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Preface

This book evolved from a course at our university for beginning graduate stu-
dents in mathematics—particularly students who intended to specialize in ap-
plied mathematics. The content of the course made it attractive to other math-
ematics students and to graduate students from other disciplines such as en-
gineering, physics, and computer science. Since the course was designed for
two semesters duration, many topics could be included and dealt with in de-
tail. Chapters 1 through 6 reflect roughly the actual nature of the course, as it
was taught over a number of years. The content of the course was dictated by
a syllabus governing our preliminary Ph.D. examinations in the subject of ap-
plied mathematics. That syllabus, in turn, expressed a consensus of the faculty
members involved in the applied mathematics program within our department.
The text in its present manifestation is my interpretation of that syllabus: my
colleagues are blameless for whatever flaws are present and for any inadvertent
deviations from the syllabus.

The book contains two additional chapters having important material not
included in the course: Chapter 8, on measure and integration, is for the ben-
efit of readers who want a concise presentation of that subject, and Chapter 7
contains some topics closely allied, but peripheral, to the principal thrust of the
course.

This arrangement of the material deserves some explanation. The ordering
of chapters reflects our expectation of our students: If they are unacquainted
with Lebesgue integration (for example), they can nevertheless understand the
examples of Chapter 1 on a superficial level, and at the same time, they can
begin to remedy any deficiencies in their knowledge by a little private study
of Chapter 8. Similar remarks apply to other situations, such as where some
point-set topology is involved; Section 7.6 will be helpful here. To summarize:
We encourage students to wade boldly into the course, starting with Chapter 1,
and, where necessary, fill in any gaps in their prior preparation. One advantage
of this strategy is that they will see the necessity for topology, measure theory,
and other topics — thus becoming better motivated to study them. In keeping
with this philosophy, I have not hesitated to make forward references in some
proofs to material coming later in the book. For example, the Banach contraction
mapping theorem is needed at least once prior to the section in Chapter 4 where
it is dealt with at length.

Each of the book’s six main topics could certainly be the subject of a year’s
course (or a lifetime of study), and many of our students indeed study functional
analysis and other topics of the book in separate courses. Most of them eventu-
ally or simultaneously take a year-long course in analysis that includes complex
analysis and the theory of measure and integration. However, the applied math-
ematics course is typically taken in the first year of graduate study. It seems
to bridge the gap between the undergraduate and graduate curricula in a way
that has been found helpful by many students. In particular, the course and the
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vi Preface

book certainly do not presuppose a thorough knowledge of integration theory nor
of topology. In our applied mathematics course, students usually enhance and
reinforce their knowledge of undergraduate mathematics, especially differential
equations, linear algebra, and general mathematical analysis. Students may, for
the first time, perceive these branches of mathematics as being essential to the
foundations of applied mathematics.

The book could just as well have been titled Prolegomena to Applied Math-
ematics, inasmuch as it is not about applied mathematics itself but rather about
topics in analysis that impinge on applied mathematics. Of course, there is
no end to the list of topics that could lay claim to inclusion in such a book.
Who is bold enough to predict what branches of mathematics will be useful in
applications over the next decade? A look at the past would certainly justify
my favorite algorithm for creating an applied mathematician: Start with a pure
mathematician, and turn him or her loose on real-world problems.

As in some other books I have been involved with, I owe a great debt of
gratitude to Ms. Margaret Combs, our departmental TEX-pert. She typeset and
kept up-to-date the notes for the course over many years, and her resourcefuiness
made my burden much lighter.

The staff of Springer—Verlag has been most helpful in seeing this book to
completion. In particular, I worked closely with Dr. Ina Lindemann and Ms.
Terry Kornak on editorial matters, and I thank them for their efforts on my
behalf. I am indebted to David Kramer for his meticulous copy-editing of the
manuscript; it proved to be very helpful in the final editorial process.

I thank my wife, Victoria, for her patience and assistance during the period
of work on the book, especially the editorial phase. I dedicate the book to her
in appreciation.

I will be pleased to hear from readers having questions or suggestions
for improvements in the book. For this purpose, electronic mail is efficient:
cheney@math.utexas.edu. I will also maintain a web site for material related
to the book at http://www.math.utexas.edu/users/cheney/AAMbook

Ward Cheney
Department of Mathematics
University of Texas at Austin
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Chapter 1

Normed Linear Spaces

1.1  Definitions and Examples 1

1.2 Convexity, Convergence, Compactness, Completeness 6

1.3  Continuity, Open Sets, Closed Sets 15

1.4  More about Compactness 19

1.5  Linear Transformations 24

1.6  Zorn’s Lemma, Hamel Bases, and the Hahn-Banach Theorem 30
1.7  The Baire Theorem and Uniform Boundedness 40

1.8  The Interior Mapping and Closed Mapping Theorems 47

1.9  Weak Convergence 53

1.10 Reflexive Spaces 58

1.1 Definitions and Examples

This chapter gives an introduction to the theory of normed linear spaces. A
skeptical reader may wonder why this topic in pure mathematics is useful in
applied mathematics. The reason is quite simple: Many problems of applied
mathematics can be formulated as a search for a certain function, such as the
function that solves a given differential equation. Usually the function sought
must belong to a definite family of acceptable functions that share some useful
properties. For example, perhaps it must possess two continuous derivatives.
The families that arise naturally in formulating problems are often linear spaces.
This means that any linear combination of functions in the family will be another
member of the family. It is common, in addition, that there is an appropriate
means of measuring the “distance” between two functions in the family. This
concept comes into play when the exact solution to a problem is inaccessible,
while approximate solutions can be computed. We often measure how far apart
the exact and approximate solutions are by using a norm. In this process we are
led to a normed linear space, presumably one appropriate to the problem at hand.
Some normed linear spaces occur over and over again in applied mathematics,
and these, at least, should be familiar to the practitioner. Examples are the
space of continuous functions on a given domain and the space of functions
whose squares have a finite integral on a given domain. A knowledge of function
spaces enables an applied mathematician to consider a problem from a more

1



2 Chapter 1 Normed Linear Spaces

lofty viewpoint, from which he or she may have the advantage of being more
aware of significant features as distinguished from less significant details.

We begin by reviewing the concept of a vector space, or linear space.
(These terms are interchangeable.) The reader is probably already familiar with
these spaces, or at least with the example of vectors in R"™. However, many
function spaces are also linear spaces, and much can be learned about these
function spaces by exploiting their similarity to the more elementary examples.
Here, as a reminder, we include the axioms for a vector space or linear space.

A real vector space is a triple (X, +, ), in which X is a set, and + and -
are binary operations satisfying certain axioms. Here are the axioms:

(i) If z and y belong to X then so does z + y (closure axiom).
(i) z+y=y+z (commutativity).
(i) z+ (y+2) =(r+y)+ 2z (associativity).
(iv) X contains a unique element, 0, such that z + 0 =z for all z in X.

(v) With each element z there is associated a unique element, —z, such
that z + (—z) = 0.

(vi) If z € X and A € R, then A\-z € X (R denotes the set of real numbers.)
(closure axiom)

(vii) A-(z+y)=A-z+A-y (A €R), (distributivity).
(viii) A+ p)-z=A-z+p-z (A p€R), (distributivity).

(ix) A-(u-z)=(An) -z (associativity).

(x) 1-z==z.

These axioms need not be intimidating. The essential feature of a linear space
is that there is an addition defined among the elements of X, and when we add
two elements, the result is again in the space X. One says that the space is
closed (algebraically) under the operation of addition. A similar remark holds
true for multiplication of an element by a real number. The remaining axioms
simply tell us that the usual rules of arithmetic are valid for the two operations.
Most rules that you expect to be true are indeed true, but if they do not appear
among the axioms it is because they follow from the axioms. The effort to keep
the axioms minimal has its rewards: When one must verify that a given system
is a real vector space there will be a minimum of work involved!

In this set of axioms, the first five define an (additive) Abelian group. In
axiom (iv), the uniqueness of 0 need not be mentioned, for it can be proved
with the aid of axiom (ii). Usually, if A € R and z € X, we write Az in place
of A - z. The reader will note the ambiguity in the symbol + and the symbol
0. For example, when we write Ox = 0 two different zeros are involved, and in
axiom (viii) the plus signs are not the same. We usually write z — y in place of
z + (—y). Furthermore, we are not going to belabor elementary consequences of
the axioms such as A} 7 z; = Y] Az;. We usually refer to X as the linear space
rather than (X, +, -). Observe that in a linear space, we have no way of assigning
a meaning to expressions that involve a limiting process, such as > 1° ;. This
drawback will disappear soon, upon the introduction of a norm.

From time to time we will prefer to deal with a complex vector space. In
such a space Az is defined (and belongs to X) whenever A € C and z € X. (The



Section 1.1 Definitions and Examples 3

symbol C denotes the set of complex numbers.) Other fields can be employed
in place of R and C, but they are rarely useful in applied mathematics. The
field elements are often termed scalars, and the elements of X are often called
vectors.

Let X be a vector space. A norm on X is a real-valued function, denoted
by H ||, that fulfills three axioms:

(i) ||m|| > 0 for each nonzero element in X.
(i) |Az|| = |Al||z| for each X in R and each z in X.
(iit) “w + y“ < Hx“ + “y“ for all z,y € X. (Triangle Inequality)

A vector space in which a norm has been introduced is called a normed linear
space. Here are eleven examples.

Example 1. Let X = R, and define ||z|| = |z, the familiar absolute value
function. [

Example 2. Let X = C, where the scalar field is also C. Use ||z|| = |z|, where
|z| has its usual meaning for a complex number z. Thus if z = a + ib (where a
and b are real), then |z| = va? + b2. "

Example 3. Let X = C, and take the scalar field to be R. The terminology
we have adopted requires that this be called a real vector space, since the scalar
field is R. [

Example 4. Let X = R". Here the elements of X are n-tuples of real numbers
that we can display in the form z = [z(1),z(2),...,z(n)] or z = [z1,Z2,...,Zx].
A useful norm is defined by the equation

lell.. = e, 12

Note that an n-tuple is a function on the set {1,2,...,n}, and so the notation
z(2) is consistent with that interpretation. (This is the “sup” norm.) ]

Example 5. Let X = R", and define a norm by the equation ||:c|| =
S . |z(i)|. Observe that in Examples 4 and 5 we have two distinct normed
linear spaces, although each involves the same linear space. This shows the ad-
vantage of being more formal in the definition and saying that a normed linear
space is a pair (X , H ||) etc. etc., but we refrain from doing this unless it is
necessary. 1

Example 6. Let X be the set of all real-valued continuous functions defined
on a fixed compact interval [a, b]. The norm usually employed here is

l=ll., = max. l=(s)]

(The notation max,gs<s |2($)| denotes the maximum of the expression |z(s)| as
s runs over the interval [a,b].) The space X described here is often denoted
by Cla,b]. Sticklers would insist on C([a,b]), because C(S) will be used for
the continuous functions on some general domain S. (This again is the “sup”
norm.) [}
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Example 7. Let X be the set of all Lebesgue-integrable functions defined on
a fixed interval [a, b]. The usual norm for this space is Ha:“ = fab |z(s)|ds. In this
space, the vectors are actually equivalence classes of functions, two functions
being regarded as equivalent if they differ only on a set of measure 0. (The
reader who is unfamiliar with the Lebesgue integral can substitute the Riemann
integral in this example. The resulting spaces are different, one being complete
and the other not. This is a rather complicated matter, best understood after
the study of measure theory and Lebesgue integration. Chapter 8 is devoted to
this branch of analysis. The notion of completeness of a space is taken up in the
next section.) (]

Example 8. Let X = ¢, the space of all sequences in R
z = [z(1),z(2),...]

in which only a finite number of terms are nonzero. (The number of nonzero
terms is not fixed but can vary with different sequences.) Define “:I:H =
maxy, |z(n))|. ]

Example 9. Let X = /., the space of all real sequences z for which
sup,, |z(n)| < co. Define ||:r|| to be that supremum, as in Example 8. (]

Example 10. Let X = II, the space of all polynomials having real coefficients.
A typical element of II is a function = having the form

z(t) = ap + a1t + agt® + - - + ant™

One possible norm on II is & — max; |a;|. Others are £ — maxog:g1 |z(t)| or
1
[y |z(t)|dt or z— (3g |z|*)/3. "

Example 11. Let X = R"”, and use the familiar Euclidean norm, defined

by .
lall, = (S letin) " '

i=1

In all of these examples (as well as in others to come) it is regarded as
obvious how the algebraic structure is defined. A complete development would
define z + ¥y, Az, 0, and —x, and then verify the axioms for a linear space. After
that, the alleged norm would be shown to satisfy the axioms for a norm. Thus,
in Example 6, the zero element is the function denoted by 0 and defined by
0(s) = 0 for all s € [a, b]. The operation of addition is defined by the equation

(@ +y)(s) = z(s) + y(s)

and so on.

The concept of linear independence is of central importance. Recall that a
subset S in a linear space is linearly independent if it is not possible to find a
finite, nonempty, set of distinct vectors x,xs,...,Z,;, in S and nonzero scalars
¢1,¢a,. .., Cm for which

axy+cexe+ - -+ e, =0
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(Linear independence is not a property of a point; it is a property of a set
of points. Because of this, the usage “the vectors... are independent” is mis-
leading.) The reader probably recalls how this notion enters into the theory
of nth—order ordinary differential equations: A general solution must involve a
linearly independent set of n solutions.

Some other basic concepts to recall from linear algebra are mentioned here.
The span of a set S in a vector space X is denoted by span(S), and consists
of all vectors in X that are expressible as linear combinations of vectors in S.
Remember that linear combinations are always finite expressions of the form
Z;;l Aiz;. We say that “S spans X” when X = span(S). A base or basis
for a vector space X is any set that is linearly independent and spans X. Both
properties are essential. Any set that is linearly independent is contained in a
basis, and any set that spans the space contains a basis. A vector space is said
to be finite dimensional if it has a finite basis. An important theorem states
that if a space is finite dimensional, then every basis for that space has the same
number of elements. This common number is then called the dimension of the
space. (There is an infinite-dimensional version of this theorem as well.)

The material of this chapter is accessible in many textbooks and treatises,
such as: [Au], [Av], [BN], [Ban], [Bea], [CP], [Day], [Dies], [Dieu], [DS], [Edw],
[Frie2], [Fried], [GP], [Gre], [Gri], [HS], [HP], [Hol], [Horv], [Jam], [KA], [Kee],
[KF], [Kre], [Lanl], [Lo], [Moo}, [NaSn], {OD], [Ped], [Red], [RS], [RN], [Roy],
[Rul], [Sim], [Tay2], [Yo], and [Ze].

Problems 1.1

Here is a Chinese proverb that is pertinent to the problems: I hear, I forget; I see, I
remember; I do, I understand!

1. Let X be a linear space over the complex field. Let X" be the space obtained from X by
restricting the scalars to the real field. Prove that X7 is a real linear space. Show by an
example that not every real linear space is of the form X7 for some complex linear space
X. Caution: When we say that a linear space is a real linear space, this has nothing to
do with the elements of the space. It means only that the scalar field is R and not C.

2. Prove the norm axioms for Examples 4-7.

3. Prove that in any normed linear space,

[lo]l =0 and

Il = il < llz = ol

4. Denote the norms in Examples 4 and 5 by || || and || ||, respectively. Find the best
constants in the inequality
allzll, < llzll < Bllzll,

Prove that your constants are the best. (The “constants” o and 3 will depend on n but
not z.)

5. In Examples 4, 5, 6, and 7 find the precise conditions under which we have ||z + y|| =
llzll + llyll-

6. Prove that in any normed linear space, if ¢ # 0, then z/||z|| is a vector of norm 1.

7. The Euclidean norm on R" is defined in Example 11. Find the best constants in the
inequality afjz|| . < l|lzll, < Bllz|| -
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
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. What theorems in elementary analysis are needed to prove the closure axioms for Example

67

. What is the connection between the normed linear spaces ¢ and II defined in Examples

8 and 107

For any ¢ in the open interval (0,1), let £ be the sequence [t,t,t3,...]. Notice that
t € . Prove that the set {t : 0 <t < 1} is linearly independent.

In the space IT we define special elements called monomials. They are given by z,(t) =
t"™ where n =0,1,2,... Prove that {zn : n=0,1,2,3...} is linearly independent.

Let T be a set of real numbers. We say that T is bounded above if there is an M
in R such that ¢t < M for all t in T. We say that M is an upper bound of T. The
completeness axiom for R asserts that if a set T is bounded above, then the set of
all its upper bounds is an interval of the form [b, 00). The number b is the least upper
bound, or supremum of T, written b = L.u.b.(T) = sup(T). Prove that if z < b, then
(z,00)NT is nonempty. Give examples to show that [b, 00)NT can be empty or nonempty.
There are corresponding concepts of bounded below, lower bound, greatest lower
bound, and infimum.

Which of these expressions define norms on R2? Explain.

(a) max{|z(1)], |=(1) +=(2)[}
(b) |=(2) —z(1)|
(©) le(V)] +[2(2) - z(1)] + =(2)|

Prove that in any normed linear space the conditions ||z|| = 1 and ||z —y|| < & < 1 imply
that ||z — y/|lyl| ]| < 2e.

Prove that if Ny and N2 are norms on a linear space, then so are a1 N; + a2 N2 (when

ay > 0 and a2 > 0) and (N12 + N22)1/2.

Is the following set of axioms for a norm equivalent to the set given in the text? (a) ||z|| #
0if z #0, (b) [IAzl| = =Allz]l if A <0, (¢) llz + | < Il + llll-

Prove that in a normed linear space, if ||z-+y|| = |z||+|lyl|, then |laz+8yl| = |lez||+]|8yll
for all nonnegative o and 8.

Why is the word “distinct” essential in our definition of linear independence on page 47
Is the set of functions f;(z) = |t — i, where i = 1,2.. ., linearly independent?

One example of an “exotic” vector space is described as follows. Let X be the set
of positive real numbers. We define an “addition”, @&, by ¢ ® y = zy and a “scalar
multiplication” by a ©® ¢ = z%. Prove that (X, ®,®) is a vector space.

In Example 10, two norms (say N; and N32) were suggested. Do there exist constants
such that N3 < aNz or N2 < BN1?

In Examples 4 and 5, let n = 2, and draw sketches of the sets {z € R? : ||z|| = 1}.
(Symmetries can be exploited.)

1.2 Convexity, Convergence, Compactness, Completeness

A subset K in a linear space is said to be convex if it contains every line segment

connecting two of its elements. Formally, convexity is expressed as follows:
[zeK & yeK & Os/\gl] = M+(l-ANyeK

The notion of convexity arises frequently in optimization problems. For example,
the theory of linear programming (optimization of linear functions) is based on
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the fact that a linear function on a convex polyhedral set must attain its extrema
at the vertices of the set. Thus, to locate the maxima of a linear function
over a convex polyhedral set, one need only test the vertices. The central idea
of Dantzig’s famous simplex method is to move from vertex to vertex, always
improving the value of the objective function.

Another application of convexity occurs in studying deformations of a physi-
cal body. The “yield surface” of an object is generally convex. This is the surface
in 6-dimensional space that gives the stresses at which an object will fail struc-
turally. Six dimensions are needed to account for all the variables. See [Mar],
pages 100-104.

Among examples of convex sets in a linear space X we have:

(i) the space X itself;

(ii) any set consisting of a single point;
(iil) the empty set;
(iv) any linear subspace of X;

(v) any line segment; i.e. a set of the following form in which a and b are
fixed:
{da+(1-=Xb: 021}

In a normed linear space, another important convex set is the unit cell or unit
ball:
fzex : o] <1}

In order to see that the unit ball is convex, let ||z|| < 1, ||y < 1,and 0 < A< 1.
Then, with py=1— A,

e+ pyl| < [Azll + [luy]] = Alll| + wlly| <A +p=1

If we let n = 2 in Examples 4 and 5 of Section 1.1, then we can draw pictures
of the unit balls. They are shown in Figures 1.1 and 1.2.

-1 1 -1 1

-1 9

Figures 1.1 and 1.2. Unit balls

There is a family of norms on R", known as the £,-norms, of which the norms
in Examples 4 and 5 are special cases. The general formula, for 1 <p < o0, is

n 1/p
Jaf, = (;lz(i)pv)
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The case p = oo is special; for it we use the formula
l2ll., = max I2(3)
It can be shown (Problem 1) that limp_, “a:”p = ”z“oo (This explains the

notation.) The unit balls (in R?) for ” ”p are shown for p = %, 2, and 7, in
Figure 1.3.

Figure 1.3. The unit balls in ¢, for p = %, 2,and 7.

In any normed linear space there exists a metric (and its corresponding
topology) that arises by defining the distance between two points as

d(z,y) = ||z - y||
All the topological notions from the theory of metric spaces then become avail-
able in a normed linear space. (See Problem 23.) In Chapter 7, Section 6,
the theory of general topological spaces is broached. But we shall discuss here
topological concepts restricted to metric spaces or to normed linear spaces. A
sequence xi,ZTz,... in a normed linear space is said to converge to a point z
(and we write z,, — x) if

lim Hxn - x“ =0
n—>00

For example, in the space of continuous functions on [0, 1] furnished with the
max-norm (as in Example 6 of Section 1, page 3), the sequence of functions
z,(t) = sin(t/n) converges to 0, since
|zn — 0| = sup |sin(t/n)| = sin(1/n) — 0
0<t<1

The notion of convergence is often needed in applied mathematics. For example,
the solution to a problem may be a function that is difficult to find but can be
approached by a suitable sequence of functions that are easier to obtain. (Maybe
they can be explicitly calculated.) One then would need to know exactly in what
sense the sequence was approaching the actual solution to the problem.

A subset K in a normed space is said to be compact if each sequence
in K has a subsequence that converges to a point in K. (Caution: In general
topology, this concept would be called sequential compactness. Refer to Section
7.6.) A subsequence of a sequence 1, Z2, ... is of the form Tny,Tny,-- -, Where
the integers n; satisfy n; < np < ng < ---. Our notation for a sequence is [z, ],
or [t, : n € N], or [x),22,...]. With this meagre equipment we can already
prove some interesting results.
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Theorem 1. Let K be a compact set in a normed linear space X.
To each x in X there corresponds at least one point in K of minimum
distance from z.

Proof. Let z be any member of X. The distance from x to K is defined to be
the number
dist (z, K) = inf ||z — 2||
z€EK

By the definition of an infimum (Problem 12 in Section 1.1, page 6), there exists
a sequence [yn] in K such that Hz‘ - yn” — dist (z, K). Since K is compact,
there is a subsequence converging to a point in K, say yn, = y € K. Since

lz = lI < llz = [ + [lvm; = vl

we have in the limit Hz—y” L dist (2, K) < Hx—y“ (The final inequality follows
from the definition of the distance function.) (]

The preceding theorem can be useful in problems involving noisy measure-
ments. For example, suppose that a noisy measurement of a single entity z is
available. If a set K of admissible noise-free values for z is prescribed, then
the best noise-free estimate of x can be taken to be a point of K as close as
possible to . Theorem 1 is also important in approximation theory, a branch
of analysis that provides the theoretical underpinning for many areas of applied
mathematics.

Example 1. On the real line, an open interval (a,b) is not compact, for we
can take a sequence in the interval that converges to the endpoint b, say. Then
every subsequence will also converge to b. Since b is not in the interval, the
interval cannot be compact. On the other hand, a closed and bounded interval,
say [a, b], is compact. This is a special case of the Heine-Borel theorem. See the
discussion before Lemma 1 in Section 1.4, page 20. ']

Given a sequence [z,] in a normed linear space (or indeed in any metric
space), is it possible to determine, from the sequence alone, whether it con-
verges? This is certainly an important matter for practical purposes, since we
often use algorithms to generate sequences that should converge to a solution
of a given problem. The answer to the posed question is that we cannot infer
convergence, in general, solely from the sequence itself. If we confine ourselves to
the information contained in the sequence, we can construct the doubly indexed
sequence Cpm = Hzn — zmH If [cnm] does not converge to zero, then the given
sequence [z,] cannot converge, as is easily proved: For any z in the space, write

com = 20 = 2] = (20 = 2) = (2 = D) < e~ 2] + i = 3]

This shows that if ¢, does not converge to 0, then [z,] cannot converge. On
the other hand, if ¢,,, converges to zero, one intuitively thinks that the sequence
ought to converge, and if it does not, there must be a flaw in the space itself: The
limit of the sequence should exist, but the limiting point is somehow missing from
the space. Think of the rational numbers as an example. The missing ingredient
is completeness of the space, to which we now turn.
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A sequence [z,] in a normed linear space X is said to have the Cauchy
property or to be a Cauchy sequence if

lim sup ||z; — z;|| =0
n—o0 i>n
izn

If every Cauchy sequence in the space X is convergent (to a point of X, of
course), then the space X is said to be complete. A complete normed linear
space is termed a Banach space, in honor of Stefan Banach, who lived from 1892
to 1945. His book [Ban| stimulated the study of functional analysis for several
decades. Examples 1-7, 9, and 11, given previously, are all Banach spaces.
The real number field R is complete, and so is the complex number field C.
The rational field Q is not complete. These facts are established in elementary
analysis courses.

Completeness is important in constructing solutions to a problem by taking
the limit of successive approximations. One often wants information about the
limit (i.e., the solution). Does it have the same properties as the approximations?
For example, if all the approximating functions are continuous, must the limit
also be continuous? If all the approximating functions are bounded, is the limit
also bounded? The answers to such questions depend on the sense in which the
limit is achieved; in other words, they depend on the norm that has been chosen
and the function space that goes with it. Typically, one wants a norm that leads
to a complete normed linear space, i.e., a Banach space.

Here is an example of a normed linear space that is not a Banach space:

Example 2. Let the space be the one described in Example 8 of Section 1.1,
page 4. This is £, the space of “finitely-nonzero sequences,” with the “sup norm”
||z|| = max; |z(i)|. Define a sequence [zx] in £ by the equation

11 1
=1(1,=,= ...,
Tk 1903 ’k,O’O, :|

If m > n, then

1 1
-z, = |0,...,0, ——,...,—,0,...
Tm Tn ’ 77n+1’ ,maa ]

Since ||Zm —za|| = 1/(n+1), we conclude that the sequence [zx] has the Cauchy
property. If the space were complete, we would have z,, — y, where y € £. The
point y would be finitely nonzero, say y(n) = 0 for n > N. Then for m > N, z,,
would have as its Nth term the value 1/N, while the Nth term of y is 0. Thus
||zm — y|| = 1/N, and convergence cannot take place. 1

Theorem 2.  The space Cla,b] with norm ||z|| = max, |z(s)| is a
Banach space.

Proof. Let [z,] be a Cauchy sequence in Cla,b}. (This space is described in
Example 6, page 3.) Then for each s, [z,(s)] is a Cauchy sequence in R. Since R
is complete, this latter sequence converges to a real number that we may denote
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by z(s). The function z thus defined must now be shown to be continuous, and
we must also show that Hxn - a:“ — 0. Let t be fixed as the point at which
continuity is to be proved. We write

(1) z(s) ~ 2(®)] < |2(8) = 2n(8)] + [2a(s) = 2a(t)] + |2n(t) - 2(t)]

This inequality should suggest to the reader how the proof must proceed. Let
€ > 0. Select N so that ”mn - zmn < €/3 whenever m > n > N (Cauchy
property). Then form > n > N, |z,(s) —zm(s)| < €/3. By letting m — oo we
get |zn(s) — z(s)| < /3 for all s. This shows that ||zn — z|| < /3 and that the
sequence ||z, — z|| converges to 0. By the continuity of z, there exists a § > 0
such that |z,(s) — z,(t)] < €/3 whenever |t — s| < 4. Inequality (1) now shows
that |z(s) — z(t)] < € when |t — s| < 4. (This proof illustrates what is sometimes
called “an €/3 argument.”) ]

Remarks. Theorem 2 is due to Weierstrass. It remains valid if the interval
[a, ] is replaced by any compact Hausdorff space. (For topological notions, refer
to Section 7.6, starting on page 361.) The traditional formulation of this theorem
states that a uniformly convergent sequence of continuous functions on a closed
and bounded interval must have a continuous limit. A sequence of functions [f,,]
converges uniformly to f if

(2) Ve In Vk Vs [k>n = |fi(s)— f(s)| <e]

(In this succinct description, it is understood that ¢ > 0, n € N, k € N, and s is
in the domain of the functions.) By contrast, pointwise convergence is defined
by

Vs Ve 3n VE [k>n = |fi(s)—f(s)| <e]

Our use of the austere and forbidding logical notation is to bring out clearly
and to emphasize the importance of the order of the quantifiers. Thus, in the
definition of uniform convergence, n does not (cannot) depend on s, while in
the definition of pointwise convergence, n may depend on s. Notice that by the
definition of the norm being used, (2) can be written

Ve In Vk [k>n = |fi—f]l <e]

or simply as limp_,c0 || fa — f||, = 0. The latter is conceptually rather simple, if
one is already comfortable with this norm (called the “supremum norm” or the
“maximum norm”).

The (perhaps) simplest example of a sequence of continuous functions that
converges pointwise but not uniformly to a continuous function is the sequence
[fn] described as follows. The value of f,(x) is 1 everywhere except on the
interval [0, 2/n}, where its value is given by |nx — 1|.

Problems 1.2

1. Prove that limp—oc |||, = max; ¢;<n |2(3)| for every z in R™.



12

11.

12.

13.
14.
15.
16.

17.

18.
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. Is this property of a sequence equivalent to the Cauchy property?

lim sup |z — zn|| =0
RO k>n

Answer the same question for this property: For every positive € there is a natural number
n such that ||zm — za|| < € whenever m 2> n.

. Prove that if a sequence [z,] in a Banach space satisfies z;o:l lzn]] < oo, then the

. o
series _ ., Tn converges.
n=1

. Prove that Theorem 2 is not true for the norm f |z(t)] dt.

. Prove that the union of a finite number of compact sets is compact. Give an example to

show that the union of an infinite family of compact sets can fail to be compact.

. Prove that || ||, on R™ does not satisfy the triangle inequality if 0 < p < 1 and n 2> 2.

. Prove that if £, — z, then the set {z,z1,z2,...} is compact.

. A cluster point (or accumulation point) of a sequence is the limit of any convergent

subsequence. Prove that if a sequence lies in a compact set and has only one cluster
point, then it is convergent.

. Prove that the convergence in Problem 1 above is monotone.

10.

Give an example of a countable compact set in R having infinitely many accumulation
points. If your example has more than a countable number of accumulation points, give
another example, having no more than a countable number.

Let zo and z; be any two points in a normed linear space. Define z2,z3, ... inductively
by putting
Tny2 = %(Im-l + zn) n=0,1,2,...

Prove that the resulting sequence is a Cauchy sequence.

A particular Banach space of great importance is the space £..(S), consisting of all
bounded real-valued functions on a given set S. For z € £(S) we define

llzll = sup|(s)]
seS

Prove that this space is complete. Cultural note: The space £ (N) is of special interest.
Every separable metric space can be embedded isometrically in it! You might enjoy
trying to prove this, but that is not part of problem 12.

Prove that in a normed linear space a sequence cannot converge to two different points.
How does a sequence [t : n € N] differ from a countable set {z, : n € N}?
Is there a norm that makes the space of all real sequences a Banach space?

Let co denote the space of all real sequences that converge to zero. Define ||z| =
sup,, |z(n)|. Prove that co is a Banach space.

If K is a convex set in a linear space, then these two sets are also convex:

v+K={u+z:x€K} and MK ={Izr:z€ K}

Let A be a subset of a linear space. Put

n n
ACI{Z/\,'G,':nEN,)\iZO,aiEA,Zki:I}
i=1 i=1

Prove that A C A°. Prove that A€ is convex. Prove that A€ is the smallest convex set
containing A. This latter assertion means that if A is contained in a convex set B, then
A¢ is also contained in B. The set A€ is the convex hull of A.
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20.
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25.

26.

27.

28.

29.

30.

31
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If A and B are convex sets, is their vector sum convex? The vector sum of these two sets
isA+B={a+b: a€ A, be B}.

Can a norm be recovered from its unit ball? Hint: If z € X, then z/)\ is in the unit
ball whenever |A| 2 ||z||. (Prove this.) On the other hand, /X is not in the unit ball if
|Al < ||||. (Prove this.)

What are necessary and sufficient conditions on a set S in a linear space X in order that
S be the unit ball for some norm on X?

Prove that the intersection of a family of convex sets (all contained in one linear space)
is convex.

A metric space is a pair (X, d) in which X is a set and d is a function (called a metric)
from X x X to R such that

(@) d(z,y) 20

(il) d(z,y) =0 ifandonly if z =1y
(iti) d(x,y) = d(y,z)
(iv) d(z,y) < d(z,2) + d(z,y)

Prove that a normed linear space is a metric space if d(z,y) is defined as ||z — y||.

For this problem only, we use the following notation for a line segment in a linear space:
(a,b) = {da+(1-Ab:0< AL 1}

A polygonal path joining points a and b is any finite union of line segments
U:zl(a,-,aiﬂ), where a1 = a and an+1 = b. If the linear space has a norm, the length
of the polygonal path is E?:I llai — ai+1]|- Give an example of a pair of points a,b in
a normed linear space and a polygonal path joining them such that the polygonal path
is not identical to {(a,b) but has the same length. A path of length ||a — || connecting a
and b is called a geodesic path. Prove that any geodesic polygonal path connecting a
and b is contained in the set {z : ||z — a|| < ||b - all}.

If £, — z and if the Césard means are defined by 0, = (x1+---+25)/n, then o — .
(This is to be proved in an arbitrary normed linear space.)

Prove that a Cauchy sequence that contains a convergent subsequence must converge.

A compact set in a normed linear space must be bounded; i.e., contained in some multiple
of the unit ball.

Prove that the equation f(z) = E:io ak cosbkz defines a continuous function on R,
provided that 0 < a < 1. The parameter b can be any real number. You will find
useful Theorem 2 and Problem 3. Cultural Note: If 0 < a < 1 and if b is an odd
integer greater than a1, then f is differentiable nowhere. This is the famous Weierstrass
nondifferentiable function. (See Section 7.8, page 374, for more information about this
function.)

Prove that a sequence [z,] in a normed linear space converges to a point z if and only if
every subsequence of [zn] converges to z.

Prove that if ¢ is a strictly increasing function from N into N, then ¢(n) 2 n for all n.

Let S be a subset of a linear space. Let S; be the union of all line segments that join

pairs of points in S. Is S; necessarily convex?
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. (continuation) What happens if we repeat the process and construct Sz, S3,...? (Thus,
for example, S3 is the union of line segments joining points in S1.)

Let I be a compact interval in R, I = [a,b]. Let X be a Banach space. The notation
C(I,X) denotes the linear space of all continuous maps f : I - X. We norm C(I, X)
by putting || f|| = sup,¢; || £(2)]|- Prove that C(I, X) is a Banach space.

Define fn(z) = e~™*. Show that this sequence of functions converges pointwise on [0, 1]
to the function g such that g(0) = 1 and g(t) = O for t # 0. Show that in the L?-norm
on [0, 1], fn converges to 0. The L2-norm is defined by || f|| = {fol |F(8)[2dt} 2.

Let [zn] be a sequence in a Banach space. Suppose that for every ¢ > 0 there is a
convergent sequence [yn] such that sup,, ||z, — yn|| < &. Prove that [z,] converges.

In any normed linear space, define K(z,r) = {y : ||z — y|| < r}. Prove that if K(z, 3) C
K(0,1) then 0 € K(z, 3).

Show that the closed unit ball in a normed linear space cannot contain a disjoint pair of
closed balls having radius %

(Converse of Problem 3) Prove that if every absolutely convergent series converges
in a normed linear space, then the space is complete. (A series Ex,. is absolutely
convergent if } ||zx|| < 00.)

Let X be a compact Hausdorff space, and let C(X) be the space of all real-valued
continuous functions on X, with norm ||f|| = sup |f(z)|. Let [fx] be a Cauchy sequence
in C(X). Prove that

lim lim fo(z)= lim lim fp(x)
r—xrg N-—H00 n—0 T—IQ

Give examples to show why compactness, continuity, and the Cauchy property are needed.

The space £; consists of all sequences = [z(1),z(2),...] in which z(n) € R and
Z |z(n)| < oo. The space £2 consists of sequences for which Z |z(n)|? < co. Prove
that £y C £, by establishing the inequality ) |z(n)]2 < (3 lz(n)])?.

Let X be a normed linear space, and S a dense subset of X. Prove that if each Cauchy
sequence in S has a limit in X, then X is complete. A set S is dense in X if each point
of X is the limit of some sequence in S.

Give an example of a linearly independent sequence [xg, 1,22, ...] of vectors in £o, such
that E:‘;o zn, = 0. Don’t forget to prove that Zzn =0.

Prove, in a normed space, that if 2, — z and ||zn — yn|| = 0, then y, 5 z. If 2, > z
and |lzn — yn|| = 1, what is limy,?

Whenever we consider real-valued or complex-valued functions, there is a concept of
absolute value of a function. For example, if z € C[0, 1], we define |z| by writing |x|(t) =
|z()|- A norm on a space of functions is said to be monotone if ||z|| 2 ||y|| whenever
|z| 2 fy|. Prove that the norms || ||, and || ||p are monotone norms.

(Continuation) Prove that there is no monotone norm on the space of all real-valued
sequences.

Why isn’t the example of this section a counterexample to Theorem 2?
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47. Any normed linear space X can be embedded as a dense subspace in a complete normed
linear space X. The latter is fully determined by the former, and is called the completion
of X. A more general assertion of the same sort is true for metric spaces. Prove that the
completion of the space ¢ in Example 8 of Section 1.1 (page 4) is the space co described
in Problem 16. Further remarks about the process of completion occur in Section 1.8,
page 60.

48. Metric spaces were defined in Problem 23, page 13. In a metric space, a Cauchy sequence
is one that has the property limp iy, d(zn,2m) = 0. A metric space is complete if
every Cauchy sequence converges to some point in the space. For the discrete metric
space mentioned in Problem 11 (page 19), identify the Cauchy sequences and determine
whether the space is complete.

1.3 Continuity, Open Sets, Closed Sets

Consider a function f, defined on a subset D of a normed linear space X and
taking values in another normed linear space Y. We say that f is continuous
at a point z in D if for every sequence [z,] in D converging to z, we have also
f(zn) = f(x). Expressed otherwise,

f(limz,) = lim f(zn)

A function that is continuous at each point of its domain is said simply to be
continuous. Thus a continuous function is one that preserves the convergence
of sequences.

Example. The norm in a normed linear space is continuous. To see that this
is s0, just use Problem 3, page 5, to write

| leall = llall | < ll2n — ]

Thus, if z, — z, it follows that ||xn|| - ”z“ (]

With these definitions at our disposal, we can prove a number of important
(yet elementary) theorems.

Theorem 1. Let f be a continuous mapping whose domain D is a
compact set in a normed linear space and whose range is contained in
another normed linear space. Then f(D) is compact.

Proof. To show that f(D) is compact, we let [y,] be any sequence in f(D),
and prove that this sequence has a convergent subsequence whose limit is in
f(D). There exist points &, € D such that f(z,) = yn. Since D is compact, the
sequence [z,] has a subsequence [:r,.i] that converges to a point x € D. Since f
is continuous,
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Thus the subsequence [yn, ] converges to a point in f(D). ]

The following is a generalization to normed linear spaces of a theorem that
should be familiar from elementary calculus. It provides a tool for optimization
problems—even those for which the solution is a function.

Theorem 2. A continuous real-valued function whose domain is a
compact set in a normed linear space attains its supremum and infi-
mum; both of these are therefore finite.

Proof. Let f be a continuous real-valued function whose domain is a compact
set D in a normed linear space. Let M = sup{f(z) : =z € D}. Then there
is a sequence [z,] in D for which f(z,) — M. (At this stage, we admit the
possibility that M may be +00.) By compactness, there is a subsequence [z, ]
converging to a point z € D. By continuity, f(zn,) — f(z). Hence f(z) = M,
and of course M < 0o. The proof for the infimum is similar. [}

A function f whose domain and range are subsets of normed linear spaces
is said to be uniformly continuous if there corresponds to each positive € a
positive & such that ||f(z) — f(y)|| < & for all pairs of points (in the domain of
f) satisfying ||:17 - y|| < 4. The crucial feature of this definition is that ¢ serves
simultaneously for all pairs of points. The definition is global, as distinguished
from local.

Theorem 3. A continuous function whose domain is a compact
subset of a normed space and whose values lie in another normed space
is uniformly continuous.

Proof. Let f be a function (defined on a compact set) that is not uniformly
continuous. We shall show that f is not continuous. There exists an £ > 0 for
which there is no corresponding § to fulfill the condition of uniform continuity.
That implies that for each n there is a pair of points (x,,y,) satisfying the
condition ||zn - Z/n“ < 1/n and ||f(zn) — f(yn)|| > €. By compactness the
sequence [r,] has a subsequence [z,,] that converges to a point z in the domain
of f. Then yn, — = also because llyn, — || < lyn; — zn,]| + Hxni — z||. Now the
continuity of f at x fails because

e < || f(@n;) = flyn )| < | f(zny) = F@)| + || £(2) = flym,)]| ]

A subset F' in a normed space is said to be closed if the limit of every
convergent sequence in F' is also in F. Thus, for all sequences this implication is
valid:

zn€F & zp,—2] = z€F

As is true of the notion of completeness, the concept of a closed set is useful
when the solution of a problem is constructed as a limit of an approximating
sequence.

By Problem 4, the intersection of any family of closed sets is closed. There-
fore, the intersection of all the closed sets containing a given set A is a closed
set containing A, and it is the smallest such set. It is commonly written as A or
cl(A), and is called the closure of A.
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Theorem 4. The inverse image of a closed set by a continuous map
is closed.

Prcof. Recall that the inverse image of a set A by a map f is defined to be
F7H{A)={zx : f(z) € A}. Let f: X — Y, where X and Y are normed spaces
and | is continuous. Let K be a closed set in Y. To show that f~!(K) is closed,
we start by letting [z,,] be a convergent sequence in f~!(K). Thus z, — = and
f(zyn) € K. By continuity, f(xz,) = f(z). Since K is closed, f(z) € K. Hence
z € f}K). 2

As an example, consider the unit ball in a normed space:

{z: ||z|| <1}
This is the inverse image of the closed interval [0, 1] by the function = — Hz”
This function is continuous, as shown above. Hence, the unit ball is closed.
Likewise, each of the sets
{x:||z—a”<r} {a::||z—a||>r} {m:a<||x—a||<[3}

is closed.

An open set is a set whose complement is closed. Thus, from the preceding
remarks, the so-called “open unit ball,” i.e., the set

U={z : ||z <1}
is open, because its complement is closed. Likewise, all of these sets are open:
{z ]|z > 1} {z:||lz—a| <r} {z:a<|z-a| <8}

An alternative way of describing the open sets, closer to the spirit of general

topology, will now be discussed.
The open e-cell or e-ball about a point z, is the set
B(zo,e) ={z : ||z — zo|| < &}

Sometimes this is called the e-neighborhood of 2. A useful characterization of
open sets is the following: A subset U in X is open if and only if for each x € U
there is an € > 0 such that B(z,e) C U. The collection of open sets is called the
topology of X. One can verify easily that the topology 7 for a normed linear
space has these characteristic properties:

(1) the empty set, @ , belongs to T;

(2) the space itself, X, belongs to T;

(3) the intersection of any two members of 7 belongs to T;

(4) the union of any subfamily of 7 belongs to 7.

These are the axioms for any topology. One section of Chapter 7 provides an
introduction to general topology.

A series ) o, xx whose elements are in a normed linear space is conver-
gent if the sequence of partial sums s, = 22:1 zi converges. The given series
is said to be absolutely convergent if the series of real numbers ZZ‘;I szH
is convergent. That means simply that Z,;“;l ||mk|| < 00. Problem 3, page 13,
asks for a proof that absolute convergence implies convergence, provided that
the space is complete. See also Problem 38, page 14. The following theorem
gives another important property of absolutely convergent series.
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Theorem 5. If a series in a Banach space is absolutely convergent,
then all rearrangements of the series converge to a common value.

Proof. Let Y 72, x; be such a series and ) 2, zj, a rearrangement of it. Put
T =22 %, S = Y1 Ti, Sn = Yy Thyy and M = Y02, ||lz||. Then
> ||zx;]| < M. This proves that Y jo, x, is absolutely convergent and hence
convergent. (Here we require the completeness of the space.) Put y = Y"2, Tk,
Let € > 0. Select n such that 3, ||z:|| < € and such that || Sy, — z|| < € when
m > n. Select r so that ”sr - y“ < € and so that {1,...,n} C {ki,...,k}.
Select m such that {ki,...,k;} C {1,...,m}. Then m > n and

m
1m = sell = @1+ +2m) = (@n, + -+ o) < D2 Jlaal| <&
i=n+1

Hence
Iz = yll < ll& = Sml| + [1Sm = sefl + [[sr — | < 3¢ "

In using a series that is not absolutely convergent, some caution must be
exercised. Even in the case of a series of real numbers, bizarre results can arise
if the series is randomly re-ordered. A good example of a series of real numbers
that converges yet is not absolutely convergent is the series ), (—1)"/n. The
series of corresponding absolute values is the divergent harmonic series. There
is a remarkable theorem that includes this example:

Riemann’s Theorem. If a series of real numbers is convergent but
not absolutely so, then for every real number, some rearrangement of
the series converges to that real number.

Proof. Let the series Y x,, satisfy the hypotheses. Then limz, = 0 and

Zzn— Zzn:Z|zn|:oo

zn>0 zn <0

Since the series )z, converges, the two series on the left of the preceding
equation must diverge to oo and —oo, respectively. (See Problems 12 and 13.)
Now let r be any real number. Select positive terms (in order) from the series
until their sum exceeds r. Now add negative terms (chosen in order) until the
new partial sum is less than r. Continue in this manner. Since limz, = 0, the
partial sums thus created differ from r by quantities that tend to zero. [

Problems 1.3

1. Prove that the sequential definition of continuity of f at z is equivalent to the “c,d”
definition, which is

Ve>0 36>0 Vulllz—ull <d=||flz) - flu)] <]
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. Let U be an arbitrary subset of a normed space. Prove that the function z — dist(z,U)

is continuous. This function was defined in the proof of Theorem 1 in Section 1.2, page
9. Prove, in fact, that it is “nonexpansive”:

| dist(z,U) — dist(y, U)| < ||z — |

. Let X be a normed space. We make X X X into a normed linear space by defining

ll(z,9)|l = ||z}l + ||ly|l. Show that the map (z,y) — x + y is continuous. Show that the
norm is continuous. Show that the map (\,z) = Az is continuous when R x X is normed
by [[(x @)l = 1Al + ||

. Prove that the intersection of a family of closed sets is closed.

. If z # 0, put = z/||z||. This defines the radial projection of x onto the surface of the

unit ball. Prove that if £ and y are not zero, then

llz - yll < 2llz - yll/|l=]l

. Use Theorem 2 and Problem 2 in this section to give a brief proof of Theorem 1 in

Section 2, page 9.

. Using the definition of an open set as given in this section, prove that a set U is open if

and only if for each z in U there is a positive € such that B(z,e) C U.

. Prove that the inverse image of an open set by a continuous map is open.

. The (algebraic) sum of two sets in a linear space is defined by A+ B={a+b:a € A,

b € B}. Is the sum of two closed sets (in a normed linear space) closed? (Cf. Problem
19, page 13.)

Prove that if the series 2:1 z; converges (in some normed linear space), then z; — 0.

A common misconception about metric spaces is that the closure of an open ball S = {z :
d(a,z) < r} is the closed ball S* = {z : d(a,z) < r}. Investigate whether this is correct
in a discrete metric space (X, d), where d(z,y) = 1 if £ # y. What is the situation in a
normed linear space? (Refer to Problem 23, page 13.)

Let Z T, and z yn be two series of nonnegative terms. Prove that if one of these series

converges but the other does not, then the series Z(zn —yn) diverges. Can you improve
this result by weakening the hypotheses?

Let E zn be a convergent series of real numbers such that Z |zn| = co. Prove that the
series of positive terms extracted from the series E T, diverges to co. It may be helpful
to introduce u, = max(x,,0) and v, = min(z,,0). By using the partial sums of series,
one reduces the question to matters concerning the convergence of sequences.

Refer to Problem 12, page 12, for the space £ (S). We write < to signify a pointwise
inequality between two members of this space. Let g, and fn be elements of this space,
forn=1,2,...Let gn 20, fa—-1 —gn-1 < fn < M, and Z?gi < M for all n. Prove
that the sequence [fn] converges pointwise. Give an example to show that convergence
in norm may fail.

1.4 More About Compactness

We continue our study of compactness in normed linear spaces. The starting
point for the next group of theorems is the Heine-Borel theorem, which states
that every closed and bounded subset of the real line is compact, and conversely.
We assume that the reader is familiar with that theorem.
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Our first goal in this section is to show that the Heine-Borel theorem is true
for a normed linear space if and only if the space is finite-dimensional. Since most
interesting function spaces are infinite-dimensional, verifying the compactness of
a set in these spaces requires information beyond the simple properties of being
bounded and closed. Many important theorems in functional analysis address
the question of identifying the compact sets in various normed linear spaces.
Examples of such theorems will appear in Chapter 7.

Lemma 1. In the space R™ with norm “:c“oo = maxXigign |2(%)]
each ball {z : ||x||oo < c} is compact.

Proof. Let [zx] be a sequence of points in R™ satisfying ||$ch < ¢. Then
the components obey the inequality —c < zx (i) < ¢. By the compactness of the
interval [—¢, ¢, there exists an increasing sequence I C N having the property
that lim [xgx(1) : k € I1] exists. Next, there exists another increasing sequence
I, C I such that lim [z(2) : k € I,] exists. Then lim [zx(1) : k € L)
exists also, because I» C I;. Continuing in this way, we obtain at the nth
step an increasing sequence I, such that lim[zx(i) : k € I,] exists for each
i =1,...,n. Denoting that limit by z*(i), we have defined a vector z* such that
"l — 0 as k runs through the sequence of integers I,. 1

Lemma 2. A closed subset of a compact set is compact.

Proof. If F is a closed subset of a compact set K, and if [z,] is a sequence in
F, then by the compactness of K a subsequence converges to a point of K. The
limit point must be in F', since F' is closed. [}

A subset S in a normed linear space is said to be bounded if there is a
constant ¢ such that ||:z:|| < cfor all z € S. Expressed otherwise, sup g ”IH <
00.

Theorem 1. In a finite-dimensional normed linear space, each
closed and bounded set is compact.

Proof. Let X be a finite-dimensional normed linear space. Select a basis for
X, say {z1,...,2n}. Define a mapping T : R™ — X by the equation

n

Ta:Za(i)x,- a=(a(l),...,a(n)) €R™

i=1
If we assign the norm “ ||Oo to R™, then T is continuous because

<> la(é) - b(i)] |a]
=1

n

> (a(d) - b(d)z;

i=1

< max [a(i) — b(i)| le%ll—lla-bll ZH%H

|a 78] =
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Now let F be a closed and bounded set in X. Put M = T~!(F). Then M is
closed by Theorem 4 in Section 1.3, page 17. Since F = T(M), we can use
Theorem 1 in Section 1.3, page 15, to conclude that F' is compact, provided that
M is compact. To show that M is compact, we can use Lemmas 1 and 2 above
if we can show that for some c,

MC {a €ER™ : ”a”oo < c}
In other words, we have only to prove that M is bounded. To this end, define
B =inf{||Tal : ||af| , =1}

This is the infimum of a continuous map on a compact set (prove that). Hence
the infimum is attained at some point b. Thus ||b|l = 1 and

Z b(i)z;

g = 7] =

Since the points x; constitute a linearly independent set, and since b # 0, we
conclude that Th # 0 and that 8 > 0. Since F is bounded, there is a constant
c such that ||z| < c for all z € F. Now, if a € R” and a # 0, then a/|ja|« is a
vector of norm 1; consequently, || T(a/llallc0)|| = B, or

|Tal| > Blal,

This is obviously true for ¢ = 0 also. For a € M we have Ta € F, and
ﬁ“a“oo < HTaH < ¢, whence Ha“oo < ¢/B. Thus, M is indeed bounded. ]

Corollary 1. Every finite-dimensional normed linear space is com-
plete.

Proof. Let [z,] be a Cauchy sequence in such a space. Let us prove that the
sequence is bounded. Select an index m such that ||ml — x]|| < 1 whenever
1,7 = m. Then we have

“x’H < “zl_wm||+”zm“ < 1+”1'm“ (i=zm)

Hence for all i,
lzell < 1 [lzaf| + -+ [lom| = ¢

Since the ball of radius ¢ is compact, our sequence must have a convergent
subsequence, say zn, — z*. Given € > 0, select N so that Hx, — acJ” < € when
i,j > N. Then ||z; — on,|| < & when 4,5 > N, because n; > i. By taking the
limit as ¢ — oo, we conclude that Hx] - z*“ < € when j > N. This shows that
T; T 1
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Corollary 2.  Every finite-dimensional subspace in a normed linear
space is closed.

Proof. Recall that a subset Y in a linear space is a subspace if it is a linear
space in its own right. (The only axioms that require verification are the ones
concerned with algebraic closure of ¥ under addition and scalar multiplication.)
Let Y be a finite-dimensional subspace in a normed space. To show that Y is
closed, let y, € Y and y, — y. We want to know that y € Y. The preceding
corollary establishes this: The convergent sequence has the Cauchy property and
hence converges to a point in Y, because Y is complete. (]

Riesz’s Lemma. If U is a closed and proper subspace (U is neither
0 nor the entire space) in a normed linear space, and if 0 < A < 1, then
there exists a point  such that 1 = ||z'|| and dist(z,U) > \.

Proof. Since U is proper, there exists a point z € X \U. Since U is
closed, dist(z,U) > 0. (See Problem 11.) By the definition of dist(z,U) there
is an element u in U satisfying the inequality ||z - u|| < A1 dist(z,U). Put
& = (2 —u)/||z — ul|. Obviously, ||z|| = 1. Also, with the help of Problem 7, we
have

dist(z,U) = dist(z — u,U)/||z — u|| = dist(z, U)/||z — v > A ]

Theorem 2.  If the unit ball in a normed linear space is compact,
then the space has finite dimension.

Proof. If the space is not finite dimensional, then a sequence [z,] can be
defined inductively as follows. Let z; be any point such that “z1|| =1.1If
Zi,-..,Tp—1 have been defined, let U,,_; be the subspace that they span. By
Corollary 2, above, U,_; is closed. Use Riesz’s Lemma to select x, so that
||$n|| = 1 and dist(zn,Un-1) > % Then ||.7:n — :z:,” > % whenever i < n. This
sequence cannot have any convergent subsequence. (]

Putting Theorems 1 and 2 together, we have the following result.

Theorem 3. A normed linear space is finite dimensional if and only
if its unit ball is compact.

In any normed linear space, a compact set is necessarily closed and bounded.
In a finite-dimensional space, these two conditions are also sufficient for compact-
ness. In any infinite-dimensional space, some additional hypothesis is required
to imply compactness. For many spaces, necessary and sufficient conditions for
compactness are known. These invariably involve some uniformity hypothesis.
See Section 7.4, page 347, for some examples, and [DS] (Section IV.14) for many
others.

Problems 1.4

1. A real-valued function f defined on a normed space is said to be lower semicontinuous
ifeach set {z : f(z) < A} is closed (A € R). Prove that every continuous function is lower
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semicontinuous. Prove that if f and —f are lower semicontinuous, then f is continuous.
Prove that a lower semicontinuous function attains its infimum on a compact set.

. Prove that the collection of open sets (as we have defined them) in a normed linear space

fulfills the axioms for a topology.

. Two norms, N1 and N3, on a vector space X are said to be equivalent if there exist

positive constants a and 8 such that aN; < Ny < 8N;. Show that this is an equivalence
relation. Show that the topologies engendered by a pair of equivalent norms are identical.

. Prove that a Cauchy sequence converges if and only if it has a convergent subsequence.

. Let X be the linear subspace of all real sequences z = {z(1),z(2),...] such that only a

finite number of terms are nonzero. Is there a norm for X such that (X, || ||) is a Banach
space?

. Using the notation in the proof of Theorem 1, prove in detail that F = T'(M).
. Prove these properties of the distance function dist(x, U) (defined in Section 1.2, page 9)

when U is a linear subspace in a normed linear space:
(a) dist(A\z,U) = |A|dist(z,U)
(b) dist{z — u,U) = dist(z,U) (uel)
(c) dist(z +y,U) < dist(z,U) + dist(y, U)

. Prove this version of Riesz’s Lemma: If U is a finite-dimensional proper subspace in a

normed linear space X, then there exists a point z for which ||z|| = dist(z,U) = 1.

. Prove that if the unit ball in a normed linear space is complete, then the space is complete.

10.

Let U be a finite-dimensional subspace in a normed linear space X. Show that for each
z € X there exists a u € U satisfying ||z — ul| = dist(z, U).

Let U be a closed subspace in a normed space X. Prove that the distance functional has
the property that for x € X \ U, dist(z,U) > 0.

In any infinite-dimensional normed linear space, the open unit ball contains an infinite
disjoint family of open balls all having radius % () (Prove it, of course. While you're at

it, try to improve the number %)

In the proof of Theorem 1, show that M is bounded as follows. If it is not bounded,
let ax € M and |lakll,, — oo. Put a} = ai/|lak|l... Prove that the sequence [a}]
has a convergent subsequence whose limit is nonzero. By considering Taj, obtain a
contradiction of the injective nature of T.

Prove that the sequence [z,] constructed in the proof of Theorem 2 is linearly indepen-
dent.

Prove that in any infinite-dimensional normed linear space there is a sequence [zy] in
the unit ball such that ||zn — zm|| > 1 when n # m. If you don’t succeed, prove the
same result with the weaker inequality ||zn —2m|| 2 1. (Use the proof of Theorem 2 and
Problem 8 above.) Also prove that the unit ball in £, contains a sequence satisfying
||zn — Zm|| = 2 when n # m. Reference: [Dies}.

Let S be a subset of a normed linear space such that ||z — y|| 2 1 when = and y are
different points in S. Prove that S is closed. Prove that if S is an infinite set then it
cannot be compact. Give an example of such a set that is bounded and infinite in the
space C[0, 1].

Let A and B be nonempty closed sets in a normed linear space. Prove that if A+ B is
compact, then so are A and B. Why do we assume that the sets are nonempty? Prove
that if A is compact, then A + B is closed.
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1.5 Linear Transformations

Consider two vector spaces X and Y over the same scalar field. A mapping
f: X =Y is said to be linear if

fleu+ Bv) = af(u) + Bf(v)
for all scalars « and G and for all vectors u,v in X. A linear map is often called
a linear transformation or a linear operator. If Y happens to be the scalar
field, the linear map is called a linear functional. By taking o = 8 = 0 we see
at once that a linear map f must have the property f(0) = 0. This meaning of
the word “linear” differs from the one used in elementary mathematics, where a
linear function of a real variable £ means a function of the form z — ax + b.

Example 1. If X = R" and Y = R™, then each linear map of X into Y is of
the form f(z) =y,

y(i) = Zaz‘jx(j) (1<i<m)

where the a;; are certain real numbers that form an m X n matrix. [ |
Example 2. Let X = C[0,1] and Y = R. One linear functional is defined by

= fol x(s)ds. |
Example 3. Let X be the space of all functions on [0,1] that possess n

continuous derivatives, z’,z”,...,z™. Let ag,a,...,a, be fixed elements of
X. Then a linear operator D is defined by

n
Dz = Z a;x®
i=0
Such an operator is called a differential operator.

Example 4. Let X = C[0,1] =Y. Let k be a continuous function on [0,1] x
[0, 1]. Define K by

(Kz)(s) / k(s,t)x(t)dt
This is a linear operator, in fact a linear integral operator. 1

Example 5. Let X be the set of all bounded continuous functions on Ry =
{teR:t >0} Put

0
(Lz)(s) = / e Stz(t)dt
0
This linear operator is called the Laplace Transform. [

Example 6. Let X be the set of all continuous functions on R for which
J22, |z(t)| dt < co. Define

(Fz)(s) = /°° e 2™ty (t) dt

-0
This linear operator is called the Fourier Transform. [}

If a linear transformation T acts between two normed linear spaces, then
the concept of continuity becomes meaningful.
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Theorem 1. A linear transformation acting between normed linear
spaces is continuous if and only if it is continuous at zero.

Proof. LetT : X — Y besuch a linear transformation. If it is continuous, then
of course it is continuous at 0. For the converse, suppose that T is continuous
at 0. For each € > 0 there is a § > 0 such that for all z,

|z|| <6 = ||Tz| <e
Hence

lz-y||<é6 = |Te-Ty|=|T=-y)|<e (]

A linear transformation T acting between two normed linear spaces is said
to be bounded if it is bounded in the usual sense on the unit ball:

sup{[Tz| : [Ja]| < 1} < o0

Example 7. Let X = C![0,1], the space of all continuously differentiable
functions on [0,1]. Give X the norm Hx”oo = sup|z(s)|. Let f be the linear
functional defined by f(z) = 2’(1). This functional is not bounded, as is seen
by considering the vectors z,(s) = s™. On the other hand, the functional in

Example 2 is bounded since |f(z)| < fi [¢(s)|ds < || - "

Theorem 2. A linear transformation acting between normed linear
spaces is continuous if and only if it is bounded.

Proof. LetT: X — Y be such a map. If it is continuous, then there isa § > 0
such that
Joll < 5= iTa]l <1

If ||z|| < 1, then 6z is a vector of norm at most 8. Consequently, ||T(6z)|| < 1,
whence HT.'I:]] < 1/4. Conversely, if HTx” < M whenever ”x” < 1, then

e 1= (2
£ &

This proves continuity at 0, which suffices, by the preceding theorem. ]

HI“ < % = <M= ”T.’L‘“ <e

IfT: X — Y is a bounded linear transformation, we define
| T|| = sup{||T=] : [|=]] < 1}

It can be shown that this defines a norm on the family of all bounded linear
transformations from X into Y'; this family is a vector space, and it now becomes
a normed linear space, denoted by £(X,Y).

The definition of ||T|| leads at once to the important inequality

7= < |7 =

To prove this, notice first that it is correct for x = 0, since 70 = 0. On the other
hand, if z # 0, then z/||z|| is a vector of norm 1. By the definition of ||T||, we
have ||T(z/||z||)|| < ||T||, which is equivalent to the inequality displayed above.
That inequality contains three distinct norms: the ones defined on X, Y, and
L(X,Y).
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Theorem 3. A linear functional on a normed space is continuous if
and only if its kernel (“null space”) is closed.

Proof. Let f: X — R be a linear functional. Its kernel is
ker(f) = {z : f(z) = 0}

This is the same as f~!({0}). Thus if f is continuous, its kernel is closed, by
Theorem 4 in Section 1.3, page 17. Conversely, if f is discontinuous, then it is
not bounded. Let ||z,|| < 1 and f(z,) — co. Take any z not in the kernel and
consider the points ¢ — €,zn, where €, = f(z)/f(zn). These points belong to
the kernel of f and converge to x, which is not in the kernel, so the latter is not
closed. i

Corollary 1.  Every linear functional on a finite-dimensional normed
linear space is continuous.

Proof. 1If f is such a functional, its null space is a subspace, which, by Corollary
2 in Section 1.4, page 22, must be closed. Then Theorem 3 above implies that
f is continuous. ]

Corollary 2.  Every linear transformation from a finite-dimensional
normed space to another normed space is continuous.

Proof. Let T: X — Y be such a transformation. Let {b1,...,b,} be a basis
for X. Then each x € X has a unique expression as a linear combination of
basis elements. The coefficients depend on z, and so we write z = ¥ ;- ; Ai(z)b;.
These functionals A; are in fact linear. Indeed, from the previous equation and
the equation u = )~ A;(u)b; we conclude that

n

az +Pfu=Y_[ai(z) + BAi(u)] b

i=1
Since we have also

oz + Bu = Z Ai(az + Bu)b;

i=1

we may conclude (by the uniqueness of the representations) that
Ai(az + Bu) = aXi(z) + BAi(u)

Now use the preceding corollary to infer that the functionals \; are continuous.
Getting back to T, we have

Tz = T(é ,\i(x)b;) = gxi(z)m

and this is obviously continuous. ]
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Corollary 3. All norms on a finite-dimensional vector space are
equivalent, as defined in Problem 3, page 23.

Proof. Let X be a finite-dimensional vector space having two norms H H1 and

I ”2 The identity map I from (X, || ||,) to (X, ]| ||2) is continuous by the
preceding result. Hence it is bounded. This implies that

lzll, = | 72]l, < o],

By the symmetry in the hypotheses, there is a 3 such that HacHl < ﬁ”1||2 1

Recall that if X and Y are two normed linear spaces, then the notation
L(X,Y) denotes the set of all bounded linear maps of X into Y. We have seen
that boundedness is equivalent to continuity for linear maps in this context. The
space L£(X,Y) has, in a natural way, all the structure of a normed linear space.
Specifically, we define

(eA + BB)(z) = a(Az) + B(Bz)
14| = sup{[|Az[l, : = € X,

el <1}

In these equations, A and B are elements of £(X,Y), and z is any member of
X.

Theorem 4. If X is a normed linear space and Y is a Banach space,
then L(X,Y) is a Banach space.

Proof. The only issue is the completeness of £(X,Y). Let [A,] be a Cauchy
sequence in £(X,Y). For each x € X, we have

|42 = Am|| = [|(An = Am)z|| < ||4n — A |2

This shows that [4,,z] is a Cauchy sequence in Y. By the completeness of Y we
can define Az = lim A,x. The linearity of A follows by letting n — oo in the
equation

Ap(az + Bu) = adnz + BAnu

The boundedness of A follows from the boundedness of the Cauchy sequence
[An]. If ||An|| < M then ||Anz| < M||z|| for all z, and in the limit we have
]lAm“ < M”z” Finally, we have ”An—A“ — 0 because if ||An —Am“ < € when
m,n > N, then for all z of norm 1 we have ||Anx - Amm” < e when m,n > N.
Then we can let m — oo to get ||Anz — Az|| < € and |4, — A| <. 1

The composition of two linear mappings A and B is conventionally written
as AB rather than Ao B. Thus, (AB)z = A(Bz). If AA is well-defined (i.e., the
range of A is contained in its domain), then we write it as A%. All nonnegative
powers are then defined recursively by writing A% = I, A"*! = AA"™.
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Theorem 5. The Neumann Theorem. Let A be a bounded

linear operator on a Banach space X (and taking values in X). If
|A|| < 1, then I — A is invertible, and

I-A)7'= iA’“
k=0

Proof. Put B, =Y ;_, A*. The sequence [By] has the Cauchy property, for
if n > m, then

n n 00

' k

1Ba = Bl = 3= 4% < X0 (145 < X 1l4]
k=m+1 k=m+1 k=m

- ||Au’"§; Al = g™ (1~ 141

(In this calculation we used Problem 20.) Since the space of all bounded linear
operators on X into X is complete (Theorem 4), the sequence [By,] converges to
a bounded linear operator B. We have

n n+1
(I-A)Bp=Bp— AB, =) A*-) AF=1- 4"
k=0 k=1

Taking a limit, we obtain (I — A)B = I. Similarly, B(I — A) = I. Hence
B=(I-A)"1 ]

The Neumann Theorem is a powerful tool, having applications to many
applied problems, such as integral equations and the solving of large systems of
linear equations. For examples, see Section 4.3, which is devoted to this theorem,
and Section 3.3, which has an example of a nonlinear integral equation.

Problems 1.5
1. Prove that the closure of a linear subspace in a normed linear space is also a subspace.
(The closure operation is defined on page 16.)

2. Prove that the operator norm defined here has the three properties required of a norm.

3. Prove that the kernel of a linear functional is either closed or dense. (A subset in a
topological space X is dense if its closure is X.)

4. Let {z1,...,Z} be a linearly independent finite set in a normed linear space. Show that
there exists a § > 0 such that the condition

i —yill <6
lrggékllz; will

implies that {y1,...,yx} is also linearly independent.

5. Prove directly that if T is an unbounded linear operator, then it is discontinuous at 0.

(Start with a sequence [z,] such that ||z.|| < 1 and ||Tza|| = cc.)
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. Let A be an m x n matrix. Let X = R™, with norm ||z|| , = max;¢;¢, |2()]. Let Y =

R™, with norm ||y|| ., = max;¢;<.m, [y(i)|. Define a linear transformation T from X to

Y by putting (T'z)(3i) = 2;21 ai;z(j), 1 € i < m. Prove that ||T|| = max; E;:I laijl.

. Prove that a linear map is injective (i.e., one-to-one) if and only if its kernel is the 0

subspace. (The kernel of a map T is {z : Tz = 0}.)

. Prove that the norm of a linear transformation is the infimum of all the numbers M that

satisfy the inequality ||Tz|| < M||z|| for all .

. Prove the (surprising) result that a linear transformation is continuous if and only if it

transforms every sequence converging to zero into a bounded sequence.

If f is a linear functional on X and N is its kernel, then there exists a one-dimensional
subspace Y such that X =Y & N. (For two sets in a linear space, we define U + V as
the set of all sums u + v when u ranges over U and v ranges over V. If U and V are
subspaces with only 0 in common we write this sum as U ® V)

The space £o(S) was defined in Problem 12 of Section 1.2, page 12. Let S = N, and
define T : £oc(N) — C[—%, %] by the equation (T'z)(s) = Zz‘;l x(k)s®. Prove that T is
linear and continuous.

Prove or disprove: A linear map from a normed linear space into a finite-dimensional
normed linear space must be continuous.

Addition of sets in a vector space is defined by A+ B = {a+b:a € A, b € B}.
Better: A+ B = {z: 3a € A & 3b € B such that £ = a + b}. Scalar multiplication
is A = {)a : a € A}. Does the family of all subsets of a vector space X form a vector
space with these definitions?

Let Y be a closed subspace in a Banach space X. A “coset” is a set of the form z+Y =
{z+y:y €Y} Show that the family of all cosets is a normed linear space if we use the
norm ||z + Y || = dist(z,Y).

Refer to Problem 12 in the preceding section, page 23. Show that the assertion there is
not true if % is replaced by %

Prove that for a bounded linear transformation T: X — Y

IT|l = sup ||T$||=51;I;||TI||/“I”

1|=1 z

Prove that a bounded linear transformation maps Cauchy sequences into Cauchy se-
quences.

Prove that if a linear transformation maps some nonvoid open set of the domain space
to a bounded set in the range space, then it is continuous.

On the space C[0,1] we define “point-evaluation functionals” by t*(x) = z(t). Here
t €10,1] and = € C[0,1). Prove that ||t*|| = 1. Prove that if ¢ = 3 . Ait}, where
t1,t2,...,tn are distinct points in [0, 1], then ||¢}| = Z:;l [As].

In the proof of the Neumann Theorem we used the inequality ||A¥|| < ||A]|*. Prove this.

Prove that if {¢1,...,9n} is a linearly independent set of linear functionals, then for
suitable z; we have ¢i(x;) = 6;; for 1 < i,j < n.
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22. Prove that if a linear transformation is discontinuous at one point, then it is discontinuous
everywhere.

23. Linear transformations on infinite-dimensional spaces do not always behave like their
counterparts on finite-dimensional spaces. The space ¢ was defined in Problem 1.2.16
(page 12). On the space ¢y define

Az = Alz(1),2(2),...] = [2(2),z(3),. . ]
Bz = B[z(1),z(2),...] = [0,z(1),2(2),.. ]

Prove that A is surjective but not invertible. Prove that B is injective but not invertible.
Determine whether right or left inverses exist for A and B.

24. What is meant by the assertion that the behavior of a linear map at any point of its
domain is exactly like its behavior at 0?

25. Prove that every linear functional f on R™ has the form f(z) = Z"

i=1
z(1),z(2),...,z(n) are the coordinates of . Let @ = [@1,az2, ..., an] and show that the

o;z(t), where

relationship f — « is linear, injective, and surjective (hence, an isomorphism).

26. Is it true for linear operators in general that continuity follows from the null space being

closed?
27. Let ¢o,1,...,dn be linear functionals on a linear space. Prove that if the kernel of ¢¢
contains the kernels of all ¢; for 1 < i < n, then ¢y is a linear combination of ¢1, ..., ¢n.

28. If L is a bounded linear map from a normed space X to a Banach space Y, then L has a
unique continuous linear extension defined on the completion of X and taking values in
Y. (Refer to Problem 1.2.47, page 15.) Prove this assertion as well as the fact that the
norm of the extension equals the norm of the original L.

29. Let A be a continuous linear operator on a Banach space X. Prove that the series
:°:0 A" /n! converges in £(X,X). The resulting sum can be denoted by e®. Is e#
invertible?

30. Investigate the continuity of the Laplace transform (in Example 5, page 24).

1.6 Zorn’s Lemma, Hamel Bases, and the Hahn-Banach Theorem

This section is devoted to two results that require the Axiom of Choice for their
proofs. These are a theorem on existence of Hamel bases, and the Hahn-Banach
Theorem. The first of these extends to all vector spaces the notion of a base,
which is familiar in the finite-dimensional setting. The Hahn-Banach Theorem
is needed at first to guarantee that on a given normed linear space there can
be defined continuous maps into the scalar field. There are many situations
in applied mathematics where the Hahn—-Banach Theorem plays a crucial role;
convex optimization theory is a prime example.

The Axiom of Choice is an axiom that most mathematicians use unre-
servedly, but is nonetheless controversial. Its status was clarified in 1940 by a
famous theorem of Godel [Go]. His theorem can be stated as follows.
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Theorem 1.  If a contradiction can be derived from the Zermelo—
Fraenkel axioms of set theory (which include the Axiom of Choice),
then a contradiction can be derived within the restricted set theory
based on the Zermelo—Fraenkel axioms without the Axiom of Choice.

In other words, the Axiom of Choice by itself cannot be responsible for intro-
ducing an inconsistency in set theory. That is why most mathematicians are
willing to accept it. In 1963, Paul Cohen [Coh] proved that the Axiom of Choice
is independent of the remaining axioms in the Zermelo—~Fraenkel system. Thus
it cannot be proved from them. The statement of this axiom is as follows:

Axiom of Choice. If A is a set and f a function on A such that
f(a) is a nonvoid set for each a € A, then f has a “choice function.”
That means a function ¢ on A such that c¢(a) € f(a) for all o € A.

For example, suppose that A is a finite set: A = {ay,...,an}. For each i in
{1,2,...,n} a nonempty set f(c;) is given. In n steps, we can select “repre-
sentatives” z; € f(ay), z3 € f(az), etc. Having done so, define c(a;) = z; for
i = 1,2,...,n. Attempting the same construction for an infinite set such as
A = R, with accompanying infinite sets f(a), leads to an immediate difficulty.
To get around the difficulty, one might try to order the elements of each set f(«)
in such a way that there is always a “first” element in f(a). Then ¢(c) can be
defined to be the first element in f(a). But the proposed ordering will require
another axiom at least as strong as the Axiom of Choice! For a second example,
see Problem 45, page 40.

A number of other set-theoretic axioms are equivalent to the Axiom of
Choice. See [Kel] and [RR]. Among these equivalent axioms, we single out
Zorn’s Lemma as being especially useful. First, we require some definitions.

Definition 1. A partially ordered set is a pair (X, <) in which X is a set
and < is a relation on X such that

(i) z <z forall z

(ii) fx <yand y < 2, then z < z

Definition 2. A chain, or totally ordered set, is a partially ordered set in
which for any two elements x and y, either x <y or y < «.

Definition 3. In a partially ordered set X, an upper bound for a subset A
in X is any point x in X such that a < z for all a € A.

Example 1. Let S be any set, and denote by 2° the family of all subsets of
S, including the empty set @ and S itself. This is often called the “power set”
of S. Order 2° by the inclusion relation C. Then (2°,C) is a partially ordered
set. It is not totally ordered. An upper bound for any subset of 25 is S. 1

Example 2. In R? define z < y to mean that z(i) < y(i) for i = 1 and 2.
This is a partial ordering but not a total ordering. Which quadrants in R? have
upper bounds? ]

Example 3. Let F be a family of functions (whose ranges and domains need
not be specified). For f and g in F we write f < g if two conditions are fulfilled:
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(i) dom(f) C dom(g)

(ii) f(z) = g(z) for all  in dom(f)
When this occurs, we say that “g is an extension of f.” Notice that this is
equivalent to the assertion f C g, provided that we interpret (as ultimately we
must) f and g as sets of pairs of elements. 2

Definition 4. An element m in a partially ordered set X is said to be a
maximal element if every x in X that satisfies the condition m < x also
satisfies x < m.

Zorn’s Lemma. A partially ordered set contains a maximal element
if each totally ordered subset has an upper bound.

Definition 5. Let X be a linear space. A subset H of X is called a Hamel
base, or Hamel basis, if each point in X has a unique expression as a finite
linear combination of elements of H.

Example 4. Let X be the space of all polynomials defined on R. A Hamel
base for X is given by the sequence [h,] where hy,(s) =s", n=0,1,2,.... 1

Theorem 2. Every nontrivial vector space has a Hamel base.

Proof. Let X be a nontrivial vector space. To show that X has a Hamel
base we first prove that X has a maximal linearly independent set, and then
we show that any such set is necessarily a Hamel base. Consider the collection
of all linearly independent subsets of X, and partially order this collection by
inclusion, C. In order to use Zorn’s Lemma, we verify that every chain in
this partially ordered set has an upper bound. Let C be a chain. Consider
S* ={J{S : § € C}. This certainly satisfiess S C S* for all S € C. But is S*
linearly independent? Suppose that }_©  a;s; = 0 for some scalars @; and for
some distinct points s; in S*. Each s; belongs to some S; € C. Since C is a chain
(and since there are only finitely many s;), one of these sets (say .S;) contains all
the others. Since S; is linearly independent, we conclude that ) |a;| = 0. This
establishes the linear independence of S* and the fact that every chain in our
partially ordered set has an upper bound. Now by Zorn’s Lemma, the collection
of all linearly independent sets in X has a maximal element, H. To see that H
is a Hamel base, let  be any element of X. By the maximality of H, either
H U {z} is linearly dependent or H U {z} C H (and then z € H). In either
case, T is a linear combination of elements of H. If x can be represented in two
different ways as a linear combination of members of H, then by subtraction, we
obtain 0 as a nontrivial linear combination of elements of H, contradicting the
linear independence of H. [

In the next theorem, when we say that one real-valued function, f, is dom-
inated by another, p, we mean simply that f(z) < p(z) for all z.

Hahn-Banach Theorem. Let X be a real linear space, and let
p be a function from X to R such that p(z + y) < p(z) + p(y) and
p(Az) = Ap(x) if A > 0. Any linear functional defined on a subspace of
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X and dominated by p has an extension that is linear, defined on X,
and dominated by p.

Proof. Let f be such a functional, and let Xy be its domain. Thus X is a
linear subspace of X. In approaching the theorem for the first time and wonder-
ing how to discover a proof, one naturally asks how to extend the functional f
to a domain containing Xy that is only one dimension larger than X,. If that is
impossible, then the theorem itself cannot be true. Accordingly, let y be a point
not in the original domain. To extend f to Xo + span(y) it suffices to specify a
value for f(y) because of the necessary equation

fl@+dy) =fl@)+Afly) (z€Xo, AeR)
The value of f(y) must be assigned in such a way that
f@)+Af(y) <plz+Xry) (€ Xo, AER)

If A = 0, this inequality is certainly valid. If A > 0, we must have

1(3)+fw<p(3+y) (@exo

or
flz)+ fly) <plxi+y) (71 € Xo)

If A <0, we must have

f(z2) + f(y) 2 (1' +Ay) =-p(-z2~y) (22 € Xo)
These two conditions on f(y) can be written together as

—p(—z2 —y) — f(z2) < f(y) <p(z1+y) — f(z1) (71,72 € Xo)

In order to see that there is a number satisfying this inequality, we compute

f(x1) — fz2) = f(z1 — 22) < p(x1 — Z2) = p(T1 + Yy — T2 — V)
<p(z1 +y) +p(-z2 - y)

This completes the extension by one dimension.

Next, we partially order by the inclusion relation (C) all the linear exten-
sions of f that are dominated by p. Thus h C g if and only if the domain of
g contains the domain of h, and g(z) = h(z) on the domain of h. In order to
use Zorn’s Lemma, we must verify that each chain in this partially ordered set
has an upper bound. But this is true, since the union of all the elements in
such a chain is an upper bound for the chain. (Problem 2.) By Zorn’s Lemma,
there exists a maximal element f in our partially ordered set. Then f is a linear
functional that is an extension of f and is dominated by p. Finally, f must be
defined on all of X, for if it were not, a further extension would be possible, as
shown in the first part of the proof. 1
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Corollary 1. Let ¢ be a linear functional defined on a subspace Y
in a normed linear space X and satisfying

o) < M|ly|| (@eY)

Then ¢ has a linear extension defined on all of X and satisfying the
above inequality on X.

Proof. Use the Hahn-Banach Theorem with p(z) = M ||:n|| ]

Corollary 2. Let Y be a subspace in a normed linear space X.
If w € X and dist(w,Y) > 0, then there exists a continuous linear
functional ¢ defined on X such that ¢(y) =0 forally € Y, p(w) = 1,
and HqS“ = 1/dist(w,Y).

Proof. Let Z be the subspace generated by Y and w. Each element of Z has a
unique representation as y + Aw, where y € Y and A € R. It is clear that ¢ must
be defined on Z by writing ¢(y + Aw) = A. The norm of ¢ on Z is computed as
follows, in which the supremum is over all nonzero vectors in Z:

|8l = sup |o(y + Mw) /||y + Mw|| = sup |A|/||y + Aw|| = sup 1/]|y/A + w||
=1/inf ||y + w|| = 1/ dist(w,Y)

By Corollary 1, we can extend the functional ¢ to all of X without increase of

its norm. [}
Corollary 3. To each point w in a normed linear space there
corresponds a continuous linear functional ¢ such that “d)” = 1 and
$(w) = ||wl].

Proof. In Corollary 2, take Y to be the O-subspace. B

At this juncture, it makes sense to associate with any normed linear space X
a normed space X* consisting of all continuous linear functionals defined on X.
Corollary 3 shows that X* is not trivial. The space X* is called the conjugate
space of X, or the dual space or the adjoint of X.

Example 4. Let X = R", endowed with the max-norm. Then X* is (or
can be identified with) R™ with the norm || ”1 To see that this is so, recall
(Problem 1.5.25, page 30) that if ¢ € X*, then ¢(z) = Y i, u(i)z(i) for a
suitable v € R™. Then

n
l¢] = sup |Z 2() = 3 lu(i)] = [Ju] '
Hzlloo <1 i=1
Example 5. Let ¢y denote the Banach space of all real sequences that converge
to zero, normed by putting ||z||_ = sup|z(n)]. Let £ denote the Banach
space of all real sequences u for which Y -, Ju(n)| < oo, normed by putting
llull, = Sne; lu(n)l. With each u € £; we associate a functional ¢, € c} by
means of the equation ¢,(z) = > oo, u(n)z(n). (The connection between these
two spaces is the subject of the next result.) ]



Section 1.6 Zorn’s Lemma, Hamel Bases, Hahn-Banach Theorem 35

Proposition. The mapping u — ¢, is an isometric isomorphism
between ¢, and ci. Thus we can say that ¢ “is” £;.

Proof. Perhaps we had better give a name to this mapping. Let A : £, —
¢ be defined by Au = ¢,. It is to be shown that for each u, Au is linear
and continuous on c¢y. Then it is to be shown that A is linear, surjective, and
isometric. Isometric means ||Au” = Hu“l That ¢, is well-defined follows from
the absolute convergence of the series defining ¢, (z):

2Lzl fu(m)] < |zl fum)l = [l [l

The linearity of ¢, is obvious:

dulaz + By) = Y _u(n)[az(n) + By(n)] =Y u(n)z(n) + 8 u(n)y(n)
= apy(z) + B¢u(y)

The continuity or boundedness of ¢, is easy:

6u(@)] = |3 utma(m)] < 3 lum)] [2(n)] < [lal| ],

By taking a supremum in this last inequality, considering only x for which
[[x“oo < 1, we get

9ull < frull,
On the other hand, if & > 0 is given, we can select N so that Y>> v, |u(n)| <e.

Then we define z by putting z(n) = sgn u(n) for n < N, and by setting z(n) =
for n > N. Clearly, z € ¢ and ||z|| = 1. Hence

N N
6]l = dulz) = z(m)u(n) =D ju(n)] > |juf, -«

Since € was arbitrary, ||¢u|| > ||u||,. Hence we have proved

[ Aull = fl¢ull = [lull,

Next we show that A is surjective. Let ¢ € ¢. Let 6, be the element of ¢y
that has a 1 in the nth coordinate and zeros elsewhere. Then for any z,

T = i z(n)dy

n=1

Since 1 is continuous and linear,

Y(z) =) &(n)(sn)
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Consequently, if we put u(n) = ¢¥(8,), then ¥(z) = ¢,(z) and ¢ = ¢,,. To verify
that u € ¢;, we define (as above) z(n) = sgnu(n) for n < N and z(n) = 0 for
n > N. Then

N
D lu(m)] =3 am)u(n) = y(a) <[]l |z = [[v]

Thus [[uf], < [[4].

Finally, the linearity of A follows from writing

Sauts(®) = Y_(au+ Bv)(n)z(n) = ay_u(n)z(n) + 8 ) _ v(n)z(n)

= (agy + Bov)(z) ]
Corollary 4.  For each z in a normed linear space X, we have
2| = max{lg(e)}: ¢ € X, [|¢]| =1}
Proof. If ¢ € X* and ||¢|| = 1, then
l6(2)] < |l@]| [|=] = [|=|

Therefore,
sup{|¢(z)| : ¢ € X", [|¢] = 1} <||=]
For the reverse inequality, note first that it is trivial if x = 0. Otherwise, use

Corollary 3. Then there is a functional ¥ € X* such that ¢¥(z) = ”z]] and
||| = 1. Note that the supremum is attained. i

A subset Z in a normed space X is said to be fundamental if the set of
all linear combinations of elements in Z is dense in X. Expressed otherwise, for
each z € X and for each ¢ > 0 there is a vector Y ., A;z; such that z; € Z,

X € R, and
”.’L‘ - Zx\th” <e€

We could also state that dist(z,span Z) = 0 for all z € X. As an example, the

vectors
& =(1,0,0,...)

& =1(0,1,0,...)
etc.

form a fundamental set in the space co.

Example 6. In the space C[a, b], with the usual supremum norm, an important
fundamental set is the sequence of monomials

up(t) =1, w(t)=t, ua(t) =12, ...

The Weierstrass Approximation Theorem asserts the fundamentality of this se-
quence. Thus, for any z € Cl[a,b] and any € > 0 there is a polynomial u for
which ||z — u“oo < &. Of course, u is of the form Yo Aiu;. ]

Definition 5. If A is a subset of a normed linear space X, then the annihilator
of A is the set
At ={¢eX*:¢(a)=0 forall ac A}
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Theorem 3. A subset in a normed space is fundamental if and only
if its annihilator is {0}.

Proof. Let X be the space and Z the subset in question. Let Y be the closure
of the linear span of Z. If Y # X, let x € X \Y. Then by Corollary 2, there
exists ¢ € X* such that ¢(z) =1 and ¢ € Y*. Hence ¢ € Z+ and Z+ #0. If
Y = X, then any element of Z+ annihilates the span of Z as well as Y and X.
Thus it must be the zero functional; i.e., Z+ = 0. 1

Theorem 4. If X is a normed linear space (not necessarily com plete)
then its conjugate space X* is complete.

Proof. This follows from Theorem 4 in Section 1.5, page 27, by letting Y = R
in that theorem. [

Problems 1.6

1. Let X and Y be sets. A function from a subset of X to Y is a subset f of X x Y such
that for each z € X there is at most one y € Y satisfying (z,y) € f. We write then
f(z) = y. The set of all such functions is denoted by S. Prove or disprove the following:
(a) S is partially ordered by inclusion. (b) The union of two elements of S is a member
of S. (c) The intersection of two elements of S is a member of S. (d) The union of any
chain in S is a member of S.

2. In the proof of the Hahn—-Banach theorem, show that the union of the elements in a chain
is an upper bound for the chain. (There are five distinct things to prove.)

3. Denote by cp the normed linear space of all functions z : N — R having the property
limy, 00 Z(n) = 0, with norm given by ||z|| = sup,, |z(n)|. Do the vectors em defined by
em(n) = 6nm form a Hamel base for cy?

4. If {hq : a € I} is a Hamel base for a vector space X, then each element z in X has a
representation = Za A(@)hqa in which A : I — R and {a : A(a) # 0} is finite. (Prove
this.)

5. Prove that every real vector space is isomorphic to a vector space whose elements are
real-valued functions. (“Function spaces are all there are.”)

6. Prove that any linearly independent set in a vector space can be extended to produce a
Hamel base.

7. If U is a linear subspace in a vector space X, then U has an “algebraic complement,”
which is a subspace V such that X = U+V,UNV = 0. (“0” denotes the zero subspace.)
(Prove this.)

FIVE EXERCISES (8-12) ON BANACH LIMITS

8. The space £ consists of all bounded sequences, with norm ||z||, = sup,, |z(n)|. Define
T : £° — £ by putting
Tz = [2(1), 2(2) - 2(1), 2(3) - 2(2), (4) — 2(3) .. ]

Let M denote the range of T, and put u = [1,1,1,...]. Prove that dist(u, M) = 1.

9. Prove that there exists a continuous linear functional ¢ € M+ such that ||¢|| = ¢(u) = 1.
The functional ¢ is called a Banach limit, and is sometimes written LIM.

10. Prove that if z € £%° and = 2> 0, then ¢(x) 2 0.
11. Prove that ¢(z) = lim, z(n) when the limit exists.

12. Prove that if y = [z(2),2(3),...] then ¢(z) = ¢(y).
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. Let €5, denote the normed linear space of all bounded real sequences, with norm given
by ||zll., = sup, |z(n)|. Prove that £ is complete, and therefore a Banach space. Prove
that £7 = £, where the equality here really means isometrically isomorphic.

A hyperplane in a normed space is any translate of the null space of a continuous,
linear, nontrivial functional. Prove that a set is a hyperplane if and only if it is of the
form {z : ¢(z) = A}, where ¢ € X* N0 and X € R. A translate of a set S in a vector
space is a set of the foom v+ S = {v+s:s € S}.

A half-space in a normed linear space X is any set of the form {z : ¢(z) 2> A}, where
¢ € X* N 0and X € R. Prove that for every z satisfying ||z]| = 1 there exists a half-space
such that z is on the boundary of the half-space and the unit ball is contained in the
half-space.

Prove that a linear functional ¢ is a linear combination of linear functionals ¢1, ..., ¢n if
and only if N(¢) D ﬂ:':l N(¢;). Here N(¢) denotes the null space of ¢. (Use induction
and trickery.)

Prove that a linear map transforms convex sets into convex sets.
Prove that in a normed linear space, the closure of a convex set is convex.

Let Y be a linear subspace in a normed linear space X. Prove that
dist(z,Y) = sup{¢(z) : € X", ¢ LY , ||¢]| =1}

Here the notation ¢ L Y means that ¢(y) =Oforally €Y.

Let Y be a subset of a normed linear space X. Prove that Y is a closed linear subspace
in X*.

If Z is a linear subspace in X*, where X is a normed linear space, we define
Z, ={z€X:¢(z)=0 forall g€ 2}

Prove that for any closed subspace Y in X, (Y1), =Y. Generalize.

Let f(z) = Z:":O anz™, where [an] is a sequence of complex numbers for which nan, — 0.

Prove the famous theorem of Tauber that Zan converges if and only if lim,,; f(z)
exists. (See [DS], page 78.)

Do the vectors d,, defined just after Corollary 4 form a fundamental set in the space £
consisting of bounded sequences with norm ||zl = max, |z(n)|?

REE EXERCISES (24-26) ON SCHAUDER BASES (See [Sem) and [Sing].)

. A Schauder base (or basis) for a Banach space X is a sequence [un] in X such that each
z in X has a unique representation

oo
= E Antn
n=1

This equation means, of course, that limy_, [z — Z:’:l Anun|| = 0. Show that one
Schauder base for cg is given by un(m) = énm (n,m =1,2,3,...).
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Prove that the A\, in the preceding problem are functions of £ and must be, in fact, linear
and continuous.

Prove that if the Banach space X possesses a Schauder base, then X must be separable.

That is, X must contain a countable dense set.

Prove that for any set A in a normed linear space all these sets are the same:
At (closure A)*, (span A)L, [closure (span A)]L,...

Prove that for z € ¢,

lell. = sup{zzm)u(n) wen ull, < 1}

n=1

Use the Axiom of Choice to prove that for any set S having at least 2 points there is a
function f : S — S that does not have a fixed point.

An interesting Banach space is the space ¢ consisting of all convergent sequences. The
norm is ||z|| ., = sup,, |z(n)|. Obviously, we have these set inclusions among the examples
encountered so far:

6 CcpCcClx

Prove that co is a hyperplane in ¢. Identify in concrete terms the conjugate space c*.
Prove that if H is a Hamel base for a normed linear space, then so is {h/||h]| : h € H}.

Let X and Y be linear spaces. Let H be a Hamel base for X. Prove that a linear map
from X to Y is completely determined by its values on H, and that these values can be
arbitrarily—assigned elements of Y.

Prove that on every infinite-dimensional normed linear space there exist discontinuous

linear functionals. (The preceding two problems can be useful here.)

Using Problem 33 and Problem 1.5.3, page 28, prove that every infinite-dimensional

normed linear space is the union of a disjoint pair of dense convex sets.

Let two equivalent norms be defined on a single linear space. (See Problem 1.4.3, page
23.) Prove that if the space is complete with respect to one of the norms, then it is
complete with respect to the other. Prove that this result fails (in general) if we assume

only that one norm is less than or equal to a constant multiple of the other.

Let Y be a subspace of a normed space X. Prove that there is a norm-preserving injective
map J : Y* — X* such that for each ¢ € Y*, J¢ is an extension of ¢.

Let Y be a subspace of a normed space X. Prove that if YL = 0, then Y is dense in X.

Let T be a bounded linear map of cg into cg. Show that T must have the form (Tz)(n) =
3% | aniz(i) for a suitable infinite matrix [an). Prove that sup, 3o land = 1T
Prove that if #5 = n, then #25 = 27,

What implications exist among these four properties of a set S in a normed linear.space
X? (a) S is fundamental in X; (b) S is linearly independent; (c) S is a Schauder base
for X; (d) S is a Hamel base for X.
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41. A “spanning set” in a linear space is a set S such that each point in the space is a linear
combination of elements from S. Prove that every linear space has a minimal spanning
set.

42. Let f : R =& R. Define z < y to mean f(z) < f(y). Under what conditions is this a
partial order or a total order?

43. Criticize the following “proof”’ that if X and Y are any two normed linear spaces, then
X* = Y*. We can assume that X and Y are subspaces of a third normed space Z.
(For example, we could use Z = X @Y, a direct sum.) Clearly, X* is a subspace of
Z*, since the Hahn—-Banach Theorem asserts that an element of X* can be extended,
without increasing its norm, to Z. Clearly, Z* is a subspace of Y*, since each element
of Z* can be restricted to become an element of Y*. So, we have X* C Z* C Y*. By
symmetry, Y* C X*. So X* =Y*.

44. Let K be a subset of a linear space X, and let f : K — R. Establish necessary and
sufficient conditions in order that f be the restriction to K of a linear functional on X.

45. For each « in a set A, let f(a) be a subset of N. Without using the Axiom of Choice,
prove that f has a choice function.

1.7 The Baire Theorem and Uniform Boundedness

This section is devoted to the first consequences of completeness in a normed
linear space. These are stunning and dramatic results that distinguish Banach
spaces from other normed linear spaces. Once we have these theorems (in this
section and the next), it will be clear why it is always an advantage to be working
with a complete space. The reader has undoubtedly seen this phenomenon when
studying the real number system (which is complete). When we compare the
real and the rational number systems, we notice that the latter has certain
deficiencies, which indeed had already been encountered by the ancient Greeks.
For example, they knew that no square could have rational sides and rational
diagonal! Put another way, certain problems posed within the realm of rational
numbers do not have solutions among the rational numbers; rather, we must
expect solutions sometimes to be irrational. The simplest example, of course, is
2 = 2. Our story begins with a purely metric-space result.

Theorem 1. Baire’s Theorem. In a complete metric space, the
intersection of a countable family of open dense sets is dense.

Proof. (A set is “dense” if its closure is the entire space.) Let O;,0;,... be
open dense sets in a complete metric space X. In order to show that (o—, O, is
dense, it is sufficient to prove that this set intersects an arbitrary nonvoid open
ball S; in X. For each n we will define an open ball and a closed ball:

={z€ X :d(z,z,) <Tn} Sp={zeX:dz,zn) <rn}

Select any 7 € X and let r; > 0. We want to prove that S; intersects ﬂn=1 On
Since O, is open and dense, O; N 81 is open and nonvoid. Take S5 C S; N O;.
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Then take S3 C S; N O3, S; C S3N O3, and so on. At the same time we can
insist that r, | 0. Then for all n,

Sp41 CSnNOR CS1 N0,
The points z, form a Cauchy sequence because z;,z; € Sy, if ¢,j > n, and so
d(zi, ;) < d(xi, Tn) + d(zn, ;) < 21y

Since X is complete, the sequence [z,] converges to some point z*. Since for
1> n,
x; € S':1+1 c S5 NO,

we can let ¢ — oo to conclude that z* € S}, C §; N Oy. Since this is true for
all n, the set (oo, O, does indeed intersect S;. s

Corollary.  If a complete metric space is expressed as a countable
union of closed sets, then one of the closed sets must have a nonempty
interior.

Proof. Let X be a complete metric space, and suppose that X = |Jo.; Fn,
where each Fy, is a closed set having empty interior. The sets O, = X \ F}, are
open and dense. Hence by Baire’s Theorem, ﬂ;”zl Oy, is dense. In particular, it
is nonempty. If z € (o, On, then z € X \ |, Fy, a contradiction. 1

A subset in a metric space X (or indeed in any topological space) is said to
be nowhere dense in X if its closure has an empty interior. Thus the set of
irrational points on the horizontal axis in R? is nowhere dense in R?. A set that
is a countable union of nowhere dense sets is said to be of category Iin X. A
set that is not of category I is said to be of category II in X.

Observe that all three of these notions are dependent on the space. Thus
one can have E C X C Z, where E is of category II in X and of category I in
Z. For a concrete example, the one in the preceding paragraph will serve.

The Corollary implies that if X is a complete metric space, then X is of the
second category in X.

Intuitively, we think of sets of the first category as being “thin,” and those
of the second category as “fat.” (See Problems 5, 6, 7, for example.)

Theorem 2. The Banach-Steinhaus Theorem. Let {Aq}
be a family of continuous linear transformations defined on a Banach
space X and taking values in a normed linear space. In order that
sup,, ||Aa|| < oo, it is necessary and sufficient that the set {x € X :
sup, || Aaz|| < 0o} be of the second category in X.

Proof. Assume first that ¢ = sup, HAQH < 00. Then every x satisfies HAaac” <
¢||z||, and every z belongs to the set F' = {z : sup, ||Aaz|| < co}. Since F = X,
the preceding corollary implies that F' is of the second category in X.

For the sufficiency, define

F, = {x € X :sup HAam“ < n}
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and assume that F is of the second category in X. Notice that F = {J,_; Fy.
Since F is of the second category, and each F), is a closed subset of X, the
definition of second category implies that some F,, contains a ball. Suppose
that

B={zeX:|z—zo||<r} CFn (r >0)

For any z satisfying “ac” < 1 we have zp + rz € B. Hence

[[Aaz|| = [|Aa[r~" (@0 + rz — zo)] |
< 7| Aa(@o + r2)|| + 77| Aazo|| < 2r7'm

Hence ||Aq|| < 2r~1m for all a. ]

Theorem 3. The Principle of Uniform Boundedness. Let
{Aa} be a collection of continuous linear maps from a Banach space X
into a normed linear space. If sup, ||Aqz|| < oo for each z € X, then
sup, “AaH < 00.

Example 1. Consider the familiar space C[0,1]. We are going to show that
most members of C[0, 1] are not differentiable. Select a point £ in the open
interval (0, 1). For small positive values of h we define a linear functional ¢;, by
the equation

on(z) = ze+ h)2_hz(€ —h) (z € C[0,1])

It is elementary to prove that ¢y is linear and that ||¢h” = h~1. Consequently,
by the Banach-Steinhaus Theorem, the set of z such that sup, |¢n(z)] < oo is
of the first category. Hence the set of  for which sup, |¢n(z)| = oo is of the
second category in C[0,1]. In other words, the set of functions in C[0, 1] that
are not differentiable at £ is of the second category in C[0, 1]. ]

Example 2. The formal Fourier series of a function z is

oo

Z an(z)eint

n=-—00

where the functionals o, are defined by

_ 1 o —ins
an(x)—é; A z(s)e " ds

If z belongs to Car, the space of continuous 27-periodic functions on [0, 2]
(endowed with the sup-norm), then the coefficients an(z) certainly exist; (in
fact, they exist if = is only Lebesgue integrable). A sequence of linear operators,
called Fourier projections, is obtained by truncation of the series:

n

(An2)(t) = Y ai(a)e™

k=-n
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It can be shown that the norm of A,, considered as a map of Cs, into itself,
is roughly (4/72%)logn. In fact, the norm of each functional t* o A, has this
property. Recall from Problem 19 in Section 1.5 (page 29) that t* denotes
point—evaluation at ¢, so that

(t" 0 Az)(2z) = t"(Anz) = (Anz)(t)

Since sup,, ||t* o An” = +o00, the set of z in Cy, whose Fourier series diverge
at a specified point ¢t is a set of the second category. Thus, for most periodic
continuous functions, the Fourier series do not converge. []

Theorem 4.  Let [A,] be a sequence of continuous linear transfor-
mations from a Banach space X into a normed linear space. In order
that lim, A,z = 0 for all £ € X it is necessary and sufficient that
sup,, ||An“ < oo and that A,u — 0 for each u in some fundamental
subset of X.

Proof. If A,z — 0 for all z, then obviously sup,, HAn:c“ < oo for all . Hence
sup,, HAnH < 00, by the Principle of Uniform Boundedness.

For the other half of the theorem, assume that ||An|| < M for all n and
that A,u — 0 for all v in a fundamental set F. It is elementary to prove that
Apy — 0 for all y in the linear span of F'. Now let x € X. Let € > 0. Select y
in the linear span of F so that ||z — y|| < €/2M. Select m so that | Any|| < /2
whenever n > m. Then for n > m we have

Anel] < [ nte = )] + 4wy < Mz~ o] + 2 < .

Example 3. The Riemann integral of a continuous function z defined on [a, b]
can be obtained as a limit as follows:

n

[ o= i 3o i228) 228

i=1

This suggests that we consider the problem of approximating functionals 1 that
have the form

b
(1) P(z) = / z(s)w(s)ds  z € Cla,b

in which w is a fixed integrable function called the weight. We seek to approx-
imate 1 by a sequence of functionals ¢, having the form

(2) $n(z) =D Aniz(sni) € Cla,b]

i=1

Notice that ¢, is simply a linear combination of point-evaluation functionals.
One can argue with some justification that from the practical, numerical, stand-
point only such functionals are realizable. Other functionals, such as those
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involving integrals, must be approximated by the simpler realizable ones. Func-
tionals of this type were considered in Problem 1.5.19 (page 29), and a result of
that problem is the formula

16nll =D [Anil
i=1

Here it is necessary to assume that for each n, {sp1,8n2,...,8nn} is a set of n
distinct points in [a,b]. We call these points the “nodes” of the functional ¢,,.
An old theorem of Szegd, presented next, concerns this example. (]

Theorem 5. Let ¢ and ¢, be as in Equations (1) and (2) above.
In order that ¢,(x) — ¥(z) for each z € Cla,b], it is necessary and
sufficient that these two conditions be fulfilled:

n
(i) supz |Ani| < 00
" oi=1

(ii) The convergence occurs for all the elementary monomial functions,
s sk k=01,2,....

Proof. Consider the sequence of functionals [¢) — ¢,]. The norm of ¢ is

ol = sup | [ atohuterae] < [ oteas

Consequently, condition (i) is equivalent to the condition

sup ||¥ — én|| < 00
n

Next observe that the functions ey defined by the equation ex(s) = s*, where
k=0,1,..., form a fundamental set in Cla, b], by the Weierstrass Polynomial
Approximation Theorem. Now apply the preceding theorem. (]

Problems 1.7

1. Prove the equivalence of these properties of a set U in a normed linear space X:
(a) U intersects each nonempty open set in X
(b) U intersects each open ball in X
(c) The closure of U is X

(d) For each z € X and each € > O there is a point u € U satisfying the inequality
lz—u|l <e

(e) The set X \ U contains no open ball.

2. An interesting metric space is obtained by taking any set X and defining d(z,y) to be 1
ifz # y and 0 if £ = y. In such a metric space identify the open sets, the closed sets,
the convergent sequences, and the compact sets. Also determine whether the closure of
{z : d(z,y) < r} is the set {z : d(z,y) < r}. Is (X,d) complete?

3. Prove that the set of functions in C|0, 1] that do not possess a right—derivative at a given
point in [0,1) is dense.
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. Is every set of the second category the complement of a set of the first category?

. Prove that in a complete metric space, the complement of a set of the first category is

dense and of second category.

. Prove that a closed, proper subspace in a normed linear space is nowhere dense (and

hence of first category).

. Prove that in a Banach space, a subspace of second category must be dense.

. Prove that in a Banach space every nonempty open set is of the second category. Prove

that this assertion is not true for normed linear spaces in general. (Give an example.)

. Let [zn] be a sequence in a Banach space X. Assume that sup, |¢(zn)| < oo for each

¢ € X*. Prove that [zn] is bounded. Does X have to be complete for this? If so, give a
suitable example.

Determine the category of these sets: (a) the rationals in R; (b) the irrationals in R; (c) the
union of all vertical lines in R? that pass through a rational point on the horizontal axis;
(d) the set of all polynomials in C[0, 1}.

Does a homeomorphism (continuous map having a continuous inverse) preserve the cat-
egory of sets?

Give an example to show that a homeomorphic image of a complete metric space need
not be complete.

Prove that any subset of a set of the first category is also of the first category. Prove
that a set that contains a set of second category is also of second category.

Is the closure of a nowhere dense set also nowhere dense? Is the closure of a set of the
first category also of the first category?

For each natural number n, let A, be a continuous linear transformation of a Banach
space X into a normed linear space Y. Suppose that for each z € X the sequence [Anz]
is convergent. Define A by the equation Az = lim,_,0c Anz. Prove that A is linear and
continuous. Explain why completeness is needed.

Let X be the space of real sequences z = [z(1),2(2),...] in which only a finite number of
terms are nonzero. Give X the supremum norm. Define functionals ¢, by the equation
on(z) = Z?ﬂz(i). Show that the sequence [¢n(z)] is bounded for each z, that each
¢n is continuous, but that the sequence [¢n] is not bounded. (Compare to the Uniform
Boundedness Theorem.)

Prove that the set of reals whose decimal expansions do not contain the digit 7 is a set
of the first category.

Select a function xo € CI0, 1] and a sequence of reals [a,]. Define recursively

t
zn+1(t)=an+/ Tn(s)ds n=0,1,...
0

Assume that for each t € [0, 1] there is an n for which z,(t) = 0. Prove that x¢o = 0.

Return to Problem 15, and suppose that Y is complete. Weaken the hypotheses on A,
so that Ay, is not necessarily linear and the set of z for which [Anz] converges is of the
second category. Prove that this set must be X and that A is continuous.

Let [An] be a sequence of continuous linear maps from one Banach space X to another.
Prove that the set of z for which [Anz] is a Cauchy sequence is either X or a set of first
category.

Prove that in a complete metric space a set of the first category has empty interior.

Prove that in a complete metric space, if a countable intersection of open sets is dense,
then it is of second category.

Give an example of a metric space having countably many points that contains no subset
of second category.
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Prove that a set V' is nowhere dense if and only if each nonempty open set has a nonempty
open subset that lies in the complement of V.

(Principle of Condensation of Singularities). For each n and m in N, let Ap,, be a
bounded linear operator from a Banach space X into a normed linear space Y. Assume
that sup,, ||Anm|| = oo for each n. Prove that the set

{:t € X :sup ||Anmz|| = oo for each n}
m

is of second category.
(The Cantor Set). This famous set is C = [0,1] \ Ufj:l An, where

Ay =(%w%)v A2:(%7%)U(Qz; )

A= (3 2)U(H UG B)U(E.5), adsoon

wlm

Draw pictures of {0,1] \ Ay, [0,1] \ (41 U A2), and so on to see that we are successively
removing the middle thirds from intervals. Each A, is open, so U Ap is open. Hence C
is closed. Prove that C is nowhere dense. Prove that the lengths of the removed intervals
add up to 1. Explain how there can be anything left in C. Prove that C is a “perfect
set,” ie., if z € C, then C \ {z} is not closed.

Prove this theorem: Let X be a complete metric space. Let {fq} be a family of continuous
real-valued maps defined on X. Assume that for each z, sup, |fa(x)] < 0co. Then for
some nonvoid open set O, sup,co sup, |fa(z)| < oco.

Prove that a countable union of sets of the first category is also a set of the first category.
Prove that a nowhere dense set is of the first category.

Is a countable set in a metric space necessarily a set of the first category?

Answer the question in Problem 30 for countable subsets of a normed linear space.

Prove that the sets Fj, occurring in the proof of the Banach—Steinhaus Theorem are
closed.

In a complete metric space, is every nonempty open set of the second category?

A metric space (X,d) is said to be discrete if d(z,y) = 1 whenever £ # y. In such a
space identify the nowhere dense sets, sets of first category, sets of second category, and
dense sets. (Cf. Problem 2.)

Can a normed linear space have any of the peculiar properties of discrete metric spaces?

Show that a countable discrete metric space can be embedded isometrically in the Banach
space cg.

Give an example of sets S C F' C X, where X is a complete metric space, F is a closed
set in X, and S is of Category II in F' but of Category I in X.

The intersection of a countable family of open sets is called a Gs-set. Prove that the set
of rationals is not a Gs-set in R.

(Continuation) Let f: R — R be continuous. Show that each set f~1(r) is a Gg-set.

(Continuation) Let f:R — R. Define

w(z)=inf sup |f(u) - f(v)|
€>0 |lz—u|<

lz— v|<€
Prove that w(z) = 0 for each z at which f is continuous. Prove that for € > 0, the set
{z : w(z) < e} is open.

(Continuation) Prove that there is no function f : R — R that is continuous at each
rational point and discontinuous at each irrational point.
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42. Can an infinite-dimensional Banach space have a countable Hamel base?

43. Prove that the complement of a nowhere dense set is dense. What about the converse:
is it true?

44. Let f € C°(R). Thus f has derivatives of all orders on R. Suppose that 0 € {f(™)(¢) :
n=0,1,2,...} for each t. Then f is a polynomial.

45. A point z in a metric space is isolated if for some € > 0, the ball of radius € centered at
z contains no point of the space except . Prove that a complete metric space in which
there are no isolated points is uncountable.

46. If f : R — R, then there is an interval (a,b) and a number M such that each point of
(a,b) is the limit of a sequence [zn] such that a < zn, < b and |f(z,)| < M.

47. Let X be a complete metric space and for each n let Fy, be a closed set having empty
interior. Prove that Unoo:l F, has empty interior.

48. Prove that a set E in a metric space X (or any topological space) is nowhere dense if
and only if X \ E is dense.

49. In a metric space, is a singleton {z} always nowhere dense? Answer the same question
for a normed linear space.

50. Prove that if A is of the second category and B is of the first category, then A\ B is of
the second category.

51. Is a countable intersection of sets of the second category necessarily a set of the second
category?

52. A subset of a metric space is called a residual set if its complement is of the first category.
Prove that the intersection of countably many residual sets is a residual set.

1.8 The Interior Mapping and Closed Mapping Theorems

A function f from one normed linear space X to another Y is said to be closed
(or to have a closed graph) if f is closed as a subset of X x Y. Expressed
otherwise, the set

{(z, f(z)) 1z € X}

is a closed set in X x Y. In terms of sequences, the closed property of f is
that the conditions z, — z and f(z,) — y imply that y = f(z). It is clear
that a continuous map is closed. For general topological spaces this is still
true if Y is a Hausdorff space ([Rul], page 29). The outstanding example of a
linear transformation that is closed but not continuous is the derivative operator
D acting on the differentiable functions in C[a,b] and mapping into Cla,d]. If
T, = = and Dz, — y, then y = Dx. This is actually a theorem of calculus
([Wid], page 305). Let us stop to prove it. We denote by C*[a,b] the linear
space of all functions on [a,b] whose derivatives exist and are continuous on

(a, b].

Theorem 1. Letz, € C'a,b], Hzn—x“w — 0, and Hzﬁl—yllw 0.
Then y € Cla,b] and 2’ = y.

Proof. Since z,, € C'[a,b], we have z/, € Cla,b]. Thus y € Cla, b], by Theorem
2 in Section 1.2, page 10. By the Fundamental Theorem of Calculus and the
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continuity of integration,

¢ ¢ ¢
/ y(s)ds = / limz,(s)ds = lim/ zh(s)ds
a a " " Ja
= lim[z,(t) — 2n(a)] = 2(t) - z(a)
Differentiation with respect to ¢t now yields y(t) = z'(t). ]

Of course, in general we may not infer that z], — z’ from the sole hypothesis
that z,, — z, even if z,, € C'|a, b] and the convergence is uniform. For example,
the sequence z,(s) = lsinns converges (uniformly) to 0, but the sequence
x,,(8) = cosns does not converge even pointwise.

Another property that a mapping f : X — Y may have is being an interior
(or “open”) mapping. That means that f maps open sets to open sets.

Theorem 2. The Interior Mapping Theorem. If a closed
linear transformation maps one Banach space onto another, then it is
an interior map.

Proof. Let L:X — Y, where L is linear and closed, and X and Y are Banach
spaces. (This double arrow signifies a surjection.) Let S be the open unit ball
in X or Y, depending on the context. Since L is surjective,

Y = L(X) =L< Q nS) C @ L(nS)

Since Y is complete, the Baire Theorem implies that one of the sets cl[L(nS)]
has a nonempty interior. Suppose, then, that for some m in Nand r > 0

v+ 7S C cl L(mS)
It follows that v € cl L(m.S), and hence
rS C cL(mS)—v C cL(mS)—clL(mS) C clL(2mS)

Hence S C cl L(tS) for some t > 0, namely t = 2m/r.

We will now prove that S C L(2tS). Let y be any point of S. Select a
sequence of positive numbers &, such that > 8, < 1. Since y € clL(tS),
there is an z; in tS such that ||y — Lz:|| < 6;. Since

Y- Lz, €S Cel L((sltS)

there is a point x5 € 6;tS such that ”y — Lz, — L.’L‘z“ < &2. We continue this
construction, obtaining a sequence z, zs, . .. whose partial sums z, = z; +---+
&n have the property ||y — Lzn|| < 8,. Also, we have

[e o]
lzall < l|lza]] + - + ||l2n]| St + 81t 4+ + 801t < t(l +Zék) <2t
k=1
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The sequence [z,] has the Cauchy property because

“Zn+i - Zn” = ||$n+1 +-- +mn+,-|| <ty + - tppior < tz5j
i>n

Since X is complete, z, — z for some z € X. Clearly, ||z” < 2t, or z € 2tS.
Since L is closed and Lz, — y, we conclude that y = Lz; thus y € L(2tS) as
claimed.

To complete the proof we show that L(U) is open in Y whenever U is open
in X. Let y be any point in L(U). Then y = Lz for some z € U. Since U is open,
there exists a § > 0 such that z + S C U. Then y + 6L(S) C L(U). By our
previous work, we know that S C L(2tS). Hence (8/2t)S C 0L(S) and

y+ (8/2t)S c L(U)
Thus L(U) contains a neighborhood of y, and L(U) is open. ]

Corollary 1.  If an algebraic isomorphism of one Banach space onto
another is continuous, then its inverse is continuous.

Proof. Let L : X — Y be such a map. (The two-headed arrow denotes a
surjective map. Thus L(X) = Y.) Being continuous, L is closed. By the Interior
Mapping Theorem, L is an interior map. Hence L~! is continuous. (Recall that
a map f is continuous if f~! carries open sets to open sets.) 1

Corollary 2. If a linear space can be made into a Banach space
with two norms, one of which dominates the other, then these norms
are equivalent.

Proof. Let X be the space, and Nj, N, the two norms. The equivalence of
two norms is explained in Problem 1.4.3, page 23. Let I denote the identity map
acting from (X, N2) to (X, N1). Assume that the norms bear the relationship
N; < Ns. Since N1(Iz) < N2(zx), we see that I is continuous. By the preceding
corollary, I is continuous. Hence for some a, No(z) = No(I71z) < aNi(z). B

Theorem 3. The Closed Graph Theorem. A closed linear map
from one Banach space into another is continuous.

Proof. Let L: X — Y be closed and linear. In X, define a new norm N(z) =
||z|| + ]| L=||- Then (X, N) is complete. Indeed, if [zn] is a Cauchy sequence with
the norm N, then [z,] and [Lz,] are Cauchy sequences with the given norms in
X and Y. Hence z,, — = and Lz, — y, since X and Y are complete. Since L is
closed, Lz = y and so

N(z — zn) = || — zn|| + ||Lx — Lzg|| = 0

By the preceding corollary, N(z) < aHxH for some a. Hence HL.’E” < a”z‘“ 1



50 Chapter 1 Normed Linear Spaces

Theorem 4. A normed linear space that is the image of a Banach
space by a bounded, linear, interior map is also a Banach space.

Proof. Let L: X —» Y be the bounded, linear, interior map. Assume that X
is a Banach space. By Problem 1.2.38 (page 14), it suffices to prove that each
absolutely convergent series in Y is convergent. Let y, € Y and > ||yn|| < 00.
By Problem 2 (of this section), there exist z,, € X such that Lz, = y, and (for
some ¢ > 0) “zn“ < c”ynH. Then 3 “an ey ['yn” < 00. By Problem 1.2.3,
page 12, the series 3 z,, converges. Since L is continuous and linear, L(}_ z,,) =
3>~ Lz, =) yn, and the latter series is convergent. (]

Let L be a bounded linear transformation from one normed linear space,
X, to another, Y. The adjoint of L is the map L* : Y* — X* defined by
L*¢ = ¢o L. Here ¢ ranges over Y*. It is elementary to prove that L* is linear.
It is bounded because

L*¢

|27]1 = sup |27 9]] = supsup (L*9)(z)]

= supsup|¢(La)| = sup|Le|| = |||
z ¢ z

In this equation ¢ ranges over functionals of norm 1 in Y*, and x ranges over
vectors of norm 1 in X. We used Corollary 4 on page 36.

In a finite-dimensional setting, an operator L can be represented by a matrix
A (which is not necessarily square). This requires the prior selection of bases
for the domain and range of L. The adjoint operator L* is represented by
the complex conjugate matrix A*. An elementary theorem asserts that A is
surjective (“onto”) if and only if A* is injective (“one-to-one”). (See Problem 20.)
The situation in an infinite-dimensional space is only slightly more complicated,
as indicated in the next three theorems.

Theorem 5. Let L be a continuous linear transformation from one
normed linear space to another. The range of L is dense if and only if
L* is injective.

Proof. Let L : X — Y. By Theorem 3 in Section 1.6 (page 37), applied
to L(X), we have these equivalent assertions: (1) L(X) is dense in Y. (2)
L(X)* =0. (3) If $ € L(X)*, then ¢ = 0. (4) If ¢(Lz) = O for all x, then
¢=0. (5) If L*¢ = 0, then ¢ = 0. (6) L* is injective. (]

Theorem 6. The Closed Range Theorem. Let L be a bounded
linear transformation defined on a normed linear space and taking val-
ues in another normed linear space. The range of L and the null space
of L*, denoted by N(L*), are related by the fact that [N'(L*)]. is the

closure of the range of L.

Proof. Recall the notation U, for the set {x € X : ¢(z) =0 for all ¢ € U},
where X is a normed linear space and U is a subset of X*. (See Problems 1.6.20
and 1.6.21, on page 38, as well as Problem 13 in this section, page 52.) We
denote by R(L) the range of L. To prove [closure R(L)] C [N(L*)]L, let y be
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an element of the set on the left. Then y = limy, for some sequence [y,] in
R(L). Write y, = Lx, for appropriate z,. To show that y € [N(L*)] L we must
prove that ¢(y) = 0 for all ¢ € N(L*). We have

#(y) = ¢(limyy,) = lim ¢(yn) = lim ¢(Lxy)
= lim(¢ o L)(z,) = lim(L*¢)(x,) = im0 =0

To prove the reverse inclusion, suppose that y is not in [closure R(L)]. We
shall show that y is not in [NM(L*)];. By Corollary 2 of the Hahn-Banach
Theorem (page 34), there is a continuous linear functional ¢ such that ¢(y) # 0
and ¢ annihilates each member of [closure R(L)]. It follows that for all z,
(L*¢)(z) = (¢ o L)(x) = ¢(Lx) = 0. Consequently, ¢ € N'(L*). Since ¢(y) # 0,
we conclude that y ¢ [N(L*)] . (]

Theorem 7 Let L be a continuous, linear, injective map from one
Banach space into another. The range of L is closed if and only if L is
bounded below: | i1”1f X |Lz|| > o.

zl||l=

Proof. Assume first that ||Lz|| > ¢ > 0 when ||z|| = 1. By homogeneity,
||Lz|| > c||x|| for all z. To prove that the range, R(L), is closed, let yn € R(L)
and y, — y. It is to be shown that y € R(L). Let y, = Lz,,. The inequality

o = yml = [|L(@n = zm)|| > cllen - zn]

reveals that [z,] is a Cauchy sequence. By the completeness of the domain space,
T, — z for some z. Then, by continuity,

Lz = L(limz,) = lim Lz, = limy, =y

Hence y € R(L).

Now assume that R(L) is closed. Then L maps the domain space X injec-
tively onto the Banach space R(L). By Corollary 1 of the Interior Mapping The-
orem (page 49), L has a continuous inverse. The equation || L~Yy|| < ||Z7|| ||yl
is equivalent to Hz“ < HL‘IH ||Lz'||, showing that L is bounded below. ]

Problems 1.8

1. Use the notation in the proof of the Interior Mapping Theorem. Show that a linear map
L: X — Y is interior if and only if L(S) D rS for some r > 0.

2. Show that a linear map L : X — Y is interior if and only if there is a constant ¢ such
that for each y € Y there is an z € X satisfying Lz =y, ||z]| < c|ly||.

3. Define T : co — co by the equation (T'z)(n) = z(n + 1). Which of these properties does
T have: injective, surjective, open, closed, invertible? Does T have either a right or a
left inverse?

4. Prove that a closed (and possibly nonlinear) map of one normed linear space into another
maps compact sets to closed sets.

5. Let L be a linear map from one Banach space into another. Suppose that the conditions
Zn — 0 and Lz, — y imply that y = 0. Prove that L is continuous.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
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. Prove that if a closed map has an inverse, then the inverse is also closed.

. Let M and N be closed linear subspaces in a Banach space. Define L: M X N - M+ N

by writing L(z,y) = z + y. Prove that M + N is closed if and only if L is an interior
map.

. Adopt the hypotheses of Problem 7. Prove that M + N is closed if and only if there is

a constant ¢ such that each z € M + N can be written z =z + y wherez € M, y € N,
and [|z]| + [lyl| < ell2|-

. Let L : X —» Y be a continuous linear surjection, where X and Y are Banach spaces.

Let y» — y in Y. Prove that there exist points z, € X and a constant ¢ € R such that
Lzy, = yn, the sequence [zn] converges, and ||z || < cllynll-

Recall the space ¢ defined in Example 8 of Section 1.1. Define L : £ — £ by (Lz)(n) =
nz(n). Use the sup-norm in £ and prove that L is discontinuous, surjective, and closed.

Is the identity map from (C[-1,1], || ||,,) into (C[-1,1], || ||;) an interior map? Is it
continuous?

(Continuation) Denote the two spaces in Problem 11 by X and Y, respectively. Let

1
Gz{yEY:/ y(s)ds:O}
-1

Show that G is closed in Y. Define

(s) = nx lz) £ 1/n
= el Jal > 1/n

Show that [gn] is a Cauchy sequence in Y. Since the space L![—1,1] is complete, gn, — g
in L!. Since G is closed, g should be in G. But it is discontinuous. Explain.

Let X be a normed linear space, and let K C X and U C X*. Define
Kt ={peX*:¢(x)=0forall z € K}

Uy ={r€X:¢(z)=0forall ¢ € U}
Prove that these are closed subspaces in X* and X, respectively.

Prove that for any subset K in a normed linear space, (K1) is the closure of the linear
span of K. The Hahn-Banach Theorem can be used as in the proof of the Closed Range
Theorem. Problem 13 will also be helpful.

Prove that if L is a linear operator having closed range and acting between normed linear
spaces, then the equation Lz = y is solvable for « if and only if y € [N(L*)] .

Prove that if L is a bounded linear operator from one normed space into another, and
if || Lz]|/ dist(z, N (L)) is bounded away from O when ||z|| = 1, then the conclusion of
Problem 15 is again valid.

Let T be a linear map of a Banach space X into itself. Suppose that there exists a
continuous, linear, one-to-one map L : X — X such that LT is continuous. Does it
follow that T is continuous?

Define an operator L by the equation
1
(Lx)(t) =/ (t — s)%x(s)ds
-1

Describe the range of L and prove that it does not contain the function f(x) = et.

(Continuation) Draw the same conclusion as in Problem 18 by invoking the Closed Range
Theorem. Thus, find ¢ in the null space of L* such that ¢(f) # 0.
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20. For an m X n matrix A prove the equivalence of these assertions: (a) A* is injective. (b)
The null space of A* is 0. (c) The columns of A* form a linearly independent set. (d)
The rows of A form a linearly independent set. (e€) The row space of A has dimension
m. (f) The column space of A has dimension m. (g) The column space of A is R™. (h)
The range of A is R™. (i) A is surjective, as a map from R™ to R™.

1.9 Weak Convergence

A sequence [z,] in a normed linear space X is said to converge weakly to an
element z if ¢(x,) — ¢(z) for every ¢ in X*. (Sometimes we write z, — x.)

The usual type of convergence can be termed norm convergence or strong
convergence. It refers, of course, to ||xn - x“ — 0. Clearly, if z, — z, then
T, — z, because each ¢ in X* is continuous. This observation justifies the
terms “strong” and “weak.”

Example 1. For an example of a sequence that converges weakly to zero yet
does not converge strongly to any point, consider the vectors e, in ¢y defined by
en() = 0in. These are the “standard unit vectors” in the space ¢g. (This space
was defined in Problem 1.2.16, on page 12.) Recall from Section 1.8, particularly
the proposition on page 34, that every continuous linear functional on ¢y is of

the form
o

() =Y ali)z(i)

i=1
for a suitable point a € ¢,. Thus ¢(e,) = a(n) — 0. The sequence [z,] does not
have the Cauchy property, because Hxn - a:m|| =1 when n #m. [

Lemma. A weakly convergent sequence is bounded.

Proof. Let X be the ambient space, and suppose that £, — x. Define func-
tionals T, on X* by putting

Tn(d) = ¢(zn) (P € X7)

For each ¢, the sequence [¢(z,)] converges in R; hence it is bounded. Thus
sup,, [Zn(¢)| < co. By the Uniform Boundedness Theorem (page 42), applied in
the complete space X*, [T,,” < M for some constant M. Hence, for all n,

sup {[Ea(8)] - 6 € X°, 9]l <1} < M

By Corollary 4 of the Hahn-Banach Theorem (page 36), ||za|| < M. a

Theorem 1. In a finite-dimensional normed linear space, weak and
strong convergence coincide.

Proof. Let X be a k-dimensional space. Select a base {by,...,b} for X and
let ¢1,..., ¢ be the linear functionals such that for each z,

k
T = Z ¢,($)b,

i=1
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By Corollary 1 on page 26, each functional ¢; is continuous. Now if z, — z,
then we have ¢;(z,) — ¢(z), and consequently,

o - za]| = ”Z:‘b"( )

Theorem 2. If a sequence [z,] in a normed linear space converges
weakly to an element z, then a sequence of linear combinations of the
elements x,, converges strongly to x.

Z|¢,z—zn|”b”—>0 (]

Proof. Another way of stating the conclusion is that  belongs to the closed
subspace
Y = closure (span{z;,z2,...})

If x ¢ Y, then by Corollary 2 of the Hahn-Banach Theorem (page 34), there is
a continuous linear functional ¢ such that ¢ € Y+ and ¢(z) = 1. This clearly
contradicts the assumption that z, — . ]

A refinement of this theorem states that a sequence of conver linear combi-
nations of {z1,z2, ...} converges strongly to z. This can be proved with the aid
of a separation theorem, such as Theorem 3 in Section 7.3, page 344.

Theorem 3.  If the sequence [zg, %1, Z2,. . .| is bounded in a normed
linear space X and if ¢(x,) — ¢(xo) for all ¢ in a fundamental subset
of X*, then x,, — x.

Proof. (The term “fundamental” was defined in Section 1.6, page 36.) Let
F be the fundamental subset of X* mentioned in the theorem. Let ¢ be any
member of X*. We want to prove that ¢¥(z,) — ¥(z¢). By hypothesis, there is a
constant M such that ||:c,|| <Mfori=0,1,2,... Given € > 0, select ¢1,...,dm
in F and scalars Aq, ..., An such that

lv - iwi

Put ¢ = Y \i¢s. It is easily seen that ¢(z,) — ¢(zo). Select N so that for all
n > N we have the inequality |¢(z,) — ¢(z0)| < £/3. Then for n > N,

[¥(zn) — (o)

< [$(@n) = $(an)| +|8(zn) = S(z0)| + |é(z0) — w(z0)]
<l = lllanll + e/3+ o = o] o]
<

3MM+3+WM—E B

Example 2. Fix a real number p in the range 1 < p < oco. The space £, is
defined to be the set of all real sequences z for Wthh Yol lz(m)|P < co. We
define a norm on the vector space £, by the equation

el = (S eor)
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For p = o0, we take £, to be the space of bounded sequences, with norm
Hx[lm = sup,, |z(n)|. We shall outline some of the theory of these spaces. (This
theory is actually included in the theory of the LP spaces as given in Chapter
8.) Notice that in these spaces there is a natural partial order: z > y means
that z(n) > y(n) for all n. We also define |z| by the equation |z|(n) = |z(n)|.

Holder Inequality. Let 1 <p<oo,1l/p+1/g=1,z € ¥, and
y € ¢q. Then

o0

>_emy(n) < o]l llyll,

n=1

Minkowski Inequality. If z and y are two members of £, then
Iz +ll, <llell, + 9]l

Proof. For p =1 an elementary proof goes as follows:

Iz +yll, =D le(n) +y(m)] < Y lem)| + > ly(m)] = |||, + [lvll,

Now assume 1 < p < co. Then

Y _la(m) +ym)P <> {lz(n)| + ly(m)[}
<Y {2max(je(n)], [y(n)[]}7
=Y 2?max{|z(n)|?, ly(n)["}
<2 {lz()P + [y(n)P} < 0o

This proves that x +y € £,. Now let 1/p+ 1/¢ = 1 and observe that
Tel, = |zPl e,

because
d {le@)P 1} = |z(n)P < 0

Therefore, by the Holder inequality,

Hx + yHZ = z |z(n) +
Y lz(n) + y()Pz(n) + Y l2(n) + y(n) P~ y(n)]

<
<[+, All=ll, + llvll,}

=ll=+ Iy (], +llvll,}

Thus, finally,
lz+ll, <llell, +llyll, "

Some theorems about these spaces are given here without proof.
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Theorem 4. The conjugate of £, is isometrically isomorphic to
£q, where p~! + ¢~! = 1. (Here 1 < p < o0.) The isomorphism pairs
each element ¢ in £, with the unique element y in £, such that () =

2k z(K)y(k).

Theorem 5. Let = and x,, be in {,. We have x, — z if and only if
l]xn”p is bounded and (k) — z(k) for each k.

Theorem 6. Let S be a compact Hausdorff space, and suppose
z,2y € C(S). We have z, — z if and only if ||z,|| _ is bounded and
Zn(8) — z(s) for each s € S.

Theorem 7. (Schur’s Lemma) In the space ¢,, the concepts of weak
and strong convergence of sequences coincide.

A subset F in a normed linear space X is said to be weakly sequentially
closed if the weak limit of any weakly convergent sequence in F is also in F. A
weakly sequentially closed set F' is necessarily closed in the norm topology, for
if z, € F and ©, — z, then , — z € F. (A simple example of a closed set that
is not weakly sequentially closed is the surface of the unit ball in the space co.)

Theorem 8. A subspace of a normed linear space is closed if and
only if it is weakly sequentially closed.

Proof. Let Y be a weakly sequentially closed subspace in the normed space
X Ify, €Y and y, — vy, then y, — y and y € Y. Hence Y is norm-closed.

For the converse, suppose that Y is norm-closed, and let y, € Y, y, — y.
If y ¢ Y, then (because Y is closed) we have dist(y,Y) > 0. By Corollary 2 of
the Hahn-Banach Theorem (page 34) there is a functional ¢ € Y1 such that
o¢(y) = 1. Hence ¢(y,) does not converge to ¢(y), contradicting the assumed
weak convergence. ]

A refinement of this theorem states that a convex set is closed if and only
if it is weakly sequentially closed. See [DS], page 422.

Theorem 9. A linear continuous mapping between normed spaces
is weakly sequentially continuous.

Proof. Let A: X — Y be linear and norm-continuous. In order to prove
that A is weakly continuous, let z, — x. For all ¢ € Y*, ¢ 0 A € X*. Hence
¢(Az, — Az) > Ofor all p € Y*. (]

In a conjugate space X*, the concept of weak convergence is also available.
Thus ¢, — ¢ if and only if F(¢,) — F(¢) for each FF € X**. There is another
type of convergence, called weak* convergence. We say that [¢,] converges to ¢
in the weak™* sense if ¢, (z) — ¢(z) for all z € X.
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Theorem 10. Let X be a separable normed linear space, and [¢,]
a bounded sequence in X*. Then there is a subsequence [qﬁni] that
converges in the weak* sense to an element of X*.

Proof. Since X is separable, it contains a countable dense set, {z1,z2,...}.
Since [¢n) is bounded, so is the sequence [¢,(z;)]. We can therefore find an
increasing sequence Ny C N such that hmmgN1 ¢n(z1) exists. By the same rea-
soning there is an increasing sequence N2 C Nj such that lim,en, ¢n(T2) exists.
Continuing in this way, we generate sequences

NONjDODNp D -+

Now use the Cantor diagonalization process: Define n; to be the ith element
of N;. We claim that lim;—,o ¢n,(zx) exists for each k. This is true because
limpen, ¢n(xr) exists by construction, and if ¢ > k, then n; € N; C Ni. For any
z € X we write

d’ni(z) _¢nj (.’E)’ <

Dy (2) g ()| +

&, (zk) _¢nj (xk)l +|¢n

(@)= b, (@)

This inequality shows that [¢y, ()] has the Cauchy property in R for each z €
X. Hence it converges to something that we may denote by ¢(z). Standard
arguments show that ¢ € X*. [

For Schur’s Lemma, see [HP] page 37, or [Ban] page 137. The original
source is [Schu]. See also [Jam| page 288, or [Hol] page 149.

Problems 1.9

1. Show that the Holder Inequality remains true if we replace the left-hand side by
Y lz(n)| ly(n)l.

2. If 1 < p < g, what inclusion relation exists between €5 and £,?

3. Prove that if z, — z and [|za|| — c, then ||z|] < ¢. Why can we not conclude that
|lz)l = ¢? Give examples. Explain in terms of weak continuity and weak semicontinuity
of the norm.

4. Fix p > 1 and define a nonlinear map T on £, by the equation Tz = |z|P~!sgn(z).
Thus, (Tz)(n) = |z(n)|P~!sgn(z(n)) for all n. Prove that T maps £, into £, where
1/p+1/q = 1. Then determine whether T is surjective.

5. Prove this theorem: In order that a sequence [zn] in a normed linear space X converge
weakly to an element z it is necessary and sufficient that the sequence be bounded and
that ¢(zn) — ¢(z) for all functionals ¢ in a set that is dense on the surface of the unit
ball in X™.

6. Prove this characterization of weak convergence in the space co: In order that a sequence
xp, converge weakly to an element x in the space cp it is necessary and sufficient that the
sequence be bounded and that (for each i) we have lim,  n (i) = 2(i).

7. A Banach space X is said to be weakly complete if every sequence [z,] such that ¢(zn)
converges for each ¢ in X* must converge weakly to an element x in X. Prove that the
space ¢g is not weakly complete.
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1.10 Reflexive Spaces

Let X be a Banach space. It is possible to embed X isomorphically and iso-
metrically as a subspace of X**. There may be many ways to do this, but one
embedding is called the natural or canonical embedding, denoted by J. Thus
J: X — X™**, and its definition is

(Jz)(¢) = p(z) €X', z€X

The reader may wish to pause and prove that J is a linear isometry.

For an example of this embedding, let X = cg; then X* = ¢; and X** = /.
In this case, J : ¢ = £, and J can be interpreted as the identity embedding,
since ¢(z) = Y oo, u(n)z(n) for an appropriate u € ¢;.

If the natural map of X into X™** is surjective, we say that X is reflexive.
Thus if X is reflexive, it is isometrically isomorphic to X**. The converse is false,
however. A famous example of R.C. James exhibits an X that is isometrically
isomorphic to X**, but the isometry is not the canonical map J, and indeed the
canonical image of J(X) is a proper subspace of X** in the example. See [Ja2).

Theorem 1. Each space £, where 1 < p < o0, is reflexive.

Proof. 1fp~!+gq7! =1, then ¢, = €4 and £ = ¢, by Theorem 4 of Section
1.9, page 56. Hence £,* = ¢;. But we must be sure that the isometry involved
in this statement is the natural one, J. Let A : £, — £3 and B : {; — £, be
the isometries that have already been discussed in a previous section. Thus, for
example, if z € £, then Az is the functional on ¢, defined by

o0

(Az)(y) =Y z(n)y(n) yel,

n=1
Define B* : £3* — £; by the equation
B*¢=¢oB peL

One of the problems asks for a proof of the fact that B* is an isometric isomor-

phism of £3* onto £;. Thus B*~'A is an isometric isomorphism of £, onto o

Now we wonder whether B*~! A = J. Equivalent questions are these:

B* Az =Jz (z € tp)

Az = B*Jz (z € lp)
(Az)(y) = (B*Jz)(y)  (z €6, yely)
(Az)(y) = (Jz)(By) (x €l yely)
(Az)(y) = (By)(z) (z€lp, yel)

The final assertion is true because both sides of the equation are by definition
Y ner z(n)y(n). .
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Theorem 2. A closed linear subspace in a reflexive Banach space
is reflexive.

Proof. LetY be a closed subspace in a reflexive Banach space X. Let J : X —
X** be the natural map. Define R: X* — Y* by the equation R¢ = ¢|Y. (This
is the restriction map.) Let f € Y**. Define y = J~1(f o R). We claim that
y € Y. Suppose that y ¢ Y. By a corollary of the Hahn-Banach Theorem, there
exists ¢ € X* such that ¢(y) # 0 and ¢(Y) = 0. Then it will follow that R¢ =0
and that ¢(y) = ¢(J " (foR)) = (fo R)(¢) = 0, a contradiction. Next we claim

that for all ¢ € Y, F() = ¥(y). Let ¢ be a H~ahn—Banagh extension of ¥ in
X*. Then ¢ = Ry and f(v) = f(R¢) = (foR)(¢) = (Jy)(¥) = ¥(y) = ¥(y). u

Theorem 3. A Banach space is reflexive if and only if its conjugate
space is reflexive.

Proof. Let X be reflexive. Then the natural embedding J : X — X** is
surjective. Let ® € X***, and define ¢ € X* by the equation ¢ = ® o J. Then
for arbitrary f € X** we have f = Jz for some z, and consequently,

f(¢) = (Jz)(¢) = 8(z) = (® 0 J)(x) = ®(Jz) = O(f)

Thus ® is the image of ¢ under the natural map of X* into X***. This natural
map is therefore surjective, and X* is reflexive.

For the converse, suppose that X* is reflexive. By what we just proved,
X** is reflexive. But J(X) is a closed subspace in X**, and by the preceding
theorem, J(X) is reflexive. Hence X is reflexive (being isometrically isomorphic
to J(X)). ]

Eberlein—-Smulyan Theorem. A Banach space is reflexive if and
only if its unit ball is weakly sequentially compact.

Proof. (Partial) Let X be reflexive, S its unit ball, and [y,] a sequence in
S. We wish to extract a subsequence [ynz] such that y,, — y € S. To start,
let Y be the closure of the linear span of {y;,y2,...}. Then Y is a closed and
separable subspace of X. By Theorem 2, Y is reflexive, and so Y = Y**. Since
Y** is separable, so is Y*. Let {¢1,%2, ...} be a countable dense set in Y*. Since
[%1(yn)] is bounded, there exists an infinite set N; C N such that limpen, ¥1(¥n)
exists. Proceeding as we did in the proof Theorem 10, Section 1.9, page 57, we
find a subsequence yy, such that ¢ (yn,) converges for all ) € Y*. By a corollary
of the uniform boundedness theorem, there is an element f of Y** such that
Y(Yn;) = f(¢) for all Y € Y*. Since Y is reflexive, f(¢) = ¥(y) for some y € Y.
Hence ¢ (yn;) — ¥(y) for all ¢ € Y. Now if ¢ € X*, then ¢|Y € Y. Hence

O(yn;) = (&Y )(yn;) = (4lY)(y) = 8(y)
Thus yn, — y. By a corollary of the Hahn-Banach Theorem, ||y|| < 1.

The converse is more difficult, and we do not give the proof. See [Yo], page
141, or [Tay2], page 230. |
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Theorem of James. A Banach space X is reflexive if and only
if each continuous linear functional on X attains its supremum on the
unit ball of X.

Proof. (Partial) Suppose that X is reflexive. Let ¢ € X*, and select z, € X
such that ||xn|| < 1and ¢(zy,) = ”¢>“ By the Eberlein-Smulyan Theorem, there
is a subsequence [z,,] that converges weakly to a point z satisfying Hz“ < 1. By
the definition of weak convergence,

8(x) = lim o(as,) = |l
The converse is more difficult, and we refer the reader to [Hol], page 157. &

One application of the second conjugate space occurs in the process of com-
pletion. If X is a normed linear space that is not complete, can we embed it
linearly and isometrically as a dense set in a Banach space? If so, such a Banach
space is termed a completion of X. The Cantor method of completion of a
metric space is fully discussed in [KF]. The idea of that method is to create a
new metric space whose elements are Cauchy sequences in the original metric
space.

If X is a normed linear space, we can embed it, using the natural map
J, into its second conjugate space X**. The latter is automatically complete.
Hence J(X) can be regarded as a completion of X. It can be proved that all
completions of X are isometrically isomorphic to each other.

The Lebesgue spaces Lpla,b] can be defined without knowing anything
about Lebesgue measure or integration. Here is how to do this. Consider the
space Cla,b] of all continuous real-valued functions on the interval [a,b]. For
1 < p < 0o, we introduce the norm

el = [ [ etopas]

In this equation, the integration is with respect to the Riemann integral. The
space Cla, b], endowed with this norm, is denoted by Cpla, b]. It is not complete.
Its completion is Lpla, b]. Thus if J is the natural map of Cpla, b] into its second
conjugate space, then

LP[a’ b] = J(Cp[a’b])

Problems 1.10

1. Use the fact that ¢ = £; and £} = £ to prove that the successive conjugate spaces of
co are all nonreflexive.

2. Find a sequence in the unit ball of ¢o that has no weakly convergent subsequence.
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2.1 Geometry

Hilbert spaces are a special type of Banach space. In fact, the distinguishing
characteristic is that the Parallelogram Law is assumed to hold:

le = oll” + flz+oll” = 2ljel|” + 2]

This succinct description gives no hint of the manifold implications of that as-
sumption. The additional structure available in a Hilbert space makes it the
preferred domain for much of applied mathematics! We pursue a more tradi-
tional approach to the subject, not basing everything on the Parallelogram Law,
but using ideas that are undoubtedly already familiar to the reader, in particular
the dot product or inner product of vectors. An inner-product space is a
vector space X over the complex field in which an inner product (z,y) has been
defined. We require these properties, for all z, y, and z in X:

(1) {z,y) is a complex number
2) (z,y) = (y,z) (complex conjugate)
(3) (az,y) —a(w y) «a€C
(4) [@a)>0 if  z#0

(5) (z+y, ) = (z,2) + (y,2)
The term “pre-Hilbert space” is also used for an inner-product space. Occa-
sionally, we will employ real inner-product spaces and real Hilbert spaces. For
them, the scalar field is R, and the inner product is real-valued. However, some
theorems to be proved later are valid only in the complex case.

61



62 Chapter 2 Hilbert Spaces

Example 1. Let X = C™ (the set of all complex n-tuples). If two points
are given in C*, say = = [z(1),z(2),...,z(n)] and y = [y(1),y(2),...,y(n)], let

(.’L’, y) = ZZ—_I x(l)m [ |
Example 2. Let X be the set of all complex-va.lued continuous functions
defined on [0, 1]. For z and y in X, define (z,y) fo x(t)y(t)dt. ]

In any inner-product space it is easy to prove that

(x+y,z+y) = (z,z) +2R{z,y) + (y,y) R = “real part”
(z,ay) = (z,y)
(z,y+2) = (z,y) +(z,2)
<Zzly> =2 (=)

In an inner-product space, we define the norm of an element x to be Hz” =
(z,z).

Theorem 1. The norm has these properties

a. ”:c” >0 if ¢#0

b. |laz|| = |e| ||z|| (x €C)

c. [{z,y)| < ||:1:|| ||y” Cauchy-Schwarz Inequality

d. |z +y| <|jz||+|ly||  Triangle Inequality

e. |z + y][2 + ||z - yH2 = 2[[:::[|2 + 2||y||2 Parallelogram
Equality

f. If (x,y) = 0, then ”z +y”2 = “z“2 + Hy“2 Pythagorean
Law.

Proof. Only c and d offer any difficulty. For c, let ”y“ =1 and write
0< {z =My, = Ay) = (z,2) = Mz,y) — My, 2) + [M*(y,9).

Now let A = (z,y) to get 0 < ||ac”2 — |{z,y)|2. This establishes c in the case
lly|| = 1. By homogeneity, this suffices. To prove d, we use c as follows:

Iz +9|” = (@ +y,2+9) = (&,2) + 1,7) + (2,9) + (1,1)
= lz]* + 2Rz, ) + [lo]* < l|]* + 2l(z,v) | + [lo]”
< [l +2)lel| ol + 191* = (]| + [l#])® .

Item e in Theorem 1 is called the Parallelogram Equality (or “Law”) because it
states that the sum of the squares of the four sides of a parallelogram is equal
to the sum of the squares of the two diagonals.
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Lemma. In an inner-product space:
a. z =0 if and only if (x,v) =0 for all v
b. x—ylfandonlylfxv):( v) for all v
c. ||l = sup{l{z, v)1 : [Jo] = 1}

Proof. 1If =0, then {(x,v) = 0 for all v by Axiom 3 for the inner product. If
{(z,v) = 0 for all v, then (z,z) = 0, and so z = 0 by Axiom 4. The condition
z =y is equivalent to x —y = 0, to {(z — y, v} = 0 for all v, and to (z,v) = (y,v)
for all v. If ||v” =1, then by the Cauchy-Schwarz Inequality, |(z,v)| < HZH If
z =0, then ||z| < |{z,v)| for all v. If z # 0, let v = z/||z||- Then ||v|| =1 and
(z,v) = ||z||. [

Definition. A Hilbert space is a complete inner-product space.

Recall the definition of completeness from Section 1.2 (page 10): It means
that every Cauchy sequence in the space converges to an element of the space.

Example 3. The space of complex-valued continuous functions on [0, 1] fur-
nished with inner product

1
(e,y) = /0 2(t)u(D) dt

is not complete. Consider the sequence shown in Figure 2.1. The sequence
of functions has the Cauchy property, but does not converge to a continuous
function.

1_1 1
277 H !

Figure 2.1
|

Example 4. We write L?[a,b] for the set of all complex-valued Lebesgue
measurable functions on [a, b] such that

/b lz(t)|2 dt < 0o

(The concept of measurability is explained in Chapter 8, Section 4, page 394.)
In L?[a,b], put (z,y) = f: x(t)y(t) dt. This space is a Hilbert space, a fact known
as the Riesz-Fischer Theorem (1906). See Chapter 8, Section 7, page 411 for
the proof. This space contains many functions that have singularities. Thus,
the function ¢ — t~1/3 belongs to L2[0, 1], but t = t~2/3 does not. [ |

In L?[a,b], two functions f and g are regarded as equivalent if they differ
only on a set of measure zero. Refer to Chapter 8 for an extended treatment
of these matters. A set of measure O is easily described: For any € > 0 we can
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cover the given set with a sequence of open intervals (ay, b,) whose total length
satisfies 3, (bn — @n) < €. An important consequence is that if f is an element
of L?, then f(z) is meaningless! Indeed, f stands for an equivalence class of
functions that can differ from each other at the point z, or indeed on any set of
points having measure 0. When f(z) appears under an integral sign, remember
that the x is dispensable: The integration operates on the function as a whole,
and no particular values f(x) are involved.

Example 5. Let (S,.A, ) be any measure space. The notation L?(S) then
denotes the space of measurable complex functions on S such that [ |f(s)|2du <
oco. In L*(S), define (f,g) = [ f(s)g(s)du. Then L?(S) is a Hilbert space. See
Theorem 3 in Section 8.7, page 411. ]

Example 6. The space ¢2 (or £;) consists of all complex sequences z
[z(1),2(2),...] such that Y |z(n)|?> < oo. The inner product is (z,y) =
Zz(n)ﬁn) This is a Hilbert space, in fact a special case of Example 5. Just
take S = N and use “counting” measure. (This is the measure that assigns to
a set the number of elements in that set.) This example is also included in the
general theory of the spaces £;, as outlined in Section 1.9, pages 54-56. (]

1

Theorem 2. If K is a closed, convex, nonvoid set in a Hilbert space
X, then to each x in X there corresponds a unique point y in K closest
to x; that is,

|z — y|| = dist(z, K) := inf{||z — v : v € K}
Proof. Put a = dist(z, K), and select y, € K so that ||z — yn|| — a. Notice
that 1(yn + ym) € K by the convexity of K. Hence ||3(¥n + ¥m) — z|| > a. By
the Parallelogram Law,
“yn - ym”2 = “(ym - z) = (yn — x)”2

= 2||yn — z||* + 2|y — || — [|4n + ¥m — 22]°

= 2|lyn — 2l + 2y — 2|* ~ 4|3 +vm) - 2|

< 2||yn - x“2 + 2”ym — a:||2 —4a%* 50

This shows that [yy] is a Cauchy sequence. Hence y, — y for some y € X. Since
K is closed, y € K. By continuity,

|l =yl = ||z = limya|| = lim [}z = ya|| = @

For the uniqueness of the point y, suppose that y; and y; are points in K of
distance « from z. By the previous calculation we have

los — el < 2llyr —2|* + 2y - 2f|* — 40® =0 .

In an inner-product space, the notion of orthogonality is important. If
(x,y) = 0, we say that the points z and y are orthogonal to each other, and we
write z L y. (We do not say that the points are orthogonal, but we could say
that the pair of points is orthogonal.) If Y is a set, the notation z L Y signifies
that z Ly forally €Y. If U and V are sets, U L V means that u L v for all
ueUandallveV.
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Theorem 3. LetY be a subspace in an inner-product space X. Let
x € X and y € Y. These are equivalent assertions:

a.z—ylY, ie,(z-yv)=0forallveY.
b. y is the unique point of Y closest to x.

Proof. If a is true, then for any u € Y we have

o= ul* = e = )+ -0l = o ol + - wll* > [l - o]

Here we used the Pythagorean Law (part 6 of Theorem 1).
Now suppose that b is true. Let u be any point of Y and let A be any scalar.
Then (because y is the point closest to x)

0< ||z —(y+ )\u)||2 - Hx - y”2 = —2R{x — y, \u) + ]/\|2||u||2

Hence _ 2
2R (Xo -0} < WP o]

If (£t —y,u) # 0, then u # 0 and we can put A = (z — y,u)/“u”2 to get a
contradiction: B . \
T} < el ,

Definition. The orthogonal complement of a subset Y in a inner-product
space X is

Yt={zeX:(z,y)=0 forall yeY}

Theorem 4. IfY is a closed subspace of a Hilbert space X, then
X=YoYL

Proof. We have to prove that Y is a subspace, that Y N YL = 0, and that
X CcY + YL If v; and vy belong to Y+, then so does ajv; + avz, since for
yey,

(y, ovy + agvz) =y, 'U]) +aa(y,v2) =0

Ifx € YNYZL, then (z,2) = 0, so z = 0. If z is any element of X, let y be
the element of Y closest to x. By the preceding theorem, z —y L Y. Hence the
equation z = y + (z — y) shows that X C Y + Y. 1

Theorem 5.  If the Parallelogram Law is valid in a normed linear
space, then that space is an inner-product space. In other words, an
inner product can be defined in such a way that (z,z) = ||:1c“2

Proof. We define the inner product by the equation

4(z,9) = [lz + 9l ~ lla — o +illz + ig]]* ~ iflz ~ i)
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From the definition, it follows that
2 2
R(z,y) = [z +yl|” - [lo -y
From this equation and the Parallelogram Law we obtain

R{u+ ) = fut o4yl - Jut v -y

= {2u+ o] + 2o ~ ffu+y—olf)
= {2lfuf* +2flo ~y)* ~ u - v +9)}

= {Jlutol* =l =ll*} + {llo +vll* = o - oI}
- {llu+ ol + e = o)~ 2full” ~ 2fglf")
+{2ll* +2llol* ~ flo +ll” ~ v -l

= 4R (u,y) + 4R(v,y)

This proves that R{u + v,y) = R(u,y) + R{v,y). Now by putting iy in place

of y in the definition of {x,y) we obtain (z,iy) = —i(z,y). Hence the imaginary
parts of these complex numbers satisfy

T(u+v,y) = —Ri{u+v,y) = R{u+v,iy)
= R(u,1y) + R{v,1y) = —Ri{u,y) — Ri{v,y)
=ZI(u,y) + Z(v,y)

(In this equation, Z denotes “the imaginary part of.”) Thus we have fully es-
tablished that (u + v, y) = (u,y) + (v,y). By induction, we can then prove that
(nz,y) = n{z,y) for all positive integers n. From this it follows, for any two
positive integers m and n, that

(Be) = En(%0) = R

By continuity, we obtain (Az,y) = A{z,y) for any A > 0. From the definition,
we quickly verify that

(".’L‘,y) = —<$7y> and <’l$,y> = Z((L‘, y)
Hence (Az,y) = Az, y) for all complex scalars A. From the definition we obtain
4z, 2) = ||2a||* +ifle +iz|)” ~ il|z - iz||?
= 4l + a1+ iz - i1 — i a]|* = 4[|
Finally, we have
4(,2) = ly + 2| = lly ~ 2|* +illy + iz||* ~ ifly — iz}
=llz 4ol ~ e = olf" +i - ity + i2)|* ~ iflity — i)
=llz +u[* = llz ~ ol + il i||* ~ iflz + i)
= 4(z,y) .
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In an inner-product space, the angle between two nonzero vectors can be
defined. In order to see what a reasonable definition is, we recall the Law of
Cosines from elementary trigonometry. In a triangle having sides a,b,c and
angle 6 opposite side ¢, we have

c? =a% +b% — 2abcosb

Notice that when 6 = 90°, this equation gives the Pythagorean rule. In an
inner-product space, we consider a triangle as shown in Figure 2.2.

Figure 2.2

We have

Iz —y|” = (€ -y, - y) = (z,2) — (z,9) - ¥,2) + (¥,y)
= llz]” + lyll” - 2R(z, )

On the other hand, we would like to have the law of cosines:

2
e = oll” = llz]]* + 1ol ~ 2lllly]] cose

Therefore, we define cosd so that ||z|| ||y|| cos6 = R(z,y) Thus
0 = Arccos M
[yl

The “principal value” of Arccos is used; it is an angle in the interval [0,7]. Is

the definition proper? Yes, because the number ’R(;v,y)HzH_IHyH_1 lies in the
interval [—1,1], by the Cauchy-Schwarz inequality. Other definitions for the
angle between two vectors can be given. See [Ar], pages 87-90.

There are many sources for the theory of Hilbert spaces. In addition to the
references indicated at the end of Section 1.1, there are these specialized texts:
[AG], [Ar], [Berb], [Berb2], [DM], [Hal2], [Hal3], [St], and [Youn].

Problems 2.1

1. Verify that Example 1 is an inner-product space.

2. Verify that Example 2 gives an inner product. Give all details, especially for the fourth
axiom.

3. Prove the four equations stated in the text just after Example 2.

4. Pix z and y in an inner-product space, and determine the value of A for which ||z — Ay|f
is a minimum.

5. Prove the Parallelogram Law.
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. Let K be a convex set in an inner-product space. Let z be a point at distance a from

K. Prove that the diameter of the set
{zeK:|z-z2|| La+}

is not greater than 2v/2a6 + 62. The diameter of a set S is sup,, ,eg [Ju —v||.

. Prove that in an inner-product space if ||z|| = 1 < ||y]|, then ||(z — y/llyDI| < llz — ¥]|-

. Prove that in an inner-product space X, the mapping = — (z,v) is continuous. (Here v

can be any fixed vector in the space.) Prove that on X X X the mapping (z,y) — (z,y)
is continuous.

. In an inner-product space X, let M = {x € X : (z,v) =0}, where v is a fixed, nonzero

vector. Show that M is a closed subspace. Prove that M has codimension 1.

For any subset M of an inner product space X, define ML = {z € X : (x,m) = 0 for all
m € M}. Prove that M+ is a closed subspace and that M N M~ is either & (the empty
set) or 0. (Here O denotes the zero subspace, {0}.)

Prove that |(x,y)| = ||z]| ||y]| if and only if one of the vectors = and y is a multiple of
the other.

Let X be any linear space, and let H be a Hamel basis for X. Show how to use H to
define an inner product on X and thus create an inner-product space.

Let A be an n X n matrix. In the real space R™, define (z,y) = yT Az. (Here we interpret
elements of R™ as n.x 1 matrices. Thus y7 is a 1 xn matrix.) Find necessary and sufficient
conditions on A in order that our definition shall produce a genuine inner product.

Let X be the space of all “finitely nonzero sequences” of complex numbers. Thus z € X if
z:N— Rand {n: z(n) # 0} is finite. For z and y in X, define (x,y) = E:o:l z(n)y(n).
Prove that X is not a Hilbert space.

Let X = R?, and define an inner product between vectors z = [z(1),z(2)] and y =
[¥(1),y(2)] by the equation

(z,y) = 2z(1)y(1) + z(2)y(2)
Prove that this makes X a real inner-product space. Let
Y={yeX:yQ1)-y(2) =0}

Find the point y of Y closest to z = [0,1]. Draw an accurate sketch showing all of this.
Explain why x — y is not perpendicular to Y. Does this contradict Theorem 57 Draw a
sketch of the unit ball.

Prove or disprove this analogue of Theorem 4: If Y is a subspace of a Hilbert space X,
then X =Y @Y.

Let z and y be points in a real inner-product space such that ||z + y||* = ||z||* + ||y]|>.
Show that = L y. Show that this is not always true in a complex inner-product space.

In an inner-product space, prove that if ||z,|| = ||y]| and (zn,y) = ||y]|%, then z, — y.

. . . 2 .
Prove or disprove: In a Hilbert space, if 3~ | ||za|° < oo, then the series 3> zn
converges.

Find all solutions to the equation (z, a)c = b, assuming that a, b, and c are given vectors
in an inner-product space.

Indicate how the equation Ax = b can be solved if the operator A is defined by Az =
Z?:1<z’ a;)c;. Describe the set of all solutions.

Find all solutions to the equation z + (z,a)c = b.

Use Problem 22 to solve the integral equation z(s) + fol z(t)t?s dt = cos s.
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Let v = [v(1),v(2),...] be an element of £2. Prove that the set {x € £2 : |z(n)| < |v(n)|
for all n} is compact in £2.

Prove that if M is a closed subspace in a Hilbert space, then M+1 = M.

Prove that if M = ML for every closed linear subspace in an inner-product space, then
the space is complete.

Prove that if M and N are closed subspaces of a Hilbert space and if M L N, then
M + N is closed.

Consider the mapping A in Problem 21. Find necessary and sufficient conditions on a;
and ¢; in order that A have a fixed point other than 0.

In a Hilbert space, elements w, u;, and v; are given. Show how to find an z such that
n
r=w+ Z(z,vi)ui
i=1

In a Hilbert space, let ||znl] = ¢, llynll = ¢, and {(zn,yn) — c2. Prove that ||zn —yn|| —
0. Then make two generalizations. Is there any similar result for unbounded sequences?

If M C N, then N+ C M~L. Prove this.

Let K be a closed convex set in a Hilbert space X. Let € X and let y be the point of K
closest to . Prove that R{z —y,v —y) < 0 for all v € K. Interpret this as a separation
theorem, i.e., an assertion about a hyperplane and a convex set. Prove the converse.

Prove that if a; 2> 0 and 221 a; < 0o, then

o] 2 o
(L) <Xa
=0 =1

The Banach space £! consists of sequences [z1, 2, ...] for which Z |zn| < co. The norm
is defined to be ||z|| = 3" |zn|. Prove that £! is dense in £2, and explain why this does
not contradict the fact that ¢! is complete.

Prove that in a real-inner product space

2
llz = gll* = llell* ~ llyll* + 2(y — =, )

In a real inner-product space, does the equation ||z + y + z||° = ||z||* + |lyll* + ||=|I
imply any orthogonality relations among the three points?

Find the necessary and sufficient conditions on the complex numbers wy, w2,...,wn in
order that the equation
n
(@,9) =) a(kyy(k) w
k=1

shall define an inner product on C™.

Prove that if z is an element of £2, then for all natural numbers n,

k
inf [o(k)| ) lz(3)| =0

j=1
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39. Let K be a closed convex set in a Hilbert space X. For each z in X, let Pz be the point
of K closest to z. Prove that ||Pz — Py|| < ||z — y||. (Cf. Problems 2.2.24, 2.1.32.)

40. (Continuation) Prove that each closed convex set K in a Hilbert space X is a “retract”,
i.e., the identity map on K has a continuous extension mapping X onto K.

41. Let F and G be two maps (not assumed to be linear or continuous) of an inner product
space X into itself. Suppose that for all z and y in X, (F(z),y) = (z,G(y)). Prove that
if a sequence xp converges to x, and G(zn) converges to y, then y = G(z). Prove also
that F(0) = G(0) = 0.

42. Prove that in an inner product space, if A > 0, then

1
(@, 9) < Mall + 5 1vll®

2.2 Orthogonality and Bases

Definition. A set A of vectors in an inner-product space is said to be or-
thogonal if (z,y) = 0 whenever z € A, y € A, and z # y. Recall that we write
z 1 ytomean (z,y) =0,z L Stomeanthatz Lyforallye S,andU LV
tomean that z L yforallz e U and y € V.

Theorem 1. Pythagorean Law. If {z1,22,...,@n} is a finite
orthogonal set of n distinct elements in an inner-product space, then

[l =Ll

j=1

Proof. By our assumptions, x; # z; if ¢ # j, and consequently,

HixjH2:<izj , ixi>=ii(zﬁz, =ix],xj Z”z]”
j=1 Jj=1 Jj=1

i=1 Jj=11i=1

This theorem has a counterpart for orthogonal sets that are not finite, but
its meaning will require some explanation. What should we mean by the sum
of the elements in an arbitrary subset A in X? If A is finite, we know what is
meant. For an infinite set, we shall say that the sum of the elements of A is s if
and only if the following is true: For each positive € there exists a finite subset
Ao of A such that for every larger finite subset F we have

‘Z{x:xeF}—s <e

When we say “larger set” we mean only that Ay C F C A. Notice that the
definition employs only finite subsets of .A. For the reader who knows all about
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“nets,” “generalized sequences,” or “Moore-Smith convergence,” we remark that
what is going on here is this: We partially order the finite subsets of A by
inclusion. With each finite subset F' of A we associate the sum S(F') of all the
elements in F. Then S is a net (i.e., a function on a directed set). The limit of
this net, if it exists, is the sum s of all the elements of A. To be more precise,
it is often called the unordered sum over A.
When dealing with an orthogonal indexed set of elements [z;] in an inner-
product space, we always assume that x; # x; if i # j. This assumption allows
us to write z; L x; when i # j.

Theorem 2. The General Pythagorean Law.  Let [z;] be an
orthogonal sequence in a Hilbert space. The series Y x; converges if
and only if ¥ HmJHZ < oo. If} Hz‘JH2 = A < 00, then || sz|l2 =X\
and the sum Y x; is independent of the ordering of the terms.

Proof. Put S, =3 Tz;ands, =) 7 HarJH2
By the finite version of the Pythagorean Law, we have (for m > n)

2 i 2 & 2
1Sm = Sall* = [ 325 = 3 NIl =lsm = sl
n+1 n+1

Hence [S,] is a Cauchy sequence in X if and only if [s,] is a Cauchy sequence
in R. This establishes the first assertion in the theorem.

Now assume that A < oco. By the Pythagorean Law, ||S, ?_ Sn, and hence

in the limit we have || Zz]-||2 = A. Let u be a rearrangement of the original
series, say u = 3 Tk Let U, =37 Tk By the theory of absolutely convergent

L 2 . .
series in R, we have ) “xk]H = A. Hence, by our previous analysis, U, — u

and Hu“2 = A. Now compute

osur= (5, $2) -3

i=1 j=11

NgE

2
E
1

i

We let n — 0o to get (4, Sm) = Y 1oy ||x1||2 Then let m — oo to get (u,z) = A,
where x = lim S,,,. It follows that = u, because

||:c—uH2 = ||z“2 - 2R{x,u) + Hu“2 =A-2A+A=0 ]

Definition. A set U in an inner-product space is said to be orthonormal if
each element has norm 1 and if (u,v) = 0 when u,v € U and u # v. If the set U
is indexed in a one-to-one manner so that U = [u; : i € I], then the condition of
orthonormality is simply (u,,u;) = 8;;, where, as usual, 4;; is 1 when ¢ = j and
is 0 otherwise. If an indexed set is asserted to be orthonormal, we shall always
assume that the indexing is one-to-one, and that the equation just mentioned
applies.

If [v; : i € I] is an orthogonal set of nonzero vectors, then [vy/||v;| : i € 1]
is an orthonormal set.



72 Chapter 2 Hilbert Spaces

Theorem 3. If [y1,Y2,---,Yn] Is an orthonormal set in an inner-
product space, and if Y is the linear span of {y; : 1 < i < n}, then for
any z, the point in Y closest to z is Z:;l(z, Yi)Vi-

Proof. Lety=3 i ;(z,vi)y;- By Theorem 3 in Section 2.1, page 65, it suffices
to verify that z —y L Y. For this it is enough to verify that « — y is orthogonal
to each basis vector yx. We have

(z—yuk) = (T, y) — <Z(w,yi)yi,yk> = (2, ye) — 3 (2, Yi)(¥ir k)

1

= (z,9%) — D _ (%, 9:)0k = (T, ) — (@, ) =0 . ]

)

The vector y in the above proof is called the orthogonal projection of z onto
Y. The coefficients (z,y;) are called the (generalized) Fourier coefficients of
x with respect to the given orthonormal system. The operator that produces
y from z is called an orthogonal projection or an orthogonal projector.
Look ahead to Theorem 7 for a further discussion.

Corollary 1. If z is a point in the linear span of an orthonormal
set [yly Y2,... 7yn] then x = z;l:l(x, yl)?h

Theorem 4. Bessel’s Inequality. If[u; : i € I] is an orthonormal
system in an inner-product space, then for every z,

>zl < le]”

Proof. For j ranging over a finite subset J of I, let y = 3 (z, u;)u;. This vector
y is the orthogonal projection of x onto the subspace U = span(u; : j € J]. By
Theorem 3, x — y L U. Hence by the Pythagorean Law

lzl|* = ll@=s)+ol* = o=l +llol* > lloll” = 3 Il wpdusl|” = 3 1w, uj) P

This proves our result for any finite set of indices. The result for I itself now
follows from Problem 4. ]

Corollary 2. If [uy,us,...] is an orthonormal sequence in an
inner-product space, then for each z, lim,_,o (z,u,) = 0.

Corollary 3. If [u; : © € I] is an orthonormal system, then for
each  at most a countable number of the Fourier coefficients (z,u;)
are nonzero.

Proof. Fixing z, put J, = {i € I : |{(z,u;)| > 1/n}. By the Bessel Inequality,

lzl” > 3 > S 1/n? = (# J,) /n?

]EJn jEJn
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Hence J,, is a finite set. Since

{i:{z,u;) #0} = U Jn

n=1

we see that this set must be countable, it being a union of countably many finite
sets. |

Let X be any inner-product space. An orthonormal basis for X is any
maximal orthonormal set in X. It is also called an “orthonormal base.” In this
context, “maximal” means not properly contained in another orthonormal set.
In other words, it is a maximal element in the partially ordered family of all
orthonormal sets, when the partial order is set inclusion, C. (Refer to Section
1.6, page 31, for a discussion of partially ordered sets.)

Theorem 5. Every nontrivial inner-product space has an orthonor-
mal basis.

Proof. Call the space X. Since it is not 0, it contains a nonzero vector .
The set consisting solely of z/||z|| is orthonormal. Now order the family of
all orthonormal subsets of X in the natural way (by inclusion). In order to use
Zorn’s Lemma, one must verify that each chain of orthonormal sets has an upper
bound. Let C be such a chain, and put A* = |J{A4 : A € C}. It is obvious that
A* is an upper bound for C, but is A* orthonormal? Take x and y in A* such
that £ #£y. Say x € A; € C and y € A, € C. Since C is a chain, either 4; C A;
or A C A;. Suppose the latter. Then z,y € A;. Since A, is orthonormal,
(z,y) = 0. Obviously, H:z:” = 1. Hence A* is orthonormal. [}

Theorem 6. The Orthonormal Basis Theorem. For an or-
thonormal family {u;] (not necessarily finite or countable) in a Hilbert
space X, the following properties are equivalent:

[u;] is an orthonormal basis for X.

Ifz € X and z L u; for all i, then z = 0.

Foreachz € X, z =) (z,u;)u;.

For each x and y in X, (z,y) = Y_(z,u;)(y, us).

For each z in X, ||:E||2 = 3" |{z,u;)|?. (Parseval Identity)

P Ao TP

Proof. To prove that a implies b, suppose that b is false. Let £ # 0 and
z L u; for all i. Adjoin z/||z|| to the family [u;] to get a larger orthonormal
family. Thus the original family is not maximal and is not a basis.

To prove that b implies ¢, assume b and let  be any point in X. Let
y = Y. (z,u;)u;. By Bessel’s inequality (Theorem 4), we have

> i wihuall” = 3l wl? < ]

By Theorem 2, the series defining y converges. (Here the completeness of X is
needed.) Then straightforward calculation (as in the proof of Theorem 3) shows
that £ —y L u; for alli. By b, z —y = 0.
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To prove that ¢ implies d, assume ¢ and write

=) (mudu Y=Y (yuu
Straightforward calculation then yields (z,y) = Y_(z, u;){y, u;).
To prove that d implies e, assume d and let y =  in d. The result is the
assertion in e.
To prove that e implies a, suppose that a is false. Then [u;] is not a maximal
orthonormal set. Adjoin a new element, z, to obtain a larger orthonormal set.

Then 1 = “ac“2 # 3" |{z,u;))? = 0, showing that e is false. ]

Example 1. One orthonormal basis in ¢2 is obtained by defining un(j) = dn;-.
Thus
uy=[1,00...], u2=1[0,1,0,...], etc

To see that this is actually an orthonormal base, use the preceding theorem, in
particular the equivalence of a and b. Suppose z € ¢2 and {z,u,) = 0 for all n.
Then z(n) = 0 for all n, and z = 0. (]

Example 2. An orthonormal basis for L?[0,1] is provided by the functions
un(t) = €*™*" where n € Z. One verifies the orthonormality by computing the
appropriate integrals. To show that [u,] is a base, we use Part b of Theorem 6.
Let z € L?[0,1] and z # 0. It is to be shown that (z,u,) # 0 for some n. Since
the set of continuous functions is dense in L?, there is a continuous y such that
”x—y“ < “x||/5 Then Hy“ > Hx“ - ||x—y|| > é”x” By the Weierstrass
Approximation Theorem, the linear span of [u,] is dense in the space C|0, 1],
furnished with the supremum norm. Select a linear combination p of [u,] such
that [[p— ]|, < l2]/5. Then [lp— y]| < [l]}/5. Hence [l > ]| - lv ~ o] >
3”z” Then

iz, p) = [p,P)| = [y — P, p)| — (= — , p)|
> lIpll* = lly = 2l lpll = ll= = Il |f| >0
Thus it is not possible to have {(z,u,) = 0 for all n. ]

Recall that we have defined the orthogonal projection of a Hilbert space
X onto a closed subspace Y to be the mapping P such that for each x € X, Pz
is the point of Y closest to z.

Theorem 7. The Orthogonal Projection Theorem. The
orthogonal projection P of a Hilbert space X onto a closed subspace
Y has these properties:

It is well-defined; i.e., Px exists and is unique in Y.
It is surjective, i.e., P(X) =Y.

It is linear.

IfY is not 0 (the zero subspace), then HP“ =1.
x—Px LY forall x.

e U
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P is Hermitian; i.e., (Pz,w) = (z, Pw) for all z and w.

If [y;] is an orthonormal basis for Y, then Pr = (z,y;)y;.
P is idempotent; i.e., P? = P.

Py=yforallyeY. Thus P|Y = Iy.

. 2 2 2

io Yl = 1P + }o - Pel”

TR o

-
.

Proof. This is left to the problems. (]

The Gram-Schmidt process, familiar from the study of linear algebra, is an
algorithm for producing orthonormal bases. It is a recursive process that can be
applied to any linearly independent sequence in an inner-product space, and it
yields an orthonormal sequence, as described in the next theorem.

Theorem 8. The Gram—Schmidt Construction. Let
[v1,v2,v3,...] be a linearly independent sequence in an inner product
space. Having set u; = vl/Hvl H, define recursively

n—1
Un — Z <’Un,ui>ui
Up = =1 n=223,...

on - ’fjll |

1=

Then [u,u2,us,...] is an orthonormal sequence, and for each n,
span{u,uz,...,un} = span{vy,va,...,Up}.

Notice that in the equation describing this algorithm there is a normalization
process: the dividing of a vector by its norm to produce a new vector pointing
in the same direction but having unit length. The other action being carried out
is the subtraction from the vector v, of its projection on the linear span of the
orthonormal set presently available, u;,us, ..., u,—;. This action is obeying the
equation in Theorem 3, and it produces a vector that is orthogonal to the linear
span just described. These remarks should make the formulas easy to derive or
remember.

Example 3. (A nonseparable inner-product space). A normed linear space
(or any topological space) is said to be separable if it contains a countable
dense set. If an inner-product space is nonseparable, it cannot have a count-
able orthonormal base. For an example, we consider the uncountable family of
functions uy(t) = e}, where t € R and A € R. This family of functions is
linearly independent (Problem 5), and is therefore a Hamel basis for a linear
space X. We introduce an inner product in X by defining the inner product of
two elements in the Hamel base:

1 A=
(u/\vud>:5Aa:{0 /\79(;

This is the value that arises in the following integration:

1 T —_— 1 T i(A—a)t
lim ﬁ/_Tu,\(t)ug(t)dt=T]1m 5T e dt

T—oo —00 -T
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If A = o, this calculation produces the result 1. If A # o, we get 0. Elements of
X have the property of almost periodicity. (See Problem 1.) (]

Example 4. (Other abstract Hilbert spaces). A higher level of abstraction
can be used to generate further inner product spaces and Hilbert spaces. Let us
create at one stroke a Hilbert space of any given dimension. Let S be any set.
The notation C° denotes the family of all functions from S to the field C. This
set of functions has a natural linear structure, for if z and y belong to C5, z +y
can be defined by

(z +y)(s) = z(s) +y(s)

A similar equation defines Az for A € C. Within C% we single out the subspace
X of all z € CS such that

(1) > [la(s)?:s€ 8] < o0

(Here we are using the notion of unordered sum as defined previously.) This
construction is familiar in certain cases. For example, if S = {1,2,...,n}, then
the space X just constructed is the familiar space C®. On the other hand, if
S = N, then X is the familiar space ¢2. In the space X, addition and scalar
multiplication are already defined, since X C C5. Naturally, we define the inner
product by

(2) (@,y) = Z[x(s)m s € S]

Much of what we are doing here loses its mystery when we recall (from the
Corollary to Theorem 4) that the sums in Equations (1) and (2) are always
countable. The space discussed here is denoted by £2(S). ]

Example 5. (Legendre polynomials.) An important example of an orthonor-
mal basis is provided by the Legendre polynomials. We consider the space
C[-1,1] and use the simple inner product

mw=[ngMt

Now apply the Gram-Schmidt process to the monomials t — 1,¢,t2,t3,... The
un-normalized polynomials that result can be described recursively, using the
classical notation P,:
P(t)=1 P(t)=t
2n

Palt) = 2= Lp 1) -

n—1

Pas(t)  (n=23,..)

The orthonormal system is, of course, p, = P, /||Pn“ The completion of the
space C[—1,1] with respect to the norm induced by the inner product is the
space L?[—1,1]. Every function f in this space is represented in the L2—sense
by the series

F=Y (f.oe)pe
k=0
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We should be very cautious about writing

F&) = _(fipe)px(t)
k=i

(]

because, in the first place, f(t) is meaningless for an element f € L*[—1,1].
In this context, f stands for an equivalence class of functions that differ from
each other on sets of measure zero. In the second place, such an equation would
seem to imply a pointwise convergence of the series, and that is questionable,
if not false. Without more knowledge about the expansion of f in Legendre
polynomials, we can write only

/_ 11 [(6) - i<f,pk>pk(t)]2 dt—0 asn— oo

k=1

Consult {Davis] or [Sz] for the conditions on f that guarantee uniform conver-
gence of the series to f.

Problems 2.2

—

. A function f: R — C is said to be almost periodic if for every € > 0 there isan £ > 0
such that each interval of length £ contains a number 7 for which

sup|f(s+7)— f(s)] <e
s€ER

Prove that every periodic function is almost periodic, and that the sum of two almost
periodic functions is almost periodic. Refer to [Bes] and [Tay2] for further information.

2. Prove Theorem 7.
3. Prove Theorem 8. (Theorem 7 will help.)

4. Let  : I — R4, where I is some index set. Suppose that there is a number M such that
> [x;:j € J] < M for every finite subset J in I. Prove that y [z; : ¢ € I] exists and
does not exceed M. What happens if we drop the hypothesis z; 2> 07

5. Prove that the set of functions {uy : A € R}, defined in Example 3, is linearly indepen-
dent.

6. Using the inner product

1
(z,y) = / z(t)y(t) dt

1

construct an orthonormal set {ug,u1,uz2,us} where (for each j) u; is a polynomial of
degree at most j. (One can apply the Gram-Schmidt process to the functions v;(t) = t7.)

7. Prove that the functions un(t) = €™ (n = 0,41,42,...) form an orthonormal system

with respect to the inner product

@) = 5- / =(6) ¥(0) de
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8.

10.

11.

12.

13.

14.

15.

16.

17.
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Prove that the functions

cosnt n=-1,-2,-3,...
un(t) =< sinnt n=1,23,...
1/V2 n=0

form an orthonormal system with respect to the inner product

@9) == / () dt

. Prove that the Chebyshev polynomials

Tn(t) = cos(n Arccost) (-1€t<1;n=0,1,2,...)

form an orthogonal system with respect to the inner product

1
(z,y) = f z(t)y(t)(1 —t2) "2 dt

1

What is the corresponding orthonormal system? Hint: Make a change of variable t =
cos§ and apply Problem 8.

Let v1,v2,. .. be a sequence in a Hilbert space X such that span{vi,v2,...} = X. Show
that X is finite dimensional.

Prove that any orthonormal set in an inner product space can be enlarged to form an

orthonormal basis.

Let D be the open unit disk in the complex plane. The space H2(D) is defined to be the
space of functions f analytic in D and satisfying fD |f(2)]2 dz < co. In H?(D) we define
(f,9) = fD f(z) g(z) dz. Prove that the functions un(z) = 2™ (n = 0,1,2,...) form an

orthogonal system in H2(D). What is the corresponding orthonormal sequence?
If 0 < a < 8, which of these implies the other?
(@ Ylleall® <00, (b) Y llaall’ <oo.

Prove that if {v1,v2,...} is linearly independent, then an orthogonal system can be
constructed from it by defining u; = v1 and

n—1

un:vn—Z(vn,uj)uj/]|uj”2 n=23,...

=1

Illustrate the process in Problem 14 with the four vectors vg, v1,v2,vs, where v;(t) = t/
and the inner product is defined by (z,y) = fil x(t)y(t) dt.

Let [u; : i € I] be an orthonormal basis for a Hilbert space X. Let [v; : ¢ € I'] be an
orthonormal set satisfying Zi Nui — v,-||2 < 1. Show that [v;] is also a basis for X.

Where does the proof of Theorem 6 fail if X is an incomplete inner-product space? Which

equivalences remain true?



18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
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Prove that if P is the orthogonal projection of a Hilbert space X onto a closed subspace
Y, then I — P is the orthogonal projection of X onto Y +.

(Cf. Problem 12.) Let I" be the unit circle in the complex plane. For functions continuous
on I' define (f,g) = —i fl‘ f(2)g(2) Zdz. Prove that this is an inner product and that the
functions z" form an orthogonal family.

Prove that an orthogonal projection P has the property that (Pz,z) = ||Pz||2 for all z.

Let [un] be an orthonormal sequence in an inner product space. Let [an] C C and
nle |an|? < co. Show that the sequence of vectors y, = zn

=1 O has the Cauchy
property.

Let [u1,u2,...,un] be an orthonormal set in an inner product space X. What choice of
n

coefficients )\; makes the expression ||z — Z]‘=1 A;u;]| a minimum? Here z is a prescribed

point in X.

d’n
Define pn(t) = dt—n(t2 —1)" for n = 0,1,2,... Prove the orthogonality of {p, : n € N}
with respect to the inner product (z,y) = f_ll z(t)y(t) dt.

If K is a closed convex set in a Hilbert space X, there is a well-defined map P : X — K
such that ||z — Pz|| = dist(z, K) for all z. Which properties (a),...,(j) in Theorem 7
does this mapping have? (Cf. Problem 2.1.39, page 70.)

Consider the real Hilbert space X = L2[—m, 7], having its usual inner product, {z,y) =
fjﬂ z(t)y(t) dt. Let U be the subspace of even functions in X; these are functions such
that u(—t) = u(t). Let V be the subspace of odd functions, v(—t) = —v(t). Prove that
X =U+V and that U L V. Prove that the orthogonal projection of X onto U is given
by Pz = u, where u(t) = %[z(t) + z(—t)]. Find the orthogonal projection Q : X — V.
Give orthonormal bases for U and V, and express P and @ in terms of them.

Let [en] be an orthonormal sequence in a Hilbert space. Let M be the linear span of this

sequence. Prove that the closure of M is

oc oo
{Z anpen z lan)? < oo}
n=1 n=1

Let [en : n € N] be an orthonormal basis in a Hilbert space. Let [an] be a sequence
in C. What are the precise conditions under which we can solve the infinite system of

equations (x,en) = an (n € N)?
Find orthonormal bases for the Hilbert spaces in Examples 3 and 4.

What are necessary and sufficient conditions in order that an orthogonal set be linearly
independent?

A linear map P is a projection if P2 = P. Prove that if P is a projection defined on a
Hilbert space and || P|| = 1, then P is the orthogonal projection onto a subspace.

Let [un : n € N] be an orthonormal sequence in a Hilbert space X. Define

Y = {ianun :Zlanl2 < oo}

=1
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32.

33.

34.

35.

36.

37.

38.

39.
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Prove that the map a — E anun is an isometry of £2 onto Y. Prove that Y is a closed
subspace in X.

An indexed set [u; : i € I] in a Hilbert space is said to be stable if there exist positive
constants A and B such that

AY lalP <Y awl’ <BY  laf?

whenever a € ¢2(I). Prove that a stable family is linearly independent. Prove that every
orthonormal family is stable.

(Continuation) Let {u; : i € Z] be an orthonormal family. Define v; = u; + u;11. Prove
that [v; : i € Z] is stable. Generalize.

(Continuation) Let [u; : i € I] be a stable family. Let a : I — C. Prove that these
properties of a are equivalent: (1) Z lai|? < oo; (2) Zaiui converges; (3) Eai (z,u;)
converges for each z in the Hilbert space.

(Continuation) Let [u; : i € I] be an indexed family of vectors of norm 1 in a Hilbert
space. Prove that if Ei#j [{ui,u;)|® < 1, then the given family is stable.

(Continuation) Prove that if [u; : i € I] is stable, then {3 a;u; : a € £2(1)} is a closed
subspace.

Let [z1,Z2,...,2n] be an ordered set in an inner-product space. Assume that it is
orthogonal in this sense: If x; # z;, then (x;,z;) = 0. Show by an example that the
Pythagorean law in Theorem 1 may fail.

(Direct sums of Hilbert spaces). For n = 1,2,3,... let X, be a Hilbert space over the
complex field. The direct sum of these spaces is denoted by @:021 Xn, and its elements
are sequences [n : n € N], where zn € Xpn and ) > | lzn]|® < co. Show how to make
this space into a Hilbert space and prove the completeness.

This problem gives a pair of closed subspaces whose sum is not closed. Let X be an
infinite-dimensional Hilbert space, and let {un} be an orthonormal sequence in X. Put

o
1 n? —1 1
Un = U2n Wn = U2n+1 Zn = —vp + ————wp o = E —Un
n n n
n=1

Let W and Z denote the closed linear spaces generated by {wn} and {z,}. Prove that
(1) All three sequences {vn}, {wn}, {2n} are orthonormal.
(2) The vector z¢ is well-defined; i.e., its series converges.
(3) The vector zo is in the closure of W + Z.
(4) If z € Z, then (z,vn) = (2, 2n)/n.
(5) If w e W, then (w,vn) =0.

(6) If xg = w + 2z, where w € W and z € Z, then
1=n(z0,vn) = n{w+z,vn) = (z,2n) > 0

This contradiction will show that zo ¢ W + Z.
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40. Prove that an orthonormal set in a separable Hilbert space can have at most a countable
number of elements. Hint: Consider the open balls of radius % centered at the points in
the orthonormal set.

41. Let [u, ] be an orthonormal base in a Hilbert space. Define vp, = 271/2(ugp, + uzn+1)-
Prove that [vn] is orthonormal. Define another sequence [wn ] by the same formula,
except + is replaced by —. Show that the v-sequence and the w-sequence together
provide an orthonormal basis for the space.

42. Let X and Y be measure spaces, and f € L2(X x Y). Let [u;] be an orthonormal basis
for L?(X). Prove that for suitable v; € L?(Y), we have f(z,y) = Z ui(z)vi(y).

2.3 Linear Functionals and Operators

Recall from Section 1.5, page 24, that a linear functional on a vector
space X is a mapping ¢ from X into the scalar field such that for vectors z,y
and scalars a, b,

¢(az + by) = ag(z) + bg(y)

If the space X has a norm, and if

(1) ”81"121 |¢(z)| < o0

we say that ¢ is bounded, and we denote by ||¢|| the supremum in the inequality
(1). (Boundedness is equivalent to continuity, by Theorem 2 on page 25.)

The bounded linear functionals on a Hilbert space have a very simple form,
as revealed in the following important result.

Theorem 1. Riesz Representation Theorem. Every continuous
linear functional defined on a Hilbert space is of the form z — (z,v)
for an appropriate vector v that is uniquely determined by the given
functional.

Proof. Let X be the Hilbert space, and ¢ a continuous linear functional. De-
fineY = {z € X : ¢(z) = 0}. (This is the null space or kernel of ¢). If Y = X,
then ¢(x) = 0 for all z and ¢(z) = (z,0). If Y # X, then let 0 £ u € Y. (Use
Theorem 4 in Section 2.1, page 65.) We can assume that ¢(u) = 1. Observe
that X = Y @ Cu, because z = z — ¢(z)u + ¢(z)u, and = — ¢(z)u € Y. Define
v= u/||u||2 Then

(z,0) = (z — Bz}, v) + (B(x)u, v) = $(x) (v, v) = Bz){u, u)/|[u]|” = ¢(z) u

Example 1. Let X be a finite-dimensional Hilbert space with a basis
[u1,u2,...,un], not necessarily orthonormal. Each point z of X can be rep-
resented uniquely in the form z =} j Aj(z)u;, and the )A; are continuous linear
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functionals. (Refer to Corollary 2 in Section 1.5, page 26.) Hence by Theorem 1
there exist points v; € X such that

n

m:Z(z‘,vj)uj reX
=1

Since u; = Z;’:l(ui, v;)u;j, we must have (u;,v;) = d;;. In this situation, we say
that the two sets [uj,usg,...,u,] and vy, ve,...,v,] are mutually biorthogonal
or that they form a biorthogonal pair. See [Brez]. ]

Before reading further about linear operators on a Hilbert space, the reader
may wish to review Section 1.5 (pages 24-30) concerning the theory of linear
transformations acting between general normed linear spaces.

Example 2. The orthogonal projection P of a Hilbert space X onto a closed
subspace Y is a bounded linear operator from X into X. Theorem 7 in Sec-
tion 2.2 (page 74) indicates that P has a number of endearing properties. For
example, ”P” = 1. ]

Example 3. 1t is easy to create bounded linear operators on a Hilbert space X .
Take any orthonormal system [u;] (it may be finite, countable, or uncountable),
and define Az = Y, Z]‘ ai;{x,u;j)u;. If the coefficients a;; have the property
> 2= laij|* < oo, then A will be continuous. ]

Theorem 2. Existence of Adjoints. If A is a bounded linear
operator on a Hilbert space X (thus A : X — X), then there is a
uniquely defined bounded linear operator A* such that

(Az,y) = (z,A™y)  (z,y€ X)

Furthermore, ||A*

= Al

Proof. For each fixed y, the mapping  — (Az,y) is a bounded linear func-
tional on X:

(A(Az + pz),y) = Mz + pAz,y) = \Az,y) + p(Az,y)
[(Az, y)| < ||| ]| < [|A] fl[| lv]|

Hence by the Riesz Representation Theorem (Theorem 1 above) there is a unique
vector v such that (Az,y) = (z,v). Since v depends on A and y, we are at liberty
to denote it by A*y. It remains to be seen whether the mapping A* thus defined
is linear and bounded. We ask whether

A*(Ay + pz) = AA*y + pA*z
By the Lemma in Section 2.1, page 63, it would suffice to prove that for all z,

(z, A" (M\y + pz)) = (z,\A*y + pA*z)
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For this it will be sufficient to prove
(z, A*(\y + pz)) = Mz, A*y) + filz, A*2)
By the definition of A*, this equation can be transformed to
(Az, Ny + pz) = XAz, y) + i{Az, 2)

This we recognize as a correct equation, and the steps we took can be reversed.
For the boundedness of A* we use the lemma in Section 2.1 (page 63) and
Problem 15 of this section (page 90) to write

“A* = sup ||A*y|| = sup sup |(z,A"y)|
lyll=1 lyll=1 [=l=1
= sup sup |(Az,y)| = sup ||Az| =4
llzll=1 [lyll=1 lizf=1
The uniqueness of A* is left as a problem. (Problem 11, page 89) ]

The operator A* described in Theorem 2 is called the adjoint of A. For
an operator A on a Banach space X, A* is defined on X* by the equation
A*¢ = ¢o A. If X is a Hilbert space, X* can be identified with X by the Riesz
Theorem: ¢(z) = (z,y). Then (A"¢)(z) = (¢0 A)(z) = ¢(Az) = (Az,y). Thus,
the Hilbert space adjoint is almost the same, and no shame attaches to this
innocent blurring of the distinction.

Example 4. Let an operator T on L?(S) be defined by the equation

(Tx)(s):/sk(s,t)x(t)dt

Here, S can be any measure space, as in Example 5, page 64. Assume that the
kernel of this integral operator satisfies the inequality

//lk(s,t)|2dtds<oo
SJS

Then T is bounded, and its adjoint is an integral operator of the same type,
whose kernel is (s,t) — k(t,s). Such operators have other attractive proper-
ties. (See Theorem 5, below.) They are special cases of Hilbert—Schmidt
operators, defined in Section 2.4, page 98.

If A is a bounded linear operator such that A = A*, we say that A is self-
adjoint. A related concept is that of being Hermitian. A linear map A on
an inner product space is said to be Hermitian if (Az,y) = (z, Ay) for all z
and y. This definition does not presuppose the boundedness of A. However,
the following theorem indicates that the Hermitian property (together with the
completeness of the space) implies self-adjointness.
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Theorem 3. If a linear map A on a Hilbert space satisfies (Az,y) =
(z, Ay) for all x and y, then A is bounded and self-adjoint.

Proof. For each y in the unit ball, define a functional ¢, by writing ¢,(z) =
(Az,y). It is obvious that ¢, is linear, and we see also that it is bounded, since
by the Cauchy—Schwarz inequality

|8y(2)] = [{Az,y)| = |(z, Ay)| < ||z]| || Av]]
Notice also that by the Lemma in Section 2.1, page 63,

sup |oy(z)] = sup |(Az,y)| = ||Az||
lyli<t llyli<t

By the Uniform Boundedness Principle, (Section 1.7, page 42),
00 > sup [|gy[| = sup sup |¢y(z)|
lyll<t lyli<1 l=ll<1

= sup sup [(Az,y)||¢y(z)|
lel<1 Iyl <1

= sup sup |[(Az,y)||dy()|
lzli <1 lyll<t

= sup sup |(Az,y)[|¢y(<)|
l=l<1 i<t

= sup sup |{dz,y)| = sup |4z = || 4]

lzll<1 flyli<1

The equation (Az,y) = (z, Ay) = (z, A*y), together with the uniqueness of the
adjoint, shows that A = A*. 1

With any bounded linear transformation A on an inner product space we
can associate a quadratic form z — (Az,z). We define

41= sup [(42,2)

Lemma 1. Generalized Cauchy—Schwarz Inequality. IfAis
a Hermitian operator, then

[(Az, )| <Al ]| [ly]]

Proof. Consider these two elementary equations:

<A(.’L‘ + y),x + Z/> = A:E :L‘) (A:c,y) (Ay,.r) + (Ay7 y>
—(A(z - y),z —y) = —(Az,z) + (Az,y) + (Ay,z) — (Ay,y)

By adding these equations and using the Hermitian property of A, we get

(1) (Az+y),z+y) — (Alz —y),z - y) = 4R(Az,y)
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From the definition of || A|| and a homogeneity argument, we obtain

(2) Az, ) <JAllz]*  (zeX)

Using Equation (1), then (2), and finally the Parallelogram Law, we obtain

[4R(Az,y)| = [(A(z +y),z +y) — (A(z — ),z — y)]

<A@z +y),z +y)| + [(Alz - y), 2 — y)]
<B4llfle +y]* + 1Al - o||”
= lA=]* +2llslf*)

Letting HxH = ||y|| =1 in the preceding equation establishes that

Rzl <Al (el = ol =

For a fixed pair z,y we can select a complex number 6 such that |§] = 1 and
0(Az,y) = |(Az,y)|. Then

(Az, y)| = [(A(62), y)| = [R(A(62),y)| < | A
By homogeneity, this suffices to prove the lemma. ]
Lemma 2. If A is Hermitian, then ||A|| = || A||

Proof. By the Cauchy-Schwarz inequality,
lAl= sup [(du,u)| < sup ||Aul|flul = sup ||Au] = 4]
flull=1 liull=1 lul=1

For the reverse inequality, use the preceding lemma to write

|A|| = sup ||Az|| = sup sup |(Az,u)|
llzll=1 lzll=1 |lyll=1

N

sup

sup | ANl l]| flyll = 1Al .
lzl=1 flyll=1

1 iyl

Definition. An operator A, mapping one normed linear space into another, is
said to be compact if it maps the unit ball of the domain to a set whose closure
is compact.

When we recall that a continuous operator is one that maps the unit ball to
a bounded set, it becomes evident that compactness of an operator is stronger
than continuity. It is certainly not equivalent if the spaces involved are infinite
dimensional. For example, the identity map on an infinite-dimensional space is
continuous but not compact.

Lemma 3. Every continuous linear operator (from one normed
linear space into another) having finite-dimensional range is compact.

Proof. Let A be such an operator, and let ¥ be the unit ball. Since A is
continuous, A(L) is a bounded set in a finite-dimensional subspace, and its
closure is compact, by Theorem 1 in Section 1.4, page 20. ]
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Theorem 4. If X andY are Banach spaces, then the set of compact
operators in L(X,Y) is closed.

Proof. Let [Ayn] be a sequence of compact operators from X to Y. Suppose
that ||An - A|| — 0. To prove that A is compact, let [x;] be a sequence in the
unit ball of X. We wish to find a convergent subsequence in [Az;]. Since A4;
is compact, there is an increasing sequence I; C N such that [Ayz; : i € [4]
converges. Since A, is compact, there is an increasing sequence I C I; such
that [Aax; : © € I3] converges. Note that [Ayz; : ¢ € I3] converges. Continue
this process, and use Cantor’s diagonal process. Thus we let I be the sequence
whose ith member is the ith member of I;, for i = 1,2,... By the construction,
[Anz; : i € I} converges. To prove that [Az; : ¢ € I] converges, it suffices to
show that it is a Cauchy sequence. This follows from the inequality

|4z: = Azs|| < [|Azi = Anzi|| + [[Anzs = Anzs| + || Anzs - Azy|
<A = Anflfloill + | Anzi = Anzsl| + (| 4n = All fJa5]|  n

Theorem 5. Let S be any measure space. In the space L%(S),
consider the integral operator T defined by the equation

(T:v)(s):/sk(s,t)a:(t) dt

If the kernel k belongs to the space L?(S x S), then T is a compact
operator from L?(S) into L%(S).

Proof. Select an orthonormal basis [u,] for L?(S), and define ap, =
{TUm,Uun). This is the “matrix” for T relative to the chosen basis. In fact,
we have for any z in L%(S), ¢ = }_,, (%, un)un, whence

Tz = Z(Tm,un)un = Z < Z(z, um)Tum,un>un

>~ n n m

-3 {; G (m,um)] n

Using the notation k, for the univariate function ¢ — k(s,t), we have

I1&||” =//]k(s,t)|2dtds:/||ks||2ds= /Z|(ks,un)|2ds
=/Z]/ks(t)un(t) dt{zds = /Z|(Tun)(s)l2ds

=3 [ITun)e) ds = 3 [T
= 2 2 Tum, )= 303 lamal?

3)

= i Bm where B, = Z Ia'mn|2
m=1 n
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Equation (3) suggests truncating the series that defines T in order to obtain
operators of finite rank that approximate T. Hence, we put

n [e 9]

Tn.’l,‘ = Z z aij <l‘, uj>ui

i=1 j=1

By subtraction,

Tx —Tphx = Z i ay; (T, uj)u;

i>n j=1

whence, by the Cauchy-Schwarz inequality (in £2!) and the Bessel inequality,

172~ Tl = 3| aiste )] < X loP Y e us) 2
k=1

i>n j=1 i>n j=1
2 > 2
<[ell* D layl = |l Y 8
i>n j=1 i>n

This shows that HT — Tn|| — 0. Since each T, is compact, so is the limit T, by
Theorem 4. ]

Theorem 6. The null space of a bounded linear operator on a
Hilbert space is the orthogonal complement of the range of its adjoint.

Proof. Let A be the operator and N'(A) its null space. Denote the range of
A* by R(A*). If z € N(A) and z is arbitrary, then

(x, A%z) = (Az,2) = (0,2) =0
Hence z € R(A*)1 and N(A) C R(A*)*. Conversely, if z € R(A*)*, then
(Az, Az) = (x, A*(Az)) =0

whence Ar = 0, z € N(A), and R(A*)*+ C N(A). B

Corollary. A Hermitian operator whose range is dense is injective
(one-to-one).

A sequence [z,] in a Hilbert space is said to converge weakly to a point
z if, for all y,
(Tn,y) = (z,7)

A convenient notation for this is , — z. Notice that this definition is in com-
plete harmony with the definition of weak convergence in an arbitrary normed
linear space, as in Chapter 1, Section 9, (page 53). Of course, the Riesz Repre-
sentation Theorem, proved earlier in this section (page 81), is needed to connect
the two concepts.
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Example 5. If [uy] is an orthonormal sequence, then u, — 0. This follows
from Bessel’s inequality,
Zl Un,Y ly“

which shows that (u,,y) — 0 for all y. 1

We say that a sequence [z,] in an inner-product space is a weakly Cauchy
sequence if, for each y in the space, the sequence [(z,,y)] has the Cauchy prop-
erty in C.

Lemma 4. A weakly Cauchy sequence in a Hilbert space is weakly
convergent to a point in the Hilbert space.

Proof. Let [z,] be such a sequence. For each y, the sequence [{y,z,)] has
the Cauchy property, and is therefore bounded in C. The linear functionals ¢,
defined by én(y) = (¥, zn) have the property

sglpl%(y)l <oo (yeX)

By the Uniform Boundedness Principle (Section 1.7, page 42), we infer that
||¢>n|| < M for some constant M. Since

|zl = sup (@, za) = ||6n] < M
llyll=1

we conclude that [z,,] is bounded. Put ¢(y) = lim,(y,z,). Then ¢ is a bounded
linear functional on X. By the Riesz Representation Theorem, there is an z for
which ¢(y) = (y, z). Hence lim,,(y,z,) = (y,z) and z,, — . ]

Many problems in applied mathematics can be cast as solving a linear equa-
tion, Az = b. For our discussion here, A can be any linear operator on a Hilbert
space, X, and b € X. Does the equation have a solution, and if it does, can
we calculate it? The first question is the same as asking whether b is in the
range of A. Here is a basic theorem, called the “Fredholm Alternative.” It is
the Hilbert space version of the Closed Range Theorem in Section 1.8, page 50.
Other theorems called the Fredholm Alternative occur in Section 7.5.

Theorem 7. Let A be a continuous linear operator on a Hilbert
space. If the range of A is closed, then it is the orthogonal complement
of the null space of A*; in symbols,

R(4) = V(A")]*

Proof. This is similar to Theorem 6, and is therefore left to the problems.
(Half of the theorem does not require the closed range.) (]
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Problems 2.3

. Let X be a Hilbert space and let A : X — X be a bounded linear operator. Let [u; : i € I]

be any orthonormal basis for X. (The index set may be uncountable.) Show that there
exists a “matrix” (a function a on I x I) such that for all z, Az = Zi ZJ. 05T, uj ;.

. Adopt the hypotheses of Problem 1. Show that there exist vectors v; such that Az =

;(@, vi)u;. Show also that the vectors v; can be chosen so that ||u;|| < [|4]|.

. Let [un] be an orthonormal sequence and let Az = Y An(Z,un)un, where [An] is

bounded. Prove that A = A* if and only if [Az] CR.

. Prove that a bounded linear transformation on a Hilbert space is completely determined

by its values on an orthonormal basis. To what extent can these images be arbitrary?

. Let X be a complex Hilbert space. Let A : X — X be bounded and linear. Prove that

if Az L z for all z, then A = 0. Show that this is not true for real Hilbert spaces.

. Let A be an operator on a Hilbert space having the form Az = Z An{Z, Un)un, where

[un] is an orthonormal sequence and [An] is a bounded sequence in C. If f is analytic
on a domain containing [An], then we define f(A)(z) to be Zf()\n)(z,un)un. For the
function f(z) = e* prove that f(A + B) = f(A)f(B), provided that AB = BA.

. Prove, without using the Hahn-Banach theorem, that a bounded linear functional defined

on a closed subspace of a Hilbert space has an extension (of the same norm) to the whole
Hilbert space.

. Let Y be a subspace (possibly not closed) in a Hilbert space X. Let L be a linear map

from X to Y such that t — Lz L Y for all z € X. Prove that L is continuous and
idempotent. Prove that Y is closed and that L is the orthogonal projection of X onto Y.

. Let A be a bounded linear operator mapping a Banach space X into X. Prove that if

[o
D leal 14" < oo
n=0

then Z:O:O cn A" is also a bounded linear operator from X into X.
An operator A whose adjoint has dense range is injective.

Prove the uniqueness of A* and that A** = A.

Prove the continuity assertion in Example 3.

Let [en] be an orthonormal sequence, [An] a bounded sequence in C, and Ar =
E,\n(;c,en)en. Show that the operators defined by the partial sums Z? A{z, ex)ex
need not converge (in operator norm) to A. Find the exact conditions on [An] for which
this operator convergence is valid. Prove that if the partial sum operators converge to
A, then A is compact.

Let X be a separable Hilbert space, and [urn] an orthonormal basis for X. Define A :
X - X by
— 1
Az = Z ;(z,un)un
n=1

Notice that A is a compact Hermitian operator. Prove that the range of A is the set

{yEX : iln(y,un)|2<oo}

n=1

20
n=1

Prove that the range of A is not closed. Hint: Consider the vector v = Z Un/n.
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. Let X and Y be two arbitrary sets. For a function f : X X Y — R, prove that

sup sup f(z,y) = sup sup f(x,y)
r€X yeY y€Y xeX

Show that this equation is not generally true if we replace sup,c x by infzex on both
sides.

Prove that if A, — A, then A}, — A*. (This is continuity of the map A — A*.)

Prove that the range of a Hermitian operator is orthogonal to its kernel. Can this
phenomenon occur for an operator that is not Hermitian?

Prove that for a Hermitian operator A, the function z — dist(z,R(A)) is a norm on
ker(A). Here R(A) denotes the range of A.

Let A be a bounded linear operator on a Hilbert space. Define [z,y] = (Az,y). Which
properties of an inner product does [, ] have? What takes the place of the Cauchy—
Schwarz inequality? What additional assumptions must be made in order that [, | be an
inner product?

Give an example of a nontrivial operator A on a real Hilbert space such that Az 1 z
for all z. You should be able to find an example in R2. Can you do it with a Hermitian
operator? (Cf. Problem 5.)

Let [un] be an orthonormal sequence in an inner product space. Let [An] be a sequence
of scalars such that the series Z Anun converges. Prove that Z [An]? < oo.

Let [un] be an orthonormal sequence in a Hilbert space. Let Az = Z:ozl an (T, un)ln,
where [an] is a bounded sequence in C. Prove that A is continuous. Prove that if [an]
is a bounded sequence in R, then A is Hermitian. Prove that if [an] is a sequence in C

such that Z |an|? < 0o, then A is compact. Suggestion: Use Lemma 3 and Theorem 4.

If [un] is an orthonormal sequence and Az = E An{Z,un)un where A, € C and A\, 4 0,
then A is not compact.

Let v be a point in a Hilbert space X. Define ¢(z) = (z,v) for all z € X. Show that the
mapping T such that Tv = ¢ is one-to-one, onto X*, norm-preserving, and conjugate
linear: T(ajvi + agvz) = a1Tv1 + a2Tvs.

Prove that if X is an infinite-dimensional Hilbert space, then a compact operator on X
cannot be invertible.

Let X be a Hilbert space. Let A : X — X be linear and let B : X — X be any map such
that (Az,y) = (z, By) for all z and y. Prove that A is continuous, that B is linear, and
that B is continuous.

Adopt the hypotheses of Problem 3, and prove that || A|| < sup,, |Anl-

Illustrate the Fredholm Alternative with this example. In a real Hilbert space, let A be
defined by the equation Az = z — A(v, z)w, where v and w are prescribed elements of
the space, and (v, w) # 0. The scalar X is arbitrary. What are A*, N(A*), R(A)? (The
answers depend on the value of \.)

Refer to Theorem 5, and assume that S = [0, 1]. Prove that if the kernel k is continuous,
then Tz is continuous, for each z in L2(S).

Let A be a bounded linear operator on a Hilbert space, and let [u] and [vn] be two
orthonormal bases for the space. Prove that if Zn Zm [(Aun,vm)|? < oo, then A is
compact. Suggestion: Base the proof on Lemma 3 and Theorem 4. Write

Az = Z(x,un}Aun = Z(z,un) Z(Aun,vm)

Define the operator T as in Theorem 5, page 86, and assume that

c://]k(s,t)]2dsdt<oo
SJS
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Prove that if [un] is an orthonormal sequence and if Tunp = Apun for each n, then

Zn 1’\n|2 <e
32. Prove Theorem 7.

33. Prove the assertion made in Example 3.

2.4 Spectral Theory

In this section we shall study the structure of linear operators on a Hilbert
space. Ideally, we would dissect an operator into a sum of simple operators or
perhaps an infinite sum of simple operators. In the latter scenario, the terms of
the series should decrease in magnitude in order to achieve convergence and to
make feasible the truncation of the series for actual computation.

What qualifies as a “simple” operator? Certainly, we would call this one
“simple”: Qx = (x,u)v, where u and v are two prescribed elements of the space.
The range of @ is the subspace generated by the single vector v. Thus, Q is an
operator of rank 1 (rank = dimension of range). We may assume that |v|| =1,
since we can compensate for this by redefining u. Every operator of rank one is
of this form.

Another example of a simple operator (again of rank 1) is Tz = a(z, u)u.
Notice that in defining the operator T there is no loss of generality in assuming
that “u” = 1, because one can adjust the scalar a to compensate. Next, having
adopted this slight simplification, we notice that T has the property Tu = au.
Thus, a is an eigenvalue of T and u is an accompanying eigenvector. From such
primitive building blocks we can construct very general operators, such as

[e e]
Lz = z a;{z, u;)u,
i=1

This goal, of representing a given operator L in the form shown, is beautifully
achieved when the operator L is compact and Hermitian. (These terms are
defined later.) We even have the serendipitous bonus of orthonormality in the
sequence [u,]. Each u, will then be an eigenvector, since

o0
Lu, = E a;j (Un, Uj)U; = Qply,
Jj=1

Definition. An eigenvalue of an operator A is a complex number A such that
A — M has a nontrivial null space. The set of all eigenvalues of A is denoted
here by A(A). (Caution: A(A) is defined differently in many books.)

If X is a finite-dimensional space, and if A: X — X is a linear map, then
A certainly has some eigenvalues. To see that this is so, introduce a basis for X
so that A can be identified with a square matrix. The following conditions on a
complex number A are then equivalent:

(i) A — AI has a nontrivial null space
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(ii) A — Al is singular

(iii) det(A — M) =0 (det is the determinant function)
Since the map A — det(A — AI) is a polynomial of degree n (if Aisann xn
matrix), we see that there exist exactly n eigenvalues, it being understood that
each is counted a number of times equal to its multiplicity as a root of the
polynomial. This argument obviously fails for an infinite-dimensional space.
Indeed, an operator with no eigenvalues is readily at hand in Problem 1.

If X\ is an eigenvalue of an operator A, then any nontrivial solution of the
equation Ar = Az is called an eigenvector of A belonging to the eigenvalue A.

Lemma 1. If A is a Hermitian operator on an inner-product space,
then:

(1) All eigenvalues of A are real.

(2) Any two eigenvectors of A belonging to different eigenvalues
are orthogonal to each other.

(3) The quadratic form z — (Axz,x) is real-valued.

Proof. Let Az = Mx, Ay=puy,x#0,y#0, A# u. Then

Mz, z) = Oz, x) = (Az,z) = (, Az) = (2, \2) = A2, T)
Thus ) is real. To see that (z,y) = 0, use the fact that A and p are real and
write

(A= p)(z,y) = (Az,y) — (z, py) = (Az,y) — (z,Ay) =0

For (3), note that (Az,z) = (z, Az) = (Az, z). ]
Lemma 2. A compact Hermitian operator A on an inner-product
space has at least one eigenvalue X such that |\| = ||A|.

Proof. Since the case A = 0 is trivial, we assume that A # 0. Put ||A| =
sup{|(Az,z)| : ||z|| = 1}. By Lemma 2 in Section 2.3 (page 85), || A|| = ||A]|.
Take a sequence of points @, such that ||z,|| = 1 and lim |[(Azn, zn)| = || A}
Since A is compact, there is a sequence of integers ny, ny, ... such that lim; Az,
exists. Put y = lim; Az,,. Then y # 0 because |[(Azn,,zn,)| = ||A]| # 0. By
taking a further subsequence we can assume that the limit A = lim(Azn,, Zn,)
exists. By Lemma 1, A is real. Then

”Ax"i - )‘x"iHQ = ||Amni||2 — MAZn,;, Tn;) = MEn;, ATn;) + XZHI"@‘”Q
Hence
0 < A, ~ g = " = X7~ 32432 = o]~

This proves that |A| < ||y||. On the other hand, from the above work we also
have
lyll = tim || Az || < lim | A]ll|n, || = [[A]] = A

Thus our previous inequality shows that 0 < lim || Azn, — Azy, || < 0, and that
[y = Azn, || < [ly = Azn, || + || Az, — Az, || =0

Thus z,;, — y/A. Finally, Ay = A(lim Az,;) = Alim Azp, = Ay, so y is in the
null space of A — AI, and A is an eigenvalue. [
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Theorem 1. The Spectral Theorem. If A is a compact Hermi-
tian operator defined on an inner-product space, then A is of the form
Az = Y Mz, ex)ex for an appropriate orthonormal sequence {ey}
(possibly finite) and appropriate real numbers A, satisfying lim Ax = 0.
Furthermore, the equations Aey = Agex hold.

Proof. 1If A =0, the conclusion is trivial. If A # 0, we let X; = X. Let A; and
e1 be an eigenvalue and unit eigenvector determined by the preceding lemma.
Thus, |A;| = ||Al|. Let X; = {z : (x,e1) = 0}. Then X is a subspace of X,
and A maps X into itself, since (Az,e;) = (z, Ae;) = (z, \ie1) = A\i1(z,e;) =0
for any z € X,. (Thus X, is an invariant subspace of A.) We consider the
restriction of A to the inner product space X5, denoted by A|X,. This operator
is also compact and Hermitian. Also, “A|X2H < ||A” If A|X, # 0, then the
preceding lemma produces A, and ey, where “62” =1, |A| = HA|X2“ < A,
es L X, Aes = Mes. We continue this process. At the nth stage we have
Al = A2l = -+ 2 |An] >0, {e1,...,en} orthonormal, and Aex = Agey for
k=1,...,n. We define X4, to be the orthogonal complement of the linear
span of [e1,...,en]. If A|X,4+1 = 0, the process stops. Then the range of A is
spanned by ey, .. ., e,. Indeed, for any z, the vector z—Y | (z, ek )ex is orthogonal
to {ei,...,es}; hence it lies in X4, and so A maps it to zero. In other words,

n

Az = Z(x, ex)Aex = Z Ak{z, ex)ex

k=1 k=1

If A|Xp41 # 0, we apply the preceding lemma to get Ap41 and en4;. It remains
to be proved that if the above process does not terminate, then limAx = 0.
Suppose on the contrary that |[A,| > € > 0 for all n € N. Then e,/\, is a
bounded sequence, and by the compactness of A, the sequence A(e,/An) must
contain a convergent subsequence. But this is not possible, since A(e,/A,) = e,
and {e,}, being orthonormal, satisfies | en — emH = +/2. In the infinite case let
Yn =T — 31 (T, ex)ex. Since yn L Y ¢, (z, exdex,

n n
lzl)* = llyn + - @ exdexll” = llyal* + 2 Itz ee)l” > [lyall”
k=1 k=1

Since |Ant1 is the norm of ||A|Xn41||, we have
||Ayn“ < A1l “?Jn“ < |An+1] ||x|| =0
Since Ay, = Az — 37 M(z, ex)ex, we have Az = limy, 3 7" Ak (z, e )ex. ]
Remark. Every nonzero eigenvalue of A is in the sequence [Ay)].

Proof. Suppose Az = Az, x # 0, A # 0, A ¢ {A\, : n € N}. Then z L e, for
all n by Lemma 1. But then Az = ) A\, (z,en)e, = 0, a contradiction. (]
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Remark. Each nonzero eigenvalue A of A occurs in the sequence
[An] repeated a number of times equal to dim{z : (A— AI)z = 0}. Each
of these numbers is finite.

Proof. Since A, — 0, a nonzero eigenvalue A can be repeated only a finite
number of times in the sequence. If it is repeated p times, then the subspace
{z : (A — M)z = 0} contains an orthonormal set of p elements and so has
dimension at least p. If the dimension were greater than p, there would exist
z # 0 such that Az = Az and (z,e,) = 0 for all n (again impossible). ]

The next theorem gives an application of the spectral resolution of an op-
erator, namely, a formula for inverting the operator A — AI when A is compact
and A is not an eigenvalue of A. (The Hermitian property is not assumed.)

Theorem 2. Let A be a compact operator (on an inner-product
space) having spectral decomposition Az = Y Ap(z,en)en. (We allow

An to be complex.) If 0 # A ¢ {\n}, then A — M is invertible, and

(z, en)

An — A"

Proof. If the series converges, then our formula is correct. Indeed, by the
continuity of A — AI we have by straightforward calculation

(A—AM)Bx=B(A- X))z =z

(A=) =-XATz+ A7) N,

where Bz is defined by the right side of the equation in the statement of the
theorem. In order to prove that the series converges, define the partial sums

The sequence [vy] is bounded, because with an application of the Pythagorean
law and Bessel’s inequality we have

[e¢]
oI Z Z |@,ex)? < 8- 2]/
k=

Since A is compact, A, — 0, by Problem 15. Thus 8 < co. Also, the sequence
[Av,] contains a convergent subsequence. But [Av,] is a Cauchy sequence, and a
Cauchy sequence having a convergent subsequence is convergent (Problem 1.2.26,
page 13). To see that [Av,] is a Cauchy sequence, write

Avn_Z/\ iz, e’“

xek)
Ak — A

/\—/\

= Ak
and
T o - 5 S e
Avy — Avy||” = M~—=| < sup |{z, ex)| (]
k=n+1 )‘k —A 1gj<00 /\'7 —A k=n+1

If an operator A is not necessarily compact but has a known spectral res-
olution (in the form of an orthonormal series), then certain conclusions can be
drawn, as illustrated in the next three theorems.
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Theorem 3. Let A be an operator on an inner—product space
having the form Az = Y o | An(z, €n)en, where {e,} is an orthonormal
sequence and [A,] is a bounded sequence of nonzero complex numbers.

Let M be the linear span of {e, : n € N}. Then M+ = ker(A).

Proof. The following are equivalent properties of a vector z:
(a) = € ker(A)

(b) ||Az|* =0
(c) E |/\n(x,en)|2 =0
(d) (z,e,) =0 for all n. 1

Theorem 4. Adopt the hypotheses of Theorem 3. The orthonormal
set {en} is maximal if and only if ker(A) = 0.

Proof. By Theorem 3, ker(A) = 0if and only if M+ = 0. (In these equations, 0
denotes the 0 subspace.) The condition M+ = 0 is equivalent to the maximality
of {e,}. Here refer to Theorem 6 in Section 2.2, page 73, and observe that the
equivalence of (a) and (b) in that theorem does not require the completeness of
the space. 1
Theorem 5. Let A be an operator on a Hilbert space such that Az =
Yo 1 An(®, en)en, where [ey] is an orthonormal sequence and [\,] is a

bounded sequence of nonzero complex numbers. If v is in the range of

A, then one solution of the equation Az =visz =Y oo A7 (v, en)en.

Proof. Since v is in the range of A, v = Az for some z. Hence

(v,em) = (Az,em) = <Z)\ z,€n) en,em> = Am(z,em)

From this we have

oo o0 )
Yot wen)? = [zen)” < 2]
n=1 n=1

This implies the convergence of the series z = Y oo | A;;1 (v, en)en, by Theorem 2
in Section 2.2, page 71. It follows that

Az—Z)\ v, en) Aen—Z(v,en)en=Zx\n(z,en)en:Az:v (]

Example 1. Consider the operator A defined on L2[0, 1] by the equation

1
(A.z')(t):/0 G(s,t)z(s)ds

where
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The eigenvalues of A are A\, = n?x?, and the corresponding eigenfunctions are
en(t) = V2sin(2nnt). This example is discussed also in Section 2.5 (page 107)
and in Section 4.7 (page 215). Theorem 5 shows how to solve the equation
Az = v when v is a prescribed function in the range of A. ]

We turn now to the topic of Fredholm integral equations of the first kind.
These have the form

(2) JRCOECEYD

In this equation, the functions K and f are prescribed. The unknown
function z is to be determined. A natural setting is the space L%(S), described
on page 64. Let us assume that the kernel K is in the class L%(S x S), so that
Theorem 5 of Section 2.3 (page 86) is applicable.

If the integral on the left side of Equation (2) were a Riemann integral on
the interval [0,1], it would be a limit of linear combinations of sections of the
bivariate function K. That is,

n . .
. 1 IN.(J
Jm 3G (0 2)=()
The sections of K are functions of s parametrized by the variable ¢:
s K'(s) = K(s,t)

Thus, we must expect the integral equation to have a solution only if f is in the
L2—closure of the linear span of the sections K*. This argument is iuformal, but
nevertheless alerts us to the possibility of there being no solution.

Adopting the notation of Theorem 5 in Section 2.3 (and its proof), we have

(Tz)(s) = / K(s,t)z(t)dt
s
The operator T thus defined from L?(S) to L?(S) is compact. (It is an example
of a Hilbert-Schmidt operator.) Its range cannot be all of L2(S), except in the

special case when L2(S) is finite dimensional. Equation (2) will have a solution
if and only if f is in the range of T. Now, as in Section 2.3,

o0 o0
Tz =Y ai(z,u)u

i=1 j=1
On the other hand, if f is in the range of T, we have
o0
(3) F= (fruu
i=1

Hence the equation Tz = f will be true if and only if Equation (3) holds and

Zaij<x,Uj) = (f,u;) (i=1,2,..)
i=1
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Putting §; = (z,u;) and B; = (f,u;), we have the following infinite system of
linear equations in an infinite number of unknowns:

Zaijéj:,b’i (i:1,2,...)
j=1

A pragmatic approach is to “truncate” the system by choosing a large integer n
and considering the finite matrix problem

n
YagM =8 ((=12..,n)
—

Here the notation 6;") serves to remind us that we must not expect 5;") to equal

(x,u;). One can define z, = Z;:l §§")uj and examine the behavior of the
sequences [r,] and [Tz,]. Will this procedure succeed always? Certainly not,
for the integral equation may have no solution, as previously mentioned.

Other approaches to the solution of integral equations are explored in Chap-
ter 4. The case of Equation (2) in which the kernel is separable or “degenerate,”
i.e., of the form

K(s,t) = Zn:ui(s)vi(t)
=1

is easily handled:

(Tz)(s) = /K s, t)x(t) dt = /Zu, s)vi(t)x(t) dt

= Z ui(3)<’U1,IE)

This shows that the range of T is the finite-dimensional space spanned by the
functions u;,us,...,u,. Hence, in order that there exist a solution to the given
integral equation it is necessary that f be in that same space: f = Y[, ciu;.
Any z such that (v;,z) = ¢; will be a solution.

Spectral methods can also be applied to Equation (2). Here, one assumes
the kernel to be Hermitian: K(s,t) = K(t,s). Then the operator T is Hermitian,
and consequently has a spectral form

(o o}

Tz = Z An{T, Un)un

n=1

in which [u,] is an orthonormal sequence. If f is in the span of that orthonormal
sequence, we write f = Y, (f,un)un. The solution, if it exists, must then be
the function z whose Fourier coefficients are (f,un)/An. If this sequence is not
an ¢2 sequence, we are out of luck! Here we are following Theorem 5 above. This
procedure succeeds if f is in the range of T'.

For compact operators that are not self-adjoint or even normal there is still a
useful canonical form that can be exploited. It is described in the next theorem.



98 Chapter 2 Hilbert Spaces

Theorem 6. Singular-Value Decomposition for Compact Op-
erators. Every compact operator on a separable Hilbert space is
expressible in the form

oo

Az = Z(x,un)vn

n=1

in which [uy] is an orthonormal basis for the space and [vy,] is an orthog-
onal sequence tending to zero. (The sequences [un] and [v,] depend on
A)

Proof. The operator A* A is compact and Hermitian. Its eigenvalues are non-
negative, because if A* Az = Bz, then

0 < (Az, Az) = (z,A* Az) = (z, Bz) = B(z, x)
Now apply the spectral theorem to A* A, obtaining
[e o]
A*Az = Z 22 (2, un Uy,
n=1
where [u,] is an orthonormal basis for the space and A2 — 0. Since we are
assuming that [u,] is a base, we permit some (possibly an infinite number) of
the A\, to be zero. In the spectral representation above, each nonzero eigenvalue

A2 is repeated a number of times equal to its geometric multiplicity. Define
v, = Au,. Then we have

(Vm, Un) = (AUm, Auy) = (up, A" Auy,) = (um,)\ﬁun) = /\ﬁénm

Hence [v,] is orthogonal, and “vn“ = A, — 0. Since [u,] is a base, we have for

arbitrary z,
00
z= z(z,un)un

n=1
Consequently,
oo [o o]
Az = Z(z‘, up)Au, = Z(m,un)vn (]
n=1 n=1

A general class of compact operators that has received much study is the
Hilbert—Schmidt class, consisting of operators A such that

Z ||Aua,||2 < 00
a

for some orthonormal basis [ua]. It turns out that if this sum is finite for one
orthonormal base, then it is finite for all. In fact, there is a better result:
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Theorem 7. Let [u,) and [vg] be two orthonormal bases for a
Hilbert space. Every linear operator A on the space satisfies

O lldua||” = ; 1 4va]”

Proof. By the Orthonormal Basis Theorem, Section 2.2 (page 73), we have

3 [ Aual* = 305 HAua, v)2 = 03 (Aua, vg)?
23 a g a

g

=33 (o, ATvp) 2 = 3 || A% vg?
B « B8

Letting {us} = {vg} in this calculation, we obtain 34 “A’Uﬁ“z =) “A*vgllz.
By combining these equations, we obtain the required result. (]

Example 2. An example of a Hilbert—-Schmidt operator arises in the following
integral equation from scattering theory:

ue) = £@) [ Glle = shwuis) dy

Here, f, G, and h are prescribed functions, and u is the unknown function. The
function h often has compact support. (Thus it vanishes on the complement
of a compact set.) It models the sound speed in the medium, and in a simple
case could be a constant on its support. The function f in the integral equation
represents the incident wave in a scattering experiment. An important concrete
case is
v etlz-yl J
u(w) = ev® [ o)y dy

In this equation, p is a unit vector (prescribed). Notice the singularity in the ker-
nel of this integral equation. Unfortunately, in the real world, such singularities
are the rule rather than the exception. ]

References for operator theory in general are [DS, vol.1I], [RS], [AG], [Hal2].

Problems 2.4

1. Let X be a Hilbert space having a countable orthonormal base [uj,ug,...]. Define an
operator A by the equation
o
Az = Z(z,un)unﬂ
n=1

What are the eigenvalues of A7 Is A compact? Is A Hermitian? What is the norm of A?

2. Repeat Problem 1 for the operator

oc
Az = Z on (T, Un)Un

n=1
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in which [ap] is some prescribed bounded real sequence. Find the conditions under which
A~ exists as a bounded linear operator.

. Repeat Problem 1 for the operator

oc

Az = Z(Iv Un+1)Un

n=1

. Repeat Problem 1 if the basisis [...,u—2,u—1,u0,u1,...]and A = Zf;_x(z,un)unﬂ.

What is A~1?

. Let Y be a subspace of a Hilbert space X, and let A: Y — X be a (possibly unbounded)

linear map such that A~ : X — Y exists and is a compact linear operator. Prove that
if (A — AI)™! exists, then it is compact.

. Prove that for a compact Hermitian operator A on a Hilbert space these properties are

equivalent:
(a) (Az,z) = 0 for all =
(b) All eigenvalues of A are nonnegative

. Prove these facts about the spectral sets: (A is defined on page 91.)

(a) A(A) =A(A%)
(b) If A is invertible, A(A71) = {A71: X € A(4)}
() A(AM) D {A": A€ A(A)} forn=1,2,3,...

. Let {e1, €2, ...} be an orthonormal system (countable or finite). Let A1, A2, ... be complex

numbers such that lim A, = 0. Define Az = Z,\n(m,en)en. Prove that the series
converges, that A is a bounded linear operator, and that A is compact. Prove also that
if the Ay are real, then A is Hermitian. Suggestion: Exploit the facts that operators of
finite rank are compact and limits of compact operators are compact.

. In the spectral theorem, when is the following equation true?

oo
2= Y lereaten
n=1

Let P be the orthogonal projection of a Hilbert space onto a closed subspace. What are
the eigenvalues of P? Give the spectral form of P and I — P.

Let A be a bounded linear operator on a Hilbert space. Prove that:
(1) A commutes with A™ forn =0,1,2,....
(2) A commutes with p(A) for any polynomial p.
(3) If A—! exists, then A commutes with A~ forn =0,1,2,3,....
(4) If (A — M)~ ! exists, then it commutes with A.

An operator A is said to be normal if AA* = A*A. Give an example of an operator
that is not normal. (The eminent mathematician Olga Tausky once observed that most
counterexamples in matrix theory are of size 2 X 2.) Are there any real 2 x 2 normal
matrices that are not self-adjoint? (Other problems on normal operators: 29, 39, 40, 41.)

Establish the first equation in the proof of Theorem 4.

If A is a bounded linear operator on a Hilbert space, then A + A* and i(A — A*) are
self-adjoint. Hence A is of the form B + iC, where B and C are self-adjoint.

Let {e1,e2,...} be an orthonormal sequence. Let Az = Z,\n(z,en)en, in which 0 <
inf |An| < sup|An| < oco. Prove that the series defining Az converges. Prove that A is
not compact. Prove that A is bounded. What are the eigenvalues and eigenvectors of A?
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Find the eigenvalues and eigenvectors for the operator Ar = —z’’ acting on the space
X ={z € L?[0,1] : 2(0) = 0 and z'(1) + yz(1) = 0}. Here v is a prescribed real number.
How can the eigenvalues be computed numerically? Find the first one accurate to 3 digits
when v = —%. Newton’s method, described in Section 3.3, can be used.

Prove that if Az = Az, A*y = py, and XA # 1, then z L y.
If A is Hermitian and z is a vector such that Az # 0, then A"z #0 forn =0,1,2,....

Every compact Hermitian operator is a limit of a sequence of linear combinations of
orthogonal projections.

If ) is an eigenvalue of A2 and A > 0, then either +vX or —V/X is an eigenvalue of A.
(Here, A is any bounded operator.) Hint: If A2z = )z, then for suitable ¢, x + cAz is
an eigenvector of A.

Consider the problem x4+ (A% —q)x = 0, (0) = 1, z’(0) = 0. Show that this initial-value
problem can be solved by solving instead the integral equation

z(t) — i / q(s)sin(A(t — s))z(s) ds = cos(At)
0

If X is an eigenvalue of A, then ||A|| 2 |A.
If A is Hermitian and p is a polynomial having real coefficients, then p(A) is Hermitian.

A bounded linear operator A on a Hilbert space is said to be unitary if AA* = A*A=1.
Prove that for such an operator, (Az, Ay) = (z,y) and [Az|| = ||z]|.

(Continuation) All eigenvalues of a unitary operator satisfy |A| = 1.

If Az = E;’;l An{Z,en)en, what is a formula for A* (k=0,1,2,...)? (The en form an
orthonormal sequence.)

Let A and B be compact Hermitian operators on a Hilbert space. Assume that AB = BA.
Prove that there is an orthonormal sequence [u,] such that

Az = Z AT, un)un Bz = an(z,un)un

Hint: If X is an eigenvalue of A, put E = {z : Az = Az}, and show that B(E) C E.
Apply the spectral theorem to B|E.

An operator A on a Hilbert space is said to be skew-Hermitian if A* = —A. Prove a
spectral theorem for compact skew-Hermitian operators. (Hint: Consider i4.)

Assume that A is “normal” (AA* = A*A) and compact. Prove a spectral theorem for
A. Use A= %(A + A*) + %(A — A*), Problem 28, and Problem 27.

Let A be a compact Hermitian operator on a Hilbert space X. Assume that all eigenvalues
of A are positive, and prove that (Az,z) > 0 for all nonzero z.

Prove that a compact operator on an infinite-dimensional normed linear space cannot be
invertible.

Let [un] be an orthonormal sequence in a Hilbert space and let [An] be a bounded sequence
in C. The operator Az = Z An(Z, un)un is compact if and only if A, — 0.

Criticize this argument: Let A be defined as in Problem 32. We show that A is surjective,
provided that A\, # O for all n. Take y arbitrarily. To find an z such that Az = y we
write the equivalent equation E An{Z, un)un = y. Take the inner product on both sides
with um, obtaining Am (z, um) = (¥, um). Thus

. Z (Y, um)
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34. Let A be a bounded linear operator on a Hilbert space. Suppose that the spectral
decomposition of A is known:

o
Az = Z)\n(z, en)en
n=1

where [en] is an orthonormal sequence. Show how this information can be used to solve
the equation Az — ux = b. Make modest additional assumptions if necessary.

35. Prove that the eigenvalues of a bounded linear operator A on a normed linear space all
lie in the disk of radius || A|| in the complex plane.

36. Prove that if P is an orthogonal projection of a Hilbert space onto a subspace, then
for any scalars a and f the operator aP + 3(I — P) is normal (i.e., commutes with its
adjoint).

37. Prove that an operator in the Hilbert—-Schmidt class is necessarily compact.

38. Prove that every operator having the form described in Theorem 6 is compact, thus
establishing a necessary and sufficient condition for compactness.

39. Find all normal 2 x 2 real matrices. Repeat the problem for complex matrices.

40. Prove that for a normal operator, eigenvectors corresponding to different eigenvalues are
mutually orthogonal.

41. Prove that a normal operator and its adjoint have the same null space.

Appendix to Section 2.4

In this appendix we consider a finite-dimensional vector space X, and discuss
the relationship between linear transformations and matrices.

Let L : X — X be a linear transformation. If an ordered basis is selected
for X, then a matrix can be associated with L in a certain standard way. (If L is
held fixed while the basis or its ordering is changed, then the matrix associated
with L will change.) The association we use is very simple. Let [ug,...,uy] be
an ordered basis for X. Then there must exist scalars a;; such that

n
(1) Luj=Zaijui (IQJSH)
i=1

The n x n array of scalars

an1 *°° Qan

is called the matrix of L relative to the ordered basis [uy,...,uy,].

With the aid of the matrix A it is easy to describe the effect of L on any
vector z. Write z = Z;;l ¢; uj. The n-tuple (c1, . . ., ¢, ) is called the coordinate
vector of z relative to the ordered basis [u,, ..., uy]. Then

n n n n n
(2) Lx:ZCjLuj=Z¢J’Z“iﬁ“i=z<zaﬁcf)“i
j=1

j=1 j=1 =1 i=1
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The coordinate vector of Lz therefore has as its entries
n
Zaijcj (1<z<n)
j=1

This n-tuple is obtained from the matrix product

ayy - Qin (&1
Ac=
An1 " Qnn Cn
If the basis for X is changed, what will be the new matrix for L? Let [vy, ..., v,]

be another ordered basis for X. Write
n

3) v=Y pyu (1<j<n)
i=1

The n X n matrix P thus introduced is nonsingular. Now let B denote the matrix
of L relative to the new ordered basis. Thus

n n n
(4) Lv; =Zbkjvkzzbkapikui (I1<j<n)
k=1 k=1 =1

Another expression for Lv; can be obtained by use of Equations (2) and (3):

(5) Lvj = z": (

i=1 k=

n

aikpkj)ui (1<j<n)
1

Upon comparing (4) with (5) we conclude that

n

(6) > pinbe; =Y awpr;  (1<i,j<n)
k=1

k=1

Thus in matrix terms,
(7) PB=AP o B=P'AP

Any two matrices A and B are said to be similar to each other if there exists
a nonsingular matrix P such that B = P~!AP. The matrices for a given linear
transformation relative to different ordered bases form an equivalence class under
the similarity relation. What is the simplest matrix that can be obtained for
a linear transformation by changing the basis? This is a difficult question, to
which one answer is provided by the Jordan canonical form. Another answer
can be given in the context of a finite-dimensional Hilbert space when the linear
transformation L is Hermitian.
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Let [ui,...,u,] be an ordered orthonormal basis for the n-dimensional
Hilbert space X. Let L be Hermitian. The spectral theorem asserts the exis-
tence of an ordered orthonormal basis [v1, . .., v,] and an n-tuple of real numbers
(A1,...,An) such that

n
(8) Lz = Z iz, vi)v;
i=1
As above, we introduce matrices A and P such that
n n
(9) LUj :Zaijui (I =Zpijui (1 <]<n)
i=1 i=1

The matrix B that represents L relative to the v-basis is the diagonal matrix
diag(A1,-..,An), as we see from Equation (8). Thus from Equation (7) we
conclude that A is similar to a diagonal matrix having real entries. More can be
said, however, because P has a special structure. Notice that

n n n n
(Djk = Gk = vk, v5) = <sz‘k i, B Drj ur> =3 pik By (s, ur)
i=1 r=1

i=1 r=1
n

n

= kB = p (P");i(P)ix = (P*P)jx
i=1 i=1

This shows that

(10) P*P=1]

(It follows by elementary linear algebra that PP* = I.) Matrices having the
property (10) are said to be unitary. We can therefore state that the matrix A
(representing the Hermitian operator L with respect to an orthonormal base) is
unitarily similar to a real diagonal matrix.

Finally, we note that if an n xn complex matrix A is such that A = A*, then
A is the matrix of a Hermitian transformation relative to an orthonormal basis.
Indeed, we have only to select any orthonormal base [uy,...,u,] and define L
by

n
Luj=Zaijui (1<]<n)
i=1

Then, of course,
n n

n
Lz = L(ZCjUj) = Zchaijui
j=1 j=1i=1
By straightforward calculation we have
(Lz,y) = (z, Ly)
A matrix A satisfying A* = A is said to be Hermitian. We have proved

therefore the following important result, regarded by many as the capstone of
elementary matrix theory:

Theorem.  Every complex Hermitian matrix is unitarily similar to
a real diagonal matrix.
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2.5 Sturm-Liouville Theory

In this section differential equations are attacked with the weapons of
Hilbert space theory. Recall that in elementary calculus we interpret integration
and differentiation as mutually inverse operations. So it is here, too, that dif-
ferential operators and integral operators can be inverse to each other. We find
that a differential operator is usually ill-behaved, whereas the corresponding in-
tegral operator may be well-behaved, even to the point of being compact. Thus,
we often try to recast a differential equation as an equivalent integral equation,
hoping that the transformed problem will be less troublesome. (This theme will
reappear many times in Chapter 4.) This strategy harmonizes with our general
impression that differentiation emphasizes the roughness of a function, whereas
integration is a smoothing operation, and is thus applicable to a broader class
of functions.

Definition. The Sturm-Liouville operator is defined by

(Az)(t) = [p(t)z' (1)) + q(t)z(t)  ie, Az=(pa’) +qz
where x is two-times continuously differentiable, p is real-valued and continu-
ously differentiable, and ¢ is real-valued continuous. The domain of the functions
z, p, and ¢ is an interval [a,b]. We permit = to be complex-valued. Let eight
real numbers «;;, B;; be specified 1 < 4,5 < 2. Assume that

p(a)(B11822 — P12821) = p(b) (11002 — 012021)

Let X be the subspace of L2[a,b] consisting of all twice continuously differen-
tiable functions z such that

auz(a) + algx’(a) + Bllflf(b) + ﬁlzm,(b) =0
anz(a) + aznt'(a) + Ba1z(b) + Bz’ (b) =0
Assume also that 811822 7# B12021 Or a11022 # 02002].

Theorem 1. Under the preceding hypotheses, A is a Hermitian
operator on X.

Proof. Let z,y € X. We want to prove that (Az,y) = (x, Ay). We compute

b b
(Az,y) - (z, Ay) = / [gAz — zAg) = / [pz') + Tz — (7Y - og3]
b
= / [@(pz') - z(p¥')']
b
- / G(pe') +7pe — 27 ~ «'p¥]

b b
= / [pz'y — pa) = [p2'y - pa7'],
= p(b) [« (b)7(b) — z(b)¥' (b)] — p(a) [z’ (a)¥(a) — z(a)¥'(a)]
= —p(b) [det w(b)] + p(a)[det w(a)]
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where w(t) is the Wroriski matrix

RECR0
“’(t)‘[x'm y’<t>]

Put also

o [au 0112] 5= [,311 ﬂu]

a1 02 P21 B2

Our hypothesis on p is that p(a)det 3 = p(b)det . The fact that z,y € X
gives us aw(a) + Sw(b) = 0. This yields (det a)[det w(a)] = (det 8)[det w(b)].
Note that det(—g8) = det(8) because S is of even order. Multiplying this by p(b)
gives us p(b) det a det w(a) = p(b) det B det w(b). By a previous equation, this is
p(a) det Sdet w(a) = p(b) det Bdet w(b). If det 8 # 0, we have p(b)det w(b) =
p(a)det w(a). If det @ # 0, a similar calculation can be used. ]

Lemma. A second-order linear differential equation
a(t)z”(t) + b(t)z'(t) + c(t)z(t) =d(t) (a<t<D)

can be put into the form of a Sturm-Liouville equation (pz')’ +qzx = f,
provided that the functions a, b, ¢ are continuous and a(t) # O for all t
in the interval [a, b].

Proof. We transform the equation az” + bz’ + cx = d by multiplying by the
integrating factor éexp / (b(t)/a(t)) dt. Thus

el ¥e 4 (b/a)x'ef bae 4 (c/a)xef be (d/a)ef b/a

or

(z'ef b/a)l + (c/a)ef bog = f

Let
p=el¥,  g=(c/a)el ¥ ’

Example 1. If Az = —2"” (ie., p(t) = —1 and ¢(t) = 0), what are the
eigenvalues and eigenfunctions? The solutions to —z” = Az are of the form
¢ sin VAt + ¢; cos VAt. Hence every complex number ) is an eigenvalue, and
each eigenspace is of dimension 2. [

Example 2. Let Az = —x” as before, but let the inner-product space be
the subspace of L2[0, 7] consisting of twice continuously differentiable functions
that satisfy £(0) = z(w) = 0. The eigenvalues are n? for n = 0,1,2,..., and the
eigenfunctions are sin n’t. [}

The next theorem illustrates one case of the Sturm-Liouville Problem. We
take p(t) = 1 in the differential equation and let 813 = B2 = @21 = gy = 0.
We assume that |a;1]| + |ai2| > 0 and |Ba1| + |B22] > 0. It is left to Problem 8
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to prove that the differential operator is Hermitian on the subspace of functions
that satisfy the boundary conditions.

Our goal is to develop a method for solving the equation Az = y, where y is
a given function, and z is to be determined. The plan of attack is to find a right
inverse of A (say AB = I) and to give £ = By as the solution to the problem.
It will turn out that the spectral theorem is applicable to B.

We assume that there exist functions u and v such that

(1) v =qu  Baju(b) + Bau'(b) =0
(2) v '=qu  anva)+apv(a)=0
3) u'(a)v(a) — u(a)v'(a) = 1

From (3) we see that u # 0 and v # 0. The left side of (3) is the Wroiiskian of
u and v evaluated at a.

In practical terms, v and v can be obtained by solving two initial-value
problems. This is often done as follows. Find ug and vy such that

ug =quo  up(d)=1 wug(b)=0
vy =que wvo{a)=0  vja)=1

The u and v required will then be suitable linear combinations of ug and vg.
Now we observe that for all s,

' (8)v(s) —u(s)v'(s) =1

This is true because the left side takes the value 1 at s = a and is constant.
Indeed,

d
= Wy —w' ) =v"v+u'v —uw” —u'v =quv—uqu=0
S

Next we construct a function g called the Green’s function for the prob-

u(s)v(t) a<t<s
g(s,t) = { 3

lem:

v(s)u(t) a
The operator A in this case is defined by
(4) Az=1"—qx

and the domain of A is the closure in Lz[a, b] of the set of all twice continuously
differentiable functions z such that

a11z(a) + a122' (a) = Ba1z(b) + Baaz’(b) = 0

Theorem 2. A right inverse of A in Equation (4) is the operator B
defined by

b
(5) (By)(s) = / o(s, tyy(t) dt
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Proof. 1t is to be proved that AB = I. Let y € Cl[a,b] and put z = By. We
show first that Ax = y. From the equation

b
o(5) = [ glo,t)y(e)d
s b
:/ u(s)v(t)y(t)dt+/ v(s)u(t)y(t) dt

s b
= u(s)/ v(t)y(t) dt + v(s)/ u(t)y(t) dt

we have

T(s)=u (s)/ y(t) dt + u(s)v(s)y(s)
b
+(6) [ ultlyle)de - vis)ulsly(s)

s b
= u/(s) / o(O)y(t) dt +v'(s) / w(t)y(t) dt

Another differentiation gives us
2(s) = u"(s) / o(O)y(t) dt -+ (s)o(s)y(s) + " (s) / w(t)y(t) dt — o' (s)u(s)y(s)

a(s)u(s) / £) dt + q(s)v(s) / (£ (t) dt + y(s) [ (s)o(s) — u(s) (5)]
= q(s)z(s) + y(s)

In the last step, the constant value of the Wronskian was substituted. Our
calculation shows that z” — qr = y or Az =y, as asserted. Hence AB = I.

It remains to prove that x € X, i.e., that x satisfies the boundary conditions.
We have, from previous equations,

b
2(a) = v(a) / w(tu(t) dt = ev(a)

and R
7'(a) = v’(a)/ u(t)y(t) dt = cv'(a)
Hence
a11z(a) + a122'(a) = ariev(a) + arzev’(a) =0

Similarly we verify that
B212(b) + Pazz’(b) =0 ]

Remark. If it is known that the homogeneous boundary-value problem has
only the trivial solution, then B is also a left inverse of A. In order to verify this,
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let x € X, y = Az, and By = z. The previous theorem shows that y = ABy =
Az and that z € X. Hence z— 2z € X and A(xz— z) = 0. It follows that z —z = 0,
so that ¢ = By = BAz.

Remark. The operator B in the previous theorem is Hermitian, because (by
Problem 9) g satisfies the equation

9(s,t) = g(t,5)

Now we apply the Spectral Theorem to the operator B. Notice that B is
compact by Theorem 5 in Section 2.3, page 86. There exist an orthonormal
sequence [u,] in L%[a,b] and real numbers A, such that

(o9}

By = Z An (y, Un)”n

n=1

Since Buy = Agu, we have ux = AgAug, and uy satisfies the boundary con-
ditions. This equation shows that uy is an eigenvector of A corresponding to
the eigenvalue 1/Ag. Since Ay — 0, 1/ — oo. Consequently, a solution to the
problem Az =y, where y is given and = must satisfy the boundary conditions,
is

00
z=By= Z)‘n(y7un>un
n=1

Example 3. Consider the boundary-value problem
Az=2"+z=y 2'(0)=z(r)=0

We shall solve it by means of a Green’s function. For the functions u and v we
can take u(t) = sint and v(t) = cost. In this case the Green’s function is

sinscost 0<t
0

atont) = {

s
<

<t<
cos ssint <s<t<w

The compact Hermitian integral operator B is given by
8 ™
(By)(s) = sin s/ costy(t)dt + cos s/ sint y(t) dt ]
0 s

Example 4. Let us solve the problem in Example 3 by using the Spectral
Theorem. The eigenvalues and eigenvectors of the differential operator A are
obtained by solving " +z = pz. The general solution of the differential equation

is
z(t) = cysiny/1 — pt+cacos/1 — p
Imposing the conditions z'(0) = z(m) = 0, we find that the eigenvalues are p, =

1-(n— %)2 and the eigenfunctions are v, (t) = cos(2n — 1)t/2. The v, are also

eigenfunctions of B, corresponding to eigenvalues A\, = 1/p, = (n —n?® + %)—1.
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Observe that the eigenfunctions v, are not of unit norm. If a, = 1/||vn||, then
[@nvp] is an orthonormal system, and the spectral resolution of B is

)
By = Z An (yv anvn)(anvn)

n=1

A computation reveals that a, = (2/7)!/2. Hence we can write

By = (2/m) Z An{Y, Un)vn
n=1

Use of this formula is equivalent to the traditional method for solving the
boundary-value problem

" +z=y 2(0)=z(xr)=0
2n-1

The traditional method starts with the functions v,(t) = cos ———— ¢, which

satisfy the boundary conditions. Then we build a function of the form z =
Yoo | enUn. This also satisfies the boundary conditions. We hope that with a
correct choice of the coefficients we will have Az = y. Since Av, = p,v,, this
equation reduces t0 Y oo | Coftn¥n = y. To discover the values of the coefficients,
take the inner product of both sides with v,,:

Z Cnbin{Vn, ¥m) = (Y, Vm)

By orthogonality, we get cmiman2 = (Y, Um) and cm = (¥, vm)plaZ,.

Notice that Theorem 2 has given us an alternative method for solving the
inhomogeneous boundary-value problem. Namely, we simply use the Green’s
function to get z:

2(s) = (By)(s) = /0 " gl () dt .

Our next task is to find out how to determine a Green'’s function for the more
general Sturm-Liouville problem. The differential equation and its boundary
conditions are as follows:

Az =(pz’) +qz =y 1z € C?a,b]
(6) anz(a) + (1121"(0) + ﬂui(b) + ,3121"(1)) =0

aglx(a) + 0122$,(0.) + ﬁglx(b) -+ ,322.’[’(1)) =0

We are looking for a function g defined on [a, b] x [a,b]. As usual, the t-sections
of g are given by g'(s) = g(s, ).
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Theorem 3. The Green’s function for the above problem is charac-
terized by these five properties:

(i) g is continuous in [a, b] X [a, b].
0
(i) a—g is continuous ina < s <t<bandina<t<s<b
(iii) For each t, gt satisfies the boundary conditions.

(iv) Ag' =0 in the two open triangles described in (ii).

im gg (s,t) = —1/p(s).

. Og
(v) thins s (s,t) — tlT ;

Proof. As in the previous proof, we take y € Cla, b] and define

b
2(s) = / ols, yy(t) dt

It is to be shown that z is in the domain of A and that Az = y. The domain of A
consists of twice-continuously differentiable functions that satisfy the boundary
conditions. Let us use ’ to denote partial differentiation with respect to s. Since

s b
2(s) = / o(s, yu(t) dt + / o(s, )y(t) dt

s

we have (as in the previous proof)

s b
2(s) = / d(s, () dt + / d(s, () dt
It follows that

b b
2(a) = / ola, tyy(t) dt 2(b) = / a(b.t)y(t) dt

b b
d@= [ daouod  <0)= / ¢ (b, t)y(t) dt

Any linear combination of z(a), (b), z’(a), and z’(b) is obtained by an integra-
tion of the same linear combination of g(a,t), g(b,t), ¢'(a,t), and ¢’(b,t). Since
g¢ satisfies the boundary conditions, so does . We now compute z”(s) from the
equation for z'(s):

s

b
2"(s) = g/(5, 5-)u(s) + / ¢ (5, yy(t) di — o' (s, 5+)(s) + / §"(s, () dt

a

b
—y(s)/p(s) + [ " (s.u(e) e
a
Here the following notation has been used:

'(s,5+) = lim ¢'(s,t '(s,5~) = lim ¢'(s,t
g'(s,5+) t,Lsg( ) g'(s,5-) thg( )
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Now it is easy to verify that Az = y. We have

Az = (pz') + qz = p'z’ + pz" + gz

Hence
b b
(Az)(s) = p'(s) / g (s, )y(t) dt + y(s) + p(s) / 9" (s, t)y(t) dt
b
(o) [ s, (o)t
b ’
—u(9)+ [ (p(s)g (5:0) + alehals, D u(t) dt = ()
because g is a solution of the differential equation. [}

Example 5. Find the Green’s function for this Sturm—Liouville problem:
=y z(0)=z'(00=0 zeC?0,1]

The preceding theorem asserts that g* should solve the homogeneous differential
equation in the intervals 0 < s <t < 1 and 0 < t < s < 1. Furthermore, g
should be continuous, and it should satisfy the boundary conditions. Lastly,
¢'(s,t) should have a jump discontinuity of magnitude —1 as ¢ passes through
the value s. One can guess that g is given by

0 0<sg<t«l
g(s,t)={
s—t 0<tg<s<l1

If we proceed systematically, it will be seen that this is the only solution. In the
triangle 0 < s <t < 1, Agt = 0, and therefore g* must be a linear function of s.
We write g(s,t) = a(t) + b(t)s. Since g* must satisfy the boundary conditions,
we have g(0,t) = (9¢/0s)(0,t) = 0. Thus a(t) = b(t) = 0 and g¢(s,t) = 0 in
this triangle. In the second triangle, 0 < t < s < 1. Again g must be linear,
and we write g(s,t) = a(t) + 8(t)s. Continuity of g on the diagonal implies that
a(t) + B(t)t = 0, and we therefore have g(s,t) = —B(t)t + B(t)s = B(t)(s — t).
The condition (9g/ds)(s,s+) — (39/9s)(s,s—) = —1/p leads to the equation
0 — B(t) = —1. Hence g(s,t) = s —t in this triangle. The solution to the
inhomogeneous boundary-value problem z” = y is therefore given by

8
o(s) = [ (s~ ule) '
0
Example 6. Find the Green’s function for the problem
-2 -2z=y z(0)=0=2z(1)

We tentatively set

™ oo, = {0
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and try to determine the functions u and v. The homogeneous differential equa-
tion has as its general solution the function

z(s) = ae™* + Be**

The solution satisfying the condition z(0) =0 is

u(s) = ae™* — ae®

The solution satisfying the condition z(1) =0 is
’U(S) — _ﬂeSG-s 4+ Be23

With these choices, the function g in Equation (7) satisfies the first four require-
ments in Theorem 3. With a suitable choice of the parameters o and (3, the
fifth requirement can be met as well. The calculation produces the following
equation involving the Wroriskian of u and v:

g'(s,54) = g'(s,5—) = u'(s)v(s) — v'(s)u(s)
= af(3 — 3e®)e’

In this problem, the function p is p(s) = ™%, because

z"(s) — '(s) = (e_sz'(s))l

Hence condition 5 in Theorem 3 requires us to choose a and § such that af =
—(3 —3€3)~! ~.0017465. Then

af(e™® —e?)(e* —e3!) 0<s<t<]
9(s,t) =
0<t<s<

aﬁ(e2s _ 63—5)(e—t _ eZt)
Example 7. Find the Green’s function for this Sturm-Liouville problem:
2/ +9r=y z(0)=z(x/2)=0

According to the preceding theorem, g should be a continuous function on the
square 0 < s,t < 7/2, and ¢* should solve the homogeneous problem in the
intervals 0 < s < t and ¢t € s < w/2. Finally, 8g/0s should have a jump of
magnitude —1 as t increases through the value s. These considerations lead us

to define
—%sin3scos3t 0<s<t
g(s,t) =

<t<
—1cos3ssin3t 0<t<s< /2

Problems 2.5

1. Find the eigenvalues and eigenfunctions for the Sturm-Liouville operator whenp =g =1

and
S
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2. Prove that an operator of the form
b
(Az)(s) = / k(s,t)z(t)dt
a

is Hermitian if and only if k(s,t) = k(t, s).

3. Find the Green'’s function for the problem

2/ -3z +2r=y z(0)=0==z(1)

4. Find the Green’s function for the problem

/' -9z=y z(0)=0=z(1)

5. Prove that if u and v are in C2{a, b}, then the function

. u(s)v(t) a<s<tLh
9(st) = v(s)u(t) a<t<s<h

has properties (i) and (ii) mentioned in Theorem 3.

6. (Continuation) Show that if
(/o) = -1

then g (in Problem 5) will have property (v) in Theorem 3.

8. Prove that if p = 1 in the Sturm-Liouville problem and 81; = B12 = a1 = a22 = 0 then
A is Hermitian.

9. Prove that the function g in Equation (4) is symmetric: g(s,t) = g(t, s).
10. Let Az = (pz’)’ — gz. Prove Lagrange’s identity:

zAy — yAz = [p(zy’ —y2')]’

11. (Continuation) Prove Green’s formula:
b b
/ (zAy — yAz) = p(zy’ — yz')],
a

12. Show that the Wroriskian for any two solutions of the equation (pz’)’ — gz = 0 is a scalar
multiple of 1/p, and so is either identically zero or never zero. (Here we assume p(t) # 0
fora<t<b)

13. Find the eigenvalues and eigenfunctions for the operator A defined by the equation Az =
—z'" +2z’ —z. Assume that the domain of A is the set of twice continuously differentiable
functions on [0, 1] that have boundary values z(0) = z(1) = 0.
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3.1 The Fréchet Derivative

In this chapter we develop the theory of the derivative for mappings between
Banach spaces. Partial derivatives, Jacobians, and gradients are all examples of
the general theory, as are the Gateaux and Fréchet differentials. Kantorovich’s
theorem on Newton’s method is proved. Following that there is a section on
implicit function theorems in a general setting. Such theorems can often be
used to prove the existence of solutions to integral equations and other similar
problems. Another section, devoted to extremum problems, illustrates how the
methods of calculus (in Banach spaces) can lead to solutions. A section on the
“calculus of variations” closes the chapter.

The first step is to transfer, with as little disruption as possible, the ele-
mentary ideas of calculus to the more general setting of a normed linear space.

Definition. Let f : D — Y be a mapping from an open set D in a normed
linear space X into a normed linear space Y. Let x € D. If there is a bounded
linear map A : X — Y such that

i M@+ 0) = £(@) — Ah]| _

(1) m =0
h=0 |[Al

then f is said to be Fréchet differentiable at x, or simply differentiable at
z. Furthermore, A is called the (Fréchet) derivative of f at .

115
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Theorem 1. If f is differentiable at x, then the mapping A in the
definition is uniquely defined. (It depends on z as well as f.)

Proof. Suppose that A; and A; are two linear maps having the required prop-
erty, expressed in Equation (1). Then to each ¢ > 0 there corresponds a § > 0
such that

If(@+h) - f(z) - Ah|| <e|b]|  (i=1.2)

whenever “hH < 6. By the triangle inequality, ||A1h - AzhH < 2€”h|| whenever
Hh“ < 6. Since A; — A, is homogeneous, the preceding inequality is true for all
h. Hence “Al - A2“ < 2¢. Since € was arbitrary, ||A; — A2|| =0. 1

Notation. If f is differentiable at x, its derivative, denoted by A in the
definition, will usually be denoted by f’(z). Notice that with this notation
f'(z) € L(X,Y). This is NOT the same as saying f' € L(X,Y). It will be
necessary to distinguish carefully between f’ and f'(z).

Theorem 2. If f is bounded in a neighborhood of x and if a linear
map A has the property in Equation (1), then A is a bounded linear
map; in other words, A is the Fréchet derivative of f at x.

Proof. Choose § > 0 so that whenever Hh” < 6 we will have
|f(z+R)|| <M and |f(z+h)— f(z)— Ah| < ||A||

Then for ||h|| < & we have || Ah|| < 2M +||h|| < 2M +6. For |ju|| <1, ||6u|| <6,
whence ||A(6u)|| < 2M + 6. Thus ||A|| < (2M + §)/6. ]

Example 1. Let X =Y = R. Let f be a function whose derivative (in the
elementary sense) at z is \. Then the Fréchet derivative of f at z is the linear
map h — Ah, because

L farh) = f@) -]
im = lim
h—0 |hl h—0

fe+h) - @) |,
h

Thus, the terminology adopted here is slightly different from the elementary
notion of derivative in calculus. 2

Example 2. Let X and Y be arbitrary normed linear spaces. Define f : X —
Y by f(x) = yo, where yo is a fixed element of Y. (Naturally, such an f is called
a constant map.) Then f'(z) = 0. (This is the 0 element of L(X,Y).) [ ]

Example 3. Let f be a bounded linear map of X into Y. Then f'(z) = f.
Indeed, ||f(2: +h)— f(z) - f(h)” = 0. Observe that the equation f’ = f is not
true. This illustrates again the importance of distinguishing carefully between
f'(z) and f'. (]
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Theorem 3. If f is differentiable at x, then it is continuous at x.

Proof. Let A= f'(z). Then A € L(X,Y). Given € > 0, select § > 0 so that
d<e/(1+ HA”) and so that the following implication is valid:

Inl <6 = |If(@+h) = f(x) - An[|/[|Al| < 1

Then for Hh” < 4, we have by the triangle inequality

| f(z+h) = f@)|| < ||f(z + k) — f(z) — AR|| + ||Ah]|
< ||hl| + || AR]| < [[B]| + (4] ||l
<5(1+|Al)<e ]

Example 4. Let X =Y = C[0,1] and let ¢ : R —» R be continuously
differentiable. Define f : X — Y by the equation f(z) = ¢ oz, where z is any
element of C[0,1]. What is f'(z)? To answer this, we undertake a calculation
of f(z + h) — f(x), using the classical mean value theorem:

[+ h) ~ F(@)]() = 6(a(t) + () — 6(a(®)) = & (a(t) + B(OIR(E) ) h(t)
where 0 < 6(t) < 1. This suggests that we define A by
h= (¢ oz)h

With this definition, we shall have at every point ¢,

[z +R) = f(x) — AR](2) = &' (a(t) + O(t)h() ) blt) — &' (< (t))A(t)
Hence, upon taking the supremum norm, we have
|£(z +h) — f(z) = AR|| < ||¢ o (@ + Oh) — ¢' o z|| |||

By comparing this to Equation (1) and invoking the continuity of ¢/, we see that
A is indeed the derivative of f at z. Hence f'(z) = ¢/ o z. (]

Theorem 4. Let f : R®™ — R. If each of the partial derivatives
D;f (= 0f/0z;) exists in a neighborhood of x and is continuous at
then f'(x) exists, and a formula for it is

f(@h=Y Dif(x)-hi  h=(hi,hs,....hy) ER"
i=1

Speaking loosely, we say that the Fréchet derivative of f is given by
the gradient of f.

Proof. We must prove that

lim ||h[| fx+h) - Zth }
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We begin by writing
n . .
f@+h) = f@) = f(o") = F°) = D [F(v") - F(*)]
i=1

where the vectors v* and v*~! differ in only one coordinate. Thus we put 1° = z
and v* = v*~! 4+ h;e', where €' is the ith standard unit vector. By the mean
value theorem for functions of one variable,

f) = fFY) = f('! + hie') = F(v'T1) = BiDif (V' + Bihiet)

where 0 < 6; < 1. Putting this together, and using the Cauchy-Schwarz in-
equality, we have

[l 7 £z + h)=f(z) = Y hiDsf(x)

= || 7 S b [Dif (v + Bihie’) — Dyf ()]

<l IRl [Dif =1 + Oihie) — Dif(@)]) 0
as ||h|| — 0, by the continuity of D;f at z. Note that

[[vi=! + 6;hie’* — z|| = ||(ha, - .., hi-1,6:R3,0,0,...,0)|| < ||A]| ]

Theorem 5. Let f : R® - R™, and let f1,..., f;n be the component
functions of f. If all partial derivatives D; f; exist in a neighborhood
of ¢ and are continuous at x, then f'(z) exists, and

(f'(z)h), ZD fi(z)-h; forall heR"
j=1

Speaking informally, we say that the Fréchet derivative of f is given by
the Jacobian matrix J of f at z: J;; = (D fi(z)).

Proof. By the definition of the Euclidean norm,

n 2
”h”2||f( 24+ h)— f(z)— Jh] = lh”,zz[fz( z4h)- ﬁ(x)—j;Djfi(z)-hj]

Each of the m terms in the sum (including the divisor ||h||2) converges to 0 as
h — 0. This is exactly the content of the preceding theorem. []

Example 5. Let f(z) = y/|z122|- Then the two partial derivatives of f exist
at (0,0), but f'(0,0) does not exist. Details are left to Problem 16. (]
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Example 6. Let L be a bounded linear operator on a real Hilbert space X.
Define F : X — R by the equation F(z) = (z, Lz). In order to discover whether
F is differentiable at x, we write

F(z+ h) — F(z) = {(x + h,Lz + Lh) — (z, Lz)
= {z, Lh) + (h, Lz) + (h, Lh)

Since the derivative is a linear map, we guess that A should be Ah = (z, Lh) +
(h, Lz). With that choice, |Ah| < 2||z||||L|| ||2||, showing that 14| < 2||=|| ||Z]|-
Thus A is a bounded linear functional. Furthermore,

|F(z + k) — F(z) — Ah| = |(h, LR)| < ||| |2||* = o(R)

(The notation o(h) is explained in Problem 6.) This establishes that A = F'(z).
Notice that
Ah = (L*z + Lz, h) |

References for the material in this chapter are [Avl], [Av2], [Bart], [BI],
[Bo], [Car], [Cart], [CS], [Cou], [Dieu], [Els], [Ewi], [Fox], [FM], [GF], [Gold],
[Hes1], [Hes2], [JLJ], [Lanl], [NSS], [PBGM], [Sag], [Schj], [Wein], and [Youl].

Problems 3.1

1. Let g be a function of two real variables such that g22 is continuous. (This notation means
second partial derivative with respect to the second argument.) Define f : C[0,1] —

C[0,1] by the equation (f(x))(t) = fol g(t,z(s)) ds. Compute the Fréchet derivative of
f. You may need Taylor’s Theorem.
2. Let f be a Fréchet-differentiable function from a Hilbert space X into R. The gradient

of f at x is a vector v € X such that f'(z)h = (h,v) for all h € X. Prove that such a v
exists. (It depends on z.) Illustrate with f(z) = {a,z)2, a € X and fixed.

3. Prove that if f and g are differentiable at x, then so is f+g, and (f+g)'(z) = f'(z)+g'(z).

4. Let X, Y and Z be normed linear spaces. Prove that if f : X — Y is differentiable and
if A:Y — Z is a bounded linear map, then (Ao f) = Ao f’.

5. Let f : X — X be differentiable, X a real Hilbert space, and v € X. Define g : X =+ R
by g(z) = (f(z),v). Prove that g is differentiable, and determine g'.

6. We write h — o(h) for a generic function that has the property

lim 9—(L) =0

h—o ||h||

Thus f’(z) is characterized by the equation f(z + h) — f(z) — f'(z)h = o(h). Prove that
the family of all such functions o from X to Y is a vector space.

7. Find the derivative of the map f : C[0,1] — C|0, 1] defined by f(z) = g-z. Here the dot
signifies ordinary multiplication, and g € C[0,1].

8. Supply the missing details in Example 4. For example, you should establish the fact that
||¢' o (z + 6h) — ¢’ o z|| converges to O when h converges to 0. Quote any theorems from
real analysis that you use.

9. Let X and Y be two normed linear spaces, and let £ € X. Let f and g be functions
defined on a neighborhood of « and taking values in Y. Following Dieudonné, we say
that “f and g are tangent at z” if

etk — o+ W _
h—0 IRl

0
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.
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Prove that this is an equivalence relation. Prove that the relationship is preserved if the
norms in X and Y are changed to equivalent ones. Prove that z — f(zo)+ f'(z0)(z —z0)
is the unique affine map tangent to f at zo. (An affine map is a constant plus a linear
map.)

Show that these two functions are tangent at x = 2:

flzy=2® g(z)=3+ /17— (z—6)2

Draw a picture to illustrate.

Prove that if f and g are tangent at = and if both are differentiable at z, then f'(z) =
g'(z). Here f and g should be as general as in Problem 9.

Let X = C[0,1], with its usual sup-norm. Select t; € [0,1] and v; € C[0, 1], and define
f(z) = Y o [&(t:))?vi. Prove that f is differentiable at all points of X and give a
formula for f’.

Prove that the supremum norm on the space C[0, 1] is not differentiable at any element
x for which there are two or more points t in [0, 1] where |z(t)| = |||

Recall that co is the space of sequences converging to 0 and that the norm is ||z} =
maxp |z(n)|. Prove that the norm is differentiable at z if and only if there is a unique n
such that |z(n)| = ||z||.

Let yo be a point in a normed linear space Y. Define f : R —» Y by the equation
f(t) = tyo. Compute f'. Now define g(t) = (sint)yo and compute g’.

Supply the missing details for Example 5.

Define f : C[0,1] — C[0,1] by the equation [f(z)](t) = z(t) + fol [z(st)]? ds. Compute
f'(z).

Prove that if f is differentiable at «, then f is Lipschitz continuous at z. This means
that || f(v) — f(z)|| < Aly — z|| for some A and ali y in a neighborhood of z.
Let an (n =0,1,2,...) be real numbers such that Enoozo anz™ converges for all z € C.
Let X be a Banach space. Define f : £(X,X) — L£(X,X) by the equation f(A) =
3 sanA™. What is the Fréchet derivative of f?
Explain the difference between these statements:

(i) f’ is continuous at x.

(ii) f'(z) is continuous.
Prove that if f/(z) exists, then it is continuous and differentiable. Give an example of a
mapping f such that f’ is continuous but not differentiable.

Refer to the definition of the Fréchet derivative. If the bounded linear map A satisfies
the weaker condition

lim $1£(2 -+ M) = £(2) = Ah]| =0

for every h € X, then f is said to be Gateaux differentiable at z, and A is the
Gateaux derivative at z. Prove that if f is Fréchet differentiable at x, then it is
Gateaux differentiable at z, and the two derivatives are equal.

Let f be a differentiable map from one normed linear spaces into another. Let y be a
point such that f~1({y}) contains no point z for which f’(z) = 0. Prove that f~1({y})
contains no nonvoid open set.

If f : R — R™, what is the formula for f’(z)?

Prove that in an inner-product space the functions f(z) = ||z||* and g(z) = (a,z) are
differentiable. Give formulas for the derivatives.
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3.2 The Chain Rule and Mean Value Theorems

We continue to work with a function f : D — Y, where D is an open set in
a normed linear space X, and Y is another normed linear space. In the next
theorem, we have another mapping g defined on an open set in Y and taking
values in a third normed space. In the proof we use notation explained in
Problem 3.1.6, page 119.

Theorem 1. The Chain Rule. If f is differentiable at = and if g
is differentiable at f(x), then g o f is differentiable at z, and

(go f)(z) =4'(f(z))o f'(2)
Proof. Define F=gof, A= f'(z),y= f(z), B=¢'(y), and
o1(h) = f(z + h) — f(z) — Ah (h e X)
o2(k)=g(y+k)—g(y) —Bk  (keY)
¢(h) = Ah + 01(h)
It is to be shown that F’(z) = BA. This requires a calculation as follows:
F(z + h) — F(z) — BAh = g(f(z + h)) — g(f(z)) — BAh
= glf(z) + Ak + 01 (h)] - g(y) — BAR
= gly + ¢(h)] — g(y) — BAh

= g(y) + Bo(h) + 02(¢(h)) — g(y) — BAh
= B[Ah + 01(h)] + 02(¢(h)) — BAR

= Boi(h) + 02(¢(h))

In order to see that this last expression is o(h), notice first that HBol(h)H <
“BH Hol(h)“. Hence this term is o(h). Now let € > 0. Select §; > 0 so that

[kl <& = [loa(k)l| < e[K]l/([|All + 1)
Select § > 0 so that é < 51/(||AH + 1) and so that
[all <6 = [lexs(W)]| < [[A]
Now let Hh“ < 6. Then we have
6t = 141 -+ or(my] < (4] ]+ or(w)]
< (4] + D] < (1] + 5 <&
Consequently, using k = ¢(h), we conclude that
lo2(¢(m)|| < ell¢(m)[l/ ([|Al| +1) < e[| n| "

The mean value theorem of elementary calculus does not have an exact
analogue for mappings between general normed linear spaces. (An exception to
this assertion occurs in the case when f : X — R. See Theorem 2, below.) Even
for functions f : R — X, the expected mean-value theorem fails, as we now
illustrate.
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Example. Define f : R — R? by the equation f(t) = (cost,sint). We ask: Is
the equation

f2m) = £(0) = f'(t)2n

true for some t € (0,2w)? The answer is “No,” because the left side of the
equation is (0,0), while f'(t) = (—sint, cost) # (0, 0). ]

However, the mean value theorem of elementary calculus does have a gen-
eralization to real-valued functions on a normed linear space. We present this
first.

Theorem 2. Mean Value Theorem I. Let f be a real-valued
mapping defined on an open set D in a normed linear space. Let
a,b € D. Assume that the line segment

[a,b)={a+tb—a):0<t <1}

lies in D. If f is continuous on [a, b] and differentiable on the open line
segment (a,b), then for some £ in (a,b),

f(b) = f(a) = f'(€)(b - a)

Proof. Put g(t) = f(a+t(b—a)). Then g is continuous on the interval [0, 1]
and differentiable on (0, 1). By the chain rule,

g @) = f'(a+t(b—a))(a-0b)

By the mean value theorem of elementary calculus,

fb) = fla)=g'(r) = f'(a+7(b—a))(b—a)
= f'(€)(b—a) .

Theorem 3. Mean Value Theorem II. Let f be a continuous
map of a compact interval [a,b] of the real line into a normed linear
space Y. If, for each z in (a,b), f'(x) exists and satisfies || f'(z)|| < M,
then || f(b) — f(a)|| < M(b—a).

Proof. It suffices to prove that ifa < a < 8 < b, then ||f(,3)—f(a)‘| < M(b—a)
because, the desired result would follow from this by continuity. Also, it suffices
to prove || f(8) — f(a)|| < (M + €)(b — a) for an arbitrary positive e. Let S be
the set of all z in [, 8] such that

1£(2) = f(@)]| < (M +¢)(z ~a)

By continuity, S is a closed set. Let g = sup S. Since S is compact, g € S. To
complete the proof, the main task is to show that xy = 3. Suppose that o < 3
and look for a contradiction. Since f is differentiable at x, there is a positive §
such that § < 8 — z¢ and

k| < & =>||f(zo + h) = f(z0) — f'(zo)hl| < elhl
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Put h = 6/2 and u = zo 4 6/2. Then
1£(w) = (o) = f'(z0) (u = zo)|| < e(u — o)
Hence
1£(u) = f(@o)]| < | (@o)(u = zo)| +&(u — z0) < (M +é&)(u — o)
Since o € S, we have also
1£(0) = £(@)]| < (M +&)(zo — a)
Hence
1£() = F(@)]| < [|£(w) = F(@o)|| + | F(z0) = F(@)|| < (M +&)(u—a)

This proves that u € S. Since u > xg, we have a contradiction. Thus z¢ = 3,
B €S, and

1£(8) = f@)|| < (M +e)(B—a) < (M +e)(b~a) .
Theorem 4. Mean Value Theorem III. Let f be a map from
an open set D in one normed linear space into another normed linear
space. If the line segment
S={ta+(1—-t)b : 0<t<1}
lies in D and if f'(z) exists at each point of S, then

1£) = f(@)]| < [[o - af| sup [} '@
z€S

Proof. Define g(t) = f(ta+(1—t)b) for 0 < ¢ < 1. By the chain rule, ¢’ exists
and ¢'(t) = f'(ta + (1 — t)b)(a — b). By the second Mean Value Theorem

1£) = £(a)]| = l9(1) - 9(0)[| < sup [lg'()]| < |6 - al|sup [|£' ()]
0<t<1 z€s

Notice that g = f o £, where £(t) = ta + (1 — t)b. Thus ¢(t) € L(R, X). Hence
in the formula for ¢/, the term (a — b) is interpreted as a mapping from R to X
defined by t — t - (a — b). (]
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Theorem 5. Let X and Y be normed spaces, D a connected open
set in X, and f a differentiable map of D into Y. If f'(z) = 0 for all
x € D, then f is a constant function.

Proof. Since f'(z) exists for all z € D, f is continuous on D (by Theorem 3 of
Section 3.1, page 117). Select o € D and define A = {z € D : f(z) = f(z0)}
This is a closed subset of D (i.e., the intersection of D with a closed set in X).
But we can prove that A is also open. Indeed, if z € A, then there is a ball
B(z,r) C D, because D is open. If y € B(z,r), then the line segment from z to
y lies in B(z,r). By the Mean Value Theorem II,

| £(z) = F@)|| < ||z —y|| sup ||f/(tz+ (1 -t)y)|| =0
0<t<1

So f(y) = f(z) = f(zo). This means that y € A. Hence B(z,7) C A. Thus A is
open (it contains a neighborhood of each of its points). A set is connected if it
contains no proper subset that is open and closed. Since A is open and closed
and nonempty, A = D. |

The connectedness of D is essential in the preceding theorem, even if D C R.
For example, suppose that D = (0,1) U (2,3) and that f(z) =1 on (0,1) while
f(z) =2 o0n (2,3). Then f is certainly not constant, although f’(z) = 0 at each
point of D.

Problems 3.2

1. Let X = C[0,1] and let f(x) = [|z]l, = [ |e(t)| dt. Is f differentiable?

2. Prove that the norm in a real Hilbert space is differentiable except at 0. Hint: Find the
derivative of ||z||? first.

3. Let X be a real Hilbert space and v € X. Define f(z) = ||z||*v. What is f'(z)?

4. Let f be a continuous real-valued map on a Hilbert space. If f'(x¢) exists, then there is
a direction of steepest descent at zo. This means that there exists a vector u of norm 1
for which (d/dt) f(zo + tu)|¢=o0 is a maximum. What is u?

5. Let f be a differentiable and continuous real-valued function defined on an open set D
in a normed linear space. Suppose that zo € D and that f(z¢) 2> f(z) for all z € D.
Prove that f'(zo) = 0.

6. Let D be a bounded open set in a finite-dimensional normed linear space. Let D be the
closure of D. Let f : D — R be continuous. Assume f differentiable in D and that fis
constant on D \ D (the boundary of D). Show that f’(z) = O for some = € D. (Hint: A
continuous real-valued function on a compact set achieves its maximum and minimum.
Use Problem 5.)

7. Let K be a closed convex set contained in an open set D contained in a Banach space
X. Let f: D —» X. Assume that f'(z) exists for each ¢ € K and that f(K) C K.
Assume also that sup{||f’(z)|| : £ € K} < 1. Show that f has a unique fixed point in K.
(Banach’s Theorem, page 177, is helpful.)

8. The mean value theorem for functions f : R — R states that f(z+h)— f(z) = hf'(z+6h)
for some 6 € (0,1). Show that this is not valid for complex functions. Try e?, 2 =0, h =
27i, and at least one other function.

9. Let f be a differentiable map from a normed space X to a normed space Y. Let yo be a
point of Y such that f’ is invertible at each point of f~1(yo). Prove that f~1(yo) is a
discrete set.
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10. Write out the conclusion of Theorem 2 in the case that X = R"™, using the partial
derivatives 0f/0z;.

3.3 Newton’s Method

The elementary form of Newton’s method is used to find a zero of a function
f:R = R (or “root” of the equation f(z) = 0). The method is iterative
and employs the formula 2,41 = z, — f(zn)/f (zn). Its rationale is as follows:
Suppose that z, is an approximation to a zero of f. We try to find a suitable
correction to z, so as to obtain the nearby root. That is, we try to determine h
so that f(z, + h) = 0. By Taylor’s Theorem,

0= f(zn+h) = f(za) + hf,(zn) + o(h)

So, by ignoring the o(h) term, we are led to h = —f(z,)/f'(zs). If f is now
a mapping of one Banach space, X, into another, Y, the same rationale leads
US t0 Tpnt1 = Tn — [f(zn)] " f(zn). Of course f’(zy,) is a linear operator from
X into Y, and the inverse [f'(z,)]”! will have to be assumed to exist as a
bounded linear operator from Y to X. First, we examine the simple case, when
f:R—=>R

Theorem 1. Let f be a function from R to R. Assume that f”
is bounded, that f(r) = 0, and that f'(r) # 0. Let § be a positive
number such that

1
=4 "(z)| + mi ! 1
P=3 |§11;|”éa|f @)+ min (=)l <

If Newton’s method is started with xq € [r — 4,7 + 8], then for all n,
P 2
[Zn+1 — 7| < Slxn =" < plzn — 7]
Proof. Define e, = ,, — . Then

0= f(r) = f(zn — en) = [(@n) ~ enf'(za) + €40 (En)

In this equation, the point &, is between z,, and r. Hence |£,—7| < |zn—7| = |en]-
Using this we have

_ _ flen) f(@n)
et I T T ) T Plan)
_ enf'(@n) = f(@n) _ 2 /()
f'(zn) " f'(zn)
Since |zo — r| < § by hypothesis, we have |eg| < 6 and |, — 7| < 6. Hence
le] < 2edlf"(€o)l/If (wo)| < §€§ - 2p/d < pleol. By repeating this we establish
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that |zn41 — r| < plzn — 7| (convergence). Similarly, we have |e;| < (p/8)e? and
lent+1] < (p/d)€2. (quadratic convergence). ]

The successive errors e, in the preceding theorem obey an inequality
lent1] < Clen|?. Suppose, for example, that C = 1 and |eg| < 10~!. Then
ler] < 1072, |ez] < 1074, |es] < 1078, and so on. For an iterative process, this
is an extraordinarily favorable state of affairs, as it indicates a doubling of the
number of significant digits in the numerical solution at each step.

Example 1. For finding the square root of a given positive number a, one can
solve the equation 2 — a = 0 by Newton’s method. The iteration formula turns
out to be

T *1(x+a)
n+1—2 n In

This formula was known to the ancient Greeks and is called Heron’s formula.
In order to see how well it performs, we can use a computer system such as
Mathematica, Maple, or Matlab to obtain the Newton approximations to /2.
The iteration function is g(z) = (z + 2/z)/2, and a reasonable starting point is
zo = 1. Mathematica is capable of displaying x,, with any number of significant
figures; we chose 60. The input commands to Mathematica are shown here.
(Each one should be separated from the following one by a semicolon, as shown.)
The output, not shown, indicates that the seventh iterate has at least 60 correct
digits!

glx1:=(x+(2/x))/2; gl1]; N[%.601; gl%l; g4l; ... |

Example 2. We illustrate the mechanics of Newton’s method in higher di-
mensions with the following problem:

z—-y+1=0
22 +y?-4=0

where x and y are real variables. We have here a mapping f : R? - R?,
and we seek one or more zeros of f. The Newton iteration is up41 = u, —
[f'(un)] " f(un), where up = (Tn,yn) € R%. The derivative f'(u) is given by the
Jacobian matrix J. We find that

1 =1 a1 2 1
J= [2:5 Zy] J T2z 42 [—21‘ 1
Hence the iteration formula, in detail, is this:
Tnt1| _ I:xn _ 1 2yn 1 Zn—yn+1
Yn+1 Yn 2z, + 2yn | —22n 1 x?x + yrzz -4

If we start at up = (0,2)7, the next vectors are u; = (1,2)7 and uy =
(5/6, 11/6). A symbolic computation system such as those mentioned above
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can be used here, too. The problem is chosen intentionally as one easily visual-
ized: One seeks the points where a line intersects a circle. See Figure 3.1. 1

Figure 3.1
The remarkable theorem of Kantorovich is presented next. This theorem:
(1) Proves the existence of a zero of a function from suitable hypotheses, and (2)
Establishes the quadratic convergence of the Newton algorithm. When it was
published in 1948, this theorem gave new information about Newton’s method
even when the domain space X was two-dimensional.

Theorem 2. Kantorovich Theorem on Newton’s Method.
Let f : X — Y be a map from a Banach space X into a Banach
space Y. Let zo be a point of X where f'(xq) exists and is invertible.
Define

ao = ||f' (o) f(mo)|| o= ||f (zo)7Y
S={z€X:|z-zo <2a0}
k = 2sup{||f'(z) - f’(v)“/”z - :z,v € S,z #v}

If f is differentiable in S and if agbok < -;—, then f has a zero in S.
Newton’s iteration started at xo converges quadratically to the zero.

Proof. At the nth step we will have z,,, a,, b, such that
(1) zn € S
(2) f'(zn)~! exists
(3) ||/ (2n)" Flan)]| < an
(4) Hfl(mn)_ln < bn
(5) anbnk <1
(6) an < ap/2"
Observe that 1 — anbnk > %, and that properties (1)-(6) are true for n = 0.

Now define , .
Tnt1 = Tn — f(Tn) 7 f(zn)
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