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Yet here is no confusion: central-ruled

Divergent plungings, run through with a thread

Of pattern never snapping, cleave the tree

Into a dozen stubborn tusslings, yieldings,

That, balancing, bring the whole top alive.

Caught in the wind this night, the full-leaved boughs,
Tied to the trunk and governed by that tie,

Find and hold a center that can rule

With rhythm all the buffeting and flailing,

Till in the end complex resolves to simple.

from Tree in Night Wind

ABBIE HUSTON EVANS



PREFACE

A deafigaoms ol Yamm fwf ool A : e

This book has grown out of a set of lecture notes I had prepared for
a course on Lie groups in 1966. When I lectured again on the subject in
1972, 1 revised the notes substantially. It is the revised version that is now
appearing in book form.

The theory of Lie groups plays a fundamental role in many areas of
mathematics. There are a number of books on the subject currently available
—most notably those of Chevalley, Jacobson, and Bourbaki—which present
various aspects of the theory in great depth. However, I feel there is a need
for a single book in English which develops both the algebraic and analytic
aspects of the theory and which goes into the representation theory of semi-
simple Lie groups and Lie algebras in detail. This book is an attempt to fill
this need. It is my hope that this book will introduce the aspiring graduate
student as well as the nonspecialist mathematician to the fundamental themes
of the subject.

I have made no attempt to discuss infinite-dimensional representations.
This is a very active field, and a proper treatment of it would require another
volume (if not more) of this size. However, the reader who wants to take
up this theory will find that this book prepares him reasonably well for that
task.

I have included a large number of exercises. Many of these provide the
reader opportunities to test his understanding. In addition I have made a
systematic attempt in these exercises to develop many aspects of the subject
that could not be treated in the text: homogeneous spaces and their coho-
mologies, structure of matrix groups, representations in polynomial rings,
and complexifications of real groups, to mention a few. In each case the
exercises are graded in the form of a succession of (locally simple, I hope)
steps, with hints for many. Substantial parts of Chapters 2, 3 and 4, together
with a suitable selection from the exercises, could conceivably form the con-
tent of a one year graduate course on Lie groups. From the student’s point

vii



viil Preface

of view the prerequisites for such a course would be a one-semester course
on topological groups and one on differentiable manifolds.

The book begins with an introductory chapter on differentiable and
analytic manifolds. A Lie group is at the same time a group and a manifold,
and the theory of differentiable manifolds is the foundation on which the
subject should be built. It was not my intention to be exhaustive, but I have
made an effort to treat the main results of manifold theory that are used
subsequently, especially the construction of global solutions to involutive
systems of differential equations on a manifold. In taking this approach I
have followed Chevalley, whose Princeton book was the first to develop the
theory of Lie groups globally. My debt to Chevalley is great not only here
but throughout the book, and it will be visible to anyone who, like me,
learned the subject from his books.

The second chapter deals with the general theory. All the basic results
and concepts are discussed: Lie groups and their Lie algebras, the corre-
spondence between subgroups and subalgebras, the exponential map, the
Campbell-Hausdorff formula, the theorems known as the fundamental
theorems of Lie, and so on.

The third chapter is almost entirely on Lie algebras. The aim is to examine
the structure of a Lie algebra in detail. With the exception of the last part
of this chapter, where applications are made to the structure of Lie groups,
the action takes place over a field of characteristic zero. The main results
are the theorems of Lie and Engel on nilpotent and solvable algebras;
Cartan’s criterion for semisimplicity, namely that a Lie algebra is semisimple
if and only if its Cartan-Killing form is nonsingular; Weyl’s theorem assert-
ing that all finite-dimensional representations of a semisimple Lie algebra
are semisimple; and the theorems of Levi and Mal’¢ev on the semidirect
decompositions of an arbitrary Lie algebra into its radical and a (semisimple)
Levi factor. Although the results of Weyl and Levi-Mal’¢ev are cohomo-
logical in their nature (at least from the algebraic point of view), I have
resisted the temptation to discuss the general cohomology theory of Lie
algebras and have confined myself strictly to what is needed (ad foc low-
dimensional cohomology).

The fourth and final chapter is the heart of the book and is a fairly com-
plete treatment of the fine structure and representation theory of semisimple
Lie algebras and Lie groups. The root structure and the classification of
simple Lie algebras over the field of complex numbers are obtained. As for
representation theory, it is examined from both the infinitesimal (Cartan,
Weyl, Harish-Chandra, Chevalley) and the global (Weyl) points of view.
First I present the algebraic view, in which universal enveloping algebras.
left ideals, highest weights, and infinitesimal characters are put in the fore-
ground. I have followed here the treatment of Harish-Chandra given in his
early papers and used it to prove the bijective nature of the correspondence
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between connected Dynkin diagrams and simple Lie algebras over the com-
plexes. This algebraic part is then followed up with the transcendental theory.
Here compact Lie groups come to the fore. The existence and conjugacy of
their maximal tori are established, and Weyl’s classic derivation of his great
character formula is given. It is my belief that this dual treatment of repre-
sentation theory is not only illuminating but even essential and that the
infinitesimal and global parts of the theory are complementary facets of a
very beautiful and complete picture.

In order not to interrupt the main flow of exposition, 1 have added an
appendix at the end of this chapter where I have discussed the basic results
of finite reflection groups and root systems. This appendix is essentially the
same as a set of unpublished notes of Professor Robert Steinberg on the
subject, and I am very grateful to him for allowing me to use his manuscript.

It only remains to thank all those without whose help this book would
have been impossible. I am especially grateful to Professor I. M. Singer for
his help at various critical stages. Mrs. Alice Hume typed the entire manu-
script, and I cannot describe my indebtedness to the great skill, tempered
with great patience, with which she carried out this task. I would like to
thank Joel Zeitlin, who helped me prepare the original 1966 notes; and
Mohsen Pazirandeh and Peter Trombi, who looked through the entire
manuscript and corrected many errors. I would also like to thank Ms. Judy
Burke, whose guidance was indispensable in preparing the manuscript for
publication.

I would like to end this on a personal note. My first introduction to
serious mathematics was from the papers of Harish-Chandra on semisimple
Lie groups, and almost everything I know of representation theory goes back
either to his papers or the discussions I have had with him over the past
years. My debt to him is too immense to be detailed.

V. S. VARADARAJAN
Pacific Palisades

PREFACE TO THE SPRINGER EDITION (1984)

Lie Groups, Lie Algebras, and Their Representations went out of print
recently. However, many of my friends told me that it is still very useful as a
textbook and that it would be good to have it available in print. So when
Springer offered to republish it, I agreed immediately and with enthusiasm.
I wish to express my deep gratitude to Springer-Verlag for their promptness
and generosity. I am also extremely grateful to Joop Kolk for providing me
with a comprehensive list of errata.
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CHAPTER 1

DIFFERENTIABLE AND ANALYTIC
MANIFOLDS

1.1. Differentiable Manifolds

We shall devote this chapter to a summary of those concepts and results
from the theory of differentiable and analytic manifolds which are needed
for our work in the rest of the book. Most of these results are standard and
adequately treated in many books (see for example Chevalley [1], Helgason
[1], Kobayashi and Nomizu [1], Bishop and Crittenden [1], Narasimhan [1]).

Differentiable structures. For technical reasons we shall permit our dif-
ferentiable manifolds to have more than one connected component. However,
all the manifolds that we shall encounter are assumed to satisfy the second
axiom of countability and to have the same dimension at all points. More
precisely, let M be a Hausdorff topological space satisfying the second axiom
of countability. By a (C*) differentiable structure on M we mean an assignment

D:U—DWU) (Uopen, = M)
with the following properties:

(i) for each open U = M, D(U) is an algebra of complex-valued func-
tions on U containing 1 (the function identically equal to unity)

(i) if V, U are open, V < U and f € D(U), then f|V € DV);Lif V;
(i € J) are open, V = U,V,, and fis a complex-valued function defined on V'
such that f|V; € D)) for all i € J, then f € D(V)

(iti) there exists an integer m > O with the following property: for any
x € M, one can find an open set U containing x, and m real functions x,,
.o, X, from D(U) such that (a) the map

fU’H (Xx(}’)’ A ’xm(y))

is a homeomorphism of U onto an open subset of R™ (real m-space), and (b)

HIf Fis any function defined on a set 4, and B < 4, then F|B denotes the restriction
of Fto B.



2 Differentiable and Analytic Manifolds Chap. 1

for any open set V' < U and any complex-valued function f defined on V,
fe€ D(V)if and only if fo £~ is a C> function on &[V].

Any open set U for which there exist functions x,,...,x, having the
property described in (iii) is called a coordinate patch; {x,, ..., x,} is called
a system of coordinates on U. Note that for any open U = M, the elements of
D(U) are continuous on U.

It is not required that M be connected; it is, however, obviously locally
connected and metrizable. The integer m in (iii) above, which is the same for
all points of M, is called the dimension of M. The pair (M, D) is called differ-
entiable (C ) manifold. By abuse of language, we shall often refer to M itself
as a differentiable manifold. It is usual to write C=(U)instead of D(U) for any
open set U < M and to refer to its elements as (C*) differentiable functions
on U. If U is any open subset of M, the assignment V— C=(V)(V = U,
open) gives a C> structure on U. U, equipped with this structure, is a C*
manifold having the same dimension as M it is called the open submanifold
defined by U. The connected components of M are all open submanifolds of
M, and there can be at most countably many of these.

Let k be an integer > 0, U = M any open set. A complex-valued function
fdefined on U is said to be of class C* on U if, around each point of U, fis a
k-times continuously differentiable function of the local coordinates. It is
easy to see that this property is independent of the particular set of local
coordinates used. The set of all such f'is denoted by C*(U). (We omit k when
k=0:C(U)= C°U). C¥U)is an algebra over the field of complex numbers
C and contains C=(U).

Given any complex-valued function f on M, its support, supp f, is defined
as the complement in M of the largest open set on which f'is identically zero.
For any open set U and any integer k with 0 << k < oo, we denote by C¥(U)
the subspace of all f € C*(M) for which supp f is a compact subset of U.

There is no difficulty in constructing nontrivial elements of C~(M). We
mention the following results, which are often useful.

(1) Let U < M be open and K = U be compact; then we can find ¢ €
C>(M) such that 0 < ¢(x) < 1 for all x, with ¢ = 1 in an open set containing
K, and ¢ = 0 outside U. '

(i) Let {V;}ic; be a locally finite? open covering of M with CI(V}) (CI
denoting closure) compact for all i € J; then there are o, € C*(M)(i € J)
such that

(a) foreachi € J g, > 0 and supp ¢, is a (compact) subset of V;
(b) Y.y @(x) =1 for all xe M (this is a finite sum for each x,
since {V;};, is locally finite).
{9}, is called a partition of unity subordinate to the covering {V};c;.

2A family {E;}:es of subsets of a topological space S is called locally finite if each point
of X has an open neighborhood which meets E; for only finitely many i € J.
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Tangent vectors and differential expressions. Let M be a C~ manifold
of dimension m, fixed throughout the rest of this section. Let x € M. Two
C~= functions defined around x are called equivalent if they coincide on an
open set containing x. The equivalence classes corresponding to this relation
are known as germs of C* functions at x. For any C~ function fdefined around
x we write f, for the corresponding germ at x. The algebraic operations on
the set of differentiable functions give rise in a natural and obvious fashion
to algebraic operations on the set of germs at x, converting the latter into an
algebra over C; we denote this algebra by D,. A germ is called real if it is
defined by a real C= function. The real germs form an algebra over R. For
any germ f at x we write f(x) to denote the common value at x of all the C*
functions belonging to f. It is easily seen that any germ at x is determined by
a C~ function defined on all of M.

Let D} be the algebraic dual of the complex vector space D,, i.e., the
complex vector space of all linear maps of D, into C. An element of D¥ is said
to be real if it is real-valued on the set of real germs. A tangent vector to M
at x is an element v of D¥ such that

{ (i) wisreal

(1.L.D) (i) wo(fg) = f(x)v(g) + g(x)v(f) for all f, g € D,.

The set of all tangent vectors to M at x is an R-linear subspace of D¥, and is
denoted by T.(M); it is called the tangent space to M at x. Its complex linear
span T, (M) is the set of all elements of D¥ satisfying (ii) of (1.1.1). Let U be
a coordinate patch containing x with x,,...,x,, a system of coordinates on
U, and let

U={(x(p),....xu(»):y € U}

For any f € C=(U)let f € C~(U) be such that f o (x,,...,x,) =/ Then
the maps
af
f,_) (atj)n:m(x) ,,,,, tm=Xm(x)

for 1 <j<m(t,...,t, being the usual coordinates on R™) induce linear
maps of D, into C which are easily seen to be tangent vectors; we denote
these by (d/0x;),. They form a basis for T,(M) over R and hence of T, (M)
over C.

Define the element 1, € D¥ by

(1.1.2) 1.(6) = f(x) (f € D,).

1, is real and linearly independent of T (M). It is easy to see that for an ele-
ment v € D¥ to belong to the complex linear span of 1, and T, (M) it is
necessary and sufficient that o(f, f,) = 0 for all f,, f, € D, which vanish at x.
This leads naturally to the following generalization of the concept of a tangent
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vector. Let
(1.1.3) J.={:f e D, f(x) =0}

Then J, is an ideal in D,. For any integer p > 1, J2 is defined to be the linear
span of all elements which are products of p elements from J, ; J2is also an
ideal in D,. For any integer r > 0 we define a differential expression of order
<r to be any element of D¥ which vanishes on J.*!; the set of all such is a
linear subspace of D¥ and is denoted by T{)(M). The real elements in T {}(M)
from an R-linear subspace of T{)(M), spanning it (over C), and is denoted by
TO(M). We have TO(M) =R-1,, TO(M) =R-1, + T,(M),and T (M)
increases with increasing r. Put

TOM) = TO(M)
(1.1.4) r%0
T(M) = | TRM).

T(M) is a linear subspace of D¥, and T{”(M) is an R-linear subspace
spanning it over C.

It is easy to construct natural bases of the T{’(M) in local coordinates.
Let U be a coordinate patch containing x and let U and x,, . . . ,x,, be as in
the discussion concerning tangent vectors. Let (¢) be any multiindex, i.e.,
(@) = (ay, - . . ,&,) Where the a; are integers >0; put |a| =&y + - -+ + a,.
Then the map

a7

(2 (f e C=(U)
f <at11 e atmm>)‘1=)61(x)..--,'m=-7‘m(")

induces a linear function on D, which is real. Let ¥ denote this (when
(a) = (0), 3« = 1,). Clearly, 0 € TOM) if |a]| < r.

Lemma 1.1.1. Let r > 0 be an integer and let x € M. Then the differen-
tial expressions 3% (|a| < r) form a basis for T’(M) over R and for T{)(M)
over C.

Proof. Since this is a purely local result, we may assume that M is the
open cube {(yy, . . . ,Vm) :|y;| < afor 1 <j < m}inR™ with x as the origin.
Let ¢,, ... ,t, be the usual coordinates, and for any multiindex (8) = (8,,
..., B let t2 denote the germ at the origin defined by #§* . . . t5»/f,! - - - B!

Let f be a real C~ function on M and let g,, . ..(1) = f(tx,, ... ,tx,)
(=1<t< 1, (xy,...,x,) € M). By expanding g,, . . about? = 0in its
Taylor series, we get

880.ni@) + 2y [ =y g
* 0

t.\'
B o&5%, 5!
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for 0 <<t < 1. Putting ¢ = 1 and evaluating the ¢-derivatives of g,, ., in

..... m

terms of the partial derivatives of f, we get, for all (x,,...,x,) € M,
xPr ... xﬁ{“
SGrexy) = 3 S X gu(r)
12 Byt B!
uh(a> X ¥
|Nl:r+1a1!"-am! ( 1 ’ m)a

where

ot tam

B9(xy, ... %) = (r + 1)[1(1 —uy (a f )(uxl, .., ux,)du.

IR T

Clearly, the 4 are real C= functions on M. Passing to the germs at the origin,
we get

f— Z o)(‘ﬂ)(f)t(ﬁ) 4 Z t®h(),
| 1

1Bl<r al=r+
Since t e J.*! for any (a) with || = r + 1, we get, for any A € T (M),

A= 3 At9)g®

181<r
This shows that the d¥'(| f| << r) span T(M) over R. On the other hand,
the @’ are linearly independent over R or C, since

0 (=B

GaE) = { L 4)=(B)

This proves the lemma.

Vector fields. Let X (x+— X,) be any assignment such that X, € T, (M)
for all x € M. Then for any function f € C=(M), the function Xf: x+>
X, (f,) is well defined on M, f, being the germ at x defined by f. If U is any
coordinate patch and x,,...,x, are coordinates on U, there are unique
complex-valued functions ay, . . . ,a, on U such that

5= 3 a0GE) vew.

X is called a vector field on M if Xf € C=(M) for all f € C=(M), or equiva-
lently, if for each x € M there exist a coordinate patch U containing x and
coordinates x, . . .,x, on U such that the a; defined above are C> functions
on U. A vector field X 1s said to be real if X, € T.(M) V¥ x € M; X is real
if and only if Xf is real for all real f € C~(M). Given a vector field X, the
mapping f— Xf is a derivation of the algebra C=(M); i.e., for all f and
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g € C°(M),
(1.1.5) X(fe)=/-Xg+ g-X[.

This correspondence between vector fields and derivations is one to one and
maps the set of all vector fields onto the set of all derivations of C=(M).
Denote by 3(M) the set of all vector fieldson M. If X € 3(M)andf € C=(M),
SX:x— f(x)X, is also a vector field. In this way, 3(M) becomes a module
over C~(M). We make in general no distinction between a vector field and the
corresponding derivation of C=(M).

Let X and Y be two vector fields. Then X o Y — Y o X is an endomor-
phism of C~(M) which is easily verified to be a derivation. The associated
vector field is denoted by [X, Y] and is called the Lie bracket of X with Y.
The map

(X, Y)— [X,Y]
is bilinear and possesses the following easily verified properties:

(H [X,X]=0
(1.1.6) (i) [X,Y]+ [V, X]=0
(i) [X,[Y.Z]] + [Y,[Z,X]) + [Z,[X., Y]] = O

(X, Y, and Z being arbitrary in 3(M)). If X and Y are real, so is [X,Y]. The
relation (iii) of (1.1.6) is known as the Jacobi identity.

Differential operators. Let r >> 0 be an integer and let
(1.1.7) D:xw— D,

be an assignment such that D, € T(M) for all x € M. If f € C~(M), the
function Df: x— D,(f,) is well defined on M, f, being the germ defined by
fat x. If Uis a coordinate patch and x,, .. .,x, are coordinates on U, then
by Lemma 1.1.1 there are unique complex functions a(,, on U such that

D, :lg/\:r awm(»)as” (y € U).

D is called a differential operator on M if Df € C>(M) for all f € C~(M), or
equivalently, if for each x € M we can find a coordinate patch U containing
x with coordinate x,, . . .,x,, such that the a,, defined above are in C~(U).
The smallest integer r > 0 such that D, € T{)(M) for all x € M is called
the order (ord(D)) or the degree (deg(D)) of D. For any differential operator
Don M and x € M, D, is called the expression of D at x. If Df is real for
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any real-valued f € C=(M), we say that D is real. The set of all differential
operators on M is denoted by Diff(M). If f € C~(M) and D « Diff(M),
fD: x> f(x) D, is again a differential operator; its order cannot exceed the
order of D. Thus Diff(M) is a module over C=(M). A vector field is a differ-
ential operator of order <{1.If {V,};, is an open covering of M and D(i € J)
is a differential operator on V; such that

(a) sup;e; ord (D)) < o0
() if V;,, N V., # ¢, the restrictions of D, and D, to V,, N V,, are equal,

then there exists exactly one differential operator D on M such that for any
i € J D, is the restriction of D to V..

Let D (x — D,) be a differential operator of order <r. We also denote
by D the endomorphism f+> Df of C~(M). This endomorphism is then
easily verified to have the following properties:

(1) it is local; ie., if f € C=(M) vanishes on an open set U,
Df also vanishes on U
(1.1.8) (i) if x e M, and f,,...,f,,, are r + 1 functions in C~(M)
which vanish at x, then

(D(f1fy -+ fre)(X) = 0.

Conversely, it i1s quicky verified that given any endomorphism E of C~(M)
satisfying (ii) of (1.1.8) for some integer r > 0, E is local and there is exactly
one differential operator D on M such that Df = Ef for all f € C~(M); and
ord(D) < r. In view of this, we make no distinction between a differential
operator and the endomorphism of C~(M)induced by it. It follows easily
from the expression of a differential operator in local coordinates that if
D, and D, are differential operators of respective orders r, and r,, then
D, D, is also a differential operator, and its order is <r, + r,; moreover,
D,D, — D,D, is a differential operator of order <r, + r, — 1. Diff(M)
is thus an algebra (not commutative); if Diff(M), is the set of elements
of Diff(M) of order <{r, r — Diff(M), converts Diff(M) into a filtered alge-
bra. A differential operator of order O is just the operator of multiplica-
tion by a C~ function; if u is in C~(M) we denote again by u the operator
fr>uf of C=(M).

If M = R~ and D is a differential operator of order <{ r, there are unique
C= functions a,, (a| << r) on M (coefficients of D) such that

dlal

D = Ay 55—
IG’ZSI ()0[7‘ s dt:.’"

ty,...,t, being the linear coordinates on M. It is natural to ask whether
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such global representations exist on more general manifolds. The following
theorem gives one such result.

Theorem 1.1.2. Let X, ..., X, be m vector fields on M such that (X,),,
- (X, form a basis of T, (M) for each x € M. For any multiindex (a) =
(s, ... ,0,) let X be the differential operator

(1.1.9) X = XoXg - Xgr

(when (a) = (0)X® = 1, the identity operator). Then the X‘* are linearly
independent over C=(M). If D is any differential operator of order < r, we can
find unique C= functions a,, on M such that

(1.1.10) D=3 a,X".

fal<r
If the X, are real, then for any real differential operator D the a,, defined by
(1.1.10) are all real.

Proof. For any integer r > 0, let D, denote the complex vector space of
all differential operators on M of the form Y, <, i X ¥, the fi,, being C*
functions on M. Note that D, contains all vector fields. In fact, if Z is any
vector field, we can write Z = Y, ,.,.¢;X; for uniquely defined functions c;.
To see that the ¢; are in C~(M), let U be a coordinate patch with coordinates
Xy, ..., X, Then there are C= functions d,, a;, on U (1 <j, k < m) such
that Z, = 33, <;<nd(y)(0/0x,), and (X)), = 3 <k <m@;(¥)(9/dx,), for all y €
U. Since the (X)), (1 << j < m) are linearly independent for all y, the matrix
(a;) is invertible. If a’* are the entries of the inverse matrix, they are in
C=(U) and ¢; = 3 <;<mdia* on U.

. We begin the proof of the theorem by showing that if / is an integer
>1land Z,,...,Z, are [ vector fields, then the product Z, - -- Z, belongs
to O,. For [ = 1, this is just the remark made in the previous paragraph.
Proceed by induction on /. Let / > 1, and assume that the result holds for

any [ — 1 vector fields. Let Z,,...,Z, be [ vector fields, and write F =
Z, - Z,
Notice first that if Y,...,Y, are any [/ vector fields, F= Y, --- Y,

and F' is the product obtained by interchanging two adjacent Y’s, then F —
F’ is a product of / — 1 vector fields. So F — F' € D, , by the induction
hypothesis. Since any permutation is a product of such adjacent interchanges,
it follows from the induction hypothesis that ¥, --- Y, — Y, Y, --- Y, €
D,_, for any permutation (i, ...,i) of (1,...,). Butif 1 <j, <j, < ---
<j,<m, then X, --- X; = X for a suitable (a) with |a| =/, so that
X, --+ X;, € D,. Hence, from what we proved above, if (k,,...,k,) is
any permutation of (1, ...,m) and (&) is any multi-index with || </, then
Xz - X € D,
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Now consider E. By the induction hypothesis, there exist C* functions b,
and c;on Msuchthat Z, =3 ;.. c;X;and Z, - - - Z,= > p1ci-1 by X P.
So

E= 3 3 c(X;°obp)X?

1<j<m |pI<I-1

= 2 2 cbpX XD+ N c(X;b )X P,
1<5<m 1 p1=1-1 1<7<m | pI<i-1
Since, for all (f) with |B| <</ — 1, X;X®» € D, (by what was seen in the

preceding paragraph), we have F € D,.

We can now complete the proof of the theorem. Let r > 0 be any integer.
Let U be a coordinate patch with coordinates x,, .. .,x,, and let 3 be the
differential operators y — @{* on U. By the result of the preceding paragraph
(applied to the manifold U), there exist C* functions a,, (5 on U such that

(1.1.11) 9 = m‘éram,m}("” (la|<r)

on U. This shows at once that for any y € M, the X?( 8| < r) span T
(M); since their number is exactly the dimension of T{(M), they must be
linearly independent too. Therefore, if D is a differential operator of order
<r, we can find unique functions a.;, on M such that

1.1.12 D = xX®
( ) |,;g,a"”

To prove that the a(,, are C*=, we restrict our attention to U and use the above
notation. We select C~ functions g, on U such that D = Y7, <80 on
U. Then by (1.1.11) and (1.1.12) we have, on U,

ap = 2 Eww,m (BI<P),
la|<r

proving that the a, are C=. The last statement is obvious. This proves the
theorem.

We shall often use Harish-Chandra’s notation for denoting the applica-
tion of differential operators. Thus, if fis a C> function and D a differential
operator, f(x; D) denotes the value of Df at x € M.

Exterior differential forms. Let W be a finite-dimensional vector space
of dimension m over a field F of characteristic 0. Put Ao(W) = F, and for any
integer k > 1, define A, (W) as the vector space of all k-linear skew-symmetric
functions on W x --- X W (k factors) with values in F. A, (W) is then 0 if

k > m, and dim A (W) = (II?)’ 1 <k <m. We write A(W) for the direct

sum of the Ay(W), 0 <<k < m and write A for the operation of exterior
multiplication in A(W) which converts it into an associative algebra over F,
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its unit being the unit 1 of F. We assume that the reader is, familiar with the
defintion of A and the properties of A(W) (cf. Exercises 9-11). If ¢, ¢’
A(W) (= dualof W), 9 A ¢ = —¢’ A ¢; in particular, g A ¢ = 0. More
generally, if ¢ € A (W) and ¢’ € A (W), then ¢ A ¢ € A,, (W), and
p AN ' =(—D"9' N If{p,,...,0,}isabasisfor A;{(W),and 1 <k <m,
the (’:) elements g, A --- A g, (1 <i, < --- <i, <m)form a basis for

A (W). Note that dim A,,(W) = 1 and that ¢, A --- A ¢,, is a basis for
it. If wy,...,p, is another basis for A,(W), where v, = 33, ;.na,0, (1 <
i << m), and if A is the matrix (a;;);; jm, then

(1.1.13) Wi A, =det(A) g, A -+ A @
A O-form is a C* function on M. Let 1 << k << m and let
WX,

be an assignment such that w, € A (T, (M)) for all x € M. w is said to be
real if @, is real-valued on T, (M) X --- X T, (M) forallx € M. Let Ube a
coordinate patch and let x,...,x, be a system of coordinates on it. For
y € U, let {(dx,),, ... ,(dx,),} be the basis of T,(M)* dual to {(d/dx),),, ...,
(d/dx,,),}. Then there are unique functions a;,  , (1 <i; <i, < -+ <y
< m) defined on U such that

,,,,,

WNdx, ), N - A (dxy), (y € U).

w}’ = Z a;

1<i < <iv<m

.....

w is said to be a k-form if all the a;,
choices of U).

Suppose w (x — w,) is an assignment such that w, € AT, (M)) for all
x e M. LetZ,,...,Z, be vector fields. Then the function

. are C= functions on U (for all possible

.....

Q)(Z], e 9Zk) X wx((Zl)x7 e )(Zk)x)

is well defined on M. 1t is easy to show that w is a k-form if and only if this
function is C~ on M for all choices of Z,, . .. ,Z,. The map

(le e 7Zk)'_)w(zl" .. aZk)

of 3(M) X -+ X 3(M)into C=(M) is skew-symmetric and C~(M)-multilinear
(i.e., C-multilinear and respects the module actions of C~(M)); the corre-
spondence between such maps and k-forms is a bijection. If  is a k-form and
feC=(M),fo: x— f(x)w, is also a k-form. So the vector space of k-forms is
also a module over C=(M). If wis a k-form and ' is a k'-form, then x — w, A
o', is usually denoted by w A ’. It is a (k + k')-form,and w A o' = (—1)*¥
o' A .
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We write @,(M) = C*(M) and @, (M) for the C~(M)-module of all k-
forms. Let @(M) be the direct sum of all the @, (M) (0 << k < m). Under
A, @(M) is an algebra over C~(M).

Suppose f € C=(M). Then for any vector field Z, Zf ¢ C=(M), and so
there is a unique 1-form, denoted by df, such that

(1.1.14) df)Z)=2Zf (Z e I(M)).
If U is a coordinate patch with coordinates x,, . . .,x,, then
_ af
@, = 5 (GE)orax), v

In particular, on U, dx; is the 1-form y — (dx,),. More generally, there is a
unique endomorphism d (w — dw) of the vector space @(M) with the follow-
ing properties:

(i) d(dw) =0 for allw € A(M)
(i) if o € @,(M), ' € @.(M), then dlw A o) = (dw) A

1.15

(I.1.13) o+ (Do Ado

(i) if f € @,(M), df is the 1-form Z — Zf (Z € 3(M))
Let U be a coordinate patch, let x,, . .. ,x, coordinates on it, and let

w = > an ndx, A Adx,,
1<iy< o <iy<m

on U. Then on U
(1.1.16) dw = > da;, . .. N\dx, A N\dx,.

1<i)<---<ix<m

The elements of Q(M) are called exterior differential forms on M. The
endomorphism d (w — dw) is the operator of exterior differentiation on G(M).

We now discuss briefly some aspects of the theory of integration on
manifolds. We confine ourselves to the integration of m-forms on m-dimen-
sional manifolds.

We begin with unoriented or Lebesgue integration. Let M be, as usual, a
C= manifold of dimension m, and e any m-form on M. It is then possible to
associate with ¢ a nonnegative Borel measure on M. To see how this is done,
consider a coordinate patch U with coordinates x,,...,x,, and let U =
{(x:(y), ..., x.(»):y € U}; for any C* function f on U, let f € C"() be
such that f o (x,,...,x,) =f. Now, we can find a real C* function wyon U
such that @ = wydx,; A --- A dx, on U. The standard transformation for-
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mula for multiple integrals then shows that for any f € C,(U), the integral

fﬂf'(f,, cest )Wty L ) de L dty,
does not depend on the choice of coordinates x,, ..., x,. In other words,
there is a nonnegative Borel measure yx, on U such that for all f € C.(U) and
any system (x,, ..., x,,) of coordinates on U

[ fduy = [ Flwoldt, - di,

The measures u, are uniquely determined, and this uniqueness implies the
existence of a unique nonnegative Borel measure g on M such that g, is the
restriction of g to U for any U. Thus, for any coordinate patch U and any
system (xy, . .. ,x,,) of coordinates on U we have, for all f € C(U),

(1.1.17) J.Ufa',u — jﬂf(r,,...,zm);wu(z,,...,fm)uz, coedt,

We write @ ~ u and say that u corresponds to w.

Let M be as above. M is said to be orientable if there exists an m-form on
M which does not vanish anywhere on M. Two such m-forms, w, and w,, are
said to be equivalent if there exists a positive function g (necessarily C*) such
that w, = gw,. An orientation on M is an equivalence class of nowhere-
vanishing m-forms on M. By M being oriented we mean that we are given M
together with a distinguished orientation; the members of this class are then
said to be positive (in symbols, >0).

Suppose now that M is oriented. Let # be any m-form on M with compact
support. Select an m-form w > 0 and write # = gw, where g € C7(M); let
U, be the measure corresponding to w. We then define

(1.1.18) qu:fMgd,uw.

It is not difficult to show that this definition is dependent only on # and the
orientation of M, and not on the particular choice of w. Finally, if w > 0 is
as above we often write foco for fod,uw.

Theorem 1.1.3. Let M be oriented and w a positive m-form on M. Let u
be the nonnegative Borel measure on M which corresponds to w. Then, given
any differential operator D on M, there exists a unique differential operator D'
on M such that

(1.1.19) jMDf-gdﬂ:jMf-D*gdﬂ
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for all f, g € C=(M) with at least one of f and g having compact support. D'
has the same order as D and D — D' is an involutive antiautomorphism of the
algebra Diff(M).

Proof. Given D € Diff(M) and g € C~(M), the validity of (1.1.19) for
all f € Cy(M)determines D'g uniquely. So if D' exists, it is unique. It is also
clear thatif D'is a differential operator such that (1.1.19) is satisfied whenever
fand g are in C7(M), then (1.1.19) is satisfied whenever at least one of f and
g lies in CZ(M). The uniqueness implies quickly that the set D,, of all D e
Diff(M) for which D! exists is a subalgebra, that DY, = D,,, and that D —
D' is an involutive antiautomorphism of D,,. It remains only to prove that
D,, = Diff(M).

Let U be a coordinate patch, and let (x,, . .. ,x,,) be a coordinate system
U with @ = wydx, A --- A dx,, on U, where w, >0 on U. Put U =
{(x1()), . ..,xa(»)):y € U} and forany h € C=(U) denote by % the element
of C=(U)such that o (x,,...,x,) =h. A simple partial integration shows
thatif | <j<<m,f,g € C2(U),

7\ - o g | 1 dwy 5\ 7~

L (a_zf,> gy dt, - dt, — —fv (a—z,. 4 w_ua—t,g> Ty dt, - dt,,
If Z; is the vector field y — (d/dx,), on U, and ¢, € C=(U) is defined by
@, = wg' - (Z;wy), it is clear that Z' exists and is the differential operator of
order I givenby Z} = —(Z; 4 ¢;). If h € C=(U), h' exists and coincides with
h. But by Theorem 1.1.2, Diff(U) is algebraically generated by C=(U) and the
vector fields Z;, 1 <j <<m. Hence D, = Diff(U). Moreover, the above
argument shows that for any E € Diff(U) the order of E' is << order of E.

Let D be any differential operator on M. From what we have just proved
itis clear that for each coordinate patch U one can find a differential operator
Dy, on U such that ord(D})) < ord(D) and for all f, g € C=(U)

@ -gdu={ f-Digdn.

The uniqueness of f shows that the D}, match on overlapping coordinate
patches. So there is a differential operator D’ on M such that C}, is the restric-
tion of D’ to U for any arbitrary coordinate patch U. Moreover, if U is any
coordinate patch, we have

[, @ngdu = rwgau

for all f; g € C7(U). A simple argument based on partitions of unity shows
that this equation is valid for all f, g € C=(M). In other words, D' exists and
coincides with D’. Our construction makes it clear that ord(D') < ord(D)
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for all D e Diff(M). Since D' = D, this shows that ord(D) < ord(D"),
so that necessarily ord(D) = ord(D") for all D € Diff(M). The theorem is
proved.

D' is called the formal adjoint of D relative to w.
Mappings. Let M, N be C~ manifolds. A continuous map
n.M-—>N

is said to be differentiable (C*) if for any openset U < Nand any g € C(U),
gorm e C(n~'(U)). Suppose = is differentiable, x € M, y = zn(x). Then with
respect to coordinates x;, ...,x, around x, and y,,...,y, around y, & is
given by differentiable functions.

If g, g’ are C= around y and coincide in an open set containing y, then
gomand g’ o m coincide in an open set containing x. Thusthe mapgi> gon
(g € C=(N)) induces an algebra homomorphism z* (u+ u o 7) of D, into
D.. If X, € T,.(M), there is a unique Y, € T,.(N) such that Y, (u) =
X, (n*(u)); we write Y, = (dn),(X,). Thus

(dn) (X )(w) = X (z*(w)) (u € D).

(dr), is a linear map of T, (M) into T,(N), called the differential of m at x. It
is clear that (dr), maps the tangent space 7,(M) into the tangent space T,(N).
A special case of this arises when M is an open subset of the real line R. In
this case, for any t € M, D, = (d/dt),-, is a basis for T,(M), and it is custo-
mary to write

(1.1.20) (t) — (%) a(t) = (dn) D).

7(t) is thus an element of T, ().

If p > 1 is any integer, it is obvious that z*(J?) < J2, so givenany v €
T&(M), there is a unique v € T{(N) such that v'(u) = v(n*(u)) for all
u € D,. We write v’ = (dn){”(v); thus

(1.1.21) (@) (@)u) = v(z*(w)) (u € D,).

It is obvious that (dz){ maps T’(M) into T{”(N) for any integer r > 0 and
that (dn){ | T.(M) = (dr),. We refer to (drn){ as the complete differential of
7 at x. If D is a differential operator on M, there need not in general exist a
differential operator D’ on N such that (dn){(D,) = Dy, for all x € M.
If such a D’ exists, we shall say (following Chevalley) that D and D’ are n-
related. Given D € Diff(M) and D’ € Diff(N), it is easy to show that D and
D’ are m-related if and only if D(u o ) = (D'u) o & for all u € C=(N). If
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D; € Diff(M) and D) € Diff(N) are n-related (j = 1, 2), then D, o D, and
D' o D) are n-related.

Let z: M — N be a C” map and w any r-form on N. For x € M let
(n*w), be the r-linear form defined by

(1.1.22) (T*0). (V15 . . ,0,) = @pi((dm) (), . . ., (dn).(v),

forvy,...,v, € T,(M). Then (n*w), € A(T,.(M)), and x+> (n*w), is an
r-form on M. We denote this form by z*w. n*: w — n*w has the following
properties:

(1) #*uw) = (uomn*w W c C*(N))
(1.1.23) (i) d(n*w) = n*(dw)
(i) ¥, A ;) = (@*w,) A (T*,).

(w, Wy, @,, € Q(N) are arbitrary).

We consider now the special case where the differentiable map 7 is a
homeomorphism of M onto N and z~!is also a differentiable map. = is then
called a diffeomorphism. In this case  induces natural isomorphisms between
the respective spaces of functions, differential operators, etc. For instance,
let N= M and a: x — a(x) a diffecomorphism of M onto itself. Then « in-
duces the automorphism u+— u* of C~(M) where u*(x) = u(e '(x)) for all
x € M,u € C=(M). This in turn induces the automorphism D > D= of the
algebra Diff(M); D*(u) = (D(u*")), for all D € Diff(M) and u € C=(M).
The set of all diffeomorphisms of M is a group under composition. If o, 8
are diffeomorphisms of M onto itself, the D*# = (D#)* for D < Diff(M).
Similarly we have the automorphism w > * of @(M).

Let # (M~ N) be a C~ map (m = dim(M), n = dim(N)), x € M, and
let (dm), be surjective. Let y = n(x). Then m > n, and it is well known that in
suitable coordinates around x and y, @ looks like the projection (¢,, .. . ,t,)
=~ (¢, ...,t,)around the origin in R™. In fact, let x,, . . ., x,, be coordinates
around x, and y,, . . .,y, coordinates around y with x,(x) = y,(y) =0, 1 <
i <<m, 1 <j<{n. There are C~ functions F,, ... ,F,defined around 0, —
0,...,0) € R™ such that y; oz = F;(x,,...,x,) (I < j < n) around x.
Since (dm), is surjective, a standard argument shows that the matrix
(0F;/0t) 1< j<n 12k=m has rank n at 0,,. By permuting the x, if necessary, we
assume that the n X n matrix (9F;/d,), -, -, is non-singular at 0,,. It is then

clear that the functions y, oz, ...y, o m, X,.,...,X, form a system of
coordinates around x; and with respect to these and the y;, 7 looks like the
projection (¢,, ... ,t,) — (¢, ...,t1,). It follows from this that the set M, =

{z:z € M, (dn), is surjective} is open in M, that z[M,] is open in N, and that
m is an open map of M, onto #[M,]. n is called a submersion if (dr), is sur-
Jective for all x € M. If z is a submersion and #[M] = N, N is called a quo-
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tient of M relative to n. It follows from the local description of z given above
that if N is a quotient of M relative to x, then for any open set U S N, a
function gon Uis C~if and only if goz is C* on z~'(U). In other words, in
this case, the differentiable structure of N is completely determined by =
and the differentiable structure on M.

We now consider maps with injective differentials. Here it is necessary to
exercise somewhat greater care than in the case of a submersion. Let M and
N be C~ manifolds of dimensions m and n respectively, and z (M — N) a
C~ map. Let x € M, y = n(x) and suppose that (dr), is injective. Then m <Z
n, and in suitable coordinates around x and y, m looks like the injection

(ty, ..t (ty, ... ,1,,0,...,0) around the origin. More precisely, we can
find all of the following: a coordinate patch U containing x with coordinates
Xi, - - .,X,; a coordinate patch V containing y with coordinates yi, ... .,p,;

and a number a > 0 with the following properties:

(i) &(z (x,(2),...,x,(2) is a difftomorphism of U onto
17, with {(x) = 0,,; 7 (z' = (31(2)), . . . ,yu(27)) s a diffeo-
morphism of V onto 77, with 5(y) = 0,.3
(L.1.24) (i) momo & tisthe map
(..t (ty, .. t,0,...,0)
of I™ into I%.

To see this, let x', ... ,x,, be coordinates around x and let ), ...,y, be
coordinates around y = z(x) with xi(x) = y}(») = 0,1 <i<m, 1 <j<n.
Let F(1 <j < n) be C~ functions around 0,, such that y} o 7 = Fy(x,, ...,

x,,) around x(1 < j<n). Since(dn), is injective, the matrix (0F;/01,) < j<n 1<k <m
has rank m at 0,,. By permuting the y/ if necessary, we may assume that the
m X m matrix (0F;/d1,),<; r-m is nonsingular at 0,,. It is then clear that the
functions y, o m,...,y,, o m form a system of coordinates around x. Let x, =
Yy om(l < i<m). Let G, be C* functions around 0,, such that Vyom =
G,(xy,...,x,) around x(m < p < n). Define y, =y, (i <m), y, =y, —
G,(¥1, ... V) (m < p < n). Then we have (1.1.24) for suitable U, V, a > 0.
It follows from (1.1.24) that there is a sufficiently small open set U around
x such that 7 is a homeomorphism of U onto zn[U].

7 is called an immersion if (dn), is injective for all x € M; an imbedding
if it is an one to-one immersion; and a regular imbedding if it is an imbedding
and if 7 is a homeomorphism of M onto n[M], the latter being given the
topology inherited from N. The properties (1.1.24) are not in general strong

3For any integer k =1 and any 6 > 0, we write 1{,‘ for the cube in R* defined by
I¥ = {(t1,...,0): =b <t; <b for 1<j<<k}.

The origin of R* is denoted by 0.
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enough to ensure that a given imbedding is regular or has other nice prop-
erties. Note, however, that if z is an imbedding the equations (1.1.24) com-
pletely determine the differentiable structure of M in terms of = and the
differentiable structure of N:if W < M is open and f is a complex-valued
function on W, fis C~ if and only if for each x € W one can find an open set
U with x € U < W, an open set V containing y = n(x) with z[U] < V, and
g € C>(V) such that f(z) = g(n(2)), z € U.

The next theorem describes some of the nice properties of regular imbed-
dings. Recall that a subset 4 of a topological space E is said to be locally
closed (in E) if it is a relatively closed subset of some open subset of E, or
equivalently, if it is open in its closure.

Theorem 1.1.4. Let © be a regular imbedding of M into N. Then n[M] is
locally closed in N. For each x € M, we can choose U, V, X1, ... X, Vis-- -,
¥, such that, in addition to (1.1.24), we have

(1.1.25) alU] = a[M] N V.

If P is any C= manifold, and u is any map of P into M,uis C ifand only if mo u
is a C* map of P into N.

Proof. Let U, V', x{,...,Xp Vis...,Vn and @ > 0 be such that the
relations (1.1.24) are satisfied (with U’, V', and a’ replacing U, V, and a,
respectively). Since m is a homeomorphism onto #[M],z[U’] is open in
n[M], so there is an open set V'’ in N such that z[U'] = V" N n[M]. Let
Vi=V"NV". Then V| is an open subset of N containing y = n(x) and
U] = V, N n[M]. Choose a with 0 < a < a’ such that #~'(I?) < V| and
E1I™)y < U'. Thenif we set U = E-1(I7) and V = n~1(I7), we have (1.1.25).
Note that n[U] = n[M] N V is closed in V by (1.1.24). Now select open
sets V(i € I)in N such that z[M] < (.c,V: and a[M] N V; is closed in V;
for each i € I. Then it is clear that z[M] is closed in (¢, V,; thus n[M]
is locally closed. For the last assertion, let P be a C* manifold, and let u
be a map of P into M such that 7o u is a C~ map of P into N. Let p € P,
x = u(p), y = n(x). There is an open set W in P containing p such that
(m o uw)[W] < V; then u[W] < U, It follows at once from a consideration of
coordinates that u is a C~ map of W into U.

The universal property contained in the last assertion of Theorem 1.1.4
is an important consequence of the regularity of an imbedding. However,
even some irregular imbeddings possess this property. Let # be an imbedding
of M into N. We shall call # quasi-regular if the following property is satisfied :
if P is any C~ manifold and « any map of P into M, u is C*~ if and only if
mouis C~ from P to N. There are imbeddings which are quasi-regular but
not regular (Exercise 1).
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Submanifolds. Let M, N be C~ manifolds. Then M is called a submani-
fold of N if
(1.1.26) { (1) M < N (set-theoretically)

o (i) the identity map of M into N is an imbedding.

M is said to be a regular (resp. quasi-regular) submanifold if the identity map
of M into N is regular (resp. quasi-regular). If M is a submanifold of ¥ and
x € M, we shall identify T2 (M) with its image in T (N) under the complete
differential of the identity map of M into N.

As we have observed already, the relations (1.1.24) have the following
consequence: given a subset M = N and a topology on M under which Misa
Hausdorff second countable space and which is finer than the one induced
from N, there is at most one differentiable structure on M so that M becomes
a submanifold of N. If such a structure exists, we shall equip M with it and
refer to M as a submanifold of N. If the topology on M is the one induced by
N, then the differentiable structure described above, if it exists, will convert
M into a regular submanifold of N.

Theorem 1.1.5. Let N be a C* manifold and let M = N. In order that M,
equipped with the relative topology, be a (regular) submanifold of N, it is neces-
sary and sufficient that the following be satisfied. There exists an integer m
with 1 < m < n such that given any x € M, one can find an open set V of N

containing x and n — m real differentiable functions f, . . . ,f,_, on V such that
(l) VmM:{Z:ZEVafl(Z):“':n~m(z):0}
(1.1.27) i) (df)ss .- (dfo-m). are linearly independent elements of
T.(N)*.

If this is the case, dim(M) = m, and M is a locally closed subset of N.

Proof. The only thing that needs to be proved is that if M satisfies the
conditions described above, then it becomes a regular submanifold of N;
Theorem 1.1.4 implies the remaining assertions. Also if m = n, (1.1.27) reduces
to the condition ¥ = M, so that in this case M is an open submanifold of N.
We may thus assume 1 < m < n.

Fixx € MandletV,f,,...,f,-m beasin (1.1.27). It is then clear that we
can find a system of coordinates x,, . . . ,x, in a neighborhood of x such that
x;(x) = 0(1 <j<n)and x,,; = f(1 <j<n— m). By replacing V' by a
smaller open set, we may assume that the homeomorphism & (y — (x,(»),
...,x,(»))) maps V onto 12 for some a > 0. Then £ maps M N V onto I3 X
0,_,.. In other words, U = M N Vis a regularly imbedded submanifold of ¥,
hence of V. Since x € M is arbitrary, it follows that we can write M = Ui Uss
where each U, is open in M and is a regular submanifold of N. If i, j € I are
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such that U,; = U, N U; # @, then U,; is open in both U; and U; and is a
regular submanifold of N under each of the C= structures induced by U,
and U,. These two structures must be the same, so U,; is an open submanifold
of both U, and U,. It then follows that there is a unique C* structure for M
such that each Ui € I) becomes an open submanifold of M. This structure
converts M into a regular submanifold of N.

Product manifolds. Let M,(j = 1, 2) be a C~ manifold of dimension m;,
and let M = M, X M,. Equip M with the product topology; it is then
Hausdorff and second countable. Let U & M be an open subset and f'a com-
plex function defined on U. We say fis C= if the following condition is
satisfied: for any (a;, a,) € U there are coordinate patches V; around a; and
coordinates x;, . . . ,X;,, on V,(j = 1, 2) such that (i) V', x V, < U, and (ii)
if 7; is the image of ¥, under the map z+> (x,;,(2), . ..,x;.(2)), there is a
C~ function ¢ on ¥, x ¥, such that

f(bi,by) = p(x11(b1), ..o X, (B1)sX21(D2), . - o 5 X2 y(D2))

for all (b,,b,) € V|, X V,. U~ C=(U) is a differentiable structure for M;
it is called the product of the structures on M, and M,. M is called the product
of the C~ manifolds M, and M,. If #; is the natural projection of M on M,
7; is a submersion. If Nis a C= manifold and u: y — (u,(¥), u,(y)) is a map of
N into M, then u is C~ if and only if 4, and u, are C=.

Suppose x = (x,, x,) € M. Given functions f; € C~(U,), where x; € U,
(/= 1,2), we write f, X f, for the element of C=(U, X U,) given by (f; ®.f2)
(a,,a,) = fi(a,) fr(a)(a; € U)). The map f,,f, — f; KX f; induces a natural
injection of D, X D,, into D,. If X; is a tangent vector to M; at x; (j =
1, 2), there is exactly one tangent vector X to M at x such that foru;, € D,,
(j=12),

(1.1.28) X(u, @ u,) = ui(x,)X,(u,) + uy(x,)X,(u,);

X,, X, — X is a linear isomorphism of T,(M,) x T, (M,) with T,(M).
More generally, if v; € TU(M;) (j = 1, 2) there is exactly one v € TE(M)
such that

(1.1.29) of, ®1,) = v (f)vfy) (f; € D,);

v € TUw (M) and the map v, X) v, — v extends uniquely to a linear iso-
morphism of T (M,) QR TE)(M,) onto TS (M). We shall often identify
these two spaces and write v, (X) v, for the element v defined by (1.1.29); in
particular, the tangent vector X defined by (1.1.28) is nothing but X, & 1,,
+ 1, ® X,.

If D, is a differential operator on M; (j = 1, 2), then D: (x,, x;) > (D).,
&) (D,),, is a differential operator M, X M,; we write D, X) D, for D.
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These considerations can be extended easily to products of more than two
manifolds.

1.2. Analytic Manifolds

We begin by recalling the definition of an analytic function of m variables,
real or complex. Let U = R™ be any open set and let f be a function defined
on U with values in C. fis said to be analytic on U if, given any (x8, ... ,x%)
€ U, we can find an > 0 and a power series

Cry,..., n.(xl - X?)” ttt (xm - xl(:l)'m (Cn ..... ™ € C)

around (x}, .. .,x%) such that the series converges absolutely and uniformly

for all (x,,...,x,) with max |x; — x%| < #, to the sum f(x,,...,x,). For
1<j<m

an open set U < C™, a similar definition of a complex analytic or holomorphic
function on U can be given. The functions which are analytic on U form an
algebra under the usual operations. Analytic functions of analytic functions
are analytic.

The definition of a real analytic manifold is similar to that of a C* mani-
fold. Let M be a Hausdorff space satisfying the second axiom of countability.
A real analytic structure for M is an assignment

A:U— AWU) (U open, = M)
such that

(i) U possesses properties (i) and (ii) of a differentiable structure (cf.
§1.1).

(ii) There exists an integer m > 0 with the following property: for each
x € M, can find an open set U containing x and m real functions x, . . . ,x,,
from A(U) such that (a) the map &: y+— (x,(¥), ..., x,(y)) is a homeomor-
phism of U with an open subset of R™, and (b) if W is any open subset of U,
A(W) is precisely the set of all functions of the form F o &, with Fanalytic on

vl

The pair (M, %) (and, by abuse of language, M itself) is said be a real analytic
manifold of dimension m. For an open U < M, the elements of A(U) are called
the analytic functions on U. As before, any open set such as U in (ii) above is
called a coordinate patch; and x,, . . . ,x,, are called analytic coordinates on U.

Let U = M be open and let f be a complex-valued function defined on
U. We define f to be C* if for each x € U, fis a C* function of the local
analytic coordinates around x. The assignment U — C=(U) is easily seen to
be a differentiable structure for M. We shall call this the C= structure underly-
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ing the analytic structure. Note that %(U) = C~(U) for all open U. The entire
theory of differentiable manifolds now becomes available to M.

Let M and N be analytic manifolds and 7 a map of M into N. The defini-
tion of the analyticity of z is analogous to the C~ case. z is called an analytic
isomorphism or an analytic diffeomorphism if it is bijective and if both = and
7~ are analytic. It is a consequence of the classical theorem on implicit and
inverse functions that if # (M - N) is analytic and bijective and if (dn), is
bijective for all x € M, then n~! is analytic, so that z is an analytic diffeo-
morphism.

Let M be an analytic manifold and D a differential operator on M. For any
open set U = M, let D, denote the restriction of D to U. D is called analytic
if for each open U, Dy, : f+ D f leaves A(U) invariant. Let U be a coordi-
nate patch, x|, . .. ,x, analytic coordinates on U, and let D, = 3, 1<, 0.
Then if D is analytic, a.,, € 2(U); conversely, if for each x € M we can find
analytic coordinates x,, ... ,x, around x such that D = 3}, .,4,0* on
an open set around x with analytic a,,, then D is an analytic differential
operator. Similarly, a definition of analyticity can be given for differential
forms. The analytic differential operators form a subalgebra of Diff(M).
If w is an analytic m-form which is real and vanishes nowhere, D an analytic
differential operator, and D' the formal adjoint of D with respect to w, then
it is easy to verify that D' is analytic. If w, w’ are analytic r-forms, then dw
and @ A o’ are analytic; if 7 (M —> N) is analytic and @ is an analytic r-
form on N, so is #*w on M.

The concepts of products and quotients of analytic manifolds as well as
submanifolds of analytic manifolds are defined exactly as in the C~ case, with
analytic functions and coordinate systems replacing the C~ ones. The defini-
tions and results of §1.1 concerning maps with surjective and injective differ-
entials remain valid with this modification. In particular, Theorems 1.1.4 and
1.1.5 remain true in the analytic case: if N is an analytic manifold and M a
subset of N equipped with the relative topology, then M is a regular analytic
submanifold of N of dimension m (1 << m < n)if and only if foreachx € M
we can find an open subset ¥ of N containing x and n — m real-valued ana-
Iytic functions f,, . . . ,f,-, on ¥V such that (i) ¥ N\ M is precisely the set of
common zeros of f, ... ,f,_, in V, and (ii) (df),, ..., (df,-.), are linearly
independent elements of T,(N)*.

A complex analytic or holomorphic manifold of complex dimension m is
defined in the same way as a real analytic manifold, with holomorphic
functions replacing real analytic functions. Given a complex analytic mani-
fold M of dimension m, there is an underlying real analytic structure for M
in which M is a real analytic manifold of dimension 2m; if U & M is open
and fis a real-valued function on U, f will be analytic in this real analytic
structure if and only if the following is satisfied: for each x € U, we can find
holomorphic coordinates z, . . : ,z,, around x such that f is a real analytic
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function of the 2m real functions Re(z,), ... ,Re(z,), Im(z)),...,Im(z,) in
a sufficiently smali open neighborhood of x.

Let M be a complex analytic manifold and let x € M. Two functions
defined and holomorphic in an open set containing x are called equivalent if
they coincide in some open neighborhood of x. The equivalence classes are
called the germs of holomorphic functions at x. In the usual way, they form an
algebra over C, denoted by H,; for any f € H,, write f(x) for the common
value at x of the elements of f. The holomorphic tangent vectors to M at x are
then the linear functions v on H, such that v(fg) = f(x)v(g) + g(x)v(f) for all
f,g € H,. They form a complex vector space, the so called holomorphic
tangent space to M at x; this vector space is denoted by 7T,(M). More general-
ly, let J, be the ideal in H,, of all u with u(x) = 0; then for any integer r >0, a
holomorphic differential expression at x is a linear function v on H, which
vanishes on J7*!. The set of all such is a vector space denoted by T(M).
As before, we put T(M) = U,., T (M). Holomorphic vector fields, differ-
ential forms, and differential operators can now be defined as in the real
analytic case; no changes are needed.

The same situation provails with respect to the concepts of quotient and
submanifolds of complex analytic manifolds. In particular, the analogues
of Theorems 1.1.4 and 1.1.5 are true in the complex analytic case also.

Algebraic sets. The version of Theorem 1.1.5 for analytic manifolds is
very useful in showing that certain subsets of R” or C* are regular analytic
submanifolds. The simplest examples are obtained when we take M to be the
set of zeros of a collection of polynomials. For example, let p > 1,4 > 1 be
integers and let F be the polynomial on R”*7 defined by

F(XyyooosXpug) = X1+ -+ x5 — x5 — - — X3,

Let M be the set of zeros of F and M, = M\{0} (0 is the origin in R?*9).
Then, for x € M, (dF), # 0 if and only if x € M,. So M, is a regular ana-
lytic submanifold of dimension p + g — 1. It is not difficult to show that M
does not look like a manifold around 0. 0 is called a singular point, and points
of M, are called regular; the set of regular points is thus open in M and
forms a regular submanifold of R?*%. We now prove a theorem of H.
Whitney [1] which asserts that the above example is somewhat typical. We
work in R”; the case of sets of zeros in C” of complex polynomials can be
handled similarly.

Let U < R~ be an open set, fixed throughout this discussion; let @ be
the algebra of all polynomial functions on R” with real coefficients. For any
subset F = @ let

(1.2.1) Z&)={u:uec U, Pu)=0V P e F}.
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Any subset of U which is Z(F) for some § = @ is called an algebraic subset of
U. For any subset M of U, let

(1.2.2) SM)={P:Pc®Pu)=0VYuec M};

9(M) is an ideal in @. Note that Z(F) is also the set of common zeros of the
elements of 9(Z(F)), so that any algebraic subset of U is of the form Z(9) for
some ideal § = ®. Now, if g is an ideal in ®, we can find P,,... ,P, € 9
such that 4 = ®P, + --- + ®P, (Hilbert basis theorem); {P,,...,P,} is
called an ideal basis for 4. So any algebraic set is of the form Z(¥) for a finite
subset F of @.

Suppose now that M is an algebraic subset of U. For any u € M, let
ru(u) be the dimension of the linear space spanned by the differentials (dP),,
P ¢ 9(M). ry(u) is called the rank of M at u. The relation

d(PQ), = Pu)dQ), + Qu)(dP),

shows thatif {Q, ..., Q,}is an ideal basis for 9(M), r,,(u) is also the dimen-
sion of the linear space spanned by (dQ,),, .. ., (dQ,),. Put
(1.2.3) r = max ry(u)
ueEM
(1.2.4) M,={u:ue M,ry,(u)=r}

The points of M are called regular, those of M . M, are called singular. Now,
forany Py, ..., ,P, € 9(M), (dP,),, . ..,(dP,),are linearly independent if and
this that M is a nonempty oi);n, subset of M, being the set of allu € M where
the rank of the matrix ((0Q,/d¢,),) is maximum.

Theorem 1.2.1. (Whitney) Let notation be as above. Then M, is a non-
empy open subset of M and is a regular analytic submanifold of R of dimension
n—r.

Proof. We follow Whitney’s proof. It is enough to prove that each point
of M, can be surrounded by a connected open subset of M, which is a regular
analytic submanifold of R” of dimension n — r. Fix u, € M,; we may as-
sume that u, = 0. We can then select P,,...,P, € 9(M) such that (dP,),,
...,(dP,), are linearly independent. The matrix (dP,/0¢;), <, 1<;<. therefore
has rank r at 0. By permuting the coordinates if necessary, we may assume
that
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It is then obvious that

a(P]" . aPr)tr+19~ .. atn)>
(d(tl, el bty sty Jo #0.

Write y, = P, 1 <i<r,y;=t,r+ 1 <i< n. Clearly, we can choose an
open set ¥ and an @ > O such that (i) 0 € V < U, and (ii) v — (y,(v), . . .,
Ya(v)) is an analytic difffomorphism of ¥ with the cube I7. Let

(1.2.5) Vo={v:v € V, 3,(v) = - = y,(v) = O};

then ¥V, is a connected regular analytic submanifold of R” of dimension
n—r,0e Vy,and VN M < V,. It is now enough to prove that V, = M.
For suppose this proved: then V, = V' N M, so V, is an open subset of M.
Since (dP,),,...,(dP,), are linearly independent for all v € V,, V, < M,.
So ¥, would be an open subset of M, containing u, and imbedded as a
regular analytic submanifold of dimension n — r of R”.

We now prove that V, & M. Let A be the algebra of all real-valued ana-
lytic functions on V. Write 4 = 9(M) and 9§ = Ad, the ideal in A generated
by 9. We claim that g is invariant under the derivations d/dy;, r + 1 <j < n.
It is enough to prove that d/dy; 9 = dforr + 1 <j < n. Fixjwithr + 1 <
Jj<n Fed Write b,=1¢,ifr+1<I<nand/+j, and P,= F. Then

0Py,...,P) _0(Py,...,P) O(ty,...,t)

1.2.6 e .
( ) 0(}'1,---,)’”) d(’l,'-',tn) 0(}’1,---,%.)
Now

Py, ... ,P) _ OF
0(}’1,---,}’") oy]
Furthermore,
Ay, ... L,
= __(1—) € A.
6(.)]1, v 7yn)
On the other hand, consider
_d(Py,...,P)
P_ a(th- . ’tn)
We have
P— adPy,...,P,F)
d(tl, LECI 7tr7tj)
Since P,, ..., P,, F € 9, P has to vanish at all points of M, as otherwise

there would be points of M where 4 has rank >r +- 1. So P = 0 on M. Since
P is a polynomial, P € 4. (1.2.6) now shows that

23 =

+—=@P e 4.

dy; ¢
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It follows from the above result that for any F € § and any multiindex
(@) = (Oys1y ... 0), (0/0y,. )% - -(8/0y,)*F € 9. Now, it is trivial to see
that any element of 4 vanishes at 0. So if F € 4, all the derivatives (0/dy,,,)*
-+ +(d/dy,)F vanish at 0. Since F is analytic and V, is connected, this im-
plies that F vanishes on V. In particular, all elements of 9 vanish on V.
So V, < M. As mentioned earlier, this is sufficient to prove the theorem.

1.3. The Frobenius Theorem

The aim of this section is to introduce the concept of involutive systems
of tangent spaces on an analytic manifold and to prove that such systems are
integrable. At the local level this is just the classical Frobenius theorem.
However, for applications to the theory of Lie groups, the local form of the
theorem is not adequate, and it becomes necessary to construct global in-
tegral manifolds. We shall follow Chevalley’s elegant method of doing this.
We restrict ourselves to the analytic case; the C* versions of our theorems
can be proved by means of analogous arguments.

Let M be an analytic manifold of dimension m. An assignment £: x >
£,.(x € M) is called a system of tangent spaces (of rank p) if £, is a linear
subspace of dimension p contained in 7,,(M) for all x € M. The system £ is
said to be nontrivial if 1 < p <-m — 1. We shall consider only nontrivial sys-
tems in this section. Given a system £ of tangent spaces of rank p, a vector
field X is said to belong to £ on an openset Uif X, € £, forallx € U. £is
said to be an analytic system (a.s.) if for each x € M we can find an open set
U containing x and p analytic vector fields (p = rank £) X,,...,X, on U
such that (X)),, . .., (X,), span £, for all y € U. £ is said to be an involutive
analytic system (i.a.s.) if it has the additional property: let U be an open subset
of M and let X, Y be two analytic vector fields which belong to £ on U; then
[X,Y] belongs to £ on U.

Given an a.s. £, an analytic submanifold S of M is said to be an integral
manifold of £ if (a) S is connected, and (b) for each y € S, T,(S) = £,. We
do not require that .S be a regular analytic submanifold, and so the topology
of S could be strictly finer than the one induced from M. £ is said to be
integrable if each point of M lies in some integral manifold of £.

An integrable a.s. £ is necessarily involutive. To prove this, we need only
verify that if x € M and X and Y are analytic vector fields which belong
to £ in some open neighborhood of x, then [X,Y], € £,. Now, there is an
integral manifold S of £ through x. Replacing S by a sufficiently small open
subset of it containing x, we may assume that S is a (connected) regular
submanifold of M and that S = U, where U is open in M and where X and
Y are defined on U and belong to £ onit. Then X' (y—X,)and Y'(y+—Y,)
(y € §) are analytic vector fields of §; if / is the identity map of S into
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M, X', X and Y’, Y are i-related. So [X’,Y’] and [X, Y] are i-related. This
implies that [X,Y], € £,.

Let M (resp. N) be an analytic manifold and I (resp. N) an a.s. on M
(resp. N). M and N are called isomorphic if there is an analytic diffeomorphism
n (M — N) such that (dr) (M,) = N, for all x € M. If L(x— £,) isan
a.s.on Mand U < M an open set, £ induces on Uan a.s. £ | U, by restriction.

Let a > 0 and let us consider the cube I in R™, Let ¢,, . .. ,t,, be the usual
coordinates in R™. For any x € I™ let £2™¢ be the linear span of (3/d¢,).,
...,(d/0dt,),. Then £»™: x> L£2™2 is an i.a.s. If a,,4,...,a, are fixed

numbers between —a and -+ a, the submanifold

{(tla LI atm): tp+l = ap+la' .. )tm = am}

is an integral manifold of £ ™2, £»™4 s called a canonical i.a.s. The classical
Frobenius theorem asserts that, locally, every i.a.s. is isomorphic to a canoni-
cal one.

The proof of the local Frobenius theorem depends on the following two
lemmas; the first lemma proves the theorem in question for the case p = 1.

Lemma 1.3.1. Let M be an analytic manifold, X any real analytic vector
field on M, and x € M a point such that X, % 0. Then there are analytic
coordinates x,, . . . ,x,, around x such that X, = (d/dx,), for all y in an open
neighborhood of x.

Proof. Select analytic coordinates z,, ... ,z, around x such that z,(x)
== ... = z,(x) = 0 and X,(z,) % 0. Then there are real analytic functions
Gy, ...,G,, defined on I7 (for some a > 0) such that G,(0,...,0) = 0 and

X, = 3 Glz). .. .z0) (g%)y

for all y in an open neighborhood of x. Consider the system of differential
equations

(1.3.1) ‘%‘ — Glu,D), . .. (D) (1< i< m).

By the standard existence theorem (cf. Appendix, Theorem 1.4.1), we can
select b with 0 < b < @ and real analytic functions u, . . . ,u,, on I}’ such that

@) |ut,ys ... ym)|<aforl<j<mand(t,y,,...,Vn) €I}

(b) for fixed (y,, ...,V € Ir~1, the functions u,(+, Yo, . -+ s Vm)s « « + »
U(*y Y2y - . . »Vm) satisfy (1.3.1) on the open interval (—b,b) with the
initial conditions

ul(0>y2’---,ym):09 u2(osy2"--’ym):y2’ DI
um(O’yz’- . ’ym) = ym
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Then the analytic map

T (ts.V2’ L] 9ym) = (ul(tayz’- .. 7ym)9~ .« ’um(t’y27- .. ’ym))

has the nonvanishing Jacobian G,(0, ..., 0) at 0, and 7(0) = 0. So it is an
analytic diffeomorphism on an open set containing 0. Therefore, there exist
functions F,, ... F,, defined and analytic around 0, vanishing at 0, such
that the map (vy,...,v,) > (Fi(vy, ... ,0,), ..., F,(v,...v,) inverts 7
around 0. Let x; = Fi(z,, ...,z,). Then x,,...,x, form a system of ana-
lytic coordinates around x. It is easy to verify that X, = (d/dx,), for all y in
some open set containing the point x.

Lemma 1.3.2. Let M be an analytic manifold, x € M, and let Xy, ..., X,
be real analytic vector fields defined on an open set U containing x such that (i)
(X,),, . ...(X,), are linearly independent for y € U, and (ii) [X;X,] =0,
1 < j, k < p. Then we can choose coordinates x,, . . . ,X,, around x such that,
in an open set around x,

(1.3.2) + > "“a (1<ji<p),

1=s<j
where the a;, are defined and analytic around x.

Proof. We prove this by induction on p. For p = 1 this follows at once
from Lemma 1.3.1. Let I < p < m, and assume the result for X, ..., X, ;.
Then we can choose a connected open set V' with x € ¥ < U and coordinates

Uy, ... U, on Vsuch that

(1.3.3) X,.:iJr 2 by, 1<=j=p-—10,
6uj 1<s<<j us

where the b, are analytic on V. Write X, = > ,.,.n &, 8/du,, where the g,
are analytic on V, and put X, =3, ,..g 0/0u,. From (1.3.3) and the
condition (i) of the lemma we conclude easily that (X7), = Oforally e V.
On the other hand, the conditions [X,,X;] = O yield the relations

(1.3.4) S a[pt]— 2 K

1<s<m 1<s<m

on V,for 1 <j<{p — 1. Now (1.3.3) shows that, for | <s<mand 1 <j
< p — 1,[d/du,, X ] is a linear combination of only the d/du, with 1 <t <
p — 1. Hence (1.3.4) implies that X,g, =0on Vfor I <j<p—1,p<s
< m. A simple argument based on (1.3.3) now shows that ¢/du,;g, = 0 on
Vfiorl <<j<{p— 1, p<<s<m.Since Vis connected, this implies that, for
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each s with p <s<Um, g, is a function of w,u,,,,...,u, only. An ap-
plication of Lemma 1.3.1 now shows that we can replace u,,...,u, by
analytic functions v, ...,v, with the following properties: (a) u,, ...,
Up_ 1,V - - . »U, fOrm a system of coordinates around x, and (b) X', == d/dv,
around x. Let x; = u, for | <{j<{p — land x; = v, for p <Cj < m. Then
(1.3.2) is satisfied in the coordinate system (x,, ... ,x,).

Theorem 1.3.3. (Local Frobenius Theorem) Let £ (x — £,) be an involu-
tive nontrivial analytic system of tangent spaces of rank p on an analytic mani-
Jold M of dimension m. Then, for any x € M, we can find an open set U containing
x and an a > 0 such that £| U is isomorphic to the canonical i.a.s. £»™2. In
particular, £ is integrable.

Proof. The theorem is equivalent to the following: given x € M we can
choose analytic coordinates x, . . . ,x,, around x such that £, is spanned by
(d/0x,),, . . . ,(d/dx,), for all y in an open set containing x. Since the canoni-
cal involutive analytic systems £7™“ are integrable, this would imply that £
is integrable. Fix x € M. Let z,,...,z,, be analytic coordinates around x
and let Z,,...,Z, be analytic vector fields such that (i) Z,,....,Z, are
defined on an open set U containing x and the z,, . . . ,z,, are coordinates on
U, and (ii) (Z)),, . . . (Z,), span &, for all y € U. We may then write Z, =
> i<remd;, 0/0z,, where the &), are analytic functions on U. Clearly, some
p X psubmatrix of (@},);<;<, 1<,<m i$ invertible at x. We may assume without
losing generality that (@),),<; ,<, is invertible at x and that U is so small that
this matrix is invertible on U. Let b,; (1 <C i, j < p) be the entries of the inverse
matrix. Then the b, are analytic functions on U. Let X, = 3 ,.,-,0,,Z.,.
Then: (i) (X)), ...,(X,), span &, for all y € U, and (ii) X; = d/dz; +
S pri<remCyr 8/02,, 1 < j < p, the c,, being analytic functions on U.

We now claim that [X,X,] = 0, 1 <j, & < p. Fix such j, k. Since £ is
involutive, [X,,X,] belongs to £ on U. Therefore [X,X,] = > <, /i Xe
where the f; are analytic functions on U, in particular, f; is the coefficient of
d/dz, in [X,,X,] for 1 <{s < p. On the other hand, the formula (ii) above
for the X, shows that [X},X,] is a linear combination of only the d/dz, with
p -+ 1 < r < m. This implies that the f; are all zero, i.e., that [X,X,] = O.

Now use Lemma 1.3.2 to choose analytic coordinates x, . . . ,x,, around
x such that, for 1 <j<<p, X, =9/0x;, + X <,<;a;, 0/dx,, the a;, being
analytic around x. This representation shows that (d/dx,),, . ..,(d/dx,),

span £, for all y in some open set containing x. This completes the proof of
the theorem.

Let U = M be an open set, xy,...,x, a system of coordinates on U,
and a > 0. We say that (U; x,, . .. ,x,; @) is adapted to £ if the map u
(x,@), . . .,x,(1)) is an analytic diffeomorphism of U with I7 and if £, is
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spanned by (d/dx,),, . . . ,(d/dx,), for all u € U. In this case, for any a =
(@,i1s-..,0a,) € 1777, we define U(a) by

(1.3.5) U@)={utuc U, x,.;(u) = dpi1,...,x,0) = a,).

The U(a) are regularly imbedded integral manifolds of £.

The local Frobenius theorem is not adequate for applications, since the
integral manifolds have been constructed only locally. For full effectiveness
it is necessary to obtain them in the large. This was done by Chevalley [1];
we shall follow his method of “piecing together” the local integral manifolds
to obtain the global ones. However, this has to be done with some care,
because the global manifolds are not always regularly imbedded.

It is easy to see that an arbitrary integral manifold of £ is a union of
open subsets of the form Uf(a). In fact, let (U; x,, .. .,x,; a) be adapted to
£ and let S be an integral manifold of £ with S N U % ¢; then SN U is
open in S. If x; = x;|S N U, we have dx; =0 (p + 1 <<j < m), so that
these x; are locally constant on S N U. In other words, each connected com-
ponent of S M U (in the topology induced by §) is contained in some U(a).
Since these components are open in S, it follows that S N U(a) is open in S
for any a € I7~7. But then, for any such a, the identity map of S N U(a)
into U(a) is analytic with a bijective differential. This shows that S N U(a)
isopen in S, as well as in U(a); both S and U(a) induce the same topology on
1t.

Lemma 1.3.4. If S, and S, are any two integral manifolds of £, then
St M Sy isopenin S, as well asin S,; both S, and S, induce the same topology
on it. The integral manifolds of £ are all quasi-regularly imbedded in M.

Proof. Letu € S; N S,. Select an open set U containing u, coordinates
X4y ... X, on U, and a > 0 such that (U; x4, ... ,x,; @) is adapted to L.
Leta € I7 ?be such that u € Uf(a). It is then clear from what we said above
that S; N S, N U(a) is open in S, as well as in S,, both of which induce the
same topology on it. This leads at once to the first assertion. For the second,
let S be any integral manifold of £, N any analytic manifold, and z an analy-
tic map of N into M such that z[N] = S. We shall prove that z is an analytic
map of N into the analytic manifold S. Fix y € N and let u = zn(y). Choose
an open set U containing u, coordinates x,, ... ,x, on U, and a > 0, such
that (U; x4, ... ,x,; a)isadapted to £. Let a € I"~? be such that u € U (a),
and let 7 be the connected component of S N U(a) containing u(in the topo-
logy of .S). We claim that T is also the connected component of S N U in the
topology of U, which contains u. Indeed, if T’ is the component in question,
then obviously T < 7’. On the other hand, since S is second countable,
S M U has at most countably many connected components (in the topology
of S), sothat S N U = |y U(b) for some countable set F < I7-7, But then
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the map u+> (x,.,(u), . ..,x,(u)), which is continuous on S N U in the
topology induced from U, takes at most countably many values. Therefore,
it must be a constant on each connected component of S N U in the topology
of U, in particular on 7”. Thus 77 < § N U(a); and, since we have already
proved that both S and U(a) induce the same topology on S M U(a), we must
have 7'= T". This proves our claim. If W is the connected component of
7~ '(U) containing y, it is then clear that W is open and z[W] < 7. Since T is
open in the regularly imbedded U(a), & is an analytic map of Winto 7. Hence
7 is an analytic map of Winto S; this leads to the second assertion.

Lemma 1.3.5. Let A be a connected Hausdorff space which is locally con-
nected. Suppose A = |_J7., A, where each A, is open in A and each connected
component of A, is second countable for each n. Then A is itself second count-
able.

Proof. Let @, be the class of (open) sets which are connected com-
ponents of A,, and € = (_J;,@,. Since there cannot exist an uncountable
family of mutually disjoint nonempty open sets in a second countable space
it follows that, given F € @, there are only countably many F’ € € such that
F N F" 3 ¢. We now define the families J;,J,, . . . of open subsets of 4 as
follows. We select E € € arbitrarily and define J, = {E}; for s > 1, J,
={F:Fe @ Fn F ¢ for some F' € J,_,}. The J, (s > 0) are well de-
fined inductively. A simple induction on s shows that they are all count-
able. Let B == (7o {Ures, F- Then B is open and second countable. If v
CIl(B), we can find F ¢ € such that v € F; and as F " B = ¢, there is an
s> 0and an F’ € J, such that F " F’ %= ¢. This shows that F € J,,, and
hence that v € B. B is thus open and closed. Since A is connected, A = B.
A is thus second countable.

Theorem 1.3.6. (Global Frobenius Theorem) Let M be an analytic mani-
fold £ (x v+ £,) an involutive analytic system of tangent spaces of rank p.
Given any point of M, there is one and exactly one maximal integral manifold
of £ containing that point. Any (nonempty) integral manifold of £ is quasi-
regularly imbedded in M and is an open submanifold of precisely one maximal
integral manifold of L.

Proof. Let 3 be the collection of all subsets of M which are unions of
integral manifolds of £. It follows from Lemma 1.3.4 that 3 is a topology for
M finer than its original topology. It is clear that (M,3) is a Hausdorff locally
connected space. Let {M,:¢ e J} be the set of connected components of
(M,3). Each M, is an open subspace of (M,3) and if S is any integral manifold
of £, the underlying topological space of S is an open subspace of exactly
one M.,.

We now prove that the M, are second countable. Fix £ € J. Let U be an
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open set with coordinates x, . . . ,x,, and let a > 0 be such that (U; x,, ...,
x,,; a)is adapted to £. Since M, as well as the U(a) are open in (M,3), it follows
that M, N U(a) is an open subspace of U(a) for alla € I7~». Now, M, " U
is open in M, and is the disjoint union of the M, N U(a), so each connected
component of M, N U is an open subspace of some U(a) and is therefore
second countable. Since M (and hence M,) can be covered by countably many
open sets such as U, Lemma 1.3.5 can be used to conclude that M, is second
countable.

It is now obvious that there is a unique analytic structure on M, such that
each integral manifold of £ contained in M, is an open submanifold of M,.
With this structure, M, becomes a submanifold of M. It is also obvious that
each M, is a maximal integral manifold of £. Theorem 1.3.6 is completely
proved.

It may be remarked that Theorems 1.3.3 and 1.3.6 are valid in the complex
analytic case also. No change is necessary either in the formulations or in the
proofs.

1.4. Appendix

In this appendix we discuss briefly some elementary results on analytic
systems of ordinary differential equations. We work in R™ or C™. For any
a>0,let

IT ={(t,....th):t; € Rt <a for 1< j<ml
Jr={(zy,...,zx}:2; € C |z;] < a for 1< j<m}

Leta > Oandlet G,, .. .,G, be m real functions defined and analytic on
I7. We consider the system of ordinary differential equations:

(1.4.1) Wy Gan(t),. .. @) (1< < m).

If the G, are defined and holomorphic on J7, we consider the system

(1.42) Wy — G (e, @) (1< j<m)
Theorem 1.4.1. Let a > 0 and let G, ... ,G, be real functions defined

and analytic on I7. Then

(@) ifuj,v; (1 <j<<m)are analytic functions defined on an open interval
A containing 0 such that (u,, ... ,u,) and (v, ...,v,) are both solutions of
(1.4.1) on A with u;(0) = v,(0) (1 <j < m), thenu; =v,on A for 1 <j<m.
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(b) there exists b with 0 << b < a and real analytic functions u; on I+
(1 < j << m) such that

() luft,pyy, ...,y <afor(t,y,,...,p, € IF*!
(i) QUOYieodn) — Gty oy, ity )
U0, 91, -+ Vm) = ¥;
Jor (t,y,,....yn) € It 1 < j<<m.
Proof. (a) If(p,,...,p,)issolution of (1.4.1), we have, for 1 <<j << m,
90) = G,(9.(0),...,9..(0))

0= 5 9,000,

and so on. A simple induction on s> 1 shows that the initial vector
(9,00, . . ..p,,(0)) completely determines the values of all the derivatives
e(0) (s > 1,1 <j < m). So if the ¢, are analytic on an open interval A
containing 0, they are completely determined on A by the initial vector
(9.(0), . .. ,0,(0)). (a) follows at once from this.

(b) Replacing a by a smaller positive number, we may assume that the
power series expansions of the G, around the origin converge absolutely and
uniformly in I™. Hence the G, are restrictions to I7 of holomorphic functions
on J7. We also denote the latter by G,. Let 0 << ¢ < a, and

y = max sup | Glzy, . uzm)]

1<j<m (zy,..., zp) EJ™
Then y is finite. Choose a constant L > 1 such that

(1.4.3) max |Gz, ... ,zm) — GAZ\, ..., 2)| < L max |z, — z}|
1<j<m 1<j<m

forall(z,,...,z.),(Z\, .. .,z,,) € J7. Finally, select b withO << b <c(l +p)!
and Lb < 1.
Now define a sequence

(ul,N’--- :um,N) (N:051725--')
of vector-valued functions as follows. Put

(1.4.4) =0 (1=j<m);
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for N> 1and (z, z4, .. . ,z,,) € JF*!, put

uj,N(zyzls ) 5Zm)

(1.4.5) z , , ,
= Zj + J‘U Gj(ul,N—l(z 35 Z1y e ’zm)a s 9um,N—1(z PRATII ’Zm))dz >
where the integral is taken along the line segment from 0 to z. We claim that
for any N> 0, the u; \(1 <<j < m) are well defined and holomorphic on
Jr*! and that

u; (2,24, ..z < e
forl <j<mand(z,z,,...,z,) € JP*'. We prove this claim by induction
on N. For N = Q there is nothing to prove. Let N > 1 and assume the result

for N — 1. It is clear from (1.4.5) that u; 5 is well defined and holomorphic
on Jr+!, Further, if (z,z,,...,2,) € Ji*', we have for | <j<m

Iu],N(Z5Zl’~ . :zm)l é b + }’ ‘J‘Odzl

<b(l +7y)
<ec,
carrying forward the induction. Our claim is thus proved.
Now for N > 1 and (z,z,, . . . ,z,,)) € JI*!
[uj,N+1(Z,21a cen ,Zm) - uj,N(ZsZu cen 7Zm)'
g Lb max Sup Iuj,N(Z’zla LA >Zm) - uj,N—l(zazla LIRS 9Zm) Ia
1<j<m (z,21,...,zn) EL™

from (1.4.5) and (1.4.3). Applying this estimate in succession and noting that

lu; (2,24, ... ,2,)| < cforl <j<mandthat(z,z,,...,z,) € Jr*!, we get
max sup [ ne1(Z,245 o 32) — U M(25245 - o2 520) | << (LN,
1<i<m (z,21,..., 2m) EJy™1

Since Lb < 1, it follows that the series
E {uj,N—f-l(Z;zl) LI 9Zm) - uj',N(z9zl’ e ’zm)}
N>0

converges uniformly in J7*! for 1 <<j <<m. Let u/z,z,, . .. ,z,) be the sum.
Then u; is holomorphic on J7*! and

(1.4.6) ufz,24,. .. ,2,) = lim u; y(2,24, ... ,2,,) (1< j<m)
Novoo

for (z,z,,...,z,,) € Jr*'. (1.4.6) and (1.4.5) now yield
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uj(z’zl’ L ,Zm)
(1.4.7) z , , ,
=2z; + fo Gu(2'szys oo yzm)s oo stn(2's24, . . y2,) dz
forl <j<mand(zz,...,z,) € Jy*'. Restrictingto I7"'! and differentiat-

ing (1.4.7) with respect to z, we get

0u;(L,y1s - o Vm
OV Vad — Gy (1,31

uj(o,yl"- . !ym) = y}'

. sym)a v ’um(t$yl’ LI aym))

for 1 <j<mand(t,y,,...,y,) € Iy*'. Theu, being analytic on I7*!, the
theorem is proved.

The holomorphic version of Theorem 1.4.1 with the differential equations
(1.4.2) instead of (1.4.1) is proved as above with minor variations. We leave its
formulation and proof to the reader.

In applications it often happens that the G; depend analytically on certain
parameters. In this case, the solutions u; also have the same analytic depen-
dence on these parameters.

Theorem 1.4.2. Let N be an analytic manifold, a > 0, and let the real
Jfunctions G; be defined and analytic on I x N. Fix x € N. Then we can find
b with 0 < b < a, an open subset N, of N containing x, and real analytic

Sunctions uy, ..., u, onI"' X N, such that
qut,y., ..., Vmx' ) ]
!( yl (?t y X ) = Gj(ul(tyyls . 5ym’x )’ LI )um(t:yla- .. :ym,x ))
uj(O,J’x, e 9ym,xl) = y}
Sfor1 <j<m, (t,y,,...,yn) € IF"' and x' € N,.

Proof. We may assume that for somed > 0, N = I3, x = (0, ...,0), and
that the G, are the restrictions to /7' X Ij of functions (denoted again by G)
defined and holomorphic on J™ X Ji. let 0 < c¢ < a,0<e <d, and let
N’ = Jr. Define y by

y = max sup [Gi(zys. e sZmsX")]

1<j<m (zy,..., zm)EJ, X EN
and let L > 1 be a constant such that

lGj(Zla e azmax,) - Gj(zll’ e sZ:n’xl)l S L miax Zj— Z.Ii
1<j<m
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forall x’ € N' (z,...,z,), (z%, ...,z € Jr. Choose b such that 0 < b <
ol + )7t and Lb < 1; we then define the sequence u; 5 as follows. For
N=0,putu;, =01 <j<<m); for N> 1 write

uj,N(z:ZI’ e 7zm7x,)
z
=z;+ J. Glu (2, 2y o2y X )y (2 20,002 X "), x7) d2
0
forl <;j<m,(z,zy,...,z,) € J7*', x" € N'. Theorem 1.4.2 is now proved

by arguing exactly as in the previous theorem. We leave the details to the
reader.

The same proof also gives the holomorphic version of the above result.

EXERCISES

1. Consider C? as a four-dimensional real analytic manifold, and let T? =
{(z1,22): 21,25 € C,|z,| = |z,] = 1}; show that T? is a regularly imbedded
compact submanifold. Prove that if & € R is irrational, the map ¢ > (e,e'*)
(tr € R) is an imbedding of R into T? which is quasi-regular but not regular.

2. Letn > 2 and let @ be the map of R” into R! given by
wlxy, ... ,x,) = xt + --- + x2.

Let M =R {0, N={r:1€ R, 1> 0}. Let D — 32/dx? + -+ + 02/dx2.
Prove that there is a unique differential operator D on N such that D and D
are m-related. Calculate D.

3. (a) Let F be a field of characteristic 0; V' (resp. W) a vector space over F of
finite dimension m (resp. n); and ¥ a linear map of V onto W with kernel
U. Let A (resp. 1) be a nonzero element of A,,(V) (resp. A, (W)). Prove
that there is exactly one v € A,,_,(U) with the following property: let

Uty oo o sUmen1, . . .U, D€ @ basis for V such that uy,...,u,_, span U;
then
Wiy o) :l(ul,...,u,,,ﬁ,,,vl,...,v,,)
’ > .U(YUJ, L :yvn)

We write v = (4/u),.

(b) Let M and N be analytic manifolds of dimensions m and »n respectively.
Let w! € @,(M) and w? € @,(N), and suppose that w! and w? vanish
nowhere. Let 77 be a submersion of M onto N, and for each y € N let
P, = " '({y}). Prove that the P, are closed regular submanifolds of M.
Fory € Nandx € P,let W’ = (@}/®W2) (4, Prove that w”: x — @2 is an
element of @,,_,(P,) foreachy € N and that y — @? is analytic in a natural
sense.
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(c) Prove that if f € C2(M), then

Jo 0= 1, (], 12)o

Let M be an analytic manifold and £ (x — £,) an analytic system of tangent
spaces of rank p. A given 1-form @ is said to belong to £ on an open set U
ifw,|L£,; =0forall x € U. Prove that £ is involutive if and only if the fol-
lowing condition is satisfied: for any x € M and any analytic 1-form
which belongs to £ in an open neighborhood of x, we can find an open set U
containing x and analytic 1-forms &, ...,%,®;,...,w, on U such that
@y, ...,0, belong to £ on U, and dw = 3 <i<, &% A @; on U.

Let #: M — N be an analytic map. Assume that 7 is a submersion and that
ni[M]= N. Let C, be the set of all elements of C~(M) of the formgon
where g € C=(N). Let D be a differential operator on M. Prove that there
exists a differential operator D’ on N such that D’ is z-related to D if and
only if D maps C, into itself, and that in this case D’ uniquely determined
by D.

(@) Let ty,...,t, be the usual coordinates in R™, t = (¢y,...,tn), r2 =

t3 4+ -+ + 1% Let ¢ be the function defined by

{Ce—‘/l—" r2 <1
® =1, P>,

where C > 0 is a constant such that [g=@ df; -- - dt,, = 1. Put ¢ (t) =
@(e~t)(€ > 0,t € R™). Prove that if 0 <<k << oo, then for any f &

CER™), and any () = (1, ... .Bn) with |B| < k;

IO x9)—>d®f (€ —>0+),

- the convergence being uniform over R™ (here * denotes convolution
and ¥ = (9/d¢t,)8 - - - (0/01,,)x).

(b) Use a partition of unity argument to deduce from-(a) the following result.
Let M be a C~ manifold, K a compact subset of M and U an open set with
K < U. Then, given any f € C¥(M) with supp f < K, we can find a
sequence { f,}.>; of elements of C(M) such that (i) supp f, = U for all
n > 1, and (ii) if D is any differential operator on M of order < k, Df, —
Df uniformly over M.

(a) Let V be a finite-dimensional vector space over R, V, its complexification.
We assume that ¥ = V.. We regard V as an analytic manifold in the usual
manner. Let S be the symmetric algebra over V.. For any u € V let 0()
be the endomorphism of C=(V) given by

O@NW =[5 S+ 1| (xe ¥, f e C).

t=

Prove that d(«) is a vector field and that u +—> d(u) (« € V) extends uniquely
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to an isomorphism (denoted again by d) of S onto the subalgebra of
Diff (V) consisting of all differential operators which are invariant under
all translations of V. If uy, ... ,u; € V, prove that for any f € C=(V),

S0y -+ ) = [ﬁf(x+t1”1 + .- +tsus)] . xe .

fy=e=ty=

(b) Let{uy,...,uy,} beabasis for ¥ and let dV be the m-form on V such that
dv(d(uy), . . .,0u,) = 1.

Prove that dV is invariant under all translations and that the corresponding
measure is a Lebesgue measure on V.

(c) Prove that there is a unique automorphism *:a+> a* of S such that
u* = —uforallu € V;and that d(a*)is the formal adjoint of d(a) relative
to dV for any a € S.

The next exercise examines the geometric significance of the condition for an a.s.
to be involutive.

8. (a) Let M be a compact analytic manifold, X an analytic vector field on M.
Prove that there is a unique family {{X : ¢ € R} of analytic diffeomorphisms
of M such that

(i) &F =identity, X, = EXEX(1,t" € R)
(i) 1, x — &X(x) is an analytic map of R X M into M

Gy (L&) =X, (xe M.
t t=0
(b) Let Mbeasin(a), £: x+— £, ani.a.s. on M. Let X be an analytic vector
field on M belonging to £. Prove that the £X leave £ invariant.
(c) Obtain, for noncompact M, local versions of (a) and (b) and deduce a
geometric criterion for an a.s. to be involutive.

Exercises 9-11 discuss exterior algebras.

9. Let m be an integer > 1, and F a field of characteristic 0. Let C be a vector
space of dimension 2™ over F, and {e,}, a basis of C indexed by the collection
of all subsets of {1,...,m}. Write ey, = lcand ey = ¢, ;,if A = {iy, ... ,i,}
with 1 <i; < -+ <i, < m. Prove the existence of a unique bilinear map
upr—>u A vof C x Cinto C such that (i) C becomes an associative algebra
over F with 1¢ as unit, (i) e4 A es = 0if A N B # @, and (iii) if 4 N B = ¢,
A={i, ...\ B=1{jn...,jg}, and AU B ={sq,...,s]}, withi < ---
<ip 1 < -+ <Jg, and sy < --- <, then e4 A e = €e,4,5, Where € =
+1 or —1 according as the rearrangement {s1, .. . ,5,} —> {i1, . . . ,ips J1, - - - »Ja}
is induced by an even or odd permutation. Prove also that e, ; =

e, N\ +-- Aey(iy < -+ <i,) and deduce that 1. and the ¢; generate C.
10. Let V be a vector space of dimension m over F; J, the tensor algebra over
V; 30 = F-1; and for r > 1, 3,, the subspace of J spanned by all elements
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of the form x; X - -+ X x,(x; € V). Let IT, = {1} and, for r > 1, let I, be

the group of all permutations of {I,...,r}. Let § = 3, ver IX (x® x’

+x ®x)XR 3.

(a) Prove that J is a proper two-sided ideal of 3. (To check 9 = 3, note that
9 < Zr>,2 5r)

(b) Let E be the quotient algebra 3/9; let A be the product operation in E;
and let 7 : a +> a be the natural map of 3 onto E. Prove the following uni-
versal property of (E,V): if A is any associative algebra (with unit) over
Fand A is a linear map of V into A such that A(x)2 =0 for all x € ¥,
then there is a unique homomorphism 4 of E into A such that A(x) =
A (x € V).

(¢) Let{xy,...,x,}bea basis for V. Prove that the elements X;, A X;, A ---
AX, 1<iy <+ <i,<m)and 1 form a basis for E. Deduce that
dim (E) = 2m. (Use the relations x; A X; -+ X; A X; = 0 to prove that
these elements span E; thus dim (E) << 2™, If C is as in Exercise 9 and
A:V - C the linear map with A(x;) = ¢; (1 < i< m), then by (b),
AE) = C so that dim (E) > 2m)

(d) For any o € I1,, let 6 : ¢ > o(t) be the linear automorphism of J, such
that 0(0s ® -+ ® 1) = vy @ *++ D voin (0 € V)3 let €@) = 1
according as o is even or odd. Let @, be the subspace of all ¢ € J, such that
ot = €(0)t forall g ¢ I1,. If P, = (1/r!) > ,en,€(0)0, prove that P, is a
projection of J, onto @,. Deduce that @, = 0 if r > m and dim (@,) =

(’:’)(Oﬁrém)

(e) Let @ = I, @,. Prove that J is the direct sum of  and @. (If vy, ...,v, €
V and o is the interchange of an adjacent pair, v Q) - Q v, =
€0)o(w, ® - Qv,)mod d;sot = P,()modd forall t € J,. Now use
a dimension argument.)

(f) For t,t" € @, let t A t' € @ be the unique element such that 7 (¢ A t')
= 7(t) A (). Prove thatif t € @, and t' € Q,, t At =P, Q 1).

E = E(V) is the exterior algebra over V. It is usual to identify V with
(V) so that V < E(V).

Let ¥, F, m be as in Exercise 10. For r > 1 let M, be the vector space of all

r-linear mapsof ¥ X --- X V(rfactors)intok (M, = V*). Let M be the direct

sum of My = k-1andthe M, (r > 1). Forp € M,and ¢’ € M,,letgp K ¢’
€ M,.,, be defined by @R @ :xX1,..., % Xrir > O(X1,...,X,)

@' (X415 ... ,%rsr). Let II, be as in Exercise 10. Foro € Il, and ¢ € M,,

op € M, is defined by g@(xy, . ..,x.) = @(Xo1), - - - s Xo()- Let Ag = k-1

and A, ={p:9 € M, 09 =€(@)p for all ¢ € II,} (r=1). Put A =

=0\, Use Exercise 10 and the canonical identification of M with the tensor
algebra over V'* to get the following results:

@ A, =0 if r>m, dim(A,) = (’;’) if 0<<r<m,and P, = (1/r)) Soen,
€(0)0 is a projection of M, onto A,.

) Forte A,,t" e A, let t At/ =P, (t ®1t). Extend A bilinearly to
A x A. Prove that A becomes an associative algebra over F with 1 as
unit.
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12.

13.

() Let {¢,...,pn} be a basis for V*. Prove that 1 and ¢, A --- A ¢;,
(1 <i, < -++ <i, < m)form a basis for A. Deduce the existence of a
unique algebra isomorphism of A onto the exterior algebra E(V'*) that is
the identity on V'*,

(d) Letp € A,,¢’ € A,. Provethatp A @ = (—1)"¢’ A @. Deduce that
3, even A\, is the center of A.

(e) Let € be the endomorphism of A such that € = (—1)" on A,. Prove that
€ is an involutive automorphism of A. Let L be a linear map of A, into
A, forsomer > 1. Prove that there is a unique derivation (resp. antideriva-
tion) D, of A extending L if r is odd (resp. even). Here, an endomorphism
D of A is called a derivation (resp. antiderivation) if D(® A @') =
Do A @ + w A Dw'(resp. D(w A @) = Do A @ -+ €(w)w A D®’)
for all w, " € A.

M is a C> manifold of dimension m; @(M) is as in §1.1.

(a) Let d be an endomorphism of @(M) satisfying (1.1.15). Prove that d is
local in the following sense: if @ € @(M) and @|U = 0 on some open
set U < M, then dw{U = 0.

(b) Let d be as in (a), U = M an open submanifold. Deduce from (a) the
existence of a unique endomorphism d¥ of @(U) such that (i) (dw)| U =
dV(@|U) (w € @(M)), and (ii) dY is local. Prove further that dV satisfies
(1.1.15).

(c) Let U be as in (b) and such that there are x,, ... ,x, € C=(U) forming a
coordinate system on U. Prove that there is exactly one endomorphism
of @(U) satisfying (1.1.15), and that it is given by (1.1.16).

(d) Deduce from (a)—(c) that there is exactly one endomorphism d of @(M)
satisfying (1.1.15), and that for U as in (c), dV is given by (1.1.16). (To
prove existence of d, define dV by (c) for U as in (c), and patch up the
local definitions.)

() Let 0 <p <m and let w be any p-form. Prove the following global

description of dw: if Xi,...,X,,, are smooth vector fields on M,
(P + Dd0(Xi, . Xy ) = (DX, K Xp)
<i<p

Y (1O XL X LK LK X )
1<i<j<p+1
(Here, ~ over an X; indicates it should be omitted. To prove this we may
assume @ = f(dfi A --- A df,) where f,f\,...,f, € C"(M). Then
(p+DdO(X:, ..., Xp41) = Daen, €ON Xoy N Xoy) 1) - (Xotos 1) f7)
The coefficient €(0) is X,(\{f(Xo@) /1) - (Xotor S} — fXo){ (KXo 1)
o« (Xo(p+ 1) f)). Simplify the second expression by the Liebniz formula.)

Let M be as in Exercise 12. For Y € 3(M) and n € @, (M) (¢ = 1), let ny
be the (¢ — I)-form Z,,...,Z,-y —» (Y, Z\,...,Z;-1) (Z; € I(M)); for
n € Qo(M), put 11y = 0.

(@) Forw € @, (M) and Y € 3(M), prove that

Lyo:(X,... . X)) 3 (—Do(Y,X], ..., X ..) + Y-o(X,...,X,)
<i<p
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is a p-form. Extend Ly to an endomorphism of @(M), denoted again by
Ly, and prove that it is a derivation of @(M). Prove also that LyL, —
LyLy = Lix,y) (X, Y € 3(M)).

(b) Prove that (p + 1)(dw)y = —pd(wy) + Lyw (@ € Q,(M), Y € I(M)).
Deduce that if dw = 0, Lyw = d(pwy). (Use (e) of Exercise 12).

(c) Prove that d commutes with Ly. (Use (b) to prove that Lydw = dLyw =
(p + Dd(dw)y for w € Q,(M)).

Let M be a C~ manifold of dimension m. If T'is a C* manifold and 5.t € T)
are p-forms on M, 1, is said to be smooth in ¢ if for X,,...,X, € I(M),
x> (X, ..., Xp)x)isC>onT x M.If T=R and 7, is a p-form smooth
in ¢, dnjdr, [ 1. dt, etc., are defined in the obvious fashion. If & is any
diffeomorphism of M, @ — w* (resp. X +— X*) is the induced automorphism
of Q(M) (resp. I(M)). Let 1 < p < m.

(a) If (¢t € R) is a p-form smooth in ¢, so are dn./dt, (.)y, dn., etc., and

(o) =

(b) Let &£,(t € R) be an one-parameter group of diffeomorphisms of M, i.e.,
v =EL(t, 1 € R) and t,x — &(x) is a C~ map of R X M into M.
If w € @,(M), prove that @, = w* is smooth in 7.

(c) Let X € 3(M) be defined by

X = (grew) e m.

Prove that
d

ar @ = Lyw, VYt

(It is enough to consider ¢ = 0. Note first for Y € 3(M) and f € C~(M),

(Y f)(x)/dt)-o = —([X, Y1 )x) (x € M). Let X; € J(M) and X}=
Si<jemai{x:t) @/dx; in local coordinates, 1 << i < p. Observe now that

(% a(x: t))lzo — (X X))

and calculate

(a‘% 0l Xy, . .. ,X,,)(x)) = (Edt‘ DX, ... XHED)

t= =0

(d) Let X, w, w, be as in (b) and (c) and let dw = 0. Let #, = p [ (w.)x dT.
Prove that dn, = @, — @ for all . (Hint: Let A, =dn, — (0, — w).
Then dA,/dt = 0 by (c) and (b) of Exercise 13.)

Ly is called the Lie derivative of @ by X; (c) gives its differential
interpretation.

Let M be oriented. Let { be an (m — 1)-form with compact support. Prove

that [ d{ = 0. Deduce that if M is compact and { is any (m — 1)-form,

[sdf = 0.



CHAPTER 2

LIE GROUPS AND LIE ALGEBRAS

2.1. Definition and Examples of Lie Groups

The notion of a Lie group is obtained by imitating the definition of a
topological group.

Let G be a topological group. Suppose there is an analytic structure on
the set G, compatible with its topology, which converts it into an analytic
manifold and for which the maps

{ ()= xy (x,y€G)

Q2.1.1) o ce )

of G x G into G and of G into G, respectively, are both analytic. Then G,
together with this analytic structure, is called a Lie group. As usual, by abuse
of language, we shall refer to G itself as a Lie group. According as the analytic
structure is real or complex, G is called a real/ or a complex Lie group. A
connected Lie group is called an analytic group.

The underlying topological group of a Lie group is obviously locally com-
pact and second countable. If G is a complex Lie group, then the underlying
topological group, together with the real analytic structure corresponding to
the complex analytic structure, forms a real Lie group (cf. §1.2). We shall
refer to this as the real Lie group underlying the complex Lie group G.

If G, 1 < i< n, are Lie groups, then the product group G, X --- X G,,
equipped with the product analytic structure, is a Lie group; we shall denote
itby G, x --- x G,. 1f G, and G, are Lie groups, a map n of G, into G, is
called an isomorphism of Lie groups if it is an isomorphism of the underlying
groups as well as of the analytic manifolds.

Let G be a Lie group. It is then immediate from the definition that
(x,y) — xy~'is an analytic map of G X G into G. For any fixed a € G, let [,
and r, be the left and right translations of G defined by

(2.1.2) l,x = ax r,x =xa (x e G).

41
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Then /, and r, are analytic difffomorphisms of the analytic manifold G. If
we write

(2.1.3) I,x = axa!'=x* (x e Q),

then i, is an analytic automorphism of the Lie group G.

It is natural to ask whether the class of Lie groups is enlarged if one re-
places the analytic manifolds in the definition of a Lie group by C* manifolds
(0 <k << o). For example, let G be a topological group, and let us assume
that for some integer & (0 << & < oo) G has the structure of a C* manifold
for which the maps (2.1.1) are of class C*. It is then natural to call G a C*
group. One may then raise the question whether it is possible to equip G with
an analytic structure compatible with its C* structure, under which it is a Lie
group. It is comparatively easy to prove that there cannot be more than one
analytic structure with this property; we shall give a proof of this later on.
The question of existence, however, is more difficult to settle. When k = oo
or is at least sufficiently large, the existence of such a compatible analytic
structure on a C* group was a classical result, proved by Schmidt and known
to Hilbert. The case k = 0 is the fifth problem of Hilbert. Its solution for
compact groups was by von Neumann in 1933; the general case was settled
only in recent times, as a result of the contributions of Gleason, Montgomery-
Zippin, and other mathematicians. We refer the interested reader to the book
of Montgomery and Zippin [1] for a treatment of this and related questions.
The fact that every C* group underlies a unique Lie group shows that we can
restrict ourselves to analytic and Lie groups without any loss of generality.

Given a Lie group G and a subgroup H of G which is not necessarily
closed in G, we shall call H a Lie subgroup of G if (i) H is a Lie group, and (ii)
the identity mapping of H into G is an imbedding of the analytic manifold H
into the analytic manifold G, i.e., H is an analytic submanifold of G. If H is
regularly imbedded in G, then H is a topological subgroup of G. A connected
Lie subgroup is called an analytic subgroup.

Theorem 2.1.1 Let G be a Lie group, real or complex. Suppose H is a
subgroup which is at the same time a quasi-regularly imbedded submanifold of
G. Then H, together with this analytic structure, is a Lie subgroup of G. If H
is a regularly imbedded submanifold of G, then H is closed in G.

Proof. The map (x,y) > xy~! of G x G into G is analytic. Hence, by
restriction, ¢: (x,y)— xy ! is an analytic map of H X H into G. Since
¢[H < H] < H and H is quasi-regularly imbedded, ¢ is an analytic map of
H x Hinto H. This proves that H is a Lie group. It is obviously a Lie sub-
group of G. Suppose now that H is regularly imbedded in G. Then H is locally
closed in G; and in particular, H is open in its closure. Let H be the closure
of Hin G. Then H is a subgroup of G, and H an open subgroup of H. But an
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open subgroup of a topological group is necessarily closed; hence, H is closed
in H. This implies that # — H; i.e., H is closed in G.

We now discuss a few examples of Lie groups.

(1) Rm, the additive group of m-tuples of real numbers, is a real analytic
group. C™, the additive group of m-tuples of complex numbers, is a complex
analytic group.

(2) Let C* be the multiplicative group of .nonzero complex numbers;
the analytic structure of C* is that of an open submanifold C. Then C* is a
complex analytic group. For any integer m > 1, C*" —= C* X ... X C* (m
factors) is an abelian complex analytic group of (complex) dimension m.

(3) Let

(2.1.4) T = {(zy,...,2,) € C¥*"1|z;| = 1 for | << j < m}

Then T™ is a connected compact subgroup of C*™. We equip C*” with the
real analytic structure underlying its complex analytic structure and define the
functions F; by Fi(z,,...,z,) = (Re z;)> 4+ (Imz;)2 — I; then F, (1 < j << m)
are real analytic functions and T™ is the set of common zeros of F,, ... ,F,.
It is easy to see that dF,, ... ,dF, are linearly independent at all points
of T™. Thus T™ is a compact regular analytic submanifold of the real analytic
manifold underlying C*”. By Theorem 2.1.1, T™ is a compact analytic group.
It is called the m-dimensional torus. If 7 is the map of R™ onto T” given by

(2.1.5) X1y X)) = (e300, eRinen),

then 7 is a submersion of R™ onto T™. Thus T™ may be regarded as the quo-
tient manifold of R™ relative to z. Note that z is a homomorphism and its
kernel is Z™, the set of all (x4, ... ,x,) where all the x; are integers.

(4) Letn>1 and let M(n,R) be the real vector space of all n X n real
matrices. We denote by a;; (1 < i, j < n) the linear function which associates
with any matrix its /jth entry. Let GL(n,R) be the set of all invertible elements
of M(n,R). GL(n,R) is open in M(n,R), and we regard it as an open submani-
fold of M(n,R). Under matrix multiplication GL(n,R) becomes a real Lie
group. In an analogous manner, GL(n,C) becomes a complex Lie group. The
Lie subgroups of GL(n,R) and GL(n,C) provide the most important examples
of Lie groups. More abstractly, if ¥ is a vector space of finite dimension over
R (resp. C), the group GL(V) of linear automorphisms of V is a real (resp.
complex) Lie group.

(5) Letn>1 and let T“(n,R) be the set of all upper triangular n X n
matrices with real entries whose diagonal elements are all equal to 1:
A € M(n,R) belongs to T*(n,R) if and only if a,,(4) = §,; for 1 <j<i<n.
T*(n,R) is a closed subgroup of GL(n,R). Since it is an affine subspace of
M(n,R), it is a regular analytic submanifold of GL(n,R), hence a Lie sub-
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group (Theorem 2.1.1). Similarly one can define the complex Lie group
T“(n,C).

(6) Let SL(n,R) be the closed subgroup of GL(n,R) consisting of all
elements of determinant 1. For 4 € M(n,R) let f(4) = det(4) — 1. Then f'is
an analytic function, and SL(n,R) is the set of zeros of f. If 4,, is the cofactor
of a;; in the matrix (a,,);<,, ;<. a simple calculation shows that

(2.1.6) df = 1 E< Ay day;.

<i,j<n .
It follows from this formula that if df vanishes at some 4, € M(n,R), then all
the cofactors of the elements of 4, must be zero, so that det(4,) must vanish.
Consequently df'is nonzero at all points of SL(n,R). This proves that SL(n,R)
is a closed regular analytic submanifold of GL(n,R) of dimension n? — 1.
Theorem 2.1.1 allows us to conclude that SL(n,R) is a closed Lie subgroup of
GL(n,R). An analogous treatment can be given for SL(n;C).

(7) Let O(n,R) be the group of n X n real orthogonal matrices. It is a
compact subgroup of GL(n,R). We shall prove that it is a regular analytic
submanifold of IMM(n,R), of dimension }n(n — 1). Theorem 2.1.1 will then
imply that it is a compact Lie subgroup of GL(n,R).

Let g,; be the function on IM(n,R) defined by

(2.1.7) qdi; = Z a; i, — (5,‘] (1 < i,]é n)'
1<s<n

Then g,; = g;,, and O(n,R) is the set of common zeros of all the g,;. For any
A € M(n,R) let 6(A4) be the dimension of the vector space spanned by the
differentials (dg;;),. We now show that if 4 € M(n,R) is invertible, §(4) =
4n(n + 1). Fix an invertible 4 in M(n,R). Denote by Q the n X n matrix (g;,).
Then Q = AA* — 1 and so (the suffix denotes that the derivatives are evalu-
ated at A)
2.1.8) (‘9_9_) — AE, + E A

04,1/ 4
where E,, is the n X n matrix whose uvth entry is é,,d,,. Let S, be the vector
space of all matrices B = (b,;) such that 3, <, b:(00/0a;;), = 0. It is
then obvious that §(4) = n? — dim(S,). On the other hand, using the above
expression for (0Q/day,),, we find that

Be S~ 1<k21:<n bi(AE, + E,A) =0
<> AB"'+ BA*' =0

<= BA' is skew-symmetric.

But, since A4 is invertible, X — XA* is a linear automorphism of the vector
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space M(n,R). So S, has the same dimension as the vector space of real n X n
skew-symmetric matrices, which is in(n — 1). Thus

O(A) = in(n 4- 1) (A invertible).

In particular, for 4 € O(n,R), 6(4) = {n(n + 1). Thus the in(n + 1)
I-forms dq,; (1 << i <j < n) are linearly independent at all points of O(n,R).
O(n,R) is thus a regular analytic submanifold of dimension jn(n — 1). An
analogous discussion can be given for O(n,C). Note that O(n,C) is not com-
pact.

For A € O(n,R), det(A4) == 4-1. The subgroup SO(n,R) of all real ortho-
gonal matrices of determinant | is an open and closed subgroup of O(n,R)
of index 2. It is thus also a compact Lie subgroup of GL(n,R). SO(n,C) =
SL(n,C) is analogously open and closed and if index 2 in O(n,C).

(8) The discussion on SL(n,R) and O(n,R) can be generalized to include
all algebraic subgroups of GL(n,R). A subgroup G = GL(n,R) is said to be
real algebraic if G is an algebraic subset of the open set of invertible elements
of M(n,R) (cf. §1.2). Similarly, a complex algebraic group is a subgroup of
GL(n,C) which is at the same time an algebraic subset of it. For instance, the
orthogonal group is algebraic. We have the following theorem.

Theorem 2.1.2. Let G be a real (resp. complex) algebraic group. Then G
is a closed real (resp. complex) Lie subgroup of GL(n,R) (resp. GL(n,C)).

Proof. We discuss only the real case; the complex case is treated along
the same lines. Let @ be the algebra of all polynomials in the entries a;; with
real coefficients. Write U == GL(n,R), and let G = U be an algebraic group.
In view of Theorem 2.1.1, it is enough to prove that G is a regular submani-
fold of U. Let g be the ideal of all elements of ® which vanish on G. For
A € U let R, be the vector space spanned by the differentials (df),, f € 9;
let d, = dim(R,).

Suppose 4 € G, and let /, be the left translation B+> 4B of U. For any
p € @, let p* be the function X+ p(4X) on M(n,R). Then p* e @, and
p— p* is an automorphism of the algebra ® which leaves the ideal g invari-
ant. Now, for any B € U, the differential (d/,), is an isomorphism of the
tangent space to U at B onto the tangent space to U at AB; the dual of this
isomorphism maps (dp) .z onto (dp?), for any p € ®@. In particular, the vector
space R, gets mapped onto the vector space R, under this dual. Thus d,,, —
dy for all B € U. We thus see that d, is constant for 4 € G.

Now apply Whitney’s Theorem 1.2.1. The constancy of d,for A € G shows
that all points of G are regular and enables us to conclude that G itself is a
regular analytic submanifold of U. As mentioned at the beginning, this proves
that G is a closed Lie subgroup of GL(n,R).
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(9) Let B be the skew-symmetric bilinear form on C2* x C2?” given by

(219) B(xay) = 1"2 (xpyn+p - xn+pyp),
<p=<n
wherex = (xq,...,x;,)andy = (yy, . .. ,p2.). The symplectic group Sp(n,C)

is defined to be the subgroup of GL(2n,C) of all elements which leave B in-
variant. Let

(2.1.10) F (0 I")
" “\—r1, 0/

where I, is the n X n identity matrix. Then it is easy to show that Sp(n,C) is
the subgroup of all 4 € GL(2x,C) such that A'FA = F. Sp(n,C) is thus a
complex algobraic group, hence a closed complex Lie subgroup of GL(2n,C)
by Theorem 2.1.2. The analogously defined algebraic subgroup of GL(2n,R)
is denoted by Sp(n,R).

It is customary to refer to the groups GL(n,C), SL(n,C), SO(n,C), O(n,C),
and Sp(n,C) as the complex classical groups.

(10) Let U(n,C) be the unitary group in n dimensions, i.e., the subgroup
of all matrices in GL(n,C) that leave the Hermitian form x,x; -+ - -+ -+ x,X,
invariant. If 1 denotes adjoints, then A € U(n,C) if and only if 44" = 4’4
== [. SU(n,C) denotes SL(n,C) N U(n,C). If Sp(n,C) is defined as above, we
write Sp(n) = Sp(n,C) N U(2n,C). U(n,C), SU(n,C), and Sp(n) are all com-
pact groups.

Lete, = (J,1, . . .,0,,) (1 < p < n) be the usual basis of C" over C. Then
e;,...,e,ie,,...,ie, (i* = —1)is a basis of C"considered as a vector space
over R. This enables us to identify GL(n,C) with a real algebraic subgroup of
GL(2n,R). Under this identification, SU(n,C), U(n,C), and Sp(n) are easily
seen to be real algebraic subgroups of GL(2n,R). These are therefore all Lie
groups. ,

Un,C), SU(n,C), SO(n,R), and Sp(n) are usually referred to as the com-
pact classical groups.

Note that if G is a Lie group and G° is the connected component of G
containing 1, G° is an open and closed subgroup of G; hence G° is an open
analytic subgroup of G. We leave it to the reader to verify that if H is a Lie
subgroup of G, H® is an analytic subgroup of G, and that H° is regularly
imbedded in G if H is.

If G is a countable discrete group, G° = {1}. We shall regard G° as an
analytic group (of dimension 0), so G will be a Lie group.

2.2. Lie Algebras

Let k be a field of characteristic 0. A vector space ¢ over k is called a Lie
algebra over k if there is a map
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XY)~[XY] (X,Y,[X.Y]€g)
of g X g into g with the following properties:

(i) (X,Y)— [X,Y]is bilinear
(2.2.1) (i) [X,Y]+[V.X]=0 (X,Yeg)
(i) [X,[Y,Z]) + [Y,[Z,X]] + [Z[X, Y]] =0 (X,Y,Z €g).

For X,Y € g, [X,Y] is called the bracket of X with Y. The relation (iii) of
(2.2.1) is known as the Jacobi identity. All the Lie algebras considered by us
are finite-dimensional unless we explicitly state otherwise.

Let g be a Lie algebra over k and let {X,,...,X,} be a basis of g (as a
vector space). Then there are uniquely determined constants ¢,,, € k (1 <
r, s, p < n) such that

(2.2.2) (X, X]= 3 ¢, X,
1<p<n
Thec,,, are called the structure constants of g relative to the basis {X, ... ,X,}.

The identities (2.2.1) then lead to the following relations:

(l) cra‘p+csrp:0 (lgr,sspgn)
(2'2*3) (ll) 1<§<n (cr:pcpru + CstpCoru + c/rpcp:u) =0
o 1<r s, t,u<n).

Ifgisa Lie algebra over k£ and K is a field containing &, the K-vector
space g X, K has a unique structure of a Lie algebra over K such that

(2.2.4) XRLY®I=[XYI®]1 X,Yeqg)

We denote this Lie algebra by g, and refer to it as the extension of g to K.
We shall usually identify g with its image in g, under the map X— X X 1
(X e€g). If k =R and K = C, we write g, for g Xr C and call it the com-
plexification of g.

Let g be a Lie algebra over k. Given two linear subspaces a and b of g,
we denote by [a,b] the linear space spanned by [X,Y] with X €a, Yeb. A
linear subspace 1) of g is called a subalgebra if [§,5] = Y; it is called an ideal if
[3,5] =Y. If g, g are Lie algebras over k, and z (X > n(X)) a linear map of
g into @', @ is called a homomorphism if it preserves the bracket operations,
ie., if

(2.2.5) (2(X),7a(Y)] = =([X,Y]) (X,Y € g).

If 7 is a homomorphism, then z[g] is a subalgebra of g’, and the kernel of #
is an ideal in g. Conversely, let g be a Lie algebra over k and §j an ideal of g.
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Let ¢" = g/b be the quotient vector space, and z the canonical linear map of
gontog’. For X' = z(X)and Y’ = n(Y) let

(2.2.6) [X",Y'] = a([X,Y]).

Then it is easy to show that [X",Y’] is well defined and that ¢’ becomes a Lie
algebra over k with this definition of the bracket. x is then a homomorphism
of g onto g’ with ) as its kernel. g’ is called the quotient of g by §j; we continue
to denote it by g/}).

Let g, (1 < i< m) be Lie algebras over k. Then g=g¢g, X --- X g,
becomes a Lie algebra over k if we define

(2.2.7) [(Xy,.... %)Y, . ... 00l = (X, Y. .. [ X, YR

for (X,,...,X,) and (Y,,...,Y,) in g..q is called the product of the Lie
algebras g; (1 < i < m).
We now give some examples of Lie algebras.

(1) Let g be any finite-dimensional vector space over k. If we define
[X,Y] =0 for all X,Y < g, then g becomes a Lie algebra over k. It is said to
be abelian.

(2) Let V be a finite-dimensional vector space over k. For any two
endomorphisms X and Y of V, define

(2.2.8) [X,Y] = XY — YX.

With this bracket, the vector space of all endomorphisms of ¥ becomes a Lie
algebra over k. It is denoted by gl{(V). More concretely, the vector space of
all n X n matrices with entries from k& becomes a Lie algebra over k if we
define the bracket by (2.2.8). This Lie algebra is generally denoted by gl(n,k).
As important subalgebras of gl(#,k) we mention the following: 8l(n,k), the
subalgebra of all matrices of trace 0; o(n,k), the subalgebra of all matrices
which are skew-symmetric; and when n = 2m, 8p(m,k), the subalgebra of all
matrices 4 such that A°F + FA = 0, F being the matrix defined by

229 F = 0 /I
(2.2.9) —(41 0)

(here I, is the m x m identity matrix). The verification that these are in fact
subalgebras is elementary and is left to the reader.

(3) Let gl{n,C)g denote gl(n,C) considered as a Lie algebra over R. Then
X — —X'is an involutive automorphism of gl(#,C)y," denoting the operation
of taking adjoints. The elements which are fixed by this involution form a
subalgebra, denoted by u(n,C). More generally, let p > 1,4 > 1 be two in-
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tegers with n = p -+ g and let D be the diagonal matrix

(2.2.10) D = diag(l,...,1,—1,...,—1)

p elements q elements

Then X+ —DX'D is an involutive automorphism of gl(#,C)g whose fixed
points form a subalgebra, denoted by u(p,q,C). 8u( p,q,C) = 8((n,C) N u(p,q,C)
is a subalgebra of u(p,q,C). Analogously, with D asin (2.2.10), X — —DX'D
is an involutive automorphism of gl(n,R) whose set of fixed points is a sub-
algebra, denoted by o(p,q).

(4) Let 9 be any algebra over k. We assume that the multiplication in
A is bilinear but not necessarily associative. An endomorphism D of A (con-
sidered as a vector space) is called a derivation if

(2.2.11) D(ab) = (Da)b + a(Db) (a, b e ).

If D, and D, are derivations of 9(, then it is easy to see that [D,,D,] =
D,D, — D,D, is also a derivation of 9. If 9 is finite-dimensional, the set of
derivations of 2 is a subalgebra of gl(Y).

(5) Let M be a real analytic manifold. We shall denote by 3,(M) the real
vector space of all real analytic vector fields on M. It follows from (1.1.6) that
3.(M), equipped with the Lie bracket, is a Lie algebra over R. This Lie algebra
is in general infinite-dimensional. However, there are many situations where
3,(M) admits a variety of finite-dimensional subalgebras. These play an im-
portant role in the theory of Lie groups. For instance, we may take M = R”
and take g to be the set of all vector fields of the form Y, ..., a(d/dx,), where
X4, ...,X, are the usual coordinates on M and the a; are possibly inhomo-
geneous linear functions of the x’s. g is a finite-dimensional subalgebra of
3(M).

We also introduce at this stage the notion of a representation of a Lie
algebra; with later applications in mind, we allow the representation to be
infinite-dimensional. Let g be a Lie algebra over k, and V a vector space over
k, not necessarily finite-dimensional. By a representation of g in V we mean a
map

n: X—aX) (Xeg)
of g into the vector space of all endomorphisms of ¥ such that

(2.2.12) { (i) = is linear

(i) n(X,Y]) = 2a(X)n(Y) — z(¥)rn(X) (X,Y €g).

If Vis finite-dimensional, (2.2.12) is equivalent to saying that z is a homomor-
phism of g into g{(¥). The dimension of V is called the degree of zr. 7 is said to
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be the trivial representation if dim ¥ =1 and n(X) = 0 for all X € g. In
many cases of interest ¥ is an algebra over k and each z(X) a derivation of V.

Suppose g is any Lie algebra over k. For any X € g, let ad X denote the
endomorphism of g given by"

(2.2.13) ad X: Y~ [X)Y] (Y €g).

It follows easily from (2.2.1) that ad X is a derivation of g and that X — ad X
is a representation of g in g. This is called the adjoint representation of g.
Note that g is abelian if and only if ad X = 0 for all X € g. The kernel of
the adjoint representation is the set of all X € g such that [X,Y] = O for all
Y € g; it is called the center of g.

There are two important and interesting operations which can be perfor-
med on representations to yield new representations. Let g be a Lie algebra
over k and let z; be a representation of g in a vector space V,, i = 1,...,r.
Let V=V, X --- x V,, and for any X € g let n(X) be the endomorphism
of V defined by

(2.2.19) aX)(v,,...v) =@ X)v,,...,n(X)v,)

for all (v,,...,v,) € V. It is easy to see that z is a representation of g in
V; it is called the direct sum of the representations z; (1 < i < r). Further, let

W=V, ®V,

For any X € g let n(X) be the endomorphism of W given by

(2.2.15) { X)) =1,NRI® R +IRLERI® R

L IRI® - ® 1R rX).

We leave it to the reader to verify that z is a representation of g in W. It is
called the tensor product of n,, ... ,n, and is denoted by 7, ) - - - X =,.

It is important not to confuse the notion of tensor products of representa-
tions of a Lie algebra with another notion, the so-called outer tensor prod-
uct. Let g; be a Lie algebra over k, and =; a representation of g, in V. Let
g =g, X --- X g, be the product of the g,, and for any (X,,...,X,) € g let

(2.2.16) aXy,..., X)=2,X)R1IR - X1 4 ---
+1I®IR - X r (X)),
It is easy to verify that 7, is a representation of g, in W. It is called the outer

tensor product of m,,...,n,, and is denoted by @, X @, X - -+ x m,. Note
that
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2217y X Ra)X)=(m xm, X - Xxn)X,...,.X) (Xe€g@)

ifg, = =g =g
Representations 7, of a Lie algebra g in V, (i = 1, 2) are said to be
equivalent if there is a linear isomorphism & of V; onto V, such that

(2.2.18) (X! = m(X) (X €9).

A representation z of a Lie algebra g in V is said to be irreducible if 0 and V
are the only subspaces of V' which are invariant under all z(X), X € g. Let
7 be non-irreducible and W (3£ 0, £ V) a subspace invariant under all z(X),
X e g; for any X € g let 7, (X) (resp. 7, (X)) be the endomorphism induced
by n(X) on W (resp. V/W). Then z, (resp. my ) is a representation of g in W
(resp. V/W); it is called the subrepresentation (resp. quotient representation)
defined by W.

2.3. The Lie Algebra of a Lie Group

Let G be a real Lie group. We denote its identity element by 1. Then the
vector space 3,(G) of all analytic real vector fields on G is a Lie algebra over
R, the bracket being the usual Lie bracket. For any 4 € G, /, (x +> bx) is an
analytic diffeomorphism of the analytic manifold G. Tt therefore induces an
automorphism X +— X" of the Lie algebra 3,(G). An element X € 3,(G) is
said to be left-invariant if X" = X for all b € G. It is obvious that the set of
all left-invariant real analytic vector fields forms a subalgebra of the Lie alge-
bra 3,(G). We denote this Lie algebra by g and call it the Lie algebra of G.
In a similar manner, if G is a complex Lie group, the set of all left-invariant
holomorphic vector fields on G is a Lie algebra over C, denoted by g and
called the Lie algebra of G.

Theorem 2.3.1 Let G be a Lie group and g its Lie algebra. Then the map
(2.3.1) XX, (Xeg),
is a linear isomorphism of g onto the tangent space T (G) to G at 1. In particular
(2.3.2) dim(G) = dim(g).

Proof. We give the proof in the real case. The complex case is handled
in a similar fashion.

If X € gand b € G, the left invariance of X implies that

Xb = (dlb)l(Xl)-
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Hence X, = 0 implies X, = 0 for all b.e G;i.e., X =0. Thus the map (2.3.1)
is injective. We now prove that it is surjective. Let v € T,(G). For any b € G
we define the tangent vector X, € T,(G) by

X, = (dl,),(v).

We prove that X (b— X,) is an element of g. If x € G, the relation [, =
I, o l, implies that

(dl)(X,) = (dl),((dl,),(v))
= (dl 4)(v)
= X)cb'

X is thus invariant under all left translations. We now assert that X is an
analytic vector field. In view of the left invariance, it is enough to check that
X is analytic around the identity element 1. Select coordinates x,,...,x,
on an open subset U of G with 1 € U and x,(1) = --- = x,(1) = 0. Since
the map (x,y)+— xy of G X G into G is analytic, there are functions F;
(1 < i < n) defined and analytic around the origin of R” X R” such that

(2.3.3) x{ab) = F{x(a),...,xa): x(b),...,x (b))

for 1 < i< n and all q,b in some open set V' with 1 € ¥ and V¥V = U. Let
Ciy...,0, € Rbesuch that X; = Y3 .,c,¢c,(0/0x),. If ac V, X, x, = Xy,
where y, is the function b — x,(ab) on V (1 < i < n). Hence, from (2.3.3),

(2.3.4) Xox, = 3 c,.(;_F,.(xl(a), L x(a)ie,,. .. ,m) .
1<7<n v; V1= =vn=0
The expression (2.3.4) shows that the functions a+— X,x, (1 << i< n) are
analytic on V. This proves that X is an analytic vector field. Thus X € g.

The map X — X, is therefore a linear bijection of g onto T,(G). The as-
sertions of the theorem follow at once from this.

It follows at once from Theorem 2.3.1 that for any b € G, the map X'— X,
(X € g) is a linear isomorphism of g with T,,(G). This isomorphism enables
us to identify the tangent space to G at b with g. We refer to this as the can-
onical identification.

It is possible to develop the theory of Lie groups by defining the Lie
algebra of a Lie group G to be the set of all right-invariant analytic vector
fields. It should be noted, however, that a right-invariant vector field is in
general not left-invariant. If G is abelian, it is obvious that left and right
invariance coincide.

If G is a Lie group, its Lie algebra g is an “invariant” of the Lie group
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structure of G. The fundamental problem in the theory of Lie groups is that
of determining the extent to which G is determined by g. We shall prove that
G is determined up to “local isomorphism” by its Lie algebra. We shall also
prove the much deeper result that any abstractly given Lie algebra over R
(resp. C) is isomorphic to the Lie algebra of a real (resp. complex) Lie group.
The proofs of these theorems require considerable preparation and will be
carried out in subsequent sections. At this stage we content ourselves with the
remark that g is already determined by the component of 1 of G. In fact, let
G° be the component of 1 of G and g° its Lie algebra. G° is an open submani-
fold of G. For any X € g, let X° be its restriction to G°. Then X — X?° is an
isomorphism of g with g° (by Theorem 2.3.1). In rough terms, the structure of
G beyond G° cannot be obtained from g.
We now give a few examples of the correspondence G +— g.

(1) Let V be a vector space over R of finite dimension #. It is an analytic
manifold in the usual way and a real Lie group under addition. For v € V
denote by d(v) the derivation of C*(V') given by

23.5) (@) f) () = {di,f(u + zv)} weVv).

=0

d(v) is a left-invariant analytic vector field, and v +— d(v) is a linear isomor-
phism of V with its Lie algebra. For fixed u € V, f+ (d(v) f)(u) defines a
tangent vector d(v), to V at u, and v — d(v), is a linear isomorphism of V'
with the tangent space to V" at u. This enable us to identify the tangent space
to V at any of its points with V itself. We shall always do this and refer to it

as the canonical identification. Let x4, ... ,x, be a basis of the dual V'* of V,
and e, ... ,e, the corresponding dual basis of V. If v € V, then
v = E x(v)e,
1<i<n

and an easy calculation shows that
0, = 3 x0)() wev)
“ 1<i<n ! 0x,. u ’

It follows at once from this that the Lie algebra of ¥ is abelian.

(2) Let ¥V be as in (1). The space M of endomorphisms of V is a vector
space over R of dimension n2 and is an analytic manifold in the usual manner.
Let G = GL(V); then G is an open submanifold of M. We now “determine”
the Lie algebra g of G. We canonically identify the tangent space to It at any
of its points with M itself (cf. (1)). Given X € g, the tangent vector X, at the
identity element 1 is, by virtue of our identification, an element of M itself.
Let us denote this element by X°. Since dim(I) = n? = dim(g), it is clear
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that X'+ X° is a linear isomorphism of g with M. To complete the “deter-
mination” of g it only remains to calculate [X,Y]° in terms of X° and Y?° for
any two elements X and Y of g.

Let X, Y € g. Let f be an arbitrary real /inear function on . For 4 € G
let 4 be the linear function on M defined by f4(C) = f(4C) (C € M). Then
in the notation for differential operators (cf. §1.1)

fA4;Y) = fAL;Y°)
d 0
= {Gra + ax )}
= f(AY°).

t=0

Therefore

SLXY) = (¥F)(1:X0)
d 0 0yo
= {Gr@ + o)
— f(X°YY).

=0

It follows from this that
(2.3.6) SGIXY]) = f(X°Y° — Y°X°).

Since fis an arbitrary real linear function on 9k, and since there exist n? real
linear functions on I which form a system of coordinates for I (hence for
G), the formula (2.3.6) leads us to

(2.3.7) [X,Y]0 = XOY° — YoXo.

In other words, the map X+ X° is a Lie algebra isomorphism of g with
gl(V). We shall henceforth identify g with g{(¥) via this isomorphism, so that
gl(V) becomes the Lie algebra of GL(V).

(3) Let A be an associative algebra with unit 1. We assume that A is
defined over R and that it is of finite dimension; the complex case may be
treated along the same lines. Denote by G the group of invertible elements of
A.Forx,y € A, let A,(y) = xy. The function f: x — det(4,) is a polynomial
function on 4, and x € G if and only if f(x) % 0. G is thus open in 4. Equip-
ped with the topology and analytic structure inherited from 4, G becomes a
Lie group. Let g denote its Lie algebra.

Since A is a vector space, we may identify the tangent spaces T,(4) (x € A4)
with A itself in the usual fashion. We then have a linear isomorphism

XX (Xeg)

of g onto 4 which associates with any X € g the element of 4 corresponding
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to the tangent vector defined by X at 1. Proceeding exactly as in the previous
example, we find that

[X,Y]° = X°Y° — Yox°.

In other words, if we denote by A, the Lie algebra whose underlying vector
space is that of 4 and in which the bracket is defined by

[up]l = uv — vu (u,v € A),

then g is canonically isomorphic to A4,.

(4) Let G,...,G, be Lie groups and let g, be the Lie algebra of
G, 1<j<n Let G=G, X --- X G, be the product Lie group and g
its Lie algebra. We canonically identify the tangent space to G at any point
(x4, .. .ox,) With T, (G,) X --- X T, (G). If X; € g; for 1 <j<n, the as-
signment (x,,...,x,)— (X, -..,(X,),,) determines an element, say X,
of g. We leave it to the reader to check that the map (X4, ...,X,) — Xisan
isomorphism of the Lie algebra g, X --- X g, onto g. In view of this iso-
morphism, we shall identify g with g, X -+ X g,.

2.4. The Enveloping Algebra of a Lie Group

Let G be a real Lie group. For each a € G, /, (x — ax) is an analytic
difftomorphism of G onto itself; it therefore induces an algebra automor-
phism of the algebra (over R) of all analytic real differential operators on G.
An analytic real differential operator D is called left-invariant if it is invariant
under. all left translations. Such differential operators form an algebra over
R, denoted by &. If G is a complex Lie group, & will denote the algebra
(over C) of all holomorphic differential operators on G invariant under all
left translations. In either case & is called the enveloping algebra of G. If g is
the Lie algebra of G, then g = &, and for X, Y € g, [X,Y] = XY — YX. We
shall postpone to the next chapter a closer study of &, and content ourselves
at this stage with the following theorem.

Theorem 2.4.1. Let G be a Lie group, g its Lie algebra, & its enveloping
algebra. Suppose {X,, . ..,X,} is any basis for §. For any n-tuple (r,, . . .,r,)
of integers >0 let us define the element X ‘-~ of & by

(241) X(rn.A..,r,,) — Xrln ... X;n
(X9 = 1, the identity operator). Then, the X "™ form a basis for &. In

particular, & is algebraically generated by 1 and g. For any a € G, the map
D D, (D € ®) is a linear isomorphism of & with T {(G).
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Proof. We work with real Lie groups; the complex case can be treated
similarly. Now, X, . .., X, are real analytic vector fields on G with the prop-
erty that (X,),, ... ,(X,), form a basis for T,(G) for any a € G; therefore,
Theorem 1.1.2 applies. We conclude first from that theorem that the X ¢+
are linearly independent elements of &. Now suppose D € &. The same theo-
rem then implies that for some integer s > 0 and analytic functions f,, .,
onG(ri+--+r,<5s),

(242) D = Z f(n ,,,, r")X(n ..... rn)’
n< s

ryteco+r

the functions f,,
are left-invariant, we have

(2.4.3) D=D"= % (fu.)d X (a€G).

.....
ri+eo+ra<

The relations (2.4.2) and (2.4.3) imply that all the f,,, . . ,,, are left-invariant.
Hence they are all constant. & is thus linearly spanned by the X v, In
particular, the X, generate & algebraically.

To prove the last assertion, fix @ € G and write (D) = D, (D € ®).
The left invariance of the elements of & implies at once that 7 is injective. On
the other hand, if p is any integer > 0 and &’ is the linear span of the
Xeewm with ey + - -+ + r, < p, T maps @ into 7”(G), while dim @» =
dim T¢”(G). 7 thus induces a linear bijection of & onto T{"(G) for each
p > 0. Consequently, 7 is a linear isomorphism.

As a simple example, let B be a vector space over R of dimension n. Let
b be the Lie algebra of the additive group of B, B its enveloping algebra. For
X € Blet d(X) be the derivation of C=(B) defined by (2.3.5). Then X — d(X)
is a linear isomorphism of B onto b. Let S denote the symmetric algebra over
B; we assume that B = S. Since ¢(X)d(Y) = d(Y)d(X) for X,Y € B, d
extends to a unique homomorphism, denoted again by d, of S into B. Since b
generates B, d maps S onto B. On the other hand, if X3, . .. ,X, is a basis of
B, the elements d(X,)" --- d(X,)™" = (X - -- X) are linearly independent
in B by Theorem 2.4.1. It follows from this that ¢ is an isomorphism of the
algebra S onto the algebra B. If &, . . . ,&, is the basis of B* dual to the basis

{X,,...,X,} of B, then an easy calculation shows that
s ! sll! sni—=rn Sh—rn
;ﬁ”'r_,,'!il c &
a(X?X;")(éilE;”): if rlsrm---,s]SS"

0 otherwise

The linear independence of the d(X,)" - - - d(X,)™ may also be deduced
from these formulae, thereby avoiding the appeal to Theorem 2.4.1.
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2.5. Subgroups and Subalgebras

Let G be a Lie group (real or complex) and g its Lie algebra. Let H be a
Lie subgroup of G and § its Lie algebra. We denote by i the identity map
of Hinto G. For any X € 0, (di),(X,) € T,(G), so there is a unique element
X € g such that X, = (di),(X,). Write

(2.5.1) X = i) (X) (Xeh).

Since (di), is a linear injection, it is clear that di is a linear injection of f into
g. Moreover, X and X = (di)(X) are i-related for any X < f. In fact, if we
write A, for the left translation of H by an element x € H, then [, o[ =
i o A,; from this we get the relation

(2.5.2) X, =(@@)(X,) (xeH),

which asserts the i-relatedness of X and X. It follows from this that
(2.5.3) [(di)(X),(d) )] = (@)([X,Y]) (XY €b);

di is therefore a Lie algebra injection of § into g. If we write

(2.5.4) (@i)[f] =0,

then § is a subalgebra of g, called the subalgebra of g defined by H. Clearly, Y
is also the subalgebra of g defined by H°. Note for later use the following
relation, which follows trivially from (2.5.2):

(2.5.5) (@)IT(H)] = {X.: X €9} (x € H).

The question naturally arises whether one can construct, corresponding
to an arbitrary subalgebra 1) of g, a Lie subgroup H of G which defines Y;
and if this is possible, whether H is uniquely determined. It is obvious that
we cannot in general expect uniqueness unless H is connected. The aim of
this section is to prove that the correspondence H — Y is a bijection of the
set of all analytic subgroups of G onto the set of all subalgebras of g. The
proof depends on the following lemma.

Lemma 2.5.1. Let G be a Lie group, g its Lie algebra, and Yy a subalgebra
of §. For any x € G, let £ be the subspace of T.(G) consisting of the set of
all tangent vectors of the form X,, X € §). Then (x — L£%) is an involutive
analytic system of tangent subspaces, of rank equal to dim Yy, on the manifold G.

Proof. We work with real Lie groups; the complex case is analogous.
Put £ = £ let p = dimY, and let X,,...,X, be a basis for g such that
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X,,...,X, span §. Since 1) is a subalgebra, there are constants ¢;;, € R
such that
[Xan] = l<;<pciijk (1<i,j SP)-

The tangent vector (X,),,...,(X,), span £, for any x € G. Since the X;
are analytic vector fields, we may conclude that £ is an analytic system of
tangent subspaces of rank p. It remains to prove that £ is involutive.

To prove that £ is involutive, let U be any open subset of G, and X and
Y two analytic vector fields on U which belong to £ on U; we must prove
that [X,Y] belongs to £ on U. Now, the (X,),,...,(X,), form a basis for
T.(G) for any x € G. Therefore by Theorem 1.1.2 there are analytic functions
fi & (1<i<n) on U such that X =3, .., f;X; and Y=Y, .., &X;
on U. Since X and Y belongto Lon U, f; = g, = 0 for p < i< n. Hence on U

[X,Y] = E pﬁ(Xigj)Xj - lg%}g gi(’“fj)Xj + lglz;gp.figj[XhXj]

1<i,j

I
A

= X,

1<k<

A
™

where for | < k < p,

hy = 1giz;gp cinfigr + . (f(X:g) — g X.fo)-

<i<p
This proves that [X,Y] belongs to £ on U. £ is therefore involutive.

Theorem 2.5.2. The correspondence, which assigns to any analytic sub-
group of G the subalgebra of g defined by it, is a bijection of the set of all analytic
subgroups of G onto the set of all subalgebras of g. If Y < g is a subalgebra, the
analytic subgroup H that defines Yy is the maximal integral manifold containing
1 of the involutive system £%, while for any x € G, the left coset xH is the
maximal integral manifold of £° passing through x.

Proof. Let £ be as in Lemma 2.5.1. We can apply the Chevalley-Fro-
benius theory of involutive systems (cf. §1.3) to it. Let H be the maximal in-
tegral manifold of £ containing 1.

From the definition of £ it is clear that

(256) (dlx)y("ey) = "Bxy (x,y € G).

It follows from (2.5.6) that if S is an integral manifold of £ containing y,
xS is an integral manifold of £ containing xy. As a consequence, if S is the
maximal integral manifold of £ containing y, xS is the maximal integral
manifold of £ through xy. Taking y = 1, we see that xH is the maximal
integral manifold through x for any x € G. Since the maximal integral
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manifold through any point is unique, we must have xH = H for x € H.
It follows easily from this that H is a subgroup of G. We know (Theorem
1.3.7) that H is a connected quasi-regular submanifold of G. Hence, by
Theorem 2.1.1, H is an analytic subgroup of G.

We claim that [) is the subalgebra of g defined by H. Suppose [’ is
the subalgebra in question. Then, for any X € g, X € )’ if and only if
X, e (diL[T(H)] = £,, i.e., if and only if X € |). This proves that §’ = .

Suppose, finally, that H' is an analytic subgroup of G which defines the
same subalgebra [j of g. Let i’ be the identity mapping of H' into G. By (2.5.5),
di),IT (H)] = £, for all, x € H'. Hence H' is an integral manifold of £.
Since 1 € H', it follows that H’ is an open submanifold of H. In particular,
H'’ is an open subgroup of H. But then H’ is closed in H, and since H is con-
nected, we must have H' = H. Thus H' and H are identical as analytic sub-
groups of G.

Theorem 2.5.2 is completely proved.

In general, an analytic subgroup is not regularly imbedded, and so is not
a topological subgroup. We shall now examine the circumstances under
which an analytic subgroup is regularly imbedded.

Lemma 2.5.3. Let A and B be locally compact second countable groups,
and let ¢ be a continuous homomorphism of A onto B. Then ¢ is open. If ¢ is
one-to-one, it is a homeomorphism.

Proof. Let 1, and 1, be the respective identities of 4 and B. Let V be an
open set containing 1,. Select a compact neighborhood V', of 1, such that
ViVi' < V. Since 4 is second countable, we can find a sequence a,,a,, . . . of
elements of 4 such that 4 = |_J;., a,V;. Then B = | 2, o(a,)p[V,]. The sets
¢(a,)p[V,] being compact, we can apply the Baire Category theorem to infer
that for some n > 1, ¢(a,)p[V/,] has nonempty interior. Hence ¢[V,] has non-
empty interior. Choose b € ¥, such that ¢(b) is an interior point of ¢[V,].
Then 1, = @(b)p(b~") is an interior point of [V,]p[V '] = @[V,V1'], so that
15 is an interior point of ¢[V]. If U is an arbitrary open set in 4 and a € U,
1 is an interior point of g[a~'U] = ¢(a) '¢[U] by the above result, showing
that ¢(a) is an interior point of p[U]. This proves that g[U] is open. ¢ is thus
an open mapping. The second result is a trivial consequence of the first.

Theorem 2.5.4. Let G be a Lie group and H a Lie subgroup of G. Then H
is quasi-regularly imbedded in G. Moreover, the following conditions on H are
equivalent :

(1) H is a topological subgroup of G
(i) H is regularly imbedded in G
(iii) H is a closed subset of G.
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Proof. Let H® be the component of the identity of H. H° is quasi-reg-
ularly imbedded in G, as we observed in the proof of Theorem 2.5.2. From this
the quasi-regularity of H follows easily. For the rest of the theorem (i) = (ii)
by definition, while (ii) = (iii) by Theorem 2.1.1. Suppose now that H is a
closed subset of G. Then H is locally compact and second countable in the
relative topology inherited from G. So, by Lemma 2.5.3, the identity mapping
of H into G is a homeomorphism into. This shows that H is a topological
subgroup of G. Theorem 2.5.4 is proved.

It is easy to give examples of analytic subgroups which are not topological
subgroups. For example, let G = T2, the two-dimensional torus (cf. (2.1.4)).
Let /2 be the map of R! into G given by

(2.5.7) ) = (e"e™) (t € RY),

o being an irrational number. Let H = A[R!]. Then H is a subgroup of G. It
is classical that H is not closed in G—it is actually dense in G. We give to
H the analytic structure for which % is an analytic diffeomorphism of R! with
H. It is then obvious that H is an analytic subgroup of G.

As an example illustrating Theorem 2.5.2, consider G = GL(n,R) and
H = O(n,R). H is a closed Lie subgroup of G of dimension {n(n — 1) (cf.
§2.1). We identify canonically the Lie algebra of G with g = gl(n,R). We now
determine the subalgebra §j of g defined by H. We have

(2.5.8) dim(f) = Jn(n — 1).

Let a,; (1 < k, ! < n) be the linear function on M(n,R) whose value at any
matrix A is its k/th entry. Fix X € §), and let X = (b,)),<;, j<,. Then the tan-
gent vector corresponding to X at 1 is

. d
X = 19%9- bk’(a_é:z)1.

Let g,; be the functions defined by (2.1.7) and let Q be the n X n matrix-
valued function whose jjth entry is ¢,;. Since g,; = 0 on H, we have X,q,; =
0(1<ij<m),ie,

00\ _
(259) 2 bel5), =
In view of (2.1.8), we get from (2.5.9)
(2.5.10) X+ X' =0,

i.e., X is skew-symmetric. Thus § < o(n,R), the Lie algebra of all skew-sym-
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metric matrjces. Since dim o(n,R) = In(n — 1), we conclude from (2.5.8)
that §) = o(n,R).

Given a Lie group G with Lie algebra g and an analytic subgroup H of G,
Theorem 2.5.2 enables us to identify in a canonical fashion the Lie algebra of
H with the subalgebra of g defined by H. In particular, the Lie algebras of
analytic subgroups of GL(n,R) may be canonically identified with subalgebras
of gl(n,R). The above example is an illustration of this identification.

2.6. Locally Isomorphic Groups

As we have seen, the Lie algebra of a Lie group G is already determined
by the component of the identity G° of G. Actually, the converse of this is
also true. It turns out that the Lie algebra of G completely determines the
local structure of G} i.e., two Lie groups have isomorphic Lie algebras if and
only if they are locally isomorphic. These facts constitute what are usually
referred to as the first and second fundamental theorems of Sophus Lie. The
proof of this theorem will be given in §2.8. We shall devote this section to a
brief recapitulation of the basic facts of the theory of a certain class of con-
nected groups and their covering groups. This theory is well known, and we
refer the reader to Pontryagin [1] and Spanier [1].

We begin with the notion of paths and their homotopy. Let X be a Haus-
dorff topological space. A path in X is a continuous map f of the unit interval
[0,1]into X; if f(0) = f(1) = x, fis said to be a closed path about x. If fis con-
stant it is said to be a null path. X is said to be arcwise connected if, given any
two points x, y € X, there is a path fin X with f(0) = x and f(1) = y. X is
said to be locally arcwise connected if the collection of all arcwise connected
open sets forms a base for the topology of X. Suppose now that X is arcwise
connected and locally arcwise connected. Two paths fand g in X are said to
be homotopic (f ~ g in symbols) if there is a continuous map ¢ of the unit
square [0,1] X [0,1] into X such that ¢(0,r) = f(¢), p(1,t) = g(t) (0 <t < 1)
and ¢(s,0) = f(0) = g(0), ¢(s,1) = f(1) = g(1) (0 < s < 1). If fand g are paths
with f(1) = g(0), their composition h = fg is the path given by A(f) = f(2¢)
(O<tr<%)and i(r) = g(2t — 1) (3 < t < 1), while f~1is the path given by
S = f(1 — 1) (0 <t < 1). It is easy to prove that homotopy is an equiva-
lence relation in the set of paths and that this relation respects formation of
compositions and inverses. Let x € X. Then the set of all equivalence classes
of closed paths about x becomes a group under composition, the identity of
the group being the class of closed paths about x which are homotopic to the
null path. The isomorphism class of this group is independent of x. We denote
it by 7,(X) and call it the fundamental group of X. X is said to be simply
connected if m,(X) is trivial. X'is said to be locally simply connected if for any
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x € X and any open set U containing x, we can find an open set ¥ such that
x € ¥V < U and any closed path in ¥ is homotopic in U to a null path. X is
called admissible if it is arcwise connected, locally arcwise connected and
locally simply connected. Any convex open subset of R”is simply connected. If
n >3, the unit sphere in R” is simply connected. Any connected manifold
is an admissible topological space, and at each of its points there is a basis
of simply connected open neighborhoods.

Let X be an admissible topological space. A pair (X,w) is called a covering
of X if X is admissible, e is a continuous map of X onto X, and if the follow-
ing condition is satisfied: given x € X, there is a connected open set U con-
taining x such that @~ '(U) is a disjoint union of open sets {V;} and w is a
homeomorphism of V; onto U for each j; U is said to be evenly covered in this
situation. X is called the covering space and w the covering map. Coverings
(X1,w,) and (X,,w,) of X are said to be equivalent if there is a homeomor-
phism @ of X, onto X, such that w, = w,w.

The fundamental theorem of the theory of covering spaces can now be
described. Let X be an admissible topological space. Then there is a covering
of X with the property that the covering space is simply connected ; moreover
this covering is determined up to equivalence. It is called a universal covering
of X because it possesses the following property. Let (X,w) be a covering of
X such that X is simply connected and let (X,,e,) be any covering of X; then
there is a continuous map @’ of X onto X, such that @ = @,w’ and (X,w’) is
a covering of X;. The covering space of a universal covering is called a univer-
sal covering space of X.

A topological group G is said to be admissible if its underlying topological
space is admissible in the sense just described. Suppose G is an admissible
topological group and (G,w) a covering of the topological space G. Then a
multiplication can be introduced into G under which it becomes a topological
group (necessarily admissible) and @ becomes a continuous homomorphism
with discrete kernel. Conversely, let G be an admissible topological group,
N a discrete normal subgroup, G = G/N, and @ the natural homomorphism
of G onto G. Then G is admissible, N is contained in the center of G, and (G,w)
is a covering of G. Motivated by these results, we introduce the following
definition. Let G be an admissible group. An admissible group G is said to
be a covering group of G if there exists a continuous homomorphism o with
discrete kernel mapping G onto G; wis then called the covering homomorphism.
Given any admissible group G there exists a simply connected covering group
of G.Itis determined up to isomorphism and is known as the universal covering
group of G. More precisely, let G, be a simply connected covering group of G,
and w; the corresponding covering homomorphism (j = 1, 2); then there is
an isomorphism o of G, onto G, (as topological groups) such that w, = w,w.
If G, is a covering group of G with covering homomorphism w; (j = 1, 2) and
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If G, is simply connected, there is a continuous homomorphism w of G, onto
G, with discrete kernel such that w; = w,w.

One of the most important and useful properties of a simply connected
topological group is the possibility of extending local homomorphisms to
global ones (principle of monodromy). To describe this result precisely we need
the concept of a local homomorphism. Let G, (j = 1, 2) be groups with G,
arcwise connected. By a local homomorphism of G, into G, we mean a map ¢
of an open neighborhood U of the identity of G, into G, with the following
property: if a, b, and ab are all in U,p(ab) = ¢(a)p(b). A homomorphism y of
G, into G, is said to extend a local homomorphism g if w(a) = ¢(a) for all ain
some open neighborhood of the identity. Since G| is connected, it is generated
by any arbitrary open neighborhood of its identity, and so there can be at
most one homomorphism of G, into G, which extends a given local homomor-
phism. The principle of monodromy asserts that if G, is admissible and simply
connected, then any local homomorphism of G, into G, possesses a unique
extension to a global homomorphism of G, into G,.

The concept of local homomorphism leads naturally to that of local
isomorphism. Let G, (j = 1, 2) be admissible groups. We shall say that G,
and G, are locally isomorphic if there are open neighborhoods U, of the
identity of G; (j = 1, 2) and a homeomorphism ¢ of U, onto U, such that the
following condition is satisfied: if a, b € U,, then ab € U, if and only if
¢(a)p(b) € U,, and in that case p(ab) = p(a)p(b). Let G be an admissible
group and G, a covering group of G. Then G and G, are locally isomorphic.
The relation of local isomorphism is reflexive, symmetric, and transitive. The
fundamental result in this context is the one which asserts that two admissible
groups G, and G, are locally isomorphic if and only if there is an admissible
group which covers both. In particular, let G be a given admissible group, G
the universal covering group of G; then the groups of the form G/N, where N
is a discrete normal (hence central) subgroup of G, are admissible and locally
isomorphic to G; moreover, any admissible group locally isomorphic to G is
isomorphic to a group of the above type.

Let us now consider the case of an analytic (= connected Lie) group G.
Since a connected analytic manifold is necessarily arcwise connected, locally
arcwise connected, and locally simply connected, it follows that G is admis-
sible. In this case it turns out that all the admissible groups locally isomorphic
to G become analytic groups in a natural manner. The proof of this depends
on the following lemma.

Lemma 2.6.1. Let G be a connected second countable topological group.
Suppose U and V are two open neighborhoods of the identity having the following
properties:
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(a) there is an analytic structure on V converting it into an
analytic manifold

(b) UU ' <V, and the map (u,0) — uv=! is analytic from
UXUintoV.

(2.6.1)

Then there exists a unique analytic structure on G such that

(i) some open neighborhood of 1 is an open submanifold of both G and V
(ii) for any a € G, the left translation 1, is an analytic diffeomorphism of
G onto itself.

Moreover, G becomes an analytic group under this analytic structure.

Proof. Let Wbe an open set containing 1 with W = W-tand WW < U.
W is an open submanifold of V. For any a € G we regard al¥ as an analytic
manifold with the analytic structure for which x — ax is an analytic diffeo-
morphism of W onto aW. Suppose a, a’ € G are such that aW N a'W =
@. Then aW M a’W is an open submanifold of both aW and a'W. In fact,
a'“'aand a~'a’ belong to WW = U, and (2.6.1) shows that x — &'~ 'ax is an
analytic diffeomorphism of W a 'a'W onto W a'~'aW. This proves
that there is an analytic structure on G such that (i) all the al# are open sub-
manifolds of G, and (ii) the left translations /, (a € G) are analytic diffeo-
morphisms of G.

Suppose there exists another analytic structure for G such that the re-
quirements (i) and (ii) of the lemma are satisfied. Let G denote the analytic
manifold obtained by equipping the topological space G with this analytic
structure. The identity map i (G — G) is then analytic at 1 with a bijective
differential. But then condition (ii) implies that / is analytic at any a € G and
has a bijective differential. / is thus an analytic diffeomorphism.

We now prove that this analytic structure converts G into an analytic
group. Write i,x = axa™!, a, x € G. If Nis an open neighborhood of 1 such
that N = N-'and NNN < W, it follows from (2.6.1) that (x,y,z) — xyzis an
analytic map of N x N X N into W. In particular for @ € N, i, is an analytic
map of N into W. Using left translations, we conclude easily that i, is an
analytic map of G onto itself for all @ € N. Now G, being connected, is
generated by the elements of N. Further, i,, =i, and i, = i;', a,b € G.
Hence i, is an analytic diffeomorphism of G for all a € G.

We now prove that (x,y) — xp~! is an analytic map of G X G into G. Fix
Xg, Vo € G. To prove the analyticity of this map at (x,,y,), it is enough to
prove that (x,y) — (xx)(y,y)~! is analytic at (1,1), in view of the fact that left
translations are analytic diffeomorphisms. Now (x,x)(yoy) ™! = L.yl (xy71).
So, since (x,y) —> xp~! is analytic at (1,1) by (2.6.1), the required conclusion
follows from the analyticity of /., and i,. G is thus an analytic group.

0Yo
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Corollary 2.6.2. Let G, and G, be admissible groups satisfying the second
axiom of countability. Let

n:G, — G,

be a continuous homomorphism whose kernel D is a discrete subgroup of G,
and which maps G, onto G,. Suppose G, (resp. G,) is an analytic group. Then
there exists exactly one analytic structure on G, (resp. G,) converting it into an
analytic group for which m is an analytic homomorphism.

Proof. For definiteness, let G, be an analytic group. Since D is discrete,
we can select a compact neighborhood K, of the identity 1, of G, such that
K,K7i' N D = {1,}. Let V| be the interior of K, and ¥ = #[V,]. Then V is
open in G, by Lemma 2.5.3, 1, € V, and = is a homeomorphism of V| onto
V. We give to V the analytic structure which makes z a diffecomorphism of
V, onto V and select an open neighborhood U of 1, such that UU"! = V.
Then U, V satisfy the conditions of the lemma. So we can convert G, into an
analytic group in such a way that x is analytic at 1,. Since z is a homomor-
phism, 7 is analytic everywhere.

Now observe that 7 is an analytic difftfomorphism of an open neighbor-
hood of the identity of G, onto an open neighborhood of the identity of G,.
It is clear from Lemma 2.6.1 that this requirement on n determines the ana-
lytic structure on G, uniquely. On the other hand, it follows from Corollary
2.7.4 (see below) that a surjective analytic homomorphism whose kernel is
discrete is necessarily a local diffeomorphism. Hence, the above analytic
structure G, is the only one with the properties stated in the corollary.

The case when the roles of G, and G, are interchanged is handled simi-
larly. This completes the proof of the corollary.

Now consider an analytic group G. Let G be a universal covering group
of G and w a covering homomorphism. It follows from Corollary 2.6.2 that
we can convert G into an analytic group so that o becomes an analytic map
which is locally diffeomorphic. Since any admissible group locally isomorphic
to G is isomorphic to a group G/D where D is a discrete normal subgroup
of G, Corollary 2.6.2 applies once again and shows that all such admissible
groups can be converted into analytic groups in a perfectly natural fashion.
This is the fact we mentioned earlier.

We give some examples.

(I) Let G = R™ and let # be the homomorphism of G onto T given
by (2.1.5). Then kernel(n) = Z™. It is easy to see that the analytic struc-
ture defined on T™ by Corollary 2.6.2 is the same as the one introduced
in §2.1.
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(2) Let G =SUQRC). If x € GL(2,C), then x « G if and only if

(2.6.2) X = (*“ A )

ﬂconj a:cnj
where &, f € C and |a|* + | #]> = I. Thus the map
x+— (Rea,Ima,Re f,Im B)

is a homeomorphism of G onto the unit sphere in R*. G is thus simply con-
nected. It is easy to see that the center C of G consists of the two matrices

;t(cl) (])> Thus, up to isomorphism, G and G/C are the only admissible

groups locally isomorphic to G. Actually, G/C =~ SO(3,R), as we shall see
presently.

Let V be the vector space (over R) of all 2 x 2 Hermitian matrices of
trace 0. The map (x,,x,,x;) — v(x,,x,,X;), where

Xy Xz 4 ix;

) ((x1,x2,x;) € R3)

V(X 1,X2,X3) = ( .
X, — ix, —x,

is a linear isomorphism of R3? onto V. For g € G let n'(g) be the linear auto-
morphism v — gvg™! of V, and let n(g) be the linear automorphism of R3
which corresponds to 7'(g) under the identification (x;,x,,Xx3) — v(x,,X,,X3).
Since det(v(x;,x,,x;)) = —(x? + x% 4+ x2) and det(v) = det(n'(g)v) forv € V,
it follows that n(g) leaves the form (x,,x,,x;)+— x? + x% 4+ x% invariant.
So n[G] = O(3,R). Since n(G) is connected, #[G] = SO(3,R). An explicit cal-
culation reveals that arbitrary rotations in R? around the coordinate axes can
be obtained as n(g,) ( € R), where for g, we take one of the following three
forms:

B (e"' 0 ) B cos ! sin t) B (cost isin t)
870 o) &7 (—-sint cost)” & \isint cost
It follows from this that z[G] = SO(3,R). A straightforward argument shows
that the kernel of z is C. In particular, n,(SO(3,R)) = Z,.

(3) G = SL(2,C). It is easily checked that the center C of G is the sub-

group consisting of the matrices j:((]) ?) We show that G is simply con-

nected. This will prove that, up to isomorphism, G and G/C are the only
admissible groups locally isomorphic to G.

Letn > 1 be any integer and let D be the set of all n X n complex Hermiti-
an matrices which are nonnegative definite. Put P = DN SL(n,C). 1tis a
simple consequence of the diagonalization theorem that given any p € D,



Sec. 2.7 Homomorphisms 67

there is a unique p’ € D such that p'2 = p. It is customary to denote p’ by p!/2.
It is obvious that || p'/2|| = || p||"/2, || - || being the usual norm of elements
of M(n,C) regarded as endomorphisms of the complex Hilbert space C*. Thus
the map p+— p'/? of D onto itself is one-to-one, maps compact sets into
compact sets, and has a continuous inverse. It is therefore a homeomorphism.
Note that it leaves P invariant.

Consider now any x € GL(n,C). Then there are uniquely defined matrices
u and p such that u is unitary, p is Hermitian positive definite, and x = up.
In fact, we must have p = (x'x)"/2; then u = xp~! and is unitary. This is the
classical polar decomposition of x. From the formulae for u and p it is clear
that if x € SL(n,C), then u € SU(n,C) and p € P. From the fact that p —
pY? is a homeomorphism of P onto itself, it follows that the map (v,p) — up
is a homeomorphism of SU(n,C) X P onto SL(n,C); it is also a homeomor-
phism of U(n,C) X P* onto GL(n,C), where P* = D n GL(n,C).

Now suppose n = 2. We know from (2) that SU(2,C) is simply connected.
So it remains to prove that P is simply connected. But P is the set of all ma-

trices p of the form
a o
p= aconj l+la|2 ’
a

where a is real and > 0 and a« € C. Thus P is homeomorphic to (0,00) X C,
hence obviously simply connected.

(4) LetG, H be groups with H normal in G and G/H countable. Suppose
H is an analytic group and that for each x € G themap y — xyx~!' of H onto
itself is an analytic diffeomorphism. We convert G into a topological group by
requiring that H be an open (hence closed) subspace of G and equip it with
the unique analytic structure for which aH is an open submanifold for each
a € G. We leave it to the reader to verify that G is a Lie group and that
H = G°.

2.7. Homomorphisms

We now prove two basic theorems concerning analytic homomorphisms
from one Lie group to another. Their proofs depend on the following simple
lemmas on certain involutive analytic systems. These are true for both real
and complex manifolds; since the complex case needs no new arguments, we
give the proofs only for real analytic manifolds.

Lemma 2.7.1. Let M, N be analytic manifolds and let m be a submersive
analytic map of M onto N. Then £ : x — kernel (dr), (x € M) is an involutive
analytic system of tangent spaces of rank equal to dim(M) — dim(N). For
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any x € M, let S, be the connected component containing x of n~'({n(x)}).
Then S, is open and closed in n~'({n(x)}), is a closed regular submanifold of
M, and is the maximal integral manifold of £ passing through x.

Proof. Let m = dim(M), n = dim(N). Clearly, m = n if and only if
(dn), is bijective for all x € M. In this case x is a local diffeomorphism. If
x € M, y = n(x), and U is an open subset of M containing x on which 7 is
one-to-one, then {x} = U N z~!({y}). This proves that z~'({y}) is a discrete
subset of M and establishes the lemma in this special case.

Let m > n, x, € M, y, = n(x,). Choose coordinates x,, ...,Xx, (resp.
Y1, - - - »¥Vs) ON an open set U containing x, (resp. ¥ containing y,) such that
V =a[U), y;on = x; (1 <i<n), and for some a > 0, (x,, . ..,x,) (resp.
(y15 - - - »y,)) maps U (resp. V) onto I™ (resp. I7). It follows from this that for

any z € U, £, is spanned by (9/0x,,,),, - - - ,(d/dx,).. This proves that £ is
an involutive analytic system of tangent spaces of rank m — n. Let U(x,) =
{z:ze€ U, x,(z) = --- = x,(z) = 0}. Then U(x,) = U N 2~ '({rn(x,)}); more-
over, U(x,) is a regular submanifold of M and is an integral manifold of £.
Since x, is completely arbitrary, it follows from this that (i) for any x € M,
n-'({rn(x)}) is a closed regular submanifold of M, and (ii) the connected com-
ponents of 7~ !({x(x)}), being open and closed in z~!({n(x)}), are closed regu-
lar submanifolds of M and integral manifolds of £. Let x € M, let S, be the
connected component of z~!({n(x)}) containing x, and let S be the maximal
integral manifold of £ passing through x. Since S, is an integral manifold
of £, S, is open in S. On the other hand, S, is closed in M, and therefore
closed in S. Since S is connected, S = S,. This proves the lemma.

Lemma 2.7.2. Let M, N be analytic manifolds and &t an analytic map of M
into N such that for some integer p > 1, dim(dn) [T (M)] = p for all x € M.
Then x — kernel (dn), is an involutive analytic system of tangent spaces on
M. Moreover, for each y € M we can find a connected open set U containing
y such that n[U] is a regular p-dimensional submanifold of N and such that m is
a submersion of U onto n[U].

Proof. Theentire lemma is local. To prove the first assertion, assume that
M and N are open neighborhoods of the origin in R™ and R” respectively, and
that z is the map (¢4, . . . ,tm) = (s, - - . ,4,), the u; being analytic functions
oft,,...,t,whichvanishatt,= ... =1, = 0. Let £, = kernel(dn),, x € M.
By assumption, the matrix (9u,/0¢;);<i<n 1<;<m has rank p on M. Without
loss of generality we may assume that the submatrix (0u,/0¢;), <i<p, 1<j<m alsO
has rank p on M. Suppose =, is the projection (xy,...,x,) > (X;, ... X},)
of R” onto R?, and let 7’ = 7, o n. Then (dn’), is surjective for all x € M.
In particular, z'[M] = P is an open neighborhood of the origin in R?. From
Lemma 2.7.1 it follows that £: x — £ = kernel(dz’), is an involutive ana-
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lytic system of tangent spaces of rank m — p. On the other hand, £, < £,
and dim £, = m — pforall x € M. Hence £, = £}, x € M.

To prove the second assertion, choose coordinates around any y € M
which are adapted to £. We assume, in fact, that M is the cube /7 for some
a > 0, that y is the origin of coordinates, and that £, is spanned by (d/0¢,.,),,
...,(0/dt,), for all x € M; moreover, that N is an open neighborhood of
the origin in R” and that # is the map (¢y,...,t,) — (u,,...,u,), the u;
being analytic functions of ¢, . . . ,z,, which vanish at the origin. The fact that
the (d/d¢,), (j > p) span kernel(dn),, x € M, implies that du,/dt, = 0 on M
for1 <r<n, p+ 1 <i<m. Thus the u, are functions of ¢, . . . ,¢z, only.
Let v,(t;, ... ,t,) =ulty, ... .tpn), 1 <r<n, (t,,...,t,) € M. Then n =
7 o m,, where =, is the projection (¢, ... ,t,)— (t,,...,t,) of I7 onto IZ,
and # is the map (¢, ...,t,)— (U, (t,,...,t,),....0,(t,...,t,)) of I? into
N. It is obvious that (d#), is injective for all x € 72. Hence we can find b with
0 < b < a such that #[I7] is a regular p-dimensional submanifold of N and
# is an analytic diffeomorphism of /7 onto it. Let U = n;'(1?). Then U is a
connected open neighborhood of the origin in 77 with the required properties.

Theorem 2.7.3. Let G, be a Lie group with Lie algebra g, (j = 1, 2), and
let & be an analytic homomorphism of G, into G,. Then for any X € g, there
exists exactly one X' € @, such that X and X' are n-related. Write X' = (dn)(X).
Then dn is a homomorphism of g, into g,. Let ), be the kernel of dn and
), = (dn)[g,], and denote by H; the analytic subgroup of G, corresponding to
H);, (G =1,2). Then (i) n[G,] is a Lie subgroup of G,, & is an analytic map of G,
onto nt[G ), and H, = n[GY] = =[G ,]°, and (i) H is a closed analytic subgroup
of G, and coincides with the component of the identity of the kernel of .

Proof. Let 1, be the identity of G; (j =1, 2). It is obvious that given
X € g, there is exactly one X’ € g, such that X';, = (dn),,(X,,). n being a
homomorphism, we have

2.7.1) Liweom=mol, (xe€G)).
Consequently,
(27.2) X = (dm)(X,) (x € G)).

The relation (2.7.2) shows that X and X’ are n-related. The fact that dr is a
homomorphism of g, into g, follows at once from the z-relatedness proved
above.

Define now

(2.7.3) {£x ={X.:X€0} (x€G)

M, = {X,: X' €0} (¥ € G)
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It follows from (2.7.1) and (2.7.2) that

{,Cx = kernel (drn),

(2.7.4)
M,y = (dn).[T(G))]

forall x € G,. Now, §j, is a subalgebra of g,, so by Lemma 2.5.1 and Theorem
2.5.2 M (y — M,) is an involutive analytic system of tangent spaces whose
maximal integral manifolds are H, and its left cosets. On the other hand, by
Lemma 2.7.2 we can find a connected open set U containing 1, such that
n{U] = N is a p-dimensional regular submanifold of G,, where p = dim {),.
This shows that for x € U, M, ,, = (dn),[T.(G,)] is a subspace of T,,(N).
Since dim IM,(,, = p, we conclude that N is an integral manifold of M. Since
1, € N, it follows that N is an open submanifold of H,. Now, U generates
GY and N generates H,, so we must have n[GY] = H,. Since H, is quasi-reg-
ularly imbedded in G,, it follows that the inner automorphisms of zn[G,]
induce analytic automorphisms of H,. Hence (cf. example (4) of §2.6) we may
convert n[G,] into a Lie group in such a way that H, = #[G,]° is an open
submanifold of it. Since H, is an analytic subgroup of G,, n[G,] is a Lie
subgroup of G,. Now, H, being a quasi-regular submanifold of G,, z is an
analytic map of G{ into H,. Since 7 is a homomorphism, we conclude that
7 is an analytic map of G, into n[G,].

It is clear from (2.7.4) that z is a submersion of G, onto zn[G,]. We may
therefore conclude from Lemma 2.7.1 that £ (x — £,) is an involutive ana-
lytic system of tangent spaces on G,, that H'| = z7'(l,) is a closed regular
submanifold of G,, and that the component of H'| containing 1, is the maxi-
mal manifold of £ through 1,. This shows that H', the kernel of z, is a
closed Lie subgroup of G, (Theorem 2.1.1) and that H, is the component of
the identity of H',. This proves everything we wanted.

The following corollary is immediate from Theorem 2.7.3.

Corollary 2.7.4. Let © be as above. Then dr is surjective if and only if
n[GS] = GY, and it is injective if and only if the kernel of m is discrete.

dn is called the differential of m. In connection with applications it is often
useful to observe the following method of determining dz when =« is given.
Suppose that X € g, and that x (¢ — x(¢)) is a C~ or an analytic map of an
open neighborhood of ¢ = 0 such that x(0) = 1, and (dx/dt),., = X,, (cf.
(1.1.20)). Then

(2.7.5) (@dn)(X),, = (-(%(7: o x))‘=0

IfG,, G,, G, are three analytic groups and if # (G, — G,)and ' (G, — G;)
are analytic homomorphisms, then it is obvious that d(n’ o @) = dn’ o dn.
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Suppose G, G, ...,G, are analytic groups with respective Lie algebras g,
81» ... ,8, and let z; be an analytic homomorphism of G into G,, | <j < n;
then 7, : x— (7,(x),...,m,(x)) is an analytic homomorphism of G into
G, X -+ X G, and dn, is the homomorphism X — (dr,(X), ... ,dn,(X))
of g intog, X --- X g, (here we are canonically identifying the Lie algebra
of G; X --- X G, withg, X --- X g,).

The converse of Theorem 2.7.3 is not true in general. If A is a homomor-
phism of g, into g,, there may not exist an analytic homomorphism 7 of G,
into G, for which dr = A. The next theorem shows that such a x exists when-
ever G, is simply connected.

Theorem 2.7.5. Let G, be an analytic group with Lie algebra g; (i = 1, 2),
and let A be a homomorphism of g, into §,. Then there cannot exist more than
one analytic homomorphism t of G, into G, for which dr = A; if G, is simply
connected, there is always one such m, and it is unique.

Proof. Let G= G, X G, and g =g, X g,. We shall canonically identify
g with the Lie algebra of G. Define §) to be the graph of 4, i.e.,

(2.7.6) h = {(XAX)): X € g,

As 1 is a homomorphism, §) is a subalgebra of g. So we can associate with )
the analytic subgroup of G which defines [); denote this subgroup by H.

Suppose now that z is an analytic homomorphism of G, into G, such that
dn = A. Then ¢: x — (x,7n(x)) is an analytic homomorphism of G, into G,
and do is the homomorphism X — (X,A(X)) of g, into g. Consequently,
(do)lg;] = Y, and we may conclude from Theorem 2.7.3 that ¢[G,] = H. In
other words, H is the graph of z. Since A determines H uniquely, we see that
m is uniquely determined by A.

Now assume that G, is simply connected. To prove the existence of an
analytic homomorphism 7 of G, into G, such that 4 = dnr, let y be the analytic
homomorphism (x,,x,) — x, of G onto G,; then dy is the map (X,,X,) — X,
of g onto g,. Let 7 denote the restriction of y to H; then dr is the restriction
of dy to ) (here we are canonically identifying ) with the Lie algebra of H).
Now, the restriction of dy to 1) is obviously an isomorphism of 1) onto g,.
So, by Corollary 2.7.4, 7 is a homomorphism of H onto G, with a discrete
kernel. In other words, H is a covering group of G, and 7 is a covering homo-
morphism. Since G, is simply connected, t must be an isomorphism of H
onto G, (as topological groups). On the other hand, the fact that dr is an
isomorphism of §) onto g, implies that (dt), is a linear bijection of T,(H)
onto T, (G,) forall 1 € H. 7 is therefore an analytic isomorphism. 77! = ¢
is then an analytic homomorphism of G, onto H. It is clear that

(2.7.7) o(x) = (x,n(x)) (x € Gy),
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7 being an analytic homomorphism of G, into G,. From (2.7.7), do(X) =
(X,dn(X)), X € g,. On the other hand, do(X) = (X, A(X)), X € g,. So A = dn.
The proof of the theorem is complete.

The following example shows that one cannot drop the requirement of
simple connectivity. Let G, = SO(3,R), G, = SU(2,C), and let o be the cover-
ing homomorphism of G, onto G, constructed in example (2) of §2.6. By
Corollary 2.7.4, do is an isomorphism of g, onto g,. Let 1 = (do)~!. Suppose
there is an analytic homomorphism z of G, into G, such that A = dn; by
Corollary 2.7.4, # must be surjective. Since A o do = do o 1 = identity, g o &
= 1 o g = identity, by the uniqueness part of Theorem 2.7.5. 7 is thus the
inverse of ¢. But this is a contradiction, since ¢ is not one-to-one and so
does not possess an inverse.

Corollary 2.7.6. Let G be a simply connected analytic group, § its Lie
algebra. Suppose & (X — X¢) is an automorphism of §. Then there exists ex-
actly one automorphism n (x — x") of G such that & = dn.

Proof. By Theorem 2.7.5 there is a unique homomorphism 7 of G into
itself such that & = dn. It remains to check that # is an automorphism. By
Corollary 2.7.4, 5 is surjective and its kernel is discrete. G is therefore a
covering group of itself, # being the covering homomorphism. Since G is
simply connected, # must be a bijection.

The assumption of simple connectedness is essential for the validity of this
corollary. Suppose G is not simply connected. Let G* be a simply connected
covering group of G and let 7 be a covering homomorphism. Given &, there
is an automorphism #* of G* such that dn* = ¢&. In order that there exist an
automorphism 5 of G such that dy = ¢&, it is necessary and sufficient that »*
leave the kernel of z invariant. This may not always happen.

2.8. The Fundamental Theorem of Lie

We shall now prove the basic theorem of Sophus Lie according to which
the Lie algebra of a Lie group is a complete invariant of the local structure
of the group.

Let G, and G, be two Lie groups. We say that they are locally analytically
isomorphic if there are open neighborhoods U, and U, of the respective
identities and an analytic diffefomorphism w of U, onto U, such that the
following condition is satisfied: if x, y € U, then xy € U, if and only if
w(X)w(y) € U,, and then w(xy) = w(x)w(y). It is obvious that local analytic
isomorphism is an equivalence relation and that two Lie groups are locally
analytically isomorphic if and only if their components of identity are.
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As an example, let us consider two analytic groups G, and G, and suppose
there is an analytic homomorphism @ of G, onto G, having a discrete kernel.
Then G, and G, are locally analytically isomorphic. In fact, dw is an iso-
morphism of the corresponding Lie algebras by Corollary 2.7.4, so we can
find open neighborhoods V; of the identity of G, (j = 1, 2) such that @ is an
analytic diffeomorphism of V| onto V,; if we select an open neighborhood
U, = U;' of the identity of G; such that @[U,] = U, and U,U;' <V,
(j =1, 2),then U,, U,, and w satisfy the conditions of the definition. The next
lemma shows that, when suitably generalized, the above example is typical.

Lemma 2.8.1. Let G, and G, be two analytic groups. Then they are locally
analytically isomorphic if and only if the following condition is satisfied: there
exists a simply connected analytic group G and homomorphisms w; of G into
G; such that w; is analytic, maps G onto G, and has discrete kernel (j = 1, 2).

Proof. Let G, and G, be locally analytically isomorphic and suppose
that U,, U,, and w are as in the definition. Let G be a simply connected admis-
sible covering group of G, with covering homomorphism ;. In view of the
discussion in §2.6, we may assume that G is an analytic group and w, an
analytic homomorphism. By the monodromy principle, we can construct a
continuous homomorphism @, of G into G, such that w,(x) = w(w,(x)) for
all x in an open neighborhood of the identity of G. From the properties of
U,, U,, and w it is clear that w,[G] contains an open set around the identity
of G,. Hence w,[G] = G,. Clearly, w, is analytic at the identity of G. Being a
homomorphism, w, is analytic everywhere. On the other hand, both @ and
w, are diffeomorphisms around the respective identities, so that w, is also a
diffeomorphism around the identity of G. This shows that dew, is an isomor-
phism. By Corollary 2.7.4, the kernel of w, is discrete. G, G,, G, are thus in
the prescribed relation to one other.

Conversely, suppose that G, G,, G,, w,, w, satisfy the conditions of the
lemma. Then G and G, are locally analytically isomorphic, j = 1, 2. This
shows that G, and G, are locally analytically isomorphic. This proves the
lemma.

Theorem 2.8.2. Let G; be Lie groups and §; the corresponding Lie alge-
bras, j = 1,2. Then g, and g, are isomorphic if and only if G, and G, are
locally analytically isomorphic.

Proof. We may assume that G, and G, are analytic groups. Suppose G,
and G, are locally analytically isomorphic; then there is a simply connected
analytic group G and analytic homomorphisms w; of G onto G, with discrete
kernels. Let g be the Lie algebra of G. Then, by Corollary 2.7.4, dw; is an
isomorphism of g onto g;. So (dw,)(dw,)"" is an isomorphism of g, onto g,.
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Conversely, let A be an isomorphism of g, onto g,. Let G be a simply
connected covering group of G, with w, as the covering homomorphism.
We regard G as an analytic group such that w, is analytic. Let g be the Lie
algebra of G; then A o dw, is an isomorphism of g onto g,. By Theorem 2.7.5,
there is an analytic homomorphism w, of G into G, such that dw, = 4 o dw,.
Since A o dw, is an isomorphism, we conclude by Corollary 2.7.4 that w, is
surjective and has discrete kernel. By Lemma 2.8.1, G, and G, are locally
analytically isomorphic. This proves the theorem.

2.9. Closed Lie Subgroups and Homogeneous Spaces. Orbits and Spaces of
Orbits

Let G be a Lie group and H a closed Lie subgroup. We show in this sec-
tion that there exists a natural analytic structure on the left coset space G/H
converting it into an analytic manifold on which G “acts analytically.”

Let G be a topological group and M a Hausdorff topological space. We
say that G acts on M if there exists a continuous map

2.9.1) (gx)—>g-x (geG,xeM,g-xeM)

of G X M into M such that

i) l-x=x (xeM)
@90 { () (myer— g (gem) (g e Gox e M.
If we define
(2.9.3) t(x)=g-x (geG xe M),

then ¢, is a homeomorphism of M onto itself for any g € G, and

(2 9 4) { tllxz = t!ltgz (gl» 82 € G)

t, = identity.

Under these circumstances M is called a G-space. G is said to act transitively
on M if there exists an x, € M such that g+ g- x, maps G onto M; M is
then known as a transitive G-space or a homogeneous space. In this case, given
x, X' € M, there is some g € G such that g-x = x". If M is a G-space and
Xo €M,

(2.9.5) G, ={g:g€ G, g x, = xo}

is a closed subgroup of G, called the stability subgroup at x,. If M is a transi-
tive G-space and x, x’ € M, one has
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(2.9.6) G, = hG !,

where /1 is any element of G with the property that /1 - x = x’; thus the stability
subgroups at the various points of M are mutually conjugate.

Suppose now that G is a locally compact second countable group and G,
a closed subgroup of G. Let N = G/G, and § the natural map of G onto N.
We give to N the quotient topology with respect to f; i.e., a subset V< N
is open if and only if f-'(V')is open in G. It is known (and easy to prove) that
N is a Hausdorff, locally compact, and second countable space with the above
topology. We leave it to the reader to verify that the map

(2.9.7) (8.8(a)) — g-P(a) = P(ga) (g a € G)

is well-defined and continuous from G X N into N and defines an action of
G on N. It is obvious that G acts transitively on N and that G, is the stability
subgroup at f(1). The following lemma shows that every transitive G-space
arises in this manner.

Lemma 2.9.1. Let M be a G-space, both G and M being locally compact
and second countable. Let G act transitively on M, let x, € M, and let G, be
the stability subgroup at x,. Then the map

(2.9.8) n:gG,—gx, (g€0C)

is well defined on G|G,,, is a homeomorphism of G/G,, onto M, and intertwines
the actions of G on the two spaces. In particular, the map g — g - x, is an open
map of G onto M.

Proof. Let f denote the natural map of G onto G/G,, = N, and let y be
the map g — g - x, of G onto M. y is continuous, and y = 7 o §. Since N has
the quotient topology, we conclude that z is continuous. It is obvious that zz
is one-to-one and intertwines the G-actions on N and M. It remains to prove
that 7 is an open map. Let V' be a compact subset of N with non-null interior.
Then there is a sequence a,, a,, . . . of elements of G such that N = (_J, (a, - V),
from which we get M = (_J, (a,- n[V]). By the Baire category theorem, some
a,- n[V], hence n[V] itself, has non-null interior. Let W = interior z[V'] and

, = " Y(W). Since n is one-to-one and C/(V,) is compact, n is a home-
omorphism of ¥, onto W. Now, any open subset of N is a union of sets of the
form a-U, where a € G and U is an open subset of V,. Consequently, = is
an open map. The proof of the lemma is complete.

Let G, M be locally compact and second countable, G acting on M. We
shall say that G acts analytically on M if (i) G is a Lie group and M is an
analytic manifold, and (ii) the map (g,x) — g- x is analytic from G X M
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into M. In this case each ¢, (g € G) is an analytic diffcomorphism of M onto
itself. The main purpose of this section is to prove the analytic version of
Lemma 2.9.1. This is valid for both real and complex Lie groups and mani-
folds; the proofs are given only in the real case. We need two lemmas.

Lemma 2.9.2. Let G be a Lie group acting transitively and analytically
on an analytic manifold M and let x, € M. Then the stability subgroup G, is
a closed Lie subgroup of G. If G is transitive, the map

(2.9.9) v:gr>g-8 (g€0)

is an analytic submersion of G onto M. In particular, M is the quotient manifold
of G relative to the map yp.

Proof. We have
(2.9.10) yol,=t,0y (g€ (@),

1, as usual denoting the left translation by g. If we write V, = (dy),[T,(G)],
it follows from (2.9.10) that V, = (dt,),,[V,]. In particular, dim(V,) is con-
stant, = k say, for all g € G. If y € G,,, we can choose, by Lemma 2.7.2,
an open set U containing y, such that p[U] is a k-dimensional regular sub-
manifold of M and such that y: U — p[U] is a submersion. In particular,
{z:ze U, y(z) = x,} = G,, N U is a regularly imbedded submanifold of U,
hence of G. Since y € G,, is arbitrary, G,, is a regular submanifold of G,
proving the first assertion. Suppose now that G acts transitively on M. Then
y[U] is open in M, by Lemma 2.9.1. Hence k = dim M, proving that (dy), is
surjective for all g € G. This proves the lemma.

Lemma 2.9.3. Let G be a Lie group with Lie algebra g, and H a closed Lie
subgroup which defines the subalgebra Yy of g. We denote by £ (x +— £,) the
involutive analytic system' of tangent spaces defined by £, = {X,: X € b},
x € G. Write p = dimY). Then there exist an a > 0, an open subset U of G
containing 1, and coordinates x,, . . . ,x,, on U such that

(1) (U;xy,...,xn; a) are adapted to £
(2.9.11) { (i) zHNU ={x:x e U, x(x) = x(2) for p <i < mj

(z e U).

Proof. Choose coordinates x, ... ,X, onanopensubset V of G contain-
ing 1 such that (d/dx,),, . . . ,(d/dx,), span £, for all y € V; we may (and do)
assume that y — (x,(), . . . ,x,,(»)) is an analytic diffeomorphism of V" onto

1Cf. Lemma 2.5.1.
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some cube I (b > 0) and that x,(1) = --- = x,(1) = 0. For0 < ¢ < b we
write V,={y:yeV,(x,(»),...,xn(y)) € Ir}. For 0<d<b and a=
@ity .- -sam) € 1m77, let V() ={y:y €V, x(y)=a; for i > p}. For
0 < c<b, V,(0)is an integral manifold of £ containing 1, and so it is an
open submanifold of H. Moreover, H is regularly imbedded in G. So we can
choose b, with 0 < b, < b such that V,, " H = V,,(0); then select b,, b,
with 0 < b, < b, (j = 2, 3) such that V;,'V,, S V,,, V3V, S V. We now
prove that (ii) of (2.9.11) is satisfied for U = V,,. This will prove the lemma,
with a = b,.

Let u € V,, and let x(u) = a,, p < i < m, so thatu € V, (a), where a =
(@,41, .. .,a,); we must prove that V, N uH = V,(a). Since V,(a) is an
integral manifold of £ through u, V, (a) < uH, and we need verify only that
V,, " uH < V, (a). Now, V,, " H = V,,(0), so

Ve, NuH = u(u™'V,, N H)
culV,,N"H)
= uV,(0).

On the other hand, uV,,(0) is a connected integral manifold of*£ contained
in ¥, so the functions x,,, ... ,x,, are constant on uV,,(0). This proves that
Xp+1s. .. ,X, are constant on V, NuH;ie., V, N uH < V,(a).

Theorem 2.9.4. Let G be a Lie group, H a closed Lie subgroup. Then there
exists exactly one analytic structure on G/H = N which converts it into an
analytic manifold such that the natural action of G on N is analytic. If M is
any analytic manifold on which G acts analytically and transitively, x, € M,
and G is the stability subgroup at x,, then the map

86, &+ Xo
is an analytic diffeomorphism of G/G,, onto M.

Proof. Let f be the natural map of G onto N. For each open set ¥V = N
let (V') be the set of all complex-valued functions f defined on ¥ such that
fo B is analytic on g-!(¥). It is evident that for any g € G, f € (g V) if
and only if x — f(g- x) belongs to A(V); i.e., Wis invariant under G. We shall
prove that ¥V — A(V) is an analytic structure on N. It is clearly enough to
prove the following: for any x € N, we can find an open set 4 containing x
such that the restriction % ;: V' — UA(V) (V open, = A) is an analytic structure
on A. Since G is transitive on N and ¥ is invariant under G, it is sufficient
to prove this for x, = B(1).

We select an open subset U of G around 1, coordinates x,, ... ,x,, on U,
and a > 0 such that the conditions (2.9.11) are satisfied. Let 4 = B[U].
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Then A is an open neighborhood of x,. Write
(2.9.12) Uy ={x:ix e U, x,(x)=---=x,(x) =0}

It is then obvious from (ii) of (2.9.11) that B is an one-to-one map of U, onto
A. We may therefore, by replacing @ with a smaller number if necessary,
assume that £ is a homeomorphism of U, onto 4. Clearly, U, is a regular
submanifold (containing 1) of G of dimension m — p. Let { be the map of
U, X Hinto G given by

(2.9.13) txh) =xh (x e Uy, he H).

{ is obviously analytic while (i) of (2.9.11) implies that it is one-to-one.
We assert that d{ is surjective everywhere. For any x € U,, the image of
{x} x Hunder {is xH, and xHN U = {z: z € U, x(2) = x(x), p < i < m},
from which it follows that the range of (d(),, ;, contains (9/dx,),, s =1,...,
p; the image of U, X {1} being Uy, it is obvious that the range of (d(),,
contains (9/dx,),, p < s < m. (d{),.y, is thus surjective. For any & € H, let
a, and f, be the analytic difftomorphisms of U, X H and G given respectively
by a,(x,k) = (x,kh) (x € Uy, k € H) and B,(y) = yh(y € G). Then f,0¢
= { o 0, SO

(2.9.14) @) e = (dfy)s © A0z, 1) © (dotyer) -

The relation (2.9.14) implies our assertion that (d{),, , is surjective for all
(x,h) € Uy, X H. Since dim(U, X H) = dim G, we may conclude that
{[U, X H] = U,H is open in G and that { is an analytic difffomorphism of
U, X Honto U,H.

Let p be the map of 4 onto U, which inverts the restriction of f§ to U,.
For any open set V' = A and any function f defined on V, let f;, be the func-
tion x — f(B(x)) defined on p[V]. Then

(2.9.15) (foBol)x.h) =folx) ((x,h) € Uy X H).

Now, { is an analytic difffomorphism of U, x H onto U,H. Consequently,
S fo B o is an isomorphism of the algebra (V) onto the algebra of all
those analytic functions on p[V'] x H which depend only on the first argu-
ment. The relation (2.9.15) then implies that f+ f is an isomorphism of the
algebra (V) onto the algebra of analytic functions on y[V] (considered as an
open submanifold of U,). This proves that 2, is an analytic structure on A.
Our construction makes it obvious that for any g € G, f(x) — B(gx) is an
analytic diffeomorphism of N. On the other hand, df is surjective at 1. So,
since G is transitive on N, df is surjective everywhere. f is therefore a sub-
mersion, and N is the quotient of the analytic manifold G relative to f.
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Let n denote the map-(g,8(g")) — B(gg’) (g, & € G) of G X N into N.
We denote by 7 the map (g,g') — (g,8(¢g’)) of G X G onto G X N. We have

(2.9.16) (non)gg) = Bgg).

From (2.9.16) it follows that 5 o 7 is an analytic map of G X G into N. On
the other hand, it is obvious that 7 is a submersion, so G X N is the quotient
of the analytic manifold G X G relative to 7. We may therefore conclude
that # is an analytic map of G X N into N. G thus acts analytically on N.
The uniqueness of the analytic structure on N and the last assertion both
follow immediately from Lemmas 2.9.1 and 2.9.2.
The proof of the theorem is complete.

We shall refer to the analytic structure defined above on N as the analytic
structure induced from G.

Let V' < N be an open set. By a section for G/H defined on V we mean an
analytic map ¢ of V into G such that

(2.9.17) Ble(x)) =x. (x e V).
It follows from (2.9.17) tﬁat
(2.9.18) (dB)eixy © (de), = identity (x € V).

The relation (2.9.18) shows that (dc), is injective for all x € V and that, for
any x € V, the linear spaces (dc),[T.(N)] and £,,,(= T.,,(c(x)H)) are com-
plementary in T,,(G). In geometric language, ¢ is an imbedding of V into G
with the following property: for any x € V, there is an open neighborhood
W of x such that ¢[WW] is a regular submanifold of G transversal to the left
cosets of H. If a section is defined on all of ¥, it is called global.

Theorem 2.9.5. Let G, H be as above and let N = G/H. Suppose that
x € Nand that y € G is such that f(y) = x. Then there is a section ¢ defined
in an open neighborhood of x such that ¢(x) = y.

Proof. Let A and U, be as in the proof of Theorem 2.9.4. Then f is an
analytic diffeomorphism of U, onto 4. As before, let y be the map of 4 onto
U, which inverts the restriction of § to U,. Then y is a section for G/H, de-
fined on A; and p(x,) = 1, where x, = B(1). Since B(y) = x, we must have
y+x, = x. Define c on y- 4 by

(2.9.19) c(x)=yp(y t-x") (x' €y-A).

It is easily verified that ¢ is a section with the required properties.
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The case whén H is a normal subgroup of G is especially important.

Theorem 2.9.6. Let G be a Lie group, H a closed normal Lie subgroup.
Then the analytic structure induced on the topological group N = G/H from G
converts N into a Lie group. The natural map B is then an analytic homomor-
phism of G onto N.

Proof. Let 5 be the map (x,y) — xy~! of N X N into N; # the map
(g,8)— gg' "' of G X Ginto G; and z the map (g,g") — (B(g),B(g) of G X G
onto N X N. It is obvious that z is a submersion, and hence N X N is the
quotient of the analytic manifold G X G with respect to z. On the other
hand, # o = f o # and so 5 o 7 is an analytic map of G X G into N. So
n is analytic from N X N into N. Theorem 2.9.6 follows at once from this.

When H is a closed normal Lie subgroup of G, the Lie group N = G/H
constructed above is called the quotient of G by H.

We now give an example where global sections do not exist. Let G be a
compact Lie group and H a finite subgroup. We claim that if G is connected,
then there exist no global sections for G/H. For if a global section ¢ exists, then
the compactness of G implies that (A,x)+— ¢(x)% is a homeomorphism of
H x (G/H) onto G. This is a contradiction, since H X (G/H) is not connected.
For examples of global sections we refer the reader to the exercises.

We now turn our attention to the case when a Lie group G acts analyt-
ically, but not necessarily transitively, on an analytic manifold M. For any
x € M, the set

(2.9.20) G-x={g-x:ge G}

is called the orbit of the point x. Let G, be the stability subgroup of x. Then
the map

(2.9.21) n,:8G,— g+-x

is well defined. By Lemma 2.9.2, G, is a closed Lie subgroup of G. So, since
G/G, is the quotient of G with respect to the map g — gG,, m, is analytic.
Equip G-x with the analytic structure with respect to which 7, is an analytic
diffeomorphism; then we have

Theorem 2.9.7. G- x is a submanifold of M of dimension = dim(G) —
dim(G)). In order that G - x be a regular submanifold of M it is necessary and
sufficient that it be locally closed in M.

Proof. Letibetheinclusionmap of N=G - x into M. Asin Lemma2.9.2,
(di),[T,(N)] has the same dimension for all y € N. Since 7 is one-to-one and
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one-to-one submersions are imbeddings, we can use Lemma 2.7.2 to find, for
any y € N, an open neighborhood U of y in N such that i is an imbedding of
Uin M. This proves that N is a submanifold of M. If Nis regular, it has to be
locally closed in M, by Theorem 1.1.4. Suppose conversely that N is locally
closed in M. Then N is locally compact and second countable in the topology
inherited from M. Lemma 2.9.1 now implies that 7, is a homeomorphism of
G/G, with the topological space obtained by equipping N with this relative
topology. So N is a regular submanifold of M.

Corollary 2.9.8. If G is compact, all orbits in M are regular submanifolds.

When the orbits are regular submanifolds, it is natural to ask whether we
can “parametrize” the orbits nicely. Let us write X = M/G for the set of all
orbits, and for any x € M let n(x) be the orbit that contains x. Then our
question may be formulated as follows: is it possible to convert X into an
analytic manifold in such a way that z is an analytic submersion ?

Suppose such an analytic structure exists on X. Then x is an open con-
tinuous map of M onto X, so a subset Y of X is open if and only if z~1(Y) is
open in M. In other words, X has the quotient topology. Moreover, X is the
quotient of the analytic manifold M with respect to the map 7, so the analytic
structure on X is uniquely determined. Lemma 2.7.1 implies at once that the
orbits of G in M are all closed regular submanifolds of the same dimension
dy = dim(M) — dim(X); in particular, all the stability subgroups have the
same dimension d; = dim(G) — d,. We now consider the problem of proving
the existence of an analytic structure on X with the required properties when
the above conditions are satisfied. We limit ourselves to a discussion of a
particularly simple situation. We say that G acts freely on M if G, = {1} for
all x € M. Put

(2.9.22) {V(x’g) = (x,g-x)
I' = Y[M X G] = {(X,g.x):x eEM,ge G}

Observe that if G acts freely on M, y is one-to-one on M X G.

Lemma 2.9.9. The quotient topology on X is Hausdorff if and only if T is
closed in M X M. In this case all the orbits in M are closed regular submani-
folds of M. :

Proof. Let T" be closed, and let x, y € M be such that n(x) == n(y).
Then (x,y) ¢ T, so we can find open subsets U, V of M such that (x,y) €
UXVeMXxX M)NT. ThenG-UN G-V = &; hence na[U] N n[V] = &.
This proves that X is Hausdorff in the quotient topology. Conversely,
suppose X is Hausdorff and (x,y) ¢ I'. Then zn(x) % n(y), so we can find
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disjoint open subsets Y, Z of X such that n(x) € Y and n(y) € Z. Let U =
a2 YY),V =mn'Z). Then(x,y) € U X V= (M x M)\T. This proves that
(M x M)\T is open. Note that in this case all the orbits are closed in M
and are hence regular submanifolds of M by Theorem 2.9.7.

Theorem 2.9.10. Let G act freely on M. Then the following are equivalent:

(1) T isclosedin M X M, and y is a homeomorphism of M <X G onto T.

(2) T is closed in M X M moreover, given any x € M we can find a
regular submanifold N of M passing through x such that (a) T (M) is the direct
sum of T (N) and T (G - x), and (b) & is one-to-one on N.

(3) There exists an analytic structure on X such that n is an analytic sub-
mersion.

Proof. (1) = (2). Let x € M. Choose a regular submanifold N, of M
passing through x such that 7,(M) is the direct sum of T,(G-x) and T,(N,).
Let y be the map (g,y) — g-y of G X N, into M. It follows from the choice
of N, that (dy), ,, maps T ,,(G X N,) onto T, (M). But since G, = {1},
dim(G) = dim(G - x), so (dy),, ., is actually a bijection. Choosing N, small
enough, we may therefore ensure that (dy),, ,, is a bijection of T; ,,(G X N,)
onto T,(M) for all y € N,. Now, if g € G and 4, is the analytic diffeomor-
phism (h,y) — (gh,y) of G X N, onto itself,

Yol =10,

where ¢, is given by (2.9.3). Consequently, (dy),, is a bijection of
T, (G x N,) onto T,.(M) for all g € G, y € N,. In particular, G- N, is
open in M, while y is an open map which is even a local homeomorphism.
Let U and N, be open subsets of G and N, respectively with 1 € U and
X € N,, such that y is a homeomorphism of U X N, onto U+ N,.

We claim that for some open neighborhood N of x in N,, 7 is one-to-one
on N. If this were not so, we could find sequences {y,} in N, and {g,} in G such
that y, — x and ), = g, -y, — x as n — oo, while y, % y,, for all n. Since y
is a homeomorphism, this implies that g, — 1; hence for some k, g, € U and
¥, and y; are both in N,. Thus w(1,y;) = w(g.Yx)> SO Yx = Vi, a contradic-
tion.

(2) = (3) We equip X with the quotient topology. Then X is Hausdorff
and second countable. For each open subset Y of X we denote by A(Y) the
set of all complex-valued functions f on ¥ for which fo z is analyticonz~*(Y).

Let x € M. Select a regular submanifold N of M passing through x and
satisfying (a) and (b) of (2). Let y be the map (g,y) — gy of G X N into M.
Then (dy), ,, is a bijection of T, ,,(G X N) onto T (M). Replacing N by an
open submanifold of it containing x, we may assume that (dy),, ,, is a bijec-
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tion of T; ,,(G X N)onto T,(M)forall y € N. Asin the previous discussion,
we now conclude that (dy),, ,, is a bijection of T, ,,(G X N) onto T,. (M)
for all (g,y) € G X N. On the other hand, it follows from the one-to-one
nature of 7| NV that y is one-to-one on G X N. Consequently, G - N is open in
M and the map y is thus an analytic difftomorphism of G X N onto G - N.
If Z is any open subset of N, G - Z = y[G X Z] is then open in M, so n[Z] =
n[G +- Z] is open in M; moreover, if f'is a complex-valued function defined on
n[Z], £ € A(w[Z]) if and only if fo 7 oy is an analytic function on G X Z
that depends only on its second argument. In particular, f € A(z[Z]) if and
only if (fo m)|Z is an analytic function on the open submanifold Z of N,.

These remarks prove that we have an analytic structure on X and that, for
each x € M, there exists a regular submanifold P of M passing through x
such that z is an analytic diffeomorphism of P onto an open neighborhood of
7(x) in X. This proves that 7z is a submersion of M onto X.

(3) = (1) Assume now that (3) is satisfied. We have already remarked
that X has to be given the quotient topology. By Lemma 2.9.9, T is closed in
M X M. We now prove that y is a homeomorphism. Let {(x,,g,)} be a
sequence in M X G such that (x,,g,- x,) — (x,y) € I'. Then y = g - x for some
geG, x,—xand g,-x,— y as n — oo. Write h, = g~ 'g,. We have to
prove that 4, — 1 as n — oo,

Since 7 is a submersion, we can find a regular submanifold N of M passing
through x such that (a) and (b) of (2) are satisfied. Arguing as in the preced-
ing proof, we may assume that G- N is open in M and that y((g,y) — g-»)
is an analytic diffeomorphism of G x N onto G- N. Since both x, and
h,- x, converge to x, we may assume that x, and 4, - x, belong to G- N for
all n. So x, = y(u,,y,) and h,-x, = y(v,z,) for all n. Since y is a homeo-
morphism, we must have 4, — 1 and v, — 1 as n — oco. On the other hand,
y(hu,y,) = w\w,z,), so hu, = v, for all n. Hence 4, — 1 as n — oo. This
completes the proof of the theorem.

Remark. We have actually proved the following stronger result: for each
p € X we can select an open subset Y of X containing p, and an analytic
diffeomorphism &, = &€ of G X Y onto z~(Y), such that

(2.9.23) Shg.y) = h-4(g.y) (8he G yeY).

In other words, (M, X,n,G) is a principal G-bundle.
There are two special cases of this theorem that are worth mentioning.
Corollary 2.9.11. Let G be a compact Lie group acting freely and analyt-

ically on M. Then M|G admits a unique analytic structure for which n is a sub-
mersion.
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Proof. 1In this case it is easily seen that (1) of Theorem 2.9.10. is satisfied.

Corollary 2.9.12. Let G be a discrete group acting freely and analytically
. on M, and let T be closed in M X M. Then, in order that X = M|G admit an
analytic structure such that © is a submersion, it is necessary and sufficient that
the following condition be satisfied: for each x € M we can find an open subset
U of M containing x such that (g-UYNU = & forany g = 1inG.

Proof. We shall verify that this condition is equivalent to the fact that y
is a homeomorphism. Suppose y is a homeomorphism and x € M. If an open
neighborhood of x with the required properties does not exist, we can find
sequences {x,} and {p,} converging to x as #u-— oo, with y, = g,+x, for
some g, # 1 in G for all n. Then g, — 1, so since G is discrete, g, = 1 for
all sufficiently large », a contradiction. In the other direction, let {(x,.g,)}
be a sequence in M x G such that, for some (x,g) € M X G, x, — x and
g,* X, — g+xas n— oo, Write 1, = g~ 'g,. Then for some %, x, and #4,- x,
are in U for all n > k, U being an open neighborhood of x with the properties
described in the statement of this corollary. So 4, = 1 for n > k, proving
that g, — g as n — co.

2.10. The Exponential Map

Let G be a Lie group and g its Lie algebra. In this section we shall intro-
duce the exponential map of g into G and study some of its properties. If G =
GL(n,R) or an analytic subgroup of it, the exponential map coincides with the
usual matrix exponential map—a fact which accounts for its name. The ex-
ponential map is probably the most important basic construct associated with
G and g. Many important results in the general theory of Lie groups and
Lie algebras depend in some way or the other on the properties of this map.

Let R be the additive group of real numbers and let ¢ be the usual coordi-
nate on R. R is an analytic group under addition. The Lie algebra of R is
one-dimensional and is spanned by the vector field D = d/dt. For T € R let
D, = (d/dr),. be the tangent vector defined by D at 7. If M is an analytic
manifold and f: ¢+ f(¢) an analytic map of an open neighborhood of 7
into M, then we have (cf. (1.1.20))

(2.10.1) j@ = (41) = @n.o..

Consider now a real Lie group G with Lie algebra g. Let X € g. Then the
map D tX (¢t € R) is a homomorphism of the Lie algebra of R into g.
Since R is simply connected, there is a unique analytic homomorphism £ of
R into G such that dé (D) = X (Theorem 2.7.5). We have
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(2.10.2) { D) = Xoyior Ex(0) = X,

dé (D) = X.

Conversely, let 7 be any analytic homomorphism of Rinto G. If we write X =
(dn)(D), it is obvious that # = &4. In other words, the correspondence

Xy

is a bijection of g onto the set of all analytic homomorphisms of R into G,
such that d¢ (D) = X for all X € g. Note that &, is the trivial homomorphism
t— 1. If T € R is fixed, then for any X € g, 5:t+—> Ex(tf) is again an
analytic homomorphism of R into G. Since (d#),(D,) = tX,, it follows that
n=~C«xsie,

(2.10.3) Cx(t) = &x(tt) (1,7 €R, X € g).
It is customary to write
(2.10.4) Ex(1) =expX (X €9).

exp : X — exp X is thus a map of g into G, called the exponential map. From
(2.10.3) we get

(2.10.5) éx(t) =exptX (t€R, X €g).
Also
(2.10.6) exp0 = 1.

Fix X € g. Then for any x € G, the map
(2.10.7) {,:t—xexptX (t€R)

is an analytic map of R into G, and since {(¢) = I, (exp tX),

(2.10.8) £.(0) = X..

In other words, the analytic curve {, is the unique integral curve of the vector
field X through the point x. From the definition (2.10.1) we see that for any
function f defined and C~ around x

(2.10.9) Xof = f(X) = <a,itf(x exp tX)) (x € G, X € g).

t=0

Suppose G is a complex Lie group, g its Lie algebra. To define the expo-
nential map we proceed as follows. Let C be the complex analytic group of
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the complex numbers under addition and let z be the usual coordinate. We
denote by E the differential operator d/dz and by E, the holomorphic tangent
vector (d/dz),., (t € C). As in the real case, given any X € g there is a unique
complex analytic homomorphism ¢, of C into G such that

(2.10.10) déW(E) = X.

The correspondence
X—&y

is a bijection of g onto the set of all complex analytic homomorphisms of C
into G. We have

(2.10.11) Ex(t) =E&x(zt) (1,7 € C, X €qg).
The exponential map of g into G is then defined by
(2.10.12) exp X = &x(1) (X €9).

For x € G, X € g, and any function f defined and holomorphic around x,
we have

(2.10.13) Xof = f(x:X) — (ad‘t f(x exp tX))
t=0
Theorem 2.10.1. Let G be a Lie group, g its Lie algebra. Then the expo-
nential map is analytic. Further, it is an analytic diffeomorphism on an open
neighborhood of the origin of 6. More generally, let g be the direct sum of
linear subspaces V), ..., (s > 1); then there are open neighborhoods B, of
0inh), (1 <i<s)and Uoflin G, such that the map

(2.10.14) vi(Z,,...,Z)—expZ,---expZ,
is an analytic diffeomorphism of B, X - -+ X B, onto U.
Proof. The proofs are essentially the same in both the real and the

complex cases. We give the proof in the real case.
We prove first that exp is analytic around X = 0. Select coordinates

X1, ...,X, on an open subset U of G containing 1 such that x;(1) = --- =
x(1) = 0, and let X; € g be such that (X,); = (d/dx,);, 1 < i< m. Then
{X,,...,X,} is a basis for g. There are functions F, (1 < k, i << m), defined

and analytic on the open set U = {(x,(»), . . . ,x.(»)): ¥ € U} such that

X, = B, Fulnh o n(Gs) e U
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Denote by F the m X m matrix (Fy;), ¢ ;-m. For 1 <i<{m, write
f(t:ay,...,a,) =exp(t(a, X, + -+ a,X,) (ta,...,a,<R).

It follows from the definition of the exponential map that for fixed a4, ... ,a,
eR, t—f(t:a,,...,a,) is an integral curve of the vector field a,X; + - --
+ a,X,, with f(0:a,,...,a,) = 1. For any fixed a, ... ,a, € R, consider
the system of differential equations

(2.10.15) i% =F(yy...yma,

where y and a are column vectors with respective components y, .. .,»,, and
a, ...,a,. By Theorem 1.4.2 there is an ¢ > 0 and an analytic map

f:(t,ay,...;a,)—f(t:a,,...,a,)

defined on the cube /7*! with values in U such that for fixed (ay, . . . ) €
17, the function ¢t — f(¢: a,, ... ,a,) (|t| < a) is a solution of (2.10.15) with
f(0:ay,....a,) = 0. Going back to U, this means that there is an analytic
map

f: (t’alv L 3am) Hf-(t: ala LR 5am)
of the cube 17" into U such that for fixed (ay, . .. ,a,) € I7, the curve t —
ft:ay,... ) (1] < a) is an integral curve of the vector field a, X, + ---

+ a,X,, with f(0:a,,...,a,) = 1. By the uniqueness property of integral
curves of vector fields, we must have

f@tray, ... ,a,) =exp(t(a, X, + -+ a,X,) ((t,a,,....,a,) € Ir").
It follows from this equation and the analyticity of f that the map
(ay,....a,) —expla, Xy + -+ a,X,)
is analytic on some cube /7. This proves that exp is analytic on some open

neighborhood of X = 0.
Now, for any integer k > 1,

exp X = <exp —}(—X)k (X € 9g).

Since the maps x — x* of G into G are analytic (k = 1,2, ...), it follows
from the proceding result that exp is analytic everywhere.
It remains to prove the last result. Note that for s = 1, [); = g, and so we

obtain as a corollary that exp is an analytic diffeomorphism on an open set
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around X = 0. We shall canonically identify the tangent space to G at any of its
points with g and, similarly, the tangent space to the vector space [j; at any of
its points with §, (1 <Ci <{s); so for any element (Z,,...,Z) € ); X -+ X [,
(dy)z..... z) becomes a linear map of f); X --- X [, into g. Clearly, it is
enough to prove that (dy), .. o is a bijection. As dim(f, X --+ X)) =
dim(g), it is enough to verify surjectivity. Let L be the range of (dy) .. o).
If X € 1), and f; is the map ¢ +— (0, .. . ,tX, ... ,0) (zeros in all places except

the ith) of R into fj; X --- X U, it is clear that [(d/dt)(w o f;)()},_o, € L. But
(w o f)(r) = exp tX, so we can conclude that §, < L. Since this is true for
i=1, ,5, we have L = g. As mentioned earlier, this is sufficient to com-

plete the proof.

Remarks 1. (dexp)y is an endomorphism of g for each X € g with our
identification. We write

(2.10.16) DX:Y)=DyY)=(dexp)x(Y) (X,Y €g).
It follows from the reasoning above that
(2.10.17) (dexp)y(Y)=Y (Y €g).
2. Since g is connected, so is exp[g]. Hence
exp[g] = G°.

We shall give examples where exp[g] 7= G°. It is also possible that (dexp)x
is not surjective for some X € g (cf. §2.14). Since exp[g] contains an open
neighborhood of the identity, it follows that the subgroup generated by exp[g]
concides with G°.

3. Let {X,,...,X,} be a basis for g. It follows from the above theorem
that for some a > 0, the map

¢:(a1a e sam)H eXp(a1X1 + e + ame)

is an analytic diffeomorphism of the cube I7 onto an open subset U, of G
containing 1. Suppose x,, .. .,x,, are the analytic functions on U, such that
v (x,0), . .. ,x,(»)) is the map of U, onto I which inverts ¢. Then for
1 <i<m,

(2‘10']8) xi(exp(ale + ce >% ame)) = 4a; ((alﬂ e 7am) = 11’1")

X1, ...,X, are called the canonical coordinates of the first kind around I,
relative to the basis {X,, ... ,X,.}.
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Let {X,,...,X,} be, as before, a basis for g and let us consider the map

v:(a,,...,a,) — exp(a,X,) exp(a,X,) - - - exp(a,X,)

of R™ into G. y is obviously analytic. It follows from the theorem proved
above that for some a > 0, y is an analytic diffeomorphism of the cube I

onto an open subset U, of G containing 1. Let x,,...,x, be the analytic
functions on U, such that the map y — (x,(»), .. .,x,.(y)) inverts w. Then
for 1 <i<m,

(2.10.19) x(exp a, X,exp a, X, ---expa,X,) =a; ((ay,...,a,) €Im.

Xy, ..., X, are called the canonical coordinates of the second kind around 1
with respect to the basis {X, ... ,X,}.
We now discuss some examples.

(1) Let V be a vector space (over R or C) of finite dimension m. Let G
be the additive group of V. We have seen earlier that the Lie algebra of G
can be canonically identified with V itself. With this identification, exp X = X
for X e V.

(2) Let V be a vector space of finite dimension m over R or C. For G =
GL(V) and g = gl(V), the exponential map coincides with the usual matrix
exponential. The proof of this depends on the following lemma.

Lemma 2.10.2. Let V be as above and let & be the algebra of endomor-
phisms of V. For A € & let

4 A? A"
(2.10.20) el A A
Then e* is well defined and A — e* is an analytic map of & into GL(V). If
A1y ... A, are the eigenvalues of A with respective multiplicitiesm,, . .. ,m,, then
e, ... e* are the eigenvalues of e? with respective multiplicities m,, . .. ,m,.

In particular,
(2.10.21) det(e?) = "4 (A € 8).
If A and B are in & and commute, then
(2.10.22) etB = edef,
Proof. It is enough to prove everything when V is a complex vector

space.
Suppose {v,, . ..,v,} is a basis for ¥ and ¢ > 0 is a constant such that all
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the matrix entries of an 4 € & relative to this basis are < ¢. Then an easy
induction shows that for any integer n > 1, the entries of the matrix of A4”
are all < (mc). It follows from this that the series defining ¢4 converges over
all of &, the convergence being uniform over compact sets of &. The classical
theorem on uniformly convergent sequences of holomorphic functions now
implies that 4 — e is a holomorphic map of & into &.

Suppose 4, B € & and AB = BA. Then an easy induction on n shows that

(4+ By A B
n! B 0<r<n r!(n—r)!

The formula (2.10.22) follows from this by multiplication of the series for e*
and €®. Since e° = 1, efe " = 1, therefore e is invertible for all 4 € &, the
inverse of e being e™.

It remains to prove the result concerning eigenvalues. Fix 4 € §. By
reduction theory we can choose a basis {v;,...,v,} for V such that the
matrix (a,;) of A relative to this basis is upper triangular, i.e., a;; = 0 (i > j).
It is easily seen that the matrix of 4" has the same property for all n > 1,
and the diagonal entries of the matrix of A" are af, 1 <i<m. A simple
calculation now shows that the matrix of e4 is upper triangular with diagonal
entries e, 1 < i < m. Since the characteristic polynomial of 4 (resp. e”) is
11 <i<m (z — ay) (resp. []1<i<m (z — €°*)), we are through.

It follows from the above lemma that for any X € g{(V), the map ¢ — e*
is an analytic homomorphism of R into GL(V'). Writing 4 = ¢tX in (2.10.20)
and differentiating termwise, we get

(2.10.23) (%e"")r:o —x

We may therefore conclude that

(2.10.24) Ex(t) =e* (¢t R, X egl(V)).
The formula (2.10.24) shows that

(2.10.25) expX =e* (X egl(V)).

(3) Let G = GL(2,R), g = gl(2,R). We now prove that

—1 1
x:( 0 1)600 but x ¢ exp[g].

Suppose to the contrary and let X € g be such that x = e*. Since tr X is real
and det(x) = 1, (2.10.21) shows that tr X = 0. So there is a ¢ € C such that
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¢ and —c are the eigenvalues of X. The eigenvalues of x = e* are then e°
and e~°, showing that ¢ = —1 and ¢ = 0. Therefore X has distinct eigen-
values. Hence we can find an invertible complex 2 X 2 matrix u such that

uXu ! = (C 0)-
0 —c¢

Then
. —1 0
uxu! = uefu ! = "' = ( : .
0 —1
Consequently, (uxu~')? = ux?u~! = 1. But then x? = 1, a contradiction. So

x ¢ exp[g]. To prove that x € G°, note that the curve

cost sint
tl—»( , ) O<i<n)
—sint cost

joins 1 to —1, and the curve

—1 t
t}——-)( 0 _1) o<er<

joins —1 to x.

We conclude this section with a useful result connecting the exponential
map with subgroups and homomorphisms.

Theorem 2.10.3. (1) Let G, be a real (resp. complex) Lie group with Lie
algebra g, (i = 1, 2), and let 1 (G, — G,) be an analytic homomorphism. Then

(2.10.26) n(exp X) = exp(dn)(X) (X € g,).

In particular, (dr)(X) = 0 if and only if exp tX lies in the kernel of © for all
t € R (resp. C).

(2) Let G be a real (resp. complex) Lie group with Lie algebra g, H an
arbitrary Lie subgroup of G, and ) the subalgebra of g defined by H. Suppose
X € g. Then for X to be in ) it is necessary and sufficient that exp tX € H for
all t € R (resp. C).

Proof. We prove both assertions in the real case. Let 1, be the identity of
G, i=12).

To prove (1), let X € g, and nx(¢r) = n(exp tX), (¢ € R). Then 74(0) =
(dn),,(X;,) = (dr)(X),,, so since 7, is a homomorphism,

(2.10.27) Nx = Sum -

This proves that z(exp tX) = exp #(dn)(X). Putting t = 1 we obtain (2.10.26).
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It is clear from (2.10.27) that (dn)(X) = 0 if and only if #, is trivial, i.e., if
and only if exp ¢X lies in the kernel of x for all £ € R.

To prove (2), let f be the Lie algebra of H and i the identity map of H into
G. By (1), i(exp tX) = exp t(di)(X) for all X € §Hand r€R. So if X €0,
exptX € H for all t € R. Conversely, let X € g and exptX € H for all
t € R. Since H is quasi-regularly imbedded in G, ¢+ exp tX is an analytic
homomorphism of R into H, so exp tX = i(exp tX) for all t € R and some
X e . Therefore, X = (di)(X) € §. This proves the theorem.

One can describe (2) in less pedantic terms in the following way. Let the
Lie algebra of H be canonically identified with §). Then the exponential map
of b into H is the restriction to ) of the exponential map of g into G.

2.11. The Uniqueness of the Real Analytic Structure of a Real Lie Group

One of the most important applications of the exponential map is the
theorem which asserts that a topological group can be converted into a real
Lie group in at most one way. The proof is based on the following lemma.

Lemma 2.11.1. Let G be a real Lie group and let o be a continuous homo-
morphism of R into G. Then o is analytic.

Proof. Let g be the Lie algebra of G. By Theorem 2.10.1 we can choose
an open set B around 0 in g such that (i) X € B, |t| <1 = tX € B, and (ii)
exp is an analytic difftomorphism of B onto an open subset U of G containing
1. Let B, be an open neighborhood of 0 on B such that (i) X € B,, |[t| < 1
= tX € B,, and (ii) B, + B, < B. Since a is continuous, we can find a
b > 0 such that a(¢) € exp B, for —b < t < b. We can then write a(f) =
exp B(r), —b < t < b, B being obviously a continuous map of (—5,b) into B,.

We now assert that for any ¢t € (—b,b) and k= 1,2,..., B(rt/k) =
rB(t/k) for r = 1,2, ... k. For k =1 this is obvious. Fix t € (—b,b) and
an integer k > 1. Since | rt/k| < b for 1 < r < k, B(rt/k) € B, for all such r.
Suppose that, for some r with 1 < r < k, rf(t/k) € B; then exp r f(t/k) =
(exp B(t/k))" = (a(t/k)) = a(rt/k) = exp B(rt/k), so rB(t/k) = B(rt/k). In this
case we can even conclude that rB(t/k) € B,. Suppose now that rf(t/k) ¢ B
for some r with 1 << r < k, and that s is the smallest such r. Obviously, 1 <
s < k. Then (s — 1)B(t/k) € B, so (s — 1)B(t/k) € B, by the observation
made above. But then sB(t/k) = (s — 1)B(¢/k) + B(t/k) € B, + B, = B,
contradicting the definition of s. So rB(t/k) € B, 1 < r < k. Then rp(t/k)
= B(rtlk), 1 < r < k, as we saw above.

We thus have B(pt) = pf(r) for —b < t < b and all rational p with 0 <
p < 1. Since B is continuous, we have B(ct) = cf(t) for —b < t < b and
0 < ¢ < 1. Since f(—1) = —B(z) for t € (—b,b), we have f(ct) = cf(¢) for
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te (=bb)and —1 < ¢ < 1. Let X = (2/b)B(b/2). Then, for t € [—b/2,b/2],

o 82 4)
= tX.

In other words, # is the restriction to [—5/2,b/2] of a linear map of R into g.
Hence g is analytic around ¢ = 0. So a is analytic around ¢ = 0. Since & is a
homomorphism, it is analytic everywhere.

Theorem 2.11.2. Let G,, G, be real Lie groups and n a homomorphism of
G into G,. In order that m be analytic it is necessary and sufficient that for every
continuous homomorphism o, of R into G, m o & is continuous. In particular, if
7 is continuous, m is analytic.

Proof. The necessity of the conditions is obvious. We now prove their
sufficiency. Let g; be the Lie algebra of G, i = 1,2. Let X,,...,X,, be a
basis for g,. By our assumption, for 1 <<i<m, n,:t— n(exptX;) is a con-
tinuous homomorphism of R into G,, hence, by the preceding lemma, ana-
lytic. So the map

¢:(115~ .. 7tm)H’71(t1)' ot ﬂm(tm)

of R™ into G, is analytic. On the other hand, we saw during the course of our
discussion of the canonical coordinates of the second kind in §2.10 that for
some a > 0, the map

W : (tl’ e ”m) e exp(thl) e exp(thm)

is an analytic difftomorphism of the cube /7 onto an open subset U of G,
containing 1. Then for u € U we have

n(u) = o(y~'(w)).

This shows that 7 is analytic on U. Since z is a homomorphism, it is analytic
everywhere. This proves the theorem.

As an immediate consequence we obtain

Theorem 2.11.3. Let G, G, be real Lie groups and ¢ a continuous one-to-
one homomorphism of G, onto G,. Then ¢ is an analytic isomorphism of G,
onto G,. In particular, a (second countable) topological group can admit at
most one real analytic structure compatible with its topology under which it is a
real Lie group.
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Proof. By Lemma 2.5.3, ¢ is a homeomorphism. So both ¢ and ¢! are
analytic by the previous theorem. For the second assertion, let G be a real Lie
group and G* another real Lie group having the same underlying topological
group as G. If we apply the first result to the identity map, we get G = G*
as real Lie groups. This proves the theorem.

The uniqueness of the analytic structure does not persist for complex Lie
groups. For example, let G be the additive group of complex numbers with
the usual complex structure. Then the map x +— x<°" is an automorphism of
the underlying topological groups but not an automorphism of the complex
structure.

It follows from this theorem and the discussion in §2.6 that given a real
Lie group G, any second countable topological group locally (topologically)
isomorphic to G can be regarded as a Lie group in a unique fashion. From
this we obtain the following significant refinement of Theorem 2.8.2.

Theorem 2.11.4. Let G; be real Lie groups and §; the corresponding Lie
algebras (j = 1, 2). Then the following statements are equivalent:

(i) G, and G, are locally isomorphic as topological groups
(i) G, and G, are locally isomorphic as Lie groups
(iii) g, and g, are isomorphic as Lie algebras

2.12. Taylor Series Expansions on a Lie Group

Suppose G is a Lie group with Lie algebra g. Let x € G, X € g. We have
then seen that ¢ — x exp tX is the integral curve of the vector field X through
the point x and that, if fis any function defined and analytic around x,

@.12.1) (X)) = f(x:X) = (;‘f;f(x exp X))

t=0

We propose to obtain similar formulae involving higher derivatives. Such
formulae lead to expansions analogous to the Taylor series expansions in
Euclidean spaces. Throughout this section we shall work with a fixed real Lie
group G whose Lie algebra will be denoted by g. We shall leave to the reader
the task of making the necessary changes in the complex case. We shall
denote by ® the enveloping algebra of G, introduced in §2.4.

Lemma 2.12.1. Let x € G, X € g. Then for any integer k > 0 and any
Sunction f defined and C~ around x,

(2.12.2) (XS )(x) = f(xiX*) = (g,—iﬂx exp 1X))

t=0
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If f is analytic around x, we have, for all sufficiently small | t|,
(2.12.3) fxexptX) =3 f(x;X")%-
n=0 .
Proof. We shall prove by induction on k the more general formula
dk
(2.12.4) Sf(xexptX;X*) = Wf(x exptX)

for all t+ € R and all /'defined and C~ around x. For k = 0 this is obvious.
Assume (2.12.4) for some k>0 and all f. Since X**!= X.X* and
exp sX exp tX = exp(s + £) X, we have

f(xexptX; X+ = {%(X"f)(x exp(s -+ t)X)}

s=

d

— E[-(X"f)(x exp tX)
dk+l

— d“t"“f(x exp tX)

proving (2.12.4) for k + 1. For t = 0 we obtain (2.12.2). The relation (2.12.3)
follows from the analyticity of the function 7 — f(x exp tX).

Lemma 2.12.2. Let x € G, X, ... . X, € q. If fis a function defined and
C~ around x, then

Xy X)) = fes X, - X))

2.12.5 '
( : - (&%f(x exp £, X, - - - exp ’SX‘)>
1 s

fy=eees=0

Proof. Let F be the function (£, ...,t)— f(xexpt, X, --expt,X,),
defined in a neighborhood of the origin in R*. Then for all sufficiently small
]tlls LR a]t.v-lL

(ditF(z,, . ,ts_,,ts)) — (X.f)xexp t,X,exp t,_ X._,).
5 0

5=

(2.12.5) now follows by induction on s.

We shall now obtain a general expansion formula for functions on G.
When suitably specialized, these go over to the usual Taylor series expansions
in Euclidean spaces. To formulate the results precisely we need some nota-
tion. Fix an integer s > 1 and elements X, ..., X, € g. For any ordered
s-tuple n = (ny, ... ,n;) of integers > 0, write X(n) for the coefficient of
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7' - - - t7 in the formal polynomial

Ll'ﬁ_'_____ .o it dbng

(nl )|(t Xl +t:Xs)
Note that Xy, ... ,X, do not in general commute. When n, = --- = n, = 0,
we put X(n) = 1. The X(n) are elements of &, and for any n = (n, ... ,n,),

the order of the differential operator X(m) is < n, + - -- + n,. For example,
let s = 2. Then

X(l’l) = ‘%(Xle + XZXI)
X(2,1) = %(X%Xz + X XX, + XzX%)-

It is also possible to describe X(n) in another manner. Let n = (ny, ... ,n,)
and let n = n, + - - - + n,. Define the elements Z,, . .. ,Z, of g by
Z, =X, 1<j<n,
Zoiioiiims) = Xewr 1<7<mp, 1<k<s— 1.
Then
(2.12.6) Xw="4 5 22, Z,
where the sum extends over all permutations (iy, . . . ,i,) of (1,2,...,n). We

leave it to the reader to verify (2.12.6).

Theorem 2.12.3. Let x € G and let f be a function defined and analytic

around x. Let Xy, . . . ,X, € g. Then there is an a > 0 such that
@127 few X, + - +1X) = B I fGax)
the series converging absolutely and uniformly in the cube I;.

Proof. Let F be the function (¢4, ... ,t)— f(xexp(t, X, + -+ + t,X),

defined and analytic around the origin in R*. Write D; = d/d¢;, 1 <j <s.
Then for some a > 0, we have the following expansion absolutely and uni-
formly convergent for all (¢, ... ,t,) € I}:

t" ...t”‘ "
F(tl’~--,t:): E —I—UZS__!(DT'"DS'F)O,

where the suffix 0 indicates that the derivatives are taken when 7, = --. =
t, = 0. Now fix (¢, ...,t,) € I{ and let u be the function ¢ +— F(tt,, .. . ,tt,)
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defined around ¢ = 0. Obviously,

u(k)(o)_ t';:
k! 7 .

I 1>

for k =0, 1. ... .. On the other hand, it is clear from (2.12.2) that we have,
fork=0,1,...,

u®(0) = f(x;(t, Xy + - - + £,X)H).

The equality of these two expressions for u*’(0) for all (¢,,...,t,) € I}
implies that the corresponding coefficients of ¢7' - - - " must be the same. We
therefore obtain

(2.12.8) f(x;X(n)) = (D - - - DF),.
(2.12.7) follows at once from this.

As an application of these formulae, we now derive expressions for
products and commutators in the group in canonical coordinates. In the
following we shall use the symbol O(z*) to denote any function of the form
t — t3u(t) where u is defined and analytic around ¢ = 0 with values in some
finite-dimensional vector space over the reals.

Theorem 2.124. Lets>1and Xy, ... ,X, € g. Then

(2.12.9) exptX,---exptX, = exp{t > X+ Y [XLX]+ O(t’)}

t2
1<i<s 2 1<i<j<s

Sfor all sufficiently small|t|. In particular, for X, Y € g and for all sufficiently
small |t],

(i) expiXexptY = exp{t(X YY)+ -t22—[X,Y] + O(t3)}

(2.12.10) (ii) exptXexptY exp(—tX) = exp{tY + 12[X,Y] + O(¢?)}
(iif) exp tX exp tY exp(—tX) exp(—1tY)

= exp{r’[X,Y] + O(#*)}.

Proof. Fixs>1, X,,...,X, € g. Let f be a function defined and ana-

lytic around 1 and let F be the function (¢4, ... ,t,)— f(exp t, X, - - - exp ¢, X}).
Then for sufficiently small ||,

Flto.) =f) 4t 33 (DiF)y + 4% 3 (DD,F)y + O);

1<i, j<s



98 Lie Groups and Lie Algebras Chap. 2

here D, = d/d¢;, and the suffix zero indicates that the derivatives are taken
fort; =---=1,=0. Now, by (2.12.5),

(D,F), = f(1;X)), (DiDjF)(! = (DjDiF)O :f(1§X1Xj) I<i<j<ys).

Therefore, for all sufficiently small ||,

F(t’-'-st) :f(l) +t <E< f(laXi)
(2.12.11) s S
+ 7{1;:f(1;Xi) + 2 l<§<:f(l;X;’X;‘)} -+ O(%).
Select a basis {X, . .. ,X,} for g, and let x,, ...,x, be the correspond-

ing canonical coordinates of the first kind. If Z=¢, X, + -+ + ¢, X € g,
then x,(exp tZ) = tc, and hence, by (2.12.2),

Cr 1f n = I
2.12.12 x(1;Z") = 1 <k <m).
21212)  x (1,29 { o )
Let
X, = Crk}?k, [X,X;] = d:ij/k-
1<k<m 1<k<m

We now apply (2.12.11) to the case when f = x,. Since

S X2 Y XX =X+ XS [XNX)

1<i<s 1<i<j<s 1<i<j<s

we conclude from (2.12.11), on taking into account (2.12.12), that
x(exptX,---exptX,) =1t Y, x(1;X))
1<i<s

+5 B wEGXD + o)

1<i<j<

2
:t1<‘2<‘ C”‘+%l Z d”k-|~0(t3).

<i<j<s

On the other hand, if we define Z(¢) for sufficiently small |¢]| by exp Z(¢) =
exptX, - --exptX,, then

Z(t) = xi(exp tX, - - - exp tX)X,.

1<k<m

It then follows from the above that

20 =1 5 X+ B XX+ 0e)

<i<s

This proves (2.12.9). The relations (2.12.10) then follow by specializing suit-
ably. This proves the theorem.
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One can now obtain a direct interpretation of the Lie bracket in ¢ in terms
of commutators in G. In fact, it follows easily from (iii) of (2.12.10) that the
map

(2.12.13) s exp(sV2X) exp(s'2Y) exp(—s'2X) exp(—s"V2Y) (s> 0)

is of class C! near s = 0, and its derivative at s = 0 is [X,Y],. This was the
classical (local) way of introducing the Lie bracket.

Corollary 2.12.5. Let X, Y € g and let {X,}, {Y,} be sequences in g such
that X,— X andY,— Y as n — oo. Then

exp(X 4+ Y) = lim (exp %’ exp %)n
(2.12.14) "

exp[X,Y] = lim (exp % exp % exp *—nX,. exp HnYn)n )

This corollary would follow if we showed that the O(f®) estimates in
(2.12.10) are uniform when X and Y vary over compact subsets of g; and for
this it would be enough to verify that the O(¢?) estimates in (2.12.11) are
uniform when X}, ... ,X, vary over compact subsets of g. Fix a norm || - ||
over g, and for any function f defined and analytic around 1, consider the
function

gYy,....Y)=flexpY,---expY,) (|Y,||<a, 1<j<ys);

g is analytic around (0, . . .,0). Let H be the difference between g and its
Taylor expansion about (0, . . . ,0) containing only derivatives of order <C 2.
Then we can find C' > 0, b’ > 0 such that

(OO STES 5yl D AN P AR A !

It follows from this that if M > 0, then with C = C'sM?3 and b = b'/M,
HEX,, ... tX)||<Cr? (|X,]|<Mforl<j<s,|t]|<b).

This estimate implies the required uniformity in (2.12.11).

We conclude this section with another application of the exponential map,
expecially the formulae (2.12.14). Let G be a real Lie group. It was proved by
von Neumann that when G = GL(n,R), all closed subgroups of G are Lie
subgroups. This result was later extended by E. Cartan to arbitrary G. We
now give a proof of Cartan’s result.

Theorem 2.12.6. Let G be a real Lie group and H a closed subgroup. Then
H is a Lie subgroup of G.
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Proof. Let H® denote, as usual, the component of the identity of H.
The theorem will follow if we prove that H° is an analytic subgroup of G and
is open in H. For, assuming that this has been done, then by Lemma 2.6.1
there is an analytic structure on H which converts it into a Lie group and for
which H? is an open submanifold of H; since H® is regularly imbedded in G
and H is the union of (countably many) disjoint left cosets of H?, it is clear
that H is regularly imbedded in G. H is thus a Lie subgroup of G.

The proof that H° is open in H and is an analytic subgroup of G consists
of two steps. Let g be the Lie algebra of G. We first introduce the set

(2.12.15) ) ={X:Xeg,exptX e Hforall t € R};

if H were a Lie subgroup, {) would be the subalgebra of g defined by H. The
first step consists in proving that {) is a subalgebra of g. This would allow us to
introduce the analytic subgroup H' of G defined by 1). The second step con-
sists in proving that H" = H° and that it is open in H.

We prove first that [) is a subalgebra. Obviously, 0 € §. If X € |) and c,
teR, expctX =expt(cX), socX el for all c € R. Suppose X,Y €g
and ¢t € R. It follows from (2.12.14) that as n — oo

expt(X+Y)= 1im<exp t—f{ exp %)n

t
€X
n pn

exp 1} [X,Y] = 1im<exp%/ exp % exp — X _tY)" .

Since H is closed in G, these relations imply that exp #(X + Y) € H for all
t € R and exp ¢[X,Y] € H for all # > 0 in R. If we note that exp —/[X,Y] =
(exp [ X,Y])"!, we can conclude that X + Y and [X,Y] belong to §). ) is thus
a subalgebra of g.

Let H’ be the analytic subgroup of G defined by §j. Since exp [) generates
H', we see that H' = H°. In order to prove that H' = H° and is open in H,
it is obviously sufficient to prove that H’ contains an open neighborhood of
1 in H. This will then complete the proof of the theorem.

Select a linear subspace b of g complementary to {). By Theorem 2.10.1,
we can select open neighborhoods A and B of 0 in f) and b respectively such
that (i) the closures of 4 and B are compact, and (ii) (X,Y)—exp XexpY
is an analytic diffeomorphism of 4 X B onto an open neighborhood of 1 in
G. Suppose now that H' does not contain an open neighborhood of 1 in H.
Then there is a sequence x, € H\ H' such that x, — 1 as k — co. We may
assume that x, = exp X, exp Y, where X, € 4, Y, € B, and that both X,
and Y, tend to zero when k — oco. Put y, = exp Y,. Since exp —X, € H’
and X, — O, itis clear that y, € H\ H' and y, — 1; moreover, Y, +# 0 for
any k. So, since C/(B) is compact, for each k > 1 we can find an integer
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re = 1 such that
(2.12.16) Y, €B,  (r, + 1Y, ¢ B.

By passing to a subsequence if necessary, we may assume that Z =
limy ... 7Y, exists. Obviously, Z € b. Further, Z cannot be zero. For if Z = 0,
then (r, + )Y, =r.Y, + Y, — 0 as k — oo, and hence (r, + 1)¥, € B
for sufficiently large k, contradicting (2.2.16). Thus Z # 0, Z € b.

We claim that exp tZ € H for all t € R. Since H is a closed subgroup,
it is enough to prove that exp¢Z € H for all ¢ rational and > 0. Since
exp(m/n)Z = (exp(1/n)Z)" for integers m,n>1, we need only prove
exp(1/p)Z € H for all integers p > 1. Fix p > 1, and write r, = s, p + t,,
where s, and ¢, are integers, s, > 0,0 < ¢, < p. Then

1 t
exp—r. Y, =exps,Y,-exp-£Y,.
ppkk P Skl pp k

Now, Y, — 0 and 0 < ¢, < p, so exp(¢,/p)Y, — 1. So, as exp(1/p)r,.Y, —
exp(1/p)Z, we have exp s,Y, — exp(1/p)Z. On the other hand, exp 5,Y, =
yir € H for all k. So, using the fact that H is closed once again, we conclude
that exp(1/p)Z € H. This proves our claim.

It now follows from (2.12.15) that Z € ). Since Z 0 and Z € b, we
reach a contradiction. This proves the theorem.

We remark that the analogue of this theorem for complex groups is false.
For instance, let G = C* and H = T!, the one-dimensional torus. Then G
is complex analytic and H is closed in G, but H is not a complex Lie sub-
group of G.

2.13. The Adjoint Representations of g and G

Let g be a Lie algebra over a field k of characteristic zero. For X € g,
let ad X be the endomorphism of g defined by

(2.13.1) (ad X)Y) =[X,Y] (Y €g).

We have seen that ad X is a derivation of g for all X € g and that X — ad X
is a representation of g, the so-called adjoint representation of g (cf. §2.2).
We write

(2.13.2) adg={ad X: X € g};

ad g is a subalgebra of gl(y).
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Now let us consider the case when A = R (resp. C). Let G be a real (resp.
complex) Lie group with Lie algebra g. Suppose V is a finite-dimensional
vector space over R (resp. C). Then by a representation of G in ¥ we mean an
analytic homomorphism of G into GL(V). It is obvious that if z is a represen-
tation of G in V, then x,v— m(x)v is an analytic map of G X V into V.

In the theory of group representations it is customary to reserve the term
“representation” to denote a somewhat more general type of object. Let G
be a real Lie group and V a finite-dimensional vector space over C. By a
representation of G in V is then meant an analytic homomorphism of G into
GL(V)x where GL(V )y is the real Lie group underlying the complex Lie group
GL(V). In view of Theorem 2.11.2, a map = of G into GL(V') is a representa-
tion in this sense if and only if

() =(l) =1, a(xy) = n(x)n(y) (x,y € G)
(2.13.3) (i) forany v € V, the map x +— z(x)v is continuous from
GtoV.

In this section we use the term “representation” only in the stricter earlier
sense. If G is a complex Lie group and = is a representation of G in a complex
vector space V (in our strict sense), then the functions x — z(x)v occuring in
(2.13.3) are holomorphic; in the theory of group representations 7 would be
called a complex analytic or holomorphic representation.

Let G be a Lie group with Lie algebra g. The main aim of this section is to
show that there is a natural representation of G in g, the so-called adjoint
representation, and that its differential is none other than the adjoint repre-
sentation of g. As usual, the proofs are given in the real case; the complex
case needs only minor changes.

Before formally introducing the adjoint representation, it is covenient to
begin with a more general situation.

Lemma 2.13.1. Let G be a Lie group acting analytically on an analytic
manifold M. Let x, € M, and let G, be the stability subgroup of G at x,. For
each g € G, let t, denote the diffeomorphism x — g+ x of M. Then for each
g € Gy, L, = (dt,),, is a linear automorphism of T.(M), and L (g L,) is a
representation of G, in T, (M).

Proof. By Lemma 2.9.2, G, is a closed Lie subgroup of G. If g € G,,
ty*Xo = lg- Xy = X,, s0 the linear map (dt,),, is a well-defined endomorphism
of the tangent space T,,(M) having (dt,-),, as its inverse. So L, is an auto-
morphism of T, (M) for each g € G,, L, = 1, and the composition formula
for differentials implies that L is a homomorphism of G, into GL(T,(M)).
It remains to check that L is analytic, and it is enough to verify analyticity at
the identity. ‘
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Let x,,...,x, be coordinates on an open subset U of G, containing I,
and y,, ...,y, coordinates on an open subset A4 of M containing x,. We may
suppose that x(1) = y;(xo) =0 (1 <i<p, 1 <j<n)and that for a suit-
able open set B with x, € B< 4, g-be A for allg € Uand b € B. Since
G, is a Lie subgroup of G, G, acts analytically on M, so there are functions
F, defined and analytic around (0,0) € R? x R~ such that

Vg x) = Fx(8),...,x,(8):y:1(x),...,y.(x))

for1 <i<n,ge U, x< B. Then for fixed g € U,

@ () )= B (EF e i) ()

for 1 << s < n. This shows that the matrix of (dt,),, with respect to the basis
{(0/3Y)sa - - - ,(3/y,),,} of T, (M) has entries which are analytic functions
of g on U. L is thus analytic at 1. As mentioned earlier, this is sufficient to
complete the proof of the lemma.

Consider now a Lie group G with Lie algebra g. For each y € G,
i,: x+— yxy~!is an automorphism of G and consequently induces in a natural
way an automorphism X — X” of the Lie algebra of all analytic vector fields
on the analytic manifold G. By transport of structure we have, for any ana-
lytic vector field X on G,

(2.13.4) X7 =X7y (yy €0G),

It follows from the identity /,i, = i /-, (x, y € G) thatif X € g, then X” € g
for y € G. We put

(2.13.5) AdO) X =X’ (yeG, X eq).

It is then clear that Ad (y) is an automorphism of the Lie algebra g for each
y € G and that y+— Ady is a homomorphism of G into GL(g). For any
subset b of g and y € G, write b” = {X?: x € b}.

It is possible to introduce the linear transformation Ad (y) of g in another
manner. Since the map (y,x) — yxy~! is analytic from G X G into G, the
natural action of G on itself by inner automorphisms is analytic. Moreover,
i,l =1 for all y € G. So by Lemma 2.13.1, (di,), is an automorphism of
T,(G) for each y € G, and y +— (di,), is a representation of G in T',(G). On
the other hand, X +— X, is a linear isomorphism of g onto 7',(G), and we have
as an immediate consequence of the definitions

(2.13.6) (X)) = (di) (X)) (X eg,y€0)
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In other words, the map X — X, intertwines the linear transformations Ad (y)
and (di,), for all y € G. We may thus conclude that y — Ad (») is a represen-
tation of G in g. At the same time, it follows from (2.13.6) that for fixed y € G,
Ad (y) is the automorphism of g which is the differential of the automor-
phism i, of G (cf. §2.7). In particular, taking = = i, in (2.10.26), we get the
important relation

(2.13.7) expX? =yexpXy ! (Xeg,yel);

i.e., the exponential map intertwines the actions of Ad(») (ong) and i, (on G)
for all y € G. Ad: y— Ad (y) is called the adjoint representation of G. It fol-
lows from Theorem 2.7.3 that Ad[G] is a Lie subgroup of GL(g) whose com-
ponent of identity coincides with Ad[G°]. The basic result concerning the
adjoint representation of G is the following.

Theorem 2.13.2. Let G be a Lie group with Lie algebra §. Then the differ-
ential of the adjoint representation of G is the adjoint representation of §. In
particular, its kernel is the centralizer of G° in G, and the subalgebra of §
defined by this kernel is the center of 3. Moreover,

(2.13.8) Ad(exp X) = e** (X € g).

Proof. Let 1 denote the differential of the adjoint representation of G.
Then by Theorem 2.10.3 and the fact the that exponential map of gl(g) is the
usual matrix exponential, we have Ad(exp tX) = ¢*® for all X € g, t € R.
Fix X € g and write y, = exp tX. Then for any Z € g,

(2.13.9) Z"=Z + tMX)Z 4 0(t*) (t — 0).
On the other hand, it follows from (2.13.7) and (ii) of (2.12.10) that
(2.13.10) exp tZ” = exp{tZ + t*}[X,Z] + O(t*)} (¢t — 0).

A comparison of (2.13.9) and (2.13.10) yields at once the conclusion A(X)Z =
[X,Z]. Thus A(X) = ad X for X € g. This proves the first assertion and im-
plies (2.13.8), as already mentioned above. It remains to determine the kernel
of Ad. If y € G, Ad(y) = 1 if and only if X” = X’ for all X" € g. In view of
(2.13.7), this can happen if and only if y exp X’ y~' = exp tX’ forall 7 € R
and X’ € g, i.e., if and only if y commutes with exp[g]. Now the subgroup of
G generated by exp[g] coincides with G° (cf. Remark 2 following Theorem
2.10.1), and hence we can conclude that y is an element of the kernel of Ad if
and only if it commutes with G°. Let 3 be the subalgebra of g defined by the
kernel of Ad. Then by (2) of Theorem 2.10.3, X € 3 if and only if Ad(exp 7X)
= ¢'* X — ] forall ¢ € R, i.e., if and only if ad X = 0. So 3 is the center of g.
This proves the theorem.
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Corollary 2.13.3. If X,Y € gand [X,Y] = 0, then
(2.13.11) exp(X 4 Y) =exp Xexp Y.

G° is abelian if and only § is abelian, in this case the exponential map is a
covering homomorphism of the additive group of § onto G,. A simply connected
abelian analytic group is isomorphic to the additive group of a vector space.

Proof. Let Z be the component of the identity of the kernel of Ad, and
3 the corresponding subalgebra of g. By the theorem just proved 3 is the
center of g. Since g is abelian if and only if 3 = g, it follows that g is abelian
if and only if Z = G°. Applying the theorem once again, we see that this is
true if and only if G° is contained in its centralizer, i.e., if and only if G° is
abelian. Suppose now that X, Y € g are such that [X,Y] = 0, G being arbi-
trary. Let [) be the subspace spanned by X and Y. Then | is a subalgebra of g
and is abelian. So, by the previous result, the analytic subgroup of G cor-
responding to |) is abelian. Since exp[{] is contained in this subgroup, we see
that n: ¢+ exp tXexptY is an analytic homomorphism of R into G. On the
other hand, we see from (i) of (2.12.10) that

17(0) = (dexp)o(X + Y)
— X+ 7Y (by(2.10.17))

Consequently n = &y, proving that exp rX exptY = exp t(X + Y) for all
t € R. For t = 1 we obtain (2.13.11).

It follows from this that if g is abelian, exp is a homomorphism of the
additive group of g. But then exp[g] is a subgroup of G and hence must
coincide with G°. Since exp is an analytic diffeomorphism around X = 0, the
kernel of exp must be discrete. Because g is simply connected, exp must be a
covering homomorphism. In particular, if G is a simply connected abelian
analytic group, exp must be an isomorphism of g onto G. This proves all the
statements of the corollary.

It follows from this corollary that the abelian analytic groups are precisely
of the form V/D, where V is the additive group of a vector space and D a
discrete subgroup. A complete description of the discrete subgroups of the
additive vector groups would then lead to a complete description of all
abelian analytic groups.

Next we formulate a theorem which describes the connection between
normal subgroups of G and ideals in g. For simplicity of formulation we work
with connected groups.

Theorem 2.13.4. Let G be an analytic group with Lie algebra g, H an
analytic subgroup of G, and \) the corresponding subalgebra of §. Then H is
normal in G if and only if' ) is an ideal in g, in this case Yy’ =) for all y € G.
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Proof. Suppose Hisnormalin Gandlet X € §), y € G. Then exp tX” =
yexptXy '€ H for all t € R. By (2) of Theorem 2.10.3, X* € . Thus
)* = 0. In particular, if X€§) and Z e g, X*rZ =2 Z2. X e |) for all
t € R. But then [Z,X] = ((d/dt)e'**%2X),_, € § too. So }§ is an ideal in g.
Conversely, let {) be an idealing. Thenfor X € hand Z € g, (ad Z)"(X) € |y
for n = 0,1, .... This shows that X***Z = ¢ 2. X € }). So § = § for all
y € exp [g]. Since the set of all y € G such that §j =1 is a subgroup of G, we
can conclude that ) = Yj for all y € G. In view of (2.13.7), we may conclude
that yHy ' = H for all y € G; i.e., H is normal. This proves the theorem.

We shall conclude this section with some remarks.

(1) Let G, be an analytic group with Lie algebra g; (i = 1, 2), and let #
be an analytic homomorphism of G, into G,. Then it follows from (2.13.7),
(2.10.26), and the definition of Ad that

(2.13.12) Ad(n(y)) e drn = dn o Ad(y) (¥ € G)).

In particular, let G be any Lie group, H a Lie subgroup. Let g be the Lie
algebra of G and let us canonically identify the Lie algebra of H with the
subalgebra {) defined by H. If we denote by Ad; and Ady the respective ad-
joint representations of G and H, then

(2.13.13) Ady(y) = Adg(WIY (¥ € H).

We leave it to the reader to verify that §” = 1) for any y € H and that
(2.13.13) is satisfied for all y € H.

(2) Let G = GL(V), V being a finite-dimensional vector space over R
(or C). We write g = g{(V). A trivial calculation shows that for y € G and
Xeg,

(2.13.14) yeXy 1 = ¥,
It follows from this that
(2.13.15) X’ =yXy ' (Xeg,ye<l).

In view of the remark (1), (2.13.15) remains valid even if G is only a Lie sub-
group of GL(V), provided that we identify its Lie algebra canonically with
the subalgebra of gl(V) that it defines.

(3) Let G be arbitrary. Since Ad(y) is an automorphism of g for y € G,
we have [X*,Y’] = [X,Y], X, Y € g. This shows that

(2.13.16) ad X = Ad(y)-ad X-Ad(y)"! (¥ € G, X € g).
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2.14. The Differential of the Exponential Map

In this section we make a closer study of the exponential map. Let G be a
Lie group and g its Lie algebra. As usual, we identify the tangent spaces to G
and g at any of their points with g itself. With this identification, for any
X € g, (dexp)y becomes an endomorphism of the underlying vector space
of g. We write

(2.14.1) D(X:Y) = (dexp)y(Y) (X,Y € g).

We propose to obtain an explicit formula for D(X: Y). As usual, everything
will be proved for real groups; the changes to be made in the complex case
are minor and left to the reader.

For X, Y € g, the map

fit—exp(—X)exp(X +1tY) (¢t€R)
is analytic from R into G with f(0) = 1. Since /,,, x f(t) = exp(X + ¢Y), it

follows from our identification of the tangent space T,,, x(G) with g that f(0)
is precisely (d exp)x(Y). Thus

(2.14.2) (d exp)y(Y) — (dit exp(—X) exp(X + zy))
t=0
Further, the map
(6, X,Y) — exp(—X) exp(X + tY)

is analytic from R X g X g into G. Consequently, we conclude from (2.14.2)
that

D:(X,Y)— (dexp)x(Y)
is an analytic map of g X g into g.

Lemma 2.14.1. Let [, n be integers with 0 << | << n. Then

(2.14.3) S (_1)k(n + 1) — (_1)1( ’11)

0<k<! k

(here, for integers a, b with 0 < b < a, < Z ) denotes the binomial coefficient
al/bl(a — b)!).

Proof. Follows trivially by induction on /.
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Lemma 2.14.2. Let U be an associative algebra over a field k of charac-
teristic zero. For any a € W let d, be the endomorphism b+ ab — ba of A.
Then for any integer n > 0,

(2.14.4) dib) = (—1)y 3 (—1)F<n)al’ba"“’ (b € ).
0<p=<n P

Proof. Letl, (resp. r,) denote the endomorphism b ~ ab (resp. b > ba)
of 9. It is obvious that /, commutes with r, and that d, = I, — r,. So for any
integer n > 0,

=1 3, (2 e

If we apply both sides to an element b € 9, we get (2.14.4).

Theorem 2.14.3. Let G be a Lie group, g its Lie algebra. For any X € g
let (d exp)y denote the differential of the exponential map at X. Then

(2.14.5) (d exp)y = i T l),(ad X

In particular, (d exp)y is bijective if and only if no eigenvalue of the endomor-
phism ad X is of the form (—1)'22kn for a nonzero integer k.

Proof. Let X,Y € gand let U be an open subset of G containing 1. We
choose an @ > 0 such that expuXexp(vX 4 wY) € U for all real u, v, w
with |u| < a, |v| < a, and |w| < a. Suppose f'is a function defined and ana-
lytic on U. Then the function

F:uv,w— flexpuXexp(X + wY))

is analytic on the cube /2. By choosing « sufficiently small, we may assume
that the power series expansion of F about the origin is absolutely and uni-
formly convergent in I}. We write, for integers p, g, r > 0,

Then

F
F(u,v, 2,411 Py) uow) e l?),
(wow) = 55 Esmuwew (wow) € 1)

and hence

oF . F, .1 2
<a—w>(u,v,0) = Mzzlo —Iﬁq! uPv?t ((uw) € 12).
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In particular, taking —u = v = ¢, we have

(2.14.6) (3-5) ~110) = 3 S (1] <a),

where

(2.14.7) ¢, = (—1)k( " )Fk .
0<k<n k ’

Now, it follows from the relation (2.14.2) that

@148)  (E)r0) =15 exp)ar) (1] < )

On the other hand, we see from (2.12.8) that for any u with [u| < a,
gt F
( o )(u 0,0) = f(exp uX; &),

where £ is the element of the enveloping algebra & of G defined as the coeffi-
cient of v?w in the expansion of (vX + wY)¥/(g + 1) as a polynomial in »
and w. Thus for |u| < q,

1 s q—s
(amo )(uOO)ﬁT 3 flexpuX; XYX),

Differentiating this p times with respect to u at u = 0 we obtain, on using
(2.12.2), for all integers p, ¢ > O,

(2.14.9) S f(1; XPHo Yy Xe-s),

1
Fp,q.l - m 0<s<gq

Now substitute this expression for F, ,, in the formula (2.14.7) for ¢,. We
then get

n
o=,5, 0} ) T S R

<s<n-k

SEE= I (A IR E 22

. ylyyn-i IR
n+lostsnf(l°XYX )Oszkfl( 1)< k )
1

- ”(—1)’( ’ )f(I;XIYX"-I),

by Lemma 2.14.1. Moreover, by Lemma 2.14.2 we have the identity
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(ad Xy(¥) = (—1y (—1)1( )XIYX"'

valid in the associative algebra (9. Hence we have
er = D 1(1; (ad X ().
n n _I_ ] ’

From (2.14.6) and (2.14.8) we then obtain the formula
(2.14.10)  f(1;(dexp)(Y)) = i} NCEE 1),2 f(1;(ad X)y(Y)) (1] < a).

The open set U and the function f'have been arbitrary so far. If we choose
U to be a coordinate open set around 1 and f'to be an arbitrary member of a
system of coordinates on U, we can conclude from (2.14.10) that

DitX:Y) = mad X)(Y) (t] < a).

Loty

Observe that both sides of this relation are analytic functions on R; hence
they must be equal for all ¢. Putting ¢ = 1 and observing that Y was arbitrary,
we get (2.14.5).

For the second assertion, let g be the entire function on C defined by

82 = 3 iy @0

Then zg(z) = 1 — e7%, and we easily see that g(z) = 0 if and only if z =
(—D"22kn for some nonzero integer k. Fix X € g. Then (d exp)y is bijective
if and only if no eigenvalue of (d exp)y is zero. But (d exp)x = g(ad X), soits
eigenvalues are g(z,), . . . ,g(z,), where z,, ... ,z, are the eigenvalues of ad X.2
This leads to the second assertion. The proof of the theorem is complete.

Globally, the exponential map is seldom one-to-one, even when we restrict
it to the open set of all X € g such that (d exp) is bijective. We now prove a
theorem which explicitly exhibits an open neighborhood of 0 on which exp is
an analytic diffeomorphism (cf. Harish-Chandra [6]). We need two lemmas.
For any endomorphism L of a finite-dimensional vector space (over R or C),

2This is seen by arguing as in Lemma 2.10.2. In fact, let Zy, . ..,Z» be a basis for the
complexification g. of g such that the matrix (a;;) of ad X is upper triangular, i.e., a;; = 0
(i > j). Then the matrix of g (ad X) is also upper triangular and its diagonal entries are
glan) 0 <i< m).
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write g(L) for the set of all eigenvalues of L. As usual, for any z € C, we
write Re(z) and Im(z) for the real and imaginary parts of z respectively.

Lemma 2.14.4. Let V be a finite-dimensional vector space over R or C.
Let m be the set of all endomorphisms L of V with the property that | Im 4| < =n
Sfor each eigenvalue A of L. Then mi is an open subset of (V) containing 0, and
the exponential map from qU(V') into GL(V') is one-to-one on 1.

Proof. 1t is enough to consider the case when V is defined over C, since
the real case can be reduced to this by complexification. m is well defined and
contains 0. We write n = dim V. If n = 1, the lemma simply asserts the
elementary fact that the exponential function is one-to-one on the subset
{z:z € C,|Im(2)| < m} of C. We propose to show that 1 is open and that
if L, L, € m are such that et* = e%*, then L, = L,.

We prove first that m is open in g{(V). We shall deduce this from the fol-
lowing more general fact: if 4 is an open subset of C and u, is the set of all
L e gl(V) such that (L) < A, then u, is open in gl(¥). Suppose this is false.
Then we can find L, € u, and a sequence {L,} from gl{(¥)\u, such that
L,— Lyasn— oo, Forany M € gl(V) let

PM:t)y=dettl —M)=1"+ Y, c(M)
0<s<n

be the characteristic polynomial of M. Then c¢(L,) — ¢,(L,) as n— oo
(0 < 5 < n). On the other hand, if 4 is any root of the equation P(M : f) = 0,
we have?

FIESERS JRrxslt

Consequently, we can find a constant A > 0 such that all the eigenvalues of
all the L, lie in the disc {z: | z] < A} in C. Now choose a subsequence {n,} and
eigenvalues 4,, € o(L,) suchthat 1, ¢ A4 forallkand A,, — A, as k — oo.
Then 4, ¢ A. Butsince P(L,,A,) = 0 for all k, P(L,,A,) = 0, showing that
Ay € a{L,) = A. This contradiction proves that 1, is open.

Now consider the case when o(L,) = a(L,) = {0}, i.e.,, when L, and L,
are nilpotent. Then L7 = L} = 0. For any nilpotent endomorphism K of V,
e — 1 = KS, where S commutes with K, showing that K' = eX — 1 is
nilpotent. Now, the relation x = log(l + (e* — 1)) (x real and sufficiently
small) implies the formal power series identity

(2.14.11) f;“”“’(f; %) —T,

S k=1

3This may be seen as follows. If | 1| << 1, there is nothing to prove. If [A] > 1, 1 =
Zogsgn C:(M)j-s-("—l ), SO “* l = ZOS:S» ICS(M) I-
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T being an indeterminate. If we replace T by the nilpotent endomorphism K
of V, we see at once that

(2.14.12) K=% ("S)’_‘(ex — 1y (K nilpotent).
s=1

It follows at once from this that L, = L,.

We take up next the case when L, and L, are both semisimple. Let 4;
be the distinct eigenvalues of L, (1 <j <), and let V; be the eigenspace
corresponding to 4,. Then e*, . . . ,e* are the distinct eigenvalues of ™', and
V; is the eigenspace corresponding to e”. Since L, is semisimple, V' is the
direct sum of V,,...,V,. Now L, commutes with e** = e** and so leaves
each V; invariant. If g is an eigenvalue of the restriction of L, to V; (j fixed),
the | Im(x) | < & by assumption; on the other hand, e*v = e*v forallv € V.
So e* = e, implying that x4 = 4,. 4, is thus the sole eigenvalue of L, restricted
to V;. Since this restriction is also semisimple, L,v = A,v for allv € V. Thus
L, and L, coincide on V. Since j was arbitrary, L, = L,.

We now come to the general case. Let L; = S; + N, be the Jordan de-
composition* of L, into its semisimple part S; and nilpotent part N, (j = 1,2).
Then €% is semisimple, e¥’ — 1 is nilpotent, and since S; and N; commute,
we have in addition that e* = eSe™' = e 4 e5(e™ — 1) (j=1,2; cf.
Lemma 2.10.2). Moreover, ¢ and e¥’ — 1 commute, implying in particular
that eS’ (e¥ — 1) is nilpotent. So €%’ and e’ (¢¥’ — 1) are the semisimple and
nilpotent parts of e, respectively. The uniqueness of Jordan decompositions
implies now that eS' = ¢5* and e = e™. On the other hand, because S,
commutes with N, and N, is nilpotent, ¢(S,) = o(L;). So we conclude from
the special cases proved earlier that S; = S, and N, = N,. Thus L, = L,.
The proof of the lemma is complete.

From now on, we fix a Lie group G with Lie algebra g. Let

(2.14.13) b = {X:X e€g,|ImA| <z for each eigenvalue of ad X}.

Lemma 2.14.5. b is an open connected subset of @ which is invariant under
Ad[G]. If § is the center of g,

(2.14.14) b+ 3=

Proof. For X € g and y € G, the eigenvalues of ad X and ad X are
the same, by (2.13.16). So b is invariant under Ad. If X € v, Z € 3, then

4Cf. §3.1.



Sec. 2.14 The Differential of the Exponential Map 113

ad(X + Z) = ad X, because ad Z = 0. This proves (2.14.14). For X € b and
t € Rwith 0 <7 <1, we have tX € b. Thus b is connected. Suppose m is
the set of all endomorphisms L of g such that |Im 4| < # for any eigenvalue
Aof L; then v = {X: X € g, ad X € m}. Since m is open (Lemma 2.14.4)
and ad is continuous, v is open. This proves the lemma.

The center 3 of g is abelian. We denote by Z the analytic subgroup of G
cooresponding to 3. By Theorem 2.13.2, Z is the component of identity of the
centralizer of G° in G, while Corollary 2.13.3 implies that exp is a covering
homomorphism of the additive group of 3 onto Z. Let

(2.14.15) I'={X:Xe3expX =1}
Then T is a discrete additive subgroup of 3.

Theorem 2.14.6. Let notation be as above. Then exp v = U is a connected
open neighborhood of 1 in G which is invariant under the inner automorphisms
of G. The exponential map has bijective differential at all points of b, and for
X, X cv,expX=expX if and only if X — X' €T, where T is defined
by (2.14.15). In particular, exp is a covering map of v onto U, and U is the
quotient of b with respect to exp (as an analytic manifold). If Z is simply
connected, exp is an analytic diffeomorphism of v onto U, this is always the
case if G is a simply connected analytic group.

Proof. U is obviously connected, and (2.13.7) implies that it is invariant
under the inner automorphisms of G. It is immediate from Theorem 2.14.3
that (dexp)y is bijective for all X € v. This enables us to conclude that U is
open in G. Suppose now X, X' € v and exp X = exp X’. Then ¢ ¥ = x4 ¥’
by (2.13.8), and hence ad X = ad X’ by Lemma 2.14.5. This proves that
X — X' =Y €3 Butthenexp X = exp(X’' + Y) = exp X" exp ¥ (cf.(2.13.11))
=exp XexpY, so expY = 1, proving that X — X’ € I'. Conversely, if
Xev,Yel,and X' = X+ Y, then X' € b by(2.14.14)andexp X = exp X".
This leads to all the assertions of the theorem except for the last pair. If Z
is simply connected, the covering property of exp|3 implies that I" = {0}.
So in this case exp is one-to-one on b, hence an analytic diffeomorphism of
v onto U. The last assertion follows from a theorem of Mal’€ev according
to which closed normal analytic subgroups of simply connected analytic
groups are also simply connected (cf. Theorem 3.18.2).

We shall conclude this section with an example. Let G = SO(3,R). We
may then identify its Lie algebra g with the Lie algebra of all 3 x 3 skew-
symmetric real matrices; the exponential map is then the usual matrix expo-
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nential. Let
0 0 0 0 0 1 010
X, =10 0 1], X,= 0 0 0), X,=1—1 0 0}.
0O —1 0 -1 0 0 0 00

Then {X;,X,,X,} is a basis for g, and the commutation rules are
[XUXZ] = X, [Xz,Xa] = X, [Xa,XJ = X,.

It follows easily from this that if X = x X| + x,X, + x;X; (x, x,, x; € R),
then the eigenvalues of ad X are 0 and ++(—1)"/2 (x? + x% + x%)!/2. Theorem
2.14.3 shows that X = x, X, + x,X, + x;X; is a singular point of the map
exp if and only if x} 4+ x% 4+ x% = 4k2z? for some nonzero integer k. Given
any y € G, we can find a continuous homomorphism ¢+ y(¢) of Rinto G
such that y(1) = y; this follows from the well-known fact that any element of
G is a rotation around some axis. So we can write y = exp Y for some Y € g.
The exponential map is therefore surjective in this case.

2.15. The Baker-Campbell-Hausdorff Formula

Let G be a Lie group, g its Lie algebra. We have seen that if X,Y € g
and [X,Y] =0, then exp Xexp Y = exp(X + Y). This is in general not
true if [X,Y] % 0, and the question arises naturally whether one can obtain
an explicit formula for exp X exp Y for arbitrary X, Y € g. Now, the expo-
nential map is an analytic difftomorphism around 0 € g, so we can find an
open neighborhood a of 0 and an analytic map A:(X,Y)— A(X:Y) of
a X ainto g such that

exp XexpY =expA(X:Y) (X,Y €a).

The problem raised above may then be regarded as that of determining 4
explicitly. It is our aim in this section to obtain an expression for 4. The
formula we obtain is substantially equivalent to what is known as the Baker—
Campbell-Hausdorff formula.

We begin with an auxiliary lemma.

Lemma 2.15.1. Let V be a finite-dimensional vector space (over R or C)
equipped with a norm| - |. Let E be the algebra of all endomorphisms on V and
let | - | denote the standard® operator norm in E. Let a > 0 and let F, be the

SIf T is an endomorphism of V,
|T]= sup |Tvl.

veV,lv|<1
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algebra of all functions of a complex variable z which are analytic in the disc
{z:]z| < a}; for ¢ € F, we denote by ¢(z) = 3., a,(p)z" its power series ex-
pansion around z = 0. Then for any L € E with |L| < a and any ¢ € F,,

L) - % a (o)l
is absolutely convergent in E, and the map ¢ — @(L) is a homomorphism of F,
into E.

Proof. Elementary.

We recall that a series >, x, of vectors in a Banach space is absolutely
convergent if 3, x,| < oo; in this case it is also necessarily convergent. It
follows from the lemma that if ¢ € F, does not vanish in {z:]z| < a}, then
@(L) is invertible and @(L)~! = (1/p)(L).

Let G be a Lie group and g its Lie algebra. We work in the real case, but
all our considerations go over to the complex case with only minor changes.
We shall equip g with a suitable norm | - | so that it becomes a Banach space.
Let A be as defined at the beginning of this section with 4(0:0) = 0. For
any e >0 let g, ={Z:Z € g,|Z| < €} and let 5,{ be two numbers with
0 < n < { such that exp is an analytic diffeomorphism on g, and (exp[g,])?
< exp[g;]; then A4 is an analytic map of g, X g, into g,. For X, Y € g, put

(2.15.1) Zu:v:X:Y) = AluX:vY);

then Z(-: -: X: Y)is analytic in a neighborhood of (0,0) in R2, certainly for
luX| < n,|vY|<<n. Then

(2.15.2) expuXexpvY =expZ(u:v:X:Y).
Let
(2.15.3) F(t:X:Y)=2Z(:t:X:Y).

Fis analytic around ¢ = 0, certainly if |t X| < #n, |tY| < 5. If

(2.15.4) e(X:Y)— L

n!(iF(z X Y)) (n = 0),

dr =0
then for all sufficiently small ¢

(2.15.5) Fit:X:Y) =3 re(X:Y),

the series being absolutely convergent. It follows from (i) of (2.12.10) that
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(X:Y)=0
(2.15.6) X Y)=X 1Y
(X1 Y) = JX,Y].

We shall now determine the coefficients ¢,. This will be done® by deriving
a differential equation for F and obtaining its solution as a power series; the
coeflicients ¢, will then be determined by recursion formulae. To this end, let
g be the entire function on C given by

(2.15.7) OEDY (’511}")!2" -5

Put 4 = 1/g. Then /iis analytic around z = 0, and 4#(0) = 1. A simple calcula-
tion shows that i(—z) = h(z) — z. So if we put

(2.15.8) 1(z) = h(z) — —;—z R S

e»z

then fis defined and analytic around z = 0, f(0) = 1, and f'is even. We write
(2.15.9) f@)=f(—2) =1+ i} K,,z%.
F=

It is a straightforward verification that the K,,’s are all rational numbers; we
leave it to the reader. From Theorem 2.14.3 and Lemma 2.15.1 we see that
for all X € g, the endomorphism (d exp), = g(ad X) is invertible and

g(ad X)~! — f(ad X) - % ad X
(2.15.10) )
f@d X) =1+ 3 Ky (ad X).

Lemma 2.15.2. Let X, Y € g and F be as in (2.15.3). Let a > 0 be such
that a|X| < n,a|Y| < n. Then F is a solution to the equation

(2.15.11) % — f(ad F)X 1 Y) + %[X — Y,F]

in (—a,a) with the initial condition
(2.15.12) FO:X:Y)=0.

6The development through Theorem 2.15.4 is an adaptation of a treatment of this
question by Professor V. Bargmann of Princeton, given in a course many years ago, and is
closely related to the treatment of Baker [1] and Hausdorff [1].
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Proof. For brevity we denote Z(u:v: X:Y) by Z(u:v)and F(t: X:Y)

by F(¢). We shall also make the usual identification of the tangent spaces to
G and g at each of their points with g. We have

expuXexpvY =expZ(u:v) (u|<a,|v|<a).

Equating the differentials of the maps v — exp uX exp vY and v — exp Z(u : v)
we get, in view of our identification of tangent spaces,

— @ exp)ruin(5E)

s (%)
So by (2.15.10), since Z(u: v) € g,
(2.15.13) ‘z—izf(ad Z)(Y)—{——é—[Z,Y] (u| < a,|v| < a).
On the other hand, proceeding with the equation

exp(—vY) exp(—uX) = exp(—Z(u: v))

in an analogous manner but taking differentials with respect to », we obtain

= exp)(—z<u:v>>(—a(z942>

— o~ adZ)( "Z),

giving for |u| < aand [v| < a

92 _ g(~ad 2)"1(X).

Using (2.15.10) and the fact that f'is an even function, we get

GZ

(2.15.14) = — f(ad Z)(X) — _[z X1 (u|<a,l|v| < a).

Now

7= (o %)

Consequently, we get (2.15.11) from (2.15.13) and (2.15.14).
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Lemma 2.15.3. Let ¢, (X:Y) be defined (2.15.4) for X, Y € g. Then they
are uniquely determined by the recursion formula

(n + l)cn+l(X: Y) = %[X - Y’ “n(X: Y)]
(2.15.15) + K,, ) . leaX: Y[ [ern(X:Y),X + Y] -]

p=1,2p<n ki,..., kap>
kit likap=n

(n>1, X, Y € g) and by the condition c,(X:Y) = X + Y.

Proof. The relations (2.15.15) obviously determine all the ¢, uniquely if
¢, is known. We now prove (2.15.15). Fix X, Y € g and write ¢, for ¢,(X: Y).
In what follows, if k is any integer > 1, denote by O(¢*) any function of the
form ¢+ t*g(¢), where g is defined and analytic around ¢ = 0 and takes
values in an appropriate finite-dimensional real vector space. Fix an integer
n > 1. Then with the above convention, we have

% =cy + 2tcy + oo+ (0 4+ Dt"cyyy A+ O@™)

and
ad F@) =tadc, +t*adc, + --- + t"ad ¢, + O@"*").
Hence for any integer p > 1 with 2p < n,

@ F)r= ¥ ¢ Y adc, - -adc, + 0@).

2p<s<n ki>1,..., kap>1
ky+oee

On the other hand, ad F(¢) = O(¢), so

f(ad F@t) =1+ 122: K, (ad F(2))* 4 O(t**1)
p=1,2p<n
1+ S ¢ ¥ K, X ade,---ade, + O@*).

1<s<n p=21,2p<s k..., kop>1
ki++kop=s

If we now substitute these expressions in (2.15.11) and identify the coefficients
t" on both sides, we obtain (2.15.15) without difficulty. This proves the lemma.

The ¢, may be calculated from (2.15.15) in succession; unfortunately,
the calculations become complicated very rapidly. However, the first few of the
¢, may be calculated without too much difficulty. On doing this, one finds the
following expressions for ¢; and ¢,:

(2.15.17) {“(X: Y) = HlIX.Y)Y] — 15X, Y.X]

cl(X:Y) = — VXX Y]] — X [Y.[XY]I
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for X, Y € g. Itis clear from the relations (2.15.15) that for any n > 1, ¢, is
a polynomial map of g X g into g whose degree is n.
Let M > 1 be a constant such that

(2.15.18) XY <M|X||Y] (XY €qg),
and let H be the function of the complex variable z defined by

(2.15.19) H(z) = 1 4+ S |K,,| 2%
p=1

Then H is defined and analytic around z = O—-certainly for |z| < 2zn. Con-
sider the differential equation

dy 1
E~—2‘Y+H(J/)

»(0) = 0.

From the general theory of differential equations, we know that for some
constant § > O there is a solution y to (2.15.20) which is holomorphic in the
disc {z:|z]| < 6}. Note that § > 0 is a universal constant. We are now in a
position to formulate and prove our first main result in this section. Put

(2.15.20)

(2.15.21) a:g,,m:{{X:Xeg,|X|<%}.
Theorem 2.15.4. Let G be a Lie group, g its Lie algebra. For X,Y € g,
define c(X:Y)=X+Y and ¢ (X:Y) (n> 1) by the recursion formulae

(2.15.15). Then for each n > 1, ¢, is a polynomial map of @ X g into ¢ of degree
n. Moreover, if a is as in (2.15.21), the series

(2.15.22) z;l c(X:Y)=C(X:Y)

converges absolutely for all X, Y € a, its sum C defines an analytic map of
a X ainto g, and

(2.15.23) expXexpY =expC(X:Y) (X,Y € a).
Proof. It remains to prove only the last group of assertions. Write

¢, =c,(X:Y)and « = max(|X|,| Y]), X, Y being fixed in g. From (2.15.15)
we find that |¢, | < 2a, and for n > 1,

(2.15.24) (n 4+ Dlecpi| < Mac,|
20 3 Ky M B o] ek
p=1,2p<n ki1>0,..., kap>0
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Let y be the solution of (2.15.20) which is holomorphicin {z:|z| < 4}, and let
(2.15.25) y(z) = El vz (|z]| < 9).

Substitution of (2.15.25) in (2.15.20) then yields

2.15.26) b Dpaes = g9+ 30| Kp"‘k'i":gi‘::;" Ver s Ve

7 =L

We now claim that for n > 1

It follows from (2.15.26) that p, > 0O for all n.

(2.15.27) le,| < M"'Q2a)"p,.

Since | ¢, | < 2a, this is true for n = 1. Suppose (2.15.27) is true for ¢, with
1 < n < m. Then from (2.15.24) we get

(m + l)l Cm+1 [ g Mma(za)m}’m
+ 2“ Z <m [ KZp | sz & Z Mm_zp(za)mykl e ykw

»>1,2p< 1>0,..., k2p>0
ki+ - +kopp=m

= M"Qoy"* (m 4 Dpmsr,

in view of (2.15.26). Thus (2.15.27) istrue for all » > 1. Since the series
(2.15.25) converges absolutely if | z| < J, we see from (2.15.27) that Y, |c,|
converges if 2Ma < J, i.e., if X and Y are in a.

For fixed X,Y €4g, c,(tX:tY)=tc,(X:Y) for t € R. Hence we con-
clude from (2.15.5) that for fixed X, Y

C(tX:tY) = A(tX:tY)

for all sufficiently small |#|. This implies, in view of the analyticity of both C
and A around (0,0), that C = A4 in a neighborhood of (0,0) in g X g. In
particular,

exp XexpY =expC(X:Y)

whenever X and Y are sufficiently near 0. Once again we use analytic con-
tinuation to conclude the validity of this relation on a X a. This completes
the proof of the theorem.

Remarks 1. This theorem shows that the multiplication law in the group
is determined uniquely and very explicitly by the Lie algebra structure, at
least in a neighborhood of the identity. We thus obtain an alternative proof
of the second fundamental theorem of Lie in the following form: if G, are Lie
groups with Lie algebras g, (i = 1, 2,), and if ¢ is a Lie algebra isomorphism
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of g, onto g,, there is a (unique) local analytic isomorphism ¢ of a neighbor-
hood of the identity in G, onto a neighborhood of the identity in G, such that
p(expg, X) = expg, ¢(X) for all X € g, sufficiently near the origin. We leave
the details of proving this to the reader.

2. When we introduced the concept of a Lie group we mentioned the
problem of showing that any C* group can be converted into an analytic
group, the analytic structure being of course compatible with the C* structure.
Theorem 2.15.4 can be used to prove this, at least when k is sufficiently large.
We indicate briefly how this may be done: Suppose, for instance, that G is a
C= group; introduce its Lie algebra g and the exponential map as in the
analytic case, prove the formula (2.14.5) for the differential of the exponential
map (cf. ex. 41), and then, as in this chapter, derive the differential equation
(2.15.11) together with the initial condition (2.15.12). Let € be such that
0 < € < min((n/3), (6/4M)). Then for X, Y € g., (2.15.11) is valid for || < 2.
From the general theory of ordinary differential equations we conclude that
F(-:X:Y) is analytic for |¢| < 2, and hence

Ft:X:Y) = i:; tre(X:Y) = C(tX: 1Y)

for all sufficiently small ¢. Since both sides are analytic for |z| < 2, the above
relation is true for all ¢ with [¢] << 2. Setting t = 1,

AX:Y)=CX:Y) (X,Y € q.).

In other words, A4 is analytic around (0,0) € g X g. But this is equivalent to
saying that in canonical coordinates of the first kind, multiplication in the
group near the identity is given by analytic functions of the coordinates.

3. When one calculates the ¢,(X : Y) by means of the recursion formulae
(2.15.15), one finds that each c¢,(X:Y) is a linear combination of the
commutators of the form [Z,,[Z,,[ - [Z,.,Z,]- - -] with Z, € {X,Y]} for
1 < i <n, the coefficients being universal rational constants. This suggests
that there is a formal algebraic theory of the exponential series underlying
the analytical theory. This was already implicit in the work of Baker [1], but
results explicity emphasizing the formal aspects were first obtained by Haus-
dorff [1]. It was Dynkin [2] who returned to this question in 1947 and obtained
the decisive results, including an exact formula for c,(X: Y). We refer the
reader to the exercises at the end of this chapter for these results.

2.16. Lie’s Theory of Transformation Groups
In this section we give a brief treatment of the theory of Lie transformation

groups. The local theory was conceived and developed by Sophus Lie himself,
and it marked the beginning of the entire theory of Lie groups and Lie alge-
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bras. The development of the global aspects of the theory is, however, a
relatively recent accomplishment. We refer the reader to Palais [2] for a
detailed treatment of the questions that grew out of Lie’s work, and to
Montgomery-Zippin [1] for the topological aspects of the theory of transfor-
mation groups (see also Bourbaki [5]).

Our main concern is with the infinitesimal description of the action of an
analytic group G on an analytic manifold M. Let g be the Lie algebra of G.
Then for any X € g, the one-parameter group ¢+ exp ¢X acts on G; and
therefore one can, following Lie, introduce the vector field 7(X) on M whose
integral curves are of the form ¢+ exp(—tX)-x(x € M). The first funda-
mental theorem of Lie asserts that X + 7(X) is a homomorphism of g into
the Lie algebra 3,(M) of all analytic vector fields on M. Now, the action of
G on M is described by a homomorphism, say a, of G into the group of all
analytic diffeomorphisms of M; so if for heuristic purposes we regard 3,(M)
as the “Lie algebra” of the group of all analytic difftomorphisms of M, we
see that 7 is the “differential” of «. It is therefore natural to call any homomor-
phism of g into 3,(M) an infinitesimal G-transformation group on M, and to
refer to 7 as the infinitesimal G-transformation group determined by the ac-
tion of G on M. The second fundamental theorem of Lie asserts that given
an arbitrary infinitesimal G-transformation group 7 on M, one can construct
at least a local action of G on M which determines 7, such a local action being
essentially unique.

While Lie himself did not consider the global problem it is obvious that
infinitesimal transformation groups do not always generate global transfor-
mation groups. To see this, let 7 be the infinitesimal G-transformation group
determined by a global action of G on M; let M’ be an open submanifold of
M; and let 7(X) = 1(X)| M’ (X € g). Then unless M’ is invariant in M, 7’
will not be determined by a global G-action on M’. The main problem studied
in this section thus divides itself into two parts. In the first and classical part
we establish the one-to-one correspondence between local and infinitesimal
transformation groups; in the second part we investigate the conditions under
which a local transformation group “extends” to a global transformation
group.

We now begin the formal development. Let G be an analytic group with
Lie algebra g, M an analytic manifold. Let n = dim(G), m = dim(M). We
treat the real case, leaving the complex case to the reader. By a local action
of G on M or a local G-transformation group on M we mean a map ¢ of a
subset D of G X M into M such that

(i) D is an open enighborhood of {1} X M, and ¢ is analytic on D

(i) g(l:x)=x (xeM)

(iii) if E is the set of all (g,4,x) € G X G X M such that (A,x), (gh,x),
(g,¢(h: x)) are all in D and ¢(gh: x) = ¢(g: ¢(h: x)), then E is a neighbor-
hood of {1} x {I} X M.
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If D=G x Min(i)and E= G X G X M in (iii), ¢ is called a global G-
action on M or a global G-transformation group on M; M is then a G-space
(cf. §2.9). By an infinitesimal G-action on M or an infinitesimal G-transforma-
tion group on M we mean a homomorphism of g into the Lie algebra 3,(M)
of all analytic vector fields on M.

Let ® be the enveloping algebra of G. As usual, for any g € G, we identify
T7(G) with ®. Suppose now that ¢ is a local G-transformation group on M.
For any x € M, the map

(2.16.1) 9.8 0(g ' x)

is defined and analytic around 1, so we may introduce its complete differential
(dg,)7, which is a linear map of & into T{'(M). Put

(2.16.2) 7, (a), = (dp,)7(a) (a € ).
If we write
(2.16.3) p(g:x)=g-x,

then forany x € M, and a = X, X, --- X, (X, € g for all i), and any function
f defined and C~ around x, the element 7°(a), of T¢?(M) is determined by

2164) w0 = (- PSP~ 1,X) - exp(—1,X)) ) 3

1 r 0
here f is the germ defined by fat x, and the suffix O indicates that the deriva-
tives are taken when ¢, = --. = ¢, = 0.

Lemma 2.16.1. For any a € ®, 1;(a)(x — 1.(a),) is an analytic differ-
ential operator on M, and the map t;(a — t7(a)) is a homomorphism of &
into the algebra of analytic differential operators on M.

Proof. The first assertion is immediate from (2.16.4) on using local co-
ordinates. To prove the second it is enough to show that z3(ab) = t7(a)ty(b)
when a=X,---X, and b=Y,---Y, (X, Y, € g for all i, j). Let D =
d/dt, ---3d/dt,, E = d/du, - - - d/du,, and let a suffix O mean that the deriva-
tives are taken when all the variable are 0. Then for any function f defined
and C~ around x,

(5(ab) f)(x)
= (DEf(exp(—u,Y,) - - - exp(u,Y,) exp(—1,X,) - - - exp(—#,X,) - X))o
= (D(z7(b) ) exp(—1,X,) - - - exp(—1,X 1) - X))o
= (75(a)(z7(6) /().
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Corollary 2.16.2. Let T, = 7, |8. 7, is a homomorphism of g into the Lie
algebra 3,(M).

The infinitesimal G-transformation group , is said to be determined by ¢.
Let 7 (X — 7(X)) be any homomorphism of g into 3,(M). For any X € g,
the assignment

(2.16.5) T(X): (g,x) — (X,1(X),)

is an analytic vector field on G X M, and it is obvious that 7: X+ 7(X)
is a Lie algebra injection of g into 3,(G X M). Let

(2.16.6) Lo = TX)gn: X € a};
it is then immediate that
(2.16.7) L1 (gx) > L

is an involutive analytic system of tangent spaces on G X M, of rank equal
to dim(G) = n. The theory of §1.3 is applicable to £°. For (g,x) € G X M,
denote by S, ,, the maximal integral manifold of £° passing through (g,x).

Lemma 2.16.3. Let notation be as above. Then

(1) if A, denotes, for any h € G, the analytic diffeomorphism (g,x) —
(hg,x) of G X M onto itself, then

(2168) lh[S(g,x)] - S(hg,x)'

(2) Suppose ¢ is a global G-transformation group on M such that T, = 7.
Then for any x € M, the map

(2.16.9) Ot & (&0(g7 11 X))

is an analytic diffeomorphism of G onto S, ).

(3) Suppose ¢ is a local G-transformation group on M such that T, = 1.
Let x, € M. Then there exists an open connected neighborhood V = V=1 of
1 (resp. U of x,) such that for each x € U, the map @, , is an analytic diffeo-
morphism of V onto an open submanifold of S ,, that passes through (1,x).

Proof. The proof of (1) is an immediate consequence of the fact that £*
is invariant under the 4, (4 € G). Let ¢ be a global G-transformation group
on M with 7, = 7. Then forany X € g, x € M,

(d“w.x)x(Xg) = (Xg.r(X)lp(x“ :x))
= f(X)Gw,x(x)‘
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So if we write A, = a, [G] and give to A4, the analytic structure that makes
o, . an analytic difftomorphism, it follows that A, is a submanifold of
G X M which is an integral manifold of £° through (1,x). Thus A4, is an open
submanifold of S, ,,. On the other hand, A4, is closed in G X M, hence
closed in S ,,. So 4, = S, ,, and «a,, is an analytic difftomorphism of G
onto S, .. This proves (2). To prove (3), let V' (resp. U) be an open connected
neighborhood of | (resp. x,) such that ¥ = V~! and the following condition
is satisfied: if g, 1 € V and x € U, then (/i : x), p(gh: x), and ¢(g: @(h: x))
are all defined, and ¢(gh: x) = ¢(g: @(1: x)). Then, for any X € g, g € V,
xe U,

(dat, Y(X) = (X t(X)yiger.0)

= T(X sy i
This shows, as in the previous instance, that a,, , is an analytic diffeomorphism
of ¥ onto an open submanifold of S, ,, passing through (1,x).

Corollary 2.16.4. Let T be a homomorphism of ¢ into 3,(M). If ¢, and ¢,
are global G-transformation groups on M with 1, = 1,, = 7, then ¢, = @,.
If . and @, are local G-transformation groups on M witht, = t,, = 1, then
@ = @, in a neighborhood of {1} X M.

Proof. First assume that ¢, and ¢, are global G-transformation groups
on M with t, = 1,, = 7. Let p; (resp. p,,) be the projection of G X M onto
G (resp. onto M), and let p; , = ps| S, ., (x € M). It follows from (2) of the
preceding lemma that pg , is a bijection of S, ,, onto G and that ¢,(g: x) =
9,(8:x) = pyopsr(g™"). Suppose that ¢, and ¢, are only local. Fix x, € M
and let V/, U be as in lemma above such that (3) is satisfied with respect to both
¢, and ¢,. Fix x € U and let 4, , = a,,,[V] (= 1,2). Then 4, , and 4, ,
are open submanifolds of S, ,, through (1,x). So 4, , N A, , is a nonempty
open submanifold of both 4, ; and A4, ,. It follows from this that the set

W,=1{g:geV,p(g:x)=py(g:x)}

is open in V. Since it is nonempty and closed in V, W, = V. So ¢, = ¢, on
V x U.Since x, € M was arbitrary, ¢, = ¢, in a neighborhood of {I} x M.

The above results suggest that given an arbitrary homomorphism 7 of g
into 3,(M), one may be able to construct the global transformation group ¢
which determines 7 by defining p(g: x) = p,, o pg L(g~!). However, this is not
always possible, because in general p; , is not one-to-one on S, ), nor does it
map S, ,, onto G. On the other hand, such a definition will certainly work
locally and lead to a local G-transformation group. We now turn to the
details of this construction.
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Lemma 2.16.5. Let © be a homomorphism of g into 3,(M), and let £ be
defined by (2.16.6) and (2.16.7). Given x, € M, we can find a connected open
neighborhood V — V=1 of 1 (resp. U of x,), and an analytic map y of V X U
into M such that

(1) w(l:x)=xforallx e U
(1) (g,x) (gw(g ': x)) is an analytic diffeomorphism of V X U onto
an open neighborhood W of (1,x,)
(i) for each x € U, the map

g—(gw(g ' x))

is an analytic diffeomorphism of V onto a connected open submanifold of S, ,,
that contains (1,x).

Proof. Select an open neighborhood V, (resp. U,) of 1 (resp. x,) and
functions z,,...,z, on ¥V, x;,...,X,+m, On V; X U, such that the follow-
ing conditions are satisfied: (i) (z,,...,z,) form a system of coordinates
on V, and (x,,...,x,+m) On V; X U,, and (ii) for all (g,x) € V, X Uy,
(8/0x1) x5 - - - (0/0x,) 5. » SPAN £, .y OT, equivalently £, ,, is precisely the
interection of the null spaces of (dX,+ (). - - - s(@Xnim)e. 0. FOr (8,x) €
V, X U, put

7(g:x) = z{g), Wi(&x) = wi(x) = X, (1,X)

Now observe that £7, ,,, does not contain any tangent vector of the form
(0,Y) where Y is a nonzero element in T,,(M). It follows from this that the

functions 7, ...,Z,X,i1, - - - »Xnem form a system of coordinates around
(1,x,) and, furthermore, that the functions w,,...,w, form a system of
coordinates around x,. Consequently the functions Z,,...,z,,w;, ... ,W,

form a system of coordinates around (1,x,). We can therefore select open
neighborhoods V = V-1, U, W (< V, x U,) of 1, x,, and (1,x,) respectively,
and an analytic diffeomorphism ¢ of V' X U onto W such that

(2.16.10) ;=200 (1<i<n) W, =X,;00 (1<j<m).

The first set of the relations (2.16.10) shows that for any (g,x) € V' X U,
the first member of 6(g,x) is g. Hence there exists an analytic map y of V' X U
into M such that

o(gx) = (gy(g ':x)) ((gx €V XU)
The second set of the relations (2.16.10) may obviously be rewritten as

(2.16.11) X (gW(g 1 %) = X, (LX) (gx) €V XU, 1<j<m).
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The equations (2.16.11) show that for fixed x € U, the image V* of V X {x}
under ¢ is a connected n-dimensional regular submanifold of W passing
through (1,x), on which the functions x,,, ... ,x,,, are constant. So V'* is
an integral manifold of £ through (1,x), proving that it is an open connected
submanifold of S, ,,. The proof of the lemma is complete.

We are now in a position to state and prove the basic theorem of Lie.

Theorem 2.16.6. Let T (X — t(X)) be an infinitesimal G-transformation
group on M. Then given any x, € M, we can find an open neighborhood U of
xo and a local G-transformation group ¢ on U such that for any X € g,
7,(X) = 1(X)|U.

Proof. Fix x, € M and select V, U and y as in the preceding lemma.
Let D be the set of all (g,x) € V' X U such that w(g: x) € U. Obviously, D
is an open neighborhood of {1} X Uin G X U. Let ¢ = w|D. We wish to
prove that ¢ is a local G-transformation group on U with 7,(X) = 7(X)|U
for all X € g.

Fix x € U. Since the map g +— (g,p(g!: x)) is analytic from Vinto S, ,,,
itfollows that for any X € g, (dp,),(X;) = ©(X),, ¢, being defined by (2.16.1).
Now select connected open neighborhoods V; = V;' of 1 (resp. U; of x)
(j=1,2)suchthat Vi<V, Vi<V, y[V, X U, ]S U,, [V, x U] < U.
Clearly, for (g,h,y) € V, X V, X Uy, @(h:y), p(gh:y), o(g: o(h: y)) are all
defined. We shall prove that ¢(gh:y) = o(g:e(h:y)) for all (gh,y) €
Vy XV, X U, or, what is the same thing, thaty(h™'g ' : p)=w(h™ ' :w(g ': )
for all (g,h,y) € V, X V, X U,. Fix g€ V,, y € U,, write z=y(g ':y),
and define

a(h) = (ghy(h™'g':y),  Blh) = (ghy(h™':2)) (he V).

It follows from the previous lemma that a (resp. f) is an analytic diffeomor-
phism of V, onto an open submanifold A4 (resp. B) of S, (resp. Si..,)-
A and B are thus integral manifolds of £7, and as (g,z) € AN B, AN Bisa
nonempty open submanifold of both 4 and B. The fact that 4 N B is open
in A implies that W = {h: h € V,, a(h) = B(h)} is open in V,. Since W is
closed in V,, W=V,. So a = f§, proving that w(h™'g ':y) = w(h':2).
Since x € U was arbitrary, this completes the proof that ¢ is a local G-trans-
formation group on U with 7,(X) = ©(X)|U (X € g).

The above theorem is local in both the group and space variables. It is
natural to raise the question to what extent the global version of this theorem
remains true. This was studied in considerable detail by Palais [2]. We confine
ourselves to proving two important results (Theorem 2.16.8 and 2.16.13). We
consider first the question of globalization with respect to M. We need a
lemma.
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Lemma 2.16.7. Let {U;:i € 1} be a locally finite open covering of M.
For each (i,j) € I X I and any x € U, N U, let U,;, be a neighborhood of x
contained in U, N U;. Then for each x € M we can select a neighborhood U,
of x such that

() ifxeUnU,thenU, < U,,
() fU.NU,# @, thereisani e Isuchthat U, U U, < U,

Proof. Let {W,:ic I} be a locally finite open covering of M with
Cl(V)y< U, (i e I). For x € M, denote by U’, the intersection of all the
U, V;, U,, that contain x. Since there are only finitely many of these, U’
is a neighborhood of x. So U, meets C/(V;) for only finitely many i, from
which it follows that

U:=U.n () (M\CI(VY)
(€T x¢ClLVy)
is a neighborhood of x. With this choice of U,, (i) is obvious. Suppose
U,NU,= @. Then x € U, for some i € I, so U, < V,. Then U, " CI(V))
# &, which means that y € C/(V})). So y € U,, implying U, < U,. Thus
u,uu,cU.

Theorem 2.16.8. Let t be an infinitesimal G-transformation group on M.
Then there is a local G-transformation group ¢ on M such that T, = t.

Proof. By Theorem 2.16.6 we can select a locally finite open covering
{U;:i €1} of M and local G-transformation groups ¢, on U, (i € I), such
that 7,(X) =1(X)|U, (Xeg,i<l). For each (ij) </ x 1 and each
x € U; N Uy, select a neighborhood U, of xsuch that U,;, < U, N U;, and
@:and g, are defined and equal on a neighborhood of {1} X U,;,. By the lemma
above we can find for each x € M an open neighborhood U, of x satisfying
the conditions (i) and (ii) therein. Foreachx € Mlet I(x) = {i:ie I, x € U},
and let W, be the set of all (g,y) € G X U, such that all the ¢; (/ € I(x)) are
defined and take the same value at (g,y). Since /(x) is finite, W, is a neigh-
borhood of {1} X U,. Let ¢, = ¢;|W,, i € I(x). Suppose x,y € M and
W.NW,%# @.Then U, N U, # @&, soforsome i € I, U, U U, < U, This
means that i € I(x) N I(p),s0 g |[W. "W, =9, |W. "W, =W ,NW,.
Define ¢ on (_J, W, by setting ¢ |W, = ¢, |W,; ¢ is well defined It is now
clear that ¢ is a local G-transformation group on M with 7, = 7. In fact,
. W, is a neighborhood of {I} x M, while for each x € M we can find
an open neighborhood V), x U’ of (1,x) in G x U, such that ¢ = ¢, on
V' x U', (i € I(x)); this leads to our assertion.

We now consider the more interesting but more difficult problem of
globalization in the group variable. First we have the following elementary
consequence of Theorem 2.16.8.
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Theorem 2.16.9. Let M be compact and G simply connected. Then for any
infinitesimal G-transformation group T on M there is a unique global G-trans-
Sformation group ¢ on M such that T, = 1.

Proof. The proof depends on the following elementary result whose
verification is left to the reader: if Z is any Hausdorff space, z € Z, and A4 is
a neighborhood of {z} X M, there is an open neighborhood B of z such that
B X M = A. This said, let y be a local G-transformation group on M with

» = T. By the observation made just now we can find open neighborhoods
V,=V;itof lin G (j =1, 2) such that (i) y is defined on V', X M, and (ii)
Vi<V, and for (ghx) eV, XV, X M, w(gh: x) = w(g:w(h: x)). For
heV, let t,(x) =w(h:x) (x € M). Then ¢, is an analytic map of M into
itself, ¢, = identity and ¢,, = t,0t, (h, i € V). In particular, #,0 t,., =
t, o t, = identity for h € V,, so each ¢, (h € V) is an analytic diffeomor-
phism of M. Since G is simply connected, we can find a homomorphism
6 (h — 0,) of G into the group of all analytic difffomorphisms of M such
that ¢, = 6, for all /1 in a neighborhood of 1 in V,. Write ¢(h: x) = 0,(x)
(h € G, x € M). Itis easily verified that ¢ is analytic. Hence ¢ is a global G-
transformation group on M with t, = 7. We have already proved the unique-
ness of ¢.

If M is not compact, it is not always possible to construct global G-
transformation groups corresponding to arbitrary infinitesimal transforma-
tion groups, even when G is simply connected. For instance, let us consider
the case G = R. Then g is spanned by d/dt (¢ being the usual coordinate on
R); and if Z is any analytic vector field on M, one knows from classical
analysis that it is not always possible to find a global R-transformation group
w on M such that 7,(d/dt) = Z. If we can do this, we call Z global; in this case

(2.16.12) Z. = (éi—tt//(——t:x)) e,

If {(2) is the map x — w(¢: x) of M, {(z) is an analytic difffomorphism of M,
and { (¢ — {(¢)) is a homomorphism of R into the group of analytic diffeo-
morphisms of M. We refer to { as the one-parameter group of analytic diffeo-
morphisms generated by Z, and to Z as the infinitesimal generator of {. Coming
back to the case of arbitrary G, suppose ¢ is a global G-transformation group
on M. Then 7,(X) is global for each X € g, because (t,x) — g(exp tX: x) is
an R-transformation group on M and

d
7(X), = (Go(exp(—1X): x))
t=0
Our main result in this context is Theorem 2.16.13 below, which asserts that
if T is an infinitesimal G-transformation group on M such that 7(X) is global
for all X € g, then 7 = 7, for some global G-transformation group on M,
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provided G is simply connected. This is a special case of a more general result
of Palais [2] (see Exercise 47). In what follows we fix an infinitesimal G-
transformation group 7 on M and follow the treatment of Palais [2].

Lemma 2.16.10. Let { be an one-parameter group of analytic diffeomor-
phisms of M, and Z the infinitesimal generator of {. If X € g, then 1(X) = Z
and only if for each x € M, (exp(tX),{(—t-x)) € S, for all t € R.

Proof. Write f(t) = (exp(tX),{(—1)-x) (t € R), x € M being fixed.
Suppose f(t) € S, ,, for all t. Then fis an analytic map of R into S, ,,, so
(d/dt f(2)).=o € £, 5. Since (d/dt f(1)),., = (X,,Z,), we have Z, = 7(X),.
Suppose conversely that 7(X) = Z. Then Z: (g,y) — (X,,Z,) is an analytic
vector field on S, ,,. Suppose ¢, € R is such that f(¢,) € S, ,,- We can find
€ > 0 and an analytic map f: ¢ — f(¢) of (—e€,€) into S(1,» such that f(0) =
f(to) and djdt f(f) = Z;, (/t| < €). By the uniqueness of integral curves
of vector field, f(t) =f(t + t,), |t]<€. So {t:te R, f({)€ Sy} is a
nonempty open subset of R. Since this set is obviously closed, it must be R.

Lemma 2.16.11. Suppose X, ... ,X, € g are such that ©(X,) is global for

alli=1,...,p. L2t {; be the one-parameter group of analytic diffeomorphisms
of M generated by ©(X;) (1 <i<p). Define {(t,,...,t,) =, (t;) o o(t,)
(¢, ... 5t,) € R?). Then

D:(ty, ... tpx) > exp(t Xy) - - exp(t,X,), {(ty, ... ,t,) e x)

is an analytic map of R? X M into G X M such that, for each x € M,
D@y, ... X)) Sy o forall(t,...,t,) <R

Proof. The analyticity of @ is obvious. We prove the second assertion by
induction on p. The case p = 1 is precisely the preceding lemma. Suppose
p > 1, and assume the result when the number of elements considered from
gis p — 1. Then

(exp(thZ) e exp(thp)a C(tl’ .. :tp)ilfs(l,exp(‘lu\’.)-x)
forall x € M, (¢, ...,t,) € R?. By (2.16.8),
q)(tl’ LRI :tmx) € S(exp(t.X.),exp(—r,X1)-x)

for all (¢;,...,t,) € R?, x € M. But since (exp uX, exp(—uX)-x) lies in
S, foru € R,

S(cxp uX, exp(—uX)-x) — S(l,x) (-x € M: uec R)

This proves what we want.
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Lemma 2.16.12. Let © be as above and let us suppose that ©1(X) is global
for all X € g. Let pg be the canonical projection of G X M onto G and let
Po.x = P6|Sti.0 (x € M). Then for each x € M, pg . is a covering map of
S, onto G.

Proof. Let {X,,...,X,} be a basis for g. Then the map
(tla e 7tn) — exp(thl)' : ‘eXp(tan)

is an analytic diffeomorphism of a neighborhood of the origin in R” onto a
neighborhood of 1 in G. Combining this observation with the previouslemma,
we establish the existence of a connected open neighborhood V' = V! of 1
in G and an analytic map y of V' X M into M with the following properties:
(i) w(1: x) = x for all x € M, and (i) (gw(g™!: x)) € S » for all (g,x) €
V X M. For x € M let

a.(g) = (gw(g':x) (geV)
V> =a,[V]

It is then easily seen that V> is a connected open submanifold of S, ,, con-
taining (1,x) and that a, is an analytic diffeomorphism of ¥ onto V'*. In par-
ticular, a, is a homeomorphism of ¥ onto V'*, from which it follows that V'*
is closed in pg 1(V). This shows that V' is the connected component of pzL(V)
that contains (1,x) and that p; , is a homeomorphism of ¥'* onto V.

We now claim that p; ,[S(,,,] = G for all x € M. Since V generates G,
it is enough to prove that for each integer £ > 1 and each y € M, p; [S( ,]
contains V*. We do this by induction on k. This has been shown for £ = 1
in the previous paragraph. Assume this has been proved for some &, and let
ge V¥ Then g = g'h, where g’ € V, h € V*. Fix x € M andselect y e M
such that (g',y) € Si ,,. Then S, ,, = S, ,,. On the other hand, by the
induction hypothesis, we can find z € M such that (h,z) € S, ,,. So (g,2) =
(&'hz) e Sy, = Su . (cf. (2.16.8)).

In order to prove that the p; , are covering maps it is enough to show that
forany g € G and x € G and x € M, p; , maps each connect component
of psi(gV) homeomorphically onto gV. Fix g € G and a connected compo-
nent C of pgi(gV); let (g,y) be some element of C. Then S ,, = S, =
A0S ). It follows from this that A, is a homeomorphism of pz (V) onto
Pc.(gV) and that the following diagram commutes:

pG,x
gV < Pox(gV)
,g B
V <« Pa (V)

pG,y



132 Lie Groups and Lie Algebras Chap. 2

On the other hand, we have seen above that V7 is the connected component
containing (1,y) of pz (V) and that p; , is a homeomorphism of V” onto V.
So C = 4,[V”], and p; , is a homeomorphism of C onto gV. This completes
the proof of the lemma.

Theorem 2.16.13. Let T be an infinitesimal G-transformation group on M.
Suppose that G is simply connected and that ©(X) is a global vector field on
M for all X € g. Then there is a unique global G-transformation group ¢ on
M such that t, = 1.

Proof. By the preceding lemma and the simple connectedness of G, we
obtain the result that p; , is a homeomorphism of S;; ,, onto G for each
x € M. For (g,x) € G X M, define ¢(g~!: x) as the unique element of M
such that (g,p(g™': x)) € S(, .. We prove that ¢ is a global G-transforma-
tion group on M with 7, = 7.

Clearly, ¢(1: x) = x for all x € M. Suppose g, h € G, xe M. Let y =
@(g7': x). Then (g,9) € S(s 5, 80 Sc1,5 = Ste = 44[Si1.»]. Consequently,
since (gh,p(h™'g7':x)) € S, (hop(h g ' x)) € S, In other words,
ph~1g7':x) = @(h™':@(g ': x)) or, what is the same thing,

(2.16.13) p(gh:x) = g(g:o(h:x)) ((ghx)e GXGXM).

It only remains to verify the analyticity of ¢ and the equation 7, = 7.
Suppose V and y are as in the proof of the preceding lemma. It is then clear
that g(g: x) = w(g: x) for (g,x) € V X M. So ¢ is analytic on V' X M. An
easy induction based on (2.16.13) establishes that ¢ is analytic on V'* X M for
all k > 1. Since V generates G, we get the analyticity of ¢ on G X M. Let
x € M, Xeg,and let Y = (dp,),(X,), where ¢, is the map g+ ¢(g7!: x).
Since «, (g — (g,9(g~': x))) is an analytic map of G into S, ), (da,),(X,) €
£, . Hence (X,,Y) € £f, ), proving that Y = 7(X),. This completes the
proof of the theorem.

Remark. Itturnsout that it is not necessary to require that 7(X') be global
for all X € g. Let us say that a subset 4 of g generates g if g is the smallest
subalgebra containing A4. It can then be shown that the above theorem re-
mains true provided we assume that G is simply connected and that 7(X) is
global for all X belonging to a subset of g which generates g. This is the
theorem of Palais referred to earlier. For a proof the reader is referred to
Exercise 47.
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EXERCISES

1. Determine the Lie algebras of all the matrix Lie groups which have been con-
sidered in this chapter.

2. Let k be a field of characteristic zero and g a Lie algebra of dimension 2 over
k. Prove that either g is abelian or there is a basis { X, Y] for g with [X, Y] = X.

3. (a) For any Lie algebra g over a field k& of characteristic 0, we write Dg for
[a,8]. Prove that Dg is an ideal in g and that g/Dg is abelian.
(b) Let g be the subalgebra of gl(n,k) consisting of all n X n matrices (a;,)
with a;; = 0 for 1 <j <i < n. Determine Dg, D(Dg) = D?2g, D(D2g) =
D3g, etc.

4. Let k be a field of characteristic zero and g a Lie algebra of dimension 3 over
k. The following exercises lead to the classification of all such Lie algebras
up to isomorphism (cf. Jacobson [1], pp. 11-14).
(a) If dim Dg = 1 and Dg < center g, there is a basis {X,Y,Z} for g with
[X,Y]=[X,Z]1=0,[Y,Z] = X.
(b) If dim Dg =1 but Dg 4= center g, there is a basis {X,Y,Z} for g with
[X,Y]= X, [X,Z] =[Y,Z] = 0.
(c) If dim Dg = 2, then Dg is abelian, and there is a basis {X,Y,Z} for g

with [X,Y] =0, [X,Z] = aX + bY, [Y,Z] = cX + dY where (Z Z) €

GL(2,k). Prove further that the isomorphism classes of such g are in one-
to-one correspondence with the conjugacy classes in PGL(2,k) =
GL(2,k)/k*-1. Examine the case when k is algebraically closed.

(d) If dim Dg = 3, prove that g is simple and that there is a basis {X,Y,Z}
for g such that [X,Y] = Z, [Y,Z] = aX, [Z,X] = bY where a, b € k™.
If £ = R, prove that such g form the two isomorphism classes obtained by
takinga = b =1 and —a = b = 1 in the above.

(e) If k is algebraically closed, prove that 3[(2,k) is the only simple Lie algebra
of dimension 3 over k& (up to isomorphism).

5. Let g, be a Lie algebra over C. By a real form of g. is meant a Lie algebra g
over R such that (i) g is a subalgebra of the real Lie algebra underlying g,
and (ii) dimg g = dimc g..

(a) Determine all real forms of g, = 8((n,C).

(b) Let g. be the Lie algebra of dimension 3 over C with a basis {X,Y,Z} for
which [X,Y]=0,[X,Z] = X, and [Y,Z] = aY, a being a nonzero complex
number. Prove that g, has a real form if and only if either a is real or |a|
= 1. (Hint: If g is a real form of g., then Mg is a real form of Dy, =
C- X + C-Y, so there is a basis {X’,Y’,Z’} for g. with real structure con-
stants such that X', Y’ span Dy, and Z’ = pZ mod Dy, for some p #= 0.
The condition for this is the existence of M € GL(2,C) such that

pM((l) 2)M‘1 € GLQ,R). This is so if and only if either a € R or
lal =1).
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Let k be an algebraically closed field of characteristic 0. Prove that the classical
Lie algebras 8{(n,k) (n > 2), o(n,k) (n > 5), and 8p(n,k) (n > 1, even) are simple,
i.e., do not possess proper nonzero ideals. Prove also that 8((2,k) and 0(3,k)
are isomorphic and that 0(4,k) is the direct sum of two ideals each of which
is isomorphic to 0(3,k).

Give an example of a closed subgroup of GL(2,R) which is not algebraic.

Let G = SL(n,C). Let @ be the algebra of all polynomials in the matrix entries
a;; (1 < i,j < n), and 9 the ideal of those which vanish on G. Let f be the
polynomial function (a;;) +> det(a;;) — 1. Prove that 4 = f@®.

(a) Let k be a field of characteristic zero and V a finite-dimensional vector
space over k. Let V* be the dual of V and @, the algebra of all polynomial
functions on V. For any endomorphism L of V, write L’ for the endomor-
phism of V* given by (Lf)(v) = f(Lv) (v € V, f € V*). Prove that corre-
sponding to any endomorphism L of V there is a unique derivation
O(L) of @y such that O(L)f = —L‘f for all f€ V*. Prove also that
L — d(L) is a representation of gl(¥) in ®,.

(b) Take k = R or Cin (a), and let G = GL(V) be an algebraic group. Let E
be the algebra of endomorphisms of ¥ and @ the algebra of polynomial
functions on the vector space E. Write 4 for the ideal of all those elements
of ® which vanish on G. For each X € gl(V) let Ry be the endomorphism
A+ AX of E and let d(X) = 0(Ry). Prove that the subalgebra g of g{(V)
corresponding to G consists of precisely all those X € g{(V) such that
derivation d(X) of ® maps the ideal 9 into itself.

Let H be the division algebra of quaternions. We write the elements of H in
the form g = a + bi + ¢j + dk, where a, b, c,d € R, and i, j, k satisfy the
following relations: i2 = j2 = k2 = —1, ij = —ji = k, jk = —kj =1, ki =
—ik = j. For q as above, define ¢' = a — bi — ¢j — dk.

(a) Show that g — g¢'is an involutive antiautomorphism of H, that g¢' is real
and > 0 for all ¢ € H, and that g — |g| = (gq*")'/? is a multiplicative norm
on H.

(b) Identify C with{g:q € H,q = a + bi},and for ¢ = a + bi + ¢j + dk €
H write z,(q) = a + bi, z,(q) = ¢ — di. Prove that g — (21(¢),z2(q)) is a
C-isomorphism of H with C2, H being considered as a right vector space
over C.

(c) Forg e H let I,g' = qq’ (¢’ € H), and let o, be the endomorphism of C?
that corresponds to /, with respect to the isomorphism considered in (b).
Let H, be the multiplicative group of quaternions of norm 1. Prove that
H, is a real analytic group, and that g — &, is an isomorphism of it with
SUQ2,C).

(d) For gi,q, € H let 7(g1,9,) be the R-linear endomorphism g’ — ¢19g3"
of H. Prove that 7:(q1,92) — 7(q1,92) is an isomorphism of H; X H;
with SO(4,R). Verify that the kernel of 7 is {+(1,1)}. Deduce that SO(4,R)
and SO(3,R) x SO(3,R) are locally isomorphic.

(e) Let H" be considered in the obvious way as a right vector space over
H. For q=1(q1,..-,4.), 4 =(q%,...,qn) in H", define {q,9) =
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2i<r<nd(@)h 11l = (Zi<r<a 9,7 V2. Let G, denote the group of all
automorphisms L of the additive group of H" such that L(qq") = L(q)q’
(g e H*, ¢’ € H) and ||L(q)!| = ||q]| (9 € H"). Prove that G, acts tran-

sitively on the unit sphere in H” with respect to the norm || - || and that
the stability subgroup of the point (0, . ..,0,1) is canonically isomorphic
to G,,‘l.

For g € G, let o(g) denote the element of GL(2n,C) that corresponds to
g under the C-isomorphism

@1, - g0 = (21(91),21(q2), . . . ,21(g4),22(q)), - . . ,22(q,)

of H" with C2~, the former being considered as a right vector space over C.
Prove that g — o(g) is an isomorphism of G, with Sp(n) (as analytic groups)
(see Chevalley [1]).

Let G be a real Lie group, H a closed Lie subgroup. If H and G/H are
connected, prove that G is connected. If G is connected and G/H is simply
connected, prove that His connected and that n,(G) is a quotient group of
7, (H).

Prove that SO(n,R), SU(n,C) and Sp(n) act transitively on the respective
unit spheres of R”, C? and C?". Deduce the homeomorphisms
SO(n,R)/SO(n — 1,R) = §*"!, SUMnC)/SU(n — 1,C) ~ S?~!, and
Sp(n)/Sp(n — 1) =~ S47~! (§* is the k-dimensional sphere).

Prove that SO(n,R) (n>2), SUn,C) (n>1), and Sp(n) (n > 1) are
connected while SU(n,C) (n == 2) and Sp(n) (n > 1) are simply connected.
Prove also that 7,(SO(n,R)) = Z, forn >3, and = Z for n = 2.

Prove that U(n,C) is connected for all n > 1, and 7, (U(n,C)) = Z.
Show that SU(2,C) and Sp(1) are isomorphic.

Let ¥ be a vector space over R or C, and let X € gl(V). Prove that the
eigenvalues of ad X are of the form 4 — u, where A and u are eigenvalues
of X. Prove also that if X is semisimple, so is ad X.

Let G, (resp 4o) denote the real Lie group (resp. real Lie algebra) underly-
ing GL(n,C) (resp. underlying gl(n,C)). Write U = U(n,C), and let u be
the subalgebra of g, defined by U. Prove that u is the Lie algebra of all
skew Hermitian elements of gq. If p, is the R-linear subspace of all Her-
mitian elements in g, prove that g, is the direct sum it 4 p, and that

bl = po,  [Popel €1, [uul s
Prove that the map
V. kX)) kexpX (ke U X< by

is a homeomorphism of U X py onto G,. Deduce that G, is connected
and that 7,(G,) = Z.

Calculate (d¥) i, x) using (2.14.5) and deduce that ¥ is an analytic diffeo-
morphism. (Hint: use (a)).
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Let G, and g, be as in Exercise 12, and let G be a closed Lie subgroup of G,

with g as the corresponding subalgebra of go. For X € g, let X' denote the

matrix adjoint to X. Let G° be the component of 1 in G.

(a) Prove that GO = (G%)' if and only if g = g".

(b) Let g =g" and let t =ung, b =p, N g Prove that g is the direct
sum t + p and that

(Eplep,  ylcet, [icst

(c) Let K° be the analytic subgroup of G corresponding to the subalgebra £.
Prove that K° is compact and that the map

Wik, X))~ kexp X (ke K° Xeb)

is an analytic difffomorphism of K° X p onto G°. Deduce that 7,(G°)
= 1,(K%) and that global analytic sections exist on G°/K°., (Hint: Use
Exercise 12 to prove that (dW) , x, is bijective. Observe now that K ° exp[p]
is both open and closed in G°.)

(d) Prove that K° is a maximal compact subgroup of G° and deduce that
K° =Un G°

(e) Suppose now that G = G' and that G is an algebraic subset of the real
vector space of all complex n x n matrices. If p = exp X, where X € p,,
show that p? € G if and only if X € p. Deduce that in this case, exp t.X

€ G for all r € R. (Hint: For some u € U, upu=' = diag(e*, ... ,e*)
(x; € R). Observe now that if F is a polynomial in » variables and
F(e* >, . .. e¥x) =0 for k =1,2,..., then F(e**1,...,e) =0 for
all £ € R).

(f) Let K = G n U. Then prove that
vk, X)—>kexp X

is an analytic diffecomorphism of K X b onto G. Deduce that K is a
maximal compact subgroup of G.

(g) Prove that SL(n,C) (n >> 2) and Sp(n,C) (n > 1) are connected and simply
connected and that SO(n,C) (n > 3) is connected with fundamental group
Zz.

Let M be a real or complex analytic manifold. Suppose G is a topological
group acting transitively and continuously on M with compact stability groups,
and let D be a discrete subgroup of G such that (i) each element of D induces
an analytic difffomorphism of M, and (ii) G, N D = {1} for all x € M.
Then prove that M/D admits an analytic structure with respect to which the
natural map of M onto M/D is a submersion.

(a) Let G, be a simply connected complex analytic group with Lie algebra
a., let g be a real form of g., and let G be the analytic subgroup of the
underlying real analytic group of G, defined by g (when g is considered as
a subalgebra of the real Lie algebra underlying g.). Let V" be a finite-dimen-
sional vector space over R and p a homomorphism of g into g{(¥). Prove
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that there is a (unique) analytic homomorphism @ of G into GL(V') such
that dm = p. (Hint: If p,, V. is the complexification of p, V and =&, the
corresponding homomorphism of G, into GL(V,), take @ = n.|G).

(b) Taking G = SL(n,R), G. = SL(n,C) (n > 2), show that any Lie group
which is a nontrivial covering group of G = SL(n,R) cannot be isomorphic
to a matrix Lie group.

Prove that if G is a simply connected analytic group, then any normal analytic
subgroup of G is necessarily closed in G. (Hint: We may work over R. This
depends on the fact that given any Lie algebra over R there is a real analytic
group whose Lie algebra is isomorphic to the given one. Let g be the Lie algebra
of G, H the normal analytic subgroup, and ) < g the corresponding ideal.
If B is an analytic group whose Lie algebra is isomorphic to g/l), prove that
there is a continuous homomorphism of G onto B, the component of identity
of whose kernel is H).

Let G; be a real Lie group, V; a finite-dimensional real vector space, and 7;
an analytic homomorphism of G; into GL(V;) (i = 1, 2). Write H = G| X G,
V=V Q Vs, and let w(x,x;) = 7,(x;) Q 72(x3), (x1,x,) € H. Prove that
dn =dm, X dn,. If G, = G, = G and 71(x) = T,(x) Q) 7T,(x), x € G, prove
that dm = dn, ® dn,.

Prove that the exponential map is surjective when G = SO(n,R), SU(n,C),
or GL(n,C).

Let G = GL(n,C), g = gl(n,C). Prove that there is an open set U containing
1 in G with the following properties: (i) for each x € U, the series log x =

r=1 (=1 '-(x — 1)"/r converges absolutely to an element of g, (ii) the
map x — log x is an analytic diffefomorphism of U onto an open neighborhood
uof 0in g, and (iii) x = e8¢ *, X = logeX forx € U, X € 1.

(a) Let G be the group of all n X n real matrices (a;;) with a;; = J;; for
i > j. Let g be the subalgebra of gl(n,R) defined by G. We identify g with
the Lie algebra of G. Prove that forany X € g, ad X is a nilpotent endomor-
phism of g. Deduce that exp is an analytic diffeomorphism of g onto G,
with inverse log given by log x = 37—, (—1)""'(x — 1)"/r (x € G).

(b) Prove that all analytic subgroups of G are closed and simply connected.

(c) For X,Yeg, let A(X:Y) be the unique element of g such that
exp Xexp Y = exp A(X:Y). Prove that A is a polynomial map of g x g
into g.

(d) Denote by I the subgroup of all matrices in G whose entries are integers.
Prove that G/I" is compact.

Let A be a finite-dimensional algebra over R. We assume that the multiplica-

tion is bilinear but not necessarily associative.

(a) Prove that if L is an endomorphism of A4, L is a derivation if and only if
e'L is an automorphism of A4 for all t € R.

(b) Show that the group Aut(4) of the automorphisms of A is an algebraic
subgroup of GL(A4) and that its corresponding subalgebra in gl(4) is the
Lie algebra of all derivations of A.
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(c) Take A to be the Lie algebra 3{(n,R), and prove that the derivations ad X
(X € A) are precisely all the derivations of 4. Deduce that (Aut(A))°
is the image under the adjoint representation Ad of SL(n,R).

(d) Show that if n > 2, the map X — — X' (X € A) is an automorphism of 4
which does not lie in (Aut(A))°.

Let G = SL(2,C) act on itself by inner automorphisms. Determine all the
orbits.

Let G be an analytic group, g its Lie algebra. Let M be the vector space of all

left-invariant 1-forms on G.

(a) Prove that if ¢ is an analytic diffeomorphism of G onto itself such that
each member of M is invariant under @, there is an element a € G such
that ¢ = [,; i.e., 9(x) = ax for x € G.

(b) Suppose there is an analytic diffeomorphism ¥ of g onto G. Let M, be
the set of 1-forms on g that correspond to the members of I under y.
For a € G, let A, be the analytic diffeomorphism of g onto itself defined
by A, = ¥~1 o I, o w. Deduce from (a) that the map a + A, is an isomor-
phism of G onto the group of all analytic diffefomorphisms of g onto
itself that leave the members of 9, invariant.

Let G be an analytic group, g the Lie algebra of G, and { X}, ... ,X,} a basis
for g. Let £ = R or C according as G is real or complex, and let ¥ be the map
(ty, .. ) > expti Xy exptnX, of k™ into G. Let wy,...,w, be the

left-invariant 1-forms on G such that @,(X;) = J;;, 1 < i, j < m. We identify

the tangent space to G at any of its points with g.

(@) Prove that (dW)q,,.. .n(0/0t) = X{xptaXarexpmdn)™ for | <s<m
(when s = m, the exponent of X; is regarded as 1).

(b) Let @; be the 1-form on k™ that corresponds to @; under ¥, 1 < j < m.
Let a;;(x) denote ijth entry of the matrix of Ad(x) relative to { X, ..., X}
(x € G). Then deduce from (a) that

CL_), = Z ar:((exp ts+1X:+1 "'expthm)yl)dr: (1 Srgm)

1<s<m

Let G be a Lie group with Lie algebra g. An analytic 1-form on G which is
invariant under all left translations is called a Maurer—Cartan form. Let mt
denote the vector space of all such forms (cf. Chevalley [1].

(a) Let g* be the dual of g. Prove that for any @ € g* there is a unique @ € m
such that @,(X;) = w(X) for all X € g and that the map w — @ is a
linear isomorphism of g* onto nt.

(b) Let {X,...,X,] be a basis for g, {®;, ... ,w,} the dual basis of g*; for
any @ € g*, let @ € m be defined by (a) and let @* be the analytic 1-form
on g which corresponds to @ under exp. Put il = {®*: w € g*}. If

X1,...,Xn are the linear coordinates on g corresponding to the basis
{X1,...,Xn), prove that there are analytic functions a;; of xy,...,xnm
such that

@F = ¥ ayxt,. .. xm)dx; (1 <i<m).

1<jsm
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Let A denote the m X m matrix whose ijth entry is the function
a;i(x1,...,xn). Define the structure constants c.;x by [X,X;]=
i <k<m CrjxXi. Then prove that

l m
dw, = "*“2—2 Cijx@; N\ ;.

i,j=1

Obtain the differential equations

3 .
E(IA(rxl, cestxm) = Iy — L(xy, .., xo)tA(txy, . ooyt X0m),
where L(xy, . . . ,xn») is the m X m matrix whose ijthentry is X1 <, <m €, jiXr,

while I, is the m X m unit matrix. Hence show that

on ¥1)’|

z;: (n + 1)'
(Hint: For fixed (xi,...,xn,), the map > expt(x;X; + - + XpuXn)
is the composition of (¥, ...,ym) —exp(y1Y; + - -+ + ymYn) followed
by t — (txy, ... ,tx,). Deduce from this the relation

D artxy, . txm)x; = x (1< k< m).

<j<m
Let w), ... ,w),, be the 1-forms on R**! that correspond to ®@%, ... 0%
respectively under the map (4,x4, . . . ,xn) — (tx1, . . . ,1x,). Deduce from

the previous relation the formula

Wi =xpdt + 1 D ar(txy, ... tx,) dx;.

1<j<m

Use the relations

dow, = — Z ¢ w; N\ @

i,j=1

to obtain the required differential equations.)

Prove that for any w € g*, (@*)x(Y) = w({(dexp)x(Y)) (X, Y € g), and
hence obtain the above expression for A as a consequence of (2.14.5).
Conversely, deduce (2.14.5) from the expression for A.

Let G be a real Lie group of dimension m, and let q be the real vector
space of all analytic m-forms on G which are invariant under all left
translations. Prove that dimq = 1 and that for any w € q, the corre-
sponding Borel measure on G is a left Haar measure.

Let u be a left Haar measure for G and A the modular function; i.e., A
is the continuous homomorphism of G into the positive reals such

that A(y) f S G) dp) = j S dp) for all f€ C(G). Prove that
A(y) = det Ad(y)~! for all y € G. Hence prove that G is unimodular
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(i.e., left Haar measures are also right-invariant) if and only if trad X = 0
for all X € g. Deduce that the classical algebras are unimodular. Give
an example of a group which is not unimodular.

Let V be a real vector space of dimension 1, G = GL(V). Let A be a Lebes-
gue measure on the vector space gl(V). Prove that the measure 4 on G
defined by du(X) = (det X) "dA(X) is a left Haar measure on G. Obtain
the corresponding formula when V is a complex vector space.

Let G be a Lie group, g its Lie algebra. Let b be as in Theorem 2.14.6.
Assume that exp is one-to-one on v, Denote by dx a left Haar measure
on G and by dX a Lebesgue measure on g. Prove that there is a constant

¢> 0 such that f flexp X)|det (d exp)y| dX — cJ- f(x) dx for all
v exp v
f € C.expv).

Let V be a real vector space of finite dimension ». If D is a discrete sub-
group of V, prove that D is isomorphic to Z™ for some m and that
dim (R- D) = m.

Let G be a connected abelian Lie group. Prove the existence of closed
analytic subgroups K, H such that (i) K is compact and contains every
compact subgroup of G, (ii) A is isomorphic to R? and K is isomorphic to
T¢ for some p,q > 0, and (iii) G = KH, K N H = {1}. Prove further that
K is uniquely determined by (1), while H is determined up to an automor-
phism of G.

Let D be a discrete subgroup of C”. If D is of rank 2n, i.e., D is isomorphic
to Z2, prove that C*/D is compact.

Let G be a compact complex analytic group of dimension n. Prove that G
is abelian and is isomorphic to C"/D, where D is a discrete subgroup of
C of rank 2n. [Observe that the adjoint representation of G is trivial.]
Let G = C"/D where D is a discrete subgroup of C” of rank 2n. Prove
that any holomorphic exterior differential form on G is invariant under
translations.

Let G, = C*/D, and G, = C"/D,, where D, and D, are discrete sub-
groups of C” of rank 2n. If y : G; — G, is a holomorphic isomorphism
of the underlying complex manifolds that takes the identity of G to that
of G,, prove that there is a linear automorphism of C” that maps D, onto
D, and induces . (Hint: Let 7; be the canonical map C* — G;. Prove,
using covering space arguments, that there is a complex analytic diffeo-
morphism ¢ : C* — C” such that 7, o ¢ = y o ;. Use (c) to prove that
the space of Maurer—Cartan forms of C” is stable under ¢*, and deduce
from Exercise 23 that ¢ is an affine map.)

In Exercises 29-34, G is an analytic group with Lie algebra g; M isa C* mani-
fold; (x,y)—> x-y (x € G,y € M) a smooth action of G on M; dim(M) = m,
dim(G) = n. All functions, forms, etc., considered by us are real. Q(M) (resp.
@(G)) is the algebra of exterior differential forms on M (resp. G). For w € Q(M),
x € G, let w, = w'="', where ¢, is the diffeomorphism y > x-y of M. w € Q(M)
is said to be closed if dw == 0; it is said to be exact if w € d(Q(M)). C(M) is the
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algebra of all closed forms, §(M) the ideal of all exact forms, H(M) = C(M)/&(M)
(the De Rham cohomology algebra) the quotient algebra. If (M) is a subspace
of @(M), then D,(M) = DM)NQ(M). H(M) = C,(M)/&,(M). G(M) =
{w:we @M),w, =wforallx € G}; €M) = C(M) N R(M), (M) = d(&(M)).
G(G) is the algebra of left-invariant elements of @(G). A(g) is, as usual, the algebra
of multilinear forms on g; A ,(g) its subspace of p-forms.

29.

30.

31.

Letl <p<m, we Q,M).

(a) Prove that @, is smooth in x € G (cf. Exercise 14, Chapter 1).

(b) Suppose w is closed. Prove that W, — @ is exact for all x € G.

(Use Exercise 14, Chapter 1.)

(c) Let w be closed, z € G. Prove the existence of an open neighborhood U
of z and, for each u € U, of a (p — 1)-form 5, on M such that (i) 7, is
smooth in u, and (ii) dgu =w, —wueU). (}_{int: We may assume that
z =1.For X € g let X € 3(M) be defined by X, = ((d/dt)(exp tX - x));=o
(xe M). For Xeg let #oxpx =P Jl (Wexp sx)g ds. By Exercise 14 of

0
Chapter 1, dffexp x = Wexp x — W. Verify that 5.4, x is smooth in X))

(d) Let @ be as above, dx a left Haar measure on G. Prove that for any

g e C2(0), J g(¥w, dx — (f g(x) dx)-co is exact. (Use (¢) and a
G G

partition of unity argument.)

Let G be compact, 1 < p < m.

(@) Letwe C, (M) and @ = fc , dx. Prove that @ — w is exact.

(b) Suppose w € &,(M) N @(M). Prove that w € § ,(M). (If w = d1, where
1€ @, (M), then & = dfj, where 7j = f . dx.)

(c) Prove that the natural map of (—B(M)/S(}GVI) (resp. €, (M)/& (M)) into
H(M) (resp. H?(M)) is an algebra (resp. linear) isomorphism.

Let G be arbitrary.

(a) Prove that d leaves &(G) invariant

(b) Forw € &,(G) and X, ..., X, € g, let D(Xy,...,X,) = (X, ...,X,).
Prove that the maps @ —> @ extend to an algebra isomorphism of &(G)

with A(g).
(c) Let d be the endomorphism of A(g) defined as follows: d1 = 0, and for
”EAP(G) (PZI), X1,---,Xp+/1\€9, ,(\p+1)(dﬂ)(Xls>Xp+l):

Sicicieprs (DX X)), .. K. X, ..., X,.1).  Prove that
d® = (dw) for @ € G(G). Deduce that (i) d2 = 0, and (i) d(®w A ©') =
do AN o + €@ A do’ (W, w € Ag), € as in (e) of Exercise 11,
Chapter 1).

(d) For X € g, let Ly be the endomorphism of A(g) such that Lyl = 0 and,
for p=1and we ALQ), (Lyx@)( X, ..., X,) = e, (—Do(X,X],

X, X)Xy, oL, X, € g). Prove that each Ly is a derivation of

A(Q) and that X+ Ly is a representation of g in A(g).

(e) Prove that d commutes with all L.
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(f) Prove that

2(p + D)Xy, ..., Xpe1)
= L2 CDTEo) X, K X (XS g 0 € Ay

Let G be transitive on M. Fix y, € M; let H be the stabilizer of y, in G, §
the subalgebra of g defined by H, and y the map x ~> x-y, of G onto M. For
h e H, a(h) (resp. p(h)) is the linear transformation of g/ (resp. the tangent
space T,,(M) to M at y,) induced by Ad(#) (resp. h). ¢ and p are representa-
tions of H.

(a) Prove that the differential (dy); induces an isomorphism of g/f) with
7,,(M) that intertwines the actions of @ and p. Let y be the induced isomor-
phism of A(g/§) with A(T,,(M)). i

(b) Let &(@ +— £@) be the injection of A(g/h) into A(g) induced by the natural
map of g onto g/). Let A(g/D), be the algebra of all elements of A(g/f)
invariant under all a(h) (4 € H). For any w € (M) let ¢, be the element
of A(g/) that corresponds to w,, via p. Prove that ¢, € A(g/f), and
that @ > ¢, is a degree-preserving algebra isomorphism of &(M) with
A(@/9),. Prove also that @ € G(M) (resp. (M) if and only if d(@,) =0
(resp. &g, € d(E(A@/H).)). (For e RM), y*w € @(G), and (cf.
Exercise 31) y*w = &g, so Epa, = d(Ep.,).)

Let G, M be compact, and G be transitive on M. Let notation be as in Exercise

32. Following E. Cartan, we call (G, M) a symmetric pair if there is an involu-

tive automorphism 8 of G such that, if G, is the subgroup of fixed points of @

and G§ is the connected component of Gy containing 1, then G = H < G,.

We write 8 again for the induced involution of g. We assume that (G,M)

is a symmetric pair and that @ has the above significance.

(@) Let 3 ={X:Xeg,0X = —X}. Prove that g =0 + 8 is a direct sum
andthath) = {X: X cg,0X = X}.

(b) Prove that [§,§] = 1, that [(,8] < 8, that [3,3] = 0), and that Ad(h) leaves
8 invariant for all 4 ¢ H.

(c) Let d be the endomorphism of A(g) defined in Exercise 31, and & as in
Exercise 32. Prove that d(&p) = 0 for all ¢ € A(g/h). (Hint: d(lw,) =
Epa, for o € Q(M), so d(&(A@/H),) < E(AQ/H),); since [8,8] < b, it is
immediate that d(@)(Xy,...,X,,1) = 0 whenever X; € 8 for all i and
9 € A/9).) B i _

(d) Prove that all members of @(M )are closed and that &(M) = QM) &(M)
= {0}. Deduce that @(M) is the direct sum of &M) and &(M).

(&) Let £ be the isomorphism of A(g/0) with A(®) induced by the natural
map of 3 onto g/9. Let AB) = £(A(g/D),). Prove that A(3) is the algebra
of all elements of A(8) invariant under the action of Ad(h) for all
he H.

(f) For w € G(M) let [w] be the corresponding class in H(M). Prove that
[w] — [w] = £(p.,) is a degree-preserving algebra isomorphism of H(M)
onto A(8). Deduce that dim H#(M) = dim AB) <o (0<p<m).



Chap. 2 Exercises 143

34. Let G be compact. Let G(G) be the algebra of all two-sided invariant exterior
differential forms on G. Let A(g) be the subalgebra of all elements of A(g)
invariant under the adjoint representation of G.

(a) Prove_that the map @ +— @ induces an algebra isomorphism of &(G)
with A(g).

(b) Let G X G act on G by ((a,b),x) — axb~'. Prove that (G X G,G) is a
symmetric pair.

(c) Use (b) or a direct argument to prove that C(G) is the direct sum of &(G)
and @(G) and that [w]— @ (we G(G)) is a degree-preserving isomor-
phism of H(G) onto A(g).

(d) Deduce that H(G,) and H(G,) are canonically isomorphic if G, and
G, are locally isomorphic compact analytic groups.

(For Exercises. 29-34 cf. E. Cartan [3]; for the theory of symmetric pairs see
the papers of E. Cartan and also Helgason [1]; for an account of the topological
properties of Lie groups, see Samelson [1]; see also Borel [1].)

35. (a) Let ¥ =R", H = SO(n), and let H act on V in the usual way. Let ¢; be
the linear function (xy,...,x,)+— x;, and let # =@, A -+ A @,. If
1 <p<nand w € A,(V)is H-invariant, prove that @ = 0 for p < n,
andweR-nifp=n
(b) Let M be the unit sphere in R**!, G = SO(n + 1). Take y, = (0,...,0,1)
in the notation of Exercise 32 and verify that (G,M) is a symmetric pair.
(c) Prove that H?(M) =0 for 1 < p < n and that dim H"(M) = 1.
(d) Let M be the space obtained by identifying x with —x for all x e M
(projective real n-space). Prove that if niseven, H?(M) = 0,1 < p < n.

36. Let G = Tr, the n-torus. Prove that dim H?(G) = ( ; ) 0<p<n.
37. Let G = SO(3). Write b, = dim H?(G). Prove that by = b, =0, b; = 1.
38. Let M be the set of all k-dimensional linear subspaces of C*! (I < k < n).

(a) Prove that the natural actions of both.G = GL(n + 1,C) and U =
U(n + 1,C) on M are transitive.

(b) Let y, be the element of M defined by the equations xx,.; = 0, ... ,x,:;
= 0 (x; are the usual coordinates on C»*!), Determine the stabilizers of
Yo in G and U.

(c) Use (b) to show that M can be equipped with a natural complex structure
under which it is compact and of (complex) dimension k(n + 1 — k),
and on which the action of G is complex analytic.

(d) Verify that (U,M) is a symmetric pair.

39. Let G be a real Lie group. Prove that it does not have small subgroups; i.e.,
prove the existence of an open neighborhood U of 1 such that {1} is the only
subgroup of G that is entirely contained in U.

40. (a) Let G be a real analytic group, g its Lie algebra. Suppose g can be given
the structure of a complex vector space such that g becomes a complex
Lie algebra, denoted by §. Prove that there exists exactly one complex
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structure on G under which G becomes a complex Lie group, say G, having
the following two properties: (i) G is the real analytic group underlying
G, and (ii) § is the Lie algebra of G.

(b) Prove that exps; = expg.

(c) Let G be a complex analytic group. If G is compact, prove that all its finite-
dimensional (holomorphic) representations are trivial. Deduce that G
is commutative.

Let G be a real C~ group, g its Lie algebra, and ® its enveloping algebra. As
in the analytic case we identify T,.(G) and T{”(G) with g and ® respectively
(x € G). Define D by (2.14.1).

(a) Let A (¢+> A(r)) be a C~ map of some open interval A of R into g and let
w(s, 1) = exp(s4A()) (s € R, t € A). Calculate the image of d%/dsdt in
® under (dw){), in two different ways and deduce the following equation
(here A denotes dA/dt):

A+ sD(GsA: A)A = g—s(sD(sA 1 A) + sAD(A : A).

(b) Let X, Y € g. Take A(t) = X + tY in (a) and obtain the following differ-
ential equation for the function E (s — sD(sX:Y)) (s € R):

de _ =
Pt —[XE] +Y

(c) Deduce from (b) the formula (2.14.5) for D.

Let 3 be an associative algebra with unit 1 over a field & of characteristic O.

Jo = 330 32 are k-linear subspaces of 3 such that 3 o J® if

0<m=<n and JWI < Jm+m if m n> 0. We also write I3+ = I,

Assume that 1 € 3@, 1 ¢ 3™ for m> 0, and (), 3™ = {0}. Clearly,

each 3 (m > 1) is a two-sided ideal in 3.

(a) Forany x € 3 let ord (x) be the supremum of all integers m > 0 for which
x € 3™ and let |x| = 2-o) Prove the following properties for the
function |-|: (1)) 0 < |x|=lex|<1VV x€3, cek”; |x]=0 if and
only if x =0, and |1| = 1; (i) |x + y| < max((x||y) V x, y € 3; (iii)
|xy| <\x|ly| V¥V x,»y € 3. Weshall say that J is complete if it is a complete
metric space for the distance function d(x,y) = |x — y|(x, y € J). From
now on we assume that J is complete.

(b) Let {x,: A € A} be an indexed family in 3. We say that it is summable if
there exists x € J such that for each € > 0 one can find a finite subset
F, < A for which |x — X,er x;| < & whenever F is a finite set 2 F,.
In this case we write x = 3,,c4 X;. x i, of course, uniquely determined.
Prove the following criterion for summability: {x;: A € A} is summable
if and only if | x,| — O in the sense that given any € > 0, we can find a
finite subset F, < A such that |x,| < € whenever 4 ¢ F..

(¢) If x € 3*, show that {x*/n!:n > 0} and {(—1)*"'x"/n:n > 1} are sum-
mable. Write expx = X, (x"/n!), logy = 3, (1)~ (y — )*/n
(xe 3, yel + 3.
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(d) Prove that exp is a homeomorphism of 3* onto 1 4 J* and that log is its
inverse.

(e) If x,y € 3*, prove that {xmy*/m!n!:m, n > 0} is summable and that
Yo nzo X™y"/m!in! = exp x exp y. Prove that if xy = yx, then exp(x + y)
=expx-expy =expy - expx. Deduce that exp x is invertible and
exp(—x) = (exp x)~ 1.

(f) For any x e J let 8(x)(y) = xy — yx = [x,y] (¥ € 3). Prove that G(x)
is a continuous derivation of 3. If x € J3* and D is a continuous derivation
of J, prove that

exp(—x)Dlexp x) = T 00O,

[Hint: Use Lemmas 2.14.1 and 2.14.2.]

(g) Let Tbe an indeterminate and k[[7]} the algebra over k of all formal power
series W = 3,50 a,T" (a, € k) in T with coefficients from k. If L is any
endomorphism such that L[3(] < 3+D for all m > 0, prove that L
is continuous, that (L) : y > 3,~0 a,.L(») (¥ € 3) is a well-defined con-
tinuous endomorphism of J, and that y > w(L) is a homomorphism of
KI[TTL

(h) Let x,y € 3* and let expxexpy =expz where z = z(x,y) € 3+ is
uniquely determined by x and y. Let D; (resp. D;) be a continuous
derivation of J such that D,(y) = 0 and [x,D(x)] = 0 (resp. D,(x) =0
and [y,D,(»)] = 0). Let K,, (p > 1) be the rational constants defined in
§2.15. Prove that

Di(@) = =5z Di@] + i) + T Kz B (D)

Da(@) = (2D + Do) + 3, Koy 7(Ds()

[Hint: Imitate proof of Lemma 2.15.2.]

Let k be a field of characteristic 0, £ a set having two elements U and V. W
is the set consisting of all words in E; treat 1 as a word of zero length. J is the
set of all formal infinite sums x = ¥,cw ¢,(x)w, where c,(x) € k for all
w & W. We refer to elements of 3 as formal power series in two non-commuting
indeterminates U and V; the ¢,(x) are called the coefficients of x. Equality,
addition, and multiplication by elements of k are coefficient-wise; multiplica-
tion is Cauchy. Thus, if x,y € 3, then

ofxy) = 3 e, Ay).

w=ww’

For integers r, s = 0, define W, , as the set of all words with r letters U and
s letters V and put 3, = 2wew, k- w; for any integer n > 0, write 3, =
> r+s=n 3,5, and define 3 to be the set of all x such that ¢,{x) = 0 whenever
length of w is < n. For any x e 3, write x,, = Dwew, s X)W, X, =
Dir+s=n X, Itis easy to see that {3¢m : m > 0] satisfies the conditions described
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in Exercise 42. We may thus define |- | on J and regard J as a topological ring.

(a) Prove that J is complete. Prove also that for any x € 3, x = 3, ;50 X,,5
= Zn20 Xy

(b) Prove that there exists a unique continuous endomorphism d(U) (resp.
d(¥)) of I such that d(U)x = rxif x € 3, , (resp. d(V)x = sxif x € 3, ;).
Prove also that d(U) and @(V) are derivations of J.

(¢) Let C = C(U:V) be the unique element of 3* such that exp Uexp V =
exp C. Prove that

JUXC) = ~FICUI+ U + 3 Ky, (CP2(U)

IO = FICVI+V + T Kapf(CP2(V),

From these equations deduce recursion formulae for the C, and C,.
Prove that the C, satisfy the recursion relations (2.15.15) with C, =
U-+V.

Let notation be as in Exercise 43. For x,y € 3 put [x,y] = xy — yx. J,
equipped with [-,-], is a Lie algebra over k. Denote by F the Lie subalgebra
of 3 generated by {U,V'}. Let¥, , = F N 3, ,,F, = F N J,. Let y be the unique
continuous endomorphism of J such that y(1) = 0, w(U) = U, w(V) =V,
and for any word w = Z, --- Z, of length > 2 (i.e., n > 2 and Z; € {U,V}
for all i), w(w) =[Z,[Z,]-- - [Z,-1,Z,)]) - - -]

(a) Prove that § is spanned by the w(w) (w € W) and that §, ; (resp. F,) is
spanned by the y(w) with w € W, ; (resp. w € W,). Deduce that  is the
algebraic direct sum of §, ; and that F, = >, .-, F, ;.

(b) Prove that w(w) = nw for w € §,. [Hint: This needs the theory of free
Lie algebras. See Chapter 3.]

(¢) Let C = C(U:V) be as in Exercise 42. Prove that C, ; € §,, for all r,
s > 0. [Hint: Use Exercise 43 (¢)]

(d) Prove that if r + s > 0, then

¢+9C,, = 3y St W(UP Vo Upnlan)
r,s m=1 m P21, pmtgn>1 PG P!
i+t pm=r,gitotgm=s

(Hint: C = log(l + u), where u = 3,51 U?V9plq!. So C,, can be
determined by expanding the log. Observe, by (c), that w(C, ;) =
(r + 5)C,,,. This formula is due to Dynkin [2]).

Use the notation of Exercises 43 and 44. Assume now that k = R or C. Let g
be a Lie algebra over k. Suppose that ||- || is a norm over g and that there is a
constant M > 0 such that ||{[Z,Z7]| < M| Z]|}||Z’]| for all Z,Z" € g. For
X, Yeg, ;(X:Y)= X +Y, and ¢,,1(X:Y) (n > 1) is determined by the
recursion relations (2.15.15). Let o be such that || X|| < &, || Y| < d.

(a) Let X, Y e g. Prove the existence of a unique homomorphism 7y y of

the Lie algebra § into g such that 7y y(U) = X, 7y y(V) = Y.
(b) Prove that mx y(C(U:V)) = c(X:Y).
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(c) Prove that the series Y- ¢ (X:Y)| converges whenever || X|| <
1/2Mlog2 and || Y|| < 1/2M log 2. (Hint: Use (b) and Exercise 44 (d)
to obtain the majorant ||nc, (X : Y)|| < M 1anf,, where B, is the coeffi-
cient of z* in the expansion of —log(l — (e?e — 1)) in powers of z.
Observe that this function of z is analytic if | z| < } log 2).

(d) Prove that if g is finite-dimensional, ¢(X:Y) = 3,50 c(X:Y) is well
defined for (X,Y)e b X b, where b ={Z:Z e g, ||Z|| < 1/2M log 2},
and that ¢: (X,Y)— c¢(X:Y) is an analytic map of b x 0 into g.

Let £k = R or C and let 4 be a finite-dimensional associative algebra over &
with unit 1. Let |- | be some norm over A. For x, y € A let I.(y) = xy, [x,y] =
xy — yx. Write g for the Lie algebra thus obtained whose underlying vector

space is that of A. Let G be the Lie group of all invertible elements of A.

We identify g canonically with the Lie algebra of G.

(@) For x € A, let ||x|| = supy, <, | L.(»)|. Prove that ||-|| is an equivalent
norm on A and ||xy|| < || x|/ ||y]| for all x,y € A.

(b) Prove that the exponential map of g into G is given by exp x = 3,~o x"/n!
(x € A).

(c) For any €>0, let G€) ={y:ye A, ||y —1|| <€} and g(€) =
{x:xe A,||x|| <e€}. For y € G(1), let 3,~, (—1)*(y — 1)*/n. Prove
that G(1) < G and that y +— log y is a well-defined analytic map of G(1)
into g.

(d) Prove that exp(logy) = y for y € G(1); prove further that if ||x| <
log 2, then exp x € G(1) and log(exp x) = x.

(e) Show that log[G(1)] = u is an open neighborhood of 0 in A, that log is
an analytic difffomorphism of G(1) onto ut with exp as its inverse, and that
u is the connected component containing 0 of the open set exp~!(G(1)).

(f) For x, y € g, define ¢,(x: y) (n > 1) by the recursion formulae (2.15.15).
Prove that the series Y-, ¢,(x: y) converges absolutely for (x,y) € ¢ =
g(4 log 2) X g(} log 2); if c(x,y) is its sum, prove further that c is analytic
on ¢ and that exp x exp y = exp ¢(x: y) for all (x,y) € c.

Let G be an analytic group with Lie algebra g, M an analytic manifold, and
7 (X — 7(X)) an infinitesimal G-transformation group on M. Let A be the set
of all X € g for which 7(X) is global.

(a) Prove that if X € 4 and f € R, then tX € A.

(b) Let X,Y € A and let & (resp. #) be the one-parameter group of diffeomor-
phisms of M that is generated by 7(X) (resp. 7(Y)). If s € R and {(t) =
1(s) o 7(r) o £(—s) (¢ € R), prove that the one-parameter group { is gener-
ated by 7(YexrsX) Deduce that Yex» X ¢ 4. (Hint: Use Lemmas 2.16.10
and 2.16.11.)

(c) Let] be the linear subspace of g spanned by A. Prove that {) is a subalgebra.
Hint: If X, Y € A, [X,Y] = ((d/ds) Y=x» sX) _; € ).)

(d) Suppose that 4 generates g. Prove that there exists a global G-transforma-
tion group @ on M such that 7, = 7. (Hint: By (c), we can choose a basis
{Xy,...,X,} for g such that X; € A for all i. From this point the proofs
of Lemma 2.16.12 and Theorem 2.16.13 need no change.)

(¢) Supposethat Zy,...,Z, are analytic vector fields on M. If each Z, is global
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and if the Z; generate a finite-dimensional subalgebra a of 3,(M), show that
each vector field in a is global.
(f) Let M = R2? with the usual coordinates x and y. Write

Zl:yaix’ ZZ:%Zaiy

Show that Z; and Z, are global but that neither Z, + Z, nor [Z,,Z,] is
global.

(a) Let G be an n-dimensional analytic group, H a discrete subgroup, and
M = G/H. Prove the existence of analytic vector fields Xy, ...,X,on M
such that (i) the X; are linearly independent at each point of M, and (ii)
there are constants c; ; such that [X;,X;] = 3 ¢;;x X, for all i, j.

(b) Suppose M is a compact n-dimensional connected analytic manifold on
which there exist analytic vector fields X, ..., X, having properties (i)
and (ii) of (a). Prove that M is analytically diffeomorphic to a quotient
manifold of the form G/H, where G is an n-dimensional analytic group and
H is a discrete subgroup of it. (Hint: Use the global form of the third
fundamental theorem of Lie to construct an analytic Lie group G and a
basis X, ...,X, of its Lie algebra g such that [X,X;] = 3, ¢;;x X, for
all 4, j. Let 7 be the infinitesimal G-transformation group on M for which
7(X,) = X, for all i. Now use Theorem 2.16.9.)

(c) Suppose M is a compact, connected, complex analytic manifold of dimen-
sion n admitting » holomorphic vector fields that are linearly independent
at each point. Prove that M is holomorphically diffeomorphic to a quotient
manifold of the form G/ D, where G is a complex analytic group of dimen-
sion n and D is a discrete subgroup of it.

(a) Let G be a Lie group and H a closed Lie subgroup. Let g be the Lie algebra
of G, and let ) be the subalgebra of g defined by H. Let a be a linear sub-
space of g complementary to §). Prove the existence of an open neighbor-
hood 1t of 0 in a such that (i) U = exp[u] is a regular submanifold of G
and exp is an analytic difftfomorphism of 1 onto U, and (ii) U meets each
left H-coset at most once. Use this to obtain an alternative proof of Theo-
rem 2.9.4.

(b) Assume that H is connected; prove that for H to be an isolated fixed
point for the action of H on G/H it is necessary and sufficient that {j be its
own normalizer in g, i.e., that §) = {X: X € g, [X,)] = §}. (Hint: Let N
be the normalizer of H. Prove that H is open in N.)

Let G be an analytic group over k& (= R or C), g, the Lie algebra of G. Identify
T,(G) and Tx(g) with g for any g € G, X € g in the usual manner. Suppose
1t is an open neighborhood of 0 in g and ¢ is a C~ map of u into G such that
(i) @(0) =1 and (d@)o(X) = XV X € g, and (ii) if Xe gand t,¢’ € k are
such that tX, t’X, and (+ + t)X € u, then @((¢ + t)X) = p(tX)p(’X). Then
prove that ¢ coincides with the exponential map in a neighborhood of 0.



CHAPTER 3

STRUCTURE THEORY

This chapter will be devoted to the development of the general structure
theory of Lie algebras and its group-theoretic consequences. Among other
things, we shall prove the theorems of Levi-Mal’¢ev, Weyl, and Ado, as well
as the global version of the third fundamental theorem of Lie, namely, that
there is an analytic group corresponding to every real or complex Lie algebra.
In addition, we shall develop the theory of the universal enveloping algebra
in a systematic fashion; this will be of great use in our subsequent discussion
of the theory of semisimple Lie groups and their representations.

3.1. Review of Linear Algebra

The aim of this section is to give a brief review of certain concepts and
results from linear algebra which will be needed later. The reader who is
interested in detailed proofs is referred to standard texts (Jacobson [I],
Bourbaki [1, 2], Chevalley [2]).

Throughout this section, k will denote a field of characteristic zero. We
recall that if k" is either an algebraically closed extension or a Galois exten-
sion! of k and I the corresponding Galois group, thenk = {c:c € k', ¢* = ¢
for all s € T'}. Let V be a vector space of finite dimension over k, k’ an ex-
tension of k; then we write V¥ for the canonical extension of V to a vector
space over k'. We always identify V with a subset of V¥, If k"’ is an extension
of k with k € k" < k', we may regard V* as the canonical extension of V*”
to a vector space over k'. For any subspace U (resp. endomorphism L) of
V, we write U*" (resp. L) for the subspace of V¥ spanned by U (resp. endo-

'k’ is not necessarily a finite extension of k. So k&’ Galois over k means: (i) &’ is algebraic
over k, and (ii) if k is an algebraic closure of k’ with k’ < &, then any k-isomorphism of
k" into k is a k-automorphism of k”’. If Vis a vector space over k and s(c — ¢*) is an auto-
morphism of k, then by an s-linear automorphism of ¥ is meant an automorphism L of the
additive group of ¥ such that L(cv) = csLv forv € V, ¢ € k.
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morphism of V* extending L). Such subspaces and endomorphisms of V¥’
are said to be defined over k. If k' is either an algebraically closed extension
or a Galois extension of k and I' is the Galois group of k" over k, then for
any s € T there is a unique (s-linear) automorphism s of the additive group
of V¥ such that s-v = v forallv € V. If U’ is any subspace of V¥ (resp. L’
is any endomorphism of V*’), then U’ (resp. L) is defined over k if and only
if seU’' = U’ (resp. s-L'-s7' = L') for all s € T'; in this case, U = U¥,
where U= U’ N V (resp. L' = L¥, where L =L'| V).

Let V be of finite dimension m over k. An endomorphism L of V is called
nilpotent if for each v € Vthereis an integer n = n(v) > 0 such that L"v = 0.
In this case there is an integer r > 0 such that L™ = 0. If L is nilpotent, the
subspace V; of vectors v such that Lv = 0 is nonzero, and L induces a nil-
potent endomorphism on V/V,. It follows that we can find subspace V, = 0,
Vi,....V,=V({<s<m)suchthat )V, < V, < --- = V,dimV, <
dimV,,,0<i<s—1,and (i) V,,, ={w:ve V,Llve VJO<i<s —
1). In particular, L™ = 0, and there is a basis for V" with respect to which the
matrix of L has zeros on and below the main diagonal. If k' is an extension
of k, an endomorphism L is nilpotent if and only if L* is. If L is nilpotent,
ad L: M~ [L,M] is-a nilpotent endomorphism of g{(V) (cf. (2.14.4)).

Let 7 be an indeterminate and k[7T7] the algebra of all polynomials in T’
with coefficients from k. If L is any endomorphism of V and p = a,T" +
a, V"' + ... 4 ay € k[T], write p(L) = a,L" + a,L¥ ' 4 - 4 ayl. The
action (p,v) — p-v = p(L)v(p € k[T],v € V) then converts V into a module
over the principal ideal domain k[T]. The theory of modules over such rings
leads quickly to the main theorems concerning L and its action on V.

The first theorem is the so-called decomposition into primary compo-
nents. For any ¢ € k[T] let ¥(q) be the subspace {v: v € V, g(L)v = 0}, and
let V, denote the subspace (_J,»: V(g").

Theorem 3.1.1. Let J be the ideal in k[T) of all q such that (L) = 0, and
let p be the monic® polynomial which generates J. Write p = q7' - q;",
where m,, . ..,m, are integers >0 and q,,....q, are distinct, monic, ir-
reducible polynomials in T. Then V = Y, ,<, V(q™), the sum being direct, and
V,, = V(qr), 1 <i<r. Moreover, there are elements p; € k[T] such that
pi(L) is the projection of V on V,, corresponding to the above direct sum.

This theorem takes a simpler form when k is algebraically closed. Let us
assume this and write a(L) for the set of eigenvalues of L. For 4 € o(L) let
Via=Vra ie.,

(3.1.1) Vi,={v:ve V,(L— A-1yv =0 for some integer s > O}.

2This means that the highest power of T in p has coefficient 1. p is called the minimal
polynomial of the endomorphism L.
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Then the following theorem follows at once from Theorem 3.1.1.

Theorem 3.1.2. Let k be algebraically closed. Then V is the direct sum of
V.1 (A € o(L)), and there are p, € k[T] such that p,(L) is the projection of V’
onto V. , corresponding to the direct sum. The dimension of V, , is equal to the
multiplicity of A as a root of the characteristic polynomial of L. The restriction
of L — A-1to V., is nilpotent.

The. second main result is the construction of the so-called invariant
factors. For any v € V,letJ, = {p:p € k[T}], p(Lyv = 0} and [v] = { p(L)v
:p € K[T]}.

Theorem 3.1.3. There are ideals J,, . . . ,J, of k[T] such that ()0 %« J, <
Jy - € J, %% k[T, and (ii) for suitable vectors v,, . . . w, of V, V is the direct
sum of the subspaces [v\],...,[v,), and J,, =J; for | <i<n IfI,..., I,
are ideals in k[T) satisfying (i) and (ii) (for suitable vectors w,, ... ,w,), then
r=nandJ, = I for 1 <s <n.

It is obvious that 1 << n << m. Let p,(1 < i <C n) be monic polynomials
generating the ideal J,. Then p,, .. .,p, form a complete set of invariants for
the action of L on V.

Let k be an algebraic closure of k, with k < k. An endomorphism L of
Vis said to be semisimple if V* is the direct sum of eigensubspaces of L¥, or
equivalently, if there is a basis of ¥ with respect to which L has a diagonal
matrix. It is known that if the characteristic equation of L has m == dim(V)
distinct roots in k, then L is semisimple. Moreover, we have the following
very useful theorem.

Theorem 3.1.4. Let L be an endomorphism of V. Then L = S + N, where
(1) S is semisimple and N is nilpotent, and (ii) S and N commute. S and N are
uniquely determined by these requirements, and we can find elements p, q of
k[T whose constant terms are zero, such that S == p(L), N = q(L). In particular,
L is semisimple if and only if given any subspace of V invariant under L, one can
find a complementary subspace that is also invariant under L.

We remark that if k is algebraically closed and the P, are the projections
V— V., then S = 3 ,c,(yAP;, and N = L — S. It is obvious that g(L) =
o(S). For arbitrary &, the decomposition L = S + N is known as the Jordan
decomposition of L,and S and N are known respectively as the semisimple and
nilpotent parts of L.

If k is not algebraically closed, the decomposition of Theorem 3.1.2 is
available for L* in V*, k 2 k being an algebraic closure of k. Moreover, for
L itself the following theorem (the so-called Fitting decomposition) gives a
partial substitute.
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Theorem 3.1.5. Let k be arbitrary. For any endomorphism M of V, let
R(M) be the range of M, and N(M) the null space of M. Let L be an endomor-
phism of V and let

N+ = | N(L"
(3.1.2) n1
R™ = [} R(L").

Then V is the direct sum of N* and R, both of which are invariant subspaces
for any endomorphism M with the property that (ad LY'(M) = 0 for some
integer s > 0. If L is semisimple, N* = N(L) and R~ = R(L).

We conclude this review of the theory of a single endomorphism with two
results. The first of these follows simply from Theorem 3.1.2; the second
comes out of Theorem 3.1.3.

Theorem 3.1.6. Let k be algebraically closed, L an endomorphism of V.
In order that an endomorphism M leave the subspaces V, , (A € o(L)) invari-
ant, it is necessary and sufficient that there exist an integer s > 0 with (ad L)*
(M) = 0.

Theorem 3.1.7. Let k be arbitrary, L an endomorphism of V. Denote by
A the algebra of all endomorphisms of V of the form p(L), p € k[T). Then an
endomorphism M of V belongs to A if and only if it satisfies the following con-
dition: M commutes with every endomorphism of V that commutes with L.

Some of the above concepts admit far-reaching generalizations to sets of
(possibly noncommuting) endomorphisms of V. We now turn to a description
of a few results of this type. It is convenient to formulate these in the context
representation of associative algebras.

Let 9 be an associative algebra® over k. By a representation p of U we
mean a homomorphism of ¥ into the associative algebra of endomorphisms
of a vector space W over k with p(1) = 1; p is said to act on W. Unless we
state otherwise, we shall be concerned only with finite-dimensional repre-
sentations, i.e., those that act on finite-dimensional vector spaces. et p be a
representation of ¥ acting on W and k’ an extension field of k. Denoting by
A~ the extension of 2 to an algebra over k', it is obvious that there is a unique
representation p’ of A* acting on W* such that p'(a) = p(a)* for alla € ¥;
p’ is said to be the extension of p to k' and is denoted by p*. If p and p’ are
representations of A acting on W and W' respectively, we say that p and p’
are equivalent if there is a linear isomorphism & of W onto W' such that

3IWe assume that 2 has a unit, denoted by 1. Any subalgebra of 9 contains 1 by defini-
tion. This convention is in force throughout this chapter. If B < 9, the subalgebra B
generated by B is the smallest subalgebra of 9 containing B; B is said to generate if
B =9
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&p(a) = p'(a)¢ for all @ € A; ¢ is then said to intertwine p and p’. For any
representation p of ¥, define the character of p to be the linear function x,: a
— tr p(a) (@ € A) on A with values in k. It is obvious that x,(ab) = x,(ba)
foralla, b € A and that equivalent representations have the same characters.

Givenarepresentation pof 2 on W, asubspace W’ of Wissaid to be invariant
(under p) if p(a)[W'] < W’ for all @ € . Let W’ be an invariant subspace,
and let us write py-(a) (resp. pwmw(a)) for the endomorphism induced by p(a)
on W' (resp. W/W’), for any a € . Then p,. : a— py.(a) (resp. pwmw: a—
pwmw(a)) is a representation of A in W' (resp. W/W’); it is called the
subrepresentation (resp. quotient representation) defined by W’. A representa-
tion p on W is said to be irreducible if 0 and W are the only subspaces of W
that are invariant under p; p is called semisimple if given any subspace of W
invariant under p, one can find a subspace complementary to it and invariant
under p.

Suppose p is a representation of 2l in W. Then there exist subspaces
Wo=0,W, ..., W,= Wsuchthat ) W, < W,,, and dim W, <dim W, ,
(O0<i<s—1), and (ii)) each W, is p-invariant and the representations
Pi = Pw.. w, are irreducible (0 << i << s — 1). The integer s is the same for all
such chains. If {p;} and {g,} are the irreducible representations associated with
two chains, there is a permutation i+ i’ of {l,...,s} such that p, and o,
are equivalent for all i. If p is semisimple we can write W as the direct sum of
subspaces W, ... ,W,, where the W, are invariant under p and the repre-
sentations py, are irreducible, 1 << i <Cs. In this case, for any equivalence
class b of irreducible representations of 9(, the number of i’s such that p,, €
v is called the multiplicity of b in p and is denoted by (p : v). Even though the
W, are in general not unique, for any equivalence class b of irreducible repre-
sentations, the number (p : v) and the subspace W, = Z,.:I,WED W, are unique-
ly determined once p is given.

Let p be an irreducible representation of 2 on W. Denote by 3 the algebra
of all endomorphisms B of W such that p(a)B = Bp(a) for all a € B. It is
easily seen that if B € B and B # 0, Bisinvertible and B! € 8. Bisthusa
division algebra over k. If k is algebraically closed, the eigenspaces of elements
of B are invariant under p, leading to the conclusion that ¥ = k-1. These
results constitute what is known as Schur’s lemma. For arbitrary k, the action
(Bv)— Bv (B € B,v € W) converts W into a left vector space over B.
Let W?® denote this left vecter space. Then for any a € 9, p(a) is an endo-
morphism of W2,

Theorem 3.1.8. Let notation be as above. Then p[] is the set of all endo-
morphisms of W3. In particular, if k is algebraically closed, then W3 — W and
PIU] is the set of all endomorphisms of W.

There is a generalization of this theorem to the case when p is assumed
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only to be semisimple. In order to formulate it we need some notation. Let
D be a set of endomorphisms of a vector space W. Denote by D’ the set of all
endomorphisms B of W such that AB = BA forall A € D. We write D" =
(D")'. D" and D'’ are both algebras over k, and D < D’". We then have the
following theorem.

Theorem 3.1.9. Let p be a semisimple representation of N acting on W.
Then p[A] = p[N]". In particular, let v be an equivalence class of irreducible
representations of N, and let W, be the linear span of all invariant subspaces
W' of W such that py. € v, then W, admits exactly one complementary
subspace invariant under p, and there is an element z, & % such that p(zy) is the
projection of W onto W, parallel to this complementary subspace.

We remark that if p is a representation of % in W, and k’ is an extension
field of k, then p is semisimple if and only if p*" is semisimple. However, it
might happen that p is irreducible without p*" being so. If p is irreducible,
then in order that p* remain irreducible for all extension fields k&’ of k, it is
necessary and sufficient that p[U] = k- 1.

In the sequel we shall on occasion deal with infinite-dimensional repre-
sentations of . For such representations, the concepts of irreducibility and
equivalence are defined as in the finite-dimensional case. However, care must
be exercised in handling them.

Let p be a representation of 2 in a vector space V, not necessarily of
finite dimension. Let ¥ € V be a nonzero cyclic vector for p, i.e., V = p[UJv.
If

M, ={a:ac U, playp = 0},

it is clear that M, is a left ideal of UA. Let A, = A/M, be the quotient vector
space and let @ — a be the canonical map of % onto U,; for a,a’ € ¥, let
p(a)-@ = aa'. Then p,(a) is an endomorphism of A, and a+> pa)is a
representation of 9. It is obvious that the map

E:a playw (a )

is a well-defined linear isomorphism of ¥, onto V that intertwines the repre-
sentations p, and p; i.e.,

Eopla)olt = pla) (a € AN).
If W is any subspace # ¥ of V invariant under p, then the set
MY ={a:a € U, playp € W}

is a left ideal of 9 containing M,, and the correspondence Wi MY is a
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bijection of the set of all p-invariant subspaces %= V of V with the set of all
left ideals of U containing IM,; obviously, if W, = W,, then M"+ = MW=,
In particular, p is irreducible if and only if 9, is a maximal left ideal. In this
case, every vector of V is cyclic, and

() M, = kernel(p).

weV
Conversely, let M be a left ideal of A (1 ¢ M); let A = A/IM and let a4
be the canonical map of % onto ¥, for «, b ¥, let p(a)-b = ab. Then a
p(a) is a representation of 2 in ¥, and 1 is cyclic for p. p is called the natural
representation of 9 in . p is irreducible if and only if 9 is maximal. Clearly,
M = M7 in the earlier notation.

We now give a brief account of Chevalley’s theory of replicas of endo-
morphisms. This plays an important role in Chevalley’s theory of algebraic
groups over fields of characteristic zero (cf. Chevalley [2,5] Lazard [1]).

Let V be a vector space over k of finite dimension m, V* its dual. For
integers r, s > 0 with r + 5 > 0, let ¥, , be given by

(3.1.3) Ve =V® - QVRV*R - @ V*

r times s times

Given any x € GL(V), let x° be the element of GL(V*) defined by
(3.1.4) (x°%*)(v) = v¥(x"v) (v € V,v* € V*)

Then it is obvious that x — x° is an isomorphism of GL(¥) onto GL(V*). For
r, s as above and x € GL(V), let

3.1.5) X0 =x® - RxRXOR® - R x°

r times s times

Obviously, x + x»* is a homomorphism of GL(V) into GL(V, ). If k = R
or C, then x — x* is a representation of GL(V) acting in V, ,, and as such
admits a differential, which is a representation of g{(V') in ¥, ,. A simple
calculation reveals that the resulting representation of gl(¥) makes sense in
an arbitrary field of characteristic zero. We now define it directly. For any
L € gl(V), let L be the element of gl(V*) given by

(3.1.6) (Lo*)(v) = —v*(Lv) (v € V,v* € V*).

Then it is easily seen that L — L is an isomorphism of gl(¥) onto g((V'*).
For any integers r, s, both >0, and any endomorphism L of V, let
Lo =LRIRKIR- - ®]

3.1.7)
FIRLRI® - @1+ +1IRI® - RIRL,
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where each tensor product has r factors, and let
(3.1.8) Ly, = (L),,

Then L +— L, y and L — L, are representation of g{(¥)in V,, and V, |, re-
spectively (cf. §2.2). Define, for integers r, s > 0 with r + s > 0,

(3.1.9) L,=L,o®1+1QLy, (LeglV).

Write V, o = k-1, and define L, , = 0 for all L € gl(V), x> =1 for all
x € GL(V). We leave it to the reader to verify that L — L, ,is a representa-
tion of gl(V) in V, ,, and that if k = R or C, this representation is the differ-
ential of the representation x — x9 of GL(V) in V, ,.

Note finally that if k" is an extension field of k, (V, ,)* is canonically
isomorphic to (V*), ; for all r, s > 0. If L is an endomorphism of V, then the
endomorphisms (L, ,)*" and (L*), , correspond under this isomorphism. We
shall generally identify (V, ,)*" (resp. (L, ,))* with (V*), , (resp. (L¥), ;) with-
out comment.

The spaces V,, and V,, have useful and interesting interpretations.
Given v € V, v* € V*, let us define z(v,v*) to be the endomorphism of V
given by

(3.1.10) 2 p*)(w) = v*wp  (w € V).

From the properties of tensor products it follows that there is a linear map {
of VX V* into gl(¥V) such that

(3.1.11) v X v¥) = z(v,0*) (v € V,v* € V*).

If{e,, ... e,}is abasis for Vand {e¥}, . . . ,e*} the dual basis in V*, it follows
from (3.1.11) that {(e; &) e%) is the endomorphism of ¥ whose matrix relative
to{ey, ..., e,}i8(0,0,,) 1< j<m- This shows that { is a linear isomorphism of

V1 with the underlying vector space of g{(¥). In an analogous manner, let
v € V,v¥, v¥ € V* and let y(v,0¥,v5) be the bilinear map of ¥ X Vinto V'
defined by

(3.1.12) y@,F,05)u,u,) = vFu i)y (ug,u,) € V.

We write 7 for the linear map of V, , into the vector space B of bilinear maps
of ¥V X Vinto ¥V such that

3.1.13) (v Q) v¥ X v¥) = y(v,v¥,vF) (v € V,v¥v¥ € V).
n Y

A simple calculation, analogous to the one performed earlier, shows that »
is a linear isomorphism of ¥, , onto B. We now have the following lemma.
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Lemma 3.1.10. Let notation be as above. Then for any endomorphism
L of V, { intertwines the actions of L, , and ad L, i.e.,

(3.1.14) {oL, ot =adlL.

Further, let B € B, and let V; be the algebra whose underlying vector space is
V and whose multiplication law is given by x-y = B(x,y), x,y € V. Then an
endomorphism L is a derivation of V if and only if

(.1.15) L, (n"'(p)) = 0.

Proof. Let v,w € V, v* € V*. Then [LL(v X v*)|(w) = v*(w)Lv —
v*(Lw)v, so (ad L)Y{(v Q) v*)) = (o L, ; o )¢ (v R v*)). From this we get
(3.1.14). For the second assertion it is enough to prove that if t € V, , and
B = n(t), then for any endomorphism L of V, the element (L, ,(f)) of B is
given by

(3.1.16) n(Ly,(O)x,) = LP(x,y) — B(Lx,y) — B(x,Ly)

for all x, y € V. A trivial calculation shows that this is true for all 1 =
v v¥ Qvf, withv € V,v¥v¥ € V*. By linearity, the validity of (3.1.16) for
allv € V, , follows at once.

Let L be any endomorphism of V. Following Chevalley, we say that an
endomorphism M of V'is a replica of L if for all integers r, s > 0

(3.1.17) ueV, L, u=0=—=>M u=0.

We then define

(3.1.18) g(L) ={M:M € gl(VV), M is a replica of L}.

We begin with two elementary properties of replicas of endomorphisms.

Lemma 3.1.11.  Let L be semisimple (resp. nilpotent). Then L, , is semisim-
ple (resp. nilpotent) for all r, s > 0. In particular, ad L is semisimple (resp.
nilpotent).

Proof. If M,, M, are nilpotent endomorphisms on a vector space of
dimension n, and [M,,M,] = 0, then (M, + M,)?" = 0. In particular, if N,
are nilpotent endomorphism of a vector space W,,i = 1,2, then N, ® 1 + 1
(&) N, is also nilpotent. We conclude easily from this that L, , is nilpotent if L
is, for r, s > 0. We now consider the semisimple case. By replacing k with an
extension field we may assume that k is algebraically closed. Since L is semi-
simple, we can select a basis {v,, . .. ,v,]} for ¥ such that Ly, = cw;, i <j<
m, for suitable c; € k. If {v}, . .. ,v%}is the dual basis for V'*, then L*v} =
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—cvf, 1 <i<m.Ifr,s >0andr + s > 0, the tensors

0, Q- RV, QUER - RV =1, i,
lgjln---,jnil’-'-’isgm

form a basis for V, ;. Since we have
Lo tyiginn =i+ o e — e — o = el

the semisimplicity of L, , follows at once. The second assertion is immediate
from (3.1.14).

Corollary 3.1.12. Let L = S + N be the Jordan decomposition of L, and
let r,s>0. Then L, , = S, . + N, , is the Jordan decomposition of L, .

Proof. By the lemma, S, , is semisimple and #, , is nilpotent. Since
[S,N] = 0, we have [S, ,,N,,] = 0. Hence, L, , = S, 4 N, , is the Jordan
decomposition of L, .

Theorem 3.1.13. Let notation be as above. Then:

(i) Forany L € g(V), g(L) is an abelian Lie algebra whose elements are
of the form p(L) for p € k[T] with zero constant term.
(i) Let k' be an extension field of k. Then

g(L*¥) = k'-{M* : M € g(L)},
g(L) = {M € gl(V): M* € g(L")}.

(iii) Let M € g(L) and V a subspace of V invariant under L. Then V is
invariant under M. Let L and M (resp. L and M) be the endomorphisms induced
on V (resp. V|V) by L and M respectively. Then M a(L) (resp. M € g(L)).

(iv)y If M e g(L), N € g(M), then N € g(L).

) If M e g(L), then M, € a(L, ) for all r,5s > 0. In particular,
ad M is a replica of ad L.

(vi) Let L, M be endomorphisms of V. Then M € g(L) if and only if for
each r,s >0 one can find p, , € k[T] with zero constant term such that
Mr,.r = pr.s(Lr,:)'

(vii) Let L, L' be endomorphisms of V,L =S + N,L' = S’ + N’ their
Jordan decompositions. Then S and N are replicas of L, and L' € g(L) if and only
if " € g(S) and N’ € g(N).

Proof. Since [M,N],, = [M,,,N, ], it is clear that g(L) is a Lie sub-
algebra of gl(V). Fix M € g(L). By (3.1.14), M € {L}"’, so by Theorem 3.1.7,
M = p(L) for some p € k[T] with constant term a. If Lv = 0 for some non-
zerov € V, Mv =av =0, so a = 0. If L is invertible, ML™' € {L}", so
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ML™' = p,(L) for some p, € k[T]; then M = q(L), where q(T) = p,(T)T has
zero constant term. Since all endomorphisms of the form p(L) (p € k[T])
mutually commute, we have (i).

Let W, ; (resp. W' ) be the null space of L, , (L¥,). Obviously, W, , =
kK'-W,,so W, isa subspace of (V*), , defined over k. For M’ € gl(V*),

M' e g(L*¥) if and only if M, | W, = 0. It follows easily from this that
g(L"'), as a subspace of gl(V*) =~ gl(V)¥, is defined over k. Furthermore, if
M < gl(V), then M* e g(L¥) if and only if M¥,|W,, =0 for all r,s,
i.e,, if and only if M, ,|W, , =0 for all r, 5, i.e., M € g(L). These two ob-
servations lead to (ii).

To prove (iii), we may assume that ¥ = 0, ¥ # V. Since M is a polyno-
mial in L, M leaves ¥V invariant. Hence M is well-defined. Let f be the restric-
tion map which maps V* linearly onto ¥*. Fix integers r, s > 0. We prove
that if u € V, , and L, u = 0, then M, u = 0. Write ¥, , =V, ,® V...
For any endomorphlsm N of ¥ which leaves ¥ invariant, let N = = N| V and
Niea=N, o X1+ 1K N,.,. It is then obvious that N, leaves V, , invari-
ant, and N, 4| V,s = N, ,. So it is enough to prove that if u € Vies and
Ly, yu = 0, then M, qu = 0. Let B, ; be the unique linear map of ¥, , onto
Vi« such that

ﬂr.:(vl® ---®U,®’UT® ®v;k)
=@ ®0,QPEHX - ® P

forv,,...,w, € Vand v}, ... v¥ € V* It is then clear that for any endo-
morphism N that leaves ¥ invariant, B. . intertwines the actions of »,, on
V,sand N, on V.. It is therefore enough to prove the following: if
w e V,,and if L, ,w belongs to the kernel of §, ,, then M, ,w also belongs
to the kernel of B, .. Since M, ,B, , = B, M, , it is clear that M, , leaves
the kernel of B, invariant. On the other hand, it is a consequence of the
assertion (vi) to be proved presently, that M, , = p, (L, ) for some p,, €
k[T] whose constant term is zero. From these two observations we can deduce
the assertion.

Let 7° be the annihilator of ¥ in ¥'*. Then both £ and M leave V° in-
variant. It follows from the above result that A |V ° is a replica of L| 7°. Now
¥V is canonically isomorphic to (¥/¥)*, and this canonical isomorphism in-
tertwines L | V'° and L (resp. M | V* and M). So MAiS areplica of L. This proves
that M < g(L). (iii) is completely proved.

(iv) is trivial.

We now prove (v). Let L, M be endomorphisms of ¥V with M € g(L).
Fix integers r, s > 0 with r 4+ s > 0. Suppose r’, s’ are integers >>0. It is
then easy to see that there is a natural isomorphism { of (V, ), , onto
Vi sss,re+se, and that for any endomorphism N of V,

C o (Nr,.v)r',.v' ° C_‘ = Nrr'+::’,r:’+sr"

(3.1.19)
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Taking N = L, M we get the first assertion in (v). The second follows at once
from (3.1.14).

We now come to (vi). Suppose M € g(L). Then M, € g(L,,) by (v)
for integers r, s > 0, so by (i), we can find polynomials p, , € k[T] with zero
constant terms such that M, , = p, (L, ), r, s > 0. Suppose conversely that
M, = p, (L, ,) for such polynomials p, ;. Then for any u € V, , such that
L, u=0 L ,=0fori=12,...,s0 M, u=0. From our definition of
g(L), we can conclude that M € g(L). This proves (vi).

To prove (vii), let L = S + N be the Jordan decomposition of L. Then
L,,=S,,+ N,,istheJordan decomposition of L, , for r, s > 0 (Corollary
3.1.12), and there are p, ., q,, € k[T] with zero constant terms such that
S, o =0,L, )N, ,=q,(L,,) (Theorem 3.1.4). So by (vi) above, S and N
are replicas of L. Let L' be another endomorphism and L' = S" 4 N’ its
Jordan decomposition. If S € g(S) and N’ € g(N), then in view of (iii) above
and the inclusions S, N € g(L), we have S’, N’ € g(L). So L’ € g(L). We
now prove the converse. Let L' € g(L). Since S" and N’ belong to g(L’), we
have S, N € g(L). So for any r, s > 0, there is p, , € k[T] with zero con-
stant term, such that S, , = p, (S, , + N, ). Fixr, s > 0. It is then obvious
that p, (S, + N, =p,(S,,) + N, R, where R is an endomorphism
which is a polynomial in S, , and ¥, ,, and hence commutes with both. Now
D..«(S, ;) is semisimple, N, (R is nilpotent, and the two endomorphisms com-
mute with each other. As their sum is the semisimple endomorphism S ,
we must have S;, = p, (S,,). Since r,s > 0 are arbitrary, we see that
S’ € g(S). We now take up the proof that N' € g(N). Clearly, we may as-
sume that k is algebraically closed. We claim that if ¥ € V and Nv = 0,
then N'v = 0. Write V as the direct sum of the V', ;(4 € a(L)). Then Su = Au
foru € V,,,soforu e V,,, Nu=0if and only if Lu = Au. So ifv € V
and Nv = 0, we can write v = 3.,..y¥,, Where v, € V., and Lv, = Av,.
But since N’ € g(L), there is a p € k[T] such that N = p(L). Consequently,
N'v, = p(A)v,, A € o(L). Since the eigenvalues of N’ are all zero, we must
have N'v, = 0, A € o(L). Hence N'v = 0. If r,5s >0, N, € g(L, ,), so by
the same argument as above, we can conclude that N, v = O forany v € V, |
for which N, ;v = 0. Thus N’ is a replica of N. This completes the proof of
(vii). The theorem is proved.

We now have the following simple corollary.

Corollary 3.1.14. Let A be an algebra over k. Assume that dim A < co. If
L is a derivation of A, then any replica of L is also a derivation of A. In particu-
lar, the semisimple and nilpotent parts of A are also derivations of A.

Proof. LetL = S + N be the Jordan decomposition of L. By (vii) above,
S and N are replicas of L. The present corollary is then an immediate con-
sequence of Lemma 3.1.10 (cf. especially (3.1.15)).
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Our aim now is the determination of g(L) for arbitrary L. In view of (vi)
of the preceding theorem it is enough to do this when L is either semisimple
or nilpotent. Moreover, in the semisimple case it is sufficient to confine
ourselves to the case when k is algebraically closed, or more generally, when
L is diagonalizable in k itself.

Theorem 3.1.15. Let N be a nilpotent endomorphism of V. Then
(3.1.20) g(N)={cN:c € k}.

Let {v,,...,v,} be a basis for V. For any A = (4, . ..,A,) € k™, write
S(A) for the endomorphism for which S(\)v; = Aw;, 1 < j << m, and {\) for
the subset of k™ of all p = (u,, . . . ,iu,,) Satisfying the following condition: if

Cyy ... ,Cp are rational integers and c,Ay + --- + ¢,A, =0, then c u, +
<o+ Cuptw = 0. Then, for any A € k™,
(3.1.21) 8(SO)) = {S(m): p € AY).

Proof. We prove that g(N) = k- N by induction on dim V. Fordim V =
1, N=0,s0g(N) =0. Letdim V> 2. Let s(1 < s < dim V) be the integer
such that 7 is the minimal polynomial of N. We may assume that s > 1.
Fix N’ € g(N). Then by (iii) of Theorem 3.1.13, N’ leaves the range R(N) of
N invariant, and N’| R(N) is a replica of N|R(N). Since dim R(N) < dim V,
there is, by the induction hypothesis, a constant ¢ € k such that N’ = ¢N on
R(N), i.e., N'N = ¢N?%. Now there are unique constants c,,...,c,_; such
that N' =¢,N + --- + ¢,_{N°7!; the relation N'N = ¢N? then gives N’
= ¢N when s=2and N' = ¢N + ¢,_,N*"! when s > 2. Suppose s > 2 and
¢,_1 7% 0. Then N*~! € g(N). We shall show that this leads to a contra-
diction. There is a p € k[T] with zero constant term such that (N*°1!), =
P(N2 o) i, NN TRQIF+1QRQNT=p(NR1+1XRN)in VR V. Now
N:=0, and hence (N® 1+ 1 X N)y =0 for r > 25 — 1. So there are
constants d, € k (1 < r < 2s — 2) such that

NIRRT+ 1TQRN = 2d,(N®1 +1®N).

1<r<2s-

We now expand the powers in the right side. Remembering that N? = 0 for
p > s and writingc, , = d,,, (p j; q)’ we get

(3.1.22) N T ®RI+1@Nt= ¥ ¢, N°QN-

0<p,g<s—1
0

Since the endomorphisms 1,N,N2, ... N*-! are linearly independent, so are
the endomorphisms N? Q) N9, 0 < p,q < s — 1. We may therefore conclude
from (3.1.22) that ¢, , = O unless (p,q) = (0,s — 1) or (s — 1,0); in particular,
d, = 0if r = s — 1. But since s > 2, we can find p,g > O withr =p + q =
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s —1.Sowe haved, = 0, 1 < r << 2s — 2. This implies that N*"! ) 1 - 1
& N*~1 = 0, a contradiction.

We now take up the proof of (3.1.21). Let {v}, . .. ,v}} be the dual basis
of V*. Fix A € k™ and write § == S(A). We have Sv} — —A0%, 1 << j < m.
Suppose S’ = S(p) for some p € {A). Let r, s be integers >0 with r + s > 0.
Then the null space of S, , is spanned by the tensors v, &) - -+ X v;, ® v} &

co-®o¥, with A, + -+ + 4, —A4;, — -+ — 4, =0. So, in order to
prove that S’ € g(S), it is sufficient to show that for any such i,,... i,
Jisenoss Mo+ o0+ iy, — u;, — -+ — u;, = 0. This is, however, an

obvious implication of the assumption p € {(A>. Conversely, let S € g(S).
As S’ = p(S) for some p € k[T], we have S’ = S(p), where u; = p(4;) for
1 <j<m. In particular, 4, = A; implies u, = u,. For integers r,s >0
with » + s > 0, we use the reasoning given above to deduce that for any
fiyevosipyjisenesjs (1<, j, <<m)such that 4, + --- + 4, — 4;, —

— A;, =0, we must have u;, - -+ + w, — p;, — -+ — u;, = 0. These
relations taken for all r,s >0 with r 4 5 > 0 imply that p € {A). This
proves (3.1.21). The proof of the theorem is complete.

Remarks 1. For a given A € k™, the set (A) can be given an alternative
description. We regard k as a vector space over Q, the prime subfield of
rational numbers. Let C be the Q-subspace of k generated by 4,,...,4,. We
leave it to the reader to verify that (A)is the set of all p = (uy, . . . ,Un) € k™
with the following property: there is a Q-linear map y of C into k such that
ui=yly), 1 <j<m.

2. The relation (3.1.21) determines g(S) very explicitly for arbitrary
semisimple S when k is algebraically closed. Moreover, if S is semisimple but
k is not algebraically closed, one can pass to the algebraic closure k in which
S* is diagonalizable and determine g(S) from (3.1.21) and the relation

(3.1.23) aS) = [L: L € gl(V), LF € g(S%).

If L is an arbitrary endomorphism of ¥, and L = S + N is its Jordan decom-
position, it follows from the above theorems that

(3.1.24) g(L) ={S" +cN:S € g(S),c € k}.

We shall now establish the criterion (due to Chevalley) for the nilpotency
of an endomorphism. If L is an endomorphism of V, it is easy to show that
L is nilpotent if and only if tr(L°) = 0 for s = 1,2, . ... The following result
improves this significantly.

Theorem 3.1.16. Let L be an endomorphism of V. Then L is nilpotent if
and only if

(3.1.25) t(LL)y =0 \/ L' e g(L).
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Proof. If L is nilpotent, then (3.1.25) is obvious. Conversely, let L be
arbitrary but satisfying (3.1.25). Let L = S -+ N be the Jordan decomposition
of L. We must prove that S = 0. We may (and shall) assume that & is alge-
braically closed. Since q(S) < q(L), #(LS") =0 for all S* € g(S). On the
other hand, the elements of g(S) commute with N, so S’N is nilpotent for all

S’ € g(S). Hence 17(SS") = Oforall " € g(S). Now selectabasis{v,, . . . ,v,}
for V' such that Sv; = A,v;, 1 << j < m, for suitable numbers A; € k. Then it
follows from Theorem 3.1.15 that 3, ,,, u;4; = 0 forall p == (u,, ... ,u,)
€ (A). Let C denote the Q-subspace of k spanned by 4,,...,4,. We may

then conclude from the remark following the preceding theorem that >,
w(4;)A; = 0 for all Q-linear maps y of C into k.

Suppose now that C 5= 0. It is then obvious that there are nonzero Q-
linear maps of Cinto Q itself. Let  be any one such map. Then applying
to the relation >, .;., w(4)A; = 0, we get X1, (W(4;)? = 0. Since all
the w(4,) are in Q, all of them must vanish. Hence y = 0, a contradiction.

C must therefore be zero. But this implies at once that S = 0. The proof
of the theorem is complete.

Corollary 3.1.17. Let A be a finite-dimensional algebra over k, and let L
be a derivation of A. Then L is nilpotent if and only if tr(LL") == 0 for all L' ¢
k[L] that are derivations of A.

For by Corollary 3.1.14, any replica of L is a derivation of 4 and belongs
to k[L].

We shall conclude this section with a discussion of tensor algebras. Let
V be a vector space over k, not necessarily of finite dimension. We denote by
J, the tensor product V() --- X V (r terms), r being >1, we put 3, = k- 1.
Elements of 3, are called tensors of degree r. Let 3 be the direct sum of all 3,
(r = 0). Then there is a unique bilinear map (u,0) — u X v of 3 X J into J
such that (i) cl ®v=cv=vX®cl for ¢ € k and v € 3, and (i) if r, s
are integers >1, x,,...,x, and y;, ...y, € V, then (x; X - R x,) X
Q- ®Py)=x;® - @x, ¥y, @ -+ Xy, I, under K, becomes
an associative algebra with 1 as its unit. It is called the tensor clgebra over V.
V may identified with a subspace of 3.

J is generated by V" and possesses the following universal property: if 9
is an associative algebra, and y a linear map of V into %, there is a unique
homomorphism of 3 into 9( that extends y. This, in fact, characterizes 3.
In other words let 3’ be an associative algebra, 7 a linear map of ¥ into ¥’
such that (i) 3" is generated by z[V], and (ii) if 2 is an associative algebra and
y a linear map of V into 9, there is a (unique) homomorphism p’ of 3’ into
A with y = 9" o m; then 7z is an injection and there is a unique isomorphism &
of the algebra 3 onto the algebra 3’ such that &v = nv for allv € V. We
follow the usual practice and call a tensor t homogeneous if f belongs to 3,
for some r > 0. Obviously, 3, X 3, = J,., (r, s = 0).
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Let X; (i € J) be indeterminates. By a free associative algebra over k
generated by the X; we mean an associative algebra U over k containing the
X: such that (i) the X; (/ € J) generate , and (ii) if ® is an associative algebra
over k and x, (i € J) are elements of &, there is a (unique) homomorphism ¢
of Ainto ® such that &(X;) = x; forall i € J. If 9 and " are free associative
algebras over k generated by the X, a standard argument based on the above
universal property proves the existence of an algebra isomorphism { of ¥
onto ' such that {(X;) = X, for all i € J. To prove the existence of the free
associative algebra generated by the X;, we proceed as follows. Let V be a
vector space over k for which the X; form a basis and let 3 be the tensor
algebra over V. It is then obvious that J is a free associative algebra over k
generated by X; (i € J). The elements X, --- X, (i/,,...,i, € J) form a
basis for 3, for n > 0.

We now return to the earlier context of a vector space ¥ and its tensor
algebra 3. If x is a linear bijection of V, there is a unique automorphism ¥
(resp. antiautomorphism X) of 3 that extends x; if vy, ...,v, € V,X (v, ® - -
X)) =x(®)® - @ x(v,) (tesp. X X - ®v)=x0)X &
x(v,)). We write x® = ¥|3J,. If x and y are two linear bijections of ¥, then
Xy = Xy and %1 = %1, Let L be a linear map of Vinto 3. Then there is a
unique derivation Z of 3such that Zv = Lv forallv € V;in fact,if {v;: i € J}
is a basis for ¥ and if one defines L as the unique endomorphism of 3 such
that Z(1) = 0 and

3.1.26 Lo, Q- ®v,) = Lo, ®v, X - X,
(3120 + 0, QLY. ® - ®u, + - + o, Q- P, X Ly,
(r>1,i,...,i, € J),thenitis an easy verification that L is a derivation of
3 extending L, and that it is the only derivation of 3 with this property. An
important and extremely useful special case arises when we take L to be an
endomorphism of V. Then it is obvious that L leaves each J, invariant and
that

(3127) L3, =LRIQ - R +1RLRI® - ® 1
f IR - RIL.

The map L > L is a homomorphism of the Lie algebra of all endomorphisms
of V into the Lie algebra of all derivations of 3.

For any r > 1 let IT, be the group of all permutations of {I,...,}. Let
€ be defined by

+1 if s e I, is an even permutation

(3.1.28) €(s) = {

—1 if s € I, is an odd permutation.
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Given s € II,, there is a unique linear automorphism s of J, such that

sOW, Q-+ ®0,) =0y X -+ R Vsn

for all v, ...,v, € V. The correspondence s+ s is a representation of
IT, in 3,. An element ¢ € 3, is called a symmetric (resp. skew-symmetric)
tensor of rank rif s(¢) = tforall s € II, (resp. s(t) = e(s)tforalls = IT,).
Anelement t € Jis called symmetric (resp. skew-symmetric) if its component
in 3, is symmetric (resp. skew-symmetric) for all » > 1. Suppose dim V' = m
< oo, Then if r > m, 0 is the only skew-symmetric tensor of degree r; for
I << r < m, the vector space of skew-symmetric tensors of degree r has

dimension (T) For any r > 1, the vector space of all symmetric tensors of
m-+r—1

,
A two sided ideal a of J is said to be homogeneous if

degree r has dimension (

(3.1.29) a= Y (an3d,).

r=0
If J is a set of homogeneous tensors of degree > p where p is an integer > 2,
then the two-sided ideal a generated by J is homogeneous, and a N 3, = 0 for
r=20,...,p — L. In particular,

(3.1.30) and =0 (r=0,1).
Let 4 be the algebra 3/a. Let z be the natural map of 3 onto A. If we put
(3.1.31) A, ==n[3] (r=0,1,...),

then A is the direct sum of the A,, and we have 4,4, < A4,,, (r,s > 0). In
view of (3.1.30) it is clear that 7 is one-to-one on V, so it is natural to identify
V with its image in 4 under z. Obviously, V generates 4. Suppose L is an
endomorphism (resp. x is an automorphism) of ¥ such that L (resp. x) maps
J into a. Then the derivation L (resp. automorphism ¥) of 3 maps a into a
and so induces a derivation of 4 (resp. automorphism of A4). Denoting this
derivation by L, (resp. automorphism by %), itis clear that [L, M]; = L ,M , —
M, L, (resp. (xy); = %,¥,) for any two endomorphisms (resp. automor-
phisms) L, M (resp. x, y) of V. As important examples we mention (i) J =
xRy —yRx:x,yeViand(i)J={xRy+yXx:x,y € V}.Inex-
ample (i) 4 is the symmetric algebra over V; in example (ii) 4 is the exterior
algebra over V. ,
The symmetric algebra over V is generally denoted by S(V). It is com-
mutative, graded, and its subspace of homogeneous elements of degree n is
denoted by S, (V) (n = 0,1,2, .. .). We customarily identify V with its image
in S(V). If X; (i € J) form a basis for V, the monomials IT;., X;™ (m; >0
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integers, m; = 0 for all but finitely many /) form a basis for S(V). If 2 is any
commutative associative algebra and ¢ is a linear map of V into 9, ¢ extends
to a unique homomorphism of S(¥) into . If dim (V) = m < oo, dim

S(V) = (m +’111 — 1>-

Let dim(V) be finite. Denote by V'* the dual of V. We then have a natural
isomorphism & of V with V**, Let P(V*) be the algebra of polynomial func-
tions on V*, i.e., the algebra of functions on ¥* with values in k generated by
the linear functions on V*. The map & then extends to an algebra isomor-
phism of S(¥) onto P(V'*). The image of S,(V) under this isomorphism is the
subspace of P(V*) consisting of homogeneous polynomials of degree n.

The exterior algebra over V is generally denoted by E(V). Let dim(V) =
m << oo. We identify V with its image in E(V), and denote the product opera-
tionin E(V)by A.1If v,w € V,thenv Av=0andv A w-+w A v=0.1If
{vy,...,v,} is a basis for V, then for any r with 1 <<r <m, the elements
v, Ao, A -+ Ao, (1 <i, <i, <--- < < n) are linearly independent
and span E,(V), the subspace of E(V) consisting of homogeneous elements of

degree r. In particular, dim(E,(V)) = (’:1) Of course, Eo(V) = k- 1.

3.2. The Universal Enveloping Algebra of a Lie Algebra

In this and in the next section, k will denote a field of characteristic 0, g
a Lie algebra over k. Our aim is to introduce the universal enveloping algebra
of g and describe some of its properties. If k = R or Cand g is the Lie algebra
of a Lie group G, we shall see in §3.4 that there is a canonical isomorphism of
the universal enveloping algebra of g with what we have earlier called the
enveloping algebra of G, namely the algebra of all analytic left-invariant
differential operators on G. The main results are the existence and unique-
ness of the universal enveloping algebra and the Poincare-Birkhoff-Witt the-
orem. In proving these, the restriction to finite-dimensional Lie algebras
is rather artificial; we therefore work with a Lie algebra g of arbitrary
dimension.

Let 3 be the tensor algebra over the underlying vector space of g. We
denote multiplication in 3 by X). 3, = k-1, and for any integer m > 1, J,,
is the subspace of 3 of all homogeneous tensors of degree m. For X, Y € g,
let

(3.2.1) Upy = X®RY — YR X — [X,Y].

We denote by £ the subspace of 3 spanned by all elements of the form
Ruyy Xt (t,t' €3, X, Y €g):

(3.2.2) =3 3 R tuxy X 3.

xye



Sec. 3.2 The Universal Enveloping Algebra of a Lie Algebra 167

Since uyy € 3, + 3, for all X, Y € g, it is clear that £ = 3,3, £ is
thus a proper two-sided ideal in 3. We many thus introduce the quotient
algebra J3/L. Let

© = 3/L,

and let y be the natural homomorphism of 3 onto ®. Since g generates J,
y[a] generates &. We denote the unit of ® by I, and for a, b € &, write ab
for their product.

A pair (€,), where € is an associative algebra® over £ and =« is a linear
mapping of g into C, is called a universal enveloping algebra of g if the follow-
ing conditions are satisfied: (i) z[g] generates C, (ii) ([ X, Y]) = n(X)z(Y) —
a(Y)n(X) for all X, Y € g, and (iii) if 9 is any associative algebra and ¢ is
any linear map of ¢ into 2 such that &([X, Y]) = &(X)E(Y) — E(Y)E(X) for
all X,Y € g, there is a homomorphism ¢’ (necessarily unique in view of (i))
of € into A such that &(X) = &'(rn(X)) for all X € g. We now have

Theorem 3.2.1. et g, &, and y be as defined above. Then (&, p) is a
universal enveloping algebra of . If (&, y") is another universal enveloping
algebra of @, there exists a unique isomorphism { of & onto & such that
(X)) = ¥'(X) for all X € g.

Proof. We have already observed that p[g] generates &. Since y(uy y) = O,
we have

MNXY]) = y(Xp(Y) — p(Y)p(X)

for all X, Y € g. Suppose 9 is an associative algebra and ¢ is a linear map of
g into 9 such that &([X, Y]) = E(X)E(Y) — E(V)E(X) forall X, Y € g. Let &
be the homomorphism of 3 into 9 such that &(X) = &(X) for all X € g.
Since E(ux'y) =0 forall X, Y € g, E—=0oné&. Passing to the quotient alge-
bra , we may obtain a homomorphism &’ of & into 9 such that & = &' o p.
We have thus proved that (®,y) is a universal enveloping algebra of g.

Suppose (&’,y) is another universal enveloping algebra of g. By the ex-
tension property there is a homomorphism { of & into &’ such that {((X)) =
y'(X) for all X € g; since p’[g] generates &', { is surjective. Interchanging the
roles of (8,y) and (&¥',y"), we obtain a homomorphism {’ of & onto & such
that {'(p' (X)) = p(X) for all X € g. Thus { o{" and {’ o { are the respective
identities on y’[g] and y[a]. Hence { o {' = {’ o { = 1. In other words, { is an
isomorphism of & onto &’ and {(y(X)) = y'(X) for all X € g.

Let J be a linearly ordered set, and { X, : i € J} a basis for g. Then it is ob-
vious that & is spanned by 1 and the products y(X;) - - - p(X3) (i1, . - i, € J,
s > 1). Since

XX = p(Xp(X)) + (X, XD,

it is almost obvious that & is spanned by 1 and the products p(X;,) - - - p(Xi)
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with iy < i, < --- <, s > 1; the Poincaré-Birkhoff~Witt theorem asserts
that these elements actually constitute a basis for & (Theorem 3.2.2). We
begin the proof of this theorem with some preparation.

Fix the linearly ordered set J and consider a basis {X;:/ € J}of g. By a
monomial (in 3) we mean any tensor which is either 1 or is of the form
X.® - ®X,(p>1,iy,...,i, € J). A standard monomial is a tensor
which is either 1 or is of the form X, & --- R X, (p > 1,1, < --- < i),
For any p > 0, let 39 be the linear span of the standard monomials of degree
p. Obviously, 33 = 3,, 3% = 3,. We write

30— 390
p=0

More generally, if p >2and t = X, X --- X X, define the index ind(¢)
of ¢ to be the number of pairs (r,s), | < r, s < p, for whichr < sbuti, > i;
ind(z) = 0 if and only if ¢ is standard. We write 3¢ for the linear span of all
monomials of degree p and index d. Obviously, 3, = ¥ ,., 3%, the sum being
direct.

Theorem 3.2.2. Let g be a Lie algebra over k, J a linearly ordered set,
{X;:i € J} a basis for g, and (&,y) the universal enveloping algebra defined
above. Then the elements 1 and y(X;) --- p( X)) (s > 1,1, < .-+ < i,) form a
basis for &. In particular, y is an injection on §.

Proof. The theorem is equivalent to proving that & is the direct sum of
£ and 3°. We must therefore prove that £ + 3° =3 and £ N 3° = 0.

To prove that £ + 3° = J, it is clearly more than sufficient to prove that
forany r >0

3.2.4) 3 £+ OZ 32
=q=r

This is clear for r = 0, 1. We prove (3.2.4) for r > 2 by induction on r. Fix
p > 2andassume (3.2.4)for0 << r << p — 1.Since I, = > 4~, 3%, itis enough
to prove that 3¢ = £ + > ,<,<, 3¢ for all d > 0. We shall do this by induc-
tion on d. For d = O this is obvious. Let > 1, and assume that 3, = £ -+
Socqc, 3 for0<<e<d— 1. Letr=X, X -+ ® X, € 3. Since d > 1,
it is clear that we can choose an integer r with 1 << r <p — | such that
i, > i,,;. Define ¢’ as the tensor X, ® --- & X,, where j, = i, for [ r,
#“r A1, jou1 = iy jr = ip1. Then ¢ € 371 < £ + 3° But since X, &
X, — X..® X, =[X,,X:,] modulo &, it is easily seen thatt — 1" € £
+ 3,1 S £+ Docgp-1 32, by the induction hypothesis. Hence ¢ € £ 4-
S 0<q<, 30. This proves that 3¢ = £ + ¥7,-,-, J7, and carries the induction
forward.

The proof that £ N 3° = 0 is more complicated. We shall achieve this
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by constructing an endomorphism L of J such that

(i) L(¢) =t for all standard monomials ¢
(i) ifp>2, 1<s<p-—1,and i; > i, then
(3.2.5)
LX, X - R0 X, R0 X, X ®X,)

LR X, @K, )+ L @K X J® ).

Indeed, suppose that such an endomorphism L of 3 has been constructed. It
follows easily from (ii) above that L(t; X uy,x, ® t,) = 0 for all #,, 1, € 3,
i,j € J and, consequently, that L is zero on £. On the other hand, L is the
identity on 3°. So £ M 3° has to be 0.

Define L to be the identity on 3, 4 J,. Suppose that p > 2 and that L is
an endomorphism of > ,.,-,-, I, satisfying (3.2.5) for all monomials of de-
gree < p — 1. We wish to extend L to an endomorphism of Y3,-,-, J, which
will satisfy (3.2.5) for all monomials of degree << p. It is clearly enough to
define L(¢) for all t = X;, X --- X X,, in such a way that (i) and (ii) of
(3.2.5) are satisfied. We do this by induction on d = ind(¢). For d = 0, we
put L(¢) = t. Suppose that d >> 1 and that L has been defined so as to satisfy
(3.2.5) for all monomials of degree p and index <<d — 1. Lett = X;, & ---
X® X, € 3. Select an integer r, | <<r <p — 1, such that /, > i,,, and
define L(?) by the right side of part (ii) of (3.2.5), with r replacing s. It is not
immediately obvious that L(¢) is well defined, since the integer r is in general
not unique. However, if we can ensure that L(z) is well defined, (i) and (ii)
of (3.2.5) would follow at once, and we would have an endomorphism of
D ocacr—1 94 + Do<e=a 35 such that (3.2.5) is satisfied for all monomials of
degree << p — 1 and of degree p but of index <<d. The inductions on d and
p then lead to the existence of L. To show that L(z) is well defined, let / be
another integer, 1 <</ <{p — I, with i, > i,,. Let v and v denote the re-
spective expressions obtained by replacing s with r and with /in the right side
of (ii) in (3.2.5). We must show, using the induction hypothesis, that v = .
In the following, for brevity we write Y, for X;, 1 <t < p. Two cases arise.

Case 1. |r — 1| > 2. We may assume without losing generality that
r> 1+ 2.Thenp > 4. Since bothuandvarein Y ocpc,—1 3, + Doceca1 35,
we can use the induction hypothesis to simplify them both. A simple calcula-
tion then shows that both » and v are equal to

L(-+ XY RYQ - RY, QY @ --)
F LG QY@ - QY Y, & - )
T LG QY R®Y® - QLY ] @)
+L( - QYY) - ®Y,Y, 0] & ).

Case 2. |r — 1| = 1. We may assume that r =/ + 1. Then i, > i;,, >
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i+2, and p > 3. Using the induction hypothesis we obtain, after a simple
calculation,

u=L( XYY, RY,Q ---) + L(-- ®Yl®[YI+IaYI+2]®”'
+ LG YL Yal®Y @) + L ® Y @YY 0] & -

v:L('-'®Yz+z®Y:+1®Yz®---)+L(-~'®[Yz+1,Y1+z]®Y:®"')
HLC Y RV Y0a]® ) + L Q@YY ] ® Y, @ -« 0)

On the other hand, it follows from the induction hypothesis that for any
X,Yeqg,t,€3,t, €I, witha>0,b>0anda+ b=p— 3, we have

L, @XRYR1) — Lit, Y @ X ® 1) = Lt, @ XY ® 1,).

If we use this in the expression for # and compare the result with the expres-
sion for v, we see that the relation u = v would follow provided we show that
L annihilates the element

Y Yl @ 4+ s QY s [V YN R - -
R Yi2Y Yl X -

of 3,_,. This is, however, an immediate consequence of the Jacobi identity
for g.

We have thus proved that ¥ = v in both cases. L(¢) is thus well defined.
As observed earlier, this proves the entire theorem.

Remarks 1. The Poincaré-Birkhoff-Witt theorem proved above is one
of the most fundamental results in the theory of Lie algebras. Together with
the theorem on the existence and uniqueness of the universal enveloping
algebra, it constitutes the principal device for converting Lie algebra prob-
lems into associative algebra problems. As such it occupies a central place
in the theory.

2. Since 7 is injective on g, it is possible to identify g with its image in &
under p. With this identification, & will be called the universal enveloping
algebra of g. g = ©, g generates &, and

(3.2.6) [X,Y] = XY — YX (X,Y € g).

We shall henceforth make this identification without explicit comment. 1f
dim(g) < oo and {X|, ...,X,} is a basis for g, then the elements X7 --- X}»
(r,...,r» nonnegative integers), which we call the standard monomiais of
the basis {X,, . ..,X,]}, constitute a basis for & by Theorem 3.2.2.

3. Let dim(g) < oo, and let {X|,...,X,} be a basis for g; let c;;, be the
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corresponding structure constants. Then O is generated by the X; with the
relations

(327) /YIXJ - XJ'XI' - Z Cierr (1 g l’.] —<,. m)
1<rim
The relations (3.2.7) actually give a presentation of (; in fact, if % is any
associative algebra generated by elements x,. .. ,x,, satisfying the relations
xixj - xjxi - Z C:‘jrxr (1 w(_\ l’jé m)s
1<r:2m

then Theorem 3.2.1 leads at once to the existence of a unique homomorphism
¢ of ® onto A such that {(X)) = x; for 1 << i< m.

Theorem 3.2.3. Let g be a Lie algebra k, & its universal enveloping
algebra.

(1) Suppose that V is a vector space and 7 is a representation of §in V.
Then there exists a representation n’ of the associative algebra ® in V such that
n(X) = n'(X) for all X € g; n’ is uniquely determined by . In other words, n
“extends™ uniquely to a representation of & in V.

(i) Suppose a is an automorphism (resp. antiautomorphism) of §. Then
there is a unique automorphism (resp. antiautomorphism) & of & that extends o,
and &' = a7 '. If a, B are two automorphisms (resp. antiautomorphisms),
then o?,\é = &p.

(iti) If D is a derivation of @, there is a unique derivation D of & that
extends D; if Dy, D, are two such, then[D,,D,] = [D,,D,). In particular, for
any X € @, ad X is the derivation a — Xa — aX of ®.

Proof. (i) If in the definition of the universal enveloping algebra we
take ¥( to be the associative algebra of endomorphisms of ¥ and & as the map
X — n(X), we get (i). To prove (ii), let & be an automorphism (resp. antiau-
tomorphism) of g. Then & is a linear bijection of the underlying vector space
of gand so can beextended to an automorphism (resp. antiautomorphism) & of
3. Since Ay y) = Uyizyar) (T€SP. AUy y) = Uyryan) fOr X, ¥ € g, we have
a[L£] = £. On the other hand, if f is another automorphism (resp. antiau-
tomorphism) of g, af = &p. In particular, (x~1) = (&), and hence !
leaves £ invariant. So & induces an automorphism (resp. antiautomorphism)
of ®, say &. Since g generates &, the uniqueness of & is clear. The relation
af = af implies that &Vﬁ = @&f and (6™ 1) = (&)~!. This proves (ii). Suppose
D is a derivation of g. Then there is a derivation D of 3 that extends D. Since
D_.(ux,y) = Upxy + Uxpy (X, Y € g), D leaves £ invariant. Hence D induces
a derivation D of &. If D, and D, are derivations of g, [Dy,D,] = [D,,D,].

Vg ~ ~ ~
This implies that [D,,D,] = [D,,D,]. The uniqueness of D follows, as before,
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from the fact that g generates &. If D = ad X (X < g), then a+— Xa — aXis
a de~rivation of & that coincides with D on g. Hence by the uniqueness of
D, Da= Xa—aX,a c ®.

Corollary 3.2.4. There is a unique antiautomorphism a — a' of ® such that
(3.2.8) X'=—-X (X €g),

and this antiautomorphism is involutive.

Proof. Since X — — X is an antiautomorphism of g, the first assertion
follows from the theorem above. Since a +— (&) is an automorphism of ©
which is the identity on g, (¢') = a for alla € ©.

For any a € &, a' is called its formal transpose. If Y,,...,Y, € g, then
3.2.9) Y, - Y)y=(—=1)YY,,---Y, (s=1).
For X € gand a € ®, write
(3.2.10) (ad X)(a) = Xa — aX.

It is usual to refer to the representation X — ad X of g in & as the adjoint
representation of g in ®.

Theorem 3.2.5. Let g be a Lie algebra over k, ® its universal enveloping
algebra. If a is a subalgebra of § and ? the subalgebra of & generated by qa,
then U, together with the identity map of a into it, is the universal enveloping
algebra of a. If a is an ideal of § and & = &a®, then S is a proper (two-sided)
ideal of ®, and /S, taken with the natural map of g/a into it, is a universal
enveloping algebra of g/a. Let g; (1 < i<s) be Lie algebras over k,®, the
universal enveloping algebra of 8;; § =@, X --- X §,, and & the universal
enveloping algebra of §. Then the map

G.2.11) Xy . . X)X R1IR---®1

+1IXLPIP R+ +1IRIR - RIRX,
extends uniquely to an isonorphisn of & onto the tensor product &, Q) - - - @ &,
of the algebras ®,.

Proof. Let 9’ be the universal enveloping algebra of the subalgebra a
of g. We denote the product operation in %’ by -. Then there is a homomor-
phism & of A’ into ® such that &(X) = X for X € a. Since a generates U’
as well as 9, it is clear that £ maps 9’ onto 2. Let{X,:j € J} be an ordered
basis of a. Since this can be enlarged to an ordered basis of g, the monomials



Sec. 3.2 The Universal Enveloping Algebra of a Lie Algebra 173

X, -+ X, (ry << --- <r,) arelinearly independent, so they form a basis for 9.
On the other hand, the monomials X, -X,,----- X, (n<rn<---<r)
form a basis for ', and we have (X, - X,,- - - - X,,. So ¢ is an isomorphism.
This prove the first assertion,

Let a be an ideal, b = g/a the quotient Lie algebra, and y the natural
map of g onto b. Suppose @ is an associative algebra and 7 is a linear map of
b into © such that z([X',Y']) = (X )n(Y’) — a(Y)m(X') forall X', Y’ € b.
It is then obvious that there is a homomorphism »’ of & into € such that
P(X) =n(p(X)) for all Xeg. If a, b @ and Y € q, y'(a¥b) = y'(ad)
n(p(Y))y'(b) = 0; hence y’ = 0 on &. So & is proper, and y’ induces a homo-
morphism 7’ of $/& into €. Let 5 be the natural map of & onto &/S. Since
n = 0 on a, we have a unique linear map # of b into /& such that 7(y(X)) =
n(X), X € g. It is then trivial to verify that #([X',Y']) = #(X")f(Y’) —
A(Y)g(X')forall X', Y’ € band thatn'(f(X’)) = n(X’)forall X’ € b. This
proves that ($/S.#) is a universal enveloping algebra of b.

For the last assertion, we identify the g, with subspaces of g, so that
[8,8;]=0,i=jand g =g, + --- +g,. Let § denote the map (3.2.11).
Then (X, Y]) = (X)O(Y) — 6(Y)(X) for X, Y € g, so § extends to a
homomorphism & of & into &, R --- X ©,. We prove that & is a bijection.
Let J; be an ordered set, and let { ¥, :j € J;} be a basis for g, (1 << i <C s). Let
J={(,j): 1 <i<s,jeJ}, and order J by the following rule: (i,j) <
(i",j') if either (a) i < i’,or(b)i=i"andj < ;' inJ,. Write ¥, == X,,,j € J,.
Then {X, ;:(i,j) € J}isabasisforg. If j, e J,(1 <r<t)and j, < - - <
Jir» an easy calculation shows that

S(Xl,jn e Xl,iul e Xf,j'xl U X-V,f:t,)
— (Xl,]'u e Xl,ju‘) ® Tt ®(X5,J'n Tt XS,}::,)'

(3.2.12) shows that & is a linear isomorphism of & onto ®, XX,

(3.2.12)

Corollary 3.2.6. Let g be a Lie algebra over k, & jts universal enveloping
algebra. Then $3® = &g = g® (= &*, say), and & is the direct sum of k-1
and &*.

Proof. Let @ = &g®. Then &* is a proper two-sided ideal in & and
®/&* is the universal enveloping algebra of g/g = 0. So dim(®/&*) = 1,
proving that & is the direct sum of k-1 and &*. On the other hand, if J is
an ordered set and {X,:j € J}is a basis for g, any standard monomial other
than 1 lies in both &g and g®. Hence, by the Poincaré-Birkhoff-~Witt theorem
O =kl + &g =k-1+ g@. Since 8g and g& are both contained in G+,
the corollary follows at once.

Corollary 3.2.7. Let a and b be subalgebras of § such that g is their
vectorial direct sum. Let A (resp. B) be the subalgebra of ® generated by a
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(resp. D). Then the left (resp. right) ideal &a (resp. a®) is proper, and & is the
vectorial direct sum of B and Ga (resp. a®).

Proof. Considering an ordered basis for g which consists of an ordered
basis for b followed by an ordered basis for a, and using the Poincaré-
Birkhoff-Witt theorem, we conclude that the map (b,a) — ba of B x 9 into
& extends to a linear isomorphism & of 8 X) A onto &. Let %* = 9la. Since
we can canonically identify 91 with the universal enveloping algebra of a,
we deduce from the previous corollary that ¥ is the direct sum of 9* and
k-1.So ® is the direct sum of BU* = ¢[B R At} and B = ¢[B ® k- 1]. But
BUT = BUa = Ga, so Ga is proper, and & = Ga + B is a direct sum. The
argument for the right ideal is similar.

Remarks 1. Let g be any finite-dimensional vector space over k. We
may then regard g as an abelian Lie algebra by defining [X, Y] = 0 for all
X,Yeg For X, Yeg uyy=XX Y— YR X L is thus the sym-
metric algebra S(g) over g.

2. Let k' be an extension field of k, g a Lie algebra over k, and g* its
extension to k’. Let & be the universal enveloping algebra of g and & its
extension to k. Then there is a natural isomorphism of &* with the envelop-
ing algebra of g

One of the most interesting applications of the preceding development is
to the theory of free Lie algebras. Let X; (i € I) be arbitrary distinct elements.
By a free Lie algebra over k generated by the X; we mean a Lie algebra g over
k such that (i) X; € g for all i € I, and the X, generate g (i.e., the smallest
subalgebra of g containing all the X, is g itself, and (ii) if ) is a Lie algebra
over k and X; (i € I) are elements of [), then there is a Lie algebra homomor-
phism 7z of g into § (necessarily unique) such that z(X;) = X for all i € L
If g and g’ are free Lie algebras generated by the X, it is immediate from the
definition that there is a (unique) isomorphism 7 of g onto g such that
n(X;) = X; (i € I). To establish the existence of a free Lie algebra generated
by X; (i € I), we proceed as follows. Let & be the free associative algebra
over k generated by X; (i € I). Foru,v € O, let [i,v] = uv — vu. Then &
equipped with [-,-] becomes a Lie algebra; we denote it by ®,. Let g be the
smallest subalgebra of &, containing all the X; (i € I).

Theorem 3.2.8. ¢ is a free Lie algebra generated by X; (i € I). Moreover
&, together with the identity map of § into it, is the universal enveloping algebra

of g.

Proof. Let |) be a Lie algebra over &, § = {) the universal enveloping
algebra of §). Suppose X; (i € I) are elements of I). We denote by ¢ the homo-
morphism of & into § such that &(X,) = X|foralli € I. Letz = g, and
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letg" ={u:u € &, &wu) € 0}. Clearly, g’ is a Lie subalgebra of ®,, so since
X; e g’ foralli € 1, < ¢'. So m maps g into [), hence is a homomorphism
of g into ). This proves that g is a free Lie algebra generated by the X;. Sup-
pose now that  is an associative algebra over k and z is a linear map of g
into A such that ([ X, Y]) = n(X)n(Y) — n(Y)n(X) for X, Y € g. Denote by
¢ the homomorphism of & into A such that &(X) = n(X)), i € I. If U,
denotes the Lie algebra whose underlying vector space is that of 9 and for
which [u,v] = wv — vu (u, v € ), then &|g and 7 are both homomorphisms
of g into ¥, coinciding on the set {X;:7/ € I}. Since this set generates g,
¢|g = =. This proves that & is the universal enveloping algebra of g.

Consider the adjoint representation of g in ®. By (i) of Theorem 3.2.3, we
may extend this to a representation § of & in 8. We have

O(uv) = O(w)f(v) (u,v € ®)

(3.2.13)
0(w)(v) = (ad w)(v) = [u,w] (u € g,v € ®).

The representation @ is closely related to the endomorphism y of & defined by

py()=0, wX)=X, (il
G219 ypX, -+ X,) = 0(X,) - - 0(X,,_)X.)
= [ X[ Xe . WX n X ).l 0=>2,00, ..., 0, € D).

It follows easily from this that
(3.2.15) v(uv) = 0(ww®) (wu,v € ).

Theorem 3.2.9. (i) For any integer n > 0 let &, be the subspace of
homogeneous elementst of & of degree n, and let 3, = &, N g. Then g, is the
linear span of w(X,,- - - X.) (i\,. . . ,i, € I), and y[®,] = g,.

(i) § = X.=0 Q. and the sum is direct.

(i) Letu € ®,. Then u € g, if and only if w(u) = nu.

Proof. ®,isthelinearspan of the X;,- - - X,, (iy,. . . ,i, € I),and wehave

p(X, - X)) = X, w(X, - - X)]

(3.2.16)
- ilW(A/fz' . .an-l) - W(/‘/iz. . .Xin-l)Xil'

Using this relation and an induction on n, we find that v maps &, into

®, N g = g, forall n > 0. In order to complete the proofs of (i) and (ii) it is

tRecall that g is canonically isomorphic to the tensor algebra over the vector space

spanned by the X; and so is graded. The homogeneous subspace g, of degree n spanned
by the X;,... X;,.
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therefore sufficient to prove that g is the linear span of the w(X;, --- X,).
Let m be this linear span. Clearly, m < g. Now X; € m for all 7, and (3.2.16)
shows that m is invariant under all 8(X;). Hence m is invariant under 6(u),
u € &. Since O(u)(v) = [u,v] for u,v € g, this implies that [g,m] < ni, and
in particular that [m,m] < nt. m is thus a Lie subalgebra of &, containing
all the X, proving that g < m.

We now prove (iii). If n > 1, u € &,, and y(u) = nu, then u = (1/n)y(u)
€ g, by (i). For the converse, we use induction on n. Assume that y(v)
= mv for v € g,, and m < n. Suppose that u = y(X,,---X,). We prove
that w(u) = nu. We may assume that n > 2. Then, writing v = w(X,,- - - X..),
we have u = [X;,v] = X;,v — vX,,. So

y(u) = w(X,v) — y(vX,)
= [Xi,y()] — O0(v)(X,)  (by (3.2.15))
=(n— D[X,;,v] — [v,X;] (by (3.2.13),asv € g)

= NU.

Since the y(X;, - -+ X.) span g,, the induction goes forward.

3.3. The Universal Enveloping Algebra as a Filtered Algebra

Let 4 be an associative algebra over a field k of characteristic 0. A is said
to be graded if for each integer n > 0 there is a subspace A, of 4 such that
(i) 1 € Ay and A4 isthe direct sum of the 4,, and (ii) 4,4, S A,,.,form, n > 0.
In this case the elements of (_J;,-, A4,, are called homogeneous, and those of 4,
are called homogeneous of degree n; if a =Y, a,(a, € A,,a € A), then
a, is called the homogeneous component of a of degree n.

A is said to be filtered if for each integer n > O there is a subspace 4™ of
Asuchthat (i) 1 € A®, 4 = 4D < ... (Jry A™ = A, and (ii)) A™A4A™
< A+ for all m, n > 0. It is convenient to use the convention that A< =
@ . Fora € A, the integer s > 0 such that a € 4 but ¢ A“ " is called the
degree of a, and written deg(a). For n > 0, A™ is then the set of alla € 4
with deg(a) << n. Clearly deg(1) = 0, deg(a + b) << max(deg(a), deg(b)), and

-deg(ab) < deg(a) + deg(b) (a, b € A).

Let A be a graded algebra, 4,(n > 0) the homogeneous space of degree
n Ifweput A” = 3., A, (n > 0), then it is easily verified that 4 becomes
a filtered algebra. We call it the filtered algebra associated with the graded
algebra 4. However, not every filtered algebra arises in this manner from a
graded algebra. Suppose 4 is a filtered algebra, 4™ the subspace of all ele-
ments of degree << n. We associate a graded algebra with A in the following
manner. Let B, = A™/4"~ " be the quotient vector space and 7, be the
natural map of 4™ onto B, (n > 0). Define B as the direct sum of the B,.
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Givend € B,,and b € B, choosea € A™ and b € A" suchthatz,(a) = a
and 7,(b) = b, and define ab = ,,,,(ub). It is easy to verify that ab is well
defined and independent of the choices of @ and b. The map (a,b) — ab is
bilinear from B,, X B, into B,.,. These bilinear maps extend to a bilinear
map (@,b) — ab of B x Binto B. With this as the operation of multiplication,
B becomes an associative algebra, and B,,B, < B,.., for all mn > 0. B is
thus a graded algebra and B, is the subspace of homogeneous elements of
degree n. We call it the graded algebra associated with the filtered algebra V.
Note that dim(4™) = ¥ ,.,,-, dim(B,), n > 0.

Let V be a vector space over k, J the tensor algebra over V. If we write
3, for the space of homogeneous tensors of degree m (m > 0),3 becomes a
graded algebra. Let 3 = Y,,,3,. If a is any proper two-sided ideal in 3,
we can form the quotient algebra 4 = J/a; if & is the natural map of 3 onto
A and we define

(3.3.1) A" = 2[3™] (n > 0),

it is obvious that 4 becomes a filtered algebra with 4 as the subspace of
elements of degree < n. Suppose a is a homogeneous ideal, i.e., a = 3,5,
a N J,,. Then if we define

(3.3.2) A, = 7[3,] (n=0),

it is easily seen that A4 is a graded algebra with A, as the homogeneous sub-
space of degree n, and that the associated filtered algebra is the one defined
by (3.3.1). As examples of this we mention the symmetric and exterior alge-
bras over V.

Let g be a Lie algebra over k. As usual, we assume that g is finite-dimen-
sional unless the contrary is specified. Put m = dim(g). Denote by 3 the
tensor algebra over g, by ® the universal enveloping of g, and by y the homo-
morphism of 3 onto & such that p(X) = X for all y(X) € g. The kernel of
7 is the ideal £ generated by all elements of the formuy, = XQ Y — Y
R X —[X,Y](X, Y € g). Since £ is not a homogeneous ideal of 3, we cannot
expect & to be a graded algebra. It is, however, a filtered algebra with

(3.3.3) G = p[3"]  (n = 0).

Theorem 3.3.1. (i) & = k1; &P is the direct sum of & and g; and
Sorany n > 0, 8™ s the linear span of 1 and all elements of the formZ, - - - Z,
(N <s<n Z, € gforalli).

(i) If{X,,...,X,} is a basis for g, the standard monomials X' - -+ XIn
withr, + --- -+ r, < njform a basis for $™.

(iii) Let ® be the graded algebra associated with . Then & is commuta-
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tive. Moreover, the natural map X — X of g = & into & extends to an alge-
bra isomorphism of the symmetric algebra § over g onto .

Proof. The relation ® = k-1 is obvious. Let n >> 1 be arbitrary. Then
3™ is spanned by 1 and all tensors of the formZ; ) --- ® Z,with1 < s <n
and Z,,...,Z, € g. Hence @™ is the linear span of 1 and the Z,,...,Z;
(1 <s<n Z, € gforalli). Forn == 1, this gives us 8" = k-1 + g. Since
k-1 N g =0, all statements of (/) are proved.

Let X,,...,X, be abasis for g. Since the standard monomials are linearly
independent, (ii) will be proved if we show that & is spanned by the
X  Xopwithry -+ -oo 4 1, < n. But by (3.2.4), 3 < £ + 30,2 32,
and hence & = Y, _,., 7[3%]. Since the right side of the last inclusion is the
linear span of the X7' + -+ Xr= with ry + --- 4 r, < n, (ii) is proved.

We come now to the proof of (iii). Let § be the symmetric algebra over
g. We show first that & is commutative. Suppose s > 2 and Z,, ... ,Z, € g.
Since Z,Z,., — Z,.\Z, =[Z,,Z,,,] € g for | <r<s— 1, it follows that
Zy o Z—Z 0y Zosy € B¢ wherea is the permutation of {1, ... s} that
interchanges r and r -+ 1 while leaving the others fixed. Now, any permuta-
tion of {1,...,s}is a product of adjacent interchanges. Consequently, we have

(3.3.4) Zy o Zy—Zyy o Loy € BUD

for any permutation ¢ of {l,...,s}. In particular, if X\,...,X,, Yi,....Y,
are arbitrary elements of g, then X, --- X, Y,,...,Y, =Y, --- Y, X, -+~
Y, (mod 2= for n, p > 1. We conclude from this that

(3.3.5) ab = ba(mod ®**?~1) (a € B, b € B?, n,p>0).

The relation (3.3.5) shows that & is commutative.

Since & is the direct sum of k-1 and g, the natural map of " into ®
induces an injection of g into ®. Let X denote the image of X under this map.
Since & is commutative, this linear map extends to a homomorphism & of
S into &. We prove that & is an isomorphism. Let {X,, . .. ,X,} be a basis for
g. Denote by ®, the homogeneous subspace of ® of degree n, and let 7, be
the linear map of ®™ onto , with kernel 8=V, If n > 1, the elements

X Xopwithry 4 oo 41, = nare linearly independent modulo G~ Y.
So the elements X7 - Xip = (X7 -+ X7p) (ry 4 - 4 1w = n) form
a basis for ®,. In other words, the monomials X7 -+ X/ (ry,...,r,, > 0)

form a basis for (. The fact that & is an isomorphism of § onto & follows
immediately.

Corollary 3.3.2. Let o (resp. D) be an automorphism (resp. derivation) of
g and let @ (resp. D) the corresponding automorphism (resp. derivation) of ®.
Then & (resp. D) maps & into itself for all n = 0.
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Theorems 3.2.2 and 3.3.1 summarize the essential features of & as a fil-
tered algebra and are of great use in many applications. We now indicate one
of these, namely to the construction of the so-called symmetrizer map of §
onto (5.

For any integer p > 1 we denote by IT, the permutation group of {1, . . . ,p}
Let s — s be the natural representation of IT, in 3,. Let the endomorphisms
Q, of 3, be defined by

3.3.6
( ) Qp:L'ES(p) (P?_])
p. s€Mp

Then Q, = 1, each Q, is a projection, and the range of Q, is the space of
homogeneous symmetric tensors of degree p. We write 3 for the space of all
symmetric tensors and 3, = 3 N 3, (p > 0). We have

(3.3.7) mmifz("+;*‘ﬂ.

Lemma 3.3.3. Let notation be as above. Then 3 is the direct sum of £ and
3. Moreover, if y is the natural map of 3 onto &, y is a linear isomorphism of
S ocacpr 3, 0nto 8P (p > 0), and of 3 onto .

Proof. 7y isanisomorphism of 3, = 3, onto ®®. Let p > 1 be arbitrary.
If X;,...,X,€q8,1<r<p-—1, and s is the permutation of {1,...,p}
that interchanges r and r 4 1 while leaving the others fixed, it is clear that

X ® - RX, =X, ®R---XRX,) €3, + L
We easily conclude from this that
(3.3.8) t—sP()ed,  +& (sell,tel,).
Averaging over IT,, we deduce from this the relation
(3.3.9) t=0,() (mod(3,., + £),7 € 3,).
Applying p to (3.3.9), we finally obtain the inclusion
GBP = @1 4 9[3,].

A simple induction on p now shows that y maps >-,-, 3, onto 8 for all
p = 0. On the other hand, it follows from (3.3.7) and (ii) of Theorem 3.3.1
that $'” has the same dimension as 3 ,.,-, 3,. So 7 is a linear isomorphism
of ¥ o-4<, 3, onto B for p > 0. In particular, y is a linear isomorphism of
3 onto ®. This implies at once that 3 is the direct sum of £ and 3.
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Let g be the abelian Lie algebra whose underlying vector space is the same
as that of g. Then the universal enveloping algebra of § can be identified with
the symmetric algebra § over g. Let $ be the natural homomorphism of 3 onto
8. Then the kernel of 7 is the two-sided ideal I of 3 generated by the elements
of the form X Q Y — Y X (X, Y € g). Let §, be the homogeneous sub-
space of § of degree p, and let

(3.3.10) 8§ = 0<Z< S, (p=0).

We may then conclude from Lemma 3.3.3 that 7 is a linear isomorphism of
> o<e<p 3, Onto § for every p > 0 and of 3 onto . In particular, 3 is the
direct sum of M and J.

We now define A to be the unique linear map of § into & such that the
diagram

3J =}

5\}'\
(3.3.11) 7 I/(Sj
S A

is commutative. It is obvious from the definition that A is a linear isomor-
phism of § onto ®. It is also clear that for any p > 0, the diagram

g

055, I
- Y

8(p)

(3.3.12) 1)

is commutative. The map A is called the symmetrizer of § onto & (cf. (3.3.13))
and has been used systematically by Harish-Chandra in his work on the
representation theory of semisimple Lie groups and Lie algebras.

Theorem 3.3.4 (i) A is a linear isomorphism of § onto & and of §'? onto
&P forp>0.If X;,..., X, €8,

‘

(3.3.13) AFXy) - - (X)) = z‘r‘u Xoy -+ Xsipre

v

S
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() ifu e 8,v e §,, then

(3.3.14) AMuv) = Mu)h(v) (mod G+r~1)
(iii)~ if a (resp. D) is an automorphism (resp. derivation) of §, and & and &

(resp. D, D) the respective corresponding automorphisms (resp. derivations) of
®& and S, then

(3.3.15) Aod —=@ok, AhoD = DoA.

Proof. Only (3.3.13) remains to be proved in (i). We may assume that
p=>1.Let X,..., X, € gandlett= X, --- X X, Then from (3.3.6),
Y(0,() = (1/pY) Dsen Xsa1y - -+ Xi»- Onthe other hand, since § is commu-

tative, (Q,(t)) = P(X,) - - - P(X,). We thus have (3.3.13).
We now prove (3.3.14). It is clear from (3.3.4) and (3.3.13) that for arbi-
trary X,,...,X, € g,

MFOX) - FX) =X, -+ X, (mod B0,

Consequently, if Yy,...,Y,, X,,..., X, € g, then, writingu =$(Y,)---9(Y,)
and v = p(X,) --- §(X,), we have the congruences Mu)= Y, --- Y,
(mod B V), M) =X, - - X, (mod B»"), and Muv)=Y,--- Y, X, --- X,
(mod G*2=D) It follows from this that Muv) = Mu)M(®) (mod G+»-1),
(3.3.14) follows from this.

Let & (resp. D) be an automorphism (resp. derivation) of g and let & (resp.
D) be the automorphism (resp. derlvatlon) of J that extends « (resp. D). It is

then easy to verify that & and D both leave J invariant. On the other hand,

Ql

521

=7 Doy=y
= o Doj=7oD.

\il‘i

The relation (3.3.15) now follows from the commutativity of (3.3.11).

Corollary 3.3.5. For X € g, let Dy be the derivation of § that extends the
endomorphism ad X of g, then

(3.3.16) MDy(u) = XMu) — Muw)X (u € §).
Proof. Take D = ad X in (3.3.15).

Corollary 3.3.6. Let g be the direct sum of the subspacesa,, . .. ,a,. Let
S: be the subalgebra of § generated by | and a,, §; 4 the homogeneous subspace
of 8; of degree d, S, ; = NS, ], and for integers dl,. cd, >0, G,
©,492.4, S, 4. Then the map (uy,. .. u,)— Mu,) --- Mu,) of §; %

.....
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X 8, into & extends to a unique linear isomorphism of $X) -+ X 8, onto ®.
Moreover, the subspaces ©,, ., are all linearly independent, and for p > 0,

.....

(3.3.17) GP = 3 &

Proof. We begin by proving (3.3.17) using induction on p. We may as-
sume p > 1. Now, for u; € §,, with d, 4+ --- + d, < p, we have from
(3.3.14)

(3.3.18) Muy -+ u) = Mu,) - -+ Mu,) (mod GB»-1),
On the other hand, it is obvious that

(3.3.19) 8P = ¥ 84 8,4 (directsum).
te+d,<p

dy

So we obtain from (3.3.18) and (3.3.19) the inclusion

G < B 4 2 Gy
di+--+d;<p
By the induction hypothesis, &” is contained in the sum of the right of
(3.3.17). Since the reverse inclusion is obvious, we obtain (3.3.17). Further-
more, dim(&,, ;) <dim(§,,) --- dim(§,,) for all d,,...,d, >0, so
we conclude from (3.3.19) that

dim@P) = 5 dim(S,,..q).
1o 4dy<p

It follows easily from this estimate that (3.3.17) is a direct sum and that

dim(&,, . 4) = dim(§,,) -+ - dim(§, ) for d, 4+ --- +d, <p. Since
,,,,, 4, and that

dim(&,, . 4) = dim(§, ) --- dim(§,,) for all d,,...,d, > 0. If ¢ is the

unique linear map of §; X --- ® 8, into & such that &(u, ® -+ R u,) =

Auy) -+ Mu,)(u; € §; fori=1,...,), the foregoing conclusions imply at

once that £ is a bijection.

Corollary 3.3.7. Let a be a subalgebra of § and b a subspace such that g
is the direct sum of a and b. Let S(b) be the subalgebra of § generated by 1 and
b. Then

(3.3.20) ® = Ga + A[S(b)],
the sum being direct.

Proof. Let S(a)and 2 be the respective subalgebras of § and & generated
by 1 and a. Since we can canonically identify S(a) with the symmetric algebra
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of a, and A with the universal enveloping algebra of a, we must have A[S(a)]
= 9. Let A* = Ya. By Corollary 3.3.6, there is a linear isomorphism 7 of
S() X A onto & such that y(b X a) = Mb)a for b € S(b), a € A. Using
Corollary 3.2.6, we conclude that & is the direct sum of S(b) and S(b)?(*. But
SOA+ = SH)Aa = Ga.

We conclude this section with a theorem which is often useful in finding
the center of the universal enveloping algebra of a Lie algebra.

Theorem 3.3.8. Let Z (resp. 3) be the set of all elements u of S (resp. a
of ®) such that Dxu =0 for all X € g (resp. Xa —aX =0 for X € g),
Dy(X € g) being the derivation of § that extends ad X. Then

() Z and 3, are algebras, M[Z] = 3, and 3 is the center of &

() ifu,=1,...,u, are homogeneous elements of Z generating Z, then
Auy), ... ,Mu,) generate 3; if the u; are algebraically independent, so are the
Mu)).

Proof. Since each Dy is a derivation, Z is an algebra. For the same
reason 3 is an algebra. Moreover, since g generates 3, 3 is also the center of
®&. That A[Z] = 3 follows from (3.3.16). This proves (i). We now come to the
proof of (ii). Let Z, = Z N §, and 3, = A[Z,] (n = 0). Since the derivations
Dy leave the homogeneous subspaces invariant, it is easily seen that Z is the
direct sum of the Z,. Hence 3 is the direct sum of the 3,. Obviously, 3, =
k-1.

Suppose thatu, =1, u,, .. . ,u, are homogeneous and generate Z. We may
assume that d, = deg(u,) > Oforalli > 2. Let v, = Mu,), | < i < r. Denote
by 3’ the algebra generated by v, = 1,v,,...,v,. Then 8" < 8, and it is
enough to prove that 3, = 8’ for all > 0. This is obvious for n = 0. As-
sumen > land 8, & 3'for0 << s << n — 1. Weshall prove that 8, < 8';an
induction on n will then complete the argument. Let b € 3,. Then we can
write b = M(a), where a € Z,. There are constantsc,, ., (ny,...,n, > 0)such
that

a = Z Cay,..., n,u'{l e u:’,

all but finitely many of the ¢,, ., being 0. Since a € §, and u;, € §,, we

may assume that the summation is over all ny, ... ,n, with n,d, + --- +
n,d, = n. Define the elements b’ € 3’ by
b= 3 VO

mdy+ - -+nd,=n

It is then clear from (3.3.14) that b — " € B“~" N 3. On the other hand,
forany p=> 0,8, = MZ N 8,1 = 8 NAS,) 50 8o 4 -+ + B,y — GO
N 8. Consequently, b — b’ € 3 <,<,_, 3, so by the induction assumption,
b —b" € 3'. This proves that b € 3’.
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Suppose that the u; are algebraically independent but that the v, are not.
Then there are constants ¢, ., not all zero such that >, ¢, ., v v =0.
Let p be the maximum value of n,d, + --- + n,d, over all n,, ... ,n, with
,,,,, o0, and let w= 3,4+ sndpCo. it - ur. Thenue S,NZ
and is nonzero. Moreover, we conclude from (3.3.14) and the relation
> mdit e tmdi<p Conrom U o 0% = 0 that Mu) € " N 8. On the other
hand, we saw in the previous paragraph that -9 N 3 = A[§?~ " N Z],
so we must have u € §®»~", This is a contradiction. The proof of the
theorem is complete.

As an illustrative example, let g = 8[(2,k). Let

0 1)
X = ,
(o 0

Then {H,X, Y} is a basis for g, and

0 —1

()

[HX] =2X, [HY]=—2Y, [X.Y]=H.

1 0
(3321) H= ( )

Define the element w of & by
(3.3.22) w = H?+ 2H + 4YX.

It is then easy to see that @ € 3 and is the image under A of the element
H? + 4XY of §. It can be shown that the algebra Z is generated by the
homogeneous element H? + 4XY. Hence 3 = k[w).

Let g be arbitrary, 7 an irreducible representation of g in a finite-dimen-
sional vector space V. We extend # to a representation of & in ¥ and denote
this extension by & again. Suppose now that k is algebraically closed. Then
by Schur’s lemma, n(z) is a scalar multiple of the identity for each z € 3.
So there exists a homomorphism y, of 3 into k such that n(z) = x.(2)-1
forall z € 8. We call x, the infinitesimal character of 7. When g is reductive,
x.. determines the equivalence class of 7z, as will be proved later on. If the
structure of 3 as an algebra is known, we may then parametrize the finite-
dimensional representations of g by a subset of the spectrum of 3.

3.4. The Enveloping Algebra of a Lie Group

In this section we examine the analytic significance of the universal en-
veloping algebra of the Lie algebra of a Lie group. We work with real groups,
leaving it to the reader to make the necessary changes in the proofs for the
complex case.

Let G be a real Lie group, g its Lie algebra. Denote by g, the complexifica-
tion of g, and regard g as a subset of .. The elements of g, may be identified
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with left-invariant analytic vector fields on G. Let &, be the universal enve-
loping algebra of g, and & the subalgebra over R generated by 1 and g. We
obviously may identify & with the universal enveloping algebra of g.

Theorem 3.4.1. For any X € g, let d(X) be the differential operator
f Xf(f € C°(G)). Then the map X — d(X) extends uniquely to an isomor-
phism @ (a— d(a)) of &, with the algebra of all left-invariant analytic differ-
ential operators on G. Moreover, for a € &, d(a) is real if and only if a € ®.

Proof. We have, forall X, Y € @,
d([X,Y]) = d(X)(Y) — d(Y)I(X).

Let D be the algebra (over C) of all left-invariant analytic differential opera-
tors on G. Then the map X +— d(X) extends to a unique homomorphism
d (a— d(a)) of ®, into D. Suppose that {X,...,X,] is a basis for g over R.
Then by Theorem 2.4.1, the differential operators {d(X;)" --- d(X,)™}

(r1,...,tm =>0) form a basis for D over C, and an element of D is real if
and only if it is in the real span of these. On the other hand, the elements
{X7-- X»:r,...,r,>>0}form a basis for ®, over C, and an element of &,

belongs to & if and only if it is in the real span of these monomials. Since
Xy - Xim)y =d(X)™ --- (X)), we have the theorem at once.

In view of the above theorem it is natural to identify &, with D via d. We
shall do so from now on and refer to & as the universal enveloping algebra
of G. The elements of &, act as differential operators on G; if y € G and if f
is C= around y, then for Y,,...,Y, € g,

BG4 S5 Y e ¥) = (5T S exp Y, - expr,Y)

T fi=-e=t=0
If f € C=(G) and a € &, we write af for the function y — f(y; a); we have
a(bf) = (ab)f (a,b € &,).

Theorem 3.4.2. Fix y € G. For each a € &, let T, be the element of
T3 (G) induced by the linear function f— f(y; a) on C=(G). Then T (a— 1,)
a linear bijection of &, with T3 (G) that maps 8% onto T P(G) for each p > 0.

Proof. Clearly, 7, =1, Ifa=Y, .- Y, (1<s<r, Y,,...,Y, €0),
and f=f, -+ f,+1, Where f1,...,f,,, are C~ functions on G that vanish
at y, then f(y;a) = 0. This shows that t maps & into 7{’(G) for each
r > 0. Suppose now that a € ®, is such that 7, = 0. Then f(y;a) = 0 for all
f € C=(G). Since ais left-invariant, af = 0 for all f € C~(G). Hence a = 0,
by Theorem 3.4.1. 7 is thus an injection. Since dim & = dim ¢T{?(G) for
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each r > 0, T must map & onto T{"(G) for each r >> 0. 7 is thus surjective.
This proves the theorem.

Let U be an open subset of G. It is then clear from the above theorem
that if E is any analytic differential operator on U of order < r, we can find
analytic functions f; on U and elements a; € &{” such that

3.4.2) Ef = Y fa.f

1<i<s

for all f € C~(U). We abbreviate this as

(3.4.3) E= 3 fioa:.

1<i<s
The f; and a; are not uniquely determined by E. If {a,, ... ,a,} is a basis for
G over R, then we can find unique analytic functions f;, ..., f; on U such

that (3.4.2) is satisfied; in this case, if E is real, the f; are real.
Suppose E is as above and we have (3.4.3) for suitable «,, f;. Let

(3.4.4) E, = ’;; f(ya; (y el).
Then E, € ®,, and

(3.4.5) S(y;E) = f(y;E,)

forallf € C=(U)and y € U. Even though f; and g, are not uniquely deter-
mined by E, the equation (3.4.5) shows that E,, for any y € U, is determined
as the unique element of &, whose image under the isomorphism 7 of Theo-
rem 3.4.2 is the element of 7{7’(G) induced by the linear function f+— f(y; E)
on C~(G). E, is called the local expression of E at y. It is an easy verification
that E is real if and only if E, € & for each y € U. Itis obvious from (3.4.5)
that E = 0 if and only if E, = 0 for all y € U. In particular, E is uniquely
determined by the map y — E, (y € U).

The formula (3.4.4) makes it clear that if r >> 0 is an integer such that
a, € O for 1 <i<s, the map y > E, is analytic from U into 8. Con-
versely, it is obvious that if y — E, is an analytic map of U into &, there
is a unique analytic differential operator E on U with E, as its local expression
at y € U;in fact, if {a,,. .. ,a,} is a basis for & over C, there are analytic
functions f;,...,f, on U such that E, = 3, .-, fi(y)a; for all y € U;
then one can define E as Y.<, f; c a;, the uniqueness of E having been
noted earlier.

Let us now take U = G in the foregoing discussion. Suppose & (x — x*)
is an automorphism of the Lie group G. Then & induces an automorphism
X — X of g, and the latter can be extended uniquely to an automorphism
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a— a* of ®,. More generally, a induces an automorphism E > E* of the
algebra of all analytic differential operators on G. Between the local expres-
sions of E* and E we have the relation

(3.4.6) (E)yx = (E)* (v € G).

To see this, write E in the form (3.4.3). Then E* = Y, f# o af, so (E®),a
= 3 fi(y) aF = (E,)*. In particular, E is invariant under o if and only if

(3.4.7) Ex.—=(E) (y e G).

The most important automorphisms of G are the inner ones. For y € G,
let Ad(y) denote the automorphism of g, that extends the automorphism
X — X” of g; write Ad(y) for the extension of this to an automorphism of
®,. It is usual to write

(3.4.8) Ad(y)a =a® (a € G,y € G).

By Corollary 3.3.2, Ad(y) leaves & invariant for each » > 0 and each y €
G. We now have the following equation valid on each & :

3.4.9) Ad(exptX) = e ¥ (X € g,t € R).

To establish the relation (3.4.9), differentiate the relation (X, --- X,)* =
X3t --- Xy withrespect tot at t = 0(X; € g, y, = exp tX); we then obtain
the relation ((d/dt) Ad(exp tX)),., = ad X, valid on B¢, leading at once
to (3.4.9).

More generally, let 7 be a representation of G in a finite-dimensional
vector space V. Replacing V' by its complexification, we may assume that =
is an analytic homomorphism of G into GL(V)g; here GL(V )g (resp. gl(¥)r)
is the real Lie group (resp. Lie algebra) underlying GL(¥V) (resp. gl(V)). The
differential of 7z is then a homomorphism of g into g{(V)x and so can be
extended to a homomorphism of g, into g{(¥); in turn, this can be extended
to a representation of &, in V. We write z for this last representation. Then
n(exp X) = exp n(X) is (X € g). The basic relation between these repre-
sentations of G and &, is given by

(3.4.10) n(a”) = n(y)n(a)n(y)! (a € &,y € G).

Clearly, it is sufficient to prove (3.4.10) with a replaced by an arbitrary ele-
ment X € g. Suppose then that X € g. Then for any y € G,

2(X?) — (a‘-’t- 2(»)(exp tX)a( y)“)t:o (cf. (2.13.7))

= n(y)n(X)n(y)~".
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Let 3, be the subalgebra of ®, consisting of all a € ®, for which @® = a
forally € G.If 3, = 8, N &, then §,, is the complex span of 3, in &. It
is clear from (3.4.7) that 3. is the algebra of all analytic differential-opera-
tors which are invariant under all left translations and inner automor-
phisms. Since r, = i,-/, for any a € G (cf. (2.1.2), (2.1.3)), B,. is precisely
the algebra of all analytic differential operators on G invariant under all
translations. Since G° is generated by exp[g], it follows from (3.4.9) that 8,
the center of ®, is the algebra of all @ € & such that > = a for all y € G°;
thus 8, = 8, and if G is connected, 3 = 3,.

So far, we have allowed the elements of &, to act as differential operators
only from the left. It is also possible to consider each element of ®, as a
differential operator acting on elements of C~(G) from the right. We now
indicate how this is done. Let a € ®&,. If r > 0is such that a € &, the map
y+> @ is analytic from G to &, so there is a unique analytic differential
operator D, on G such that @' is the local expression of D,aty € G:

(3.4.11) (D), =a" (ac@,yecl).
It follows from (3.4.11) that if a = X, - -- X,, where the X, are elements of
g, then for all f € C~(G) and y € G,

(412)  fiD) = (5 Lg fexptiX, - exp1.X.))

f1=-r=t,=0

The formula (3.4.12) makes it clear that each D, is invariant under all right
translations. If b = Y, --- Y,, where the Y; € g, then a simple calculation
based on (3.4.12) shows that D,, f = D,D,f for all f € C~(G). Hence

(3.4.13) D,, = D,D, (a,b e ®).

In view of (3.4.13), it is natural to write

(3.4.14) D.f=fa (a€@,f e CG)).
It is also convenient to write

(3.4.15) f(y;D,) =f(aiy) (a€B,yeqfeC(qG).
Thus, if a = X, --- X,, where the X; € g, y € G, and f € C~(G), then

(3.4.16) flasy) = (071-0-S—-0tf(eXp t, X, - exp t,Xsy))

fr=-e=ty=0

We note that the operators f+— af and f+— fb (a,b € &,) commute. We also
note the following easy consequence of (3.4.16):

3.4.17) fla; 1) = f(l;a) (f € C(G),a € &,).
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Let D be an analytic differential operator on G invariant under all right
translations. Let @ € &, be the local expression of D at the identity 1 of G.
Since a is also the local expression of D, at 1 (cf. (3.4.17)), the operator
D — D, has local expression 0 at 1. Since D — D, is also invariant under all
right translations, the local expressions of D — D, at all y € G are zero.
Hence D == D,. Since D, = 0 implies a = 0, we conclude that the map
a+— D, is an anti-isomorphism of (J onto the algebra of all analytic differen-
tial operators on G which are invariant under all right translations.

Let D be the algebra of analytic differential operators on G generated by
the left-invariant and right-invariant differential operators defined above.
For a, b € ®&,, the endomorphism fr> afb’ (f € C~(G)) is an element of D,
¢ — ¢ being the anti-automorphism of &, under which X* = — X for X € g,
(cf. Corollary 3.2.4); the map which assigns this differential operator to
(a, b) extends to a homomorphism of the tensor product &, X &, onto D.

3.5. Nilpotent Lie Algebras

k is, as usual, a field of characteristic 0, g a Lie algebra of finite dimension
mover k. g is said to be nilpotent if ad X is a nilpotent endomorphism of g for
all X € g. A representation p of an arbitrary Lie algebra g in a finite-dimen-
sional vector space is called a nil representation if p(X) is nilpotent for all
X e qg.

Any abelian Lie algebra is nilpotent. More generally, let V be a finite-
dimensional vector space over k and N the set of all nilpotent endomorphisms
of V. If g is a subalgebra of g{(¥) such that g = N, then g is nilpotent. For if
X € g, then ad X is a nilpotent endomorphism of g{(V) (cf. §3.1), and there-
fore ad X|g is also nilpotent. In particular, if {;},;, is a basis for V and g
is the Lie algebra of all endomorphisms of ¥ whose matrices in this basis
have zeros on and below the main diagonal, then g is nilpotent.

Theorem 3.5.1. Let g be a Lie algebra over k, k' an extension field of k,
and §¥ the extension of § to k'. Then § is nilpotent if and only if ¢* is. If g is
nilpotent, so are its subalgebras and quotient algebras.

Proof.  Since g = g*¥, g nilpotent = g nilpotent. Suppose that g is
nilpotent, and for any integer r > 1, let g,(X) = tr(ad X)" (X € g¥). Then
g, are polynomials on g¢*" vanishing on g. Hence g, = 0 for r > 1. This proves
that g* is nilpotent.

Suppose g is nilpotent and {) is a subalgebra of g. If X € [), then adyX =
(adyX) |0, showing that adyX is nilpotent. Thus [ is nilpotent. Suppose g’ is a
quotient of g and 4:g — g’ the canonical homomorphism. If X € g and
X' € g’ are such that X’ == A(X), then 1 o ad X = ad X’ o A, from which we
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get Ao (ad X)" = (ad X')" o A for all integer r > 1. This shows that g’ is
nilpotent.

The central result in the theory of nilpotent Lie algebras is the well-known
Engel’s theorem.

Theorem 3.5.2. Let g be a Lie algebra over k, p a nil representation of g
in a nonzero finite-dimensional vector space V over k. Then there is a nonzero
vector v € V such that

(3.5.1) p(XWw =0 (X € g).

Proof. Let a = kernel(p). Then p induces a faithful representation of
g/a. Since all elements of p[g] are nilpotent, p[g] is a nilpotent Lie algebra.
Hence g/a is nilpotent. Since we may replace g by g/a for the proof, we see
that there is no loss of generality in assuming that g is nilpotent. We shall do
so and prove the theorem by induction on dim g. For dim g = 1 there is
nothing to prove. So let dim g > 2 and assume the theorem for all nilpotent
Lie algebras of lower dimension. Let & be the set of all subalgebras ) of g
with 0 < dim [) < dim g. & is nonempty, since k- X € & for all X = 0 in g.
Let §) be an element of & of maximal dimension; §) is clearly nilpotent.

We claim that |j is an ideal and that dim(g/f)) = 1. To see this, let W be
the vector space g/f). If X € [), ad X leaves [) invariant, so it induces an
endomorphism p'(X) of W. p’ (X — p’(X)) is obviously a nil representation
of § in W. So by the induction hypothesis, there is a nonzero w € W such
that p'(X)w = 0 for X € §). If X, € g lies above w, then X, ¢ {) and [X,,b]
< |). This implies that k- X, + § is a subalgebra whose dimension is strictly
larger than dim §. By the choice of ) we must have ¢ = k- X, + ), showing
dim(g/)) = 1. At the same time [g,§] < 0.

By the induction hypothesis applied to ), we conclude that the space

V'={u:ue V,p(Y)u=0forall Y € b}
is nonzero. If u € V' and Y € |), then

P(Y)p(Xo)u = p(Xo)p(Y)u + p([Y,X,o])u
=0,

since [Y,X,] € ), showing that p(X,)u € V'. p(X,) thus leaves V' invariant.
Since p(X,) is nilpotent, we can find a nonzero v € V' such that p(X,)v = 0.
Clearly such a v satisfies (3.5.1).

Theorem 3.5.2 leads at once to the following.

Theorem 3.5.3. Let g be a nilpotent Lie algebra over k, p a nil representa-
tion of § in a finite-dimensional vector space V over k. Define V, = 0 and for
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i>1, let
(3.5.2) Vi={wvive V,p(Xw e V,_, forall X € g}.

Then Vo< V, SV, S ---, V.=V for some integer s with 1 < s < dimV,
dim V; < dim V;,,,0 <i<s— 1. Let A, be the associative algebra of all
endomorphisms L of V such that L[V;] = V; for 0 < i <s, and M, the two-
sided ideal in U, of all Lwith L[V] < V,_, for | <i < s. Then p[g] = M,. The
product of any s elements of WM, is O; in particular, each element of M, is nilpo-
tent. There is a basis for V with respect to which the matrix of each p(X)(X € @)
has zeros on and below the main diagonal.

Proof. It is clear by induction on i that the V; are well-defined subspaces
of Vinvariant for the representation p, and ¥V, < V, < ---. Suppose i >0
and V; # V. Then the quotient representation in V/V; is also a nil representa-
tion of g. If we apply Theorem 3.5.2 to this, we find that there are v € V,
v ¢ V; with p(X)v € V, forall X € g. Thus V, = V,,,, and dim V, < dim
Vi+1. This shows that V; = V for some s with 1 < s < dim(V). Now it is
obvious that M, is a two-sided ideal in ,, and that p[g] = M,. If r > 1,
Ly,...,L,eM,andL =L, L, then L maps V;intoV,_, forr <i<s;
in particular, L = 0 for r = 5. Let n, = dim V; and let {v;},,.,, be a basis for
V such that {v;},,,, is a basis for V; (1 < i <Cs). Then in this basis, the
matrix of each p(X) (X € g) has zeros on and below the main diagonal.

The adjoint representation of a nilpotent Lie algebra is a nil representa-
tion, so Theorems 3.5.2 and 3.5.3 may be applied to it. This leads at once to
the basic results on the structure of nilpotent Lie algebras.

Theorem 3.5.4. Let g be a nilpotent Lie algebra over k; then:
(i) Letg; (i = 0) be defined inductively as follows. g, = 0, and for i > 1,

(3.53) g ={X:X € g,[Xg] S g}
Then each g, is an ideal in g, g, = g for some integer s with1 < s < m = dim(g),
and §; S Gy, dim(g,) < dim(@;.,) for 0 < i <s— 1. In particular, § has
nonzero center.

(i) Let s be as in (i). Then
3.5.4) adZ,---adZ, =0 (Z,,...,Z, €qg).

(iii) There is a basis {X,, . . ., X} for g such that for the structure constants
Cl'i' deﬁned by [X’Xj] = Zlgrérn Cl‘jr Xr (1 g Ia] S m), one has

(3.5.5) ¢ijr = 0 r = min(, j).
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In particular, in this basis, the matrix of each ad X (X € ) has zeros on and
below the main diagonal.

Proof. (i) and (ii) are immediate consequence of Theorem 3.5.3 applied
to the adjoint representation of g. Note that (3.5.3) displays the fact that the
g; are ideals. To prove (iii), let m, = dim(g,) (0 < i <Cs, m; = m), and let
{X,...,X,}beabasis for gsuch that {X,, ..., X, }is abasis forg,(1 <i<s).
Clearly, 1 <m, <m, < --- < m, = m; in particular, m;, > i, 1 <i<s.
Ifm, <j<<my,, thenX; € g,,(,50[X;,X,] € g,for 1 < p <m. This shows
that ¢;,, = 0 for » > m,; in particular, for r > j. As ¢,;, = —Cjp, Cjpy =0
for r > p also. Hence we get (3.5.5). This completes the proof of the
theorem.

Corollary 3.5.5. Let g be a Lie algebra over k, and let C°q,Clqg, ... be
defined inductively as follows: C°q = g, and for q > 1, Clg = [g,C?"'g]. Then
Qg D Clg 2 - - -, the C'g are all ideals in g, and [C°g,C79] < C**?*!q for
a,q > 0. g is nilpotent if and only if €*q = 0 for some p > 1. In this case, the
Cq decrease strictly till they vanish; i.e., if @q = 0, then CI*!g == C4g.

Proof. Write £, = €%, g > 0.If ¢ > 0 and £, is an ideal, then £,,, =
[0,£,] € £, and [g,£,.,] =[3.£,] & £,+. So £, is an ideal and is contained
in £,. By induction on ¢ we conclude that the £, are all ideals and that £, 2
£, = - --. By definition, [£,,£,] & £,,, for all g > 0. Suppose now that for
somea >0, [£,L,] & £,,,., forallg > 0. The identity [ X, Y],Z] = [X,[ Y,Z]]
+[Y,[Z,X]], where X € g, Y € £,,Z € £, shows that [£,,,,£,] & £, .42
for all ¢ > 0. So, by induction on a, we see that [£,,£,] & £,,,.+, for all
a>0,g>0. For X € g and p > 1, (ad X)” maps g into £,. Hence if £,
=: 0 for some p > 1, ad X is nilpotent for all X € g, showing that g is
nilpotent. Conversely, suppose ¢ is nilpotent. Let g, (1 << i <C s) be the ideals
defined by (3.5.3). Clearly, £, = g, (, £2 & g;-2,-.., s0o £, = 0. In this
case, suppose ¢ > 0 is such that £, = 0 but £,,; = £,. Then £, = £, for
p > q, contradicting the fact that £, = O forall r > 5. So £,,;, # £,.

Corollary 3.5.6. Let g be nilpotent, m = dim §. Then there are ideals \); of
q such that () dim\), =m — i for 0 <i<<m, (iD)y=¢g20H, 2 --- 20,
=0, and (iii) [8,0,] S 0,y for 0 <i<m — 1.

Proof. Letg, =0,q,,...,3 =g be the ideals defined by the equation
(3.5.3). If a, b are any two linear subspaces of ¢ with g, S b = a < g;44,
then [g,a] = [8,8:+:] = a; = b = a, so a is an ideal and [g,a] < b. By inter-
polating suitably many linear subspaces between the successive g, we obtain a
sequence {b,} with the required properties.

It is clear from the definition of the ideals g, that g, is the center of g and
g, is the complete inverse image in g of the center of g/g,-;. For this reason,
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the increasing sequence g, = 0, ,,0,, . . . is called the ascending central series
of g. Note that this can be defined for any Lie algebra, and the nilpotent Lie
algebras are precisely those for which some member of the ascending central
series coincides with g. The sequence {€%} is called the descending central
series for g.

We now use Theorem 3.5.3 to study finite-dimensional representations of
nilpotent Lie algebras which are not necessarily nil representations.

Let g be a nilpotent Lie algebra and p a representation of g in a finite-
dimensional vector space V over k. A linear function A on g with values in k
is said to be a weight of p if there exist v = 0 in V' and an integer m = m(v)
> 1 such that

(3.5.6) (p(X) — AX))y"v =0 (X € g);

in this case, the set of all such v together with O forms a linear subspace of V,
called the weight subspace of p corresponding to the weight A, and is denoted
by V,,. It is obvious that p is a nil representation if and only if V=V,
More generally, if A € g* (= dual of the vector space underlying g), p is
called a A-representation if V=1V, ,.

Given a representation p of g in V, the weight subspaces corresponding
to distinct weights are linearly independent. For suppose A,,...,4, are
distinct weights of p. Choose X, € g such that 4,(X,),...,A,(X,) are distinct
elements of &, and write u; = A,(X,), L = p(X,); then V,, < V, ,(cf.(3.1.1)),
so the linear independence of the V,,, follows from that of the V., (cf.
Theorems 3.1.1 and 3.1.2).

Suppose p such that for each X € g thereisa A(X) € k such that p(X) —
A(X)1 is nilpotent. We then obtain the identity

(3.5.7) MX)-dim(V) = tr p(X) (X € q).

This equation implies at once that 1 is a linear function on g vanishing on
[9,a] and that p is a A-representation. In particular, p gives rise to a nil rep-
resentation of [g,3] by restriction. A simple calculation, based on the vanish-
ing of 4 on [g,8], shows that p": X — p(X) — A(X)l is a nil representation of
g. Conversely, if p’ is a nil representation of g in ¥, and A is a linear function
on g with values in k£ and vanishing on [g,8], p: X+ p’'(X) + A(X)l is a A-
representation of g in V. If p is a A-representation of g in V, there is a basis
{vy,...,,} for Vin which the matrix of each p(X) has the form

MX)
AX)
(3.5.8)

0 AX)
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this follows at once on applying Theorem 3.5.3 to the nil representation
X = p(X) — AX)1 of g.

Lemma 3.5.7. Let g be a nilpotent Lie algebra over k and let p; be a A-
representation of § in a finite-dimensional vector space V; (i = 1,2, A; € g*).
Then p, X p, is a Ay 4 A,-representation of §.

Proof. Let 1; be the identity endomorphism of V; (j = 1,2). Write
V=V QVyp=p Qps =2 + 4. Then p(X) = p,(X) X1, + I,
X p(X)(X € g). Fix X € g,and let L, = p,(X) — A;(X)1,. Then L, ¥ 1,
and 1, ® L, are commuting nilpotent endomorphisms of V, so L; ® 1, +
1, ® L, = L is also nilpotent. But L = p(X) — A(X)-1. '

Theorem 3.5.8. Let g be a nilpotent Lie algebra, V a finite-dimensional
vector space, both over k. Let p be a representation of & in V. Then the weight
subspaces of p corresponding to distinct weights are linearly independent. If k

is algebraically closed, and A,,...,A, are all the distinct weights of p, then
(3.5.9) V=2 Vo
1<i<r

the sum being direct.

Proof. We have already proved the first assertion. Let k be algebraically
closed. We prove the second assertion by induction on dim V. Suppose that
for each X € g, p(X) has exactly one eigenvalue, say A(X). Then, as we saw
above, A is a linear function on g with valuesin k, zeroon [g,g], and V' =V, ,.
This is the case, for example, if dim V' = 1. We may thus assume that for some
X, € g, p(X,) has at least two distinct eigenvalues. Let g,, ... ,u, (r = 2) be
the distinct eigenvalues of p(X,). By Theorem 3.1.2,

V= "\Z Vp(Xo),;m

1<i<r
the sum being direct. Further,
(3.5.10) dim(V ,xp,) < dim V(1 <i<{r).

Suppose X € g. Since ad X is nilpotent, we can find an integer p > 1 such
that (ad X;)?(X) = 0, i.e.,

[XO’[XO’[' : [XmX] : ] = 0.

p times

Since p is a representation, we then have

[p(X0), [p(X0), [ - - [p(Xo).p(X)] - - -] = O.

p times
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In other words,
(ad p(X,))?(p(X)) = 0.

We may then conclude from Theorem 3.1.6 that p(X) leaves each V,x,)
invariant. Let V; = V,xy u P(X) = p(X)|V: (X € g, 1 <i<r). Then p,
is arepresentation of g in V;; and, in view of (3.5.10), the induction hypothesis
is applicable to it. The relation (3.5.9) then follows from the decompositions
of the V; relative to the p,.

3.6. Nilpotent Analytic Groups

An analytic group (real or complex) is said to be nilpotent if its Lie algebra
is nilpotent. We shall obtain in this section some basic results concerning the
structure of nilpotent analytic groups. Our principal tools will be the results
of the previous section and the Baker—-Campbell-Hausdorff formula.
Throughout this section, G will denote a nilpotent analytic group and g its
Lie algebra.

Theorem 3.6.1. (i) There exists a polynomial mapping* P of ¢ X g into
g such that

3.6.1) expXexpY =expP(X:Y) (X,Y € g).
(i1) Let 3 be the center of g and
(3.6.2) D={X:X€3expX =1}

Then D is a discrete additive subgroup of §, and the exponential map induces an
analytic diffeomorphism of the manifold g/ D onto G. In particular, D is the
Sundamental group of G, g is a covering manifold of G with exp as the covering
map, and exp is surjective.

Proof. We prove (i) using the results of §2.15. Let ¢, (n > 1) be the maps
of ¢ X g into g such that ¢,(X: Y) = X + Y (X, Y € g) and the recursion
formulae (2.15.15) are satisfied. Each ¢, is a polynomial map. Let £, = g,
£4,. .. be the descending central series of g, so that £,,, = [3,£,] (g > 0)
and £, = 0 for some s >> 1. We now prove by induction on g that c,(X : Y)
€ £,.,forg>1and X, Y € g. This is clear for g == 1. Suppose that g > |
and that ¢, maps g x ginto £,_, for | < r < g. By Corollary 3.5.5, if k; are

“Let U, V be finite-dimensional vector spaces over a field k of characteristic 0 and ¢

a map of Uinto V. ¢ is said to be a polynomial map if there are bases {«y, . .. ,uns} for U,
{vi,...,oa} for V¥, and polynomials pi,...,pn such that ¢@(31<i<m Xiu) =
Dit<j<n Pi(X1, ... »Xm)vj. It is easy to verify that this definition is independent of the

choice of bases. If 4" is an extension field of k, it is obvious that ¢ extends uniquely to a
polynomial map of U* into V¥,
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integers >1 and X; € £,,., (1 <j < p), then for any Z € g,
[Xla[XZ![' : '[Xp’Z]' ‘ ']]] € £kl+"'+kp'

If we use this and the induction hypothesis, we may conclude at once from
the recursion formulae (2.15.15) that ¢, maps g X g into £,.,. In particular,
¢ = 0.

Let P = 3 g<4<; ¢,. Then P is a polynomial map of ¢ X g into g, and
there is an open neighborhood 11 of 0 in g such that exp Xexp Y==exp P(X: Y)
for all X, Y € n. By the analyticity of exp, this equation is valid for all
X, Y eq.

We now come to (ii). The formula (3.6.1) shows that G' =expg is a
subgroup of G. Since G’ contains an open neighborhood of 1 in G, G’ must
be an open and hence also closed subgroup of G. Since G is connected, G =
exp g. Now use Theorem 2.14. For any X € g, ad X is nilpotent and so has
0 as its sole eigenvalue. Hence the open set b of Theorem 2.14.6 coincides
with g itself. The assertions of (ii) now follow immediately from that theorem.

These results lead at once to the following.

Theorem 3.6.2. Let G be simply connected. Then exp is an analytic
diffeomorphism of § onto G. If H is an analytic subgroup of G and Yy is the cor-
responding subalgebra of g, then H is closed in G, is simply connected, and is
equal to exp [5).

Proof. Since g is a covering manifold of G with exp as the covering map,
D must be {0} when G is simply connected. Hence exp is an analytic diffeo-
morphism of g onto G. Let H be an analytic subgroup of G, {) the correspond-
ing subalgebra of g. Since {) is nilpotent, exp ) = H by (ii) of the previous
theorem. Now exp is a homeomorphism of g onto G, and ) is a closed simply
connected subset of g. Hence H == exp ) must be a closed simply connected
subset of G.

Remarks 1. If G is not simply connected, its analytic subgroups need
not always be closed. This is already the case, for instance, when G is a torus.

2. When G is simply connected it is customary to write. “log” for the map
of G onto g that inverts the exponential map.

Our aim now is to prove that the simply connected nilpotent groups are
precisely those which are isomorphic to unipotent subgroups of matrix
groups. An endomorphism u of a finite-dimensional vector space V is said to
be unipotent if u — 1 is nilpotent; it is then invertible, and »~! is also uni-
potent. A subgroup of GL(V) is said to be unipotent if it consists entirely
of unipotent elements.
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Theorem 3.6.3. Let V be a finite-dimensional vector space (over R or
C), and let p = dim V. Let § be a subalgebra of gl(V') consisting entirely of
nilpotent endomorphisms of V, and G the analytic subgroup of GL(V) defined by
. Then § is nilpotent, and G is a simply connected, unipotent, algebraic sub-
group of GL(V'). Moreover,

epr:l»%rl/(’% (X €§)
(3.6.3) e S
logx = 3 (=11 & =D (5.
1<s<p N

Proof. We saw at the beginning of §3.5 that § is nilpotent. By Theorem
3.6.1,G = exp[g]. Let {v,,...,v,} be a basis for ¥ in which the matrices of
X € 3 have zeros on and below the main diagonal. It is then clear that the
matrix of x = exp X (X € §) in this basis has the form

1

0 1
G is thus seen to be a unipotent subgroup of GL(V).
Let & be the associative algebra of endomorphisms of ¥V, and
— s-1 (X — l)s
3.6.4) Ix)y= Y (—1)y1:=2——2L (x € §).
1<s<p

S

Then [ (x — /(x)) is a polynomial map of & into g{(¥). If x is unipotent, then
(3.6.5) I(x) = i(—])‘*‘(i%—lx-
s=1

A straightforward verification then shows that if x is unipotent and X is
nilpotent.

(3.6.6) expl(x) = x lexpX)=X

In other words, /is a continuous map of G onto § inverting exp. exp is thus
a homeomorphism of § onto G. G is thus simply connected, / = log on G,
and we have (3.6.3).

It remains to prove that G is algebraic. Let{v,, ... ,v,} be the basis con-
sidered above, let g’ be the Lie algebra of all X € gl{(}) whose matrices in
this basis have zeros on and below the main diagonal, and let G’ = exp [¢'].
For any endomorphism x of V, let u,,(x) be the jjth entry of the matrix of x
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in the basis {v,...,v,}. Then x € G" if and only if
(3.6.7) u(x) =8, (=),

Let A,,...,4, be linear functions on g{(¥) such that § is precisely the set of
all X for which 2,(X) = --- = 1,(X) = 0. Let

(3.6.8) p(x) = A(x)) (x € &)

for I <<r <s (cf. (3.6.4)). Then the p, are polynomials on & and for any
x € & x € G if and only if

(3.6.9) ux) =6, (=), px)=0 (1<r=y).
The equations (3.6.9) show that G is algebraic.
Corollary 3.6.4. The center of any nilpotent analytic group is connected.

Proof. Let H be a nilpotent analytic group with Lie algebra 1), Z the
center of H. Applying Theorem 3.6.3 to the case when V = Iy and § = ad[f],
we find that H/Z =~ Ad(H) = exp[ad[0]] is simply connected. Let Z° be the
component of 1in Z, and # the natural map of H/Z° onto H/Z. Then 7 is
easily seen to be a covering map. So 7 is bijective, i.e., Z° = Z.

Our aim now is to obtain a converse to Theorem 3.6.3. We need a lemma.

Lemma 3.6.5. Let A be an analytic manifold, H a Lie group acting ana-
Iytically on A via the action (h,a)— h-a(h € H,a € A). For any analytic
function ¢ on A and h € H, let p*(a) = @(h™'-a) (a € A), and let n(h) be the
map @ — @". Suppose ¢, . . . ,@, are analytic functions® on A such that the linear
span V of the functions ¢ (1 < i <<r, h € H) is finite-dimensional. Then V is
invariant under all n(h) and n (h — mw(h)) gives rise, by restriction to V, to an
analytic homomorphism of H into GL(V).

Proof. Since p* = (¢¥)* (h, i’ € H), it is clear that V is invariant under
all the n(h). Let {y,, ... ,w,} be a basis for V. Then there are functions ,; on
H such that, for i < j <r,

yiht-a) = 3 dWvia) (@< Ahe H).

Since the map (4, a) — h~'-a is analytic, it is clear that the right side of this
equation are analytic in /4 for each @ € A. On the other hand, since the y,
are linearly independent, it follows that a — (w,(a), . . . ,w,(a)) maps 4 onto
k”(= R" or C according as we are in the real or complex analytic case).
Consequently, if y; ,(h) = w,;(h~'-a), the functions d;; (1 < i <r) are in the

SWith real or complex values according as we are in the real or complex analytic setup.
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linear span of the y; , (@ € A), hence analytic. This leads easily to the state-
ments of the lemma.

Theorem 3.6.6. Any simply connected nilpotent analytic group G is iso-
morphic to a closed unipotent subgroup of GL(V) for some finite-dimensional
vector space V.

Proof.  We write k for either R or C. For purposes of this proof, a func-
tion ¢ : G +— k is called linear (resp. polynomial) if ¢ o exp is a linear (resp.
polynomial) function on g. Let £ (resp. @) be the vector space over k of all
linear (resp. polynomial) functions on G. For any integer r > 0, let @, be the
subspace of all f € @ such that fo exp is a polynomial of degree <<r on g.
Forp € ®, h € G, let

(3.6.10) 9"(y) = o(yh) (¥ € G).

If P is the polynomial map of ¢ X g into g satisfying (3.6.1), then
gHexp X) = g(exp P(X:logh)) (X € g)

forp €e ®and i € G,s0 9" € @ forp € ® and h € G. Let V be the linear
span of all p* with 1 € G, ¢ € & Weclaim that dimV << co. Let d >> | be an
integer with the property that for any Y € g and any linear function A:
gk, X+ A(P(X:Y)))is apolynomial of degree <d on g; it is clearly pos-
sible to choose such a d, since P is a polynomial map. But this implies that
p" € ®,forallp € &, h € G. This proves that dim V < co.

Lemma 3.6.4 now applies and gives rise to an analytic homomorphism 7
of G into GL(V'), where n(h)p = ¢* (h € G, ¢ € V). The proof of the theorem
will be complete if we show that 7 is injective and that z[G] is a closed uni-
potent subgroup of GL(V).

To prove that z is injective, let # € G be such that n(h) = 1, ie., p" = ¢
forall ¢ € V. Then ¢(xh) = ¢(x) for all linear ¢ and x € G. Since the linear
functions on G separate the points of G, xh = x for x € G, ie., h= 1.

To prove the assertions about z[G] it is enough, in view of Theorem 3.6.3,
to show that dz is a nil representation of g in V. Suppose this is not true. We
consider first the case k = C. Then by Theorem 3.5.8 we can find a nonzero
linear function 4:g —> C and a nonzero f € V such that dn(X)f = A(X)f
for all X € g. We then have, for X € g,

(3.6.11) n(exp X)f = (expdn(X))f = e f.
If we write F for the function Z+ f(exp Z) on g, we get

FP(Z:X)) =e!PHZ) (X,Z < g).
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Since P is a polynomial map, this equation implies that (X,Z) — e* P F(Z)is a
polynomial function. This is a contradiction, since both A and F are nonzero.

Suppose now that & == R and assume as before that dz is not a nil repre-
sentation. We extend drn to a representation, denoted by dn again, of g, in
the complex linear span V. of V. Then we can find a nonzero complex linear
function A:g - C and a nonzero f € V, such that

flxexpX)=e""f(x) (x € G,X € g).

From this point on, the argument is the same as before.

3.7. Solvable Lie Algebras

As usual, k is a field of characteristic 0, g a Lie algebra of finite dimension
m over k. We write Dg == [g,g] for the linear span of elements of the form
[X,Y], X, Y € g. Dg is a subalgebra of g and is called the derived algebra of g.
We define D?g (p > 0) inductively by

Dog = g

(3.7.1)
Drg = DD 'g) (p=1).

If ais a subalgebra of g, Da = [a,a] is again a subalgebra, so (3.7.1) leads to a
well-defined sequence D°g = D'g = -+ of subalgebras of g. H#g is called
the pth derived algebra of g.

Theorem 3.7.1 (i) If ) is an ideal in g, the DPl) are ideals of § for all
p = 0. If D is a derivation of § that leaves\) invariant, then D leaves each D?()
invariant. In particular, the D*g are ideals of § invariant under all derivations
of g.

(i) If k' is an extension field of k, then for all p > 0,

(3.72) Dr(g¥) = (Drg)¥,  Drg = D) N 6.
(iii) If @ is homomorphism of § onto a Lie algebra ), then
(3.7.3) a[Drg] = D2 (p > 0).
(iv) The algebras Drg/D?*'g are abelian for p = 0.

Proof. (i) If X,X €0, Y eg, then [V,[X,X]] = —[X,[X",Y]] —
[X'[Y,X]]. So D is an ideal in g. If D is a derivation of g mapping {) into
itself, D[X,X'] -~ [DX,X'] + [X.DX'], showing that D maps D) into itself.
By induction on p we now have (i).

(i) is obvious.

For (iii), the surjectivity of z implies that z[Dg] = ©0); thus (3.7.3) follows
by induction on p.
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For (iv), let X, X' € g. Then [X,X’] € Dg, showing that g/Dg is abelian.
(iv) follows on using induction on p once again.

g is said to be solvable if D*g = 0 for some p > 1. In this case, if DIg #~ 0,
then D*1g = Dg, so the Dry strictly decrease until they become 0. It is clear
from (3.7.2) that if k" is an extension field of &, then g is solvable if and only
if g is. If g is solvable and p > 0 is such that D?g % 0 but D?g = 0, D?g is
a nonzero abelian ideal of g. If a is any subspace of g with Dg = a < g,
then [g,a] < Dg < a, so a is an ideal. In particular, we can choose ideals a
with dim(g/a) = 1 when g is solvable.

Theorem 3.7.2. (i) g is solvable if and only if we can find ideals g, = g,
Q1s- -85y = 0 such that g; 2 g,., and ,/8;., is abelian, for 0 < i <s.

(it) If g is solvable, subalgebras and quotient algebras of § are solvable.

(ii)) If Yy is an ideal in § such that ) and /%) are solvable, then g is solvable.

(iv) Nilpotent Lie algebras are solvable.

Proof. (i) If gissolvable, g, = D?g (p > 0) have all the required prop-
erties. Conversely, let g,,4,,... be as in (i). Since g,/g,,, is abelian, Dg;, =
8.+1. Hence D?g < g, p = 0,1,. . ., showing that D**!g = 0. g is thus solv-
able. If g is solvable and {) is a subalgebra of g, then D?) = ) N D?g; so
D2 = 0 for large p, showing that §) is solvable. From (3.7.3) we see that the
quotient algebras of g are all solvable. To prove (iii), let ) be a solvable ideal
in g such that g/[) is solvable. Let #, s > 0 be such that D = 0, D*(g/h) = 0.
Then g = 1) by (3.7.3), and hence D"**g = 0. Suppose g is nilpotent and
g; are ideals of g defined by (3.5.3). Since Dg;, = [8,8] S i1, 8:/Gir1 1S
abelian for i > 0. Since g, = 0 for sufficiently large p > 1, g is solvable by
(1). This proves the theorem.

Let V be a vector space over k, {v,,....,v,} a basis for V. Let g be the
Lie algebra of all endomorphisms X of ¥ whose matrices in the basis {v,, ..
v,} have the form

L)

Ay

0 A
Then g is solvable. For Dgq is contained in the nilpotent Lie algebra of all
endomorphisms of ¥ whose matrices have zeros on and below the main
diagonal; hence Dg is solvable, and hence so is g. Any subalgebra of g is thus
solvable. The basic result in the theory of solvable Lie algebras is the theorem

of Lie which asserts that if & is algebraically closed, then any solvable matrix
Lie algebra can be obtained in the above manner.
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Theorem 3.7.3. Let k be algebraically closed, § a solvable Lie algebra over
k, and p a representation of § in a vector space V of finite dimension n over k.

Then there exist A; € ¢* (1 <i <n)andabasis{v,,...,w,} of Vsuch that for
each X € g, the matrix of p(X) in the basis has the form
A(X) b
(3.7.4) .
0 ' ALX)

In particular, for all X € g,
(3.7.5) p(X ), = A, (X)v,.

Proof. By induction on dim g. Since the case dimg = 1 is trivial, assume
that dimg > 2.

First we prove the existence of a nonzero vector of ¥ which is an eigen-
vector for all p(X), X € g. Let{) be an ideal in g with dim(g/0)) = 1; let X, €
8, Xo ¢ 0. By the induction hypothesis, we can select a nonzero w, € V
and a A € §)* such that p(Y)w, = A(Y)w, for all Y € ). Let w, =
p(Xo)wy (s >1). Let p >0 be the largest of the integers s for which
Wwo, . . . ,w, are linearly independent. Let W_, = 0, and let W, be the linear
span of wy,...,w, (0 <<r <p). Then w, € W, for g > p, so p(X,) leaves
W, invariant and maps W, into W,,, (0 < r < p).

We claim that for 0 < r <pand Y € |,

(3.7.6) p(Y)w, = A(Y)w, (modW,_)).

For r = 0 this is obvious. Suppose (3.7.6) is true for some r < p. Then for
Yel,

(3.7.7) P W,y = p(Xo)p(Y)w, + p(IY. XoDw,;

and since [X,,0)] = 1), we conclude easily from the assumption on r that
(3.7.6) is true with r replaced by r 4 1. In particular, W, is invariant under p.

If Yel, both p(Y) and p(X,) leave W, invariant, and hence
tr(p([Y,X,]) | W,) = 0. On the other hand, it is clear from (3.7.6) that
tr(p(Z)|W,) = (p + DAMZ) for all Z € ). So, taking Z = [Y,X,], we have
AM[Y,X,]) = 0for Y € 1. But then since p(Y)w, = A(Y)w, for all Y € ), an
easy induction on r enables us to conclude from (3.7.7) that p(Y)w, = A(Y )w,
for all Y € {) and 0 << r << p. Now choose a nonzero v, € W, such that
p(X)v, = cv, for some ¢ € k, and let A, denote the extension of 1 to the
element of g* which takes the value ¢ at X,. Then A, and v, satisfy (3.7.5) for
all X € g.

k+v, is thus invariant under p. Considering the representation induced by
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p in V/k-v, and using induction on dim ¥, we obtain a basis {v,, ... ,»,} for
V and elements 4,, . ..,4, of g* such that

(3.7.8) pX W, = 2, (X)p, (mod 3 k-v).

But then the matrix of p(X) has the form (3.7.4) for all X € g. This proves
the theorem.

Corollary 3.7.4. Let assumptions be as in the above theorem. If p is ir-
reducible, then dim V = 1.

Proof. Obvious.

Corollary 3.7.5. Let g be a solvable Lie algebra over k. Then we can find
subalgebras §, = 8,82, . . . ,Qme1 = 0 such that (i) g,y S g; and @, is an
ideal of g; for 1 < i<<m, and (ii) dim (§;/8;+1) = 1 for 1 <i<m. If k is
algebraically closed we can choose the g, to be ideals in g itself.

Proof. We have seen that we can select an ideal g, of g, = g such that
dim(g,/g,) = 1. The first assertion is now immediate by induction in dim(g).
Suppose now that k is algebraically closed. Applying the theorem above to
the adjoint representation of g, we see that there are 4,,...,4,, € g* and a
basis { X, . . ., X} for g such that

(3.7.9) X,X,]= 40X, (mod ¥ k-X,).

1<s<r

Clearly, it is then sufficient to take g, to be the linear span of X, ..., X, _, ;.
As another consequence of the theorem of Lie we have

Theorem 3.7.6. Let g be a solvable Lie algebra over k. Let p be a represen-
tation of g in a finite-dimensional vector space V. Then the set of all X € g
with p(X) nilpotent is an ideal in g that contains Dg. A Lie algebra over k is
solvable if and only if its derived algebra is nilpotent.

Proof. First, assume that k is algebraically closed. Let {v,,...,v,]} be a
basis for V and 4,,. . .,A, elements of g* such that

(3.7.10) p(X)v; = A,(X); (mod Z kv) (Xeg l<j<n).

If a = {X: X € g, p(X) is nilpotent}, then X € a if and only if 1,(X)=0
for 1 <<j < n. It follows from this that a is a linear subspace that contains
Dg. In particular, a is an ideal. If k is not algebraically closed, let &’ be an
algebraic closure of k and denote by g’, V', and p’ the respective k’-extensions
of g, ¥, and p. If a (resp. a’) is the set of all X € g (resp. X € g’) such that
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p(X) (resp. p'(X)) is nilpotent, then a’ is an ideal of ¢’ containing Dg" and
a =g N a’.Soaisanideal of g containing Dg. This proves the first assertion.

To prove the second, let Dg be nilpotent. Since g/Dg is abelian, g is solv-
able by (iii) of Theorem 3.7.2. Conversely, let g be solvable. By the first result
applied to the adjoint representation, we see that ad X is nilpotent for any
X & Dg. This implies at once that Dg is nilpotent.

An analytic group is called so/vable if its Lie algebra is solvable. Despite
the similarity of the concepts of solvability and nilpotency for Lie algebras,
there are many differences in the structure of solvable and nilpotent groups.
Examples of some of these may be found in the exercises at the end of this
chapter.

3.8. The Radical and the Nil Radical

Let k be a field of characteristic zero. Let g be a finite-dimensional Lie
algebra over k. Suppose a and b are two solvable ideals of g. Then a + b is
an ideal, and since (a + b)/a is isomorphic to b/(a N D), (a 4 b)/a is solv-
able, so a -+ b is solvable. This shows that there is a unique solvable ideal
q of g containing all solvable ideals of g. q is called the radical of g(rad g).
rad g = g if and only if g is solvable. g is said to be semisimple if rad g = 0.
The radical of a Lie algebra is obviously invariant under all automorphisms
of the Lie algebra.

Theorem 3.8.1. (i) Ifk’is an extension field of k, then (rad §)* = rad g*.
(i) rad g is invariant under all derivations of g.

(iti) If Y is an ideal of 8, so is rad ), and rad ) = (rad g) N V).

(iv) g/rad g is semisimple.

Proof. To prove (i), let k be an algebraic closure of k". Let q, ¢/, § be the
respective radicals of g, g, g*. Since g¥ is a solvable ideal of g%, g = . On
the other hand, let s be a k-automorphism of k. It is then easily seen that the
corresponding s-linear automorphism of g¥ maps solvable ideals into solvable
ideals, and consequently leaves § invariant. So § = (§ N g)*. Since § N g is
a solvable ideal of g, § N g < g, showing that § < gf. Thus § = g¥; simi-
larly, § = q’%. But then q’ = q*.

Let D be a derivation of g. If we choose a basis for g, the structure con-
stants of g, as well as the entries of the matrix of D in this basis,all belong to a
subfield of k which is finitely generated over the prime field Q. So, to prove
(ii), in view of (i), we may assume that k itself is finitely generated over Q.
But then k£ may be regarded as a subfield of C. So using (i) again, we see that
k may be assumed to be C without any loss of generality. In this case, the
endomorphisms exp tD (¢t € C) are automorphisms of g, and therefore leave
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q invariant, q being the radical of g. Since D = (d/dt)(exp tD),-,, it is clear
that D leaves g invariant.

Now let [y be an ideal in g. If X € g, ad X|[) is a derivation of ), so by
(ii) it must leave rad [j invariant. This shows that rad ) is an ideal of g. Since
it is solvable, rad {) = (rad g) N §). On the other hand, (radg) N Y is a
solvable ideal of {), showing that (radg) ") = rad ). Thus rad) =§ N
rad g.

To prove (iv), let = be the natural map of g onto ) = g/radg. If ais a
solvable ideal of {), #z~!(a) is a solvable ideal of g by (iii) of Theorem 3.7.2.
Since rad g < 7~ !(a), we must have 7~ !(a) = rad g, showing that a = 0. So
[) is semisimple.

This proves the theorem.

Lemma 3.8.2. Let g be a Lie algebra over k and p a representation of g
in a finite-dimensional vector space V over k. Let & be the universal enveloping
algebra of g and let o be the extension of p to a representation of & in V. Let
R be the kernel of . Then:

(1) if S is the set of all ideals W < g with the property that p(X) is nil-
potent for all X € n, then there is a unique element n, € & such thatn < n,
foralln € &.

(1) if V(0 < i< r) are invariant subspaces for pwithV, =V 2 V, 2

- 2 V, = 0 such that the representations p; of § in V,_,/V,; are irreducible
(1 < i< r), then n, is the intersection of the kernels of the p,.

(i) if M, = On, G, then N, is a proper two-sided ideal of &, and if a, € N,
Jor 1 <i<r, then a, ---a, € & in particular, o(a) is nilpotent for each
ac M,

Proof. We begin with the following simple result. Let 7 be an irreducible
representation of g in a finite-dimensional vector space W, m an ideal of g
such that 7(X) is nilpotent for all X € m; then 7[m] = 0. For if we write W’
for the subspace (v:v € W,7(X)v =0 for all X € m}, then W’ £ 0 by
Theorem 3.5.2. On the other hand, if we W', X € g, Y € m, then7(Y)t(X)w
=17(X)t(Y)w + 7([Y,X])w = 0, so that W’ is t-invariant. So W' = W;
ie., 7[m] = 0.

Suppose now that m is any ideal in g such that p(X) is nilpotent for all
X € m; the observation made above shows that p(X) =0 for 1 <i<r,
X € m. So writing 11, = (), .., kernel(p,), we have m < n,. On the other
hand, 11, is an ideal of g, and it is clear that

(3.8.1) L, ={X:X g pV- eV, 1 <i<r}

It follows from (3.8.1) that p(X)" = 0 for all X € n,. Thus u, has the prop-
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erties (i) and (ii). Moreover, for any a € &, g(a) maps V; into itself for
0 << i<r, and hence we deduce from (3.8.1) that

(3.8.2) R, S (arac®o@V ]S V,l<i<r.

The assertions in (iii) follow immediately from (3.8.2).

A nil ideal of g is an ideal m of g such that ad X is nilpotent for X € mt.
An ideal m of g is a nil ideal if and only if 1, as an algebra, is nilpotent. Ap-
plying the above lemma to the adjoint representation, we see that any Lie
algebra g has a unique maximal nil ideal that contains every nil ideal. We call
it the nil radical of g (nil rad g). It is clear that nil rad g < rad g and that
nil rad g is invariant under all automorphisms of g.

Theorem 3.8.3. (i) If k' is an extension field of k, then (nil rad g)* =
nil rad g~'.

(i) If Y is an ideal of g, so is nil radl), and nil rad) =Y N nil rad g.

(i) If g = rad g and 0 = nil rad g, then 1 = nil rad q = the set of all
X € q such that ad X (or equivalently ad, X) is nilpotent, and any derivation
of @ or q maps q into n. In particular, [g,8] < n.

Proof. (i) is proved exactly as the assertion (i) of Theorem 3.8.1.
Moreover, as in that theorem, we can prove that 1 is invariant under all
derivations of g. The proof of (ii) can now be carried out exactly as the proof
of (iii) of Theorem 3.8.1. In particular, since q is an ideal of g and 1 < q, we
see by (ii) that 1 = nil rad q. Let " = {X: X € q, ad X is nilpotent}. By
Theorem 3.7.6, 11" is an ideal of g. Since 1’ is nilpotent, n” < nil rad q = 1.
Since it is obvious that 1 < n’/, 1 = 1n’.

Let D be a derivation of q. We regard k, trivially, as a Lie algebra of di-
mension 1 over itself. Let " = q X k and let us define, for X, X’ € gqand c,
¢ €k,

[(X,0)(X',c)] = ([X,X'] + ¢DX' — ¢'DX,0).

It is then easily verified that q" becomes a Lie algebra with this definition of
the bracket, that g x {0} is an ideal of q’, and that X+ (X,0) is an injection
of qinto q’. q’ is thus solvable. Let 11" = nil rad q’. Since by Theorem 3.7.6,
Dq’ is a nilpotent ideal of q’, Dq’ = 1. Hence Dq' N (q X {0}) = ' N
(g x {0}) = n x {0} by (ii). So for X € g, [(X,0),(0,1)] = (—DX,0) € n X
{0}, from which we conclude that DX € n for X € q. In particular, taking
D = ad X (X € g), we find that [X,q] < u. Since any derivation of g leaves
q invariant and induces a derivation of g, we also have D[q] < n for all
derivations D of g.
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Corollary 3.8.4. If g is solvable, nil rad g is the set of all X € g for which
ad X is nilpotent, and Dg < nil rad g.

Proof. Follows from (iii) above.

3.9. Cartan’s Criteria for Solvability and Semisimplicity

The aim of this section is to derive the well-known criteria of Cartan for a
Lie algebra to be solvable or semisimple. These criteria are formulated in
terms of the Cartan—Killing form of the Lie algebra. The Cartan-Killing form
is the bilinear form associated with a canonically defined quadratic form on
the Lie algebra which is invariant under all its automorphisms. We shall
therefore begin with a discussion of the ring of invariants attached to a rep-
resentation of a Lie algebra. The field & is of characteristic 0.

Let g be a Lie algebra of dimension m over k, 1 << m < oo. For any
indeterminate 7 and any X € g, let

3.9.1) KT:X)=det(T-1 —adX) = (—Dy"'p(X)T".
- 0=i<m

It is obvious that p, = 1 and that the p; are polynomial functions on ¢

with values in k. From elementary linear algebra we find that for X € g

<

Pm-1(X) = tr(ad X)

(3.9.2)
Prm-2(X) = }{[tr(ad X)]* — [tr(ad X)*]}.
Changing X to ¢X in (3.9.1) (¢ € k), we deduce that the p, are homogeneous
polynomials, with deg(p,)) =m — i, 0 < i < m.
If & (X — X*)is an automorphism of g, ad X* = « o ad Xoa~! for all
X € g, and hence

(3.9.3) F(T:X*)=FT:X) (X < g).

It follows from this that the p, are invariant under all the automorphisms of
g. If k" is an extension field of k and p; (0 << i <C m)are the polynomials on
g* defined by (3.9.1), it is obvious that

(3.9.4) pi=pilg (0<i<m).

Let D be an endomorphism of the vector space underlying g. We write D
for the derivation of the algebra of polynomial functions on g (with values in
k) such that if 1: g+ k is a linear function, (DA)(X) = —A(DX) (X € g).
If k = C and D is a derivation of g, the invariance of the p, with respect to
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the automorphisms exp D (¢t € C) leads at once, through differentiation,
to the result

(3.9.5) Dp,=0 (0<i<m).

We may now argue as in the proof of (ii) of Theorem 3.8.1 to conclude that
(3.9.5) is valid with k instead of C.
Write now, for X, Y € g,

&(X) = tr(ad X)?

(3.9.6)
XYy =1tr(adXad?).

¢ is a quadratic form. Since by (3.9.2) ¢ = p%_; — 2p,,_,, it follows that & is
invariant under all automorphisms of g. £ is known as the Casimir polyno-
mial of g. {-,->is obviously the symmetric bilinear form on g X g that is as-
sociated with &. It is called the Cartan—Killing form of g, and it is also invariant
under all automorphisms of g. It follows from (3.9.5) that if D is any deriva-
tion of g, then

3.9.7 DX,Yy+{X,DY)=0 (X,Y € g).

Since [DX,Y] = D(X,Y]) — [X,DY] for all X, Y € g, we have

(3.9.8) ad DX = [D,ad X] (X € g);

using this, (3.9.7) follows from (3.9.6) by direct calculation. In particular,
(3.9.9) qX,Y,Z> + X [X,Z)) =0 (X,Y,Z € g).

Note that if & = 0, the Cartan—Killing form is also 0. This is the case, for
example, if g is nilpotent.

The above construction which leads to the polynomials p, is a special case
of a more general one. Let p be a representation of g in a finite-dimensional
vector space V over k. Let d = dim V, and for any X € g, let

(39.10)  FAT:X)=det(T-1 — p(X)) = 3 (~1F~pt(N)T",

T being an indeterminate as before. The p# are polynomials on g, and we have
the obvious analogue of (3.9.4). Let

(3.9.11) BAX,Y) = tr p(X)p(Y) (XY € g);

Br is a symmetric bilinear form on g X g. It is said to be defined by p.
Unlike the p,, the p? are not in general invariant under all automorphisms
of g. (For example, let g = gl(n,k), ¥V = k*, and p(X) = X for X € g; then
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po(X)=det X, and if n is odd, p, is not invariant under the automorphism
X — — X' of g.) However, if & (X — X*)is an automorphism of g with the
property that the representations p and p* (X — p(X*™)) are equivalent, then
F(T: X*") = F(T: X), so the pf are invariant under a.

Let k = R or C, and let G be a simply connected analytic group with
Lie algebra g. If p and V are as above, there is a representation of G in V'
whose differential is p. We also denote this representation by p. Then p(X?) =
PMp(X)p(y)~!forall X € gand y € G, by (3.4.10). So it follows from what
we said above that the p? are invariant under the adjoint group:

(39.12) X)) =piX) 0<i<d,Xegyecq)

For arbitrary 4, it follows from (3.9.12) in the usual way (cf. proof of
Theorems 3.8.1 and 3.8.3) that

(3.9.13) (@dX)(p) =0 (0<i<d Xeq),

(ad X)~ being the derivation D of the algebra of polynomials on g defined
above when D = ad X. In particular,

(3.9.14) B/[X,Y),Z) + B/(Y,[X,Z]) = 0

for all X, Y, Z € g. This can also be established by a simple direct calcula-
tion based on (3.9.11). In fact,

tr(p((X,YDp(Z)) = —tr(p(Y)p(X)p(Z)) + tr(p(X)p(Y)p(Z))
= —tr(p(Y)p(X)p(Z)) + tr(p(Y)p(Z)p(X))

for X, Y,Z € g.
We are now in a position to formulate and prove Cartan’s criteria. Our
proof is essentially Chevalley’s and relies on the theory of replicas.

Theorem 3.9.1. Let g be a Lie algebra over k. Then g is solvable if and
only if

(3.9.15) XY,ZD =0 (X,Y,Z € g).

In particular, if the Cartan-Killing form of g is identically zero, then g is
solvable.

Proof. Let g be solvable, X € g, X' € Dg. By Theorem 3.7.6, Dg is a
nilpotent ideal of g, and hence Dg < nil rad g. Consequently, by Lemma
3.8.2, ad X ad X’ is nilpotent; in particular, {X,X’> = trad Xad X’ = 0.
This proves (3.9.15). Conversely, let (3.9.15) hold for all X,Y,Z € g. To
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prove that g is solvable it is sufficient to prove that Dg is solvable. On the
other hand, if X, X' € Dg,

tr(adDgXad:DgXl) = tr ad Xad X’
—0

since ad X ad X’ maps g into Dg. So Dg is a Lie algebra with identically
vanishing Cartan-Killing form. In other words, we may assume without any
loss of generality that g itself has identically vanishing Cartan-Killing from.
Assuming this we now prove that Dg is nilpotent. To prove this it is clearly
sufficient to prove that for any X € Dg, ad X is nilpotent. Write X =
Yo Y Z] (Y,Z, € g). Since ad X is a derivation of g, we may use
Corollary 3.1.17 to reduce the proof of the nilpotency of ad X to showing
that fr(ad X M) = O for every derivation M of g. But

trtd X M)= > tr(fadY,ad Z, M)
1<i<r
= > tr(adY,adZ,M —ad Z,ad Y, M)

1<izr

= Y tr(adZ,MadY, —ad Z,ad Y, M)

1<i<r

= tr(ad Z[M, ad Y}])

1<i<r

N

= tr(ad Z,ad MY,) (by (3.9.8))

1<i<r

= 2 {Z.MY)

1=<i<r

A

=0
This proves that ad X is nilpotent.

Theorem 3.9.2. Let g be a Lie algebra over k. Then g is semisimple if and
only if the Cartan—Killing form of g is nonsingular.

Proof. Suppose g =radg % 0. Let p > 0 be such that a = H?g+# 0
but Da = 0. Then a is abelian and is an ideal of g by (i) of Theorem 3.7.1.
Suppose X € a, Y € g. Then

X, Y>=tradXadY
=tr((ad XadY)|a)
since ad X ad Y maps g into a. On the other hand, as a is abelian,
[X[Y,Z =0 (X,Z€a,Y g

so that
ad Xad Y|a = 0.
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This shows that
X, Y>=0 (X eaq, Yeq),

i.e., that {-,-> is singular.
Suppose conversely that {-,-> is singular. Let

(3.9.16) m={X:XegqgXY>=0foral Y € g}

Then 1t = 0 and it follows from (3.9.9) that mis anideal of g. If X, X’ € m,
then ad X ad X’ maps g into nt, and so

tr(ad X ad X') = tr(ad, X ad,, X")
Consequently
tr(ady X ad, X') =0 (X, X € m),

i.e., n is a Lie algebra with identically vanishing Cartan-Killing form. By
the previous theorem, m is solvable. So rad g # 0, proving that g is not
semisimple.

Corollary 3.9.3. Let g admit no ideals other than 0 and . Then g is either
of dimension 1 or semisimple.

Proof. Let m be as in (3.9.16). Then m is an ideal. If m =0, {+,-> s
nonsingular, so g is semisimple. If m = g, g is solvable. In this case, Dg +# g,
and if a is any subspace such that Dg < a < g, ais an ideal. So g must have
dimension 1.

A Lie algebra g over k is said to be simple if it is not abelian and if 0 and
g are its only ideals. g is simple if and only if it is semisimple and has no
proper ideals.

Corollary 3.9.4. Let g be a Lie algebra over k, {X,,...,X,} a basis for
a. Then g is semisimple if and only if

(3.9.17) det(<X;, X)) 21 jom # 0.

In particular, if k' is an extension field of k, then g is semisimple if and only if
g~ is.

Proof. The relation (3.9.17) is the criterion for {-,-> to be nonsingular.
The second statement follows trivially from the first.

We remark that if g is a Lie algebra over k, if a is an ideal of g, and if
{+,+>q is the Cartan—-Killing form of a, then

(3.9.18) XY = XY (X,Y € a).



212 Structure Theory Chap. 3

We have already used this result implicitly in some of the preceding proofs.
Note also the following fact established in the course of proving Theorem
3.9.2: g is semisimple if and only if g has no nonzero abelian ideals.

Finally the argument used in the proof of Theorems 3.9.1 and 3.9.2 can
be isolated and formulated in the following manner, in order to facilitate
subsequent applications.

Lemma 3.9.5. Let g be a Lie algebra over k, and p a representation of
g in a finite dimensional vector space V over k. Let B’ be as in (3.9.11) and let
p be defined by

3.9.19) p={X:X e€g,B(X,Y)=0 forall Y € g}

Then p is an ideal of g, and p(X) is nilpotent for all X € [p,g]. In particular,
m is as in (3.9.16), m is an ideal of § and [m,g] < nil rad g.

Proof. The relation (3.9.14) implies at once that p is an ideal of g. Let
X € [p,g] and write

X = [YhZi] (Yi € P, Z:‘ € Q)

1<i<Zr
In order to prove that p(X) is nilpotent, it is sufficient to prove, in view of
Theorem 3.1.16, that tr(p(X)R) = 0 for each replica R of p(X). Let R be a
replica of p(X). Since ad R: gl(V) — gl(¥) is a replica of ad p(X) by (v) of
Theorem 3.1.13, ad R is a polynomial in ad p(X), and so ad R leaves p[g]
invariant. Therefore we can find U, € g such that

[P(Z).R] = p(U) (1 <i<r)
But then,
tr(p(X)R) = tr([p(Y ), p(Z)IR)

1<i<r

= tr(p(Y)p(Z)R — p(Z)p(Y )R)

<i<r

= tr(p(Y)P(Z)R — p(Y)Rp(Z))

1 r

=2 rtr(/?(Yi)[P(Zi),R])
tr(p(Y)p(U))

r

= BP(YD Ui)

1 r

= 0.

A

IA

o
N

A
IA

1<i

n

i

A
IN!

This proves that p(X) is nilpotent.
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3.10. Semisimple Lie Algebras

We devote this section to a discussion of some of the elementary prop-
erties of semisimple Lie algebras over k. Let g be a Lie algebra over k,
{-,+> its Cartan-Killing form; for any linear subspace a of g, write

(3.10.1) at={X:X € g,X,Y>=0 forall Y € a}.

a’ is called the orthocomplement of a. In case g is semisimple, the nonsingu-
larity of {-,-> implies that dim a ++ dim a* = dim g; however, it is not in
general true that a' is complementary to a.

Theorem 3.10.1 Let g be semisimple. If ) is an ideal of g, then Ot is also
an ideal, [),§1] = 0, and g is the direct sum of ) and \-. Moreover, both ) and
g/l are semisimple. :

Proof. That )" is an ideal follows from (3.9.9). Suppose §) N )+ == 0.
Then{X,X"> = 0for X, X' € ) N h*. So (-, DyayL = 0by (3.9.18). Theorem
3.9.1 now implies that [y N )~ is solvable, contradicting the semisimplicity of
g. The relation dim g = dim {) + dim > now shows that g is the direct sum
of ) and L. Since [),)1] = § N O+, it follows that [{),)+] = 0, and hence that
the (X,X')— X 4 X' is a Lie algebra isomorphism of ) x )+ onto g. If a is
an ideal of g and rad a = 0, rad a will be a nonzero solvable ideal of g by
Theorem 3.8.1; consequently, either rad a = 0 or a is semisimple. So both |)
and g/0), which is isomorphic to )+, are semisimple.

Corollary 3.10.2. [f g is scmisimple, then
(3.10.2) g = Dg.

Proof. 1If Dg +~ g, 3/Dg will be nonzero, abelian, and semisimple all at
once, which is impossible.

Corollary 3.10.3. Let g be semisimple, ) an ideal of g, and a an ideal of ).
Then a is an ideal of §. In particular, if \) is a minimal element of the set of all
ideals of g partially ordered by inclusion, \) is a simple Lie algebra.

Proof. Since g = §) + )t and [0),)1] = 0, we have [a,g] = [a,)] = a.

Theorem 3.10.4. Any semisimple Lie algebra over k is isomorphic to a
direct sum of simple Lie algebras. More precisely, let g be semisimple. Let © be
the set of minimal elements in the set of all ideals of § partially ordered by
inclusion. Then & is finite; if © = {g,, . . . ,8,}, the g, are mutually orthogonal
simple algebras, and (X,,...,X,)— X, +---+ X, is a Lie algebra isomor-
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phism of g, X --- X @, onto §. The only ideals of § are the direct sums of the
members of subfamilies of S.

Proof. If a € © and b is any ideal, the minimal property of a implies
that eitherac boranb=0.IfanNb =0, then [a,b] = a N b=0; in
this case a = b+ because for X € a and Y € b, ad X ad Y = 0. The
elements of & are thus mutually orthogonal under {-,->. We claim that
they are also linearly independent. To see this, let {g,, . . . ,g,} be a maximal
family of linearly independent members of &. Write §) =g, +--- 4 g,.
If &  {g,,. . . ,8,} and g, is a member of & distinct from all the g, (1 <<i < r),
then g¢ constains all the g,, and hence ) = g4. Then by Theorem 3.10.1, we
may conclude that g, N ) = 0, contradicting the maximality of {g,,....g,}
Thus & = {g,,...,8,}. Suppose [) is an ideal of g and {)’ is the sum of all
members of & contained in ); put )’ = 0 if there is no such member. If
)’ # ), then the fact that g is the direct sum of )" and {)’* implies that a =
"L M G is a nonzero ideal of g. Clearly, there would be a member, say g;, of
© such that g; < a. But since g; = ), we alsohave g, < ). So g; = )’ N "'+
= 0, a contradiction. In particular, g = }3,.,., g,. Since [g,,3,] = 0 for
1 <i#j<vr, itis obvious that the map (X,,... ., X,))— X, +---+ X,
is a Lie algebra isomorphism of g, X --- X g, onto g. In particular, any
ideal of g, is an ideal of g, showing that each g, is simple. This completes
the proof of the theorem.

In essence, this theorem reduces the study of semisimple algebras to that
of simple algebras. It turns out that when k is algebraically closed, the simple
Lie algebras over k can be completely classified, thereby opening the way for
a very intensive study of the semisimple Lie algebras. The classification of
simple Lie algebras over an algebraically closed k, which is the great achieve-
ment of the classical work of Cartan and Killing, will be taken up in the next
chapter.

Theorem 3.10.5. Let () be a Lie algebra over k, q the radical of \). If a is an
ideal such that \)/a is semisimple, then q < a. If n is a homomorphism of |)
onto a Lie algebraly’, then n[q] is the radical of |)'.

Proof. Let 7 be the natural map of {) onto h/a. If g & a, 7[q] will be a
nonzero solvable ideal of §/a. So we must have q < a. Let ¢" = rad ). Then
7 induces in a natural fashion a homomorphism of {/q into §)’/z[g]. So since
/q is semisimple, Theorem 3.10.1 implies that {)’/z[q] is semisimple. By the
previous result, g < z[g]. On the other hand, z[q] is a solvable ideal of fy’,
so z[q] < q'. Hence z[q] = q'.

If g is semisimple, the center of g has to be zero, as otherwise it would be
a nonzero abelian ideal of g. Thus the adjoint representation of g is faithful.
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Further, by (3.10.2),
(3.10.3) tr((ad X) =0 (X € g).

Theorem 3.10.6. Let g be semisimple. If D is a derivation of g, there is a
unique X € @ such that D = ad X. Any X € g can be written as S + N,
where [S,N] = 0, ad S is semisimple, and ad N is nilpotent; S and N are,
moreover, uniquely determined by these requirements.

Proof. Since {-,-> is nonsingular, we can find X € g such that {X,Y) =
tr(Dad Y)forall Y € g. Let D' = D — ad X. Then D’ is a derivation of g,
and tr(D' ad Y) = 0 for all Y € g. We prove that D" = 0. Fix Z € g. Then
tr(ad Y-[D',ad Z]) = —tr(D' ad [Y,Z])=O0forall Y € g. Butsince [D’, ad Z]
=: ad (D'Z) by (3.9.8), we may conclude that {Y,D'Z> =0 for all Y € g.
Hence D'Z = 0.

We now come to the second assertion. Let X € g. Letad X = Y + Z be
the Jordan decomposition of ad X, with Y semisimple, Z nilpotent, and
[Y,Z] = 0. By Corollary 3.1.14, Y and Z are both derivations of g. Conse-
quently, by the previous result, we can find S, N € g such that Y =ad S
and Z = ad N. Since the adjoint representation is faithful, we must have
X =S + N and [S,N] = 0. The uniqueness of S and N follows from the
uniqueness of Y and Z, and the fact that the adjoint representation is faithful.
This proves the theorem.

The decomposition X = S + N is known as the Jordan decomposition
of X; S (resp. N) is known as the semisimple (resp. nilpotent) component of
X; X is called semisimple (resp. nilpotent) if ad X is.

Lemma 3.10.7. Let g be semisimple, p a finite-dimensional representation
of g in a vector space V, and B? the bilinear form on § X g defined by p. If |)
is the kernel of p and p = ), then B’ is nonsingular on p X p.

Proof. [)isanideal and g is the direct sum of {) and p by Theorem 3.10.1.
Let

m={X:Xep B(X,)Y)=0forall Y € p}.

Then m is an ideal in p. Applying Lemma 3.9.5, we conclude that p(X) is
nilpotent for all X € [m,p]. So p([m,p]) is a nil ideal of p[p]. But by Theorem
3.10.1, p and p[p] are both semisimple. Hence p([in,p]) = 0. Since p is obvi-
ously faithful on p, [m,p] = 0. So m < center(p). Since center(p) = 0, we
must have n1 = 0.

A Lie group G (real or complex) is said to be semisimple if its Lie aglebra
is semisimple.
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Now assume that k = R or C and that g is a semisimple Lie algebra over
k. Let Aut(g) be the group of all automorphisms of g. Then Aut(g) is an
algebraic subgroup of GL(g), and its Lie algebra consists of all the elements
in gl(g) that are derivations of g (cf. Exercise 21, Chapter 2).

Theorem 3.10.8. Let G be a semisimple analytic group over k with Lie
algebrag. Then Ad[G) = Aut(g)°, the component of 1 in Aut(g), and Aut(g)° =
SL(g).

Proof. 1t is obvious that Ad[G] = Aut(g)°. To prove the first assertion
it is therefore enough to prove that the Lie algebra of Aut(g)° is contained in
ad[g]. But this is immediate since, by Theorem 3.10.6, ad[g] is precisely the
set of all derivations of g. By (3.10.3), ad[g] < 8I(g), and hence Ad[G] = SL(g).
This proves the second assertion.

3.11. The Casimir Element

Our aim in Sections 3.11-3.14 is to prove the famous theorems of Weyl
and Levi-Mal’¢ev. The proofs of both these theorems use the cohomological
result known as Whitehead’s Lemma. The entire argument hinges on a con-
sideration of a remarkable element of the center of the universal enveloping
algebra of a semisimple Lie algebra, known as the Casimir element. We now
define this element and obtain some of its fundamental properties.

Throughout this section, g will denote a fixed semisimple Lie algebra over
k. Let ®@ (resp. §) be the polynomial (resp. symmetric) algebra over g. Denote
by & the universal enveloping algebra of g. We use the same notation for
products, in both & and §, of elements from g; it will usually be clear from
the context whether we are operating in § or . Since the Cartan-Killing
form is nonsingular, we have a canonical linear isomorphism of g* onto g.
We extend this to an algebra isomorphism p > j of ® onto §. Thus, for f €
g*, the element f of g is defined by

(3.11.1) XD =fX) (X € g).
Given any endomorphism L of g, the endomorphism L of g* is defined by
(3.11.2) (LX) = —f(LX) (X € g,f € g%).

Forany X € g, let Dy (resp. D) be the derivation of § (resp. ®) that extends
ad X (resp. (ad X)7). It follows easily from (3.9.9) and (3.11.1) that the
isomorphism p — j intertwines D, and D :

(3.11.3) D,p = (Dyp)” (X eg,pec®).
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If é~is the Casimir polynomial (3.9.6) of g, it then follows from (3.11.3) that
D¢ = 0forall X € g. Let A be the symmetrizer map of § onto & (cf. §3.3),
and let

(3.11.4) o = ME);
w 1s called the Casimir element of &.

Theorem 3.11.1. The Casimir element o belongs to the center of &. Let
{X,...,X,} be a basis for g and let {X*, . .. ,X™} be the dual basis defined by

(3.11.5) {X:, X"> = d,; (the Kronecker delta).
Then
(3.11.6) w = X.X.

1<i<m

Proof. Since D& = Oforall X € g, lies in the center of & by Theorem
3.3.8. We now prove (3.11.6). Fix the basis {X, . . . ,X,,} of g. Theexistence of
the dual basis {X',...,X™} follows, of course, from the nonsingularity of
{+,-»>. Now, it is obvious that X = 3, ., <X, XX, for any X € g. So
(ad X)? = 33, , XXX, X*) ad X, ad X, and from (3.9.6) we get

()= 3 XXDXXNXX) (X €g)

r,s<m

Consequently,
= 3 X.X)XX

1<r,s<m
Now apply the symmetrizer map A to this, remembering that {X,,X,> =
{X,,X,)>; we obtain, in (,

o= 3 X, XOXX

1<r,5<m

= Z (Z <XnX:>X’)XS

1<s<m 1<r<m
= 3 XX
1<s<m
The construction above can be generalized substantially. Let p be a rep-
resentation of g in a finite-dimensional vector space V. Let {) be the kernel
of p and p = )t Write B/(X,Y) = tr(p(X)p(Y)) for all X,Y € g. Then p is
an ideal of g and B”is nonsingular onp x p (Lemma 3.10.7). If ®(p) and $(p)
are respectively the polynomial and symmetric algebras over p, there is a
unique isomorphism f— f of ®(p) onto §(p) such that

(3.11.7) B(f,X) =f(X) (X € p,f € p®).
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Let & be the function X — B”(X,X) (X € p) in ®(p). It is then clear from
(3.9.14) that D,(£7) = 0 for all X € p. On the other hand, since [(),p] = 0,
Dy(&?) = 0 for all X € 1) (here we are regarding §(p) as imbedded in §(g)).
Let

(3.11.8) @ = M(¢%)).

Theorem 3.11.2. Let p be a finite-dimensional representation of g and
p = (kernel p)*-. Let w* be defined as above. Then w* lies in the center of . Let
{X,...,X,} be a basis for p and let {X',... X"} be the basis of p such that
BA(X,X') = 8, (1 < i,j < p). Then

(3.11.9) w = Y, XX.

1<7<p
In particular, denoting by p the reprecentatlon of & that extends the given
representation of g,

(3.11.10) trp(w?) = dim p.

Proof. Proceed as in the preceding theorem. Since trp(X,X?) = B/(X,X")
= 1, we have (3.11.10).

w”’ is called the Casimir element associated with p. Its consideration has
turned out to be one of the most fruitful ideas in harmonic analysis on
semisimple Lie groups and Lie algebras.

Corollary 3.11.3. Let p be as above and let

V,={viv eV, p(Xw=0"forall X € g}

Then V, and V, are invariant subspaces for p, and V' is their direct sum.

Proof. The p-invariance of ¥, and V, is trivial. It remains to prove that
V is the direct sum of ¥, and V,. We use induction on dim p. If Vis the direct
sum of two nonzero invariant subspaces W, and W, then the relations V,, =
Wi+ WynwV,=W,,+ W,,, together with the induction hypothesis,
imply the result for p. In what follows we use this observation without com-
ment.

If p = 0, then ¥, = V, V, = 0, and there is nothing to prove. Let p == 0.
By (3.11.10), trp(w*) # 0, and hence if C = p(w”), then C cannot be nilpotent.
Let N(C?) and R(C*) be the null space and range of C* for s > 1, and let

W, = LAN(CS)’ W, = QR(C:).
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Then by Theorem 3.1.5, Vis the direct sum of W, and W,. On the other hand,
w” lies in the center of &, so the endomorphisms C* (s > 1) commute with
p(X) for all X € g. W, and W, are therefore invariant subspaces for p. If
both of them are nonzero, we have the result by the induction hypothesis.
Since C is not nilpotent, W, cannot be 0. So we are left with the case when
W, = 0and W, = V. Then C must be invertible. But then, using the notation
of the theorem, we see that for any v € V,

v = CC v
~ B pp(xIC .
sisp

Furthermore, if v € V,, then p(X")v = 0 for 1 < i < p, so

Co= 3 pX)p(Xyw
— 0.

In other words, V' =V, and V, = 0 in this case. The induction thus goes
forward. The corollary is proved.

3.12. Some Cohomology

The aim of this section is to prove the cohomological lemmas of White-
head from which the theorems of Weyl and Levi-Mal’¢ev follow quickly.
It turns out not to be difficult to develop a general cohomology theory of
semisimple Lie algebras. We shall not take this up here, but prove the White-
head lemmas only in the cases of immediate interest to us.

Throughout this section, fix a semisimple Lie algebra g over k& and a
representation p of g in a vector space F of finite dimension over k. Let V1(g,p)
be the space of linear maps of g into F, and for s > 1, let V*(g,p) be the space
of s-linear skew symmetric maps of g X --- X g (s factors) into F. Given
0 € V'(g,p), define df € V(g,p) by

(3.12.1) do(X,Y) = p(X)B(Y) — p(Y)O(X) — 6(IX,Y]) (XY € g).

The map @ — d@ is linear, and the set of all @ € V'(g,p) such that d§ = O is a
linear subspace of V'!(g,p). Denote this by C'(g,p). Suppose that v € F and
that

(3.12.2) 0,(X) = p(Xw (X € g).
It then follows from a trivial calculation that

(3.12.3) d6, =0 (v € F).
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The set of all @, (v € F)is thus a subspace of C'(g,p), denoted by B'(g,p). Put

(3.12.4) H'(g,p) = C'(8,p)/B'(3.p).

Now consider an element § € V2(g,p). Define the trilinear map df of g X g
X g into F by

(3.12.5) do(X,Y,Z) = =X, 0(X,[Y,Z]) — 3 p(X)0(Y,Z) (X,Y,Z € g),

where Y denotes summation over the set of cyclic permutations of X, Y, Z.
It is easily verified that df € V3(g,p). The map 6 — d@ is linear, so the set
C%(g,p) of all @ € V2(g,p) such that df = 0 is a linear subspace of V'2(g,p).
On the other hand, if ¢ € V!(g,p) and if we define dp by (3.12.1), a direct
calculation shows that

(3.12.6) d(dp) =0 (p € V'(8.p).

So d (p — dg) maps V'!(g,p) onto a subspace of C2(g,p). Denote this subspace
by B%(g,p). Let

(3.12.7) H*(g.,p) = C*(8,p)/B*(8,p).
The Whitehead lemmas may now be formulated as follows.

Theorem 3.12.1. Let g be a semisimple Lie algebra over k, p a representa-
tion of g in a vector space F of finite dimension over k. Then

(3.12.8) H'(g.,p) =0,  H¥gp)=0.

Proof. To start with, we take up the proof that H'(g,p) = 0. This is
equivalent to proving that

(3.12.9) C'(8.0) = B'(8.p).

In what follows, we write C' and B’ for C'(g,p) and B(g,p) respectively.
For any X € g, let n(X) be the endomorphism of V'(g,p) defined by set-
ting, for each ¢ € V'(g,p),

(3.12.10) (@(XN)P)Y) = —o([X,Y]) + p(X)p(Y) (Y € g).

A straightforward calculation shows that z (X — n(X)) is a representation of
g. If p € C1, we see from (3.12.1) and (3.12.2) that

(3.12.11) 2(X)p =0, (X € g).

Thus 7(X) maps C! into B! for all X € g. In particular, C! is invariant under



Sec. 3.12 Some Cohomology 221

7, and we write 7'(X) = n(X)|C'. Now apply Corollary 3.11.3 to the repre-
sentation z'. We may then conclude that C! is the direct sum of C! and C!
(cf. (3.11.11)). But (3.12.11) shows that C! < B'. So (3.12.9) will be proved
if we show that C! = 0. Suppose # € C}. Then

(3.12.12) pOOBCY) — BUX.YD = 0

for all X, Y € g. On the other hand, as df = 0, we also have p(X)B(Y) —
p(Y)B(X) — B(X,Y]) =0forall X, Y € g.So p(Y)B(X) =0 forall X, Y e
g. Using thisin (3.12.12) we get f([X,Y]) = Oforall X, Y € g. It now follows
from (3.10.2) that g = 0.

We now prove that H2(g,p) = 0. This is the same as proving

(3.12.13) C? = B2
As before, for any X € g we define the endomorphism z(X) of V(g,p) by
(3.12.14) ((X)p(Y,Z)) = p(X)p(Y,Z) + o(Y,[Z,X]) + ¢(Z,[X,Y])

for Y,Z € g and ¢ € V?*(g,p). A straightforward calculation shows that
7 (X — n(X)) is a representation of g in V'2(g,p). Suppose ¢ € C? and that

(3.12.15) px(Y) = p(X,Y) (X,Y € g).
Then since dp = 0, we find from (3.12.1), (3.12.5), and (3.12.15) that
(3.12.16) a(X)p =dpy (X € g).

This equation shows that z(X) maps C? into B? for all X € g. In particular,
C?isinvariant under r, and we write 72(X) = n(X)| C?* (X € g). By Corollary
3.11.3, C? is the direct sum of C2 and C?. On the other hand, (3.12.16) shows
that C? = B2. So in order to prove (3.12.13), it is enough to prove that
C? < B2,

Suppose B € CZ, so that n(X)f = 0 for all X € g. Since df =0, we
see that, on summing (3.12.14) over all cyclic permutations of X, Y, Z (and
denoting such sums by Y)),

Z B(X’[Y’Z]) =0 (X,Y,Z €qg).
Substituting this in the relation z(X)8 = 0, we get

Now Dg = g, so we conclude from this relation that f maps g X g into the
linear span F, of ranges of p(X), X € g (cf. (3.11.11)). On the other hand,
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(3.12.16) implies that dff, = 0, X € g. If we now write p, for the represen-
tation of g obtained by restriction to F,, we can use the previous result that
H'(g,p,) = 0 to obtain, for each X € g, an element v(X) € F, such that

Bx = 0.x); i.e.,
(3.12.18) PXY) = p(YW(X) (X,Y € g).

Since F, N F, = 0, it is obvious that v(X) is uniquely determined. Conse-
quently, the map v (X — v(X)) is linear. If we substitute (3.12.18) in (3.12.17),
we get

pPX){p(YW(Z) — v([Y,Z]} =0 (X,Y,Z € g).
Thus p(Y)»(Z) — v([Y,Z]) € F,. Since p(Y)(Z) — »([Y,Z]) € F,, we have
pYW(Z) — u([Y,Z]) =0 (Y,Z < g).
Using this in (3.12.18), we obtain
(3.12.19) BX,Y) = p(Y)u(X) = o([Y,X]) (X,Y € g).

It follows easily from (3.12.19) that § = —dv, so f € B% Thus C; < B2
As observed earlier, this completes the proof of the theorem.

3.13. The Theorem of Weyl

We now use the relation H'(g,p) = 0 to prove one of the most funda-
mental theorems in the theory of semisimple Lie algebras, namely, the theo-
rem of H. Weyl, which asserts that every finite-dimensional representation of
a semisimple Lie algebra is semisimple. Weyl proved this by transcendental
arguments based on his theory of compact semisimple Lie groups. Our
present method is algebraic.

Theorem 3.13.1. Let g be a semisimple Lie algebra over k. Then all finite-
dimensional representations of § are semisimple.

Proof. Let V be a finite-dimensional vector space over k and ¢ a repre-
sentation of g in V. Let W be a subspace of V that is invariant under . We
show that there is a subspace W’ of V that is complementary to W and in-
variant under ¢. Assume that W == 0, W = V, and select some subspace w
of ¥ complementary to W. Let B, be the projection of ¥ onto W parallel to
W.If A is any projection of V onto W, i.e., 4> = A and A[V'] = W, then the
null space N, of A is complementary to W; N ,is invariant under o if and only
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if A commutes with g, i.e.,
(3.13.1) [6(X),4] =0 (X € g).

Now B, may not satisfy (3.13.1), so we have to modify it in order to be able
to construct a projection 4 of V onto W satisfying (3.12.1). To this end,
therefore, we introduce the vector space F of all endomorphisms C of V such
that C[V'] < W and C[W] = 0. Since W % 0 and W == V, it follows that
F £ 0. It is easy to see that an endomorphism 4 of V is a projection of V
onto W if and only if it is of the form B, — C for a suitable C € F. Conse-
quently, in order to construct a projection 4 of ¥ onto W satisfying (3.13.1),
it is sufficient to construct an element C € F such that

(3.13.2) [0(X),B,] — [0(X),C] (X € g).

It follows from the definition of F that if D € F, then for any endomor-
phism L of ¥ that leaves W invariant, both LD and DL belong to F. In par-
ticular, if we set

(3.13.3) p(X)-D = [a(X),D] (X q,D & F),

then, p(X): D p(X)- D is an endomorphism of F for any X e g. It is
elementary to verify that p is a representation. On the other hand, it follows
from the relations Byv € W (v € V) and Byw = w(w & W) that for any
X € g, [6(X),B,] is an element of F. Let

(3.13.4) 0(X) = [0(X).B,] (X € g).

Then @ is a linear map of g into F.
We now calculate df. From (3.12.1) we have, for X, Y < g,

(@0)(X,Y) = [6(X).[o(Y).B,]] — [o(Y),[0(X),B,]] — [a([X,Y]),B,]
= 0.

So @ e C'(g,p). Since H'(g,p) = 0 by Theorem 3.12.1, it follows that there is
anelement C € Fsuch that §(X) = p(X)- Cforall X € g. Thus [0(X),B,] =
[o(X),C]for all X & g, which is just (3.13.2). This completes the proof of the
theorem.

Weyl’s theorem reduces the study of arbitrary representations of a semi-
simple Lie algebra to the study of its irreducible representations. It was Cartan
who first obtained a description of all the irreducible representations of a
complex semisimple Lie algebra. His method involved an extremely detailed
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consideration of the classification of simple Lie algebras; a general algebraic
method for this problem was devised only recently by Harish-Chandra. The
same question had been solved earlier by H. Weyl using transcendental
methods. We treat these developments in the next chapter.

3.14. The Levi Decomposition

We now prove that any Lie algebra is a semidirect product of its radical
and a semisimple subalgebra. Such decompositions are known as Levi decom-
positions and are very useful in reducing problems about general Lie algebras
to problems of solvable and semisimple Lie algebras. We begin with the
definition of semidirect products.

Let g, m be Lie algebras over k, ¢ a representation of m in q such that
o(Y) is a derivation of g for all ¥ € m. For X,X’' € g and Y,Y' € m, let

(3.14.1) [(XY),X,Y)] = (X, X+ e(V)X — a(Y)X,[Y,Y']).

It is then easily verified that this converts the vector space q X m into a Lie
algebra. We denote it by q X, m and call it the semidirect product of q with
m relative to o. If ¢ = 0, we obtain the direct product, denoted by q X mt.
If g = q X {0} and m’ = {0} X m, it is obvious from (3.14.1) that ¢’ is an
ideal and m'’ a subalgebra of q X, m, and that

(3.14.2) q+m=qx,m, aNnm =0.

Conversely, let g be any Lie algebra over k, g an ideal and m a subalgebra of
g such that

(3.14.3) q+m=gq, gNnnm=0.

For Y € mand X € q, let o(Y)X = —[X,Y]. Then ¢ (Y~ o(Y)) is a re-
presentation of m in q and o(Y) is a derivation of g for all Y € mt. Itis then
easy to verify that

(3.14.9) :(X,Y)~»X+Y (Xeq,Yem)
is a Lie algebra isomorphism of q X, m with g and that
(3.14.5) 7l X {01 =q,  7[{0} x m]=m.

Let g be any Lie algebra over k and q its radical. By a Levi subalgebra of g
we mean a subalgebra m such that (3.14.3) is satisfied. Since g/q is semisimple
and m is isomorphic to it, a Levi subalgebra is necessarily semisimple. The
relation (3.14.3) is then called a Levi decomposition of g. The main theorem
of this section is that of Levi-Mal’¢ev, which asserts that any Lie algebra
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admits Levi subalgebras. We shall also prove the result of Mal’¢ev-Harish-
Chandra, which asserts that any two Levi subalgebras are conjugate under a
naturally defined subgroup of the group of automorphisms of the Lie algebra.

Theorem 3.14.1. Let § be a Lie algebra over k, q its radical. Then g
admits Levi subalgebras. If wi is a Levi subalgebra of g, then it is also a Levi
subalgebra of Dg, and Dg = [q,q] + W is a Levi decomposition of Dg.

Proof. We prove the existence of a Levi subalgebra of g by induction on
dim q. If dim q = 0, g itself is a Levi subalgebra. So let dim q > 1, and as-
sume the existence of Levi subalgebras for any Lie algebra whose radical has
dimension < dim q. We consider two cases.

Case 1: Dq# 0. Let ¢' = g/Dq and let # be the natural map of g onto
g’. Then z[q] = q’ is the radical of ¢' by Theorem 3.10.5. By the induction
hypothesis, " admits Levi subalgebras. Let m’ be one of them, and let m, =
n~'(m’). Theng = q + m, and Dg = q N m,. Now, Dq is a solvable ideal of
My, and 11,/Dq is isomorphic to m’, which is semisimple. So Dgq = rad m, by
Theorem 3.10.5 again. Further, since q is solvable, dim ®q < dim g. So by the
induction hypothesis we can find a Levi subalgebra m of m,. It is now obvious
that m satisfies (3.14.3) and is thus a Levi subalgebra of g.

Case 2: Dq = 0. q is thus abelian. Let g, = g/q, and let z be the natural
map of g onto g,. Select a linear map u of g, into g such that mo y is the
identity. For any X, € g, write p(X,) for the endomorphism ad X| g where
X € g is such that z(X) = X, ; the fact that q is abelian implies easily that
this is a valid definition. Obviously, p (X, — p(X),)) is a representation of the
semisimple Lie algebra g, in q, and

(3.14.6) p(X,) = ad u(X))|g (X, € g).
For X, Y € g,, let
(3.14.7) O(X.Y) = [u(X),u(Y)] — p((X,Y)).

Since 7 is a homomorphism and zo 4 is the identity, it is clear that u([X,Y])
and [u(X),u(Y)] both lie above the same element, namely [X,Y], of g,. So
0(X.,Y) € q. A trivial verification shows that 6 is a skew-symmetric bilinear
map of g, X g, into q. We claim that df = 0, d@ being defined by (3.12.5).
In fact, if X, Y, Z € g, and X denotes summation over the cyclic permuta-
tions of X, Y, Z, we see from (3.14.6) and (3.14.7) that

—di(X,Y,Z) = Z{O(X.[Y.Z]) + p(X)O(Y,Z)}
= Z{—p(X[Y.Z]]) + [O[u(Y),1(Z)]])}

= —puEX[Y.Z]]) + Z(uX0,[u(Y),u(2)]]
-0,
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by the Jacobi identity. Now, H*(g,,p) = 0, since g, is semisimple. Hence
there is a linear map v of g, into q such that § = dv, i.e.,

O(X,Y) = p(X)(Y) — p(Y)W(X) — W([X,Y]) (XY € g)).
In other words, using (3.14.6) and (3.14.7), we have
(3.14.8) (X)), u(V)] — (X, Y]) = [u(X),w(Y)] — [w(Y),W(X)] — w([X,Y])
for all X, Y € g,. Let us now write
MX) = u(X) — v(X) (X € g)).

Since the values of v are in q, mo A is also the identity, and hence A is also a
linear injection of g, into g. If we now remember that [v(X),»(Y)] = O for
all X, Y € g,, we can conclude at once from (3.14.8) that 1 isa homomorphism
of g, into g. Consequently, if m1 = A[g,], then m is a subalgebra of g, and the
relations (3.14.3) are satisfied. m is thus a Levi subalgebra.

The induction argument is completed, so we have proved the existence of
a Levi subalgebra for any Lie algebra.

Now let b = [q,9], and let m be a Levi subalgebra of g. Since g = q + m,
Dg = [g,6] = [a,a] + [m,m]. But D = ni, because m is semisimple. Hence
Dg =p + m, while p N m = g N m = 0. Thus p is the radical of Dg, and
m is a Levi subalgebra of Dg. Note that

(3.14.9) v =qnN Dg.
The theorem is completely proved.

Let notation be as above. Then p = [q,8] is contained in nil rad g, by (iii)
of Theorem 3.8.3. In other words, b is an ideal in g and ad X is nilpotent for
any X € p. Now, if 4 is any finite-dimensional (not necessarily associative)
algebra over k and D is a nilpotent derivation of A4, a direct calculation shows
that exp D = 1 4+ 3., (1/s!)D* is a well-defined automorphism of 4. Ap-
plying this to the present situation, we see that exp ad Z is an automorphism
of the Lie algebra g forany Z € p. Let G, denote the group of automorphisms
of g generated by the exp ad Z, Z € p. If y € G, it is obvious that ¢” = q.
So for any Levi subalgebra m of g and any y € G, n’ is also a Levi sub-
algebra. We now prove the conjugacy theorem of Mal'¢ev-Harish-Chandra.

Theorem 3.14.2. Let g be a Lie algebra over k, q its radical, y = [q,8],
and G, the group generated by exp adZ, Z & p. If m,,m, are two Levi sub-
algebras of g, there is y € G, such that n, = .

Proof. We prove this by induction on dim g. Assume the theorem to be
true for all Lie algebras of dimension <dim g. If dim Dg < dim g, and m,
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(i = 1, 2) are Levi subalgebras of g, they are also Levi subalgebras of g,
and the result follows from the induction hypothesis. We may thus assume
that Dg = g. Then by 3.14.9, p = q; in particular, q = nil rad q. Let ¢ be
the center of q. ¢ is easily seen to be a nonzero ideal of g. Two cases arise.

Cuse I: ¢ # q. Letwm; (i = 1, 2) two Levi subalgebras of g. Let ¢' = g/,
and m) (resp. q") ({ = 1,2) be the image of mi, (resp. q) in ¢’. Then i
is a Levi subalgebra of g for i= 1,2, and q' = nil rad ¢ = rad g'.
So by the induction hypothesis, we can find Z/,. .. ,Z, € g such that (m’)¥
= 115, where x" = expad Z| - - -exp ad Z|. Let Z, be an element of q such
thatitsimage inq'is Z; (1 <<j <{s). If we writex = expad Z, - - -expad Z,,
then m¥ < w1, + ¢. Now, [) = m, + ¢ is a Lie algebra with dim ) < dim g,
¢ = rad {), and mf,m, are two Levi subalgebras of {). So by the induction

hypothesis, we can find elements Y,. . . ,Y, € ¢ such that (n¥)* = ni,, where
z=expadY,---expad Y. If y = zx, then y € G, and m} = m,.
Case 2: ¢ = q. In this case q is abelian. Also, as before, [q,0] = q. Let

m; (i = 1, 2) be Levi subalgebras of g. If Y & q, (ad Y)? = 0, so
(3.14.10) expadY =1-adY (Y € q).

Let E and E,, be the projections of g onto q and nt, respectively, correspond-
ing to the direct sum decomposition ¢ = q + ut,. E,,, is obviously a homo-
morphism. Moreover, E,,, is zero precisely on g, so E,,, is injective on ui,.
So the restriction E of Ey, to n1, is a Lie algebra isomorphism of n1, onto m,,
and we have

(3.14.11) Z = EZ)+ E(Z) (Z € wy).

If we now write the condition that £ is a homomorphism, and remember that
q is abelian, we can conclude from (3.14.11) that

(3.14.12) E([Z2,2') = [Z,E(Z)] + [E(Z),Z']
forall Z, Z" € m,. Let p(Z) = ad Z|q for Z € m,. Then (3.14.12) becomes
(3.14.13) PZ)E(Z) — p(Z)E(Z) — E([2,Z]) =0

for Z, Z' € m,. In other words, dE, = 0. Since H'(i,,p) = 0, it follows that
there is an element Y € q such that E(Z) = [Z,Y]for all Z € m,. But then,
by (3.14.10),

E(Z)=Z + (ad Y)(Z)
= (exp ad Y)(Z).

If y = (expad Y)~', then y € G, and m} = m1,. This completes the proof of
the theorem.
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Corollary 3.14.3. Let m be a Levi subalgebra of g, a a semisimple subalge-
bra. Then there is y € G, such that o> = m. In particular, a maximal semisim-
ple subalgebra is a Levi subalgebra.

- Proof. g, = q + a is a subalgebra, and a is a Levi subalgebra of g,,
while g = rad(g,). Leta’ =m N g,. Theng, =q +a’,and g N a’ =0, so
a’ is also a Levi subalgebra of g,. Since [q,9,] < [a,5], we can find y € G,
such that @ = a’ < m.

3.15. The Analytic Group of a Lie Algebra

We shall now use the Levi-Mal'¢ev theorem to prove the global version
of the third fundamental theorem of Lie, namely that given a real or complex
Lie algebra, there is an analytic group whose Lie algebra is isomorphic to the
given one. Throughout this section, k = R or C.

We begin with the concept of semidirect products for Lie groups. Let 4
and B be analytic groups and let # (b +— ¢,) be a homomorphism of B into the
group of automorphism of the analytic group 4. For b € B, a € A, write
t,[a] for the image of a under ¢,. We assume that the map (a,b) — t,[a] is
analytic from A X Binto A. Fora,,a, € Aand b;,b, € B, let

(3.15.1) (ay,bi)(az,b,) = (aity[a;]b.by).

Let 1, and 1, be the respective identities of 4 and B. 1t is then easily verified
that (3.15.1) converts the set 4 X B into a group and that

(3.15.2) (a,b)™' = (tp[a '1,b7"') (a € A,b € B).

It is clear from the analyticity of the map (a,b) — ¢,[a] that on equipping
A X B with the product analytic structure, we obtain an analytic group. We
denote this analytic group by A4 X, B and call it the semidirect product of A
with B relative to t. If ¢, is the identity for all & € B, this reduces to the usual
direct product.

Fora € Aand b € B, let

(3.15.3) a = (aly), b =(1ub)
énd let
(3.15.4) A = A x {lg}, B’ = {1,} X B.

Since for a,,a, € A and b,,b, € B one has

(3.15.5) (a,b))az,by)a,b)™! = (aity[as)ts o laT '1,6,b,b71),
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it follows that A’ is a closed normal subgroup of 4 X, B, that B’ is a closed
subgroup, and that

(3.15.6) b'a’b’' =tfal (a € A,b € B).

Let a and b be the respective Lie algebras of 4 and B. Let G = 4 X, B.
For any b € B, t, is an automorphism of A and its differential 7, is an auto-
morphism of a; moreover

3.15.7) t,[exp X] = exp1,(X) (X € a).

Since b — ¢, is a homomorphism, the map z (b — t,) is a homomorphism of
B into the group of automorphism of a. It follows easily from (3.15.7) that ¢
is an analytic map of B into GL(a). Let ¢ be its differential. Since each 7, is
an automorphism of a, it follows that ¢(Y) is a derivation of a for each Y €
b. We may therefore form the semidirect product ¢ = a X, b. g is said to be
associated with G. ‘

We now show that there is a natural isomorphism of the Lie algebra of G
witha X, D. Let g’ be the Lie algebra of G, and let a’ and b’ be the respective
subalgebras of g’ defined by 4" and B’. a’ is an ideal of g’, and

(3.15.8) a +0 =g, aNb =0.

Let X+ X' (resp. Y Y’') denote the isomorphism of a onto a’ (resp. b
onto b’) corresponding to the isomorphism a +— a’ (resp. b+ b’) of 4 onto
A’ (resp. B onto B’). It is clear from (3.15.6) that for any b € Band X € a

(exp7,(X)) = b exp X'b' 1,
from which we conclude that
(3.15.9) 7,(X) = Adg(b")(X).
If we differentiate this relation, we get
(3.15.10) (o)XY =[Y,X] (Y € b, X € q).

The last equation makes it clear that the map (X,Y)+— X’ 4+ Y’ is a Lie
algebra isomorphism of a X, b onto g'.

Now consider the converse problem of associating a semidirect product
of groups with a given semidirect product of Lie algebras. Let 4 and B be
simply connected analytic groups with Lie algebras a and b respectively, and
let o be a representation of b in a such that ¢(Y) is a derivation of a for all
Y € b. Since B is simply connected, there is a representation 7 (b +— 7,) of
B in a whose differential is o. Clearly, each 7, is an automorphism of a and
thus is the differential of an automorphism 7, of 4, the existence and unique-~
ness of ¢, being an immediate consequence of the simple connectedness of 4.
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We leave the easy verification of the analyticity of the map (a,b) — #,[a] to
the reader. We may thus form the semidirect product. G = 4 %, B. It is
said to be associated with ¢ = a x 0. Clearly, a X, b is associated with
A X, B

Semidirect products occur naturally in many problems. As an interesting
class of examples, we mention the case when A is a vector space and b+ ¢,
is a representation of Bin A.

We now state and prove the global version of the third fundamental
theorem of Lie.

Theorem 3.15.1. Let g be a Lie algebra over k (= R or C). Then there is a
simply connected analytic group whose Lie algebra is isomorphic to g.

Proof. Note that if the theorem is true for two Lie algebras a and b, and
if o is a representation of a in b such that g(Y) is a derivation of a for all
Y € b, then it is also true for a %, b. For let 4 and B be simply connected
analytic groups whose Lie algebras are respectively isomorphic to a and b.
Let us assume, by appropriate identification, that a and b are actually the
respective Lie algebras of 4 and B. Then the semidirect product of 4 with B
that is associated to a X, b is a simply connected analytic group whose Lie
algebra is isomorphic to a X b.

This said, we come to the proof of the theorem. Consider first two special
cases. Case 1. g solvable. We prove the theorem in this case by induction on
dim g. For dim g = 1 this is trivial. Since Dg # g, we can select a subspace
a < gsuch that Dg < a and dim(g/a) = 1. Let b be a subspace of dimension
1 complementary to a, and for X € a, Y € b, let ¢(Y)X = [Y,X]. Since
[a,g] € Dg < a, ais an ideal of g, o(Y) is a derivation of a for Y € g, and
o is a representation of b in a. The theorem is true for a and b by the induc-
tion hypothesis. So since g is isomorphic to a x . b, the theorem is true for g
too. Case 2: g semisimple. Then the adjoint representation of g is faithful
and so gives rise to an isomorphism of g with a subalgebra g’ of gl(g). Let G’
be an analytic subgroup of GL(g) defined by g, G a universal covering group
of G'. Then G is a simply connected analytic group whose Lie algebra is
isomorphic to g.

We now come to the general case. Let a = rad g and b a Levi subalgebra
of g. For X € a, Y € b, let a(Y)X = [Y,X]. Then g is obviously isomor-
phic toa x,b. Sincea is solvable and b is semisimple, the theorem is true
for them. So the theorem is true for g. This completes the proof.

3.16. Reductive Lie Algebras

It is possible to use the foregoing results to obtain some general results
concerning semisimple representations of arbitrary Lie algebras and the
structure of reductive Lie algebras.
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Lemma 3.16.1. Let A be an associative algebra with unit 1 over k, S a
subset of A such that S and | generate A. Let D be a derivation of A with the
property that for eachu € S, there is an integer n(u) > 0 such that D"y = 0.
Then for each v € A we can find an integer n(v) > 0 such that D"Vv = 0. In
particular, if A is finite-dimensional, D is a nilpotent derivation of A.

Proof. Foru,v € Aandany integer m > 0, we have the Leibniz formula

Dr(uv) = Y (m) DrubD"™".
o<r<m \ p

Let A" be the set of allu € A with the property that for some integer m(u) > 0,
Dm®y = 0. Then the above formula shows that 4’ is a subalgebra of 4 con-
taining S. Hence A" = A. The second assertion follows trivially from the first.

Theorem 3.16.2. Let g be a Lie algebra over k and let q = rad §. Then
[a.8] is a p-nil ideal for any representation p of § and is the intersection of the
kernels of the semisimple representations of §. Moreover, there is a semisimple
representation whose kernel is precisely [q,a]. In particular, g has a faithful
semisimple representation if and only if g is the center of §. In this case, q is the
direct sum of g and Dg, and Dg is semisimple.

Proof. Letp = [q,5). We begin by proving that if p is any representation
of g in a finite-dimensional vector space ¥ over k, then p(X) is nilpotent for
X € p. Clearly, we may assume that & is algebraically closed. Suppose first
that p is irreducible. p being a nil ideal of g, p[p] is a nil ideal of p[g]. Let E
be the associative algebra of all endomorphism of ¥, and for X € p, let 4,
be the endomorphism M +— p(X)M — Mp(X) of E. Fix X € p. Then 4, is a
derivation of E and A4, induces a nilpotent endomorphism of p[g]. On the
other hand, p being irreducible, p[g] generates E. So by Lemma 3.16.1, A is
nilpotent. Using the Jordan decomposition of p(X), we conclude easily that
p(X)isof theformc-1 + N, where ¢ € k and N is nilpotent. But zr p(X) = 0
because X € Dg. So ¢ = 0, and p(X) is nilpotent. It now follows easily
from Lemma 3.8.2 that p[p] = 0 if p is semisimple and that p is a p-nil ideal,
for arbitrary p.

Letg’ = g/[n,g], and let 7 be the natural map of g onto ¢’. Write g’ = =n[q].
By Theorem 3.10.5, ' is the radical of g". Since [q',g'] = 0, q’ is the center of g'.
Let m’ be a Levi subalgebra of ¢'. Then

D" =1[g"a'1 + [g" ]
= [q",m'] 4 ', m]

’

=1,

showing that m’ = Dg’ is an ideal of ¢'- g’ is thus the direct sum of the ideals
q" and m’. m’, being semisimple, has a faithful semisimple representation.
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q’, being abelian, is trivially seen to possess a faithful semisimple representa-
tion too. So ¢’ has a faithful semisimple representation. This gives rise to a
semisimple representation of g whose kernel is precisely [q,9]. The remaining
assertions follow trivially from this.

A Lie algebra g is called reductive if its radical coincides with its center
(cf. Koszul [1]).

Theorem 3.16.3. Ler g be a Lie algebra over k. Then the following state-
ments are equivalent.

(1) g is reductive
(ii) g has a faithful semisimple representation
(iii) The adjoint representation of § is semisimple.
(iv) Dgq is semisimple.
In this case, g is the direct sum of its center and Dg.

Proof. (i) <> (ii) and (i) = (iv) by the previous theorem. If Dg is semi-
simple, it must be a Levi subalgebra of g by Theorem 3.14.1. So g = q +
Dg is a direct sum. But then [gq,q] = g N Dg = 0, so q = center(g). Thus
(iv) < (i). If g is reductive, then ad[g] = ad[Dg] and Dg is semisimple, so by
Weyl’s theorem, the adjoint representation of g is semisimple. Thus (i) = (iii).
Conversely, let (iii) be true. Let ¢ be the center of g, and b a subspace of g
complementary to ¢ and invariant under ad[g]. Then b is an ideal. Obviously,
as [c,v] = 0, center(v) < center(g), so center(v) = 0. Thus the adjoint rep-
resentation of v is faithful; since ad{pb] = ad[g], it is even semisimple. So
by the previous theorem v is reductive. Since center(y) = 0, v is semisimple,
and since b = Dg, we have (iv). This completes the proof.

Corollary 3.16.4. Let 11 be the nil radical of g,) = g/n, and let y be the
natural map of § onto \). Then 1) is reductive, and y[q] is the center of ). If
g = q + nt is a Levi decomposition of g, then \j = y[a] + y[m] is a Levi de-
composition of |y, and v is a bijection of m onto p[m].

Proof. By Theorem 3.10.5, yp[q] = rad{). Since [q.5] & 11, we have
[[a],§] = 0. This implies that § is reductive and that p[q] is the center of ).
Since m N 11 = 0, y is a bijection on nt. The rest is trivial.

From these two theorems we can obtain the following decisive criterion
for the semisimplicity of a representation of an arbitrary Lie algebra.

Theorem 3.16.5. Let g be a Lie algebra over k, p a finite-dimensional
representation of o. Then p is semisimple if and only if p(X) is a semisimple
endomorphism for every element X in the radical of g.
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Proof. Let q = rad g. To prove that p(X) is semisimple for all X € q
when p is semisimple, we may assume that k is algebraically closed. Let p
be semisimple. Then p|[g,g] = 0, by Theorem 3.16.2, so p induces a semisim-
ple representation of g/[g,4]. We may therefore assume that g is the center of
g (and hence that g is reductive) without loss of generality. Let X € q. To
prove that p(X) is semisimple it is enough to prove that each eigen subspace
of n(X) admits a complementary subspace invariant under p(X). Let V be
the space on which p acts and let A be an eigenvalue of p(X). Then V, = {v:
v € V, p(X)v = Av} is invariant under p, since [X,g] = 0. So there is a sub-
space of V' complementary to V, and invariant under p[g], in particular under
p(X). We now turn to the converse. Suppose p is a representation of g in a
finite-dimensional vector space V' over k such that p(X) is semisimple for each
X e q.Since p[q]is the radical of p[g] by Theorem 3.10.5, we may, by replacing g
with p[gl, assume that ¢ < gl(V) and p(X) = X (X € g). Let X € [q,4]. Then
ad, X is nilpotent. On the other hand, X is semisimple, so by Lemma 3.1.11
ad X is a semisimple endomorphism of g{(V); in particular, ad; X is semisim-
ple. This shows that ad; X = 0, proving that [q,q] = 0. g is thus reductive,
and q = center(g). By passing if necessary to an algebraic closure of k, we
come down to the case when k is algebraically closed. We can then find
distinct elements 4,,...,4, of 0* and subspaces V,,. .. ,V, of V' such that V
is the direct sum of the V;and V, = {v:v € V, Xv = 4,(X)v for all X € q}.
Since q = center(g), each V, is invariant under g. For any i, g|V; = Dg|V,,
so by Weyl’s theorem applied to the semisimple Lie algebra Dg, X > X |V,
is a semisimple representation of g. Hence X — X is a semisimple represen-
tation of g.

Theorem 3.16.6. Let g be a Lie algebra over k and let p,p,,. .. ,p, be
finite-dimensional semisimple representations of §. Then the representations p*
and p, Q) - - - & p, are semisimple.

Proof. Let g =radg. For X ¢ g, p(X) is semisimple. Hence p*(X) is
semisimple by Lemma 3.1.11. This proves that p* is semisimple. For the next
assertion it is enough to consider the case s = 2; the general case follows by
induction on s. Let p; act in the space V; and let 1, be the identity of V.. Then
if ©=p,&® p;, we have 7(X) = p,(X)® I, + 1, ® po(X) (X € g). For
X € g, p,(X) and p,(X) are semisimple. Then 7(X) is semisimple, and hence
7 is a semisimple representation.

3.17. The Theorem of Ado

The aim of this section is to prove the theorem of Ado, which asserts that
a finite-dimensional Lie algebra over a field k& of characteristic zero always
possesses at least one faithful finite-dimensional representation. This was
prove by Ado in 1935 [1,2], but his proof appears to be incomplete at some
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places. A complete proof was given by Cartan in 1938 [5] using global tran-
scendental methods; more recently, proofs using algebraic methods were
given by Harish-Chandra [2] (cf. also Hochschild [1]. Essentially, we follow
Harish-Chandra’s method in this section. All Lie algebras considered in this
section are finite-dimensional.

Lemma 3.17.1. Let a be a Lie algebra over k, and let 9 be its universal
enveloping algebra.

(i) Suppose M is a proper two-sided ideal of N. Then in order that dim
(A/M) < oo, it is necessary and sufficient that for any a € U there exist an
element p, in the algebra k[T of polynomials in an indeterminate T with coeffi-
cients from k, such that p(a) € M

(i) Suppose W, are proper two-sided ideal of N such that dim(A/M,) < o
A<i<r).LetM=M,---IM,. Then M is a proper two-sided ideal of ¥,
and dim(A/M) < oo.

Proof. (i) Suppose dim(A/M) < oo and a € U. Then for some integer
N> 0, l,a,a%,...,a" are linearly dependent modulo M. So p(a) € M for
some p € k[T]. For the converse, let I be a proper two-sided ideal of U, and
let {X,,...,X,} be a basis for a. For each i we can choose an integer N, > 0
and an element p;, € k[T, of the form

pi=TVN+ > ;TN (¢ € k),

0<j<N;

such that p,(X,) € M. A simple induction on r shows that

(3.17.1) XreM+ X k-X5 (r=0).
0<s<Ny
Now use induction on m (1 << m < n) to conclude that for all integers 7y, . . .,
'm 2 0’
(3.17.2) Xy o Xme M + Z k-X;l---X::.
<N

Taking m = n in (3.17.2) and using the Poincaré-Birkhoff-Witt theorem, we
find that the monomials X5 --- X5 (0 < s, < N, for 1 <i<n) span A
modulo M. Thus dimA/M) < N, ---N, < co.

(i) Clearly, M = N <<, M;, so M is proper. Suppose a € A. We can
choose p;, € k[T] such that p(a) € M,. Write p = p, --- p,. Then p € k[T]
and p(a) € M. So by (i), dim(A/M) < oo.

Lemma 3.17.2. Let a, U be as above. Suppose that ti is an ideal of a and p
is a finite-dimensional representation of a such that p(X) is nilpotent for all X €
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1. Let g be the representation of U that extends p and let & denote the kernel
of p. Let

(3.17.3) M, = (& -+ Ay (p=12,...).
Then we have the following properties.

(i) M, isaproper two-sided ideal of U, and dim(U[M,) < oo forallp > 1
(i) If D is a derivation of a that maps a into n, and if D is the derivation
of U that extends D, then D[IR,] = M, for p > |
(iii) There exists r > 1 such that M, < §

Proof. Let V denote the vector space on which g acts. Let V, (0 << i < r)
be invariant subspaces for ¢ such that Vy =V 2V, 2..- 2V, =0 and
such that the representation g; of 9 in V,_,/V, is irreducible (1 < i<Cr).
Write M = & + An. Then by (3.8.2),

(3.17.4) M < {aia € W aa)V,.,] < Viforl <i<r}

From (3.17.4) we find that | ¢ 9. Hence M is a proper two-sided ideal of .
As & < M, we must have dim(/IN) < co. Hence by Lemma 3.17.1, dim(2(/M,)
< oo forall p > 1. Further, it follows from (3.17.4) thatifa, e M (1 < i < r),
then ¢(a, - - - a,) = 0. This proves (iii). Suppose finally that D is a derivation
of a that maps a into 1t and that D is its extension to a derivation of 9. Since
D1 =0, D[a] < u, and a generates 9, we see that D maps 9 into 9, so
D[IM] < M. Consequently D leaves IR, invariantfor all p > 1.

Lemma 3.17.3. Let notation be as above and let r = 1 be such that MM, <
K. Let U = A/, let y be the natural map of W onto U, and let & be the natural
representation of Ain U. Let b be the Lie algebra of all derivations of a that map
a into n. For D € b, let D be the endomorphism of U induced by D. Then we
have the following :

(i) D> D is a representation of b in U.
(i) Fora e Nand D € b, &(Da) = [D,&(a)]
(iti) If D € b is nilpotent, D is nilpotent.

Proof. Since D D is a representation of b in 9, (i) is immediate.
Suppose that a, b € 9. Then

&(Da)(y(b)) = y((Da)b)
== p(D(ab) - p(a.Db)
= Dy(ab) — &(a)y(Db)
= D&(a)y(b) — E(a)Dy(b)
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This proves (ii). To prove (iii), let / > 1 be such that D'X = 0 for all X € a.
If X,,...,X, € a, then D?(X,-.-X,)is a linear combination of terms of
s With s, >0 for all / and s, + ---

.....
,,,,,

.....

Lemma 3.174. Let g bea Lie algebra over k,and let g = a + b, where a
is an ideal and b is a subalgebra of g, the sum being direct. Suppose 1 is an ideal
of a such that [b,a] < n. Let & be the universal enveloping algebra of g, 9 the
subalgebra of & generated by a. Suppose o is a finite-dimensional representation
of W such that o(X) is nilpotent for all X € w. Then there exists a finite-dimen-
sional representation ¢’ of & with the following properties.

(1) The kernel of a’ | is contained in the kernel of o
(1) If X € g, then o'(X) is nilpotent provided either that X € a and o(X)
is nilpotent, or that X € b and (ad X)|« is nilpotent.
(iii) Furthermore if wis nilpotent, then for any X € nwand Y € b such that
(ad Y)|a is nilpotent, o' (X + Y) is nilpotent.

Prcof. We use the notation of the previous lemma. Let & = kernel(s).
For Y € b, let D, be the derivation X — [Y,X] of a. Then D, € b for all
Y € b. We now define the map ¢’ (g — gl(U)) by

(3.17.5) X +Y)y=&X)+ D, (X €a,Y eh).

It follows from (i) and (ii) of Lemma 3.17.3 that ¢’ is a representation of g in
U. We extend ¢’ to a representation of & in U and denote the extension by ¢
also. If a € 9, then o’'(a) = &(a), so the kernel of ¢’ | U is precisely TN,. Since
M, = &, we have (i). If X € a and ¢(X) is nilpotent, X’ & for some /> 0.
So X" € M,, proving that ¢'(X)”* = 0. If X € b is such that D, is nilpotent,
then ¢'(X) = D, is nilpotent by (iii) of previous lemma. We thus have (ii).
Suppose now that t is nilpotent and Y € D[ is such that D, is nilpotent. Let
) =n + k- Y. Then |) is a subalgebra and n is an ideal in [). Since 11 and §/n
are nilpotent, {j is solvable. Therefore, if

¢ ={Z:Z € 1), 6'(Z) is nilpotent},

then ¢ is an ideal of {) (Theorem 3.7.6). Since n = cand Y e ¢,c=1. In
particular, ¢’'(X + Y) is nilpotent for all X € 1.
This proves the lemma.

Corollary 3.17.5. Suppose o is faithful on . Then ¢’ is faithful on a.

Proof. This follows at once from (i).
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Corollary 3.17.6. Suppose g is a nilpotent Lie algebra over k. Then g has
a faithful finite-dimensional nil representation.

Proof. We use induction on dim(g). If dim(g) = 1, this is obvious. For
dim(g) > 1, we select an ideal a of g such that dim(a) = dim(g) — 1. Let X
be an element of g not in a, and let b = k- X. We use the above lemma with
a =1 and ¢ as a finite-dimensional representation of 9 such that ¢|a is a
faithful nil representation. Then p’ = ¢'|g is a nil representation that is
faithful on a. On the other hand, since dim(g/a) = 1, we can find a nil-repre-
sentation p”’ of g such that a is the kernel of p". The direct sum of p’ and p”
is a faithful nil representation of g.

We now state and prove the following version of Ado’s theorem.

Theorem 3.17.7. Let g be a Lie algebra over k and w its nil radical. Then
there exists a faithful finite-dimensional representation p of § such that p(X) is
nilpotent for all X € 1.

Proof. We use induction on dim(g). Suppose first that g is solvable. In
view of the preceding corollary, we may assume that 11 = g. Now Dg < 1u;
hence if a is any linear subspace of g such that a = 1 and dim(a) = dim(g)
— 1, then a is an ideal of g and [g,a] £ Dg = 1. Choose any such a and
an element X € g not in a. We write b = k- X. By the induction hypothesis,
there is a finite-dimensional representation ¢ of U such that ¢|a is faithful
and o |1 is a nil representation. The direct sum p of p’ and p”, where p'' is a
nil representation of g with kernel a, has the required properties to carry the
induction forward.

Suppose that g is not solvable. Let ¢ = rad g, and let ¢ = q + m be a
Levi decomposition of g. Then dim(q) < dim(g), so by the induction hypothe-
sis there is a faithful finite-dimensional representation ¢ of g such that g|n
is a nil representation. By Theorem 3.8.3, [11,q] < 1. We apply Lemma 3.17.4
and its corollaries to derive the existence of a finite-dimensional representation
p" of g such that p’ is faithful on q and p'|1ut is a nil representation. On the
other hand, g/q is semisimple, so its adjoint representation is already faithful.
So we can find a finite-dimensional representation p’’ of g such that q =
kernel(p”). If p is the direct sum of p’ and p”’, then p is faithful and p|nisa
nil representation. This completes the induction argument.

The theorem is completely proved.

Let us now assume that k = R or C and that g is a Lie algebra over k.
From Ado’s theorem we immediately have the following.

Theorem 3.17.8. Let g be a Lie algebra over k = R or C. Then there
exists an integer n > | and an analytic subgroup G of GL(n,k) such that the
Lie algebra of G is isomorphic to g.
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We thus have the remarkable result that any analytic group is locally
isomorphic to a matrix group. At the same time the above theorem yields
another proof of the global version of the third fundamental theorem of Lie.

It must be remarked, however, that an analytic group may not always be
globally isomorphic to some matrix group. More precisely, let G be an ana-
lytic group with Lie algebra g, and let # be an analytic homomorphism of
G into GL(n,k); write p = dn. If n is faithful, then p is a faithful representa-
tion of g, but the converse is not true in general. From the fact that p is faith-
ful we can conclude only that n has discrete kernel.

There are analytic groups which do not possess faithful finite-dimensional
representations (cf. Exercise 15, Chapter 2). In the next section we prove that
simply connected solvable groups have faithful finite-dimensional represen-
tations. We have already proved this for nilpotent groups (Theorem 3.6.6).
For some of the subtler aspects of globally faithful representations we refer
the reader to the exercises at the end of this chapter.

3.18. Some Global Results

Our concern so far has been almost exclusively with the structure of Lie
algebras. In this section we discuss some of the group-theoretic implications
of the preceding theory. Throughout this section k£ will be R or C; ‘analytic’
means k-analytic unless we state otherwise.

Theorem 3.18.1. Let G be a simply connected analytic group with Lie
algebra g. Let o be an ideal in g, A the analytic subgroup of G defined by a.
Then A is a closed normal subgroup of G.

Proof. We need prove only that A4 is closed. By the global form of the
third fundamental theorem of Lie, there exists an analytic group H whose Lie
algebra Y is isomorphic to g/a. Then there exists a homomorphism A of g
onto ) such that a = kernel(A). Since G is simply connected, we can find an
analytic homomorphism = of G onto H such that dn = 1. Then A is the com-
ponent of the identity of the kernel of &, which is closed in G. So A is closed.

Actually, A4 is simply connected, as was proved by Mal’¢ev [1]. We have,
in fact, the following theorem.

Theorem 3.18.2. Let G be a simply connected analytic group and A a
normal analytic subgroup. Then A is closed, A and G|A are both simply con-
nected, and the coset space G|A admits a global analytic section.

Essentially, we follow Hochschild’s method of proof [1]. We need some
lemmas. Note that, by the preceding theorem, A is closed.
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Lemma 3.18.3. Let ) be a Lie algebra over a field k' of characteristic zero
and a < 1y an ideal which is maximal among the ideals of \) that are properly
contained in ). Then there exists a subalgebra b of ) such that

(3.18.1) a+b=1, anb=0.

Proof. AsY)/a has no ideals other than 0 and 0/a, either dim({/a) = 1 or
D/a is semisimple. If dim()/a) = 1, we can take b = k'- X, where X is any
element of ) not in a. Suppose now that {)/a is semisimple. Then rad((/a) = 0,
so by Theorem 3.10.5, ¢ = rad ) < a. Let ) = q + 1t be a Levi decomposi-
tion of ). Clearly, mt N a is an ideal of n1, so by Theorem 3.10.1 we can find
an ideal b of m such that m is the direct sum of m N a and 0. It is obvious
that b satisfies (3.18.1).

Lemma 3.18.4. Let H be a simply connected analytic group with Lie
algebra). Suppose that a is an ideal of ) and that b is a subalgebra of §) such that
(3.18.1) is satisfied. Let A and B be the respective analytic subgroups of H
defined by a and b. Write t,Ja]l = bab™! (a € A, b € B). Then

(a,p)—>ab (a € A,b € B

is an analytic group isomorphism of A X, B onto H. In particular, A and B are
both closed and simply connected, and we have

(3.18.2) AB=H, AN B={l}

Proof. For Y € bletg(Y) = (ad Y)|a. Then the map & ((X,Y) — X +
Y) is an isomorphism of a X, b onto [). Let H' = A4 x, B be the semidirect
product associated with a x, b (cf. §3.15). If [’ is the Lie algebra of H', we
have an isomorphism £’ of §)’ onto a X, b such that a’ = &'~!(a x {0}) and
b” = £'71({0} x b) are the subalgebras of ()’ defined by 4 x {1} and {1} x B
(cf. §3.15). Let n = &'~ £~'. Then n is an isomorphism of () onto [’ that maps
a onto a’ and b onto b’. Since H and H' are both simply connected, we have
an analytic isomorphism n of H onto H’ such that dx = 5. Then A =
71 (A x {1}) and B = a~'({l} x B), so all assertions of the lemma follow
at once.

Lemma 3.18.5. Let G be a simply connected analytic group with Lie
algebrag. Suppose a,b,, . .. ,b, are subalgebras of § such that (i) g = a + b, +
<o+ b, is a direct sum (of vector spaces), and (ii) if (), = a and §);, = a 4 b,
+ -+~ + b, then the V), are all subalgebras of g and ), is an ideal of ).,
O<i<<r—1). Let A4,B,,...,B, be the respective analytic subgroups of G
defined by a,b,, ... .b,. Then these are all closed and simply connected, and the
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map
(aby,....b,)—ab,---,b, (ac A,b; € B))

is an analytic diffeomorphism of A X B, X --- X B, onto G.

Proof. For r =1, this follows from the preceding lemma. We use
induction on r. Assume that r > 2. Let H,_, be the analytic subgroup of G
defined by 1),_,. By the previous lemma, H,_, and B, are closed and simply
connected in G, and the map (h,b) — hb is an analytic diffeomorphism of
H,_, X B, onto G. On the other hand, by the induction hypothesis, 4,B,, ...,
B,_, are all closed in H,_, and simply connected, and the map

(aby,... .0, ) abb,---b,_,

is an analytic diffeomorphism of 4 X B, X --- X B,_, onto H,_,. Combin-
ing these two facts, we get the result at once.

We are now in a position to prove Theorem 3.18.2. It is obvious that we
can choose subalgebras g =g, 2 g, @ --- 2 g, = a such that for each
i=12,...,r,g;is anideal of g,_, containing a and g, is a maximal element
of the set of ideals of g,_, that are properly contained in g;_,. Write [), = g,_,.
By Lemma 3.18.3, we can find subalgebras b, such that 1), = 0),_, + 0,0,_,
Nb,=0( <i<r). From Lemma 3.18.5 we conclude that (i) 4 is closed
and simply connected in G, (ii) the map (b,, . . . ,b,) — Ab, - - - b, isan analytic
diffeomorphism of B, X --- x B, onto G/A4, and (iii) the map 4b,---b, —
b,---b, is a global analytic section for G/4. This proves everything stated
in Theorem 3.18.2.

Corollary 3.18.6. Assume that G is simply connected. Let § be the center
of § and Z the analytic subgroup of G defined by 3. Then Z is simply connected.

Next we examine some global properties of commutator subgroups. This
will lead naturally to alternative definitions of solvable and nilpotent groups.

If a, b are two elements of a group, define [a,b] to be the commutator
aba=1b!. If A and B are two subgroups of a group, define [4,B] to be the
group generated by [a,b], witha € A4, b B. Note that [b,a] = [a,b]! and that
[4,B] is the set consisting of 1 and all elements of the form [a,,b,]- - -[a,,b,]
(r>1,a, € A, b, € Bforalli). Werecall also that if a and b are two subalge-
bras of a Lie algebra, [a,b] is the linear span of all elements of the form [X,Y]
with X € aand Y € b.

If 4 and B are connected subgroups of a connected topological group G,
then [4,B] is connected. For [4,B] = | J,s, [4,B],, where [4,B], = {1} and
[4,B], = {la;,b,]---[a,,b,]: a; € A, b, € B for 1 <i<r} for r > 1. Since
{A,B], is the image of (4 X B) X (4 X B) X --- X (4 X B) (r factors) un-
der the continuous map
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((alabl)s e 5(arsbr)) nd [alabl] Tt [a,,b,],
[A4,B], is connected; since 1 € [A4,B], for all r > 0, [4,B] is connected.

Theorem 3.18.7. Let G be an analytic group with Lie algebra §. Suppose
a,b,0) are subalgebras of g with the following properties: (i) [a,9] = 1,[6,0] = 1),
and (ii) [a,b] = 1. Let A,B,H be the respective analytic subgroups of G
defined by a,b,\). Then H = [A,B].

Proof. Notethatifa € 4,b € B,thenaHa ' = Hand bHb™! = H, by
(i). The proof consists of three steps.

First we show that for any Y € band a € 4, Y — Y belongs to 1), and
[) is spanned by such elements. If X € a and ¢ € k, then for any Y € b,

(3.18.3) Yk — Y = 3 L(ad X)(Y),
n>1 7.

so since (ad X)* (Y) € |) for all n > 1, we find that Y***** — Y < |). On the
other hand, {a:a € 4, Y* — Y € )} is a subgroup of 4. Hence Y* — Y € )
for all a € A. To prove that these elements span ), it is enough to prove that
if A:0) — k is a linear function such that A(Y* — Y) =0 for all Y € b,
a € A, then A = 0. Now, (3.18.3) gives the result that

(Far =) = ax,

! =0

from which we get that A([X,Y]) = O for all X € a, Y € b. This shows that
A=0.

Next we show that [4,B] < H. To this end we begin by exhibiting a
neighborhood m of 0 in g such that if X e a n m and Y € b N m, then
[exp X, exp Y] € H. We use the Baker-Campbell-Hausdorff formula (cf.
§2.15). Let ¢, (n > 1) be the maps of g X g into g defined by (2.15.15), and
let m; = —m, be an open neighborhood of 0 in g with the following prop-
erty: if X,Y € m,, the series Y., c,(X:Y) converges absolutely (with
respect to some norm on g) to the sum C(X: Y), and

exp Xexp Y =expC(X:7Y).

Now select a neighborhood m = —m of 0 in g such that m = m, and if
X,Y € m, then Y***X € m,. In particular, for Y e mNnband X € m N
a, we have Y***¥ € m,, so

[exp X, exp Y] = exp C(Y°*? X —Y).
Let us write X' = Y***¥ Y’ = — Y. Then from (2.15.15) we have

X Y)=X +Y =YX _Y e
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Suppose that for some n > 1,¢,(X': Y’) € [y for all m = 1,2, ...,n. Then
[X'— Y, c,(X 1Y) =[X+ Y, c(X:Y)] —2[Y, c,(X :Y)] belongsto
because [b,)] < 0, and we also conclude from (2.15.15) that ¢, ,(X': Y') € 1.
By induction, ¢ (X': Y') € {)foralln > 1. Thus C(X': Y’) € 1), proving that
[exp X, exp Y] € H. This proves that for suitable neighborhoods 4, = 47!
and B, = B! of the respective identities in 4 and B, [a,b] € Hif a € A,,
b e B,.Nowifae Ab b € B, then

[ab'b"] = [a,b']- b'[a,b"1b"~".

Consequently, since b'Hb" "' == H for all ¥ € B and B, generates B, we
conclude from the above relation that [a,b] € H for b € B, a € A,. Inter-
changing the roles of 4 and B in the above argument, we see now that
[b,al € Hforallb € B,a € A. This proves that [4,B] = H.

The third and final step consists in proving that [4,B] contains a neighbor-
hood of 1 in H. To do this, select elements ¥, € banda, € 4 (1 <i<r)
such that if Z, = Y* — Y, Z,,...,Z, span {). Let us consider the analytic
map

W:((xhyl), e ,(x,,yr))’—’ [xhyl] ot '[xlsyr]

of the manifold M = (4 X B) X (4 x B) X -+ X (4 X B)(r factors) into
G. Then w[M] = H by the second step, so y is an analytic map of M into H
with y[M] < [4,B]. Now

W((al’l)v (aZal)a e >(ar’l)) - la

so in order to prove that [4,B] contains an open neighborhood of | in H, it
suffices to show that the differential of y is surjective at m = ((a,,1),(a,,1), . . .
(a,,1)). If m® is the point obtained from m by replacing (a,,1) with (a;, exp
tY) (1 < i <r), then

(Gym»)  — (& exp (e exp(—1v))

= Y:'“ - Yi’

t=0

by (2.12.10). So the range of (dy),, contains Z, for all i, proving that (dy),, is
subjective. The theorem is completely proved.
Let G be an analytic group and g its Lie algebra. Define

DG =[G,Gl, D'G=DD"'G) (r>1),

(3.18.4)
CG = [G,G], CG=I[GC'G] (r>1).

Theorem 3.18.8. Foranyr > 1, D'G (resp. C'G) is the analytic subgroup
of G defined by D'g (resp. C'g). These are all normal, and if G is simply con-
nected, they are all closed and simply connected.
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Proof. This follows at once from Theorems 3.18.7 and 3.18.2.

Corollary 3.18.9. G is nilpotent if and only if C'G = {1} for some r > 1.
G is solvable if and only if D'G = {1} for some r > 1.

Corollary 3.18.10. Suppose G is semisimple. Then G = [G,G].

We shall now obtain some results on the structure of solvable groups anal-
ogous to the results of §3.6 concerning nilpotent groups. Unlike the nilpotent
case, the exponential map is no longer an analytic diffeomorphism. It turns
out, however, that the canonical coordinates of the second kind serve the same
purpose.

Theorem 3.18.11. Let G be a simply connected solvable analytic group
with Lie algebra g. Suppose® {X, ... ,X,} is a basis of g with the following
property: ), = 33, ., k- X; is a subalgebra of § and \), is an ideal of )., for
1 <i<m— 1. Then the map

(3.18.5) wilty, ... tn)—exp(t,Xy) - exp(tnXom)
is an analytic diffeomorphism of k™ onto G.

Proof. Write b, = k-X,. Let B, be the analytic subgroup of G defined by
v,. Then Lemma 3.18.5 is applicable (with a = 0, r = m), and we conclude
that (i) the B, are all closed and simply connected in G, and (ii) the map
b,,...,b,)—>b,---b, is an analytic difftomorphism of B, X --- X B,
onto G. On the other hand, since B, is one-dimensional and simply connected,
t > exp tX; is an analytic isomorphism of k onto B,. The theorem follows at
once from this.

From this theorem we obtain the following result, which generalizes
Theorem 3.6.2 to solvable groups.

Theorem 3.18.12. Let G be a solvable analytic group. If G is simply con-
nected, then every analytic subgroup of G is closed and simply connected.

Proof. Let g be the Lie algebra of G. Let 4 be an analytic subgroup of G,
a the corresponding subalgebra of g. Choose a basis {X,,...,X,} for g
satisfying the conditions of the previous theorem. If dim(a) = r (we may
assume r > 1), we can find integers i,, . . . ,i, (with 1 <i, <i, <---<i, <
m) with the following property: if d; = dim((); N a), then d;, = 0 for i < i,
d=vfori, <i<i,,(I<v<r—1),d =rfori>i. Let{Y,,...,Y,}
be a basis for a such that {Y,...,Y,} span {),, N a (1 << v < r). Replacing

6Such bases exist by Corollary 3.7.5.
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X;, with Y, for | << v << r does not change the {),, We may therefore assume
without losing generality that X, =Y, (1 <v<r). If a, =3, -, k- Y,
then a, = 0);, N a, so the a, are subalgebras of a for all y. If 1 <v <r — 1,
thenl), na=0,, Nnafori, <i<i,,,so

[aw 15 av] - [[)i\'.] M a’ﬁiv.l-l N ﬂ]
< [0i.sbnn-il N oa
< D1 N A

= a,.

This proves that q, is an ideal of a,, ,.

Let A* be a simply connected analytic group that is a covering group of
A, and let 7 be the covering homomorphism. The properties of the Y, estab-
lished above show that Theorem 3.18.11 is applicable to 4*. Consequently,
the map

SiQup, . oou) > expe(u,Y)) - - -exp(u,Y,)

is an analytic difffomorphism of k" onto A*; here we write exp,. for the
exponential map into 4*. Since n[4*] = A4, we conclude from this that the
map

g: (ula cee 9ur) = eXp(ulyl) e eXp(u,Y,)

maps k" onto A. But then we find from (3.18.5) that A is the image under y
of the subset of all (¢,,...,t,) € k™ such that ¢, = 0 fori ¢ {i,,...,.}. So
A is closed and simply connected. This proves the theorem.

Let G be an analytic group with Lie algebra g,q = rad g,n = nil rad g,
and Q, and N the respective analytic subgroups of G defined by q and 1.
Clearly, Q is the largest solvable normal analytic subgroup of G, and N is the
normal analytic subgroup of G. Q is called the radical of G and N, the nil
radical of G. Obviously, G is semisimple if and only if Q = {1}.

Theorem 3.18.13. Let G be an analytic group with Lie algebra g, and Q
(resp. N) the radical (resp. nil radical) of G. Then Q and N are closed. Suppose
that ¢ = q + uisa Levi decomposition of § and that M is the analytic subgroup
of G defined by wmi. Then G = QM, and M is a maximal semisimple analytic sub-
group of G. If M’ is another maximal semisimple analytic subgroup of G, then
G = QM', and there is y € [Q,N] such that yMy~' = M'. If G is simply con-
nected, then M is closed in G and simply connected, and (q,m) — gm is an analytic
diffeomorphism of Q X M onto G. In particular,

(3.18.6) OM =G, 0OnM=/{l}.

We require a lemma.
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Lemma 3.18.14. Let H be an analytic group and A = H an analytic
subgroup. Suppose A is solvable (resp. nilpotent). Then CI(A) is a solvable
(resp. nilpotent) analytic group.

Proof. The arguments for the two cases are quite similar, so we treat
only the solvable case. Let A, = A4 and A, = D?A(p > 1). Since A is solv-
able, we can find @ > O such that 4,,, = {I}. Let B, = CI(A4,). Then B, is an
analytic group and [B,,B,] <€ B,,, (0 < p <(s). This implies that D?B, =
B, for 0<_p s+ 1. In particular, D**'B, = {1}, proving that B, is
solvable.

We can now prove Theorem 3.18.13. By the above lemma, CI(Q) is a
solvable analytic group. Since it is obviously normal, the maximality of Q
implies that Q = CI(Q). Similarly, N = CI(N). The assertions concerning M
follow from Theorem 3.14.2 and Corollary 3.14.3, except for the proof that
G = QM. To prove this, observe that since Q is normal, QM is a subgroup
of G. Now consider the map g: (¢,m) ~> gm of Q X M into G. With the usual
identification of tangent spaces, we have

), (X,Y)=X+ Y (Xeg, Yem),

so that (dg), ,, is surjective. Thus QM contains a neighborhood of 1 in G,
proving that G = QM. If G is simply connected, the assertions concening M
and Q follow from Lemma 3.18.4.

We refer to any maximal semisimple analytic subgroup of G as a Levi
subgroup. If G has a decomposition of the form (3.18.6), we call it a Levi
decomposition.

We conclude this section with some remarks concerning faithful represen-
tations. In what follows, by a representation of an analytic group G we mean
an analytic homomorphism z of G into GL(V), where V is a finite-dimensional
vector space over k. x is called unipotent if n(x) is unipotent for all x € G.
Clearly, z is unipotent if and only if dx is a nil representation of the Lie alge-
bra of G.

Lemma 3.18.15. Let G be a nilpotent analytic group with Lie algebra q.
Suppose 1 is a unipotent representation of G. Then

(3.18.6) kernel(n) = exp[kernel(dn)].
In particular, 7 is faithful if dr is faithful.

Proof. Let Z = kernel(n), 3 = kernel(drn). Write N = zn[G], 1 = (dn)[g].
Let V' be the vector space on which x acts. Then N is the analytic subgroup of
GL(V) defined by 11 and all elements of 1 are nilpotent. So by Theorem 3.6.3,
N is closed and simply connected. On the other hand, Z° = exp[3], while
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G/Z° — G|/Z ~ N is a covering map. So Z = Z°. In particular, if 3 = 0,
Z = {1}.

Theorem 3.18.16. Let G be an analytic group. Assume that there are
closed analytic subgroups A and B such that (i) A is normal, simply connected,
and solvable, and (ii) G = AB and A N B = {l}. Then there exists a represen-
tation of G that is faithful on A and unipotent on the nil radical N of A. If B
has a faithful representation, then G has a faithful representation that is uni-
potent on N.

Proof. Let g be the Lie algebra of G, and let a,b,n be the respective
subalgebras defined by A4, B, N. First, consider the case 4 = G. By Theorem
3.17.7, there is a faithful representation p of g that is a nil representation on
n. Let 7, be the representation of G such that dr, = p. Then by the previous
lemma, 7, | N is a faithful unipotent representation. On the other hand, N is
closed and G/N is an abelian group, so there is a representation 7z, of G such
that & is the kernel of . If 7 is the direct sum of z, and 7,, then z is faithful
and 7| N is unipotent.

We now take up the general case. Write & for the universal enveloping
algebra of g, and let 9 be the subalgebra of & generated by a. By the preced-
ing argument, there is a faithful representation { of A4 that is unipotent on N.
Extend d{ to a representation ¢ of 9, and let & be the kernel of ¢. By Theorem
3.8.3, [b,a] = n. Now use the results and notation of Lemma 3.17.2-3.17.4.

We assert the existence of a representation 7z of Bin U such that dry(Y) =
D, forall Y € b. To prove this, observe that since the adjoint representation
of g in ® leaves both 9 and M, invariant, the same is true for the adjoint
representation of G in . So we have a representation 4 of G acting on A/,
such that dA is the representation of g in 2A/9MN, induced by the adjoint represen-
tation of g. If 7, = 1| B, the dn(Y) = D, (Y € b).

A being simply connected, there is a representation 7, of 4 in U such that
dn, = &¢|a. From (3.17.5) and (ii) of Lemma 3.17.3 we have

(3.18.7) dn([Y,X]) = [drayY),dn (X)] (X € a,Y € b).
Replacing X by (ad Y)"(X) (n = 0,1, . . .) in succession in this relation, we get

dn(X**Y) = exp(ad dny(Y))(dn (X))
= exp(dny(Y))dn (X) exp(—dnxY))
= my(exp Y)dn (X)mp(exp ¥)™!

for X € a, Y € b. This implies that

(3.18.8) dn (X?) = nyb)dn(X)mxb) (X € a,b € D),
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from which we finally get

(3.18.9) nbab™ ') = nyb)n(a)ng(b)"' (a € A,b € B).
As an immediate consequence of (3.18.9) we find that

(3.18.10) n.ab— nfa)ng(b) (a € A,b € B)

is a representation of G in U. Clearly, dr|a = ¢, so it follows from Lemma
3.17.4 that dr|n is a nil representation. z is thus unipotent on N. Now, if
v = 0 is any vector in the vector space ¥ on which ¢ acts, the map a — o(a)v
induces a map of U onto V that intertwines £ and ¢. So the same map also
intertwines the representations m, and {. { is thus a quotient of z,. This
proves that z, is faithful. If B has a faithful representation, G has a repre-
sentation ” whose kernel is 4, and the direct sum of 7 and =’ is a faithful rep-
resentation of G that is unipotent on N. This proves all statements of the
theorem.

EXERCISES

Unless otherwise stated, all vector spaces and Lie algebras considered are finite-
dimensional; k& denotes a field of characteristic zero.

1. Let V be a vector space of dimension m over k, L an endomorphism of V,
and D the algebra of all endomorphisms of ¥ that commute with L. The fol-
lowing observations lead to a proof of Theorem 3.1.7.

(a) Let v;,J; be as in Theorem 3.1.3, 1 < i < n. Suppose B € ’. Show that
Bv, € [v], and hence deduce the existence of a p € k[T] such that
Bvy = p(L)v;.

(b) Let v € V. Prove the existence of a D € D such that Dv; = v». (Hint:
Observe that J; < J,).

(c) Let p be as in (a). Prove that B = p(L).

2. Let ¥V be a vector space of dimension m over C. For x € SL(V) and X e

sl(V), write X* = xXx~!. We thus have an action of SL(V) on 8((V).

(a) Let L be a nilpotent endomorphism of V. Prove that the minimal poly-
nomial of L is T™ if and only if there is a basis {vy, . . . ,v,,} for V such that
Lv; =0and Lv; = v,_; (1 < s < m). Deduce that SL(V) acts transitively
on the set of all such nilpotent endomorphisms. We call them principal
nilpotent endomorphisms.

(b) Prove that the set of principal nilpotent endomorphisms is a regular
submanifold of dimension m2 — m in 3((V) and is a dense open subset
of the set of all nilpotent endomorphisms.

(c) Let L be an arbitrary endomorphism. Prove that its minimal and charac-
teristic polynomials coincide if and only if (L — A-1)| V., is a principal
nilpotent endomorphism of ¥, ; for each A € a(L).
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(d) Deduce from (b) and (c) that the orbit of an element L € 3((V) under
SL(V) is closed if and only if L is a semisimple endomorphism of V.
(e) Extend the result of (d) to the real case.

3. (a) Let V be a vector space of dimension m over k, and let L be a nilpotent
endomorphism of V. Let u be the centralizer of L in gl(V), i.e., the set of
all elements of g{(¥) that commute with L. Prove that dim(in) > m and
that L is principal (cf. Exercise 2) if and only if dim(1) = m.

(b) Let L be an arbitrary element of g{(¥) and let u be the centralizer of L in
gl(V). Prove that dim(i) > m.

4. Let V be a vector space of finite dimension over &, and let x € GL(V). Prove
that one can write x = su where (i) s is semisimple, « is unipotent, and both
s and u are in GL(V), and (ii) s and ¥ commute. Prove also that s and u are
uniquely determined by these conditions and that s = p(x) #u = g(x) for suitable
p.q € k[T).

In Exercises 5-11, 9( is a fixed associative algebra over k. All representations of
9 to be considered are finite-dimensional unless otherwise stated.

5. Let p be arepresentation of 2 acting on W. Prove that the following statements
on p are equivalent: (i) p is semisimple, (ii) given any invariant subspace,
W’ # W, of W, one can find an invariant subspace W' -~ 0 such that W’ N
W' =0, (iii) W is the linear span of invariant subspaces W’ such that py.
is irreducible, and (iv) W is the direct sum of invariant subspaces W, ... W,
such that py, is irreducible for i =1, ... s.

6. The following observations are designed to lead to a proof of Theorem 3.1.9.

We use the notation therein. p is semisimple.

(a) Letv € W,andlet[v] = p[]v. Prove the existence of a projection belong-
ing to p[A]’ that maps W onto [¢]. Deduce that if B € p[]”, one can find
a € 9 such that p(a)v = Bv.

(b) Let r be an integer > 1 and let W = W X ... x W (r factors). For any
endomorphism A4 of W let A be the endomorphism (ry,...,,)+—
(Avy, . .. ,Av,) of W. Let j be the representation a +— p(a) of 2 acting on
W. Prove that p is semisimple. Apply the result of (a) to p and deduce
that give v;,...,», € W and a B € p[A]”, there exists an a € ¥ such
that By, = p(a)v, for 1 < s <r.

7. Let p be a representation of 9 acting on W, k" a Galois extension of k, and r
the Galois group of k’ over k. We write W’ = W¥', p" = pk', A" = A¥.

(a) Assume that p is irreducible, and let W, be a subspace of W’ invariant
under p’. Prove that W' = 3. s+ W,, and hence deduce from Exercise
5 that p’ is semisimple. Prove that the number of irreducible constituents
of p’ cannot exceed the order of I'.

(b) Assume that p’ is semisimple, and let ¥/, be a subspace of W invariant
under p, with W, 5 0, W, = W. Let C (resp. €’) be the algebra of all
endomorphisms 4 of W lying in p[2]" and vanishing on W, (resp. A’
of W’lying in p’[U']" and vanishing on W¥'). Prove that €’ contains non-
zero semisimple elements, and hence deduce that € contains nonzero
elements which are not nilpotent. (Hint: Observe that €', considered as
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10.

11.

12.

13.

a subspace of the vector space of endomorphisms of W’, is defined over k).
(c) Let A be a nonzero element of € which is not nilpotent. Prove that the
semisimple part of 4 belongs to C.
(d) Deduce that p is semisimple.

Let k = R, and let p be a representation of 2 in W. Prove that if p is irreduci-
ble, the division algebra p[2(]" is isomorphic to R, C, or the algebra of quater-
nions. Give examples to show that all the three possibilities can arise.

Let kK = R or C and let p be a representation of % in a Hilbert space W of
finite dimension over k. Let (-,-) denote the scalar product in W. Suppose
there is a subset E of 9 such that (i) E generates %, and (ii) p(a) is symmetric
(or skew-symmetric) with respect to (-,-) for all a € E. Then prove that p
is semisimple.

Let p be an irreducible representation of . Prove that the equivalence class
of p is uniquely determined by the character of p. Hence (or otherwise)
show that if p,, .. .,p, are mutually inequivalent irreducible representations
of 9 with respective characters x, . ..,X,, the linear functions ); on 2 are
linearly independent.

Let 9 be commutative, p a representation of 9 in W.

(a) Assume that k is algebraically closed and that p(a) is semisimple for
each a € . Prove that there exist a basis {v, ... ,»,} of W and homo-
morphisms x;,...,X» of 2 into £ such that p(a), = x,(a)v, for all
acAandl <s< m.

(b) Let k and p be arbitrary. For each a € ¥, let p,(a) (resp. p,(a)) be the
semisimple (resp. nilpotent) part of p(a). Prove that p; and p, are repre-
sentations of  in W and that p; is a semisimple representation. Deduce
that p is a semisimple representation if and only if p(a) is semisimple for
each a € .

Let p be a representation of a Lie algebra ¢ in a vector space W of possibly
infinite dimension. Assume that W = Y, W,, where the W; are finite-dimen-
sional subspaces invariant under p such that the representations py, are all
semisimple. Prove that W is the direct sum of the subspaces W°and W!, where
We ={v:v e W, p(X) = 0forall X € g}, and W! is the linear span of the
ranges of all the p(X), X € g. Prove further that W° and W! are invariant and
that each is the unique complementary invariant subspace in W of the other.

Let V be a finite-dimensional vector space over k, E the exterior algebra over
V. We denote by A the operation of multiplication in £ and by E, the homo-
geneous subspace of E of degree p.

(a) Let x;,...,x; € V, then they are linearly independent if and only if
x;1 A xa A -+ A x, % 0. In this case, if U is the linear space spanned
by the x;(1 < j < ), then for any vector y to belong to U, it is necessary
and sufficient that y A x; A -+ A x, = 0. Assume from here on that the
x; form a basis for U.

(b) Write u = x; A --- A x,. Let L be an endomorphism of ¥, and let I be
the derivation of E which extends L. Prove that U is invariant under L if
and only if « is an eigenvector for I.
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15.
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19.

20.
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(c) Suppose Fis a subspace of E; that is complementary to k-u. Denote by
U’ the set of all vectors v € V having the following property: if y,, ...,
yi.1 € U, then v A yy A -+ A ys-1 € F. Show that U’ is a subspace
of V that is complementary to U.

(d) Suppose F is invariant under I ; show that U’ is invariant under L.

(a) Letg be a Lie algebra of arbitrary dimension over k, § its universal envel-
oping algebra. Prove that themap X > X® 1 + 1 &Q Xofginto & ® &
extends to a homomorphism J of & into & @ ®. Prove also that J is an

injection.
(b) Leta € ®. Prove thata € gifand only if 0(a) =a @ 1 + 1 ® a. (Hint:
Let X,,X,,... be linearly independent in g. For M = (m,,m,,...),

where the m; are integers > 0 with >, m; < co, let xM = XT X7 ...
Calculate d(xM)).

Let g (resp. ®) be the free Lie (resp. associative) algebra generated by
(X1, ...,X,}; let &, be the subspace of & spanned by elements of degree
n; and let g, = ®, N g. Prove that dim(g,) = (1/n) X 4, u(d)m™? for all
n, where u is the usual Mobius function defined on the set of positive integers
as follows: u(1) = 1, u(n) = 0 if n is divisible by the square of a prime, and
u(n) = (—1)*ifn=p,--- ps, wherep,, . . ., p, are distinct primes. (Hint: Let
v, = dim(g,), and let T be an indeterminate. Calculate dim(®,) using Theorem
3.2.8 to get (1 — mT)~! = [[,».(1 — T")*~. Take logarithms to deduce that
m" = 34, dvs. Now use the Mobius inversion formula.)

Let g be a Lie algebra over &, a a subalgebra. Let ® be the universal enveloping
algebra of g, the subalgebra of ® generated by a. Suppose that M is a left
ideal of 2. Prove that @M N A = M.

Let g = gl(n,k), G = GL(n,k), and for X € g, x € G, write X* = xXx~1,

Let Z and 8 be as in Theorem 3.3.8. Denote by P(g) the algebra of polynomial

functions on g and by J the subalgebra of all p € P(g) such that p(X*) = p(X)

for all X € g, x € G. Let S(g) be the symmetric algebra over g.

(a) Prove the existence of a unique algebra isomorphism & of S(g) onto
P(g) such that for each X e g, £(X) is the element of g* (the dual of g)
given by E(X)(X') = tr(XX') (X' € g).

(b) Prove that &[Z] = J.

(c) Deduce from (b) that Z and 3 are isomorphic to [T}, . ..,T,].

Let g be a Lie algebra over &, ® its universal enveloping algebra.

(a) Prove that g has a faithful representation p such that #r p(X) = 0 for all
X € g.

(b) Let p be as in (a). Denote by ¢ the tensor product pQ P Q-+ &Q p
(r factors), and let o, be its extension to a representation of &. Prove that
N,>: kernel (g,) = 0. (cf. Harish-Chandra [1]).

Let g be the Lie algebra of dimension 3 with basis {X,Y,Z} such that [X,Z]
=[Y,Z]1= 0, [X,Y] = Z. Prove that § = K[Z].

Prove that the members of the ascending and descending central series of a
Lie algebra g are invariant under each derivation of g.
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21.

22.

23.

24,

25.

Let g be a nilpotent Lie algebra over £ and p a representation of g in a finite-
dimensional nonzero vector space V over k. Suppose that det p(X) = 0 for
all X e g. Show that there is a nonzero vector v € V¥ such that p(X)v = 0
forall X € g.

Let G be a nilpotent analytic group, g its Lie algebra. Let dx be a Haar measure
on G, and dX a Lebesgue measure on g. Prove that dx is both right- and left-
invariant and that there is a constant ¢ > 0 such that cdx is the measure on
G that corresponds to dX under exp.

Prove that compact subgroups of a nilpotent aﬁalytic group G are necessarily
central, and that they are equal to {1} if G is simply connected.

Let G be a simply connected nilpotent analytic group, ¢ its Lie algebra.

{Xy,...,X,}is a basis for g such that if {); is the linear span of {X,,, . .. ,X,]
(0 <i< m), then V), is an ideal in g with [g,f] =B, O<i<m—1).
Let @, ...,w, be the left-invariant 1-forms on G such that w(X;) =,
(1 <i,j < m). Let @; be the form on g that corresponds to ; under exp.
(@) If x,,...,x, are the linear coordinates on g with respect to the basis
{X1,...,Xn}, prove that @, = dx, and that for 1 <i<<m, @; = dx; +
Di<jci-1 Qij(xy, ... ,x;-1) dx;, Q;; being a polynomial in i — 1 variables

of degree < m — 1.

(b) For x € G, let B, be the analytic diffeomorphism X s log (exp X - x)
of g. Prove that the 8, (x € G) are precisely the analytic diffeomorphisms
of g that leave each @, invariant.

(c) Let P be the polynomial map of g X g into g satisfying (3.6.1). Let B,
be the polynomials of x, . .. ,x,, such that P(3 | cicm X, Xi, 31 <icm Vi X2)

:ZléiimBA‘('xl"-"Xm:yh"'aym)/‘,i for a“ ESTIITIRIE® 75 STIIRIRIS 74
Prove that By(x;, ..., Xn Y15+ .s¥m) = X; + y;and thatfor 1 < i< m,
Bi(-xls' s Xm Vi 'aym) =X +y1 + Qi(xls e X1 V1 e '9yi—1)’

where Q; is a polynomial in 2/ — 2 variables.
(d) Prove that the differential operators on g that correspond to ® under exp
have polynomial coefficients.

Let a and g be Lie algebras over &, a being abelian. Let p be a representation

of g in a. A triple (b,4,u) is called an extension of g by a associated with pif

(a) b is a Lie algebra, 4 is an injection of a onto an ideal of b, and y is a

homomorphism of b onto g; (b) Ala] = kernel (x); and (c) if Z € b and

X € o,[Z,A(X)] = p(u(Z)) X. Extensions (b,A, ) and (b",, ') are equivalent

if there is an isomorphism { of b onto b" such that A’ =( o A, u = ' o (.

The extension (b,4,u) is called inessential if there is a subalgebra §) of b such

that A[a] + 4 =0, Ala] N § = 0.

(a) Let (0,4,u) be an extension and v a linear map of g into b such that
M o v = identity. Let 9 (X,Y) = [v(X),v(Y)] — v([X,Y]), X, Y € g. Prove
that ¢, € C2(g,p). If v’ is another linear map of g into b such that g o v’
= identity, prove that ¢, — @,, € B2(g, p).

(b) Let b =a x g, A(X) =(X,0) (X €a), A(X,Y) =Y (Xea,Yeqg).
Let ¢ € Cxg,p). For (X,Y), (X, Y)eb, let [(X,V)(X,Y)]=
(@(Y,Y) + p(Y)X' — p(Y')X,[Y,Y"]). Prove that [-, -] converts b into



252

26.

27.

28.

29.

30.

Structure Theory Chap. 3

a Lie algebra. Denote this Lie algebra by 0,, and prove that (bw}:,ﬂ) is
an extension of g by a associated with p. Prove also that the above exten-
sion corresponding to ¢ in C2(g,p) is inessential if and only if ¢ € B2(g,p).
(c) Deduce that the elements of H2(g,p) are in natural one-to-one correspon-
dence with the equivalence classes of extensions of g by a associated with p.

Let g be a Lie algebra over £, q its radical. Prove that [q,g] is the smallest of the
ideals a such that g/a is reductive.

Let g be a semisimple Lie algebra over k, g; (1 < i< r) the simple ideals
whose direct sum is g, 7; the projections g — g, corresponding to this direct
sum, and ¢, -> the Cartan-Killing form of g. Let ® be the vector space of all
bilinear forms B on g X g such that B([X,Y],Z) + B(Y,[X,Z]) = O for all
X,Y, Zeg Let B(X,Y) = <mXmY> (X, Yeg1<i<r).

(a) Prove that the restriction of (-, -> to g; X g, is the Cartan—Killing form

of g,.
(b) Prove that {B;, ...,B,} is a basis for ® if k is algebraically closed.

Give an example of a solvable Lie algebra whose Cartan-Killing form is not
identically zero, and of a solvable but non-nilpotent Lie algebra whose
Cartan-Killing form is identically zero.

Let g be a solvable Lie algebra over R, V a vector space over R, and p a
representation of g in V. Prove that there are invariant subspaces V; (0 < i
< s)of Vsuchthat(i)) ¥V, =0c< V, = ... = V, = V, (ii) the representations
induced on V;/V;_, are irreducible for 1 < i <'s, and (iii) dim(V;/V;_;) < 2,
1 < i< 5. Deduce the existence of ideals g, (0 < i < r) of g such that g, =
0cg, = - =g, =g with dim(g;/g;-;) < 2,1 <i<r.

Let g be a Lie algebra over k, ¢ = rad g, p = [q,8]. Let G, be the group con-
sidered in Theorem 3.14.2. Prove that G, = {expad Z: Z € p.}

The next exercise leads to an alternative proof of Weyl’s theorem that does not
use cohomology (cf. Chevalley [3], pp. 70-73).

31.

Let g be a semisimple Lie algebra over &,® its universal enveloping algebra.

(a) Suppose that p is an arbitrary representation of ®. Prove that zr(p(X)) = 0
for all X € g. Deduce that if p is one-dimensional, p(X) = 0 for all
X eg.

(b) Let p be a representation of & in Wand let W, be a subspace of dimension
1 invariant under p. Prove the existence of an invariant subspace that is
complementary to W,. (Hint: Use induction on dim(W). Let p|g # 0
and let R~ = N, range (p(w?)"), N* = U,>, (null space of p(w?)).
Then R~ and N* are invariant, W = R~ + N* is a direct sum, R~ # 0,
and W, = N*.

(c) Let o be a representation of & in V. Let E be the exterior algebra over V'
and E, (k > 0) the homogeneous subspaces of E. For X € g let 6(X)
be the derivation of E that extends o(X). Prove that & is a representation of
g in E leaving each of the E, invariant.

(d) Let U be a subspace of V invariant under o. Let u = x; A --- A X,
where {x, . ..,x,} is a basis for U. Prove that 6(X)u = 0 for all X € g.
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32.

(e) Show that there is a subspace of ¥ complementary to U and invariant under
o. (Hint: Use Exercise 13).

Let 4 be a finitely generated associate algebra over k. Suppose M is a two-
sided ideal in 4 such that dim (4/M) < oo. Prove that M has a finite ideal
basis, i.e., that there are a,, . .. ,a, € M such that M = 3, .;., Aa;A. Prove
also that dim(4/M$) < oo for all s > 1.

Exercises 33 and 34 lead to Hilbert’s theorem on invariants (cf. Cartier, Exposé

n° 7, Séminaire “Sophus Lie” [1]; also Harish-Chandra [5]).

33.

Let g be a Lie algebra over &, p a semisimple representation of g in a vector

space V over k. § is the symmetric algebra over V and §, (# > 0) is the

homogeneous subspace of § of degree n. For each X € g, p(X) is the deriva-
tion of § that extends p(X). J is the algebra of all # € § such that §(X)u =0
for all X € g. & (resp. §*) is the set of all equivalence classes of irreducible

(resp. nontrivial irreducible) representations of g over k. For each b € §,$»

is the linear span of all subspaces U = § with the following property: U is

invariant under p and the corresponding subrepresentation is irreducible and

belongs to d. If u € §, we say that u transforms according to d if u € §p.

(a) Prove that for each n > 0, §,, is invariant under p and the corresponding
subrepresentation of g is semisimple.

(b) Prove that § = Y scg S, the sum being direct. Writing $* = Jpecex S,
deduce that §* is the linear span of all elements of the form F(X)u
(X € g, u € §), that § is the direct sum of J and §*, and that §* is the
unique p-invariant subspace of § complementary to J.

(c) Show that each §y is a J-module.

(d) Let J* =J N (X 40 S»)- Prove that there are families {uy, ... ,u,} of
homogeneous elements in J+ such that §J+ = 3}, <, Su;. For any such
{uy, ...,u}, prove that J = kluy, . .. ,u]. (Hint: Let u —> i be the projec-
tion § — J modulo §*. Show that vz = vit for v € J, u € §. Hence, if
d; =deg (), u e §,, then u = 3,4, fu; with f; € §,4, and a =
S 1 <i<r fiu;. Now use induction on n.)

(e) Fixd € §, and let A be an irreducible representation of g in a vector space
U over k such that the class of 4 is contragredient to d. Let 0 = j @ A.
Put

W={wiwe §QU, a(X)w=0forall X € g}

Let {e;, ... ,e,} be abasis for U. Forany w = Y, 1«i<n i Q €, in § Q U,
let L(w) be the linear span of the f;. Prove that L(w) does not depend on the
choice of the basis of U. Prove further that if w = 0 and w lies in I, then
L(w) is irreducibly invariant under p and L(w) = S». Prove, finally, that
if T is a subspace of §p that is irreducibly invariant under 7, there is a
w € W such that T = L(w).

(f) Regard § ® U as an §-module by therule f- (¢ Qu) = fg Qu(f,g € S,
u € U). Let W be the smallest sub §-module of § ® U containing W.
Prove that W is a J-module and that there are wy, ... ,w, € W such that
() W = 3 1<i<p $-w;, and (ii) for each i, L(w;) consists entirely of homo-
geneous elements. (Hint: § is Noetherian and § @ U is a finite §-module)
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(g) Let wy,...,w, € W be such that W = 3, $-w;. Then prove that
W = 3 1<icqJ-Ww;. (Hint: Let T be the linear span of all o(X)w, with
X e g, we §&® U. Use Exercise 12 to prove that § @ U is the direct
sum of Wand T. Now let w € W, and write w = >, <, f;*w;. Observe
that (f; — f))-w, € T for all i, and deduce that w = S icica fiWi)

(h) Prove that there exist homogeneous elements f, . . ., f, in. § such that
S = Di<i<pIfic

Let g, be Lie algebras over &, p a semisimple representation of g in §) such

that for each X € g, p(X) is a derivation of ). Let § be the universal envelop-

ing algebra of §), and for each X € g, let p(X) be the derivation of $ that

extends p(X). Let ¥ = {u: v € 9, p(X)u = Oforall X € g}. For each b € &

let ), be the linear span of all subspaces U of § with the following property:

U is invariant under g, and the corresponding subrepresentation is irreducible

and belongs to b.

(a) Prove that % is an algebra and that § is the direct sum of the £s.

(b) Let § = §(b), and let J and §» be defined as in the previous exercise.
Prove that A maps J onto ¥ and §; onto H» for all b.

(c) Prove that U is finitely generated.

(d) Prove that each £ is a finite Y-module. (Hint: Choose homogeneous
fis--.sf; such that §p = > <<, J-f;. Then prove that H, =
z 1<i<q ‘)‘['x(fi))

Let G be an analytic group and 4 an analytic subgroup. Let B = CI(A). Prove

that DB = DA. (Hint: We may assume B = G. Let G be the universal covering

group of G, A the analytic subgroup of G lying above A. Observe that 4 is

normal and that DG c CI(DA) = DA.)

Prove that if G is a simply connected solvable analytic group, then G does not
have nontrivial compact subgroups.

G is a real analytic group and H is a closed simply connected normal analytic
subgroup of G. If H is solvable and G/H is compact, prove that there exist a
compact analytic subgroup B of G such that HB = G, H N B = {1}. (Hint:
Use induction on dim (H). First prove the result when H is a vector group,
i.e., when DH = {1}. If dim(DH) > 0, choose a closed analytic subgroup T
such that DH< T, HT = G, HN T = DH, and T/DH is compact.)

G is a real analytic group and H = G a closed normal subgroup such that
G/H is compact. Suppose p is a representation of G such that p|H is semi-
simple. Prove that p is semisimple. (Hint: Let V' be the space of p and W #= V
a subspace invariant under p[G]. Let L be a projection operator in ¥ vanishing
on W and commuting with p[H]. Let M = J.G/H (xLx~1) dx where x> X

is the canonical map of G onto G/H; consider the subspaces U,>; (null space
of M) and N ,>, range (M"), and use induction on dim (¥).)

Let G be a real analytic group with Lie algebra g.

(a) Prove that g is reductive if and only if the adjoint representation of G in
g is semisimple.

(n) Let g be reductive. Prove that a necessary and sufficient condition for every
representation of G to be semisimple is that G/CI/(DG) be compact.
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40. Let G be a semisimple real or complex analytic group having a faithful repre-
sentation. Prove that G has finite center. Give an example to show that the
converse is not necessarily true.

Exercises 41-45 deal with the structure of real analytic groups possessing faithful
linear representations. For a systematic study of these and other structural questions
we refer the reader to the book of Hochschild [1] (cf. also Harish-Chandra [3]).

41. Let G be a real analytic group, Q the radical of G, and M a Levi subgroup of G.

(a) Prove that Q " M < center (M).

(b) Write t[m](q) = mgm~!. Then show that y((g,m)+> gm) is an analytic
homomorphism of Q X, M onto G and that y is a covering map.

(c) Suppose center (M) is finite. Prove that p is a closed map. Deduce that M
is closed.

(d) Let { be a faithful representation of G. If N is any analytic subgroup of
G such that | NV is a unipotent representation, prove that N is closed and
simply connected.

(e) Let G have a faithful representation. Prove that M, [Q,G], and DG are all
closed, that [Q,G] is simply connected, and that DG is isomorphic to
[Q,G] x, M. (Hint: Observe that [Q,G] is closed and simply connected by
(d), and that [Q,G] N M = {1} by Exercise 36.)

(f) Deduce from (e) that m,(DG) and 7,(M ) are isomorphic.

42. Let G be a solvable real analytic group. Prove the equivalence of the following

statements:
(i) G has a faithful representation.
(ii) DG is closed and simply connected.
(iii) G is a semidirect product of a simply connected solvable group and a
compact abelian group.

(Hint: For (ii) = (iii) write G/DG as V x T where V is a vector group and
T is a torus. Let M be the preimage of V' x {I;} in G. Prove, by considering
covering groups, that M is simply connected. Now use Exercise 37.)

43. A real analytic group is said to be reductive if it has a faithful representation
and all its representations are semisimple. Prove the equivalence of the follow-
ing statements concerning a real analytic group G:
(i) G is reductive.

(ii) DG is closed in G, center (G) is compact, and DG is a semisimple group
with a faithful representation.

(ili) G = MA, where M and A are closed subgroups of G, M is a semisimple
analytic group with a faithful representation, and A is a compact abelian
group centralizing M.

44. Let G be a real analytic group with a faithful representation. Let Q be the
radical of G. Denote by g the Lie algebra of G and by q the subalgebra of g
defined by Q.

(a) Prove that Q = PA, where P is a simply connected closed normal sub-
group of G that contains [Q,G], 4 is a compact abelian subgroup of G,
and P N A = {1}. (Hint: [Q,G] is closed and simply connected by Exercise
41. Now argue as in Exercise 42.)
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(b) Prove the existence of a Levi subgroup M centralizing A. (Hint: Let a
be the subalgebra of g defined by A. If 3 is the centralizer of a in g, then
g = 3 + [a,q], the sum being direct. Show that ¢ =3 + q.)

(c) Let H = MA. Prove that H is a closed analytic subgroup of G with
G =PHand PN H = {l}.

(d) Prove that H is reductive.

(e) Deduce that an analytic group has a faithful representation if and only if
it is a semidirect product of a simply connected solvable group and areduc-
tive group.

Let G be a real analytic group and let ¢ be a representation of G in a vector space
V. Prove that [#[G],n[G]] is a closed subgroup of GL(V). Deduce that a
reductive analytic subgroup of GL(V) is necessarily closed in GL(V). (Hint:
Assume that G = GL(V) and that 7 is the identity. Write G = CI(G) and use
Exercises 35 and 41. If G is reductive, G = (DG)-(center (G)) and center (G) is
compact.)

Let G be a simply connected solvable analytic group with Lie algebra g. Let 3

be the center of g, Z the center of G.

(a) Suppose that 3 N Dg # 0. Then show that there are discrete nontrivial
subgroups of Z N DG and that if D is any such subgroup, G/D does not
have a faithful representation.

(b) Prove that if g is nilpotent and nonabelian, 3 N Dg 7~ 0.

(c) Assume that 3 = 0. Then prove that any analytic group locally isomorphic
to G has a faithful representation. (Hint: Consider G/Z ~ Ad [G] and its
covering groups, and use Exercise 42.)

(d) Let n>2, k = R or C, and P the subgroup of SL(n,k) consisting of all
matrices (a;;) € SL(n,k) with a;; = 0 for i > j. Let G be the universal
covering group of P. Prove that Z is discrete and that P is isomorphic to
G/Z.

The following statements are designed to lead to an example of an analytic

group G with a reductive Lie algebra for which [G,G] is not closed in G.

(a) Let G, be the universal covering group of SL(2,R), and Z the center of
G,. Prove that Z is isomorphic to the additive group Z of integers.

(b) Show that there is a discrete subgroup D of R X Z such that (R X Z)/D
is isomorphic to the circle group T and the image of {0} x Zis dense in T.
(Hint: Let ¢ be an irrational number, and let D be the kernel of the homo-
morphism (¢,v) — exp 2in(t + cv) of R X Z onto T; here v+ ¥ is an
isomorphism of Z with Z.)

(c) Let G = (R X G,)/D, C = center (G), and let & be the canonical map
of R X G, onto G. Prove that [G,G] = z[{0} X G,] and that C =
n[R x Z].

Exercises 48-52 discuss some aspects of complexifications of real analytic groups.

The development begun here will be completed in the exercises for Chapter 4. Let
G be a real analytic group. A pair (G.,) consisting of a complex analytic group G,
and an R-analytic homomorphism y of G into G, will be called a universal complexi-
fication of G if the following is satisfied: given any complex analytic group H, and
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an R-analytic homomorphism v of G into H,, there is a unique C-analytic homo-
morphism v, of G, into H, such that v, oy = .

48.

49.

50.

(a) Suppose that G is a real analytic group and that (G.,y), (G.,y’) are two uni-
versal complexifications of G. Prove the existence of a unique C-analytic
isomorphism @ of G, onto G| such that @ o y = y’.

(b) Suppose g is a Lie algebra over R and g, is its complexification. Let G,
be a simply connected complex analytic group with Lie algebra g.. Prove
that there is an R-analytic automorphism { of the R-analytic group under-
lying G. such that d{ is the conjugation of g, induced by the real form g.
If G is the component of 1 in the subgroup of G, consisting of all points
left fixed by £, prove that G is closed in G, and is the R-analytic subgroup
defined by g.

(c) Let G be a covering group of G and let 7 be the covering homomorphism.
Prove that (G.,m) is a universal complexification of G.

Let G be a real analytic group with Lie algebra g, G the universal covering

group of G, and (G — G) the covering map. We assume that the Lie algebra

of G is identified with g in such a way that d7 is the identity. Let F be the
kernel of 7. Let g, be the complexification of g, and G, a simply connected

complex analytic group with Lie algebra g..

(a) Prove that there is a unique R-analytic homomorphism ¢ of G into G,
such that do is the natural inclusion map of g into g..

(b) Suppose H, is a complex analytic group and v is an R-analytic homo-
morphism of G into H,. Prove that there is a unique C-analytic homo-
morphism ¥, of G, into H, such that v o & = ¥, o g. Deduce that g[F]
< kernel (¥,).

(c) Let P be the intersection of the kernels of ¥, as H, and v vary. Prove that
P is a closed normal complex Lie subgroup of G, containing o[F].

(d) Let { be the R-analytic automorphism of G, such that d{ is the conjuga-
tion of g, induced by g (cf. Exercise 48). Prove that {[P] = P. (Hint:
With notation as in (b), let H, be the complex analytic group opposnte
to H,. Prove that 7, o { is the C-analytic homomorphism of G, into H,
such that ¥ o{ = (¥.om) o g. Observe now that kernel (¥, o {) =
{[kernel (¥)].)

(e) Let G, = G./P and let 7 be the natural map G, — G.. Definey (G — G.)
by y(r(x)) = n(o(x)) (x € G). Prove that (G.,y) is a universal complex-
ification of G.

(f) Letg, be the Lie algebra of G, and let § = dn[g]. Prove that § is a real form
of §. and that dn intertwines the conjugations of gc and §.. Prove further
that there is a unique R-analytic automorphism C of the underlying R-
analytic group of G. such that dC is the conjugation of §, induced by §,
and that # intertwines { and (. Prove, finally, that y[G] is the R-analytic
subgroup of G, defined by § and coincides with the component of the
identity of the set of fixed points of {.

Let notation be as in Exercise 49. Prove that the following conditions are
equivalent: (i) o[F] is a discrete subgroup of G, (ii) P = o[F], and (iii)
dim.(G.) = dimgr(G). Prove also that this happens when G has a faithful
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representation and' that in this case y is an R-analytic isomorphism of G onto
p[G]. If conditions (i)-(iii) are satisfied, (G.,y) is called a regular universal
complexification.

Let G be a solvable real analytic group, and let (G.,y) be its universal com-
plexification. Prove that (G,.p) is regular, that y[G] is closed in G, and that
p is an R-analytic isomorphism of G onto p[G]. Prove also that G, is simply
connected if and only if G is. (Hint: Use Exercise 49 and observe that [G] is
closed and simply connected by the results of §3.18; g is thus injective. Observe
now that G, = G./o[F].)

Let G be a solvable real analytic group and (G,,p) its universal complexification.
Prove that if G has a faithful representation, then G, has a faithful complex
analytic representation. (Hint: Use Exercise 42 to write G as a semidirect
product A X, B, where A is simply connected and solvable and B is compact
abelian. Let (4,,&) and (B,,f) be the universal complexifications of 4 and B.
Then prove that G, = A. X, B, for a suitably chosen #,. Prove, finally, that
B, is isomorphic to C* for some » and hence that B, has a faithful complex
analytic representation. Now use the results of §3.18.)

G is a real analytic group with Lie algebra g. Let & be the universal enveloping

algebra of the complexification g, of g. 3 is the center of &.

(a) Let 7 (x — 7m(x)) be an irreducible representation of G in a complex vector
space V of finite dimension. Let MM, be the linear space spanned by the
functions on G of the form x — v*((x)v) (v € V, v* € V*). Prove that
the elements of I, are analytic and that if 7 is irreducible, dim M, =
dim(V)2.

(b) Let & be as above, [v, . . .,v,] be a basis for V, and the functions a;; be
defined on G by (x)v; = 3} ;-4 a;;(x)v; (x € G). Let r (x— r(x)) denote
the representation of G in the space of all analytic functions on G given
by (r(x)f)(») = f(yx) (f analytic, x, y € G). Prove that 3, is invariant
under r, the subspaces ®; spanned by a;; (1 < j < d) are invariant under r
for 1 < i < d, and the representation induced on ®; by r is equivalent to 7.

(c) Let s be an integer > 1, Vs the Cartesian product V' X ... X V (s times),
and 7, the representation x — 75(x) of G in V¢ where ms(x)(vy, . . . ,v5) =
(X, .. w(X)vy) (0, .. .)€ Vo). If (uy, ... ,u;) € Vs, then it is
cyclic for zs (i.e., s (x)(uy, . . . ,u,) span ¥V as x runs through G) if and only
if uy, ... ,u, are linearly independent in V.

(d) Let y.(x) = tr n(x) (x € G). Prove that y, € M, and that it is cyclic
for the representation r on IM,.

(e) Let1 < i<C dand let{; be an isomorphism of ®; with V that intertwines
the restriction of r to ®; and 7. Let r and 7 denote the respective associated
representations of ¢ in I, and V. Prove that r(a)f = af (f € M,,
a € ®) and that {;(r(a)f) = n(a){,(f) (a € &, f e ®R,). Hence deduce
that zf = x,(2)f for f € M,, z € 8, x. (8 — C) being the infinitesimal
character of 7.

(f) Prove that i, is the unique element of M, that is invariant under all the
inner automorphisms of G and takes the value dim (V) at 1.
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54.

55.

Let the general notation be as in the previous exercise. Let G = SU(2,C),
and identify g canonically with the Lie algebra of all 2 x 2 skew Hermitian
matrices of trace 0. A function on G is said to be invariant if it is invariant
under all the inner automorphisms of G.

1 i .
(a) Prove that g is semisimple. Let A4 :< 0 7), B = ( 0 ’/2>, and

~1 0 i o
C = ('(/)2 i;)z)' Prove that @ = A2 + B2 4 C? generates 3.
(b) Write any element x € G in the form x = ( a+ l.b ¢+ ':d>, where
—c+id a—ib

a,byc,d e R and a? + b% + ¢2 +d? = 1. Let G* be the set of all x
where b = 0. Prove that a, ¢, and d are coordinates on G*. Determine the
expression for w in these coordinates. Prove also that if ¢ is any invariant
analytic function on G, d/dc ¢ = d/dd ¢ = 0 on G*.

(c) Let T be the diagonal subgroup of G, T* = T N G*. For any analytic
function ¢ on G let ¢ be ¢ | T*. Prove that for any invariant analytic func-
tion ¢ on G, (wWY)~ = &P, where @& is the differential operator on T+
whose expression in the coordinate a is 1(1 — a2)(92/da?) — 3a(d/da).

(d) For @ & R let u, = (e: e?"”)’ and let (d/d6) be the usual differential
operator on T. Let  be an irreducible representation of G with infinitesimal
character x, and global character y,. Let f, = y,|T, A = x.(w). Prove
that £, is a finite Fourier series with integral coefficients, invariant under
the involution uy+— u_o of T. Prove further, using (e) of the previous
exercise and (c) above, that the function g,: u, — f,(u,) sin 8 satisfies the
differential equation (d2/d0%)g, = (44 — 1)g..

(e) Deduce from (d) that, for some integer m>1, 44 — 1 = —m? and
S(ug) = c (€m0 — e~im8)[(e!® — ¢-i%) (uy ¢ T), c, being a nonzero con-
stant.

(f) Let V= C2, 1 =nV the representation x+>x of G in V, V©© =

- V@@ V (r factors), and n” the representation x > xR --- X x

of Gin V', Let W, denote the subspace of all symmetric tensors of ¥V,

Prove that W, is invariant under 7. Let &, denote the representation of

G induced on W,, y, the global character of @,. Prove that y,(us) =

(eir+ 18 — e=itr+18)[(¢i® — ¢-i8) (uy € T). Deduce from (e) that the o,

(r > 1), together with the trivial representation of G, exhaust the irreduci-

ble representations of G up to equivalence, and that the constant ¢, of
(e)is 1.

Let G be an analytic group, g its Lie algebra, and {X,, ..., X,] a basis for g.
Assume that g is solvable and that for any 7, 1 < i << m, the linear span of
X;, ..., X, isanideal in g. Let K = R or C according as G is real or complex.
Let @, ...,w, be the left invariant I-forms on G such that w/ (X;) = §,;,
1 < i, j << m, and let @, be the 1-form on k™ that corresponds to w; under the
map (f;,...,tn)—>€Xpt;X;---expt,X,. Prove that @, = dt, and that for
r>1,m, = df, - Zlgsg, A, dtj, where A”(fl, ‘e ,fm) = Bx,(t“.], S ,f,_l)
4 t,Cs(ts41, - - - »t1), By, and C,, being analytic on k™.



CHAPTER 4

COMPLEX SEMISIMPLE LIE ALGEBRAS
AND LIE GROUPS:
STRUCTURE AND REPRESENTATIONS

From now on we shall be concerned almost exclusively with semisimple
Lie algebras and their representations. In this chapter we develop the structure
theory of semisimple Lie algebras in full detail. This will then be followed by
a treatment of the finite-dimensional representations of semisimple groups,
both from the infinitesimal and global points of view.

Much of the algebraic theory is valid in an arbitrary field of charac-
teristic 0. However, we work exclusively in the real or complex case. In view
of the interplay between the global and infinitesimal aspects of the theory,
this restriction is a natural one, if one does not want to get involved with the
theory of algebraic groups.

In order that the exposition not be interrupted, we have discussed in an
appendix to this chapter certain results in the theory of finite linear groups
generated by refiections that are very useful in the theory of semisimple Lie
groups and Lie algebras.

Throughout this chapter, k is either R or C. If V is a vector space over R,
we write V, for its complexification and regard ¥ as canonically imbedded
in V.. As usual, all Lie algebras are of finite dimension, unless we state
otherwise.

4.1. Cartan Subalgebras

Let g be a Lie algebra over & of dimension m. Let T be an indeterminate,
and for X € g let (cf. (3.9.1))

4.1.1) det(T-1 —ad X) = (=D ip(X)HT".

0<i<m
pn = 1, and the p, are polynomial functions on g; since detad X = 0, p, =0.
We denote by / the smallest integer r > 0 such that p, == 0, and call it the
rank of g (rk(g)). Clearly, 1 <</ < m, and / = m if and only if g is nilpotent.
It is obvious that when k = R, the rank of g is the same as the rank of g..

260
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We write

(4.1.2) 7= p.

Anelement X € g is said to be regular or singular according as n(X) # 0 or
n(X) = 0. We put

4.1.3) g ={X:X € g, X regular}].
In view of (3.9.4), it is clear that if K = R,
(4.1.4) g =(8) Ng.

Since the p, are invariant under the group of all automorphisms of ¢ (cf.

(3.9.3)), it follows that g’ is an open set that is invariant under the adjoint

group of g (i.e., the analytic subgroup of GL(g) defined by ad g = gl(g)).
For any X € g, let )

v(X) = multiplicity of the root 0 of the characteristic

(@.1.5) equation of ad X,

Then v(X) is the smallest integer » > 0 such that p,(X) % 0. So v(X) > rk(g)
for all X € g, and v(X) = rk(g) is and only if X is regular.

To get an idea of what is meant by regularity, we consider an example.
Let / be an integer > 1. ¥ a complex vector space of dimension / + 1, and
g = 8l(V). For any X € g, let X be the endomorphism of the dual V'* of ¥
given by (Xv¥)(v) = —v*(Xv) (v € V,v* € V*). If A,,...,A, are the dis-
tinct eigenvalues of X and v, is the multiplicity of 4, as a root of the charac-
teristic equation of X(1 < j<Cr), it is easily seen that 0 is a root of the
characteristic equation of X, , = X ® | + 1 ® X, of multiplicity v? + ---
+- v2. Now gl(V) is the direct sum of g and C- 1, and [X,1] = 0; conseqnently,

we may conclude from Lemma 3.1.10 that v(X)=1v} + ... + v — 1.
Since ¥, v, =1+ 1, it follows that v(X) > /, and that v(X) = / if and
only if v = ... = v, =1, i.e,, X has / + 1 distinct eigenvalues. If 1,,. . .,
A+, are these eigenvalues, an easy calculation shows that

(4.1.6) nx) = 1;[1 (4 — 4y).

For arbitrary g, Whitney’s theorem [1] implies that g’ has finitely many
connected components if ¥ = R; if k = C, ¢’ is actually connected.!

1The fact that g’ is connected if & = C is immediate from the following result: if ¥
is a vector space of finite dimension over C, and if f is a polynomial on ¥V, then V' = {v: v .
e V, f(v) # 0} is connected. To prove this it is enough to assume f'# 0 and show that given
v, v € V’, there is a connected set W,, < ¥’ containing both v and . Letg(r) =
fv + (1 — 1)) (t € C;v,v € V', fixed). Then g is a polynomial and g = 0. Let Z be
the set of zeros of g and W,,,» = {tv + (1 — t)': t € C\Z}. Then W, being the continu-
ous image of the complement in C of a finite set, is connected; and v, v’ € Wy,
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Let ) be a subalgebra of g. By the normalizer of |) in g we mean the set of
all X € g such that [X,0] < §; it is a subalgebra of g that contains {) as an
ideal in it. {) is said to be a Cartan subalgebra (CSA) of g if (i) §j is nilpotent,
and (ii) [) is its own normalizer in g. These subalgebras play a fundamental
role in the theory of semisimple Lie algebras.

Lemma 4.1.1. Let g be a Lie algebra over k, () a CSA. Then. (i) ) is maxi-
mal nilpotent. (it) If 3 is any subalgebra of g such that () < 3 < g, then {) is a
CSA of 3. (iii) If k = R,|), is a CSA4 of g.. (iv) Let

4.1.7) {(X) =det(ad X)gy (X € 0);
then {y is a polynomial function 5= 0 on ) that does not vanish identically.

Proof. (i) Letlbea CSA of g, 11  §janilpotent subalgebra containing
). By Engel’s theorem (cf. §3.5) applied to the nil representation H — (ad H),
(H € n)of §in n/l), we see that thereisan X € n, X ¢ |), such that [X,)] <
§; this is a contradiction. (ii) is obvious. If b is any subalgebra of g and m is
its normalizer in g, then in the case k = R, it is obvious that m, is the normal-
izer of b, in g,.. This proves (iii). We come to (iv). In view of (iii) we may as-
sume that k = C. Then p (Y — (ad Y)yy) is a representation of [ in g/f). If
{y=0, det p(Y) = 0 for all Y € §). From Theorem 3.5.8 we can conclude
that 0 must be a weight of p. So the subrepresentation of p defined by the
weight subspace corresponding to the weight O is a nil-representation. So by
Engel’s theorem we conclude that there is an X ¢ § such that [X,{)] = 0, a
contradiction.

We shall now describe a method of constructing CSA’s.

Theorem 4.1.2. Let g be a Lie algebra over k. For X € g, let
(4.1.8) Dy ={Y:Y € g,(ad X)*(Y) = O for some integer s >> 1}.

Then for any regular X, Gy is a CSA, and dim \)y = rk(g). In this case, if g, is
defined by (4.1.7) and n is given by (4.1.2),

(4.1.9) 110x = {ox
In particular, Y € V) is regular if and only if {3, (Y) #= 0.

Proof. Let X € g be regular and let us write {) for §,. If ¥ € 1), (ad X)*
(Y)=1[X][X,...,[X,Y]] ---] =0 for some s > 1. So
LA

§ terms

[ad X,Jad X,[---[ad X,ad Y]---] = 0

§ terms

Theorem 3.1.5 then shows that ad Y leaves {) invariant. [) is thus a subalgebra.
We assert that Y is nilpotent. Let { = {5, be defined by (4.1.7), so that
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{(Y)=det(ad Y)y, and let ) = {Y: Y € 1, {(Y) # 0}. By Theorem 3.1.5,
g is the direct sum of ) and m, where m = (),,, range((ad X)*), and for any
Y € Y, ad Yleaves both § and m invariant. If Y € §’, (ad Y)|m is invertible,
so §y = . On the other hand, since X is regular, dim(f)) = rk(g) < wW(Y) =
dim(,) (cf. (4.1.5)), so §y, = §. In other words, (ad Y)|Y is nilpotent for ¥ €
§’. Now {(X) = 0,s0{ £ 0. So § is dense in ). This implies that (ad Y)|} is
nilpotent for all Y € §.

Let n be the normalizer of § in g. If X’ € n, then [X,X"] € §, so X' €
f too. So n < ¥). This completes the proof that Y is a CSA. Note that dim(})
= 1k(g)(= /, say).

It remains to prove (4.1.9). For Y € 9, (ad Y)| Y is nilpotent, so there is
a basis for ) in which the matrix of (ad Y)|{) has zeros on and below the main
diagonal. Combining this with a basis for m, we obtain a basis for g. If we
calculate the determinants in this basis, we easily obtain (4.1.9) from (4.1.1).

We now prove Chevalley’s theorem on the conjugacy of the Cartan sub-
algebras of a complex Lie algebra under the adjoint group (Chevalley [3]).

Theorem 4.1.3. Let g be a Lie algebra over k. Then any CSA of g is of
the form %), for some regular element X. There are finitely many CSA’s Y,,. . .,
Y), such that any CSA of g is conjugate to one of the Yy, through an element of the
adjoint group G of g. If k = C, all CSA’s are mutually conjugate under G.

Proof. We note that if §) is a CSA and X € 1) is a regular element, then
h) = Y. In fact, since Y is nilpotent, ) = §; since Y is nilpotent and §) is
maximal nilpotent, §) = Y),. In particular, if two CSA’s contain a regular
element in common, they must coincide.

This said, we take up the proof of the theorem. Let §j be a CSA of g and
{ = { be defined by (4.1.7). Let

(4.1.10) B ={Y:Y eb {(¥)=0)

Then, by Lemma 4.1.1, ¥ is a dense open subset of f). We now introduce the
analytic map

(4.1.11) v:(xX)— X*

of G X Y into g, and calculate its differential. We canonically identify the
tangent spaces to G, g, and }) at each of their points with g, g, and Y respec-
tively. Then, for Y € g, H € ),

@), (Y, H) = (dy) iz, x(Y,0) + (d¥)xox)(0,H)

d

- )+ s )

= [Y,X]* + H*.

=0
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Let

(4.1.12) L(Y,H)y=[Y,.X]+H (Y €g, Hel).
Then

(4.1.13) @¥)is.x) = Ad(x)o Ly (x € G, X € ).

In particular, for x € G and X € ),
(4.1.14) range ((dy)..x,)) = (0 + range (ad X))*.

Now, for any X € 0, [) + range (ad X) = g if and only if ad X induces an
invertible endomorphism of g/, i.e., {(X) # 0. So the relation (4.1.14) shows
that (dy),,.x, is surjective if and only if X € Yy'.

It follows from this last assertion that (f)')° = w[G X 1)'] is an open subset
of g and that y is a submersion of g X )’ onto (§')°. Since the set g’ is dense
in g, it follows that (§')° N ¢’ % @. Since ¢’ is invariant, we must have [’
N g # &. So [ contains a regular element, say X. Then [) = 1),, as we had
observed at the outset.

It remains to examine the conjugacy question. Let g,,. . . ,3, be the con-
nected components of ¢’, and let X; € g, be arbitrary, 1 < i <r. Write f), =
Ox, (1 < i< r). Since G is connected, it is clear that the g, are invariant under
G. Fixi, 1 <i<r. Forany X € g, write [y = [y N g¢’, and let )} be the
connected component of b, that contains X; let by = (§5)°. Then Y} is open
in 0y, and it follows from the submersive nature of the map (y,Y)+> Y” of
G x 0, onto (h%)° that v is a connected open subset of g". Thus by = g;. If
Z € b}, itisclear thath; = 0%, 500, =0, If X, Y e g;and vy N0y # &,
it is obvious that Y is conjugate to some element Z in §}, so b, == b, = by.
In other words, two members of the family {v,: X € g,} are either identical
or disjoint. Since they are all open and g, is connected, all of them must
coincide with g;. Thus g; = by, 1 < i < r. Suppose §) is a CSA, X a regular
point such that ) = l),. Then X € g, for some i, so X = Z” for some Z €
b4,y € G (1 < i< r). This implies that iy = §). Finally, if kK = C, g is con-
nected. So r = 1 in the above discussion, and any CSA of g is conjugate, via
G, to Y),. This proves the theorem.

Corollary 4.1.4. The dimension of any CSA is the rank of g. If V) is any
CSA

n(Y)=det(adY)ys (¥ € D).
We give two examples.

(1) Let/be an integer >1, V a vector space of dimension / + 1 over C,
and g = 8[(V). Let X € g be regular. We have then seen that X has /41
distinct eigenvalues. So there is a basis {v,: 1 < i <[+ 1} of V in which the
matrix of X is diagonal. X is clearly semisimple, so ad X is semisimple. Thus
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)y becomes the centralizer of X in g. ), is thus the space of all endomor-
phisms of trace 0 of ¥ whose matrices in the above basis are diagonal; rk(g)
=/

(2) Let g—8((2,R): k — R. Let H:((l) _?),X: (8 5) Y =

((1) 8) It is then easy to verify that A and X — Y are regular, and that ,

a=R-H and b = R-(X — Y) are the CSA’s containing H and X — Y
respectively. But a and b are not conjugate because, for any ¢t € R, the
eigenvalues of ad(tH) are 0, 2¢, and —2¢ while those of ad(#(X — Y)) are 0,
2it, and —2it(i* = —1). However, a, and b, are conjugate in g, under the
adjoint group of g..

From now on, g is semisimple, and {-,-> is its Cartan-Killing form.

Theorem 4.1.5. Let g be a semisimple Lie algebra over k and ) = ¢ a
subalgebra. Then |y is a CSA if and only if (a) ) is maximal abelian, and (b)
ad H is semisimple for any H € |). Moreover, in this case, the restriction of
{eye> to Ny X ) is also non-singular.

Proof. We prove first that if [) is any CSA of g, the restriction of the
Cartan-Killing form to {) X ) is non-singular. Let X be a regular element
such that {) = {),. If S is the semisimple component of X (cf. Theorem 3.10.6),
then [X,S] = 0, s0 .S € [); moreover, since ad S is the semisimple component
of ad X, they both have the same characteristic polynomials, from which we
conclude that S is regular. So {) = |)5, and the semisimplicity of S shows that
0 is the centralizer of S'in g. Let q = [S,g]. Then Theorem 3.1.5 implies that g
is the direct sum of ) and q. If H € ) and Y € g, we see from (3.9.9) that

CHIS, Y] = —([S,H],Y)

Therefore, {) and q are mutually orthogonal with respect to {-,->. We may
therefore conclude that q is the orthogonal complement of ) with respect to
{+,+>, and therefore that {-,-> is nonsingular when restricted to §) x ).

Let N be an element of () such that ad A is nilpotent. By Theorem 3.7.3,
there is a basis—for g, when k = R, and for ¢ itself when k = C—with
respect to which the matrices of ad H, H € {), have zeros below the main
diagonal; since ad N is nilpotent, its matrix will then have zeros even on the
main diagonal. Consequently, tr(ad N ad H) =0 for all H € |, i.e., {(N,H)
=0, H € 1). From the previous result we see that N must be 0. On the other
hand, let )’ be the set of all elements of [) which are regular in g. If X € 1)/
and N is its nilpotent component, N € ) as [X,N] = 0, so by the result proved
just now, N = 0. So |)’ consists of semisimple elements. If X € (), {) is then
the centralizer of X'ing. So[X,Y] = Ofor X, Y € (). Now since ) is open in
l), we can find a basis for {) whose members belong to [)’. Since these elements
commute and are semisimple, it follows that 1) is abelian and that ad H is
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semisimple for all H € Y. Since ) is maximal nilpotent, it must a fortiori be
maximal abelian.

Conversely, let ) be a maximal abelian subalgebra such that ad H is
semisimple for all H € Y. Then H — ad H is a semisimple representation of
) in g. So we can find a subspace g of g that is invariant under ad § and com-
plementary to f). Suppose now that Yj is not a CSA. Then thereisa Y € g
such that Y ¢ §and [Y,§] = §. If we write Y=H + Y, He l), Y €q,
we see that Y’ == 0and [Y",§] < §. On the other hand, [Y’,§] < q,s0[Y",§] =
0. This contradicts the fact that ) is maximal abelian. The theorem is com-
pletely proved.

Note that not every maximal abelian subalgebra of g is a CSA. For
example, let ¢ = 8[(2,R) and 1 = R- X, where X = (8 (1)> Then n is max-
imal abelian but not a CSA, because ad X is not semisimple.

Roughly the same arguments as above lead to the following theorem.

Theorem 4.1.6. Let g be a semisimple Lie algebra over k. Then an element
of § is semisimple if and only if it belongs to some CSA of g. Let X be a semisim-
ple element of g, § the centralizer of X, and q = [X,g]. Then 3 and q are or-
thogonal complements of each other with respect to {-,-», 3 is a subalgebra of
the same rank as §, and § is the direct sum of 3 and q. Moreover, - ,-) is non-
singular on § X 3.

Proof. Let X be semisimple. 3 is obviously a subalgebra. As in the
previous theorem, we prove that g = 3 + q is a direct sum, and that 3 and
q are orthogonal complements of each other with respect to {-,->. This al-
ready implies that {-,- > is non-singular on 3 X 3. Note also that if there is a
CSA of g, say ), containing X, then X € § < 3, so ) will also be a CSA of 3;
this will imply that rk(3) = rk(g). So it remains to prove that there is a CSA
of g containing X. It is sufficient to prove that 3 N g’ = . Forif Y € ¢
and lies in 3, then §) = %, is a CSA containing X.

For Z € 3, ad Z leaves 3 and q invariant. Let

{(Z) = det(ad Z),.
Then { is a polynomial function on 3 and {(X) = 0. Put
(4.1.15) '3=1{Z:Z € 3,{(Z)+ 0}.

Then '3 is a nonnull open subset of 3 containing X. Let y be the map (2,Z) —
Z7 of G x 3 into g. As in Theorem 4.1.2, we find that

(4.1.16) @), o(X,Z2') ={[X,Z] + Z'} (X' €g,2Z' €3}).
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This relation shows that dy is surjective at (z,Z) if and only if 3 + range
(ad Z) = g, i.e., if and only if ad Z maps g onto itself, i.e., if and only if
Z € '3. But then ('3)® = w[G X ‘3] is an open subset of g. In particular,
since ¢' isdensein g, ('3)° N g %= @,sothat '3 N g #« &.

It is quite useful to isolate the submersive nature of w as a corollary.

Corollary 4.1.7. Let X € g be semisimple, 3 the centralizer of X in g,
and’} asin (4.1.15). Then y: G x '3 — g is everywhere submersive. In particu-
lar, ('3)° is an open subset of g invariant under G.

4.2. The Representations of 3((2,C)

The Lie algebra 3{(2,C) is simple, and its properties are of fundamental
importance in the theory of semisimple Lie algebras. The object of this sec-
tion is to present the basic results concerning the (finite-dimensional) repre-
sentations of this Lie algebra.

Let g = 8[(2,C), G = SL(2,C), and let & denote the universal enveloping
algebra of g. Write

1 0 0 1 0 0
4.2.1) Hz( ), X:( ), Yz( );
0 —1 00 1 0
then
(4.2.2) [HX] = 2X, [HY] = —2Y, [X,Y] = H.
Also
4.2.3) {HHY=28 {X,Y> =4,

The representations z,. Since g is semisimple, all of its representations
are semisimple by Weyl’s theorem. We shall now determine the irreducible
representations of g. We need a Lemma.

Lemma 4.2.1. Let p be an integer > 0. Then we have the following identi-
ties in &:
XY?' = Y291 X + (p + DY*(H — p)

(4.2.4)
YXPH = XPH1Y — (p + DX?(H + p).

Proof. We use induction on p. For p = 0, this is clear, since XY — YX
= H. Assume (4.2.4) for some p > 0. Since HY = Y(H — 2),
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XY?*2 = (Y?*1 X - (p 4 DY?(H — p))Y
— Y?2X 4 YU H + (p+ DY?H(H — p — 2)
=YX + (p+ Y (H —p — 1)

The second relation in (4.2.4) is established similarly.

Theorem 4.2.2. Let p be a finite-dimensional irreducible representation of
g in a complex vector space V. Then p(H) is semisimple, its eigenvalues being
all simple and integral. Moreover, there is an integer j > 0 and a basis {vq,v,,
.\0,} for V such that

p(H)rUp:(j-" zp)vp (1’:0,1,5])
(425) p(X)UO = 0’ p(X)Up = P(J - P -+ l)vp—“l (P = 1’ s ’j)
pYyw, =0, p(Yw,=v,,, (p=01,....j— 1)

Conversely let j > 0 be any integer. Then there is exactly one equivalence class
of irreducible representations of § of dimension j -+ 1, and (4.2.5) defines a
member of this class. Finally, each of these representations is equivalent to its
contragredient.

Proof. Let p be an irreducible representation of g in a finite-dimensional
vector space V. For any A € C, write V, for the eigenspace of p(H) cor-
responding to the eigenvalue A, if A is an eigenvalue of p(H); otherwise, put
V,=10. Since [p(H),p(X)] = 2p(X) and [p(H),p(Y)] = —2p(Y), we see
easily that forany 4 € C

(4.2.6) PV = ba PNV S Vo,

Now, we can find an eigenvalue j of p(H) such thatj 4 2 is not an eigenvalue.
If v, £ 0 is an eigenvector corresponding to the eigenvalue j, we get from
(4.2.6)

(4.2.7) p(Hw, = jus,  p(X)v, = 0.
Let
(4.2.8) v, = p(Y)yv, (s=0,1,...)

By (4.2.6), p(H)v, = (j — 2s)v, for s > 0. As the numbers j — 2s cannot all
be eigenvalues of p(H), we can find s > 1 such that v, = 0. Let m >0 be
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chosen so that
(4.2.9) v,#0 (0<p<m), V,er = O.

The v,(0 << p < m) are linearly independent, since they are eigenvectors of
p(H) for distinct eigenvalues. Moreover, by the first formula of (4.2.4) we
have, for 0 < p < m,

PX W, = p(XY7Y,
—p(j—p+ D,

Consequently, the subspace Y <, C-v, is invariant under p(H), p(X), and
p(Y). Since p is irreducible, we must have
V= 3 Cw,

0<p<m.

At the same time, since v,,,, = p(Y)"*1v, = 0, we have

0 = p(XY™" ),
= (m + D(j — m,,.

This implies that j = m. Therefore j is an integer > 0, the dimension of V
is j + 1, and one has the relations (4.2.5). The semisimplicity of p(H) is
obvious.

Conversely, let j be an integer > 0. Let V' be a vector space over C of
dimensionj 4 1. We choose a basis {v,,. . . ,v,} for V" and define the endomor-
phisms p(H), p(Y), and p(Y) by (4.2.5). A straightforward calculation shows
that the map hH + xX + yY — hp(H) + xp(X) + yp(Y) (h, x,y € C) is a
representation of g in V. This representation must be irreducible. For, if
W £ 0 is an invariant subspace of V, the invariance of W under p(H) implies
that W is spanned by the v, it contains. If s is the smallest of the integers
g > 0 for which v, € W, then s = 0; for if s > 0, p(X)v, is a nonzero multi-
ple of v,_, and lies in W, showing that v,_, € W. So v, € W. But then
v, = p(Y)v, € Wfor0<<p <, Thus W= V.

For each integer j > 0, we thus have a unique equivalence class of ir-
reducible representations of g, of dimension j + 1. Since the contragredient
of an irreducible representation is an irreducible representation of the same
dimension, the last assertion follows immediately. This proves the theorem.

Corollary 4.2.3. Let p be a representation of §. Then p(H) is semisimple,
while p(X) and p(Y) are nilpotent. The eigenvalues of p(H) are all integers;
and the set of eigenvalues of p(H) is invariant under the symmetry s+ —s of
the additive group of integers.
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It is enough to prove these assertions for irreducible p; for such p, they
are immediate from (4.2.5).

Corollary 4.2.4. Let n be a representation of § in a finite-dimensional
vector space V. Assume that (i) all eigenvalues of n(H) are of multiplicity 1,
and (ii) the difference between any two eigenvalues of n(H) is even. Then 1t is
irreducible.

Proof. m is seen to be either irreducible or equivalent to the direct sum
of n; and x, where | j — j'| is odd, on noting that in the irreducible represen-
tation p corresponding to j > 0 the eigenvalues of p(H) are j,j —2,...,—J;
the second alternative is impossible in view of (ii).

The following corollary is immediate from the proof of Theorem 4.2.2.

Corollary 4.2.5. Let p be a representation of ¢ in a (not necessarily finite-
dimensional) vector space V, and v a nonzero vector in V such that: (i) p(X)v =
0 and p(Y)'v = O for some integer s > 1, and (i1) p(H)v = Av for some A  C.
Then A is an integer > Q; moreover, the subspace 3 4., C-p(Y)Yv is p-
invariant, and it defines the irreducible representation of dimension ) +- 1. In
particular, p(Y)*'v = 0.

The eigenvalues of p(H) are called weights of p; the eigenspaces are called
the weight spaces. If p is irreducible and of dimension j - 1, j is the largest of
the weights of p; j is called the highest weight of p, and we denote by =; the
irreducible representation of g with highest weight ;.

The left ideals 9%,. The representations z; are so important that it may
be worthwhile looking at them from other angles. From the point of view of
the universal enveloping algebra, we have

Theorem 4.2.6. Let v, be a nonzero vector of weight j for n;. Then C-v,
is the null space of m(X). If

(4.2.10) M, =={a:a € B,a,a), = 0},
then MM, is a maximal left ideal of &, and
4.2.11) M, == OX 4 G(H — j) + GY/+1L.

Proof. 1tis clear from (4.2.5) that C-v, is the null space of z;(X). Since
n; is irreducible, M; is a maximal left ideal of &. Let M be the subspace of &
given by the right side of (4.2.11). Then, since X, H — j, and Y/*t € M,,
(cf. (4.2.5)), M < M,. On the other hand, if , 5, and 7 are integers >0, we
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have, modulo N,

0 ifr>0
YHX =q jY ifs>0,r<jt=0
0 ifs>0,r>j+1,t=0.

So, since & is spanned by the monomials Y"H*X*, we have

G=M+ > C-.Y".
0<r<j
In other words, dim(®/2M) << j + 1. But dim(®/M,) = dim(x,)) =+ 1, so
we must have M = M;.

Remark. Given any integer j > 0, it is possible to prove directly that
M, as defined by (4.2.11), is a maximal left ideal of &, thus providing one with
an alternative method of constructing the z;. We shall take this method up
in the case of arbitrary g later on.

Corollary 4.2.7. Let w = H*> +2H -+ 4YX + 1. Then w lies in the
center of &, and

(4.2.12) n () = (j+ 1)*-1.

Proof. It is an easy verification that ¢ lies in the center of . So, by
Schur’s lemma, 7,(w) = c,-1 for some constant c;. In particular, z,(w)-v, =
¢;v,. But

n{@)vy = w,(H)*vy + 2 (H ), + v, 1 Ar(Y ) (X)v,
= (U + D,

Concrete realizations. We shall proceed to the concrete realizations of
the z;. Since G = SL(2,C) is simply connected, the z; can be lifted to complex
analytic representations of G; these will also be denoted by ;.

Let 1V, = C2, and let us write elements of ', as 2 X 1 column vectors; the

elements of g and G act as endomorphisms of ¥, through matrix multiplica-
tion. Put

(4.2.13) vlloﬁ((l)) vy :(?)

Then

(4.2.14) Hv, 5 = vy, Xvi, =0, YV, 0 =0 ;.



272 Complex Semisimple Lie Algebras and Lie Groups Chap. 4

So the representation Z+ Z is equivalent to 7,. Let § be the symmetric
algebra over V,, and for any integer r > 0, let §, be the homogeneous sub-
space of degree r of §. For Z € g, let d, be the derivation of § that extends
the endomorphism v +— Zv of V',. The d, leave §, invariant and so induce a
representation Z+—d, | $, on §,. For r = 0, this is the trivial representation
of g; for r = 1, this is the representation Z — Z considered above. Let r > 2,
and let

(4.2.15) v, = Vi, (0<p<r).

The v, , (0 < p < r) form a basis for §,, so dim(§,) = r 4+ 1. A straight-
forward calculation shows that

dl‘lvr,p = (I' - 2p)vr,p (0 S D S I‘)
dyv, , =0, dyw,, =0
(4.2.16) xono Yo,
der,p = PV p-1 1<<p<n),
der,p =(r— P)Ur,pﬂ o<<p<r—1).

(4.2.16) makes it clear that the representation defined by §, is equivalent to
,.

$ is canonically isomorphic to the polynomial algebra on V'}; identifying
V* naturally with V,, we obtain an isomorphism of § with the algebra P of
polynomials on V. A straightforward verification shows that G acts on P in
the following way:

(4.2.17) (x-p)u) = p(x'-u) (ue V,p€<eP)

(t denotes matrix transposition). The space P, of homogeneous polynomials
of degree r is then invariant under this action and defines a representation
equivalent to 7,.

Characters. Let ¢, and ¢, be respectively the linear functions (Z:) — U

and (“t) > u, on V,. For any A € C* let
U,

4.2.18 = A0
(4.2.18) xz—(o ,1_1)'

It is then clear from (4.2.17) that
X, @17 P@8 = AP0 (0 < p <))

So the trace of the endomorphism g x,-g (¢ € P;)is found to be A/ 4- 1/72
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4 oo 4 A0 Let

(4.2.19) vix)=trn(x) (x € G).
Then
(4.2.20) wix) =@ — A7) (A — A7) (A e CHA= +1).

w; is a continuous function invariant under all the inner automorphisms of
G. Further, any x € G with distinct eigenvalues is conjugate, via some inner
automorphism of G, to an x, with 4 = 4+ 1. As the set of such x € Gis a
dense open subset of G, (4.2.20) determines y; completely. From (4.2.12) we
see (cf. Exercise 54, Chapter 3) that y; satisfies the following differential
equation:

(4.2.21) wy; =+ Dy,

4.3. Structure Theory

Let g be a complex semisimple Lie algebra, [) a CSA. We fix g and |
throughout this section. The aim of this section is to make a detailed analysis
of the structure of g through an examination of the spectral theory of ad .
This is not difficult, since Y is abelian, and ad H is semisimple for all H € .

We write {-,-> for the Cartan-Killing form of g; if a and b are two sub-
spaces of g, we write a 1| b when (X)Y> =0 for Xe€q, Y€ b, al=
{YXX,Y> =0 for all X € a}. §)/ is the set of regular points of ). As usual,
dim(g) = /.

1. Roots and root subspaces. Let )* be the dual of §). For 4 € {* let
4.3.1) g, ={X:X € q,[H,X] = AMH)X for all H € Y}.

Since [) is the centralizer of any element of [y, it is obvious that g, = ).
A € U* is called a root of (g,})), or simply a root, if A 5= 0 and g, %= 0. We
write A for the set of roots.

4.3.2) A={A:1 € bH* 1aroot}.

For any 1 € A, g, is called the root subspace corresponding to A. To the
representation H — ad H we apply Theorem 3.5.8. Since ad H is semisimple
for H e |, it is clear that the weight subspaces are the root subspaces. Hence
we have the decomposition

(4.3.3) g=10+ ;A Bas
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the sum being direct. We call (4.3.3) the root space decomposition of g with
respect to ).

Lemma 4.3.1. Let, u € H*. Then[g,,8,] S 8,4, if A+ u #0,8, L g,

Proof. Since ad H is a derivation of g, we have, for X € g, and Y €
8. [H[X, Y]] = [[H,X], Y] + [X[H,Y]] = (A + u)(H)[X,Y], showing that
[X,Y] € g4, If A4+ 4 0 and X and Y are as above, then for any v €
b*,ad X ad Y maps g, into g, ,,,, which is different from g,. Hence (X, YD =
tr(ad Xad Y) = 0.

Corollary 4.3.2. g, 1 § (A € A). If o € A, then —a € A. Moreover,
{+y+) is non-singular on g, X §_, for any o € A.

Proof. The first relation is clear, since 4 £ 0. If « € A but —a ¢ A,
then g, | g, for all # € A. So, since g, | § too, g, | g, contradicting the
non-singularity of (.,->. If X € g, and X | g_,, then the same argument
shows that X | g, so X = 0. This gives the last result.

Lemma 4.3.3. C-A = §*

Proof. For H, H' € Y we have

4.3.4) {H,H» =Y dim(g,)a(H)a(H").

a€A
If C- A = b*, there will be an H 0 in {j such that a(H) = 0 for all &« € A.
Then H | § by (4.3.4), contradicting the non-singularity of {.,.-> when
restricted to §) x b,

Since {-,->|H X 1) is non-singular, there is a natural isomorphism of §*
onto §). For any A € 0)* its image in [) will be denoted by H,. Thus

(4.3.5) MH) = <{H,H,) (A€ b* Heh).

We also transfer {-,-> to a symmetric non-singular bilinear form {-,-)> on
h* X b* via this isomorphism. Thus

Note that H, 5= 0 for any a0 € A.
Lemma 4.34. Leta € A, X €g,, Y € g_,. Then

4.3.7) [X,Y] = {X,YDH,.
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In particular,
(4.3.8) [8..8-.] = C-H,.

Proof. By Lemma 4.3.1, [g,.8-,] 0. If X, Y are as above, then
CHIX, YD = a(H)XX,Y) ={H{X,Y>H,> for any H 1. This proves
(4.3.7) and shows that [g,,5_,] = C-H,. By Corollary 4.3.2, we can find
X, Y as above with {(X,Y) = 1; then [X,Y] = H,. This proves (4.3.8).

Since H, = [X, Y] for suitably chosen X € g, and Y € g_,, ad H, =
[ad X, ad Y] for such X, Y. Then tr(ad H,| V) = 0 for any subspace V of g
invariant under both ad X and ad Y. This remark leads to the next two lem-
mas.

Lemma 4.3.5. Leta, f € A. Then there is a rational number q,, such that
(4.3.9) By = gpalao).

Moreover, {a,a) is a rational number >0.

Proof. Let V=3 ,cz 8.1, (the sum is finite). By Lemma 4.3.1, [g,,V]
< V, [g-,,V] < V. Let d, = dim(g,,,,). Then, by the remark made above,
tr(dd H,|V) = 0. So

; d({B.)> + kla,a>) = 0.

As Y. d, > d, > 0, we can solve for {,a> from this relation to get (4.3.9)

with q,, = — (O, kd )k di). If (a0 =0 (B,a> =0 for all f € A by
the above result. So {a,A> = 0 for all A € {*, showing that « = 0, a con-
tradiction. Thus {a,a> = 0. By (4.3.4) and (4.3.9)

<a’a’> = ﬂ;A dim(g,,)q,%,(a,oc)z.

Since {a,a) 7= 0, we can solve for it from this relation to get {a,0)> =
(3o pea 93, dim(gg))~!, which is rational and > 0.

Corollary 4.3.6. Let

(4.3.10) br = 3 R-H,.

x€EA

Then dimg O)g = [. Moreover, {+,-> is a positive definite scalar product on
Or X Y. Each root is real-valued on \g.
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Proof. By (4.3.9) it is clear that each root is real-valued on ). By (4.3.4),
(HH) = p% dim(g,)B(H)* (H € Bg).

Since B(H) is realfor H € \)g, f € A,{H,H)>>O0for H € \)p. f (HH> =0
for some H € U, then B(H) = 0 for all § € A, showing that H = 0. So
{+,+> is a positive definite scalar product on g X Dg. Since dim () =/, we
can select a,,...,0, € A such that H,,...,H,, span ) over C. If H =
Si<i<i ¢H,, € Ug (c; € C), we have the equations

o(H) = 1§gzc’<a”“i> a<j<h.

Now the matrix ({a;,&,>),<: ;< is invertible because -, is non-singular on
h* x h*. Also, its entries are real. Consequently, as the a;(H) are real, the ¢,
are also real. In other words, Yy is spanned by the H, (1 <i</) over R.
This proves that dimg Hr = /.

Lemma 4.3.7. Leta € A. Then dim(g,) = 1, and none of +2a, +3a,.. .,
are roots.

Proof. Select X € g,, Y € g_, such that H, =[X,Y], and let V' =
C-Y + C-H, + i1 Gea- It is clear that V is invariant under both ad X ad
Y. Hence tr(ad H, | V) = 0. Write d, = dim(g,,), K = 1,2, .... Then

(oax(—1 +dy + 2d, + ---) = 0.

Since {a,a> 7% 0,d, > land d, > 0 (i > 2), we must haved, = 1,d, =d; =
R

Since (&, is a rational number > 0, we can find a rational number g,
such that a(q,H,) = 2(« € A). Let H, = g,H,. Thus:

(4.3.11) A, = @%H,l (@ € A).

We can find X, € g,, X_, € g_, such that [X,,X_,] = H,. Then

(4.3.12) [A.X]=2X, [HX_,]=-2X_,, [X,X.]=H.,.
Write

(4.3.13) b,=C-H, + g, + G0

Then b, is spanned by H,,X,, and X_, and is a subalgebra of g isomorphic
to 8((2,C). Put

(4.3.14) p(X)=adX (X €b,);
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p. is then a representation of b, in g. We now examine this representation
using the results of §4.2.

Lemma 4.3.8. Leta, f € A with f %= d-o. Then there exist two integers
p = p(a,B) and g = q(a,B), both > 0, such that for any integer k, f + ka €
A if and only if —q < k < p. The representation p, is irreducible on Y .z
Qpika- Moreover, B(H,) = q — p is an integer, and f — B(H) o € A.

Proof. B+ ka0, k=0, +1,+2,..., sodim(gs,,,) < 1 for all k.
Let
(4.3.15) 850 = 2 Bpikar
keZ

p. leaves g, , invariant. If g,,,, 5= 0, its elements are eigenvectors for p(H)
for the eigenvalue B(H,)+ 2k. So, all eigenvalues of p.(H,)|a,, are of
multiplicity 1, and any two of them differ by an even integer. By Corollary
4.2.4, p, acts irreducibly on g, ,. Let j be the highest weight of the irreduci-
ble representation defined by g, ,. Then since g, < g, ,, we see that B(H,) is
an integer, while j — B(H,) and B(H,) + j are nonnegative even integers.
Let p = 1(j — B(H,)), ¢ = }(j + B(H,)). It is then obvious that

(4.3.16) Opa= 2 Bpikar

—q<k<p
Finally, — B(H,) must be an eigenvalue of p,(H,)| g, , (Corollary 4.2.3), so
there is a k with —g < k < p such that (8 + ka)(H,) = —B(H,). Solving
for k, we find that k = — B(H,): So

(4.3.17) B — B(H,)-a € A.

Corollary 4.3.9. Let a € A. If ¢ € C, then ca is a root if and only if
c= +1.

Proof. We may assume that ¢ 5= 0. Let § = ca. Then 2¢ = S(H,) is an
integer. Similarly, since & = ¢~!f, 2¢~! is an integer too. So ¢ = +1, +1,
or 4-2. If ¢ = 41, then either « = 428 or B = 42a, both of which are
impossible by Lemma 4.3.7. So ¢ = +1.

Corollary 4.3.10. Suppose o, B € A and B # a. If B — & is not a root,
{a, B> < 0; moreover, in this case, ¢ = 0 and p = — B(H,).

Proof. 1f B —aisnota T00t, 840 =85+ Opiq -+ + Bpipar SO B(H)
is the lowest eigenvalue of p,(H,) in g, ,, hence f(H,) << 0. This implies that
{a,> < 0. The rest is obvious.

Corollary 4.3.11. Suppose that a, f € A and oo + f € A. Then [g,,0,]

= gm+B'
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Proof. Otherwise [g,,a5,] =0, S0 > _,<x<0 8p+xo i invariant under p,.
This implies that p = 0 or § + & ¢ A, a contradiction.

Corollary 4.3.12. Let a, B € A, with B # +a, and let p,q be as in Lemma
4.2.8. Then p + q < 3. Furthermore, the possible values of 2{a,B>/{a,&)> are
O’ :t]’ iz’ :t3'

Proof. Let m = 2{a,B>/{o,06> n = 2{B,a>/{B,B>. Then both m and n
are integers. Suppose m % 0. Then n = 0 also. On the other hand, by Corol-
lary 4.3.6, {-,-> is a positive definite scalar product on } ., R-y; so, using
the Cauchy-Schwarz inequality, and remembering that & and g are linearly
independent, we get 0 <|m||n|<4. So m = +1, +2, or +3. Replacing §
by B + pa in this result, we see that the highest weight of the representation
Py in g, 45 namely (f + pa)(H,), is at most 3. Hence dim(g,,) < 4. So p +
q<3.

Corollary 4.3.13. Leta,f € A, with B # 4o, and let p,q be as in Lemma
4.3.8. Suppose that Z,, € ¢, and Z_, € §_,, both #= 0. Then for any X € g,

(4.3.18) (ZolZ-X]] = 227, Z_54(p + DX.

Proof. Let X, € g,, X_, € §_, be such that (4.3.12) is satisfied. Since
H, = /{a,0>)H, and [X,,X_,] = {X,,X_,>H, (cf. (4.3.7)), we have

(4.3.19) (XX = <72a_>

LetZ, = ¢, X,, Z_, = c_,X_,. If j is the highest weight of the representation
p. in g ,, it is clear that g, = (ad X_,))?[8,. .}, S0 we obtain from (4.2.5)
adX,ad X_,- X =(p+ D(Jj—pX (X € gp).

On the other hand, dim(g,,) =p + g+ 1,s0j=p +q. So
(4.3.20) [Xo[X -0 XT = g(p + DX (X € gp).

Now, (4.3.19) implies that (Z,,Z_,> = c,c_,-2/{a,0), so we get (4.3.18) from
(4.3.20).

Consider now « € A. Let
4.3.21) o,={H:H € Y, a(H) =0}

o, is a hyperplane in Y. Since a(H,) > 0, H, ¢ o,. So ) is the orthogonal
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direct sum of ¢, and C-H,. We now introduce the “reflection” s, in the
hyperplane ,. This is the endomorphism of [) given by

(4.3.22) S.oH = H — a(H)H,.

Note that s, leaves [z invariant and s, | ) is the reflection in the null space of
o in g. It is easy to verify that

st=1

(4.3.23)

s,H= H(H € o,), soH, = —H,
Let tv be the subgroup of GL()) generated by the s, (& € A). It is called the
Weyl group of (g.,0)), or simply, the Weyl group. tv acts naturally in H* too
and the two actions are intertwined by the map 4 — H,.

Lemma 4.3.14. v is a finite subgroup of the orthogonal group of ) with
respect to {+,+>. Fach element of \v induces a permutation of A.

Proof. Ifa € A, thenforany g € A, B — B(H,)a = y is also in A. But
H,= H, — B(H,)H, = H, — a(H,)H, = s,+H,. So for the action of 1 in
b*, 5.+ =y. Thus s5,-A < A. Since s, is one-to-one, s,-A = A. Hence
s-A = Aforanys € tv. Foranys € 1v, let § be the permutation of A induced
by s. Then s+ § is a homomorphism of v onto a finite group. If § is the
identity, it is clear from Lemma 4.3.3 that s is the identity. So s+ § is an
isomorphism. tv is thus finite. It is obvious from 4.3.23) that s, is an ortho-
gonal transformation for each & € A. So each s € 1w is orthogonal.

The essential results in the foregoing analysis may now be summarized as
follows. Our notation is as above.

Theorem 4.3.15. The root spaces are one-dimensional. If a, f € A and
o + f # 0, then [3,,8,] = 0 or = g,,, according asa + f ¢ A or € A; if
Xeg,Yeg [ X,Y]1=<X,YOH,. A= —A;ifo € A, then +a are the
only multiples of a which are roots. If a, f € A, {a,a> is > 0, both {a,a> and
{a,B)> are rational numbers, and 2{a,B>/{a,a> is an integer. whose possible
values are 0, +1, 42, 4-3. C-A = )*\g = X .ca R-H, is of dimension |
over R, and (-, is positive definite on )z X \r. For each o« € A, s5,: H—
H — Qa(H)/{a,a))H, is a reflection in ) in the null space (hyperplane) of «,
and the group generated by the s, is a finite subgroup \v of the orthogonal
group of |y relative to {-,->; moreover, s-A = A for each s € . |) | g,
(@€ A), and g, L g, ifa, B € A but a + B +#0; <{-,-> is nonsingular on
) X Handg, X g_, (@ € A).
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2. Positive and simple systems of roots. Weyl group. A set P = A of
roots is called a positive system if

PN (—P) =g, PU(—P)=A

(4.3.24)
a,fePat+pfeA=>at+fcP

Note that P then contains exactly half the number of elements of A. A set
S < A of roots is called a simple system if (i) S = {a,, ..., ,} has / elements,
and (ii) if & € A, there are integers m;, (I << i < /), either all >> 0 or all < 0,
such that & = m,a, + --- + my,. Note that S must be a basis for j*, and
the m, corresponding to a given a are uniquely determined. If S={a,,...,
a,} is a simple system, the set of all roots of the form m,a, + --- + m,,
where the m, are all integers > 0, is easily verified to be a positive system; it
is called the positive system corresponding to S. It is obvious that if P is a
positive system, S is a simple system, and ¢ € {v, then ¢- P is a positive system,
and ¢-S is a simple system; if P corresponds to S, ¢- P corresponds to ¢-S.

Before constructing positive and simple systems, we examine some of
their properties. Let S = {a,, ... ,a,} be a simple system. If P is the corre-
sponding positive system and o € P, then write

(4.3.25) o) =m; + -+ +m (&=moa; + -+ ma,).

O(a) is called the order of a. O(x) > 1 for « € P, and =1 if and only if
o e S.

Theorem 4.3.16. Let S = {ay, . .. ,a,} be a simple system of roots, and let
P be the corresponding positive system. Then:

() Ifl<i,j<landi=+j, then o, — a; is not a root, and
(4.3.26) o, < 0.

(i) If1<i<|,
(4.3.27) S0 = — 0y, S, (PN {o}) = P\ {a;};
v is generated by s, . .., S,, and

(4.3.28) A= (J w-a.
1<i<]
(i) If Qis an arbitrary positive system, Q = P if and only if o, € Q for
1<i<l.
(V) 3.cr Q. (resp. X.cpQ_,) is the subalgebra of g generated by 33, -;-18.,
(resp. 331<i18-4,), while § is the algebra generated by 37, 2184, + DIFPET:
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Proof. If ma, + --- 4+ ma, is a root, then we must have either all
m; >0 or all m; <0. So a; — a; cannot be a root if i = j; by Corollary
4.3.10, {a;0;» < 0 in this case. Fix i, 1 <i</, and let f € P, f +# a,.
Then f = ma, + --- + mu,, where m; > 0 for some j 7 i. Now s, f =
B + ca; for some integer ¢, so s, f = ma; + > ,.,m,a, where the m, are
integers. Since s, f is a root and m; > 0, s, 8 must be in P and, in fact, in
P\ {a}. Forif s, f = a,, then f§ = 5,,-a; = —a,. This proves (4.3.27).

Let tv, be the subgroup of \v generated by s, , . . . ,s,,. We prove first that
A= UJ w,-a
1<
Since 1, - o, = 10,8, &, = —1V,+ 0, it is enough to prove that P =, ;- 10, 0,

We shall prove by induction on O(a) that & € (_J,;, 10,-a; for all & € P.
If O(a) = 1, & = a; for some i, so we may assume that O(a) > 1. Then
we can find i, 1 < i </, such that {a,a;> > 0; for otherwise, {a,a;> <0
for all j, so that, writing & = m,e&t; + --- + ma, (m; > 0), we would have
aa) = 3o mlao,> < 0. Let g = s, Then B = o — ca;, where ¢
is an integer > 0. On the other hand, since & 7 a;, § € P by (4.3.27). Since
O(B) = O(a) — c < O(a), B € UJ,<i<itVo-0a; by the induction hypothesis.
This shows that & = s, f has the required property. In particular, (4.3.28) is
proved.

It remains to prove that tv, = tv. It is enough to prove that s, € iv, for
all @ € A. Since s, = s_,, we may assume & € P. Let « € P. Then we can
find 7 € vy and 7/, 1 <<i </, such that & = 7-a,. Since s, and s,, are the
orthogonal reflections in the null spaces of a and «; respectively, it is clear
that s, = 7-s,+77!. Hence, s, € 1v,.

For (iii), Let Q be a positive system with a; € Q, 1 < i < /. We shall
prove by induction on O(f) that any § € P belongsto Q. If § € P and O(f)
=1, f = a, for some i, so that § € Q. Suppose f§ € P and O(f) > 1. As
before, we can find 7, 1 << i </, for which {f,a,> > 0. Now, 8 — a, % 0, so
by Corollary 4.3.10, f — &, must be a root. Since O(f — a,) = O(f) — 1 >
0, this root must be in P. So # — &, € Q by the induction hypothesis. Hence
B=( —a)+a c Q. Thus P = Q. Since both P and Q have the same
number of elements, P = Q.

We now consider (iv). Letp = > .c» 0., @ = D1 <i2s G, Since P is a posi-
tive system, b is a subalgebra containing a. Let " be the subalgebra generated
by a. Then " = p. We shall prove by induction on O(f) that g, < v’ for
each f e P. This is obvious if O(f) = 1. Suppose f € P and O(B) > 1.
As in the proof of (iii), we can find y € P and i (1 <i</) such that § =
y 4+ a,. Since O(y) < O(B), 3, = v’ by the induction hypothesis. Hence
85 = [8,,8..] = b" (Corollary 4.3.11). So p < ', proving that p =p’. A
similar argument proves that .., g_, is the subalgebra of ¢ generated by
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D i<i<t 8-a- Since [g,,8_,] = C- H,, it is clear that g is the subalgebra gener-
ated by 312 Guy + X1cizi G-

We now show that positive and simple systems exist, and determine
them. We need a lemma.

Lemma 4.3.17. Let V be a real vector space with a positive definite scalar
product (+,-). Let v,, . .. ,v, be elements of V with the following two properties:
(i) (vy) <0 fori==j, 1 <i, j<s, and (ii) if m,,...,m, are nonnegative
numbers with mv, + --- +~muw, =0, then m; = --- = m, = 0. Then the
v; are independent.

Proof. Suppose to the contrary. Let ¢,v, + -+ + ¢,v, = 0 be a non-
trivial relation between the v/s. By throwing away the v, for which ¢, = 0,
we may assume that ¢; = 0, i = 1, ...,s. By (ii) the ¢; cannot all be of the
same sign. So s > 2, and we may renumber the ¢, and v, in such a manner
that for a suitable r with 1 <r<s, ¢(,...,c, are >0and c,.,...,c, are
< 0. Write ¢, = —d,,r <i<s. Then d, > 0, and we have the relation
¢y + -+, =d, V. + -+ +dy, =w (say). But then (w<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>