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Dedicated to

Shiing-shen Chern



Preface to the English Edition

This English edition could serve as a text for a first year graduate course on
differential geometry, as did for a long time the Chicago Notes of Chern
mentioned in the Preface to the German Edition. Suitable references for ordin-
ary differential equations are Hurewicz, W. Lectures on ordinary differential
equations. MIT Press, Cambridge, Mass., 1958, and for the topology of
surfaces: Massey, Algebraic Topology, Springer-Verlag, New York, 1977.

Upon David Hoffman fell the difficult task of transforming the tightly
constructed German text into one which would mesh well with the more
relaxed format of the Graduate Texts in Mathematics series. There are some
elaborations and several new figures have been added. I trust that the merits
of the German edition have survived whereas at the same time the efforts of
David helped to elucidate the general conception of the Course where we
tried to put Geometry before Formalism without giving up mathematical
rigour.

I wish to thank David for his work and his enthusiasm during the whole
period of our collaboration. At the same time I would like to commend the
editors of Springer-Verlag for their patience and good advice.

Bonn i i
June, 1977 Wilhelm Klingenberg
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From the Preface to the German Edition

This book has its origins in a one-semester course in differential geometry
which I have given many times at Gottingen, Mainz, and Bonn.

It is my intention that these lectures should offer an introduction to the
classical differential geometry of curves and surfaces, suitable for students
in their middle semester who have mastered the introductory courses. A
course such as this would be an alternative to other middle semester courses
such as complex function theory, abstract algebra, or algebraic topology.

For the most part, these lectures assume nothing more than a knowledge
of basic analysis, real linear algebra, and euclidean geometry. It is only in
the last chapters that a familiarity with the topology of compact surfaces
would be useful. Nothing is used that cannot be found in Seifert and Threlfall’s
classic textbook of topology.

For a summary of the contents of these lectures, I refer the reader to the
table of contents. Of course it was necessary to make a selection from the
profusion of material that could be presented at this level. For me it was clear
that the preferred topics were precisely those which contributed to an under-
standing of two-dimensional Riemannian geometry. Nonetheless, I think that
my lectures provide a useful basis for the understanding of all the areas of
differential geometry.

The structure of these lectures, including the organization of some of the
proofs, has been greatly influenced by S. S. Chern’s lecture notes entitled
“Differential Geometry,” published in Chicago in 1954. Chern, in turn, was
influenced by W. Blaschke’s “Vorlesungen iiber Differentialgeometrie.”
Chern had studied with Blaschke in Hamburg between 1934 and 1936, and,
nearly twenty years later, it was Blaschke who gave me strong support in my
career as a differential geometer.

So as I take the privilege of dedicating this book to Shiing-shen Chern, I
would at the same time desire to honor the memory of W. Blaschke.

Bonn-Ritigen Withelm Klingenberg
January 1, 1972
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Calculus in Euclidean Space

We will start with a brief outline of the essential facts about R™ and the vector
calculus.! The reader familiar with this subject may wish to begin with
Chapter 1, using this chapter as the need arises.

0.1 Euclidean Space

As usual, R is the vector space of ail real n-tuples x = (x%,..., x"). The
scalar product of two elements x, y in R™ is given by the formula

x.py:= Zx’y’.
i

We will write x-x = x2 and Vx2 = |x|. The real number |x| is called the
length or the norm of x. The Schwarz inequality,

G < BRIyl el = 2,
is satisfied by the scalar product and from it is derived the triangle inequality:
[x +y| < |x| + |y| forallx,yeR"

The distinguished basis of R™ will be denoted by (e;), | < i < n. The vector
e, is the n-tuple with 1 in the ith place and 0 in all the other places.

We shall also use R" to denote the n-dimensional Euclidean space. More
precisely, R™ is the Euclidean space with origin = (0,0,...,0), and an
orthonormal basis at this point, namely (¢), 1 < i < n.

1 Some standard references for material in this chapter are: Dieudonné, J. Foundations
of Modern Analysis. New York: Academic Press, 1960. Edwards, C. H. Advanced
Calculus of Several Variables. New York: Academic Press, 1973. Spivak, M. Calculus on
Manifolds. Reading, Mass.: W. Benjamin, 1966.



0 Calculus in Euclidean Space

The distance between two points x, y € R* will be denoted by d(x, y) and
defined by d(x, y) := |x — y|. Clearly d(x, y) = 0, (d(x, y) = 0 if and only
if x = y) and d(x, y) = d(y, x). Also, the triangle inequality for the norm
implies the triangle inequality for the distance function,

dx,z) <d(x,y) + d(y,2), x,y,zeR"

These three conditions satisfied by dimply that R*, with d as distance function,
is a metric space.

The transformations of Euclidean space which preserve the Euclidean
structure, i.e., the metric preserving transformations of R*, are called
isometries. One type of isometry is a translation: T,,: R* — R" defined by
x> X + X0, Where x, is a fixed element of R™. Another type is an orthogonal
transformation;

R: R*— R", R is linear and R(x)-R(y) = x-y, x,ye R

If an orthogonal motion is orientation preserving (i.e., the matrix whose
columns are Re,, ..., Re,, i = 1,...,n, has determinant +1), it is a rotation.
An example of an orthogonal motion which is not a rotation is given by the
ceflection

p:R*—R" X —x

when n is odd.
Any isometry B of Euclidean space may be written

B: R*—R", x> Rx + x,

where x, € R and R is an orthogonal motion. In other words, every isometry
of Euclidean space consists of an orthogonal motion R, followed by a trans-
lation T,,. We will call R the orthogonal component of B. If R is a rotation
we will say that B is a congruence. If not, we will say that B is a symmetry.

0.2 The Topology of Euclidean Space

The distance function 4 allows us, in the usual way, to define the metric
topology on R". For x € R" and € > 0, the e-ball centered at x is denoted
B,(x) and is defined by

B(x):={yeR"|d(x,y) < €.

A set U < R" is called open if for every x € U there exists an € = e(x) > 0
such that B(x) < U. A set ¥ < R" is closed if R*\ V is open. Given a set
W < R, W denotes its interior, i.e., the set of all x € W for which there exists
some € > 0 with B.(x) < W.

A set U < R" is said to be a neighborhood of x, € R" if x, € U. A mapping
F: U~ R" is continuous at x, if for every e > 0 there exists a § > 0 such
that F(U N By(x)) < B«(Fx,). F is said to be continuous if it is continuous
at all xe U.

2



0.3 Differentiation in R*®

Example. Linear functions are continuous

Let L be a linear function, i.e., L(ax + by) = aL(x) + bL(y) for a,be R,
x, y € R L may be written in terms of a matrix (@), 1 <i<n 1 <j<m,
where (L(x)) = >, alx*. To show that L is continuous, we use the Schwarz
inequality. Writing |L|? for 3, ; (a})?,

) (> e 5 (3 @) 3 007 = iz

Therefore |Lx — Lx,| < |L|-|x — xo|. From this, the continuity of L is
easily seen. Note: It follows that isometries B: R* — R" are continuous: for
Bx — Bxy, = R(x — x,), R being the orthogonal component of B, and R is
linear.

0.3 Differentiation in R”

Consider the set L(R", R™) of linear transformations from R" to R™. This set
has a natural real vector-space structure of dimension n-m. Addition of two
linear transformations L,, L, is defined by adding in the range; (L, + Ly)x : =
Lyx + Lyx. Scalar multiplication by « € R is defined by («L,)x := a(L;x).

In terms of the matrices (af) which represent elements L e L(R", R™),
addition corresponds to the usual matrix addition and scalar multiplication
to multiplication of matrices by scalars.

The bijection of L(R", R™) onto R™™, given by considering the matrix
representation (af) of a linear map L and identifying (a;/) with the vector
(ai,...,d7,45,...,43,...,4a,...,4a%), is norm-preserving. The norm |L|
agrees with the length (= norm) of its image vector in R™™,

Let U = R™ be an open set, and suppose F: U — R™ is any continuous
map. F is said to be differentiable at x, € U if there exists a linear mapping
L = L(F, x,) € L(R", R™) such that

lim [Fx — Fxy — L(x — x,)] —o.
X% Ix - xol

It will be convenient to denote by o(x) an arbitrary function with

lim ox) = 0.
x~0 le

In terms of this notation, the equation above may be rewritten as
|Fx — Fxy — L(x — Xxo)] = o(x — x,).

If such an L = L(F, x,) exists, it is unique. Suppose L and L’ are two such
linear mappings with the required properties. Then, using the triangle
inequality,



0 Calculus in Euclidean Space

(L = L')x — x)] = |(L — L')(x — xo) + Fx — Fx + Fx, — Fx,|
< |Fx — Fxg — L(x ~ xo)| + |Fx — Fxg — L'(x — Xo))

= 0o(x — Xxp) + o(x — xp) = o(x — xy).

Thus [(L — L')(x — Xo)| is o(x — xo). In particular, if x — x, = re,, then

r(lz (a — a;’)z)”2 = o(r).

Therefore, af = ay/ for all i, .

The unique linear map L = L(F, x,) is called the differential of F at x,,
which will also be denoted by dF,,, or simply dF.

If A is an arbitrary (not necessarily open) set in R", a mapping F: 4 — R™
is said to be differentiable on A if there exists an open set U = R" containing
A4 and a mapping G: U — R" such that G|, = F, and G is differentiable at
each x,e U.

Examples of differentiable mappings

1. L: R*— R™, any linear map. dL,, = L, for all x € R

2. B: R"~> R™, an isometry. dB, = R, the orthogonal component of B.

3. All the elementary functions encountered in calculus of one variable are
differentiable; polynomials, rational functions, trigonometric functions,
the exponential and logarithm.

4. The maps (x, y)~> x-y from R* x R" into R and x —> |x|? from R" into R
are differentiable.

5. The familiar vector cross-product (x, y)> x x y € R®, considered as a
map from R® x R? into R, is differentiable. In terms of a basis for RS, if
X = (X1, X3, X3) and y = (1, ya, ya), then x x Y = (X235 = X3¥2, Xay1 —
X1Y8, X1¥2 — Xa¥1)-

It is an easy exercise to prove that the composition of two differentiable
mappings is differentiable.

A mapping F: U— R™, U open in R, is said to be continuously differen-
tiable, or C3, if F is differentiable at each x e U and the map dF: U—
L(R", R™), given by x — dF,, is continuous.

A mapping F: U— R™, U = R"is said to be twice continuously differenti-
able, or C?, if dF: U— L(R", R™) is differentiable, and its derivative is
continuous.

In an analogous manner, we may define k-times continuously differentiable
mappings, or C* mappings. If f is k-times differentiable for any k = 1, 2,...,
fis said to be C © (read ““ C infinity”). Sometimes we will refer to C mappings
as differentiable mappings when there is no possibility of confusion.

IfU < R™, ¥ = R"are open sets and F: U — Vis a bijective, differentiable
function such that F~1: ¥ — U is also differentiable, then F is called a
diffeomorphism (between U and V).

4



0.4 Tangent Space

If F: U— R™, U < R* is differentiable, then the m coordinate functions
Fi(x%, ..., x") have partial derivatives 0F'/ox! = Fj+ with respect to each of
the n coordinates x'. From our definition of dF, : R™ — R", it follows that
the matrix of this linear map is given by the matrix of first derivatives of F
at xo, (Fit), the familiar Jacobian matrix.

The differential d2F = d(dF) of the differentiable function dF: U—
L(R", R™) at the point x, € U has the following matrix representation: dF is
determined by the n-m real valued functions 8F//ox'. Therefore d?F,, is
determined by the (m x n-m)-matrix (62F7/ox* 8x¥)|,,,. The row-index in this
notation is {{} and k is the column-index. (The pairs {{} are ordered lexico-
graphically.)

0.4 Tangent Space

The concept of a tangent space will play a fundamental role in our study of
differential geometry. For x, € R*, the tangent space of R" at x,, written
T,,R" or R, is the n-dimensional vector-space whose elements consist of
pairs (x,, x) € {xo} x R". The vector-space structure is defined by means of the
bijection

T, R*— R", (X0, X) > X,

i'e'5 (xOy x) + (Xo, y) = (x0a x + y) and a(an x) = (xO> ax)'

Let U be a subset of R". The tangent bundle of U, denoted TU, is the
disjoint union of the tangent spaces T, ,R", x, € U, together with the canonical
projection =: TU — U, given by (xo, X) > X,. TU is in 1-1 correspondence
with U x R" via the bijection

(%0, X) € T, R* € TU> (xp, x) e U x R™.

In view of the generalizations we will make in subsequent chapters,
the interpretation of TU as the disjoint union of the tangent spaces T, R",
xo € U, is preferable to that of TU as U x R™ On the other hand, the
interpretation of TU as U x R* shows that TU may be considered as a
subset of R* x R* = R2" If U is open, then U x R*" is also open in R?", so
it is clear what it means for a function G: TU — R* to be continuous or
differentiable. We may now define the notion of the differential of a differenti-
able mapping F: U — R™ in terms of the tangent bundle.

Let U be an open set in R™ and let F: U — R™ be a differentiable function.
For each x,€ U we define the map TF,,: T, ,R* — TrR™ by (x, X)—
(F(xo), dF,(x)). The map TF: TU — TR™ is now defined by TF|T, R" :=
TF,,. TF is called the differential of F.

A word about notation: If we identify Tx,R"” with R” in the canonical way,
and likewise Tp,R™ with R™, then instead of TF, : T, R" — Ty, R™ we
write dF,: R* — R™.



0 Calculus in Euclidean Space

0.5 Local Behavior of Differentiable Functions
(Injective and Surjective Functions)

We shall need to use the following basic theorem:

0.5.1 Theorem (Inverse function theorem). Let U be an open neighborhood of
0 € R Suppose F: U—> R" is a differentiable function with F(0) = 0 e R"
If dF,: R™ — R™ is bijective, then there is an open neighborhood U’ < U
of O such that F|y.: U' — FU' is a diffeomorphism.

Such a function Fis said to be a Jocal diffeomorphism (or, more precisely, a
local diffeomorphism at 0).

In order to state and prove an important consequence of the inverse func-
tion theorem, it is necessary to recall some facts about linear maps. A linear
map L: R® — R™ is injective, or 1-1, if and only ifker L := {x e R* | Lx = 0}
= {0}. This is equivalent, in turn, to the requirement that R™ has a direct
sum decomposition R™ = R™ (§ R™™~* (into subspaces of dimension » and
m — n, respectively) such that L: R* — R'™ is a bijection.

Similarly, a linear map L: R® — R™ is surjective, or onto, if and only if
n — m = dim ker L. This condition is equivalent to the existence of a direct
sum decomposition R* = R'™ @ R"*~™ into subspaces of dimension m and
n — m, respectively, such that R ™ = ker L and L|gm:R™-—R™ is a
bijection.

The next theorem shows that, locally, differentiable functions behave in a
manner analogous to linear maps, at least with respect to the injectivity and
surjectivity properties described above.

0.5.2 Theorem (Local linearization of differentiable mappings). Let U be an
open neighborhood of 0 € R™. Suppose F: U — R™ is a differentiable function
with F(0) = 0.

i) If TF,: ToR™ — T,R™ is injective, then there exists a diffeomorphism g
of a neighborhood W of 0 € R™ onto a neighborhood g(W) of 0 € R™ such
that g o F is an injective linear map from some neighborhood of 0 € R"
into R™, In fact, g o F(x1,..., X;) = (X1,..., %5, 0,...,0).

ii) If TFy: ToR™ — T,R™ is surjective, there exists a diffeomorphism h of
a neighborhood V of 0 € R™ onto a neighborhood h(V') of 0 € R™ such that
F o h is a surjective linear map from some neighborhood of 0 € R™ onto a
neighborhood of 0€ R™. In fact, Fo h(X1, ...y Xpy v v vy X) = (X140 v vy X)-

Remark. The converse of each of the above statements is clearly true.

ProoF. i) Suppose dF,: R* — R™ is injective. Write R™ = R'™* @ R"™~* with
dFy(R") = R™. Define §:R"=R"@PR™ ">R"=R"@PR™ " in a
neighborhood of 0 by v = (v', v")—~> F(v') + (0, v"). Here the R’ on the
left-hand side is identified with R". Clearly, dg, = dF, + id | R™~",



0.6 Exercise

Therefore dg, is bijective and we may use the inverse function theorem
(0.5.1) to assert the existence of a local differentiable inverse g = g~ 1.

Since gog =1id, gog| R™ =id | R'™ locally, and thus g F(v') =
(v', 0). This proves g o F is a linear injective function from a neighborhood
of 0in R* into R < R"@ R"™ " = R™.

ii) Suppose dF, : R* — R™ is surjective. Decomposing R* = R"™ @ R"™ "™ so
that dF, | R™:R'™— R™ is a bijection, define #: R* = R™ @ R"™~" —
R* = R'™ @ R""™ in a neighborhood of zero by v = (v, v") > (Fv, v").
Here we have identified R™™ on the right-hand side with R™.

Since dhy = dF, | R"™ + id | R"™~™is bijective, s has a local inverse b = A2
Since h ok = idlocally, h(F(v',v"),0") = (v', v")and therefore Fo h(F(v',0"),0") =
F(v', v"). This means that F o A is given locally by the projection R* = R™ @
R"-™ — R’™ onto the first m coordinates, which, of course, is linear and
surjective. O

0.6 Exercise

Prove that any distance-preserving mapping B: R* — R" may be written in the form
Bx = Rx + Xo,

an orthogonal motion followed by a translation.



Curves

1.1 Definitions

1.1.1 Definitions. Let / = R be an interval. For our purposes, a (parametrized)
curve in R™ is a C*® mapping c: I — R". ¢ will be said to be regular if for
alltel, é(t) # 0.

Remarks. 1. If I is not an open interval, we need to make explicit what it
means for ¢ to be C . There exists an open interval I* containing 7 and a
C > mapping ¢*: I* - R such that ¢ = ¢*|I.

2. The variable ¢ € I is called the parameter of the curve.

3. The tangent space R;, = T; R of R at 7, e/ has a distinguished basis
1 = (%, 1). As an alternate notation we will sometimes write d/dt for
(te, 1) = 1.

4. If c: I— R™ is a curve, the vector dey (1) € Ty, R™ is well defined. Since
le(t) — e(ty) — de, (1)t — to)] = ot — t,), it follows immediately that
de (1) = limy,, [c(?) — c(tn))/(t — t5) = (1), the derivative of the R
valued function c¢(¢) at t, € I

1.1.2 Definitions. i) A vector field along c: I — R" is a differentiable mapping
X: I — R The vector X(t), that is the value of X ata given ¢ € I, will be
thought of as lying in the copy of R™ identified with T,,R" (see Figure1.1).

ii) The tangent vector field of c: I — R™ is the vector field along c: I — R"
given by ¢ ¢(¢).

1.1.3 Definition. Let c: I — R*, &: [ — R be two curves. A diffeomorphism
é:I— 1 such that é = co ¢ is called a parameter transformation or a
change of variables relating ¢ to é. The map ¢ is called orientation preserving
if ¢’ > 0.



1.1 Definitions

Figure 1.1

Remark. Relationship by a parameter transformation is clearly an equivalence
relation on the set of all curves in R". An equivalence class of curves is called

an unparameterized curve.

1.1.4 Definitions. i) The curve c(?), t € I, is said to be parameterized by arc
length if |¢(t)] = 1. We will sometimes refer to such a curve as a
unit-speed curve.

ii) The length of c is given by the integral L(c) := f | 16@)| at.
iii) The integral E(c) := % f | C()?dtis called the energy integral of c or,
simply, the energy of c.

1.1.5 Proposition. Every regular curve c: I — R" can be parameterized by arc
length. In other words, given a regular curve c:I— R" there is a change
of variables ¢: J — I such that |(c  $)'(s)| = 1.

PRrOOF. The desired equation for ¢ is |dc/ds| = |dc/dt|-|dp/ds| = 1. Define

s(t) = f:o lé@e") dt’, to € 1, and let s(t) = ¢~ *(¢). Since ¢ is regular, ¢ exists

[ R
cit), t>0
e
clt)
>
€2 cft), t<0

(a) ()
Figure 1.2 (a) Helix; (b) cusp



1 Curves

and satisfies the desired equation. Clearly, c o ¢ is parameterized by arc
length. O

Examples

1. Straight line. For v, v, € R" let c(¢) = tv + vy, t € R. The curve c(¢) is
regular if and only if v # 0 and, in this case, is a straight line.

2. Circle and helix. c(t) = (acost,asint,bt), a,b,teR, a® + b% # 0.
When b = 0, ¢(t) is a plane circle of radius . When a = 0, ¢(?) is a
straight line. In general, ¢(¢) is a helix. In all cases, ¢(¢) is a regular curve.

3. Parameterization of a cusp. The curve c(t) = (t3,t%), te R, is regular
when ¢ # 0. The image of ¢(t) is a cusp.

4. Another parameterization of a straight line. The curve c(t) = (¢, ¢9),
t € R, is regular when ¢ # 0. The image of c(¢) is a straight line.

c(t),t>0
c(t),t <0

-1

Figure 1.3 Image of ¢

1.2 The Frenet Frame

1.2.1 Definition. Let c: I — R" be a curve. i) A moving n-frame along c is a
collection of n differentiable mappings

e:I—R" l<i<n,

such that for all z €1, e((t)-e,(t) = 8, where 8, = {{:1z7}. Each ¢(t)
is a vector field along c, and e,(t) is considered as a vector in T, R™.

ii) A moving n-frame is called a Frenet-n-frame, or simply Frenet frame,
if for all k, 1 < k < n, the kth derivative ¢®(t) of ¢(t) lies in the span
of the vectors e;(2), ..., et).

Remark. Not every curve possesses a Frenet-n-frame. Consider

(—e~10), ift<0
cR—>RE o) =<{(e V" e ), ift>0p.
(0, 0), ift=0
Because the image of ¢ has a crease at (0, 0) it is impossible to find a differen-
tiable unit vector field e,(¢) along ¢ such that é(z) = |é(2)]e(2).

10



1.3 The Frenet Equations

1.2.2 Proposition (The existence and uniqueness of a distinguished Frenet-
frame). Let c: 1€ R" be a curve such that for all tel, the vectors
ét), c2(t),...,c" () are linearly independent. Then there exists a
unique Frenet-frame with the following properties:

i) Forl <k <n—1,60),...,c%(t) and e\(2), . . ., et) have the same
orientation.
ii) e;(t), ..., e,(t) has the positive orientation.

This frame is called the distinguished Frenet-frame.

Remark. Recall that two bases for a real vector space have the same orienta-
tion provided the linear transtormation taking one basis into the other has
positive determinant. A basis for R" is positively oriented if it has the same
orientation as the canonical basis of R™.

ProoF. We will use the Gram-Schmidt orthogonalization process. The
assumption that é(¢), é(z), ... are linearly independent implies that ¢(¢) # 0
and so we may set e,(t) = ¢(r)/|¢(t)|. Suppose ey(t),. .., e;-1(t), j < n, are
defined. Let &,(¢) be defined by

5(1) = — 5 () edtet) + ¢(e)

and let e/(t) := &2)/|é(t)|.

Clearly, the e,(t), j < n, are well defined and satisfy the first assertion of
the theorem. Furthermore, we may define e,(¢) so that e,(z),..., e,(?) has
positive orientation. The differentiability of e(t), j < n, is clear from its
definition. To see that e,(t) is differentiable, observe that each of the com-
ponents ei(¢), 1 < i < n, of e,(t) may be expressed as the determinant of a
minor of rank (n — 1) in the n x (n — 1)-matrix (e}(r)), 1 <i < n,

l<j<n-1 O

1.3 The Frenet Equations

1.3.1 Proposition. Let c(t), t € I, be a curve in R* together with a moving frame
(et)), 1 < i < n, tel. Then the following equations for the derivatives hold:

&) = 3 an)e),

[]

&) = 2 w,(De,(t),

where

™ wi (1) = é(r)-et) = —wy(t).

If (e(t)) is the distinguished Frenet-frame defined in (1.2.2),
(**) a@) = 6],  ed)=0 fori> 1,
and wt)y=0 forj>i+ 1

11



1 Curves

Proofr. Equation (*) follows from differentiating e,(¢)-e,(¢) = §;;.

Equations (**) hold for distinguished Frenet-frames because the condition
that e,(¢) is a linear combination of ¢(¢), . . ., ¢(¢) implies that é,(¢) is a linear
combination of ¢(¢), ..., ¢c**V(¢t) and hence of e,(t), .. ., €,.(?). J

Remark. If w(t) denotes the one-parameter family of matrices (wy,(¢)), 1 < i,
J < n, we may write the n equations

() = Z wy(t)e,(t)
as

é1) = w(t)e(t),

where e(t) is the matrix whose rows are the vectors e,(¢). Equation (*) then
says: w is skew-symmetric. If, in addition, (e(z)) is a distinguished Frenet-
frame, (**) implies that w is of the form

0 wg 0 0

—Wia 0 wgg 0 0

0 —wy3 0 wy O ... 0

w= . X .
0 0 Wno1n

0 e 0 —wpg, 0

The next proposition proves that these differential equations are invariant
under isometries of R", and establishes how these equations transform under
a change of variables.

1.3.2 Proposition. i) Let c: I— R" be a curve and B: R* — R" an isometry
of R* whose orthogonal component is R. Let ¢ = Boc:I—> R", and let
(er)), i = 1,...,n, be a moving frame on c. Then (€(t)) := (Re(?)),
i=1,...,n, is a moving frame on & and if &(t) are the coefficients of
the associated Frenet equation for &, (&(t)), then

[é@)] = e
and @y(t) = ay(t).

ii) Let ¢: I— R"™ and é: J — R™ be curves in R", related by the orientation-
preserving change of variables ¢. In other words,

E=cod, ¢'(s)>0.
Let (e(t)),i =1,..., n, be amoving frame on c. Then (8(s)) = (e, o ¢(s)),
i=1,...,n,is a moving frame on &. If |&'(s)| # O, then

@i/(5) — wy($(s))
EOIRECON

12



1.3 The Frenet Equations

PROOF. i) &(t) = &(t)-8(t) = Ré(t)-Reft) = é(t)-eft) = w;(1).

efp(s)  _ wu($(s))
BENIF'(s) [N O

w,,(s ) (s) 5 '
= - é(P(s))e'(s)-
I()I ()I()l (¢())¢()|
1.3.3 Definition. Let c: ] — R" be a curve satisfying the conditions of (1.2.2),
and consider its distinguished Frenet-frame. The ith curvature of c,i = 1,2,

n — 1, is the function

. wigea(t)
<= Teor

Note that for the distinguished Frenet-frame we may now write the
matrix w as

0 « O 0
—x; 0 Ky 0
w = || P —ky
0 ... —xp—g O Kn-1
0o ... —Kkp-y O

Let us establish a simple fact about the curvature functions, «;, i < n — 1.
Namely: they are positive. Remember, we have only defined the «; for curves
satisfying the nondegeneracy conditions of (1.2.2).

1.3.4 Proposition. Let «(t), | < i < n — 1, be the curvature functions defined
in (1.3.3). Then x(t) > Ofor1 <i<n -2

PRrOOF. By construction (in (1.2.2)),
k k
c® = Z a.e; and e = Z b, c® with gy >0
=1 i=1

(and so by, = agt > 0) for 1 < k < n — 1. Therefore for 1 <i<n-— 2,

e — _ 2 - 1+1 —
[élr; = wii01 = €41 = buct* Ve, y = byay sy 441 > 0. O

We now explore to what extent these curvature functions determine curves
satisfying the nondegeneracy conditions of (1.2.2).

1.3.5 Theorem. Let c:I— R™ and &:1— R* be two curves satisfying the
hypotheses of (1.2.2), insuring the existence of a unique distinguished
Frenet-frame. Denote these Frenet-frames by (e(t)) and (é(?)), respectively,
1 < i < n. Suppose, relative to these frames, that «(t) = &(t), 1 <i <
n — 1, and assume |é(t)| = |é(t)|. Then there exists a unique isometry
B: R™ —> R" such that

¢=Boc.

13



1 Curves

Furthermore, B is a congruence; its orthogonal component has determinant
+1 (a rotation).

PrOOF. Fix t, € I. There is precisely one isometry B satisfying

Be(to) = c(to),
Re(t,) = &(t), l<i<n,

where R is the orthogonal component of B. Since both Frenet-frames are
positively oriented, R has determinant equal to +1.
From the hypotheses we have @;,(t) = w;(¢), which implies

&(1) = Z wi{1)(2).

7
On the other hand,

Ré(1) = ,z w(t)Re/(1).

We see that &(r) and Re(r) satisfy the same system of linear differential
equations. Since they are equal at ¢ = t,, Reft) = &(t) for all tel In
particular, Ré(t) = |¢(t)|Re,(t) = |é(r)|é(t) = &¢). Thus

Be(t) — Be(ty) = f " Ré(r) dt = f “deyde = ) — &),

which proves Be(t) = é(¢).

To see that B is unique, let B’ be another isometry satisfying B’ o ¢ = ¢.
Then B’ must transform the distinguished Frenet-frame of c¢ into that of &.
In addition, B’ o ¢(t,) = &(t,), so B and B’ have the same translation com-
ponent and the same orthogonal component. Therefore B = B'. O

1.3.6 Theorem (Existence of curves with prescribed curvature functions).
Let x,(s), . . ., k,_1(s) be differentiable functions defined on a neighborhood
0e R with «k(s) > 0,1 < i < n— 2. Then there exists an interval I con-
taining O and a unit speed curve c: I — R"™ which satisfies the conditions of
(1.2.2) and whose ith curvature function is k(s), 1 <i<n-— 1.

Proor. Consider the matrix-valued function

0 Ky(8) ... 0
—xi(s) O
Als) =
0 Kn—l(s)
0 e —xu_q(s) O

and the linear system of differential equations X’(s) = A(s)- X(s), X(0) = 1d,
where X(s) is an n x n matrix-valued function, Id is the » x n identity
matrix and the multiplication is matrix multiplication. By standard results in
differential equations (e.g., Hurewicz, W. Lectures on ordinary differential

14



1.4 Plane Curves; Local Theory

equations. MIT Press, Cambridge, Mass. (1958) p. 28), there exists a solution
X(s) defined on some interval I containing 0 € R.

Since A(s) is skew-symmetric (CA(s) = —A(s)), CX(s)- X(s)) = A(s)-
X(s)- X(5) + tX(s) A(s)- X(s) = LX(5)-2A(s)- X(5) + *X(5)-A(5)- X(5)=0.
Thus tX(s)- X(s) is a constant matrix and must be equal to its value at s = 0,
namely the identity matrix. Therefore X(s) is an orthogonal matrix. Let T(s)
be the first column of X(s) and define

c(s) = f: T(r)dr, sel,

the integration being done component-wise. One can now check directly that
¢(s) is a unit speed curve with distinguished Frenet frame X(s) and curvature
functions «(s), 1 <i<n-— 1. O

1.4 Plane Curves; Local Theory

In this section we will investigate plane curves; c: I — R2. We will assume
throughout that ¢() # 0, i.e., c is regular. For plane curves this hypothesis
is equivalent to (1.2.2). Thus we may always construct the distinguished
Frenet-frame, and we shall always choose this frame as the moving 2-frame
on our curve c.

The Frenet equations of (1.3.1) for a plane curve are

&) = [e(®)es(t)
éy(t) = wya(t)ex(r)

€(1) = —wya()ei(?t),

or ét) = |60 ex(r)

and there is only one curvature:

. wi(t)
O =T

In the special case that |¢(t)] = 1, é(t) = ey(¢) and

ét) = é(1) = wig(t)eg(t) = (t)eg(t),

so |«(?)] = |é()].

The sign of «(¢) is positive (negative) when e,(¢) and é(¢) make an acute
(obtuse) angle with each other.

Expressed graphically: «(¢) > 0 («(t) < 0) means that e,(¢) points toward
the convex (concave) side of the curve ¢ at c(¢).

15



1 Curves

Example. Graph of the sine
o(t) = (t,sinz), forteR,
x(t) <0 for t € (0, ),
«(t) > 0 for ¢ € (m, 27).

It is possible that «(¢) = 0. If, in addition, &(¢) # 0 (and hence the zero of «
is isolated) ¢(¢) is called an inflection point of the curve. In the example above,
¢(0) and c(m) are inflection points.

€

€2

€
k>0

Figure 1.4 The sine curve
The curvature function for plane curves has the following geometric
interpretation: Fix some vector v of unit length. Define 8(¢) by
cos 6(t) = es(t)-v,
sin 6(t) = —ey(t)-0.

Thus 6(z) is, up to a multiple of 2, the angle from v to e,(¢) measured in the
positive direction. In a sufficiently small neighborhood of any parameter
value ¢, € I, 6(t) may be defined so that it is continuous. Doing this will also
make 6(z) differentiable in that neighborhood. Clearly, (¢) is a well-defined
function, independent of the choices involved in defining 6(¢).

1.4.1 Proposition. Suppose 0(t) is locally defined as above. Then
0(r) = wio(t) = K(1)]é()].
In the case that |é(t)| = 1, «(t) = 6(¢).

Proor. The proposition is an immediate consequence of differentiating the
defining equations for 6(¢):

—sin 0(t)8(r) = wio(t)et)-v = —sin B(t)w,4(2),

c0s 8()0(t) = wya(t)ey(t)-v = cos B(t)wq(t). 0
1.4.2 Proposition (Characterization of straight lines). For plane curves, the
Sollowing conditions are equivalent.
i) x(t) =0 forall tel
i) There exists a parameterization of c of the form

ct) = (@t — to)v + vy, where toeR,v,v,€R% v #0,

i.e., a straight line.

16
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Proor. We may assume |é(t)] = 1. If «(t) = O then &(t) = 0. Therefore
c(t) = (t — t)é(to) + c(ty) for any fixed #,€l. Conversely, if c(t) =
(t — tov + v, then, by assumption, 1 = |é(r)] = |v|, and so |«(t)| =
|é@®)] = 0. 0

1.4.3 Proposition (Characterization of the circle). For plane curves, the
Sfollowing conditions are equivalent.
i) |«(#)| = 1/r = constant > 0.
ii) cis a piece of circular arc, i.e., there exists an x, € R? with |c(t) — x,| =
r = constant > O forall tel.

ProoF. We may assume [é(7)| = 1.
The Frenet equations, if we assume (i), look like

é(t) = ex(t)
é,(t) = efreg(t) withe = +1ore=—1
€x(t) = —¢fres(1).

Therefore (c(t) + erey(t)) = é(t) — ey(t) = 0, which implies that ¢(t) +
eres(t) = x,, a constant vector in R2 Hence c(f) — x, = —erey(t), implying
le(t) — xo|2 = r2, which is (ii).

Conversely, assume (ii). We have (c(f) — x,)-(c(t) — xo) = r?, a constant.
Differentiating yields

é@)-(c(t) — x0) = 0.

Since é(t) = ey(t), we have established that c(t) — x, is a multiple of e,(¢).
Since we know its length is r,

c(t) — xo = erey(t), where e = +1.
Differentiating this equation yields
e)(t) = ¢(t) = eréy(t) = —er(t)ey(?).
Thus |«(z)| = 1/r. a

1.5 Space Curves
In this section we will look at curves ¢: I — R3. In order to use Frenet-frames

we assume that é(¢) and é(¢) are linearly independent. By (1.2.2) we know
that, under these conditions, a distinguished Frenet-frame exists.

Remark. Note that we have excluded straight lines from our consideration!

1.5.1 Definition. For a curve ¢: I — R?, the curvatures «;(¢) and «,(¢) defined

17



1 Curves

in (1.3.3) will be denoted «(¢) and (¢) and called the “curvature” and
“torsion” of ¢, respectively. Explicitly,

._ €(t)-e(t)
K(t) = -—l?(?jl— >0

._ 6x(t)-es(t)
(1) := _——|c(t)| .

The Frenet equations, in matrix form, are

0 (t) 0
e‘(t)=!c'(t)|(—~(t) 0 r(t))e(t).
0 - 0

1.5.2 Proposition. If c(t) is parameterized by arc length, then
k(t) = |&@t)] and =(t) = det(é(r), é(z), E(2))/x*(2).

ProOF. We know that é(r) = e,(7), ex(t) = é(t)/|é(r)], and es(t) = ey(t) x
ex(t) = é(t) x é@)/|é(t)] (“x” denotes the cross-product in R®). Thus
«(t) = |é(t)|, which implies é(¢) = «(t)ex(r). The Frenet equations imply

&(t) = #(t)ex(t) + x(1)éa(r)
#(0)ex(t) + k(D) —r(D)es(t) + 7(2)es(?)]
#()ex(t) — k3(D)ex(t) + wl(t)r(t)ea(t).

The equation for 7(¢) now follows directly from the equations for é(¢), é(z),
and &(¢) above. Od

Remark. By (1.3.2), «(¢) and 7(¢) are invariant with respect to isometries of
R? and orientation-preserving changes of variables.

Since ¢(¢) is a differentiable curve, we may write it in terms of its Taylor
series at t = f,. Doing so, and using the Frenet equations as they appear in
(1.5.1) and (1.5.2), we get

1.5.3 Proposition (Normal (local) representation for a space curve). Suppose
¢: I— R® is a space curve parameterized by arc length, and let t, € I. Then

o) - o) = (@ - ) - L= ) e
+ (52 w0 + E k10 st

+ ((t__é_t_o_)3 "(’o)”(to))ea(to) + ot — 1)

18



1.5 Space Curves

)

T~

Figure 1.5

The proof follows from substituting the Frenet equations into the Taylor

series.
At t, € I the planes in Figure 1.5 have descriptive names:

(e, e2)-plane = osculating plane at c(zo).
(ez, es)-plane = normal plane at c(t,).
(es, e,)-plane = rectifying plane at c(t).
Using Proposition (1.5.3), we may write down expansions for the projection

of ¢(t) onto these planes.

1.5.4 Corollary. Let c: I —> R® be a space curve parametrized by arc length and
let t, =0€cl. Set e0) =e, 1 <ix< 3, and «0) = «, 71(0) = r, #(0) =
k. Then the projections of c(t) onto the
osculating plane at c(t,)
normal plane at c(ty)
rectifying plane at c(to)

have Taylor expansions at 0 of the form
t2
(t, 'E K) + O(tz)
t2 P s
(‘2—'( + 3 ,—6—K7) + o(t%)
3 3
(t——t—6— K2, % KT) + o(t®)
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1 Curves

Remark. The osculating plane derives its name from the Latin osculari,
“to kiss.” It is the plane spanned by the first and second derivatives of ¢(¢)
at ¢, and may be thought of as the plane that fits best to ¢(¢) at c(z,). Notice
that when ¢(¢) is projected onto this plane the result is, up to second order, the
graph of a parabola.

The normal plane is literally that; the unique plane normal to e,(¢,), and
hence to ¢(z,), at ¢(t,).

The rectifying plane is the plane perpendicular to the *“curvature vector”
ey, Projection onto this plane ““straightens” or rectifies ¢(¢) in the sense that,
up to second order, the projected curve is a line.

€ ]
€

@) (b) ©)

Figure 1.6 Projection onto: (a) rectifying plane; (b) normal plane; (c) osculating
plane

1.6 Exercises
1.6.1 Determine the curvature of the ellipse (@ cos ¢, bsint), t e R, ab # 0.

1.6.2 Show that the curvature of a plane curve is in general given by the formula
det(é(1), é(t))
EGR
1.6.3 Show that the curvature and torsion of a space curve are in general given
by the formulae

«(t) =

_ ) x &0
W ="qor

0 - S 108
where x x y is the cross-product in R3,
1.6.4 i) Determine the curvature and torsion of the “elliptical helix’’
(acost, bsint, ct), ab #£ 0, teR.

ii) Use (i) to conclude that if @ = b = 1 then « goes to zero as ¢ goes to
infinity. Does this make geometric sense ?
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Plane Curves: Global Theory

2.1 The Rotation Number

2.1.1 Definition. A curve c: I = [a, b] — R" is closed if there exists a curve
¢: R — R* with the following properties: ¢|I = ¢ and, for all teR,
&t + w) = é(t), where w = b — a.

The number w is the period of c. The curve ¢ is said to be periodic with
period ». Given a closed curve ¢, it is clear that its associated periodic
curve ¢ is unique.

Remark. An equivalent definition of a closed curve is: a curve c: [a, b] - R*
such that c(a) = ¢(b) and c®(a) = c¢®(b) for all £ > 0.

For later applications we use the following generalization.

2.1.2 Definition. A piecewise smooth curve is a continuous function c: [a, b] — R*
together with a partition

a=b_=a,<by=a,<...<b,_y=a,<by=a;,,=b

of [a, b] such that ¢; := c| [a;, )], 0 < j < k, is a differentiable curve.
The points c(a;) = c(b;_,) are called corners of c. We will use the following
terminology for piecewise smooth curves c: ¢ is

regular if each ¢, is regular,
closed if c¢(a) = c(b),
simple closed if ¢ is closed and ¢,y is one-to-one.

Given a regular curve c: I — R?, there is an induced map e;: ] — R?,
where e,(f) = ¢(t)/|¢(t)|, the unit tangent vector. This is sometimes called
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2 Plane Curves: Global Theory

the tangent mapping, and its image lies in S* = {x € R? | [x| = 1}. We begin
our study of the tangent mapping by introducing a global version of the
function 6 considered in (1.4.1).

2.1.3 Proposition. Let c: [a, b] — R? be a regular curve. Then there exists a
continuous, piecewise differentiable function 0: [a, b] — R such that

e;(t) = ¢(@t)/|é(t)| = (cos 6(¢), sin 6(t)).
Moreover, the difference 6(b) — 0(a) is independent of the choice of 6.

Proor. Choose a partition a = t, < t; < ... <t, = b fine enough to insure
that e;|y,_,.; lies entirely in some open semicircle of S!. This is clearly
possible since e, is continuous. Choose 6(a) satisfying the requirements of the
proposition. Then 6 is uniquely determined on [a, #,] = [t,, #,] by the require-
ment that it be continuous. If # is known on [#,, #,_], it has a unique con-
tinuous extension to [fo, ;]; namely, 6(¢;_,) is given and there is a unique
continuous function 8: [t,_,, t,] — R, with 8(¢;_,) = 6(¢;_,), satisfying the
requirements of the proposition. Using §, we may extend 0 so that it is
continuous on [t,, ¢,]. By this procedure, § may be defined to be continuous
on [a, b].

The differentiability of 8| [¢,_, #,] follows from (1.4.1), or directly from the
differentiability of e; and the inverse trigonometric functions.

Finally, suppose 6 and ¢ are two functions satisfying the requirements of
the proposition. Then ¢(¢) — 6(f) = 2wk(r), where k(¢) is a continuous
integer valued function. This forces k(z) to be a constant. Therefore

0(b) — 6(a) = $(b) — ¢(a). O

The next proposition is a technical result which will allow us to associate
an “angular” function 6 to a continuous mapping e: T — R?, T = R?, when
T is star-shaped.

2.1.4 Proposition. Let T < R? be star-shaped with respect to x,€T; ie., if
x €T then the line segment Xx, is also in T. Suppose e: T — S* is a con-
tinuous function. Then there is a continuous function 8: T — R satisfying

e(x) = (cos 8(x), sin 8(x)).

Moreover, if 8 and 8 are two such functions, they must differ by a constant
multiple of 2.

PROOF. Choose 8(x,) to satisfy e(xo) = (cos 6(x,), sin 6(x,)). We may use the
procedure of the proof of (2.1.3) to determine 6 uniquely on each ray Xx,x,
x €T, as a continuous function with initial value 6(x,). What remains to be
shown is that @ is continuous at any y, € T. We may choose 8 > 0 such that
for any y' € Xo),, |¥ — ¥'| < & implies that the angular separation between
e(y) and e()") is strictly less than . Since X, is compact and e is continuous,
such a & must exist.

22



2.1 The Rotation Number

Given € > 0, choose a neighborhood U of y, small enough to guarantee
U < By(y,) and ye U = |8(y) — 8(yo)| = 27k + €, where |¢| < € and k
is some integer which depends on y. Continuity of e assures the existence of
such a set U. We will show k = 0, which implies the continuity of 8 at y,.

Let ye U. Consider ¢(s) = 0(x, + s(¥ — xo)) — 0(xo + s(¥o — X0)),
0 < s < 1. ¢ is the difference between the values of 8 at corresponding points
on the line segments X,y and X, y,. ¢ is continuous since ¢ is a continuous
function on each line segment.

Since |(xo 4+ s(¥ — Xxo)) — (X0 + s(¥o — X0))| = [s(¥y — yo)| < &, the
angular separation between (x, + s(¥ — X)) and (xo + s(¥o — Xo)) can
never be.equal to «. Therefore |¢(s) — $(0)| < 7. But $(0) = 0. Lets = 1, then

7> [$(1)] = |8(y) — 6(yo)| = |27k + €.
This implies k = 0. 0

2.1.5 Definition. Let c: [0, w] — R2 be a piecewise smooth, regular, closed
curve. Let 0 = b_; = gy < by = a; < ... <b, = w partition [0, w] into
intervals I, := [ay, b;] on which ¢, := ¢|;, are differentiable, 1 < j < k.
Let o, denote the oriented angle from é(b; ;) : = é(b;-, — ) to é(ay) : = é(a;+).
The oy, 1 < j < k are the exterior angles of c. We will require —7 < «; < 7.

The number

mei= 33 00) - 0@) + 3.5 e

is the rotation number of c.
Here the functions 6,: I, - R, 0 < j < k, are those defined in (2.1.3).

Remarks. If ¢ is a smooth closed curve, then all ¢, = 0 and
o 96 = 00)

27

The connection between n. and the winding number of ¢ as defined in
elementary complex analysis is that n, is the winding number, with respect
to the origin, of the closed curve e;(¢), t € [0, w].

ExaMpLEs. i) If ¢ is the parameterization in the positive sense (counter-
clockwise) of a nondegenerate triangle, the three differentiable arcs, c,, of
which ¢ is composed, are line segments. Therefore 8, = constant and
>3-1 ¢, = 27. Hence n, = 1.

Similarly, if ¢ is a parameterization of a convex polygon, n, = +1.

ii) Let ¢ be a parameterization in the positive sense of the unit circle, which

makes m revolutions:

¢(t) = (cos 2at, sin 2xt), 0<t<m
Then n, = m.
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Notice that, in the examples above, n, is an integer. The next proposition
establishes that n, is always an integer, and that |n,| is invariant under
isometries of R™ and change of variables.

2.1.6 Proposition. The rotation number n, of a closed piecewise smooth curve
is an integer. Moreover,

* n=g 3 [ @EOld 5 S

As a consequence of (*) (together with (1.3.2) and the change of variables
Sformula), n, is invariant under orientation-preserving change of variables or
congruences of R". An orientation-reversing change of variables or a sym-
metry of R™ will change the sign of n,.

Proor. The formula defining n, may be rewritten as

k

2, = !2: (6;-1(b5-1) — 04a) + o),
=0
where 6_, is interpreted as 6,. By definition of a,, (8;-1(b;-,) — 8,(a,) + «;)/2=
is an integer. By (1.4.1), 6,(t) = «()|¢(¢)|. This implies (*). 0O

2.2 The Umlaufsatz

The theorem we shall prove in this section is best known by its German name
“Umlaufsatz.” (Umlauf means ‘“‘rotation” in German; Umlaufzahl =
‘“rotation number,” Satz = “theorem.”)

2.2.1 Theorem (Umlaufsatz). Let c: I— R? be a piecewise smooth, regular,
simple closed plane curve. Suppose the exterior angles o; of ¢ are never
equal to w in absolute value. Then n, = +1.

2.2.2 Corollary. Let c: I — R? be a smooth, regular, simple closed plane curve
with |é(t)| = 1. Then

fl;f k(t) dt = £1.
1

PROOF (due to H. Hopf)*

Step 1. We will first perform a change of variables of ¢ and an isometry
of R" in order to put ¢ in a particular form. (Recall that, by (2.1.6), |n.|
is invariant.)

Let g be a straight line in R? which intersects the image of ¢. At least one
point p in the intersection of g with the image of ¢ will have the following

1 Hopf, H. Uber die Drehung der Tangenten und Sehnen ebener Kurven. Compositio
Math., 2, 50-62 (1935).
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2.2 The Umlaufsatz

property: a half-line of g with endpoint p will have no other points in com-
mon with the image of ¢. By performing a slight translation of g, if necessary,
we can insure that p is not a corner of ¢ (the corners of ¢ are isolated). Thus,
without loss of generality, we may assume that there is a half-line, H, emana-
ting from a regular value, p, of ¢, and that H has no other points in common
with the image of c. Let 4 be the unit vector in the direction of H.

(0, w) {t, w) {w, W)
T
cit) 0,1
©.0) ©

e(0, t) y
g, w’f 0(0,1)

(b)

(@)
Figure 2.1 (Adapted from Manfredo P. do Carmo, Differential Geometry of Curves and
Surfaces, Prentice-Hall, Inc., 1976, p. 396.)

Since ¢ is regular, we may (re)parameterize ¢ by arc length: |¢(r)| = 1.
We also require ¢(0) = c(w) = p. If necessary, translation and rotation of R?
yields ¢(0) = the origin and ¢(0) = e,(0) = e, = (1, 0).

Step 2. Let 0 < a, < ... < a,-; < w be a partition of [0, w] such that ¢
is smooth on each segment. The corners of ¢ are the points ¢(e;), 0 < j < k.
Define

T={t,t)eR|0<t; <t < P\t 1) eR? | 1y = 1, = a}}.
The set T is star-shaped with respect to (0, w) (for definition, see (2.1.4)).
Let e: T— S* be the mapping defined by
(), ift, =t;, # a
_é(o)’ lf (tl’ tZ) = (0’ w):
cltz) — c(ty) ,
|e(t2) — e(ty)]
e is a continuous function (easy exercise). By Proposition (2.1.4), there exists
a continuous function 8: T— R satisfying

(cos 8(t,, t2), sin 8(t,, t3)) = e(ly, t2), (t, 1) eT.

e(ty, tz) =
otherwise (t;, t,) € T.
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2 Plane Curves: Global Theory

0 is determined up to an integral multiple of 2=. We choose 8 to satisfy
000, w) = +m.

Step 3. We will show that 8(w, w) — 6(0,0) = +2n. For t €] 0, o, 0(¢, w)
— 6(0, w) measures the angle between —e, and the unit vector

c(w) — c(t)
le(w) — @I
But e(?, w) can never be equal to —h. Therefore 8(t, w) — 6(0, w) is always
less than 27. So when ¢ = w, §(w, w) — (0, w) = + .
Similarly, 6(0, t) ~ 6(0, 0), which represents the angle from e, to (0, ¢),
is equal to 0 when 7 = 0 and can never exceed 2#. Therefore as ¢ — w,
6(0, t) — 6(0, 0) — + . The sign here is the same as that of 8(w, w) — 8(0, w).
Thus §(w, w) — 6(0,0) = (w, w) — (0, @) + 8(0, w) — 6(0,0) = +2a.
Step 4. Consider c(a;) = c(b;_,), a corner of ¢ with exterior angle o,. The
angle o, is equal to the angle between ¢(b,_,) and ¢(q,), measured in the
positive sense. Define

e(t, w) =

0ay, a) = tllnal 0, 1), t> a,
el

01, by-) = lim 60,0), 1< by,
bl

Claim: o«; = 0(a;, a)) — 0(b,_,, b;_,).

PrOOF. Let A be the triangle whose vertices are x_, := c(b;_; — ¢€), xp :=
e(by-1) = c(ay), x, := c(a; + ¢), where e satisfies b,_, < b;_; — € < b;_, +
€ < b,. Assume that x_,, x,, x, orders the vertices of A in the positive sense.
Without loss of generality, A may be assumed to be nondegenerate. Let
@y, 0 < @,y <7 be the angle at vertex x.,. Then 6(b,_,, a, + ¢ —
0(b;-; — €, a; + €) = a; + 27k, for some integer k,. If € is chosen small
enough, 6(b;_1,a, + €) — 6(t,a;, + €), b, — € < t < b,_,, cannot exceed 2,
$0 ky = 0. Similarly, 8(b;-; — ¢, a, + €) — 8(b,_; — ¢, a;}) = a_,. Therefore
0(a,a;+ ¢ — O0(b;_y — €,b;_1) =e; + a_, =7 — By, where B, is the
angle at x,. As e >0, # — B, — oy, the exterior angle of c(¢) at a,. This
proves the claim.

If x_y, xo, X, orients A in the negative direction, an analogous proof will
work.

Step 5. Conclusion of proof of theorem. By Steps 3 and 4, we may write

+27 = f(w, w) — 60, 0)
k-1 k-1 k-1
= 8w, @) = > Oaya) + > Obs-s,b;21) + > a; — 6(0,0).
=1 1 i=1

Since 6(a;, a;) = 6,(a;) and 6(b,.,, b,_,) = 0,(b,_,) as defined in (2.1.5), the
right-hand side is 2#n,. Here we have w = b,, 0 = a,. This proves the
theorem.

Step 6. Proof of corollary. The corollary follows immediately from the
theorem and (2.1.6). a
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2.3 Convex Curves

x_q=cla; —¢€) X1 = cla; +¢€)

Figure 2.2

2.3 Convex Curves

2.3.1 Definition. A regular plane curve c¢: 7 — R? is convex if, for all ¢, € I,
the curve lies entirely on one side of the tangent at ¢(z;). In other words,
for every t, € I one and only one of the following inequalities hold:

(c(t) — c(ty))-es(ty) = 0, alitel
or

(c(t) — c(to))-es(ty) <0, alltel

2.3.2 Theorem (A characterization of convex curves). Let ¢: I— R? be a
simple closed regular plane curve. Then c is convex if and only if one of the
Sfollowing conditions are true:

«(t) =20, altel
or
k() <0, alltel

Remarks. i) If one of the above conditions hold then an orientation-reversing
change of variables will produce the other. So, geometrically, they are
equivalent.

ii) If ¢ is closed but not simple, the theorem fails. For example, a trefoil
(pretzel curve) satisfies x(¢) > 0, but it is not convex.

Figure 2.3

ProOF. Step 1. We may assume, without loss of generality, that (after possibly
a change of variables) |¢é(z)| = 1. If we then consider the function §: I — R,
defined in (2.1.3), we may assert that 8(z) = «(¢). This is proved in (1.4.1).
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2 Plane Curves: Global Theory

Step 2. Suppose ¢ is convex. We will show that « does not change sign by
showing that 6(¢) is weakly monotone. If 6(+') = 0(t") and ¢’ < ¢” then 8 is
constant on [t’, ¢"].

First observe that since cis simple, there must be at least one point " where
0(t™) = —0(¢") = —6(t"). Using the convexity of ¢, it is possible to conclude
that two of the tangent lines to ¢ at the points ¢(¢"), c(t”), ¢(¢") must coincide.

Let p; = c(t;) and p, = c(ty), t; < t,, denote these two points, and con-
sider the line segment p, p,. This line segment must lie entirely on the image of
c. For suppose ¢ is a point on p; p; which is not on the image of c. The line per-
pendicular to p, p; and through g intersects ¢ in at least two points and, since
¢ is convex, these points must lie on the same side of p;p;. Let r (resp. s)
be the points of intersection closest to (resp. furthest from) p;p,. Then r lies
in the interior of the triangle p,p,s. Consider the tangent line to ¢ at the
point r. Whatever it is, there are points of ¢ on both sides of it, contradicting
the fact that ¢ is convex. Hence p;p; = {c(¢) | t < t < 1}, which means
that 6(¢,) = 6(t) = 6(ty) for t € [ty, t;]. In particular, t, = ¢’ and ¢, = ¢;.
This concludes the proof of weak monotonicity.

Step 3. Suppose ¢ is not convex. This means there exists a #, € I such
that ¢(2) := (c(t) — c(2,))- ex(t,) changes sign. Let ¢, and 7_ (# t,) be values
of ¢ € I where ¢(¢) assumes its maximum and minimum, respectively:

$(r-) < 4(to) = 0 < 4(1.).

Since ¢(z_) = ¢(t,) = 0, e,(¢,) and e,(z.) = +e,(t,). Therefore at least
two of these vectors are equal. By reparameterizing, we may now assert that
there exist s,, 5;, with s; = 0 < 5, < w and

ei(s:) = ex(sy).

But this means that 6(s;) — 6(s,) = 2wk, k an integer, and 6(s, + w) —
0(s;) = 2#k’, k' an integer. By the Umlaufsatz, k + k' = +1 and, since
0]10,5,1 and 0|, .y are nonconstant functions, kk’ # 0. Therefore kk' < 0,
which means that «(f) = 6(¢) must change sign (one of the “k’’s is positive,
the other negative). This completes the proof. O

We will now use this characterization of a convex curve to prove the well-
known four vertex theorem.

2.3.3 Definition. A vertex of a smooth plane curve c¢: I— R? is a critical

point of the curvature «: I — R in the interior [ of I, i.e., x(t;) = 0, t, € I.
If «(t) = const, ¢, < t < t,, all these ¢ are vertices.

2.3.4 Theorem (Four vertex theorem). A convex, simple, closed smooth plane
curve has at least four vertices.

Remark. The theorem is true without the convexity hypothesis (although it is
harder to prove).
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2.4 Exercises and Some Further Results

PROOF (due to G. Herglotz)?

Step 1. Since «(¢) has a maximum and a minimum on J, ¢(¢) has at least
two vertices. Without loss of generality, we may assume that ¢ is para-
meterized by arc length and that «(¢) has a minimum at # = 0 and a maximum
at t,, 0 < 1y < w, where I = [0, w]. After a suitable rotation, we may also
assume that the line through ¢(0) and ¢(#,) is the x-axis in the (x, y) plane, and
that, if ¢(¢) = (x(¢), (2)), there exists at least one point 7, 0 < 7 < t,, with
Y& > 0.(Ify(2) = 0,0 < t < to,then«(t) = 0,0 < ¢ < ¢, implyingx = 0
on I, an impossibility.)

Step 2. Claim: ¢(0) and c(t,) are the only points of ¢ on the x-axis. For if
¢(t,) is another point of ¢ on the x-axis, the convexity of ¢ forces the tangent
line to c(¢) at the middle point of ¢(0), c(¢,), c(¢,) to pass through the other
two points. As in the proof of (2.32), this implies that the line segment
c(0)c(t,) lies entirely in the image of ¢, making «(0) = «(#,) = 0. This is
impossible since it would imply «(#) = O on 1.

Step 3. Suppose ¢(t,) and ¢(0) are the only vertices of ¢. Then

k() =0 fortel0,1]
k() < 0 for te[ty, w].

This implies that «(¢)y(¢) = 0 for ¢ € [0, w]. Therefore
0< J “(0)y(e) dt = — f (1) 5(0) dt,
1] 0

using integration by parts.
Since ey(t) = (x(2), (1)), é1(t) = «(t)ex(t) and ey(t) = (—y(t), X(1)), it
follows that %(t) = —«(t)y(¢). Therefore

0= J: k(1) y(r) dt = —f k(1) 9(t) dt = fo " () dt = 0.

This can only be true if y(¢) = 0, so we have arrived at a contradiction.
Step 4 (conclusion). We have actually shown that, under the hypotheses,
there must be another point ¢ where 4(¢) changes sign, i.e., where « has a
relative extremum. Relative extrema come in pairs; so there must be at least
four vertices. O

2.4 Exercises and Some Further Results

2.4.1 A convex curve c: I — R? with «(¢t) # 0 for all te I = [0, w] is said to be
strictly convex.
Prove: If c is a closed, strictly convex curve, then for every v € S* there
exists a unique # € I such that e;(¢t) = ».

2 See Blaschke [A2], pp. 31-32, or Chern [A6], pp. 23-25.
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2 Plane Curves: Global Theory
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2.4.6

By (2.4.1), for every point c(¢) on a closed, strictly convex curve ¢: I — R?,
there is a unique point c(¢’) such that e,(¢) = —ey(t’). ¢ is said to have
constant width if d(c(t), c(t’)) = d, a constant.

Prove: The circumference of a closed, strictly convex curve of constant
width = d is equal to nd.

If a closed, strictly convex curve ¢ has exactly four vertices, then any circle
has at most four points of intersection with ¢.®

If a closed, strictly convex curve intersects a circle in 2z points, then it has
at least 2n vertices.®

The four vertex theorem can be derived from the following result concern-
ing closed curves ¢ in R® with no self-intersections. Suppose ¢ is strictly
convex, in the sense that through each point of ¢ there passes a plane
which has no other points in common with ¢. Then ¢ has at least four
points with stationary osculating plane; i.e., four points c(f) where
7(¢) = 0. For a proof of this result, see Barner.*

A closer look at our proof of the four vertex theorem will show that we
may actually claim a stronger result: a simple closed convex curve must
have either ¥ = constant # 0 or a curvature function « with two relative
maxima and two relative minima. In the latter case, we may also require
that the values of « at the relative maxima be strictly greater than the
values of « at the relative minima.

From this theorem we see that not every periodic «: [0, w] >R = 0
occurs as the curvature function of a closed convex curve c: I — R2, It
turns out that the necessary restrictions on « given above are also sufficient.

Theorem (a converse to the four vertex theorem) (Gluck).® Let «: [0, w] —
R > 0 be a continuous, strictly positive, periodic function (x(0) = x(w))
which is either constant or has two maxima and two minima, the values of
x at the maxima being strictly greater than the values of x at the minima.
Then there exists a C2 curve c: [0, w] — R? which is simple and closed and
whose curvature function is equal to «.

The four vertex theorem (2.3.4) has the following generalization: Let ¢
be a simple, closed, null-homotopic curve on M, an oriented surface with
a Riemannian metric of constant Gauss curvature. Then the geodesic
curvature of ¢ has at least four stationary points.

If M has variable, nonpositive Gauss curvature, a version of the four-
vertex theorem is still true with the same hypotheses as above, provided
one generalizes the notion of a vertex to mean a point of ¢ where ¢ may be
well approximated by a “circle of hyperbolic geometry.” The meaning of
this approximation can be precisely defined. In case M has constant Gauss
curvature, the derivative of the geodesic curvature vanishes at these
generalized vertices (Thorbergsson).®

3 See Blaschke, Kreis, and Kugel [A4], p. 161.
¢ Barner, M. Uber die Mindestanzahl stitiondrer Schmiegebenen bei geschlossenen
strengkonvexen Raumkurven. Abh. Math. Sem. Univ.-Hamburg, 20, 196-215 (1956).

5 Gluck, H. The converse to the four vertex theorem. L’Enseignement Mathématique,
II® Serie, Tome XVII, 34 (1971), pp. 295-309.

8 Thorbergsson, G. Vierscheitelsatz auf Flichen. Math. Z., 149, 47-56 (1976).
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2.4.7 By the Jordan curve theorem, a simple closed plane curve, ¢, divides the
plane into two disjoint regions, one of which is bounded. If L = length of
¢ and A = area of the bounded region, then L? — 474 > 0. Equality
holds if and only if ¢ is a circle. This is the famous isoperimetric inequality
(proved in Chern [A5], p. 23).”

A stronger form of this inequality exists for closed convex curves.® If ris
the radius of the largest disc lying inside the bounded region, or the radius
of the smallest disc containing the bounded region, then L? — 474 >
(A — @r?)?/r. For further developments, see Osserman.®

2.4.8 Consider the following problem. Given p, g € R? and X € T,R?, Y e T,R?,
unit vectors, find the curve of shortest length from p to ¢ with initial
direction X and final direction Y. A solution does not always exist; let
p # qand X | Y. However, if the class of curves is restricted to those with
‘‘average curvature’ equal to or less than 1/r, r > 0, and C* (but possibly
not C2) curves are allowed, then a solution always exists. In fact, the
solution curves consist of circular arcs and line segments. Moreover, there
are, at most, three different arcs of this type on any solution curve. This
result is due to L. E. Dubins.®

2.4.9 Corollary (2.2.2) of the Umlaufsatz can be generalized to closed curves
c:I— R", n = 3. Recall that, for n > 2, x > 0 for the curves we con-
sidered in Section (1.5). The total curvature of ¢ is defined as

KO = || Ieto] a,

where ¢ is assumed to be parameterized by arc length.

Theorem (Fenchel!!). K(c) = 2n, with equality, if and only if ¢ is a con-
vex plane curve.

This theorem was generalized by Fary and Milnor.*2 They proved that
if ¢: I— R?3 is closed and knotted, then K(c) > 4. A curve c is knotted
if no homeomorphism of R® will move ¢ onto the unit circle in the (x, y)
plane. Equivalently, ¢ is knotted if it does not bound an embedded disc
in R3,

7 An early proof of the isoperimetric inequality, although not one which completely
satisfies today’s mathematical standards, was given by J. Steiner: Steiner, J. Einfache
Beweise der isoperimetrischen Hauptsitze. J. Reine Angew. Math. 18, 289-296 (1838).

8 Bonneson, T. Les problémes des isopérimétres et des isépiphanes. Gauthier-Villars,
Paris, 1929.

® Osserman, R. Isoperimetric and related inequalities. Proc. AMS Symp. in Pure and
Applied Marh. XXVII, Part 1, 207-215.

1° Dubins, L. E. On curves of minimal length with constraint on average curvature and
prescribed initial and terminal positions and tangents. Amer.J. Math.,79,497-516 (1957).

11 Fenchel, W. Uber Kriimmung und Wendung geschlossener Raumkurven. Math. Ann.
101, 238-252 (1929). Cf. also Fenchel, W. On the differential geometry of closed space
curves. Bull. Amer. Math. Soc., 57, 44-54 (1951), or Chern [A5].

12 Fary, I. Sur las courbure totale d’une courbe gauche faisant un noeud. Bull. Soc. Math.
France, 77, 128-138 (1949). Milnor, J. On the differential geometry of closed space
curves. Ann. of Math., 52, 248-257 (1950).
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2.4.10 A proof of Fenchel’s theorem. i) Prove: Let c: I — R" be a closed curve
lying on S"~1(r) = {xe R"| |x] = r}, i.e., |c(?)| = r, t € [0, w]. Sup-
pose ¢ does not lie in any open hemisphere of S*~*(r). Then the length
of ¢ is at least 2mr. (A simple proof of this is given by Horn !3.) Using
this result,

ii) Prove: Fenchel’s theorem (2.4.9).

12 Horn, R. A. On Fenchel’s theorem. Amer. Math. Monthly, 18, 380-381 (1971).
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Surfaces: local theory

3.1 Definitions

3.1.1 Definitions. i) U will always denote an open set in R2. Points of U will
be denoted by ue R%, or by (1}, u®)e R x Ror (u,v)eR x R.
ii) A differentiable mapping f: U— R® such that df,: T,R?* — T,,R®
is injective for all u € U is a (parameterized) surface patch, or simply
a surface. A mapping f satisfying this condition is called regular.
The u € U are called parameters of f.
iii) The two-dimensional linear subspace df,(R32) < T, R® is called the
tangent space of f at u, and will be denoted by T,f. Elements of T, f
are called tangent vectors (of f at u).

3.1.2 Examples. i) f(u, v) = x, + ux + vy, where x,y are linearly inde-
pendent vectors in R®. The map f: U— R® parameterizes a piece of a
plane.

i) U= D?={(u,v) e R?|u® + v < 1}, f(u,v) = (u, v, V1 — u? — v%).
The map f parameterizes a hemisphere.

Remark. The natural basis e; = (1, 0), e; = (0, 1) of T,R? >~ R2is mapped by
df, into a basis of T,f. We shall write df,e, = (8ffout)(u?, u?), df.e, =
(9ffou)u?, u?) or simply df.(e)) = f.1, df.(es) = f.2, where u = (u', u?).

These basis vectors of T, f < T;,,R® = R® are equal to the first partial
derivatives of f at (u3, u): since

|f@) = fluo) — dfu(u — wo)| = olu — uo),
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this implies

fim |L9=S0) 4 1 o) =0 withuo = i, 4d), 4 = (2, ud).
ulsu} u — uy

Therefore df,,(1,0) = df,.e; is equal, in coordinates, to (3ffou)ud, u3).
Similarly, df,,,(0, 1) = (2f/eu®)(u}, u).

3.1.3 Definition. Let f: U — R® be a surface. A change of variables of f is a
difftomorphism ¢: ' = R? — U < R?, where V is an open set in R?, such
that d$ always has rank = 2. If det(d¢) > 0, ¢ is orientation preserving.
The surface f:= fo ¢: ¥ — R® is said to be related to f by the change of
variables ¢.

Remark. Relationship by change of variables defines an equivalence relation
on the class of all surfaces. An equivalence class of mappings is called an
unparameterized surface.

3.1.4 Definition. A vector field along f={f: U— R® is a differentiable
mapping X: U— R3,
We think of a vector field X along f as taking values in the tangent space
of R® restricted to the surface f; i.e., X(u) € T,,R®. To make this explicit,
consider the map

X:U—>TR® given by ur> (f(v), X(w).
X is clearly a differentiable mapping and, for a given f, determines the

mapping X. Conversely, given a vector field X along a map f, we usually
interpret it as defining the corresponding map X.

3.1.5 Definition. A vector field X along f: U — R® is
tangential if (f(u), X(w)) e T, fforallue U,
normal if (f(w), X(w)) € T,,R? is orthogonal to T, ffor all u e U.
For example, f,1(u) and f,2() are tangential vector fields along f. They
are sometimes called the coordinate vector fields. The vector field of

Ju(u) x fa(u) (cross-product in R®) is a normal vector field along f. All
three are obviously differentiable.

3.1.6 Proposition. Every tangential vector field X along a surface f: U — R®
may be represented in the following form:

* X(u) = aW)f@) + a*u)fa(w).

The real-valued functions a*(u) and a*(u) are differentiable and uniquely
determined. Conversely, a pair of differentiable functions a': U—> R,
i = 1,2, determines a unique tangential vector field of the form (*).

ProoF. The last statement is clear. Moreover, given X (»), the functions a'(u)
and a®(u) are uniquely determined. What remains to be shown is that the
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a'(u) are differentiable. To prove differentiability, take the inner product of

(*) with f,2(u) and f,a(u):
> d@fufr = X@)-fe, k=12

1
This gives a system of linear equations for a'(u), a*(u). The coefficients are
differentiable functions, and det(f,:-f,7) # 0. By using Cramer’s rule, one
can see that the a'(u), i = 1, 2, are differentiable. O

3.1.7 Definition. Let n := (f,r X f,2)/|fir x f.2|. The vector field » is called
the (Gauss) unit normal field along f. The mapping n: U— S2? < R3 is
also referred to as the Gauss map. The moving 3-frame (f,1, f,2, n) is
called the Gauss frame of the surface f: U — RS2,

—_—
~—

Coordinate
curves

Figure 3.1 The Gauss Frame at a point of f (Adapted from Manfredo P. do Carmo,
Differential Geometry of Curves and Surfaces, Prentice-Hall, Inc., 1976, p. 39.)

>

N.B. This is in general not an orthonormal frame.

3.2 The First Fundamental Form

3.2.1 A quick review of quadratic forms

1. Let T be a real vector-space.
A symmetric bilinear form or a quadratic form is amap B: T x T— R
satisfying

BX,Y) = (Y, X) (symmetry)
BlaX + bY,Z) = af(X,Z) + bB(Y,Z) (bilinearity).
Here a,be R and X, Y,Z e T. B is positive definite if
X # 0= 80X, X)>0.

Example: The standard inner product in Euclidean space R™.
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3 Surfaces: Local Theory

2. The matrix representation of B with respect to a basise;,, ] <i < n, of T
is the matrix

(g)) := (Bles, €).

If X = 3 e, Y= 3,7, then B(X, Y) = 2, £7'gy,.

Suppose f;, 1 < k < n, is another basis of 7. Let (a¥) be the matrix
defined by e, = 5, afi, 1 < i < n. If B(fio ) := by, then gy, = > afalhy,.
If G = (g,), A = (a)), and H = (h{) these equations may be written in
matrix form:

G=AH',

the dot denoting matrix multiplication.
3. Let L: S — T be a linear mapping between vector spaces S and 7. Suppose
B is a quadratic form on 7. Then, for X, Ye S,

X, Y) := B(LX, LY)

defines a quadratic form on S. The form « is said to be induced by B via L.
If L is injective and 8 is positive definite, then « is positive definite. Suppose
X #0.Then LX # 0 and «(X, X) = B(LX,LX) > 0.

3.2.2 Definitions. i) Let /> U — R® be a surface. Let u € U. The inner product
on R® ~ T,,R? induces a quadratic form on T,f < T,,,R® ~ R? by
restriction. This form is called the first fundamental form and is denoted
sometimes by g or g, and sometimes by 7 or I,.

ii) The inner product on T,,,R® ~ R® composed with the linear map
df,: R? ~ T,R%— T,,,R® ~ R®induces a quadratic form on T,R? which
is also called the first fundamental form. It is also denoted by g or I,
and it will sometimes be written “df-df.”

Remark. The linear bijection df,: T,R? ~ R?2— R? ~ T,f is clearly an
isometry with respect to the first fundamental form, i.e.,

Lf.X, df.Y) = I(X,Y) for X, YeT,Re

Therefore, if we identify T,R? with T,f by means of df,, we may identify
these two definitions of the first fundamental form. Once more: For X and Y
in T,R% I(X,Y) :=df, X-df,Y. For Xand Yin T, f, I(X, Y) := X Y.

3.2.3 Definition. The matrix representation of the first fundamental form,
with respect to the basis f,1, f,2, will be denoted by

(gu) = (g(fut, i¥))-

Sometimes we will use the notation E := g(f,1, f,2), F := g(f1, fi2) =
g(fu3, fu1), G := g(f.3,/.3) (Gauss’ notation). Here gu(u) = f.:(u) fux(u).
By the definition of 7 on T,R? in (3.2.2), (g,x(»)) is also equal to the matrix
representation (I(e;, e,)) of I with respect to the canonical basis e;, e, of
T,R2,
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3.2 The First Fundamental Form

Y
f(u)
X ( df, Y
u df, X
f
—
R?

X, Y) =df,X - df, Y

Tf = df, (T, R?)

-
L
-

X, Y)=X-Y

R? R?

Figure 3.2

3.2.4 Proposition. i) The first fundamental form I of a surface f: U — R3 is
positive definite.

ii) I is differentiable, i.e., the coefficients of the matrix g,.: U—R are
differentiable. This is equivalent to the following condition: For any
X:U—R3 Y:U—>R® tangential vector fields along f, the map
u— g (X(u), Y(w)) is differentiable.

Proor. i) follows from (3.2.1, 3).
i) follows from the definition of g,(x) = f,(u)-fu<(x) and from the last

statement of Proposition (3.1.6). O

3.2.5 Proposition (Invariance of the first fundamental form). Le? f: U~ R®
be a surface.

i) Let B: R® — R® be an isometry. Then f := Bof is also a surface and
1(dBX,dBY) = I(X,Y) forall X,YeT.f.
ii) Let ¢: V — U be a change of variables and let f = fo ¢. Then
I(X,Y) = Li(X, Y) Jor all X, Ye T,f = Towf
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3 Surfaces: Local Theory

and
(X, ¥) = I,(d$ X, dpT) for all X,Y e T,R%.

ProOF. i) Suppose Bx = Rx + x,, where R is an orthogonal map. Then
dB = R. Therefore, if X,YeT.f, I(RX,RY)=RX-RY = XY =
LX)

i) Let X, YeT,R% Then I(X,?)=df, X df,¥ = df, o dpX-df, 0 dp¥ =
I(dp X, ds ¥), where u = $(v). O

3.2.6 Corollary. Suppose the change of variables $ is given, in terms of coordi-
nates, by u* = u'(v*, v?), i = 1,2. Then the fundamental matrix (g;) of
F=f<éis related to the fundamental matrix (giy) of f by

s~ ouk ol
&iv) = & o gia($(v)).

PROOF. dgé; = 3, (9u*/ov')e,, where (&) (respectively (e,)) is the canonical
basis of T,R? (respectively Tyq,R2). The corollary follows by applying the
formula (3.2.5, (ii)) to X = &, ¥ = &,. Note: Since we know that d,: T,R? —
TywR? has the matrix representation (0u*/v') (see Chapter 0), we may prove
the corollary by using (3.2.1, 2). Specifically, if 4 = (2u*/év"), then (&) =
G = A-G-'A, where G = (8- O

3.3 The Second Fundamental Form
3.3.1 Definition. Let f/: U — R® be a surface. The map
n:U— S% < RS, ur—> n(u)
is called the Gauss map. In words, n maps u into the unit normal vector

n(u) to f at f(u). Each n(u) lies in T,R3. By using the canonical identifica-
tion of Ty, R® with R3, we may consider # as a mapping from U to R®2.

Remark. Since n(u) is a unit vector, n(u) € S2 < R?, where
S?={xeR?| x| = 1}.

3.3.2 Proposition. The image of dn,: T,R? — T,,R® lies in T, f < T,,R5.
Proor. dn,(T,R?) = span of n,,nz2. Since n(u)-n(u) = 1, differentiation
yields n,4(u)-n(u) = 0, i = 1, 2. This means n, € T,f. Here we have canonic-
ally identified T,,R® with T, R3. O
3.3.3 Proposition. The mapping
X, Y)eT,R? x T,R?*~ —dn,X-df,YeR
is a symmetric bilinear form on T, R2.

Proor. Bilinearity is obvious. To prove symmetry, observe that, since
nfs =0,
—nu(.f;‘y = n.f;‘(uy

= n'fu’u' = _nu"fu" O
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3.3 The Second Fundamental Form

Figure 3.3 The Gauss map

3.3.4 Definition. i) The quadratic form
—dn,-df,: T,R? x T,R? >R

is called the second fundamental form of f at u, and is denoted by II
(or I1).

ii) The linear mapping L, := —dn,odf;*: T,f—T,f is called the
Weingarten map.

Remarks. 1. II,: T, f x T,f— R can be written as L, XY, i.e.,
II(X,Y) = LX-Y forall X,YeT.f.

2. The matrix representation of II, with respect to the canonical basis {e;}
of T,R? and the associated basis {f} of T,fis

(hik) = (_nu‘ 'fu") = (n 'fu‘u")-
Sometimes we will use Gauss’ notation:
L M\, (hy hy
M NJ 7 \hy hyt
See section 3.7 for examples.
3.3.5 Definition. The third fundamental form of f at u is the symmetric bilinear
form given by
X, )eT,R? x T,R?>dn,X-dn,YeR.
The third fundamental form is denoted by II1,, III or dn-dn. If we want
to consider III as a form on T,f, it is given by L, X-L,Y.

Proposition (3.2.5) for I has a counterpart for II:

3.3.6 Proposition. II is invariant (in the sense of (3.2.5)) under congruences
of R® and orientation-preserving changes of variables.
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3 Surfaces: Local Theory

PRrooF. i) Let Bx = Rx + x, be a congruence (det R = 1). Thenf = Bofisa
surface and fi4 = dBf,s = Rf,s, i = dBn. Therefore, if X, Ye T, f,

11(dBX,dBY) = —dii o df s (dBX)-dBY
=—dB(dnodfy (X)) -dBY = —dnodf;*X-Y = II(X,Y).
ii) Let ¢: ¥ — U be an orientation-preserving change of variables and f =
fo¢. Then fix = 3, fu1 &u'/v¥, and this implies that
4
Fit x fia = (fir x f,2) det(g—zfc).

Therefore /i = n o ¢, since det(du'/dv¥) > 0. Thus, for X, ¥ e T,f, we have
(X, Y) = —diio df "X(X)-Y = —dn o df "{(X)-Y = H,(X, Y)
and, for X, ¥ € T,R?, we have
(X, 7)) = —dnodd X -df dp¥ = II(dp X, d$¥) withu = ¢(v). [
3.3.7 Examples
1. The sphere
f(u, v) := (cos u-cos v, cos u-sin v, sin u), W, v)el-n2,7/2[ x R.
The image of fis S? minus the north and south poles: S2 — {0, 0, +1}
fu = (—sin u cos v, —sin u sin v, cos u)
Jf» = (—cos u sin v, cos u cos v, 0)

E=fi=gu=1 F=ffi=82=0, G=f}=gs=cos’u

n(u,v)=(f" xS _

o £ = —(cos u cos v, cos u sin v, sin u)
u v

= —f,v)
I = —dn-df = df-df = I.

2. The torus

g(u,v) := ((@ + b-cosu) cos v, (a + b-cos u) sin v, b-sin u),
O<b<a uv)eR x R.
gy = b(—sin u cos v, —sin u sin v, cos u)
g, = (a + b-cos u)(—sin v, cos v, 0)

gu=E=gl=0b, g,=F=g,8=0

g22= G = g2 = (a + b-cos u)?
n(u, v) = —(cos u cos v, cos u sin v, sin u).
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3.3 The Second Fundamental Form

Thus, for u € ]—=/2, =/2[, n(u, v) = —f(u, v) where fis as in (1) above.
II = —dn-dg = df-dg
hy=L=frg.=b
ha=M=f8 + /8 =0
hys = N = f,-g, = (@ + bcosu) cos u.

T ™
>0 for—§<u<§

det(hy) = becosu(a + beosu)is { =0 foru = i‘%

T 3r
<0 for§<u<—2—.

These three cases are the outside, the top and bottom circle, and the in-
side, respectively.

Figure 3.4 Torus

3. Surfaces of revolution
f(u, v) := (h(u) cos v, h(u) sin v, k(u))

where h'2 + k'2 # 0, h # 0. The surface parameterized by f is the surface
generated by revolving the curve (h(u), 0, k(u)) about the z-axis

=K+ k2 fofy=0, fi=H.
4, Surfaces generated by one-parameter groups of isometries

A one-parameter group of isometries of R® is a differentiable mapping
y: R x R® — R® with the following properties:

The map y;: R® — R3 given by x — (1, x), (f, x) e R x R®, is an isometry,
Y:0¥s = ve4s and y, = the identity.

It may be shown that, possibly after a change of basis, any one-parameter
group may be written as

W, x) = (x* cost + x?sint, —x*sin ¢ + x% cos 7, x® + bt).
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3 Surfaces: Local Theory

The orbit t € R+ y(t, x) € R® of a point (x2, x2, x3) = x which does not
lie on the x3-axis is a helix (see Example 2 in 1.1). A generated surface is
a surface produced by a curve ¢(v), veJ, and a one-parameter group of
isometries y:

S, v) = y(u, c(v)), (u,v)elxJ.

It is certainly possible that fis not a regular map, so one needs to assume
additional conditions to insure that f'is a surface. Some examples of generated
surfaces are the sphere, the torus, and, more generally, any surface of
revolution.

An example of a generated surface which is not a surface of revolution is
given by the helicoid. Let ¢(v) = (v, 0, 0), v € R, and let

y(t, x) = (x*cost + x?sint, —x'sint + x2cost,x* + bt), b+#0,teR.
Then the generated surface
S(u, v) = y(u, c(v)) = (v cos u, —v sin u, bu)
is in fact a surface in the sense of (3.1). Moreover:

fu=(—vsinu, —vcosu, b) B (b2 o 0)
fo = (cos u, —sin u, 0) 8 = 0 1
_ (bsinu, bcos u,v) blcos u, —sin u, 0)
W— n, = W
0 __=b
h (b2 + v?)iz B b .
iy = -b nv—m —rsinu,
@+ oy ° —vcosu, b

The helicoid may be thought of as the surface generated by a ray per-
pendicular to the z-axis which is rotating at a constant speed in the plane
parallel to the (x, y) plane and moving at a constant speed in the z-direction.

Figure 3.5 Helicoid
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3.4 Curves on Surfaces

3.4 Curves on Surfaces

3.4.1 Definition. Let f: U— R? be a surface. By a curve on f we mean a
curve ¢: I— R® which can be written in the form fou, where u: I —
U< R%is a curve in U.

The study of curves on surfaces will give us a geometric interpretation
of the first and second fundamental forms.

3.4.2 Proposition, Let ¢ = fou: I— R® be a curve on f. Then
ity = > difuro ut)

[

is a tangent vector to f at u(t). The length of é(t) is given by
612 = 3 gulu(e)i(e)i(r).
17
PRrROOF. é(t) = defl) = dfuy o du(l) = dfuo Gy tite) = 5, iy o u(t). The
desired formula follows from the definition |é(¢)|? = (é(¢), ¢(1)). O

Remarks. For a curve ¢(t) = fou(t) on f, the arc-length parameter s(¢) is
uniquely determined by the following formula:

ds)2 g dut d’ .
=} =|é@)|? = — — = I(u, u).
(&) - o = 3 el % = 10,0
The first fundamental form may be expressed, in terms of this notation, as
ds? =Y gy du du' = I(du, du).
1,5

The expression ds is called the line element of the surface f.

Suppose ¢ = fou: I— R® is a unit-speed curve on f: U — R® for which
é(t), é(t) are linearly independent. The curve c¢(z) possesses a distinguished
Frenet-frame (ey(?), e5(2), es(¢)) and the curvature of ¢ is defined by the
equation é,(t) = x(t)ex(t) (see (1.5.1)). The relationship between the curvature
of cand the second fundamental form of fis given by the following proposition.

3.4.3 Proposition. Let ¢ = fou be a curve which satisfies the hypotheses in
the above remark. Then

TI(E(2), ¢(2)) = w(t)n(t)-eq(t)
with n(t) = no u(t).

Corollary (Meusnier’s theorem). Let 6(¢) € [0, 7/2] be the angle between the
normal to f and the osculating plane of ¢ (i.e., 8 = X(n, eg)). Then

[II(E), é(t))| = «(t) cos 6(t).
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3 Surfaces: Local Theory

Consequently, if 0(t) < =/2,

_ (@), é@))|
w(t) = cos 0(r)

PROOF. II(E(2), é(t)) = —dn(u(2))-df(u(t)) = —A(t)- é(z). Since n(t)-¢(t) = 0,

this implies

1I(¢(2), €(1)) = n(1)-E(t) = w()n(t)-e5(?). O

Remark. For an arbitrary curve, the above results are not true.

3.4.4 Definitions. i) Let X € T, f, | X| = 1 be a unit tangent vector on a sur-
face f. The normal curvature in the direction + X is the number

K(X) = k(= X) := II(X, X).

ii) Let ¢ = fou: I— R® be a unit-speed curve on f for which ¢, ¢ are
also linearly independent. Let (e,(7)) be the distinguished Frenet-frame
of ¢ at t. If ex(ty) = +n(c(t)), ¢ is said to lie in a normal section at
t =1,

Remark. If II(X, X) # 0 for some X eT,f, then |«(X)| is equal to the
curvature «(t,) of a curve c at ¢(t,) = f o u(t,) which lies in a normal section
at ¢t = t,. Of course, we assume that ¢(¢,) and &(¢,) are linearfy independent.
By hypothesis, «(t,) > 0. Therefore I/(X, X) is positive or negative, depend-
ing on whether e,(z,) is equal to plus or minus n(u(t;)) = the unit normal
vector to the surface at u(t,).

3.4.5 Examples. We will continue those examples introduced in (3.3.7).

1. The sphere. Clearly II = I and «(X) = 1 for all X. The requirement
that ¢(7) be a normal section at each point forces ¢(r) to be a great circle.

2. The torus. Consider a typical meridian circle on the torus, e.g., c(t) =
g(t,0) =(a+ bcost,0,bsint). This is a circle with radius b, curvature
k(t) = 1/b, e,(t) = (—sin ¢, 0, cos ), ex(t) = —(cos ¢, 0, sin £).

Using the expression for n(u(t)) computed in (3.3.7), we see that n(u(t)) =
ey(t). Therefore x(e,(2)) = 1/b.

For the inner and outer equators of the torus,

c(t) = ((@a £ b)cost,(a £ b)sint,0),
a simple computation will show
ey(t) = (—sint, cos t, 0)
ey(t) = (—cos t, —sin t, 0)
«(t) = 1/(a + b)

n(t) = {F}(cos t,sin ¢, 0) = { elt) foru=0,

—ey(t) foru=m.
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Therefore

on inner equator.
a+b q ’

«(ey(1)) =

on outer equator.
a—>b q

3.4.6 Definition. Let ¢: 7— R® be a space curve with the property that é(¢)
and ¢&(¢) are linearly independent. The osculating circle of c at t is the circle
withradius 1/«(#) lying in the plane of e,(¢), e,(¢) with center ¢(z) + e5(2)/x(2).

Remark. The osculating circle is characterized by the following property. It is
the limit as ¢’, t” — ¢ of the circle passing through the points ¢(¢'), c(¢), and
¢(t"). (Proof: exercise.)

/a2

Figure 3.6 Osculating circle

The relationship between the local behavior of ¢(¢) and the osculating circle
is given by the next proposition, a typical result of classical surface theory.

3.4.7 Proposition. Suppose f is a surface and X is a tangent vector at u, with
|X] = 1 and «(X) # 0. If ¢ = fouis a curve on f with é(to) = +|é(to)| X,
then the osculating circle of ¢ at t, is the intersection of the osculating plane
of ¢ at t, with the sphere of radius 1/|«(X)| centered at f(uy) + n(u)/«(X).

Proor. By Meusnier’s theorem, (3.4.3), 1/x(to) = n(ty)- ex(to)/x(X), provided
e(to)-n(to) # 0. In other words, c(t,) + ex(to)/x(t,), which is the center of the
osculating circle, is equal to the projection of the vector n(z,)/x(X) in the e,(t,)
direction. O

3.5 Principal Curvature, Gauss Curvature, and
Mean Curvature

3.5.1 Definition, Let f: U — R® be a surface. Let
Sif i={XeT.f| (X, X) =1}
denote the unit circle in T,f. A vector X, € Sif is said to be a principal
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3 Surfaces: Local Theory

direction if X, is a critical point of the function
XeSifi>u(X) = I(X,X)eR.

If X, is a principal direction, the value x(X,) is called a principal curvature
of fat u.

Note that if X is a principal direction, so is —X. There are always
at least two linearly independent principal directions, namely the values
of X where «(X) takes on a maximum and a minimum on the compact
set Sif.

The principal curvatures are characterized by the following proposition.
3.5.2 Proposition (Rodriguez). Let X € SLf. Then X is a principal direction
if and only if X is an eigenvector of the Weingarten map
L,=—dn,odf;4: T, f—T.f.
The associated eigenvalues are the principal curvatures.

ProoF. Suppose « is a principal curvature with associated principal direction
Xo, 1(X,, X,) = 1. Using the Lagrange multiplier rule,! we may assert that
d(II — «I) = 0 at X,, I(X,, Xo) = 1. Since I and 7 are both quadratic forms
and since the differential of any quadratic form 8 at a point X is given by
dBY = 2B(X, Y), the above requirement is equivalent to

I(Xo, Y) — el(Xo, Y) =0 I(X,, Xo) =1, forallY,
which in turn is equivalent to
L. X, =xX,, I(X, Xp) =1, x = II(X,, Xo) = «(X,).

Therefore X, is an eigenvector of L, with eigenvalue k. Conversely, let
X, be an eigenvector of L, with eigenvalue «. Then if X + €Y satisfies
I(Xo + Y, Xy + ) = 1,

(X, + ¥, Xo + €¥) — I(Xo, Xo) = 2eII(Xo, ¥) + €. ..)

and 2el(X,, Y) + €I(Y,Y) = 0.
Therefore 211(X,, Y) = 2«I(X,, Y) = —«el(Y, Y) and

II(X, + €Y, Xy + €¥Y) — II(Xy, Xp) = 0 + €%(...).
The last equation clearly implies that X, is a critical point of «(X) on Sif,
i.e., X, is a principal direction. O

3.5.3 Corollary. Either 1I is proportional to I (II = «I), in which case every
direction is a principal direction, or there exist exactly two (up to sign)
principal directions orthogonal to each other.

1 See Edwards, C. H. Advanced Calculus of Several Variables. Academic Press, New
York, 1973, pp. 90-99.
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3.5 Principal Curvature, Gauss Curvature, Mean Curvature

PROOF. Let «,, «, be the largest and smallest principal curvatures, respectively.
If X; and X, are associated principal directions, then wJJ(X;, X;) =
II(Xy, X,) = xI(Xy, X;). Therefore either «; = «y, ie., « = const, and II
is proportional to I or x; > «, and I(X;, X3) = 0. Suppose «, is any principal
curvature with principal direction X,. Then either 1(X,, X;) or I(X,, X3) = 0,
which implies that either X, = + X, or X, = £ X,. O

We will now use the principal curvatures to define two important functions.

3.5.4 Definition. Let f: U— R® be a surface. The Gauss curvature and the
mean curvature of f are the following two functions on U:

K@) 1= ry@) k() H@) := 3ca(®) + xaw)).

3.5.5 Proposition. i) The curvature functions K and H are determined by the
equation det(<id + dnodf 1) = «* — 2Hk + K, where the left-hand
side is the characteristic polynomial y(L,) of the Weingarten map
L, = —dnodf;! in the variable x. Consequently, 2H (u) = TrL(u) and
K(u) = det L(u).

ii) If (hy) is the matrix representation of II,(g,.) is the matrix representation
of I, and (g*) is the inverse of (gu), then L, has the matrix representation

*) (@) = (; hig”).

Consequently,

det II, _ det(hu(w))
detl,  det(g,())

2H(wW) = g‘: hu() 87(u).

K@) =

Note: From the representations for K and H, it follows that they are dif-
ferentiable functions.

PROOF. i) The principal curvatures «;,, «, are solutions to «* — 2Hkx + K = 0,
the characteristic equation of —dn o df ~1. Therefore «* — 2Hk + K =
(x — k1)(x — Kg). :

ii) With respect to the standard basis of T, f,

—dnodf ~\(fy) = —dn(e) = —ny = D difs.
k
Taking the inner product with fys:
hy = Z algis,
k

which implies (*). Now det(x8f — >, h,g’*) = «* — 2Hx + K (by (i)),
from which the expressions for H and X follow directly.
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It is reasonable to ask why the third fundamental form has not entered
directly into our study of curvature on surfaces. It turns out that the third
fundamental form is totally determined by the first and second funda-
mental forms. O

3.5.6 Proposition. IIT — 2HII + KI = 0.

PROOF. Let IV := (dn + «, df)-(dn + «; df), where «,, x, are the principal
curvatures. Clearly,

v = III — 2HII + KI.

But IV (X1, Y) = IV(Y, X;) = 0, where X, is a principal direction for «;,
i = 1,2, and Y is arbitrary. Therefore IV = 0. |

Remark. This proposition is a special case of Cayley’s theorem: A linear
mapping L (in our case, the Weingarten map) satisfies x(L) = 0, where
x(x) = det(L — «(id)).

The various curvature functions we have been considering are invariant
under change of variables and isometries as the following theorem shows.

3.5.7 Theorem. Let f: U — R® be a surface and X € T, f a principal direction
with associated principal curvature « = «(X). Let K(u) and H(u) be the
Gauss and mean curvatures, respectively.

i) If B: R® — R® is an isometry, then f:= Bof is also a surface and
X :=dBXeT,f is a principal direction of f, #X)= +w(X),
K@) = K@), and A(u) = + H(u). The signs are positive if B is a
congruence, negative if B is a symmetry.

ii) If : V— U is a change of variables, then f:= fo¢ is a surface and
X := X is a principal direction of f and &) = +x o $(v), K@) =
Ko ¢(v), and A(@v) = + H o $(v). The sign is positive if ¢ is orientation-
preserving, negative if ¢ is orientation-reversing.

Proor. i) From the proof of (3.3.6) we see that Ai(x) = +dBn(), the sign
depending on whether B is orientation-preserving or reversing. Therefore,

—dﬁOdf—1X= F dBodnodf‘1X= +xdBX = iKX.

This means that X is a principal direction with principal curvature
K=+«

ii) From the proof of (3.3.6) we see that 7(v) = +no $(v), the sign being
positive if detdp > 0, negative otherwise. Therefore —diiodf 18 =
Fdnodf X = +«X. This means that £ = X is a principal direction
with associated principle curvature & = +«.

Remark. The Gauss curvature K is the only one of the curvature functions
which does not change sign under orientation-reversing isometries or change
of variables.
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3.6 Normal Form for a Surface, Special Coordinates

3.5.8 Examples. We continue the examples developed in (3.3.7) and (3.4.5).

1. On the sphere, x; =k, =1, H=K = 1.

2. The torus. We compute af =—3,h,g", ai=>b"1, a3 =a} =0,
a3 = cos uf(a + b cos u). Therefore x;, = a% < k, = a} = b~1. Compare
this with (3.4.3). Also,

K = cos u/b(a + b cos u), H = (a + 2b cos u)/2b(a + b cos u).

The maximum «; = b~* is assumed by any principal direction, X, which
is tangential to a meridian circle: II(X, X) = «(X) = «,.

The minimum «, is not a constant function. It is positive on the outside
of the torus, i.e., when u € ]—=/2, »/2[. It is negative on the inside of the
torus, i.e., when u € ]n/2, 37/2[. Finally, x, = 0 on the top and bottom
latitude circles, i.e., u = + /2.

Consequently, K > 0 on the outside of the torus, K < 0 on the inside of
the torus, and K = 0 on the top and bottom latitude circles.

3.5.9 Definition. Let f: U — R® be a surface. A point u, € U is called an
umbilic if x,(ug) = ro(uo). If, in addition, «;(u) = ko(up) = 0, then u, is
said to be a planar point.

3.5.10 Definition. A surface f: U — R® is said to be planar (resp. spherical)
if n(u) = constant (respectively, if there exists an x, e R® such that
|f(@) — x| = p, a positive constant).

3.5.11 Proposition. A surface consists entirely of umbilics if and only if it is
planar or spherical.

Proor. 1. If f is planar or spherical, then dn = Oor df- (f — x,) = 0. The
latter condition implies that n = +(f — xp)/|f — xo| = £ (f — xo)/p-
Therefore dn = —« df, where « = 0 or « = constant = +1/p.

2. Let dn = —« df. Therefore n, = —«f,, n, = —«f,. Consequently, n,, =
—kofy — &fuy = —Kufy — wfiy. Since f, and f, are linearly independent,
Ky = Kk, = 0, s0 « = constant. If k = 0, dn = 0. Therefore n = constant
and fis planar. If « 5 0, then ((n/«) + f), = ((n/x) + ), = 0. Therefore
(n/<) + f = x,, a constant vector. Consequently, | f — x| = 1/|x| = p =
constant, so f is spherical. O

3.6 Normal Form for a Surface,
Special Coordinates

In our investigation of curves we were able to analyze local behavior by
expressing the curve up to second order in terms of a Frenet-frame at a fixed
point (see (1.5.3)). Here is the analog for surfaces.

3.6.1 Proposition. Let f: U — R® be a surface, uy € U, { X1, X5} a basis of T, f,
and ny = n(u,) the unit normal at uy, which makes {X,, X, n,} positively
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3 Surfaces: Local Theory

oriented. Then there is a change of variables ¢: Vo — Uy, < U near u, with
#(0) = u, with the following properties: if f = fo ¢,

F@) = f0) = o' Xy + 0*X, + r()n,, v = (W, v?).
If X, = fu(uy), then v = u* — ub + of|u — uo|) and rys(0) = Ay u,).
PRrOOF. Since {X;, X;, n} forms a basis in T,,R%, we may write
S@W) — fluo) = v'(W) X, + v*(W) X5 + q(u)n,

for some functions v'(u), (1) with v'(uo) = q(u,) = 0. The first order of
business is to find an inverse for v = (v(), v%(x)). Since

ov*
Julug) = z 7 (40) Xi,
k
((ov*/ou')(uo)) is an invertible matrix. The inverse function theorem insures

the existence of a local inverse ¢ to v, defined in a neighborhood ¥, of 0.
This is the change of variables we seek. For, if f = fo ¢,

J@) — J0) = > v'X, + r(v)n,, wherer =go .

It is clearly seen that ,,(0) = r,,#(0). If the X, happen to be f(1,), then
(0v*ou’)(ue) = 85 and hy,(0) = (9v'/2w’)(uo). Therefore (£ (0)) = (hy(uo)). [J

3.6.2 Definition. A surface f: U — R3 is

elliptic >0
parabolic atwu,e Uifdetll, isq=0
hyperbolic < 0.

Let us assume now that our surface f: U — R3 is presented in the standard
form of (3.6.1) with X; = f,. Since r(0) = rg(0) = 0,

r(u) = %g RO + of|ul?).
Consequently,
1) = £0) = 3 4@ + 5 5 hOutin) + o).
We have “proved” the following result.
3.6.3 Proposition. If f is

elliptic
parabolic  (with I, # 0)
hyperbolic

50



3.6 Normal Form for a Surface, Special Coordinates

at u,, then the surface represented by the second Taylor polynomial of f is an

elliptic paraboloid,
parabolic cylinder,
hyperbolic paraboloid.

This representation gives us a geometric picture of what the sign of the
Gauss curvature means, since its sign is the same as the sign of det I1.

(D

(@)

(b)
Figure 3.7 (a) Elliptic point; (b) hyperbolic point

We now turn out attention to finding coordinates on a surface fitted to
vector fields that are given in advance. The basic tool is the following theorem.

3.6.4 Theorem. Suppose X, and X, are tangential vector fields on f: U — R®
which are linearly independent at each u€ U. Then in a neighborhood U,
of each u, we can change variables, ¢: Vo — U,, so that fo ¢ = f has
coordinate vector fields f,, proportional to X,.

(This result is false for higher dimensional submanifolds of R" and, more
generally, for any differentiable manifold of dimension >2. See Spivak
[A17], vol. I, ch. 6.)

PrOOF. 1. Consider the vector fields X,(u) = df; X ,(u) defined for ue U.
Suppose we could find a change of variables 7: U— V, 7(u) = (v'(u), v*(1)),
for which

* (X)) =0 d*(X,) =0.

Then in terms of canonical basis vector fields (&,, &,) on V, dn(X.(w)) =
dvi(X,w)é, + 0 and dy (X)) = 0 + dv3(X,(u))é,. Consequently, if
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é =5"1: VU, then f = fo ¢ satisfies f,, = dfy(&) = dfypy o dbo(&) =
a(v)X;, where a(v) = (dvi(X(#(v))~1. Thus ¢ is the required change of
variables. Note that a,(v) is well defined, for if dvi(X(¢(v)) = 0, then
dv\, = 0 since {X,, X,} are linearly independent and dv(X)) = 0, i# j.
This contradicts the assumption that n = (¢, v?) is a change of variables.

In order to complete the proof, it is necessary to establish the existence
of a pair of functions v'(u), v*(u), defined on some neighborhood of u,,
satisfying (*) with dv* # 0, i = 1, 2. This last condition will ensure that
7 = (v%, v°) is a change of variables.

. Let {e,, e;} be the canonical basis vector fields on U and write X,(x) =

>2_, £€X(u)e,. By the standard existence theorem for ordinary differential
equations, we may assert the existence, locally, of integral curves ¢(s) of
X(u). That is, for |s| sufficiently small, we may find curves c,(s), cs(s) in
V with ¢(0) = u, and ¢(s) = X(c(s)). We wish to solve (*) which is
equivalent to

. ot ot
i) o 6300 + o5 £5) = 0,
. on? o
i) 5 £1(w) + Ew &) =0,

with the initial conditions v'(c,(s)) = s. A standard result in partial
differential equations (see F. John, Partial Differential Equations, Springer-
Verlag, New York (1971), pp. 15-36) allows us to do this in a neighborhood
of u,, provided that for i) ¢,(s) and X,(c,(s)) are linearly independent and
for ii) ¢,(s) and X;(c,(s)) are linearly independent.

But ¢,(s) = Xi(c(s)), so these conditions are satisfied by hypothesis. Also,
s = v'(c(s)), i # J, implies that

1= %(v‘(q(s)) = di*(c(s)) = d"(X(e(s)).

Therefore dv! # 0,i =1, 2.

Remarks. i) The function v*(u) (resp. v%(w)) is an integral of the differential

ii)
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equation ¢&(s) = Xiy(c(s)) (resp. ¢é(s) = Xa(c(s))). An integral of a dif-
ferential equation

™ x(s) = f(x(s),5), xeU,

is a differentiable function #: U — R which is nonconstant on any open
set and which is constant on integral curves of (*). That is, A(x(s)) = const
or, equivalently, (d/ds)h(x(s)) = 0.

If U is simply connected, it is possible to find a globally defined change of
variables, ¢: V' — U, satisfying the previous theorem. Here is a brief
indication of the proof. The theorem gives a way of constructing these
coordinates locally near #, by mapping (v?, v?) into (c,(v?), c.(v?)), where
¢, is the integral curve of X; beginning at ¢,(v*). This process may be
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continued to give a regular map from some domain V into U. The only
obstruction to getting a diffeomorphism is the possibility that the integral
curves of X; may intersect in two different points. Using simple connec-
tivity, one may show that this is impossible.

3.6.5 Definition. A regular curve ¢ = fou: I— R® on a surface fis called a
line of curvature if ¢(t)/|é(2)| is a principal direction for all z € I.

Remark. Let u, be a point where the principal curvatures are different (a non-
umbilic point). By the continuity of the principal curvature functions, we can
find a neighborhood of #, on which «,(4) < «y(u). Let X,(u), X,(u) denote
the associated principal directions. They may be chosen to be differentiable
vector fields for the following reason. Since «,(u), x,(u) are solutions to
det(dn, + « df,) = 0, they are differentiable. Since X(u) = df;1X(u) are
solutions to dn,X,(u) + x,(u) df,X,(u) = 0, they may be chosen to be dif-
ferentiable. Of course, they are linearly independent. An application of (3.6.4)
proves the following lemma.

3.6.6 Lemma. Let f: U— R® be a surface on which the principal curvatures
are not equal at a point u,. Then there exists a neighborhood U, of u, and a
change of variables ¢: Vo — U, such that the coordinate lines of f = fo
are lines of curvature.

Such coordinates are called principal curvature coordinates. In principal
curvature coordinates, the Weingarten map will have the matrix representation

(K1g11 0 )
0 Ka82g

Conversely, using (3.5.5) which shows that this matrix is always equal to
Ck hy.g*), Proposition 3.6.7 follows.

3.6.7 Proposition. If f: U — R® satisfies hy; = g1, = O, then f is a principal
curvature coordinate system.

We turn our attention now to another naturally occurring vector field on
a surface.

3.6.8 Definition. A vector X € S,'f < T,fis an asymptotic direction provided
II(X, X) = 0. The notion of asymptotic direction has invariant geometric
meaning.

3.6.9 Proposition. Asymptotic directions are invariant under isometries and
change of variables.

This proposition is immediate from the properties of II described in
(3.3.6). Notice that X is an asymptotic direction if and only if —X is an
asymptotic direction. The existence of an asymptotic direction at u is

53
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equivalent to the requirement that «; < 0, x; > 0. Therefore an asymptotic
direction exists at u if and only if K(u) < 0 (see 3.6.10 below).

3.6.10 Proposition. i) K < 0 if and only if there exists exactly two (up to sign)
asymptotic directions.

i) K(u) = 0 and I, # 0 if and only if there exists exactly one (up to sign)
asymptotic direction.

iii) K(u) = 0 and II, = O (planar point) if and only if all X € SLf are
asymptotic directions.

ProoF. i) K < 0<detl] < 0<JI(X, X) = 0 has precisely two linearly
independent solutions, + X, with I(X, X) = 1.

if) K = 0 and II # 0 means that one of the eigenvalues of I is zero, and
the other is equal to « # 0. If (X3, X;) is a basis of eigenvectors with
respect to 0, , then for any X = ' X, + 02X, II(X, X) = «({?)% There-
fore X is the only principal direction.

iii) Is clear. O

3.6.11 Definition. A regular curve ¢ = fou: I— R® is an asymptotic line
provided ¢é(z)/|é(r)| is an asymptotic direction at u(¢) for all te I. The
surface f: U— R® is presented in asymptotic coordinates near u, if the
coordinate lines are asymptotic lines in a neighborhood of u,,.

3.6.12 Lemma. Suppose K(u,) < 0 on f: U—> R®. Then there is an asymptotic
coordinate patch defined on some neighborhood of u,.

Proor. By continuity of the Gauss curvature, there exists a neighborhood of
4, on which K < 0. By (3.6.10, i), there exist two linearly independent
asymptotic vector fields X;, X, on some, possibly smaller, simply connected
neighborhood of u,. Now Theorem (3.6.4) completes the proof. O

3.6.13 Examples. 1. For the torus (3.4.5), K < 0 on the inside. Thus on the
inside there exist precisely two asymptotic directions at each point.
2. On the sphere, no asymptotic directions exist at any point.

Remark. The reason for calling these directions asymptotic becomes clear
from the following observation. A regular curve ¢(¢) on the surface has zero
normal curvature at c(t), i.e., 1I(¢, ¢) = 0= &(t)-nou(t) = 0« é(t) e T,f.
So asymptotic lines have no normal component of acceleration. In particular,
if ¢(t) is a straight line in R® which lies on the surface, é(f) = 0 and c is an
asymptotic curve.

3.7 Special Surfaces; Developable Surfaces

3.7.1 Definition. A triply orthogonal system of surfaces is a differentiable
map F: W — R®, defined on an open set W < R?, satisfying:

1) dF,5,w° Teu,0,mR® = Tra,0.,R® is bijective for all (u, v, w) e W.
iiy F,-F,=F,-F,=F,-F, =0.
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Remark. The reason for calling such a map by this extraordinary name is
that at each p = (uo, vy, W) € W, the three surfaces

(u, )= F(u, v, wo)
(v, W) F(uo, v, w)
(u, wyr—> F(u, vy w)

are mutually orthogonal. We will denote these surfaces by f¥o, f*, and f%,
respectively. They are regular by (i).

Notice that by condition (ii), not only are the surfaces orthogonal, but
g2 = 0 on each of them. Furthermore, F,(u, v, wy) is normal to f*“ at
(u, v, w,) (and the identical relation holds for the other two surfaces) and,
differentiating,

(Fu'Fu)w = (Fu‘Fw)v = (Fv'Fw)u =0.

Therefore F,,-F, = F,,-F, = F,,-F, = 0, which means that ,, = 0 on
each of the surfaces. By (3.6.7), we may conclude that

3.7.2 Proposition (Dupin). The coordinate curves on a surface in a triply
orthogonal system are lines of curvature.

3.7.3 An example. Second order confocal surfaces. Let 0 < ¢ < b < a and
consider the equation

X 32 22 :
¢(p)_0—p+b—p+ -1=0.

a—p
p<c¢
For{c <p<bd

b<p<a

an ellipsoid
the solution set of this equation is { a hyperboloid of one sheet
a hyperboloid of two sheets.

Let Q = {(x,y,2)eR®| x > 0,y > 0, z > 0} be the positive quadrant.

Let W=]—00,d x Jc, o[ x 1b,a] < R3.

Now we observe that for each (x, y, z) € Q there exists a unique triple
(u, v, w) € Wsuch that if p = u, (x, y, ) lies on an ellipsoid, if p = v, (x, y, 2)
lies on a hyperboloid of one sheet, and if p = w, (x, y, z) lies on a hyperboloid
of two sheets. To see this we simply consider the equations $(u) = $(v) =
¥(w) = 0 and solve for x, y, and z:

x%(u, v, w) = (¢ — u)(c — v)(c — w)/(c — b)(c — a)
Y, v, w) = (b — u)(b — )b — w)/(b — a)(b — )
2%(u, v, w) = (a — u)(a — v)(@ — w)/(a — b)a — o).
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Figure 3.8 Confocal surfaces, second order

These formulae express x, y, and z uniquely as functions of (&, v, w) in the
required domain W. Remember, x, y, and z are assumed to be strictly positive.
Now consider the map F: W — Q given by

w, v, W= (x(u, v, w), y(u, v, w), z(u, v, w)).

We claim that this is a triply orthogonal system. To see this we shall take
a geometric approach and show that the surfaces ¥(u), ¥(v), and $(w) are
regular and mutually orthogonal. Since

grad (v) = 2(x/(c — v), y/(b — v), z/(a — v)) # (0,0, 0)
grad g(w) = 2(x/(c — w), y/(b — w), z/(a — w)) # (0, 0, 0)
grad (u) = 2(x/(c — u), y/(b — u), z/(a — u)) # (0,0, 0),
we conclude that, for example,
grad ¥(v)- grad ¢(w)
= 4(x*/(c — v)(c — W) + Y?/(b — v)b — w) + z%/(a - v)a — w)) = 0
grad $(v)* = 4(u — v)(w — v)/(a@ — )b — v)(c — v)
grad Y(w)* = 4(u — w)v — w)/(@ — w)b — w)c — w).
Here we use the above equations for x2, y2, z2. Regularity and orthogonality
are established by these formulae.

3.7.4 Definition. A surface f: U— R3 is a ruled surface if every u, € U has a
neighborhood on which we may define a change of variables u = ¢(s, ¢)
so that

Js, 1) = fod(s, 1) = sX(t) + c(2).
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Here X (¢) is a vector field along a curve ¢(t) on f. The curves ¢ = constant
are lines in R® and are called generators of f. A curve s = constant is
called a directrix.

If, in addition, the normal vector field 7i(s, ) is a constant along
generators, i.e., A, = 0, then fis called developable.

3.7.5 Proposition. i) On a ruled surface, generators are asymptotic curves.
Consequently, K < 0.
ii) A ruled surface, f, is developable <>
In (s, t)-parameters f, is a linear combination of f, and f; <>
K=0onf.
PROOF. i) In (s, t)-parameters, f;, = 0. Therefore by, = I (f,, f) = —n fy =
n-fis = 0, and so K = —h?,/det(g;;) < 0.
ii) In (s, t)-parameters, we have shown in (i) that n,- f; = 0. Therefore if f(s, 1)
is a ruled surface, n,=0<n,-fi=n-f,=0<n,f;=0<nfu=
0<>hyp = 0< K = —h3,/det(g,;) = 0. 0

3.7.6 Examples of developable surfaces

1. Tangential developables. Consider a space curve ¢: I — R® with é(2), ¢(¢)
linearly independent for all 7. The surface f(s, t) = s¢(t) + c(t), s # 0,
is called the tangential developable of c. Since f; = &(¢), it is a linear
combination of f, = ¢(¢) and f; = sé(t) + ¢(2).

Figure 3.9 Tangential developable

2. Cylinder over a curve. Let c(t) be a plane curve and X, # 0 a vector not
lying in the plane of the curve. The surface f(s, ) = sX, + c(t), a general-
ized cylinder, is a developable surface.

3. Cone. The surface f(s,t) = sX(t) + x, s # 0, X(¢t) and X(¢) linearly
independent, is a cone with vertex x. It is easily seen that fis a developable
surface.

Developable surfaces enter into the general theory of surfaces via the
following construction.
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3.7.7 Proposition (Existence of an osculating developable). Let c(t) = f o u(t)
be a regular curve on a surface f. Suppose Y(t) is a vector field along c(t)
tangential to f, satisfying II(¢(t), Y(t)) = O, and linearly independent of
é(t). Then g(s, t) = sY(t) + c(t) is a developable surface.

ProoF. Easy: g, = Y, n-gy =n-¥Y=—p-Y=II(¢,Y) = 0. ]

Note that the surface f and the constructed developable surface g both
contain the curve c, and at each point of ¢ they have identical tangent planes.
We will exploit these facts in a very important geometric construction
(parallel translation) in (4.2.5) and (4.4.3). For the time being, we will be
content to carry out the construction explicitly in a simple case.

3.7.8 Example. On the sphere
S(u, v) = (cos u cos v, cos u sin v, sin u), wu,v)el-n/2,7/2[ x R,

consider the latitude circle c(t) = fu(?), v(t)), u(t) = a, v(t) = t/cos a,
ae]—mn(2,n[2[, t/cos a € |-, n[. It follows that ¢(t) = f,/cos a, so |&(2)] = 1.
Let Y(¢) = f.(a, t/cos a) = (—sin a cos v(t), —sin a cos 1(t), cos a). In (3.3.7)
we showed that I] = —I and thatf, -f, = 0. Consequently, II(¢(¢), Y(¢)) = 0,
which means g(s, ) = sY(t) + () is an osculating developable surface.

Figure 3.10 Osculating cone

In the case a # 0, g(s, ¢) is a circular cone all of whose generators pass
through the point (0, 0, 1/sin @) when s = cot a. In the case a = 0, c(t) is
the equator and g(s, ¢) is a right circular cylinder.

We finish this section by looking more closely at surfaces with Gauss
curvature equal to zero. We have already shown in (3.7.5) that, in the class
of ruled surfaces, developable surfaces are precisely those with X = 0. The
question remains: are there surfaces with K = 0 which are not ruled and
hence not developable?

The answer is given locally by the following theorem.
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3.7.9 Theorem. A surface f: U — R® without planar points is developable if and
only if K = 0.

Remark. Recall that f is planar at u, € U if 1I,, = 0. The theorem fails to be
true if the hypothesis of *“no planar points” is dropped. An explicit counter-
example is constructed in (3.9.4).

Proor. If fis developable, we know by (3.7.5) that K = 0. Conversely, let
K = 0. The absence of planar points allows us to assert the existence of
unique (up to sign) mutually orthogonal principal curvature vector fields in
a neighborhood of each point u, (see (3.5.3)). Using (3.6.6), we may introduce
new coordinates (v, v2) on a neighborhood U, of u, such that the v'-coordi-
nate curves are integral curves of the principal curvature vector field corre-
sponding to the principal curvature «; = 0. Without loss of generality, we
may assume that (0, 0) — u,.

We change variables once more. Let (s, #) = (v'(s), t), where v'(s) is the
inverse of the arc-length function along the curve f(¢', 0). Clearly, dv'(s)/os # 0.
Therefore /= fo ¢ is a new coordinatization defined in a neighborhood of
(0, 0) with (0, 0) = 0. In this new coordinatization, both f(s, 0) and f(0, 1)
are parameterized by arc length. The vector £,(0, 0) is a principal direction
corresponding to x; = 0.

Agreeing to write f(s, #) instead of f(s, ¢), let us show that f;, = 0. First
observe that n, = —x, f, = 0, n, = —xof; # 0, f;-f, = 0, and f;-n, = 0. This
implies that f;,-n = —f;-n, = 0, and therefore f;; is purely tangential. Now

i (L)pen= (Fan=o

50 f,, is a multiple of f,. But £;3(s, 0) = 1 and f;(s, #),, = 2f; fu = —2fss i = 0,
which implies f;%(s, £) = 1. Differentiating this equation, we see f,;-f; = 0.
Therefore f,, = 0.

This means that the s-parameter curves are straight lines, parameterized
by arc length.

Letting c(¢) = f(0, t), we see that f(s, £) = sX(t) + c(t), where X(t) =
/0, t). Thusf{(s, ¢) is a ruled surface with n, = 0,1.e.,a developablesurface. [

Remark. Even though we have shown that flat surfaces without planar points
are developable surfaces, we still have not completely described how a piece
of surface with X = 0 can look in R®. Even without admitting planar points,
one can patch together developable surfaces in a variety of ways, cf. Figure
3.11.

The following proposition shows that developable surfaces look basically
like those described in (3.7.6)

3.7.10 Proposition. Suppose f: U—> R3isa developable surface without planar
points. Then on an open dense set A < U, f is either a cylinder, a cone, or a
tangential developable.

59



3 Surfaces: Local Theory

Figure 3. 11 Some flat surfaces (Adapted from Manfredo P. do Carmo, Differential Geometry
of Curves and Surfaces, Prentice-Hall, Inc., 1976, p. 409.)

Proor. 1. By (3.7.9) we may assume that f can be written locally as f(s, #) =
sX(t) + c(t) for (s, t) within some neighborhood U = I x J of (0, 0),
withf, fi = 0,n,-f; = n-f,, = 0. Therefore X- (sX + ¢) = 0,¢(f) = £i(0,¢) # O,
fi =X #0, and n-X = 0. The tangent space T,/ is spanned by X(?)
and é(¢), X(t)-é(f) = 0. Since X(¢) € Ty pfand X- X = 0, X(¢r) = r(1)é(¢)
for some real-valued differentiable function r(z).

2. Lett e I. Let I, be the set of ¢t € R satisfying one of the following properties.

a) There exists a neighborhood U(t,) of ¢, on which r(¢) = 0.
b) There exists a neighborhood U(#,) of ¢, on which r(¢) = constant # 0.
¢) There exists a neighborhood U(t,) of £, on which r(¢) #£ 0and #(z) # 0.
By definition, 7, < I is open. A moment’s reflection will show that 7, is
also a dense subset of I. In fact I, is the union of the sets where r(z) # 0
and #(¢) # O with the interior points of the set where /() = 0. We will
now show that the cases (a), (b), and (c) correspond to a cylinder, a cone,
and a tangential developable, respectively.

3. Suppose 1, € I, satisfies (a). Then X(¢) = X, = constant, so f(s,?) =
sX, + ¢(t), a cylinder. Suppose t, € I, satisfies (b). Then X(¢t) — X(¢,) =
ro(e(t) — (to). Therefore f(s, 1) = ((s + 1)/re)X(¢) + (c(to) — X(t0)/ro),
a cone with vertex (c(f,) — X(#,)/r,). Suppose 1, € I, satisfies (c). Let
&) = —X@®)/r(t) + c(t). Then é = X/r?, so ¢ is linearly independent
from ¢ since X and X are orthogonal. We may write c(t) = é(t) +
X@O)/r(t) = &@) + r@OéOF). If we let §=5(s, £) = sr2(t)/F(t) +
r(t)/F(t), we may write f(s,1) = f(5, 1) = §&(t) + &(t), a tangential
developable. O

Remark. 1t is still not clear from (3.7.10) whether, for example, the local
coordinates expressing f as a cone, cylinder, or tangential developable, can
be extended along the generators (i.e., in the s-direction) to the boundary of f.

There is a strong global result concerning surfaces with K = 0. If f* U — R®
is assumed to be geodesically complete (see (6.4.4) for the definition), then
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3.8 The Gauss and Codazzi-Mainardi Equations

any surface with K = 0 must be a generalized cylinder.? This result was first
proved by Pogorelov.? Note that it is not necessary to assume that f/ has no
planar points.

3.8 The Gauss and Codazzi-Mainardi Equations

Before we begin this section let us agree to abbreviate our notation for partial
derivatives. We will write ¢,, or occasionally ¢ ,, for d¢/ou' = ¢,. When
higher order partial derivatives occur, we will treat them in the same fashion,
writing ¢y, for ¢k, etc. The matrices (g (4)) and (A, (1)) will denote matrix
representations of the first and second fundamental forms with respect to the
standard basis {e;} of T,R? and {/;} of T, f. The inverse of (g,;) will be denoted

by ().

3.8.1 Theorem
*  Sulw) = 21: Th@)fiw) + k@), nu) = - g hug"fi(w),
where
**) Th := 2, g%ufs = %Zg”(gu.k + 8t — Gitsh
where g, = 08;/ou*.

3.8.2 Definition. The six functions T%(u) = 'l () in (*) are called the
Christoffel symbols of the second kind. The functions

Tiiy = 3(8usk + & — 8rt.s)
are called the Christoffel symbols of the first kind.

Remark. The expressions (*) and (**) express f;, and n; in terms of the Gauss
frame (f;, fa, n). Moreover, the coefficients can be expressed in terms of the

8k hue, and gy 1.

Proor. 1. Since (fi(), f2(u), n(u)) span T,,)R% we may write fi = fiu =
S Thefi + ayn, where the coefficients are to be determined. By taking the

2 A generalized cylinder in R® is a surface, S, that may be described as follows: there
exists a curve c(t), c: R— R®, and a fixed direction n such that f(s,¢) = c(t) + sn,
f: R? — R?® is a global parameterization of S.

3 Pogorelov, A. W. Extension of the theorem of Gauss on the spherical image of surfaces
of bounded extrinsic curvature. Dokl. Akad. Nauk, 111, 945-947 (1956) (Russian).

Other proofs of this theorem were given by P. Hartman and L. Nirenberg (1959) and
J. J. Stoker (1969). A quite simple proof with a list of references on the topic may be
found in Massey, W. S. Surfaces of Gaussian curvature zero in Euclidean 3-space.
Téhoku Math. J. (2), 14, 73-74 (1962).
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inner product with n, we see that h;, = a,,. By taking the inner product
with f;, we get

fufy = 2. Thug,
and therefore
T = Zgufu:'fj = Tk
Furthermore,
() 8k = ifde = farfs + firfoe = Z Tlegy + zl Thegu,
and cyclical permutation of the indices yields:

® 8ki,y = Z Thygu + Z Tigu
1 1

™ 8, = z Thgu + Z Thgiy.
; T

The equations in (**) are equivalent to («) — (8) + (¥).
2. The expression for n; = n, follows from (3.5.5). O

3.8.3 Theorem (Integrability conditions). The equations fi;,, = fiy; andny; = ny
are equivalent to the following relations between gy, hy, 8u..1, Puy,1, and T'fy ;.

0 I —Th,+ z (T4 — TLIE) = Z (hyhg — hychy)g'™.
[ 3
if) > Thhy — > Thehyy + hyyye — by y = 0.
1 []

The equations (i) are called the Gauss equations, and the equations (ii) the
Codazzi-Mainardi equations.

Remark. The Gauss equations come from equating of the coefficients of f,, in
the equations fi;; = fix;. The Codazzi-Mainardi equations came from equating
the coefficients of » in the equations f};, = fix;. Equating the coefficients of f,,
and nin n;; = ny gives another derivation of the Codazzi-Mainardi equations.

PrOOF. 1. Let fiy, = > Alfm + Byen. Using (3.8.1) (¥), we may express
ATy as

Afje = e + z TyTE - Z hy b g™
T 7

Since A}, = Al interchanging j and k and subtracting proves (i).
2. Another application of (3.8.1) (*) enables us to write

By = z Thhy + by
7
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3.8 The Gauss and Codazzi-Mainardi Equations

Since By, = By, this proves (ii).
3. Let

Ck=— (z hng"‘) - z hug™ T,
i od L/m

Using (**) to obtain an expression for 'k, and also the fact that
> 88 = — . &8s
k k

(obtained by differentiating 3 g™*g, = &) enables us to conclude that
Cl = Ck. This is equivalent to (ii). |

3.8.4 Definition. The curvature tensor of f is the collection of functions
Rype = O &R0, 1 < 1, J, k, I < 2, where
Ry =T, —Th,+ > OUTh - ThIH, 1<ijkms2
[

3.8.5 Lemma
Rﬂjk = huhkz - htkhﬂ-

Consequently, Ry, = — Ruy = —Rupe = Ry and the curvature tensor is
totally determined by Rygs = —Raiiz = Raiz1 = —Rigar = det(hy); all
the other R, are equal to zero.

ProoF. An immediate consequence of (3.8.3, i). (|

The following theorem will show that the curvature tensor has a geometric
meaning in the sense that it is the coordinate expression of a multilinear map
from T,f x T,f x T,f x T,f into R which is independent of the choice of
coordinates. In contrast to this, the Christoffel symbols I'; are not coordinate
independent.

3.8.6 Theorem. Let f: U — R® be a surface. Let
X=Sh Y=3uh Z=38 W=3I%
i 1l ] k

be four tangential vector fields. Then the multilinear form
R:T,fx T f x T,f x T,f—R
given by R(X,Y,Z, W) = 3,15, Ru€n'l'w"* has the following properties:
i) R(X,Y,Z,W)=—-R(Y,X,Z, W) = R(Y,X,W,Z) = R(Z, W, X, Y)

R(ﬁ,ﬁ,ﬁ,fk) = Rujk-

ii) R is linear in each variable.

iii) Let ¢: V — U be a change of variables and Ry, be the curvature tensor
associated to f = fo $. Then R(X,Y,Z, W) = R(X, Y,Z, W).

63



3 Surfaces: Local Theory

ProoF. 1. (i) and (ii) follow directly from (3.8.5) and the definition of R.
2. Writing ¢(v) = (0", v, (", v?)), we may write R in terms of R as
follows:

* Rup = 2‘ Ripeufuluful’, where uf = ou|or, etc.
vk

This expression may be derived from (3.8.5) by plugging in the expres-
sion of A, in terms of Ay, (3.3.6):

by =% Z hy i,
[Z4
If X = 3, &f, = 5, &, = 3i.v 8ulf,, etc., then (*) implies that
z Rup'itliat = Z Riy i€V T, Od

11,k 14K

3.8.7 Theorema Egregium (Gauss).* The Gauss curvature K(u) can be com-
puted from the first fundamental form and its first and second partial
derivatives. More precisely,

(u) - R1212(u)

~ det(gu()
PROOF. R,g;, is defined in terms of (g;,) and its first and second partials by
(3.8.4). The formula for K is (3.5.5). Now use (3.8.5). 0O

The meaning of this “celebrated theorem” of Gauss will be examined in
the next chapters where we will explore the intrinsic theory of surfaces.
Suffice it to say now that Gauss curvature, defined in terms of the second
fundamental form (which is dependent on how the surface sits in space), can
be computed from a knowledge of the first fundamental form and its partial
derivatives. The latter quantities can be computed, in principle, by a resident
of the surface, without knowledge of or reference to the shape of the surface
in R

To end this chapter, we will prove an analogue of the existence and
uniqueness theorem for curves in R", (1.3.5) and (1.3.6).

3.8.8 Theorem (Fundamental theorem of surface theory). Let U be an open,
simply-connected subset of R®. Suppose I, 11, are quadratic forms on T,R?,
u € U, whose coefficients (g,)) and (h,(w)) are differentiable functions of u.
If 1, is positive definite and the Gauss and Codazzi-Mainardi equations
(3.8.3) are satisfied, then:
i) There exists a surface f: U— R® whose first and second fundamental
forms are I, and II,.

¢ Gauss, C. F. Disquisitiones generales circas superficies curvas. Commentationes
societatis regiae scientiarum Gottingensis recentiores, 6, Gottingen, 1828.
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3.8 The Gauss and Codazzi-Mainardi Equations

ii) Any two surfaces f and f defined on U which have the same first and
second fundamental form differ by an isometry:

f = Beof, Banisometryof R®

PROOF. 1. The existence of f. The structural equations of (3.8.1) may be
considered as a system of linear partial differential equations for the three
R3-valued functions f1(u), fo(1), n(u). The integrability conditions f; ;. = fi.xs
n,; = ny, are satisfied (this is the content of the Gauss and Codazzi equa-
tions). By a well-known theorem of differential equations (see Flanders [B8],
pp. 92-101, or Spivak [A15], Vol. I, ch. 6), there exists a unique solution to
this system satisfying any given initial conditions fi(u,) = X;, n(%,) = N,
where X;- X, = gu(#o), X;-N =0, |N| =1, and (X;, X;, N) is positively
oriented.
Choose x, € R?, and let

f) = f * S i dt + o

Since f1,2 = f2,1, this integral is independent of path and therefore f(v) is
well defined. We wish to show that fis the desired surface. Toward that end,
consider the functions f;-f(¥), n-fi(#), n-n(u). Because f; and n satisfy the
differential equations (3.8.1), we have

Fifde = Z TLif) + Z Thlfiof) + hun-f)) + hy(n-f)),
nf)i= —kZ hag™(fi f) + Z T (fi-n) + hy(n-n),
(n'n),i =-2 Z hug"‘(fk'”)-

It is easily seen that these differential equations would be satisfied if
fi-f; = 8y, n-f; = 0, n-n = 1. Our functions agree with these functions at
u = u,, and therefore must be equal to these functions on U. Fromf;-f; = g;;
we may conclude that f;, f; are linearly independent, which implies that f is
indeed a surface. Furthermore, det(f;, f2, n) > 0 when u = u,, and since it
never equals zero, it must be positive everywhere on U. The second funda-
mental form of fis determined by — n;-f,. Using the differential equations (*)
of (3.8.1) for which » and f, are solutions, we see that —n,-f,, = h,,. Therefore
fis the desired surface.

2. Uniqueness of f up to isometry. Suppose f and f are two solutions deter-
mined by the initial conditions x,, X3, X,, N and %, £;, X,, N, respectively.
Since X;- X, = X, Xy, X, N=X,-N=0,N-N = N-N = 1, there exists a
unique isometry B such that

Bx, =%, dB.X,=%X, dB,N=~N.

Since both (X, X,, N) and (X,, X,, N') are positively oriented, B is a
congruence.
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3 Surfaces: Local Theory

Since dBf;, dBn and f,, i satisfy the same system of differential equations

with the same initial conditions at u = u,, it follows that dBf; = f,. Therefore

Bf(u) = Bf(uo) + f(u) — fuo) = f(w). O

3.9 Exercises and Some Further Results

3.9.1

66

Surfaces of revolution with constant Gauss curvature. Consider a surface of
revolution given as in (3.3.7) by

f(u, v) = (h(u) cos v, h(u) sin v, k(u)).

Assume that A2 + k2 = 1 and hence that k’k* = —h"}'.
Prove: gy = 1,812 = 0,820 = h% hyy = —K'R” + Kk", hyz = 0, hyy = BK'.
Therefore

_ WKE — KkR) K

K 7 T

The requirement that f have constant Gauss curvature K, means that &
must satisfy

h"(u) + Koh(u) = 0.

Conversely, a function h(u) satisfying this equation with A2 < 1 will
enable us to construct a surface of constant Gauss curvature K.

Case (i). Ko = 0. Without loss of generality, h(u) = au + b,0 < a < 1.
If a = 0, the surface of revolution is a right-circular cylinder. If 0 < @ < 1,
the surface is a circular cone. If @ = 1, the generated surface is a piece of a
plane.

(a) (b) (©)
Figure 3.12 (a) Sphere; (b) spindle; (c) bead

Case (ii). K, = 1. Without loss of generality, k() = acos u, where
a > 0 and a@?sin?# < 1. This implies that k(u) = J: V1 = a®sin® ¢ dt.
When a = 1 we get a sphere, when 0 < @ < 1 a spindle-like surface, and



3.9 Exercises and Some Further Results

when a > 1 the surface looks like a column of water about to break into
beads.

Case (iii). Ko = —1. Then we may write h(u) = ae* + be™*, requiring
(ae* — be~*)* < 1. Consider the case where b = 1, a = 0. Then

hu) =e®,  k(u) =f Vi—e2d, ux=0.
0

The curve (h(u), k(»)) in the (x, z) plane is the tractrix. It is characterized
by the fact that distance, along the tangent line to (h(u), k()), from
(h(u), k(u)) to the z-axis is always equal to 1. The surface of revolution
is called the pseudosphere. It was an important example in the early history
of non-Euclidean geometry.

If ab # 0, then it can be shown that @ = —b = ¢/2 or a = b = ¢/2.
In the first case the surface of rotation looks something like cones stacked
point to point and base to base. In the second case, the surface looks like
a horizontally fluted column (see Figure 3.13).

(a) (b) (c)

Figure 3.13 (a) The pseudosphere; (b) a pile of cones; (c) horizontally-fluted
column

3.9.2 Caustic surfaces.® Suppose f: U— R? is a surface whose principal curva-
tures «, and «. are nonzero and unequal. Let (4!, #2) be principal curvature
coordinates.

Prove: The functions by(u) = f(u) + n(u)/x(w), i = 1, 2, are surfaces if
and only if «;,1x2,2 # 0. These surfaces are called the caustic surfaces of f.

If kc1,142,2 = 0, fis called a canal surface. If k,,, = 0, then the u'-parameter
curves lie on circles of radius 1/k;. In this case, the surface f may be
represented as the boundary of the region swept out by a one-parameter
family of spheres.

5 See Strubecker [A15], Vol. III
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Figure 3.14 Caustic surfaces

3.9.3 Weingarten surfaces.® A surface f: U — R2is called a Weingarten surface, or
W-surface, provided there exists a function ¢: U— R with dp # 0 such
that the principal curvatures w,(u) = xa(u) satisfy @(xci(u), xa(u)) = O.
For example, surfaces with H = constant or X = constant are W-surfaces.
Prove: i) On a W-surface, k 1k, — Ki,2%2,1 = 0.
ii) The ellipsoid of revolution,

f(u, v) = (a-cos u-cos v, a-cos u-sin v, b-sin u)

with 0 < a < b, is a W-surface satisfying «; = c«,.°
iii)) A W-surface is not a canal surface if and only if its caustic
surfaces consist of asymptotic curves.

3.9.4 A surface with X = 0 which is not a developable surface.” We will show
the existence of a surface f: R x ]-1, 1[ — R® whose first and second

8 There is a wealth of interesting results about Weingarten surfaces, due to Hilbert,
Chern, Hopf, Voss, and others. See, for example, Hopf, H. Uber Flichen mit einer
Relation zwischen der Hauptkriimmungen. Math. Nachr., 4, 232-249 (1951). See also
Hopf [A9] and [A10].

7 This example is due to E. Heintze
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3.9 Exercises and Some Further Results

fundamental forms satisfy

(gu) = Bu)

(h) = (Pulu, v)e= (@207,
where

2

1 _ u
D

1oy

P11= P12 P22

. u

=7 ——(1 ey

and where the sign is the upper when # > 0 and the lower when u < 0.

We will then show that this surface has zero Gauss curvature but is

not a developable surface.

1. The k; are differentiable.

2. hyihoe — k32 = 0. Therefore K = 0.

3. hu,z = M2, ha2 = Mo

4. From (2) and (3) one can easily prove that the first and second
fundamental forms satisfy the Gauss and Codazzi-Mainardi equations.
By the fundamental theorem of surface theory (3.8.8), there exists a
surface f with the required first and second fundamental forms.
Moreover, f is unique up to an isometry of R2,

5. The second fundamental form has been chosen so that the inverse
image of the generators of f in the set # < 0 are the straight lines
through (0, 1). In the set # > 0, they are the straight lines through
(0, —1). The slope of these straight lines blows up as one moves through
(0, 0) on the u-axis.

6. The surface f'is not a developable surface near (0, 0): there is no change
of variables ¢: V— U’ < U, (0,0)e U’, such that fod(s,t) =
sX(@) + c(2).

ProOF. Assume that such a ¢ exists. Without loss of generality, we may
assume $(0, 0) = (0, 0). Consider the lines parallel to the z-axis in V. They
must be mapped into the inverse images of the generators of f which are
described in the previous section. Since each of these lines crosses the u-axis
exactly once, the inverse image under ¢ of the u-axis may be written in the
form (s, B(s)). If p: R? — R2 is the map (o, 7) — (0, B(0) + 7), the map
$ = & o p|p~}V) is differentiable and #(s,0) = (a(o), 0) for some differen-
tiable function a(c). This follows from the definition of p. Therefore &, )
= (a(o), 0) + y(7)(Ja(o)|, 1), where (7) is a differentiable function with
¥(0) = 0. The function $(o, 7) must have this form because ¢ maps
parallels to the 7-axis into the inverse images of the generators.

But 6&1/60 = a'(0) + y(7)a’(o), the sign depending on the sign of a(c).
Since a(0) = 0 and a’(0) # 0, this function cannot be differentiable at any
point where y(r) # 0. Contradiction.

Show that the ellipsoid of (3.7.3) with p = u, = constant < c¢ has exactly
four umbilics. In fact the umbilics are precisely the points x(u,, v, w),
y(uo, v, w), z(uo, v, w) on the ellipsoid where v = w = b. At these points,
the lines of curvature are degenerate and grad y(v), grad y(w) are not
defined.
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Figure 3.15 Lines of curvature on an ellipsoid. Umbilics marked as dots

3.9.6

3.9.7

398

A surface f: U— R® is called a minimal surface if H(u) = 0. The reason
for this name is the fact that these are precisely the surfaces for which the
first variation of area vanishes. What does this mean?

Consider a family f(u) = f(u) + ea(u)n(u) of surfaces neighboring f.
Here ¢ lies in an interval containing 0 and a: U — R is a smooth function.
For sufficiently small €, f€ is a regular surface and we may define its first
fundamental form. Up to terms of second order and higher in ¢, g5 =
& — 2eahy,, and the area element g€ = det(gf) = g(1 —~ ed4aH). Therefore
(6Vg%/8€)|c=0 = —2aH. The only way this can equal zero for all functions
a is for H to be identically zero. In (5.6) integration on a surface will be

discussed and the area of a surface f: U— R® will be defined asfu Vg dut du?.

Using standard techniques of advanced calculus (namely differentiation
under the integral sign and the divergence theorem), we may use the above
calculation to show that a surface is minimal (H = 0) if and only if given
any variation f¢(u) = f(u) + ea(u)n(u) of f the area function A(e) =
fu Vg€ dut du? = “area of the surface f<” has a critical point at € = 0.

It is easy to see that the area of f cannot be a maximum among nearby
surfaces (introducing a pimple on the surface will increase the area).
Therefore f must be either a local minimum or some sort of inflection
point for the area function.®

Consider the surface of revolution f generated by the catenary (h(u), O,
k(u)), where

h(w) = a cosh(&‘)a;lz) (see (3.3.7).

This surface is known as the catenoid.
Prove that the catenoid is the only surface of revolution which is also a
minimal surface.

One of the most interesting results in the global theory of minimal surfaces
is Bernstein’s theorem: If f(u,v) = (u, v, z(u, v)) is a minimal surface
defined for all (, v) € R2, z must be a linear function. In other words, if a
minimal surface is the graph of a function defined on the whole plane,
then it is a plane.

8 See Strubecker [A15], Vol. III, p. 222 ff,, or the references in footnote 10,
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Figure 3.16 Catenoid

The proof is not elementary, but it is interesting. It utilizes some tech-
niques from complex analysis (see (5.7.4)).°

3.9.9 The problem of Plateau.'® Given a simple, closed, rectifiable curve ¢ in R?,
find a minimal surface f: D — R® spanning ¢, i.e., if D is the open unit
disk, D its closure and §* = 8D its boundary, does there always exist a
continuous function f: D — R® such that f:= f| D is a minimal surface
and f|S!: S* — ¢ is a homeomorphism, i.e., a continuous, one-to-one
mapping onto ¢ with a continuous inverse ?

In 1930, T. Rado and J. Douglas independently answered this question in
the affirmative. Their solution was not only a minimal surface, but also had
minimum possible area among all surfaces f: D — R2 which span the given
curve ¢. However, both Rado and Douglas had to admit surfaces with
possible isolated singularities. A singularity of a mapping f: D — R®is a
point u € D where df, has rank <2. An isolated singularity is a singularity
which sits in some neighborhood of all whose points, except «, are not
singularities. Whether singularities actually occurred in the Douglas
solution to the Plateau problem was an open problem for forty years.
In 1970, Osserman was able to show that singularities did not occur in
the classical (Douglas) solution to the Plateau problem.!?

The behavior of f at the boundary of D was, up until recently, not well
understood. Hildebrandt'? was able to show that if ¢ is differentiable, then

® There are many proofs of Bernstein’s theorem. One of the shortest is due to Nitsche
J. C. C. Elementary proof of Bernstein’s theorem on minimal surfaces. Ann. of Math., 66
543-544 (1957). For another treatment see Chern [A5].

10 For a detailed presentation of the solution to the Plateau problem, see Courant, R.
Dirichlet’s Problem, Conformal Mappings and Minimal Surfaces. New York: Interscience
Publ., 1950. An excellent introduction to the theory of minimal surfaces in R" is Osser-
man, R. 4 Survey of Minimal Surfaces. New York: Van Nostrand Reinhold, 1969. A
compendium of the current knowledge about minimal surfaces can be found in Nitsche,
J. C. C. Vorlesungen Uber Minimalfiiiche, Springer-Verlag, 1975.

11 Osserman, R. A proof of regularity everywhere of the classical solution to Plateau’s
problem. Ann. of Math., 91, 550-569 (1970).

12 Hildebrandt, S. Boundary behavior of minimal surfaces. Arch. Rational Mech. Anal.,
35, 47-82 (1969).

>
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F: D — R, the classical solution to the Plateau problem, is differentiable.
The dependence of fon c is still an open problem. For example, how many
minimal surfaces span a given curve ¢? What are necessary and sufficient
conditions on ¢ which insure the existence of a unigue solution to the
Plateau problem? What conditions on ¢ will insure the existence of an
embedded solution, i.e., a solution given by a one-to-one mapping f (see
Gulliver and Spruck*?).

One of the ways in which the Plateau problem has been generalized is
to seek surfaces of constant mean curvature, H = ¢ = const, spanning a
given curve c. Even more generally, one might want the mean curvature H
to be specified as a function of position in R3. One seeks a surface f: D — R?
spanning ¢ such that H(x) = h(f(u)), where h is a real-valued function
defined on R3. These problems have physical interpretations just as the
Plateau problem does. Significant contributions to this subject have been
made by Heinz, Hildebrandt, Gulliver, Spruck, and others.**

13 Gulliver, R., and Spruck, J. On embedded minimal surfaces. Annals of Math., 103
(1976), 331-347.

14 Heinz, E. Uber die Existenz einer Fliche konstanter mittlerer Kriimmung bei vor-
gegebener Berandung. Math. Ann., 127, 258-287 (1954). A useful survey article is
Hildebrandt, S. Some recent contributions to Plateau’s problem, in Differentialgeometrie
im Grossen, W. Klingenberg, ed. Mannheim: Bibl. Inst., 1971.
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Intrinsic Geometry of Surfaces:
Local Theory

We are now going to concentrate on the properties of a surface f: U — R®
which are intrinsic in the sense that they are definable in terms of tangent
vectors to the surface and the first fundamental form and its derivatives. For
example, the length of a vector or the length of a curve on a surface are
intrinsic quantities. The Gauss curvature and the curvature tensor are also
intrinsic since they may be defined in terms of the first fundamental form and
its derivatives. In contrast, the second fundamental form is not intrinsic.
It requires discussion of normal vector fields and cannot, in any case, be
reduced to the first fundamental form. Also, principal curvatures are not
intrinsic, even though their product, the Gauss curvature, is an intrinsic
quantity.

Our point of view will be to use the map f: U— R?® to define the first
fundamental form as an inner product on T,R2, ue U. We have done
this previously, but now want to emphasize it. Given X = S3., @' offou',
Y =32, b offow’ € T,R? g (X, Y) = J3a'b’ ofjout-ofjor’. The first funda-
mental form in this description is an inner product defined on each T,R2. As
such, we will ultimately want to consider it as given and avoid further reference
to the mapping f. In fact, this will be the point of view of the next chapter, in
which Riemannian manifolds will be considered without reference to any
immersion. For now, we will hold on to the picture of f: U — R® as a surface
sitting in Euclidean three-space, using it as a transitional object.

The inner product g, on U< R? is not, in general, the standard
inner product on RZ2 One theme of this chapter will be to generalize
familiar properties of the standard inner product on R? to new inner prod-
ucts g,. Of particular interest will be those properties relating to vector
differentiation.
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4 Intrinsic Geometry of Surfaces: Local Theory

4.1 Vector Fields and Covariant Differentiation

The natural class of vector fields in the study of intrinsic differential geometry
of a surface f are the tangential vector fields. These correspond to velocity
vectors of paths on f(U). Given a curve u: I — U, it is clear that fou is a
curve on f(U). An application of the implicit function theorem, (0.5.2),
establishes the converse. Namely, given a regular curve ¢(¢) in R® such that
¢(t) < f(U) for all ¢, then for any ¢, there exists a map u: / — U, defined on a
neighborhood of #,, such that fo u = ¢. As a consequence, all tangent vectors
to curves on f may be realized as the image under df of tangent vectors to U.

Even if X is a tangential vector field, 0.X/0u' may not be tangential. This
partially motivates the next definition.

4.1.1 Definition. Let f: U—> R® be a surface, ¢ = fou:I— R® a curve
on f, and X:I— R® a tangential vector field along ¢. For ue U, let
pr,: T;,R® — T, f be orthogonal projection in the direction of the normal
vector n(u). For t €1, the covariant derivative (of X at t), denoted by
VX(t)/dt, is the vector field pryg, o (dX/dr)(t).

4.1.2 The covariant derivative VX(¢)/dt is a tangential vector field by
definition. Since dX(t)/dt and pr,, are independent of the choice of coordi-
nates, so is VX (¢)/dt. In terms of a coordinate system (4!, #?) on U, we may
write X(¢) = X €°(t)f.*  u(t). Then using (3.8.1%),

D= (Teme+ > £ (3 i + ) ) o w0

It follows immediately that
*) FO=3 (& + > eawors. u(t) ) fuo ).

Conclusion: (VX/dt)(¢) is an intrinsic geometric quantity whose expression
in local coordinates involves the Christoffel symbols.

4.1.3 Lemma. If ¢: V— U is a change of variables, let T and T be the
Christoffel symbols associated with f and f = fo ¢, respectively. They are
related by the following equation:

oS b
P L Q0P vt Ou* T 4, OUP BT Uk E

PROOF. Let ¢ be given in coordinates by %' = u(v). Then
o . o
X”—'Zé’ﬁ’=Z§kﬁm so fk=Zf'%‘;, “’=Zv”w-
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4.1 Vector Fields and Covariant Differentiation

Using (*),

PO s[sed s se b
e 5][23_;,1,]
2P+zw@wwu%%rm$

S|E+3 A

Since this identity must hold for all x* and v% the desired result follows. [

4.1.4 Proposition. Let X(¢) be two tangential vector fields along c(t) = f o u(t).
Then

VX(t)

VY(t))‘

2800, Y0) = ¢( 2D v0) + ¢ x0)

Proor. Using the product rule for differentiation,

d(X(t)-Y(t)) dX(t)
dt

But for YeT,f, Z-Y = (pr Z)-Y, where pr is projection onto T,f. The
proposition now follows from the definition of covariant differentiation. []

o + xo) % (’).

Remark. If f(uy, us) = (uy, u,, 0), the surface represented is a piece of the
flat plane. Thus T, = 0, g(X, Y) = X-Y, and (*) tells us that in this case
covariant differentiation is ordinary differentiation.

4.1.5 Let X be a tangential vector field along f: U — R®. In coordinates we
may write X(u) = > €L, fu«(u). If ¢(t) = fo u(z) is any curve on fthrough u,,
u(0) = u,, we may restrict X to u(¢) and define (VX o u(¢))/dt, which will have
a coordinate representation given by (*) in (4.1.2):

VX«;zu(O) z (auf (uo) + Z o)L (uo))u’(o)fuk(uo)

Notice that the dependence of (VX o u)/dt on u(t) involves only the point u,
and the value of the derivatives #/(0). Consequently, if ¥ is any tangent vector,
YeT,f, Y= 2;nfuuy), and c(z) = fou(t) is any curve with u(0) = u,,
é(0) = Y, then (VX o u(0))/dr will be a vector whose value is independent of
the choice of the curve ¢. We already know by (4.1.2) that (VX o 4(0))/dr does
not depend upon the choice of coordinates on U. Therefore (VX o u(0))/dt
depends only on the value of Y€ T, f, and from the form of (*) the depend-
ence is linear.
These observations are summarized below.

75



4 Intrinsic Geometry of Surfaces: Local Theory

Lemma. Let X be a tangential vector field on a surface f: U— R3. Then for
every u, € U we may define a linear map

VX: T, f—> Tuf

as follows: If Y = 3 v'f{u,), choose a curve c(t) = fo u(t) with w'(0) = uj,
#(0) = 7’ (for example, let W (t) = u} + tv’). Then VX(Y) = (VX o u(0))/ds.
The map VX is invariantly defined. In particular, V X (t5)/dt = V X(¢(t,)).

4.1.6 Definition. Let X () be a tangential vector field on f.
i) VX is called the covariant differential of X. VX(Y) is the covariant
derivative of X in the direction Y.
ii) The function u+>trace VX(u) from U to R is called the divergence
of X, written div X ().

4.1.7 Observation. Using (4.1.5), we may express div X in coordinates:
vx=S% ko LS5 2 o
leX—Zauk"l'gcfiFlk_Vg;auk(\/éf),

where g = det(gy). In the special case where f: U — R?® is a linear and
injective map, f(U) is a piece of a plane and g,(u) = §,,. Therefore
Ty = 0and div X = 3, 0&*/ou*. So we see that the divergence of a vector
field reduces to the usual notion of divergence when the surface is a piece
of a plane. Note: (VX o u(2))/dt = VX(f o u(z)).

4.2 Parallel Translation

4.2.1 Covariant differentiation on a surface generalizes ordinary differentia-
tion in the plane. We may now use covariant differentiation to define what it
means for vectors or vector fields to be parallel along a curve on a surface.
In the plane, a vector field X(z) along a curve c(t) is constant, or parallel, if its
value is constant; X(¢) = X, = constant. In other words, dX(¢)/dt = 0.

Definition. Let ¢ = fo u be a curve on a surface f: U— R®, A vector field X
along c is parallel along ¢ provided VX (¢)/dt = 0.

4.2.2 1t follows immediately from (4.1.4) that if X(¢) and Y(¢) are both
parallel vector fields along ¢, then g.)(X(¢), Y(¢)) is a constant.

Thus a parallel vector field must have constant length and the angle between
two parallel vector fields remains constant. Here, in analogy with Euclidean
space, the angle between two nonzero vectors X and Y is

g, 1Y)

6 = arccos .
|X]-1Y]

4.2.3 Theorem. Let f: U— R® be a surface, and c(t) = fo u(t) a curve on f,
to <t < ty. Let u(ty) = uy, u(ty) = u;. Then
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4.2 Parallel Translation

i) For every X, € T, f there exists a unique parallel vector field X(t) along
¢ with X(t,) = X,.
ii) The mapping |: Ty, f— Ty, f, defined by Xo— X(t,), is an isometry.

PROOF. Suppose X(t) = > £(t)f,s o u(t) is parallel along ¢. Then X(¢)
satisfies equation (*) of (4.1.2), namely

(1) + > BOFOT o ut) =0, k=12
i,f

But this linear system of two differential equations has a unique solution
&(t, ¢), with initial value (', ¢') = ¢, for any t'€[to, t;]. The corre-
spondence (£”%)— (€, ¢)) is a linear bijection. Finally, we know from
(4.2.2) that this map is an isometry. O

Remark. The mapping |, generalizes parallel translation in the plane (constant
vector fields). Given a vector X, at p in the plane, its parallel translation to
another point g will be independent of the path ¢ along which we parallel
translate. This is not true in general. We will soon see examples of surfaces
on which parallel translation is path-dependent.

4.2.4 Technical lemma. Suppose we are in a coordinate system where g, = 0,
(orthogonal coordinates). Then g* = 1/gy, T'¥. = (log V&) = 8icwc,i/ 28k
and T, = — gy /281, (0 # k).

PRrooF. It is easily seen that g'* = 1/g,,, %2 = 1/g,,, and g'2 = 0. Therefore

1 { g}ck,b lf.l=k’

Tl = 38"(8uw.s + 8wt — &ink) = Yoo \—gur ifj=ik#i O
i,k - b .

4.2.5 An example. The sphere. Using the coordinates developed in (3.3.7),
g1 = 1, g12 = 0, g52 = cos? u. An application of (4.2.4) yields

M, =r%=I%=T%=0, '3, = —tanu, I'i; = cos u sin u.

Consider the curve c(t) = f(u(t), vo(t)), where u(t) = ae 1—=/2, n/2[, v(t) =
t/cosa, 0 < t < 2mcos a (this is the same curve considered in (3.3.7), a
latitude circle). The differential equations for the components £(¢), £%(r) of
a parallel vector field along c are

£() + £()sina=0,  £() - £(0)

cos2

For the initial values (&3, £2) = (0, 1/cos @), these equations have the
unique solution

cos(tan at)
cos a

£(1) = —sin(tanat),  €t) =

In this case we can give an interesting geometric interpretation of parallel
translation. In (3.7.7) we showed that the osculating developable to the
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4 Intrinsic Geometry of Surfaces: Local Theory

X{o)

Figure 4.1 Development of the osculating cone

sphere along the latitude circle ¢ was the tangential cone meeting the sphere
along ¢ (we will assume that a € ]0, #/2[, so this surface really is a cone).
Slitting the cone along the generator through ¢(0) and applying it to the plane,
we consider what happens to the latitude circle ¢(z) under this transformation.
It becomes a circular arc of radius cot 4 and length 27 cos a. At ¢t = 0 the
tangent vector to this segment is X(0), and X(¢) is a parallel (constant) vector
field along this arc when considered as a vector field on the plane.

4.2.6 Definitions. Let ¢(¢) = f o u(t) be a curve on a surface f: U — R® with

é) # 0.

i) The ordered pair of tangential vector fields e,(?) := ¢(2)/|c(t)], ex(t),
along c, where e,(t) satisfies |ex(t)| = 1, e5(2)-e,(¢) = 0, and (e,(?), ex(¢))
has the same orientation as (f,1(u(?)), f,2(u(?)), is called the Frenet frame
of c.

i) wg(£) := ex(t)-((Vey(2))/dt)]|¢(2)| is the geodesic curvature of c.
Remark. The Frenet frame of a curve ¢ on a surface generalizes the Frenet
frame of a plane curve (see (1.4)), and geodesic curvature generalizes the
curvature of a plane curve. It is easy to see that Frenet frames are unique.
Moreover, the Frenet frame along ¢ and the geodesic curvature of ¢ are
invariantly defined with respect to orientation-preserving change of variables.
If #(s) is a change of variables and &(s) = ¢ o #(s), then 7,(s) = + ry(¢(s)),
the sign being the sign of dr/ds (see (1.3.2)). In the case that c(¢) is a unit-
speed curve, |¢(z)] =1, we have e,(r) = ¢(r) and Vé(2)/dt = wy{t)eq(t).
Therefore «,(t) = +|Vé(2)/dt] (see (1.4)). ‘

4.3 Geodesics

Continuing our study of geometric quantities on surfaces which generalize
familiar objects in the plane, we now investigate the analog of straight lines.

4.3.1 Definition. A curve c(t) = fo u(t) on a surface f: U— R® is a geodesic
if Vé()/dr = 0.
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4.3 Geodesics

4.3.2 Proposition (A characterization of geodesics). For a regular curve
c(t) = fou(t) on a surface f, the following conditions are equivalent:
i) x,(2) = 0.
ii) If s+> t(s) is a change of variable on c such that &(s) = cot(s) is a
unit-speed curve, then &(s) is a geodesic.

PROOF
k(1) = 0<>%(s) =0 by (4.2.6)

VE(s)
«=22 =0 by (426). O

Remark. Proposition (4.3.2) is the generalization of (1.4.2), which charac-
terizes straight lines in the plane. Notice that it follows immediately from the
definition of a geodesic that |é(2)| is a constant. Provided that |é(¢)| # 0, this
means that geodesics are parameterized proportional to arc length. Proposi-
tion (4.3.2) says that a regular curve can be reparameterized to be a geodesic
if and only if x,(¢) = 0. Regular curves satisfying «,(t) = 0 are sometimes
called pre-geodesics.

In the plane, where Vé(¢)/dt = dc(t)/dt, it follows that a curve c(t) is a
geodesic if and only if ¢(f) = A¢ + B for some constant vectors 4 and B.
Therefore c(t) is a straight line provided c(¢) is regular (and hence 4 # 0).

4.3.3 Proposition. Suppose c(t) = f o u(t) is a geodesic. If u(t) = (u*(t), u*(2)),
then é(t) = 5, t*(t)f,x o u(t), and combining the equations Vé(t)/dt = 0 and
(4.1.2) (*), we see that u(t) must satisfy

i) + > a(OOTY o ut) = 0.
17
Conversely, if u(t) satisfies the above equation, ¢ = f o u(t) is a geodesic.

4.3.4 Theorem. Let X € T, f be a tangent vector to a surface f. Then for
sufficiently small € > 0 there exists a unique geodesic c(t) = fou(t), |t| < e,
satisfying the initial conditions u(0) = u,, ¢(0) = X.

Proor. This follows immediately from (4.3.3) and the existence and unique-

ness theorem for systems of ordinary differential equations, with initial
conditions #/(0) = uh, 4'(0) = £, where X = 3, £f,(uo). O

4.3.5 An example. A/l the nonconstant geodesics on a sphere (f = f(u, v) of
(3.3.7)) are great circles. Recall that

f(u, v) = (cos u-cos v, cos u-sin v, sin u), uv)el—=/2,7/2[ x R.
Since f,,(u, v) = —f(u, v) = n(u, v), Vf,/du = 0. Consequently, the v =
constant curves, the meridians, are geodesics. Let co(t) be one of these
meridians with ¢,(0) = f(0, 0) and call ¢,(0) = X,.

Now consider an arbitrary tangent vector X € T, .,/ If X =0, the
geodesic with tangent vector X passing through f(uo, vo) is the constant
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4 Intrinsic Geometry of Surfaces: Local Theory

curve c(t) = f(uo, vo). If X # 0, we might as well assume that | X| = 1, since
the geodesics through f(u,, vo) with initial conditions X or X/| X| are different
parameterizations of the same curve.

Now there exists a rotation B of the sphere in R3® such that Bo ¢,(0) =
f(uo, vo) and TBX, = X. Since B leaves the first fundamental form invariant,
it must take geodesics into geodesics. Also B takes meridians into great
circles on the sphere. Consequently é(¢) = Boc(t) is a geodesic on the
surface f = Bof with the initial conditions ¢(0) = f(uq, vy), ¢(0) = X. We
know c(t) is a great circle.

Of course, c(t) is a curve on the surface fand not on the surface f. In order
to conclude that all geodesics on f are great circles, it is now necessary to
show that there exists a change of variables ¢ defined on a neighborhood ¥,
of (u,, vo) with values in a neighborhood U of (0, 0) such that

fIVy=Bofo4.
Then ¢(t) = fo u(t) where u(t) = ¢-1(0, #). We proceed as follows. Since f
is regular there exists neighborhoods U, of (0, 0) and W, of (0, 0) on the
sphere such that f: U, — W, is a diffeomorphism (see (0.5.2)). Restricting f°
to a smaller neighborhood if necessary, we may assert that there is a neighbor-
hood V¥, of (uo, vo) such that f|Vy: Vo — B(W,) = Bof(U,) is a diffeo-
morphism. Now let

$ = (flUo) e Bt o (f]V).

It is easy to check that ¢ has the required properties.

Coordinate systems in which some of the coordinate curves are geodesics
play an important part in computations as well as in qualitative results in
the differential geometry of surfaces.

4.3.6 Lemma (The existence of geodesic orthogonal coordinates). Let c(s) =
Fouv(s), sel, be a curve on a surface f: V — R®. Fix s € I and ¢'(s;) # 0.
Then there exists a change of variables ¢: U— V', where V' is an open
neighborhood of v(so) such that f = fo ¢ and u = ¢~ o v satisfies:

i) The curve o(s) = fou(s), for |s — so| sufficiently small, is given by
w=0,u=ys.

ii) The curves u® = constant are geodesics parameterized by arc length.
The curves u' = constant meet these curves orthogonally. The segment
of any u® = constant geodesic between the curves u* = a and u* = b
has length b — a.

iif) The parameters u are an orthogonal coordinate system for f. That is,
812 = 0. Moreover, g,; = 1 and, of course, go5 > 0. Conversely, if the
matrix of the first fundamental form satisfies

(&) = ((l) 222),

then (ii) is valid.
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4.3 Geodesics

In the special case that the initial curve c(s) is a unit-speed geodesic,
822(0, u?) = 1, g55.1(0, *) = 0, and T'}(0, 4®) = O for all i, j, k.

L

U2 = const.

Figure 4.2 Geodesic coordinates

4.3.7 Definition. Coordinates satisfying (ii) or (iii) above are called geodesic
coordinates (with respect to a curve u! = constant). The curves u' =
constant are called parallel curves. If, in addition, the curve u* = 0 is a
geodesic parameterized by arc length then these coordinates are sometimes
called Fermi coordinates, although they had already been considered by
Gauss.

Proor (of Lemma 4.3.6). 1. Since ¢'(s,) # 0, we may assume, after possibly

restricting the domain of definition of ¢, that ¢'(s) 5 0 for s e I. This being
done, we may assert the existence of the Frenet frame e,(s), e;(s). For each
seletc(z, s) = fou(t, 5) be the geodesic with ¢(0, 5) = ¢(s) and (3¢/2£)(0, 5) =
e(s). Each of these geodesics is defined for ¢ < €(s) and by shrinking the
domain of definition of c¢(s) again, if necessary, we may assume that there is
an € > 0 such that e(s) > ¢ for se [,

2. The mapping (¢, s) e (—¢', €) x T (W1, 5), v3(t, s)) e V is differen-
tiable because the v'(¢, 5) are solutions to the equation for geodesics and those
solutions depend smoothly on the initial conditions c(s), e;(s), which in turn
are differentiable in s. At the point (0, s,), the matrix of first derivatives of
this mapping (the Jacobian matrix) represents vectors which are mapped by
df into ey(s,) and c'(s,). Consequently, they are linearly independent. The
inverse function theorem, (0.5.1), implies that ¢(z, s) = (V(z, 5), v*(, 5)) is
locally a change of variables.

3. At this point, let us change notation and write (#*, #?) instead of (¢, 5).
Now (i) is immediate from the definition of » and u. Also the curves u? =
constant are unit-speed geodesics by definition. This implies that g,, = 1 and
also that

i* + z #wW'TF =0 for u' = t, 4> = constant.
IR}
Therefore I'}; = I'}; = 0. But

1
Th = izg“(gug + gua — 8u,) = 8%m,a = 0.
1
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4 Intrinsic Geometry of Surfaces: Local Theory

Since g'? = —g;./det(gy), the equation above implies g1582:,, = 0 or
3(g%:).1 = 0. Since g:4(0, %) = (inner product of e;(s) with ex(s) along
c(s)) = 0, it follows that g,; = 0. Of course, g5, = det(gy) > 0. This proves
(ii) and the first part of (iii). (To see that the curves #* = ¢ and «* = b cut
off an arc of length b — a on any geodesic #? = constant, simply observe
that u! = s is arc length on the curve u? = constant.)

4. We now prove the second part of (iii). Suppose g,; = 1, g12 = 0, and
822 > 0. By (4.2.4), T%, = T% = 0. Therefore Vf,:/ou' = 3, T, f,s = 0. In
other words, the curves 2 = constant are unit-speed geodesics cutting the
curves 4! = constant orthogonally. Any one of the curves ! = constant may
serve as basis curve.

5. Suppose c(s) is a unit-speed geodesic. Then

_4 _Ve , Ve, _ Ve
O—ds(el(s)'eil(s))_ s ey + s e = s e.

Similarly, Ve,/ds-e; = 0 since ey-e; = 1. Consequently, Vey/ds = 0. In
geodesic coordinates, e;(s) = f,1 and we may apply (4.1.2) (*) with (£, £2) =
(1, 0). This yields
a0, #%) = T'f(0, »%) = 0.

By (4.2.4), T2, = 3g%2g,, 1. Therefore gs, (0, #%) = 0. Also, 2I'2,(0, %) =
822,2(0, 4?)/g2; = 0 and 20350, u%) = —g22,1(0, #?)/g1, = 0. O
4.3.8 Proposition. In geodesic coordinates, K(u) = —(V ga2),11/V &a3-
PROOF. By (4.3.6) and (4.24), T}, = I'f; = T'}; = O and I'}, = (log Vga0) 1.
Therefore

K= Ri21g - 822112 — 822021 + 822(T'5: T3 — THl'3)

P 822
= —(log @),11 — ((log Vgaoh)* = - (\/g:\/:%—l—l' (|

If one writes (Vgas).11 + K(Vgas) = 0, this turns into a differential equation
for v/ ggo(ut, u3). It will be used below, e.g., in the proofs of (4.4.2) and
(4.4.6). Cf. also example (3.9.1).

4.3.9 Theorem. Let f: U— R® be a surface in geodesic coordinates. Then a

geodesic of the form

c={c(t) :=flt,ud) | to < t < t;}
is shorter than any curve b = {b(s) := fou(s) | so < 5 < 8,} from p, =
S(to, ud) to py = f(t,, ud):
L(b) = L(o).
PrOOF
83 s

L(b) =f V') + gog o u(s)?)? ds = J. ' [u| ds = u(sy) — 1*(so)
so s

]

=1 — ty = L{c). O
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4.4 Surfaces of Constant Curvature

fliu' =u('))

Po
fl {u2 =u§}

Figure 4.3 A curve in a geodesic coordinate system

Remark. The geodesic ¥ = 4§ in a geodesic coordinate system is said to be
embedded in a field of geodesics. In the previous theorem we compared the
length of such a geodesic ¢ with a curve b which lies within such a field. If ¢
and b have the same end points, then L(b) > L(c). If b does not lie in a field
of geodesics, then it is possible that L(b) < L(c). For example, consider a
region on the unit sphere of (3.3.7), namely

S(u, v) = (cos u-cos v, cos u-sin v, sin u), |u] < =/4, |v] < =/2.

Using (4.3.5) we see that (u, v) are actually geodesic coordinates based on the
curve v = 0. However, we may add to this region a patch of surface which
meets this piece of a sphere smoothly and joins a neighborhood of 10, —#/2[
to a neighborhood of 10, + =/2[ around the back in such a way that it contains
a curve b of length approximately 2 which, of course, is strictly less than .
But = is the length of the geodesic ¢(¢) = (0, ¢), —7/2 < t < 7/2.

—— "/

Figure 4.4

4.4 Surfaces of Constant Curvature

4.4.1 Definition. Two surfaces f: U—> R® and f: V¥ — R® are isometric if
there exists a diffeomorphism ¢: ¥ — U such that

ZoedPX, dpY) = §(X, Y)
forallve Vand X, Ye T,R2

Remark. The map ¢ is called an isometry. It is a diffeomorphism which does
not stretch the length of vectors or change angles. It is clear that isometry is
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4 Intrinsic Geometry of Surfaces: Local Theory

an equivalence relation between surfaces, and that the definition involves only
the intrinsic geometry of a surface. If ¢: ¥V — U is an isometry, then for
all X, YeT,f,

Bowdf o dp o df X, df o dp o df 1Y) = (X, Y).

To check whether a map ¢ is an isometry, it is only necessary to verify
that g,.(ddfi, ddf)) = 8 fi f;) = 8. This is because g and § are bilinear and
the coordinate vectors form a basis at each point.

An example. The cylinder f(u,v) = (h(u), k(u),v) with A% + k2 =1,
(u,v)e I x R, is isometric to the strip in the plane defined by f(u,v) =
(U, v,00eR3, (u,v)el x R.Themap¢ = id: I x R— I x Risanisometry,
& = fifi = 8 = G-

Both the cylinder and the plane have zero Gauss curvature. The following
theorem will show that this condition characterizes all surfaces which are
(locally) isometric to the plane; in other words, all surfaces which may be
mapped diffeomorphically onto a piece of the plane without any stretching.

4.4.2 Theorem. Let f: U— R® be a surface. The following conditions are
equivalent.
i) K®) = 0.
ii) There exist local coordinates in which g, = 8.
iii) Parallel translation is independent of path.
iv) The surface f is locally isometric to an open set of the Euclidean plane R2.

Remark. As usual, the use of the word “local” means that the statements
hold true for a sufficiently small simply connected neighborhood of any point
u € U. In fact, the theorem fails ““ globally”’; the conditions are not equivalent
in the large. For example, consider the doubly covered annulus

u? — v? 2up
ﬂuﬂ):(ﬁ’\/ﬁ”)’ O<a<u®?+v2<bh.

Certainly K = 0, but (ii) and (iv) fail globally.

Proor. 0. Notice that (ii) and (iv) are clearly equivalent.

1. (i) = (ii). By using (4.3.6), we may assume that f'is presented locally in
geodesic coordinates based on a geodesic; so-called Fermi coordinates. The
assumption that K = 0 implies that (Vgs2) 1, = O (see (4.3.8)). Therefore
(V/gaz).1 is a function of the second coordinate only. But since g5 1(0, %) = 0
in geodesic coordinates, it follows that g,,; = 0. Since g.(0, 4% = 1, it
must be that g, = 1.

In geodesic coordinates, g;; = 1 and g,5 = 0. Therefore g;; = 8.

2. (ii) = (iii). Given (ii) it follows from the coordinate formula for parallel
translation, (4.1.2)(*), that parallel translation on f is identical to parallel
translation in the plane, and (iii) is true in the plane.
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4.4 Surfaces of Constant Curvature

3 (iii) = (iv). Let (%, u®) be geodesic parallel coordinates based on a geodesic
(0, u?). We wish to show that the curves (1}, u?) are also geodesics. Consider
the unit vector @ = ey/V/gaa(d, 0) € Ty 1,0)R2. Since the curve u* = 0 is a
geodesic and e, is perpendicular to it, the parallel translation of @ along u? = 0
to the point (0, 0) must be a unit vector perpendicular to u? = 0 at (0, 0).
Therefore it is e,/V/222(0, 0). Since t = 0 is a unit-speed geodesic, the parallel
translate of e,/v/g,2(0, 0) along this curve is simply the tangent vector to this
curve. Its value at u2 is e5/V/g55(0, u3). Now parallel translation of this vector
along u? = uf to (u}, u3) preserves orthogonality and length, so the parallel
translate of e,/Vg5(0, uZ) at (ul, u2) is es/ V'gag(ud, ul).

Since we are assuming that parallel translation is independent of path,
the parallel translate of a along #* = u§ at the point (u, uZ) must be
s/ Vgaa(ud, u2). Therefore e,/V gy, is a parallel vector field along #* = ud.
This means that #* = u} is a geodesic. Even more, it means that g,,(u}, u?)
is a constant function of #2. Using the geodesic equation of (4.3.3), it follows
that T'j; = 0. By (4.2.4), TI'l; = —g4s,1/281;. Therefore go (s, ud) =
£20(0, u3) = 1, since g, is a constant function.

In geodesic parallel coordinates, g;; = 1 and gy, = 0, so we now have
shown that g;;, = §;,, and (iv) follows from step 0 above.

4. (iv) = (i). K is invariant under change of variables. So if f is isometric
to the plane, then K = 0. O

4.4.3 We will now give a geometric interpretation of parallel vector fields
along a curve ¢ = fou on a surface f. In (3.7.7), we defined the osculating
developable of a surface, and in (3.7.8) and (4.2.5) an example was given
which used the osculating developable to interpret parallel translation on the
sphere. We will now do this in general. Of course, the osculating developable
is not an intrinsic geometric object on a surface, so for the moment we are
leaving the realm of intrinsic differential geometry.

Lemma. Let c(t) = fo u(t) be a curve on a surface f. Suppose the osculating
developable of f along c(t) is given by

g(s, 1) = sY(t) + ().

If X(¢) is a tangential vector field on f along c(t), then X(t) is also a
tangential vector field on g along c(t) = g(0, t). Furthermore, X(t) is
parallel along c, considered as a curve on f, if and only if X(t) is parallel
along ¢, considered as a curve on g.

4.4.4 Corollary. The developable surface g is locally isometric to the plane.
Therefore X (t) is parallel along c(t) if and only if X(t) is parallel along
¢(t) in the Euclidean sense when considered as a vector field along a curve
in the plane.
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4 Intrinsic Geometry of Surfaces: Local Theory

Proor. Along c(t) the tangent spaces of f and g agree: T,/ = T8
Therefore VX/dt = pr dX/dt is the covariant derivative of X along c(¢) on
both fand g. This proves the lemma. The corollary now follows from (4.4.2)
and the fact that g has zero Gauss curvature. O

4.4.5 Examples of surfaces with constant Gauss curvature

1. The Euclidean plane: f(u, v) = (4, v, 0) has K = 0.

2. The sphere of radius r > 0: f7 = (r-cos u-cos v, r-cos u-sin v, r-sin u) has
curvature K = 1/r2. To see this consider geodesic coordinates # = ur,
¥ = v based on the equator ¥ = 0. Since the equator is a geodesic, these
are Fermi coordinates. Let f(#, 5) = f'(d/r, §). An easy calculation shows
that

§11=f¥=1, g~12=ﬂ'.f2=0’ g~22=f§=’20052(%)a

and (4.3.8) allows us to calculate K = -—(\/g—;z),n/\/gzz = 1/r2
3. The “pseudosphere” of (3.9.1) which is the surface of revolution gener-
ated by a tractrix:

Su, v) = (h(u) cos v, h(u) sin v, k(u))
with
h(u) = re-v, k(u) = J’u V1 — e~ 2 gy, r>0,

fi=h2+k2=1, fi-fa=0, f%=~n
These are geodesic parallel coordinates and, by (4.3.8), K = —1/r2.

4.4.6 Proposition. Suppose f is a surface with Gauss curvature K = K,, a
constant. Then in Fermi coordinates

ds? = du® + cos*(V Kyu) dv®.
Here cos(V Kyu) is interpreted as cosh(V — Kou) when K, < 0.

Proor. By (4.3.7), g,; = 1 and g,, = 0, so in Fermi coordinates based on
a geodesic u = 0,

ds? = du? + g, dv?

with g50(0,v) = 1 and g,5,,(0, v) = 0. We may assume K, # 0, since the
case K, = 0 follows immediately from (4.4.2). By (4.3.8), (Vgs2) 11 +

K,V gs, = 0. With the given initial conditions, this equation has the unique
solution

Vgag = cos(VKqu). 0O
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4.5 Example and Exercises

We will now use this “normal” form for the line element ds2 on a surface
of constant Gauss curvature to generalize (4.4.2).

4.4.7 Theorem. Suppose f: U— R® and f: U— R® are two surfaces with
constant Gauss curvature. The surfaces f and f have the same constant
Gauss curvature if and only if they are locally isometric. Under these
conditions, given unit vectors X, € T, f and X, Ty, 7, there exists a neigh-
borhood U, of uy and V, of vy and an isometry ¢: Vo — U, with $(ve) = 1,
and dp o df 1 X, = df 1 X,.

ProOF. 1. Suppose f and f have the same constant Gauss curvature. Given
Uy € U (resp. v, € V) and X, € T, fa unit vector (resp. X, € T, f), letc(t) =
Sou(t) (resp. é(t) = fov(t)) be the unit-speed geodesic with u, = #(0) and
¢0) = X, (resp. v, = v(0) and ¢(0) = X;). Introduce Fermi coordinates
(u, v) near u, based upon the geodesic ¢ (resp. (i, #) near v, based upon the
geodesic ¢). The points f(uo) and f(v,) correspond to the coordinate (0, 0).
By (4.4.6), the line elements of £ and f are in exactly the same form, which
means that the local diffeomorphism induced by letting ¥ = #and v = ¥ is
a local isometry.

2. Suppose f and f are locally isometric. Then K(uo) = K(v,) for every
o€ U and v, € V. f and fhave the same constant Gauss curvature. O

4.5 Examples and Exercises

4.5.1 The geodesics on a surface of revolution.! Let f be a surface of revolution as
defined in (3.3.7, 3). We will consider those surfaces given in the special form:
f(u, v) = (r(u) cos v, r(u) sin v, u), r>0.

Recall this is the surface generated by rotating the curve (r(u), 0, ) about
the z-axis. The curves v = vy = constant are called meridians. They are
geodesics. The curves u = u, = constant are called parallel circles. They
are circles of radius equal to r(uo).

Let T°f denote the collection of nonzero tangent vectors on f. If X € T,
define 6(X) to be the angle between X and the parallel circle # = u, (here
Xe T(uo.vo)f)a i-e"

0(X) := arc cos(X-£,(uo, vo)/| X |r(uo)).
The mapping
Q:T%— R,

defined by X > r(uo) cos 8(X), determines almost all the geodesics on f.
Prove the following theorem due to Clairaut: A curve c(t) = f(u(t), v(t))
on f which satisfies u(z) # 0 is a pre-geodesic if and only if ®(¢(2)) is a
constant. (This theorem, which expresses the conservation of the angular
momentum @, is a special case of a more general result about surfaces

which may be expressed in local coordinates whose line element has a
specific form (Liouville line element). See (5.7.5).)

1 See Darboux [A6], Volume III, Book 6, Chapter 1.
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4 Intrinsic Geometry of Surfaces: Local Theory

Clairaut’s theorem enables us to give a qualitative description of the
geodesics on a surface of revolution. To simplify matters, let us assume that
the surface f possesses an “equator.” By this we mean that r(¥) < r(0) with
equality if and only if ¥ = 0, and for every 4, > 0 in the domain of defini-
tion there exists a unique #- < 0 such that r(u,) = r(x-). In other words,
to every northern latitude circle there corresponds exactly one southern
latitude circle and conversely. This boils down to an assumption about the
shape of the meridian curve; in particular, r(u) must have a strict Iocal
maximum at u = 0.

Let 0, be an angle small enough to insure the existence of a pair u.., -
in the u-parameter interval such that r(0) cos 0, = r(u,) = r(u-).

Show: (i) There exists a geodesic which (a) cuts the equator at an angle
of 8y, (b) crosses every parallel circle # = constant foru_ < u < u., (c) lies
entirely in the region of the surface of revolution with u_ < u < u,, and
(d) meets the parallel circles # = u, and # = u_ tangentially.

Since rotation, u— u, v v + vo, is an isometry of a surface of rev-
olution, the above result characterizes every geodesic which crosses the
equator at a sufficiently shallow angle.

(ii) The equator itself is a geodesic. More generally, on any surface of
revolution a parallel circle ¥ = u, = constant is a geodesic if and only if
r'(ug) = 0.

4.5.2 Examples of surfaces of revolution with an equator.® The surfaces of revolu-

tion with constant curvature X = 1 of (3.9.1, ii) all have equators of length
27a. By using the fact that these surfaces are locally isometric to the sphere
of constant curvature X = 1 (for which a = 1), show: (i) If aisirrational, a
geodesic which crosses the equator making a sufficiently small angle 6,
(small enough so that the geodesic is defined for all values of ¢, see (4.5.1))
will never close up smoothly. Consequently, the equator is an isolated
closed geodesic. (ii) If ais rational, i.e., a = p/q with p and q relatively prime,
then all geodesics which cross the equator making a sufficiently small angle
8, # 0 must be smoothly closed curves of length 2mg. Consequently, any
small perturbation of the initial conditions defining the equatorial geodesic
will be the initial conditions of a closed geodesic.

1 See Darboux [A6], Volume III, Book 6, Chapter 1.
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Two-Dimensional
Riemannian Geometry

In the previous chapter, we considered the intrinsic geometry of a surface
f: U— R3. Many geometric properties of surfaces were presented in terms of
the open set U, together with the positive definite inner product g, on each
T,R?2 (i.e., in terms of the first fundamental form). The geometric properties
were those invariant under change of variable.

We did, however, continue to distinguish between surfaces which were
isometric but not congruent. For example, we made a distinction between the
cylinder and the plane in (4.4). The cylinder is locally isometric to the plane,
but there does not exist an isometry of R® which maps the plane into the
cylinder, even locally. This distinction is not an intrinsic one, and involves
reference to the ambient space R®, and to the respective mappings which
define the plane and the cylinder.

In this chapter, we will make two important generalizations of the notion
of a surface. First, a (local) surface will be defined to be an open set U < RZ,
together with a positive definite inner product g, on each T,R2. The inner
product is not required to be derived from some f: U — R3. It is only required
to be differentiable as a function of u € U. Second, the idea of a manifold will
be introduced. A two-dimensional manifold is a topological space which,
locally, is homeomorphic to an open set in R?. For example, each point on the
sphere S2 in R® has a neighborhood homeomorphic to an open set in R?, but
the entire manifold S2 does not have this property. We will want to consider
manifolds on which a positive definite inner product is defined at each point,
i.e., Riemannian manifolds,
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5 Two-Dimensional Riemannian Geometry

5.1 Local Riemannian Geometry

Let S(2) denote the set of all real symmetric, positive definite 2 x 2 matrices
(gi). An element of S(2) corresponds to the matrix representation of a
positive definite quadratic form on the vector space R? (see (3.2.1)). As a set,
S(2) may be considered an open subset of the three-dimensional space of all
2 x 2 symmetric matrices, and as such we may speak of differentiable maps
from R? into S(2), meaning that the induced map from R? to R® is differen-
tiable.

5.1.1 Definitions. i) Let U be an open subset of R2. A Riemannian metric on U
is a differentiable map

g: U—S(Q).

Notation: We will denote a Riemannian metric on U by (U, g).

If (U, g) and (¥, §) are two sets with Riemannian metrics, they are
equivalent if they are isometric. In other words, they are equivalent if
there exists a diffeomorphism ¢: V' — U such that

Zow(dpX, ddY) = g(X,Y) forall X,YeT,R?and allve V.

If (U, g) and (V, &) are equivalent via an orientation-preserving diffeo-
morphism ¢ (det d¢ > 0), they are said to be positively equivalent.
i1) A (local) surface with Riemannian metric is an equivalence class of sets

with Riemannian metric.

A (local) oriented surface with Riemannian metric is a class of sets
with a Riemannian metric which are positively equivalent.

We will use M to denote one of these equivalence classes. In general,
M will be written in terms of one of the (U, g) and we will call (U, g) a
coordinate system of M. The elements of U will correspond to points of
M and these points will be denoted by the letters p, g, r,....

Remark. If f: U~ R is a surface in the sense of Chapters 3 and 4, it defines
a surface with a Riemannian metric, namely the equivalence class of (U, g)
with g, = I,

We will now prove that all the geometric objects of Chapter 4, which may
be defined in terms of the Riemannian metric g, = I, and which are invariant
under change of variables, may be generalized to geometric objects on a
surface with Riemannian metric. To wit:

5.1.2 Lemma. Let M be a surface with a Riemannian metric. Let (U, g) be a
coordinate system for M.
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5.1 Local Riemannian Geometry

i) Let ¢ be a curve on M, represented by u(t), t, < t < t,. Then the
length of ¢, L(c), and the energy of ¢, E(c), defined by

L) := f‘ A/ Zk Zueou(2)i(2)ie(t) dt

t1
EQ =3 [ 3 s d,

are invariantly defined.
ii) Define the Christoffel symbols T}, by

1
I = 3 ngl(gli.j + 8u,s — &0
7

and the covariant derivative of the basis vector fields e u) by

Vey(u .
a;(,):=2k:1‘§‘,oue,,(u), 1<i,jk<2
If X is a vector field on M, the covariant differential VX, and the
divergence div X, may be defined as follows. In terms of the coordinates
(U, g), X may be written as 3, £u)e,(u). Then VX: T,R? — T,R? is
the linear transformation corresponding to the matrix

(VX@W)) = (a‘;;(,”) + Z £ o u)
(see (4.1.5)) and
div X = trace VX = \/L‘_g Z 5%; (Vgé*),

where g = det(gy). (Compare with (4.1.7, 1)).
All of these quantities are invariantly defined.

iii) The covariant derivative VX(t)/dt of a vector field X(t) along a curve
¢(t) in M may be defined in terms of a coordinate system (U, g) by
using the formula (4.1.2(%)). Let X(t) = > £(t)ey o u(t). Then

VRO -3 (60 + 3 #0w0)Th e uo)ew o o
Using this definition, we may now speak of parallel vector fields X(t)
along c(t), i.e., vector fields satisfying VX (¢)/dt = 0.

iv) The Frenet frame of a regular curve c(t) on an orientable surface M is
definable exactly as in (4.2.6).

V) Geodesics as in (4.3.1).

vi) The curvature tensor, defined on (U, g) as in (3.8.4), is coordinate
invariant. It is given by

v Vv vV Vv
Ry = g el T AR )
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5 Two-Dimensional Riemannian Geometry

vii) The Gauss curvature K is invariantly defined. With respect to (U, g),
it is K = Ryzo/det(gy).

Proor. The above definitions involve tangent vectors, curves, and the
Riemannian metric, all of which may be expressed in terms of a local coordi-
nate system, (U, g). What needs to be verified is that these definitions are
independent of choice of coordinate system.
1. Suppose ¢: (V, &) — (U, g) is an isometry. This means that
ou* out

20) = 3 s o BuBO).

From this it is clear that length and energy are invariant under change of
coordinates.

2. To show that the expression (4.1.2(*)) for the covariant derivative is
coordinate invariant, it suffices to verify the transformation law (4.1.3) for the
Christoffel symbols. This may be done by direct calculation. If such a calcula-
tion is not to your taste, here is an alternate proof. First express &,, and I';,
in terms of gy, and T'},. Now consider (4.1.3) as an identity in which the I'}
appear linearly, with coefficients of the form ou!/ov®, 8%u!/0v*0v® and their
products.

We now claim that, given u, € U, there is a surface f: U — R® such that
the g;,(1,) and T'f(u,), defined by £, agree with those given by the Riemannian
metric on U at u,. We have already verified (4.1.3) for surfaces f: U — R, and
the identity will then follow in the Riemannian case.

To prove the claim, observe first that it is certainly possible to construct
an f with the required g;/(u,). We may then introduce a change of variables
é: (v, v¥) = (1, u?) with ou®/ov' = 8F at uy and (0%u*/ouP dum)(u,) arbitrary.
Using the transformation law for the Christoffel symbols, (4.1.3), it follows
that for an appropriate choice of ¢ the mapping f'= fo ¢ will have the
required Christoffel symbols.

From this (ii) and therefore (iii)-(vii) follow: all the quantities are param-
eter-invariant. The only loose end is the invariance of Ry, but this follows
directly from the definition of Ry, O

Before continuing with our general development of the subject of surfaces
with a Riemannian metric, let us pause to consider a very important example.

5.1.3 The hyperbolic plane (the Poincaré half-plane) HZ.

The surface H? is the set U := {(u,v) € R?| v > 0}, together with the
Riemannian metric ds? := (r? du® + r2 dv?)/v?, r > 0 (see (3.4.2)). Recall
that this notation for the metric is equivalent to g, = (r2/v?)8,.

Introduce geodesic coordinates based on a horizontal line v = v, > 0 as
follows: u = &, v = exp(—#ifr), (#, ) e R x R. Computing (§), using the
transformation law for the first fundamental form under change of variables,
we get g1y =1, §12 = 0, o3 = r2exp(2ii/r). Therefore, by (4.3.8), K =
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5.1 Local Riemannian Geometry

(= V%22).11/VZ22 =—1/r2. The hyperbolic plane H? has constant Gauss
curvature equal to —1/rZ.

Notice that the line element ds? of H? in the (u, v) coordinates is equal to
the Euclidean line element du? + dv? multiplied by a function, i.e., it is
proportional to the Euclidean line element. Because of this, angles measured
in the Euclidean upper half-plane are equal to angles measured in the metric
of HZ

Remark. Given two surfaces with Riemannian metric (U, g) and (7, §), a
mapping ¢: U— U is conformal if §,.,(dd(X), d(Y)) = Au)gu(X, Y) for
all X, Y e TU. Here A: U — R s a real strictly positive differentiable function.
It is straightforward to prove that if ¢ is conformal, ¢ preserves angles. In
the above example, the identity is a conformal mapping.

The hyperbolic plane provides a negative answer to a very natural question
that may have already occurred to the astute reader. Is it true that every
surface with Riemannian metric (U, g) can be realized as a surface f: U — R®?
(That is, the metric induced by the mapping f is isometric to g.) In 1901,
David Hilbert proved that H? cannot be realized as a surface in R3.! None-
theless, each point p € H? has a neighborhood ¥ which may be realized as
a surface f: ¥ — R®. In fact, we have all but proved this already. The pseudo-
sphere of (4.4.5) is a surface in R® with constant negative Gauss curvature
—1/r2. But Theorem 4.4.7 says any two such surfaces of the same constant
Gauss curvature are locally isometric.

There is not a globally defined isometry, however. Briefly, H? is simply
connected and complete (for precise definitions, see (6.6.2) and (6.4.4),
respectively) and the pseudosphere is neither. Any global isometry would
preserve these properties. A proof of Hilbert’s nonexistence theorem may be
found in Hopf [A11] or do Carmo [A8].

5.1.4 A brief word about transformation groups. Let E be a set and G a group.
The group G acts on E as a transformation group if there exists a mapping
G x E— E; (g, x)> gx such that

(8182)x = 81(82%)
and
ex = x, where e € G is the identity element.

For each g € G, the map g: E— E; x— gx is a bijection since g ~1 is its inverse.
Of course, a group G may act on a set E in more than one way.

An action of G on E is transitive provided that for each pair x;, x, € G
there exists a g € G such that gx; = x.

Given x € E, the isotropy subgroup G, is the set of all ge G such that
gx = x. It is easy to check that G, is in fact a subgroup.

! Hilbert, D. Uber Flichen von konstanter Gausscher Kriimmung. Trans. Amer. Math.
Soc. 2, 87-99 (1901). For further references, see Nirenberg [A12].
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5.1.5 Definition. SL(2, R), the special linear group in dimension 2, is the group

of all real (2 x 2)-matrices with determinant = 1.

We may define an action of SL(2, R) on H? as follows. First introduce
the complex variable z = u + iv. The points (1, v) in the upper half-plane
correspond to z = u + iv, v > 0. Given g = (¢}) e SL(2, R), let gz =
(az + b)/(cz + d).

Figure 5.1 Geodesic circles in the Poincaré half-plane

It is easy to verify that (g, z)— gz is an action of SL(2, R) on H2. In fact:

5.1.6 Proposition. The group SL(2, R) acts as a group of isometries on HZ.

Moreover, the action is transitive (even stronger, given any two unit tangent
vectors to HY, there exists a g € SL(2, R) such that dg maps one into the
other). The isotropy subgroup of any point of H? is isomorphic to SO(2),
the group of rotations of the Euclidean plane.

ProoF. 1. Let u + iv = z and (az + b)/(cz + d) = 2. If we write dz dz
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for du® + dv®, the line element for H? at z may be written ds2(z) =
—4r2 dz dz/(z — Z)%. (Recall Z = u — iv). An easy calculation shows that
dz = d((az + b)/(cz + d)) = dz/(cz + d)? and therefore ds(z) = ds2(%).
This means that z+> Z is an isometry.

.If z =1, then Z = & + i = (ai + b)/(ci + d) = (bd + ac)/(c* + d?) +

i(1/(c* + d%)). Now, given any (&, &) with & > 0, there exists a g = (23),
with ad — bc = 1, such that g maps (0, 1) into (#, 7). Namely, let d = 0,
¢ = 1/VD, a = 4/V3, and b = — /. Therefore SL(2, R) acts transitively
on HZ.

. The isotropy group of z = i is the group of all matrices (2 ) with bd +

ac=0, ¢*+ d?=1, and ad — bc = 1. This implies that, for some
$€[0,2n],a = d = cos and b = —c = sin ¢. Conversely, given ¢ € [0, 27],

cosé —sin ¢ l
(sin ¢ cos qS)
is an element of the isotropy group of z = i. Therefore SL(2, R), = SO(2],
i.e., the isotropy group of SL(2, R) at i is SO(2).
The isotropy groups of any z and z’ are conjugate to one another. For,
if geSL(2, R) takes z to gz = 2/, then G, = gG,g~!. Therefore all
isotropy groups of this action are isomorphic to SO(2). Combining this



5.2 The Tangent Bundle and the Exponential Map

result with (2) above also proves that SL(2, R) acts transitively on the unit
tangent vectors of H2. |

5.1.7 The geodesics on H? are, modulo parameterization, circles or straight
lines (in the Euclidean sense) which meet the boundary v = 0 orthogonally.
To prove this it is sufficient to establish the result in the case r = 1, since
the identity map from H? to HZ is a homothetic transformation with
constant = r (i.e., a conformal map with A(%) = r). Such a map must preserve
geodesics. (Proof: exercise.)

In H? gy, = 1v% g2 =0, and gy = 1/v2. Therefore I'l; = '}, =
I'%; =0 and T% = —T'4;, = T}, = 1jv. The differential equations for
geodesics, (4.3.3), can therefore be written in the form

2up . ut =

i-2-o0, b+ =0.
v v

If # = 0, then u = constant. In this case the geodesic is a line orthogonal
tov =0.

If 4 # 0, the first equation implies that In(#/v?) = constant and therefore
u = cv? # 0 for some constant ¢. Similarly, the second equation implies
u? + 92 = bv? > 0for some constant b. Combining these two equations gives
(dvdu)? = 9*[u® = b/c*v? — 1. Therefore (u — a)® + v?> = bjc? for some
constant a. This is a circle with center on v = 0. Hence the circle meets v = 0
orthogonally.

5.2 The Tangent Bundle and the Exponential Map

The notion of the tangent bundle TU of U < R? was introduced in (0.4). We
recall briefly some notation and basic facts. First, # = #y: TU — U denotes
the projection. The inverse image 7~ (1) of u is precisely T,R2. The canonical
identification TU 2~ U x R? allows us to define a differentiable structure on
TU (i.e., as a subset of R*) and therefore it makes sense to speak of differenti-
able functions f: TU — R or differentiable mappings X: U — TU.

Suppose now that (U, g) and (V, §) are two coordinate systems for a
surface M. There must be an isometry ¢: V — U, that is, a diffeomorphism
with g(dé, dp) = &(_, ). The tangential of ¢,

Té: TV — TU,
must also be a diffeomorphism (for definition, see (0.4)). Moreover, T¢ is
compatible with the projections; 7y o T¢p = ¢ o 7. Also, To|T,R2 maps T,R?
onto T,.,R? isometrically. Using this we may make the following definitions.

5.2.1 Definitions. Let M be a surface with a Riemannian metric.
i) Let (V,§) and (U, g) be representations of M and ¢: V— U an
isometry. We will say that X, e T,R? < TV is equivalent to X, e
T,R? < TUprovided Té(v, X,) = (4, X,),1.e.,¢(v) = vand d X, = X,.
A tangent vector to M is an equivalence class of such vectors.
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5 Two-Dimensional Riemannian Geometry

ii) Every tangent vector X to M determines an element of M. If X is
represented by (4, X,) € T,R? = TU, the point p € M represented by
u € Uis called the base point of the tangent vector X. The base point of
X is defined independently of choice of coordinate systems.

iii) The tangent bundle of M, denoted by TM, is the set of all tangent
vectors of M, together with the map =: TM — M which maps X € TM
to its base point. If U is a representative of M, TU together with
my: TU— U s called a representation of TM. The tangent bundle TM
of M has a natural differentiable structure inherited from the differen-
tiable structure of its representatives. This differentiable structure is
clearly independent of the choice of representative.

iv) The inverse image 7 ~(p) of a point p € M under the bundle projection
w: TM — M is called the tangent space of M at p. Notation: T, M.
The space T,M consists of precisely those vectors in TM with base
point equal to p. If TM is represented by TU and p is represented by u,
T,M is represented by T,R2. Via this identification, T,M has the
structure of a two-dimensional real vector space with a positive
definite inner product g, defined by g,.

v) Given X € TM, the norm of X, |X|, is defined by |X| := |X,]| :=
Vg (X,, X.), where X, e T,R? is a representative of X.

vi) Let e > 0. By B.M we will mean the set of all X € TM with | X| < e.
The set B, < TM is an open set because, in a representation TU,
B.M is represented by the set of all X, with |X,| < e. This set is the
inverse image of the open interval ]—e, [ under the continuous func-
tion v: TU — R that carries X, into |X,|.

Remark. For each pe M, B.M N T,M is the open disc B.(0) centered at the
originin T, M. Let X € T, M. Given a sufficiently small ¢ > 0 (¢ depends on X),
there exists a unique geodesic c(?), |¢| < €, in M with ¢(0) = X (this follows
from (4.3.4)). We shall denote this geodesic by c;.

We now want to use this fact in order to construct a map from B,.(0) onto a
neighborhood of p in M. To be precise, the map we will use is X € B(0) — cx(1).
Even more, we would like to do this simultaneously for all p € M in a suffi-
ciently small neighborhood of a point p, € M.

5.2.2 Lemma. Let M be a surface with a Riemannian metric and let p, € M.
Then there exists an open neighborhood M, of p, and an € = €(p,) > 0 such
that the map B.M, — M given by X — cx(1) is defined and differentiable.
Consequently, if nX € M, and | X| < ¢, then tX, 0 < t < 1, gets mapped
into a geodesic cx(t).

ProoF. 1. We will do everything in a coordinate system (U, g) of M. The
point p, will be represented by u,.
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5.2 The Tangent Bundle and the Exponential Map

2. The differential equations (4.3.3)(*) for a geodesic can be written in the
form

wt =0k oF= —2 v’ TH(u).
1,

Let u(t; u, X), v(t; u, X) be the solution of these equations which have
the initial value (4, X) € U x R? ~ TU when ¢ = 0. Applying well-known
theorems of the theory of ordinary differential equations (see Hurewicz,
Lectures on Ordinary Differential Equations, M.LT. Press, 1958), there
exists a neighborhood W = 1—-26, 26[ x B§(uo) x B3(0) of (0,4, 0)eR x
U x R? on which the map ®: W — U x R? given by

¢, u, X) > (u(t; u, X), o(t; u, X))

is differentiable. Here B denotes the disk of radius p in the Euclidean
metric.
3. Since B4(u,) is relatively compact in U, there exists a y > 0 such that, for
every u € Bi(u,), X - X = (x] + x3) < y’g.X, X).
Set € = n0/y, and define U, = Bj(u,). From the differential equations
above, it follows that for 8 # 0 the following identities hold:

u(t; u, X) = u(20, u, X/0), o(t; u, X) = 0v(20; u, X/6).
Now |t| < 2< |¢6] < 20 and, if g,(X, X) < €%,
(X/6)-(X/6) < y*8(X]8, X/8) < y*e*6% = n°.
Therefore @ is defined and differentiable on ]—2, 2[ x B.U,, where
B.U, = {X€TU, | gax(X; X) < €%}

4. Let uy be the representative of cx in (U, g). Suppose X € B.U,. Since
ux(t) = u(t, 7X, X), the map X — ux(1) is differentiable. Since ux(t) =
u(t, 7X, X) = u(l, 7 X, tX) = ux(1), the set {tX|0 <t < 1} is mapped
onto {ux(t) |0 < ¢t < 1}. O

Figure 5.2

5.2.3 Definition. The map
BM,— M; X+ cx(1)
is called the exponential map and is usually denoted by *“exp.” The open
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5 Two-Dimensional Riemannian Geometry

sets M, and B.M, corresponding to a given point p, € M are defined in
(5.2.2), where the existence and smoothness of exp is proved.

Remark. The name exponential mapping comes from the theory of Lie
groups. In the simplest possible case, the map T,R*— R* given by 7+ ' is
a map from the tangent space TR+ of the multiplicative group R* of positive
reals (which we may identify with the additive group R) into R*.

5.2.4 Lemma. Let M be a surface with Riemannian metric. Let p, € M. Then
Do has a neighborhood M, < M such that, for some € > 0, the map

m X exp: B.My— M x M defined by X+ (v X, exp X)

is an injective diffeomorphism (in other words, a diffeomorphism from B.M,
onto an open subset of M x M).

Proor. First translate the claim into a statement for a local coordinate system
(U, g). Let uy € U be a representative of p,. The map 7 x exp: B.Uy— U x U
exists and is differentiable by (5.2.2). Using (0.5.1), it will suffice to show that
the differential of # x exp is injective at (o, 0). Toward that end, consider the
curve (4, + tX,, tX) in B.U,. This curve passes through (u,, 0) when ¢ = 0.
What is its image in M x M under = x exp? Using the notation of (5.2.2),
we see thatitis (uy + tX,, u(t; 4o + tXo, X)). Thisis because u(l; uy + tXp, 1X)
= u(t; Uy + tXy, X). Thus d(m X exp)u, o0 Xo, X) = (Xo, X + X), and
therefore d(m X €XP)w,,0) i injective. d

As an easy corollary of this lemma, we have the following:

5.2.5 Theorem. Let p, be a point on M, a surface with a Riemannian metric.
Then there exists a neighborhood My < M of p, and a p = p(po) > O such
that:

i) Any two points q, r € M, may be joined by a unique geodesic c,; = Coft),
0 <t<1,oflength < p.
ii) The map M, x M,— TM given by (g, r) > ¢,(0) is differentiable.
iii) For every q€ M, the map exp,: B,(0) =« T,M — M is an injective
diffeomorphism (a diffeo onto an open subset of M).

PRrOOF. Let (U, g) be a coordinate system for M. Let u, € U. Choose p and
Us 2 uy as in (5.2.4), making

m x exp: B,Us—>U x U

an injective diffeomorphism. Choose U, containing #, small enough so that
(7 x exp)(B,Up) > U, x U,. Therefore

(7 x exp)~*: Uy x Uy — B,U,

is an injective diffeomorphism. What does this mean? Given v and w in U,
(m x exp)~ (v, w) = Xe T,R? is a tangent vector and ux(r), 0 <z <1,
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5.3 Geodesic Polar Coordinates

represents a geodesic of length = |X| < p. Moreover, cx(t) joins v to w.
This proves (i) and (ii). (Why is cx(¢) “unique”?)

Since exp, B,(0) = pro (= x exp | B,Uy N T, R?), where pr: U x U— U
is projection onto the second factor, (iii) follows. O

5.2.6 Definition. Let M be a surface with Riemannian metric. Suppose p > 0
is such that exp, restricted to B,(0) < T,M is an injective diffeomorphism
from B,(0) into M. Then the image of B,(0) is called the p-disc with center
p. It is denoted by B,(p).

The set B,(p) = exp, B,(0) consists of precisely those points in M
which may be joined to p by a geodesic of length less than p. (We know
that every point in B,(p) may be joined to p by a geodesic of length < p.
The converse follows from (5.3.4), below.)

5.3 Geodesic Polar Coordinates

5.3.1 Definition. Let M be a surface with a Riemannian metric. Let pe M
be a point in M and let p > 0 be such that B,(p) is a p-disk with center at p.
Let {e,(p), ex(p)} be an orthonormal basis of T,,M.

i) The coordinate system ¢: B,(0) < T,M = R*— B,(p), defined by
(0!, v3) > exp,(5; v'ep)), is known as (Riemannian) normal coordinates.
ii) Geodesic polar (or simply polar) coordinates on B,(p) are the coordinates

$:10, o[ x R— B,(p) — {p}: (r, 6} exp,(r cos fe,(p) + r sin fe(p)).

The curves r = constant are called geodesic circles centered at p.

Geod. circle

Geod. line

Figure 5.3 Geodesic polar coordinates

Remarks. i) Riemannian normal coordinates may be defined with respect to
coordinate system (U, g) as follows. Let u, € U be a representative of p.
Choose {e,(uo), es(uo)} an orthonormal basis of T, R? with respect to the
metric g,,. Define ¢: B,(0) = B,(uo) by (v*, v®)> expy,(v'e; + v3es).
Clearly ¢ is a diffeomorphism. Let g(_, ) := g(d$, d¢) be the induced
metric on B,(0). Then (B,(0), §) is a Riemannian coordinate system for

B,(0).
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i) In order to make geodesic polar coordinates into a coordinate system in
the usual sense, the § variable must be restricted to lie in an open interval
of length < 2#. For example,

¢:10, p[ x J—m, [ = B,(uy) — {—pte;;0 <t < 1}.

We have to remove an entire radius.

5.3.2 Proposition (Gauss-Lemma).2 Polar coordinates are geodesic coordinates
based on a geodesic circle.

ProoF. Let (U, g) be a coordinate system on M. As in the remark above, we

may define

¢: V= ]—P’ P[ X ]—'"’ '”[ g Ba(uo)
@', v%) > exp,,(v* cos v3e; + v!sin viey) =: (U, u?).

We shall show that this is a geodesic coordinate system when »* > 0. To
do this we shall use (4.3.6 (iii)), which means we must show that in these
coordinates §;; = 1, §;, = 0, and &3, > 0. Now consider

o o out
8y = kzl 8t 77 557

on V. Since u*(0, v?) = uf = constant for k = 1,2, §,(0,v*) = 0. Fixing
v? = pgand letting v* = ¢ € ] —p, p[ vary parameterizes a unit-speed geodesic.
Therefore &, = 1 and, for v* > 0, [}, = %, = 0. By definition of I'};,

ng(zEll.l — &1, = 28%%821,, = 0.
T

But §22 = g,,/det(g,) # 0, which means that g,,, =0 for »* > 0 and
therefore for »! > 0 by continuity. &,,(0, v?) = 0 implies that §,, =0. O

Our first application of the fact that geodesic polar coordinates are
geodesic coordinates will be to show that geodesics have length minimizing
properties analogous to those of straight lines in the plane, at least locally.

5.3.3 Definitions. On a surface M with Riemannian metric,
i) acurvec = c(t), 1, < t < t, from py = ¢(2,) to q = c(t,) is minimizing
if, for any curve b = b(s), 5o < 5 < §, from p, = b(s) to p; = b(sy),
L) = L(c);
i) a curve ¢ = c(t), te I, on M is locally minimizing if, for every t, € I
there exists a closed interval I, < I containing 7, as interior point and
on which ¢/ is minimizing.

5.3.4 Theorem. Let B,(p) be a p-disk centered at p € M.
i) For every q € B,(p), the geodesic ¢ = ¢,y = c(t), 0 < t < 1, defined in
(5.2.5), is minimizing.

2 See footnote 12 of Chapter 6.
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ii) If b = b(s), so < s < 8y, is any other curve from p = b(s,) to q = b(sy),
then L(b) > L(c) with equality if and only if there exists a diffeomorphism
t: [So, 51] — [0, 1] with dt/ds > 0 and b(s) = c(t(s)).

Proor. 1. Without loss of generality ¢ # p and L(c) = r, > O.

2. We may further assume that given any comparison curve b(s), So < s < sy,
then b(s) # p for s > s,. Introduce geodesic polar coordinates (5.3.1 (ii))
on B,(p) — {p}. Here (r, 0) €10, p[ x R, and we may arrange it so that
0(c(t)) = 0.

3. Suppose b(s) € B,(p) for all se€[so,s;]. As in (2.1.3) one proves the
existence of differentiable functions 8: [s,, 5;] — R and r: [so, 5,] =10, p[
such that

b(s) = exp,(r(s) cos 8(s)e, + r(s) sin 0(s)ey)
(this may also be proved directly). It follows that for e > 0 sufficiently small,

Lo| 5+ eosD = VIGF T galGlds = r(ss) — r(so + ©

sp+e
= L(c) — r(so + ¢).
Since r(s, + €) — 0 as e — 0, L(b) = L(c).

Figure 5.4 Geodesics are locally minimizing

4. Suppose b(s) leaves the set B,(p). This means that there exists an s, < s,
such that b|[so, s2) < B,(p) and L(c) < r(ss) < p. Therefore L(b) >
r(sg) > L(c).

5. Suppose L(b) = L(c). Looking at the inequality in (3), we see that the
only way to get equality is for 8'(s) = 0 and r'(s) > 0. Therefore 8(s) = 0.
Letting ¢(s) = r(s)/ro, where r, = L(c), produces the required change of
parameter. Od

5.3.5 Theorem (A characterization of geodesics). 4 curve b = b(s), 5, <
§ < 8, on M is locally minimizing if and only if there exists a smooth
mapping t: [so, s1]+> [0, 1] with dt/ds > O such that b(s) = c(t(s)), where

¢ is a geodesic.
Proor. By (5.3.4), b is locally minimizing implies that b is locally of the form
c(t(s)). Conversely, (5.2.5) and (5.3.4) together show that geodesics are

locally minimizing, since length remains unchanged under a change of
parameters s+ 7(s) with dt/ds = 0. O
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5.4 Jacobi Fields

5.4.1 Definition. Let ¢ = ¢(¢), 0 < t < a, be a unit-speed geodesic on M. A
vector field Y(¢) along c is a Jacobi field provided g..,(¢(t), Y(¢)) = 0, i.e.,
Y is orthogonal to ¢, and

™ Z%zY ) + Ko c()Y(2) = 0.

This definition is clearly coordinate invariant, i.e., independent of the
choice of a coordinate system (U, g) on M. It will be useful to have (*)
expressed in terms of the Frenet frame e;(r), ex(r) on c¢. We may write
Y(t) = ya(t)es(t) for some smooth function y(z). Then (*) is equivalent to

V(@) + Ko c(t)y(t) = 0.
This follows since Viey(¢)/dt* = 0. As a further consequence of this,

gc(t)(é(t)’ _'%Lt(t_)) = gc(t)(el(t)’ Yt + ¥(t) 'V%(t—)) =0.

5.4.2 Proposition. Let c(t) be a unit-speed geodesic (|¢(t)| = 1). Given
ay, @, € R, there exists a unique Jacobi field Y(t) .= y(t)ey(t) with y(0) = ay,
W0) = a,. O

This follows directly from the existence and uniqueness theorem for
ordinary differential equations.

5.4.3 Lemma (How to produce a Jacobi field). Let ¢(t), 0 <t < a, be a
geodesic with |é(t)| = 1 and call ¢(0) = p. Let &(t) denote the segment
té(0), 0 < ¢ < a, in the tangent space T,M. Let A € T,M be a vector or-
thogonal to ¢(0). Then

Y(¢) 1= (dexp,)aetd) € TeM
is a Jacobi field along c(t). Moreover, Y(t) satisfies the initial conditions
Y(0) = 0and VY/dt(0) = A. (Here we consider tA as an element of Tz,M,
via the canonical identification.) Since a Jacobi field Y(t) is completely
determined by the initial conditions Y (0), (VY/dt)0), every Jacobi field Y (t)
with Y(0) = O may be written in the above form.

Proor. 1. Without loss of generality we may assume that A # 0. Furthermore,
solutions to the Jacobi equation (*) form a vector space; in particular, if
Y(2) is a Jacobi field so is a-Y(¢), a € R. Therefore we may assume that
|4} = 1.

2. Consider the orthonormal basis {e;(p), es(p)} = {¢(0), 4} in T,M. For
sufficiently small 8, ¢ > 0, we will define ¢: [0, a + 8] x ]—¢, e[ >M by

(r, 6) > exp,(r cos 0 e;(p) + r sin fey(p)).
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=
oo

Figure 5.5 Generation of a Jacobi field by variation through geodesics

For sufficiently small r > 0, this is a polar coordinate system centered at p.
We need to show that there exists 8 > 0 and € > 0 so that ¢ is defined.
Notice that ¢(¢, 0) is defined for € [0, a]; in fact, ¢(¢, 0) = c(¢). Moreover,
#([0, a], 0) is compact. If U < T,M is the domain of definition of exp,, then
#([0, a], 0) lies in exp,(U), an open set. The existence of the required ¢ > 0
and & > 0 now follow from the compactness of ¢([0, a], 0).

Let {e;(z), ex(t)} be the Frenet frame along c() with {e;(0), e;(0)} =
{e«(p), ex(p)}. We consider the (z, 6) coordinate having coordinate basis
{eu(t, 0), ex(t, 0)}. Now Y(r) = (0¢/20)(t, 0) = dd(ey(t, 0)), so if we write
Y(t) = y(t)es(t), then y(¢)*> = | Y(¢)|2. Wherever ¢ is a coordinate system,
its first fundamental form (g;;) must have g,5(¢, 0) = y(¢)% In fact, ¢ will be a
coordinate system in a neighborhood of any point (¢, 0) where y(¢) # 0, i.e.,
where Y(z) # 0. On such a neighborhood, we have geodesic polar coordinates
and hence, by (5.3.2), geodesic coordinates. This allows us to use the formula
for Gauss curvature:

= (Vea)n1
822

K=

of (4.3.8), where we consider (z, 6) = (1, u?). Since gq5(t, 0) = y(¢)?, the
above formula implies that at least for 7 € f where y(z) # 0,

* (1) + Ko c(t)y(t) = 0.

How do we handle the points where y(¢) = Y(¢) = 0? Such points must
be isolated: for if ¢, were a nonisolated point of this set, then Y(¢,) would be
the unique Jacobi field with Y(#) = VY(t,)/dt = 0, i.e., Y(¢) = 0, con-
tradicting the fact that VY(0)/dr = A # 0. Now y(¢) is defined and differenti-
able for all 7 and satisfies (*) except at isolated points. It follows by continuity
of y(¢) that y(¢) satisfies the equation (*) everywhere.

3. We now calculate (VY/dt)(0). Letting (¢, 6) = (1%, u%), the geodesic
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c(t) is representable as ¢ou, where #'(t) =¢, u*(¢) =0, and Y(t) =
dd(ex(u (1), (1)) = dg(t(0/ou™)) = t(6¢/ou)t, 0). Using (4.1.2),
T =1in 0 = lin(et.0) + 3 Thet,0)) = e0)

= ex(p) = 4. O
Remark. 1t follows from (3) of the proof that in geodesic polar coordinates,
@, u?) = (t, §) > exp,(z cos e, + 1sin Be,), Vgao(t, 8y) is equal to the

length of the unique Jacobifield Y (z) along y,,(¢) = exp,(z cos 6ee; + ¢sin Oe5)
with ¥(0) = 0 and (VY/dr)(0) = —sin fye, + cos foe,.

5.4.4 Proposition. Let Y(t) = y(t)es(t) be a Jacobi field along c(t) with
¥(0) = 0, y(0) = 1. Then we have the following Taylor series expansion for
yt)att=0:

y(t)=t—Koc(0)-t—63+....

ProOF. Immediate from the differential equation

J+ Keoc(t)y(t) = 0. O
We now use this proposition to prove several interesting results about the
geometry of M near p. We assume B,(p) is an embedded geodesic disk.

5.4.5 Proposition. i) Let L(r) be the length of a geodesic circle S}(p) of radius
r in B,(p). Then we have the following Taylor expansion for L(r) atr = O:

3
L(r) = 2ar — ZwK(p)-% +....

ii) Let A(r) be the area of the r-disk B/p) centered at p, r < p. Then we
have the following Taylor expansion for A(r) at r = 0:

4
A() = mr? — wK(p)-{-i -
Remark. The notion of the area of a subset of M is defined in (5.6.6).

As an immediate corollary of (5.4.5) we get a striking theorem which
relates Gauss curvature to the deviation of the geometric functions L(r) and
A(r) on a surface M from the corresponding Euclidean quantities.

5.4.6 Theorem. Let L(r) and A(r) be defined as in (5.4.5). Then

2or — L(r) 3 _ .. wr® — A(r) 12
rd T Pﬁ} rt -’

K(p) = lim
r=0

ProorF of (5.4.5). Let {e;(p), ex(p)} be an orthonormal basis of T,M. The
unit circle in T,M is B(s) = cos s-e;(p) + sin s-ex(p), and the geodesic
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circles SX(p) may be expressed as c(s) = exp, rb(s), 0 < s < 2m. Using
(5.4.3) we may interpret ¢'(s) = (d exp,),5?P'(s) as the value at ¢ = r of
the Jacobi field Y(¢; 5) = (d exp,)s t5'(s) along exp, th(s),0 < ¢ < r. Since
|5'(s)| = 1, (5.4.4) implies that | Y(r; s)| = r — K(p)-r®6 +... for r small.
Therefore

L(SHp)) = f:" |Y(r, 5)| ds = f:ﬂ (r - K(p)-%f +. ) ds

and
ABp) = J:f:”|Y(t, 5)| ds dt =f0'f:” (t - K(p)-% +) ds di,

which proves the proposition. O

5.5 Manifolds

We will now introduce the second generalization of the idea of a surface. Up
to now, we have required a surface to be representable in terms of one single
coordinate system (U, g). This restriction will now be dropped. It will now
be possible to treat, for example, the entire sphere S2 in R® as a surface. Until
now, we have had to consider only a part of S2, e.g., S% minus half of a great
circle as in (3.3.7).

Furthermore, it will be useful to allow our generalized surfaces to have
arbitrary dimension, and not restrict them to dimension 2. We have already
seen that investigating surfaces of dimension 2 leads to the introduction of
the tangent bundle, a four-dimensional object.

5.5.1 Definitions. i) A topological manifold M of dimension n is a Hausdorff
topological space with a countable basis such that there exists a
family of homeomorphisms {u,: M, — U, < R"},., from open sets
M, < M to open sets U, < R* and (J, M, = M. These homeo-
morphisms will usually be denoted by (u,, M,), and they are called
coordinate systems or charts for M. The collection (#,, M,),c4 is called
a (topological) atlas for M.

i) An atlas (1., M,)ec 4 is a differentiable atlas if, for every (e, B) € A x A,
the homeomorphism ug o (4, | M, N M)~ :u, (M, N Mg)—us(Mg N M)
is a diffeomorphism.

iii) Two atlases (4, M,)ees and (U, My )yrcar are equivalent if the union
of these atlases is a differentiable atlas.

iv) A differentiable manifold is a topological manifold together with an
equivalence class of differentiable atlases.

Remark. For the case n = dim M = 2, a manifold is also called a surface.
These will be the focus of our study.
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5 Two-Dimensional Riemannian Geometry

It is clear that (iii) defines an equivalence relation. For two equivalent
atlases (4o, Moues and (Uy, My )pes €VEry g ougl, (o, e’)eA x A' is a
diffeomorphism. Note: From now on, when we speak of an atlas we will always
mean a differentiable atlas.

ug

Figure 5.6 Change of coordinates

The concept of differentiable manifold allows us to define what it means
for a function F: M — N between differentiable manifolds to be a differenti-
able function.

5.5.2 Definition. Suppose M and N are differentiable manifolds and F: M — N
is a continuous function. Then F is differentiable if, for atlases (#,, M,)pea
of M and (vg, Nj)ses of N, the function

vgo Fougl:u(M, N F~Y(Ng)) — vy(Ny)

is differentiable for all (¢, )€ A x B.
This definition is independent of the choice of atlases as one may readily
see from the equality

vgo Fougl = (vgovgt) o (g0 Fougl)o (uy o uzd).
ExampLE. A curve ¢:J—> M is differentiable provided: for every chart
(e, M), c| (N c Y (M,)) is represented by a differentiable function
C.oteln cY(M,)— u{M,). We consider I as a one-dimensional differen-
tiable manifold with atlas consisting of the single chart (id, I).

5.5.3 Some examples of (differentiable) surfaces and manifolds

1. The sphere M = S}(0) = {(x, y,z) e R® | x2 + y? + 22 = r%} with the
topology induced from R?. Since it is a subset of R®, Af is Hausdorff and has
a countable basis of open sets. We may define an atlas consisting of two charts,
{us, M}, {u_, M_}, as follows:
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5.5 Manifolds
M, = M- (©,0,-r); M.=M-{0,0r)
wwnd = (g rly) = €.

The maps u, and u_ are stereographic projections from the south and
north poles, respectively.

Figure 5.7 Stereographic projection from North Pole; u_(P) = P

Let (x, y, z) = U= (x, 5). Then

__wt N GET
T@rrrry YT @F Ty ST A

and the map

ouie ) = (T L)
u,ouZl(¢, ) ((52 T E+ P
is a diffeomorphism of u_.(M_N M,) = R? — {(0,0)} ontou (M, N M_) =

R2 — {(0, 0)}. It is easy to see that det (d(u, ou-Y)) < 0.
2. The projective plane M = P2. Consider the set

P2 .= {{x,—x}|xeR |x| =1}

We define a topology on M as follows. Let S2 := {xe R?| |x| = 1} = S}(0).
Consider the mapping ¢: §2 — P2 given by x> {x, —x}. If B < §2 lies in
an open hemisphere, ¢ | B: B~ P2 is injective. As a basis for the topology
of P? we will take the collection of sets ¢(B), where B < S? lies in an open
hemisphere of S2.

If (u,, S2).c41s a differentiable atlas for S2 which has the property that each
S2 lies in an open hemisphere, u, o (]| S2) ™%, (¢(S2)eeq is a differentiable
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5 Two-Dimensional Riemannian Geometry

atlas for P2, For example, we may take the atlas (w,, M) of S2 which was
developed in (1) above and subdivide it to give an atlas of S with the required
property. Thus P2 is a differentiable surface. Also, our construction makes
@: S% — P2 a differentiable mapping.

We certainly expect differentiable manifolds to have all the general
properties that locally defined surfaces have. In particular, the notion of a
tangent vector should be a natural one. In the interest of clarity, we will
restrict ourselves to the case of surfaces. The general case (arbitrary dimen-
sion) may be treated in the same manner.

5.5.4 Definition. Let M and N be differentiable surfaces.
i) Suppose (¥, M,) is a chart for M and pe M,. The vector space
T,,»R? is a representation of the tangent space of M at p. A vector
X, € T, »R? is a representative of a tangent vector to M at p.

if) Suppose (v, M,) and (u;z, M) are two charts on M and pe M, N M.
The representatives X, € T, »,R? and X; € T,,,R? are equivalent (or
represent the same tangent vector) provided Xz = d(ug o u71)X,.

iii) The equivalence of (ii) is an equivalence relation. An equivalence class
of vectors is called a tangent vector to M at p.

iv) The set of tangent vectors to M at p carries a vector space structure
determined by the vector space structure of any one of its representa-
tions. This vector space is called the tangent space to M at p, and will
be denoted by T, M.

Remark. These definitions are compatible with the corresponding definitions
of tangent vector and tangent space for surfaces (U, g), (5.1.1). We will now
define the tangent bundle of a differentiable manifold. Toward that end, we
first show that (J,ey T,M has a naturally defined differentiable atlas.

5.5.5 Proposition. Let M be a differentiable surface. Let TM := \Jpey To,M
denote the union of all tangent spaces to points p e M. Let m: TM — M be
the projection mapping X+>p when X € T,M. Then TM is a four-dimen-
sional differentiable manifold whose differentiable structure is determined by
that of M: Given (U, M,)scs, an atlas for TM is defined by (Tug, TM)zes,
where TM, = Upem, T,M and Tu,: TM, — TU, is the map X € T,M >
X, € T, »R?, where X, is a representative of X.

With this differentiable structure on TM, the projection m: TM — M is
differentiable.

Proor. 1. First we define a topology for TM as follows. The map Tu,: TM, —
TU, is bijective and its image is an open subset of R x R2. A set S in
TM, is open if and only if Tu,(S) is open in R? x R2

2. The bijection

Tug o Tug': Tu,(T(M, 0 Mp)) — Tug(T(M, N M,))
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5.5 Manifolds

is in the form d(u; o u; ') and is thus a difftcomorphism. Therefore the
topology on TM, is independent of the choice of coordinates. Further-
more, this implies that (Tu,, TM,)., is a differentiable atlas.

3. If (4y, My)yeq is an atlas which is equivalent to (u,, M,),cs, then
(Tuy, TMy)peqa is an atlas equivalent to (Tu,, TM,)ecs. This follows
directly from the definitions and is easy to check. Therefore the differenti-
able structure of TM is determined by the differentiable structure of M.

4. It remains to show that =: TM — M is differentiable. This is a local
question, so let us consider 7|TM,. In terms of the coordinate chart
(Tu,, TM,), 7y = Uy omwo Tuzt, where = TU, = U, x RZ— U, is the
projection onto the first factor. It follows that = is differentiable. O

5.5.6 Definition. The tangent bundle TM of a differentiable surface M is the
four-dimensional differentiable manifold defined in (5.5.5).

It is now possible to define vector fields on M.

5.5.7 Definition. A vector field on M is a differentiable mapping X: M - TM
which satisfies # « X = id. In other words, X(p) e T, M.

Remark. A chart (u,, M,) of M defines two linearly independent vector fields
on M,, namely vector fields represented by the basis vector fields e,(x,), ea(1,)
on TU,. However, it is not always possible to find two linearly independent
vector fields defined on all of M. In fact, it can be proved that if M is a
compact surface, the existence of two globally defined linearly independent
vector fields implies that M is a torus. That such vector fields do exist on a
torus follows from (3.3.7 (ii)): The vector fields desired can be constructed
by taking the tangent vectors to the globally defined parameter curves
corresponding to the (u, v) coordinates.

5.5.8 Definition. A -surface with a Riemannian metric is a differentiable
surface such that, for each p € M, T, M has a positive definite inner product
which is a differentiable function of p € M. In terms of an atlas (u,, M,)eca,
this means that, for every « € A, there exists a g,( , ): U, —S(2) such
that given (o, B)eAd x A, ugouz: u(M, "\ Mp)—> ug(Mz; N M,) is an
isometry.

A manifold with a Riemannian metric is defined analogously.

Remark. This definition includes two different ways to think about the metric
on a surface. First, it may be conceived of as an inner product g( , ) on each
T,M which in terms of a chart (u,, M,) corresponds to an inner product
g, on U,. Using the notation of (5.5.5),

g(X,Y) = g(Tu, X, Tu,Y) for X, Ye T, M.
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The requirement that the inner product be a differentiable function of p is
equivalent to requiring each g, to be differentiable. Equivalently, one could
require that, given any two differentiable fields X, Y, the function p+~>
g(X(p), Y(p)) be differentiable.

One may reverse the procedure and consider the Riemannian metric as
being given by the collection (U,, g,)se4 corresponding to an atlas (u,, M,)zes
of M. The identification of TM, with TU, via Tu, defines an inner product
on each T, M, pe M. If p e M, N Mj, there are two different ways to define
an inner product on T, M. The question is: Do they agree ? The answer is yes
if and only if ug o uz: u (M, N M) — ug(M, N M) is an isometry.

In sections (5.1) through (5.4) we considered surfaces with Riemannian
metrics which were representable in terms of a single coordinate system (U, g).
All of the concepts and definitions we introduced there as well as the theorems
and propositions concerning them carry over word for word to surfaces (and
manifolds!) with a Riemannian metric. For example, let ¢: 7 — M be a curve
(see the example preceding (5.5.3)). The vectors é(t) € T.,,M are well defined
and therefore we may also define

L(o) := f Vel €, G0 d

EQ) i= 5 [ saleto) co)

the length and energy of c.

To end this section we now define the concept of an orientable surface.
(This concept is only of interest for surfaces (and manifolds) which cannot
be represented in terms of a single coordinate system. If a surface consists
of a single chart then it trivially satisfies the definition.)

5.5.9 Definition. Let M be a differentiable surface (or manifold).
i) M is said to be orientable if there exists an atlas (u,, M,) with the
following property:

det(d(ugouzv)) > 0 forall (e, f)e A x A.

The atlas itself is also said to be orientable.

ii) Two orientable atlases have the same orientation provided their union
is orientable. This is an equivalence relation among orientable atlases
on M. An equivalence class is also called an orientation.

iii) An oriented manifold is a manifold together with a distinguished
orientation, designated as positive. A chart belonging to one of the
atlases is called a positively oriented chart.

EXAMPLES AND DISCUSSION. 1. If M is orientable and connected, there exist
exactly two orientations of M (i.e., two equivalence classes of atlases under
the equivalence relation in (ii). (Proof: exercise.)
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5.6 Differential Forms

2. Not every surface (or manifold) is orientable. For example, the projec-
tive plane P2 defined in (5.5.3, 2) is not orientable. To see this, consider the
antipodal map i: S2 — S? which maps x> —x. In terms of the atlas for §2
defined in (5.5.3,1),

u,oiouZl(é,n) = (¢ — ) (& m #(0,0).

It follows that this map reverses orientation.* Now assume that P2 possesses
an oriented atlas (4, P2),e4. Recall that ¢: $% — P2 js the map x+— {x, —x}.
The sets @~ 'P2 can be divided into sets SZ U iSZ in such a way that
@: S2— P2 and ¢:iS%2— P? are diffcomorphisms. Thus (4, © @, SPees Y
(40 @, iS2)4es is an orientable atlas for S2. But i: SZ—iSZ has the
coordinate representation id: u,(P2) — u,(P2). This is a contradiction since
i is orientation reversing, but id: u,(P2) — u,(P3) is not.

5.6 Differential Forms

5.6.1 More linear algebra. We continue the development of (3.2.1). Let T be
a real vector space of dimension n. For our purposes, n will usually be
equal to 2.

1. The dual space T* of T is the set Z(T, R) of linear mappings w: T— R,
together with the natural vector space structure

(w1 + @)(X) = 01(X) + wx(X),  (aw)(X) = aw(X).

The elements of T* are called 1-forms or linear functionals (on T). If
e, 1 < i <n,is a basis of 7, we may define a basis ¢/, 1 < j < n, of T*,
the dual basis, by the equations

el(e) = &/.

2. Letfy, 1 < k < m, be a basis for another vector space S. If L: S —~T
is a linear mapping, we may write Lf;, = >, ake, for some n x m-matrix (a}).
The dual mapping L*: T* — S* of L is the mapping defined by the relation
L*(w) = w o L. This implies that L*(e’) = ¢’ o L = 3, a}f*. (The matrix of L*
is the transpose of the matrix of L.) If L is bijective then L* is also bijective
and L*~!: $* — T* may be written in terms of a basis as L*~f* = 3, b¥e’,
where the matrix (b¥) satisfies >, b%a) = 8%. (In other words, (b)) =
(@)~*)

3. The direct sum T @ T of T with itself is the set of pairs (X, Y)eT x T
with the vector space structure:

X, )+ (Xo, Y) = (X1 + X5, V1 + T))
a(X,Y) = (aX, aY).

4. A 2-form on T is a mapping Q: T @ T— R which is bilinear and
skew-symmetric:

i) QX + bY, Z) = aQ(X, Z) + bQ(Y, Z),

* If j(¢, 1) = (£.9), {(j o s, M,), (u_, M_)} is an orientable atlas for S%.

111



5 Two-Dimensional Riemannian Geometry

i) AX,Y) =—-Q7, X).
(Note: Linearity in the second variable follows from (ii) together with (i),
where X, Y,ZeT and a,beR.)

The set A?T* of all 2-forms on T is a vector space with the following
addition and scalar multiplication:

Q+ Q)X,Y)=QX,Y) + Q(X,Y)
@Q)(X,Y) = aQ(X, Y).

For n = 2 we will show that A2T* has dimension = 1. To wit, if e;, e, is a
basis for T, we define an element e* A e? e A2T* by

e AeE(X, Y) = £ — £t = det(é, ),
where X = 3, £'e; and Y = 3, vle,. If Q is an arbitrary element of A2T*,

Q(X’ Y) = z E’ﬂjg(eh e])

,§=1,2
= (fl 2 - 527)1)0(81’ e2) = A(el A 82)(Xa Y)’

where 4 = Q(e,, e,). Therefore e* A €2 spans A2T*.

5. Let L: S — T be a linear mapping as in (2) above. Then we may define
the mapping A%L¥: A2T* — A2S* by (A2L*Q)(X, ¥) = Q(LX, LY).

In the special case that dim S = dim T = 2,

(AL*Q(f1, f2) = QLA Lfa) = Qey, e5)-det(a),

where Lf,, = 3, ake,. But by (3) this equation implies that AZ2L*(e! A €2) =
det(@f)f* A f2.

6. Suppose B: T x T— R is a quadratic form on T. Then 8 defines an
associated linear mapping L;: T — T*, namely

Ly:T—>T*  X—B(X, )

Note that L, is bijective if and only if, for every X # 0, there exists a ¥ such
that B(X, ¥) # 0. A quadratic form with the above property is called non-
degenerate. For example, a positive definite quadratic form is nondegenerate.
Another way to characterize a nondegenerate form is: g is nondegenerate if
and only if its matrix representation has nonzero determinant. A very
important fact about a nondegenerate quadratic form 8 is that we may use it
to identify T with T* by means of the bijection Lj.

We would now like to generalize the above definitions to surfaces. In order
to do this we must, among other things, generalize the idea of a direct sum of
vector spaces to its counterpart for tangent bundles.

5.6.2 Definition. Let M be a differentiable surface. The direct sum TM @ TM
of the tangent bundle of M with itself is the disjoint union { ey ToM @
T,M. The projection mapping = @ =: TM @ TM — M is the mapping
defined by

X, Y)eT,MP T,Mp.
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5.6.3 Proposition. TM @ TM can be given the structure of a six-dimensional
differentiable manifold which we also denote by TM @ TM: If (g, My)sea
is an atlas of M, we may define an atlas (Tu, @ Tu,, TM, @ TM)ycq for
TM @ TM by

Tuy @ Tu,: TM, ® TM, —TU, ® TU, = U, ® R? @ R?
(X’ Y) € TpM @ T‘,MH (“a([’): Xm Yz) € Uo: @ Tua;(P)[R2 @ Tua(D)Rz'

Here X, and Y, are representatives of X and Y with respect to the chart
(4es M)

Proor. Exactly analogous to the proof of (5.5.5). As with TA, the differenti-
able structure of TM @ TM is completely determined by the differentiable
structure of M. O

5.6.4 Definition. On a differentiable manifold,
i) a 1-form on M is a differentiable mapping

w: TM —-R

which has the following property: for every pe M, o | T,M: T,M — R
is a 1-form, ie., o |T,M e T} M := (T,M)*;
ii) a 2-form on M is a differentiable mapping

QTMPTM >R

with the following property: for every pe M, Q|T,M P T,M¢e
ATIM.

Remarks. 1. What happens in local coordinates, i.e., terms of a chart (u,, M,)
on M? A l-form w on M determines a 1-form w,: TU, = U, x R2— R
via w,(X,) = w(X). Here X, is the representative of X.

2. On U, we have the natural coordinate basis (e;(u,), ex(t,)). Let
(dul, du) denote the dual basis. The 1-form w, may be written as w, =
>, au,) du’, where a,(u,) are differentiable functions of u,. Conversely w,
determines a 1-form on M,.

3. If (u,, M,) and (u,, M) are two charts on M, then

-1 2 2. oup
d(ug ° uz*): TuynR? — TyynR?: €1(uie) — Z ot elug)
1 o

is a bijective linear map. By (5.6.1,2), the dual mapping d(u; o uz)* is
given by

By
i hdad 39 291
duh— ;2' o, dul,.
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Therefore, if wy = 3; bj(u,) du} and w, = 3, a,(u,) dul, are representatives
of a 1-form w with respect to two different charts, then

ou}
d(ug o uzYrwp = 2 bjus) 7 diy =
FA «

A
6u5

aue) = 2, bu) 70

This last formula tells us how the components of 1-forms transform under
a change of coordinates.

4. A 2-form Q on a surface M is represented with respect to every chart
(us, M,) by Q,: TU, ®TU,— R, where Qu(X,,Y,)=QX,Y), X, 7,
being the representatives of X and Y.

5. Ateach point of U, the 2-form du} A du? is a basis for the one-dimen-
sional vector space of 2-forms: If X, = 3, £le, and ¥ = 3, nle,, then

dui A dug: (Xm Ya)|_.> Edlﬂlg - ")ﬁfﬁ-

Therefore Q, may be written as Q, = A(u,) dul A du?, where A(u,) is a
differentiable function from U, to R.

6. How does A(u,) transform under a change of coordinates? Suppose Q
is a 2-form whose representation with respect to (u,, M,) is A(u,) dul A du?
and with respect to (uz, My) is B(u,) du} A dui. By (5.6.1,5),

A2 d(ug o uzty* dup A dul = det(d(ug o uz ) dul A dul.
Therefore
A?d(ugouz')*Qp = Qp;  Blup) det(d(us o ug?) = A(uy).

5.6.5 Proposition. (Definition of differential forms via local coordinates).
Differential forms may be defined in terms of local coordinates. Let
(Uay M) e a be an atlas for M. Suppose for every « € A a 1-form w,: TU, — R
is specified and that, for every (a,f)e A x A,

*) d(ug o uz H*wp = w,.

Then the 1-form w: TM — R given by w(X) = w(X,), where X, is the
representation of X in the a-coordinate system, is well defined.

Similarly, given a 2-form Q,: TU, ® TU,— R corresponding to each
(u,, M,) such that
** A2 d(ug o uz')*Qy = Q,

Jorall («,B)e A x A, the 2-form Q: TM @ TM — R defined by Q(X, Y) : =

Q (X, Y,), where X,, Y, are representatives of X and Y in the a-coordinate
system, is well defined. The forms w and Q are differentiable since each w,
and Q, is differentiable.

Proor. The only possible problem arises when ¥, X € TM are represented
in two coordinate systems by X,, ¥, and X, Y, respectively. Then
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“well defined” means w.(X,) = wy(X;) and Q(X,, ¥,) = Qu(X;, Y;). But
this follows immediately from the transformation ““laws” (*) and (**) com-
bined with the results of the previous section, (5.6.4). O

This method of defining forms is useful for constructing examples of
differential forms.

5.6.6 Examples
1. Suppose f: M — R is a differentiable function. The differential of f is
the 1-form

df: TM — R, X—>d(fousH)X,,
where X, = representative of X in TU,. For example, the dual 1-forms
dul, du? corresponding to the basis vector fields e, (), e;(u) of U, are in fact
the differentials of the coordinate functions u%: M, — R.

2. Suppose M has a Riemannian metric, g, given in each coordinate
system (u,, M,) by (U,, &) Using (5.6.1, 6), T,M is isomorphic to TyM =
(T,M)* by means of the mapping

Lg,: Xe T,M+—> g, (X, )eTiM.
Thus a vector field defines a 1-form and conversely: if X is represented
locally by X, = 3, é(u)e(u,), the 1-form corresponding to X is
Wy = z gi](ua)ffz(ua) dutjz-
7

3. Suppose M is oriented. Then we may define a 2-form, dM, called the
area-element of M as follows: With respect to a positively oriented atlas

(urx’ Mnt)ntsA’ dM(ua) =V ga:(ulx)'du%t A duﬁ, Whel’e ga(ua) = det(galf(ua))'
Since gg(u,)(det(d(ug o u; *)))? = g.(u,), the transformation law (**) of (5.6.5)
is satisfied and dM is well defined.

4. Suppose X is a vector field on M, M oriented. Then with respect to a
positively oriented atlas (#y, M)qes, the 1-form iy dM defined locally by

Wy 1= Vg~ E2 dut + £Lduf),

where X, = 3, £le/(u,), is well defined. To see this, note that

1
d(uy o uz Y duy = > (—ng) dul,,
7 @

oul ou'
iﬁ= 2'372 Z, Vg = Vg.,/det(wg).
Therefore d(u; o u; ) *ws = w,.

Remark. Sometimes iy dM is called the interior product of X with dM. One
can easily see that iy dM coincides with the I-form Y+ dM (X, Y). Moreover,
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if X, ¥ form a positively oriented basis for T, M,

ixdM(Y) = dM(X,Y) = Vg(X, X)g(¥,Y) — g(X, Y)*.

One verifies this first for a local representation dM, of dM and (X, Y) =
(e1(uy, ex(us))). The 1-form iy dM has a geometric interpretation. Given
X e T,M, we define X’ by

X' =LgtizdM, ie,g(X, )=ixdM=dM(X, )

and claim that if X # 0, {X, X'} is an orthogonal, positively oriented basis
of T,M and X' has the same length as X. Indeed, g(X, X') = L, X'(X) =
dM(X, X) = 0. Since X' # 0, either dM (X, X') or dM(X', X) is equal
to Vg(X, X)g(X’, X'), depending on whether {X, X'} or {X’, X} is positively
oriented. But we know that g(X’, X') = dM (X, X') > 0, hence {X, X'} is
positively oriented and g(X’, X') = vg(X, X)g(X’, X").

We shall use this remark to obtain a geometric interpretation of Gauss’
theorem (5.6.9).

The main reason for developing differential forms is that they allow us to
define line and area integrals on a surface, M. We start by defining the
two-dimensional analog of a piecewise smooth curve.

5.6.7 Definition. Let F denote a closed subset of the plane which is homeo-
morphic to the disk and whose boundary &F is a piecewise smooth simple
closed curve whose exterior angles are all strictly less than = (see (2.1.5)
for definition of exterior angle). A (singular) polygon on M is a smooth
map P: F— M. (If &F consists of three smooth curves, P is called a
(singular) simplex.) The mapping P|éF will be denoted by &P. If we
consider &F a parameterized curve in the plane, P parameterizes a piece-
wise smooth curve in M. We make the convention that F will always be
parameterized so that its rotation number is equal to +1. The coordinates
on F < R? will be denoted by (1%, 7?).

il
.

Figure 5.8 An example of a polygon on a surface M
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5.6.8 Definition (Integral of a 1-form on a curve). Given a 1-form w on M
and a curve c¢: I — M, I compact, the integral L w is defined to be

J;w :=£w(c’)dt.

(Integral of a 2-form on a polygon). Given a 2-form on M and a polygon
P: F— M, the integral ﬂP Q is defined to be

. — 2_3_?; 1 442
fLQ ._JLQ(WI,W) drt dr®.

Note that these integrals are invariant under an orientation-preserving
change of variables of the curve or of the polygon.

We now state and prove the most important result of this section; Gauss’
theorem relating the integral of the divergence of a vector field X on a
polygon P to the line integral of iy dM on P. The next theorem generalizes
the well-known Stokes theorem of two-dimensional calculus. When M = R?2
with the standard metric, then dM = du® A du?, and the two theorems
coincide.

5.6.9 Theorem (Gauss). Let M be an oriented surface with a Riemannian
metric. Let X be a vector field on M. Then for every polygon P: F— M,

”P(div,Y)arM=faP ix dM.

(Note: The last remark of (5.6.8) tells us that the integral on the right-hand
side is well defined.)

Proor.

1. Without loss of generality, we may assume that P lies entirely
within one coordinate system. For if not, then we may subdivide F into
{F,}, 1 < p < k, so that each P, := P|g, lies inside a coordinate system.
Then if the theorem is true for each P,

div X dM = f iy dM.
S, avxaw=3 [ i

The left-hand side is equal to J:I'P (div X)) dM by definition. The right-hand
side is equal to fap ix dM for the following reason: Every inner edge of
Ui <o<x P, appears twice and is traversed once in each direction. Therefore
the integrals cancel out on each inner edge, leaving (div X) dM integrated
over oP.

2. Suppose now that P(F) lies entirely in one coordinate patch u: U — M,
Uc R?% Then X may be written as £'e, + £%e,. Therefore divX =
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5 Two-Dimensional Riemannian Geometry

1/Vg 3, (0/u)(Vg &), dM = Vgdu A du?, and iydM = — Vg du* +
£Vg du. By the well-known Stokes theorem for two dimensions,

% — _a_j_i 1 2 1 2
”F(aul a;ﬂ) ditdi = | fidit + fu it
When f; = —£2Vg and f, = + £4/%, this gives the required result. O

Remark. We can make a “physical™ interpretation of the line integral in
Gauss’ theorem. Let 9P be parameterized (locally) by c(f), |é(f)| = 1. Let
{ew(z) = ¢(2), ex(2)} be the Frenet frame of c(r). We may write X|c(¢) as
X(t) = £(t)e(t) + £3(t)ey(t). Then using the remark in (5.5.6, 4),

ix AM(E(1)) = 8o X' (1), €(1)) = —£%(1),

where X'(1) = — £%(t)e;(t) + £(¢)eq(t). Therefore the integrand is equal to
— X(t)-eq(t). Since ey(t) is the inward pointing normal to P at c(¢), the line
integral measures the “flow” of X out of the region P.

5.6.10 Suppose M is a compact oriented surface.

i) A polygonal decomposition II of M is a finite family {P,: F, — M},
1 < p < k, of orientation-preserving polygons on M (i.e., polygons on M
such that P, is an orientation-preserving differentiable mapping) which
satisfy

UPD(FD) =M,

and if r # s, either P, N P is empty or consists of a corner of both polygons
or an entire edge of both polygons. Note: A corner of P,(F,) in this context
is the image under P, of a corner of the boundary of F,.

ii) Given a 2-form, Q, on M and a polygonal decomposition II of M, we

define
Je=310,0

Figure 5.9 Polygonal decomposition
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5.6.11 Proposition. Suppose II = {P,} and 1I' = {P,} are two polygonal
decompositions of a surface M as defined in (5.6.10, 1). If Q is a 2-form, then

2/l e- 300,

This means that ﬂM Q, which is defined in terms of a polygonal decom-
position, is in fact independent of the choice of such a decomposition.

Proor. To prove (*), consider {P, N P,.} which is also a polygonal decom-

position. Now each side of (*) is equal to 5, ,- ] »,r; @, and hence they are
equal to each other. O

We conclude the chapter with a result that will have important applications
in Chapter 6.

5.6.12 Theorem (Gauss’ theorem for compact surfaces). Let M be a compact
surface with Riemannian metric. Then if X is a vector field on M,

HM(div X)ydM = 0.

ProOOF. Write the integral, in terms of some polygonal decomposition II, as
a sum and apply (5.6.9) to each summand. Each edge appears as a curve on
two polygons, with opposite orientations, and the corresponding line integrals
cancel each other.

5.7 Exercises and Some Further Results

5.7.1 The gradient. The gradient vector field of a differentiable function
$: M — R is the vector field p > Lg* dif,. Recall that Lg,: T,M — Ty M
is the isomorphism X+ g, (X, ) (see 5.6.1, 6). The gradient is usually
denoted by grad §(p) or simply grad .

The gradient vector field generalizes the Euclidean notion of a gradient.
If U = R2is a subset of the plane and : U — R s a differentiable function,
grad f = (8/ou)e; + (O/ouP)es. If X = x'e; + x%e, is a tangent vector
at up € U, the directional derivative of ¢ in the direction X is equal to
X-grad Y(p) = x}(0p/our) + x*(@p/ou?). Similarly, if ¢: M—R and
X e T,M, then

df(X) = g,(X, grad {)).

i) Suppose M is orientable and X is a vector field on M. Using (5.6.6), we
may define dM and ix dM. Prove: iyx dM = ix dM for any real-valued
function ¢: M — R.

ii) In terms of a coordinate system (u,, M,) on M, show:
ou-1
(erad o = 3 &) L e
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5.7.2 Let #(M) denote the set of differentiable functions on M. & (M) has a
natural structure of an algebra over R, the operations being defined point-
wise. The Laplace-Beltrami operator is the mapping A: F(M )= F (M)
defined by

Ag: = div grad 4.

It is easy to convince yourself that if  is differentiable, then so is Ay,
justifying the claim that A(F(M)) = F(M).
Prove:
divgX = div X + dpX
div(y, grad o) = 1 A, + g(grad ¢, grad ¢).
Use Gauss’s theorem (5.6.9) to show

f _L P1AY; + g(grad iy, grad o) dM = L ) " % s,

where di,/0n = dif(n), and n is the outward pointing normal to the bound-
ary curve P (see (5.6.7)). The above equation immediately implies

Yo My — tha Aty dM = A %& - %93'1’_1 ds.?
P o n n

These are Green’s formulae.

5.7.3 A function¢: M — R s said to be harmonic if Ay = 0. It can be shown that
each p € M has a neighborhood # on which a harmonic function v >R
exists which satisfies dif # 0. The conjugate harmonic Junction x is the
harmonic function defined (up to sign) by the relations g(grad ,grady) = 0,
&(grad x, grad y) = g(grad ¥, grad ¢).

If (ua, M) is a chart such that (u2, u2) are conjugate harmonic functions,
then the u, = (ui, u2) are called isothermal (or conformal) coordinates. It
was first proved by Lichtenstein* that isothermal coordinates always exist.

The line element in isothermal coordinates looks like

_ (du)? + (du®)?

2 W) T au)”
ds a(?, u?) °

a(ut, u?) # 0.

Conversely, if the line element ds? has the above form, then the coordinate
functions #* and u? are harmonic. This is because the Laplace-Beltrami
operator for such a line element may be written in the form

ap = (@O + @iy

a(ut, u?)

3 For further details about the Laplacian on a Riemannian manifold, see Berger ez al. [B3).

* Lichtenstein, L. Beweis des Satzes, dass jedes hinreichend kleine, im wesentlichen stetig
gekrimmte, singularitétenfreie Flachenstuck auf einen Teil einer Ebene zusammen-
hingend und in den kleinsten Teilen dhnlich abgebildet werden kann. Abh. Kgl. Preuss.
Akad. Wiss. Berlin, Phys.-Math. Klasse, 1911, Anhang, Abhandlung VI, 1-49,
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Suppose ¢: (v1, v2) — (4, ®) is a change of variables between isothermal
coordinate systems (a@ conformal mapping). Prove: The functions u'(v?, v?),
u?(v*, v?) satisfy the Cauchy—Riemann equations:

ou'  ou? ot ou?
Wl a® R o

It follows from elementary complex analysis that ¢ can be written as a
holomorphic function from an open set in the complex plane C = u* + iu?
into the complex plane C = v! + iv2.

In other words, the existence of isothermal coordinates on a surface M
with a Riemannian metric implies that M can be given a complex structure,
making it a Riemann surface in the sense of complex function theory.

5.7.4 More about minimal surfaces. Suppose f: U — R? is a parameterized surface
in the sense of (3.1.1). If x, y, and z are the coordinates in R?, we may
consider xo f(u), yo f(u), and zo f(u) as functions on the surface M,
represented in the coordinate chart and metric (U, g) = (U, I). Here
g. = I, is the first fundamental form.

Show:

Af(u) := (A(x o fW)), A(y o f(w)), A(z © f())) = 2H (u)n(u),
where H is the mean curvature and # is the unit normal vector field on the
surface f.

Remark. This formula can be found in the proof of (6.2.9).

It follows from this formula that minimal surfaces, surfaces f which
satisfy H = 0, are characterized by the fact that their three coordinate
functions are harmonic.

Problem: State and prove an analogous result for minimal surfaces f: U — R"
in Euclidean n-space.

Suppose (v1, v?) are local isothermal parameters on a minimal surface M
in R3, (We may choose v* to be equal to one of the coordinate functions,
e.g., x o f(u). Then v? will be the harmonic conjugate of v*. See (5.7.3).)
Show: The R3-valued function f(2?, v?) is representable as the real part of a
holomorphic function F(v? + iv?): C — C3, (Hint: Use (5.7.3).)

Also, show: The Cauchy-Riemann equation simply that F* = f,1 — f2 —
ifis # 0, F’2 = 0. In other words, F is a holomorphic curve in C* with
F’2? = 0. Conversely, if Fis a holomorphic curve in C3 with F* # 0, F’2 = 0,
then its real part determines a minimal surface in R3,

This intimate connection between minimal surfaces and complex function
theory is the basis for a highly developed theory of minimal surfaces.®

5.7.5 A Liouville line element on a surface M is a line element of the form

ds? = (A — BY(A%du® + B} dv®), (u,v)e U < R?,
where A, A, depend on u only and B, B, depend on v only.®

5 See Nitsche, J. C. C. On new results in the theory of minimal surfaces. Bull. Amer.
Math, Soc. 71, 195-270 (1965); or the references of footnote 10 of chapter 3.

¢ See Darboux [A7], Part III, Book VI, Chapter 1.
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Prove: The surfaces of revolution of (3.3.7, 3) are presented in coordinates
which have a Liouville line element.

Prove: The lines of curvature on a surface of second order (3.7.3) deter-
mine a Liouville line element. For example, the line element on the ellipsoid
is ds? = grad (v) dv® + grad (w) dw? (cf. (3.9.5)).

The most important property of a surface (U, g) with a Liouville line
element is the existence of a nontrivial function ®: T°U — R which is
constant on any one-parameter family {¢(¢)} of tangent vectors to a geodesic
c(t). As a special case of this we obtain Clairaut’s theorem (4.5.1). Here
TU={XeTU| X # 0. If XeT°U, let

D(X) := A(u(# X)) cos? 8(X) + B(v(7X)) sin? 8(X),
where 8(X) is equal to the angle between X and the tangent to the v-param-
eter curve.

Prove (Liouville’s theorem): A curve c(t) = (u(t), v(¢)) with u(z) # 0 is
(after possibly a reparameterization) a geodesic if and only if ®(é(?)) =
constant.

Outline of proof. For an appropriate choice of a constant ¢, the functions

u :=fA1\/A - cdu+f81\/c— Bdv

""=J A g [B 4

VA ——¢ Ve - B
define a new coordinate system in which
ds? = du? + (4 — ¢)(c — B)dv'%
It then follows from (4.3.6) that the curves v’ = constant are geodesics,
ie., ¥ = (4/VA — o) — (By/Ve — B)s = 0 implies that (u(r), »(r)) is
(after possibly a reparameterization) a geodesic. The function @ assumes the
value ¢ on the tangent vectors (B;V A — ¢, A;V¢ — B) to this geodesic.

Remark. On a surface with a Liouville line element, there exists two non-
degenerate differentiable functions on T°U which are constant on families
{c(2)} of tangent vectors to geodesics c¢(¢). Namely ®(X) and g(X, X)/2,
the energy. In general, only the latter function exists. Given a surface with
Riemannian metric, it is usually not possible to introduce coordinates whose
line element is a Liouville line element.



The Global Geometry
of Surfaces

In this chapter, we will consider some problems in the global differential
geometry of surfaces. A “global” problem can be described as one which
in general cannot be stated locally in terms of one coordinate system on a
surface with a Riemannian metric, but must necessarily involve the total
behavior of the surface. Most often, this total behavior is related to the
topology of the surface. For example, Theorem (6.3.5) equates the integral
of the curvature function K(p) over a compact surface M with a topological
invariant of M (the Euler characteristic). Neither of these two quantities can
be described completely in terms of a single coordinate system.

Some of the theorems concern surfaces in Euclidean 3-space. Others treat
abstract surfaces which are not realized in 3-space and are concerned entirely
with intrinsically definable quantities.

When it is possible to do so without additional work, we will state and
prove theorems for Riemannian manifolds. Otherwise, we will stick to
surfaces and indicate what the appropriate generalization to manifolds
would be.

6.1 Surfaces in Euclidean Space

6.1.1 A subset M of R® is an embedded surface or simply a surface if, in the
induced topology on M, there exists a family (f;, U,).cs Of parameterized
surfaces f,: U, — R® in the sense of (3.1.1) satisfying
i) each f,: U, — M, is a homeomorphism of U, onto an open subset M,
of M;
ii) the sets M, cover M, i.e., | J, M, = M.
The homeomorphisms u, = f;*: M, — U, will be referred to as charts
or coordinate systems, and will be denoted by (4., M,).
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6 The Global Geometry of Surfaces

It is easy to verify that the family (u,, M,).c4 defines a topological atlas
for M. The next lemma will show that this is a differentiable atlas and M is a
differentiable surface in the sense of (5.5.1).

Remark. More generally, we may define embedded m-dimensional sub-
manifolds of R* (n > m) to be subsets of R” with the induced topology such
that there exists a family (f,, U,),es (Where U, is an open set in R™ and
fo: U, — R is a regular map) satisfying (i) and (ii) above. The next lemma
has a straightforward generalization to submanifolds. For clarity, we restrict
ourselves to the case when m = 2 and n = 3.

6.1.2 Lemma. Let M be a surface in R® and let (u,, M,)qc4 be an atlas for M

as defined in (6.1.1).

i) In the induced topology, M is a topological surface and the atlas
(Uoy M)oca is a differentiable atlas for M. Any two such atlases are
equivalent.

ii) The tangent space T,M at pe M is represented by T, ,f < T,R®
whenever pe M,. In particular, if pe M, Mg, T, pf = Tymf
Therefore the restriction of the Euclidean inner product of R® to T,M is
well defined. This inner product defines a Riemannian metric on M: in
local coordinates

Zuot #) = (Wouuo(®) * (@uair(¥)-

PROOF. 1. As a subset of R3, the induced topology on M must be Hausdorff
and have a countable basis. Moreover, for each pe M there exists an
o = ap) such that u,: M, — U, < R?is a homeomorphism. All that remains
to be shown is that the homeomorphism

ug ozt u(My N Mg) — ug(My N M,)

is a diffeomorphism.

Let pe M, N My Now f, =u;':U,— M, < R® is a parameterized
surface (and therefore a regular map of constant rank = 2). We may apply
the basic result (0.5.2) which asserts the existence of a neighborhood W of
p in R® and a diffeomorphism g,: W — W,, where W, is a neighborhood of
(u(p), 0) e R? x R, such that g, satisfies

8 o folus, u2) = (u3, u2, 0).

Consequently, if U, (p) is a sufficiently small neighborhood of u,(p) € U,,
then uz'| Uy(p) = gz*| Ud(p)-

Similarly, there exists a diffeomorphism g, from W onto a neighborhood
W of (us(p), 0) € R? x R so that g, o f is, locally, a linear injection. There-
fore uy o uzt is equal to g5 o go 1| U,(p) on a sufficiently small neighborhood
of u,(p). Since gz g;* is a diffeomorphism and u; - 47! is equal to the
restriction of gz o g;! to a linear subspace, u, o u;! is itself differentiable.
Therefore u, o u; ! is a diffeomorphism.

124



6.1 Surfaces in Euclidean Space

2. Let pe M, N M. Suppose f, | u (M, N M) and f3|us(M, N My) are
two parameterized surfaces (in the sense of Chapter 3) which are related by
the change of variables ¢o5 = ;0 (us| Mz N\ M)t = f71 o fo| ug(Mg N M),
i.e., f = fu © dup. According to (3.2.5), gu,0 = Juyry and guyry = Luyem define
the equivalent metrics, as one would expect. This shows that the restriction
of the Euclidean inner product to M defines a Riemannian metric on M as
defined in (5.5.8). O

Examples of surfaces in R® may be found in Chapter 3. In (3.3.7), the
sphere frestricted to (4, v) € ]—n/2, n/2[ x ]—m, =[, and the torus g restricted
to (u, v) € }—m, w[ x ]—m=, =, are both surfaces. We have not considered the
entire sphere or the entire torus in these examples. This is because the surfaces
in Chapter 3 had to be defined in terms of a single coordinate system.

One of the most important ways in which surfaces in R® and submanifolds
of R arise are as the level sets of differentiable functions on R?® or R™
The next theorem describes sufficient conditions for the level sets

{xeR* | §(x) = c}
of a differentiable map ¥: R* — R* to be submanifolds of R™.

6.1.3 Theorem. Suppose D is an open set in R* and : D — R¥ is a differen-
tiable map, where 0 < k < n. If a € $(D) is a regular value of §: (i.e., for all
p €Y~Ya), d,: T,R* — T,R¥ is onto, or equivalently dib, has rank = k),
then M = $~(a) is an (n — k)-dimensional submanifold of R".

Note: M is not necessarily connected. Consider (x, y) = x2 — »* and
a #0.

Proor. We will consider the case n = 3, k = 1, the case of surfaces in R®.
The general case is similar (see Edwards, Advanced Calculus of Several
Variables, Academic Press, 1973, pp. 196-200). We will show that, given
P € M, there exists a parameterized surface f: U —> R® in the sense of Chapter
3 such that f(U) = M’ is an open subset of M containing p, and f: U — M’
is a homeomorphism.

We may assume, without loss of generality, that a = 0, since we may
replace ¢ by ¢ — a without affecting the regularity of the function. Since
d,: T,R® — ToR is onto, the implicit function theorem (0.5.2) asserts the
existence of open neighborhoods ¥ and V' of p € R® and a diffeomorphism
h: V— V' such that h(p) = p and ¢ o h: ¥ — R is a linear, onto mapping
of the form

x4 x% x)eVi>x2eR, ¢oh(p)=0.

Let M'=V'NnMand h~*M' = U’ < R? = {(x%, x%, x*) e R® | x® = 0}.
Then f=h|U:U'—-M' < M < R® is the desired parameterized sur-
face. a
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6.1.4 Example. S(x;) = {x e R®| [x — xo| = r}, r > 0, the sphere of radius
r centered at x, € R®,

Define ¢: R® — R by x> |x — x,|2. First, note that »2 is a regular value
of . If $(x) = r?, then dip(x — xo) = 2 [(3/0x)Z; (x' — xb)*)] ' — xb) =
2%, (" — xt)® = 2r2 > 0. The induced Riemannian metric on S?(x,) can
be written explicitly in terms of the chart /7| ]—#/2, #/2[ x ]—=, #[ which
was introduced in (4.4.5,2). Since f7- f7 = r?, it follows that f7 is a chart
for S2(0). The surfaces S? = S2(0) and S?(x,) differ by a translation in R®
which does not disturb the geometry of the surface. All the calculations of
the metric g, of the Gauss’ curvature, etc., carry over without change. In
particular, K = 1/r2,

We can now give a second proof of the fact that geodesics on the sphere
consist of arcs of great circles. To do this we will use the characterization of
geodesics as curves which locally measure length (see (5.3.4)). Suppose c is a
nontrivial, i.e., nonconstant, geodesic on M = S2. Choose p, and p, two
different points on ¢ which are not antipodal points, and such that the arc
¢’ of ¢ which connects p, to p, is the unique length minimizing geodesic from
Do to py (cf. (5.2.5)).

Let d be the uniquely determined arc of a great circle which connects p, to
p: whose length is strictly less than #r. We will now prove that, after possibly
a reparameterization, ¢’ = d.

The reflection o of S? through the plane determined by d is an isometry
which fixes d. In fact the only fixed points of S? are the points on the great
circle determined by d, which includes p, and p,. The length-minimizing
geodesic ¢’ connecting p, to p, is mapped into a length-minimizing geodesic
oc’ connecting op, = p, to op, = p;. By the uniqueness of minimizing
geodesics between p, and p,, oc’ = ¢/, and therefore ¢’ lies on the great circle
determined by d. Therefore ¢’ = d up to parameterization.

More generally, S7 %(x,) = {x € R*| |x — xo| = r}, r > 0, the hyper-
sphere in R™ of radius r and centered at x, is an (# — 1)-dimensional sub-
manifold of R". It may also be shown that geodesics on S*~(x,) consist of
segments of great circles. The proof is similar.

6.1.5 More examples. 1. The torus. Let
§e) = e, 22, 5%) 1= (VT F GO — @) + (),
If0 < b < a, b?is a regular value of . For if x e M = ~1(}), then (x*)? +
(x?)? > 0 and d,(y) = 2b* for the following value of y = (3%, 2, y°):
‘oo X¥VEP + (P2 —a
&) + (22 ’
The values of the map g(u, v), defined in (3.3.7), lie in M, so this is the
familiar torus in Euclidean space. By changing to cylindrical coordinates, it

is easily seen that this is a torus, symmetric about the (r, f)-plane, with
radii a and b.

i=1,2,)%:=x%
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2. A surface of second order (see (3.1.3)). Let 0 < ¢ < b < a, p¢{a, b, ¢},

p < a. Let (x, y, z) denote the coordinates in R®. Define
L x2 2 72
¢(x,y,z).—c_p+b_P+a_p—1

If (x,y,z)€d~X0), df(x,y,z) = 2§(x, y,z) + 2 = 2. Therefore 0 is a
regular value of .

3. Matrix groups. If we identify M, = spaceof alln x n matrices with R™,
then various classical groups appear as submanifolds of Euclidean space.
First we restrict our attention to GL(n, R) = {4 |det 4 # 0}. Since det:
M, —> R is a continuous function, GL(n, R) is an open set in R, By exercise
(6.8.12) det: GL(n, R)— R is a differentiable function all of whose values
are regular values. If !4 denotes the transpose of A, consider the map
S: GL(n, R) — GL(n, R) given by S(4) = *4- A. Actually S(4) is a symmetric
matrix, so we may consider S as a map from R™ to R"** /2, Let [ denote the
identity matrix. Then O(n) = {4 € M, | S(4) = I}, the orthogonal group,
is a sub-manifold of dimension n? — (n(n + 1)/2) = (n(n — 1)/2) in M,,
since I is a regular value of S. (The proof is left as an exercise.) The group
SO(n) = {Ae€ O(m) | det 4 = 1} is called the special orthogonal group. It
corresponds to orientation-preserving rotations of Euclidean n-space.

All the above submanifolds of R** which we have been calling groups are
indeed groups under matrix multiplication. For example, if det 4 # 0 and
det B # 0, then det A-B = det A-det B # 0, and 4! exists and has nonzero
determinant. Thus GL(r, R) is a group. Similarly, if det 4 = det B = +1,
then det 4-B = +1 and if S(4) = S(B) = I then S(4-B) = (4B) (4B) =
tB'4AB = 'BB = I, so O(n) and SO(n) are also subgroups of GL(n, R). A
group G with the structure of a differentiable manifold in which the mapping
(g, h) € G x G+ gh~' e G is differentiable is called a Lie group. We may
check that the above groups are Lie groups. The multiplication on GL(n, R)
is given in each coordinate by polynomials. Hence (g, /) — gh~'is a C* map
from GL(n, R) x GL(n, R) to GL(n, R). We have just shown that O(n) is a
closed sub-manifold of GL(n, R). Hence O(n) x O(n) = GL(n, R) x GL(n, R)
is a closed submanifold and the inclusion map is continuous. Thus the restric-
tion of the map (g, #) > gh~* to O(n) x O(n)is a C* map. For more details
and an introduction to Lie groups, see Warner [B19] or Spivak [A17]. Cf. also
(5.1.5.).

4. Graphs of differentiable functions. Let A = R™ be an open set and
f: A~ R* a differentiable function. The set

graph f:= {(x, ) eR™*" | x € 4, y = f(x)}
is a submanifold of R™*". Indeed, graph f is the image of the regular map
fu: A — R™** (rank m) given by fy(x) = (x, f(x)).
An application of the implicit function theorem (0.5.2) shows that every
submanifold of R* of dimension k is locally the graph of a differentiable
function f from some open set 4 < R¥ into R*~F,
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6.1.6 Proposition. 4 surface M <= R® is orientable if and only if there exists a
continuous function n: M — S? = S¥0), p— n(p), such that n(p) is a unit
normal vector to M at p., i.e., n(p) | T,M.

Proor. 1. Let (4., M), be a positive atlas for M. For p € M, define n,(p) to
be the Gauss normal vector to the surface f, = u;*: U, — R3. If p € M, we
have fp = f, o (u, o uz') and det d(u, o uz*) > 0 hence n,(p) = n,(p). (See
the proof of (3.3.6).) Consequently, n(p) is well defined and obviously
continuous.

2. Conversely, suppose n: M — S? is a continuous unit normal vector
field as in the statement of the proposition. Let (u,, M,).., be any atlas of M.
We construct a positive atlas out of this atlas as follows. The chart (u,, M,)
remains unchanged if the Gauss normal vector field associated with f, =
uz': U, — R3agrees with n on M, If the Gauss normal vector field associated
with £, is equal to —n, then replace (u,, M,) with the chart (s o u,, M,), where
s: R? — R? is the (orientation-reversing) reflection (u!, u?) — (—u*, u%). The
new atlas is clearly an orientable atlas. O

Remark. If M is the level set at a regular value of a differentiable real valued
function ¢: R* — R, as in (6.1.3), then n(p) = grad ¥(p)/|grad ¥(p)| defines
a unit normal vector field on M. Consequently, every component of M is
orientable.

We may now extend the uniqueness theorem (3.8.8) for parameterized
surface patches to oriented surfaces M < R®3.

6.1.7 Proposition. Suppose M and M* are oriented and connected surfaces in
RS. Then there exists an isometry B of R® such that BM = M* if and only

_ if there exists a diffeomorphism ¢: M — M* which preserves the first
Sundamental form and preserves the second fundamental form up to sign.

Proor. 1. Using (6.1.6), we know it is possible to choose positive atlases
(Uay Mo)aes and (uf, M¥)sep for M and M*, respectively, such that the
Gauss normal vector fields n and #* on the parameterized surface patches
fu: U—R3and f}: U¥ — R® define global continuous mappings n: M — S?
and n*: M* — S2. Suppose ¢: M — M* is a diffecomorphism satisfying the
hypotheses of the proposition. Without loss of generality, we may assume
that ¢ preserves second fundamental forms, for if necessary we may change
the orientation of M* and thereby change the sign of each »* associated to
(u¥, M})scp. Applying (3.8.8) to each f,: U,— R®3, « €4, we may assert
the existence of an isometry B,: R® — R® such that B,|M, = ¢|M,. Since
B, |M;NMy =¢|M;N M, = B,|M;NM, and M is connected, it
follows that B, = B, for all &, o’ € A. Thus the required isometry exists.

2. Conversely, suppose B is an isometry of R® with BM = M*. It follows
that ¢ = B|M is an isometry, ¢: M — M*. Certainly ¢ is one-to-one and
onto. Given «€ A, f, = u;*: U,—~ M, < R® is a local surface patch on
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6.2 Ovaloids

M and Bof,:U,— BM, < R® is a surface patch on M*. By (6.1.2),
ufoBo(u, | M, N B-1M¥)~1 is a diffeomorphism. If we choose the sign
of n so that dBn = n*, it follows from (3.2.5) and the proof of (3.3.6) that
the first and second fundamental forms are invariant under ¢ = B|M. [J

We end this section with our first result in global differential geometry, a
result which is not only interesting in and of itself, but also has a number
of useful applications.

6.1.8 Theorem. On a compact surface M < R®, there must exist a point pe M
where K(p) > 0.

Proor. Consider the continuous function p — |p|® on M. By compactness
of M, there exists a p, € M where this function assumes its maximum.
Let f: U— R® be a local representation of M with f(0) = p,. Locally,
|pI? = | f@)|? = | f(O)|? + 2dfo(w)-1(0) + d*fo(u, u)-f(0) + dfo(u)-dfo(w) + 3rd
and higher order terms. Since f(0) = p, is the point where the maximum
value is obtained, f(0)-dfy = 0. Therefore f(0) = «-n(0) # 0, and the
quadratic terms in the expansion of | p|? = | f(4)|2 may be written in the form

ollo(u, u) + I(u, u) < 0.

Since 1, is positive definite and & # 0, afl, must also be a definite quadratic
form. Therefore K(p) = det I1,/det I, > 0. O

A somewhat more geometric but equivalent proof of this theorem goes
as follows. Since M < R® is compact, it lies inside the region bounded by
some sphere S?(0) of sufficiently large radius centered at the origin. Let r
shrink until $?(0) has a first point (or points) of contact with M. Let p, be
one of these points of first contact. By exercise (6.8.12), all normal curvatures
of M at p must have the same sign and have absolute value equal to or greater
than 1/r. It follows that K(p) > 1/r2.

6.2 Ovaloids

In this section we will investigate a very interesting and important class of
surfaces called convex surfaces. These are compact surfaces with strictly
positive Gauss curvature. In R3, they turn out to be precisely the boundaries
of bounded convex sets (see (6.2.3)).

6.2.1 Definition. A compact surface M < R® which has strictly positive
Gauss curvature is called an ovaloid. In German, ovaloids are known as
“Eifidche,” literally egg-surfaces, a name apparently due to Blaschke [A2]
and one that is quite suggestive of their appearance.

! Our convex surfaces are referred to by many mathematicians as “strictly convex” sur-
faces. The class of “convex” surfaces in this terminology includes those surfaces with
K=0.
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6 The Global Geometry of Surfaces

In Chapter 2, section 3, we showed that a simply closed curve in the
plane was convex (in the sense that it lay on one side of its tangent line at
each point) if and only if its curvature was nonnegative. This result can
easily be sharpened to say that a simply closed plane curve lies strictly on
one side of each of its tangent lines if and only if its curvature is strictly
positive. We shall prove analogous results for ovaloids.

ExampLE. The ellipsoid (3.7.3) with p < ¢, e.g., p = 0. To show that K > 0
is equivalent to showing that the second fundamental form, 7J, is definite
(see (3.6.3)). To prove this, write the equation for the ellipsoid M in the form

3

Z a(x)? =1, as > as > a; > 0.

i=1
Let xo € M. For x € M near to x, we may express the coordinates of x as
follows:

x* = xb + 7' + $0'(n, ) + third and higher order terms.

Here Q' is quadratic in 3 = (4%, %3, 9°), and x + 7 lies in the tangent space
to M at x, (i.e., > axhn' = 0).
The quadratic terms satisfy

Daxh@m, m) + 2 a(y’)® = 0.
This is a consequence of substituting x = x) + 7' + ...into >3 a(x)2 = 1
and looking at the quadratic terms. This relation shows that the normal

component Yy axh(x' — xb) = > axbQ'(n, ) # 0 whenever 5 # 0, hence
K > 0.

6.2.2 Theorem (Hadamard’s characterization of ovaloids).? Suppose M < R®
is an ovaloid. Then

i) M is orientable;
ii) given an orientation of M, the normal map n: M — S? which it defines
is a diffeomorphism;
iii) M is strictly convex: for every p € M, M lies entirely on one side of the
tangent space T,M here T,M is considered as a plane through p in R3.

Proor. i) Since K(p) > 0, the second-order osculating surface to M at p is
an elliptic paraboloid (see (3.6.3)). We can choose n(p) to be the unit normal
pointing in the direction of the positive axis of this paraboloid. The vector
field n(p) is clearly continuous and, by (6.1.6), M is orientable.

ii) In terms of a local representation f: U — R® of M, K # 01is equivalent
to the condition that —dn, or the Weingarten map —dn, o df ;! is bijective
(see (3.5.5)). Therefore dn,: T,M — T, S? is a bijection and, by the inverse
function theorem (0.5.1), n: M — S§? is a local diffeomorphism.

2 Hadamard, J. Sur certaines propriétés des trajectoires en dynamique. J. Math. Pures
Appl. (5) 3, 331-387 (1897). For a modern version of Hadamard’s theorem which

includes convex hypersurfaces in R**! (submanifolds of dimension n whose second
fundamental form is positive definite), see Hopf [A12] or Chern [A6].
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6.2 Ovaloids

Now this means that n(M) < S? is open and compact. It is certainly
nonempty. Therefore n(M) = S? i.e., n is onto.

We will now prove that n is injective. Choose p, € M and let p; = n(p,) € S2.
Let U, be an open neighborhood of p, and Uy a neighborhood of p; chosen
so that n: U, — Uy is a diffeomorphism. Let m denote the inverse of n, that
is, m = (n|Uy)~1: Uy — U,. We claim that m may be extended to a con-
tinuous function m: $% — M which satisfies n o m = id. It follows from this
that m(S?%) < M is open, nonempty and compact, which implies that m is
surjective. Thus, if n(p) = n(q), there exists p’ and ¢’ in S2 with m(p") = p,
m(q") = q. Applying n to these two equations implies that p’ = ¢’ and p = g.
Hence n is one-to-one.

The proof of the existence of the continuous extension of m to all of S?
uses the well-known idea of monodromy from complex analysis. Let p; € S2.
Join pg to py by means of a curve ¢’ = ¢'(¢),0 < ¢t < 1, on S2? which has no
self-intersections (for example, by a length-minimizing arc of a great circle =
a length-minimizing geodesic).

Since n: M — S?% is a local diffeomorphism, it is possible to extend
m: Uy — U, to a mapping m: U’'(¢") — M, where U’(c’) is a neighborhood
of ¢’, and n o m = id. We prove this claim as follows. Suppose ¢* = the first
value of ¢ for which this is not possible. Certainly ¢* > 0, since ¢(0) =
Po€ Up. Let c(t) =moc'(t), 0 <t <t* As t—>1t* c(t) approaches a
well-defined limiting value which we will denote by c(¢*): for, since M is
compact, there exist positive constants k, k' such that

kg,(X, X) < gnp(dn(X), dn(X)) < k'g,(X, X)

for all p € M and all X € T, M. This means that a sequence {¢'(#,)} on S2, with
t, < t*, lim, t, = t*, is Cauchy if and only if {c(t;) = mo ¢'(¢,)} is Cauchy
in M.

For a suitably small neighborhood U(c(t*)) of c(¢*), n|U(c(¢*)) is a
diffeomorphism of U(c(z*)) with some subset of S2 which contains c'(¢*).
Obviously this diffeomorphism extends past ¢*. This means that t* = 1 and
we have the required extension of m to a neighborhood of ¢'.

Suppose ¢” = ¢"(t),0 < ¢t < 1, is some other curve on S2 connecting pg to
pi. There exists a homotopy ¢, 0 < s < 1, with ¢’ = ¢o, ¢” = ¢, (ie., ¢ is a
continuously varying one-parameter family of curves which begins at ¢’ and
ends at ¢”). But since the value of m(p}) is undisturbed by sufficiently small
continuous changes of the curve by which it is defined (a small change of ¢’
still remains in U’(c*)), it follows that m(p}) is defined independent of the
choice of the curve ¢’. This proves the existence of a globally defined inverse
of n, from which (ii) follows.

To prove (iii) consider the ““support function” A: M — R of M at any
Po € M which is defined by p+> h(p) := n(po)-(p-— po). The statement of
(iii) is equivalent to proving that 4 does not change sign. Since M is compact,
h assumes a minimum at some p; € M. At p,, 0 = dh,, = n(p,)-dp,,, ie.,
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6 The Global Geometry of Surfaces

n(p,) = +n(p,). If p; # p,, then, by (ii), n(p,) = —n(p,). This means that
h(p) = —n(p1)-(p — po). We may write

h(p) = —n(p,)-(p — po) = —n(p1)-(p — p1 + P1 — Po)
= —n(p)-(p — p1) + K(p).

For values of p near p;, the first term is negative by our choice of n, con-
tradicting the choice of p; as the point where 4 assumes its minimum. There-
fore p, = po and A(p) > O for all p e M. Moreover A(p) > 0 if p # p,. For
if A(p) = 0 then A assumes its minimum value at p and the previous argument
applies. O

6.2.3 Corollary. Given p € M, a surface and n(p) a unit normal to M at p, let
H, = {qeR®| n(p)-(q — p) = 0}. i, is the closed half-space bounded by
T,M and containing the point p + n(p). If M is an ovaloid, let K =
Mseu . By the previous theorem, part (iii), M < K. K is a convex set.
That is, if r, s € K the line segment, rs, joining r to s is also in K. Furthermore,
if K denotes the interior of K, K is not empty and M = K — K. Ifrek
then n(p)-(p — r) < Oforallpe M.

ProoF. Since 5, is convex for each p € M, so is K = ("\,ex 5,. Further, any
p € M cannot be in K because each neighborhood (in R?) of p must contain
points which do not belong to J,. Thus K < K — M.

Given p, € K, we have, for all pe M, n(p)-(p — po) < 0. If there is a
1 € M with n(p,))-(p; — po) = 0 then p, = p,. Indeed, otherwise there exist
Pi€M near p, with n(p})-(pi — po) > 0 since d(n(p):(p — podlp, =
dny,-(p1 — po) + n(p1)-dpy, = dny,-(p1 — po) # 0.

To show that K — M # @ we prove: If ppe M and e = «(pg) > 0 suffi-
ciently small then, for p, = po + en(po), g(p) = n(p)-(p — pPo) < 0 for all
p € M. Let p, € M such that « = g(p,) > g(p) for all pe M. Assume « > 0.
Since 0 = dg,, = dn,,-(p1 — po), we have p; — p, = an(p,). From g(p) =
n(p)-(» — po) = n(p)-(p — po) + en(p)-n(py) < « it follows that

[pr — pol < |P1 = Po| + |Po — ol S @+ €< 2
Hence, if € — 0, p; — po. On the other hand, for p, near pg,
g(p1) = n(p1)-(p1 — po) = n(p1)-(p1 — po) — en(p:)-n(po) < 0,

a contradiction to g(p;) = 0.
Finally, to prove that p,e K — M implies p,e K we observe that
sup,en M(P)-(p — po) < 0. This is true also for p’ sufficiently near p,. O

6.2.4 Definition. Let (k,;) be a symmetric 2 x 2 matrix. The adjoint transposed
matrix of (ki) is the matrix

@ (L ")
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6.2 Ovaloids

Clearly 3, k& = 8t det(k;)). Thus, if k = det(k,;) # 0, then (K/k) is
the inverse matrix of (k).

In preparation for the next theorems of this section, we prove two algebraic
lemmata.

6.2.5 Lemma. If (k;,) and (k,,,) are related by the equations ki, = >, alatky,
where a ;= det(al) # 0, then their respective adjoint transposes are related

by
k* = biblskm a2,
I,m

where 3, blaf, = 8.

Proor. Compute. In the case where k = det(k;,) # 0, this follows from the
usual transformation law relating the inverse matrices of (ki) and (k)

(see (5.6.1,2)):
T Jm
where k = a%k. d

6.2.6 Lemma. Suppose (hy) and (k) are 2 x 2 positive definite symmetric
matrices with det(hy) = det(h},). Then det(h, — ) < 0 with equality if
and only if (hy) = (h}).

Proor. Both the hypotheses and the conclusions of this lemma are inde-

pendent of transformations of the form &, = 3, , alaihy, (or H = AH'A),

where det 4 # 0. It follows from our results (3.5.2) and (3.5.3) on the prin-
cipal curvature directions that a matrix 4 = (a},) exists such that

10 - a, 0)
= t = M * = *t = .
H = AH'A (0 1), H* = AH*'4 (0 o

To see this, we consider H as the fundamental matrix of a first fundamental
form and H* as the fundamental matrix of a second fundamental form. Then
a pair {X;, X5} of H-orthonormal vectors exists for which

X>H*X,X); HX, X)=1

assumes its maximum at minimum, respectively.
Take as A the matrix carrying the natural basis of R? into {X;, X5}.
Then det(H — H*) = (1 — a;)(1 — ag) = —(Va, — Vay)?, since a,a, =
det #* = det f = 1 and @; > 0, g, > 0. This proves the lemma. O

Geometric application of the above results

1. Let M be an orientable surface in R® and let (u, M') be a chart on M.
With respect to f = u~': U— M’ < R?, define the coefficients A, () of the
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6 The Global Geometry of Surfaces

second fundamental form. If (v, M”) is another similarly oriented chart ane
hy(v) are the corresponding coefficients of 17, then for ue u(M' N M"),

- out ou*
fym(0(u)) = £ B0t G ).

If we write A = (0u'/ov")|,, this equation may be written as
H = 4H'A.
The determinants of the first fundamental forms are related by
E(w)) = (det 4)*-g(u).
Lemma (6.2.5) yields

—Zh };nc
= ik " -

ik
py
s 8 |ow N 8 fu
I.e., this expression is independent of change of coordinates. Thus it gives .
globally well-defined function on M.

2. Let M and M* be two orientable surfaces in R3. Suppose ¢: M —~ M
is an isometry, i.e., a diffeomorphism which preserves the first fundamenta
forms. If (u, M) is a chart for M, then (uo ¢, $M"’)is a chart for M*. S
we may write M and M* locally in terms of the same parameters. Since ¢ i
an isometry, g,.(u) = git(u). Let AX(u(p)) = Af(u - = *($(p))). This define
a function on M. By (1) above,

Jxie _ Jik

* k(p) := > hy ————
o g

is a well-defined function on M. It represents twice the difference of the Gaus

curvature functions. We shall need £(p) for

u(p)

6.2.7 Lemma (The Herglotz integral formula®). Suppose M and M* ar
ovaloids in R®. By (6.2.2), both M and M* are orientable, which means tha
after a choice of orientation the mean curvature functions H and H* ar
defined. Suppose there exists ¢: M — M*, an isometry. Fix x, € R%. The,
the following integral formula holds:

e | fM Kpn(p)-(p - x0) dM = | [ 21y anr - | fM 2H¥ (7)) AM

where k(p) is defined in (*) above.

Proor. 1. Let (u, M’) be a chart for M and (1 o ¢, $M ") the associated char
of M* . If f = u~1: U— R®, we will show that

;‘l‘*tk

1 ) h’*ik
) X («/é ~g—fk) = > hun.

3 Herglotz, G. Uber die Starrheit der Einflichen. Abh. Math. Sem. Univ. Hamburg 1*
127-129 (1943).
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6.2 Ovaloids

Both sides of (1) are invariant under change of coordinates: For the
right-hand side this was shown above. If we write f;, = 5, fie, and let
& = 3, h*¥f1/g, then the left-hand side equals div X, where X = 5, £f; (see
(4.1.7)). Therefore we choose to verify (1) in Fermi coordinates. In such
coordinates I'j,(uo) = 0, g(u,) = 1, and dg/ou'(u,) = 0, which makes the
left-hand side of (1) equal to

) Z‘ v A Zk F*ep,n.

We apply the Mainardi-Codazzi equations (3.8.3 (ii)): Ay, — Ay = 0,
which imply
> he = {ﬁ + B =y~ by =0 (k=1
*]2 h*22 = —hm 1+ h’fl,z =0 (k= 2).
This in turn implies that the first term of (2) is equal to zero. Therefore the

left- and right-hand sides of (1) are equal.
2. Using (1),

ZE:—khgkn-(f—xo)=\/g( 8u‘( E*kﬁc)) (f — x0)

OR ]
1 *lk a *ik
=—§Zk gik'l'\/gi,zk'a_ui(\/é?ﬁc'(f_xo))'

Since

1 1
p Z Fixtegy, = g(h;‘zgu 2htag1s + hi1820) = Zh kg* = 2H*
iE

and the second sum on the right-hand side in (3) may be written as div X,

where X = 5, &, and & = 3, (F**/g)f.-(f — x,), integrating (3) over M
yields

@ .UM{k—é—h,kn(f x0)d =—”M2H*dM.

(IM div X = 0 by Gauss’s theorem (5.6.12).) If M = M* the formula is true

with the * deleted. Call this formula (4"). The difference between this formula
(4) and (4') is (**). O

We now use the Herglotz integral formula to establish a famous result due
to Cohn-Vossen and Herglotz.*

4 Cohn-Vossen proved this theorem for analytic surfaces in 1927. The methods he
employed were different from those presented here. Herglotz’ proof is in the paper in
footnote 3. He makes use of an idea of Blaschke. See Blaschke, W. Uber eine geometrische
Frage von Euklid bis heute. Hamburger Mathematische Einzelschriften, 23. H. Leipzig
and Berlin: Teubner, 1938. For a discussion of the history of this problem as well as
some further results in this area of research, see Efimov, N. W. Flichenverbiegung im
Grofen; mit einem Nachtrag von E. Rembs und K. P. Grotemeyer. Berlin: Akademie-
Verlag, 1957.
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6.2.8 Theorem (Rigidity of ovaloids). Let M and M* be two ovaloids which are
isometric, i.e., there exists an isometry ¢: M — M*. Then there exists an
isometry B of Euclidean 3-space which maps M onto M* and which satisfies
B|M = ¢.

Proor.

1. Using ¢, we may introduce coordinates simultaneously on M and M*.
Choose normal vector fields n on M and n* on M* so that Il and IT* are both
positive definite (see the proof of (6.2.2)). Since ¢ is an isometry, K* = K,
g* = g, and therefore i = det(h;,) = K-g = K*-g* = h*. We claim that
(hy) = (A}). The theorem follows from this claim by an application of (6.1.7).

By (6.2.6), the claim will follow if we can show that det(h;,, — h) = 0.

2. By (6.2.3) there exists an x, € R® for which n(p)-(p — x,) < 0, for all
pEM. Also,

> (B — [y, = —2 det(hy) + hiahyy — 2hlshis + hlihas
wr
= —det(h, — hy) = 0

by (6.2.6). Therefore k(p) > 0 and (6.2.7) implies

H 2HdM—U 2H* dM < 0.
M M

Since we could interchange M and M* and derive the analogous inequality,
it must be that

[[ komto)-o — x am = 0.
The fact that n(p)-(p — x,) < 0 implies that k(p) = 0, hence
det(h,, — hi) = 0. O

6.2.9 Lemma (The Minkowski integral formulae).® Let M be a compact
orientable surface in R3. Then the following integral formulae hold:

i) - f L‘H(p)n(p)(p — x)dM = f L dM.

ii) - f L H(p)dM = f L K)n(p)-(p — x;) dM.

ProoF. 1. Let f: U— R® be a local representation of M by a positively
oriented chart. We show that

@ ‘,Zk—\}—;;’—u.(«ﬂégm) = 2Hn.

Since both sides of (a) are clearly invariant under choice of coordinates, it
suffices to prove (a) in Fermi coordinates where gy, (#o) = 0 and gy (o) = 8.
The left-hand side is then equal to 3, , g*hyn = 2Hn by definition.

5 Minkowski, H. Volumen und Oberflache. Math. Ann. 57, 447-495 (1903).
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2. Taking the inner product of (a) with (f — x,), we get
1 2 1
Hn-(f = x0) = —= > =— {(Vg&™f)-(f — xo)} = —= > V28"8u,
(.f 0) 2'\/§ & au‘ {( 88 f;c) (f 0)} 2\/§ “ 88 "8k

The last term is equal to —1. Statement (i) follows from Gauss’s theorem
(5.6.9).

3. To prove (ii) we proceed in a similar fashion. First, if f is a local
representation of M,

(b \/— z P ( }i fk) 2Kn.

To prove this, we use the fact (established in the proof of (6.2.7)) that
= 3, A% = 0. Therefore the left-hand side of (b) is equal to

—z;?kh,,n - 2(”);: = 2Kn.
4. Taking the inner product of (b) with (f — x,),

E i

Kn(f - xg) = \/-Zau‘( R -w) - VED ae
The last term is equal to —H. Statement (ii) now follows from Gauss’s
theorem (5.6.9). O

We end this section with a famous result of Liebmann® which characterizes
the sphere as the only compact connected surface in R? with constant curvature.

6.2.10 Theorem. Let M be a compact connected surface in R® with K = constant.
Then K = r? > 0 and M = S},,, a sphere of radius 1/r.

Proor. 1. By (6.1.8), M must have at least one point of positive curvature
and therefore X > 0. Setting K = r? = constant,

édet(h,k —rg) = K— 2H + 12 = 2 — 2H.
Agr) 1= ” L det(hy, — rgy) dM = 2r2” am — 2rH HdM
u8 M M
1
8u(r) = [ [ 2 detth, = rguyn-(p — x) bt
M
= 2J'f Kn-(p — xo) dM — ZrJf Hn-(p — xo) dM
M M

-2 j LHdM + 2 j L M (by (62.9).

Thus Ay(r) = rA(r).

¢ Liebmann, H. Eine neue Eigenschaft der Kugel, in Nachr. Kgl. Ges. Wiss. Gittingen,
Math.-Phys. Klasse, 44-55 (1899). For further references, see the book of Efimov referred
to in footnote 4.
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2. Since K > 0 we may choose a2 normal vector field » making I positive
definite. Since M is an ovaloid, there exists an x, € R® for which n(p)-
(p — x0) <0 for all pe M (see (6.2.3)). Since det(hy) = K-det(gy) =
r2-det(g,) = det(rgy), (6.2.6) implies that det(h,, — rgy) < O, with equality,
if and only if Ay, = rg,,. Therefore A(r) < 0and A,(r) > 0 which, combined
with the equality Ay(r) = r A,(r), implies that Ay(r) = A,(r) = 0. Therefore
hy, = rg., where ris a positive constant. This means that M consists entirely
of umbilic points and, by (3.5.11), M must be a sphere of radius = 1/r. []

6.3 The Gauss-Bonnet Theorem

In this section we will prove one of the most important results in the global
theory of surfaces. In contrast to the results in (6.2), which deal with the
surfaces in Euclidean space, the Gauss-Bonnet theorem is a theorem of
intrinsic differential geometry. In order to appreciate its full significance,
some familiarity with the topology of compact orientable surfaces is neces-
sary. This may be found in Seifert and Threlfall, Lehrbuch der Topologie,
Chelsea, New York, N.Y., Lefschetz, S., Introduction to Topology, Prince-
ton University Press, Princeton, N.J., 1949, or Massey, W. S., Algebraic
Topology, Harcourt Inc, New York, N.Y., 1967.

In preparation for the proof of Theorem (6.3.2), consider a coordinate
system (U, g) with ds? = (du)® + goq(du®)?, i.e., geodesic coordinates. In
this situation, Ey(u) = (8/6u')(u), Eo(u) = (8/0u?)/Vgaz is an orthonormal
2-frame on (U, g). Let u(t), tel, be a curve in (U, g) with g(iz, %) = 1. If
e,(0), ey(t) is the Frenet frame on u(¢), then the geodesic curvature of u is
given by «,(¢) = g(Vey(t)/dt, ex(2)) as in (4.2.6).

6.3.1 Proposition. Under the above conditions, there exists a differentiable
Junction 6(t), t € I, such that

¢)) e,(t) = cos 0(2)- Ey(u(r)) + sin 0(2)Ey(u(z)).

The function 0(t) is uniquely determined up to integral multiples of 2m
and satisfies

@ K,(1) = 61) + Vg 1i*().

Remark. This proposition generalizes (1.4.1) and (2.1.3) (where the analogous
result was proved for curves in Euclidean space) to curves on surfaces with
a Riemannian metric. In the Euclidean case, we defined 6(¢) with respect to
a parallel translation invariant orthonormal 2-frame, namely e,, ;. Such a
2-frame does not in general exist on a surface with K # 0 (see (4.4.2)).

Proor. 1. The existence and uniqueness, modulo 2z, of 6(¢) satisfying (1)
follows by an argument identical to the one in (2.1.3).
2. We may write e,(¢) as follows:

e,(t) = —sin 0(¢)E,(u(t)) + cos 68()E(u(t)).
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6.3 The Gauss-Bonnet Theorem

Since g(E;, E,) = 8y, g(VE/dt, E,) + g(E,, VE,/dt) = 0, so, in particular,
g(VE,/dt, E)) = 0. Therefore

k(t) = 6(t) + g(VEy/dt, E))(0).

But VE,/dt = 3, . wl'fe, and T'f, = \/é,l/\/_, M,=T§{ =T =0in
geodesic coordinates (see (4.2.4)). From this, equation (2) follows. O

6.3.2 Theorem (Gauss-Bonnet, local version).” Let M be an oriented surface
with Riemannian metric. Suppose P: F— M is a diffeomorphism of a
polygon F onto a subset of M. If «;, 0 < j < k, denote the exterior angles
at the vertices of P(F) and x, = the geodesic curvature of the boundary
curve OP (traversed in the positive sense). Then

™ ” KdM+f kpdt + 3 oy = 2m.
P oP ]

Figure 6.1 Gauss-Bonnet theorem

Prookr. 1. Suppose P lies entirely in one geodesic coordinate system (u?, u?).
By (4.3.8), K may be written as div X

oL () )

where X = (— Vg 1/Vg)e,. Using the divergence theorem (5.6.9),

J' f KM= Ve — Ve du =— j Ve, di.
P uodP uodP

We may parameterize 0P to be a unit-speed, positively oriented, simply
7 Bonnet, O. Memoire sur la théorie générale des surfaces. J. de I’ Ecole Polytechnique 19,

H.32, 1-146 (1848). The important special case of a geodesic triangle (see (6.3.3 (ii))) was
treated by Gauss in the *“ Disquisitiones.”
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6 The Global Geometry of Surfaces

closed curve u(f) = (u'(t), ¥*(#)), te L Let I, = [a,, b))}, 0 < j < k, be sub-
intervals on which u; = u o I, is smooth. By (6.3.1),

_Lap Vg, du? = Z (L 6(r) dt — ft!x,(t) dt).

We claim that 3, fh 6(t)dt + 3, a; = 2, which will prove the theorem
in this special case.

2. Proof of claim. If the metric g were the Euclidean metric, i.e., if g =
822 = 1, then the claim would be precisely the Umlaufsatz (2.2.1). We now
reduce the general case to the Euclidean case as follows. On U, let

ds? = (du')? + goaq(du®)?, 0<rx<1,
be a family of line elements with

82 =7+ (1 — 7)gaa.

For = = 0, ds{ is the given line element on U and, for = = 1, ds? is the
Euclidean line element. Notice that each ds?, 0 < 7 < 1, is in fact a line
element since g,., is always strictly positive. For any = € [0, 1], we can define
the exterior angles «,; and the functions 8,; as above. These functions will be
continuous in 7, for

cos 0(¢) = %;’Z} where E,; := e;; E.:= €s/VZas
sin 0,(t) = f}(g_E_(T:"_Z_;
coS o = g:(#(ay), u(b,_,))

Veula), i(ay))- Vg, 1), i(b;_1))

Furthermore, for every = the number
2o, i= 3 [ 06t + g = 306, ~ 0a) +
i vy k) ]

is a multiple of 27. Thus n, must be a constant integer, since it depends
continuously on 7: ny = n, = n, = 2, since 2mn, = 2. This proves the
claim.

3. We now remove the restriction that P: F— M has values lying inside
of a single geodesic coordinate system. Given P: F— M, we may subdivide
Finto{F,}, 1 < p < f, so that each F, is a polygon and P, = P|F, has values
lying in some geodesic coordinate system. For each p we have

*) J KdM+f kpdt = 21+ 3 (8, — m),
P, op, T

where the sum on the right is taken over all the vertices of P,and «;;, = = — 8,,.
Denote the number of vertices of the subdivision {F,} by ». Denote the
number of edges by e and the number of faces or surfaces by f. Then
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6.3 The Gauss-Bonnet Theorem

v — e + f = 1. This can be proved as follows: If each F, is a triangle, it
follows from induction on the number of triangles since adjoining a triangle
to a triangulation (i.e., a subdivision by triangles) does not change the sum
f — e+ v = 1. Given a general subdivision into polygons, refining it to a
triangulation does not change the sum f — e + v (proof by induction on f).

Summing over p, the left-hand side becomes ﬂp KdM + fbp K, dt since
the inner edges are each traversed twice, once in each direction, and thus
cancel out. The right-hand side may be computed as follows. First, 2af-
0 210 B3, = 25 By + 2m0, where ¢ is the sum of the inner vertices and 3 is
taken over the exterior vertices, i.e., vertices of F. Now, >, >, (—#) =
—2mé + 3, (—m), where é is the number of internal edges. Since —é + ¢ =
—e + v, the right-hand side is thus equal to 2#(f — e + v) + >, (8, — @)
=2r— 3, O

6.3.3 Corollaries. i) If B, := m — «; are the interior angles at the k corners
of the polygon P, then

HPKdM+fap K,dt=ZB,+(2—k)1r.

ii) (Gauss’ theorema elegantissimum). If the k edges of the polygon P are
geodesics (k, = 0), then ”P KdM = 3,8, + (2 — k)n. In particular,
for k = 3 (a geodesic triangle):

Z,B,=w+fLKdM.

i) Suppose K = K, = constant and the edges of P are geodesics. Let
A(P) = ([, dM be the area of P. Then 3,B, = (k — 2)m + K, A(P).
If, in addition, P is a triangle, then 3,8, = nw + Ko A(P) =2 0. In
words, the sum of the interior angles of a geodesic triangle on a surface
of constant curvature K, is equal to w plus K, times the area of the
interior of the triangle. If K, < 0, then A(P) < —m/K,.

iv) If K < 0, then there cannot exist a geodesic 2-gon, since that would
mean . B; < 0, a contradiction.

Theorem (6.3.2) has some very important applications to the theory of
compact orientable surfaces with a Riemannian metric, namely the relation-
ship between [f, K dM and the Euler characteristic of M, which we now
define.

6.3.4 Definitions. Suppose M is a differentiable orientable compact surface.
LetIl := {P,: F,— M |1 < p < f} bea polygonal subdivision as defined
in (5.6.10). Let » be the number of vertices of II (that is the sum of the
points of M which are the images of the vertices of some F,). Let e be the
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6 The Global Geometry of Surfaces

sum of the edges of I, defined similarly, and let f be the sum of the faces
of I1. The Euler characteristic of M (with respect to II) is the number

XoM) =f—e+ 0.

A polygon P,: F— M is orientation-preserving if, for any positively
oriented chart (u,, M,),

Uy o P, F, N P;YM,) < R*— U, < R®

is orientation-preserving.

In part 3 of the proof of (6.3.2) the sum f — e + v (with respect to a
subdivision of a polygon F) was introduced and it was shown that f — e + v
is always equal to +1. The Euler characteristic y,(M) is a generalization of
this number to polygonal subdivisions of compact orientable surfaces, M.
As the proof of the previous theorem shows, y;(M) remains unchanged by a
refinement of II. Thus we may assume, without loss of generality, that in our
definition of x (M) the polygons of II are all triangles (or, if need be,
quadrilaterals).

EXAMPLES. 1. M = S2, the sphere. The polygonal subdivision II of S2 defined
by projection onto an inscribed tetrahedron allows us to compute x(S2%) =
4—-64+4=2.

2. M = T2, the torus, may be subdivided by using three meridians and
three parallel curves. The resulting polygonal subdivision consists of quadri-
laterals with a total of /' = 9 faces, e = 18 edges, and » = 9 vertices. Thus
xa(T?) = 0.

3. Let M, be a compact oriented surface and let y,, be a polygonal sub-
division of M,. We may assume that II, contains a quadrilateral, say P,,
introducing it if necessary by a subdivision of one of the polygons of II,. This
will not alter x; (M,). It is possible to construct a new surface M = M, + H
by a process known as “attaching a handle H.” Consider the torus with the
quadrilateral subdivision I1; defined in (2) above. Let one of the quadrilaterals
of II; be labelled Pg. Then M, — P, and H = T? — P, both have boundaries
which consist of four smooth curves which we may identify (see Figure 6.3).
The resulting surface M inherits a polygonal subdivision, II, equal to the
union of II, — {Po} and II5 — {Po}. Moreover, x,(M) = x (M,) — 2. This
is because we have deleted two faces, fouredges, and four vertices from I1, U I,

Figure 6.2 Attaching a handle
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6.3 The Gauss-Bonnet Theorem

Definition. A surface of genus g is a surface which is diffeomorphic to S2 with
g > 0 handles attached. By the above construction, such a surface has a
polygonal subdivision IT with y (M) = 2 — 2g.

6.3.5 Theorem (The Gauss-Bonnet theorem for closed surfaces). Let M be
a compact oriented surface with a Riemannian metric and let = be a poly-

hedral subdivision of M. Then j f u KdM = 2m -y (M).

6.3.6 Corollary. The Euler characteristic of M is independent of the choice
of polyhedral subdivision of M or the orientation of M.

Proor. 1. We proceed exactly as in part 3 of the proof of Theorem (6.3.2).
First of all, formula (*) is valid for each p. Summing over p, the left-hand
side becomes [[, K dM:; all of the edges cancel pairwise since each one
appears twice, with opposite orientation. The right-hand side adds up to
27 -x(M) because we have 2w for each face, —= for each time an edge
ends in a vertex (twice), and 3, B;, equals 2= times the number of vertices.
This proves the theorem.

2. To prove the corollary, simply observe that the left-hand side of the
equation (*) depends only on M and its Riemannian metric, while the
right-hand side is defined in terms of numbers which are independent of
the orientation of M. O

6.3.7 Theorem. Suppose M is a compact orientable surface with a Riemannian
metric.
i) If (M) = O (resp. > 0), then there exists a pe M with K(p) = 0
(resp. > 0).

ii) If (M) < 0 (resp. < 0), then there exists a pe M with K(p) < 0
(resp. < 0).

iii) If K > 0, then (M) > 0. [More precisely, (M) = 2, for this is the
only possible positive value of the Euler characteristic.] This implies
that M is diffeomorphic to S2.

iv) If K = 0, then «(M) = 0. This implies that M is diffeomorphic to T?.

V) If K < 0, then x(M) < 0. [More precisely, M is a sphere with two or
more handles.]

The proof [with the exception of the bracketed statements] follows
directly from (6.3.5). [The bracketed statements follow from the classification
theorem for compact orientable surfaces. Namely, any such surface is
diffeomorphic to a sphere with g > 0 handles (see Massey, loc. cit.).]

We end this section with an interesting application of the Gauss-Bonnet
theorem to the theory of curves in R3.

6.3.8 Theorem (Jacobi).® Suppose c(t), 0 < t < w, is a regular closed curve

8 Jacobi, C. G. J. Uber einige merkwiirdige Curventheoreme. Schumacher’s Astro-
nomische Nachr. 20, Nr. 463, 115-120 (1842).
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6 The Global Geometry of Surfaces

in R® on which ¢(t) and &(¢) are linearly independent. Let (e,(1), ex(t), es(t))
be the unique Frenet frame of c. Suppose the closed curve ey(t), 0 < t < w,
which lies on S* is simple (i.e., without self-intersections). Then this curve
divides S® into two sets of equal area = 2.

PrOOF. We may assume, without loss of generality, that ¢ is arc length on c(?).
Define r(¢) by

cosr(t) =

Varalth sl =oem= 0.
Since éx(t) = —«(r)es(t) + 7(t)es(t) and éx(t) - ey(t) = 0O, the vector fields

E\(t) := (—cos r(t))ey(t) + (sin r(¢))es(t)
and

Ey(t) := (sin r(t))es(t) + (cos r(z))es(r)
are the unit tangent and the unit normal vector fields on e,(z), respectively.
This means that (E,(¢), Ex(t)) is the Frenet frame of ey(r) on S2 since

(es(2), es(t)) span T, S2.
Thus

‘% = FE(t) — VT P e),
which implies
VE,
dt

Suppose P is one of the connected subsets of S bounded by eyt),
0 < 7 < w. By the Jordan curve theorem, P is a “polygon.” Since K = 1 on
S2, Theorem (6.3.2) implies

'UPIdM+J;Pr'dt=J.LdM=21r. O

6.4 Completeness

=D, k) = TRELD) = )

In this section M will always be assumed to be a connected Riemannian
manifold. When M is required to have dimension = 2, i.e., when M is a
surface, this will be indicated.

6.4.1 Definition. The distance d(p, q) between two points p and ¢ in M is the
infimum of the length L(c) of all piecewise smooth curves ¢ which join
ptog.

We wish to show that d( , )actually defines a merric on M in the usual
sense. In other words,
i) d(p, q) 2 0 (equality < p = ¢);
ii) d(p,q) = d(q, p); and
iii) d(p,q) + d(g, r) = d(p, r) (triangle inequality).
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6.4 Completeness

6.4.2 Theorem. The distance function d(p, q) defines a metric on M. Moreover,
the metric topology is equivalent to the topology of M.

Proor. 1. Certainly d(p, q) > 0, d(p, p) = 0, and d(p, q) = d(g, p). Also the
triangle inequality follows easily from the definition of d( , ).

2. Suppose d(p, q) = 0. Consider a geodesic disk B,(p) centered at p. By
(5.3.4), d(p, q) > 0 for all g ¢ B,(p) and for any g € B,(p), d(p, q¢) = 0 with
equality if and only if p = ¢. Actually, only smooth curves are considered
in the proof of (5.3.4). But piecewise smooth curves may also be admitted.
One uses the fact that geodesic (polar) coordinates (#, %) have the charac-
teristic property that any curve connecting (u}, u3) to (ui, u3) must have
length at least |ui — u§|. This is because the distance between orthogonal
trajectories to the “u! = constant” curves are given by the difference in the
parameter values of these trajectories. This completes the proofthatdisa metric.

3. A basis for the open sets in the metric topology consists of embedded
geodesic disks B,(p), p > 0, p € M. These we know are open sets in the usual
topology. Conversely, given a neighborhood U(p) of p, there exists a p > 0
with B,(p) < U(p). a

We know from Chapter 5, section 3, that for p > 0 sufficiently small B,(p)
is a geodesic p-disk. (Recall that a geodesic disk is the image of B,(0) = T,M
under exp, on which exp,|B,(0) is a diffcomorphism.) The maximal radius
pn(p) such that B,(p) is a geodesic disk for all p < p,(p) is in general a
function of p and cannot be explicitly computed from knowledge of the
curvature of M alone. The number p,,(p) is called the radius of injectivity at p.
We know that p,(p) is positive, but it may be arbitrarily small as shown by the
example of the pseudosphere (3.9.1(iii)). Likewise, p,(p) may be equal to
+00. This happens for any point in Euclidean n-space.

By Theorem (5.2.5), for every p € M, there exists a neighborhood M(p)
of p and a p = p(p) > 0 such that, for every g € M(p), B,(q) is a geodesic
disk. If K = M is a compact set, then there exists a finite set {p;} = K such
that {M(p,)} covers K. Therefore, if p < p(K) = min, {p(p;)}, B,(q) is a
geodesic disk for all g € K. We rewrite this result as follows.

6.4.3 Proposition. Let K be a compact set in M, a surface with Riemannian
metric. Then there exists a number p = p(K) > 0, depending only on K,
such that, for all pe K, exp,|B,0): B,(0)— M is an injective diffeo-
morphism: B,(p) = exp, B,(0) is an embedded geodesic disk of radius p.

When we defined the exponential map in (5.2), its domain of definition
was a suitably small neighborhood of the zero vectors in TM. The objects of
interest in Riemannian geometry in the large are those surfaces or manifolds
M for which exp, is defined on all of T, M.

6.4.4 Definition. A surface (or manifold) is said to be geodesically complete
if the exponential map is defined on all of TM.
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6 The Global Geometry of Surfaces

An important theorem of Hopf and Rinow? characterizes geodesic
completeness in several ways. Among other things, it states that M is
geodesically complete if and only if M is complete in the metric d( , ) defined
in (6.4.1). (A metric space is complete if and only if every Cauchy sequence
converges.) We will not prove this completely, but content ourselves with
proving half of the equivalence.

6.4.5 Lemma. Suppose M is complete as a metric space. Then M is geodesically
complete.

Note: The hypothesis is certainly satisfied if M is compact.

ProoF. 1. Let X € T, M be a unit vector. We wish to show that the geodesic
cx(t) = exp, tXis defined forall e R* = {te R | ¢ > 0}. We know that cx(r)
is defined for an interval of the form [0, #*[. Let {z,} be a sequence in [0, £*[
with lim, ¢, = t*. Since d(exp, # X, exp, ,X) < |t — 8|, {pn = €xp, 1, X}
is a Cauchy sequence. The assumption that M is metrically complete implies
that there exists a ¢ € M with lim, p, = ¢. -

2. According to (5.2.5), there exists a neighborhood M, of ganda p > 0
such that for every p* e M, the exponential map exp, is defined on B,(0) = T, M.

By choosing n large enough to make t* — ¢, < p/2, we may insure that
Pn € M,. This means that the geodesic ray emanating from cx(t,) with initial
direction ¢x(t,) € T, M is defined for all |¢] < p, so that cx(¢) is defined for
te[0,¢t, + p). But ¢, + p > t* and thus cx(¢) is defined forallz > 0. [

The most important property of geodesically complete surfaces and
manifolds is contained in the following theorem.

6.4.6 Theorem (Hopf-Rinow).® Suppose M is geodesically complete and
connected. Then any two points of M may be joined by a minimal geodesic
whose length is equal to d(p, q).

Note: For the definition of “minimal geodesic,” see (5.3.3).

Before proving the theorem, the reader is urged to notice that the converse
of the theorem is not true. For example, the interior of the unit-disk of R2
with the Euclidean metric satisfies the conclusion of the theorem (any two
points may be joined by a straight line (minimal geodesic) lying inside the
disk), but is not complete.

Proor. 1. Without loss of generality, we may assume that d(p,q) = r > 0.
Let p be such that 0 < p < r and exp,|B,(0) is a diffeomorphism from
B,(0) = T,M to B,(p). Choose e satisfying 0 < € < p, and define S = S.(p)
to be equal to exp, S.(0), where S.(0) is the hypersphere of radius ¢, centered
at0eT,M.

9 Hopf, H., and Rinow, W. Uber den Begriff der volistindigen differentialgeometrischen
Flichen. Math. Ann. 116, 749-766 (1938).
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Since S is compact, there exists a p, € S such that d(p,, ¢) < d(p’, ¢) for
all p’e S. Let X e T,M be the unique unit tangent vector such that p, =
exp, eX. We will show that exp, rX = g and thus ¢(¢) = exp, tX,0 <t < r,
is a minimal geodesic from p to g.

2. Toward that end, we shall prove that for ¢ € [0, r],

) d(c(t), gy =r — 1.

We know that ((¢)) holds for ¢ = €. Since every curve from p to g must pass
through S,

r=d(p,q) = llggsl(d(p, P)+dp,q) = e+ d(po,q) = « + d(c(e), 9),

which implies ((¢)). Similarly, ((#)) holds for all # < e.

Suppose now that #, € [0, 7] is the supremum of all ¢’ such that ((¢)) holds
for ¢ € [0, ¢'[. By the paragraph above, ¢, > e. By continuity of both sides of
the equation d(c(t), q) = r — t, it follows that ((¢,)) holds.

Po

C(Po)

S
St

Figure 6.3 Construction of a minimal geodesic
Suppose that #, < r. We will arrive at a contradiction. Let S’ be a small
hypersphere centered at ¢(t,) with radius €', 0 < € <r — t,. If pye S'isa

point on S’ whose distance from g is the minimum for all points on S’, and
(1), ty £t < t, + €, is the minimal geodesic from c(¢,) to po, then

d(c(to), 9) = min(d(c(to), 4) + d(¢',9)) = ¢ + d(po, 9),
ie.,
™ d(po,q) = (r — 1) — €.
But pg = c(#, + €). To prove this, first observe that

d(p,po) = d(p,q) —d(po,q) =7 —(r —to) + € =1, + €.

But since the composite curve ¢ | [0, #,] followed by ¢ has length ¢z, + ¢ <
d(p, po), it follows that it is an unbroken geodesic, i.e., py = ¢'(€) = c(ty + €).
The relation (¥) now implies ((¢, + €')), contradicting the definition of ¢,.
Therefore ¢, = r and ((r)) is our claim. 0

Remarks. 1. The careful reader is encouraged to pinpoint exactly where in
the proof the hypothesis of geodesic completeness was used.
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2. Minimal geodesi¢ joins between two points need not be unique. The
simplest example is the sphere on which any two antipodal points may be
joined by uncountably many minimal geodesics.

3. In the special case that M is simply connected and the curvature is non-
positive, a strengthened version of Theorem (6.4.6) will be proved, albeit
in a quite different way (see (6.6.4)).

6.5 Conjugate Points and Curvature

In this section M will always denote a complete surface with a Riemannian
metric. The first few results obtained may be generalized to complete
Riemannian manifolds, with little or no changes in the proofs. The com-
parison theorems are somewhat harder in the general case.

We shall have need to refer to section 5.4, which provides some basic
results concerning Jacobi fields.

6.5.1 Definition. Let ¢ = ¢(t), ¢ = 0, be a geodesic ray on M with ¢(0) = p
and ¢(0) # 0. Let &(r) = #¢(0), t = 0, be the ray in T,M for which
€xp, €(¢) = c(¢). A point ¢(2,), t, = 0, is said to be conjugate to p = ¢(0)
(along ¢ | [0, #,]) provided

d(expplacy: Toap(ToM) = ToeyM
is not bijective, i.e., exp,: T,M — M is not regular at é(z,).

Remarks. 1. A conjugate point of ¢(0) along ¢ can only occur for some
t; > 0, since (d exp,), is bijective (see (5.2.4)).

2. Since d(exp,)znf(t) = €é(t) # 0, the kernel of the linear map (d exp, )z, is
always in the complement of the one-dimensional linear subspace of
T,Mz, determined by &(¢). In fact, the proof of the next proposition will
imply that the kernel is orthogonal to the line spanned by &(z).

p=c(0) q=clt)
Figure 6.4 A conjugate point

6.5.2 Proposition. The following statements are equivalent:
i) g = () is conjugate to p = c(0) along c | [0, 1,].
ii) There exists a nontrivial Jacobi field Y(t) along c(1),0 < t < t,,t; > 0,
withY(0) = Y(¢t,) = 0.

Proor. Using (5.4.3), we may assert the existence, for # sufficiently small, of a
nontrivial Jacobi field Y(¢) with Y(0) = 0 and 4 = (VY/dt)(0) # 0, where

148



6.5 Conjugate Points and Curvature

A is orthogonal to ¢(0). In fact, Y(z) may be written in the form
Y(r) = (d expplawid.

This expression for a Jacobi field is valid for arbitrarily large ¢. The proof
of (5.4.3) carries over verbatim to the case of a geodesic ¢, defined on an
arbitrary nonempty open interval I < R, where ¢(I) lies within some co-
ordinate chart (u, M,) of M.

Thus 4 € Tz, (TM) is a nonzero element of the kernel of (d exp,)z,, if
and only if the Jacobi field Y(¢) that is determined by A = Aft, satisfies
Y(t;) = 0. This proves the proposition. O

We are now in a position to generalize the results of Theorems (4.3.9) and
(5.3.4) about the length-measuring properties of geodesics.

6.5.3 Theorem. Suppose ¢ = ¢(t), 0 < t < a, a > 0, is a unit-speed geodesic
on M which contains no conjugate points, i.e., no point of ¢ is conjugate to
¢(0) along c. Then for any curve b which is sufficiently close to ¢ and joins
¢(0) ro0 c(a), L(b) = L(c).

Proor. Consider the differentiable function ¢:]— 8,a + 8[ X ]—¢, e[~ M
defined by

(r, 9)— expy((r cos O)es(p) + (r sin B)ex(p)),

where {e;(p), eo(p)} = {¢(0), 4} is an orthonormal basis of T, M. This function
was introduced in the proof of (5.4.3), where the existence and regularity
(for r > 0) of ¢ is proved for sufficiently small € > 0, § > 0. Locally, the
map ¢|{r > 0} is a coordinate map. In fact for r > 0, ¢ defines (locally) polar
coordinates which, by (5.3.2), are geodesic coordinates based upon an arc of
the geodesic circle exp,{S,(0)}. Suppose b = b(s), 5o < 5 < 54, is a curve from
c(0) = b(so) to c(a@) = b(s,) which is sufficiently close to ¢ to lie within the
range of ¢. As in (4.3.9), the length of b between parallel curves u* = r =
r, = constantand ¥’ = r = r, = constant is equal to or greater than |r; — r,|
= distance between these parallel curves = length of c(#) between these
curves. Therefore L(b) > L(c). O

Remark. This theorem has the following partial converse: Suppose ¢ contains
a point in its interior which is conjugate to ¢(0). Then in every neighborhood
of ¢ there exists a curve b joining ¢(0) to c(a) which is strictly shorter than c.

The proof of this result uses the second variation formula for the length
integral, and, while not difficult, is long, and we prefer to omit it.1°

In the limit case, where the end-point ¢(a) is conjugate to ¢(0) along ¢, it is
not possible to say in general whether c is locally the shortest curve from ¢(0)
to ¢(a) or not. The situation is rather like the case of a real valued function

10 For a proof of this result, see Gromoll-Klingenberg-Meyer [A6] or Kobayashi, S.
On conjugate and cut loci. In: Studies in Global Geometry and Analysis [B9], or Bishop
and Crittenden [B2].
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S(x) with f'(x,) = f"(x,) = 0. The function f may or may not have a local
minimum at x,.

6.5.4 Examples of Jacobi fields. On a surface of constant curvature K = K,
the differential equation for a Jacobi field is j(¢) + Ky y(¢t) = 0 (see (5.4.1)).
Actually the Jacobi field is Y(¢) = y(t)es(t), where ex(t) is a unit normal
vector field along the geodesic in question. We are interested in solutions
with »(0) = 0, (0) = a # 0.

¥(t) = asin(t-VKy), if K, > 0,
y(@t) = at, if Ko =0,
W) = asinh(t- VIK,]), if K, < 0.

Thus conjugate points occur only in the case K, > 0, since the functions at
and a sinh(¢- V| K,|) have no zeros when ¢ > 0.

If the curvature of M is not constant it is still possible, under certain
conditions, to obtain qualitative information about the occurrence of con-
jugate points. The main result we will prove along these lines is Theorem
(6.5.6). To prove this theorem, we will need the following result from the
theory of ordinary differential equations.

6.5.5 Lemma (Sturm comparison theorem).!* Let u(t) be a solution to
i(t) + A@Wu(t) = 0 with u(0) = 0, u(0) = 1, and v(t) a solution to i(t) +
B(t)v(t) = 0 withv(0) = 0, 5(0) = 1. Suppose A(t) = B(t). If a and b are
the first zeros, after t = 0, of u(t) and v(¢), respectively, then a < b.
Furthermore, for t,, t, satisfying 0 < t, < t; < a, v(t)u(ty) > u(t)v(t,)
and v(t;) = u(t,).

(If A(t) > B(1), then a < b, vi(t)u(te) > u(t)v(to), and v(ty) > u(ty).)

Proor. 1. Since #(0) = 9(0) = 1, u(¢) > 0 for all ¢, 0 < t < a, and v(2) >
Oforallz,0 < ¢ < b. Assume that ¢ > b. We have

0=fbu(ﬁ+Bv)— o(i + Au)dr = (up — vi)} +fb(B—A)uvdt.

Since A(t) > B(t), the integrand (B — A)uv on the right is nonpositive in
the interval [0, 5], which means that u — vu|} = u(b)s(b) is nonnegative.
But u(b) > 0 and 9(b) < 0, a contradiction.

2. Suppose 0 < ¢ < a. Since

t
o:j (i + Bv) — olii + Au)dt
o

t t
= (b — oi)[} +f(B — A)ywvds < (s — vi)| ,

° 0
11 Sturm, J. C. F. Mémoire sur les équations differentielles du second ordre. J. Math.
Pures Appl. 1, 106-186 (1836).
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(d/dn)(log v(t)) = (d/dt)(log u(¢)). Thus if 0 <1, <1, < a, v(t)u(ty) =
u(ty)v(t,). Now

lim o(t)fu(te) = 1 and u(0) = o(0) = 0

imply that o(#;) = u(t,).
3. If A(r) > B(r), an analogous proof gives the sharper results. O

6.5.6 Theorem. Suppose c(?), t = 0, is a unit-speed geodesic. Define K(t) =

Ko c(t).

i) If( I)((t) < K, for all t, then c(0) has no conjugate points along ¢ for
te[0, n/VEKy[. (If K(t) < Ki, ¢(0) has no conjugate points along c for
te [0, 7/VKil)

ii) If 0 < K, < K(t) for all t, then c(t) must have at least one conjugate
point in 10, =/ VK] Uf Ky < K(t), then ¢(0) must have a conjugate point
in 10, 7/VKo[)

In case K' < 0, we interpret m/V'K' to be +o0.

Proor. 1. Suppose K(¢) < K; and assume K; > 0. Let B(t) = K(¢t),
A(t) = K, and apply (6.5.5) above. The solution u(r) is equal to
sin(tVKy)/ v/K,. Thus () cannot vanish for ¢ < 7/V/K,, which means
that any nontrivial Jacobi field along ¢(t) with initial value = 0 cannot
have another zero in ]0, #/VK;[. By Proposition (6.5.2), c(t) has no con-
jugate points in ]0, =/ VK.

2. The other cases of (i), as well as (ii) are proved analogously. (The sharp in-
equalities follow from the sharp inequalities of (6.5.5).) O

Remark. This result can be interpreted as a comparison theorem, comparing,
qualitatively, the placement of conjugate points along geodesics on a surface
of bounded curvature with the well-known distribution of conjugate points
on an appropriate surface of constant curvature K; or Ko. See the examples
in (6.5.4).

These examples also show that the inequalities in (6.5.6) are the best
possible ones.

6.5.7 Corollary. Suppose c(t), t > 0, is a geodesic on which K, < K o ot) < K.
Then c(0) has no conjugate points along c for t € [0, n/ VK[ and at least
one conjugate point in [a/VKy, 7| VK.

Since we are assuming M to be complete in this section, it is worth noticing
what the condition K > K, > 0 implies for complete surfaces. First of all,
Theorem (6.5.6) implies that every geodesic segment of length greater than
7/vVK; has a conjugate point in its interior (with respect to the initial point).

By the converse to (6.5.3), which we stated but did not prove, such a

151



6 The Global Geometry of Surfaces

geodesic segment cannot measure length, so it is not a minimal geodesic
connecting its end-points. Therefore we have the following theorem.

6.5.8 Theorem (Bonnet).'? On a complete surface M with K > K, > 0, the

distance between any two points is at most =V K,. Therefore, M is a
complete bounded metric space and hence is compact.

As we pointed out at the beginning of this section, the results about
conjugate points hold true for n-dimensional Riemannian manifolds. Bonnet’s
theorem also generalizes. The necessary curvature inequalities involve
sectional curvature.

6.6 Curvature and the Global Geometry
of a Surface

In this section, M will always be a complete surface with a Riemannian metric.
The assumption that the Gauss curvature of a surface M lies in some pre-
determined interval has some important consequences for the geometry of M.
The results of the previous section will play a central part in the discussion.

6.6.1 Theorem. Suppose K < K, on M. Then a geodesic segment of length <

w{V K, is the shortest curve joining its end-points when compared with all
curves remaining in a sufficiently small neighborhood of the segment.

This follows directly from (6.5.6) together with (6.5.3).

It is easy to see that if K < K;, a geodesic of length ‘n-/\/fl need not be a
minimal geodesic joining its end-points: First of all, this could happen
because M was not simply connected. For example, on the flat torus (K = 0),
there exist closed geodesics which can be considered as joining a point p to
itself, and d(p, p) = 0.

A simply-connected counterexample may be constructed as follows:
Consider a surface of revolution that looks like two globes of radius = 1, con-
nected by a very narrow neck—an hourglass with a tapered waist. The
curvature on the globular parts can be bounded above by a constant equal
to 1, while the curvature of near the waist will be negative. Consequently,
K < K; = 1 on this surface. However, the parallel circle at the waist will be a
closed geodesic (by (4.5.1)). Sjnce we may make the waist as small as we like,

the closed geodesic can be made to have length strictly less than #/VK, = m.

12 Bonnet, O. Sur quelques propriétés des lignes géodésiques. C.R. Acad. Sci. Paris 40,
1311-1313 (1855). Actually, Bonnet proved the following result: The * outer diameter
of an ovaloid (i.e., the maximum distance, in Euclidean space, between a pair of points
on the ovaloid) is bounded above by #/v'min K. A proof of the theorem stated above
may be found in Gromoll-Klingenberg—Meyer [B9] or Kobayashi-Nomizu [B13].
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X

Figure 6.5 Hourglass with curvature <K, = 1

In this example, K takes on some strictly negative values (on the waist).
On compact surfaces which are simply connected and satisfy 0 < K < Kj,
the conclusion of (6.6.1) holds even globally, i.e., a geodesic segment of
length <w/v/K (not just <=/+/K) is the shortest curve joining its end-points
when compared with all curves on M. A compact simply-connected surface
with K > 0 is isometric to a convex surface in Euclidean space, that surface
being unique up to rigid motions of Euclidean space (see (6.8.1)).

Unfortunately, we cannot prove this result here.

See (6.8.3) for more discussion on this subject as well as references [A6]
(the Kobayashi article), [B9], and [B13].

6.6.2 Lemma.’* Let K < K; on M. Define p = n/vVK;. Suppose ¢ = c(t),
0 < t < a, is a unit-speed geodesic from p = ¢(0) to g = c(a), a < p. Let
b = b(s), so < 5 < 51, be another curve from p to g which may be written as

b(s) = exp, b(s),

where b(s) is a curve lying in B,(0)  T,M with b(se) = 0, b(s;) = ac(0).
Then L(b) = L(c).

Note: Compare this result with (5.3.4). There the conclusion is stronger,
but the hypothesis is also stronger; p must be less than the injectivity radius
at p.

ProoF. Since K < K;, it follows from (6.5.6 (i)) and (6.5.1) that exp,: B,(0) > M
is a local diffeomorphism. By means of this diffeomorphism, the Riemannian
metric g on M induces a Riemannian metric g on B,(0):

§§(X, I‘7) = gexppﬁ(d €Xpp X, dexp,, 7)

13 The proof depends on the “ Gauss lemma > which says that radial geodesics emanating
from p cut geodesic circles (centered at p) orthogonally. This follows from (5.3.2). For a
more general proof, which works for manifolds, see Gromoll-Klingenberg-Meyer [B9],
p. 137, or Bishop-Crittenden [B2], p. 147.
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6 The Global Geometry of Surfaces

With respect to this metric, exp,|B,(0) is a local isometry. Observe that polar
coordinates in B,(0) are geodesic polar coordinates for the surface (B,(0), §).
The theorem now follows from (5.3.4) applied to (B,(0), 2). O

As the example of the hourglass surface with a narrow waist and curvature
K < K; = 1 shows, closed geodesics need not be “long” in the sense that
no a priori lower bound on their length can be predicted from an upper
bound on the Gauss curvature. However, the situation is not hopeless. Let us
take a closer look at the hourglass example. Consider this waist geodesic, c, to
be a geodesic segment whose initial point is equal to its end-point. Any family
of curves which describes a deformation of the geodesic ¢ into the trivial
geodesic formed by the initial-point (=end-point) of ¢ (keeping the initial-
point-end-point fixed) contains curves which are “long” in the sense that

Figure 6.6 Deformation of the closed waist-geodesic

they will have length >2/4/K, = 2x. This may be seen intuitively by looping
a curve over one of the hemispheres. We will now make this precise. Suppose
co=¢o(t),0 <2< 1,and ¢; = ¢4(¢),0 < ¢ < 1, are two curves from p to g.
The curves ¢, and ¢; are said to be homotopic if there exists a continuous
function 4: [0, 1] x [0, 1]— M such that each ¢(¢) = h(t,5),0 < t < l,isa
curve from p to g and ¢y(¢) = h(t, 0) and ¢,(¢) = h(2, 1) are the given initial
curves. The family ¢, 0 < s < 1, is called a homotopy from ¢, to c;.

6.6.3 Lemma (Klingenberg).'* Let ¢, and c, be two distinct geodesics from p
to q with L(¢c,) < L(c,). Suppose ¢, 0 < s < 1, is a homotopy from ¢, to c;.
Then, if K < K, there exists s, € [0, 1] such that

L(cs)) + L(co) = 2/VK,.

14 See Klingenberg, W. Uber riemannsche Mannigfaltigkeiten mit positiver Krimmung,
Comment. Math. Helv. 35, 47-54 (1961).
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6.6 Curvature and the Global Geometry of a Surface

Remarks. 1. Before proving this lemma, note its relevance to the preceding
discussion. Let ¢, be the waist-geodesic and let ¢, be the constant
“geodesic”; cy(t) = p. Then, since L(c,) = 0, the lemma implies the
above claim.

2. The inequality in the lemma is best possible as is shown by the example of
antipodal points on a sphere connected by great semi-circles.

3. The lemma has interesting consequences in the case that K, < 0. Since we
interpret 2m/v/K,; = +co in this case, it means that two distinct geodesics
from p to q cannot be homotopic. In particular, a closed geodesic cannot be
homotopic to a constant curve. This fact will be exploited in Theorem

[}
(6.6.4) below.

Figure 6.7 Homotopy (Adapted from Manfredo P. do Carmo, Differential Geometry of
Curves and Surfaces, Prentice-Hall, Inc., 1976, p. 389.)

ProoF. Let w/vK, = p. Since K < K;, (6.5.6) implies that all geodesics
emanating from p are free of conjugate points in B,(p). By (6.5.2), this means
that exp,, B,(0) is regular (i.c., of maximal rank). If L(c,) > p there is nothing
to prove, so we might as well assume L{cy) < p. Let & = é(t) = 1¢(0),
0 <t < t,, be the line segment in T,M which begins at 0 e T, M, satisfies
¢ot) = exp, éo(t), and ends at § = &y(7,) € B,(0).

For sufficiently small s, the curves ¢, may be lifted to curves &, from 0 to §
which lie in B,(0), i.e., there exist curves & such that c,(t) = exp, é(z). The
curves &(t) depend continuously on s. (Since exp,|B,(0) is a local diffeo-
morphism each ¢, must end at §.)

But such a lifting ¢; cannot exist for all s € [0, 1]. For, since ¢, is a geodesic,
this would force ¢, to be equal to ¢,, contradicting the assumption that
¢o # ¢;. Therefore to each e > 0 there must exist an s = s(e) € [0, 1[ such
that the curve ¢; < B,(0), defined above, comes within distance ¢ of the
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boundary of B,(0): The length of the curve ¢; must be at least 2p — 2¢ —
L(cp). Consequently, by (6.6.2), L(c;) + L(co) = 2p — 2e. But this inequality
holds for all € > 0, and therefore the lemma follows. O

Remark. This lemma and its proof carry over word-for-word to Riemannian
manifolds.

We will now use this lemma to prove a famous theorem of Hadamard.

6.6.4 Theorem (Hadamard).'® Suppose M is connected, simply connected, and
complete with K < 0 everywhere on M. Then for every p e M,

™ expy: T,M—> M
is a bijective diffeomorphism. (In other words, M is diffeomorphic to R2.)

Moreover, there exists a unique minimal geodesic joining any two points,
pandg,in M.

Remarks. 1. The theorem holds under the slightly weaker condition that
there are no geodesic segments with conjugate points on M (cf. (6.8.4)).

2. The last statement sharpens the result (6.4.6) of Hopf and Rinow; we will
prove this without using (6.4.6).

3. The fact that (*) is injective also follows from (6.3.3 (iv)).

PRrooOF. 1. The assumption that K < 0 allows us to use (6.5.6) and (6.5.2) to
conclude that (*) is regular (maximal rank) and therefore is a local diffeo-
morphism. As in (6.2.2 (ii)), we can show that (*) is onto: Suppose g € M.
Consider a curve b = b(s), 5o < § < 5,, joining p to g. We may lift this
curve to T,M, via the inverse of exp,, to a curve b = b(s), 5o < 5 < 51,
which connects 0 € T,M to a point § € T,M. We have exp, 5(s) = b(s).
This means that g = exp, §. Note: That exp, is onto can also be deduced
from (6.4.6).

2. We will now show that (*) is one-to-one: Suppose there exists §o; §; € T,M
with exp, §o = exp, 1 = g€ M. Let é(t), 0 < ¢ < 1, be the line segments
from O to g, i = 0, 1. Then ¢(t) = exp, &(t), i = 0, 1, are geodesics from
P tog. Since M is simply connected, ¢, is homotopic to ¢;. This contradicts
remark (3) to (6.6.3) unless ¢, = ¢;. But ¢, = ¢; implies that ¢, = ¢;.

3. Let p € M. From the above discussion, it follows that B,(p) is a geodesic
disk for all p > 0. Given g € M, choose p > d(p, q). Then g € B,(p) and,
by (5.3.4), there exists a unique geodesic from p to g.

6.7 Closed Geodesics and the

Fundamental Group
In this section, M will always be assumed to be complete. A nonconstant
geodesic ¢ = ¢(), 0 < t < w, is said to be closed of period w if é(w) = ¢(0).
c is called prime if w is the smallest positive number «’ such that é(w’) = ¢(0).

15 Hadamard, J. Les surfaces & courbures opposées. J. Marh. Pures Appl. (5) 4, 27-73
(1898).
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ExaAMPLEs. 1. Parameterized great circles are closed geodesics on the sphere
M = S whose period is 2=. Also, multiply covered great circles (of period
27k, k = 1,2,...) are closed geodesics.

2. Let M be the flat torus. M is the quotient of the Euclidean plane, R?,
under the operation of Z x Z defined by

((m,n),(,v))€Z x Z x R2—~>(u+ m,v + n)e R%

The geodesics of R2, the straight lines u(t) = a;t + aq, v(t) = byt + b, with
ai + b? # 0, cover geodesics on M. The latter are closed geodesics if and
only if a,/b, or b,/a, is rational.

We want to investigate how elements of the fundamental group of M and,
more generally, certain fixed-point free isometries can give rise to closed
geodesics.

Fix pe M and let o(t), 0 < ¢ < 1, be a continuous curve which begins and
ends at p; «(0) = «(1) = p. Denote by Q(p) the set of all such curves. If
B € Q(p), we may consider the curve

_ fe(20), fo<tr<i
Bxolr) = {3(2(1 —1), ify<t<l,

that is, B # « is the curve o followed by B. Let 1 € Q(p) be the constant curve.
Denote by [«] the set of curves in Q(p) which are homotopic to « via a homo-
topy which fixes p. The operation * is associative up to homotopy. It is easy
to check that if [8] = [8'] and [¢] = [¢], then [B*a] = [B' *<'], [1 ] =
[«]; and if ¢~ 2(¢) = «(1 — t), then [« * ¢~] = [1]. Therefore the operation
[«] * [B] = [« * 8] is well defined and, with that operation, {[«]| « € Q(p)}is a
group with identity = [1] and [e]™! = [«~*]. This group is called the
fundamental group of M at p, and is denoted by m,(p). See Massey, loc. cit.,
for more details.

a €Q(p) praxp ' EQq)

Figure 6.8

If M is connected and g is another point of M, then =,(p) is isomorphic to
m1(q). If pis a curve connecting p to g, then for [«] € m,(p), [p * o ¥ p~2] e m,(q),
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and the map [«] > [p * « * p~'] is an isomorphism. In this case we write
(M) for the fundamental group of M (at any point).

ExaMmPpLEs. 1. 7,(S%) = {[1]}, since every curve a € Q(p), p € S2, is contrac-
tible, i.e., homotopic to the constant curve c (¢) = p.

2. m(T?) = Z x Z, where Z = integers. To see this, consider the standard
torus in R® (3.3.7). Since the fundamental group does not depend upon the
choice of metric, but only upon the topology of the manifold, we are free to
choose a convenient model. Let « denote the closed geodesic which forms the
internal latitude line. Fix p € « and let B be the longitude circle (a closed
geodesic also) through p. If «™ = ¢ *a *... %, «~™ = (™)1, etc., then it
can be shown that every curve y € Q(p) is homotopic to unique curve of the
form o™ * 8" for some (m, n) € Z x Z (proof left as an interesting exercise
for the reader). This correspondence is a group isomorphism.

We shall assume the existence of a simply-conneécted covering surface upon
which the fundamental group acts as deck transformations. (For a complete
discussion, see Singer-Thorpe [A16].)

Let /7 be the simply-connected covering surface of M and let

wl—>M

be the covering projection—a local homeomorphism with the property that
M possesses an atlas (#,, M;)qcq Such that, for each « € 4, p~Y(M,) is a family
(M, )ic: of open sets with p|M,,: M,,— M, being a diffeomorphism. We now
define a differentiable atlas (uy,, My)w.neaxs for M with Uy, = Uy © (p.|ﬂa‘).
g, © Uyt = uy o ug * shows that this is indeed a differentiable atlas. The local
representation of u on Uis u, o p o 4,, = id. Thus u: M — M is differentiable.
Moreover, we may define a Riemannian metric on M which will make p a
local isometry, i.e., for each € M, du;: TzM — T,;M shall be an isometry.
This requires the following scalar product g; on T,)M :

g%, ¥) = gu(dpsX, dus¥) forall X, ¥e T; M.

Now let I' denote the fundamental group M, considered as a group of
deck transformations of M. In particular, if y € T, then u o y = p. This implies
that y must be a local isometry of A7.

The conjugacy class of y is the set {y'yy' =1 |y’ € T'}. Fory = 1, the con-
jugacy class is {1}.

We may now formulate and prove the main result of this section.

6.7.1 Theorem. Let M be compact and let y #+ 1 be an element of T, the
Sfundamental group of M. Then there exists a y-invariant geodesic ¢ in M,
ie., yi(t) = &t + o) for all t e R. Here |&(t)] = 1 and » = d(&(0), y&(0)),
where d is the distance function on M. Under u: M — M, ¢ projects onto a
closed geodesic ¢ = po é in M of period w. The closed geodesic ¢ is a
representative of the conjugacy class of y.
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PRrOOF. 1. On the universal covering surface M of M, y operates as a fixed-
point free isometry: For suppose y(5) = p. Then, if (u,, M,) is a coordinate
chart containing p, y has the local expression #, o poyop=t o uzt: U, — U,.
But since p oy = p, this map is equal to the identity. This means that
y = identity near p. By the simple connectivity of M, ¥ = id on M which
means y = 1 is the neutral element of . Contradiction.

2. Consider the function f(5) = d(p, yp) on M. Since

d(p, vp) < d(p,§) + d(G, vd) + d&g, vP) = d(@,vd) + 2d(p, ),
fis a continuous function. Let {5,} be a sequence on M such that lim, f(5,) =
w = inff. Fix j, e M, and let d/2 = diameter of M = maximum distance
d(p, q) between two points in M. Then, for every n > 1, there existsa y, € T
such that d(y,p,, po) < d. Therefore the sequence {y,j,} lies in the compact
set {p € M | d(p,, p) < d} (this set is bounded and M is complete). Therefore
{ynf.; has a limit point, say §’. For sufficiently large n, d(yp,,p,) =
A ayya Y abns Yabn) is near w and y, j, is near 5. Thus for large 7, y.py; 5’
is near to p’. But within a fixed distance of j’ there can only be a finite number
of different points y,yy, 1p’. Therefore there exists a y, € I such that for an
infinite number of », y,yy; P’ = yeyys'p’. But this means that
dlyerys'p', b)) = o.

Define y5 5’ = p.

3. Let &(t), te R, be a geodesic with é(0) = p, é(w) = yp. Since M is
geodesically complete, such a curve exists by (6.4.6). We will prove that
y&(t) = é(t + w) for all ¢. By definition this is true for ¢ = 0. It will also
hold for ¢ € [0, w] unless the geodesics é(t + w), t > 0, and &(¢), ¢ = 0, have
different tangent vectors at their common initial point ¢(w). But if this were so,
then we would have

d(&(1), y&()) < d(&(1), &(w)) + d(y&0), yé()) = w,
which contradicts the definition of w. Thus yé(t) = é(¢ + w) on [0, w] and
hence for all £ e R.

The image c(¢) = pé(t) of ¢ under p is therefore a closed geodesic:
ot + w) = (1) a
Remark. The geodesic &(¢) need not be unique. For example, consider the
flat torus whose universal covering is the Euclidean plane (see example 2
above). If é(z) is a line in the plane invariant under y # 1, then any integral
translation of &(¢) is also y-invariant. A similar situation holds true for the
projective plane, covered by S2 (see (5.5.3, 2)).

A further existence theorem for closed geodesics on compact surfaces M
is the following.

6.7.2 Theorem. Suppose y: M — M is an isometry of M which has no fixed
points. Then there exists a y-invariant geodesic ¢ = c(t),te R, i.e.,y o c(t) =
o(t + w) for all t. If y is of finite order, i.e., if there exists an n > 1 such
that v = 1, then c is closed with period nw.
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Proor. Consider the function f(p) = d(p, yp). As in the proof of (6.7.1), we
can easily show that f'is continuous. Since M is compact, f assumes a mini-
mum value, say w, at some point p. Since y is fixed-point free, w = d(p, yp)
> 0. Let ¢(¢) be a unit-speed geodesic with ¢(0) = p and ¢(w) = yp. As in
the proof of (6.7.1), we can show that y o ¢(t) = ¢(t + w). If y* = id, then it
follows immediately that ¢(t), 0 < ¢ < nw, is closed. O

ExaMpLEs. 1. The flat torus M with universal covering & = R2. (Example 1
above.) Every translation #: R® — R? induces an isometry = on M. The
isometry = is the identity if and only if #(0, 0) € Z x Z. Suppose 7 does not
generate the identity. Then there exists a 7-invariant closed geodesic if and
only if 7 satisfies

7#0,0eQ@x Q-Zx Z,

where Q = field of rationals.

2. The sphere S2 (see 5.7). The antipodal map is an isometry of order two.
The closed geodesics, whose existence is proved in the above theorem, are the
great circles.

The results of this section may be generalized to Riemannian manifolds.
The interested reader is referred to Kobayashi, S. Differential Geometry and
Transformation Groups [B14], Chapter 3. A few of these theorems can be
found in section 6.8 below.

To conclude, we prove a theorem of Preissmann which makes explicit the
consequences of Theorem (6.7.1) for compact surfaces with K < 0.

6.7.3 Theorem (Preissmann).}® Let M be a compact surface with K < 0. Then:
i) T is infinite.
ii) Every element y # 1 of T' has infinite order.
iii) For eachy # 1inT there exists a y-invariant unit-speed geodesic in M.
If K < 0, this geodesic is unique up to choice of initial point.
iv) If K < 0, every abelian subgroup of T is an infinite cyclic group.

Remark. If K < 0, the conclusions of statements (iii) and (iv) need not be true.
They fail, for example, on the flat torus, Example 1 above.

PRrOOF. 1. By (6.6.4), the universal covering M of M is diffeomorphic to R?
and therefore is noncompact. It follows that I is infinite.

2. Let yeT,y # 1. By (6.7.1), there exists a y-invariant geodesic &: yé =
&(t + ) for all ¢, where w = d(é(0), é(w)). By (6.6.4), we may conclude that
for all positive integers n, y"é(0) = é(nw) # é(0). Therefore y has infinite
order.

18 Preissmann, A. Quelques propriétés globales des espaces de Riemann. Comment.
Math. Helv. 15, 175-216 (1943). See also Cartan [B4], note IIl. The proof given there is
unfortunately not completely correct, and the claimed existence of two geodesics in a
given homotopy class is false if K < 0.
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3. Suppose K < 0. To prove (iii), it suffices to show that if &(¢) and &'(¢),
t e R, are y-invariant geodesics in M, i.e.,

yé(t) = é(t + w); yé&'(t) = é@t + o),

then ¢&'(¢) = &(t + t,) for some fixed ¢,.
ye(w)
772 {a)
&' (w)

To see this, consider the geodesic quadrilateral with vertices &0), é(w),
&'(w), and é’(0). By (6.4), this figure is uniquely defined. If this quadrilateral
were nondegenerate, the sum of the angles at the vertices would be 27. This
is because y is an isometry which maps the edge ¢(0)é’(0) into the edge
é(w)é’(w') and maps the geodesics ¢ and ¢’ into themselves. But by Corollary
(6.3.3 (ii)) to the Gauss—Bonnet theorem, the sum of the interior angles of a
geodesic quadrilateral must be <27 when K < 0. Therefore the quadrilateral
is degenerate which means there must exist a #, € R with &'(¢) = &t + ¢,)
for all 2.

4. Suppose y and 9’ are nontrivial commuting elements in I'. Let é&(¢),
te R, and &'(¢r), t € R, be the corresponding invariant geodesics in #. By (iii),
they are unique up to choice of initial points. Sinceyy’ = y'y, yy/'é = y'yé = y'¢.
In other words, y’¢ is y-invariant. By (iii), we may conclude that y'¢ = ¢&
up to choice of initial point. But this means that ¢ is y/-invariant, so, by (iii),
¢ = &' up to choice of initial point. We reparameterize so that &(¢) = é'(¢)
for all 7. Let B,(¢é(t)) be a geodesic disk centered at &(¢) for any fixed z. If
p > 0 is sufficiently small, then for all integers k and /, either v*y/''¢(¢) =
é(t + kw + lw') is equal to &) or y*y''¢(¢) lies outside B,(é(t)). Therefore
there must be some wy, > 0 so that w = mw, and ' = Mm'w, for some
integers m, m'. Thus y*y''é(t) = é(t + (km + Im')w,) for all k, ! integers.
Therefore there must be an element y, € I' which generates a cyclic group
(infinite by (ii)) containing y and y’. The element y, € I is determined by the
equation yoé(t) = é(t + wy). O

E(0)&(w) Elw) v (E(0)&(w))

) ¥l) Fi0Etw)

Figure 6.9 Geodesic quadrilaterals

6.8 Exercises and Some Further Results

6.8.1 Recall that an ovaloid is a compact surface in R® with K > 0 ((6.2)). As a
surface with Riemannian metric, it must be diffeomorphic to S2 by (6.3.5).
A natural question to ask is: Given a surface M diffeomorphic to S2 and
endowed with a metric for which X > 0, does there exist an ovaloid in R®
which is isometric to M ? The answer is yes. This existence theorem was
partially proved by H. Weyl. A complete proof in the real analytic case
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was given by H. Lewy. The theorem for differentiable M was proved
independently by Alexandrov, working with Pogorelov, and by Nirenberg.
Their respective proofs are quite different in method.1?

6.8.2 The second part of the Sturm comparison theorem (6.5.5) and its applica-
tion (6.5.6) has the following geometric interpretation.

Suppose M and M* are surfaces with Riemannian metric whose curva-
ture functions K and K* satisfy max K < min K*, which we will write for
short as K < K*. Suppose ¢ and c¢* are two geodesic arcs, parameterized by
arc length, on M and M*, respectively, whose lengths are both equal to a.

Assume that a < 7/v' max K*. This insures that both segments are free of
conjugate points in their interior. Suppose further that Y(z) and Y*(z)
are Jacobi fields along c(f) and c*(¢), respectively, with Y(0) = Y*(0) and
|VY(0)] = |VY*(0)|. Then [Y(2)| = |Y*()|.

This is the infinitesimal version of the Alexandrov comparison theorem
for geodesic triangles.'® We will state one special case of the theorem here.
The proof, which involves introducing polar coordinates and integration
of the inequality of the above theorem, is left as an exercise.

Under the conditions and assumptions above, consider two geodesic
arcs emanating from a point p € M. Denote these geodesics by ¢ and ¢’ and
suppose that they have end points g and ¢’, respectively. Let the length of ¢
equal that of ¢’ and denote their common length by a which we will assume
is equal to or less than =/v'max K*. Let c* and ¢*' be two geodesic seg-
ments in M*, emanating from a point p* € M*, whose lengths are also
equal to a and whose end points are g* and g*’, respectively. Suppose the
angle at p between ¢ and ¢’ is equal to the angle at p* between c* and ¢*'.
Then if this angle is sufficiently small, d(q, ¢’) = d(g*, g*’). (See Figure 6.10).

Figure 6.10 Geodesic triangles

17 Weyl, H. Uber die Besti g einer geschle konvexen Fliche durch ihr Linien-
element. Vierteljahrsschrift Naturforsch. Gesellschaft Ziirich, 1916, 40-72. Lewy, H. On
the existence of a closed surface realizing a given Riemannian metric. Proc. Nat. Acad.
Seci. U.S.A. 24, 104-106 (1938). Alexandrov, A. D. [B1]. Pogorelov, A. V. Deformation of
convex surfaces. Gosudarstv. Izdat. Tehn-Teor. Lit., Moscow-Leningrad (1951) (Russian).
English review: MR 12, 400. German translation: Berlin, Akademie-Verlag, 1955.
Nirenberg, L. The Weyl and Minkowski problems in differential geometry in the large.
Comm. Pure Appl. Math. 6, 337-394 (1953).

18 Alexandrov, A. D. [B1].
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6.8.4

6.8.5

6.8 Exercises and Some Further Results

Suppose M is a surface with Riemannian metric which is diffeomorphic to
S2 and on which X < K;. The example of the hourglass surface in (6.6.1)
illustrates that it is not possible to estimate the injectivity radius solely on
the basis of an upper bound on the curvature alone.

However, if the curvature also satisfies 0 < K, < K, we can say some-
thing. First of all, M can be realized as an ovaloid in R® (see 6.8.1). A
result due to Pogorelov states that for all p € M the injectivity radius pna(p)
is at least /v K,.1® On the other hand, we know from (6.5.8) that the most
it can be is m/VKo. Therefore n/VK;, < pn(p) < m/VK, for all pe M.
This implies that the intrinsic diameter d(M) = supg, pem (g, p) also satisfies
mVEK, < dM) < n/VK,.

The example of the sphere of constant curvature K, (resp. K;) shows that
these bounds are best possible. For a sphere of curvature K’, p = pn(p) =

The theorem of Pogorelov is equivalent to the fact that on an ovaloid M
with Ko < K < Ki, a closed geodesic must have length at least 27/V/ ..
Moreover, a closed geodesic on M which has no self-intersection can have
length at most 27/V'K,. These estimates are shatp, as the example of a
sphere of constant curvature shows.

Show: Suppose M is a complete, simply-connected surface with a
Riemannian metric. If for some p € M all geodesic rays emanating from p
are free of conjugate points, then exp,: T,M — M is a diffeomorphism,
and therefore the injectivity radius pn.(p) = . (Hint: Use the lifting
technique of (6.6.3).)

In (6.7), we proved the existence of closed geodesics on compact surfaces
which were not simply connected. It turns out that closed geodesics always
exist, even on compact simply-connected surfaces—i.e., surfaces which are
diffeomorphic to S2. The proof of this fact requires techniques beyond
those developed in this book.

In fact, if M is diffeomorphic to S$2 there must exist at least three
different simple closed geodesics. This result is due to Lusternik and
Schnirelmann. Moreover, there exists such a surface with exactly three
simple closed geodesics and no more.

Consider an ellipsoid with three different axes. If the ratios of the
lengths of the axes are sufficiently close to 1, then the only simple closed
geodesics are the ellipses which occur as the intersection of the ellipsoid
with the coordinate planes,2°

18 Pogorelov, A. V. A theorem regarding geodesics on closed convex surfaces. Math. Sb.
N.S. (18), (60), 181183 (1946) (Russian with English summary). English review: MR 8,
16. The proof is not quite complete. For a different proof, see Klingenberg, W. Neue
Ergebnisse iiber konvexe Flichen. Comm. Math. Helv. 34, 17-36 (1960).

20 Lusternik, L., and Schnirelmann, L. Sur le problem de trois géodesiques fermées sur
surfaces de genus 0. C.R. Acad. Sci. Paris 189, 269-271 (1929). An excellent presentation
of this and other results may be found in Lusternik, L. The topology of function spaces
and the calculus of variations in the large. Trudy Math. Inst. Steklov 19 (1947) (Russian)—
translated into English in Translations of Math. Monographs, Vol. 16, A.M.S., Provi-
dence, R.1., 1966. See also the forthcoming book Klingenberg, W., Lectures on Closed
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6.8.6 Suppose M is compact and K < 0 on M. It follows from (6.7.1) and (6.7.3)
that every nontrivial conjugacy class in the fundamental group T' corre-
sponds to exactly one closed geodesic (up to parameterization). It can be
deduced from the structure of the fundamental group of such a surface
(which must have negative Euler characteristic) that there must be an
infinite number of different unparameterized prime closed geodesics on M.
This means that we count only those closed geodesics which are not a
covering of some other closed geodesic. For a discussion of the structure of
T for a surface M with K < 0, see Seifert-Threlfall, Lehrbuch der Topologie,
Chelsea, New York, or Kobayashi [B14].

This result has been strengthened by E. Hopf, who proved that the
subset Per TM = {Xe TM |exp tX, te R is a closed geodesic} is dense
in TM.2*

6.8.7 Let M be a compact surface with Riemannian metric. A pair of distinct
points (p, p’) in M is called a “Wiedersehen” pair if each geodesic
emanating from p passes through p’ and conversely. For example, the
north and south of a compact surface of revolution is a * Wiedersehen * pair.

Prove: On the ellipsoid (3.7.3), both pairs of diametrically opposite
umbilics are “ Wiedersehen”” pairs. See (3.9.5.).

An oriented surface M is called a ““ Wiedersehensfliche”’ if every pe M
belongs to a “Wiedersehen” pair (“‘fliche” = surface in German). This
name is due to Blaschke, who observed that such a surface must be homeo-
morphic to 2. It was a long-standing open problem as to whether or not a
“Wiedersehensfliche’’ was necessarily isometric to a sphere with constant
curvature. The question was resolved, affirmatively, in 1963 by L. Greenin a
paper with the punning title ““ Auf Wiedersehensflichen.’’ 22 (It is in English.)

6.8.8 There exist compact surfaces on which all geodesics are closed and have
the same length but which are not isometric to a sphere of constant
curvature. The first examples of such surfaces were constructed by Zoll,
who used an idea due to Darboux. The surfaces are called Zoll surfaces.
Recently, Riemannian manifolds with the same property have been
investigated by Weinstein, Berger, and others.2®

Geodesics. Springer-Verlag, Berlin-Heidelberg-New York, 1978. Jacobi had already
investigated the behavior of geodesics on ellipsoids in his Vorlesungen iiber Mechanik,
Winter-Semester 1842/43, Konigsberg. See Darboux [A7], Volume III, Book VI,
Chapter 1.

2! Hopf, E. Statistik der geoditischen Linien in Mannigfaltigkeiten negativer Kriim-
mung. Ber. Verh. Siich. Akad. Wiss. Leipzig 91, 261-304 (1939). For more recent
developments, see Anosov, D. V. Geodesic flows on closed Riemannian manifolds with
negative curvature. Trudy Mat. Inst. Steklov 90 (1967) (Russian)—English translation:
Proc. Steklov Inst. Math. 90 (1967), A.M.S., Providence, R.L., 1969.

22 Green, L. Auf Wiedersehensflichen. Ann. of Math. 78, 289-299 (1963).

23 See Darboux [A7], Part III, Book 6, Chapter 1. Zoll, O. Uber Flichen mit Scharen
geschlossener geoditischer Linien. Math. Ann. 57, 108-133 (1903). See also Berger, M.
Lectures on Geodesics in Ri ian G try. Tata Institute of Fundamental Research,
Bombay, 1965, and Besse, A., Manifolds all of whose Geodesics are Closed. Springer-
Verlag, Berlin-Heidelberg-New York, 1977.
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6.8.9 Suppose M is a surface which is homeomorphic to a torus. By the Gauss—
Bonnet theorem for compact surfaces, (6.3.5), any metric on M must
satisfy f u KdM = 0. Thus, if there is a p € M with K(p) > 0, there must
also be a p’ € M with K(p") < 0.

The flat torus satisfies K = 0 (see the second example in (6.7)). By
(6.5.6 (i)), the flat torus is free of conjugate points. A converse of this
result has been proved by E. Hopf: Suppose M is homeomorphic to a torus
and let M have a Riemannian metric, g, in which no geodesic has a
conjugate point. Then this metric satisfies K = 0, i.e., (M, g) is the flat
torus.2*

6.8.10 Suppose M is a compact Riemannian surface. For any pe M, the cut
locus, C(p), of p is defined as follows:

Associated to each tangent vector X € S M < T, M there exists a well-
defined extended real number #(X) > 0 for which
a) the unique geodesic cx(t) = exp, tX with initial condition X is length-

measuring on [0, #(X)];

b) for every ¢ > t(X), d(p, cx(t)) < ¢.

The map cx(?) — #(X) X € T, M is continuous. The image of this map is a
non-self-intersecting closed curve in T,M. The image of this curve under
expp is C(p) = {cx(t(X))| X € S;M ).

The complement of C(p) in M may be contracted radially onto p: Each
such point g is of the form expy(10Xo), fo < 1(Xo), and cx,(¢),0 <t < fpisa
minimal geodesic from p to g. Contract by sliding ¢ along cx,(¢) to p. Thus
M\C(p) is homeomorphic to the 2-cell B,(0) = {Xe T,M;|X]| < 1}.
We may consider M as B,;(0) modulo the following identification of the
boundary points 2B,(0) = S;M: Set X ~ X’ if exp,(#(X)X) = exp,
(t(X)X') e C(p). Note: If g€ C(p), there need not exist more than one
minimizing geodesic from p to g.

The topology of M is completely determined by the topological structure
of C(p). For example, if M = S2, a sphere of constant curvature, C(p)
is equal to the antipodal point of p. If M is the flat torus (see (6.7)), C(p)
consists of two circles which cross at one point. The same is true for the
standard embedding of the torus in R (see 3.3.7).

The cut-locus was first investigated by Poincaré (he called it “ligne de
partage®).2® Myers and others continued the study and clarified the
concepts. For a detailed discussion of the cut-locus, see the article by
Kobayashi in [A6]. For a description of classical as well as recent results
we refer the reader to an article of H. Karcher.?®

More recently, it has been shown by Buchner et al. that the cut-locus
of a Riemannian manifold is stable in the following sense: Let M be a

2¢ Hopf, E. Closed surfaces without conjugate points. Proc. Nat. Acad. Sci. U.S.A. 34,
47-51 (1948).

25 Poincaré, H. Sur les lignes géodesiques des surfaces convexes. Trans. Amer. Math.
Soc. 6, 237-274 (1905).

26 Karcher, H. Schnittort und konvexe Mengen in vollstandigen riemannschen Mannig-
faltigkeiten. Math. Ann. 177, 105-121 (1968), and also Anwendungen der Alexandrows-
chen Winkelvergleichsatze. Manuscripta Math. 2, 77-102 (1970).
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6.8.11

6.8.12

manifold with a Riemannian metric g. Consider pe M and C(p) = M. Let
£ be another Riemannian metric which is close to g in some natural sense,
and let C(p) be the cut-locus of p in the £ metric. Then for almost all p € M
and a large generic class of metrics on M, there exists a homeomorphism
é: M — M such that ¢|C(p) — C(p) is also a homeomorphism.

However, it is possible to construct cut loci which are not triangulable,
i.e., cannot be decomposed into polygons. This has been done for surfaces
by Gluck and Singer.2”

Open surfaces in the large. A detailed study of complete open (i.e., non-
compact) surfaces was initiated by Cohn-Vossen. We mention only the
following result. Suppose M is a complete open surface on which the Gauss
curvature is everywhere positive. Then M is diffeomorphic to the plane
and f u KdM < 2w, Moreover, there are no closed geodesics on M and
every geodesic has at most one self-intersection from which it runs off to
infinity in both directions (it leaves every compact subset of M). Any two
complete geodesics must intersect and through each p € M there passes at
least one complete geodesic without self-intersection.?® An example (really
the example!) of such a surface on which all these properties may be verified
directly is the paraboloid of revolution in R3.

(i) Let ¢(#) be a unit-speed curve in R* with the property that |¢()|? has a
local maximum at #,. Let po = c(fo) and p? = | po|2. Show: «(ts) = 1/p,
where «(t,) = |&(fo)| (which is equal to the first curvature of c¢(¢) at 1, if
it is defined).

(i) Let M be a surface in R™ with M < {x e R*||x| < p}. Show: If
Do € M satisfies | po] = p, then any curve ¢(t) on M with ¢(0) = p, must
have normal curvature with absolute value not less than 1/p at ¢t = 0.
Moreover, the sign of the normal curvature at ¢ = 0 will be the same for
any such curve.

(iil) Let M and p, € M be as in (ii). Show: K(p) = 1/p2.

(iv) The map det: GL(n, R) — R is differentiable since the determinant
of a matrix is a polynomial in the entries of the matrix. Show: Every value
of det: GL(n, R) — R is a regular value. (Hint: Consider 4 € GL(n, R) as
(A%, ..., A®) where A'is the ith column of 4. Then det(4Y,. .., 4}, ..., A")
= t det A. Use this fact to find a tangent vector X to GL(n, R) at A satisfy-
ing d(det)4(X) # 0. See (6.1.5, 3).)

27 Singer, D., and Gluck, H. The existence of non-triangulable cut loci. Bull. Amer.
Math. Soc. 82,4, July 1976, pp. 599-602. Buchner, M. Thesis, Harvard University, 1974.
28 These last results may be generalized to complete, open Riemannian manifolds of
positive curvature. See Gromoll, D., and Meyer, W. On complete open manifolds of
positive curvature. Ann. of Math. 90, 75-90 (1969).
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