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In humble homage
dedicated to the memory of the outstanding geometer

Ernst Steinitz
(1871-1928)



PREFACE

Convex polytopes-as exemplified by convex polygons and some three
dimensional solids-have been with us since antiquity. However, hardly
any results worth mentioning and dealing specifically with the com
binatorial properties of convex polytopes were discovered prior to Euler's
famous theorem concerning the number of vertices, edges, and faces of
three-dimensional polytopes. Euler's relation , hailed by Klee as "the
first landmark" in the theory of convex polytopes, served as the starting
point of a multitude of investigations which led to the determination of
its limits of validity, and helped focus attention on the notion of convexity.
Additional ideas and results came from such mathematicians as Cauchy ,
Steiner, Sylvester, Cayley, Mobius, Kirkman, Schlafli, and Tait. Since
the middle of the last century, polytopes of four or more dimensions
attracted interest; crystallography, generalizations of Euler's theorem ,
the search for polytopes exhibiting regularity features, and many other
fields provided added impetus to the investigation of convex polytopes.

About the turn of the century, however, a steep decline in the interest
in convex polytopes was produced by two causes working in the same
direction. Efforts at enumerating the different combinatorial types of
polytopes, started by Euler and pursued with much patience and ingenuity
during the second half of the XIXth century, failed to produce any
significant results even in the three-dimensional case; this lead to a
widespread feeling that the interesting problems concerning polytopes
are hopelessly hard. Simultaneously, the ascendance of Klein's "Erlanger
Program" and the spread of its normative influence tended to cast the
preoccupation with the combinatorial theory of convex polytopes into a
rather disreputable role-and that at a time when such "legitimate"
fields as algebraic geometry and in particular topology started their
spectacular development.

Due to this combination of circumstances and pressures it is probably
not too surprising that only few specialized directions of research in
polytopes remained active during the first half of the present century.
Stretching slightly the time limits, the most prominent examples of those
efforts were: Minkowski's fundamental contributions, related to his
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VIII CONVEX POLYTOPES

work on convexity in general, and applications to number theory in
particular; Coxeter's work on regular polytopes; A. D. Aleksandrov's
investigations in the metric theory of polytopes .

Nevertheless, as far as "main-line mathematics" is concerned, the
combinatorial theory of convex polytopes was "out". Despite the
appreciable number of published papers dealing with isolated (mostly
extremal) problems, the whole area was relegated to the borderline
between serious research and amateurish curiosity. The one notable
exception in this respect among first-rank mathematicians was Ernst
Steinitz, who devoted a sizable part of his life and efforts to the com
binatorial theory of polytopes. Unfortunately, his beautiful results did
not become as well known as they deserve, and till very recently did not
stimulate additional research .

It was mainly under the influence of computational techniques (in
particular, linear programming) that a renewed interest in the com
binatorial theory of convex polytopes became evident slightly more than
ten years ago . The phenomenon of "neighborly polytopes" was
rediscovered by Gale in 1955 (the rather involved history of this concept
is related in Section 7.4). Neighborly polytopes, and Motzkin's "upper
bound conjecture" (1957) served as focal points for many investigations
(see Chapters 9 and 10). Despite many scattered results on the upper
bound conjecture and other combinatorial problems about convex
polytopes, obtained by different authors in the first few years of the
1960's, the emergence of a theory proper began only with Klee's work ,
starting in 1962. Klee's results on the Dehn-Sommerville equations (the
interesting history of this topic is given in Section 9.8) and his almost
complete solution of the upper-bound conjecture were the source and
basis for many of the subsequent developments.

During the last three years, research into the combinatorial structure
of convex polytopes has grown at an astonishing rate . It would be
premature to attempt to give here even the briefest historic outline of this
period . Instead,detailed bibliographic references are supplied with each
topic discussed in the book.

The present book grew out of lecture notes prepared by the author for
a course on the combinatorial theory of convex polytopes given at the
Hebrew University of Jerusalem in 1964/65. The main part of the final
version was written while the author was lecturing on the same topic at
the Michigan State University in East Lansing during 1965/66. The
various parts of the book may be described briefly as follows:
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The first four chapters are introductory and are meant to acquaint the
reader with some basic facts on convex sets in general, and polytopes in
particular; as well as to provide "experimental material" in the form of
examples.

Some basic tools for the investigation of polytopes are described in
detail in Chapter 5; most of them are used in different subsequent sections .
In Chapters 6 and 7 some of those techniques are applied to polytopes
with "few" vertices, and to neighborly polytopes.

Chapters 8, 9, and 10 have as common topic the relations between the
numbers of faces of different dimensions. Starting with Euler's equation,
the Dehn-Sommerville equations for simplicial polytopes (and for certain
other families) are discussed and used in the (partial) solution of the
upper-bound conjecture. Chapter 14 is related to Chapter 9 by the
similarity of the equations involved .

Chapters 11 and 12 deal with problems of a more topological flavor,
while Chapter 13 discusses the much more detailed results known about
3-dimensional convex polytopes .

Chapter 15 contains a survey of the known results concerning the
representation of polytopes as sums of other polytopes.

A summary of the available results about graphs of polytopes and
paths in those graphs, as well as their relation to various problems that
arose in applications, forms the topic of Chapters 16 and 17.

Chapter 18 deals with a topic related to convex polytopes more by the
spirit of the problems considered than by actual interdependence :
partitions of the (projective) space by hyperplanes .

In the last chapter a number of unrelated areas is surveyed . Their
inclusion-at the expense of other topics which could have been included
-is due to the author's interest in them .

It is hoped that parts of the book will prove suitable as texts for a
number of different courses . On the other hand, the book is meant to
serve as a ready reference for research workers ; hence an attempt at
completeness was made both in the coverage of the topics discussed, and
in the bibliography. While the author is confident that the current surge
of interest and research in the combinatorial properties of convex
polytopes will continue and will render the book obsolete within a few
years, he may only hope that the book itself will contribute to the
revitalization of the field and act as a stimulant to further research . (Some
of the results that came to the author's attention after completion of the
manuscript in August 1966 are mentioned in the Addendum on
pp .426-428 .)
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BRANKO GRUNBAUM

It was the author's good fortune to obtain the cooperation of his
friends and colleagues Victor Klee, M. A. Perles, and G. C. Shephard .
Professor Klee wrote Chapters 16 and 17, while Professor Shephard
contributed Chapter 15, Section 14.3, and part of Section 14.4. Professor
Perles permitted the inclusion of many of his unpublished results ; they
are reproduced in Sections 5.1, 5.4, 5.5, 6.3, ILl, 12.3, and in many
other places throughout the book. In addition, Perles corrected many of
the errors contained in the various preliminary versions, and contributed
a large number of exercises . The author's indebtedness to Klee, Perles ,
and Shephard, hardly needs elaboration.

Thanks are also due to many other colleagues who contributed to
the effort through discussions, suggestions, corrections etc . It would not
be feasible to mention them all here . Particular thanks are due to W. E.
Bonnice, L. M. Kelly, J . R. Reay, V. P. Sreedharan, and B. M. Stewart,
all colleagues at Michigan State University during 1965/66, whose
patience, encouragement and help during the most exasperating stages
are gladly acknowledged and deeply appreciated .

The author gratefully acknowledges the financial support obtained
at various times from the National Science Foundation and from the
Air Force Office of Scientific Research, U .S. Air Force. Much of the
research that is being published for the first time in the present book was
conducted under the sponsorship of those agencies . Professor Klee
acknowledges some helpful suggestions from David Barnette, and
financial support from the University of Washington, the National
Science Foundation, the RAND Corporation, and especially from the
Boeing Scientific Research Laboratories ; Chapters 16 and 17 appeared
in a slightly different form as a BSRL Report.

The author's most particular thanks go to his wife Zdenka; without
her encouragement and pat ience the book would have never been
completed.

University of Washington, Seattle
December 31,1966



Preface to the 2002 edition

There is no such thing as an "updated classic "-so this is not what you have
in hand.

In his 1966 preface, Branko Grtinbaum expressed confidence "that the cur
rent surge of interest and research in the combinatorial properties of convex
polytopes will continue and will render the book obsolete in a few years ." He
also stated his "hope that the book itself will contribute to the revitalization of
the field and act as a stimulant to further research."

This hope has been realized. The combinatorial study of convex polytopes
is today an extremely active and healthy area of mathematical research, and the
number and depth of its relationships to other parts of mathematics have grown
astonishingly. To some extent, Branko's confidence in the obsolescence of his
book was also justified, for some of the most important open problems men
tioned in it have by now been solved. However, the book is still an outstand
ing compendium of interesting and useful information about convex polytopes,
containing many facts not found elsewhere.

Major topics, from Gale diagrams to cubical polytopes, have their begin
nings in this book. The book is comprehensive in a sense that was never
achieved (or even attempted) again . So it is still a major reference for poly 
tope theory (without needing any changes) .

Unfortunately, the book went out of print as early as 1970, and some of our
colleagues have been looking for "their own copy" since then . Thus, respond
ing to "popular demand", there have been continued efforts to make the book
accessible again. Now we are happy to say : Here it is!

The present new edition contains the full text of the original, in the origi
nal typesetting, and with the original page numbering-except for the table of
contents and the index, which have been expanded. You will see yourself all
that has been added : The notes that we provide are meant to help to bridge the
thirty-five years of intensive research on polytopes that were to a large extent
initiated, guided, motivated, and fuelled by this book . However, to make this
edition feasible, we had to restrict these notes severely, and there is no claim
or even attempt for any complete coverage. The notes that we provide for the
individual chapters try to summarize a few important developments with re
spect to the topics treated by Grtmbaum, quite a remarkable number of them
triggered by his exposition. Nevertheless, the selection of topics for these notes
is clearly biased by our own interests.

xi
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The material that we have added provides a direct guide to more than 400
papers and books that have appeared since 1967; thus references like "Grun
baum [a]" refer to the additional bibliography which starts on page 448a. Many
of those publications are themselves surveys, so there is also much work to
which the reader is guided indirectly. However, there remain many gaps that
we would have liked to fill if space permitted, and we apologize to fellow re
searchers whose favorite polytopal papers are not mentioned here .

Principal references to "polytope theory since Grtinbaum's book" that we
have relied on include the books by McMullen-Shephard [b], Brendsted [a],
Yernelichev-Kovalev-Kravtsov [a], Ziegler [a], and Ewald [a], as well as the
survey s by Grtinbaum-Shephard [a], Grtinbaum [d], Bayer-Lee [a], and Klee
Kleinschmidt [b]. Furthermore, we want to direct the readers' attention to
Croft-Falconer-Guy [a] for (more) unsolved problems about polytopes.

We have taken advantage of some tools available in 2002 (but not in 1967),
in order to compute and to visualize examples. In particular, the figures that
appear in the additional notes were computed in the polymake framework
by Gawrilow-Joswig [a, b], and were visualized using javaview by Polthier
et al. [a].

Moreover and most of all, we are indebted to a great number of very help
ful and supportive colleagues-among them Marge Bayer, Lou Billera, Anders
Bjorner, David Bremner, Christoph Eyrich (Ie.TEX with style!) , Branko Grtm
baum, Torsten Heldmann, Martin Henk, Michael Joswig, Gil Kalai, Peter Klein
schmidt, Horst Martini, Jirka Matousek, Peter McMullen, Micha Perles, Julian
Pfeifle, Elke Pose, Thilo Schroder, Egon Schulte, and Richard Stanley-who
have provided information and assistance on the way to completion of this
long-planned "Grunbaum reissue" project.

Berlin/Seattle, September 2002,

Volker Kaibel . Victor Klee . Ganter M. Ziegler
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CHAPTER 1

Notation and Prerequisites

1.1 Algebra

With few exceptions, we shall be concerned with convexity in Rd
, the

d-dimensional real Euclidean space. Lower case characters such as
a, b, x, y, z shall denote points of Rd

, as well as the corresponding vectors ;
o is the origin as well as the number zero. Capitals like A, B, C, K shall
denote sets; occasionally single points, if considered as one-pointed sets,
shall be denoted by capitals. Greek characters a, P, A, }1, etc., shall denote
reals, while n, k, i,j shall be used for integers. The coordinate representa
tion of a point a E Rd shall be a = (ai) = (a l , a2 , ' • • , ad)'

Sets defined explicitly by specifying their elements will be written in
the forms {al, .. · , ak } , {al, · .. ,an , .. · } , or {aEAla has property 9'},
the last expression indicating all those elements of a set A which have a
certain property 9'. Finite or infinite sequences (of not necessarily different
elements) will be denoted by (al," ',ak ) or (al,''',an , ' '' ) ; the first
expression will also be called a k-tuple. For the set-theoretic notions of
union, intersection, difference, subset we shall use the symbols u, fl, "",

and c . The empty set will be denoted by 0, while card A will denote
the cardinality of the set A.

The algebraic signs are reserved for algebraic operations; thus

a ± b = (ai) ± (Pi) = (ai ± PI)

Aa = A(ai) = (Aai)

A ± B = {a ± blaEA,bEB}

AA = {Aa Ia E A} .

If a set A consists ofa single point a we shall use the simplified notation
a + B instead of {a} + B = A + B. The set (-l)A will be denoted - A.
The set x + AB, for A =1= 0, is said to be homothetic to B, and positively
homothetic if ). > O.
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The scalar product <a, b) of vectors a, b E Rd is the real number defined
by

d

<a,b) = L IXJ3 j.
i= I

The most important properties of the scalar product are

<a, b) = <b, a)

<Aa, b) = A<a,b)

<a + b,c) = <a,c) + <b,c)

<a, a) ~ 0 with equality if and only if a = O.

If (a, b) = 0 then a and b are said to be orthogonal to each other.
If (a, a) = 1 then a is called a unit vector. In the sequel, the letter u (with
or without indices) shall be used only for unit vectors.

A hyperplane H is a set which may be defined as H = {x E RdI(x, y) = IX}
for suitable y E Rd

, Y :f: 0, and IX. An open halfspace [closed halfspace] is
defined as. {x E RdI(x, y) > IX} [respectively {x E RdI(x, y) ~ IX}] for
suitable y E Rd, Y :f: 0, and IX. Clearly, {x E RdI(x , y) < IX} is also an
open halfspace for y :f: 0; similarly for closed halfspaces.
, Each hyperplane has a translate which is (isomorphic to) a (d - 1)

dimensional Euclidean space Rd
- 1. For each hyperplane H which does

not contain the origin 0 there exists a unique representation
H = {x E RdI (x, u >= IX} in which u is a unit vector and IX> O.

If x, x, E Rd
, we shall say that x is a linear combination of the x/s

provided

k

X = L AjX j
j= I

for suitable real numbers Aj.

If x = L~= 1 AjXj for reals Ajsatisfying L~= 1 Aj = 1 we shall say that x is
an affine combination of the x/so

A set X = {x i- • •• ,Xk} is linearly [respectively affinely] dependent

provided 0 is representable as a linear combination 0 = L~= 1 AjXj in

which some Aj:f: 0 [and L~= 1 Aj = 0]. If a set X fails to be linearly
[affineiy] dependent we call it linearly [affinely] independent. In any linearly
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[affinely] dependent set some point is a linear [affine] combination of the
remaining points. The d-dimensional space contains d-membered sets
which are linearly independent, but every (d + I)-membered set in Rd is
linearly dependent. A set X = {Xj), Xl'·· ·' Xk} is affinely dependent
[independent] if and only if the set (X '" {xo}) - Xo = {Xl - X O,X2 - Xo,
•• • , X k - xo} is linearly dependent [independent]. For any X E Rd the sets
X and X + X are simultaneously affinely dependent or independent.

The set of all affine combinations of two different points x, Y E Rd is
the line L(x,y) = {(I - A)X + AYIAreal}. If x',y'EL(x,y) and x ' # y'
then L(x', y') = L(x, y).

If a set H has the property that L(x, y) c H whenever x, y E H , X # y,
we call H aflat (or an affine variety). Clearly, the set of all affine [linear]
combinations formed from all finite subsets of a given set A is a flat
[subspace]; it is denoted by aff A [lin A] and is called the affine hull
[linear hull] of A. The family of all flats in R d contains Rd

, 0, all one
pointed sets, all lines, all hyperplanes; also, it is intersectional : if all
Ha's are flats, so is n H• . The affine hull aff A of a set A may equivalently

a

be defined as the intersection of all flats which contain A. Similar state-
ments hold for linear hulls. The formation of the affine hull is translation
invariant, i.e. aff (x + A) = oX + aff A.

Every nonempty flat H is a translate H = x + V of some subspace V
of Rd

, and is therefore isomorphic to a Euclidean space of a certain
dimension r ~ d ;the dimension of H (and of V) is then r = dim H = dim V.
A flat of dimension r will be called an r-flat, We agree to put dim 0 = -1.
In general, instead of saying 'an object of dimension r' we shall use the
shorter term 'r-object"; for example, d-space, r-subspace, etc. If A is any
subset of Rd

, its dimension dim A is defined by dim A = dim aff A.
Each r-flat contains r + I affinely independent points, but each

(r + 2)-membered set of its points is affinely dependent.
If A = tal>a2 , · · · , ak}' where ai = {ail' ai2 , · · · , aid}' then the maximal

number of linearly independent members of A equals the rank of the
matrix

while the maximal number of affinely independent members of A equals



4

the rank of the matrix

CONVEX POLYTOPES

10(11 0(12 ' " O(ld

10(21 0(22 . • • 0(24

A finite set X c Rd is said to be in general position provided each subset
of X containing at most d + 1 members is affinely independent.

The following remark is sometimes useful : Given positive integers d
and k, there exists an integer n(d, k) with the property that whenever
A c R d satisfies card A ~ n(d, k), there exists a subset B of A such that
card B = k and the points of B are in general position in aff B.

Let a transformation T from Rd to Rd be defined by

Ax + b
Tx = ,

(c,x) + 0

where A is a linear transformation of Rd into itself, band care d-dimen
sional vectors, and 0 is a real number, at least one of c and 0 being dif
ferent from O. Any transformation of this type is called a projective trans
formation* from Rd into Rd. Note that T is not defined for x in N(T) =

{y I (c, y) + 0 = O}. The set N(T) may be empty (in which case T is an
affine transformation); if A is regular and c "# 0, N(T) is a hyperplane
(which, in the projective space, is mapped by T into the 'hyperplane at
infinity') . The reader is invited to verify that collinear points are mapped
by projective transformations onto collinear points . A projective trans-

(A' b')formation T is nonsingular provided the matrix c 0 is regular (here

A' is the matrix of A, and b' the transposed vector b) ; in this case T has
an inverse which is again a projective transformation. If (xo,' . . ,Xd+ d
and (Yo, ' .. ,Yd+1) are two (d + 2)-tuples of points in general position in
Rd

, there exists a unique projective transformation T such that TXi = Yi
for i = 0" .. ,d + 1; moreover, this T is nonsingular. If K is a subset of
R d

, T is said to be permissible for K provided K n N(T) = 0. If K, C R d

• In case of need. the reader should consult a suitable textbook on projective geometry .
However, he should bear in mind that we are dealing with Euclidean (or affine) spaces,
and nonhomogeneous coordinates, while the most natural setting for projective trans
formations are projective spaces and homogeneous coordinates.
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and 1; is a projective transformation permissible for K j , i = 1,2, and if
T1K 1 C K 2 ' then T2 T1 is a projective transformation permissible for K r

Subsets A, B of Rd will be called affinely rprojectively] equivalent pro
vided there exists a nonsingular affine [permissible for A projective]
transformation T such that T A = B.

1.2 Topology

A set X is a metric space provided a real valued metricfunction (or distance)
p is defined for all pairs of points of X satisfying the conditions :

(i) p(x, y) ~ 0, with equality if and only if x = y ;
(ii) p(x, y) = p(y, x);

(iii) p(x, y) ~ p(x, z) + p(z, y).

In the remaining part of this section X shall denote a metric space with
a given distance p.

o

For any x E X and ~ > 0 the open ball B(x ; ~), the closed ball B(x ; ~),
and the sphere S(x ; ~) with center x and radius ~ are defined by

o

B(x; ~) = {y E X Ip(y, x) < ~}

B(x ;~) = {y E X Ip(y, x) ~ ~}

S(x;~) = {YEXlp(y,x) = ~} .

A set A c X is open provided every a E A is the center of some open ball
o

B(a ; ~) which is contained in A. It is easily shown that open balls, the
whole space X. the empty set 0. are open sets. The union of any family
of open sets is an open set; the intersection of any finite family of open
sets is open .

A set A c X is closed provided its complement '" A = X '" A is open.
All closed bans. all spheres. an finite sets of points. 0. and X. are closed.
The family of closed sets is intersectional. i.e. the intersection of any family
of closed sets is itself closed; the union of any finite family of closed sets
is closed . A set A c X is bounded provided there exists ~ > 0 and x E X
such that pta, x) < ~ for an a E A. The diameter diam A is defined by
diam A = sup{p(x, y) Ix, YEA} .

A sequence of (x 10 X2 • • • • • x".' . .) of points of X is said to converge to
x E X (or to have x as limit) provided lim p(x". x) = O. A sequence

""'00
(Xl. X2. · .. ,XII" . .) C X is a Cauchy sequence provided for every s > 0
there exists k = k(e) such that p(x i • Xj) < s whenever i.] > k. The metric
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space X is complete provided every Cauchy sequence in X converges to
some poin t of X.

An alternative definition of closed sets is : A set A c X is closed pro
vided the limit of every convergent sequence of points of A belongs to A.

A set A c X is compact provided every infinite sequence of points of A
contains a subsequence which has a point of A as limit.

The union of all open sets contained in a set A c X is an open set, the
interior of A ; it is denoted by int A. The intersection of all closed sets
containing A is a closed set, the closure of A; it is denoted by cI A. The
boundary of A, denoted bd A, is defined by bd A = cI A n c1( -.,A). Clearly
bd A is closed (possibly empty) for every A.

The metric space which will be most important in the sequel is the d
dimensional real Euclidean space Rd. For a, b E Rd we define

d

p(a, b) = (i~1 (tXi - py)! = «a - b.o - b»t.

It is easily shown that all flats and all closed halfspaces are closed sets,
and that open halfspaces are open sets.

The metric function of Rd has also the following properties :

p(Aa,Ab) = 1..1.1 p(a,b)

p(a + c.b + c) = p(a, b) .

Using the notation [x] = p(x,O), this becomes p(a, b) = Iia - bll .
A set A c Rd is compact if and only if A is closed and bounded.
If A, B C Rd are closed sets and at least one of them is compact, then

A + B is closed; if both are compact, so is A + B.
If A C Rd is open, then A + B is open for every B.
The distance 15(A, B) between sets A, B c Rd is defined by

15(A, B) = inf{p(a, b) Ia E A, b E B}.

The family f/ of all compact subsets of Rd is a metric space with the
Hausdorffdistance p(A I , A 2 ) defined by

p(A 1,A 2 ) = inf[« > OIA I c A 2 + tXB,A 2 cAl + tXB},

where B = B(O; 1) is the closed ball of unit radius centered at the origin O.
An equivalent definition is

p(A I,A 2) = max{sup inf Ilx I - x211, sup inf IIx2- xtll}.
XI eA. x2eA2 -"'lEAl XI eA.
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g> is a complete metric space, with the following local compactness
property:

Every subfamily of g> which is bounded and closed in the Hausdorff
metric, is compact in this metric .

Convergence of closed subsets of Rd may be defined by stipulating that
a sequence (AI' A 2 , · · · , An,···) of closed sets in Rd converges to a closed
set A provided

(i) for every a E A there exists a sequence anE An such that a = lim an;
and

(ii) for every convergent sequence (an), where anE An, we have
lim anE A.
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1.3 Additional notes and comments

The fi rst sentence on page 1 is
"With a few exceptions, we shall be concerned with convexity in Rd

, the
d-dimen sional Euclidean space."

For the study of convex polytopes, this is justified by the observation that in
Euclidean d-space one encounters the same (combinatorial types of) polytopes
as those met in elliptic/spherical space or in hyperbolic space. Indeed, with
any polytope PC Rd one may associate the pointed cone Cp C Rd+1 that is
spanned by all points (1,x ) with x E P. The intersection of this cone with the
unit sphere Sd ::: {x E ~+1 : xij + ...+x~ ::: I} yields a spherical polytope;
furthermore, any spherical polytope (distinct from Sd) may be transformed to
lie in the open hemisphere {x E Sd : Xo > O} , and then determines a cone Cp

and a convex polytope P = {x E Rd : (l ,x) E Cpl . (See pages 10 and 30 for
discussions of spherical convexity.) Similarly, if we scale P C Rd to lie in
the interior of the unit ball Bd C ~, then the intersection of the cone Cp with
the hyperboloid Hd = {x E~+ I : xij ::: 1+xi + ...+x~} yields a hyperbolic
polytope, and conversely any hyperbolic polytope (in the sheet of H d given by
Xo > 0) determines a Euclidean polytope contained in the unit ball.

One may also note that orthogonal transformations that keep a polytope in
the positive hemisphere of Sd correspond to admissible projective transforma
tions (as discussed on page 4). The use of homogeneous coordinates gives
correspondences between affine, spherical, and hyperbolic polytopes.

Nevertheless, it has turned out to be very useful at times to view polytopes
in spherical resp. hyperbolic space, for arguments or computations that would
exploit aspects that are specific to the geometry (metric, angles, volumes) of
spherical or hyperbolic space.

A remark on page 4.
Griinbaum' s "useful observation" may be proved by induction on k and d: One
obtains recursions of the type

(
k - l )n(d,k)::; d n(d-l,k) ,

based at n( l ,k) ::: k. Here one may assume that the given setA has dimension d,
otherwise the claim is true by induction . Then we consider ad-dimensional
general position subset B C A of maximal cardinality card B ::; k - 1; if the
(d - I )-flats it spans all contain fewer than n(d - l,k) points from A, then
there are points from A that extend B.

The observation has been considerably strengthened: The subset B C A of
cardinality k can be found to lie on a curve of order d' in d' -dimensional affine
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space; thus it will give a cyclic oriented matroid. For d' > 1 the set B will be
in convex position, forming the vertex set of a cyclic polytope C(k,d')-this
is obtained by combination of Grtinbaum's remark with results of Duchet
Roudneff [a, Cor. 3.8] and Sturmfels [a] (see also Bjorner et al. [a, pp. 398
399]).

The observation is in essence a Ramsey-theoretic result, see Graham-Roth
schild-Spencer [a]. Correspondingly, the bounds that follow from recursions
of the type given above grow extremely fast. More precise versions for small
corank are discussed in exercises 2.4.12 and 6.5.6.

The footnote on page 4 .. .
. . . asks the reader to consult, if necessary, "a suitable textbook on projec
tive geometry". Classical accounts of projective geometry include Veblen
Young [a] and Hodge-Pedoe [a]. A treatment of projective transformations
using homogenization for the manipulation of convex polytopes, as suggested
by Grtinbaum, is Ziegler [a, Sect. 2.6].



CHAPTER 2

Convex Sets

The present chapter deals with some fundamental notions and facts on
convex sets. It serves a double purpose : we establish certain properties
of convex sets which shall be used later in the special case of convex poly
topes; certain other properties are investigated which do not hold for
all convex sets but are valid (and important) for more restricted families
such as compact convex sets, polyhedral sets, or polytopes. We discuss
these properties in order to enable the reader to place the convex poly
topes in a better perspective among all convex sets.

Though readers familiar with the theory of convex sets may omit
chapter 2, it is the author's hope that some of the facts and approaches
presented will be of interest even for the specialist.

2.1 Definition and Elementary Properties

A set K c Rd is convex if and only if for each pair ofdistinct poin ts a, b e K
the closed segment with endpoints a and b is contained in K.

Equivalently, K is convex if its intersection with every straight line is
either empty, or a connected set.

Examples of convex subsets of Rd
: the empty set 0; any single point;

any linear subspace (including Rd
) of Rd

; any flat (affine variety) and any
(closed or open) halfspace of Rd

; the interior of any triangle, or simplex
in general; the interior of a circle (or k-dimensional sphere), together with
any subset of the circle resp. sphere.

Using the vectorial notation, the definition of convexity may be re
formulated as follows :

K is convex if and only if a, b e K and 0 ~ A ~ 1 imply Aa + (1 - A)b
eK.

The following statements are almost obvious (and should become
completely obvious after the reader proves them):

1. If {K v } is any (finite or infinite, denumerable or not)family ofconvex
sets in Rd

, then their intersection nK; is also convex.
v

8
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2. If A and B are convex then A + B and A - B are convex, and for
any real A, the set AA is convex.

3. If A is convex, ai E A and Ai ~ 0 for i = 1,2, . . . , k, and

k

L A.i = 1, then
j ~ I

k

L Aiaj E A .
i ~1

4. If A C Rd is convex , the sets cI A and int A are also convex. (Hint
for cI A : Use exercise 2 and cI A = n (A + jlB), where B is the unit ball
of Rd.) ,, >0

5. If A C Rd is convex , x E A, and y E int A, then all points of the line
segment between x and y belong to int A.

6. 1fT is an affine transformation ofR d into itself, and ifA c Rd is convex,
then T(A) is convex.

7. For a conv ex set A c R d let H = aff A be the affine hull of A . The
relative interior relint A of A as a subset of H is never empt y, and relint cI
A cAe cl relint A. Th e relati ve boundary relbd A ofA with respect to H
is empty if and only if A is an affine variety (i.e. A = H).

Exercises

1. For subsets A and B of R d let A ~ B mean : there exist x E Rd and
lX > 0 such that B = x + lXA . (This symbol will be used only in the
present exercise.) This is an equivalence relation. Prove: The convex
subsets of R1 (including 0 and R1) form eleven distinct classes with
respect to the relat ion ~ . Describe these classes. How many classes are
there if in the definition of ~ the only restriction on lX is lX ¥ O? What is
the number of classes in R 2 ?

2. Determine all subsets A of R I such that both A and its complement
-A are convex ; the same for R2 and R3 • Try to generalize to Rd.

3. Let {Kv} be a family of convex sets in Rd. If every denumerable
subfam ily of {K v } has a non-empty intersection, then n K, ¥ 0. (For

v

generalizations and a survey of related results see Klee [71.)
4. For any pair of distinct points a, b E Rd let [a, b[ denote the (closed)

halfline with endpoint a, passing through b. For any set K c Rd
, and any

a E R d we define the cone cone, K generated by K , with apex a, by
cone, K = U [a, b[. We also define cone, 0 = {a}. For convex K c Rd

beK
b*a

prove the following statements:
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(i) cone, K is convex;
(ii) if K is open, (cone, K) '" {a} is open;

(iii) the assertion 'if K is closed then cone, K is closed' is false ;
(iv) if K is compact and if a ¢ K, then cone, K is closed.
5. Determine which of the statements in exercises 3 and 4 remain valid

if K is not assumed to be convex.
6. Let s': 1 be the unit sphere in Rd

, centered at the origin O. A set
A c Sd- 1 is spherically convex provided cone., A is a convex set. Prove
that this definition is equivalent with the following: A c; s': 1 is spherically
convex if and only if for every x, YEA, Y # ±x, the set A contains the
small arc of the great circle determined on Sd- 1 by x and y .

7. Prove Blaschke's 'selection theorem' (Blaschke [1], Eggleston [3];
compare p. 7) : Every infinite sequence of compact convex sets which
is bounded in the Hausdorff metric, contains a subsequence which con
verges (in the Hausdorff metric) to a compact, convex set.

8. Let (A 1" '" An" ") be a sequence of closed convex sets in Rd.
Show that the sequence (An) converges to the closed set A if and only if
for every sufficiently large A. the sequence (Ai n A.B, A2 n A.B, ... , An n
A.B,···) converges to A n A.B (where B denotes the solid unit ball in Rd

).

2.2 Support and Separation

Let A be a subset of Rd. We shall say that a hyperplane

H = {x E Rd I (x, u) = lX}

cuts A provided both open halfspaces determined by H contain points
of A. In other words, H cuts A provided there exist Xl' x 2 E A such that
<Xl' u) < lX and <x2 , u) > a.

We shall say that a hyperplane H supports A provided H does not cut
A but the distance between A and H is 0, b(A, H) = O. In other words, H
supports A if either sup{<x, u) [x E A} = a or else inf{<x, u) Ix E A} = lX.

Since bounded and closed subsets of Rd are compact, this implies:
A bounded set A c Rd is supported by a hyperplane H if and only if

H does not cut A and H n cl A # 0.
Two subsets A and A' of Rd are said to be separated by a hyperplane H

provided A is contained in one of the closed halfspaces determined by H
while A ' is contained in the other. The sets A and A' are strictly separated
by H if they are separated and An H = A' n H = 0 . In other words,
A and A' are strictly separated by H provided they are contained in

different open halfspaces determined by H .
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The following results are of fundamental importance :

1. If A and A' are convex subsets of Rd such that A'is bounded and
cl A n cl A' = 0, then A and A' may be strictly separated by a hyperplane.

2. If A and A' are convex subsets of Rd such that aff(A u A') = Rd

then A and A' may be separated by a hyperplane if and only if.
relint A n relint A ' = 0.

PROOF OF THEOREM I Since the distance between two sets is the same
as the distance between their closures, it is obviously enough to consider
the case in which A and A' are closed sets. Let b = b(A, A') be the distance
between A and A ' ; by the hypothesis b > O. Clearly, the function
b(x , A') = inf{p(x, y) [y e A'} depends continuously on x . If B(e) denotes
the closed d-dimensional ball centered at x, with radius e + b(x, A'),
then A' n B(e) is, for e > 0, a nonempty compact set, and A' n B(e) c

A' n B(e') whenever 0 < e < e' , Therefore n (A' n B(e» = A' n B(O)
l > O

'1= 0. In other words, there exists a point y = y(x) E A' such that b(x , A') =
p(x, y(x» . Moreover, the point y(x) is unique, since if there would exist
distin ct YI, Y2 E A' with p(x , YI) = p(x , Y2) = b(x, A') then !<YI + Y2) E A'
would satisfy p(x , t(Y 1 + Y2» < b(x, A'), contradicting the definition of
b(x, A').

Since b(x, A') is a continuous function of x, it assumes a minimum on
the compact set A ; thu s there exists an Xo E A such that b = b(xo, A') =
p(xo, y(xo». The hyperplanes H I and H 2 ' orthogonal to [xo, y(xo)] and
passing through Xo respectively y(xo), have the following property : The
open slab Qof width b > 0, determined by H I and H2' contains no point
of A u A'. Indeed, let Z E Q and consider the open intervals [z, x o[ and
[z, y(xo )[ . Each point of the first interval , sufficiently near to Xo, is at a
distance less than b from y(xo) and thu s can not belong to A ; similarly,
each point of the second interval, sufficiently near y(xo) is at a distance
less than b from Xo and therefore does not belong to A'. Since both A
and A' are con vex, it follows that z belongs to neither of them. In other
words , we have establi shed that H I (as well as H 2) separates A and A',
and each hyperplane parallel to H I and intersecting the open interval
]xo, y(x o)[ strictly separates A and A'. This completes the proof of
theorem 1.

PROOF OF THEOREM 2 The 'only if ' part is obvious. We shall establish
the other part of the theorem assuming, without loss of general ity, that
A and A' are closed. Let Xo E relint A, Yo E relint A', and let 0 < e < 1.



12 CONVEX POLYTOPES

Denoting by B the solid d-dimensional unit ball centered at the origin,
let

1
At = Xo + -B n ((1 - e)(-xo + A»

e
and

A; = Yo + (1 - e)(-yo + A') .

Then A; is homothetic to A' , and At is homothetic to a compact subset
of A. Note that for e' > e" > 0, At' C At" and A;. c A;.., and that
relint A = U At and relint A' = U A;. Since At c relint A and

oe e-e i O<t <l

A; c relint A', it follows that At n A; = 0. By theorem 1, there exists a
hyperplane H, = {x E Rd I<x, ut) = at} strictly separating At and A; .
Since each H, meets the segment (xo, Yo], the set {at [s » O} is bounded.
The set [u, Ie> O} being contained in the compact unit sphere Sd-1, this
implies the existence of a sequence (en In = 1,2, · · ·) with en > 0 and
lim en = 0 such that the sequences (utJ and (atJ converge to u and a.
n-e eo

Let H be the hyperplane H = {x I (x, u) = a}; then H clearly separates
A and A', and the proof of theorem 2 is completed.

The reader is invited to derive the following propositions from
theorems 1 and 2.

3. Each closed, convex subset ofRd is the intersection ofall the closed (or
of all the open) halfspaces of Rd which contain the set . Each -open convex
subset of Rd is the intersection ofall the open halfspaces containing it.

4. If K is a convex set in Rd and if C is a convex subset ofbd K (in partic
ular, if C is a single point ofbd K) then there is a hyperplane separating K
and C. In other words, there exists a supporting hyperplane of K which
contains C.

Exercises

1. In the proof of theorem 1 the uniqueness of the point xo was not
asserted; could it have been asserted? Is the boundedness of A' essential
for the validity of theorem I?

2. If A is a bounded set in Rd and if H is a given hyperplane, there
exists a supporting hyperplane of A parallel to H . If A is, moreover,
convex and int A :f= 0, there exist exactly two such hyperplanes. If A is
convex and bounded, and x ¢ int A, there exists a supporting hyperplane
of A which contains x. Are all the conditions mentioned in the above
statements necessary?
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3. If A and A' are disjoint compact convex sets in Rd
, then the set

.Te = {H(u, oc)} of all hyperplanes H(u, oc) = {x e Rd I (x, u) = oc} which
strictly separate A and A' is open in the sense that {(u, oc) IH(u, oc) e.Te} is
an open subset of the product Sd-l x R.

4. If A is a closed subset of Rd with int A ::/= 0, such that each boundary
point of A is on a supporting hyperplane of A, then A is convex.

5. Determine all the semispacesof R", that is, the maximal (with respect
to inclusion) convex sets which do not contain a given point. (Motzkin [Z],
Hammer [1,2], Klee [1J). Prove:

(i) The complement (in Rd
) of a semispace is a convex set.

(ii) The family of all semispaces of Rd is an intersectional basis for all
convex sets in Rd (that is, every convex subset of Rd is the intersection of
all the semispaces containing it).

(iii) The family of all semispaces in Rd is a minimal intersectional basis
for the convex subsets of Rd (that is, none of its proper subfamilies is an
intersectional basis). It is a minimal intersectional basis for all bounded
convex sets.

6. Characterize those subsets of R d which are obtainable as intersections
of d-dimensional solid balls.

7. Let K c Rd be a closed convex set and L c Rd a flat such that
dim L < d and L n K = 0 . Show that there exists a hyperplane H such
that K n H = 0 and L c H.

8. Let K c Rd be a nonempty set. The supporting function H(K, x) of
K is defined for all x e Rd by

H(K, x) = sup{(y,x)lyeK}.

If for some nonzero x E Rd we have H(K , x) < 00 , the hyperplane

L(K, x) = {YERdl(y,x) = H(K,x)}

is obviously a supporting hyperplane of K ; L(K, x) is called the support
ing hyperplane of K with outward normal x. The following facts will be
used mainly in Chapter 15; the reader is urged to provide their proofs,
or to look them up in the literature (see, for example, Bonnesen
Fenchel [1D.

(i) The supporting function H(K, x) of a convex set K ::/= 0 is positively
homogeneous and convex, that is, it satisfies

H(K, AX) = AH(K, x) for all A ~ 0, Xe Rd;

H(K, x + y) ~ H(K, x) + H(K, y) for all x, y E Rd.
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On the other hand, if H(x) is any function defined on Rd such that
H(O) = 0, H().x) = )'H(x) and H(x + y) :::; H(x) + H(y) for all ). ~ 0 and
x, y E Rd

, then there exists a nonempty closed convex set K such that
H(x) = H(K, x) for all x E Rd.

(ii) If K is a nonempty set, if ). ~ 0, and if y E Rd
, then H(y + K, x) =

<y, x ) + H(K, x), H()'K, x) = )'H(K, x), and H(cl K, x) = H(K, x) for all
x e R".

(iii) If K \> K 2 are nonempty and 0 i= x E Rd
, then H(K 1 + K 2 , x) =

H(K1,x) + H(K 2,x) and (K 1 + K 2)n L(K1+ K 2,x) = (K 1n L(K1,x» +
(K 2 n L(K 2 , x».

(iv) If Kl> K 2 are nonempty, closed convex sets in Rd such that
H(K I ' x) = H(K 2 , x) for every x E Rd

, then K 1 = K 2 •

2.3 Convex Hulls

The space R d is convex [and closed], and the intersection of any family of
convex [and closed] sets is again convex [and closed]. Therefore the
following definitions make sense:

The convex hull cony A of a subset A of Rd is the intersection of all the
convex sets in Rd which contain A . The closed convex hull clconv A of
A c Rd is the intersection of all the closed convex subsets of Rd which
contain A.

Clearly, if A is bounded so are cony A and clconv A.
An immediate consequence of the definitions is

1. For every A c; Rd we have clconv A = cl(conv A).

Proposition 3 from the preceding section implies

2. clconv A is the intersection ofall the closed halfspaces which contain A.

A useful representation of cony A is given by

3. The convex hull conv A of a nonempty set A c Rd is the set of all
points which may be represented as convex combinations of points of A ;
that is, points which can be written in the form Li~ 1 rJ.jXj, where x, E A,
«, ~ O'Li~1 «, = l,n = 1,2, ···.

In many applications the following result of Caratheodory [I] is very
important.

4. If A is a compact subset of Rd then cony A is closed; in other words,
for compact A we have clconv A = conv A.
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Using the results of the preceding section it is not hard to give adirect
proof of theorem 4, by induction on the dimension d. Since a much
simpler proof results from Caratheodory's theorem, we defer the proof
of theorem 4 till we establish theorem 5.

The following theorem, known as Caratheodory's theorem, is one of the
basic results in convexity , and has important application in other fields.

5. (Caratheodory [2]) If A is a subset of Rd then every x E conv A is
expressible in the form

d

X = I !.XiXi
i=O

d

where Xi E A, «, ~ 0, and L!.Xi = 1.
i=O

PROOF Let x E con v A be given; let x = If= 0 !.XiXi (with Xi E A, a, ~ 0,
If=o !.Xi = 1) be a representation of x as a convex combination of points
of A, involving the smallest possible number p + 1 of points of A. We shall
prove Caratheodory's theorem by showing p ~ d. Indeed, assuming
p ~ d + 1 it follows that the set {xo "'" x p } is affinely dependent. Thus
there exists Pi' 0 ~ i ~ p, not all equal to 0, such that If=o PiXi = 0 and
If= 0 Pi = O. Without loss of generality we assume the notation such that
Pp > 0 and !'xp/Pp ~ !.Xi/Pi for all those i (0 ~ i ~ P - 1) for which Pi > O.
For 0 ~ i ~ P - 1, let Yi = !.Xi - (!.Xp/Pp)Pi ' Then

p- 1 p !.X P

L Yi = I a, - 2. I Pi = 1.
i=O i=O Pp i=O

Moreover, Yi ~ 0; indeed, if Pi ~ 0 then Yi ~ a, ~ 0 ; if Pi > 0 then

Thus

p- 1 p-l ( ) p

I YiXi = L a, - !.X
p

Pi Xi = I !.XjXi = X
i=O i=O Pp i=O

is a representation of x as a convex combination of less than p + 1 points
of A, contradicting the assumed minimality of p. This completes the proof
of Caratheodory's theorem.

The proof of theorem 4 is now immediate. Indeed, if x E c1conv A there
exists a sequence x, E conv A such that x = lim X n •

n- oo

By Caratheodory's theorem x; = I t= 0 A.n.i xn.i> where Xn.i E A,
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°~ An,i s 1, '[,1=0An,i = 1 for each n. The compactness of [0, 1] and of
A guarantees the existence of converging subsequences (An.,;) and (xn. ,;)
such that lim An.,i = A(i)and lim Xn.,i = xli). Then obviously 0 ~ A(i) ~ 1,

1:- 00 1:- 00

L~=OA(i) = 1, xli)E A and x = L~=o A(i)X(i), as claimed.
A result closely related to Caratheodory's theorem in the sense that

either is easily derived from the other, is Radon's theorem :

6. (Radon [1]) If A is a (d + 2)-pointed subset of Rd, it is possible to
find disjoint subsets A' , A" of A such that conv A' n conv A" "# 0 .

A direct proofofRadon's theorem is very easy. Let A = {xo, "" Xd+ d;
since d + 2 points in d-space are affinely dependent there exist lXi' not

'\'d + 1 '\'d + 1 .
all equal 0, such that L,i=O lXi = 0 and L, i=O a.x, = O. Without loss
of generality we assume the notation such that 1X0, " • ,lXp are positive,

IXp+1'''', IXd+ 1 non positive. Then 0~ p ~ d. Let IX = If=o lXi > 0, and
define Pi = lXilX for 0 ~ i ~ p, and Yi = -lXilX for p + 1 ~ i ~ d + 1.
The affine dependence of A can be rewritten in the form

P d+ 1

I PiXj = I YiXi'
i=O i=p+1

Since Pi ~ 0, Yi ~ 0, and If=o Pi = I:::+ 1 Yi = 1, this relation expresses
conv {Xo,,·· ,Xp} n conv {Xp+ 1,, ·· , xd+d "# 0 , as claimed by Radon's
theorem.

For far-reaching generalizations of Radon's theorem see Tverberg [1]
and Reay [3].

Exercises

1. Show that a hyperplane HeRd supports [cuts] a set A c Rd if
and only if H supports [cuts] conv A.

2. Proposition 4 states that the convex hull of a compact set is com
pact; show that the convex hull of an open set is open. The convex hull
of a closed set is not necessarily closed; find a closed set A "# 0 such
that conv A is an open proper subset of the whole space.

3. For A c Rd let T(A) = {!<x 1 + X2) IXl' X2 E A} ; let T1(A) = T(A),
and for n ~ 1 let Tn+ l(A) = T(Tn(A)). Denote T*(A) = U Tn(A). Show

n 2:1

that cl T*(A) = clconv A, although in general T*(A) "# conv A. IfA = bd K
where K is a bounded convex set in Rd

, d ~ 2, show that cl K = T(A).
4. For A c Rd let 9(A) = {Ax 1 + (1 - A)X2Ix1,X2EA,0 ~ A ~ 1}.

Define 9 1(A) = 9(A) and 9n + l(A) = 9(9n(A)) for n ~ 1. Show that



CONVEX SETS 17

con v A = U .9n(A ). Characterize those convex sets K c Rd for which
n~l

K = .9(bd K) .
5. Prove Steinitz's theorem (Steinitz [5] ; Rademacher-Schoenberg [1] ;

generalizations in Bonnice-Klee [1], Reay [1,2]) : If x E int con v A c Rd
,

there exists a subset A' of A, containing at most 2d points such that
x E int conv A' . Show that the number 2d may not be decreased in
general, and characterize those A and x for which 2d points are needed
in A'.

6. Let A c Rd be a finite set. Then x E relint cony A if and only if
x is representable as a convex combination of all points of A, with all
coefficients positive.

7. Show that in Radon's theorem 2.3.6 the sets A' and An are unique
if and only if every d + 1 points of A are affinely independent. Show
also that in this case two points of A belong to the same set if and only
if they are separated by the hyperplane determined by the remaining
d points. (Proskuryakov [1], Kosmak [1]).

8. Let A be a nonempty subset of Rd and let 9'(A) denote the family
of all subsets S of A with the property card S = 1 + dim S. Show that
conv A = U relint cony S.

SeS"(A)

9. Using the notation of section 2.2, show that for every nonempty set
A c Rd and every x E Rd

,

H(A, x) = H(conv A, x)
and

conv(A n L(A, x)) = (conv A) n L(A, x) .

2.4 Extreme and Exposed Points; Faces and Poonems

Let K be a convex subset of Rd. A point x E K is an extreme point of K
provided y, Z E K, 0 < A < 1, and x = Ay + (l - A)Z imply x = y = z.
In other words, x is an extreme point of K if it does not belong to the
relative interior of any segment contained in K. The set of all extreme
points of K is denoted by ext K. Clearly, if x E ext K then
x If: conv(K '" {x}).

Let K be a convex subset of Rd. A set F c K is a face of K if either
F = 0 or F = K, or if there exists a supporting hyperplane H of K
such that F = K n H. 0 and K are called the improper faces of K.
The set of all faces of K is denoted by ff(K) . A point x E K is an exposed
point of K if the set {x} consisting of the single point x is a face of K.
The set of all exposed points of K is denoted by exp K. If K is a closed
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convex set, it is obvious that each F E ~(K) is closed. Throughout the
sequel, the notations ext K, exp K , and ~(K) will be used only for closed
convex sets K.

The following statements result at once from the definitions :

1. IfF E ~(K) and ifK ' c K is a closed convex set, then F n K' E ~(K').

2. If FE ff(K) and if x E F, then x E ext K if and only if x E ext F ;
thus, if F E ~(K) then ext F = F next K.

3. For every convex K c R d we have exp K c ext K .

4. Let K be a closed convex set in Rd
, let x E K , and let B be a solid

ball centered at x. Then x E ext K if and only if x E ext(K n B), while
x E exp K ifand only ifx E exp(K n B).

The next two results explain the role of the extreme points.

5. Let K be a compact convex subset of Rd. Then K = conv ext K.
Moreover. if K = conv A then A :::> ext K.

PROOF Clearly K :::> convext K . In order to establish K c conv ext K,
we use induction on the dimension of the convex set K, the assertion
being obvious in case dim K is -1, or 0, or 1. Without loss of generality
we assume Rd = aff K. Let x E K. If x ¢ ext K, let L be a line such that
x E relint (L n K). Then L n K is a segment [y, z], ' where obviously
y, z E bd K . Since through each boundary point of the convex set K there
passes a supporting hyperplane, there exist faces F, and F, of K containing
y respectively z. Now, the dimensions of F, and F, are smaller than dim K;
by the inductive assumption. F; = conv ext F, and F, = conv ext F;
Using statement 2 (above) we have

x E conv{y. z} c convtf, u F:) c conv(conv ext Fy u conv ext Fz )

c conv(ext F; u ext F:) c conv ext K,

as claimed. The last assertion of the theorem being obvious, this com
pletes the proof of theorem 5.

An analogous inductive proof yields also

6. Let K be a closed convex subset of Rd
, which contains no line. Then

ext K =1= 0 .
Regarding exposed points. we have

7. Let K c Rd be a compact set and let H = {x E R d I(x, u) » .«}
(where u is a unit vector) be an open halfspace such that H n K =1= 0·
Then H r, exp K =1= 0.
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PROOF Let K' = H (') K , let y E K ', and denote by s the distance
from y to bd H and by b the number b = max{p(x, y - su) Ix E K (') bd H}.
Let z = y - Bu, where fJ is some fixed number satisfying fJ > (b2 + e2)/2e.

Denoting by B the solid unit ball centered at the origin, let
J1. = infrA. > 0 Iz + A.B :::> K '} . Clearly J1. 2:: fJ. Then, by the compact
ness of cl K', we have z + J1.B :::> K' and C = (cl K ') (') bd(z + J1.B) #- 0 .
We claim that C (') bd H = 0 . Indeed, assuming the existence of a
point VEe (') bd H, we would have b2 2:: (p(v, Y - eu))2 = J1.2 - (fJ - e)2
2:: 2fJe - e2 which implies 2fJe ::; b2 + e2

, in contradiction to the choice
of fJ. Therefore C c: K'; but clearly each point of C is an exposed point
of z + J1.B and therefore also of cl K ' and of K, as claimed.

Lemma 7, together with theorems 4,5, and 6 above, 3 from section 2.2,
and 4 from section 2.3, imply Straszewicz' [1] theorem :

8. If K c: Rd is a compact convex set then cl conv exp K = K .

Indeed, let K' = cl conv exp K; obviously K' c: K. If K ' #- K , then
there exists an x E K such that x ¢ K '. Since the compact convex sets
x and K' may be strictly separated, there exists an open halfspace H
such that H (') K #- 0 and H (') K ' = 0 . But then H (') exp K #- 0
by theorem 7, contradicting the definition of K '.

The reader is invited to prove

9. If K c: Rd is a closed convex set then ext K c: cl exp K; therefore
if K is line-free then exp K #- 0.

Regarding the family .?F(K) of all faces of a closed convex set K we
have :

r

10. The intersection F = n Fj of any family {FJ offaces of a closed
i= 1

convex set K is itselfa face of K .

PROOF If F = 0 the assertion is true according to our definitions ;
thus we shall consider only the case F #- 0 . Without loss of generality
we may assume that the origin 0 belongs to F and that each F, is a proper
face of K . Then the face F, is given by Fj = K (') {x I( x, uj >= O} where
Uj is some unit vector such that K c: {x I( x , Uj) 2:: O} . Let

r

H = {xl(x,v) = O} where v = I Uj;
j=l

then clearly K c: {x I(x, v) 2:: O}. Since 0 E K (') H this implies that
H is a supporting hyperplane of K . Now, if x E F then (x, Uj) = 0 for
all i and therefore (x, v) = 0 ; hence x E H (') K and thus F c: H (') K.
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On the other hand, if x E K - F then <x, uj ) > 0 for at least one j and
<x, v) ~ (x, uj ) > 0 ; thus x if H (") K. Therefore F = H (") K and F is
a face of K, as claimed.

The family {Fj } in theorem 10 may be infinite; in this case the face
of smallest dimension obtainable as intersection of finite subfamilies
of {Fj } equals the intersection of all members of {Fj } .

It is easy to find examples (in each Rd
, d ~ 2) which show that the

situation is possible : K is a compact convex set, C E Si'(K) and FE Si'(C),
but F if Si'(K).

This observation leads to the foIlowing definition :
A set F is caIled a poonem* of the closed convex set K provided there

exist sets Fo, " ', F, such that Fo = F, F, = K , and Fj - t E Si'(FJ for
i = 1, ··· , k.

By thi s definition, each face of K is also a poonem of K, but the converse
is not true in general. Clearly, each poonem F is a closed convex set,
and ext F = F (") ext K . The set of all poonems of a closed convex set K
shall be denoted by flP(K) .

The reader is invited to deduce from theorem 10 the analogous result

11. The intersection F = n F, ofany family {FJ of poonems ofa closed
convex set K is in flP(K). j

12. IfF EflP(K) then flP(F) = {PEflP(K) IPc F}.

13. IfF E Si'(K ) and P E flP(K) then P (") FE flP(F) and P (") FE Si'(P).

Ex ercises

1. A convex cone has at most one exposed point.
2. Let K denote a compact convex set. Show that if dim K ~ 2 then

ext K is closed, but exp K is not necessarily closed . Find a K c R 3

such that exp K =F ext K =F cI exp K.
3. If (An) is a sequence of sets in Rd let the set lim sup An consist of

all x E Rd such that for every open set V containing x , the intersection
V (") An is nonempty for infinitely many n. Prove the foIlowing result
(Jerison r1]): Let (Kn ) be a sequence of compact convex sets in Rd

, and
let K be a compact convex set such that K = lim sup Kn. If En = ext K;
then K = conv(lim sup En)'

4. Extending the definition given above, a point x of a compact convex
set K is called k-exposed [k-extreme] provided for some j ~ k, x belongs

• 'Poonem' is derived from the Hebrew word for 'face' . Klee [2) uses 'face' for this
notion ; however, it seems worthwhile to reserve 'face' for the different notion considered
at the beginning of the present section .
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to a j-face U-poonem] of K. Clearly, the case k = 0 corresponds to the
previously considered notions of exposed and extreme points. Denoting
the set of all k-exposed points of K by exp, K and that of all k-extreme
points by ext, K, the following generalization of theorem 2.4.9 holds
(Asplund [1]; See Karlin-Shapley [1] for some related notions) : If K
is a closed convex set and if k ~ 0, then exp, K c ext, K c cl exp, K.

5. Let K be a closed convex set. Show that exp, K = U F and
Fe9'(K)

ext, K = U F. dimFSk
Fe9'(K)

dimF Sk

6. If the family 3i'(K) of all faces of a closed convex set K is partially
ordered by inclusion, then 3i'(K) is a complete lattice . (For lattice
theoretic notions see, for example, Birkhoff [1], SZ3.SZ [1].) The same is
true for the family 9(K) of all poonems of K . (In both cases the greatest
lower bound of a family of elements is their intersection.)

7. If K is a closed convex set and if C is a subset of K , show that
C E 9(K) is equivalent to each of the following conditions :

(i) C is convex and for every pair x, y of points of K either the closed
segment [x, y] is contained in C, or else the open interval [x, y[ does
not meet C.

(ii) C = K n aff C and K ~ aff C is convex.
(iii) C = K n L, where L is a flat, and K ~ L is convex.
(iv) There exists an x E K such that C is the maximal convex subset

of K satisfying x E relint C.
n

8. If F, E 3i'(K) for 0 ~ i ~ n and if Fo c U Fi , then there exists
i= 1

io, 1 ~ io ~ n, such that Fo c Fio' The same is true if all F, belong to
9(K).

9. Let K 1 and K 2 be closed convex sets. Prove :
(i) If F, E 3i'(K;) for i = 1, 2, then F1 n F2 E 3i'(K 1 n K 2)'

(ii) If Fi E9(Ki) for i = 1,2, then F1 n F2 E9(K 1 n K 2 ) .

(iii) If FE 9(K 1 n K 2 ) there exist F1 E 9(K I) and F2 E 9(K2 ) such
that F = F1 n F2 •

(iv) If relint Kin relint K 2 :I: 0 and if FE 3i'(K 1 n K 2 ), there exist
F1 E 3i'(K I) and F2 E 3i'(K2) such that F = F1 n F2 •

(v) Find examples showing that (iv) is not true if relint K 1 n relint K 2

=0·
10. Let T be a nonsingular projective transformation,

Tx = Ax + b
( c,x) + b'
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and let H+ be the open halfspace H+ = {x E Rd I( c, x) + (j > OJ. Prove:
(i) If A is any subset of H+ then T(conv A) = conv T A.
(ii) For every closed convex set K for which T is permissible,

~(TK) = { T F IFE .? (K )} and .9(TK) = {TF I F E.9(K)}.
11. A Helly-type theorem (see Danzer-Griinbaum-Klee [1], p. 127) is

a statement of the following general type : A family of elements has a
certain property whenever each of its subfamilies, containing not more
than a fixed number of elements, has this property. Prove the following
Helly-type theorems (see also exercise 7.3.5):

(i) A compact set A c R d has the property A = ext con v A if and only
if for every Be A such that card B ~ d + 2 we have B = ext conv B.

(ii) A set A c R d satisfies A c bd conv A if and only if for every B c A
with card B :S 2d + 1 we have Be bd conv B.

(iii) Find examples showing that the 'Helly-numbers' d + 2 and
2d + 1 of (i) and (ii)are best possible.

12. Show that if A c Rd is any set of d + 3 points in general position,
there exists aBc A with card B = d + 2 such that B = ext conv B.
(See Danzer-Grunbaum-Klee [1], p. 119; for d = 2 see Erdos
Szekeres [1].)

13. The following statement is a particular case of the result known
as Ramsey's theorem (see Ramsey [1], Skolem [1], Erdos-Rado [1],
Ryser [1]) : Given positive integers PI' P2' q there exists an integer
r(PI ' P2; q) with the property : If A is a set of elements such that card A
~ r(ph P2 ; q) and if all the q-tuples of elements of A are partitioned
into two families .911 and .912 , then either there exists in A a set A I con
taining PI elements such that all q-tuples of elements of Al are in .911,

or there exists a subset A 2 of A containing P2 elements such that all
the q-tuples of elements of A 2 are in .912 ,

Use Ramsey's theorem and exercises 11 and 12 to prove the following
results, which generalize a theorem of Erdos-Szekeres [1] :

(i) Given integers d and v, with 2:s d < v, there exists an integer
e(d, v) with the following property: Whenever A c Rd consists of e(d, v)
or more points in general position, there exists B c A such that
card B = v and B = ext conv B. (Hint : Apply Ramsey's theorem, with
q = d + 2, PI = v, P2 = d + 3, taking as .911 the set of all (d + 2)-tuples
C with C = ext conv C.)

Exercise 12 shows that we may take e(d, d + 2) = d + 3; the least
possible values for e(d,d + 3) are not known except for d = 2, in which
case e(2,5) = 9 (Erdos-Szekeres [1]); for additional results in this direc
tion see Erdos-Szekeres [2].
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(ii) Given integers d and v, with 2 :::; d < v, there exists an integer
e'(d, v) with the following property: Whenever A c Rd satisfies
card A ;::: e'id, v) and dim aff A = d, there exists B c A such that
card B = v, dim conv B = d, and B c bd conv B.

Note that (ii) is a weaker version of exercise 7.3.5(ii); it would be
interesting to find a direct proof of (ii) paralleling that of (i); the only
direct proof known to the author uses (i) and the remark on p.4.

2.5 Unbounded Convex Sets

The present section deals with some important properties of unbounded
convex sets.

1. A closed convex set K c R d is unbounded if and only if K contains
a ray .

PROOF We shall consider only the nontrivial part of the assertion.
Let Xo E K, and let S = bd B denote the unit sphere of R d centered at
the origin. For each ;, > 0 we consider the radial projection
P, = n(K II (xo + AS)) of the compact set K II (xo + AS) onto X o + S,
the point X o serving as center of projection'[ Since radial projection is
obviously a homeomorphism between X o + ),S and Xo + S, the set P,
is compact. If K is unbounded then p.. :j= 0 for every A > O. Since K is
convex and Xo E K, we have p ;. c ~. for A* :::; A. Therefore n p;.:j= 0 .

. ;' >0

If Yo is any point of this intersection, the ray {AYo + (1 - A)XO IA ;::: O} is
clearly contained in K . This completes the proof of lemma 1.

2. Let K c R d be closed and convex, let L = {itz I), ;::: O} be a ray
emanating from the origin , and let x , Y E K . Then x + L c K if and only
ify + L c K .

PROOF Let x + L c K , and let y + ),ZEY + L be given, A;::: O.
For 0 < p. < 1, consider the point v/l = (l - p.)y + p.(x + V,/p.)z) E K.
Since p(vl' , Y + AZ) = p(O, p.(x - y)), the distance between y + AZ and vI'
is arbitrarily small provided p. > 0 is sufficiently small. But K is closed,
and therefore vI' E K implies y + ),z E K . Since x and y play equivalent
roles, the proof of lemma 2 is completed.

A convex set C c Rd is a cone with apex 0 provided AX E C whenever
x E C and A ;::: O. A set C is a cone with apex Xo provided - Xo + C is a

t If Xo E Rd
, the radial projection n, with center of projection xo. of Rd

- {xo} onto the
unit sphere Xo + S is defined by n(x + xo) = Xo + x/IIx].
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cone with apex O. A cone C with apex X o is pointed provided Xo E ext C.
Let C be a closed cone with apex O. The following assertions are easily
verified:

(i) The apices of C form a subspace C n - C of Rd
; therefore either

C is pointed, or there exists a line all points of which are apices of C.
(ii) C = C + C = AC for every A > O.
Conversely, if a nonempty closed set C c Rd has property (ii) then

C is a cone with apex O.
The intersection of any family of cones with common apex X o is a

cone with apex X o' Therefore it is possible to define the cone with apex
Xo spanned by a set A c Rd as the intersection of all cones in Rd which
have apex X o and contain A. Though this notion is rather important
in different investigations, we shall be more interested in another con
struction of cones from convex sets.

Let K be a convex set and let x E K. We define cc, K = {y Ix + ).y E K
for all A~ O}. Clearly cc, K is a convex cone which has the origin as
an apex. Lemma 2 implies that for closed K we have cc, K = cCy K for
all x, y E K . Thus the index x is unnecessary and may be omitted. The
convex cone cc K is called the characteristic cone of K. Using lemmas 1
and 2 we obtain the following result :

3. If K C Rd is a closed convex set then cc K is a closed convex cone;
moreover, cc K =f {O} if and only if K is unbounded.

A closed convex set K shall be called line-free provided no (straight)
line is contained in K. Using this terminology, theorems 2.4.6 and 2.4.9
may be formulated as : If K is line-free then ext K =f 0 =f exp K . It is
also clear that every line-free cone is pointed.

Returning to lemma 2 we note that it immediately implies : If L is a
linear subspace of R d such that x + L c K for some x , then y + L c K
for every y E K . Therefore the following decomposition theorem results :

4. If K C Rd is a closed convex set there exists a unique linear sub
space L c Rd of maximal dimension such that a translate of L is con
tained in K . Moreover, denoting by L* any linear subspace of Rd com
plementary to L, we have K = L + (K n L *), where K n L * is a line-free
set.

Some information on the structure of line-free sets is given by the
following theorem.

5. Let K c Rd be an unbounded, line-free, closed convex set. Then
K = P + cc K, where P is the union ofall bounded poonems ofK.
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PROOF We use induction on the dimension of K , the assertion being
obvious if dim K = 1. If dim K > 1 and if x E K, let y E relbd K and
Z E CC K be such that x = y + z. (Since K is line-free such a choice is
possible; indeed, for any t E CC K , t =F 0, there exists a A. ~ 0 such that
x - ),t E relbd K.) Let F be any proper face of K such that y E F. If F is
bounded then F c P and x E P + cc K. If F is not bounded, the in
ductive assumption and dim F < dim K imply that y = v + W, where
WE CC F and v belongs to P', the union of the bounded poonems of F.
Since P' c P, cc F c cc K, and cc K is convex, it follows that
x = y + z = v + W + ZEP' + ccK + ccK c P + ccK. Since obviously
K ::::> P + cc K, this completes the proof of theorem 5.

Since for each bounded poonem F of K we have ext F = F next K
and F = conv ext F, theorem 5 implies

6. Let K c Rd be a line-free, closed convex set. Then K = cc K
+ conv ext K.

Exercises

1. Show that lemma 1 is valid even without the assumption that K
is closed.

2. If K is any convex set in Rd, show that x, y E relint K implies
cc, K = cC yK. Moreover, for x E relint K the characteristic cone cc, K
is closed.

3. Show that the decomposition theorem 4 holds also if K is a
relatively open convex set.

4. Let K c Rd be a closed convex set; then cc K is the maximal (with
respect to inclusion) subset T c Rd with the property : For every x c K,
x + Tc K .

5. Let K c Rd be a closed convex set; then cc K = {x E Rd I(x , u) ~ 0
for all u such that there exists an lX with K c {z] ( x , u) ~ lX} }.

6. Let K c Rd be a closed convex set such that 0 E relint K . Prove that

ccK= n(~K) .
n= 1 n

7. Using the notation of the decomposition theorem 4, let L** denote
another linear sub space of Rd complementary to L. Show that L** n K
is an affine image of L* n K.

8. If K C Rd is a closed, convex, line-free set, then there exists a hyper
plane H such that H n K is compact and dim K = 1 + dim (H n K).
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9. If K c Rd is a closed pointed cone with apex xo, there exists a
hyperplane H such that H n K is compact and K is the cone with apex
Xo spanned by H n K.

10. Prove the following results converse to theorems 5 and 6.
(i) If K is an unbounded, line-free, closed convex set and if K = C + P,

where C is a cone with apex 0, then P contains all bounded poonems of K.
(ii) If K is a line-free, closed , convex set and if K = C + P, where C

is a cone with apex 0 and P is a closed , bounded convex set, then
C = cc K and P :::> con v ext K.

II. A convex set K is called reducible (Klee [2] ; this notion
of reducibility will be used only in the present exercise) provided
K = conv relbd K . Prove the following results :

(i) If K is a closed convex set then K is the convex hull of the union
of all irreducible members of 9(K).

(ii) Each irreducible closed convex set is either a fiat, or a closed
halffiat.

12. Show that each d-dimensional closed convex set is homeomorphic
with one of the following d + 2 sets: (i) a closed halfspace of Rd

; (ii) the
product Rd

-
k x Bk for some k with 0:::; k :::; d, where Bk denotes the

k-dimensional (solid) un it ball.

2.6 Polyhedral Sets

A set K c R d is called a polyhedral set provided K is the intersection of a
finite family of closed halfspaces of Rd.

Polyhedral sets have many properties which are not shared by all
closed convex sets. One of the most important such properties is

I. Each poonem ofa polyhedral set K is a face ofK.

Before proving theorem I we note a few facts about polyhedral sets.
Let u; = {x E Rd I<x, u) ~ aJ, I :::; i :::; n, be halfspaces, and let

K = nnt. Without loss of generality we shall in the present section
i=1

assume that dim K = d ; we shall also say that a maximal proper face of
K is afacet of K. (Note that if K is a fiat, then K has no facets.) The family
{Ht 11 :::; i :::; n} is called irredundant provided K i = n H j+ i: K

1 S j S "
j '¢ i

for each i = 1,2,· ·· ,n.
Denoting Hi = bd n; = {x E Rd I<x, Ui> = ail , we have
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"2. If K = n Ht, where {Ht 11 ~j s n} is irredundant, then
j; I

F, = H, n K is a facet of K.
This follows at once from the observation that H, n int K, i= 0

which, in turn, is a reformulation of the irredundancy assumption. The
same assumption also implies

"3. bd K = U Fj , where F, = H , n K, i = I" " , n, are all the fa cets
i = l

ofK.

In particular, for each proper face F of K there exists a facet F, of K
such that F c F, (see exercise 2.4.8).

Let F, = H, n K be a facet of K. Then

Thus F, is a polyhedral set, namely the intersection of the sets H i n Ht,
1 ~ j ~ n, each of which is either H j , or a halfspace of the (d - 1)
dimensional space H j • Therefore, by theorem 3, each facet F of F, is of
the form

F = F, n relbd iH, n Hn = F, n H, n H, = K n H , n H, = F, n Fj ,

for a suitable j . Thus

4. Each facet of a facet of a polyhedral set K is the intersection of two
facets of K.

Now we are ready for the proof of the following theorem which, in view
of theorem 2.4.10, clearly implies theorem 1.

5. Every nonempty proper poonem F of a polyhedral set K is an inter
section offacets of K .

PROOF We shaII use induction on dim K , the assertion being obvious
if dim K = 1. If dim K > 1, let x E relint F. By theorem 3, there exists a
facet F, of K such that x E Fj , i.e. F E Fj • Theorem 2.4.12 then implies that F
is a poonem of Fj • Using the inductive assumption we see that F is an
intersection of facets of Fj • Since each facet of F, is the intersection of 2
facets of K, this completes the proof of theorem 5.

We mention also the foIIowing immediate consequence of theorem 5 :

6. If K is a polyhedral set then the family .9f"(K ) is finite.
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Exercises

CONVEX POLYTOPES

1. (See theorem 2.5.4 for the notation .) Show that if K is a nonempty
•

polyhedral set , K = n {x E Rd I( x , u) 2': IX;} , then
i= I

•
L = n {xERdl (x,u) = O} .

i= 1

2. Show that if K is as above, then
•

ccK = n {xERdl (x,u) 2': O}.
i= 1

3. Show that if K is as above, and if p E K sa tisfies

( p, Ui ) = IXi for I ~ i ~ m
and

for m < i ~ n ,

then
m

conepK = n {xERdl <x,u;) 2': IX;}.
; = 1

4. Show that every affine map of a polyhedral set is a polyhedral set.
Find a polyhedral set K and a projective transformation T permissible
for K , such that T K is not a polyhedral set.

5. As converses of exercise 4, prove the following results :
(i) (Klee [3]) If K is a convex subset of Rd

, d 2': 3, and if all projections
of K in to 3-d imensional subspaces of Rd are polyhedral sets, then K is a
polyhedral set.

(ii) (Mirkil [1], Klee [3]) If K is a convex cone in Rd
, d 2': 3, and if all

projections of K into 2-dimensional subspaces of Rd are closed, then K
is a polyhedral cone.

6. Let KJ," ', K. be polyhedral sets in Rd
, and let C be a convex set

•
such that C c U K i • Prove that there exists a polyhedral set K such

; = 1
n

that C eKe U K ;.
; = I

2.7 Remarks

An adequate account of the history of the main results on convex sets
would require much more room than we ha ve at our dispos al ; therefore
we shall limit ourselves to just a few remarks.
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Though quite a few notions and facts related to convexity have been
considered appreciably earlier , it was mainly through the pioneering
work of Minkowski (see Minkowski [2]) that convexity became a well
known subject of research, applicable to many other disciplines. The scope
of research greatly expanded during the first quarter of the present cen
tury ; most influential on the other workers were probably the papers of
Caratheodory [1,2] and Steinitz [5], and the book of Blaschke [1]. An
extremely useful review of results on convexity up to 1933 is the book
Bonnesen-Fenchel [1].

A complete bibliography of papers dealing with various aspects of
convexity would contain several thousand entries . We shall mention here
as general references only some of the books published recently (though
some of them do not have much bearing on polytopes) :Aleksandrov [2, 3],
Busemann [2], Eggleston [2,3] , Fejes-T6th [1,3], Fenchel [4], Hadwiger
[3,5], Hadwiger-Debrunner [1], Klee [81, Kuhn-Tucker [1], Lyusternik
[1], Rogers [1], Valentine [1], Yaglom-Boltyanskil [1].

Most results of the present chapter are well known, though the formula
tions used by different authors often vary, and various settings and degrees
of generality are considered. A survey of known results and an extensive
bibliography* on the material of sections 2.1, 2.2, and 2.3, may be found
in Danzer-Griinbaum-Klee [1]. For the facts dealt with in sections 2.4,
2.5, and 2.6, and for related material and additional references the reader
may consult, for example, Weyl [1], Motzkin [1,2], Fenchel [4J, Klee [4],
Gale-Klee [1], and, in particular, Klee [2].

With suitable changes, many results of the present chapter have valid
analogues for convex sets in vector spaces over any ordered field, or for
convex sets which are not necessarily closed (in Euclidean spaces). In
many cases, the proofs of such generalizations are much more elaborate
(see, e.g., Weyl [1], Motzkin [1], Klee [10].

Convexity has been studied-and is a natural and interesting notion
in many settings different from the Euclidean (or affine) spaces. We shall
briefly explain two such variants, since they will be mentioned in the
sequel.

If pd is the d-dimensional (real) projective space, we shall say that a set
K c pd is convex provided

• The reader should be aware of the fact that in some of the papers the presentations
of definitions or theorems are rather careless, to the extent of being ambiguous (e.g. the
definition of spherically convex polygons in Aleksandrov [2, p. 13]) or false (e.g. the
separation theorem in Karlin [1, p. 356]).
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(i) For each line Lin r, the intersection L()K is either empty, or else
a connected subset of L;

(ii) There exists a (d-l)-dimensional subspace H of pd such that
H()K = 0.

It is obvious that if K is a convex subset of pd and if H is as in (ii), K
may be considered as a subset of the affine d-space obtained from pd by
assigning to H the role of the 'hyperplane at infinity '. In this interpreta
tion, K becomes a convex subset of the affine space. Hence most of the
notions and results of the present chapter may be reformulated for
convex subsets of projective spaces. One important exception derives
from the possibility that the intersection of two or more convex sets may
fail to be convex . (However, if {Ka } is a family of convex sets such that
the intersection of each two sets is convex, then nK, is convex.) This

a

implies that the convex hull of a set A c pd (which exists only if some
hyperplane misses A) is in general not unique. For more detailed accounts
of convexity in projective spaces see, for example, Steinitz [5], Veblen
Young [1], p. 386, Motzkin [2], Fenchel [4], Sinden [1]; additional
references are given in Danzer-Grunbaum-Klee [1]. (In certain investiga
tions it seems to be more convenient to define convex sets in projective
spaces by the single condition (i) (see, for example, Kneser [1], Marchaud
[1] ; we shall not use this terminology.)

For subsets of the d-sphere Sd a number of different definitions of
convexity are frequently used ; they coincide for sets contained in an open
hemisphere, but differ in the treatment of larger sets. For our purposes,
the most suitable definition results by taking Sd as the unit sphere of
Rd + 1 with center at the origin 0 and calling a set K c S" convex if and
only if cone., K is a convex subset of Rd+ 1. For a discussion of other
definitions, and for references to the rather voluminous literature, see
Danzer-Grunbaum-Klee [1].
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2.8 Additional notes and comments

30a

An example .
In the figure below, the point x is an extreme point that is not exposed; also, {x}
is a poonem (a face of a face) that is not a face itself. However, such simple
examples cannot display the full complexity of the facial/extremal structure
of general convex bodies . For example, Griinbaum (see Lindenstrauss-Phelps
[a]) produced a 3-dimensional body with uncountably many extreme points but
only countably many exposed points.

x

Face functions on general convex bodies.
Let K be a general d-dimensional convex body, let B be its boundary, and for
each x E B let F(x) denote the union of all segments in B that have x as an
inner point. The set-valued function F is called the face function of K, and
when K is a polytope it behaves very simply : It is lower semicontinuous at
each point of B, and is upper semicontinuous precisely on the relative interiors
of K's facets. The analogue of this for a general K is as follows: F is lower
semicontinuous almost everywhere on B in the sense of Baire category (i. e., at
the points of a dense G<5 subset of B), and is upper semicontinuous on B almost
everywhere in the sense of measure (i. e., at the points of a subset of B whose
complement is of zero (d -I)-dimensional measure). However, for d? 3 there
exists ad-dimensional K whose face-function is lower semicontinuous almost
nowhere in the sense of measure and is upper semicontinuous almost nowhere
in the sense of category. For these results, see Klee-Martin [a] and Larman [b],
and also Corson's paper [a] on which the example is based.

Convex bodies-geometric and algorithmic aspects .
In this chapter, general convex sets and their faces and poonems are presented
as foundational material, whose specific "pathologies" disappear in the much
more special, discrete setting of convex polytopes .

Nevertheless, the geometry of general convex sets is important, in particular
in view of the manifold connections and applications to fields such as func
tional analysis (Banach space theory), the geometry of numbers, etc. Key refer
ences to access this theory are the "Handbook of Convex Geometry" edited by
Gruber and Wills [a] and the book by Schneider [b]. We refer to Thomp son [a)
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for the geometry of finite dimensional normed spaces, to Gruber-Lekkerkerker
[a] for the geometry of numbers, to LeichtweiB [a] for the theory of affine
convex geometry, and to Ball [a], Matousek [b, Chap . 14], and Giannopoulos
Milman [a] as guides to some recent developments such as the "concentration
of measure" phenomenon, which still waits for more impact on the combina
torial theory of polytopes.

Algorithmic aspects have emerged and gradually become more influential
in the theory of convex bodies (i. e., full-dimensional, closed convex sets) .
Thus, on the one hand, the geometry of convex bodies rules the field of con
vex optimization-see Rockafellar [a] and Stoer-Witzgall [a]; on the other
hand, non-linear optimization concepts such as the ellipsoid method have had
tremendous impact on the "algorithmic model" of a convex set, starting with
the fundamental problem of how we can be "given" a convex set. We refer to
Grotschel-Lovasz-Schrijver [a] and to the introduction by Lovasz [a).

Tverberg, Helly, Ramsey, and Erd/is-Szekeres.
Tverberg's theorem , pointed to on page 16, has turned out to be a driving force
for discrete geometry and combinatorial convexity. This led to new proofs (by
Tverberg and by others-see, e. g., Sarkaria [a]), to far-reaching extensions
such as the so-called "colored Tverberg theorem", and to the development of
new tools and methods, in particular from equivariant topology. Zivaljevic [a)
is a guide to the current discussion.

For Helly type theorems (as in exercise 2.4.11), surveys are Eckhoff [a)
and Wenger [a). In exercise 2.4.13 one meets Ramsey theory and the Erdos
Szekeres theorem as an application. We refer to Matousek [b, Chap. 3).

Generalizations ofconvexity.
In addition to projective and spherical convexity (see pages 29-30), the case
of convexity in hyperbolic space has turned out to be particularly interesting
again and again . Highlights include the work by Sleator-Tarjan-Thurston [a)
on rotation distance of trees and triangulations ofn-gons, and Smith's [a] lower
bounds for the number of simplices needed to triangulate the d-cube.

We refer to Boltyanski-Martini-Soltan [a) for a survey and geometric study
of various generalized convexity models . See also Coppel [a) [b], Edelman
Jamison [a], and Prenowitz-Jantosciak [a].

A combinatorial model for the convexity structure of finite sets of points
(such as the vertices of a polytope) was provided by the theory of oriented
matroids (see Bjomer et al. [a], Ziegler [a, Lect. 6]), which emerged in the late
seventies and has produced substantial tools and results for polytope theory ;
see in particular the notes in section 5.6 (on Gale-diagrams).



CHAPTER 3

Polytopes

The present chapter contains the fundamental concepts and facts on
which we rely in the sequel. Polytopes, their faces and combinatorial
types, complexes, Schlegel diagrams, combinatorial equivalence, duality,
and polarity are the main topics discussed.

3.1 Definition and FundamentalProperties of Polytopes

A compact convex set K c Rd is a polytope provided extK is a finite set.
From the results of section 2.4 and theorem 2.3.4 it follows that polytopes
may equivalently be defined as convex hulls of finite sets. Also, if K is a
polytope then, by theorem 2.4.9, exp K = ext K; in other words, each
point of ext K is a face of K. For a polytope (or polyhedral set) K , it is
customary to call the points of ext K vertices, and to denote their totality
by vert K ; l-faces of K are called edges, while maximal proper faces are
facets of K.

Clearly each face F of a polytope K is itself a polytope, and
vert F = vert K 11 aff F. We shall use d-polytope and k-face as abbrevia
tions for 'polytope of dimension d' and 'face of dimension k' . Since each
k-face of ad-polytope K contains k + 1 affinely independent vertices of
K, and since different faces of K have different affine hulls, it follows that
the niJmber of different k-faces of a polytope is finite for each k. Moreover,
denoting by fk(K) the number of different k-faces of a d-polytope (or

polyhedral set) K, we havef,,(K) ~ (fo(K)) ; with the plausible convention
k+l

f,,(K) = 0 for k > d or k < - 1, this relation holds for all k.
The following theorem is of fundamental importance in the theory of

polytopes. It may be considered as a sharpening of theorem 2.2.3 for the
special case of polytopes, showing that polytopes are polyhedral sets.

1. Each d-polytope K c Rd is the intersection ofafinitefamily of closed
halfspaces .. the smallest such family consists of those closed halfspaces
containing K whose boundaries are the affine hulls ofthe facets ofK.

31
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PROOF Let.Yf = {H j 11 ::=; j ::=; fd- ((K)} be the set of hyperplanes
determined by the facets of K, and let a point y rf: K be given. We shall
show that there exists an H, such that y does not belong to the closed
halfspace determined by H, and containing K . We denote by L the set of
all affine combinations of at most d - 1 points of vert K . By Cara
theodory's theorem 2.3.5 L contains all the faces of K which have dimen 
sion at most d - 2. Let M denote the cone spanned by L with vertex y ;

then M is contained in the union of finitely many hyperplanes through
y. Since finitely many hyperplanes do not cover any nonempty open set,
int K is not contained in M. Let x be any point of (int K) '" M; we con
sider the ray N = {A.X + (1 - A.)y I A. ;::: O} with endpoint y determined
by x ; clearly N (\ int K =1= 0 . Let ,1.0 = inf{A. > 0 I A.X + (1 - A.)y E K} .
Since K is compact and y rf: K , the greatest lower bound is attained,
o< ,1.0 < 1, and Xo = A.oX + (1 - A.o)y E bd K . It follows that Xo belongs
to some proper face F of K ; but x rf: M implies Xo rf: L and therefore F is
not of dimension less than or equal to d - 2. Thus F is a facet and the
hyperplane aff F has all the desired properties. The assertion about the
minimality of.Yf being obvious, this completes the proof of theorem 1.

A partial converse of theorem 1 is given by

2. Every bounded polyhedral set K is a polytope.

The proof follows at once from the previous results. Indeed, the
assumptions imply that K is compact and therefore (by theorem 2.4.5)
K = conv ext K. By theorem 2.6.1, ext K = exp K, and by theorem 2.6.6
exp K is a finite set; hence K is a polytope.

The last two results may be combined to yield the following theorem.

3. A set P c Rd is a polytope ifand only if P is a bounded polyhedral set.

The reader is now invited to establish the following assertions which
provide a number of methods for generating new polytopes from given
ones; some of the proofs use theorem 3, others follow directly from the
definitions .

4. The convex hull, the vector sum, and the intersection offinitely many
polytopes is a polytope. The intersection of a polytope with an affine
variety, or with any polyhedral set , is a polytope. Any affine image, and any
permissible projective image ofa polytope is a polytope.

We shall next consider in some detail the family §,(P) of all (proper and
improper) faces of a polytope P.

Theorem 2.4.1 implies that the intersection of any family of faces of a
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polytope K is itself a face of K. Trivially, it is also true that if F I and F 2are
faces of K and F2 C F I' then F2 is a face of F I. Theorems 3.1.3 and 2.6.1
imply for polytopes the transitivity of the property 'is a face of ' :

5. If F I is a face of the polytope P and ifF2 is a face of the polytope F I'

then F 2 is aface ofP.

We find it interesting to give a direct proof of theorem 5, independent
of the results of section 2.6. For such a proof, it is clearly enough to
consider proper faces; without loss of generality we may assume that the
origin 0 belongs to F2and that P is a d-polytope in Rd. Let UI and U2 be unit
vectors such that, denoting HI = {x ERd I<x, u l ) = O} we have : HI is a
supporting hyperplane of P with F1 = HI" P and P c {x I ( x, U I)
~O} ; U2EHI' FIC{XEHII<x,U2)~0} and F2=FI"H2, where
H 2 is the (d - 2) - flat {x E HI I (x, U2) = O}. Let H(e) = {x ERd I (x,
u, + W 2) = O};then H(e) :::::> H 2 :::::> F2 for every e. Let a = max{l<v,u2 )11
v Evert P ~ vert F I}and p = min{<v, UI) Iv Evert P ~ vert F,} > O. We
claim that if s satisfies 0 < e < P/2lX (or just e > 0 if o: = 0) then H(e) is a
supporting hyperplane of P and F2 = P" H(e). Indeed, if v Evert P
~ vert F, then <v;u, + W2) ~ P- elX > P/2 > 0 ; if vEvertF, ~ vert
F2 then (u; u, + W2) = e<v; u2) > 0 by the definition of U2 ; finally,
for e s vert F, we have <v ;u, + W2) = 0, i.e. v EH(e). This completes
the direct proof of theorem 5.

Some remarks of a methodological nature seem indicated in view of
the proofs given in the present Section. It is hoped that readers who
worked their way through the proofs are by now ready to accept the
validity of the results proved. The author doubts, however , that the above
formal proofs give a good idea of why the proofs work. In a subject as
elementary and intuitively as comprehensible as the theory of polytopes,
it seems a pity to obscure the simple idea of a proof by the-almost
necessarily-involved and complicated notation and symbolism. As an
example. consider the following formulation of the idea of the direct proof
of theorem 5. If H I is a hyperplane determining F

"
and if H2 is a (d - 2)

subflat of H, determining F2' any sufficiently small rotation of H I about
H 2 in the proper direction ('away' from vert F, ~ vert F2) will yield a
hyperplane H(e) whose intersection with P is F 2.

In this context, as in many other cases, the idea of the proof becomes
clearly comprehensible with the help of a graphic representation of the
two- or three-dimensional case (see figures 3.1.1 and 3.1.2). The formal
proof is necessary as a guarantee that no unwarranted simplifications
have been made in the intuitive examination of the problem, and that
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all the choices , positions, and other aspects, are as imagined . But the formal
proof should be carried out after the idea of the proof has been found and
understood. The reader is most insistently advised to reread the proof of
theorem 1 and to formulate for himself the intuitive ideas involved.

-----=~,..--~--'------Hl

H(f;)

Figure 3.1.1

Figure 3.1.2

In the opposite direction, the reader is invited to expand the ideas of the
direct proofs of the statements given below to formal proofs.

6. If P is a d-polytope, each (d - 2)jace F of P is contained in precisel y
two facets F 1 and F2 ofP, and F = F 1 n F2•
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Indeed, if H is a hyperplane such that H n P = F, a rotation of H
about the (d - 2)-f1at aff F yields the two (extremal) positions HI and H 2

for which Hi n P = F j •

Using theorems 5 and 6 it easily follows by induction that

7. If -1 :$: h < k :$: d - 1 and if P is a d-polytope, each h-face of P
is the inte rsection of the family (containing at least k - h + 1 members)
of k-faces of P containing it.

The following statement is rather obvious, but nevertheless occasionally
useful :

8. If P is a d-polytope and ifF is a k-face ofP, there ex ists a (d - k - 1)
face F* of P such that dim conv(F u F*) = d. (Then necessarily F n F*
= 0·)

Indeed, if k = 0 (that is, F is a vertex), let x be a point of bd P such
that the segment [F, x] meets int P. Then any facet of P which contains
x can serve as F* . The proof is easily completed by induction.

Exercises

1. Let P be a polytope and let A evert P. Then conv A is a face of P
if and only if aff A n conv(vert P) '" A) = 0.

2. Let P be ad-polytope, F a proper face of P, and F0 a proper k-face of
F. Prove that there exists a (k + 1)-face F I of P such that F 0 = Fin F.
Prove also the sharper result : If P is ad-polytope, F an h-face of P, and
F 0 a k-face of F, where - 1 :$: k < h :$: d, then there exists a (d - h + k)
face F I of P such that Fo = F n F I and P = conv(F u F I ).

3. Let Fk - I be a (k - I)-face and let Fk+ I be a (k + I)-face of the
d-polytope P, 0 :$: k < d. There exist precisely two distinct k-faces of P
each of which is contained in F k + I and contains F k - I • Does this result
remain valid if P is assumed to be a polyhedral set?

4. Let V be a vertex of a polytope P c Rd and let H* be a closed half
space with bounding hyperplane H, such that V E H and all the edges of P
which contain V are contained in H*. Prove that P c H*, and therefore
H is a supporting hyperplane of P.

5. Prove directly, or derive from theorem 3.1.8, the following fact :
If P is a d-polytope and if k vertices VI" ' " lI,. of P are given, 1 s k :$: d,
there exists a (d - k)-faceof P which contains none of the vertices VI" ' " lI,. .

6. Let P be a polytope and T a projective transformation (not nec
essarily regular) permissible for P. Let P' = T(P) and let F' be a face of P'.
We have seen in exercise 2.4.9 that there exists a face F of P such that
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F' = T F. Find examples which show that it is possible that every F such
that F' = T(F) satisfies dim F > dim F'.

7. Let P c Rd be a d-polytope and let L be an m-flat such that
P (\ L :I 0. Prove that F (\ L :I 0 for some (d - m)-face F of P.

8. If P is a d-polytope then J;.(P) ~ (d + 1) for all k with -1:::;; k :::;; d;
k + 1

(
d + 1)if fo(P) > d + 1 then J;.(P) > whenever 0 :::;; k :::;; d - 1.
k + 1

9. Let 0 :::;; i, j :::;; d - 1; prove the existence of numbers lfJjik, d) such
that every d-polytope P with};(P) :::;; k satisfies !;{P) :::;; lfJjik, d).

10. Let (P, Ii = 1,2" ,,) be a sequence of polytopes which is convergent
in the Hausdorff metric to the compact set K. Prove that if (fo(PJ I i = 1,
2, . . .) is a bounded sequence then K is a polytope. (Hint : Use exercise 2.4.4).

II . Show that the results of theorems 6 and 7 and exercises 2 and 4
generalize to polyhedral sets (with the restrictions: d > 1 for theorem 6,
h ~ 0 for theorem 7, and k ~ 0 for exercise 2). Does theorem 8 generalize?

12. A set K c Rd is called a quasi-polyhedral set provided K (\ P is a
polytope whenever P is a polytope. Show that each quasi-polyhedral set
is closed and convex, and that the results mentioned in exercise 11 are
valid for quasi-polyhedral sets. Prove that if K is quasi-polyhedral and
o < card ext K < 00 then K is a polyhedral set.

13. Let K be a convex set and let x E K. We shall say that K is polyhedral
at x provided there exists a polytope P such that x E int P and K (\ P is a
polytope.

(i) Show that K is polyhedral at x if and only if cone, K is a polyhedral
cone.

(ii) Show that if K is compact [closed] and polyhedral at each point,
then K is a polytope [a quasi-polyhedral set].

14. Let K c Rd be a polytope and let vert K = {VI"'" Vr } . Then each
x E K is expressible-in general in many ways-in the form

r

X = I A,{X)Vj
j= I

with Aj(X) ~ 0 and I;= I Aj(X) = 1. Show that it is always possible to
choose the numbers Aj(X) in such a way that all the functions Aj(X), 1 :::;; i s: r,
depend continuously on x E K. (This is a result of Kalman [1]. Hint :
On 0- and I-dimensional faces of P the functions Aj(X) are uniquely deter
mined. If the Aj(X) are already defined for x belonging to p-dimensional
faces for some p :::;; d - 1, we extend the definition to (p + I)-dimensional
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faces in the following manner. Let F be a (p + 1)-dimensional face of K,
and w = (card vert F) - I . " v. Then WE relint F and each x E F

~v e vert F

has a unique decomposition x = (l - Jl)w + JlY, where Y E relbd F. By
assumption Y = " Aj(Y)Vj and thereforel..JV i Evert F

(
I-Jl )x = L Aj(X)Vj = L d F + JlA.{y) Vj '

V i e veri F car vert

Show that Aj(X) defined in this fashion satisfies all the requirements.)
Show also that the Aj(X) may be chosen so that they are all continuous
and that, for one preassigned i, Aj(X) is a convex function of x E K. (A
function <p(x) is convex on the convex set K provided <p(A.x 1 + (1 - A)X2)
::; A<p(xd + (1 - A)<p(X2) whenever XI' X2 E K and 0::; A ::; 1.) Also, by
considering the case in which K is a square in R 2 , show that it is not always
possible to have all the Aj(X) convex. (This provides a negative answer to a
problem of Kalman [I]; compare Wiesler [1].)

15. The lattice ff(P) of all faces of ad-polytope P has various interesting
properties (see Perles [1,2].) Let a tower in P be a family .A = {M(i) I0
::; i ::; d - I} offaces of P such that dim M(i) = i for all i , and M(i) c MU)
for 0 ::; i ::; j ::; d - 1. Denote also M(i) = 0 for i < 0 and M(i) = P for
i ~ d. For a tower.A define the tower T.A = % by putting N( -I) = 0
and by taking as N(i), for 0 ::; i ::; d - 1, the unique i-face of P different
from M(i) which contains N(i - I) and is contained in M(i + 1).

(i) Prove that T is a one-to-one mapping of the set of all towers in P
onto itself; define the inverse mapping T- I .

(ii) Let - 00 < r ::; s < 00 and 0 ::; k ::; d - 1. Prove that

T'M(k + s - r) = V TjM(k)
i=r

and

YSM(k - s + r) = n TjM(k).
i=r

If. moreover, s =I rand s - r ::; d, then T'M(k) =I T"M(k).
16. Let K c Rd be a line-free polyhedral set. Show that there exists a

nonsingular projective transformation P permissible for K such that
c1(PK) is a polytope, (c1(PK» _ PK being one of its faces.

17. (Klee [2]) A compact [closed] set K c Rd is a polytope [a quasi
polyhedral set] if and only if cone p K is closed for every p E K.

18. Let P be a polytope and let T be a (not necessarily regular) projec
tive transformation permissible for P. Prove that };,(TP) ::; };,(P) for all k.
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19. If P is a polytope in Rd
, prove that the supporting function H(P, x)

(see exerci se 2.2.8) is a piecewise linear function of x (that is, Rd is the
union of a finite number of convex cones C I ' ... , Cn such that for a
suitable aj and all x E C, we have H(P, x) = ( x , ai>, for i = I,· · · , r) .
Conversely, show that every piecewise linear function satisfying the con
ditions given in exercise 2.2.8(i) is the supporting function of some
polytope.

20. If K l ' K 2 are polytopes show that

K I + K 2 = conv((vert K ,) + (vert K 2 ) ) .

21. (Motzkin [7]) Let P be a d-polytope, let do, ' . . , dk be nonnegative
integers such that k + L~= o d, = d, and let x E P. Prove that there exist

k

faces F, of P such that dim F, = d, for i = 0, . .. , k, and x E conv U Fj •

j = O

3.2 Combinatorial Types of Polytopes; Complexes

Two polytopes P and P' are said to be combinatorially equivalent (or
isomorphic, or of the same combinatorial type) provided there exists a
one-to-one correspondence cp between the set {F} of all faces of P and
the set {F'} of all faces of P', such that cp is inclusion-preserving (i.e. such
that F, C F2 if and only if cp(F,) C cp(F2 ).) Equivalently , one could say
that the lattices .fF(P) and .fF(P') are isomorphic. Clearly, combinatorial
equivalence is an equivalence relation ; if P and P' are combinatorially
equivalent we shall write P ~ P'.

The following assertions are easily established.

1. If P ~ P' then dim F = dim cp(F) and F ~ cp(F) ; also,fk(P) = };.(P')
for all k.

2. If P ~ P' and if {FI , · · · , Fn } is any famil y offaces of P, then

cp(j81 Fi ) = j ~1 cp(FJ and CP( i~1 Fj ) = i ~ l <p(FJ

3. If T is a nonsingular affine map of Rd onto itself and if P c Rd is a
polytope, then P ~ TP. If T is a nonsingular projective mapping.permissible
for P, then P ~ TP.

In particular, all d-simplices are of the same combinatorial type.
The concept ofcombinatorial equivalence of polytopes is of fundamen

tal importance in many questions of the theory of polytopes, since many
properties of a polytope depend only on its combinatorial type. The
intrinsic difficulty of many problems on polytopes is intimately related to
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the fact that the combinatorial equ ivalence of polytopes is not endowed
with properties usually encountered when dealing with equivalence rela
tions in other mathematical disciplines . For example, combinatorial
equivalence is neither a closed relation in the topological sense, nor an
open one (that is, a limit of polytopes, all of which are of the same com
binatorial type, is not necessarily of the same type ; in every neighborhood
of a polytope there are polytopes of a different combinatorial type.) Also
it is impossible to define the 'sum -type', ' intersection-type', etc., of given
combinatorial types. Following the procedure useful in many other
disciplines, it would be desirable to find characteri stics, easily computable
for every polytope, such that the equality of the characteristics of the
polytopes would indicate their combinatorial equivalence.* Unfortu
nately no such invariants of combinatorial types are known. Accordingly,
very little is known about the combinatorial types of d-polytopes for
d ~ 3. For d = 1 the problem is trivial , since all l-polytopes are segments.
For d = 2 the combinatorial types may be characterized by the number
of vertices, since two polygons are of the same combinatorial type if and
only if they have the same number of vertices. The number of different
combinatorial types of d-polytopes with v vertices shall be denoted by
c(v, d) ; the number of simplicial d-pol ytopes (see section 4.5) with v vertices
by cs(v, d). For the known results on c(v, d) and cs(v, d) see chapters 6
and 13, and tables 1 and 2.

We shall return to some problems of classification of polytopes accord
ing to combinatorial type later on ; presently we turn to certain notions
belonging to combinatorial topology.

A finite family ~ of polytopes in Rd will be called a complex t provided
(i) Every face of a member of~ is itself a member of ~;

(ii) The intersection of any two members of ~ is a face of each of them.
If a polytope P is a member of a complex ~ we shall call P a face of ~

and write P E ~. The number of k-faces of ~ will be denoted by fk(~) '

Among the simplest complexes we ment ion the following two which
are associated with a k-polytope P:

• For two given polytope s it is, in principle, easy to determine whether they are com
binatorially equivalent or not. It is enough to find all the faces of each of the polytopes
and to check whether there exists any inclu sion preserv ing one-to-one correspondence
between the two sets of faces. However, th is procedure is practically feasible only if the
number of faces is ra ther small.

t Not e that we depart here from the usual topological terminology. Our 'complexes'
are commonly referred to as ' polyhedral complexes' , 'convex complexes', or 'geometric
cell complexes' (see, for example, Alexandroff-Hopf [I, p. 126], Lefschetz [ I, p. 60]). When
cons idering the more general topological objects we shall specify that the reference is to
' topological complexes'.



40 CONVEX POLYTOPES

(1) The boundary complex 91(P) of P, which is the complex consisting
of all the faces of P which have dimension at most k - 1.

(2) The complex 'C(P) = 91(P) u {P} consisting of all the faces of P.
Note that the complex 'C(P) contains the same elements as the lattice

§,(P).
A complex 'C is said to be k-dimensional, or a k-complex, provided

some member of 'C is a k-polytope but no member of 'C has dimension
exceeding k.

Obviously, if P is a k-polytope then 9I(P) is a (k - Ij-complex, and
'C(P) is a k-complex.

Let'C be a complex and let C E 'C. We define:
The star st(C;~) of C in 'C is the smallest subcomplex of ~ containing

all the members of~ which contain C.
The antistar ast( C; 'C) of C in 'C is the subcomplex of ~ consisting of

all the members of ~ which do not intersect C.
The linked complex link( C; ~) of C in ~ is the complex consisting of

all polytopes of st(C ;~) disjoint from C. Thus

link(C; ~) = st(C ;~) n ast(C; ~) .

Obviously, ~ = st(C ;~) u ast( C ;~) whenever C E~ is O-dimensional.
In order to illustrate the above notions, let T d be a d-simplex, and Va

vertex of t: (see section 4.1). Then st(V; 'C(Td» = 'C(T d), st(V ;91(T d» is
obtained from 81(Td) by omitting the (d - lj-face Td- 1 of yd opposite
to V; ast(V, 91(Td» = ast( V, ~(Td» = ~(Td-l) ; link(V; 91(T d» = 91(Td- 1

) ,

while link(V; ~(Td» = 'C(Td- 1) .

To a complex 'C in Rd there is associated the subset of Rd consisting of
all the points of members of ~; we shall denote it by set ~. Thus
set~ = U P.

Pe't
For example, if P c Rd is a d-polytope then set ~(P) = P and

set 81(P) = bd P.
It is easy to establish the following assertions, the second of which is a

refinement of the first and fits more naturally in the elementary-geometric
theory of complexes.

4. Let P be a d-polytope and V Evert P. Then set st(V; 81(P» and
set ast(V; 91(P» are each hom eomorphic with the (d - I)-dimensional solid
ball IJd -l (and therefor e with any (d - I)-dimensional compact convex set.)
Also, set link(V; 91(P» is homeomorphic with Sd- 2 = relbd Bd- I

.
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5. Let P be a d-pol ytope and V Evert P. Then set st(V ;~(P)) and
set ast(V; &lJ(P» are piecewise affinelyt homeomorphic with the (d - 1)
simplex T d

-
1

.. also, set link(V; &lJ(P» is piecewise affinely homeomorphic
with relbd T d

- 1•

Substituting 'member of ((/ or ((/" for 'face of P or P" the definition of
combinatorially equivalent polytopes may be generalized to that of com
binatorially equivalent complexes. Clearly, properties 1, 2, and 3 hold for
combinatorially equivalent complexes.

Entities more general than complexes are obtained by substituting
'polyhedral sets' for 'polytopes' in the definition of complexes. We shall
not deal with those entities, though some of the results mentioned in the
sequel are valid for them (for example, exercise 3.2.6), while others have
to be only slightly modified (compare exercise 8.5.2).

Exercises

1. If P and P' are line-free polyhedral sets, show that the definition of
P ~ P' used for polytopes is suitable in the sense that it is intu itively
acceptable and satisfies properties 1, 2, and 3. Show that this is no longer
the case if P and P' are allowed to be any polyhedral sets, but that even in
this case an acceptable definition is obtained if the additional requirement
dim F = dim <p(F) is imposed. Show also that if K 1 and K 2 are polyhedral
sets in Rd such that the lattices ~(Kd and ~(K2) are isomorphic, then
K 1 n L! ~ K 2 n L!, where L! is a linear subspace of Rd complementary
to the maximal flat contained in K 1 (see theorem 2.5.4).

2. Let P and P' be two polytopes and let 'I' be a biunique correspond
ence between vert P and vert P' with the following property: For a set
A evert P, there exists a face F of P such that A = vert F if and only if
there exists a face F' of P' such that 'I'(A) = vert F'. Show that'll can be
extended to a biunique correspondence between all the faces of P and P',
under which P ~ P'.

3. Let P and P' be two polytopes and let there exist a one-to-one
correspondence P which maps vertices of P onto vertices of P' and facets
of P onto facets of P', in such a way that incidence relations between
vertices and facets are preserved (i.e. if V is a vertex of P and F a facet of
P, then V EF if and only if '1'(V) E 'I'(F).) Then P ~ P'.

t A mapping T defined on Rd is piecewise affine [projective] if it is possible to represent.
Rd in the form Rd = U K;. where the K , are closed convex sets, so that the restr iction

i = J
of T to each K, is an affine map [is a permissible projective map of K ,j. Fo r interesting
results and problems concern ing piecewise affine, convex functions see Davis [4].
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4. Let (Pi I i = 1,2,· · ·) be a sequence of d-polytopes converging (in
the Hausdorff metric) to the k-polytope P, where k < d. Prove that the
sequence (bd P, I i = 1,2, ···) converges to P.

5. Let (P, I i = 1,2, · · ·) be a sequence of d-polytopes of the same com
binatorial type, such that the corresponding vertices form convergent
sequences. Let P be the limit, in the Hausdorff metric, of the sequence
(Pi)' and let Ki denote the union of al1 the m-faces of Pi' Using exercise 4,
show that for every m, dim P ~ m ~ d, the polytope P is the limit of the
sequence (Ki I i = 1,2, · · .).

6. Generalizing the above, prove the fol1owing: Let tK, I i = 1,2, · · ·)
be a sequence of compact convex sets in Rd, converging in the Hausdorff
metric to the compact convex set K. Let ext, K, be the set of k-extreme
points of K, (see section 2.4). For every k such that dim K ~ k ~ d, the
sequence (c1 ext, K , Ii = 1,2,· · ·) converges to K .

7. If~, f0 are complexes in Rd then {C n Die E C(f, D E f0} is a complex .
If P is a polytope and L a flat, then C(f(P r, L) = {F n L IFE C(f(P)}.

8. Let P and P' be combinatorially equivalent polytopes in Rd the face
of P' corresponding to the face F of P being cp(F). Show that there exists
a piecewise affine mapping T of Rd onto itself such that TF = f.'>(F) for
every face F of P. Find examples which show that this assertion may fail
if P, P' are polyhedral sets, even if Tis allowed to be piecewise projective.

9. Let K, K' be unbounded, line-free polyhedral sets which are com
binatorially equivalent under the mapping cp of ff(K) onto ff(K'). Show
the equivalence of the fol1owing assertions :

(i) There exists a piecewise projective homeomorphism T of K onto K '
such that TF = cp(F) for each FE ff(K).

(ii) There exists a piecewise affine homeomorphism T of K onto K '
such that TF = cp(F) for each FE ff(K).

(iii) If T, T are projective transformations permissible for K , K', such
that TK and T K ' are bounded, there exists an isomorphism ljJ between
ff(c1 TK) and ff(c1 T K') such that ljJ(c1 TF) = cI T(cp(F)) for each
FE ff(K).

3.3 Diagrams and Schlegel Diagrams

Let P c Rd be ad-polytope, Fo a facet of P, and let X o ¢ P be a point* of
Rd such that among al1 the affine hul1s of the facets of P only that of Fo
separates X o and P. Let f!jJ denote the complex PJ(P) ~ {Fo}. The projec 
tion of Ponto aff Fo by rays issuing from X o yields, when restricted to

* Prove the existence of such Xo by showing that for each Yo E relint Fo all X o rt p
sufficientl y close to Yo satisfy those assumptions.
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set qJ, a mapping of the (d - I)-complex PA onto a (d - Ij-complex ~
contained in aff Fo. The projection is a homeomorphism between set f!J!
and set y~ and shows that .~ is combinatorially equivalent to f!J! . More
over, obviously Fo = set~. The family Y' = {Fo} u ~ is called a
Schlegel diagram of P, based on Fo. (Schlegel [11 ; Sommerville [2, p. 100]).

As illustrations of the formation of Schlegel diagrams, figure 3.3.1
represents a pentagon and its Schlegel diagram, while figures 3.3.2 and
3.3.3 represent a square pyramid and two of its Schlegel diagrams.
Figures 3.3.4 and 3.3.5 represent Schlegel diagrams of the 4-simplex and
the 4-cube, respectively.

-,
-,

-,

Figure3.3.1

Figure3.3.2

Figure3.3.3
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Figure 3.3.4

Figure 3.3.5

Schlegel diagrams are mainly used as a means of facilitating the repre
sentation of 3- and 4-polytopes by complexes in the plane or in R 3

; but
they are useful in some 'theoretical' questions as well (see chapter 11.)

Schlegel diagrams are a special case of certain complex-like families
which we call diagrams.

A finite family fifi = {Do} u ({j of polytopes in Rd shall be called a
d-diagram provided

(i) ({j is a complex;
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(ii) Do is a d-polytope such that Do = set ~ and each proper face of Do
is a member of ~ ;

(iii) C n bd Do is a member of ~ whenever C E ~.

It is remarkable that even at the beginning of the present century, when
Schlegel diagrams were extensively used in the study of polytopes, no
distinction was made between Schlegel diagrams and d-diagrams (that is,
complexes which ' look like' Schlegel diagrams). It seems that the reason
for this attitude is to be found in the (usually tacit) assumption that every
d-diagram is (combinatorially equivalent to) a Schlegel diagram (see, for
example, Bruckner (2, 3J.) This is indeed trivially the case for l -diagrams,
In what is probably the deepest result to date in the theory of polytopes,
Steinitz proved that every 2-diagram is combinatorially equivalent to a
Schlegel diagram of a 3-polytope. (We shall present a proof of Steinitz's
theorem in chapter 13). However, already in the case of 3-diagrams the
situa tion is different. As we shall see in chapter 11, there exist 3-diagrams
(even simplicial one s- see section 4.5) which are not combinatorially
equivalent to any Schlegel diagram of a 4-polytope.

Thus we are presented with the problem how to define d-diagrams
'correctly' for d ;::: 3. In other words, what conditions mu st a complex
satisfy in order to be identifiable with the Schlegel diagram of some
polytope.

Conceivably, some clues to the solution of the problem may be derived
from the ob servation that each Schlegel diagram has the following two
properties :

(i) it may be ' inverted' in the sense that an y maximal face of the polytope
may be taken as the 'basic' face, into which the polytope is projected ;

(ii) there exists a 'dual' Schlegel diagram (a Schlegel diagram of any
dual pol ytope ; see section 3.4).

At present it is not known whether any or all of these properties may
be used in order to characterize Schlegel diagrams among diagrams.

Exercises

1. By considering 2-diagrams and by checking whether they are
Schlegel diagrams, show that there exist two combinatorial types of
3-polytopes with 5 vertices, and 7 types with 6 vertices. There exist 5
types of 3-polytopes with 7 vertices having as faces only triangles.

2. With reference to the Schlegel diagrams in figure 3.3.6 determine
which of them represent the same combinatorial type of 3-polytopes.
Find all the other Schlegel diagrams of these polytopes.
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Figure 3.3.6

3.4 Duality of Polytopes

Two d-polytopes P and P" are said to be dual to each other provided
there exists a one-to-one mapping 'P between the set of all faces of P and
the set of all faces of P" such that 'P is inclusion-reversing (i.e. faces FI

and F2 of P satisfy FI C F2 if and only if the faces 'P(FI) and 'P(F2 ) of p*
satisfy 'P(FI) ::::> 'P(F2 ). ) Clearly this implies '1'(0) = P*, 'P(P) = 0 , and
in general dim F + dim 'P(F) = d - 1 for every face F of P.

It is also obvious that if P ~ PI' P" ~ P! and P is dual to P*, then PI
is dual to PT. Thus it is meaningful to define two combinatorial types to
be dual to each other provided there exist polytopes, one of each of the
types, which are dual one to the other.
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If PI is dual to P*, and if P2 is also dual to P*, then it is immediate that
PI and P2 are combinatorially equivalent.

As examples of dual 3-polytopes we mention: the cube and the octa
hedron, and in general the n-sided prism and the n-sided bipyramid; the
n-sided pyramid is dual to itself ; the dodecahedron and the icosahedron.
The d-dimensional simplex is dual to itself.

Later on we shall encounter different applications of duality. Now we
shall only settle one question arising naturally in connection with the
notion of duality : Has each d-polytope a dual d-polytope? The answer
is affirmative, and it may be deduced from various well-known geometric
constructions. We shall describe only one of them, which has well-known
analogues, variants and generalizations in many other fields.

Let A be a subset of Rd; the polar set A* of A is defined by

A* = {y E Rd l<x , y ) ::;; 1 forall xEA }.

It is easily verified that

I, If K C Rd is a compact convex set such that 0 E int K , then the polar
set K* is also a compact convex set and 0 E int K* .

2. If K I ' K 2 C Rd are compa ct convex sets such that 0 E int K I C K 2'

then Kj :::> Ki .
Using the notation K** = (K*)* , we have

3. If K C R d is a compact convex set with 0 E int K, then K** = K.

Indeed, it is immediate from the definitions that K c K**. On the
other hand, if X o ¢ K there exists a hyperplane H = {z E Rd I<z,Yo) = I}
strictly separating X o and K, i.e. such that ( x, Yo) < 1 for all x E K and
<xo, Yo) > 1. Therefore Yo E K* and then <xo, Yo) > 1 shows that
xo ¢ K** .

Let F be a face of K ; define the set F by

F = {y E K* I ( x, y ) = 1 for all x E F}.

4. If K is a compact convex set with 0 E int K , the mapping 'P defined
by 'P(F) = F is a one-to-one inclusion-reversing correspondence between
ff(K) and ff(K *).. moreover, 'P('P(F» = F for every face F of K.

PROOF Clearly 0 = K* and K = 0; thus we may restrict our
attention to proper faces F. We shall first prove that F is a face of K*.
Let X o E relint F and consider the face F* of K* defined by

F* = {y E K* I<y, xo) = I}.
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Obviously P c F* ; we shall show that P = F*. Indeed, assume Yo E K*,
Yo¢ P.Then there exists XI E F such that (XI' Yo> < 1. Since X o E relint F,
there exists X2 E F such that Xo = Ax l + (1 - A)X2 , where 0 < A < 1.
Since Yo E K* we have (x 2 , Yo> :s; I and therefore (xo, Yo> < 1. Thus
Yo ¢ F* and P = F* as claimed. This shows that '¥ maps faces of K onto
faces of K* ; since the mapping is obviously inclusion-reversing the
theorem will be completely proved if we show that '¥('¥(F» = F. Now,
by the definition we have '¥('¥(F» = {z E K** I(y, z> = 1 for all YEP};
since K** = K, it is obvious that F c '¥('¥(F» . Let Zo E K, Zo ¢ F ; since
F is a face of K there exists a hyperplane H = {x E Rd I(x, Yo> = I} such
that F = K n H. This clearly implies that Yo E Pand (zo, Yo> < 1; there
fore z ¢ '¥('¥(F» and the proof of theorem 4 is completed.

In the special case that K is a d-polytope with 0 E int K , theorem 4
shows that the polar set K* is a polytope, and '¥ is a dual correspondence
between the faces of K and the faces of K* .

Exercises

1. Show that each combinatorial type of 2-polytopes is dual to itself.
2. Show that the 3-polytopes with at most 9 edges form 4 combinatorial

types. Determine those types and their duals.
3. Determine all self-dual types of 3-polytopes with at most 7 vertices .

(Hermes [1] has determined the number t(v) of different combinatorial
types of self-dual 3-polytopes with v vertices, for v :s; 9; by a different
method, these numbers were determined by Jucovic [1], who discovered
an error in Hermes' work ; Bouwkamp-Duijvestyn-Medema [1] deter
mined t(v) for v:s; 10. The known values of t(v) are : t(4) = t(5) = 1,
t(6) = 2, t(7) = 6, t(8) = 16. t(9) = 50, t(10) = 165.)

4. Let K c Rd be a compact convex set with 0 E int K, and let p E int K.
Show that (- p + K)* is a projective image of K*, with Z E (-P + K)*
if and only if Z = y/(l - (p, y» for some y E K*.

5. Generalizing the properties of the polarity mapping A -+ A*
mentioned in the text, prove that if A, B are any subsets of Rd and if
A =I 0, then :

(i) A** = c1conv(A u {O})
(ii) A*** = A*

(iii) if A c B then A* :J B*
. 1

(IV) (AA)* = -A*
A

(v) (A u B)* = A* n B*
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(vi) A is bounded if and only if 0 E int A*
(vii) A * is bounded if and only if 0 Eint con v A

(viii) if A is a polyhedral set then A* is a polyhedral set
(ix) if A is a cone with apex 0 then A* is a cone with apex 0
(x) if .A and B are closed convex sets containing 0, then (A II B)*

= cI conv(A* u B*) .
6. Let C c Rd be a closed con vex cone with apex at the origin; the

polar cone C* is defined as C* = {x E Rd I ( x , y ) ~ 0 for all Y E C}.
Establish the following assertions :

(i) This definition of C* coincides with the definition on page 47.
(ii) If C is pointed and d-dimensional then C* has the same properties.
(iii) More generally,

dim C* + dim(C II -C) = d and dim C + dim( C* II -C*) = d .

(iv) If C is a pointed polyhedral cone of dimension d, and if H , H' are
hyperplanes which do not contain 0 such that the sets P = H II C and
p* = H'II C* are bounded, then the (d - Ij-polytopes P and P" are
dual to each other.

7. If the convex polytope P c Rd is the int ersection of the closed
halfspaces {x E Rd I ( x , y;) ~ I }, where 1 s 1 ~ n, show that

p* = conv{Yl" . " Yn} .

More generally, if K = {x E Rd I (x, r.> ~ 1, 1 ~ i ~ n, ( x, z) ~ 0,
I s j ~ m}, show that

K* = c1conv({o,Yl ' '' ' ,Yn } u.U R*Zi)
)=1

= conv{O, YI"", Yn} + conv (.U R*Zi) '
) = 1

where R*z = {Az I0 ~ A}.
8. Let K c Rd be a d-polytope and V Evert K. A vertex figure ofK at V

(compare Coxeter [1]) is the intersection of K by a hyperplane which
strictly separates V from vert K - {V}.

(i) Show that any two vertex figures of K at Vare projectively equivalent.
(ii) Let 0 E int K. Show that any vertex figure of K at V is dual (in the

sense of duality of (d - I)-polytopes) to the facet P of K*.
9. Let P be a polytope. We shall denote by 9i (P) the set of cones asso

ciated with P,
9i(P) = {- V + coney P I V Evert Pl .
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If P I and P 2 are polytopes we shall say that P 2 is related to PI provided
each member of 9l(P2 ) is representable as an intersection of members of
9P(Pd; we shall say that PI and P2 are related provided each of them is
related to the other.

(i) Show that for each d ~ 2 there exists d-polytopes PI' P 2' P 3 such
that P 2' P 3 are related to P ), but none of P 2 and P 3 is related to the other.

(ii) Show that polytopes PI and P2 are related if and only if .~(P I)

= 9l(P2)'
(iii) Show that if PI and P2 are related, then they are combinatorially

equivalent.
(iv) LetP c Rdbead-polytope,P = {xERdl<x,u i ) ~ IX ;,1 ~ i s »}.

Show that there exists an c = c(P ) > 0 such that P is related to every P'

of the type P' = {x E Rd I<x, u;) ~ Pi'1 ~ i ~ n}, where IIXi - Pil < c
for i = 1, 2, ···,n.

10. As in section 3.2, let ff(K) denote the lattice of all faces of the com
pact convex set K c Rd.

(i) If 0 E int K show that ff(K) is anti isomorphic to the lattice ff(K*)
under the mapping t/J(F) = F.

(ii) IfK is, moreover, a d-polytope show that dim F + dim t/J(F) = d - 1.
(iii) Let K be ad-polytope, F), F 2 E ff(K), and Fie F 2 ' Show that

{F E ff(K) IF) c F c F2} is a sublattice of ff(K), isomorphic to the lattice
ff(P) of some polytope P of dimension d' = dim F 2 - dim F I - 1,
and antiisomorphic to the lattice ff(P') of another d'-polytope P'.

(iv) Generalize (iii)to the case where K is a quasi-polyhedral set.
11. The notion of duality of two polytopes in Rd may easily be gen

eralized to the notion of duality of two complexes in Rd
, by requiring the

existence of an inclusion-reversing correspondence between the nonempty
faces of the complexes.

(i) Find examples of(d - I)-complexes in Rd which have no dual com
plexes.

(ii) Let a k-complex rc be called boundary-free if every member of rc
of dimension less than k belongs to at least two k-dimensional members of
rc. Prove that if a (d - 1)-complex rc in Rd

, d ~ 2, has a dual then rc is
boundary-free and each (d - 2)-dimensional element of rc belongs to
precisely two (d - I)-dimensional elements of rc. Find examples which
show that those properties are not sufficient for the existence of a dual
complex if d ~ 3.

12. Let A be a linear transformation from Rd into W. The adjoint
transformation A* from W onto Rd is defined by the condition: y* = A*Y
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is that point of Rd for which ( Ax, y ) = ( x , y* ) for all x E Rd. Prove that
A* is a linear transformation.

13. Let K 1 C Rd and K 2 C R" be compact convex sets such that
oE int K 1 and 0 E int K 2' and let A be a linear transformation from Rd to
W such that AK 1 = K 2• Show that the adjoint transformation A* is
one-to-one and maps K! onto Kr 1\ A*R".

14. Using theorems 3.4.3 and 3.1.2, give a short proof of theorem 3.1.1.
(Compare Glass [1].)

3.5 Remarks

The use of the term 'polytope' in this book-as well as the use of some
other terms such as 'polyhedral set', 'complex', etc.-differs from the
generally accepted one (though Klee [18] uses 'polytope' in the sense
adopted here). Our 'polytopes' are in the literature mostly referred to as
'convex polytopes' (or 'convex polyhedra' ; compare the preface to the
second edition of Coxeter [1]); however, since the only 'polytopes'
considered here are the convex ones, we felt that the omission of a few
thousands of repetitions of the word 'convex' is justified. The weight of
this decision was considerably lightened by the observation that in most
instances in which the term 'polytope' is used in the literature for not
necessarily convex objects of dimension exceeding 3, a precise definition
is lacking (see, for example, chapter 7 of Sommerville [2]) ; and if given,
varies according to the author's aims (compare, for example, Coxeter [1],
pp. 126,288, and N. W. Johnson [3]).

The main aim of the present chapter was to obtain a number of fun
damental notions and results on polytopes. All the results in the main text
and in most of the exercises are well known, though in some cases it is
rather hard to find definite references. The reader wishing to pursue the
historical aspect in more detail is referred, in a general way, to Schlafli [1],
Minkowski [2], Weyl [1], and Coxeter [1].

The justification for our use of the term 'complex' lies only in its brevity.
Though many books on topology define the objects we call complexes
(using various terms, such as 'polyhedral complexes', 'geometric cell
complexes', etc.), this appearance is mostly of marginal interest and con
sequence. Indeed, a topologist's aims are mostly invariant under sub
division, hence the study of 'polyhedral complexes' may be reduced to the
study of 'simplicial polyhedral complexes'; but every such entity is a
complex in our sense (see exercise 25 in section 4.8). In other words, the
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question whether a given topological complex is, or is not representable
by a complex with convex cells is rather uninteresting from a topological
point of view, and has consequently received little attention (seechapter 11
for a more detailed discussion). For us, however, the complexes as defined
above are a natural generalization of polytopes. Moreover, even though
our main interest are polytopes, valuable insights are reached by studying
the more general case of complexes (see, for example, chapters 9, 11, 12, 13).

Polarity-for polytopes, or for more general sets-has been studied
by many authors. As references for various approaches and for additional
facts and references we mention Weyl [1], Motzkin [1,2), Fenchel [3,4).

Various notions of infinite-dimensional polytopes have been considered.
Though some of the results obtained have important analytic content,
there seems to be rather little that may be said about combinatorial
properties of such polytopes and they will not be considered in the sequel.
The interested reader should consult, for example, Choquet [1], Bastiani
[1], Eggleston-Grunbaum-Klee [I], Maserik [I] , Alfsen [1].

The notion of a polytope 'related' to another polytope (exercise 3.4.9)
is rather recent (Griinbaum [11)); a similar concept was introduced some
what earlier by Shephard [2) (see section 15.1 ; a polytope A is related to a
polytope B if and only if, in the notation of section 15.1, AA :::;; B for some
A > 0). This notion seems to be quite natural in various combinatorial
problems (see, for example, Hadwiger-Debrunner [1), Asplund-Grun
baum [I), Griinbaum [11), Rado [1]); probably many results known at
present only for some special families (such as parallelotopes having
parallel edges) may be meaningfully extended to families of polytopes
related to a given polytope.
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3.6 Additional notes and comments

52a

The "main theorem ".
Theorems 3.1.1 and 3.1.2 together make up the "main theorem about poly
topes": Any polytope may be defined as the convex hull of a finite set of points
(i. e., by a "fI-description), or as a bounded intersection of finitely many closed
half-spaces (an .Yt'-description). In the case of a full-dimensional polytope, the
minimal such descriptions are in fact unique: The minimal ;':representation
of a polytope is given by the vertices, while the minimal .Yt'-representation
consists of the facet-defining halfspaces.

There are several different methods of proof available, some of which also
lead to algorithms for the conversion between;': and .Yt'-descriptions (see be
low). Griinbaum's argument of theorem 3.1.1 reminds one of the "ray shoot
ing" techniques in computational geometry (de Berg et al. [a, Chap. 8]). Still
an alternative proof is from metric aspects, see Ewald [a, Sect. II.l].

Rational Polytopes.
A polytope is rational if it has rational vertex coordinates or, equivalently, if
it has rational facet-defining inequalities. For every rational polytope the facet
complexity is bounded by a cubic polynomial of the vertex complexity, and
conversely; herejccer complexity refers to the maximal coding size of a facet
defining inequality, while vertex complexity is the maximal coding size of a
vertex. See Schrijver [a, Sect. 10.2].

Under suitable magnification of coordinates, each rational polytope is equiv
alent to one whose vertices all have integral coordinates. The theory of such
lattice polytopes is extensive, and makes many contacts with algebraic geome
try and with the geometry of numbers. See Barvinok [b] for a short survey.

Algorithmic aspects.
From the algorithmic point of view of computational convexity (see Gritz
mann-Klee [e)), it makes a great difference which type of representation of
a polytope is given: First, one representation may be very large even though
the other one is small-e. g. for the d-cube, which may be given by 2d half
spaces or by 2d vertices. Moreover, even if this is not the case, the problem
of computing one representation from the other-known as the convex hull
problem-is non-trivial, both in theory and in practice.

In theory , an asymptotically optimal algorithm for polytopes in any fixed
dimension was provided by Chazelle [a]. Similarly, in the case of input "in
general position", the reverse search techniques of Avis-Fukuda [a] solve the
problem in polynomial time. However, without any of these restrictions, the
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convex hull problem is not solved at all. Indeed, Avis-Bremner-Seidel [a]
have demonstrated that the known methods for the convex hull problem have
no polynomial bounds for their running times in terms of the size of "input plus
output" (see also Bremner [a]). Check Fukuda [b] and Kaibel-Pfetsch [a] for
current discussions about polyhedral computation .

Non-trivial isomorphism problems are raised, e. g., by the footnote on p. 39,
where Griinbaum talks about a "given" convex polytope, and says that checking
combinatorial equivalence "is, in principle, easy"; see Kaibel-Schwartz [a].

In practice, there are several reasonable algorithmic methods available to
attack convex hull problems of moderate size:
a Fourier-Motzkin elimination/the double-description method are described

in Ziegler [a, Lect. I]; an implementation is cdd by Fukuda [a].
a Lexicographic reverse search is implemented in Irs by Avis [a].
These convex hull codes are integrated in the polymake system by Gawrilow
Joswig [a] [b]. In most cases, a solution of the convex hull problem for a given
example is the first step for all further analysis of any "given" example. It is
also often the computational bottleneck : If the convex hull problem part can be
solved, then many other questions may be answered "easily" .

Further representations.
1'- and £ -descriptions are the standard ways to represent polytopes. However,
alternative representations have been studied; we describe two of them in the
following.

A result of Brocker and Scheiderer on semi-algebraic sets (see Bochnak
Coste-Roy [a] for references) implies that each d-polytope P C Rd can be pre
sented as the solution set of a system of did + 1)/2 polynomial inequalities;
for P's interior, d polynomial inequalities suffice. These striking results are
nonconstructive , and it is at present unknown whether one can algorithmically
convert an £-description of a d-polytope into a polynomial representation in
which the number J1(d) of polynomials depends only on d. Grotschel-Henk
[a] show that for simple d-polytopes this can be done with J1(2) = 3, J1(3) =6,
and in general, J1(d) :::; dd.

In the oracle approach pioneered by Grotschel-Lovasz-Schrijver [a], a sup
pliant attempts to determine the structure of a polytope P by means of the
answers to a sequence of questions posed to some sort of oracle. For a d
polytope P whose interior is known to contain the origin, each query to the
ray-oracle consists of a ray issuing from the origin, and the oracle responds
by telling where the ray intersects P's boundary. For this oracle, Gritzmann
Klee-Westwater [a] show that the entire face lattice of ad-polytope P can be
reconstructed with the aid of at mostfo(P)+ (d - I)f3-1 (P) + (5d -4)fd_1(P)
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queries. For similar results involving other oracles, see Dobkin-Edelsbrunner
Yap [a]. Oracle representations are particularly important with respect to vol
ume computation (see the notes in section 15.5).

Diagrams vs. Schlegel diagrams .
A review of diagrams and Schlegel diagrams appears in Ziegler [a, Lect. 5].
Schlegel diagrams of dimension d are most useful in the case of d =3, where
they provide a tool to visualize 4-dimensional polytopes. Such 3-dimensional
diagrams may be visualized via cardboard or wire models, but also electroni
cally using polymake by Gawrilow-Joswig [a] [b].

The decision whether a given d-diagram is a Schlegel diagram is easily re
duced to linear programming . However, the question whether a given diagram
is combinatorially equivalent to a Schlegel diagram seems to be very hard in
general; see Richter-Gebert [b, Chap. 10]. A remarkable theorem, however,
states that all simple d-diagrams are Schlegel diagrams, for d ~ 3; for this we
refer to Rybnikov [a], who derives it from rather powerful, general criteria for
liftability of polyhedral cell complexes .

In view of the question posed on page 45, we now know many examples of
non-polytopal 3-diagrams. In particular, examples constructed and analyzed
by Schulz [a] [b] show that neither invertible nor dualizable 3-diagrams are
necessarily Schlegel diagrams. (Apparently it has not been proved explicitly
that the combination of both properties is not sufficient.)

"Related " polytopes and their fans.
For exercise 3.4.9 one can, equivalently, consider the normal fan of the poly
tope, a concept that first arose in the theory of toric varieties (see Ewald [a],
Fulton [a]): A (complete)fan is a complex of pointed polyhedral cones in Rd

whose union is all of~. The normal fan .%(P) of ad-polytope P C Rd con
tains, for each non-empty face F C P, the collection CF of all vectors a E~
such that the linear function x I-t (a,x) on P is maximized by all points in F .
(Thus for each vertex V, the cone Cv is dual to the cone - V + coney P con
sidered by Grlinbaum.) By exercise 3.4.9(ii), two d-polytopes are "related" if
their normal fans coincide. See also Ziegler [a, Lect. 7].

Related polytopes are also called strongly isomorphic, normally equivalent,
analogous, and locally similar (see Schneider [b, Notes for Section 2.4]).

Two exercises.
In exercise 3.1.14, continuous functions are most easily derived from a trian
gulation (without new vertices) of the polytope.
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Exercise 3.4.3 is to enumerate self-dual 3-polytopes-here the study of DiI
lencourt [a] has produced the following table:

n 45678910 II
fen) I I 2 6 16 50 165 554

12 13 14
1908 6667 23556

It seems to be a recent insight that for self-dual polytopes, a self-duality of
order 2 need not exist; we refer to a thorough discussion and survey by Ashley
et aI. [a]. See also JendroI' [a].



CHAPTER 4

Examples

The aim of the present chapter is to describe in some detail certain
polytopes and families of polytopes. This should serve the double purpose
of familia rizing the reader with geometric relationships in higher
dimensional spaces , as well as providing factual material which will be
used later on.

4.1 The d-Simplex

The simplest type of d-polytopes is the d-simplex t-. A d-simplex is
defined as the convex hull of some d + 1 affinely independent points.
Since any affinely independent (d + Ij-tuple of points is affinely equivalent
to every other (d + I)-tuple of affinely independent points, and since
affine transformations commute with the operation of forming convex
hulls, it follows that each two d-simplices are nonsingular affine images of
each other. Therefore, in particular :

1. All d-simplices are of the same combinatorial type.

Let T d be a d-simplex and V = vert T d
• Each face of T" is obviously

the convex hull of some subset of V, and-being the convex hull of an
affinely independent set-is itself a simplex of appropriate dimension.
Since any d-pointed V' subset of V spans a supporting hyperplane of
t-, conv V' is a (d - I)-simplex which is a face of t-. Using theorem
3.1.5, or a direct argument, there follows:

2. All the k-faces, 0 ~ k ~ d - 1, of the d-simplex T d are k-simplices,
and any k + 1 vertices of T d determine a k-face of T d

• The number of

k-faces of T d is therefore given by fk(Td
) = (d + 1) for all k.

k + 1
The d-simplex T d c Rd is clearly the intersection of the d + 1 closed

halfspaces determined by the d + 1 (d - lj-faces of T d and containing
T d

• Thus the polytope dual to T d is again a d-simplex, and the com
binatorial type of the d-simplex is self-dual. Evidently this implies that

53
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each (d - k)-face of t» is the intersection of the k (d - I)-faces of T d

containing it-a fact which can easily be proved also by a direct argument.
A particular d-simplex , often very convenient from a computational

point of view, is the convex hull of the d + 1 'unit points' (1,0"",0),
(0, 1,0, ... ,0), ... , (0, . .. ,0, 1) in R d + I.

4.2 Pyramids

The d-simplex T d may obviously be considered as the convex hull of the
union of a (d - I)-simplex tv : 1 and a point A ¢ aff T d - I • In analogy to
the well-known solids in 3-space , this construction may be generalized as
follows.

Ad-pyramid pd is the convex hull of the union of a (d - I)-polytope
K d- 1 (basis of pd) and a point A (apex of pd), where A does not belong to
aff K d - I •

Let Fk be a k-face of pd determined by the hyperplane H, Fk = pd n H.
Then there are two possibilities : either (i) A ¢ vert F k

, or (ii) A Evert F k
•

In case (i), theorem 2.4.1 implies that Fk is a k-face of K d
-

I
• In case (ii),

the vertices of F k different from A are in K d
-

I
, and are exactly the vertices

of the (k - I)-face H n pd n aff ««: 1 of K d
- I . Hence Fk is a k-pyramid

with apex A and basis H n K d
-

I
•

On the other hand, theorem 3.1.5 implies that, for 0 :5; k :5; d - 1,
each k-face of K d-

1 (including the improper face K d- 1 of K d- I) is a face
of pd; also, the convex hull of the union of any proper face of K d

-
I and

A is a proper face of pd. Therefore we have

1. If pd is a d-pyramid with (d - I)-dimensional basis of K d
-

I then

fO(Pd) = fo(K d- I) + 1

fk(pd) = fk(K d- l
) + h_I(Kd

-
l

) for 1:5; k:5; d - 2

h_I(Pd) = 1 +fd_2(Kd- I).

Using the extended notation f_I(Pd) = fjpd) = 1, h(pd) = 0 for
k < - 1 and k > d, the above relations can be formulated as

for all k.

The above reasoning proves also that, as far as the combinatorial type
is concerned, we may speak about the pyramid with a given basis. A
similar remark applies to most classes of polytopes mentioned in the
present chapter.
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If pd is a d-pyramid with basis pd-l, where pd-l is a (d - Ij-pyramid
with (d - 2)-dimensional basis Kd- 2, we shall say that pd is a two-fold
d-pyramid with basis K d

-
2

• In general, for a positive integer r we shall
say that pd is an r101d d-pyramid with «d - r)-dimensional) basis Kd-r
provided pd is a d-pyramid with basis r':', where pd- 1 is an (r - lj-fold
(d - i)-pyramid with basis Kd-r. A d-pyramid as defined earlier is a l-fold
d-pyramid. Any d-polytope is a O-fold d-pyramid.

It is easily seen by induction that

2. If pd is an r101d d-pyramid with basis Kd- r then

for all k .

Note that a (d - lj-fold d-pyramid has as basis a segment-which is
itself a l-fold l-pyramid ; thus every (d - l j-fold d-pyramid is also a
d-fold d-pyramid, or in other words , it is ad-simplex.

4.3 Bipyramids

Let Kd
- 1 be a (d - Ij-polytope and let I be a segment such that I n K d

-
1

is a single point belonging to relint I n relint K d
-

1
• Then Bd =

conv(Kd
-

1 u I) is called a d-bipyramid with basis K d
-

1
• By a reasoning

analogous to that used in section 4.2, the numbers fk(Bd
) are easily deter

mined. We have

l. If Bd is a d-bipyramid with basis K d
- 1 then

for all k ::; d - 2

and

For a positive integer r we may define r101d d-bipyramids in analogy
to r-fold d-pyramids. We shall not dwell here on the details ofthe general
case, but a few words seem to be called for in the extreme case of (d - i)
fold d-bipyramids which, again in analogy to pyramids, are necessarily
also d-fold d-bipyramids. The easiest way to study them is by considering
the simplest representative of the type-the d-dimensional crosspolytope
or d-octahedron Qd. The d-crosspolytope Qdmay be defined as the convex
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hull of d segments [Vi; w;], 1 ::; i::; d, mutually orthogonal and having
coinciding midpoints. As is easily checked, if 1 ::; k ::; d, for each k
different indices i l , " ' , ib and points Zj E {Vi}' Wi)' the points
{ Zj 11 ::; j ::; k} are the vertices of a (k - 1)-face conv{zJ of Qd, and each
proper face of Qd may be obtained in this way. From this, or from the
observation that Qd is a d-bipyramid with basis o: I, we find

2. For d ~ 1 and -1 ::; k < d,

A(Qd) = 2k + I ( d ).
k + 1

4.4. Prisms

Let K d
-

I be a (d - I)-polytope and let I = [0, x] be a segment not
parallel to aff K d

- I. Then the vector-sum P" = K d
-

I + I is ad-polytope,
the d-prism with basis x»: I. Clearly pd is also definable as the convex hull
of K d

- I and its translate x + K d
- I. A k-face of pd is either a k-face of

s»: I or of x + K d
-

I
, or it is the vector-sum of I with some (k - Ij-face

of K d-
I. Also, each face of K d- I and of x + Kd- I (including the improper

ones) is a face of r; and the vector-sum of I with any face of K d
-

I is a
face of pd. Therefore we have

I. If P' is a d-prism with basis K d
-

1 then

fo(pd) = 2!o(Kd- l )

and

for k > 0.

Agreeing that l-fold d-prism means the same as d-prism, we shall say
that ad-polytope pd is an r-fold d-prism with basis Kd-r provided pd is
a prism with basis r':', where pd-I is an (r - I)-fold (d - I)-prism with
basis K d -

r
•

The (d - I)-fold d-prisms coincide with the d-fold d-prisms; they are
the parallelotopes, a d-parallelotope being the vector-sum of d segments
with a common point, such that none is parallel to (i.e. contained in) the
affine hull of all the others. The simplest d-parallelotope is the d-cube Cd
(also called the measure polytope (Coxeter [1])), which is the vector-sum
of d mutually orthogonal segments of equal length. In a suitable Cartesian
system of coordinates Cdis the set of all points x = (XI,' .. ,Xd) for which°::; Xi s 1 for 1 ::; i s d.
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Using theorem 1 it is easily seen by induction (or directly from the
definition) that

for 0:::; k:::; d .

Prismoids (Sommerville [2]) are a family of polytopes the definition of
which generalizes that of the prisms . If Pi and Pz are polytopes contained
in parallel, distinct (d - Ij-hyperplanes, and such that P' = conv(P i u Pz)
is d-dimensional, then p d is called a d-prismoid with bases Pi and Pz. In
certain contexts (see,e.g., chapter 8) the d-prismoids are convenient build
ing-blocks for the construction of all d-polytopes. Note that the number
of faces of a d-prismoid is not determined by the numbers h(Pi ) and
h(Pz), and not even by the combinatorial type of Pi and Pz, but depends
on the polytopes Pi and Pz themselves, and on their mutual position.

4.5 Simplicial and Simple Polytopes

In general , d + 1 points in Rd are affinely independent; similarly, a finite
subset of Rd will 'in general' be in 'general position', that is, no d + 1
of its points will belong to the same hyperplane.* In particular, consider
ing ad-polytope P as the convex hull of its vertices, 'in general' no d + I
vertices of P will belong to the same facet of the polytope. Thus all the
facets of P will 'in general' be (d - I)-simplices. Any polytope not satisfy
ing this condition is singular in the sense that it exhibits the 'unusual'
incidence of more than d of its vertices in the same supporting hyperplane
of P.

Thus we are naturally led to the 'general' family fJJ: of simplicial d
polytopes. Ad-polytope P is called simplicial provided all its facets are
(d - l)-simplices.t As examples of simplicial polytopes we mention : the
d-simplex, d-bipyramids having as basis any simplicial (d - Ij-polytope,

* The aim of the present section being only to make the family of simplicial polytopes
appear a natural object of study. we do not wish to discuss the precise meaning of 'general
position '. Such a meaning may easily be derived by considering the (d + I)-tuples of points
of Rd as elements of a d(d + I)-dimensional space, and using an appropriate category
classification, or a measure on this space, in order to proclaim nowhere dense sets, or sets
of measure 0, as 'special' and their complements as general.

t It should be noted that in this class of polytopes the vertices do not necessarily form
a 'general' set of points. More than d vertices of such a polytope P may belong to the same
hyperplane provided the hyperplane does not support P. Thus, the regular 3-octahedron
Q3 is a 'general' polytope though it has quadruples of coplanar vertices.
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the d-octahedron. Additional examples shall be provided by the cyclic
d-polytopes (section 4.7).

In every d-polytope each (d - 2)-face is incident with two facets
(theorem 3.1.6); in a simplicial d-polytope each facet, being a (d - 1)
simplex, is incident with did - 2)-faces. Thus, for each P E .o/'~, we have
dh- 1 = 2h- 2· In chapter 9 we shall see that the numbers f,,(P), for
P E~ , satisfy additional linear relations.

The family £!i'~ of simplicial polytopes is not only 'natural ' but it turns
out to be rather important. Not only is the family of simplicial polytopes
from certain points of view more tractable than the family £!i'd of all
d-polytopes, but a number of results bearing on all polytopes are at
present obtainable only via simplicial polytopes (see, for example,
chapter 10).

It is to be noted, however , that the identification of 'general' polytopes
with the simplicial polytopes is quite arbitrary in at least one sense :
According to section 3.1 a polytope-that is, the convex hull of a finite
set of points-may as well be defined as a bounded intersection of finitely
many closed halfspaces . The 'general' position of d + 1 hyperplanes is
not to be incident with one point. Therefore, from this point of view, the
'general' polytope has at most, and thus exactly, d facets incident with
each of its vertices. In other words, 'general' from this point of view are
polytopes which are usually called 'simple. '

The two points of view, and the classes of simplicial and simple poly
topes, are obviously dual to each other and there is no intrinsic advantage
of one ofthem over the other. For different reasons (none very important)
we shall in chapters 8,9, and 10 prefer to deal with simplicial polytopes.
Naturally, each of the results may be dualized to the corresponding
statement about simple polytopes. By reason of easier imagination some
problems about 3-polytopes are usually treated in the setting of simple
polytopes.

The notion of simple or simplicial polytopes may be generalized as
follows. Let k and h be integers such that 1 ::::;; k, h ::::;; d - I. Ad-polytope
P shall be called k-simplicial provided each k-face of P is a simplex ; P
shall be called h-simple provided each (d - 1 - h)-face of P is contained
in h + 1facets of P. We shall denoteby [!i'd(k, h)the family of all d-polytopes
which are k-simplicial and h-simple; such polytopes are also said to be of
type (k , h). Clearly £!i'd(l , I) = fJd, and the dual of a d-polytope of type
(k, h) is of type (h, k). The simplicial d-polytopes are obviously of the type
(d - I, I), the simple ones of type (I , d - 1). The d-polytopes of type
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(d - 2, I) are called quasi-simplicial, and their totality is denoted by
~ = [!i'd(d - 2, I). It is immediate that every 3-polytope is quasi
simplicial, and so is every d-pyramid having as basis a simplicial (d - 1)
polytope. We shall consider quasi-simplicial polytopes in section 9.3.

A complex <:(j is called simplicial provided all its members are simplices.
Simplicial complexes are in many respects easier to manage than com
plexes in general , in particular from the point of view of algebraic topology.

The definitions of simplicial complexes and of simplicial polytopes are
concordant in the sense that a polytope P is simplicial if and only if its
boundary complex [Jl(P) is simplicial.

4.6 Cubical Polytopes

In section 9.3 we shall discuss the interesting family f?lJ~ of cubical d
polytopes. Ad-polytope P is called cubical provided each of its (d - 1)
faces is combinatorially equivalent to the (d - I)-cube Cd -I .

Here we shall describe some special cubical d-polytopes, the cuboids
C~, where 0 ~ k ~ d. The cuboid C~ may be imagined as obtained by
'pasting together' 2k d-cubes in the following fashion:
C~ is the d-cube c-,
C~ is the union of two d-cubes which have a common (d - Ij-face ;
C1 is the union of two cfs pasted together along a C~ -I common to

both (this, naturally, requires that the cfs be deformed beforehand) ; and
so forth.

In figure 4.6.1 the four 3-cuboids are represented.
Alternatively, C~ may be described in terms of its boundary complex as

follows :
[Jl(ct) is isomorphic to the complex which is obtained from the boundary

complex of the cube c' = {(x l, · · · , Xd) E Rdl IXil ~ I, I ~ i ~ d} by
subdividing all its cells along the k coordinate hyperplanes {(x I' . . . , xd ) E

Rd Ix j = O} for j = 1,·· · , k. Naturally, it is possible to give explicit
formulae for the coordinates of the vertices of ct (see exercise 4.8.20), but
this approach is not very helpful for obtaining an intuitive picture of the
polytope.

Since for 0 ~ i ~ d - 1 an i-face of a d-cube is incident to d - i facets
of the cube, each i-face of the d-cubes forming C~ according to the above
description will be an i-face of ct,provided i + k ~ d - 1. Therefore, for
i + k ~ d - I we have the recursion relation

];(ct) = 2];(C~_ d - ];(C~= \).
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Using this relation and the formulae };(Cd)= };(C~) = 2d-I(~) from

section 4.4, it is easily verified by induction on k that :

1. For i, k ~ 0 and i + k ;5; d - I

k (k) (d - .)};(ct) = .L (-IY. . ] 2d +k - j -2j.

J=CT ] I

This expression is, for i = 0, easily evaluated in closed form and yields
fo(ct) = 2d

-
k3k for 0;5; k ;5; d - 1, a result which may as well be obtained

directly from the definition of ct. For k = d there resultsfo(C~) = 3d
- 1.

4.7 Cyclic Polytopes

Though only a relatively recent discovery (see the historical comments in
section 7.4), the cyclic polytopes C(v, d) playa very important role in many
questions of the combinatorial theory of polytopes. Following Gale [4]
and Klee [9] they are defined by the following simple procedure :

In R d consider the moment curve M d defined parametrically by
x(t) = (t, t2, . .. , td). A cyclic d-polytope C(v, d) is the convex hull of
II ~ d + 1 points x(t j ) on Md , with t l < t2 < < tv.

Let V = {x(t j ) 11 ;5; i ;5; v}, where t 1 < t2 < < tv, be the e-pointed
subset of M d used in the definition of C(v, d), and let k be a positive integer
such that 2k;5; d. We shall now show that any k-pointed subset
Vk = {x(tf) I i = 1, ·· " k} of V determines a face of C(v, d). In order to
find the equation of a supporting hyperplane H of C(v, d) such that
H n C(v, d) = conv Vk we consider the polynomial

k

p(t) = n (t - tW = /30 + /3lt + ... + /32kt2k,
j = I

where the coefficients /3j depend only on the t1's. Let

b = (/31' /32'· · . , /32b 0, ·, · , 0)
and

H = {xERdl(x,b) = -/30} .
Then clearly x(tf) E H for 1 ;5; i S k, while for any x(t) E Md - Vkwe have

k

(x(t), b) = - Po + n (t - tn2 > - Po .
i = 1
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Thus H is a supporting hyperplane of C(v, d) and H (\ V = Vk , as claimed.
It follows easily that

1. If k is a positive integer such that 2k ~ d, every k vertices of C(v, d)
determine a (k - 1)jace of C(v, d) ; therefore

};(C(v,d)) = ( v) for 0 s i ~ rtd].
i+ 1

We shall show next that C(v, d) is a simplicial d-polytope. An easy way
to do this is by showing that every (d + I)-tuple of points in M d is affinely
independent. It follows that each proper face of C(v, d) has at most
d vertices, and therefore C(v, d)E~.

The affine independence of d + 1 points x(t i) E M d, to < t 1 < . . . < td,
is equivalent with the non-vanishing of the determinant

t 0 t~ t~

tt.=
t~

But, as is well known, tt. = n (tj - til > O. This completes the proof
os i -c t s »

of our assertion.
Let ~ {x(t[) 11 ~ i ~ d}, where t! < t1 < . . . tj, be a subset of V.

We consider the polynomial
d d

p*(t) = n (t - rn = L yi
i= 1 j =O

and define c = (Yt,· · ·, Yd). Let H* be the hyperplane

H* = {X E Rd l<x , c> = - Yo}; then ~ c H*.

The function <x(t), c) + Yo, defined for x(t) E Md, is clearly different
from 0 for each x(t) ¢ Vd and it changes sign whenever the variable t
increases and passes through one of the values tr Therefore, since every
d-pointed subset of M d is affinely independent, we have

2. A d-tuple ~ of points of V c M d determines a facet con v Vd of
conv V = C(v, d) if and only if every two points of V ~ Vd are separated
on M d by an even number of points ofVd.

We shall call the criterion of theorem 2 'Gale's evenness condition '.
It obviously makes the determination of h-t(C(v, d)) quite easy . We
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state here only the final result, delaying the proof to Chapter 9 where
the expression for j,,(C(v, d» will be found for all k.

3. !d-l(C(V, d» = (v - [d ; IJ) + ( v - [d ; 2J).
v - d v-d

This may be reformulated as

i
_ V (v - n)
v - n n

h _l(C(v,d» =
2 (v - ~ - I)

for even d = 2n,

for odd d = 2n + 1.

Another consequence of Gale's evenness condition is that each two
cyclic polytopes C(v, d) are combinatoriaIly equivalent, the correspond
ence between vertices being given by their order on Md. Thus we may
speak about the combinatorial type C(v, d).

An analysis of the proofs of the present section shows that the con
struction of cyclic polytopes use only very few of the properties of the
moment curve Md. It is therefore not surprising that it is possible to
develop the theory of cyclic polytopes using other curves in their
definition; the curves have many other interesting properties. For
additional results and references see, for example, Derry [I], Motzkin [4],
Fabricius-Bjerre [I], and Cairns [4] (the curves used being distinguished
by their geometric properties), by Caratheodory [I, 2] and Gale [4] (using
the curve (cos t, sin t, cos 2t, sin 2t, ... , cos nt, sin nt», and by Saskin [11
(using analytic conditions). For some related results see Karlin-Shapley
[1]. Some of the above authors have a number of other papers on moment
curves and their relatives ; we do not list them since their connection with
polytopes is rather tenuous.

4.8 Exercises

1. The definition of pyramids may be generalized in the following
fashion : Let P' and P' be two polytopes (of dimensions sand t, respect
ively) in Rd

, d = s + t + 1, such that aft' P' n aft' P' = 0 . Let pd =
conv(P' uP'); if dim pd = d then P" is a d-pyramidoid (Sommerville [21,
p. 115) with bases P' and pt . Show that in this case

!k(pd) = 'L};(P')!k -i-l(P').
i
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Show that each r-fold d-pyramid is a d-pyramidoid and that the above
formula forh(Pd) reduces to theorem 4.2.2 if pd is an r-fold d-pyramid.

2. Determine h(Bd
) if Bd is a 2-fold d-bipyramid with (d - 2)

dimensional basis K d
-

2
: generalize.

3. Show that for 1 :::;; r :::;; d - 2 there exist d-polytopes combinatori
ally equivalent to an r-fold d-bipyramid, which are not r-fold d-bipyramids
themselves.

4. The construction of bipyramids may be generalized as follows :
Let P' and P' be polytopes of dimensions s respectively t, d = s + t ,
with P' n P' a single point belonging to relint P' n relint Pl . Let
pd = conv(PS u PI) ; clearly, if P' is a segment then pd is a bipyramid
with basis PS. Determine the value ofh(pd) in terms ofJ;(P') andflpl).

5. As a special case of the construction mentioned in exercise 4, let
T~ denote the convex hull of the union of an r-simplex T' and a
(d - r)-simplex T d

- ' , where T' n T d
- , is a single point belonging to

relint T' n relint T d
- . , and 0 :::;; 2r :::;; d. Show that

(i) h(T~) = I (r ~ 1)(d + 1 -~)
OSiSk+l I k+l-1

- (d + 2) for 0:::;; k< r .
- k + 1

(ii) f,.(T~) = (~ : ~) - 1 for 0:::;; r < d - r.

(iii) f,.(T;') = (2r + 2) _ 2 .
r + 1

Determineh(T~) for r < k < d.

6. Let P be the 4-polytope defined as the convex hull of the points
(-1, -1, - 2,0), (-1, -1,2,0), (-1,0, -1,1), (-1,0,1,1), ('-1,1, - 2,0),
(-I, 1,2,0), (1, - 2, - 2,0), (1, -2,2,0), (1,0,0,2), (1,2, - 2,0) , (1,2,2,0).
Show that the vertices of P may be assigned symbols A, B, C, D, E, F, G,
H, I, J, K, in such a way that its 3-faces have the following sets of vertices :
{A, B, C; D, E, F, G, H}, {A, B, C, D, I, K}, {A,B, E, F, I, J, K}, {A, D, E,
H,I,J}, {B, C, F, G, K}, {C,D, G, H, I, J, K}, {E, F, G, H,J, K}. Con
struct a Schlegel diagram of P.

7. Theorems 4.3.1 and 4.4.1 indicate some connection between bi
pyramids and prisms. Elaborate this relationship.

8. Show that the d-octahedron Qdis a d-prismoid.
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9. Show that the family of all d-prismoids is projectively equivalent
to the family of all 'generalized d-prismoids' . Ad-polytope p d c R d

is a generalized d-prismoid provided P = conv(PI U Pz), where PI and
Pz are polytopes contained respectively in hyperplanes H I and Hz such
that HI n Hz n (PI U Pz) = 0 .

10. Explain the relationship between d-pyramidoids and d-prismoids.
11. Show that if P is a d-polytope of type (k, h) with k + h ~ d + 1,

then P is the d-simplex.
12. Show that an i-face of a simple d-polytope P is contained in

(: =~) j-faces of P whenever - 1 ~ i ~ j ~ d - 1.

13. Consider the 3-polytopes Schlegel diagrams of which are given
in Figure 3.4.6. Determine which of them represent pyramids, k-fold
pyramids, bipyramids, k-fold bipyramids, prisms, k-fold prisms,
prismoids, pyramidoids; consider the possibility of a polytope belonging
to more than one of the classes, and of belonging to the same class in
more than o,ne way . Determine which types are dual to each other or to
themselves. Find the duals of those for which a dual is not given.

14. Draw, or better still , construct cardboard models of, the different
Schlegel diagrams of the 4-pyramid with basis a 3-prism based on a
triangle, on a square, or on a pentagon ; how many different Schlegel
diagrams are there in each of the cases. Perform the same tasks for the
cyclic polytopes C(v, 4) where v = 5,6,7.

15. Determine the faces of the 4-polytope P c R 4
, defined as the

convex hull of the ten points (0,0,0,0), (0,1 ,0,1), (0,1 , 1,0), (0,0,1,1),
(± 1, 1,0,0), (± 1,0,1 ,0), (± 1,0,0,1). Show that all facets of the poly
tope dual to Pare combinatorially equivalent ; determine the type
(k , h) of P.

16. Let Kt , where 1 ~ k ~ d and d ~ 3, denote the pol ytope

d+1

Kt = { (X t "" , Xd+ I ) E R d+ I I O ~ Xi ~ I,i = I," ' ,d + 1, LXi = k} .
i= t

Prove the following assertions (compare Coxeter [1]) :
(i) Kt E ~(2, d - 2).
(ii) x; is a translate of K~+ I -k'

(iii) Kt is the convex hull of the centroids of (k - I)-faces of a
d-simplex t-.

(iv) If the centroid of T d is at the origin 0, then Kt is combinatorially
equivalent to kTd n (k - d - I)Td

•
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(V) Kt has 2(d + 1) facets, d + I combinatorially equivalent to Kt- I
,

the others to x;=:.
17. Let

d

M d = {(xl , "',Xd)ERd\ L Ixd ~ d - 2,lx l l ~ I,i = I, . . · ,d} .
i = I

Prove :
(i) MdE 2i'd(2, d - 2).
(ii) M d is the convex hull of the centroids of the 2-faces of ad-cube.

18. Let N d = {(x!> . .. ,Xd) E RdIL1=1t: 1X 1 ~d-2 for all t:1, · .. , t:d

such that e, = ± 1(i = 1"", d), and the number of e, equal to + 1 is
odd} . Prove that N d E gJd(3, d - 3).

19. A d-antiprism P is a d-prismoid in which the two bases PI and Pz
are (d - Ij-polytopes dual to each other, having such shapes and
position that the facets of P are precisely those obtained as convtf', u Fz),
where F, is a face of Pi and F1 is dual to Fz. Construct a 3-antiprism
with basis PI a triangle, a square, or a pentagon. Construct the Schlegel
diagram of 4-antiprisms with basis a three- or four-sided 3-pyramid.
Determine in each case the number of faces of different dimensions.
It is remarkable that it is not known whether each combinatorial type
of (d - 1)-polytopes contains members which can serve as bases of
d-antiprisms ; the problem is open even for d = 4.

20. Let Tt denote the piecewise projective transformation mapping
x = (x l' .. . , xd ) into

x
Tt(x) = k

1 + L Ixil
i ~ 1

Show that for each k satisfying 0 ~ k ~ d, the image Tt( Cd) of the 'unit
cube' Cd = {x E R d Ilxil ~ 1, 1 ~ i ~ d} is the d-cuboid ct.

21. Let 0 ~ k ~ d and 0 ~ i ~ d - 1. Prove

/;(et) = dfi (d -. k)( ~ .)3d- i- i2k- d+i+Zj _ ( k .)2k- d+ i •

j=O ) d - I - ) d - I

22. Using Gale's evenness condition show that each edge of the cyclic
polytope C(v,4), v ~ 6, is incident with either three, or four, or v - 2
3-faces of C(v , 4), and that edges of all these types occur. Similarly, show
that each edge of C(v, 4) is incident with either 3, or 4, or v - 2 2-faces
of C(v, 4), and that edges of all these types occur.
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23. Let pet) = (cos t, sin t, cos 2t, sin 2t,· . " cos nt, sin nt) E R~n, and
let K = conv{p(t j ) 11 ~ i ~ v}, where v ~ 2n + 1 and

o~ t I < t2 < ... < tv < 2n .

Prove that K is combinatorially equivalent to conv{x(t l ) 11 ~ i ~ v},
where (as in section 4.7) x(t) = (t , t'; .. . , t 2n

). (Hint : Use the identity

I ~
cos to sin to cos nto s~n :1£0 I

sin t2ncos t2 n cos nt 2 n Sin nt 2n

= 4n2 u sin tuj - t;),
O S i <j S2 n

due to Scott [11.)
24. Let C = C(2n + 2,2n). Prove that the vertices of C may be

divided into two groups, each containing n + 1 of the vertices, in such
a way that 2n vertices determine a facet of C if and only if n of them
belong to one group, and n to the other. Show that this criterion is
equivalent to Gale's evenness condition.

25. Using cyclic polytopes and Schlegel diagrams give an elementary
proof of the following well-known theorem :

Every n-dimensional simplicial complex is combinatorially equivalent
to a complex in R 2 n + I.

It will be shown in chapter 11 that this theorem remains valid even if
the complex is not assumed to be simplicial.

26. Let T = convjx, Ia~ i ~ 2n} be a 2n-simplex in R 2n such that
oE int T. Let C(j denote the family consisting of all sets C(I, J) = conv V(I, J),
where I and J are subsets of {a, 1" ", 2n}, card I ~ n, card J ~ n,
I n J = 0, and V(I, J) = {Xi liE I} U { - Xj I j E J}. Show that :

(i) C(j is a (2n - Ij-complex ;
(ii) a¢ set C(j ;

(iii) the radial projection from a establishes a homeomorphism
between set C(j and the (2n - I)-dimensional unit sphere s»::

Formulate and prove the analogous result for R 2 n + 1
•

27. Let P be a d-polytope in Rd which is not ad-simplex.
(i) Prove that there exists a nonsingular permissible projective image

P' of P with the following properties :
(a) P' is the intersection of the f = fd-I(P') closed halfspaces

HJ,· .. ,HJ ;
J -I

(b) the intersection n H, is a bounded set.
j =1
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(ii) Characterize the facets of P which may correspond to bd Hr-
(iii) Show that for a suitable P', already the intersection of some

d + 1 of the halfspaces Hi is bounded.
(iv) Show that if P has more than 2d facets, then it is possible to

choose P' = P.
28. Let P be the convex hull of d segments having a common point

relatively interior to each of them, and such that none of the segments
is contained in the affine hull of the union of the other segments. Show
that P is projectively equivalent to {t.

29. Let VI'" . , l';, be linearly independent points in Rd
, let

and let K be a polytope K = conv{O, VI"'" l';" WI"'" Wn }, where
Wi Eint cone, T d for all i = 1" ", n. Prove: For every A > 1 there
exists a projective transformation Pi.permissible for K, such that PiJO) = 0,
P(ltj) = ltj for j = 1"", d, and T d c P).K C ATd

•

30. Let a polytope P (and its combinatorial type) be called pro
jectively unique provided every polytope P' combinatorially equivalent
to P is projectively equivalent to P. Show :

(i) The cartesian product TP x T' of two simplices is projectively
unique.

(ii) The combinatorial type dual to a projectively unique combinatorial
type is itself projectively unique.

(iii) The combinatorial types of all 3-polytopes with at most 9 edges
are projectively unique.

(iv) No 3-polytope with 10 or more edges is projectively unique.
(The only proof of this fact known to the author uses Steinitz 's theorem
13.1.1; it would be of interest to find a more direct and elementary
proof.)

No characterization of projectively unique d-polytopes, d ~ 4, is
known. Shephard [12] has established the existence of a projectively
unique polytope with 7 vertices, 17 edges, 18 2-faces and 8 facets; how
ever, there exist 4-polytopes having the same numbers of faces of all
dimensions which are not projectively unique (for example, the 4-polytope
D* of figure 10.4.1).

31. Let P be a d-polytope and let V Evert P. We shall say that P is
pyramidal at V provided conv(vert P - {V })E~(K). Establish the
following results:

(i) Let P be a polytope pyramidal at V, let F = conv(vert P - {V}) ,
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and let WE vert F. Then F is pyramidal at W if and only if P is pyramidal
at W.

(ii) Ad-polytope P is pyramidal at r different vertices if and only if
P is an r-fold d-pyramid.

32. Prove that simplicial polytopes are 'stable' in the following sense:
If P E &~ there exists an e = e(P) with the property: If P' is any polytope
with fo(P) = fo(P') such that for each vertex V of P there is a vertex V'
of P' with p(V, V') < s, then P' is combinatorially equivalent to P.

33. Let pd be a self-dual d-polytope. Prove that the (d + I)-pyramid
with basis pd is self-dual. Prove also the self-duality of the (d + I)-polytope
obtained as the union of a (d + I)-pyramid over P with a (d + Ij-prism
over P, the prism and the pyramid intersecting in P.
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4.9 Additional notes and comments

Polytope theory is alive and well-this is demonstrated by its wealth of inter
esting examples and constructions. Here are notes on some more.

0/1-Polytopes.
0/ l-Polytopes are convex hulls of subsets of {a, l}d . These polytopes have
gained enormous importance in view of combinatorial optimization. In par
ticular, one is interested in the description of (large classes ot) facets of such
polytopes, for specific families of incidence vectors , for use in cutting plane
approaches to 0/ l-integer programming; this is the object of the field of poly 
hedral combinatorics, as surveyed succinctly in Schrijver [b].

Some specific subclasses of a/I-polytopes have received special attention .
We refer to a few prototypical expositions that also demonstrate the setting
and use of such special classes in optimization: to Cook et al. [a] for match
ing polytopes and variations, to Grotschel-Padberg [a] for travelling salesman
polytopes, and to Deza-Laurent [a] for cut polytopes.

Ziegler [b] provides a survey of general a/I-polytopes. A recent break
through is by Barany-Por [a], who showed that the maximal number of facets
of a d-dimensional a/I-polytope grows super-exponentially in d : Certain ran
dom a/I-polytopes have more than cdlogd facets, for a constant c > 1.

Hypersimplices.
The polytopes Kt of exercise 4.8.16 appear in Coxeter [I, Ch. VIII, esp. p. 163],
who refers to Stott [2]. They are interesting a/I -polytopes of type (2,d - 2) .
Due to prominent work by Gel'fand-Goresky-MacPherson-Serganova [a] and
Gel'fand-Kapranov-Zelevinsky [a] they also became known as hypersimplices.
See also De Loera-Sturmfels-Thomas [a].

k-Simplicial h-simple polytopes.
The polytopes of type (k,h) with k,h ~ 2 are very interesting, They are, how
ever, hard to construct (see also the comments in section 5.6, and in section 9.9
on exercise 9.7.7), and their properties, such as their f-vectors, are not well
understood. The first interesting case is that of h = k = 2, where the 4-simplex,
the hypersimplex K1 and its dual, and the regular 24-cell (the polytope M 4

of exercise 4.8.17) provide examples. Recently, Eppstein-Kuperberg-Ziegler
[a] provided a construction (using hyperbolic geometry) of infinitely many 4
polytopes of type (2,2) ; see also the notes in section 5.6. In contrast, it is not
clear whether d-polytopes of type (4,4) other than simplices exist for arbitrar
ily large d-<:ompare this to exercise 4.8.18.
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Cubical polytopes.
Interesting examples of cubical polytopes arose from several different direc
tions. Cubical zonotopes correspond to generic linear hyperplane arrange
ments; see the notes in section 18.4. The combinatorial types of cubical d
polytopes with at most 2d+ 1 vertices were completely classified by Blind
Blind [b]. Joswig-Ziegler [a] constructed neighborly cubical polytopes: cu
bical d-pol ytopes with the ([ ~] - I)-skeleton of an n-cube for all n > d ~ 2
(see the notes in section 12.4).

Free sums ofpolytopes.
The generalized bipyramids pd = conv(PSU P) of exercise 4.8.4 have later
been called free sums of polytopes (Henk et aJ. [a], Kalai [eD, and denoted
pd =PsEB P. The construction is dual to forming product s.

Cyclic polytopes.
For even d, C(d+2,d) is a generalized bipyramid ; indeed, with exercise 4.8.24,
C(2n + 2, 2n) is equivalent to the general ized bipyramid Tn

2n of exercise 4.8.5 .
For odd d, the cyclic polytope C(v,d) is combinatorially equivalent to a differ
ent type of modified bipyramid conv(lU C(v - I ,d - I», where the interval!
meets the affine hull of the cyclic polytope C(v - I ,d - I) in a single point
that is in the relative interior of ! but is a vertex of C(v - I, d - I). This mod
ified bipyramid construct ion is dual to forming "wedge s" over facets; for this
construction we refer to Klee-Walkup [a] and to Holt-Klee [a].

For the trigonometric moment curve of exercise 4.8.23 see Ziegler [a, Ex.
2.21(ii)]. The trigonometri c coordinate s provide realizations of the cyclic poly
topes of full symmetry, including a canonical "center" .

Computing explicit examples.
From the data of exercise 4.8.6, polymake together with j avaview "automat
ically" yield rotating color 3D output, which in b/w print looks as follows:



CHAPTER 5

Fundamental Properties and Constructions

Despite the simplic ity of the notion of a polytope, our understanding
of what properties a polytope may, or may not , have is severely hampered
by the difficulty of producing polytopes having certain desired features .
One example of such a difficulty will help to focus the problem. Let us
consider 4-polytopes with 8 vertices; with some patience, combining
the different types of polytopes considered in Chapter 4, the reader
will probably find 4-polytopes with 8 vertices and 16 edges, or with any
number of edges between 18 and 28. Now he may ask himself whether it
is possible to complete the list by a polytope with 17 edges. But how is
one to start looking for such a polytope?

The answer to this particular query is not too hard to come by (see
section 10.4), but there are many similar questions to which we still
do not have answers . In particular, there is no easy and direct pres
cription as to what tack to take for the solution of a given problem.
The best we can do is to investigate some more or less general properties
of polytopes in the hope that one or another of them may be useful in
solving specific problems.

This chapter is devoted to a presentation of some such properties,
and of certain techniques for a 'planned' construction of polytopes.
Thus the spirit of this chapter is quite different from that of chapter 3;
there we mainly had one polytope and we were concerned about the
features it exhibits. The principal questions to be discussed in the present
chapter are : To what extent is it possible to obtain all polytopes (or all
polytopes of a certain kind) as sections, or as projections, of some
'standard' types of polytopes? How can we relate the structure of a
polytope P with the structure of a 'smaller' polytope, obtained as the
convex hull of some of the vertices of P? What happens to the faces of
different dimensions, and to their number, if we replace a given polytope
by a 'suffi ciently near' one ? Is it possible to devise an algorithmic pro
cedure for the determination of all combinatorial types of polytopes?

Two techniques will be particularly important in the sequel : the
'beneath-beyond' method for construction of new polytopes from given
ones (section 5.2), and the Gale-transforms and Gale-diagrams which

70
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frequently allow a reformulation of a problem in more readily tractable
terms (section 5.4). As will become obvious in the following chapters,
many of the recently obtained results use one of these methods.

5.1 Representations of Polytopes as Sections or Projections

In the present section we shall discuss a number of results on repre
sentations of polytopes as sections, or projections, of other polytopes.
(A section of a polytope P is the intersection of P with some flat; a pro
jection of P is the transform T P of P under a (singular) affine map T.)
The first result is very simple, and should convey the flavor of this type
of results; the following group of results discusses to what extent variants
and generalizations have been considered in the literature. The last part
of the section deals with results obtained recently by M. A. Perles; they
are important because of the method used, as well as because of their
applicability to various other problems.

We shall prove only theorem 1: for proofs of the other results the reader
may use the hints provided , or consult the original papers. We shall use
the term facet to denote the (d - Ij-dimensional faces of ad-polytope.
The first result is :

1. Every d-polytope with f ~ d + 1 facets is a section of an (f - 1)
simplex.

PROOF Any permissible transformation of a section of a polytope may
be extended to a permissible projective transformation of the polytope
(the reader should prove this, using exercise 2.2.7), and every permissible
projective image of a simplex is itself a simplex. In order to prove theorem
1, it is therefore enough to establish that every d-polytope withf ~ d + 1
facets is a permissible projective image of a section of an (f - Ij-simplex.

Since a section of a section of a polytope is itself a section of the poly
tope, the last assertion shall be proved if we establish that every d-polytope
P withf > d + 1 facets is a permissible projective image of a section of a
(d + 1)-polytope P + with f facets.

In order to prove this we note that P is not a d-simplex and therefore,
by exercise 4.8.27, there exists a permissible, regular projective image Po
of P with the following property : If H = aff Po is the d-flat spanned by
Po, and if HI"'" H f are closed halfspaces of H such that Po = n. H i'

1 si c r
then P' = n H i is a d-polytope. Let A be a point outside H and let

1 SiS f - 1
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A

Figure 5.1.1

r: be the pyramid with apex A and basis P' (see figure 5.1.1). Then P+
is a (d + l)-polytope with j'facets. Denoting by L o the boundary of H fin
H, let L be the d-flat determined by L o and some relatively interior point
of conv({A} u Po). Then clearly r: n L is a projection from A of Po·
This completes the proof of theorem 1.

The following result is dual to theorem 1 ; the reader is invited to find
a direct proof for it.

2. Every d-polytope with v :2': d + 1 vertices is a (parallel) projection ofa
(v - l)-simplex.

Using prisms or bipyramids, respectively, instead of the pyramids used
in the proof of theorem 1, the following (mutually dual) theorems may
be proved :

3. Every centrally symmetric d-polytope with 2f :2': 2dfacets is a (central)
section of the f-cube.

4. Every centrally symmetric d-polytope with 2v:2': 2d vertices is a
(parallel) projection of the »-dimensional octahedron.
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The above results have probably been known for a long time. The first
written appearance of theorem 2 seems to be in Motzkin [1]. Theorem 1
appears in Davis [1,2], theorem 3 in Klee [3]. The qualitative aspects of
theorems I to 4 were found also by Naumann [1]. Naumann's proof is
much more involved, but his results are also somewhat stronger; for
example, he establishes

3*. Every d-polytope with f fa cets is obtainable as a section of a
(2d

• (d + 1). f)-dimensional (regular) cube.

Results of this type have been used in the determination of the 'projec
tion constants' of certain Minkowski spaces (see Grtinbaum [4]).

Another related problem, which also arose from questions in the
geometry of Banach spaces, is due to J. Lindenstrauss. Its solution was
found by Klee [6] who proved the following results :

5. IfP is a centrally symmetric d-polytope, d ;;::: 2, there is a 2-dimensional
section of P, and an orthogonal projection of P into a 2-dimensional plane,
each ofwhich has at least 2d vertices.

5*. If P is ad-polytope, d ;;::: 2, there is an orthogonal projection of P
into a 2-dimensional plane, and, through each point ofint P, a 2-dimensional
section of P, each ofwhich has at least d + 1 vertices.

It is easily seen that for d = 3, if P in theorem 5 is neither a cube nor an
octahedron, a section and a projection exist which have at least 8 vertices.
It would be interesting to find extensions of this observation to higher
dimensions, and to find analogues of theorems 5 and 5* for higher
dimensional sections and projections of P.

For other related results see Croft [2].
In the opposite direction one may inquire whether there exists a

(central) k-polytope such that among its (central) d-dimensional sections
occur affine images of all members of certain families of d-polytopes. A
problem of this type was first raised by S. Mazur in The Scottish Book
(Ulam [1]). Various results were obtained by Bessagaj l] , Grilnbaum [2],
Melzak [1,2], Naumann [1,2], and Shephard [3]. Most far-reaching are
the results of Klee [3] ; among them we mention only the following:

6. The least integer k such that some k-polytope has,for every d-polytope
P with at most f facets, a d-dimensional section affinely equivalent to P,
satisfies

d
d + 1(f + 1) s k s f - 1.
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Another line of research should be mentioned here. Let P be a compact
convex set in Rd

; as shown by Suss-Kneser [1], if every (parallel) projec
tion of Pinto 2-dimensional planes is a polygon with at most four vertices,
then P is the convex hull of four points. Bol [1] proved that if every
projection is a polygon with at most five vertices, then P is the convex
hull of at most six points . Bol [1] also obtained:

7. Ifevery projection ofa compact convex set P c R 3 into 2-dimensional
planes is a polygon, then P is a polytope. Moreover, if each such project ion
ofP has at most n vertices, n ~ 5, then P is either a pentagon, or each 2-face
ofP has at most 2n - 6 vertices.

These investigations were generalized in many directions by Klee [2];
among analogous results dealing with various notions of polyhedral sets
he obtained :

8. A bounded convex subset K of Ed is a polytope if and only if,for some
j with 2 $; j < d, all the projections of K into j-dimensional spaces are
polytopes.

9. If K is a bounded convex subset of Ed and if p E int K then K is a
polytope if and only if every section of K by a 2-dimensional plane conta in
ing p is a polygon.

For a related result (in case d = 3) see Valentine [1], p. 142.

The proof of theorem 1 shows that ad-polytope P with j'facets may be
obtained in many different ways as the intersection an (f - I)-simplex
and a d-flat. (See also exercise 3.) Therefore it may be asked whether this
representability still holds if additional restrictions are imposed on the
flats and simplices considered. The remaining part of the present section
deals with some interesting results in this direction. The results and their
proofs have recently been communicated to the author by M. A. Pedes.

10. Let P c Rd be a d-polytope with at most f facets, let T be an
(f - I)-simplex in Rf- 1

, and let p E int T . Then there exists a d-flat L in
Rf- 1 such that pEL and Tn L is a/finely equivalent to P.

The following are the main steps of the proof; the details are left to the
reader.

(i) No generality is lost in assuming that p = 0, the origin of Rf- 1,

and that P has exactly ffacets .
(ii) The flat L required by the theorem exists if and only if there exist

a point q E int P and a linear transformation A from Rd into Rf- 1, such
that A( -q + P) = Tn ARd

•
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(iii) For a given q E int P, the above A exists if and only if there exists
a linear transformation A* from RI- 1 onto Rd such that A * maps T* ,
the polar of T, onto (-q + P)*, the polar of -q + P. (A* is the adjoint
of A: see exercises 3.4.12 and 3.4.13.)

(iv) Let Fi, i = 1,2" ,, ;- f, be the facets of P; then t, = Yi are the
vertices of P" (see section 3.4). Let Yi(q) = (- q + Fr be the vertices of
(-q + P)*; then Yi(q) = yJ(1 - Cq, y) (see exercise 3.4.4). Let Xi'
i = 1, . . . ,f, be the vertices of T* ; there exists a unique I-tuple of numbers
A.i. 1 :5: i :5: f, such that I{= 1 AiXi = O. Ai > 0 for i = 1,2,·· ·,f, and
"\'1 • - 1L..i= 1 A.i - •

A linear transformation A* from RI-l to Rd maps T* onto (-q + P)*
if and only if (possibly after a suitable permutation of the indices i)
A*x j = Yi(q) for i = I,···,f A necessary and sufficient condition for the
existence of such an A * is I{= 1 AiYi(q) = o.

(v) So far. the question of existence or non-existence of ad-flat L as
required in theorem 10 has been reduced to the question whether there
exists a point q E int P such that II= I AiYi(q) = O.

For an arbitrary q E int P we define
I

M(q) = {(Ct lo · · · . lX/ ) E R/ I I CtiYi(q) = O}.
i= 1

It follows (see (iv) above) that

M(q) = {(lXI(1- (q,YI».···,Ct/(1 - (q'YI») I(Ct1 , ·· ·Ct/)EM(O)),

and it is also easy to see that

U M(q) = {(Ctl(1 - Pl).···'Ct/(1 - PI» I(lXlo "' ,IX/)EM(O),
q"intP

(PI, ·· · ,PI)EM(O)l., Pi<1 for i=I,"',j}'

where M(O)l. denotes the orthogonal complement of M(O) in RI. Let

I
G = U M(q) n {(YI, ... , YI) E RI I I Yi = 1,

q"intP i=O

Yi > 0 for i = 1,.. . ,j} .
Then

I
<PI,"·,PI)EM(O)l., I IXj= 1, lXj>O and Pj< 1 for i= I , .. ·.!} .

j= I
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By the above, the assertion of theorem 10 is true ifand only if(AI,"', Af)E G.
Consider the function

f
cp(a l,"', af, /31"'" /3f} = I Ai10g(aj{1 - /3i)) for (a I> "', af) E M(O},

i = I

f
ai ~ 0, I a, = 1, (/3 1> ' • • , /3f) E M(O}-\ /3i :s; 1,

i = I

where log 0 = - 00 . Since cp is an upper semicontinuous function defined
on a compact set, it attains a finite maximum w at some point
(a'I" '" aI' /3'1" '" /3i)with a; > 0, /3; < 1. io is the maximum value of the
function If= I Ai log Yi for (yI' ... , Yf)E G. Assume, without loss of general
ity, that /3; = 0 for 1 :s; i :s; f (The point (a'l{1 - /3'I)" . . ,al {1 - /3/)) lies
in M(q} for some q E int P, and we may replace P by -q + P, if q =I 0.)

Fix a point (/31"'" /3f) E M(O).L, and define

g(t} = cp(a'I> " " aI' /3lt, " ', /3ft).

Then g'(O) = 0, since g(t} attains a maximum at t = O. But an easy calcula
tion shows that g'(O) = - If= I AdJi . It follows that (AI " . " Af) E M(O}.L.L =
M(O}, and, by assumption, If= I Ai = 1 and Ai > 0 for 1 :s; i :s; f, hence
(AI" . . , Af) E G.

The reader may verify, using a similar orthogonality argument, that
(a;," ', a/) = (AI"'" Af), and that the point (AI"", Af) cannot belong to
M(q) for more than one q E int P.

Theorem 10, and the method used in its proof, have many analogues,
variants, and applications in other proofs; some of them will be mentioned
in the exercises. Here we shall dwell on one of them only .

It is well known that the notion of convexity may be defined in vector
spaces over any ordered field, and that many of the usual properties of
convex sets remain valid in such more general settings (though some
definitions, and some proofs, have to be modified; see, for example,
Weyl [lJ , Motzkin [2], Klee [10]). While other exceptions are known (see
section 5.5), the simplest known result on convex polytopes in Rd which
fails in vectors spaces over ordered fields is probably theorem 10. Indeed,
we have

11. In vector-spaces over the field of rational numbers, theorem 10 is
not true .

For an example establishing theorem 11 see exercise 5.1.6.
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1. Show that it is impossible to strengthen theorems 1-4 by decreasing
the dimension of the simplex (or cube, or octahedron).

2. Let P be a polytope, L I and L 2 two flats of the same dimen sion.
Show that L I (\ P and L 2 (\ Pare combinatorially equivalent provided
L I and L 2 have O-dimensional intersections with the same faces of P.

3. Suppl y the deta ils of the following proof of theorem 1. Let P c Rd

be ad-polytope with j'facets, OEint P, and let VI"' " vI be the vertices of
the polar P" of P. Let IX I" • • , IXI be positive numbers such that

I

L IXiVi = 0
i= I

and define for x ERd

I
and L IX i = 1,

i = 1

Show that
I

(i) A R d
c {(Yl" " , YI) E RI I L Yi = I};

i= 1

(ii) A is one-to-one ;
(iii) AK = ARd

(\ T , where T is the (f - I)-simplex

I
T:;: {(Yb" "YI) E R II L Yi = 1, Yl ~ 0

i = 1

for i = 1, ' · ' ,f} .

4. Show that for given P, T , and p in theorem 10 there exist at mostf!
differen t d-flats L satisfying the conditions of theorem 10, withf = fd- 1(P).
Their exact number is equal to f! divided by the order of the group of
affine automorphisms of P.

5. Let P c Rd be a centrally symmetric d-polytope with 2jfacets, such
that P = -P, and let CI c R I be thef-cube. Using a method analogous
to parts (ii), (iii) of the proof of theorem 10, show that there exists a d
dimensional subspace L of R I, such that L (\ CI is linearl y equi valent to P.

6. Let T c Rd be a 3-simplex with vertices at points having rational
coordinates ; let p be the centroid of T , and let PeR 2 be the quadrangle
conv {(l , 1), (1, -1 ), (- 1, 3), (-1 , - 3)}. Show that P is not affinely equiv
a lent to any set of the type T (\ L , where pEL and L is a 2-flat
L = {x E R 3 I<x, y ) = IX} with IX and the coordinate s of Y all rational.



78 CONVEX POLYTOPES

5.2 The Inductive Construction of Polytopes

In various problems it is important to know whether a given polytope
may be changed in such a way that the new polytope has some desired
properties. We shall encounter examples of such situations in chapters 6
and 7. The simplest case, which shall be discussed in the present section,
is that in which the new polytope has at most one new vertex.

Let P c Rd be ad-polytope, H a hyperplane such that H (') int P = 0,
and let V E Rd. We shall say that V is beneath H, or beyond H, (with respect
to P) provided V belongs to the open halfspace determined by H which
contains int P, or does not meet P, respectively. If V E Rd and F is a facet
of the d-polytope P c Rd

, we shall say that V is beneath F or beyond F
provided V is beneath or beyond aff F, respectively.

Various ideas and constructions related to the 'beneath-beyond'
concepts have appeared in the literature since Euler's times, mostly in
the (dual) variant of'cutting off' vertices or larger parts of a given polytope.
(See, for example, Bruckner [1, 2,3], Steinitz-Rademacher [1].) Neverthe
less it seems that the systematic use of these notions, in particular for
higher-dimensional polytopes, is rather new. The terminology was used
first in Griinbaum [12]. We shall see important applications of theorem 1
in chapters 6 and 7, and in other sections of the book.

The relation between the facial structure of a polytope and that of the
convex huIl of its union with one additional point is determined by the
foIlowing theorem.

I. Let P and P" be two d-polytopes in Rd
, and let V be a vertex of P*,

V f/: P, such that P" = conv({V } uP). Then
(i) aface F of Pis a fa ce of P* if and only if there ex ists a facet F' of P

such that F c F' and V is beneath F';
(ii) ifF is afaceofP then F* = conv({V } u F) is aface ofP* ifand only if

either (*) V E aff F;
or (**) among the facets of P containing F there is at least one such
that V is beneath it and at least one such that V is beyond it.

Moreover , each face of P* is of one and only one (Jf those typ es.

PROOF It is obvious that a face of P" is either a face of P, or the convex
huIl of the union of V with some face of P. It is equaIly obvious that a
facet F of P is a facet of P* if and only if V is beneath F with respect to
either (and therefore both) P or P*. Therefore, if Fo is a face of P contained
in the facet F of P, and if V is beneath F, then Fo is a face of P*. On the
other hand, if F6 is a face of P" such that V f/: F6 then F6 is a face of P
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and, since F6 is the intersection of all the facets of P* which contain F6,
there exists a facet F* of P* for which F6 c F* and V ¢ F*. Clearly V is
beneath F* and the proof of part (i) is completed.

Let now F be a face of P and F* = conv({V} u F) a face of P*. Then
clearly F = P n atf F*. We consider the intersection of the whole
configuration with the 2-dimensional plane E determined by the three
points V, Xo and Yo, where Xo E relint F, and Yo E int P. Then Po = E n P
is a 2-polytope, i.e. a polygon (see figures 5.2.1 and 5.2.2). The line
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L = aff'[x. ; V} is the intersection of E with atf F*, and Fo = L n Po is
either a vertex of Po or an edge of Po. In the last case, V E atf Fo c atf F,
and we have (*). If Fo is a vertex of Po, V is (in E) beneath one and beyond
the other of the edges of Po incident with Fo. Denoting by F1 and F2 any
pair of facets of P containing those two edges, it follows that V is (in Rd

)

beneath one and beyond the other of F1 and F2 , and we have (**).
There remains to be shown that if F is a face of P satisfying the conditions

(*) or (**), then F* = conv({V} u F) is a face of F*. This is entirely trivial
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in case of (*). Let therefore F be a face of P such that F c F1 n F2 , where
F1 and F2 are facets of P, V being beyond F1 and beneath F2 • Let
Hi = aff Fjo and let H o be a hyperplane such that H o n P = F. Rotating
Hi slightly about Hi rvH o towards H o' new hyperplanes HT and Hi are
obtained such that Hr n P = F, while V is beyond HT and beneath Hi.
But then the hyperplane H* = aff({V} u (HT n Hi» contains V and
satisfies H* n P = F. Thus

H* n P" = H* n conv({V } u P) = conv({V} u F) = F*

is a face of P*, as claimed. This completes the proof of the theorem.
Let P c Rd be a d-polytope and let V be a vertex of P. Let V' E Rd be

a point such that V' ¢ P and the half-open segment ]V, V'] does not meet
any hyperplane determined by the vertices of P. If V belongs to the
interior of P' = conv({V' } u P) we shall say that P' is obtained from P by
pulling V to V' .

The following result (see Eggleston-Gninbaurn-Klee [1]) which is
useful in different problems, is clearly a special case of theorem 1.

2. Let P' c R d be ad-polytope obtainedfrom the d-polytope P by pulling
V Evert P to V'. Then,for 1 ~ k ~ d - 1, the k-faces ofP' are asfollows :
(i) the k-fa ces of P which do not contain V ; (ii) the convex hulls of the type
convt] V'} u Gk

-
1

) , where Gk
-

I is a (k - I)-fac e not containing V of a
(d - I )~face of P which does contain V.

We note in particular the following consequences of theorem 2.

3. In the notation of theor em 2, each k-face of P', for 1 ~ k ~ d - 1,
which contains V ' is a k-pyramid with apex V' . Therefore fo(P ') = fo(P) ,
and};(P') ;::: };(P)for 1 s i s d - 1.

4. If P" is obtained from P by successively pulling each of the vertices of
P, then P* is a simplicial d-polytope satisfyingfo(P*) = fo(P) ,f.{P*) ;::: f.{P)
for 1 ~ i ~ d - 1. Moreover, if some j-face of P is not a j-simplex, then
strict inequality holds for all i with j - 1 ~ i ~ d - 1.

We shall use theorem 4 in chapter 10. The idea to apply suitable 'per
turbations' of the vertices in order to reduce questions about the maximal
possible number of faces of arbitrary d-polytopes (having a given
number of vertices) to the corresponding problems dealing with simplicial
polytopes only , has been frequently used. The case corresponding to
i = d - 1 in theorem 4 was employed (without proof) by Gale [5].
Klee [13] gave a justification of Gale's assumption, for all i, by a process
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called 'pushing' (see exercise 16). As far as applications to extremal prob
lems are concerned, 'pulling' and 'pushing' seem to have the same value;
the properties of the 'pulling' procedure, and its generalization contained
in theorem 1, seem to be more easy to establish, and to be intuitively
simpler.

A consequence of theorem 4 may be succintly formulated using the
following notion.

Let flJ" and flJ''' be two families of d-polytopes in Rd. We shall say that
flJ''' is dense in flJ" provided for every s > 0 and every P' E flJ" there exists
a P" E flJ''' such that the Hausdorffdistance p(P', P") is less than e.Theorem
4 obviously implies :

5. The family flJ'~ of all simplicial d-polytopes is dense in the family flJ'd
ofall d-polytopes.

Exercises

1. Find projectively equivalent d-polytopes PI and P2 such that among
the d-polytopes of the form conv({VI} U PI) occur types not obtainable in
the form conv({V2 } U P2 ), where VI and V2 are arbitrary points.

2. Determine all the combinatorial types of 4-polytopes with 6 vertices,
and construct their Schlegel diagrams.

3. In the notation of section 3.3, determine the set of points Xo which
may serve as centers of projection for the formation of Schlegel diagrams
of a given polytope P.

4. Show that there are [td] different combinatorial types of simplicial
d-polytopes with d + 2 vertices.

5. Formulate and prove the result dual to theorem 1.
6. If P and p* are related as in theorem 1, or in its dual, what is the

relation between their Schlegel diagrams?
7. Determine under what conditions doesfk(P') = fk(P) hold in theorem

3 for a given k.
8. Let P c R d be a d-polytope and let V be a point of Rd which is

beyond (or on) the facet F of P and beneath all those facets of P which
intersect F in a (d - 2)-face. Show that V is beneath all the facets of P
different from F.

9. Let P c Rd be ad-polytope, F a facet of P, and X, Y points such that
F is a facet both of conv({X} U P) and of conv({Y} uP). Show that F is
a facet of conv({X, Y} uP). Does this statement remain true if F is a face
of lower dimension?

10. Let P c Rd be a d-polytope and let X be a point of Rd
, X ~ P.
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Prove that the set U Fj , where F, ranges over all the facets of P such that
X is beyond the facet, is homeomorphic to the (d - I)-dimensional ball
jJd-l.

11. Let P c Rd be a d-polytope and let X I' X 2 rt P. If the segment
conv{X 1,X2 } is an edge of conv({X 1,X2 } uP) show that there exist
facets F 1 and F2 of P such that X, is beyond or on Fj, i = 1,2 , and
dim(F, n F2 ) ~ d - 2.

12. Let P c Rd be a d-polytope with facets F,, "' , Ff , where
f = h -,(P), For i = 1,·· · ,f, let Xi be a point which is beyond or on F i ,

and beneath all the other facets of P. Let P' = conv({X I ' .. . , Xf } uP).
Then conv{X j , XJ n int P ¥ 0 for all 1 :::; i < j :::; fif and only if each
k-face of P is a k-face of P', for all k = 0, I,···, d - 2.

13. It may be conjectured that whenever k + h :::; d, the family &d(k, h)
(see section 4.5) is dense in &d.Theorem 5 is clearly a particular case of this
conjecture. Prove the following additional partial results :

(i) The family of all simple d-polytopes is dense in &d.
(ii) gp4(2, 2) is dense in gp4. (This conjecture of D. W. Walkup was

recently established by Shephard [7].)
14. Prove that the family gp~ of all cubical d-polytopes is dense in &d.

(This is a result due to Shephard [9], who also proved a number of other
interesting results of a similar type. The proof uses exercise 4.8.29 and
theorem 5.)

15. Even for d = 3 it is not known whether the family of all self-dual
polytopes is dense in &d.

16. Following Klee [13] we shall say that ad-polytope P' is obtained
from the d-polytope P c Rd by pushing the vertex Vof P to the position V'
provided V' is a point of P such that the half-open interval ]V, V'] does
not intersect any (d - I)-hyperplane determined by vertices of P, and
provided P' is the convex hull of the set consisting of V' and of the vertices
of P different from V.

Find the analogue of theorem 2 if 'pulling' is replaced by 'pushing' .
Show that theorems 3 and 4 remain valid if 'pulling' is replaced by

'pushing'.
17. Let C c Rd be a d-polytope with facets G,,"' , G" where

t = fd -,(C), For 1 :::; i :::; s, with 1 :::; s :::; t , let zjbe a point which lies
beyond G, but beneath all other facets of C. Assume also that all the seg
ments [Z j, Zj] , 1 :::; i < j :::; s, intersect int C. For 1 :::; i :::; s, let P, be a
d-polytope which has a facet Fj, such that F, is projectively equivalent to
Gj • Prove :

(i) There exist nonsingular projective transformations Ii , 1 :::; i :::; s,
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with 1; permissible for Fi, such that 1;Fj = G, and 1;Pj c conv(Gj u {zJ ).
s

(ii) If 1; are such transformations, then the set K = C u U 1;Pj is a
d-polytope, and j ; I

ff (K ) = ({K} u ff(Clu U ff (1;Pj )) - {GI>· ··, Gs,C} ·
; ;:::1

(This construction is frequently used ; K is often said to arise by adjoin
ing copie s of PI ' · ·' , P, along their facets FI> " " F, to the corre sponding
facets G! , ·· · , Gs of C.)

5.3 Lower Semicontinuity of the Functionsh(P)

We saw in theorem 5.2.4 that every d-polytope P may be approximated
(in the sense of the Hau sdorff metric) arbitrarily closely by polytopes P'
such that fk(P') ~ fk(P) for all k. Following Eggleston-Grunbaum-Klee
[1] we shall supplement this by showing that each of the functions fk(P)
is lower semicontinuous in P.

1. Let P be a polytope in Rd. Then there exists an e = l;(P) > 0 such that
every polytope P' c Rd for which p(P', P) < l; satisfi es h(P') ~ fk(P) for
all k.

PROOF Let {Pj Ii = 1,2, " '} be any sequence of polytopes converging
to P. It is clearly enough to show that lim SUP{fk(Pi)} ~ fk(P), Now, if the

sequence {j~(Pi) Ii = 1, 2, ... } is unbou~ded, then {j~(Pi) I i = I, 2, ... } is
unbounded for each k (0 ::; k < dim P) and there is nothing to prove.
Thus we may assume that {fo(Pj)Ii = 1,2,·· ·} is a bounded sequence.
Passing, if necessary , to subsequences we may without loss of generality
assume that :

(i) all Pi have the same dimension d', where dim P ::; d' ::; d ;
(ii) fk(P j ) = fk for all k = 0, 1, · .. , d' - 1 and i = 1,2, ·· · ;

(iii) for every k = 0,1 ,· · · , d' - 1, the k-faces of P, may be denoted by
P~(j),j = 1,2,· · · Jk, in such a manner that, for every k and l . the sequence
{P~(j) Ii = 1,2, . . .} be convergent to a polytope P~(j), of dimension at
most k.

Clearly, bd P c U P~( j) . Let s satisfying 0::; s < dim P, be
O Sk :Sd' -1

I S j S ! .

fixed; let Q denote the union of all the sets P~(j) of dimension less than s.
Then Q obviously contains no s-dimensional subset.

Let now 0 > 0 be sufficiently small to ensure that for each s-face F of
P, the 30-neighborhood of the union of all the s-faces of P different from
F does not contain F. Then there is an s-dimensional (relatively open)
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subset F 0 of F which is at distance greater than 215 from the union of the
s-faces of P different from F. By the above, Fo is not contained in Q; let
x(F) E Fo '" Q. Then x(F) belongs to some P~°(jo) which is s-dimensional
and contained in F. It follows that there exists i(F) such that for all i ~ i(F)
the set P~°(jo) is contained in the l5-neighborhood of P~°(jo), and there
fore in the l5-neighborhood of F. By Exercise 3.3.5, the union of the
s-faces of P~°(jo) also converges to P~°(jo). Since x(F) E P~°(jo), for all i
(greater than or equal to a suitable reF) ~ i(F)) there exists an s-face of
P~°(jo) which contains x(F) in its l5-neighborhood. Let this face (or one
of them) be denoted by Kj(F). We shall show that if the s-faces F I and F2

of P are different then Ki(FI) is different from K j(F2 ) for all i ~ i(P) =
max] i'(F) IF an s-face of P} . Indeed, assuming Ki(FI) = K j(F2 ) it follows
that K i(F2 ) is in the l5-neighborhood of FI ; but x(F2 ) is in the l5-neighbor
hood of K j(F2 ). Hence x(F2 ) is in the 215-neighborhood of FI~ontradict
ing the definition of x(F2 ). Thus for i ~ i(P) to each s-face F of P there
corresponds an s-face Kj(F) of Pj, to different s-faces of P corresponding
different s-Iaces of Pi. ThereforeJ.(Pi) ~ J.(P) and the proof of the theorem
is completed.

We shall see some applications of theorem 1 in chapter 10.
Without proof we mention an extension of theorem 1 to certain

complexes, due to Eggleston-Grunbaum-Klee [1].
A complex ;j( is said to have property A(s) provided for each convex

subset C of set ;j( such that C = relint C, and for each face F of ;j( with
dim F = s ::; dim C, the assumption en relint F =I' 0 implies C c F .

The result may be formulated as :

2. Let {Jr;} be a sequence of complexes in Rd such that the sequence
{set Jr;} converges to set;j( for a complex ;j( which has property A(s).
Then lim inff.<Jr;) ~ J.(;j() if at least one of the following conditions is

j

satisfied:
(i) The sequence {fo(X;)} is bounded;
(ii) for each point x belonging to some s-face of ;j( there is a sequence

(Xi} with limit x, such that Xi belongs to an s-face ofX; .
It should be noted that a satisfactory characterization of complexes

which possess the lower semicontinuity property is still lacking.

Exercises

1. Let P c Rd be a d-polytope. Prove that there exists an e = s(P) > °
such that if P' c Rd is any polytope satisfying pep, P') < sand HP') = j;(P)
for i = 0, 1, . .. ,d - 2, then P' is combinatorially equivalent with P.
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Show by examples that it is impossible to drop the requirement
fd- 2(P') = fd- 2(P) in this result. (An acquaintance with chapter 8 is
desirable in solving this exercise.)

2. Prove that for every polytope P the complex CC(P) has property
A(s) for every s.

3. Find examples of complexes % which do not have property A(s),
such that

(i) theorem 2 holds for % ;
(ii) theorem 2 does not hold for %.

5.4 Gale-Transforms and Gale-Diagrams

The present section is devoted to the exposition of a powerful technique,
applicable to various problems involving polytopes. The method of
Gale-transforms and Gale-diagrams, to be discussed now, is rather
algebraic in character. Various special aspects of it, or of related ideas,
may be found in different papers, such as Motzkin [2,4,6], and in par
ticular Gale [3,4,5]. (Compare also the proof of theorem 5.1.10.) Our
exposition follows a private communication from M. A. Perles. All
the new results obtained by this method and presented in different
parts of the book (sections 5.5, 6.3, etc.) as well as the very useful notion
of coface (see below), are due to Perles. The reader will find it well worth
his while to become familiar with the concepts of Gale-transforms and
Gale-diagrams, since for many of the results obtained through them no
alternative proofs have been found so far. It is very likely that the method
will yield many additional results.

We tum first to a description of the Gale-transform and its properties.
Let X = (x1, . • . , xn) be an n-tuple of points in Rd

, with dim aff X = r.
The set D(X) c: R" of affine dependences of X consists of all point s
a = (1X 1,···, IXn) ERn such that

n

I lXiXi = 0
i= 1

and
n

L lXi = O.
i = 1

It is obvious that D(X) is a linear subspace of R", and that for each
x E Rd we have D(x + X) = D(X). More generally, it is easily checked
that for X , Y c: Rd we have D(X) = D(Y) if and only if X and Yare
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affinely equivalent with Xi corresponding to Yi, i.e., if Yi = AXi for
some nonsingular affine transformation A and for i = I,···, n. Let
Xi = (Xi.I, ·· ·,Xi.d) for i = I, .. ·, n ; we shall consider the n by d + I
matrix

( x,.' XI.2 XI.d

JDo = ~2.1 X2 •2 X2 •d

x n.1 xn.2 xn.d

The rank of Do clearly equals r + I; therefore, among the columns
x(I),· · · ,X(d+ I) of Do, considered as vectors in R", there are r + I linearly
independent ones (the column X(d+ I) may be assumed to be one of them).
Hence the subspace M(X) = lin{x(I), .. . , X(d+ I)} of R" has dimension
r + I. Its orthogonal complement M(X).L = {a E R" I<a,Y> = 0 for all
Y EM(X)} clearly coincides with D(X). It follows that

dim D(X) = dim M(X).L = n - dim M(X) = n - r - I .

Let the n - r - I vectors a(1l, · . " d n- r- I) of R" form a basis of D(X),
and let Dt be the n by n - r - I matrix having columns a(l), .. , , a(n-r-I),

. . . CJ(1.n -r -t)

. . . CJ(2,n -r-1

CJ(n.n-r-l

The rows of D', may be considered as vectors in R n
-

r
-

t
; we shall denote

thejth row by xj = (CJ(j.t, CJ(j.2,· ··, CJ(j,n-r-I), for j = I, ···, n.
The final result of the above construction is the assignment of a point

xjERn-r-t to each point XjEX c Rd (or rather, to eachjE{1,· .. , n}),
where d ~ r, n = card X, and r = dim aff X . The n-tuple X = (x t , · . . , xn )

c R n
-

r
-

t is the Gale-transform of X. It should be observed that the
n-tuple X c Rn-r-I , which linearly spans R"-r- 1, does not necessarily
consist of n different points, even if the n points of X are different. Hence
the set X may consist of less than n points, some of the points Z E X
having a multiplicity greater than I and equal to the number of points
Xi E X (or, more precisely, to the number of i E {I, . . . , n}) such that
Xi = z. The Gale-transform X obviously depends on a factor which has
no geometric significance for X (namely the choice of the basis aU) in
M(X).L), and it would be more proper to call it a Gale-transform of X .
Nevertheless, many geometric properties of X have as counterparts



FUNDAMENTAL PROPERTIES AND CONSTRUCTIONS 87

meaningful geometric properties of the Gale-transform X. The facts
listed below deal with some such properties; the reader is invited to
supply their proofs, which require only the basic results of linear algebra.

(i) I7= 1 Xi = 0, 0 E relint conv X, and X linearly (and even
positively) spans tc»: I .

(ii) If the n-tuple X' = X;" .. ,x~ is the Gale-transform of X obtained
by using a basis of D(X) different from a(1)" • • ,dn -r-I), then X' and X

are linearly equivalent. Conversely, whenever A is a regular linear trans
formation of Rn-r-I into itself, the n-tuple AX1,"',Axn may be ob
tained as the Gale-transform of X by a suitable choice of basis in D(X).

(iii) If Ml. is an (n - r - 1)-dimensional subspace of R", d ~ r,
orthogonal to the vector (1, 1" . . , I) ERn, there exists an n-tuple X c Rd

such that dim aff X = rand D(X) = M". Moreover, if Z = (ZI" ", zn)
is an n-tuple of (not necessarily different) points in R"-r - 1 such that

I7= 1 z, = 0 and dim lin Z = n - r - 1, there exists an n-tuple Xc Rd

with dim aff X = r such that X = Z.
(iv) Let Xc Rd

; if J = {il," ',im } c {1," ',n} = N we shall write
X(J) for (XiI" ' " xd and similarly X(J) = (XiI" . . ,X iJ, assuming of
course that il < i2 < . . . < im • If dim aff X = r, then X(J) (which is an
m-tuple in Rm -q-I, where q = dim aff X(J)) is linearly equivalent to the
m-tuple obtained from X(J) by orthogonal projection onto the subspace
of R"-r-I which is orthogonal to lin X(N ~ J) c Rn - r - I .

(v) The n points of X are in general position in Rd if and only if the
n-tuple X consists of n points in linearly general position in R"-d- I

(i.e., no (n - d - 2)-dimensional subspace contains n - d - 1 of them) .
(vi) Let P be a nonsingular projective transformation of Rd into

itself, permissible for X = (x I' . . . , x n ) c Rd (i.e. Px = (Ax + b)/(<c, x) + D),
and (c, x) + 1J =I- 0 for Xi E X) . Let Y = (Px l , " ' , Px n). Then Y is
linearly equivalent to the n-tuple «<c, XI) + 1J)X I' ... , « c, xn) + (j)xn) .

Conversely, if X, Y c R d are two n-tuples such that there exist non
zero numbers AI" " , An with the property .vi = )'iXi for i = 1"", n,
then there exist C E Rd and e such that Ai = <c, x) + (j for i = 1"", n,
and a linear transformation A and vector b e Rd such that

Px = Ax + b
(c,x) + (j

is a regular projective transformation permissible for X, satisfying
Yi = PXi for i = 1"" , n. Moreover, P is permissible for con v X if and
only if Ai > 0 for i = 1"" , n, (or )' i < 0 for i = 1"", n).
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Let X c Rd and let Y = X(J) c X for some J c N. We shall say
that Y is a face of X provided conv(X - Y) n aff Y = 0 (compare
section 2.4 and theorem 2.6.1 ; here, of course, X - Y means X(N - J) .
Clearly, if X consists of n points in general position, or if X = vert P
where P is a polytope, then Y c X is a face of X if and only if conv Y is
a face of conv X. We shall say that Y c X is a coface of X provided
X - Y is a face of X, i.e. if and only if con v Y n aff(X - Y) = 0.

The notion of coface permits an easy translation of some geometric
properties of X into properties of )(, due to the following result:

1. Y = X(J) c X is a coface of X if and only if either Y = 0 or
oE relint conv )((J).

PROOF Assume that Y = X(J) c X c Rd is not a coface of X; then
Y i= 0 . Without loss of generality assume also that dim aff X = d.
The conv Y n atf(X - Y) i= 0, hence there exists an n-vector

b = ((J1 , ··· ,Pn) such that L7=, PiXi = 0, L7=, Pi = 0, L iEJPi = 1, and
Pi ;;::: 0 whenever i E J . Since b e D(X) there exist YI, · .. , Yn- d- I such that
b = L~:~ -' Y/ l (j). In other words, denoting

c = (YI'· ··' Yn-d- I ) E Rn
-

d
-

I

we have Pi = <c,x) for i = 1,·· · ,n. Thus <c,x);;::: 0 for every i such
that Xi E Y, with strict inequality for some of those i. Hence there exists
a hyperplane H separating 0 and conv)((J), with )((J) ¢ H . By the
separation theorem 2.2.2, this implies 0 ¢ relint conv )((J). Since all
the steps of the above argument are reversible, this completes the proof
of theorem I.

The following results are immediate consequences of theorem 1 and the
properties of Gale-transforms mentioned above; their proofs are left to
the reader.

2. If X c Rand aff X = Rd then X = vert P for some d-polytope P
with n vertices ifand only ifeither (i)x = Ofor all X E X (and P is ad-simplex),
or (ii) every open halfspace H+ of te:»: I, such that 0 E bd H+, satisfies
card {ilxiEH+};;::: 2.

3. If 0 E)( then con v X is pyramidal at every Xi E X such that Xi = o.
Conversely, if conv X is pyramidal at Xi and if Xi i= Xj whenever i i= j, then
Xi = O.

4. Let P C Rd be a d-polytope, and V = (VI' ..., vn) = vert P. P is
simplicial if and only if dim conv V(J) = dim conv V for every nonempty
coface V(J) c V.
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5. Let P and P' be d-polytopes in Rd and let V = (VI" " , vn) = vert P
and V' = (V'I" ", v~) = vert P'. The polytopes P and P' are combinatorially
equivalent under a mapping qJ of .?l'(P) onto .?l'(P') such that V;(i) = qJVj
for i = 1, ···, n and a permutation 8 of 1,2,· . ., n, if and only tf

(*) for every J c: {t"", n}, the condition OErelint conv V(J) is
equivalent to 0 E relint conv V'(8(J», where 8(J) = {8(j) Ij E J} .

The Gale-transforms V and V' of two sets V and V' shall be called
isomorphic provided (*) holds. Thus theorem 5 amounts to saying that
two polytopes P and P' are combinatorially equivalent if and only if the
Gale-transforms of the n-tuples of their vertices are isomorphic.

6. Let P, P' be d-polytopes in Rd
, and let (VI"", vn) = vert P and

(V'I" ' " v~) = vert P' . Then P and P' are affinely equivalent by an affine
transformation A ofRd onto itselfsuch that v; = AVj, i = 1,···, n, ifand only
if there exists a nonsingular linear transformation B of R" -d-I onto itself
such that ii; = Bv.for i = 1" ", n.

7. Let P and P' be d-polytopes in Rd and let (VI" ", vn) = vert P and
(V'I ,"', v~) = vert P'. Then P and P' are projectively equivalent by a
projective transformation A permissible for P and such that v; = Av j ,

i = 1,·· ·, n, if and only if there exist positive reals AI, "', An' and a regular
linear transformation B of Rn- d - I onto itself, such that ii; = AjBiiJor all
i = 1, .. -, n.

Let X = (XI"", x n) and aff X = Rd. For any Gale-transform X of X
we define the Gale-diagram X of X by X = (XI'" ., xn), where

Xi = 0 if Xj = 0,

Xj = II~:II if s, i= 0,

and Ilxll is the (Euclidean) length of the vector x.
Clearly X is a subset of {O} u sr»: 2, where Sk denotes the k-sphere, i.e.

the boundary of the unit ball of R k + I (with center at 0).
Isomorphism of two Gale-diagrams is defined by the same condition

which was used in the definition of isomorphic Gale-transforms. The
reader may verify that theorems 1, 2, 3, 4, 5, and 7 are valid also if 'Gale
diagrams' are substituted for 'Gale-transforms' throughout. It should be
noted that the Gale-diagram X of a set X coincides with the Gale-trans
form Yof some Y if and only if I7= I Xi = 0 ; in this case Y is projectively
equivalent to X under a mapping permissible for conv X. Another impor
tant property is : Whenever Z = (zr- . .., zn) is an n-tuple of (not necessarily
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different) points of {O} U sn-d-2 such that aff Z = W- d - I and 0 E int
conv Z, there exists X = (xI' . . " xn) c Rd such that aff X = Rd and
Zj = i j for i = 1, · ··, n.

An additional property of Gale-diagrams is

8. Let X = (x t, . .. , x n) be an n-tuple of points in Rd
, and let X = (i I'

.. . , in) be a Gale-diagram of X. Let H be a hyperplane which strictly
separates x, from XI" '" X n - I; let Yi = H (l [Xi' x n] for 1 :5 t s; n - 1,
and Y=(YI ," ',Yn-I)' Then the (n-I)-tuple Y=(il, · .. , i n- I ) is a
Gale-diagram of Y. In particular, if X = vert P for a polytope P, and if all
[x j , x n ], 1 :5 i :5 n - 1, are edges ofP, then Yis a Gale-diagram ofthe vertex
figure H (l P of Pat xn •

5.5 Existence of Combinatorial Types*

The combinatorial structure of a given d-polytope P is obviously deter
mined by the scheme of P.The scheme of P is an enumeration of the vertices
of P, of the l-faces of P, of the 2-faces,"', of the (d - I)-faces of P, where
each face is designated by the subset of vert P contained in it. If the schemes
of two polytopes are given, it is obviously possible to decide whether the
two polytopes are isomorphic (or whether they are dual) to each other.
Unless the number of vertices is very small , the actual carrying out of the
task may be rather time-consuming; however, there is no question of
principle involved.

As a consequence, if we are presented with a finite set of polytopes it is
possible to find those among them which are of the same combinatorial
type. It may seem that this fact, together with theorem 5.2.1 which deter
mines all the polytopes obtainable as convex hulls of a given polytope
and one additional point, are sufficient to furnish an enumeration of
combinatorial types of d-polytopes. By this we mean a procedure which
yields an inductive determination of all c(k, d) combinatorial types of
d-polytopes which have a given number k of vertices. However, from the
result of exercise 5.2.1 it follows that it may be necessary to use different
representatives of a given combinatorial type in order to obtain all the
polytopes having one vertex more which are obtainable from polytopes
of the given combinatorial type. Therefore it is not possible to carry out
the inductive determination of all the combinatorial types in the fashion
suggested above.

* The author is indebted to Professor M. O. Rabin for helpful discussions on the subject
of this section .
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This naturally leads to the question whether there is any algorithm which
would yield all the different combinatorial types of polytopes. The
answer is affirmative but-at least at present-the proof uses a theorem of
Tarski on the decidability of first-order sentences in the field of real
numbers. In order to avail ourselves this rather heavy tool, we start by
introducing the notion of an abstract scheme.

An abstract scheme is a family 1/ of nonempty subsets of a set V = {VI'
v2 , ••• , vk } , such that V ¢ 1/ but each singleton {Vi}' 1 ~ i ~ k, belongs to
"f/". Clearly, the scheme of ad-polytope P is an abstract scheme provided
V = vert P and the family 1/ consists of the sets vert F for all proper
faces F of P. We shall say that an abstract scheme is realized by the d
polytope P provided it is isomorphic (in the obvious sense) to the scheme
of P.

The key step in the enumeration of d-polytopes is:

1. There exists an algorithmfor deciding whether there ex ists ad-polytope
which realizes a Riven abstract scheme.

From this there results :

2. Th e enumeration problem for d-polytopes is solvable, i.e. there exists
an algorithm for the determination of all the different combinatorial types
ofd-polytopes with k vertices.

Assuming, for the moment, the assertion 1, the proof of theorem 2 is
immediate. Clearly all abstract schemes with card V = k are easily
determinable. By theorem 1, those abstract schemes which are realizable
by d-polytopes may be singled out. Finally, as mentioned above, a single
representative of each combinatorial type may be chosen.

In order to prove theorem 1, we start by recalling some definitions from
mathematical logic. A statement in elementary algebra is any expression
constructed according to the usual rules and involving only the symbols
+ , - , ., = , < , (, ) , [,], 0, 1, V (disjunction), & (conjunction), 
(negation), 'if (universal quantifier) , 3 (existential quantifier), and real
variables. The quantifiers 'if and 3 act only upon the real variables.

The part of Tarski's theorem (Tarski [1], Seidenberg [1], Cohen [1])
which we need may be formulated as follows :

Every statement in elementary algebra containing no free variables (i.e.
such that each variable is bound either by 'if or by 3)is effectivelydecidable,
that is, there exists an algorithm for deciding whether any such statement
is true or false.

Now , given an abstract scheme the question of its realizability by a
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d-polytope may be put in the following form, in which Tarski's theorem
becomes applicable.

The scheme will be realizable by a d-polytope ifand only if it is possible
to find reals Xi, j ' where I .:S; i :S; k = card Vand 1 :S; j :S; d, such that the
following statements are equivalent for every nonempty set We V :

(i) WE 1/.
(ii) There exist reals Yjand c,where I :S;j :S; d, such that L~; I yf > 0 and

d {- cLX. .y . -
j ; I .,J J > C

if Vi E W

if VI fI. W.

The above, obviously, expresses the quest for vertices such that
appropriate sets of them form proper faces of the polytope, while other
sets do not form faces. In this formulation, Tarski's theorem shows that
the problem is effectively decidable , and the proof of theorem 1 is com
pleted .

It would be rather interesting to have an elementary proofof theorem 2.
In case of 3-polytopes such a proof may be derived from Steinitz's theorem
(see chapter 13). An elementary proof of theorem 2 would also be in
teresting in connection with the solution of the following problem of
V. Klee:

Is every combinatorial type of polytopes ration al, that is, does every
combinatorial type of polytopes have representatives all vertices of which
have rational coordinates in a suitable system of Cartesian coordinates?

In other word s, instead of dealing with the real d-dimensional space,
one could cons ider polytopes in the rational d-dimensional space. Though
some of the proofs would have to be changed , many of the results on
polytopes contained in the preceding sections remain valid in the rational
space (see, however, theorem 5.1.11). But Tarski's theorem does not apply
to the field of rational numbers and therefore it does not lead to the
solution of the enumeration problem for rational polytopes.

As we shall see in chapter 13, a theorem ofSteinitz leads to an affirmative
solution of Klee's problem for 3-polytopes. For higher dimensions the
enumeration problem for rat ional polytopes is still unsolved ; however, a
negative solution to Klee's problem in sufficiently high dimensions has
recently been obtained by M. A. Pedes (see theorem 4 below).

By a slight modification of the proof of theorem 2 it is possible to show
that the different combinatorial types of d-complexes with a given number
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of vertices are effectively determinable. Regarding complexes, however,
even the case of 2-complexes in R 3 of Klee's problem is still unsolved.

An interesting side-light is shed on the above problems by the following
observation on configurations. A configuration is a finite set of points and
lines in a projective plane, with prescribed incidence relations . Since any
two points in a projective plane are on a line, we shall shorten the descrip
tion of configurations by indicating only those lines which are incident
to at least three points of the configuration. (For the related notion of
arrangements see chapter 18.)

3. There exist configurations in the real projective plane which are not
realizable in the rational projective plane (or in any rational projective
space).*

A very simple configuration C(j with this property consists of 9 points
and 9lines.t Let the points ofC(j be A, B, C, D, E, F, G, H, I, and let the
following sets of more than two points (and only those sets) be collinear :
ABEF, ADG, AHI , BCH, BGI, CEG, CFI , DEI , DFH. The realizability
of the configuration C(j in the real projective plane is easily established on
hand of figure 5.5.1, which is derived in an obvious way from the regular
pentagon. On the other hand, the reader can easily verify that every
realization of C(j in the real plane is projectively equivalent to the con
figuration of figure 5.5.1 in one of the two ways : either as indicated in
figure 5.5.1, or as indicated in figure 5.5.2. The cross-ratio (A,B; E, F) is

Figure 5.5.1

• For a similar difference between the project ive geometries over the real and the
rat ional fields, see the notion of 'accessible points' in Coxeter [6, p. 126].

t It may be conjectured that no configuration of less than 9 points has th is property.



94 CONVEX POLYTOPES

Figure 5.5.2

1(3 - )5) in the first case, and t(3 + )5) in the second . Therefore rc may
not be realized by points having rational coordinates-hence rc is not
realizable in the rational projective plane .

As a matter offact,* if F is an ordered field such that every configuration
realizable in the real projective plane is realizable also in the projective
plane over F, then F contains a subfield isomorphic to the field of all real
algebraic numbers. The proof is very simple on observing that if on a line
L a projective system of coordinates is introduced by specifying points
0, 1, and 00, for any point x on L it is possible to construct the point
L~=o rJ.iX i E L for each choice of rational numbers rJ. i • To 'construct'
means to draw appropriate lines in the plane, i.e. to specify a suitable
configuration. But then an equation such as L~=o rJ. i Xi = °means that
a suitable line, obtained by a definite construction which starts at x,
intersects Lin 0. Therefore, if Xl" · . , x, form a complete set of conjugate,
nonrational, real algebraic numbers, there exists in the real projective
plane a configuration which is realizable in a projective plane over an
ordered field containing the rationals if and only if that field contains
Xl'" ' ,Xk '

Returning to Klee's problem about rational polytopes, we shall show:

4. There exists an 8-polytope P with 12 vertices such that no polytope
combinatorially equivalent to P has all vertices at rational points.

Theorem 4 and the following proof of it are due to M. A. Perles (private
communication). It is easily seen that the construction of P could be
modified to yield polytopes of any dimension d 2 8 having any number
t: 2 d + 4 of vertices, which are not rationally realizable.

* For this remark the author is indebted to Professor H. A. Heilbronn.
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We shall first describe the construction of P. We consider the con
figuration ~ of 9 points shown in figure 5.5.1, and assume its plane to be
{(Xl' X 2, X3) E R3 1X3 = I}. Using the 9 points of this configuration, we
form the 12-tuple

It is easily checked that Vsatisfies the conditions (seesection 5.4)sufficient
for it to be the Gale-diagram of the 12-tuple of vertices of some 8-polytope
P with 12 vertices v,, " . , v12. Let now P' be an 8-polytope combinatorially
equivalent to P, let V' = vert P' = (v'!, ··· , V'12)' and let v; correspond to
Vj for i = 1,· · · , 12. Considering the Gale-diagram V' of V' we note that
the assumed isomorphism between V and V' implies that a subset of V
is on a line, or in a plane, through the origin if and only if the corresponding

A

subset of V' has the same property. (The reader should check that this
property results from the manner in which plus or minus signs were as
signed to the points of the configuration ~ used in defining v.) Therefore,

A

the 12 points of V' are on 9 lines L I , . . . , Lg through the origin O. The inter-
sections A',· . . , I ' of the lines L, with a suitable plane L (such that 01: L)
determine 9 points which yield a configuration equivalent to ~. If it were

A
possible for P' to have all vertices at rational points, the Gale-diagram V'
could be chosen so that the lines L, have rational direction coefficients. If
L is then chosen in a similar manner, all the points A',· .. , I ' would be
rational-which is imposs ible in view of theorem 3.

This completes the proof of theorem 4.
In a certain sense, the result of theorem 4 is best possible : As we shall

see in exercise 6.5.3, every d-polytope with at most d + 3 vertices is
rationally realizable. On the other hand, the dimension 8 is probably too
high-but no lower-dimensional, rationally not realizable polytopes are
known.

Exercises

1. Prove the effective determinability of the (number 01) different
combinatorial types of d-complexes with a given number of vertices.

2. Prove the assertion made about the realizations of the configuration
~ of figure 5.5.1.
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3. Show that the polytope P constructed in the proof of theorem 4 is
projectively unique (see exercise 4.8.30), but that P has a facet which is

not projectively unique. (Hint : Consider the coface (II ~II ' -II~II) .)
4. Show that the configuration of 11 points and It lines in figure 5.5.3

(the 'projective construction' of )2) is not rationally realizable. Deduce
from it the existence ofan It-polytope with 15vertices which is projectively
unique and not rationally realizable .

Figure 5.5.3
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5.6 Additional notes and comments

96a

Sections and projections.
The representation of a polytope as a simplex or cube intersected with an affine
subspace is one of the basic steps in the construction and formulation of linear
programs, the transformation to (various kinds of) "standard form" . The key
idea for this is the introduction of slack variables (see Dantzig [I , Sect. 4-5]),
which here appears in thin disguise in exercise 5.1.3. The "is a section" in
theorem 5.1.1 may be interpreted as "is projectively equivalent to", or more
restrictively as "is affinely equivalent to".

Page 73 gives a glimpse of the now very powerful connections to func
tional analysis (Banach space theory). We refer to Ball [a] and Matousek [b,
Chap. 14] for introductions. See also Giannopoulos-Milman [a].

Gale-diagrams.
On Perles' theory of Gale-diagrams, for which this chapter is the original pub
lished source, Grtinbaum wrote: "The reader will find it well worth his while
to become familiar with the concepts of Gale-transforms and Gale-diagrams ,
since for many ofthe results obtained through them no alternative proofs have
been found so far. It is very likely that the method will yield many additional
results." It did! Among them are:
o Gale-diagrams can be formulated in terms of linear programming duality

(the Farkas lemma). They were interpreted in terms of oriented matroid
duality by McMullen [f] (see also Ziegler [a, Lect. 6]).

o Mnev's [a] [b] universality theorem for d-polytopes with d +4 vertices is
a vast generalization and extension of Perles ' example of a non-rational 8
polytope with 12 vertices: For every semi-algebraic variety V defined over
the integers, there is a d-polytope with d +4 vertices whose realization space
is "stably equivalent " to V . Later, Richter-Gebert [b] [c] (with a different
method) achieved a stunning universality theorem for 4-polytopes with arbi
trarily many vertices. (See also Richter-Gebert-Ziegler [a] and Giinzel [a].)

o Bokowski and Sturmfels [d] formalized "affine Gale-diagrams" as a different
way to handle and visualize the ("linear") Gale-diagrams explained here;
these would augment figure 5.5.1 by the signs of the vector configuration V
that is derived from it in the proof of theorem 5.5.4.

No non-rational polytope with fewer than 12 vertices has been constructed yet.
However, Richter-Gebert 's results include the construction of non-rational 4
polytopes (with roughly 30 vertices). An alternative construction method, the
"Lawrence construction", (Billera-Munson [a], Bjorner et al. [a, Sect. 9.3]),
produces non-rational (n + 2)-dimensional polytopes with 2n vertices from
non-rational configurations of n ~ 9 points in the plane (as in figure 5.5.2).
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Enumeration ofcombinatorial types.
Lindstrom [a] has shown that every combinatorial type of d-polytope is realiz
able in the d-dimensional vector space over the field of algebraic numbers .

Enumerating combinatorial types by Tarski's procedure for solving polyno
mial inequalities is impractical. The same holds for Collins' [a] "cylindrical
algebraic decomposition". Nevertheless, one has enumerated and classified
o 4-polytopes with 8 vertices (1294 types : Altshuler-Steinberg [b] [c)),
o simplicial 4-polytopes with 9 vertices (1142 types : Altshuler-Bokowski

Steinberg [a]; see also Engel [a)),
o neighborly 6-polytopes with 10 vertices (37 types: Bokowski-Shemer [a)),
o and partially the neighborly 4-polytopes with 10 vertices (exactly 431 types :

Altshuler [a], Bokowski-Sturmfels [a], and Bokowski-Garrns [a)).
The general approach towards such results is explained in Bokowski-Sturrnfels
[b]. The most successful strategy has three essential steps :
1. Enumerate the combinatorial types in a larger class (e. g., combinatorial or

shellable spheres).
2. For each type enumerate the compatible oriented matroids, i. e., orientation

data for a hypothetical realization of the vertices (it may be that none exist) .
3. Find coordinates for these, or prove that none exist. (For this, there are

"final polynomial" proofs , according to Bokowski-Richter-Sturmfels [a];
the special "biquadratic final polynomials" of Bokowski-Richter-Gebert [a]
can be found efficiently by linear programming.)

Decidability of the existence of combinatorial types of rational polytopes is
open , related to Hilbert's tenth problem: Is it decidable whether a given rational
polynomial in several variables has a rational solution? (See Sturmfels [b].)

Algorithmic aspects.
Both the inductive construction of polytopes with the "beneath-beyond" method
and the perturbation via "pulling" and "pushing" of vertices (pages 80-82), are
essential for the algorithmic treatment of polytopes . For example, beneath
beyond approaches appear in convex hull algorithms; see de Berg et al. [a], or
Bronnirnan [a]. Pulling and pushing are key tools for constructing of triangu
lations (ofthe polytope, and/or of the polytope boundary); see Lee [b].

2-Simple 2-simplicial polytopes.
Exercise 5.2.13(ii) was not established by Shephard [7]. In view of the dif
ficulty in constructing 4-polytopes of type (2,2), as discussed in section 4.9,
the Walkup conjecture seems daring; it is still open . However, Problem 5.2.15
has a positive answer: It may be derived from theorem 5.2.5 using "connected
sums" (see Ziegler [a, Example 8.41)) of the form p#p' , for simplicial P.



CHAPTER 6

Polytopes with Few Vertices

The aim of the present chapter is a discussion, as complete as possible
at present, of polytopes with 'few' vertices. In section 6.1 we deal with
d-polytopes having d + 2 vertices; Sections 6.2 and 6.3 present two
different approaches to the classification of d-polytopes with d + 3
vertices, while section 6.4 deals with a remarkable phenomenon con
cerning centrally symmetric polytopes.

6.1 d-Polytopes with d + 2 Vertices

We start with a discussion of simplicial d-polytopes with d + 2 vertices.
Each d + 1 vertices of such a polytope P must be affinely independent,
since otherwise P would be a pyramid on a (d - Ij-basis different from
a simplex. Let v be a vertex of P. Then the remaining d + 1 vertices of P
determine ad-simplex t-, and P = conv(Td u {v}). The vertex v is
beyond a certain number k of facets* of t», where 1 S k s d - 1. Since
all k-tuples of facets of T d are combinatorially equivalent, all polytopes
P for which v is beyond k facets of T d are equivalent. Let their com
binatorial type, as well as any polytope of that type, be denoted by Tt.

We shall first show that the types Tt and T~_k coincide. Let P be a
simplicial d-polytope with d + 2 vertices {vo, Vt, . • • , Vd+ t}. Since each
d + 1 points Vi are affinely independent there exists, by Radon's
theorem 2.3.6, a unique k with 1 s k s [td], and reals Pi, Yj for
o sis k < j s d + 1, such that (possibly after a permutation of the
indices) we have

where

I Pi = I Yj = 1
O:Si"k k+t:Sj:Sd+t

and Pi> 0, Yj > 0 for all i,j.
• The reader is reminded that a 'facet' is a (d - I)-face of ad-polytope.

97
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In other words, it is possible to split the vertices of P into two groups
VI and V2 , containing k + I respectively d - k + 1 of the vertices, in
such a way that the simplices conv VI and conv V2 intersect in one single
point 0, relatively interior to both simplices.

Let us consider the facets of P. Each facet is determined by the two
vertices of P which do not belong to it. These two vertices may not belong
to the same v-; since then the point 0 would be in the facet although it
belongs to the interior of P. Therefore each facet is the convex huIl of
some k points of VI and some d - k points of V2• On the other hand,
for every choice of k points of VI and of d - k points of V2 , the convex
hull of their union is a facet F of P since the remaining two vertices of P
are both in that open halfspace determined by aff F which contains O.

Consequently, each Vi E VI is beneath d - k + 1 facets of P, while each
Vj E V2 is beneath k + 1 facets of P. If Tm is the d-simplex determined by
the vertices of P different from Vm , by theorem 5.2.1 those facets of P
for which Vm is beneath them are also facets of Tm • Therefore Vi E VI
is beyond d + 1 - (d - k + I) = k facets of 7;, while vj E V2 is beyond
d + I - (k + I) = d - k facets of ~. In other words, P is of the com
binatorial type t; and also of the type T~ -k' and therefore the types
Tt and T~-k coincide. This establishes

1. There exist [td] different combinatorial types ofsimplicial d-polytopes
with d + 2 vertices. A polytope t; of the kth type, k = 1,2" ", ad], is
obtained as the convex hull of the union of ad-simplex T d with a point
which is beyond k facets of T". A polytope of the same type results if the
point is beyond d - k facets of T". The polytope Ttt dJ is combinatorially
equivalent to the cyclic polytope C(d + 2, d).

In order to prove the last assertion, it is enough to note that if
x o, XI"' " X d, X d+ I are the vertices or' C(d + 2, d) arranged according
to their order on the moment curve, Gale's evenness condition (theorem
4.7.2) implies that any one-to-one correspondence between the points
of VI (respectively V2 ) and the x;'s with odd (respectively even) i estab
lishes a combinatorial equivalence between Ttt dJ and C(d + 2, d).

The proof of theorem I shows also thath_I(Tt) = (k + I)(d - k + I).
This shaIl be generalized in the next theorem.

2. For 0::;; m ::;; d - I, the number ofm-faces ofTt is

isTt) = ( d + 2 )_( k + 1 )_(d - k + I).
d-m+1 d-m+1 d-m+1
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PROOF The total number of (m + 1)-tuples of vertices of t; is

( d + 2) = (d d + 2 ). A given (m + 1)-tuple V* of vertices of Tt
m+l +I-m

determines an m-face of Tt if and only if there is a facet F of t; which
contains the (m + I)-tuple V*. Such a facet F exists, by the above, if
and only if neither VI nor V2 is contained in V* . In other words, counting

the number of m-faces of Tt, from the total of (d + 2) (m + I)-tuples,
m+1

we have to exclude those which contain VI and those which contain V2•

The number of the former is ( d - k + I ) = (dd - k + I), while
m + I - (k + 1) - m + I

the number of (m + 1)-tuples of the latter type is

(m + I~ 7d '. k + I)) = C~ : ~ I) '
This completes the proof of theorem 2.

Because of the use we shall make below, it is worthwhile to amend the
expressions for fm(Tt) given in theorem 2 so as to remain valid for all m.
As easily checked, the formula yields the correct valuesj; = I for m = - I,
fm = 0 for m < - I and m > d + I ; the values for m = d and m = d + I
are too small by 1. Therefore an expression valid for all m is

fm(n) = (d ~ : ~ I) - C~ : ~ I) - (:=~: ~) + Jd•m+ Jd + I .m ·

We turn now to the problem of finding the polytopes Tt which have a
maximal or a minimal number of m-faces, m = 1,2" ", d - 1. Since for
k < [td] we have

(
k+2 ) ( k+1 ) (k+l) (d-k)

d-m+1 - d-m+1 = d-m :s; d-m

(
d - k + l ) (d-k)

= d-m+1 - d-m+1

= (d - k + 1) _ Id- (k + 1) + I),
d-m+1 d-m+1

with strict inequality if and only if k :s; m, it follows that

(i) for m < [td]

j~(T~) < fm(T~) < . .. < fm(T~) < fm(T~ + I) = ui: + 2) = .. . = fm(Ttt dl ) ;
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(ii) for In ~ ltd]

Hence we have
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3. For every simplicial d-polytope P with d + 2 vertices, and for every
m = I, 2, . . . , d - 1.

fm(T1) ~ fm(P) ~ fm(T1tdl)'

If fm(P) = fm(T1) for some m with I ~ m ~ d - I , then P = T1· If
fm(P) = f m(T ft dj) for some m then : if ad] - 1 ~ m ~ d - 1, P = Tftdl;
if I s m < ltd] - I , P = Ttfor some k satisfying m + 1 ~ k s [!d] .

Let now P be a d-polytope with d + 2 vertices which is not simplicial.
Then all but one of the vertices of P are contained in a hyperplane, and
P is a d-pyramid having as basis a (d - I)-polytope PI with d + 1 =
(d - 1) + 2 vertices. If PI is a simplicial (d - I)-polytope then PI = Tt- I

for some k with 1 ~ k ~ t(d - 1); if PI is not simplicial then it is a
(d - I)-pyramid with (d - 2)-basis P2 which has d = (d - 2) + 2 vertices.
Proceeding by induction we obtain

4. Ea ch d-polytope P with d + 2 vertices is, for suitable rand k with
o~ r ~ d - 2 and 1 ~. k ~ [t(d - r)], an r-fold d-pyramid with (d - r)
dim ensional basis Tt- r. Denoting such P by Tt·r we have

f, (Tt· r ) = ( d+ 2 )_ (k + r + 1) _ (d - k+ 1) + ( r + 1 )
m d-m+I d-m+I d-m+I d-m+I

for all m = 0, 1, . . . , d - 1. There are [td2
] different combinatorial types

ofd-polytopes with d + 2 vertices.

PROOF Clearly Tt,O = yt. In order to establish the expressions
given for uir: it is enough to combine the values given above for
fm(Tt) (in the form valid for all m) with theorem 4.2.2. Thus

fm(Tt·
r)

= ~ (~km -i(Tt-r)

= L (r){(d - r + 2) _( k + 1 )
i i m-i+I m-i+k-d+r

(
d - r - k + 1) }

- m - i _ k + ~d-r.m - i + ~d -r+ I ,m-i
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= (d + 2) _ ( k+ r + 1 )_ (d - k+ 1)
m+l m+k-d+r m-k

101

which equals to the expression given above. Since Tt·r is not of the same
combinatorial type as Tt:· ... unless d = d*, r = r* and k = k*, the
number [td 2

] of different combinatorial types follows easily from the
inequalities 0 ~ r ~ d - 2 and 1 ~ k ~ [t<d - r)].

From theorem 4 it follows that
(i) for r ;::: 0 and 1 < k ~ [!(d - r)],

fm(Tt~ I) s fm(Tt· r),

with strict inequality if and only if k ~ m + 1;
(ii) for r > 0 and 1 ~ k ~ [t<d - r)],

fm(Tt· r
) s fm(Tt,r-I) ,

with strict inequality if and only if d ~ m + k + r.
Hence we have

5. For every d-polytope P with d + 2 vertices and for every m with
1 ~ m ~ d - 1,

and

fm(P) s fm(Tft~) = fm(Tftd)) '

For any m, 1 ::; m ::; d - 1, equality holds in the first relation if and only
if P = T1·d

-
2

• For any m satisfying [!d] - 1 ::; m ::; d - 1, equality
holds in the second relation if and only if P = Tft~l = Tftdj'

Combining theorems 3 and 5, an easy computation yields the following
theorem.

6. If rand k are such that Tt·r has maximal possible number of m-faces,
then r = 0 and k = [!d] provided at least one of the following conditions
is satisfied:

(i) d is even and m ;::: ad] - 1;
(ii) Tt·r is simplicial (i.e., r = 0) and m ~ ad] - 1;

(iii) m ~ [!d].
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6.2 d-Polytopes withd + 3 Vertices

Th e structure of d-pol ytopes with d + 3 vertices is much more complicated
than that of d-polytopes with d + 2 vertices, and our knowledge of it is
very recen t. In the present section we shall restrict our attention to
simplicial d-pol ytopes with d + 3 vert ices and we shall present here a
method of describing them which will enable us to solve questions about
maximal, or minimal, numbers of faces of different dimensions. A dif
ferent method of investigation will be used in section 6.3 to determine
the po ssible combinatorial types of d-polytopes with d + 3 vertices, and
to solve some additional problems.

Let V = {vo , V , ," ', Vd + 2} be the vertices of a simplicial d-polytope
P c Rd. Without loss of generality we may assume that every d + 1
points of V are affinely independent. Let V' = V ~ {vd +2} = {vo,' . . , vd +, }
and P' = conv V'. Then there exists a unique decomposition V' = X u Y,
X (\ Y = 0 such that conv X (\ conv Y is a single point, which we take
as the origin O. Let us denote X = {xo, " ' , x.}, Y = {Yo, " ', y,}; then
s 2: I, t 2: 1, and s + t = d. Clearly, P" = con v X and p** = con v Y
are simplices of dimensions s respectively t. Each facet F of P' is the con vex
hull of the un ion of a facet of P" and a facet of P**. Th erefore the facets of
P' may be lab eled by a pair of integers (P, q), where 0 :$ p :$ s, 0 :$ q :$ t ,
in such a way that F(p, q) = conv(V' - {x p , yq }).

Let H* = aff X and H** = aff Y ; then R d = H* + H **, H* (\ H ** = {OJ.
Since X respectively Y are affi ne bases of H* respectively H** , there is
a un ique relation of the form

,
0 = L 21x i = L Jlj Yj

i~O j ~ O

,
where I A1 = I Jlj = 1

i~O j ~O

and J.t > 0 and Jlj > 0 for all i and j .
Also, each Z E Rd has a unique representation

S I

Z = L )' iX i + L JljYj
i ~O j ~O

s ,

with L Ai = L Jlj = 1.
i~O j ~ O

Since 0 E int P', Z will be beyond a facet F(p, q) of P' if and only if for some
K , 0 < K < I, we have K Z E aff F(p, q). Using the above representation of
oit follo ws that

L (, I.Pl*) L ( Jl
q *)Z = I , · - - k X , + Jl. - - Jl . y .

I "* I I J *))'
O S i S s I.p OS jS , u;

i* p i r «
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and therefore the condition AZ E aff F(p, q), i.e. Z E (I l K) aff F(p, q), becomes

K

Since 0 < K < 1 if and only if 11K > 1, a necessary and sufficient condi
tion for Z to be beyond F(p, q) is ),P/),; + IJ.qllJ.: < 1. In other words, Z is
beneath F(p, q) if and only if Api),; + 1J.q/1J.: > 1.

Let us assume now that Z = Vd + 2, and that the labeling of X and Y is
such that Aol)'6 > AdA! > )'2f).! > . ,. > AJAi and 1J.011J.6 > IJ. dlJ.! >
1J. 211J.! > '" > IJ.rllJ.r Then, clearly , if Vd+ 2 is beneath F(p, q) it is also
beneath every F(p', q') with p' :s; p, q' :s; q.

We shall represent the facial structure of P' by a diagram in a (p ; q)

plane, consisting of the latti ce points (p; q) with 0 :s; p :s; s, 0 :s; q :s; t, the
facet F(p, q) of P' being repre sented by the point (p ; q). For the polytope
P = conv(P' u {vd + 2}) we shall use the following representation in the
(p; q)-diagram of P' : a point (p; q) of the diagram shall be marked, e.g. by
a star, if and only if Vd + 2 is beneath F(p, q). For given P', th is sta r -diagram

of P is clearly determin ed by P in a unique way. From our conventions it
follows that if (p ; q) is starred so are all (P' ; q') with 0 :s; p' :s; p and
o:s; q' :s; q. Thus the general ap pearance of a star-diagram is as illustrated
in figure 6.2.1.*

From the developments so far it is not clear whether every sta r-diagram
satisfying the above cond ition s is indeed the star-diagram of a polytop e.
The answer to this query is affirmati ve (see theorem 6.3.4), but we do not
need it for the purpose of the present discussion. Our aim here is to deter
mine the changes in the facial structure of P accompanying the addition
or delet ion of certain sta rs in the star-diagram. Though it would require
a certain amount of technicalities we could (without reference to poly
topes) define 'faces' of various dimensions of star-diagrams, investigate
changes in their number, and determine the extremal values. To solve the
extremal problem for polytopes we would only have to show that the
star-diagrams with an extremal number of 'faces' are indeed star-diagrams
of polytopes. Though not invoking theorem 6.3.4 (the proof of which is
independent of the present considerations), we shall refrain from this

• Note that for every polytope P the points (0; 0), (0; 1) and (l; 0) of the sta r-dia gram
of P are necessarily sta rred. while (s; t) is necessaril y without a sta r.
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1=4 •
3 • •
2 • !If • ..

• • .. •
0 .. .. • .. •

0 2 3 4 5=5

Figure6.2.1

complication; nevertheless, we shall explicitly indicate polytopes cor
responding to the extremal values off...

Using theorem 5.2.1, we shall investigate the change of f..(P) resulting
from the addition of a star to a point (b; c) of the star-diagram. According
to the definition of star-diagrams the assumption that (b; c) may have a
star as well as be without it implies that (b; c) is a point of the star diagram
such that all points (p ; c)and (b ; c) with p < b, q < c, have stars, and those
with p > b or q > 0 do not have stars . If an (m + r + lj-face F of P' has
vertices {xio,,,., xi m ; Yjo''' ', YjJ, then F is contained in all the facets
F(p , q) of P' such that p ¢ {io," . , im } and q ¢ flo, '" ,j,}. Now, if
F = conv{xio" ",xim;Yjo, · .. ,YjJ is a face of P' with the property that
Vd + 2 is beyond all the facets of P' containing F if (b; c) is not starred, but
Vd + 2 becomes beneath at least one facet (namely Fib, c)) of P' containing
F if (b; c) is starred, then necessarily

b¢{io,i1 , · .. ,im } =' {O,I, .. . ,(b-l)}

and

Therefore, putting m + r + 1 = k, it follows that there are

(
s - b )( t - e )

m+l-b r+l-e
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such k-faces with given m and r, and thus there are altogether

(
s-b )( t-c )

m + r~1 = k m + I - b r + I - c
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= (S + t - b - C)
k-b - c+1

k-faces of P' which are faces of P if (b; c) is starred, and are not faces of P
if (b ; c) is not starred.

Unless m = s - 1 and r = t - I, the same k-faces of P' will serve as
bases of pyramidal (k + lj-faces of P with apex Vd+ 2 if (b ; c) is starred,
and not be bases of such faces if (b ; c) is not starred. On the other hand,
a similar counting argument shows that the starring of (b; c) will disqualify

such k-faces of P' to serve as bases of (k + l j-faces of P containing Vd + 2,

while they are such ba ses if (b ; c) is not starred.
Therefore, the increase tlk(b, c) in the number of k-faces of P which

results from the starring of (b ; c) equals

(
s - b )( t - c )tlk(b, c) = L

m+r+ 1 = k m + I - b r + I - c

(
s-b )( t-c )

+m+r +~=k -l m + I - b r + I - C

m +r];=k -l (m + I ~ (s - b))(r + I ~ (r - c))

(
s-b )( t- C) ( S-b)

=~ m+l-b k-m- c +~ m+l-b

(
; t- c ) ( b)( c )

x k-l-m-c -~ s-m-I t-k+m+1

+ (S - t - b - C) _ ( b + c )

k-b-c s + t - k

= (S + t + I - (b + C)) _ ( b + c ).

s + t - k s + t - k
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Hence
tlk(b, c) > 0 if and only if b + c ::s; k + 1 and 2(b + c) < d + 1;
tlk(b, c) < 0 if and only if b + c ~ d - k and 2(b + c) > d + I ;
tlk(h, c) = 0 ifand only ifeither k + 1 < b + c < d - k, or 2(h + c) = d + 1.

Taking into account that b ::s; sand c ::s; t, it follows that };.(P) will be
maximal provided s = ltd] , t = d - ltd] = It(d + 1)], and all the points
(b; c) with b + c < t(d + 1) are starred. That such a star-diagram may
be realized by a d-polytope is shown by the cyclic d-polytope C(d + 3, d)
with d + 3 vertices. Using Gale's 'evenness condition' (section 4.7) it is
easy to see that thi s is indeed the star-diagram of C(d + 3, d) ; for even
d = 2n the d + 3 points of the moment curve should appear in the order

while for odd d = 2n + 1 they should be preceded by Yn + i 

This proves

1. For every k, 1 ::s; k ::s; d - 1, and every simplicial d-polytop e P with
d + 3 vertices,

Ik(P) s };.(C(d + 3, d)).

Taking into account the lower semicontinuity of };.(P) as a function of
P (see theorem 5.3.1) this implies

2. For every k, 1 ::s; k ::s; d - 1, and every d-polytope P with d + 3
vertices,

};.(P) ::s; };.(C(d + 3, d)).

The proof of theorem 1 may be strengthened in case d = 2n is even.
In this case
tlk(b, c) > 0 if and only if b + c ::s; k + 1 and b + c ::s; n;
tlk(b, c) < 0 if and only if b + c ~ 2n - k and b + c ~ n + 1;
tlk(b, c) = 0 if and only if k + 1 < b + c < 2n - k.
If, moreover, k ~ n - 1 then these criteria simplify and yield:
tlk(b, c) > 0 if and only if b + c ::s; n;
tlk(b, c) < 0 if and only if b + c > n.
Thus in case d = 2n and k ~ n - I the star-diagram maximizing};.(P) is
uniquely determined by the condition that s = t = n and all points (b ; c)
with b + c ::s; n are starred. Hence
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3. For even d = 2n, if P is a simplicial d-polytope with d + 3 vertices
such that fk(P) = !k(C(d + 3, d» for some k satisfying n - 1 ~ k ~ 2n - 1,
then P is combinatorially equivalent to C(d + 3, d).

Our next aim is to strengthen theorem 3 by showing that it remains
valid for all d-polytopes with d + 3 vertices. Let P be a nonsimplicial
d-polytope with d + 3 vertices; we shall derive a contradiction from the
assumption that fk(P) = fk(C(d + 3, d» for some k satisfying n - 1 ~ k
~ 2n - 1. By theorem 5.3. I, without loss of generality we may assume
that P has only one nonsimplicial facet F, such that lo(F) = d + 1 and F
is a simplicial (d - 1)-polytope. Let V be a vertex of F and let Q be the
convex hull of the vertices of P different from V. Using the notation from
pages 102 and 103, let

Xu Y = vert Q , X n Y = 0, conv X n conv Y = {O},

and let Y = I~= 1 AiXi + I~ = 1 I1jYj , with I~= 1 Ai = I~= 1 I1j = 1. Without
loss of generality we may assume that Ai/At -# },JAk and 11/l1j -# I1Jl1t for
i -# k -# j. Let L be a straight line such that L n P = {Y}, and such that L
is not contained in the affine hull of any proper face of P. Let Y+ , V- be
points of L strictly separated by V, and let P + = conv(Q u {Y +}) and
P- = conv(Q u {V -}). By the lower semicontinuity offk(P) we shall have
fk(P) s fk(P+) and fk(P) ~ .h (P- ) for all V+, V- sufficiently near to Y.
Assuming, without loss of generality that Q is simplicial it follows that
r: and P- are simplicial. Since the difference between e: and P- is
that, relatively to Q, y+ and Y- differ in their position (beneath or
beyond) with respect to some facets of Q, by theorem 3 it is not possible
that both r: and P- have the maximal number of k-faces, for some k
with n - 1 ~ k ~ 2n - 1. But fk(P) ~ min{.fk(P+), fk(P -j} and thus we
established

4. For even d = 2n, if P is a d-polytope with d + 3 vertices such that
lk(P) = lk(C(d + 3, d» for some k satisfying n - 1 ~ k ~ 2n - 1, then P
is combinatorially equivalent to C(d + 3, d).

This clearly implies the case v = d + 3 of theorem 7.2.3.
In order to find the minimal value offk(P) for simplicial P we note that

whenever (b + c) + (b' + c') = d + 1. It follows easily that (for given s
and t) fk(P) is minimal if and only if either only (0 ; 0) is starred or if all
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points except (s ; t) are starred. Since the first case does not yield a poly
tope with d + 3 vertices, the polytope P minimizingh(P) for given sand
t is the convex hull of T~ with a point which is beyond one and only one
facet of T~. Since in this situation

h(P) will be minimal (for variable s, t) if and only if T~ minimizesh(T~).

By theorem 6.1.3 this happens if and only if s = I. Hence

5. For every simplicial d-polytope P with d + 3 vertices, and f or each k
sati sfying 1 :5: k :5: d - I,

fk(P);;::: (d + 2) + (d) _ ( d ) _ 2Dk•d - l .
k+1 k k-I

Equality holds for some k, 1 :5: k :5: d - I, if and only if Pis combinatorially
equivalent to the convex hull ofT1 with a point which is beyond one and only
one fa cet of T1·

6.3 Gale-Diagrams of Polytopes with Few Vertices

In the present section we shall see how the Gale-diagrams, discussed in
section 5.4. may be used to solve problems about d-polytopes with d + 2
or with d + 3 vert ices. The new results of this section are due to M. A.
Perles (private communication).

Let, first, P be a d-polytope with d + 2 vertices, and let V = vert P.
The Gale-transform V is a (d + 2)-tuple of points in R I = R (since in
this case n = d + 2 and thus n - d - 1 = 1). The Gale-diagram V is
contained in the 3-point set {O, I , -I } c R, those points having multi
plicities mo, m I' m _ I assigned in such a way that mo ;;::: 0, m I ;;::: 2, m _ I ;;::: 2,
and mo + m I + m _ 1 = d + 2 (see theorems 5.4.2 and 5.4.3). If P and P'
are two such polytopes, (mo, m 1, m -1) and (mo, m'I' m': 1) being the associ
ated multiplicities, then P and P' are combinatorially equivalent ifand only
if either (mo,ml,m_d = (mo,m'l ,m'_d or (mo,ml,m _ l) = (mo,m'_I,m'd·
P is simplicial if and only if mo = O. It is rather easy to deduce from these
observations all the results of section 6.1 ; this task is left to the reader as
a useful exercise.
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We turn now to the much more interesting discussion of d-polytopes P
with d + 3 vertices. Their Gale-diagrams are contained in the set
C+ = {O} u C, where C denotes the unit circle centered at the origin 0
of R2

.

For ease of explanation and pictorial representation, when drawing a
Gale-diagram V of V = vert P, we shall show the circle C as well as all
the diameters of V, that is, diameters of C which have at least one end
point in V. Points of V shall be shown in the illustrations by small circles,
and if a point of V has multiplicity greater than 1, its multiplicity will be
marked near the point.

The reader is invited to verify (using theorems 5.4.1 and 5.4.5) that the
seven 3-polytopes with 6 vertices, shown by their Schlegel-diagrams in
figure 6.3.1, have Gale-diagrams isomorphic to those shown beneath the
Schlegel diagrams. (The letters in the diagrams should help the identifica
tion.)

Using theorem 5.4.5 it is easy to verify that if V, V' are Gale-di agrams
of two d-polytopes P, P' with d + 3 vertices each, and if the only dif
ference between V and V' is in the position of one of the diameters-its
position in V' being obtained by rotating the corresponding diameter in
V through an angle sufficiently small not to meet any other diameter
then V and V' are isomorphic (and P and P' are combinatorially equiva
lent). For example, the Gale-diagrams in the last row of figure 6.3.1 are
isomorphic to those above them.

Bya repeated application of this remark we see that each combinatorial
type of d-polytopes with d + 3 vertices has representatives for which the
consecutive diameters of its Gale-diagram are equidistant. We shall call
such Gale-diagrams standard diagrams.

Another change which may be performed on a Gale-diagram V and
results in an isomorphic Gale-diagram is as follows:
If D 1 and D2 are consecutive diameters of the Gale-diagram V, each of
which has only one endpoint in V, and these two points of V are not
separated by any other diameter of V, we may omit D2 (\ V and D2 if
we simultaneously increase the multiplicity of D 1 (\ V by the multiplicity
of D 2 (\ V. For example, the first four Gale-diagrams in figure 6.3.2 are
isomorphic (but the fifth is not isomorphic to any of them). Clearly, the
change opposite to the one just described also yields a Gale-diagram
isomorphic to the given one. It follows that each combinatorial type of
d-polytopes with d + 3 vertices may be represented by Gale-diagrams
which are either contracted, or else distended-the first meaning it has
the least possible number of diameters among all isomorphic diagrams,



110

e-=-----".

d

CONVEX POLYTOPES

.".....----".e c~----"..b

"-----~e

firc------....,.

e""'- - - - - ""

e

a

b~t
c d

b

a

d
a~-~If------6b

c

Figure 6.3.1



3

POLYTOP ES WITH FEW VERTICES

2

3

III

Figure6.3.2

the latter indicating the largest possible number of diameters.
Using the above notions and the facts mentioned in section 5.4, it is

easy to establish the following result.

1. Two d-polytopes with d + 3 vertices are combinatorially equivalent if
and only if the contracted (or else, the dist ended) standard form s of their
Gale-diagrams are orthogonally equivalent (i.e. isomorph ic under an
orth ogonal linear transformation of R 2 onto itself ).

Theorem I clearl y enables one to determine, with relativel y little
effort , all the combinatorial types of d-polytopes with d + 3 vertices.
Thi s task is particularly simple for simplicial polytopes; in this case
o¢ V, and no diameter of V has both endpoints in V. Therefore the
contracted Gale diagram has an odd number (~3) of diameters, the points
of V being situated on alternate endpoints of the diameters. The dif
ferent possible contracted standard Gale-diagrams for d = 4, 5, and 6 are
shown in figure 6.3.3.

Counting the distended standard Gale-diagrams, Perles establi shed
the following gener al formul a for the number cs(d + 3, d) of different
combinatorial types of simplicial d-pol ytopes with d + 3 vertices.
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Figure 6.3.3. Standard contracted Gale diagrams of simplicial
d-polytopes with d + 3 vertices, for d = 4, 5, 6
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2. Let d + 3 = 2~Op~1 . .. P'k\ where the p/s are distinct odd primes,
(.(0 ~ 0, a, ~ 1 for i = 1"", k. Then cs(d + 3, d) equals

(Iipi Y j Il pi! . 2g )

j;! je{iIY; <~l Pj

k

where g = 2~o n pY
j; !

A simpler form of this formula, using Euler's lp-function, is

c.(d + 3, d) = 2[d/2) - [d + 4J + 1 L: lp(h). 2(d+3)/h .
2 4(d + 3) h odd divisorofd+ 3

Figure 6.3.4. Standard contracted Gale diagrams of nonsimplicial,
nonpyramidal 4-polytopes with 7 vertices
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(Euler's cp-function is defined by

cp(h) = h Il
p prime div isor of h

For small values of d, the values of c.(d + 3, d) may be found in table 1.
Similarly, for small d it is not hard to determine all the different combina

torial types of d-polytopes with d + 3 vertices. Contracted standard
Gale-diagrams of the 19combinatorial types ofnon-simpliciaI4-polytopes
with 7 vertices which are not 4-pyramids over 3-poiytopes with 6 vertices,
are shown in figure 6.3.4. The numbers c(d + 3, d) of different com
binatorial types of d-polytopes with d + 3 vertices (reproduced for d S 6
in table 2) have been determined by Perles for d = 4, 5, 6. No general
formula for c(d + 3, d) has been found so far, but Perles established

3. Th ere exist positive constants c 1 and C2 such that

2 + 6f3 + 12f32
where y = 2.83928676· . . is the algebraic number y = 1 + 2f3 -'- 4f32 '

f3 denoting the only real root of the equation

44f33 + 4f3 - 1 = o.
Using distended Gale-diagrams it is easy to prove the following result

(see section 6.2 for the notation) :

4. Every star-diagram in which (0; 0), (0; 1), (1 ; 0) are starred, and (s ; r)
is not starred, is the star-diagram of some simplicial d-polytope with d + 3
vertices.

The proof of theorem 4 is left to the reader. The idea is obvious on hand
of figure 6.3.5, which shows a star-diagram (with s = 5 and t = 4) and a
distended Gale-diagram of the same combinatorial type (the points
2,xo, · . . , Xs were first chosen on C).

6.4 Centrally Symmetric Polytopes

A polytope P E [JJd is centrally symmetric provided - P is a translate of P.
In the sequel we shall usually make the tacit assumption that the center
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of the centrally symmetric polytope P is at the origin 0, i.e. that P = - P.
The centrally symmetric d-polytopes form an interesting and important
subclass ?/~ of ?/d.

The requirement of central symmetry imposes certain natural and
obvious restri ctions on the polytopes and on the numbers fk(P) of their
k-faces. The most obvious property is the evenness of f k(P) for all P E ?/~

and °:::;; k :::;; d - 1.
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It is the aim of the present section to discuss a less obvious restriction
to which centrally symmetric polytopes are subject, a restriction which
implies that in general there do not exist centrally symmetric analogues of
the neighborly polytopes.*

Let P be a centrally symmetric d-polytope, d ~ 2, with 2v vertices.
Then P obviously has at most t2v(2v - 2) = 2v(v - 1)edges, this number
being achieved only if every pair of different vertices with non-zero sum
determine an edge. Since no 3-polytope F with 10(F) > 4 satisfies

(lo(F») . . ibl ~ P ~4II(F) = 2 ,It follows that/l(P) = 2v(v -1) IS POSSI e tor e er«,

10(P) = 2v, only if P is simpliciaL We shall prove, however, that this is
altogether impossible if v ~ 6. Clearly, this results from

1. No centrally symmetric 4-polytope with 12 vertices has 60 edges.

Note that since 21iP) = 12(P) = 2/1(P) - 2/0(P) for every simpl icial
4-polytope P (see chapter 9), the above assertion is equivalent to the non
existence of a centrally symmetric 4-polytope with 12 vertices and 48
facets, or with 96 2-faces.

PROOF Assuming the assertion false, let P be a centrally symmetric
4-polytope with 12 vertices and 60 edges, and let "Y = {± It;11 ~ i ~ 6}
be the vertices of P. No four of the points VI' ·· . , V6 are linearly dependent,
since no centrally symmetric 3-polytope with 8 vertices has 24 edges.
Every four pairs of opposite vertices from "Y determine therefore a
4-octahedron (with 24 edges) while every five such pairs form a centrally
symmetric polytope with 40 edges and 30 facets.

The proof will consist of the following parts :
(i) We shall show that centrally symmetric 4-polytopes with 10 vertices

and 40 edges have a uniquely determined combinatorial type, exemplified
by the polytope with vertices ±e1, ±e2' ±e3, ±e4 , ±(e1 + e2 + e3 + e4 ) ,

where the e/s are unit vectors in direction of the coordinate axes in a
Cartesian coordinate system.

(ii) By a counting argument we shall show that two of the pairs from "Y
must be in one of two definite configurations with respect to the 4-octa
hedron determined by the remaining four pairs.

(iii) We shall complete the proof by showing that neither of the two
special configurations has all the desired properties.

• Neighborly polytopes are generalizations of the cyclic polytopes : we shall discuss
them in chapter 7 and in section 9.6.
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(i) Let K be a centrally symmetric simplicial4-polytope with 10vertices.
Using, if necessary, an appropriate affine transform, we may assume that
the vertices of K are ±e 1, ±e2' ±e3, ±e4, and ±e = ±(<X, fl, y, <5), where
the e, denote unit vectors as above. Without loss of generality we assume
that <X > fl > Y > <5 > 0 ; clearly also <X + fl + Y + <5 > 1.

Let Q be the 4-octahedron conv{ ±e 1, ±e2, ±e3, ±e4}. The 16 facets
of Q are of five types :

I. One facet, denoted by (+ + + +), which has vertices e 1, e2, e3, e4'
II. Four facets, one of which is denoted by (+ + + -) and has vertices

e 1, e2, e3, e4' the other three, defined analogously, being
(+ + - + ), (+ - + + ),(- + + + ).

III. Six facets, designated by the rather obvious notation (+ + - - ),
(+ - + - ), (+ - - + ), (- + + - ), (- + - + ), (- - + + ).

IV. Four facets (+ - - - ), (- + - - ), (- - + - ), (- - - + ).
V. One facet (- - - - ).

We note, first, that e is not beyond any facet of Q of types IV or V;
indeed, ife were beyond (+ - - - ), for example, then rx - fl - y - () > 1;
since rx, fl, y, <5 are positive, it would follow that rx ± fl ± y ± <5 > 1 for
every choice of signs. But this would imply that e is beyond all facets of
Q which contain e1, and therefore e1 would not be a vertex of K.

Hence e is beyond (+ + + +) and possibly beyond some facets of
types II and III.

Our assumptions about the magnitudes of rx, fl, y, <5, imply : Ife is beyond
a certain facet of type II, it is also beyond those facets of type II which
have the - sign more to the right. Thus if e is beyond (+ + - +) this
implies that e is beyond (+ + + - ).

Similarly, if e is beyond a facet of type III, it is beyond the facets having
the - signs more to the right, and also beyond those having a + sign
instead of a - sign.

Note that e is beneath (- - + +) and (- + - +), and that e is not
beyond both (- + + - ) and (+ - - + ).

It follows that only the following possibilities arise. It may be verified
that all the cases are indeed realizable by centrally symmetric 4-polytopes.

Ife is beyond (- + + - ) then K has 26 facets and 36 edges ;
(+ - --+) 22 32

(+ - - + ) and ( - + + + ) 24 34
(+ - + -) 24 34

(+ - + - ) and ( - + + + ) 26 36
(+ + - -) 24 34

(+ + - - ) and (+ - + + ) 26 36
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(+ + - - ) and ( - + + + )
(-+++)
(+-++)
(++-+)
(+++-)
(++++)

CONVEX POLYTOPES

28
30
28
26
24
22

38
40
38
36
34
32

It follows that the maximal possible number of edges, or facets, is
attained if and only if e is beyond all the facets of types I and II, and
beneath all the facets of types Ill, IV, and V. An equivalent description of
this case is to say that e is exactly beyond a certain facet (its 'central'
facet) and the four facets incident with it in its four 2-faces.

(ii) Let us now return to the polytope P E q>~ with 6 pairs of vertices and
48 facets. Taking any four pairs of opposite vertices and considering the
4-octahedron Q they determine, we may consider P as being obtained by
taking first the convex hull K of Q with one of the remaining pairs, and
then the convex hull of K with the last pair. Since K must have the maximal
possible number of edges, it must be of the type described above. There
fore, considering the two additional pairs we see that their mutual
relationship relative to Q may be described by specifying whether their
'central' facets

(a) are the same;
(b) have a common 2-face ;
(c) have a common edge.

In case (a) six of the facets of Qare facets of P; in case (b) no facet of Q is
a facet of P, while in case (c) four facets of Q are facets of P. Among the

(:) = 15 possible choices of Q by quadruples of pairs of vertices of P,

let ai' a2' a3 denote the number of occurrences of the cases (a), (b), (c).
Then, since each facet of P will be counted precisely once, we have
a l + a2 + a3 = 15 and 6a( + 4a3 = 48. Each solution of this system
satisfies either at > 0 or a3 > 0; thus the nonexistence of P will be estab
lished if we prove that in either of the two cases some edge which should
occur in P does not occur.

(iii) If a I > 0, let V5 and V6 be beyond the same facets of
Q = conv{ ± ViiI ::s; i ::s; 4}. Then, by exercise 5.2.11, the six facets beneath
which are ±V5 and ±V6 , separate the boundary of Q, and also the
boundary of P, into two simply connected parts, one of which contains
V5 and V6 in its interior, while - V5 and - V6 are contained in the interior
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of the other. Therefore P cannot contain the edges (VS, - V6), and
(V6 , - Vs)·

In order to complete the proof in case a3 > 0, we need a simple lemma.
Its proof is immediate on considering the projection of the 4-space
onto the plane determined by 0, X, Y, which carries aff Fo into a point.
Clearly, the lemma is generalizable to higher dimensions.

LEMMA Let Q be a 4-polytope, °a point of int Q, FI and F2 two facets
of Q such that Fo = FI n F2 is a 2-face of Q. Let X be a point beyond F2

such that the segment OX intersects FI , and let Y be a point beyond F2

and beneath Fl ' Th en X is beyond the hyp erplane aff(Fo u {Y}).

Assuming now that a3 > 0, let Q = conv{ ± ~ /1 :s; i :s; 4}, let
conv{ VI' V2 , V3 , V4 } be the 'central' facet for Vs, and let conv{ VI' - Vb
V3 , - V4 } be the 'central' facet for V6 . The edge (VI' V3 ) of K =
conv{ ~ 11 :s; i :s; 5} is contained in the following three facets of K :
conv{ VI ' - V2 , V3 , - V4 } , conv{ VI' - V2 , V3 , Vs}, conv{ VI' V3 , - V4 , Vs}.
Applying the lemma, with V6 = X, Vs = Y, conv{ VI' - V2 , V3 , - V4 } = F I ,

and either conv{ VI' - V2 , V3 , V4 } or conv{ VI' Vb V3 , - V4 } as F2 , we see
that V6 is beyond the facets conv{ VI' - V2 , V3 , Vs} and conv{ VI' V3 ,

- V4 , Vs} of K . Since V6 is also beyond conv{ VI' - V2 , V3 , - V4 } , it follows
that V6 is beyond all the facets of K which contain (VI' V3 ). Therefore
P = conv(K u {V6 , - V6 }) does not contain the edge (VI' V3 ).

This completes the proof of theorem 1.

6.5 Exercises

1. Derive the results of section 6.1 directly from Radon's theorem,
without using the notions of 'beyond ' and 'beneath'.

2. Show thatf.t-I(Tttdl) = [t(d + 2)2].
3. Using Gale transforms prove the following result of M. A. Perles ;

it complements theorem 5.5.4 and provides a partial affirmative solution
to Klee's problem about rational polytopes (see section 5.5). Let P c Rd

be a d-polytope with d + 3 vertices x I' . . . , X d + 3' and let s > 0; then
there exists ad-polytope P' c Rd with vertices X'I , "', X~+3' which has
the following properties :

(i) [x, - x;11 < s for i = 1,,,, , d + 3.
(ii) P and P' are combinatorially equivalent under the mapping

qJX j = x;,i = 1,"',d + 3.
(iii) x; has rational coordinates for i = 1"", d + 3.
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(iv) P and P' have the same affine structure (that is, for every X evert P,
dim aff X = dim aff {qJXj Ix, EX}.

4. It would be interesting to have a complete classification of centrally
symmetric d-polytopes with few vertices. Here 'few' means 2d + 2,
2d + 4, etc. While the discussion of the case 10 = 2d + 2 is probably
quite simple (though it seems that it has not been performed so far),
the result of section 6.4 indicates that the case 10 = 2d + 4 is likely to
be rather complicated. Probably a suitable variant of the Gale diagram
technique could be useful in this connection.

5. Prove the following result of M. A. Perles: If P is a projectively
unique d-polytope with d + 3 vertices, then its contracted standard
Gale diagram has one of the forms indicated in figure 6.5.1. (The con
ditions on the multiplicities m, are listed beneath each diagram.)

m,

m3

mo::O
mi :: 2 for i ::1

mo+ m1+ m2+ m3 +m. =d + 3

mo~O

m" m2::1 m31 m4~2

mO+m,+m2+m3+m. =d+2

Figure6.5.1

m5

mo::O
mi::1 for i ~ 1

mo+ . . , +m6 =d+ 3

6. Use Gale diagrams and property (iv) from page 87 to establish
the following result of M. A. Perles: If d + 3 points of Rd are in general
position (i.e. no d + 1 are contained in a hyperplane) then some d + 2
of them are the vertices of a polytope combinatorially equivalent to
C(d + 2,d) . (This is a strengthening of the result of exercise 2.4.12.)

7. (M. A. Perles) Let P be a d-polytope with at most d + 3 vertices,
and let G be the group of combinatorial automorphisms of.P (i.e. lattice
automorphisms of ~ (P». Then there exists a polytope P', combina
torially equivalent to P, such that each element of the group of com
binatorial automorphisms of P' (which is isomorphic to G) is induced
by a symmetry of P' (i.e. an orthogonal transformation of P' onto itself).
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6.6 Remarks

121

The classification of simplicial d-polytopes with d + 2 vertices (or of
their duals) is well known. Thus, a discussion is given in Schoute [1]
and in Sommerville [2], showing that there are ad] different combinatorial
types of such polytopes. The treatment of the general d-polytopes with
d + 2 vertices seems not to have been published before, although traces
of it may be found in various papers (see, for example, Grunbaum
Motzkin [2]; compare also section 2.3).

The notion of the star-diagram of a simplicial d-polytope with d + 3
vertices seems to be new. In proving the case k = d - 1 of theorem 6.2.1,
Gale [5] develops a correspondence between the facets of such polytopes
and cyclic triangles in an oriented complete graph with d + 3 nodes.
Gale [4,5] also established, by methods different from those used here,
the cases m = d - 1 of theorem 6.1.3 (d = 2n) and k = d - 1 of theorem
6.2.3.

The results of section 6.3 are due to M. A. Perles (private communica
tion).

Our knowledge of the numbers cs(v, d) or c(v,d) of different com
binatorial types of simplicial, or of all, d-polytopes with v vertices is very
limited; no general results are known for v ~ d + 4. Correcting an earlier
attempt of Bruckner [3], Grunbaum-Sreedharan [1] have recently
shown that cs(8,4) = 37. The available information on c(v, d) and cs(v,d)
is reproduced in tables 1 and 2.
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6.7 Additional notes and comments

The number of d-polytopes with d +3 vertices.
There is interest in both explicit formulas and the asymptotic growth of the
numbers c{d + 3,d), cs{d + 3,d) and cn{d + 3,d) of all, resp. all simplicial,
resp. all simplicial neighborly d-polytopes with d +3 vertices.
o For cs{d + 3,d) a formula without proof appears as theorem 6.3.2 in this

book-the proof is left to the reader (that is, to you) as an exercise. You
should also try to derive the asymptotics from it.

o For c(d +3,d) a formula was given by Lloyd [a], but that one is not correct:
For d ~ 4 it does not produce the (correct) values determined by Perles, see
page 424. However, McMullen has remarked that Lloyd' s formula produces
the correct asymptotics, as announced in theorem 6.3.3.

o For even d all neighborly d-polytopes with d +3 vertices are cyclic (in par
ticular, simplicial) by theorem 7.2.3; thus cn{d +3,d) = 1 for even d . For
odd d Altshuler-McMullen [a] derived a formula for c«(d +3, d) . McMullen
[e] furthermore derived a formula for the number of (not necessarily simpli
cial) neighborly d-polytope s with d +3 vertices.

The numbers oftypes ofspheres and of polytopes.
A surprising discovery was that there are "by far more spheres than polytopes":
In a wide range of parameters (with n ~ d +4, d ~ 4), the fraction of poly
topally realizable types among the combinatorial types of simplicial (d - 1)
spheres with n vertices is extremely small.

There are few polytopes: Using upper bounds on the topological complexity
of real algebraic varieties (by Milnor, Thorn, Warren, Oleinik and Petrovsky),
Goodman-Pollack [a] gave unexpectedly low upper bounds on the number of
simplicial d-polytopes. After improvements by Alon [a], we know

(
n - d ) nd/4 (n) d2n( I+O(I»
---;J s cs{n ,d) s c{n ,d):$ d

for the numbers of (simplicial) polytopes, where the o{l) denotes a term that
goes to zero as nld becomes large.

There are many spheres: A simple (but elegant) construct ion by Kalai [b]
provides "many simplicial spheres" as boundaries of shellable balls in the
boundary complexes of cyclic polytopes, and hence the lower bound

I (n-!(d+2}/2J)
2~ [(d+l}/2]

for the number of simplicial (d - I)-spheres with n vertices. Combined with
the Goodman-Pollack result, this implies for example that for all fixed d > 4,
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for sufficiently large n » d, most simplicial spheres are not polytopal. This
also holds for d = 4, according to Pfeifle-Ziegler [a), while Pfeifle [b) has
shown that all of Kalai 's 3-spheres are polytopal.

"Centrally symmetric neighborly" polytopes.
A centrally symmetric d-polytope, d ~ 4, with 2v » 2d vertices cannot be
centrally symmetric 2-neighborly in the sense that each vertex is adjacent to all
other vertices except for its opposite vertex: It must have many fewer edges
than the required number 2v( v - I). Conceptual proofs for this were given by
Burton [a) and by Schneider [a).

In contrast, centrally symmetric 2-neighborly simplicial 3-spheres with 2v
vertices exist for all v ~ 4 according to Jockusch [a); the first examples were
given by Grtinbaum [c) in 1969. According to a conjecture of Lutz [a) there
should even be centrally symmetric neighborly (d - I)-spheres with a vertex
transitive group action for all even d and n = 2v ~ 2d.

Strengthening theorem 6.4.1, Pfeifle [a) showed that there is not even a cen
trally symmetric neighborly fan in Rd with 2d +4 rays. In particular, there is
no "star convex" neighborly centrally symmetric 4-polytope with 12 vertices.

Central diagrams.
As suggested in exercise 6.5.4, "central diagrams" for dealing with centrally
symmetric polytopes with few vertices were developed by McMullen and Shep
hard [a).

However, the power of these is quite limited, at least for classification pur
poses . While centrally symmetric d-polytopes with 2d vertices are affinely
equivalent to the d-dimensional cross-polytope, a complete classification of the
centrally symmetric d -polytopes with 2d +2 vertices is out of reach . This can
be seen as follows : We may assume that the first 2d vectors are {±eI' · .. , ±ed}'
spanning a d-dimensional cross polytope. Now we take one extra point, and
try to classify the collections of facets of the cross polytope it "sees". Dually,
this means that we are trying to classify the vertex sets of ad-cube [-I,+ lJd
that can be cut off by a hyperplane. There are interesting results for d ~ 5 (see
Emamy-K.-Lazarte [a) and Emamy-K.-eaiseda [a», but the problem for gen
eral d is well-known to be intractable: It appears, for example, in the disguise
of a classification of knapsack polytopes (see e. g. Weismantel [a», threshold
gates (Muroga [a), Hastad [a», etc.

These fundamental problems vindicate the rather cumbersome, explicit argu
ments that GrUnbaum uses here to classify the centrally-symmetric 4-polytopes
with 12 vertices .



CHAPTER 7

Neighborly Polytopes

The neighborly polytopes, rediscovered barely a decade ago as a rather
freak ish family of polytopes, have in recent years gained importance and
received much attention due to their connection with certain extremal
problems (see section 10.1). In the present chapter we discuss the main
properties of neighborly polytopes.

7.1 Definition and General Properties

The present chapter is devoted to the study of an interesting and important
family of polytopes, the neighborly polytopes. We have already met
examples of neighborly polytopes-the cyclic polytopes C(v, d) discussed
in section 4.7.

Let k be a positive integer . Ad-polytope P shall be called k-neighborly
provided every k-membered subset V of the set vert P of vertices of P
determines a proper face F = con v V of P such that V = vert F.

Thus for d ::2: I every d-polytope is l-neighborly ; every d-simplex is
k-neighborly for each k satisfying I ~ k ~ d. Clearly , no d-polytope is
k-neighborly for k > d.

The example of the cyclic polytopes C(v, d) shows that for every d and
every v > d there exist d-polytopes with v vertices which are [td]-neigh
borly.

In order to gain more insight into the structure of neighborly polytopes,
we start with some simple observations.

1. If P is a k-neighborly d-polytope, I ~ k ~ d, then every koertices ofP
are affinely independent.

Indeed, let V = {vI' ... , vd be a k-membered subset of vert P. Assuming
V to be affinely dependent, let Vk E aff{v I ' • . . , Vk - I}' We take any WE vert
P, W ¢ V,and consider the k-membered set W = {VI " • • , Vk - h w} evert P.
Since P is k-neighborly, F = con v W is a face of P such that W = vert F .
Now, for each hyperplane H such that F = H fl P we have Vk E aff{VI'

•. . , Vk- I} c aff W c H ; thus Vk EF. Since Vk is a vertex of P, Vk is a vertex

122
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of any face of P which contains it. Hence we reach the contradict ion
l'k E vert F = W = {v t - .. . , Vk _ l' w} tJ Vk' which establishes our assert ion I.

As a consequence of theorem I we see that the convex hull of every k
members of vert P is a (k - I j-face of P; more precisely, it is a (k - 1)
simplex . On the other hand, since each (k - I)-face of P contains at least k
vertices, it follows that every (k - I)-face of P is a (k - I)-simplex. Hence
we have

2. If P is a k-neighborl y d-p olyt ope, and if 1 s k* ::s; k, then P is k*
neighb orly .

3. IfPisak-neighborl yd-polyt opeand V is a subset ofvert P, card v> k ,
th en conv V is k-n eighborly.

Our next aim is to show that no d-polytope different from a simplex is
'more neighborly' that the cyclic polytopes. More precisely, we have

4. If P is a k-n eighborly d-polyt ope and k > [!-d] then fo(P ) = d + 1;
that is, P is ad-simplex .

Indeed, assumingfo(P) > d + 1, let V e vert P contain d + 2 vertices
of P. By Radon's theorem 2.3.6 there exist sets W and Z such that W u Z
= V, W n Z = 0, and

(*) conv W n con v Z t= 0 .

Without loss of generality we may assume that card W ::S; [(d + 2)/2J
= [dI2] + 1 ::s; k. Because of (*) every supporting hyperplane H of P
which contains W must have a non-empty intersection with conv Z, and
therefore H«, vert Z t= 0. Therefore vert conv W properly contains I¥,
in contradiction to theorem 2, the fact that card W ::s; k, and the k
neighborliness of P.

7.2 [t dJ-Neighborly d-Polytopes

The most interesting neighborly polytopes are the [!d]-neighborly d
polytopes. The family of all [!d]-neighborly d-polytopes shall be denoted
by ,Kd, and the subfamily of ,Kd consisting of all simplicial members of
,Kd shall be denoted by ,K~ . Th e cyclic polytopes show that ..,.y '~ t= 0.
In the remaining sections of the present chapter, and in the following
chapters, we shall simplify ou r terminology by referring to members of
.A' d as 'neighborly d-polytopes'.
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The present section and section 9.6 are devoted to a more detailed
study of neighborly d-polytopes.

As a strengthening of the results of the preceding section we have

1. For even d = 2n every neighborly d-polytope is simplicial .. that is,
A i d = .%~ .

The proof is very simple. The theorem being obvious for d = 2, we
assume d > 2. Let F be a (d - 1)-face of P E.Ald; if F were not a simplex,
then f o(F) > d. By theorem 3 of the preceding section F is n-neighborly;
since dim F = d - 1 = 2n - 1and n > n - 1 = [! dim F), the inequality
fo(F) > d is in contradiction to theorem 4 of the preceding section.

There is no analogue to theorem 1 for odd d = 2n + 1. Indeed, every
(2n + 1)-pyramid with an n-neighborly 2n-polytope as basis is in .Al2n+ t

but-unless the basis is a 2n-simplex-is clearly not simplicial. Thus,
,Ai 2n+t contains .AI; n+t as a proper subfamily.

Additional information is available for the families .AI~ of simplicial
neighborly d-polytopes. From the definition of neighborly d-polytopes it

fol1ows at once that if P E .AId has v = fo(P) vertices, thenh(P) = (k : 1)
for each k in the range 0 ~ k ~ [!dJ - 1. Now if P is simplicial , that is
P E Jii~, then theorem 9.5.1 implies

2. For P E Jii~ the numbers fitdl(P),,, ' ,fd-t(P) (as well as ft(P), .. · ,
fitdl - .(P)) are functions offo(P) and d only.

Explicit expressions for fk(P), where P E .AI~ and 1 ~ k ~ d - 1, in
terms offo and d, will be derived in section 9.6.

We mention here the fol1owingresult of Gale [4], which is a special case
of theorems 6.1.6 and 6.2.4.

3. IfP E .Al2n = .AI; nand ifv = fo(P) ~ 2n + 3, then P is combinatorially
equivalent to the cycli c polytope C(v, 2n).

Motzkin [4] (see also Gale [4]) claimed that theorem 3 holds without
the restriction v ~ 2n + 3. The results 1 and 2 above seem to lend addi
tional support to this assertion. However, we shal1see that Gale's theorem
3 is in a sense the maximal valid range of Motzkin's assertion. Indeed,
we have

4. Th ere ex ists a neighborly 4-polytope with 8 vertices which is not
combinatorially equivalent to the cyclic polytope C(8,4) with 8 vertices.
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The proof of theorem 4 will be furnished by constructing a neighborly
4-polytope N 8 with 8 vertices and by showing that N 8 is not combina
torially equivalent to C(8, 4).

In order to define N 8 let A, B, C, D, E, F, G be the seven vertices of the
cyclic polytope C(7,4), arranged according to increasing values of t on
the moment curve (t, t 2

, (3, (4) (see section 4.7 for the definitions and facts
used here). Then the 14 facets of C(7,4) are:* (A,B,C,D) , (A,B,C,G),
(A,B,D,E), (A,B,E,F), (A,B ,F,G), (A,C,D,G), (A,D,E ,G), (A,E,F,G), (B,C,D,E),
(B,C,E,F), (B,C,F,G), (C,D,E,F), (C,D,F ,G), (D,E,F,G). The edge (A,G) of
C(7,4) is obviously incident with the following five facets of C(7, 4) :
(A,B,C,G), (A,B,F,G), (A,C,D,G), (A,D,E,G), (A,E ,F,G). In the terminology
introduced in section 5.2, let X be a point beyond (A,B,C,G) sufficiently
near the centroid of (A,B.C,G) (that is, beneath all the other facets of
C(7, 4)); let Y denote the midpoint of (A,G). Then each point of the ray
{AX + (1 - A)YI A < O} is beneath (A,B,C,G) and beyond the other four
facets of C(7,4) which contain (A,G). Let Z = AX + (1 - A) Y, for a ;, < 0
sufficiently near to 0, so that Z is beneath all the facets of C(7,4) which
are not incident with (A,G). Defining N 8 as the convex hull of {Z} v C(7,4)
it is easily verified (with the help of theorem 5.2.1) that the 20 facets of
N 8 are : (A,B,C,D), (A,B,C,G), (A,B,D,E), (A,B,E,F), (A,B,F,Z), (A,B ,G,Z),
(A,C,D,Z), (A,C,G,Z), (A,D,E,Z), (A,E,F,Z), (B,C,D,E), (B,C,E,F), (B,C,F,G),
(B,F,G,Z), (C,D,E,F), (C,D,F,G), (C,D,G,Z), (D,E,F,G), (D,E,G,Z), (E,F,G,Z).
It is now obvious that N 8 is 2-neighborly, and that each of the edges (B,C),
(B,F), (C,G), (F,G) of N 8 is incident with exactly five facets of N 8•

This completes the proof of the assertion that N 8 is not combinatorially
equivalent to C(8,4), since an edge of C(8, 4) can be incident with either
3, or 4, or 6 facets of C(8,4), but never with exactly five facets .

It may be remarked that if the point X, used in the construction of N 8,

had been chosen near the centroid of (A,C,D,G), we would have obtained
another neighborly 4-polytope N; with eight vertices, such that N; is not
combinatorially equivalent to either C(8,4) or N 8'

It is immediate that the construction used in the proof oftheorem 4 may
be applied also to 4-polytopes with more than 8 vertices, as well as in
higher dimensions.

7.3 Exercises

1. Show that every member of ,;V2n+ 1 is quasi-simplicial.
2. Show that in case of odd d the analogues of theorems 7.2.3 and

7.2.4 are :
• Throughout this section a face with vertices A, B, 000shall be denoted (A. B. 000).
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If P E.AI: and fo(P) = d + 2 then P is combinatorially equivalent to
Cid + 2, d). There exist polytopes P E .Ald with fo(P) = d + 2, as well as
P E .AI : with fo(P) = d + 3, which are not combinatorially equivalent
with cyclic polytopes.

3. Prove that the vertices of every member of .Al 2n are in general
position in R 2 n

•

4. (Derry [2]) For every set A of d + 3 points in general position in Rd

there exists a projective transformation T permissible for A such that T A
is the set of vertices of the d-polytope conv T A, which is neighborly. Every
two such polytopes obtained from a given set A are projectively equivalent.

5. Let us call a finite set A c Rd k-neighborly [k-almost-neighborly]
provided conv A is a k-neighhorly d-polytope and A = vert conv A [for
every k-membered subset B of A, conv B c rei bd conv A]. Prove the
following Helly-type theorems (compare exercise 2.4.11):

(i) A c Rd is k-neighborly if and only if every B c A such that card B
= d + 2 is k-neighborly.

(ii) A c R d is k-almost-neighborly if and only if every B c A such that
card B ~ 2d + k is k-almost-neighborly.

The notion of k-almost-neighborly sets was considered (under the name
k- con vex sets ) by Mot zkin [6]. The 'Helly-number' 2d + k of (ii) could
probably be lowered to 2d + 1 (compare exercise 2.4.11). The assertion
in Motzkin [6] that (ii) remains true if 2d + k is replaced by d + 2 is easily
shown to be false for each d ~ 2.

6. Prove the following statements analogous to exercise 2.4.13 :
(i) Given integers d and v, with 2 ~ d < v, there exists an integer

m(d, v) with the following property: Whenever A c Rd consists of m(d, v)
or more points in general position, there exists B c A such that card B = v,
B = vert con v B, and conv B is a neighborly d-polytope. (Hint: Use
exercises 6.5.6 and 7.3.5(i), and Ramsey's theorem.)

(ii) Given integers k, d, v with 2 ~ 2k ~ d < v, there exists an integer
m'(d, k, v) with the following property : Whenever A c Rd satisfies
card A ~ m'(d, k, v) and dim aft" A = d, there exists Be A such that
card B = v, dim conv B = d, and B is k-almost-neighborly. (Hint: First
establish the existence of m'td, k. 2d + k), using an inductive argument
involving (i) and the remark on page 4; then apply the result of ex
ercise 7.3.5(ii) and Ramsey 's theorem, with q = 2d + k, PI = v, and
P2 = m'id , k, 2d + k).

7. Prove that ad-polytope P with v vertices is k-neighborly if and only
if each open hemisphere of 5v

-
d

-
2 contains at least k + 1 points of the

Gale diagram of P.
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7.4 Remarks

127

The first to discuss cyclic polytopes and to realize their neighborliness was
Caratheodory [1,2]. His results on cyclic polytopes (and, in particular, their
existence) were forgotten for a long time. Steinitz [6] mentions the existence
of (duals 00 neighborly 4-polytopes referring to Bruckner [3] (see below),
but is unaware of Caratheodory's work on them although he quotes
Caratheodory's paper [2] on the very next page. Sz.-Nagy [1] noted the
existence of 2-neighborly d-polytopes with up to [~d] vertices, and asked
whether this is the greatest possible number. The existence of 2-neighborly
polytopes, in particular such that have all vertices on a sphere, invalidates
the results of Chabauty [1,2] and partly of Chabauty [3]. Unaware of
Caratheodory's paper, Gale [2,3] and later Motzkin [4] rediscovered the
neighborly polytopes. Gale [2,3], inspired by H. Kuhn's accidental
discovery of a 2-neighborly l l-polytope with 24 vertices, established the
existence of k-neighborly (2k)-polytopes for every positive k. In an abstract,
Motzkin [4] described the generation of neighborly polytopes as convex
hulls of finite subsets of 'strictly comonotone curves' . Neighborly poly
topes seem to have been discussed in Fieldhouse's thesis [1] which,
however, was not published and was not accessible to the author. The
above exposition of properties of neighborly polytopes follows mainly
Gale [4], as elaborated in mimeographed lecture-notes of Klee [9].

In a certain sense, however, the history of neighborly polytopes begins
even before Caratheodory. In a paper published in 1909, Bruckner [3]
clearly had in mind the duals of 2-neighborly 4-polytopes. (Even earlier
in the booklet Bruckner [1], the 2-neighborly 4-polytopes with 7 or less
vertices were discovered ; Bruckner's examples were reproduced in
Schoute [1] and Sommerville [2]. However, Bruckner's discussion deals
not with 4-polytopes, but with Schlegel-diagrams, or, more precisely,
with 3-diagrams. In view of theorems 11.5.1 and 11.5.2 Bruckner's work
has only heuristic value as far as 4-polytopes are concerned. As shown by
theorem 11.5.2, one of Bruckner's [3] diagrams is indeed not a Schlegel
diagram of any 4 polytope.

If the mere discussion of appropriate 3-diagrams (or similar concepts)
is counted as occurrence of neighborly polytopes, even Bruckner [3] was
not the first discoverer. In 1905, in connection with the spatial analogue
of the 4-color problem for planar maps, Tietze [1] constructed, for every
n ;;::: 1, a partition of the Euclidean 3-space into n (unbounded) convex
sets, each two of which have a 2-dimensional intersection. In all fairness
to Bruckner, however, it must be said that although it is possible to modify
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Tietze's construction so as to obtain a partition of a 3-polytope into
3-polytopes, each two of which have an intersection which is a face of
both-this did not occur to Tietze in [1], and doing it takes some effort.
Tietze's paper [1], and the whole problem of 'neighboring polytopes' in
R 3 was forgotten for many years. (For a stimulating discussion see Tietze
[2]). In 1947 Besicovitch [1] gave a different construction, which was later
extended to Rd by Rado [1] and Eggleston [1]. The results of these papers
can be summarized as follows (compare Danzer-Grilnbaum-Klee [1],
p. 151, where some related problems are also discussed).

1. If Rd contains afamily ofm polytopes such that each i of them have a
(d - i + 1)-dimensional intersection for every i with 1::; i ::; d, then
m ::; d + 2. There exists such families containing d + 2 members.

2. There exist in Rd infinite families of closed convex sets such that each;
of the sets have a (d - i + 1)-dimensional intersection for all i with
1 ::; i ::; [Hd + 1)]. No families in Rd have this property for all i with
1 ::; i ::; 1 + [!-(d + 1)].

Clearly theorems 1 and 2 are related to the results on (duals of) neigh
borly polytopes although neither of them implies the other (compare
section 11.5).

Let a family f!1' of d-polytopes in Rd be called neighborly provided each
two members of f!1' have a (d - I)-dimensional intersection. While it
follows from theorem 2 that arbitrarily large families of this type exist
for each d ~ 3, there are many open problems if the members of f!1' are
subject to additional requirements.

One variant, due to Bagemihl [1], is to restrict f!1' to a family of d-sim
plices. Clearly, if d = 2, such a family contains at most 4 members. For
d = 3, Bagemihl [1] showed that the maximal number m(3) of members
of f!1' satisfies 8 ::; m(3) ::; 17 and conjectured that m(3) = 8, while Baston
[1] proved that m(3) ::; 9. It would be interesting to know whether, for
general d, the correspondingly defined m(d) satisfies m(d) = r.

In another variant (see Grlinbaum [6]) the members of f!1' are required
to be translates of the same d-polytope P. The maximal possible number
of members of r!J is in this case 3 for d = 2, and 5 for d = 3. In general ,
it equals to the maximal possible number of points in a stri ctly antipodal
subset of Rd (see Grlinbaum [6]); thus f!1' may contain 2d - 1 members
(Danzer-Grlinbaum [1]), and this is probably the correct upper bound.
The bound 2d - 1 (in Rd

) may be achieved even if the d-polytope P is
assumed to be centrally symmetric.
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Still another variant arises if the members of (//J are assumed to be
centrally symmetric. For d = 2 it is clear that the maximal possible
number of members of f!J is 4 ; however, already the case d = 3 is still open.

The number of similar problems may easily be increased, but their
solutions seem to be rather elusive. For additional problems, results, and
references in this general area see Danzer-Grunbaum-Klee [I] , and
section 6 of Griinbaum [10].

Returning to the subject of k-neighborly d-polytopes we note that the
proof of theorem 7.1.4 yields also the folIowingstronger result :

3. If P is a k-neighborly d-polytope, d 2 2k, then all (2k - 1)-faces of
P are simplices.

M. A. Perles raised (oral communication) the question whether there
exist d-polytopes P such that P is k-neighborly, while the dual of P is
h-neighborly. Using the above theorem 3 it follows at once that if such a
P exists then d 2 2k + 2h - 2. Thus the first interesting case would be
to establish or disprove the existence of 2-neighborly 6-polytopes which
have 2-neighborly duals . Using theorem 6.1.4 it may be shown that no
6-polytope with 8 vertices (or 8 facets) has this property, but the problem
is open for polytopes of dimension 6 or more having more vertices.

Despite their rather recent discovery, there exists a widespread feeling
(see for example Gale [3]) that neighborly d-polytopes are rather common
-in some sense-among alI d-polytopes. Exercise 6.5.6 may be considered
as a confirmation of this belief in a special case. Another expression of
this attitude is a recently posed question of V. Klee (private communica
tion), the affirmative answer to which is the content of exercise 7.3.4(i).
Still another aspect is contained in a recent assertion of Motzkin [6], the
main part of which appears in exercise 7.3.4 (ii).



129a CONVEX POLYTOPES

7.5 Additional notes and comments

Examples.
Explicit examples of (even-dimensional) neighborly polytopes are still not easy
to come by. However, research about neighborly polytopes, to a large ex
tent triggered by the Griinbaum's book, has produced some substantial new
insights , including important new construction methods.

The number of types of neighborly 4-polytopes with n vertices is

6 7 8 9 10
1 I 3 23 431

n 15-#""---ty-p~es:"- --=I=---=---.:..----==--~-~-

where the analysis by Griinbaum-Sreedharan [a] showed that with 8 vertices
there are only the three types C(8,4), Ng, and N;' described on page 125; the
enumerations for n = 9 and n = 10 are due to Altshuler-Steinberg [a], resp.
Altshuler [a], Bokowski-Sturmfels [a] and Bokowski-Garms [a]. For dimen
sion 6 we similarly have

10
37

9
1

8
1

___n_I_7__---:_~~
# types 1

where the result for n ~ 9 follows from theorem 7.2.3, while the non-trivial
result for n = 10 is due to Bokowski-Shemer [a].

Construction techniques.
Shemer's fundamental paper [a] introduced a "sewing" construction that al
lows one to add vertices to neighborly polytopes. Exploiting this technique,
Shemer produced super-polynomially many different combinatorial types of
neighborly d-polytopes with n vertices, for every fixed even d ;::: 4:

For n =d +4, he derived a super-polynomial lower bound of

c (d+4 d) > (d+2)! '" _1_(t!-)d/2
n , - 24.2d/2(~ +2)! VI8 e .

These lower bounds are remarkably close to the best known upper bounds
on the numbers c(n,d) ;::: cs(n,d) ;::: cn(n,d) of combinatorial types of all d
polytopes with n vertices; compare the notes in section 6.7.

See also Barnette [g], whose "facet splitting technique" produces duals of
neighborly polytopes.
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Random polytopes.
The question "What is the probability that a random (simplicial) polytope
is neighborly?" is not well-posed, since the answer heavily depends on the
model of random polytopes. (See, e. g., Buchta-MUller-Tichy [a] and Barany
[b].) A model with few cyclic, but many neighborly polytopes, was studied by
Bokowski-Richter-Gebert-Schindler [a].

Gale-diagrams.
A characterization of neighborly polytopes in terms of their Gale-diagrams is
hidden in exercise 7.3.7; compare Sturmfels [c]. Note that "Gale 's Lemma",
which appeared in Barany's [a] solution to the Kneser problem, is equivalent
to the existence of neighborly polytopes with n vertices, for all n > d.

Cyclic polytopes.
For cyclic polytopes of even dimension, Sturmfels [a] proved that in every
realization the vertices do lie on a curve of order d. This was based on a result
of Shemer [a] that all even-dimensional neighborly polytopes are rigid in the
sense that the combinatorial type of P also determines the combinatorial types
of all subpolytopes. A connection between cyclic polytopes and the theory of
totally positive matrices was established in Sturmfels [e].

Some problems posed on pages 128-129.
Zaks [b] proved m(3) = 8, and Perles [a] showed m(d) < 2d+ l ; see also Aigner
Ziegler [a, Chap. 12]. Zaks [a] showed that for every d ~ 3 there are arbitrarily
large neighborly families ofcentrally symmetric convex d-polytopes in Rd. See
Erickson [a] for a strong extension to congruent polytopes.

Grunbaurn's conjecture on "strictly antipodal sets" is wrong: A probabilistic
argument of Erdc5s-FUredi [a] showed that these can be even exponentially
large; see also Aigner-Ziegler [a, Chap. 13].

Three open problems.
Shemer [a, p. 314] asked whether, for even d, every neighborly d-polytope with
n vertices can be extended to a neighborly d-polytope with n + I vertices.

Does every combinatorial type of simplicial polytope occur as a quotient
(iterated vertex figure) of an even-dimensional neighborly polytope? This is a
question by Perles (see Sturmfels [d]). Kortenkamp [a] gave a neat proof for
d-polytopes with at most d +4 vertices, by a Gale-diagram construction .

A problem posed on page 129: Is there any polytope other than a simplex
that is 2-neighborly and dual 2-neighborly? One can show that there are no
such d-polytopes with less than d +4 vertices or facets.



CHAPTER 8

Euler's Relation

In the preceding chapters we became acquainted with methods of generat
ing convex polytopes and with the relations existing among a polytope
and its faces or other points of the space. Our interest was mostly centered
on positional relationships between a polytope (or its faces) and some
other given geometric object.

In the present chapter we turn to a different field of investigation : we
try to find meaningful variations of the simple-minded question 'What
polytopes do exist', and we endeavor to find at least partial answers to
some of those problems. One of the simplest questions that may be asked
in this connection is: What d-tuples of numbers can occur as the numbers
of vertices, edges, .. . , (d - I )-faces of convex d-polytopes?

The present chapter, and some of the fol1owing ones, are devoted to an
exposition of the presently known partial answers. In this chapter we
shall deal with the result known as 'Euler's formula' and some of its
ramifications: chapter 9 will deal with analogues of Euler's formula valid
for the subclass of simplicial polytopes and for some other special classes
of polytopes.

8.1 Euler's Theorem

We start by recal1ing from chapter 3 thef,.(P) notation.
Let P be a d-polytope, and let k be an integer such that 0 ::;; k ::;; d - 1.

We shall denote by fk(P) the number of k-faces of P: when no confusion as
to the polytope in question is likely to arise, we shal1 sometimes write fk
instead of fk(P). We find it convenient to use the symbolf,.(P) also for the
improper faces 0 and P of P ; in other words, we put f-l(P) = 1 and
IiP) = 1. Where convenient. we shall as well use the notation NP) = 0
for k > d and for k < - I.

With each d-polytope P we shall associate the d-dimensional vector
f(P) = (fO(P),fl(P),·· · ,fd -l(P)), which will be cal1ed the f-vector of P.
For any family & of d-polytopes we shall denote by f(&) the set f(&)

= {f(P) I P E &}.

130
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The problem mentioned above is, therefore, to determine f( fIr) , the set
of all [vectors of d-polytopes. For dimensions d ~ 4 this problem is,
however, far from being solved; for d = 3 the complete solution is rather
easy, and it will be given in section 10.3. In the present chapter we shall
solve, for general d, a much easier problem : the determination of the
affine hull off(f!Jd). We formulate the result as Euler's theorem:

1. Th e affin e hull of th e f-vec tors of all members of the family fir of all
d-polyt opes is given by

d-I
afff(f!Jd) = {f =(fo,· · ·, f.t- d l I (-1)1; = 1-(-I)d} .

i=O

The relation If:~ (-l)'l;(P) = 1 - (_I)d, which by the theorem holds

for every d-polytope P, is known as Euler's equation. Using the extended
symbol sf.t(P) andf_I(P) ' Euler 's equation may be written in the equivalent
but more symmetric forms

d

I (- 1)1.{P) = 1
i= O

or
d

I (-I)'l;(P) = O.
i= -I

Before proceeding to prove the theorem, we shall consider a few special
cases.

(1) Euler 's equation obviously holds for d = 1, as well as for d = 2
(though the inductive proof which will be given below applies already to
the latter case.) For 3-polytopes, Euler's equationfo - fl + f2 = 2 is not
obvious any more , although very simple proofs are known (see below).

(2) Next we consider a d-prismoid P (seechapter 4), that is, ad-polytope
which is the convex hull of two polytopes P_ I and PI' each of dimension
d - 1 at most , and such that the intersection (P_ 1 U PI) ("\ H _ I ("\ H I is
empty, where Hi is a hyperplane containing Pi' i = ± 1. Let Ho be a
hyperplane belonging to the pencil determined by H -1 and HI' and
passing through an interior point of P, and let Po = P ("\ H o- (See figure
8.1.1 where the case d = 3 is illustrated.) For a d-prismoid P the following
assertions obviously hold:

(i) f o(P) = f o(P- I) + f O(P1 )
(ii) for 1 ~ k ~ d - 1, a k-face F of P is either a face of either P- 1

or Ph or it has vertices in both P- I and PI' In the latter case, there
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corresponds to the k-face F of P in a biunique fashion a (k - lj-face
F n Hoof Po. Thus, for 1 ~ k ~ d - I, we have

h(P) = h(P- I) + fk(P I) + h-I(Po) ,

Figure 8.1.1

Therefore,
d-I d-I d-2

L (-l)%(P) = L (-ll(fk(P-1) + h(PI» + L (-ll+ Ih(Po)'
k=O k=O k=O

If the validity of Euler's formula is assumed for the (d - Ij-polytope Po
and for the at most (d - Ij-dimensional polytopes P-I and PI' it follows
that

d -I

L (-I)%(P) = 2 - (1 - (_I)d-l) = 1 - (-It;
k=O

in other words, the d-polytope P also satisfies Euler's equation.
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(3) The validity of Euler's relation for any d-simplex can be established
by induction from the reasoning in (2) (since P_ I and Po may be taken as
(d - 1)-simplices, and PI as a point). In this case, however, a direct
verification is also possible since for ad-simplex P we have

(
d + 1)hk(P) = k = 0 . .. d - 1
k + 1 ' " ,

and since

di
l

(-I t(d + 1) = -(1 _ l)d+1 + 1+ (_l)d+l(d + 1) = 1_ (_I)d .
k ~O k + 1 d + 1

(4) Still preparatory to the proof of the general case of Euler's relation,
we consider the following situation.

Let P be a d-polytope (in d-space) and let Ho be a hyperplane meeting
the interior of P and containing exactly one vertex Vo of P. Let H+ and H 
be the two closed half-spaces determined by H0' and let Po = P n H0 '

PI = P n H + and P2 = P n H - . (See figure 8.1.2 illustrating the case
d = 3). We note the following relations between the [vectors of Po, PI'
and P2 :

Figure 8.1,2
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(i) fo(P) = fo(Pd + fO(P2) - 2fo(Po) + 1

since, except for Vo, the vertices of P are exactly those vertices of PI or P2
which do not belong to Po;

(ii) fl(P) = fl(PI) + fl(P2) - 2fl(Po) - fo(Po) + 1

since an edge of P is either an edge of PI or of P2 not contained in Po, or
it is divided by a vertex of Po different from Vo into an edge of PI and an
edge of P2 ;

(iii) f2(P) = f2(PI) + f2(P2) - 2f2(PO) - fl(Po)

since, for 2 ~ k ~ d - 2, a k-face of P is either a face of PI or of P2 but
not of Po, or it is divided by a (k - I)-face of Po into a k-face of PI and
k-face of P2 ;

(iv) h-I(P) = fd-I(PI) - 1 + h-I(P2) - 1 - h-2(PO)

since each (d - I)-face of P is either a face of PI or of P2 different from Po,
or it is divided by a (d - 2)-face of Po into a (d - I)-face of PI and a
(d - I)-face of P2-

Therefore, if Po, PI' and P2 satisfy Euler's relation, it follows that
d-I d-I
I (-I)%(P) = I (-Il(fk(PI) + J",(P2» - 2(-I)d-1

k=O k=O
d-2 d-2

- 2 I (-l)%(Po) + 1 + I (-l)%(Po) - 1
k=O k=O

= 2(1 - (_l)d) + 2(-I)d - (1 - (_l)d-I) = 1 - (-It,

i.e. P satisfies Euler 's relation.

8.2 Proof of Euler's Theorem

Using the particular cases established in (1), (2), and (4) of section 8.1, we
are now ready for the inductive proof of Euler's relation in the general
case.

Let P be a given d-polytope, d ~ 2, and let us assume that Euler 's
equation is already established for all polytopes of dimension less than d.



EULER' S RELATION 135

Let H be a hyperplane such that no translate of H contains two or more
vert ices of P. (See figure 8.2.1 for an illustration of the case d = 3.) Let
HI ' H 2'·· · ' H; (where v = fo(P)) be the hyperplanes parallel to H, each
containing one vertex of P, the notation being arranged in such a way that
H , separates H, from H, for i < j < k. For I ::::;; i ::::;; v - I, let K, be the
part of K between H i and H j + 1. Then each K, is a d-pri smoid, as con
sidered above. The inductive assumption implies, therefore, the validity

j

of Euler's formula for each d-prismoid K j • Let K (jl = U K j , for j = I,
j= I

2, . . . , v - I. Then, for j = 1,2, ···, v - 2, the conditions assumed in (4)
for P, H o, PI and P2 , are satisfied by K (j+I),Hj + I ,Kw, and K j+ l . Since
K (1 ) = K i- and all K , satisfy Euler's formula, it follows successively that
K(21, K(3) ,· .. , K(v-I) satisfy Euler's formula. But K (v-I) = P, and thus
the valid ity of Euler 's relation for P is established.

Figure 8.2.1
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Till now we have established one half of the theorem, namely the fact
that f(&>d), and therefore also its affine hull aff f( fJ>d), are contained in the

' Euler hyperplane' Ed = {f = (fo, '" ,fd-I) IL~:~ (-1)1; = I - (_I)d}.
In order to complete the proof of the theorem we have to show that
aff f(&>d) coincides with Ed. In other words, we have to show that every
linear equation among fo(P) , '" ,h- I(P), which is satisfied by all d
polytopes P, is a multiple of Euler's equation. While it is not hard to
describe a finite family fJ>0 of d-polytopes such that the affine hull of
f( fJ>o) is (d - Ij-dimensional and therefore necessarily coincides with Ed,
a much shorter proof can be given by induction. Indeed , the assertion
aff f( fJ>d) = Ed is obvious for d = I or d = 2; assuming its truth estab
lished for a certain d, we consider aff f(&>d + I).

Let L~=o «J. = f3 be the equation of a hyperplane containing
atf f( fJ>d + I). For every d-polytope P E fJ>d, the (d + I)-pyramid P" with
base P, and the (d + 1)-bipyramid p** based on P, satisfy

d

L IXdk(P*) = f3
k=O

(*)
d

L IXdk(P**) = f3
k = O

By the definition of P" and p** (see chapter 4) we have

f(P*) = (1 + fo(P),fo(P) + f l(P),

fl(P) + f2(P)"" ,h- 2(P ) + h -I(P),h-I(P) + 1)

and

f(P**) = (2 + fo(P) , 2fo(P) + fl(P),

2fl (P) + f2(P), . .. , 2fd- AP) + h - 1(P), 2h- 1(P».

Therefore, subtracting the second equation (*) from the first we have,
for every d-polytope P,

( **)
d-I

L IXH Jk(P) = IXd - 1X0 •
k =O

Since L IX~ > 0, it follows from the inductive assumption that the
hyperplane determined by (**) is Euler's hyperplane Ed, that is,
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ak = (-l)ka o for 0 :5: k :5: d. Considering the (d + I j-simplex we see that
{3 = (I - (-I)d+lpO; in other words, the equation I..:=Ori«!k = {3 is a
multiple of Euler's equation I..: =o (-l)~k = I - (-1)"+ I. This completes
the proof of the theorem.

In section 9.3 we shall see that the Euler hyperplane is spanned even by
the much smaller family of quasi-simplicial pol ytopes.

8.3 A Generalization of Euler's Relation

Euler's formula is self-dual in the sense that the passage from ad-polytope
P c R d to the dual d-polytope P* , and the use of the relations f;(P)
= h -I -i(P*), yield again only Euler's formula for P* . Nevertheless, a
variant of Euler's formula, which we shall have occasion to use in chapter 9,
is obtainable by an application of duality.

Let P be a d-polytope and let F be an m-face of P. Let hk(F) denote the
number of k-faces of P which contain F if k ~ m, or the number of k-faces
of P contained in F if k :5: m. Thus for k :5: m we have hk(F) = fk(F).

With this notation we ha ve the following easy generalization of Euler's
formula :

l. Let P be a d-polytope and F a k-face of P, - I :5: k :5: d - 1. Th en

d-I
I.. ( - I 'YhiF) = (_l )d- I .
j =k

In order to prove this result we consider ad-polytope P" dual to P.
To each j-face of P there corr esponds a unique (d - I - j)-face of P*,
the correspondence reversing inclusion-relations. Therefore, if F* is the
(d - 1 - k)-face of p* corresponding to F, for j ~ k we ha ve hiF)
= hd - 1 - i F*) = h - 1 - i F*). Using Euler's relation for the (d - I - k)
polytope F* we obtain

d-I d-I

I.. (-l'Yhj(F) = I.. (-I'Yh-I-iF*)
j=k j =k

d-I-k
= (- I)d- 1 I.. (-l)1;(F*) = (_l)d -I ,

i=O
as claimed.
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8.4 The Euler Characteristic of Complexes

Our next aim is to obtain analogs of Euler's relation which are valid for
certain complexes (see section 3.3). We start with some definitions.

Let rc be ad-complex ; for 0 :s; k :s; d we define j,,«((f) as the number of
k-dimensional members of ((f. Clearly this is consonant with our earlier
notation for polytopes, since j,,«((f(P)) = j,,(P) for 0 :s; k :s; d, and fk(fJ4(P))
= fk(P) for 0 :s; k :s; d - I whenever P is ad-polytope.

The Euler characteristic X«((f) of ad-complex ((f is defined by

d

X«((f) = I (- I )%«((f).
k;O

Using this notation we see that Euler's relation for ad-polytope P may be
written in the two equivalent forms

x(fJ4(P)) = I - ( - l)d

or

x«((f(P)) = I .

Thus in two special cases-for complexes of type fJ4(P), as well as for
those of type ((f(P)-the Euler characteristic of a complex depends only
on the dimension of the complex . We shall show that stars in P4(P) have
a similar property.

1. If F is a proper face ofa polytope P then X(st(F; fJ4(P))) = I .

For an elementary proof of theorem I, it is convenient to establish a
more general result, the formulation of which requires some additional
concepts.

Let rc be a d-complex and let 0 :s; k :s; d. The k-skeleton skelk((f is the
subcomplex of ((f formed by all the members of ((f which have dimension
at most k. Thus skelo((f is the set of vertices of((f, while skel/~' = ((f. For a
polytope P, skel1rc(p) = skeI1P4(P) is the graph determined by the vertices
and edges of P.

Let P be ad-polytope, F an m-face of P, and 0 :s; m :s; k :s; d - 1. The
k-star stk(F; P) of F in P is defined by

stk(F; P) = st(F ; skelkP4(P)) .

We shall establish

2. If F is an m-face of ad-polytope P and if 0 :s; m :s; k :s; d - I, then
X(stk(F ; P)) = 1.
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Since std_1(F ; P) = st(F ; P4(P)), the above theorem I is the special
case k = d - 1 of theorem 2.

We shall prove theorem 2 by induction on d and k. The assertion is
obvious if d = I or d = 2. It is also true for arbitrary d provided k = m,

since then stk(F ; P) = '?i'(F) and by Euler's relation X('?i'(F)) = I . Thus we
may assume k > m. Let us denote by F~, where i belongs some index-set
I(k), the different k-dimensional members stk(F; P). If F* is a proper face of
some F~ then either (i) F* is not a face of an y FJ with j # i ; or (ii) F* is an
element of st, _ •(F; P).

Indeed, if F* is a face of both F~ and FJ, i # j, then F* c F~ n FJ = F* *
which is a face of P of dimension at most k - 1; since F is a face of F** it
follows that F** E st. .. .(F; P) and thus also F* E stk_t(F ; P). Therefore

fn(stk(F ;P)) = f n(stk- 1(F ; P)) + L fn('?i'(F~) - stk_t(F ;P))
iEl(k)

for n = 0, 1, .. < k, where h(stk -t<F ;P)) = 0. Now ~(Fn - stk-t (F ; P )
= '?i'(F~ ) - st, _ t(F; F~) and it follow s that f,,(re(F~) ~ st, _ 1(F ; P))
= fn(F~) - f,,(stk_ t(F ; Fm· The inductive assumption and Euler's relation
imply therefore

k

X(stk(F; P)) = L (- 1rrn(stk(F; P))
n= O

k-t k

= L ( -l)nf,,(stk_t(F ; P)) + L L (-I)'1n(F~ )
n=O i EI( k ) n = O

k-t
- L L (-l)'},,(stk -t(F;F~))

iEl(k) n =O

= 1 + card I(k) - card I(k) = 1.

This completes the proof of theorem 2.

8.5 Exercises

1. Show that the Euler hyperplane Ed is spanned by the f-vectors of
centrally symmetric d-polytopes.

2. If P is a polyhedral set we denote by f~(P) the number of bounded
k-faces of P, by f :'(P) the number of unbounded k-faces of P, and by
h(P) = n(p) + f :'(P) the total number of k-faces of P. Using the results
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of sections 2.4 and 2.5, derive from Euler's theorem the following rela
tions, valid for d-dimensional, line-free, unbounded polyhedral sets P:

d-I

(i) L (- 1)1?(p) = I
i =O

d

(ii) L (_I)i+ If 'f'(P) = 1
i= I

d

(iii) L (- 1)1;(p) = 0
i=O

d

(iv) L (-l)tt;(P) + Ft: ](P)) = 1
i =O

Obviously, (i) and (iv) are valid even if P is bounded, while (iii) is valid
whenever P is a polyhedral set which is not the vector sum of a polytope
and a linear variety.

Using theorem 2.5.4. (ii) may be generalized to

d

I (_I)i+ If 'f'(P) = (_I)k ,
i=k+ I

where P is any unbounded, d-dimensional polyhedral set which is not the
vector sum of a polytope and a linear variety, and k is the maximal
dimension of affine varieties contained in P.

3. Show that the Euler hyperplane pJ is spanned already by the f
vectors of d-polytopes with at most d + 2 vertices.

4. (Sommerville [1]). Show that the f -vector of every r-fold d-pyramid
satisfies the equations

d~±-r(_ly(d-l-j)Jj= (d) _(_I)d-r
J=O t t

for each t = 0, 1... . , r.
5. Use theorem 8.3.1 to show that if P is a simplicial d-polytope and if

F is a k-face of P, -1 :s; k :s; d - 1, then

x(link(F ;8l(P))) = 1 + (-It- k
•
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6. Show that the boundary complex PA(P) of every d-polytope P is an
Eulerian (d - 1)-rnanifold (Lefschetz [1], Klee [11]). This means that for
every k-face F of P, -1 :::;; k :::;; d - 1, the equation

x(link(F; PA(P))) = 1 + (_lyJ-k

holds.

8.6 Remarks

Euler's equation for 3-polytopes, 10 - II + 12 = 2, was discovered by
Euler [1,2] in 1752. It has been hailed as 'the first important event in
topology' (Alexandroff-Hopf [1], p. 1), and as 'the first landmark' in the
theory of polytopes (Klee [18]). Enquiries into its range of validity have
sparked many papers during the first half of the nineteenth century, and
were actually among the first to turn the spotlight on the notion of con
vexity. For a history of these early endeavors see in particular Bruckner
[2], Zacharias [1], Steinitz [6]. It is interesting that 'Euler's theorem'
was known to Descartes about a hundred years earlier ; however, his
manuscript was lost and forgotten, and the present knowledge of it stems
from a partial copy found in 1860 among the papers of Leibnitz (see Zac
harias [1], Steinitz-Rademacher [1], p. 9). Possibly even more remarkable
is the absence of any result related to Euler's theorem from the writings
of the ancient Greek mathematicians.

With the emergence of higher-dimensional geometry about the middle
of the nineteenth century came Schafli's [1] discovery of Euler's relation
for polytopes of dimensions exceeding 3. Though Schlafli's discovery
was made in 1852, it was published in full only in 1902,and probably had
little influence on other workers in this area. The 'public discovery' of
Euler's relation in higher dimensions came in the early 1880's, almost
simultaneously by many geometers (Stringham [1], Forchhammer [1],
Hoppe [1], Durege [1], Rudel [1]). Unfortunately, all the proofs published
by these authors were deficient at one point of their reasoning: it was
assumed, without any attempt at justifying this assumption, that it is
possible to build up the boundary complex PA(P) of ad-polytope P by
successively adding facets of P (and their faces) in such a fashion that
(except for the first and last step) the newly added facet intersects the
already present (d - Ij-complex in a 'simply-connected' (i.e. homo
topically trivial) (d - 2)-complex. Though this assumption is possibly
valid, its truth is certainly not obvious even for d = 3. In case d = 3 the
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assumption may be established by an argument involving the Jordan
curve theorem. Using Jordan's theorem in higher dimensions, or some
other high-powered result. it is conceivable that one could establish the
general valid ity of the above assumption-it seems, however, that this
has not been done so far. Moreover, an example of M. E. Rudin [1] casts
serious doubts on the validity of the assumption for d ~ 4. Curiously
enough, geometers have for a long time ignored this flaw in the first
attempts to pro ve Euler's theorem: essentially the same proof is presented
in both Schoute's [ I] and Sommerville's [2] books. On the other hand,
starting with an attempt by Poincare [I] in 1893, topologists were con
sidering the Euler characteristic of manifolds, and its relation to the Betti
numbers of the manifolds. Some flaws in Poincare's paper [I] were correc
ted by him in 1899 (Poincare [2]) and this seems to be the first real proof
of Euler's relation in higher dimensions. A more modern version of Poin
care's proof. in which the use of homology and algebraic apparatus was
purposely kept minimal. is given in chapter IX of Coxeter [1]. In a more
circuitous way. Euler's theorem is proved also in Alexandroff-Hopf [I].

In all those proofs, the elementary-geometric character of Euler's
theorem is completely lost. It was only with Hadwiger's paper [2] in 1955
that the question of an elementary proof of Euler's theorem for polytopes
was considered. Another relatively elementary proof was given by Klee
[5] in 1963. In both papers, however, algebraic overtones-extraneous
to Euler's formula for polytopes-are introduced through the considera
tion of the Kon vexring (in Hadwiger [2]) and lattices (in Klee [5]). The
elementary proof given in the preceding pages is probably not the simplest
possible, but it is completely elementary and does not exceed the frame
work of convex polytopes.

The Euler characteristic may be (and usually is) defined for topological
complexes. Clearly, this is a situation much more general than the one
considered in the present chapter; the methods of proof are, correspond
ingly, less elementary. On the other hand, the topological approach yields
not only Euler's formula for d-polytopes, but at the same time the anal
ogous relations for spherical polytopes, topological subdivisions of the
d-sphere or the projective d-space, etc. For details and proofs the reader
is referred to topology texts such as Alexandroff-Hopf[ 1].

The second part of theorem 8.1.1, namely the assertion that aff f(q>d)
has dimension d - I, is quite recent. For d = 3 it was established by
Steinitz [1] (see section 10.3), but for d ~ 4 it appears first in Hohn [1] in
1953. Hohn's proof coincides with exercise 8.5.3.
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8.7 Additional notes and comments

142a

Sweeps.
The method of proof that Grtinbaum employs for the proof of Euler's for
mula 8.1.1 (also known as the Euler-Poincare formula) may in modern compu
tational geometry terms be seen as a sweep: A hyperplane that in the beginning
does not intersect the polytope is moved in parallel across the polytope in such
a way that it never hits two vertices at the same time.

For a simple, but striking. application of this point of view, see Seidel's [a]
proof of the asymptotic upper bound theorem.

Sweeps form a crucial technique of computational geometry ; see e. g. de
Berg et al. [a, Chap. 2]. Furthermore, they are of fundamental importance for
the algebraic geometry view on polytopes: Any generic sweep for a rational
polytope corresponds to a (linear) Morse function for the associated compact
toric variety.

Polytopes are shellable.
Bruggesser-Mani [a] proved that all polytopes are shellable. The proof is by
now a classic ; it may be found also, e. g., in Ziegler [a, Sect. 8.2]. In brief,
Bruggesser and Mani's line shellings are generated as follows: Consider a di
rected line in general position through the interior of ad-polytope P. Imagine
a rocket that starts at the point where the line leaves the polytope, and take
the facets of P in the order in which the rocket passes through the facet hyper
planes, so that the facets become "visible" from the rocket; the rocket "passes
though infinity" and then, coming from the other side, again the facets are taken
in the order of passage through their hyperplanes, that is, in the order in which
they disappear from the horizon.

With hindsight, it is ironic that via polarization Grtmbaum's proof already
solves the problem about the existence of a shelling, as posed in section 8.6.
Here is an explicit translation table:

primal dual
polytope P polar polytope P'
hyperplane H point x
parallel family of hyperplanes H points x on a line
(parallel hyperplane) sweep point moves on a line
H does not intersect P x is in the interior of P'
H hits two vertices of P x lies on two facet hyperplanes of P'

Thus polarization of Grunbaum's proof leads us to consider a line in general
position through the interior of P", letting a point move on this line, starting
in the interior of P*, and to take the facets of P* in the order in which they
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move through the facet hyperplanes of P*: This is exactly the construction of a
Bruggesser-Mani line shelling of P",

Eulerian lattices.
One of the many reformulations of Euler's theorem is that the face lattice L of
any non-empty polytope P has the same number of elements of even and of odd
rank. Any interval [G,F] C L, for faces G C F of P, is again the face lattice
of a polytope (namely, of an iterated vertex figure of F) ; thus it follows that
the odd/even property is also true for all non-trivial intervals of L. Following
Klee [11], one may thus consider the combinatorial model of Euler ian lattices ,
i. e., finite graded lattices such that every non-trivial interval has the odd/even
property; equivalently (see Stanley [h, Chap . 3D, the Mobius function of such
a lattice is given by Jl(G,F) = (_I)I(G,F), where£(G,F) =dimF - dimG is
the length ofthe interval [G,F].

This generalization provides an entirely combinatorial model that includes
the face lattices of the regular cell decompositions of spheres and of odd
dimensional manifolds that have the intersection property (i. e., the intersection
of any two cells of the complex is a cell of the complex , which may be empty).
While there has been considerable effort to under stand Eulerian posets and
their I-vectors (a recent survey is Stanley [f1), Eulerian lattices have not yet
received enough attention. See also Eppstein-Kuperberg-Ziegler [a], where
regular cell complexes with the intersection property are called "strongly reg
ular" .

The vector (10 ,20,20,10) is an example of an I -vector of an Eulerian lattice
(corresponding to the boundary complex of two disjoint 4-simplices) that is
not the I-vector of a polytope (since every 4-polytope with 11 =2/0 and 12 =
2/3 is simple and simplicial, i.e., it is a 4-simplex having (5,10,10,5) as its
I-vector). A "connected" example of this type is (13,78,195,260,195,65) ,
corresponding to a simplicial 5-dimensional manifold that was constructed by
Klihnel [a].



CHAPTER 9

Analogues of Euler's Relation

In chapter 8 we have seen that the affine hull of the setf(g>d) off-vectors
of all d-polytopes is the Euler hyperplane. In the present chapter we shall
be interested in finding the affine hulls of sets f(&'), for certain families fJi
of d-polytopes.

In principle, this task consists of two parts, in which quite different
techniques find application. The first step is the establishment of various
linear equations satisfied by f(P) for all P E fJi. It is based on a combina
torial procedure useful in many fields, the 'double counting of incidences',
and it has rather little geometric content. The final result obtained by
this method is an affine variety which contains f(&'). However, there is
a priori not much reason to assume that this variety is indeed the affine
hull of the vectors f(&'). For families fJi which interest us we shall show,
by the use of appropriate geometric constructions, that this coincidence
does happen. This is the second part of the method, and it naturally varies
from family to family.

9.1 The Incidence Equation

The method of 'double counting of incidences' has various formulations,
the simplest of which is probably expressed by the commutative law for
the multiplication of positive integers . The formulation useful for our
purposes involves a somewhat specialized set-up, which we shall first
define abstractly. Applications to a number of specific problems will be
found in the following sections.

Let us assume that we are given a positive integer d and, for each i
satisfying 0 :s; i :s; d, a nonempty family ~ of objects which we shall call
i-objects. One illustration of such a situation, to which we shall refer
repeatedly, is given by any d-polytope or d-complex , where the i-faces
may be considered as i-objects. If 0 :s; i, j :s; d, an i-object F, E ~ and a
j-object F, E §j may be incident, or they may fail to be incident; the only
assumptions we wish to make on this relationship being that each object

143
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be incident to itself, and that the incidence-relation be symmetric. It is
convenient to introduce a function qJ(F', F") defined for all F', F" E U §;

O S i Sd

by

{
I if F' and F" are incident,

qJ(F', F") =
oif F' and F" are not incident.

Our assumptions imply that qJ(F, F) = 1 for every F and that qJ(F', F")
= qJ(F", F') for all F' and F". In the illustration mentioned above one
could interpret 'incidence' of two faces to have the usual meaning, i.e.
that one of the faces is contained in the other.

For given families §; of objects, let vi(F) denote the number of i-objects
incident to a given object F ; thus vi(F) = LF;€J'"; <p(Fi; F). We shall be
interested in families which satisfy the following conditions :

There exists an m, 1 ::;; m ::;; d, such that
(i) There exist real numbers (Xo, .. • '(Xm' and Pm such that each F E ~m

satisfies
m

L (XiVi(F) = Pm ·
i =O

(ii) For every i, 0::;; i ::;; m, there exists a constant Yi,m such that
vm(FJ = Yi,m for every F, E §;.

In the illustration, where the faces of a polytope are the objects, an
example of an equation as required in condition (i) is provided by Euler's
relation or by one of its variants (such as the relations of section 8.4).
Conditions of type (ii) are satisfied , for example, by the faces of simple
polytopes (see exercise 4.8.12).

Let u, denote the number of i-objects (i.e. the number of elements of
§;). We shall prove

1. If §; are families satisfying the above assumptions, then the incidence
equation

(*)

holds.

PmJlm = L (XiYi.mJli
O S i Sm

PROOF For a fixed m, we consider the number

1=
f "me!Frmfie!Fi

o S i:S m
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The number I is computable in two ways. First, keeping Fm fixed, wehave

I = L: L: (X jcp(Fj,Fm) = L: L: (X jVj(Fm) '
Frne9'rn F jEFj FmetFm O~ i:Srn

O:Si Sm

Using condition (i) it follows that

On the other hand, keeping F, fixed and using condition (ii), we have

I = L: (Xj L: L: cpj(Fj, Fm) = L: a, L 'Y j,m
O :Si:Sm F je!F j f"me!Frn O Si:Sm FjE!F j

L: (X j'Yj,mllj'
0 $ ; :Sm

This completes the proof of theorem 1.
It should be noted that the setting for 'double counting of incidences'

used above is by no means unique, or the most general possible. For
example, an easy generalization would result by allowing cp(F', F") to be
any real-valued function symmetric in its variables. Also, instead of
computing the number I, some other magnitude could be considered, We
shall meet examples of such variants of the method in sections 10.1 and
13.1. Another variant may be found in Sommerville [1]. The approach
used in the present section is c10sely related to that used by Klee [11].

It is also obvious that similar counting arguments may be applied to
spherical polytopes, to complexes or topological complexes, and in many
other situations. For an example ofsuch a procedure compare section 18.1.

9.2 The Dehn-8ommerville Equations

In chapter 8 we have seen that Euler's equation
d-l

L: (- 1)~(P) = 1 - (- l)d
j=O

is the only linear relation satisfied by the f-vectors f(P) of all d-polytopes
P. However, thef-vectors of simplicial d-polytopes satisfy additional linear
equations, which may be obtained as special cases of the incidence equa
tion of theorem 9.1.1.* In fact, denoting by &"; the family of all simplicial
d-polytopes, we shall establish the following result:

• Naturally, the equations for simplicial polytopes may as well be derived independently,
using the method applied in section 9.1.
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I. Th e dimension of the affin e hull A Id ) = afff(~) of the f-oectors ofall
simplicial d-polytopes is ltd]. Th e affine variety A (d) is th e intersection of the
hyp erplanes e.- I :os; k :os; d - 2, which are determined by th e equations

df ( _ I )j(j + 1) t, = (_ l)d- Ifk .
j = k k + 1

We sha ll call (Et) the Dehn-Sommerville equatio ns. The equa tion (E"... t>
obviou sly coincides with Euler's equation.

The system of d equations (Ed
_ I)' (E~ ), . . " (E~ _ 2) is not independent ;

some of its independent subsystems shall be determined below.

PROOF We shall first sho w that the f- vector of every P E g;~ satisfies
th e Dehn-Sommerville equations. To thi s effect we note that for 0 :os; i :os; d,
th e family of all (d - i - I)-faces of P may be consid ered as a family of
i-object s (in the sense used in section 9.1), th e incidence relationship
bein g that customary for faces. Putting i = d - j - 1 and m = d - k - 1,
we have (using hiF) = Vd - j - t(F) = vl F )) from th e eq ua t ion of theorem
8.3.1

d -I d - I d -k -I

( - l )"- t = L (- 1Yhj = L (- 1Yvd _ j _ I = L (- l)d - i - I Vi

j =k j =k i=O

m

= L ( _1)d -i - l vi ,
i = O

i.e.
m

L (- I) ivi = 1.
i =O

Therefore our 'objects' sa tisfy condition (i) of section 9.1 whenever
-1 :os; k :os; d - 2 (i.e. 1 :os; m :os; d) if we put (X i = (_I )i and Pm = 1. On
the other hand, if - 1 :os; k :os; j :os; d - 1, then each j-face is incident with

(
j + 1)

k-faces, P being a simplicial polytope. Putting again i = d - j - 1
k + 1

and m = d - k - 1, it follows that condition (ii) of section 9.1 is satisfied

(
d - i)

for all 1 :s; m :s; d, with Yi.m= Hence the incidence equat ion of
d -m

theorem 9.1.1 holds, and reduces to

m (d-i)
Pm = L (- 1)i Pi

i =O d - m
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for 1 :$ m :$ d. Introducing the numbers of faces Jj = Ild- i : 1 = Ili we
obtain

d -I (J+ 1)L: (_I)d - j- 1 Jj = I,
j =k k + 1

for - 1 :$ k :$ d - 2. But except for a factor (_1)d -1 those are exactly
the Dehn-Sommerville equations we set out to prove.

Our next aim is to find the dimension of the intersection of the hyper
planes Et for - 1 :$ k :$ d - 2. Clearly some of the equations (Et) are
dependent; for example, equation (E~_ 2) is equivalent to (E~_ 3) whenever
d ~ 2. Our intention is to show that dim A(d) :$ ad] by exhibiting
d - [!d] = [t( d + 1)] independent equations (Et). The simplest way of
doing thi s is the following (later we shall indicate other systems of
[t( d + 1)] independent linear equations which determine A (d) and which
are more convenient for certain purposes) :

Ifd = 2n is even, then the n = d - n equations (E~), (E1), (E~), · . . , (E~_ 2)
are independent. Indeed,f2j occurs only in the first J + 1 equations for
J = 0, 1" , . ,n - 1. The same applies to the n equations (E'!- tl, (E1),
(E~), .. . , (E~ _ 3)'

If d = 2n + 1 is odd, then the n + 1 = d - n equations (E'!-I)' (E1),
(E~), · .. ,(E~_ 2) are independent. Indeed, (E'!- I) is the only non-homoge
nous equation, and for J = 1,2" ", n, terms involving jjj, 1 appear only
in those equations (Et) for which k :$ 2J - 1. Another independent system
is formed by the n + 1 equations (E'!-l) ' (E~), (E1), (E~), . . . , (E~ _ 3)'

In order to complete the proof of theorem 1 we shall now show that
dim Ad ~ [!d]. For this purpose we shall use the cyclic d-polytopes (see
section 4.7 for their definition and the simple properties used here). Let
C(v , d) denote a cyclic d-pol ytope with v ~ d + 1 vertices , and let

n = [!d); then fk(C(v, d» = ( v ) for °:$ k :$ n - 1. Our assertion
k+l

that the dimension of A(d) is at least n shall be established provided we
prove that f(&~) contains n + 1 affinely independent points. But the
n + 1 f-vectors f(c( v, d» , f(c( v + 1), '" ,j(C(v + n,d» are affinely
independent for any v ~ d + 1. Indeed, already the n-dimensional vectors
formed by their first n coordinates are affinely independent. In order to
see this we have only to consider the determinant
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(;) (;) (:)

D(v, n) =
(V : 1) (V: 1) (V: 1)
. . . . . . . . . .

(V: n) (V: n) (V: n)

By repeatedly subtracting each row from the following one it is immediate
that

(J (:) (]
0 (~) L ~')D(v, n) = = 1,

0 0 L: 2)
0 0 0 0

which establishes our assertion.
This completes the proof of theorem 1.
Theorem 1 and its proof determine the affine hull A(d) of f(~) by

specifying (independent) linear equations satisfied by all the f-vectors
f(P), P E~, as well as by giving examples of affine bases of A(d). We shall
supplement those results by finding another system of equations which
determine A(d), as well as another affine basis for A(d). The new forms have
occasionally certain computational advantages (see, e.g., section 9.5).

First, following Sommerville [I], we shall obtain a new system of
equations, equivalent to the equations (Et).

2. The [td]-dimensional affine variety A(d) = afff(~) is determined by
the equations

kil (_I)d+i(d - i-I)}; = d-fl (_I)i(d - i-I)};,
i= -I d - k i= - I k

where 0 :5; k :5; -!(d - 1).
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*

PROOF Let k and m be integers satisfying 0 ::; m + 1 ::; k ::; !d. Mul-

(
d - m - 1)

tiplying equation (E~) by (_1)m-l and adding, we obtain
d-k

k-t (d - m - 1)L (_1)d+m i:
m=-1 d-k

k-l (d-m-l)d-l (i+l)L (- 1)m - 1 L (- l)i ;;
m=-1 d - k i=m m + 1

d - 1 { k - 1 (d - m - 1) (i + 1)}L (- l)i L (- 1)m + 1 ;;
i= -1 m= -1 d - k m + 1

di1
(_1)i{.t ( - 1)j (d - ~)(i +. I)};;

.=-1 ) =0 k-J J

d-1 i(d- i-I) d-k-l . i(d- .:
= L (-1) ;; L t-1) ;;.

i=- 1 k i= - 1 k

Therefore each f(P), for P E ~~, satisfies (En
On the other hand, sincejj., p occurs, for 1 ::; p ::; [(d + 1)/2],only in the

first p equations (Ef), it is clear that the equations are independent. The
intersection of the hyperplanes determined by them is therefore of dimen
sion at most d - [(d + 1)/2] = [d/2]. Therefore the equations (En,
o::; k ::; [(d - 1)/2], determine AId), as claimed.

Our next aim is to obtain an affine basis for AId) = afff(~), different
from the basis determined by thef-vectors of cyclic polytopes, or the basis
mentioned in exercise 9.7.1. All those bases have the disadvantage that
approximately one half of the coordinates of their elements are not
readily determined ; moreover, even when this task is completed (in the
case of cyclic polytopes, we shall accomplish this in section 9.6), the
resulting expressions are awkward and unmanageable.

c (a- i)(b) (a-b)* We used the fact that, for 0 ~ c ~ a, L (-I)' . . = . In order to
'-0 c - I I C

establish this identity, let its left hand side be denoted by R(a, b, c). Then obviously

R(a, b,c) = R(a - I, b,c - I) + R(a - I, b,c), while (a ~ b) satisfies the analogous re

lation. Therefore our identity shall be established by induction if we prove it in the cases

(a - O)(b ) (a-b)R(a, b,0) and R(a, b,a). But this is easy since R(a, b,0) = (- 1)0 0 0 = I = 0 '

• (b) (b - I) (a - b)and R(a,b,a) =.L (_I)' . = (-If = .
,=0 I a a
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The basis of A(d) we are going to determine now is much simpler, but
it has an aesthetic drawback : its members are notf-vectors of simplicial
d-polytopes. With minor changes, the exposition below follows Klee [11].

3. If d = 2n is even, then A(d) is the affine hull of the n + 1 vectors h(k),
o .::;; k .::;; n, where h(kl = (h~kl, h\kl, . . . ,h~~-l) with

Mk) = ( k ) for 0.::;; i .::;; 2n - 1,0'::;; k s n .
I l+i-k

PROOF The affine independence of the n + 1 vectors h(kl is obviou s.
Thus we only have to show that each of the vectors h(kl satisfies the Dehn
Sommerville equations (E~). Indeed, we have*

dik (_l)k+l+j(j+k)(~)
j=m -k+ 1 m + 1 }

±(-l)k+ 1 + j(j + k )(~)
j=O m + 1 }

( k ) = (-It-lh~),
- m + - k

as claimed.

* We note the simple formula .i (-I)' (~) = (-1)' (n - 1), which holds for all integers
, =0 I k

k, n, and which is easily verified by induction. Using this we derive

, In)li) (n)' (n-t) (n)' -' (n-t) (n)(n-t-1).L (_I)' . t =L (_I)' . _ = L (-I)i-r . = (-I)' 1. _ '

,=0 I t ,= 0 Itt j =O ] t" t

.. . . " .(n)(i + nI)which IS also valid for all integers k,n, t. Let now R(n, nI,t) = .L (-1)' . , where
, ~ O I t

n, m, t are nonnegative integers . Clearly R(n,nI, t) + R(n, nI, t + 1) = R(n,nI + 1, t + I). We

shall prove by induction that R(n, m, t) = (-1)"( m ). Since the binomial coefficients have
t - n

the same addition formula as R, we have to establish the equality only for m = 0 and for

(n)(n - t - 1) ( 0 )t = O. Let n > 0 ; by the above , R(n,O,t) = (-1)" = (-1)".5"., = (-1)" ,
t n-t t-n

while R(n, nI,0) = 0 = (-1)"1 m ). This proves the identity, a particular case of which
O-n

was used in the text above, for n > 0; its validity for n = 0 is obvious.
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4. If d = 2n + 1 is odd, then A(d) is the affine hull of the n + 1 vectors
g(k l, 0 ':::;; k :::;; n, where g(k) = (g~), g\k), . . . , g~~) with '

g!k) = ( 1 ~ k ) + ( . k ) + 2(\0(1 _ <5k•O),

1+/-k /-k

for 0 s k :::;; n, 0 :::;; i s 2n .

(<5 i•i is Kronecker's <5 and equals 1 if i = j and zero otherwise).

PROOF The affine independence of the n + 1 vectors g(k) is again
obvious. The fact that the g(k),S satisfy the Dehn-Sommerville equations
is also not hard to prove, although the computations are slightly more
involved than in the case of even d. Indeed if

it is easily checked that e~)l = 1, ebO I = 2 = gbO), and e~) = 0 for m > 0
as required. If k > 0 we have*

d- 1 (i + 1) [( k + 1 ) ( k )lebk
) = 2 + 2: (- l)i . +.

i=O 1 1 + / - k / - k J

k+l (j+k)(k+l)= 2 + (_I)k+l .2: (-I)i .
) =0 1 )

k (j + k+ 1) (k)+ (- 1)k .2: (- l)i .
)=0 1 )

= 2+ ( k ) + (k + 1) = 2+ <5k.1 = (_1)2ng~).
-k 1 - k

On the other hand, for k > 0 and m > 0, we have by an analogous
computation,

e~)=( k )+( k+l )=(_1)2ng~).
m-k m+l-k

This completes the proof of theorem 4.

* The identity used was proved in the footnote on p. 150.
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The Dehn-Sornmerville equations (Ef) of theorem 9.2.1 easily generalize
to certain complexes. We recall that a simplicial (d - l)-complex CC is
called an Eulerian (d - I)-manifold (Klee [IIJ) provided for each k
dimensional simplex FE CC, 0 ~ k ~ d - 1, we have

x(link(F ; CC» = 1 + (_l)d-k,

where X denotes the Euler characteristic. Then we have (Klee [11]):

5. The f- vector of every Eulerian (d - I)-manifold CC satisfies the
Dehn-Sommerville equations (Ef),for every k such that 0 ~ k ~ d - 2.

The proof is practically a repetition of the corresponding part of the
proof of theorem 9.2.1. The only difference is that the assumption
x(link(F; fC» = 1 + (_I)d-k has to be used in order to derive the equation

L1:~ (-1)ihi F) = (_l)d- I, which was in the case of polytopes given
by theorem 8.3.1. The derivation is immediate, since

hiF) = Jj_ ' _k(link(F, fC»

for every simplicial complex fC.
Another difference between theorems 1 and 5 is that k = - 1 is ex

cluded in the latter. Indeed, instead of Euler's equation (E~ I) we have
for Eulerian (d - 1)-manifolds

d -I

L (- 1)i/;(fC) = X(fC).
i= O

However X(CC) is not arbitrary ; indeed we have (Alexandroff-Hopf [1],
chapter XIV ; Klee [11D.

6. If CC is an Eulerian (d - I)-manifold and if d = 2n is even, then
X(fC) = o.

The proof is very simple. The remark (page 147) that for d = 2n Euler's
equation (E~ ,)is a linear combination of the equations (E~),(E~),···,(E~-2)

implies, in view of theorem 5, that L1:~ (-I)i/;(fC) = O. But X(CC) is
equal to the expression at left, hence the assertion of the theorem.

It should be noted that the proof of the equation (Ef) for a fixed k (in
theorems 1 and 5) uses only relations among faces of dimensions ;::: k.
This observation yields the first part of the following result (Wall [1D,
the second part of which is also easily established.
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7. If :£ is a simplicial (d - I)-complex such that for each simplex T
in :£, x(link(T, :£» = 1 + (_I)d- j provided dim T = j ;;:: k; then :£
satisfies the equations (£1) for all i ;;:: k. Moreover, for such a x: these
are the only essential equations, in the sense that every linear relation
among the f;'s valid for x: and all its stelar subdivisions is dependent on
those equations.

9.3 Quasi-Simplicial Polytopes

On comparing theorem 9.2.1 with Euler's theoremS.I.I the difference
between the dimension ad] of the affine hull A(d) of the f -vectors of
simplicial d-polytopes, and the dimension d - 1 of the affine hull Ed
of the f-vectors of all d-polytopes, strikes the eye. One is tempted to guess
that a gradual increase in the dimension of the affine hull will occur if
the family of simplicial d-polytopes is gradually enlarged. One possibility
in that direction would be to consider all d-polytopes P such that, for
a certain k :$; d - 1, all the k-faces of P (and therefore also all lower
dimensional faces) are simplices. Somewhat unexpectedly one finds
that the transition is not gradual: Already the family of quasi-simplicial
d-polytopes ~ (see section 4.5), corresponding to k = d - 2, has a set
off-vectors whose affine hull is of dimension d - 1, i.e. coincides with the
Euler hyperplane Ed.

The present section is devoted to a proof of this result. The theorem
and the idea of its proof were communicated to the author by M. Perles.

1. The dimension of the affine hull A~d) = afff(~) of the f-vectors of
quasi-simplicial d-polytopes is d - 1. The affine variety A~d) coincides
with the Euler hyperplane Ed.

PROOF Simplicial d-polytopes are quasi-simplicial, and so are
d-pyramids whose bases are simplicial (d - I)-polytopes. We shall show
that the affine hull of the fvectors of these particular quasi-simplicial
d-polytopes already has dimension d - 1.

As we saw in section 4.2, if P is a simplicial (d - I)-polytope and P"
is a d-pyramid with basis P, then};(P*) = };(P) + };_I (P) for 0 ~ i :$; d - 1.
Thus f(P*) is the affine image of f(P) under the affine transformation T
(ofthe (d - I)-space into the d-space) determined by T(fo,fl"" ,h-z) =

(1 + fo,fo + fl,fl + fZ, ···,fd-3 + fd-2,h-z + 1). Since affine trans
formations commute with the operation of taking affine hulls, the affine
hull of the set of f-vectors of d-pyramids with simplicial (d - I)-bases
coincides with T(A(d-l» = T(afff(£IJI~-l». We shall prove the theorem
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by showing that the affine hull of A(d) u T(A(d-I)) is (d - I)-dimensional.
This will be accomplished by taking suitable affine bases of AId) and of
A(d- I), and by showing that the affine hull of the union of the basis of
AId) with the image under T of the basis of AId-I) contains d affinely
independent vectors. As bases of AId) and A(d- I) we shall use the bases
hl i l and glil determined in theorems 9.2.3 and 9.2.4.

First, let d = 2n + I be odd. We denote by g(O), . . . ,g(n) the basis of
A(d), and by h' O), "', It(n) the basis of A(d-I). The vectors T(h li)), for
o ~ i ~ n - I, and 2T(hli)) - e". for 0 ~ i ~ n, clearly belong to A~d).

This (2n + l j-mernbered set of vectors is affinely independent. Indeed,
already the vectors formed by their first 2n components are affinely
independent. To see this we consider the determinant of order 2n + 1
formed by a column of ls followed by the first 2n coordinates of our
vectors. If the vectors are taken in the order 2T(I1(0)) - gl0), T(h 'O)),
2T(h(I)) - gIl}, T(h(1)), . .. , T(h ln- I)), 2T(I1(n)) - gIn), the determinant
becomes

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

2 2 0 0 0

0 2 0 0

3 3 0

0 0 3 3 0 =1.

0 .. . 0 (~) (';) G) (] 0

o 0 .. . 0 0 (~) (~) L:.) (:)
Thus, the vectors are affinely independent, and the dimension of A~d)

is at least (and hence exactly) 2n = d - 1.
Next, let d = 2n be even. Proceeding as above let h'O),' " ,h,n)be the

affine basis of AId) and g(O), . . . .e: I} that of A(d-I) = A(2n-l). Then
the 2n vectors h'O), 2h(1) - T(g'O»), h(1), 211(2) - T(g(l»), 11(2), · · ·, h,n-I),
2h,n) - T(gln-I)), which belong to A~d), are affinely independent. Indeed,
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forming the determinant analogous to the one used above, we find
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0 0 0 0 0 0 0 0

-I 0 0 0 0 0 0 0

0 0 0 0 0 0

- 4 -4 -I 0 0 0 0 0

0 2 0 0 0 0

- 3 -3 -3 - 3 - I 0 0 0

0 0 3 3 0 0

o 0 0 . . . 0 (n ~ I) (n ~ I) (n ~ I) (: =:) 0

I -3 -2 0 · · ·0 - ( ~ ) -(~) -G) -(n:J -C)
= (-I)" # o.

Thus the dimension of A~d) is d - I in all cases, and the proof of the
theorem is completed.

9.4 Cubical Polytopes

The ' incidence equation ' of theorem 9.1.1, which was used in section 9.2
to derive the Dehn- Sommerville equations for the j-vectors of simplicial
polytopes, may with equal success be applied to other families of poly
topes.

In the present section we shall apply this method-in a way closely
similar to that used above-in order to determine the affine hull of the
j-vectors of cubical d-polytopes. We recall from section 4.6 that a d-poly
tope is called cubical provided each of its facets is a combinatorial
(d - I)-cube. The class of all cubical d-polytopes shall be denoted by
~.

Intuitively, it seems reasonable to expect that there are 'fewer' cubical
d-polytopes than simplicial ones and that, consequently, the dimension
of the affine hull of their [vectors is smaIler than the dimens ion of
A(d) = aff j(&";).
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However, we have the following result:

1. The dimension of the affine hull A~d) = afff(~) of the f-uectors of
cubical d-polytopes is [!d]. The affine variety A~d) is the intersection of
the hyperplanes determined by the equations

d- 1 (j)L (-IY2 j
- k Jj = (_I)d-l t;

j=k k

with the Euler hyperplane

for 0:-:;; k :-:;; d - 2 ,

d-l
L (-IYJj= I-(-I)d.

j=O

The proof of the theorem is analogous to the proof of theorem 9.2.1.
In the notation we employed there, the only change consists in a different
value of Yi.m ' Indeed for every p E fJJ~ and for -1 :-:;; k :-:;; j :-:;; d - I,

eachj-face of P is incident with 2j -k(~) k-faces, and therefore

. ( d - i - I )Yi m = 2m
-

I
•

. d-m-I

This yields the equations of theorem 9.4.1. Since this system of equations
(including Euler's) obviously contains [!<d + 1)Jindependent equations,
it follows that the dimension of A~d) is at most d - [!<d + I)) = [!d].

The following example of a family of cubical d-polytopes shall com
plete the proof by establishing that A~d) has dimension at least ad],
and is therefore exactly [!d]-dimensional.

In the notation of section 4.6, let us consider the cuboids C: for
o :-:;; k :-:;; [!d]. We recall that for i + k :-:;; d - 1, and thus in particular
for 0 :-:;; i < k :-:;; [!d], we have

h(q) = .± (_IY(~)2d+k-i-2j(d ~ j).
J=O } I

Let n = [!d]. We shall show that the vectors f(C:), 0 :-:;; k :-:;; n, are
affinely independent. This will be accomplished by proving the affine
independence of the vectors formed by the first n coordinates of the
vectors f(q). The last assertion is equivalent to the nonvanishing of the
determinant



(O)(d- j)
~ (- 1Y j ° 2

d
- 2j

D(d) =
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(O)(d- j
)~ (- ly j 1 2d

-
1

- 2j

(O)(d- j)... I(-l)j" 2d-(n-I) -2j
J J n - 1
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~(-lyC)(d ~ j)2d+n-2j ~(-lyC)(d ~ j)2d+n -I-2j

.. , ~ (_1Y(~)(d - j)2d+n-<n-ll-2j
J J n - 1

In order to evaluate D(d) we proceed as follows. First, subtracting each
row multiplied by 2 from the following, we find that D(d) equals

(O){d- j)
~(-lY j ° 2

d
-

2 j (O)(d- j)
~ ( - 1Y j 1 2d

- 1 - 2j

( _1)n

(O){d- j)... ~ (- tY . 2d - (n- l l - 2 j

J ) n - 1

(O){d- 1- j) (0) (d - 1- j)
~(-IY j ° 2

d
-

I
-

2 j
~(-IY j 1 2

d
-

2
-

2 j

(O){d- 1 - j).. . I(-lY " 2d- 1 -(n -l) -2j
J J n - 1

(
n - 1) (d - 1- j)

~(-lY j ° 2d-2+n-2j

"(n- 1) (d - 1- j)~ ( - 1Y j 1 2d
- 2+ n- 1 - 2j

(
n - 1) (d - 1- j)'" 4: (-IY " 2d-2+n-(n- ll -2j

J J n - 1
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Repeating thi s procedure successively with the last n, n - 1"" ,2
rows we obtain

D(d) = ( - 1)n(n - 1)/2

~ (- I)ie)(d: j) 2d
-

2 j

~(-l)ie)(d ~ j)2d
-

I
-

2 j

... L (-I)ie)(: =~)2d - (n-I )-2j

~(-I)ie)(d- ~ -j)2d
-

I
-

2 j

~( -I)ie)(d - : - j) 2d- 2- 2j

... ~(_I)i(~)(d - 1 - j)2d-I- ln -I )-2j
J ) n - I

(0)(d - n - j)
~ (-I )i j ° 2

d
-

n
-

2 j

(0)(d - n - j)
~(-I)i j 1 2d -n -I - 2j

(0)(d - n - j)... L (- I)i . 2d - n- ln-I)-2j
j ) n - 1

(d- k)2d - k- (k- I )

k - I

(
d - I)2d - I - (k - 1)

k - ID(d, k) =

Thus D(d) = (_1)+n(n + I)D(d,n), where, for 1 ~ 2k ~ d,
2d(~) 2d -I(~) 2d-lk-I)L ~ J

2d - I (d : I) 2d _ 2 (d ~ I)
. . . .. . .. . .

2d - k (d : k) 2d _ k _ I (d ~ k)
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Considering D(d, k), we subtract from each row the following one
multiplied by 2 and obtain

(d - I) (d - I)-I 0 2
d

-
1 0

2d-(k-1)
k-2

(d - 2) (d - 2)-I 0 2d- 2
0

2d - I-(k- I )

k-2

D(d,k) =

(d - k) (d - k)-I 0 2d- k
0

2d - (k - l l - (k - 1)

k-2

(d - k) (d - k) (d - k)2d- k 0 2d -k - I 1 2d- k-(k-1)
k - 1

Developing D(d,k) with respect to the elements of the second column
we obtain D(d, k) = (-lnd-kD(d - I, k - I). Thus, by induction,

.
D(d, k) = (-I)J/ 2(d -k )(k-llD(d - (k - I), I)

It follows that D(d) = 2n
(d - n) #- 0, as claimed.

This completes the proof of the affine independence of the f-vectors
of C~, C1,... , C~, and with it the proof of theorem I.

A set of independent equations determining A~d), simpler than the
equations of theorem I, is given by the following result :

2. The flat A~d) is the intersection of the Euler hyperplane with the
hyperplanes determin ed by the equations

d- I ( .)L (-I)i ) I, = 0
j =k k

for k == d (mod 2) and 1 ~ k ~ d - 2.
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PROOF Let the left-hand side of the equation be denoted by ak' Using
the equations of theorem 1 we have

d-Id-I (j)(i)
= ~ .L.(_ly+i .2i- j J;

)=k ,=) k J

= dr.1df (_ l)i - j2i- j(~ - ~)( i )J; .
j =k i= j I - J k

Changing the order of summation, introducing t = i - j , and noting
that

i - k (i - k)L (-1)'2' = (1 - 2)i -k = (- I) i -k,
.= 0 t

the last expression may be transformed in the following manner:

d-li-k (i-k)(i)
(-It-1ak = L L (-1)'2' J;

i =kl= O t k

Since k == d (mod 2) this yields a k = -ak , i.e. ak = 0 as claimed.

9.5 Solutions of the Dehn-8ommerville Equations

The present section is a continuation of section 9.2. We are aga in con
sidering simplicial d-polytopes and our aim is to 'solve' the system of
equations determining A(d) = aff f(&";). In a certain sense we already
solved this problem by finding affine bases (for instance, those on
pp . 147, 150) for A(d). However, the geometric background of the problem
makes another type of solution desirable. The algebraic solution by
bases of A(d) yields , naturally, all the d-tuples (fo, . . . .Is- I) belonging to
A(d). On the other hand, our interest is centered on the proper subset
f(&,,;) of A(d). The complete determination of f(&,,;) (and off(~)) is the
final aim, and our preoccupation with A(d) is only a first step in this
direction.
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Though the present state of knowledge is so inadequate that we are
unable to give a complete characterization even for f(t!J;) (see chapter 10),
there is a possibility of solving the equations determining A(d) in a way
which does yield additional information. We may solve the equations
in such a manner that certain of the numbers j, are expressed in terms
of the remaining numbersj. . Obviously, there is a large number of possible
choices of the 'independent' Ii's. The particular form of solution estab
lished in the following lines is made desirable by its applications in
later chapters. Using again the notation n = [dI2] andf_1 = 1 we have
the following theorem.

1. Every vectorf = (fo ,' .. ,fd-I) E A(d) satisfies the relations

fn+r = d-t- 2{d-t-1
(_I)k+i+ I( k )(d - 1 - i)};;

i=-I k =O d-n-l-t d-k

+ nil (_l)n+i+ I ( d - 1 - i )(n + t - i-I);; ,
i= -I d - n - 1 - t t

for 0 ::s; t ::s; d - n - 1.

It is easily seen that for even d = 2n the terms corresponding to i = - 1
cancel out, while for odd d = 2n + 1 they combine to

For special values of t the above formulae may be simplified. Thus
we have:

For d = 2n,

n-I i+ 1 (2n - i) .
J.n = " (_I)n+i+ I r

i~O n + 1 n n ,

f2n-1 = nil (_I)n+i+ I i+ 1(2n - 2 - i);; ,
i =O n n - 1

while for d = 2n + 1

(
2n + 1) n - I (2n + 1- i)I, = (-1)"2 + L (_l)n+i+ I I. ,

n i=O n + 1

(
2n) n-I (2n - 1 - i)

f2n = (-I)n2 + 2 .L (_l)n+i+ I ;; .

n 1=0 n
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In order to prove theorem I we start from the equations Ed* (page 148).

Multiplying equation (Et*) by (- 1)k+SC), where s is some fixed non

negati ve integer, S :::;; d - n - I, adding the resulting equations, and
changing the order of summation, we obtain

d-n -2{d -n-1 (k) (d - i-I)}I L (- 1)d+i+k+s Ii
j ; - I k;O S d - k

dr.1 {d -t-
I

(_l)i+k+s(k) (d - i - I)} Ii .
• = - 1 k =O S k

On the right hand side, we consider separately the summands corres
ponding to i = -1 ,0,1, ·· ·, n - I, and those corresponding to
i = n, . .. , d - I ; in the second sum the effective range of k is only up
to d - i-I. Therefore, using the relation*

.± (_I)i(~)(i) = (_I)C(Q) (Q - b - I),
1=0 I b b c - b

the right hand side is transformed into

n-I (d - .: (d - i - s - 2)I (_I)d +n+s + i+ 1 Ii
i ; - I S d-n-s-l

d- 1 (d - i-I) (d - i- s - 2)+ L (_I)d+s+1 . Ii.
i =n S d - I - S - 1

(
d - i - s - 2)

But = <>0d-j - s- 1 ; therefore the second sum reduces
d-i-s-l .

to (_I)d+s+ Ih _s _I ' Putting n + t = d - s - 1 we finally obtain the
equations of theorem I.

9.6 The.r-Vectors of Neighborly d-Polytopes

It was already pointed out in theorem 7.2.2 that for a simplicial neighborly
d-polytope P the dimension d and the number of vertices v = !o(P) are
sufficient to determine the complete f-vector f(P). The interest in the
numbersjjjf"] stems in part from certain extremal properties of simplicial

• See the footnote on page 149.
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neighborly d-polytopes, which we shall discuss in chapter 10. In the
present section our aim is to find expressions for fk(P) simpler than those

obtained from theorem 9.5.1 by insertingfk(P) = ( v ) for 0 ~ k < [td).
k + I

We define fk(V, d) to mean fk(P) where P E .%~ is any simplicial neigh
borly d-polytope with fo(P) = v vertices. By theorem 9.5.1, h.(v, d) is
properly defined, that is, it does not depend on the particular P E .%~

chosen. In this notation we may formulate the result as follows.

1. Let n = [!d] ~ I and let 0 ~ k ~ d - 1. Then

v - (d - 2n)(v - k - 2) n (V - I - j) ( v - k - I )
fk(V,d) = L . . .

v - k - I j ?O k + I -.I 2.1 - k - I + d - 2n

In order to prove the theorem we shall first show that the fk(V, d) as

defined in the theorem satisfy fk(V, d) = ( v ) for 0 s k < n ; this rela-
k + I

tion is characteristic for neighborly d-polytopes. The proof will be com
pleted by showing that the numbers h.(v, d) of the theorem satisfy the
Dehn-Sommerville equations (theorem 9.2.1).

Let 0 ~ k ~ n - 1 ; introducing into the formulae for Is».d) the new
index of summation i = k + I - j, we obtain

fk(V, d)

= v - (d - 2n)(v - k - 2) (V - k - 2 + i) ( v - k - I ).

v - k - I i~O i k + 1 + d - 2n - 2i

Using the relation (*)

I (a + i) ( a + I .) = (a + h + I) ,
i? O a h + I - 21 a

the sum on the right can be evaluated in closed form and we obtain

v - (d - 2n)(v - k - 2) (V + d - 2n - I)
fk(V, d) = k 1 .

v- - v-k-2

Therefore, for even d = 2n we have

v (V-I) ( v ) ( V)fk(v,2n) = = =,
v-k-I v - k - 2 v - k - l k+l

• For sake of continuity of argument, we defer the proof till page 167.
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while for odd d = 2n + I we have

Our first assertion is thus established for all d.
We turn now to the second part of the proof, and we remark, first, that

it is sufficient to show that the numbers fk(V,d) of the theorem satisfy a
maximal independent subsystem of the Dehn-Sommerville equations.
As noted on p. 147, in case d = 2n such a system is formed by the nequa
tions E"--1' E1 , E~, ... ,E~-3' while for d = 2n + I we may take the n + I
equations E"--1' E~, E~, Ei, E~-3'

Considering the case of even d = 2n, we thus have to show that

2"i:1(_l)k(k+l) v ±(V-I-~)(V.-k-I)=O
k= 2r 2r v - k - I j = 0 k + I -] 2] - k - I

holds for r = 0, 1,2" . . ,n - 1. Using

(
V- I - i )(V- k - I ) V- k - I(V- i - I)( i )
k + I - i 2i - k - I = i j - I k + I - i '

this is equivalent to establishing

"{2"-1 (k+I)( i )}V(V-i-I)L L (_I)k --: = O.
j = 0 k= 2r 2r k + I - i] i-I

The last equation, however, is immediate since the effective range of k
is only from 2r to 2i - I and since (*)

2£1(_It(k+I)( i )=0.
k=2r 2r k + I - j

In case of odd d = 2n + I we shall first show that the numbers
fk(v,2n + 1) satisfy Euler's equation Ed (that is, E"-- 1)' Then, in analogy
to the above, we have

2" k + 2 "(V - I- i)(V - k - I)L (-It L
k=O v - k - I j =O k + I - i 2j - k

" { 2" ( i + I )} I (V - i-I)L L (-I)k(k + 2) -. - .
j=O k=O k + I - i ] + I .i

• See page 167.
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Now, for j = 0 the range of k is reduced to the single value k = 0, and
the contribution to the sum is 2; for 0 < j ~ n the value of the sum on
k is zero since, introducing i = 2j - k, we have

2" ( j+ 1 ) j+ I (j + 1)L (-I)k(k + 2) . = 2U + 1) L (_1)i .

k=O k + 1 - J i = O I

j+ I . (j + 1)
- i~1 (-1)'i i

{
j + I ( . + 1) j (j)}= (j + 1) 2 .L (- 1)i J . + .L (- l)i . = O.
1=0 I ,=0 I

Thus, Euler's equation is satisfied.

In order to complete the proof we have to show that , for
r = 0, 1" .. , n - 1 the expression

2" (k+l) k+2 " (V- l - j)(V- k- l)L (_1)k L
k=2r+ I 2r + 1 v - k- 1 j=O k+ 1 - j 2j - k

vanishes. Transforming as above we see that this sum equals to

"{ 2" ( k + 1 ) ( j + 1 )} 1 (V- j - 1)L L (_I)k (k + 2) -. - ;
j = 0 k = 2r + I 2r + 1 k + 1 - j J + 1 j

But this sum is easily seen to equal zero since the sum on k is 0 for eachj.
Indeed, introducing i = k + 1 - j we have

2" (k + 1) ( j + 1 )L (- 1)k (k + 2)
k = 2r+ I 2r + 1 k + 1 - j

j+1 (i+ j) (j+l)L (_I)i+ j-I (i + j + 1) .
i = 2r - j + 2 2r + 1 I

j+ 1 (i + j+ 1) (j + 1)= 2(-1)i+ l(r + 1) L (_I)i . .

i=2r -j+2 2r + 2 I

But

(
i + j+ 1) (j ~ 1) = 0

2r + 2 I
for i < 0 or i < 2r - j + 1.
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Therefore our sum equals
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2( _ IY+ I(r + l){ji'(_l)i(i + j + 1) (j ~ 1) + (-IY( j +.1 )}.
i = 0 2r + 2 I 2r - } + 1

Using the relation (see footnote on page 150)

.± (_ 1)i(~) (i + a) = (_ l)a( a )
1=0 I b b - a

we finally obtain

2(-IY+1(r+l)J(-IY+I( j+I )+(-IY( j+I )}=O,
l' 2r + 2 - (j + 1) 2r - j + 1

as claimed.
This completes the proof of theorem 1.

Note that the above expressions for fk(V, d) can be put into the follow
ing form which is occasionally more convenient (see, for example, the
second part of the proof of theorem 1):

(*)

and

n V(V - j - 1) ( j )
fk(v,2n) = L --: . .

j= i I } - 1 k - } + 1

n k+2(V-j-I)( j+ 1 )
fk(v,2n + 1) = L -.- . .

j=oJ + 1 } k - J + 1

for 0 ::;; k ::;; d - 1.
Either from these equations, or from those in theorem 1, it is easy to

deduce

2. For 0 ::;; k < 2n + 1 < v

k+2
fk(v,2n + 1) = - - ·f k+ , (v + I,2n + 2) .

v + 1

Equation (*) appears without proof in Motzkin [4] ; the same abstract
contains also a relation similar to theorem 2, but marred by misprints.
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We now give proofs for the identities used above. First, let

(
X + i)( x + 1 )F(x, y) = L: ;

;20 x y + I - 2i

167

(

X + Y + 1)
we shall show that Fix , y) = x . Indeed,

F(x, 0) = (x+O)( x+l )=X+l=(x+O+l),
x 0-2 '0+1 x

and

F(O,y) = L: (i)( 1. ) =[(1) or (I)J = 1 =(o+y+ 1) .
; 20 ° y - 21 + 1 ° 1 °

Thus our assertion shall be established by induction if we show that
F(x + l,y) + F(x,y + 1) = F(x + l,y + 1). But

F(x + l,y) + F(x,y + 1)

[(
X + 1 + i) ( x + 2 ) (X + i) ( x + 1 )J

i~o i y - 2i + 1 + i Y - 2i + 2

[(
X + i + 1) ( x + 1 ) (X + i) ( x + 1 )

= i ~o i Y - 2i + 1 + i-I Y - 2i + 2

(
X + i) ( x + 1 )J

+ i y - 2i + 2

[(
X + i + 1) ( x + 1 ) (X + i + 1) ( x + 1 )J

i~O i Y - 2i + 1 + i y - 2i + 2

(
X + i + 1) ( x + 2 )

=L. . =F(x+l,y+l),
i~O 1 Y - 21 + 2

as claimed.
Next, we consider the expression

n (n)(i+m)S(n,m,k)= .L(-I)i . .
.=0 1 k

Clearly S(n, m, k) = S(n, m - 1, k - 1) + S(n, m - 1, k); therefore, by in
duction,

S(n,m,k) = t (~)s(n,m - r,k - i).
;=0 1
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Also, by the footnote on page 150,

n (n) (i) (n) (n - k - I)S(n,0,k) =.L (- I)j . =( _ I)n =( - I )"<5n.k .
1:0 I k k n - k

Therefore, with r = m, we have

S(n,m,k)=.f (~)S(n,O,k - i) =i (~)(-I)"<5n .k - j =( - 1)" ( m ).
1:0 I j:O I k - n

In particular, for n = m we obtain

(*) . i ( _ l)j (~ ) ( i + n) = ( _ I )" ( n ) .
1:0 I k k - n

Using (*) we can evaluate

2 j - l (i+I)( . ) . (t+ ')( ')L (- 1)j . J . = (_ l}j - 1 ±(_ I)' J J
j :2r-l 2r 1+ I -J , : 0 2r t

= -Lrj

- ) ·

Therefore

2 j - 1 .(i+ 1) ( j )L ( _ 1)1 = 0,
i > 2r 2r i + 1 - j

as claimed on page 164.

9.7 Exercises

1. Prove that dim A (d) ~ a d] = n by showing the affine independence
of the f-vectors of the n + 1 d-polytopes T~ , °5 r 5 n, considered in
exercise 4.8.5 and in section 6.1.

2. Let fk(V, d) denote the number of k-faces of a cyclic d-polytope
C(v, d) with v vertices (see section 4.7). Using the Dehn-Somrnerville

equations, andfk(v, d) = ( v ) for 05 k 5 rid] - 1, show that
k + 1

(
2n + 2) (n + 1)fM + 2,d) = - 2
k+1 k-n

ford=2n ,
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(
2n + 3) ( n + I) (n + 2)fM + 2,d) = - -
k+1 k -n-I k-n

v (V- n - 1) __ (V-n n) + (V -n _n -I I)fd -l(V,d) = --
n n - I
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for d = 2n + 1,

for d = 2n,

for d = 2n + 1.

3. Show that for k = d - 1 theorem 9.6.1 reduces to theorem 4.7.3.
4. Determine the Dehn-Sommerville equations for simple d-polytopes

by each of the following methods :
(i) by duality, from theorem 9.2.1 ;
(ii) directly from the 'incidence equation' of theorem 9.1.1 ;

(iii) using 'double counting of incidences.'
5. Show that the affine hull of the set of [vectors of all centrally

symmetric simplicial d-polytopes coincides with A (d). (Hint: Use induc
tively bipyramids and Kleetope s (see section 11 .4) over them, starting
for d = 3-with the octahedron and the Kleetope over it.)

6. Show that the affine hull of the set of f-vectors of all self-dual d
polytopes has dimension [td]. (Hint : Use the polytopes defined in
exercise 4.8.33).

7. As in section 4.5, let &d(k, h) denote the family of all d-polytopes of
type (k, h).

(i) Show that the affine hull ofthef-vectors of all members of £!)'4(2, 2)
is determined by the equationsfo = f3 and j', = f 2. (Hint : Find the equa
tions by counting in different ways the number of incidences of edges and
2-faces ; to find three affinely independentf-vectors, consider the simplex,
the polytope mentioned in exercise 4.8.15, and the regular (Platonic)
4-polytope with 24 vertices (see Coxeter [I)) .)

(ii) Show that the [vectors of polytopes in &d(k, d - k) satisfy the
equation (k + I)};. = (d - k + l)fk-l.

(iii) It may be conjectured that the dimension of the affine hull of the
set off-vectors of all polytopes in &d(k, h) is

(a) 0 if k + h > d
(b) ad] if k + h = d and k = 1 or h = 1
(c) d - 2 if k + h = d and k #- 1 #- h
(d) d - 1 if k + h < d.
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Assertion (0) is obvious (see exercise 4.8.1 I), while (b) is theorem 9.2.1
and its dual. (i) above and theorem 9.3.1 establish (c) and (d) for d s; 4.
M. A. Perles and G. C. Shephard (private communication) proved (c) for
k = 2 and d s; 7. They also proved the existence, for each d ~ 4, of
infinitely many d-polytopes of type (2, d - 2), and for d ~ 5. the existence
of polytopes in ,q;d(3. d - 3) different from the d-simplex.

8. Let AId) and A~d) denote the affine hull of the set of [vectors of all
simplicial respectively simple d-polytopes. Show that aff(A(d) \...I A~d») is
the Euler hyperplane in Rd for d ::;; 4 and for d = 6, but that

J(d) = dim aff(A(d) v A~d» < d - I

for d = 5 and for d ~ 7.
It would be interesting to determine J(d) for all d.
9. Show that the equations of theorem 9.4.1 (including Euler's equa

tion) can be solved for fm' " Jd - 1 in terms of fo ,'" In-l (where
n = ltd)).

10. For 0 ::;; k ::;; d, let the vector W(k.d) = (W~·d), . • . , W~k.:dl) be defined
by

for 0::;; i ::;; k - I

for k s; i ::;; d - I .

Prove that the set W Id) = { Wlk•d) I0 ::;; k ::;; d, k == d (mod 2)} is an affine
basis of A(d).

9.8 Remarks

The history of the Dehn-Sommerville equations is rather interesting.
The 4-dimensional case is rather trivial ; it was known already to
Bruckner [1,3]. Dehn [1] proved in 1905 that thef-vectors of simplicial
d-polytopes satisfy 2 independent linear relations for d = 4, and 3 such
relations for d = 5. He also conjectured that for general d there are
[td ] + I such relations.* The complete systems (E~) and (E::;) were
obtained in 1927 by Sommerville [I], in a manner very similar to the one
used here. There seems to be no additional mention of the Dehn-

• Th is is o bviously a typographi cal error since already the cases d = 2 a nd d = 4
co ntra d ict it : Dehn certainly had the correc t [!{d + I)J in mind .
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Sommerville equations in the literature* till Fieldhouse's thesis [I] in
1961. Independently of all previous work Klee [11] rediscovered in 1963
the Dehn-Sommerville equations, in the more general formulation for
manifolds and 'incidence systems' (see below).

It is interesting to note that though Sommerville [1] mentions the fact
that [i(d + 1)] of the equations (E~) are independent, he does not con
sider the question of the completeness of this system-that is, the question
about the dimension of A(d) = afff(~). Klee [11] shows by a family of
examples (from which the above exercise 9.7.1 is derived) that the dimen
sion of the linear hull off(~) is at least [1(d + 1)].

Theorem 9.5.1 was first obtained by Fieldhouse [1] (the formulas
reproduced in the summary Fieldhouse [21 are not correct for odd d).
Klee [11,13] found the expressions for h - 1 in terms of fo, ' .. ,1.- 1 (where
n = ltd]), and noted that in the expression for fb k ~ n, in terms of
fo , ' . . ,fn- l' the coefficient of fn- 1 is positive. Recently Riordan [1]
obtained various recurrences and interrelations for the coefficients
appearing in those equations, as well as expressions for the /;'s of even
index in terms of those of odd index, and vice versa.

Klee [11] is certainly the most important paper on the Dehn-Sornmer
ville equations, not only because of the generality of the results obtained
but also since it is the first, necessary, stepping-stone for Klee's [11] treat
ment of the problem of maximizing jj, , givenfo (see section 10.1). The
method used by Klee [13] is similar to that used in the present exposition ;
he obtained most of the results of section 9.2.

In a far-reaching generalization of theorems 9.2.1 and 9.3.1, and
exercises 8.5.1 and 9.7.5, M. Perles [2] recently establ ished the following
theorem :

Let G be any finite group of linear transformations of Rd
, d ~ 2.

Denote by ~(G) respectively ~(G) the family of all simplicial (respect
ively quasi-simplicial) d-polytopes P such that P is mapped onto itself
by each transformation in G. Then dim aff f(~~(G» = ri d], and
dim aff f(~(G» = d - 1.

• It is remarkable that even Sommerville himself fails to mention the equations in his
book [2].



171a CONVEX POLYTOPES

9.9 Additional notes and comments

The h-vector:
In his seminal 1970 paper in which he also established the upper bound the
orem (see sections 10.1 and the notes in 10.6), McMullen [c] made extensive
use of the h-vector h{P) = (ho,h l l • • • , hd ) of a simplicial d-polytope. Its com
ponents are given by

k: k "(d-i)hk := ~(-I) -, d-k u.;
,=0

where we write I{P) = (to'/I"" '/d- I) for the I -vector, and agree that I-I =
I. The h-vector is linearly equivalent to the I -vector, via

1;-1 = t (~=~)hk'
k=O

In terms of the h-vector, the Dehn-Sommerville equations have the strikingly
simple form (already observed by Sommerville [I])

for 0 s k s d.

The h-vector of a neighborly d-polytope with n vertices is given by

for 0 s k $ [~],

so the upper bound theorem is reduced to showing that hk{P) $ (n-dk l+k)
holds for all (simplicial) d-polytopes P with n vertices.

The components hk of the h-vector of a simplicial polytope have a number
of important interpretations:
o hk counts the number of shelling steps (i . e., facets) in an arbitrary shelling

for which the unique minimal "new" face has exactly k vertices.
o Dually, hk counts the number of vertices in which an arbitrary sweep hyper

plane for P* encounters exactly k new edges.
(In particular. reversal of the shelling resp. the sweep direction immediately
establishes the Dehn-Sommerville equat ions. Also, the combinatorial inter
pretation yields that hk ~ 0 holds for all k.)

o hk is the dimension of the k-graded part of the face ring (see also the notes in
section 10.6) of the boundary complex of P, modulo a homogeneous system
of parameters of degree I.
(This is still true if we consider any triangulated sphere in place of the bound
ary of a polytope P, and this leads to Stanley's [a] [g] proof of the upper
bound theorem for spheres.)
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o hk is the rank of the 2k-th singular homology group of the toric variety asso
ciated with a (rational , centered) simplicial polytope P.
(This allows one to apply the hard Lefschetz theorem for the toric vari
ety, and thus establishes additional restrictions on the components of the h
vector ; this is the key to Stanley's [b] proof of the necessity ofthe g-theorem,
which characterizes the I-vectors of simplicial polytopes. See Ewald [a],
Stanley [c], and the notes in sect ion 10.6.)

Dehn-Sommerville with symmetries.
See Barvinok [a] for an equivariant generalization of the Dehn-Sommerville
equations.

Binomial sums.
There has been a lot of progress in the derivation and manipulation of binomial
identities such as those appearing in this chapter. Three valuable and enjoyable
references for this are Graham-Knuth-Patashnik [a], Wilf [a], and Petkovsek
Wilf-Zeilberger [a].

Cubical h-vectors.
There are two different , competing notions of an h-vector for cubical polytopes ,
one by Stanley [d] as a special case of his "toric h-vector for general polytopes"
(see also Chan [a)), and a simpler combinatorial one due to Adin [a]. Both
versions yield non-negative vectors that can be computed from a shelling, and
they satisfy cubical Dehn-Somrnerville equations of the form h'kub = hd~k '

On exercise 9.7.7.
As noted in section 4.9, our ability to construct polytopes of type (k,h) is
very limited . Despite the remark on page 170, no family of infinitely many
polytopes of type (2,d - 2) for any fixed d > 4 is known. However, we
have the quite remarkable Wythoff construction, as explained by Coxeter [1,
§§5.7, 11.6-11.8]. It produces uniform polytopes as the convex hulls of spe
cial orbits of finite reflection groups ; thus it provides the Gosset-Elte poly
topes rst of dimension d = r +s + t + 1, for parameters r ~ 1, s ~ t ~ 0 with
r~1 + s~1 + t~1 > 1. (See Coxeter [a] for a slick proof of this finiteness con
dition.) P. McMullen has observed that rst has the type (r+ 2,s +t - I).

One may work out that this construction includes as special cases the half
cubes h'Yd = I d_3,1' which are dual to the examples of type (3,d - 3) that ap
pear in exercise 4.8.18. Furthermore, the construction produces the remarkable
8-dimensional polytope 24 1 of type (4,4), related to the Coxeter group E8, with
2160 vertices and 17520 facets.



CHAPTER 10

Extremal Problems Concerning Numbers of Faces

In chapters 8 and 9 we obtained information on the f-vectors of d-poly
topes, and of some special classes of d-polytopes, by determining the
affine hull of all the [vectors of polytopes in the class considered. In
other words, we were concerned with the linear relations satisfied by
the f-vectors of all polytopes belonging to a certain class. Chapter 10
reports on the present knowledge about non-linear relations existing
between the components of f -vectors of certain classes of polytopes.
As will be seen , results in this direction are still rather incomplete
despite the considerable interest and efforts devoted to some aspects
of these problems.

10.1 Upper Bounds for Ii, i ~ 1, in Terms oflo

We have seen in section 5.2 that the process of 'pulling' the vertices of a
d-polytope P leaves fo(P) unchanged while /i(P), for 1 :s; i :s; d - 1, is
either unchanged or increased. If the pulling is performed, in turn, with
all the vertices of P, a simplicial d-polytope P/ is obtained such that
fo(P/) = fo(P), and /i(P/) ~ };(P) for 1 s i :s; d - 1, with fm(P') = fm(P)
implying that all k-faces of P are simplices , for all k :s; m. In other words,
we have

1. For all k, d, v with I :s; k < d < v,

max {fk(P) IP E 9"",fo(P) = v} = max {fk(P) IP E ~,fo(P) = v}.

Moreover, if P E [l/d,fO(p) = v, and ifh-l(P) has maximal possible value,
thenPE~.

Therefore, when endeavoring to determine upper bounds for };(P)
in terms offo(P), we may without loss of generality restrict our attention
to simplicial polytopes P. The reduction of the problem to a question
on simplicial polytopes is important because it enables us to use the
Dehn-Sommerville equations from chapter 9.

172
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We shall denote by JJ.k(V, d) the maximal possible number of k-faces
of d-polytopes P with fo(P) = v. In particular, JJ.(v, d) shall occasionally
be used instead of JJ.d-I(V, d).

Before stating and proving the general results, we shall examine in
some detail the simplest cases d = 3,4, 5.

(1) If d = 3 we have the following special cases of the equations from
section 9.5 for the [vectors of polytopes in PJ; (see table 3):

fl = 3fo - 6,

f2 = 2fo - 4.

Therefore, for every P E PJ 3 ,

fl(P) s 3fo(P) - 6 = JJ.l(fO, 3),

f2(P) ~ 2fo(P) - 4 = JJ.2(fo,3).

By duality there follow also the relations

fl(P) ~ 3f2(P) - 6 = JJ.l(f2, 3),

fo(P) ~ 2f2(P) - 4 = JJ.2(f2, 3).

Note that either inequality of each pair is a consequence of the other
inequality and of Euler's equationfo - fl + f2 = 2.

(2) If d = 4 then obviously fl s (;) with equality only for neigh

borly 4-polytopes. The equations of section 9.5 yield for each P E PJ:

f2 = 211 - 2fo ~ 2(;) - 2fo,

f3 = fl - fo ~ (;) - fo·

Therefore, the [vector of each 4-polytope satisfies

I, s tfo(fo - 1) = JJ.l(fo,4),

12 s lo(fo - 3) = JJ.2(fo,4),

13 s tfo(/o - 3) = JJ.3(fo,4),

with equality in any of the relations characterizing the polytope as
neighborly, and implying equality in all inequalities.
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(3) Similarly, if d = 5 we have, for P E &l';,
f2 = 4fl - 10fo + 20

f3 = 5fl - 15fo + 30

f4 = 2fl - 6fo + 12.

Since againj", ~ (;), thef-vector of each 5-polytope P satisfies

I, s tfo(fo - 1) = 1l1(fO, 5),

f2 ~ 2fo(fo - 6) + 20 = 1l2(fO, 5),

f3 s 1fo(fo - 7) + 30 = 1l3(fo,5),

f4 ~ fo(fo - 7) + 12 = 1l4(fO, 5).

Equality in any of the relations implies that P is a 2-neighborly 5-poly
tope . If P is a simplicial 5-polytope then equality in any of the relations
implies equality in all of them.

Already for d = 6 such a simple approach does not work. The Dehn-
Sommerville equations yield

f3 = 5fo - 5fl + 3f2'

I4 = 6fo - 6fl + 3f2'

Is = 2fo - 2fl + I2'

and the obvious inequalities II s (~0),.f2 ~ (~o), are not sufficient to

derive best-possible upper bounds for Ik, k = 3,4,5.

Our next aim is a set of inequalities generalizingf,. s ( Io ) , which
r + 1

shall, in conjunction with the Dehn-Sommerville equations, yield the
most important part of the known values of Ilk(V, d).

2. For every simplicial polytope P, andfor all nonnegative k and r, k ~ r,
we have

(r+ 1) (Io + k - 1- r)
f,. s f,.- k

k k
independent of the dimension of P. Moreover, equality holds if and only if
P is an (r + I)-neighborly polytope.
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PROOF We shall estimate in two ways the number gr,r-k(P) of inci
dences of an r-face of P with an (r - k)-face of P. On the one hand, each

r-face of P is an r-simplex and has , therefore, ( r + 1 ) = (r + 1)
r-k+I k

(r - k)-faces ; hence gr,r-k(P) =r:1) fro On the other hand, theorem

3.1.8 implies that if an (r - k)-face pr-k is incident with an r-face F' there
exists a (k - I)-face F k - I such that

Fk- 1 n pr-k = 0 and F' = P n aff(Fk - 1 u pr-k) .

Thus the number of incidences of an F'" k with r-faces of P does not
exceed the number of (k - I)-faces of P which are disjoint from r».
Clearly, the last number is not greater than (:), where v = fo - (r - k + I)

is the number of vertices of P not incident with r».Therefore,

and the proof of theorem 2 is completed.

Letfk(v, d) denote the number of k-faces of any cyclic d-polytope with
v vertices; as shown in chapter 9, fk(v, d) is also the number of k-faces
of every simplicial neighborly d-polytope with v vertices. Obviously
J1.k(V, d) 2 fk(v, d). We shall prove

3. The relation J1.k(V, d) = !t(v, d) holds at least in the following cases:
(i) for every k, 1 ~ k ~ d - 1, provided v is large enough;

(ii) for k = d - 1 provided d is even and v 2 [1dF - 1 or d is odd
and v 2 [!{d + I)]l - 2 ;

(iii) for k = ad] provided d = 2n and v 2 !(n 2 + 3n - 4) or d = 2n + 1
and v 2 !(n 2 + 5n - 2);

(iv) for every k, 1 ~ k ~ d - 1, provided v ~ d + 3.
(v) for every v and k, 1 :s; k < d < v, provided d ~ 8.

We shall prove the various assertions of theorem 3 one after another.
(i) By theorem 9.5.1 every P E~ satisfies, for each k with

n = [d/2] ~ k ~ d - 1,
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an equation of the type
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(d- n) n-2

fk(P) = k _ n f.-l(P) + i =~ 1 C1.J;(P),

where the C1./s are numerical coefficients depending only on k and d
(the values of the C1./s are given in theorem 9.5.1). In order to obtain an
upper bound forfk(P) in terms offo(P) = v, we note that

t: 1) ( v )

(

V - ~ - 1)f.-l(P) :::; J;(P):::; i + 1 '

n - 1 - 1

where the lower bound results from theorem 2 above. (Note that equality
holds throughout if and only if P is a simplicial n-neighborly d-polytope
with v vertices). Therefore

{(
d - n) (i: JJ ( v )

fk(P) :::; k _ n + I* C1.i(V _ ~ _ 1) fn-l(P) + I** C1. i i + 1'
n -I - 1

where the summation in I* extends over all i such that C1. i < 0, and in

I** over all i with C1. i ~ O. The expression in brackets is nonnegative for
v large enough and therefore for such v

{(
d - n) t:J}(V) ( V )

f.(P) '" k _ n + I"at=:J n + E" a, i + I .

Since all the inequalities become equations if P is an n-neighborly d
polytope, this completes the proof of the assertion (i).

Clearly, taking the values of C1. i from theorem 9.5.1, explicit lower bounds
on v (in terms of k and d) may be found from the above proof. However,
the slightly more involved method used below in the proof of (ii) yields
better lower bounds for v.

(ii) The proof follows a pattern similar to the above but is more
elaborate in order to obtain a best-possible result .
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We first consider the case of even d = 2n; for any P E~, by theorem
9.5.1 and the inequalities in theorem 2 above we have

In-I (2n-2-i)
f2n-1 = - L (_1)n+i+l(i + 1) I.

n i=O n - 1

1 n- 1 . (n - 1 + j)
= - L (-I}'(n-j) f,.-l-j

nj=o n-l

1 1-!ln-
l
l] { (n - 1 + 2k)

= - L (n - 2k) fn-I-2k
n k=O n - 1

- (n - 2k - 0 (nn~ 2
1k)fn_2_2k}

1 ltln-I)] { (n - 1 + 2k)
:s; - L (n - 2k)

n k=O n - 1

_ (n + 2k) (n - 2k)(n - 2k - O}
n - 1 fo- (n - 1 - 2k) f,.-1-2k

= l-!(~ 1)] {I _ (n - 2k - l)(n + 2k) 1(n - 2k)
k=O (2k + l)(fo - (n - 1 - 2k»f n

(
n - 1 + 2k)

X f,.- 1- 2k
n - 1

_ [t(n-I)] n _ 2k(n - 1 + 2k)
- L Pk'-- fn-I-2k'

k= 0 n n - 1

Now , provided all Pk are nonnegative, an upper bound for f2n- 1 is

obtained from this inequality by usingj, _ 1 _ 2k :s; ( fo ) . The resulting
n - 2k

upper bound is best possible since in the case of n-neighborly d-polytopes
all inequalities used become equations. As to the sign of Pb it is obviously
the same as the sign of

(2k + l)(fo - (n - 1 - 2k» - (n - 2k - l)(n + 2k)

= (2k + Ofo - (n - 2k - l)(n + 4k + 1)

= (2k + 1) (Jo - ~~ ~ ~) - n - 1 + 2(2k + 0) .
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The value of the last expression clearly decreases with decreasing k.
Therefore all 13k will be nonnegative provided Po ~ 0; in this case the
condition becomes 10 - n2 + n - n - I + 2 ~ 0, i.e. 10 ~ n2

- I =
[td]2 - I as claimed.

We omit the completely analogous computations for the case of odd
d = 2n + I , which yield the conditionj., ~ n2 + 2n - 1 = [!<d + IW - 2.

(iii) The proof in this case parallels the proof in case (ii) (using the
equations from page 161) and is omitted.

(iv) In case of d-polytopes with d + 2 vertices, our assertion follows
immediately from theorem 6.1.3 or 6.1.5, and the observation that

C(d + 2,d) = Tftdl = Tft~l'
In case of d-polytopes with d + 3 vertices, the assertion is contained in

theorem 6.2.1.
Before proceeding to prove the last assertion of theorem 3 we shall

quote, without proof, a recent result of Kruskal [2].
Let rand k be two positive integers. The k-canonical representation of

r is the representation of r in the form

( r1) (r2 ) (r
j

)r= + + ... +
k k-I k-i+I'

where r 1 = max{s Ir ~ (:)}, and in general, rp is defined provided

(r1) (rp- 1 )r> + ... + ,
k k-p+2

and equals

rp = max {s I r ~ (r 1) + ... + ( rp - 1 ) + ( s )} .
k k-p+2 k-p+1

For given r, k, and j we define

rUlk} = (r .1) + ( . r2 ) + ... + ( . '' ) ,
j j-I j-I+I

where r 1" • • , r j are defined by the k-canonical representation of r.

Let Cf,J denote a simplicial complex. We define

K(r; k ;j) = max{h{Cf,J) Ilk(Cf,J) = r} if j> k
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and

K(r ; k ;j ) = min{}j(~) I};.(~) = r} if j < k.

The result of Kruskal [2] may be formulated as follows :

4. For every r, k,j the relation

K(r;k ;j) = r{j+ llk+ I}

holds.

It is worth noting that Kruskal's theorem is a purely combinatorial
result, not depending on the geometric interpretation given to it here.

We shall use Kruskal's theorem in order to prove that Ilk(V, 7) = fk(V, 7).
Considering the case k = 6, the Dehn-Sommerville equations show that
every simplicial 7-polytope satisfies f6 = 2(f2 - 4fl + 10fo - 20). We
shall show that f6 s f6(fO,7).

For fo ~ 10 this assertion is contained in part (iv) of theorem 3; hence
we may assume thatfo ~ 11. Sincef601, 7) = 70, we need consider only
7-polytopes with [« ~ 70. The 7-canonical representation of 70 being

70 = (~) + (:) + (:), theorem 4 implies that for these polytopes

t. ~ 70{31 7
} = (:) + G) + (:) = 118. Hence, for all polytopes con

sidered, the 3-canonical representation of f2 will be of one of the types

or

or

where a ~ 9. If the representations of f2 is of the third type then, by

theorem 4, I, ~ a1213} = (;) and 10 ~ a. Since for a ~ 9 we have
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(
a + I)

- 4 2 it follows that(;) _ 4(;) ~ (a : I)

16 s 2{(;) - 4(;) + 10/0- 20} ~ 2{(~0) - 4(~0) + 10/0- 20}

and the assertion is established.
Thus we may assume that the 3-canonical representation of/2 is of the

first or second type , and consequently a < 10. From the definition of
canonical representation it follows that a > b > c. Now , for fixed 10'
16 clearly increases or decreases with the appropriate change in / 2 - 4[1 ·
By theorem 4,

the binomial coefficients involving c being possibl y absent . Ifc doe s occur,
increasing it to its limit c = b - I clearl y increases the right hand side
of this relation. Thus we have only to estimate from above the expressions

(;) + (~) + (b ~ I) _4{(;) + (:) + I}
«;)+(b: I) -4{(;)+ (b: I)}

and

In other words, it is enough to find an appropriate upper bound for the last

(a+ I) (a + I)expression,undertheassumptionb ~ a. We claim that 3 - 4 2

is such a bound. This assertion is equivalent to

= 4(a - b),
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that is, to
a(a - 1) - b(b - 1) ~ 8(a - b)

or a2
- b2 ~ 9(a - b). But since a ~ b this holds ifand only if a + b ~ 9,

which follows from the assumption a ~ 9. Thus

(
a + 1) (a + 1) (fo) (fo)

f2 - 4/1 :5: 2 - 4 2 :5: 3 - 4 2 '

the last inequality being a consequence of fo > a ~ 9. Finally f6 :5: f6(/0, 7),
and hence J1.6(v,7) :5: f6(V, 7). The equation J1.k(v,7) = fk(V, 7) for all k
may be proved either by an analogous argument, or deduced from the
case k = 6 by using the relations

2f5 = 7f6

2f4 = 9f6 + 4/1 - 12fo + 24

2f3 = 5f6 + lOfl - 30fo + 60,

which follow from the Dehn-Sornmerville equations. This completes the
proof of the case d = 7 of part (v) of theorem 3.

Since the cases d :5: 5 have been established at the beginning of the
present section and the case d = 6 results on combining parts (ii), (iii)
and (iv) of theorem 3 (together with f4 = 3f5), we shall now consider the
case of 8-dimensional polytopes. The proof of this case follows from the
case d = 7 in view of the following lemma (which also yields at once a
proof for -d = 6 from the case d = 5),

5. For all k < d < v,

v
J1.k(V, d) :5: -k - J1.k- l(V - 1, d - 1).

+ 1

Indeed, let P be a simplicial d-polytope and let Pi> 1 :5: i :5: v = fo(P),
be the polytopes obtained as sections of P by hyperplanes, each of which
strictly separates one of the vertices of P from all the other vertices.

Clearly

for all k = 0, 1,... , d - 1.

Also, for each i,fO(Pi) :5: f o(P) - 1 = v - I. Therefore

Jj(PJ :5: J1.j(v - 1; d - 1)
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and hence
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v
f",(P) :s;; k + 1Jlk -l(V - 1,d - 1),

which establishes lemma 5.
Now, if d is even and if Jlk-l(V - 1,d - 1) = fk-l(V - 1, d - 1), then

lemma 5 and theorem 9.6.2 imply

i.e.fk(v, d) = Jlk(V, d).
This completes the proof of part (v) of theorem 3, which is therefore

established in all its parts.

Remarks

The values of Jlk(V, 3) and Jlk(V, 4) have been known for a relatively long
time (see, for example, Bruckner [1, 3], Saaty [1]. The 'upper bound
conjecture' Jlk(V, d) = fk(V, d) was first announced in an abstract of
Motzkin [4]. (The formulation of Motzkin [4] is categorical, but since no
detailed exposition appeared in the intervening years it seems reasonable
to refer to the statement as to a conjecture. See also above, sections 7.2
and 9.6.) A proof of the case k = d - 1 of the conjecture was announced
by Jacobs-Schell [1]; however, the proof seems to have been incorrect.
The first positive step was made by Fieldhouse [1,2]. Using the easily
established cases with d s; 5 and the above lemma 5, he proved
Jlk(v,6) = fk(V, 6). Next came Gale's [5] proof that Jld- I(V, d) = i'd-l(V, d)
for all v :s;; d + 3. The most important contribution is Klee's paper [13],
in which parts (i) and (ii) of theorem 3 are established. Using the analogues
of the Dehn-Sommerville equations for Eulerian (d - I)-manifolds C(j of
Euler characteristic X(C(j) (Klee [11]; see section 9.2), Klee [13] extended
parts (i) and (ii) of theorem 3; to all complexes of this type and conjectured
the validity of the 'upper bound conjecture' for all such manifolds.

The case k = I of theorem 2 is also due to Klee [13].

Rather obviously, the case k = d - 1 of the 'upper bound conjecture'
is most important and interesting. The 'gap'd + 4 :s;; v :s;; [!d]2 - 2 for
even d, and d + 4 :s;; v :s;; [1(d + 1)] - 3 for odd d, of values of v for
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which the 'upper bound conjecture' is still open is rather frustrating.
The first unsolved cases, 13 S v s 22 for d = 9 and 14 S v s 23 for
d = 10, seem not to be decidable by the methods developed till now.

The last part of theorem 1 may probably be strengthened as follows:
If P E &4 and fk(P) = Jik(fO(P), d) for some k ~ [1(d - 1)], then P E ~.

This problem was first noted by Klee [13] who also observed that the
solution is affirmative if k = d - 1, k = d - 2, or d = 2k + 2. The last
case is a consequence of theorem 7.2.1. The simplest undecided cases are
d = 5, k = 2 and d = 6, k = 3.

10.2 Lower Bounds for f i> i ~ 1, in Terms of fo

As a counterpart to the upper bounds for the numbers fk(P), P E &4 or
P E &~, in terms of.fo(P), which were given in the preceding section, we
shall now present the known results on the corresponding lower bounds.

The present problem differs from the previous one in an important
aspect : There is, for the time being , no reasonable and general conjecture
as to the d-polytopes P which minimize fk(P) or as to the minimal values
themselves. As a consequence our knowledge is much more restricted in
case of the lower bounds than in case of the upper bounds.

We are interested in the two functions <fJk(V, d) and <fJZ(v, d) defined by

and

<fJt(v, d) = infUk(P) IP E~

Let us define, for v ~ d + 1,

and .fo(P) = v}

and fo(P) = v} .

for 1 S k s d - 24>t(v,d) = (~)v - (~: :)k

4>1-1(V, d) = (d - 1)v - (d + 1)(d - 2).

It has been repeatedly conjectured that <fJt(v, d) = 4>Z(v, d) for all v, d,
and k. For the rather interesting history of this 'lower bound conjecture'
see below.
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We shall prove the rather weak result

1. The relation

<fJ:(v, d) = <p:(v, d), k = 1,2, ···,d - I

holds provided

either

or

(i) d:-:; 3;

(ii) v:-:; d + 3.

PROOF Assertion (i) is completely trivial for d = 2. In case d = 3 we
havej', = 3fo - 6 andf2 = 2fo - 4, hence <fJt(v, 3) = <p:(v, 3) as claimed.

As to assertion (ii), in case v = d + 2 the proof follows from theorem
6.1.3 since <pt(d + 2, d) = fk(T1). In case v = d + 3 our claim follows from
theorem 6.2.5 since

<pt(d + 3,d) = (d + 2) + (d) _ ( d ) _ 215k, d - l '

k+1 k k-I

This completes the proof of theorem 1.

Let us define, for d < v :-:; 2d,

<Pk(V, d) = (d + I) + L (d - i)
k + I 1 ~i~v-d-l k

= (d + I) + ( d ) _ (2d + I- V) .
k+1 k+1 k+1

It may be conjectured that <fJk(V, d) = <Pk(V, d) for all k and d + I :-:; v :-:; 2d.
However, we are able to prove only the weaker result.

2. (i) For all k, r, and s such that I s k s d - I, I :-:; r s min{4, d},
and s > r, we have

<fJk(d + s, d) ~ <fJM + r, d) = <PM + T, d) .

(ii) <fJl(v,2) = v for all v ~ 3.
(iii) <fJl(v,3) = [!<3v + I))

<fJ2(v, 3) = [!<v + 5)] for all v ~ 4.

PROOF Assertion (ii) is trivial. If P is a 3-polytope then

2f.(P) ~ 3fo(P) + 6,
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where s = 0 if fo(P) is even, and e = I if fo(P) is odd. In any case

fl(P) ~ [:!<3fo(P) + 1)],

which establishes the first assertion of (iii); the second then results from
Euler's theorem.

The proof of (i) is much longer. The case r = 1 is trivial, and the case
r = 2 follows at once from theorem 6.1.5. Let now p d denote the (d - 3)
fold d-pyramid with a 3-dimensional three-sided prism as basis. Then an
easy computation yields

(
d + l ) (d-l) (d-2)fk(pd) = k + 1 + k + k = cPM + 3, d).

Thus ({Jk(d + 3, d) :::;; cPM + 3, d) and we have to show that the reversed
inequality holds. Let d > 3 and let P be a d-polytope with d + 3 vertices.

If P is a d-pyramid with (d - I)-basis F thenfo(F) = d + 2 and

fk(P) = fk(F) + fk-I(F) ~ ({JM + 2, d - 1) + ({Jk-I(d + 2, d - 1)

= cPM + 2,d - 1) + cPk-l(d + 2,d - 1) = cPM + 3, d).

If P is not a d-pyramid but some facet F of P has d + 1 vertices, then
there are vertices VI and V2 of P not belonging to F, and a facet F' of P
which contains VI but not V2 • Each k-face of P is of one and only one of
the following types :

(a) a k-face of F ;
(b) a k-face containing VI of F';
(c) a k-face containing V2•

The number of k-faces of type (a) is

fk(F) ~ ({JM + I,d - 1) = cPM + I,d - 1).

Those of type (b) may be counted by considering a section of F' by a
(d - I)-hyperplane H strictly separating VI from the other vertices of F'.
The required number of k-faces is then

fk-I(F' n H) ~ ({Jk-l((d - 2) + I,d - 2) = cPk-l(d - I,d - 2).

Similarly, by considering a section of P by a hyperplane which strictly
separates V2 from the other vertices of P, the number of k-faces oftype (c)
is found to be at least ({Jk-l((d - I) + I,d - I) = cPk-l(d,d - 1). Therefore

fk(P) ~ cPk(d + 1, d - 1) + cPk-l(d - 1, d - 2) + cPk-l(d,d - 1)

= cPM + 3, d).
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The remaining possibility is that P is simplicial. But then

ft(P) ~ cpt(d + 3, d) > cPt<d + 3, d).

Thus cpt(d + 3, d) = cPt<d + 3, d), as claimed.
By theorem 6.1.2 we have f(Ti) = (6,14, 16, 8). Thus if T* is a 4

polytope dual to Ti, we have

for k = I, 2, 3.

Similarly, for d > 4 the (d - 4)-fold d-pyramids with 4-dimensional basis
T* show that cpM + 4, d) :$; cPM + 4, d) for all k = 1,2,···, d - 1.

Thus we have only to show that every d-polytope P withfo(P) ~ d + 4
satisfies ft(P) ~ cPM + 4, d).

Again we have to distinguish a number of possibilities.
(a) P is a d-pyramid over a (d - Ij-dimensional basis with at least

d + 3 = (d - 1) + 4 vertices. Then , by induction,

ft(P) ~ cPt(d + 3,d - 1) + cPt-l(d + 3,d - 1) = cPM + 4, d).

(b) There is a facet of P with d + 2 = (d - 1) + 3 vertices; in analogy
to the above, we have

ft(P) ~ cPM + 2,d - 1) + cPt -M,d - 1) + cPt -l(d - I,d - 2)

= cPt(d + 4, d).

(c) Each facet of P has at most d + 1 = (d - 1) + 2 vertices, but there
exists a (d - 2)-face F with d = (d - 2) + 2 vertices. Then , using exercise
3.1.2 and the fact that at least two vertices of P belong to neither of the
two facets of P which contain F, we have

fk(P) ~ cPk(d, d - 2) + 2cPk -l(d, d - 2) + cPk-l(d,d - 1)

+ cPk-l(d - I,d - 2) ~ cPM + 4, d).

(d) Each facet of P is a simplicial (d - Ij-polytope and there exist two
facets, F I and F2 , with d + 1 = (d - 1) + 2 vertices each, intersecting in
a (d - 2)-simplex. Then there exists a vertex of P not contained in
FI u F2 , and therefore
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(e) Each facet of P is a simplicial (d - Ij-polytope, and there exist
facets F1 and F2 such that fo(Fd = d + 1, fO(F2) = d, and F1 (\ F2 is a
(d - 2)-simplex. Then there exist two vertices of P not contained in
F1 u F2 and therefore

fk(P) ~ <Pk(d + 1,d - 1) + ( d ) _ (d - 1) + <Pk- M, d - 1)
k+I k+I

(f) P is a simplicial d-polytope. Without loss of generality we may
assume that every d + 1 vertices of Pare affinely independent. Let V be
a vertex of P, let P" be the convex hull of the vertices of P different from
V, and let L be a line through V which does not intersect p* nor any
(d - 2)-flat determined by vertices of P*. Let V' be the point of L nearest
to V which is on a (d - Ij-dimensional hyperplane determined by a facet
of P*. Then for each V" E L which is between V and V', the d-polytope
P" = conv(P* u {V"}) is of the same combinatorial type as P. But when
V" approaches V', the polytope P" tends to P' = conv(P* u {V'}), and
therefore, by theorem 5.3.1, fk(P') ~ fk(P") = fk(P). Now fo(P') = fo(P),
but P' is not simplicial and hence, by the above,

fk(P) ~ fk(P') ~ <Pk(d + 4, d).

This completes the proof of theorem 2.

Denoting, as before, by fk(r, d) the number of k-faces of the cyclic
polytope C(r, d), theorem 10.1.3 yields by duality

3. The relation

((Jd-l(V,d) = min{rlh_l(r,d) ~ v}

holds provided either
(i) d s 8 ;

or (ii) v is sufficiently large relative to d.

Remarks

Clearly, if the 'upper bound conjecture' (section 10.1) is true then the
relation in theorem 3 holds for all d and v.

The simplest nontrivial consequence of theorem 2 is the fact that no
3-polytope has exactly 7 edges ; this was known already to Euler (see, for
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example, Steinitz-Rademacher [I], Cairns [3]). The similar 'gap' in the
possible numbers of edges in higher dimensions was discussed by Buck [2].
The case r = 2 of theorem 2 was establ ished by Klee [13]. Theorem 2
clearl y implies that for sufficiently large d more 'gaps' occur; thus for
d = 6, I, = 21 for fo = 7, 26 ~ I, s 28 for I« = 8, and I, ~ 30 for

fo ~ 9; for d ~ 11 three gaps occur in the series of possible values of fl'
The only serious attempts at proving the 'lower bound conjecture'

were made in case d = 4. Then the conjecture reduces to the simple (and
naturally equivalent) statements: Every simplicial 4-polytope with v
vertices has at least 4v - 10 edges and at least 3v - 10 facets. The first
attempt to establish these bounds (in the dual formulation for simple
4-polytopes) was made by Bruckner [3]. Unfortunately, his arguments
are not valid (see Steinitz [6]); equally invalid are the arguments of
Fieldhouse [2]. Another invalid 'proof was found by the author (for
tunately very few copies of the mimeographed preprint survived) ; an
anal ysis of this attempt led to the construction of the 3-diagram which is
not the Schlegel diagram of any 4-polytope (see theorem 11.5.1). It seems
that new methods will have to be developed in order to deal with the
'lower bound conjecture'. At present , it is one of the more challenging
open problems about polytopes.

A different approach to problems related to the 'lower bound conjec
ture ' for simplicial polytopes was recently discovered by Klee [21]. For
convenience of exposition, we shall first reformulate part of the 'lower
bound conjecture' in the dual form:

Does every simple d-polytope with n facets have at least (d - l)n 
(d - 2)(d + 1) vertices?

Generalizing the concept of simple d-polytopes we shall say that a
polyhedral set P of dimension d is a d-polyhedron provided P is line-free
(i.e. vert P ¥= 0) and simple (i.e. each vertex of P is incident to exactly d
facets of Pl.

Using this definition it is possible to inquire about the analogue of the
'lower bound conjecture' for d-polyhedra. Rather surprisingly, this prob
lem is easier to solve than the original one ; indeed, the result of Klee [21]
IS:

4. Every d-polyhedron with nfacets has at least n - d + 1 vertices.

The existence of d-polyhedra having n facets and n - d + 1 vertices is
easy to establish. The ingenious idea used by Klee [21] in the proof of
theorem 4 is the reduction of the problem concerning d-polyhedra to a
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problem about graphs; in this setting, an inductive proof becomes easy
since there is no need to worry about the polyhedral structure (which is
much more intricate than the graph-structure).

It is to be expected that a similar technique may solve the analogous
problems dealing with the minimal number of k-faces for k ~ 1. Con
ceivably, the proper approach to the 'lower bound conjecture' for simple
polytopes will turn out to be via d-polyhedra having specified numbers
of bounded and of unbounded facets.

The aim of the present section is to give a complete description of the
setsf(&,3) andf(&';).

For simplicial 3-polytopes the Dehn-Sommerville equations reduce to
fo - fl + f2 = 2, 2fl = 3f2' These equations may be re-written in the
form

(*) fl = 3fo - 6 f2 = 2fo - 4.

Clearly , we have also

fo ~ 4.

This obviously proves one half of the following theorem:

1. f(&';) = {(fo,3fo - 6,2fo - 4) Ifo ~ 4}.

In order to complete the proof we have to show that for each fo ~ 4
there exists aPE &'; with f (P) = (fo, 3fo - 6, 2fo - 4). Iffo = 4 then the
3-simplex T 3 satisfies the conditions. We proceed by induction. For
fo > 4 let P" c R3 be a simplicial 3-polytope satisfying

f(P*) = (fo - 1,3(fo - 1) - 6,2(fo - 1) - 4).

Let V E R3 be a point which is not on any 2-dimensional plane determined
by vertices of P" and which is beyond exactly one 2-face of P*. Then, by
theorem 5.2.1, the simplicial 3-polytope P = conv(P* u {V}) satisfies
f(P) = (fo,3fo - 6,2fo - 4).

This completes the proof of theorem 1.
By duality it follows from theorem 1 that the set off-vectors of simple

3-polytopes is {(2f2 - 4,3f2 - 6,f2) If2 ~ 4}.
By theorem 10.1.1, the maximal number of k-faces, for a given number

of vertices, is attained for simplicial polytopes. Therefore equations (*)
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yield, for every P E ~3 , the relations

fl (P) ~ 3fo(P) - 6 f2(P) ~ 2fo(P) - 4;

by duality, we also have

fl(P) s 3f2(P) - 6 fo(P) s 2f2(P) - 4.

Note that in each pa ir of inequalities, either one follows from the other
and Euler's relation.

We have established one half of the following theorem, due to Steinitz
[1J:

2.f(~3) = {(fo,fo + f 2 - 2,f2) 14 ~ fo(P) ~ 2f2(P) - 4 and 4 ~ f2(P)
~ 2fo(P) - 4}.

We shall prove the remaining part of theorem 2 on hand of Fig. 10.3.1;
it is obvious that the proof could easily be formalized.

In figure 10.3.1, which represents the (fo,f2)-plane, each 3-polytope P is
marked by a sign at the appropriate point (fo,f2) = (fO(P),f2(P)), The

18
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f. 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18
fo

Figure 10.3.1
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letter P corresponds to pyramids with an appropriate number of vertices,
while S denotes a simplicial or a simple 3-polytope. Taking the convex hull
ofthe union of a pyramid and a point which is beyond one of its triangular
2-faces only , we obtain a polytope with one vertex and two 2-faces more
than the pyramid. This shows that there exist polytopes corresponding
in the diagram to the lattice-points which are directly connected to the p's
representing the pyramids and are in the upper half of the diagram. Since
the resulting polytopes have, themselves, triangular 2-faces, the process
may be continued indefinitely. By duality there follows the existence of
polytopes corresponding to points in the lower half of the diagram. (They
could be obtained also by 'cutting off' trivalent vertices.)

10.4 The Setf(qJ4)

It would be rather interesting to find a characterization of those lattice
points in R4 which are thef-vectors of 4-polytopes. This goal seems rather
distant, however, in view of our inability to solve even such a small part
of the problem as the lower bound conjecture for 4-polytopes.

In view of Euler's relation, the determination of f(fjJ4) is obviously
equivalent to the determination of its projection onto any of the co
ordinate 3-spaces. Some information about f(fjJ4) is contained even in
the projections of f(qJ4) into the coordinate planes such as (fo,ft), etc.
Some of those easier problems are completely solvable, and we shall
now determine the sets TIt = {(fo,fd I(fO,ft,f2,f3) e f(fjJ4)} and
TI3 = {(fo,f3) I(fo,ftJ2,f3)ef(qJ4)} .

The characterization of TI3 is quite easy.

1. There exists a 4-polytope P with fo(P) = fo and f3(P) = f3 if and
only if the integers I« and f3 satisfy 5 s fo s if3(f3 - 3) and 5 ~ 13 ~
t/o(fo - 3).

PROOF The assertion that 10(P) and 13(P) satisfy the above relations
whenever P e &4 is quite obvious (see remark (2) on page 173). The
existential part of the theorem shall be proved on hand of figure 10.4.1 ;
as in section 10.3, the proof could easily be formalized . The symbols used
in figure 10.4.1 have the following meaning:

T denotes the 4-simplex;
N denotes the cyclic polytope having the appropriate number of

vertices;



192 CONVEX POLYTOPES

28 1.+ + + + + + + + + +
27 N I :" + + + + + + + + + +
26 111I r + + + + + + + + + +
25 III I :"1 + + + + + + + + + +
24 II I :" + + + + + + + + + + +
23 I I + + + + + + + + + + +
22 I I :"1 + + + + + + + + + + +
21 I I.: I + + + + + + + + + + +
20 N I I + + + + + + + + + + +
19 IU I :"1 I + + + + + + + + + + +
18 II I.: + + + + + + + + + + + +
17 I I + + + + + + + + + + + +

:
16 I ": I + + + + + + + + + + + +
15 I.: I I + + + + + + + + + + + +
14 N 1 I I + + + + + + + + + + + +
13 II ":1 I + + + + + + + + + + + + +

:
12 I.: I + + + + + + + + + + + + +
II I 1 + + + + + + + + +

:

10 .: 1 I 1 + + + +
9 ['of I 1 + -
8 I D* E - N"
7 :13" C D N"

6 .: A B N"
5 T

t, 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 2021 22
fo

Figure 10.4.1

A, C, E denote the 2-fold 4-pyramids based on a quadrangle, pentagon,
or hexagon ;

B denotes the 4-pyramid based on the 3-prism with triangular base;
D denotes the 4-pyramid based on the 3-polytope a Schlegel diagram

of which is shown in figure 10.4.2.
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Figure 10.4.2

X* denotes the dual of the polytope X.
I indicates a polytope P obtained from another polytope P' (which has

one vertex and 3 facets less than P) as the convex hull of P' and a point
which is beyond one and only one facet of P', the facet in question being
a 3-simplex.

II, III, 1111" .. denotes a polytope P obtained from the cyclic polytope N
with 10(N) = 10(P) - 1 as the convex hull of N and a point V, where V
is beyond two, three, four, . . . ,facets of N taken from some set of/o(N) - 2
facets of N having a common edge. (Compare exercise 4.8.22 and the
construction used in the proof of theorem 7.2.4.)

-,=,==, ,"', indicate polytopes obtained in a fashion dual to
I, II, 111,1111,· ".

+ indicates that the polytope is obtainable both by I and by -.
This completes the proof of theorem 1.

We turn now to the characterization of TIl '
2. There exists aPE &14 with 10(P) = 10 and 11(P) = 11 if and only if

the integers 10 and11 satisfy

10 ::s; 2/0 ::s; 11 ::s; t/o(/o - 1),

and (foJd is not one 01the pairs (6, 12), (7, 14), (8, 17), (10, 20).

PROOF The inequalities are obviously satisfied by 10{P) and 11(P) for
every 4-polytope P. The existential part of the theorem follows from
figure 10.4.3, by the same method as used in the proof of theorem 1; the
notation is the same as in figure 10.4.1. In addition,

F denotes the 4-pyramid based on the 3-polytope a Schlegel diagram
of which is shown in figure 10.4.4.

G denotes the dual of the simplicial polytope with/o = 7'/1 = 20.
H denotes the polytope of exercise 4.8.6, the Schlegel diagram of which

is shown in figure 10.4.5.
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5 6 7 8 9 10 II 12 13 14 15 16

Figure 10.4.3

Note that, in figure 10.4.3, I indicates an increase of 4 edges and 1 vertex,
while - indicates an increase of 3 vertices and 6 edges. In order to save
space, an oblique system of coordinates (foJd is used.

The most interesting feature of theorem 2 are the four exceptional pairs;
we shall now prove that they are indeed exceptional. For the pairs (6,12)
and (7, 14) this follows from theorem 10.2.2. The other two cases are more
complicated ; we consider (l0, 20) first.
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Figure 10.4.4

Ifthere exists a 4-polytope P withfo(P) = 10andfl(P) = 20, then
(i) fl = 210 implies that P is simple;

(ii) by Euler's equation, f(P) = (10,20, n + 10, n) for some positive
integer n.

Since j', ~ 213, it follows that n ~ 10. But n = 10 is impossible, since it
would imply that P is simplicial-eontradicting the fact that only simplices
are both simple and simplicial. Hence n ~ 9.

Figure 10.4.5
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On the other hand, theorem 1 implies that n ;;::: 7t. However, n = 7 is
impossible: by (i) the dual P" of P is simplicial, and if n = 7 theorem 6.2.5
implies fo(P) = f3(P*) ;;::: 11. Thus if P exists, we must have n = 8 or
n = 9. Since P is simple, all its facets are simple and therefore have an
even number of vertices. If some facet F would have 8 vertices, then
f(F) = (8, 12,6); it follows that n = 9, P is a 4-pyramid based on F,
andfo(P) = 9 #- 10. Hence all facets of P must be 3-simplices or 3-prisms
based on triangles-but the only simple 4-polytopes with this property
are the 4-simplex, and the 4-prism based on the 3-simplex, neither of which
satisfies (fo,fl) = (10,20). Thus there exists no 4-polytope with fo = 10
and j', = 20.

Assuming next that P is a 4-polytope with fo(P) = 8 and fl (P) = 17,
Euler's relation implies that f(P) = (8, 17, n + 9, n) for some positive n.
Since f2 ;;::: 2f3 it follows that n :::; 9. Also, P has either 6 vertices each of
which is of valence 4 (i.e. incident with 4 edges) and two vertices of
valence 5, or it has 7 vertices of valence 4 and one of valence 6.

If we had n = 9 then P would be simplicial. If AB is an edge of P such
that both A and B have valence 4 (see the Schlegel diagram in figure
10.4.6) it follows that the omission of the vertices C, D, E disconnects
the graph t of P between A,B and the remaining three vertices of P-in
contradiction to theorem 11.3.2. Thus n :::; 8.

Figure 10.4.6

til should be noted that if the lower bound conjecture were established, we could end
the proof here by a reference to it.

:t The reader is referred to section 11.3for the terminology and facts used here and below.
11 is possible to avoid the use of theorem 11.3.2, but its application shortens the proof
appreciably.
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If we had n = 8, thenf(P) = (8, 17, 17,8) = f(P*), where P" is the dual
of P. Hence P" also has 6 vertices of valence 4 and two of valence 5, or 7
of valence 4 and one of valence 6. In the first case, P has two facets F I , F2,

each of which has five 2-faces; thus FI , F2 are either 3-pyramids with
quadrangular bases, or 3-prisms with triangular bases; however, the
latter type would require at least four such facets and thus is impossible.
Hence FI and F2 are 3-pyramids, and since the other facets of Pare
simplices, FI and F2 must have the quadrangle as a common 2-face. But
then the edges of P not contained in FI U F2 are incident only to the
apices of FI and F2 (among the vertices of FI and F2 ) , again contradicting
theorem 11.3.2.

Thus 7 facets of P are simplices, and by duality, seven of its vertices
are of valence 4. Then the facet of P which is not a 3-simplex must be a
3-polytope F with six triangular 2-faces, and all but one vertex of F have
valence 3. Since such F clearly does not exist, it follows that n ~ 7.

If we had n = 7, then f(P) = (8,17,16,7). Using Euler's relation for
3-polytopes and theorem 4.2.1, it is easily seen that neither P nor P"
are 4-pyramids. Thus facets of P" have at most 5 vertices, hence each of
them is either a 3-simplex, or a 3-bipyramid based on a triangle, or a
3-pyramid based on a quadrangle ; a check of the valences of the vertices
of P implies that P" has either one bipyramidal facet, or two pyramidal
ones, and it is easy to verify that neither alternative is realizable. Thus
n ~ 6.

However, considering P" (with f(P*) = (n, n + 9,17,8» we clearly have
II(P*) = n + 9 ~ 1n(n - 1), thus n ~ 6. Hence n = 6 and P" is a neigh
borly polytope; therefore P" is simplicial andI2(P*) = 2f3(P*),contradict
ingf2(P*) = 17. Thus no 4-polytope has 8 vertices and 17 edges, and the
proof of theorem 2 is complete.

10.5 Exercises

1. Show that <Pt(v, d) is, for all d, v, and k, less than or equal to the
bound given by the 'lower bound conjecture'. To this effect construct
simplicial d-polytopes ~ with v vertices such that fk(~) equals to the
value given by the 'lower bound conjecture' for all v > d > k > O.

2. Construct d-polyhedra having n facets and n - d + 1 vertices.
3. Prove that the positions of the polytopes indicated in figures 10.4.1

and 10.4.3 by = ,==, . . . , II, III, .. . are correct.
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4. PTQve that !f2(P) < fl(P) < 2f2(P) for every P E e: and that c = 2
is the smallest real number such thatfl(P) ~ Cf2(P) for every P E g>4.

5. It would be interesting (and probably not too hard) to determine the
set 112 = {(fO(P),f2(P» I PEg>4}. The characterization of the set

11 = {(fl(P),J2(P» I P E g>4} seems to be more complicated; it may be
conjectured that conv 11 = conv{(fl(P),J2(P» I P or its dual are neigh
borly}.



EXTREMAL PROBL EMS CONCERNING NUMB ERS OF FACES 198a

10.6 Additional notes and comments

For a recent survey on face numbers as well as on concepts extending f-vectors
(such as "flag f-vectors" and the "cd-index") with a list of key open problems,
we refer to Billera-Bjorner [a].

The upper bound theorem.
The "rather frustrating" upper bound problem discussed in section 10.1 was
solved completely in 1970 by McMullen [c]; his proof made substantial use
of h-vector s (see the notes in section 9.9) and of the shellability construction
of Bruggesser-Mani [a] (see the notes in section 8.7). The upper bound the
orem was later extended by Stanley [a] to general simplicial spheres, using
algebraic techniques; here the key result is that the "face ring" (or "Stanley
Reisner ring") of a sphere is Cohen-Macaulay. For extensions to larger classes
of simplicial complexes see Novik [a] and Hersh-Novik [a].

The lower bound theorem.
The lower bound problem discussed in section 10.2 ("one of the more chal
lenging open problems") was solved by Barnette [b] [d], also in 1970, and he
himself extended the solution to general simplicial manifolds [c]. For a con
nection to rigidity theory see Kalai [a]. See also Blind-Blind [c] and Tay [a].

The g-theorem.
In 1970, McMullen [d] formulated the "g-conjecture'' : a combinatorial char
acterization of the possible f- vectors of simplicial polytopes ("McMullen's
conditions" on the f -vector). This was a rather daring conjecture, and its proof
nine years later by Billera-Lee [a] and Stanley [b] [c] represents the most spec
tacular achievement of modem polytope theory.

A complete statement of the g-theorern, in Bjomer 's [a] matrix formulation,
is as follows: The f -vectors f =(1'/0"" '/d- t) of simplicial d-polytopes are
exactly the vectors of the form g . Md , where Md is the non-negative matrix of

size ([~J + 1) x (d+ I) given by

M '= ((d+l-j) _ ( j ))
d . d+l- k d+l-k 0$. j$.dj2, 0$.k$.d

and g = (go, ... , g[dj2}) is an M-sequence. This means that g is a non-negative

integer vector that satisfies go = 1 and gk-I ;:: ak(gk) for 0 < k ~ ~ ; here the
upp er boundary operator a k is defined by

a k(n) := (ak- I) + (ak_1-1) +...+ (~i - I)
k- I k-2 I- I
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in terms of the unique binomial expansion of n as

ak>ak_1 >···>ai~i>O.

For given P, the vector g =g(P) is determined by the f- resp. h-vector as
s, = hk - hk_ 1 for 0 < k $ ~, with go = 1.

The g-theorem subsumes the upper bound theorem and the lower bound the 
orem. Another consequence, that gk ~ 0 holds for all k, is known as the gen
eralized lower bound theorem, as conjectured by McMullen-Walkup [a]. It is
non-trivial; except for the case k = I (Kalai [a], Tay [aJ) we have no elementary
proof for this . The inequalities gk ~ 0 are valid much more generally for every
simplicial (d - I) -sphere that is a subcomplex of the boundary complex of a
simplicial (d + I)-polytope: Thi s was proved via algebraic shifting by Kalai
[g], and via commutative algebra (Cohen-Macaulay rings) by Stanley [e]. See
below for references about these topics.

It remains an open problem to characterize the simplicial d-polytopes with
gk =O. McMullen-Walkup [a] conjecture that they are characterized by the
property that they can be triangulated without introducing new faces of dimen
sion less than d - k (k -stacked polytopes) . This part of McMullen-Walkup's
"generalized lower bound conjecture" has been proved for some special cases
(including simplicial d-polytopes with at most d +3 vertices) by Lee [a], who
established a very interesting interpretation of the gccoefficients in term s of
winding numbers in the Gale-diagram. Additional connections that may tum
out to be extremely useful were established by Welzl [b] and by McMullen [I].

See Bjorner [b] and Bjomer-Linusson [a] for further consequences of the
g-theorern.

Beyond the g-theorem.
While the sufficiency proof for the g-theorem uses intricate combinatorics, the
necessity proof by Stanley for the g-theorem relies on heavy algebraic geome
try machinery, notably the hard Lefschetz theorem for a compact toric variety
with only finite quotient singularities that may be associated with a rational
simplicial polytope (see Ewald [a], Fulton [a]) . There have been serious efforts
to find a proof for the g-theorem that gets by without algebraic geometry, and
to establish its validity beyond the realm of convex polytopes. While the first
challenge has been met by McMullen [h] [i], the hope for the second has not yet
materialized. In particular, it is not known whether the g-theorem generalizes
to fans (that is, to star-shaped simplicial polytopes). McMullen 's conditions
might be true for all simplicial (d - I)-spheres (see McMullen [d, p. 569]);
they do hold for d $ 5 (Walkup [aJ), and for simplicial spheres with at most
d +3 vertices (Mani [bJ).
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The connections between the combinatorics of rational polytopes (extremal
properties of f-vectors), commutative algebra (via Stanley-Reisner rings), and
algebraic geometry (the cohomology of the associated toric varieties) are sur
prising, but they are certainly not coincidental. The basic correspondences, as
used to prove the upper bound theorem for spheres and the g-theorem, have
been extended, and applied to a number of other questions involving f-vectors
of polytopes and related objects ; see, for instance , Stanley 's [h] proof of the
Barany-Lovasz and Bjorner lower bound conjectures on centrally-symmetric
simple (or simplicial) polytopes . Such results are summarized in Stanley [g,
Chap. Ill] and [i, Sect. 2]. A powerful related method is Kalai's theory of
algebraic shifting ; see Bjorner-Kalai [a] and Kalai [k].

Flag vectors.
For general d-polytopes, it has turned out to be very fruitful to study the
flag f-vector, which counts for each S ~ {O,. .. ,d -l} the number of chains
F1 C .. . C F; of faces with {dimF1, • • • .dimF;} =S. Similarly to the h-vectors
of simplicial polytopes, flag h-vectors are defined from the flag f -vectors via a
certain linear transformation. Bayer-Billera [a] stated the generalized Dehn
Sommerville equations and proved that they are necessary and sufficient to
define the linear span of all flag h-vectors. (Kalai [c] gave an alternative suf
ficiency proof.) The dimension of the linear span of the flag h-vectors (flag
f-vectors) is Fd, the dothFibonacci number (Fo =F1 = I) .

The cd-index--<levised by J. Fine-is a linearly equivalent encoding of the
flag f-vector by a vector of length Fd that is obtained exploiting the gener
alized Dehn-Sommerville equations . Both the flag h-vector of an arbitrary
polytope and its cd-index are non-negative. See Bayer-Klapper [a] and Stan
ley [g, Sect. Ill.d]. For lower bounds on the components of the cd-index for
odd-dimensional simplicial manifolds see Novik [b].

The toric g-vector is a generalization of the g-vector of a simplicial polytope
to arbitrary polytopes along different lines. Stanley [d] showed that the toric
g-vectors of polytopes that can be realized by rational coordinates are non
negative.

4-Polytopes.
The case of d =4, as discussed in section lOA, remains interesting, and may
slowly get within reach. Here the set of f-vectors is 3-dimensional. The
flag vectors form a 4-dimensional set, which is described in some detail in
Bayer [a]; see also Heppner-Ziegler [a]. As suggested by exercise 10.5.5, the
remaining 2-dimensional coordinate projections of the f -vectors to the coordi
nate planes were determined by Barnette-Reay [a] and Barnette tel .
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However, the picture is still quite incomplete. In particular, we do not know
whether the parameters of fatn ess ep(P} := (fl + f 2)/(fo + f 3) and complex
ity y(P} := f 03/ (f0 +f 3} are bounded for 4-polytopes. However, they satisfy
ep(P} ~ 2y(P} - 2 and y(P} ~ 2ep(P} - 2. See Eppstein-Kuperberg-Ziegler [aj
and Ziegler [dj .

A complete answer is still not available even for special classes such as cubi
cal 4-polytopes, or 2-simple 2-simplicial 4-polytopes. In both cases , the main
obstacle seems to be a lack of versatile construction methods . The flag vec
tors for the second case are characterized by the "extremal" property that they
satisfy the valid inequality ep(P} ~ 2y(P} - 2 with equality.

Special lower bound problems .
Blind-Blind [aj proved that the d-cubes have componentwise minimal f-vectors
among all d-polytopes without a triangle 2-face. Furthermore, if a triangle -free
d-polytope for some k has the same number of k-faces as the d-cube, then it is
combinatorially equivalent to the d-cube .

There is no such result for polytopes without triangles and quadrilaterals: ac
cording to Kalai [fl, for d ~ 5 every d-polytope has a triangle or a quadrilateral
2-face-see the notes in section 11.6.

Among the 3-polytopes without triangles or quadrilaterals, the dodecahe
dron has componentwise minimal f-vector. The corresponding question for
4-polytopes is open.



CHAPTER II

Properties of Boundary Complexes

In the present chapter we shall study in more detail the facial structure of
polytopes by investigating some properties of the boundary complexes of
polytopes, and some of their subcomplexes.

We recall from earlier sections some definitions, and we supplement
them by additional ones.

A complex C(j = {C } is a finite collection of polytopes in R" such that
every face of a member ofC(j is itself a member ofC(j, and the intersection of
every two members ofC(j is a face of both ofthem. A complex formed by all
the (proper and improper) faces of a polytope P is denoted by C(j(P); the
complex consisting of all the faces of P different from P is denoted by
!?4(P) and called the boundary complex of P. For a complex C(j the k-skeleton
skel, C(j is the complex consisting of all members ofC(j which have dimension
at most k. If C(j = C(j(P) for some polytope P we shall write skel, P for
skel, C(j(P). Two complexes C(jl and C(j2 are combinatorially equivalent (or
isomorphic) provided there exists a biunique, incidence-preserving cor
respondence between the members of C(jl and those of C(j2. For a complex
C(j we shall denote by set C(j the set of all points of W belonging to at least
one member of C(j. A complex ((/ is a refinement ('convex subdivision' in
the terminology used by Lefschetz [1]) of a complex x: if there exists a
homeomorphism I/J of set C(j onto set x: such that for every KEf there
exists a subcomplex ((/K C C(j satisfying I/J-I(K) = set ((/K. The homeo
morphism I/J is called a refinement map.

For example, the complex f 1 consisting of two triangles with a common
edge is a refinement of the complex f 2 consisting of one triangle. Note,
however, that the l-skeleton of f 1 is not a refinement of the l-skeleton
of.Jfi.

Clearly, if f l is a refinement of .Jfi, and if :Ifi'is a complex combina
torially equivalent to :Ifi, i = 1,2, then f'l is a refinement of f 2.

If f!J is a family of polytopes we shall say that a k-complex ((/ is (f!J)
realizable provided the k-skeleton skel, P of some P E f!Jis combinatorially
equivalent to C(j.

The characterization of (f!J 2)-realizable k-complexes is trivial. The only
interesting case is k = 1, and C(j is (f!J2)-realizable if and only if ((/ is a

199
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(simple} circuit, i.e. the members of «J are 0, the r distinct points VI'
V2 , ' • • , v,. = Yo, r ~ 3, and the r edges conv{ l";- I' l";}, i = 1,2, · · ·, r. The
characterization of (g'l3)-realizable complexes may also be formulated in
a rather simple manner ; we shall consider it in chapter 13.

No characterization of (g'ld)-realizable complexes is known for d ~ 4.
The present chapter is mainly devoted to an exposition of the known
necessary conditions for (g'ld)-realizability of complexes. Those conditions
may clearly be reformulated in such a manner as to state properties of
polytopes, or of their boundary complexes.

11.1 Skeletons of Simplices Contained in f!J(P)

We shall start with the following result of Griinbaum [15], which is a
sharpening of theorem 3.2.4 it: denotes, as before, the d-simplex).

1. For every d-polytope P the complex ~(P) is a refinement of~(Td).

An equivalent formulation of theorem 1 is

1', For every d-polytope P the complex «J(P) is a refinement of«J(Td).

The proof of theorem 1 proceeds by induction on d ; the case d = 1
being trivial, we shall assume d ~ 2. Let V Evert P and let H be a hyper
plane which strictly separates Vand conv(vert P - {V}). Then Po = P n H
is a (d - lj-polytope, and by the inductive assumption ~(Po) is a refine
ment of 91(Td- I

), while «J(Po) is a refinement of «J(Td- I
). Mapping

link(V ; 91(P»onto 91(Po)by rays issuing from V, it is clear that link(V ; f!J(P»
is a refinement of ~(Po) and therefore also of ~(Td-I). The same radial
mapping shows that st(V ; ~(P» is a refinement of st(V* ; ~(Td», where
V* is a vertex of t-. The refinement map from set link(V ; f!J(P» to
set f!J(Td- l

) = reI bd T d- I is obviously extendable to a homeomorphism
from set ast( V ; f!J(P» to set «J(Td- I) = T d- I. This shows that ast( V; ~(P»
is a refinement of«J(Td- l

) in such a fashion as to agree on the subcomplex
link(V; 8iJ(P» of the complex ast(V; f!J(P» with the previously determined
structure of link(V ; 91(P» as a refinement of the subcomplex f!J(Td- l

) of
«J(Td- I). Since

~(P) = st(V;~(P» u ast(V ;~(P»,

and
~(Td) = st(V*, ~(Td» u ast(V* ;91(Td»,

and since ast( v* ; f!J( Td» = «J(Td- I), the above construction implies that
f!J(P) is a refinement of f!J(Td). This completes the proof of theorem 1.
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As an immediate consequence of theorem 1 we have :

2. For every d and k such that 0 < k < d, each (~d)-realizable k-complex
contains a refinement of the k-skeleton skel, r of T d.

In order to derive additional criteria for (~d)-realizability of k-com
plexes, we recall the following result of van Kampen [1] and Flores [1].

3. set skel, T 2k + 2 is not homeomorphic with any subset of the 2k-dimen
sional space R2k

•

The proof of theorem 3 is somewhat outside the domain of the present
book. However, it seems that the published proofs of it are rather inacces
sible. Therefore we shall present a proof of theorem 3, but for the sake of
continuity we defer it to the next section.

Let now a(d,k), for 1 ~ k ~ d, denote the integer m such that set skel, Td

is homeomorphic to a subset of B" but is not homeomorphic to any subset
of B": I. Similarly, let b(d,k) denote the m such that skel, Td is cornbina
torially equivalent to a complex in R" but is not combinatorially equiv
alent to any complex in Rm

-
I
• Clearly a(d,k) ~ b(d,k) for all d and k.

Using theorem 3, we shall obtain the following result of van Kampen [1]
(see also Chrislock [1)).

4. For all d and k, 1 ~ k ~ d, we have
(i) a(k, k) = b(k, k) = k

(ii) a(k + 1, k) = b(k + 1, k) = k + 1
(iii) a(d, k) = b(d, k) = d - 1 for k + 2 ~ d ~ 2k + 2
(iv) a(d,k) = b(d, k) = 2k + 1 for d ~ 2k + 2.

PROOF Clearly a(k, k) = b(k, k) = k by the invariance of dimension;
clearly, also b(k + 1, k) ~ k + 1. On the other hand, set skel, r-: 1 is
homeomorphic to the k-sphere and therefore, by the Borsuk-Ulam
theorem on antipodes (see Borsuk [1], Alexandroff-Hopf [1]), it is not
homeomorphic to any subset of Rk

• Thus k + 1 ~ a(k + 1,k), and (ii) is
proved. For d ~ k + 2, the Schlegel diagram of T" contains a subcomplex
combinatorially equivalent to skel, Td; therefore b(d,k) ~ d - 1 for all
d ~ k + 2. Applying theorem 3 we see that

2k + 1 ~ a(2k + 2, k) ~ b(2k + 2, k) ~ 2k + 1;

this establishes the case d = 2k + 2 of (iii) and (iv). On the other hand,
clearly a(d, k) ~ a(d + 1, k) ~ a(d,k) + 1 and, for k + 2 ~ d ~ 2k + 2,
2k + 1 = a(2k + 2, k) ~ a(d,k) + (2k + 2 - d); hence

d - 1 ~ a(d,k) ~ b(d,k) ~ d - 1,
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and (iii) is proved. The Schlegel diagrams of cyclic (2k + 2)-polytopes
with d vertices show that b(d, k) ::; 2k + 1 whenever d ~ 2k + 2. This
completes the proof of (iv), and with it also the proof of theorem 4.

From theorem 4, using Schlegel diagrams, there follows

5. If P E~ and if skel, P contains a refinement of skel, T" + I, then
k < [td].

This is a generalization of theorem 7.1.4. A useful reformulation of
theorem 5 is

6. If a k-complex «f is (£'}Id)-realizable, where k ~ ltd], then «f does not
contain any refinement of skel, t-: I.

In analogy to the definitions of a(d, k) and bid, k) we define, for each
complex «f, two integers a(<(f) and b(<(f), where a(<(f) is the least possible
dimension of a Euclidean space which contains a subset homeomorphic
with set «f, while b(<(f) is the least possible dimension of a Euclidean space
containing a complex combinatorially equivalent with «f.

Theorem 4 implies that a(<(f) = b(<(f) whenever «f is a skeleton of some
simplex. One could ask whether a(<(f) = b(<(f) for every complex «f, or at
least for every simplicial complex «f. The answer is affirmative if «f is a
l-complex, We shall obtain this result as a corollary of theorem 13.1.1.

However, an example of Cairns [1] may be modified to show :

7. There exist simplicial 2-complexes «f such that a(<(f) = 3 while
b(<(f) ~ 4.

Cairns' original example (a related example was given by van Kampen
[2]) is a 3-complex which is homeomorphic to the 3-simplex T 3 (and is
combinatorially equivalent to a simplicial subdivision of T 3 considered
as a topological complex), but is not combinatorially equivalent to any
complex in R3

• The variant of the example suitable for our purposes is as
follows :

We start from the 2-complex «fo indicated in figure 11.1.1 by the heavy
lines. «fo has 7 vertices, 15 edges, and 10 2-faces (AoB IB2, AoB2B3 , AoB3B I ,

A IB IB2, A IB2B4 , A IB4B3, A IB3B I , CB2B3, CB3B4 , CB4B2 ) , and it is
obviously homeomorphic to the 2-sphere. We enlarge «fo to a 2-complex
«fl by the addition of the edges CA o, CAl ' and CB I , and of the nine
triangles determined by C and the nine edges of «fo incident to A o, A I'
or B I •

The second stage of the construction consists of the 2-complex PJo
indicated in figure 11.1.2 by heavy lines. PJo is ob viou sly combinatorially
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Figure 11.1.1 Figure 11.1.2

equivalent to reo, its vertices being denoted in the same way as the cor
responding vertices of reo. We enlarge ffloto a 2-complex ffl I by the addi
tion, first, of the 7 edges AoA" D ,D2, D2D3, D3D " CD" CD 2, CD 3 ,

followed by the addition (not shown in the drawing) of the six triangles
D,D2B3 , D2D3B" D3D,B2> B,B2D3, B2B3D" B3B,D 2, and the six edges
Bpj , 1 ~ j , i ~ 3, i =1= j. The idea behind this construction is to make the
circuits AoA,B, and D,D2D3linked. Let re be the 2-complex ob tained as
the union of ffl, and re" with ffloand reo identified . Clearly set re is homeo
morphic to a subset of R 3

. We shall show that re is not combinatorially
equivalent to any complex :£ contained in R3

• Indeed , assuming that
such a % exists, its subcomplex .JtQ, which corresponds to reo = PAo, is
homeomorphic to the 2-sphere. Therefore each of the subcomplexes ffl/,
and ~/, of % , which correspond to ffl, and reI' is contained in one of
the connected components of the complement of set %0 in R 3

. We shall
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assume-that ~'l is in the bounded component, the treatment of the other
case being analogous. Then PJ'1 is 'outside' Jf"o, since the 2-faces of ~'l

divide the 'inside' of Jf"o in such a way that neither the edge AoA l' nor any
of the vertices D 1 can be 'inside'. Now, since ~'l is a complex, it follows
that C belongs to the interior of the cone with vertex A o spanned by the
triangle B 1B2B 3 ; in particular, C and B1 are in the same open halfspace
determined by aff{Ao, B 2, B3 } . On the other hand, at least one of the
vertices D1 is contained in the same open halfspace, and therefore the
corresponding edge DjC must intersect set Jf"o in a point different from
C-which contradicts the definition of complexes. This completes the
proof of theorem 7.

It would be interesting to determine b(~) for the complex ~ of theorem 7 ;
since ~ is simplicial, b(~) ~ 5. Possibly every (simplicial ?) 2-complex ~
with a(~) = 3 satisfies b(~) ~ 4.

For skeletons of polytopes the situation is much simpler than it is in
the general case considered in theorem 7. Before formulating this result
(theorem 9 below) we shall prove a result of M. A. Perles (private com
munication), which generalizes the well-known topological imbedding
theorem (see exercise 4.8.25).

8. Let ~ be a k-complex in Rd .. then there exists a k-complex ss' in R2k+ 1

which is combinatorially equivalent to ~.

PROOF We assume that d > 2k + 1, since otherwise there is nothing
to prove. Each ofthe flats Hij = aff(C j u Cj ), for Ci, C, E~, has dimension
at most 2k + 1 ~ d - 1, hence ~ contains a one-dimensional subspace
L which is neither contained in nor parallel to any of the Hij' Let H be a
(d - I)-dimensional subspace of ~ not containing L, and let tt be the
projection of Rd onto H parallel to L. Then the d-complex {nC ICE~} is
combinatorially equivalent to ~ and contained in Rd - 1. An easy induc
tion completes the proof. Incidentally, the proof shows that the combina
torial equivalence between ~ and ~' is induced by a piecewise affine map.

Returning to skeletons of polytopes, we note that theorems 2 and 4
imply the relations b(skelk P) ~ a(skelk P) ~ a(d, k) = b(d, k) for every
d-polytope P. However, we have the stronger result

9. If P is a d-polytope then

b(skelk P) = a(skelk P) = a(d, k) = b(d, k).

PROOF If 2k + 2 ~ d, then the above remark implies a(skelk P) ~
a(d, k) = 2k + 1 while theorem 8 implies b(skelk P) ~ 2k + 1; hence the .
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desired equation. If k + 2 ~ d ~ 2k + 2 then skel, P contains a refine
ment of skel, rd and thus by theorem 4 a(skelkP) ~ a(d, k) = d - 1; but
the Schlegel diagram of P shows that b(skelk P) ~ d - 1, and again the
theorem folIows. FinalIy, if k = d - 1, all the numbers considered are
equal to d.

Exercises

1. Let PI and P2 be d-polytopes in Rd
, combinatorially equivalent

under a mapping qJ of .?F(PI ) onto .?F(P2 ). Prove that there exists a piece
wise affine homeomorphism A of ~ onto itself which induces qJ (i.e. such
that A(F) = qJ(F) for every FE .?F(PI».

2. Show that the maps in theorems 1 and 9 may be assumed to be
piecewise affine.

3. Let P bead-polytope and let 0 c FO c F I c··· C Fd
-

I
C Fd = P

be a tower of faces of P (where Fk is a k-face; see exercise 3.1.15). Let r d

be a d-simplex with vertices Vo," ', Vd , and let r k = conv{Vo , • • • , vd.
Then there exists a piecewise affine refinement map ljJ from P to r d such
that

(i) ljJ(Fk
) = rk for each k = 0, .. . , d;

(ii) ljJ-I(conv{vo,"" Vi-I ' Vi' Vj}) is a face of P for all i, j with °~ i
<i s d.

4. Let P be a d-polytope, let 0 c FO C F I c · ·· C F d
-

I
C Fd = P

be a tower of faces of P, and let V be a vertex of P not contained in Fd
-

I
•

Prove the folIowing result (the author is unable to do so for d ~ 4) which
is a simultaneous generalization of theorem 1 and of theorem 11.3.2:

There exists a piecewise affine refinement map ljJ of P onto the d-simplex
r dsuch that ljJ(V) and ljJ(Fi), i = 0,1" ", d, are faces of rd.

5. Prove that if P is a centrally symmetric 3-polytope different from the
octahedron, then 9I(P) is a refinement of the boundary complex of the
3-cube. Moreover, the refinement map may be chosen in such a way that
symmetric points are mapped onto symmetric points, the map being
piecewise affine.

It may be conjectured that for each d there exists a finite family
{Pi 11 ~ i ~ n(d)} of centralIy symmetric d-polytopes such that for each
centrally symmetric d-polytope P the complex 9I(P) is a refinement of
at least one of the complexes 9I(P;), 1 ~ i ~ n(d). A similar result probably
holds for polytopes invariant under any finite group of linear transforma
tions.

It would also be interesting to investigate the conjecture that the
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boundary complex of every centrally symmetric simple d-polytope is a
refinement of the boundary complex of the d-cube.

6. Let P be a d-polytope in Rd.
(i) If d = 3 and P is simple, prove that there exists e = e(P) > 0 with

the following property : whenever P' c R3 is at Hausdorff distance less
than e from P, then lI(P') is a refinement of lI(P).

(ii) Show that (i) does not hold if P is not simple, even if P' has only
one vertex more than P.

It may be conjectured that (i) is true for all d.
7. Let C(} be a connected d-complex in R", 1 s d s: n. We call C(} simple

if and only if each k-face, 0 s: k s: d, ofC(} is contained in precisely d + 1 - k
different d-faces of C(}. Prove that ad-complex C(} is simple if and only if
C(} is combinatorially equivalent to C(}(P) for some simple (d + I)-polytope P.
If d ~ 1, prove that each simple d-complex coincides with the boundary
complex of a simple (d + I)-polytope.

8. The following definition of an 'abstract (cell) complex', and the
results mentioned below, are due to M. A. Perles (private communication).
The definition is an attempt to achieve for complexes what the usual
definition of abstract simplicial complexes does for simplicial complexes.

An abstract d-complex f7 is a finite lower semilattice (i.e. a partially
ordered set, with greatest lower bounds for any set of elements) of height
d + I, with the property that for each a E f7 there exists a polytope K
such that the lattice [0, a] = {b E.'IF lOs: b s: a} is isomorphic to f7(K).

A realization of an abstract d-complex f7 in R" is a complex
:f( = {Ka I a E .'1'} in R", together with a function <p assigning to each
a E f7 a polytope <p(a) = K a , such that

(i) <p([O, a]) = {K b Ib e f7, 0 s: b s: a} = f7(K a) for each a E f7.
(ii) K; n Kb = Kal\b for all a, b E f7.
Clearly, d-complexes, and abstract simplicial d-complexes, are abstract

d-complexes. However, not every abstract d-complex has realizations by
some d-complex in R". Show that the following are examples of abstract
2-complexes which are not realizable by 2-complexes in any Euclidean
space. (Use exercise 7.)

(l) The boundary complex of the regular dodecahedron, in which
diarnetrally opposite points are identified (i.e. the abstract 2-complex C(}l
obtained from figure 11.1.3 by identifying equally denoted points and
segments). Similar examples of abstract d-complexes not realizable in
any Euclidean space may be derived (by identifying diarnetrally opposite
points) from the boundary complex of each centrally symmetric, simple
(d + 1)-polytope P having the property that no facet of P meets two
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opposite facets of P. (The abstract 2-complex CCI may clearly be realized
by a '2-complex' in the projective plane.)

(2) The abstract 2-complex CC2 obtained from figure ILIA by identifying
equally designated points and segments. CC2 is, in an obvious meaning,
homeomorphic to the torus.

A

B

Figure 11.1.3

2 3

E

5 6 4

Figure 11.1.4
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The next example uses the existence of projectively unique polytopes
which have facets that are not projectively unique (see exercise 5.5.3).
The method of construction, and the notation, are similar to those used
in the proof of theorem 5.5.4.

Let K I be the 9-polytope with 13 vertices the Gale-diagram of which is
the 13-tuple (see figure 11.1.5(a»

(a)

F

G6-------=:~-----~-G

D,-F

(b)

Figure 11.1.5
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(
A BCD E E F

UAII' 1fBif ' UCII' IIDU' m'm'w'
F G G H H J)

-W' UGU' -UGII' UHU' -UHU' -Ifij

209

and let F, be the facet of K, corresponding to the coface (H, -H) (a
Gale-diagram of F, is shown in figure 11.1.5(b» . Let K 2 be the 9-polytope
with 13 vertices, the Gale-diagram of which is the 13-tuple (see figure
11.1.6(a»

(a)

F

G~----~~----~-G

O,-F

(b)

Figure 11.1.6
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(
A BCD E F F

WAIf ' IIBII ' IIC11' IIDII ' IIEII' IIFII ' IIFII '

G G H H I J)
II Gil ' -IIG II' IIHII' - II HII' -lfij' TiJif

and let F2 be the facet of K 2 corresponding to the coface (H , - H) (a Gale
diagram of F2 is shown in figure 11.1.6(b)). Then both K 1 and K 2 are pro
jectively unique, wh ile F1 and F2 are combinatorially equivalent but not
projecti vely equivalent. Thus the abstract 9-complex obtained from
ff (K I) U ff (K 2 ) by identifying F1 with F2 is not real izable in any Euclidean
space.

11.2 A Proof of the van Kampen-Flores Theorem

Let % = skein T 2n + 2 be the n-ske1eton of the (2n + 2)-dimensional
simplex T 2n + 2

, where for convenience we assume T 2n + 2 to be regular
and to ha ve its centroid at the origin 0 of R 2n + 2. Denoting K = set %
we sha ll prove the following interesting result of van Kampen [I] and
Flores [ I] :

1. K is not homeomorphic with any subset of R2 n
•

The proof of this theorem is somewhat involved and therefore we first
give an outline of it (the new terms will be defined below; our exposition
follows Flores [I ]*). The assertion of the theorem follows from % being
(2n + I)-entangled. This property of % results from the observation that
for a metric space K certain mappings </> of K into R2n + 1 satisfy 0 E </>(K).
The last assertion follows from the Borsuk-Ulam theorem on antipodes.

We sta rt by defining, for a given complex ~, a new complex ~+. Let v
be a po int not belonging to the affine hull of set ~. «: is the complex
consisting of ~ together with the sets conv({v} u F), for all members F
of ~. Let C = set ~ and C+ = set ~+ . A mapping cp of C+ shall be called
a C-homeomorphism provided cp is a homeomorphism between C and cp(C).
We shall say that ~ is d-entangled provided

cp(C) n cp(C + - C) # 0
for every C-homeomorphism cp of C+ into Rd. If C C Rd- 1, or if some
homeomorphic image of C is contained in Rd

- 1, then clearly ~ is not

* The definition of K* (denoted there by U(K .ll in lines 5 to 9 on page 6 of Flores (1] is
not correct.



PROPERTIES OF BOUNDARY COMPLEXES 211

d-entangled. Therefore, in order to show that C is not homeomorphic to
any subset of Rd

- I, it is enough to prove that C(j is d-entangled.
We turn now to the definition of R. The points of K are the (ordered)

pairs (a; b) such that
(i) a, b E K+;

(ii) at least one of a, b belongs to K ;
(iii) there exist disjoint members Fa' Fb of x: such that a E conv({v} u Fa)

and b e conv({v} U Fb ). Defining the distance between (a; b) and (a' ; b') as
p(a, a') + p(b, b'), K becomes a compact metric space. Points (a; b) and
(a' ; b') of K are called opposite provided a = b' and b = a'.

Let <p be a K-homeomorphism of K+ into R2n+ 1. For (a; b) E K we
define

ep(a ; b) = <p(b) - <p(a) .

Clearly ep is a continuous mapping of K into R2n+ 1, and ep(a ; b) = - ep(b; a).
If we assume that f is not (2n + lj-entangled and that <p is a K -homeo
morphism of K+ into R2n+ I such that <p(K) n <p(K+ '" K) = 0 , it
follows that 0 ¢ ep(K). Indeed, otherwise for some (a; b) E K we would
have 0 = ep(a ; b) = <p(b) - <p(a). Therefore a E K and b e K, and since <p
is a K -horneomorphism, a = b contradicting condition (iii) in the defini
tion of K. We shall prove that 0 E ep(K) for every sp ; therefore f must be
(2n + Ij-entangled, and the theorem follows.

In order to achieve this, let f* be the complex formed by all sets
conv(Fj u ( - F)), where F; and Fj are disjoint members of f, and let
K* = set f* . Then (see exercise 4.8.26) K* is homeomorphic to the
(2n + Ij-sphere s-::1 by the radial projection which carries opposite
(i.e. symmetric with respect to 0) points of K* onto antipodal points of
s2n+ 1. By the Borsuk-Ulam theorem on antipodes, every mapping of
s2n+ I into R2n+ I carries some pair of antipodal points of s2n+ 1 onto the
same point of R2n+ 1. Therefore, some pair of opposite points of K* are
mapped onto the same point by every mapping of K* into R2n+ 1.

On the other hand, K* is homeomorphic to K by a mapping n carrying
opposite points onto opposite points. Indeed, each point of K is of the
form (A.a + (1 - A.)v ; ub + (1 - Jl)v), where a and b are points of K con
tained in disjoint members of ,J(, 0 :::;; A., Jl :::;; 1, and maxp, Jl} = 1. Then
it is easily checked that the following definition of tt satisfies all the
requirements :

{
(1 - tJl)a - tJlb

n(A.a + (1 - A.)v; ub + (1 - Jl)v) =
tA.a - (1 - tA.)b

for A. = 1

for Jl = 1.
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It follows that for every mapping t/J of K into R 2 n+ I there exists a pair of
opposite points (alii ; b.,,) and (b.,,; a.,,) of R such that t/J(a", ; b.,,) = l/J(b",; a.,,).
In particular, this applies to the map fP for every K-homeomorphism qJ

of K + into R2n + I. But fP satisfies fP(x ; y) = - fP(y; x) for every (x; y) E R.
Therefore fP(alp ; blp) = 0 for every qJ. This shows that :f is (2n + l}
entangled, and thus completes the proof of theorem 1.

n.3 d-Connectedness of the Graphs of d-Polytopes

We begin by recalling some definitions and facts from graph-theory.
By the usual definition, a graph ~ is a pair (AI; IS') consisting of a (finite)

set % = {N} of nodes (or vertices) of~, together with a subset IS' of the
set {{N j , N j } IN j , N j E % } of pairs of elements of .AI: (According to the
usual conventions of set-theory, this notation implies N, # N j . ) The
members {N j , N j } of IS' are the edges of ~. The nodes N, and Nj con
tained in an edge E = tn; NJ are called the endpoints of E, and are said
to be incident with E, or connected by E, or adjacent. (Some authors find
it more convenient to use 'oriented graphs', in which 'edges' are ordered
pairs (N j , N) of elements of AI; so that (N , N) is possible, and (N j , N j ) is
in general different from (Nj • N i ) ; others find it useful to allow 'multiple
edges ' having the same endpoints. We shall not use here any of these
notions.)

Every l-complex clearly determines a graph in the above sense. Con
versely, for any given graph ~ there exists a l-cornplex ~ which is com
binatorially equivalent to ~ (i.e. there exists a biunique incidence-preserv
ing correspondence between the members of ~ and those of ~~ Indeed,
such a 'realization' of ~ is given (in R 3) by an appropriate subcomplex
of the Schlegel diagram of the cyclic polytope C(v,4), where v = card .AI:

Thus 'graphs' and "l-complexes' are equivalent notions, and may be
used interchangeably. We shall call the l-skeleton of a complex ~ or
~(P) the graph of f(j or of P; in the latter case we shall denote it by ~(P).

A path f/ with endpoints A, B in a graph ~ is a subgraph of ~ having
as nodes the nodes Vo = A, VI"'" Vn - I, Vn = B of ~ and as edges the
edges {~_I' ~}, i = i,"', n, of~. n is called the length of f/. Two paths
f/I and f/2 with common endpoints A, B are called disjoint provided the
intersection f/I n f/2 consists of A and B only. A graph ~ is connected
provided for each pair of its nodes there is a path in ~ having these nodes
as endpoints.

A graph ~ is k-connected provided for every pair of nodes of ~ there
exist k pairwise disjoint paths in ~ having these nodes as endpoints. The
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following theorem of Whitney is one of the fundamental results in graph
theory; we only formulate it and refer the reader to the proofs in Whitney
[1], Berge [1], Ore [1], Dirac [3]:

1. A graph l'§ with at least k + 1 nodes is k-connected if and only if every
subgraph of l'§, obtained by omitting from l'§ any k - 1 or fewer nodes and
the edges incident to them, is connected.

A node V of a graph l'§ is called n-ualent provided V is incident to n
edges of l'§; l'§ is called n-ualent provided each of its nodes is n-valent.
If l'§ is a k-connected graph then the valence of each node of l'§ is obviously
at least k. The converse, however, does not hold.

Let l'§ be the graph of ad-polytope P. Then clearly each node of l'§ is at
least d-valent. But in this particular case the following stronger result
holds:

2. IfP is a d-polytope then l'§(P) is d-connected.

This result is due to Balinski [1] ; chronologically, it is the first (non
trivial) necessary condition for the (&,d)-realizability of a graph.

The proof of theorem 2 uses Whitney's theorem in the following way.
Let VI"' " v,,-l be some d - 1 vertices of P and let l'§* be the subgraph
of l'§(P) obtained by the omission of VI" .. , Vd- l and of the edges incident
with them. We shall prove theorem 2 by showing that l'§* is connected.
We have to distinguish a number of possibilities. Denoting M = aff
{VI" . " v,,-l}' we have either (i) M II int P = 0, or (ii) M II int P =I- 0 .
In case (i) let F = Mil P be the face (of dimension at most d - 1) of P
determined by {VI"' " Vd - d, let H be a supporting (d - Ij-hyperplane
of P such that H II P = F, and let H+ be the other supporting hyperplane
of P parallel to H. By exercise 3.1.4, for every vertex V of P either V E H+
or there 'exists a vertex V' of P, joined by an edge to V, such that V'is
nearer to H+ than V. It follows that each vertex of P which is not in
{VI"'" v,,-l}, is connected by a path in l'§* to some vertex of H+ II P.
Since H+ II P is a polytope, its graph is a connected subgraph of l'§*;
hence l'§* is connected in case (i).

In case (ii)let H be any (d - 1)-hyperplane containing M and at least one
vertex v" of P which is not in M . Denoting by H+, H- the two supporting
hyperplanes of P parallel to H, the reasoning used in case (i) applies sep
arately to the part of P contained in the slab determined by Hand H+,
and to the part of P contained in the slab determined by Hand H-.
Therefore, each of the corresponding subgraphs of l'§* is connected, and
since they have the common node Vd the graph l'§* is connected. This
completes the proof of theorem 2.
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Considering only l-cornplexes, the results on (g'd)-realizability obtained
so far may be formulated as follows.

Ifa graph "§ is (g'd)-realizable then
(i) '§ contains a refinement of the complete graph with d + 1 nodes

(i.e. of'§(Td»;moreover, for each edge of,§ it is possible to find a refinement
map carrying that edge onto an edge of '§(Td

).

(ii) '§ is d-connected ;
(iii) if d = 3 then '§ does not contain any refinement of the graph of T 4

•

These conditions are not sufficient to guarantee the (g'd)-realizability
of a graph ~ Indeed, if d = 3 an example satisfying (i), (ii), (iii) but is not
(.q;>3)-realizable is provided by the graph '§o with 6 vertices {A I' A 2. A 3' B i

B 2, B 3 } and 9 edges {{Ai' B) Ii, j = 1,2,3}. As we shall see in Chapter 13,
for d = 3 conditions (ii),(iii)and (iv)are sufficient for the (g'3)-realizability
of'§, where (iv) is the condition :

(iv) '§ does not contain any refinement of '§o.

It would be very interesting to find the higher-dimensional analogues of
condition (iv).

For d ~ 4 the condition (iii) becomes void, and the remaining conditions
(i) and (ii) are not sufficient for the (g'd)-realizability of a graph ~ A
simple example to that effect (see Griinbaum-Motzkin [2]) is that of a
complete graph with 8 nodes from which seven edges forming a simpl e
circuit are omitted. (See figure 11.3.1, where only the omitted edges are
shown.) It is easily checked that this '§ satisfies (i) and (ii) with d = 4.
Assuming '§ realized by a 4-polytope P, let F be any 3-face of P which
does not contain Va. Considering the graph '§' with 7 nodes obtained from

Figure 11.3.1
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<§ by omitting Vs and the edges incident to it, it is easily checked (by apply
ing conditions (i), (ii), (iii) and (iv) for the case d = 3) that the graph of F is
obtained from <§' by omitting one of its nodes and the edges incident to it.
Then F is necessarily of the combinatorial type represented by the Schlegel
diagram in figure 11.3.2. Since F contains only 6 vertices, there must exist
another 3-face F' of P which does not contain Vs. The face F' is necessarily
of the same combinatorial type as F. But now, F n F' contains five of the
vertices VI" . " V7-which is impossible since F has no pentagonal 2-face.

Figure 11.3.2

It should be mentioned that the conditions (i) and (ii) are independent.
Indeed, the graphs of 3-dimensional antiprisms are 4-connected but
contain no refinement of <§(T4

) ; refinements of <§(Td
) may obviously

fail to be d-connected.
The following graph-theoretical problem arises in connection with

conditions (i) and (ii) :
What is the least n = n(k) such that every n-connected graph contains as

subgraph a refinement of <§(Tk
) (the complete graph with k + 1 nodes)?

It is easily seen that n(k) = k for k = 1, 2, 3 (Dirac [1D. The following
short proof of n(3) = 3 is due to 1. Isbell. Let <§ be 3-connected and V a
node of <§. Deleting V one obtains a 2-connected graph, which contains a
circuit Vo, VI" . . , Vm = Vo (where m ~ 3). Let <§* be a graph obtained
from <§ by adjoining a new node Wand the edges {a; Jt;}, i = 1" ", m.
Then <§* is clearly 3-connected, and therefore V may be connected to W
by three pairwise disjoint paths. The circuit Vo, " ' , Vm and the parts of
those paths between Vand the circuit yield a refinement of <§(T3

) contained
in <§.

Thus, the first open problem is the determination of n(4). The graph of
the icosahedron shows that n(4) > 5. It is easy to show that n(k) > k + 1
for every k ~ 4 (Dirac [2]). A related result of Halin [1Jis:
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if ( s ) + r + 1 S d.
r + 1

3. The i-skeleton of the d-octahedron (which is (2d - 2)-connected)
contains a refinement ofr§(Tk

) if and only if k < [td].

It may be conjectured that the graph of every centrally symmetric
simplicial d-polytope contains a refinement of the graph of the ([td] - 1)
simplex.

Halin 's result clearly implies that n(k);;::: [~k]. It should be noted,
however, that even the finiteness of n(k), k ;;::: 4, has not been established
so far.

Many generalizations of theorem 2 were obtained by T. Sallee [2].
Without proof we shall quote some of his results.

For ad-polytope P, and for 0 s r < s < d, let r§(p; r, s) be the (r, s)
incidence graph of P; that is, the nodes of r§(p; r, s) correspond to the
r-faces and the s-faces of P, two nodes determining an edge if and only
if one of them corresponds to an r-face and the other to an s-face con
taining the r-face.

cx(P; r, s) is the largest integer k such that r§(p; r, s) has at least k + 1
r-nodes (nodes corresponding to r-faces), and the removal of any k - 1
nodes from r§(p; r, s) does not disconnect r§(p; r, s) between any two r
nodes. [3(P; r, s) is defined similarly, with 's-nodes' substituted for 'r-nodes',
We also define

cx(d;r,s) = min {cx(P ;r,s)!PEgl"' }

and
[3(d ; r, s) = min {[3(P ; r, s) IP E gild} .

The following results are among those proved in Sallee [2].

4. cx(P .. r, s) = [3(P* .. d - 1 - s, d - 1 - r), where P" is the dual of P*.

5. [3(d .. r, s) S P(d' .. r, s) for d S d.

As a special case of theorem 6 we have [3(d ; r, s) = s + 1 if r = 0, or
s = d - I, or s = r + 1. Sallee [2] conjectured that [3(d; r, s) = min

{(: : l en holds for all 0 S r:s; s < d. This is confirmed, in part, by

his result

(
s + 1)7. [3(d .. r, s) =
r + 1
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11.4 Degree of Total Separability
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The aim of the present section is to derive an additional necessary con
dition for the (&,d)-realizability of graphs. It extends Balinski's theorem
11.3.2, and uses the notion of total separation of one set of nodes of a
graph by another set of nodes. This notion, and theorem 1 below, are due
to Klee [14].

Let ~ be a graph, M a set of nodes of'§, and A, B two nodes of ~ which
do not belong to M. We shall say that M separates A from B (in ~) provided
every path with endpoints A and B contains some node from M. A set N of
nodes of~ is said to be totally separated by a set M of nodes of~ provided
M Il N = 0 and every two members of N are separated by M. The nth
degree of total separability of'§, denoted by sn(~)' is defined as the largest
cardinality of a set of nodes of~ which are totally separated by some set of
n nodes of <§.

For example, if ~ is a circuit then sn(~) ~ n, with equality holding
provided ~ has at least 2n nodes.

The quantity interesting us is s(n,d), defined by s(n,d) = max {sn(skeI 1 P)IP
is d-polytope}.

We recall from chapter 10 that J1(n, d) denotes the maximal possible
number of facets of a d-polytope with n vertices. We have seen in section
10.1 that J1(n, d) = fti-l(C(n, d» for n ~ d + 3 and n ~ [d/2Y - 1; if the
'upper bound conjecture' is true, this relation holds for all nand d.

The interest in s(n, d) stems from the fact that Klee succeeded with the
help of this notion to disprove a conjecture of Griinbaum-Motzkin [3]
(see section 12.2).

Klee's result [14] on total separability may be formulated as follows:

1. For all nand d,

{

I if n ~ d - 1
s(n,d) = 2 if n = d

J1(n, d) if n ~ d + 1

The proof of theorem 1 for n ~ d follows at once from theorem 11.3.2.
Let us therefore assume that n ~ d + 1.

For any d-polytope P, let p K denotethe d-polytope obtained by adding
sufficiently low pyramidal caps on all facets of P ; such polytopes are known
as Kleetopes. To be more precise, a Kleetope p K is the convex hull of the
union of P with fd- I(P) additional points, each of the 'new' points being
beyond exactly one facet of P and sufficiently near to the centroid of
the facet so that every segment determined by two of the 'new' points
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intersects into P. By theorem 5.2.1, each 'new' vertex is incident only to
such edges of p K which have as the other endpoint a vertex ofP. Therefore,
in the graph of p K

, the 'new' vertices are totally separated by the vertices
of P. Choosing for P any d-polytope with n vertices and uin, d) facets,
it follows that sn(<§(PK

) ) ~ /len , d); hence sen, d) ~ pin, d).
In order to show that (for n ~ d + 1)the relation sen, d) :::;; /len, d) holds,

we proceed as follows. Let P be a d-polytope such that sn(<§(P») = sen, d),
and let V be a set of n vertices of P such that the set W of vertices of P not
belonging to V contains an sen, d)-membered subset which is totally
separated by V in the graph of P. Let now Po be a d-pol ytope obtained
from P by successively pulling each of the vertices in V (see Section 5.2),
so as to form in the new positions a set VI' By theorem 5.2.2 the edges of
Po are of the two types :

(i) edges of P, having both endpoints in W;
(ii) edges having at least one endpoint in VI'

Let PI = con v VI; since n ~ d + 1 it follows from the definition of
pulling that PI is a d-polytope. For a facet F of PI let WF be the set of all
vertices of Po which are (in relation to Pd beyond F. Then WF C J¥, and
using the method applied in the proof of theorem 11.3.2, it is immediate
that no two points of WF are separated (in the graph of Po) by VI ' Since
the construction of Po implies that two points of Ware separated by V
in the graph of P if and only if they are separated by VI in the graph of
Po, and since We U WF , it follows that sen, d) s sn(<§(PO» :::;; h -I(Pd :::;;

F
pin, d), as claimed.

This completes the proof of theorem 1.

A number of unsolved problems are related to theorem 1. For example
if, in the definition of s(n, d), the polytope P is assumed to belong to some
subfamily 9 of 9 d

, numbers s(n,9) are obtained. From the proof of
theorem 1 it follows at once that sen,9~) = sen, d). However, if 9 is the
family of all simple d-polytopes the value of sen, 9 ) is not known ; similarly,
the problem is open in case 9 is the family of all centrally symmetric
d-polytopes.

11.5 d-Diagrams

Sections 11.3 and 11.4 were concerned with the properties of l-skeletons
of d-polytopes. In the present section we shall consider the other extreme,
namely the properties of (d - 1)-skeletons (i.e. boundary complexes)
of d-polytopes. The most obvious property of the boundary complex
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~(P) of every d-polytope P is that set fJ(P) is homeomorphic to the (d - 1)
sphere Sd-I. As we have seen in theorem 11.1.1, this may be strengthened
to the assertion that ~(P) is a refinement of ~(Td). However, Cairns'
example (see section 1Ll) may easily be modified to show that there
exists a (topological) simplicial subdivision of S3 which is not combina
tori ally equivalent to the boundary complex of any 4-polytope. Therefore
it would be desirable to find other properties of the boundary complexes,
which do take into account the convexity of its elements.

One property of the boundary complex of each d-polytope which could
be considered in this context is its representability by a Schlegel diagram
in Rd

-
1

• This brings us to the idea of trying to define, independently of
Schlegel diagrams, objects which 'look like' Schlegel diagrams and to use
them in order to determine additional properties of the boundary com
plexes. In section 3.3 we defined objects of this type which we called d
diagrams. As we shall see in section 13.2, 2-diagrams are indeed combina
torially equivalent to boundary complexes of 3-polytopes. However, in
higher dimensions the situation is different and we have

1. There exist simplicial 3-diagrams which are not combinatorially
equivalent to Schlegel diagrams of 4-polytopes.

Theorem 1 may be proved by various examples. We shall describe
here the (chronologically first) example found in 1965 (Griinbaum [16]);
though it contains an unnecessarily large number of simplices, it has the
advantage over the smaller known example (see below) of being describable
easily and without computations.

We begin by describing the construction of a 3-diagram E0, which will
then be shown to have the properties required by theorem 1.

The construction starts with the complex shown in figure 11.5.1 which
contains the following 3-simplices (denoted by their vertices): ABGH,
GPQV, GRSV, GPTV, GSTV, GHPT, GHST (In order to allow a clearer
representation of the other simplices, ABGH is in figure 11.5.1 contracted
to half its length in direction AR) Adjoining the simplices AGPQ, AGHP,
BGRS, BGH S, and their faces, a complex ~1 is obtained (figure 11.5.2).
Four copies of~l,joined along the common edge AB, form a new complex
~2 (figure 11.5.3). Using three copies of ~2 we form ~3 (figure 11.5.4).
Completing ~3 by two copies of the simplicial decomposition of a 'small'
cube (figure 11.5.5) we obtain a simplicial complex ~4. The outward
appearance of ~4 is that of a cube with square pyramids attached on parts
of each of its 2-faces ; however, the structure of ~4 is different since among
its members are the edges AB, CD, and EF. Adding simplices having one



220

A

CONVEX POLYTOPES

A A

B
Figure 11.5.1

B
Figure 11.5.2

B
Figure 11.5.3

vertex in the set A, B, C, D, E, F, and base on the face of the 'big ' cube
near to that vertex, we obtain the complex fCs (figure 11.5.6~ Adjoining
to C6's the 24 simplices of the type AE VI WI' and the 8 simplices of the type
ACEVt> a complex <if6 is obtained (figure 11.5.7). Applying a projective
transformation to <if6 it is transformed to the shape indicated in figure
11.5.8, in which form we may complete it to a 3-diagram ~, for which <if
is the union of fC6 and the simplices containing O. The detailed structure
of ~ is ot interest only to the extent that it shows that ~ contains: (i) the
simplices OACE, OAED, OADF, OAFC, OBCF, OBDE, OBEC, OBFD,
and their faces; (ii) the edges AB, CD, EF.

Let us now assume that there exists a 4-dimensional polytope P such
that ~ is combinatorially equivalent to the Schlegel diagram of P ; we
assume the vertices of P labeled by the same letters as the corresponding
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vertices of q). Then P contains as faces the simplices mentioned in (i)
and (ii) above. Let P" be the convex hun of the vertices 0, A, B, C, D, E,
F of P. Then P" has, obviously, 7 vertices and since it contains as faces
all the 21 edges determined by its vertices, it is a neighborly polytope.

A

F'--======----t

B

A'-----i"------...:::::::::;;..E

Figure 11.5.4 Figure 11.5.5

According to a theorem of Gale [4] (see theorem 7.2.3), the combinatorial
structure of 4-dimensional neighborly polytopes with 7 vertices is com
pletely determined and coincides with that of the cyclic polytope C = C
(7,4). Using Gale's evenness condition (see section 4.7) it is easily seen
that each vertex of C is incident to edges which are incident to three
2-faces, as wen as to edges which are incident to four, and to five, 2-faces.
(Compare exercise 4.8.22.) This completes the proof of theorem 1, since,
in q), the vertex 0 is contained only in faces the vertices of which belong
to the set {O, A, B, C, D, E, F} and are therefore faces of P and of P*
but each edge of ~ incident with 0 is incident with four triangles of~.

This completes the proof of theorem 1.
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A

B

Figure 11.5.6

A considerably smaller 3-diagram which is not a Schlegel diagram was
found recently (Grilnbaum-Sreedharan [1]):

2. There exists a simplicial 3-diagram !!)' with 8 vertices, which is not
combinatorially equivalent to a Schlegel diagram ofany 4-polytope.

Denoting the vertices of !!)' by A, B, C, D, E, F, G, H, let the basis of !!)'

be the 3-simplex ABCD, and let !!)' contain the following 19 additional
simplices : ABCF, ABDF, ACDG, ACFH, ACGH, ADEF, ADEG, AEFH,
AEGH, BCDH, BCEF,BCEH, BDFG, BDGH,BEFG, BEGH, CDGH,
CEFH, DEFG. This diagram is indeed realizable in R3

, for example by
choosing as vertices the points having the following cartesian coordinates :

A = (0,215,0)

B = (0,0,0)

C = (279, 0,0)

D = (0,0, 333)

E = (82,55,114)

F = (4,79,7)

G = (94,44,142)

H = (117,47,98).
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Figure11.5.8
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In order to complete the proof of theorem 2 we have to show that
there exists no 4-polytope P having a Schlegel diagram combinatorially
equivalent to ~f. Assuming that such a P exists, let its vertices be labeled
in the same manner as those of ~f, and let Q be the convex hull of the 7
vertices of P different from B. Since P is neighborly, Q is neighborly.
By theorem 7.2.3, Q is combinatorially equivalent to the cyclic polytope
C(7,4). It follows that each vertex of q is incident to two edges each of
which is contained in exactly three 2-faces of Q (see exercise 4.8.22).
On the other hand, it is easily checked that in ~', and hence in P, each edge
incident to the vertex A is contained in four 2-faces none of which contains
the vertex B; since all the edges of Q are also edges of P, and since all the
faces of P which do not contain B are also faces of Q, we have reached a
contradiction which completes the proof of theorem 2.

The 3-complex JI represented by the 3-diagram ~f has a number of
additional interesting properties (see Grunbaum-Sreedharan [1]). For
example, JI may not be represented by a 3-diagram if certain facets (such
as DEFG) are supposed to be the basis. Hence this provides another
example, smaller and simpler than the one discussed in section 11.1,
for the situation described in theorem lLl.7. Also, JI is dual to the 3
complex JI* which was described by Bruckner [3] as the boundary
complex of a simple 4-polytope with 8 facets (denoted by Bruckner P~9);

however, such a 4-polytope does not exist (since its dual would be the
4-polytope P discussed in the proof of theorem 2). Moreover, even
Bruckner's claim that JI* is a 3-complex has not been corroborated so
far ; as a matter of fact, it may be conjectured that JI* is not a 3-complex,
or at least is not representable by a 3-diagram. (It should be noted that
JI*, as well as .A, are representable-with arbitrary facets as basis-by
'topological 3-diagrams', i.e. if 'curved faces' are permitted.)

Exercises

1. Using the 3-diagrams ~ or ~f, find abstract 4-complexes which may
not be realized by complexes in any Euclidean space, though they may be
realized by suitable topological subdivisions of a 4-cell in R4

.

2. It would be interesting to investigate the conjecture that JI* is not a
3-complex .
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11.6 Additional notes and comments

224a

The van Kampen-Flores theorem.
This is a fundamental topological result. It may elegantly be derived from the
Borsuk-Ulam theorem via "deleted joins". We refer to Matousek [a) for a mod
em treatment that also gives references to the extensive literature in connection
with this topic as well as various interesting applications.

Embedding 2-complexes.
Examples of 2-dimensional simplicial complexes <t' that have an embedding
into ]R3 (that is, with a(<t') = 3), but without a straight embedding (that is,
with b(<t') ~ 4) may be found among the triangulated Mobius strips of Brehm
[a). The problem whether all triangulated 2-tori have straight, intersection-free
embeddings into R3 is still unsolved. Brehm-Schild [a) have shown that all
tori have such embeddings into R4 • On the other hand, there is an orientable
triangulated 2-manifold of genus 6 on 12 vertices that has no straight embed
ding into R3, according to Bokowski-Guedes de Oliveira [a). This provides a
negative answer to the conjecture of exercise 13.2.3. See also the interesting
necessary conditions for linear realizability by Novik [c].

Embedding higher-dimensional complexes.
Many embedding problems get easier in higher dimensions. So, while the
problem of embeddability of d-dimensional simplicial complexes into R2d is
intricate for d $ 2, for d ~ 3 there are necessary and sufficient conditions for
embeddability of d-complexes in R2d that were conjectured by van Kampen
and Flores, and proved by Shapiro [a] and by Wu [a).

An extension ofBalinski's theorem.
A "directed" version of Balinski's theorem was given by Holt-Klee [c): If P
is a d-polytope and cp is a linear function in general position , then there are
d vertex-disjoint cp-monotone paths from the minimal vertex to the maximal
vertex of P. (Using projective transformations, one can easily derive Balinski's
theorem from this.)

Non-polytopal diagrams and spheres.
While the existence of non-polytopal diagrams was a substantial new fact for
Grunbaum's book, we now have many examples, and we may assume that in
some sense "most" diagrams are not polytopal. The simplest examples are the
Bruckner sphere and the Barnette sphere; they both appear with short proofs
in Ewald [a, Sect. IIIA] . Mihalisin-Williams [a) show that each of the two
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non-polytopal simplicial 3-spheres with 8 vertices can be realized in 4-space
(without further subdivision) as the boundary complex of a 4-cell with nice
geometric properties . In one case, the 4-cell may even be star-shaped.

Whitney 's/Menger 's theorem.
Whitney's theorem (page 213) is commonly attributed to Menger [a]; see e. g.
Diestel [a, Sect. 3.3]. This theorem and its variants (for edge-connectivity,
directed versions, etc.) are fundamental results for graph theory and also for
combinatorial optimization (network flows, multi-commodity flows, etc.).

High connectivity implies subdivisions of large complete graphs.
The parameter n(k) is defined on page 215 as the smallest n such that every n
connected graph contains a subdivision of Kk+1 = l#(Tk ) . It is now known that
this parameter is finite for all k: Indeed, every n-connected graph has minimal
degree at least n, and it is a theorem of Bollobas-Thornason and of Koml6s
Szerneredi [a] (see Diestcl [a, Thm. 8.1.1]) that every graph of average degree
at least ck2 contains a subdivision of Kk+I' for some constant c > O.

In particular, we know that n(5) = 6. Indeed, any 6-connected graph on
N vertices has at least 3N edges, and thus by a deep theorem of Mader [a] it
contains a subdivision of Ks;see Diestel [a, Sect. 8.3].

Unavoidable small faces in the low-dimensional skeleton .
Kalai [f] showed that every d-polytope, d ~ 5, has a triangle or quadrilateral 2
face. Further, he conjectured that for each dimension k there exists a finite list
L(k) of k-polytopes and a dimension d(k) > k such that each d(k)-polytope has
a k-face combinatorially equivalent to some member of L(k) . He even suggests
that it may suffice for L(k) to consist of merely the k-simplex and the k-cube.
Some results in this direction have been obtained by the use of FLAGTOOL,
a computer program by G. Meisinger. For example, there is a finite list of
3-polytopes such that every rational 9-polytope has a 3-face in the list. (See
Kalai-Kleinschmidt-Meisinger [a] and Meisinger-Kleinschmidt-Kalai [a].)

Minimal centrally symmetric polytopes.
Exercise 11.1.5 may be related to the conjecture by Kalai [e] that if a d
polytope is centrally symmetric, then it must have at least 3d non-empty faces.

Kalai conjectures that equality is achieved only by the Hanner polytopes that
can be generated from an interval by taking products and dualization (which
includes the cubes and the cross polytopes) . One may speculate that this also
provides the finite family needed for exercise 11.1.5.



CHAPTER 12

k-Equivalence of Polytopes

In chapter 11 we have investigated some properties of complexes realizable
by skeletons of polytopes. The present chapter complements this by
discussing the known results on the uniqueness of such realizations.

12.1 k-Equivalence and Ambiguity

From different points of view, one special case of (g.'d)-realizability of
complexes is of particular interest. This is the question whether the k
skeleton of a polytope P E gpd is combinatorially equivalent to the k
skeleton of a polytope P', where P' is not combinatorially equivalent to P.
The simplest occurrence of this situation is provided by the fact that the
cyclic d-polytopes C(v, d) are [!d]-neighborly. This implies that for
2k + 2 :s; d the k-skeleton of C(d + 1,2k + 2) is combinatorially equivalent
to the k-skeleton of T d

•

It is convenient to introduce the notion of k-equivalence of polytopes.
Two polytopes P and P' are said to be k-equivalent provided skel, P is
combinatorially equivalent to skel, P .

Obviously, d-equivalence, or (d - Ij-equivalence, of d-polytopes P and
P' means the same as their combinatorial equivalence.

Generalizing the terminology introduced in Griinbaum-Motzkin [2]
we shall say that a k-complex C(j is dimensionally ambiguous provided there
exist polytopes P and P' with dim P ~ dim P', such that C(j, skel, P and
skel, P' are combinatorially equivalent. As mentioned above, the complete
k-complex with d + 1 vertices, d > 2k + 2, is dimensionally ambiguous
since it is realizable by the k-skeletons of both T d and C(d + 1,2k + 2).
On the other hand, by theorem 7.1.4, the k-skeleton of t», k :s; d :s; 2k + 2,
is not dimensionally ambiguous.

We shall discuss two additional notions.
A k-complex C(j is called strongly d-ambiguous provided there exist two

d-polytopes P and P', not combinatorially equivalent, such that C(j,

skel, P, and skel, P' are combinatorially equivalent.

225
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For·example, by theorem 7.2.4, the complete graph with 8 nodes (i.e.
skel, T 7

) is strongly 4-ambiguous. On the other hand, theorem 7.2.3
implies that skel, T 6 is not strongly 4-ambiguous, although it is strongly
5-ambiguous (since it is combinatorially equivalent both to skel, C(7, 5)
and to the l-skeleton of the 5-pyramid having as basis C(6,4)).

A k-complex CC is called weakly d-ambiguous provided there exists a
d-polytope P and two combinatorial equivalences <fJ and t/J from CC to
skel, P such that the combinatorial equivalence <fJt/J -I of skel, P to itself
can not be extended to a combinatorial equivalence of CC(P) to itself.

For example, if CC is the complete graph with 6 nodes VI" ' " V6 , CC is
combinatorially equivalent to skel, C(6,4) in essentially different ways.
If tp maps the J-i's to six points on the moment curve in the natural order,
and if t/J differs from <fJ by making V2 correspond to the first and VI to the
second of those six points on the moment curve, then the induced auto
morphism <fJt/J - I of skel, C(6, 4) is a l-equivalence which is not extendable
to an automorphism of CC(C(6, 4)). Indeed, the vertices of C(6,4) cor
responding to V2 , V3 , V4 , Vs under <fJ determine a facet of C(6,4), but the
vertices t/J(Vi), t/J(V3 ), t/J(V4 ), t/J(Vs) do not determine a facet of C(6,4).

The interest in k-equivalence and the different ambiguity concepts arose
from the observation of dimensional ambiguity of the l-skeletons of
d-simplices, d ~ 5. Lack of examples to the contrary led Griinbaum
Motzkin [3J to the conjecture that for d ~ 4 every (g>d)-realizable graph is
(g>4)-realizable. This conjecture has since been disproved (first by Klee [14J
in 1963) but the following variant is still undecided.

Conjecture. If the k-complex CC is (g>d}realizable and (g>d'}realizable,
where d' :s; d", then CC is (g>d)-realizable for every d satisfying d' :s; d :s; d".

The remaining sections of the present chapter are devoted to a discussion
of the known partial results on ambiguity and k-equivalence.

12.2 Dimensional Ambiguity

One of the general results on dimensionally unambiguous complexes is
the following immediate consequence of the results of section ILL

1. If k ~ [tdJ and if P is a d-polytope, then skel, P is not dimensionally
ambiguous.

Indeed, the k-skeleton of each d-polytope P contains a refinement of
skel, T" and, by theorem 11.1.6, skel, P does not contain a refinement of
skel, cr-: I) for k ~ ad]. The first fact implies (again by theorem 11.1.6)
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that skel, P is not (glld}realizable for d' < d, while the second fact implies
(because of theorem 11.1.1) that skel, P is not (glld'}realizable for d' > d.

The special cases k = 1,2 of theorem 1 yield the corollary:
The graph of every 3-polytope is dimensionally unambiguous; the 2

skeleton of every d-polytope, d S; 5, is dimensionally unambiguous.
The first of these assertions forms part of theorem I of Griinbaum

Motzkin [2] ; the other part of the Griinbaum-Motzkin result will turn
out to be a corollary to theorem 12.3.2 below.

The question about the dimensional ambiguity of skel, P, for P E &d
and k < [td], is much more involved . It is probably related to the geomet
ric structure of polytopes of highest dimension which are k-equivalent to
P, but practically nothing is known in this connection. The one affirmative
result is :

2. For every k and d, 1 S; k S; d, there exist d-polytopes P such that
skel, P is dimensionally unambiguous. Moreover, there exist d-polytopes
with this property having arbitrarily many vertices.

The main part of this theorem, the case k = 1, is due to Klee [14]; Klee's
proof is based on the notion of total separation and uses theorem 11.4.1.
We shall reproduce that proof below, A more direct proof, avoiding the
notion of total separation, was given in Griinbaum [12].

In order to prove theorem 2, we first remark that it is sufficient to prove
the theorem for k = 1, since any realization of the k-skeleton, k ~ I, of a
polytope P yields also a realization of the graph of P.

Let now P denote any simplicial d-polytope with v vertices such that P
has the maximal possible number Jl,(v, d) of (d - I)-faces. By theorem
10.1.3, if v is sufficiently large (for example, if v ~ [td]2) we may take P =
C(v, d). We claim that for all sufficiently large v the graph 'IJ of the Kleetope
pK over P (see section 11.4) is dimensionally unambiguous. Indeed, 'IJ
is not (glld}realizable for d' > d since each 'new' vertex of pK is d-valent,
while all vertices of d'-polytopes are at least d'-valent. On the other hand,
it is clear from the construction of pK that sv('IJ), the vth degree of total
separability of ~ satisfies sv('IJ) = s(v, d) = Jl,(v, d) (see theorem 11.4.1).
Therefore, 'IJ will not be (glld}realizable with d' < d provided s(v, d')
< s(v, d). By theorem 11.4.1 this is equivalent with Jl,(v, d - 1) < Jl,(v, d).
Comparing theorems 10.1.3 and 9.6.1 we see that all these requirements
are certainly met provided v ~ max{2d ;[tdF}. Thus for all such v,
the graph of p K

, and hence all skeletons of pK
, are dimensionally unam

biguous.
Using more careful estimates Klee [14] obtains a somewhat better
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bound' for v. However, even Klee's bound is not best possible since (see
Griinbaum [12]) (TS)K has a dimensionally unambiguous graph (with 12
nodes), while Klee's estimates guarantee only the existence of some
such graph with 39 nodes. It may be shown that even the ll-node graph,
obtained from skel, (TS)K by omitting one of the 'new' vertices, is dimen
sionally unambiguous; it is not known, however, whether there are
smaller dimensionally unambiguous graphs which are (&,s)-realizable.

In Griinbaum [12] it was conjectured that the graph of pK is dimen
sionally unambiguous for every d-polytope P. Though this conjecture can
be shown to be false (see exercise 1), there persists the impression that
skel, pK is dimensionally unambiguous provided dim P is not too large in
comparison to k. The first interesting open problem is the conjecture that
the graph of pK is dimensionally unambiguous for every P E &'s. 'Support
ing evidence ' for this conjecture may be found in exercise 2.

Exercises

1. Construct a (&'~)-realization of the graph of (T7)K.
2. In the notation of section 10.2, show that if cpt(v, 5) = <t>t(v, 5) (that

is, if the 'lower bound conjecture' holds for simplicial 5-polytopes) then,
for every P E »; the graph of pK is not (&';)-realizable.

12.3 Strong and Weak Ambiguity

The results on strong and weak ambiguity of complexes are even more
fragmentary than those on dimensional ambiguity. Thus, for example,
no instances are known of k-complexes which are strongly d-ambiguous
but not weakly d-ambiguous.

The only positive result of a general nature is :

1. For d ~ 3, every (&d)-realizable (d - 2)-complex is both strongly and
weakly d-unambiguous.

In other words, the (d - 2)-skeleton of a d-polytope determines the
combinatorial type of the polytope.

The proof of theorem 1 is based on the fact that every subset of the n
sphere which is a homeomorphic image of the (n - 1)-sphere, divides the n
sphere into two parts. Let ((j be a (d - 2)-complex which is (&,d)-realizable.
Without loss of generality we may assume that ((j = skelj , 2 P for some
P E &,d. Let {F j II ::; i ::; fd-l(P)} be the facets of P, i.e. the (d - 1)
dimensional elements of 9I(P). For each i, 9I(F j ) is a subcomplex of ((j
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such that set PA(F j ) is homeomorphic to the (d - 2)-sphere. The complexes
PA(F j ) obviously have the following property:

(*) If F is a face of P such that all the vertices of F belong to PA(Fj ) , then
either F = F, or F E PA(FJ

Let P' be any d-polytope such that C(j is combinatorially equivalent to
skelj., 2 P'. We wish to show that P and P' are combinatorially equivalent;
this will be accomplished by showing that the (d - 2)-equivalence of P
and P', induced by C(j, may be extended to a (d - I)-equivalence. The
subcomplex PAj of skelj , 2 P' which corresponds to PA(F j ) is homeomorphic
to a (d - 2)-sphere imbedded in bd P'. Therefore the complement of
set PA j in bd P' consists of two connected components. If each of these
components would contain at least one vertex of P', a contradiction would
result. In C(j the corresponding vertices may be joined by a path missing
PA(FJ, but in PA(P') every path connecting them meets Bj • Therefore, at
least one of the components of bd P' determined by ~j contains no vertex
of P'. But because of property (*) of C(j, this component may not meet the
relative interior of any k-face of P', 1 ~ k ~ d - 2. It follows that this
component meets only one (d - I)-face Fi of P', and PA j = PA(F;). This
completes the proof of theorem 1. (For a more elementary proof see the
exercises at the end of this section.)

It is easily seen that theorem 1 is best possible in the sense that for
k ~ d - 3 there exist k-complexes which are strongly d-ambiguous. This
assertion is trivial for d = 3 and k = 0; for d = 4 and k = 1 an example is
provided by the combinatorially non-equivalent neighborly 4-polytopes
with 8 vertices (chapter 7). Note that in these examples the different
realizations are all by simplicial polytopes ; non-simplicial examples are
still easier to find.

Combining theorem 1 with theorem 12.2.1 we have

2. For d ~ 3, the (d - 2)-skeleton of every d-polytope is dimensionally,
strongly, and weakly unambiguous.

The case d = 3 of this result is theorem 1 of Griinbaum-Motzkin [2].
Concerning the situation for k ~ d - 3, it was pointed out by M. A.

Perles in a private communication that the claim, made in Griinbaum [12],
about the strong d-unambiguity of the graphs of the Kleetopes p K

, is
unfounded. Indeed, for d ~ 4, the moving of one of the 'new' vertices to a
position such that it becomes beyond one facet of P and contained in the
affine hull of another, yields a polytope with the same graph-although
the resulting polytope is combinatorially different from pK

•
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However, for every d and k ~ 1, there exist k-complexes with arbitrarily
many vertices, which are strongly and weakly d-unambiguous. The
following construction of such graphs is due to Perles.

Let P" be an n-polytope such that the graph of 1'" is dimensionally,
strongly, and weakly unambiguous, and that none of its subgraphs is
(g."")-realizable. As examples we may take for n = 2 any polygon as p 2

,

while for n = 3 every simple 3-polytope may serve as p3. The graph ~

of the (d - n)-fold d-pyramid pd with basis 1'" is strongly and weakly d
unambiguous. Indeed, if ~ is combinatorially equivalent to the graph of
the d-polytope P then, by exercise 3.1.5, there exists an n-face F of P such
that the vertices of F correspond to some of the vertices of P". By the
assumptions made about P", it follows that F is combinatorially equivalent
to P". Therefore P is a (d - n)-fold d-pyramid with basis F, hence com
binatorially equivalent with pd. This proves our assertion.

In general, these graphs are dimensionally ambiguous. For example,
let d = 5, n = 2, and let p 2 be a k-gon, p 2 = conv{Vlt ... , Vk }, the other
vertices of p 5 being A, B, C. Then the graph ~. obtained from ~ by
omitting the vertex J.) is ([!l'4)-realizable. Indeed, ~. is the graph of the
4-pyramid K with the 3-polytope represented in figure 12.3.1 as basis.
The 4-polytope K has the facets F I = conv{VI ' A, B, C} and F 2 = conv
{J.)- I' A,B, C}. If J.) is a point in the complement of K, sufficiently near
the centroid of the 2-face conv{A, B, C} of K in order to beonly beyond the
facets F I and F2 of K then, by theorem 5.2.1, the l-skeleton of conv( {J.)}
u 'K) will be combinatorially equivalent to ~. Therefore ~ is both (g."4)
and (g."5)-realizable.

B

v,

A

Figure 12.3.1.
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Clearly, the same argument shows that, in general, the graphs con
structed with n = 2, d e. 5, are both (.?i'd)_ and (.?i'd-I)-realizable. (For
d = 4, they are dimensionally unambiguous.) The dimensional ambiguity
of the graphs constructed with n ;;::: 3 and d ;;::: 5 is still undecided.

Exercises

The following exercises lead to a proof of theorem 1 which is elementary
in the sense that it uses no topological tools heavier than the Jordan
curve theorem (and even that only in the special case of polygonal lines
in the plane). The same approach leads also to interesting extensions of
theorem 1.The exercises are based on a private communication from M. A.
Perles. We start with definitions of the terms used in the exercises.

Let !F be a finite partially ordered set (with order relation :::;;). The
height h,F(F) of an element FE!F is the largest h such that there exists a
chain of the type Fo < FI < .. . < Fh + I = F, with all F, E .~. We define
skelk!F = {F E!F Ih,F(F) :::;; k}; clearly, skelk!F is a partially ordered
set in the order relation inherited from !F. If !F and !F' are two partially
ordered sets, an isomorphism cp of !F onto !F' is any one-to-one mapping
of!F onto !F' such that both cp and cp - I are order-preserving ; a k
equivalence of !F to !F' is any isomorphism of skelk!F to skel, !F'. A
lattice !F is d-realizable provided there exists ad-polytope P such that !F
is d-equivalent to !F(P), the lattice of all faces of P. For ad-realizable
lattice the height of each element obviously equals the dimension of the
corresponding face of the polytope. Heights of elements of a lattice will be
denoted by superscripts; thus F I or FJ denote elements of height 1. The
reformulation of theorem 1 for which a proof will be outl ined in the fol
lowing exercises is :

Every (d - 2)-equivalence cp of a d-realizable lattice !F to ad-realizable
lattice !F' may beextended to a d-equivalence (isomorphism) {(J of!F to !F'.

1. Show that the extension {(J mentioned in the reformulation of theorem
1 is unique.

2. Show that for d = 3 the proof of theorem 1 as given in the text may
be reformulated so as to require only the particular case of the Jordan
theorem which deals with polygonal lines in the plane. Find an elementary
proof for this case of Jordan's theorem.

3. Let!F = !F(P) for ad-polytope, P and let pI - 4 E !F. Define !FF~ 4 =
{F E!F IFd

-
4

:::;; F}; show that !FFd-4 is a 3-realizable lattice .
4. Let P, P' be d-polytopes, d ;;::: 4, and let cp be a (d - 2)-equivalence

between P and P' (and hence between .~ = .~(P) and .~ ' = .~(P')) . If



232 CONVEX POLYTOPES

r-:4 = CfJ(Fd
-

4
) for a (d - 4)-face Fd

- 4 of P, and if CfJFd-4 is the restriction
of CfJ to Y;;fd -4 (\ skeld _ 2 y;;, then CfJFd-4 is a l-equivalence between the
3-realizable lattices Y;;Fd -4 and Y;;i'd-4 . Using exercises I and 2, show that
CfJFd -4 has a unique extension 'PFd-4 which is a 3-equivalence between
Y;;r«- 4 and Y;;~'d - 4.

5. Let (*) denote the statement :
(*) If Fd

-
1 and c": 1 are facets of the d-polytope P of exercise 4, and if

Fd -
4 c Fd

- 1 and Gd - 4 c Gd - 1, then Fd - 1 = Gd- 1 if and only if 'PFd -4
(Fd

-
1

) = 'PGd-4(Gd
-

1
).

Assuming the validity of (*), prove the reformulated theorem 1 by
showing that the d-equivalence 'P between Y;; and Y;;' may be defined as
follows :

'P(P) = P'.

6. Show that (*) is valid if and only if the following assertion (**) is
valid :
(**) If Fd

-
1 is a facet of P, and if Fd

-
4 and Gd

-
4 are (d - 4)-faces of

Fd - l, then 'PFd -4(Fd
-

l) = 'PGd _4(Fd
-

1).

7. Let Fd
-

1
, Fd

-
4 and Gd -

4 be as in (**). Then there exists a finite
sequence of(d - 4)-faces Ft- 4 and (d - 3)-faces F1- 3 having the incidence
properties indicated in the scheme

Hence (**) holds if and only if(***) is valid :
(***) If Fd

- 1 is a facet of P, if Fd - 3 is a face ofFd - l, and if Fd
-

4 and Gd
-

4

are facets of Fd- 3, then 'Pfd -4(Fd-l) = 'PGd_4(Fd-l).
8. In order to prove (***) note that there exist (d - 2)-faces of F d

-
2

and Gd- 2 of Fd- 1 such that Fd- 2 "# Gd- 2, having the incidence properties
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Considering the images of Fd
- ' , Fd

-
2

, Gd
-

2 und er qJFd- 4 and qJGd-4 ,

note that images of (d - 2)-faces of P under qJf'd -4 and qJGd-4 coincide (if
defined) , and that two facets of ad-polytope P coin cide if both contain two
different (d - 2)-faces of P. Deduce from this the validity of (***), thus
complet ing the proof of the reformulation of the orem 1.

9. Let ff i(p) denote the set of all i-faces of the polytope P. Ch ecking
the various stages of the proof of the reformulated theorem 1, show the
valid ity of the following generalization:

(i) If P and P' are polyto pes of dimension s d and d', (d, d' ~ 3), then
d - 2

any isomorphism between the partially ordered sets U ff i(p) and
i = d- 4

d' -2

U ff i(P' ) is uniq uely extendable to an isomorph ism between the sets
i= d'- 4

d ~

U ffi(p) and U ffi(P'); moreover, d' = d.
i = d- 4 i=d'- 4

Dually, th is implies:
(ii) If P and P' are polytopes of dimension at least 3, any isomorphism

3 3

between U ffi(p ) and U ff i(p' ) is uniquely extendable to a 3-equivalence
i= 1 i= 1

of ff (P) and ff(P' ).
10. (Compare exerci se 3.2.3) Let P be ad-polytope, P' a d'-polytope,

o ~ r < s < d and 0 ~ r ' < s' < d', and let qJ be an isomorphism between
the partially ordered sets ff r(p ) U P(P) and ffr '(p' ) u ffS'(P' ). Then

s - r = s' - r ' and qJ is extendable to an isomorphism of U ffi(p ) to
i= r

i= r '
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II. Combining theorem 1 with exercises 9 and 10 prove :
Let P and P' be d-polytopes, d ~ 5; then every isomorphism qJ of

g;1(p) u g;d-2(p) to g;i(p') u g;d-2(p') may be extended to a combina
torial equivalence between P and P'.

It is not known whether this result remains valid for d = 4. Indeed,
even the following more general problem is still unsolved :

Do there exist d-polytopes P and P', d ~ 4, such that an isomorphism qJ

of the set g;1(P) u g;2(p) to the set g;1(p') u g;2(p') is not extendable to
an isomorphism of the 2-skeletons of P and P'?

12. Use a theorem of Whitney [2] (see also Ore [1], theorem 15.4.1) to
prove the following result:

If P and P' are polytopes, and if tp is a one-to-one correspondence
between g; I(p) and g; I(P') such that for all E I' E2 E g; I(p)

then qJ is extendable to an isomorphism of the l-skeletons of P and P'.
A somewhat analogous result, which may be deduced from a theorem

of P. Kelly [1], is:
If P and P' are k-neighborly polytopes, and if qJ is a one-to-one cor

respondence between g;k- I(P) and g;k-I(P') such that for all F I'
F 2 E g;k - I(p)

dim(F I f1 F2) = k - 2 if and only if dim(qJ(F I) f1 qJ(F2)) = k - 2,

then tp is extendable to an isomorphism of the (k - I)-skeletons of P
and P'.

It would be interesting to find common generalizations of these results.
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12.4 Additional notes and comments

234a

Algorithmic aspects.
For any class of d-polytopes whose r-skeleta are strongly d-unambiguous it is
reasonable to ask how one can reconstruct the entire combinatorial structure
(in terms of the vertex-facet incidences, say) of such a polytope from its r
skeleton. Furthermore , the question for the complexity of the corresponding
reconstruction problem arises.

By theorem 12.3.1 the class of all d-polytopes is an example for such a class
for r =d - 2. From Perles' proof presented in exercises 12.3.1-9 one can derive
an algorithm for the reconstruction problem that runs in polynomial time. Its
main ingredient is a subroutine for finding a planar embedding of a graph (see,
e. g., Mohar-Thomassen [a, Sect. 2.7J).

Simplicial polytopes.
Perles proved that one can reconstruct the entire face lattice of a simplicial d
polytope from its [d/2J-skeleton (see Kalai [j, Thm. 17.4.19]; see also Dan
cis raJ). In particular, the [d/2J -skeleton of every simplicial d-polytope is
strongly (and weakly) d-unambiguous; it is dimensionally unambiguous by
theorem 12.2.1. Thus, the claim "non-simplicial examples are still easier to
find" on page 229 needs amplification: Simplicial examples with k =d - 3 do
not exist for d ~ 5.

Simple polytopes.
Blind-Mani [a] showed that the graphs of simple d-polytopes are strongly and
weakly d-unambiguous. This gives an alternative proof of the existence of
strongly and weakly d-unambiguous k-skeleta of d-polytopes with arbitrarily
many vertices (compare Perles' construction on page 230).

Blind's and Mani 's proof did not provide a reconstruction algorithm. Soon
afterwards, Kalai [d] found a short, elegant, and constructive proof of the re
sult, which, however, did not settle the computational complexity of the recon
struction problem. Joswig-Kaibel-Korner [a] showed that the problem can be
formulated as a combinatorial optimization problem that has a strongly dual
problem (in the sense of combinatorial optimization); in particular, this leads
to polynomial size certificates for the correctness of the reconstruction.

Given the graph of a simple d-polytope, the subgraphs that correspond to
facets are induced, non-separating, (d - I)-regular, and (d - 1)-connected. For
d ~ 3 these four conditions are sufficient to characterize the facet subgraphs
(Whitney [2J), but not for d ~ 4 (as had been conjectured by Perles; see Haase
Ziegler raJ). However, it may be that for d =4 it suffices to additionally require
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planarity. For computational experiments on the reconstruction problem for the
graphs of simple polytopes see Achatz-Kleinschmidt raj.

Zonotopes.
Bjomer-Edelman-Ziegler [aj showed that the graph of ad-dimensional zono
tope is strongly and weakly d-unambiguous. In particular, this proves the con
jecture on page 397.

Cubical polytopes.
Joswig-Ziegler [aj showed that the ([d/2] - I)-skeleton of the d-cube is di
mensionally ambiguous. Moreover, they constructed a cubical and a non
cubical 4-polytope with the graph of the 5-cube . The cubical polytope is
conv((T x 2T) U (2T x T)) c Jr, for the square T = [-1, If C R2

• Schlegel
diagrams of both polytopes are shown below.

Thus, the graph of the 5-cube is dimensionally ambiguous and strongly 4
ambiguous. Moreover, the cubical polytope has a combinatorial automorphism
group that is smaller than the automorphism group of the graph of the 5-cube .
Hence, the graph of the 5-cube is also weakly 4-ambiguous.

The following question emerges from these results : Is the [d/2]-skeleton of
the d-cube strongly and weakly d-unambiguous?

Extending Kalai's [d) methods for simple polytopes, Joswig [a] proved that
the graphs of the duals of capped cubical d-polytopes are strongly and weakly
d-unambiguous. In fact, he derived an algorithm for the corresponding recon
struction problem.

The analogous question for the duals of general cubical polytopes is open;
the case of cubical zonotopes was solved by Babson-Finschi-Fukuda raj.



CHAPTER 13

3-Polytopes

Our knowledge about 3-polytopes far exceeds our knowledge of higher
dimensional polytopes. This may be explained in part by the 'experimental
accessibility ' of 3-polytopes and the fact that the research of their prop
erties goes back to antiquity. A deeper reason is that, from many com
binatorial points of view, 3-polytopes may be replaced by planar graphs .
The various techniques of graph theory are therefore applicable to the
study of 3-polytopes.

The main graph-theoretic tool we shall apply in this context are various
types of 'reductions' of planar graphs. A 'reduction' consists of the
deletion of certain edges and nodes of a given planar graph, and their
replacement by suitable new edges and nodes, the details of the construc
tion varying with the goal to be achieved . In proofs of nonexistence we
shall show that a reduction is possible in every case-thus we shall be
using Fermat's 'method of infinite descent'. In other proofs the reduc
tions will be applicable to all but certain exceptional cases-thus the
proof will essentially be by induction.

13.1 Steinitz's Theorem

The most important and deepest known result on 3-polytopes is the fol
lowing theorem due to E. Steinitz (see Steinitz [6]. Steinitz-Rademacher
[1]) and called by him 'the fundamental theorem of convex types' . The
formulation of the result here is in terms different from those used by
Steinitz. He works with a special notion of 2-complexes, but the graph
theoretic terminology we use permits clearer and shorter proofs .

1. A graph "§ is (&,3)-realizable ifand only if"§ is planar and 3-connected.

The planarity and 3-connectedness of the graph of any P E &,3 are
obvious: any Schlegel diagram of P provides an imbedding of skel, Pin
the plane, while theorem 11.3.1 guarantees its 3-connectedness. In the
proof that these properties are sufficient for the (&,3) -realizability lies the
depth of Steinitz's arguments.

235
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We shall first give an outline of the proof, introducing at the same time
an appropriate terminology.

The proof proceeds by induction on the number of edges e = e(l§) =
f,(l§) of l§. The assumption that l§ is 3-eonnected implies e;;::::: 6, with
equality holding if and only if l§ is the complete graph with 4 nodes. Since
in this case l§ is clearly (,q)'3)-realizable by any 3-simplex, we may in the
remaining part of the proof assume e ;;::::: 7. The steps of the proof are as
follows :

(i) Using a 'double counting of incidences' we show that each graph
l§ considered has 3-valent elements (i.e. 3-valent vertices, or triangular
faces).

(ii) For any given l§ and any 3-valent element ofl§ we construct a new
graph l§*, also planar and 3-connected, such that from any realization of
l§* by a 3-polytope p* a 3-polytope P realizing l§ may be constructed.
The procedures for obtaining l§* from l§ shall be called elementary
transformations, or reductions.

(iii) If l§ contains a 3-valent vertex incident to a triangular face then
an elementary transformation of l§ yields a l§* which has less edges than
l§. Thus in this case induction takes over and the proof is completed. If
l§ does not contain such an incidence , we shall show that there exists a
finite sequence of elementary transformations such that the transformed
graph contains a 3-valent vertex incident to a triangular face, i.e. is of a
type to which the former argument applies.

(i) We first introduce a notation (different from the one used in previous
chapters) for the number of faces of different kinds of a 3-polytope P.
The number of vertices , edges, and 2-faces of P shall be denoted by
v = v(P), e = e(P), and P = p(P). The number of k-valent vertices of P
shall be denoted by Vt = Vt(P), while Pt = Pk(P) is the number of k-gonal
2-faces of P.

Thus v = Lk~3 Vk and P = Lk~3 Pk; Euler's equation becomes, in the

new notation, v - e + P = 2.
Counting the number of incidences of edges and k-gonal faces we

obtain 2e = Lk~3 kpk; similarly , counting incidences of edges and
k-valent vertices there results 2e = Lk~3 kVk' Combining those expres
sions with the previous equations it follows that

L kVk + L kpk = 4e = 4v + 4p - 8 = 4 L Vk + 4 L Pk - 8.
k~3 k~3 k~3 k ~3
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V3 + P3 = 8 + L (k - 4)(vk + Pk) ~ 8;
k:2:5

therefore every 3-polytope P has at least eight 3-valent elements.
Clearly, the above computations apply equally well to every connected

planar graph (imbedded in the 2-sphere) which has no 2-valent vertices
or digonal faces ; in particular, it applies to 3-connected planar graphs.

(ii) In either of the following two cases we shall say that a graph f§*
is obtained from a graph f§ (with e(f§) > 6) by an elementary transformation
(or a reduction):

(1) A trivalent node of f§ and the edges incident to it are deleted, and
the three nodes connected to it in f§ are pairwise connected by 'new'
edges (unless some of them are already connected in f§, in which case
there is no need for the corresponding 'new' edge). The four possible
cases are represented in figure 13.1.1, where f§ is to the left of the f§*
resulting from it by an elementary transformation Wi' i = 0,1,2,3, of
this type .

Figure 13.1.1
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(2) The three edges of a trigonal face are deleted and the three nodes
joined to a 'new' node. Ifany 2-valent node would result it is omitted and
the two edges incident to it are replaced by a single edge. The four possible
elementary transformations 'I i' j = 0, 1,2,3, of this type are schematically
indicated in figure 13.1.2.

Figure 13.1.2

Every graph <'5* obtained from a planar graph <'5 by an elementary
transformation is planar; moreover, if<'5 is 3-connected, it is easily checked
that <'5* has the same property. The reader is invited to check the validity
of these assertions in the present case, as well as for the reductions used
in the next section .

Now, if P" is any 3-polytope with graph (combinatorially equivalent
to) <'5*, we shall describe the construction of a polytope P with graph <'5.
The construction is obvious for the elementary transformations 'I i of
figure 13.1.2: 'Cutting off' the 'new' vertex of P* by an appropriate plane
yields the required polytope P. The construction is also very simple in
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case of the reductions WI> W 2, and W3: P is the convex hull of the union
of P" with an appropriate point V. The point V is beyond the facet of
P" corresponding to the 'new' triangle in f§*, and it is beneath all the other
facets of P" in case of an W3 reduction, while in the case of W 2 or WI

reductions V is beneath all but one (or two) of them, V being in the
affine hull of each of those exceptional facets. If the elementary trans
formation is wo, the polytope P is the convex hull of the union of P" with
the point V determined as the intersection of the planes of the three
facets of P" adjacent to the 'new' triangle , provided V is beyond this
triangular facet of P*. A complication arises, however, if the three planes
are parallel or intersect in a point which is beneath the triangular facet of
P*. In this case it is necessary to apply to P" a projective transformation
such that for the transform of P" the former construction becomes
applicable.

Therefore in all cases the (giIl3)-realizability of the elementary transform
f§* of f§ implies the (giIl3)-realizability of f§. Since f§ * contains i edges less
than f§ if it is obtained from f§ by Wi or "' i ' it follows that the inductive
proof of the theorem is completed for all f§ to which W i or "'i is applicable,
i = 1,2,3. Thus the final part of the proof will consist in showing that
given a graph q; to which none of the reductions co, or "'i' i = 1,2,3, is
applicable, it is possible to obtain a graph to which some of them are
applicable by performing on q; a finite sequence of reductions Wo and "'0'
This is the most intricate part of Steinitz's proof, and for it we need certain
results on 4-valent planar graphs. We interrupt here the proofof theorem 1
in order to establish the properties of 4-valent graphs we shall use. The
connection with the proof of theorem 1 will become obvious below.

Throughout the remaining part of the present section, let CC denote a
4-valent, 3-connected , planar graph.

An edge AB of CC has a direct extension BC provided the edges AB and
BC separate the other two edges incident to B.

A path AoA 1 •.• An in CC (where the node Ai is joined to Ai_ 1 by an
edge, i = 1"", n) is called a geodesic arc provided Ai-IAi has AiAi+ I

as direct extension , for 1 :$ i < n; for a closed geodesic, Ao = An, and
An- 1An has AoA 1 as direct extension.

A subgraph !l' of CC is called a lens provided:
(i) !l' consists of a simple closed path fl : AoA I • •• AnBoB1 . •• BmAO

(called the boundary of !l') and all the nodes and edges of CC contained
in one of the connected components ofthe complement of fl in the 2-sphere
(called inner nodes and edges of fl) ;
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(ii) f2 is formed by two geodesic arcs AoA I ... AnBo and BoB I .•. BmAo,
such that no inner edge of fl. is incident to the poles Ao and Bo of fl.. (See
figure 13.1.3, where (a) and (b) are lenses, while (c) is not.)

A lens.:e in rc is called indecomposable provided no lens of~ is properly
contained in .:e.

(a) (b)

(el

Figure 13.1.3

Every ~ contains at least one indecomposable lens. If !f is an indecom
posable lens, then n = m, and each node A j , 1 ~ i ~ n, is joined to a
unique Bi , 1 ~ j ~ n, by a geodesic arc fl.j contained in .:e; we shall call
fl.j the cut determined by A j • The cuts fl.j and fl.k , i i= k, intersect in at most
one inner node of .:e. Each inner edge of !f belongs to one cut fl.j , each
inner node to exactly two cuts .
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All the above assertions follow at once by considering the class of all
subgraphs of ~ which consist of a simple circuit composed of at most
two geodesic arcs, and of all the nodes and edges of ~ contained in one
of the connected components of the circuit's complement in the 2-sphere.
The members of this class, minimal with respect to the number of nodes,
are indecomposable lenses.

We need the following lemma :

2. Every indecomposable lens 2 contains a triangular face incident to
the boundary f2 of 2 .

PROOF If 2 has no inner nodes, then the face of 2 incident to A o
is a triangle. If 2 has inner nodes , let D1 , " ' , Dr be all the inner nodes
such that D, is a neighbor of some A k • Let h(DJ denote the number of
faces of 2 contained in the triangular region determined by the two cuts
f2j and f2k intersecting at D j , and by the arc of f2 with endpoints AjA k •

As easily seen, if h(D j ) = min{h(D 1) ,. · · , h(Dr ) }, then D j , A j , and A k deter
mine a triangular face of 2 . This completes the proof of the lemma. *

The number of faces in an indecomposable lens is obviously at least 2.

Let now <§ be a planar 3-connected graph; we define a new graph
I(<§) in the following fashion:

The nodes of I(<§) are (interior) points of the edges of <§, one on each
edge. Two nodes of I(<§) are joined by an edge if and only if the two edges
of <§ corresponding to them have a common node and are incident to
the same face (in <§). Clearly I(<§) is planar (and 3-connected), and every
node of I(<§) has valence 4; the faces of I(<§) are in one-to-one correspond
ence with the union of the set of faces of <§ and the set of nodes of <§; i.e.
p(I(<§» = p(<§) + v(<§). If, and only if, a node and a face of <§ are incident,
the corresponding faces of I(<§) have a common edge. A k-gonal face of
I(<§) corresponds to a k-gonal face of <§ or to a k-valent node of <§. We
define g(<§) as the minimal number of faces in an indecomposable lens 2
in 'l(<§). (Though we shall not use this fact, we note that

2 :s; g(<§) :s; tP(I(<§» = t(p(<§) + v(<§» < e(<§).)

If g(<§) = 2, the corresponding indecomposable lens of I(<§) is neces
sarily that represented in figure 13.1.3(b), and therefore <§ contains a
triangular face incident to a trivalent node; thus one of the elementary

* The following remark results at once from the above proof; we shall use it in section 13.2.
For each of the geodesic arcs forming the boundary of an indecomposable lens with inner
nodes, there exists a triangular face incident to it but not incident to the other arc.
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transformations t», or n., i = 1,2,3, may be applied to "S, and the (gIl3)_
realizability of"S follows by induction.

In order to complete the proof of theorem 1 we shall show how to
apply a reduction of type Wo or rto to a graph "S for which g("S) > 2 in
order to obtain a graph "S* with g("S*) < g("S).

This is accomplished by taking, in I("S), an indecomposable lens 2
with g("S) faces. Let T be a triangle in 2 , incident to the boundary of 2 ;
the existence of such T was established by lemma 2. Depending on
whether T corresponds to a triangular face or to a trivalent node of "S,
one of the two procedures rto or Wo is applicable.

If T is incident to only one of the two geodesic arcs forming the bound
ary of 2 , then the transition from figure 13.1.4(a) to figure 13.1.4(b)
illustrates the fact that g("S*) < g("S) in case T corresponds to a triangular
face of "S (note that 2 is above the line denoted by L 1 ), while the opposite
transition applies if T corresponds to a trivalent node of "S (in this case
2 is beneath the line Ld. If T is incident to a pole of 2, the same relations
persist, only 2 is in this case beneath the wedge formed by the lines L2

and L 3 , or above it, respectively.
This completes the proof of theorem 1.

L,

(0) (b)

Figure 13.1.4. Heavy edges denote t§, light edges denote l(t§)
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The proof of theorem 1 could have been reformulated in such a fashion
that either only n, reductions, or only co, reductions, are used . This
observation is based on the existence of polar polytopes (section 3.4) and
on the following facts :

(i) Polar polytopes are dual to each other;
(ii) The graphs ~ I' ~2 of dual polytopes PI' P2 are dual to each other

in the sense of the theory of planar graphs;
(iii) For each i, the reductions '1i and W i are dual to each other ;
(iv) Each member of a pair of polar polytopes is constructible from the

other member of the pair;
(v) Dual graphs (or dual polytopes) haye the same number of edges ;
(vi) If~ I and ~2 are dual graphs, then I(~ I) = I(~ .): therefore indecom

posable lenses are the same ill I(~I) and in I(~2)' and thus g(~I) = g(~2)'

But nodes and faces are interchanged in ~I and ~2' i.e. if a reduction '1i
is applicable to one of them, co, may be applied to the other.

In other words, the induction may be carried out simultaneously for
pairs of dual graphs.

Exercises

1. As noted by Steinitz-Radernacher [IJ , a very simple proof may be
given for the special case of theorem 13.1.1 in which the graph ~ is
assumed to be 3-valent. Only a single 'elementary transformation' 9 is
needed, which consists in deleting an edge AB and amalgamating the two
pairs of edges incident to A and B to two edges (see figure 13.1.5). The
possibility of applying 9 to an edge AB of ~ clearly presupposes that ~
contains neither of the edges A'A n and B'B n

•

Figure 13.1.5

Prove theorem 13.1.1 for 3-valent ~ by showing :
(i) Every 3-valent, 3-connected planar G with more than 6 edges con

tains an edge AB to which 9 is applicable; the resulting graph ~* is 3
valent and 3-connected.
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(ii) From any realization of t§* by a 3-polytope P" a realization of t§

by a 3-polytope P may be constructed.
2. Show that the above assertion (i) is valid for all 3-valent, 3-connected

(not necessarily planar) graphs t§. (This result has been conjectured by
V. Klee in a private communication.)

3. Dualize exercise I, thus obtaining a characterization of graphs of
simplicial 3-polytopes.

4. Show that every 3-connected graph is obtainable from the complete
graph with 4 nodes by a finite number of 'enlargements' . (An 'enlarge
ment' of a graph t§ is the addition of an edge, each endpoint of which is
either a node of t§, or a new node introduced on an edge of t§. )

5. The following problem is open even in the first nontrivial case
(n = 5) : Let P be a 3-polytope, F an n-gonal facet of P, and let F' be a
given n-gon . Does there exist a polytope P' which has F' as a facet, such
that P' is combinatorially equi valent to P under a mapping which makes
F' correspond to F? (It is conceivable that a suitable modification of the
proof of theorem 13.1.1 could be used to solve the problem.)

13.2 Consequences and Analogues of Steinitz's Theorem

We mention first some corollaries of theorem 13.1.1.
The Schlegel diagram of any 3-polytope realizing a given graph t§

shows that

1. Every 3-connected planar graph t§ is combinatorially equivalent to the
I-skeleton of some 2-diagram .

Since the l-skeleton of every 2-diagram is obviously 3-connected, we
have :

2. Every 2-diagral11 is combinatorially equivalent to a Schlegel diagram
of some 3-polytope.

Since all the steps in the proof of theorem 13.1.1 may equally well be
carried out in rational 3-space, the affirmative solution to Klee's problem
(see section 5.5) for 3-polytopes is given by

3. Every comb inatorial type of 3-polytopes may be realized in the
rational 3-space .

A slight modification of the pro of in section 13.1 yields a lso the stronger
result :
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4. For every 3-polytope Pc R3 and for each I:: > 0 there exists a
3-polytope P" combinatorially equivalent to P such that , in any pre
assigned cartesian system of coordinates in R3

, all vertices of P" have
rational coordinates, the distance between corresponding vertices of
P and P" being less than 1:: .

The proof of Steinitz 's theorem may be modified to yield character
izations of graphs of certain special families of 3-polytopes. For example,
we have:

5. A graph r§ is realizable by a centrally symmetric 3-polytope if and
only ifr§ is planar and 3-connected, and there exists an involutory mapping
cp ofr§ such that for each node N ofr§, the nodes Nand cp(N) are separated
by a circuit in r§.

We shall only sketch a proof of theorem 5, leaving out the details .
An equivalent formulation for the condition imposed on the involution
cp is that a node N and its image cp(N) are never incident to the same
face ofr§. The proof is essentially a repetition of the proofof theorem 13.1.1,
with the following exceptions : The least possible value of e(r§) is 12;
in case of equality r§ is either the graph of the octahedron, or the graph
of the cube . The involution cp of r§ induces an involution (also denoted
by cp) on l(r§); thus we may speak about a lens ff in l(r§) and its image
cp(ff), etc. The reductions are applied simultaneously to nodes D and
cp(D), or to triangular faces ABC and cp(A)cp(B)cp(C). The polytope P
is derived from P" by performing the necessary changes in a fashion
preserving central symmetry. If r§* results from r§ by a reduction of
type '71' the two new nodes are defined to be images of each other under
cp . This is possible since those two nodes are not incident to the same
face ofr§* provided no node and its cp-image are incident to one face in <§.

The necessity of applying a projective transformation to P" in case of a
reduction of type (1)0 does not arise if P" is centrally symmetric.

The only complication in the induction is caused by the possibility
that the chosen indecomposable lens ff with a minimal number of faces
is incident at its poles to cp(ff), while ff has no inner nodes. (It can be
shown that ff and cp(ff) have at most the poles in common.) In this case
(see figure 13.2.1)the (1)0 and '70 reductions of ff do not change the value
of g(r§).

Now, if the complementary lenses .A and cp(.A) are decomposable,
we take an indecomposable lens % contained in .A, and perform the
reductions co, or '7i indicated by .Ai: Since % is properly contained in .A,
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Figure 13.2.1

and therefore not incident to lp(.¥), a finite number of reductions Wo

and tlo yields a graph to which some W i or n., i ~ 1,~n be applied ; a
graph with fewer edges results , and induction takes over .

If .A is indecomposable, we consider the cut of .A determined by
A 1 (see figure 13.2.1). Together with its extension BnA l' and the arc
BnAolp(Bd'" lp(B k ) it determines a lens fil* which is indecomposable
(since each proper sublens of it would be a proper sublens of .A). If
fil* contains inner nodes, there are triangular faces of fil* incident to the
cut determined by A 1 but not incident to fil U lp(fil). Performing a finite
number of Wo and tlo reductions (without increasing g(~)) all inner
nodes may be eliminated from fil*. In case the endpoint lp(B k) of the cut
of .A determined by A 1 is different from lp(Bn), the value of g decreases,
and induction takes over. Otherwise, we repeat the same argument for
the cut of .A determined by A 2- This leads to a graph <§o, with I(<§o) con
taining the configuration of figure 13.2.2 and its lp-image. (Note that
the nodes E and lp(A n) are necessarily different.) Therefore ~o contains
the configuration of figure 13.2.3 or its dual, and thus is reducible to that
of figure 13.2.4 or its dual, with fewer edges.

This completes the proof of theorem 5.
Another result of the same type is

6. A graph ~ is realizable by a 3-polytope having a plane of symmetry
if and only if ~ is planar and 3-connected, and there exists an involutory
mapping lp of~ which reverses the orientation of the faces.
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Figure 13.2.2

Figure 13.2.3

Figure 13.2.4

247
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We again only sketch the proof, which is very similar to that of theorem 5.
The reductions to , and 1fi are again performed simultaneously for pairs
of nodes, or triangular faces, in involution. It is convenient, for purposes
of induction, to count doubly the edges AB of f§ carried into them
selves by the involution, i.e. such that {A , B } = {cp(A ), cp(B)}. Note
that the ' plane of symmetry' is completely determined by f§ and sp ;
it is a simple circuit containing all the nodes fixed under tp, and separating
all pa irs of distinct nodes A, B with A = cp(B), B = cp(A). In the illustra
tions the plane of symmetry shall be indicated by a dotted line.

Interference with the application of the reductions co, and 1fi can
occur only if the elements concerned are interrelated by tp, Even in
those cases, either the reductions co, and 1fj, or such easy variants as
that represented in figure 13.2.5, may be applied and used to reduce
e(f§) or g(f§). A problem arises, however, when the minimal indecom
posable lens (or pair of lenses) in I(f§) takes one of the form s indicated
in figure 13.2.6.

Figure 13.2.5

(0)

Figure 13.2.6
(b)
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In the latter case, which corresponds in f§ to the configuration of
figure 13.2.7(a) (or its dual) , one may reduce it to the configuration of
figure 13.2.7(b)(or its dual) .

(0)
Figure 13.2.7

(b)

Therefore only the occurrence of a minimal lens ff' with three faces
(figure 13.2.6(a» has to be investigated. In this case f§ contains the con
figuration of figure 13.2.8, or its dual. A symmetric reduction of any of
the types used so far would reduce the number of faces in ff' by at least
two, i.e. would make ff' disappear as a lens.

Figure 13.2.8

We apply practically the same idea we used in the proof of theorem 5,
and consider the two geodesic lines passing through the cuts of ff'. (We
do not assert that they are distinct.) If they would intersect more than
once, they would determine a lens, non-incident to ~ which would
contain an indecomposable lens and reductions indicated by this lens
(including W 4 and ws) would after a finite number of steps decrease
e(f§) or g(f§) . Thus, the two geodesic lines are either different, each of
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them being simple, or (see figure 13.2.9) they form one closed geodesic
with one selfintersection. In either case, we have two simple circuits
fC1 and fC2 , determined by the two cuts of ~ having at most one node
in common. Performing, if necessary, a finite number of reductions
Wi and '1i, we obtain a graph <g' such that each geodesic arc crossing ~I

crosses also ~2' while no two such arcs intersect between ~I and ~2 '

Figure 13.2.9

In other words, fC1 and ~2 determine an indecomposable 'singular lens'"
with no inner nodes. Applying alternatingly Wo and '10 reductions, one
of the two triangular faces of this lens may be made adjacent to If'
(figure 13.2.10). The graph itself then contains the configuration of
figure 13.2.11(a) (or its dual), and a reduction is possible (see figure
13.2.l ltb) to a graph with fewer edges.

Therefore there remains only the case in which ~I and ~2 are closed
geodesics, without common nodes (see figure 13.2.12). Let If'1 and If'2
be the extensions of the geodesic arcs bounding If' into the region deter
mined by ~I' If the lens determined by If'j and ~I were decomposable, a
reduction to a graph with fewer edges would be possible. Thus those lenses
may be assumed to be indecomposable, and performing, if necessary, a

• The definition of 'singular lens' is obtained from that of 'lens' by permitting the poles
to coincide . In other words, a singular lens has as its boundary a closed geodesic with
exactly one self-intersection. II is easily checked that lemma 13.1.2 and its proof remain
valid for singular lenses.
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Figure 13.2.10
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(a)
Figure 13.2.11

Figure 13.2.12

(b)

c,
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finite number of W o and '70 reductions indicated by triangular faces
incident to ~ but not to fC1, we may assume that they do not contain any
inner nodes. Then !f is contained in a configuration represented in
figure 13.2.13, and <§ contains the configuration of figure 13.2.14 (or its
dual). Applying the inverse of W 4 (or its dual), we obtain the configuration
of figure 13.2.l5(a) (or its dual); but this is reducible to the configuration
of figure 13.2.l5(b) (or its dual) , which has fewer edges.

This completes the proof of theorem 6.

Figure 13.2.13 Figure 13.2.14

(a)
Figure 13.2.15

(b)

Theorems 5 and 6 provide an affirmative answer for two special cases
of the following general problem : Let <§ be a 3-connected planar graph,
and let G be a group of (combinatorial) automorphisms of <§. Do there
exist a 3-polytope P realizing <§ and a group G of isometries of R 3 such
that each member of G maps P onto itself, the groups G and G being
isomorphic and acting in the same way on skel , P.
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1. Show by a simple example that the following statement, which
generalizes theorem 2, is false : Every 2-diagram is projectively equivalent
to a Schlegel diagram of some 3-polytopes.

2. Derive from Steinitz's theorem the following result of Fary II] :
Every planar graph with no 1- or 2-circuit s has representations in the
plane such that each edge is a segment.

3. Theorem 2 may be reformulated as follows : Each abstract 2-complex
~ homeomorphic to the 2-sphere is realizable by the boundary complex
of a 3-polytope ; in particular, ~ is realizable by a 2-complex in R 3

.

It is well known (Dehn-Heegard r1], Seifert- Threlfall [I]) that every
closed, orientable, topological 2-manifold ..Jt without boundary is im
beddable in R 3

• In analogy to Steinitz's theorem, one may ask whether
every abstract 2-complex ~ homeomorphic to such a 2-manifold ..Jt
is realizable by a 2-complex in R 3

, or in any Euclidean space. As mentioned
above, such a realization is possible (in R 3

) if ..Jt is of genus 0 (i.e. is a
2-sphere). If~ is simple then (see exercise 11.1.7) it is not realizable by a
2-complex in any Euclidean space unless ..Jt is the 2-sphere . If ~ is
simplicial, it is trivially realizable by a 2-complex in R 5

; however, no
example is known to contradict the conjecture that each simplicial ~
is realizable by a 2-complex in R 3

• (For an interesting realization by a
2-complex in R 3 of the abstract 2-complex homeomorphic to the tri 
angulation of the torus (genus 1) determined by 7 vertices and 21 edges,
see Csaszar [I]. Another realization in R 3 of the same abstract 2-complex
may be obtained by omitting suitable 2-faces from the 2-skeleton of the
Schlegel diagram of the cyclic polytope C(7,4).)

13.3 Eberhard's Theorem

The problem of determining the possible [vectors of d-polytopes, which
we discussed in chapters 8, 9, and 10, may be refined to the question :
what combinatorial types of (d - lj-polytopes, and how many of each
type, may be combined to form the boundary complex of ad-polytope?
This problem is not completely solved even for d = 3, but significant
partial results are known; they form the subject of the present section
and the following one.

We shall say that a sequence (Pk) = (P3'P4" . .) of nonnegative integers
is 3-realizable provided there exists a simple (i.e. 3-valent) 3-polytope P
such that (using the notation introduced in section 13.1) we have
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Pk = p.,.(P) for all k ~ 3. Since for simple 3-polytopes v = V3' we have

3v = 2e = Lk~3 kpk. Together with P = Lk~3 Pk and Euler 's relation
v + P = e + 2, this yields:

l. A necessary condition for the 3-realizability ofa sequence (Pk) is

(*) 3P3 + 2p4 + Ps = 12 + L (k - 6)Pk·
k~7

Theorem 1 clearly implies that each simple 3-polytope contains at
least four faces each of which has at most fiveedges. This fact has manifold
extensions and applications in various combinatorial problems and in
graph theory (see, for example, Lebesgue [1], Ringel [3], Grotzsch [1],
Grunbaum [8]).

One of the interesting features of theorem 1 is that it contains no
information about P6. Nevertheless, it is well known (Eberhard [3],
Bruckner [2]; see also table 13.3.1) that of two sequences which differ
only in P6' one may be realizable while the other is not. (See section 13.4
for the known results on this question.) The only general result in the
direction of determining to what extent is the condition of theorem 1
sufficient for the 3-realizability of a sequence (Pk) is the following theorem
of Eberhard [3]:

2. For every sequence (Pk 13 :5: k i= 6) ofnonnegative integers satisfying
(*), there exist values ofp6 such that the sequence (Pll k ~ 3) is 3-realizable.

The proof of theorem 2 being somewhat involved, we shall first give a
proof of an analogous but simpler result. It deals with 4-realizable
sequences; a (finite) sequence (Pll k ~ 3) is said to be 4-realizable pro
vided there exists a 3-polytope P having only 4-valent vertices, such that
Pl = Pk(P) for all k ~ 3. As in the proof of theorem 1, it is easy to deduce
from Euler's relation that all such P satisfy

(**) P3 = 8 + L (k - 4)Pl'
l~S

which is therefore a necessary condition for the 4-realizability of a
sequence (Pk). We have

3. For every solution (Pk 13 :5: k i= 4) of equation (**) a value P4 exists
such that the sequence (Pk I k ~ 3) is 4-realizable.

PROOF OF THEOREM 3 Let (Pk I 3 :5: k i= 4) be a solution of (**).
If a polytope is to be found 4-realizing (Pl), we may consider the P3
triangles to be of two different types, each type fulfilling a specific purpose.
Eight of the triangles serve to "close up" the polytope, their function
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being analogous to that of the eight triangular faces of the octahedron.
The remaining 13 - 8 triangles, teamed in groups of k - 4 with the
different k-gons, k ~ 5, serve to 'compensate' for the 'excessive' number
of edges of those k-gons. We shall prove the theorem by

(i) describing how to form certain standard 'building blocks,' each
block consisting of a k-gon, k ~ 5, k - 4 triangles , and a suitable number
of quadrangles ;

(ii) Showing how those blocks may be combined to form a 'basis';
(iii) 'closing up' the basis by the remaining 8 triangles and a suitable

number of quadrangles.
The final result will be a 3-connected 4-valent planar graph having

Pk k-gonal 'countries' (3 ~ k =I 4) and a certain number of quadrangles;
by Steinitz's theorem 13.1.1 this is sufficient for the existence of a poly
tope 4-realizing the sequence (Pk) and thus proves theorem 3.

(i) To form a k-block we start from a square and mark on each of two
of its consecutive edges k - 4 points, A lA 2 , " ' , A k - 4 respectively
B 1, " ' , Bk - 4 (see figure 13.3.1, where k = 7). Connecting the corres
ponding points A j , B j by segments, we divide the square into one k-gon ,

(
k - 4)k - 4 triangles and quadrangles. The square subdivided in this

way is a k-block . 2

8 1 8 2 8 3

Figure 13.3.1

(ii) To form the 'basis' we take, for all k ~ 5, Pk k-blocks, arrange
them diagonally (as in figure 13.3.2), and complete the basis (by the light
lines in figure 13.3.2) to a quadrilateral shape. Note that the two members
of one pair of consecutive 'edges' of this basis are subdivided into
equally many parts, the same assertion being true for the other two
'edges' .
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''''''-,
\

r-,

-, I
Figure 13.3.2

(iii) To 'close up' the basis we connect the corresponding points on the
'edges' of the quadrilateral by lines as indicated in figure 13.3.3. This
clearly introduces, besides quadrangles, exactly 8 triangles (shaded in
figure 13.3.3). Thus the proof of the orem 3 is completed.

PROOF OF THEOREM 2 Using a similar method, we shall now prove
Eberhard 's theorem. Equat ion (* ) suggests the assignment of 'curva ture
unit s' such that each pentagon has one unit , each quadrangle two,
and each tr iangle three units. Then our first aim will be to choose P3
triangles, P~ quadrangle s, and P~ pentagons from among the P3' P4' Ps
available ones, in such a way as to yield a total of 12 curvature units.

Figure 13.3.3
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This is not always possible and we shall first dispose of the few cases in
which P3' P4 and Ps are such that this choice is impossible. Then neces
sarily either P3 = 3, P4 = 2, or P3 = 1, P4 = 5; in both cases P7 = 1
and Pk = 0 for k = 5 and k ~ 8. Both solutions of (*) are realizable with
P6 = 3 (see figure 13.3.4).

Figure 13.3.4

In the remaining part of the proof we may assume that we have chosen
P3 triangles, p~ quadrangles, and P~ pentagons which together have
12 curvature units ; they will be used to "close up" the polytope. The
remaining P3 = P3 - P3' P~ = P4 - p~, P~ = Ps - P~ polygons of this
type we shall endeavour to split into groups teamed with the k-gons,
k ~ 7. As suggested by equation (*), it is convenient to group a k-gon
(k ~ 7) with a3 triangles, a4 quadrangles, and as pentagons, where
a3' a4, as are such that

(***)

Our construction would be somewhat simpler if it were always possible
to distribute the available P3 + p~ + p~ polygons with at most 5 sides

among the Lk <:7 Pk k-gons in this manner. However, if p~ is relatively
small, this is not always possible. Instead, we must take into considera
tion the possibility that for a given k-gon, either a3 has a fractional part
(t or i) or that a4 has a fractional part (t). It is easily seen that the case
in which both a3 and a4 have non-zero fractional parts is easily trans
formed into a case in which at most one of them is not an integer. At
the end of this 'planning' stage for our construction we are therefore
left with assignments sati sfying (***), among which we distinguish the
following types :
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(a) a3' a4,as are integers;
(b) a3 and as are integers, a4 has fractional part 1;
(c) a4 and as are integers, a3 has fractional part t;
(d) a4 and as are integers, a3 has fractional part j.
Clearly , the number of assignments of type (b) is even, and we shall

consider the corresponding polygons in pairs. Also, we shall pair off
one assignment of type (c) with one of type (d). After all such pairs are
formed, the number of remaining assignments of type (c) or (d) is
obviously divisible by 3 and we shall take triples of them to form larger
units. In case the surplus assignments are of type (d) we find it convenient
to make one third of them of a different combinatorial type (denoted
by (d*».

Now we are ready to start the construction of the 'building blocks',
one block for each assignment. The blocks will be of different types,
corresponding to the type of the assignment. We find it convenient to
form all blocks in the shape of 'triarcs', where a 'triarc' is a simply
connected region the boundary of which consists of three 'Petrie arcs't
(that is, paths taking alternatingly the left or the right edge at each
successive node) connected at their ends as in figure 13.3.5. (The dots
denote endpoints of the Petrie arcs.)

Figure 13.3.5

Each block, corresponding to an assignment of a k-gon, k 2: 7, and
numbers a3' a4,as satisfying (***), will consist of a suitable number of
hexagons together with a k-gon and 3a3 + 2a4 + as = k - 6 pentagons.

For blocks of type (a), the k - 6 pentagons are in one TOW adjacent
to the k-gon, and flanked by one hexagon on each side. (See figure 13.3.6,
in which k = 11.)

For blocks of types (b) and (c), only k - 7 of the pentagons are in one
TOW, the remaining pentagon being on one of the other arcs of the triarc.
(See figure 13.3.7, where again k = 11.) In case k = 7 a block of type (b)
or (c) may be taken to be the same as a block of type (a).)

tSee Coxeter r1J, pp. 24 and 223.



3-POLYTOPES 259

Figure 13.3.6 Figure 13.3.7

For blocks of type (d) k - 8 pentagons are in one row, the remaining
two being on one of the other arcs of the triarc. (See figure 13.3.8 for an
illustration of the case k = 11.)For blocks of type (d*) the two remaining
pentagons are one on each of the remaining arcs of the triarc (figure
13.3.9). Again the lowest possible case, k = 8, is to be treated separately;
for type (d) a block of type (a) may be used, while for type (d*) the block
is represented in figure 13.3.1 O.

Figure 13.3.8 Figure 13.3.9

Figure 13.3.10

In the next stage the above blocks will be modified, preserving their
shape as triarcs, by replacing 3[a3] pentagons by [a3] triangles . This is
achieved by inserting, instead of three successive pentagons, five hexagons
and one triangle (see figure 13.3.11). From the remaining pentagons, we
designate 2[a4] as [a4] pairs such that the members of each pair have a
common edge ; at a later stage each such pair will yield a quadrangle.
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(a)
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Figure 13.3.11

(b)

Now we shall take care of the peculiarities of blocks which are not of
type (a). Two blocks of type (b) may be joined in such a way that their
single pentagons have a common edge, which will enable us at a later
stage to transform the pair into a quadrangle (see figure 13.3.12). A small
complication arises however at this step (and in the analogous cases
dealing with blocks of type (dl): the resulting compound of two blocks
of type (b) is not a triarc. But this is easily remedied by noting that the

Figure 13.3.12

lozenge-shaped compound may be transformed into a triarc by the
addition of two suitable triarcs, each of which consists exclusively of
hexagons (see figure 13.3.13) in which only the outlines of the blocks of
type (b), and the two single pentagons are shown).

Similarly, if a block of type (c) is combined with a block of type (d)
we obtain three pentagons with a common vertex (see figure 13.3.14).
'Cutting off' this vertex (indicated by dashed lines in figure 13.3.14)
yields one triangle and three hexagons. The addition of a row of hexagons
(light lines in figure 13.3.14) yields a lozenge-shaped compound which
may be transformed (as above) into a triarc, Completely analogous is
the combination of two blocks of type (d) with one of type (d*) to yield
two triangles (and six hexagons).
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Figure 13.3.13

Figure 13.3.14

261

If three blocks of type (c)are to be combined, the three single pentagons
yield a triangle (and hexagons) as illustrated in figure 13.3.15.

The following stage consists of including all the blocks of type (a)
and all the compounds formed from blocks of the other types into one
triarc. The possibility of this construction follows at once from the
remark that two triarcs may be joined, together with a lozenge of hexa
gons, to form a new triarc (see figure 13.3.16 in which the outlines of the
two triarcs are heavily drawn, while the lozenge-hexagons are lightly
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Figure 13.3.15

Figure 13.3.16
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drawn). The triarc we obtain at the end of this stage contains a certain
number of hexagons, Pk k-gons for all k ~ 7, P3 triangles, and Ps + 2p~

pentagons among which there are p~ pairs of pentagons with a common
edge, destined to be transformed into p~ quadrangles.

Next we transform the triarc by inserting a hexagon instead of each
edge (see figure 13.3.17, in which the result of this insertion is shown for
the triarc of figure 13.3.6; the starting triarc is drawn in dashed lines).

Figure 13.3.17

The addition of three hexagons (light lines in figure 13.3.17) yields a new
triarc. The important aspect of this construction is that in the resulting
triarc the number of edges of each arc is divisible by 4. Therefore, adding
on one arc of the triarc a row of hexagons, we obtain the 'basis', which
is again a triarc each arc of which has a number of edges which is of the
form 4n + 2. Placing at the center of each arc ofthe triarc three pentagons,
and using three more pentagons and a suitable number of hexagons, the
'basis' may be 'closed up'. (See figure 13.3.18 which illustrates the case
in which the 'basis' triarc has arcs consisting of 6, 10, and 14 edges,
respectively.)
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Figure 13.3.18

Now, if P~ :s:: 3, we replace P~ triples of pentagons (adjacent to the
'base') by one triangle and 3 hexagons each by 'cutting off' the vertex
common to three pentagons. If P~ = 4, we perform this on all three triples
of pentagons and, in addition, we replace the outer hexagon and the
three pentagons adjacent to it by the configuration of figure 13.3.19,
which consists of one triangle and 6 hexagons. From the remaining
12 - 3p~ = 2p~ + p~ pentagons, p~ pairs may be chosen which consist
either of pentagons with a common edge. or of two pentagons joined
by a chain of hexagons in which each member is joined to its neighbors
along two opposite edges (figure 13.3.20). Note that the 'basis' contains
p~ such pairs, in each of which the chain consists of a single hexagon.

The construction so far has yielded a polytope (or, rather, a 3-connected
3-valent planar graph) having the desired number Pk of k-gonal faces for
k = 3 and k z 7, a certain number of hexagons, and containing 2p4 + Ps
pentagons, among which there are P4 pairs of the type described above .
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6

Figure 13.3.19
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(Note that no hexagon is involved in more than one such pair. ) The last
stage of the construction will consi st of a transformation of those P4
pairs of pentagons into P4 quadrangles (accompanied by an increa se in
the number of hexagons).

Figure 13.3.20

To achieve this , we first replace each vertex of the polytope by a hexagon
(having three edges in common with other new hexagons, and three with
faces which were incident to the vertex). Figure 13.3.21 illustrates this
operation for the case of the pentagonal prism (the prism is indicated by
dashed lines). Chains of the type of figure 13.3.20 are transformed into
chains of the type represented in figure 13.3.22. A chain of the latter type
is easily modified int o another of the same type bu t having one inter
mediate hexagon less. (In figure 13.3.22 there are 3 intermediate hexagons.)
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Figure 13.3.21

Figure 13.3.22

Figure 13.3.23
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Figure 13.3.23 represents this modification as applied to the chain of
figure 13.3.22. Repeating this process we arrive at chains with no inter
mediate hexagons (figure 13.3.24). However, these are at once trans
formable into a quadrangle (and two hexagons), as shown in figure 13.3.25.

6 6 6 4 6

Figure13.3.24 Figure 13.3.25

Modifying in this manner each of the P4 pairs of pentagons in the poly
tope constructed above , we obtain a new polytope which has the desired
number Pk of k-gonal faces for all k ~ 3, k =F 6.

This completes the proof of theorem 2.

The proof of theorem 2 may be used to obtain upper bounds for the
least value of P6 rendering 3-realizable a given sequence (Pk)t. However ,
bounds obtained in this manner seem to be very poor.

CONJECTURE I There exists a constant c such that every sequence
(Pk) satisfying (*) may be 3-realized for some value of P6 sa tisfying

P6 s c L Pk ·
3$k"6

It is easy to find examples (see exercise 2) showing that if c exists, it
must be greater than 1.

t It is well known that Po = 0 is not always possible. For example, there exist 19sequences
satisfying (*) such that Pt = 0 for all k ~ 7 ; the corresponding minimal values of Po have
been determined experimentally (Eberhard [3], Bruckner [2]) and found to vary between
oand 3 (see table 13.3.1).
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CONJECTURE 2 Every sequence (Pk) satisfying (*) may be 3-realized
for some value of P6 satisfying

P6 < max {k IPk -:I O}.

Similar conjectures may be formulated for 4-realizable sequences.

Table 13.3.1. Solution of 3P3 + 2P4 + Ps = 12 in nonnegative integers,

and minimal values ofP6 rendering the sequence (P3,P4,P S,P6) 3-realizable

P3

4

3
3

2
2
2
2

o
o
o
o
o
o
o

P. Ps P6

0 0 0

I I 3
0 3 I

3 0 0
2 2 0
I 4 I
0 6 0

4 I 2
3 3 0
2 5 1
1 7 2
0 9 3

6 0 0
5 2 0
4 4 0
3 6 0
2 8 0
I 10 2
0 12 0

Exercises

1. Show that if a sequence (pd is 3-realizable for some value of P6'
then it is 3-realizable for infinitely many values of P6. Formulate and
prove the analogous statement concerning 4-realizability.

2. Show that P6 = 12 is the least value of P6 rendering 3-realizable
the sequence (Pk), where P3 = 7, PIS = I, and Pk = 0 for k -:I 3,6,15.
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3. If n is an integer 2:: 3, the sequence (Pk) determined by P3n = I,
P3 = n + 2, Pk = 0 for k i= 3,6, 3n, satisfies (*). Show that it is 3
realizable with P6 = 3n - 4 - (-It. If it were known that this is the
least possible value for P6' it would follow that the constant c in con
jecture I is at least 3.

4. Show that the validity of conjecture 2 implies the validity of con
jecture I, with c ~ 3.

5. Let (Pk I3 ~ k i= 6) be a sequence of nonnegative integers satisfying

Lk (6 - k)Pk = 12 + 2s, where s is a nonnegative integer. Show that
there exists a 3-polytope P, singular of degree s, such that Pk(P) = P«
for all k i= 6 (Eberhard [3]). (A 3-polytope P is singularofdegree s provided

s = Lk (k - 3)Vk(P),)
6. The proofs of theorems 2 and 3 consist of quite disparate parts :

(i) The construction of a 3-valent or 4-valent 3-connected graph im
bedded in the plane, such that the resulting map has the correct number
of faces of various kinds ; (ii) An application of Steinitz's theorem to
deduce the existence of a 3-polytope from the existence of the map. If one
is interested in planar maps only, the problem may be generalized by
allowing monogons and digons as faces. Equation (*) becomes

5PI + 4pz + 3P3 + 2P4 + P5 = 12 + L (k - 6)Pk ;
k?: 7

there are 28 solutions with PI + pz > 0, Pk = 0 for k 2:: 7, all of which
are realizable by 3-valent planar maps. Equation (**) becomes

3PI + 2pz + P3 = 8 + L (k - 4)Pk ;
k?:5

there are 9 solutions with PI + Pz > 0, Pk = 0 for k 2:: 5, and they are
all realizable by 4-valent planar maps . Probably it is possible to
generalize the proofs of theorems 2 and 3 to situations in which mono
gons and digons are allowed ; the main obstacle is probably not hard
in principle, but only time-consuming: the number of 'exceptional
cases' (similar to those we disposed of by figure 13.3.4 in case of theorem
2) is rather large. Most other steps of the proof should be easily modified.

7. Another problem worth considering is whether theorems 2 and 3
(or their generalizations mentioned in exercises 5 and 6) have valid
analogues for maps on surfaces other than the plane (sphere).

8. If P is a centrally symmetric 3-polytope, then all Pk(P) are even.
Provided all Pk are even, one may probably assume the polytopes in
theorems 2 and 3 to be centrally symmetric.
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9. It is easily checked that if P is a simple 3-polytope such that
P3(P) > 4 then v(P) ~ 3P3(P), It would be interesting to find similar
relations involving other Pk(P), and also dealing with 4- or 5-valent
polytopes, or with all 3-polytopes.

10. (Eberhard [3]; Bruckner [2]) show that every simple 3-polytope
with P + 1 ~ 6 facets can be obtained from a simple 3-polytope P with
P facets by (at least) one of the three types of 'cutt ing off' parts of P,
illustrated in figure 13.3.26 : cutting off (i) a vertex; (ii) an edge; (iii) two
edges with a common vertex.

11. (Klee) Show that if a 3-polytope has more faces than vertices, it
has at least six triangular faces.

Figure 13.3.26
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12. Let a sequence (Pd be called 5-realizable provided there exists a
5-valent 3-polytope P such that Pk = Pk(P) for all k.

(i) Show that a necessary condition for 5-realizability of (Pk) is

(....) P3 = 20 + L (3k - lO)Pk'
k ~4

(ii) In contrast to the case of 3-realizable or 4-realizable sequences,
(•••*) involves all the Pk'S. However, (....) is not sufficient for 5
realizability. Prove this assertion with the example P3 = 22, P4 = 1,
Pk = 0 for k ~ 5.

It would be interesting to find sufficient conditions for 5-realizability.
13. The following result of Barnette [3] (somewhat analogous to

theorem 18.2.9) is very interesting and invites extensions in different
directions :

If (pd is a 3-realizable sequence and if P = Lk ~3 P3' then for every
positive integer m

L Pi~ m .
i~ 2p + 6m + 2

m+l

13.4 Additional Results on 3-Realizable Sequences

The present section deals with certain recent results concerning con
ditions for the 3-realizability of sequences (Pk Ik ~ 3) of nonnegative

integers which satisfy the equation L k~3 (6 - k)Pk = 12.
The first result determines the values of P6 rendering realizable certain

particular sequences'[ :

1. Sequences (0,6,0, P6) and (0,0, 12, P6) are realizable if and only if
P6 =I 1. The sequence (4,0,0, P6) is 3-realizable if and only if P6 is an
even integer different from 2. The sequence (3,1, I, P6) is 3-realizable if
and only ifP6 is an odd integer greater than 1.

The existence assertions of theorem 1 may be established by easy
examples (see exercise 1). The only non-trivial part is the assertion that
P6 is even if (4,0,0, P6) is 3-realizable, and odd if(3, I, I, P6) is 3-realizable.
A proof of the former assertion, based on a complete determination of
possible combinatorial types of realizations of (4,0,0, P6), was given

t When writing a sequence (P. ) explicitly, we shall write out only that part of its beginning
which interests us, leaving out the infinite sequence of zeros following it.
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in Griinbaum-Motzkin [4] (see exercise 2). Here we shall obtain those
parts of theorem 1 as immediate consequences of a more general result
on planar graphs (theorem 4 below).

Though we are mainly interested in simple 3-polytopes, or equivalently,
in 3-valent 3-connected planar graphs, our results hold for all 3-valent
connected planar graphs. As a matter of fact the proofs become simpler
if we do not insist on 3-connectedness, and if we allow digons.

For easier formulation of the following results we need some
definitions.

If k is an integer greater than I we shall say that a face of a graph is a
multi-k-gon provided the number of its edges is a multiple of k.

Let k ~ 2 and n ~ 0 be integers. We shall denote by f§(k, n) any
3-valent connected planar graph with the property that all but n of its
faces are multi-k-gons, while the n exceptional faces are not multi-k
gons. We shall use f§*(k,2) to denote any f§(k,2) having the additional
property that the two exceptional faces have a common edge .

With this terminology we have the results :

2(k). Let k be 2, 3, 4, or 5. Th en there ex ists no graph of type f§(k, 1)
or f§*(k, 2).

3(k ). Let k be 2, 3,4, or 5. Th en each graph f§(k, 0) is 2-connected.

4(k). The number p(f§(k, 0)) offa ces f§(k, 0) satisfies:

p(f§(3,0)) =p(f§(3,2)) =0 (mod 2);
p(f§(4 , 0)) =2 (mod 4) ;
p(f§(5,0)) =2 (mod 10).

We start with the proof of theorem 2. The nonexistence of f§(2, 1)

and f§(3 , 1) follows readily by considering modulo 2 or modulo 3 the
relation

(*) I (6 - k)Pk = 12.
k ~2

In order to prove the nonexistence of f§*(2, 2) we shall describe a
number of reductions , i.e. changes to be performed on a given graph which
yield a graph of the same type but having fewer edges . The nonexistence
of f§*(2,2) will be established by showing that at least one reduction
may be applied to every f§*(2, 2).

The first reduction is applicable in the case there is in f§*(2, 2) a digon
which does not have an edge in common with a triangle. The digon and
the edges incident to it are deleted and replaced by a single edge (see
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figure 13.4.1). This reduces by 2 the number of edges of each of the two
faces incident to the digon (or, if only one face is incident to it, the number
of its edges is reduced by 4). Therefore the resulting graph is again of
type ~*(2, 2).t

Figure 13.4.1

If the above reduction is not applicable, but there is a digon having
an edge in common with a triangle , the reduction represented in figure
13.4.2 may be used.

Figure 13.4.2

If the graph contains no digon, we choose a multi-2-face (denoted by
A in figure 13.4.3) which has common edges with both exceptional faces
(B and C in figure 13.4.3) and apply the transformation shown in figure
13.4.3. The resulting graph is again of type ~*(2, 2) and has the same
number of edges, but it contains a digon and thus one of the above
reductions is applicable.

Figure 13.4.3

This completes the proof of nonexistence of graphs ~*(2, 2).
We turn now to graphs ~*(3, 2) and note that if the exceptional faces

are an n-gon and an m-gon, then equation (*) implies that n + m == 0
(mod 3).

If one of the exceptional faces is a digon, we use again the reductions
shown in figures 13.4.1 and 13.4.2. A complication arises, however, with

t In most reduc tions to be discussed in the sequel, it will be left to the reader to check
that the reduced graph is of the desired type.
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the possibility that C;§*(3,2) is not 2-connected and that the digon is
adjacent to a single face along both its edges (then this face is the other
exceptional face). In this case the reduction shown in figure 13.4.4 yields
a C;§*(3, 2) with fewer edges. In case no digon is present we use the trans
formation shown in figure 13.4.3, taking as A that exceptional face which
has n edges, n == 2 (mod 3), B being the other exceptional face. This
yields another C;§*(3,2) with the same number of edges, to which one
of the above reductions may be applied.

,-....., ,
I

I
I
I
I,
\
\,

..... __ .. '

Figure 13.4.4

This completes the proof of nonexistence of graphs C;§*(3, 2)./
Let now a graph C;§(4, 1) be given, then the exceptional face must be

even (i.e. have an even number of edges). If the exceptional face is a
digon having a common edge with a quadrangle, the reduction shown
in figure 13.4.5 yields a C;§(4, 1) with fewer edges. (Note that each C;§(4, 1)
is also a C;§(2, 0) and is therefore, by theorem 3(2), 2-connected.)

J
Figure 13.4.5

If the exceptional face is a digon, but each of the faces adjacent to it
has at least 8 edges, we modify the graph as shown in figure 13.4.6 and
obtain a C;§(4, 1) with the same number of edges but having a digon
adjacent to a quadrangle; thus the former reduction becomes applicable.

Figure 13.4.6
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If the exceptional face is not a digon, we use the transformation shown
in figure 13.4.3 (where A now denotes the exceptional face) in order to
obtain a C:§(4, 1) having the same number of edges but containing a digon.
Then the above reductions may be applied. This completes the proof
of non-existence of graphs C:§(4, 1).

Considering graphs of type C:§*(4, 2) we first note that by theorem 2(2)
the two exceptional faces are even. Then the reduction shown in figure
13.4.7 (in which A and B are the exceptional faces) yields a C:§(4, 1).

A

Figure 13.4.7

This completes the proof of theorem 2(4).
The proof of theorem 2(5) follows an analogous pattern, and we shall

not discuss the details. The main idea is to use transformations similar
to those in figures 13.4.3 and 13.4.6, but preserving multi-5-gons , in
order to cut down to at most 6 edges the size of the exceptional face(s) .
Additional applications of such transformations lead to graphs C:§(5,1)
or C:§*(5, 2) in which the exceptional face (or faces), and some pentagons,
are connected by only one or two edges with the remaining part of the
graph. The reduction to be appl ied at this stage consists of deleting those
edges and the part of the graph containing the exceptional faces; it yields
again a C:§(5, 1) or a C:§*(5,2). Figure 13.4.8 shows a typical example of
this procedure.

This completes the proof of theorem 2.
The proof of theorem 3 is now easy. If C:§(k, 0) were not 2-connected it

would contain a cut-edge, the deletion of which would disconnect the
graph. After replacing the two edges incident to each endpoint of the
cut-edge by a single edge, at least one of the connected components
would be either a C:§(k, 1) or a C:§*(k, 2). Since this is impossible by theorem
2(k), the proof of theorem 3 is completed.

We note that theorems 2 and 3 are best possible in the sense that there
exist C:§(k,2) which are not 2-connected. For k = 2 or 4 an example is
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Figure 13.4.8

given in figure 13.4.9 while figures 13.4.10 and 13.4.11 show examples
for k = 3 and for k = 5.

Turning to the proof of theorem 4, we consider first a graph of type
,§(3, 0). If the graph contains two triangles with a common edge, then the
graph is either the complete graph with 4 nodes (and 4 faces), or the
reduction shown in figure 13.4.12 may be applied .

If no edge of a triangle belongs to another triangle, the reduction to
be applied is shown in figure 13.4.13. If the reduced graph is connected
it has 2 multi-3-gons less; if it is not connected each of the connected
components is a ,§(3,0) and the desired result again follows. Thus each
,§(3,0) has an even number of faces.
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Figure 13.4.9

Figure 13.4.10

Figure 13.4.11
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Figure 13.4.12

Figure 13.4.13
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The proof of evenness of p(,§(3,2)) is not much more complicated.
If one of the exceptional faces is a digon having an edge in common
with a triangle , the reduction shown in figure 13.4.2 may be used. It
decreases by 2 the number of multi-3-gons if A is a multi-3-gon, and it
leaves the number of multi-3-gons unchanged but yields a ,§(3,0) if A
is the other exceptional face.

If the graph contains a digon not adjacent to a triangle, the trans
formation shown in figure 13.4.14 does not change the number of faces
and yields a ,§(3,2) to which the former reduction applies.

\
Figure 13.4.14

If the graph contains no digon , the transformation shown in figure
13.4.3 may be applied to the exceptional face having a number of
edges == 2 (mod 3) (denoted by A in figure 13.4.3); a ,§(3,2) containing
a digon is obtained. This completes the proof of theorem 4(3).

We now consider a graph ,§(4,0). If it contains the heavily drawn sub
graph of figure 13.4.15, the graph is either that of the 3-cube (with
6 == 2 (mod 4) faces), or it may be reduced as in figure 13.4.15, yielding
another ,§(4, 0) which has 4 faces less. If the graph does not contain such
a subgraph, we may choose any quadrangle and by performing at most
3 transformations of the type indicated in figure 13.4.16 (on faces adjacent
to the quadrangle) we reach the above configuration and the graph
becomes reducible. This completes the proof of theorem 4(4).

Considering a graph ,§(5,0) we note that if it contains the heavily drawn
subgraph of figure 13.4.17, then it is either the graph of the dodecahedron
(with 12 == 2 (mod 10) faces), or it may be reduced as shown in figure
13.4.17, yielding another ,§(5,0) with 10 faces less. If it does not contain
such a subgraph, applying transformations of the type shown in figure
13.4.18 at most 9 times to faces adjacent to those, a ,§(5,0) having the same
number of faces but containing the configuration of figure 13.4.17 is
reached. This completes the proof of theorem 4.



3-POLYTOPES

Figure 13.4.15
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Figure 13.4.16

Figure 13.4.17



280 CONVEX POLYTOPES

Exercises

Figure 13.4.18

1. Prove the existential part of theorem 13.4.1. For sequences
(0,0, 12, P6) use the 'pieces' represented in figure 13.4.19 and , if needed,
additional 'belts' (figure 13.4.20). Find analogous con structions for
sequences (0,6,0, P6), (4,0,0, P6), and (3,1,1 , P6)'

Figure 13.4.19



3-POLYTOPES 281

Figure 13.4.20

2. Show that all 3-realizations of (4, 0, 0, P6), (P6 2:: 0), are obtained in
the following way (Griinbaum-Motzkin [4]) : Take any two numbers
k 2:: 1 and w 2:: °such that P6 = 2(k + w + kw), and consider a 'chain'
(see figure 13.4.21) containing k hexagons. Enclose it by w 'belts', each
of which consists of2(k + 1) hexagons (see figure 13.4.22, where one such
ring is represented for k = 3, together with the starting 'chain'); close
the polytope by adding another 'chain' with k hexagons. (Note that the
last chain may be added at different positions, yielding in general poly
topes of different combinatorial types.)

Figure 13.4.21

Figure 13.4.22
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3. In analogy to the material of the present section, investigate 4-valent
3-polytopes. Find the analogue of theorem 13.4.1; by considering the
'pieces' represented in figure 13.4.23, show that a sequence (8, P4) is
4-realizable in this class of polytopes if and only if P4 i= 1.

Figure 13.4.23

4. Show that for every even P i= 2,6 there exist simple 3-polytopes
with P faces all of which are multi-3-gons. Formulate and prove the
corresponding assertions about polytopes having as faces only multi-4
gons , or only multi-5-gons.

5. Show that every ~(3, 0) graph without an edge belonging to two
triangles is 3-connected.

6. Using the methods employed in the proofs of theorems 2 and 4
show that if ~ is a ~(4, 2) graph with an n-gon and an m-gon as excep
tional faces, then

P(~) == o(mod 2) if n == m == o(mod 2)

p(~) == 0 (mod 4) if n == m + 2 == 1 (mod 4)

p(~) == 3 (mod 4) if n == m == 1 (mod 4)

p(~) == 1 (mod 4) if n == m == 3 (mod 4) .

Show that no additional relations hold. Find the analogous relations
for graphs of type ~(5, 2).

7. Let a graph be called multi-k-valent provided the valence of each
of its nodes is a multiple of k. Prove the following generalization of
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theorem 4 (due to Gallagher for 3-connected graphs ; see Motzkin [8]):
If '§ is a multi-3-valent connected planar graph such that all its faces
are multi-k-gons, then the number of edges e('§) satisfies

e('§) == 0 (mod 6) if k = 3

e('§) == 0 (mod 12) if k = 4

e('§) == 0 (mod 30) if k = 5.

(Hint: Reduce the general problem to the case of trivalent graphs, by
using the 'polishing off ' transformations shown in figures 13.4.24, 13.4.25,
and 13.4.26.)

Figure 13.4.24

8. Denoting by Pk('§) the number of k-gonal faces of the planar graph
G and by Vk('§) the number of k-valent nodes of G, prove the following
generalization of a result of Motzkin [5] : If G is a connected graph with
an odd number of edges, then

L (Pk(G) + Vk(G)) ~ 3.
k",O(mod3)

Figure 13.4.25
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Figure 13.4.26

9. Generalize the results of the present section to graphs of genus
k » O.

10. There is an interesting connection between the well-known 'four
color problem' (see Ringel [3]) and simple 3-polytopes having only
multi-3-gonal faces. Hadwiger [4] observed that the solution of the
four-color problem is affirmative if and only if every simple 3-polytope
P can be transformed into a simple 3-polytope all facets of which are
multi-3-gons by 'cutting off ' certain suitable vertices of P. ('Cutting
off' a vertex means replacing it by a triangle, as in the first part of
figure 13.3.26.)

11. (See Hawkins-Hill-Reeve- Tyrrell [1]) Let P be a k-valent 3-poly-
tope ; prove that

(i) if k = 3, then v(P) is at least 4 and is even;
(ii) if k = 4, then v(P) is at least 6 and v(P) :I 7;

(iii) if k = 5, then v(P) is at least 12, even, and v(P) :I 14.

13.5 3-Polytopes with Circumspheres and Circumcircles

In the present section we shall discuss some results whose point of
departure is the following problem of Steiner [3] :

Does every combinatorial type of 3-polytopes have representatives
all vertices of which belong to a sphere?
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Combinatorial types which do have such representatives shall be
called inscribable . Circumscribable combinatorial types are defined
analogously.

The negative solution to Steiner's problem was given by Steinitz [8], in
a beautiful paper which contains many additional important results .
Theorems 1,2, and 3 below are from Steinitz's paper [8]; the last of them
establishes that a large family of combinatorial types is not circum
scribable.

1. A combinatorial type is inscribable if and only if the dual type is
circumscribable.

The proof is easy. If a 3-polytope is circumscribed to the unit sphere S2,
its polar is a 3-polytope inscribed into S2. Also, if a 3-polytope P is
inscribed into S2 and if the center 0 of S2 belongs to int P, then the polar
of P is a 3-polytope circumscribed to S2. However, if a 3-polytope P is
inscribed into S2 but 0 ¢: int P, we first apply a projective transformationt
which carries S2 onto itself and maps some interior point of Ponto O.
The resulting image P' is of the same type as P, but to P' the previous
construction is applicable. This completes the proof of theorem 1.

2. Let P be a 3-polytope circumscribed about a sphere. If ff is afamily
of p* facets of P such that no two members of ff have an edge in common,
then p* ::;; tp(P). Moreover, p* = tp(P) if and only if each edge of P
belongs to some member of ff.

The proof is based on some simple facts from elementary geometry .
Let F1 and F2 be facets of P with a common edge E. Denoting by T1, T2

the respective points of contact of F1 and F2 with the sphere and by 0
the center of the sphere , the plane aff{O, T1, T2 } is clearly orthogonal to
the line aff E. Therefore the angle a.(F1, E) spanned at T1 by E equals to
the correspondingly defined angle a.(F2 , E). Putting a.(F, E) = 0 if the
facet F of P does not contain the edge E, we have therefore

L L a.(F, E) = L L a.(F', E),
E Fe.'F E F"j.'F

the summation on E being over all E which are edges of members of .'F.

t For example, the projective transformation Tdetermined (for IIXI < 1 and p = )1 - 1(
2 )

in cartesian coordinates by

Ix - IX py PZ)
T(x, y, z) = --, - -,-- ,

I-IXX I-IXX I-IXX

maps the unit sphere {(x, y, z) Ix 2 + y2 + Z2 = I} onto itself, while T(ex, 0, 0) = (0,0,0) .
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If the range of E is extended to all the edges of P, there follows

(*) L L rx(F, E) s L L rx(F', E) .
E FE~ E F'j~

Since for each facet F* of P we have LE rx(F* , E) = 2n, it follows that
2np* :s; 2n(p(P) - p*). This establishes the inequality p*:s; tp(P);
equality is possible only ifequality holds in (*). In other words, p* = tp(P)
is equivalent to the assertion that each edge of P belongs to some member
of~

Now we are ready for

3. Let P be any 3-polytope such that v(P) ~ p(P). Let P' be the polytope
obtained from P by 'cutting off' all vertices of P by planes which have no
common points in P. Then the combinatorial type of P' is not circum
scribable.

Indeed, the polytope P' has v(P) + p(P) facets ; the v(P)-membered
family ~ of facets of P' which correspond to the vertices of P consists
of mutually disjoint polygons. Since the construction of P' guarantees
that not all edges of P' belong to members of ff, lemma 2 implies the
assertion of theorem 3.

It should be noted that the construction in theorem 3 yields simple
3-polytopes which are of noncircumscribable types. The dual types are,
by theorem 1, simplicial polytopes of noninscribable types. This is inter
esting since a hasty consideration (see Briickner [2J) may leave the
impression that every simplicial type is inscribable.

Generalizing Steiner's problem, the following question was (informally)
posed by T. S. Motzkin :

Does every combinatorial type of 3-polytopes have representatives
possessing circumcircles?

Here a polytope P is said to possess circumcircles provided for each
facet F of P all the vertices of Fare concyclic.

A negative answer to Motzkin's problem was given in Griinbaum [7J;
it is based on the following result about 2-diagrams :

4. If ~* is a 2-diagram obtained from the 2-diagram ~ on replacing
some 3-valent inner vertex of~ by the configuration offigure 13.5.1, then
no 2-diagram combinatorially equ ivalent to ~* has circumcircles.

(A 2-diagram is said to have circumcircles provided for each face F
(including the basis) of the 2-diagram, all vertices of Fare concyclic.)
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Figure 13.5.1
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The proof of theorem 4 is very simple. Since in any quadrilateral
inscribed into a circle the sum of the opposite angles is n, the sum
!Xt + !X2 + !X3 (see figure 13.5.1) equals n. If f0* had circumcircles, the
points B t , B2 , B 3 would be in the interior of conv{A t , A 2 , A 3 } , and
therefore e , + !X2 + !X3 would be less than n.

Since by theorem 13.2.2 every 2-diagram is the Schlegel diagram of
some 3-polytope, and since a simple 3-polytope with circumcircles is
inscribable, (see exercise 2) it follows that for every simple 2-diagram f0
the polytope corresponding to the 2-diagram f0* of theorem 4 is of a
combinatorial type which not only fails to be inscribable, but even
does not possess circumcircles.

Many problems related to the above results are still open . Thus,
defining in an appropriate manner 3-polytopes (or 2-diagrams) with
incircles, it is probably true that types without incircles exist. Similarly
unsolved are the problems concerning inellipses or circumellipses.

The characterization of all inscribable types, or of all types with
circumcircles, seems to be quite difficult. Probably easier is the following

CONJECTURE A 3-polytope has a realization with circumcircles if and
only if its Schlegel diagrams have circumcircles .

Exercises

1. Show that theorem 13.5.4 remains valid even if the 2-diagram f0*
is obtained from f0 on replacing any 3-valent vertex of f0 by the con
figuration of figure 13.5.1.

2. Show that a simple 3-polytope has circumcircles if and only if it is
inscribable. (Use the stereographic projection.) Generalize to d-poly
topes.
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3. Show that the simple 2-diagram in figure 13.5.2 does not have a
representative with circumcircles (this is a special case of exercise 1)
and that it is the 2-diagram with the smallest number of facets having
this property (Griinbaum [7], Jucovic [2]).

It may be conjectured that every type of d-polytope with at most d + 3
facets has representatives which are inscribable in a (d - 1j-sphere.

Figure 13.5.2

13.6 Remarks

3-polytopes and their constructions, properties and relationships have
been investigated since the beginning of geometry. A particularly
flourishing period was the second half of the nineteenth century. Mathe
maticians like Cayley and Kirkman made many contributions, but
failed in their main aim-the determination of the numbers c(P,3), or
c.(P, 3), of different combinatorial types of 3-polytopes, or of simple
3-polytopes, with p facets. Detailed historical surveys of these endeavors
were given by Briickner [2] and Steinitz [6]. The determination of c.(p, 3)
was empirically performed by Bruckner [2] for p :$; 10; Hermes [1] tried
to extend Bruckner's work to p = 11,12. Bruckner [4] spent almost
8 years on the determination of c.(P,3) for p = 11,12,13, and found that
Hermes' enumeration was incomplete. However, even the results of
Bruckner [4] can not be considered final. A recent investigation of
Grace [1] (see below) has uncovered a duplication already among
Bruckner's polytopes with 11 facets.

The values of c(p, 3), for p :$; 8, have been determined by Hermes [1]
(see table 2 on p. 424); unfortunately, these numbers seem not to have
been checked independently. Hermes ['1] also enumerated all the types
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of self-dual polytopes with at most 9 facets (see exercise 3.4.3), as well
as certain other special families. Bouwkamp-Duijvestyn-Medema [1],
utilizing a computer, determined all the combinatorial types of 3-poly
topes with at most 19 edges.

A new attempt to determine c.(ll , 3) was made by Grace [I], using a
computer. While Grace's value c.(ll, 3) = 1249 is probably correct, it is
still open to some doubts (see exercise I below).

Clearly, the experimental methods of determining c.(p , 3) for certain
values of p, which were used in the papers mentioned above, cannot
lead to a satisfactory solution of the general problem. Indeed, even fifty
years ago the general question was considered to be quite hopeless.
However, developments of Polya's [I] enumeration technique during
recent years have brought us rather close to this goal; it may be expected
that a complete solution will be found in the not too distant future. For
some partial results related to the determination of c.(p, 3), the reader
should consult Tutte [7-10] , W. G. Brown [I], Brown-Tutte [I], Rade
macher [1], Mullin [1]. We shall mention here only one of the results of
Tutte (7]. Let us consider rooted , oriented 3-polytopes ; by this we mean
polytopes on which an arbitrary vertex and one of its edges are dis
tinguished as a root , and one of the two possible orientations about the
root-vertex is chosen. Two rooted, oriented 3-polytopes are considered
to be of the same type provided there exists a combinatorial equivalence
between the polytopes under which the roots are mapped onto each
other in an orientation-preserving manner. For the number c~)(P, 3) of
different types of rooted, oriented, simple 3-polytopes with p facets,
Tutte [7] obtained

(r] _ (4p - II)!
cs (p,3) - 2(p _ 2)!(3p _ 7)!

The relation between c~')(P, 3), cs(P, 3), and the number c:(p , 3) of com
binatorial types of simple 3-polytopes with p facets which have a trivial
group of combinatorial automorphisms, is easily seen to be

c(')(p 3)
cs(p, 3) ~ Il(p ~ 2) ~ c:(p, 3).

It may be conjectured that

I· c:(P,3) 1
Im ---= ;

p- co cs(P,3)
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if this conjecture is true, then c.(p, 3) is asymptotically given by

1 (3 (256)P - 2
c.(p, 3) -16v2;/-t 27

A similar assumption regarding all 3-polytopes leads (see Tutte [9])
to the conjecture that the number of different combinatorial types of
3-polytopes with n edges is asymptotically given by

It should be noted that the determination of cs(p, d) or of c(p, d) for
d ~ 4 and p ~ d + 4 is a problem of an entirely different order of mag
nitude than the determination of cs(P, 3) or c(P,3). The difficulty of the
case d ~ 4 is intimately connected with, and may be appreciated on hand
of, the results of sections 5.5, 11.1 , and 11.5. The differences between
complexes and topological complexes, as well as the realizability in the
rational d-space or the lack of it, are non-essential for the enumeration of
3-polytopes, as shown by the results of sections 13.1 and 13.2. However.
in higher dimensions each of those distinctions requires a separate
enumeration, and no significant results are known about any of them .

More successful than the attempts at enumeration were different
approaches to the construction of 3-polytopes, or of certain types of 3
polytopes, by standardized methods or transformations. The two most
important sets of such transformations are those used by Eberhard [3]
in the proof of the existence theorem 13.3.2, and the transformations Wi

and "I i used by Steinitz in the proof of his theorem 13.1.1. Different addi
tional constructions of this kind are mentioned in various proofs and
exercises of this chapter. Many other constructions may be found in
Bruckner [2]; see also Tutte [6].

It is remarkable how relatively unknown an important result may be
even if it is the main topic of a monograph published in one of the best
known series. Steinitz 's characterization of the boundary complexes of
3-polytopes (section 13.2), announced with outlines of proofs in Steinitz
[6], and published in full in Steinitz-Rademacher [1], did not become a
well-known proposition until a few years ago. As a matter of fact, except
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for the reproduction of one of Steinitz's proofs in Lyusternik [1] in 1956,
there seems to be no mention or use of Steinitz's theorem in the literature
prior to Grunbaum-Motzkin [1]. (The Steinitz-Rademacher book [1] is
quoted by some authors, but only as a historical summary.)

Parts of Steinitz's theorem were rediscovered by different authors. For
example, the special case mentioned in exercise 13.1.3 appears in T. A.
Brown [2]. An unsuccessful attempt at proving theorem 13.2.1 was made
by Stein [1]. This result was independently proved by Tutte [5,11 ]; in
particular, the second paper is very ingenious and contains additional
interesting facts.

Steinitz gave three different proofs for his theorem (see Steinitz
Rademacher [1]). One of them is reproduced in Lyusternik [1]. Klee [18],
in calling Steinitz's theorem the 'second landmark' of the theory of convex
polytopes (Euler's theorem being the first landmark), discusses several
variants of the theorem. The proof given in section 13.1 above is a
modification of Steinitz 's third proof. The fact (see section 11.5) that
Steinitz's theorem does not generalize to higher dimensions emphasizes
the difficulties encountered in any detailed analysis of polytope s of
dimensions exceeding 3.

Theorem 13.3.2 is one of the oldest nontrivial results in the theory of
3-polytopes. It is the climax of Eberhard's book [3] which appeared in
1891. The theorem was practically forgotten for a long time, the only two
references to it the present author was able to find being Bruckner [2]
in 1900 and Steinitz-Rademacher [1] (footnote on p. 8) in 1934. In section
13.3 we gave a relatively short proofof Eberhard's theorem ; the only other
proof seems to be Eberhard's [3], which relies heavily on the earlier parts
of his book and is rather hard to follow.

The history of the results discussed in section 13.4 goes also back to
Eberhard [3]. He wondered (on p. 84) whether there exist simple 3
polytopes with an odd number of faces each of which is a multi-3-gon.
The problem was first solved by Motzkin [5], who proved theorem
13.4.4(3) for a simple 3-polytopes (i.e. for 3-connected planar graphs)
using a group-theoretic method. In a similar manner, the corresponding
special cases of theorems 13.4.4(4) and 13.4.4(5) were obtained by Gallagher
(see Motzkin [8]). Additional proofs of results contained in theorem
13.4.4(3) were given by Kotzig [2] (using coloring arguments) and by
Grtinbaum [13].For some related results see Coxeter [2].Theorem 13.4.2(2)
was conjectured by Mint y and proved by Moon (see Minty [1]).
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The material of section 13.5, though different in character from most
other parts of the book by the decisively metric conditions, is a good
example for various aspects of work on polytopes. Though Steinitz's [8]
solution (theorem 13.5.3) of Steiner's problem came more than half a
century after the problem was posed, the solution is completely elemen
tary and characterized only by a high degree of ingenuity. It would have
been easily comprehensible to Steiner himself. On the other hand, Steinitz
obtained his result while working on a seemingly rather remote problem,
the question of existence of an isoperimetrically best 3-polytope within
each combinatorial type (see Steinitz [8J, Fejes T6th [1]). More than
thirty years later, Steinitz's arguments formed the inspiration for a result
of Klee [14J (theorems 11.4.1 and 12.2.2).

There are other results and open problems related in spirit to the
contents of section 13.5. As an example we mention the following theorem
of Ungar [1] :

If rtI is a 3-valent, 3-connected planar graph such that no three faces of
rtI have a multiply connected union , there exists an imbedding of rtI in the
plane in which each bounded fa ce is a rectangle, as is the complement of the
unbounded face.

Other related subjects were treated by Cairns [2] and by Supnick [1].

Exercises

1. Grace [1] defines two simple 3-polytopes to be equisurrounded
provided their facets have the same pattern of neighbors. More precisely,
this means the following: With each k-gonal facet F we associate a
sequence (il " " , ik ) , where the integers i,,"' , ik indicate that the facets
neighboring to F are , in cyclic order, an il-gon, · · ·, an ik-gon. Two
sequences (i,, " ' , ik ) and (jl"" ,A) are considered equivalent if one of
them is a cyclic permutation of the other. (From Grace's description it is
not clear whether reversal of orientation is permitted or not.) Two simple
3-polytopes are equisurrounded provided each associated sequence of
one polytope occurs in the other as well, with the same multiplicity in both.
Clearly, combinatorially equivalent polytopes are equisurrounded, but
the converse doe s not hold. Grace [1] gives an example of two equi
surrounded simple 3-polytopes with 18 facets which are not of the same
combinatorial type . However, noting that equisurrounded polytopes with
few vertices are of the same combinatorial type, Grace [1] uses equi
surroundedness as a criterion for equivalence in his computer-assisted
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determination of c.(ll, 3). His result c.(ll, 3) = 1249 is still under some
doubt since it is not known whether equisurroundedness implies equiv
alence for polytopes with p = 11 facets.

Show that the two polytopes with p = 15 represented in figure 13.6.1,
as well as those with p = 16 represented in figure 13.6.2, are of different
combinatorial types though they are equisurrounded-the first pair
under the definition permitting reversal of the cyclic order, the second
even if such a reversal is not permitted.

Figure 13.6.1

Figure 13.6.2
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It may be conjectured that the above examples are minimal for the two
variants of the definition of equisurroundedness.

2. Since Euler's times, the question was frequently posed whether there
exist easily computable numerical characteristics (similar to the Pi'S and
v/s) of 3-polytopes, such that the equality of the characteristics implies
combinatorial equivalence . No such characteristics (short of a complete
schematic description of the polytope) seem to be known. From the
result of exercise 13.4.2 (compare also exercise 1above) it is easy to deduce
that no such system of invariants of the combinatorial type can depend
only on 'local characteristics' (i.e. on the configurations of the immediate
neighbors of each face, or of the second-order neighbors, etc .), In analogy
to the proposed Cummings criterion for 2-arrangement (see section 18.2)
one is tempted to suggest that the numbers Pi and Vj' together with the
numbers of different types of closed Petrie-curves, constitute such a system
of invariants of the combinatorial type. However, this is not the case. In
order to construct a counter-example, consider the 'pieces'S and L in
figures 13.6.3 and 13.6.4, and note that in each the three 'outer corners'
have valences 2, 3, and 4. Let the shaded 'triangles' in figure 13.6.5 be
replaced by two copies of S and one copy of L, in such positions that the

4

2<$---......L.--'~---------------:::03

Figure 13.6.3
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4

2°-----L-~---------------=:::.b3

Figure 13.6.4

Figure 13.6.5
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'corners' of various valences are placed as indicated. It is easy to check
that if the copy of L is placed in position II a 3-connected planar graph
results which is not combinatorially equivalent to the graph obtained
by placing L in position I (or III). Show that, nevertheless, the graphs
obtained (and the corresponding 3-polytopes) have the same numbers Pi
and vi ' and that all closed Petrie-curves in each are simple 8-circuits.

No example is known to disprove the conjecture that the numbers Pi'
together with the specification of the different types of closed Petrie
curves and their numbers, determine the combinatorial type of simple
3-pol ytopes.

3. A recent result of Barnette [1] is worth mentioning for its intrinsic
interest and for the contrast between dimension 3 and higher dimensions :

The graph of every 3-polytope contains a spannin g tree of maximal
valence 3. For d 2:: 4 and for any k there exist d-polytopes the graphs of
which contain no spanning trees of valence at most k. (A tree is a graph
containing no circuits; a tree contained in a graph qj is a spannin g tree
provided all vertices of qj belong to the tree.)

(Use Kleetopes over cyclic polytopes to pro ve the non-existence
assertion.)
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13.7 Additional notes and comments

296a

Proofs ofSteinitz 's theorem.
There are three main, independent classes of proofs for the fundamental result
of theorem 13.1.1 (for additional references see Ziegler [a, Lect. 4]) ;
1. Proofs "of Steinitz type" construct a polytope via simple operations, starting

with a simplex . A particularly elegant proof of this type, by Truemper [a],
uses 6Y -transformations. Based on exercise 13.1.4, Barnette-Griinbaum [a]
constructed all 3-polytopes by repeatedly "bending" facets.

2. Tutte's rubber band method first produces a planar drawing by fixing the
vertices of a triangular face in the plane, and then computing a stressed
equilibrium embedding, where the graph is modeled as a network of rubber
bands. (A triangle exists in the graph or in its dual.) Such a drawing can
always be lifted to a polytope in R3 . The underlying rigidity theory may be
traced back to work of Maxwell and Cremona in the 19th century; a modern
version is Richter-Gebert [b, Sect. 13.1].

3. A third type of proofs proceeds via the primal-dual circle packing theorem
due to Koebe, Andreev, and Thurston:
Every 3-connected planar graph G has a representation by circles on the
sphere with disjoint interiors. one circle for each node, such that adjacent
nodes correspond to touching circles. The representation is unique up to
Mobius transformations if one demands a simultaneous representation of
the same type for the dual graph. with the same touching points. and with
orthogonal intersections ofprimal and dual circles in these points.
The circles of the representation determine facet planes for the 3-polytope
and for its dual. For a proof of this result see Brightwell-Scheinerman [a].
A new derivation from a variational principle is Bobenko-Springborn [a].
See also Lovasz [b].

Extensions and analogues.
A strong extension of Steinitz's theorem (obtained via a proof of type 3) is
due to Schramm [b]: Every combinatorial type of3-polytope can be realized
with all edges tangent to a Z-sphere. (Compare this to theorem 13.5.3 and the
remarks below it. Schramm [b] has a much stronger theorem of this type, for
an arbitrary smooth convex body.) Additionally, one can require that the origin
is the barycenter of the tangency points ; then the realization is unique up to
orthogonal transformations . In particular, every automorphism of G(P} is then
induced by a symmetry of P. (Mani [a] was the first to give this answer to the
question on page 252; he used a type 1 proof.)

A type 2 proof yields that every combinatorial type of 3-polytope with n
vertices can be realized with integer coordinates with a polynomial number
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(in n) of digits; this strengthens theorem 13.2.3. For example, all 3-polytopes
that have a triangle facet may be represented with vertices in {O,1, ... ,37n }3,
by Richter-Gebert [b] and Stein [a]. (It is not clear whether integer coordinates
of polynomial absolute value are sufficient.)

Another result by Steinitz with a type 2 proof is (see Richter-Gebert [b,
Sect. 13.3J):
For every labeled 3-polyrope P with e edges, the realization space (i. e., the
topological space of all polytopes in R3 that are combinatorially equivalent
to P, modulo affine motions) is an open (e - 6)-dimensional ball.

Barnette-Griinbaum [b] showed with a type 1 proof that one may prescribe
the shape of one facet of a 3-polytope (see exercise 13.1.5). Similarly, any
given cycle in the graph of a 3-polytope can be forced to form the "shadow
boundary" for a projection to the plane (Barnette raJ). See Martini [a] for a
survey on shadow boundaries of polytopes, and for connections to the notion
of antipodality discussed in section 19.3.

Mihalisin-Klee [a] proved a directed Steinitz theorem:
Let G be a planar 3-connected graph and let (j be an acyclic orientation ofG
with a unique sink that also induces unique sinks on all 2-faces. If there are
three disjoint monotone paths from the (then) unique source to the sink, then
there is a 3-polytope P in R3 whose graph is isomorphic to G, and a linear
function on R3 that induces the orientation (j on G.

For general d, a characterization of the orientations of the graphs of d
polytopes that are induced by linear functions is out of sight. However, using
Gale-transforms, Mihalisin [a] gave such a characterization for d-polytopes
with at most d + 3 vertices .

Eberhard's theorem.
Conjecture I on page 267 was proved by Fisher [a], with c =3. With respect
to Conjecture 2 on page 268, Griinbaum [a] proved that if a sequence (Pk)
satisfies (*) and has P3 = P4 =0, then it can be realized for every P6~ 8.

The simple 3-polytopes with Pi =°for i f/. {5,6} resemble the structure of
certain molecules (Fullerenes). We refer to Brinkmann-Dress [a].

Passing from simple to general 3-polytopes P, one considers pairs of face
vectors (P3(P),P4(P),,,,) and vertex vectors (v3(P), v4(P), ... ). Any pair of
sequences (Pk) and (vk) obtained in this way from a 3-polytope satisfies the
equations (a) L.k>3(4 - k)Pk+ L.k>3(4 - kh = 8 and (b) L.k>3(6 - k)Pk+
L.k>3(6-2kh ~12 (see pages 236--237). -

In extending Eberhard's theorem from simple to general 3-polytopes, it is
natural to seek conditions which, when added to (a) or (b), will guarantee that
the pair of sequences can actually be obtained from some 3-polytope.
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Griinbaum [b] proved that if (a) holds and the sums Lk>3kPk and Lk>3kvk
are both even, then there exists a 3-polytope P with Pk(P) ;, Pk and vk(pf=vk
for alI k i= 4. Jucovic [a] showed that under these conditions, alI sufficiently
large integers can play the role of P4'

The situation with respect to (b) is more complicated. JendroI' -Jucovic [a]
proved that if (b) holds then the folIowing conditions are equivalent: (i) there
exists a 3-polytope P with Pk(P) = Pk for alI k i= 6 and vk(P) = vk for all k i= 3;
(ii) ~lk Pk > 0 or L31k vk i= 1.

For sequences (Pk) and (vk) satisfying (b) and (ii), JendroI' [b] provided
detailed information concerning the set of alI integers t such that setting P6 = t

and v3 = ~ (EkPk - E kvk)
k~3 k~4

results in a pair (Pk)' (vk) that is realized by some 3-polytope.
Roudneff [a] showed that if there is a 3-polytope that has (Pk) as its face

vector and (vk) as its vertex vector, and if Lk>6Pk ;:: 3, then one has
(c) Lk>7(6 - k)Pk ;:: 12 - Lk>3vk. For Lk>6Pk ;::4~equality in (c) is attained
precisely for 3-polytopes that can be obtained from simple 3-polytopes by a
sequence of truncations of a specified sort.

Enumeration ofcombinatorial types.
Based on programs by Brinkmann-McKay [a] for enumerating planar graphs,
Royle [a] provides cs(p ,3) for P $ 21 and c(p,3) for P $ 13, together with
databases and generation algorithms. (Compare Dillencourt [a].)

AsymptoticalIy, we also have precise knowledge about the numbers of 3
polytopes (answering the conjectures on pages 289-290): We refer to Bender
Wormald [aJ, and to the exposition in Klee-Kleinschmidt [b, Sect. 5].

Polytopes inscribed in a sphere.
For n > d , let l(d ,n) denote the colIection of alI d-polytopes that are formed as
the convex hulI of n points on the unit sphere Sd-I c e'. A remarkable, com 
plete characterization of the combinatorial types that are realized for some n
by members of 1(3 ,n) , based on a transfer to the Klein model of hyperbolic
3-space, was given by Hodg son-Rivin-Smith [a].

There is also an extensive literature about quantitative extremal problems
that involve members of l(d,n) . It was motivated in part by the fact that, when
d = 2 and n is fixed, the extremal configurations for the measures mentioned
below (and for many others) are precisely the vertex- sets of regular n-gons
inscribed in the unit circle. Our attention here is confined to the case d = 3 and
to the problems of maximizing the following two measures over alI members P
of 1(3 ,n): (a) the volume of P; (b) the length of P's shortest edge. Like these
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two measures, the many other measures that have been considered all lead
to partial results and to many open problems both for d = 3 and for higher
dimensions . See Saff-Kuijlaars [aj for relevant references.

When n is 4, 6, or 12, problem (a) is solved by placing the points at the
vertices of an inscribed Platonic solid (see Fejes T6th [1,4]). In view of the
2-dimensional situation, this is not surprising . However, for n = 8 the solution
is not provided by the 3-cube, but instead by an 8-vertex 3-polytope with 3 dif
ferent edge-lengths that was first discovered by a computer search (Grace [aJ)
and later proved by Berman-Hanes [aj to provide, up to rotation, the unique
global maximum for the volume. The volume problem has been solved only
for n ~ 8 and for n = 12. Conjectures for 9 and I°points were given by
Berman-Hanes [bj.

Problem (b) is usually phrased as the problem of arranging n points on the
unit sphere so as to maximize the minimum distance between two points of
the arrangement (the misanthrope problem) . It's not hard to show that this is
equivalent to finding an n-vertex inscribed polytope that maximizes the length
of the shortest edge. The problem has been completely solved only for n ~ 12
and for n = 24. The cases of n = 24 and of n = 10, II were settled by Robinson
[aj and Danzer [aJ, respectively. Danzer has a comprehensive collection of
references to earlier results and to conjectures for many values of n. Among
the conjectures, a particularly attractive one was proposed by Robinson [bj, to
the effect that when n is 24, 48, 60, or 120, the extreme for n - 1 points is the
same as for n points Cn - 1 misanthropes are not better off than n"). That is
true for n =6 and n = 12, but for n =24 it was disproved by Tarnai-Gaspar raj.
Tarnai [aj provides some excellent illustrations of spherical point-distributions
arising in nature. See also Melnyk-Knop-Smith raj.

Order dimension .
The order dimension of a partially ordered set IT is the least number of linear
orderings whose intersection is IT. Brightwell-Trotter [a] proved that the order
dimension of the face lattice §(P) of a 3-polytope P equals four, and the order
dimension of §(P) \ {Fo} is three, whenever Fois a vertex or a facet of P. (See
also Felsner [aj and Miller [aj.)

Higher dimensions.
Analogs of Steinitz's theorem in higher dimensions probably do not exist: It
is NP-hard to decide whether a given lattice is the face lattice of a 4-polytope ;
one cannot prescribe the shape of a facet, or even of a 2-face; some rational
4-polytopes cannot be realized with rational coordinates of polynomial coding
lengths: All of this follows from Richter-Gebert's [bj universality theorem.



CHAPTER 14

Angle-sums Relations; the Steiner Point

The subject matter of the present chapter differs from the foregoing parts
of the book in being dependent on the structure of Rd as a Euclidean
space. In spirit, however, the topic is closely related to the material of
chapters 8 and 9.

Using appropriate definitions we shall show (in sections 14.1 and 14.2)
that the 'angle-sums' (lk of d-polytopes satisfy relations analogous to the
Euler and Dehn-Sommerville equations for the numbers of k-faces,fk '

The subject is very old, but also relatively new. The simplest case,
d = 2, of theorem 14.1.1 was known to Euclid: it is the formula for the
sum of angles in a planar n-gon . On the other hand, the case d = 3 appears
only in 1874 in a paper of Gram [1]-{mly to disappear until rather recent
times.

In section 14.3 the Steiner point of a polytope is defined , and analogues
of the Euler and Dehn-Sommerville equations are proved for this vector
valued function. Though the Steiner point of smooth convex curves was
defined and investigated by Steiner already in 1840, the type of properties
discussed here was discovered only very recently by G. C. Shephard (see
section 14.4).

14.1 Gram's Relation for Angle-sums

Let P be a d-dimensional, convex polytope in Euclidean d-space Rd
, and

let F be a k-face of P; we consider P as a d-dimensional face of itself. We
denote by C(F, P) the cone with vertex at the centroid GF (or any other
relatively interior point) of F, spanned by P. The angle of Pat F, denoted
by cp(F, P) or simply by cp(F), is the fraction of Ed taken up by C(F, P);
more precisely, cp(F) is the ratio of the (d - I)-content of Sd-l (\ C(F, P)
to the (d - lj-content of s':' .where Sd-l is a (d - l j-sphere centered at
GF • For k = 0, 1,· .. d, we define the kth angle-sum (lk(P) of P by
(lk(P) = L cp(F ; E), the summation being extended over all the k-faces F
of P. (In particular, (liP) = 1 and (ld-l(P) = tfd -l(P),)

297
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We shall establish an angle-sums analogue of Euler's equation; the
case d = 3 is due to J. P. Gram [1].

1. For every d-d imensional convex polytope P the angle-sums satisfy
2:1':-6 (-I)jCXj(P) = (_I)d-I .

The proof of theorem 1 is divided into three parts. In the first part we
establish the theorem for simplices. The second part is rather straight
forward: If P is a d-polytope and 0 an interior point of P, let PI" ' " Pf'
where f = h-.(P), be the f d-pyramids having 0 as common apex, and
a (d - I)-face of P as base. We show that if each Pj, 1 :5: i :5: f, satisfies
the theorem then P satisfies the theorem. The first two parts of the proof
are thus sufficient in order to establish the theorem for simplicial poly
topes. In order to complete the proof of the theorem we have, therefore,
to establish its validity for all d-pyramids (over arbitrary (d - l l-dimen
sional bases) . This is accomplished in the third part of the proof.

PROOF OF THE THEOREM-PART I Let P be ad-simplex, F k a k-face
of P, and let C(F\ P) be the cone associated with r: The angle <p(Fk

) =
<p(F\ P) of Pat r can obviously be defined in the following way, equiva
lent to the definition used above : Let s": I be the unit (d - lj-sphere
and let V(F k

) be the subset of Sd- I consisting of all the unit vectors v
such that C(Fk

, P) contains a ray parallel to v (in the same sense) ; in the
notation used in section 2.4, V(F k

) = s': I n cc C(F\ P). Then <p(Fk
) is

the ratio of the (d - Ij-content J.l(V(Fk» of V(Fk
) to the (d - I)-content

J.l(Sd-l) of Sd- I, J.l denoting the (d - Ij-dimensional Lebesgue measure.
Let Co,, .. , Cd be the half-spaces of Rd determined by the (d - I)-faces

F~- I, ... , F~- I of P and containing P. Then clearly C, = C(F1- I, P) and,
more generally,

C(F\ P) = n c.,
Ff -l =.>pk

also, for each m, 1 :5: m :5: d, and each m-tuple (i I' ... , im ) there exists a
unique Fd-m such that

m

n c, = C(Fd-m, P),
j=1 J

with different Fd
-

m corresponding to different m-tuples. Obviously

d

n C, =P.
i=O
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From the definition of V it is immediate that for every m-tuple (i r- . . . , im ) ,

I ~ m s d. we have
m m

n V(Cd = V( n Cd ,
j ~ 1 J j ~ t J

while
d

n V(C j ) = 0.
i~ O

Since hemispheres of s- :> are measurable, we have
d

J.I(Sd -t) = J.I( U V(C j»
j~O

d d

= L J.I(V(C j )) - L J.I(V(C j ) n V(C j)) + ...
i ~O j . j ~O

j * j

d d

L J.I(V(CJ) - L J.I(V(C; n C) + ' "
i~O i . j~O

i*j

d

L J.I(V(Ft- t)) - l>(V(F~- 2» + L J.I( V(F~ - 3)) + ...
i~O 9 y

+ (-I)dJ.l(0)

= J.I(Sd-l). {CXd_t(p) - CXd- 2(P) + CXd -3(P) + .. . + (_l)d -1 CXO(P)} .

Thus L:1:~ (-I)icxi(P) = (_I)d - t as claimed , and the theorem is proved
for all simplices P.

PROOF OF THE THEOREM-PART II We intend now to extend the
validity of the theorem from simplexes to a wider class of polytopes. Let
P be ad-polytope, 0 a point of int P, and let Pj' for j E J = {I,· .. ,h- t (P)}
be the d-pyramids with common apex 0, spanned by the (d - I)-faces of
P. We shall show that P satisfies the theorem provided the theorem is
valid for each Pj '

We note, first, that

L cxo(Pj ) = cxo(P) + 1.
jeJ
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since the angles at 0 of the polytopes Pj add up to the full angle, while at
any vertex of P the angles of the P, incident with it add up to the angle of
P at the vertex. Similarly, for each k with I :$; k :$; d - I, we have

I IX.l(Pj ) = IX.l(P) + h-I(P) .
jeJ

Therefore, denotingf_I(P) = I, we have
d- 1 d- 2 d- 1

L (-1)1IX.1(p ) = L (-l)~l(P) + L (_1)1 I IX.1(Pj )

1=0 1= -I 1=0 jeJ

d-2 d-I
= L (-I)~l(P) + L L (-1)1IX.1(Pj )

1 = - 1 j eJ 1=0

d-2

= I (-lth(P) + L (_I)d-I
1= - 1 jeJ

d-I
= L (-I)~l(P) = (_I)d-I,

1= -I

the last equation using Euler's formula.
Thus, provided we establish the theorem for all d-dimensional pyramids,

its general validity is proved. At any rate, parts I and II ofthe proofalready
establish the theorem for all simplicial polytopes.

PROOF OF THE THEOREM-PART III In this final part of the proof
our aim is to establish the validity of the theorem for d-dimensional
pyramids. The idea is to use decompositions, similar to those used in
part II, but such that the final products of the decomposition are d
simplices, for which the theorem holds by part I of the proof. As it turns
out, the relationships between a d-dimensional pyramid and any of its
decomposition into d-simplices may be quite complicated, and it is in
general not feasible to give the connections between the angle-sums of the
pyramid and those of the simplices. Therefore our method shall be
somewhat roundabout.

We shall show that the validity of the theorem for m-fold d-pyramids
implies its validity for (m - I)-fold d-pyramids, where 2 :$; m :$; d - 1.
Since part I of the proof established the theorem for (d - I)-fold d
pyramids, this will complete the proof of the theorem for all d-pyramids
and thus, by part II, for all d-polytopes.

In the proof we shall use the following notation. Given ad-polytope P
and an m-face F = F" of P, we shall denote by F~, i E I(k), all those k
faces of P which contain F. Thus I(k) = 0 for k < m; I(m) contains just
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one element and {Fi liE I(m)} = {Fm}; similarly for m = d,

{Ft liE I(d)} = {Pl .

Let rck be the complex consisting of all F~, i E I(k), and their faces. For
k ~ m, rck is a k-complex; for k < m obviously rck = {0}. In the notation
ofsection 8.4,rck = stk(F ; Pl. It is easily checked that for each k, m < k :::;; d,
and for each i E I(k), we have rc(n) n rck- t = st(F; Fn, the star of F in
F~. Denoting by A '" B the set-theoretic difference, it follows that for
eachj,O :::;; j :::;; k - 1,

nrc(F~) '" rck- t) = ~{F~) - ~{st(F; Fm .

Using theorem 8.4.2 we have

k k-t k-l

I (-I)jj_t(rc(F~) '" rck
- t) = I (-I~Jj(st(F ;F~») - I (-I~nF~)

j= 1 j = O j=O

= I - (I - ( - I )k) = ( - It.

We shall use this relation in the sequel.
Let now 0 be a relatively interior point (e.g. the centroid) of the m-face

F of the d-polytope P, m = 2. Let Ps ' S E S, be the pyramids with apex 0
spanned by the (d - Ij-faces of K which do not contain F. Obviously,
card S = h-t(P) - h-t(st(F ; P» . The crucial point to note here is that
if P is a (d - m)-fold d-pyramid over F then each Ps , S E S, is a (d - m + 1)
fold d-pyramid. Thus our proof shall be completed by showing that P
satisfies the theorem provided each P, satisfies it.

Let F* be any k-face of one (or more) of the Ps• Then, if 0 ~ F*, it follows
that F* is a face of P and that qJ(F*, P) = I qJ(F*, Ps) , the summation
being extended over all P, which contain F*. If, on the other hand,O E F*
then F* is not a face of P; in this case F* is the convex hull of 0 and some
(k - Ij-face F** of P. Let H = H(F*) be the (uniquely determined) face
of P of smallest possible dimension which contains F* (and therefore,
since 0 E F* and 0 is in the relative interior of F, H ::::l F). Since P = U P,

seS

we clearly have U C(F*, Ps) = C(H(F*), P) and therefore
Ps':JP-

I qJ(F*, Ps) = qJ(H(F*), Pl·
Ps:;,F'*

It follows that the sum Ises lXk(Ps) can be evaluated as follows.
(i) For k > 0, the k-faces F* which do not contain 0 contribute

p~1) = Ip qJ(F*, P) ; the k-faces F* which contain 0 contribute
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P~2) = Ip rp(H(F*), P). Each k-face F* of the latter type is determined
by some (k - I)-face F** of P; in order to obtain all the k-faces F* for
which H(F*) is a certain fixed F7, i E I(n), we have to consider all the
(k - I)-faces of this F7 which do not belong to any F'j- J , j E I(n - I). In
other words, breaking~2) up into partial sums in each of which H(F*) = F7
is fixed, we have

~2) = I I rp(H(F*), P)
i.n (PIH(P) = Fr l

I I cp(F7,P) ,.h _J(~(F~)_ ~k -I).
n =max{m.k} iE1(n)

Regarding p~1) we note that exactly those k-faces of P which contain F
fail to befaces of some Ps. Therefore we have PP) = cxk(P) - IiEl(k) cp(F~, P).

Combining those results we find

I CXk(P,) = PP) + P~2)
SES

d

= cxk(P ) + I I rp(F7,P) .[.h-J(~(F7) - ~n - I ) - e5n.k],
n = ma xIm, k} iEl(n)

where e5 n• k is, as usual, Kronecker's delta.
(ii) For k = 0 the above verbal reasoning applies as well. However,

instead of making ad hoc notational conventions, we state the obvious
result separately in the form

I CXo(Ps) = cxo(P) + cp(F, P).
SES

Applying now the assumption that the theorem holds for all the
polytopes Ps , and using the above formulae and Euler's relations for
polytopes and for stars, we have

(-I)d -l[fd_J(P) - h _l(st(F ; P))] = (_I)d-I card S

d-J d- I

= I I (-Ilcxk(ps) = I (_l)k I CXk(Ps)
SES k = 0 k = 0 SES

d-J d

= cxo(P) + cp(F, P) + I (-ll{cxk(P) + I I cp(F7, P)
k = J n = rnaxtm, k) iE lIn)

d-I d -J

= I (-I)kcxk(P) + cp(F, P) + I I cp(F7, P)
k=O n=m iEl(n)
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n

X ([ L (-I)Yk-1(CC(F?) '" CCn- 1)] - (-In
k=l

d-r
+ <p(P, P) L (-1Uk- r(<t(P) '" ccd- r)

k=r

d-1
= L (-ItlXk(P) + <p(F, P) + <p(Fm, PH -(1 - (_I)m) - (- l)"]

k=O
d-r

+ L L <p(Fi, P)[( _I)n - (-1)"]
n=m+ I iel(n)

d-1
+ <p(P, P) L (-It[fk-r(P) - h-r(st(F, P))].

k=r
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Thus, ignoring zeros, taking into account <p(P, P) = 1, and transposing,
we have

d-r d-r
L (-ItlXk(P) = L (-I)k[fk(P) - h(st(F ; P))]

k=O k=O

= 1 - (_I)d - 1 = (_I)d-r .

This completes the proof of theorem 1.
As a complement to theorem 1we have the following result, first proved

by Hohn [1] :

2. If an equation

d

L (-I)ipjlXj(P) = 0
j=O

holds for all d-polytopes P then Po = P1 = .. . = Pd'

PROOF Let P be ad-polytope, 0 a point of int P, and let Pj' for
j E J = {I,··· ,h-1(P)} be the d-pyramids with common apex 0, spanned
by the (d - Ij-faces of P. As noted in part II of the proof oftheorem 1, we
have

L lXj(Pj) = lXj(P) + 1;-1(P)
jeJ

and obviously also

for i = 0,1,· . . , d - 1,

L lXJPj) = fd-1(P) ,
jeJ
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Unde r the hypothesis of theorem 2, we have therefore
d

0 = L L (-l )ipiIXi(P)
jeJ i=0

d-I

= (-I)dPdh_I(P) + L (-l)iP;[IXi(P) + };-I(P)]
i=O
d- 2

d r " . d= ( - 1) PdJd-I(P) - L, ( - I) 'Pi+ I/;{P) - (-1) Pp·iP)
i= - I

d -I

= - {(-l)dPd + L (-I)iPi+ I};(P)} = O.
i= - I

The last equation holds, by assumption, for every d-polytope P. But
by theorem 8.1.1 (see section 8.2) Euler's relation is (up to a constant
factor) the only linear relat ion holding for the fvectors of all d-polytopes.
Therefore all P;'s are equal, and the proof of theorem 2 is completed.

14.2 Angle-sums Relations for Simplicial Polytopes

The analogy between the numbers };(P) and IXi(P) for ad-polytope P
extends further than the similarity of form of the equations of Euler and
Gram. In the present section we shall discuss the angle-sums analogues
of the equations of Dehn-Sommerville.

The first step in the following theorem of Poincare [3]:

1. For every d-simplex T, the angle-sums satisf y the mutually equivalent
syst ems ofequations

d- k .(d- j) k - I (d _j )L (_1)d+ J IXJ{T) = L ( - l )i+ I IXJ{T) ,O~ k s d + 1,
j= O k j = O d + 1 - k

and

-l~m~d ,

where IX_I(T) = O.
We begin the proof by considering, in Rd

, d independent (d - 1)
hyperplanes through the origin O. Let one of the halfspaces determined
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by each of the hyperplanes be distinguished as the positive halfspace of
that halfplane. The d given hyperplanes define in R d regions of different
types . We shall be interested in two of the types.

(i) Each of the 2d simplicial cones determined by the d hyperplanes
is an orthant. Every orthant is determined by a sequence of d plus or
minus signs, the ith sign indicating whether the orthant is in the positive
halfspace of the ith hyperplane, or not. We distinguish d + 1 classes of
orthants. For 0 ~ k ~ d, a k-orthant is an orthant which is determined

by k plus signs and (d - k) minus signs. Therefore there are (:) k-orthants.

Using the notation of section 14.1, let Wk = Lnq>(Q) denote the sum of
the contents of all k-orthants Q . (Thus W d is the content of the single
'positive' orthant, wd - 1 is the sum of the contents of the d (d - 1)
orthants, etc.). Since an orthant Q and its reflection in the origin -Q are
congruent, they have the same content. It follows that

Wk = Wd- k for k=O,l, · ·· ,d (1)

(ii) The second type of regions determined by the d hyperplane through
o which interests us here are the wedges. For 0 ~ k ~ d, a k-wedge is
the intersection of some k of the positive halfspaces. Thus the single
d-orthant is also the only d-wedge. A l-wedge is a halfspace, the only
O-wedge is the whole Rd.

Every k-wedge is the union of k-orthants, (k + l)-orthants, ···, the
d-orthant. More precisely, a given k-wedge is the union of all those
i-orthants, k ~ i ~ d, the i plus signs of which include the k plus signs
determining the wedge. Consequently, any given i-orthant is contained

in (~) different k-wedges. Let (Jk denote the sum of the contents of all

the k-wedges ; then, for example, (J0 = 1 and (J 1 = td. As an immediate
consequence of the above we have

Inverting (2) we obtain

for k = O, .. · , d . (2)

for i = 0, . . . , d. (3)
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Taking (1) into account there results

d (i) d ( i )L(-l)i (1i= L (_l)i+d a,
i=k k i =d-k d - k

for k = 0, 1, · ··,[1(d - I)]; (4)

the [t(d + I)] equations are obviously independent.
Also, from (1) and (2)it follows that

d (i) d d (i)( j )(1k = L W d- i = L L (_l)i+j+d • (1j '

i =k k i =O j =O k d - I

and an easy computation yields

k (d - j)
(1k = L (-l)j (1j

j =O d - k
for k = 0, . . . , d. (5)

Let now T be a spherical d-simplex contained in the d-sphere
Sd c Rd

+ I. The d + I (d - I)-faces of T determine in Rd + 1 a family
£ of d + 1 d-hyperplanes ; for each of these hyperplanes we designate
the halfspace containing T as positive. By a slight modification of the
above notation, let CXk = cxk(T) denote the sum of the d-contents cp(F)
at all k-faces F of T. Clearly CXk = (1d-k for 0::<; k ::<; d, the wedges being
those determined by £ in Rd

+ I . Also, (1d+ 1 is the d-content of T (as
fraction of the d-content of Sd) ; we find it convenient to define
a : 1 = cx _I(T) = (1d + I· (Note that CXd = I, CXd- 1 = 1(d + I).)

Taking equations (4) and (5) for d + I instead of d, and substituting
a, = CXd - i for -I ::<; i ::<; d, we obtain

d-k (d - .) k-I ( d_. )L (_1)d + j J cx
j

= L (- 1Y+ 1 J cx
j

j= - 1 k j= -I d + 1 - k

for 0::<; k ::<; d + 1

and

for -1::<; m s d. (6)

Keeping the vertices of T fixed and letting the radius of Sd increase
to infinit y we obtain the Euclidean case, in which cx _I(T) = 0, and the
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first of the above equations simplifies to

d-k (d - j) k- I (d - j )L (_I)d+ j (Xj = L (-l)j+1 (Xj ,
j=O k j = O d + 1 - k

O:5:k:5:d+ 1.

This completes the proof of theorem I.
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(7)

For m = -I equation (6) reduces to Gram's equation (theorem 14.1.1)
for the d-simplex T. Thus the above is a different version for the first
part of the proof of theorem 14.1.1.

Noting that (Xd = 1 and fm(T) = (d + I) it follows that equation (6)
m+1

may be written as

d-l c.:L (-IY (XiT) = (-I)d((Xm(T) - fm(T)) .
j=m m + 1

In this formulation the equations are valid not only for every d-simplex
T, but for all simplicial d-polytopes. Indeed, the following result due to
M. A. Perles* holds :

2. Every simplicial d-polytope P E~: satisfi es the equations

for m = -1,0, I,·· ·, d - 1.

We omit the proof of theorem 2 which is completely analogous to the
second part of the proof of theorem 14.1.1. The difference between
the proofs is that all the pyramids Pj appearing now are d-simplices, so
that theorem 1 is applicable, and that the Dehn-Sommerville equations
(theorem 9.2.1) are used instead of Euler's relation.

14.3 The Steiner Point of a Polytope]

Associated with every closed bounded convex set in En is a point known
as its Steiner point or curvature-centroid. This point has many interesting
properties, some of which will be proved here. In the case of a polytope,

• Private communica tion.
t Thi s section and the last part of section 14.4 have been written by G. C. Shephard.
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the Steiner point is conveniently defined as a sum involving the external
angles of the polytope at its vertices ; hence its inclusion in this chapter.

The main results are theorems 2 and 3, in which a number of linear
relations are established between the Steiner points of a polytope and
of its faces. These (like theorems 14.1.1 and 14.2.1) are closely analogous
to the Euler and Dehn-Sornmerville relations. However they are of a
different nature being vector, as opposed to scalar, identities.

Let P be any d-polytope in R", and let sr : denote the unit (n - 1)
sphere centered on the origin O. For any vertex FO of P, denote by
C*(Fo, P) the subset of R" consisting of all those vectors y :1= 0 for which
the normal supporting hyperplane L(P, y) of P intersects P in the vertex
FO (see exercise 2.2.8). Then C*(Fo, P) is a polyhedral cone, its facets being
perpendicular to the edges of P that meet at FO. Hence

V(F°, P) = C*(FO, P) 1\ sr '
is a convex spherical polytope in sn- 1. The ratio of the (n - I)-content
of V(F°, P) to the (n - I)-content of S"" 1 is denoted by IjJ(FO, P) and is,
for obvious geometrical reasons called the external angle of P at FO.
The Steiner point of P is defined by

fo

s(P) = I vjljJ(FJ, P)
j= 1

(1)

where vj is the position vector of the vertex FJ of P (j = 1,· ·· ,fo). Since
{V(FJ , P)}j= 1• . . . • fo covers sr> except for a set of measure zero, we see

I IjJ(FJ, P) = 1
j

and hence s(P) is independent of the position of the origin 0, in other
words

s(TP) = Ts(P)

for all congruence transformations T. It is also easily verified that the
value of IjJ(FJ, P) is independent of the dimension of the space in which
Plies. We shall make use of this fact in the proof of theorem 2.

1. Let P, Q be any two convex polytopes in En and A, /l be any real
numbers. Then

s()"p + /lQ) = AS(P) + /ls(Q),

addition on the left being vector addition of the polytopes.
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PROOF Clearly S(AP) = AS(P) so it will suffice to prove

s(P + Q) = s(P) + s(Q).
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(2)

Let P have vertices F? with position vectors Vi' and Q have vertices GJ
with position vectors Wj' Writing 'V;j = V(F?, P) 11 V(GJ, Q) we see
that

{cl V(F?, P)} {cl V(Gy, Q)} {cl 'V; j}

are three coverings of sn-t by closed spherical polytopes, the third being
a common refinement of the first two. Let t n - 1 be the (n - I)-content
of sn-t ,and 'l:n- tl/Jf, 'l:n-tl/JJ, 'l:n- ll/Jij be the (n - I)-contents of V(F?, P),
V(GJ, Q) and 'V;j respectively. Then from the definition,

S(P) + s(Q) = L vil/Ji + L Wjl/JJ = L (Vi + wj)l/Jij'
i j i .]

If U E 'V;j' then L(P, u) 11 P = F? and L(Q, u) 11 Q = GJ. We deduce that
if 'V;j =I 0 then Vi + wj is the position vector of a vertex of P + Q and
l/Jij is the external angle of P + Q at this vertex. Hence

L (Vi + wj)l/Jij = s(P + Q)
i ,j

and (2) is proved. This completes the proof of the theorem .

2. Let P be a convex d-polytope and, for 0 ~ j ~ d - 1 let
F{(i = 1"",Jj) be its j-faces. Then,

Jo r,
(1 + (-I)d-t)s(P) = L s(F?) - L s(Fl) + .. .

i = t i = t

J d -I

+ (_I)d-t L s(Ft- t )

i= 1

(3)

PROOF We may assume that P lies in Ed. For any vertex F? of P
consider the region V(F?, P). This is an open spherical convex polytope
in sd-t and its (d - Ij-content may be computed from the well-known
formula of Sommerville [2, p.157]. In this way we obtain for l/J(F?, P)
the expression

d-t
(1 + (-I)d-t)l/J(F?,P) = L (_I)d-j-t rx{,

j=O

(4)
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where al denotes the sum of the (d - j - Ij-dimensional solid angles
subtended by the polytope V(F? P) at its j-faces. (In this formula
a1- 2 = 1m. where m is the number of (d - 2)-faces of V(F?, P) and
a1 - 1 = 1 for all i.) Now the (d - 2)-faces of V(F? P) lie in hyperplanes
through the center of Sd- 1 which are perpendicular to the edges of P
meeting at F? Hence the solid angle at a j-face of V(F?, P) is bounded
by the hyperplanes perpendicular to the edges of a (d - j - 1)-face of
P meeting at F?, and so is equal to the external angle at F? of that face.
Thus

Id -j -'
al= I ljJ(F?,Ft - j

-
1

)

k = •

where ljJ(F? Ft - i : I) is put equal to zero if F? is not a vertex of Ft - i : ' .

Substitute these values of al in (4), multiply by Vi ' and sum for i from
1 to f o. Using (1) we obtain

10 (d-I (Id- j -. ))
(1 + (-I)d -l)s(P) = J. Vi j~O (_I)d- j

- 1 k~1 ljJ(F?,Ft - j
-

l)

This is (3) and concludes the proof of the theorem.
Theorem 1 is analogous to the Euler identity. The next theorem gives

the analogues of the Dehn-Sommerville relations for simple polytopes.
To obtain these. we apply (3) to an r-face F' of a simple d-polytope P,
giving

(1 + (-lr I)S(F') = I's(F?) - I's(Fl) + .. . + (_1)'-1 I' s(F'i- I
) (5)

where I' means summation over those suffixes i for which the face
FlU < r) is incident with F'. Now sum relation (5) over all the r-faces

(
d - .)

of P. Since each j-face is incident with ~ r-faces, each term s(F{)
r-J
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occurs (d - ~) times in the sum, and we obtain
r -}

(1 + (- 1)' - 1) L s(Fi) = (~) L s(F?) - (~ .. ;) L s(Ff) + ...

+ (_l)r-I(d - ~ + 1) Ls(Fi- I),
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(6)

where L means summation over all the faces of P of the dimension
indicated by the superscript. Putting r = 1"" , d we obtain d relations
of type (6). These are not linearly independent :

3. For the simple d-polytope P, there are exactly [!<d + 1)] linearly
independent relations of type (6), namely those corresponding to the values

r = 1,3, 5, . . . , m

where m is the largest odd integer not exceeding d.

PROOF Rewrite equations (6) in the form

0=(-1)'( d ) Ls(F?) + (_1)r-l(d - I)LS(Ff) + ...
d-r d-r

+ (_l)I(d - r + 1) Ls(Fi-l) + (1 + (-l)r-I)Ls(Fi),
d - r

and denote the right side of this equation by (S~) (r = 1"", d). If d is
even, then it is simple to verify that

d-I

2(S~) + L (S~) = O.
r=1

If r is even and r < d. then

(7)

(8)ril (d - r ~ i)(S~_i) = O.
;=0 1 + I

To see this, we notice that for 0 :5; k :5; r - 1, the coefficient of L s(F'7)
in the left side of (8) is, after slight simplification, equal to

r- k (d - r + i)( d- k )L (-I)i. . .
i = - I 1 + I r - k - I
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But this is the coefficient of X,-k+ I in the formal product of

(d- k) (d - k) (d - k)
(1 + X)d - k = 0 + I x + .. . + d _ k xd

- k

by

-d+, (d - r- I) (d - r) (d - r+ I) 2-(I + x) = - + x - x + ...
012

and so is zero . Hence (S) is proved.
Relations (7) and (8) show that (S~) is, for even r, linearly dependent

on (S1) (j = 1, · ··, r - 1), and so the equations (S~) = 0 (r even) are
redundant. The remaining equations are linearly independent since the
matrix of coefficients is of triangular form, (S~) containing no term in
Ls(F{) for j > r. This proves theorem 3.

14.4 Remarks

Many authors have considered relations between angle-sums, and various
related notions-mostly unaware of much of the previous work . The
first nontrivial result seems to be de Gua's [1] observation that theorem
14.1.1 holds for every 3-simplex. (This result was redisco vered many
times ; see, for example, Gaddum [1. 2], where additional references may
be found.) The next achievement was Gram's [1] proof of theorem 14.1.1
for all 3-polytopes; this paper was, however, completely forgotten till
very recently. More than thirty years later Dehn [1] and Poincare [3]
made, independently of each other, contributions to the subject.

Poincare [3] obtained the second system of equations of theorem 14.2.1 ,
while Dehn [1] proved (for d s 5) parts of theorem 14.2.2. Dehn's work
was extended by Sommerville [1,2], whose proof of 14.2.1 was followed
here. Sommerville also obtained a set of equations equivalent to that of
theorem 14.2.2, but more complicated in form. He also gave a proof of
theorem 14.1.1 ; however, his version of the third part of the above proof
is invalid. The subdivisions he uses lead, in dimensions greater than 3, to
sets of convex polytopes of different dimensions which not only fail to be
polytopes of types for which the theorem has already been established,
but even fail to be complexes. It is interesting to note that although
Sommerville [1] discusses the analogy between the angle-sums relations
and the Dehn-Sommerville equations (for simplicial polytopes), and
although he mentions both forms of the latter system (see section 9.2),
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he fails to obtain the second set of equations of theorem 14.2.1 and conse
quently misses the simple equations of theorem 14.2.2.

Hohn [1] gives a new derivation for the second set of equations of
theorem 14.2.1. He also proves that the system contains [!d] + 1independ
ent equations, and shows that every other linear relation among the angle
sums of all d-simplices is a consequence of these. (Using a different nota
tion , Hohn disregards the angle-sums CXd = 1 and CXd- J = 1(d + 1);
therefore his system contains only [!d] independent equations.) Although
seemingly not aware of Sommerville [1], Hohn mentions as well-known
theorem 14.1.1, and proves the uniqueness theorem 14.1.2.

Still another set of equations equivalent to those of theorem 14.2.1,
and involving the Bernoulli numbers, was given by PeschI [1]. A simple
algebraic proof of the equivalence of the two sets of equations of theorem
14.2.1 was given by Sprott [1]; Guinand [1] gave another short proof,
including the equivalence of Peschl's system with the others.

As shown by the above proof of theorem 14.2.1, the results of the
present chapter may be extended to the spherical geometry, as well as to
the elliptic and hyperbolic geometries. For some steps in these directions ,
as well as for relations to other geometric problems see Dehn [1], Som
merville [1,2], Hohn [1], Peschl [1], Coxeter [4], and Bohm [1].

Perles-Shepherd [1] recently obtained simpler proofs of the results of
sections 14.1 and 14.2, along with many new results concerning angle
sums. Among their results is the following analogue of theorem 14.2.2,
which deals with cubical d-polytopes (compare sections 4.6 and 9.4):

1. Every cubical d-polytope P satisfies the equations

:t: (-1)i2i- m(] cxi(p ) = (-l)d(cxm(P) - fm(P»

for m = 0, 1, .. . , d - 1.

It may be noted that the assumption that the 'content' ip is determined
by the Lebesgue measure on the (d - 1)-sphere is unnecessarily special.
The measure I.l used in the definition of tp could be an arbitrary finitely
additive measure invariant under reflection in the origin and such that
I.l(Sd-J) #- O. It seems that no interesting applications of this fact have
been made so far.

Steiner [3] introduced the Krionmungsschwerpunkt (or 'Steiner point'
as we have called it) in 1840 in connection with an extremal problem for
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plane convex regions. Assuming that the boundary bd K of K was of
class C2, he defined s(K ) as the centroid of bd K , each point of which
carries a weight equal to its curvature. In d > 2 dimensions there is a
similar definition for smooth convex bodies: s(K) is the centroid of bd K ,
each point of which carries a weight equal to its Gauss curvature.

In 1918 Kubota [I] showed that the Steiner point of a plane convex
region is characterized by the fact that if s(K) is taken as origin, the
coefficients of cos () and sin () in the Fourier expansion of the supporting
function H(u(O), K) are both zero. The three dimensional analogue was
established by Gericke [I] in 1940.These properties may be used to define
the Steiner point, a procedure which has the advantage that no smooth
ness conditions on bd K need be assumed. Further, the additivity property

s(}'IK\ + )'2K2) = A1s(Ktl + )'2s(K 2)

is an easy deduction, though this was not stated explicitly until 1963, see
Griinbaum [9].

The results of Kubota and Gericke also lead to the definition of s(K)
for arbitrary closed bounded convex sets in R d given by Shephard [6] :

s(K) = ~ f uH(u, K) dco,
an Sd - I

an =f ( u, a)2 dca ,
Sd -I

where u is a variable unit vector, a is any fixed unit vector , H(u, K) is the
supporting function of K and dca is an element of surface area of the unit
sphere Sd- \ centered at O. From this definition the additivity of s(K) is
obvious, and it also shows that s(K) is a uniformly continuous function
of K in the Hausdorff metric . It is because of this uniformity that s(K)
can be defined in a continuous manner on the set of all compact convex
sets in R d

, and not only on those of maximum dimension. (By contrast,
the centroid of K is not uniformly continuous and so does not have this
property; see Shephard-Webster [1].)

The equivalence of the above integral definition with that given in
section 14.3 for polytopes is proved in Shephard [8]. Here also the proofs
of theorems 14.3.2 and 14.3.3 first appear.

It is not difficult to show that the linear relation of theorem 14.3.2 is
the only one that holds for the Steiner points of an arbitrary polytope. It
is an open question whether those of theorem 14.3.3 are the only ones that
hold for all simple polytopes.

On the other hand, G. C. Shephard (private communication) recently
established the following remarkable result:



ANGLE-SUMS RELATIONS ; THE STEINER POIN T 315

2. The Steiner point is the only point-oaluedfunct ion definedfor all convex
bodies which is additive, uniformly continuous,and commutes with similarity
transformations.

There exist other quantities associated with a convex polytope and its
faces, which satisfy relations of the type of the Euler equation. One such
quantity is the mean width (Shephard [11] ; see Bonnesen-Fenchel [1] for
the definition). Since the mean width of compact convex sets in Rd is
clearly an additive, uniformly continuous and similarity-eovariant func
tion , it follows that it is possible to associate d-dimensional convex bodies
to all compact convex sets in Rd

, in such a manner that the function has
all the properties just mentioned, and satisfies for polytopes an Euler
type equation as well ; for a compact, convex set C c Rd such an associated
convex body is the d-ball centered at the Steiner point of C and having
radius equal to the mean width of C (or a constant multiple of it). It may
be conjectured that no other set-valued function defined for all compact
convex subsets of Rd has all those properties.

Another interesting result on Steiner points is the 'valuation property'
(Sallee [1]):

3. If K" K 2, K, u K 2 are compact convex sets then

s(K, u K 2 ) + s(K, n K 2 ) = s(Kd + s(K 2 ) .

This property can be used as a starting point for extending the definition
of the Steiner point to non-convex sets (Sallee [1], Shephard [8]).
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14.5 Additional notes and comments

Gram's equation .
A beautiful short proof of theorem 14.1.1, due to Shephard [a] and Welzl [a],
reduces the claim to Euler 's equation by a probabilistic argument:

Let z be chosen uniformly at random from the unit sphere Sd-l C ~, and
denote by n;l the orthogonal projection of Rd along the line R . z. Suppose
that for every proper face F of P we have dim(n;l(F)) =dimF (this happens
with probability one). Under this assumption, the projection n;l(F) of a proper
face F of P is a face of the projected polytope n;l(P) if and only if (F +R· z)n
P =F, which in tum is equivalent to z, -z f/. C(F,P). Hence, the probability
that n;l(F) is a face of n;l(P) equals 1- 2cp(F,P). Therefore, the expected value
of the number /;(n;l(P)) of i-faces of n;l(P) is [(1- 2cp(F,P)), where the sum
ranges over alI i-faces of P, i. e., that expected value equals fj(P) - 2a j(P).

By linearity of expectation, theorem 14.1.1 thus folIows from Euler's equa
tions for n;Z(P) and P.

Steiner point.
The Steiner point of a polytope may be interpreted as the expected value of the
random variable that maps a random direction z E s':' to the highest point of P
in direction z (which is unique with probability one). It has interesting invari
ance properties that are not shared, say, by the centroid (the barycenter of the
vertex set), orby the center of gravity : One example is the fact (theorem 14.3.1)
that computing the Steiner point commutes with forming Minkowski sums,
which may be derived from linearity of expectation.

Calculating the Steiner point of a polytope (even if it is specified by both a
Y--and an £-description) seems to be hard, because it involves volume com
putations (see the notes in section 15.5).

Figure 14.1: Steiner point vs. centroid
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The Steiner point has also proved to be useful for approximation algorithms
for shape matching (Aichholzer-Alt-Rote [aJ).

Sallee [a] answered a question of Griinbaum [9] by producing, on the col
lection of all compact convex subsets of Rd , a function that has all the standard
properties of the Steiner point except that it is not continuous with respect to
the Hausdorff metric.

In addition to Steiner points and other notions of "centers" of convex bodies
surveyed in Griinbaum [9], several other sorts of centers have proved to be par
ticularly relevant to questions of optimization and computational complexity.
For a survey of these, see Kaiser-Morin-Trafalis [a].

Valuations.
The topic of valuations and their characterization-as exemplified by Shep
hard 's theorem 14.4.2-is of great importance, for example for convex geom
etry, for geometric measure theory and geometric probability (see for example
Klain-Rota [aJ), for the decomposition theory of polyhedra as discussed in
Chapter 15, but also for the question of dissections (related to Hilbert 's third
problem; see Boltianskii [aJ). We refer to McMullen [j] for a comprehensive
survey.



CHAPTER IS

Addition and Decomposition of Polytopes*

In this chapter we discuss two methods of 'adding together' two polytopes
to form a third. The first of these, vector addition or Minkowski addition
as it is sometimes called, has already been used in the preceding chapters.
The second, called Blaschke addition, will form the topic of section 15.3.
One of the main problems is to find criteria for deciding whether a given
polytope is decomposable, that is to say, can be expressed as a 'sum' (in
either sense) of other polytopes. In section 15.4 the extension of these
results to general convex sets will be discu ssed, and references given to the
relevant literature.

15.1 Vector Addition

Let Q and R be given polytopes in Ed. Then there are three equivalent
ways in which the vector sum Q + R can be defined (see exercise I) :

(a) Q + R = {x + ylXEQ and YER} .
(b) Let H(Q, u) and H(R , u) be the supporting functions of Q and R

(see section 2.2). Then Q + R is defined to be the convex set whose sup
porting function is given by the equation

H(Q + R, u) = H(Q, u) + H(R, u)

(see exercise 2.2.8).
(c) Let qi (i = I, · ··, n) be the (position vectors of the) vertices of Q,

and rj U= I, · · ·, m) be the vertices of R. Then we define

Q+R=conv{qi+rjl i=I, "',n and j=I , ···,m} .

If P = Q + R, then Q and R are called summands of P. Since a polytope
is characterized by the fact that its supporting function is piecewise linear
(see exercise 3.1.19), it follows that every summand of a polytope is a
polytope.

• Cha pter 15 was written by G. C. Sheph ard .

316
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As in section 2.2, for each v # 0, write L(Q, v) for the supporting hyper
plane of Q with outer normal v. Then L(Q, v) n Q is a face of Q, which
will be denoted by F(Q, v). The first theorem gives an expression for the
faces of a polytope in terms of the faces of its summands: it is an immediate
consequence of exercise 2.2.8.

1. If P = Q + R, then for each v # 0,

F(P , v) = F(Q, v) + F(R, v).

It is clear that the definition of a vector sum depends upon the position
of the origin, so that, if T is any nonzero translation, then T(Q + R) i=
T(Q) + T(R). This is inconvenient since we are usually interested only
in the 'shapes' of the polytope and its summands, and not upon their
position relative to an arbitrarily chosen origin. Consequently it seems
more natural, in some ways , to consider vector addition as operating on
translation classes [Ph of polytopes, instead of on the polytopes them
selves, defining [Qh + [Rh to be [Q + Rh. There is a simple manner
in which this apparent complication can be avoided. We shall make the
convention that, unless otherwise stated, every polytope considered in
this section will be translated so that its Steiner point (see section 14.3)
lies at the origin. Then the additivity of the Steiner point has the conse
quence that the conditions [P ]T = [Q]T + [R]T and P = Q + Rare
equivalent.

The scalar multiple ),P of a polytope P by a real number .A. can be
defined in three equivalent ways analogous to the three definitions of
the vector sum given above. Thus,

(a) .A.P = {Ax Ix E P}
(b) H(.A.P, u) = .A.H(P, u) for all u.
(c) .A.P = conv{Api IPi is a vertex of P} .

The following properties of vector addition and scalar multiplication are
easily verified :

PI + P2 = P2 + PI' PI + (P2 + P3 ) = (PI + P2 ) + P3 ,

A(Pt + P2 ) = APt + AP2 , (AJl)P = .A.(JlP),

(A + Jl)P = AP + JlP

Notice that the last relation does not hold if AJl < 0, so that we do not
obtain a vector space. (For a discussion of methods by which the set of all
closed bounded convex sets can be converted into a vector space, see
Ewald-Shephard [1].)
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IfA > 0 then any translate of AP is said to be positively homothetic to P.
If 0 s As 1, then AP is trivially a summand of P for

P = AP + (1 - A)P.

A polytope is said to be decomposable if it possesses a summand which is
not positively homothetic to the polytope. Thus a decomposable polytope
is one that can be expressed as a vector sum in a nontrivial manner.

We now consider the problem of characterizing decomposable and
indecomposable polytopes. In d = 2 dimensions this is simple: every
convex polygon P is decomposable unless it is a triangle, which is indecom
posable. To see this, notice that every polygon Q is a summand of P if its
edges are parallel to the edges of P and do not exceed them in length.
The next theorem generalizes this result to d > 2 dimensions.

Let P and Q be two given polytopes with the property that

dim F(P, v) = dim F(Q, v) (1)

for all v i:- O. Then there will be a one-to-one correspondence between the
r-faces of P and the r-faces of Q (r = 0" .. , d - 1) in which F(P, v)
corresponds to F(Q, v). Let PI" '" Pm be the vertices of P and ql" ", qm
be the corresponding vertices of Q. If an edge of P joins Pi to Pj' then a
parallel edge of Q will join qi to qj ' Hence

(2)

where A > 0 is a real number whose value depends on i and j . If, instead of
(1) we impose the weaker condition

dim F(P, v) ~ dim F(Q, v) (3)

for all v i:- 0, then similar considerations will apply, except that the
correspondence is no longer one-to-one, and several vertices of P may
correspond to the same vertex of Q. It will be convenient to continue
using qi for the vertex of Q that corresponds to Pi' with the understanding
that q l ' . . . ,qm may not all be distinct. Relations (2) also hold in this
case if we put A = 0 when qi = qj' If, in addition to (3), all the values of
Adefined by (2) satisfy 0 s A ::;; 1, then we shall write P ~ Q.

2. The polytope Q is a summand of P if and only if P ~ Q.

PROOF The necessity of the condition is clear. For if Q is a summand
of P, then by theorem 1, for each v, F(Q, v) is a summand of F(P, v) and
so (3) holds . If v is chosen so that F(P, v) is the edge joining Pi to Pj' then
F(Q, v) will be either the edge joining qi to qj' or qi and qj will coincide.
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In either case theorem 1 implies that Iqi - q) :s;; IPi - p) and so°:s;; A. :s;; 1
in equation (2). Hence P ~ Q.

To prove the condition is sufficient, we shall show that if P ~ Q, it is
possible to construct a polytope R such that P = Q + R. Let P have k
edges and write e\,· ··, e2k for vectors, one in each direction, along these
edges, then

(4)

will be vectors along the corresponding edges of Q. Now translate P and
Q so that the origin coincides with one of the vertices of P and also with
the corresponding vertex of Q. Then the position vector of any vertex
Pi of P can be written as a sum

(5)

of at most k edge vectors, corresponding to an edge path joining the origin
to the vertex Pi. There will be many such expressions for the position vector
of each vertex, so we shall suppose that one such representation is chosen
for each vertex. Now let

(6)

(7)

These expressions will be said to be analogous to (5) if they have the same
set of suffixes. qi is clearly the vertex of Qcorresponding to Pi. Also, since
r i = Pi - qi' the point ri depends only on Pi and not on the particular
representation (5) that is chosen . Define R to be the convex hull of the m
points r i given by all the expressions (7) analogous to the chosen rep
resentations (5) of the vertices Pi. We shall complete the proof by showing
that for any u "# 0,

H(P, u) = H(Q, u) + H(R, u) (8)

and so P = Q + R by definition (b).
Let Pu be any vertex of F(P, u). Then the corresponding vertex qu will

be a vertex of F(Q, u) and

H(P, u) = (u, Pu), H(Q, u) = (u, qu)'

Write ru = Pu - quoThen (8) is equivalent to

H(R , u) = (u, ru ) '
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Since the expression for r. is analogous to that for Pu , it follows that
ruE R, and so H(R, u) ~ ( u, r. ). Hence it will suffice to show that strict
inequal ity leads to a contradict ion. Assume therefore that

H(R, u) = ( u, r. ) > ( u, r u ) = H(P, u) - H(Q , u) (9)

for some vertex r, of R. We can expres s r, in the form (7) and write p, and
q, for the vertices of P and Qgiven by the analogous expressions (5) and
(6). Define an edge path ej," . . , ej, on P in the following manner. Let ej,
be any edge of which p, is an end-point and ( u , ej) > 0 (so that ej, jo ins
p, to a vertex p•• of P nearer to L(P, u)). This is clearly possible by the
convexity of P, and

Select ej, starting from p.. in a similar manner. Continuing thu s, after a
finite number of steps we obta in an edge-path joining p, to some vertex
Po of P lying in L(P, u), and so

Po = p. + ej, + ... + ej "

and

( u,ej . ) > 0 (k = 1, oo· ,t).

If the vertex qo corresponds to Po then

and

H(P, u) - ( u, p. ) = cu, (Po - p.)

= ( u, (ej, + .. . + ej.)

~ ( u, (Aj,ej, + ., . + Aj,ej.)

= ( u, (qo - q.)

= H(Q, u) - ( u, q.).

Thus H(P, u) - H(Q, u) ~ ( u, (p. - q.) = ( u, r.) = H(R, u) which is a
contradiction. Hence (9)·is false, (8) is true and the theorem is proved.

The next two theorems, which are consequences of theorem 2, will
enable us to deduce that every simplicial polytope is indecomposable,
whereas every simple polytope, with the exception of a simplex, is
decomposable. Further applications of these theorems will be given in the
exercises.
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3. l f all the 2-faces of ad-polytope P are triangles, then P is indecom
posable.

PROOF Let v be chosen so that F(P, v) is a triangular 2-face of P. If Q
is a summand of P, then F(Q, v) is, by theorem I, a summand of F(P , v)
and so is a triangle homothetic to F(P , v). Consequently the constants }"i

associated with all the edges of F(P. v) in (2) are all equal. This reasoning
applies to every triangular 2-face of P, and since an y two edges of P can
be joined by a 'chain' of triangles, each consecutive pair having an edge
in common, we deduce that the constants }"i associated with all the edges
of P have the same value, which we may denote by)"•.

It follows from (5) and (6) that for each i,

and sa Q is homothetic to P, the ratio of similarity being }"•. Thus every
summand of P is homothetic to P, and so P is indecomposable. This
completes the proof of theorem 3.

4. Ex cept for the d-simplex, every simple d-polytop e P is decomposable.

PROOF It is easy to show that, with the exception of the simplex. every
simple polytope P ha s a facet F(P , uo) with the property that at least one
edge e. of P is disjoint from F(P, uo)' Let U,,"', uJ be the outward unit
normals to the other facet s of P, so that P can bedefined as the set of points
x satisfying the inequalities

(i = 0, I, · . . , r) .

Let Q' be the set of points

( x, uo>:s; H(P , uo) - I:

( x , u;) :s; H(P, uJ (i = I,···, r).

Then for I: sufficiently small, it is clear that Q' will have the property

dim F(P, v) = dim F(Q', v)

for all v. (In fact I: must be chosen less than the smallest positive distance
of any vertex of P from L(P, uo))' If Q = bQ' , where b is chosen so small
that each edge of Q is sho rter than the corresponding edge of P, then
Q :s; P and so Q will be a summand of P. We complete the proof by
showing that Q is not homothetic to P.
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At least one edge of Q' (for example one that has exactly one vertex in
common with F(Q, uo)) will be shorter than the corresponding edge of P,
whereas at least one edge (for example e.) will have length equal to the
corresponding edge of P. Hence Q' is not homothetic to P, and therefore
neither is Q. By theorem 2. P is decomposable and theorem 4 is proved.

Another property of polytopes closely related to decomposability is that
of reducibility.

Let K be any convex set, and write - K for ( - 1)K, the reflection of K
in the origin. Then

K + (- K) = {x , - x 2 1 x., X 2 E K}

is called the difference set of K . A convex set H is said to be reducible if
it is the difference set of a convex set K which is not homothetic to H .
Since

- H = (- K) + K = K + (- K) = H,

central symmetry in the origin is a necessary condition for reducibility.
Obviously decomposability is also a necessary condition. A sufficient
condition is given in the next theorem.

5. A centrally symmetric polytope P is reducible if and only if it possesses
a summand Q which -is not centrally symmetric.

PROOF Suppose first that P is the difference set of a convex set R.
Then R must be a polytope since it is a summand of P. If every summand
of P were centrally symmetric. then R would be centrally symmetric and

P = R + (- R) = 2R.

Thus P and R would be homothetic. Since this applies to every R, P would
be irreducible and the necessity of the given condition is established.

If, on the other hand P possesses a noncentrally symmetric summand Q,
then P = Q + R for some polytope Rand P = (-P) = (-Q) + (-R).
Thus

P =!<Q + R) + !«-Q) + (-R))

= !«-Q) + R) +!<Q + (-R))

and so P is the difference set of!« - Q) + R). If ( - Q) + R were homo
thetic to Q + R, then, since the widths of these two sets in any direction
are equal, we could deduce that (- Q) + R = Q + R. But this is im
possible since - Q i' Q by assumption. Thus !« - Q) + R) is not homo
thetic to Q + R = P, so P is reducible and theorem 5 is proved.
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This theorem, along with theorem 2, enables us to decide whether a
given polytope is reducible or not. For example in E 2 every centrally
symmetric polygon is reducible unless it is a parallelogram. This follows
from the fact that every summand of a parallelogram is either a parallelo
gram or a line segment, and so is centrally symmetric. On the other hand
it is easy to construct a noncentrally symmetric summand of any centrally
symmetric 2n-gon if n > 2. We now generalize these sta tements to
d > 2 dimensions.

A zonotope in Rd is defined to be the vector sum of a finite number of
line segments. It is centrally symmetric and, if no d of the line segments
are parallel to a hyperplane, it is a cubical polytope (see section 4.6).

6. A zonotope P is irreducible if and only if it is the vector sum of line
segments no three ofwhich are coplanar (i.e. are parallel to a two-dimensional
plane).

PROOF If no three of the line segments are coplanar, then all the
2-faces of P will be parallelograms. If Q is a summand of P, then by
theorem I arrd the above remarks, every 2-face of Q will be a parallelo
gram. It is simple to show that Q must be a parallelotope and so is
centrally symmetric. We deduce that P is irreducible.

On the other hand, if n of the line segments are parallel to a 2-plane,
then P will have a 2-face F (parallel to the given 2-plane) which is a
2n-gon. But F is reducible and so has a summand Q which is not centrally
symmetric. Q is also a summand of P, and so, by theorem 5, P is reducible.

Exercises

1. Show that if P and Q are polytopes in Rd
, then the three definitions

of the vector sum P + Q are equivalent.
2. Prove that every polygon can be expressed as a vector sum of line

segments and triangles. Is the expression unique?
3. Show that the relation

T(AP + J1Q) = AT(P) + J1T(Q)

holds for all translations T if and only if A. + J1 = 1.
4. Prove that k-fold d-pyramids (section 4.2), k-fold d-bipyramids

(section 4.3) and d-pyramidoids (exercise 4.8.1) are indecomposable.
Show also that a d-prismoid (section 4.4) is indecomposable if no edge
of the base PI is parallel to an edge of the base P2 •
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(10)

5. Find a necessary and sufficient condition for a simple polytope
to be reducible.

6. If VI"'" Vn are outward unit vectors normal to the facets F1, " ' , F;
of ad-polytope P, then the relation

1 n

V.tP) = dJl H(P, VJ~-l(FJ

may be used to define the d-content or volume ~(P) inductively. (If the
origin is an interior point of P, this formula corresponds to the process
of dissecting P into pyramids as in section 14.1 and then using the well
known expression for the volume of each of these pyramids.) Use (10)
and theorem 1 to prove that V.t.?P + /1Q) is a homogeneous polynomial
of degree d in .? and /1. More generally, prove that for d d-polytopes
P1, " ',Pd ,

The coefficients V;""id are called the mixed volumes of the given convex
polytopes.

15.2 Approximation of Polytopes by Vector Sums

In section 15.1 we examined the conditions under which a polytope
was decomposable with respect to vector addition. Here we consider
the related problem of deciding whether a given polytope can be approxi
mated arbitrarily closely in the Hausdorff metric (see section 1.2) by
vector sums of polytopes of some prescribed type. For example, it is
easily deduced from the results of section 15.1 that every bounded
convex region in the plane can be approximated arbitrarily closely by
vector sums of triangles and line segments, so it is a natural question
to ask whether every convex body in R 3 can be approximated by vector
sums of tetrahedra, triangles and line segments. In the section we shall
prove that this is not the case, and, for example, an octahedron cannot
be approximated in this way. Although many of the results we prove
will hold for general convex bodies, the main theorem will be stated for
polytopes only since this is the most interesting and significant case.

We begin by introducing some notation. As in section 1.2 p(K 1, K 2 )

will be used for the Hausdorff distance between two closed bounded
convex sets K 1, K 2 in Rd. Thus p is a metric on &: the set of all polytopes
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in Rd. By a class of convex polytopes, we mean any subset :f( of PI, and ,
since f!jJ is a metric space , it is meaningful to speak about a class :f( as
being closed, bounded, compact, etc. (Thus :f( is bounded if there exists
a A > 0 such that K j C AB for all K i E:f(). If ,~ and ,Jf"2 are closed bounded
subsets of PI, then we may define a metric p*(,Jf"" :f(2) in an analogous
way to that in which p was defined:

P*(Jr;, :f(2) = max(sup inf p(K"K 2), sup inf p(K 2,K,» .
K1eolfi K2eJl'2 K2e Jl'2 K, eJl',

In the following , whenever we refer to such concepts as limits, continuity,
etc., it will be und erstood that these are defined relative to the euclidean
distance in Rd

, relative to the metric p, or relative to the metric p*, as
the case may be.

The properties we shall be discussing relate to homothety classes of
polytopes, rather than to polytopes themselve s, and for this reason it
will be convenient to select one definite polytope from each homothety
class. We do this as follows. Define rc C f!jJ to be the class of all polytopes
P in Rd whose diameter diam P = 1, and whose Steiner point (see
section 14.3) coincides with the origin . Then rc contains precisely one
polytope from each homothety class except for the class of O-polytopes.
Since the Steiner po int of a polytope is a relative interior point of P,
(this follows immediately from the definition in section 14.3), we deduce
that if K E rc then K c B, and so rc is bounded. Further, if {K ;} is any
infinite sequence of polytopes of ~ then by Blaschke's theorem (see
section 2.1) there exists a subsequence converging to a polytope K .
By continuity diam K = 1, and s(K) = 0, so K E~ and we deduce that
rc is a compact subset of ~

Now let :f( be any closed subset of 'i&:' We notice that :f( is compact,
and each K E:f( is of dimension at least 1. WriteL:f( for the set of all
polytopes which can be written as finite vector sums

where K, E.X'; and Ai ~ O. From theorem 14.3.1, the Steiner points of all
these polytopes lie at the origin. Hence (L:f() n f(j consists of all those
vector sums which have diameter one, and we write

for its closure.
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If P E ~ is a given polytope, then we shall say that P is approximable
by the class .Y(" if there exist members of I.Y(" arbitrary close to P, or,
equivalently,

P E u(.Y(") .

We now state the main theorem.

1. Let .Y(" be a given class of polytopes which is a closed subset of ~
If P is an indecomposable polytope, and is approximable by the class Jf;
then P E.Y!.

The condition that .Y(" is closed is clearly essential. For example, a
regular tetrahedron T in R 3 can be approximated by the class .'1 of all
tetrahedra which are not regular, and so if TE ~ then TE u(ff), but T¢ f7.

The proof of the theorem depends essentially upon the fact stated in
exercise 3.1.19, that the supporting function H(P, u) of P is piecewise
linear. It falls into two parts :

(i) First we shall show that if P E u(.Y("), we can delete from .Y(" all
those polytopes whose supporting functions are not linear in the same
regions as H(P, u) to produce a class .Y(" D(P) C .Y(" with the property
P E u(.Y("D<P))'

(ii) Secondly we shall show that if P is indecomposable then .Y("D(P)

contains exactly one set, namely P itself.
The proof of (1) is the more difficult; it depends on the following

lemmas 2-6, which shall be established first.

2. a is a continuous function (with respect to p*) on the classes .Y(" c ~

PROOF It is easy to establish that if x = (XI" ", xd) is a unit vector
in Rd

, then Ixll + .. . + Ixdl ;;:: 1. Now each polytope K, E ~ is of diameter
one, and so contains a unit line segment. We deduce that the sums of the
lengths of the projections of K, on the coordinate axes is at least one,
and therefore the sum of the lengths of the projections of

on the coordinate axes is at least If; I Ai ' One of these projections is

therefore at least If; I A;/d in length, and we deduce

di 1 1 ~ Aj
lam (AIK I + ... + ApKp) ;;:: i~1 d'

Thus if AIK I + ." + ApKpE cc, it follows that If; I Ai ~ d.
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Let Jr; .x" be an y two subsets of C(j with p*(Jr;Yl' ) < e. This means
that for each K ; E Yl' there exists a K , E x: such that

and for each K , E Yl there exists a K ; E .x: satisfying the same con

ditions. Hence for any vector sum I,f=I A.jK; E C(j,

Similarly,

p p

I, A.jK j C I, A.jK; + deB
i = I i = I

and so

P(it l x.«; it l A.iK; )::; de.

Since thi s is true for any vecto r sums belonging to (I,.Jf')n C(j and
(2:Yl') n C(j, we deduce

p*«I,Yl ) n C(j, (2:Yl') n C(j) ::; de

and so

p*(O"(Yl ),O"(Yl ')) s de.

This shows that 0" is continuous and lemma 2 is proved.
Let C be a pointed polyhedral convex cone with at least d facets whose

apex lies at the origin O. Th en C is the intersection of at least d closed half
spaces, and it has at least d edges incident with O. Let a I , " ' , a, be unit

vectors from 0 along these edge s, so that I,~= I a, = a is an inter ior point
of C. For each such C and each K E C(j we define a funct ion <Pc by

<pc<K) = Ltl H(K ,aJ - H(K,a)) /( itl H(K ,aj)) ,

We notice that K E C(j implies that the origin is a relative interior point
of K , so the denominator is strictly positive and <Pc is defined. Also , by
the convexity of the supporting function H(K, u), the numerator is non
negative and we deduce that <pc<K) ~ O. The properties of <Pc are
summarized in the next lemma ; <Pc may be regarded as a measure of
how far the supporting function of K departs from linearity in the cone C.
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3. If ¢c is defined as above, and K, K I' K 2 E x: c <i&', then the following
properties hold :

(i) ¢dK) = ¢dAK) for all A > 0,
(ii) min{¢dK.),¢dK2 )} s ¢dK I + K 2 ) ~ max{¢dK1),¢dK2)},and

similarly for any finite number of sets of .Jf;
(iii) ¢dK) is a continuous function of K,
(iv) ¢dK) = °if and only if H(K, u) is a linear function of u in the

region C.

The proofs of these statements are straightforward. (i) and (iii) follow
immediately from the definition and the fact that the supporting function
is continuous ((iii) would not be true if x: contained a sequence of sets
which converged to a single point.) (ii) arises from the fact that

H(K I + K 2 , u) = H(K I, u) + H(K 2 , u),

so

¢dK
I
+ K

2
) = IH(K I + K 2, a j ) - H(K I + K 2 , a)

IH(K I + K 2 , aj)

{IH(K I ' aj) - H(K I' a)} + {IH(K 2 ' aJ - H(K 2' a)}

{IH(K I' aj)} + {IH(K 2' aj)}

Since the terms in braces are all positive, this lies between the numbers

IH(KI ,aj) - H(K1,a) d IH(K 2,a j ) - H(K 2 ,a)
an

IH(K I' aJ IH(K 2' ail

that is, between ¢dK I) and ¢dK2)·
For (iv) assume first that H(K, u) is linear in C. Then

and so ¢dK) = o. If H(K, u) is not linear then

for some AI>·· . , Ar ;;::: °not all zero . Suppose without loss of generality
that Al = max Ai . Then

j

r

AI(al + ... + ar) = (AlaI + ... + Arar) + I (AI - A) aj •

j = 2
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The coefficients on the right are nonnegative so, by convexity,
r

AIH(K, a) :<:::; H(K,~)jaJ + L (AI - A) H(K, a)
j=2

r r

< L AjH(K, aj) + L (AI - Aj)H(K, a)
j =1 j=2
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= AIL H(K, aJ

and so ¢ c > O. This completes the proof of lemma 3.
For given C and e ;;::: 0, we define ./l'"~ ) to consist of the subset of %

for which ¢dK) :<:::; e. Since x: is closed and ¢dK) is continuous on rc
by 3(iii), %~) is a closed set or is empty . By 3(iv) ./l'"g» consists of tho se
sets whose supporting function s are linear on C.

4. If K E (/(./l'"). ¢dK) = O. and K is indecomposable. then. for all
e > 0, K E (/(%~)).

PROOF If K E (/(./l'") there exists a sequence of sets {K i } with K, E L.ff
such that K, -+ K as i -+ 00 . Each K, is a vector sum of sets from % so
write

r ( i) s(i)

tc, = L AjKi j + L IljK ;j
j = 1 j = 1

where ¢dK;j) > e, ¢dK;j) :<:::; e (all i,j). Thus if
r (i )

K ; = L AjK ;j ,
j = 1

s(i )

K " " K "j = L. Ilj j j '

j = I

using 3(ii) we see that ¢dK;) ;;::: e, ¢dK;') :<:::; s, and

K, = K ; + K ;'.

As i -+ 00 , the sequences {Ki} and {K ;' } are clearly bounded . so by
Blaschke's theorem we may select a subsequence such that K ; -+ K*
and K ;' -+ K** as i -+ 00 through this subsequence. Hence , in the limit,
K = K* + K**.

There are now two possibilities. Either K* consists of a single point,
or it does not. In the former case K = K** and K** E (/(%~» which
proves the result. In the latter case, ¢dK*) is defined, and by 3(i) and
3(ii) ¢dK*) ;;::: e. But then K is expressed as the vector sum of two sets
of which K* is not homothetic to K since ¢ dK*) ;;::: e. but ¢c<K) = O.
Thus K is decomposable. This contradicts the hypothesis, and this
second case cannot arise. Thi s completes the proof of lemma 4.
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In particular, lemma 4 shows that under the given hypotheses, how
ever small e may be, %~l cannot be empty.

5. If K E 0'(%), <pdK) = 0 and K is indecomposable, then K E O'(%g>l).

PROOF Let s -+ 0 through some sequence of values. Then because
<Pc is continuous, %~) -+ % g>l, and since, by lemma 2, 0' is continuous
O'(%~l) -+ O'(%g'» . (Notice that %~O) #- 0 being the intersection of a
decreasing sequence of compact sets.) However, by lemma 4, K E O'(%~l)

for all e > 0, so K E O'(%g' l). This proves lemma 5.
Now let P be any d-polytope in Rd. Then the Steiner point s(P), which

we take as origin, is an interior point of P and

H(P, y) = supcy, v)
i

where Vi (i = 1" " , k) are the k vertices of P. This shows that H(P, y)
is a piecewise linear function of y and the number of regions of linearity
is equal to k. Let the region where H(P, y) = <y, Vi) be denoted by
C, (i = 1" " , k). Then it is easily seen that C, is bounded by a number
of hyperplanes which pass through the origin and are perpendicular
to the edges of P that meet at Vi ' The cones {C l ' ... , Cd form a dis section
of Rd

, which will be denoted by D(P). We notice that each C, is a cone
of the type denoted in the above discussion by C, and that <Pc;(P) = 0
for i = 1. · · ·, k.

By application of lemma 5 to each of the cones we deduce :

6. If P E 0'(%) and P is indecomposable, then

Let us denote the right side by O'(KD(PI)' where % D(PI consists of those
sets of % whose supporting functions are linear on all of the regions
C l ' . . . , Ck • Thus if P E 0'(%) and P is indecomposable, then P E O'(%D(PI)'
This completes the first stage (i) in the proof of theorem 1.

It should be mentioned that it is not necessary for P to be indecom
posable for lemmas 4, 5, and 6 to be true. This additional assumption
leads to some simplification and is j ustified by the fact that these results
will be needed only for indecomposable polytopes.

We remark that if K E %D(PI then D(P) is a refinement of D(K) and so
each such K has k or fewer vertices. The proof of theorem 1 will be
completed by showing that if P is indecomposable and K E % D(PI then
K mu st be homothetic to P.
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7. If P is any polytope and K E .?f'D(P) then K is homothetic to a summand
ofP.

Consider first the case D(K) = D(P). Then associated with each cone
Ci E D(P) there is a vertex of K which will be denoted by Wi ' From the
geometrical description of D(P) given above we see that two vertices
Vi' Vj of P are joined by an edge if and only if the corresponding cones
C, and C, have a facet in common, and then this edge is perpendicular
to this facet. For the same reason, Wi and wj will be joined by an edge
parallel to that joining Vi to Vj' We deduce that a one-to-one correspond
ence exists between the r-faces of P and the r-faces of K (r = 0" . . , d - 1)
and that corresponding faces are parallel. Hence if A is sufficiently small
AK ::;; P and so by theorem 15.1.2, AK is a summand of P.

If D(P) is a proper refinement of D(K) similar considerations apply
except that we must regard two vertices Wi and wj of K as coinciding if
C, u C, is contained in one of the convex cones of D(K). Then the above
statements hold except that if an edge of P joins Vi to Vj' then K either
has a parallel edge joining Wi to Wj ' or else Wi and wj coincide. As before
AK ::;; P and AK is a summand of P. This completes the proof of lemma 7.

From lemma 7 we deduce that if P is indecomposable, and K E fD(p),

then K must be homothetic to P. If K and P belong to Cff, then K = P
and statement (ii) is proved, completing the proof of theorem 1.

If f c Cff and a(f) = Cff, then f may be called a universal approxi
mating class. We have already remarked that the set of all triangles and
line segments form a universal approximating class in E2

. Theorem I
has the important consequence :

8. There exist no nontrivial closed universal approximating classes
x: c Cff in d ~ 3 dimensions.

Here 'nontrivial' means f #-~ To establish theorem 8 we need only
note that the simplicial polytopes (which are indecomposable) are dense
in Cff if d ~ 3. Theorem I then implies that .?f' is dense in Cff. and so. if f
is closed, x: = ~

15.3 Blaschke Addition*

Let P be a k-polytope in R d
, and let Rk be the k-dimensional subspace

parallel to aff P. Denote by f(P) ~ k + 1 the number of facets of P,
and with each facet F, (1 ::;; i ::;; f(P)) associate a vector u, E Ek as follows :
• In the present section, the use of the letter u will not be restricted to unit vectors.
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(i) If k = 1, i.e. P is a line segment with end points FI and F2 , we put
U I = F I - F2 and U 2 = F2 - Fl ' (Here we are using F I and F2 to denote
the position vectors of the end-points of P.)

(ii) If k ~ 2, then for i = 1" " ,f(P), the direction of Ui is that of the
outward normal to Fj , and its length lIui li is equal to the (k - i)-content
of Fi .

This definition associates a system Ci/I(P) = {Uj I 1 :::;; i :::;; f(P)} of
vectors with every polytope P. If PI is a translation of P2 , then clearly
Ci/I(Pd = Ci/I(P2 ), and so Ci/I(P) may be regarded as being associated with
the translation class of polytopes containing P, rather than with P itself.

A system "f/ = {Vi 11 :::;; i :::;; n} of non-zero vectors in Rk is called

equilibrated if 2:7= I Vi = 0, and no two of the vectors of V are positively
proportional. "f/ is called fully equilibrated in Rk provided it is equilibrated
and spans R k

•

The following result of Minkowski regarding equilibrated systems of
vectors is fundamental. We shall give a brief sketch of the proof in
section 15.4. For further details the reader is referred to the original
paper of Minkowski [1].

MINKOWSKI'S THEOREM (i) If P is a polytope in R d
, then IJI/(P) is

equilibrated . If P is a k-polytope, then IJI/(P) is fully equilibrated in the
subspace Rk parallel to aff P.

(ii) If"f/ is a fully equilibrated system of vectors in Rk (k ~ 2), there
exists a polytope P, unique within a translation, such that "f/ = Ci/I(P).

We are now able to define the Blaschke sum P # Q of two polytopes
P and Q. Since the definition is in terms of the associated systems of
vectors Ci/I(P) and IJI/(Q), the sum P # Q is only determined within a
translation. For definiteness, therefore, it will be convenient to pick one
polytope out of each translation class, for example that one whose
centroid coincides with the origin. Throughout this section we shall
restrict attention to polytopes that satisfy this condition.

Let P and Q be polytopes of dimension p and m respectively in Rd
,

and let their associated systems of vectors

Ci/I(Q) = {ui I 1 s i s f(P)}

Ci/I(Q) = {will:::;; i :::;;f(Q)}

be numbered in such a way that Ui and Wi are positively proportional
for i satisfying 1 :::;; i :::;; n, while no other pair of vectors from Ci/I(P) u Ci/I(Q)
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are positively proportional. Then the system

l' = {Vi 11 ::; t s: f(P) + f(Q) - n}

defined by

333

{

Ui + Wi for 1::; i s n ,

Vi = u, for n < i ::; f(P) ,

w i -!(P)+n for f(P) < i s; f(P) + f(Q) - n,

is equilibrated since each of CiJI(P) and CiJI(Q) is equilibrated. Moreover
"r spans a linear space of dimension k ~ max(p, m) and so is fully
equilibrated in some Rk

• By Minkowski's theorem there exists a unique
polytope P' in this Rk with CiJI(P' ) = "Y, and centroid at the origin . We
write

P' = P # Q

and say that P' is the Blaschke sum of P and Q.
It is convenient to define an associated multiplication by a scalar

factor A. If A = 0, define A x P to be a point ; otherwise A x P is that
polytope for which OlI(A x P) = {lUi Iu, E °7l(P)}. Again, by Minkowski's
theorem, the existence and uniqueness of A x P is assured. Clearly
(-1) x P = - P, and if P is k-dimensional for k ~ 2, then

A x P = ± IA/ I/(k- l)p

where the last is the usual scalar multiplication associated with vector
addition (see section 15.1 ), and the indeterminate sign is that of A. For
k = 1, A x P = IAIP.

The properties of #-addition and its associated x -mult iplication
which are listed below are easily verified

PI # P2 = P2 # PI ' PI # (P2 # P3 ) = (PI # P2 ) # P3 •

A X (PI # P2 ) = A x PI # A X P2 , (AJL) x P = A x (JL x P),

(A + JL) x P = A x P # JL x P when AJL ~ O.

We shall also use the notation

n

# Pi = PI # P2 # . . . # Pn·
i= I

A polytope P is said to be decomposable with respect to Blaschke
addition if it can be expressed in the form P' # P" where P' and P" are
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not homothetic to P. The next theorem shows that, with the exception
of a simplex, every polytope is decomposable in this sense, and can be
expressed as a Blaschke sum of simplexes. The contrast with the theorems
of section 15.1 is striking, for these show that the indecomposable poly
topes with respect to vector addition are dense in the set of all polytopes.
Theorem 1 is essentially a geometrical formulation of the fact that an
equilibrated system of vectors is a superposition of minimal equilibrated
systems.

1. Every polytope P is expressible in the form

m

P= # Pi
i = I

(1)

where each Pi is a simplex. Further, if P is d-dimen sional and
f(P) = n ~ d + 1, there is a representation (1) with m :5: n - d.

PROOF We use induction on n. The assertion is obvious for d = 1
and also for d > 1 when n = d + 1. Thus we may assume that d > 1
and n > d + 1, and that the proposition is true for every polytope PI
withf(PJ ) < n.

Let C be the convex hull of the points with position vectors iI/I(P)
and let u io be any vector of iI/I(P). Then for a suitable <xo > 0, -<XOuio

lies on the boundary of C, and therefore, by exercise 2.3.8, is an interior
point of some (do - I)-simplex whose vertices are vertices of C. Thus,
for certain uij E iI/I(P) and <Xj > 0,

do

-<XoU io = L: <XjUi j '
j=1

(2)

If <X = max <xj , and Pj = <Xi<X for °:5: i s; do, then °< Pj :5: max Pj = 1
and (2) is equivalent to

Hence the system iI/Io = {PPi
j

I°:5: j :5: do} is equilibrated and there
exists a polytope Po with iI/I(Po) = iI/Io. Since Uio"", Ui d O are linearly
independent, the dimension of Po is do, and since the number of its (do - 1)

faces is do + 1, we deduce that Po is a simplex.
Let iI/Il be the system of vectors obtained from

{(I - P)u i j I0:5: j :5: do} U { Ui Ii ¢ {ij 10 :5: j :5: do}}
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by ormttmg the zero vectors. Then 0111 is also equilibrated and there
exists a polytope PI with OII(PI) = 0111, Let "I be the number of nonzero
vectors in 0111, so that if PI has dimension d. ; then nl is the number of its
(d l - 1)-faces. If q is the number of Pi < 1, then

I + "I = n - do + q. (3)

On the other hand, the q nonzero vectors of {(l - Pi)Uj I0 ~ j ~ do}
are linearly independent, so the intersection of the spaces Rdo and Rd.
spanned by OlIo and 0111 has dimension at least q and,

d ~ do + d , - q. (4)

By the inductive assumption, PI is expressible as the Blaschke sum of at
most n l - d, simplexes, and therefore, by (3) and (4), P is decomposable
into at most

1 + n l - d, = (n - do + q) - d, ~ n - d

simplexes. Thus the theorem is proved .
We omit the simple proof of the following result which has no analogue

in the case of vector addition for d ~ 3:

2. Every centrally symmetric polytope P is a Blaschke sum of parallelo
top es. If P is k-dimensional and has 2m facets (m ~ k), then P is represent
able as a sum of - [ -m/p ] p-dimensional parallelotopes where 1 ~ p ~ k.

In a certain sense, Blaschke add ition seems more natural if the
summands and the sum all have the same dimension ; it is only under
these conditions that the Blaschke sum of arbitrary convex sets can be
defined (see section 15.4). Following this idea one is led to the question
whether every polytope in Rk may be represented as a Blaschke sum of
k-simplexes in Rk

, or other 'standard' 'polytopes of dimens ion k. Without
loss of generality we may take k = d. The example of the cube shows
that simplexes alone will not suffi ce for this purpose. Indeed for every
representation of the d-cube P as P = PI # Pz with PI and Pz
d-dimensional, we have

f(P I ) = f(Pz) = f(P) .

Thus the bound 2d in the next theorem is the best possible.

3. Every d-polytope P is representable in the form
m

P= # Pi
i~ I

where each Pi is a d-pol yt ope with at most 2dfacets.
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PROOF The proof is by induction both on the dimension d and on
the number of facetsf(P) of P. The assertion is trivially true for the cases
d = 1, and d > 1,f(P) :5: 2d. Thus we may assume that d > 1,f(P) > 2d.

The vectors OU(P) span Rd
, so the origin 0 is an interior point of the

convex hull of the points with position vectors {ui 11 :5: i :5: f(P)}. By
exercise 2.3.5, there exists a subset 1 of {I, 2" .. ,f(P)} which contains
at most 2d integers and is such that 0 is the interior point of the convex
hull of {Ui liE I}. Therefore, for suitable a, > 0: the system OUI = {rx jui liE I}
is fully equilibrated in Rd. Obviously we may assume that the a, are chosen
so that max {rx;} = 1. Let OU2 = {uj I j E J} be the system obtained from

by the omission of zero vectors. Since OU(P) and OUI are fully equilibrated,
OU2 is equilibrated, and there exist polytopes PI and P2 such that
·J// (Pd = Jill and "'1I(P2 ) = I.f1l2 •

If OU2 is fully equilibrated, that is, if P2 is d-dimen sional, then the proof
by induction is completed since f(P2 ) < f(P).

Suppose, however that OU2 is not fully equilibrated ; let Rk where
1 :5: k :5: d - 1 be the space spanned by OU2 • Since P2 is k-dimensional,
by the inductive assumption, it may be represented in the form

q

P2 = # e,
s = I

where each R, is k-dimensional and f(R s) :5: 2k . But

thus the theorem will be proved if we can establish it in the case
f(P2 ) :5: 2k, i.e. provided J has at most 2k elements.

Let n be that projection of Rd onto Rd
-

k which carries Rk onto O. The
projection of a fully equilibrated system is fully equilibrated. Thus
{n(u;) liE I} is fully equilibrated in Rd

-
k (possibly some of the n(u;) are

zero vectors and have to be omitted). As before, there exists a set 10 c 1
which has at most 2(d - k) integers, as well as positive numbers Pi < !rxi
such that

L pjn(uj) = 0,
iE10
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where {n(u i ) liE Io} is fully equilibrated in Rd
-

k
• Now the vector
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is in Rk
• Since 01'2 is fully equilibrated in R\ there is a f3, 0 < f3 :::;; 1 for

which

-f3u = LYjUj
j EJ

where Yj;;::: 0 and 0 < max{yJ = Y< 1. Consequently the two systems
obtained by deletion of any zero vectors from the systems

0/11 = {f3f3iUi liE I o} v {(l - Y+ Yj)U j IjE J}

and

O/I! = {(lXi - f3f3i)Uj liE I o} V {lXiUi liE I "" I o} v {(y - Yj)U j Ij E J}

are both fully equilibrated in Rd. But the first system contains at most
2(d - k) + 2k vectors, and the second less than f(P) since at least one of
the coefficients Y- Yj is zero. Hence the inductive assumption may be
applied to the d-polytopes P1, P! that correspond to the systems 0/11
and O/I! . Clearly P = P1 # P! and so theorem 3 is proved .

In conclusion we remark that by a slight change in definitions, Blaschke
addition in the plane can be made to coincide with vector addition of
polygons and line segments. Only the definition of O/I(P) in the case of a
segment P needs to be modified to read: if P is a segment, O/I(P) is a pair
of opposite vectors, each of length equal to P and perpendicular to the
carrier line of P. The definition of O/I(P) for proper polygons and the
definition of #-addition in terms of equilibrated systems remains un
changed. Then it is easily seen that, within a translation,

PI + P2 = PI # P2

for all proper polygons or line segments PI and P2 • Theorem 1 then reduces
to the property of polygons given in exercise 15.1.2 and theorem 3 gives
a representation of a polygon as a sum of triangles and quadrilaterals.

15.4 Remarks

The properties of vector addition of convex sets, linear systems of convex
sets (see below) and mixed volumes (see exercise 15.1.6) were studied
extensively at the end of the nineteenth, and during the early part of the
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twentieth century. For an account of the results obtained up to 1933, the
reader should consult Bonnesen-Fenchel [1]. One of the more important
theorems discovered at this time was the Brunn-Minkowski theorem,
which may be stated as follows . Let K o, K 1 be any two closed, bounded
convex sets in Rd

, and for 0 :$; ). :$; 1, define

K ;. = (l - ).)K o + J.. K 1 •

The system of convex sets {K ;'}0 :5;' :5 1 is called a linear (vector) system,
and ), is the system parameter. Writing ~ for the d-dimen sional volume
or content, the Brunn-Minkowski theorem states that [~(K;.)Jl/d is a
concave function of J.., or, equi valently,

(1)

for 0 s ), :$; 1. It further asserts that equality hold s for all 0 s ). s 1 (that
is, [~(K;.)]l /d is a linear function of J..) if and only if either (a) Ko and K 1

lie in parallel hyperplanes (and so ~(K;.) = 0 for 0 :$; J.. :$; 1), or (b) Ko
and Klare homothetic.

At least four different proofs of this theorem are known : Brunn's proof
by integration, Hilbert's proof using curvature functions, Blaschke's
proof by symmetrization and Hadwiger-Ohmann 's [IJ proof which
depends upon approximating K ;. by the union of a finite number of rec
tangular blocks. The first three of these proofs are to be found In Bonnesen
Fenchel [1], pp. 89,102, and 72, and the last two in Eggleston [3J, pp. 98 and
97. Several generalizations of the Brunn-Minkowski theorem are known :
(a) to volumes of intersections of a convex set by pencils of half-hyper
planes, see Busemann [1J, Barthel [1], Barthel and Franz [1], Ewald [1J,
(b) to arbitrary measurable sets, see Henstock-Macbeath [1J, and (c) to
mixed volumes, see Alexandrov [1], Fenchel [1,2J, and Busemann [2].
For applications of the Brunn-Minkowski theorem to the properties of
mixed volumes, see Bonnesen-Fenchel [1], pp. 88-114 and Shephard [1].

Gale [1Jconjectured many of the results on decomposition of pol ytopes
given in section 15.1, but proofs were never published. Theorems 15.1.2,
15.1.3, and 15.1.4 first appear in Shephard [2]. For the results on re
ducibility of polytopes, see Grunbaum [5] and Shephard [5].

The theorems on approximations given in section 15.2 first appear in
Shephard [4], although at an earlier date, Asplund had conjectured that
an octahedron was not approximable by vector sums of simplexes (see
Griinbaum [9]). It should be mentioned that an exact analogue of
theorem 15.2.1 holds for Blaschke addition, but this is almost a vacuous
assertion due to the powerful decomposition theorem 15.3.1.
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The process we have called Blaschke addition was first described by
Blaschke [1] for smooth convex sets , although, even earlier, the cor
responding addition of polytopes occurs implicitly in the work of
Minkowski [1]. Blaschke's method was generalized by Fenchel-Jessen [1]
in the following manner. Associated with each d-dimensional closed
bounded convex set K in Rd is an area function SK(W), which is a non
negative totally additive set function on the Borel sets W of the unit
sphere Sd - \ in Rd, defined as follows : SKeW) is the (d - Ij-content of
the set of boundary points of K , each of which has a supporting hyper
plane with outer unit normal in w. Then the Blaschke sum K \ # K 2 of
two such convex sets is given by

SKI #K 2(W) = SK,(W) + Sdw )

for all Borel set s w. The existence of the convex set K 1 # K 2 satisfying this
condition is assured by a genera liza tion of Minkowsk i' s theorem . It will
be seen readily that in the case of polytopes, the defin ition in terms of
area functions coincides with that in terms of equilibrated systems of
vectors given above. The treatment of sect ion 15.3 follow s clo sely that of
Firey-Grunbaum [1], in which paper the decomposition theorems 15.3.1,
15.3.2, and 15.3.3 first occur.

We shall now indica te briefly how Minkowski 's fundamental theorem
quoted in section 15.3 may be proved. Let e\, " ', en be unit vectors
parallel to the outward normals of the facets F1 , • • • , F; of the polytope P,
so that

where v,,-l(Fi) is the (d - I)-content of Fi . Let the origin 0 be taken as an
interior point of P, and let Pi be the perpendicular distance from 0 to Fi.
Then Pi = H(P, Ui) and the volume VjP) is given by the equation

(1)

(see exercise 15.1.6). Any other interior point x of P is at distance
Pi - (x, ei) from Fj, so also

Since this is true for all x E int P, we deduce from (1) and (2) that

L:7= 1 eiv,,- l(Fi) = 0, that is to say OU(P) is equilibrated. The second

assertion of (i) follows easily.
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Part (ii) of the theorem is more difficult to prove. Let

1/ = {Vi I 1 ~ i ~ n}

be a given fully equilibrated system in Rd and e, be a unit vector in direc
tion Vi' so that I1lv;llej = O. Let ad-polytope P(A.I' ··· ' A.n) be defined, for
all )' i 2: 0 by the inequalities ( x , e) ~ Ai (i = 1,··· , n) and let

w(A. I , · · · , A.n) = lViP(A. I , · · · , A.n»ll/d.

Then the inequalitie s

define a closed cone W in the (n + l)-dimensionalspace with coordinates
(A.I , . •. , A.n, y) and, by the Brunn-Minkowski theorem, it is easy to see
that W is convex. Let W' be the closed bounded convex region which is
the intersection of W with the hyperplane y = 1. Then the linear functional

/l VI/lA. I + .. . + /l vnIP·n

will attain its minimum value at some point (A.T, · · · , ,1,:, 1) of W'. Then
PVT,· · · , A.: ) has facets whose (d - I)-contents are proportional to the
/I v;ll and so, for a suitable value of v > 0, ~(v(P(A.T, · . . , A.: ))) = 1/. Thus
vP(A.T. · . . , ),: ) is the required polytope . For further details, and a proof
of the uniqueness, see Minkowski [1].

The Brunn-Minkowski theorem has an analogue for Blaschke addi
tion , namel y, for an y two convex sets Koand K I which are closed, bounded
and d-dimensional,

[~((I - A.) x «; # A. x K I)] (d -I )/d

is a concave function of )., and is linear if and only if Ko and Klare homo
thetic (see Bonnesen-Fenchel [1], p. 124). The pro of of this sta tement
depends upon the theo ry of mixed volumes.

In conclusion we mention that besides vector addition and Blaschke
addition , other meth ods of 'adding together' convex bodies have been
described in the literature. For these the reader should con sult the
publications of Firey [1,2,3,4].
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15.5 Additional notes and comments
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Minkowski sums.
See Schneider [b, Chap. 3] for a comprehensive treatment of Minkowski sums.

The Minkowski sum of two polytopes induces the multiplication in the poly
tope algebra introduced by McMullen [g] (see also Morelli [a] and Brion [a]).
A fascinating application of that concept was an elementary proof by Me
Mullen [h] for the necessity part of the g-theorem. (See also McMullen [i]
[k] and the notes in section 10.6.) The decompositions of a simple polytope P
play an important role in McMullen 's proof; the crucial object of study here
is the subalgebra of the polytope algebra that is generated by the Minkowski
summands of P.

Decompositions.
Smilansky [b] extends much of the theory of polytope decomposability to un
bounded polyhedral sets that are line-free and of full dimension . In this setting,
Theorem 15.1.3 is extended as follows: If a polyhedral set P has a strongly
connected set of triangular faces that touches all facets of P, then P is inde
composable.

Another theorem in that paper concerns the set P(n ,p) of all 3-polytopes
that have n vertices and p facets. It asserts that if p < n then every member of
P(n,p) is decomposable ; ifn ~ p ~ 2n-7 then P(n,p) has both decomposable
and indecomposable members; and if2n-7 < p then every member of P(n,p)
is indecomposable.

Smilansky [a] showed that, while an indecomposable 3-polytope must have
at least four triangular (hence indecomposable) facets, there are indecompos
able 4-polytopes in which each facet is decomposable .

Theorem 15.104 ("except for simplices, all simple polytopes are decompos
able") also yields an alternative proof for a result of Kaibel-Wolff [a]: Every
simple a/I-polytope is a product of a/I-simplices .

Kallay [a] proved that if P is a polytope in Rd and T is a projective transfor
mation of Rd that is admissible for P, then decomposability of P is equivalent
to that of TP. However, he gave an example in which the set of summands of P
is not combinatorially equivalent to the set of summands of T P.

Sallee [b] showed that, if K is a d-d imensional closed convex set whose
boundary contains a neighborhood U such that U is "s-smooth" for some e > a
(in particular, U is twice continuously differentiable) and U does not contain
any line-segment , then K is decomposable . Of course the latter condition ex
cludes polytopes, but the pair of conditions does apply to a very wide class of
convex bodies.
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Difference sets ofsimplices.
The difference set Td +(-T d ) of a d-s implex is an interesting polytope. It is
a hexagon for d = 2 (regular if T2 is an equilateral triangle), and it is known
as the cuboctahedron for a (regular) tetrahedron T 3• See Rogers-Shephard [a]
for a detailed analysis of the facial structure of Td +(- Td ) for arbitrary d, and
Doehlert-Klee [a] for additional information and an application in the design
of experiments.

Zonoids.
The polytopes that are limits (with respect to the Hausdorff metric) of zono
topes are called zonoids (see also Theorem 5.2.5). They can be character
ized, e. g., as the ranges of vector-valued non-atomic measures. Properties
of zonoids have been surveyed by Bolker [a] and Schneider-Weil [a], and
sharpened results on the limiting process have been obtained by Bourgain
Lindenstrauss-Milman [a).

Algorithmic aspects.
Much attention has been paid to algorithmic questions concerning volume (see,
e. g., Gritzmann-Klee [dJ). Dyer-Frieze [a] proved that the problem to de
cide if a polytope (specified by a rational -y.. or £ -description) has volume at
most a E Q (where a is part of the input) is #P-hard. Lawrence [a] showed
that, in general, the coding size of the volume of a polytope specified by lin
ear inequalities with rational coefficients is not bounded polynomially in the
coding size of the inequality description.

It is easy to see that for fixed dimension the volume of a polytope can be
computed in polynomial time.

In a seminal paper, Dyer-Frieze-Kannan [a] described a randomized algo
rithm that for a polytope P (given by -y.. or £-description) and for two positive
rationals e and f3 computes a number V with

Prob{(I-e)vol(P) ~ V s (I +e)vol(P)} ~ 1-f3

in time polynomially bounded by the coding size of the description of P, 1/e,
and log(I/f3) . Their algorithm extends to the much more general setting of
convex bodies specified by membership oracles. For the concept of such ora
cles see Grotschel-Lovasz-Schrijver [a]. Its crucial ingredient is a certain ran
dom walk , whose associated Markov chain is proved to be "rapidly mixing ".
Since then, algorithms of this kind have been applied to algorithmic counting
problems quite successfully (see, e. g., Jerrum-Sinclair raJ).

Of course, the hardness results on the theoretical complexity of comput
ing the volume carry over to the problem of computing (mixed) volumes; in
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this context Dyer-Gritzmann-Hufnagel [a] derive further hardness results. In
particular, they prove that computing the volume of a zonotope (given by its
segments) is #P-hard. See Girard-Valentin [a] for a problem in mixture man
agement whose solution indeed requires computing the volumes of zonotopes.

On the other hand, Dyer-Gritzmann-Hufnagel [a) exploit Dyer, Frieze, and
Karman's randomized approximate volume algorithm for computing certain
mixed volumes.

It was shown by Gritzmann-Hufnagel [a] that the algorithmic problem cor
responding to part (ii) of Minkowski 's theorem (page 332) is #P-hard, while it
can be solved in polynomial time in any fixed dimension.

Blaschke sum and oriented matroids.
As Grtinbaum remarks before theorem 15.3.1, the fact that every polytope is
a Blaschke sum of some simplices is "essentially a geometric formulation of
the fact that an equilibrated system of vectors is a superposition of minimal
equilibrated systems". Nowadays this can be identified as a special instance
of the fact that every covector of an oriented matroid arises from a conformal
composition of cocircuits (see Bjorner et al. [a, Prop. 3.7.2]).

Brunn-Minkowski theory.
The interplay of Minkowski sum and volume, creating the concept of mixed
volumes, is a backbone of the Brunn-Minkowski theory. We refer to Schnei
der 's book [b] for an extensive treatment ofthis rich theory and to his article [c)
for a special treatment directed towards polytopes . See also Gardner [a].



CHAPTER 16

Diameters of Polytopes*

This and the next chapter are concerned with paths on polytopes.
References are given, unsolved problems are stated, and some outlines
of proofs are included. Most of the results have previously appeared in
the literature but a few of them are new.

A path on a polyhedron] P is a sequence (xo, Xl' . .. ,xd of successively
adjacent vertices of P. The integer k is the length of the path, which is
said to join Xo and Xk' When x and yare two vertices of P the distance
bp(x, y) is defined as the length of the shortest path joining x and y on P.
This number always exists, for the graph formed by the vertices and
bounded edges of P is always connected and is in fact d-connected when
P is a d-polytope (theorem 11.3.2, due to Balinski [1)). For each vertex x
of P the x -radius of P is defined as

Px(P) = max{bp(x, y) Iy a vertex of P},

and the radius and diameter of P are defined respectively as

p(P) = min{px(P) Ix a vertex of P}

and
(j(P) = max{px(P) I x a vertex of P}.

Thus (j(P) is the smallest integer k such that any two vertices of P can be
joined by a path of length ~ k. Note that

p(P) s (j(P) ~ 2p(P) ,

so that one who is interested only in the order of magnitude of p(P) or
(j(P) may work with whichever function proves to be more tractable.

We shall be concerned primarily with the minimum and the maximum
of (j(P) as P ranges over certain important classes of polytopes. The general
pattern of investigation of the function (j would seem to be appropriate
also for many other functions of polytopes, and the definitions to follow
can be applied to any such function (for example, to p in place of (j).

For n > d > 1 let m.«(j, d, n) and Mv«(j, d, n) denote respectively the
* This chapter was written by Victor Klee.
t In the present chapter, polyhedron means polyhedral set, i.e. intersection of finitely

many halfspaces .
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minimum and the maximum of c5(P) as P ranges over all d-polytopes with
n vertices. Similarly, mf(c5, d, n) and M f(c5, d, n) are respectively the
minimum and the maximum of c5(P) as P ranges over all d-polytopes with
n facets. The subscript v or f tells whether n indicates the number of
vertices or the number of facets. The numbers m~(c5. d. n), M~(c5, d. n),
mJ(c5, d. n) and M'j(c5 , d. n) are defined in the same way for simple d-poly
topes, and the numbers m[(c5, d. n), M[(c5, d, n), m}(c5, d, n) and M}(c5, d, n)
for simplicial d-polytopes. The superscript v or f restricts attention to
simple polytopes (those whose vertex figures are simplices) or to simplicial
polytopes (those whose facets are simplices). For example, M'f(c5, d, n)
is the maximum diameter of simple d-polytopes with n facets. Here and
in other cases involving superscripts, it may happen that there are no
polytopes of the sort in question. (For example, no simple 3-polytope
has an odd number of vertices.) We shall neglect this possibility in the
discussion below, restricting our attention implicitly to the case In which
polytopes of the sort in question do exist.

16.1 Extremal Diameters of d-Polytopes

Because of its connection with linear programming (to be described later)
the function M/(c5, . , . ) is especially deserving of study. Unfortunately, it is
also especially intractable. Most of the known results concerning minima
and maxima of diameters of polytopes are summarized below, where M v

stands for M v(c5, d, n) and so forth. ([r] and ]r[ are respectively the greatest
integer s; r and the least integer ~ r.) A few of the statements below must
be modified slightly when d = 2 or n = d + 1, but these cases are trivial
and will be ignored.

1. M v = M[ = [n ~ 2J + 1.

2. mv = m[ = 2 when d = 3, mv = m[ = 1 when d ~ 4.

3. M~ = [n ~ 2J+ 1 when d::; 3,

~ (d - 1)[;d -=- ~J+ 1 when n ~ 2
d.

4. m~ is between m~(p, d, n) and twice this integer ..

m~(p , d, n) ~ ]lo&_I((d - 2)n + 2)/d[,

with equality when n == 2 mod(d - 1).
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5. M f = Mj = [(d ~ I)nJ- d + 2 when d s 3 or n s d + 5,

except that M f(J, 4, 9) = 5.

(d - l)[~J - d + 2 ~ M f ~ 3d- S(6n - tad + 19) for d > 4.

6. mf ~ mf ; both are ~2, are = 2 when d = 3, but when d :2: 4 are
= ifor infinitely mallY values ofn.

[
n - 2dJ7. Mf:2: 2d _ 2 + 2, with equality when d ~ 3;

n + 2d(d - 2)
Mf ~ n - d, and ~ if the lower bound conjecture is

t
d(d - 1)rue.

8. mJ is between mj(p , d, n) and twice this integer ..

]lo&i_t((d - 2)n - d2 + 3d)/2[ ~ mj(p, d, n)

~ ]logd _t((d - I)(d - 2)v - d3 + 3d2
- 2)/d[,

with equality on the right if the lower bound conjecture is true and in par
ticular when d = 3.

A role in several of these results is played by the d-polytopes P(d,j),
where P(d,j) is generated by j + 1 (d - I)-simplices in Rd, situated in
parallel hyperplanes so that successive simplices are antihomothetic and
the relative boundary of each simplex is in the boundary of P(d,j). (Figure
16.1.1 is a Schlegel diagram of P(3, 2)). The simplicial d-polytope P(d,j)
has dU + 1) vertices, (2d - 2)j + 2 facets, diameter j (when j :2: 2) and
facet-diameter (d - I)j + 1. By the facet-diamet er of a polytope P is
meant the diameter of its polar, which of course is the smallest integer k
such that any two facets F and G of P can be joined by a sequence of
facets F 0 = F, F \0 • • . , Fk = G in which the intersection of any two
successive facets is a face of dimension d - 2.

For the equality 1 note that

[n ~ 2J + 1~ Mt(J,d,n) ~ Mv(J,d,n) s [n ~ 2J + 1.

The second inequality is obvious and the third (first noted by Griinbaum
Motzkin f1]) follows from the fact that since the graph of ad-polytope
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Figure 16.1.1

is d-connected, any two of its vertices can be joined by d independent
paths. The first inequality follows from a consideration of the polytopes
formed from P(d,j) by adding pyramidal caps over certain facets.

By pulling at vertices any d-polytope can be deformed into a simplicial
d-polytope whose facet-diameter is at least that of the original polytope.
By polarity it follows that M/(<5, d, n) = M'f(<5, d, n). The lower bounds in
statements 3,5, and 7 follow from properties of the polytopes P(d,j) or
their po lars, or of other polytopes closely related to these. For equality
when d = 3 use these polytopes, Euler's theorem, and the fact that
f = 2v - 4 for simplicial 3-polytopes while v = 2f - 4 for simple
3-polytopes. (Figure 16.1.2 is the graph of a simple 3-polytope of 16

Figure 16.1.2
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vertices and diameter 5, obtained from the polar of P(3, 2) by truncating
the polar at one of its vertices.) The first upper bound in statement 7
follows from the fact that on a simplicial polytope, a shortest path joining
two vertices does not revisit any facet. (See the discussion of Wv paths
below.) The second upper bound in statement 7 is based on 1 and the
lower bound conjecture. Th is disposes of 3 and 7, but the discussion of 5
will be continued later. Most of the above results have been taken from
Klee [12].

For statements 2 and 6 when d ~ 4, consider the neighborly polytopes.
For the 3-dimensional case, consider pyramids and bipyramids and recall
that the 3-simplices are the only 2-neighborly 3-polytopes.

To establish statements 4 and 8 let us consider an arbitrary simple
d-polytope P and vertex x of P. Let r = Px(P) and for 0 :s; i :s; r let v(i)
denote the number of vertices y of P such that Dp(X, y) = i. Let J(i) denote
the number offacets F of P such that min{Dp(X,y ) lYE F } = i. It is easily
verified that

v(O) = 1, v(1) = d, .. . , v(i) :s; (d - l)v(i - 1), · · ·,

v(r) :s; (d - l) v(r - 1)

J(O) = d,f(I) :s; d, ... ,f(i) :s; v(i), · . . ,f(r) :s; v(r)jd,

(*)

(**)

(***)

where the last inequality follows from the fact that the facets counted by
J(r) are pairwise disjoint and each has at least d vertices. Suppose P has v
vertices andJfacets in all. Then

r ,-I (d-l)'-1
v = i~Ov(i) :s; 1 + d j~o(d - l)i = 1 + d d _ 2

and consequently

r ~ 10gd_l«d - 2)v + 2)jd.

If the lower bound conjecture is true then v ~ (d - 1)(f - d) + 2
and from (***) it follows that

r ~ 10gd _l«d - l)(d - 2)J - d3 + 3d2
- 2)jd.

Without assuming the lower bound conjecture we see from (*) and (**)
that

, , -2 d2-3d 2(d-l)'
J = LJ(i) :s; d + d L(d - l)j + (d - 1)' - 1 = d~ ,

;=0 j = O 2

whence r ~ logj , I«d - 2)J - d2 + 3d)/2.
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To complete the proof of statements 4 and 8 we start with ad-simplex
Q(d, d + 1) and a distinguished vertex x of this simplex. The remaining
d vertices are designated as being of level 1. For d + 1 < j ::; 2d + 1,
Q(d,j) is obtained from Q(d,j - 1) by truncating the latter at one of its
level 1 vertices and replacing this vertex by a facet which has one vertex
at distance 1 from x and d - 1 vertices at distance 2 from x. The latter
vertices are designated as level 2 vertices ofQ(d,j), so that Q(d,2d +1J
has d(d - 1) level 2 vertices. For 2d + 1 < j ::; 2d + 1 + d(d - 1),

Figure 16.1.3

Q(d,j) is obtained from Q(d,j - 1) by truncating the latter at one of its
level 2 vertices and thus introducing d - 1 level 3 vertices. (Figure 16.1.3 is
a Schlegel diagram of Q(3, 13).) Continuing in this manner, we see that
for eachj > d the d-polytope Q(d,/) hasjfacets and its x-radius is equal
to r, where r is the largest integer for which

r r- 2

j - (d + d I. (d - 1)i) = k > O.
i=O

In the notation of statements (*) and (**) we have
v(O) = 1, j(O)=d, v(1)=j(l)=d, .. · , v(i) = f (i) = d(d - 1)i- t, .. . ,

ending when k = 1 with

vCr - 1) = d(d - 1)' -2, vCr) = d(d - ly-l

fer - 1) = d(d - 1),-2, f(r) = 1,
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v(r) = k(d - I)v(r - I) = d(d - 1)'-2,

f(r - I) = k .

It can be seen that the radius of Q(d,f) is actually equal to its x-radius,
and then the remaining assertions of statements 4 and 8 are derived by
straightforward computation.

Since the proof of statement 1 was so easy, and since radii seem to be
more tractable than diameters in connection with 4 and 8, it is interesting
to recall the observation of Jucovic-Moon [I] that M v(p. 3. n) ~ [nI4] + 1
and their conjecture that equality holds for n ~ 6. It seems plausible also
that M f(P, 3, n) = [nI2], but both of these conjectures are open. Note that
a k-gonal prism is a simple 3-polytope with 2k vertices, k + 2 facets, and
radius [kI2] + 1.

16.2 The Functions L\ andz,

Among the various functions considered above the one most intensively
studied (in terms of effort though not of success!) has been M f({)' " ').

The corresponding function for (not necessarily bounded) polyhedra
has also been studied. In order to describe the results obtained, and in
particular to complete our account of statement 16.1.5, we adopt a
simpler notation. A polyhedron P is said to be ofclass (d, n) provided that
n > d > 1 and P is a d-polyhedron which is pointed (has a vertex) and
has exactly n facets . Then L\(d, n) andL\b(d, n) are defined as the maxima
of {)(P) as P ranges respectively over all polyhedra of class (d, n) and all
polytopes of class (d, n). (Hence MJ{),d, n) = L\M, n).) Our account of
the functions L\ and L\b will be taken mainly from Klee-Walkup [1]. Some
of the exposition is borrowed from Klee [20].

The special interest in the functions L\ and L\b stems in part from the
connection of these functions with linear programming. A linear pro
gramming problem is that of maximizing or minimizing a linear function
tp, the objective function, subject to a finite number of linear constraints.
The polyhedron defined by the constraints is called the feasible region
of the problem. It may be difficult to determine the exact class of this
region from the constraints, but the form of the constraints does impose
some immediate limitations on the class, since (for example) a region
defined by n linear inequality constraints in d real variables is a poly
hedron of dimension at most d and has at most n facets. Thus for the study
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of polyhedra in connection with linear programming it seems reasonable
to group the polyhedra according to class and to study the behavior,
with respect to feasible regions of a given class, of the notions and pro
cedures of linear programming.

If a linear function qJ is bounded above on a pointed polyhedron P,
the maximum of qJ on P is attained at some vertex of P ; if sup qJP = 00

then some vertex of P is incident to an unb ounded edge E such that
sup qJE = 00 . The subject of linear programming is concerned with
practical methods for finding such a vertex of P. Since P is given not in
terms of its vertices but rather as the intersection of a finite family of
halfspaces (corresponding to the linear con straints), it is generally not
practical to examine all vertices of P. The most common pro cedures for
the solution of linear programming problems are based upon various
rules for the con struction of paths on polyhedra. Having found a vertex
of the feasible region , one applies the rule to produce a path leading from
that vertex to a maximizing vertex. But if P is any polyhedron and x and y
are vertice s of P such that 8p(x, y) = 8(P), it is easy to con stru ct a linear
function qJ whose maximum on P is attained only at y; if x is chosen as the
initial vertex in solving the problem of maximizing <p on P, the resulting
path will be of length at least 8(P) regardless of the rule bywhich it is formed .
Thus tl(d, n) represents, in a sense, the number of iterations required to
solve the 'worst' linear program of n inequalities in d variables using the
'best' edge-following algorithm. (All the algorithms in current use produce
paths along which the value of <p is increasing. For a discussion of the
lengths of such paths, see the next chapter.)

The numbers tlb(d,2d) are also of interest in connection with an ex
change procedure for positive bases . Suppose X and Yare disjoint
minimal positive bases for Rd - I (that is, sets of cardinal ity d positi vely
spanning Rd

-
I

), and suppose each d-pointed subset of Xu Y is linearly
independent. Let C denote the set of all convex relations on X u Y, so that
the members of C are those nonnegative functions }' on X u Y such
that

L )'(p) = 1
peX vY

and L )'(P)p = O.
pe X vY

Then C is a polytope of class (d, 2d), there is a natural correspondence
between the vertices of C and the minimal positi ve bases contained in
Xu Y (Davis [3]), and vertices corresponding to bases A and Bare
adjacent if and only if the symmetric difference of A and B cons ists of two
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points. Hence there is a sequence of minimal posit ive bases,

X = XO,X l>"',Xk = Y,

349

of length k S; tl b(d, 2d), in which each X i is obtained from its predecessor
by the exchange of a single element. Further , tl b(d,2d) is the smallest
integer such th at this is true for all X and Y as described. See Klee [21]
for more details.

Cle arly tl(d, d + 1) = tlM, d + 1) = 1. The other known values of
tl and tlb a re tabulat ed below, where as terisks ind icate that each column
is constant from the main diagonal downward (Klee-Walkup [1]) and
thus provide another reason for emphasis on th e numbers tl(d, 2d) and
tl b(d,2d).

n -d
2 3 4 5d

2 2 3 4 5 ~(2, n) = n - 2
3 * 3 4 5 ~(3, n) = n - 3

~
4 * 5 ?
5 * ?

n-d
2 3 4 5 6d

2 2 2 3 3 4 ~b(2, n) = [n/2]
3 * 3 3 4 5 ~b(3, n) = [2n/3] - 1

~b 4 * 4 5 ?
5 * 5 ?
6 * ?

A conjecture of W. Hi rsch, reported by Dantzig [1], pp. 160 and 168,
asserts th at tl b(d, n) S; n - d. It will be called here the bounded Hirsch
conjecture, and its specia l case tlb(d, 2d) = d will be call ed the bounded
d-step conjecture. (As the table shows, the corresponding assertions for tl
a re correct when d S; 3 but false for d = 4.)

The work of Klee-Walkup [1] contains various ' reduction ' theorems
in addi tion to the one asserting that tl(d, n) = tl(n - d,2n - 2d) when
n ~ 2d . For exa mple, it is sufficient to consider simple polyhedra and
simple polytopes when determining tl(d, n) and tlb(d, n), and when n ~ 2d
it suffices to consider Dp(X, y) for vertices x and y not on an y common
facet of P. In determining tl(d, n) it suffices to consider vert ices x and y
which are incident to unbounded edges of P. We sha ll not discu ss the
proofs of these red uction theorems, but we do want to outline the proofs
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that Ab(4, 8) = 4 while the numbers A(4,8), Ab(4, 9) and Ab(5, 10) are all
equal to 5.

A (do, d I' . ", dk)-path on a polyhedron P is a sequence (F0, F h ' ", Fk)
of faces of P such that F, is of dimension d, and F, intersects Fi - I . Two
vertices x and yare said to be joined by such a path provided x E F°and
y E Fk ' A face of P is called an x-face provided it is incident to x. A
d-dimensional Dantzig figure is defined as an ordered triple (P, x, y)
where P is a d-polyhedron with exactly d x-facets, exactly d y-facets, and
2d facets in all (see Dantzig [2]). The edge-facet diagram (or ef-diagram)of
(P, x, y) is a directed bipartite graph having 2d nodes in all, each identified
with a certain facet of P. The arcs of the efdiagram represent the (1, d - 1)
paths joining x to y and y to x . For example, the diagram includes an
arc from an x-facet F to a y-facet G if and only if the x-edge not in F
terminates on G. Figure 16.2.1 depicts the Schlegel diagrams of two 3
dimensional Dantzig figures and also their ef-diagrams. (In the second
Schlegel diagram the polyhedron is unbounded and the arrows represent
unbounded edges.

X "''---------"71
F; ~ t;

() () ()
o 0 0
G, Gz G3

Figure 16.2.1
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The ef-diagram is defined in terms of the (1, d - l)-paths joining the
distinguished vertices x and y of a Dantzig figure, but it also contains
information about the (1,d - 2, I)-paths joining x and y. Klee-Walkup
show that on a simple Dantzig figure, such a (1, d - 2, l)-path exists
except when the ef-diagram has exactly two arcs (F I' GI ) and (F 2' G2 )

and two arcs (Gb F 2 ) and (G2 , Fd with F I # F 2 and G I # G2 (as in
Figure 16.2.2). The exceptional case requires in particular that only two

F, Fz
o 0

lXl
G, Gz

~
o

Figure 16.2.2

t:
o

x-edges and only two j-edges are bounded. Thus a bounded simple Dantzig
figure (P, x, y) always admits a (1, d - 2, l l-path (f, Q, g) from x to y
(figure 16.2.3). The (d - 2)-polytope Qhas at most 2d - 2 facets, and each
of them is the intersection of two x-facets of P with a y-facet of P or of
two y-facets with an x-facet. Let these two different sorts of facets of Q
be assigned to classes f!{ and ilJI respectively, and let X and Y consist of all
vertices of Q which are entirely surrounded by f!{-facets and ilJI-facets
respectively . It can be verified that card f!{ :$ d - 1 and X consists of all
vertices of Q which are adjacent to x; similarly for ilJI, Yand y. The exis
tence of (f, Q, g) shows that both X and Yare nonempty. When d = 4
then Q is 2-dimensional and there is obviously a path of length 2 from
a point of X to a point of Y. Hence it is possible to go from x to y in four
'steps' and the bounded 4-step conjecture is established. Similarly, when
d = 5 it is proved by Klee-Walkup that Q admits a path of length 3

Q is a (d - 2) - polytope with at most 2d - 2 facets

Figure 16.2.3
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joining a point of X to a point of Y, and this proves the bounded 5-step
conjecture. On the other hand, the y give an example of a system
(Q, s: tfY, X, Y) in which Q is 4-dimensional and the above conditions
a re all satisfied even though Qdoe s not admit an y path of length 4 from
a point of X to a point of Y. Thus their method doe s not apply to the
bounded 6-step conjecture, which remains open. It is known only that
6 ~ ~b(6, 12) ~ 9.

For the bounded 4-step conjecture there is a much simpler proof than
the one just indicated. Merely note that each x-edge terminates on a
y-Iacet, where the latter is a 3-polytope having at most 7 facets and hence
of diameter ~ 3. Thus when (P, x, y) is ad-dimensional Dantzig figure
with d ~ 4, every x-edge is the start of a path of length ~ d from x to y.
An example of Klee-Walkup shows this is not the case for d ~ 5.

Klee -Walkup construct a 4-dimensional simple Dantzig figure (P, x, y),
necessarily unbounded, whose ef-diagram is as in figure 16.2.3 and which
therefore admits no (1,2, 1)-path from x to y. Since the figure is simple
it follow s easil y that there is no (1 , 1, 1, I)-path from x to y and hence
~(4, 8) :2: 5. By considering products of P with itself it is seen that

~(d, 2d) :2: d + [d/4 ].

The intersection of P with a suitable halfspace is a pol ytope of class (4, 9)

and diameter 5. From reason ing similar to the short proof of the bounded
4-step conjecture given above, using the fact that ~(3, 7) = 4 = ~b(3, 8),
it then follows that

~(4, 8) = -S = ~b(4, 9).

To complete our account of statement 16.1.5 we still must establish
the upper bound on ~b(d, n). The argument for thi s is based on an idea of
Barnette [2], who proved a similar theorem. Let us say that a pair of
positive numbers (a, b) is d-admissible provided that ~b(d, n) ~ an - b
for all n > d, and (d, m)-admissible provided that ~M, n) ~ an - b
for all n :2: max(m,d + 1). We shall prove the following.

1. If (a, b) is d-admissibl e then (3a,3a + 3b) is (d + 1)-admissible and
(3a,5a + 3b) is (d + 1,3 + b/a)-admissible .

Consider an arbitrary polytope P of class (d + 1, n), and vertices x
and y of P. If an x-facet F of P intersects a y-facet G at a vertex q then

<5 p(x , y) ~ <5 F(x , q) + 15 G(q, y) ~ 2~b(d,n - 1) ~ 2an - (2a + 2b),

for F and G are d-polytopes and each has at most n - 1 facets . Suppose,
on the other hand, that no x-facet intersects a y-facet, and let F 1, F2, • • . , Fk
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be a shortest sequence of facets such that x E F l' Y E Fb and F, intersects
F j + 1 for 1 ~ i < k. Then of course k ~ 3. From the minimality of k
it follows that none of the other facets of P can intersect more than three
F/s and that two Fj's cannot intersect unless they are neighbors in the
sequence. Since each facet of F j is the intersection of F j with a facet of P,
it folIows that

k

L (number of facets of F j ) ~ 3(n - k) + 2(k - 2) + 2 = 3n - k - 2
i= 1

and consequently

bp(x, y) ~ (3n - k - 2)a - kb ~ 3an - (5a + 3b).

The maximum of 2an - (2a + 2b) and 3an - (5a + 3b) is at most
3an - (3a + 3b), and if n ~ 3 + bla the maximum is 3an - (5a + 3b).
This completes the proof of theorem 1.

Now since (2/3,1) is 3-admissible it folIows from theorem 1 that
(2,19/3) is (4, 9/2)-admissible and hence (2, 7) is 4-admissible. To establish
the upper bound in statement 16.1.5 we show that (2 · 3d

-
4

, (10d - I9)3d- S)
is d-admissible for alI d ~ 4. This has been done for d = 4 and we proceed
by induction. If the statement is known for d then theorem 1 implies that
the pair

(3 ·2 ·jd -4,5·2 ·3d- 4 + 3(10d _I9)3d- S)

= (2· 3(d+ 1) -4, (IO(d + 1) - I9)3(d+l)-S)

is (d + 1, m)-admissible for

(lOd - 19)3d
-

S

m = 3 + 2. 3d-4
lOd - 1

6

But then the parr III question is in fact (d + Ij -admissible, for when
d < n < m we have n < 2d and hence

~M,n) ~ 1 +~M - I,n - 1).

Note that theorem 1 applies also to admissibility as defined for ~

rather than ~b ' From reasoning similar to that just employed, using the
fact that (1, 3) is 3-admissible for ~, it folIows that

~(d, n) ~ 3d
-

4(3n - 5d + 6)

for n > d > 3.
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16.3 Wv Paths

An easy construction shows that always Li(d, n) ~ n - d, and it follows
from results of Klee-Walkup [1] that the inequality is strict whenever
d ~ 4 and n - d ~ 4. It remains to show Li(3, n) = n - 3, a result which
follows from the existence of Wv paths on 3-polyhedra.

A path (x o, x l ' ... , x k ) on a polyhedron P is called a Wv path provided
that it does not revisit any facet F-that is, provided Xj E F whenever
i < j < m and Xi> X m E F. The notion is related to the Hirsch conjecture,
for on a polyhedron of class (d, n) any Wv path (xo, x l ' .. " Xk) is of length
:;;;; n - d. To see this note that for 1 :;;;; i :;;;; k there is a facet F, such that
Xj-l E F, but x, 1: F j • Further, the vertex x; is incident to at least d facets
Fk+ l' .. " F k + d • The Wv condition implies the listed facets are all distinct
and hence k + d :;;;; n. Wolfe and Klee have conjectured (Klee [19]) that
any two vertices of a polytope can bejoined by a Wv path . Klee-Walkup [1]
have proved that for simple polytopes this conjecture, the bounded
Hirsch conjecture, and the bounded d-step conjecture are equivalent,
though not necessarily on a dimension-for-dimension basis.

Let us show that any two vertices x and y of a 3-polyhedron P in R 3

can be joined by a Wv path, whence Li(3, n) = n - 3. If P is bounded let
q be a vertex of P other than x or y, let H be a plane intersecting P only
at q, and let n be a projective transformation of R 3 carrying H onto the
plane at infinity. Then nP is an unbounded polyhedron and every Wv

path from nx to ny on nP corresponds to a Wv path from x to y on P.
Thus it suffices to consider the case in which P itself is unbounded. In
this case there is a ray J in P and there are parallel planes H' and H in R 3

such that J intersects H' at a single point c, H is disjoint from P, and all
vertices of P lie in the open strip S between H' and H. Let r denote the
transformation which carries each point s of S onto the intersection of H
with the ray from c through s. Although r is not defined on all of P, the
full combinatorial structure of P is represented in P n S and the boundary
complex of P n S is carried by r onto an isomorphic cell-complex $" in
the plane H. Every Wv path from x to yin $" corresponds to a Wv path
from x to y on P. Let Il be a path from rx to ry in $" such that the Euclidean
length of Il is a minimum. If Il should revisit any cell K of $", then (since K
is convex) it would be possible to replace a portion of Il with a shorter
path in the boundary of K . This implies that Il is a a-;, path and completes
the proof.

For additional information on Wv paths and related notions see
Barnette [2] and Klee [17, 19]. Barnette shows that if two vertices of a
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3-polytope do not share a facet they can be joined by three independent
Wv paths. Klee [17] shows that if a linear form cp is bounded above on a
3-polyhedron P, then every vertex of P can be joined to a cp-maximizing
vertex of P by a Wv path along which cp is steadily increasing.
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16.4 Additional notes and comments

The Hirsch conjecture, the d-step conjecture , and the Wv-conjecture (which is
also known as the non-revisiting path conjecture), presented in sections 16.2
and 16.3, are equivalent (page 354), though this is still not known to be true
if the dimension is fixed. They have been of central interest and thus have
been actively studied from various points of view, following the appearance of
this book and the Klee-Walkup [a] paper. Nevertheless, the trio of conjectures
remains as one of the key open problems of polytope theory.

An extensive survey, representing the state-of-the-art in 1986, is Klee-Klein
schmidt [a]. For later developments see Klee-Kleinschmidt [b] and Ziegler [a,
Sect. 3.3].

Updated tables.
It seems that only two entries have been added to the tables on page 349 since
the writing of the book: Goodey [a] proved 6b(4, 10) =5 and 6b(5, 11) =6.

General bounds.
The best currently available general upper bounds for 6(d,n) and 6 b(d,n) are

6(d,n) ::; 2·n1og(d)+ 1

due to Kalai [h] and Kalai-Kleitman [a] (see also Ziegler [a, Thm. 3.10]), and

by Barnette [f], improving on Larman [a]. The latter shows that in any fixed
dimension the diameter is indeed bounded linearly in the number of facets.

With respect to lower bounds we know that the Hirsch conjecture is best
possible for large dimensions (and bounded polyhedra), since 6 b(d,n) ~ n - d
holds for n > d ~ 8 (Holt-Klee [b], Fritzsche-Holt [a]).

Special cases.
An interesting class of polytopes for which the Hirsch conjecture is known
to be true is given by the O/I-polytopes (convex hulls of subsets of {O, l}d),
see the notes in section 4.9. Naddef [a] proved that ad-dimensional 0/1
polytope has diameter at most d with equality if and only if the polytope is
the d-cube; an extension by Kleinschmidt-Onn [a] is that polytopes with ver
tices in {a,1, . . . ,k}d have diameter at most kd . Deza-Onn [a] showed that any
d-polytope P C J?d for which Pn Zd is the set of vertices of P has diameter at
most const ·d3.
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Moreover, the Hirsch conjecture and some of its relatives have been proved
for various classes of polytopes that arise from combinatorial optimization
problems . For relevant references, see the survey articles of Klee-Kleinschmidt
[a] and Rispoli [a] and also the later papers Rispoli [b] and Rispoli-Cosares [a].

Klee [b] established the Hirsch conjecture for the duals of cyclic polytopes .
Kalai [g] proved an upper bound of d2(n - d)d logn for the duals of d-dimen
sional neighborly polytopes with n vertices.

Monotone versions.
For a polyhedron P C Rd and a linear objective function cp in general posi
tion, let o(P, cp,v) be the length of a shortest increasing (with respect to cp)
path joining v to the cp-maximum vertex of P. Let ~""'(d,n) be the maximal
value that o(P, cp ,v) attains for all d-polyhedra P with at most n facets. Define
~t:(d,n) similarly for bounded polyhedra . Clearly, ~(d,n) ~ ~""'(d,n) and
~b(d,n) ~ ~t:(d,n).

Todd [a] showed ~t:(d,n) ~ n - d +min{[d/4], [(n - d)/4j) , thus disprov
ing the monotone Hirsch conjecture (which claimed ~t:(d,n) ~ n - d) . On
the other hand, Kalai [h] derived the upper bound for the diameter mentioned
above even for the directed setting:

The strong monotone Hirsch conjecture claims that o(P, cp, vrnin) ~ n - d holds
for every (simple) d-polytope P C~ with at most n facets, every linear func
tion cp in general position, and the cp-minimumvertex vrnin• This conjecture of
Ziegler [a, Conj. 3.9] is still open.

Generalizations .
Mani-Walkup [a] found a simplicial3-sphere whose dual cell-complex violates
the Wv-conjecture; from this, they derived an l l -dimensional counterexample
to the Hirsch conjecture for spheres. Altshuler [b], however, showed that these
spheres are not polytopal.

Barnette [i] describes two-dimensional polyhedral manifolds (of genus eight)
that do not allow Wv paths between certain pairs of vertices.



CHAPTER 17

Long Paths and Circuits on Polytopes*

A path (x o, x I ' . . " x k ) is called a simple path provided there is no repetition
among the Xi' S, and a simple circuit pro vided x , = Xo but there is oth erwise
no repetition. Any shortest path between two given vertices is simple.
Th e present chapter deals with longest simple paths and circuits on
polytopes and with some closely related notions.

A Hamiltonian path or Hamiltonian circuit for a polytope P is a simple
path or simple circuit which involves all vertic es of P. The study of
Hamiltonian circuits on the regular dodecahedron was initiated by
Kirkman and later popularized by Hamilton (see Tait [3], Ball [I]) as a
'game' . Since then there have appeared four lines of serious investigation
of long paths and circuits on polytope s. One was stimulated by the
conjecture ofTait [1,2,3] (1 880, 1884) that every simple 3-polytop e admits
a Hamiltonian circuit and his proof of the four-color ' theorem' from this.
Th e conjecture was supposedly proved by Chuard [I ] in 1932 but a
counterexample was finally given by Tutte [1] in 1946. Any such example
can be used to construct a simple 3-polytope not admitting any Hamil
tonian path. The minimal number of vertices for such examples is unknown
and is of interest in connection with a classification scheme for organic
compounds. A modification of Tail's conjecture is still of interest in
connection with the four-color problem. These and related matters are
discussed in the first section below.

When a polytope does not admit a Hamiltonian path, there are various
ways of measuring how close it come s to admitting one. For example,
one ma y consider the maximum number of vertices involved in a simple
path on the polytope or the minimum number of disjoint simple paths
covering all vertices . Such measurements are discussed in the second
section below . They are of interest in connection with path-following
search procedures which have been suggested for finding all vertices of a
polytope (Balinski [2]).

For maximizing a linear form cp on a polytope P, the usual linear
programming algorithms produce a path (x o, X 1> •• " Xk ) such that

• Thi s chapter was written by Victor Klee.

356
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cp(xo) < cp(xd < .. . < CP(Xk) = max tp]' , As a guide to the amount of
computation time required, it is desirable to estimate the lengths of such
paths produced by various rules for progressing from one vertex to the
next. Estimates of this sort are given in the third section below.

In most of the research concerning paths on polytopes attention has
been directed at some large class of polytopes and theorems have been
sought which would apply to all members of the class. When individual
polytopes have appeared in studies of this sort it has been because of their
special relationship to the class rather than because of any intrinsic
importance which they might have. However, two lines of investigation
have concerned paths on particular polytopes. One of these, mainly
of historical interest, is Hamilton's 'game' mentioned earlier. The other,
concerned with paths on cubes and motivated by certain coding problems,
is discussed in the fourth section below.

17.1 Hamiltonian Paths and Circuits

For any graph G, J1(G) will denote the minimal number of pairwise dis
joint simple paths (including those consisting of a single vertex) in G
covering all vertices of G. Now suppose A and B are complementary
nonempty sets of vertices of G, GA is the subgraph formed by A together
with all edges having both endpoints in A, and GB is similarly defined with
respect to B. Any simple path in G can be decomposed in a natural way
into alternating sequences of simple paths in GA and simple paths in GB •

Thus G admits no Hamiltonian circuit if J1(GA) > card B and admits no
Hamiltonian path if J1(GA) > 1 + card B. To construct a simplicial
d-polytope P which admits no Hamiltonian circuit, start with a (d - 2)
simplicial d-polytope Q whose numberh-l offacets exceeds its number fo
of vertices; then form the Kleetope P = QK (see section 11.4) by adding
a pyramidal cap over each facet of Q. If G denotes the graph of P, B the
vertices of Q, and A the 'new' vertices of P, then J1( GA) = h - 1 > fo = card
B and hence P admits no Hamiltonian circuit; if fd- 1 > fo + 1 then P
admits no Hamiltonian path. This construction, which is possible for all
d ~ 3, is similar to those described by T. A. Brown [3] and Moon-Moser
[1]. Taking for Q a triangular bipyramid and then a quadrangular bi
pyramid, the resulting Ps are simplicial 3-polytopes having f-vectors
(11,27, 18)and (14,36,24) respectively, the first admitting no Hamiltonian
circuit and the second no Hamiltonian path. Coxeter [1], p. 8 (see also
Coxeter-Rosenthal [1]), has similar examples whosefvectors are (11,18,9)
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and (14,24, 12) (the rhombic dodecahedron), but his polytopes are not
simplicial. It would be interesting to determine the minimum number of
vertices, edges and facets for d-polytopes or simplicial d-polytopes not
admitting Hamiltonian circuits or paths. In this direction, D. Barnette
has proved that any 3-polytope with less than II vertices admits a Hamil
tonian circuit.

Let us now describe the example of Tutte [I] showing that a simple
3-polytope need not have a Hamiltonian circuit. The first step is to notice
that if Q is a pentagonal prism and A, B, C, D, E is a cyclic list of the five
edges joining one pentagon to the other then Qdoes not admit a Hamil
tonian circuit using both A and C. From this it follows that the graph Q'
depicted below (figure 17.1.1) admits no Hamiltonian circuit using both

Q'

Figure 17.1.1

A * and C* and hence none using both A' and C' ; this in turn implies that
every Hamiltonian circuit of Q" (in figure 17.1.2) uses the edge G. With
w, x, y and z as in figure 17.1.2, let T denote the graph resulting from Q"
by removing w and the edges incident to it. Within combinatorial equiva
lence , T can be represented as in figure 17.1.3,and since every Hamiltonian
circuit of Q" uses G it is clear that T admits no Hamiltonian path from y
to z.

The original example of Tutte [1] consists of three copies of Tassembled
as in figure 17.1.4. Any Hamiltonian circuit for this graph must (for
i = 1,2,3) intersect T, in a Hamiltonian path for 1'; which has x, as one
of its endpoints. But then each of the edges UX!, UX2' and UX3 is used by the
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G

Q"

Figure 17.1.2

x

T
y<S---- -L -4:>Z

Figure 17.1.3

circuit and this is impossible. Tutte's example has 46 vertices. A modifica
tion M with only 38 vertices has been discovered independently by
Lederberg [2], Bosak [1] and D. Barnette. It consists of two copies of T
joined as in figure 17.1 .5. IfT, and T2 are shrunk to points in M the resulting
graph is combinatorially equivalent to a pentagonal prism Q, with A
and C playing the same roles they played earlier. Any Hamiltonian circuit
for M would use the edges u,x, and U2X2, hence would give rise to a
Hamiltonian circuit for Qusing A and C. Thus M admits no Hamiltonian
circuit.
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Figure 17.1.4

Balinski r1] asked whether every simple 3-polytope admits a Hamil
tonian path, and counterexamples were supplied independently ~Y

T. A. Brown [1] and Griinbaum-Motzkin [1]. Suppose G is a graph
which admits no Hamiltonian circuit, and the 3-valent vertex v of G is
incident to edges E 1, E2 and E3 • Let G; denote the graph obtained from G
by splitting v into three l -valent vertices Vi incident only to Ei . Suppose
G; is a subgraph of a graph Wand is separated from the rest of W by
removal of the v/s. Any Hamiltonian path for W which originates outside
G; or at one of the v/s must use one or three of the edges E i , for otherwise
it generates a Hamiltonian circuit for G: Thus if G is the graph of figure
17.1.5 and three copies of G; are joined after the pattern of figure 17.1.4,
the resulting graph of 112 vertices admits no Hamiltonian path. (As it did
for the earlier examples, Steinitz's theorem 13.1.1 guarantees that this
graph really corresponds to a 3-polytope.) T. A. Brown has found (private
communication) the example of figure 17.1.6, which has only 90 vertices .
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A x,
r----,----...qu,

f---..L---...qU2
C X

2

Figure 17.1.5

361

Each of the 'triangles' I; has twelve vertices in addition to the three
which are shown, and there is an isomorphism of I; onto the graph of
figure 17.1.3 carrying Xi' Yi and z, onto X, Y, and Z respectively . Let B
denote the entire graph and G [respectively H] the graph obtained from
it by collapsing all the vertices Xi> Yi and z, for 4 :s; i :s; 6 [respectively
1 :s; i :s; 3] and all edges joining these vertices into a single vertex u
[respectively v].Then Gadmits no Hamiltonian circuit, for it is isomorphic
with Tutte's example (figure 17.1.4), and it is also seen that H admits no
Hamiltonian circuit. Thus any Hamiltonian path for B uses one or three
of the edges [X 1,Y4 ], [XZ'Y5] and [X3,Y6]; indeed, it uses all three, for
otherwise it would give rise to a Hamiltonian path for G starting at u
and it can be seen no such path exists. We may assume the path starts
in T1 u Tz U T3 and first enters T4 u T5 U T6 by mean s of the edge
[x I' Y4]. Suppose it leaves T4 at 2 4 , Then it must later return to (and end in)
T4, for T4 admits no Hamiltonian path from Y4 to Z4' If the path leaves
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Figure 17.1.6

Ts at z, it fails to use the edge [X2, Ys]. Ifit leaves Ts at Ys it enters T6 at Y6
and (in order to return to T4) leaves T6 at Z6, thus omitting at least one
vertex of T6 (since T6 admits no Hamiltonian path from Y6 to Z6)' A
similar analysis disposes of the case in which the path leaves T4 at X4'

Lederberg [1,2] came to the problem of Hamiltonian circuits in seeking
a systematic way of describing organic molecules which could facilitate
the application in organic chemistry of modern methods of information
retrieval. With most of the ring compounds there is associated (after some
intermediate steps) a 3-valent (gl'3)-realizable graph or a combination
of such graphs. It is important to have some sort of canonical represen
tation for the graphs as well as an efficientalgorithm for determining when
two of them are isomorphic, and Hamiltonian circuits are useful in these
connections. For a 3-valent graph, whose 2k vertices Xl' X 2,' •• , X 2k

appear in this order on a Hamiltonian circuit. order the k chords of the
circuit according to their first vertices and then list the sequence of spans
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of the successive chords. If the ith chord joins X a to X b (with a + 1 < b)
the il b term of the sequence is b - a-I. The graph is fully determined
by this sequence of spans, which may thus serve as a canonical represen
tation of the graph. It would be of interest to determine which sequences
can be obtained in this way. (Other canonical representations may arise
from other Hamiltonian circuits. Figure 17.1.7 gives the canonical
representations associated with certain Hamiltonian circuits of the cube

(4,2,4,2)

19

20

(6,3 , 15, 12,9,6,3,9,6,3)

Figure 17.1.7

3
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and the dodecahedron.) For another type of canonical repre sentation
and a discussion of isomorphism, see Lederberg [2]. (And for a different
connection between polytopes and organic chemistry, see Schultz r1].)

The purposes for which Lederberg employs Hamiltonian circuits could
perhaps be served by Hamiltonian paths, though the greater multiplicity
of Hamiltonian paths for a given polytope leads to an increased number of
canonical repre sentat ions and hence to increased complexity in choosing
a particular repre sentation as the canonical form of the polytope. In
order to determine the range of applicability of Lederberg's canonical
form s, it would be of interest to determine the minimum number N ;
[respectively N p] of vertices for a 3-valent 3-polytope not admitting an y
Hamiltonian circuit [respectively path]. The examples described earlier
show that N; :$; 38 and N p :$; 90. Working from a list of 3-valent 3-poly
topes prepared by Grace [11 (see section 13.6), Lederberg [2] concludes
that N c ~ 20. Grace's list may be incomplete, but the conclusion is sup
ported by an independent argument of D. Barnette.

Tutte [1] showed that in an arbitrary 3-valent graph , each edge is used
by an even number of Hamiltonian circuits ; from this it follows that the
graph admits at least thre e Hamiltonian circuits if it admits an y at all.
For a related result see Kotzig [1]. Bosak [1] characterized the 3-valent
graphs admitt ing an even number of Hamiltonian circuits. Extending
an earlier theorem of Whitney [ I ], Tutte [3] proved that every 4-connected
planar graph admits a Hamiltonian circuit. Note that the graph of a
simplicial 3-polytope P is 4-connected if and only if every triangle formed
from the edges of P is the boundary of a facet of P.

As was mentioned earlier, there is a connection between Hamiltonian
circuits and the famous conjecture that an y 'map' on a 2-sphere can be
colored with four colors in such a way that no two neighboring 'countries'
are assigned the same color. Without going into detail as to what con 
stitutes a 'map', we note the conjecture is equivalent to saying the facets
of any simple 3-polytope can be divided into four classes so that no
edge is incident to two facets in the same class. (For discussions of the
history and of various reductions of the four-color conjecture, see Ball [1],
Franklin [1], Hasse [1], Ringel [1] and Hunter [1].) If a 3-polytope admits
a Hamiltonian circuit there is an easy way of effecting such a division
of its facets, for every edge not used by the circuit cuts across one of the
two regions into which the surface of the polytope is separated by the
circuit, and thus there is a natural ordering of the facets contained in a
particular region ; let those in one region be colored alternately red and
green , and those in the other region alternately black and white .
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Figure 17.1.8

365

A simple 3-polytope is called cyclically k-connected if its graph cannot
be broken into two separate parts, each containing a circuit. by the removal
offewer than k edges. The polytopes of figures 17.1.4and 17.1.5 are cyclic
ally 3-connected but not cyclically 4-connected. The four-color problem
can be reduced to the case of cyclically 4-connected polytopes but Tutte
[4] and Hunter [1] have produced such polytopes admitting no Hamil
tonian circuits. Hunter found the cyclically 4-connected simple 3-polytope
shown in figure 17.1.8 above, which has 58 vertices, no triangular or
quadrangular facets, and which admits no Hamiltonian circuit. (It does
admit a four-coloring, as shown by Hunter.) G. D. Birkhoff'[I] reduced the
four-color problem to cyclically 5-connected 3-polytopes, and Hunter [1]
conjectured that these all admit Hamiltonian circuits, but a counter
example was recently found by Walther [1] (see figure 17.1.9).

In concluding this section, we should like to say something about
Hamiltonian paths and circuits on simple polytopes of dimension d > 3.
However, very little is known, and in particular it is unknown whether
such polytopes always admit Hamiltonian paths or circuits . Two special
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cases have been studied and will be referred to later-the polars of cyclic
polytopes in section 17.2 and the cubes in section 17.4.

17.2 Extremal Path-Lengths of Polytopes

This section is devoted primarily to the path-length A(P), the maximum
number of vertices in a simple path on P. (The name is due to Brown [3].
In terms of our earlier use of the word length, A(P) is one more than the
length of the longest simple path on P.) Let us summarize what is known
about the function A, following the pattern of investigation applied to
the diameter function () in the preceding chapter. The statements 1 to 8
below refer to A, so that M; means MvP., d, n), etc .

1. M; =.M~ = n.

2. M~ :s; n, with equality if d :s; 3 or n == 2 mod(d - 1) or every simple
d-polytope admits a Hamiltonian path .
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{

2(d + 2)n10Kd2

3. mv s mC s
a(d)nt/ld/2) (for some constant a(d) depending on d but

not on n).

{

2n + ~1 + i

2 IOg2 n - 5 ~ mv ~ mC ~

8n1oK, 2

when d = 3.

for n - 2 == i mod 3

r: (d - 2)n + 2
4. y' d (I0gd-t d + 1 - d) ~ m~ ~ n, with equality on the

right if every simple d-polytope admits a Hamiltonian path .

(d - 2)n + 2 + d 2 v
dlogd-t d - [d /2] ~ mv when d ~ 6.

3 log2(n + 5) - 9 < m~ < 2n" (for some constant lX < 1) when d = 3.

(
n- [Cd + 1)/2]) (n - [Cd + 2)/2] )

5. + ~Mf~MJ'
n-d n-d

with equality throughout if d ~ 8 or n ~ d + 3 or n ~ (d/2)2 - 1 or the
upper bound conjecture is true .

[
n - 2J6. Mf ~ d _ 1 + d

fn - 2J
Mf s Ld _ 1 + d

bound conjecture is true.

if n == 2mod(d - 1).

if d ~ 3 or n ~ d + 3 or the lower

is true.
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when d = 3.

{

n + 15 + i

n + 4 3
2 1og2- 2- S; m, S; ~ S; 8(" ; 4)'"'"

for n/2 == i mod 3

8. m'f .$ (d - l)(n - d) + 2, with equality if every simple d-polyt ope
admits a Hamiltonian path and the lower bound conjecture is true.

3 log2(2n + I) - 6 < m'f < 2(2n _A)a

(for some constant C1. < I) when d = 3.

To ju stify statements 1 and 5, consider the cyclic polytopes studied by
Gale [4] (compare section 4.7). For d > 3 each cyclic d-polytope is
2-neighborly and hence adm its a Hamiltonian circuit. Gale's characteriza
tion of the facets of cyclic polytopes can be used to ident ify the edges of a
cyclic 3-polytope and show it admits a Hamiltonian circuit : statement I
follows. The same characterization was used by Klee [19] to show all the
facets of a cyclic d-polytope can be arranged in a sequence Fo, FI , ••• , Fk

such that Fk = Fo, there is otherw ise no repetition, and Fj _ 1 n F, is a
(d - 2)-face for 1 .$ i .$ k. Thus the polars of cyclic polytopes admit
Hamiltonian circuits. Statement 5 follows from this fact in conjunction
with Gale's [4] count of the facets of a cyclic polytope and the known
cases of equality for the upper bound conjecture (Fieldhouse [1], Gale [5],
Klee [13] ; compare section 10.1).

To establish statement 2 and the first part of 8 we construct, for each
k > d, a simple d-polytope which has k facets, (k - dHd - 1) + 2 vertices,
and admits a Hamiltonian circuit. Start with a d-simplex for k = d + 1
and then proceed by successive truncation. Observe that if ad-polytope Q
admits a Hamiltonian circuit, and ifP is a d-polytope formed by truncating
Q at a d-valent vertex x, then P adm its a Hamiltonian circuit.

If a simplicial d-polytope P has n facets and v vertices, and if the lower
bound conjecture applies to P, then n ;;::: (d - IHv - d) + 2 and conse
quently A.(P) .$ v.$ [(n - 2)/(d - 1)] + d. This establishes part of state
ment 6. For the other part, start with a Hamiltonian circuit on ad-simplex
PI ' Having constructed, for j ;;::: 1, a simplicial d-polytope Pj with
j(d - I) + 2 facets and d + j vertices in a Hamiltonian circuit, construct
Pj + I by add ing a pyramidal cap over a facet of Pj which is incident to
some edge of the circuit. Then Pj + I admits a Hamiltonian circuit and the
procedure can be continued.
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The lower bound in statement 3 is due to Barnette [1] and is based on
his theorem asserting that all n vertices of any (g>3)-realizable graph can be
covered by a tree T of maximum valence 3. If (XI, "' , Xk) is a longest
simple path in T and if j = [(k + 1)/2] then for each i there are at most
3 ·2;- I vertices y such that c5 T (x j ' y) = i. Thus n :::; 1 + 3 I{= I 2;- I,

whence j ~ log2((n + 2)/3), and since k ~ 2j - 1 the desired conclusion
follows.

When d = 3 the lower bound in statement 8 follows from that in 4.
For the lower bounds of statement 4 we combine an earlier result on
diameters with a theorem on lengths of simple paths in d-connected graphs
of given diameter. In preparation for this let us define an n-ladder as a
graph formed from two disjoint simple paths (x I' X2, •• • , xn) and
(y I> Y2, . . . , Yn) (the sides of the ladder) together with n additional edges
(the rungs) establishing a biunique correspondence between the x;'s and
the Y/s. Thus an n-ladder has 2n vertices and 3n - 2edges, with each vertex
of valence 3 except the four end vertices XI' x, ; YI and Yn ' Let v(n) denote
the largest integer k such that every n-ladder admits a simple path using
k or more rungs.

9. For any d-connected graph G of diameter b,

2(G) > v(d)(b + 1 - d);

if v(d) = d then

2(G) ~ d(b + 1) - [d2/2].

PROOF Let Xo and Yo be vertices of G such that bG(xo, Yo) = (j . For
as: 3 a simple path of length d(b + 1) - [d2/2] is contained in the sub
graph formed by d independent paths from Xo to Yo' Now suppose d ~ 4
with d = 2u or d = 2u + 1; we may assume b > u. Let (xo, XI"'" Xu ,
" ' , Yo), (XO,x-I"",x-u,""Yo), (xo," ',Yu,"',YI'YO) and (xo," "
Y-u' ... , Y-I' Yo) be four independent paths from Xo to Yo, whence
{x, Iu - d < i :::;; u} and {Yi Iu - d < i :::;; u} are disjoint sets of d vertices
each. Since G is d-connected a theorem of Whitney (see theorem 11.3.1)
guarantees the existence of d disjoint paths PI> . . . , Pd joining the vertices
of the first set to those of the second set. If Pkjoins X;(k) to Yj(k) the length
of P, is at least b - li(k)1 - v(k)l. Consider the d-ladder whose sides are
the two simple paths (Xu-d+I,''',X-I,XO,XI,' ' ',Xu) and (Yu-d+I ,"',
Y-I> Yo, Yl, . .. , Yu) and whose rungs join Xi(k) to Yj(k)' 1:::;; k:::;; d. This
ladder admits a simple path using v(d)rungs and the corresponding simple
path P in G contains v(d) of the paths Pk • When v(d) = d the total number
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of vertices in P is at least
d

L (15 + 1 - li(k)1- Ij (k)l) = d(15 + 1) - [d2/2]
k= I

and in any case it is more than
v(d)

L (15 + 1 - d) .
k =1

The lower bounds in statement 4 follow from 9 in conjunction with
statement 16.1.4 and the appropriate parts of the following result:

10. For n :::; 6, v(n) = n. For all n, fi :::; v(n) :::; [2n/3] + 2.

PROOF The assertions are obvious for n :::; 3. For n = 4, verify that
every 4-ladder is isomorphic to one of those shown in figure 17.2.1
(ignoring the broken segment s) and that everyone admits a Hamiltonian
path using all four rungs; indeed, such a path may be started at an
arbitrary end vertex. Now consider a 5-ladder L s with sides (Xl> "' , x s)
and (Ylo . . " Ys)' At least one rung joins Xi to Yj with i and j both odd . If
there is such a rung for which Xi or Yj is an end vertex we assume without
loss of generality that i = 1 and let L 4 denote the 4-ladder formed from
L s by removing the rung (XI ' y) and suppressing XI and Yj ' Then X2 is
an end vertex of L 4, so L 4 admits a Hamiltonian path (X2, . • .) using all
four rungs and (Yj, X I ' x 2 , · · · ) is the desired path for Ls . In the remaining
case (x 3, Y3) is the only candidate for (X i ' Yj) and L s is as in one of the last
two diagrams of figure 17.2.1 (including the broken segments ). These are
seen to admit Hamiltonian paths using all five rungs.

Figure 17.2.1
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The proof that Y(6) = 6, due to J. Folkman, will not be given here. That
.,;n :s; yen) follows readily from a theorem of Erdos-Szekeres [1] (see also
Kruskal [1]) asserting that any sequence of n integers admits a monotone
subsequence of at least .,;n terms. For the inequality, yen) :s; [2n/3] + 2,
consider the ladders shown in figure 17.2.2and others similar to them with
the central rung-configuration (Xi-I' Yi+ I), (Xi' Yi), (x.; 1>Yi-I) repeated
several times.

Figure 17.2.2

While establishing the upper bounds in statement 3 we shall prove the
following as well.

(
b(d») n < f di11. 1 - n l - I /[4/ 2 ) 3" - Mv(J-l, d, n)for some constant bed) depen mg on

d but not on n.

For n - 2=i(mod 3),

n-~+0 f n+2
3 :s; Mv(J-l, 3, n) :s; M.()1, 3, n):S; -3-'

Here J-l(P) is the minimum number of disjoint simple paths covering the
vertices ofP.

Let us first dispose of II's upper bound on M v(JJ., 3, n), due to Barnette
[1]. Recall Barnette's theorem (see exercise 13.6.3) asserting that every
(,q}'3)-realizable graph can be covered by a tree of maximum valence
three. An easy induction on the number of branch points shows that if
such a tree has n vertices it can be covered by (n + 2)/3 disjoint simple
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paths, and this implies Mv(Jl, 3, n):$: (n + 2)/3. Perhaps a slight improve
ment can be effected by using the fact that Barnette's theorem applies not
only to a 3-polytopal graph G but also to any graph formed by a simple
circuit C in G together with all vertices and edges in a component of the
complement of C.

Next we shall consider the contribution of Brown [3] to statements 3
and II . Let S be a simplicial 3-polytope with v vertices and (necessarily)
2v - 4 facets, and form S(O) [respectively S(2)] by adding pyramidal caps
over all [respectively all but one] of the facets of S. Form S(I) by adding a
pyramidal cap over one facet of S(O). Then the total number n of vertices
of S(i) is congruent to 2 + i (mod 3), being 3v - 4, 3v - 5, and 3v - 3 for
i = 0, I, 2. In any simple path on S(i)there is at least one vertex of S between
any two 'new' vertices. Thus if m disjoint simple paths cover w vertices of
S(i) we have w - v :$: v + m. For a single path, w :$: 2v + I, and express
ing v in terms of n yields the first upper bounds of statement 3 for d = 3.
If the m paths cover all vertices then w = nand m ~ n - 2v; expressing v
in terms of n yields the lower bounds of statement 11 for d = 3.

For the remaining upper bounds in 3 and lower bounds in 11 we
combine the methods of Brown [3] and Moon-Moser [1]. Starting with a
simplicial d-polytope Po, construct a sequence Po, PI, . . . of such polytopes,
Pi + I being the Kleetope (Pj)K (see section 11.4)formed by the addition of
pyramidal caps over all the facets of Pi' For each i let J!; denote the set of
all vertices of Pi' Vi the number of vertices, and j, the number of facets. Then
vi + I = Vi + ./; and j.; I = dll , whence

dj
- 1

Vj =vo +~/o .

For any integer n ~ Vo let k be determined by the condition that
Vk :$: n < Vk+ I and form the polytope Q(Po, n) by adding pyramidal caps
over n - Vk of the facets of Pk • Let V be the set ofall vertices of Q(Po, n). Now
consider an arbitrary set of m disjoint simple paths on Q(Po, n), involving
w vertices in all with Wi of them in J!;. In any simple path there is a member
of Vk between any two members of V '" Y,., a member of Vk - I between
any two members of Vk '" y"-I' etc. Hence

and since Wo :$: Vo it follows that
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The choice of k implies

whence

and

373

(
(d - l)n - v + fO)IOgd

2

W ::; 2(vo + m) fo 0 - m.

When Po is a d-simplex this yields

w ::; 2(d + 1 + m)(~ ~ ~) IOgd

2

nlOgd2 - m< 2(d + 1 + m)nIOgd2,

which for m = 1 is essentially the bound given by Moon-Moser [1].
When d > 4 an improvement is possible for large n, as we now show.

For v > d letf(d, v) denote the number of facets of a cyclic d-polytope
with v vertices, so that

(
V- [(d + 1)/2]) (V - [(d + 2)/2])

f(d, v) = + ,
v-d v-d

a polynomial in v of degree [d/2]. For any integer n ~ 2(d + 1) let Do be
defined by the condition that

Vo + f(d, vo) ::; n < (vo + 1) + f(d, Vo + 1).

Let Po be a cyclic d-polytope with Vo vertices and construct Q(Po, n) as
described. Then fo = f(d, vo) and

VI = Vo + f(d, vo) ::; n < (vo + 1) + f(d, Vo + 1) < Vo + (d + 1)fo = V2'

whence k = 1 and w ::; 4vo + 3m. With n ~ Vo + f(d, vol, this implies
the remaining upper bound in statement 3 and lower bound in 11. The
inequalities of statement 7 follow from those of 3.

The upper bound of statement 4 when d = 3 is due to Grunbaum
Motzkin [1], whose construction is based on the merging of two 3-poly
topes P' and P" by combining a triangular facet of P' with a triangular
facet of P" in the manner of figure 17.2.3.The resulting graph corresponds
to a 3-polytope P by Steinitz's theorem and it can be verified that
A(P) ::; A(PI

) + A(P"). Clearly fo(P) = fo(P') + fo(P"). For any simple
3-polytope Q, truncation at a vertex produces a simple 3-polytope Q'
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Figure 17.2.3

which has a triangular facet; note that !o(Q') = !0(Q) + 2 and
A(Q') ~ A(Q) + 2.

Starting with a simple 3-polytope G which admits no Hamiltonian
path, the first aim is to construct a simple 3-polytope P, for which
..1.(Pd < !o(Pd - 5. This is formed from six copies of G by truncating
the first and last copies at one vertex each, the intermediate copies at
two vertices each, and then merging appropriately along the new
triangular facets. Having constructed Pi' set Vi = 10(Pi) and Ai = ..1.(PJ
Then V, = 6!0(G) + 20 and A, ~ 6A(G) + 20 < V , - 5, so there exists
p > 0 such that (A, + 5)/v, < (v, + 5) -~ .

With P, as described, we next produce a sequence of simple 3-polytopes
P2 , P3, · · · such that V i+' = Vi(Vi + 5) and Aj < vj(vi + 5)-~. To construct
Pi+, from Pi> first truncate the latter at each of its Vi vertices to obtain
pr with fo(pr) = 3vj ; then take Vj copies of Pi ' truncate each of them
at a single vertex, and merge them with pr . The result is Pi+ , . Since each
simple path on Pj misses at least Vi - Ai vertices of Pj, the same number
of truncated copies of Pi (used in constructing Pi+ , ) will be completely
missed by any simple path on Pi-I . For each of the remaining truncated
copies of Pi> the simple path on Pi+' determines a simple path on Pi
which misses at least V j - Ajvertices of Pj • Considering also the additional
vertices introduced in forming pr from Pi> we see that any simple path
on Pj +,misses at least

(Vi - Ai)(V j + 5) + AAv j - Ai)

vertices, and consequently Aj+' ~ Ai(Aj + 5). From Aj < vj(vj + 5)-~ it
then follows that Ai+, < Vi+,(vi+, + 5)-~. This establishes a strengthened
form of the upper bound of statement 4 when n is one of the v;'s, and it
remains only to treat the intermediate values of n.

Let mj = Vi + 4, so that mj+' = mj(mj - 3) and Aj + 5 < ml-~. Any
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even integer n > mI admits a unique expression in the form
n = 2(qo - 2) + L~= I qjmi with 0::; qi < mj - 3 for 1::; i ::; k, qk ~ 1
and 0 ::; 2qo < mi' A simple 3-polytope P(n) with n vertices is formed by
taking qj copies of P, (for 1 ::; i ::; k), truncating and merging at selected
vertices, and then truncating the resulting polytope at qo of its vertices.
It is verified that

j

(mj + I + 3)Aj+ I ~ m l + L mj(Aj + 2)
i= I

and
k

A(P(n»::; L qi(Aj + 2) + 2qo - 4,
i = I

whence

< Ak+2 + Ak-I < 2 -(1 /2)P 2 -(1 /4)P- _ mk < n .
mk mk-I

This completes the discussion of statement 4 and takes care of the upper
bound in 8 for d = 3.

Of the many unsolved problems concerning long paths which are
implicit in our discussion, the most important is probably that of deter
mining whether every simple d-polytope admits a Hamiltonian path
(for d ~ 4) and more generally of finding for each d the minimum m(d)
such that each simple d-polytope admits a path which uses all its vertices
at least once and does not use any vertex more than m(d) times. Algorithms
for finding such paths of minimal multiplicity would be especially inter
esting. Results of Petersen [1], Tutte [2] and Balinski [1] imply that
m(d) ::; [dI2]. This was noted by Grunbaum-Motzkin [1], whose paper
contains many other interesting results and problems concerning long
paths and circuits on polytopes.

17.3 Heights of Polytopes

When qJ is a real-valued function defined on the vertices of a polytope P,
a path (xo, XI" '" Xk) on P is called a tp-path provided that qJ(xo) < qJ(x I)
< ... < qJ(Xk)' A qJ-path (xo,XI' " " Xk) is called a strict tp-path, a steep
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sp-path, or a simplex sp-path provided that for 1 sis k the vertex x, is
chosen, among the vertices of P adjacent to Xj-I ' so as to maximize
respectively

the value of <p(x j ) ,

the slope (<p(x j ) - <p(x j _ d)/!Ix j - x i-III,
the gradient of <p in the space of non basic variables (as ex
plained below).

These sorts of paths are all of interest in connection with linear
programming, for they all correspond to pivot rules which are used to
form a path from an initial vertex to a vertex at which the P-maximum of
<p is attained.

The height '1(P) is defined as the largest number realized as the length of
a <p-path on P, the maximum being taken over all linear forms <p on the
containing space. The strict height a(P), the steep height ,(P), and the
simplex height -r(P) are similarly defined . These functions have all been
studied in the manner of the function A in the preceding section (see
Klee [15,16)]). However, we shall include here only the results on
M/('1, d, n), M/(a, d, n), and M/(-r, d, n). Each of these is the maximum
number of iterations which may be required (using the appropriate pivot
rule) to solve a nondegenerate linear program whose feasible region is a
simple d-polytope with n facets. It seems probable that M/(" d, n) =
M/(-r, d, n) but this is known only for d s 3 (Klee [15, 16]).

1. M/(a, 2, n) = n - 2

M/(a, 3, n) = [3n; 1] _4
M/(a, d, n) ~ 2(n - d) - 1 for d ~ 4.

2. MJ(n, d, n) ~ MJ(-r, d, n) ~ (d - l)(n - d) + 1,
with equality throughout for d s 3.

The first assertion of (1) is obvious. For the second, consider a strict
<p-path (xQ' x I' . . . ,Xl) on a simple d-polytope P with v vertices. Let r

denote the number of edges of P which have exactly one endpoint among
the x/soThen

(k + l)(d - 2) + 2 S r S d(v - k - 1),

where the first inequality comes from the fact that (by strictness of the
path) P has no edges [Xi' Xj] except those used by the path. Thus
k s [d(v - 2)/2(d - 1)). If d = 3 and P has n facets, then v = 2n - 4 and
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it follows that k S [(3n - 1)/2] - 4. This shows

M'f(a, 3; n) S [(3n - 1)/2] - 4.

To establish the reverse inequality and to complete the proof of statement
1 we will show that for n > d 2:: 3 there exists a simple d-polytope P;
with n facets such that a(Pn) 2:: h(n), where h(n) = [(3n - 1)/2] - 4 if
d = 3 and h(n) = 2(n - d) - 1 if d 2:: 4.

Let qJ be a nontrivial linear form on a d-dimensional vector space E,
and let PH I be a d-simplex in E whose vertices (xo, XI' ·· ', xd ) form a
qJ-path. Then for n = d + 1 we have produced a simple d-polytope P;
which has n facets and which satisfies the following two conditions:
(i) there is a strict qJ-path (qQ, . '. , q~(n») of length h(n) on P; such that
qJ(q~(n») = max qJPn; (ii) when h(n + 1) - h(n) = 2 there is a vertex q: of
Pn, adjacent to both q~(n)-I and q~(n), such that qJ(q~(n)- Il < qJ(q~) < qJ(q~(n)) ·

To complete the proof of 1 it suffices to show that when such a construc
tion has been made for a given n > d it can be made also for n + I.

Let ZI'· · ·' Zd be the d vertices of P; adjacent to q~(n)' with ZI = q~(n) -I

and with Z2 = q~ when q~ exists. Choose the points Yj E ]Zj' q~(n)[ such that

qJ(q~(n)-I) < qJ(YI) < qJ(q~) < qJ(Y2) < ... < qJ(Yd) '

where the two inequalities involving qJ(q~) are replaced by qJ(YI) < qJ(Y2)
when h(n + 1) - h(n) = 1. Define Pn + I as the convex hull of the y/s
together with all vertices of P; other than q~(n). Then Pn+ I is, as required,
a simple d-polytope with n + 1 facets. If h(n + 1) - h(n) = 1 (that is, if
d = 3 and n is odd), the sequence (qQ" . . , q~(n)-I' YI' Y3) is a strict qJ-path
oflength h(n + 1) on P; + I and Y2 can serve as q~ + I. Ifh(n + 1) - h(n) = 2,
(qQ," . ,q~(n)-I' Y2' Yd) is a strict qJ-path of length h(n + 1). The point Y3
serves as q~ + I when d 2:: 4, and no q~ + I is required when d = 3 for then
h(n + 2) - h(n + 1) = 1. The proof of statement 1 is complete. (The
3-polytope P7 is shown in figure 17.3.1, where the arrows indicate a strict
qJ-path of length 6.)

For d S 3 a d-polytope with n facets has at most (d - l)(n - d) + 2
vertices and hence does not admit a qJ-path of length greater than
(d - l)(n - d) + 1. Thus part of statement 2 is obvious. We shall com
plete the proof of 2 by showing M'ffr, d, n) 2:: (n - d)(d - 1) + 1 for
n > d 2:: 2, but of course this requires a clear definition of simplex qJ
paths. Let us begin with a coordinate-free description of the simplex
algorithm of linear programming (with the most common pivot rule)
taken from Klee [15]. It applies only to nondegenerate problems but is
adequate for our purpose. It is closely related to the coordinatized descrip
tions of Dantzig ([I], Chap. 7) and Kuhn-Quandt [I].
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Figure 17.3.1

Suppose P is a simple d-polyhedron* in a d-dimensional vector space E.
Any affine form on E which is not constant on P will be called a variable.
We are concerned with the problem of maximizing a variable CPo over P.
Let !F denote the set of all facets of P and for each FE !F let <PF be a
variable such that Fe {x I cp~x) = O} and Pc {x I<PF(X) ;;::: O}. Let
<1> = { <PFIF E !F}. Henceforth the discussion is relative to the system
(P, <1>, <Po). A variable <P E <1> will be called basic or nonbasic for a vertex x
of P according as <p(x) > 0 or <p(x) = O. The set of all non basic variables
will be denoted by <1>x ' so that <P E <1>x if and only if cp = <PF for some facet
F containing x. Since P is simple, each set <1>v is of cardinality d and two
vertices x and x' are adjacent if and only if there is exactly one variable
<px,x' in <1>x - <1>x" The nonbasic (x, x') gradient of <Po is defined as the
quotient

<Po(x') - CPo(x)

Note that the objective function <Po admits a unique expression in the
form L~x y(cp)<p + Yo (for real constants y(<p ), Yo) and

<p~(x') - CPo(~) = CPo(x') -:- <Po(x) = y( x,x').
Icpx, x (x') _ tp":x (x)1 <px, x (x') cp

A path (xo, Xl " .. ,xk ) on P is called a simplex <po-path provided that for
1 :5: i:5: k it is true that y(<pX' _I,X,) = maxy(<pXi-I . W

) > 0, where the max
imum is over the set of all vertices w adjacent to X j - l in P, Thus a <po-path
is a simplex cpo-path if and only if it maximizes the non basic gradient of

• In the present section. polyhedron mean s polyhedral set, i.e. intersection of finitely many
halfspaces,
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lfJo, or more specifically if and only if (for 1 :s; i :s; k)

(*) lfJo(Xj) - lfJO(Xj-l) > lfJo(w) - lfJO(Xj-l)
lfJX'-I,X;(Xj) - lfJXi-I.W(w)

for each vertex w adjacent to Xj-l with lfJo(w) > lfJo(xj- l), If inequality
always holds in (*) the path will becalled an unambiguous simplex lfJo-path.
These notions are relative to the set <I> of variables corresponding to the
facets of P, and they would be affected by nonuniform rescaling of the
members of <1>. Thus what we have called .(P) is really a function of a par
ticular representation of P; it is not determined by the set Palone.

The following is a more complete statement of the inequality,
M'J(., d, n) ;;::: (d - l)(n - d) + 1, of theorem 2.

3. For n > d > 1, there exists a simple d-polytope P with exactly n
facets, a variable lfJo, and a set <I> of variables corresponding to the facets
ofP such that the system (P, <1>, lfJo) admits an unambiguous simplex lfJo-path
of length (d - l)(n - d) + 1 using all the vertices of P.

The theorem's proof depends on the following lemma, taken from
Klee [15]. The lemma's proof is routine and will not be given here.

LEMMA If tX l, Yl" . . ,Yd are positive numbers with 1 > tX l and Y2 > Y3
> ... > Yd' then there exist positive numbers tX2, tX3' . .. ,tXd such that

Yl > tXlYl > tX2Y2 > . . . > «a,
and

C(h, i.j, k):

For an arbitrary fixed d, the theorem is proved by induction on n.
For the case in which n = d + 1, let the numbers Yj be such that Yl > Y2
> . . . > Yd+ 1 > 0 and let the tX/s be as in the lemma. Let P be the d
simplex in Rd+l whose vertices are tXlbl,tX2b2,oo',tXd+lbd+l' where the
points bj are the Kronecker deltas, and for each point x = (x', x 2

, ' •• ,

Xd+l)ERd+l let lfJo(x) = -L~::Yjxj. By the lemma's first condition the
sequence (tX 1b l, tX2b2, . . . , tXd+1bd+1) is a lfJo-path on P. If Fj is the facet of
P determined by all of P's vertices other than tXjb j , let the corresponding
variable lfJj( = lfJF) E <I> be the ith coordinate function. Then the nonbasic
(tXhbh, tXij) gradient of lfJo is equal to (tXjYj - tXhYh)/tX j , and the path in
question is an unambiguous simplex lfJo-path provided that

tXh+lYh+l - tXhYh < tXjYj - tXhYh for 1:s; h < h + 1 <j s; d + 1.
O(h+ 1 tXj
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But this inequality is equivalent to

which in turn is equi valent to the inequality C(h, h + l ,j,j) of the lemma.
(Note that d + I here corresponds to d in the lemma.) This completes
the proof for the case in which n = d + I.

Suppose the theorem is known for n = r 2:: d + 1, and let (P, 11>, qJo)
be the corresponding system. Let (vo, VI" • • ,vk ) be an unambiguous
simplex qJo-path running through all the vertices of P, where k = (d - 1)
x (r - d) + 1. The P-maximum of qJo is attained only at the vertex Vk •

We may assume without loss of generality that the d-polytope P lies in
Rd

, with the vertex Vk at the origin. Since P is simple, there are exactly d
variables in 11> which are nonbasic for Vk' and there is a nonsingular linear
tran sformation t of Rd onto Rd such that the var iables qJt (for qJ E 11» are
exactly the d coordinate functions on Rd. The system (t- I P, {qJt I qJ E 11>},
qJot) will then have the properties required of the system (P, 11>, qJo). Thus
we may assume without loss of generality that t is the identity transforma
tion , and the d vertices of P which are adjacent to Vk must then lie along
the positive coordinate axes. We may assume the P-maximum of qJo is 0,
whence qJo is a linear form on Rd and there are positive numbers Yi such
that lfJo(x ) = - I1: I YiXi for all x E Rd. The relevant aspects of the situa
tion are clearly unchanged by a sufficiently small perturbation of lfJo' so
we may assume the d numbers Yi are all distinct. By a uniform contraction
or dilation together with a suitable permutation of the coordinates we
may assume Vk- I = 151 and Y2 > Y3 > . . . > Yd'

Now let the positive numbers CX I , ' . . , CXd be as in the lemma, and note
that for each AE lO, IJ the conditions of the lemma are also satisfied by the
sequence A(Xl>"', ACXd. Let vP) = "s for 0::;; j < k and let vP)
= ACXj _k+115j-k+I for k::;;j::;; k + d - 1. Let p.. denote the convex hull
of the set {vP )I0 ::;; j ::;; k + d - I}. Then it can be verified that p.. is a
simple d-polytope having the points vP) as its vertices. Each facet of p..
is contained in a facet of P, with the sole exception of the facet
F.. = conv{A.cxJ.l5i 11 ::;; i ::;; d} of pa- Thus p.. has exactly r + 1 facets. Let
<1>.. be obtained from 11> by the addition of a variable lfJFA corresponding
to Fa- Then the sequence (Vo(A), V1(A), ' . . , Vk+d- l (A)) is a path of length
(d - l)(r + 1 - d) + 1 which runs through all the vertices of p... Indeed,
it is a lfJo-path, for (Vo(A), VI(A),' . " Vk _I(A)) is identical with the lfJo-path
(vo, VI" ' " Vk -I) and (Vk_I(A), " ' , Vk+d -I(A)) is a lfJo-path by the first condi
tion of the lemma (because lfJO(Vk -I(A)) = - YI and lfJo(Vj(A)) = -ACXjYj
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for k :$; j :$; k + d - 1). To complete the proof of the theorem, it suffices
to show that for A. sufficiently small (in JO, 1[) the path (vo(A.), v, (A.)" . . ,
Vk+d-'(}'» is an unambiguous simplex <po-path relative to the system
(PJ., <DJ., <Po)·

If °:$; h < k :$; j :$; k + d - 1 and the vertices vh(A.) and vP) are
adjacent in PJ.' then Vjand Vk (= 0) are adjacent in P. Further, the variable
in <D J. which is nonbasic for vh(A.) but basic for vP) is identical with the
variable in <D which is nonbasic for Vhbut basic for Vk ' Thus for A. very small,
the non basic (vh(A.), ViA.» gradient of <Po is very close to the non basic
(vh, Vk) gradient of <Po' The desired conclusion then follows from this fact in
conjunction with the facts that (vo, V,,"', Vk) is an unambiguous simplex
<po·path in P, that vk(A.) is the only vertex of PJ. which is adjacent to Vk-,
and gives a greater value to <Po, and that (vk(A.), · . . , Vk+d- ,(A.» is (by the
first paragraph of the proof of the theorem) an unambiguous simplex
<po-path relative to the system (PJ., <DJ.' <Po). The proof of theorem 3 is
now complete.

Perhaps we should emphasize, in closing this section , that it has not
been our intention to discuss the practical solution of linear programs.
Instead, our discussion has related to the important question of determin
ing the maximum number of iterations which may be required to solve a
linear program (with feasible region of a given class) by means of various
pivot rules . See Klee [15] for interpretation of theorem 3 in terms of
linear programs in standard form, Quandt-Kuhn [1,2] and Kuhn
Quandt [1] for reports of computer experience on the number of iterations,
and Dantzig [2] and Klee [18] for other unsolved problems concerning
convex polytopes arising in linear programming.

17.4 Circuit Codes

In the most common representation of a d-dimensional cube the 2d

vertices are just the various d-tuples of binary digits. Coupled with the
prevalence of two-state components in computers and other electronic
devices, this fact has led to some interesting studies and applications of
circuits on cubes. Simple circuits on cubes correspond to ways of encoding
certain analogue-to-digital conversion systems so as to minimize the errors
caused by quantization of continuous data, and the circuit codes of spread
s (defined below) have further desirable error-checking properties.

Let I(d) denote the graph of the d-dimensional cube, two vertices being
adjacent if and only if they differ in exactly one coordinate. By a d-
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dimensional code of spread s we shall mean a subgraph G of f(d) such that
for any two vertices x and y of G,

b1(41(X, y) ~ min(bG(x, y), s)
or, equivalently,

b1(dl(X, y) < s implies bG(X, y) = b1(41(X, y).

Every subgraph is of spread 1, and a subgraph G is of spread 2 if and only
if it admits no chords (edges of f(d) ~ G joining two vertices of G).

A subgraph of f(d) will be called a discrete code provided that it has no
edges, and a circuit code or path code provided that it consists ofthe vertices
and edges of a simple circuit or a simple path. Note that a set of vertices
of I(d) forms a discrete code of spread s if and only if the distance between
any two vertices is at least s. Such codes have been extensively studied for
their error-correcting properties but they will not be discussed here as
they do not fit under our general topic of ' long paths and circuits'. The
study of path codes (Davies [1], Singleton [1]) has been merely incidental
to that of circuit codes and hence our discussion will be confined to circuit
codes. Circuit codes of spread 1 have been called unit distance codes
(Tompkins [1]) or Gray codes (Gilbert [1]) and those of spread 2 have been
called snakes or SfB (snake-in-the-box) codes (Kautz [1]). Circuit codes
of spread s have been called Sf B, codes (Singleton [1Dand circuit codes of
minimum distance s (Chien-Freiman- Tang [1D.

The present section is concerned with estimating y(d, s), the maximum
length of d-dimensional circuit codes of spread s. The main results can be
summarized as follows.

1. y(d, 1) = 24 (d ~ 2).

7 24

2. 4d _ 1 s y(d,2) s 24
-

1 (d ~ 5).

3. 32.3(4- 81/3 ::s; y(d,3) s d ~ 2 (d ~ 6).

4. y(d,s) ::s; --,---,-,------

5. For odd s > 3,

for s = 2r + 1 or s = 2r + 2

(d ~ s).

4"/0+ 1 ~ y(n, s).
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6. For even s > 4,

(jn -< y(n, s) for all positive (j < 41/$ ;

(jn -< y(n, 4) for all positive (j < 31
/
3

.

In results 5 and 6 we write f(n) :S g(n) to mean lim inf, .... oo g(n)/f(n) > 0
and f(n) -< g(n) to mean limn_ oo g(n)/f(n) = 00.

A path (XQ , Xl'· · ·' xk ) in 1(d) is uniquely determined by its starting point
X Q together with its transition sequence (t(1), ···, t(k)), where (for 1 ::; i
::; k) Xj_1 and x, differ in the t(i)lh coordinate. If the transition sequence
(t(I), t(2),· . . ,t(2d

- 1), t(2d
) ) corresponds to a Hamiltonian circuit of 1(d)

then
(t(1), t(2),· .. ,t(2d

- 1), d + 1, t(I), t(2),· .. ,t(2d
- 1),d + 1)

corresponds to a Hamiltonian circuit of l(d + 1). Thus 1(d) admits a
Hamiltonian circuit for d ~ 2 and this establishes the result 1. For
2 ::; d ::; 4 the following are transition sequences of Hamiltonian circuits
of l(d):

(d = 2) 1212 ; (d = 3) 12131213; (d = 4) 1213121412131214.

A difficult unsolved problem, studied by Gilbert [1] and Abbott [1], is
that of determining the number h(d) of Hamiltonian circuits of 1(d) and
also the number e(d) of equivalence classes of such circuits, where equiv
alence is with respect to the group of all symmetries of l(d). Considering
two circuits to be different only if the corresponding undirected graphs

are different, Abbott shows h(d) > (.J"6)2 d and remarks that
e(d) ~ h(d)/(d!2d

) .

The use of circuits in 1(d) to encode certain analogue-to-digital conver
sion systems has been discussed by Caldwell [1], pp. 391-396, Fifer [1],
pp. 308-311, Gray-Levonian-Rubinoff [1], Keister-Ritchie-Washburn
[1], chap. 11, Tompkins [1] and many others. We note also that solutions
of the 'towers of Hanoi' puzzle correspond to Hamiltonian circuits on
cubes (Crowe [1]).

The upper bound in result 2 is due to Singleton [1] and Abbott [1], and
has been established also by Danzer-Klee [1]. Suppose C is a d-dimen
sional circuit code of spread 2 and 1(3) is (the graph corresponding to) a
3-dimensional subcube of 1(d) such that 1(3) includes at least five but not
all vertices of C. A simple analysis shows that the intersection en 1(3)
must be as in figure 17.4.1, and from this it follows that no intersection
en 1(4) can have more than eight vertices. Hence y(d,2) ::; 2d

-
1 for

d ~ 4.
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Figure 17.4.1

Upper bounds on the cardinalities of discrete codes (Hamming [1],
Gramenapoulos [1], S. M. Johnson 1l,2], Peterson [1], Plotkin [1],
Wyner [1]) may be applied to circuit codes by using the fact that a circuit
code of spread s and length k must contain s pairwise disjoint discrete
codes of spread s and cardinality [k/s]. However , the proof of the upper
bounds in results 3 and 4 (due to Chien-Freiman-Tang [1], also to
Singleton [I] for d = 3) does not depend explicitly on discrete codes.
Suppose s = 2r + lor s = 2r + 2 and consider a circuit (xo, XI" ' " xk , xo)
in I(d) determining a circuit code C of spread s and length k = y(d, s).
With d ~ s we have k ~ 4r + 1 because the d-dimen sional circuit code of
length 2d and transition sequence 12·· · d 12· . . d is of spread s. With
k ~ 4r + 1 it follows that oC<xo, Xi) = i for 0 ::;; i .::;; 2r and hence we may
assume for this range that the first i coordinates of Xi are 1 and the
remainder are O. For 0 ::;; j ::;; k let V j denote the set of all vertices y of
I(d) such that y is at distance r from Xj but greater than r from each of
x j + I ' X j + 2" • . , X j + 2" where the indices are reduced modulo k. Clearly tj,

misses V j + I U Vj + 2 U . •. U Vj + 2" and since C is of spread s we see
that Vj intersects Vi' only for j = j'. Thus the upper bounds for odd s
may be established by showing the cardinality of V j is at least

e) -2e .. :),and for this it suffices to consider u.; The cube I(d) has

(~) vertices whose weight (sum of coordinates) is r, and these include all

points of Vo. Let Vo [respect ively VI] denote the set of all vertices of I(d)
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(d ;;:: 8)

which are of weight r, are not in V 0' and have first coordinate 0 lrespec
tively 1]. Then

card u; = e) - card Vo - card VI

(
d - 1)

and card VI :5: , so the proof can be completed by constructing a
r - 1

biunique mapping of Vo into VI'
For each point vof Vo there exists i between 1 and 2r such that

(jl(d)(X j , v) :5: r, and since (jl(d)(XZn v) ;;:: r there must be a smallest i-say
i = i(v)-such that (j l(d)(X j , v) = r. If m is the number of 1's among the
first i(v) coordinates of v, then since v is of weight r we have

(i(v) - m) + (r - m) = (jl(d)(X j(v), v) = r

and 2m = i(v).Thus a biunique mapping qJ of Vo into VI can be constructed
by defining qJ(v) as the vertex of I(d) obtained by complementing each of
the first i(v) coordinates of v and leaving the remaining coordinates
unchanged.

The above reasoning establishes the upper bounds in 3 and 4 when
s = 2r + 1. For a slight improvement when s = 2r + 2, let Wm (for
o :5: m :5: k) denote the set of all vertices y of I(d) such that y is at distance
r + 1 from X m and at least r + 1 from all the x/soThen Wm n V j = 0
for all m and j, and Wm n Wm , = 0 when m and m' are of different parity.

The cardinality of Wm is seen to be (d ~ 1) when s = 4, and for s = 2r + 2

to have the formc.; (d-r) (d-r) (d-r)r+ 1 + a; r + a;- I r_ 1 + ... + ao 0 '

where the constants a, are independent of d. Thus

(d 4) < 2
d

- (d
Z

- 3d + 2)
y , - d-2

and

(d ;;:: s)
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when s = 2r + 2, P,(d) being a polynomial of degree r + I in which the
coefficient of r: I is 2/(r + 1) !

The lower bounds in results 2 and 6 are based on the following result.
It extends a theorem of Danzer-Klee [I], who treated the case s = 2.

7. Suppose that s ~ 2 :s;; c :s;; d, that there exists a c-dimensional circuit
code of spread s - I whose length m(~ 2s) is divisible by s, and that there
exists a d-dimensional circuit code of length n ~ 2s. Then

if s = 2 there exists a (c + d)-dimensional circuit code of spread s and
length mn fl ;

if s is even there exists a (c + d + I)-dimensional circuit code ofspread s
and length m(n + 2)/s.

PROOF For each vertex p of l(c), p* will denote the vertex of l(d) whose
first c coordinates are those of p and whose last d - c coordinates are
equal to O. With k = mls, let

and

be circuits corresponding to codes of spread s - I and s and lengths m
and n in l(c) and l(d) respectively. For I :s;; i :s;; k the two paths

and

(the paths (xn-l ,xn,X I) and (a~+I)I,arz,arl) when s = 2) are both of
length s and are such that the l(d)-distance between any two vertices of
the path is equal to the path-distance. As the symmetry group of l(d) is
transitive on paths of this sort, there is a symmetry of l(d) which carries
the circuit (XI' X z, " ' , Xn, XI) onto a circuit Xi = (xL x~"'" x~, xD such
that

X~-s+ I = an+1)1 ' x~- s+z = a~, · ··, X~_I = ar3'x~ = arz,

and

(Here a~+ Iii = aTd
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When s = 2 we obtain a (c + d)-dimensional circuit code C of spread
2 and length mn/2 by following the successive rows of the m/2-by-n matrix:

(ar l' atl)(a 12, xt)(a12'xD ...(a12,x~_ 1)

(aw a!1)(a 22,xf)(a22' x~) · · . (an. X;-l)

(ak1,'at d (ak2: x~)(ak2:x~) :: : (ak2' ·x:_ 1)'

Since af1 = x~ and X~-l = a~+ 1)1' with X:-1 = atl ' it is clear the above
sequence really forms a circuit of length mn/2 in I(c + d), where I(c + d)
is identified with I(c) x I(d) in the usual way. Since each sequence
xL x~., . . ,X~-l is part of a circuit of spread 2 in I(d), no chord of C can
join two vertices on the same row. Indeed, since it never happens that ail
is adjacent to aj1 or ai2 to aj2• any chord of C must join (ail. af1) to
(aj2,xl) for some i "# j and 1 ::;;; k ::;;; n. This requires that af1 = xl and ail
is adjacent to aj2• whence of course af1 is adjacent to aj2' Since the vertices
af1 = xl and aj2 = x~ lie together in the circuit Xi of spread 2, their
adjacency implies k = 1 or k = n - 1. From k = n - 1 it follows that
i = j + 1, whence (ail' af1) and (aj2,xl) determine an edge (and not a
chord) of C. From k = 1 it follows that i = i, an impossibility. This settles
the case s = 2.

For even s > 2 the construction and reasoning are similar to those for
s = 2 but are somewhat more complicated. A (c + d + I)-dimensional
circuit code of spread s and length men + 2)/s is obtained by following
the successive rows of the m/s-by-(n + 2) matrix:

(all' atl ' 0)··· (a1" atl' 0)(a1S' x], 0)(a1s,x], 1)· . . (a1s. x~_" l)(a ls , x~-r' 0)

(a21,a!l' 0)··· (a2" a!1. 0)(a2s' xf, 0)(a2s' xi, 1)·· · (a2.. x;_" I)(a2.. x;-r' 0)

See Klee [22] for the proof.
For the lower bound in result 2, due to Danzer-Klee [1], note that if

n ;::: 2 and the inequality

(*)

is valid for d = n then it is valid also for d = 2n and d = 2n - 1. Indeed,
since Yen, 1) = 2" it follows from the first part of theorem 7 that

2" 22
"

y(n,2) ;::: 2"- 1y(n, 2) ;::: 2"-1,1.--1 > ,1.-21
n- n-
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and similarly y(2n - 1,2) ~ J2 2 n
-

1/(2n - 2). An induction then shows
that (*) is valid for all d ~ n if it is valid for n ~ d < 2n and hence the lower
bound in result 2 is implied by the following table of values of y(d, 2) :

d
y(d, 2)

2
4

3
6

4
8

5
14

6
26

7
~48

8
~64

9
~ 112

(To justify these values see Kautz Ill, Even [1], and Davies [1] for d ~ 7,
and note that y(8, 2) ~ 8y(4, 2) and y(9, 2) ~ 8y(5,2) by theorem 7.)

In addition to papers already mentioned, the reader is referred to
Vasiliev [1], Rarnanujacharyulu-Menon [1] and Abbott [1] for construc
tion s of circuit code s of spread 2. See Kautz [1] for the error-checking
properties of these codes and Zuravlev [1] for their relationship to al
gorithms for the simplification of disjunctive normal forms.

The lower bounds in results 3 and 5 depend on Singleton 's constructions
1, 3a, and 5, which apply to a transition sequence for a circuit code of
spread s, dimension d, and length k.

(SI) Divide the sequence into two segments of equal length and within
each segment form successive blocks of s transitions, leaving an incomplete
block at the end of each segment if s does not divide k/2. Insert the new
transition number d + 1 at the end of each complete block . The new
transition sequence corresponds to a circuit code of spread s, dimension
d + 1, and length k + 2[k/2s].

(S3a) Suppose s is odd . Divide the sequence into two segments of equal
length and within each segment form successive blocks of (s + 1)/2
transitions, leaving an incomplete block at the end of each segment if
s + 1 does not divide k. Alternate the new transition numbers
d + I ,· ·· , d + (s + 1)/2 with the old ones in each complete block, using
the new ones in the same order in each case. The new transition sequence
corresponds to a circuit code of spread s, dimension d + (s + 1)/2 and
length k + (s + I)[k/(s + I)].

(S5) Suppose s = 3, and some number j appears m times in the original
transition sequence. Let each occurrence of j be replaced by the pattern

x(d + I)j(d + 2)x(d + 3)j(d + I)x(d + 2)j(d + 3)x,

where the center j is the original one and the x's are other members of
the original sequence. (Note that any two of the original j's are separated
by at least three x's.) The number j appears 3m times in the new transition
sequence, which corresponds to a circuit code of spread 3, dimension
d + 3, and length k + 8m.
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To facilitate an inductive proof of the lower bound in result 3, consider
the strengthened assertion that for each d 2 6 there exists a d-dimen
sional circuit code of spread 3 and length at least 32· 3(d-81/3 in which a
fourth of the transition numbers are the same. To verify this for d = 6,
apply (S3a) to the code whose transition sequence is 12341234. For d = 7
apply (S5) to the same code. For d = 8 apply (SI) to the code for d = 7.
Then the assertion is established for 6 ::;; d ::;; 8 and an easy inductive
argument based on (S5) shows its validity for all d 2 6.

The lower bound in result 5 follows from an easy induction based on
(S3a), and the bounds in result 6 follow from those in 5 by an argument
analogous to that used in deriving result 2 from the fact that y(d, 1) = 2d

•

The exact values of y(d, s) have been determined in a few cases. We
include the following theorem and proof of Singleton [1].

8. If d < [3s/2] + 2 then y(d, s) = 2d.

PROOF The circuit code who se transition sequence is 12 ·· · dI2 ·· · d
is of spread s for all s, whence y(d, s) 2 2d. For the reverse inequality
when d ::;; [3s/2] + 1 we may assume in addition that s ::;; d. for s > d
implies y(d, s) = y(d, d). Suppose there exists a d-dimensional circuit code
C of spread s and length k > 2d. With s ::;; d we have k > 4S. If k = 2s + 2
then d < s + 1 and two vertices of C related by s + 1 transitions must
have distance at most s - 1 in I(d) ; but that is impossible for their distance
in C is s + 1 and C is of spread s. Suppose, finally, that k 2 2s + 4 and
consider a block of s + 3 transitions. If both the end blocks of s + 2
transitions (in the given block of s + 3) include repetitions, the I(d)
distance of the vertices related by the s + 3 transitions is s - 1, an impos
sibility. Thus one of the end blocks consists of s + 2 distinct transitions.
Consider the block of 2s + 3 transitions formed from that end block
and an adjacent block of (necessarily distinct) s + 1 transitions. Let i and
j denote the number of transitions appearing once and twice respectively
in the block of 2s + 3, whence i + j ::;; d and i + 2j = 2s + 3. The I(d)
distance between the related vertices is

i = 2(i + j) - (i + 2j) ::;; 2d - (2s + 3) < s,

whence the C-distance must be i and the total length of the circuit is
(i + 2j) + i ::;; 2d.

In addition to the equality of theorem 8, Singleton [1] states
y«3s + 3)/2, s) = 4s + 4 for odd s and conjectures y«3s + 4)/2, s) = 4s + 6
for even s.
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17.s Additional notes and comments

The four-color theorem.
Much motivation for investigating the Hamiltonicity of the graphs of simple
3-polytopes has been drawn from the "four-color problem" (see page 364) that
was still unresolved in 1967. The (controversial, computer-based) positive res
olution in 1977 due to Appel and Haken (see Appel-Haken [aj) has since been
backed by an independent (also computer-based) proof by Robertson, Sanders ,
Seymour, and Thomas (see Robertson et al. [a] and Seymour raJ).

Hamiltonicity ofpolytopal graphs .
Holton-McKay [a] (extending a method of Okamura raJ) proved that every
simple 3-polytope with at most 36 vertices is Hamiltonian. This implies Nc =
38 (see pages 359 and 364). Zamfirescu [aJ found a simple 3-po1ytope with 88
vertices not admitting a Hamiltonian path, thus improving the upper bound
on Np to 88. See Aldred et al. [a] for a recent paper about related problems. A
nice (earlier) survey is in Barnette [h, Chap. 3].

A related problem, posed by Barnette, is still open: Is every cubic 3-connec
ted bipartite planar graph Hamiltonian? This is true for graphs with at most 64
vertices, according to Holton-Manvel-McKay raJ.

Furthermore, the "higher-dimensional" problem mentioned on page 375 is
still open (even for d =4): Does every simple d-polytope (d ~ 4) have a Hamil
ton circuit? Paulraja [aJ proved that for each cubic 3-connected graph G the
product of G and a single edge (the prism over G) is Hamiltonian. A simpler
proof was recently given by Cada et al. [a], who were motivated by the conjec
ture due to Alspach-Rosenfeld [a] that each such prism can be decomposed into
two Hamiltonian circuits. They proved the conjecture for G being the bipartite
graph of a simple 3-polytope.

Checking Hamiltonicity is an NP-complete problem even for graphs that
are planar, 3-connected, and 3-regular (Garey et al. raJ). Griinbaum-Walther
[a] introduced measures for the failure of Hamiltonicity on infinite families of
graphs. See also the recent survey by Owens [a].

Path lengths .
The estimates in 17.2.5-17.2.8 (which were conditioned on the lower or upper
bound conjecture) are valid, due to the proofs of the lower and upper bound
theorems-see the notes in section 10.6.

The Hamiltonian circuits on the duals of cyclic d-polytopes with n vertices,
found by Klee (see page 368), can be described compactly by a "twisted
lexicographic order" on the d-subsets of {1, . . . ,n} (Gartner-Henk-Ziegler raJ).
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Heights .
Klee-Minty [a] showed in 1972 that there are simple polytopes-the Klee
Minty cubes---of exponential height. In fact, they proved the lower bound
Mj(..,d,2d) ~ 2d on the maximal length of a path produced by the simplex
algorithm on a simple d-polytope with 2d facets that chooses the pivots in or
der to maximize the gradient (Dantzig's original rule). For fixed d the function
Mj(..,d,n) grows asymptotically like a polynomial (in n) of degree [d/2J .

Jeroslow [a] proved M;(G,d,3d - I) ~ 3 · 2[d/2] - 2 (i. e., for the greatest

increase rule). For fixed d the function M;(G,d,n) grows asymptotically like
a polynomial (in n) of degree [d/2J . Goldfarb-Sit [a] rescaled the Klee-Minty
cubes in order to derive the analogous results for the function S(for the steepest
edge rule). A unified, comprehensive treatment in the framework of deformed
products can be found in Amenta-Ziegler [a].

It is still not clear (see Ziegler [a, Problem 3.11*]) whether the upper bound
theorem gives a sharp upper bound on M;(T/,d,n) . This is the case for n =
d+ 2 by Giirtneret al. [a] and for d =4 by Pfeifle [c]. In particular, the maximal
height for duals of cyclic polytopes is unknown.

Randomization.
While still no deterministic pivot rule is known to make the simplex algo
rithm run in polynomial time, substantial progress has been obtained with
randomized variants. In 1992, Kalai [h] (see also Kalai [i]) proved that the
random-facet rule produces (on all instances) an expected number of at most
exp(const·y'1ilOg(l) pivot steps. Independently, Matousek-Sharir-Welzl [a]
also found a sub-exponential algorithm. Later the two algorithms turned out to
be dual to each other (see Goldwasser raJ).

However, the question about the complexity of the simplex algorithm with
the random-edge pivot rule is unsolved. For an analysis of randomized pivot
rules on the Klee-Minty cubes see Giirtner-Henk-Ziegler [a].

Borgwardt [a] showed that the (deterministic) "shadow vertex" pivot rule
has polynomial expected running time on (a certain model of) random linear
programs.

Circuit codes.
For a comprehensive treatment of Gray codes in the d-cube (circuit codes of
spread 1 of maximum size) see Knuth [a]. The best available bounds (improv
ing 17.4.2) on the maximal length y(d,2) of an induced cycle in the d-cube
graph ("snake in the box") are due to Abbott-Katchalski [a] and Zemor [a]:

11..2d- 1 < y(d 2) < 2d- 1(1 - I +0(1))
128 - , - 89Jd d



CHAPTER 18

Arrangements of Hyperplanes

There are many fields which are similar in spirit and related in the methods
used and results obtained to the combinatorial theory of polytopes. The
present chapter is devoted to one such field: to questions dealing with
arrangements of (or partitions by) hyperplanes.

Though arrangements and polytopes are quite analogous in certain
aspects, there appears to be sufficient difference between the two topics
to justify considering them side by side. The decision to include the chapter
on arrangements was made even easier by the fact that there seems to be
available in the literature no systematic survey of the topic, despite the
multitude of papers written on it and the interest in it shown in recent
years by different applied disciplines.

18.1 d-Arrangements

A finite family d of at least d + I hyperplanes in the real projective d
space pd is said to form a d-arrangement of hyperplanes provided no point
pd belongs to all the members of d . If d is a d-arrangement, the open set
pd - (U H) is the union of a finite number of connected components.

HEd

The closure of each such component is a polytope in pd; we shall call it
a d-face or a d-ce1l of d . The k-faces of d, for - 1 ::; k < d, are defined
as the k-faces of the d-faces of d. We shall denote by n(d) the number of
hyperplanes in the d-arrangement d , and byJ".(d) the number of different
k-faces of d . The f-vector of d is defined by f(d) = (fo(d),· . . ,f~d».
The faces of any d-arrangement may be also considered as forming a
complex in pd.

In a quite analogous manner it is possible to define arrangement of
hyperplanes in the Euclidean d-space . For most purposes it is of small
importance whether one considers arrangements in the projective or in
the Euclidean space, since the addition of the 'hyperplane at infinity'
yields a projective arrangement from each Euclidean one . We prefer the
projective setting as being more symmetric. However, the difference
between Euclidean and projective arrangements becomes important in

390
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some questions, such as the determination of the number of non
equivalent d-arrangements of n hyperplanes.

There is a close analogy between the facial structure of arrangements in
projective spaces, and the facial structure of polytopes. This is the reason
for the inclusion of the present chapter in the book . However, there are
also significant differences between the two topics . It is hoped that the
present exposition will induce an exchange of ideas between the two fields.

The subject of d-arrangements goes back at least to Steiner [1], where
d-arrangements (for d = 2, 3) and the similar concepts in Euclidean space
involving planes, or spheres, were considered in detail. The subject was
pursued by many authors, some of whom extended the discussion to
projective spaces of higher dimensions (see, for example . v. Staudt [1],
Eberhard [1,2], Cahen [1], Roberts [1], Schlafli [1]; see also P61ya [2]
(vol. 1, chapter 3) for a stimulating introduction to the field). In the related
field of configurations a large amount of research has been done; however,
this topic is outside the scope of the present book (for detailed accounts
see Steinitz [3, 4], Levi [2]. Hilbert-Cohn-Vossen [1]).

Ad-arrangement d will be calIed simple provided no d + 1 hyperplanes
in d pass through the same point. The analogy between arrangements
and polytopes is strengthened by the similarity of properties of simple
arrangements and simple (or simplicial) polytopes.

Thefvectors of d-arrangements satisfy a relation analogous to Euler's,
while the fvectors of simple d-arrangements satisfy equations similar to
those of Dehn-Sommerville.

We shalI start with Euler's equation (Eberhard [2]):

I, For every d-arrangement d the vector J(d) satisfies the equation

d

L (- 1)1; = 1(1 + (- 1t) .
i=O

For simple d-arrangements d the inductive proof of theorem 1 is
very simple: Let d* denote the d-arrangement obtained from d by
omitting one hyperplane H 0, and let d** denote the (d - 1)-arrangement
determined in H o by its hyperplanes Ho n H, where H is in d*. Then it
is easily seen that d, d*, and d** are related by

Jo(d) = Jo(d*) + Jo(d**)

};(d) = };(d*) +};(d**) + };-t(d**) for 1:5 i :5 d.

Since Euler's relation is easily checked for d-arrangements of only d + 1
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hyperplanes (in which case}; = 2i(~ + 1), the above recursive equations
1+1

yield at once the inductive proof for the general case.
A different proof of theorem 1, valid for all d-arrangements, follows

from the interpretation of the projective d-space as ad-sphere Sd in
Euclidean (d + Jj-space Rd + 1, with diametral points identified (or from
the equivalent interpretation as the set of all lines through the origin of
Rd + 1). Therefore, if diametral points of Sd are not identified, each d
arrangement gives rise to a partition of Sd into (spherically convex) cells,
each k-face of the d-arrangement yielding two k-faces of the partition of
Sd. Therefore theorem 1 follows from Euler's formula for Sd upon division
of the right-hand side by 2.

For simple d-arrangements, a similar approach yields also analogues
of the Dehn-Sornmerville equations. Indeed, it is sufficient to note that
the induced partition of Sd mentioned above has a dual partition which is
cubical (see section 9.4). Using theorem 9.4.1, or noting that each i-face

of a simple d-arrangement d is contained in 2j-l(~ - ~) j-faces of d
j-I

(for 0 ::; i ::; j ::; d) and applying the method of section 9.1, there results

2. For each simple d-arrangement d andfor each k with 1 ::; k < d, the
vector f(d) satisfies the equation

i (_l)i2k - i (d - i)}; = t;
i=O d - k

Clearly, this system contains [!(d - 1)] independent equations. In
distinction from the cubical polytopes, the [vectors of simple d-arrange
ments satisfy additional independent linear relations. The reason for this
difference between the two cases is that the derivation of the equations
in theorem 2 used only 'local' properties of the d-arrangements which,
in fact, would be shared by all partitions of pd into convex cells induced
by identifying diametral points in centrally symmetric partitions of Sd
which are dual to cubical partitions of S". But in case of simple d-arrange
ments there is available additional, 'global', information : the fact that
different (d - I)-faces of the d-arrangement 'fit' together to form hyper
planes.

Using the inductive approach mentioned in the outline of the first
proof of theorem 1, it is easy to establish the following facts (see Buck [1]).

3. The number f,.(d) of k-faces of a simple d-arrangement d with
n(d) = n depends only on k, d, and n. Denoting this number by ft(n) we have
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it _ Itk) (d - 2i) ( n ) _ ( n ) k (n - d - I + k)
f,.(n) - L . - L . .

i=O d - k d - 21 d - k i=O 1

4. The numbersft(n) satisfy the relations

~~k (_I)i(d - i)ft(n) = t(n)(1 + (-It- k)
.=0 k k

whenever 0 ::; k ::; d < n.

Euler's equation is clearly contained in this system for k = O. The
equations corresponding to k == d (mod 2) do not depend on n; they form
a system equivalent to that of theorem 2 (compare theorems 9.4.1 and
9.4.2).

As an analogue of theorem 8.1.1 we have

5. The affine hull of the set ofall vectors oftheformf(d) = Uo(d),· ··,
fid)), where d varies over all d-arrangements, has dimension d.

In other words, constant multiples of Euler's equation are the only
linear equations in the J;(d)s which hold for all d-arrangements d .

A proof of theorem 5 may be obtained by considering d-arrangements
determined by at most d + 2 hyperplanes. It is even possible to show that
for every n ~ d + 3, dim aff{f(d) Idad-arrangement with n(d) = n}
=d.

Similar to the corresponding fact about polytopes is

6. The functions fk(d), 0 ::; k ::; d, depend in a lower semicontinuous
way on the d-arrangement d .

Therefore, in particular, we have

7. For every d-arrangement d with n(d) = n, and for each k,0 ::; k ::; d,

fk(d) ::; ft(n).

Ifd is a d-arrangement with n(d) = n such that n - d + 1 hyperplanes
of d pass through the same (d - 2)-dimensional variety, it is easy to

Sh;'~~~: 2'-'Hfl -(f =:)}n -2
H(d + 1){k~ l(f) - (f =:)}

Let cpt(n) = min{,h(d)I d be a d-arrangement with n(d) = n}. The
values of cpt(n) are not known for d ~ 3. We venture the following :

CONJECTURE

cpt(n) = 2k
-

1{2(:)_ (: =:)}n - 2k
-

1
(d + l){k ~ I (:) - (: =:)} .



394 CONVEX POLYTOPES

Two d-arrangements are called equivalent provided there exists a one
to-one incidence-preserving correspondence between their faces. In other
words, the d-arrangements are equivalent provided the corresponding
d-complexes are combinatorially equivalent. As in section 5.5, it is
possible (in principle) to determine all the different classes of non
equivalent d-arrangements of n hyperplanes. However, as with polytopes,
the actual determination of the number of different equivalence-classes of
d-arrangements with n hyperplanes is quite hopeless unless n - d is very
small. The known results deal only with d < 3 (see Cummings [1,2],
White [1,2], R. Klee [I]) ; they are given in table 18.1.1.The different simple
2-arrangements with n(d) ::s; 7 are shown in figure 18.1.1, while figure
18.1 .2 shows the nonsimple 2-arrangements with n(d) ::s; 6.

Table 18.1.1. Number of nonequivalent 2-arrangements d with n(d) = n

n= 3 4 5 6

Simple arrangements In the pro -
jective plane 4

All arrangements in the projective
plane 2 4 16

Simple arrangements in the non-
oriented Euclidean plane 6 43

Simple arrangements in the oriented
Euclidean plane 7 79

7

11

922*

1765*

We wish to mention here a rather old conjecture of Cummings [3], to
the effect that certain numerical 'indices' of simple 2-arrangements (which
depend only on the combinatorial type of the arrangement) have equal
values only for equivalent arrangements. Though the truth of this conjec
ture (which is somewhat analogous to that disproved in exercise 13.6.2)
seems rather doubtful (Carver [1]), the conjecture is known to be correct
for n(d) ::s; 7.

In order to define the index i(d) of a simple 2-arrangement d we
proceed as follows. For any vertex V consider the two lines of d passing
through V; they divide the projective plane into two 'halfplanes' H I and
H 2 ' Let aj be the number of vertices of d contained in the interior of H j ;

then clearly al + a2 = (n ~ 2). The index i(V) of V is defined by

i(V) = min{a l , a2 } . The index i(d) is the vector i(d) = (io, i l , " ' , im ),

• Due 10 R. Klee[1], probably not correct (seepage 408).
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-A A- ~ ~
n= 3 p=(4) n=4 P=(4,3) n=5 P=(5,5,l) n=6 p =(I0,O,6)

395

n=6 p=(7,6 ,3) n=6 p =(6,8,2)

Figure 18.1.1 (part 1). Simple 2-arrangements of at most 6 lines

p=(IO,6.6)

p=(8,IO,4)n=7

n= 7 p =(9,9,3,1l
p= (11,5,5,1)n=7

n=7 p=(7,13,l,1l

p = (8 ,11,2,11

n=7 p =(7,14,O,O,1)

n=(7)

n=7 p=(7,12, 3) n=7 p=(7,12,3)

Figure 18.1.1 (part 2). Simple 2-arrangements of 7 lines
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n=4 r ; (4,9,6)

~=(3,1) P=(6)

n=5 ,= (5, 12,S)

~=(4,O,I) P=(S)

n=5 (=(6,14,9.)

~a(4,2) p=(S,I)

n=5 (=(S,17,10)

~=(7,1) p =(6,4)

n=6 '=(6,15,10)

~=(5,0,0,1) P=(IO)

n=6 '=(S,19,12)

~=(6,r,11 P=(l0,2)

n=6 (=(IC,22,13)

~=(9,O,I) P=(S,5)

n=6 (=(7,18,12)

~=(3,4) p=(l2)

n=6 (=(9,21,13) n=6 (=(11 ,24,14) n"6 ("'(11,24 ,14)

~=(6,3) p=(l0,3) ~·(9,2) p=(S,6) vz(9,2) p·(S,6)

¥~4
n-6 (·(11,24,141,"}t61

n= 6 (=(11,24,14)

I' = (9,2) P =(9,4,1)

n=6 (=(13,27,15)

~ = (12,1) P • (9,3,3)

n=6 (=(13,27,15)

~ = 112,1) P =(7,7,1)

n=6 ( =(13,27,15)

~=(12,1) p=(7,7,1)

n = n(d)

v = (v 4 (d ). v6 (d j. . . .)

f = (fo(d) , f1(d) , f2(d»

P = (P3(d). p4(d), .. .)

Figure 18.1.2. Nonsimple 2-arrangements of at most 6 lines

(
n - 2)

where m = t 2 ' and i k is the number of vertices V of .91 such that

i{V) = k, °::;; k ::;; m. For example, if.91 is the last 2-arrangement with 6
lines shown in figure 18.1.1, then i{.9I) = (6,0, 3, 6),while for the 2-arrange
ment with six lines shown first in figure 18.1.1 we have i{.9I) = (O, 15,0,0).
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With every d-arrangement d a graph f§ = f§(d) may be associated in
the following manner : The vertices of f§ correspond to the d-cells of d ;
two vertices of f§ are connected by an edge if and only if the correspond
ing d-cells in d have a common (d - I)-face. Clearly f§(dd and f§(d2 )

are isomorphic graphs whenever d 1 and d 2 are equivalent d-arrange
ments. For d = 2 it is not hard to show that the isomorphism of f§(dd
and f§(d2 ) implies the equivalence of d 1 and d 2 • However, already for
d = 3 it is not known whether this statement is still valid.

18.2 2-Arrangements

In the present section we shall consider certain additional problems and
results dealing mostly with 2-arrangements d . Let the number of k-gonal
2-faces of d be denoted by Pk'Then, as in chapter 13,for simple 3-arrange
ments d we have

4fo(d) = 2fl(d) = L kpk = 2n(n - 1),
k ~3

and

(*) P3 = 4 + L (k - 4)Pb
k~5

where n = n(d) is the number of lines in d.
The following lemma is the source of various other results.

1. Each line ofa 2-arrangement d is incident with at least three triangular
2-faces ofd .

This result, and the following elegant proof of it, are due to Levi [1].
It was rediscovered in a solution to a problem of Moser [2]. We consider
a representation of d in the Euclidean plane, with Lthe 'line at infinity'.
Let M be the set of vertices of d which are not in L. If the finite set M
consists of a single point, then all lines of d, except L, pass through it
and 2n - 2 triangles have an edge in L. If conv M is a segment (this case
was overlooked by Levi [1]) then d consists of the lines L, Lo = aff M,
and L 1, 1 :::;; i:::;; k, where L 1, ' '' , Lk are 'parallel' (i.e. have a common
point on L). Thus the 2-arrangement is the same as in the previous case,
and L is incident with 4 triangles . If conv M is a polygon it has at least 3
vertices, and for each vertex there are at least two half-lines in A issuing



398 CONVEX POLYTOPES

from it and not meeting any other point of M. Each neighboring pair of
such halflines determines, together with L, a triangular 2-face of .91;
thus L is incident with at least 3 such faces, and the proof is complete.

As an immediate corolIary we have the folIowing result, mentioned
already in Eberhard [I] :

2. If .91 is any 2-arrangement with n lines, then P3(.9I) ~ n.

Indeed, by theorem 1, there are at least 3n incidences between triangles
a nd lines of .91. On the other hand, there are 3p3(.9I)such incidences, hence
the result.

Together with relation (*), theorem 2 clearly yields a solution to the
problem proposed by Mo ser [1].

It should be noted that the estimate of theorem 2 is best possible of its
type. For each n ~ 4, the lines determined by the edges of any convex n
gon form such a 2-arrangement. We mention without proof the following
result of Roberts [I ] which is sometimes stronger than theorem 2 :

3. If .91 is a simple 2-arrangement of n lines and if Lo is any line in .91,
there are at least n - 3 triangles not incident with Lo.

Theorem 2 naturally leads to the problem ofdetermining the largest and
smalIest possible value s of Pk(.9I) for 2-arrangements .91 with n lines.
Each of these questions may be considered for all 2-arrangements, or
with .91 restricted to simple 2-a rrangements. Onl y very scattered results
a re known.

Thus, clearly P3(.9I) :$; t n(n - I) for all simple 2-a rra ngements .91 with
n ~ 4 lines. The known ma ximal values P3(n) [P3(n)] of P3(.9I) for [simpleJ
2-arrangements .91 with n lines are collected in table 18.2.1. The values
of P3(n) are less than [tn(n - I)J for n = 5,7,8, but equal thi s bound for
n = 4,6,10. It is not known whether equality holds for any additional

Table 18.2.1. The known value ofP3(n) and p~(n)

n

3
4
5
6
7
8

10

4
6
8

12

pj(n)

4
4
5

10
11
16
30

I jn(n - I) ]

2
4
6

10
14
18
30



ARRANGEMENTS OF HYPERPLANES 399

values of n. To see that P3(8) ~ 16 and p3(10) ~ 30 it is sufficient to con
sider the 2-arrangements in figures 18.2.1 and 18.2.2. It is not hard (but
somewhat time-consuming) to show that p3(8) :::;; 16 even without deter 
mining all possible simple 2-arrangements .<4 with n(d) = 8.

p =(16,4 ,6,3)

Figure 18.2.1

Another unsolved problem is : For what values of n do there exist simple
2-arrangements d with n(d) = nand P4(d) = O. The three known cases
are n = 3,6, 10 (see figures 18.1.1 and 18.2.2).

In analogy to the determination of the set off-vectors of all 3-polytopes
(section 10.3), we may attempt to characterize the set of f-vectors of all
d-arrangements, at least for d = 2.
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Figure 18.2. 2

p = l:30.0,6.l0)
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Let v2k(d) denote the number of2k-valent vertices of the 2-arrangement
d (i.e. the number of vertices each of which is on exactly k lines). Then
lo(d) = Ik~2V2k(d), I,(d) = Ik~2kv2k(d), and therefore

lid) = I, - 10 + 1 = 1 + L: '(k - l)v2k ~ 1 + I V2k = 1 + lo(d) ;
k~2 k ~2

equality holds if and only if d is simple. On the other hand, combining
2/,(d) = Ii~3 ip~d) with Euler 's equation, there results

2/0(d) - 2 = 2/, - 2/2 = L: (i - 2)Pi~ L: Pi(d) = f 2(.>1) ;
i~ 3 i ~3

equality holds if and only iff2(d) = P3(.>1).
Hence we have (see figure 18.2.3)

O Denotes poirs of numbers that
both occupy the same lattice-point

8°

8

8

12

II

'2
30 16

29 /
28 15

27 /
26 14 8 8

25 / 8 8
24 @ 10 8 8

23 / 8 8 8
22 12 8 8 8 8 7°

2 1 /88@8/
20 @ 8 8 8 7

19 / 8 7 7
18 19 8 7 7

17 / 7 7

i~ /~::' ~~
12 @6 /
II /- 5°

'~ Is /
~ ,!~40
5//
43

'0=3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 202122 23 2425 2627 28

Figure 18.2.3



402 CONVEX POLYTOPES

4. Th e con vex hull of the se t off-vectors ofall 2-arrangement s is the set
{(/o,fo + f2 - 1,f2) I f o + 1 ~ f2 s 2fo - 2}.

In figure 18.2.3, a number in the position (/0,f2) indicates n(d) for
2-arrangements d withfo(d) = fo andf2(d) = f 2. As visible from figure
18.2.3, in which all (/0(d ),f2(d)) for n(d) ~ 8 are represented, the situa
tion in the present case is more compl icated than in the analogous case
dealt with in theorem 10.3.1. Man y lattice-points in the region fo + 1
~ f2 ~ 2fo - 2 do not correspond to an y 2-arrangement-but their
characterization still eludes us.

As shown by the equation used in the proof of theorem 4, the charac
terization off-vectors of 2-arrangements is closely related to the question :
Which (n - 2)-tuples (v4 , v6 , •• " v2• _2)may be realized by 2-arrangements
d with n(d) = n?

It is not hard to show that the numbers V2i(d) satisfy the equation

. -1 (i) _(n)L V2i-
i = 2 2 2

'0= 28
27
26
25
24
23
22
21

20
19
18

17
16

15
14

13

12
II
10

9
8
7
6

5
4

3

+

3 4 5 6 7 8 9 10 II 12 n=n (A)

Figure 18.2.4
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and the inequalities

(
V(j))

L iV2 i s n +
i '<?j 2

where

for j = n - 1,n - 2, .. . , 2,

IPl = L V2i·
i;?j

Additional results in this direction (theorems 5 and 6) are due to Kelly
Moser [1]:

5. If n(d) = n and if k is a positive integer such that V2i(d) = 0 for
i > n - k and 2n :2: 3(3k - 2)2 + 3k - 1, then

fo(d) :2: kn - ¥3k + 2)(k - 1).

It is obvious that if n(d) = nand V2n- 2(d ) > 0, then V2n -2(d) = 1,
and d consists of n - 1 lines passing through one point, and one line
not through this point. Let this 2-arrangement be denoted d n' For k = 2
theorem 5 implies the following analogue of theorem 10.2.2 :

6. Ifn(d) = n :2: 27 and if d is not dn , then

fo(d) :2: 2n - 4 .

This estimate for fof.s;l) is best possible as shown by the 2-arrangement
consisting of n - 3 'parallel' lines, two 'parallel' lines (not parallel to the
n - 3 lines), and the line 'at infinity'. The condition n :2: 27 is too
restrictive; for example, the estimate is valid for n = 5, 10, 11; it is
probably valid for all n :2: 10. However, for n = 6,7,8,9 the best possible
estimate isfoW):2: 2n - 5.

A graphic illustration of theorem 6 is shown in figure 18.2.4, in which
the possible pairs (nf.s;l), fof.s;l)) are indicated. (The representation is
complete for n ~ 8, and in the regionfo ~ 2n - 4 for n ~ 11.)The 'gaps'

at points (n, (;) - 1) and (n, G) - 3) are not accidental; the reader

is invited to prove that no 2-arrangement with n«<#) = n satisfies

fo(d)= G) - 1 or fo(d) = (~) - 3. The following conjecture is
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suggested by figure 18.2.4: For every integer k such that

2n - 4 ~ k s (;) - 4,

there exists a 2-arrangement d satisfying ned) = n and/o(d) = k.
For a similar phenomenon in a related field see Steinitz [7].

Figure 18.2.5

A famous problem of Sylvester [1] may be formulated as follows :
Is v4 (d ) > 0 for every 2-arrangement d?
The affirmative answer to Sylvester's problem was surprisingly late

in coming (see Motzkin [3], Kelly-Moser [1] for the interesting history
of the problem and for references to earlier papers; for higher-dimensional
analogues see Hansen [1] and Bonnice-Edelstein [1]). Kelly-Moser [1]
established the following stronger result:

7. For every 2-arrangement d ,

v4(d) ~ ~n(d).

As shown by the 2-arrangement in figure 18.2.5 (with ned) = 7,
v4(d) = 3, this is the best possible estimate of the form v4(d) ~ co(d).
It may be conjectured that v4(d) ~ [tn(d)]. This conjecture is true at
least for ned) ~ 9. On the other hand, the following example of T. S.
Motzkin shows that for even ned) it is best possible, and incidentally
refutes a conjecture of Erdos [4] : If d consists of the k lines determined
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by the edges of a regular k-gon, and the k axes of symmetry of the k-gon,
then n(sat') = 2k and it is easy to see that V4(sat') = k. The conjectured in
equality is certainly not best for all odd n(sat'); thus, for example, it may
be shown that if n(sat') = 9 then v4(sat') ~ 6.

For an application of theorem 7 to the classification of zonohedra
see Coxeter [3]. For some related questions concerning the V2;'S see
chapter 4 of Ball [I].

A sequence (p" Ik ~ 3) of nonnegative integers will be called pro
jectively realizable prov ided there exists an integer n and a simple
2-arrangement sat' of n lines such that p,,(sat' ) = PIc for all k. As in the
analogous problem concerning polytopes (see section 13.3), it may be
asked whether for every sequence (p"13 ::;; k ¥- 4) of nonnegative integers
sat isfying

(*) P3 = 4 + L (k - 4)p",
" ~5

there exists a value of P4 such that the sequence (p" Ik ~ 3) is projectively
realizable.

The following affirmative answer to this problem was mentioned
without proof in a footnote in Eberhard [3] :

8. For every finite sequence (P" 13 ::;; k ¥- 4) of nonnegati ve integers
satisfying (*) there exists values of P4 such that the sequence (P" Ik ~ 3)
is projectively realizable . Moreover, for every such (p,,) there are only
finitely many nonequivalent simple 2-arrangements sat' with p,,(sat') = PIc
for k = 3,5,6,7,···.

The proof ofthe last part of the theorem follows at once from theorem 2,
which limits the number of lines in sat' to at most P3' In order to prove
the first part of theorem 8, we first note that the assertion is obvious if
P3 = 4. Then sat' may have either 3 or 4 lines, and P4 may be 0 or 4. In
the sequel we shall assume P3 ~ 5 and hence (by (*» PIc ~ I for some
k ~ 5. The idea of the following construction is to have available, at each
step, a 'desirable' pair of lines. By this we mean a pair of lines such that
one of the 'halves' of the projective plane determined by them consist
only of quadrangles and of 2 triangles which have the intersection-point
V of the two lines as a common vertex (see the solid lines in figure 18.2.6).
If a 2-arrangement containing a 'desirable' pair of lines is given, it is
possible to introduce an additional line (dashed in figure 18.2.6) the
only effect of which , besides increasing the number of quadrangles, is to
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split an 'outer' k-gon containing V into tr iangle and a (k + l)-gon.
Note that the enlarged 2-arrangement again contains 'desirable' pairs,
neighboring to the (k + l)-gon, and neighboring to quadrangles. There
fore, given a sequence (Pi I 3 s;, j :1= 4)satisfying (*), we start from the second
2-arrangement in figure 18.1.1 and choose a 'desirable' pair of lines.
By successive addition of k - 4 lines we transform one of the quadrangles
containing V into a k-gon (and introduce, besides quadrangles, k - 4
new triangles). Repeating this procedure with other 'desirable' pairs of
lines, we easily arrive at a projective realization of the given sequence (Pk)'
This completes the proof of theorem 8.

Figure 18.2.6

In contrast to the analogous situation regarding 3-polytopes, the
construction of the above proof yields a definite number of lines in d

(namely P3) and a definite value of P4 = r;) + 1 - Lk*4 Pk'

However, the same sequence (Pk 13 s;, k :1= 4) may be projectively
realizable also for other values of P4and n. Examples of such 'ambiguous
realizability' are evident from figure 18.1.1. It is not known whether the
set ofall values of n for which a given sequence (Pk 13 s;, k :1= 4) is realizable
by simple 2-arrangements with n lines, consists in each case of con
secutive integers.

Some additional information on the possible values of n is contained
in the next theorem; its first part is due to N. G. Gunderson (seeCarver [1];
Gunderson's proof seems not to have been published).

9. Let d be a simple 2-arrangement with n lines. If d contains a p-gon
and a q-gon, then P + q s;, n + 4 ; if d contains a p-gon, a q-gon, and
an r-gon then P + q + r s;, n + 9.
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The proof of the first part is rather straight forward on observing
that if d contains 5 lines each of which contains an edge of each of two
fixed 2-faces of d, then those 5 lines determine a 2-arrangement with
at least two pentagons; but the combinatorially unique 2-arrangement
of 5 lines (figure 18.1.1) contains only one pentagon. It follows that
the p-gon and the q-gon of d have at most 4 common lines, hence
p + q - 4:$ n.

The second part of theorem 9 may be established by similar (but
lengthier) arguments, involving configurations of 7 or fewer lines; we
shall not give it here.

It would be interesting to generalize theorem 9 to the situation where
d has as faces a q l-gon, a q2-gon, . .. , a qk-gon. Probably there exists an
estimate of the form

k

L a. s n +a(k),
t> 1

where a(k) depends only on k. From the above, we have a(I) = 0, a(2) = 4,
a(3) = 9; it seems likely that a(4) = 14. The 2-arrangement of figure
18.2.2 shows that a(5) ;;::: 20 and a(6) ;;::: 26.

It would be interesting to find an existence theorem analogous to
theorem 8, but dealing with 2-arrangements which are not necessarily
simple.

Considering higher-dimensional analogues of theorem 2, using a
method similar to that applied in the proof of theorem 1 it is easy to
establish the following result (Eberhard [IJ for d = 3):

10. For every simple d-arrangement of n hyperplanes at least n of the
d-faces are d-simplices.

Theorem 10 is probably true for all d-arrangements.

18.3 Generalizations

Many properties of d-arrangements, and of simple d-arrangements, are
topologically invariant in the sense that they remain valid if hyperplanes
are replaced by (d - I)-varieties homotopic to hyperplanes, provided
their intersections are homotopic to the corresponding intersections
of hyperplanes. For example, all theorems of section 18.1 remain valid
for such 'generalized arrangements'. We shall examine more closely
only the special case d = 2.
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Following Levi [I], a system of simple closed curves in the projective
plane is called an arrangement of pseudo-lines provided

(i) Each two curves have precisely one point in common, each of them
crossing the other at this point;

(ii) there is no point in common to all the curves.
Arrangements of pseudo-lines have many properties analogous to the

properties of 2-arrangements of lines (Levi [I D. For example, it is possible
to define 2-faces of such arrangements, and they are topological 2-cells;
according to the number of pseudo-lines incident to such a 2-face, it is a
triangle, quadrangle, etc. Relation (*) of the preceding section holds, and
theorem 18.2.2 has a valid analogue: In every arrangement of n pseudo
lines there are at least n triangles.

On the other hand, not every arrangement of pseudo-lines is stretch
able, i.e. combinatorially equivalent to a 2-arrangement of linest. This
fact, mentioned already by Levi [I], was established by examples in
Ringel (1]. (See Ringel [2] for some related questions.) We venture the
following:

CONJECTURE There exists an integer no such that an arrangement d
of pseudo-lines is stretchable whenever each sub-arrangement of d con
taining at most no pseudo-lines is stretchable.

Another series of problems arises in connection with the maxima and
minima of p/c(d) for arrangements of n pseudo-lines ; in particular, are
those extrema the same as the corresponding extrema for 2-arrange
ments of lines? Are all the extremal arrangements stretchable?

Similar questions may be asked regarding the fvectors and the
sequences (v4 , v6, ' .• ) .

There is an interesting unsolved problem about the relation of d
arrangements and (d + I)-polytopes. Since the problem is open already
for d = 2, we shall satisfy ourselves with a formulation for this special
case.

Any 2-arrangement of lines in the projective plane is naturally associ
ated with a family of planes through the origin in the Euclidean 3-space
R 3

, the 2-faces of the 2-arrangement being in a bi-unique correspondence
with the pairs of antipodal 3-dimensional cones into which R 3 is split

tR. Klee [1] gives an invalid argument to show that every arrangement of pseudo-lines
is stretchable. The existence of nonstretchable simple arrangements of pseudo-lines implies,
among other consequences, that R. Klee [1] counted (in principl e) the number of com
binatorial types of simple arrangements of pseudo-lines, and not of lines. It is not known
whether every simple arrangement of 8 pseudo-lines is stretchable.
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by the planes . (For such systems of cones and for related topics and
additional references see, for example, Cover [1], Cover-Efron [1],
Samelson-Thrall-Wesler [1].) The problem is whether every system of
cones obtained in this way may also be obtained by taking a suitable
3-polytope with center 0 and by considering the cones with vertex 0
spanned by the 2-faces of the polytope. If the answer to this should
be negative, does it matter if the system of cones arising from the 3
polytope is only required to be combinatorially equivalent to the system
of cones obtained from the 2-arrangement? (See Supnick [1] for a related
problem.)

It would be interesting to investigate properties of d-arrangements
(or 'generalized arrangements') analogous to the properties of polytopes
we considered in chapters 11, 12, 13. In particular, what is the analogue
for 2-arrangements of Steinitz's theorem 13.1.1 ; in other words, what
graphs imbeddable in the projective plane may be realized by (simple)
2-arrangements?

d-Arrangements may be generalized also in another direction ; indeed,
this generalization was considered already by Steiner [1].

In Euclidean d-space Rd
, a finite family of (d - 1)- spheres defines

in an obvious way a spherical d-arrangement. Using the fact that the
intersection of k different (d - Ij-spheres is either a sphere of lower
dimension, or a point, it is possible to obtain results analogous to those
in section 18.1. (P6lya [2], pp. 224-225). A complication arises from the
fact that even for simple spherical d-arrangements d of n (d - Ij-spheres,
the number q>k(d) of k-cells depends not only on d, n, and k, but varies
with d However, using a simple variant of the inductive approach
mentioned in connection with theorems 18.1.1 and 18.1.3, it is possible
to show that q>f(n) ~ 2ff(n), where q>f(n) = max{q>k(d)Id a simple
spherical d-arrangement with n spheres}. But even the stronger result
q>~(n) = 2f~(n) holds.

Indeed, taking any simple d-arrangement d of n hyperplanes such
that j,,(d) = ff(n), we consider the projective d-space as the d-sphere
in Rd + 1, with antipodal points identified. Disregarding the identification,
we obtain an arrangement on Sd determined by n 'great (d - I)-spheres',
with 2ff(n) k-cells. Applying a stereographic projection of S,d onto a
Euclidean d-space, the n 'great (d - Ij-spheres' project onto n (d - 1)
spheres in Rd

; this spherical d-arrangement obviously has 2f~(n) k-cells.
(For partial results in case d = k = 3, see Ruderman [1] ; for the general
case see Renyi-Renyi-Suranyi [1].)
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Clearly, most of the problems on arrangements of hyperplanes have
valid analogues for spherical d-arrangements. Among problems specific
for spherical d-arrangements we mention only the following one, which
seems to be open even for d = 2.

Is every simple spherical d-arrangement d of n (d - I)-spheres, with
the property cpk(d) = cp~(n), combinatorially equivalent to one which is
obtainable by stereographic projection from a d-arrangement of hyper
planes in the projective space?
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18.4 Additional notes and comments

410a

Arrangements and zonotopes.
The "interesting unsolved problem" posed on p. 408 has a rather simple posi
tive solution, which establishes that arrangements and zonotopes are equivalent
in a very strong sense . Let pi = {HI' ... ,Hn } be a d-arrangement of n ~ d + 1
hyperplanes in projective space pd . Associated with this is an arrangement
pi' = {HL ... ,H~} of n linear hyperplanes in Rd+! . (Such an arrangement
of hyperplanes through the origin in a Euclidean space is known as a central
arrangement.) The correspondence is such that each non-empty k-face of pi

corresponds to two opposite faces of pi', which are (k+ I)-dimensional cones.
Let the hyperplanes HI = {x E ~+! : (Zj'x) = O} be given in terms of or

thogonal unit vectors z, E ~+I. Then we get a zonotope of dimension d + 1,
associated with the arrangement pi, by

:e(pI) := {.t. AiZ i : -1 s Ai ~ 1 for 1s i s n}.
,=1

The dual :e* of this zonotope "spans" the hyperplane arrangement pi' in the
way required for the problem on page 408: For this it suffices to note that any
two vectors a, a' E~+ I lie in the same face of pi' if and only if the linear ob
jective functions (a,x) and (a',x) are maximized on the same face of :e.Thus
pi' is the normal fan for :e (as defined in the notes in section 3.6). Equiva
lently, the faces of :e* span the (closed) faces of pi': The (k+ 1)-faces of pi'

are exactly the cones cone(F) generated by the k-faces F of :e* for k ~ O.
With this set-up, there is a bijection between d-arrangements and (d + 1)

dimensional zonotopes (up to normalization of the lengths of the zones) . Here
simplicial arrangements correspond to simple zonotopes, while "simple"
arrangements (as defined on page 391) correspond to cubical zonotopes.

The conjecture on page 397 was proved by Bjomer-Edelman-Ziegler [a].
See also the notes in section 12.4.

Line arrangements, pseudo-line arrangements, and oriented matroids.
Griinbaum's tel own work "Arrangements and Spreads" has been extremely
influential for research about line and pseudo-line arrangements. A current
survey with many references is Goodman [a].

Substantial theoretical backing for this has arisen since the seventies in the
form of oriented matroid theory. Pseudo-line arrangements are in a very precise
sense equivalent to oriented matroids of rank 3; line arrangements correspond
to the special case of "realizable" oriented matroids. In the same way, general
oriented matroids correspond to a well-defined concept of "pseudo-hyperplane
arrangements"; the case of realizable oriented matroids corresponds to real
hyperplane arrangements. (The basic objects for this are central hyperplane
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arrangements in which a "positive side" has been fixed for each hyperplane.)
This is also the proper setting for results such as Zaslavsky's theorem [a] that
the number of (bounded) regions of an affine hyperplane arrangement is deter
mined by the underlying (not oriented) matroid; see Las Vergnas [a]. We refer
to the comprehensive discussion in Bjorner et aI. [a], as weII as to Bokowski
[a], Richter-Gebert-Ziegler [b], and Ziegler [a, Lect. 7].

The Sylvester-Gallai problem.
Sylvester 's problem on page 404 (solved by GaIlai) has recently been gener
alized by Chvatal [a] to finite metric spaces (with a proof for metrics induced
by connected finite graphs). The related question whether every simple ar
rangement of n pseudo-lines in the projective plane has at least [n/2J simple
intersections (by Griinbaum [c]) is far from being resolved. The best results up
to now are due to Czima-Saywer [a]. (See also Fukuda-Finschi [a].)

Simplicial arrangements, simplicial regions.
Simplicial arrangements (i. e., hyperplane arrangements in which alI regions
are simplicial) have been studied intensively. For d = 2, infinite classes may
be derived from regular n-gons, and in higher dimensions from finite reflection
groups (see the notes in section 19.4), and by taking "direct sums" . An un
resolved conjecture states that beyond this, there are only finitely many "spo
radic" simplicial arrangements-as listed by Griinbaum [c] and Griinbaum
Shephard [c] (with only few later additions, see Wetzel [a]).

The maximal number of triangles in a line resp. pseudo-line arrangement has
been the object of intensive studies. In particular, Table 18.2. I can be extended
by /1(15) =65 and /1(16) =80. We refer to Goodman [a, Sect. 5.4].

The claim of theorem 18.2.10 is true for alI hyperplane arrangements : There
are at least n simplicial regions in every d-arrangement of n hyperplanes. How
ever, Shannon 's [a] proof relies on metric constructions that are not avail
able in the more general setting of oriented matroids; see Roudneff-Sturmfels
[a]. A still unresolved conjecture of Las Vergnas states that every pseudo
arrangement must contain at least one simplicial region. Richter-Gebert [a]
produced pseudo-arrangements with "few" simplicial regions.

More on arrangements.
There has been extensive work in computational geometry on the combinatorial
complexity of arrangements of curves, surfaces, hyperplanes, etc., by Sharir
and others-see Agarwal-Sharir [a].

Complex hyperplane arrangements are discussed in OrIik-Terao [a]. For
more general subspace arrangements see Bjorner [c] and Vassiliev [a].
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Concluding Remarks

In the three sections of this, the last, chapter we shall discuss a number of
combinatorial-geometric topics which are either directly concerned with
polytopes or else, though meaningful for a larger class of sets, reduce
in their most interesting aspects to polytopes. Clearly, the number of
such topics could be increased almost without bounds, and the selection
of those dealt with here reflects only the author's predilections and
interests.

Regarding two omitted topics the author feels obliged to explain their
absence, and to provide at least some references to the literature.

The first such topic started with Cauchy's [1] famous 'rigidity theorem'
and has developed, through interaction with differential geometry, to a
large body of knowledge concerning the metric structure of polytopes.
Aleksandrov's book [2] gives an excellent and thorough account of the
whole field, making superfluous our dwelling on it. (For a recent contri
bution to the subject see Stoker [1].)

Another topic, even the briefest meaningful discussion of which would
by far transcend the place at our disposal, deals with packings, space
fillings , and related subjects. For parts of this material the reader is
referred to Fejes Toth [1,3] and Rogers [1], though even this does not
do full justice to the far-flung ramifications of the subject. As one topic
not discussed in the above references we mention the following fascinating
problem of Keller [1,2] which is, apparently, open for d ~ 7 (Perron [1]):

Does there exist, for every space-filling of Rd by congruent d-cubes,
a pair of cubes having a common facet ?

19.1 Regular Polytopes and Related Notions

Regular polytopes, and different kinds of semiregular polytopes, have
been a topic of investigation since antiquity, and during the centuries
led to many interesting and important notions and results.

A number of different definitions of regularity are frequently used .

411
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According to the inductive definition (see, for example, Coxeter [1],
Fejes Toth [3]) a d-polytope is regular provided all its facets and all its
vertex figures are regular (d - I)-polytopes. (Vertex figur e is here under
stood in a more restricted sense than in exercise 3.4.8 : the hyperplane
determining the vertex figure at a vertex passes through the midpoints
of the edges incident to the vertex.)

Another definition (Coxeter [1,5]), equivalent to the former, is :
Ad-polytope P c Rd is regular provided for every k,O :s; k :s; d - 1,
and for every (k + lj-face r : 1 and (k - I)-face r: 1 incident with
Fk+ I , there exists a symmetry of P (i.e. an orthogonal transformation T
of Rd mapping P onto itself) such that the two k-faces of P incident to
both Fk+ 1 and Fk

- 1 are mapped onto each other. (Obviously this implies
that for each two k-faces of P there is a symmetry of P interchanging
them.)

For other definitions of regularity see, for example, Du Val [1], N. W.
Johnson [3]. All those definitions are equivalent for (convex) polytopes;
most of them are also suitable for nonconvex polytopes, or for tessella
tions. For detailed accounts of regular polytopes and similar objects,
and their properties and history, the reader is referred in particular to
Coxeter [I] and Fejes Toth [3]. (For a characterization of regular non
planar polygons see Efremovic-Il'jasenko [1].) We mention only the
fact that the family of regular polytopes consists, in addition to the
infinitely many regular polygons (d = 2), of 5 'Platonic solids,' 6 regular
4-polytopes, and just 3 regular d-polytopes for each d ~ 5 (d-simplex,
d-cube, d-octahedron).

There are, nevertheless, many open questions in connection with
regular polytopes and allied notions. The aim of the present section is
to mention some of the relevant known results , and to formulate a
number of still unsolved problems.

Using the second of the above definitions of regularity, Coxeter [5]
defined affinely regular polytopes by substituting 'affine symmetry'
for 'symmetry'. This means that T is allowed to be any affine trans
formation mapping P onto itself. As pointed out by Coxeter (private
communication) it is not hard to show that every affinely regular poly
tope is affinely equivalent to a regular polytope. The proof uses well
known results on finite groups of affine transformations, and is related
to theorem 2.4 of Danzer, Laugwitz and Lenz [1].

Similarly, by allowing Tto be any projective transformation permissible
for P, one may define 'projective symmetries' and projectively regular
polytopes. Also, using automorphisms of the lattice ff (P ) of all faces



CONCLUDING REMARKS 413

of P instead of the transformations T, combinatorial symmetries and
combinatorially regular polytopes may be defined.

It may be conjectured that each projectively (or combinatorially)
regular polytope is projectively (or combinatorially) equivalent toa
regular polytope. This conjecture may easily be verified for d :::;; 3 (see,
for example, Askinuze [2]), but it seems not to have been solved in higher
dimensions.

The very stringent requirements of the definition of regularity may be
(and have been) relaxed in many different ways, yielding a great variety
of 'semi-regularity' notions. There is a remarkable lack of completeness
in the results, possibly explainable in part by the emphasis many authors
place on nonconvex polytopes. We shall mention some of the classes of
(convex) polytopes which were investigated; however, the reader should
beware of the differing terminologies used by different authors.

Ad-polytope Pis calIed semiregular (Gosset [1], Coxeter [1, p. 162]) if
the facets of P are regular and the vertices of P are equivalent (i.e. the
group of symmetries of P acts transitively on the vertices of P).

Ad-polytope P is called uniform (N. W. Johnson [3, p. 31]) ifit is regular,
or if d ~ 3, the facets of P are uniform, and the vertices of P are equivalent.

For d = 3 the semiregular (and the uniform) polytopes coincide with
the Archimedean solids; it is well known that, except for the 5 Platonic
solids and the infinite families of 'regular' prisms and anti prisms, there
exist 13 Archimedean solids. (Some authors call only those last 13 3
polytopes 'Archimedean solids' .) The Archimedean solids may also be
defined by the requirements of equal edges and equivalent vertices. It is
remarkable that if the definition is only slightly changed by substituting
'all vertex figures are congruent' for the transitivity of the symmetry
group, the Archimedean solids are not the only 3-polytopes allowed
(Ball [1], p. 137, Askinuze [1]). A Schlegel diagram of the only additional
polytope is shown in figure 19.1.1.

Though various construction of semiregular and uniform d-polytopes
in dimensions d 2 4 have been described (see, for example, Stott [1],
and Coxeter [1], where many additional references are given), even for
d = 4 it is not known whether the enumeration is complete (for any of
these classes).

No serious consideration seems to have been given to polytopes in
dimensions d ~ 4 about which transitivity of the symmetry group is
assumed only for faces of suitably low dimensions, and regularity or
some variant of it is required only for faces of dimensions :::;; d - 2.
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Figure 19.1.1

Similarly uninvestigated are the affine, projective, or combinatorial
variants of semi-regularity, uniformity, or the related notions (d ~ 4).
For d = 3 see, for example, Askinuze [2].

Other generalizations may be derived from the first of the definitions
of regularity given above . For example, ad-polytope, d ~ 3, is regular
faced provided all its facets are regular. The regular-faced 3-polytopes
have recently received considerable attention (Freudenthal-van der
Waerden (1), N. W. Johnson [1,2), Zalgaller [1], Zalgaller et al. (1 ),
Griinbaum-Johnson [I)) . Clearly, all Archimedean solids are regular
faced, and it is not hard to show (N. W. Johnson [I) , Zalgaller (1),
Griinbaum-Johnson [1J) that there exists only a finite number of regular
faced 3-polytopes which are not Archimedean. N. W. Johnson [2) has
found 92 such exceptional regular-faced 3-polytopes. Most of them are
parts of Archimedean solids, or unions of smaller regular-faced 3-poly
topes, but 8 of his polytopes cannot be obtained in this way ; Schlegel
diagrams of three such polytopes are shown in figure 19.1.2. Johnson's list
is probably complete, but this has not been established so far. Completely
uninvestigated is the problem of higher-dimensional regular-faced poly
topes. An interesting by-product of Johnson's list is his conjecture (true
in all known instances) that the group of symmetries of each regular-faced
3-polytope is nontrivial.

A different family of d-polytopes, d ~ 3, results by requiring all the
facets to be congruent. Clearly the polars of Archimedean solids are such
congruent-faced 3-polytopes, as are certain rhombic zonohedra (see
Coxeter [1], Bilinski [1J). An amusing observation of Steinhaus (see
Griinbaum [3]), which could probably be greatly strengthened, is : Each
congruent-faced 3-polytope has an even number of facets.



CONCLUDING REMARKS 415

Figure 19.1.2

It would be interesting to investigate whether, in analogy to Johnson's
conjecture about regular-faced 3-polytopes, each congruent-faced 3
polytope has a nontrivial symmetry group.

Relaxing the requirement of congruence of facets to that of affine,
projective, or combinatorial equivalence, successively larger families of
polytopes are obtained. Very interesting results about higher-dimensional
polytopes with these properties have been recently obtained by Perles
Shephard [2]; their methods will probably be applicable to many other
questions.

For another interesting family of d-polytopes which satisfy certain
regularity conditions see Polak [1].

A subset A of a metric space with distance function p is said to be
homogeneous provided for every al> a2, a3 E A there exists a4 E A such that
p(a 1,a2) = p(a 3, a4). It is easily checked that each finite homogeneous
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subset A of Rd satisfies A = vert conv A . Clearly, the vertices of semi
regular, or uniform d-polytopes form homogeneous sets. The finite
homogeneous sets in R2 have recently been characterized (Griinbaum
Kelly [1]); surprisingly, a result analogous to Johnson's conjecture about
regular-faced 3-polytopes is true in the present setting : Every finite,
homogeneous subset of R 2 has a nontrivial group of symmetries.

19.2 k-Content of Polytopes

In section 5.3 we discussed the lower semicontinuity of the functions
fk(P), the number of k-faces of the polytope P. A similar result holds for an
additional family of functions, the k-content (k(P) of the d-polytope P,
k=I,2, · " ,d.

In order to define the k-content of ad-polytope P we recall (compare,
for example, Bonnesen-Fenchel [1], chap. 7, Hadwiger [5]) that the
d-dimensional volume voldP of ad-polytope P (and indeed of each d
dimensional compact convex set P) is a well-defined positive number.
The k-content (k(P) of ad-polytope P is defined, for each k, as the sum of
the k-volumes of all k-faces of P,

(k(P) = I volk F .
FaJ<,..faceof P

The function (d-I(P) may easily be defined for all d-dimensional compact
convex sets P ; it is the (d - I)-dimensional 'surface area' of P.

It is well known (see, for example, Hadwiger [5]) that the functions
(iP) and (d-I(P) depend continuously (in the Hausdorff metric) on P,
not only if P ranges over d-polytopes but even if it ranges over all compact
convex sets of dimension d. However, it was only recently that the follow
ing generalization was established (Eggleston-Grunbaum-Klee [1]):

1. If a polytope P is the limit of the sequence PI' P2, • • • of polytopes,
then, for each k,

(k(P) .s lim inf (k(P n) ,

In other words, all the functions (iP) depend in a lower semicontinuous
manner on the polytope P.

In view of theorem 1, it is possible to extend the definition of k-content
to all d-dimensional compact convex sets K by putting

(k(K) = lim inf (k(Pn),
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for all sequences Ph P2, ••• of d-polytopes converging to K. It is then
easily shown that the extended functions (It(K) depend in a lower semi
continuous manner on the compact convex set K . Clearly, (It(K) = 00 is
possible for k ::s; d - 2 ; even in the case d = 3 and k = 1, no geometric
characterization is known for the family~ of all d-dimensional compact
convex sets K such that (k(K) < 00. (Obviously all d-dimensional compact
convex sets belong to ft'~ = ft'~_ I')

In analogy to the fvectors of polytopes, one could consider d-tuples of
the form «( I(P), (2(P), . . " ("P)), where P is a d-polytope or a member of
~. It is more convenient, however, to define the (-vector (P) by

(P) = «(I(P), (2(P)t, . . . , (d(P)I/d) .

Then it is clear that the sets (9') = {(P) IP E 9'} and

( ~1) = WK) IK E~}

are cones with apices at the origin . The sets (9') and (~) are somewhat
analogous to the so-called Blaschke diagrams (see, for example, Hadwiger
[3]) of families of convex sets. While the complete description of the
Blaschke diagram is not known for any interesting family of sets, in all
cases that have been investigated the Blaschke diagram was found not
to be a convex set. About the sets ( 9') and (~) even this is not known .
One of the few affirmative results on those sets is the well known isoperi
metric inequality (see, for example, Hadwiger [5])

r 'K)I /d < _ 1_r (K)l /ld -1)
':.4\ - d I/d':.d- 1 ,

rod

where rod is the d-volume of the unit ball of Rd and K E~. The isoperi
metric inequality establishes parts of the boundaries of the sets (9')
and ( ft'1). Additional information about those cones is contained in the
following result of Eggleston-Griinbaum-Klee [1] :

2. Whenever 1 ::s; k ::s; s ::s; d and either s = d, or s = d - 1, or k divides
s, there exists a minimal finite constant 1'(d;k, s) such that

for all K E ~t·

The isoperimetric inequality shows that 1'(d;d - 1,d) = l/droJ/d. The
only other result known in this direction is 1'(3;1,2) ::s; (67t)-t (Aberth
[1]). Melzak [3] conjectured that 1'(3; 1, 3) = 2- 2/3r 11/6 , with equality
only for the Archimedean 3-sided prism.
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It is rather remarkable that even the finiteness of )'(d ; k, s) is still
undecided in all cases not covered by theorem 2.

(A number of similar problems have been frequently considered.
Typical of those variants is the following conjecture of Fejes T6th [1],
established by Besicovitch-Eggleston [1]: Of all 3-polytopes which con
tain a given sphere, the cube has the smallest value of (t . For additional
results, and for references to the literature, see Fejes Toth [1,3,4].)

It may be conjectured that the constants )'(d; k, s) remain unchanged if
f!l'd is substituted for <ct in their definition. At least for s = d and s = d - 1
it seems probable that equality holds for some d-polytope K in the
inequality defining-jfd : 1, s). However, even for d = 3 this question seems
still to be open.

The problem of the constants 1'(d ; k, s) may be refined by considering
in their definition-instead of all members of ret , or all d-polytopes
only d-polytopes having a specified number of vertices, or of facets, or
which are of a given combinatorial type . Even for the classical isoperi
metric problem (d = 3, k = 2, s = 3) many of those questions are still
open, despite a variety of contributions and partial solutions ranging
from Lhuilier [1J (in 1782) and Steiner [2], through Minkowski [2] and
Steinitz [8] to many new results (see, for example, Fejes T6th [3]).

In particular, no characterization of those combinatorial types of 3
polytopes which have an isoperimetrically 'best' representative is known.

19.3 Antipodality and Related Notions

More than thirty years ago Borsuk [1] formulated the following problem,
which rivals the 'four-colors problem' in simplicity of statement and
intuitive appeal, as well as in its apparent hopelessness.

Is every bounded set A c Rd representable in the form

d

A = U Ai '
i=O

where diam Ai < diam A for i = 0, ... ,d?
Borsuk's problem has given rise to, and is connected with, many other

problems of a combinatorial-geometric nature. Affirmative solutions of
it are known only in some special cases ; among them we mention the
following two :

(i) d s 3 ;
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(ii) K is a convex set with sufficiently smooth boundary. (For a sum
mary of known results on Borsuk's problem and related questions, and
for references to the quite extensive literature, see Griinbaum [to].)

A somewhat sharper formulation of Borsuk's problem is :
Determine the least fJd such that every bounded set A c Rd is rep

resentable in the form

where diam Ai ~ fJd diam A for i = 0, . . . , d.
Clearly, fJd < 1 implies an affirmative solution of Borsuk's problem in

Rd. The only information available on fJd is fJ2 = t)3 and fJ3 < 0.9887;

it has been conjectured that fJ3 = )(3 + )3)/6 = 0.888 · . . . It is easy to
show that the same numbers fJd would be obtained if in their definition
A were restricted to finite sets, and even to sets of the type A = vert P,
for all d-polytopes P.

Though this approach to Borsuk's problem has not yielded a solution,
it led to a variety of interesting questions about polytopes. Some of them
will be discussed presently.

The possibility of decomposing finite subsets of Rd into d + 1 parts of
smaller diameter (however, without implying {3d < 1) results for d = 2, 3
from the following theorem :

If A c R d and card A = n, then the number of pairs x, yEA for which
diam{x, y} = diam A is at most n if d = 2, and 2n - 2 if d = 3. (See
Erdos [1] for d = 2, Griinbaum [1], Heppes [1], Straszewicz [2] for
d = 3.)

For d ~ 4 the number of such pairs may exceed [!n 2
] (see Erdos [3]),

and the result has no immediate implication for Borsuk's problem
(except, possibly, to weaken the seemingly universal belief that the solu
tion to Borsuk's problem is affirmative). The complete determination of
the maximal possible number of such pairs in Rd

, d ~ 4, is still outstand
ing; Erdos [3] has shown that it is of the form

1 2 (1 1) 0( 2 - ')
2n - ad] + n

for some e > O.
A related question is how many times any fixed distance can occur

between the pairs of vertices of a d-polytope with n vertices. It is easy to
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see that for d = 2 there may be as many as [5(n - 1)/3] such pairs, and
this is probably the maximum. For d = 3 it has been conjectured that
the maximal number of such pairs is 3n - 6; however, in the regular
dodecahedron (with n = 20 vertices) two different distances occur 60 = 3n
times each . This naturally implies that for any k, more than 3n + k pairs
can occur for sufficiently large n.

For additional results and problems of this type see Erdos [3],
Altman [1].

Let K be a convex body in Rd and let c(K) denote the least integer C

with the property : There exist C translates of int K such that their union
contains K. If c(K) .:5; d + I it is clearly possible to cover K by d + 1
sets of smaller diameter. Well known procedures allow to show that an
affirmative solution to Borsuk's problem would result if it were known
that c(K) .:5; d + 1 for every set of constant width . However, this question
seems to be rather hopeless, and therefore some attention has been
given to the problem of determining Cd' the maximal value of c(K) for
d-dimensional convex bodies K . (Levi [3], Hadwiger [6], Gohberg
Markus [1], Boltyanskii [1], Soltan [2]). The example of the d-cube shows
that Cd ~ 2d

, and it has been conjectured that Cd = r. This problem is
also far from a solution (though for d = 2 it is easy to see that c(K) = 3
unless K is a parallelogram). Some small advances have been made in
this direction ; to describe them, we use the following notion due to
V. Klee :

Let K c Rd
, and let x, Y E K . We shall say that x and yare an antipodal

pair of K provided there exists a pair of parallel (distinct) supporting
hyperplanes of K such that x belongs to one of them and y to the other.
A d-polytope is said to be antipodal provided each two of its vertices form
an antipodal pair of the polytope. Clearly Cd is at least as great as K(d),
the maximal number of vertices in an antipodal d-polytope.

It has been shown that K(d) = 2d for each d ~ I (Danzer-Griinbaum
[I]). This result implies also that e(d) = 2d is the answer to the following
problem of Erdos [2] : What is the maximal possible number e(d)of points
in Rd such that all angles determined by triples of them are less than or
equal to 90°1

Slightly generalizing the question of K(d) one is led to the problem of
determining e(d, n), the maximal number of antipodal pairs among the
vertices of a d-polytope with n vertices. It is not hard to show that
e(2, n) = [3n/2] (Griinbaum [6]), and that

e(3, n) ~ [tn][i(n + I)] + [i3n] + [i(3n + I)].
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It would be interesting to investigate whether the relation

lim e(d,n) = ~ __1_
a-e cc n2 2 2d

- '

421

holds for all d ~ 2.
Let the notion of an antipodal pair be modified by defining a pair

x, y E K as k-antipodal provided there exist parallel (distinct) supporting
hyperplanes of K, each of which intersects K in a set of dimension at most
k, such that x belongs to one ofthe hyperplanes, y to the other. In analogy
to the above, we define k-antipodal polytopes and the numbers Kk(d) and
ek(d, n). Clearly, a d-polytope is antipodal if and only if it is (d - I)-anti
podal. A number of interesting problems concern O-antipodality. While
it is easy to show that K o(2) = 3, the proof of K o(3) = 5 is rather involved
(Griinbaum [6]). For d ~ 4, it is known that Ko(d) ~ 2d - 3, and it has
been conjectured that Ko(d) = 2d - 3 (Danzer-Grunbaum [I]). As in
the case of antipodal pairs, Ko(d) may be considered as the affine variant
of the following Euclidean problem due to Erdos [2]: Determine the
maximal possible number t:o(d) of points in Rd such that all the angles
determined by triples of them are acute. Examples show that
t:o(d) ~ 2d - 3, and clearly t:o(d) ~ Ko(d). In contrast to the situation in
the case of e(d), it is not known whether t:o(d) = Ko(d) for d ~ 4. (Direct
proofs of t:o(3) = 5 were given by Croft [1] and Schiitte [I ].)

Still less is known about Kk(d) for k ~ 1. Even the conjectured value
K,(3) = 6 has not been ascertained so far.

The relationship between K(d) and Cd has an analogue in the relation
of Ko(d) and the number Cd defined as follows: For ad-dimensional
convex body K denote by c(K) the minimal number of proper translates
of K the union of which covers K; then Cd is defined as the maximum of
c(K) for all d-dimensional convex bodies K. It is easily seen that Cd ~ Ko(d),
but it is not known whether Cd = Ko(d) for d ~ 3. As is easily verified, an
affirmative solution of Borsuk's problem would be implied by a proof of
the conjecture that c(K) = d + 1 for every d-dimensional K of constant
width.

Regarding eo(d, n) it is easy to prove that eo(2, n) = n (Griinbaum [6]),
but even the 3-dimensional case seems to be very complicated.

The numbers Ko(d) and eo(d, n) are interesting also from a quite dif
ferent point of view. If K is a d-polytope with v = fo(K) vertices, one may
consider the possible relations between v and fo(K + (- K)). Clearly
fo(K + (- K)) ~ v(v - 1); however, equality may hold in this relation
only if v ~ Ko(d). In general, fo(K + (- K)) ~ 2eo(d, v), with equality if
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and only if K is a d-polytope with v vertices, which form eo(d, v) 0
antipodal pairs.

This interpretation of eo(d, n) leads to an additional problem. Let M
and N denote d-polytopes with m respectively n vertices, and let v.J.m, n)
[Vd(m, n)] denote the minimal [maximal] possible value of fo(M + N)
(Griinbaum [6], Danzer-Griinbaum [2]). The determination of V.J.m, n)
is quite simple; we have V2(m, n) = m + nand V.J.m, n) = mn for d ;;::: 3.
Regarding v.J.m, n) the following results were obtained by E. T. Poulsen
(private communication) ; for simplicity of formulation we assume that
n ;;::: m > d > 2.

v2(m, n) = n;
v3(m, n) = n except if n = 5, m = 4 ;/3(4, 5) = 6 ;
vim, n) = n if n;;::: 2d or if m = n ;
vd(m, n) = m + d - I if n < 2d.

The unsolved problem deals, therefore, with the case 4 ~ d < m
< n < 2d.

Problems analogous to vd(m, n) and ~(m, n) but dealing with numbers
of k-faces, for 0 < k < d, rather than the numbers of vertices of the poly
topes involved, could also be considered. However, no nontrivial results
seem to be known, even in the most interesting case k = d - I. Another
possibility, also completely uninvestigated, is to substitute the Blaschke
addition # (see chapter 15) for the vector addition.

Let K be a d-d imensional convex body in Rd. A set A c bd K [a set U
of unit vectors] is called an inner [outer] illuminating set of K provided for
every x E bd K there exists an sO < e < I, and a point a E A [a vector
u E U ] such that (l - e)x + WE int K [respectively x + eu E int K ]. An
illuminating set is called primitive provided none of its proper subsets is
an illuminating set. Let Ij(K) [respectively lo(K) ] denote the least number
of elements in an inner [outer] illuminating set of K, and let Ij(K) rrespec
tively IO(K)] be the supremum of the number of elements in primitive inner
[outer] illuminating sets of K. Clearly I o(K) ~ c(K), and it may be shown
that the two numbers coincide for each K.

The determination of the upper and lower bounds for the values of
IlK) and the other functionals, when K ranges over all d-dimensional
convex bodies, leads to a number of interesting problems. Among the
known results (except for those on lo(K) = c(K ) which were discussed
above) we mention (see Soltan [1], Griinbaum [14]) :

2 ~ I j(K) ~ d + I, with Ij(K) = d + 1 if and only if K is the d-simplex;
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liCK):$; 4 if K is 2-dimensional, with equality if and only if K is a
quadrangle;

li(ed
) = 2d

;

lOCK) :$; 6 if K is 2-dimensional, with equality only for hexagons having
opposite edges parallel.

It is easily seen that in the search for the least upper bounds of hK)
and lOCK) there is no loss of generality in assuming the d-dimensional
convex body K to be a d-polytope. It is remarkable, however, that even
the existence of a finite upper bound for liCK) and lOCK) has not been
established, though it may be conjectured that liCK) :$; 2d and lOCK)
:$; 2(2d

- I) for all d-dimensional K.
Similar open problems exist regarding the fixing systems (Fejes Toth

(2), Polak-Polakova [I), Griinbaum (14». If K is a d-dimensional convex
body in Rd

, a set A c bd K is called a fixing system for K provided for
some B > 0 we have A (l (int(x + K» # 0 for each nonzero vector x
oflength at most B. Let qJ(K) denote the minimal possible number of points
in a fixing system for K, and let <I>(K) denote the least upper bound for the
number of points in primitive fixing systems for K. (A fixing system for K
is primitive provided none of its proper subsets is a fixing system for K .)
It is easy to show that d + I :$; qJ(K) :$; 2d and to relate qJ(K) to various
other problems, such as d-polytopes which are not the # -sum of d
polytopes with a smaller number of facets (section 15.3), or to primitive
polytopes (see Fejes T6th [2], Steinitz [2]). The finiteness of <I>(K), how
ever, is still uncertain; it is known that <I>(K) = 2(2d

- I) for some d
polytopes K (Danzer [I D.
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19,4 Additional notes and comments

Cube tilings .
Keller's problem (asking whether every tiling of Rd by congruent cubes has two
tiles that share a facet, see page 411) was resolved in the negative for d;:: 10
by Lagarias-Shor [a], by reduction to a finite graph coloring problem due to
Corradi-Szabo [a]. For d =7,8,9 it apparently remains open.

Hajos [a] established an affirmative answer for all d if one considers only
lattice tilings, i. e., tilings in which the centers of the tiles form a translate of
an additive subgroup of Jri.

For an extensive treatment and survey of tilings, including many additional
open problems, see Grtinbaum-Shephard [b] [d].

Regular polytopes.
The conceptual framework of Coxeter groups has turned out to be very impor
tant and fundamental for the study of regular polytopes. We refer to Benson
Grove [a] and Brown [a].

It also allows one to resolve positively the question posed on page 413
whether projectively resp. combinatorially regular convex polytopes are al
ways (projectively resp. combinatorially) equivalent to regular polytopes-see
McMullen [a] [b].

Semiregular polytopes (of various kinds and denominations) form a vast
field of study. We refer to Schulte 's [d] handbook survey and to the references
given there.

The enumeration of the uniform polytopes (see page 413) in dimension four
was completed by Conway [a] in collaboration with Guy. Johnson [a] will
describe these polytopes and many related figures.

The book by McMullen-Schulte [a] on abstract regular polytopes will con
tain a lot of information (including a large bibliography) about the classical
regular convex polytopes and their symmetry groups as well.

Equifacetted polytopes.
A polytope all of whose facets are pairwise combinatorially equivalent (see
page 415) is called equifacetted. Obviously, simplices and cubes arise as "facet
types" of equifacetted polytopes. Going beyond the results of Perles-Shephard
[a] (referred to on page 415), Schulte [a] [b] (see also Schulte [cD found d
polytopes for every d ;:: 3 that are not even the facet types of any equifacetted
manifold and also are not the "tile types" of face-to-face tilings of Rd with
combinatorially equivalent tiles. For d =3 the simplest known example is the
cuboctahedron.
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Kalai [f] shows that the 24-, the 120-, and the 600-cell as well as the d-cross
polytope (d ~ 4) are not facet types of equifacetted polytopes ; furthermore ,
there is no face-to-face tiling of R5 with crosspolytopes.

k-Content.
A different approach to extend the notion of k-content from polytopes to convex
bodies is to study directly the k-dimensional Hausdorff measure of the union
of the at most k-dimensional extreme faces of a convex body. For a survey on
these so called Hausdorff measures of skeletons and their relations to 'k(K),
see Schneider [b, pp. 68-70] .

Borsuk's conjecture in high dimensions.
Borsuk's conjecture is false in high dimensions-it was first disproved by
Kahn-Kalai [a] for certain sets of ±l-vectors. After a number of subsequent
simplifications (see the two-page version by Nilli [aD, improvements and new
ideas, we now know that Borsuk 's conjecture fails for all dimensions d ~ 298
(by Hinrichs-Richter [aD. Recent surveys include Boltyanski-Martini-Soltan
[a] and Raigorodskii [a].

There is a close connection to the problem of the "chromatic number of Rd"

that asks for the smallest number of colors that is sufficient to color Rd such
that no two points of distance one get the same color. (For d = 2 this is the
notorious "Hadwiger-Nelson problem" for which one knows that the answer
satisfies 4 $ X(R2 ) $ 7; see Jensen-Toft [a, Sect. 9.1] and the references given
there.)

Borsuk's conjecture in low dimensions.
Borsuk's problem is still unresolved in low dimensions. Let us just mention
that /33 s 0.98, according to Raigorodskii [a, p. 106], while Gale 's [a] conjec
ture from 1953 that the bound /33 ~ (H3 + V]))1/2 R: 0.888 should be tight
still stands .

In dimension d =4 the best result is that every set may be decomposed into at
most 9 sets of smaller diameter, by Lassak [a]. For collections of Oil-vectors,
Borsuk's conjecture is true at least for d $ 8, by Ziegler [c].

Borsuk's conjecture is closely related to the questions about the maximal
number of pairs of points of maximal distance resp. the maximal number of
pairs of points of any fixed distance in a finite d-dimensional point set V. Of
special interest is, of course , the case where V is in convex position (that is, if
it is the vertex set of a polytope). We refer to Pach-Agarwal [a, esp. Chap. 13]
for an extensive discussion and survey of these questions .
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The Borsuk problem/or the sphere.
Even the case of the unit ball/sphere poses a substantial problem in view of Bor
suk's conjecture: What is the smallest diameter D(d) such that the unit sphere
sJ-1 can be decomposed into d+ I parts of diameter at most o(d)? It has been
conjectured that the "obvious" partition induced by the regular simplex is best
possible, but that has been verified only for d ::; 3; see Croft-Falconer-Guy [a,
Problem DI4]. Asymptotic results were given by Larman-Tamvakis [a].

Illumination and covering.
An inner diagonal of a polytope is a line segment that joins two vertices and
lies, except for its ends, in the interior of the polytope . This corresponds to
an unordered pair of vertices that do not share any facet, that is, where each
vertex is illuminated by the other. A d-cube has 2d- 1 inner diagonals, and von
Stengel [a] has conjectured that this is the maximum among all d-polytopes
with 2d facets. His conjecture arose from a study of Nash equilibrium points
of certain bimatrix games; it has been proved only for d ::;4.

Boltyanski-Martini-Soltan [a] found for every d ~ 4 a convex body with
arbitrarily large primitive inner illuminating sets; in particular, this disproves
the conjectured bound [i(K) ::; 2d on page 423. For related work on "inner
illumination", see also Mani [c] and Bremner-Klee [a].

According to a theorem of Boltyanskii [I], the covering number c(K) agrees
for all compact, convex bodies K C Rd with the number of directions needed
to illuminate the convex body from the outside. The conjecture (by Hadwiger)
that Cd =2d has not even been proven in full for d =3. See the discussions in
Boltyanski-Martini-Soltan [a, p. 270] and Bezdek [a].

For convex bodies K of constant width, Schramm [a] obtained

c(K) s (IftSdv'd(4+logd) ;

this result also implies the best known asymptotic bounds for the Borsuk parti
tion problem.

For surveys see Boltyanski-Martini-Soltan [a]; §44 of the same book also
provides an extensive discussion of (minimal) fixing systems.

Containment problems.
Given a class «f of convex sets and a convex body K, the quest for a "largest", or
"smallest", member of «f contained in K (or containing K) has been considered
in lots of variations (see Gritzmann-Klee [cD. For the algorithmic problem of
finding the inradius, circumradius , width, and diameter, see Gritzmann-Klee
[a] [b] and Brieden et al. [a]. Below, we sketch a few results on largest and
smallest j-simplices (with respect to j-dimensional measure).
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Simplices containing or contained in ad-polytope.
Among the largest j-simplices contained in a given convex body K, there is
one whose vertices are all extreme points of K. When K is a polytope, this
leads to an obvious finite algorithm for finding a largest j-simplex in K . For
other results concerning largest j-simplices in d-polytopes, see Gritzmann
Klee-Larman [a].

Klee [c] proved that if C is a d-polytope containing a convex body K, and C
is a local minimum among polytopes that contain K and have the same num
ber of facets as C, or C is a local minimum among the simple polytopes that
contain K and are of the same combinatorial type as C, then the centroid of
each facet of C belongs to K. When K is a polytope and dE {2,3}, this fact is
useful in designing efficient algorithms that actually find a local or global mini
mum among the simplices containing K (see O'Rourke et al. [a] and Zhou-Suri
[aj) , However, Packer [a] shows that the general problem of finding a smallest
(largest) d-simplex containing (contained in) a d-polytope, which is specified
either in 1/- or in £ -description, is NP-hard.

Largest simplices in cubes.
The problem of finding a largest j-simplex in the d-cube [O,l]d amounts to
finding optimal weighing designs for spring balances, and there are closely
related "largest simplex" problems that amount to finding optimal weighing
designs for two-pan balances. See the papers cited below for explanation.

For fixed j , the problem of finding a largest j-simplex in [O,l]d has been
solved for all d 2:: j by Hudelson-Klee-Larman [a] when j E {2,3} and by
Neubauer-Watkins-Zeitlin [b] [c] for 4 ~ j ~ 6. For each j 2:: 7, the problem
is open for infinitely many d, but when j is even it has been solved for infinitely
many d by Neubauer-Watkins-Zeitlin [a]. See Neubauer-Watkins [a] for the
cased = 7.

The case j =d is of special interest. Define Pd as d! times the volume of
a largest d-simplex in [0, u-. Translated into geometric terms, Hadamard [a]
observed (Pdf ~ (d + 1)(d+ 1)/(4d) and that, for d > I, equality implies d
congruent to 3 (mod 4). Hadamard's conjecture that equality holds for all such
d has been proved for infinitely many values of d and for all d < 427, but it is
also still open for infinitely many values of d. For each d, the following three
statements are equivalent: (i) a Hadamard matrix of order d + 1 exists; (ii) in
a d-cube, there is a largest d-simplex that is regular; (iii) the vertex-set of a
d-cube contains an equilateral set consisting of d + 1 points.

We refer to Hudelson-Klee-Larman [a] for further details and references.
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Table 1. Known values of c.(v, d), the number of different combinatorial types
of simplicial d-polytopes with v vertices (or of simple d-polytopes with v facets)

v - d 2 3 4 5 6 7 8 9

d
3 1 2 5 14 50 233 "1249 b7616
4 2 5 <37
5 2 8
6 3 18
7 3 29
8 4 57
9 4 96

10 5 183
11 5 318
12 6 603
13 6 1080
14 7 2047
15 7 3762
d [-!-d j d

• Grace [I) ; not certai n. but probably correct (see section 13.6).
• Bruckner (4); pro babl y incorrect (see section J3.6. and Rademach er [ I l~
, Griinbaum-Sreedharan [I) .
• Determ ined by M. A. Perl es ; see theorem 6.3.2.

Table 2. Known values of c(v, d), the number of different combinatorial types

of d-polytopes with v vertices (or with v facets)

v-d 2 3 4 5
d

3 2 7 34* 257*
4 4 31
5 6 116
6 9 379
d [id2

]

The values fo r d = 3 are due to Herm es [I) , those for v = d + 3 to M. A. Perles (see section
6.3). Asterisks indica te values which have no t been checked independently.
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Table 3. Relations between numbers of faces of simplicial d-polytopes

d = 3 /1 = 3/0- 6
/2=2/0-4

d=4/2=2/1-2/0
/3= /1- /0

d = 5 /2 = 4/1 - 10/0+ 20
/3 = 5/1 - 15/0 + 30
/4 = 2/1- 6/0 + 12

d = 7 / 3 = 5/2 - 15/1 + 35/0 - 70
/4 = 9/2 - 34/. + 84/0 - 168
/5 = 7/2 - 28/. + 70/0 - 140
/6 = 2/2 - 8/1+ 20/0 - 40

d = 9 /4 = 6/3 - 21/2 + 56/1- 126/0 + 252
/5 = 14/3 - 63/2 + 182/1- 420/0 + 840
/6 = 16/3 - 78/2 + 232/1- 540/0 + 1080
/7 = 9/3 - 45/2 + 135/1- 315/0 + 630
/a = 2/3 - 10/2 + 30/1 - 70/0 + 140

425



ADDENDUM

The following remarks were added in proof (November 1966).
Page 67. An easy modification of exercise 4.8.25 establishes the follow

ing result of Wagner [I]: Every simplicial k-"complex" with at most
~ vertices has a representation in R 2k + 1 such that all the "simplices" are
geometric (rectilinear) simplices.

Page 93. J. H. Conway (private communication) has established the
validity of the conjecture mentioned in the second footnote .

Page 126. For d = 2, the theorem of Derry [2] given in exercise 7.3.4
was found earlier by Bilinski [I].

Page 183. M. A. Perles (private communication) recently obtained an
affirmative solution to Klee's problem mentioned at the end of section
10.1.

Page 204. Regarding the question whether a(~) = 3 implies b(~) ~ 4,
it should be noted that if one starts from a topological cell complex ~ with
a(~) = 3 it is possible that ~ is not a complex (in our sense) at all (see
exercise 11.1.7). On the other hand, G. Wegner pointed out (in a private
communication to the author) that the 2-complex ~ discussed in the proof
of theorem 11.1 .7 indeed satisfies b(~) = 4.

Page 216. Halin's [1] result (theorem 11.3.3) has recently been genera
lized by H. A. lung to all complete d-partite graphs. (Halin's result deals
with the graph of the d-octahedron, i.e. the d-partite graph in which each
class of nodes contains precisely two nodes .)

The existence of the numbers n(k) follows from a recent result of Mader
[1] ; Mader's result shows that n(k) ~ k.2(~) .

Page 222. A very elegant, non-computational, construction of the
3-diagram E0 ' of theorem 11.5.2 was communicated to the author by
G. Wegner. His construction is explained in an addendum to Griinbaum
Sreedharan [1]. Concerning the dual A* of the 3-complex A represented
by E0' (see page 224), Wegner has shown that it is not representable by
a 3-diagram if the basis of the diagram is required to be the 3-face of A*
which corresponds to the vertex 8 of A.

Page 231, line 4. M. A. Perles has shown (private communication) that
the graphs in question are dimensionally ambiguous whenever d ~ n + 3.

426
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Page 271. In a revised version of Barnette's paper [3], the following
improvement of the inequalities of exercise 13.3.13 is established:

If (Pk) is a 3-realizable sequence, then

2P3 + 2P4 + 2ps + 2P6 + P7 ~ 16 + L (k - 8)Pk'
k ?: 9

Thi s inequality refutes conjecture 2 (page 268). Indeed, if Pk = 0 for
k -:f 3, 6, 6m, then equation (*) (page 254) implies P3 = 4 + (2m - 2)P6m'
hence Barnette's inequality yields P6 ~ 4 + (m - 2)P6m ' For
(m - 2)(P6m - 6) ~ 8 this contradicts conjecture 2.

On the other hand, an affi rmative solution of conjecture 1 (page 267)
will be established in a forth coming paper by the author.

Page 315. Recent results have greatly increased the number of known
Euler-type relations, and their comparison here seems useful.

We have alre ady discu ssed Euler's equation (Chapter 8) concerning
numbers of faces, Gram's equation (theorem 14.1.1) concern ing angle
sums, and the equation of theorem 14.3.2 dealing with the Steiner point
of a polytope and its faces.

In order to discuss the new results, let pd = P1 denote a d-polytope,
let Jj = HP), and let the j -faces of pdbe p{, . . . , Pir

Let m(K) denote the mean width of the compact convex set K . Shephard
[11] proved that for each d-polytope P

d I j

L (-IY L m(P{) = -m(P).
j;O j; 1

Another function with similar properties is the "angle-deficiency"
l5(pLP) defined below. Let us define qJ(PL pt -I) as the angle (see page
297) spanned by pi in pt -I if pi c Pi: '; and as 0 if Pi is not contained
in pt - I . Extending the well known case (d = 3), the following results were
obtained by Perles-Shephard [1], Perles-Walkup [1], and Shephard [10]:

For eachj-face pi of the d-polytope P (0::::; j ::::; d - 1),

Id -I

l5(pLP) = I - L qJ(P{, pt - I) ~ 0,
j ; 1

with equality for j ~ d - 2, and strict inequality for j ::::; d - 3.
For each d-polytope P ,

d -3 Ij

L ( -lY L (j(P{, P) = 1 + (_I)d - I.

j ; O j ; 1
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An additional relation of the same type (which contains the mean width
result as a special case) is due to Shephard [13]. Let p d be ad-polytope,
let 0 < r < d, and let K,+ 1> "" K, be any d - r convex bodies . Let us
denote by v(P{, . . . , PI, K,+ I' .. . , K d) the mixed volume (Bonnesen
Fenchel [1], page 38) of the face p{ of pd (repeated r times) and the sets
K,+ I> ••• , K d • Then

d r,
L (-IY L v(P{, .. . ,P{,K'+I, · .. K d )

j=O i =O

= (-1)'v( -pd, . . . , -r-, K,+I"" K d )·

For proofs of these results, which usc a great variety of methods, the
reader should consult the papers quoted . They contain also extensions to
the case of spherical polytopes, as well as analogues of the Dehn-Sommer
ville equations (in case of simplicial polytopes, and of other special families
of polytopes) for the various quantities considered. One indication of the
usefulness of some of these results may be found in Perles-Shephard [2].
Thi s paper contains results of the following type (which were completely
unassailable so far) ; we quote only two very special results which are
easy to formulate :

If d ~ 7, no d-polytope has all facets combinatorially equ ivalent to the
(d - 1)-octahedron.

No 5-polytope has all facets combinatorially equivalent to the cyclic
polytope C(8,4).

Page 365. The example (figure 17.1.9) of a 3-valent, 3-connected,
cyclically 5-connected planar graph without a Hamiltonian circuit
(Walther [1]) was recently improved in some respects. While Walther's
example contains 162 nodes, the author has found a similar example
with 154 nodes, as well as an example with 464 nodes which does not admit
even a Hamiltonian path. The first example was improved still further by
Walther, who constructed a 114-node graph of this type which has no
Hamiltonian circuit (private communication). A still smaller graph with
the same property (with 46 nodes only) has reportedly been found by
Kozyrev.

Page 425. The coefficients of the Dehn-Sommerville equations given
in table 3 were independently computed by Riordan [1]; however, his
table is marred by misprints. In Riordan's notation, the incorrect values
are Ai,_1(4) and Aj,2(5).



ERRATA FOR THE 1967 EDITION

This is a list of corrections (other than small typos), noted by Marge Bayer,
Branko Grtinbaum, Michael Joswig, Volker Kaibel, Victor Klee, Carsten Lange,
Julian Pfeifle, and GUnterM. Ziegler. A minus in front of a line number means
"counted from the bottom" .

Page Line Original Correction

9 6 Use exerci se 2 Use statement 2
9 13 The relative interior of a convex set A C Rd may be defined as

relintA := {x E Rd : (affA) n (x+ eB") C A for some e > OJ. This is
empty if and only if A = 0.

13 20 The claim in exercise 7 is not valid. The following counter
example is due to P. McMullen: Let K := K' + B3• where

K' := {(x,y,O) E R3 I x> 0, xy ~ I} and B3 := {(x,y,z) E R3 1

x 2 +r+ z2 ~ I} is the 3-dimensional unit ball. and let L :=
{(x, 0, I) Ix E R}. (An earlier counterexample. due to T. Botts. ap
pears on p. 459 of Klee [a].)

35 - 15 P = conv(FUF1) aff(P) = aff(FUF))
35 - I4 The hypothesis in exercise 3 should include Fk _ ) C FH) .
59 12 section 9.3 section 9.4
61 I 2d - ) 2d - i

62 5 O~i~[id] O~i<lid]
65 -5 K~ -K~
68 15 P{Vj ) P). (V)
68 -3 9"(K) 9"(P)
77 16 AK AP
78 - I I In part (ii) ofTheorem I the "only if' part is not true. Let F be a vertex

of a polygon P and let V be the new vertex so that E' := conv({V} U
F) is an edge that contains an original edge E of P. Then E' is a face
of P·. but (*) is not satisfied. since V ~ aff F. and (**) is not satisfied.
because there is no facet (edge) of P containing F for which V is
beyond. The (first) error in the proof occurs in lines 4-5 on page 79.
See Altshuler-Shemer [a].

79 -7 aff FoC affF is false for the same reason as above.
82 17 The claim in exercise 13(ii) was not established by Shephard in [7];

he later found an error in his construction. (See also the notes in sec
tion 4.9.)

100 - 8 [id2J [!d2]
I I 3 3 The last product in this formula contains two typos; it should be:

TI Pj-l .28

je{ilr,<a,} Pj

428a



349 -6
392 16
392 -IS
394/
396

396 - 4
397 12
405 -10
424 5

428b

Page Line

lIS 0

117 10
129 -I
129 -3
138 3
170 4

185 17

186 12

206 13
213 23

217 -14
317 -II
318 10

In the figure, the star diagram and the Gale-diagram do not fit together
(there should be a * at position (2,3».
el' e2,e3,e4 e)le2,e3,-e4
exercise 7.3.4 exercise 7.3.5
exercise 7.3.4 exercise 7.3.5
section 3.3 section 3.2
Perles and Shephard did not prove the existence, for each d ~ 4, of
infinitely many d-polytopes of type (2,d - 2) . (See the note above for
p.82.)
It is not true that each k-face of P is of (at least) one of the listed types.
There can be faces of P not contained in F' and containing VI but not

V2·
(a) P is a d-pyramid over a (d-I)- (a) P has a facet with at least
dimensional basis with at least d +3 vertices
d +3 vertices
'i'(P) ~(P)

F = M nP is not necessarily a face of P; M nP could be a proper
subpolytope of a face, intersecting the relative interior of the face.
12.2 12.1
The equality in (b) holds only for A~ O.
For the polygon Q to be a summand of P one needs the parallel edges
to have the same outer normals . For instance, the reflection of an
equilateral triangle is not a summand of the original triangle , even
though its edges are parallel to the edges of the original.
n>2d n<2d
2/-=1 2/-;

[(d-I)/2] [dI2]
Table 18.1.1 and Figure 18.1.2: The number of nonequivalent arrange
ments of 6 lines in the projective plane should be 17, not 16 (see Griin
baum [e, p. 5)).

m = Hn'22
) m = [H"'22

) ]

simple 3-arrangements simple 2-arrangements
00r4 00r3
In Table I, c,(1I,3) = 1249 is correct (as suspected by Griinbaum),
while c,(12,3) = 7616 is incorrect (as also suspected by Griinbaum);
it should be c,(12,3) = 7595 . For the correct values of c,(v,d) for
4 :S d :S 21 see Royle [a]. Furthermore, in Table 2, the questionable
values are correct ; the values of c(v,3) up to v = 13 are also given by
Royle [a] ,

Computation from Perles' formula yields c,(15,12) = 604 rather than
603.

424 14
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boundary -free complex, 50
bounded d-step conjecture, see d-step

conjecture
bounded Hirsch conjecture, see Hirsch

conjecture
bounded set, 5, 23
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Bruckner sphere, 224a
Bruggesser-Mani shelling , see line

shelling
Brunn-Minkowski theorem, 338
Brunn-Minkowski theory, 340c

Caratheodory's theorem , 15
Cauchy sequence , 5
Cauchy's rigidity theorem, 411
cd-index, 198a, 198c
cdd,52b
cell complex, 51
cell of an arrangement, 390
center of gravity, 315a
central arrangement, 410a
centrally symmetric

2-neighborly simplicial spheres,
121b

(d -I)-neighborly simplicial
spheres, 121b

neighborly fans, 121b
polytope , see centrally

symmetric polytope
centrally symmetric polytope , 114

2-neighborly, 121b
3-dimensional -s and

refinements of the cube,
205

4-dimensional -s with
12 vertices, 121b

affine hull of f -vectors, 169
Blaschke sums of parallelotopes,

335
d-dimensional -s with

2d +2 vertices, 121b
degree of total separability, 218
Euler hyperplane , 139
graphs of 3-dimensional -s, 245
neighborly families of -s, 129
neighborly star-convex , 121b
number of faces, 224b
reducibility, 322
simple or simplicial , 198c
valences of vertices of

3-dimensional -s, 269

with few vertices, 120
centroid, 297, 315a

curvature - ,307
characteristic cone, 24
chromatic number of [ri , 423b
circle packing theorem, 296a
circuit, 200

Hamiltonian, see Hamiltonian
circuit

simple , 356, 381
circuit code, 381, 389b
circumcircle, 286
circurnradius, 423c
circumscribable type, 285
circumsphere, 284
class of convex polytopes, 325
closed convex hull, 14
closed set, 5
closure of a set, 6
code, 357

circuit -, 381
discrete, 382
Gray -, 382
of spread s, 382
path -, 382
snake-in-the-box -, 382
unit distance -, 382

coding size
of rational 4-polytopes, 296d
of rational polytopes, 52a
of the volume, 340b

coface of a point set, 88
Cohen-Macaulay property, 198a
combinatorial automorphism

3-connected planar graphs, 252
number of simple 3-polytopes,

289
regular polytopes , 413
symmetries of polytopes with

few vertices, 120
combinatorial complexity of

arrangements, 4lOb
combinatorial equivalence

of complexes, 199
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of diagrams, 219
isomorphi sm of

Gale-transforms, 89
k-equivalence of polytopes , 225
of polytopes, 38

combinatorial isomorphism, see
combinatorial equivalence

combinatorial optimization
0/I-polytopes,69a
Hirsch conjecture, 355b
Menger's theorem, 224b

combinatorial type, 38, 90
combinatorially equivalent, 38. see

combinatorial equivalence
combinatorially regular polytopes,

413
commutative algebra, 198c
compact set, 6
complete metric space, 6
complex , 39, 199

abstract , 206
boundary-c. see boundary

complex
cell ~,51

computing the number of ~s, 95
linked, 40
of an arrangement, 390
polyhedral, 51
sequences of ~s, 84
simple, 206
simplicial , 59, 67
topological, 39

complex hyperplane arrangement,
410b

complexity of a 4-polytope, 198d
computational convexity, 52a
computational geometry, 142a.410b
concentration of measure, 30b
cone , 23

associated, 49
characteristic, 24
generated by a set, 9
pointed, 24
polyhedral, 36

spanned by a set, 24
configuration, 93, 391
congruent polytopes, 129b
congruent-faced polytope , 414
connected graph, 212

k-r- , 212
connected sum. 96b
containment problem, 423c
content, k-content, 416
convergence, 5
convex body, see convex set

extremal structure, 30a
convex combination. 14
convex function, 13,37
convex hull, 14
convex hull algorithm

asymptotically optimal, 52a
beneath and beyond, 96b
reverse search, 52a

convex hull problem, 52a
convex hull program , 52b
convex polyhedron, 51
convex polytope , 51, see polytope
convex set, 8, see convex body

algorithmic model, 30b
general, 30a
k-r-; 126
projectively, 29
reducible, 26
spherically, 10. 30

convex subdivision, 199
convexity

computational,52a
generalized, 30b
hyperbolic,30b

covering number, 423c
Coxeter group. 423a
crosspolytope, see octahedron
cube, 56

polytopes without triangles ,
198d

codes, 381
largest simplex in a ~, 423d
sections , 72
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cubical polytope , 59
angle-sums relations, 313
i-vectors, 156
family of ~s, 82
h-vector, 171b
neighborly, 69b
with at most 2d +1 vertices,69b

cuboctahedron, 340b, 423a
cuboid,59

face numbers, 156
images of cubes, 66

Cummings criterion, 294, 394
curvature centroid, 307, 314
cut polytope , 69a
cutting plane approach, 69a
cyclic oriented matroid, 7b
cyclic polytope, 61

affine hull of i-vectors, 147
ambiguity of complexes , 225
edges of 4-dimensional ~s , 66
embedding graphs into R3, 212
extremal path-lengths, 368
i -vectors of 4-polytopes, 191
height of the duals, 389b
Hirsch conjecture for the duals,

355b
history, 127
neighborly polytopes , 122, 124
partial proof of the upper bound

theorem, 106, 175
realizations, 129b
realizations with full symmetry,

69b
spanning trees of bounded

valence, 296
totally positive matrices , 129b
twisted lexicograph ic order, 389a
with d +2 vertices, 69b, 98, 168

cyclically k-connected 3 polytope, 365
cylindrical algebraic decomposition,

96b

d-realizability of
abstract d-complexes, 206

abstract schemes, 91
lattices, 231
star-diagrams, 106, 114

d -step conjecture, 349, 355a
Wv-paths, 354

d-unambiguityof
I-skeleta of simple polytopes,

234a
I-skeleta of zonotopes, 234b
I-skeleta of capped cubical

d-polytopes, 234b
I-skeleta of duals of cubical

d-zonotopes, 234b
[d/2]-skeleta of d-cubes, 234b
[d/2]-skeleta of simplicial

d -polytopes, 234a
(d - 2)-skeleta of d-polytopes,

228
Dantzig figure, 350
Dantzig's pivot rule, 389b
decomposable polytope , 318

Blaschke addition, 333
decomposition

and projective transformations,
340a

of 3-polytopes, 340a
of 4-polytopes, 340a
of general convex sets, 340a
of polyhedra, 315b, 340a
of simple polytopes, 340a

deformed product, 389b
degree of singularity, 269
degree of total separability, 217
Dehn-Sommerville equations

cyclic polytopes, 168
equivariant generalization, 171b
for Eulerian manifolds, 152
for simple arrangements, 392
for simplicial 3-polytopes, 189
for simplicial polytopes, 146,

171a
generalized, 198c
history, 170

~y-transformation, 296a
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dense family of polytopes, 81
description of a polytope, see

representation of a
polytope

design of experiments, 340b
diagram, 44

2-~s, 244, 286
3-~s that are not Schlegel ~s,

188,219
Blaschke e-, 417
central,I21b
dual,45
dualizable, 52c
edge-facet (ef-j -« , 350
Gale-s- , see Gale-diagram
invened,45
invenible, 52c
non-polytopal , 52c, 224a
Schlegel ~, 43, see Schlegel

diagram
simple, 52c
standard ~, see standard

Gale-diagram
star-e-, see star-diagram

diameter, 419
computation, 423c
facet-e-, 343
of a Gale-diagram, 109
of a polytope, 341
of a set, 5
of duals of neighborly polytopes,

355b
upper bounds, 355a-355b

difference set
of a convex set, 322
of a simplex, 340b

dimension, 3
dimensional ambiguity, 225, 229
directed diameter, see diameter
discrete code, 382
dissection, 315b
distance

between sets, 6
Hausdorff ~, 6

in a metric space, 5
path-e-, 341

dodecahedron
3-polytopes without triangles

and quadrilaterals, 198d
distances between venices, 420

double counting, 143
double-description method, 52b
dual polytope, 46

self-e- , see self-dual polytope

Eberhard's theorem, 253
extensions, 296b, 405
history, 291

edge, 31, 200
edge-facet (ef-) diagram, 350
elementary transformation, 236
ellipsoid method, 30b
embeddings of simplicial complexes,

224a
entangled, 210
enumeration of

4-polytopes with 8 vertices, 96b
2-arrangements, 394
3-polytopes, 296c
combinatorial types of

polytopes, 90
neighborly 4-polytopes with

10 vertices, 96b
neighborly 6-polytopes with

10 vertices , 96b
self-dual 3-polytopes, 52d
simplicial 4-polytopes with

9 vertices, 96b
simplicial 3-polytopes, 296c
the faces of a polytope, 90

equifacetted manifold, 423a
equifacetted polytope, 423a
equilateral set, 423d
equilibrated system, 332

fully, 332
of vectors, 340c

equilibrium embedding, 296a
equisurrounded 3 polytopes, 292
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equivalence, 38
k-~, 225, 231
of arrangements, 394

equivalent
combinatorially, 38
projectively ~,see projectively

equivalent
equivalent vertices, 413
equivarianttopology, 30b
Erdos-Szekeres theorem, 30b
Euclidean space, 7a
Euler characteristic, 138
Euler hyperplane, 136

cubical polytopes, 156
quasi-simplicial polytopes, 153

Euler 's equation, 131
angle-sums, 297
Dehn-Sommerville equations,

145
for 3-polytopes, 236
for arrangements, 391
generalization, 137
Gram's equation, 315a
sweeps ,142a

Euler 's theorem, 131,291
Euler-Poincare formula , see Euler's

equation
Eulerian lattice, 142b
Eulerian manifold, 141

boundary complexes of
polytopes, 141

Dehn-Sommerville equations,
152

upper bound conjecture, 182
Eulerian poset, 142b
exposed point, 17, 30a

k-r-, 20
external angle, 308
extreme point, 17, 30a

k-r«, 20

I -vector, 130
4-polytopes, 191, 198d
arrangements, 390,399

cubical polytopes, 156
Eulerian manifolds, 152
Eulerian posets, 142b
quasi-simplicial polytopes, 153
simplicial polytopes, see

simplicial polytope
face

improper, 17
j-~, 21
of a convex set, 17
of a point set, 88
of a polytope , 31
of an arrangement, 390
x-r-, 350

face function, 30a
face lattice

Euler's equation, 142b
reconstruction from an oracle,

52b
face ring, 198a, see Stanley-Reisner

ring
and h-vector, 171a

facet, 342
of a polyhedral set, 26
of a polytope, 31, 71

facet complexity, 52a
facet splitting, 129a
facet tile, 423b
facet-diameter, 342
fan,52c

centrally symmetric ~, see
centrally symmetric

g-theorem, 198b
Farkas lemma, 96a
fatness of a 4-polytope, 198d
feasible region, 347
Fibonacci numbers, 198c
final polynomial, 96b
finite reflection group, 171b, 410b
first-order sentence , 91
fixing system, 423, 423c

primitive, 423
flag f -vector, 198a, 198c
flag h-vector , 198c
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FLAGTOOL, 224b
flat, 3
four-color problem, 127, 284, 418

cyclically 5-connected
3-polytopes, 365

Hamiltonian circuits , 356
solution , 389a

Fourier-Motzkin elimination method,
52b

free sum, 69b
Fullerene, 296b
fully equilibrated system, 332
functional analysis, 30a, 96a

g-theorem, 198a
generalizations, 198b
matrix formulation, 198a
necessity part and toric varieties,

171b
polytope algebra, 340a

Gale's evenness condition, 62
star-diagrams, 106

Gale's lemma, 129b
Gale-diagram, 89

affine,96a
construct ion of a non-rational

8-polytope, 95
contracted, 109, 120
distended, 109
interpretations, 96a
k-neighborly polytopes, 126
neighborly polytope s, 129b
polytopes with few vertices, 108
quotients of neighborly

polytopes , 129b
standard , 109
winding numbers, 198b

Gale-transform, 86, 119
general position , 87, 126

of hyperplanes, 58
of points, 4, 57

generalized arrangement, 407
generalized bipyramid, 69b
generalized Dehn-Sornmerville

equations, 198c

generalized lower bound conjecture,
198b

generalized lower bound theorem,
198b

generalized prismoid, 65
generalized regular polytope, 423a
geodesic arc, 239
geometric cell complex, 51
geometry of numbers, 30a, 52a
Gosset-Elte polytope , 171b
gradient

nonbasic , 378
Gram's equation , 298, 304, 315a
graph,212

of a polytope, 212,341
of an arrangement, 397
planar, 235, 358

graph of a complex , 138
Gray code, 382, 389b
greatest increase pivot rule, 389b

.Jt"-description, see representation of a
polytope

h-vector, 171a
ofa cubical polytope, 171b
of a simplicial polytope , see

simplicial polytope
Hadamard's conjecture, 423d
Hadwiger-Nelson problem , 423b
half cube, 171b
halfspace, 2

intersections of <-s, 12
polytopes, 31

Hamilton game, 356
Hamiltonian circuit, 356, 368
Hamiltonian path, 356, 366
Hamiltonicity

four-color problem , 389a
graphs of simple polytopes , 389a

Hanner polytope, 224b
hard Lefschetz theorem, 171b
Hausdorff distance, 6
Hausdorff measures of skeletons,

423b
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Hausdorff metric
approximation of polytopes by

vector sums, 324
continuity of Sk(P), 416
lower semicontinuity of fk(P) ,

83
height

of an element in a poset , 231
simplex - , 376
steep - , 376
strict - , 376

Helly-type theorem, 22, 30b, 126
hexagon, 340b
Hilbert

tenth problem, 96b
third problem, 315b

Hirsch conjecture, 349, 355a
Wv paths , 354
for simplicial spheres , 355b
for special polytopes , 355a
monotone, 355b
strong monotone , 355b

homeomorphism
C--,21O

homogeneous coordinates, 7a
homogeneous function , 13
homogeneous metric space, 415
homogenization, see projective

transformation
homothetic, I

positively, I, 318
hyperbolic space , 7a
hyperplane , 2

at infinity, 4
Euler -, see Euler hyperplane
separating , 10
supporting, 10

hyperplane arrangement, see
arrangement

complex , 410b
number of regions, 41Ob
number of simplicial regions ,

4lOb

real ~s and oriented matroids,
410a

simplicial ,410b
zonotopes, 41Oa

hypersimplex, 69a

icosahedron, 215
illuminating set, 422
illumination, 423c
improper face, 17
incidence, 143

- equation, 144, 169
~ graph, 216
- system, 171

incident objects, 143
indecomposable lens, 240, 245
indecomposable polytope, 318, 329

examples, 323
index of a 2 arrangement, 394
inner diagonal , 423c
inradius, 423c
inscribable type, 285
integer programming, 69a
interior of a set, 6
intersection property, 142b
intersectional basis, 13
intersectional family, 3, 13
irredundant set of halfspaces, 26
isometry, 252
isomorphism

of complexes , 199
of Gale-diagrams, 89
of Gale-transforms, 89
of partially ordered sets, 231
of polytopes , see combinatorial

equivalence
isomorphism problem, 52b
isoperimetric problem, 292, 417

javaviev,xii
Jordan's theorem, 142,231

k-content , 423b
Keller's problem , 411, 423a
Klee-Minty cube, 389b
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Kleetope , 217
dimensional unambiguous

graphs, 227
f-vectors of centrally symmetric

polytopes, 169
Hamiltonian circuits, 357
path-lengths, 372
spanning trees , 296

knapsack polytope, 121b
Kneser problem, 129b
Kriimmungsschwerpunkt, see Steiner

point
Kruskal's theorem , 179

ladder, 369
lattice, 21

deciding polytopality, 296d
Eulerian , see Eulerian lattice
face "', 50
semi-vs and abstract cell

complexes, 206
lattice polytope, 52a
lattice tiling, 423a
Lawrence construction, 96a
lens, 239, 245

indecomposable, 240
limit, 5
line, 3
line arrangement, 41Oa

number of triangles, 410b
projective plane, 428c

line shelling, 142a
line-free set, 24
linear combination, 2
linear dependence, 2
linear hull, 3
linear hyperplane arrangement, 69b
linear program, see simplex algorithm

random , 389b
standard forms, 96a

linear programming, 356
computer experience, 381
duality,96a
paths on polytopes, 342, 347

simplex algorithm, 356
standard form , 381

linear systems, 337
linked complex , 40
locally similar polytopes, 52c
lower bound conjecture, 183, see

lower bound theorem
lower bound theorem

for polytopes, 198a
for simplicial manifolds, 198a
g-theorem, 198b

lower semicontinuity
of Sk(P), 416
of fk(.rd), 393
of fk(P), 83

lrs,52b

M -sequence, 198a
main theorem about polytopes, 52a
manifold, see Eulerian manifold
Markov chain, 340b
matching polytope, 69a
McMullen's conditions, 198a
mean width, 315

of a compact convex set, 427
measure polytope, 56
Menger's theorem, 224b, see

Whitney's theorem
merging of polytopes, 373
metric function , 5
metric space, 5

complete, 6
homogeneous, 415

Minkowski sum, 340a
Minkowski 's theorem, 332, 339
misanthrope problem, 296d
mixed volume, 324

hardness of computing, 340b
randomized algorithm for

computing, 340c
Mobius function , 142b
moment curve , 61

trigonometric, 69b
monotone Hirsch conjecture, 355b
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Morse function , 142a
multi-k-gon, 272
multi-k-valent, 282
multiplicity, 86, 109

Nash equilibrium, 423c
neighborly family

of centrally symmetric
polytopes ,129b

of polytopes , 128
of simplices, 129b

neighborly polytope, 123, 129a-129b
centrally symmetric, 116
diameter, 345
i-vectors, 162, 174
k-almost , 126
k-r-; 122
number of ~s, see number
simplicial, 124

neighborly set, 126
non-rational, 96a
non-revisiting path conjecture , 355a,

see Wv-conjecture
nonbasic gradient, 378
nonbasic variable, 378
normal fan of a polytope, 52c
normally equivalent polytopes, 52c
number of

2-arrangements, 394
3-polytopes (asymptotically),

296c
3-polytopes with n edges , 290
d-polytopes with d +3 vertices,

114,121a
neighborly 4-polytopes, 129a
neighborly 6-polytopes, 129a
neighborly d-polytopes, 129a,

428c
neighborly d-polytopes with

d +3 vertices, 121a
neighborly simplicial

d-polytopes with d +3
vertices , 121a, 428c

simplicial 3-polytopes with
p vertices, 290

simplicial d-polytopes with
d +3 vertices, III , 121a

simplicial polytopes and
sphere s, 121a

objective funct ion, 347
octahedron

I-skeleton, 216
d-r- , 55
projection, 72
regular polytopes , 412

open set, 5
optimization

combinatorial r-, see
combinatorial optimization

convex,30b
non-linear, 30b

oracle,52b
computation of volume, 340b

order dimension, 296d
organic compounds, 356, 362
orientation of a polytope graph, 355b

induced by a linear function,
296b

oriented matroid, 30b
arrangements,410a
compatible, 96b
cyclic, see cyclic oriented

matroid
duality and Gale-diagrams, 96a
equilibrated systems of vectors,

340c
realizable, 410a

orthant , 305
orthogonal vectors , 2
outward normal, 13

(9')-realizable complex, see
( .'JI'd)-realizable

packing, 411
parallelotope, 56, 335
path

Hamiltonian, 356
in a graph, 212
length,366
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on a polyhedron, 341
rp-~, 375

simple, 356
simplex rp-~, 376

steep rp-~, 376

strict rp-~, 375

Wv~, 354

path code , 382
path-length, 366
(,9d)-realizable, 199

ambiguously ~ complexes, 225
dimensionally unambiguously ~

complexes for d = 5, 228
graphs, 213, 217
graphs for d = 3, 235

Perles, M. A.
angle-sums relations of

simplicial polytopes, 307
automorphisms and symmetries

of d-polytopes with
d +3 vertices, 120

conjecture on facet subgraphs of
simple polytopes, 234a

d +3 points in general position,
120

d-polytopes with d +3 vertices,
121a

dimension of f-vectors of
quasi-simplicial polytopes,
153

Gale-diagrams, 96a
Gale-transformation, 85
neighborly families of simplices,

129b
non-rational 8-polytope, 94
number of d-polytopes with

d +3 vertices, 114
number of simplicial

d-polytopes with
d +3 vertices, III

polytopes with few vertices, 108
projectively unique d-polytopes

with d +3 vertices , 120

rational realizations of
d-polytopes with
d + 3 vertices, 119

reconstruction of polytopes from
(d - 2)-skeleta, 234a

reconstruction of simplicial
polytopes from
[d/2]-skeleta, 234a

results on intersections of
simplices and flats, 74

solution of a problem of Klee's,
426

permissible projective transformation,
4

perturbation, 96b
Petrie arc, 258 , 294
piecewise affine mapping, 41
piecewi se affine refinement map, 205
piecewise linear function, 316, 326
piecew ise projective mapping, 41
planar graph

2-diagrams, 244
3-polytopes, 235

plane of symmetry, 246
Platonic solids, 296<1, 412
point

exposed, see exposed point
extreme, see extreme point

pointed cone, 24
polar cone, 49
polar set, 47
polyhedral at a point, 36
polyhedral cell-complex, 52c
polyhedral combinatorics, 69a
polyhedral complex, 51
polyhedral computation, 52b
polyhedral set , 26

bounded,32
complex of ~s, 41
face numbers, 139
quasi-e-, 36

polyhedron
class (d,n), 347
diameter, 347
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number of vertices, 188, 197
paths, 341
simplex-algorithm, 378

polymake, xii, 52b
polynomial inequalit ies, 52b
polytope, 31

O/ I-~, 69a
antipodal, 420
approximation, 326
centrally symme tric, see

centrally symmetric
polytope

coding size of coordinates, 296d
congruent-faced, 414
cubical, see cubical polytope
cyclic, see cyclic polytope
decornposable s-, see

decomposable polytope
dual ,46
enumeration of~s, see

enumeration
equifacetted, 423a
generalized regular, 423a
height , 389b
hyperbolic, 7a
indecomposable, see

indecomposable polytope
infinite-dimensional , 52
inscribed in a sphere, 296c
neighborly, see neighborl y

polytope
number of <-s, see number
prescribing shapes of faces, 296d
project ively unique, 68
pyramidal, see pyramidal

polytope
quas i-simplicial, see

quasi-simplicial polytope
quotient, 129b
random , 129b
rational, see rational polytope
reconstruction of the

combinatorial structure ,
see reconstruction

regular, see regular polytope
regular-faced, 414
related ~s, 50
rigidity, 129b
rooted, oriented 3-~, 289
self-dual, 52d
semiregular, 4 13, 423a
shellability, 142a
simple , see simple polytope
simplicial, see simplicial

polytop e
spherical, 7a
stacked, 198b
summand, 316
type (2,2), 69a, 82, 96b
type(2,d-2),17Ib,428b
type (3,d - 3), 171b
type (4, 4), 69a
type (k, h), 58, 65, 69a, 169
type (r +2,s+t-I ),17Ib
unavoidable small faces, 224b
uniform , 171b, 413, 423a
with d +3 vertices, 121a
with d +4 vertices, 96a
without triangle faces, 198d

polytope algebra , 340a
poonem,20

not being a face, 30a
polyhedral sets, 26

positively homogeneous function, 13
primi tive fixing system, 423
prim itive illuminating set, 422
primitive polytope, 423
prism

d-pri sm,56
k-fold d-pri sm, 56

prismoid, 57
generalized, 65
indecomposability, 323
proof of Euler's theorem, 131

projection
~ constant , 73
of a polytope, 71
radial ,23
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projective equivalence, 5
Gale-transforms, 89

projective geometry, 7b
projective space, 4

arrangements, 390
configurations, 93
Euler characteristic, 142

projective transformation, 4, 7b
admissible, 7a
Gale-diagrams, 87
of convex sets, 21, 35
of d +3 points in ]?'I, 126
of polytopes, 67
permissible, 4
piecewise, 41
polytopes inscribed into spheres,

285
projectively convex set, 29
projectively realizable sequence, 405
projectively regular polytope, 412
projectively unique, 68

d-polytopes with d +3 vertices,
120

non-rational 8-polytope, 96
polytopes with not ~ facets , 208

pseudo-hyperplane arrangement, 410a
number of simplicial regions ,

4lOb
pseudo-line, 408
pseudo-line arrangement, 41Oa

number of triangles, 410b
pulling , 82, 96b
pushing, 82, 96b
pyramid,54

f-vectors of r-fold ~s, 140
indecomposability of r-fold ~s,

323
r-fold ,54
r-fold ~s and d-polytopes with

d +2 vertices, 100
r-fold ~s and pyramidoids, 64

pyramidal polytope. 68, 88
pyram idoid, 63

indecomposability, 323

quasi-polyhedral, 36
quasi-simplicial polytope, 59

Euler hyperplane, 137
f -vectors, 153

radial projection, 23, 200
radius of a polytope, 341
Radon's theorem, 16

k-neighborly polytopes, 123
Ramsey theory, 7b, 30b
Ramsey's theorem , 22, 126
random walk, 340b
random-edge pivot rule, 389b
random-facet pivot rule, 389b
rational polytope, 52a, 92

decidability offace lattices, 96b
perturbing a polytope with

d +3 vertices, 119
Steinitz' theorem, 244

rational space
polytopes, 92
sections, 76

ray shooting, 52a
realizability, see d-realizability

3-~ of a sequence, see
3-realizable sequence

of 2-complexes, 253
(go)-~ of a complex, see

(god)-realizable
(god)_~ of a complex, see

(god)-realizable
projective ~ of a sequence, see

projectively realizable
sequence

reconstruction of
duals of capped cubical

polytopes from their
l-skeleta, 234b

duals of cubical zonotopes from
their l-skeleta, 234b

polytopes from their
(d - 2)-skeleta, 234a

simple polytopes from their
l-skeleta, 234a
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simplicial polytopes from their
[d/2]-skeleta,234a

zonotopes from their l-skeleta,
234b

reducible convex set , 26, 322
reducible polytope, 322
reduction

proof of Steinitz's theorem, 237,
see M'-transformation

proof on realizable sequences,
272

refinement
~ map, 199
of a complete graph in a

polytopal graph, 214
of a complex, 199
of the boundary complex of a

simplex, 219
reflection group, see finite reflection

group
regular cell complex

Eulerian lattices, 142b
intersection property, 142b
strongly, 142b

regular polytope, 423a
affinely, 412
combinatorially,4l3
projectively, 412

regular-faced polytope, 414
related polytopes, 50, 52c
relative boundary, 9
relative interior, 9, 428a
representation of a polytope, 52a

alternative, 52b
as a section, 96a
coding size , 52a, 296d
computation, 52a
.no-description, 52a
oracle,52b
polynomial inequalities, 52b
1'Cdescription, 52a

reverse search, 52a
rigidity theorem, 411
rigidity theory

lower bound theorem, 198a
Steinitz's theorem, 296a

rotation distances of trees, 30b
rubber band method, 296a

scalar product, 2
scheme

abstract, 91
of a polytope, 90

Schlegel diagram, 43, 52c
3-polytopes, 235 , 244
3-diagrams not being ~s, 219
circurncircles, 287
embedding graphs into cyclic

4-polytopes, 212
history, 127

section of a polytope, 71
selection theorem, 10, 325
self-dual polytope, 48

density of the family of
3-dimensional ~s, 82

enumeration of 3-dimensional
~s, 289

pyramids, 69
semi-algebraic set, 52b
semi -algebraic variety , 96a
semiregular polytope, 423a
semispaces, 13
separated set, 10
separated sets

strictly , 10
separation in graphs, 217
sewing, 129a
shadow vertex pivot rule , 389b
shape matching, 315b
shellability

of polytopes, 142a
upper bound theorem, 198a

simple d-arrangement, 391
simple circuit, 356, 38 I
simple complex, 206
simple path , 356
simple polytope, 58

affine hull of i-vectors, 170
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decomposability, 321
degree of total separability, 218
h-~, 58
incidence equation, 144
Perles' conjecture on the facet

subgraphs , 234a
reconstruction from l-skeleton,

234a
refinements of boundary

complexes, 206
relations between the Steiner

poin ts of the faces , 311
simplex, 53

combinatorial type, 53
embedding skeleta of simplices,

210
generalized bipyramid of two

simplices, 64
sections of simplices, 71
simplices as regular polytopes,

412
spherical, 306

simplex algorithm, 377, 389b
simplex height, 376
simplex rp-path, 376

unambiguous, 379
simplicial complex, 59

embedding, 67, 202, 224a
minimal face numbers, 179

simplicial polyhedral complex, 51
simplicial polytope, 57

angle-sums relations, 307
Dehn-Sommerville equations,

I7la
density of the family of ~s, 81
f-vector and h-vector, 171a
f-vectors , 145
g-theorem,l7lb
Gale-transforms, 88
h-vector and face ring, 171a
k-~ , 58

neighborly polytopes, 124
number of ~s, see number

reconstruction from
[d/2]-skeleton, 234a

stability, 69
upper bound problem, 172
with d +2 vertices, 97

simplicial sphere
centrally symmetric ~, see

centrally symmetric
g-tneorem . 198b
number of ~s, see number
polytopality, 121a
upper bound theorem, 171a,

198a
singular of degree s, 269
skeleton, 138

k-~, 138
of a simplex, 20 I , 210

slack variable, 96a
snake-in-the-box code, 382
space-filling, 411
spanning tree, 296
sphere, 5

convexity on ~s, 10, 30
shellable, 96b
simplicial, see simplicial sphere

spherical arrangement, 409
spherical polytope

arrangements, 392
Euler's equation, 142
incidence equations, 145

spherical simplex, 306
spherical space, 7a
spherically convex set , 10, 30
spread,382
stable equivalence, 96a
stacked polytope, 198b
standard Gale-diagram, 109
Stanley-Reisner ring, 198a, 198c
star, 40

k-~, 138,301
star -diagram, 103

simplicial polytopes, 114
steep height, 376
steep rp-path, 376
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steepest edge pivot rule, 389b
Steiner point, 308, 315a

history, 313
translation classes, 317
valuation property, 315

Steinitz's theorem on 3-polytopes,
235, 296a-296b

analogue for 2-arrangements,
409

enumeration oO-polytopes, 92,
290

modification s, 244
projective uniqueness , 68

Steinitz's theorem on convex hulls, 17
Straszewicz ' theorem , 19
stretchable arrangement, 408
strict height, 376
strict cp-path, 375
strictly antipodal subset of Rd , 128,

129b
strong d-ambiguity, 225, 228
strong monotone Hirsch conjecture,

355b
strongly isomorphic polytopes, 52c
strongly regular cell complex, see

regular cell complex
subdivisions of complete graphs, 224b
subspace, 3
subspace arrangements, 41Ob
summand of a polytop e, 316
support ing function , 13, 326
supporting hyperplane, 10, 13
sweep,142a
Sylvester 's problem , 404, see

Sylvester-Gallai theorem
Sylvester-Gallai theorem , 410b
symmetry of a polytope , 120

central ~, see centrally
symmetric polytope

regular polytopes, 412

Tarski's procedure, 96b
Tarski 's theorem, 91
threshold gate, 121b

tile type, 423a
tiling of~, 423a
topolog ical complex

Euler characteristic, 142
incidence equation, 145
polyhedral, convex, geometric

complex, 39
toric g-vector. 198c
toric h-vector, 171b
toric variety, 52c

and h-vector, 171b
and the g-theorem, 171b
cohomology, 198c
Morse function , 142a

torus, 207, 253
totally positive matrix, 129b
totally separat ed, 217

degree of total separability, 217
tower, 37
towers of Hanoi, 383
transformation

adjoint, 50
transition sequence, 383
translation invariance, 3
traveling salesman polytope , 69a
tree, 369
triangulation

of a cube, 30b
of a polytope, 96b
of an n-gon, 30b

Tverberg's theorem, 30b
twisted lexicographic order, 389a

unambiguous graphs, 227
unambiguous simplex cp-path, 379
unavoidable small faces, 224b
uniform polytope, 413, 423a
unit distance code, 382
unit vector, 2
universal approximation class, 331
universality theorem

for 4-polytopes, 96a
for d-polytopes with

d +4 vertices , 96a
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upper bound conjecture, 182, see
upper bound theorem

upper bound theorem
asymptotic version, 142a
for polytopes, 171a, 198a
for simplicial spheres . 171a.

198a
g-theorem. 198b
monotone paths, 389b

upper boundary operator. 198a

~description, see representation of a
polytope

valence. 213
3-valent element. 236
n-valent graph . 213. 236

valuation. 315. 315b
van Kampen-Flores theorem. 20 I

Borsuk-Ulam theorem. 224a
proof,210

variable
basic. 378
nonbasic , 378
simplex algorithm . 378

vector addition
Blaschke sum. 337
of convex sets. 9
of polytopes. 38. 316

vector sum, 316
vertex.Bt
vertex complexity, 52a
vertex figure, 49

Gale-diagram. 90
regular polytopes, 412
simple polytopes, 342

visualization of polytopes. 52c
volume, 338. 416

coding size. 340b
computation in fixed dimension .

340b
hardness of computation, 340b
randomized algorithm, 340b
Steiner point, 315a

Walkup conjecture, 96b

weak d-ambiguity, 226, 228
wedge. 69b, 305
weighing design for spring balance.

423d
Whitney 's theorem. 213

Menger 's theorem . 224b
width,423c
Wv path, 354
Wv-conjecture, 354, 355a

for simplicial spheres . 355b
Wythoff construction, 171b

'-vector. 417
zonohedron,405
zonoids, 340b
zonotope, 323

computing the volume, 340c
cubical, 69b
hyperplane arrangements, 410a
irreducible, 323
reconstruction from l-skeleton,

234b
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air A 3 § (P) 32
ast(C ; "6') 40 ft("6') 39
A(d) 146 f(P) 130
Aid) 153 f(9) 130q
Aid) 156 fk(V, d) 168,175c

a(d,k) 201 ft(sI), f(sI) 390
a("6') 202 f~(n) 393

bdA 6 <§(P) 212
PA(P) 40 <§(k, n), <§* (k, 2) 272
b(d, k ) 201
b("6') 202 H(K, x ) 13

cardA 1 int A 6
ciA 6 l (d) 381
cone. K 9
convA 14 lin A 3
clconv A 14 L(K, x) 13
ccK,ccx K 24 link (C ;"6') 40
CC(P) 40
~ 56 m.(b, d, n) 341
q 59 Mv(b,d,n) 341
C(v, d) 61
c.(v, d) II I 'yd 123
v(v, d) 114 'yd 123•

dim A 3 9 (K ) 20
diamA 5

~ 57

expK 17
~ 58
~(k,h) 58

extK 17
~ 59

extkK 21 f?J"; 59
eXPk K 21

~ 115
(E') 136
(E~) 146

P(P),Pk(P) 236
Pk(<§) 283

(m*) 148 pd 390
e(P) 236 pisl) 398

§(K) 17
h.(K) 31 ~ 55
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R4 I ,,(P) 376
relbd A 9
relint A 9 K(r ;k;j) PI8
rtilt} 178

).(P) 366
~ 10
st(C; 'C) 40 JJtCv, d), JJ(v, d) 173
sel'C 40 JJ(G) 357
st, (F, P) 138 JJ(P) 371
skel, f.{/ 138
s.(~), sen, d) 217 p(x,y) 5

p(A, B) 6
yd 53 Px(P),p(P) 341
T~ 64, 97
~.r 100 cr(P) 376

vert K 31 rep) 376
v(P), vt(P) 236
Vt(~) 283 CfJt(v, d), CfJ:(v, d) 183
v2t(d' ) 401 cP:(v,d) 183

cPt(v, d) 184
cxt(P) 297
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