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To Rolf Nevanlinna



Preface to the fourth edition

This textbook gives a detailed and comprehensive presentation of
linear algebra based on an axiomatic treatment of linear spaces. For this
fourth edition some new material has been added to the text, for instance,
the intrinsic treatment of the classical adjoint of a linear transformation
in Chapter IV, as well as the discussion of quaternions and the classifica-
tion of associative division algebras in Chapter VII. Chapters XII and
XIII have been substantially rewritten for the sake of clarity, but the
contents remain basically the same as before. Finally, a number of
problems covering new topics —e.g. complex structures, Caylay numbers
and symplectic spaces —have been added.

I should like to thank Mr. M.L.Johnson who made many useful
suggestions for the problems in the third edition. I am also grateful
to my colleague S. Halperin who assisted in the revision of Chapters XII
and XIII and to Mr. F. Gomez who helped to prepare the subject index.

Finally, I have to express my deep gratitude to my colleague J.R. Van-
stone who worked closely with me in the preparation of all the revisions
and additions and who generously helped with the proof reading.

Toronto, February 1975 WERNER H. GREUB



Preface to the third edition

The major change between the second and third edition is the separation
of linear and multilinear algebra into two different volumes as well as
the incorporation of a great deal of new material. However, the essential
character of the book remains the same; in other words, the entire
presentation continues to be based on an axiomatic treatment of vector
spaces.

In this first volume the restriction to finite dimensional vector spaces
has been eliminated except for those results which do not hold in the
infinite dimensional case. The restriction of the coefficient field to the
real and complex numbers has also been removed and except for chapters
VII to XI, § 5 of chapter I and § 8, chapter IV we allow any coefficient
field of characteristic zero. In fact, many of the theorems are valid for
modules over a commutative ring. Finally, a large number of problems of
different degree of difficulty has been added.

Chapter I deals with the general properties of a vector space. The
topology of a real vector space of finite dimension is axiomatically
characterized in an additional paragraph.

In chapter II the sections on exact sequences, direct decompositions
and duality have been greatly expanded. Oriented vector spaces have been
incorporated into chapter IV and so chapter V of the second edition has
disappeared. Chapter V (algebras) and VI (gradations and homology)
are completely new and introduce the reader to the basic concepts
associated with these fields. The second volume will depend heavily on
some of the material developed in these two chapters.

Chapters X (Inner product spaces) XI (Linear mappings of inner
product spaces) XII (Symmetric bilinear functions) XIII (Quadrics) and
XIV (Unitary spaces) of the second edition have been renumbered but
remain otherwise essentially unchanged.

Chapter XII (Polynomial algebra) is again completely new and de-
velopes all the standard material about polynomials in one indeterminate.
Most of this is applied in chapter XIII (Theory of a linear transformation).
This last chapter is a very much expanded version of chapter XV of the
second edition. Of particular importance is the generalization of the
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results in the second edition to vector spaces over an arbitrary coefficient
field of characteristic zero. This has been accomplished without reversion
to the cumbersome calculations of the first edition. Furthermore the
concept of a semisimple transformation is introduced and treated in
some depth.

One additional change has been made: some of the paragraphs or
sections have been starred. The rest of the book can be read without
reference to this material.

Last but certainly not least, I have to express my sincerest thanks
to everyone who has helped in the preparation of this edition. First of
all T am particularly indebted to Mr. S. HALPERIN who made a great
number of valuable suggestions for improvements. Large parts of the
book, in particular chapters XII and XIII are his own work. My warm
thanks also go to Mr. L. YONKER, Mr. G. PEDERZOLI and Mr. J. SCHERK
who did the proofreading. Furthermore [ am grateful to Mrs. V. PEDERZOLI
and to Miss M. PETTINGER for their assistance in the preparation of the
manuscript. Finally T would like to express my thanks to professor
K. BLEULER for providing an agreeable milieu in which to work and to
the publishers for their patience and cooperation.

Toronto, December 1966 WERNER H. GREUB



Preface to the second edition

Besides the very obvious change from German to English, the second
edition of this book contains many additions as well as a great many
other changes. It might even be called a new book altogether were it not
for the fact that the essential character of the book has remained the
same; in other words, the entire presentation continues to be based on
an axiomatic treatment of linear spaces.

In this second edition, the thorough-going restriction to linear spaces
of finite dimension has been removed. Another complete change is the
restriction to linear spaces with real or complex coefficients, thereby
removing a number of relatively involved discussions which did not
really contribute substantially to the subject. On p. 6 there is a list of
those chapters in which the presentation can be transferred directly to
spaces over an arbitrary coefficient field.

Chapter I deals with the general properties of a linear space. Those
concepts which are only valid for finitely many dimensions are discussed
in a special paragraph.

Chapter II now covers only linear transformations while the treat-
ment of matrices has been delegated to a new chapter, chapter III. The
discussion of dual spaces has been changed; dual spaces are now intro-
duced abstractly and the connection with the space of linear functions is
not established until later.

Chapters IV and V, dealing with determinants and orientation re-
spectively, do not contain substantial changes. Brief reference should
be made here to the new paragraph in chapter IV on the trace of an
endomorphism — a concept which is used quite consistently throughout
the book from that time on.

Special emphasis is given to tensors. The original chapter on Multi-
linear Algebra is now spread over four chapters: Multilinear Mappings
(Ch. VI), Tensor Algebra (Ch. VII), Exterior Algebra (Ch. VIII) and
Duality in Exterior Algebra (Ch. IX). The chapter on multilinear
mappings consists now primarily of an introduction to the theory of the
tensor-product. In chapter VII the notion of vector-valued tensors has
been introduced and used to define the contraction. Furthermore, a
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treatment of the transformation of tensors under linear mappings has been
added. In Chapter VIII the antisymmetry-operator is studied in greater
detail and the concept of the skew-symmetric power is introduced. The
dual product (Ch. IX) is generalized to mixed tensors. A special paragraph
in this chapter covers the skew-symmetric powers of the unit tensor and
shows their significance in the characteristic polynomial. The paragraph
“Adjoint Tensors” provides a number of applications of the duality theory
to certain tensors arising from an endomorphism of the underlying space.

There are no essential changes in Chapter X (Inner product spaces)
except for the addition of a short new paragraph on normed linear spaces.
In the next chapter, on linear mappings of inner product spaces, the
orthogonal projections (§ 3) and the skew mappings (§ 4) are discussed
in greater detail. Furthermore, a paragraph on differentiable families of
automorphisms has been added here.

Chapter XII (Symmetric Bilinear Functions) contains a new paragraph
dealing with Lorentz-transformations.

Whereas the discussion of quadrics in the first edition was limited to
quadrics with centers, the second edition covers this topic in full.

The chapter on unitary spaces has been changed to include a more
thorough-going presentation of unitary transformations of the complex
plane and their relation to the algebra of quaternions.

The restriction to linear spaces with complex or real coefficients has
of course greatly simplified the construction of irreducible subspaces in
chapter XV. Another essential simplification of this construction was
achieved by the simultaneous consideration of the dual mapping. A final
paragraph with applications to Lorentz-transformation has been added
to this concluding chapter.

Many other minor changes have been incorporated — not least of which
are the many additional problems now accompanying each paragraph.

Last, but certainly not least, I have to express my sincerest thanks
to everyone who has helped me in the preparation of this second edition.
First of all, T am particularly indebted to CORNELIE J. RHEINBOLDT
who assisted in the entire translating and editing work and to Dr.
WERNER C. RHEINBOLDT who cooperated in this task and who also
made a number of valuable suggestions for improvements, especially in
the chapters on linear transformations and matrices. My warm thanks
also go to Dr. H. BoLDER of the Royal Dutch/Shell Laboratory at
Amsterdam for his criticism on the chapter on tensor-products and to
Dr. H. H. KeLLER who read the entire manuscript and offered many
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important suggestions. Furthermore, I am grateful to Mr. GIORGIO
PepErzoLI who helped to read the proofs of the entire work and who
collected a number of new problems and to Mr. KHADJA NESAMUDDIN
KHAN for his assistance in preparing the manuscript.

Finally I would like to express my thanks to the publishers for their
patience and cooperation during the preparation of this edition.

Toronto, April 1963 WERNER H. GREUB
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Chapter 0

Prerequisites

0.1. Sets. The reader is expected to be familiar with naive set theory
up to the level of the first half of [11]. In general we shall adopt the no-
tations and definitions of that book; however, we make two exceptions.
First, the word function will in this book have a very restricted meaning,
and what Halmos calls a function, we shall call a mapping or a set map-
ping. Second, we follow Bourbaki and call mappings that are one-to-one
(onto, one-to-one and onto) injective (surjective, bijective).

0.2. Topology. Except for § 5 chap. I, § 8, Chap. IV and parts of chap-
ters VII to IX we make no use at all of topology. For these parts of the
book the reader should be familiar with elementary point set topology
as found in the first part of [16].

0.3. Groups. A group is a set G, together with a binary law of com-

position G x GG

which satisfies the following axioms (u(x, ¥) will be denoted by xy):
1. Associativity: (xy)z=x(yz)
2. Identity: There exists an element e, called the identity such that
Xe=ex=x.

3. To each element x€G corresponds a second element x~! such that

xx l=x"1x=e.

The identity element of a group is uniquely determined and each ele-

ment has a unique inverse. We also have the relation

(ey) =yl

As an example consider the set S, of all permutations of the set {1...n}
and define the product of two permutations o, T by

(67)i=o(ti) i=1..n.

In this way S, becomes a group, called the group of permutations of n
objects. The identity element of S, is the identity permutation.

1 Greub, Linear Algebra
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Let G and H be two groups. Then a mapping

¢0:G->H
is called a homomorphism if

p(xy)=9x9y x,yeG.

A homomorphism which is injective (resp. surjective, bijective) is called
a monomorphism (resp. epimorphism, isomorphism). The inverse map-
ping of an isomorphism is clearly again an isomorphism.

A subgroup H of a group G is a subset H such that with any two ele-
ments y€ H and z € H the product yz is contained in H and that the inverse
of every element of H is again in H. Then the restriction of u to the subset
H x H makes H into a group.

A group G is called commutative or abelian if for each x, yeG xy=yx.
In an abelian group one often writes x+ y instead of xy and calls x4y
the sum of x and y. Then the unit element is denoted by 0. As an example
consider the set Z of integers and define addition in the usual way.

0.4. Factor groups of commutative groups.* Let G be a commutative
group and consider a subgroup H. Then H determines an equivalence
relation in G given by

x~x" ifand onlyif x—x"eH.

The corresponding equivalence classes are the sets { H+x} and are called
the cosets of H in G. Every element xeG is contained in precisely one
coset x. The set G/H of these cosets is called the factor set of G by H and
the surjective mapping
n:G— G/H
defined by
X=X, XeX

is called the canonical projection of G onto G/H. The set G/H can be made
into a group in precisely one way such that the canonical projection be-
comes a homomorphism; i.e.,

a{x+y)=nax+mny. 0.1

To define the addition in G/H let ¥ G/H, j € G/H be arbitrary and choose
x€eG and yeG such that
nx=% and my=7.

*) This concept can be generalized to non-commutative groups.
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Then the element 7 (x + ) depends only on % and y. In fact, if x’, y" are

two other elements satisfying nx"=x and 7y’ =Jj we have

whence x'—xeH and )y —yeH
(x"+y)—(x+y)eH

and so 7 (x' +y")=mn(x+y). Hence, it makes sense to define the sum X+ y
by X+y=n(x+y) mx=%xXny=7y.
It is easy to verify that the above sum satisfies the group axioms. Relation
(0.1) is an immediate consequence of the definition of the sum in G/H.
Finally, since = is a surjective map, the addition in G/H is uniquely deter-
mined by (0.1).

The group G/H is called the factor group of G with respect to the sub-
group H. Its unit element is the set H.

0.5. Fields. A field is a set I' on which two binary laws of composition,
called respectively addition and multiplication, are defined such that

1. I' is a commutative group with respect to the addition.

2. The set I'—{0} is a commutative group with respect to the multi-
plication.

3. Addition and multiplication are connected by the distributive law,

(«+B)y=ay+pBy, ap, yel.

The rational numbers @, the real numbers R and the complex numbers
C are fields with respect to the usual operations, as will be assumed with-
out proof.

A homomorphism ¢:I'-I"’ between two fields is a mapping that pre-
serves addition and multiplication.

A subset 4T of a field which is closed under addition, multiplication
and the taking of inverses is called a subfield. If 4 is a subfield of I', I' is
called an extension field of A.

Given a field I we define for every positive integer k the element ke (e
unit element of I') by

ke=e+--+e
\/‘k,x/
The field I is said to have characteristic zero if ke=0 for every positive
integer k. If I' has characteristic zero it follows that ke+k’e whenever
k=+k’. Hence, a field of characteristic zero is an infinite set. Throughout
this book it will be assumed without explicit mention that all fields are of
characteristic zero.

1%



4 Chapter 0. Prerequisites

For more details on groups and fields the reader is referred to [29].

0.6. Partial order. Let .7 be a set and assume that for some pairs X, Y
(Xeof, Yes/) a relation, denoted by X <Y, is defined which satisfies the
following conditions:

(i) X=X for every Xe.os (Reflexivity)

(i) if X <Y and Y=< X then X =Y (Antisymmetry)

(iii) If X <Y and Y<Z, then X < Z (Transitivity).
Then < is called a partial order in .o/.

A homomorphism of partially ordered sets is a map ¢:.o/ % such
that @ X <Y whenever X < Y.

Clearly a subset of a partially ordered set is again partially ordered.

Let .o/ be a partially ordered set and suppose Ae.o/ is an element
such that the relation 4 < X implies that A = X. Then 4 is called a maximal
element of .o/. A partial ordered set need not have a maximal element.

A partially ordered set is called linearly ordered or a chain if for every
pair X, Yeither X<Yor Y<X.

Let o/, be a subset of the partially ordered set .«Z. Then an element
Ae.o/ is called an upper bound for </, if X < A for every Xe./,.

In this book we shall assume the following axiom:

A partially ordered set in which every chain has an upper bound,

contains a maximal element.

This axiom is known as Zorn’s lemma, and is equivalent to the axiom
of choice (cf. [11]).

0.7. Lattices. Let </ be a partially ordered set and let .o/, =.«/ be a
subset. An element Ae.«/ is called a least upper bound (l.u.b.) for
o if

1) A is an upper bound for <.

2) If X is any upper bound, then A< X. It follows from (ii) that if a
Lu.b. for .o, exists, then it is unique.

In a similar way, lower bounds and the greatest lower bound (g.l.b.)
for a subset of o7 are defined.

A partially ordered set .<7 is called a lattice, if for any two elements X, Y
the subset {X, Y} has a l.u.b. and a gl.b. They are denoted by X v Y and
X AY. It is easily checked that any finite subset (X,, ..., X,) of a lattice
has a L.u.b. and a glb. They are denoted by v X, and A X,;.

i=1 i=1

As an example of a lattice, consider the collection of subsets of a given

set, X, ordered by inclusion. If U, ¥ are any two subsets, then

UAV=UNnNV and UvV=UUYV.



Chapter |

Vector Spaces

§ 1. Vector spaces

1.1. Definition. A vector (linear) space, E, over the field I is a set of
elements x, y, ... called vectors with the following algebraic structure:

I. Eis an additive group; that is, there is a fixed mapping Ex E—»F
denoted by
(x,y)>x+y (1.1)

and satisfying the following axioms:
L1. (x+y)+z=x+(y+z) (associative law)
1.2. x4+ y=y+x (commutative law)
I.3. there exists a zero-vector O; i.e., a vector such that x+0=
0+ x=x for every xeE.
1.4. To every vector x there is a vector —x such that x+(—x)=0.

II. There is a fixed mapping I' x E— E denoted by
(4, x)— ix (1.2)

and satisfying the axioms:
IL1. (Aw)x=A(ux) (associative law)
1.2, (A+p)x=Ax+px
A(x+y)=Ax+ iy (distributive laws)
IL.3. 1-x=x (1 unit element of I')

(The reader should note that in the left hand side of the first distributive
law, + denotes the addition in I" while in the right hand side, + denotes
the addition in E. In the sequel, the name addition and the symbol + will
continue to be used for both operations, but it will always be clear from
the context which one is meant). I is called the coefficient field of the
vector space E, and the elements of I are called scalars. Thus the mapping
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(1.2) defines a multiplication of vectors by scalars, and so it is called
scalar multiplication.

If the coefficient field I' is the field R of real numbers (the field C of
complex numbers), then £ is called a real (complex) vector space. For the
rest of this paragraph all vector spaces are defined over a fixed, but arbi-
trarily chosen field I' of characteristic 0.

If {x,, ..., x,} is a finite family of vectors in E, the sum x, +--- + x, will
often be denoted by Y x;.

i=1
Now we shall establish some elementary properties of vector spaces.
It follows from an easy induction argument on # that the distributive laws
hold for any finite number of terms,

Proposition I: The equation
Ax=0
holds if and only if
A=0 or x=0.

Proof: Substitution of u=0 in the first distributive law yields
Ax=4x+0x
whence Ox=0. Similarly, the second distributive law shows that
A0=0.

Conversely, suppose that Ax=0 and assume that 1=%0. Then the as-
sociative law 1.1 gives that

I'x=A"")x=4"1Ax)=1"10=0

and hence axiom II.3 implies that x=0.
The first distributive law gives for p=— 1

Ax+(=)x=A-AHx=0x=0

whence
(—A)x=—2x.
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In the same way the formula

AM—x)=—2x
is proved.
1.2. Examples. 1. Consider the set I'*=TI x--- x I' of n-tuples
S

n

x = (&, ..., &, Eer

and define addition and scalar multiplication by

(éla -~-’én) + ('11’ "'9’7") = (él + ’71’ "'55" + }’]")
and

AL LB = (LE, .., 28",

Then the associativity and commutativity of addition follows at once
from the associativity and commutativity of addition in I'. The zero vec-
tor is the n-tuple (0, ..., 0) and the inverse of (¢1, ..., ") is the n-tuple
(=¢', ..., —&"). Consequently, addition as defined above makes the set
I'" into an additive group. The scalar multiplication satisfies II.1, I1.2,
and 1.3, as is equally easily checked, and so these two operations make
I'" into a vector space. This vector space is called the n-space over I'. In
particular, I" is a vector space over itself in which scalar multiplication
coincides with the field multiplication.

2. Let C be the set of all continuous real-valued functions, f, in the
interval [:0=5¢ <1,

f:I-R.

If £, g are two continuous functions, then the function f+g defined by

(f+O) =10 +2)

is again continuous. Moreover, for any real number A, the function Af
defined by
AW =211

is continuous as well. It is clear that the mappings
(f.e)»f+g and (AL f)-A-f

satisfy the systems of axioms I. and II. and so C becomes a real vector
space. The zero vector is the function 0 defined by

0(1)=0
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and the vector —f is the function given by

(=NO==71@).

Instead of the continuous functions we could equally well have con-
sidered the set of k-times differentiable functions, or the set of analytic
functions.

3. Let X be an arbitrary set and E be a vector space. Consider all
mappings f: X —E and define the sum of two mappings / and g as the

mapping [+ =/()+gx)  xeX
and the mapping /Af by
X)) =2f(x)  xeX.
Under these operations the set of all mappings f: X —»E becomes a
vector space, which will be denoted by (X ; E). The zero vector of (X; E)
is the function f defined by f(x)=0, xe X.
1.3. Linear combinations. Suppose E is a vector space and x,, ..., X,

are vectors in E. Then a vector xeFE is called a linear combination of
the vectors x; if it can be written in the form

r
_ G i
x=Yix;, Ael.
i=1

More generally, let (x,),., be any family of vectors. Then a vector
xeE is called a linear combination of the vectors x, if there is a family
of scalars, (4,) only finitely many different from zero, such that

x=37x,
x
where the summation is extended over those « for which 7, +0.

We shall simply write x = Z A x,

aed

aecA>

and it is to be understood that only finitely many A* are different from
zero. In particular, by setting A*=0 for each a we obtain that the 0-vector
is a linear combination of every family. It is clear from the definition that
if x is a linear combination of the family {x_} then x is a linear combination
of a finite subfamily.
Suppose now that x is a linear combination of vectors x,, xe A
x= Y A*x,, Ael

a€Ad

and assume further that each x, is a linear combination of vectors y,g,
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BeB,,
xa=;#aﬁyaﬁ’ .ualier-

Then the second distributive law yields
x=2'laxa=Z}‘a#aﬁyaﬂzzﬂgaﬂyaﬁ’ Qaﬂ:'lalua/}
a a, B a,

and hence x is a linear combination of the vectors y,;.

A subset Sc Eis called a system of generators for E if every vector xe E
is a linear combination of vectors of S. The whole space E is clearly a
system of generators. Now suppose that .S is a system of generators for
E and that every vector of S is a linear combination of vectors of a subset
TcS. Then it follows from the above discussion that 7 is also a system
of generators for E.

1.4. Linear dependence. Let (x,),., be a given family of vectors. Then
a non-trivial linear combination of the vectors x, is a linear combination

Y A*x, where at least one scalar A* is different from zero. The family {x,}

is called linearly dependent if there exists a non-trivial linear combination
of the x,; that is, if there exists a system of scalars A* such that

Y Ax,=0 (1.3)

and at least one A*=0. It follows from the above definition that if a sub-
family of the family {x,} is linearly dependent, then so is the full family.
An equation of the form (1.3) is called a non-trivial linear relation.
A family consisting of one vector x is linearly dependent if and only if
x=0. In fact, the relation
1-:0=0

shows that the zero vector is linearly dependent. Conversely, if the vector
x is linearly dependent we have that Ax=0 where A+0. Then Proposition
I implies that x=0.

It follows from the above remarks that every family containing the zero
vector is linearly dependent.

Proposition II: A family of vectors (x,),c 4 is linearly dependent if and
only if for some fe 4, x; is a linear combination of the vectors x,, =+ f.
Proof: Suppose that for some e 4,
xg= 3 A*x,.

pFa
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Then setting /= — | we obtain
Y Ax,=0

and hence the vectors x, are linearly dependent.
Conversely, assume that
Y Ax, =0

and that 2 #0 for some feA. Then multiplying by (4#)~! we obtain in
view of IL.1 and 1.2
0=x,+ ¥ (% i,

a¥p

xp=— Y (A1 1x,.

aFf

Corollary: Two vectors x, y are linearly dependent if and only if y=1x
(or x=Ay) for some Aerl.

1.5. Linear independence. A family of vectors (x,),. 4 is called linearly
independent if it is not linearly dependent; i.e., the vectors x, are linearly
independent if and only if the equation

Y A*x,=0

implies that A*=0 for each ae 4. It is clear that every subfamily of a line-
arly independent family of vectors is again linearly independent. If
(x.)zc 4 15 a linearly independent family, then for any two distinct indices
o, feA, x, ¥ x;, and so the map a—Xx, is injective.

Proposition I11: A family (x,),., of vectors is linearly independent if
and only if every vector x can be written in at most one way as a linear
combination of the x, i.e., if and only if for each linear combination

x =Y A*x, (1.4)

the scalars A* are uniquely determined by x.
Proof: Suppose first that the scalars A% in (1.4) are uniquely determined
by x. Then in particular for x=0, the only scalars A* such that

Y Ax, =0

are the scalars 2*=0. Hence, the vectors x, are linearly independent. Con-
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versely, suppose that the x, are linearly independent and consider the
relations

x=YAx,, x=Y p'x,.
Then
S (3 — )%, = 0

whence in view of the linear independence of the x,
) A—pur=0, aed
ie., AA=p*

1.6. Basis. A family of vectors (x,),c 4 in E is called a basis of E if it is
simultaneously a system of generators and linearly independent.

In view of Proposition I and the definition of a system of generators,
we have that (x,),c 4 is a basis if and only if every vector xeE can be
written in precisely one way as

x=)Y&x%,, Eerl.

The scalars &* are called the components of x with respect to the basis
(xa)ae A

As an example, consider the n-space, I'", over I" defined in example 1,
sec. 1.2. It is easily verified that the vectors
x;=(0,...,0,1,0...0) i=1..n

i—1

form a basis for I

We shall prove that every non-trivial vector space has a basis. For
the sake of simplicity we consider first vector spaces which admit a
finite system of generators.

Proposition IV: (i) Every finitely generated non-trivial vector space
has a finite basis

(ii) Suppose that S=(x,, ..., x,,) is a finite system of generators of E
and that the subset RcS given by R=(x,,...,X,) (r=m) consists of
linearly independent vectors. Then there is a basis, T, of E such that
RcTcS.

Proof: (i) Let x,, ..., x, be a minimal system of generators of E. Then
the vectors x,, ..., x, are linearly independent. In fact, assume a relation

n
Y Ax,=0.

v=1
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If /i=0 for some i, it follows that

x;=Yax, ol (1.5
v#i
and so the vectors x, (v=1i) generate E. This contradicts the minimality
of n.

(i) We proceed by induction on n (n=r). If n=r then there is nothing
to prove. Assume now that the assertion is correct for n—1. Consider
the vector space, F, generated by the vectors x;,....X,, X, ;,...,X
Then by induction, F has a basis of the form

n—1"

Xiseeos Xy Vyseeen Vg Where pe§ (j=1...9.

Now consider the vector x,. If the vectors x,,...,x,, ¥;. ..., ), X, are
linearly independent, then they form a basis of E which has the desired
property. Otherwise there is a non-trivial relation

Zcxgxg—i_ Z ﬁay{7+ '}/X’,:O.
o=1 c=1

Since the vectors x,, ..., x
that y+0. Thus

Vi, ..., ¥, are linearly independent, it follows

re

r S
Xp= Y A X, Yty Ve
o=1 =1
Hence the vectors x,, ..., x,, ), ..., v, generate E. Since they are linearly
independent, they form a basis.
Now consider the general case.

Theorem I: Let E be a non-trivial vector space. Suppose S is a system
of generators and that R is a family of linearly independent vectors
in E such that R = S. Then there exists a basis, 7, of E such that R T<S.

Proof. Consider the collection 7 (R, S) of all subsets, X, of E such that

1) ReXc<S

2) the vectors of X are linearly independent.

The a partial order is defined in .«Z(R, S) by inclusion (cf. sec. 0.6).

We show that every chain, {X,}, in /(R, S) has a maximal element A.

In fact, set A=|)X,. We have to show that Aeo/(R,S). Clearly,

Rc Ac=S. Now assume that

Y Ax,=0 x €A. (1.6)

Vv
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Then, for each i, x;e X, for some «. Since {X,} is a chain, we may

assume that xeX (i=1...n). (1.7)

i ay

Since the vectors of X, are linearly independent it follows that 4"=0
(v=1...n) whence Ae/(R, S).

Now Zorn’s lemma (cf. sec.0.6) implies that there is a maximal
element, 7, in &/(R, S). Then R T =S and the vectors of T are linearly
independent. To show that T is a system of generators, let xeE be
arbitrary. Then the vectors of T Ux are linearly dependent because
otherwise it would follow that x U Te./(R, S) which contradicts the
maximality of T. Hence there is a non-trivial relation

ix+Y x,=0  jel, i*el, x,eT.

Since the vectors of T are linearly independent, it follows that A0

whence ,
x=) a'x,.
-

This equation shows that T generates E and so it is a basis of E.

Corollary I: Every system of generators of E contains a basis. In
particular, every non-trivial vector space has a basis.

Corollary I1: Every family of linearly independent vectors of E can
be extended to a basis.

1.7. The free vector space over a set. Let X be an arbitrary set and
consider all maps f: X —»I such that f(x)==0 only for finitely many xe X.
Denote the set of these maps by C(X). Then, if feC(X), ge C(X)
and /, u are scalars, 2f + ug is again contained in C(X). As in example 3,
sec. 1.2, we make C(X) into a vector space.

For any ae X denote by f, the map given by

ro={o e

XFa.
Then the vectors f, (aeX) form a basis of C(X). In fact, let fe C(X)
be given and let ay....,a, (1=0) be the (finitely many) distinct points
such that f(a,)#0. Then we have
f=Yaf,
where =1
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and so the element f, («e X) generate C(X). On the other hand, assume
a relation .

)."j"h =0.
=1

J

Then we have for each j (j=1...n)

n

0= ilf, (a)=7/
j=1
whence 4/=0 (j=1...n). This shows that the vectors f, (aeX) are
linearly independent and hence they form a basis of C(X).
Now consider the inclusion map iy: X — C(X) given by

iv(a)=f, aeX.

This map clearly defines a bijection between X and the basis vectors
of C(X). If we identify each element aeX with the corresponding
map f,, then X becomes a basis of C(X). C(X) is called the free vector
space over X or the vector space generated by X.

Problems

1. Show that axiom II.3 can be replaced by the following one: The
equation Ax=0 holds only if A=0 or x=0.

2. Given a system of linearly independent vectors (xy, ..., x,), prove
that the system (x;, ...x;+4x, ...x,), i=/ with arbitrary 4 is again line-
arly independent.

3. Show that the set of all solutions of the homogeneous linear differ-
ential equation

d’y  dy
— T 4+p—+qy=0
arr TP g T

where p and ¢ are fixed functions of 7, is a vector space.

4. Which of the following sets of functions are linearly dependent in
the vector space of Example 2?7

a) fi =3t fo=t+5 f3=21% fa=(+1)
b) fi=0+1)? fr=2~1; f3=202+2t-3

© fi=1; fa=¢€; fi=e™

d) fi=1% fr=1 fi=1

e) fi=1-1; f2=t(1-—t);f3=1—t2.
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5. Let E be a real linear space. Consider the set £ x E of ordered pairs
(x, y) with xe E and yeE. Show that the set £x E becomes a complex
vector space under the operations:

(0 y0) + (X2, ¥2) = (X + X2, 71 + ¥2)
and

(x+iB)(x,y)=(xx—By,ay + fx) (o, B real numbers).

6. Which of the following sets of vectors in R* are linearly independent,
(a generating set, a basis)?

a) (1,1,1, 1), (1,0,0,0), (0, 1,0,0), (0,0, 1, 0), (0, 0, 0, 1)
b) (1,0, 0,0), (2, 0,0,0)

o) (17, 39, 25, 10), (13, 12, 99, 4), (16, 1, 0, 0)

d) (1,4,0,0),(0,0,1,1), (0,4, 4, 1), (3, 0,0, %)

Extend the linearly independent sets to bases.

7. Are the vectors x;=(1,0, 1); x,=(i, 1,0), x3=(/, 2, 1 +/) linearly
independent in C*? Express x=(1, 2, 3) and y=(j, /, i) as linear combi-
binations of x,, x,, x3.

8. Recall that an a-tuple (1,...4,) is defined by a map f:{l...n}—>TI
given by

fy=%4 (i=1..n).

Show that the vector spaces C{1...n} and I' " are equal. Show further that
the basis f; defined in sec. 1.7 coincides with the basis x; defined in sec. 1.6.
9. Let S be any set and consider the set of maps

f:S->1I"

such that f(x)=0 for all but finitely many x€S. In a manner similar to
that of sec. 1.7, make this set into a vector space (denoted by C(S,I™)).
Construct a basis for this vector space.

10. Let (x,).4 be a basis for a vector space E and consider a vector

a=>y&x,.

Suppose that for some feA. & +0. Show that the vectors {x,},., form
again a basis for E.
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11. Prove the following exchange theorem of Steinitz: Let (x,),. 4 be a
basis of E and g;(i=1...p) be a system of linearly independent vectors.
Then it is possible to exchange certain p of the vectors x, by the vectors
a; such that the new system is again a basis of E. Hint: Use problem 10.

12. Consider the set of polynomial functions f/: R— R,

fx)= ‘=io o X

Make this set into a vector space as in Example 3, and construct a natural
basis.
§ 2. Linear mappings

In this paragraph, all vector spaces are defined over a fixed but arbi-
trarily chosen field I' of characteristic zero.

1.8. Definition. Suppose that F and F are vector spaces, and let
¢: E— F be a set mapping. Then ¢ will be called a linear mapping if

p(x+y)=9¢x+¢y x,yeE (1.8)
and
e(Ax)=Apx Aiel,xeE (1.9)

(Recall that condition (1.8) states that ¢ is a homomorphism between
abelian groups). If F=T then ¢ is called a linear function in E.
Conditions (1.8) and (1.9) are clearly equivalent to the condition

(,D(Z)fx,.) :Zli‘l’xi

and so a linear mapping is a mapping which preserves linear combinations.
From (1.8) we obtain that for every linear mapping, ¢,

®0=0(0+0)=¢(0)+ ¢(0)
whence ¢ (0)=0. Suppose now that

Y ix;=0 (1.10)

is a linear relation among the vectors x;. Then we have

YHex=¢(YAx)=90=0
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h .
whenee Y igx;=0. (1.11)

Conversely, assume that ¢: E—F is a set map such that (1.11) holds
whenever (1.10) holds. Then for any x, yeE and AeI set

u=x+y and v=141x.
Since
u—x—y=0 and v—4Ax=0
it follows that
p(x+y)—@x—@y=0
and
o(Ax)~ipx=0

and hence ¢ is a linear mapping. This shows that linear mappings are
precisely the set mappings which preserve linear relations.

In particular, it follows that if x,...x, are linearly dependent, then so
are the vectors @x,...¢x,. If x,...x, are linearly independent, it does not,
however, follow that the vectors ¢x;,...¢x, are linearly independent. In
fact, the zero mapping defined by ¢x=0, xe E, is clearly a linear mapping
which maps every family of vectors into the linearly dependent set (0).

A bijective linear mapping ¢: ESF is called a linear isomorphism and
will be denoted by ¢: ESF. Given a linear isomorphism ¢: E> F consider
the set mapping ¢~ ': E«F. It is easy to verify that ¢ ! again satisfies the
conditions (1.8) and (1.9) and so it is a linear mapping. ¢ ~! is bijective
and hence a linear isomorphism. It is called the inverse isomorphism of ¢.
Two vector spaces E and F are called isomorphic if there exists a linear
isomorphism from E onto F.

A linear mapping ¢:E—E is called a linear transformation of E. A
bijective linear transformation will be called a linear automorphism of E.

1.9. Examples: 1. Let E=I"" and define ¢: E—~E by

(&, .. &) =(E 4+ &2 E%, .., EM).

Then ¢ satisfies the conditions (1.8) and (1.9) and hence it is a linear
transformation of E.

2. Given a set S and a vector space E consider the vector space (S; E)
defined in Example 3, sec. 1.2. Let ¢:(S; E)— E be the mapping given by

of=f(a) fe(S;E)

where ae S is a fixed element. Then ¢ is a linear mapping.

2 Greub. Linear Algebra
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3. Let ¢:E—E be the mapping defined by @x=Ax, where Ael is a
fixed element. Then ¢ is a linear transformation. In particular, the iden-
tity map 1. E—E, ix=x, is a linear transformation.

1.10. Composition. Let ¢: E—F and y: F—G be two linear mappings.
Then the composition of ¢ and

l//oQDZE_’G
is defined by
Wep)x=y(px)  xeE.
‘//0(/’(2'11'3‘:‘) = ‘//(Z;ﬁ@xi)
=Z}yilﬁo(px,~

The relation

shows that . ¢ is a linear mapping of E into G. y- ¢ will often be denoted
simply by y¢. If @ is a linear transformation in E, then we denote ¢ - ¢ by
@*. More generally, the linear transformation ¢-....¢ is denoted by ¢*.

—

k
We extend the definition to the case k =0 by setting ¢°=1. A linear trans-

formation, ¢, satisfying @2 =1 is called an involution in E.

1.11. Generators and basis.

Proposition I: Suppose S is a system of generators for E and ¢y :S—F
is a set map (F a second vector space). Then ¢, can be extended in at most
one way to a linear mapping

¢o:E - F.

A necessary and sufficient condition for the existence of such an extension
is that
Y i pex; =0 (1.12)

whenever
Yaix;=0.

Proof: If ¢ is an extension of ¢, we have for each finite set of vectors
x;€S
PRAX =Y N ox; =3 X pox;.

Since the set S generates E it follows from this relation that ¢ is uniquely
determined by ¢,. Moreover, if

t

YAix;=0 xS
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it follows that
SApexi=YAox;=0Y A x;=¢0=0

and so condition (1.12) is necessary.
Conversely, assume that (1.12) is satisfied. Then define ¢ by

Y Ax; =Y Noox;,  x€S. (1.13)
To prove that ¢ is a well defined map assume that

Zii_xi=z,ujyj, x;€S, y;eS.
Then l ’
Zl"xi —Zyjyj=0
whence in view of (1.12) l ’
Y poxi =Y i oy =0
and so l ’
Zi:iicooxi = %:#jﬁao)’j-

The linearity of ¢ follows immediately from the definition, and it is clear
that ¢ extends ¢,.

Proposition II: Let (x,),c4 be a basis of E and ¢,:{x,}—>F be a set
map. Then ¢, can be extended in a unique way to a linear mapping
@o:E-F.

Proof: The uniqueness follows from proposition 1. To prove the exist-
ence of ¢ consider a relation

Y 2x,=0.

Since the vectors x, are linearly independent it follows that each 1*=0,
whence

Y P pox,=0.

Now proposition / shows that ¢, can be extended to a linear mapping
@ E-F.

Corollary: Let S be a linearly independent subset of E and ¢y:S—F
be a set map. Then ¢, can be extended to a linear mapping ¢: E— F.

%
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Proof: Let T be a basis of E containing S (cf. sec. 1.6). Extend ¢, in an
arbitrary way to a set map y,: T— F. Then o, may be extended to a linear
mapping : E— F and it is clear that  extends ¢,.

Now let ¢: E—F be a surjective linear map, and suppose that S is a
system of generators for E. Then the set

@(S)={px|xeS}

is a system of generators for F. In fact, since ¢ is surjective, every vector
yeF can be written as
y=¢x

for some xeE. Since S generates E there are vectors x;€S and scalars
&'el such that 4
x =)y &x
whence i

y=ox=3%0x,

13

This shows that every vector yeF is a linear combination of vectors in
¢ (S) and hence ¢ (S) is a system of generators for ¢ (S).

Next, suppose that ¢: E— F is injective and that S is a linearly inde-
pendent subset of E. Then ¢ (S) is a linearly independent subset of F. In
fact, the relation )

YXex;=0, x;€S8

implies that )
pY Ax;=0.

Since ¢ is injective we obtain

Yix;=0

whence, in view of the linear independence of the vectors x;, A'=0. Hence
¢ (S) is a linearly independent set.

In particular, if ¢:E—Fis a linear isomorphism and (x,),. 4 is a basis
for E, then (¢x,),. 4 is a basis for F.

Proposition I1I: Let ¢: E—F be a linear mapping and (x,),. 4 be a basis
of E. Then ¢ is a linear isomorphism if and only if the vectors y,=¢x,
form a basis for F.

Proof: If ¢ is a linear isomorphism then the vectors form a linearly
independent system of generators for F. Hence they are a basis. Converse-
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ly, assume that the vectors y, form a basis of F. Then we have for every
yeF

y=X0V =20 0xX, = o 0"x,
and so ¢ is surjective.

Now assume that . .
PY A x, = QY U x,.

Then it follows that
0= z’laq)xa - Z”a(pxaz
=2 (2 = 1) .
Since the vectors y, are linearly independent, we obtain that 1*= u* for

each «, and so
YA X, =Y X,

It follows that ¢ is injective, and hence a linear isomorphism.

Problems

1. Consider the vector space of all real valued continuous functions
defined in the interval a <¢<b. Show that the mapping ¢ given by

e:x(t)—tx(1)
is linear.
2. Which of the following mappings of I'* into itself are linear trans-
formations?

a) (éls 62’ ésa 64) - (61 623 52 - 619 63’ 64)

b) (51’ 62’ 63, 54) - (l 623 62 - 615 §3a 54)

c) (£4,8%,8%,8M (0,8, 83,8 + &2 + & + &%)

3. Let E be a vector space over I', and let f;...f, be linear functions in
E. Show that the mapping ¢: E—TI" given by

¢x =(f1(x),.... fr(x))
is linear.
4. Suppose ¢: E—T" is a linear map, and write

¢x=(f1(x),. [, (x)).

Show that the mappings f;: E—T are linear functions in E.
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5. The universal property of C(X). Let X be any set and consider the
free vector space, C(X), generated by X (cf. sec. 1.7).

(i) Show that if /: X —F is a set map from X into a vector space F
then there is a unique linear map ¢: C(X)—F such that ¢ iy, = f where
iy: X — C(X) is the inclusion map.

(ii) Let a: X—Y be a set map. Show that there is a unique linear
map 2, : C(X)— C(Y) such that the diagram

X 5 Y

ix | iv]
C(X)3 C(Y)

commutes. If f: Y—>Z is a second set map prove the composition
f 1
ormula (Boa), = B, o0, .

(iii) Let E be a vector space. Forget the linear structure of E and form
the space C(E). Show that there is a unique linear map n;: C(E)—E
such that ngoip=1.

(iv) Let E and F be vector spaces and let ¢: E—F be a map between
the underlying sets. Show that ¢ is a linear map if and only if

T[FO(/)*: (pOTEE'
(v) Denote by N(E) the subspace of C(E) generated by the elements
of the form ) . )
Jrasup = 2o = 1hy a,beE, A uel
cf. part (iii)). Show that
(el p ) kern = N(E).
6. Let "
P=Y at" ael
v=0

be a fixed polynomial and let f be any linear function in a vector space E.
Define a function P(f): E-T by

n

P(f)x= ) o f(x)".

v=0
Find necessary and sufficient conditions on P that P(f') be again a linear
function.

§ 3. Subspaces and factor spaces

In this paragraph, all vector spaces are defined over a fixed, but arbitrarily
chosen field I' of characteristic 0.
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1.12. Subspaces. Let E be a vector space over the field I'. A non-empty
subset, £y, of E is called a subspace if for each x, ye E, and every scalar

el x+ yek, (1.14)

and
AxeE,. (1.15)

Equivalently, a subspace is a subset of E such that
Ax+ puyekE,;

whenever x, ye E;. In particular, the whole space E and the subset (0)
consisting of the zero vector only are subspaces. Every subspace E, c E
contains the zero vector. In fact, if x, e £ is an arbitrary vector we have
that 0=x, —x;€E,. A subspace E, of F inherits the structure of a vector
space from E.

Now consider the injective map i: E; — E defined by

ix=x, xekE,.

In view of the definition of the linear operations in E; { is a linear map-
ping, called the canonical injection of E, into E. Since i is injective it fol-
lows from (sec. 1.11) that a family of vectors in E| is linearly independent
(dependent) if and only if it is linearly independent (dependent) in E.

Next let S be any non-empty subset of E and denote by E| the set of
linear combinations of vectors in S. Then any linear combination of vec-
tors in E is a linear combination of vectors in S (cf. sec. 1.3) and hence
it belongs to E,. Thus E; is a subspace of E, called the subspace generated
by S, or the linear closure of S.

Clearly, S is a system of generators for E,. In particular, if the set S is
linearly independent, then S is a basis of E,. We notice that E,=S if and
only if S is a subspace itself.

1.13. Intersections and sums. Let £, and £, be subspaces of E and
consider the intersection E; N E, of the sets E, and E,. Then E, n E, is
again a subspace of E. In fact, since O E, and Oe E, we have 0cE, N E,
and so E| n E, is not empty. Moreover, it is clear that the set £, N E,
satisfies again conditions (1.14) and (1.15) and so it is a subspace of E.
E,n E, is called the intersection of the subspaces E; and E,. Clearly,
E; N E, is a subspace of E; and a subspace of E,.

The sum of two subspaces E; and E, is defined as the set of all vectors
of the form

X=x, +Xx,, x,€E,x,€E, (1.16)
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and is denoted by E| + E,. Again it is easy to verify that E, + E, is a sub-
space of E. Clearly E, + E, contains E; and E, as subspaces.

A vector x of E,+ E, can generally be written in several ways in the
form (1.16). Given two such decompositions

X=x,+x, and x=x]+x}
it follows that
X, — X=X, —X,.
Hence, the vector
z=Xx; — X}

is contained in the intersection E; n E,. Conversely, let x=x, + x,, x; € E;,
x,€E, be a decomposition of x and z be an arbitrary vector of E, N E,.
Then the vectors

xi=x,—zeE, and x),=x,+:z€kE,

form again a decomposition of x. It follows from this remark that the
decomposition (1.16) of a vector xe E, + E, is uniquely determined if and
only if £, n E,=0. In this case E, + E, is called the (internal) direct sum
of E; and FE, and is denoted by E,®E,.

Now let S; and S, be systems of generators for E, and E,. Then clearly
S{ U S, 18 a system of generators for E; + E,. If T, and T, are respectively
bases for E, and E, and the sum is direct, £, N E,=0,then T, U T, is a
basis for E,@E,. To prove that the set T, U T, is linearly independent,
suppose that

SAx+ Yy, =0, xeT,y;eT,.
Then '
SAixi==YuyeE,nE,=0
whence '
YAx;=0 and Y uly;=0.
i J

Now the x; are linearly independent, and so A'=0. Similarly it follows
that p/=0.

Suppose that

: E=E ®E, (1.17)

is a decomposition of E as a direct sum of subspaces and let F be an arbi-
trary subspace of E. Then it is not in general true that

F=FnE ®FnE, (1.18)
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as the example below will show. However, if E, cF, then (1.18) holds.
In fact, it is clear that
FNE®FnE,cF. (1.19)

On the other hand, if
y=Xx;+ X, x,€E,,x,€E,
is the decomposition of any vector yeF, then

x,€eEs=FnE, x,=y—x,€FnE,.
It follows that
FcFNE ®FnNE,. (1.20)

The relations (1.19) and (1.20) imply (1.18).
Example I: Let E be a vector space with a basis e,, e,. Define E,, E,
and F as the subspaces generated by e,, e, and e, +e, respectively. Then

E=E ®E,
while on the other hand
FnE,=FnE,=0.
Hence
F+FnNnE ®FneE,.

1.14. Arbitrary families of subspaces. Next consider an arbitrary family
of subspaces E,c E, ae A. Then the intersection () E, is again a subspace
of E. The sum ZE, is defined as the set of all vectors which can be written

-4

fini
as finite sums, x=Yx, xeE, (1.21)

and is a subspace of E as well. If for every ae 4

E,n X E;=0
pFa

then each vector of the sum Y E, can be uniquely represented in the form
(1.21). In this case the space }Ea is called the (internal) direct sum of the
subspaces E,, and is denotedaby Y E,.

If S, is a system of generators For E,, then the set (S, is a system of
generators for ZE,. If the sum of the E, is direct and aT, is a basis of E,,

then (JT, is a basis for ) E,.
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Example 2: Let (x,),.4 be a basis of E and E, be the subspace generated

by x,. Then

E=YE,.

Suppose *
E=)E, (1.22)

is a direct sum of subspaces. Then we have the canonical injections
i,: E,—»E. We define the canonical projections n,: E—E, determined by

T, X = X,
where

x ac”

x=Yx, x,eE
a

It is clear that the m, are surjective linear mappings. Moreover, it is easily
verified that the following relations hold:

. 1 f=ua
naolﬁ—{o 'B:*:a
Yi,m,x=x  xek.

a

1.15. Complementary subspaces. An important property of vector
spaces is given in the

Proposition I: 1f E| is a subspace of E, then there exists a second sub-
space E, such that
E=E, ®E,.

E, is called a complementary subspace for E, in E.

Proof: We may assume that E, & F and E, #(0) since the proposition
is trivial in these cases. Let (x,) be a basis of F, and extend it with vectors
y; to form a basis of E (cf. Corollary I to Theorem I, sec. 1.6). Let E,
be the subspace of E generated by the vectors y;. Then

E=E ®E,.
In fact, since (x,)U (y,) is a system of generators for E, we have that
E=E, +E,. (1.23)
On the other hand, if xe £, n E,, then we may write

x=YAix, and x= %yﬂyﬂ



§ 3. Subspaces and factor spaces 27

whence
Y Ax, — “;,u”y,, =0.

Now since the set (x,) U (y) is linearly independent, we obtain
=0 and uf=0

whence x=0. It follows that £, n E,=0 and so the decomposition (1.23)
is direct.

As an immediate consequence of the proposition we have

Corollary I. Let E, be a subspace of £ and ¢, : E,— F a linear mapping
(F a second vector space). Then ¢, may be extended (in several ways) to a
linear map ¢: E—F.

Proof: Let E, be a complementary subspace for £, in E,

E=E ®E, (1.24)
and define ¢ by
OxX =0,y
where
XxX=y+z

is the decomposition of x determined by (1.24). Then
(P‘Z'lixi:(p(zi:;tiyl"l';'{izi) X =Y+ z
=@ ;Ai Vi
= ‘Zii(h Vi
= Z Ao X;
and so ¢ is linear. It is trivial that ¢ extends ¢,.

As a special example we have:

Corollary II: Let E| be a subspace of E. Then there exists a surjective
linear map
¢o:E-E;
such that
Px=x xekE,.
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Proof: Simply extend the identity map 1: E,—>E, to a linear map
@o:E-E;.

1.16. Factor spaces. Suppose E, is a subspace of the vector space E.
Two vectors xe E and x' € E are called equivalent mod E, if x'—xeE,. It
is easy to verify that this relation is reflexive, symmetric and transitive
and hence is indeed an equivalence relation. (The equivalence classes are
the cosets of the additive subgroup E, in E (cf. sec. 0.4)). Let E/E, denote
the set of the equivalence classes so obtained and let

n:E—> EJE,
be the set mapping given by
X =X, xeE

where X is the equivalence class containing x. Clearly n is a surjective
map.

Proposition II: There exists precisely one linear structure in E/E, such
that = is a linear mapping.

Proof: Assume that E/E, is made into a vector space such that  is a
linear mapping. Then the equations

t(x+y)=nax+mny
and
n(Ax)=Anx

show that the linear operations in E/E, are uniquely determined by the
linear operations in E.

It remains to be shown that a linear structure can be defined in E/E,
such that = becomes a linear mapping. Let X and y be two arbitrary ele-
ments of E/E, and choose vectors xe E and yeFE such that

TX=X, my=y.

Then the class 7 (x+y) depends only on ¥ and 5. Assume for instance that
x'eE is another vector such that nx'=x.
Then nx"=mnx and hence we may write

xX'=x+z, zeE,.
It follows that

X +y=(x+y)+z
whence

n(x" +y)=n(x+y).
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We now define the sum of the elements e E/E, and ye E/E, by
f+y=n(x+y) where x=nx and y=my. (1.25)

It is easy to verify that E/E, becomes an abelian group under this oper-
ation and that the class 0= E, is the zero-element.

Now let xe E/E| be an arbitrary element and Ael be a scalar. Choose
x€eE such that nx=%. Then a similar argument shows that the class = (1x)
depends only on % (and not on the choice of the vector x). We now define
the scalar multiplication in E/E; by

A-x=mn(Ax) where X=nx. (1.26)

Again it is easy to verify that the multiplication satisfies axioms 11.1-11.3
and so E/E, is made into a vector space. It follows immediately from
(1.25) and (1.26) that

n(x+y)=nx+ny x,yeE

n(Ax)=Anx Ael

i.e., w is a linear mapping.

The vector space E/E,; obtained in this way is called the factor space
of E with respect to the subspace E,. The linear mapping = is called the
canonical projection of E onto E,. If E; =E, then the factor space reduces
to the vector 0. On the other hand, if E; =0, two vectors xeE and yeE
are equivalent mod E; if and only if y=x. Thus the elements of E/(0) are
the singleton sets {x} where x is any element of E, and = is the linear
isomorphism x— {x}. Consequently we identify E and E/(0).

1.17. Linear dependence mod a subspace. Let E, be a subspace of E,
and suppose that (x,) is a family of vectors in E. Then the x, will be called
linearly dependent mod E, if there are scalars A% not all zero, such that

Y A*x,€E;.

If the x, are not linearly dependent mod E; they will be called linearly
independent mod E.
Now consider the canonical projection

n:E— E[E,.

It follows immediately from the definition that the vectors x, are linearly
dependent (independent) mod E| if and only if the vectors nx, are linearly
dependent (independent) in E/E|.
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1.18. Basis of a factor space. Suppose that (y,)U(z,) is a basis of E
such that the vectors y, form a basis of £,. Then the vectors nz; form a
basis of E/E,. To prove this let E, be the subspace of E generated by the

vectors z;. Then E=E ®EF,. (1.27)

Now consider the linear mapping ¢: E,— E/E, defined by
pz=nz zekE,.

Then ¢ is surjective. In fact, let ¥e E/E, be an arbitrary vector. Since
n:E— E/E| is surjective we can write

X=nx, xekE.
In view of (1.27) the vector x can be decomposed in the form

xX=y+z yeE,, z€E,. (1.28)
Equation (1.28) yields
X=nx=ny+nz=nz=¢@z
and so ¢ is surjective.
To show that ¢ is injective assume that

pz=¢z z,z'€eE,.
Then
n(z' —z)=¢(z' —2z)=0

and hence z'—ze E,. On the other hand we have that z’ —ze E, and thus
z'—zeE nE,=0.

It follows that ¢: E,—E/E, is a linear isomorphism and now Propo-
sition I1I of sec. 1.11 shows that the vectors nz; form a basis of E/E,.

Problems

1. Let (&1, &2, &%) be an arbitrary vector in I' 3. Which of the following
subsets are subspaces?

a) all vectors with &' =¢E2=¢3

b) all vectors with £*=0

c) all vectors with &' =¢2—-¢3

d) all vectors with &' =1

2. Find the subspaces F,, F,, F,, F, generated by the sets of problem I,
and construct bases for these subspaces.
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3. Construct bases for the factor spaces determined by the subspaces
of problem 2.

4. Find complementary spaces for the subspaces of problem 2, and
construct bases for these complementary spaces. Show that there exists
more than one complementary space for each given subspace.

5. Show that

a) I'*=F,+F,
b) I'*=F,+F,
c) I'*=F,+F,

Find the intersections F,n F,, F,n F,, F,n F, and decide in which cases
the sums above are direct.

6. Let S be an arbitrary subset of E and let E, be its linear closure.
Show that E_ is the intersection of all subspaces of E containing S.

7. Assume a direct composition E=E; @ E,. Show that in each class
of E with respect to £, (i.e. in each coset xe E/E,) there is exactly one
vector of E,.

8. Let E'be aplane and let £, be a straight line through the origin. What
is the geometrical meaning of the equivalence classes with respect to
E,. Give a geometrical interpretation of the fact that x~x" and y~)’
implies that x+y~x"+y'.

9. Suppose Sis a set of linearly independent vectors in E, and suppose
T is a basis of E. Prove that there is a subset of 7 which, together with S,
is again a basis of E.

10. Let w be an involution in E. Show that the sets £, and E_ defined
by

E, ={xeE;wox=x}, E_={xeE;wx=—x}

are subspaces of E and that
E=E . ®E_.

11. Let E,, E, be subspaces of E. Show that E, +F, is the linear
closure of E, U E,. Prove that

E1 + E2 = El U E2
if and only if
E,oE, or E,>E,.

12. Find subspaces E,, E,, E; of I'* such that
i) EEnE;=0 (i*))

i) E, + E, + E;=T?

iii) the sum in ii) is not direct.
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§ 4. Dimension

In this paragraph all vector spaces are defined over a fixed, but arbitrarily
chosen field I' of characteristic 0.

1.19. Finitely generated vector spaces. Suppose E is a finitely generated
vector space, and consider a surjective linear mapping ¢: E—F. Then F
is finitely generated as well. In fact, if x;...x, is a system of generators for
E, then the vectors ¢x,, ..., ¢x, generate F. In particular, the factor space
of a finitely generated space with respect to any subspace is finitely gener-
ated.

Now consider a subspace E; of E. In view of Cor. Il to Proposition I,
sec. 1.15 there exists a surjective linear mapping ¢: E— E,. It follows that
E| is finitely generated.

1.20. Dimension. Recall that every system of generators of a non-
trivial vector space contains a basis. It follows that a finitely generated
non-trivial vector space has a finite basis. In the following it will be shown
that in this case every basis of £ consists of the same number of vectors.
This number will be called the dimension of E and will be denoted by
dim E. E will be called a finite-dimensional vector space. We extend the
definition to the case E=(0) by assigning the dimension O to the space
(0). If E does not have finite dimension it will be called an infinite-dimen-
sional vector space.

Proposition I: Suppose a vector space has a basis of n vectors. Then
every family of (n+ 1) vectors is linearly dependent. Consequently, » is
the maximum number of linearly independent vectors in E and hence
every basis of E consists of #n vectors.

Proof: We proceed by induction on n. Consider first the case n=1 and
let a be a basis vector of E. Then if x=%0 and y <0 are two arbitrary vec-
tors we have that

x=2Xa, 2+0 and y=pa, u=+0
whence
ux—21y=0,.

Thus the vectors x and y are linearly dependent.

Now assume by induction that the proposition holds for every vector
space having a basis of r<n—1 vectors.

Let E be a vector space, and let a,(u=1...n) be a basis of E and
Xj...Xp4 a family of n+ 1 vectors. We may assume that x,, ; 0 because



§ 4. Dimension 33

otherwise it would follow immediately that the vectors x;...x,,,; were
linearly dependent.
Consider the factor space E;=E/(x,,,) and the canonical projection

n:E—> E/(x,+1)

where (x,, ;) denotes the subspace generated by x,.,. Since the system
d,, ..., 4, generates E; it contains a basis of £, (cf. Cor. I to Theorem I,
sec. 1.6). On the other hand the equation

Xn+1 = Z }'vav
v=1
implies that
Aa,=0

1

1=

v
and so the vectors (dy, ..., d,) are linearly dependent. It follows that E,
has a basis consisting of less than »n vectors. Hence, by the induction
hypothesis, the vectors X,...x, are linearly dependent. Consequently,
there exists a non-trivial relation

n

Y &%, =0
=1

v=

and so
n
+1
Z évxv=én xn+1'
v=1

This formula shows that the vectors x,...x, . are linearly dependent and
closes the induction.

Example: Since the space I'" (cf. Example 1, sec. 1.2) has a basis of n

vectors it follows that .
dimI™ =n.

Proposition II: Two finite dimensional vector spaces E and F are iso-
morphic if and only if they have the same dimension.

Proof: Let ¢: E—F be an isomorphism. Then it follows from Propo-
sition III, sec. 1.11 that ¢ maps a basis of E injectively onto a basis of F
and so dim E=dim F. Conversely, assume that dim E=dim F=n and let
x, and y, (u=1...n) be bases of E and F respectively. According to Propo-
sition II, sec. 1.11 there exists a linear mapping ¢:E—F such that
¢x,=y,(u=1...n). Then ¢ maps the basis x, onto the basis y, and hence
it is a linear isomorphism by Proposition III, sec. 1.11.

3 Greub. Linear Algebra
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1.21. Subspaces and factor spaces. Let E, be a subspace of the n-dimen-
sional vector space E. Then E, is finitely generated and so it has finite
dimension m. Let x,...x,, be a basis of E;. Then the vectors x,...x, are
linearly independent in E and so Cor. II to Theorem I, sec. 1.6 implies
that the vectors x; may be extended to a basis of E. Hence

dimE; <dimE. (1.29)

If equality holds, then the vectors x,...x, form a basis of E and it fol-
lows that E,=E.
Now it will be shown that

dimE = dimE, + dim EJE, . (1.30)

If E;=(0) or E,=FE (1.30) is trivial and so we may assume that £, is a
proper non-trivial subspace of E,

0 <dimE; <dimE.

Let x,...x, be a basis of E, and extend it to a basis x;...x,...x, of E. Then
the vectors %,,,...%, form a basis of E/E; (cf. sec. 1.18) and so (1.30)
follows.

Finally, suppose that E is a direct sum of two subspaces £, and E,,

E=E ®E,.
Then
dimE =dimE, + dimE,. (1.31)

In fact, if x;...x, is a basis of E; and x,,,...Xx,,, is a basis of E,, then
X{...Xp44 18 @ basis of E whence (1.31). More generally, if E is the direct
sum of several subspaces,

E= Y E,
i=1
then

dimE = ) dimE,.
i=1
Formula (1.31) can also be generalized in the following way. Let E,
and E, be arbitrary subspaces of E. Then
dim(E, + E,) + dim(E, n E;)=dimE, +dimE,. (1.32)

In fact, let z,...z, be a basis of £, n E, and extend it to a basis z,...z,
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X,41...x, of E; and to a basis z,...z,, ¥, 4+1...y, of E,. Then the vectors

Zy i Zy Xpats o Xpy Ver1ee Vg (1.33)

form a basis of E;+E,. Clearly, the vectors (1.33) generate E;+E,.
To show that they are linearly independent, we comment first that the
vectors x; are linearly independent mod(E, n E,). In fact, the relation

Y AxeE N E,

implies that
YAx =Y Hz,
i x
whence A'=0 and p*=0. Now assume a relation
Y+ Y Ex+ Y n'y;=0.
% i j
Then
Z?xi == Z’?JJ’j - ZCkaEEz
i i k

whence
Y ExeE N E,.

i

Since the vectors x; are linearly independent mod (E, n E,) it follows that
&=0. In the same way it is shown that 7’ =0. Now it follows that {*=0
and so the vectors (1.33) are linearly independent. Hence, they form a
basis of E, + E, and we obtain that

dim(E, +E))=r+(@—-r)+(q—7)
=p+qg-—r
= dimE, + dimE, — dim(E, n E,).

Problems

1. Let (x;, x,) be a basis of a 2-dimensional vector space. Show that

the vectors
X=X+ X, X=X —X;

again form a basis. Let (£', &%) and (&', %) be the components of a vector
x relative to the bases (x;, x,) and (¥;, X,) respectively. Express the com-
ponents (&', £2) in terms of the components (¢, £2).

2. Consider an n-dimensional complex vector space E. Since the multi-
plication with real coefficients in particular is defined in E, this space may
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also be considered as a real vector space. Let (z,...z,) be a basis of E.
Prove that the vectors z,...z,, iz,...iz, form a basis of E if E is considered
as a real vector space.

3. Let E be an n-dimensional real vector space and C the complex
linear space as constructed in § 1, Problem 5. If x,(v=1...n) is a basis of
E, prove that the vectors (x,, 0)(v=1...n) form a basis of C.

4. Consider the space I'" of n-tuples of scalars AeI'. Choose as basis
the vectors:

e =(1,1,...,1,1)
ez = (0,1,..., 1,1

ey = (0,0,...,0,1).

Compute the components 7', 7%, ..., #" of the vector x=(¢!, &2, ..., &)
relative to the above basis. For which basis in I'” is the connection be-
tween the components of x and the scalars &, &2, ..., &" particularly sim-
ple?

5. In I'* consider the subspace T of all vectors (¢, &2, &3, £4) satisfying
&1 4+282=¢34+2¢*. Show that the vectors: x;=(1,0,1,0) and x,=
(0, 1, 0, 1) are linearly independent and lie in T; then extend this set of
two vectors to a basis of T.

6. Let ay, ay, a3 be fixed real numbers. Show that all vectors (1, 52,
n*,n*) in R* obeying n*=a;n' +a,n? +a;n> form a subspace V. Show
that V is generated by

x; =(1,0,0,0); x, =(0,1,0,,); x5 = (0,0, 1, ;).

Verify that x,, x,, x3 form a basis of the subspace V.
7. In the space P of all polynomials of degree <n—1 consider the two
bases p, and ¢, defined by

p() =1
q,(t) =(t —a)’ (a, constant; v=0,...,n —1).

Express the vectors g, explicitly in terms of the vectors p,.

8. A subspace E; of a vector space E is said to have co-dimension n if
the factor space E/E; has dimension n. Let E; and F, be subspaces of
finite codimension, and let E,, F, be complementary subspaces,

E®E,=E, FI®F,=E.
Show that
dimE, =codimE;, dimF, =codimF,.



§ 5. The topology of a real finite-dimensional vector space 37

Prove that E, n F, has finite codimension, and that
codim(E; n F;) £dimE, + dimF,.

9. Under the hypothesis of problem 8, construct a decomposition
E=H,®H, such that H; has finite codimension and

i) HHcE n Fy
i) H, o E  + F;.

Show that

H,=E,®(E, n Hy)
and

H,=F,®(F, n H,).

10. Let (x,),c 4 and (¥4)se p be two bases for a vector space E. Establish
a 1—1 correspondence between the sets 4 and B.

11. Let E be an n-dimensional real vector space and E; be an (n—1)-
dimensional subspace. Denote by E! the set of all vectors xe E which are
not contained in E;. Define an equivalence relation in E'as follows: Two
vectors xe E' and yeE! are equivalent, if the straight segment

x()=(1-t)x+ty 0=t=Z1

is disjoint to E,. Prove that there are precisely two equivalence classes.

12. Show that a vector space is not the union of finitely many proper
subspaces.

13. Let E be an n-dimensional vector space. Let F, (i=1...k) be
subspaces such that dimF, < r (i=1..k
where r<n is a given integer. Show that there is a subspace F<E of
dimension n—r such that FN F,=0 (i=1...k). Hint: Use problem 12.

§ 5. The topology of a real finite-dimensional vector space

1.22. Real topological vector spaces. Let E be a real vector space in
which a topology is defined. Then E is called a topological vector space if
the linear operations

ExE—-E and R x E—E defined by
(x,y)>x+y
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and
(4, x)—Ax
are continuous.

Example: Consider the space R”. Since the set R” is the Cartesian
product of n copies of R, a topology is induced in R” by the topology in
R. It is easy to verify that the linear operations are continuous with re-
spect to this topology and so R" is a topological vector space. A second
example is given in problem 6.

In the following it will be shown that a real vector space of finite di-
mension carries a natural topology.

Proposition: Let E be an n-dimensional vector space over R. Then
there exists precisely one topology in E satisfying the conditions

T,: E is a topological vector space

T,: Every linear function in E is continuous.

Proof: To prove the existence of sucha topology let e, (v=1, ..., n) be a
fixed basis of E and consider the linear isomorphism ¢: R"— £ given by

(fl,...,én)ervev.

Then define the open sets in £ by ¢ (U) where U is an open set in R".
Clearly ¢ becomes a homeomorphism and the linear operations in E are
continuous in this topology. Now let f be a linear function in £. Then we
have for every x,€E, xeE

S %)= f(x0) =f(x = x0) = ;(5” — &) f(e).

Given an arbitrary positive number ¢>0 consider the neighbourhood,
oU, of x4 defined by
If"_é(‘)’l<5 V=1,...,n

where 6>0 is a number such that

52 1f(e)l <e.
Then if xepU we have that

IF ()=o)l <o) 1f (el <

which proves the continuity of f at x=x,.

It remains to be shown that the topology of E is uniquely determined
by T, and T,. In fact, suppose that an arbitrary topology is defined in E
which satisfies T} and T.
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Let e,(v=1, ..., n) be a basis of E and define mappings ¢:R"—E and
Y:E->R" by

P& =) 2%,
and

Yx=(E(x),...,E"(x))
X = ;év(x)ev

where

T, implies that ¢ is continuous. On the other hand, the functions x—¢&" (x)
are linear and hence it follows from T, that s is continuous. Since

Vo =1, and @ofy =1

we obtain that ¢ is a homeomorphism of R” onto E. Hence the topology
of E is uniquely determined by T; and T.
Corollary: The topology of E constructed above is independent of the

basis e,.
Let F be a second finite-dimensional real vector space and let ¢: E—F
be a linear mapping. Then ¢ is continuous. In fact, if y,(u=1, ..., m) is

a basis of F we can write
px =y n"(x)y,
u

where the #* are linear functions in E. Now the continuity of ¢ follows
from T, and T5.

1.23. Complex topological vector spaces. The reader should verify that
the results of sec. 1.22 carry over word for word in the case of complex
spaces.

Problems

1. Let f be a real valued continuous function in the real n-dimensional
linear space E such that

fx+y)=f(x)+f(») xyeE.

Prove that f is linear.

2. Let ¢: E,—E, be a surjective linear mapping of finite dimensional
real vector spaces. Show that ¢ is open (the image of an open set in E,
under ¢ is open in E,).
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3. Let n: E- E/F be the canonical projection, where E is a real finite
dimensional vector space, and F is a subspace. Then the topology in E
determines a topology in E/F (a subset Uc E/F is open if and only if
n~'U is open in E).

a) Prove that this topology coincides with the natural topology in the
vector space E/F.

b) Prove that the subspace topology of F coincides with the natural
topology of F.

4. Show that every subspace of a finite dimensional real vector space
is a closed set.

5. Construct a topology for finite dimensional real vector spaces that
satisfies T; but not T,, and a topology that satisfies T, but not T;.

6. Let E be a real vector space. Then every finite dimensional subspace
of E carries a natural topology. Let E; be any finite dimensional subspace
of E, and let U, = E, be an open set. Moreover let E, be a complementary
subspace in E, E=E;®F,. Then U; and E, determine a set O given by

O={x+y;xeU,yeE,}. (1.34)
Suppose that
O ={x+y;xeU,uckE}}

is a second set of this form. Prove that O n O’ is again a set of this form.
Hint: Use problems 8 and 9, § 4.

Conclude that the sets O < E of the form (1.34) form a basis for a
topology in E.

7. Prove that the topology defined in problem 6 satisfies T, and T,.

8. Prove that the topology of problem 7 is regular. Show that E is not
metrizable if it has infinite dimension.



Chapter 11
Linear Mappings

In this chapter all vector spaces are defined over a fixed but arbitrarily
chosen field, I, of characteristic 0.

§ 1. Basic properties

2.1. Kernel and image space. Suppose E, F are vector spaces and let
¢@: E—F be a linear mapping. Then the kernel of ¢, denoted by ker ¢, is
the subset of vectors xe E such that ¢x=0. It follows from (1.8) and (1.9)
that ker ¢ is a subspace of E.

The mapping ¢ is injective if and only if

ker ¢ = (0). (2.1)

In fact, if @ is injective there is at most one vector x € E such that ¢x=0.
But ¢0=0 and so it follows that ker ¢ =(0). Conversely, assume that
(2.1) holds. Then if

Px1=0x,

for two vectors x,, x,€E we have

@(x; —x)=0

whence x, —x,eker ¢. It follows that x, —x,=0 and so x,=x,. Hence
@ 1s injective.

The image space of ¢, denoted by Im ¢, is the set of vectors ye F of the
form y=¢x for some xeE. Im ¢ is a subspace of F. It is clear that ¢ is
surjective if and only if Im ¢=F.

Example 1. Let E; be a subspace of E and consider the canonical
projection

n:E— E|E,.
Then
kern=E;, and Imn=E/E,.



42 Chapter 11. Linear mappings

2.2. The restriction of a linear mapping. Suppose ¢: E—F is a linear
mapping and let £, < E, F; = F be subspaces such that

oxeF, for xeE,.
Then the linear mapping
@ E, - F,
defined by
P1X=0QXx xeE,

is called the restriction of ¢ to E,, F,. It satisfies the relation

Qolg=lpo@,

where ip: E)—E and ip: F, > F are the canonical injections. Equivalently,
the diagram

E.SF,
is commutative.
2.3. The induced mapping in the factor spaces. Let ¢: E— F be a linear
mapping and ¢, : F; - F, be its restriction to subspaces E, c E and F, c F.
Then there exists precisely one linear mapping

¢:E[E > F[F,
such that
Pollg =Tpo@ (2.2)
where
ng:E—>E/E, and np:F— FJF,

are the canonical projections.
Since m is surjective, the mapping @ is uniquely determined by (2.2) if
it exists. To define @ we notice first that

TpP Xy =TpP Xy (2.3)

whenever
MEX{ = Mg X,. (2.4)
In fact, (2.4) implies that
x; —x,ekerng=E,.
But by the hypothesis
¢x1—@x;=0¢(x; — x,)eF; = kerng

and so

Tp@P Xy =TNpPXsy.
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It follows from (2.3) and (2.4) that there is a set map ¢:E/E,—~E/F,
satisfying (2.2). To prove that @ is linear let Xe€E/E; and jeE/E, be
arbitrary and choose vectors xe E and y € E such that nypx=% and n.y=J.
Then it follows from (2.2) that

GAx+pd)=0ng(Ax +py)=nre(Ax+pny)
=AnpQX +punpQy=A@X+ upy
and hence ¢ is a linear mapping.
The reader should notice that the relation (2.2) is equivalent to the
requirement that the diagram
E-2>F
nE l - l"F
E/E, 5 FJF,

be commutative. Setting ngx=25%, xe E and nyy=Jj, yeF we can rewrite
(2.2) in the form
P =px.

2.4. The factoring of a linear mapping. Let ¢: E— F be a linear mapping
and consider the subspaces E; =ker ¢ and F, =(0). Since ¢x=0, xeE,
a linear mapping

@:Elkerep > F

is induced by ¢ (cf. sec. 2.3) such that
Pot=¢ 2.5)
where 7 denotes the canonical projection
n:E— Elkerg.

The mapping @ is injective, In fact, if pnx=0 we have that px=0. Hence
xeker ¢ and so nx=0. It follows that @ is injective. In particular, the
restriction of @ to E/ker ¢, Im ¢ (also denoted by §) is a linear isomorph-
ism
@:Elker ¢ 3 Ime.
Formula (2.5) shows that every linear mapping ¢: E— F can be written
as the composition of a surjective and an injective linear mapping,
E%F
] 75
E/ker ¢
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As an application it will now be shown that for any two subspaces
E,cF and E, c E there is a natural isomorphism

E{(E, 0 E) 5 (E; + Ey)[E,. (2.6)
Consider the canonical projection
n:E, + E, > (E, + E,)/E,

and let ¢ be the restriction of n to Ey, (E; + E,)/E,. Then ¢ is surjective.
In fact, if
X=X, + X, x€E|,x,€E,

is any vector of E; + E, we have

ix=n(xX, + X)) =nX, =@X;.
Since
kero =kernn E, =E, N E,

it follows that ¢ induces a linear isomorphism
@:EJ(E; N E)) > (Ey + EyJE, .
Now consider the special case that
E=E,®E,.
Then E, n E, =0 and hence the relation (2.6) reduces to
E, > EJE,.

As a second example, let f;(i=1...r) be r linear functions in £ and
define a subspace F< E by

F=(kerf;.
i=1
Now consider the linear mapping ¢: E—TI'" defined by

Qx= (fl (X), ""fr(x))'
Then clearly

kerop = M kerf,=F
i=1

and so ¢ determines a linear isomorphism

G:EF SImecT'.



§ 1. Basic properties 45

It follows that Im ¢, and hence E/F, has dimension <r,
dimE/F < r.

Proposition I: Suppose ¢:E—F and y: E- G are linear mappings such

that
ker ¢ < keryr.

Then y can be factored over ¢; that is, there exists a linear mapping
x:F—G such that
Xo@ =Y.

Proof: Since y maps ker ¢ into 0 it induces a linear mapping: E/ker ¢
—G such that
Yom=y
where
n:E > Efker ¢

is the canonical projection. Let

@:Elkero SImo

be the linear isomorphism determined by ¢, and define a linear mapping
¥,:Im ¢—G by
‘pl = J o~ L.

Finally, let y: F— G be anylinear mapping which extends /. Then we have
that

=—1 _==1 =

Q@ o P=@ " ocQPoTM=T
whence

Xo@=Y100=Po@ lop=Yon=y.
Our result is expressed in the commutative diagram
E3F
vl ¥
G

2.5. Exact sequences. Exact sequences provide a sophisticated method
for describing elementary properties of linear mappings.
A sequence of linear mappings

FSEYG 2.7
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is called exact at E if
Ime = kery.

We exhibit the following special cases:

1. F=0. Then the exact sequence (2.7) reads

05E%G. (2.8)

Since Im ¢ =0 it follows that ker =0 i.e., ¥ is injective. Conversely,
suppose : E—G is injective. Then kery =0, and so the sequence (2.8)
is exact at E.

2. G=0. Then the exact sequence (2.7) has the form
FLE%0. (2.9)
Since s is the zero mapping it follows that
Imo =kery =E

and so ¢ is surjective. Conversely, if the linear mapping ¢:F—E is sur-
jective, then the sequence (2.9) is exact.

A short exact sequence is a sequence of the form

*)

0-FAELGS0 (2.10)

which is exact at F, £ and G. As an example consider the sequence
0-E, SESEE -0 (2.11)

where E; is a subspace of F and i, n denote the canonical injection and
projection respectively. Then

Imi=E, =kern

and so (2.11) is exact at E. Moreover, since i and & are respectively injec-
tive and surjective, it follows that (2.11) is exact at £, and E/E, and so
(2.11) is a short exact sequence.

The example above is essentially the only example of a short exact
sequence.

*) It is clear that the first and the last mapping in the above diagram are the zero
mappings.
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In fact, suppose
0-FSE% G0

is a short exact sequence. Let
E, =Im¢ = kery
and consider the exact sequence
0—E, SESEE -0

Since the mapping ¢: F— E is injective its restriction ¢, to F, E, is a linear
isomorphism, ¢,:F3 E,. On the other hand, ¥ induces a linear iso-
morphism _ -
Y:E/E,>G.
Now it follows easily from the definitions that the diagram

0-F -E -> G-0
I g1 = 2.12)
O0-E,-E —EE -0
is commutative.
2.6. Homomorphisms of exact sequences. A commutative diagram of
the form
0-F,5E %G -0
le o e (2.13)

OﬂFngzﬁGZ—)O

where both horizontal sequences are short exact sequences, and g, o, T
are linear mappings, is called a homomorphism of exact sequences. If
g, 0, T are linear isomorphisms, then (2.13) is called an isomorphism be-
tween the two short exact sequences. In particular, (2.12) is an isomorph-
ism of short exact sequences.

2.7. Split short exact sequences. Suppose that

0-FAE%LG-0 (2.10)

is a short exact sequence, and assume that there y:E«G is a linear
mapping such that
ping Vox=1.

Then y is said to split the sequence (2.10) and the sequence

'3
0>F5E2G-0
X
is called a split short exact sequence.
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Proposition 1I: Every short exact sequence can be split.
Proof: Given a short exact sequence, (2.10) let £; be a complementary
subspace of ker { in E,
E=E, ®kery

and consider the restriction, Y, of ¥ to E,, G. Since ker {y; =0, ¥, is a
linear isomorphism, ¥/, : E; 5 G. Then the mapping y:E, <G defined by

=y ! satisfies the relation

Yrz=yyitz=y,y;lz=1z zeG

and hence y splits the sequence.

2.8. Stable subspaces. Consider now the case F=E; i.e., let ¢ be
a linear transformation of the vector space E. Then a subspace E, c E
will be called stable under ¢ if

oxeE, for xeE,.

It is easy to verify that the subspaces ker ¢ and Im ¢ are stable. If E,
is a stable subspace, the restriction, ¢,, of ¢ to E,. E, will be called the
restriction of ¢ to E,. Clearly, ¢, is a linear transformation of E,. We
also have that the induced map

@:EJE, > E|E,

is a linear transformation of E/E;.

Problems

1. Let C be the space of continuous functions f: R— R and define the
mapping ¢:C—C by

qxf(t)»ff(s)ds-

Prove that Im ¢ consists of all continuously differentiable functions while
the kernel of ¢ is 0. Conclude that ¢ is injective but not bijective.

2. Find the image spaces and kernels of the following linear transfor-
mations of I'*:

a) w(él,éz’ 633 64) = (51 - 525 él + 52’ 53, 54)
b) Y (&', &2, 8% &%) = (&', ¢4, ¢4, &)
) Y(&, &8N = (et + e+ &8,¢Y.
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3. Find the image spaces and kernels of the following linear mappings
of I'*into I'>:

a) (P(él’€2’53,€4) — (551 _ 62’51 + 62’ 63,54’51)

b) @(£,8%,8%, &%) = (&' + & + 78 +¢4,28% + ¢4, 8,858 - &)

) (8,878, &) =& -+ & +¢,8 - 4L 178 +138%,168" +
+5¢4,¢ = &)

4. Construct bases for the factor spaces I'*/ker ¢y and I'*/ker ¢ of
problems 2 and 3. Determine the action of the induced mappings on these
bases and verify that the induced mappings are injective.

5. Prove that if ¢:E—F and : E-G are linear mappings, then the
relation

ker ¢ < kerys

is necessary for the existence of a linear mapping y:F—G such that
Y=x00.

6. Consider the pairs (, @) in parts a, b, ¢ of problems 2 and 3. Decide
in each case if ¥ can be factored over ¢, or if ¢ can be factored over ,
or if both factorings are possible. Whenever y can be factored over ¢
(or conversely) construct an explicit factoring map.

7. a) Use formula (2.6) to obtain an elegant proof of formula (1.32).

b) Establish a linear isomorphism

(E[F)/(E,/F) > E[E,
where Fc E, < E.
8. Consider the short exact sequence

05 E,S>ESEIE —0.

Show that the relation y2Im y defines a 1 —1 correspondence between
linear mappings x: E« E/E; which split the sequence, and complementary
subspaces of E; in E.
9. Show that a short exact sequence 0-F5 ELG0is split if and only

if there exists a linear mapping w: F« E such that w.p=1.
In the process establish a 1—1 correspondence between the split short
exact sequences of the form

v

05FSE2G-0

X

and of the form

0oFoELGS0

4 Greub. Linear Algebra
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such that the diagram
0FEELG«0

is again a short exact sequence.
10. Assume a commutative diagram of linear maps

E, 5E,5E,3E,BE,
oo Lo los lea |es
FR5F5FR5F5F
where both horizontal sequences are exact.
i) Show that if ¢, is injective and ¢, is surjective, then

ker ¢, = a, (ker ¢,).
i) Show that if ¢, is surjective and ¢ is injective, then

Ime,; = ﬁ;l(lm Py).

ii1) Conclude that if the maps ¢,. ¢,, ¢,, @5 are linear isomorphisms,
then so is ¢ (5-lemma).

11. Consider a system of linear mappings

0o 0 0
l ! l

@Yoo Pot
0— Egp = Egy = Egy —

l/’ool ll/ml '//ozl

P10 4+ @11
O0-E > E;—~E;,~

llllol lllnl 'I'lzl

®20 P21
0-Eyy > Ey = Eyp—

l ! l

where all the horizontal and the vertical sequences are exact at each E;;.
Assume that the diagram is commutative. Define spaces H;; (i1, /= 1) by

H;; = (kero;; n kery )/Im (00,24 1)

Construct a linear isomorphism between H; ;,, and H;, | ;.
12. Given an exact sequence

ESAFLGHH

prove that ¢ is surjective if and only if y is injective.
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13. Prove the hexagonal lemma: Given a diagram of linear maps

in which all triangles are commutative, k, and k, are isomorphisms and
the diagonals j,i, and j oi, are exact at E, show that

11°k1°h1+12°k2°h2:¢°‘/’~

§ 2. Operations with linear mappings

2.9. The space L(E; F). Let E and F be vector spaces and consider the
set L(E; F) of linear mappings ¢:E—F. If ¢ and y are two such map-
pings ¢+ and A of E into F are defined by

(p+¥)x=0x+yx
and
Ae)x=Aopx xekE.

It is easy to verify that ¢ +y and A¢ are again linear mappings, and so
the set L(E; F) becomes a linear space, called the space of linear mappings
of E into F. The zero vector of L(E; F) is the linear mapping 0 defined
by 0 x=0, xeE.

In the case that F=T (¢ and y are linear functions) L(E; I') is denoted
simply by L(E).

2.10. Composition. Recall (sec. 1.10) that if ¢: E—F and y: F—G are
linear mappings then the mapping Y. ¢: E—G defined by

(Yop)x =y (ox)

is again linear. If H is a fourth linear space and y: G— H is a linear map-
ping, we have for each xe E

ro@Woo)lx=x(Wop)x=y[¥(ex)] = (o) ox=[(xo¥)o@]x
whence xo(Wo0) = (1ow)e0. (2.14)

Consequently, we can simply write xo/o .

4%
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If ¢: E—Fis a linear mapping and i; and 1 are the identity mappings
of E and F we have clearly

Qolg=¢ and 1.0 =0. (2.15)

Moreover, if ¢ is a linear isomorphism and ¢ ~ ' is the inverse isomorphism
we have the relations
0 lop=1; and Qoo !=1;. (2.16)
Finally, if ¢;: E— F and y;: F— G are linear mappings, then it is easily
checked that
X AV) oo =22 (Vio0)
and (2.17)
Ve(She) =Y A (Wep).

2.11. Left and right inverses. Let ¢: E— F and {: E«< F be linear map-
pings. Then y is called a right inverse of ¢ if oy =1g.
Y is called a left inverse of ¢ if Yop=1g.

Proposition I: A linear mapping ¢: E— F is surjective if and only if it
has a right inverse. It is injective if and only if it has a left inverse.
Proof: Suppose ¢ has a right inverse, . Then we have for every yveF

y=0yy

and so yelm ¢; i.e., ¢ is surjective. Conversely, if ¢ is surjective, let E,
be a complementary subspace of ker ¢ in E,

E=E @kereo.

Then the restriction ¢ of ¢ to E,, F is a linear isomorphism. Define the
linear mapping : E,« F by Yy =i,¢, ', where i,: E, - E is the canonical
injection. Then
oYy =00 'y=y, yeF
ie., o =1p.
For the proof of the second part of the proposition assume that ¢ has
a left inverse. Then if xeker ¢ we have that

x=yex=y0=0

whence ker ¢ =0. Consequently ¢ is injective.
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Conversely, if ¢ is injective, consider the restriction ¢, of ¢ to E, Im ¢.
Then ¢, is a linear isomorphism. Let n: F—»Im ¢ be a linear mapping
such that

ny=y for yelmeg

(cf. Cor. 11, Proposition I, sec. 1.15) and define y: E—F by

l// = (pl_ 1 oTl.
Then we have that

yox=0¢'nox=9'ox=9; o, x=x

whence - @ =1;. Hence ¢ has a left inverse. This completes the proof.

Corollary: A linear isomorphism ¢:E— F has a uniquely determined
right (left) inverse, namely, ¢ ~!.
Proof: Relation (2.16) shows that ¢ ~ ! is a left (and right) inverse to ¢.

Now let ¥ be any inverse of ¢,
lp O(p = lE'

Then multiplying by ¢ ' from the right we obtain

1 1

Voo™ =@~

whence Y =¢ ~!. In the same way it is shown that the only right inverse
1

of pis ™.
2.12. Linear automorphisms. Consider the set GL(E) of all linear auto-
morphisms of E. Clearly, GL(E) is closed under the composition
(o, )= o and it satisfies the following conditions:
) xo(Wop)=(x-y)oe (associative law)
ii) there exists an element : (the identity map) such that @.:=
1o =g for every p€GL(E)
iii) to every peGL(E) there is an element ¢ ~'e€GL(E) such that
¢ lop=0pop !
In other words, the linear automorphisms of E form a group.

=1.

Problems
1. Show that if E, F are vector spaces, then the inclusions

L(E; F)c C(E; F)< (E; F)
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are proper ((E; F) is defined in Example 3, sec. 1.2 and C(E; F) is defined
in problem 9, § 1, chap. I). Under which conditions do any of these spaces
have finite dimension?

2. Suppose

YL E->F and @, F > G

are linear mappings. Assume that ¢,, ¢, are injective, ¥, ¥, are surjec-
tive and y,, yx, are bijective. Prove that

a) ¢,0@, Is injective

b) ¥,y is surjective

C) ¥20y is bijective

3. Let ¢: E—F be a linear mapping. a) Consider the space M'(¢p) of
linear mappings y: E«<F such that Yo =0. Prove that if ¢ is surjective
then M'(¢)=0.

b) Consider the space M"(¢) of linear mappings y: E«F such that
@<y =0. Prove that if ¢ is injective then M"(¢)=0.

4. Suppose that ¢:E—F is injective and let M'(¢) be the subspace
defined in problem 3. Show that the set of left inverses of ¢ is a coset in
the factor space L(F; E)/M"'(¢p), and conclude that the left inverse of ¢
is uniquely determined if and only if ¢ is surjective. Establish a similar
result for surjective linear mappings.

5. Show that the space M'(¢) of problem 3 is the set of linear mappings
Y : E«F such that Im ¢ <ker . Construct a natural linear isomorphism
between M'(p) and L(F/Im ¢; E).

Construct a natural linear isomorphism between M'(¢p) (cf. prob-
lem 3) and L(F; ker o).

6. Assume that ¢: E— E'is a linear transformation such that g oy =0 @
for every linear transformation . Prove that ¢ =41 where 1 is a scalar.
Hint: Show first that, for every vector x€ E there is a scalar A(x) such that
@x=2A(x)x. Then prove that 1(x) does not depend on x.

7. Prove that the group GL(E) is not commutative for dim E>1. If
dim E=1, show that GL(E) is isomorphic to the multiplicative group of
the field I'.

8. Let E be a vector space and S be a set of linear transformations of
E. A subspace Fc E is called stable with respect to S if F is stable under
every @€ S. The space E is called irreducible with respect to S if the only
stable subspaces are F=0 and F=E.

Prove Schur’s Lemma: Let E and F be vector spaces and «: E—F be a
linear mapping. Assume that Sy and Sy are two sets of linear transfor-
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mations of E and F such that

O(SE= Spa

i.e. to every transformation @eSg there exists a transformation YeSg
such that ao@=y.a and conversely. Prove that «a=0 or « is a linear
isomorphism of E onto F.

§ 3. Linear isomorphisms

2.13. It is customary to state simply that a linear isomorphism pre-
serves all linear properties. We shall attempt to make this statement more
precise, by listing without proof (the proofs being all trivial) some of the
important properties which are preserved under an isomorphism ¢: ES F.

Property I: The image under ¢ of a generating set (linearly independent
set, basis) in E is a generating set (linearly independent set, basis) in F.

Property II: 1If E, is any subspace in E, and E/E, is the corresponding
factor space, then ¢ determines linear isomorphisms

and
EJE, S @E|pE,.

Property III: If G is a third vector space, then the mappings

Yovop !  YeL(E;G)
and
y->o0o¥  YeL(G;E)

are linear isomorphisms

L(E;G)> L(F;G)
and

L(G;E)> L(G;F)

2.14. Identification: Suppose ¢:E—F is an injective linear mapping.
Then ¢ determines a linear isomorphism

(pI:EiIm<p.
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It may be convenient not to distinguish between E and Im ¢, but to
regard them as the same vector space. This is called identification, and
while in some sense it is sloppy mathematics, it leads to a great deal of
economy of formulae and a much clearer presentation. Of course we
shall only identify spaces whenever there is no possibility of confusion.

§ 4. Direct sum of vector spaces

2.15. Definition. Let £ and F be two vector spaces and consider the set
E x F of all ordered pairs (x, y), xe E, ye F. It is easy to verify that the set
E x F becomes a vector space under the operations

(xts 1) + (20 92) = (g + %2591 + ¥2)
and

A(x,y) = (4x,2y)

This vector space is called the (external) direct sum of E and F and is
denoted by E@F. If (x,), . 4 and (y4) . g are bases of E and F respectively
then the pairs (x,, 0) and (0, y;) form a basis of E@F. In particular, if E
and F are finite dimensional we have that

dim(E® F)=dimE + dimF.

2.16. The canonical injections and projections. Consider the linear map-
pings
icE-E®F i,)F>E®F
defined by
ipx=(x,0) i,y=(0,y)

and the linear mappings

T E®@F->E n,;E®F-F
given by
m(x,y)=x m(x,y)=y.

It follows immediately from the definitions that

Tyoly =1 Myoiy =Ip (2.18)

ﬂloi2=0 nzoi1=0 (219)
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and
ilon1+i20n2=1E®F. (2.20)

The relations (2.18) imply that the mappings i;(A=1, 2) are injective
and the mappings =, (4=1,2) are surjective. The mappings i, are called
respectively the canonical injections and n, the canonical projections as-
sociated with the external direct sum E@F. Since /;, and 7, are injective
we can identify E with Im i, and F with Im /,. Then E and F become sub-
spaces of E@QF, and E® F is the internal direct sum of E and F.

The reader will have noticed that we have used the same symbol to
denote the external and the internal direct sums of two subspaces of a
vector space. However, it will always be clear from the context whether
the internal or the external direct sum is meant. (If we perform the iden-
tification, then the distinction vanishes). In the discussion of direct sums
of families of subspaces (see sec. 2.17) we adopt different notations.

If F=E we define an injective mapping 4: E—»E®FE by

Ax =(x,x).

A is called the diagonal mapping. In terms of i, and i, the diagonal map-
ping can be written as
A=i +i,.

Relations (2.18) and (2.19) imply that
Tiod=Ty04=1.

The following proposition shows that the direct sum of two vector
spaces is characterized by its canonical injections and projections up to
an isomorphism.

Proposition I: Let E, F, G be three vector spaces and suppose that a
system of linear mappings

90 :E->G, Y,:G->E
¢, F>G, Y,:G->F

Is given subject to the conditions

Yio@r =1 Yr00,=1p

Yi00,=0 Y00, =0
and

QoW+ @0, =15.
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Then there exists a linear isomorphism 1: E®FS G such that

¢y =7toiy Yy=moer!
and (2.21)

Oy =Toiy, WYy =Tp07 '.

The ¢,, ; are called (as before) canonical injections and projections.
Proof: Define linear mappings
0:G>E®F and T:E®F-G
by

6z=0W2,¥,2), zeG
and
(X, ) =@ X+ @y, xeE yeF.

Then for every vector zeG
TUZ:(P1W1Z+‘P2¢22=Z

and for every vector (x, y)e EQF

ot(x, )= o x + ¥, Q0,0 X +¥0,3) =(x,)).

These relations show that t and o are inverse isomorphisms. Formulae
(2.21) are immediate consequences of the definition of 7.

Example: Let E be a real vector space. Then E@ E can be made into
a complex vector space as follows:

(a+ip)x.y)=(ax—PFyay+fx) o fpfekR.

The complex vector space so obtained is called the complexification of E
and is denoted by E.
Every vector (x, y)e E¢ can be uniquely represented in the form

(x, ) =(x.0)+ (0, y) = (x. 0) + i(». 0).

Now identify the (real) subspace E@®O0 of E¢ with E under the inclusion
map i,: E->E®E. Then the equation above reads

(x,v)=x+1iy x,yek.

If E has finite dimension n, and if x,, .... x, is a basis of E, then the vec-
tors x,, ..., x, form a basis of the complex space E as is easily verified.
Thus

dim Eq = dimg E.
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2.17. Direct sum of an arbitrary family of vector spaces. Let (E,),., be
an arbitrary family of vector spaces. To define the direct sum of the family
E, consider all mappings

x:A-JE, (2.22)

such that *

) x(0)eE,, acAd

i) all but finitely many x(«) are zero.
We denote x(«) by x,. Then the mapping (2.22) can be written as

Xl Xx,.
The sum of two mappings x and y is defined by
(x+3)(@)=x,+y,
and the mapping Ax is given by
(Ax)(a) = Ax,.

Under these operations the set of all mappings (2.22) is made into a
vector space. This vector space is called the (external) direct sum of the
vector spaces E, and will be denoted by @ E,. The zero vector of @ E, is
the mapping x given by * *

x(x)=0, (0, zero vector of E,).

For every fixed ge A we define the canonical injection i,: E,—» @ E, by

, 0, e+«
lax:aa{x 0 =0 xeE, (2.23)
and the canonical projection n,: ® E,— E, by
T,X =X, xXeE®@E, (2.24)
It follows from (2.23) and (2.24) that
Tgol, = 0441 (2.25)
and
Yi,mpx=x Xxe®E,. (2.26)
e a

By ‘abus de langage’ we shall write (2.26) simply as

Yim,=1.
e
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Proposition II: Suppose that a decomposition of a vector space E as a
direct sum of a family of subspaces E, is given. Then F is isomorphic to
the external direct sum of the vector spaces E,.

Proof: Let @ E,=E. Then a linear mapping o: E— E'is defined by

ox=Yi,x, where x=) X,x,€E,.
a

a

Conversely, a linear mapping t: £~ E is given by

TX=) m,X.

a

Relations (2.25) and (2.26) imply that
Too=1 and ogoT=1

and hence ¢ is an isomorphism of E onto £ and 7 is the inverse isomorph-
ism.

2.18. Directsum of linear mappings. Suppose¢,:E;—»F,and¢,:E,»F,
are linear mappings. Then a linear mapping ¢, ®¢,: E,®E,—»F,®F, is
defined by

(@1 ® @2)(x1,x2) = (@1 X1, 02 X3).

It follows immediately from the definition that

Im(¢; ® ¢@,) =Ime, ®Ime,
and

ker(¢; @ ¢,) = ker o, @ ker g, .

Now suppose E;, E, are subspaces of E and F,, F, are subspaces of F
such that
E=E,®E, and F=F @F,. 2.27)

If ¢;: E;—> F; are linear maps then ¢, @ ¢, is again a linear map, defined by

(@1 @ @2)(x1 + x3) = @1 X1 + @2 X,

where x=x,; + x, is the decomposition of any vector xe E determined by
(2.27). ¢, ® @, may be characterized as the unique linear map of E into F
which extends ¢, and ¢,.
2.19. Projection operators. A linear transformation ¢: E—FE is called
a projection operator in E, if ¢*=¢. If ¢ is a projection operator in E,
then
E=kero®Ime. (2.28)
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Moreover,
P = 'lm(p®0ker<p' (229)

To prove (2.28) let xe E be an arbitrary vector. Writing

x=y+ox (ie.y=x—0¢x)
we obtain that
Py=0x—¢*x=0

whence yeker ¢. It follows that
E=kerp +Ime. (2.30)
To show that the decomposition (2.30) is direct let z=@x be an arbi-
trary vector of ker ¢ N Im ¢. Then we have that

O=¢pz=@’x=¢px=1z

and thus ker ¢ N Im ¢ =0.

To prove (2.29) we observe that the subspaces Im ¢ and ker ¢ are
stable under ¢ (cf. sec. 2.8) and that the induced transformations are the
identity and the zero mapping respectively.

Conversely, if a direct decomposition

E=E ®E,

is given, then the linear mapping
P =1, @ OEZ

is clearly a projection operator in E.

Proposition III: Let g;(i=1...r) be projection operators in E such that

Q,-ogj=0, I#J (2.31)

ZQL'=’-

i

and

Then

E= ®lImy,.

i=1

Proof: Let xe E be arbitrary. Then the relation

X = ZQ"XE.ZI Im g;

i=
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shows that r
E= X Imy,. (2.32)

i=1

To prove that the sum (2.32) is direct suppose that

xelmg;, n 2 Img;.
JjFi

Then x=y9,y (some yeFE), so that
oax=0ly=0y=x. (2.33)

On the other hand, we have that for some vectors y;eE,
X=2.0,);
J¥i
whence, in view of (2.31),
eix =) 00;y=0. (2.39)
Jj*i

Relations (2.33) and (2.34) yield x=0 and hence the decomposition (2.32)
is direct.

Suppose now that

E=YE,
is a decomposition of E as a direct sum of subspaces E,. Let n,: E-FE,
and i,: E,— E denote the canonical projections and injections, and con-
sider the linear mappings ¢,: E— E defined by

0

Ly

=17

v v

Then the g, are projection operators satisfying (2.31) as follows from
(2.25) and (2.26). Moreover, Im ¢,=F, and so the decomposition of £
determined by the g, agrees with the original decomposition.

Problems

1. Assume a decomposition
E=E +E,.

Consider the external direct sum E;@E, and define a linear mapping
¢o:E,®FE,—F by
@(x1,x3) = x; + X, x €E,x,€E;.

Prove that the kernel of ¢ is the subspace of E consisting of the pairs
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(x, — x) where xe E{ n E,. Show that ¢ is a linear isomorphism if and only
if the decomposition E=FE| + E, is direct.
2. Given two vector spaces E and F, consider subspaces £, cF, F,cF
and the canonical projections
ng:E—> E[E,, np: F > F[F, .

Define a mapping
0:E®F>E|E, ®F|F,

b
Y @(x,y) = (mgx,mpy).

Show that ¢ induces a linear isomorphism
P (E@F)/(E, ®@F,)—E[E, ®F|F,.

3. Let E=E,®F, and F=F,®F, be decompositions of E and F as
direct sums of subspaces. Show that the external direct sum, G, of Eand F
can be written as G=G,®G, where G, and G, are subspaces of G and G;
is the external direct sum of E; and F,;(i=1, 2).

4. Prove that from every projection operator n in E an involution w
is obtained by w=2n—1 and that every involution can be written in this
form.

5. Let m;(i=1...r) be projection operators in E such that

Imn;=F (i=1..r)
where F is a fixed subspace of E. Let A'(i=1...r) be scalars. Show that
a) If Y, 2"+ 0 then Im ) 2'm; = F
b) Z/l;ni isa non-triviall projection operator in E if and only if Zli= 1.

6. Let E be a vector space with a countable basis. Construct a linear
isomorphism between F and EQE.

7. Let X be any set and let C(X) be the free vector space generated by X
(cf. sec. 1.7). Show that if Yis a second set, then C(X U Y)= C(X)® C(Y).

§ 5. Dual vector spaces
2.20. Bilinear functions. Let £ and F be vector spaces. Then a mapping
&:E x F-T satisfying

¢(lxl+MxZ’y)zl(p(xl’y)—{_#(p(‘sty) xlax2€anEF (235)
and
<P(x,).y1+/1y2)=/1<1>(x,y1)+u¢(x,y2) x€E,y,y,€F (2.36)
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is called a bilinear function in Ex F. 1If & is a bilinear function in Ex F
and E, < E, F, cF are subspaces, then ¢ induces a bilinear function @,
in E; x F, defined by

@, (x,y)=d(x,y) xeE,, yeF,
&, is called the restriction of @ to E,; x F|.

Conversely, every bilinear function @, in E; x F; may be extended (in
several ways) to a bilinear function in Ex F. In fact, let

0:E-E,, o:F-F,

be surjective linear mappings such that ¢ and ¢ reduce to the identity in
E, and F| respectively (cf. Cor. 11, Proposition I, sec. 1.15). Define @ by

&(x,y) =P, (0x,0Y).

Then @ is a bilinear function in Ex F and for x, € E,, y, €F; we have that

D(xy,y1) = ¢1(Qx1a0)’1) =&, (x1,)1)
Thus @ extends @,.

Now let
E= ZEa and F = ZF,, (2.37)
a B

be decompositions of E and F as direct sums of subspaces. Then every
system of bilinear functions
Dy E, X Fg—> T

can be extended in precisely one way to a bilinear function @ in E x F.
The function @ is given by

¢(X, y) = 2}}%9(%%% y)

where n,: E— E, and n,: F— F; denote the canonical projections associated
with the decompositions (2.37).

2.21. Nullspaces. A bilinear function @ in E x F determines two sub-
spaces Ny E and Npc F defined by

Ng={x|®(x,y)=0} forevery yeF
and
Np={y|®(x,y) =0} forevery xeE.

It follows immediately from (2.35) and (2.36) that Ny and Ny are sub-
spaces of E and F. They are called the nullspaces of @. If Ny=0and Nx=0
then the bilinear function @ is called non-degenerate.
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Given an arbitrary bilinear function @ consider the canonical projec-
tions g E - E/Ng, np:F — F|Ng.
Then @ induces a non-degenerate bilinear function @ in E/Ng x F/N such
that B(nsx.mey) = D(x,).

To show that @ is well defined, suppose that x’e E and y’ e F are two other
vectors such that ngx=n,x" and ngy=ngy’. Then x'—xeNgand y' —ye N
and hence we can write x'=x+u, ue Ny and y'=y+v, ve Ng. It follows
that
P(x,y)=@(x+u,y+v)
=®(x,y) + P(x,0) + @ (u,y) + @ (u,v)
=P(x,y).

Clearly & is bilinear. It remains to be shown that @ is non-degenerate.
In fact, assume that
@ (ngx,mpy)=0 (2.38)

for a fixed nzx and every myy. Then @ (x, y)=0 for every ye F. It follows
that xe N whence ngx=0. Similarly, if (2.38) holds for a fixed n;y and
every mpx, then mpy=0. Hence & is non-degenerate.
A non-degenerate bilinear function @ in E x F will often be denoted by
{,>. Then we write
& (x,y)={x, ¥ xeE,yeF.

2.22. Dual spaces. Suppose E*, E is a pair of vector spaces, and as-
sume that a fixed non-degenerate bilinear function, ¢, ), in E¥x E is
defined. Then E and E* will be called dual with respect to the bilinear
function {, ). The scalar {x*, x), is called the scalar product of x* and x,
and the bilinear function <, ) is called a scalar product between E* and E.

Examples. 1 Let E=E*=1T and define a mapping {,) by
Cpup=4ip  Apel.

Clearly ¢, ) is a non-degenerate bilinear function, and hence I' can be re-
garded as a self-dual space.

2. Let E= E*=TI" and consider the bilinear mapping <, ) defined by

<x*’x> = z éiéi
i=1

5 Greub. Linear Algebra



66 Chapter II. Linear mappings

where

x*=(E..,&) and x=(&,...,¢&).

It is easy to verify that the bilinear mapping {.) is non-degenerate and
hence I'" is dual to itself.

3. Let E be any vector space and E*=L(F) the space of linear func-
tions in E. Define a bilinear mapping {. ) by
{fox) = f(x), feL(E),xeE.

Since f (x)=0 for each xeE if and only if =0, it follows that N, ,=0.
On the other hand, let ae E be a non-zero vector and E; be the one-
dimensional subspace of E generated by a. Then a linear function g is
defined in E, by
g(x)=4 where x=1la.

In view of sec. 1.15, g can be extended to a linear function fin E. Then

fr,a)=f(a)=g(a)=1%0.

It follows that N, =0 and hence the bilinear function {, ) is non-degener-
ate.

This example is of particular importance because of the following

Proposition 1: Let E*, E be a pair of vector spaces which are dual
with respect to a scalar product {,>. Then an injective linear map
&: E*— L(E) is defined by

D (x*)(x) = {x*, x> x*e E* xeE. (2.39)

Proof: Fix a vector a*e E*. Then a linear function, f,,, is defined in E by
fou(x)y=<a*, x> xekE. (2.40)

Since {.) is bilinear, f,, depends linearly on a¢*. Now define @ by setting
D(a*) = f.. (2.41)

To show that @ is injective, assume that ®(a*)=0 for some a*eE*.
Then <{a*, x> =0 for every xeE. Since {,) is non-degenerate, it follows
that ¢*=0.

Note: It will be shown in sec. 2.33 that @ is surjective (and hence a
linear isomorphism) if E has finite dimension.
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2.23. Orthogonal complements. Two vectors x*eE* and xeFE are
called orthogonal if {x*, x)=0. Now let E; be a subspace of E. Then the
vectors of E* which are orthogonal to E, form a subspace Ej of E*. E{
is called the orthogonal complement of E,. In the same way every subspace
Ec E* determines an orthogonal complement (Ef)* < E. The fact that
the bilinear function {. ) is non-degenerate can now be expressed by the
relations

E*=0 and (EM'=0.

It follows immediately from the definition that for every subspace E, c E
E, c(ED)* (2.42)

Suppose next that E*, E are a pair of dual spaces and that F is a sub-
space of E. Then a scalar product is induced in the pair E*/F*, F by

(R*, y> =<{x*,yy,  X*eE*/F* yeF,

where x* is a representative of the class x*. In fact, let @ be the restriction
of the scalar product {, ) to E* x F. Then the nullspaces of @ are given by

DJEa:I;‘-L and NF=0'

Now our result follows immediately from sec. 2.21.
More generally, suppose F= E and H* < E* are any subspaces.
Then a scalar product in the pair H*/H*n F* F/Fn (H*)*, is deter-
mined by
{X*, %y = {x*, x)

as a similar argument will show.

2.24. Dual mappings. Suppose that £, E* and F, F* are two pairs of
dual spaces and ¢: E— F, ¢*: E*« F* are linear mappings. The mappings
¢ and ¢* are called dual if

o x) ={@*y*, x>  y*eF* xeE.

To a given linear mapping ¢ : E— F there exists at most one dual mapping.
If T and ¢% are dual to ¢ we have that

X ox) =<pTy* x) and (¥ ex) =<e3y* x)
whence
¥ 0¥ y* x> =0 xeE,y*eF.
{p1y" — @2y y
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This implies, in view of the duality of E and E*, that ¢} y* = ¢3;y* whence
o1 =03.

As an example of dual mappings consider the dual pairs £*, E and
E*/E{, E, where E, is a subspace of E (cf. sec. 2.23) and let © be the
canonical projection of E* onto E*/E {,

n:E*/E{ « E*.

Then the canonical injection
itE, > E

is dual to n. In fact, if xeE,, and y*e E* are arbitrary, we have

y*,ixy = y*,x) = (% x) = {ny*, x)
and thus
nT=1i*.

2.25. Operations with dual mappings. Assume that £*, E and F* F
are two pairs of dual vector spaces. Assume further that ¢:E—F and
Y: E—~F are linear mappings and that there exist dual mappings ¢*:
E*«F*and y*: E*«F*, Then there are mappings dual to ¢+ and A¢
and these dual mappings are given by

(¢ +Y)* = o* + y* (2.43)
and
(Ao)* = Lo*. (2.44)
(2.43) follows from the relation

A@* +¥*) y*, x> = (o* y*, x) + (Y* y*, x)
=% exd> + X x) = (e +¥)x)

and (2.44) is proved in the same way. Now let G, G* be a third pair of
dual spaces and let y: F—G, y*: F*«G* be a pair of dual mappings. Then
the dual mapping of y.¢ exists, and is given by

(xo@)* = @*ox™.
In fact, if z*eG* and xeF are arbitrary vectors we have that

Co*p*z*,x)> =¥ z*, x> ={z* 1 px).
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For the identity map we have clearly
lEc = (IE)* .

Now assume that ¢: E— F has a left inverse ¢, : F>E,
QroQ =1g (2.45)

and that the dual mappings @*: E*« F* and ¢}: F*« E* exist. Then we
obtain from (2.45) that

"o 0T =(p100)* = ()" = 15, (2.46)
In view of sec. 2.11 the relations (2.45) and (2.46) are equivalent to

@ injective, ¢, surjective
and
o¥ injective, ¢* surjective.

In particular, if ¢ and ¢, are inverse linear isomorphisms, then so are
@* and ¢},

2.26. Kernel and image space. Let ¢: E— F and ¢*: E*« F* be a pair
of dual mappings. In this section we shall study the relations between the
subspaces

kerocE, ImgpcF
and
kero* = F*, Ime* < E*.
First we establish the formulae
kerp* = (Imp)* (2.47)
ker ¢ = (Im¢™)*. (2.48)

In fact, for any two vectors y*eker ¢*, pxelm ¢ we have

O exy=Lp*y*,x) =0

and hence the subspaces ker ¢* and Im ¢ are orthogonal, ker p* = (Im ¢) *.
Now let y*e(Im ¢)* be any vector. Then for every xe E

(p*y*, x> ={y*,0x)=0.

It follows that p*y* =0, whence y*eker ¢*. This completes the proof of
(2.47). (2.48) is proved by the same argument.



70 Chapter II. Linear mappings

Now assume that ¢ is surjective. Then Im ¢ =F and hence formula
(2.47) implies that ker ¢*=0; i.e., ¢* is injective. If ¢ Is injective we ob-
tain from (2.48) that (Im ¢*)*=0. However, this does not imply that
Im ¢* = E* and so we can not conclude that the dual of an injective map-
ping is surjective (cf. problem 9).

2.27. Relations between the induced mappings. Again let ¢:E— F and
@*: E*¥—F* be a pair of dual mappings. Then it follows from (2.48) and
from the discussion in sec. 2.23 that a scalar product is induced in the pair
Im ¢* E/ker ¢, by

{x*, %> ={x*,x> x*elme* xeE/ker¢.

In particular, if ¢ is injective, then the restriction of the scalar product in
E*, E to Im ¢*, E is non-degenerate.

The same argument as above shows that the vector spaces F*/ker ¢*
and Im ¢ are dual with respect to the bilinear functions given by

(x*, x) = <{x*, x> x*e F*/ker *,xelmo.
Now consider the surjective linear mapping
@ :E->Ime
induced by ¢ and the injective linear mapping
¢*: E* « F*/ker ¢*

induced by ¢*. The mappings ¢, and $* are dual. In fact, if ¥*e F*/ker ¢*
and xe E are arbitrary vectors, we have that

(* x*, x> = {@*x*,x)
= {x*, 0 x)
= <j*’ (pl X> .

In the same way it follows that the surjective mapping
o7 :Im@* « F*
induced by ¢* and the injective mapping
p:Elkero > F
induced by ¢ are dual. Finally, the induced isomorphisms

E/ker ¢ S1Im (a3
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and N
Im @* « F*/ker ¢*
are dual as well.

2.28. The space of linear functions as a dual space. Let E be a vector
space and L(E) be the space of linear functions in E. Then the spaces E,
L(E) are dual with respect to the scalar product defined in sec. 2.22. For
these spaces we have three important results, which are not valid for

arbitrary pairs of dual spaces.

Proposition II: Let F, F* be arbitrary dual spaces and ¢: E—F be a
linear mapping. Then a dual mapping ¢*:L(E)« F* exists, and is given

by
y*eF* (2.49)

(e*y*)(x) = y*, 0 x> <eE

Proof: 1t is easy to verify that the correspondence y*— @*y* defined
by (2.49) determines a linear mapping. Moreover, the relation

Co* y*, x) = (9* y*)(x) = *, 0 %)
shows that ¢* is dual to ¢. If F*=L(F) as well, (2.49) can be written in
the form
o*f =fo@, feL(F). (2.50)

Proposition III: Suppose ¢:E—F is a linear mapping, and consider the

dual mappin
ping o*: L(E) < L(F).

Then
Im ¢* = (ker @)*. (2.51)
Proof: From (2.42) and (2.48) we obtain that
Im¢* = (Im @*)** = (ker p)*. (2.52)

On the other hand, suppose that fe(ker ¢)*. Then

ker f > kerg
and hence (cf. sec. 2.4) there exists a linear function g in F such that
goop=1f.
Now (2.50) yields
p*g=gop=1f

and so feIm ¢*. Thus Im @* > (ker @) * which together with (2.52) proves
(2.51).
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Corollary I: If ¢ is injective, then ¢* is surjective.
Proof: 1f ker ¢ =0 formula (2.51) yields

Im ¢* = (ker ¢)* = (0)" = L(E)

and so ¢* is surjective.

Corollary II: (ker @)**=ker ¢
Proof: Proposition III together with the relation (2.48) yields

(ker )"t = (Im@*)* = kero.

Proposition IV: If E, < E is any subspace, then
Ei*=E,. (2.53)
Proof: Consider the canonical projection n: E-E/E|. Then ker n=E|.

Now the result follows immediately from corollary II.

Corollary I: If ¢: E—F is a linear mapping and ¢*: L(E)« L (F) is the
dual mapping, then
(ker ™)t = Imeo.

Proof: 1t follows from (2.47) and (2.53) that

(ker *)* = (Ime)* = Ime.

Corollary II: The bilinear function
(x*, %> =(x*,x> x*eEj,xeE|E,
defines a scalar product in the pair E, E/E,.
2.29. Dual exact sequences. As an application suppose the sequence
FS5ESG
is exact at E. Then the dual sequence
LA ELE)ELG)
is exact at L(E). In fact, it follows from (2.47) and (2.51) that
kero* = (Im )" = (kery)* = Imy™.

In particular, if
0-FSESG-0
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is a short exact sequence, then the dual sequence
0« L(F) & L(E)L L(G)«0
is again a short exact sequence.
2.30. Direct decompositions. Proposition V: Suppose
E=E , @E, (2.54)
is a decomposition of E as a direct sum of subspaces. Then
L(E)y=E{®E;
and the pairs E{, E, and E, E, are dual with respect to the induced
scalar products. Moreover, the induced injections
E{ - L(E,), Ey— L(E,)
are surjective, and hence
L(E) = L(E,) ® L(E,).
Finally, (E{)**=E{ and (Ey)*"*=E;.
Proof: Let n,: E-E, and n,: E—~E, be the canonical projections as-

sociated with the direct decomposition (2.54). Let fe L(E) be any linear
function, and define functions £}, f, by

fi(x)=f(n2x) and f,(x)=f(m;%).
It follows that fie E; (i=1, 2) and

f=fH+/f.

C tly,
onsequently L(E)=E" + Ef. (2.55)

To show that the decomposition (2.55) is direct, assume that fe E+n E3.
Then

f(x)=0 xeE,; xeE,
and hence f (x)=0 for every xe E. Thus =0, and so the decomposition
(2.55) is direct. The rest of the proposition is trivial.

Corollary: If E=E @---@®E, is a decomposition of E as a direct sum
of r subspaces, then
L(Ey=F/®-®F'
where
F=Y E;.

JjFi
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Moreover, the restriction of the scalar product to E, F; is again non-
degenerate, and
Ff = L(E).

Proposition V has the following converse:

Proposition VI: Let E,cE be any subspace, and let Efc L(E) be a
subspace dual to E, such that

(ED = EY.
Then
E=E ®(EH (2.56)
and
L(E)=Ef®E;y. (2.57)
Proof: We have

(E.+ET) =Ern(EY") =ETnEf=0
whence
E=0"=(E, + E¥Y)** =E, + EF. (2.58)

On the other hand, since £, and E* are dual, it follows that
E,nNE*=0

which together with (2.58) proves (2.56). (2.57) follows from Proposition V
and (2.56).

Problems

1. Given two pairs of dual spaces E*, E and F*, F prove that the
spaces E*@F* and E@F are dual with respect to the bilinear function

%, p%), (e, p) = %, x) + %, )
2. Consider two subspaces F, and E, of E. Establish the relation
(E; + E;)' = E{ n E3.
3. Given a vector space E consider the mapping 4: E—L(L(E)) de-
fined by o A ,
/)= fla) aeE, fel(E).

Prove that / is injective. Show that / is surjective if and only if dim E < o .
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4. Suppose n: E—E and n*: E*« E* are dual mappings. Assume that
© is a projection operator in E. Prove that n* is a projection operator in
E* and that

Imn* = (kern)*, Imn = (kern*)".

Conclude that the subspaces Im 7, Im n* and ker =, ker n* are dual pairs.

5. Suppose E, E* is a pair of dual spaces such that every linear func-
tion f: E-T induces a dual mapping f*: E*«TI. Show that the natural
injection E*— L(E) is surjective.

6. Suppose that E is an infinite dimensional vector space. Show that
there exists a dual space E* such that the natural injection E*— L(E) is
not surjective.

7. Consider the vector space E of sequences

(losAy...) Ael

and the subspace F consisting of those sequences for which only finitely
many 4; are different from zero (addition and scalar multiplication being
defined as in the case of I'"™). Show that the mapping Ex F—T given by

(Aos21-+)s (Hos ---)_’Zli#i

defines a scalar product in £ and F. Show further that the induced injec-
tion E— L(F) is surjective.

8. Let S be any set. Construct a scalar product between (S; I') and
C(S) (cf. Example 3, sec. 1.2 and sec. 1.7) which determines a linear
isomorphism (S; I")E»L(C(S)).

Hint: See problem 7.

9. Let E be any vector space of infinite dimension. Show that there is
a dual space E* and a second pair of dual spaces F, F* such that there
exist dual mappings

@:E->F, @* E*« F¥*

where ¢ is injective but ¢* is not surjective.

Prove that E, Im ¢* is again a dual pair of spaces.

10. Let ¢:E—F be a linear mapping with restriction ¢,: E; - F,. Sup-
pose that ¢*: E*¥« F* is a dual mapping. Prove that ¢* can be restricted
to the pair (F1, E7). Show that the induced mapping

@*:E|E; « F|F}

is dual to ¢, with respect to the induced scalar product.
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11. Show that if F is a vector space with a countable basis then there
is no vector space E such that F = [(E).

12. Let E be an infinite dimensional vector space. Construct a linear
automorphism of L(E) which is not the dual of an automorphism of E.

13. Let @: Ex F—TI be a bilinear map such that the linear maps
¢: E-L(F)and y: F—>L(E) given by ¢, (3)=®{a, y) and Y, (x}=D(x, h)
are isomorphisms. Show that the canonical map 4 defined in problem 3
is given by /. =()~'¥* > ¢. Conclude that E and F must have the same
finite imension.

§ 6. Finite dimensional vector spaces

2.31. The space L(E; F). Let E and F be vector spaces of dimension
n and m respectively. Then the space L(E; F) has dimension nm,

dimL(E; F) = dimE-dimF. (2.59)

To prove (2.59) let x,(v=1, ..., n) be a basis of Eand y,(u=1, ..., m) be
a basis of F. Consider the linear mappings ¢?: E— F defined by

Av=1,...,n

Pox, =07y, *) —Lom

Now let ¢: E—F be any linear mapping, and define scalars «j by

Px, = ) oy,
u=1
Then
(0= 2 o) x, =2 a5y, — Y ovdiy, =205y, — L hy, =0
", v ] B,V [ "
whence
Q= aey.
v, i

It follows that the mappings ¢% generate the space L(E; F). A similar
argument shows that the mappings ¢ are linearly independent and hence
they form a basis of L(E; F). This basis is called the basis induced by the

bases of E and F. Since the basis ¢/, consists of nm vectors, formula (2.59)
follows.

A=

*) 5% i v = ﬂ !
) &% is the Kronecker symbol defined by 6% = 2 0 A%y
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2.32. The space L(E). Now consider the case that F=TI" and choose in
I the basis consisting of the unit element. Then the basis of L(E) induced
by the basis x, (v=1, ..., n) consists of » linear functions f* given by

FH(x,) =" (2.60)

The basis f* of L(E) is called the dual of the basis x, of E. In particular,
we have . .
dimL(E) =dimE.
Since the functions f* form a basis of L(£) every linear function f in
E can be uniquely written in the form

f = Z/{ufu ’
u
where the scalars 4, are given by

A= f(x,) u=1,....n.

This formula shows that the components of f with respect to the basis f*
are obtained by evaluating the function f on the basis x,,.

2.33. Dual spaces. We shall now prove the assertion quoted at the end
of sec.2.22.

Proposition I: Let E, E* be a pair of dual spaces and assume that E
has finite dimension. Then the injection @: E* — L(FE) defined by formula
{2.39) sec. 2.22 is surjective and hence a linear isomorphism. In particular,
E* has finite dimension and

dim E* = dim E. (2.61)
Proof: Since @ is injective and dim L(E)=dim E it follows that

dim E* <dimE.

Hence E* has finite dimension. In view of the symmetry between E and

E* we also have that
dim E < dim E*

whence (2.61). On the other hand, dim L(E)=dim E and hence ¢ is
surjective.

Corollary I: Let E, E* be a pair of dual finite dimensional spaces. Then
the results of sec. 2.28, 2.29 and 2.30 hold.

Proof: Each result needs to be verified independently, but the proofs
can all be obtained by using the linear isomorphism E*SL (E). The actual
verifications are left to the reader.
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Corollary II: Let E and E; be any two vector spaces dual to E. Then

there exists a unique linear isomorphism ¢@: £X= E¥ such that
{px* x> ={(x* x>  x*eE} xeE.
Two bases x, and x*'(v=1...n) of E and E* are called dual if
M x> =05 (2.62)

Given a basis x,(v=1...n) of E there exists precisely one dual basis of E*.
It is clear that the vectors x*" are uniquely determined by (2.62). To prove
the existence of the dual basis let f¥ be the basis of L(£) defined in sec.
2.32 and set
¥ = Lf¥ v=1..n

where @ is the linear isomorphism of E* onto L(E). Then we have

MxD =X = f(x,) =0
Given a pair of dual bases x,, x**(v=1...n) consider two vectors

x*=Y¢Ex®™ and x=Y¢&x,.

It follows from (2.62) that
(xX*, x> = Y E&.

Replacing x* by x** in this relation we obtain the formula
&= x)

which shows that the components of a vector xe E with respect to a basis
of E are the scalar products of x with the dual basis vectors.
Proposition II: Let F be a subspace of E and consider the orthogonal
complement F*. Then
dimF + dimF* = dimE. (2.63)

Proof: Consider the factor space E*/F*. In view of sec. 2.23, E*/F*
is dual to F which implies (2.63).

Proposition 111: Let E, E* be a pair of dual vector spaces and consider
a bilinear function @: E* x E—T'. Then there exists precisely one linear
transformation ¢: E— E such that

@ (x*,x) =<{x*, 0x) x*eE* xeE.
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Proof: Let xeE be a fixed vector and consider the linear function f, in

E* defined by fo(x¥) = ®(x*,x).

In view of proposition I there is precisely one vector ¢xeE such that
fo(x*) =<x%,0x).
The two above equations yield
(x*, o x) = O (x*, x) x*eE* xeE

and so a mapping ¢: E— E is defined. The linearity of ¢ follows immedi-
ately from the bilinearity of ¢. Suppose now that ¢, and ¢, are two
linear transformations of E such that

P(x*,x)={(x*@,x) and &(x* x)={x* 0,x)

Then we have that
X0 X =@y x>=0
whence ¢, =¢,.
Proposition III establishes a canonical linear isomorphism between the
spaces B(E*, E) and L(E; E),

B(E*,E) =~ L(E; E).

Here B(E*, E) is the space of bilinear functions ¢: E*x E—-I" with ad-
dition and scalar multiplication defined by
(@1 + @2)(x*,x) = &1 (x*,x) + P, (x*,x)
and
(A®)(x*,x) = A1 P (x*,x).

2.34. The rank of a linear mapping. Let ¢:E— F be a linear mapping
of finite dimensional vector spaces. Then ker ¢ < F and Im ¢ = F have
finite dimension as well. We define the rank of ¢ as the dimension of Im ¢

r(p)=dimIme.
In view of the induced linear isomorphism

E/kero 5 Img
we have at once
r(¢) + dim ker ¢ = dimE. (2.64)

o is called regular if it is injective. (2.64) implies that ¢ is regular if and
only if r(¢)=dim E.



80 Chapter 1I. Linear mappings

In the special case dim E=dim F (and hence in particular in the case of
a linear transformation) we have that ¢ is regular if and only if it is sur-
jective.

2.35. Dual mappings. Let E*, E and F*, F be dual pairs and ¢: E—F
be a linear mapping. Since E* is canonically isomorphic to the space L(E)
there exists a dual mapping ¢*: E*«F*. Hence we have the relations

(cf. sec. 2.28)

Im ¢ = (ker ¢*)*
and

Im¢* = (kerp)*.

The first relation states that the equation
px=y
has a solution for a given ye F if and only if y satisfies the condition
{x* y>=0 forevery x*ekere*.

The second relation implies that dual mappings have the same rank. In
fact, from (2.63) we have that

dim Im ¢* = dim (ker ¢)* = dim E — dimker ¢ = dimIm ¢
whence
r(¢*) = r(e). (2.65)

Problems

(In problems 1-10 it will be assumed that all vector spaces have finite
dimension).
1. Let E, E* be a pair of dual vector spaces, and let E,, E, be sub-
spaces of E. Prove that
(E, n E;)*=E{ +Ej;.

Hint: Use problem 2, § 5.
2. Given subspaces Uc E and V* < E* prove that

dim(U* n ¥*) +dimU = dim(U n ¥**) +dim V*.

3. Let E, E* be a pair of non-trivial dual vector spaces and let ¢ : E— E*
be a linear mapping such that ¢ot=(t*)"'c¢ for every linear auto-
morphism 7 of E. Prove that ¢ =0. Conclude that there exists no linear
mapping ¢: E— E* which transforms every basis of E into its dual basis.



§ 6. Finite dimensional vector spaces 81

4, Given a pair of dual bases x*, x, (v=1...n) of E, E* show that the

n
bases (x*'+ 3 Ax*, x*?, .., x*") and (x;, X,~A,X;, ..., X,— 4,x,) are
again dual. *~?
5. Let E, F, G be three vector spaces. Given two linear mappings
¢:E—F and y: F- G prove that

r(Wop)<r(p) and r(Yoe)=r(y).

6. Let E be a vector space of dimension » and consider a system of n
linear transformations o;: E— E, ¢,+0, such that

0i00;=00; (i,j=1...n).

a) Show that every o; has rank 1
b) If o;(i=1...n) is a second system with the same property, prove that
there exists a linear automorphism 7 of E such that

’

0; = T‘—loo'io'f.
7. Given two linear mappings ¢: E—F and : E— F prove that

Ir (@) —r(W) S r(p +¥) r(e) + r(¥).

8. Show that the dimensions of the spaces M'(¢), M"(¢) in problem 3,
§ 2 are given by
dim M'(¢) = (dim F — r(¢))-dimE
dim M"(¢) = dimker ¢-dim F.

9. Show that the mapping ®:¢— ¢* defines a linear isomorphism,

®:L(E;F)> L(F*;E¥).
10. Prove that
&M (@) = M"(¢p*)
and
® M’ (¢) = M'(¢*)

where the notation is defined in problems 8 and 9. Hence obtain the
formula

r(p) = r(e*).

I1. Let ¢: E—F be a linear mapping (E, F possibly of infinite dimen-
sion). Prove that Im ¢ has finite dimension if and only if ker ¢ has finite
codimension (recall that the codimension of a subspace is the dimension

6 Greub, Linear Algebra
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of the corresponding factor space), and that in this case
codimker ¢ =dimIme.

12. Let £ and F be vector spaces of finite dimension and consider a
bilinear function @ in E x F. Prove that

dimE — dim Ny = dim F — dim N,

where Ng and N denote the null spaces of &.
Conclude that if dim E=dim F, then N;=0 if and only if N, =0.



Chapter III

Matrices

In this chapter all vector spaces will be defined over a fixed, but arbitrarily
chosen field I' of characteristic 0.

§ 1. Matrices and systems of linear equations

3.1. Definition. A rectangular array

af ... o
A= : (.1

al. ol
of nm scalars o, is called a matrix of n rows and m columns or, in brief,
an n x m-matrix. The scalars o) are called the entries or the elements of
the matrix A. The rows

a,=(at...af) (v=1..n)

can be considered as vectors of the space I'™ and therefore are called the
row-vectors of A. Similarly, the columns

b*=(by...b) (p=1..m)

considered as vectors of the space I' ", are called the column-vectors of A.
Interchanging rows and columns we obtain from A the transposed
matrix

... o
A* = : . (3.2)
of ooy

In the following, matrices will rarely be written down explicitly as in
(3.1) but rather be abbreviated in the form A4 = (o). This notation has the
disadvantage of not identifying which index counts the rows and which
the columns. It has to be mentioned in this connection that it would be
very undesirable — as we shall see — to agree once and for all to always let

6*
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the subscript count the rows, etc. If the above abbreviation is used, it will
be stated explicitly which index indicates the rows.

3.2. The matrix of a linear mapping. Consider two linear spaces E and
F of dimensions # and m and a linear mapping ¢: E— F. With the aid of
bases x,(v=1...n) and y,(u=1...m) in E and in F respectively, every
vector @ x, can be written as a linear combination of the vectors y,
(u=1...m), m

px, =Yooy, (v=1..n). (3.3)
u=1
In this way, the mapping ¢ determines an »x m-matrix («}), where v
counts the rows and u counts the columns. This matrix will be denoted
by M (o, x,, y,) or simply by M (¢) if no ambiguity is possible.

Conversely, every nxm-matrix () determines a linear mapping

¢: E- F by the equations (3.3). Thus, the operator

M:¢ - M(p)

defines a one-to-one correspondence between all linear mappings ¢: E—F
and all » x m-matrices.

3.3. The matrix of the dual mapping. Let E* and F* be dual spaces of
E and F, respectively, and ¢: E-F, ¢*: E*« F* a pair of dual mappings.
Consider two pairs of dual bases x**, x,(v=1...n) and y**, y,(u=1...m)
of E*, E and F*, F, respectively. We shall show that the two correspond-
ing matrices M (@) and M (¢*) (relative to these bases) are transposed,
i.e., that

M(¢*) = M(@)*. (3.4

The matrices M (¢) and M (¢*) are defined by the representations
px,=yaby, and @*y* =Y artx*.
n v

Note here that the subscript v indicates in the first formula the rows of
the matrix o) and in the second the columns of the matrix «¥. Substituting
x=x, and y=y** in the relation

¥ exd = {o*y*, x> (3.5)
we obtain
e x,) = (o* y*,x,). (3.6)
Now
M exy = Yas Yyt yo = o (3.7
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and
<(p*y*u9xv> :Za:u<X*l’xv>:aru' (38)

The relations (3.6), (3.7) and (3.8) then yield

X = ok,
Observing — as stated before — that the subscript v indicates rows of («%)
and columns of («*) we obtain the desired equation (3.4).

3.4. Rank of a matrix. Consider an n x m-matrix 4. Denote by r, and
by r, the maximal number of linearly independent row-vectors and co-
lumn-vectors, respectively. It will be shown that r, =r,. To prove this let
E and F be two linear spaces of dimensions #n and m. Choose a basis
x,(v=1...n)and y,(u=1...m)in E and in F and define the linear mapping
@:E-F by

(p xV = Z a‘v‘ y}l .
n

Besides ¢, consider the isomorphism

p:F->TI"
defined by
Bry—(n'...n™),
where
y=§n“y,‘-

Then Bog is a linear mapping of E into I'"™. From the definition of § it
follows that ffo ¢ maps x, into the v-th row-vector,

B(va =aV'

Consequently, the rank of Bo¢ is equal to the maximal number r, of
linearly independent row-vectors. Since f is a linear isomorphism, fo¢
has the same rank as ¢ and hence r; is equal to the rank r of ¢.

Replacing ¢ by ¢* we see that the maximal number r, of linearly inde-
pendent column-vectors is equal to the rank of ¢*. But ¢* has the same
rank as ¢ and thus r; =r,=r. The number r is called the rank of the
matrix A4.

3.5. Systems of linear equations. Matrices play an important role in
the discussion of systems of linear equations in a field. Such a system

Y& =n"  (u=1..m) (3.9
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of m equations with #» unknowns is called /inhomogeneous if at least one
n* is different from zero. Otherwise it is called homogeneous.

From the results of Chapter 11 it is easy to obtain theorems about the
existence and uniqueness of solutions of the system (3.9). Let E and F be
two linear spaces of dimensions n and m. Choose a basis x,(v=1...n) of
E as well as a basis y,(u=1...m) of F and define the linear mapping
¢:E-F by

PX, =20,
Consider two vectors '
x=¢&x, (3.10)
and '
y=x1"y,. (3.11)
Then g
¢x=§‘;é"¢xv=§aif€”yu. (3.12)

Comparing the representations (3.9) and (3.12) we see that the system (3.9)
is equivalent to the vector-equation

pxX=1y.

Consequently, the system (3.9) has a solution if and only if the vector y

is contained in the image-space Im ¢. Moreover, this solution is uniquely

determined if and only if the kernel of ¢ consists only of the zero-vector.
3.6. The homogeneous system. Consider the homogeneous system

Yab&'=0 (u=1..m). (3.13)

From the foregoing discussion it is immediately clear that (¢'...&") is a
solution of this system if and only if the vector x defined by (3.10) is con-
tained in the kernel ker ¢ of the linear mapping ¢. In sec. 2.34 we have
shown that the dimension of ker ¢ equals »—r where r denotes the rank
of ¢.

Since the rank of ¢ is equal to the rank of the matrix («}), we therefore
obtain the following theorem:

A homogeneous system of m equations with n unknowns whose coefficient-
matrix is of rank r has exactly n—r linearly independent solutions. In the
special case that the number m of equations is less than the number » of
unknowns we have n—r=n—m=1. Hence the theorem asserts that the
system (3.13) always has non-trivial solutions if m is less than n.
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3.7. The alternative-theorem. Let us assume that the number of equa-
tions is equal to the number of unknowns,

Y& =y (u=1...n). (3.14)

Besides (3.14) consider the so-called “corresponding” homogeneous sys-
tem

Yoh&'=0 (u=1..n). (3.15)

The mapping ¢ introduced in sec. 3.5 is now a linear mapping of the »n-
dimensional space E into a space of the same dimension. Hence we may
apply the result of sec. 2.34 and obtain the following alternative-theorem:

If the homogeneous system possesses only the trivial solution (0...0), the
inhomogeneous system has a solution (£'...E") for every choice of the right-
hand side. If the homogeneous system has non-trivial solutions, then the
inhomogeneous one is not solvable for every choice of the n*(v=1...n).

From the last statement of section 3.5 it follows immediately that in the
first case the solution of (3.14) is uniquely determined while in the second
case the system (3.14) has - if it is solvable at all — infinitely many solu-
tions.

3.8. The main-theorem. We now proceed to the general case of an
arbitrary system

Y& =n* (u=1...m) (3.16)

of m linear equations in » unknowns. As stated before, this system has a
solution if and only if the vector

y=Xxn"y,
n
is contained in the image-space Im ¢. In sec. 2.35 it has been shown that
the space Im ¢ is the orthogonal complement of the kernel of the dual

mapping ¢*: F*— E*. In other words, the system (3.16) is solvable if and
only if the right-hand side #* (u=1...m) satisfies the conditions

Yty =0 (3.17)
u
for all solutions #} (x=1...m) of the system

Sakyr=0 (v=1...n). (3.18)

We formulate this result in the following
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Main-theorem: An inhomogeneous system of n equations in m unknowns
has a solution if and only if every solution ns (u=1...m) of the transposed
homogeneous system (3.18) satisfies the orthogonality-relation (3.17).

Problems
1. Find the matrices corresponding to the following mappings:
a) px=0.

b) px=x.

c) px=Ax.

d) px= ) &e, where e,(v=1,...,n) is a given basis and m=<nis a
v=1 n

given number and x= ) &Ve,.
v=1
2. Consider a system of two equations in # unknowns

n

Yal=s ¥ AHE=5.

v=1
Find the solutions of the corresponding transposed homogeneous system.

3. Prove the following statement:

The general solution of the inhomogeneous system is equal to the sum
of any particular solution of this system and the general solution of the
corresponding homogeneous system.

4. Let x, and X, be two bases of E and A be the matrix of the basis-
transformation x,—%,. Define the automorphism a of E by ax,=%,.
Prove that A is the matrix of « as well with respect to the basis x, as with
respect to the basis X,.

5. Show that a necessary and sufficient condition for the » x n-matrix
A=(o}) to have rank <1 is that there exist elements o, a, ..., &, and
B, B%, ..., B" such that

ol = a, p* (v=1,2,..,n;u=12,...,n).
If A+0, show that the elements «, and $* are uniquely determined up to

constant factors 4 and u respectively, where Au=1.
6. Given a basis a, of a linear space E, define the mapping ¢:E—E as

pa, =Y a,.
n

Find the matrix of the dual mapping relative to the dual basis.
7. Verify that the system of three equations:

E+n+(=3,
E—n—-(=4,
E+3n+3=1
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has no solution. Find a solution of the transposed homogeneous system
which is not orthogonal to the vector (3, 4, 1). Replace the number 1 on
the right-hand side of the third equation in such a way that the resulting
system is solvable.

8. Let an inhomogeneous system of linear equations be given,

Z“‘:fv=flu (u=1,...,m).

The augmented matrix of the system is defined as the m x (n+ 1)-matrix
obtained from the matrix o* by adding the column (', ..., #™). Prove that
the above system has a solution if and only if the augmented matrix has
the same rank as the matrix (o).

§ 2. Multiplication of matrices

3.9. The linear space of the n x m matrices. Consider the space L(E; F)
of all linear mappings ¢: E—F and the set M"*™ of all n x m-matrices.
Once bases have been chosen in E and in F there is a 1-1 correspondence
between the mappings ¢: E— F and the n x m-matrices defined by

® > M(e,x,,¥,)- (3.19)

This correspondence suggests defining a linear structure in the set M"*"™
such that the mapping (3.19) becomes an isomorphism.
We define the sum of two n x m-matrices

A= () and B=()
as the »n x m-matrix
A+ B=(a+ BY)

and the product of a scalar 4 and a matrix A as the matrix
AA=(Ld}).

It is immediately apparent that with these operations the set M"*™ is a
linear space. The zero-vector in this linear space is the matrix which has
only zero-entries.

Furthermore, it follows from the above definitions that

MAo+up)=iM(p)+uM@) ¢, yel(E;F)

i.e., that the mapping (3.19) defines an isomorphism between L(E; F)and
the space M"*™,
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3.10. Product of matrices. Assume that
¢:E—->F and Y:F->G

are linear mappings between three linear spaces E, F, G of dimensions
n, m and /, respectively. Then Y- ¢ is a linear mapping of E into G. Select
a basis x,(v=1...n), y,(u=1...m) and z;(A=1.../) in each of the three
spaces. Then the mappings ¢ and ¥ determine two matrices (%) and (f;)
by the relations

OxX,= Zai}tyu
n

w,\'ﬁ;[fﬁz,:-

and

These two equations yield

(op)x, =Y ai Bz,

u, A

Consequently, the matrix of the mapping y - ¢ relative to the bases x, and

z, is given by o2 =Zoc\‘,‘ﬁ:. (3.20)
N

The n x l-matrix (3.20) is called the product of the nx m-matrix A= (o)
and the m x I-matrix B=(f%) and is denoted by 4 B. It follows immedi-
ately from this definition that

MWop)=M(@)M()). (3.21)

Note that the matrix M (s o ¢) of the product-mapping - ¢ is the product
of the matrices M (@) and M () in reversed order of the factors.

It follows immediately from (3.21) and the formulas of sec. 2.16 that
the matrix-multiplication has the following properties:

A(AB, + uB,)=AAB, + uAB,
(AA, + uA,)B=2A,B+ uA,B
(AB)C = A(BC)

(A B)* = B* A*.

3.11. Automorphisms and regular matrices. An n x n-matrix A is called
regular if it has the maximal rank n. Let ¢ be an automorphism of the
n-dimensional linear space E and A= M (¢) the corresponding s X n-
matrix relative to a basis x, (v=1...n). By the result of section 3.4 the rank
of ¢ is equal to the rank of the matrix A. Consequently, the matrix A4 is
regular. Conversely, every linear transformation ¢: E— E having a regular
matrix is an automorphism.
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To every regular matrix A there exists an inverse matrix, i.e., a matrix

-1
A~ ' such that AA-l=A-T4=7,

where J denotes the unit matrix whose entries are 4. In fact, let ¢ be the
E automorphism of E such that M(¢p)=A and let ¢! be the inverse
automorphism. Then
P lop=9.p7 =1,

whence

M(@)M (@)™ ' =M(p ™ o) =M(1)=J
and

Mo~ YM(p)=M(pop™ ) =M(1)=J.
These equations show that the matrix

A '=M(p™Y)

is the inverse of the matrix A.

Problems

1. Verify the following properties:

a) (A + B)* = A* + B*.

b) (AA)* = A 4*.

¢) (A™)*=(4*)"".

2. A square-matrix is called upper (lower) triangular if all the elements
below (above) the main diagonal are zero. Prove that sum and product of
triangular matrices are again triangular.

3. Let ¢ be linear transformation such that ¢?=¢. Show that there
exists a basis in which ¢ is represented by a matrix of the form:

@! 0...0)
1
m

1 0.0

(U 0
n—m

(0.t 0)

N— —————
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4. Denote by A;; the matrix having the entry I at the place (i, ) and
zero elsewhere. Verify the formula

Aij'Ajk:Aik-

Prove that the matrices form a basis of the space M" ™",

§ 3. Basis-transformation

3.12. Definition. Consider two bases x, and X,(v=1...n) of the space
E. Then every vector %,(v=1...n) can be written as

X, =>ax,. (3.22)
v "
°
Similarly,

x,=Ya'%,. (3.23)
n

The two n x n-matrices defined by (3.22) and (3.23) are inverse to each
other. In fact, combining (3.22) and (3.23) we obtain

=Y b AL,
", A
This is equivalent to
Y(Xohdy—8)x, =0
Ao
and hence it implies that
Yohgs=5}.
u
In a similar way the relations

YU A SA
Y.aba; =90,
u

are proved. Thus, any two bases of E are connected by a pair of inverse
matrices.

Conversely, given a basis x,(v=1...n) and a regular n x n-matrix (),
another basis can be obtained by

F,o=Y adbx,.
"
To show that the vectors x, are linearly independent, assume that

YA x,=0.

Then
Y Aahx, =0
v, i
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and hence, in view of the linear independence of the vectors x,,
YAoi=0 (u=1..n).
Multiplication with the inverse matrix (%) yields
YAalkar =Y 216 =1"=0 (x=1...n).
Vo u v

3.13. Transformation of the dual basis. Let £* be a dual space of E,
x*" the dual basis of x, and £** the dual of the basis x,(v=1...n). Then

* =Y Blx*7, (3.24)
where 2 is a regular n x n-matrix. Relations (3.23) and (3.24) yield

W ACHEDED WITELE RS (3.25)

Now
*o a -%g = s
x™%,x,» =067 and (X", x> =297.

Substituting this in (3.25) we obtain
B =5x°.

This shows that the matrix of the basis-transformation x*'—x*" is the
inverse of the matrix of the transformation x,—x,. The two basis-trans-

formations
X, =yox, and =Y a)x* (3.26)
I u

are called contragradient to each other.

The relations (3.26) permit the derivation of the transformation-law
for the components of a vector xe £ under the basis-transformation
x,—X,. Decomposing x relative to the bases x, and %, we obtain

x=3% &%, and x=)Y¢&%,.
"

v

From the two above equations we obtain in view of (3.26).
Ev=Z&;'<x*”’x> :Z&Lf” (327)
H "

Comparing (3.27) with the second equation (3.26) we see that the com-
ponents of a vector are transformed exactly in the same way as the vectors
of the dual basis.
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3.14. The transformation of the matrix of a linear mapping. In this sec-
tion it will be investigated how the matrix of a linear mapping ¢: E—F
is changed under a basis-transformation in E as well as in F. Let M (¢;
x,, y,)=(y) and M(¢; %,, 7,)=(74) be the nx m-matrices of ¢ relative
to the bases x,,y, and ¥, 5,(v=1...n, u=1...m), respectively. Then

ex, =Yy, and @%, =Y 77, (v=1...n). (3.28)

" u

Introducing the matrices
A=(x}) and B=(B))

of the basis-transformations x,— ¥, and y,—y, and their inverse matrices,
we then have the relations

’\-‘v = Zd:}.\'l Xy = Z&:'\_‘l
i A o
yuzzﬁ;yh‘ yu:zﬁz.}_}x'

Equations (3.28) and (3.29) yield

(3.29)

e, =Yalox, =Y alyhy, = Y alyipri,
A Y

Ay U, K
and we obtain the following relation between the matrices (y4) and (7,):
=Y B (3.30)
A, u

Using capital letters for the matrices we can write the transformation
formula (3.30) in the form

M(¢@;%,,5,)=AM(¢;x,,y,)B™".

It shows that all possible matrices of the mapping ¢ are obtained from
a particular matrix by left-multiplication with a regular »n x n-matrix
and right-multiplication with a regular m x m-matrix.

Problems

1. Let f be a function defined in the set of all #n x n-matrices such that
f(TAT™Y)=f(4)
for every regular matrix 7. Define the function Fin the space L(E; E) by

F(o)=f (M (9;x,,x,))
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where E is an n-dimensional linear space and x,(v=1...n) is a basis of E.
Prove that the function F does not depend on the choice of the basis x,.
2. Assume that ¢ is a linear transformation E— E having the same
matrix relative to every basis x,(v=1...n). Prove that ¢ =4 where 4 is a
scalar.
3. Given the basis transformation

X, =2x; — X, — X3
X-ZZ—XZ
X3 =2x, + X3

find all the vectors which have the same components with respect to the
bases x, and ¥, (u=1,2,3).

§ 4. Elementary transformations

3.15. Definition. Consider a linear mapping ¢ : E—F. Then there exists
a basis a,(v=1, ..., n) of E and a basis b,(u=1, ..., n) of Fsuch that the
corresponding matrix of ¢ has the following normal-form:

0\

(3.31)

0 0
where r is the rank of ¢. In fact, let a,(v=1, ..., n) be a basis of E such
that the vectors a,,,...a, form a basis of the kernel. Then the vectors
b,=¢a,(¢=1, ..., r) are linearly independent and hence this system can
be extended to a basis (by, ..., b,) of F. It follows from the construction
of the bases a, and b, that the matrix of ¢ has the form (3.31).

Now let x,(v=1, ...,n) and y,(u=1, ..., m) be two arbitrary bases of
E and F. It will be shown that the corresponding matrix M(¢; x,, y,) can
be converted into the normal-form (3.31) by a number of elementary
basis-transformations. These transformations are:
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(I.1.) Interchange of two vectors x; and x;(i=j).
(1.2.) Interchange of two vectors y, and y,(k=+/).
(IL.1.) Adding to a vector x; an arbitrary multiple of a vector x;(j+1).
(II.2.) Adding to a vector y, an arbitrary multiple of a vector y,(I%k).

It is easy to see that the four above transformations have the following
effect on the matrix M (¢):

(I.1.) Interchange of the rows / and j.

(1.2.) Interchange of the columns k and /.

(IL.1.) Replacement of the row-vector a; by a;+ Aa; (j+1).
(I1.2.) Replacement of the column-vector b, by b, + Ab,(I+k).

It remains to be shown that every # x m-matrix can be converted into
the normal form (3.31) by a sequence of these elementary matrix-trans-
formations and the operations a,—4a,, b,—4ib, (4%0).

3.16. Reduction to the normal-form. Let (y*) be the given n x m-matrix.
It is no restriction to assume that at least one y*=0, otherwise the
matrix is already in the normal-form. By the operations (I.1.) and (1.2.)
this element can be moved to the place (1, 1). Then y1=0 and it is no
restriction to assume that 7} = 1. Now, by adding proper multiples of the
first row to the other rows we can obtain a matrix whose first column
consists of zeros except for y}. Next, by adding certain multiples of the
first column to the other columns this matrix can be converted into the

form 1 0..0
0 * *

(3.32)
0 * =

If all the elements % (v=2...n, u=2...m) are zero, (3.32) is the normal-
form. Otherwise there is an element y,+0(2=<v<m, 2<p<m). This can
be moved to the place (2,2) by the operations (I.1. and (I.2.). Hereby the
first row and the first column are not changed. Dividing the second row
by y> and applying the operations (II.1.) and (II.2.) we can obtain a
matrix of the form

10 ..0
01 0..0
- 0 % %
0 0 * =«

In this way the original matrix is ultimately converted into the form (3.31.).
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3.17. The Gaussian elimination. The technique described in sec. 3.16
can be used to solve a system of linear equations by successive elimination.
bet o0 &+, &=
: (3.33)
A E e = "
be a system of m linear equations in # unknowns. Before starting the
elimination we perform the following reductions:

If all coefficients in a certain row, say in the i-th row, are zero, consider
the corresponding number n' on the right hand-side. If #'+0, the i-th
equation contains a contradiction and the system (3.33) has no solution.
If #' =0, the i-th equation is an identity and can be omitted.

Hence, we can assume that at least one coefficient in every equation is
different from zero. Rearranging the unknowns we can achieve that «} 0.
Multiplying the first equation by —(a})™'of and adding it to the p-th
equation we obtain a system of the form

. (3.34)
BrE% + - B ="
which is equivalent to the system (3.33).

Now apply the above reduction to the (m— 1) last equations of the sys-
tem (3.34). If one of these equations contains a contradiction, the system
(3.34) has no solutions. Then the equivalent system (3.33) does not have
a solution either. Otherwise eliminate the next unknown, say &2, from the
reduced system.

Continue this process until either a contradiction arises at a certain
step or until no equations are left after the reduction. In the first case,
(3.33) does not have a solution. In the second case we finally obtain a
triangular system

(3.35)

which is equivalent to the original system *).

*) If no equations are left after the reduction, then every n-tuple (£ ... &) is a
solution of (3.33).

7 Greub, Linear Algebra
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The system (3.35) can be solved in a step by step manner beginning
with &,
E=—(x)""1 <w’ - Y K (f”) : (3.36)
v=r+1
Inserting (3.36) into the first (r—1) equations we can reduce the system
to a triangular one of r—1 equations. Continuing this way we finally
obtain the solution of (3.33) in the form

&= 3 L&+ (v=1..r)

p=r+1

where the & (v=r+1...n) are arbitrary parameters.

Problems

1. Two nx m-matrices C and C’ are called equivalent if there exists a
regular n x n-matrix 4 and a regular m x m-matrix B such that C'=A4 CB.
Prove that two matrices are equivalent if and only if they have the same
rank.

2. Apply the Gauss elimination to the following systems:

a) &' - 428 =1,
2¢! +28 =1,
g =382 448 =2,

b) n'+2n* +3p° +4n* =5,
20t + 44’ + pt=2,
3" +4n* + P +5p* =6,
2n' +3n% + 573 + 2p* = 3.

) el4+et4ed=1,
el + 62 —¢3=0.
2e! + g2 =1,



Chapter IV
Determinants

In this chapter, except for the last paragraph, all vector spaces will be
defined over a fixed but arbitrarily chosen field I of characteristic 0.

§ 1. Determinant functions

4.1. Even and odd permutations. Let X be an arbitrary set and denote
for each p=1 by X” the set of ordered p-tuples (x,, ..., x,), x;e X. Let
P XP->Y

be a map from X7 to a second set, Y. Then every permutation €S,
determines a new map
ad: XP->Y
defined by
(e P)(xy, ..., xp) =D (X515 -oes XG(,,))-

It follows immediately from the definitions that

(cd)=(to)d 0,T€S, 4.1
and

1 o= (4.2)
where 1 is the identity permutation.
Now let X =Z, Y=Z and define & by

& (x,, ...,xp):n'(xi—xj) " x.eZ.

i<j '
It is easily checked that for every €S,
odP=¢, - P

where ¢, = + 1. Formulae (4.1) and (4.2) imply that

and



100 Chapter V. Determinants

Thus ¢ isa homomorphism from S, to the multiplicative group { — 1, + 1}.
A permutation ¢ is called even (respectively odd) if ¢,=1 (respectively
g,=—1).

Since for a transposition 1. ¢, = — [, the transpositions are odd per-
mutations.

4.2. p-linear maps. Let E and F be vector spaces. A p-linear map from
E to F is a map &: E?—>F which is linear with respect to each argument;
ie.,

DXy, s AX LYy s X)

) sopel.
=G D(Xye oy X e X)) F HD(Xys o Vi X #

)
A p-linear map from E to I' is called a p-linear function in E. As an
example, let f;, ..., f, be linear functions in E and define @ by

D(xy, s X,) = f1(x)) ol fo(x)) x;eE.

A p-linear map @: EP—F is called skew symmetric, if for every per-

mutation o
cP=¢, D,

that is,

DXy 1y oos X)) = & P Xy, .00, X))

Every p-linear map @: EF - F determines a skew symmetric p-linear map,

Y, given by R P

In fact, let T be an arbitrary permutation. Then formula (4.1) yields

¥ =>¢tlcP)=) ¢,(to)®

a

=¢ ) e e,(1o)P=¢) ¢, (tcd)
=¢. ) e(pP)=¢ - ¥
@
and so ¥ is skew symmetric.

Proposition I: Let @ be a p-linear map from E to F. Then the following

conditions are equivalent:
(i) @ is skew symmetric.

(i) @(x;,...,x,)=0 whenever x,=x; for some pair i=.

(iii) @(xy,....x,)=0 whenever the vectors x,, ..., x, are linearly de-
pendent.

Proof: (i)<>(ii). Assume that @ is skew symmetric and that x;=x;
(i)
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Denote by 7 the transposition interchanging i and j. Then, since x; = x;,
(T®)(xy, .05 X)) = PUxy, ..o, xp).
On the other hand, since @ is skew symmetric,
(TP)Xy, .oy X)) = — DXy, .00, X))
These relations imply that
20(x;,...,x,)=0
and so, since I' has characteristic zero,
D(xy,...,x,)=0.

Conversely, assume that @ satisfies (ii). To show that & is skew sym-
metric, fix a pair i, j (i<j) and set

P(x, ) =DP(Xg, ey Xy ooy Vo ouey X))

p
where the vectors x, (v =1, j) are fixed. Then
Y(x,x)=0 xeE.
It follows that
Yx, M +P. x)=Px+y,x+y)—Px,x)—¥(y,»=0
whence

Py, x)=—¥(x, ) x,yeE.

This relation shows that
Td=—-¢

for any transposition. Since every permutation is a product of trans-
positions, it follows that

cob=¢, - P geSsS,;

p*

ie., @ is skew symmetric.
(ii)<=>(iii). Assume that ¢ satisfies (ii) and let x,,...,x, be linearly
dependent vectors. We may assume that

p—1
X, = PIAR W
v=1
Then. by (ii).

p-1
DXy x,) =) AP0, .0X, 1.x,)=0
v=1
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and so @ satisfies (iii). Obviously, (iii) implies (ii) and so the proof is
complete.

Corollary: 1If dim E=n, then every skew symmetric p-linear map @
from E to F is zero if p>n.

Proposition 11: Assume that E is an n-dimensional vector space and
let @ be a skew symmetric n-linear map from E to a vector space F.
Then @ is completely determined by its value on a basis of E. In par-
ticular, if @ vanishes on a basis, then @ =0.

Proof: In fact, choose a basis a, ..., a, of E and write

n
x, =y ¢&a, (2=1..n).
v=1
Then
D(xy, ., x,)= Y &L Erd(a,, ..., a,)
Vieeooo Vi

— ca(1) 20 (1)
=) MG Da,yy. s )
[

=Y e, M. M) Dlay. ..., aq,).
a

Since the first factor does not depend on @, the proposition follows.
4.3. Determinant functions. A determinant function in an n-dimensional
vector space E is a skew symmetric n-linear function from E to I
In every n-dimensional vector space E (n=1) there are determinant
functions which are not identically zero. In fact, choose a basis, f,, ..., f,
of the space L(E) and define the n-linear function @ by

D(x1. .. X,) = filxy) ... fulx) x,ek.
Then. if a,. .... a, is the dual basis in E,

1 =1
D(a,y, ...,am))z{o . (4.3)

Now set
A= Z e, (0 D).

Then 4 is a skew symmetric. Moreover, relation (4.3) yields

Alay, ....a,)=1
and so 4 = 0.
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Proposition 111: Let E be an n-dimensional vector space and fix a non-
zero determinant function 4 in E. Then every skew symmetric n-linear
map ¢ from E to a vector space F determines a unique vector b € F such

that
Oy, .., x,)=A4(x,...,x,) - b. 4.4

Proof: Choose a basis a,, ..., a, of E so that 4(a,,...,a,) =1 and set
b=e¢l(a,,...,a,). Then the n-linear map y: E"—F given by

WXy, o x,)=4(x,...,x,) - b 4.5)

agrees with ¢ on this basis. Thus, by Proposition I1, y =g, i, p=4"-b.
Clearly, the vector b is uniquely determined by relation (4.4).

Corollary: Let A be a non-zero determinant function in E. Then every
determinant function is a scalar multiple of 4.

Proposition IV: Let A be a determinant function in E (dim E =n).
Then, the following identity holds:

n

Z(—l)j”zl(x,xl,...,fcj,...,xn)~xj=A(x1,‘..,x")-x x,eE, xeE, (4.6)

j=1

Proof: If the vectors x,, ..., x, are linearly dependent a simple cal-
culation shows that the left hand side of the above equation is zero.
On the other hand, by sec.4.2, 4(x,, ..., x,)=0. Thus we may assume
that the vectors x,, ..., x, form a basis of E. Then, writing

X= irf“xv,
we have -
S = 1 A Xy s Ky X,
R T TN S T @.7)

=A(xp, ..., %) Y Ex,=A(x,,....x,) - X.

Problem

Let E*, E be a pair of dual spaces and 40 be a determinant func-
tion in E. Define the function 4* of n vectors in E* as follows:
Ifthevectorsx*' (v=1...n)arelinearly dependent,then 4* (x*'...x*")=0.
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Ifthe vectors x**(v=1...n)arelinearlyindependent, then 4* (x*'...x*") =
A(x,...x,)” " where x, (v=1...n) is the dual basis. Prove that 4* is a deter-
minant function in E£*,

§ 2. The determinant of a linear transformation

4.4. Definition. Let ¢ be a linear transformation of the n-dimensional
linear space E. To define the determinant of ¢ choose a non-trivial deter-
minant function 4. Then the function 4, defined by

A,(xy...x,)=4(¢ Xy ...0X,)

obviously is again a determinant function. Hence, by the uniqueness-
theorem of section 4.3,
A, =ad,

]

where « is a scalar. This scalar does not depend on the choice of 4. In
fact, if A’ is another non-trivial determinant function, then 4’'=14 and
consequently AL =24, =hud =ad .
Thus, the scalar « is uniquely determined by the transformation ¢. It is
called the determinant of ¢ and it will be denoted by det ¢. So we have the
following equation of definition:

4,=deto-4,

where 4 is an arbitrary non-trivial determinant function. In a less con-
densed form this equation reads

A{pxy...px,) =detpd(x,...x,). 4.3)
In particular, if ¢ =241, then
4,=1"4
and hence
det(A1) = A*.

It follows from the above equation that the determinant of the identity-
map is 1 and the determinant of the zero-map is zero.

4.5. Properties of the determinant. A linear transformation ¢ is regular
if and only if its determinant is different from zero. To prove this, select
a basis e, (v=1...n) of E. Then

A(pey...pe)=detpd(e;...e,). 4.9
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If ¢ is regular, the vectors e, (v=1...n) are linearly independent; hence
A(pe,...pe,)*0. (4.10)
Relations (4.9) and (4.10) imply that
deto +0.
Conversely, assume that det ¢ +0. Then it follows from (4.9) that
A(pe,...pe,)*0.

Hence the vectors g e, (v=1...n) are linearly independent and ¢ is regular.
Consider two linear transformations ¢ and  of E. Then

det(y o @) = detyrdeto. 4.11)
In fact,
AW ox,...Yox,)=dety4(px;...0x,)
=detydetp 4(x, ... x,),

whence (4.11). In particular, if ¢ is a linear automorphism and ¢ ~! is the
inverse automorphism, we obtain

detop ldetp =deti=1.

4.6. The classical adjoint. Let E be an n-dimensional vector space and
let A 40 be a determinant function in E. Let ¢ e L(E; E). Then an n-linear

map
®: E"— L(E; E)
is given by
Oxy, o x)x =3 (=1 ' Ax.@xp, ..., 9X;, ..., 0x,) - X; x,ekE.

J? v
Jj=1

It is easy to check that @ is skew symmetric. Thus, by Proposition II,
there is a unique linear transformation, ad(¢), of E such that
D(x,, ..., x,)=A4(xq, ..., x,) ad (@) x,eE;

1

j?

J

€.

Y=Y AKX, @xp, s 0Xpy o, 0 x,) X = Alxg, ..., x,) ad (@) x (4.12)
! x,eE.

This equation shows that the element ad(@)e L(E; E) is independent of

the choice of 4 and hence it is uniquely determined by ¢. It is called the
classical adjoint of .
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Proposition V: The classical adjoint satisfies the relations

ad(p)op=1-deto
and
poad(p)=1-deto.

Proof: Replacing x by ¢ x in (4.14) we obtain

n

Y (=W Mex,ox,, ..., /ch, @)X, = A(xy, L x,) ad @ (@ x).

j=1
Now observe that, in view of the definition of the determinant and
Proposition IV,

Z (=1 AMQx, Xy, . X @ X,) X;

=det g - Z(—l)j‘lz](x, Xps oo X X, X
j=1

=deto - 4(x,....x,) - X x,eE, xeE.
Composing these two relations yields
A(xy,....x)ad plox)=deto - A(x;, ..., x,) - x

and so the first relation of the proposition follows. The second relation
is established by applying ¢ to (4.12) and using the identity in Proposi-
tion IV, with x; replaced by ¢ x; (i=1 ... n).

Corollary: If ¢ is a linear transformation with det ¢ +0 then ¢ has
an inverse and the inverse is given by

1

“l=———ad(e).

7 ety

Thus a linear transformation of E is a linear isomorphism if and only if
its determinant is non-zero.

4.7. Stable subspaces. Let ¢: E—E be a linear transformation and as-
sume that FE is the direct sum of two stable subspaces,

E=E,®E,.
Then linear transformations

¢:E,—>E; and ¢,:E,—>E,
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are induced by ¢. It will be shown that
deto = det g, detg,.

Define the transformations ,: E—F and ,: E»>E by

@,inE 1 inE
Yy = 1. ! l//2= . !
1 InkE, @,inE,

Then
©=Yr0Y,

det o = dety,-dety, .

and so

Hence it is sufficient to prove that

dety, =detep, and dety, =detgp,. (4.13)

Let 440 be a determinant function in E and b, ... b, be a basis of E,. Then
the function 4, defined by

Ay(x; ... x,)=4(x;...x,,b; ... b)), x€E, p=dimE, (4.14)
is a non-trivial determinant function in E,. Hence

A (@y Xy ...@yx,) =deto, 4, (x;...x,).

On the other hand we obtain from (4.14)

A (@rxy @1 xp) =AWy Xy Yy Xp Yy by by)
=dety 4(xy...x,by...b,)
=dety 4, (x;...x,).
These relations yield
deto, =dety,.

The second formula (4.13) is proved in the same way.

Problems
1. Consider the linear transformation ¢: E— E defined by
pe,=41,e, (v=1...n)
where e,(v=1...n) is a basis of E. Show that

detop =4,...4,.
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2. Let @:E—E be a linear transformation and assume that E, is a
stable subspace. Consider the induced transformations ¢,:E,—E; and
@:E/E, > E/E,|. Prove that

deto = det g, -det@.
3. Let a: E—~F be a linear isomorphism and ¢ be a linear transfor-

mation of E. Prove that
det(xopoa™')=deto.

4, Let E be a vector space of dimension n and consider the space
L(E; E) of linear transformations.

a) Assume that Fis a function in L(E; E) satisfying
F(yop)=F()F ()
and
F()=1.

Prove that F can be written in the form
F(p) = f (deto)
where f:I'— I is a mapping such that
fGw)=fQ)f .
b) Suppose that F satisfies the additional condition that
F(A1)=2".
Then, if E is a real vector space,
F(p)=detg or F(p)=|deto]
and if E is a complex vector space
F(p)=deto.
Hint for part a): Let e;(i=1...n) be a basis for E and define the trans-
formations y;; and ¢; by
e, vEi .
l//ijev:{ . Lj=1...n

e, +Ae; v=i

and
e, vFi -
qoiev—{/{ei - i=1..n.
Show first that
F(‘l’ij)zl

and that F(g;) is independent of i.
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4. Let E be a vector space with a countable basis and assume that a
function F is given in L(E; E) which satisfies the conditions of problem

3a). Prove that
F(p)=1 @eL(E; E).

Hint: Construct an injective mapping ¢ and a surjective mapping

such that
lp o (/) = 0 .
5. Let @ be a linear transformation of E such that w?=1. Show that
det w=(—1)" where r is the rank of the map 1—w.
6. Let j be a linear transformation of E such that j?= —1. Show that

then the dimension of E must be even. Prove that det j=1.

7. Prove the following properties of the classical adjoint:
(i) ad(y o @)= ad(p)oad ().

(i) det ad(¢p)=(det @)"~'.

(iii) If @ has rank n—1, then Im ad(¢)=ker ¢.

(iv) If ¢ has rank <n—2, then ad(¢)=0.
)
)

—

(v) ad(ad (P)=(det (p)n—z .
(Vi det ad (ad (p):(det (p)("*l)z‘
8. If n=2 ShOW that

ad{(@)=1-tro—o.

§ 3. The determinant of a matrix

4.8. Definition. Let ¢ be a linear transformation of £ and («%) the corre-
sponding matrix relative to a basis e,(v=1...n). Then

pe, =y dhe,.
"
Substituting x,=e, in (4.8) we obtain
A(pey,...pe,)=detpd(e,...e,).
The left-hand side of this equation can be written as
d(pey,...pe,) =4 e, ... Y ake,)
= Zs:a’fm fx;',‘z")'A (er-..e,).

We thus obtain
detop =Y g o{" .. ag™. (4.15)
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This formula shows how the determinant of ¢ is expressed in terms of the
corresponding matrix.
We now define the determinant of an n x n-matrix A= («,) by

detd =Yg af™ .. af™. (4.16)

Then equation (4.15) can be written as
detop =det M (o). (4.17)
Now let 4 and B be two n x n-matrices. Then
det(4 B) = det A detB. (4.18)

In fact, let E be an n-dimensional vector space and define the linear trans-
formations ¢ and Y of E such that (with respect to a given basis)

M(p)=A and M(J)=B.
Then
det (A B) = det M (@) M () = det M (f - @) = det (Y - @)
= det@-dety = det M (¢p)det M () = det A-det B.

Formula (4.18) yields for two inverse matrices
detA-det(A™ ') =detJ =1 (J unit-matrix)
showing that
det(A™')=(detA)~".

Finally note that if an (n x n)-matrix 4 is of the form

A:<Al 0)
0 A,

det A =det 4, - det 4, (4.19)

then

as follows from sec. 4.7.

4.9. The determinant considered as a function of the rows. If the rows
a,=(x,...o) of the matrix 4 are considered as vectors of the space I'"
the determinant det 4 appears as a function of the n vectors a,(v=1...n).
To investigate this function define a linear transformation ¢ of I'" by
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where the vectors e, are the n-tuples

e,=(0...1...0) (v=1...n).

R e =g

v

Then A is the matrix of ¢ relative to the basis e,. Now let 4 be the deter-
minant functionin I"" which assumes the value one at the basis e, (v=1...n),

A(ey...e))=1.
Then
d(ay...a,)=4d(pe,...pe,)=detpd(e,...e,) =deto
and hence
detA =A(ay...a,). (4.20)
This formula shows that the determinant of 4 considered as a function
of the row-vectors has the following properties:
1. The determinant is linear with respect to every row-vector.
2. If two row-vectors are interchanged the determinant changes the
sign.
3. The determinant does not change if to a row-vector a multiple of
another row-vector is added.
4. The determinant is different from zero if and only if the row-vectors
are linearly independent.
An argument similar to the one above shows that

detA = A(b, ... b")

where the b* are the column-vectors of A4. It follows that the properties
1-4 remain true if the determinant of A4 is considered as a function of the
column-vectors.

Problems
1. Let A=(o%) be a matrix such that o, =0 if v<u. Prove that
detA=oaf...a".
2. Prove that the determinant of the n x n-matrix

ay =1-25}
is equal to (n—1)(—1)""1.
Hint: Consider the mapping ¢ : E— E defined by

pe,=Ye, —e, (v=1..n).
"
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3. Given an n x n-matrix 4=(o}) define the matrix B=(f}) by

Bl = (= 1) ak,
Prove that
detB =detd.

4. Given n complex numbers «, prove that

O Oy Oy y QA

n{n—1)

=(=1) % Bi..A

Oy Oy ...l oy

det

where the numbers 8, are defined by

2nk 2nk
Bi=> e, & =cos—— + isin T (k=1...n).
v n n

Hint: Multiply the above matrix by the matrix

&y - n
2 2
87 ... &y
g1 ... &n

§ 4. Dual determinant functions

4.10. Let E*, E be a pair of dual vector spaces and 4*40, 440 be
determinant functions in £* and E. It will be shown that

A* (XY A(xg . x,) = adet ((x*x)), x*eE* x €K, (4.21)

where ael is a constant scalar. Consider the function Q of 2# vectors
defined by
Qx*! L x* xp L x,) = det (Kx*, x;)).

Then it follows from the properties of the determinant of a matrix that Q
is linear with respect to each argument. Moreover, Q is skew symmetric
with respect to the vectors x*' and with respect to the vectors x;(i=1...n).
Hence the uniqueness theorem (sec. 4.3) implies that Q can be written as

Q(x*, L x*¥ X Lx,) = O (xR LX) A (xg . x,) (4.22)
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where @ depends only on the vectors x*, Replacing the x; in (4.21) by a
basis e; of E we obtain

Q(x*, ... x*;e;...e,) = D(x*' ...x*)A(e; ... e,).

This relation shows that @ is linear with respect to every argument and
skew symmetric. Applying the uniqueness theorem again we find that

D (x*L .. x*") = fA*(x* ... x*"),  Pel. (4.23)
Combining (4.22) and (4.23) we obtain
Q(x*' L x* x Lx,) = AR (X L) A(xy .. x,). (4.24)
Now let e*/, e;(i=1...n) be a pair of dual bases. Then (4.24) yields
1=p4*(e*' ...e*") 4 (e, ... ¢,) (4.25)

and so 0. Multiplying (4.24) by =" we obtain the relation (4.21).
The determinant functions 4* and 4 are called dual if the factor « in
(4.21) is equal to 1; i.e.,

A% (x*¥1 L x*) A(xy ... x,) = det ({x*, x D). (4.26)

To every determinant function 40 in E there exists precisely one dual
determinant function 4* in E*. In fact, let 45 +0 be an arbitrary deter-
minant function in E£* and set 4*=a~ 'A% where « is the scalar in (4.21).
Then 4* and 4 are dual. To prove the uniqueness, assume that 47 and
A% are dual determinant functions to 4. Then we have that

[4F(x* . x™) = A5 (x*' . x™)] A (xy ... x,) =0  x*,€E* x;eE

whence A7 =43.
4.11. The determinant of dual transformations. Let ¢:F—FE and
@*: E*« E* be two dual linear transformations. Then

det * = deto. (4.27)

To prove this, let 4*, 4 be a pair of dual determinant functions in E*
and E. Then we have in view of (4.26)

A*(x*, L x*) A (xq . x,) = det (04 x)).
This relation yields

A% (@* x*¥1 . @* x*) A (x, ... x,) = det ((p* x*, x,D)

8 Greub. Linear Algebra
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and
A (x* L x*) A (@ Xy .. @ x,) = det ({9 x))).
Since
Co* x*, x;y = (x* o x;) (i,j=1...n)
it follows that

A* (¥ x*L, L @* x*) A(xy ... x,) = A (x* LX) A (@ xy ... 0 X,).
But A% (@* x*', . @* x*") = det *- A% (x*! ... x*") 2
and A(px,...px,)=detpd(x;...x,)
and so we obtain from (4.28) that

(detp* — det ) 4* (x*' ... x*) A (x;...x,) =0

whence (4.27)

The above result implies that transposed # x n-matrices have the same
determinant. In fact, let 4 be an n x n-matrix and let ¢ be a linear trans-
formation of an n-dimensional vector space such that (with respect to a
given basis) M (¢)=A. Then it follows that

det A* = det M (¢)* = det M (¢*) =
= det p* = detp = det M (¢) = det 4.

Problems

1. Show that the determinant-functions, 4, 4* of § 1, problem 1 are
dual.
2. Using the expansion formula (4.16) prove that,

det A* =detA.

§ 5. The adjoint matrix

4.12. Definition. Let ¢: E—E(dim E=n) be a linear transformation
and let ad(¢) be the adjoint transformation (cf. sec. 4.6). We shall express
the matrix of ad () in terms of the matrix of ¢. It is called the adjoint of
the matrix of ¢.

Let a,, ...,a, be a basis of E such that A(a,,...,a,)=1 and write

ad(w)aj:ZB;ai.
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Then, setting x,=a, (v=1... n) and x =g, in the identity (4.14) we obtain

=0 Aapay. .. U @a)a;=Aay, .. a 2;5 a;
whenée
Bi=(=1""Aa;, @ay. ..., ¢0,....,pa,
=Apay,....,pa;_y,a;,9a;,,,....pa,) (i,j=1...n).

This equation shows that
B = det @]

where @} E—E is the linear transformation given by

pila)=pa, (v+i)
q)j.a‘.:aj (i,j=1...n)

Since the matrix of ¢ with respect to the basis ay, ..., q, is given by

1 -1 j +1
(ol ad™ o a’l o)

) %y 0‘] T af+1l'--“?—1
Cl=f 0.0 1 0 ..0 (i,j=1..n)

1 1 i+t n
LIS o‘;+1 11+1 o‘,+1 v g

1 -1 j j+1 n
(O O % O ...oc,,J

we have
pi = det CL.

Definition: The determinant of C/ is called the cofactor of o and is
denoted by cofa/. Thus we can write

/{_;f:cofoc{ (Lj=1...n);

L.e.. the adjoint matrix is the transpose of the matrix of cofactors.
4.13. Cramer’s formula. In view of the result above we obtain from
Proposition V, sec. 4.6, the relations

Y =0t -detA (4.36)
J

and
Y /f{ocj’." =0 detA. (4.37)
j
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Setting k=i in (4.36) we obtain the expansion formula by cofactors,

detA=3% «/pi (i=1..n). (4.38)
J

Now assume that det 4 +0 and define a matrix %! by setting

R

j B
) . : detA P
Then these equations yield

LA =L =0
J

showing that the matrix (/) is the inverse of the matrix ().
From (4.36) we obtain Cramers solution formula of a system of n
linear equations in 1 unknowns whose determinant is non-zero. In fact, let

Salk=y  j=1..n (4.39)
k=1

be such a system. Then we have, in view of (4.36),
odetd =) [3; n
whence !

. 1 o
i1 x_,J_\,ﬁ
&= deid %/)’j " Zcof

This formula expresses the (unique) solution of (4.39) in terms of the
cofactors of the matrix A and the determinant of A.

4.14. The submatrices SI. Given an (nx n)-matrix denote for each
pair (i,j) (i=1...n, j=1...n) by S! the (n—1)x (n— 1)-matrix obtained
from A by deleting the i-th row and the j-th column. We shall show that

cofo = (— 1)/ detS]  (i,j=1...n). (4.40)

In fact. by (i—1) interchanges of rows and (j—1) interchanges of
columns we can transform C{i into the matrix (cf. sec. 4.12)

1 0 ....0)
2 T
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Thus _ , o ,
cofa] =det Cl=(— 1)/ det Bl

On the other hand we have, in view of the expansion formula (4.38),
with i=1
and so (4.40) follows.

4.15. Expansion by cofactors. From the relations (4.35) and (4.30) we
obtain the expansion-formula of the determinant with respect to the i
row,

det B/ = det S/

detA =Y (= 1)*aidetS! (i=1...n). (4.41)
J

By this formula the evaluation of the determinant of » rows is reduced to
the evaluation of »# determinants of n—1 rows.
In the same way the expansion-formula with respect to the j column

is proved: i .
detd =3 (—1)"ajdetS] (j=1...n). (4.42)

4.16. Minors. Let 4=(a%) be a given n x m-matrix. For every system
of indices

ISii<i,<-<ip2n and 1=Z5j,<j,<-<j,Em

denote by 47'/* the submatrix of A, consisting of the rows /..., and the

iyedi

columns j,...j,. The determinant of A/*/* is called a minor of order k of
the matrix A. It will be shown that in a matrix of rank r there is always a
minor of order r which is different from zero, whereas all minors of order
k>r are zero. Let AJ'"'/* be a minor of order k>r. Then the row-vectors
a;,...a; of A are linearly dependent. This implies that the rows of the
matrix A{f,’k" are also linearly dependent and thus the determinant must
be zero.

It remains to be shown that there is a minor of order r which is different
from zero. Since A has rank r, there are r linearly independent row-
vectors g;,...a; . The submatrix consisting of these row-vectors has again
the rank r. Therefore it must contain r linearly independent column-
vectors b''...b (cf. sec. 3.4). Consider the matrix A/~ Its column-

vectors are linearly independent, whence
det Al £ 0.
If 4 is a square-matrix, the minors
det A\l

are called the principal minors of order k.
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Problems

. Prove the Laplace expansion formula for the determinant of an
(nx n)-matrix: Let p (1Sp=<n-—1) be a fixed integer. Then

detd= ) &(v,.....v,)detA " *rdetB' -t
Vi< < Wy
where
Vi Vp ViV
A" b= AI{..p ’
B“p FleeVn A;;I;+ll4..','n“n
and
°
L (vi=i)
eviov)=(—1)"
2. Letay,....a,and b,..... b, be two bases of a vector space E and

let p(1=p=<n—1) be given. Show that the vectors b, can be reordered
such that
i) a,, sy, b‘_pﬂ. ....b, is a basis of E,

,...,a, 1s also a basis of E.

r1 11
1 1 -1 -1
=1
A= o1 1 o
1 -1 -1 1
A1
A1
B= B (A4 +0)
1
A

4. Show that
a) (xaa..a
axa..a

det| - =+ (=1 al(x—ay!



§ 5. The adjoint matrix 119

and that
b) (1 | |
Ay Ay Ay
det| A2 13 ...A2 |= [T(=2).
i>j
/11{—1 lzl—l /{:—1
(Vandermonde determinant.)
5. Define
e x, 1 N
-1 x, 1
- 1 X3 1
4, = det
Xp-y 1
L -1 x,,J

Show that 4,=x,4,_,+4,_, (n>2)

A4, =xy; A, =x;x,+1.

6. Verify the following formula for a quasi-triangular determinant:

fxu...xlp 0....0) (" h
. . : . xp+1p+1....xp+1n
Xp1-eX,, 0....0 :
pl pp DRIy .
Xg1.o-X1p .
det| X, 14000 .. Xp+1a | =det| : ¢ |-det .
xpl --axpp .
Xypal cermeens Xpun
\x,,l .......... Xun J \_ J

7. Prove that the operation A—ad A (cf. sec.4.12) has the following

properties:

a) ad (AB)=adB-ad A.

b) det ad 4=(det 4)""'.

c) ad ad A=(det 4)""?- A.
d) det ad ad A=(det 4)" ',
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§ 6. The characteristic polynomial

4.17. Eigenvectors. Consider a linear transformation ¢ of an n-dimen-
sional linear space E. A vector a+0 of E is called an eigenvector of ¢ if

pa=Aa.

The scalar A is called the corresponding eigenvalue. A linear transforma-
tion ¢ need not have eigenvectors. As an example let £ be a real linear
space of two dimensions and define ¢ by

PXy =Xy PXy;=—Xy
where the vectors x; and x, form a basis of E. This mapping does not
have eigenvectors. In fact, assume that
a=¢"x +8x,
is an eigenvector. Then ¢pa=Ja and hence
g=ag, P=-ig
These equations yield
(61)2 + (52)2 — 0
whence ¢!'=0 and é2=0.

4.18. The characteristic equation. Assume that a is an eigenvector of
¢ and that A is the corresponding eigenvalue. Then

pa=4la, a+0.
This equation can be written as
(p—21)a=0 (4.43)
showing that ¢ — A1 is not regular. This implies that
det(p — 11)=0. (4.44)

Hence, every eigenvalue of ¢ satisfies the equation (4.44). Conversely,
assume that 4 is a solution of the equation (4.44). Then ¢@— A1 is not
regular. Consequently there is a vector a=+0 such that

(¢ —A1)a=0,
whence pa=2Aa.
Thus, the eigenvalues of ¢ are the solutions of the equation (4.44). This
equation is called the characteristic equation of the linear transformation ¢.
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4.19. The characteristic polynomial. To obtain a more explicit expres-
sion for the characteristic equation choose a determinant function 440
in E. Then

A(px; —Axy...ox,—Ax,)=det(p — A1) 4(x; ... x,)
x,eE(v=1...n). (4.45)

Expanding the left hand-side we obtain a sum of 2" terms of the form

A(zy...z2,),

where every argument is either ¢ x, or — Ax,. Denote by S,(0<p <n) the
sum of all terms in which p arguments are equal to ¢ x, and n—p argu-
ments are equal to —Ax,. Collect in each term of S, the indices v;...v,
(vy <---<w,) such that

2y, = QX 2, = QX
and the indices v, ...v, (v, <---<v,) such that

z =—Ax Lz, =—Ax

Vp+1 Vp+1 Vn Vn*

Introducing the permutation ¢ by

o(i)=v; (i=1..n)

Wwe can write

A(zy .. 2,) = &, 4(Z501y - Zgn)
=8, A(Q Xyt @ Xg(py = AXg(pi 1y — AXg(m)
= (_ )')"_psad((pxu'(l) < @ Xgpys Xa(p+1) +- 'xa(n))'
Thus,
Sp=(—A)"""Y e, (@ X501y @ Xo(pys Xa(p+1) -+ Xo(m)) (4.46)

where the sum is extended over all permutations ¢ subject to the con-
ditions
c(1)<--<a(p) and o(p+1)<---<a(n).

Observing the skew symmetry of 4 we obtain from (4.46)

(=4
= = N e, AP Xy01y - P Xgpys Xg o Xgin 4.47

p!(n—p)!Z,,: o A(@ Xo(1) - P Xa(p)r Xa(p+ 1) m) (4.47)
where the sum on the right hand-side is taken over all permutations. Let
¢, be the function defined by

p

P,(xy...x,) = ZSaA((an(n e @ Xo(py Xo(pt 1)+ Xom) (0= p = n)
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and t be an arbitrary permutation of (1...n). Then

d)p(xr(l) Xt(n)) = ZSUA ((P xra(l) (pxw(p)"xw(p+1) xra(n))
a
= ETZS‘IO'A ((P xw(l) (pxm(p)’xro(p+1) xm(n))
4

= gtzgaA ((P Xo(1) - @ Xo(pys Xo(p+1) - xe(ﬂ))
a

=6®,(x;...X,).

This equation shows that @, is skew symmetric with respect to all argu-
ments. This implies that

&, =(—1)"?pl(n—p)la, 4 (4.48)
where a, is a scalar. Inserting (4.48) into (4.47) we obtain
S,=a,A"" " 4.
Hence, the left hand-side of (4.45) can be written as

A(pxy — AX(, o 0x,— AX,)=A(xy...x,) Y 2, A" 7. (4.49)
p=0
Now equations (4.45) and (4.49) yield

det(p — A1) = ) o, A" P
p=0

showing that the determinant of ¢ — 41 is a polynomial of degree » in A.

This polynomial is called the characteristic polynomial of the linear trans-

formation ¢. The coefficients of the characteristic polynomial are deter-

mined by equation (4.48), and are called the characteristic coefficients.
These relations yield for p=0 and p=n

op=(—1) and «a,=dete
respectively.
4.20. Existence of eigenvalues. Combining the results of sec. 4.18 and
4.19, we see that the eigenvalues of ¢ are the roots of the characteristic
polynomial

n

F@)=Y @i,

v=0

This shows that a linear transformation of an n-dimensional linear space
has at most n different eigenvalues.
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Assume that E is a complex linear space. Then, according to the funda-
mental theorem of algebra, the polynomial f has at least one zero. Con-
sequently, every linear transformation of a complex linear space has at
least one eigenvalue.

If E'is a real linear space, this does not generally hold, as it has been
shown in the beginning of this paragraph.

Now assume that the dimension of E is odd. Then

limf(A)=—o00 and lim f(})=+o0

A= o A= — o0

and thus the polynomial f (1) must have at least one zero. This proves
that a linear transformation of an odd-dimensional real linear space has at
least one eigenvalue. Observing that

f0) =, =dety

we see that a linear transformation of positive determinant has at least
one positive eigenvalue and a linear transformation of negative deter-
minant has at least one negative eigenvalue, provided that E has odd
dimension.

If the dimension of E is even we have the relations

lim f(A)=0 and lim f(i)=o0
A= A==

and hence nothing can be said if det ¢ >0. However, if det ¢ <0, there
exists at least one positive and one negative eigenvalue.

4.21. The characteristic polynomial of the inverse mapping. It follows
from (4.27) that the characteristic polynomial of the dual transformation
@* coincides with the characteristic polynomial of ¢.

Suppose now that E=FE, ®E, where E, and E, are stable subspaces.
Then the result of sec. 4.7 implies that the characteristic polynomial of ¢
is the product of the characteristic polynomials of the induced transfor-
mations ¢,:E,—»E, and ¢,: F,>F,.

Finally, let ¢ : E— E be a regular linear transformation and consider the
inverse transformation ¢~'. The characteristic polynomial of ¢~1! is
defined by

F(A)y=det(p~' = A1).
Now,
1

ol —di=9p lo(1—dp)=—20 (o — A1),
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whence
det(p ' = i1)=(—42)detop '-det(p — 2 '1).

This equation shows that the characteristic polynomials of ¢ and of ¢ ™"

are related by
F(i)=(=2)ydete ™ f(i71).
Expanding F(4) as

F)= % g2
we obtain the following relations between the coefficients of f and of F:

B.=(—1ydeto la,_, (v="0..n).

4.22. The characteristic polynomial of a matrix. Let e,(v=1...n) be a
basis of E and A= M(p) be the matrix of the linear transformation ¢
relative to this basis. Then

M(p—2A1)=M(@)—IM@u)=A4-1J
whence
det(p — A1) =det M (¢ — A1) =det(4 — AJ).

Thus, the characteristic polynomial of ¢ can be written as
F(A)y=det(A—2J). (4.50)

The polynomial (4.50) is called the characteristic polynomial of the matrix
A. The roots of the polynomial fare called the eigenvalues of the matrix A.

Problems

1. Compute the eigenvalues of the matrix

1 0 3
3 -2 —-1].
1 -1 1

2. Show that the eigenvalues of the real matrix

<; ’g) are real.
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3. Prove that the characteristic polynomial of a projection n: E—FE,
(see Chapter 11, sec. 2.19) is given by

fRY=(=1rr=r(1 = A)

where n=dim F and p=dim E|.

4. Show that the coefficients of the characteristic polynomial of an

involution satisfy the relations
o, =¢d,_, e=+1 (p=0..n).

5. Consider a direct decomposition E=FE,; @ E,. Given linear transfor-
mations ¢;: E;— E; (i=1,2) consider the linear transformation ¢ =, ®¢,:
E- E. Prove that the characteristic polynomial of ¢ is the product of the
characteristic polynomials of ¢ and of ¢,.

6. Let ¢: E—F be a linear transformation and assume that E| is
a stable subspace. Consider the induced transformations ¢,:E;—FE,
and ¢:E/E,—>E/E,. Prove that

X=X1X

where y, x; and jy denote the characteristic polynomials of ¢, ¢, and §
respectively. In particular show that

(A= (=4 x(2)

where ¢ is the induced transformation of E/ker ¢ and s denotes the di-
mension of ker ¢.

7. A linear transformation, ¢, of E is called nilpotent if ¢*=0
for some k. Prove that ¢ is nilpotent if and only if the characteristic
polynomial has the form

1) =(=4).

Hint: Use problem 6.

8. Given two linear transformations ¢ and \ of Eshow that det (¢ — 1y/)
is a polynomial in 4.

9. Let ¢ and ¥ be two linear transformations. Prove that ¢.i and
¥ o ¢ have the same characteristic polynomial.

Hint: Consider first the case that y is regular.
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§ 7. The trace

4.23. The trace of a linear transformation. In a similar way as the deter-
minant, another scalar can be associated with a given linear transforma-
tion @. Let 440 be a determinant function in E. Consider the sum

Y A(xy . @x;...x,).
i=1

This sum obviously is again a determinant function and thus it can be
written as

iA(xl...q)xi...x,,)zovA(xl...x,,) (4.51)
=1

where o is a scalar. This scalar which is uniquely determined by ¢ is called
the trace of ¢ and will be denoted by tr ¢. It follows immediately that
the trace depends linearly on o,

tr(Ao + py)=Atro + ptrij.
Next we show that

tr(Yop)=tr{poy) (4.52)

for any two linear transformations ¢ and ¥. The trace of Y. ¢ is defined
by the equation

ZA(x1 (o)X x,) =tr(Yop)d(x;...x,) x,€E.
Replacing the vectors x, by ¥ x, (v=1...n) we obtain
Z:A(wxl "'(l/joq)"[p)xi"'l//xn) (453)
=tr(Yo@)d(Wx,...¥x,)=tr(Yop)detyd(x,...x,).
The left hand-side of this equation can be written as

ZA(lpxl Wopo)x;. P x,) = dett//ZA(x1 Qo) x;.x,)

=dety-tr(poy)d(x;...x,)
and thus (4.53) implies that

detytr(poy) = tr(yoq@)detyy. (4.54)

If  is regular, this equation may be divided by det y yielding (4.52). If
is non-regular, consider the mapping  — A1 where 4 is different from all
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eigenvalues of Y. Then y — A1 is regular, whence

tr[(y = A)eo] =tr[po(y — 21)].

In view of the linearity of the trace-operator this equation yields

tr o - /ltl' = tr o _ }-tr
whence (4.52). Wee) ¢ =tr(poy) ¢

Finally it will be shown that the coefficient of "~ ! in the characteristic
polynomial of ¢ can be written as

ap=(=1)""treo. (4.55)
Formula (4.48) yields for p=1
Za:sa A(Q X g1y Xa(2) - Xgmy) = (= 1) Loy A(x; ... x,)  (4.56)
the sum being taken over all permutations ¢ subject to the restrictions
6(2)<---<a(n).
This sum can be written as
iil(— D7 Ao xsxy o Xy x,) = é:l A(Xy oo X 1O Xy X g eee X))
We thus obtain from (4.56)
ARy ox;x,) = (= 1"l A(xg ... x,). (4.57)

Comparing the relations (4.57) and (4.51) we find (4.55).
4.24. The trace of a matrix. Let e,(v=1...n) be a basis of E. Then ¢
determines an »n x n-matrix o, by the equations

pe,=>ale,. (4.58)
m
Inserting x,=e,(v=1...n) in (4.51) we find
YA(ey...pe...e,) =trod(e...e,). (4.59)

Equations (4.58) and (4.59) imply that

A(ey...e)) Y ai=A(ey...e,)tr o
i=1
whence ]
tro =) af. (4.60)
Observing that !
oy =< ey,
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where e*”(v=1...n) is the dual basis of e, we can rewrite equation
(4.60) as .
tro =Y (e* pe). (4.61)

Formula (4.60) shows that the trace of a linear transformation is equal
to the sum of all entries in the main-diagonal of the corresponding matrix.
For any n X n-matrix A= («%) this sum is called the zrace of 4 and will be
denoted by tr 4,

trd =Y. (4.62)

Now equation (4.60) can be written in the form

tro =tr M (o).

4.25. The duality of L(E; F) and L(F; E). Now consider two linear
spaces E and Fand the spaces L{E; F)and L(F; E) of all linear mappings
¢@:E—F and : F— E. With the help of the trace a scalar product can be
introduced in these spaces in the following way:

(o ¥y =tr(Yo@) @eL(E;F), yeL(F;E). (4.63)
The function defined by (4.63) is obviously bilinear. Now assume that
o, > =0 (4.64)

for a fixed mapping @eL(E; F) and all linear mappings yeL(F; E). It
has to be shown that this implies that ¢ =0. Assume that ¢+0. Then
there exists a vector a€ E such that pa=+0. Extend the vector by =¢a to
a basis (b,...b,,) of F and define the linear mapping : F— E by

Wby =a, Yyb,=0 (u=2..m).
(po¥)by=by, (poy)b,=0 (L=2...m),

(o ¥ =tr(Yop)=tr(p-y)=1.

This is in contradiction with (4.64). Interchanging E and F we see that
the relation
{p.¥>=0

for a fixed mapping Y eL(F; E) and all mappings ¢eL(E; F) implies
that  =0. Hence, a scalar-product is defined in L(E; F) and L(F; E)
by (4.63).

Then

whence
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Problems

1. Show that the characteristic polynomial of a linear transformation
¢ of a 2-dimensional linear space can be written as

f(A)=4*—ltro +deto.
Verify that every such ¢ satisfies its characteristic equation,
¢* — @-tro + 1-detgp = 0.
2. Given three linear transformations ¢, ¥, y of E show that

tr(yoy o)+ tr(yopoy)
in general.
3. Show that the trace of a projection operator n: E— E; (see Chapter
I1 sec. 2.19) is equal to the dimension of Im =.
4. Consider two pairs of dual spaces £*, E and F*, F. Prove that the
spaces L(E; F)and L(E*; F*)are dual with respect to the scalar-product
defined by

Lo, > =tr(p*oy) @eL(E; F) YyeL(E*; F¥).

5. Let f be a linear function in the space L(E; E). Show that f can be
written as

f(p)=tr(poa)

where « is a fixed linear transformation in E. Prove that o is uniquely
determined by f.
6. Assume that fis a linear function in the space L(E; E) such that

fWe0)=f(o-¥).
Prove that
flo)=12tre
where £ is a scalar.
7. Let ¢ and ¥ be two linear transformations of E. Consider the sum

Y A(xy @ x L P XL X,)
i*j

where 4+0 is a determinant function in E. This sum is again a deter-
minant function and hence it can be written as

_;A(,\'I XX x,) = B(o,)A(x; ... x,).

9  Greub. Linear Algebra
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By the above relation a bilinear function B is defined in the space L (E; E).
Prove:

a) B(o,y)=trotry—tr(y-op).
b) 1B(@, ¢)=(—1)"a, where x, is the coefficient of 2"~ % in the charac-
teristic polynomial of ¢.

(=1

o) — (o).

C) a, =

8. Consider two # x n-matrices A and B. Prove the relation
tr (A B) =tr(BA)

a) by direct computation.

b) using the relation tr ¢ =tr M (¢).

9. If ¢ and ¥ are two linear transformations of a 2-dimensional linear
space prove the relation

Yoo+ ooy =0ttty +ytro+1(tr(Ycp)—trotry).
10. Let A:L(E; E)»L(E; E) be a linear transformation such that
A(poy)=A(p)oA() @, YeL(EE)

A()=1.

and

Prove that tr A (¢)=tr ¢.

I1. Let E be a 2-dimensional vector space and ¢ be a linear transfor-
mation of E. Prove that ¢ satisfies the equation @*=—211, A>0 if and
only if

deto >0 and tre =0.

12. Let ¢:E, - F, and ¢,: E,— E, be linear transformations. Consider
p=¢0, @9, E,@E, > E,®E,.

Prove that tr ¢ =tr ¢, +tr ¢,.

13. Let ¢:E— FE be a linear transformation and assume that there is a
decomposition E=E ®---@E, into subspaces such that E;n¢E;=0
(i=1...r). Prove that tr ¢ =0.

14. Let ¢: E—~F and y: E—F be linear maps between finite dimen-
sional vector spaces. Show that tr (¢ o ¥)=tr(ys o ).

15. Show that the trace of ad(¢) (cf. sec. 4.6) is the negative (n— 1)-th
characteristic coefficient of ¢.
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§ 8. Oriented vector spaces

In this paragraph E will be a real vector space of dimension n= 1.
4.26. Orientation by a determinant function. Let 4,+0 and 4,0 be
two determinant functions in E. Then 4, =214, where A+0 is a real num-
ber. Hence we can introduce an equivalence relation in the set of all de-
terminant functions 40 as follows:

A, ~4, if 1>0.

It is easy to verify that this is indeed an equivalence. Hence a decompo-
sition of all determinant functions 4+0 into two equivalence classes is
induced. Each of these classes is called an orientation of E. If (4) is an
orientation and 4 € (4) we shall say that 4 represents the given orientation.
Since there are two equivalence classes of determinant functions the vec-
tor space E can be oriented in two different ways.

A basis e,(v=1...n) of an oriented vector space is called positive if

A(e;...e,) >0

where 4 is a representing determinant function. If (e,...e,) is a positive
basis and ¢ is a permutation of the numbers (1...n) then the basis (e, (...
€, () s positive if and only if the permutation ¢ is even.

Suppose now that E* is a dual space of E and that an orientation is
defined in E. Then the dual determinant function (cf. sec. 4.10) determines
an orientation in E*. It is clear that this orientation depends only on the
orientation of E. Hence, an orientation in E* is induced by the orien-
tation of E.

4.27. Orientation preserving linear mappings. Let £ and F be two
oriented vector spaces of the same dimension » and ¢:E— F be a linear
isomorphism. Given two representing determinant functions 4 and 4y
in E and F consider the function 4, defined by

A(p(xl "‘xn) = AF((pxl’ ---,(Px,,)-
Clearly 4, is again a determinant function in £ and hence we have that
A,=24g

where 140 is a real number. The sign of A depends only on ¢ and on the
given orientations (and not on the choice of the representing determinant
functions). The linear isomorphism ¢ is called orientation preserving if

9



132 Chapter 1V. Determinants

4A>0. The above argument shows that, given a linear isomorphism
¢:E—F and an orientation in £, then there exists precisely one orien-
tation in F such that ¢ preserves the orientation. This orientation will be
called the orientation induced by ¢.
Now let ¢ be a linear automorphism; i.e., F=E. Then we have 4, =A4¢
and hence it follows that
A=deto.

This relation shows that a linear automorphism ¢: E—E preserves the
orientation if and only if det ¢ >0.
As an example consider the mapping ¢ = —1. Since

det(—1)=(—1)

it follows that ¢ preserves the orientation if and only if the dimension of
n is even.

4.28. Factor spaces. Let £ be an orientated vector space and F be an
oriented subspace. Then an orientation is induced in the factor space
E/F in the following way: Let 4 be a representing determinant function
in £and a,...a, be a positive basis of F. Then the function

A(ay .. A, Xppq ... X,), x,€E

depends only on the classes &;. In fact, assume for instance that y,,; and
X,+1 are equivalent mod F.
Then

p
bRy
Yp+1 = Xp41 t+ Z A da,

v=1

and we obtain
d(ay...a,ypey..x)=4(ay ... a,Xppq1...X,) +
P

+ Y Md(ay...apa,..x,)=A4(a;...ap X, 4y ... X,).
v=1

Hence a function A of (n—p) vectors in E/F is well defined by
A(Xpyy o X)) =4(ay .. Ay Xphq ... X,). (4.65)

It is clear that A4 is linear with respect to every argument and skew sym-
metric. Hence 4 is a determinant function in E/F. It will now be shown
that the orientation defined in E/F by A depends only on the orientations
of E and F. Clearly, if 4" is another representing determinant function in
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E we have that 4’=24, >0 and hence 4’=14. Now let (a}...a,) be
another positive basis of F. Then we have that

ay=>Y ala,, det(ah)>0
n

whence
A(ay...ay,xpeq ... x,)=det(ad)Ad(ay ... a, X4 ... X,).

It follows that the function 4" obtained from the basis 4}...a,, is a positive
multiple of the function 4 obtained from the basis a;...a,.
4.29. Direct decompositions. Consider a direct decomposition

E=E, ®E, (4.66)

and assume that orientations are defined in £, and F,. Then an orien-
tation is induced in E as follows: Let a;(i=1...p) and b;(j=1...q) be
positive bases of E; and E, respectively. Then choose the orientation of
E such that the basis a;...a,, b,...b, is positive. To prove that this orien-
tation depends only on the orientations of E, and E, let 4;(i=1...p) and
b;(j=1...q) be two other positive bases of E, and E,. Consider the linear
transformations ¢: E;— E| and y: F,— FE, defined by

pa;=d, (i=1..p) and yb;=b;, (j=1..9).

Then the transformation ¢ @y carries the basis (a,...a,, b,...b,) into the
basis (d,...d,, b;.. .b,). Since det ¢ >0 and det y >0 it follows from sec. 4.7
that

det(p @ Y) = detpdety >0

and hence (d;...d,, by...b,) is again a positive basis of E.

Suppose now that in the direct decomposition (4.66) orientations are
given in £ and E,. Then an orientation is induced in E,. In fact, consider
the projection n: E—E, defined by the decomposition (4.66). It induces
an isomorphism .

¢:EJE, S E,.

In view of sec. 4.28 an orientation in E/E; is determined by the orien-
tations of F and E;. Hence an orientation is induced in E, by ¢. To
describe this orientation explicitly let 4 be a representing determinant
function in E and ¢,, e, be a positive basis of E,. Then formula (4.65)
implies that the induced orientation in E, is represented by the deter-
minant function

Ay (ypur - yn)=A(eq . €pypryg o VYu)s Vi€E,. (4.67)
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Now let e, ;.....¢, be a positive basis of E, with respect to the induced
orientation. Then we have

Ay(e, y...e,)>0
and hence formula (4.67) implies that
Aley...e e, y...¢)>0

It follows that the basis ¢, ...¢,, ¢, ...¢, of E is positive. In other words,
the orientation induced in E by E; and F, coincides with the original
orientation.

The space E, in turn induces an orientation in E;. It will be shown that
this orientation coincides with the original orientation of E; if and only
if p(n—p) is even. The induced orientation of E, is represented by the

determinant-function

Ay(xy..x,)=A(e,4q ... €y Xy ... X,) (4.68)
where e, (A=p+1, ...n) is a positive basis of E,. Substituting x,=e,
(v=1...n) in equation (4.68) we find that
di(ey...e))=Ad(e,pq.epey..e)=(—1P""PA, (e, ...¢,). (4.69)
But e, (~=p+1,...,n) is a positive basis of E, whence

dy(ep4y...€,)>0. (4.70)

It follows from (4.69) and (4.70) that

>0 if p(n— p)iseven
A(ey...e,) { ( (4.71)

<0 if p(n—p)isodd.
Since the basis (e;...e,) of E| is positive with respect to the original orien-
tation, relation (4.71) shows that the induced orientation coincides with
the original orientation if and only if p (n—p) is even.
4.30. Example. Consider a 2-dimensional linear space E. Given a basis
(ey, e,) we choose the orientation of E in which the basis e,, e, is positive.
Then the determinant function 4, defined by

A(epez) =1

represents this orientation. Now consider the subspace E;(j=1,2) gener-
ated by e;(j=1,2) with the orientation defined by e;. Then E; induces in
E, the given orientation, but £, induces in E, the inverse orientation.
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In fact, defining the determinant-functions 4, and 4, in E; and in E, by
A4,(x)=A4(ey,x) xeE,, and 4,(x)=A4(e,x) xe€E,
we find that
d;(e;) = A4(ej,e;)=1 and 4d,(e;)=A4(ey,e,)=—1.
4.31. Intersections. Let E, and E, be two subspaces of E such that
E=E +E, (4.72)

and assume that orientations are given in E;, E, and E. It will be shown
that then an orientation is induced in the intersection E,,=FE, n E,.
Setting

dimE, =p, dimE,=q, dmE,=r

we obtain from (4.72) and (1.32) that
r=p+4q—n.
Now consider the isomorphisms
@ E[E; > E,[Ey,

and
Y:E[E, = E,/E,,.

Since orientations are induced in E/E; and E/E, these isomorphisms
determine orientations in E,/E;, and in E,/E,, respectively. Now choose
two positive bases d,,,...d, and b,,,...b, in E,/E,, and E,/E,, respec-
tively and let g;e E| and b;e E, be vectors such that

nya;=d; and myb;=b;
where 7, and 7, denote the canonical projections
n,:E, > E/E;, and n,:E,— E,[E,,.
Now define the function 4,, by
Ay2(zy...2,)=A4(2zy ... 2,841 ... Ap by . b)) 4.73)

In a similar way as in sec. 4.30 it is shown that the orientation defined in
E,, by 4,, depends only on the orientations of E, E, and F (and not on
the choice of the vectors a; and b;). Hence an orientation is induced in E| ,.
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Interchanging £, and F, in (4.73) we obtain
Ay (zy.z)=4(zy oz byey o bpagey oay). (4.74)
Hence it follows that
43 = (_ 1)(1,_” (q_r)Alz = (- 1)(,.—,,) ("_q)Alz- (4.75)

Now consider the special case of a direct decomposition. Then p+g=n
and E;,=(0). The function 4,, reduces to the scalar

ay, =4d(ay...a,by...b,). (4.76)

o

It follows from (4.76) that «,,+0. Moreover the number —> depends
3V

only on the orientations of E,, E, and E. It is called the intersection number

of the oriented subspaces E, and E,. From (4.75) we obtain the relation
Ay = (_ 1)p(n_mo‘12~

4.32. Basis deformation. Let a, and b,(v=1...n) be two bases of E.
Then the basis a, is called deformable into the basis b, if there exist n
continuous mappings

Y :

ye

satisfying the conditions

1. x,(to)=a, and x,(¢;)=b,

2. The vectors x,(7)(v=1...n) are linearly independent for every fixed z.
The deformability of two bases is obviously an equivalence relation.
Hence, the set of all bases of E is decomposed into classes of deformable
bases. We shall now prove that there are precisely two such classes. This
is a consequence of the following

Theorem: Two bases a, and b,(v=1...n) are deformable into each
other if and only if the linear transformation ¢: E— F defined by ¢a,=b,
has positive determinant.

Proof: Let 440 be an arbitrary determinant function. Then formula
4.17 together with the observation that the components & (i=1...n) are
continuous functions of x, shows that the mapping Ex --- x E—>R defined
by 4 is continuous. T

Now assume that r—x,(z) is a deformation of the basis a, into the
basis b,. Consider the real valued function

D(1) =d(x(1)...x,(1)).



§ 8. Oriented vector spaces 137

The continuity of the function 4 and the mappings ¢—x, (¢) implies that
the function @ is continuous. Furthermore,

P(N+0 (tr,St<t)

because the vectors x,(r)(v=1...n) are linearly independent. Thus the
function @ assumes the same sign at r=¢, and at t=¢,. But

O(ty)=A(by...b,)=Ad(pa,...pa,)=detpd(a,...a,) =detp - ®(ty)

whence
detp >0

and so the first part of the theorem is proved.

4.33. Conversely. assume that the linear transformation a,—b,_ has
positive determinant. To construct a deformation (a,...a,)— (b;...5,)
assume first that the vector n-tuple

(ay...a;,b;x(...b,) 4.77)

is linearly independent for every i(1<i<n—1). Then consider the de-
composition

b,=Y pa,.

By the above assumption the vectors (a,...a,_,, b,) are linearly independ-
ent, whence "+0. Define the number ¢, by

_f+1af B, >0
" l=1 if B,<O.
It will be shown that the » mappings

¥40=%@=1mn-0

0<t=<1
x,(t)=(1—1t)a, + te,b, O=r=1)

define a deformation
(ay...a,)—(ay...a,_1,e,b,).
Let 440 be a determinant function in E. Then
A(x (1) ... x, (1) =((1 = 1) + &,B,1)4(ay ... a,).
Since ¢,f3,>0, it follows that

1—t+6¢,8,t>0 0=tz
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whence
A(x (.. x, ()0 (0=t<1).

This implies the linear independence of the vectors x,(f)(v=1...n) for
every t.
In the same way a deformation

(al ceeQp— 158y bn) - (al s Qpo2585-1 bn—l’sn bn)

can be constructed where ¢,_; = + 1. Continuing this way we finally ob-
tain a deformation

(ay...a,)—> (e  by...6,b,) &, =+1 (v=1..n).
To construct a deformation
(ey by...6,b,) > (by ... b,)

consider the linear transformations

o:a,—¢e,b, (v=1...n)
and
Vie,b,— b, (v=1...n).

The product of these linear transformations is given by

Yop:a,— b, (v=1...n).
By hypothesis,
det(Y o) >0 (4.78)
and by the result of sec. 4.32
detop > 0. (4.79)

Relations (4.78), and (4.79) imply that

dety > 0.
But
dety =¢,...¢,
whence
€ ...6=+1.

Thus, the number of ¢, equal to — 1 is even. Rearranging the vectors b,
(v=1...n) we can achieve that

-1 (v=1..2p)
& =
+1 (v=2p+1..n).
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Then a deformation
(eyby...&4b,) > (by...b,)

is defined by the mappings

Xpy_1(t) =—b,,_ cost + b,,sint

. (v=1..p) <<
X3,(t) =—b,,_ sint — b,,cost 0st=m.
x,(t) =b, (v=2p+1...n)

4.34. The case remains to be considered that not all the vector n-tuples
(4.77) are linearly independent. Let 40 be a determinant function. The
linear independence of the vectors a,(v=1...n) implies that

A(ay...a,) *0.

Since 4 is a continuous function, there exists a spherical neighbourhood
U,, of a, (v=1...n) such that

A(xy...x,)*£0 if x,eU,, (v=1..n).

Choose a vector a} € U,, which is not contained in the (n— 1)-dimensional
subspace generated by the vectors (b,...b,). Then the vectors (a}, b,...b,)
are linearly independent. Next, choose a vector a5 e U,, which is not con-
tained in the (n—1)-dimensional subspace generated by the vectors
(a3, b,...b,). Then the vectors (a3, ajy, bs...b,) are linearly independent.
Going on this way we finally obtain a system of n vectors a,(v=1...n)
such that every n-tuple

(ay...a,biyy...by) (i=1..n)
is linearly independent. Since a,e U, , it follows that
A(ay...a;) £0.
Hence the vectors a, (v=1...n) form a basis of E. The » mappings
x,()=(1—1t)a, + ta, 0=t

define a deformation
(ay...a,)—>(ay...a,). (4.80)

In fact, x,(£)(0<¢=<1) is contained in U,, whence
A(x () ...x, (1)) *£0 (0=t 1).

This implies the linear independence of the vectors x, (f)(v=1...n).
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By the result of sec. 4.33 there exists a deformation
(ay...a)—> (b, ...b,). (4.81)
The two deformations (4.80) and (4.81) yield a deformation

(ay...a,y—>(by...b,).

This completes the proof of the theorem in sec. 4.32.

4.35. Basis deformation in an oriented linear space. If an orientation is
given in the linear space E, the theorem of sec. 4.32 can be formulated as
follows: Two bases a, and b, (v=1...n) can be deformed into each other
if and only if they are both positive or both negative with respect to the
given orientation. In fact, the linear transformation

@ a,—b, (v=1..n)

has positive determinant if and only if the bases @, and b,(v=1...n) are
both positive or both negative.

Thus the two classes of deformable bases consist of all positive bases
and all negative bases.

4.36. Complex vector spaces. The existence of two orientations in a
real linear space is based upon the fact that every real number 430
is either positive or negative. Therefore it is not possible to distinguish
two orientations of a complex linear space. In this context the question
arises whether any two bases of a complex linear space can be deformed
into each other. It will be shown that this is indeed always possible.

Consider two bases a, and b, (v=1...n) of the complex linear space E.
As in sec. 4.33 we can assume that the vector n-tuples

(ay...apbiyq...b,)

are linearly independent for every i(1<i<n—1). It follows from the
above assumption that the coefficient " in the decomposition

by=)p"a,
is different from zero. The complex number f” can be written as
pr=re®  (r>0,0<9<2m).
Now choose a positive continuous function r(r)(0=<t < 1) such that

r(0=1, r()=r (4.82)
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and a continuous function $ (¢)(0=<7<1) such that
8(0)=0, 9(1)=9. (4.83)
Define mappings x,(7),(0<:<1) by
x,(t)=a, (v=1..n-1)

and 0<t<1. (4.84)

n—1
)=ty Ba,+r(t)eVa,.
v=1

Then the vectors x, (f)(v=1...n) are linearly independent for every ¢. In
fact, assume a relation

Y A'x,(1)=0.
v=1

Then
n—1 n—1
S Xa,+4tY Ba,+Ar()e*Pa, =0
v=1 v=1
whence
A+lp=0 (v=1...n-1)
and

Ar(t)e® =0.

Since r(#)#0 for 0= ¢<1, the last equation implies that A"=0. Hence the
first (n— 1) equations reduce to A*=0(v=1...n—1).
It follows from (4.84), (4.82) and (4.83) that

x,(0)=a, and x,(1)=0b,.
Thus the mappings (4.84) define a deformation
(ay...ap-y,a,)—>(ay...a,_4,b,).
Continuing this way we obtain after » steps a deformation of the basis
a, into the basis b,(v=1...n).
Problems

1. Let E be an oriented n-dimensional linear space and x,(v=1...n) be
a positive basis; denote by E;, the subspace generated by the vectors
(xy, ---%;...x,). Prove that the basis (xy...%;...x,) is positive with respect
to the orientation induced in E; by the vector (—1)'~'x,.
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2. Let E be an oriented vector space of dimension 2 and let ay, a, be
two linearly independent vectors. Consider the 1-dimensional subspaces
E, and E, generated by a, and a, and define orientations in E; such that
the bases a; are positive (i=1,2). Show that the intersection number of
E, and E, is + 1 if and only if the basis a,, a, of E is positive.

3. Let E be a vector space of dimension 4 and assume that e,
(v=1...4) is a basis of E. Consider the following quadruples of vectors:

I. e, +e,, e, +e,+e;3, e, +e,+ez3t+ey, ep—e,+ey
II. e, +2e;, e,+e4, e3—€;+ey, €,
IIl. e +e,—e;, e;4€4, €3+€,, €,—¢€;
1V. e;+e,—e;, e,—e4, e3+€,, €,—€;
V. e;—3es, e,tey, e,—e;—ey, €;.

a) Verify that each quadruple is a basis of E and decide for each pair
of bases if they determine the same orientation of E.

b) If for any pair of bases, the two bases determine the same orien-
tation, construct an explicit deformation.

¢) Consider E as a subspace of a 5-dimensional vector space £ and
assume that e,(v=1, ...5) is a basis of £. Extend each of the bases above
to a basis of E which determines the same orientation as the basis e,
(v=1, ..., 5). Construct the corresponding deformations explicitly.

4. Let E be an oriented vector space and let E,, E, be two oriented
subspaces such that E=E, + E,. Consider the intersection E, n E, to-
gether with the induced orientation. Given a positive basis (cy, ..., ¢,) of
E, n E, extend it to a positive basis (cy, ..., ¢y @y 41, ..., a,) of E; and to
a positive basis (¢q, ..., ¢, by 41, ..., by) of E,. Prove that then (cis s Cr
A1y -0 Ay bpiy, .., by) is @ positive basis of E.

5. Linear isotopices. Let E be an n-dimensional real vector space.
Two linear automorphisms ¢: ESE and : ESE will be called linearly
isotopic if there is a continuous map ®:Ix E—~E (I the closed unit
interval) such that ®(0, x)=¢(x), ®(1, x)=y(x) and such that for each
tel the map @,: E-E given by @,(x)=®(t, x) is a linear automorphism.

(i) Show that two automorphisms of E are linearly isotopic if and
only if their determinants have the same sign.

(ii) Let j: E-E be a linear map such that j*= —1. Show that j is
linearly isotopic to the identity map and conclude that detj=1.

6. Complex structures. A complex structure in real vector space E
is a linear transformation j: E— E satisfying j*= —1.
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(i) Show that a complex structure exists in an n-dimensional vector
space if and only if n is even.

(i) Let j be a complex structure in E where dimE=2n. Let 4 be a
determinant function. Show that for x €E (v=1...n) either

ANy oees Xy f X s X,) 20
or
A(Xy, ooy X j Xy, jX,) 2 0.

The natural orientation of (E,j) is defined to be the orientation re-
presented by a non-zero determinant function satisfying the first of these.
Conclude that the underlying real vector space of a complex space
carries a natural orientation.

(i11) Let (E,j) be a vector space with complex structure and consider
the complex structure (E, —j). Show that the natural orientations of
(E.)) and (E, —)) coincide if and only if n is even (dim E=2n).



Chapter V

Algebras

In paragraphs one and two all vector spaces are defined over a fixed, but
arbitrarily chosen field I' of characteristic 0.

§ 1. Basic properties

5.1. Definition: An algebra, A, is a vector space together with a map-
ping 4 x A— A such that the conditions (M,) and (M,) below both hold.
The image of two vectors xeA4, ye A, under this mapping is called the
product of x and y and will be denoted by xy.

The mapping A x A— A is required to satisfy:

(M) (Axy +puxp)y =A(x; ) + pu(x;y)

(M,) x(Ayy+nyy)=A(xyy) + p(xy,).

As an immediate consequence of the definition we have that
0-x=x-0=0.

Suppose B is a second algebra. Then a linear mapping ¢: A— B is called
a homomorphism (of algebras) if ¢ preserves products; i.e.,

p(xy)=0x9y. (5.1)

A homomorphism that is injective (resp. surjective, bijective) is called a
monomorphism (resp. epimorphism, isomorphism). If B=A4, ¢ is called
an endomorphism.

Note: To distinguish between mappings of vector spaces and mappings
of algebras, we reserve the word linear mapping for a mapping between
vector spaces satisfying (1.8), (1.9) and homomorphism for a linear map-
ping between algebras which satisfies (5.1).

Let A be a given algebra and let U, V be two subsets of 4. We denote
by UV, the set

UV:{xedA|x=Yuyv, ueUveV}.
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Every vector a€ 4 induces a linear mapping

p(a):A— A
defined by
ula)x =ax (5.2)

u(a) is called the multiplication operator determined by a.

An algebra A is called associative if

x(yz)=(xy)z x,y,z€4
and commutative if
Xy=yx x,yeA.

From every algebra 4 we can obtain a second algebra A°"" by defining
(x5 = yx
A°PP is called the algebra opposite to A. It is clear that if 4 is associative
then so is A°PP. If A is commutative we have A°°°=A4,
If A is an associative algebra, a subset S< A is called a system of gener-

ators of A if each vector xe 4 is a linear combination of products of ele-
ments in S,
x=Y A x X, x, €S, A""rel.
O]

A unit element (or identity) in an algebra is an element e such that for

every x
Xe=ex=x. (5.3)

If 4 has a unit element, then it is unique. In fact, if e and e’ are unit ele-
ments, we obtain from (5.3)

Let A4 be an algebra with unit element e, and ¢ be an epimorphism of
A onto a second algebra B. Then eg= ¢ e, is the unit element of B. In fact,
if ye B is arbitrary, there exists an element xe 4 such that y=¢x. This
gives
yes=0x pe,=0¢(xe,)=0o(x)=y.
In the same way it is shown that egy=y.
An algebra with unit element is called a division algebra, if to every

element a =0 there is an element a~! such that aa " '=a la=e.

5.2. Examples: 1. Consider the space L(E; E) of all linear transfor-
mations of a vector space E. Define the product of two transformations

by Yo=y.0.

10 Greub, Linear Algebra
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The relations (2.17) imply that the mapping (@, )y ¢ satisfies (M)
and (M,) and hence L(E; E) is made into an algebra. L(E; E) together
with this multiplication is called the algebra of linear transformations of E
and is denoted by A(E; E). The identity transformation 1 acts as unit
element in A(E; E). It follows from (2.14) that the algebra A (E; E) is
associative.

However, it is not commutative if dim £=2. In fact, write

E=(x)®(x) ®F

where (x,) and (x,) are the one-dimensional subspaces generated by two
linearly independent vectors x; and x,, and F is a complementary sub-
space. Define linear transformations ¢ and y by

px; =0, @x,=xy; py=0,yeF

and
le1=X2, l//X2=0; l//y:()’yEF'
Then
PYx;=¢00=0
while

Yox,=yYx=x,
whence @y =y ¢.

Suppose now that A4 is an associative algebra and consider the linear

mapping
wA— A(A4;A)
defined by
ul@)x =ax. (5.4)
Then we have that
plabyx =abx = p(a)u(b)x

whence

p(ab) = p(a)p(b).

This relation shows that u is a homomorphism of 4 into 4 (4; A).

Example 2: Let M"*" be the vector space of (nxn)-matrices for a
given integer » and define the product of two (1 x n)-matrices by formula
(3.20). Then it follows from the results of sec. 3.10 that the space M"*"
is made into an associative algebra under this multiplication with the
unit matrix J as unit element. Now consider a vector space E of dimen-
sion n with a distinguished basis e, (v=1...n). Then every linear transfor-
mation ¢ : E— E determines a matrix M (¢). The correspondence ¢p— M (¢)
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determines a linear isomorphism of 4(E; E) onto M"*". In view of sec.

3M0wehavethat ) M(0)M®©). (3.21)

This relation shows that M is an isomorphism of the algebra A (E; E)
onto the opposite algebra (M"*")°P.

Example 3: Suppose I'y =T is a subfield. Then I' is an algebra over I';.
We show first that I' is a vector space over I'y. In fact, consider the map-
ping I'y x I'->T defined by

(4, x)—> ix, Ael ,xerl.

It satisfies the relations

A+ wx=2ix+pux

Ax+y)=2ix+ 41y

(Au)x = A(ux)
Ix=x
where A, uel'y, x, yeI'. Thus I' is a vector space over I';.
Define the multiplication in I" by

(x,y)— xy (field multiplication).

Then M, and M, follow from the distribution laws for field multiplication.
Hence I' is an associative commutative algebra over I'y with 1 as unit
element.

Example 4: Let C" be the vector space of functions of a real variable ¢
which have derivatives up to order r. Defining the product by

(f)®=r10s@)
we obtain an associative and commutative algebra in which the function
f(#)=1 acts as unit element.

5.3. Subalgebras and ideals. A subalgebra, A,, of an algebra 4 is a
linear subspace which is closed under the multiplication in 4; that is, if
x and y are arbitrary elements of 4,, then xye 4,. Thus A, inherits the
structure of an algebra from A. It is clear that a subalgebra of an asso-
ciative (commutative) algebra is itself associative (commutative).

Let S be a subset of 4, and suppose that 4 is associative. Then the sub-
space Bc A generated (linearly) by elements of the form

Sy .. Sy, 5;€S

is clearly a subalgebra of A, called the subalgebra generated by S. It is
easily verified that B=(4,

where the A4, are all the subalgebras of 4 containing S.

10*
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A right (left) ideal in an algebra A is a subspace [ such that for every
xel, and every ye A, xyel(yxel). A subspace that is both a right and
left ideal is called a two-sided ideal, or simply an ideal in A. Clearly, every
right (left) ideal is a subalgebra. As an example of an ideal, consider the
subspace A2 (linearly generated by the products xy). 4% is clearly an ideal
and is called the derived algebra.

The ideal I generated by a set S is the intersection of all ideals containing
S. If A is associative, I is the subspace of A generated (linearly) by ele-

ments of the form
5,as,sa seS,acA.

In particular every single element a generates an ideal I,.. I, is called the
principal ideal generated by a.

Example 5: Suppose A is an algebra with unit element e, and let
@:T'— A be the linear mapping defined by

ol=le.

Considering I' as an algebra over itself we have that

p(A)=(Ape=(e)(ne) =D ().

Hence ¢ is a homomorphism. Moreover, if ¢ A=0, then 1e=0 whence
A=0. It follows that ¢ is a monomorphism. Consequently we may iden-
tify I' with its image under ¢@. Then I' becomes a subalgebra of 4 and
scalar multiplication coincides with algebra multiplication. In fact, if A
is any scalar, then

la=Alea)=(le)ra=@Na.

Example 6: Given an element a of an associative algebra consider
the set, N,, of all elements xe A such that ax=0. If xe N, then we have
for every ye 4

Yy a(xy)=(ax)y=0
and so xyeN,. This shows that N, is a right ideal in A. It is called the
right annihilator of a. Similarly the left annihilator of a is defined.

5.4. Factor algebras. Let A be an algebra and B be an arbitrary sub-
space of 4. Consider the canonical projection

n:A— A/B.

It will be shown that 4/B admits a multiplication such that = is a homo-
morphism if and only if B is an ideal in 4.
Assume first that there exists such a multiplication in 4/B. Then for
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every xe A, ye B, we have

n(xy)=nxny=nx0=0
whence xyeB.
Similarly it follows that yxe B and so B must be an ideal.

Conversely, assume B is an ideal. Then define the multiplication in
A/B by

xp=mn(xy) x,yeA/B (5.5)
where x and y are any representatives of X and j respectively.

It has to be shown that the above product does not depend on the
choice of x and y. Let x" and y’ be two other elements such that nx'=x
and ny'=y. Then

x'—xeB and y — yeB.
Hence we can write
x'=x+b, beB and y ' =y+c, ceB.
It follows that
x'y—xy=by+xc+bceB
and so
n(x'y) =n(xy).

The multiplication in A/B clearly satisfies (M,) and (M,) as follows

from the linearity of =. Finally, rewriting (5.5) in the form
n(xy)=nx-my

we see that 7 is a homomorphism and that the multiplication in A/B is

uniquely determined by the requirement that 7= be a homomorphism.

The vector space A/B together with the multiplication (5.5) is called the
Sfactor algebra of A with respect to the ideal B. It is clear that if A4 is
associative (commutative) then so is 4/B. If 4 has a unit element e then
é=me is the unit element of the algebra 4/B.

5.5. Homomorphisms. Suppose 4 and B are algebras and ¢:4—B is
a homomorphism. Then the kernel of ¢ is an ideal in 4. In fact, if
xeker ¢ and ye A are arbitrary we have that

p(xy)=90x@y=09y=0

whence xyeker ¢. In the same way it follows that y xeker ¢. Next con-
sider the subspace Im ¢ < B. Since for every two elements x, ye 4

px-@y=¢(xy)elme
it follows that Im ¢ is a subalgebra of B.
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Now let
@:Alkerp > B

be the induced injective linear mapping. Then we have the commutative
diagram
& AS B
nl /'q—,
Alker ¢

and since 7 is a homomorphism, it follows that

P(nx-ny)=0¢nr(xy)
=¢(xy)
= ¢(x) ¢(y)
=o(nx)@(ny).

This relation shows that @ is a homomorphism and hence a monomor-
phism. In particular, the induced mapping

13

p:Alkerp > Imeo
is an isomorphism.

Finally, assume that C is a third algebra, and let y: B—C be a homo-
morphism. Then the composition yo¢: A—C is again a homomorphism.
In fact, we have

Weo)(xy)=y(px-9y)
=VYoxyoy
=(Wo0)x-(Yoo)y.

Let ¢: A— B be any homomorphism of associative algebras and S be
a system of generators for 4. Then ¢ determines a set map ¢,:S— B by

QoX=0@Xx, xeS.
The homomorphism ¢ is completely determined by ¢,. In fact, if

X=) Ay X, x,, €S, A" el
)
is an arbitrary element we have that
px =3 A" ox, .ox,
)

- AViLLY
=) AP Q0x,, o X,
(v)
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Proposition I: Let ¢,:S— B be an arbitrary set map. Then ¢, can be
can be extended to a homomorphism ¢: A— B if and only if

YA Qo x,, ... 9ox, =0 whenever Y A"'Px, ..x, =0.(56)
™ »

Proof: 1t is clear that the above condition is necessary. Conversely,
assume that (5.6) is satisfied. Then define a mapping ¢: A— B by

@Y EP X, X, =Y QX o X, x, €S. 5.7
™) 0}
To show that ¢ is, in fact, well defined we notice that if

Viey _ Hiopt
(Z)f "xvl...xvp—(z)n Vs Vug
v "

then

Y Mol i
Y X, X, =My, Ly, =0,
) (#)

In view of (5.6)

wamvp(poxvl PO X, — an.--ﬂq(po Yuy oo Po Yy, = 0

) (n)
and so

Zévl...vp Po Xy, - PoX,, = Zr’uxmuq Qo Vuy - PoVu,-
" ”

It follows from (5.7) that
PX=QoX xeS

e(Ax+py)=iox+puey
and

e(xy)=9x @y
and hence ¢ is a homomorphism.

Now suppose {e,} is a basis for 4 and let ¢: A — B be a linear map such
that

¢(ee5) = e, 0e

for each «, f. Then ¢ is a homomorphism, as follows from the relation
o(y) =0 (X e) (X e}
= <P(§?5“’1ﬂeaeﬁ) = Egﬁ“n @ (es) ¢ (ep)
= (X0 (e) (; " o(ep) = 0 (x)0 ().
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5.6. Derivations. A linear mapping 0: 4— A of an algebra into itself is
called a derivation if
O(xy)=0xy+x-0y x,yeA. (5.8)

As an example let A be the algebra of C*-functions f:R—R and
define the mapping 0 by 8:f—f" where f’ denotes the derivative of /. Then
the elementary rules of calculus imply that 0 is a derivation.

If A has a unit element e it follows from (5.8) that

fe=0e+0e¢

whence 0e=0. A derivation is completely determined by its action on a
system of generators of A, as follows from an argument similar to that
used to prove the same result for homomorphisms. Moreover, if 6: 4— A
is a linear map such that

0 (e e5) = 0(e,) ep + e, 0(ep)

where {e,} is a basis for 4, then 0 is a derivation in 4.
For every derivation 6 we have the Leibniz formula

n

0"(x y) = Z (’r’) 0 x-0""y. (5.9)

r=0
In fact, for n=1, (5.9) coincides with (5.8). Suppose now by induction
that (5.9) holds for some n. Then

0" (xy) =00"(xy)

n n

S S Qv

r=0 r=
n

o S [ (L errrire

r=

n

=x.0n+1y _*_Z (n'::l) orx,en—r+1y+ 0n+1x.y

r=1
n+1

_ z :<n+ 1) 0 x0Ty
r
0

r=

and so the induction is closed.
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The image of a derivation 0 in A4 is of course a subspace of 4, but it is
in general not a subalgebra. Similarly, the kernel is a subalgebra, but it
is not, in general, an ideal. To see that ker 0 is a subalgebra, we notice
that for any two elements x, yeker 0

O(xy)=0xy+x0y=0
whence xyeker 0.

It follows immediately from (5.8) that a linear combination of deri-
vations 0;: A— A is again a derivation in 4. But the product of two deri-
vations 6,, 8, satisfies

(0,0:)(xy)=0,(0,x"y + x:0,y)
=0,0,xy+0,x0,y+0,x0,y+x0,0,y (5.10)
and so is, in general, not a derivation. However, the commutator
[91,02] =0, 0,—0,0,
is again a derivation, as follows at once from (5.10).

5.7. ¢-derivations. Let 4 and B be algebras and ¢:A4— B be a fixed
homomorphism. Then a linear mapping 0: A — B s called a ¢-derivation if

()(xy):f)x-(py—{—(pX'Oy x,yeA.

In particular, all derivations in A are i-derivations where 1: A — A4 denotes
the identity map.

As an example of a ¢p-derivation, let A be the algebra of C*-functions
f:R—-R and let B=R. Define the homomorphism ¢ to be the evaluation

homomorphism 0:f = £(0)
and the mapping 6 by

0:f = f(0).
Then it follows that
0(f2)=(f2) (0)
= 7' (©2(0)+ £ (0)g' (0)
=0f-pg+of-0g
and so 0 is a ¢-derivation.
More generally, if 6, is any derivation in A4, then 0=¢.0, is a ¢-
derivation. In fact,
0(xy)=@04(xy)
=@04xy+x04)
=0 xpy+ox@l,y
=0x-py+ox0y.

Similarly, if 0 is a derivation in B, then 0gz.¢ is a @-derivation.
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5.8. Antiderivations. Recall that an involution in a linear space is a
linear transformation whose square is the identity. Similarly we define an
involution w in an algebra A4 to be an endomorphism of A whose square
is the identity map. Clearly the identity map of 4 is an involution. If 4
has a unit element e it follows from sec. 5.1 that we=e.

Now let w be a fixed involution in 4. A linear transformation Q: A— A4
will be called an antiderivation with respect to w if it satisfies the relation

Qxy)=Qxy+wxQy. (5.11)

In particular, a derivation is an antiderivation with respect to the involu-
tion 1. As in the case of a derivation it is easy to show that an antideri-
vation is determined by its action on a system of generators for A and
that ker Q is a subalgebra of 4. Moreover, if 4 has a unit element e, then
Qe=0. It also follows easily that any linear combination of antideriva-
tions with respect to a fixed involution w is again an antiderivation with
respect to w.

Suppose next that Q, and Q, are antiderivations in 4 with respect to
the involutions w, and w, and assume that w,cw,=w,.w,. Then o, cw,
is again an involution. The relations

(2:2)(xy) =2 (Qx 'y + 0, x Q) = Q, Qyxy +
0 2x 2y +Qw,x Q4+ w0, xQ;Q2,y
and

(2,2)(xy)=Q(Qx y +0;xQy)=Q,Q xy +
+w, 2 x 2y +Q,0xQy+ w0, x Q2,2 y
yield

(2,92, £2,Q)(xy)=
=(2,2,+2,0)xy+ (0,2, + Qo )xQ,y+
+(Qw, T w,Q)x Q¥+ w0, x (2,2, +02,0))y. (5.12)

Now consider the following special cases:

l. wQ2,=2,w, and w, Q, =Q, w, (this is trivially true if w, = +1 and
®, = *1). Then the relation shows that Q, Q, —Q, Q, is an antiderivation
with respect to the involution w,; w,. In particular, if Q is an antiderivation
with respect to w and 0 is a derivation such that w6 =0w, then 62 —Q0
is again an antiderivation with respect to w.

2. wQ,=-Q,w;and w,Q,=-Q,w,. Then Q, Q, +Q, Q, is an anti-
derivation with respect to the involution w, w,.
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Now let 2, and Q, be two antiderivations with respect to the same
involution w such that

0wQ=—Qo (i=12).

Then it follows that Q, Q, +Q,Q, is a derivation. In particular, if Q is
any antiderivation such that
wR=-Qw
then Q? is a derivation.
Finally, let B be a second algebra, and let ¢: 4— B be a homomorphism.
Assume that w, is an involution in 4. Then a ¢-antiderivation with re-
spect to w, is a linear mapping Q: 4— B satisfying

Qxy)=Qx-oy+ow,x-Qy. (5.13)
If wg is an involution in B such that

Py =wpP
then equation (5.13) can be rewritten in the form

Qxy)=0x 0y +wgpx-Qy.

Problems

1. Let 4 be an arbitrary algebra and consider the set C(4) of elements
ae A that commute with every element in 4. Show that C(A) is a subspace
of A. If A4 is associative, prove that C(A4) is a subalgebra of 4. C(4) is
called the centre of A.

2. If A is any algebra and 6 is a derivation in A4, prove that C(A4) and
the derived algebra are stable under 6.

3. Construct an explicit example to prove that the sum of two endo-
morphisms is in general not an endomorphism.

4. Suppose ¢@:A— B is a homomorphism of algebras and let 140, 1 be
an arbitrarily chosen scalar. Prove that 1¢ is a homomorphism if and
only if the derived algebra is contained in ker ¢.

5. Let C!' and C denote respectively the algebras of continuously differ-
entiable and continuous functions f: R— R (cf. Example 4). Consider the
linear mapping

d:Ct-C

given by df=f" where f’ is the derivative of f.
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a) Prove that this is an /-derivation where i:C!—C denotes the ca-
nonical injection.
b) Show that d is surjective and construct a right inverse for d.
c) Prove that 4 cannot be extended to a derivation in the algebra C.
6. Suppose A is an associative commutative algebra and 8 is a deri-
vation in A. Prove that
OxP =pxP~1O(x).

7. Suppose that 0 is a derivation in an associative commutative algebra
A with identity e and assume that xe A is invertible; i.e.; there exists an
element x~ ! such that

Prove that x”(p=1) is invertible and that
()7t =(x71).
Denoting the inverse of x? by x~? show that for every derivation 0
O(x~P)=—px~P710(x).

8. Let L be an algebra in which the product of two elements x, y is
denoted by [ x, y]. Assume that

[x,y]+[y,x] =0 (skew symmetry)
[[x,y],2] + [ 2], x] + [[z,x],y] =0 (Jacobi identity)

Then L is called a Lie algebra.
Let Ad () be the multiplication operator in the Lie algebra L. Prove that
Ad(a) is a derivation.

9. Let A be an associative algebra with product xy. Show that the
multiplication (x, y)—[x, y] where

[(x,y]=xy—yx

makes A into a Lie algebra.
10. Let A be any algebra and consider the space D(A) of derivations
in A. Define a multiplication in D (A4) by setting

[91,92] = 61 02 - 92 01-

a) Prove that D(A4) is a Lie algebra.

b) Assume that 4 is a Lie algebra itself and consider the mapping
@:A—D(A) given by ¢:x—Adx. Show that ¢ is a homomorphism of
Lie algebras. Determine the kernel of ¢.
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11. If Lis a Lie algebra and 7 is an ideal in A, prove that the algebra
L/I is again a Lie algebra.
12. Let E be a finite dimensional vector space. Show that the mapping

®: A(E; E) » A(E*; E*)P?

given by ¢—¢* is an isomorphism of algebras.

13. Let 4 be any algebra with identity and consider the multiplication
operator i A— A(A; A).
Show that u is a monomorphism. If A=L(E; E) show that by a suitable
restriction of y a monomorphism

GL(E)— GL(L(E; E))
can be obtained.
14. Let F be an n-dimensional vector space. Show that each basis ¢;
(i=1...n) of E determines a basis ¢;;(/, j=1...n) of L(E; E) such that

(i) QijQu = 5,'1 Qi
(ii) ZQii =1.

Conversely, given n? linear transformations ;; of E satisfying i) and ii),
prove that they form a basis of L(E; E) and are induced by a basis of E.

Show that two bases e; and e; of E determine the same basis of L(E; E)
if and only if e;=4¢;, AeT.

15. Define an equivalence relation in the set of all linearly independent
n’-tuples (¢, ...¢,.), ¢ ,€ L(E; E), in the following way:

(@10 @n2) ~ (Y1 Y2)
if and only if there exists an element ye G L(E) such that

vo=xe,"t (v=1..n%.
Prove that
(@15 @) ~ (@1 ... 20,) AeD
onlyif A=1.

16. Prove that the bases of L(E; E) defined in problem 14 form an
equivalence class under the equivalence relation of problem 15. Use this
to show that every non-zero endomorphism ®: 4 (E; E)—>A(E; E) is an
inner autdmorphism; i.e., there exists a fixed linear automorphism « of F

such that .

P(p)=apa' @eA(E;E).

17. Let A be an associative algebra, and let L denote the corresponding
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Lie algebra (cf. problem 9). Show that a linear mapping 0: A—A is &
derivation in 4 only if it is a derivation in L.

18. Let £ be a finite dimensional vector space and consider the map-
ping 0,: A(E; E)— A(E; E) defined by

0.(p) =20 —o@u
Prove that 0, is a derivation. Conversely, prove that every derivation in
A(E; E) is of this form.
Hint: Use problem 14.

§ 2. Ideals

5.9. The lattice of ideals. Let 4 be an algebra, and consider the set .#
of ideals in A. We order this set by inclusion; i.e., if I, and I, are ideals
in A, then we write I, <1, if and only if I, = I,. The relation £ is clearly
a partial order in .# (cf. sec. 0.6). Now let I, and I, be ideals in A. Then
it is easily cheeked that I,+1, and I, N I, are again ideals, and are in
fact the least upper bound and the greatest lower bound of I, and I,.
Hence, the relation < induces in .# the structure of a lattice.

5.10. Nilpotentideals. Let A be an associative algebra. Then an element
ae A will be called nilpotent if for some k,

ac=0. (5.14)
The least & for which (5.14) holds is called the degree of nilpotency of a.
An ideal I will be called nilpotent if for some &,

I*=0. (5.15)
The least k for which (5.15) holds is called the degree of nilpotency of 1
and will be denoted by deg I.

5.11.* Radicals. Let 4 be an associative commutative algebra. Then the

nilpotent elements of 4 form an ideal. In fact, if x and y are nilpotent of
degree p and g respectively we have that

rtq

ﬁ

z + » . e

(/lx+/ty)”+"= <p q /yz[up+q 1),p+q lxl
{

i=0

rtq
— Z “'Yi},p+q—i

i

i=0

4 e ptq v
=Y axyPTiTi N g x P =0

i=0 i=p+1

and
(xy)P=xPyP=0.
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The ideal consisting of the nilpotent elements is called the radical of A
and will be denoted by rad A. (The definition of radical can be generalized
to the non-commutative case; the theory is then much more difficult and
belongs to the theory of rings and algebras. The reader is referred to [14]).
It is clear that

rad(rad 4) =rad 4.
The factor algebra 4/rad A contains no non-zero nilpotent elements.

To prove this assume that Xe A/rad A4 is an element such that ¥*=0 for
some k. Then x*erad A and hence the definition of rad 4 yields ! such

that = () = 0.

It follows that xerad 4 whence ¥=0. The above result can be expressed
by the formula
rad (A/rad A) = 0.
Now assume that the algebra A has dimension n. Then rad 4 is a nil-
potent ideal, and

deg(rad A) < dim(rad4) + 1 <n + 1. (5.16)

For the proof, we choose a basis e, ..., e, of rad A. Then each ¢; is nil-
potent. Let k=max (deg ¢;), and consider the ideal (rad 4)™*. An arbitrary
element in this ideal is a sum of elements of the form

kr
r

éi.e
where
ki+-+k. =kr.
In particular, for some i, k;=k and so €%'...e"=0. This shows that
(rad A)*" =0
and so rad A4 is nilpotent.

Now let s be the degree of nilpotency of rad A4, and suppose that for

some m<s,
(rad A)" = (rad A)"* ', (5.17)

Then we obtain by induction that
(rad A)" = (rad A)"*! = (rad 4)"*? =---= (rad A)* = 0
which is a contradiction. Hence (5.17) is false and so in particular

dim(rad A)" > dim(rad A)"*', m<s.
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It follows at once that s — | cannot be greater than the dimension of rad 4,
which proves (5.16).

As a corollary, we notice that for any nilpotent element xe A4, its degree
of nilpotency is less than or equal to n+1,

degx<n+1.

5.12.* Simple algebras. An algebra A is called simple if it has no proper
non-trivial ideals and if 4240. As an example consider a field I' as an
algebra over a subfield I';. Let /&0 be an ideal in I'. If x is a non-zero
element of 7, then

and it follows that
Ir=r-1<l

whence I'=1. Since I'*#0, I' is simple.

As a second example consider the algebra A (E; E) where E is a vector
space of dimension #. Suppose [ is a non-trivial ideal in 4 (E; E) and let
¢ +0 be an arbitrary element of /. Then there exists a vector ae E such
that ¢ a#0. Now define the linear transformations ¢; by

pep=0ka i,k=1..n

where ¢;(i=1---n) is a basis of E. Choose linear transformations y; such
that
Vipa=e i=1..n.

Let yeA(E; E) be arbitrary and o let be the matrix of  with respect to
the basis e;. Then

Ve = ZaI{ej = Zdi!ﬂj(pa = (.Za{'l/j(P(pi)ek
J J LJ
whence

V=Y odv;00.
L J

It follows that Y el and so I=A(E; E). Since, (clearly) A(E; E)*#+0,
A(E; E) is a simple algebra.

Theorem I: Let A be a simple commutative associative algebra. Then
A is a division algebra.

Proof: We show first that 4 has a unit element. Since 42+0, there
is an element ae A such that I,+0. Since A4 is simple, I, = 4. Thus there

i ) h the
1s an element ee A such that de—a. (5.18)
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Next we show that e =e. In fact, equation (5.18) implies that
a(e? —e)=(ae)e—ae=ae—ae=0

and so e*—e is contained in the annihilator of a, ¢ —eeN,. Since N,
is an ideal and N,# 4 it follows that N,=0 whence ¢’ =e.

Now let xeA be any element. Since a=aeel, we have I,+0 and
so I,=A. Thus we can write

X=ey for some yeA.

It follows that ex=e?y=ey=x and so e is the unit element of A.

Thus every element xe A satisfies x=x-e; i.e., xel,. In particular,
1,40 if x+0. Hence. if x#0, I, =4 and so there is an element x~'eA
such that xx '=x"'x=e¢; i.e, 4 is a division algebra.

5.13.* Totally reducible algebras. An algebra 4 is called rotally reduc-
ible if to every ideal I there is a complementary ideal I,

A=I1@l.

Every ideal 7 in a totally reducible algebra is itself a totally reducible
algebra. In fact, let /' be a complementary ideal. Then

I-I'elInl =0.
Consequently, if J is an ideal in /, we have
JlecJ and J-I'ci-I'=0

whence
J-AcJ.

It follows that J is an ideal in 4. Let J' be a complementary ideal in A,
A=J@J.
Intersecting with J and observing that J<=7 we obtain (cf. sec. 1.13)
I=J®InJg).

It follows that 7 is again totally reducible.

An algebra, A, is called irreducible if it cannot be written as the direct
sum of two non-trivial ideals.

5.14.* Semisimple algebras. In this section 4 will denote an associative
commutative algebra. A will be called semisimple if it is totally reducible
and if for every non-zero, I, ideal 1% 0.

11 Greub. Linear Algebra
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Proposition I: 1f A is totally reducible, then A is the direct sum of its
radical and a semisimple ideal. The square of the radical is zero.
Proof: Let B denote a complementary ideal for rad 4,

A=radA®B.

Since B~ A/rad A4 it follows that B contains no non-zero nilpotent ele-
ments and so B?+0. It follows from sec. (5.13) that B is totally reducible
and hence B is semisimple.

To show that the square of rad 4 is zero, let k be the degree of nil-
potency of rad A, (rad 4)*=0. Then (rad 4)*~ ' is an ideal in rad 4, and
so there exists a complementary ideal J,

(rad A" '@®J =rad 4.
Now we have the relations
(rad 4*7')> = rad A* = 0
Je(rad A" =0
Jl e (radA) ' nJ=0.
These relations yield
(rad A)mx(2k=D = 0,

But (rad A)*~'+0 and so
(rad 4)* =0.

Corollary: A is semisimple if and only if 4 is totally reducible and
rad 4=0.

Problems

1. Suppose that I, I, are ideals in an algebra A. Prove that
(I, + )/ = LN 1).

2. Show that the algebra C' defined in Example 4, § I, has no nilpotent
elements=0.
3. Consider the set S of step functions f: [0,1]— R. Show that the oper-
ations
(f+e)()=f(1)+¢g()
(Af) (1) = Af (1)
(Fo)(1) = £ (02(1)



§ 3. Change of coefficient field of a vector space 163

make S into a commutative associative algebra with identity. (A function
S:[0,1]>R is called a step function if there exists a decomposition of the
unit interval,

O=to<t; <-<t,=1
such that f'is constant in every interval t,_, <t<t;(i=1...n).

4. Show that the algebra constructed in problem 3 has zero divisors,
but no non-zero nilpotent elements.

5. Show that the algebra S of problem 3 has ideals which are not
principal. Let (a, b))=[0,1] be any open interval, and let f be a step func-
tion such that /' (#)=0 if and only if a<z<b. Prove that the ideal gener-
ated by f is precisely the subset of functions g such that g(¢#)=0 for
a<t<b.

6. Let I be any principal ideal in S (cf. problem 3). Show that there
exists a complementary principal ideal I,. Conversely, if S=I®I, is a
decomposition of S into ideals, prove that I and I, are principal.

7. Let E be an algebra with identity. Show that if E is totally reducible,
then every ideal is principal.

8. Let E be an infinite dimensional vector space. Show that the linear
transformations of £ whose kernels have finite codimension form an
ideal. Conclude that 4 (E; E) is not simple.

Hint: See problem 11, chap. 11, § 6 and problem 8, chap. I, § 4.

§ 3. Change of coefficient field of a vector space

5.15. Vector space over a subfield. Let £ be a vector space over a field
I' and let 4 be a subfield of I'. The vector space structure of E involves
a mapping

I' X E-E

satisfying the conditions (11.1), (11.2) and (11.3) of sec. 1.1. The restriction
of this mapping to 4 x E again satisfies these conditions, and so it deter-
mines on E the structure of a vector space over 4. A subspace (factor
space) of E considered as a A-vector space, will be called a A-subspace
(4-factor space). Similarly we refer to I'-subspaces and I'-factor spaces.
Clearly every I'-subspace (factor space) is a A-subspace (4-factor space).

Now let F be a second vector space over I and suppose that ¢: E—F
is a I'-linear mapping; i.e.,

p(Ax+puy)=reox+poy x,yeEApuel.

Then ¢ is a A-linear mapping if £ and F are considered as A-vector spaces.

11*
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As an example, consider the field I" as a 1-dimensional vector space
over itself. Then (cf. sec. 5.2 Example 3) I" is an algebra over 4.

5.16. Dimensions. To distinguish between the dimension of E over I
and 4 we shall write dim;E and dim,E. Suppose now that I' is finite
dimensional over 4. Assume further that the dimension of E over I is
finite. It will be shown that

dim, E =dim;E-dim,I".

Let e;(i=1...n) be a basis of E over I' and consider the I'-subspace E;
of E generated by e;. Then there is a I'-isomorphism ¢:I'Z, E;. But ¢ is
also a 4-isomorphism and hence it follows that

dim E, = dim,I,  i=1..n. (5.21)

Since the 4-vector space E is the direct sum of the A-vector spaces E; we
obtain from (5.21) that

dimy E = n-dim,I' = dimp E-dim,I".

As an example let E be a complex vector space of dimension #. Then,
since dimg C=2, E, considered as a real vector space, has dimension 2x.
If z,(v=1...n) is a basis of the complex vector space E then the vectors
z,, iz,(v=1...n) form a basis of E considered as a real vector space.

5.17. Algebras over subfields. Again let 4 be a subfield of I and let 4
be an algebra over I'. Then 4 may be considered as a vector space over 4,
and it is clear that A4, together with its A-vector space structure, is an
algebra over 4. We (in a way similar to the case of vector spaces) distin-
guish between A-subalgebras, 4-homomorphisms and I'-subalgebras, I'-
homomorphisms. Clearly every I'-subalgebra, (I'-homomorphism) is a
A-subalgebra, (4-homomorphism).

5.18. Extension fields as subalgebras of A,(E; E). Let £ be a non-
trivial vector space over I and 4<TI be a subfield. Then E can be con-
sidered as a vector space over 4. Denote by 4,(E: E) the algebra (over 4)
of A-linear transformations of E. Define a mapping
by &: > Ay(E; E)

é()x =ax, ael,xeE (5.22)

where ax is the ordinary scalar multiplication defined between I' and E.
Then
P(af)x =(af)x =o(fx)=®(x)®(B)x
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and
Pla+Pf)x=>@a+pP)x=ax+fx
=0 (x)x + P(f)x
=(@(x) + () x
whence
P(x+ f)=2(2) + 2(B)
and

P(f)=@(x)®(B)  «perl.

Since 4T, it follows that @ is a A-homomorphism. Moreover, & is in-
jective. In fact, @ (x)=0 implies that «x=0 for every xe E whence a=0.

Since @ is a monomorphism we may identify I" with the A-subalgebra
Im @ of A,(E; E).

Conversely, let E be a vector space over a field 4 and assume that
I'cA4(E; E) is a field containing the identity. We may identify 4 with
the subalgebra of I' consisting of elements of the form -1, A€ 4, the iden-
tification map being given by 21— 1. Then we have 4<T;i.e., 4 is a sub-
field of I'.

Now define a mapping I' x E—E by

(0,x)> px gpel, xeE. (5.23)

Then we have the relations
ey (x) = x)
p(x+y)=0x+oy
(p+¥)x=0px+¢x
IX=Xx x,yeE; o, yel,

and hence E is made into a vector space over I'.

The restriction of the mapping (5.23) to A gives the original structure
of E as a vector space over 4 while the mapping @ restricted to 4 reduces
to the canonical injection of 4 into A, (E; E).

5.19. Linear transformations over extension fields. Let A<TI be a sub-
field and £ be a vector space over I'. Then we have shown that A (E; E)c
A4(E; E). Now we shall prove the more precise

Proposition: A(E; E) is the subalgebra of A,(E; E) consisting of
those 4-linear transformations which commute with every A-linear trans-
formation of the form

X D AX, ael.
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Proof: Let peAr(E; E). Then

o(xx)=o0¢x xeEael
and so
Poby=1=E,00. (5.24)

Conversely, if (5.24) holds, then by inverting the above argument we ob-
tain that pe A (E; E).

Corollary: Suppose E is a vector space over A and I'c A (E; E) is a field
such that 1el. Then a transformation @eA,(E; E) is contained in
Ar(E; E) if and only if it commutes with every 4-linear transformation
inT.

Problems

1. Suppose A<=T is a subfield of I" such that I" has finite dimension
over 4. Suppose further that 4 = I is a subalgebra such that 4 = 4. Prove
that 4 is a subfield of I'.

2. Show that if A<T is a subfield, and I' has finite dimension over 4,
then there are no non-trivial derivations in the A-algebra I'.

3. A complex number z is called algebraic if it satisfies an equation of
the form

Y o,z"=0  (x,rational)
where not all the coeflicients «, are zero. Prove that the algebraic numbers

are a subfield, A, of C and that 4 has infinite dimension over the rationals.
Prove that there are no non-trivial derivations in A.



Chapter VI

Gradations and homology

In this chapter all vector spaces are defined over a fixed, but arbitrarily
chosen field I' of characteristic 0.

§ 1. G-graded vector spaces

6.1. Definition. Let £ be a vector space and G be an abelian group.
Suppose that a direct decomposition
E= )Y E, 6.1)

ael

is given and that to every subspace E, an element k(«) of G is assigned
such that the mapping a—k () is injective. Then E is called a G-graded
vector space. G is called the group of degrees for E. The vectors of E, are
called homogeneous of degree k () and we shall write

degx = k(a), xe€E,.

In particular, the zero vector is homogeneous of every degree. If the
mapping a—k(«) is bijective we may use the group G as index set in the
decomposition (6.1). Then formula (6.1) reads

E= Y E,

ke G
where E, denotes the subspace of the homogeneous elements of degree k.

If G=12, E will be called simply a graded vector space. Suppose that
E is a vector space with direct decomposition

E=Y E (keZ).
k=0

Then by setting E, =0(k< — 1) we make E into a graded space, and when-

ever we refer to the graded space E=) E,, we shall mean this particular
k=0

gradation. A gradation of E such that E,=0, k< —1, is called a positive

gradation.
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Now let £ be a G-graded space, E=) E,, and consider a subspace
Fc E such that ke
F=)Y FnE.
keG
Then a G-gradation is induced in F by assigning the degree & to the vec-
tors of Fn E,. Ftogether with its induced gradation is called a G-graded
subspace of E.

Suppose next that E* is a family of G-graded spaces indexed by a set 1
and let £ be the direct sum of the E*. Then a G-gradation is induced in
E by

E= Y E, where E,= Y E;.

keG iel

This follows from the relation

E=YE'=Y YE=Y Y E=YE.
iel Ael keG keG Ael keG
6.2. Linear mappings of G-graded spaces. Let E and F be two G-graded
spaces and let ¢ : E— F be a linear map. The map ¢ is called homogeneous
if there exists a fixed element ke G such that

@0E;cF,,, jeG (6.2)

k 1s called the degree of the homogeneous mapping ¢. The kernel of a
homogeneous mapping is a graded subspace of E. In fact, if ¢;: E—» E; and
o;:F—F; denote the projection operators in £ and F induced by the
gradations of E and F it follows from (6.2) that

Ok+jo @ =@ogy. (6.3)

Relation (6.3) implies that ker ¢ is stable under the projection operators
¢; and hence ker ¢ is a G-graded subspace of E. Similarly, the image of ¢
is a G-graded subspace of F.

Now let £ be a G-graded vector space, F be an arbitrary vector space
(without gradation) and suppose that ¢: E— F is a linear map of E onto F
such that ker ¢ is a graded subspace of E. Then there is a uniquely deter-
mined G-gradation in F such that ¢ is homogeneous of degree zero. The
G-gradation of F is given explicitly by

F=Y F (6.4)
jeG
where
F;=¢(E)).
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To show that (6.4) defines a G-gradation in F, we notice first that since
@ is onto,
F=9E=¢Y E;=XF,.

J J

To prove that the decomposition (6.4) is direct assume that

Y. y;=0 where y;eF,.
j

Since F;=¢ E; every y; can be written in the form y,=¢ x;, x;eE;. 1t fol-
lows that ¢ ) x;=0 whence
J

Y x;ekerg.
J
Since ker ¢ is a graded subspace of E we obtain
x;eker for each j

whence y;=¢x;=0. Thus the decomposition (6.4) is direct and hence it
defines a G-gradation in F. Clearly, the mapping ¢ is homogeneous of
degree zero with respect to the induced gradation.

Finally, it is clear that any G-gradation of F such that ¢ is homogene-
ous of degree zero must assign to the elements of F; the degree /. In view
of the decomposition (6.4) it follows that this G-gradation is uniquely
determined by the requirement that ¢ be homogeneous of degree zero.

This result implies in particular that there is a unique G-gradation de-
termined in the factor space of E with respect to a G-graded subspace
such that the canonical projection is homogeneous of degree zero. Such
a factor space, together with its G-gradation, is called a G-graded factor
space of E.

Now let E= Y E, and F= ) F, betwo G-graded spaces, and suppose
that keG keG

@:E->F

is a linear mapping homogeneous of degree /. Denote by ¢, the restriction
of ¢ to E,

O Ey— Feyy.
Then clearly
P=73 ¢
keG

It follows that ¢ is injective (surjective, bijective) if and only if each ¢, is
injective (surjective, bijective).
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6.3. Gradations with respect to several groups. Suppose that 1:G—-G’
is a homomorphism of G into another abelian group G’. Then a G-
gradation of F induces a G'-gradation of E by

E:%Eﬁ where Ej = (;=pEa' (6.5

To prove this we note first that

E=ZXE,
B

since E, = E.,. The directness of the decomposition (6.5) follows from the
fact that every space Ej is a sum of certain subspaces E, and that the
decomposition E=Y E, is direct.

A G p-gradation is a gradation with respect to the group G,=G®...@G.
—
If G=12Z, we refer simply to a p-gradation of E. Given a G p-gradation in
E consider the homomorphism
1:6,-G
given by
t(ky, k) =ky+--+k,.

The induced (simple) G-gradation of E is given by

E=YF, F,= Y E,®-®E,. (6.6)
j kit tkp=j
The G-gradation (6.6) of E is called the (simple) G-gradation induced by
the given G p-gradation.
Finally, suppose E is a vector space, and assume that

E=Y E, E=Y F (6.7)

JjeG kel

define G and H-gradations in E. Then the gradations will be called com-
patible if
E=YE;nF,.
ik

If the two gradations given by (6.7) are compatible, they determine a
(G® H)-gradation in E by the assignment

(k)= E;n F,.
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Conversely, suppose a (G@® H )-gradation in E is given
E=YE,,.
Ji k
Then compatible G and H-gradations of E are defined by
E= 3 E;, E;j=3 E;,

jeG keH
and

E=Y F, F=Y E,,.

keH JjeG

Moreover, the (G® H)-gradation of E determined by these G and H-
gradations is given by

Ej,k=Ejan ]EG,kGH.
6.4. The Poincaré series. A gradation E=) E, of a vector space E is
k

called almost finite if the dimension of every space E, is finite. To every
almost finite positive gradation we assign the formal series

Pe(t) =Y dimE,-¢*.
k
P.(?) is called the Poincaré series of the graded space E. If the dimension
of E is finite, then Pg(¢) is a polynomial and
P;(1) = dimE.

The direct sum of two almost finite positively graded spaces E and F
is again an almost finite positively graded space, and its Poincaré series
is given by

Pror(t) = Pe(t) + Pp(1).

Two almost finite positively graded spaces E and F are connected by a
homogeneous linear isomorphism of degree 0 if and only if Py= P;. In
fact, suppose

¢o:E->F

is such a homogeneous linear isomorphism of degree 0. Writing
[ee)
¢ = Z Pr
K=0
(cf. sec. 6.2) we obtain that each ¢, is a linear isomorphism,

o Ey :Fk.
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Hence
dimE, = dim F, (k=0,1,..) (6.8)
and so
P, = Pp.

Conversely, assume that P;= P.. Then (6.8) must hold, and thus there
are linear isomorphisms

0 E, > F,. (6.9)

Since E= Z E, we can construct the linear mapping
k=0 -
¢=Y @ E>F
k=0

which is clearly homogeneous of degree zero. Moreover, in view of sec.
(6.2) it follows from (6.9) that ¢ is a linear isomorphism.

6.5. Dual G-graded spaces. Suppose E= Y E,and F= ) F, aretwo G-
graded vector spaces, and assume that ~ *<¢ ke@

¢:ExF->T

is a bilinear function. Then we say that ¢ respects the G-gradations of E
and F if
@(E,x F)=0 (6.10)

for each pair of distinct degrees, k =.
Every bilinear function ¢: Ex F—I which respects G-gradations deter-
mines bilinear functions ¢,: E, x F,—TI (keG) by

o|E, x F, = ¢, keG. (6.11)

Conversely, if any bilinear functions ¢,: E, x F,—»I are given, then a
unique bilinear function ¢:Ex F—I" which respects G-gradations is de-
termined by (6.10) and (6.11).

In particular, it follows that ¢ is non-degenerate if and only if each ¢,
is non-degenerate. Thus a scalar product which respects G-gradations
determines a scalar product between each pair (£, F,), and conversely if
a scalar product is defined between each pair (E,, F;) then the given scalar
product can be extended in a unique way to a G-gradation-respecting scalar
product between E and F. E and F, together with a G-gradation-respecting
scalar product, will be called dual G-graded spaces.

Now suppose that £ and F are dual almost finite G-graded spaces.
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Then E, and F, are dual, and so
dim E, = dim F, keG.
In particular, if G=Z and the gradations of E and F are positive, we have

Py =P;.

Problems

1. Let ¢:E—F be an injective linear mapping. Assume that F is a G-
graded vector space and that Im ¢ is a G-graded subspace of F. Prove
that there is a unique G-gradation in E so that ¢ becomes homogeneous
of degree zero.

2. Prove that every G-graded subspace of a G-graded vector space has
a complementary G-graded subspace.

3. Let E, F be G-graded vector spaces and suppose that E,cE, F,cF
are G-graded subspaces. Let ¢: E—F be a linear mapping homogeneous
of degree k. Assume that ¢ can be restricted to E,, F, to obtain a linear
mapping ¢,: E;—F, and an induced mapping

3:E|E, > F|F,.

Prove that ¢, and ¢ are homogeneous of degree k.

4. If @, E, F are as in problem 3, prove that if ¢ has a left (right) in-
verse, then a left (right) homogeneous inverse of ¢ must exist. What are
the possible degrees of such a homogeneous left (right) inverse mapping?

5. Let Ey, E,, E5 be G-graded vector spaces. Suppose that ¢: E, > E,
and ¥ : E,;— E; are linear mappings, homogeneous of degree k and / re-
spectively. Assume that s can be factored over ¢. Prove that y can be
factored over ¢ with a homogeneous linear mapping y:E,—F; and
determine the degree of y.

Hint: See problem 5, chap. 11, § 1.

6. Let E, E* and F, F* be two pairs of dual G-graded vector spaces.

Assume that
@:E—>F and ¢@*: E*¥« F*

are dual linear mappings. If ¢ is homogeneous of degree k, prove that ¢*
is homogeneous of degree k.

7. Let E be an almost finite graded space. Suppose that E} and E are
G-graded spaces each of which is dual to the G-graded space E. Construct
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a homogeneous linear isomorphism of degree zero

E

L

* %
¢ E, 2
such that

Cpy*,xy =(y* x) y*eEY, xeE.

8. Let E, E* be a pair of almost finite dual G-graded spaces. Let F be
a G-graded subspace of E. Prove that F' is a G-graded subspace of E*
and that (F*)*=F.

9. Suppose E, E*, F are as in problem 8. Let F; be a complementary
G-graded subspace for F in E (cf. problem 2). Prove that

E*=F'@F;

and that F, F;" and F,, F* are two pairs of dual G-graded spaces.

10. Suppose E, E* and F, F* are two pairs of almost finite dual G-
graded vector spaces, and let ¢: E— F be a linear mapping homogeneous
of degree k. Prove that ¢* exists.

11. Suppose E, E* is a pair of almost finite dual G-graded vector
spaces. Let {x,} be a basis of E consisting of the set union of bases for the
homogeneous subspaces of E. Prove that a dual basis {x**} in E* exists.

12. Let Eand F be two G-graded vector spaces and ¢: E— F be a homo-
geneous linear mapping of degree k. Assume further that a homomorphism
w:G— H is given. Prove that ¢ is homogeneous of degree w (k) with er-
spect to the induced H-gradation.

§ 2. G-graded algebras

6.6. G-graded algebras. Let A4 be an algebra and suppose that a G-
gradation A= Y A, is defined in the vector space A. Then 4 is called a

keG
G-graded algebra if for every two homogeneous elements x and y, xy is
homogeneous, and
deg(xy) =degx + degy. (6.12)

Suppose that 4= ) A, is a graded algebra with identity element e.
keG

‘Then e is homogeneous of degree 0. In fact, writing

e= Y e  ecd,

keG
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we obtain for each xe 4 that

xX=xe= ) xe.
keG

Hence if x is homogeneous of degree /

Y XeE Ay

keG
whence

xe,=0 for k+0
and so
Xey=X. (6.13)

Since (6.13) holds for each homogeneous vector x it follows that e, is
a right identity for A, whence

e=-¢eey=e¢,.

Thus ee 4, and so it is homogeneous of degree 0.

It is clear that every subalgebra of A that is simultaneously a G-graded
subspace, is a G-graded algebra. Such subalgebras are called G-graded
subalgebras.

Now suppose that /= 4 is a G-graded ideal. Then the factor algebra
A/I has a natural G-gradation as a linear space (cf. sec. 6.2) such that the
canonical projection n: 4— A/I is homogeneous of degree zero. Hence if
X and y are any two homogeneous elements in A/I we have

Xy=xy=mn(xy)
and so xj is homogeneous. Moreover,
deg(xj) = deg(x y) = degx + degy = deg x + degy.

Consequently, A/l is a G-graded algebra.

More generally, if Bis a second algebra without gradation, and ¢: 4—B
is an epimorphism whose kernel is a G-graded ideal in A, then the induced
G-gradation (cf. sec. 6.2) makes B into a G-graded algebra.

Now let 4 and B be G-graded algebras, and assume that p: A—Bis a
homogeneous homomorphism of degree k. Then ker ¢ is a G-graded
ideal in 4 and Im ¢ is a G-graded subalgebra of B.

Suppose next that 4 is a G-graded algebra, and t:G—»G’ is a homo-
morphism, G’ being a second abelian group. Then it is easily checked
that the induced G'-gradation of 4 makes A4 into a G'-graded algebra.
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The reader should also verify that if E is simultaneously a G- and an
H-graded algebra such that the gradations are compatible, then the in-
duced (G® H)-gradation of 4 makes A into a (G@® H)-graded algebra.

A graded algebra 4 is called anticommutative if for every two homo-
geneous elements x and y

xy=(- yx.
If x and y are two homogeneous elements in an associative anticommu-

tative graded algebra such that deg x - deg y is even, then x and y com-
mute, and so we obtain the binomial formula

n

(x+y)= Z <7> xtynTE,

i=

1) deg x deg y

In every graded algebra 4= Y A, an involution w is defined by
k

ox=(-1}x, xeAd,. (6.14)

In fact, if xe A, and ye 4, are two homogeneous elements we have

o(xy)=(=1)"xy=(-1x(-y=0xowy
and so w preserves products. It follows immediately from (6.14) that
w?=1and so w is an involution. w will be called the canonical involution
of the graded algebra A.
A homogeneous antiderivation with respect to the canonical involution
(6.14) will simply be called an antiderivation in the graded algebra A4. It
satisfies the relation

Qxy)=Qx-y+ (=1 x-Qy, xed,yed.

If Q, and Q, are antiderivations of odd degree then Q,Q2,+Q,Q, is a
derivation. If Q is an antiderivation of odd degree and 0 is a derivation
then Q0 —0Q is an antiderivation (cf. sec. 5.8).

Now assume that A4 is an associative anticommutative graded algebra
and let he 4 be a fixed element of odd (even) degree. Then, if Q is a
homogeneous antiderivation, u(4)Q is a homogeneous derivation (anti-
derivation) and if 6 is a homogeneous derivation, p(#)0 is a homogeneous
antiderivation (derivation) as is easily checked.

Problems

1. Let A be a G-graded algebra and suppose x is an invertible element
homogeneous of degree k (cf. problem 7, chap. V, § 1). Prove that x~*
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is homogeneous and calculate the degree. Conclude that if 4 is a positively
graded algebra, then k=0.

2. Suppose that 4 is a graded algebra without zero divisors. Prove that
every invertible element is homogeneous of degree zero.

3. Let E, F be G-graded vector spaces. Show that the vector space
L (E; F) generated by the homogeneous linear mappings ¢@:E—F is a
subspace of L(E; F). Define a natural G-gradation in this subspace such
that an element pe L (E; F) is homogeneous if and only if it is a homo-
geneous linear mapping.

4. Prove that the G-graded space L;(E; E) (E is a G-graded vector
space) is a subalgebra of A(E; E). Prove that the G-gradation makes
Lg(E; E) into a G-graded algebra (which is denoted by 4 (E; E)).

5. Let E be a positively graded vector space. Show that an injective
(surjective) linear mapping @€ L,(E; E) has degree £0(=0). Conclude
that a homogeneous linear automorphism of E has degree zero.

6. Let A be a positively graded algebra. Show that the subset 4, of 4
consisting of the linear combinations of homogeneous elements of degree
=k is an ideal.

7. Let E, E* be a pair of almost finite dual G-graded vector spaces.
Construct an isomorphism of algebras:

®: Ag(E;E) > Ag(E*; EX)°™.

Hint: See problem 12, chap. V, § .
Show that there is a natural G-gradation in A;(E*; E*)°*® such that ¢
is homogeneous of degree zero.

8. Consider the G-graded space L;(E; F) (E is a G-graded vector
space). Assign a new gradation to L (E; E) by setting

—

degop = —dego

whenever e lLg(E; E) is a homogeneous element. Show that with this
new gradation Lg(E; E) is again a G-graded space and Ag(E; E) is a
G-graded algebra. To avoid confusion, we denote these objects by
L¢(E; E)and 4G (E; E).
Prove that the scalar product between L (E; E) and L (E; E) defined
by
oy = tr (o)

makes these spaces into dual G-graded vector spaces.

12 Greub. Linear Algebra
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9. Let A=) A, be a graded algebra and consider the linear mapping
p

0:A— A defined by
O0x=px xeA

p*

Show that 0 is a derivation.

§ 3.* Differential spaces and differential algebras

6.7. Differential spaces. A differential operator 0 in a vector space E is
a linear mapping d: E— E such that ¢*=0. The vectors of ker ¢ =Z(E)
are called cycles and the vectors of Im &= B(FE) are called boundaries. 1t
follows from 0?=0 that B(E)<=Z(E). The factor space

H(E) = Z(E)/B(E)

is called the homology space of E with respect to the differential operator
0. A vector space E together with a fixed differential operator ¢y, is called
a differential space.

A linear mapping of a differential space (E, d;) into a differential space
(F, 0) is called a homomorphism (of differential spaces) if

aFo(pz(/)an. (615)

It follows from (6.15) that ¢ maps Z(E) into Z(F) and B(E) into B(F).
Hence a linear mapping ¢4: H(E)— H(F) is induced by ¢. If ¢ is an
isomorphism of differential spaces and ¢~ ' is the linear inverse iso-
morphism, then by applying ¢ ! on the left and right of (6.15) we obtain

¢ olp=0popp”!
and so ¢~ ! is an isomorphism of differential spaces as well.
If  is a homomorphism of (F, &) into a third differential space (G, d¢)
we have clearly

(llfo(P)# =Ypo@y.

In particular, if ¢ is an isomorphism of £ onto Fand ¢~
isomorphism we have

' is the inverse

((P_])#O(P# =lg =1
and

QD#O(@“)# =1y =1.

Consequently, @, is an isomorphism of H(E) onto H(F).
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6.8. The exact triangle. An exact sequence of differential spaces is an
exact sequence

0-FSEL G0 (6.16)

where (F, 0p), (E, dg) and (G, d;) are differential spaces, and ¢,  are
homomorphisms.

Suppose we are given an exact sequence of differential spaces then the
sequence

H(F)Y HE)Y H(G)

is exact at H(E). In fact, clearly, Y, 0o, =0 and so Im¢e, ckery,.
Conversely, let fekery, and choose an element ye Z(E) which repre-
sents . Then, since ¢, f=0,

Vy=73Cq2,, 2,€G.

Since ¥ is surjective, there is an element y, e E such that yy, =z,. It
follows that
Y(y—Cey)=Vy—0g¥y =yYy— 0z, =0.

Hence, by exactness at E,
y—0py=0X for some xeF.

Applying ¢, we obtain
Cpox=0gy=0
whence ¢ (Cpx)=0.
Since ¢ is injective, this implies that ¢ x=0; ie, xe Z(F). Thus x
represents an element oae H(F). It follows from the definitions that

ppoa=p
and so felme,,.
It should be observed that the induced homology sequence is not
short exact. However, there is a linear map, y: H(G)— H(F) which makes

the triangle os
H(F)5 H(E)

N Jus (6.17)
H(G)

exact. It is defined as follows: Let ye H(G) and let ze Z(G) be a repre-
sentative of 7. Choose yveE such that yy=z. Then

Y(Cpy)=Cy=036z=0

12
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and so there is an element xe F such that

Qx=Cpy.
Since
P(Cpx)=Cppx=C3r=0

and since ¢ is injective, it follows that ¢.x=0 and so x represents an
element o of H(F). It is straightforward to check that « is independent
of all choices and so a linear map y: H(G)— H(F) is defined by y(;)=2.
It is not difficult to verify that this linear map makes the triangle (6.17)
exact at H(G) and H(F). y is called the connecting homomorphism for
the short exact sequence (6.16).

6.9. Dual differential spaces. Suppose (£, 0) is a differential space and
consider the dual space E* = L(E). Let ¢* he the dual map of . Then for
all xeE, x*e E* we have

{O*¥0* x*,x) =<{x*,00x) = (x*,00 =0
whence 0* 0*x*=0 i.e.,
(6*)? =0.

Thus (E*, ¢*) is again a differential space. It is called the dual differential
space.

The vectors of ker 0¥ =Z (E*) are called cocycles (for E) and the vectors
of B(E*) are called coboundaries (for E). The factor space

H(E*) = Z(E*)/B(E*)

is called the cohomology space for E.

It will now be shown that the scalar product between E and E* deter-
mines a scalar product between the homology and cohomology spaces.
In view of sec.2.26 and 2.28 we have the relations

Z(E*)= B(E)*, Z(E)= B(E** (6.18)
B(E*)= Z(E)*, B(E)= Z(E*". (6.19)

We can now construct a scalar product between H(E) and H(E*).
Consider the restriction of the scalar product between E and E* to
Z(E)x Z(E¥),

Z(E) x Z(E*)-T.

Then since, in view of (6.18) and (6.19),
Z(E*) n Z(E)=B(E) n Z(E) = B(E)
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and
Z(E)* n Z(E*) = B(E*) n Z(E*) = B(E"),
the equation

F* 2 =% N ’__'

defines a scalar product between H(E) and H(E*) (cf. sec. 2.23).
Finally, suppose (E, dg), (E*, 0g) and (F, 0p), (F*, Cp.) are two pairs
of dual differential spaces. Let
¢o:E>F

be a homomorphism of differential spaces, with dual map ¢*: E*« F*
Then dualizing (6.15) we obtain

@ 0F = 050"

and so ¢* is a homomorphism of differential spaces. It is clear that the
induced mappings
¢4:H(E)— H(F)
and
(¢*)s: H(E*) < H(F*)

are again dual with respect to the induced scalar products; i.e.,

((P*)# = (o #)*

6.10. G-graded differential spaces. Let E be a G-graded space, E= ) E,

peG
and consider a differential operator ¢ in £ that is homogeneous of some
degree k. Then a gradation is induced in Z(E) and B(E) by

Z(E)y= Y Z,(E) and B(E)= Y B,(E)
peG peG
where Z,(E)=Z(E)n E, and B,(E)=B(E)n E, (cf. sec. 6.2).
Now consider the canonical projection

n:Z(E)- H(E).

Since 7 is an onto map and the kernel of x is a graded subspace of Z(E),
a G-gradation is induced in the homology space H(E) by

H(E)= Y H,(E) where H,(E)=nZ,(E).

preG
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Now consider the subspaces Z,(E)cZ(E) and B,(E)cB(E). The
factor space Z,(E)/B,(E) is called the p-th homology space of the graded
differential space E. It is canonically isomorphic to the space H,(E). In
fact, if 7, denotes the restriction of 7 to the spaces Z,(E), H,(E), then

n,:Z,(E)—> H,(E)
is an onto map and the kernel of 7, is given by
kern,=Z,(E)n kern =Z,(E) n B(E)= B,(E).

Hence, 7, induces a linear isomorphism of Z,(E)/B,(E) onto H,(E).
If E is a graded space and dim H,(E) is finite we write

dimH,(E) = b, :

b, is called the p-th Berti number of the graded differential space (E, 0).
If E is an almost finite positively graded space, then clearly, so is H(E).
The Poincaré series for H(E) is given by

Py = Z b, .
6.11. Dual G-graded differential spaces. Suppose (E= Y E,, d;) and
keG
(E*=Y E;,dF)is a pair of dual G-graded differential spaces. Then if oy
keG

is homogeneous of degree /, we have that ¢ E;c E;,, and hence
<0;-?}’;k,xj>:<y?<,asxj>:0 )”'?‘EE?’XJEEJ
unless y*e E} . It follows that

Eyl € m El E:k—l
Jj¥i—1
and so 0y is homogeneous of degree —/.
Now consider the induced G-gradations in the homology spaces

H(E) = ;Hk(E)’ H(E*) = ;HR(E*)'

The induced scalar product is given by
Z*eZ(EY)

zeZ(E). (6.22)

<T[E* Z*’T[EZ> = <Z*’Z>

Since
np Z(E¥)> H(E*) and ng;:Z(E)— H(E)
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are homogeneous of degree zero, it follows that the scalar product (6.22)
respects the gradations. Hence H(E) and H(E*) are again dual G-graded
vector spaces. In particular, if G =Z, the p-th homology and cohomology
spaces of E are dual. If H,(E) has finite dimension we obtain that

dim H,(E*) = dim H,(E) = b, .

6.12. Differential algebras. Suppose that 4 is an algebra and that 0 is
a differential operator in the vector space 4. Assume further that an in-
volution w of the algebra A is given such that dw+wd=0, and that 0 is
an antiderivation with respect to w; i.e., that

o(xy)=0x-y+wx-0y. (6.23)

Then (4, 0) is called a differential algebra.

It follows from (6.23) that the subspace Z(4) is a subalgebra of A.
Further, the subspace B(A4) is an ideal in the algebra Z(4). In fact, if
and dxeB(A) we have

O(xy)=0x-y  yeZ(4)
and
d(wy x)=w’y-dx+0(wy)x=y0x yeZ(A)

whence 0x - yeB(4) and y - dxe B(A).

Hence, a multiplication is induced in the homology space H(A). The
space H(A) together with this multiplication is called the homology alge-
bra of the differential algebra (4, d).

The multiplication in H(A) is given by

nzymzy, =n(zy2,) z1,2,€Z(A)

where n: Z (A)— H (A) denotes the canonical projection. If 4 is associative
(commutative) then so is H(A).

Let (4, d,) and (B, 0p) be differential algebras. Then a homomorphism
@:A— B is called a homomorphism of differential algebras if

90,4=20p¢.
It follows easily that the induced mapping ¢, : H(4)- H(B) is a homo-
morphism of homology algebras.

Suppose now A is a graded algebra and that  and w are both homo-
geneous, w of degree zero. The A is called a graded differential algebra.
Consider the induced gradation in H(A). Since the canonical projection
n:Z(A)->H(A) is a homogeneous map of degree zero it follows that
H(A) is a graded algebra.
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If 4 is an anticommutative graded algebra, then so is H(A) as follows
from the fact that n is a homogeneous epimorphism of degree zero.

Problems

1. Let (E, 8,), (F, 0,) be two differential spaces and define the differ-
ential operator ¢ in EQF by
0=0,®0,.
Prove that
H(E®F) = H(E)®H(F).

2. Given a differential space (£, 8), consider a differential subspace;
i.e., a subspace £, that is stable under 0. Assume that g: E— E| is a linear
mapping such that

) ed=27de¢
ii)oy=y yekE
iil) ox —xeB(E) xeZ(E).

Prove that the induced mapping

¢+ H(E)— H(E,)
1s a linear isomorphism.
3. Let(E, ¢) be a differential space. A homotopy operator in E is a linear
transformation /#: E— E such that

ho+0h=1.

Show that a homotopy operator exists in £ if and only if H(E)=0.

4. Let (E, d;) and (F, dF) be two differential spaces and let ¢, be
homomorphisms of differential spaces. Prove that ¢, =, if and only if
there exists a linear mapping 4: E— F such that

hog+ 0ph=¢ —

h is called a homotopy operator connecting ¢ and . Show that problem 3
is a special case of problem 4.
5. Let d,, 0, be differential operators in E which commute, ¢,8,=20,0,.
a) Prove that @, ¢, is a differential operator in E.
b) Let B,, B,, B be the boundaries with respect to 0,, d, and &, d,.
Prove that
0,(By)=0,(By)=B.
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¢) Let Z,, Z,, Z be the cycles with respect to é,, d, and @,3d,. Show
that Z, +Z, < Z. Establish natural linear isomorphisms

Z/Z,5B,nZ, and Z|Z,5B,n Z,.
d) Establish a natural linear isomorphism
(By N Z2,)/0,(Z,)~ (B, 1 Z,)]0,(Z,)

and then show that each of these spaces is linearly isomorphic to
Z[(Z, + Z,). _

e) Show that d, induces a differential operator in Z,. Let H, denote
the corresponding homology space. Assume now that Z=Z,+Z, and
prove that [, can be identified with a subspace of the homology space
H,=Z/B,. State and prove a similar result for 0,.

f) Show that the results a) to €) remain true if 6,0,= —0,0,.

6. Let 0,, 0, be differential operators in E such that §,0,= —0,7;.

a) Prove that 0, + 0, and @, —d, are differential operators in E.

b) With the notation of problem 5, assume that

B=B,nNB, and Z=2Z, +2Z,.

Prove that the homology space of each of the differential operators in a)
is linearly isomorphic to

Z, 0 Z,/(Z,N B, + Z,N B,).

(This is essentially the Kiinneth theorem of sec. 2.10 volume II.)

7. Lefschetz formula. Let E= ) E, be a finite dimensional graded
i=0
differential space and assume that ¢ is homogeneous of degree —!1
(=0 in E;). Let ¢: E-E be a homomorphism of differential spaces,
homogeneous of degree zero. Denote the restrictions of ¢ (respectively
®4) to E, (respectively H,(E)) by ¢, (respectively (¢,),). Prove the
Lefschetz formula

M=

ZO(—I)”tr(go#)p——- (—1ytro,.

0

il

p p

Conclude that

p

(— P dimH,(E)= ) (—1)’dimE, (EP)
0 p=0

(Euler-Poincaré formula). Express this formula in terms of B, and B, g,.
The number given in (EP), is called the Euler-Poincaré characteristic
of E.



Chapter VII

Inner product spaces

In this chapter all vector spaces are assumed to be real vector spaces

§ 1. The inner product

7.1. Definition. An inner product in a real vector space E is a bilinear
function (,) having the following properties:

1. Symmetry: (x, y)=(», x).

2. Positive definiteness: (x, x)=0, and (x, x)=0 only for the vector
x=0.

A vector space in which an inner product is defined is called an
inner product space. An inner product space of finite dimension is also

called a FEuclidean space.
The norm |x| of a vector xe FE is defined as the positive square-root

¥l = /(x,x).

A unit vector is a vector with the norm 1. The set of all unit vectors is
called the unit-sphere.
It follows from the bilinearity and symmetry of the inner product that

Ix 4+ y1? = x>+ 2(x, ) + |y
whence
(x, ) = 3(x + yI? = x> = [y]?).

This equation shows that the inner product can be expressed in terms of
the norm.

The restriction of the bilinear function (,) to a subspace E; = E has
again properties 1 and 2 and hence every subspace of an inner product
space is itself an inner product space.

The bilinear function (,) is non-degenerate. In fact, assume that (a, y)=0
for a fixed vector aeE and every vector ye E. Setting y=a we obtain
(a, a)=0 whence a=0. It follows that an inner product space is dual to
itself.
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7.2. Examples. 1. In the real number-space R" the standard inner pro-
duct is defined by
(. 3) =28,
where
x=("...& and y=(@'...n").

2. Let E be an n-dimensional real vector space and x,(v=1...n) bea
basis of E. Then an inner product can be defined by

() =2&n",

where

x=Y&x,, y=yn'x,.

3. Consider the space C of all continuous functions f in the interval
0<t=1 and define the inner product by

(f,g)=ff(t>g<z)dt.

7.3. Orthogonality. Two vectors xe E and yeE are said to be ortho-
gonal if (x, y)=0. The definiteness implies that only the zero-vector is
orthogonal to itself. A system of p vectors x,#0 in which any two vectors
x, and x, (v+u) are orthogonal, is linearly independent. In fact, the re-
lation

YA x, =0
yields
HP(xpx,)=0 (u=1...p)
whence
#=0 (u=1...p).

Two subspaces E, < E and E,cFE are called orthogonal, denoted as
E, LE,, if any two vectors x,€ E; and x,€E, are orthogonal.

7.4. The Schwarz-inequality. Let x and y be two arbitrary vectors of
the inner product space E. Then the Schwarz-inequality asserts that

(x, ) = Ix[2yl? (7.1

and that equality holds if and only if the vectors are linearly dependent.
To prove this consider the function

Ix + Ay|?
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of the real variable 2. The definiteness of the inner product implies that
x+Ay?20 (—oo<i<oo).
Expanding the norm we obtain
22 y]2 4+ 24(x,y) + x| = 0.

Hence the discriminant of the above quadratic expression must be nega-
tive or zero,

(x, 1) < IxI2 )%
Now assume that equality holds in (7.1). Then the discriminant of
the quadratic equation

Ay +24(x,y) + |x]* =0 (7.2
is zero.*) Hence equation (7.2) has a real solution Z,. It follows that

|)'0y +x12 =0’
whence
Aoy +x=0.

Thus, the vectors x and y are linearly dependent.
7.5. Angles. Given two vectors x#0 and y =0, the Schwarz-inequality
implies that

LG
Ix] ¥l
Consequently, there exists exactly one real number w (0<w £ r) such that
cosw = (.5 : (7.3)
x| |1

The number w is called the angle between the vectors x and y. The sym-
metry of the inner product implies that the angle is symmetric with respect
to x and y. If the vectors x and y are orthogonal, it follows that cos w =0,

i1
whence w = 5

Now assume that the vectors x and y are linearly dependent, y=Ax,

Then A {+1 if 1>0

cosw=— = .
Al 1=1 if 2<0

*) Without loss of generality we may assume that y + 0.
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and hence

0 if >0
w =
n if A<0.

With the help of (7.3) the equation
Ix = yI? = 1x1> = 2(x, ) + Iy
can be written in the form
[x — yI? = x> + [yI* = 2|x] |yl cos w.

This formula is known as the cosine-theorem. If the vectors x and y are
orthogonal, the cosine-theorem reduces to the Pythagorean theorem

Ix — yI2 = Ix]* + [y

7.6. The triangle-inequality. It follows from the Schwarz-inequality
that

x4+ p12 = X2 + 2(x, p) + 912 S xI? + 20x| 1yl + [y = (Ix] + )%,

whence
lx + y| < x| + [y]. (7.4)

Relation (7.4) is called the triangle-inequality. To discuss the equality-
sign we may exclude the trivial case y=0. It will be shown that equality
holds in (7.4) if and only if

x=A4y, 4>0.
The equation

Ix + yl = Ix| + |yl
implies that

IXI% +2(x,p) + Iy12 = Ix12 + 2 x| [yl + 1y1%,
whence
(x,y) = Ix| |yl (7.5)

Thus, the vectors x and y must be linearly dependent,
x=21y. (7.6)

Equations (7.5) and (7.6) yield A=|4|, whence 1=0.
Conversely, assume that x=Ay, where A=0. Then

Ix + ¥l =1(A+ D)yl =A@+ DIyl = Ayl + 1yl = Ix] + [yl
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Given three vectors x, y, z, the triangle-inequality can be written in the
form = 3 < x = 2| + |z = . .7
As a generalization of (7.7), we prove the Ptolemy-inequality

lx = yllzl S |y = zlIx] + [z = x[|y]. (7.8)

Relation (7.8) is trivial if one of the three vectors is zero. Hence we
may assume that x=+0, y+0 and z40. Define the vectors x’, ' and z’ by

X y z

x’ = —, y, = - s Z, [
|x|* ly|? |z|?
Then
Cppo L2y 1 eyl
IXI2 IxPIvl o P IxP Iy

Applying the inequality (7.7) to the vectors x’, ¥ and z’ we obtain

’

|x

b=yl _ly—zl lz=x1
NI

whence (7.8).

7.7. The Riesz theorem. Let E be an inner product space of dimension
n and consider the space L{E) of linear functions. Then the spaces L(E)
and E are dual with respect to the bilinear function defined by

(fsx) = f(x).

On the other hand, E is dual to itself with respect to the inner product.
Hence Corollary I to PropositionI sec.2.33 implies that there is a
linear isomorphism a— f, of E onto L(FE) such that

fa(y) =(a,y).
In other words, every linear function fin E can be written in the form
f () =(a,y)

and the vector g€ E is uniquely determined by f (Riesz theorem).

Problems
1. For x= (&', &%) and y=(n", %) in R? show that the bilinear function
(X,_}’) — élrll _ 52,71 _ 61'72 + 462'72

satisfies the properties listed in sec. 7.1.
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2. Consider the space S of all infinite sequences x= (&, &,, ...) such
that
Yél< .

v

Show that Y &,7, converges and that the bilinear function (x, y)=3 &7,

is an inner product.
3. Consider three distinct vectors x#0, y#+0 and z40. Prove that the

equation
Ix = yllzl =1y = zl1x] + |z = x| |yl

holds if and only if the four points x, y, z, 0 are contained on a circle such
that the pairs x, y and z, O separate each other.

4. Consider two inner product spaces F, and E,. Prove that an inner
product is defined in the direct sum E, ®E, by

(x5 %2, (V15 ¥2)) = (x5 ¥1) + (X2, ¥2) x, V1€E;, Xx,3,y,€E,;.

5. Given a subspace E, of a finite dimensional inner product space E,
consider the factor space E/E,. Prove that every equivalence class con-
tains exactly one vector which is orthogonal to E|.

§ 2. Orthonormal bases

7.8. Definition. Let £ be an n-dimensional inner product space and
x,(v=1...n) be a basis of E. Then the bilinear function (,) determines
a symmetric matrix

g, =(x,x) (u=1..n). (7.9)
The inner product of two vectors
x=Y¢&x, and y=3n"x,

can be written as

(x,y) = Z & (x,,x,) = Z g & (7.10)

and hence it appears as a bilinear form with the coeflicient-matrix g, .
The basis x, (v=1...n) is called orthonormal, if the vectors x,(v=1...n)
are mutually orthogonal and have the norm 1,

(Xy5 %) = Oy (7.11)
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Then formula (7.10) reduces to
(x,y)=Y.&n (7.12)

and in the case y=x

x| =3.¢"¢".
The substitution x=x, in (7.12) yields

(x,x)=¢&  (u=1...n). (7.13)

Now assume that x+0, and denote by 0, the angle between the vectors x
and x, (u=1...n). Formulas (7.3) and (7.13) imply that

"

cosfl, = < (u=1..n). (7.14)
x|

If x is a unit-vector (7.14) reduces to
cosf, = & (u=1...n). (7.15)

These equations show that the components of a unit-vector x relative to
an orthonormal basis are equal to the cosines of the angles between x and
the basisvectors x,,.

7.9. The Schmidt-orthogonalization. In this section it will be shown that
an orthonormal basis can be constructed in every inner product space of
finite dimension. Let a,(v=1...n) be an arbitrary basis of E. Starting out
from this basis a new basis b, (v=1...n) will be constructed whose vectors
are mutually orthogonal. Let

b,=a,.
Then put
b,=a, + b,

and determine the scalar A such that (b, b,)=0. This yields
(a2, by) + A(by, by) = 0.

Since b, %0, this equation can be solved with respect to 4. The vector b,

thus obtained is different from zero because otherwise a, and a, would

be linearly dependent.
To obtain b, set

’ by=a3;+ub; +vb,

and determine the scalars u and v such that

(by,b3)=0 and (b,,b;)=0.
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This yields

(03, bl) + #(bl’ bl) = 0
and

(613, bZ) + v(bZ’ b2) =0.

Since b, #+0 and b, +0, these equations can be solved with respect to u
and v. The linear independence of the vectors a,, a,, a; implies that 55 +0.
Continuing this way we finally obtain a system of n vectors b,+0(v=1...n)

such that
(bub)=0 ().

It follows from the criterion in sec. 7.3, that the vectors b, are linearly
independent and hence they form a basis of E. Consequently the vectors

e, = (v=1..n)

form an orthonormal basis.
7.10. Orthogonal transformations. Consider two orthogonal bases x,
and x,(v=1...n) of E. Denote by o the matrix of the basis-transformation

xv-)x-v’
=)0 x,. (7.16)
u

The relations
(x,,x,)=9,, and (x,%,)=90,,
imply that
;a&aﬁ =0,,. (7.17)

This equation shows that the product of the matrix («}) and the transposed
matrix is equal to the unit-matrix. In other words, the transposed matrix
coincides with the inverse matrix. A matrix of this kind is called orthogonal.

Hence, two orthonormal bases are related by an orthogonal matrix.
Conversely, given an orthonormal basis x,(v=1...n) and an orthogonal
n x n-matrix (o), the basis x, defined by (7.16) is again orthonormal.

7.11. Orthogonal complement. Let £ be an inner product space (of
finite or infinite dimension) and E, be a subspace of E. Denote by E; the
set of all vectors which are orthogonal to E,. Obviously, E{" is again a
subspace of E and the intersection E, n E; consists of the zero-vector
only. E7 is called the orthogonal complement of E,. If E has finite dimen-
sion, then we have that

dimE, + dim E{ = dimE

13 Greub. Linear Algebra
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and hence £, n E; = 0 implies that
E=E ®E;. (7.18)

Select an orthonormal basis y,(u=1...m) of E,. Given a vector xe E
and a vector

y=221"y,
n
of E, consider the difference
z=x—y.
Then
(Z’yu) = (x,y#) - (y’yu) = (X’yu) - '1"-

This equation shows that z is contained in £ if and only if
n=(xy) (u=1..m).
We thus obtain the decomposition

x=p+h (7.19)
where
p=Y(xy)y, and h=x—p.

"

The vector p is called the orthogonal projection of x onto E;.
Passing over to the norm in the decomposition (7.19) we obtain the
relation
Ix|2 = |pl* + [hI*. (7.20)

Formula (7.20) yields Bessel’s-inequality
x| = |pl
showing that the norm of the projection never exceeds the norm of x. The
equality holds if and only if 2=0, i.e. if and only if xe E,. The number
|A] 1s called the distance of x from the subspace E;.
Problems
1. Starting from the basis
a, =(1,0,1) a,=(2,1,-3) a;=(—1,1,0)

of the number-space R* construct an orthonormal basis by the Schmidt-
orthogonalization process.
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2. Let E be an inner product space and consider E as dual to itself.
Prove that the orthonormal bases are precisely the bases which are dual
to themselves.

3. Given an inner product space F and a subspace E,; of finite dimen-
sion consider a decomposition

X =x;+ X, x,€E,
and the projection
x=p+h  peE, heE]f.
Prove that
Ix2| 2 A

and that equality is assumed only if x;=p and x,=4h.

4. Let C be the space of all continuous functions in the interval 0=¢<1
with the inner product defined as in sec. 7.2. If C' denotes the subspace
of all continuously differentiable functions, show that (C')*=0.

5. Consider a subspace E; of E. Assume an orthogonal decomposition

E,=F &G, F, 1G,.
Establish the relations

Ff=Ef®G,,Ef LG, and Gy =E{®F,E{ LF,.

6. Let F? be the space of all polynomials of degree <2. Define the
inner product of two polynomials as follows:

1
.0 = [ PO .
-1
The vectors 1, ¢, ¢? form a basis in F>. Orthogonalize and orthonormalize

this basis. Generalize the result for the case of the space F" of polynomials
of degree <n—1.

§ 3. Normed determinant functions

7.12. Definition. Let E be an n-dimensional inner product space and
Ao %0 be a determinant function in E. Since E is dual to itself we have
in view of (4.21)

do(xyy..x)do(yy .. y) =adet(x,y;))  x,€E,y,€E

where « is a real constant. Setting x;=y,=e; where ¢; is an orthonormal
13*
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basis we obtain
a=Ady(e;...e,)}° (7.21)

and so the constant o is positive. Now define a determinant function 4
by

R (7.22)
Ja
Then we have
A(xy...x)A(yy ... y,) =det(x,y;). (7.23)

A determinant function in an inner product space which satisfies (7.23)
is called a normed determinant function. It follows from (7.22) that there
are precisely two normed determinant functions 4 and —4 in E.

Now assume that an orientation is defined in E. Then one of the func-
tions 4 and — A represents the orientation. Consequently, in an oriented
inner product space there exists exactly one normed determinant function
representing the given orientation.

7.13. Angles in an oriented plane. With the help of a normed deter-
minant-function it is possible to attach a sign to the angle between two
vectors of a 2-dimensional oriented inner product space. Consider the
normed determinant function 4 which represents the given orientation.
Then the identity (7.23) yields

IXI2191% = (x,9)* = 4(x, p)*. (7.24)
Now assume that x#0 and y +0. Dividing (7.24) by |x|?|y|* we obtain the

relation s )
(x.9)° | A(up)

X2 P

Consequently, there exists exactly one real number 0 mod 27 such that

A >
cosé)z—x—— and sin0=—(x—y)

. (7.25)
Ix] 1yl |x| 1yl

This number is called the oriented angle between x and y.

If the orientation is changed, 4 has to be replaced by —4, and hence 0
changes into —0.

Furthermore it follows from (7.25) that 6 changes sign if the vectors
x and y are interchanged and that

0(x, —y)=0(x,y)+7n mod2n,



§ 3. Normed determinant functions 197

7.14. The Gram determinant. Given p vectors x,(v=1...p) in an inner
product space E, the Gram determinant G(x,...x,) is defined by

(x1,%1) ... (%4, %)
G(xy...x,)=det| : : : (7.26)
(xp’ xl) (xp’ xp)
It will be shown that
G(xy...x,)20 (7.27)

and that equality holds if and only if the vectors (x,...x,) are linearly
dependent. In the case p=2 (7.27) reduces to the Schwarz-inequality.
To prove (7.27), assume first that the vectors x,(v=1...p) are linearly
dependent. Then the rows of the matrix (7.26) are also linearly dependent
whence
G(x;...x,)=0.

If the vectors x,(v=1...p) are linearly independent, they generate a
p-dimensional subspace E, of E. E| is again an inner product space. De-
note by 4, a normed determinant function in E,. Then it follows from
(7.23) that

G(xy...x,) =4y (xy...x,)%.

The linear independence of the vectors x,(v=1...p) implies that

4, (xy...x,)+0, whence
G(xg...x,)>0.

7.15. The volume of a parallelepiped. Let p linearly independent vectors
a,(v=1...p) be given in E. The set

x=Y2ra, O0ZA2=1 (v=1..p) (7.28)

is called the p-dimensional parallelepiped spanned by the vectors a,
(v=1...p). The volume ¥ (a,...a,) of the parallelepiped is defined by

V(ay...a,)=14,(a,...a,)l, (7.29)

where 4, is a normed determinant function in the subspace generated by
the vectors a, (v=1...p).
In view of the identity (7.23) formula (7.29) can be written as

<(a1,a1) ...(al,ap)>
V(ay...a,)’ =det| : :

(@pay)..(a,a,)

(7.30)
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In the case p=2 the above formula yields
V(apaz)z = la,|*|a,|® — (‘11,02)2 = |a,|*|a,|*sin? 0, (7.31)

where 0 denotes the angle between a, and a,. Taking the square-root on
both sides of (7.31), we obtain the well-known formula for the area of a
arallelogram: .
paratieloe V(ay,a;) = lay la;] sin0)
Going back to the general case, select an integer i (1 <i<p) and de-
compose g; in the form
a; =y &a,+h;, where (h,a)=0 (v=*i). (7.32)

vEi
Then (7.29) can be written as
V(ay...a,)=|4y(ay...a;_, hja;54...a,)l.
Employing the identity (7.23) and observing that (h;, a,)=0(v+i) we
obtain ¥)
(ay,ay)...(4y,d)...(ay, a,)

V(ay...a,)? = det| (dndy) ...(dnd) ... (dd,) |(hihy). (7.33)

(ap ay)... (4, d)...(ap a,)

The determinant in this equation represents the square of the volume of
the (p —1)-dimensional parallelepiped generated by the vectors (a; ...4;...a,).
We thus obtain the formula

Viay...a,) =V(ay...d;...a,) |k (1=i<p)

showing that the volume V(a,...a,) is the product of the volume
V(ay...d;...a,) of the i"" “base” and the corresponding height.

7.16. The cross product. Let £ be an oriented 3-dimensional Euclidean
space and 4 be the normed determinant function which represents the
orientation. Given two vectors xe E and ye E consider the linear function

defined b
S Y f(2)=4(x,,72). (1.34)
In view of the Riesz-theorem there exists precisely one vector ue E such
that
f(2)=(u,2). (7.35)

*) The symbol d; indicates that the vector a; is deleted.
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The vector u is called the cross product of x and y and is denoted by x x y.
Relations (7.34) and (7.35) yield

(x x y,z)=4(x,y,z). (7.36)

It follows from the linearity of 4 in x and y that the cross product is
distributive

(Axp +pux) x y=2Ax; Xy +px; xy

XX (Ayg+py)=2x X y; +px x y,

and hence it defines an algebra in E. The reader should observe that the
cross product depends on the orientation of E. If the orientation is re-
versed then the cross product changes its sign.

From the skew symmetry of 4 we obtain that

XXy=—pXX.
Setting z=x in (7.36) we obtain that

(x x y,x)=0.
Similarly it follows that
(xxy,y)=0

and so the cross product is orthogonal to both factors.

It will now be shown that x x y+0 if and only if x and y are linearly
independent. In fact, if y=Ax, it follows immediately from the skew
symmetry that x x y=0. Conversely, assume that the vectors x and y are
linearly independent. Then choose a vector ze E such that the vectors
X, y, z form a basis of E. It follows from (7.36) that

(x x y,z2)=4(x,y,2)* 0
whence x X y=+0.
Formula (7.36) yields for z=xxy

A(x,y,x x y)=|x x y|?. (7.37)

If x and y are linearly independent it follows from (7.37) that 4 (x, y,
xXy)>0 and so the basis x, y, x X y is positive with respect to the given
orientation.

Finally the identity

(g X x5,y X y2) = (xp,¥1) (X2, 52) = (X1, ¥2) (x2, 1) (7.38)

will be proved. We may assume that the vectors x,, x, are linearly inde-
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pendent because otherwise both sides of (7.38) are zero. Multiplying the

relations
A(xl,xz,x3) = (x; X X2,X3)
and

A1 y2,¥3) =1 X V2. )3)
we obtain in view of (7.23)
(x1 % X3, X3) (3 % ¥, »3) = det(x;, p;).
Setting y; =x, X x, and expanding the determinant on the right hand side

by the last row we obtain that

(g X X3, x3)(¥y X ypxy X Xp) =
(x x X2=X3)[(X1a)’1)(xz,)’z)'“(xbyz)(xz’)’l)]- (7.39)

Since x; and x, are linearly independent we have that x; x x,+0 and
hence x; can be chosen such that (x; X x,, x3)%0. Hence formula (7.39)
implies (7.38).

Formula (7.38) yields for x; =y, =x and x,=y,=y

Ix % yI2 = Ix2{y12 = (x,»)* (7.40)
If 0(0<0 <) denotes the angle between x and y we can rewrite (7.40) in
the form )

[x x y| =|x||y|sin0 x+0,y+0.
Now we establish the triple identity

Xx(yxz)=(xz)y—(x,y)z (7.41)

In fact, let ue E be arbitrary. Then formulae (7.36) and (7.38) yield
(x x (yxz)u)=A(x,y x z,u)=— A(y X z, X, u)

—(yxz,xxu)=—(px)(zu)+ (v u)l(zXx)
=(=(nx)z+(z,%) y,u).

Since ueE is arbitrary, (7.41) follows. From (7.41) we obtain the Jacobi
identity
X(yxz)+yx(zxx)+zx(xxy=0.

Finally note that if ¢, ¢,, e; is a positive orthonormal basis of E we
have the relations

ey X e, =¢€3, €,Xe3=¢, €3Xe =¢€,.
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Problems

1. Given a vector a+0 determine the locus of all vectors x such that
x —a is orthogonal to x+a.

2. Prove that the cross product defines a Lie-algebra in a 3-dimensional
inner product space (cf. problem &, Chap. V, § 1).

3. Let e be a given unit vector of an n-dimensional inner product space
E and E| be the orthogonal complement of e. Show that the distance of
a vector xe E from the subspace E, is given by

d=|(x,e).

4. Prove that the area of the parallelogram generated by the vectors x,
and x, is given by

A=2s(s—a)(s— b)(s —¢),

where

a=|x{, b=|x,], c=|x;—x4, s=%(a+b+c).

5. Let a0 and b be two given vectors of an oriented 3-space. Prove
that the equation x x a=» has a solution if and only if (a, b)=0. If this
condition is satisfied and x, is a particular solution, show that the general
solution is xo,+ Aa.

6. Consider an oriented inner product space of dimension 2. Given two
positive orthonormal bases (e,, e,) and (é,, é,), prove that

€, =e,COoSW — €,sinw
€, =-¢e,siInw+ e,Cosw.

where o is the oriented angle between e, and é,.

7. Let a; and a, be two linearly independent vectors of an oriented
Euclidean 3-space and F be the plane generated by a, and a,. Introduce
an orientation in F such that the basis a,, a, is positive. Prove that the
angle between two vectors

x=¢ay +6202 and y='11‘11 +112a2

is determined by the equations

Z(avsau)évrlu 1.2 £2 1
Ty . ¢ —=¢n
cos@=""— —  andsinf="1_>" g xa)(—n<0<m).
x| [yl x| [yl
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8. Given an orthonormal basis e,(v=1, 2, 3) in the 3-space, define
linear transformations ¢, by

p,x=xxe, (v=1273).
Prove that
Yo =—21.

9. Let 4 be a determinant function in the plane. Prove the identity

(x, x)) A (x5, x3) + (X, x5) A (x5, X)) + (X, x3) A(x;, x,) =0 x;eE. xeE.

10. Let ¢; (i=1. 2, 3) be unit vectors in an oriented plane and denote
by O, the oriented angle determined by ¢; and ¢; (i<,). Prove the

formulae . .
cos®,; =cos@,, cos @, ; —sin O, sin O,

sin @, ; =sin O, cos O, ; + cosO,, sin O, ;.

I1. Let x, y, z be three vectors of a plane such that x and y are linearly
independent and that x+y+2z=0.

a) Prove that the ordered pairs x, y; y, z and z, x represent the same
orientation. Then show that

0(x,y)+0(y,2) + 0(z,x)=2n

where the angles refer to the above orientation.
b) Prove that
0(_)’, - X) + O(Za - y) + g(x’ - Z) =T.

What is the geometric significance of the two above relations?
12. Given p vectors x, ..., x, prove the inequality

G(xpsonnnXp) S X412 60020 I, 17

Then derive Hadamard’s inequality for a determinant

k=1

* n n

. . 2 2 2

det | : : = Z @yl z lazl”... Z [@ul”
k=1 k=1

§ 4. Duality in an inner product space

7.18. The isomorphism 7. Let E be an inner product space of dimension
n and let E* be a vector space which is dual to E with respect to a scalar
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product {, >. Since E* and E are both dual to E it follows from sec. 2.33
that there is a linear isomorphism 7: E— E* such that

{x,yy =(x,y) x,yeE. (7.42)

With the aid of this isomorphism we can introduce a positive definite
inner product in E* given by

(x*,y*) = (z~ ' x*, 171 y*). (7.43)
Now introduce a scalar product in Ex E* by
x, x*y = {x*, x> (7.44)
Then it follows from (7.42) and (7.44) that

tx, ) =(63) = (%) = Ty, x) = {1y

This relation shows that the dual mapping t*:E*«< E coincides with
and so 7 is dual to itself.
Let e,, e*'(v=1...n) be a pair of dual bases of E and E* and consider
the matrices
g, =(e,,e;) and g"* = (e*,e*). (7.45)

It follows from the symmetry of the inner product that the matrices (7.45)
are symmetric. On the other hand, the linear isomorphism t: E— E* de-
termines an n X n-matrix o, by

v

Te, =Y o, e,

v

Taking the inner product with e, yields

aiu = <T € eu> = (e}., eu) = glu

and hence we can write

te, =Y g et (7.46)
m
A similar argument shows that
e =Y gte,. (7.47)
M

From (7.46) and (7.47) we obtain that
28,8 =9;
I

and hence the matrices (7.45) are inverse to each other.
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If
x=Y¢e, (7.48)
A

is an arbitrary vector of E we can write
Tx =Y & e*h (7.49)

The numbers &, are called the covariant components of x with respect to
the basis e, (=1...n). It follows from (7.48) that

Ei=K1x,e;) =L1e€;,x) = Z<T epe = zg}.v &

whence

&= 8nt. (7.50)

We finally note that the covariant components of a vector xe E are its
inner products with the basis vectors. In fact, from (7.48) and (7.50) we
obtain that

(x’ eV) = ;il(eb ev) = ;givél = ng}. fl = év .

If the basis e, (v=1...n) is orthonormal we have that g;,=§,, and hence
formulae (7.46) simplify to ;
Te, = e**,

It follows that t maps every orthonormal basis of F into the dual basis.
Moreover, the equations (7.50) reduce in the case of an orthonormal basis

to fz = fi-

Problems

1. Let ¢;(i=1...n) be a basis of E consisting of unit vectors. Given a
vector xe E write
x=p;+h

where p; is the orthogonal projection of x onto the subspace defined by
(x, ¢,)=0. Show that
[h| = |&] i=1...n

where the &, are the covariant components of x with respect to the basis e;.
2. Let E, E* be a dual pair of finite dimensional vector spaces and con-
sider a linear isomorphism 7: E- E*. Find necessary and sufficient con-
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ditions such that the bilinear function defined by

(x,y)=<tx,y>  x,y€E

be a positive definite inner product.

§ 5. Normed vector spaces

7.19. Norm-functions. Let F be a real linear space of finite or infinite
dimension. A norm-function in E is a real-valued function || | having the
following properties:

N;:||x|| =0 for every x€E, and ||x]] =0 only if x =0.
Nyptllx + I < lxl+ [yl
Ny:flAx] = [A]-|x] .

A linear space in which a norm-function is defined is called a normed
linear space. The distance of two vectors x and y of a normed linear space

is defined b
s celined by 0(x,y) =lx — yl.

N;, N, and N; imply respectively

o(x,y)>0 if x=*=y
0(y) S o(x,2) + (e y) (triangle inequality)
e(x,y)=e(y,x).

Hence ¢ is a metric in E and so it defines a topology in E, called the norm
topology. 1t follows from N, and N, that the linear operations are con-
tinuous in this topology and so E becomes a topological vector space.
7.20. Examples. 1. Every inner product space is a normed linear space
with the norm defined by _
Ixll = /(x, ).

2. Let C be the linear space of all continuous functions fin the interval
0<¢<1. Then a norm is defined in C by

Ifl = [max Lf (I

Conditions N; and N, are obviously satisfied. To prove N, observe
that
f@O+e@I=If O+ 1gOIIfI+ g, O0=st=1)

whence
If+el 200+ llel.
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3. Consider an n-dimensional (real or complex) linear space £ and let
x,(v=1...n) be a basis of E. Define the norm of a vector

x=Y&x,
Ixll = > 1€

7.21. Bounded linear transformations. A linear transformation ¢: E—E
of a normed space is called bounded if there exists a number M such that

by

lexl <M|x||  xeE. (7.51)

It is easily verified that a linear transformation is bounded if and only if
it is continuous. It follows from N, and N, that a linear combination of
bounded transformations is again bounded. Hence, the set B(E; E) of all
bounded linear transformations is a subspace of L(E; E).

Let ¢: E—>E be a bounded linear transformation. Then the set | x||,
[ x||=1 is bounded. Its least upper bound will be denoted by | ¢,

el = ”shlp o x|l (7.52)
x|[=1
It follows from (7.52) that

lexll = lell-lIxl xeE.

Now it will be shown that the function ¢— | ¢| thus obtained is indeed a
norm-function in B(E; E). Conditions N, and Nj; are obviously satisfied.
To prove N, let ¢ and ¥ be two bounded linear transformations. Then

Il +¥)xll =llex +¢xll < lox| + ¥ xi (el + W) x| xeE

and consequently, L ul < ol + 101

The norm-function {¢| has the following additional property:

ool < ¥l lel. (7.53)
In fact,
Io@)xl S l-lexl < 1¥l-llel- x| xeE
whence (7.53).

7.22. Normed spaces of finite dimension. Suppose now that Eis a norm-
ed vector space of finite dimension. Then it will be shown that the norm
topology of E coincides with the natural topology (cf. sec. 1.22). Since
the linear operations are continuous it has only to be shown that a linear
function is continuous in the norm topology. Let e, (v=1, ..., n) be a basis
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of E. Then we have in view of N, and N; that
Ixt=1x&el <Y1 e,

This relation implies that the function x— | x|/ is continuous in the natural
topology.
Now consider the set Q = E defined by

0={x=Y&%, | YI&l=1).

Since Q is compact in the naturaltopology and || x| +0 for xe Q it follows
that there exists a positive constant m such that

|x]| = m xeQ.
Now N, yields
Ix|=m) (& xeE

whence

|va|£M v=1,...,n. (7.54)
m

Let f be a linear function in E. Then we have in view of (7.54) that

llx]l

If Gl =128 (e))] S;TZ |f(e)l < M x|

and so fis continuous. This completes the proof.

Since every linear transformation ¢ of E is continuous (cf. sec. 1.22) it
follows that ¢ is bounded and hence B(E; E)=L(E; E). Thus L(E; E)
becomes a normed space, the norm of a transformation ¢ being given by

lofl = max lep x|
x| =1

Problems

1. Let E be a normed linear space and E, be a subspace of E. Show that
a norm-function is defined in the factor-space E/E, by
%]l = inf x| X€eE[E, .
2. An infinite sequence of vectors x,(v=1,2...) of a normed linear
space E is called convergent towards x if the following condition holds:
To every positive number ¢ there exists an integer N such that

[x,— x| <e if n>N.
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a) Prove that every convergent sequence satisfies the following Cauchy-
criterion: To every positive number ¢ there exists an integer N such that

lx,—x,l<e if n>N and m > N.

b) Prove that every Cauchy-sequence*) in a normed linear space of
finite dimension is convergent.

¢) Give an example showing that the assertion b) is not necessarily
correct if the dimension of E is infinite.

3. A normed linear space is called complete if every Cauchy-sequence
is convergent. Let E be a complete normed linear space and ¢ be a linear

[ee]
transformation of E such that ||| <1. Prove that the series ) ¢"is
convergent and that the linear transformation v=0

Y= ZO @'
has the following properties:
a) (1—@)ob=y(1—9)=1.
1
b Lo
YIS

§ 6. The algebra of quaternions

7.23. Definition. Let E be an oriented Euclidean space of dimension 4.
Choose a unit vector e, and let E, denote the orthogonal complement
of e. Let E, have the orientation induced by the orientation of E and
by e (cf. sec. 4.29). Observe that every vector xeE can be uniquely
decomposed in the form

X=re+x .eR. xeE,.
Now consider the bilinear map E x E—E defined by
e-X=X, X-e=Xx xeE (7.55)
X-yv=—(x,y)e+ XXy x,yekE, (7.56)

where x denotes the cross product in the oriented 3-space E,.
It is easily checked (by means of formula (7.41)) that this bilinear map
makes E into an associative algebra. This algebra is called the algebra

*) i.e. a sequence satisfying the Cauchy-criterion.
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of quaternions and is denoted by H. In view of (7.55), e is the unit element
of H while (7.56) shows that

X-y+y-x=-2(x,y)e x, yeE,
and so the algebra H is not commutative.
The elements of E are called quaternions, and the elements of E; are
called pure quaternions. The conjugate of a quaternion x=Ae+x;,
(e R, x,eE)) is defined by

X=re—X,

It is easily verified that

and -
X=x xekE.
Note that xeE, if and only if X= —x. Next, let xeH be arbitrary and
write
x=/re+X, +eR, xeE,.
Then
x-X=2e+(x,x)e=(x,x)e=|x|*-e.
Similarly,
X-x=|x]?-e.

Thus we have the relations

x-xl=x"1x=e¢ (x £0).

Thus every non-zero element in H has a left and right inverse and
so H is a division algebra.
Finally note that the multiplication in H satisfies the relations

(x-y.x-z)=IxI*(,2)  x,y zeH (7.57)
and (y-xz-x)=(y2)|x% (7.58)
which are easily verified using (7.36) and (7.38). In particular, we have

Ix -yl =Ix]- 1yl x, yeH.

14 Greub. Linear Algebra
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Proposition I: The 3-linear function in E, given by
A(x)0 X5 X3) = (X, * X5, X3) Xy, X5, X5€E;
is a normed determinant function in E, and represents the orientation
of E,.

Proof: First we show that A is skew symmetric. In fact, formulae (7.58)
and (7.57) imply that

Alx X, xX)=(x, - x,X)=(x;,e)|x|*=0
and
A(X, XZa X) = (X ’ xZ: X): (XZa e) |x|2 = 0
Thus 4 is skew symmetric.
Next observe that

A(Xp xy, X3) =3 {A(xp, X5, X3) = A(X, Xy, x5)}

1
=30 - X3 — X5 - X7, X5) = (X X X5, X3).

This relation shows that 4 is a normed determinant function in E, and
represents the orientation of E,.

7.24. Associative division algebras. Let A be an associative division
algebra (cf. sec. 5.1) with unit element e. Observe that the real numbers,
the complex numbers and the quaternions form associative division
algebras over R. The dimensions of these algebras are respectively 1, 2
and 4. We shall show that these are the only finite dimensional associative
division algebras over R.

Let A be any such algebra with unit element e. Let ae A be arbitrary
and consider the n+1 powers

ad(v=0,....n, a°=¢) n=dim4d.

Since these elements are linearly dependent we have a non-trivial relation

Y A,at=0  2eR.

Vv

This relation can be written in the form
fla)=0 (7.59)

where [ is the polynomial given by

fy=> i1t iR
v=0
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By the fundamental theorem of algebra, f is a product of irreducible
polynomials of degree 1 and 2. Since A4 is a division algebra, it follows
from (7.59) that a satisfies an equation of the form

pla)=0

where p is of degree two or one. Equivalently, every element ae A4 satisfies
an equation of the form

(a+ae)f=—p%e a, BeR.

Lemma I: If x and y are elements of 4 satisfying x* = —e¢ and y> = —e,
th . .

en Xy+yx=2sLe —1Z2Z1.

Proof: Without loss of generality we may assume that y + + x. Then
the elements e, x, y are linearly independent as is easily checked.

Now observe that x+y and x—y satisfy quadratic equations

(x+y?+alx+y)+2Be=0  a feR (7.60)
and (x— P +7(x—y)+25e=0 7 deR. (7.61)
Adding these equations and observing that x*=y?= —e¢ we obtain

(@+)x+@=7)y+2(+0—-2)e=0.

Since the vectors e, x and y are linearly independent, the equation

above yields
a+y=0, a—y=0

p+dé=2
and therefore
=0, »=0.
Now equations (7.60) and (7.61) reduce to
(x+y)Y2=—2pfe¢ (7.62)
and (x =y =—2de. (7.63)

Since the vectors e, x, y are linearly independent the polynomial (> +2f

must be irreducible and so f>0. Similarly, 6>0. Now the equation

4+ 6=2 implies that 0 < <2. Finally, relation (7.62) yields
xy+yx=2(1-p)e.

Since 0 <3< 2, the lemma follows.
14*
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Lemma I1: Let F be the subset of A consisting of those elements x

which satisfy
xt=—72¢ for some yeR.
Then
(1) F is a vector space.

(i) A=(e)@®F where (¢) denotes the l-dimensional subspace gen-
erated by e.

(iii) If xeF and yeF, then xy+yxe(e)and xy—yxeF.

Proof: (1) If xe F, then clearly, AxeF for AcR . Now let xeF and yeF.
We may assume that x>= —e and y?>= —e. Then Lemmal yields

(x+y)?=x*+y 4 xy+yx=20—1)e, —1<ig1.

It follows that x+ ye F. Thus F is a vector space.
(i) Clearly, (e) N F=0. Finally, let ae 4 be arbitrary. Then «a satisfies
an equation of the form

(a+ae)y=—pe %, feR.
Set
x;=—oe and x,=a+ae.

Then x, e(e), x,eF and x; + x,=a.

(iii) Let xeF and yeF. Again we may assume that x?= —e¢ and
y?= —e. Then, by Lemmal, xy+ yxe(e).

To show that xy—yxeF observe that

Xy—yx=—(x+px—y=Kx-y(x+y).
Thus
(xy =y == (x+p(x=p*0x+y).

Since, by (i), x+yeF and x—yeF we have

(x+y?=—ax%e axeR
(x—y?=—pe feR
whence
(xy—yx)P=—2*ple
and so xy—yxekF.
7.25. The inner product in F. Let xe F and ye F. Then, by Lemma 11,
xy+ yxe(e). Thus a symmetric bilinear function, (,), is defined in F by

xy+yx=—-2(x,y)e x, yeF. (7.64)

Since

x2=—(x,x)e
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it follows that (,) is positive definite and so it makes F into a Euclidean
space.
On the other hand, again by Lemma II sec. 7.24, x y—y xe F. Hence a
skew symmetric bilinear map ¥: F x F—F is defined by
xy—yx=2%(x,y) x, yeF. (7.65)
Formulae (7.64) and (7.65) imply that
xy=—(x,y) e+ ¥x, ) x, yeF. (7.66)
Finally, observe that
(xy—yx,y)=0  x,yeF (7.67)
since
(xy—yx)y+yxy—yx)=xy*—y*x=p*(xe—ex)=0.

7.26. Theorem: Let A be a finite dimensional associative division
algebra over R. Then A=R, A=C or A=H.

Proof: We may assume that n=2 (n=dim A4). If n=2, then F has
dimension 1. Choose a vector jeF such that j2= —e. Then an isomor-

phism ASC is given by
ae+ fj—a+if a2, feR.

Now consider the case n>2. Then dim F=2. Hence there are unit
vectors e, e F, e,e F such that

(e, e,)=0.
It follows that
e e, +e,e,=—2(e,e;)e=0.
Now set
ey =e,¢e,.
Then we have
ei=e e e e, =—eje3=—e
whence e e F. Moreover,
e es=—e,, e,e3=¢.
These relations imply that
(5’35 €3) =1

d
an (e, e3) =(e5, e5) =0.

Thus the vectors ¢,, ¢,, ¢; are orthonormal.
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In particular, it follows that dim F = 3.
Now we show that the vectors ¢, ¢,, ¢5 span F. In fact, let ze F. We
may assume that z2= —e¢. Then

Zey—e3I=12€,€,—€,€6,2
=[—-2(z,e)e—e,z]e, —e [—2(z.e5) — ze,]
= —2(z.e) e, +2(z,¢,) €.

On the other hand,

teyteyr=—2(ze;5)e.
Adding these equations we obtain

ze3=—(z,e;)e; + (2. e)) e, — (2, e5) e
whence
z=1(z,¢)) e, +(z, €;) e, + (2, €3) e5.

This shows that z is a linear combination of ¢, e, and ¢;. Hence dim F =3
and so dim A=4.

Finally, we show that A is the quaternion algebra. Let 4 be the trilinear
function in F defined by

A(x, 3, 2) = (P(x, ), 2) x, v, zeF. (7.68)

We show that 4 is skew symmetric. Clearly, 4(x, x, z)=0. On the other
hand, formula (7.67) yields

A(x, . y) = (P(x, p), y) = 5(xy — yx, y)=0.
Thus 4 is a determinant in F. Since
Aley, ey, e3)=1(e, e, — ey e, e3) = (e5,¢5) =1,

A is a normed determinant function in the Euclidean space F. In par-
ticular, 4 specifies an orientation and so the cross product is defined in
F. Now relation (7.68) implies that

P(x,y)=xXxYy x, yeF. (7.69)
Combining (7.66) and (7.69) yields
xy=—(x,y)e+xxy x, yeF.
Since on the other hand,
Xe=ex=x xeA

and A=(e)@F, it follows that A is the algebra of quaternions.
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Remark: Tt is a deep theorem of Adams that if one does not require
associativity there is only one additional finite dimensional division
algebra over R. It is the algebra of Cayley numbers defined in Chap. X1, § 2,
problem 6.

Problems

1. Let a+0 be a quaternion which is not a negative multiple of e.
Show that the equation x*=a has exactly two solutions.
2. If y, (i=1, 2, 3) are three vectors in E; prove the identity

ViVaVs=—4, Va2, y3)e — (g, V) V3 + (5, v3) va — (2, ¥l by

3. Let p be a fixed quaternion and consider the linear transformation
@ given by ¢ x=px. Show that the characteristic polynomial of ¢ reads

fO)=(2=2(p, et + |p*).

Conclude that ¢ has no real eigenvalues unless p is a multiple of e.



Chapter VIII

Linear mappings of inner product spaces

In this chapter all linear spaces are assumed to be real and to have finite
dimension

§ 1. The adjoint mapping

8.1. Definition. Consider two inner product spaces E and Fand assume
that a linear mapping ¢: E— Fis given. If E* and F* are two linear spaces
dual to E and F respectively, the mapping ¢ induces a dual mapping
@*: F*— E* The mappings ¢ and ¢* are related by

OFex) ={p*y*,x)  xecE,y*eF*, 8.1

Since inner products are defined in £ and in F, these linear spaces can be
considered as dual to themselves. Then the dual mapping is a linear map-
ping of F into E. This mapping is called the adjoint mapping of ¢ and will
be denoted by @. Replacing the scalar product by the inner product in
(8.1) we obtain the relation

(px,y)=(x,py) xeE,yeF. 8.2)

In this way every linear mapping ¢ of an inner product space E into an
inner product space F determines a linear mapping & of F into E.
The adjoint mapping ¢ of @ is again ¢. In fact, the mappings ¢ and @
are related by
(#9.%) = (3, ox). (8.3)

Equations (8.2) and (8.3) yield
(0x,y)=(¢x,y) x€E,yeF

whence 5 =¢. Hence, the relation between a linear mapping and the
adjoint mapping is symmetric.
As it has been shown in sec. 2.35 the subspaces Im ¢ and ker $ are
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orthogonal complements. We thus obtain the orthogonal decomposition
F=Im¢o ®kerp. 8.4)

8.2. The relation between the matrices. Employing two bases x,
(v=1...n) and y,(u=1...m) of E and of F, we obtain from the mappings
¢ and @ two matrices «, and &, *) defined by the equations

PX, =) 05 Y,
and
@ y“ = Z &’}; xl .
p)
Substituting x=x, and y=y, in (8.2) we obtain the relation
Za: (yx’ yu) = Z&i(xvs x}.)' (85)
K A
Introducing the components

gv}. = (xv’ x).) and h;uc = (yw yx)

of the metric tensors we can write the relation (8.5) as
Z“Chxu = z&ﬁgvl
K \d

Multiplication by the inverse matrix g*¢ yields the formula

2 =75 ah,g". (8.6)

Now assume that the bases x,{(v=1...n) and y,(u=1...m) are ortho-
normal,

&= 5”, hxu = 5xu .

Then formula (8.6) reduces to

This relation shows that with respect to orthonormal bases, the matrices
of adjoint mappings are transposed to each other.

8.3. The adjoint linear transformation. Let us now consider the case
that F=E. Then to every linear transformation ¢ of E corresponds an
adjoint transformation . Since ¢ is dual to ¢ relative to the inner pro-

*) The subscript indicates the row.
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duct, it follows that

detp=detp and trg=tre.

The adjoint mapping of the product ¥ -¢ is given by

% -
Vop=poy.

The matrices of ¢ and ¢ relative to an orthonormal basis are transposes
of each other.
Suppose now that e and €& are eigenvectors of ¢ and @ respectively.
Then we have that
pe=2Ae and @pé=1¢

whence in view of (8.2)
(L —A)(e,&)=0.

It follows that (e,&)=0 whenever Z+; that is, any two eigenvectors of
¢ and @ whose eigenvalues are different are orthogonal.

8.4. The relation between linear transformations and bilinear functions.
Given a linear transformation ¢: E— E consider the bilinear function

@(x,y)=(px,y). (8.7)
The correspondence ¢— @ defines a linear mapping
o0:L(E; E)-> B(E, E), (8.8)

where B(E, E) denotes the space of bilinear functions in Ex E. It will be
shown that this linear mapping is a linear isomorphism of L(E; E) onto
B(E, E). To prove that g is regular, assume that a certain ¢ determines
the zero-function. Then (¢ x, y)=0 for every xe E and every ye E, whence
¢=0.

It remains to be shown that ¢ is a mapping onto B(E, E). Given a bi-
linear function @, choose a fixed vector x€ E and consider the linear func-
tion f, defined by

f:(v) = @(x, ).
By the Riesz-theorem (cf. sec. 7.7) this function can be written in the form
() =(")

where the vector x’ € E is uniquely determined by x.
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Define a linear transformation ¢: E— E by

ox=x".
Then
?(x,y)=(¢x,y) xeE,yeE.

Thus, there is a one-to-one correspondence between the linear trans-
formations of FE and the bilinear functions in E. In particular, the identity-
map corresponds to the bilinear function defined by the inner product.

Let & be the bilinear function which corresponds to the adjoint trans-
formation. Then

B(x,y) = (px,) = (x,0y) = (@ y,x) = (y,%).
This equation shows that the bilinear functions ® and @ are obtained
from each other by interchanging the arguments.
8.5. Normal transformations. A linear transformation ¢: E— Eis called
normal, if
Pop =@op. (8.9)
The above condition is equivalent to
(px,0y)=(px,9y) x,yeE. (8.10)
In fact, assume that ¢ is normal. Then
(px,0y)=(x,00y)=(x,09y)=(px,0)).

Conversely, condition (8.10) implies that

(r,o0x)=(¢y,0x)=(py,2x)=(y,09x)
whence (8.9).
Formula (8.10) is equivalent to

lox|* =px|*  xeE.
This relation implies that the kernels of ¢ and ¢ coincide,
ker¢op = ker .
Hence, the orthogonal decomposition (8.4) can be written in the form
E=kero®Imo. (8.11)

Relation (8.11) implies that the restriction of ¢ to Im ¢ is regular. Hence,
@2 has the same rank as ¢. The same argument shows that all the trans-
formations ¢* (k=2, 3...) have the same rank as o.
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It is easy to verify that if ¢ is a normal transformation then so is ¢ — 11,
/€ R. Hence it follows that

ker(p — A1)y =ker(p — A1).

In other words, ¢ and @ have the same eigenvectors. Now the result at
the end of sec. 8.3. implies that every two eigenvectors of a normal trans-
formation whose eigenvalues are different must be orthogonal.

Let ¢: E— E be a linear transformation and assume that an orthogonal

decomposition
E=E, ®-®E,

is given such that the subspaces E; are stable. Denote by ¢, the restriction
of ¢ to E;. Then ¢ is normal if and only if the subspaces E; are stable
under @; and the transformations ¢; are normal.
In fact, assume that ¢ is normal and let x,e E; be arbitrary. Then we
have for every x;€E;, j*i
(@xi,x) = (x, 9 x;) = 0.

This implies that px;e E j*, j=*iwhence @ x;eE;. Thus F, is stable under .
The normality of ¢; follows immediately from the relation

lo;x12 = |ox|® =|px|* = |p;x|* x€E,.

Conversely, assume that E, is stable under @; and that ¢, is normal. Then

we have for every vector
X = in xiGE,-
i

that
IQ’x[Z = Zlq’xilz = Z|(Pixi|2 = Z |‘77ixi12 = Zl@xi|2 = |¢x|2
and so ¢ is normal.
Problems

1. Consider two inner product spaces £ and F. Prove that an inner
product is defined in the space L(E; F) by

(p¥)=tr(fo9) @, YeL(E;F).

Derive the inequality

(tr(F o)) S tr(@y)tr(p o)
and show that equality holds only if y =1¢, AeR.
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2. Let ¢: E—E be a linear transformation and ¢ be the adjoint trans-
formation. Prove that if F< E is stable under ¢, then F* is stable under .

3. Prove that the matrix of a normal transformation of a 2-dimensional
space with respect to an orthonormal basis has the form

(5 ) o 2

§ 2. Selfadjoint mappings

8.6. Eigenvalue problem. A linear transformation ¢:E—FE is called
selfadjoint if p=¢ or equivalently

(¢px,y)=(x,0y) x,y€eE.

The above equation implies that the matrix of a selfadjoint transformation
relative to an orthonormal basis is symmetric.

If @ : E— E is a selfadjoint transformation and F< E'is a stable subspace
then the orthogonal complement F* is stable as well. In fact, let ze F*
be any vector. Then we have for every ye F

(pz,y)=(z0y)=0
whence pzeF*.

It is the aim of this paragraph to show that a selfadjoint transformation
of an n-dimensional inner product space E has n eigenvectors which are
mutually orthogonal.

Define the function F by

F(x)=-" x+0. (8.12)

This function is defined for all vectors x+0. As a quotient of continuous
functions, F is also continuous. Moreover, F is homogeneous of degree
Zero, i.e.

F(Ax)=F(x) (A+0). (8.13)

Consider the function F on the unit sphere |x|=1. Since the unit sphere
is a bounded and closed subset of E, F assumes a minimum on the sphere
|x]=1. Let ¢, be a unit vector such that

Fle)) £ F(x) (8.14)
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for all vectors |x]=1. Relations (8.13) and (8.14) imply that
Fley) < F(x) (8.15)

for all vectors x=0. In fact, if x+0 is an arbitrary vector, consider the
corresponding unit-vector e. Then x=|x|e, whence in view of (8.13)

F(x)=F(e)= F(e,).

Now it will be shown that e, is an eigenvector of ¢. Let y be an arbitrary
vector and define the function f by

f(t)=F(e, +1y). (8.16)

Then it follows from (8.15) that f assumes a minimum at r=0, whence
S’ (0)=0. Inserting the expression (8.12) into (8.16) we can write

(91 +1y,pe + t@.")

f(t): (ey +ty,e  +1y)

Ditterentiating this function at =0 we obtain

F(0)= (e, 03) + (3, 0e,) —2(er,@ey)(er,y). (8.17)

Since ¢ is selfadjoint,
(eroy)=(pey. )

and hence equation (8.17) can be written as

F(0)=2(pe;,y) —2(e;,0e)(er,¥). (8.18)
We thus obtain

(pe — (e, per)ey,y) =0 (8.19)
for every vector ye E. This implies that
pe = (el,(pel)el >
i.e. ey is an eigenvector of ¢ and the corresponding eigenvalue is

Ay =(e,pey).

8.7. Representation in diagonal form. Once an eigenvector of ¢ has
been constructed it is easy to find a system of n orthogonal eigenvectors.
In fact, consider the I-dimensional subspace (e,) generated by e,. Then
(ey) is stable under ¢ and hence so is the orthogonal complement E; of
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(e,). Clearly the induced linear transformation is again selfadjoint and
hence the above construction can be applied to E,. Hence, there exists
an eigenvector e, such that (e, e,)=0.

Continuing this way we finally obtain a system of » eigenvectors e,
(v=1...n) such that

(e, e,) =0,,.

The eigenvectors e, form an orthonormal basis of E. In this basis the
mapping ¢ has the form
pe,=Ae, (8.20)

where A, denotes the eigenvalue of e,. These equations show that the
matrix of a selfadjoint mapping has diagonal form if the eigenvectors are
used as a basis,

8.8. The eigenvector-spaces. If 1 is an eigenvalue of ¢, the correspond-
ing eigen-space E(J) is the set of all vectors x satisfying the equation
px=J2x. Two eigen-spaces E(4) and E(4') corresponding to different
eigenvalues are orthogonal. In fact, assume that

pe=4ie and e =1¢".
Then
(e',pe)=A(e,e’) and (e,@e’)=1'(e€).

Subtracting these equations we obtain

(A =2)(e,e)=0,
whence (e, ¢')=0if A’ 4.

Denote by 4,(v=1...r) the different eigenvalues of ¢. Then every two
eigenspaces E(4;) and E(A;)(i<j) are orthogonal. Since every vector xe E
can be written as a linear combination of eigenvectors it follows that the
direct sum of the spaces E(4;) is E. We thus obtain the orthogonal de-
composition

E=E(3)®®E(®). (8.21)

Let @, be the transformation induced by ¢ in E(4;). Then
Qi x=AX xeE(4).
This implies that the characteristic polynomial of ¢; is given by
det(p; —Any=(A—-2) (i=1..r) (8.22)
where k; is the dimension of E(2;). It follows from (8.21), and (8.22)
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that the characteristic polynomial of ¢ is equal to the product
det(p — A1) = (A — A" ... (4, — A)". (8.23)

The representation 8.23 shows that the characteristic polynomial of a
selfadjoint transformation has n real zeros, if every zero is counted with
its multiplicity. As another consequence of (8.23) we note that the dimen-
sion of the eigen-space E(4;) is equal to the multiplicity of the zero 4; in
the characteristic polynomial.

8.9. The characteristic polynomial of a symmetric matrix. The above
result implies that a symmetric »n x n-matrix 4=(«}) has » real eigen-
values. In fact, consider the transformation

px,=yokx, (v=1..n)
u

where x,(v=1...n) is an orthonormal basis of E. Then ¢ is selfadjoint
and hence the characteristic polynomial of ¢ has the form (8.23). At the
same time we know that

det(p — A1) = det(4 — AJ). (8.24)
Equations (8.23) and (8.24) yield
det(A —2J) = (4, — )" ... (4, = ).

8.10. Eigenvectors of bilinear functions. In sec. 8.4 a one-to-one corre-
spondence between all the bilinear functions @ in E and all the linear
transformations ¢ : E— E has been established. A bilinear function @ and
the corresponding transformation ¢ are related by the equation

D(x,y)=(ox,y) x,y€E.

Using this relation, we define eigenvectors and eigenvalues of a bilinear
function to be the eigenvectors and eigenvalues of the corresponding
transformation. Let e be an eigenvector of @ and 4 be the corresponding
eigenvalue. Then
P(e,y) =(pe,y) =1(e,y) (8.25)
for every vector yeE.
Now assume that the bilinear function ¢ is symmetric,

D(x,y)=P(y,x).

Then the corresponding transformation ¢ is selfadjoint. Consequently,
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there exists an orthonormal system of n eigenvectors e,

pe,=Ae, (v=1..n). (8.26)
This implies that
P (e, e,) = A (e,,e,) = 4,0,,.

Hence, to every symmetric bilinear function ® in E there exists an ortho-
normal basis of E in which the matrix of ® has diagonal-form.

Problems

1. Prove by direct computation that a symmetric 2 x 2-matrix has only
real eigenvalues.
2. Compute the eigenvalues of the matrix

4 -1 2

5

-1 -2 -3
5

2 -5 1

3. Find the eigenvalues of the bilinear function
P(x,y)= D &n".
v¥u
4. Prove that the product of two selfadjoint transformations ¢ and ¥
is selfadjoint if and only if Yo@=¢oy.
5. A selfadjoint transformation ¢ is called positive, if
(x,0x)=0

for every xe E. Given a positive selfadjoint transformation ¢, prove that
there exists exactly one positive selfadjoint transformation ¥ such that
¥i=0.

6. Given a selfadjoint mapping ¢, consider a vector be(ker ¢) . Prove
that there exists exactly one vector acker ¢* such that pa=b.

7. Let ¢ be a selfadjoint mapping and let e,(v=1...n) be a system of n
orthonormal eigenvectors. Define the mapping ¢, by

o, =0 — A1
where 4 is a real parameter. Prove that
eorlx=Y ;ffv/)lev xeE.

v

provided that 1 is not an eigenvalue of ¢.

1S Greub. Linear Algebra
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8. Let ¢ be a linear transformation of a real #-dimensional linear space
E. Show that an inner product can be introduced in £ such that ¢ becomes
a selfadjoint mapping if and only if ¢ has » linearly independent eigen-
vectors.

9. Let ¢ be a linear transformation of £ and ¢ the adjoint map. Denote
by |¢| the norm of ¢ which is induced by the Euclidean norm of E (cf.
sec. (7.19)). Prove that ol = 2
where A is the largest eigenvalue of the selfadjoint mapping @. .

10. Let @ be any linear transformation of an inner product space E.
Prove that ¢ ¢ is a positive self-adjoint mapping. Prove that

(x,0px)>0 x%0
if and only if ¢ is regular.

11. Prove that a regular linear transformation ¢ of a Euclidean space
can be uniquely written in the form

Q=007

where o is a positive selfadjoint transformation and 7 is a rotation.
Hint: Use problems 5 and 10. (This is essentially the unitary trick of
Weyl).

§ 3. Orthogonal projections

8.11. Definition. A linear transformation n: E— E of an inner product
space is called an orthogonal projection if it is selfadjoint and satisfies the
condition n? = n. For every orthogonal projection we have the orthogonal
decomposition

E=kern@®Imn

and the restriction of 7 to Im = is the identity. Clearly every orthogonal
projection is normal. Conversely, a normal transformation ¢ which satis-
fies the relation @?=¢ is an orthogonal projection. In fact, since ?=¢
we can write

X=@x+ xq x,ekero.

Since ¢ is normal we have that ker ¢ =ker ¢ and so it follows that
x €ker @.
Hence we obtain for an arbitrary vector ye E

(xoy)=(@x,03)+ (x,0¥)=(0x,0y)+(¢x1,¥) = (0 x,0)
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whence
(x,0y) =, 0x).

It follows that ¢ is selfadjoint.

To every subspace E; c E there exists precisely one orthogonal projec-
tion 7 such that Im == E|. It is clear that = is uniquely determined by E;.
To obtain 7 consider the orthogonal complement Ej and define n by

ny=y,yeE; nz=0,zeEy.

Then it is easy to verify that n?=r and #=rn.

Consider two subspaces E; and E, of E and the corresponding ortho-
gonal projections n,: E>E| and n,: E— E,. It will be shown that 7,0, =0
if and only if £, and E, are orthogonal to each other. Assume first that
E, LE,. Then n,xeE; for every vector xe E, whence 7,07, =0. Con-
versely, the equation m,.m, =0 implies that 7, xe E5 for every vector
xeE, whence E, eE;.

8.12. Sum of two projections. The sum of two projections n,: E—E,
and n,: E—> E, is again a projection if and only if the subspaces F; and E,
are orthogonal. Assume first that £, L E, and consider the transformation
n=m,+7n,. Then

n(X; + X)) =wx; +TX; =Xy + X, x,€E,x,€E,.

Hence, = reduces to the identity-map in the sum E;@E,. On the other
hand,
nx=0 if xeEin E;.

But Ei' n Ej is the orthogonal complement of the sum E; ® E, and hence
7 is the projection of E onto E,®E,.
Conversely, assume that n, +7, is a projection. Then

(ny + 7)) =7y + 715,
whence
TyoTy+ Myomy =0. (8.27)

This equation implies that

ﬂ10n20n1+n20n1=0 (828)
and
Tiofly + AyoMyeny =0. (8.29)

Adding (8.28) and (8.29) and using (8.27) we obtain
MyoMyoTy =0. (830)
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The equations (8.30) and (8.28) yield
TEZ ¢} 7t1 = 0 .

This implies that E, L E,, as has been shown at the end of sec. 8.11.

8.13. Difference of two projections. The difference n, —n, of two pro-
jections m,: E»E, and n,: E—~ E, is a projection if and only if E, is a sub-
space of E,. To prove this, consider the mapping

p=1—(n1,—1,)=0—m)+7,.

Since 1 —mn, is the projection E—E{, it follows that ¢ is a projection if
and only if E{f<E3, i.e., if and only if E, > E,. If this condition is ful-
filled, ¢ is the projection onto the subspace E @ E,. This implies that
7, —Tm,=1—¢ is the projection onto the subspace

(Ex ®E,)" =E; n Ej.

This subspace is the orthogonal complement of E, relative to E|.

8.14. Product of two projections. The product of two projections
n,:E—E, and n,: E—F, is an orthogonal projection if and only if the
projections commute. Assume first that n,.n, =7,0.7,. Then

m, 7y X = m, x = x for every vector xeE; N E,. (8.31)

On the other hand, m,.m; reduces to the zero-map in the subspace
(En E})*=E{ +Ej5. In fact, consider a vector

L
x=xi+x; xi€E{,x;€E;.
Then

MM X =T, X] + MMy X3 =M, 7, X1 + 7 Myx; =0, (8.32)
Equations (8.31) and (5.32) show that 7, .7, is the projection E—E, n E,.

Conversely, if m,0m, is a projection, it follows that

~—~—

TyoM =M,00 =T, 0ft, =T 07,.

Problems

1. Prove that a subspace J= E is stable under the projection n: E—E,
if and only if
J=JnE @®Jn E;.
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2. Prove that two projections n;: E—~E,| and n,: E— E, commute if and
only if
E,+E,=E,NE,+E, nE;+EfNnE,.

3. The reflection ¢ of E at a subspace E, is defined by
ex=p—h

where x=p+h(peE,, he E{). Show that the reflection ¢ and the projec-
tion n: E—E, are related by
o=2n—1.

4. Consider linear transformation ¢ of a real linear space E. Prove that
an inner product can be introduced in E such that ¢ becomes an ortho-
gonal projection if and only if ¢ =¢.

5. Given a selfadjoint mapping ¢ of E, consider the distinct eigen-
values 4; and the corresponding eigenspaces E;(i=1 ...r). If n; denotes
the orthogonal projection E— E; prove the relations:

a) mon; =0 (i+)).
b) Y, =1.

) Yhm=9.
§ 4. Skew mappings

8.15. Definition. A linear transformation ¢ in F is called skew if
¥ = —y. The above condition is equivalent to the relation

Wx,y)+(x,¥y)=0 x,yeE. (8.33)

It follows from (8.33) that the matrix of a skew mapping relative to an
orthonormal basis is skew symmetric.
Substitution of y=x in (8.33) yields the equation

(x,yx)=0  xeE (8.34)

showing that every vector is orthogonal to its image-vector. Conversely,
a transformation ¥ having this property is skew. In fact, replacing x by
x+y in (8.34) we obtain

(x+y,¥x+¢y)=0,
whence

(¥ x)+(x,y)=0.
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It follows from (8.34) that a skew mapping can only have the eigenvalue
4=0.
The relation Y = — implies that

try =0

and
detyy = (= 1)"det .

The last equation shows that

detyy =0

if the dimension of E is odd. More general, it will now be shown that the
rank of a skew transformation is always even. Since every skew mapping
is normal (see sec. 8.5) the image space is the orthogonal complement of
the kernel. Consequently, the induced transformation ¥, :Im y—Im
is regular. Since ¥, is again skew, it follows that the dimension of Im
must be even.

It follows from this result that the rank of a skew-symmetric matrix is
always even.

8.16. The normal-form of a skew symmetric matrix. In this section it
will be shown that to every skew mapping ¢ an orthonormal basis a,
(v=1...n) can be constructed in which the matrix of ¥ has the form

0 «x, h

—Kk, 0

G (8.35)

\ 0)

Consider the mapping @ =%. Then @ =¢. According to the result of sec.

8.7, there exists an orthonormal basis e, (v=1...n) in which ¢ has the form
pe,=A,e, (v=1..n).

All the eigenvalues A, are negative or zero. In fact, the equation

pe=/le le] =1
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implies that
A=(e,pe)=(e,y’e)=—(Ye,Ye) 0.
Since the rank of  is even and 2 has the same rank as i, the rank of
¢ must be even. Consequently, the number of negative eigenvalues is
even and we can enumerate the vectors e, (v=1...1n) such that

A <0 (v=1..2p) and A, =0 (v=2p+1...n).

Define the orthonormal basis @, (v=1...n) by

1 -
)y =e,, c12v=;t//ev Kv=\/——/1v (v=1...p)

and

a,=e, (v=2p+1..n).

v

In this basis the matrix of y has the form (8.35).

Problems

1. Show that every skew mapping ¢ of a 2-dimensional inner product
space satisfies the relation

(9x,0y) =deto-(x,y).
2. Skew transformations of 3-space. Let E be an oriented Euclidean
3-space.
(1) Show that every vector ae E determines a skew transformation
¢, of E given by ¢, (x)=a x x.
(i1) Show that
Puxt = Pa°Pp = Pp° Py a, beE.

(ii) Show that every skew map ¢: E—E determines a unique vector
ae E such that p=¢,.

Hint: Consider the skew 3-linear map ®:Ex Ex E—-E given by
D(x,3,2)=(@X,¥)- z+(py. z)- x+(¢pz x)-y and choose aeE to be the
vector determined by

P(x,y,z)=A(x, v, 2)a

(cf. sec. 4.3, Proposition II).
(iv) Let ¢,. e,. ¢5 be a positive orthonormal basis of E. Show that the
vector a of part (iii) is given by

A=2y3 €  + %31 €5+ %p; €5

where (2;;) is the matrix of ¢ with respect to this basis.
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3. Assume that @ +0 and  are two skew mappings of the 3-space
having the same kernel. Prove that y=24¢ where 4 is a scalar.
4. Applying the result of problem 3 to the mappings

px=(a; Xa,) xx
and
Y x = ay(as,x) = as(ax)
prove the formula

(a; x ay) x ay = ay(ay,as) — a,(az,a3).
5. Prove that a linear transformation ¢:E—E satisfies the relation
p=41Lp, AeR if and only if ¢ is selfadjoint or skew.
6. Show that every skew symmetric bilinear function @ in an oriented
3-space E can be represented in the form

P(x,y)=(x x y,a)

and that the vector ¢ is uniquely determined by @.

7. Prove that the product of a selfadjoint mapping and a skew map-
ping has trace zero.

8. Prove that the characteristic polynomial of a skew mapping satisfies

the equation
2(=2)=(=1yxA.

From this relation derive that the coefficient of 2"~ " is zero for every odd v.
9. Let ¢ be a linear transformation of a real linear space E. Prove that
an inner product can be defined in E such that ¢ becomes a skew mapping
if and only if the following conditions are satisfied: 1. The space E can
be decomposed into ker ¢ and stable planes. 2. The mappings which are
induced in these planes have positive determinant and trace zero.
10. Given a skew symmetric 4 x 4-matrix 4=(q,,) verify the identity

detA = (0(12 34 + A13%gn + a14a23)2 .

§ 5. Isometric mappings

8.17. Definition. Consider two inner product spaces £ and F. A linear
mapping ¢:E—F is called isometric if the inner product is preserved
under o,

(@x1,0x;) = (x1,%;) Xy, %,€E.
Setting x, = x, = x we find

lox| =|x| xeE.
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Conversely, the above relation implies that ¢ is isometric. In fact,

2(403‘1,(?"'2) = |(P(x1 + x2)|2 - |¢X1|2 - '(szlz
=|x; + X2 = |x 2 = |x,)2 = 2(xy,x3).

Since an isometric mapping preserves the norm it is always injective.

We assume in the following that the spaces E and F have the same di-
mension. Then every isometric mapping ¢: E— F is a linear isomorphism
of E onto F and hence there exists an inverse isomorphism ¢~ ': F>E.
The isometry of ¢ implies that

(¢x,y)=(x,0""'y)  x€E,yeF,
whence

p=0'. (8.36)

Conversely every linear isomorphism ¢ satisfying the equation (8.36) is
isometric. In fact,

(@x1,0x)=(x,Pox;) = (x, @ ' ox,)=(x,x,).

The image of an orthonormal basis a,(v=1...n) of E under an isometric
mapping is an orthonormal basis of F. Conversely, a linear mapping
which sends an orthonormal basis of E into an orthonormal basis b,
(v=1...n) of Fis isometric. To prove this, consider two vectors

x; =y ¢la, and x,=)Y¢&5a,;
then
(px1:Z§;bv and (Px2=Z'f;bv,

whence
(px1,9x2) = T E18(bnb) = T &1e40,, = D& & = (x1.x2).

It follows from this remark that an isometric mapping can be defined
between any two inner product spaces E and F of the same dimension:
Select orthonormal bases a, and b,(v=1...n) in E and in F respectively
and define ¢ by pa,=b,(v=1...n).

8.18. The condition for the matrix. Assume that an isometric mapping
¢:E— Fis given. Employing two bases a, and b, (v=1...n) we obtain from
@ an n x np-matrix o, by the equations

pa,=Yoalb,.
u
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Then the equations
(pa,,pa,)=(a,a,)

Z. afak(b,,b,)=(a,a,).

can be written as

Introducing the matrices
gvu = (av’ au) and h/lK = (b}d bx)
we obtain the relation

Z ol o He = G- (8.37)

Conversely, (8.37) implies that the inner products of the basis vectors are
preserved under ¢ and hence that ¢ is an isometric mapping.
If the bases a, and b, are orthonormal,

gv;; = 5vu ’ hlk = 5).;( s

relation (8.37) reduces to
Zocjcxﬁ =9,
A

showing that the matrix of an isometric mapping relative to orthonormal
bases is orthogonal.

8.19. Rotations. A rotation of an inner product space E is an isometric
mapping of E into itself. Formula (8.36) implies that

(detp)? =1

showing that the determinant of a rotation is +1.

A rotation is called proper if det ¢ =+ 1 and improper if det o= —1.

Every eigenvalue of a rotation is + 1. In fact, the equation pe=21e im-
plies that |e|=|4]||e|, whence 1=+ 1. A rotation need not have eigenvec-
vectors as can already be seen in the plane (cf. sec. 4, 17).

Suppose now that the dimension of F is odd and let ¢ be a proper
rotation. Then it follows from sec. 4.20 that ¢ has at least one positive
eigenvalue 1. On the other hand we have that 1= +1 whence A= 1. Hence,
every proper rotation of an odd-dimensional space has the eigenvalue 1.
The corresponding eigenvector e satisfies the equation pe=e; that is, e
remains invariant under ¢. A similar argument shows that to every im-
proper rotation of an odd-dimensional space there exists a vector e such
that pe= —e. If the dimension of E is even, nothing can be said about
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the existence of eigenvalues for a proper rotation. However, to every im-
proper rotation, there is at least one invariant vector and at least one
vector e such that pe= —e (cf. sec. 4.20).

Let ¢: E— E be a rotation and assume that Fc E is a stable subspace.
Then the orthogonal complement F* is stable as well. In fact, if zeF*
is arbitrary we have for every ye F

(pz,9)=(z,07'y)=0
whence gpzeF*.

The product of two rotations is obviously again a rotation and the
inverse of a rotation is also a rotation. In other words, the set of all
rotations of an n-dimensional inner product space forms a group, called
the general orthogonal group. The relation

det(¢,0¢) = det g, detg,

implies that the set of all proper rotations forms a subgroup, the special
orthogonal group.

A linear transformation of the form A¢ where 1>0 and ¢ is a proper
rotation is called homothetic.

8.20. Decomposition into stable planes and straight lines. With the aid
of the results of § 2 it will now be shown that for every rotation ¢ there
exists an orthogonal decomposition of E into stable subspaces of dimen-
sion 1 and 2. Denote by E; and E, the eigenspaces which correspond to
the eigenvalues A= +1 and A= —1 respectively. Then E, is orthogonal
to E,. In fact, let x, e F; and x,€E, be two arbitrary vectors. Then

¢x,=x; and o@x,=-—x,.

These equations yield
(X1, %3) = = (x1, %),
whence (x, x,)=0.
It follows from sec. 8.19 that the subspace F=(E,® E,)* is again stable
under ¢. Moreover, F does not contain an eigenvector of ¢ and hence F
has even dimension. Now consider the selfadjoint mapping

V=9+p=0+¢'
of F. The result of sec. 8.6 assures that there exists an eigenvector e of .
If 2 denotes the corresponding eigenvalue we have the relation

1

pe+ @ e=le.
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Applying ¢ we obtain

ple=lgpe—e. (8.38)
Since there are no eigenvectors of ¢ in F the vectors e and @e are linearly
independent and hence they generate a plane F,. Equation (8.38) shows
that this plane is stable under ¢. The induced mapping is a proper rota-
tion (otherwise there would be eigenvectors in F,).

The orthogonal complement Fi of F, with respect to F is again stable
under ¢ and hence the same construction can be applied to Fi". Conti-
nuing in this way we finally obtain an orthogonal decomposition of F into
mutually orthogonal stable planes.

Now select orthonormal bases in E;, E, and in every stable plane.
These bases determine together an orthonormal basis of E. In this basis
the matrix of ¢ has the form
(e, N

&p

cosf, sinf, g, =+1 (v=1...p)
—sinf, cosl; 2k=n—1p

cosf, sin0,
_ —sinf, cosb,

where 0, (i=1...k) denotes the corresponding rotation angle (cf. sec. 8.21).

Problems

1. Given a skew transformation ¢ of E, prove that
o=+ -1
is a rotation and that —1 is not an eigenvalue of ¢. Conversely, if ¢ is a
rotation, not having the eigenvalue —1 prove that
V=(p—1elp+1)"
is a skew mapping.
2. Let ¢ be a regular linear transformation of a Euclidean space E such

that (¢ x, ¢y)=0 whenever (x, y)=0. Prove that ¢ is of the form ¢ =211,
A=%0 where 7 is a rotation.
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3. Assume two inner products ¢ and ¥ in E such that all oriented
angles with respect to @ and ¥ coincide. Prove that ¥(x, y)=A4®(x, y)
where 4>0 is a constant.

4. Prove that every normal non-selfadjoint transformation of a plane
is homothetic.

5. Let ¢ be a mapping of the inner product space E into itself such that
@0=0and

lpx —@yl=Ix—yl x yeE.

Prove that ¢ is then linear.

6. Prove that to every proper rotation ¢ there exists a continuous
family ¢,(0 <t < 1) of rotations such that p,=¢ and ¢, =1.

7. Let ¢ be a linear automorphism of an n-dimensional real linear
space E. Show that an inner product can be defined in E such that ¢ be-
comes a rotation if and only if the following conditions are fulfilled:

(i) The space E can be decomposed into stable planes and stable
straight lines.

(i) Every stable straight line remains pointwise fixed or is reflected
at the point 0.

(i) In every irreducible invariant plane a linear automorphism y is
induced such that

detyy =1 and |[try|<?2.

8. If ¢ 1s a rotation of an n-dimensional Euclidean space, show that
[tr ol <n.

9. Prove that the characteristic polynomial of a proper rotation satis-
fies the relation

fEY=(=2" 1Y),

10. Let E be an inner product space of dimension n>2. Consider a
proper rotation T which commutes with all proper rotations. Prove that
t=¢1 where e=1if nis odd and e=+1 if nis even.

§ 6. Rotations of Euclidean spaces of dimension 2,3 and 4

8.21. Proper rotations of the plane. Let E be an oriented Euclidean
plane and let A4 denote the normed positive determinant function in E.
Then a linear transformation j: E— E is determined by the equation

Alx,y)=(ix,y) x yekE.
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The transformation j has the following properties:

1) (x. 1) +(xjy=0

2) (x. jy)=(x.»)

3) 2= —1

4) detj=1.
In fact, 1) follows directly from the definition. To verify 2) observe that
the identity (7.24), sec. 7.13, implies that

(x, ))* + (Gx, »)? = x> y*  x yeE.
Setting y=j x we obtain, in view of 1),
(o, jx)? =1jx* - [x]?.
Since j is injective (as follows from the definition) we obtain
lj x| = Ix][.

Now the relations j= —j and j=;~'imply that j*= —1. Finally, we
obtain from 1), 2), 3) and from the definition of j

AGx, jy) =0 xjy=—(xjn=0xy) =4(xy)
whence
det j=1.

The transformation j is called the canonical complex structure of the
oriented Euclidean plane E.

Next, let ¢ be any proper rotation of E. Fix a non-zero vector x and
denote by @ the oriented angle between x and ¢ x (cf. sec. 7.13). It is
determined mod 2 7 by the equation

@Xx=x-c080 + j(x)-sin O. (8.39)
We shall show that
cosO0=3treo and sin0=1tr(joq). (8.40)
In fact, by definition of the trace we have
Ao x, )+ A(x, @ y)=A(x, y) - tr . (841)
Inserting (8.39) into (8.41) and using properties 2) and 3) of j we obtain
2¢os @ - A(x, y)=A(x, y) - tr o

and so the first relation (8.40) follows. The second relation is proved in
a similar way.
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Relations (8.40) show that the angle @ is independent of x. [t is called
the rotation angle of ¢ and is denoted by O (¢).
Now (8.39) reads

@X=Xx"-cos @(p)+j(x)-sin O(p) xeE.

In particular, we have

e1)=0, O(-y)==n, O(H=—.

If

Yx=x-cos OW)+ j(x)-sin @)
is a second proper rotation with rotation angle @ (i) a simple calculation
shows that

(@) x=op)x=x-cos(O(p)+ OW)) +j(x)sin(O(p) + O¥)).

Thus any two proper rotations commute and the rotation angle for their
product is given by

OWop)=0(p)+ OW) (mod 27). (8.42)

Finally observe that if e,, e, is a positive orthonormal basis of E then
we have the relations

pe =e cosO(p)+e,sinb(p) @e,=—e sinb(p)+ e, cosb(@).

Remark: If E is a non-oriented plane we can still assign a rotation
angle to a proper rotation ¢. It is defined by the equation

cosO(p)=ttrg (0= O =<n). (8.43)

Observe that in this case @ (o) is always between 0 and © whereas in the
oriented case @(¢p) can be normalized between — = and =.

8.22. Proper rotations of 3-space. Consider a proper rotation ¢ of a
3-dimensional inner product space E. As has been shown in sec. 8.19,
there exists a 1-dimensional subspace E,; of E whose vectors remain fixed.
If ¢ is different from the identity-map there are no other invariant vectors
(an invariant vector is a vector xe E such that ¢ x=x).

In fact, assume that ¢ and b are two linearly independent invariant
vectors. Let ¢(c+0) be a vector which is orthogonal to @ and to b. Then
@c=JAc where A= +1. Now the equation det ¢ =1 implies that 1= +1
showing that ¢ is the identity.

In the following discussion it is assumed that ¢ #1. Then the invariant
vectors generate a 1-dimensional subspace E,; called the axis of ¢.
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To determine the axis of a given rotation ¢ consider the skew mapping
Yy=1(e—9) (8.44)

and introduce an orientation in E. Then  can be written in the form
Yx=uxx uckE (8.45)

(cf. problem 2, § 4). The vector u which is uniquely determined by ¢ is
called the rotation-vector. The rotation vector is contained in the axis
of . In fact, let a+0 be a vector on the axis. Then equations (8.45) and
(8.44) yield
uxa=ya=%gpa—pa)=%(pa—¢p 'a)=0 (8.46)

showing that u is a multiple of a. Hence (8.45) can be used to find the
rotation axis provided that the rotation vector is different from zero.

This exceptional case occurs if and only if =@ i.e. if and only if
@=¢ " '. Then ¢ has the eigenvalues 1, —1 and —1. In other words, ¢ is
a reflection at the rotation axis.

8.23. The rotation angle. Consider the plane F which is orthogonal to
E,. Then ¢ transforms F into itself and the induced rotation ¢, is again

proper. Denote by 0 the rotation angle of ¢, (cf. remark at the end of
see 8.21). Then, in view of (8.43),

cosl = Ltro,.
Observing that
tro =tro, + 1
we obtain the formula
cosl = L(tro — 1).

To find a formula for sin 6 consider the orientation of F whick is induced
by E and by the vector u (cf. sec. 4.29)*). This orientation is represented
by the normed determinant function

1
Al(yﬁz): |'1'I|A(“,y,2)

where 4 is the normed determinant function representing the orientation
of E. Then formula (7.25) yields

_ 1
sinf = 4,(y,9y) = md(u,y,w) (8.47)

*) It is assumed that u # 0.



§ 6. Rotations of Euclidean spaces of dimension 2, 3 and 4 241

where y is an arbitrary unit vector of F. Now

A(u,y,py)=detod(o™ u, 07  y,y)
=A(u, 0 'y, y)=—4w,y,9”'y)

and hence equation (8.47) can be written as
1
sinf = — il A(u,y,071y). (8.48)
u
By adding formulae (8.47) and (8.48) we obtain

ino= . A( “y) 1A( ¥y) (8.49)
smov=_—4Uu,y, ¢y —@ y)y=—4a(u,y,yy). .
2 u) |x|

Inserting the expression (8.45) in (8.49), we thus obtain
. 1 1 )
sinf =— A(u, y,u x y)=—lu x y|*. (8.50)
|ul |ul

Since y is a unit-vector ortnogonal to u, it follows that
lu x y| = lul|y| = {ul
and hence (8.50) yields the formula
sinf = [u].

This equation shows that sin 0 is positive and hence that 0 <8 <= if the
above orientation of F is used.

Altogether we thus obtain the following geometric significance of the
rotation-vector u:

1. u is contained in the axis of ¢.

2. The norm of u is equal to sin 0.

3. If the orientation induced by u is used in F, then 6 is contained in
the interval 0<f<m.

Let us now compare the rotations ¢ and ¢ ~!. ¢~ has obviously the
same axis as . Observing that ¢ ~* = ¢ we see that the rotation vector of
@~ ' is —u. This implies that the inverse rotation induces the inverse
orientation in the plane F.

To obtain an explicit expression for u select a positive orthonormal
basis e,, e,, e5 in E and let o), be the corresponding matrix of ¢. Then
has the matrix

1

By =%( — )

16 Greub. Linear Algebra
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and the components of u are given by

ul =43 —o3) w =3y —ai) ul=4(ef-ai).

It should be observed that a proper rotation is not uniquely determined
by its rotation vector. In fact, if ¢, and ¢, are two rotations about the
same axis whose rotation angles satisfy 0,+0,=mn, then the rotation
vectors of ¢, and ¢, coincide. Conversely, if ¢, and ¢, have the same
rotation vector, then their rotation axes coincide and the rotation angles
satisfy either 6,=0, or 0, +0,=m.

Since cos(r—0)= —cosf it follows from the remark above that a
rotation is completely determined by its rotation vector and the cosine
of the rotation angle.

8.24. Proper rotations and quaternions. Let E be an oriented 4-dimen-
sional Euclidean space. Make E into the algebra of quaternions as
described in sec. 7.23. Fix a unit vector a and consider the linear trans-

formation
ox=ax xekE.

Then ¢ is a proper rotation. In fact,
lp x| =lax|=lal|x| = |x|.

To show that ¢ is proper choose a continuous map f from the closed
unit interval to S* such that

fO=e, f()=a

and set
o, (x)=f()x xeE.

Then every map ¢, is a rotation whence
deto,=+1 0=t=1.
Since det ¢, is a continuous function of ¢ it follows that
detp, =detp,=det1= +1.

This implies that
deto=+1

and so ¢ is a proper rotation. In the same way it follows that the linear
transformation
Yyx=xa xe€E

is a proper rotation.
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Next, let a and b be fixed unit vectors and consider the proper rotation
17 of E given by
t(x)=axb™! xeE. (8.51)
If a=b=p (p a unit vector) we have

1

T(x)=pxp~ xeE. (8.52)

It follows that t(e)=e and so t induces a proper rotation, t,, of the
orthogonal complement, E,, of E. We shall determine the axis and the
rotation angle of 7,.
Let ge E, be the vector given by
q=p— ‘e 4=(p,e).
Then
(@) =1t(p)—itle)=p—re=¢

and so g determines the axis of the rotation 7,. We shall assume that
p+ tesothat g=+0.

To determine the rotation angle of 7, consider the 2-dimensional sub-
space, F of E, orthogonal to g. We shall show that, for ze F,

1z=02:>-1)z+2/igxz. (8.53)

In fact, the equations
1

p=Ae+q and p'=lde—¢q
yield
pzp l=(e+qziie—q=i’z+i(qgz—zq)—qzq.

Since

gz —zq=2(qx2)
and

qz+zq=—2(q, z)e=0
we obtain

pzp '=022-1)z+24i(gxz) zeF

and so (8.53) follows.

Let F have the orientation induced by the orientation of E, and the
vector ¢ (cf. sec. 4.29). Then the rotation angle @ is determined by the
equations (cf. see 8.21)

cos O =(z, 1, 2)
and
sin@zfﬁA(q, Z,12) 0

where z is any unit vector in F.
16*

lIA
o)
lIA
o
3
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Using formula (8.53) we obtain

cos@=2,%2—-1
and ')/‘ 2/
Sin®@ =-"=A(q,z,gx z) =—|gxz|*=24]q|.
g @ ) lqlw | lq]
Since

/=cosw and |g|=sinw

where w denotes the angle between ¢ and p (O<w <n) these relations
can be written in the form

cos @ =2cos’w—1=cos2w

and . . .
sin @ =2 cosw sin w = sin 2w.

These relations imply that
e=20.

Thus we have shown that the axis of 7, is generated by ¢ and that the
rotation angle of 7, is twice the angle between p and e.

Proposition I: Two unit quaternions p; and p, determine the same
rotation of E, only if p, = +p,. Moreover, every proper rotation of E;
can be represented in the form (8.52).

Proof: The first part of the proposition follows directly from the
result above. To prove the second part let ¢ be any proper rotation
of E,. We may assume that g +1. Let a be a unit vector such that c a=a
and let Fc E, be the plane orthogonal to a. Give F, the orientation
induced by a and denote the rotation angle of ¢ by § (0<$<2n). Set

[ ¢

= e cos — sin —-.
p 3 +a 3

Then the rotation t given by

1

TX=pxp~ xekE,

coincides with ¢. In fact, if g is the vector determined by p=Je+¢, geE,,

then

. l()
=aSsim —
q 2

and so t and ¢ have the same rotation axis.
. .9 . .. .
Next, observe that since sin —>0, ¢ is a positive multiple of ¢ and so

2
the vectors g and a induce the same orientation in F. But, as has been
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shown above, the rotation angle of t with respect to this orientation is
given by 9
O=2.—=39.
2

It follows that T =¢. This completes the proof.

Proposition 11: Every proper rotation of E can be written in the form
(8.51). Moreover, if a,, b; and a,, b, are two pairs of unit vectors such
that the corresponding rotations coincide, then

a,=¢a, and b,=¢b,
where e= +1.

Proof: Let ¢ be a proper rotation of E and define 7.by

-1

T(x) =0 (x) o (e) xeE.

Then 7 is again a proper rotation and satisfies t(e)=e. Thus 7 restricts
to a proper rotation of E,. Hence, by Propositionl, there is a unit
vector p such that

1

T(x)=pxp~ xeE.

It follows that
1

o(x)=1(x)o(e)=pxp 'ole)=axb!

with a=p and b=a(e)"!p.
Finally, assume that

a,xb;'=a,xb;' xeE. (8.53)
Setting x=¢ yields

a,byt=a, b7t
Now set
p=ay'a;=b;'b,.
Then we obtain from (8.53)
pxpl'=x xeE.
Now Proposition I implies that p=¢e, e= +1 and so

a,=¢a,, b,=c¢b,.

This completes the proof.
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Problems

1. Show that the rotation vector of a proper rotation ¢ of 3-space is
zero if and only if ¢ is of the form

px=—x+42(x,¢)e

where e is a unit vector.

2. Let ¢ be a linear automorphism of a real 2-dimensional linear space
E. Prove that an inner product can be introduced in E such that ¢ be-
comes a proper rotation if and only if

deto=1 and |tro|L2.

3. Consider the set H of all homothetic transformations ¢ of the plane.
Prove:

a) If ¢,eH and @,eH, then Ap; +up,eH.

b) If the multiplication is defined in H in the natural way, the set H
becomes a commutative field.

¢) Choose a fixed unit-vector e. Then, to every vector x& E there exists
exactly one homothetic mapping ¢, such that ¢,e=x. Define a multi-
plication in E by xy=¢,y. Prove that E becomes a field under this multi-
plication and that the mapping x— ¢, defines an isomorphism of E onto
H.

d) Prove that E is isomorphic to the field of complex numbers.

4. Given an improper rotation ¢ of the plane construct an orthonormal
basis ey, e, such that pe; =¢, and gpe,= —e,.

5. Show that every skew mapping ¥ of the plane is homothetic. If iy +0,

. . . T,
prove that the angle of the corresponding rotation is equal to + 5 if the
orientation is defined by the determinant-function

A(x,y)=Wx,y) x,yekE.
6. Find the axis and the angle of the rotation defined by

pe =%(—e +2e, —2e;)
pe,=5%(2e +2e, +e3)
pe;=%Q2e; _92“2‘33)

where e, (v=1, 2, 3) is a positive orthonormal basis.
7. If ¢ is a proper rotation of the 3-space, prove the relation

det(¢ + 1) = 4(1 + cos0)

where 0 is the rotation angle.
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8. Consider an orthogonal 3 x 3-matrix («,) whose determinant is + 1.
Prove the relation

(;a:— 12+ Y (o — o) =4.

v<p

9. Let e be a unit-vector of an oriented 3-space and 0 (—n<0=mn) be

a given angle. Denote by F the plane orthogonal to e. Consider the proper

rotation ¢ whose axis is generated by e and whose angle is 0 if the orien-
tation induced by e is used in F. Prove the formula

@x =xcos0 + e(e,x)(1 — cosf) + (e x x)sinb.

10. Prove that two proper rotations of the 3-space commute if and
only if they have the same axis.

11. Let ¢ be a proper rotation of the 3-space not having the eigen-
value —1.

Prove that the skew transformations

x=(p=1o(p+1)"! and ¢Y=1(¢p—p)

are connected by the equation
1

1= ir+ cosHl/I

where @ denotes the rotation-angle of ¢.

12. Assume that an improper rotation ¢ + —1 of the Euclidean 3-space
is given.

a) Prove that the vectors x for which ¢ x= —x, form a 1-dimensional
subspace E;.

b) Prove that a proper rotation ¢, is induced in the plane F orthogonal
to E,. Defining the rotation-vector u as in sec. 8.22, prove that ¢, is the
identity if and only if #=0.

¢) Show that the rotation-angle of ¢, is given by

cosf = $(tre + 1)

and that 0 <0< if the induced orientation is used in F.
13. Let a be a vector in an oriented Euclidean 3-space such that
la|= 1. Consider the linear transformation ¢, given by
1 lal ?
9ux = xcos(n-la) + La-(ax) f (7) +(a % x) f(al
where f is defined by

1.
f(t)z—t-smnt teR.
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(i) Show that ¢, is a proper rotation whose axis is generated by a
and whose rotation angle is @ =7 - |d|.
(i) Show that ¢,=1 and that

@, x=—Xx+2ala, x)
if laf=1.
(i1i) Suppose that a=#bh. Show that ¢,=¢, if and only if |a|=1 and
b= —a. Conclude that there is a 1—1 correspondence between the

proper rotations of R* and the straight lines in R*.

14. Let E be an oriented 3-dimensional inner product space.

a) Consider E together with the cross product as an algebra. Show
that the set of non-zero endomorphisms of this algebra is precisely the
group of proper rotations of E.

b) Suppose a multiplication is defined in E such that every proper ro-
tation t is an endomorphism,

T(xy)=7tX°TY.
Show that
xy=2(x xy)
where 4 is a constant.
15. Let 6 be a skew linear transformation of the Euclidean space H.
a) Show that ¢ can be written in the form

oX=pXx+Xxq xeH

and that the vectors p and ¢ are uniquely determined by o.
b) Show that E, is stable under ¢ if and only if g= —p.
¢) Establish the formula
deto = (|p> — q1?)*.
16. Let p be a unit vector in E and consider the rotation tx=pxp~'.
Show that the rotation vector (cf. sec. 8.22) of 7 is given by

u=2ilp—re .=(p,e).

17. Let p= +e be a unit quaternion. Denote by F the plane spanned
by e and p and let F* be its orthogonal complement. Orient F so that
the vectors e, p form a positive basis and give F* the induced orientation.
Consider the rotations

¢x=px and Yx=xp.
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a) Show that the planes F and F* are stable under ¢ and ¥ and that
@=y in F.

b) Denote by @ the common rotation angle of ¢ and ¥ in F and by
6, O the rotation angles for ¢ and ¢ in F*. Show that &, =06 and
0;=—-0.

v

§ 7. Differentiable families of linear automorphisms

8.25. Differentiation formulae. Let E be an n-dimensional inner product
space and let L(E; E) be the space of all linear transformations of E. It has
been shown in sec. 7.21 that a norm is defined in the space L(E; E) by
the equation

lp] = max [@x].
Ixf=1

A continuous mapping t—¢(¢) of a closed interval t,<t<t, into the
space L(E; E) will be called a continuous family of linear transformations
or a continuous curve in L(E; E). A continuous curve ¢ (¢) is called differ-
entiable if the limit

lim 2040 =00 _ )

4t-0 A t
exists for every ¢(t, <t<t,). The mapping ¢ is obviously again linear for
every fixed ¢.

The following formulae are immediate consequences of the above
definition:

1. (A@+uy): =4¢+puy (4, u constants)

2. (}poﬁﬁ)' =¢o(p+l//o(p

3. 9=9¢

4. If ¢,(t)(v=1...p) are p differentiable curves in L(E; E) and & is a
p-linear function in L(E; E), then

Ei¢(¢l(t)"' ¢,(1) = v21 D (@ (1) ... 9,(2)...0,(0)).

A curve ¢ (¢)(to<t=<t,)is called continuously differentiable if the mapping
t— ¢ (¢) is again continuous. Throughout this paragraph all differentiable
curves are assumed to be continuously differentiable.

8.26. Differentiable families of linear automorphisms. Our first aim is
to establish a one-to-one correspondence between all differentiable fami-
lies of linear automorphisms on the one hand and all continuous families
of linear transformations on the other hand. Let a differentiable family
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¢ (t)(to<t<t,) of linear automorphisms be given such that ¢(f,)=1.
Then a continuous family ¥ (¢) of linear transformations is defined by

Y =900

Interpreting ¢ as time we obtain the following physical significance of the
mappings ¥ (7): Let x be a fixed vector of E and

x(1) = 9 (1) x
the corresponding orbit. Then the velocity vector x(¢) is given by

()= p(0)x = $()@() x(1) = ¥ (1) x (1)

Hence, the mapping V¥ (¢) associates with every vector x () its velocity at
the instant z.

Now it will be shown that, conversely, to every continuous curve V¥ (¢)
in L(E; E) there exists exactly one differentiable family ¢ (1)(t,<1=1,)
of linear automorphisms satisfying the differential equation

¢() =y ()o0(1) (8.54)

and the initial-condition ¢(z,)=1. First of all we notice that the differ-
ential equation (8.54) together with the above initial condition is equiva-
lent to the integral equation

w(t)=z+fw(r>o<p<z>dr (to<ts1). (8.55)

In the next section the solution of the integral equation (8.55) will be con-
structed by the method of successive approximations.

8.27. The Picard iteration process. Define the curves ¢,(¢)(n=0,1...)
by the equations

@o(t) =1
and
P I (8.56)

¢n+1(r>=:+f¢<z)omt>dz (n=0,1..)

Introducing the differences

4,(0) = ¢() = @i () (n=12,..) (8.57)
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we obtain from (8.56) the relations

4,(1) = f¢(t)oAn_1(t)dt (n=23..). (8.58)
Equation (8.57) yields for n=1
A, () = 01 (H) — @o(t) = flﬁ(t)dt.

Define the number M by

M = max |}y (t)].
Then o
14, (1) < M (1 = 10). (8.59)

Employing the equation (8.58) for n=2 we obtain in view of (8.59)

g 2
M
42015 M [ =)t =) (1= 1)
to

and in general

14, (1) < f;(t —t)  (n=1,2..).

Now relations (8.57) imply that

¢n+p(t) - QD,,(I) =v:;j1 Av(t)s

whence
n+p n+p v
|(pn+p(t) - (pn(t)l é z . lAv(t)| é Z 'v" (t - to)v §
v=n+ v=n+1 V.
AREON (8.60)
= ,"(t1 — 1)
v=n+1 .

Let ¢>0 be an arbitrary number. It follows from the convergence of

. MY . .
the series Y. ) (t, —1o)’ that there exists an integer N such that
n+p Mv
y - (t,—to)'<e for n>N and p=1. (8.61)
v=n+1 V.

The inequalities (8.60) and (8.61) yield
|@0s,(t) — 0, () <& for n>N and p=1.
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These relations show that the sequence ¢, (¢) is uniformly convergent in
the interval 1, <1<t
lim ¢, (1) = ¢ (1).

n—aoo

In view of the uniform convergence, equation (8.56) implies that

p(t)=1+ fl,b(t)oq)(t)dt (tyS151y). (8.62)

As a uniform limit of continuous curves the curve ¢ (1) is itself continuous.
Hence, the right hand-side of (8.62) is differentiable and so ¢ (¢) must be
differentiable. Differentiating (8.62) we obtain the relation

p() =¥ (o1

showing that ¢ (¢) satisfies the differential equation (8.54). The equation
¢(t,)=1is an immediate consequence of (8.62).

8.28. The determinant of ¢ (¢). It remains to be shown that the map-
pings ¢ (¢) are linear automorphisms. This will be done by proving the
formula

B r;(;trl]l(t)dt
deto(t) =€ (8.63)

Let 440 be a determinant function in E. Then
A(p()xy...0(t)x,) =deto()4(x;...x,)  x,€E.
Differentiating this equation and using the differential equation (8.54) we

obtain
YA(e(®)x; .. ¥y (D)o ()x,...0(1)x,)
’ (8.64)

d
= Jidet(p(t)-A (q oo x,)-
Observing that

LAle®xi b (e (0)x,...0(1)x,)

=try () A(p(t)x; ... 0(1)x,)
=try(t)detp(t)4(x; ... x,)

we obtain from (8.64) the differential equation

5} det o () = trp (1)-det o (1) (8.65)
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for the function det ¢ (¢). Integrating this differential equation and ob-
serving the initial condition

deto(ty) =det1 =1
we find (8.63).
8.29. Uniqueness of the solution. Assume that ¢, (¢) and ¢,(7) are two
solutions of the differential equation (8.54) with the initial condition
@ (o) =1. Consider the difference

@ (1) =02 (1) — . (1).
The curve ¢(¢) is again a solution of the differential equation (8.54) and
it satisfies the initial condition ¢ (zo)=0. This implies the inequality

o (1)l = f«')(t)dtj§f|¢(t)ldt§Mfl<p(t)ldt~ (8.66)

to

Now define the function F by
F(t)= f|<p(t)| dt. (8.67)
to

Then (8.66) implies the relation
F()SMF(1).

t

Multiplying by e~*™ we obtain

F()e™ —Me™™F(1) <0,
whence

dit(F(t)e"M) <0.

Integrating this inequality and observing that F(#,)=0, we obtain

F()e ™ <0
and consequently
F()<0  (t,St<1y). (8.68)

On the other hand it follows from (8.67) that
F()z0 (t,=t=ty). (8.69)

Relations (8.68) and (8.69) imply that F(f)=0 whence ¢()=0. Con-
sequently, the two solutions ¢, (¢) and ¢, (¢) coincide.
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8.30. 1-parameter groups of linear automorphisms. A differentiable
family of linear automorphisms ¢ () (— o0 <7< o) is called a 1-parameter

group, if
p(t+1)=0()op(1). (8.70)

Equation (8.70) implies indeed that the automorphisms ¢(t) form an
(abelian) group. Inserting t=0 we find ¢(0)=1. Now equation (8.70)
yields

p(Dog(—1)=1

showing that with every automorphism ¢ (¢) the inverse automorphism
@ ()~ is contained in the family ¢ (¢)(—oo0 <t<o00). In addition it fol-
fows from (8.70) that the group ¢ (¢) is commutative.

Differentiation of (8.70) with respect to 7 yields

¢(t+7)=6¢(0-0(7).
Inserting =0 we obtain the differential equation
p(t)=yYop(t) (—o0<t<00) (8.71)

where y=¢(0). Conversely, consider the differential equation (8.71)
where ¥ is a given transformation of E. It will be shown that the solution
¢ (1) of this differential equation to the initial condition ¢ (0)=1is a 1-
parameter group of automorphisms. To prove this let T be fixed and con-
sider the curves

p()=0(t+1) (8.72)
and
9:(t) =)o (7). (8.73)
Differentiating the equations (8.72) and (8.73) we obtain
() =0¢(t+1)=Vop(t+1)=VYoo (1) (8.74)
and

92() = (D)o@ (1) =Y 0()ep(1) =¥-0:(1). (8.75)

Relations (8.74) and (8.75) show that the two curves ¢, (¢) and ¢, (¢)
satisfy the same differential equation. Moreover,

?,(0) = 9,(0) = (7).

Thus, it follows from the uniqueness theorem of sec. 8.28 that ¢, (/)= ¢, (1)
whence (8.70).
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8.31. Differentiable families of rotations. Let ¢ (7)(7,<r<1t,) be a differ-
entiable family of rotations such that ¢ (¢,)=1. Since det ¢ (f)= =1 for
every ¢ and det ¢ (t,)= + lit follows from the continuity that det ¢ (¢)=
+1, i.e. all rotations ¢ (¢) are proper.

Now it will be shown that the linear transformations

y()=¢@0®)"

are skew. Differentiating the identity

p(ep(t) =1

we obtain
p()oo(t)+ @(1)o (1) =0.
Inserting
() =y ()-0(1)
and

p(1) = ¢(1) = p(1) ¥ (1)
into this equation we find

PO+ ¥ ())op()=0,
g (1) + ¢ (1)=0.

Conversely, let the family of linear automorphisms ¢ (¢) be defined by
the differential equation

e =y (1)o0(t), @(t))=1

where ¥/ (¢) is a continuous family of skew mappings. Then every auto-
morphism ¢ (¢) is a proper rotation. To prove this, define the family y(¢)
by

whence

1O =0)-0().
Then

10 =0(0-0(1)+ 2D (1)
== 9OV (Dop()+ oDy (1)op(1)=0

and
x(t)) =1.

Now the uniqueness theorem implies that y (#)=1, whence
p()op()=1.

This equation shows that the mappings ¢ (¢) are rotations.
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8.32. Angular velocity. As an example, let ¢(¢) be a differentiable
family of rotations of the 3-space such that ¢ (0)=1. If 7 is interpreted as
the time, the family ¢ (¢) can be considered as a rigid motion of the space
E. Given a vector x, the curve

x(1) = o(1)x
describes its orbit. The corresponding velocity-vector is determined by
(1) = (1) = ¥ (Do (1)x = ¥ () x(1). (8.76)

Now assume that an orientation is defined in E. Then every mapping
¥ (¢) can be written as

Y()y=uxy. (8.77)

The vector u () is uniquely determined by  (¢) and hence by ¢. Equations
(8.76) and (8.77) yield
x(1) = u(r) x x(t). (8.78)

The vector u(t) is called the angular velocity at the time ¢. To obtain a
physical interpretation of the angular velocity, fix a certain instant ¢ and
assume that (7)%0. Then equation (8.78) shows that x(¢)=0 if and only
if x(¢) is a multiple of u(¢). In other words, the straight line generated by
u(r) consists of all vectors having the velocity zero at the instant ¢. This
straight line is called the instantaneous axis. Equation (8.78) implies that
the velocity-vector x(¢) is orthogonal to the instantaneous axis.

Passing over to the norm in equation (8.78) we find that

/1:7\/]1/ [0 = lu @ ()l

2 \ J where |A ()| is the distance of the vector x(¢)

Fig. 1 from the instantaneous axis (fig. 1). Conse-

quently, the norm of u(¢) is equal to the mag-

nitude of the velocity of a vector having the distance 1 from the instan-
taneous axis.

The uniqueness theorem in sec. 8.28 implies that the rigid motion ¢ (7)
is uniquely determined by ¢ (t,) if the angular velocity is a given function
of t.

8.33. The trigonometric functions. In this concluding section we shall
apply our general results about families of rotations to the Euclidean
plane and show that this leads to the trigonometric function cos and
sin. This definition has the advantage that the addition theorems can be
proved in a simple fashion, without making use of the geometric intuition.
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Let E be an oriented Euclidean plane and 4 be the normed determinant
function representing the given orientation. Consider the skew mapping
Y which is defined by the equation

W x,y)=4(x,y). (8.79)

First of all we notice that ¥ is a proper rotation. In fact, the identity 7.24
yields
W x,y)* = 4(x,y)* = (x,x) (5, 5) = (x,)*.

Inserting y =y x we find
(W x, ¥ x)* = (x, %) (¥ x, ¥ x).

Now y is regular as follows from (8.79). Hence the above equation implies
that
W x, ¥ x) = (x,x).

Replacing x and y by ¥ x and {y respectively in (8.79) we obtain the re-
lation
AW x¥y) = xyy)=@Wxy)=4(x,y)
showing that
dety = + 1.

Let ¢ (1)(— oo <t<o0) be the family of rotations defined by the differ-
ential equation

p(t)=vo0(1) (8.80)
and the initial condition
®(0)=1.
Then it follows from the result of sec. 8.29 that
o(t+1)=0@)-0(7). (8.81)

We now define functions ¢ and s by

c()=1tro()
and —0<t<™, (8.82)

s()=—1tr(Yoo(1)

These functions are the well-known functions cos and sin. In fact, all
the properties of the trigonometric functions can easily be derived from
(8.82). Select an arbitrary unit-vector e. Then the vectors e and e form

17 Greub, Linear Algebra
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an orthonormal basis of E. Consequently,

tro()=(p(e,e)+ (p()Yeye). (8.83)

Since ¥ is itself a proper rotation, the mappings ¢ (¢) and y commute.
Hence, the second term in (8.83) can be written as

(Ve ve)=Wo()eye)=(p(1)ee).
We thus obtain

c(t) = (p(t)e.e). (8.84)
In the same way it is shown that
s()=(e(t)e,ye). (8.85)
Equations (8.84) and (8.85) imply that
o(e=c(t)e+s(t)ye. (8.86)

Replacing ¢ by ¢+ in (8.84) and using the formulae (8.81) and (8.86) we
obtain

ct+1)=(p(t+1)e,e)=(p(t)p(1)e,e)
=c()(e(r)e,e) —s()(p(r)e,ye). (8.87)

Equations (8.87), (8.84) and (8.85) yield the addition theorem of the func-
tion ¢:

c(t+1)y=c(t)c(z) = s(t)s(r).
In the same way it is shown that

s+ 1)=s()c(x) +c(t)s(z).

Problems

1. Let i be a linear transformation of the inner product space E. De-
fine the linear automorphism exp ¥ by

expy = ¢ (1)
where ¢ (¢) is the family of linear automorphisms defined by

o) =Vo0(t),0(0)=1.
Prove that

o(t)=exp(ty) (—oo<t<o0).



§ 7. Differentiable families of linear automorphisms 259

2. Show that the mapping ¥ —exp y defined in problem 1 has the fol-
lowing properties:

1. exp(Y i+ )=expy oexp ¥, if Yool =i ot
2. exp(—y)=(exp )~ ".

3. exp0=1.

4. e;;)lp———explﬂ.

5. detexpy=e".

From these formulas derive that exp y is selfadjoint if i is selfadjoint and
that exp y is a proper rotation if i is skew.
3. Consider the family of rotations ¢ () defined by (8.80).
a) Assuming that there is a real number p 0 such that ¢ (p)=1, prove
that ¢ (t+p)=¢ (1)(— 0 <t< ).
b) Prove that ¢ (¢,)=1 if and only if
1

dt
tO :4](J~-*fﬂ —= (k—-—_()’i- 15i2"")'
1—12

0

¢) Show that the family ¢ (¢) has derivatives of every order and that

eCTI(1) = — (1) (v=0,1...).
d) Define the curve x(f) by

x() = p(1)e

where e is a fixed unit-vector. Show that

jl)&(t)ldt= t.

4. Derive from formulae (8.82) that the function c is even and that
the function s is odd.

5. Let y be the skew mapping defined by (8.79). Prove De Moivre’s
Sformula

exp(t9) = ()1 + s ().

6. Let i a skew mapping of an n-dimensional inner product space and
¢(t) the corresponding family of rotations. Consider the normal form
(8.35) of the matrix of ¥. Prove that the function ¢ (f)(—o0 <f<o0) is

periodic if and only if all the ratios x,:x, are rational.
17%
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7. Let A be a finite dimensional associative real algebra.
a) Consider a differentiable family of endomorphisms ¢,: 4— A such
that ¢,=1. Prove that ¢, is a derivation in A.
b) Let 0 be a derivation in 4 and define the family ¢, of linear trans-
formations by )
(ﬂr=0(Pr’ Po=1.
Prove that every ¢, is an automorphism of 4. Show that every ¢, com-
mutes with 6.
8. The quaternionic exponential function. Fix a quaternion « and
consider the differential equation
x(t)=ax(t) teR
with the initial condition x(0)=e. Define exp a by
exp a= x(1).
Decompose a in the form a=1e+ b where 2€R and (b, e)=0.
(i) Show that
a) exp(le)=expi-e
where exp 4 is the exponential function for the reals.
b .
b) exp b=ecos |b|+msm |b|.
b .
c) expa=exp i (e cos |b| +m sin lbl) .
(i) Show that
lexp a| = exp 4.
(i) Prove that exp a=e if and only if
A=0 and |b|=2kn, keZ.
(iv) Let a,=A,e+b, and a, =4, e+b, oe two quaternions with b, £0
and b, +0. Show that exp a, =exp q, if and only if
b
A, =4, and b,=b + anﬁ, kez.
1
(v) Let B® be the closed 3-ball given by (x,e)=0, [x|<n. Define a
map ¢: R x B*>E by
oA, y)=exp(le+y) AeR, yeB>.
Show that a) ¢ maps B? onto E —0.
b) @ is injective in the interior of B3.
c) If S3 denotes the boundary of B3 then

@A, y)=—expi-e yeS’.



Chapter IX

Symmetric bilinear functions

All the properties of an inner product space discussed in Chapter VII
are based upon the bilinearity, the symmetry and the definiteness of the
inner product. The question arises which of these properties do not depend
on the definiteness and hence can be carried over to a real linear space
with an indefinite inner product. Linear spaces of this type will be dis-
cussed in § 4. First of all, the general properties of a symmetric bilinear
function will be investigated. It will be assumed throughout the chapter
that all linear spaces are real.

§ 1. Bilinear and quadratic functions

9.1. Definition. Let E be a real vector space and @ be a bilinear func-
tion in E X E. The bilinear function @ is called symmetric if

?(x,y)=®(y,x) x,yeE.

Given a symmetric bilinear function @ consider the (non-linear) func-
tion ¥ defined by
¥ (x) = d(x,x). (9.1)

Then @ is uniquely determined by V.
In fact, replacing x by x+y in (9.1) we obtain
Fx+y)=0(x+y,x+))=¥(x)+22(x,)+¥(), 2

whence
P(x,y)=3{¥(x+y)—¥(x)—-¥()}. 93)

Equation (9.3) shows that different symmetric bilinear functions ¢ lead
to different functions ¥.
Replacing y by —y in (9.2) we find

V(x—y)=¥(x)-22(x,y) + ¥()). 9.4
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Adding the equations (9.2) and (9.4) we obtain the so-called parallelo-
gram-identity
P(x+p)+ ¥P(x—y)=2(Y(x)+ ¥(). 9.5)

9.2. Quadratic functions. A continuous function ¥ of one vector which
satisfies the parallelogram-identity will be called a quadratic function.
Every symmetric bilinear function yields a quadratic function by setting
x=y. We shall now prove that, conversely, every quadratic function can
be obtained in this way.

Substituting x=y=0 in the parallelogram-identity we find that

¥(0)=0. 9.6
Now the same identity yields for x=0
Y(-y)=¥(0)

showing that a quadratic function is an even function.
If there exists at all a symmetric bilinear function @ such that

& (x,x)=¥(x)
this function is given by the equation

D(x,y)=3{P(x+y) - ¥V(x) - ¥ ©.7)

Therefore it remains to be shown that the function ¢ defined by (9.7) is
indeed bilinear and symmetric. The symmetry is an immediate conse-
quence of (9.7). Next, we prove the relation

D(x; + x3,¥) = P(x, ) + P(x5, ). 9.8)
Equation (9.7) yields
20 (x; + x5, ) =P (x; + x2+¥) = ¥(x; +x,) = ¥ ()
20(xp,y)=¥(x; +y) = ¥(x) = ¥(»)

20 (x5, ) =¥ (x, +y)— Y (x) — ¥(»),
whence

2{P(x + %2,9) = P(x1, ) = P(x2, P} ={¥(x1 + x, + ) + Y ()} —
—{P O + WP+ 1) = {0 +x) = P (x)— P(x2)}. (99

It follows from (9.5) that

V(xi+ x4+ 0)+P(0)=5{¥ 1 +x2+2p) + P(x +x,)} (9.10)
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and
Y+ )+ PO+ y) =5 {¥ i +x+20)+ P(x, —x3)}. (9.11)

Subtracting (9.11) from (9.10) and using the parallelogram-identity again
we find that

(PO +x+9)+ PO —{¥(x  +»)+ P(x2 + y)} (9.12)
= 3{¥(x; + x3) = V(x; = x3)} == ¥ (x;) = Y(x2) + ¥(x; +x3).

Now equations (9.9) and (9.12) imply (9.8). Inserting x,=x and x,= —x
into (9.8) we obtain

D(—x,y)=—P(x,y). (9.13)
It remains to be shown that
P(Ax,y)=AP(x,y) (9.14)

for every real number A. First of all it follows from (9.8) that
P(kx,y)=ko(x,y)

for a positive integer k. Equation (9.13) shows that (9.14) is also correct
for negative integers. Now consider a rational number

A= P (p, q integers).
q
Then
p
09 (! )= 050 = P05,

whence
(P(I?x,y> = gd)(x,y).
q q

To prove (9.14) for an irrational factor A we note first that @ is a continu-
ous function of x and y, as follows from the continuity of ¥. Now select
a sequence of rational numbers 4, such that

limA,= 4.
Then we have that
P (A%, y) = 2, P(x, ). (9.15)

For n— oo we obtain from (9.15) the relation (9.14).
Our result shows that the relations (9.1) and (9.7) define a one-to-one
correspondence between all symmetric bilinear functions and all qua-
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dratic functions. If no ambiguity is possible we shall designate a symme-
tric bilinear function and the corresponding quadratic function by the
same symbol, i.e., we shall simply write

¢ (x,x) = P(x).

9.3. Bilinear and quadratic forms. Now assume that E has dimen-
sion n and let x,(v=1...n) be a basis of E. Then a symmetric bilinear
function @ can be expressed as a bilinear form

O(x,y) =) «, " n" (9.16)
v, 1
where
x=38%, y=XYn'x,
and the matrix o, , is defined by
o, = D(x,,X,) *).
It follows from the symmetry of ¢ that the matrix «,, is symmetric:

Oy = Xy

Replacing y by x in (9.16) we obtain the corresponding quadratic form
D(x)=) a,, E"E".
v, 1

Problems

1. Let fand g be two linearly independent linear functions in E and
let 6 be a derivation in the algebra R. Show that the function

¥ (x)=f(x)0[g(x)]—g(x) [ f(x)]

satisfies the paralelogram identity and the relation ¥(Ax)=A*¥(x).
Prove that the function @ obtained from ¥ by (9.7) is bilinear if and only
if 0=0.

2. Prove that a symmetric bilinear function in E defines a quadratic
function in the direct sum F@E.

3. Denote by A and by A4 the matrices of the bilinear function @ with
respect to two bases x, and X,(v=1...n). Show that

A=TAT*

where T is the matrix of the basis transformation x,—%,.

*) The first index counts the row.
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§ 2. The decomposition of E

9.4. Rank. Let E be a vector space of dimension n and ¢ a sym-
metric bilinear function in E x E. Recall that the nullspace E, of & is
defined to be the set of all vectors x,€ E such that

D (x0,y)=0 for every yeE. 9.17)

The difference of the dimensions of E and E, is called the rank of &.
Hence @ is non-degenerate if and only it has rank ».

Now let E* be a dual space and consider the linear mapping ¢: E—E*
defined by

®(x,y)=<ox,y>  x,yeE. (9.18)
Then the null-space of @ obviously coincides with the kernel of ¢,
E,=kereo.

Consequently, the rank of & is equal to the rank of the mapping ¢. Let
(et,,) be the matrix of @ relative to a basis x, (v=1...n) of E. Then relation
(9.18) yields

<(p Xys xu> = (D(xv’ xu) =0y

showing that «,, is the matrix of the mapping ¢. This implies that the
rank of the matrix (a,,) is equal to the rank of ¢ and hence equal to the
rank of @. In particular, a symmetric bilinear function is non-degenerate
if and only if the determinant of («,,) is different from zero.
9.5. Definiteness. A symmetric bilinear function @ is called positive
definite if
@(x)>0

for all vectors x=+0. As has been shown in sec. 7.4, a positive definite
bilinear function satisfies the Schwarz-inequality

O(x,y) < P(x)P(y) x,yeE.

Equality holds if and only if the vectors x and y are linearly dependent.
A positive definite function @ is non-degenerate.

If @ (x)=0 for all vectors xe E, but @ (x)=0 for some vectors x+0, the
function @ is called positive semidefinite. The Schwarz inequality is stiil
valid for a semidefinite function. But now equality may hold without the
vectors x and y being linearly dependent. A semidefinite function is al-
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ways degenerate. In fact, consider a vector x,=+0 such that &(x,)=0.
Then the Schwarz inequality implies that

B (x0, ¥)* < B (x0) B (y) = O

whence @ (x4, y)=0 for all vectors y.

In the same way negative definite and negative semidefinite bilinear
functions are defined.

The bilinear function @ is called indefinite if the function ¢ (x) assumes
positive and negative values. An indefinite function may be degenerate
or non-degenerate.

9.6. The decomposition of E. Let a non-degenerate indefinite bilinear
function @ be given in the n-dimensional space E. It will be shown that
the space E can be decomposed into two subspaces £* and E ~ such that
& is positive definite in £+ and is negative definite in E .

Since @ is indefinite, there is a non-trivial subspace of E in which & is
positive definite. For instance, every vector a for which @ (a)> 0 generates
such a subspace.

Let E* be a subspace of maximal dimension such that @ is positive
definite in £*. Consider the orthogonal complement E~ of E* with re-
spect to the scalar product defined by ®. Since @ is positive definite in E*,
the intersection E* n E~ consists only of the zero-vector. At the same
time we have the relation (cf. Proposition 11, sec. 233)

dimE* + dimE~ =dimE.
This yields the direct decomposition
E=E*"®E".
Now it will be shown that @ is negative definite in £~. Given a vector

z+0 of E~, consider the subspace E, generated by E* and z. Every vec-
tor of this subspace can be written as

X=y+4iz yeE™.
This implies that
P(x)=d(y) + A*P(2). (9.19)

Now assume that @ (z)>0. Then equation (9.19) shows that & is positive
definite in the subspace E; which is a contradiction to the maximum-
property of E*. Consequently,

®(z) £0 for all vectors zeE~
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i.e., @ is negative semidefinite in £~. Using the Schwarz inequality
®(z,,2)) S P(z,)P(z) z,€E ,zeE” (9.20)

we can prove that @ is even negative definite in £~. Assume that ¢ (z,)=0
for a vector z;€ E~. Then the inequality (9.20) yields

@(z,,2)=0

for all vectors ze E~. At the same time we know that
P(z;,y)=0

for all vectors ye E*. These two equations imply that
P(zy,x)=0

for all vectors xe E, whence z, =0.
9.7. The decomposition in the degenerate case. If the bilinear function
& is degenerate, select a subspace E; complementary to the nullspace E,

E=E,®E,.
Then & is non-degenerate in E,. In fact, assume that
D(x1,y)=0

for a fixed vector x,€F, and all vectors y,€E,. Consider an arbitrary
vector ye E. This vector can be written as

y=Yo+n Yo€Eg y €E;
whence
¢(xl7y):qb(xl’y())+(p(x1’yl)=0' 9.21)

This equation shows that x, is contained in E, and hence it is contained
in the intersection E, 0 E,. This implies that x, =0.

Now the construction of sec. 9.6 can be applied to the subspace E;. We
thus obtain altogether a direct decomposition

E=E,®E*®E- (9.22)

of E such that ¢ is positive definite in E* and negative definite in £ .
9.8. Diagonalization of the matrix. Let (x,...x,) be a basis of E*, which
is orthonormal with respect to @, (X,+;...X,) be a basis of E~ which is
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orthonormal with respect to —@®, and (x,,,...x,) be an arbitrary basis
of E,. Then
+1(v=1..59)
?(x,,x,)=¢,0,, whereg, = —1(v=s+1..r)
2 O(v=r+1..n)

The vectors (x;...x,) then form a basis of £ in which the matrix of @ has
the following diagonal-form:

0\

9.9. The index. It is clear from the above construction that there are
infinitely many different decompositions of the form (9.22). However, the
dimensions of E* and E~ are uniquely determined by the bilinear func-
tion @. To prove this, consider two decompositions

E=E/ ®@E{ ®E, (9.23)
and
E=E; ®E; ®E, (9.24)

such that & is positive definite in E; and E; and negative definite in
E{ and E;. This implies that

E; n(Ef ®Ey) =0
whence
dimE; + dimE] + dimE, < n. (9.25)

Comparing the dimensions in (9.23) we find
dimE{ + dimE] +dimE,=n. (9.26)
Equations (9.25) and (9.26) yield

dimE; < dimE; .
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Interchanging E;" and E,” we obtain

dimE; <dimE;,
whence
dimE] =dimE; .

Consequently, the dimension of E* is uniquely determined by @. This
number is called the index of the bilinear function @ and the number
dim E* —dim E~ =2s—r is called the signature of ®.

Now suppose that x,(v=1...n) is a basis of E in which the quadratic
function ¢ has diagonal form

P(x)=228¢
and assume that
A, >0(v=1...p) and A, £0(v=p+1..n).

Then p is the index of @. In fact, the vectors x, (v=1...p) generate a sub-
space of maximal dimension in which @ is positive definite.

From the above result we obtain Sylvester’s law of inertia which asserts
that the number of positive coefficients is the same for every diagonal
form.

9.10. The rank and the index of a symmetric bilinear function can be
determined explicitly from the corresponding quadratic form

O(x)=) a,, E"E".

We can exclude the case @®=0. Then at least one coefficient a;; is different
from zero. If i+/, apply the substitution

feErE=F-8.
(x) = ¥ 8,88

Then

where &; %0 and &;;#0. Thus, we may assume that at least one coefficient
o, SAY o4 4, is different from zero. Then @ (x) can be written as

2 n
¢(x)=<xu{(él)2+ -2 aw«:‘é"}+ Yo,
Xy p=2 v, u=2
The substitution

1 n
=& Yy,
Ayg p=2

=&  (v=2..n)
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yields
d(x)=ay; (0" + Y Zﬁvuﬂvﬂ"- 9.27)
YV, 4=

The sum in (9.27) is a symmetric bilinear form in (n—1) variables and
hence the same reduction can be applied to this sum. Continuing this way
we finally obtain an expression of the form

P(x)=Y 2.
Rearranging the variables we can achieve that

A>0 (v=1..53)
<0 (v=s+1...r)
=0 (v=r+1..n).

Then r is the rank and s is the index of @.

Problems

1. Let @0 be a given quadratic function. Prove that @ can be written
in the form
P(x)=cf(x)e= %1

where fis a linear function, if and only if the corresponding bilinear func-
tion has rank 1.
2. Given a non-degenerate symmetric bilinear form @ in E, let J be a
subspace of maximal dimension such that @ (x, x)=0 for every xeJ.
Prove that
dimJ = min(s,n — s).

Hint: Introduce two dual spaces E* and F* and linear mappings

¢ E—-E* and ¢,:E- F*
defined by
P(x,y)=<@yx,y> and P(x,y)=<{x,0,¥).

3. Define the bilinear function @ in the space L(E; E) by

P(p,¥)=tr(Yop).

Let S(E; E) be the space of all selfadjoint mappings and A4 (E; E) be
the space of all skew mappings with respect to a positive definite inner
product. Prove:
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a) d’(qo, 90)>0 for every q)=|=0 in S(E; E),
b) @ (¢, ¢)<0 for every ¢ +0in A(E; E),
¢) @(,¥)=0if peS(E; E) and yeA(E; E),

+1
d) The index of @ is '3("2 1) here n = dimE.

4. Find the index of the bilinear function

(oY) =tr(Yop) —trotry

in the space L(E; E).

5. Find the index of the quadratic form

P(x) =), gl
i<j

6. Let @ be a bilinear function in E. Assume that E; is a subspace of
E such that @ is non-degenerate in E;. Define the subspace E, as follows:
A vector x,€E is contained in E, if

&(x,x,) =0 for all vectors x, €E, .
Prove that
E=E, ®E,.

7. Consider a (not necessarily symmetric) bilinear function @ such that
& (x, x)>0 for all vectors x 0. Construct a basis of E in which the matrix
of & has the form

1 oK, 3
- Kl 1
1 x,
—K, 1
1
. 1)
Hint: Decompose @ in the form
d=0, +,,

where

®,(x,y) =P (x,y) + @(y, %))
and

@, (x,5) = 1(2(x,5) — ¢(5,x)).
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8. Let E be a 2-dimensional vector space, and consider the 4-dimen-
sional space L(E; E). Prove that there exists a 3-dimensional subspace
Fc L(E; E) and a symmetric bilinear function ¢ in F such that the nil-
potent transformations (cf. problem 7, Chap. 1V, § 6) are precisely the
transformations t satisfying @ (t)=0 (In other words, the nilpotent trans-
formations form a cone in F).

§ 3. Pairs of symmetric bilinear functions

9.11. In this paragraph we shall investigate the question under which
conditions two symmetric bilinear functions ¢ and ¥ can be simultane-
ously reduced to diagonal form.

To obtain a first criterion we consider the case that one of the bilinear
functions, say ¥, is non-degenerate. Then the vector space E'is self-dual
with respect to ¥ and hence there exists a linear transformation ¢: E—-F
satisfying

®(x,y)=¥(px,y) x,yeE

(cf. Prop. 111, sec. 2.33). Suppose now that x; and x, are eigenvectors of
¢ such that the corresponding eigenvalues 1; and 4, are different. Then
we have that

P (xy,xz) = A Y (X, X3)
and

P(x2,X;) = A2 ¥(xp,X,)

whence in view of the symmetry of ¢ and ¥
(A1 = 42) ¥ (x1,%;) = 0.

Since 2, %1, it follows that ¥ (x,, x,)=0 and hence ¢ (x, x,)=0.
Proposition: Assume that ¥ is non-degenerate. Then ¢ and ¥ are
simultaneously diagonalizable if and only if the linear transformation ¢
has » hinearly independent eigenvectors.
Proof: If ¢ has n linearly independent eigenvectors consider the distinct
eigenvalues 4,...4, of ¢. Then it follows that

E=E ®--Q@E,
where E; is the eigenspace of 4;. Then we have for x;€ E; and x;e E;, i%]
Y(x;,x;)=0 and @(x;x;)=0.

Now choose a basis in each space E; such that ¥ has diagonal form (cf.
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sec. 9.8). Since
P(x,y)=4L¥(x,y)  xyeE

it follows that @ has also diagonal form in this basis. Combining all these
bases of the E; we obtain a basis of E such that ¢ and ¥ have diagonal
form.

Conversely, let e;(i=1...n) be a basis of E such that & (e, ¢;)=0 and
¥ (e;, e;)=0if i%j. Then we have that

Y(pe,e;)=0 i%j.

This equation shows that the vector ¢e; is contained in the orthogonal
complement (with respect to the scalar product defined by ¥) of the sub-
space F; generated by the vectors e,, v#i. But F j is the 1-dimensional
subspace generated by e;, and so it follows that @ e;=Ae;. In other words,
the e; are eigenvectors of ¢.

As an example let E be a plane with basis a, b and consider the bilinear
functions @, ¥ given by

®(a,a)=1, @(a,b)=0, @(b,b)=-1
and
¥Y(a,a)=0, ¥(a,b)=1, ¥(b,b)=0.

It is easy to verify that then the linear transformation ¢ is given by
pa=b, pb=—a.

Since the characteristic polynomial of ¢ is A2+ 1 it follows that ¢ has no
eigenvectors. Hence, the bilinear functions ¢ and ¥ are not simultane-
ously diagonalizable.

Theorem: Let E be a vector space of dimension n>3 and let ® and ¥
be two symmetric bilinear functions such that

D(x)2+ ¥(x)*=+0 if x=+0.

Then & and ¥ are simultaneously diagonalizable.

Before giving the proof we comment that the theorem is not correct for
dimension 2 as the example above shows.

9.12. To prove the above theorem we employ a similar method as in
sec. 8.6. If one of the functions @ and ¥, say ¥, is positive definite the
desired basis-vectors are those for which the function

P (x)

R7eY

x+0. (9.28)

18 Greub. Linear Algebra
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assumes a relative minimum. However, if ¥ is indefinite, the denominator
in (9.28) assumes the value zero for certain vectors x=#0 and hence the
function F is no longer defined in the entire space x=0. The method of
sec. 8.6 can still be carried over to the present case if the function F is
replaced by the function

arc tan F (x). (9.29)

To avoid difficulties arising from the fact that the function arc tan is not
single-valued, we shall write the function as a line-integral. At this point
the hypothesis n=3 will be essential *).
Let £ be the deleted space x+0and x=x(f) (0= < 1) be a differentiable
curve in £. Consider the line-integral
1

J = J ?(x)i(xf,i— d),(f,’ x)j(x)d ¢ (9.30)
@ (x)" + ¥ (x)’
0
taken along the curve x(z). First of all it will be shown that the integral J
depends only on the initial point x,=x(0) and the endpoint x=x(1) of
the curve x(¢). For this purpose define the following mapping of E into
the complex w-plane:

w(x)=&(x)+i¥(x).
The image of the curve x(¢) under this mapping is the curve
o@)=o(x@)+i¥(x@) (0=Lr=1) (9.31)

in the w-plane. The hypothesis @ (x)*+ ¥ (x)*=+0 implies that the curve
w(1)(0=t=1) does not go through the point w=0. The integral (9.30)

can now be written as
1

J 1 ub—uvdt
T2 u? 4+ v?
0

where the integration is taken along the curve (9.31).

Now let 6(r) be an angle-function for the curve w(¢) i.e. a continuous
function of ¢ such that
u(r)

. v(t)
cos (1) = Iw(iﬂ and sind(t) = Iw(tﬁ (9.32)

*) The proof given is due to JoHN MILNOR.
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(cf. fig. 2)*). It follows from the differentiability of the curve w(z) that
the angle-function 6 is differentiable and we thus obtain from (9.32)

. d|ow|
—Uu I(DI +u 7
sin-0= " 9.33
wrt) |Cl)|2 ( )
) and
d|w|
vlw| — v
cosf= . 9.34)
Fig. 2 ||

Multiplying (9.33) by sin 6 and (9.34) by cos 8 and adding these equa-
tions we find that

. uv—uv
6=

u2+l)24'
Integration from 7=0 to =1 gives
1
uv—uv
———dt=6(1)—-06(0
|4 ae=0m - 00

0o

showing that the integral J is equal to the change of the angle-function 6

along the curve w(?),
2J = 0(1) — 6(0). (9.35)

Now consider another differentiable curve x=%(7)(0<¢<1) in E with
the initial point x, and the endpoint x and denote by J the integral (9.30)
taken along the curve % (7). Then formula (9.35) yields

2J=0(1)—-06(0) (9.36)
where 8 is an angle-function for the curve
o()=0(x()+i¥Y(x@) ((O=Lt£1).
Since the curves w (¢) and @(7)(0=<r<1) have the same initial point and
the same endpoint it follows that

0(0)— 0(0)=2kom and 0(1)—0(1) =2k, n (9.37)

*) For more details cf. P.S. ALExaxnprOV. Combinatorial Topology, Vol. I, chapter I1.§ 2.




276 Chapter IX. Symmetric bilinear functions

where k, and k, are integers. Equations (9.35), (9.36) and (9.37) show
that the difference J—J is a multiple of =,

J—J=kn.

It remains to be shown that k=0. The hypothesis #= 3 implies that the

space E is simply connected. In other words, there exists a continuous

mapping x=x(t, 7) of the square 0<¢<1, 0<t<1 into E such that
x(1,0)=x(1), x(t,1)=2x() 01t

and
x(0,7)=x,, x(l,7)=x 071,

The mapping x (¢, 7) can even be assumed to be differentiable. Then, for
every fixed 7, we can form the integral (9.30) along the curve

x(tty (0=2t<1).

This integral is a continuous function J(t) of 7. At the same time we know
that the difference J(t)—J is a multiple of =,

J(1)—=J =nk(7). (9.38)

Hence, k(t) is a continuous integer-valued function in the interval
0=<7=1 and thus k() must be a constant. Since k (0)=0 it follows that
k(r)=0(0=t<1). Now equation (9.38) yields

J@)=J (0=t=1).

Inserting =1 we obtain the relation

J=J
showing that the integral (9.30) is indeed independent of the curve x (7).
9.13. The function F. We now can define a single-valued function F in
the space E by

x

Flx) = J'¢(x)f(x,)'c) — & (x,%)¥(x)

et 9.39

D (x)* + ¥(x)° ©-39)
X0

where the integration is taken along an arbitrary differentiable curve x(¢)

in £ leading from x, to x. The function Fis homogeneous of degree zero,

F(Ax)=F(x), 1>0. (9.40)
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To prove this, observe that
Ax

[ P(x) P (x, %) — D(x,%) ¥ (x)
Fldx) = Fx) = f B TET TS

Choosing the straight segment
x()=(1-tix+tx (0=r<1)
as path of integration we find that

x=(1-%x
whence
P(x)P(x,x)— d(x, %) ¥(x)=0.

This implies the equation (9.40).

9.14. The construction of eigenvectors. From now on our proof will
follow the same lines as in sec. 8.6. We consider first the case that ¥ is non-
degenerate. Introduce a positive definite inner product in E. Then the
continuous function F assumes a minimum on the sphere |x|=1. Let ¢,
be a vector on |x|=1 such that

F(e) = F(x)
for all vectors |x|=1. Then the homogeneity of F implies that

F(e;) £ F(x)
for all vectors x=+0.
Consequently, the function

f(t)=F(e +1y),
where y is an arbitrary vector, assumes a minimum at r=0, whence
f(0)y=o0. (9.41)
Carrying out the differentiation we find that

y _(p(ex)ql(ebJ’)“‘p(en,")ql(ex)
SO = ey (9.42)

Equations (9.41) and (9.42) imply that
Ple,y)¥(e,) —P(e)¥(e;,y)=0 (9.43)

for all vectors yeE. In this equation ¥ (e,)+0. In fact, assume that
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¥ (e,)=0. Then ®(e;)+0 and hence equation (9.43) yields ¥ (e, »)=0
for all vectors ye E. This is a contradiction to our assumption that ¥ is
non-degenerate.

Define the number 2, by

- @D(el),
l‘”(ex)’

2

then equation (9.43) can be written as
Pe,y) =/, ¥(e,y) yeE.
9.15. Now consider the subspace £, defined by the equation
¥ (e, z)=0.

Since ¥ is non-degenerate, £, has the dimension n—1. Moreover, the
restriction of ¥ to E, is again non-degenerate: Assume that z, is a vector
of E, such that

Y(z,,2)=0 (9.44)

for all vectors ze E;. Equation (9.44) implies that
V(20 x) =0 (9.45)
for every vector xe E because x can be decomposed in the form
x=C%e +z zeE,.

Now it follows from (9.45) that z; =0, and so ¥ is non-degenerate in E;.
Therefore, the construction of sec. 9.14 can be applied to E,. We thus
obtain a vector e,e E; with the property that

P(ey,z) = A, ¥ (e,,z) for every vector zeE, (9.46)
where
P(e
)
¥ (e2)

Equation (9.46) implies that
P(ey,y) =24, ¥ (e, ) (9.47)
for every vector ye E; in fact, y can be decomposed in the form

y=¢e +z zeE,
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and we thus obtain

(e, y) =EP(eg,01) + P, 2) = LD (ey, 05) + P ey, 2) (9.48)
=CA V(e er) + Pley,z) = @ (e, 2)
and
V(e y)=CEW(epe)+ V(e z)=¥(e,y2). (9.49)

Equations (9.46), (9.48) and (9.49) yield (9.47).
Continuing this construction we obtain after » steps a system of n
vectors e, subject to the following conditions:

(e, y)=21¥(e,y) yeE (9.50)
¥ (e, e,) 0
¥(e,e)=0 (v*p).

Rearranging the vectors e, and multiplying them with appropriate scalars
we can achieve that
+1(v=1...3)

ll’(ev,eu)=8v5vu & =9 1(V= S +1n)

9.51)
where s denotes the signature of ¥. It follows from the above relations
that the vectors e, form a basis of E.

Inserting y=e, in the first equation (9.50) we find

P (e, e,) =4,8,0,,. (9.52)

Equations (9.51) and (9.52) show that the bilinear functions ¢ and ¥ have
diagonal form in the basis e,(v=1...n).

9.16. The degenerate case. The degenerate case now remains to be con-
sidered. We may assume that ¥ #0. Then it will be shown that there
exists a scalar A, such that the bilinear function ®+4,¥ is non-de-
generate

Let E* be a dual space of E and consider the linear mappings

¢:E—E* and y:E— E*
defined by the equations

D(x,y)=<px,y> and ¥(x,y)=<¥x,p>.
Then

Imy n @(kery) =0. (9.53)

To prove this relation, let y*e Imy N ¢ (kery) be any vector. Then y* =g x
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for some xe ker . Hence
Y(x)=<{x,¥yx>=0 (9.54)
and
P(x)={px,x>=%x>=0 (9.55)

because y*eImy and xekery.
Equations (9.54) and (9.55) imply that x =0 and hence that y*=¢px=0.
Now let x,(v=1...n) be a basis of E such that the vectors (x,;...x,)
form a basis of ker . Employing a determinant-function 40 in E we
obtain
A(exy + AYx,...px, + AP x,)
=A(px; +AYUX; .. 0X, + AYX,, QX 1 ( ... 0X,).

The expansion of this expression yields a polynomial f(1) starting with
the term

AW X, X, @X, g .. 0 X,).

The coefficient of A" is not identically zero. This follows from the relation
(9.53) and the fact that the r vectors yx,eImy (¢=1...r) and the (n—r)
vectors @x,e @ (ker ) (6 =r+1...n) are linearly independent.

Hence, f is a polynomial of degree r. Our assumption ¥ +0 implies
that r= 1. Consequently, a number 4, can be chosen such that f(4,)=+0.
Then @+ 4, ¥ is non-degenerate (cf. sec. 9.4).

By the previous theorem there exists a basis e, (v=1...n) of E in which
the bilinear functions ¢ and ¢+ AY¥ both have diagonal form. Then the
functions @ and ¥ have also diagonal form in this basis.

Problems

1. Let ¢ and ¥ be two symmetric bilinear functions in E. Prove that
the condition

O(x)*+ ¥ (x)*>0, x%0
is equivalent to the following one: There exist real numbers A and p such
that
AP(x)+pn¥(x)>0
for every x+0.

2. Let A=(a,,) and B=(f,,) be two symmetric nx n-matrices and
assume that the equations

0, &8 =0 and ¥ B,L8 =0
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together imply that £'=0 (v=1...n). Prove that the polynomial
f(A) =det(4 + AB)

is of degree r and has r real roots where r is the rank of B.

§ 4. Pseudo-Euclidean spaces

9.17. Definition. A pseudo-Euclidean space is a real linear space in
which a non-degenerate indefinite bilinear function is given. As in the
positive definite case, this bilinear function is called the inner product and
is denoted by (,). The index of the inner product is called the index of
the pseudo-Euclidean space.

Since the inner product is indefinite, the number (x, x) can be positive,
negative or zero, depending on the vector x. A vector x=0 is called

space-like, if (x, x)>0

time-like, if (x, x)<0

a light-vector, if (x, x)=0

The light-cone is the set of all light-vectors.

As in the definite case two vectors x and y are called orthogonal if
(x, y)=0. The light-cone consists of all vectors which are orthogonal to
themselves.

A basis e, (v=1...n) is called orthonormal if

(ev’ eu) =&, 5vu
where
_(+1(v=1..5)

8”_(—1(v=s+1...n).

In sec. 9.8 we have shown that an orthonormal basis can always be
constructed.
If an orthonormal basis e,(v=1...n) is chosen, the inner product of

two vectors v v
x=y&, and y=>Yn'e,

is given by the bilinear form

(x,y)=2 &¢&n"= Zlé”nv— Y o (9.56)
v=1 v= v=s+1
and the equation of the light-cone reads

Lee- ¥ oee=o.

v=s+1
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9.18. Orthogonal complements. Since the inner product in E is non-
degenerate the space E is dual to itself. Hence, every subspace £, < E
determines an orthogonal complement E; which is again a subspace of E
and has complementary dimension.

However, the intersection £, N E; does not necessarily consist of the
zero-vector alone, as in the positive definite case. Assume, for instance,
that E; is the 1-dimensional subspace generated by a light-vector /.
Then E, is contained in Ej.

It will be shown that E, n E{ =0 if and only if the inner product is
non-degenerate in £, . Assume first that this condition is fulfilled. Let x,
be a vector of E; n E;. Then

(x,,y,) =0 for all vectors y, eE,, (9.57)
and thus x; =0. Conversely, assume that E, N E{ =0. Then it follows that
E=E, QE; (9.58)

since E, and Ej have complementary dimension.
Now let x, be a vector of E, such that

(x1,)1)=0 for all vectors y, €E,.
It follows from (9.58) that every vector y of E can be written as

1 1
y=¥i+¥r yi€E,yeEy,
whence

(x1,9) =(x1,y1) + (x;,37) =0 for all vectors yeE.

This equation implies that x;=0. Consequently, the inner product is
non-degenerate in E,.
9.19. Normed determinant functions. Let 4,40 be a determinant func-
tion in E. Since E is dual to itself, the identity (4.21) applies to E yielding
xeR

veo O

Ao(X1s s x,) Ao (315 ey ¥,) = adet (x;, 3;)
Substituting x,=y,=e, in (9.59), where e,(v=1...n) is an orthonormal
basis, we obtain

do(ey...e) =(=1)" a.

This equation shows that
2(—=1y"*>0.
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Consequently, another determinant function, 4, can be defined by

4o

A = i - 'T;;;;f . (9.60)
V(=1
Then the identity (9.59) assumes the form
Ay .. x,)A(yy - y,) = (= 1) *det(x;, v)). (9.61)

A determinant function satisfying the relation (9.61) is called a normed
determinant function. Equation (9.60) shows that there exist exactly two
normed determinant functions 4 and —4 in E.

9.20. The pseudo-Euclidean plane. The simplest example of a pseudo-
Euclidean space is a 2-dimensional linear space with an inner product
of index 1. Then the light-cone consists of two straight lines. Selecting
two vectors /; and /, which generate these lines we have the equations

(I,1)=0 and (I,,1,)=0. (9.62)
But
([1’12):"20

because otherwise the inner product would be identically zero. We can
therefore assume that U 1)=—1. (9.63)

Given a vector
x=¢& 4+ &,
of E the equations (9.62) and (9.63) yield
(x,x)=—2¢&"¢?

showing that x is space-like if &' £2<0 and x is time-like if &' £2>0. In
other words, the space-like vectors are contained in the two sectors S,
and S, of fig. 3 and the time-like vectors are contained in T+ and T~
The inner product of two vectors

x=¢"1,+&1, and y=n'l, +7n%l,

>0 is given by

(,y)=—@"n* + &n').
This formula shows that the inner product of two
space-like vectors is positive if and only if these
vectors are contained in the same one of the sectors
S, and S,.
Letan orientation be defined in £ by the normed determinant function 4.

Fig. 3
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Then the identity (9.61) yields (n=2, s=1)

(x,9)* = 4(x,y)* = (x,x)(y, ). (9.64)
If x and y are not light-vectors equation (9.64) may be written in the
form 2 2
b A >
(x,9) A" 9.65)

(X)) (6x) (1, ¥)
Now assume in addition, that the vectors x and y are space-like and are
contained in the same one of the sectors S, and S,. Then

(x,y) > 0. (9.66)

Relations (9.65) and (9.66) imply that there exists exactly one real
number 0 ( — 00 <6< o) such that

3 A 3
= (x Y) and sinh6 = (x.7)

coshf = .
|x] 1yl Ix] 1yl

(9.67)

This number is called the pseudo-Euclidean angle between the space-like
vectors x and y.
We finally note that the vectors

1 1
J2 /2
form an orthonormal basis of E. Relative to this basis the equation of
the light-cone assumes the form

(&) —(&*)* =0.

9.21. Pseudo-Euclidean spaces of index n—1. More generally let us con-
sider an n-dimensional pseudo-Euclidean space with index n—1. Then
every fixed time-like unit vector z determines an orthogonal decom-
position of E into an (n—1)-dimensional subspace consisting of space-

like vectors and the 1-dimensional subspace generated by z. In fact, every
vector x€ E can be uniquely decomposed in the form

(11 - lz) and ez = (ll + lz)

ey =

x=lizty  (5y)=0

where the scalar 4 is given by
A=—(x,z2).

Passing over to the norm we obtain the equation

(x,x) == 22+ (y,5)
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showing that
A% < (y,y) if x is space-like
22> (y, ) if x is time-like (9.68)
2% =(y,y)if x is a light-vector.

From this decomposition we shall now derive the following properties:

(1) Two time-like vectors are never orthogonal.

(2) A time-like vector is never orthogonal to a light-vector.

(3) Two light-vectors are orthogonal if and only if they are linearly
dependent.

(4) The orthogonal complement of a light-vector is an (rn—1)-di-
mensional subspace of E in which the inner product is positive semide-
finite and has rank n—2.

To prove (1), consider another time-like vector z,. This vector z, can be
written as

z,=Az+ ¥y, (z,y,)=0. (9.69)
Then
'12 > (.VI’ yl) 4

whence 4 0. Inner multiplication of (9.69) by z yields
(z,z1) = A(z,2) £ 0.
Next, consider a light-vector /. Then

l=%z+y (z,y)=0
and
A2=(y,y)>0.
These two relations imply that
(I,2)=A(z,2) £ 0

which proves (2).

Now let /; and /, be two orthogonal light-vectors. Then we have the
decompositions

li=4z+4+y, and l,=4z+y,,
whence
— 1A+ (y1,2)=0. (9.70)
Observing that
Ai=(yuyi) and A3 =(y5,5,)

we obtain from (9.71) the equation

(}’1,)’1)(}’23)’2):(3’1’)’2)2- (9.11)
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The vectors y, and y, are contained in the orthogonal complement
of z. In this space the inner product is positive definite and hence equation.
(9.71) implies that y, and y, are linearly dependent, y,=7Ay,. Inserting
this into (9.70) we find 1, =424,, whence /, =4/,.

Finally, let / be a light-vector and E, be the orthogonal complement of
L. It follows from property (2) that E; does not contain time-like vectors.
In other words, the inner product is positive semidefinite in £,. To find
the null-space of the inner product, assume that y, is a vector of E; such
that

(v, ¥)=0 for all vectors yeE, .

This implies that (y;, y,)=0 showing that y, is a light-vector. Now it
follows from property (3) that y, is a multiple of /. Consequently, the
null-space of the inner product in E; is generated by /.

9.22. Fore-cone and past-cone. As another consequence of the prop-
erties established in the last section it will now be shown that the set of all
time-like vectors consists of two disjoint sectors 7+ and T~ (cf. fig. 4.) To
this purpose we define an equivalence relation in the set T of all time-like

vectors in the following way:
Xy

Relation (9.72) is obviously symmetric and reflexive.
s To prove the transitivity, consider three time-like

Zr vectors z;(i=1, 2, 3) and assume that

z,~z, if (z,,2z;)<0. 9.72)

y (z1,23) <0 and (z,,z3) <0.
We have to show that
Fig. 4 (z1,2,) < 0.
We may assume that z; is a time-like unit-vector. Then the vectors z; and
z, can be decomposed in the form
zi=Azy+ v, A=—(z23) (i=1,2) (9.73)

where the vectors y, and y, are contained in the orthogonal complement
F of z5. Equations (9.73) yield

(znz) == A +0ny) (=12 9.74)
and
(21,32) ==+ (}’1, V). (9.75)
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It follows from (9.68) that
(o) < i (i=1,2).

Now observe that the inner product is positive definite in the subspace
F. Consequently, the Schwarz inequality applies to the vectors y, and y,,
yielding

(Yp}’z)z SLy)sy) = AtA3.

This inequality shows that the first term determines the sign on the
right-hand side of (9.75). But this term is negative because A;= — (z;, z3)
>0 (i=1, 2) and we thus obtain

(z1,22) < 0.

The equivalence relation (9.72) induces a decomposition of the set T’
into two classes T* and T~ which are obtained from each other by the
reflection x—» —x.

9.23. The two subsets T* and T~ are convex, i.e., they contain with
any two vectors z; and z, the straight segment

z()=(1—1t)z, + 1z, 0=r=1).
In fact, assume that z, eT* and z, eT*. Then

(z1,21) <0,(z5,2,) <0 and (z,,2,) <0,
whence

(2(),z(1) = (1 = 1)* (21, 2¢) + 2t(L = 1) (21, 25) + 17 (2, 22) <O,
o=,

In the special theory of relativity the sectors T+ and T~ are called the
fore-cone and the past-cone.
The set S of the space-like vectors is not convex as fig. 4 shows.

Problems

1. Let E be a pseudo-Euclidean plane and g,, g, be the two straight
lines generated by the light-vectors. Introduce a Euclidean metric in E
such that g, and g, are orthogonal. Prove that two vectors x#0 and
y=+0 are orthogonal with respect to the pseudo-Euclidean metric if and
only if they generate the Euclidean bisectors of g, and g,.

2. Consider a pseudo-Euclidean space of dimension 3 and index 2.
Assume that an orientation is defined in E by the normed determinant



288 Chapter IX. Symmetric bilinear functions

function 4. As in a Euclidean space define the cross product of two
vectors x; and x, by the relation

(X1 X x3,X3) = A(xy,X2,%3).

Prove: a) x; x x, =0 if and only if the vectors x; and x, are linearly
dependent.

b) (xy X Xz, Xy X Xz)= (x1, ) = (x;, x;) (x2, X;)

¢) If e, e,, e is a positive orthonormal basis of E, then

ey Xe; =—¢e€;3, € Xeé3=—e,, €y X €y =2¢;.

3. Let E be an n-dimensional pseudo-Euclidean space of index n—1.
Given two time-like unit vectors z, and z, prove: a) The vector z; +z, is
time-like or space-like depending on whether z, and z, are contained in
the same cone or in different cones. b) The Schwarz inequality holds in
the reversed form

(21,22)2 2 (z4,2,)(22,22).

Equality holds if and only if z, and z, are linearly dependent.

4. Denote by S the set of all space-like vectors. Prove that the set .S
is connected if »=3. More precisely: Given two vectors x,€S and x,€S
there exists a continuous curve x=x(¢)(0=<¢=<1) in S such that x(0)=x,
x()=x,.

§ 5. Linear mappings of pseudo-Euclidean spaces

9.24. The adjoint mapping. Let ¢ a linear transformation of the n-di-
mensional pseudo-Euclidean space E. Since £ is dual to itself with
respect to the inner product the adjoint mapping ¢ can be defined as in
sec. (8.1). The mappings ¢ and @ are connected by the relation

(ex,y)=(x,py) x,yeE. (9.76)
The duality of the mappings ¢ and @ implies that
detp=detyp and trp=treo.

Let () and (&) (v, p=1...n) be the matrices of ¢ and ¢ relative to an
orthonormal basis e,. Inserting x=e, and y=e, into (9.76) we find that

£, =€, 0, (v,u=1...n)
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where

_f+1(v=1..9)
rgv—{—l(v-——s+1...n).

Now assume that the mapping ¢ is selfadjoint, #=¢. In the positive
definite case we have shown that there exists a system of n orthonormal
eigenvectors. This result can be carried over to pseudo-Euclidean spaces
of dimension n 23 if we add the hypothesis that (x, ¢x)+0 for all light-
vectors. To prove this, consider the symmetric bilinear functions

P(x,y)=(px,y) and ¥(x,y)=(x,y).
It follows from the above assumption that
®(x)* + ¥(x)* >0 for all vectors x # 0.

Hence the theorem of sec. 9.11 applies to @ and ¥, showing that there
exists an orthonormal basis e, (v=1...n) such that

(pe,e,)=4,¢9,, (v,u=1..n). (9.77)
Equations (9.77) imply that
pe,=A¢ee, (v=1..n)
showing that the e, are eigenvectors of ¢.

9.25. Pseudo-Euclidean rotations. A linear transformation ¢ of the
pseudo-Euclidean space E which preserves the inner product,

(px,0y)=(x,y) (9.78)

is called a pseudo-FEuclidean rotation. Replacing y by x in (9.78) we obtain
the equation (@%,0%) = (x,%) <eE
showing that a pseudo-Euclidean rotation sends space-like vectors into
space-like vectors, time-like vectors into time-like vectors and light-
vectors into light-vectors. A rotation is always regular. In fact, assume
that ¢x =0 for a vector xeE. Then it follows from (9.78) that

(x,y)=(px,0y)=0

for all vectors ye E, whence x=0.
Comparing the relations (9.76) and (9.78) we see that the adjoint and
the inverse of a pseudo-Euclidean rotation coincide,

p=0 " (9.79)

19 Greub, Linear Algebra
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Equation (9.79) shows that the determinant of ¢ must be + 1, as in the
Euclidean case.
Now let e be an eigenvector of ¢ and 4 be the corresponding eigen-
value, ,
pe=ie.
Passing over to the norms we obtain

(pe,pe)=1%(e,e).

This equation shows that 2= 4- | provided that e is not a light-vector.
An eigenvector which is contained in the light-cone may have an eigen-
value 2% + 1 as can be seen from examples.

If an orthonormal basis is chosen in E the matrix of ¢ satisfies the

relations 12 .
e o, =¢,0,,.
A

A matrix of this kind is called pseudo-orthogonal.
9.26. Pseudo-Euclidean rotations of the plane. In particular, consider
a pseudo-Euclidean rotation ¢ of a 2-dimensional space with index 1.
Then the light-cone consists of two straight lines. Since the light-cone is
preserved under the rotation ¢, it follows that these straight lines are
either transformed into themselves or they are interchanged. Now assume
that ¢ is a proper rotation i.e. det =+ 1. Then the second case is im-
possible because the inner product is preserved under ¢. Thus we can
write 1
@l, =211, and (plzzi—lz, (9.80)

where /,, /, is the basis of E defined in sec. 9.20. The number 4 is positive
or negative depending on whether the sectors T+ and T~ are mapped
onto themselves or interchanged.

Now consider an arbitrary vector

x =&, +E21,. (9.81)
Then equations (9.80) and (9.81) yield
1
ox=AE'1, +;~le2,
whence

(x px)=— 2 151:2—1<a ! 9.82
X, P X)= <~+/{> -—E +A>(X,X). ( . )
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This equation shows, that the inner product of x and ¢x depends only
on the norm of x as in the case of a Euclidean rotation (cf. sec. 8.21).

To find the “rotation-angle” of ¢, introduce an orientation in E such
that the basis I;, I, is positive. Let A be a normed determinant function
which represents this orientation. Then identity (9.64) yields

A(lulz)z = (11, 12)2 =1,
whence
A, 1,)=1.

Inserting the vectors x and ¢x into 4 we find that

A(x, ¢ x) =;<z -D(x,x)a(zl, 1) = ;<z -D(x,x).

Now assume in addition that ¢ transforms the sectors 7" and T~
into themselves (i. e., that ¢ does not interchange 7 and 7 7). Then
A> 0 and equation (9.82) shows that (x, @x) > 0for every space-like vector
x. Using formulae (9.67) we obtain the equations

1 1 1 1
coshf=—{A+-) and sinhf=—{4A-—-], (9.83)
2 A 2 A

where 0 denotes the pseudo-Euclidean angle between the vectors x and
oXx.

Now consider the orthonormal basis of E which is determined by the
vectors

1

72

— 12) and 82 = (ll + lz).

1
€ = :/—i(l 1
Then equations (9.80) yield

1 1 1/. 1
¢61=2<l+1)e1+§<A_i>e2

1 1 /. 1
(pez=—2'<i—l>e1+2</t+/{>e2.

We thus obtain the following representation of ¢, which corresponds to

the representation of a Euclidean rotation given in sec. 8.21:

@e; = e, coshf + e,sinh 0
@e, =e,sinhf + e;coshd.
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9.27. Lorentz-transformations. A 4-dimensional pseudo-Euclidean
space with index 3 is called Minkowski-space. A Lorentz-transformation is
a rotation of the Minkowski-space. The purpose of this section is to
show that a proper Lorentz-transformation ¢ possesses always at least one
eigenvector on the light-cone*). We may restrict ourselves to Lorentz-
transformations which do not interchange fore-cone and past-cone be-
cause this can be achieved by multiplication with —1. These transfor-
mations are called orthochroneous. First of all we observe that a light-
vector / is an eigenvector of ¢ if and only if (/, ¢/)=0.1In fact, theequation
@l=21 yields

(Lel)=21(,1)=0.

Conversely, assume that / is a light-vector with the property that (/, /)=
0. Then it follows from sec. (9.21) property (3) that the vectors / and ¢!/
are linearly dependent. In other words, / is an eigenvector of ¢.

Now consider the selfadjoint mapping

v=3e+p)=%e+o ). (9.84)
Then

(x,¥x)=2%(x,ox)+ +(x,px)=(x,px) x€E. (9.85)

It follows from the above remark and from (9.85) that a light-vector /
is an eigenvector of ¢ if and only if (/, Y/)=0. We now preceed indirectly
and assume that ¢ does not have an eigenvector on the lightcone. Then
(x, ¥x)=(x, ¢x)+0 for all light-vectors and hence we can apply the
result of sec.9.24 to the mapping y: There exist four eigenvectors e,
(v=1...4) such that

(ene) = .8, & = {+ 1(v=1,2,3)

—~1(v=4).

Let us denote the time-like eigenvector e, by e and the corresponding

eigenvalue by A. Then ye=2e and hence it follows from (9.84) that
ple=21ye—e.

Next, we wish to construct a time-like eigenvector of the mapping ¢.
If pe is a multiple of e, e is such a vector. We thus may assume that the
vectors e and @e are linearly independent. Then these two vectors generate

*) Observe that a proper Euclidean rotation of a 4-dimensional space need not have
eigenvectors.
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a plane F which is invariant under ¢. This plane intersects the light-cone
in two straight lines. Since the plane F and the light-cone are both
invariant under ¢, these two lines are either interchanged or transformed
into themselves. In the second case we have two eigenvectors of ¢ on the
light-cone, in contradiction to our assumption. In the first case select
two generating vectors /; and /, on these lines such that (/;, /,)=1. Then

oly=al, and o¢l,=4I,.
The condition
((/711,(/’12):(11’12)

implies that aff=1. Now consider the vector z

z=1,4+al,.
Then
oz=al,+afly=al,+1, =z

To show that z is timelike observe that
(z,2) =2a(ly, 1) = 20

and that the vector =1/, —/, is time-like. Moreover,
1
(tot)=a+-. (9.86)
o

Now (¢, pr)<0 because ¢ leaves the fore-cone and the past-cone in-
variant (cf. sec. 9.22). Hence equation (9.86) implies that « <0, showing
that z is time-like.

Using the time-like vector z we shall now construct an eigenvector on
the light-cone which will give us a contradiction. Let E, be the orthogonal
complement of z. E, is a 3-dimensional Euclidean subspace of E which is
invariant under ¢. Since ¢ is a proper Lorentz-transformation it induces
a proper Euclidean rotation in E,. Consequently, there exists an invariant
axis in E, (cf. sec. 8.22). Let y be a vector of this axis such that (y, y)=
—20. Then I=y+z is a light-vector and

pl=gy+oz=y+z=1

i. e. /is an eigenvector of ¢.

Hence, the assumption that there are no eigenvectors on the light-cone
leads to a contradiction and the assertion in the beginning of this section
is proved.
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We finally note that every eigenvalue A of ¢ whose eigenvector / lies
on the light-cone is positive. In fact, select a space-like unit-vector y such
that (/, y)=1 and consider the vector z=/+1y where 7 is a real para-
meter. Then we have the relation

z,z) =2t +1*

showing that z is time-like if —2 <7 <0. Since ¢ preserves fore-cone and
past-cone it follows that

(z,02) <0 (-2<1<0).
But

1
(2,¢2)=(1+1y,il+wy)=f<i+i>+12(y,<py)

and we thus obtain
1
r<}t+l>+tz(y,(py)<0 (—2<1<0).

Letting t—0 we see that A must be positive.

Problems

1. Let ¢ be a linear automorphism of the plane E. Prove that an inner
product of index I can be introduced in E such that ¢ becomes a proper
pseudo-Euclidean rotation if and only if the following conditions are
satisfied:

1. There are two linearly independent eigenvectors.
2. detp=1.
3. |tre|=2.

2. Find the eigenvectors of the Lorentz-transformation defined by the

matrix

—_ O =

N= = O N
SO - O
N = O N

Verify that there exists an eigenvector on the light-cone.
3. Let @ and b be two linearly independent light-vectors in the pseudo-
Euclidean plane E. Then a linear transformation ¥ of E is defined by

ya=a, Yyb=—>.
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Consider the family of linear automorphisms ¢ (¢) which is defined by the
differential equation
p()=vo.0(1)
and the initial condition
®(0)=1.

a) Prove that ¢ (¢) is a family of proper rotations carrying fore-cone
and past-cone into themselves.
b) Define the functions C(¢) and S(¢) by

C()=1trp(t) and S()=}tr(-0().
Prove the functional-equations

C(ty + 1) = C(t) C(t2) + S(t;)S(12)
and
S(ty + 1) =S(t,)C(t;) + S(t,) C(t,).
c¢) Prove that
o(t)la=e"'a and @(t)b=e'b.

4. Let E be a pseudo-Euclidean space and consider an orthogonal
decomposition
E=E*"®E~

such that the restriction of the inner product to E* (E~) is positive
(negative) definite. Let w be a selfadjoint involution of E such that E*
(and hence E7) is stable under w. Define a symmetric bilinear function
¥ by

Y(x,y)=(wx,y) x,y€eE.

Prove that the signature of ¥ is given by
sig =tro™ —tro”

where @™ and ™~ denote the restrictions of w to E* and E~ respectively.



Chapter X

Quadrics *

In the present Chapter the theory of the bilinear functions developed
in Chapter I1X will be applied to the discussion of quadrics. In this
context we shall have to deal with affine spaces.

§ 1. Affine spaces

10.1. Points and vectors. Let £ be a real n-dimensional linear space and
let A be a set of elements P, Q... which will be called points. Assume that a
relation between points and vectors is defined in the following way:

1. To every ordered pair P, Q of A there is assigned a vector of E,

called the difference vector and denoted by ;Q.
2. To every. point Pe A and every vector xe E there exists exactly one

point Qe A4 such that ;Q=x.
3. If P, Q, R are three arbitrary points, then

PQ+0QR=PR. (10.1)
A is called an n-dimensional affine space with the difference space E.

Insertion of Q=P in (10.1) yields I;P+ ;R=;R, whence PP=0 for
every point Pe 4. Using this relation we obtain from (10.1)

QP=-PQ.

law). In fact, o
PP,=PQ,—P,0,
— — — >
0,Q,=P 0, - P Q.
Subtraction of these equations yields PP, =0Q,0,.
For any given linear space E, an affine space can be constructed which
possesses £ as difference space:
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Define the points as the vectors of E and the difference-vector of two
points x and y as the vector y —x. Then the above conditions are obvi-
ously satisfied.

Let 4 be a given affine space. If a fixed point O is distinguished as

origin, every point P is uniquely determined by the vector x=0P. x is
called the position-vector of P and every point P can be identified with
the corresponding position-vector x. The difference-vector of two points
x and y is simply the vector y —x.

10.2. Affine coordinate systems. An affine coordinate-system(O; x,...x,)
consists of a fixed point O€ 4, the origin, and a basis x,(v=1...n) of the
difference-space E. Then every point PeA determines a system of n
numbers £* (v=1...n) by

>

OP=)Y &%,.

The numbers & (v=1...n) are called the affine coordinates of P relative to
the given system. The origin O has the coordinates &' =0.
Now consider two affine coordinate-systems

(0;xy...x,) and (0" y,...¥,).

Denote by o the matrix of the basis-transformation x,—y, and by " the
affine coordinates of O’ relative to the system (O; x,...x,),

=Y arx,, 00’ =) p'x,
mn v

The affine coordinates & and ” of a point P, corresponding to the sys-
tems (O; x,...x,) and (O’; y,...y,) respectively, are given by

— —

OP=Z§”xv and O'P:Zn“yv. (10.2)

—

Inserting o P OP— 0O’ in the second equation (10.2) we obtain
2ty =28 = B)x,,
whence

Yarpt=¢—p"  (u=1...n).

Multiplication by the inverse matrix yields the transformation-formula
for the affine coordinates:

i —Z A (& — (v=1...n).
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10.3. Affine subspaces. An affine subspace of A is a subset A; of 4 such

that the vectors f;Q(PeAI, QeA,) form a subspace of E. If O is the
origin of 4 and (O,; x;...x,) is an affine coordinate-system of A,, the
points of A, can be represented as

- = e p

OP=00,+ Y &x,. (10.3)

v=1
For p=1 we obtain a straight line through O, with the “direction vector”
X, s -
OP=00,+¢x.
In the case p=2 equation (10.3) reads
OP=00, + &' x, +&x,.

It then represents the plane through O, generated by the vectors x; and
x,. An affine subspace of dimension n—1 is called a hyperplane.

Two affine subspaces 4, and 4, of A are called parallel if the differ-
ence-space E; of A, is contained in the difference-space E, of A4,, or
conversely. Parallel subspaces are either disjoint or contained in each
other. Assume, for instance, that F, is contained in E,. Let Q be a point
of the intersection A, N A, and P, be an arbitrary point of 4,. Then

——

Q P, is contained in E, and hence is contained in E,. This implies that
P,eA,, whence 4, = 4,.

10.4. Affine mappings. Let P— P’ be a mapping of 4 into itself subject
to the following conditions:

1. P;Ql :P;QZ implies that P{Q'l =P;@'2

2. The mapping ¢: E— E defined by ¢ (}’Q) =PTQ’ is linear.

Then P— P’ is called an affine mapping. Given two points O and O’ and
a linear mapping ¢: E— E, there exists exactly one affine mapping which
sends O into O’ and induces ¢. This mapping is defined by

OP' =00 +¢(0P).

If a fixed origin is used in A4, every affine mapping x—x’ can be written
in the form
xX'=¢x+Db,

where ¢ is the induced linear mapping and b=00".
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A translation is an affine mapping which induces the identity in E,

P'Q =PQ.

For two arbitrary points P and P’ there obviously exists exactly one
translation which sends P into P'.

10.5. Euclidean space. Let 4 be an n-dimensional affine space and as-
sume that a positive definite inner product is defined in the difference-
space E. Then A4 is called a Fuclidean space. The distance of two points P
and Q is defined by

o(P,Q) = PQI.

It follows from this definition that the distance has the following pro-
perties:

1. ¢(P,Q)= 0 and ¢(P,Q)=0 if and only if P=0.

2. 0(P,0)=0(Q,P).

3. 0(PQ) < 0 (P, R) +0(R, Q).

All the metric concepts defined for an inner product space (cf. Chap.
VII) can be applied to a Euclidean space. Given a point x,€4 of 4 and a
vector p # 0 there exists exactly one hyperplane through x, whose differ-
ence-space is orthogonal to p. This hyperplane is represented by the
equation

(x — X1 P) =0.

A rigid motion of a Euclidean space is an affine mapping P— P’ which
preserves the distance,

Q(PI’ Ql) = Q(P’ Q) (104)

Condition (10.4) implies that the linear mapping, which is induced in
the difference-space by a rigid motion, is a rotation. Conversely, given
a rotation ¢ and two points OeA4 and O’eA, there exists exactly one
rigid motion which induces ¢ and maps O into O'.

Problems

1. (p+1) points P,(v=0...p) in an affine space are said to be in general
position, if the points P, are not contained in a (p —1)-dimensional sub-
space. Prove that the points P,(v=0...p) are in general position if and

—_—>

only if the vectors P, P, are linearly independent.
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2. Given (p+1) points P,(v=0...p) in general position, the set of all
points P satisfying
—_— p —_— P
POP:ZévPOP\' 5"205 Zéé
v=1 v=
is called the p-simplex spanned by the points P,(v=0...p). If O is the

origin of A, prove that a point P of the above simplex can be uniquely
represented as

—A—>

— P
P:Z

The numbers £” (v=0...p) are called the barycentric coordinates of P.

p
&'=z0, ) &=
¥Y=0

The point B with the barycentric coordinates &Y= ! -(v=0...p) is
called the center of S. P+l
3. Given a p-simplex (P,...P,) (p=2) consider the (p — 1) simplex S; de-
fined by the points (P,...P...P,) (0<i<p) and denote by B; the center
of S;(0<i<p). Show that the straight lines (P, B;) and (P}, B;) (i =) inter-
sect each other at the center B of S and that
. 1 ——

i iti-

B p7+ 1
4. An equilateral simplex of length a in a Euclidean space is a simplex

(Py...P,) with the property that |P,P,|=a(v==p). Find the angle between

,,l
—

the vectors P P and P, P,l (u#v, A%v) and between the vectors BP, and
BE, where B is the center of (Ry...P).
5. Assume that an orientation is defined in the difference-space E by
the determinant function 4. An ordered system of (n+ 1) points (Py...P,)
in general position is called positive with respect to the given orientation,
if R —_—
! A(PyP,...PyP,)>0.
a) If the system (P,...P,) is positive and ¢ is a permutation of the
numbers (0, 1...n), show that the system (P, q,...P,,) is again positive if
and only if the permutation o is even.
b) Let A4; be the (n—1)-dimensional subspace spanned by the points
P,...P,...P,. Introduce an orientation in the difference-space of A; with
the help of the determinant function

Ai(xy o xyog) = A(P;Q, Xy 0. X, y),
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where Q is an arbitrary point of A4;. Prove that the ordered n-tuple
(P,...P....P,) is positive with respect to the determinant function ( —1)'4,.

6. Let (Py...P,)be an n-simplex and S be its center. Denote by S, ...;, the
center of the (n—k)-simplex obtained by deleting the vertices P, ,..., P,.
Now select an ordered system of » integers iy,..., i,(0</,£n) and define
the affine mapping « by

- P

o:S— Py, S;, = P, Siyi, > Py, S -

izi2 1°ccin

1 . . .
Prove that det¢o=———¢, where ¢ is the corresponding linear map.

(n+1)!
In this equation ¢ denotes the permutation o(v)=i, (v=1...n), a(0)=k
where k is the integer not appearing among the numbers (i;...i,).
7. Let g, and g, be two straight lines in a Euclidean space which are
not parallel and do not intersect. Prove that there exists exactly one

point P, on g;(i=1, 2) such that P, P, is orthogonal to g, and to g,.

8. Let A; and A, be two subspaces of the affine space such that the
difference-spaces E; and E, form a direct decomposition of E. Prove that
the intersection 4, N A4, consists of exactly one point.

9. Prove that a rigid motion x’=tx+a has a fixed point if and only if
the vector a is orthogonal to all the vectors invariant under t.

A rigid motion is called proper if det 1=+ 1. Prove that every proper
rigid motion of the Euclidean plane without fixed points is a translation.

10. Consider a proper rigid motion x’=1tx+a(t+1) of the Euclidean
plane. Prove that there is exactly one fixed point x, and that

0
x0=§|a|<a + bcot§>.

In this equation, b is a vector of the same length as a and orthogonal to a.
0 designates the rotation-angle relative to the orientation defined by the
basis (a, b).
11. Prove that two proper rigid motions 41 and f+1 of the plane
commute, if and only if one of the two conditions holds:
1. « and f§ are both translations
2. o and f have the same fixed point.

§ 2. Quadrics in the affine space

10.6. Definition. From elementary analytic geometry it is well known
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that every conic section can be represented by an equation of the form

2 2
Y w, & +2% B =2,

v, u=1 v=1

where a,,, f, and « are constants. Generalizing this to higher dimensions
we define a quadric Q in an n-dimensional affine space 4 as the set of all
points satisfying an equation of the form

P (x)+2f (x) ==, (10.5)

where @0 is a quadratic function, f a linear function and « a constant.

For the following discussion it will be convenient to introduce a dual
space £* of the difference-space E. Then the bilinear function @ can be
written in the form

D(x,y)=<px,y> x,vekE,

where ¢ is a linear mapping of E into E* which is dual to itself: ¢* =¢.
Moreover, the linear function f determines a vector a*e £* such that

f(x)=<a* x> xeE.
Hence, equation (10.5) can be written in the form
{px,xy +2<a*x)=ua. (10.6)

We recall that the null-space of the bilinear function @ coincides with the
kernel of the linear mapping ¢.

10.7. Cones. Let us assume that there exists a point x,eQ such that
@xo+a*=0. Then (10.6) can be written as

px,x) —=2{@xp, Xy =0 (10.7)
and the substitution x=x, gives
o0=—LPXgp,Xgy-
Inserting this into (10.7) we obtain
px,x) = 2@ X0, x) + P Xg, %) = 0.
Hence, the equation of Q assumes the form
@(x —x4)=0.

A quadric of this kind is called a cone with the vertex x,. For the sake of
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simplicity, cones will be excluded in the following discussion. In other
words, it will be assumed that

@x + a*+0 for all points xeQ. (10.8)

10.8. Tangent-space. Consider a fixed point x,€Q. It follows from
condition (10.8) that the orthogonal complement of the vector ¢xq +a* is
an (n—1)-dimensional subspace T, of E. This subspace is called the
tangent-space of Q at the point x,. A vector yeE is contained in T, if and
only if

{a* + ¢ x4,y> =0. (10.9)

In terms of the functions @ and f equation (10.9) can be written as
@(x0,y) + f(y)=0. (10.10)

The (n —1)-dimensional affine subspace which is determined by the point
X0 and the tangent-space T, is called the tangent-hyperplane of Q at x,. It
consists of all points

X=Xg+Yy yeT,.

Inserting y=x —Xx, into equation (10.10) we obtain

D (xg,x — xo) + f(x —x0) =0. (10.11)
Observing that
®(xo) + 2f (xo) =

we can write equation (10.11) of the tangent-hyperplane in the form
D (xg,x) + f(xo +x)=0. (10.12)

To obtain a geometric picture of the tangent-space, consider a 2-

dimensional plane
Fix=xy+&fa+nb (10.13)

through x, where a and b are two linearly independent vectors. Inserting
(10.13) into equation (10.5) we obtain the relation

Ed(a) +2En®(a,b) + n* @ (b) +
+28(P (xp,a) + f (a)) + 21 (P(x0,b) + f (b)) =0  (10.14)

showing that the plane F intersects Q in a conic ;. Define a linear function

g by setting 2(x) = 2(D(xo. X) + f(x))- (10.15)
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Then. in view of (10.8), g+0. Now the equation of the conic y can be
written in the form

& d(a) +28n @ (a,b) + n* d(b) + Egla) + ng(b)=0.  (10.16)
Now assume that the vectors @ and b are chosen such that g(a) and g(b)

are not both equal to zero. Then the conic has a unique tangent at the
point £ =#=0 and this tangent is generated by the vector

t=—g(b)a+g(a)b. (10.17)

The vector ¢ is contained in the tangent-space T, this follows from the
i
cquation g()=—g(b)g(a) + g(a)g(b)=0.

Every vector y=+0 of the tangent-space T, can be obtained in this way.
In fact, let a be a vector such that g(a)=1 and consider the plane through
Xo spanned by a and y. Then equation (10.17) yields

t=—g(y)a+g(ay=y (10.18)

showing that y is the tangent-vector of the intersection QN F at the
point {=5=0.
Note: If g(a)=0 and g(b)=0 equation (10.16) reduces to

E2d(a) + 2End(a,b) +n? d(b)=0.

Then the intersection of Q and F consists of
a) two straight lines intersecting at x,, if

®(a,b)* — @ (a)P(b) >0,
b) the point x4 only, if

@ (a,b)? — ®(a)@(b) <0,
¢) one straight line through x,, if

@ (a,b)* — d(a)d(b) =0,

but not all three coefficients @ (a), @ (b) and ¢ (a, b) are zero
d) The entire plane F, if
¢(a)=®(b)=b(a,b)=0.

10.9. Uniqueness of the representation. Assume that a quadric Q is rep-

resented in two ways
Oy (x) +2f,(x) = (10.19)
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and
@, (x)+ 2f5(x) = a,. (10.20)
It will be shown that

Dy =A@, fr=2f,0,=20

where 2 £ 01s a real number. Let x, be a fixed point of Q. It follows from
hypothesis (10.8) that the linear functions g, and g,, defined by

g1(x) = @, (x,x0) + f1(x) and g,(x) = @, (x,x0) + f5(x) (10.21)

are not identically zero.
Choose a vector a such that g, (a)£0 and g, (a)#0, and a vector b0
such that g, (b)=0. Obviously @ and b are linearly independent. The plane

x=Xxg+&a+nb

then intersects the quadric Q in a conic y whose equation is given by
each one of the equations

@ (a)+ 28 (a,b) +n° P (b) + &g, (a) =0  (10.22)
and

E2d,(a) +2En®,(a,b) + n* @, (b) + &g, (a) + nga(b)=0.  (10.23)
The tangent of this curve at the point £ =1=0 is generated by the vector

ty=gi(a)b
and also by
ty=—gy(b)a+g,(a)b.
This implies that
g2,(b)=0. (10.24)

But h#+0 was an arbitrary vector of the kernel of g,. Hence equation
(10.24) shows that g, (b)=0 whenever g,(b)=0. In other words, the linear
functions g, and g, have the same kernel. Conscquently g, is a constant

multiple of g,, g, =ig, %0, (10.25)

Multiplying equation (10.22) by 4 and subtracting it from (10.23) we
obtain in view of (10.24) that

& (P, — Ady)(a) + 28 (D, — AP,)(a,b) + n* (@, — AP,)(b) = 0.
(10.26)

20 Greub, Linear Algebra
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In this equation all three coefficients must be zero. In fact, if at least one
coefficient is different from zero, equation (10.26) implies that the conic
y consists of two straight lines, one straight line or the point x, only.
But this is impossible because g, (a¢)+0. We thus obtain from (10.26)
that

®,(a) = A ®, (a), d,(a,b) = 4D, (a,b), &, (b) = Ad,(b).  (10.27)

These equations show that
@,(x)=21d,(x) (10.28)

for all vectors xe E: If g, (x)=0, (10.28) follows from the third equation
(10.27); if g, (x)*0, then g, (x)#0 [in view of (10.25)] and (10.28) fol-
lows from the first equation (10.27).

Altogether we thus obtain the identities

&,=2®, and g,=1g, A=%0.
Now relations (10.21) imply that
fa=42f
and equation (10.20) can be written as
M@y (x) +2f (x)) = . (10.29)

Comparing equations (10.19) and (10.29) we finally obtain «, = 2a,. This
completes the proof of the uniqueness theorem.
10.10. Centers. Let

0:0(x) +2f (x) =

be a given quadric and ¢ be an arbitrary point of the space A. If we

introduce ¢ as a new origin,
x=c+x,

the equation of Q is transformed into
D(x')+2(P(e,x")+ f(x))=a—D(c) — 2f (). (10.30)

Here the question arises whether the point ¢ can be chosen such that the
linear terms in (10.30) disappear, i. e. that

S(c,xY+ f(x)=0 (10.31)

for all vectors x"e E. If this is possible, c is called a center of Q. Writing
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equation (10.31) in the form
{pec+a*x'y)=0 x'eE
we see that ¢ is a center of Q if and only if (cf. sec. 10.7)
pc=—a*. (10.32)

This implies that the quadric Q has a center if and only if the vector a*
is contained in the image space Im ¢. Observing that Im ¢ is the ortho-
gonal complement of the kernel of ¢ we obtain the following criterion:
A quadric Q has a center if and only if the vector a* is orthogonal to the
kernel of ¢.

If this condition is satisfied, the center is determined up to a vector of
ker ¢. In other words, the set of all centers is an affine subspace of A
with ker ¢ as difference-space.

Now assume that the bilinear function @ is non-degenerate. Then ¢ is a
regular mapping and hence equation (10.32) has exactly one solution.
Thus it follows from the above criterion that a non-degenerate quadric has
exactly one center.

10.11. Normal-form of a quadric with center. Suppose that Q is a quad-
ric with centers. If a center is used as origin the equation of Q assumes
the form

o(x)=p p=*0. (10.33)

Then the tangent-vectors y at a point x,eQ are characterized by the
equation {(@x,, y>=0. Observing that {¢x,, y>={xy, @y) we see that
every tangent-space T, contains the null-space of &.

The equation of the tangent-hyperplane of Q at x, is given by

®(xo,y) =B (10.34)

It follows from (10.34) that a center of Q is never contained in a tangent-

hyperplane. 1
Dividing (10.33) by S and replacing the quadratic function & by - @

we can write the equation of Q in the normal-form B

P(x)=1. (10.35)
Now select a basis x,(v=1...n) of E such that
+1(v=1..53)
D(x,,x5) =60, &=9—1(v=s+1...7) (10.36)

O(v=r+1..n)

20
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where r denotes the rank and s denotes the index of @. Then the normal-
form (10.36) can be written as

i £, &8 =1. (10.37)
v=1

10.12. Normal-form of a quadric without center. Now consider a quad-
ric Q without a center. If a point of Q is chosen as origin the constant « in
(10.5) becomes zero and the equation of Q reads

®(x) + 2{a* x> =0. (10.38)

By multiplying equation (10.38) with — 1 if necessary we can achieve
that 2s=r. In other words, we can assume that the signature of @ is not
negative

To reduce equation (10.38) to a normal form consider the tangent-
space T, at the origin. Equation (10.9) shows that T, is the orthogonal
complement of a*. Hence, a* is contained in the orthogonal complement
T, On the other hand, a* is not contained in the orthogonal complement
K* (K =ker @) because otherwise Q would have a center (cf. sec. 10.10).
The relations a*e T; and a*¢ K* show that Ty ¢ K*. Taking the ortho-
gonal complement we obtain the relation T, 3 K showing that there exists
a vector ae K which is not contained in T, (cf. fig. 5). Then <{a*, a) =0
and hence we may assume that (a*,a)=1.

Now T, has dimension n—1 and hence every vector
x€E can be written in the form

x=y+<&a yeT,. (10.39) - =

Inserting (10.39) into equation (10.38) we obtain Fig. 5

D(y)+ 28 (y,a) + &2 P(a) +2<a*,y +Ead=0. (10.40)
Now
®(y,a)=0 and &(a)=0,
because ae K, and
{a*,y> =0,

because ye T,. Hence, equation (10.40) reduces to the following normal-
Jorm:
@(y)+2£=0. (10.41)

Since a is contained in the null space of & it follows from the decom-
position (10.39) that the restriction of @ to the tangent-space T, has again
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rank r and index s. Therefore we can select a basis x,(v=1...n—1) of T,
such that P(x,,x,)=¢,0,, (vyu=1..n-1).

Then the vectors x,(v=1...n—1) and a form a basis of £ in which the
normal form (10.41) can be written as

i 6, & & +2E=0. (10.42)
v=1

Problems

1. Let £ be a 3-dimensional pseudo-Euclidean space with index 2.
Given an orientation in E define the cross product x x y by

(x xy,2)=4(x,y,2) x,y,z€E

where 4 is a normed determinant function (cf. sec. 9.19) which re-
presents the orientation. Consider a point x, % 0 of the light-cone (x, x)=0

and a plane Fix=xo+&a+nb

which does not contain the point O. Prove that the intersection of the
plane F and the light-cone is

an ellipse if a x b is time-like

a hyperbola if ax b is space-like

a parabola if ax b is a light-vector.

2. Consider the quadric Q:®(x)=1 where @ is a non-degenerate
quadratic function. Then every point x, #0 defines an (n — 1)-dimensional
subspace P(x,) by the equation

D(x,x;)=1.

This subspace is called the polar of x,. It follows from the above equation
that the polar P(x,) does not contain the center O.

a) Prove that x,eP(x,) if and only if x; e P (x,).

b) Given an (n—1)-dimensional affine subspace A4, of 4 which does
not contain O, show that there exists exactly one point x; such that
A, = P(xy).

¢) Show that P(x,) is a tangent-plane of Q if and only if x, € Q.

3. Let x, be a point of the quadric @ (x)=1. Prove that the restriction
of the bilinear function @ to the tangent-space T, has the rank r —1 and
index s—1.

4. Show that a center of a quadric Q lies on Q only if Q is a cone.
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5. Let x,, be a point of the quadric
P(x)+2f(x)+a=0
and consider the skew bilinear mapping w: E x E—E defined by
w(xy)=gx)y—g(x xyeE
where the linear function g is defined by (10.15). Show that the linear

closure of the set w(x,y) under this mapping is the tangent-space T,.

§ 3. Affine equivalence of quadrics

10.13. Definition. Let an affine mapping x'=tx+5 of 4 onto itself be
given. Then the image of a quadric

Q:0(x) +2f (x) =

is the quadric Q' defined by the equation

Q¥ (x)+2g(x) =8,

where
Y(x)=o(x""x), (10.43)
g(x)=—@(t7'x, 17 b) + f (7' %) (10.44)
and
B=—@( 'b)+2f(x""b) +a. (10.45)

In fact, relations (10.43), (10.44) and (10.45) yield
Y(x+b)+2g(tx+b)—pf=&(x)+2f(x) -«

showing that a point xeA is contained in Q if and only if the point
x'=1tx+b is contained in Q.

Two quadrics @, and Q, are called affine equivalent if there exists a
one-to-one affine mapping of 4 onto itself which carries Q, into Q,. The
affine equivalence induces a decomposition of all possible quadricsinto
affine equivalence classes. It is the purpose of this paragraph to construct
a complete system of representatives of these equivalence classes.

10.14. The affine classification of quadrics is based upon the following
theorem: Let £ and F be two n-dimensional linear spaces and ¢ and ¥
two symmetric bilinear functions in £ and in F. Then there exists a
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linear isomorphism t: E— F with the property that
&(x,y)=¥(tx,7y) x,yeE (10.46)

if and only if @ and ¥ have the same rank and the same index.
To prove this assume first that the relation (10.46) holds. Select a basis
a,(v=1...n) of E such that
+1(v=1-53)
d(a, a,)=¢,0, e, =1—1lv=s+1..7) (10.47)
O(v=r+1..n).

Then equations (10.46) and (10.47) yield
¥Y(ta,rta,) = ®(a,a,) =¢,9,,.

showing that ¥ has rank r and index s.
Conversely, assume that this condition is satisfied. Then there exist
bases a, and b,(v=1...n) of E and of F such that

o (a,,a,)=¢,0,, and ¥(b,b,)=¢,9,,.
Define the isomorphism 7: E— F by the equations
ta,=b, (v=1...n).

Then
o(a,a,)=Y¥(ta,ta,) (v,u=1...n)
and consequently

&(x,y)=¥(rx,TY) x,yeE.

10.15. Affine classification. First of all it will be shown that the centers
are invariant under an affine mapping. In fact, let

0:d(x—c)=p

be a quadric with ¢ as center and x"=1x+b an affine mapping of 4 onto
itself. Then the image Q' of Q is given by the equation

Q:¥(x—~c)=§,
where
P(x)=o(r"'x)
and
¢=b+r1c.

This equation shows that ¢’ is a center of Q.
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Now consider two quadrics with center

QP (x—c))=1 (10.48)
and
Q,:P,(x—cy)=1 (10.49)

and assume that x—x’ is an affine mapping carrying Q, into Q,. Since
centers are transformed into centers we may assume the mapping x—x’
sends ¢, into ¢, and hence it has the form

X'=1(x—¢)+c,.
By hypothesis, O, is mapped onto Q, and hence the equation
Py(t(x —¢y)) =1 (10.50)

must represent the quadric Q,. Comparing (10.48) and (10.50) and
applying the uniqueness theorem of sec. 10.9 we find that

P, (x) = &, (rx).
This relation implies that

ry=r, and s;=3s,. (10.51)

Conversely, the relations (10.51) imply that there exists a linear auto-
morphism 7 of E such that
Py (x) = @, (rx).

Then the affine mapping x—x" defined by
X =t(x —cy)+ ¢,

transforms Q, into Q,. We thus obtain the following criterion: The two
normal forms (10.48) and (10.49) represent affine equivalent quadrics if
and only if the bilinear functions ®, and ®, have the same rank and the
same index.

10.16. Next, let

0,:®,(x—qp) +2<at,x—q>=0 ¢,€0,  (10.52)
and

inqu(x—CI2)+2<a§’x—42>:0 q4,€Q, (10.53)

be two quadrics without a center. It is assumed that the equations
(10.52) and (10.53) are written in such a way that 2s,=r, and 2s,>r,.
If x' = 7(x—q,) + ¢, is an affine mapping transforming Q, into Q,, the
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equation of Q, can be written in the form
®,(t(x — 1)) + 2<a3,1(x — q,)) = 0.
Now the uniqueness theorem yields
D, (x) = 2, (tx)

where A#0 is a constant. This relation implies that the bilinear functions
&, and @, have the same rank r and that s,=s, or 5, =r —s, depending
on whether 2>0 or A<0. But the equation s, =r —s, is only compatible

. .« . . r
with the inequalities 25, >r; and 2s,2r, if s, =5,= 3 and hence we see

that s; =s, in either case.

Conversely, assume that r;=r,=r and s, =s,=s. To find an affine
mapping which transforms @, into @, consider the tangent-spaces
T,,(Q,) and T, (Q,). As has been mentioned in sec. 10.12 the restriction
of @, to the subspace T, (Q), (i=1, 2) has the same rank and the same
index as @, Consequently, there exists an isomorphism ¢:T,, (Q;)—
- T,,(Q,) such that

P (y)=P:(ey) yeT,(Q).
Now select a vector g; in the nullspace of @;(i=1, 2) such that
af,ay=1 (i=1,2)

and define the linear automorphism t of E by the equations

ty=¢0y yeT,(Qy)
and

Ta,=a,. (10.54)
Then
&, (tx) + {a3,tx) = &, (x) + {af,x) xekE. (10.55)

In fact, every vector xe E can be decomposed in the form
x=y+&a, veT, (Qy). (10.56)
Equations (10.54), (10.55) and (10.56) imply that

D,(tx) =D, (ty +&ay) =Dy (1)) =, (3) =@, (y + &ay) = P, (%)
(10.57)
and

a3, txy ={da3, 0y + Eay =ECaz,a)y =& =(al,x).  (10.58)
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Adding (10.57) and (10.58) we obtain (10.55). Relation (10.55) shows
that the affine mapping x'=1(x—gq,)+¢, sends Q, into Q, and we
have the following result: The normal-forms (10.52) and (10.53) represent
affine equivalent quadrics if and only if the bilinear functions ®, and @,
have the same rank and the same index.

10.17. The affine classes. It follows from the two criteria in sec. 10.15
and 10.16 that the normal forms

ilél+"‘+ésés_és+lés+l—“"‘éré’-:l (lésér)
and
élél+"'+ésés—és+1§s+l—"‘—‘érfr'{"zé:o (V§2S)

form a complete system of representatives of the affine classes. Denote by
N, (r) and by N,(r) the total number of affine classes with center and
without center respectively of a given rank r. Then the above equations
show that

+1
LT i ris odd

1<rn—-
N,(r)=r and Ny(r)=1r+2. srsn-|
if r is even

0 r=n.

The following list contains a system of representatives of the affine
classes in the plane and in 3-space *):

Plane:
I. Quadrics with center:
1. r=2:2a) s=2: E34p2=1 ellipse,
b) s=1: 2—p?=1 hyperbola.
2. r=1: s=1: &=+1 two parallel lines.

1I. Quadrics without center:
r=1,s=1: E2—2n=0 parabola.
3-space:
I. Quadrics with center:
1. r=3:a) s=3: &+n*+{?=1 ellipsoid,

b) s=2: E4n*>—{*=1 hyperboloid with one shell,
¢) s=1: & —n?—={?=1 hyperboloid with two shells.

*) In the following equations the coordinates are denoted by &, #, ¢ and the super-
scripts indicate exponents.
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2. r=2:a) s=2: E+n?=1 elliptic cylinder,
b) s=1: E—n*=1 hyperbolic cylinder.
3. r=1: s=1: ¢=+1 two parallel planes.

I1. Quadrics without center:
1. r=2: a) s=2: E2+n*-2{=0 elliptic paraboloid,
b) s=1: £2—yn*—-2{=0 hyperbolic paraboloid.
2. r=1,s=1: E2-20=0 parabolic cylinder.

Problems

1. Let Q be a given quadric and C be a given point. Show that Cis a
center of Q if and only if the affine mapping P— P’ defined by CP'=

—
— CP transforms Q into itself.
2. If @ is an indefinite quadratic function, show that the quadrics

&(x)=1 and P(x)=-1

are equivalent if and only if the signature of @ is zero.
3. Denote by N; and by N, the total number of affine classes with
center and without center respectively. Prove that

n(n+1)
==

kK* +k—1 if n=2k
2={k2+2k if n=2k+1.

1

4. Let x, and x, be two points of the quadric
Q:d(x)=1.
Assume that an isomorphism 1: T,,— T,, is given such that
O(ry,1z)=d(y,2) v, zeT,,.

Construct an affine mapping 4—A which transforms Q into itself and
which induces the isomorphism 7 in the tangent-space T,.
5. Prove the assertion of problem 4 for the quadric

®(x) + 2{a* x> =0.
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§ 4. Quadrics in the Euclidean space

10.18. Normal-vector. Let 4 be an n-dimensional Euclidean space and

0:0(x) +2f (v) =

be a quadric in 4. The bilinear function @ determines a selfadjoint linear
transformation ¢ of £ by the equation

?(x,y)=(0x,).

The linear function f can be written as

f(x)=(a,x)

where a is a fixed vector of E. Cones will again be excluded; 1. e. we shall
assume that
X+ —a

for all points xe Q. Let x, be a fixed point of Q. Then equation (10.10)
shows that the tangent-space T, consists of all vectors y satisfying the
relation

(pxo +a,y)=0.

In other words, the tangent-space T, is the orthogonal complement of
the normal-vector

p(x0)=@xo +a.

The straight line determined by the point x, and the vector p(x,) is
called the normal of Q at x,.
10.19. Quadrics with center. Now consider a quadric with center

0:0(x)=1. (10.59)
Then the normal-vector p(x,) is simply given by
p(xo) = @Xo.

This equation shows that the linear mapping ¢ associates with every
point x,€Q the corresponding normal-vector. In particular, let x, be a
point of Q whose position-vector is an eigenvector of ¢. Then we have the
relation

QXo=AXg

showing that the normal-vector is a multiple of the position-vector x.
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Inserting this into equation (10.59) we see that the corresponding eigen-
value is equal to
1

A=—.
2
X6l

As has been shown in sec. 8.7 there exists an orthonormal system of n
eigenvectors e,(v=1...n). Then

pe,=Ae, (v=1...n) (10.60)
whence
P(e,e,)=20,,.

Let us enumerate the eigenvectors e, such that
O<A =4, 224
0> Ayy Z A, 22 4, (10.61)
Apy=r=A=0

where r is the rank and s is the index of @. Then equation (10.59) can be
written as

Z' ALEE =1, (10.62)

The vectors

a,=-> (v=1..s) and a,=——= (v=s+1...r)

v \/}’v'
are called the principal axes and the conjugate principal axes of Q.
Inserting

v

1
(v=1...s) and lvz——lz (v=s+1...r)

2
la,| la,

into (10.62) we obtain the metric normal-form of Q:

sévév r évév
I e

Sial T Sa

1. (10.63)

Every principal axis a, generates a straight line which intersects the
quadric Q in the points a, and —a,. The straight lines generated by the
conjugate axes have no points in common with Q but they intersect the
conjugate quadric

Q:d(x)=—1

at the points a, and —a,(v=s+1...r).
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10.20. Quadrics without center. Now consider a quadric Q without
center. Using an arbitrary point of Q as origin, we can write the equation
of Q in the form

@ (x)+2(a,x)=0 (10.64)

where a is a normal vector of Q at the point x=0.
For every point xeQ the vector

p(x)=¢x+a (10.65)

is contained in the normal of Q. A point xeQ is called a vertex if the
corresponding normal is contained in the null-space K of @.

It will be shown that every quadric without center has at least one
vertex.

Applying ¢ to the equation (10.65) we obtain

ep(x)=¢*x +¢a
showing that a point xe Q is a vertex if and only if

p'x=—-9a. (10.66)

To find all vertices of Q we thus have to determine all the solutions of
equations (10.64) and (10.66). The self-adjointness of ¢ implies that the
mappings ¢ and @2 have the same image-space and the same kernel (cf. sec.
8.7). Consequently, equation (10.66) has at least one solution x. The general
solution of (10.66) can be written in the form

X=Xg+z

where z is an arbitrary vector of the kernel K. Inserting this into equation
(10.64) we obtain
TP (xo) + (a,x0) + (a,2z) =0. (10.67)

Now a¢ K* (otherwise Q would have a center) and consequently (10.67)
has a solution ze K. This solution is determined up to an arbitrary vector
of the intersection K N Ty. In other words, the set of all vertices of Q
forms an affine subspace with the difference-space K n 7T,. This subspace
has dimension (n—r—1).

Now we are ready to construct the normal form of the quadric (10.64).
First of all we select a vertex of Q as origin. Then the vector @ in (10.64) is
contained in the kernel K. Multiplying equation (10.64) by an appro-
priate scalar we can achieve that |a|=1 and that 2s=r. Now let e,(v=1
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...n—1) be a basis of T, consisting of eigenvectors of @. Then the vectors
e,(v=1...n—1) and a form an orthonormal basis of E such that

d(eye,)=490,, (hpu=1..n-1)
and
¢(ev9a)=(ev7¢a)=0 (V=1...n'—1).
In this basis the equation of Q assumes the metric normal-form

i LEE +2E=0. (10.68)
v=1

Upon introduction of the principal axes and the principal conjugate axes

e e
a,=— (v=1...s) and a,=—— (v=s+1..r)
v, VN
the normal-form (10.68) can be also written as
Zéi— > “‘:+25=0. (10.69)
v=1 lavl v=s+1 Iavl

10.21. Metric classification of bilinear forms. Two quadrics Q and Q'
in the Euclidean space A4 are called metrically equivalent, if there exists
a rigid motion x— x’ which transforms Q into Q’. Two metrically equiv-
alent quadrics are a fortiori affine equivalent. Hence, the metric classi-
fication of quadrics consists in the construction of the metric subclasses
within every affine equivalence class.

It will be shown that the lengths of the principal axes form a com-
plete system of metric invariants. In other words, two affine equivalent
quadrics Q and Q' are metrically equivalent if and only if the principal axes
of Q and Q' respectively have the same length.

We prove first the following criterion: Let E and F be two n-dimen-
sional Euclidean spaces and consider two symmetric bilinear functions ¢
and ¥ having the same rank and the same index. Then there exists an
isometric mapping t: E— F such that

o(x,y)=Y(tx,ty) x,yeE (10.70)

if and only if ¢ and ¥ have the same eigenvalues.
Define linear transformations ¢: E—F and {: F—F by

P(x,y)=(ox,y) x,yeE and Y(x,y)=(x,y) x,yeF.
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Then the eigenvalues of @ and ¥ are equal to the eigenvalues of ¢ and
 respectively (cf. sec. 8.10).

Now assume that 7 is an isometric mapping of E onto F such that
relation (10.70) holds. Then

(px,y)=(1x,7y) (10.71)
whence
@ = T~ ! < lp oT.
This relation implies that ¢ and y have the same eigenvalues.
Conversely, assume that ¢ and ¥ have the same eigenvalues. Then

there is an orthonormal basis a, in E and an orthonormal basis b, (v=
1...n) in F such that

pa,=2A,a, and Yy b,=2A,b, (v=1..n). (10.72)
Hence, an isometric mapping t: E— F is defined by
ta,=b, (v=1...n). (10.73)
Equations (10.72) and (10.73) imply that

(eaya,)=Wra,ta,) (v,u=1...n)
whence (10.71).

10.22. Metric classification of quadrics. Consider first two quadrics Q
and Q' with center. Since a translation does not change the principal axes
we may assume that Q and Q' have the common center Q. Then the
equations of Q and Q’ read

0:d(x)=1
and
Q:d'(x)=1.
Now assume that there exists a rotation of E carrying Q into Q’. Then
&(x) =P (tx) xekE. (10.74)

It follows from the criterion in sec. 10.21 that the bilinear functions
¢ and @’ have the same eigenvalues. This implies that the principal axes
of O and Q' have the same length.

la,| = |ai) (v=1..r). (10.75)
Conversely, assume the relations (10.75). Then

Wl=12  (v=1..n).
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Observing the conditions (10.61) we see that A,=A4,(v=1...n). According
to the criterion in sec. 10.21 there exists a rotation t of E such that

@ (x) = & (x).

This rotation obviously transforms Q into Q’.

Now let Q and Q' be two quadrics without center. Without loss of
generality we may assume that Q and Q’ have the common vertex O.
Then the equations of Q and Q' read

0:d(x)+2(a,x)=0 aeK |a|=1, (10.76)

and
Q:d'(x)+2(a',x)=0 a’eK l|a|=1. (10.77)
If Q and Q' are metrically equivalent there exists a rotation 7 such that

& (x) =P (rx).
Then
la,| = |a.] (v=1..r). (10.78)

Conversely, equations (10.78) imply that the bilinear functions ¢ and
&’ have the same eigenvalues,

A=21  (v=1..n). (10.79)

Now consider the restriction ¥ of @ to the subspace T,(Q). Then every
eigenvalue of ¥ is also an eigenvalue of @. In fact, assume that

¥ (e,y) = 2A(e.y)
for a fixed vector ee T, (Q) and all vectors ye Ty (Q). Then

d(e,x)=db(e,éa+y)=EP(e,a) + Ve, y) =ED(e,a) + Ale, y)
(10.80)

for an arbitrary vector xe E. Since the point O is a vertex of Q we have
that @ (e, a)=0. We thus obtain from (10.80) the relation

P(e,x)=A(e,y)=A(e,Ea+y)=A(e,x)

showing that 4 is an eigenvalue of @. Hence we see that the bilinear
function ¥ has the eigenvalues 4,...4,_,. In the same way we see that the
restriction ¥’ of @’ to the subspace T, (Q’) has the eigenvalues 27...4,, _,.
Now it follows from (10.79) and the criterion in sec. 10.21 that there exists
an isometric mapping

0Ty (Q) - To(Q')

21 Greub. Linear Algebra
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with the property that
P (ey)=2(y) yeT,(Q).
Define the rotation 7 of E by

Ty =0y veTo(Q)
ta=a.
Then
P (tx)+2(a’,tx)=d(x) +2(a,x) xeE

and consequently, 7 transforms Q into Q.

10.23. The metric normal-forms in the plane and in 3-space. Equations
(10.63) and (10.69) yield the following metric normal forms for the
dimensions n=2 and n=3:

Plane:
I. Quadrics with center:
& 0
1. e + b2 =1, azb ellipse with the axes a and b.
‘:2 ’72
2. 2= 1 hyperbola with the axes a and b.
3.6=+4a two parallel lines with the distance
2a.
II. Quadrics without center:
62
=21 parabola with latus rectum of
a length a.
3-space:

I. Quadrics with center:

S

1. e + b2 + o2 =1,a 2 b= c ellipsoid with axes a, b, c.
62 ’72 CZ

2. 5+ rEim i l,azb hyperboloid with one shell and axes
a ¢ a, b, c.
S

3. ,-—5—5=Lbzc hyperboloid with two shells and axes
a b c

a, b, c.
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2 2
4. 52 + %2 =1,azb elliptic cylinder with the axes a and b.
él '72
5 7, - b2 =1 hyperbolic cylinder with the axes a
a and b.
6. E=+a two parallel planes with the distance
2a.
I1. Quadrics without center
52 '72
1. 2 =2{,a=2b elliptic paraboloid with axes a and b.
62 r’Z
"2. 2 =2 hyperbolic paraboloid with axes a
and b.
62
3. 55 =2¢( parabolic cylinder with latus rectum
4 of length a.
Problems

1. Give the center or vertex, the type and the axes of the following
quadrics in the 3-space:

a) 2824202 = +8En—4E —4Anl=2.

b) 4% +3p2 —(2 —12¢n+4EL -8l =1.

c) E24n2+ 702 —16En—8EL —8nl=9.

d) 3E243n2 4+ —2En+6E—2n—2¢ +3=0.

2. Given a non-degenerate quadratic function @, consider the family
(Q, of quadrics defined by

d(x)=a (x=%0).

Show that every point x 0 is contained in exactly one quadric Q,.
Prove that the linear transformation ¢ of E defined by

?(x,y)=(¢x,y)

associates with every point x 0 the normal vector of the quadric passing
through x.
3. Consider the quadric

Q:P(x)=1,
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where @ is a non-degenerate bilinear function. Denote by Q' the image
of Q under the mapping ¢ which corresponds to @. Prove that the
principal axes of Q" and Q are connected by the relation

a,= (v=1...n).
4. Given two points p, ¢ and a number 2ux(a>|p—gql|), consider the
locus Q of all points x such that
Ix — pl + |x — g] = 2a.
Prove that Q is a quadric of index » whose principal axes have the length
las| = o, la)=a*—%lp—ql> (v=2..n).

5. Let @(x)=1 be the equation of a non-degenerate quadric Q with
the property that x is a normal vector at every point of Q. Prove that Q
is a sphere.



Chapter XI

Unitary spaces

§ 1. Hermitian functions

11.1. Sesquilinear functions in a complex space. Let £ be an n-dimen-
stonal complex linear space and @: £x E—C be a function such that

P(Axy + puxp,y) =AP(x1, ) + u®(x;, )
(D(X,}L}H+l‘y2):z‘p(x,y1)+/7¢(xd’z) (1L.1)

where 1 and ji are the complex conjugate coefficients. Then ¢ will be
called a sesquilinear function. Replacing y by x we obtain from & the
corresponding quadratic function

Y (x)=d(x,x). (11.2)
It follows from (11.1) that ¥ satisfies the relations

Px+y)+¥x—y)=2(F)+ ¥() (11.3)
and
P (2x) = |27 ¥ (x).

The function @ can be expressed in terms of ¥. In fact, equation (11.2)
yields

Px+p)=Y(x)+¥Y0)+2(x,p) + (y,%). (11.4)
Replacing y by iy we obtain
Y(x+iy)=¥Yx)+¥YQ)—i®(x,y)+i®(y,x). (11.5)
Multiplying (11.5) by i and adding it to (11.4) we find
Y(x+y)+iP(x+iy)=01+)(¥()+P()+20(x,y),
whence

2006, ) ={Y(x+y) - ¥Y(xX) - PO} +i{¥(x+iy) - ¥(x) =¥}
(11.6)
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Note: The fact that @ is uniquely determined by the function ¥ is due
to the sesquilinearity. We recall that a bilinear function has to be sym-
metric in order to be uniquely determined by the corresponding quadratic
function.

11.2. Hermitian functions. With every sesquilinear function ¢ we can
associate another sesquilinear function @ given by

b (x,y) = ®(y,x).
A sesquilinear function @ is called Hermitian if =9, i. e.
D (x,y) = &(y,x). (11.7)
Inserting y=x in (11.7) we find that
¥ (x) = ¥(x). (11.8)

Hence the quadratic function ¥ is real valued. Conversely, a sesquilinear
function @ whose quadratic function is real valued is Hermitian. In fact,
if ¥ is real valued, both parcntheses in (11.6) are real. Interchange of x
and y yields

20(y,x) ={¥(x+y)—¥x) -V} +i{P+ix)-¥(x)-¥()}.
(11.9)

Comparison of (11.6) and (11.9) shows that the real parts coincide. The
sum of the imaginary parts is equal to

Y(x+iy)+¥P(y+ix)—2¥(x)—2¥(y).
Replacing y by iy in (11.3) we sce that this is equal to zero, whence
P(y,x) = 2(x, ).

A Hermitian function @ is called positive definite, if ¥ (x)>0 for all vec-
tors x#0.

11.3. Hermitian matrices. Let-x,(v=1...n) be a basis of E. Then every
sesquilinear function @ defines a complex # x n-matrix

a,, = P(x,,x,).
The function & is uniquely determined by the matrix («,,). In fact, if

x=y¢&x, and y=)#"x,
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are two arbitrary vectors, we have that
o(x,y) =3 a,&7".
v, i

The matrices («,,) and (&,,) of ¢ and @ are obviously connected by the
relation

Aypy = Lyye

If & is a Hermitian function it follows that

a,

v = Gy

A complex n x n-matrix satisfying this relation is called a Hermitian matrix.

Problems

1. Prove that a skew-symmetric sequilinear function is identically zero.
2. Show that the decomposition constructed in sec. 9.6 can be carried
over to Hermitian functions.

§ 2. Unitary spaces

11.4. Definition. 4 unitary space is an n-dimensional complex linear
space E in which a positive definite Hermitian function, denoted by (.),
is distinguished. The number (x, y) is called the Hermitian inner product
of the vectors x and y. It has the following properties:

1' (Axl +#x2,}’)='1(x1,J’)+ﬂ(x2,)’)
(x5 Ay +uy2) =L (x,y) + A (x,,).

2. (x,»)=(»,x). In particular, (x, x) is real.
3. (x, x)>0 for all vectors x=+0.

Example I: A Hermitian inner product in the complex number space C"
is defined by

(=3 &7
v=1

where
x=(E ... and y=@h ...

Example I1: Let E be a Euclidean space and let E¢ be the complexifica-
tion of the vector space E (cf. sec. 2.16). Then a Hermitian inner product
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is defined in E¢ by
(X1 v X iy, = (X0 X))+ (. v+ 0. X)) — (. )

The unitary space so obtained is called the complexification of the
Euclidean space E.

The norm of a vector x of a unitary space is defined as the positive
square-root

x| = /(x.%).

I(x, ) < [x] 1yl (11.10)

is proved in the same way as for real inner product spaces. Equality holds
if and only if the vectors x and y are linearly dependent.
From (11.10) we obtain the triangle-inequality

The Schwarz-inequality

[x + ¥l < Ix] + [y].

Equality holds if and only if y=Ax where 4 is real and non-negative. In
fact, assume that
[x + y| = x| + |y]. (11.11)

Squaring this equation we obtain

(x, ¥) + (x,9) = 21x] [yl. (11.12)
This can be written as

Re(x, y) = |x| |yl
where Re denotes the real part. The above relation yields
[(x, p)I = |x] |yl

and hence it implies that the vectors x and y are linearly dependent,
y=2Ax. Inserting this into (11.12) we obtain

A+1=2]4
whence
Rei = |4].

Hence, 1 is real and non-negative. Conversely, it is clear that
I(1+ A) x| = x| + 4|x]|

for every real, non-negative number A.
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Two vectors xe E and yeE are called orthogonal, if

(x,y)=0.

Every subspace E, c E determines an orthogonal complement Ei con-
sisting of all vectors which are orthogonal to E,. The spaces E, and E;
form a direct decomposition of E:

E = El (‘B Ei .
A basis x,(v=1...n) of E is called orthonormal, if

(x,,x,) = 0,,.
The inner product of two vectors
x=Y¢&x, and y=Yn"x,

is then given by

(X, y) = Zévﬁv-

Replacing y by x we obtain
Ix|? =) ¢,

Orthogonal bases can be constructed in the same way as in a real inner
product space by the Schmidt-orthogonalization process.

Consider two orthonormal bases x, and X, (v=1...n). Then the matrix
(o%) of the basis-transformation x,— %, satisfies the relations

Kot
Zavai_évl'
u

A complex matrix of this kind is called a unitary matrrix. Conversely, if
an orthonormal basis x, and a unitary matrix (of}) is given, the basis

x,= 0k x,
"
is again orthonormal.
11.5. The conjugate space. To every complex vector space E we can
assign a second complex vector space. E. in the following way: E coin-

cides with E as a real vector space. However, scalar multiplication
in E, denoted by (4, z)—2 - z is defined by

JoI=/2z.
E is called the conjugate vector spuace. Clearly the identity map v: E—E

satisfies K{iz)=—1-x(2) cekE.
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Now assume that (.) is a Hermitian inner product in E. Then a complex
bilinear function, < ). is defined in E x E by

oy =(x. k7 y) xeE. veE.

Clearly this bilinear function is non-degenerate and so it makes E. E
into a pair of dual complex spaces.

Now all the properties arising from duality can be carried over to
unitary spaces. The Riesz theorem asserts that every linear function f
in a unitary space can be uniquely represented in the form

f(x)=(x.q) xeE.

In fagt, consider the conjugate space E. In view of the duality between E
and E there is a unique vector b€ E such that

J(x)=Lx.b).
Now set a=x""'(h).
11.6. Normed determinant functions. A normed determinant function
in a unitary space is a determinant function, A, which satisfies

A(xy, oo x,) Ay .op,) = det((x;, 3)) x;cE. yieE. (11.13)

We shall show that normed determinant functions always exist and
that two normed determinant functions. 4, and 4, are connected by
the relation 4, =¢4,. where ¢ is a complex number of magnitude 1.

In fact, let 4,40 be any determinant function in E. Then a determinant
function. 4%, in E is given by

AFCHF, XY = Ao (e X e TR,
Since E and E are dual with respect to the scalar product {.) for-
mula (4.21) yields
Ao(Xp, oy x,) AR(e*Y L x*™) = adet((x;, x*7))
where x40 is a complex constant. Setting

*

x*V=rKy, y.eE

we obtain
Ag(xye oo X)) Ao (e ooy ) =0 det (X, ky ) =0 det((x;,y;).  (11.14)

Now set x,=y,=e, where ¢, (v=1...n) is an orthonormal basis of E.

It follows that R
[Agler.....e)]" =2
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and so « is real and positive. Let 4 be any complex number satisfying
[4]> = and define a new determinant function, 4, by setting

1
A ZTA()‘
/.

Then (11.14) yields the relation
A(Xyy ooy X)) - Ay on v = det((xq, 1)) x,€E. y.€E

showing that 4 is a normed determinant function.

Finally, assume that 4, and 4, are normed determinant functions in E.
Then formula (11.13) implies that 4, =¢4,, |e[=1.

11.7. Real forms. Let E be an n-dimensional complex vector space
and consider the underlying 2n-dimensional real vector space Eg. A real
form of E is a subspace, F < Eg, such that

Eg=F®iF.

Clearly, dimgF=n. If F is a real form of E, then every vector zeE can
be uniquely written in the form z=x+iy, x, yeF.

Every complex space has real forms. In fact, let z, ... z, be a basis of E
and define F to be the subspace of Ey consisting of the vectors

n
x=) &z, E'eR.
v=1

Then clearly, F is a real form of E.
A conjugation in a complex vector space is an R-linear involution,
z—Z, of Ey satisfying

jz=—iz.

Every real form F of E determines a conjugation given by
X+iyox—iy x. yeF.

Conversely, if z+-Z is a conjugation in E,then the vectors z which satisfy
Z=z determine a real form F of E as is easily checked. The vectors of
F are called real (with respect to the conjugation).

Problems

1. Prove that the Gram determinant
(xl’xl) "‘(xl’xp)
G(xy...x,) = det :

(x,,,xl)...().cp, x,)
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of p vectors of a unitary space is real and non negative. Show that
G(x,...x,)=0if and only if the vectors x, are linearly dependent.

2. Let E be a unitary space.

(i) Show that there are conjugations in E satisfying (2, Z,)=(z,, z,).

(i1) Given such a conjugation show that the Hermitian inner product
of E defines a Euclidean inner product in the corresponding real sub-
space.

3. Let F be a real form of a complex vector space E and assume that
a positive definite inner product is defined in F. Show that a Hermitian
inner product is given in E by

(21, 25) = ((X1- Xo) + (3. ,"2)) +i((x1. )2) — (x5, .1'1))
and that

(z,.2,) = (z4. :2)

4. Quaternions. Fix a unit quaternion j (cf. sec. 7.23) such that (j, ¢)=0.
Use j to make the space of quaternions into a 2-dimensional complex
vector space. Show that this is not an algebra over C.

5. The complex cross product. Let E be a 3-dimensional unitary space
and choose a normed determinant function A4.

(i) Show that a skew symmetric bilinear map Ex E—E (over the
reals) is determined by the equation

Alx. v, 2)=(x,yXx2z) x,y.zek.
(ii) Prove the relations
(ix)xy=xx(iy)=—i{xxy)
(xxyx)=(xxy1=0
(X1 X Xg, ¥y X Ya) = (V1 X))V X2) — (150 x) (0. X5)
X % X5 2 = x, 12 x5 12— [(x. x5)]2

xx(yxz)=y(z.x)— z(y, x).

6. Cayley numbers. Let E be a 4-dimensional Euclidean space and
let E¢ be the complexification of E (cf. Example II, sec 11.4). Choose a
unit vector e E¢ and let E; denote the orthogonal complement of e.
Choose a normed determinant function 4 in E; and let x be the corres-
ponding cross product (cf. problem 5). Consider E¢ as a real 8-dimen-
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sional vector space F and define a bilinear map x, y— x-) by setting

Xxoy=—(x.,y)e+xxy x,vekE,
(ze)-y=/v /eC. yekE,
x-(le)=ix .eC. x€E,
and
(Ae)-(ne)y=rlue A, ueC.

Show that this bilinear map makes F into a (non-associative) division
algebra over the reals.

Verify the formulae x - y> =(xv)y and x? y=x(xy).

7. Symplectic spaces. Let E be an m-dimensional vector space over a
field I'. A symplectic inner product in E is a non-degenerate skew sym-
metric bilinear function (. in E.

(i) Show that a symplectic inner product exists in E if and only if m
is even, m=2n.

(i) A basis a,.....a, by. ..., b, of a symplectic vector space is called

symplectic, if {aroay =0 Chiob> =0
{a;. by =9,

Show that every symplectic space has a symplectic basis.
(ii1) A linear transformation ¢: E— E is called symplectic, if it satisfies

{ox.oyy=<xy>  x, yekE.

If @ and ¥ are symplectic inner products in E, show that there is
a linear automorphism o of E such that ¥(x, y)=®(x x,ay), x, yeE.

8. Symplectic adjoint transformations. 1) If ¢: E—E is a linear trans-
formation of a symplectic space the symplectic adjoint transformation,
@. is defined by the equation

{px.y>=Lx.¢y>  x,yekE.
If =¢ (respectively ¢p=—¢) then ¢ is called symplectic selfadjoint
(respectively skew symplectic).

(i) Show that ¢ = ¢. Conclude that every linear transformation ¢ of E
can be uniquely written in the form ¢ =¢, + ¢, where ¢, is symplectic
selfadjoint and ¢, is skew symplectic.

(il) Show that the matrix of a skew symplectic transformation with
respect to a symplectic basis has the form

(¢l
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where 4. B. C. D are square (n x n)}-matrices satisfying
B*=B. C*=C, D=-4%*

Conclude that the dimensions of the spaces of symplectic selfadjoint
(respectively skew symplectic) transformations are given by

Ny=n2n-1) N,=n(2n+1).

(iii) Show that the symplectic adjoint of a linear transformation ¢ of
a 2-dimensional space is given by

Q=1-tro—o.

(iv) Let E be an n-dimensional unitary space with underlying real
vector space Ey.
Show that a positive definite symmetric inner product and a symplectic
inner product is defined in Eg by
(x,y)=Re(x, y)

and x. yeEg.
vy =Im(x,y)

Establish the relations
Gyy=—(ixy)
dx.yy =(x).

Conclude that the transformation x+—ix is both symplectic and skew
symplectic.

and

§ 3. Linear mappings of unitary spaces

11.8. The adjoint mapping. Let E and F be two unitary spaces and
¢@: E— Falinear mapping of E into F. As in the real case we can associate
with ¢ an adjoint mapping ¢ of F into E. A conjugation in a unitary
space is a linear automorphism x— X of the underlying real vector space
such that ix= —iX and (X.7)=(x.v). If x>X is a conjugation in E,
then a non-degenerate complex bilinear function is defined by {x, y)> =
(x, ¥}, x,yeE. Let x—Xx and y—¥ be conjugations in E and in F, respec-
tively. Then E and F are dual to themselves and hence ¢ determines a
dual mapping ¢*: F—E by the relation

(o x,y) =<{x,0*y). (11.16)
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Replacing y by 7 in (11.16) we obtain
Lo x, 7 =<x,0*y). (11.17)

Observing the relation between inner product a:«:i scalar product we can
rewrite (11.17) in the form

(9 x,y)=(x,0*). (11.18)
Now define the mapping @: E—F by

(11.19)

<

Py =0*
Then relation (11.18) reads

(px,y)=(x,py) xeE, yeF. (11.20)

The mapping @ does not depend on the conjugations in E and F. In fact,
assume that @, and @, are two linear mappings of F into E satisfying
(11.20). Then

(x,(p2 — 21)y)=0.

This equation holds for every fixed ye F and all vectors xe E and hence
it implies that @, = @,. The mapping @ is called the adjoint of the mapping
Q.

It follows from equation (11.18) that the relations

"_‘ N — -
o+Yy=p+y and Ao=I1d

hold for any two linear mappings and for every complex coefficient A.
Equation (11.20) implies that the matrices of ¢ and & relative to two
orthonormal bases of E and F are connected by the relation

@=a (v=1..nu=1..m).

Now consider the case E=F. Then the determinants of ¢ and @ are
complex conjugates. To prove this, let 4+0 be a determinant function in
E and 4 be the conjugate determinant function. Then it follows from the
definition of 4 that

A@xy... 9x,) =4(Px;...0x,) = A(p* %, ... p* X,)
=det@ A(%, ... %,) = detp A(x, ... x,).

This equation implies that
detp =dete. (11.21)
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If ¢ 1s replaced by ¢ —A1, where 1 is a complex parameter, relation
(11.21) yields

det(p — A1) =det(p — 11).

Expanding both sides with respect to A we obtain
Ya, At =Y, A
v v

This equation shows that corresponding coefficients in the charac-
teristic polynomials of ¢ and ¢ are complex conjugates. In particular,

tro=tro.

11.9. The inner product in the space L(E; E). Consider the space
L (E; E). An inner product can be introduced in this space by

1 .
(0. ¥) = ’;tr(q)ol//)- (11.22)

It follows immediately from (11.22) that the function (@, ¥) is sesquili-
near. Interchange of ¢ and y yields

(tl/,q))=;1;tr(¢o¢)=%tr(wolﬁ):(%—!//)-

To prove that the Hermitian function (11.22) is positive definite let
e, (v=1...n) be an orthonormal basis. Then

pe, =) aye, and ge, =) dle, (11.23)
o] u
where &, =&,. Equations (11.23) yield
ppe, =Y diue,
n, v
whence
tr(pap)= Y @log = Y aog = ¥ 121,
v, # v, u v, 1

This formula shows that (¢, ¢)> 0 for every transformation ¢ =0.
11.10. Normal mappings. A linear transformation ¢:E—E is called
normal, if the mappings ¢ and @ commute,

(po(p:¢o¢. (]124)

In the same way as for a real inner product (cf. sec. 8.5) it is shown
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that the condition (11.24) is equivalent to
|q)x|2=|(7)x|2 xekE. (11.25)

It follows from (11.25) that the kernels of ¢, and @ coincide, ker ¢ = ker .
We thus obtain the direct decomposition

E=kero@®Imep. (11.26)

The relation ker ¢ =ker ¢ implies that the mappings ¢ and ¢ have the
same eigenvectors and that the corresponding eigenvalues are complex
conjugates. In fact, assume that e is an eigenvector of ¢ and that A is the
corresponding eigenvalue,

@pe=le.

Then e is contained in the kernel of ¢ —A:1. Since the mapping ¢ —A1 is
again normal, e must also be contained in the kernel of 3 —11, i. e.

pe=1le.

In sec. 8.7 we have seen that a selfadjoint linear transformation of a
real inner product space of dimension n always possesses n eigenvectors
which are mutually orthogonal. Now it will be shown that in a complex
space the same assertion holds even for normal mapping. Consider the
characteristic polynomial of ¢. According to the fundamental theorem
of algebra this polynomial must have a zero 4,. Then 4, is an eigenvalue
of ¢. Let e, be a corresponding eigenvector and E, the orthogonal
complement of e;. The space E, is stable under ¢. In fact, let y be an
arbitrary vector of E,. Then

((py’e1)=(y’ (7)81) = (}’,161)=i(,v,el) =0

and hence ¢y is contained in E,. The induced mapping is obviously again
normal and hence there exists an eigenvector e, in E;. Continuing this
way we finally obtain n eigenvectors e, (v=1...n) which are mutually
orthogonal,

(e,.e,)=0  (v+p).

If these vectors are normed to length one, they form an orthonormal
basis of E. Relative to this basis the matrix of ¢ has diagonal form with
the eigenvalues in the main-diagonal,

pe,=4i,e, (v=1...n). (11.27)

22 Greub. Linear Algebra
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11.11. Selfadjoint and skew mappings. Let ¢ be a selfadjoint linear
transformation of E; i.e., a mapping such that ¢=¢. Then relation
(11.20) yields

(px,y)=(x0y) x,yeE.

Replacing y by x we obtain

(@ x,x) =(x,0x) = (@ x,x)
showing that (¢@x, x) is real for every vector xeE. This implies that all
eigenvalues of a selfadjoint transformation are real. In fact, let e be an
eigenvector and 4 be the corresponding eigenvalue. Then @e= Ae, whence

(pe,e) = Ale,e).

Since (@e, ) and (e, €) # 0 are real, 4 must be real.

Every selfadjoint mapping is obviously normal and hence there exists
a system of n orthonormal eigenvectors. Relative to this system the matrix
of ¢ has the form (11.27) where all numbers A, are real.

The matrix of a selfadjoint mapping relative to an orthonormal basis
is Hermitian.

A linear transformation ¢ of E is called skew if = —¢. In a unitary
space there is no essential difference between selfadjoint and skew
mappings. In fact, the relation

ip==ip
shows that multiplication by i associates with every selfadjoint mapping a
skew mapping and conversely.

11.12. Unitary mappings. A unitary mapping is a linear transformation
of E which preserves the inner product,

(px,0y)=(x,¥)  x,y€E. (11.28)
Relation (11.28) implies that
lp x| = |x] xeE

showing that every unitary mapping is regular and hence it is an auto-
morphism of E. If equation (11.28) is written in the form

(px.y)=(x,07"y)
it shows that the inverse mapping of ¢ is equal to the adjoint mapping,

p=¢ L. (11.29)
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Passing over to the determinants we obtain

detp-detop =1
whence
|dete| =1.

Every eigenvalue of a unitary mapping has norm 1. In fact, the equation
pe= e yields
lpel = 14| el
whence [A]=1.
Equation (11.29) shows that a unitary map is normal. Hence, there
exists an orthonormal basis e, (v=1...n) such that

pe,=Ae, (v=1..n)

where the 4, are complex numbers of absolute value one.

Problems

1. Given a linear transformation ¢: E—E show that the bilinear
function ¢ defined by b (x,y) = (@, y)
is sesquilinear. Conversely, prove that every sesquilinear function @ can
be obtained in this way. Prove that the adjoint transformation determines
the Hermitian conjugate function.

2. Show that the set of selfadjoint transformations is a real vector
space of dimension n2.

3. Let ¢ be a linear transformation of a complex vector space E.

a) Prove that a positive definite inner product can be introduced in E
such that ¢ becomes a normal mapping if and only if ¢ has n linearly
independent eigenvectors.

b) Prove that a positive definite inner product can be introduced such
that ¢ is

1) selfadjoint

ii) skew

iii) unitary
if and only if in addition the following conditions are fulfilled in corre-
sponding order:

i) all eigenvalues of ¢ are real
ii) all eigenvalues of ¢ are imaginary or zero
iit) all eigenvalues have absolute value 1.

22*
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4. Denote by S(E) the space of all selfadjoint mappings and by 4 (E)
the space of all skew mappings of the unitary space E.
Prove that a multiplication is defined in S(E)and A (E) by

[o. W] =i(p-y —Yo9)  @eS(E),yeS(E)

and
[o.¥] =0 =Yoo peA(E).ye A(E)

respectively and that these spaces become Lie algebras under the above
multiplications. Show that S(E) and A(E) are real forms of the complex
space L(E; E) (cf. problem &, §1, chap. I and sec. 11.7).

§ 4.* Unitary mappings of the complex plane
11.13. Definition. In this paragraph we will study the unitary mappings
of a 2-dimensional unitary space C in further detail. Let t be a unitary
mapping of C. Employing an orthonormal basis ¢;, ¢, we can represent
the mapping 7 in the form
Te,=oe; + fPe, (11.30)
te, =¢e(— fe;, + de,y)

where «, B and ¢ are complex numbers subject to the conditions

l? + 1817 =1
and
lef =1.
These equations show that
dett =e¢.

We are particularly interested in the unitary mappings with the determi-
nant + 1. For every such mapping equations (11.30) reduce to

Te, =oe; + fle,
te, =—Pe, + de,
This implies that

lal® + 1B =1.

t e, =de, — fe,
- -
T e, =fe +ae,.

Adding the above relations in the corresponding order we find that

t+t Ne,=(x+a)e,=trtre, (v=12)
whence
T+t =00tre. (11.31)
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Formula (11.31) implies that
(z,t2) + (z,t7 ' z) = |z|*trt
for every vector ze C. Observing that
(zt7'2)=(12,2) = (z,72)
we thus obtain the relation
2Re(z,72) = |z]*trt zeC (11.32)

showing that if det t=1, then the real part of the inner product (z,7z)
depends only on the norm of z. (11.32) is the complex analogue of the
relation (8.42) for a proper rotation of the real plane.
We finally note that the set of all unitary mappings with the deter-
minant+1 forms a subgroup of the group of all unitary mappings.
11.14. The algebra Q. Let Q denote the set of complex linear trans-
formations of the complex plane C which satisfy

Q+Q=1-treo. (11.33)

It is easy to see that these transformations form a real 4-dimensional
vector space, Q. Since (11.33) is equivalent to ¢ =ad¢ (cf. sec. 4.6 and
problem 8, §2, chapter IV) it follows that Q is an algebra under com-
position. Moreover, we have the relation

pp=¢adp=1-detg ¢eQ. (11.34)
Define a positive definite inner product in Q by setting (cf. sec. 11.9)
() =3trlpey) . YeQ.
Then we have

(. (P)Z%tr((pogb):'l*detqo-trl = det;
1.€.,
(p.p)=detp, ¢@eQ (11.35)
and
(p.)=3trg  ¢@eQ. (11.36)

Now we shall establish an isomorphism between the algebra Q and
the algebra H of quaternions defined in sec. 7.23.

Consider the subspace Q, of Q consisting of those elements which
satisfy tro =0 or equivalently (¢.1)=0. Then Q, is a 3-dimensional
Euclidean subspace of Q.
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For ¢eQ, we have. in view of (11.33). ¢ = —¢ and thus (11.34) yields
@’ =—detg 1==(p.0)1  @eQ,.
This relation implies that
ooy +yep)=—(o.9) 1 @.YeQ; (11.37)
Next, observe that for peQ, and yeQ,
(@ =Yoo 1) =3(tr(@ey) — tr(Y o) =0
whence @ o — o peQ,. Thus a bilinear map, x, is defined in Q, by
P xXY=3@p —Yoq). (11.38)

It satisfies
(@ xy,9)=0 and (¢ x ¥, ¥)=0. (11.39)

Moreover, equations (11.37) and (11.38) yield

poy=—(p, )1 +eox¥y @, PYe0;. (11.40)
It follows that

o211 = (0, ¥)* + @ x §J?. (11.41)

Finally, let 4 be the trilinear function in Q, given by

Mo, )= (o, 1).

In view of (11.40) we can write

A, 4, 1) = (@ x ¥, %). (11.42)

This relation together with (11.39) implies that 4 is skew symmetric and
hence a determinant function in Q,. Moreover, setting y=¢ x  yields,
in view of (11.41),

Ao x ) =lol YI* = (0, ¥)* @, ¢¥eQy.

Thus 4 is a normed determinant function in the Euclidean space Q,.
Hence it follows from (11.42) that the bilinear function x is the cross
product in Q, if Q, is given the orientation determined by 4 (cf. sec. 7.16).
Now equation (11.40) shows that Q is isomorphic to the algebra M of
quaternions (cf. sec. 7.23).
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Remark: In view of equation (11.35), Q is an associative division
algebra of dimension 4 over R. Therefore it must be isomorphic to H
(cf. sec. 7.26). The above argument makes this isomorphism explicit.

11.15. The multiplication in C. Select a fixed unit-vector a in C. Then
to every vector zeC there exists a unique mapping ¢.€Q such that
¢.a=z. This mapping is determined by the equations

¢p.a=o0a+pb
@.b=—PBa+ab

where b is a unit-vector orthogonal to ¢ and
z=oaa+ fBb.
The correspondence z— ¢, obviously satisfies the relation

(p121+uzz = A(le + )u(pzz

for any two real numbers 4 and p. Hence, it defines a linear mapping of
C onto the linear space Q, if C is considered as a 4-dimensional real
linear space. This suggests defining a multiplication among the vectors
ze C in the following way:
242, =@, 2;. (11.43)
Then ¢,=1 and
Qrrz = Pry0 Pz, z,2,€C. (11.44)

In fact, the two mappings ¢,, ,, and ¢,,.¢,, are both contained in Q and
send a into the same vector. Relation (11.44) shows that the corre-
spondence z— ¢, preserves products. Consequently, the space C be-
comes a (real) division-algebra under the multiplication (11.43) and this
algebra is isomorphic to the algebra of quaternions.
Equation (11.31) implies that

z+z '=2(p,1)a (11.45)

for every unit-vector z.

In fact, if z is a unit-vector then ¢, is a unitary mapping with determi-
nant 1 and thus (11.31) and (11.36) yield

z+z ' =¢.a+(p.a) ' =¢.a+ ¢ la=atre,=2a(p,1).

Finally, it will be shown that the inner products in C and @ are connected

by the relation
Re(zy,22) = (9:,5 92,) - (11.46)
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To prove this we may again assume that =, and -, are unit-vectors. Then
¢., and @_, are unitary mappings and we can write

(21722) = (q)z; a, (p:z a) = (([):_21 (le a,a) = ((P:1:3“1 a, (I) . (1147)

Since ¢, ,,,-1 is also unitary formula (11.32) yields
Re((szzz‘la’a) = ltr (P::lzz‘l = %tr((to:—;l ° (pzl) = %tr((._;o_.:zo(pzl)
= ltr((pll O(p'-‘:z) = ((p R (1022)'

Relations (11.47) and (11.48) imply (11.46).

(11.48)

Problems

1. Assume that an orthonormal basis is chosen in C. Prove that the
transformations which correspond to the matrices

60 G- G (57)

form an orthonormal basis of Q.
2. Show that a transformation geQ is skew if and only if tr ¢ =0.
3. Prove that a transformation @ e Q satisfies the equation

@ =1

if and only if
deto =1 and treo =0.

4. Verify the formula
(z12,252) = (21, 25) | 2| zy,25,2€C.,

5. Let E be the underlying oriented 4-dimensional vector space of the
complex plane C and define a positive definite inner product in E by

(x, v)g = Rel(x, ).

Let a.b be an orthonormal basis of C such that « is the unit element
for the multiplication defined in sec. 11.15. Show that the vectors

e=d, ¢,=id. e,=b, e;=ib

form an orthonormal basis of E and that, if A is the normed positive
determinant function in E,

Afe,ep,e5,03)=—1.
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6. Let E, denote the orthogonal complement of ¢ in E (cf. problem 5).
Let iy be a skew Hermitian transformation of C with try=0.
a) Show that there is a unique vector pe E; such that yx=p- x, xeE.

by If ia PB+ivy
(—[§+i*,' —ioz)

is the matrix of  with respect to the orthonormal basis a, b in problem 5,

show that
p=ae + Pes+7e;.

§ 5.* Application to Lorentz-transformations

11.16. Selfadjoint linear transformations of the complex plane. Consider
the set S of all selfadjoint mappings ¢ of the complex plane C. S is a real
4-dimensional linear space. In this space introduce arealinner product by

{o,7) =%(tr(cot) —tro-trr). (11.69)

This inner product is indefinite and has index 3. To prove this we note
first that
{o,0) = }(tro? — (tro)?) = — deto (11.70)
and
{o,1) =—4tro. (11.71)

Now select an orthonormal basis z,,z, of C and consider the transfor-
mations ¢;(j=1,2,3) which correspond to the Pauli-matrices

1 0 (0 1 (0 —i
il —1) %2\ o o3: | o)
Then it follows from (11.69) that

{o; O'j> = 5ij
and

<ai’l>=0, <l,l>=——1.

These equations show that the mappings 1, ¢4, ¢,, o3 form an ortho-
normal basis of S with respect to the inner product (11.69) and that this
inner product has index 3. Thus S becomes a Minkowski space (cf.
sec. 9.7).

The orthogonal complement of the identity-map consists of all self-
adjoint transformations with the trace zero.
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11.17. The relation between the spaces Q and S. Recall from sec. 11.14
the definition of the 4-dimensional Euclidean space Q. Introduce a new
inner product in Q by setting

(o > =—JFtr(pey) P YeQ.

We shall define a linear isomorphism Q: QiS such that

Q. Qup={p.y> . yeQ.

In fact, set
Qq):f—;l 1ro +i@ @eQ.
Then "y
Qo —-Qe=i-1-tro—ile+ Q).
Since ¢eQ, we have ¢+ @ =1-tro and so it follows that
Qp—-Qp=0;

Le., Qe is selfadjoint. The map ¥: Q«S given by

‘P(a):}%wtra—ia oeSs

is easily shown to be inverse to Q and thus Q is a linear isomorphism.
Finally. since
l g 2 _ .
Qoo = L?TIL 1tro-try + 71——2—11'(1// tro+@tey)— oy
it follows that
tr-(Q(p)e Q) =tro-try —tr(peoy)
whence
(e, QY> =1 {tr((Qe)e(Qy) — rQe - trQy}
=Mtro-try —trooy —tro-tri}
=—Stripoy) =L@, ¥

Note as well that, by definition,
QWopo Y=yoQopoy™ ¢, peQ.
11.18. The transformations T,. Now consider an arbitrary linear trans-

formation a of the complex plane C such that det a=1. Then a linear
transformation T,: S— S is defined by

T,0 =060l oeS. (11.79)



§5. Application to Lorentz-transformations 347

In fact, the equation

S~ - ~ ~
T, 0 =006cd=0a000d=T,0

shows that the mapping T,o is again selfadjoint. The transformation T,
preserves the inner product (11.69) and hence it is a Lorentz-transfor-
mation (cf. sec. 9.7):

(T,0,T,0) = —detT,c =— det(¢o0.4)
= — deto|deta|? = — deto = {0,0).

Every Lorentz-transformation obtained in this way is proper. To prove
this let () (0<7<1) be a continuous family of linear transformations of
C such that

a(0)=1 a(l)=a and deta(t)=1 o0=stg1).

It follows from the result of sec. 4.36 that such a family exists. The
continuous function det T, O<t<1)
is equal to + 1 for every ¢. In particular

det T, oy =det T,=1.
This implies that
detT,,, =1 (0=st=1)
whence
detT,=1.

The transformations T, are orthochroneous. To prove this, observe

that -

T,1 =004

whence
(, Ty =<,008y =—3tr(e.d) < 0.

This relation shows that the time-like vectors 1 and T, are contained in
the same cone (cf. sec. (9.22)).

11.19. In this way every transformation « with determinant 1 defines a
proper Lorentz-transformation T,. Obviously,

Tyop=TooTy. (11.80)

Now it will be shown that two transformations T, and T} coincide only
if = +a. In view of (11.80) it is sufficient to prove that T, is the identity
operator only if a= 4. If T, is the identity, then

%o0.8 =0 forevery cgeS. (11.81)
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Inserting o =1 we find that ac&=1 whence a=d "', Now equation (11.81)
implies that
%o6 =0.a forevery oeS. (11.82)

To show that a= +1 select an arbitrary unit-vector eeC and define
a selfadjoint mapping ¢ by
oz=(z,e)e zeC.
Then
(coa)e=(xe,e)e and (xo0)e=oe.

Employing (11.82) we find that
ae= (e e)e.

In other words, every vector «z is a multiple of z. Now it follows from
the linearity that «=Ar where 4 is a complex constant. Observing that
det «=1 we finally see that A= +1.

11.20. In this section it will be shown conversely that every proper
orthochroneous Lorentz-transformation 7 can be represented in the
form (11.17). Consider first the case that 1 is invariant under 7,

Ti=1.

Employing the isomorphism Q:0— S (cf. sec. 11.17) we introduce the
transformation

T =Q7'.T.Q (11.83)
of 0. Obviously,
T, T'Yy =L, ¥> ¢, beQ (11.84)
and
T i1=1. (11.85)

Besides the inner product of sec. 11.17 we have in Q the positive inner
product defined in sec. 11.14. Comparing these two inner products we
see that

(0. ¥) =L, ¥) + 3trotry = o, ¥> = 2{p, 1) Y, 1>, (11.86)
Now formulae (11.84), (11.86) and (11.85) yield

(T"o, T'Y)=(0,¥) @, yeQ

showing that 7" is also an isometry with respect to the positive definite
inner product. Hence, by Proposition I, sec. 8.24, there exists a unit-
vector feQ such that

T ¢ =fopoft. (11.87)
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Using formulae (11.83), (11.87) and (11.74) we thus obtain
To=(QoT cQ No=QBcQ 'oop ™ )=poo.p™".
Since ! =B (cf. sec. 11.34). This equation can be written in the form
To=fc0.8= To.
Finally,
detf=(B,p)=1.

Now consider the case T 1= 1. Then, since T is a proper orthochroneous
Lorentz-transformation, Tt and 1 are linearly independent. Consider
the plane F generated by the vectors 1 and Ti. Let w be a vector of F

such that
,m)=0 and <(w,w)=1. (11.88)

In view of (11.70) and (11.71) these conditions are equivalent to

trwo=0 and detw=-—1.

Therefore
Wow =1.

By hypothesis, T preserves fore-cone and past-cone. Hence T'1 can be
written as (cf. sec. 9.26)
Ti=1coshd + wsinh§. (11.91)

Let « be the selfadjoint transformation defined by

0 ]
o =1cosh -+ wsinh-. (11.92)
2 2
Then
. ,0 0. 0 . L0
T,1 =aod = 1cosh” - + 2wcosh -sinh- + wowsinh” -
2 2 2 (11.93)
= 1coshf + wsinhf.

Comparing (11.91) and (11.93) we see that
Ti=T,1.

This equation shows that the transformation 7', '°T leaves vector 1 in-
variant. As it has been shown already there exists a linear transformation
feQ of determinant 1 such that

-1
Ta oT=Tﬂ.
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Hence,
T=T,Ty;=T,.

It remains to be proved that o has determinant I. But this follows from
(11.70), (11.92) and (11.88):

0 0
detor = — (o, o) = = 1,1y cosh® S — {w, ) sinh?* 2 = 1.

Problems

1) Let o be the linear transformation of a complex plane defined by

the matrix
1 2i
—-i 3

Find the real 4 x 4 matrix which corresponds to the Lorentz-transfor-
mation T, with respect to the basis 1, 64, 6,, 6 (cf. sec. 11.16).

2) A fractional linear transformation of the complex plane € is a trans-
formation of the form

T(:):,,,, — ad—bc=1

where a, b. ¢, d arc complex numbers.
(1) Show that the fractional linear transformations form a group.
(i) Show that this group is isomorphic to the group of proper
orthochroneous Lorentz transformations.



Chapter XII

Polynomial Algebras

In this chapter I' denotes a field of characteristic zero.
§ 1. Basic properties

In this paragraph we shall define the polynomial algebra over I and
establish its elementary properties. Some of the work done here is
simply a specialization of the more general results of Chapter VII.
Volume lI, and is included here so that the results of the following
chapter will be accessible to the reader who has not seen the volume
on multilinear algebra.

12.1. Polynomials over I'. A polvnomial over I is an infinite sequence

=30, 0, .es Oy, ..) a,el

such that only finitely many 2, are different from zero. The sum and
the product of two polynomials
f=(29.%,...) and g=(B. 0. ...)
are defined by
fHg=(ug+ Bo oy + By, ..
Je=00o.71-)

k= Z O‘iﬁj-

i+j=k

where

These operations make the set of all polynomials over I' into a com-
mutative associative algebra. It is called the polynomial algebra over I
and is denoted by I'[t]. The unit element, 1, of I'[t] is the sequence
(1.0...). It is easy to check that the map i: I'—-I'[] given by

i) =(2,0...0...)

is an injective homomorphism of algebras.
Thus we may identify I with its image under i. The polynomial
(0, 1, 0...) will be denoted by ¢

t=(0.1,0...).
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It follows that
*=(0.....0.1.0..) k=0.1....

—_—
k

Thus every polynomial f can be written in the form

f=> a1 x.el (12.1)
v=0
where only finitely many 2, are different from zero. Since the elements r*
(k=0.1,...) are linearly independent. the representation {12.1) is unique.
Thus these elements form a basis of the vector space I'[(].
Now let n
f=> o, %0
v=0
be a non-zero polynomial. Then g, is called the leading coefficient of f.
The leading coefficient of fg (f+0. g+0) is the product of the leading
coefficients of f and g. This implies that fg=+0 whenever f+0 and g=+0.
A polynomial with leading coefficient 1 is called monic.
On the other hand. for every polynomial /=) x,* the element % eI’

v

is called the scalar term. 1t is easily checked that the map o:I'[t]—T
given by fi—a, is a surjective homomorphism.
Consider a non-zero polynomial

f=Y ot o #0.
K=o

The number n is called the degree of f. If ¢ is a second non zero
polynomial, then clearly

deg(f + g) < max(deg f,degg)
and

deg(f g) =degf + degg. (12.2)

A polynomial of the form «,r"(«, 4 0) is called a monomial of degree n.
Let I',[¢] be the space of the monomials of degree n together with the
zero element. Then clearly

I = ¥ 1,0

and by assigning the degree n to the elements of I;[t] we make I'[(]
into a graded algebra as follows from (12.2). The homogeneous elements



§ 1. Basic properties 353

of degree n with respect to this gradation are precisely the monomials
of degree n.

However, the structure of I'[{] as a graded algebra does not play a
role in the subsequent theory. Consequently we shall consider simply
its structure as an algebra.

12.2. The homomorphism I'[t]—>A. Let A be any associative algebra
with unit element ¢ and choose a fixed element ae A. Then the map

l1-et—>a
can be extended in a unique way to an algebra homomorphism
¢:I'[t]-A.

The uniqueness follows immediately from the fact that the elements 1 and
t generate the algebra I'[¢]. To prove existence, simply set

¢(;akt")= ;ak a.

It follows easily that @ is an algebra homomorphism. The image of
I'{t] under @ will be denoted by I'(a). It is clearly the subalgebra of A
generated by e and a. Its elements are called polynomials in a, and are
denoted by f(a).

The homomorphism &: f— f(a) induces a monomorphism

@:I'[t]/kerd - A.

In particular, if 4 is generated by e and a then @ (and hence @) are
surjective and so @ is an isomorphism

@: I'[t]/ker® > A
in this case.
Example: Let AeI'[t] and let g=) f,t" be a polynomial. Then we
have #

flg)= Z a(; Buth)".
In particular. the scalar term of f(g) is given by
o =2 % By = f(Bo)-
Thus we can write ‘v
o(f(@)=/lel®)  fgell]

where ¢: I'[t]—T is the homomorphism defined in sec. 12.1.

23 Greub. Linear Algebra
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12.3. Differentiation. Consider the linear mapping

d:I'[t]->T[1]
defined by
dt? =pt~! p=1
dl =0.
Then we have for p,g=1

d(tP-1%) = d(1**9)
=(p+qrr!
= pt"'l 1+ tPg a1
=diP '+ 17 d e
i.e.
d(tP ) =dtP- 11 +1Pd 1. (12.3)
It is easily checked that (12.3) continues to hold for p=0 or ¢=0. Since
the polynomials t* form a basis of I'[¢] (cf. sec. 12.1) it follows from (12.3)
that the mapping d is a derivation in the algebra I'[1].
d is called the differentiation map in I'[t], and is the unique derivation
which maps ¢ into 1. It follows from the definition of d that d lowers the
degree of a polynomial by 1. In particular we have

kerd =T
and so the relations
df =dg
and
f—-g=ua, ael

are equivalent. The polynomial df will be denoted by f".
The chain rule states that for any two polynomials fand g,

(f(g) =/"(g)¢g.

For the proof we comment first that

dgt=kgt 'dg k=1 (12.4)

dg®=0
which follows easily from an induction argument. Now let

=Yt
k
Then
f(g)= ;“k g
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and hence formula (12.4) yields
(&) =X kgt™l-dg
= ;erkgk_l-g’
=f'(e)g-

The polynomial d&'f (r=1) is called the r-th derivative of f and is
usually denoted by f. We extend the notation to the case r=0 by
setting =, It follows from the definition that /=0 if and only
if r exceeds the degree of f.

12.4. Taylor’s formula. Let 4 be an associative commutative algebra
over I' with unit element e. Recall from sec. 12.2 that if fel'[t] and
a€A then an element f(a)eA is determined by

= Y a,a
v=0
Taylor’s formula states that for ae A, be A
n f(P
fla+b)= Z b?. (12.5)

Since the relation (12.5) is linear in f it is sufficient to consider the
case f=t". Then we have by the binomial formula

fla+b)=(a+by= Z(;)a"“”-b”.

p=0
On the other hand.,

fPN=nmn—-1..n—p+ Ht"?
whence
fPay=nn—-1)...(n—p+ 1)a" "

and so we obtain (12.5).

Problems

1. Consider the mapping I'[¢] x I'[t]—-I'[t] defined by (f,g)—f(g).

a) Show that this mapping does nor make the space I'[r] into an algebra.

b) Show that the mapping is associative and has a left and right
identity.

RE}
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¢) Show that the mapping is not commutative.
d) Prove that the mapping obeys the left cancellation law but not the
right cancellation law; i.e., f;(g)=/>(g) implies that f, =/, but f(g,)=

f(g,) does not imply that g, =g,.
2. Construct a linear mapping

[:r[]-r[1

such that
d oj =1.
Prove that if |, and {, are two such mappings, then there is a fixed scalar,
a, such that
(J. 1= j. )f =a.

In particular, prove that there is a unique homogeneous linear mapping j
of the graded space I'[#] into itself and calculate its degree. { is called the
integration operator.

3. Consider the homomorphism ¢:I'[#]— I defined by

oY att =uaq.
Show that *
ef =1(0).
Prove that if | is the integration operator in I'[t], then
fod=1-0.

Use this relation to obtain the formula for integration by parts:

ffe=fg—o(fe)—Jlgf.

4, What is the Poincaré series for the graded space I'[7]?

5. Show that if d:I'[¢]-TI[r] is a non-trivial homogeneous antideri-
vation in the graded algebra I'[¢] with respect to the canonical involution,
and 0*=0 then

H([)=0, pz1.

6. Calculate Taylor’s expansion

fle+h)=f@+hf @+

for the following cases and so verify that it holds in each case:

a) f=t>—t+1, g=3+2t, h=t-5
b) f=*+1, g=3+t—1, h=—t+1
c) f=3t2+2t+5, g=1, h=-1

d) f=>—r*+1t-1, g=t, h=*—1+1
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7. For the polynomials in problem 6 verify the chain rule
Lf &) =1 ()¢

explicitly. Express the polynomial f(g(#))’ in terms of the derivatives of £,
g and A and calculate [ f(g(h))]" explicitly for the polynomials of problem
6.

§ 2. Ideals and divisibility

12.5. Ideals in I"[t]. In this section it will be shown that every ideal in
the algebra I'[¢] is a principal ideal (cf. sec. 5.3). We first prove the
following

Lemma I: (Euclid algorithm): Let f+0 and g=+0 be two polynomials.
Then there exist polynomials ¢ and r such that

f=gq+r
and deg r<deg g or r=0.
Proof: Let deg f=rn and deg g=m. If m>n we write

f=g0+f

and the lemma is proved. Now consider the case n>m. Without loss of
generality we may assume that f'and g are monic polynomials. Then we
have

f=1t"""g+ f, degfi<n or f,=0. (12.6)

If f, &0 assume (by induction on #) that the lemma holds for f;.
Then
fi=gq +r, (12.7)

where deg r; <deg g or r; =0. Combining (12.6) and (12.7) we obtain

f=@""+4q)g+r

and so the lemma follows by induction.

Proposition 1: Every ideal in I'[#] is principal.

Proof: Let I be the given ideal. We may assume that 7&0. Let 4 be a
monic polynomial of minimum degree in 7. It will be shown that / = I,
(cf. sec. 5.3). Clearly, I, = I. Conversely, let fel be an arbitrary poly-
nomial. Then by the lemma,

f=hqg+r
where
degr <degh or r=0. (12.8)
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Since fe I and ke I we have
r=f—hqel

and hence if r+0 deg r=deg h. Now (12.8) implies that r=0; i.e. f=hg
and so fe1,.

The monic polynomial his uniquely determined by I. In fact, assume
that k is a second polynomial such that I=1,. Then there are monic
polynomials g, and g, such that k=g, i and h=g,k. It follows that
k=g g,k whence g,g,=1. Since g, and g, are monic we obtain g, =g, =1
whence k=h.

12.6. Ideals and divisors in I'[t]. Let f and g be non-zero polynomials.
We say that g divides f or [ is a multiple of g if there is a polynomial h
such that f=g-h

In this case we write g/f. Clearly, f is a multiple of g if and only if it is
contained in the ideal, I,, generated by g. If h/g and g/f, then h/f.
Two monic polynomials which divide each other are equal.

Next, let f/ and g be monic polynomials and consider the ideal I, +1,.
In view of Proposition I, sec. 12.5, there is a unique monic polynomial,
/v g. such that

Lyo=1I+1,.
It is called the greatest common divisor of f and g. Since I,<1I;,, and
I,cl,,. fvgis indeed a common divisor of f and g. On the other
hand, if h/f'and h/g, then I, =1, and I, =1, whence I, , =1, and so h/f v g.
This shows that every common divisor of f and g is a divisor of fvg.
A polynomial f whose only divisors are scalars and scalar multiples
of f is called irreducible ar prime.

In a similar way the greatest common divisor of a finite number of
monic polynomials f; (i=1...r) is defined. It is denoted by fiv - Vv f,
and is characterized by the relation

Iflv"'vfrzlfx+“'+I./'r' (129)
If

fiveevif=1

the polynomials f; are called relatively prime.
12.7. Again let f and g be monic polynomials and consider the ideal
I, N I,. By Proposition I, sec. 12.5. there is a unique monic polynomial,

J A g. such that
Irg=1N 1.



§ 2. Ideals and divisibility 359

It is called the least common multiple of f and g. It follows from the
definition that f'A g is indeed a common multiple of f and g and every
common multiple of f and g is a multiple of f A g.

If f; (i=1...r) are monic polynomials their least common multiple,
JiA-- A f., is defined by the equation

Lyningo =100 I (12.10)

Proposition I1: 1f f is the greatest common divisor of the f; (i=1...r)
then there are polynomials g; such that

M‘

f=) fie. (12.11)

i=1

Proof’: 1t follows from (12.9) that every element hel, can be written as

-

h=

figi

i=1

Since fel;, f must be of the form (12.11).

Corollary: If the polynomials f; are relatively prime there exist poly-
nomials g; (i=1...r) such that

zr:f,-g,-zl. (12.12)
i=1

Conversely if there exists a relation of the form (12.12) then the f; are
relatively prime.

Proof: The first part follows immediately from the proposition. Now
assume that there is a relation of the form (12.12). Then every common
divisor of the f; divides 1 and hence is a scalar.

Proposition I11. Let f be the greatest common divisor of the monic
polynomials fi, f, and write

fi=fh  (i=12).

Then the polynomials h,, h, are relatively prime and the least common
multiple of the polynomials f,. f; is given by f - h, - h,.
Proof: In view of Proposition II we can write

f=Yre. (12.13)
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It follows that
/= Z.fhigi
whence

Y higi=1.

This shows that hy, and h, are relatively prime.
Clearly. the polynomial fh h, is a common multiple of f, and f;.
Now let g be any common multiple of f; and f, and write

g=fip. g=/ip,.
Then (12.13) yields

Ipi=glip+8 ap=818+ & [api= /(g P2+ &2 py)
=/ hy(g p2+gap1)-
This implies that
Py ="hy(gi P2+ g2 1)
whence
g=fipi =/ hy(gips+gp);

i.e, g is a multiple of f hy h,.

Corollary: If the monic polynomials f; (i=1...r) are relatively prime,
then X . : :
hnnfe=Te e

Proof: If r=2 this follows immediately from the proposition. If r>2
a simple induction argument is required.

12.8. The lattice of ideals in I'[t]. Let .¥ denote the set of all ideals
in I'[t]. Recall from sec. 5.9 that .# is a lattice with respect to the partial
order given by inclusion.

On the other hand. let 2 denote the set of all monic polynomials
in I'[t] together with the zero polynomial. Define a partial order in 2
by setting
f=g ifg/f  (f+0.g%0);

0

g=

for every gel'[t].

Then, in view of sec. 12.6 and 12.7, 2 becomes a lattice as well. Now let
@: 7 — .7 be the map given by ®: fi—1,. Then f <g implies that I, <1,
and so @ is a lattice homomorphism. Moreover, since @ is bijective, it
is a lattice isomorphism (cf. Proposition I, sec. 12.5).
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12.9. The decomposition of a polynomial into prime factors.

Theorem 1: Every monic polynomial can be written
f=H (12.14)

where the f; are distinct irreducible monic polynomials and degf;= 1.
The decomposition is unique up to the ordering of the prime factors.

Proof: The existence of the decomposition (12.14) is proved by in-
duction on the degree of f. If deg f=0 then f=1 and the decomposition is
trivial. Suppose that the decomposition (12.14) exists for polynomials of
degree <n and let f be of degree n. Then either f is irreducible in which

case we have nothing to prove; or fis a product
f=gh degg=1,degh=1.

Since deg g <deg f and deg h<deg f it follows by induction that

g=g\..g

h=hi'.. hi

f =gl genit ki

Collecting the powers of the same prime polynomials we obtain the
decomposition (12.14).

The uniqueness part follows (with the aid of a similar induction
argument) from

and

whence

Lemmall: Let f, g, h be monic polynomials and assume that h is
irreducible. Let m be a positive integer. Then 4™ divides fg if and only
if there is an integer p (1 < p=<m) such that

W/f and H™ P/g.

Proof. The “if” part of the statement is trivial. Now suppose that
h"/fg. Let p=0 be the largest integer such that h?/f. If p=m there is
nothing to prove. If p<m, write

f=hf.
fe="h"fig.
On the other hand, by hypothesis,
Seg=hm"k

Then

for some polynomial k.
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These relations yield
Sig=h""rk. (12.15)

By the definition of p, f; is not divisible by h. Since h is irreducible,
it follows that h and f; are relatively prime. Thus there are polynomials i
and v such that (cf. the corollary to Proposition 11, sec. 12.7)

uh+uvf=1.
Set

g =ug+vh"rtk.
Then we have
hgy=hug+uvh" ?k=hug+ fivg=(hu+ fiv)g=g;
Le.hg =g.
Now equation (12.15) implies that
frgy=h"rlk

Continuing this process we see that /7 divides g. This establishes the
lemma and so the proof of Theorem I is complete.

Corollary. The monic polynomials which divide the polynomial

f=rfr

are precisely the polynomials
g=f" 7 sk (v=1,..7).

Now let (12.14) be the decomposition of the monic polynomial fand
set

a

gi=fE . flfE =1,

It will be shown that the g, are relatively prime and that for every i, f is

the least common multiple of ¢; and the polynomial \/ g;,
JFi

Vogi=1 (12.16)

A (Vg)=1. (12.17)

jFi
Let g be a monic polynomial which divides g;. Then Theorem I implies
that g has the form

g=f" A sk

Hence, if g divides all polynomials g;, it follows that g=1, whence (12.16).
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A similar argument shows that V/ qj=f,-"" and now tormula (12.17)
follows from the relation %
an(Va)=afli=S
j¥Fi

and the fact that ¢, and f{* are relatively prime.

Proposition IV: Suppose g is a product of relatively prime irreducible
polynomials and suppose f is a polynomial such that g/f™ for some
mz=1. Then g/f.

Proof: Let : &

/ F= o g
be the decomposition of f into its prime factors. Then the corollary of
Theorem I implies that g is of the form

g =ft oo S
Since, by hypothesis, g is a product of relatively prime irreducible poly-
nomials it follows that j, =---=j,=1 whence
gl Js

and so g/f.

Proposition V: A polynomial f is the product of relatively prime
irreducible polynomials if and only if f and f” are relatively prime.
Proof: Let
f=H

be the decomposition of f into prime factors. Suppose that k;>1 for
some i (1ZiZr).
Then writing
fS=hf? he I'[t]
we obtain
['=H 220 f =L fi+ 20 f))

and so f; divides f and f’. Consequently, f and f are not relatively
prime.

Conversely, assume that k;=1 (i=1...r). Then, if f/ and f’ have a
common factor, the corollary to Theorem [, implies that, for some i, f;
divides /.

Since

S =S e ff e =S e S oty Sy
j=1

j*i
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we obtain

Tl f

Since f; is irreducible and the polynomials f,..... /, are relatively prime,
it follows that f;/f;. But this is impossible since deg f; <deg f;. This
contradiction shows that f and ' are relatively prime.

12.10. Polynomial functions. Let (I"; I') be the space of all set maps
I'-> T furnished with the linear structure defined in sec. 1.2, Example 3.

Then every polynomial f= ) «;t'determines an element f of (I'; I') defined
by i=0

n

J(O=Y xud=1(), <cel (=1,

i=1
The functions f are called polynomial functions.
If f(A)=0 for some AeT, then 2 is called a root of f. Aisarootof fif and
only if #— 4 divides f. In fact, if

f=@-2g

it follows that /(2)=0. Conversely, if  — 4 does not divide £, then t — A and
fare relatively prime and hence there exist polynomials ¢ and s such that

fg+(@—A)s=1.
This implies that
f)a()=1

whence f(1)#0. It follows from the above remark that a polynomial of
degree n has at most » roots.

Proposition VI: The mapping f—f is injective.
Proof: Suppose f=0. Then f(£)=0 forevery éeT. Since I' has charac-
teristic zero it contains infinitely many elements and hence it follows that

f=0.

In view of the above proposition we may denote the polynomial
function f simply by f.

Problems

1. Let f be a polynomial such that f'(0) 0. Consider two polynomials
g; and g, such that g,+g, and f(g,)=f(g,). Prove that g, and g, are
relatively prime.
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2. Consider the set of all pairs (f,g) where g+0. Define an equivalence
relation in this set by

(f.g)~(f.g) ifandonlyif fg§=7fg.

Show that this is indeed an equivalence relation. Denote the equivalence
classes by (f,g). Prove that the operations

(fi-81) + (f2.82) =(f1g2+ f281,8182)

and

(fhgl)(fz»gz) = (f1fz’glgz)

are well defined.

Show that with these operations the set of equivalence classes becomes
a field, denoted by Q[1].

Prove that the mapping

=00

is a monomorphism of the algebra I'[¢] into the algebra Qp[¢].

3. Extend the derivation d to a derivation in Q,[¢] and show that this
extension is unique. Show that the integration operator | (cf. problem 2,
§ 1) cannot be extended to Q[¢].

4, Show that any ideal in I'[ /] is contained in only finitely many ideals.

5. Consider the mapping R[#] x R[¢]—R[¢] defined by

(S A1) > b,

Show that this mapping makes R[7] into an inner product space. Prove
that the induced topology makes R[¢] into a topological algebra (ad-
dition, scalar multiplication, multiplication and division are continuous).
6. Let R[¢] have the inner product of problem 5. Let I be any ideal.
Calculate 7 explicitly. Under what conditions do either of the equations

R[{]=I01I*
(IHy=1

hold? Show that

((Il)l)L — IJ".

7. Let £ and g be any two non-zero polynomials and assume that

deg f=deg g. Write

f=pig+ta
where g, =0 or deg g, <deg g. Prove that the greatest common divisor
of fand g coincides with the greatest common divisor of g and g,, unless
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g divides f. 1f g, =0 write
g=p28 +8» 8 =0 or degg, <degg,.

Show that the repeated application of this process yields an explicit
calculation of the greatest common divisor of f and g. (This method is
called the Euclidean algorithm).

8. Calculate the greatest common divisors and the least common
multiples of the following polynomials over R[¢]:

A L+t P+ ++1, °—1

by P +3%+1, t*—1+7, TP+16

o) St*— L+ =347, Mt 170 16, Pt* =P+ 241
d) 8% + /61" — /21 =72+ 2/6, 21° +1° + 51" — 617 — 3t — 15
e) 3t* + 508> —91* + 84t + 5, 1*+ 151> — 2917 — 64t + 4.

9. If f, g are two polynomials and d is their greatest common divisor
use the Euclidean algorithm to construct polynomials r, s such that

fr+gs=d.

10. Construct the polynomials r, s explicitly for the polynomials of
problem 8, (in parts b) and ¢) it will be necessary to construct three
polynomials).

11. Decide whether the following polynomials are products of
relatively prime irreducible polynomials:

a) t'—t°+13—1;

b) t* 423 4212 4+ 1,

¢) the polynomials of problem 6, §1;

d) the polynomials of problem 8.

12. Let f, g, g, be non-zero polynomials such that g, #g,. Show that
g1 — & divides f(g,)— f{g,).

§ 3. Factor algebras

12.11. Minimum polynomial. Let 4 be a finite dimensional associative
commutative algebra with unit element ¢. Fix an element ae A and
consider the homomorphism @: I'[t]— A4 given by

Pif)=fla)  fel[t]
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(cf. sec. 12.2). Its image is the subalgebra of A4 generated by ¢ and a.
It will be denoted by I'(a).

The kernel, K of @ is an ideal in I'[t]. Since A has finite dimension,
K +0. By Proposition I, (Sec. 12.5) there is a unique monic polynomial,
#, such that K=1,. p is called the minimum polynomial of a.

If A+0, 4 must have positive degree. To see this assume that u=1.
Then I,=I[t] and so @=0. It follows that e=®(1)=0 whence 4=0.

The homomorphism @ factors over the canonical projection to induce
an isomorphism =
Y:I'[t]/l, - I'a)
such that the diagram

I'[t]1% I'a)
LI
ey,

commutes.

Example I: 1If a=0, then K consists of all polynomials whose scalar
term is zero and so u=t.

Example I1: If a=e, then K consists of all polynomials f= Z/ r
satisfying Zoc =0. In this case we have u=r—1.

Example I11:Set A=1TI"[t]/I, (where h is a fixed monic polynomial) and
a=t where t=m(t). Then, for every polynomial f:z AN

D(f)=) a,m(t") Zoc n{t) Zar‘~n‘f

and so @ coincides with the canonical projection. It follows that the
minimum polynomial of 7 is the polynomial h.

Proposition I: The dimension of I'(a) is equal to the degree of the
minimum polynomial of a.

Proof: Let r denote the degree of p. Then it is easily checked that the
elements 1,f.....¢" ! form a basis of I'[r]/I,. Thus we have, in view of
the isomorphism ¥, dimI'(a)=dimI'[t]/I,=r.

Proposition I1: Every ideal in I'(@) is principal.

Proof: Let I, be an ideal in I'ta) and set I=&~'(I,). Then I is an
ideal in I'[r]. Thus, by Proposition V. sec. 12.5, there is an element
JeI'[t] such that I=1,. It follows that

Li=d)= (I)(]_/-) = Ij'(u)'
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12.12. Nilpotent elements in I'(a). Suppose that f{«) is a nilpotent
element of I'(¢). Then, for some m=1. [(a)"=0. It follows that

(D( f'm) — ((D( f'))m — ./'(U)m:O

and so the minimum polynomial. p. of a divides ™.
Now decompose p into its prime factors

=Rk
and set

g=h.. I

Then we have g/u/ /™. Now Proposition IV, sec. 12.9. implies that g
divides f.

Conversely. assume that g//. Set k=max (k,..... k,). Then ;/¢" and so

we have ok
we .
It follows that f{a)*=0 and so f{(a) is nilpotent.

Thus f{a) is nilpotent if and only if' g divides f. In particular. if all the
exponents in the decomposition of y are 1, then y=g and so f{a) is
nilpotent if and only if x/f;i.e.. if and only if f{a)=0. Hence. in this case
there are no non-zero nilpotent elements in I'(«).

12.13. Factor algebras of an irreducible polynomial.

Theorem I: Let f be a polynomial. Then the factor algebra I'(f) is a
field if and only if [ is irreducible.

Proof: Suppose f = gh, where deg g = | and deg h = 1. Theng¢l,, h¢l,
and so g#0, h+0. On the other hand, g-h=gh=f=0 and so I'(f) has
zero divisors. Consequently, it is not a field.

Conversely, suppose f is irreducible. I'(7) is an associative commuta-
tive algebra with identity T. To prove that I'(f) is a field we need only
show that every non-zero element g has a multiplicative inverse. Let geg
be any representing polynomial. Then since g0, it follows that g is not
divisible by f. Since f is irreducible, f and g are relatively prime and so
there exist polynomials /2 and k such that

gh+fk=1
whence
gh+ k=1
But f=0 and so
gh=1

Hence / is an inverse of g.
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Corollary: If f is irreducible, then I'(f) is an extension field of I'.
Proof: Consider the homomorphism ¢:I'—I'(7) defined by

Qia—>0a.

It is clear that ¢ is a monomorphism and so the corollary follows.

Problems

1. Consider the irreducible polynomial f=¢>+5¢+1 as an element of
Q[ ] (where Q is the field of rational numbers). Let

n: Q] - Q[t)/I,

be the canonical projection.
a) Decide whether the polynomials of problem 6, § 1, problem &, § 2
(except for part d) and problems 11a) and b), §2 are in the kernel of 7.
b) For each polynomial p of part a) such that np=0 construct a poly-
nomial ge @ [t] such that
nqg=(np)".

2. Let felI'[t] be any polynomial. Consider an arbitrary element
xeI'[t]/I,. Prove that the minimum polynomial of x has degree < deg f.

3. Suppose fel'[] is an irreducible polynomial, and consider the
polynomial algebra I'[7]/I,[ ] denoted by I /[ ¢].

a) Show that I'[ 7] may be identified in a natural way with a subalgebra
of I';[1].

b) Prove, that if two polynomials in I'{f] are relatively prime, then
they are relatively prime when considered as polynomials in I ;[¢].

¢) Construct an example to prove that an irreducible polynomial in
I'[#] is not necessarily irreducible in I'([¢].

d) Suppose that f has degree 2, and that g is an irreducible polynomial
of degree 3 in I'[r]. Prove that g is irreducible in I' [ ].

§ 4.* The structure of factor algebras

In this paragraph [ will denote a fixed monic polynomial, and I'(t) will
denote the factor algebra I'[(]/1,.

12.14. The lattice of ideals in I' (f). Consider the set of all monic poly-
nomials which divide f These polynomials form a sublattice #, of 2
(cf. sec. 12.8). In fact, if f;... f, is any finite set in Z; then the greatest

24 Greub. Lincar Algebra
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common divisor and the least common multiple of the f; is again con-
tained in ;. [ is a lower bound and 1 is an upper bound of ..

On the other hand, consider the lattice .#; of ideals in the algebra
I'(f)=Tr[t]/1;. The remarks of sec. 12.11 establish a bijection

(Pi.@f—> <ﬂf
defined by
(I)g =1

g

where I, denotes the ideal in I'(7) generated by g. The reader can easily
check that @ and @' are order preserving and so @ is a lattice isomor-

phism: i.c.,
d)(\/ fl) = Z[]i
and
¢(/\ fl) = mlfi'
In particular,
¢(1)=r(i)
and

o(f)=0.

12.15. Decomposition of I'(f) into irreducible ideals. Let f=f, ...f,
and let /; denote theideal in I'(7) generated by /;. Consider the ideal

1=y1,. (12.18)
J

Proposition I: I=T'(7) if and only if the polynomials f; are relatively
prime. The sum (12.18) is direct if and only if, for each j, the polynomials

fjand V f; have fas least common multiple.
i+j

Proof: To prove the first part of the proposition we notice that
r@)= Z]i
is equivalent to
o(1) = db(y f)
which in turn is equivalent to

1=\/fi'

But according to sec. 12.6, this holds if and only if the f; are relatively
prime.
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For the second part we observe that the sum is direct if and only if
ILnY =0 (j=1..m).
i*j
Since

L0 Y L=2(f; ~(V £))
i*j i)
this is equivalent to

fin(Vv =1 (=1..m).

iFj

Theorem I: Let
f=feg

be the decomposition of finto prime polynomials and let the polynomials
g; be defined by

gi=fE . flhfk.
Then

r@=Y1r (12.19)
where I, denotes the ideal generated by g;. Moreover let

1

i

é1+"'+ér’ e_iEIi (12.20)
and

i, el (12.21)

Il
~

f

+

1 + -

be the decompositions determined by (12.19). Then ¢; is an identity in J;
and for every geI'(f)

i= ¥ a(0). (12.22)
Finally, if 1 is any ideal in I"(7), then

I=Y1Inl. (12.23)
i=1

Proof: The relation (12.19) is an immediate consequence of Proposi-
tion I, and formulae (12.16) and (12.17). To show that ¢, is an identity in
I(7) let gel, be arbitrary. Then

g=T14=3¢;9.
Since for j+i ’
é;gel;nl;=0

24*
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it follows that
&qd=4g.
Now let g be an arbitrary element of I'(f) and let ge g be any represent-
ative. Writing

we obtain
=8y ++ &)+ Y a(fy +-+ 1),
k=1
But
Liel,nl;=0
and so

(fl 4+t t'r)" = f{‘ 4+t frk,
It follows that

g= Y a(fi+-+5)=Y q() (’=¢).
k=0 i=1
Finally, let / be any ideal in I'(7). Then clearly
Ini, =¢él

and so (12.23) is an immediate consequence of (12.20).

Theorem II. With the notation of Theorem I let
@I [1] =1
be the homomorphism defined by
(1) =¢; @i(1)=1,.

Then ¢, is an epimorphism and ker ¢; = 7.
Thus ¢; induces an isomorphism

I/l S 1 (12.24)

In particular, the minimum polynomial of ; is f;*.
Proof: (12.22) shows that ¢; is an epimorphism. Next we prove that
I, = ker ¢;. We have

XS (@)= f(@#)=0.
Since f(7)el; and the sum (12.19) is direct it follows that

f@)=0  (i=1-r);
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i.e., »;(f)=0. Now consider the induced map

@ T[], 1.
Then
?:(q) = q (%) qel (1]
and. in view of {12.22),

ker@, = Y I,.

iFi
But ¥ J; is the ideal generated by ;" and thus
j¥i

kerg; =1 ;.

This completes the proof.

Corollary I: An element geI'(f) is contained in 7; if and only if
q(i)=q¢ and ¢q(i)=0 j*1i.

Theorem ITI: The ideals I; are irreducible and (12.19) is the unique
decomposition of I'(7) into a direct sum of irreducible ideals.

Proof: Let fi=g,. In view of the isomorphism (12.24) it is sufficient to
prove that the algebra I'[1]/I,, is irreducible. According to Proposition I,
I'{t]/1,, is the direct sum of two ideals I, and I, only if

ILi=1I, and I,=1I,

where ¢, and g, are relatively prime divisors of g;. But this can only
happen if either g, =1 or g,=1. If ¢, =1, say, then I, is the full algebra
and so I,=0. It follows that I'(¢)/I,, is irreducible.

Now suppose that [ is an irreducible ideal in I'(f). Then Theorem I,
sec. 12.16 gives

I=Y Inl,.

i=1
Since [ is irreducible, it follows that I < [, for some i. Thus if
rH=1eJ
for some ideal J, then intersection with 7; gives
L=1®(Unl).

Since 7, is irreducible, it follows that Jn I;,=0, whence I;=1. This com-
pletes the proof.
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Corollary I: The irreducible factor algebras I'(f) are precisely those for
which fis a power of an irreducible polynomial.

Corollary II: Suppose the ideal 7 is a direct summand in I'(7). Then
1s a direct sum of the 7.

Proof: Let J be an ideal such that /@ J = I'(f). It is obvious that in a
finite dimensional algebra any ideal is a direct sum of irreducible ideals.
Since 7 and J are ideals, /- J=0,and soanyidealin I(J)is an ideal in I'(f).
Now the result follows from Theorem I}1.

12.16. Semisimple elements. Let A+0 be a finite dimensional asso-
ciative commutative algebra with unit element ¢ and let e 4. Recall
from sec. 12.11 that the minimum polynomial, f, of a has positive degree.
The element a is called semisimple, if f is the product of relatively prime
irreducible polynomials.

Lemma I: a is semisimple if and only if the element f”(a) is invertible
in the algebra I'(a).

Proof: If u is semisimple, then the polynomials f and f” are relatively
prime (cf. Proposition V, sec. 12.9). Thus, by Corollaryl to Proposi-
tion I1, sec. 12.8. there are polynomials p and ¢ such that

pf+qf =1

Since f{a)=0 it follows that g{a) f"{a)=¢ and so f'{a) is invertible.
Conversely. assume that f"{«) is invertible in I («). Then there is a poly-
nomial g such that f'(a)g(a)=e. Set

h=f"g—1.
Then hia) = (@) gla) — e = 0.
Since f is the minimum polynomial of « it follows that f/h. Thus we
can write y ,
I'e=1=/f-q

where ¢ is some polynomial. It follows that f and /" are relatively prime.

Lemma I1: Assume that « is semisimple and let & be a polynomial
such that h(a)"=0 for some m=1. Then h{a)=0.

Proof: Let f be the minimum polynomial of a. Then the hypothesis
implies that f/I™. Since « is semisimple. f is a product of relatively prime
irreducible polynomials and it follows that f/h (cf. Proposition IV,
sec. 12.9). Thus h(a)=0.
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Theorem IV: Let A be a finite dimensional associative commutative
algebra. Let xe 4 and let

f=p e

be the decomposition of the minimum polynomial of x into prime fac-
tors. Set

g=fi f
and
k = max k; (i=1...r1).
Then there are unique elements xge 4 and xyeA such that xg is semi-
simple, xy is nilpotent and

X =Xg+ Xy.
The minimum polynomials of xg and x are given by
ps=g and py =1t~

Proof: 1. Existence: Identify the subalgebra I'(x) with the factor algebra
r{t)=r[t]/l; via x=t. Lemma IV below {cf. sec. 12.17) yields elements
uel'[t] and wel'[t] with the following properties:

(i) g/glu).
(i) ut+w=t,
(iii) g divides w.
Projection onto the quotient algebra yields the relations

gwy=0 (12.25)
o =0, (12.26)
and
u+om=t. (12.27)
Now set

x¢=u and xy=.

Then g{x4)=0.

Thus the minimum polynomial of xg divides g and hence it is a pro-
duct of relatively prime irreducible polynomials. Thus, by definition,
Xg is semisimple. Relation (12.26) shows that xy is nilpotent and from
{12.27) we obtain the relation

Xy +Xg=X.

Finally. xg and xy are polynomials in x.
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. Minimum polynomials: Next we show that ¢ is the minimum poly-
nomial of xg. Let /i be the minimum polynomial of xg. Then & divides g.
On the other hand. Taylor’s expansion gives

hix)=hixg+ xy)=hixg)+¢q - xy=q-xy

where ge A is some element. This shows that hi{x) is nilpotent. Now
Sec. 12.12 implies that g/h. Thus g=h.
Now consider the minimum polynomial, uy, of xy. Since g/w we have
g" /e Thus f/g*/w* It follows that
xh=m"=0.
Thus uy =1t with I<k.
To show that k<! we may assume that k=2. Then w=g-¢ and r is

relatively prime to g (cf. Lemma I1I and IV, sec. 12.17). Hence v is relatively
prime to f. It follows that v(x) is invertible. Now

Xy=m=g -r=g(x)r(x)
and so

Since r(x) is invertible we obtain g(x) =0 whence g'(x)=0. This implies
that f/¢' whence k<1 Thus k=1; i.e.. uy=1t~.

3. Unigqueness: Assume a decomposition
X=Vs+ ¥y
where y i1s semisimple and yy is nilpotent. Set y¢—xg=z. Then
I=XNT VN
and so z is nilpotent. We must show that z=0. Taylor expansion yields

(1)(x ) .

g{vg) = g(xg+ 2) = g(xq) + Z J(Xs) Z
i1 -

showing that g (1) is nilpotent.
Hence, for some m.
(g (,"S))m — 0 .

Since yg is semisimple it follows that g(ys)=0 (cf. Lemma IT) sec. 12.16
and so

Y 87 i (12.28)
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Let /=1 denote the degree of nilpotency of z. We show that I=1. In
fact. assume that 1>2. Then, multiplying the equation above by z/~2 we
obtain glxg) 21 = 0.

In view of Lemmal (applied with 4=TI(xg)). g'(xg) is invertible in
I'(xg) and hence invertible in A. It follows that z'~! =0, in contradiction
to the choice of I. Thus I=1; i.e, z=0. Thus yg=xg and yy=xy and the
proof is complete.

Definition: The elements xy and xg are called the semisimple and
nilpotent parts of x.

12.17. Lemma I11: Let g be a polynomial such that g and ¢’ are rel-
atively prime. Then for each integer k=1 there are polynomials v and v
with the following properties:

(i) g"g(w).

(i) u+gr=t.

(it1) If k=2, then v is relatively prime to g.

Proof: For k=1 set u=t and v=0. Next consider the case k=2. Since
g and g’ are relatively prime there are polynomials p and ¢ such that

I+pg=qzg.

The Taylor expansion (cf. sec. 12.4) gives. in view of the relation above,

o Gli) olm

glitpe)=2 ~ (g =g+gpg+-+ "+ (pg)"+-
i=0 '

n!
=g(l+gp+g° -1 (12.29)

Now set
u=t+gp and r=—p.
Then we have
ut+gr=t (12.30)

and, in view of (12.29),
g =g*(q+1)

which achieves the result for k=2.
Finally. suppose the proposition holds for k—1 (k= 3) and define u, by

Uy = Uy (U _y).
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Replacing r by u,_, in (12.30) we obtain
Uy (U )+ @) U (U ) = Uy 4. (12.31)
By induction hypothesis
&gty
whence g/g(u,_,). Thus we can write

gl =g ¢

where ¢ is some polynomial. Now (12.31) can be written as

U+ g q - Uy _q) =ty {12.32)
Finally, (ii) yields in view of the induction hypothesis
Uy =1—gU5_- 112.33)

Relations (12.32) and (12.33) imply that

o+ g (g vl )4, )=t

Setting v, =q v, {4, _,)+v,_, we obtain

ulc+gvlc:r"

It remains to be shown that g* divides g{1,). But

gluy) = fs’(Uz(qu)) = (g{uz))(“qu

Now the lemma. applied for k=2, shows that g(u,_,)*/g(u,). Since

g '/g(u, ) it follows that g/g(u,) and so the induction is closed.
Thus property (1) and (ii) are established.

(1i1): Let k=2. Suppose that h is a common divisor of g and v,

g=p-h, t=gq-h.
Then, by (i1)

guy=glt—vg)=glt—pgh?
and so Taylor’s expansion yields

guy=g—h*-1
where [ is some polynomial.

Since k=2, (i) implies that g2/g(u) and so h?/g(u).
Now the equation above shows that i? divides g

,
g=h"-m.



§4. The structure of factor algebras 379

It follows that
g=2hl"m+hm

and so h is a common divisor of g and g'. Since g and g are relatively
prime, h must be a scalar. Hence g and v are relatively prime. This
completes the proof.

Lemma IV: Let g be a polynomial such that g and ¢’ are relatively
prime. Then for each k=1 there are polynomials u and «w with the
following properties:

(i) g* divides g(u).

(il u+w=t,

(iii) g divides .

Proof: Define » by w=g - where v is the polynomial obtained in
Lemma III.

12.18. Decomposition of I'(f) into the radical and a direct sum of fields.

Let . :
f=h

be the decomposition of f into its prime factors and set
g=h- I

Consider the factor algebra I'(f)=1"[1]/I,.
By Theorem IV there is a unique decomposition

I=tIg+1y

where fg i1s semisimple and fy is nilpotent. Moreover, g is the minimum
polynomial of 7.

Now let 4 be the subalgebra of I'(f) generated by 1 and 75. Let I; be
the ideal in I'[7] generated by f; (i=1...7).

Theorem V: 1. A is the (unique) direct sum of irreducible ideals I,
(i=1...r),
A=1® @I,
and
=T/, (i=1..r).

In particular, each [, is a field and so A contains no non-zero nilpotent
elements.

2. The radical of I'(t) consists precisely of the nilpotent elements in
I'(t). and is generated as an ideal by fy.



380 Chapter XII. Polynomial algebra

3. The vector space I'(f) is the direct sum of the subalgebra 4 and the

ideal rad I (). .
IF'ty=A®rad I'(1).

4. The subalgebra 4 consists precisely of the semisimple elements
in I'(1).
5. A is the only subalgebra of I'(t) which complements the radical.
Proof: 1) Consider the surjective homomorphism I'(1)—> 4 given by
t—tg. Since g is the minimum polynomial of rg. it induces an isomor-
phism N
I, —A.

According to Theorem III (applied to g) I'[t]/I, is the unique direct
sum of irreducible ideals I; where I, =I'[(]/I,. (i=1... ). Let I; also denote
the corresponding ideal in A. Then

A=1,® @I,

and the I, are irreducible ideals.

Finally, since each f; is irreducible, Theorem I, sec. 12.13, implies
that I'[¢]/1, is a field.

2) and 3): Let Iy denote the ideal generated by 7y and let I be the ideal
of nilpotent elements in I'(r). Since ty is nilpotent we have

Iyclcrad I'(1). (12.34)
Next, since t=tg+ty, it follows that
r=A+1Iy. (12.35)

Moreover, since A4 is the direct sum of the fields I;,

rad I'f)n Acrad A=) rad [;=0. (12.36)
i=1
Relations (12.34) and (12.36) imply that the decomposition (12.35) is
direct,
ro=4Aol,.
This yields
radlNt)=rad Ity A+ Iy=1y
whence
Iy=1=rad I'({).

It follows that

I'ty=A®@rad I'(1). (12.37)
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4) We show first that every element in A4 is semisimple. In fact. let
xeA. Then, by Theorem IV, sec. 12.16, there are elements Xgel'(X),
xyel'(X) such that x4 is semisimple, X, is nilpotent and

X =Xg+ Xy

In particular, Xy is nilpotent in A. Thus, by 1), Xy =0 and so X is semi-
simple.
Conversely, let XeI'(f) be semisimple. In view of 3) we can write

X=X,+%g x4eA. Xgperad I'(f). (12.38)

Then X, is semisimple and Xg is nilpotent. Thus (12.38) must be the
unique decomposition of X into its semisimple and nilpotent parts.
Since X is semisimple it follows that Xz =0 whence xe 4.

5) Let B be any subalgebra of I'(f) which complements the radical.
Then dividing out by the radical we obtain an algebra isomorphism
A> B. Thus. by 4), the elements of B are semisimple. Hence, again by 4),
Bc A. It follows that B=A.

Corollary: Let xel'(f). Then the decomposition

X =Xy + Xp

obtained from the decomposition 3) is the decomposition of x into its
semisimple and nilpotent parts.
The results of this paragraph yield at once

Theorem VI: Let
rn=Le---®I, (12.39)

be the decomposition of the algebra I'(¢) into irreducible ideals. Then
every ideal I; is a direct sum

I, =A;®rad | (12.40)

where A; is a field isomorphic to I'[t]/I;, (i=1...r). Moreover. the
decompositions (12.39) and (12.40) are connected by
rad I'(f) = ) rad [,
i=1

and ;
A=) A,
i=1
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Problems

1. Consider the Polynomials

a) f=03—6r+111— 16,

b f=r>+1t+7.

c) f=t>—5.
Prove that in each case f is the product of relatively prime irreducible
polynomials. For k=2.3, construct polynomials u and ¢ which satisfy
the conditions of Lemma III, sec. 12.17.

2. Show that if & and ¢ are any two polynomials satisfying the condi-
tions of Lemma III (for some fixed k), then g¢* divides & —u and g*~!
divides o —v.



Chapter XIII
Theory of a linear transformation

In this chapter E will denote a finite-dimensional non-trivial vector space
defined over an arbitrary field I' of characteristic 0, and ¢: E—E will
denote a linear transformation.

§ 1. Polynomials in a linear transformation

13.1. Minimum polynomial of a linear transformation. Consider the
algebra A(E: E) of linear transformations and fix an element pe A(E; E).
Then a homomorphism @: I'[t]— A(E; E) is defined by

D - flp)

(cf. sec. 12.11). Let i be the minimum polynomial of ¢. Since A(E; E)
is non-trivial and has finite dimension, it follows that deg u=1 (cf. sec.
12.11). The minimum polynomial of the zero transformation is ¢t whereas
the minimum polynomial of the identity map is t— 1.

Proposition I, sec. [2.11, shows that

dim I'(¢) = deg u
where (o) = Im .

13.2. The space K (f). Fix a polynomial f and denote by K(f) the
kernel of the linear transformation f(¢). Then the subspace K(f)<E
is stable under ¢. In fact. if xe K{f). then f(¢)x=0 and so

f@)ox=¢ flo)x=0;
ie. o xeK(f).
In particular we have
K(l)=0. K(r)=ker¢o and K(u=E.

where ;i denotes the minimum polynomial of ¢.
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Let FcE be any subspace stable under ¢ and let ¢ F > F be the
induced linear transformation. Then p(p,)=0 and so pg/u where g
denotes the minimum polynomial of .

Now let g be a second polynomial and assume that g/f. Then

K(g) = K(f). (13.1)
In fact, writing f=gg, we obtain that for every vector xe K(g)

fle)x =g (p)g(p)x =0
whence xe K(f). This proves (13.1).

Proposition I: Let f and g be any two non-zero polynomials, and let d
be their greatest common divisor. Then

K(d)=K(f)n K(g).
Proof: Since d/f and d/g it follows that

K(d)< K(f) and K(d)<=K(g)
whence
K(d)=K(f)n K(g). (13.2)

On the other hand, since d is the greatest common divisor of f and g,
there exist polynomials f; and g, such that

d=ff+8g38g.
Thus if xe K(f)n K(g) we have
d(@)x = f1(0)f(9)x + g1(9)g(@)x =0
and hence xeK(d). It follows that
K(d)> K(f) n K(g) (13.3)

which, together with (13.2) establishes the proposition.

Corollary I: Let f be any polynomial and let d be the greatest common
divisor of fand u. Then

K(f)=K(d).
Proof': Since K(u)=E, it follows from the proposition that
K(d)y=K(f)n E=K(f).
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Proposition II: Let fand g be any two non-zero polynomials, and let v
be their least common multiple. Then

K{(v)=K(f)+ K(g). (13.4)

Proof: Since f|v and glv it follows that K(f)<=K(v) and K(g)<K(v);
whence
K@) = K(f)+ K(g). (13.5)

On the other hand, since v is the least common multiple of f and g,
there are polynomials f; and g, such that

fHif=v=gg

and f; and g, are relatively prime. Choose polynomials f, and g, so that
f2f1+8:8,=1; then
f2(@0)f1(@) + g2(0) g (0) =1.

Consequently each xe€ E can be written as

X=X; + X,
where
x;=f2(@)f1(p)x and x,=g,(p)g (0)x. (13.6)

Now suppose that xe K(v). Then

f1(0)f (@)x =g (@)g(@)x =v(p)x =0
and so (13.6) implies that
f(@)x1 =0=g(p)xz.
Hence x,€K(f), and x,eK(g), so that

xeK(f)+K(g)
that is,
K(v) = K(f)+ K(g). (13.7)

(13.4) follows from (13.5) and (13.7).

Corollary I: If f and g are relatively prime, then
K(fg)=K(f)®K(g). (13.8)

Proof: Since fand g are relatively prime, their least common multiple is
fg and it follows from Proposition II that

K(fg)=K(f)+K(g)- (13.9)

25 Greub. Linear Algebra
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On the other hand the greatest common divisor of fand g is 1, and so
Proposition I yields that
K(f)n K(g)=K(1)=0. (13.10)

Now (13.9) and (13.10) imply (13.8).

Corollary 11: Suppose
f=fHf

is a decomposition of the polynomial finto relatively prime factors. Then

K(f)=K(f))® @ K(f,).

Proof: This is an immediate consequence of Corollary I with the aid of
an induction argument on r.

Let f and g be any two non-zero polynomials such that g is a proper
divisor of f. Then K(g)= K(f) but the inclusion need not be proper. In
fact, let g=p and f'=hu where h is any polynomial with deg h=1. Then
gl f (properly) but K(g)=E=K(/).

Proposition I11: Let fand g be non-zero polynomials such that

(1) flu
and

(ii) glf  (properly)
Then

K(g)= K(f)  (properly).
Proof: (i) and (ii) imply that there are polynomials f; and g, such that

p=ff and f=gg, degg, >0. (13.11)

Setting g, =g f; we have degg,<degu and so u is not a divisor of
g». It follows that g, cannot annihilate all the vectors of E; i.e., there is a
vector x€ E such that

g:2(¢)x 0. (13.12)

Let y=f£,(¢)x. Then we obtain from (13.11) and (13.12) that

F@)y=rf(@)fi(e)x=pu(p)x=0

while
g(@)y =g(9) fi(o)x=2,(¢)x +0.
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Thus ye K(f), but y¢ K(g) and so K(g) is a proper subspace of K(f).

Corollary I: Let f be a non-zero polynomial. Then
K(f)=0 (13.13)

if and only if fand p are relatively prime.
Proof: If fand p are relatively prime, then Corollary I to Proposition II
gives
K(f)=K(f)n E=K(f)n K(u)=0.

Conversely suppose (13.13) holds, and let d be the greatest common
divisor of fand u. Then

1/d and dju
but

K(d)=K(f)n K(u) =0=K(1).
It follows from Proposition III that 1 cannot be a proper divisor of d;

hence d=1 and f'and u are relatively prime.

Corollary IT: Let f be any non-zero monic polynomial that divides g,
and let ¢, denote the restriction of ¢ to K(f). Let u, denote the minimum
polynomial of ¢,. Then

up=f. (13.14)

Proof: We have from the definitions that f(¢,)=0, and hence yu/f. It
follows that K(u;) = K(f) and since K(u;)> K(f) we obtain

K(ys) = K(f).

On the other hand, f|u and ;| f. Now Proposition III implies that u,
cannot be a proper divisor of f, which yields (13.14).

Proposition TV: Let
w=fo..f

be a decomposition of u into relatively prime factors. Then

E=K(f)®®K(f).

Moreover, if ¢; denotes the restriction of ¢ to K(f;) and y; is the minimum
polynomial of ¢;, then
wi=f;.

25%
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Proof: The proposition is an immediate consequence of Corollary II to
Proposition 11 and Corollary 11 to Proposition 111.
13.3. Eigenvalues. Recall that an eigenvalue of ¢ is a scalar el such
that
(PX=/,X (13.15)

for some non-zero vector xe E. and that x is called an eigenvector corre-
sponding to the eigenvalue /. (13.15) is clearly equivalent to

K(f)+0 (13.16)

where [ is the polynomial f=t—/.

In view of Corollaryl to Proposition IIl. (13.16) is equivalent to
requiring that f'and x have a non-scalar common divisor. Since deg f = 1.
this is the same as requiring that fju. Thus the eigenvalues of ¢ are
precisely the distinct roots of p.

Now consider the characteristic polynomial of ¢,

Z — Zav rn——\'
\d

where the «, are the characteristic coefficients of ¢ defined in sec. 4.19.
The corresponding polynomial function is then given by

x (1) = det(p — A1):
it follows from the definition that
dim E = degy.

Recall that the distinct roots of y are precisely the eigenvalues of ¢,
{cf. sec. 4.20). Hence the distinct roots of the characteristic polynomial
coincide with those of the minimum polynominal. In sec. 13.20 it will
be shown that the minimum polynomial is even a divisor of the char-
acterisic polynomial.

Problems

1. Calculate the minimum polynomials for the following linear trans-
formations:

a) o=k

b) ¢ is a projection operator

¢) ¢ is an involution
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d) ¢ is a differential operator
€) ¢ is a (proper or improper) rotation of a Euclidean plane or of
Euclidean 3-space

2. Given an example of linear transformations ¢,y : E— E such that
Yo and @ oy do not have the same minimum polynomial.

3. Suppose E=E ,®F, and ¢=¢,®¢, where ¢;:E,—E; (i=1,2) are
linear transformations. Let y, pt,, i, be the minimum polynomials of ¢,
¢, and ¢,. Prove that yu is the least common multiple of y; and p,.

4. More generally, suppose E,, E, < E are stable under ¢ and E=
E\+E,. Let 9,:E,»E,, 0, E,—»FE, and ¢,:E 0 E;,—»E 0 E, be the
restrictions of ¢ and suppose that they have minimum polynomials p, u,,
;5. Show that

a) u is the least common multiple of y; and p,.

b) ,u,zlv where v is the greatest common divisor of y, and p,.

¢) Give an example showing that in general p,, #+v.

5. Suppose E, < E is a subspace stable under ¢. Let u, u; and i be the
minimum polynomials of ¢:E—FE, ¢,:E,—~E, and ¢:E/F,—E/E, and
let v be the least common multiple of p, and . Prove that v|u|fiy,.
Construct an example where v=pu=+ju, and an example where v+u=
[u,. Finally construct an example where v pu = jiy,.

6. Show that the minimal polynomial u of a linear transformation ¢
can be constructed in the following way: Select an arbitrary vector x, € E
and determine the smallest integer k,, such that the vectors ¢'x; (v=
0...k,) are linearly dependent,

ki
Y A,9"x,=0.
v=0

Define a polynomial f; by

ky
fi= Zo,lvt'.

If the vectors ¢*x, (v=0...k,) do not generate the space E select a vector
x, which is not a linear combination of these vectors and apply the same
construction to x,. Let f, be the corresponding polynomial. Continue
this procedure until the whole space E is exhausted. Then p is the least
common multiple of the polynomials f,.

7. Construct the minimum and characteristic polynomials for the
following linear transformations of R*. Verify in each case that u divides
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a) @&, &%, =(¢' =&+ 8,88+ 84,0
b) @ (&1, 82,8%,8%) = (&% + 387 + 284,287, &' — 387 — 4¢%,28%)
) ¢(§1,§2,f3,§4) — (51 + 53,52 + 54’52 + 53,54)
d) (&1,8,8,8 ="' -8+ -8 - + & - &4
gt —8,8h.
8. Let ¢ be a rotation of an inner product space. Prove that the
coefficients «, of the minimum polynomial satisfy the relations

o, = €0 _, k=degu,v=0...k

where e= + | depending on whether the rotation is proper or improper.

9. Show that the minimum polynomial of a selfadjoint transformation
of a unitary space has real coefficients.

10. Assume that a conjugation z—Z is defined in the complex vector
space E (cf. sec. 11.7). Let ¢: F—E be a linear transformation such that
@z=Z. Prove that the minimum polynomial of ¢ has real coefficients.

11. Show that the set of stable subspaces of £ under a linear transfor-
mation ¢ is a lattice with respect to inclusion. Establish a lattice homo-
morphism of this lattice onto the lattice of ideals in I'(¢).

12. Given a regular linear transformation ¢ show that ¢~
nomial in ¢.

13. Suppose @ L(E, E) is regular. Assume that for every e L(E: E)
@y =2y (some 2eT). Prove that 2* =1 for some k. If k is the least integer
such that A*=1, prove that the minimum polynomial, g, of ¢ can be

written
ﬂ — Zav tkv
v

1is a poly-

§ 2. Generalized eigenspaces
13.4. Generalized eigenspaces. Let
p=ff ... fF¥  f irreducible (13.17)

be the decomposition of u into its prime factors (cf. sec. 12.9). Then the
spaces
E;=K(f) i=1,..,r

are called the generalized eigenspaces of ¢. It follows from sec. 13.2 that
the E; are stable under ¢. Moreover, Proposition 1V, sec. 13.2 implies
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that
E=E ® @E, (13.18)
and
ki
ui = fi

where y; denotes the minimum polynomial of the restriction ¢; of ¢ to E,.
In particular, dim E,;>0.
Now suppose 4 is an eigenvalue for ¢. Then t—/1|u, and so for some i/
(I<i<r)
fi=t—A.

Hence the eigenspaces of ¢ are precisely the spaces

K(f)

where the f; are the those polynomials in the decomposition (13.17) which
are linear.

13.5. The projection operators. Let the projection operators in E
associated with the decomposition (13.18) be denoted by x;. It will be
shown that the mappings #; are polynomials in ¢,

mel(p) i=1,..,r.

If r=1, n; =1 and the assertion is trivial. Suppose now that r>1 and
define polynomials g; by

Ak
gi=f' S

Then, according to sec.12.9, the g; are relatively prime, and hence there
exist polynomials A; such that

Yehi=1. (13.19)

On the other hand, it follows from Corollary 11, Proposition 1I, sec.
13.2 that

K(gi): Z E;

J#i

and so, in particular,

hi(p)g(p)x=0 xe) E;. (13.20)

JiFi
Now let xe £ be an arbitrary vector, and let

xX=x; +:-+x x;eE;

1
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be the decomposition of x determined by (13.18). Then (13.19) and
(13.20) yield the relation

;Xi =X= ;hi(ﬁl’)gi((P)x = iz_hi((p)gi((p)xj
= Zi:hi(ﬁf’)gi(ﬁp)xi

whence
x; = hi(@)gi(p)x; i=1,..,r. (13.21)

It follows at once from (13.20) and (13.21) that

m; = hi(e)gi(e) i=1..,r

which completes the proof.
13.6. Arbitrary stable subspaces. Let F— E be any stable subspace.
Then
F=YFnE (13.22)

where the E; are the generalized eigenspaces of ¢. In fact, since the
projection operators 7; are polynomials in ¢, it follows that F is stable
under each 7;.
Now we have for each xe F that
X=1X=y mX

i

and
m,xeFn E;.

It follows that xe Y Fn E;, whence
Fc)Y FneE.

Since inclusion in the other direction is obvious, (13.22) is established.

13.7. The Fitting decompesition. Suppose F, is the generalized eigen-
space of ¢ corresponding to the irreducible polynomial ¢ (if # does not
divide g, then of course F,=0). Let F, be the direct sum of the remaining
generalized eigenspaces. The decomposition

E=F,®F,

is called the Fitting decomposition of E with respect to ¢. F, and F, are
called respectively the Fitting-null component and the Fitting-one com-
ponent of E.
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Clearly F, and F, are stable subspaces. Moreover it follows from the
definitions thatif ¢, and ¢, denote the restrictions of ¢ to F,and F,, then
@, 1S nilpotent; i.e.,
° oh=0  forsome I >0
while ¢, is a linear isomorphism. Finally, we remark that the corre-
sponding projection operators are polynomials in ¢, since they are
sums of the projection operators r; defined in sec. 13.5.

13.8. Dual mappings. Let E* be a space dual to E and let

(p* . E* «— E*
be the linear transformation dual to ¢. Then if f is any polynomial, it

follows from sec. 2.25 that

fle*) =[S (o)]*.

This implies that f(¢*)=0 if and only if f(¢)=0. In particular, the
minimum polynomials of ¢ and ¢* coincide.

Now suppose that F is any stable subspace of E. Then F* is stable
under ¢*. In fact, if ye F and y*e F* are arbitrarily chosen, we have

(o*y*,y> =<{y*,0y>=0

whence @* y*e F*. This proves that F* is stable. Thus ¢* induces a
linear transformation
(p*)*: E*/F* « E*/F*.
On the other hand, let
¢p: F>F

be the restriction of ¢ to F. It will now be shown that ¢ and (¢*)* are
dual with respect to the induced scalar product between F and E*/F*
(cf. sec. 2.24). In fact, if yeF is any vector and y* is a representative of
an arbitrary vektor y*e E*/F*, then

Up*) F* y> =L o* ¥ ) =Q* ey
= oy =% oy

which proves the duality of ¢, and (¢*)*. Thus we may write (¢*)* =(¢)*.
Suppose next that

E:F1®F2

is a decomposition of E into two stable subspaces. Then it follows that

E*=F, @ F{
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is a decomposition of E* into stable subspaces (under ¢*). Moreover, the
pairs F,, F; and F,, F | are dual,

F¥=F; and Fy=F/

(cf. sec. 2.30), and it is easily checked that ¢ and @* induce dual mappings
in each pair.

Conversely, assume that F,cE and F{ < E* are two dual subspaces
stable under ¢ and ¢* respectively. Then we have the direct decom-
positions

E=F®& (Fl*)l
and
E*=F ®F;
{cf. sec. 2.30). Clearly the subspaces (Fj*)" and F{- are again stable.
More generally. a direct decomposition

E=F, ®-®F

of E into several stable subspaces determines a direct decomposition of E*
into stable subspaces,

E*=F'®--®F F*=(Y F)*
j¥i
as follows by an argument similar to that used above in the case r=2.
Each pair F,. F*, is dual and the restrictions ¢,. ¢F of ¢ and ¢* to F;
and F* are dual mappings.

Proposition I: Let
& k.
=t g

be the decomposition of the common minimum polynomial, g of ¢ and
¢*. Consider the direct decompositions

E=E ® - ®E,
and
E*=Ef@®- @E* (13.23)
of E and E* into the generalized eigenspaces of ¢ and ¢*. Then
Ef=(Y E)* i=1,..,r. (13.24)
JFi

Proof: Consider the subspaces F;" < E* defined by
F*=(Y E) i=1..,r.

JjFi
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Then, as shown above, the F* are stable under ¢* and
E*=F'®  --®F". (13.25)

It will now be shown that
F* c EF. (13.26)

Let y*eF* be arbitrarily chosen. Then for each xe E; we have
SE@M) Y™ x> = 5 [ (e)x) = (y*,0) = 0.

In view of the duality between E; and F.*, this implies that f;*(¢*)y*=0;
i.e.,
y*eEf.

This establishes (13.26). Now a comparison of the decompositions (13.23)
and (13.25) yields (13.24).

Problems

1. Show that the minimum polynomial of ¢ is completely reducible
(i.e. all prime factors are of degree 1) if and only if every stable subspace
contains an eigenvector.

2. Suppose that the minimum polynomial u of ¢ is completely re-
ducible. Construct a basis of F with respect to which the matrix of ¢ is
lower triangular; i.e., the matrix has the form

A 0

* A

Hint: Use problem 1.

3. Let E be an n-dimensional real vector space and ¢:E—E be a
regular linear transformation. Show that ¢ can be written ¢=¢,¢,
where every eigenvalue of ¢, is positive and every eigenvalue of ¢, is
negative.

4. Use problem 3 to derive a simple proof of the basis deformation
theorem of sec. 4.32.

5. Let ¢:E—E be a linear transformation and consider the subspaces
F, and F, defined by

Fo= Y kerg’ and F, = () Im¢’

jz1 jz1
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a) Show that F,= | ker ¢’.

iz

b) Show that E=F,®F,.

¢) Prove that F, and F, are stable under ¢ and that the restrictions
@ Fo—Fy and ¢, : F, > F, are respectively nilpotent and regular.

d) Prove that c) characterizes the decomposition E=F,@F, and con-
clude that F, and F; are respectively the Fitting null and the Fitting
1-component of E.

6. Consider the linear transformations of problem 7, § 1. For each
transformation

a) Construct the decomposition of R* into the generalized eigenspaces.

b) Determine the eigenspaces.

¢) Calculate explicitly polynomials g; such that the g;(¢) are the pro-
jection operators in E corresponding to the generalized eigenspaces.
Verify by explicit consideration of the vectors g; (¢)x that the g;(¢) are in
fact the projection operators.

d) Determine the Fitting decomposition of E.

7. Let E=Y E; be the decomposition of E into generalized eigenspaces

of ¢, and let n; be the corresponding projection operators. Show that
there exist unique polynomials g; such that

gi(p)=m; and degg, <degu.

Conclude that the polynomials g; depend only on pu.
8. Let £* be dual to £ and ¢*: E*— E* be dual to ¢. IfE”‘zZE{’< is the

decomposition of £* into generalized eigenspaces of ¢* prove that
n = gi((P*)

where the 7 are the corresponding projection operators and the g; are
defined in problem 7.

Use this result to show that 7; and #* are dual and to obtain formula
(13.24).

9. Let FcFE be stable under ¢ and consider the induced mappings
¢p:F—>Fand ¢: E/JF>E[F. Let E=) E; be the decomposition of E into

generalized eigenspaces of ¢. Let j: F— E be the canonical injection and
0: E— E/F be the canonical projection.
a) Show that the decomposition of F into generalized eigenspaces is

given by F = ZE where Fi = F N Ei'
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b) Show that the decomposition of E/F into generalized eigenspaces of
@ is given by
EJF = Y(EJF); where (E/F); = o(E).
Conclude that ¢ determines a linear isomorphism
E,/F;— (E[F);.

) If n,, nf, @; denote the projection operators in E, F and E/F associ-
ated with the decompositions, prove that the diagrams

E-ZSE E-X.E
a‘ e‘ and f‘T ,-I
{ - ! oF
E/IFSEIF F—%F

are commutative, and that 7, n; are the unique linear mappings for
which this is the case. Conclude that if g; are the polynomials of problem

7, then _ _
7;=gi(®) and ”iF = gi(¢F)-

10. Suppose that the minimum polynomial u of ¢ is completely re-
ducible.
a) By considering first the case u= (t —A)* prove that

degu < dimE.
b) With the aid of a) prove that ,u| ¥, x the characteristic polynomial
of o.
§ 3. Cyclic spaces

13.9. The map o,. Fix a vector ¢eE and consider the linear map
a,: '[t]—E given by

a,(f)=fl@ra  fellt].

Let K, denote the kernel of ¢,. It follows from the definition that feK,
if and only if ae K(f). K, is an ideal in I'[¢]. Clearly I,c K,, where p is
the minimum polynomial of ¢.

Proposition I: There exists a vector acE such that K,=1,.
Proof’: Consider first the case that p is of the form

= f* k=1, [ irreducible.
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Then there is a vector ae E such that
1)) %0, (13.27)

Suppose now that he K, and let g be the greatest common divisor of
hand p. Since ae K(f), Corollary I to Proposition I, sec. 13.2 yields

aeK(g). (13.28)

Since g/u it follows that g=f' where I<k. Hence f'(¢)a=0 and rela-
tion (13.27) implies that /=k. Thus K(g)=K,. Now it follows from
(13.28) that ueK,.

In the general case decompose u in the form

pw=fM.. f f irreducible
and let
E=E ®  -®E,

be the corresponding decomposition of E. Let ¢;: E,—E; (i=1...1) be
the induced transformation. Then the minimum polynomial of ¢; is

given by (cf. sec. 13.4) = [ (i=1..1).

Thus, by the first part of the proof. there are vectors «;e E; such that

K, =1 (i=1..n.

aj Hi
Now set
a=d,+ - +d,.

Assume that f€K,. Then f(¢) a=0 whence
Z Jp)a;=0.
i=1

Since f(¢;) «;€E;, it follows that
f(p)a, =0 (i=1.....1
whence feK, (i=1...r). Thus

fel,n-nl, =1

Hr H

and so fel,. This shows that K,=1, whence K,=1,.

13.10. Cyclic spaces. The vector space E is called c¢yelic (with respect
to the linear transformation ¢) if there exists a vector aeE such that
the map o, is surjective. Every such vector is called a generator of E.
If @ is a generator of E. then K,=1,. In fact. let fe K, and let xe E. Then.



§ 3. Cyclic spaces 399

for some gel'[r]. x=g (@) a. It follows that

f@)x=[(@glpla=g@) fl@la=g(@)0=0
whence f(¢)=0 and so f€l,.

Proposition 11: 1f E is cyclic, then
degy =dimE.

Proof. Let a be a generator of E. Then, since K,=1,, 0, induces an
isomorphism ~
i/, ~E.

It follows that (cf. Proposition I, sec. 12.11)
dimE=dimI'[t]/I, = degpu.

Proposition 111: Let a be a generator of E and let degu=m. Then the
vectors

form a basis of E.
Proof: Let | be the largest integer such that the vectors

a, @ ....o" " Ya) (13.29)

are linearly independent. Then these vectors generate E. In fact, every
k

vector xeE can be written in the form x=/(p)a where f= > o, is a
polynomial. It follows that v=0

1-1

k
x= ) 0,0 ()= ) we'(a).
v=0

j=0
Thus the vectors (13.29) form a basis of E. Now Proposition Il implies
that I=m.

Proposition 1V: The space E is cyclic if and only if there exists a basis
a, (v=0...n—1) of E such that

o) =ua,,, (v=0...n-=2).

Proof: If E is cyclic with generator « set ay=ua and apply Proposi-
tion I1l. Conversely. assume that a, (v=0...n—1) is a basis satisfying

n—1

the conditions above. Let x= ) ¢,a, be an arbitrary vector and define
fel'[t] by =0
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Then
Slp)ag=x

as is easily checked and so E is cyclic.

Corollary: Let a, (v=0,....n—1) be a basis as in the Proposition
above. Then the minimum polynomial of ¢ is given by

n—1
p=0—y a1,
v=0

n—1
where the o, are determined by ¢(a, ;)= ) a,a,.
v=0
Proof: 1t is easily checked that u(¢)=0 and so u is a multiple of the

minimum polynomial of ¢. On the other hand., by Proposition Il. the
minimum polynomial of ¢ has degree 1 and thus it must coincide with .

13.11. Cyclic subspaces. A stable subspace FcE is called a cyclic
subspace if it is cyclic with respect to the induced transformation. Every
vector a€ E determines a cyclic subspace, namely the subspace

E,=Ilmo,.

Proposition V: There exists a cyclic subspace whose dimension is equal
to deg p.

Proof: In view of Proposition] there is a vector ¢ekE such that
kero,=1,. Then ¢, induces an isomorphism

I, >E,.
It follows that
dimE, =dim[[1]/], = deg .

Theorem I : The degree of the minimum polynomial satisfies
degp < dimE.

Equality holds if and only if E is cyclic. Moreover, if F is any cyclic
subspace of E. then )
dimF < degp.

Proof: Proposition V implies that deg u <dim E. If E 1s cyclic, equality
holds (cf. Proposition I1I). Conversely, assume that degu=dimE. By
Proposition V there exists a cyclic subspace F<E with dim F'=deg .
It follows that F=FE and so E is cyclic.
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Finally, let F = E be any cyclic subspace and let v denote the minimum
polynomial of the induced transformation. Then, as we have seen above,
dim F =degv. But v/u (cf. sec. 13.2) and so we obtain dim F <deg u.

Corollary: Let Fc E be any cyclic subspace, and let v denote the
minimum polynomial of the linear transformation induced in F by ¢.
Then

v=p
if and only if
dimF = degpu.

Proof: From the theorem we have
dim F = degv

while according to sec. 13.2 v divides .
Hence v=p if and only if deg v=deg y; i.e., if and only if

dim F = degpu.

13.12. Decomposition of E into cyclic subspaces. Theorem II: There
exists a decomposition of E into a direct sum of cyclic subspaces.

Proof: The theorem is an immediate consequence (with the aid of an
induction argument on the dimension of E) of the following lemma.

Lemma I: Let E, be a cyclic subspace of E such that

dimE, = deg .
Then there is a complementary stable subspace, F< E,

E=E,®F.
Proof: Let
¢aEs— E,

denote the restriction of ¢ to E,, and let
Q¥ E* « E*

be the linear transformation in E* dual to ¢. Then (cf. sec. 13.8) E; is
stable under ¢*, and the induced linear transformation

@3 EY/E; « E*[E;

26 Greub. Linear Algebra
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is dual to ¢, with respect to the induced scalar product between E, and
E*|E}.

The corollary to Theorem I, sec. 13.11 implies that the minimum
polynomial of ¢, is again u. Hence (cf. sec. 13.8) the minimum polynomial
of X is u. But £, and E*/E; are dual, so that

dim E*/E} = dimE, = degp.

Thus Theorem I, sec. 13.11 implies that E"‘/E,,i is cyclic with respect to (p;".
Now let ‘
nE* > E¥/E;

be the projection and choose a*eE* so that the element % =m(u*)
generates E*/E;. Then. by Proposition 111, the vectors a*=(p}y a*
(t=0...m—1) form a basis of E*/E}. Hence the vectors aF = (@™ a*
(t=1...m—1) are linearly independent.

Now consider the cyclic subspace EX. Since a¥eEX (u=0...m—1) it
follows that dimE%=m. On the other hand. Theorem . sec. 13.11,
implies that dim EX <m. Hence

dim EX = m.

Finally. since n* ¢f =a¥ (u=0...m—1) it follows that the restriction of
7 to EX is injective. Thus E% N E+=0. But

dimEY: +dimEfy =m+(n—m)=n (n=dim E)
and thus we have the direct decomposition

E* = EAQE!

of E* into stable subspaces. Taking orthogonal complements we obtain

the direct decomposition
E=E,®(Ex*

of E into stable subspaces which completes the proof.

§ 4. Irreducible spaces

13.13. Definition. A vector space E is called indecomposable or
irreducible with respect to a linear transformation ¢, if it can not be
expressed as a direct sum of two proper stable subspaces. A stable
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subspace F<E is called irreducible if it is irreducible with respect to the
linear transformation induced by ¢.

Proposition I : E is the direct sum of irreducible subspaces.
Proof: Let
E=) F, dimF; >0

be a decomposition of E into stable subspaces such that s is maximized
(this is clearly possible, since for all decompositions we have s<dim E).
Then the spaces F; are irreducible. In fact, assume that for some 7,

FE=F @F/ dim F{ > 0,dimF > 0
is a decomposition of F; into stable subspaces. Then
E=Y FOF QF
JjFi
is a decomposition of E into (s+ 1) stable subspaces, which contradicts
the maximality of s.

An irreducible space E is always cyclic. In fact, by Theorem II, sec.
13.12, E is the direct sum of cyclic subspaces.

E=YE.
Jj=1

If E is indecomposable, it follows that j=1 and so E is cyclic.

On the other hand. a cyclic space is not necessarily indecomposabile.
In fact. let E be a 2-dimensional vector space with basis a. b and define
¢@: E—E by setting pa=b and @b=a. Then ¢ is cyclic {cf. Proposi-
tion IV, sec. 13.10). On the other hand, E is the direct sum of the stable
subspaces generated by a+b and a—b.

Theorem I : E is irreducible if and only if

i) u=f* f irreducible;

i) E is cyclic.

Proof: Suppose E is irreducible. Then, by the remark above, E is
cyclic. Moreover. if E=E,®---@E, is the decomposition of E into the
generalized eigenspaces (cf. sec. 13.4), it follows that r=1 and so u=f*
(f irreducible).

Conversely, suppose that (i} and (ii) hold. Let

E=E QE,

26
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be any decomposition of E into stable subspaces. Denote by ¢, and ¢,
the linear transformations induced in £, and £, by ¢, and let ¢, and p,
be the minimum polynomials of ¢, and ¢,. Then sec. 13.2 implies that
I ’,u and ;tzl,u. Hence, we obtain from (i) that

wo=fn =% kLk, <k, (13.33)
Without loss of generality we may assume that &, > k,. Then

ffp)x=0 xeE, or xeE,
and so

¥ (@) =0.

It follows that u| /** whence &, > k. In view of (13.33) we obtain k, =k
1e.,
U=t .

Now Theorem 1, sec. 13.10 yields that
dimE, > degpu. (13.34)
On the other hand, since E is cyclic, the same Theorem implies that
dimE =degpu. (13.35)
Relations (13.34) and (13.35) give that
dimE =dimE,.

Thus E=FE, and E, =0. It follows that E isirreducible.

Corollary I: Any decomposition of F into a direct sum of irreducible
subspaces is simultaneously a decomposition into cyclic subspaces.

Corollary II: Suppose that y=f*, firreducible. Then a stable subspace
of Eis cyclic if and only if it is irreducible.

13.14. The Jordan canonical matrix. Suppose that £ is irreducible with
respect to ¢. Then it follows from Theorem I sec. 13.13 that E is cyclic
and that the minimum polynomial of ¢ has the form

w=f* k=1 (13.36)

where f is an irreducible polynomial. Let e be a generator of E and



§4. Irreducible spaces 405

consider the vectors

-1 j- i=1,...,k
a;=f(@) e e p=degf.  (13.37)
j=1,...,p
It will be shown that these form a basis of E.

Since
dimE =degu=pk

it is sufficient to show that the vectors (13.37) generate E. Let Fc E be
the subspace generated by the vectors (13.37).
Writing

14
f=ar a, =1
v=0
we obtain that

Qa;=a;;+, i=1..,k j=1,..,p—1
p—1

pa,=0f(e) 'o" le=f(p) 'ofe=f(pfe— Y o, f (p)o’e

=0

p—1
=0ajy11 — Zavaivﬂ i=1,..,k-1
v=0
p—1
(pakp_'_ Ay Qg oyt -
v=0

These equations show that the subspace F is stable under ¢. Moreover,
e=a,€F. On the other hand, since E is cyclic, E is the smallest stable
subspace containing e. It follows that F=E.

Now consider the basis

Aygsesyp3Anqeee Aopsenns Ay oee Ay

of E. The matrix of ¢ relative to this basis has the form

4 0\
4,

(13.38)
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where the submatrices A; are all equal, and given by
(01 0)
01

0"

0

L~ %o = Op .o — %y )

The matrix (13.38) is called a Jordan canonical matrix of the irreducible
transformation ¢.

Next let ¢ be an arbitrary linear transformation. In view of sec. 13.12
there exists a decomposition of F into irreducible subspaces. Choose a
basis in every subspace relative to which the induced transformation has
the Jordan canonical form. Combining these bases we obtain a basis of E.
In this basis the matrix of ¢ consists of submatrices of the form (13.38)
following each other along the main diagonal. This matrix is called
a Jordan canonical matrix of ¢.

13.15. Completely reducible minimum polynomials. Suppose now that
Eis anirreducible space and that the minimum polynomial is completely
reducible (p=1); i.e. that

p= (=2
It follows that the A; are (1 x 1)-matrices given by 4;=(1). Hence the
Jordan canonical matrix of ¢ is given by

il 0
A1
" (13.39)

0 P

In particular, if £ is a complex vector space (or more generally a vector
space over an algebraically closed field) which is irreducible with respect
to ¢, then the Jordan canonical matrix of ¢ has the form (13.39).

13.16. Real vector spaces. Next, let £ be a real vector space which is
irreducible with respect to ¢. Then the polynomial fin (13.36) has one of
the two forms fot—i 1eR

or
f=t+at+p ofeR, o«*—48<0.
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In the first case the Jordan canonical matrix of ¢ has the form (13.39). In
the second case the A; are 2 x 2-matrices given by

e

Hence the Jordan canonical matrix of ¢ has the form

T o 1 N
—p —a|l

0 1
_ﬁ_“ 1

0 -~z J

13.17. The number of irreducible subspaces. It is clear from the con-
struction in sec. 13.12 that a vector space can be decomposed in several
ways into irreducible subspaces. However, the number of irreducible
subspaces of any given dimension is uniquely determined by ¢, as will be
shown in this section.

Consider first the case that the minimum polynomial of ¢ has the form

p=f* degf=p

where f'is irreducible. Assume that a decomposition of E into irreducible
subspaces is given. The dimension of every such subspace is of the form
pr (1 <k <k), as follows from sec. 13.12. Denote by F, the direct sum of
the irreducible subspaces E! of dimension px and denote by N, the
number of the subspaces E7.

Then we have

(13.40)

where dim E=n.
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Now consider the transformation

Y =f(0).

Since the subspaces F, are stable under ¥ it follows from (13.40) that

WE=Y yF,. (13.41)

F.= Y E. dmE!=pxk
whence

NK "
= 2 VEL
A=1

Since the dimension of each E} decreases by p under  (cf. sec. 13.14) it
follows that
dimy F, = p(x — 1)N,. (13.42)

Equations (13.41) and (13.42) yield (r(y) = rank /)
k

r(y)=rp Zz(K —1)N,.

Repeating the above argument we obtain the equations
k
r@)=p Y (k—Jj)N, j=1,.. k.

k=j+1

Replacing j by j+1 and j—1 respectively we find that

'(W“)—p Z [(k=j=1N;=p Z (k= j)Ne—p Z N,

k=j+2 Kk=j+2
(13.43)
and

k k k
rW ) =p Y (k=j+ )N;=p Y (k=j)N.+p ¥ N,. (13.44)
K=j K=] K=J
Adding (13.43) and (13.44) we obtain

P @Y =2 S (k=) N+ pN je1t PN+ Nj)

K}+

=2p Z (k —j)Ne+ pN;=2r(’) + pN;

k=j+1
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whence
1 ) ) )
N,-='p'[r(wf“)+r(w"l)—zr(w’n j=1,.k.

This equation shows that the numbers N; are uniquely determined by the
ranks of the transformations ¥/ (j=1,...,k).
In particular,

1
Ne=—r(y*H=1
kp(t// =

and N;=0if j> k. Thus the degree of u is pk where k is the largest integer k
such that N, >0.

In the general case consider the decomposition of E into the generalized
eigenspaces E; (i=1.....r) and suppose that

E=YF,

is a decomposition of E as a direct sum of irreducible subspaces. Then
every irreducible subspace F, is contained in some E; (cf. Theorem I,
sec. 13.13). Hence the decomposition determines a decomposition of
each E; into irreducible subspaces. Moreover, it is clear that these
subspaces are irreducible with respect to the induced transformation
¢;: E;— E;. Hence the number of irreducible subspaces in E; of a given
dimension is determined by ¢, and thus by ¢. It follows that the number
of spaces F, of a given dimension depends only on .

13.18. Conjugate linear transformations. Let E and F be n-dimensional
vector spaces. Two linear transformations ¢: E—~E and y: F—F are
called conjugate if there is a linear isomorphism «: E5 F such that

[pzxo@oa’l_

Proposition I1: Two linear transformations ¢ and y are conjugate if
and only if they satisfy the following conditions:

(i) The minimum polynomials of ¢ and i have the same prime
factors f,, ..., /,

@) r(fileY)=r(f(py) i=1..rjz1

Proof: If ¢ and ¥ are conjugate the conditions above are clearly
satisfied.

To prove the converse we distinguish two cases.
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Case I: The minimum polynomials of ¢ and i are of the form
to=/" and y,=f'.  firreducible.

Decompose E and F into the irreducible subspaces
k Nite) ) I Noty) )
E=Y Y E. F=Y S F.
i=1 j=1

i=1 j=1

The numbers N;(¢) and N;(y) are given by

7[’ t+1 I‘(f((p)igl) _ 2"(]{(([))1‘)]
and p=degf
ff[r fE )+ r(f @)1 = 2r(fW))]

(cf. sec. 13.17). Thus (1) implies that

Nip)=N(p) i=1.
Since
Ne(@) 0, Nilp)=0 i>k
and
N #0. Ny=0 i>I

it follows that k=1.
In view of Theorem I, sec. 13.13, the spaces E{ and F/ are cyclic. Thus
Lemma I below yields an isomorphism o: E{ 5 F/ such that
W=ofogo(a)".
These isomorphisms determine an isomorphism z: ESF such that
W=oopoa !
Case I1: ¢ and  are arbitrary. Decompose E and F into the general-

ized eigenspaces

E=E® ®E. F=F®--®F
and set
p; =dimE,;, ¢,=dimF, (i=1...r).

Then f;(@) restricts to a linear isomorphism in the subspace

El@“'@ﬁi@"’@Ew
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Moreover, for p=p;, fi(@) is zero in E;. Thus

dimE — dimE; = r( fi(¢)? ) i=1..r.
Similarly,
dimF — dimF; = r( f; ()7 +%) i=1..r.

Now (ii) implies that
dimE; = dimF; i=1..r.

Let ¢;: E,~E;, and ,: ;F—F, denote the restrictions of ¢ and
respectively. The minimum polynomials of ¢; and ; are of the form

w= i=1..r

and
v, = fif i=1..r.
Since
r(fil@Y)=r(f(¢)) +dmE — dimE;
and i=1..r

P>

r(f,WY)=r(f,(W)) + dimF — dim F;

it follows from (ii) that
o o i=1..r
(oD =riiwd) 2
Thus the pair ¢,.1; satisfies the hypotheses of the theorem and so we
are reduced to case I.

Lemma I: Let ¢: E-E and : F — F (dim E=dim F =n) be linear
transformations having the same minimum polynomial. Then, if E and
F are cyclic, ¢ and ¥ are conjugate.

Proof: Choose generators « and b of E and F. Then the vectors
a;=@'(a)and b,=y/(b) (j=0...n— 1) form a basis of E and F respectively.
Now set u,,:(p”(a and b =" {b). Then, for some a;, B;eTl’,

n—1

a,= Zoc a; and b,= ) f;b
j=0 j=0

Moreover. the minimum polynomials of ¢ and  are given by
n—1

n—1
fo=1t"— Y ot/ and p,=1"— ) B,V

j=0 Jj=0
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(cf. the corollary of Proposition IV, sec. 13.10). Since p1,, = p,,, it follows that
¥ =0 (j=0...n—1).
Now define an isomorphism 7' ESF by setting
e = b, j=0...n—1.
Then we have

n—1 n—1
) =7 au;= > 2b;=b,.

j=0 j=0
These equations imply that
l// ”(!((lj) = l// bj — l//H—l(b) — b,qu = */v(aj“+ 1) =" (p(uj) 1 =0...n—1.

This shows that
—1

lp:‘/‘c([)o‘/‘

Anticipating the result of sec. 13.20 we also have

Corollary I: Two linear transformations are conjugate if and only if
they have the same minimum polynomial and satisfy condition {ii) of
Proposition 11.

Corollary I1: Two linear transformations are conjugate if and only
if they have the same characteristic polynomial (cf. sec. 4.19) and satisfy (ii).
Proof: Let [ be the common characteristic polynomial of ¢ and .

Write . . .
f :.flnll"'.frmr

=1 (f; irreducible).
and . |
My =f .. fi

Set E;=ker(f:(@)™). F=ker(fi(yy™). i=1...r;let E. F,(i=1...r) denote
the generalized eigenspaces for ¢ and y respectively. Then we have the
direct decompositions

Ty

Il
e
~m1

&)

Il
N
™

w
-

and

~
Il
-
iyl
-
Il
-
|

Il
I
A
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Since k;<m;. it follows that E;cE; whence E,=E, (i=1...r). Similarly.
F,=F, (i=1...r). Thus we may assume that f is of the form f=g"

{g trreducible). Then ,u(p:g" (k< m), ﬂd,:g’ (!I=<m) and the corollary
follows immediately from the proposition.

Corollary I11: Every linear transformation is conjugate to its dual.

Problems

. Let @: A(E; E)> A(E; E) be a non-zero algebra endomorphism.
(i) Show that for any projection operator m,

r@(n)=r(n). @eA(E;E).

(ii) Use (i) to prove that r(®())=r().

2. Show that every non-zero endomorphism of the algebra A(E; E)
is an inner automorphism.

Hint: Use Problem | and Proposition 11, sec. 13.18.

3. Construct a decomposition of R* into irreducible subspaces with
respect to the linear transformations of problem 7, § 1. Hence obtain the
Jordan canonical matrices.

4. Which of the linear transformations of problem 7, § 1 make R* into
a cyclic space? For each such transformation find a generator. For which
of these transformations is R* irreducible?

5. Let E;c E be a stable subspace under ¢ and consider the induced
mappings ¢,:E,—»E, and @:E/E,—>E/E,. Let u, u,, i be the corre-
sponding minimum polynomials.

a) Prove that E is cyclic if and only if

i) E, is cyclic

i) E/E, is cyclic

1) p=p ji.
In particular conclude that every subspace of a cyclic space is again
cyclic.

b) Construct examples in which conditions i), ii), iii) respectively fail,
while the remaining two continue to hold.
Hint: Use problem 5, § 1.

6. Let E=) F ; be a decomposition of E into subspaces and suppose
i=1

@;:F;>F; are linear transformations with minimum polynomials u;.
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Define a linear transformation ¢ of E by

P=0 D Do

a) Prove that E is cyclic if and only if each ¢; is cyclic and the y; are
relatively prime.

b) Conclude that if E is cyclic, then each F; is a sum of generalized
eigenspaces for ¢.

¢) Prove that if E is cyclic and

a=a;+--+a; a;eF;

is any vector in E, thena generates E if and only if a; generates F;(j=1...s).

7. Suppose Fc E is stable under ¢ and let ¢p: F—F (minimum poly-
nomial p;) and @: E/F— E/F (minimum polynomial i) be the induced
transformations. Show that E is irreducible if and only if

i) E/F is irreducible.

i1) F is irreducible.

iil) pp=f* g=f" u=f*"" where fis an irreducible polynomial.

8. Suppose that Eis irreducible with respect to ¢. Let f* (f irreducible)
be the minimum polynomial of ¢.

a) Prove that the k subspaces K(f), ..., K{(f*~!) are the only non-trivial
stable subspaces of £

b) Conclude that

Imf(o)=K(f**) 0=Zk<k.

9. Find necessary and sufficient conditions that E have no non-
trivial stable subspaces.

10. Let 0 be a differential operator in E.

a) Show that in any decomposition of E into irreducible subspaces,
each subspace has dimension 1 or 2.

b) Let N, be the number of j-dimensional irreducible subspaces in the
above decomposition (j=1, 2). Show that

N, + 2N, =dimE and N, =dimH(E).

c¢) Using part b) prove that two differential operators in £ are con-
jugate if and only if the corresponding homology spaces coincide.

Hint: Use Proposition 11, sec. 13.18.

11. Show that two linear transformations of a 3-dimensional vector
space are conjugate if and only if they have the same minimum poly-
nomial.
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12. Let ¢: E—E be a linear transformation. Show that there exists a
(not necessarily unique) multiplication in E such that
i) E is an associative commutative algebra
ii) E contains a subalgebra A isomorphic to I'(¢)
i) If @:I'(¢)> A is the isomorphism, then

() x=yx yYel(p),xeE.

13. Let £ be irreducible (and hence cyclic) with respect to ¢. Show that
the set .S of generators of the cyclic space F is not a subspace. Construct
a subspace F such that S is in 1 —1 correspondence with the non-zero
elements of E/F.

14. Let ¢ be a linear transformation of a real vector space having
distinct eigenvalues, all negative. Show that ¢ can not be written in the
form @ =y2.

§ 5. Applications of cyclic spaces

In this paragraph we shall apply the theory developed in the preceding
paragraph to obtain three important, independent theorems.

13.19. Generalized eigenspaces. Direct sums of the generalized eigen-
spaces of ¢ are characterized by the following

Theorem I: Let
E=F ®®F, (13.45)

be any decomposition of E into a direct sum of stable subspaces. Then
the following three conditions are equivalent:
(i) Each F; is a direct sum of some of the generalized eigenspaces E;
of ¢.
(i) The projection operators g; in E associated with the decomposition
(13.45) are polynomials in ¢.
(iiiy Every stable subspace Uc E satisfies

U=Y UnF,.
J

Proof: Suppose that (i) holds. Then the projection operators g; are
sums of the projection operators associated with the decomposition of E
into generalized eigenspaces, and so it follows from sec. 13.5 that they
are polynomials in ¢. Thus (i) implies (ii).
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Now suppose that (ii) holds, and let U = E be any stable subspace. Then
since ) 0;=1, we have
s Uc) o; U.
J

Since U is stable under g; it follows that o, U< U n F;; whence
Uc) UnF;.
J

The inclusion in the other direction is obvious. Thus (ii) implies (iii).
Finally, suppose that (iii) holds. To show that (i) must also hold we
first prove
Lemma I: Suppose that (iii) holds, and let
E=E, ® - @E,

be the decomposition of E into generalized eigenspaces. Then to every i,
(i=1,...,r) there corresponds precisely one integer j, (1 <j<s) such that

E 0 F;#0.

Proof of lemmal: Suppose first that E; 0 F;=0 for a fixed i and for
every j (1<j<s). Then from (iil) we obtain

E=Y EnF,=0
=1

which is clearly false (cf. sec. 13.4). Hence there is at least one j such that
E;nF;%0.

To prove that there is at most one j (for any fixed 7) such that E;n F; =0,
we shall assume that for some i, j,, j,,

ENF,+0 and EnF, +0

and derive a contradiction. Without loss of generality we may assume
that
E.nF £0 and E, n F,+0.

Choose two non-zero vectors
yi€E,nF, and y,eE NF,.

Then since y,, y,€E; we have that
fE @)y =0=f{(9)y.
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where u=£{"...£}¥, f; irreducible, is the decomposition of u. Let /, and /,

be the least integers such that f{'(¢)y; =0 and f{*(¢)y,=0. We may
assume that /; =/,. In fact, if /; >/, we simply replace y, by the vector

f17"(9)y,. Then
1 (@)f 127 (@)y =0 and f{(e)f{' *(¢)y, +0 for k<lI,.

Now set
y=yi+¥y2

and let Y be the cyclic subspace generated by y. Clearly Y F,®F,, and so
in view of (iii) we obtain
Y=YnNnF,®YnF,.
It will now be shown that Y'n F; =0.
Let ue Y n F, be any vector. Since ue Y we have that

u=f(e)y=r(9)y:+f(®)y:

for some polynomial f. Since ue Fy, it follows that

f(@)y2=u—f(p)y,eF,n F,=0

and hence d(¢)y,=0 where d is the greatest common divisor of f and
fi¥'. Thus we obtain d = fP where

kyzpzly.

But d|f; whence /1'|f; and so u=f(@)y=/(@)y, +/(#)y,=0.
This proves that ¥Yn F;=0. A similar argument shows that Yn F, =0
so that

Y=YﬂF1®YﬂF2=0.

This is the desired contradiction, and it completes the proof of the lemma.

We now revert to the proof of the theorem. Recall that we assume that
(iii) holds, and are required to prove (i). In view of the above lemma we
can define a set mapping

:(1,..,r)>(1,...,5)
such that
E;nF,4+0 i=1,.,r and EnF;=0 ’if;(’) .
Then (iii) yields that
E; = Z EnFi=EnF.
j=1

27 Greub, Linear Algebra
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Finally, the relation

E=3) E=YEnFyc)Fyc)lF=E

i=1 i i J
implies that

YF.n=>F and F;= E;.

i j ier”1())
Hence 7 is a surjection, and for every integer j (1 <j<s). F; is a direct sum
of some of the E; and so (i) is proved. Thus (iii) implies (i), and the
proof of the theorem is complete.

13.20. Cayley-Hamilton theorem. It is the purpose of this section to

prove the

Theorem II: (Cayley-Hamilton) Let y denote the characteristic poly-
nomial of ¢. Then

ulx

or, equivalently, ¢ satisfies its own characteristic equation.

Before proceeding to the proof of this theorem we establish some
elementary results.

Suppose A€l is any scalar, and let v denote the minimum polynomial
of ¢ —4i1. Assume further that v has degree m, and let v be given ex-
plicitly by

m—1
v=1"4+ Y Bt (13.46)
ji=0
Then
m—1
0=(¢ = 20"+ 3 (0= 21)
=
o St 13.47
— (,0 + Z ajq)j ( )
j=0
= f (o)
where

m—1
f="+ Y ot
j=o0
It follows that u/f, and so in particular

degu < degf =degv. (13.48)
On the other hand,
o=(p—21)+ 1
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and thus a similar argument shows that
degv < degp.
This, together with (13.48) implies that
degv =degf =degpu. (13.49)

Sincefly and f has leading coefficient 1, we obtain that

f=u
In particular, since f =v(g), where g=t—4, we have
w(2)=v(g(H)=v(0)=fo. (13.50)

Lemma II: Suppose E is cyclic and dim E=m, and let y be the charac-
teristic polynomial for ¢. Then

x=(=1"p.

Proof: Let AeI' be any scalar, and let v be the minimum polynomial
for ¢—A1. Since E is cyclic (with respect to ¢), Theorem I, sec. 13.11
implies that

degu=dimE=m.

Now we obtain from (13.49) that deg v=m, and so a second application
of Theorem I, sec. 13.11 shows that E is cyclic with respect to ¢ —Ai.
Let a be any generator of E (with respect to ¢ —1). Then

a,(¢ —Aa,....(p—A)" 'a

is a basis for E (cf. Proposition 111, sec. 13.10).
Now suppose that 4 is a non-trivial determinant function for E. Then

x(A)-A(a,(¢ —A1)a,....(¢ — A1)" " 'a)
=det(p — A1) 4(a,....(¢ — A1)""'a)
=A((¢ — A1)a,...,(¢ — A1)"a) (13.51)
=(—= D" '4((¢ —A)"a,(¢p — A1) a,....,(¢p — L1)" " 'a).

On the other hand, if (13.46) gives the minimum polynomial of ¢ — 41,
we obtain that

(¢ —A1)"a = —"_,:io Bi(¢ — A1) a
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and substitution in (13.51) yields the relation
x(A)-A(a,....(¢ — 21)" " "a)
=(- 1)'"';2:&4 ((p — 2ty a,(¢ —it)a,....(@ — A1)" "' a)

=(=1)"Bo4(a,(¢ — A1)a,....(¢ — A1)" "' a).
It follows that
2(A)=(=1"pBo
and in view of (13.50) we obtain that

() =(=D"u(d)  ier. (13.52)

Finally, since (13.52) holds for every Ael’, we can conclude (cf. sec.
12.10) that
(=D)"u=1x.
Proof of Theorem II: According to Proposition V, sec. 13.11 there
exists a cyclic subspace E,= E such that

dimE, = degu.
By Lemma I, sec. 13.12, E, has a complementary stable subspace F,
E=E,®F.

Let y, and yr be the characteristic polynomials of the linear transfor-
mations induced in E, and in F by ¢. Then

X = XaXF
(cf. sec. 4.21).

On the other hand, the minimum polynomial of the linear transfor-
mation induced in E, by ¢ is p as follows from the corollary to Theorem I,
sec. 13.11. Now the lemma implies that

o=t u.
Hence, p|y.

13.21.* The commutant of ¢. The commutant of ¢, C(p), is the sub-
algebra of A(E; E) consisting of all the linear transformations that
commute with ¢.

Let f be any polynomial. Then K(f) is stable under every ¥ e C(¢). In
fact if ye K(f) is any vector, then

fvy=yf(e)y=0 yeC(p)
and so yyeK(f).
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Next suppose that y e C(¢) is any linear transformation. Consider the
decompositions of E into generalized eigenspaces of ¢ and of i,

E=E @ -@®E, (fore)
and

E=F ® --®F, (fory)

and the corresponding projection operators in E, m; and ;. Since the
mappings 7; and g; are respectively polynomials in ¢ and  (cf. sec. 13.5)
it follows that

ﬂiogj=Qjo7Z,-

Now define linear transformations ;; in E by
T = M0Qj.

Then we obtain that

2 2
T; ”H,OQJOTL-;OQJ‘:H,'OQ] ﬂlogj—f

and hence the 7;; are again projection operators in E.

Since
Imz,; < E; nF;

Tij Z(ZI: 7)o (ZQJ) =1

and

i j
it follows that
E= Zlmr CZE nFcE
i, j
whence
Imz;; =E; nF;
and
E=%EnF;.
iJ
Proposition I: Let E=F, ®---®F, be any decomposition of E as a direct
sum of subspaces. Then the subspaces F; are stable under ¢ if and only if
the projection operators a; are contained in C(¢).
Proof: Since F, = (kera,
1%
it follows that the F; are stable under ¢ if the o;€ C(¢). Conversely, if the
F; are stable under ¢ we have for each yeF; that gye F;, and hence

0Py =0y =¢0;)
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while
opy=0=¢0y I+j.

Thus the o, commute with ¢.

13.22.* The bicommutant of ¢. The biconmutant, C*(¢p), of ¢ is the
subalgebra of (cf. example 1, see 5.2) consisting of all the linear trans-
formations which commute with every linear transformation in C(g).

Theorem III: C*(¢p) coincides with the linear transformations which
are polynomials in ¢.
Proof: Clearly
C*(9) > I'(¢).

Conversely, suppose e C*(¢) is any linear transformation and let
E=F @ @F, (13.53)

be a decomposition of E into cyclic subspaces with respect to ¢@. A
decomposition (13.53) exists by Theorem II, sec. 13.12. Let {a;} be any
fixed generators of the spaces F,.

Denote by ¢, the linear transformation in F; induced by ¢, and let y; be
the minimum polynomial of ¢;. Then (cf. sec. 13.2) |y so we can write

= ;v i=1,..,s.

In view of Proposition V and the corollary to Theorem I, sec. 13.11 we
may (and do) assume that u, =u.

Now the F;are stable subspaces of E (under ¢), and so by Proposition I,
sec. 13.21 the projection operators in F associated with (13.53) commute
with ¢. Hence they commute with s as well, and so a second application
of Proposition 1 shows that the F; are stable under . In particular,

i

Ya;eF,. Since F; is cyclic with respect to ¢ we can write
Va; = g(@)a; i=1,..s.
Thus if #(¢)a;e F, is an arbitrary vector in F; we obtain
Yh(p)a;=h(e)ya;=h(e)g(e)a;=gi(o)h(¢)a;
since ¢ and ¥ commute. It follows that

l//,=gl((p) i=1,...,S

where ; denotes the restriction of ¢ to F,. In the following it will be
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shown that

¥ =1g,(9)

thus proving the theorem.
Consider now linear transformations y; (2<i<s) in E defined by
X=X xeE; j+i
rf(@)ai=f(@)vi(p)a,.

To show that yx; is well-defined it is clearly sufficient to prove that

F(@)vi(@)a, =0 whenever f(¢)a,=0.
But if f(¢)a;=0, then y;| f and so u=p;v; divides v,f: whence
f(@)vi(p)=0.
The relation
nef(p)ai=of(e)vi(e)ar=oxf(@)a;
shows that y; commutes with ¢, and hence with y. On the other hand we
have that

uiva; = yigi(0)a; = gi(o)vi(e)a, = vi(p)g(e)a;
and

Va=yvi(e)a, =vi(e)Ya, =vi(e)g(e)a,
whence

vi(0)[gi(9) — g1 (9)]a, =0.
This relation implies that u|v;,(g; —g,). But 4, =4 and so
wlvi(g —g0)-
Since u=v;u;, we obtain that
Hilg — 81

This last relation yields that for any vector xeF,

yx=g(e)x=g(p)x i=2,..5s.
It follows that

Y =g.(0)
which completes the proof.
Problems

1. Let
T A
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be the decomposition of the minimum polynomial of ¢, and let E; be the
generalized eigenspaces. If f; has degree p; denote by N;; the number of
irreducible subspaces of E; of dimension p;j (1 < j<k;). Set

ki
li=Y jNy;.
j=1
Show that the characteristic polynomial of ¢ is given by
1= fir.. fr.
2. Prove that E is cyclic if and only if

1=Tu.

3. Let ¢ be a linear transformation of E and assume that E=) F, is a
J
decomposition of £ as a direct sum of stable subspaces. If each F; is a

sum of generalized eigenspaces, prove that each F; is stable under every
e C(p). Conversely, assume that each F; is stable under every y e C(¢)
and prove that each F; is a sum of generalized eigenspaces of ¢.

4. a) Show that the only projection operators in C(¢) are 1 and 0 if and
only if E is irreducible with respect to ¢.

b) Show that the set of projection operators in C(¢) is a subset of
C*(¢) if and only if E is cyclic with respect to ¢.

5. a) Define C3(¢) to be the set of all linear transformations in E
commuting with every transformation in C?(¢). Prove that

C*(p) = C(o).

b) Prove that C*(¢)=C(¢) if and only if E is cyclic.

6. Let E be cyclic with respect to ¢ and S be the set of generators of E.
Let G be the set of linear automorphisms in C(¢).

a) Prove that G is a group.

b) Prove that for each Wy eG, S is stable under ¥ and the restriction y,
of Y to S'is a bijection. Show that , has no fixed points if 1.

¢) Let ae S be a fixed generator and let ¢, e G be arbitrary. Prove that
o=t if and only if

ga=r1a

and hence in particular, =7 if and only if 6,=17,.

d) Prove that G acts transitively on S; i.e. for each a,beS there is a
Y €G such that ya=5b.

e) Conclude that if aeS is a generator, then the mapping ¢:G—S
given by - (a) is a bijection.
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7. Let 0 be a differential operator in E. Consider the set I of transfor-
mations y € C(¢) such that v Z(E)= B(E) (cf. sec. 6.7).
Show that [ is an ideal in C(¢) and establish an algebra isomorphism

C(@)/I 5 A(H(E); H(E)).

§ 6. Nilpotent and semisimple transformations

13.23. Nilpotent transformations. A linear transformation, ¢, is called
nilpotent if ¢*=0 for some integer k or equivalently, if its minimal
polynomial has the form

p=t".

The exponent 1 is called the degree of ¢. It follows from sec. 13.7 that ¢
is nilpotent if and only if the Fitting null component is the entire space.
It is clear that the restriction of a nilpotent transformation to a stable
subspace is again nilpotent.

Suppose now that ¢ and ¥ are two commuting nilpotent transfor-
mations. Then the transformations ¢ + and ¥/ - ¢ are again nilpotent. In
fact, if k and / denote the degrees of ¢ and y, then

k k+1
, . [ . .
((p+l//)k+l=2<k;‘l>(p1¢k+l J+Z<k;_ >(P]lﬂk+l J =0
j=0 ji=k+1

and
(Vo) =y e*=0

which proves that ¢+ and Y. ¢ are nilpotent.

Assume that E is irreducible with respect to the nilpotent transfor-
mation ¢. Then it follows from sec. 13.14 that the Jordan canonical
matrix of ¢ has the form

(13.54)
0 0
Henee, the Jordan canonical matrix of any nilpotent transformation

consists of matrices of the form (13.54) following each other along the
main diagonal,
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Suppose now that ¢ is any linear transformation, and that x has the
decomposition .
p = f. e

f =it

Then if 4 is any polynomial, A(¢) is nilpotent if and only iff{h, as follows
at once from sec. 12.12.

13.24. Semisimple transformations. A linear transformation ¢ is
called semisimple if every stable subspace E, < E has a complementary
stable subspace.

Example I: Let E be a Euclidean space and ¢ be a rotation of E. Since
the orthogonal complement of every stable subspace is stable (cf. sec.
8.19) it follows that ¢ is semisimple.

Example II: 1In a Euclidean space every selfadjoint and every skew
transformation is semisimple, as follows from a similar argument.

Example III: Let E be a unitary space. Then every unitary and every
selfadjoint transformation is semisimple.

Let ¢ be a semisimple transformation and suppose that E, is a stable
subspace. Then the restriction ¢, of ¢ to E, is semisimple. In fact,
suppose F, < E| is stable under ¢,. Then F, is stable under ¢, and hence
there exists a complementary stable subspace, F,, in E,

Let f be the polynomial

E=F ®F,.
Intersection with E, yields
E, =F @®(F,NE)).

Since F, n E; is (clearly) stable under ¢, it follows that ¢, is semisimple.

Proposition I: Suppose ¢ is semisimple, and let / be any polynomial.
Then f(¢) is nilpotent if and only if f(¢)=0.

Proof: The if part is trivial. Suppose now that f(¢) is nilpotent of degree
k. Then K(f*~') is stable under ¢ and so we can write

E=K(f*"heF

where F is stable under ¢, and hence under f{¢). On the other hand, it is
clear that f(@)F< K(f*~') whence

| F@F<K(f*~)n F=0
ie.,
F < K(f).
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It follows that E=K(f') where /=max (k—1,1). Since k is the degree

of nilpotency of f(¢) we have
I>k

whence k=/=1. Hence f(¢)=0.

Corollary I: 1f ¢ i1s simultaneously nilpotent and semisimple, then
¢o=0.

The major result on semisimple transformations obtained in this
section is the following criterion:

Theorem I: A linear transformation is semisimple if and only if its
minimum polynomial is the product of relatively prime irreducible
polynomials (or equivalently, if the polynomials u and u’ are relatively
prime).

Remark: Theorem 1 shows that a linear transformation ¢ is semi-
simple if and only if it is a semisimple element of the algebra I'(¢) (cf.
sec. 12.17).

Proof: Suppose ¢ is semisimple. Consider the decompositions

w=fk .. fk  f irreducible and relatively prime

of the minimum polynomial, and set
f=frte

Then f(¢) is nilpotent, and hence by Proposition I of this section,
f(9)=0. 1t follows that ,u[f. Sincef],u by definition, we have

:u:fl“'fr‘

This proves the only if part of the theorem.

To prove the second part of the theorem we consider first the special
case that the minimum polynomial, u, of ¢ is irreducible. To show that
@ is semisimple consider the subalgebra, I' (@), of A(E; E) generated by ¢
and 1. Since yu is irreducible, I'(¢) is a field (cf. sec. 12.14). I'(¢) contains I
and hence it is an extension field of I', and E may be considered as a
vector space over I'(¢) (cf. § 3, Chapt. V). Since a subspace of the I'-vector
space E is stable under ¢ if and only if it is stable under every transforma-
tion of I'(¢), it follows that the stable subspaces of E are precisely the
I'(¢)-subspaces of the I'(p)-vector space E. Since every subspace of a
vector space has a complementary subspace it follows that ¢ is semisimple.
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Now consider the general case
u=fr...f, fi irreducible and relatively prime.

Then we have the decomposition
E=E, ®-®E,

of E into generalized eigenspaces. Since the minimum polynomial of the
induced transformation ¢;: E;— E; is precisely f; (cf. sec. 13.4) it follows
from the above result that ¢, is semisimple. Now let F— E be a stable
subspace. Then we have, in view of sec. 13.6,

F=FnE,® ®FnE,.

Clearly F n E; is a stable subspace of £; and hence there exists a stable
complementary subspace H,,

These equations yield
E=Y(FNE)®YH=F®H  H=)YH,.

Since H is a stable subspace of £ it follows that ¢ is semisimple.
Corollary I: Let ¢ be any linear transformation and assume that

E=(F E)®H,.

is a decomposition of E into stable subspaces such that the induced
transformations ¢,: F;— F; are semisimple. Then ¢ is semisimple.

Proof: Let u; be the minimum polynomial of the induced transfor-
mation ¢;: F;— F;. Since ¢, is semisimple each y; is a product of relatively
prime irreducible polynomials. Hence, the least common multiple, f, of
the y; is again a product of such polynomials. But f(¢) annihilates £ and
hence the minimum polynomial, x, of ¢ divides f. It follows that u is a
product of relatively prime irreducible polynomials. Now Theorem I
implies that ¢ is semisimple.

Proposition II: Let AT be a subfield, and assume that E, considered
as a A-vector space has finite dimension. Then every (I'-linear) transfor-
mation, ¢, of E which is semisimple as a A-linear transformation is
semisimple considered as I'-linear transformation.
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Proof: Let u, be the minimum polynomial of ¢ considered as a A-linear
transformation. It follows from Theorem I that u, and p, are relatively
prime. Hence there are polynomials g,reA[r] such that

qus+ruy=1. (13.55)

On the other hand, every polynomial over A[7] may be considered as a
polynomial in I'[¢]. Since u,(¢)=0 we have
Bl ay

where i, denotes the minimum polynomial of the (I'-linear) transfor-
mation ¢. Hence we may write
Uy=prh some hel[t]
and so
Wy =prh+purh'. (13.56)

Combining (13.55) and (13.56) we obtain

gqhpr+h' rpup+hrpp=1
whence
(gh+h'ryur+(hr)ur=1.
This relation shows that the polynomials - and uj are relatively prime.

Now Theorem | implies that the I-linear transformation ¢ is semisimple.

Theorem 11 : Every linear transformation ¢ can be written in the form

Q=@+t Py

where ¢ is semisimple and ¢, is nilpotent. ¢4 and ¢, are polynomials
in ¢ and their minimum polynomials are given by

us=S ... .
and
pay=t*  k=max(k.. ..., k).
Moreover, if
P=Ys+Py

is any decomposition of ¢ into a semisimple and nilpotent transformation
such that WYgoy =1 o, then

Ws=¢@g and Yy=yy.

Proof: For the existence apply Theorem | and Theorem [V, sec. 12.16
with A=T(¢).
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To prove the uniqueness let ¢ =+, be any decomposition of ¢
into a semisimple and a nilpotent transformation such that ¢ commutes
with . Then the subalgebra of A(E: E) generated by 1, ¢ and ¥/ is
commutative and contains ¢. Now apply the uniqueness part of Theo-
rem IV, sec. 12.16.

13.25. The Jordan normal form of a semisimple transformation. Sup-
pose that E is irreducible with respect to a semisimple transformation ¢.
Then it follows from sec. 13.13 and Theorem I sec. 13.24 that the mini-
mum polynomial of ¢ has the form

p=1r
where f is irreducible. Hence the Jordan canonical matrix of ¢ has the
form (cf. see. 13.15)

0 1 0)
01,
(13.57)
0 1
U~ % — %o — Ay )

where
14
p=y ot o,=1 p=degn.
V=0

It follows that the Jordan canonical matrix of an arbitrary semisimple
transformation consists of submatrices of the form (13.57) following
each other along the main diagonal.

Now consider the special case that E is irreducible with respect to a
semisimple transformation whose minimum polynomial is completely
reducible. Then we have that p=1 and hence £ has dimension 1. It
follows that if ¢ is a semisimple transformation with completely reducible
minimum polynomial, then E is the direct sum of stable subspaces of
dimension 1; i.e., £ has a basis of eigenvectors. The matrix of ¢ with
respect to this basis is of the form

’ 0
2,
' (13.58)

0 )
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where the 4; are the (not necessarily distinct) eigenvalues of ¢. A linear
transformation with a matrix of the form (13.58) is called diagonalizable.
Thus semisimple linear transformations with completely reducible mini-
mum polynomial are diagonalizable.

Finally let ¢ be a semisimple transformation of a real vector space E.
Then a similar argument shows that E is the direct sum of irreducible
subspaces of dimension 1 or 2.

13.26.* The commutant of a semisimple transformation.

Theorem 111: The commutant C(¢) of a semisimple transformation ¢
is a direct sum of ideals (in the algebra C(¢)) each of which is isomorphic
to the full algebra of transformations of a vector space over an extension
field of I

Proof: Let

E=E ® ®E, (13.59)

be the decomposition of E into the generalized eigenspaces. It follows
from sec. 13.21 that the eigenspaces E; are stable under every transfor-
mation Y eC(¢). Now let J;= C(¢p) be the subspace consisting of all
transformations ¢ such that

Y:E, -0 k+j.

Since E, is stable under each element of C(¢) it follows that I; is an ideal
in the algebra C(p). As an immediate consequence of the definition, we
have

ILnYL=0 j=1,..,r. (13.60)

k*j

Now let yeC(¢) be arbitrary and consider the projection operators
n;: E— E associated with the decomposition (13.59).
Then

=Yy =Yy =Y =3y (13.61)
where

Yi=mym. (13.62)

It follows from (13.62) that y;el,. Hence formulae (13.60) and (13.61)
imply that
Clo) = Z]i'
It is clear that I

I,~ C(¢y) o, is the restriction of ¢ to E;
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where the isomorphism is obtained by restricting a transformation yel,
to E;.

Now consider the transformations ¢;: E—E induced by ¢. Since the
minimum polynomial of ¢; is irreducible it follows that I' (¢,) is a field.
Considering E as a vector space over I (¢;) we obtain from chap. V, § 3
that

C(p;) = Apo(E;E).

13.27. Semisimple sets of linear transformations. A set {¢,} of linear
transformations of £ will be called semisimple if to every subspace Fy c E
which is stable under each ¢, there exists a complementary subspace F,
which is stable under each ¢,.

Suppose now that {p,} is any set of linear transformations and let
A< A(E;E) be the subalgebra generated by the ¢,. Then clearly, a
subspace Fc E is stable under each ¢, if and only if it is stable under
each Y eA. In particular, the set {¢,} is semisimple if and only if the
algebra A is semisimple.

Theorem IV: Let {p,} be a set of commuting semisimple transfor-
mations. Then {¢,} is a semisimple set.

Proof: We first consider the case of a finite set of transformations
@4,---,@, and proceed by induction on s. If s=1 the theorem is trivial.
Suppose now it holds for s—1 and assume for the moment that the
minimum polynomial of ¢, is irreducible. Then £ may be considered as a
I (¢,)-vector space. Since the ¢;(i=2,...,s) commute with ¢, they may
be considered as I"(¢,)-linear transformations (cf. Chap. V, § 3). More-
over, Proposition 11, sec. 13.24 implies that the ¢;, considered as I' (¢ )-
linear transformations, are again semisimple.

Now let F, < E be any subspace stable under the ¢,;(i=1,...,s). Then
since F, is stable under ¢, it is a I'(¢,)-subspace of E. Hence, by the in-
duction hypothesis, there exists a I'(¢, )-subspace of E, F,, which is stable
under ¢,, ..., ¢, and such that

E=F ®F,.

Since F, is a I'(¢p;)-subspace, it is also stable under ¢, and so it is a
stable subspace complementary to F;.

Let the minimum polynomial g, of ¢, be arbitrary. Since ¢, is semi-
simple, we have

ty = f1...f,  fjirreducible and relatively prime.



§ 6. Nilpotent and semisimple transformations 433

Let
E=E, ®-@E,

be the corresponding decomposition of E into the generalized eigenspaces
of ;.

Now assume that F, = E is a subspace stable under each ¢, (i=1,...,s).

According to sec. 13.21 each E; is stable under each ¢;. It follows that
the subspaces F, n E; are also stable under every ¢;. Moreover the re-
strictions of the ¢; to each E; are again semisimple (cf. sec. 13.24) and in
particular, the restriction of ¢, to E; has as minimum polynomial the
irreducible polynomial f;. Thus it follows that the restrictions of the
@; to E; form a semisimple set, and hence there exist subspaces F/ c E;
which are stable under each ¢; and which satisfy

Ei=(F,nE)@®F j=1,..,r.
Setting
F,=YF
J

we have that F, is stable under each ¢;, and that
E=F ®F,.

This closes the induction, and completes the proof for the case that the
{¢@,} are a finite set.

If the set {¢,} is infinite consider the subalgebra A = 4 (E; E) generated
by the ¢,. Then A is a commutative algebra and hence every subset of 4
consists of commuting transformations. In view of the discussion in the
beginning of this section it is sufficient to construct a semisimple system
of generators for A. But 4 is finite dimensional and so has a finite system
of generators. Hence the theorem is reduced to the case of a finite set.

Theorem IV has the following converse:

Theorem V: Suppose A< A(E; E) is a commutative semisimple set.
Then for each @€ 4, ¢ is a semisimple transformation.
Proof: Let @€ A be arbitrary and consider the decomposition

ﬂ :f{“ "‘frkr
of its minimum polynomial yx. Define a polynomial, g, by
g= fl fr .

Since the set 4 is commutative, K(g) is stable under every e 4. Hence

28 Greub. Linear Algebra
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there exists a subspace E,  E which is stable under every ye A such that
E=K(gO®E,. (13.63)

Now let
h=flb-t et

h(@)E = K(g).
On the other hand, since E| is stable under A(¢p),

Then we have

h(e)E, < E,
whence
h(@)E, = K(g)n E; =0.
It follows that E, = K(h).
Now consider the polynomial
p=f{"..fr where I =max(k;—1,1).

Since /;>k; —1 it follows that

plp)x=0 xekE, (13.64)

and from /;>1 we obtain
ple)x=0  xeK(g). (13.65)

In view of (13.63), (13.64) and (13.65) imply that p(¢)=0 and so y|p.
Now it follows that

max(k; - 1,1)=>k;, i=1,...,r
whence

Hence ¢ is semisimple.

Corollary: 1f ¢ and y are two commuting semisimple transformations,
then ¢+ and Y ¢ are again semisimple.

Proof: Consider the subalgebra A< A(E;E) generated by ¢ and
Then Theorem IV implies that 4 is a semisimple set. Hence it follows
from Theorem V that ¢+ and ¢ are semisimple.

Problems

1. Let ¢ be nilpotent, and let N, be the number of subspaces of di-
mension 4 in a decomposition of E into irreducible subspaces. Prove that

dimkergp =Y N, .
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2. Let ¢ be nilpotent of degree k in a 6-dimensional vector space E.
For each k(1 <k <6) determine the possible ranks of ¢ and show that k
and r(¢) determine the numbers N, (cf. problem 1) explicitly. Conclude
that two nilpotent transformations ¢ and y are conjugate if and only if

r(p)=r(¥) and dege =degy.

3. Suppose ¢ is nilpotent and let ¢*: E*— E* be the dual mapping.
Assume that E is cyclic with respect to ¢ and that ¢ is of degree k. Let
a be a generator of E. Prove that E* is cyclic with respect to ¢* and that
¢* is of degree k. Let a*e E* be any vector. Show that

Ca*,@* " ay £ 0

if and only if a¢* is a generator of E*.

4. Prove that a linear transformation ¢ with minimum polynomial u
is diagonalizable if and only if

i) p is completely reducible

i) @ is semisimple
Show that i) and ii) are equivalent to

p=(t—=2) .. (t = 1)

where the 2, are distinct scalars.

5. a) Prove that two commuting diagonalizable transformations are
simultaneously diagonalizable; i.e., there exists a basis of E with respect
to which both matrices are diagonal.

b) Use a) to prove that if ¢ and  are commuting semisimple transfor-
mations of a complex space. then ¢+ and ¢y are again semisimple.

6. Suppose ¢ is a linear transformation of a complex space E. Let
E=Y E; be the decomposition of E into generalized eigenspaces, and let

i

7; be the corresponding projection operators. Assume that the minimum
polynomial of the induced transformation @;: E;—E; is (t—2)“. Prove
that the semisimple part of ¢ is given by

(Ps:Z;~i7Ti-
t

7. Let E be a complex vector space and ¢ be a linear transformation
with eigenvalues 4, (v=1,...,n), not necessarily distinct. Given an arbi-
trary polynomial f prove directly that the linear transformation f (¢) has
the eigenvalues f(4,) (v=1...n) (n=dimE).

28*
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8. Give an example of a semisimple set of linear transformations which
contains transformations that are not semisimple.

9. Let A be an algebra of commuting linear transformations in a
complex space E.

a) Construct a decomposition E=E,; @ ---@ FE, such that for any pe A,
E,; is stable under ¢ and the minimum polynomial of the induced trans-
formation ¢;: E;— E; is of the form

(t — 2(p)) .
b) Show that the mapping 4—C given by

o) o@eA

is a linear function in A. Prove that J; preserves products and so it is a
homomorphism.

c) Show that the nilpotent transformations in 4 form an ideal which is
precisely rad A (cf. chap. V, § 2). Consider the subspace T of L(4)
generated by the 4;. Prove that

radA=T*".

d) Prove that the semisimple transformations in A form a subalgebra,
A,. Consider the linear functions A} in A4, obtained by restricting 1, to A,.
Show that they generate (linearly) the dual space L(4,). Prove that the
mapping A,— A{ is a linear isomorphism. 75 L(4,).

10. Assume that E is a complex vector space. Prove that every com-
mutative algebra of semisimple transformations is contained in an n-
dimensional commutative algebra of semisimple transformations.

11. Calculate the semisimple and nilpotent parts of the linear transfor-
mations of problem 7, § 1.

§ 7. Applications to inner product spaces

In this concluding paragraph we shall apply our general decomposition
theorems to inner product spaces. Decompositions of an inner product
space into irreducible subspaces with respect to selfadjoint mappings,
skew mappings and isometries have already been constructed in
chap. VIIIL.

Generalizing these results we shall now construct a decomposition
for a normal transformation. Since a complex linear space is fully
reducible with respect to a normal endomorphism (cf. sec. 11.10) we can
restrict ourselves to real inner product spaces.
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13.28. Normal transformations. Let £ be an inner product space and
¢@: E—E be a normal transformation (cf. sec. 8.5). It is clear that every
polynomialin ¢ is again normal. Moreover since the rank of ¢* (k=2,3...)
is equal to the rank of ¢, it follows that ¢ is nilpotent only if ¢ =0.

Now consider the decomposition of the minimum polynomial into its

ime f:
prime factors, p=fl. fk (13.66)

and the corresponding decomposition of E into the generalized eigen-
spaces,
P E=E, @ ©E,. (13.67)
Since the projection operators w; associated with the decomposition
(13.67) are polynomials in ¢ they are normal. On the other hand n? =,
and so it follows from sec. 8.11 that the n; are selfadjoint. Now let x,eE;
and x;e E; be arbitrary. Then

(x5 %)) = (x5 %)) = (7, x;, %) = 0 R
i.e., the decomposition (13.67) is orthogonal.
Now consider the induced transformations ¢,: E;— E;. It follows from
sec. 8.5 that the ¢; are again normal and hence so are the transformations
Ji(@;). On the other hand, f;(¢,) is nilpotent. It follows that f;(¢;)=0and

hence all the exponents in (13.66) are equal to 1. Now Theorem I of
sec. 13.24 implies that a normal transformation is semisimple.

Theorem I: Let E be an inner product space. Then a linear transfor-
mation ¢ is normal if and only if

i) the generalized eigenspaces are mutually orthogonal.

ii) The restrictions ¢;:E;-» E; are homothetic (cf. sec. 8.19).

Proof: Let @ be a normal transformation. It has been shown already
that the spaces E; are mutually orthogonal. Now consider the minimum
polynomial, f;. of the induced transformation ¢,. Since j; is irreducible
over R it follows that either

fi=t—7; JeR (13.68)

or
fi=t?+ot+p; o —4B,<0  o,PeR. (13.69)

In the first case we have that ¢,=2;1 and so ¢; is homothetic. Now
consider the case (13.69). Then g; satisfies the relation

@i + %0+ Bi1=0
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and hence the proof is reduced to showing that a normal transforma-
tion ¢: E— E which satisfies

O’ +oap+p1=0 o, BeR, **—4B<0 (13.70)

is homothetic.
We prove first that ¢ —¢ is regular. In fact, let K be the kernel of ¢ —
If ze K is an arbitrary vector, we have ¢z =@z whence

plez)=(pp)z=(0d)z=0(92) =9 (pz).

It follows that K is stable under ¢ and hence stable under ¢. Clearly the

restriction of ¢ to K is selfadjoint. Hence, if K0, ¢ has an eigenvector in

K which contradicts the hypothesis > —48 <0. Consequently, K=0.
Equation (13.70) implies that

o +ap+ f1=0. (13.71)
Multiplying (13.70) and (13.71) respectively by @ and ¢ and subtracting

we find that
(P —B1)(p—¢)=0

whence, in view of the regularity of ¢ —¢,

po=L1. (13.72)

Define a transformation, t, by

1
=—=0
JB

(notice that a? —4f <0 implies that f>0). Then (13.72) yields #7=1and
so 7 is a rotation. This proves that every normal mapping satisfies 1) and
ii). The converse follows immediately from sec. 8.5.

Corollary I: If ¢ is a normal transformation then the orthogonal
complement of a stable subspace is stable.

Proof’: Let F be a stable subspace. In view of sec. 13.6 we have

F=(E,N F)® - ®(E,n F).

Clearly the subspace E; N F is stable under the restriction, ¢;, of ¢ to E,.
Since ¢, is homothetic it follows that the orthogonal complement, H,, of
E;n Fin E; i1s again stable under ¢,;. Hence, the space H= ZH is stable
under ¢. On the other hand the equations

=(E;n F)® H,
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yield
E=F®H H=F".
Hence F* is a stable subspace.
As an immediate consequence of Theorem I we obtain

Theorem II: Let E be an inner product space. Then a linear transfor-
mation ¢ is normal if and only if E can be written as the sum of mutually
orthogonal irreducible subspaces such that the restriction of ¢ to
every subspace is homothetic.

13.29. Semisimple transformations of a real vector space. In sec. 13.28
it has been shown that every normal transformation of an inner product
space is semisimple. Conversely, let ¢:E—FE be a semisimple transfor-
mation of a real vector space. Then a positive definite inner product can
be introduced in E such that ¢ becomes a normal mapping. To prove this

let E=2Fj
i

be a decomposition of E into irreducible subspaces. In view of Theorem
I1 it is sufficient to define a positive inner product in each F; such that the
restrictions, ¢;. of ¢ to F; are homothetic. In fact, we simply extend these
inner products to an inner product in E such that the F; are mutually
orthogonal.

Now let F be one of the irreducible subspaces. Since ¢ is semisimple,
F has dimension 1 or 2. If dim F=1 we choose the inner product in F
arbitrarily. If dim F=2 there exists a basis «, b in Fsuch that

pa=b, ob=—fa—ab, o*—45<0

(cf. sec. 13.16). Define the inner product by
o
(a,a)=1, (a,b)=- 5 (b,b)= 5.

Then we have for every vector
x=%a+nb

(x,x) =& —aln+pn’.

Since «®> —4f<0 it follows that (x, x)=0 and equality holds only for
x=0. Moreover, since

(va00)=p=Plaa), (pa.pb)=—"3 =(a.b),

and (¢b,¢b)=p*=p(b.b)

of F
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it follows that
lox*=B|x|* xeF.

This equation shows that ¢ is homothetic and so the proof is complete.

13.30. Lorentz-transformations. As a second example we shall con-
struct a decomposition of the Minkowski-space into irreducible sub-
spaces with respect to a Lorentz-transformation ¢ (cf. sec. 9.27). For
the sake of simplicity we assume that the Lorentz-transformation is
proper orthochroneous. The condition ¢ =¢ =" implies that the inverse
of every eigenvalue is again an eigenvalue. Since there exists at least one
eigenvalue (cf. sec.9.27) the minimum polynomial. g, of ¢ has at least
one real root. Now we distinguish three cases:

I. The minimum polynomial p contains a prime factor

P+at+pf  a2-4f<0
of second degree. Then consider the mapping
=@ +ap + f1.

The kernel of 7 is a stable subspace F of even dimension and containing
no eigenvectors. Since ¢ has an eigenvector in E, F+F. Thus F has
necessarily dimension 2 and hence it is a plane. The intersection of the
plane F and the light-cone consists of two straight lines, one straight line,
or the point 0 only. The two first cases are impossible because the plane F
does not contain eigenvectors (cf. sec. 9.26). Thus the inner product must
be positive definite in F and the induced transformation ¢, is a proper
Euclidean rotation. (An improper rotation of F would have eigenvectors.)
Now consider the orthogonal complement F*. The restriction of the
inner product to F* has index 1. Hence F* is a pseudo-Euclidean plane.
Denote by ¢, the induced transformation of F*. The equation

detp = detg, det g,

implies that det ¢, = + 1, showing that ¢, is a proper pseudo-Euclidean
rotation. Choosing orthonormal bases in F and in F* we obtain an
orthonormal basis of E in which the matrix of ¢ has the form

cosw sinw 0
—sinw cosw

cosh® sinh0

0 sinh® cosh#
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1I. The minimum polynomial is completely reducible, and not all its

1
roots are equal to 1. Then ¢ has eigenvalues 1+ 1 and —/{4: l. Let e and €’

be corresponding eigenvectors

’

1
e=Ale e'=-e'.
@ @ /{e

The condition A+ 1 implies that e and ¢’ are light-vectors. These vectors
are linearly independent, whence (e,e’)+0 (cf. sec. 9.21). Let F be the
plane generated by e and e’ and let

z=C¢te+ne
be any vector of F. Then
(z,2) =2(e, ') En.

This equation shows that the induced inner product has index 1. The
orthogonal complement F* is therefore a Euclidean plane and the in-
duced mapping is a Euclidean rotation. The angle of this rotation must be
0 or 7, because otherwise the minimum polynomial of ¢ would contain an
irreducible factor of second degree. Select orthonormal bases in Fand F*.
These two bases form an orthonormal basis of E in which the matrix of ¢
has the form

coshf sinhf 0

sinhf cosh0 0+0

e O e=+1

0 0 ¢
II1. The minimum polynomial of ¢ has the form

p=0—-10)F (Q<k<4).

If k=1, ¢ reduces to the identity map. Next, it will be shown that the
case k=2 is impossible. If k=2, applying ¢ ' to the equation (¢ —1)*=0
yields
o+ =2
whence
(x,ox)=(x,x) xeE.

Inserting for x a light-vector, [, we see that (I, )=0. But two light-vectors
can be orthogonal only if they are linearly dependent. We thus obtain
@l=Al. Since ¢ does not have eigenvalues A1, it follows that ¢/=1 for
all light-vectors /. But this implies that ¢ is the identity. Hence the
minimal polynomial is r—1 in contradiction to our assumption k =2.
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Now consider the case k>3. As has been shown in sec.9.27 there
exists an eigenvector e on the light-cone. The orthogonal complement E,
of e is a 3-dimensional subspace of E which contains the light-vector e.
The induced inner product has rank and index 2 (cf. sec.9.21). Let F
be a 2-dimensional subspace of E in which the inner product is positive
definite. Selecting an orthonormal basis ¢;. ¢, in F we can write

pe=ecosmw+e,sinw + o e
Ppe,=—e;Sinw+ e,cosw + a,e (13.73)
pe=ce.

The coefficients «; and «, are not both zero. In fact, if ; =0 and «,=0
the plane F is invariant under ¢ and we have the direct decomposition
E=F@®F* of E into two 2-dimensional invariant subspaces. This would
imply that k£ <2.

Now consider the characteristic polynomial. 7,. of the induced mapping
¢,:E,—E,. Computing the characteristic polynomial from the matrix
(13.73) we find that

x1 = (12 = 2tcosw + 1)(1 —1). (13.74)

At the same time we know that
x=0-=17>. (13.75)

Comparing the polynomials (13.74) and (13.75) we find that w=0. Hence,
equations (13.73) reduce to
Qe =e; +o e
pe,=¢€; +ae
pe=e.
Now consider the vector
y=0u1€; —0€y.
Then
() =oi+a3>0
and
py=oipe; —aype; = (e; +aye) —oy(e; +ae)=y.

In other words, y is a space-like eigenvector of ¢. Denote by Y the
I-dimensional subspace generated by y. Then we have the orthogonal
decomposition

E=Y®Y*'

into two invariant subspaces. The orthogonal complement Y*is a 3-
dimensional pseudo-Euclidean space with index 2.
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The subspace Y~ is irreducible with respect to ¢. This follows from our
hypothesis that the degree of the minimal polynomial g is >3. On the
other hand, u can not have degree 4 because then the space E would be
irreducible.

Combining our results we see that the decomposition of a Minkowski-
space with respect to a proper orthochroneous Lorentz-transformation ¢
has one of the following forms:

I. Eis completely reducible. Then ¢ is the identity.

II. E is the direct sum of an invariant Euclidean plane and an in-
variant pseudo-Euclidean plane. These planes are irreducible except for
the case where the induced mappings are +: (Euclidean plane) or 1
(pseudo-Eudidean plane)

III. E is the direct sum of a space-like 1-dimensional stable subspace
(eigenvalue 1) and an irreducible subspace of dimension 3 and index 2.

Problems

1. Suppose FE is an n-dimensional vector space over I'. Assume that a
symmetric bilinear function Ex E—T is defined such that {x, x> +0
whenever x=+0.

a) Prove that (. ) is a scalar product and thus E is self dual.

b) If F<E is a subspace show that

E=F®F"..

c) Suppose ¢:E—E is a linear transformation such that ¢¢*=¢p*¢.
Prove that ¢ is semisimple.

2. Let ¢ be a linear transformation of a unitary space. Prove that ¢ is
normal if and only if, for some polynomial f,

p=1f(9).

3. Suppose ¢ is a linear transformation of a complex vector space such
that ¢* =1 for some integer k. Show that E can be made into a unitary
space such that ¢ becomes a unitary mapping.

4. Let E be a real linear space and let ¢ be a linear transformation of E.
Prove that a positive definite inner product can be introduced in E such
that ¢ becomes a normal mapping if and only if the following conditions
are satisfied:

a) Thespace E can be decomposed intoinvariantsubspaces of dimension
1 and 2.
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b) If 7 is the induced mapping in an irreducible subspace of dimension
2, then
Hirt)®* —dett < 0.

5. Consider a 3-dimensional pseudo-Euclidean space E with the index
2. Let /; (i=1, 2, 3) be three light-vectors such that

(I,1)=1 P%j.
Define a linear transformation, ¢, by the equations

ply=1,
ely=0a(c— 1)1 +al, + (1 —x)l, o F 1
ply=@—-2) =Dl +(x=1)L+Q2—-a)l;.

fi

Prove that ¢ is a rotation and that E is irreducible with respect ¢.

6. Show that a real 3-dimensional vector space cannot be irreducible
with respect to a semisimple linear transformation. Conclude that the
pseudo-Euclidean rotation of problem 5 is not semisimple. Use this to
show that a linear transformation in a self dual space which satisfies
@o* = @*@ is not necessarily semisimple (cf. problem 1).

7. Let a Lorentz-transformation ¢ be defined by the matrix

B! 2 | 57)
2 3 6
2 1 4 10
39 3 9

4 5
R 1 z
3 3
10 5 43
L6 9 3 18

Construct a decomposition of E into irreducible subspaces.

8. Consider the group G of Lorentz transformations.

Let e be a time-like unit vector and F be the orthogonal complement of
e. Consider the subgroup H <G consisting of all Lorentz transformations
¢ such that pH=H.

a) Prove that H is a compact subgroup.

b) Prove that H is not properly contained in a compact subgroup of G.

Hint: Show first that if K is a compact subgroup of G and @€KX, then
every real eigenvalue of ¢ is + 1.
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Parabola 309

Parallel affinc subspaces 298

Parallelogram-identity 262

I-parameter group 254

Partially ordered set 4

Past-cone 287

Pauli-matrices 345

Point 296

Poincaré series 171

Polar subspace 309

Polynomial 359

— function 364

Position vector 297

Positive basis 131

— definite 265

— definite Hermitian function
326

— gradation 167

— selfadjoint transformation 225

— semidefinite symmetric bilinear
function 265

Prime polynomial 358

Principal axes 317

— minors 117

Product 144

— of matrices 90

Projection operator 60

Proper rigid motion 301

— rotation 234

p-dimensional parallelepiped 197

p-th Betti number 182

— homology space 182

Ptolemy-inequality 190

Pscudo-Euclidean rotation 289

— -Euclidean space 281

— -orthogonal matrix 290

Pythagorean theorem 189

Subject Index

Quadratic form 264

— function 262

Quadric 302

Quasi-triangular determinant 119
Quaternion-algebra 341
Quaternionic exponential function 200
Quaternions 209

Radical of an algebra 159

Rank of a linear mapping 79

— of a symmetric bilinear function 265
Real form 331

-— vector space 6

Reflection 229

Regular linear mapping 79

— matrix 90

Relatively prime polynomials 358
Restriction of a bilinear function 64
— of a linear mapping 42

Riesz theorem 190

Right ideal 148

— inverse of a linear mapping 52
Rigid motion 299

Root of a polynomial 364

Rotation 234

Rotation-angle 239, 240

— -vector 240

Row-vector 83

Scalar 5

— product 65

— multiplication 6

— term 352

Schmidt-orthogonalization 192

Schur’s lemma 54

Schwarz-inequality 187

Selfadjoint linear transformation 221

— symplectic transformation 333

Semisimple algebra 161

— element 374

— linear transformation 426

— part 377

— set of linear transformations 432

— transformation of a real vector
space 439

Sesquilinear function 325

Set mapping 1

Short exact sequence 46

Signature of a bilinear function 269

Simple algebra 160

Simplex 300



Subject Index

Skew linear transformation
— symmetric map 100
— symplectic transformation 333
Space-like 281

— of linear mappings 51

Special orthogonal group 235

Split short exact sequence 47

Stable subspace 48, 383

Standard inner product 187

Step function 163

Subalgebra 147

Subfield 3

Subgroup 2

Subspace 23

Sum 23

— of matrices 89

Sylvester’s law of inertia 269
Symmetric bilinear function 261
Symplectic space 333

System of generators of an algebra 145
— of generators of a vector space 9

229,333

Tangent-hyperplane 303
—-space 303

Taylor’s formula 355
Time-like 281

Topological vector space 37
Totally reducible algebra 161
Trace of a linear transformation
— of a matrix 128
Transposed matrix &3
Trangle-inequality 189
Trigonometric functions 257
Two-sided ideal 148

Unit element 145

— -sphere 186

— vector 186
Unitary mapping 338
— matrix 329

— space 327

— trick of Weyl 226
Upper bound 4

— triangular matrix 91

Vandermonde determinant 119
Vector space S

Vectors 5

Vertex 318

Volume 197

Zero-vector 5

126
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