


Graduate Texts in Mathematics 

51 
Editorial Board 

F. W. Gehring 

P. R. Halmos 
M anaging Editor 

c. C. Moore 



Wilhelm Klingenberg 

ACoursein 
Differential Geometry 

Translated by David Hoffman 

Springer Science+Business Media, LLC 



Wilhelm Klingenberg 
Mathematisches Institut der 
Universitiit Bonn 
5300 Bonn 
Wegelerstr. 10 
West Gemiany 

David Hoffman 
Department of Mathematics 
Graduate Research Center 
University of Massachusetts 
Amherst, MA 01003 
USA 

Editorial Board 

P. R. Halmos 
Managing Editor 
Department of Mathematics 
University of California 
Santa Barbara, CA 93106 
USA 

F. W. Gehring 
Department of Mathematics 
U niversity of Michigan 
Ann Arbor, Michigan 48104 
USA 

AMS Subject Classification: 53-01 

Library of Congress Cataloging in Publication Data 
Klingenberg, Wilhelm, 1924-

A course in differential geometry. 

(Graduate texts in mathematics; 51) 
Translation of Eine Vorlesung iiber Differentialgeo-

metrie. 
Bibliography: p. 
Includes index. 
1. Geometry, Differential. 1. Title. II. Series. 

QA641.K5813 516'.36 77-4475 

AII rights reserved. 

C. C. Moore 
Department of Mathematics 
University of California 
Berkeley, CA 94720 
USA 

No part of this book may be translated or reproduced in any form 
without written permission from Springer-Verlag. 

© 1978 by Springer Science+Business Media New York 
Originally published by Springer-Verlag, New York lnc. in 1978 
Softcover reprint of the hardcover 1 st edition 1978 

9 8 7 6 5 4 3 2 1 

ISBN 978-1-4612-9925-7 ISBN 978-1-4612-9923-3 (eBook) 
DOI 10.1007/978-1-4612-9923-3 



Dedicated ta 

Shiing-shen Chern 



Preface to the English Edition 

This English edition could serve as a text for a first year graduate course on 
differential geometry, as did for a long time the Chicago Notes of Chern 
mentioned in the Preface to the German Edition. Suitable references for ordin­
ary differential equations are Hurewicz, W. Lectures on ordinary differential 
equations. MIT Press, Cambridge, Mass., 1958, and for the topology of 
surfaces: Massey, Algebraic Topology, Springer-Verlag, New York, 1977. 

Upon David Hoffman fell the difficult task of transforming the tightly 
constructed German text into one which would mesh well with the more 
relaxed format of the Graduate Texts in Mathematics series. There are some 
e1aborations and several new figures have been added. I trust that the merits 
of the German edition have survived whereas at the same time the efforts of 
David helped to elucidate the general conception of the Course where we 
tried to put Geometry before Formalism without giving up mathematical 
rigour. 

1 wish to thank David for his work and his enthusiasm during the whole 
period of our collaboration. At the same time I would like to commend the 
editors of Springer-Verlag for their patience and good advice. 

Bonn 
June,1977 

Wilhelm Klingenberg 
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From the Preface to the German Edition 

This book has its origins in a one-semester course in differential geometry 
which 1 have given many times at Gottingen, Mainz, and Bonn. 

It is my intention that these lectures should offer an introduction to the 
classical differential geometry of curves and surfaces, suita bie for students 
in their middle semester who have mastered the introductory courses. A 
course such as this would be an alternative to other middle semester courses 
such as complex function theory, abstract algebra, or algebraic topology. 

For the most part, these lectures assume nothing more than a knowledge 
of basic analysis, real linear algebra, and euc\idean geometry. It is only in 
the last chapters that a familiarity with the topology of compact surfaces 
would be useful. Nothing is used that cannot be found in Seifert and ThrelfaIl's 
classic textbook of topology. 

For a summary of the contents of these lectures, 1 refer the reader to the 
table of contents. Of course it was necessary to make a selection from the 
profusion of material that could be presented at this level. For me it was clear 
that the preferred topics were precisely those which contributed to an under­
standing of two-dimensional Riemannian geometry. Nonetheless, 1 think that 
my lectures provide a useful basis for the understanding of aII the areas of 
differential geometry. 

The structure of these lectures, inc\uding the organization of some of the 
proofs, has been greatly influenced by S. S. Chern's lecture notes entitled 
"Differential Geometry," pubIished in Chicago in 1954. Chern, in turn, was 
influenced by W. Blaschke's "Vorlesungen liber Differentialgeometrie." 
Chern had studied with Blaschke in Hamburg between 1934 and 1936, and, 
nearly twenty years later, it was Blaschke who gave me strong support in my 
career as a differential geometer. 

So as 1 take the privilege of dedicating this book to Shiing-shen Chern, 1 
would at the same time desire to honor the memory of W. Blaschke. 

Bonn-Riittgen 
January 1, 1972 

Wilhelm Klingenberg 
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Calculus in Euclidean Space o 

We will start with a brief outline ofthe essential facts about ~n and the vector 
calculus.1 The reader familiar with this subject may wish to begin with 
Chapter 1, using this chapter as the need arises. 

0.1 Euc1idean Space 

As usual, ~n is the vector space of aII real n-tuples x = (xl, ... , xn). The 
scalar product of two elements x, y in ~n is given by the formula 

x·y:= Lxii. 
i 

We will write x·x = x2 and W = jxj. The real number jxj is called the 
length or the norm of x. The Schwarz inequality, 

is satisfied by the scalar product and from it is derived the triangle inequality: 

jx+yj:::; jxj + jyj forallx,YE~n. 

The distinguished basis of ~n will be denoted by (ei), I :::; j :::; n. The vector 
ei is the n-tuple with 1 in the ith place and O in aII the other places. 

We shall also use ~n to denote the n-dimensional Euclidean space. More 
precisely, ~n is the Euclidean space with origin = (O, O, ... , O), and an 
orthonormal basis at this point, namely (ei), 1 :::; j :::; n. 

1 Some standard references for material in this chapter are: Dieudonne, J. Foundations 
of Modern Analysis. New York: Academic Press, 1960. Edwards, C. H. Advanced 
Calculus of Several Variables. New York: Academic Press, 1973. Spivak, M. Calculus on 
Manifolds. Reading, Mass.: W. Benjamin, 1966. 



o Calculus in Euc1idean Space 

The distance between two points x, y E IR" will be denoted by d(x, y) and 
defined by d(x, y) : = Ix - yl. Clearly d(x, y) ~ O, (d(x, y) = O if and only 
if x = y) and d(x, y) = d(y, x). Also, the triangle inequality for the norm 
implies the triangle inequality for the distance function, 

d(x, z) ::; d(x, y) + d(y, z), x, y, Z E IR". 

These three conditions satisfied by d imply that IR", with d as distance function, 
is a metric space. 

The transformations of Euclidean space which preserve the Euclidean 
structure, i.e., the metric preserving transformations of IR", are called 
isometries. One type of isometry is a translation: Txo : IR" --+ IR" defined by 
x 1-+ x + xo, where Xo is a fixed element of IRn. Another type is an orthogonal 
transJormation: 

R: IR" --+ IR", R is linear and R(x)· R(y) = x· y, 

If an orthogonal motion is orientation preserving (i.e., the matrix whose 
columns are Re!, ... , Re", i = 1, ... , n, has determinant + 1), it is a rotation. 
An example of an orthogonal motion which is not a rotation is given by the 
reflection 

X 1-+ -x 

when n is odd. 
Any isometry B of Euclidean space may be written 

X 1-+ Rx + Xo 

where Xo E IRn and R is an orthogonal motion. In other words, every isometry 
of Euclidean space consists of an orthogonal motion R, followed by a trans­
lation Txo ' We wiII caII R the orthogonal component of B. If R is a rotation 
we will say that B is a congruence. lf not, we will say that B is a symmetry. 

0.2 The Topology of Euclidean Space 

The distance function d allows us, in the usual way, to define the metric 
topology on IR". For x E IR" and " > O, the ,,-baII centered at x is denoted 
B.(x) and is defined by 

B.(x) : = {y E IR" I d(x, y) < fi}. 

A set U c IR" is called open if for every x E U there exists an " = ,,(x) > O 
such that B.(x) c U. A set Ve IR" is closed if IR" \ Vis open. Given a set 

W c IR", W denotes its interior, i.e., the set of aII x E W for which there exists 
some fi > O with B.(x) c W. 

A set U c IR" is said to be a neighborhood of Xo E IR" if Xo E O. A mapping 
F: U --+ IR" is continuous at X o if for every fi > O there exists a 8 > O such 
that F( U Il B6(x» c B.(Fxo)' F is said to be continuous if it is continuous 
at aII x EU. 
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0.3 Differentiation in IR" 

Example. Linear junctions are continuous 

Let L be a linear function, i.e., L(ax + by) = aL(x) + bL(y) for a, b E IR, 
x, Y E IR". L may be written in terms of a matrix (al), 1 ::; i ::; n, 1 ::; j ::; m, 
where (L(x))1 = LI alxl • To show that L is continuous, we use the Schwarz 
inequality. Writing ILI2 for LI.1 (a{)2, 

Therefore ILx - LXol ::; ILI'lx - xol. From this, the continuity of L is 
easily seen. Note: It follows that isometries B: IR" ~ IR" are continuous: for 
Bx - Bxo = R(x - xo), R being the orthogonal component of B, and R is 
linear. 

0.3 Differentiation in IR" 

Consider the set L(lRn, [Rm) of linear transformations from [Rn to [Rm. This set 
has a natural real vector-space structure of dimension n· m. Addition of two 
linear transformations LI> L2 is defined by adding in the range; (Ll + L2)x : = 

Llx + L2x. Scalar multiplication by a E [R is defined by (aLl)X : = a(Llx). 
In terms of the matrices (al) which represent elements LE L(IR", [Rm), 

addition corresponds to the usual matrix addition and scalar multiplication 
to multiplication of matrices by scalars. 

The bijection of L([R", [Rm) onto [Rn'm, given by considering the matrix 
representation (al) of a linear map L and identifying (a/) with the vector 
(at, ... , aT, a~, ... , a~, ... , a~, ... , a:;'), is norm-preserving. The norm ILI 
agrees with the length (= norm) of its image vector in [R,,·m. 

Let U c: IR" be an open set, and suppose F: U --? IRm is any continuous 
map. F is said to be differentiable at Xo E U if there exists a linear mapping 
L = L(F, xo) E L([R", [Rm) such that 

1· IFx - Fxo - L(x - xo)1 O lm = 
X-Xo Ix - xol . 

It will be convenient to denote by o(x) an arbitrary function with 

Iim o(x) = O. 
x-o Ixl 

In terms of this notation, the equation above may be rewritten as 

IFx - Fxo - L(x - xo)1 = o(x - xo)' 

lf such an L = L(F, xo) exists, it is unique. Suppose L and L' are two such 
linear mappings with the required properties. Then, using the triangle 
inequality, 

3 



o Calculus in Euclidean Space 

I(L - L')(x - xo)1 = I(L - L')(x - xo) + Fx - Fx + Fxo - Fxol 
~ IFx - Fxo - L(x - xo)1 + IFx - Fxo - L'(x - xo)1 
= o(x - xo) + o(x - xo) = o(x - xo). 

Thus I(L - L')(x - xo)1 is o(x - xo). In particular, if x - Xo = re" then 

( )
1/2 

r f (a{ - a;f)2 = o(r). 

Therefore, a{ = a? for all i,j. 
The unique linear map L = L(F, xo) is called the dijferential of F at xo, 

which wiII also be denoted by dFxo' or simply dF. 
If A is an arbitrary (not necessarily open) set in 1Rn, a mapping F: A ~ IRm 

is said to be differentiable on A if there exists an open set U c IRft containing 
A and a mapping G: U ~ IRft such that GIA = F, and G is differentiable at 
each Xo EU. 

Examples of dijferentiable mappings 

1. L: IRft ~ IRm, any linear map. dLx = L, for all x E IRft. 
2. B: IRn ~ IRm, an isometry. dBx = R, the orthogonal component of B. 
3. All the eIementary functions encountered in caIculus of one variable are 

differentiable; polynomials, rational functions, trigonometric functions, 
the exponential and logarithm. 

4. The maps (x, Y)I-+ X·Y from IRn x IRn into IR and X 1-+ Ixl 2 from IRn into IR 
are differentiable. 

5. The familiar vector cross-product (x, y) 1-+ X X Y E 1R3, considered as a 
map from 1R3 x 1R3 into 1R3, is differentiable. In terms of a basis for 1R3, if 
x = (Xl> X2, x 3) and Y = (Yl> Y2' Ya), then x x Y = (X2Ya - XaY2, XaYl -
xlYa, XlY2 - X2Yl). 

It is an easy exercise to prove that the composition of two differentiable 
mappings is differentiable. 

A mapping F: U ~ IRm, U open in IRn, is said to be continuously differen­
tiable, or CI, if F is differentiable at each x E U and the map dF: U ~ 
L(lRft, IRm), given by x ~ dF x, is continuous. 

A mapping F: U ~ IRm, U c Rn is said to be twice continuously differenti­
able, or C2, if dF: U ~ L(IRn, IRm) is differentiable, and its derivative is 
continuous. 

In an analogous manner, we may define k-times continuously differentiable 
mappings, or Ck mappings. If fis k-times differentiable for any k = 1, 2, ... , 
fis said to be C 00 (read "C infinity "). Sometimes we wiII refer to C 00 mappings 
as differentiable mappings when there is no possibiIity of confusion. 

If U c IRm, V c IRn are open sets and F: U ~ V is a bijective, differentiable 
function such that F-l: V ~ U is also differentiable, then F is called a 
dijfeomorphism (between U and V). 

4 



0.4 Tangent Space 

If F: U --+ ~m, U C ~n is differentiable, then the m coordinate functions 
P(xl, ... , xn) have partial derivatives eP/exl = F~' with respect to each of 
the n coordinates Xl. From our definition of dFxo: ~m --+ ~n, it follows that 
the matrix of this linear map is given by the matrix of first derivatives of F 
at xo, (F~')xo' the familiar Jacobian matrix. 

The differential d2F = d(dF) of the differentiable function dF: U--+ 
L(~n, ~m) at the point Xo E U has the foJlowing matrix representation: dF is 
determined by the n·m real valued functions ep/exl. Therefore d2Fxo is 
determined by the (m x n·m)-matrix (e 2P/exl exk)lxo' The row-index in this 
notation is {1} and k is the column-index. (The pairs {{} are ordered lexico­
graphicaJly.) 

0.4 Tangent Space 

The concept of a tangent space will play a fundamental role in our study of 
differential geometry. For Xo E ~n, the tangent space of ~n at xo, written 
T xo~n or ~~o' is the n-dimensional vector-space whose elements consist of 
pairs (xo, x) E {xo} X ~n. The vector-space structure is defined by means ofthe 
bijection 

(xo, x) 1-+ x, 

Le., (xo, x) + (xo, y) = (xo, x + y) and a(xo,x) = (xo, ax). 
Let U be a subset of ~n. The tangent bundle of U, denoted TU, is the 

disjoint union of the tangent spaces T xo~n, Xo E U, together with the canonical 
projection 1T: TU --+ U, given by (xo, x) 1-+ Xo. TU is in 1-1 correspondence 
with U x ~n via the bijection 

In view of the generalizations we will make in subsequent chapters, 
the interpretation of TU as the disjoint union of the tangent spaces Txo~n, 
Xo E U, is preferable to that of TU as U x ~n. On the other hand, the 
interpretation of TU as U x ~n shows that TU may be considered as a 
subset of ~n x ~n = ~2n. If U is open, then U x ~n is also open in ~2", so 
it is c1ear what it means for a function G: TU --+ ~k to be continuous or 
differentiable. We may now define the notion of the differential of a differenti­
able mapping F: U --+ ~m in terms of the tangent bundle. 

Let U be an open set in ~n and let F: U --+ ~m be a differentiable function. 
For each Xo E U we detine the map TFxo: T xo~n --+ T F(Xo)~m by (xo, x) 1-+ 

(F(xo), dFxo(x)). The map TF: TU --+ T~m is now defined by TFITxo~n : = 

T Fxo' T Fis caJled the differential of F. 
A word about notation: If we identify Txo~n with ~n in the canonical way, 

and Iikewise TF(Xo)~m with ~m, then instead of TFxo: Txo~n --+ TF(Xo)~m we 
write dFxo: ~n --+ ~m. 

5 



o Calculus in Euc1idean Space 

0.5 Local Behavior of Differentiable Functions 
(Injective and Surjective Functions) 

We shall need to use the following basic theorem: 

0.5.1 Theorem (Inverse function theorem). Let U be an open neighborhood of 
O E IR". Suppose F: U -+ IRn is a dijferentiable function with F(O) = O E IRn. 
lf dFo: IRn -+ IRn is bijective, then there is an open neighborhood U' c: U 
of O such that FI U': U' -+ FU' is a dijfeomorphism. 

Such a function Fis said to be a local dijfeomorphism (or, more precisely, a 
local diffeomorphism at O). 

In order to state and prove an important consequence of the inverse func­
tion theorem, it is necessary to recall some facts about linear maps. A linear 
map L: IR" -+ IRm is injective, or 1-1, if and only if ker L : = {x E IR" I Lx = O} 
= {O}. This is equivalent, in turn, to the requirement that IRm has a direct 
sum decomposition IRm = lR'n EB lR"m-n (into subspaces of dimension n and 
m - n, respectively) such that L: IRn -+ lR'n is a bijection. 

Similarly, a linear map L: IRn -+ IRm is surjective, or onto, if and only if 
n - m = dim ker L. This condition is equivalent to the existence of a direct 
sum decomposition IR" = lR'm EB IR",,-m into subspaces of dimension m and 
n - m, respectively, such that lR"n-m = ker L and LIIR'm: lR'm -+ IRm is a 
bijection. 

The next theorem shows that, locally, differentiable functions behave in a 
manner analogous to linear maps, at least with respect to the injectivity and 
surjectivity properties described above. 

0.5.2 Theorem (Locallinearization of differentiable mappings). Let U be an 
open neighborhood of O E IR". Suppose F: U -+ IRm is a dijferentiablefunction 
with F(O) = O. 
i) lfTFo: TolRn -+ TolRm is injective, then there exists a dijfeomorphism g 

of a neighborhood W of O E IRm onto a neighborhood g(W) of O E IRm such 
that g o F is an injective linear map from some neighborhood of O E IR" 
into IRm. Infact, g o F(xl>"" xn) = (Xl>"" Xn, O,.,., O). 

ii) lf TFo: TolRn -+ TolRm is surjective, there exists a dijfeomorphism h of 
a neighborhood Vof O E IRn onto a neighborhood h(V) of O E IRn such that 
F o h is a surjective linear map from some neighborhood of O E IRn onto a 
neighborhood of O E IRm. Infact, F o h(Xh .. " Xm, ••• , Xn) = (Xl> ... , x m). 

Remark. The converse of each of the above statements is clearly true. 

PROOF. i) Suppose dFo: IRn -+ IRm is injective. Write IRm = lR'n EB lR"m-n with 
dFo(lRn) = lR'n. Define g: IRm = lR'n EB IR"m-n -+ IRm = lR'n EB IR"m-n in a 
neighborhood of O by v = (v', v")......,.. F(v') + (O, v"). Here the lR'n on the 
left-hand side is identified with IR". Clearly, dgo = dFo + id IlR"m-", 
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0.6 Exercise 

Therefore dgo is bijective and we may use the inverse function theorem 
(0.5.1) to assert the existence of a local differentiable inverse g = g-l. 

Since gog = id, gog IIR'n = id IIR'n locally, and thus g o F(v') = 

(v', O). This proves g o Fis a linear injective function from a neighborhood 
of O in IRn into lR'n c lR'n EB lR"m-n = IRm. 

ii) Suppose dFo : IRn --+ jRm is surjective. Decomposing IRn = lR'm EB lR"n-m so 
that dFo IIR'm:lR'm --+ IRm is a bijection, define I!: IRn = lR'm EB lR"n-m--+ 
IRn = lR'm EB IR"n-m in a neighborhood of zero by v = (v', v")t-+ (Fv, v"). 
Here we have identified lR'm on the right-hand side with IRm. 

Sincedl!o = dFo IIR'm + id I IR"n-misbijective,I!hasa local inverse h = 1!-1. 
Sinceh oI! = idlocally,h(F(v',v"),v") = (v', v")and thereforeFoh(F(v',v"),v") = 

F(v', v"). This means that F o h is given locally by the projection IRn = lR'm EB 
lR"n-m --+ lR'm onto the first m coordinates, which, of course, is linear and 
surjective. O 

0.6 Exercise 

Prove that any distance-preserving mapping B: !Rn -+ !Rn may be written in the form 

Bx = Rx + Xo, 

an orthogonal motion followed by a translation. 
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t Curves 

1.1 Definitions 

1.1.1 Definitions. Let 1 ~ IR be an interval. For our purposes, a (parametrized) 
curve in IRn is a C'" mapping c:l-+ IRn. c will be said to be regular if for 
all tEl, c(t) =f. O. 

Remarks. 1. If 1 is not an open interval, we need to make explicit what it 
means for c to be C "'. There exists an open interval 1* containing 1 and a 
C'" mapping c*: 1* -+ IRn such that c = c*[l. 

2. The variable tEl is called the parameter of the curve. 
3. The tangent space IRto = TtolR of IR at to E 1 has a distinguished basis 

1 = (to, 1). As an alternate notation we will sometimes write d/dt for 
(to, 1) = 1. 

4. If c: 1 -+ IRn is a curve, the vector dCto(1) E TC(tollRn is well defined. Since 
[c(t) - c(to) - dcto(1)(t - to)[ = o(t - to), it follows immediately that 
dcto(1) = limt~to[c(t) - c(to)]/(t - to) = c(to), the derivative of the IRn_ 
valued function c(t) at to E 1. 

1.1.2 Definitions. i) A vector field along c: 1-+ IRn is a differentiable mapping 
X: 1-+ IRn. The vector X(t), that is the value of X at a given tEl, will be 
thought of as lying in the copy oflRn identified with TC(tllRn (see Figure 1.1). 

ii) The tangent vector field of c: 1-+ IRn is the vector field along c: 1-+ IRn 
given by t 1-+ c(t). 

1.1.3 Definition. Let c: 1-+ 1Rn, c: i -+ IRn be two curves. A diffeomorphism 
.p: 1-+ 1 such that c = c o.p is called a parameter transformation or a 
change of variables relating c to c. The map .p is called orientation preserving 
if.p' > O. 
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1.1 Definitions 

Figure 1.1 

Remark. Relationship by a parameter transformation is cIearly an equivalence 
relation on the set of aII curves in IRn. An equivalence cIass of curves is called 
an unparameterized curve. 

1.1.4 Definitions. i) The curve c(t), tEl, is said to be parameterized by arc 
length if le(t)1 = 1. We wiII sometimes refer to such a curve as a 
unit-speed curve. 

ii) The length of c is given by the integral L(c) : = fI le(t)1 dt. 
jji) The integral E(c) : = t fI e(t)2 dt is caIled the energy integral of cor, 

simply, the energy of c. 

1.1.5 Proposition. Every regular curve c: 1--+ IRn can be parameterized by arc 
length. In other words, given a regular curve c: 1--+ IRn there is a change 
ofvariables 4>: J --+ 1 such that I(c o 4>)'(s)1 = 1. 

PROOF. The desired equation for </> is Idcjds 1 = Idcjdt 1·ld</>/ds 1 = 1. Define 

s(t) = f:o le(t')1 dt', to E 1, and let set) = 4>-l(t). Since c is regular, </> exists 

cIti 

el 

(a) (b) 

Figure 1.2 (a) Helix; (b) cusp 
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1 Curves 

and satisfies the desired equation. Clearly, c o 1> is parameterized by arc 
length. O 

Examp/es 

1. Straight line. For v, Vo E IRn let c(t) = tv + vo, tE IR. The curve c(t) is 
regular if and only if v # O and, in this case, is a straight line. 

2. Cirele and helix. c(t) = (a cos t, a sin t, bt), a, b, tE IR, a2 + b2 # O. 
When b = O, c(t) is a plane circle of radius a. When a = O, c(t) is a 
straight line. In general, c(t) is a helix. In all cases, c(t) is a regular curve. 

3. Parameterization of a cusp. The curve c(t) = (t 2 , t 3), tE IR, is regular 
when t # O. The image of c(t) is a cusp. 

4. Another parameterization of a straight line. The curve c(t) = (t 3, t 3), 

tE IR, is regular when t # O. The image of c(t) is a straight line. 

e(t),t <o 

-1 

Figure 1.3 Image of c 

1.2 The Frenet Frame 

1.2.1 DefinitioD. Let c: 1 -+ IRn be a curve. i) A moving n-frame along c is a 
collection of n differentiable mappings 

1 ::o; i::o; n, 

such that for all tEl, ej(t)· elt) = Sjl> where Sji = (ă: l~n. Each ej(t) 
is a vector field along c, and ej(t) is considered as a vector in Tc(t)lRn. 

ii) A moving n-frame is called a Frenet-n-frame, or simply Frenet frame, 
iffor all k, 1 ::o; k ::o; n, the kth derivative C(k)(t) of c(t) lies in the span 
of the vectors el(t), ... , eit). 

Remark. Not every curve possesses a Frenet-n-frame. Consider 

{
( _e-l/t', O), 

c(t) = (e- 1/t2, e- 1/t2), 

(O, O), 

ift < O} 
ift>O. 
if t = O 

Because the image of c has a crease at (O, O) it is impossible to find a differen­
tiable unit vector field el(t) along c such that c(t) = !c(t)!el(t). 

10 



1.3 The Frenet Equations 

1.2.2 Proposition (The existence and uniqueness of a distinguished Frenet­
frame). Let c: 1 E IR" be a curve such that for ali tEl, the vectors 
e(t), C(2l(t), ... , c(,,-1)(t) are linearly independent. Then there exists a 
unique Frenet-frame with the following properties: 

i) For 1 ~ k ~ n - 1, e(t), . .. , C(kl(t) and el(t), ... , ek(t) have the same 
orientation. 

ii) el(t), ... , e,,(t) has the positive orientation. 

This frame is called the distinguished Frenet-frame. 

Remark. Recall that two bases for a real vector space have the same orienta­
tion provided the linear transformation taking one basis into the other has 
positive determinant. A basis for IRn is positively oriented if it has the same 
orientation as the canonical basis of IR". 

PROOF. We will use the Gram-Schmidt orthogonalization process. The 
assumption that e(t), c(t), ... are linearly independent implies that e(t) "# O 
and so we may set el(t) = e(t)/\e(t)\. Suppose el(t), ... , ej_l(t),j < n, are 
defined. Let elt) be defined by 

j-l 
elt) : = - L (C(jl(t). ek(t»ek(t) + C(jl(t) 

k=l 

and let elt) := elt)/\elt)\. 
Clearly, the elt), j < n, are well defined and satisfy the first assertion of 

the theorem. Furthermore, we may define e,,(t) so that el(t), ... , e,,(t) has 
positive orientation. The differentiability of elt), j < n, is c\ear from its 
definition. To see that e,,(t) is differentiable, observe that each of the com­
ponents e~(t), 1 ~ i ~ n, of e,,(t) may be expressed as the determinant of a 
minor of rank (n - 1) in the n x (n - l)-matrix (ej(t», 1 ~ i ~ n, 
l~j~n-1. O 

1.3 The Frenet Equations 
1.3.1 Proposition. Let c(t), tEl, be a curve in IR" together with a moving frame 

(e,(t», 1 ~ i ~ n, tEl. Then thefollowing equationsfor the derivatives hold: 

e(t) = L a,(t)el(t), , 

where 

(*) 

If(etCt» is the distinguished Frenet-frame defined in (1.2.2), 

(**) al(t) = \e(t)\, a,(t) = O for i > 1, 

and W!J(t) = O for j > i + 1. 

11 



1 Curves 

PROOF. Equation (*) follows from differentiating ej(t)·ej(t) = Sjj. 
Equations (**) hold for distinguished Frenet-frames because the condition 

that ej(t) is a linear combination of c(t), . .. , c(j)(t) implies that ej(t) is a linear 
combination of c(t), ... , C(j+l'(t) and hence of el(t), ... , ej+l(t). D 

Remark. If w(t) denotes the one-parameter family of matrices (Wjj(t)), l ~ i, 
j ~ n, we may write the n equations 

as 

e(t) = w(t)e(t), 

where e(t) is the matrix whose rows are the vectors et(f). Equation (*) then 
says: w is skew-symmetric. If, in addition, (ej(t)) is a distinguished Frenet­
frame, (**) implies that w is of the form 

o Wl2 O O 

-W12 O W23 O O 

O -W23 O W34 O O 
w= 

O O Wn-l. n 

O O -Wn-l.n O 

The next proposition proves that these differentiaI equations are invariant 
under isometries of IRn, and establishes how these equations transform under 
a change of variables. 

1.3.2 PropositioD. i) Let c: 1 -+ IRn be a curve and B: IRn -+ IRn an isometry 
of IRn whose orthogonal component is R. Let e = B o c: 1 -+ IRn, and let 
(ej(t)), i = 1, ... , n, be a moving frame on c. Then (elt)) : = (RetCt)), 
i = 1, ... , n, is a moving frame on e and if Wjj(t) are the coefficients of 
the associated Frenet equationfor e, (ej(t)), then 

12 

and 

!c(t)! = !c(t)1 

Wjlt) = wlj(t). 

ii) Let c: 1 -+ IRn and e: J -+ IRn be curves in IRn, re/ated by the orientation­
preserving change of variables </>. In other words, 

e = c o </>, </>'(s) > O. 

Let (ej(I)), i = 1, ... , n, be a movingframe on c. Then (ei(S)) = (ej o </>(s)), 
j = 1, ... , n, is a moving frame on e. If !e'(s)! # O, then 

Wjj(s) Wjl<f>(s)) 
I e'(s) I = Ic(</>(s))I' 



1.3 The Frenet Equations 

PROOF. i) wlj(t) = i;(tHW) = RetU)·Re/t) = etU)·e/t) = Wjj(t) . 

.. ) Wj/s) '() eis) . (-1.( ))-I.'() elc/>(s)) wlj(c/>(s)) 
II Ic'(s)1 = ej s ·1C'(s)1 = ei 'f' s 'f' s ·lc(c/>(s))Ic/>'(s) = Ic(c/>(s))I· o 
1.3.3 Definition. Let c: 1 ~ ~n be a curve satisfying the conditions of (1.2.2), 

and consider its distinguished Frenet-frame. The ith curvature of c, i = 1,2, 
... , n - 1, is the function 

(t) .= Wi.i+1(t). 
Kj • Ic(t)1 

Note that for the distinguished Frenet-frame we may now write the 
matrix W as 

C 
K1 O O 

-K1 O K2 O 

W = Ici : -K2 

O •.. -Kn-2 O Kn-l 

O -Kn-l O 

Let us establish a simple fact about the curvature functions, Kh i < n - 1. 
Namely: they are positive. Remember, we have only defined the Kj for curves 
satisfying the nondegeneracy conditions of (1.2.2). 

1.3.4 Proposition. Let Kj(t), 1 :5 i :5 n - 1, be the curvaturefunctions defined 
in (1.3.3). Then Kj(t) > O for 1 :5 i :5 n - 2. 

PROOF. By construction (in (1.2.2)), 

k k 

C(k) = .L ak,el and ek = .L bklc(1) with akk > O 
1=1 1=1 

(and so bkk = akk1 > O) for 1 :5 k :5 n - 1. Therefore for 1 :5 i :5 n - 2, 

We now explore to what extent these curvature functions determine curves 
satisfying the nondegeneracy conditions of (1.2.2). 

1.3.5 Theorem. Let c: 1 ~ ~n and c: 1 ~ ~n be two curves satisfying the 
hypotheses of (1.2.2), insuring the existence of a unique distinguished 
Frenet-frame. Denote these Frenet-Jrames by (elt)) and (elt)), respectively, 
1 :5 i :5 n. Suppose, relative to these frames, that K;(t) = RI(t), 1 :5 i :5 

n - 1, and assume Ic(t)1 = li(t)l. Then there exists a unique isometry 
B: ~n ~ ~n such that 

c = B o c. 

13 



1 Curves 

Furthermore, B is a congruence; its orthogonal component has determinant 
+ 1 (a rotation). 

PROOF. Fix to E 1. There is precisely one isometry B satisfying 

Bc(to) = c(to), 
Ret(to) = i!t(to), 1 :::; i:::; n, 

where R is the orthogonal component of B. Since both Frenet-frames are 
positively oriented, R has determinant equal to + 1. 

From the hypotheses we have Uitlt) = Wt;(t), which implies 

~m = 2 wtj(t)elt). 
j 

On the other hand, 

Ret(t) = 2 Wtj(t)Relt). 
j 

We see that elt) and Relt) satisfy the same system of linear differential 
equations. Since they are equal at t = to, Ret(t) = ej(t) for aII tEl. In 
particular, Rc(t) = Ic(t)IRe1(t) = 1c'(t)lel(t) = c'(t). Thus 

Bc(t) - Bc(to) = ft Rc(t) dt = ft c'(t) dt = c(t) - c(to), 
to to 

which proves Bc(t) = c(t). 
To see that B is unique, let B' be another isometry satisfying B' o c = c. 

Then B' must transform the distinguished Frenet-frame of c into that of c. 
In addition, B' o c(to) = c(to), so B and B' have the same translation com­
ponent and the same orthogonal component. Therefore B = B'. O 

1.3.6 Theorem (Existence of curves with prescribed curvature functions). 
Let Kl(S), ... , Kn_l(S) be differentiable functions dejined on a neighborhood 
O E IR with Kt(S) > O, 1 :::; i :::; n - 2. Then there exists an interval 1 con­
taining O and a unit speed curve c: 1 ~ IRn which satisjies the conditions of 
(1.2.2) and whose ith curvature function is Kt(S), 1 :::; i :::; n - 1. 

PROOF. Consider the matrix-valued function 

( -~l(S) ~l(S) 
A(s) = . 

O 

and the linear system of differential equations X'(s) = A(s)· X(s), X(O) = Id, 
where X(s) is an n x n matrix-valued function, Id is the n x n identity 
matrix and the muItiplication is matrix multiplication. By standard results in 
differential equations (e.g., Hurewicz, W. Lectures on ordinary differential 
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1.4 Plane Curves; Local Theory 

equations. MIT Press, Cambridge, Mass. (1958) p. 28), there exists a solution 
X(s) defined on some interval 1 containing O E IR. 

Since A(s) is skew-symmetric ('A(s) = -A(s», ('X(s)·X(s»)' = I(A(s)· 
X(s»·X(s) + IX(s)·A(s)·X(s) = IX(S)·IA(s)·X(s) + IX(s)·A(s)·X(s)=O. 
Thus I X(s)· X(s) is a constant matrix and must be equal to its value at s = O, 
namely the identity matrix. Therefore X(s) is an orthogonal matrix. Let T(s) 
be the first column of X(s) and define 

c(s) = Ia" T(T)dT, SE 1, 

the integration being done component-wise. One can now check directly that 
c(s) is a unit speed curve with distinguished Frenet frame X(s) and curvature 
functions Kj(S), 1 ::; i ::; n - 1. O 

1.4 Plane Curves; Local Theory 

In this section we will investigate plane curves; c: 1 ~ 1R2. We will assume 
throughout that c(t) # O, Le., c is regular. For plane curves this hypothesis 
is equivalent to (1.2.2). Thus we may always construct the distinguished 
Frenet-frame, and we shall always choose this frame as the moving 2-frame 
on our curve c. 

The Frenet equations of (1.3.1) for a plane curve are 

or 

c(t) = Ic(t)lel(t) 

el(t) = w12(t)e2(t) 

e2(t) = -wdt)el(t), 

c(t) = Ic(t)lel(t) 

e(t) = (-Wl~(t) W 12(t») () O e t , 

and there is only one curvature: 

( ) . W12(t) 
K t .= Ic(t)l· 

In the special case that Ic(t)1 = 1, c(t) = el(t) and 

c(t) = el(t) = w12(t)e2(t) = K(t)e2(t), 

so jK(t)1 = Ic(t)l. 
The sign of K(t) is positive (negative) when e2(t) and c(t) make an acute 

(obtuse) angle with each other. 
Expressed graphically: K(t) > O (K(t) < O) means that e2(t) points toward 

the convex (concave) side of the curve c at c(t). 
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1 Curves 

Examp/e. Graph of Ihe sine 
C(/) = (1, sin 1), for t E ~, 

K(t) < O for tE (O, 11"), 

K(/) > O for tE (11", 2".). 

It is possible that K(t) = O. If, in addition, K(/) of:. O (and hence the zero of K 

is isolated) c(t) is called an infieclion point ofthe curve. In the example above, 
c(O) and c( 11") are inflection points. 

A ~ 
"'-.(27 

"-1L.e, 
K>O 

Figure 1.4 The sine curve 

The curvature function for plane curves has the following geometric 
interpretation: Fix some vector v of unit length. Define /1(1) by 

cos /1(/) = el(t)· v, 

sin /1(/) = -el/)·v. 

Thus /1(/) is, up to a multiple of 211", the angle from v to el(t) measured in the 
positive direction. In a sufficiently small neighborhood of any parameter 
value 10 EI, /I(t) may be defined so that it is continuous. Doing this will also 
make /1(/) differentiable in that neighborhood. Clearly, 8(t) is a well-defined 
function, independent of the choices involved in defining /I(t). 

1.4.1 Proposition. Suppose /I(t) is locally defined as above. Then 

8(/) = W12(t) = K(/)lc(/)I. 

In the case thal k(t)1 = 1, K(t) = 8(t). 

PROOF. The proposition is an immediate consequence of differentiating the 
defining equations for /I(t): 

-sin /1(/)8(/) = wd/)e2(/)·v = -sin /I(/)W12(t), 

D 

1.4.2 Proposition (Characterization of straight lines). For plane curves, Ihe 
fo//owing conditions are equivalent. 

16 

i) K(t) = O for ali IEI. 
ii) There exists a parameterizalion of c of Ihe form 

C(/) = (1 - (0)V + vo, where to E R, v, Vo E ~2, V of:. O, 

i.e., a slraighl line. 



1.5 Space Curves 

PROOF. We may assume Ic(t)1 = 1. If K(t) = O then c(t) = O. Therefore 
c(t) = (t - to)c(to) + c(to) for any fixed to E 1. Conversely, if c(t) = 

(t - to)v + Vo then, by assumption, 1 = Ic(t)1 = Ivi, and so IK(t)1 = 
Ic(t)1 = O. O 

1.4.3 Proposition (Characterization of the circIe). For plane curves, the 
following conditions are equivalent. 
i) IK(t)1 = l/r = constant> O. 

ii) c is a piece of circular arc, i.e., there exists an Xo E 1R2 with I c(t) - xol = 
r = constant > O for ali tEl. 

PROOF. We may assume Ic(t)1 = 1. 
The Frenet equations, if we assume (i), look like 

c(t) = el(t) 

el(t) = E/re2(t) with E = +l or E = -1 

e2(t) = -E/rel(t). 

Therefore (c(t) + Ere2(t)) = c(t) - el(t) = O, which implies that c(t) + 
Ere2(t) = Xo, a constant vector in 1R2. Rence c(t) - Xo = -Ere2(t), implying 
Ic(t) - XOl2 = r2, which is (ii). 

Conversely, assume (ii). We have (c(t) - xo)· (c(t) - xo) = r2, a constant. 
Differentiating yields 

c(t)·(c(t) - xo) = O. 

Since c(t) = el(t), we have established that c(t) - Xo is a multiple of e2(t). 
Since we know its length is r, 

c(t) - Xo = Ere2(t), where E = il. 

Differentiating this equation yields 

el(t) = c(t) = Ere2(t) = -ErK(t)el(t). 

Thus IK(t)1 = l/r. o 

1.5 Space Curves 

In this section we willlook at curves c: 1 -+ 1R3. In order to use Frenet-frames 
we assume that c(t) and c(t) are linearly independent. By (1.2.2) we know 
that, under these conditions, a distinguished Frenet-frame exists. 

Remark. Note that we have excIuded straight Iines from our consideration! 

1.5.1 Definition. For a curve c: 1 -+ 1R3, the curvatures Kl(t) and K2(t) defined 
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1 Curves 

in (1.3.3) will be denoted K(t) and -r(t) and called the "curvature" and 
"torsion" of c, respectively. Explicitly, 

The Frenet equations, in matrix form, are 

( 
O K(t) O ) 

e(t) = \c(t)\ - K(t) O o-r(t) e(t). 
O --r(t) 

1.5.2 Proposition. If c(t) is parameterized by arc length, then 

K(t) = \c(t)\ and -r(t) = det(c(t), c(t), C(t))/K2(t). 

PROOF. We know that c(t) = el(t), eit) = c(t)/\c(t)\, and ea(t) = el(t) x 
e2(t) = c(t) x c(t)/\c(t)\ (" x" denotes the cross-product in IRa). Thus 
K(t) = \c(t)\, which implies c(t) = K(t)eit). The Frenet equations imply 

c(t) = K(t)eit) + K(t)e2(t) 
= K(t)e2(t) + K(t)[ -K(t)el(t) + -r(t)ea(t)] 
= K(t)eit) - K2(t)el(t) + K(t)-r(t)ea(t). 

The equation for -r(t) now follows directly from the equations for c(t), c(t), 
and c(t) above. O 

Remark. By (1.3.2), K(t) and -r(t) are invariant with respect to isometries of 
IRa and orientation-preserving changes of variables. 

Since c(t) is a differentiable curve, we may write it in terms of its Taylor 
series at t = ta. Doing so, and using the Frenet equations as they appear in 
(1.5.1) and (1.5.2), we get 

1.5.3 Proposition (Normal (local) representation for a space curve). Suppose 
c: 1 -+ IRa is a space curve parameterized by arc length, and let ta E 1. Then 
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1.5 Space Curves 

Figure 1.5 

The proof follows from substituting the Frenet equations into the Taylor 
series. 

At to EI the planes in Figure 1.5 have descriptive names: 

(el' e2)-plane = osculating plane at c(to). 

(e2 , e3)-plane = normal plane at c(to). 

(e3' el)-plane = rectifying plane at c(to). 

Using Proposition (1.5.3), we may write down expansions for the projection 
of c(t) onto these planes. 

1.5.4 CoroIlary. Let c: 1 -+ ~3 be a space curve parametrized by arc length and 
let to = OEI. Set elO) = el> 1 :5 i :5 3, and K(O) = K, 'T(O) = 'T, K(O) = 
ic. Then the projections of c(t) onto the 

{
OSCulating plane at c(to) 
normal plane at c(to) 
rectlfying plane at c(to) 

have Taylor expansions at O of the form 

(t, ~ K) + 0(t2) 

(~K + ~ic,~K'T) + 0(t 3) 

( t3 t 3 ) t -"6 K2 , "6 K'T + 0(t 3) 
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1 Curves 

Remark. The osculating plane derives its name from the Latin osculari, 
"to kiss." It is the plane spanned by the first and second derivatives of c(t) 
at to and may be thought of as the plane that fits best to c(t) at c(to)' Notice 
that when c(t) is projected onto this plane the result is, up to second order, the 
graph of a parabola. 

The normal plane is literally that; the unique plane normal to el(tO), and 
hence to 6(to), at c(to). 

The rectifying plane is the plane perpendicular to the "curvature vector" 
Ke2 • Projection onto this plane "straightens" or rectifies c(t) in the sense that, 
up to second order, the projected curve is a line. 

lli 
" (.) (b) (e) 

Figure 1.6 Projection onto: (a) rectifying plane; (b) normal plane; (c) osculating 
plane 

1.6 Exercises 

1.6.1 Determine the curvature of the ellipse (a cos t, b sin t), t E Ihl, ab i' O. 

1.6.2 Show that the curvature of a plane curve is in general given by the formula 

( ) _ det(e(t), c(t» 
K t - le(t)!" . 

1.6.3 Show that the curvature and torsion of a space curve are in general given 
by the formulae 

K( ) = le(t) x c(t)1 
t le(t)!" 

( ) _ det(C(t), c(t), c(t» 
T t - le(t) x c(/)12 , 

where x x y is the cross-product in R3. 

1.6.4 i) Determine the curvature and torsion of the .. elliptical helix" 

20 

(a cos t, b sin 1, ct), ab i' 0, tE R 

ii) Use (i) to conclude that if a = b = 1 then K goes to zero as c goes to 
infinity. Does this make geometric sense? 



Plane Curves: Global Theory 2 

2.1 The Rotation Number 

2.1.1 Definition. A curve c: 1 = [a, b] -+ IRn is closed if there exists a curve 
c: IR -+ IRn with the following properties: ciI = c and, for ali t E IR, 
c(t + w) = c(t), where w = b - a. 

The number w is the period of c. The curve c is said to be periodic with 
period w. Given a closed curve c, it is clear that its associated periodic 
curve c is unique. 

Remark. An equivalent definition of a c10sed curve is: a curve c: [a, b] -+ IRn 
such that c(a) = c(b) and c(kl(a) = C(kl(b) for aH k > O. 

For later applications we use the following generalization. 

2.1.2 Definition. Apiecewise smooth curve is a continuous function c: [a, b] -+ IRn 
together with a partition 

a = b_ l = ao < bo = al < ... < bk- l = ak < bk = ak+l = b 

of [a, b] such that CI := ci [al> bl ], O S j S k, is a differentiable curve. 
The points c(al) = c(bl _l ) are called corners of c. We will use the following 
terminology for piecewise smooth curves c: c is 

regular if each CI is regular, 
closed if c(a) = c(b), 
simple closed if c is c10sed and Clr .. ,bl is one-to-one. 

Given a regular curve c: 1 -+ 1R2, there is an induced map el: 1 -+ 1R2, 
where el(t) = c(t)/lc(t)l, the unit tangent vector. This is sometimes called 
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2 Plane Curves: Global Theory 

the tangent mapping, and its image !ies in Sl = {x E 1R2 Ilxl = I}. We begin 
our study of the tangent mapping by introducing a global version of the 
function 8 considered in (1.4.1). 

2.1.3 Proposition. Let c: [a, b] -+ 1R2 be a regular curve. Then there exists a 
continuous, piecewise differentiable function 8: [a, b]-+ IR such that 

e1(t) = c(t)//C(t)1 = (cos 8(t), sin 8(t». 

Moreover, the difference 8(b) - 8(a) is independent of the choice of 8. 

PROOF. Choose a partition a = to < t 1 < ... < tk = b fine enough to insure 
that e11[tf-l.ti] !ies entirely in some open semicirc1e of Sl. This is c1early 
possible since el is continuous. Choose 8(a) satisfying the requirements ofthe 
proposition. Then 8 is uniquely determined on [a, t1 ] = [to, td by the require­
ment that it be continuous. If 8 is known on [to, tl - 1], it has a unique con­
tinuous extension to [to, ti]; namely, 8(1i-1) is given and there is a unique 
continuous function U: [t;-1> ti] -+ IR, with U(tI-1) = 8(t1-1), satisfying the 
requirements of the proposition. Using U, we may extend 8 so that it is 
continuous on [to, ti]' By this procedure, 8 may be defined to be continuous 
on [a, b]. 

The differentiability of 81 [ti _ b ti] folIows from (1.4.1), or direct1y from the 
differentiabi!ity of el and the inverse trigonometric functions. 

Finally, suppose 8 and '" are two functions satisfying the requirements of 
the proposition. Then "'(t) - 8(t) = 217k(t), where k(t) is a continuous 
integer valued function. This forces k(t) to be a constant. Therefore 

8(b) - 8(a) = "'(b) - "'(a). o 
The next proposition is a technical result which will aIIow us to associate 

an "angular" function 8 to a continuous mapping e: T -+ 1R2, Te 1R2, when 
T is star-shaped. 

2.1.4 Proposition. Let Te 1R2 be star-shaped with respect to Xo E T; i.e., if 
x E T then the line segment xXo is also in T. Suppose e: T -+ Sl is a con­
tinuous function. Then there is a continuous function 8: T -+ IR satisfying 

e(x) = (cos 8(x), sin 8(x». 

Moreover, if 8 and U are two suchfunctions, they must differ by a constant 
multiple of 217. 

PROOF. Choose O(xo) to satisfy e(xo) = (cos O(xo), sin O(xo». We may use the 
procedure of the proof of (2.1.3) to determine O uniquely on each ray xox, 
x E T, as a continuous function with initial value O(xo). What remains to be 
shown is that 8 is continuous at any Yo E T. We may choose li > O such that 
for any y' E xoYo, Iy - y'1 < li imp!ies that the angular separation between 
e(y) and e(y') is strictly less than 17. Since XoYo is compact and e is continuous, 
such a li must exist. 
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2.1 The Rotation Number 

Given E > O, choose a neighborhood U of Yo small enough to guarantee 
U c Blyo) and y EU=> //I(y) - /I(yo)/ = 21Tk + E', where /E'/ < E and k 
is some integer which depends on y. Continuity of e assures the existence of 
such a set U. We will show k = O, which implies the continuity of /1 at Yo. 

Let y E U. Consider .p(s) = /I(xo + s(y - xo» - /I(xo + s(Yo - xo», 
O ::; s ::; I..p is the difference between the values of /1 at corresponding points 
on the line segments XoY and xoYo' .p is continuous since /1 is a continuous 
function on each line segment. 

Since /(xo + s(y - xo)) - (xo + s(Yo - xo»/ = /s(y - Yo)/ < 3, the 
angular separation between (xo + s(y - xo» and (xo + s(Yo - xo» can 
never beequal to 1T. Therefore /.p(s) - .p(0)/ < 1T. But .p(0) = O. Let s = 1, then 

1T > 1.p(I)/ = I/I(y) - /I(yo)/ = /21Tk + E'I. 
This implies k = O. o 

2.1.5 DefinitioD. Let c: [O, w] "'* 1R2 be a piecewise smooth, regular, cIosed 
curve. Let 0= b_ 1 = ao < bo = al < ... <bk = w partition [O, w] into 
intervals Ii : = [ai> bi ] on which Ci : = ciI, are differentiable, 1 ::; j ::; k. 
Letaidenote theorientedanglefromc(bi _1): = c(bj_1- )to c(aj): = c(aj+). 
The ai> I ::; j ::; k are the exterior angles of c. We will require -1T < aj < 1T. 

The number 

is the rotation number of c. 
Here the functions /lj : Ii ",* IR, O ::; j ::; k, are those defined in (2.1.3). 

Remarks. If c is a smooth closed curve, then alI a, = O and 

/I(w) - /1(0) 
ne = 21T . 

The connection between ne and the winding number of c as defined in 
elementary complex analysis is that ne is the winding number, with respect 
to the origin, of the cIosed curve e1(t), tE [O, w]. 

EXAMPLES. i) If c is the parameterization in the positive sense (counter­
cIockwise) of a nondegenerate triangle, the three differentiable arcs, Ci> of 
which c is composed, are line segments. Therefore /lj = constant and 
'2.1=1 aj = 21T. Hence ne = 1. 

Similarly, if c is a parameterization of a convex polygon, ne = ±1. 
ii) Let c be a parameterization in the positive sense of the unit circle, which 

makes m revolutions: 

c(t) = (cos 21Tt, sin 21Tt), O::; t::; m. 

Then ne = m. 
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2 Plane Curves: Global Theory 

Notice that, in the examples above, ne is an integer. The next proposition 
establishes that ne is always an integer, and that Inel is invariant under 
isometries of IRn and change of variables. 

2.1.6 Proposition. The rotation number ne of a dosed piecewise smooth curve 
is an integer. Moreover, 

(*) 

As a consequence of (*) (together with (1.3.2) and the change of variables 
formula), ne is invariant under orientation-preserving change of variables or 
congruences of IRn. An orientation-reversing change of variables or a sym­
metry of IRn will change the sign of ne. 

PROOF. The formula defining ne may be rewritten as 

k 

217ne = L (91- 1(b1- 1) - 9la1) + (ti), 
1=0 

where 9_1 is interpreted as 9k • By definition of (ti' (91- 1(b1- 1) - 9;(a1) + (1)/217 

is an integer. By (1.4.1), O;(t) = K(t)lc(t)l. This implies (*). O 

2.2 The Umlaufsatz 

The theorem we shall prove in this section is best known by its German name 
"Umlaufsatz." (Umlauf means "rotation" in German; Umlaufzahl = 

"rotation number," Satz = "theorem.") 

2.2.1 Tbeorem (Umlaufsatz). Let c: 1 ~ 1R2 be a piecewise smooth, regular, 
simple dosed plane curve. Suppose the exterior angles ai of care never 
equal to 17 in absolute value. Then ne = ±1. 

2.2.2 Corollary. Let c: 1 ~ 1R2 be a smooth, regular, simple dosed plane curve 
with Ic(t)1 = 1. Then 

2~ i K(t) dt = ±1. 

PROOF (due to H. Hopf)l 
Step 1. We will first perform a change of variables of c and an isometry 

of IRn in order to put c in a particular form. (Recall that, by (2.1.6), Inel 
is invariant.) 

Let g be a straight line in 1R2 which intersects the image of c. At least one 
point p in the intersection of g with the image of c wiII have the following 

1 Hopf, H. Ober die Drehung der Tangenten und Sehnen ebener Kurven. Compositio 
Math., 2, 50-62 (1935). 
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2.2 The Umlaufsatz 

property: a half-line of g with endpoint p will have no other points in com­
mon with the image of c. By performing a slight translation of g, if necessary, 
we can insure that p is not a corner of c (the corners of care isolated). Thus, 
without loss of generality, we may assume that there is a half-line, H, emana­
ting from a regular value, p, of c, and that H has no other points in common 
with the image of c. Let h be the unit vector in the direction of H. 

-h 

(a) 

p = e(O) 
=e(w) 

e(t) 

,~~~'~'W'W' 

(O, O) (e) 

(b) 

Figure 2.1 (Adapted from Manfredo P. do Carmo, Difjerential Geometry of Curves and 
Surfaces, Prentice-HaIl, Inc., 1976, p. 396.) 

Since c is regular, we may (re)parameterize c by arc length: Ic(t)1 = 1. 
We also require c(O) = c(w) = p. Ifnecessary, translation and rotation of ~2 
yields c(O) = the origin and C(O) = e1(0) = el = (1, O). 

Step 2. Let O < al < ... < a k - 1 < w be a partition of [O, w] such that c 
is smooth on each segment. The corners of care the points c(a,), O < j < k. 
Define 

T = {(Ilo t2) E ~2 I O ::; 11 ::; t2 ::; w}\{(llo 12) E ~2 I 11 = t2 = a,}. 

The set T is star-shaped with respect to (O, w) (for definition, see (2.1.4)). 
Let e: T -'>- S 1 be the mapping defined by 

{

C(t1)' 

e(t1' t2 ) = - c(O), 
c(t2) - c(t 1) 

IC(12 ) - c(tl)l' 

if t1 = 12 '" a" 
if (t1' 12) = (O, w), 

e is a continuous function (easy exercise). By Proposition (2.1.4), there exists 
a continuous function (): T -'>- ~ satisfying 
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2 Plane Curves: Global Theory 

8 is determined up to an integral multiple of 217. We choose 8 to satisfy 
8(0, w) = +17. 

Step 3. We will show that 8(w, w) - 8(0, O) = ± 217. For tE] 0, w[, 8(t, w) 
- 8(0, w) measures the angle between -el and the unit vector 

c(w) - c(t) 
e(t, w) = Ic(w) _ c(t)l' 

But e(t, w) can never be equal to -h. Therefore 8(t, w) - 8(0, w) is always 
less than 217. So when t = w, 8(w, w) - 8(0, w) = ±17. 

Similarly, 8(0, t) - 8(0, O), which represents the angle from el to e(O, t), 
is equal to ° when t = ° and can never exceed 217. Therefore as t -+ w, 
8(0, t) - 8(0, O) -+ ±17. The sign here is the same as that of 8(w, w) - 8(0, w). 
Thus 8(w, w) - 8(0, O) = 8(w, w) - 8(0, w) + 8(0, w) - 8(0, O) = ±217. 

Step 4. Consider c(aj) = c(bj_l), a corner of c with exterior angle aj' The 
angle aj is equal to the angle between c(bj_l) and c(aj), measured in the 
positive sense. Define 

C/aim: aj = 8(aj, aj) - 8(bj_l> bj_l). 

PROOF. Let Do be the triangle whose vertices are X_ l := c(b j _ l - ~), Xo := 
c(bj- l) = c(aj), Xl := c(aj + ~), where ~ satisfies bj- 2 < bj- l - ~ < bj- 1 + 
~ < b,. Assume that x -1, Xo, Xl orders the vertices of Do in the positive sense. 
Without loss of generality, Do may be assumed to be nondegenerate. Let 
aH, 0< aH < 17, be the angle at vertex XH' Then ()(bj_l> aj + ~) -
8(bj_l - ~, aj + ~) = al + 217kl for some integer k l . If ~ is chosen small 
enough, 8(bj_l> aj + ~) - 8(t, aj + ~), bj - ~ ::; t ::; bj-l> cannot exceed 217, 
so k l = O. Similarly, 8(bj_l - ~, aj + ~) - 8(bj_l - ~,aj) = a-l' Therefore 
8(aJ> aj + ~) - 8(bj_1 - ~,bj_l) = al + a_l = 17 - fio, where fio is the 
angle at Xo. As E -+ 0, 17 - fio -+ aj' the exterior angle of c(t) at aj' This 
proves the claim. 

If X -1> Xo, Xl orients Do in the negative direction, an analogous proof will 
work. 

Step 5. Conc/usion of proof of theorem. By Steps 3 and 4, we may write 

± 217 = 8(w, w) - 8(0, O) 
k-l k-l k-l 

= 8(w, w) - L 8(a;. aj) + L 8(bj_l , bj- l) + L aj - 8(0, O). 
j-l 1 j-1 

Since 8(aj, aj) = 81aj) and 8(bj_l , bj _ l) = 81bj- l) as defined in (2.1.5), the 
right-hand side is 217nc' Here we have w = bk , ° = ao. This proves the 
theorem. 

Step 6. Proof of corollary. The corollary follows immediately from the 
theorem and (2.1.6). O 

26 



2.3 Convex Curves 

x_, =c(ai -El x, = c(ai + El 

Figure 2.2 

2.3 Convex Curves 

2.3.1 Definition. A regular plane curve c: I ~ 1R2 is convex if, for all to EI, 
the curve lies entirely on one side of the tangent at c(to). In other words, 
for every to E I one and only one of the following inequalities hold: 

(c(t) - c(to»' e2(tO) ~ 0, all tEl 

or 

2.3.2 Theorem (A characterization of convex curves). Let c: I ~ 1R2 be a 
simple closed regular plane curve. Then c is convex if and only if one of the 
following conditions are true: 

Ie(t) ~ 0, alltEI 

or 

Ie(t) :s; 0, ali tEl. 

Remarks. i) If one of the above conditions hold then an orientation-reversing 
change of variables will produce the other. So, geometrically, they are 
equivalent. 

ii) If c is closed but not simple, the theorem fails. For example, a trefoil 
(pretzel curve) satisfies Ie(t) ~ 0, but it is not convex. 

Figure 2.3 

PROOF. Step 1. We may assume, without loss of generality, that (after possibly 
a change of variables) !C(t)1 = 1. If we then consider the function (}: I ~ IR, 
defined in (2.1.3), we may assert that O(t) = Ie(t). This is proved in (1.4.1). 
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2 Plane Curves: Global Theory 

Step 2. Suppose c is convex. We will show that 1< does not change sign by 
showing that 8(t) is weakly monotone. If 8(t') = 8(t") and t' < t" then 8 is 
constant on [t', t"]. 

First observe that since c is simple, there must be at least one point t'" where 
8(t'") = - 8(t") = - 8(t'). Using the convexity of c, it is possible to conclude 
that two ofthe tangent lines to cat the points c(t'), c(t"), c(t m) must coincide. 

Let P1 = c(t1) and P2 = c(t2), tI < t2, denote these two points, and con­
sider the line segment P1P2. This line segment must lie entirely on the image of 
c. For suppose q is a point on PlP2 which is not on the image of c. The line per­
pendicular to P1P2 and through q intersects c in at least two points and, since 
c is convex, these points must lie on the same side of P1P2. Let r (resp. s) 
be the points of intersection closest to (resp. furthest from) P1P2. Then r lies 
in the interior of the triangle P1P2S. Consider the tangent line to c at the 
point r. Whatever it is, there are points of c on both sides of it, contradicting 
the fact that c is convex. Hence PlP2 = {c(t) I tI :<;; t :<;; t2}, which means 
that 8(t1) = 8(t) = 8(t2) for 1 E [tI' 12]. In particular, tI = l' and t2 = 1;. 
This concludes the proof of weak monotonicity. 

Step 3. Suppose c is not convex. This means there exists a to E 1 such 
that.p(t):= (c(t) - c(to»·eito)changessign. Lett+ andL (,= to)bevalues 
of tEl where .p(t) assumes its maximum and minimum, respectively: 

.p(L) < .p(to) = O < .p(I+). 

Since ~(L) = ~(t+) = O, e1(t+) and e1(L) = ±e1(tO). Therefore at least 
two of these vectors are equal. By reparameterizing, we may now assert that 
there exist s" S2, with SI = O < S2 < w and 

e1(sl) = e1(s2). 

But this means that 8(S2) - 8(Sl) = 27Tk, k an integer, and 8(Sl + w) -
8(S2) = 27Tk', k' an integer. By the Umlaufsatz, k + k' = ±l and, since 
81[0.'21 and 81['2.",1 are nonconstant functions, kk' ,= O. Therefore kk' < O, 
which means that I«t) = O(t) must change sign (one of the "k"s is positive, 
the other negative). This completes the proof. D 

We will now use this characterization of a convex curve to prove the welI­
known four vertex theorem. 

2.3.3 DefinitioD. A vertex of a smooth plane curve c: 1 -+ 1R2 is a critical 

point of the curvature 1<: 1 -+ IR in the interior J of 1, i.e., i«to) = O, to Ei. 
If I<(t) = const, tI :<;; t :<;; t2, alI these tare vertices. 

2.3.4 Theorem (Four vertex theorem). A convex, simple, c/osed smooth plane 
curve has at least four vertices. 

Remark. The theorem is true without the convexity hypothesis (although it is 
harder to prove). 
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2.4 Exercises and Some Further Results 

PROOF (due to G. Herglotz)2 
Step 1. Since K(t) has a maximum and a minimum on 1, c(t) has at least 

two vertices. Without loss of generality, we may as sume that c is para­
meterized by arc length and that K(t) has a minimum at t = O and a maximum 
at to, O < to < w, where I = [O, w]. After a suitable rotation, we may also 
assume that the line through c(O) and c(to) is the x-axis in the (x, y) plane, and 
that, if c(t) = (x(t), y(t», there exists at least one point r, O < r < to, with 
y(t) > O. (If y(t) == O, O ~ t ~ to, then K(t) == O, O ~ t ~ to, implying K = O 
on 1, an impossibility.) 

Step 2. Claim: c(O) and c(to) are the only points of con the x-axis. For if 
c(t1) is another point of c on the x-axis, the convexity of c forces the tangent 
line to c(t) at the middle point of c(O), c(to), c(tJ to pass through the other 
two points. As in the proof of (2.32), this implies that the line segment 
c(O)c(to) lies entirely in the image of c, making K(O) = K(tO) = O. This is 
impossible since it would imply K(t) == O on 1. 

Step 3. Suppose c(to) and c(O) are the only vertices of c. Then 

k(t) ~ O for tE [O, tol 

k(t) ~ O for tE [to, w]. 

This implies that k(t)y(t) ~ O for tE [O, w]. Therefore 

O ~ I: k(t)y(t) dt = - f' K(t)j(t) dt, 

using integration by parts. 
Since e1(t) = (i(t), Ji(t», e1(t) = K(t)e2(t) and e2(t) = (- jet), i(t», it 

follows that x(t) = -K(t)j(t). Therefore 

O ~ f' k(t)y(t) dt = - f' K(t)j(t) dt = r x(t) dt = O. 

This can only be true if y(t) == O, so we have arrived at a contradiction. 
Step 4 (conclusion). We have actually shown that, under the hypotheses, 

there must be another point t where k(t) changes sign, Le., where K has a 
relative extremum. Relative extrema come in pairs; so there must be at least 
four vertices. O 

2.4 Exercises and Some Further Results 

2.4.1 A convex curve c: 1 ->- 1Jil.2 with K(t) "# O for aII tEl = [O, w] is said to be 
strictly convex. 

Prove: If c is a c1osed, strictIy convex curve, then for every v E Sl there 
exists a unique tEl such that el(t) = v. 

2 See Blaschke [A2), pp. 31-32, Of Chern [A6), pp. 23-25. 
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2 Plane Curves: Global Theory 

2.4.2 By (2.4.1), for every point c(t) on a cJosed, strictly convex curve c: 1 -- R', 
there is a unique point c(t') such that el(t) = -el(t'). c is said to have 
constant width if d(c(t), c(t'» = d, a constant. 

Prove: The circumference of a cJosed, strictly convex curve of constant 
width = dis equal to 1Td. 

2.4.3 If a cJosed, strictly convex curve c has exactIy four vertices, then any circJe 
has at most four points of intersection with c." 

2.4.4 If a cJosed, strictly convex curve intersects a circJe in 2n points, then it has 
at least 2n vertices." 

2.4.5 The four vertex theorem can be derived from the foIIowing resuIt concern­
ing cJosed curves c in [R" with no self-intersections. Suppose c is strictly 
convex, in the sense that through each point of c there passes a plane 
which has no other points in common with c. Then c has at least four 
points with stationary osculating plane; i.e., four points c(t) where 
'T(t) = O. For a proof of this result, see Barner.4 

2.4.6 A c10ser look at our proof of the four vertex theorem will show that we 
may actuaIly c1aim a stronger result: a simple cJosed convex curve must 
have either K :; constant # O or a curvature function K with two relative 
maxima and two relative minima. In the latter case, we may also require 
that the values of K at the relative maxima be strictly greater than the 
values of K at the relative minima. 

From this theorem we see that not every periodic K: [O, w]-- [R ;:: O 
occurs as the curvature function of a cJosed convex curve c: 1 __ [R2. It 
turns out that the necessary restrictions on K given above are also sufficient. 

Theorem (a converse to the four vertex theorem) (Gluck).5 Let K: [O, w]-­
[R > O be a continuous, strictly positive, periodic function (K(O) = K(W» 
which is either constant or has two maxima and two minima, the values of 
K at the maxima being strictIy greater than the values of K at the minima. 
Then there exists a C2 curve c: [O, w]-- [R2 which is simple and cJosed and 
whose curvature function is equal to K. 

The four vertex theorem (2.3.4) has the foIIowing generalization: Let c 
be a simple, cJosed, nuII-homotopic curve on M, an oriented surface with 
a Riemannian metric of constant Gauss curvature. Then the geodesic 
curvature of c has at least four stationary points. 

If M has variable, nonpositive Gauss curvature, a version of the four­
vertex theorem is still true with the same hypotheses as above, provided 
one generaIizes the notion of a vertex to mean a point of c where c may be 
weII approximated by a "circle of hyperbolic geometry." The meaning of 
this approximation can be preciseIy defined. In case M has constant Gauss 
curva ture, the derivative of the geodesic curva ture vanishes at these 
generaIized vertices (Thorbergsson).6 

3 See Blaschke, Kreis, and Kugel [A4], p. 161. 
• Barner, M. Ober die Mindestanzahl stătionărer Schmiegebenen bei geschlossenen 
strengkonvexen Raumkurven. Abh. Math. Sem. Univ.-Hamburg, 20, 196-215 (1956). 

5 Gluck, H. The converse to the four vertex theorem. L'Enseignement MatMmatique, 
II" Serie, Tome XVII, 3-4 (1971), pp. 295-309. 

6 Thorbergsson, G. Vierscheitelsatz auf FIăchen. Math. Z., 149, 47-56 (1976). 
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2.4 Exercises and Some Further Results 

2.4.7 By the Jordan curve theorem, a simple c10sed plane curve, c, divides the 
plane into two disjoint regions, one of which is bounded. If L = length of 
c and A = area of the bounded region, then L" - 47TA ;;:: O. Equality 
holds if and only if c is a circ1e. This is the famous isoperimetric inequality 
(proved in Chem [AS], p. 23).1 

A stronger form of this inequality exists for c10sed convex curves.8 If r is 
the radius of the largest disc lying insi de the bounded region, or the radius 
of the smallest disc containing the bounded region, then L2 - 47TA ;;:: 
(A - 7Tr 2)2/r 2• For further developments, see Osserman." 

2.4.8 Consider the following problem. Given p, q E 1R2 and X E Tp 1R2, Y E T.1R2, 
unit vectors, find the curve of shortest length from p to q with initial 
direction X and final direction Y. A solution does not always exist; let 
p # q and X 1- Y. However, if the cIass of curves is restricted to those with 
"average curvature" equal to or less than l/r, r > O, and C l (but possibly 
not C2) curves are allowed, then a solution always exists. In fact, the 
solution curves consist of circular arcs and line segments. Moreover, there 
are, at most, three different arcs of this type on any solution curve. This 
result is due to L. E. Dubins.'o 

2.4.9 Corollary (2.2.2) of the Umlaufsatz can be generalized to c10sed curves 
c: 1 ~ IRn, n ;;:: 3. Recall that, for n > 2, K > O for the curves we con­
sidered in Section (l.5). The total curvature of c is defined as 

K(c) = J: IK(t)1 dt, 

where c is assumed to be parameterized by arc length. 
Theorem (Fenchel"). K(c) ;;:: 27T, with equality, if and only if c is a con­

vex plane curve. 
This theorem was generalized by Fary and Milnor,12 They proved that 

if c: 1 ~ IRa is c10sed and knotted, then K(c) ;;:: 47T. A curve c is knotted 
if no homeomorphism of IRa will move C onto the unit circle in the (x, y) 
plane. EquivalentIy, c is knotted if it does not bound an embedded disc 
in IRa. 

7 An early proof of the isoperimetric inequality, aIthough not one which completely 
satisfies today's mathematical standards, was given by J. Steiner: Steiner, J. Einfache 
Beweise der isoperimetrischen Hauptsătze. J. Reine Angew. Math. 18, 289-296 (1838). 

8 Bonneson, T. Les problemes des isoperimetres et des isepiphanes. Gauthier· ViIlars, 
Paris, 1929. 

• Osserman, R. Isoperimetric and related inequalities. Proc. AMS Symp. in Pure and 
Applied Math. XXVII, Part 1, 207-215. 

,. Dubins, L. E. On curves of minimal length with constraint an average curvature and 
prescribed initial and terminal positions and tangents. Amer. J. Math., 79, 497-516(1957). 

11 Fenchel, W. Ober KrUmmung und Wendung geschlossener Raumkurven. Math. Ann. 
101, 238-252 (1929). Ce. also Fenchel, W. On the differential geometry of c10sed space 
curves. Bull. Amer. Math. Soc., 57, 44-54 (1951), ar Chem [A5]. 

12 Fary, 1. Sur las courbure totale d'une courbe gauche faisant un noeud. Bull. Soc. Math. 
France, 77, 128-138 (1949). Milnor, J. On the differential geometry of closed space 
curves. Ann. of Math., 52, 248-257 (1950). 
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2 Plane Curves: Global Theory 

2.4.10 A proof of Fenchel's theorem. i) Prove: Let c: 1- Din be a c10sed curve 
Iying on sn-l(r) = {x E Din Ilxl = r}, Le., Ic(t)1 = r, tE [0, w]. Sup­
pose c does not Iie in any open hemisphere of sn-l(r). Then the length 
of c is at least 27Tr. (A simple proof of this is given by Horn 13.) Using 
this result, 

ii) Prove: Fenchel's theorem (2.4.9). 

13 Horn, R. A. On Fenchel's theorem. Amer. Math. Monthly, 78, 380-381 (1971). 
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Surfaces: local theory 3 

3.1 Definitions 

3.1.1 Definitions. i) U will always denote an open set in 1R2. Points of U will 
be denoted by u E 1R2, or by (ul, u2) E IR x IR or (u, v) E IR x IR. 

ii) A differentiable mapping f: U ~ 1R3 such that dfu: TuIR2 ~ T f (u)1R3 
is injective for alI u E U is a (parameterized) surface patch, or simply 
a surface. A mapping f satisfying this condition is called regular. 
The u E U are called parameters of f 

iii) The two-dimensionallinear subspace dfu(IR~) c Tf (u)1R3 is called the 
tangent space of f al u, and will be denoted by T uf Elements of T uf 
are called tangent vectors (of/at u). 

3.1.2 Examples. i) /(u, v) = Xo + ux + vy, where x, y are linearly inde­
pendent vectors in 1R3• The map f: U ~ 1R3 parameterizes a piece of a 
plane. 

ii) U = D2 = {(u, v) E R 2 I u2 + v2 < l},j(u, v) = (u, v, vI - u2 - v2 ). 

The map f parameterizes a hemisphere. 

Remark. The natural basis el = (1, O), e2 = (O, 1) ofTuIR2 ::;' 1R2 is mapped by 
dfu into a basis of Tu!. We shall write dfuel = (oflou1)(u1, u2), dfue2 = 

(oflou2)(u1, u2) or simply dfiel) = fu', dfu(e2) = fu', where u = (u1, u2). 

These basis vectors of T uof C Tf (uo)1R3 = 1R3 are equal to the first partial 
derivatives offat (uA, ug): since 
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this impIies 

Iim I f(u~ - f\Uo) - df.i l , O) I = ° with Uo = (u~, u~), U = (ul, u~). 
vI-vă u - Uo 

Therefore df.o(l, O) = dfuoel is equal, in coordinates, to (OflOUl)(U~, u~). 

Similarly, df.iO, 1) = (OflOU2)(U~, u~). 

3.1.3 Definition. Let f: U ~ 1R3 be a surface. A change of variables of fis a 
diffeomorphism </>: Ve 1R2 ~ U C 1R2, where Vis an open set in 1R2, such 
that d</> always has rank = 2. If det(d</» > O, </> is orientation preserving. 
The surface J : = f o </>: V ~ 1R3 is said to be related to f by the change of 
variables </>. 

Remark. Relationship by change of variables defines an equivalence relation 
on the class of alI surfaces. An equivalence class of mappings is called an 
unparameterized surface. 

3.1.4 Definition. A vector field along f = '{f: U ~ 1R3} is a differentiable 
mapping X: U ~ 1R3 • 

We think ofa vector field X alongfas taking values in the tangent space 
of 1R3 restricted to the surfacef, Le., X(u) E T/(.)1R3• To make this explicit, 
consider the map 

g: U ~ TIR3 given by Uf-+ U(u), X(u». 

g is clearly a differentiable mapping and, for a given f, determines the 
mapping X. Conversely, given a vector field X along a map f, we usually 
interpret it as defining the corresponding map g. 

3.1.5 Definition. A vector field X alongf: U ~ 1R3 is 

{
tangential ifU(u), X(u» E Tulfor ali u EU, 

normal if(f(u), X(u» E T,(u)1R3 is orthogonal to T.ffor ali U EU. 

For example,fu'{u) andf.'(u) are tangential vector fields alongj. They 
are sometimes called the coordinate vector fields. The vector field of 
f.'(u) x fu'(u) (cross-product in 1R3) is a normal vector field along j. AlI 
three are obviously differentiable. 

3.1.6 Proposition. Every tangential vector field X along a surface f: U ~ 1R3 
may be represented in the fo//owing form : 

(*) 

The real-valued functions a1(u) and a2(u) are dijferentiable and uniquely 
determined. Conversely, a pair of dijferentiable functions 0': U ~ IR, 
i = 1, 2, determines a unique tangential vector field of the form (*). 

PROOF. The last statement is clear. Moreover, given X(u), the functions a1(u) 
and a2(u) are uniquely determined. What remains to be shown is that the 
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3.2 The First Fundamental Form 

d(u) are differentiable. To prove differentiability, take the inner product of 
(*) withfu'(u) andfAu): 

L: d(u)fu'fu' = X(u)fu', k = 1,2. 
I 

This gives a system of linear equations for a' (u), a2(u). The coefficients are 
differentiable functions, and det{fu'fuf) =1- O. By using Cramer's rule, one 
can see that the d(u), i = 1,2, are differentiable. O 

3.1.7 Definition. Let n := {fu' X fu 2 )/lfu' x fu'l. The vector field n is called 
the (Gauss) unit normal field along f The mapping n: U --+ S2 c 1R3 is 
also referred to as the Gauss map. The moving 3-frame (fu''!u', n) is 
called the Gauss frame of the surface f: U --+ 1R3. 

dluo -
-+---1--+---- u' = u~ ., 

Figure 3.1 The Gauss Frame at a point of f (Adapted from Manfredo P. do Carmo, 
Differential Geometry of Curoes arni Surfaces, Prentice-Hall, Ine., 1976, p. 39.) 

N.B. This is in general not an orthonormal frame. 

3.2 The First Fundamental Form 

3.2.1 A quick review of quadratic forms 

1. Let T be a real vector-space. 
A symmetric bilinear form or a quadratic form is a map {J: T x T --+ IR 

satisfying 

(J(X, Y) = (J(Y, X) (symmetry) 

(J(aX + bY,Z) = a{J(X,Z) + b{J(Y,Z) (bilinearity). 

Here a, b E IR and X, Y, Z E T. {J is positive definite if 

X =1- O => (J(X, X) > O. 

Example: The standard inner product in Euclidean space IRn. 
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3 Surfaces: Local Theory 

2. The matrix representation of {:J with respect to a basis e" 1 S; i s; n, of T 
is the matrix 

(glj) : = (f:J(eh ei»~' 

If X = Lf ~ef' Y = L' 'TJ'e" then (:J(X, Y) = Lf" ~'TJfgf" 
Suppose fk, 1 s; k s; n, is another basis of T. Let (an be the matrix 

defined by ef = Lk a'tfk, 1 s; i s; n. If (3Uk,J;) : = hk" thenglj = Lk,l a~a}hkl' 
If G = (gf')' A = (al), and H = (hl) these equations may be written in 
matrix form: 

G = A·H·fA, 

the dot denoting matrix multiplication. 
3. Let L: S -+ T be a linear mapping between vector spaces S and T. Suppose 

(:J is a quadratic form on T. Then, for X, Y E S, 

a(X, Y) : = (3(LX, LY) 

defines a quadratic form on S. The form a is said to be induced by (3 via L. 
If Lis injective and (3 is positive definite, then a is positive definite. Suppose 
X =1 O. Then LX =1 O and a(X, X) = (:J(LX, LX) > O. 

3.2.2 Defioitions. i) Letf: U -+ 1R3 be a surface. Let U E U. The inner product 
on 1R3 ;:;: Tf (u)1R3 induces a quadratic form on Tuf c T/(U)1R3 ;:;: 1R3 by 
restriction. This form is called thefirstfundamentalform and is denoted 
sometimes by g or gu and sometimes by I or lu. 

ii) The inner product on Tf(U)1R3 ;:;: 1R3 composed with the linear map 
dfu: 1R2 ;:;: T uIR2 -+ T f (u)1R3 ;:;: 1R3 induces a quadratic form on T uIR2 which 
is also called the first fundamental form. It is also denoted by g or 1, 
and it will sometimes be written "df· df" 

Remark. The linear bijection dfu: TuIR2 ;:;: 1R2 -+ 1R2 ;:;: Tuf is clearly an 
isometry with respect to the first fundamental form, i.e., 

lidfuX, dfuY) = lu(X, Y) for X, Y E Tu1R2• 

Therefore, if we identify T uIR2 with T J by means of dfu, we may identify 
these two definitions ofthe first fundamental form. Once more: For X and Y 
in Tu1R2, I(X, Y):= dfuX·dfuY' For Xand Yin Tuf, I(X, Y):= X·y. 

3.2.3 Defioition. The matrix representation of the first fundamental form, 
with respect to the basis fu ' '/u., will be denoted by 
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(gjk) := (g(fu''/u·». 

Sometimes we will use the notation E:= g(fu' '/u' ), F:= g(fu' '/u.) = 
g(fu.'/u1), G : = g(fu.'/u.) (Gauss' notation). Here gj.(u) = fu.(u)fu'(u). 
By the definition of 1 on T uIR2 in (3.2.2), (gik(U» is also equal to the matrix 
representation (/(eh ek» of I with respect to the canonical basis e" e2 of 
Tu1R2 • 



3.2 The First Fundamental Form 

f -
I(X. Y) =df,X' df,Y 

df -

I(X, Y) =X' Y 

Figure 3.2 

3.2.4 PropositioD. i) The first fundamental form 1 of a surface f: U -+ 1R3 is 
positive definite. 

ii) 1 is differentiable, i.e., the coefficients of the matrix glk: U -+ IR are 
differentiable. This is equivalent to the following condition: For any 
X: U -+ 1R3, Y: U -+ 1R3, tangential vector fields along f, the map 
u -+ giX(u), Y(u» is differentiable. 

PROOF. i) follows from (3.2.1, 3). 

ii) follows from the definition of gik(U) = fAu)fAu) and from the last 
statement of Proposition (3.l.6). O 

3.2.5 PrOPOSitiOD (Invariance of the first fundamental form). Let f: U -+ 1R3 
be a surface. 

i) Let B: 1R3 -+ 1R3 be an isometry. Then!: = B of is also a surface and 

lu(dBX, dBY) = I.(X, Y) for ali X, Y E Tuf 

ii) Let .p: V -+ U be a change of variables and let! = f o .p. Then 

lv(X, Y) = I,,(vlX, Y) for ali X, Y E Tv! = T ,,(vli 
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and 

lv(2, Y) = 14J(vMi>2, di>Y) for ali X, Ye Tv1R2. 

PROOF. i) Suppose Bx = Rx + xc, where R is an orthogonal map. Then 
dB = R. Therefore, if X, YeT,J, lu(RX,RY) = RX·RY = x·y = 
Iu(X, Y). 

ii) Let 2, Ye Tv1R2• Then l v(2, Y) = dj',,2.d!"y = dfu o di>2'd/u o di>Y = 
Iu(di>2, di>Y), where u = i>(v). O 

3.2.6 Coro)]ary. Suppose the change of variables i> is given, in terms of coordi­
nates, by ul = UI(V1, v2), i = 1,2. Then the fundamental matrix (ili) of 
! = f t. i> is related to the fundamental matrix (gli) of f by 

_ 8uk 8ul 
gli(v) = ') 8vl 8vi gkl(i>(V)). 

t.1 
PROOF. di>el = ~k (8ukj8vl)ek' where (el) (respectively (ek)) is the canonical 
basis of TvIR2 (respectively T 4J(V)1R2). The corollary follows by applying the 
formula (3.2.5, (ii)) to 2 = e" Y = ei' Note: Since we know that di>v: TvIR2 ~ 
T4J(V)1R2 has the matrix representation (8uk j8vl) (see Chapter O), we may prove 
the corollary by using (3.2.1, 2). Specifically, if A = (8ukj8vl), then (ili) = 
(J = A·G,IA, where G = (gli)' O 

3.3 The Second Fundamental Form 
3.3.1 Definition. Letf: U ~ 1R3 be a surface. The map 

u~n(u) 

is called the Gauss map. In words, n maps u into the unit normal vector 
n(u) to/at/(u). Each n(u) !ies in Tf(u)1R3. By using the canonical identifica­
tion of Tf(u,1R3 with 1R3, we may consider n as a mapping from U to 1R3. 

Remark. Since n(u) is a unit vector, n(u) e S2 e 1R3, where 

S2 = {x e 1R3 Ilxl = 1}. 

3.3.2 Proposition. The image of dnu: TuIR2 ~ Tf(u/1R3 /ies in Tufe Tf(U)1R3. 

PROOF. dnu(TuIR2) = span of nu', nu •. Since n(u)·n(u) = 1, differentiation 
yie1ds nu'(u)·n(u) = O, i = 1,2. This means nu' e T,J. Here we have canonic­
ally identified Tn(U)1R3 with Tf(u)1R3. O 

3.3.3 Proposition. The mapping 

(X, Y) e TuIR2 x TuIR2 ~ -dnuX·dfuY e IR 

is a symmetric bilinear /orm on Tu1R2• 

PROOF. Bilinearity is obvious. To prove symmetry, observe that, since 
nf,/ = 0, 

- nu' ·ful = n 'fu'ul 

= n·fulu' = -nu/ ·/u'. O 
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3.3 The Second Fundamental Form 

@.,", 
OER3 

Figure 3.3 The Gauss map 

3.3.4 Definition. i) The quadratic form 

-dnu·dfu: Tu IR2 x TuIR2 -+ IR 

is called the second fundamental form of f at u, and is denoted by II 
(or IIu). 

ii) The linear mapping Lu: = - dnu o dfu- 1 : T uf -+ T uf is called the 
Weingarten map. 

Remarks. 1. IIu: Tuf x Tuf-+ IR can be written as LuX·Y, Le., 

II.(X, Y) = LuX· Y for ali X, Y E T uf 

2. The matrix representation of IIu with respect to the canonica! basis {el} 
of T uIR2 and the associated basis {fu'} of T uf is 

(h jk):= (-nu··fu·) = (nIu"'). 

Sometimes we will use Gauss' notation: 

See section 3.7 for examp!es. 

3.3.5 Definition. The thirdfundamentalform off at u is the symmetric bilinear 
form given by 

(X, Y) E Tu IR2 X TuIR2 f-+ dnuX·dnuY E IR. 

The third fundamenta! form is denoted by IIIu, III or dn· dn. If we want 
to consider III as a form on Tuf, it is given by LuX·LuY' 

Proposition (3.2.5) for 1 has a counterpart for II: 

3.3.6 Proposition. II is invariant (in the sense of (3.2.5)) under congruences 
of 1R3 and orientation-preserving changes of variables. 
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3 Surfaces: Local Theory 

PROOF. i) LetBx = Rx + Xo be a congruence (det R = 1). Then!= Bofisa 
surface and/,.< = dBfu' = Rfu' , ii = dBn. Therefore, if X, Y E Tuf. 

Ilu(dBX,dBY) = -dii o d!;l(dBX)·dBY 
= -dB(dn o df;l(X»·dBY = -dn odf;lX·Y = IIuCX, Y). 

ii) Let ep: V ~ U be an orientation-preserving change of variables and! = 
f o ep. ThenJ.,k = '2.du' fJul/8v k , and this implies that 

J.,t x J.,. = (fu' x fu') det(~~:). 
Therefore ii = n o ep, since det(8u'/iJvk) > O. Thus, for X, Y E Tuf, we have 

liv(X, Y) = -dii o d!-l(X).Y = -dn o df-l(X)·Y = II~(v)(X, Y) 

and, for 2, Y E Tv!R2, we have 

llve2, Y) = -dn o dep2.dfdepY = IIuCdep2, depY) with u = ep(v). O 

3.3.7 Examples 

1. The sphere 

f(u, v) := (cos u·cos v, cos u·sin v, sin u), (u, v) E ]-1T/2, 1T/2[ x !R. 

The image offis S2 minus the north and south poles: S2 - {O, O, ±l} 

fu = (-sin u cos v, -sin u sin v, cos u) 

fv = (- cos u sin v, cos u cos v, O) 

E = f; = gll = 1, F =fu·fv = g12 = O, 

n(u, v) = ~: ~ 7.~ = - (cos u cos v, cos u sin v, sin u) 

= -f(u, v) 

II = -dn·df= df·df= 1. 

2. The torus 

g(u, v) : = ((a + b·cos u) cos v, (a + b·cos u) sin v, b· sin u), 
O < b < a, (u, v) E!R x !R. 

gu = b(- sin u cos v, - sin u sin v, cos u) 

g. = (a + b·cos u)(-sin v, cos v, O) 

g12 ;: F = gu· gv = O 

g22;: G = g~ = (a + b·COSU)2 

n(u, v) = -(cos u cos v, cos u sin v, sin u). 
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3.3 The Second Fundamental Form 

Thus, for u E ]-?T/2, ?T/2[, n(u, v) = -f(u, v) wherefis as in (1) above. 

II = -dn·dg = dIdg 

hll == L =fu·gu = b 

h12 == M =fu·g. + J.·gu = O 

h22 == N = 1.. g. = (a + b cos u) cos u. 

> O for -~ < u < ~ 
2 2 

det(h1k) = b cos u(a + b cos u) is 
?T 

= O for u = ±2 

?T 3?T 
< O for 2 < u < y. 

These three cases are the outside, the top and bottom circle, and the in­
side, respectively. 

Figure 3.4 Torus 

3. Surfaces of revolution 

f(u, v) := (h(u) cos v, h(u) sin v, k(u)) 

where h'2 + k'2 =F 0, h =F O. The surf ace parameterized by f is the surface 
generated by revolving the curve (h(u), 0, k(u)) about the z-axis 

f.2 = h'2 + k'2, fu·J. = 0, f: = h2. 

4. Surfaces generated by one-parameter groups of isometries 

A one-parameter group of isometries of 1R3 is a differentiable mapping 
)1: IR x 1R3 -+ 1R3 with the following properties: 

The map )It: 1R3 -+ 1R3 given by x -+ )I(t, x), (t, x) E IR X 1R3, is an isometry, 
)It °)ls = )lt+s and )10 = the identity. 

It may be shown that, possibly after a change of basis, any one-parameter 
group may be written as 

)I(t, x) = (Xl cos t + x 2 sin t, _Xl sin t + x2 cos t, x 3 + bt). 

41 



3 Surfaces: Local Theory 

The orbit te IR 1--7 1'(t, x) e 1R3 of a point (xl, x·, x 3) = x which does not 
lie on the x3-axis is a helix (see Example 2 in 1.1). A generated surface is 
a surf ace produced by a curve c(v), veI, and a one-parameter group of 
isometries 1': 

f(u, v) = 1'(u, c(v)), (u, v) e 1 x 1. 

It is certainly possible thatfis not a regular map, so one needs to as sume 
additional conditions to insure thatfis a surface. Some examples of generated 
surfaces are the sphere, the torus, and, more generally, any surface of 
revolution. 

An example of a generated surface which is not a surface of revolution is 
given by the helicoid. Let c(v) = (v, O, O), ve IR, and let 

1'(t, x) = (Xl cos t + r sin t, _Xl sin t + x 2 cos t, r + bt), b i= O, te IR. 

Then the generated surface 

f(u, v) = y(u, c(v)) = (v cos u, -v sin u, bu) 

is in fact a surface in the sense of (3.1). Moreover: 

fu = (-v sin u, -v cos u, b) 

Iv = (cos u, -sin u, O) 

(b sin u, b cos u, v) 
n = (b2 + V2)1/2 

b(cos u, -sin u, O) 
nu = (b2 + V2)1/2 

( 
O (b2 ;~2)1/2) b ( . 

hjf = -b nu = (b2 + V2)3/2 -r Sin u, 

(b2 + V 2)112 O -v cos u, b) 

The helicoid may be thought of as the surface generated by a ray per­
pendicular to the z-axis which is rotating at a constant speed in the plane 
parallel to the (x, y) plane and moving at a constant speed in the z-direction. 

v 

Figure 3.5 HeJicoid 
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3.4 Curves on Surfaces 

3.4 Curves on Surfaces 

3.4.1 Definition. Let 1: U -+ IRa be a surface. By a curve on I we mean a 
curve c: 1-+ IRa which can be written in the form 10 u, where u: 1-+ 
U c 1R2 is a curve in U. 

The study of curves on surfaces will give us a geometric interpretation 
of the first and second fundamental forms. 

3.4.2 Proposition. Let c = 10 u: 1-+ IRa be a curve on f. Then 

c(t) = L: il,!., o u(t) 
1 

is a tangent vector to I at u(t). The length 01 c(t) is given by 

Ic(t)12 = L: g!j(u(t))iI'(t)ili(t). 
'.1 

PROOF. c(t) = dct(l) = dlu(t) o dUt(l) = dlu(t)C2., iI'e,) = 2., il'!., o u(t). The 
desired formula follows from the definition Ic(t)12 = (c(t), c(t). O 

Remarks. For a curve c(t) = 1 0 u(t) on f, the arc-length parameter set) is 
uniquely determined by the following formula: 

( dS)2 " du' dui 
dt = Ic(t)12 = L.., glf dt dt = l(iI, il). 

1.1 

The first fundamental form may be expressed, in terms of this notation, as 

ds 2 = L: g" du' dui = I(du, du). 
'.i 

The expression ds is called the line element of the surface f 
Suppose c = 10 u: 1-+ IRa is a unit-speed curve on 1: U -+ IRa for which 

c(t), c(t) are linearly independent. The curve c(t) possesses a distinguished 
Frenet-frame (el(t), e2(t), ea(t)) and the curvature of c is defined by the 
equation l\(t) = l«t)e2(t)(see (1.5.1)). The relationship between the curvature 
of c and the second fundamental form of/is given by the following proposition. 

3.4.3 Proposition. Let c = 1 0 u be a curve which satisfies the hypotheses in 
the above remark. Then 

II(c(t), c(t)) = I<(t)n(t)· e2(t) 

with net) = n o u(t). 

Corollary (Meusnier's theorem). Let O(t) E [O, 7T/2] be the angle between the 
normal to I and the osculating plane 01 c (i.e., O = <ten, ea)). Then 

III(c(t), c(t))1 = I«t) cos O(t). 
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Consequently, if 8(t) < "'/2, 

K(t) = III(c(t), c(tm 
cos 8(t) 

PROOF. II(c(t), c(t» = -dn(u(t»·df(u(t» = -li(t)·c(t). Since n(t)·c(t) = O, 
this implies 

II(c(t), c(t» = n(t)·c(t) = K(t)n(t)·e2(t). D 

Remark. For an arbitrary curve, the above results are not true. 

3.4.4 DefinitiODS. i) Let X E Tu!. IXI = 1 be a unit tangent vector on a sur­
face f The normal curvature in the direction ± X is the number 

K(X) = K(-X) := II(X, X). 

ii) Let c = f ou: 1 _ R3 be a unit-speed curve on f for which C, c are 
also linearly independent. Let (el(t» be the distinguished Frenet-frame 
of c at t. If e2(tO) = ± n(c(to», c is said to lie in a normal section at 
t = to. 

Remark. If II(X, X) # O for some X E Tu!. then IK(X)I is equal to the 
curvature K(tO) of a curve c at c(to) = f o u(to) which lies in a normal section 
at t = to. Of course, we assume that c(to) and c(to) are linearly independent. 
By hypothesis, K(to) > O. Therefore II(X, X) is positive or negative, depend­
ing on whether e2(tO) is equal to plus or minus n(u(to» = the unit normal 
vector to the surf ace at u(to). 

3.4.5 Examples. We will continue those examples introduced in (3.3.7). 
I. The sphere. Clearly II = 1 and K(X) = l for alI X. The reqQirement 

that c(t) be a normal section at each point forces c(t) to be agreat circle. 
2. The torus. Consider a typical meridian circle on the torus, e.g., c(t) = 

get, O) = (a + b cos t, O, b sin t). This is a circle with radius b, curvature 
K(t) = l/b, el(t) = (-sin t, O, cos t), e2(t) = -(cos t, O, sin t). 

Using the expression for n(u(t» computed in (3.3.7), we see that n(u(t» = 
e2(t). Therefore K(el(t» = l/b. 

For the inner and outer equators of the torus, 

c(t) = «a ± b) cos t, (a ± b) sin t, O), 

a simple computation will show 
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el(t) = (-sin t, cos t, O) 

e2(t) = (-cos t, - sin t, O) 

K(t) = I/(a ± b) 

_ . { ell(t) for u = O, 
net) = {+ }(cos t, Sin t, O) = () fi 

-ellt oru=",. 



3.5 Principal Curvature, Gauss Curvature, Mean Curvature 

Therefore 

on inner equator, 

on outer equator. 

3.4.6 Definition. Let c: 1 -7 1R3 be a space curve with the property that c(t) 
and c(t) are Iinearly independent. The osculating circle of cat t is the circle 
with radius ljK(t) lyingin the plane of e1(t), e2(t) with center c(t) + e2(t)jK(t). 

Remark. The osculating circle is characterized by the following property. It is 
the limit as t', t" -7 t of the circle passing through the points c(t ' ), c(t), and 
c(t"). (Proof: exercise.) 

Figure 3.6 Osculating circle 

The relationship between the local behavior of c(t) and the osculating circle 
is given by the next proposition, a typical result of c1assical surface theory. 

3.4.7 Proposition. Suppose f is a surface and X is a tangent vector at Uo with 
IXI = I and K(X) #- O. lf c = f oU is a curve onfwith c(to) = ± Ic(to)IX, 
then the osculating circle of c at to is the intersection of the osculating plane 
of c at to with the sphere of radius 1/jK(X)1 centered at f(uo) + n(uo)jK(X). 

PROOF. By Meusnier's theorem, (3.4.3), ljK(to) = n(to)· e2(tO)jK(X), provided 
e(to)· n(to) #- O. In other words, c(to) + e2(tO)/ K(tO)' which is the center of the 
osculating circle, is equal to the projection of the vector n(to)/ K(X) in the e2(tO) 
direction. O 

3.5 Principal Curvature, Gauss Curvature, and 
Mean Curvature 

3.5.1 Definition. Letf: U -7 1R3 be a surface. Let 

S~f:= {XeTufl fu(X, X) = I} 

denote the unit circ1e in T uf A vector Xo e S;'f is said to be a principal 
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direction if Xo is a critical point of the function 

X E SUf-»> K(X) = I1(X, X) E IR. 

If Xo is a principal direction, the value K( Xo) is called a principal curva ture 
offat u. 

Note that if X is a principal direction, so is - X. There are always 
at least two linearly independent principal directions, namely the values 
of X where K(X) takes on a maximum and a minimum on the compact 
set Sf,! 

The principal curvatures are characterized by the following proposition. 

3.5.2 Proposition (Rodriguez). Let X E SU Then X is a principal direction 
if and only if X is an eigenvector of the Weingarten map 

Lu = -dnu o df;;l: TJ--'? Tu! 

The associated eigenvalues are the principal curvatures. 

PROOF. Suppose K is a principal curvature with associated principal direction 
Xo, /(Xo, Xo) = 1. Using the Lagrange multiplier rule,l we may assert that 
d(J/ - K/) = O at Xo, /(Xo, Xo) = 1. Since II and / are both quadratic forms 
and since the differential of any quadratic form f3 at a point X is given by 
df3Y = 2f3(X, Y), the above requirement is equivalent to 

I1(Xo, Y) - K/(XO' Y) = O /(Xo, Xo) = 1, for ali Y, 

which in turn is equivalent to 

Therefore Xo is an eigenvector of Lu with eigenvalue K. Conversely, let 
Xo be an eigenvector of Lu with eigenvalue K. Then if X + eY satisfies 
/(Xo + eY, Xo + eY) = 1, 

I1(Xo + eY, Xo + eY) - /(Xo, Xo) = 2eIl(Xo, Y) + e2( ••• ) 

and 2e/(Xo, Y) + e2/(Y, Y) = o. 
Therefore 2I1(Xo, Y) = 2K/(XO' Y) = -Ke/(Y, Y) and 

I1(Xo + eY, Xo + eY) - I1(Xo, Xo) = O + e2( ••• ). 

The last equation clearly implies [hat Xo is a critical point of K(X) on S~f, 
i.e., Xo is a principal direction. O 

3.5.3 Corollary. Either II is proportional to / (II = K/), in which case every 
direction is a principal direction, or there exist exactly two (up to sign) 
principal directions orthogonal to each other. 

1 See Edwards, C. H. Advanced Ca/cu/us of Several Variables. Academic Press, New 
York, 1973, pp. 90--99. 

46 
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PROOF. Let 1<1, 1<2 be the largest and smallest principal curvatures, respectively. 
If Xl and X2 are associated principal directions, then 1<1/(X1, X2) = 
II(X1, X2) = 1<2/(Xl> X2). Therefore either 1<1 = 1<2, Le., 1< = const, and Il 
is proportional to lor 1<1 > 1<2 and I(Xl> X2) = O. Suppose 1<0 is any principal 
curvature with principal direction Xo. Then either I(Xo, Xl) or I(Xo, X2) = 0, 
which implies that either Xo = ± Xl or Xo = ± X2. D 

We will now use the principal curvatures to define two important functions. 

3.5.4 Definition. Let f: U ~ ~3 be a surface. The Gauss curvature and the 
mean curvature of f are the following two functions on U: 

3.5.5 Proposition. i) The curvature functions K and H are determined by the 
equation det(l<id + dn o df-1) = 1<2 - 2HI< + K, where the left-hand 
side is the characteristic polynomial x(Lu) of the Weingarten map 
Lu = -dn o df;; 1 in the variable 1<. Consequently, 2H(u) = TrL(u) and 
K(u) = det L(u). 

ii) If(hlk) is the matrix representation of Il, (glk) is the matrix representation 
of 1, and (glk) is the inverse Of(glk)' then Lu has the matrix representation 

(*) (an = (fhliglk). 

Consequently, 

K(u) = det lIu = det(hliu» 
det lu det(glk(u» 

2H(u) = 2: h'k(U)g'k(U). 
I.k 

Note: From the representations for K and H, it follows that they are dif­
ferentiable functions. 

PROOF. i) The principal curvatures 1<1, 1<2 are solutions to 1<2 - 2HI< + K = O, 
the characteristic equation of -dn o df-1. Therefore 1<2 - 2HI< + K = 

(1< - 1(1)(1< - 1(2)' 

ii) With respect to the standard basis of T,J, 

-dn o df-1(fut) = -dn(e,) = -nu' = L: a~fuk. 
k 

Taking the inner product withfu/: 

which implies (*). Now det(KlI~ - LI h,lglk) = 1<2 - 2HI< + K (by (i», 
from which the expressions for Hand K follow directly. 
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It is reasonable to ask why the third fundamental form has not entered 
directly into our study of curvature on surfaces. It tums out that the third 
fundamental form is totally determined by the first and second funda­
mental forms. O 

3.5.6 PrOPOSitiOD. III - 2HII + KI = O. 

PROOF. Let IV:= (dn + Kl df)·(dn + K2 df), where Kl> K2 are the principal 
curvatures. Clearly, 

IV = III - 2HII + KI. 

But IV(Xl> Y) = IV(Y, X2) = O, where Xi is a principal direction for Kh 

i = 1, 2, and Y is arbitrary. Therefore IV = O. O 

Remark. This proposition is a special case of Cayley's theorem: A linear 
mapping L (in our case, the Weingarten map) satisfies X(L) = O, where 
X(K) = det(L - K(id». 

The various curvature functions we have been considering are invariant 
under change of variables and isometries as the following theorem shows. 

3.5.7 Tbeorem. Let f: U ~ ~3 be a surface and X E T,J a principal direction 
with associated principal curvature K = K(X). Let K(u) and H(u) be the 
Gauss and mean curvatures, respectively. 

i) /f B: ~3 ~ ~3 is an isometry, then j: = B of is also a surface and 
2:= dBXETu! is a principal direction of J, R(2) = ±K(X), 
K(u) = K(u), and H(u) = ± H(u). The signs are positive if B is a 
congruence, negative if B is a symmetry. 

ii) /f </>: V ~ U is a change of variables, then j : = f o </> is a surface and 
2 : = X is a principal direction of f and R(V) = ± K o </>(v), K(v) = 
K o </>(v), and H(v) = ± H o </>(v). The sign is positive if </> is orientation­
preserving, negative if </> is orientation-reversing. 

PROOF. i) From the proof of (3.3.6) we see that ii(u) = ± dBn(u), the sign 
depending on whether B is orientation-preserving or reversing. Therefore, 

-dfl odj-lg= + dB odn odf-lX= ±KdBX= ±Kg. 

This means that g is a principal direction with principal curvature 
K = ±K. 

ii) From the proof of (3.3.6) we see that ii(v) = ± n o </>(v), the sign being 
positive if det d</> > 0, negative otherwise. Therefore - dii o dj-l g = 
+ dn o df-l X = ± Kg. This means that 2 = X is a principal direction 
with associated principle curvature K = ± K. 

Remark. The Gauss curvature K is the only one of the curvature functions 
which does not change sign under orientation-reversing isometries or change 
of variables. 
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3.6 Normal Form for a Surface, Special Coordinates 

3.5.8 Examples. We continue the examples developed in (3.3.7) and (3.4.5). 
1. On the sphere, K1 = K2 = 1, H = K = 1. 
2. The torus. We compute a~ = - Li h"gik, a~ = b-l, a~ = a~ = O, 

a~ = cos u/(a + b cos u). Therefore K1 = a~ < K2 = at = b- 1. Compare 
this with (3.4.3). Also, 

K = cos u/b(a + b cos u), H = (a + 2b cos u)/2b(a + b cos u). 

The maximum K2 = b -1 is assumed by any principal direction, X, which 
is tangential to a meridian circle: I/(X, X) = K(X) = K2' 

The minimum K1 is not a constant function. It is positive on the outside 
of the torus, i.e., when u E ]-11/2,11/2[. It is negative on the inside of the 
torus, i.e., when u E ]11/2,311/2[. Finally, K1 = O on the top and bottom 
latitude circles, i.e., u = ± 11/2. 

Consequently, K > O on the outside of the torus, K < O on the insi de of 
the torus, and K = O on the top and bottom latitude circles. 

3.5.9 Definition. Let f: U ~ ~3 be a surface. A point Uo E U is called an 
umbilic if K1(UO) = Kiuo). If, in addition, K1(UO) = K2(UO) = O, then Uo is 
said to be a planar point. 

3.5.10 Definition. A surface f: U ~ ~3 is said to be planar (resp. spherical) 
if n(u) = constant (respectively, if there exists an Xo E ~3 such that 
If(u) - xol = p, a positive constant). 

3.5.11 Proposition. A surface consists entirely of umbilics if and only if it is 
planar or spherical. 

PROOF. 1. If fis planar or spherical, then dn = O or dI (f - xo) = O. The 
latter condition implies that n = ±(f - xo)!lf - xol = ± (f - xo)! p. 

Therefore dn = -K df, where K = O or K = constant = ± lip. 
2. Let dn = -K di Therefore n. = -4'., nv = -Kfv' Consequently, n.v = 

- Kvf. - Kf.v = - Kufv - KIv.· Since f. and Iv are linearly independent, 
K. = Kv = O, so K = constant. If K = O, dn = O. Therefore n = constant 
andfis planar. If K =1 O, then «n/K) + f)u = «n/K) + f)v = O. Therefore 
(njK) + f = xo, a constant vector. Consequently, If - xol = l/[KJ = p = 

constant, so f is spherical. O 

3.6 Normal Form for a Surface, 
Special Coordinates 

In our investigation of curves we were able to analyze local behavior by 
expressing the curve up to second order in terms of a Frenet-frame at a fixed 
point (see (1.5.3)). Here is the analog for surfaces. 

3.6.1 Proposition. Letf: U ~ ~3 be a surface, Uo EU, {Xl> X2} a basis ofT.of, 
and no = n(uo) the unit normal at Uo which makes {Xl' X2, no} positively 
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oriented. Then there is a change olvariables </>: Vo -+ Uo c U near Uo with 
</>(0) = Uo with the lollowing properties: il/ = 1 0 </>, 

/(v) - /(0) = V 1X1 + V2X2 + r(v)no, v = (vi, v2). 

Jf Xl = h(uo), then Vi = ul - uh + o(lu - uol) and rvv(O) = hlluo). 

PROOF. Since {Xl> X2 , n} forms a basis in Tf (u)1R3, we may write 

I(u) - I(uo) = V1(U)Xl + V2(U)X2 + q(u)no 

for some functions vl(u), q(u) with vl(uo) = q(uo) = o. The first order of 
business is to find an inverse for v = (v1(u), v2(u». Since 

ovk 

1.I(uo) = L OUl (uo)Xk , 
k 

«ovkjoUI)(UO» is an invertible matrix. The inverse function theorem insures 
the existence of a local inverse </> to v, defined in a neighborhood Vo of O. 
This is the change of variables we seek. FoI', if / = 1 0 </>, 

/(v) - /(0) = L VIXI + r(v)no, where r = q o </>. 
1 

It is cIearly seen that hjf(O) = r.v(O). If the Xl happen to be 1.I(uo), then 
(ovljouJ)(uo) = cIJ} and hllO) = (ovljoUI)(uo). Therefore (hjf(O» = (hlluo». O 

3.6.2 Definition. A surface 1: U -+ 1R3 is 

{
elliPtic {> O 
parabolic at Uo E U if det II •• is = O 
hyperbolic < O. 

Let us assume now that our surface/: U -+ 1R3 is presented in the standard 
form of (3.6.1) with Xl = 1.1. Since r(O) = r.I(O) = O, 

r(u) = ~ & hjj(O)uluJ + 0(luI 2). 

ConsequentIy, 

We have "proved" the following result. 

3.6.3 Proposition. III is 
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3.6 Normal Form for a Surface, Special Coordinates 

at uo, then the surface represented by the second Taylor polynomial of fis an 

{
elliPtic paraboloid, 
parabolic cylinder, 
hyperbolic paraboloid. 

This representation gives us a geometric picture of what the sign of the 
Gauss curvature means, since its sign is the same as the sign of det II. 

(al 

(bl 

Figure 3.7 (a) Elliptic point; (b) hyperbolic point 

We now turn out attention to finding coordinates on a surface fitted to 
vector fields that are given in advance. The basic tool is the foIIowing theorem. 

3.6.4 Theorem. Suppose Xl and X2 are tangential vector fields on f: U -+ 1R3 
which are linearly independent at each u E U. Then in a neighborhood Uo 
of each Uo we can change variables, "': Vo -+ UO, so that f o '" =! has 
coordinate vector fields!vl proportional to X,. 

(This result is false for higher dimensional submanifolds of IRn and, more 
generally, for any differentiable manifold of dimension > 2. See Spivak 
[A17J, voI. 1, ch. 6.) 

PROOF. 1. Consider the vector fields X,(u) = df;;l X,(u) defined for u EU. 
Suppose we could find a change ofvariables 7]: U -+ V,7](u) = (vl(u), v2(u)), 
for which 

(*) 

Then in terms of canonical basis vector fields (eh e2) on V, d7]uCX1(u)) = 

dV~(Xl(u))el + O and d7]u(X2(u)) = O + dV~(X2(u))e2' Consequently, if 
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.p = '1- 1 : V -+ U, 'then 1 = lo.p satisfies!v, = d!v(e,) = dl",(v) o d.pv(e,) = 

a,(v)X" where a,(v) = (dv~(,XM(v))-l. Thus.p is the required change of 
variables. Note that a,(v) is well defined, for if dv~(X,(.p(v)) = 0, then 
dv~ = ° since {Xl> Xz} are linearly independent and dv'(X,) = 0, i#- j. 
This contradicts the assumption that 1) = (vi, VZ) is a change of variables. 

In order to complete the proof, it is necessary to establish the existence 
of a pair of functions vl(u), v2(u), defined on some neighborhood of uo, 
satisfying (*) with dv' #- 0, i = 1, 2. This last condition will ensure that 
'1 = (vi, v2) is a change of variables. 

2. Let {el> ez} be the canonical basis vector fields on U and write Xlu) = 

L~=l gNu)e/c. By the standard existence theorem for ordinary differential 
equations, we may assert the existence, 10cally, of integral curves Ci(S) of 
X,(u). That is, for Is 1 sufficiently small, we may find curves cl(s), C2(S) in 
V with c,(O) = Uo and c,(s) = X,(c,(s)). We wish to solve (*) which is 
equivalent to 

i) 
ovl ovl 
OUl g~(u) + ouz g~(u) = 0, 

ii) 

with the initial conditions v'(c,(s)) = s. A standard result in partial 
differential equations (see F. John, Partial DijJerential Equations, Springer­
Verlag, New York (1971), pp. 15-36) allows us to do this in a neighborhood 
of uo, provided that for i) CI(S) and XZ(cl(s)) are linearly independent and 
for ii) C2(S) and XI(cz(s)) are linearly independent. 
But c;(s) = X,(c,(s)), so these conditions are satisfied by hypothesis. AIso, 
s = v'(c;(s)), i #- j, implies that 

1 = ~ (v'(c,(s)) = dv'(C;(s)) = dv'(X,(c(s)). 

Therefore dv' #- 0, i = 1, 2. 

Remarks. i) The function vl(u) (resp. v2(u)) is an integral of the differential 
equation c(s) = Xl{c{s)) (resp. c(s) = Xz{c(s))). An integral of a dif­
ferential equation 

(*) i(s) = I(x(s), s), XE U, 

is a differentiable function h: U -+ IR which is nonconstant on any open 
set and which is constant on integral curves of (*). That is, h(x'(s)) = const 
or, equivalently, (d(ds)h(x(s)) = O. 

ii) If U is simply connected, it is possible to find a globally defined change of 
variables, .p: V -+ U, satisfying the previous theorem. Here is a brief 
indication of the proof. The theorem gives a way of constructing these 
coordinates Jocally near Uo by mapping (vi, VZ) into {CI (VI), C2(V2)), where 
CI is the integral curve of X, beginning at CI(VI ). This process may be 
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continued to give a regular map from some domain V into U. The only 
obstruction to getting a diffeomorphism is the possibiIity that the integral 
curves of XI may intersect in two different points. Using simple connec­
tivity, one may show that this is impossible. 

3.6.5 Definition. A regular curve c = f ou: I -+ ~3 on a surface f is called a 
line of curvature if c(t)J[c(t)[ is a principal direction for aII tEl. 

Remark. Let Uo be a point where the principal curvatures are different (a non­
umbilic point). By the continuity of the principal curvature functions, we can 
find a neighborhood of Uo on which Kl(U) < K2(U). Let Xl(u), X2(u) denote 
the associated principal directions. They may be chosen to be differentiable 
vector fields for the foIlowing reason. Since Kl(U), Klu) are solutions to 
det(dnu + K dfu) = 0, they are differentiable. Since X,(u) = df;; 1 X,(u) are 
solutions to dnuX,(u) + Klu) dfuX,(u) = 0, they may be chosen to be dif­
ferentiable. Of course, they are linearly independent. An appIication of (3.6.4) 
proves the foIlowing lemma. 

3.6.6 Lemma. Let f: U -+ ~3 be a surface on which the principal curvatures 
are not equal at a point uo. Then there exists a neighborhood Uo of Uo and a 
change of variables efo: Vo -+ Uo such that the coordinate lines of 1 = f o efo 

are lines of curvature. 

Such coordinates are called principal curvature coordinates. In principal 
curvature coordinates, the Weingarten map wiII have the matrix representation 

(
KlgU 0) ° K2g22 

Conversely, using (3.5.5) which shows that this matrix is always equal to 
C2:k h,kgk'), Proposition 3.6.7 foIlows. 

3.6.7 Proposition. If f: U -+ ~3 satisjies h12 = g12 = 0, then f is a principal 
curvature coordinate system. 

We turn our attention now to another naturaIly occurring vector field on 
a surface. 

3.6.8 Definition. A vector X E Su lf C T uf is an asymptotic direction provided 
IIiX, X) = O. The notion of asymptotic direction has invariant geometric 
meaning. 

3.6.9 Proposition. Asymptotic directions are invariant under isometries and 
change of variables. 

This proposition is immediate from the properties of II described in 
(3.3.6). Notice that X is an asymptotic direction if and only if - X is an 
asymptotic direction. The existence of an asymptotic direction at u IS 
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equivalent to the requirement that Kl ~ O, K2 ;::: O. Therefore an asymptotic 
direction exists at u if and only if K(u) ~ O (see 3.6.10 below). 

3.6.10 Proposition. i) K < O if and only if there exists exactly two (up to sign) 
asymptotic directions. 

ii) K(u) = O and IIu =F O if and only if there exists exactly one (up to sign) 
asymptotic direction. 

iii) K(u) = O and IIu = O (planar point) if and only if ali X E S~f are 
asymptotic directions. 

PROOF. i) K < O <o> det II < O <o> II(X, X) = O has precise1y two linearly 
independent solutions, ± X, with I(X, X) = 1. 

ii) K = O and II =F O means that one of the eigenvalues of II is zero, and 
the other is equal to K =F O. If (Xl> X2) is a basis of eigenvectors with 
respect to O, K, then for any X = tI Xl + t2 X2, II(X, X) = K(t2)2. There­
fore Xl is the only principal direction. 

iii) Is dear. O 

3.6.11 Definition. A regular curve c = f ou: 1 -+ 1R3 is an asymptotic line 
provided l'(t)/[l'(t)[ is an asymptotic direction at u(t) for ali tEl. The 
surface f: U -+ 1R3 is presented in asymptotic coordinates near Uo if the 
coordinate lines are asymptotic lines in a neighborhood of Uo. 

3.6.12 Lemma. Suppose K(uo) < O onf: U -+ 1R3. Then there is an asymptotic 
coordinate patch defined on some neighborhood of Uo. 

PROOF. By continuity of the Gauss curvature, there exists a neighborhood of 
Uo on which K < O. By (3.6.10, i), there exist two linearly independent 
asymptotic vector fields Xl> X2 on some, possibly smaller, simply connected 
neighborhood of Uo. Now Theorem (3.6.4) completes the proof. O 

3.6.13 Examples. 1. For the torus (3.4.5), K < O on the inside. Thus on the 
inside there exist precisely two asymptotic directions at each point. 

2. On the sphere, no asymptotic directions exist at any point. 

Remark. The reason for calling these directions asymptotic becomes dear 
from the following observation. A regular curve c(t) on the surface has zero 
normal curvature at c(t), i.e., II(l', l') = O <o> c(t)·n o u(t) = O <o> c(t) E Tuf 
So asymptotic lines have no normal component of acceleration. In particular, 
if c(t) is a straight line in 1R3 which lies on the surface, c(t) = O and c is an 
asymptotic curve. 

3.7 Special Surfaces; Developable Surfaces 
3.7.1 Definition. A triply orthogonal system of surfaces is a differentiable 

map F: W -+ 1R3, defined on an open set W c 1R3, satisfying: 
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Remark. The reason for calling such a map by this extraordinary name is 
that at each p = (uo, vo, wo) E W, the three surfaces 

(u, v) ~ F(u, v, wo) 

(v, w) ~ F(uo, v, w) 

(u, w)~ F(u, Vo w) 

are mutuaIly orthogonal. We will denote these surfaces by f Wo , ro, and f·o, 
respectively. They are regular by (i). 

Notice that by condition (ii), not only are the surfaces orthogonal, but 
g12 = O on each of them. Furthermore, Fw(u, v, wo) is normal to f Wo at 
(u, v, wo) (and the identical relation holds for the other two surfaces) and, 
ditferentiating, 

(Fu·F.)w = (Fu·Fw). = (F.·Fw)u = O. 

Therefore Fuv·Fw = Fuw·Fv = F.w·Fu = O, which means that h12 = O on 
each of the surfaces. By (3.6.7), we may conc1ude that 

3.7.2 Proposition (Dupin). The coordinate curves on a surface in a triply 
orthogonal system are lines of curvature. 

3.7.3 An example. Second order confocal surfaces. Let O < c < b < a and 
consider the equation 

.xli y2 Z2 
.p(p) = -- + -- + -- - 1 = O. c-p b-p a-p 

For {c < : : ~ 
b<p<a 

the solution set of this equation is a hyperboloid of one sheet {
an ellipsoid 

a hyperboloid of two sheets. 

Let Q = {(x, y, z) E 1R3 Ix> O, y > O, Z > O} be the positive quadrant. 
Let W = ]- 00, c[ x ]c, b[ x ]b, a[ c 1R3. 

Now we observe that for each (x, y, z) E Q there exists a unique triple 
(u, v, w) E W such that if p = u, (x, y, z) !ies on an ellipsoid, if p = v, (x, y, z) 
lies on a hyperboloid of one sheet, and if p = w, (x, y, z) !ies on a hyperboloid 
of two sheets. To see this we simply consider the equations .p(u) = .p(v) = 

.p(w) = O and solve for x, y, and z: 

x2(u, v, w) = (c - u)(c - v)(c - w)/(c - b)(c - a) 

y2(U, v, w) = (b - u)(b - v)(b - w)/(b - a)(b - c) 

Z2(U, v, w) = (a - u)(a - v)(a - w)/(a - b)(a - c). 
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Figure 3.8 Confocal surfaces, second order 

These formulae express x, y, and z uniquely as functions of (u, v, w) in the 
required domain W. Remember, x, y, and zare assumed to be strictly positive. 

Now consider the map F: W -+ Q given by 

(u, V, w)1-+ (x(u, v, w), y(u, v, w), zeu, v, w)). 

We c1aim that this is a triply orthogonal system. To see this we shall take 
a geometric approach and show that the surfaces .p(u), .p(v), and .p(w) are 
regular and mutually orthogonal. Since 

grad .p(v) = 2(x/(c - v), y/(b - v), ziCa - v)) #- (0,0, O) 

grad .p(w) = 2(x/(c - w), y/(b - w), ziCa - w)) #- (0,0, O) 

grad .p(u) = 2(x/(c - u), y/(b - u), ziCa - u)) #- (0,0, O), 

we conclude that, for example, 

grad .p(v)· grad .p(w) 

= 4(x2/(c - v)(c - w) + y2/(b - v)(b - w) + z2/(a - v)(a - w)) = O 

grad .p(V)2 = 4(u - v)(w - v)/(a - v)(b - v)(c - v) 

grad .p(W)2 = 4(u"- w)(v - w)/(a - w)(b - w)(c - w). 

Here we use the above equations for x2, y2, Z2. Regularity and orthogonality 
are established by these formulae. 

3.7.4 Definition. A surfacef: U -+ 1R3 is a ruled surface if every Uo EU has a 
neighborhood on which we may define a change of variables u = </>(s, t) 
so that 

J(s, t) = f o </>(s, t) = sX(t) + c(t). 
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Here X(t) is a vector field along a curve c(t) onf The curves t = constant 
are lines in IRa and are called generators of f A curve s = constant is 
called a directrix. 

If, in addition, the normal vector field fi(s, t) is a constant along 
generators, i.e., fi, = O, thenfis called developable. 

3.7.5 Proposidon. i) On a ruled surface, generators are asymptotic curves. 
Consequently, K ::; O. 

ii) A ruled surface, f, is developable <o> 

In (s, t )-parameters /.1 is a linear combination of/, and it <o> 

K = Oonf 

PROOF. i) In (s, t)-parameters,/., = O. Therefore hll = II(J.,/,) = -n,·/. = 

n·/., = O, and so K = -h~2/det(g'f) ::; O. 
ii) In (s, t)-parameters, we have shown in (i) thatn,·/. = O. Therefore iff(s, t) 

is a ruled surf ace, n, = O <o> n,·it = n,·/. = O <o> n,·it = O <;!> n '/'I = 
O <;!> h12 = O <o> K = - hi2/det(gtj) = O. O 

3.7.6 Examples of developable surfaces 

1. Tangential developables. Consider a space curve c: 1 -+ IRa with c(t), c(t) 
linearly independent for alI t. The surf ace f(s, t) = sc(t) + c(t), solO, 
is called the tangential developable of c. Since /.1 = c(t), it is a linear 
combination of/. = c(t) andit = sc(t) + c(t). 

Figure 3.9 Tangential developable 

2. Cylinder over a curve. Let c(t) be a plane curve and Xo # O a vector not 
lying in the plane ofthe curve. The surfacef(s, t) = sXo + c(t), a general­
ized cylinder, is a developable surf ace. 

3. Cone. The surface f(s, t) = sX(t) + x, solO, X(t) and X(t) linearly 
independent, is a cone with vertex x.1t is easily seen thatfis a developable 
surface. 

Developable surfaces enter into the general theory of surfaces via the 
folIowing construction. 
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3.7.7 PropositioD (Existence of an osculating developable). Let c(t) = 1 0 u(t) 
be a regular curve an a surlace f. Suppose Y(t) is a vector field along c(t) 
tangential ta f, satislying II(e(t), Y(t» = O, and linearly independent 01 
C(t). Then g(s, t) = sY(t) + c(t) is a developable surlace. 

PaOOF. Easy: g.1 = f, n·gsl = n·f = -li·Y = II(e, Y) = O. o 
Note that the surf ace I and the constructed developable surface g both 

contain the curve c, and at each point of c they have identical tangent planes. 
We will exploit these facts in a very important geometric construction 
(parallel translation) in (4.2.5) and (4.4.3). For the time being, we will be 
content to carry out the construction explicitly in a simple case. 

3.7.8 Example. On the sphere 

I(u, v) = (cos u cos v, cos u sin v, sin u), (u, v) E ]-1T/2, 1T/2[ x R, 

consider the latitude circIe c(t) = I(u(t), v(t», u(t) = a, v(t) = t/cos a, 
a E ]-1T/2, 1T/2[, t/cos a E ]-1T, 1T[. Itfollows thate(t) = I./cos a, so le(t)1 = 1. 
Let Y(t) = lu(a, t/cos a) = (- sin a cos v(t), - sin a cos v(t), cos a). In (3.3.7) 
we showed that II = - 1 and that/u·1. = O. Consequently, II(e(t), Y(t» = 0, 
which means g(s, t) = sY(t) + c(t) is an osculating developable surface. 

Figure 3.10 Osculating cone 

In the case a of. 0, g(s, t) is a circular cone ali of whose generators pass 
through the point (O, 0, l/sin a) when s = cot a. In the case a = 0, c(t) is 
the equator and g(s, t) is a right circular cylinder. 

We finish this section by looking more closely at surfaces with Gauss 
curvature equal to zero. We have already shown in (3.7.5) that, in the class 
of ruled surfaces, developable surfaces are precisely those with K = O. The 
question remains: are there surfaces with K = ° which are not ruled and 
hence not developable? 

The answer is given locally by the following theorem. 
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3.7.9 Theorem. Asur/ace /: U ~ 1R3 without planar points is developable if and 
only if K = O. 

Remark. Recall that/is planar at Uo E U if IIuo == O. The theorem fails to be 
true if the hypothesis of" no planar points" is dropped. An explicit counter­
example is constructed in (3.9.4). 

PROOF. If/is developable, we know by (3.7.5) that K = O. Conversely, let 
K = O. The absence of planar points allows us to assert the existence of 
unique (up to sign) mutually orthogonal principal curvature vector fields in 
a neighborhood of each point Uo (see (3.5.3». Using (3.6.6), we may introduce 
new coordinates (v1, v2) on a neighborhood Uo of Uo such that the v1-coordi­
nate curves are integral curves of the principal curvature vector field corre­
sponding to the principal curvature Kl = O. Without loss of generality, we 
may assume that (O, O) t-+ Uo. 

We change variables once more. Let (s, t) ~ (v1(s), t), where v1(s) is the 
inverse ofthe arc-length function along the curve/(vl, O). Clearly, ov1(s)/ os #- O. 
Therefore 1 = / o </> is a new coordinatization defined in a neighborhood of 
(O, O) with </>(0, O) = O. In this new coordinatization, bothl(s, O) andl(O, t) 
are parameterized by arc length. The vector /.(0, O) is a principal direction 
corresponding to K1 = O. 

Agreeing to write /(s, t) instead of /(s, t), let us show that /.. = O. First 
observe that n. = -K1/. = O, ni = -Kdl #- O,/'·j; = O, and/'·nl = O. This 
implies that /..' n = - /.. n. = O, and therefore /.. is purely tangential. Now 

/. •. j; =. ( - :J/. .. '" = (:J/..n'l = O, 

so/.. is a multiple of/.. But/.2(s, O) = 1 and/.2(s, t),1 = 2/"/al = -2/..·j; = O, 
which implies /.2(S, t) = 1. Differentiating this equation, we see /. •. /. = O. 
Therefore /.. = O. 

This means that the s-parameter curves are straight lines, parameterized 
by arc length. 

Letting c(t) = /(0, t), we see that /(s, t) = sX(t) + c(t), where X(t) = 
/.(0, t). Thus/(s, t) is a ruled surface with n. = O, i.e., a developable surface. O 

Remark. Even though we have shown that Hat surfaces without planar points 
are developable surfaces, we still have not completely described how a piece 
of surface with K = O can look in 1R3. Even without admitting planar points, 
one can patch together developable surfaces in a variety of ways, cf. Figure 
3.11. 

The following proposition shows that developable surfaces look basically 
like those described in (3.7.6) 

3.7.10 Proposition. Suppose/: U 4-1R3 is a developable sur/ace without planar 
points. Then on an open dense set Ac: U,/is either a cylinder, a cone, or a 
tangential developable. 
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3 Surfaces: Local Theory 

Figure 3.11 Some flat surfaces (Adapted from Manfredo P. do Carmo, Differential Geometry 
of Curoes and Surfaces, Prentice-Hall, Inc., 1976, p. 409.) 

PROOF. 1. By (3.7.9) we may assume thatf can be written locally asf(s, t) = 
sX(t) + c(t) for (s, t) within some neighborhood U = I x J of (O, O), 
withls·1t = O,n.·1t = n ·1s1 = O. Therefore X· (sX + c) = O, c(t) = 1t(0, t) of. O, 
Is = X of. O, and n·X = O. The tangent space T(s.t)fis spanned by X(t) 
and c(t), X(t)· c(t) = O. Since X(t) E T(s.ofand X· X = O, X(t) = r(t)c(t) 
for some real-valued differentiable function r(t). 

2. Let tEl. Let 10 be the set of t E IR satisfying one ofthe following properties. 
a) There exists a neighborhood U(to) of to on which r(t) = O. 
b) There exists a neighborhood U(to) of to on which r(t) = constant of. O. 
c) There exists a neighborhood U(to) of to on which r(t) ,;, O and ;(t) ,;, O. 
By definition, 10 c I is open. A moment's reftection will show that 10 is 
also a dense subset of 1. In fact 10 is the union of the sets where r(t) of. O 
and ;(t) of. O with the interior points of the set where ;(t) = O. Vje wiJl 
now show that the cases (a), (b), and (c) correspond to a cylinder, a cone, 
and a tangential developable, respectively. 

3. Suppose to E 10 satisfies (a). Then X(t) = Xo = constant, so f(s, t) = 

sXo + c(t), a cylinder. Suppose to E 10 satisfies (b). Then X(t) - X(to) = 
ro(c(t) - c(to». Therefore f(s, t) = «s + 1)/ro)X(t) + (c(to) - X(to)/ro), 
a cone with vertex (c(to) - X{to)fro). Suppose to E 10 satisfies (c). Let 
c(t) = - X(t)/r(t) + c(t). Then c = ; X/r 2, so e is linearly independent 
from g since X and X are orthogonal. We may write c(t) = c(t) + 
X(t)/r(t) = c(t) + r(t)e(t)/;(t). If we let & = &(s, t) = sr 2(t)/;(t) + 
r(t)/;(t), we may write f(s, t) = /(&, t) = &e(t) + c(t), a tangential 
developable. O 

Remark. It is still not dear from (3.7.10) whether, for example, the local 
coordinates expressing f as a cone, cylinder, or tangential developable, can 
be extended along the generators (i.e., in the s-direction) to the boundary of! 

There is a strong global result conceming surfaces with K == O.lff: U -+ 1R3 
is assumed to be geodesically complete (see (6.4.4) for the definition), then 
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3.8 The Gauss and Codazzi-Mainardi Equations 

any surface with K == O must be a generalized cylinder.2 This result was fust 
proved by Pogorelov.3 Note that it is not necessary to assume thatfhas no 
planar points. 

3.8 The Gauss aod Codazzi-Maioardi Equatioos 

Before we begin this section let us agree to abbreviate our notation for partial 

derivatives. We will write "'" or occasionally "'," for o"'/ou' = "'u" When 
higher order partial derivatives occur, we will treat them in the same fashion, 
writing "'ik for "'u'u', etc. The matrices (g'k(U)) and (h'k(U)) will denote matrix 
representations of the first and second fundamental forms with respect to the 
standard basis {e.} of T uIR2 and {la of T uf. The inverse of (glJ) will be denoted 
by (g'l). 

3.8.1 Theorem 

(*) J.k(U) = L rlk(u)J.(u) + h'k(u)n(u), 
I 

where 

(**) 

3.8.2 DefiDition. The six functions flk(U) = rL,(u) in (*) are called the 
ChristojJel symbols of the second kind. The functions 

r /ciI = ·l(g'M + glk., - g/cl,/) 

are called the ChristojJel symbols of the first kind. 

Remark. The expressions (*) and (**) expressJ.k and n, in terms ofthe Gauss 
frame (/1./2' n). Moreover, the coefficients can be expressed in terms of the 

g'k' h'k' and g'k,l' 

PROOF. 1. Since (/1(U)./2(U), n(u)) span Tf (u)1R3, we may write J.k = fk' = 
LI flk..h + a,~, where the coefficients are to be determined. By taking the 

• A gelleralized cylillder ill Ra is a surface, S, that may be described as follows: there 
exists a curve c(t), c: R --o-JRa, and a fixed direction 11 such that I(s, t) = c(t) + SIl, 

1: e" --o- Ra is a global parameterization of S. 

• Pogorelov, A. W. Extension of the theorem of Gauss on the spherical image of surfaces 
of bounded extrinsic curvature. Dokl. Akad. Nauk, 111, 945-947 (1956) (Russian). 

Other proofs of this theorem were given by P. Hartman and L. Nirenberg (1959) and 
J. J. Stoker (1969). A quite simple proof with a Iist of references on the topic may be 
found in Massey, W. S. Surfaces of Gaussian curvature zero in Euclidean 3-space. 
Tohoku Math. J. (2), 14,73-74 (1962). 
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inner product with n, we see that h'k = a'k' By taking the inner product 
with ft, we get 

and therefore 

r!k = 2: g''!tk·ft = ni' 
I 

Furthermore, 

and cycIical permutation of the indices yields: 

(fJ) gkl.j = 2: rkjgll + 2: rljg,k 
I I 

(y) gjk.' = 2: r},glk + 2: rklg". 
I I 

The equations in (**) are equivalent to (a) - (f3) + (y). 
2. The expression for n, = nu' follows from (3.5.5). o 

3.8.3 Theorem (Integrability conditions). The equationsfjjk = hkj and n'j = nil 
are equivalent to the following relations between glk, h1k, g'k.l, h1k,h and rt,l' 

i) rl'},k - fl'l.:.j + 2: (r!jf?!c - r!krU) = 2: (hjjhkl - h'kh,,)g'm. 
I 1 

ii) 2: r!jh'k - 2: r!khlj + hjj,k - h'k,j = O. 
I I 

The equations (i) are called the Gauss equations, and the equations (ii) the 
Codazzi-M ainardi equations. 

Remark. The Gauss equations corne from equating ofthe coefficients offm in 
the equationShjk = hki' The Codazzi-Mainardi equations carne from equating 
the coefficients of n in the equations};fk = hkj' Equating the coefficients offm 
and n in njj = nil gives another derivation ofthe Codazzi-Mainardi equations. 

PROOF. 1. Let hfk = Lm Al'}dm + Bjjkn. Using (3.8.1) (*), we rnay express 
Al'}k as 

Since Al'}k = AI'I.:t> interchanging j and k and subtracting proves (i). 
2. Another application of (3.8.1) (*) enables us to write 

B'ik = 2: r!fhlk + hlj,k' 
I 
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3.8 The Gauss and Codazzi-Mainardi Equations 

Since BIj" = BI"i> this proves (ii). 
3. Let 

Using (**) to obtain an expression for r~f and also the fact that 

L: g':}"gkl = - L: gm"g"I,f 
" le 

(obtained by differentiating L" gm"g"l = Sr) enables us to conclude that 
CI~ = q. This is equivalent to (ii). O 

3.8.4 DefinitioD. The curva ture tensor of f is the collection of functions 
~/f" = Lm glmRff", 1 ~ i,j, k, I ~ 2, where 

Rffk : = rl'},,, - r7k,f + L: (flfr~ - fl"rm, 
I 

1 ~ i, j, k, m ~ 2. 

3.8.5 Lemma 

RUf" = hlfh"l - hlkhfl' 

Consequently, RUfk = - RU"f = - RUf" = RfkU and the curvature tensor is 
totally determined by R1212 = - R2112 = R2121 = - R1221 = det(hlj); ali 
the other RUfk are equal to zero. 

PROOF. An immediate consequence of (3.8.3, i). o 

The following theorem will show that the curvature tensor has a geometric 
meaning in the sense that it is the coordinate expression of a multilinear map 
from T uf x T uf x T uf x T uf into IR which is independent of the choice of 
coordinates. In contrast to this, the Christoffel symbols rt are not coordinate 
independent. 

3.8.6 Theorem. Let f: U ~ IRa be a surface. Let 

X= L:n;, 
I 

Y = L: 7Jlj;, 
1 

be four tangential vector fields. Then the multilinear form 

R:TJx Tufx TJx TJ~IR 

given by R(X, Y, Z, W) = LI,I,f,k RUf"e'7J/~fwk has the following properties: 
i) R(X, Y,Z, W) = -R(Y,X,Z, W) = R(Y,X, W,Z) = R(Z, W, X, Y) 

R(f;,j;,ji.Jk) = RUfk' 
ii) R is linear in each variable. 

iii) Let c{>: V ~ U be a change of variables and RUfk be the curvature tensor 
associated to 1 = foc{>. Then R(X, Y, Z, W) = R(X, Y, Z, W). 
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PROOF. 1. (i) and (ii) follow directly from (3.8.5) and the definition of R. 
2. Writing </>(v) = (U1(V1, v2), u2(v\ v2)), we may write R. in terms of R as 

follows: 

(*) 5 ~ l) l' l' i' k' h l' "1'/" 1 ~Ifk = ~'1'I'i'k,UI UI Ui Uk , W ere UI = uU uV, etc. 
1'1'1' ' 

This expression may be derived from (3.8.5) by plugging in the expres­
sion of filJ in terms of hli, (3.3.6): 

fi 'h l' i' li = ± L. I'I'UI Ui • 
1'1' 

If X = ~I g''j;, = ~I ~" = ~I,I' glul'j;" etc., then (*) implies that 

, l) 1'1-1 Fi -k 'R l:\' I'fl' k' L. ~'1lJkf; 1j ~ w = L. l'I'l'k'f; 1j .. w • 
1,1,J,k 1',I',J',k' 

o 

3.8.7 Theorema Egregium (Gauss).' The Gauss curvature K(u) can be com­
puted from the first fundamental form and its first and second partial 
derivatives. More precisely, 

K(u) - R1212(U) 
- det(glk(U))' 

PROOF. R1212 is defined in terms of (glJ) and its first and second partials by 
(3.8.4). The formula for K is (3.5.5). Now use (3.8.5). O 

The meaning of this "celebrated theorem" of Gauss will be examined in 
the next chapters where we will explore the intrinsic theory of surfaces. 
Suffice it to say now that Gauss curva ture, defined in terms of the second 
fundamental form (which is dependent on how the surf ace sits in space), can 
be computed from a knowledge of the first fundamental form and its partial 
derivatives. The latter quantities can be computed, in principle, by a resident 
of the surface, without knowledge of or reference to the shape of the surface 
in iij3. 

To end this chapter, we will prove an analogue of the existence and 
uniqueness theorem for curves in iijn, (1.3.5) and (1.3.6). 

3.8.8 Theorefil (Fundamental theorem of surf ace theory). Let U be an open, 
simply-connected subset of iij2. Suppose Iv, IIv are quadratic forms on T viij2, 

U E U, whose coefficients (glk(U)) and (htk(u)) are differentiable functions of u. 
lf Iv is positive definite cind the Gauss and Codazzi-Mainardi equations 
(3.8.3) are satisfied, then: 
i) There exists a surface f: U -+ iij3 whose first and second fundamental 

forms are Iv and IIv. 

• Gauss, C. F. Disquisitiones generales circas superficies curvas. Commentationes 
societatis regiae scientiarum Gottingensis recentiores, 6, Gottingen, 1828. 

64 



3.8 The Gauss and Codazzi-Mainardi Equations 

ii) Any two surfaces f and! defined on U which have the same first and 
secondfundamentalform differ by an isometry: 

! = B of, Ban isometry oflR3• 

PROOF. 1. The existence of f. The structural equations of (3.8.1) may be 
considered as a system of linear partial differential equations for the three 
1R3-valued functionsf1(u).!2(u), n(u). The integrability conditions.h.lk = .h.kl' 
n',i = ni,' are satisfted (this is the content of the Gauss and Codazzi equa­
tions). By a well-known theorem of differential equations (see Flanders [B8], 
pp. 92-101, or Spivak [AI5], VoI. 1, ch. 6), there exists a unique solution to 
this system satisfying any given initial conditions j;(uo) = X" n(uo) = N, 
where X"Xk = g'k(UO), X,.N = 0, jNj = 1, and (Xl' X2 , N) is positively 
oriented. 

Choose Xo E 1R3, and let 

f(u) = fU L: j;(u) du' + Xo. 
Uo , 

Since f1,2 = f2,l> this integral is independent of path and therefore f(u) is 
well deftned. We wish to show thatfis the desired surface. Toward that end, 
consider the functions j;·Jj(u), n'Jj(u), n'n(u). Because j; and n satisfy the 
differential equations (3.8.1), we have 

(kJjh = L: rlk(J;·Jj) + L: r}k(J;·j;) + h'k(n·Jj) + hik(n·j;), 
I I 

(n·Jj)" = - L: hllg'k(kJj) + L: rli(J;·n) + h'l (n·n), 
k,l I 

It is easily seen that these differential equations would be satisfied if 
j;.Jj = g'i> n·Jj = 0, n· n = 1. Our functions agree with these functions at 
u = uo, and therefore must be equal to these functions on U. Fromj; 'Jj = gii 
we may conclude thatf1.!2 are linearly independent, which implies thatfis 
indeed a surface. Furthermore, det(f1.!2' n) > ° when u = uo, and since it 
never equals zero, it must be positive everywhere on U. The second funda­
mental form offis determined by - n, fk' Using the differential equations (*) 
of (3.8.1) for which n andfk are solutions, we see that -n, fk = h'k' Therefore 
fis the desired surface. 

2, Uniqueness off up to isometry. Supposefand!are two solutions deter­
mined by the initial conditions Xo, Xl> X2 , N and xo, )(10 )(2' N, respectively. 
Since X"Xk = )(")(k' X"N = )("N = 0, N·N = N·N = 1, there exists a 
unique isometry B such that 

Since both (Xl' X2 , N) and ()(1o )(2, N) are positively oriented, B is a 
congruence. 
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Since dBj;, dBn andJ:, fi satisfy the same system of differential equations 
with the same initial conditions at u = uo, it follows that dBj; = J:. Therefore 
Bf(u) = Bf(uo) + /(u) - /(uo) = /(u). O 

3.9 Exercises and Some Further Results 

3.9.1 Surfaces of revolution with constant Gauss curvature. Consider a surface of 
revolution given as in (3.3.7) by 
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f(u, v) = (h(u) cos v, h(u) sin v, k(u». 

Assume that h'2 + k'2 = 1 and hence that k'k' = -h'h'. 
Prove:gn = 1,gl2 = O,g22 = h2,hn = -k'h* + h'k",hl2 = O,h22 = hk'. 
Therefore 

The requirement that f have constant Gauss curvature Ko means that h 
must satisfy 

Conversely, a function h(u) satisfying this equation with h'2 :s 1 will 
enable us to construct a surface of constant Gauss curvature Ko. 

Case (i). Ko = O. Without loss of generality, h(u) = au + b, O :S a :S 1. 
If a = O, the surface ofrevolution is a right-circular cylinder. If O < a < 1, 
the surface is a circular cone. If a = 1, the generated surface is a piece of a 
plane. 

k k k 

h 

(a) (b) (e) 

Figure 3.12 (a) Sphere; (b) spindle; (c) bead 

Case (ii). Ko = 1. Without loss of generality, h(u) = a cos u, where 

a > O and a2 sin2 u :S 1. This implies that k(u) = f: VI - a2 sin" t dt. 

When a = 1 we get a sphere, when O < a < 1 a spindle-Iike surface, and 
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when a > 1 the surface looks Iike a column of water about to break into 
beads. 

Case (iii). Ko = -1. Then we may write h(u) = aeU + be- u, requiring 
(aeU - be- U)2 :s; 1. Consider the case where b = 1, a = O. Then 

h(u) = r u, u ~ O. 

The curve (h(u), k(u)) in the (x, z) plane is the tractrix. It is characterized 
by the fact that distance, along the tangent line to (h(u), k(u)), from 
(h(u), k(u)) to the z-axis is always equal to 1. The surface of revolution 
is called the pseudosphere. It was an important example in the early history 
of non-Euclidean geometry. 

If ab # O, then it can be shown that a = - b = c/2 or a = b = c/2. 
In the first case the surface of rotation looks something Iike cones stacked 
point to point and base to base. In the second case, the surface looks like 
a horizontally fiuted column (see Figure 3.13). 

(al (bl (el 

Figure 3.13 (a) The pseudosphere; (b) a pile of cones; (c) horizontally-fiuted 
column 

3.9.2 Caustic surfaces.5 Suppose f: U -+ D;l3 is a surface whose principal curva­
tures Kl and K2 are nonzero and unequal. Let (u1, u2) be principal curvature 
coordinates. 

Prove: The functions b,(u) = f(u) + n(u)/Kj(U), i = 1,2, are surfaces if 
and only if Kl.lK2.2 # O. These surfaces are called the caustic surfaces of f 

If Kl.lK2.2 = O,fis called a canal surf ace. If Kl.l = O, then the u1-parameter 
curves lie on circles of radius I/Kl' In this case, the surface f may be 
represented as the boundary of the region swept out by a one-parameter 
family of spheres. 

• See Strubecker [AI5], VoI. III. 
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Figure 3.14 Caustic surfaces 

3.9.3 Weingarten surfaces.6 A surfacef: U -+ 1R3 is called a Weingarten surface, or 
W-surface, provided there exists a function ep: U -+ IR with dep #O O such 
that the principal curvatures Kl(U) ~ K2(U) satisfy CP{Kl(U), K2(U» = O. 
For example, surfaces with H = constant or K = constant are W-surfaces. 

Prove: i) On a W-surface, Kl.1K2.2 - Kl.2K2.1 = O. 
ii) The ellipsoid of revolution, 

f(u, v) = (a·cos u·cos v, a·cos u·sin v, b·sin u) 

with O < a :S b, is a W-surface satisfying Kl = CK2.5 
iii) A W-surface is not a canal surface if and only if its caustic 

surfaces consist of asymptotic curves. 

3.9.4 A surf ace with K = O which is not a developable surface! We will show 
the existence of a surface f: IR x ]-1, 1[-+ 1R3 whose first and second 

• There is a wealth of interesting results about Weingarten surfaces, due to Hilbert, 
Chem, Hopf, Voss, and others. See, for example. Hopf, H. Ober F1ăchen mit einer 
Relation zwischen der Hauptkriimmungen. Math. Nachr., 4, 232-249 (1951). See also 
Hopf [A9] and [AlO]. 

7 This example is due to E. Heintze 
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3.9 Exercises and Some Further Results 

fundamental forms satisfy 

(g'k) = (ll'k) 

where 

1 
P11 = (1 ± v)' 

_ U 

P12 = + (1 ± V)2' 

and where the sign isthe upper when u ~ O and the lower when u ::; O. 
We will then show that this surface has zero Gauss curvature but is 
not a developa bie surface. 
1. The h'k are differentiable. 
2. h 11h 22 - h~2 = O. Therefore K = O. 
3. h 11 •2 = h 12 .1> h 22 •1 = 1112•2 , 

4. From (2) and (3) one can easily prove that the first and second 
fundamental forms satisfy the Gauss and Codazzi-Mainardi equations. 
By the fundamental theorem of surface theory (3.8.8), there exists a 
surface I with the required first and second fundamental forms. 
Moreover, lis unique up to an isometry of IRa. 

5. The second fundamental form has been chosen so that the inverse 
image of the genera tors of I in the set u < O are the straight lines 
through (O, 1). In the set u > O, they are the straight lines through 
(O, -1). The slope of these straight lines blows up as one moves through 
(O, O) on the u-axis. 

6. The surface/is not a developable surface near (O, O): there is no change 
of variables cp: V ->- V' C V, (O, O) E V', such that 1 0 cp(s, t) = 
sX(t) + c(t). 

PROOF. Assume that such a cp exists. Without loss of generality, we may 
assume </>(0, O) = (O, O). Consider the Iines parallel to the t-axis in V. They 
must be mapped into the inverse images of the generators of I which are 
described in the previous section. Since each of these lines crosses the u-axis 
exactly once, the inverse image under cp of the u-axis may be written in the 
form (s, {3(s». If p: 1R2 ->-1R2 is the map (a, T) ->- (a, {3(a) + T), the map 
~ = cp o p[p -1( V) is differentiable and ~(a, O) = (a(a), O) for some differen­
tiable function a(a). This follows from the definition of p. Therefore ~(a, T) 
= (a(a), O) + Y(T)([a(a)[, 1), where Y(T) is a differentiable function with 
y(O) = O. The function ~(a, T) must have this form because cp maps 
parallels to the T-axis into the inverse images of the generators. 

But o~l/oa = a'(a) ± Y(T)a'(a), the sign depending on the sign of a(a). 
Since aCO) = O and a'(O) "# O, this function cannot be differentiable at any 
point where Y(T) "# O. Contradiction. 

3.9.5 Show that the ellipsoid of (3.7.3) with p = uo = constant < c has exactly 
four umbilics. In fact the umbilics are precisely the points x(uo, v, w), 
y(uo, v, w), z(uo, v, w) on the ellipsoid where v = w = b. At these points, 
the lines of curvature are degenerate and grad .p(v), grad .p(w) are not 
defined. 
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3 Surfaces: Local Theory 

Figure 3.15 Lines of curvature on an ellipsoid. Umbilics marked as dots 

3.9.6 A surface f: U ---"; 1R3 is called a minimal surface if H(u) == O. The reason 
for this name is the fact that these are precisely the surfaces for which the 
tirst variation of area vanishes. What does this mean? 

Consider a family f'(u) = f(u) + Ea(u)n(u) of surfaces neighboring f 
Here E lies in an interval containing O and a: U ---"; IR is a smooth function. 
For sufficiently small E, f' is a regular surface and we may detine its tirst 
fundamental form. Up to terms of second order and higher in E, g,"" = 
g'k - 2Eah'k' and the area element g< = det(g[",) = g(l - E4aH). Therefore 
(ovg./oE)I<=o = -2aH. The only way this can equal zero for ali functions 
a is for H to be identically zero. In (5.6) integration on a surface will be 

discussed and the area of a surfacef: U ____ 1R3 will be detined as fu Vg du' du2 • 

Using standard techniques of advanced calculus (namely differentiation 
under the integral sign and the divergence theorem), we may use the above 
calculation to show that a surface is minimal (H == O) if and only if given 
any variation f«u) = f(u) + Ea(u)n(u) of f the area function A(E) = 
fu vi< du' du2 = .. area of the surface f''' has a critical point at E = O. 
It is easy to see that the area of f cannot be a maximum among nearby 
surfaces (introducing a pimple on the surface will increase the areal. 
Therefore f must be either a local minimum or some sort of infiection 
point for the area function. 8 

3.9.7 Consider the surface of revolution f generated by the catenary (h(u), O, 
k(u», where 

( k(U) - b) 
h(u) = a cosh --a- (see (3.3.7». 

This surface is known as the catenoid. 
Prove that the catenoid is the only surface of revolution which is also a 

minimal surface. 

3.9.8 One of the most interesting results in the global theory of minimal surfaces 
is Bernstein's theorem: If f(u, v) = (u, v, z(u, v» is a minimal surface 
detined for ali (u, v) E 1R2, z must be a linear function. In other words, if a 
minimal surface is the graph of a function detined on the whole plane, 
then it is a plane. 

8 See Strubecker [AI5], VoI. III, p. 222 ff., or the references in footnote 10. 
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3.9 Exercises and Some Further Results 

Figure 3.16 Catenoid 

The proof is not elementary, but it is interesting. It utilizes some tech­
niques from complex analysis (see (5.7.4».9 

3.9.9 The problem of Plateau.IO Given a simple, cIosed, rectitiable curve c in 1R3, 
tind a minimal surface f: D --->- 1R3 spanning c, Le., if D is the open unit 
disk, fj its cIosure and SI = a fj its boundary, does there always exist a 
continuous function 1: fj --->- 1R3 such that f: = fi D is a minimal surface 
and fi SI: SI --->- c is a homeomorphism, Le., a continuous, one-to-one 
mapping onto c with a continuous inverse? 

In 1930, T. Rado and J. Douglas independentIy answered this question in 
the affirmative. Their solution was not only a minimal surface, but also had 
minimum possible area among aII surfacesf: D --->- 1R3 which span the given 
curve c. However, both Rado and Douglas had to admit surfaces with 
possible isolated singularities. A singularity of a mapping f: D --->- IRa is a 
point u E D where dfu has rank < 2. An isolated singularity is a singularity 
which sits in some neighborhood of aII whose points, except u, are not 
singularities. Whether singularities actually occurred in the Douglas 
solution to the Plateau problem was an open problem for forty years. 
In 1970, Osserman was able to show that singularities did not occur in 
the cIassical (Douglas) solution to the Plateau problem.ll 

The behavior of 1 at the boundary of fj was, up until recentIy, not well 
understood. Hildebrandt 12 was able to show that if c is differentiable, then 

• There are many proofs of Bernstein's theorem. One of the shortest is due to Nitsche, 
J. C. C. Elementary proof of Bernstein's theorem on minimal surfaces. Ann. of Math., 66, 
543-544 (1957). For another treatment see Chern [A5). 

10 For a detailed presentation of the solution to the Plateau problem, see Courant, R. 
Dirichlet's Problem, Conformal Mappings and Minimal Surfaces. New York: Interscience 
Publ., 1950. An excellent introduction to the theory of minimal surfaces in IRn is Osser­
man, R. A Survey of Minimal Surfaces. New York: Van Nostrand Reinhold, 1969. A 
compendium of the current knowledge about minimal surfaces can be found in Nitsche, 
J. C. C. Vorlesungen (Jber Minimalflăche, Springer-Verlag, 1975. 

11 Osserman, R. A proof of regularity everywhere of the c1assical solution to Plateau's 
problem. Ann. of Math., 91, 550-569 (1970). 
12 Hildebrandt, S. Boundary behavior of minimal surfaces. Arch. Rational Mech. Anal., 
35, 47-82 (1969). 
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3 Surfaces: Local Theory 

/: i5 -+ R3, the c1assical solution to the Plateau problem, is differentiable. 
The dependence of/ on c is still an open problem. For example, how many 
minimal surfaces span a given curve c? What are necessary and sufficient 
conditions on c which insure the existence of a unique solution to the 
Plateau problem? What conditions on c will insure the existence of an 
embedded solution, i.e., a solution given by a one-to-one mapping f (see 
Gulliver and Spruck 13). 

One of the ways in which the Plateau problem has been generalized is 
to seek surfaces of constant mean curvature, H == IX = const, spanning a 
given curve c. Even more generally, one might want the mean curvature H 
to be specified as a function of position in R3. One seeks a surface f: D -+ R3 
spanning c such that H(u) = h(f(u)), where h is a real-valued function 
defined on R3. These problems have physical interpretations just as the 
Plateau problem does. Significant contributions to this subject have been 
made by Heinz, Hildebrandt, Gulliver, Spruck, and others.14 

13 Gulliver, R., and Spruck, J. On embedded minimal surfaces. Annals of Math., 103 
(1976), 331-347. 

14 Heinz, E. 'Ober die Existenz einer Flăche konstanter mittlerer KrUmmung bei vor­
gegebener Berandung. Math. Ann., 127, 258-287 (1954). A useful survey article is 
Hildebrandt, S. Some recent contributions to Plateau's problem, in Dijferentialgeometrie 
im Grossen, W. Klingenberg, ed. Mannheim: Bibl. Inst., 1971. 
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Intrinsic Geometry of Surfaces: 4 
Local Theory 

We are now going to concentrate on the properties of a surface f: U -+ 1R3 
which are intrinsic in the sense that they are definable in terms of tangent 
vectors to the surf ace and the first fundamental form and its derivatives. For 
example, the length of a vector or the length of a curve on a surface are 
intrinsic quantities. The Gauss curvature and the curvature tensor are also 
intrinsic since they may be defined in terms of the first fundamental form and 
its derivatives. In contrast, the second fundamental form is not intrinsic. 
It requires discussion of normal vector fields and cannot, in any case, be 
reduced to the first fundamental form. Also, principal curvatures are not 
intrinsic, even though their product, the Gauss curvature, is an intrinsic 
quantity. 

Our point of view will be to use the map f: U -+ 1R3 to define the first 
fundamental form as an inner product on T.1R2, u EU. We have done 
this previously, but now want to emphasize it. Given X = L~=l ai ofloul, 
Y = LJ=l b! oflou! E T.1R2, g.(X, Y) = L~aib! of/oul.oflou!. The first funda­
mental form in this description is an inner product defined on each T.1R2. As 
such, we will ultimately want to consider it as given and avoid further reference 
to the mappingf. In fact, this will be the point ofview ofthe next chapter, in 
which Riemannian manifolds will be considered without reference to any 
immersion. For now, we will hold on to the picture off: U -+ 1R3 as a surface 
sitting in Euclidean three-space, using it as a transitional object. 

The inner product g. on U c 1R2 is not, in general, the standard 
inner product on 1R2. One theme of this chapter will be to generalize 
familiar properties of the standard inner product on 1R2 to new inner prod­
ucts g.. Of particular interest will be those properties relating to vector 
differentiation. 
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4 Intrinsic Geometry of Surfaces: Local Theory 

4.1 Vector Fields and Covariant Differentiation 

The natural class of vector fields in the study of intrinsic differential geometry 
of a surface f are the tangential vector fields. These correspond to velocity 
vectors of paths on f( U). Given a curve u: 1 -'>- U, it is clear that f o u is a 
curve on f(U). An application of the implicit function theorem, (0.5.2), 
establishes the converse. Namely, given a regular curve c(t) in 1R3 such that 
c(t) C f(U) for all t, then for any to there exists a map u: 1 -'>- U, defined on a 
neighborhood of to, such thatf o u = c. As a consequence, all tangent vectors 
to curves onfmay be realized as the image under df of tangent vectors to U. 

Even if X is a tangential vector field, oX/ou' may not be tangential. This 
partially motivates the next definition. 

4.1.1 Definition. Let f: U -'>- 1R3 be a surface, c = f ou: 1 -'>-1R3 a curve 
on J, and X: 1 -'>- 1R3 a tangential vect()r field along c. For u E U, let 
pru : Tf (u)1R3 -'>- Tufbe orthogonal projection in the direction ofthe normal 
vector n(u). For tEl, the covariant derivative (of X at t), denoted by 
V X(t)/dt, is the vector field prU(t) o (dX/dt)(t). 

4.1.2 The covariant derivative V X(t)/dt is a tangential vector field by 
definition. Since dX(t)/dt and prU(t) are independent of the choice of coordi­
nates, so is V X(t)/dt. In terms of a coordinate system (u\ u2) on U, we may 
write X(t) = 2k gk(t)fuk o u(t). Then using (3.8.1 *), 

ddX (t) = (L: gkfuk + L: gtui(L: rtfuk + hiin)) o u(t). 
t k '.i k 

It follows immediately that 

(*) VdX (t) = L: (gk + L: gt(t)ui(t)rt o U(t»)fu k o u(t). 
t k U 

Conclusion: (V X/dt)(t) is an intrinsic geometric quantity whose expression 
in local coordinates involves the Christoffel symbols. 

4.1.3 Lemma. If q,: V -'>- U is a change of variables, let ni and î'fi be the 
Christoffel symbols associated with f and J = f o q" respectively. They are 
related by the following equation: 

- 02Uk ov' ou' OUi ov' k 

r~. = L: ovP ov. ouk + L: ovP ov.ouk r'i' 
k '.i.k 

PROOF. Let q, be given in coordinates by u' = u'(v). Then 

X = L: N'v' = L e'fuk , 
, k 

lk _ " lr ouk '1 _ " .• OUl 
so ~ - L., <;; "" u - L., v ".' 

r uV • uV 
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4.1 Vector Fields and Covariant Differentiation 

Using (*), 

V X(t) = L [L gT Ouk + L ~P 02Uk v' 
dt k T ovT P.' ovP ov' 

" lp OUl., Oui r k ] [" ov' 2' ] + L.. s- ovP v ov' Ii L.. OukJV' 
<.J.r,'1 S 

Since this identity must hold for aII xP and v', the desired result follows. D 

4.1.4 Proposition. Let X(t) be two tangential vector fields along c(t) = f o u(t). 
Then 

~ g(X(t), Y(t» = g(V ~~t), Y(t») + g( X(t), V~~t)). 

PROOF. Using the product rule for differentiation, 

d(X(t)·Y(t» = dX(t).Y(t) + X(t).dY(t). 
dt dt dt 

But for Y E T J, Z· Y = (pr Z)· Y, where pr is projection onto T,J. The 
proposition now follows from the definition of covariant differentiation. D 

Remark. If f(ul> U2) = (Ul> u2, O), the surface represented is a piece of the 
Hat plane. Thus rt == 0, g(X, Y) = X·Y, and (*) tells us that in this case 
covariant differentiation is ordinary differentiation. 

4.1.5 Let X be a tangential vector field along/: U -+ 1R3. In coordinates we 
may write X(u) = 2.kgfu>fuk(u). If c(t) = 1 0 u(t) is any curve on/through uo, 
u(O) = Uo, we may restrict Xto u(t) and define (V X o u(t»Jdt, which will have 
a coordinate representation given by (*) in (4.1.2): 

V X; u(O) = L (~g; (uo) + L gl(Uo)rrlUo»)Ui(O)/uk(Uo), 
t i.k uU I 

Notice that the dependence of (V X o u)Jdt on u(t) involves only the point Uo 
and the value of the derivatives ui(O). Consequently, if Y is any tangent vector, 
Y E Tu.f, Y = 2.; 7Jiful(uO)' and c(t) = 1 0 u(t) is any curve with u(O) = uo, 
c(O) = Y, then (V X o u(O»Jdt will be a vector whose value is independent of 
the choice ofthe curve c. We already know by (4.1.2) that (V X o u(O»jdt does 
not depend upon the choice of coordinates on U. Therefore (V X o u(O»jdt 
depends only on the value of Y E T u.J, and from the form of (*) the depend­
ence is linear. 

These observations are summarized below. 

75 
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Lemma. Let X be a tangential vector field on a surface f: U -+ 1R3• Then for 
every Uo E U we may define a linear map 

VX:Tuof-+Tuof 

asfollows: Jf Y = L 7J1ft(uo), choose a curve c(t) = f o u(t) with ul(O) = Ub, 
ul(O) = "II (for example, let ul(t) = Ub + t7J'). Then V X(Y) = (V X o u(O))jdt. 

The map V X is invariantly defined. In particular, V X(to)/dt = V X(c(to)). 

4.1.6 Definition. Let X(u) be a tangential vector field onf. 
i) V X is called the covariant differential of x. V X(Y) is the covariant 

derivative of X in the direction Y. 
ii) The function u f-+ trace V X(u) from U to IR is called the divergence 

of X, written div X(u). 

4.1.7 Observation. Using (4.1.5), we may express div X in coordinates: 

div X = 2: ~e: + 2: e'r~k = .~ 2: ~8k (vgek), 
k uU i.k V g k uU 

where g = det(gjk). In the special case where f: U -+ 1R3 is a linear and 
injective map, f(U) is a piece of a plane and glf(U) = ii jj • Therefore 
r~j == O and div X = Lk 8ekj8uk. So we see that the divergence of a vector 
field reduces to the usual notion of divergence when the surface is a piece 
of a plane. Note: (V X o u(t))jdt = V X(f o u(t)). 

4.2 Parallel Translation 

4.2.1 Covariant differentiation on a surface generalizes ordinary differentia­
tion in the plane. We may now use covariant differentiation to define what it 
means for vectors or vector fields to be paraIIel along a curve on a.surface. 
In the plane, a vector field X(t) along a curve c(t) is constant, or paraIIel, ifits 
value is constant; X(t) = Xo = constant. In other words, dX(t)jdt = O. 

Definition. Let c = f o u be a curve on a surface f: U -+ 1R3. A vector field X 
along c is parallel along c provided V X(t)jdt = O. 

4.2.2 It foIlows immediately from (4.1.4) that if X(t) and Y(t) are both 
paraIIel vector fields along c, then gC(t)(X(t), Y(t)) is a constant. 

Thus a parallel vector field must have constant length and the angle between 
two paral/el vector fields remains constant. Here, in analogy with EucIidean 
space, the angle between two nonzero vectors X and Y is 

g(X, Y) 
(J = arc cos IXI.ln 

4.2.3 Theorem. Let f: U -+ 1R3 be a surface, and c(t) = f o u(t) a curve on f, 
to ~ I ~ t1 • Let u(to) = uo, U(11) = u1 • Then 
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4.2 Parallei Translation 

i) For every Xo E T uof there exists a unique parallel vector field X(t) along 
c with X(to) = Xo. 

ii) The mapping Ile: Tuof-+ Tu.!, defined by Xol-+ X(tl), is an isometry. 

PROOF. Suppose X(/) = }; e(/)/u' o U(/) is parallel along c. Then X(t) 
satisfies equation (*) of (4.1.2), namely 

ek(t) + "5' e(t)U'(t)q, o u(t) = 0, 
f;; 

k = 1,2. 

But this linear system of two differential equations has a unique solution 
e(t, f), with initial value e(/', f) = fi, for any t' E [to, td. The corre­
spondence (fi) 1-+ (e(t, f» is a linear bijection. Finally, we know from 
(4.2.2) that this map is an isometry. D 

Remark. The mapping Ile generalizes parallel translation in the plane (constant 
vector fields). Given a vector Xo at pin the plane, its parallel translation to 
another point q will be independent of the path c along which we parallel 
translate. This is not true in general. We will soon see examples of surfaces 
on which parallel translation is path-dependent. 

4.2.4 Technicallemma. Suppose we are in a coordinate system where g12 = 0, 

(orthogonal coordinales). Then gll = l/glb r~k = (log v'fu), = gkk.,/2gkk , 
and r~ = -gll.k/2gkk' (i oF k). 

PROOF. It is easily seen that gl1 = l/glh g22 = l/g22' and g12 = O. Therefore 

r k 1 kk( ) 1 { gkk.b ifj = k, l' = -,;g g'k.1 + g'k.1 - glJ.k = 2g 'f . . k ...L • kk - gll.k, 1 J = 1, .,... 1. D 

4.2.5 An example. The sphere. Using the coordinates developed in (3.3.7), 
gl1 = 1, g12 = 0, g22 = cos2 u. An application of (4.2.4) yields 

r~2 = -tan u, n2 = cos u sin u. 

Consider the curve c(t) = l(u(/), v(t», where U(/) = a E ]-11/2, 11/2[, v(t) = 

I/COS a, ° :5 t :5 211 cos a (this is the same curve considered in (3.3.7), a 
latitude circle). The differential equations for the components el(/), ~(t) of 
a parallel vector field along care 

el(t) + ~(t) sin a = 0, 

For the initial values (eA, e~) = (0, l/cos a), these equations have the 
unique solution 

e(t) = -sin(tan at), ~(t) = cos(tan al}. 
cos a 

In this case we can give an interesting geometric interpretation of parallel 
translation. In (3.7.7) we showed that the osculating developable to the 
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XII) 

Figure 4.1 Development of the osculating cone 

sphere along the latitude circle c was the tangential cone meeting the sphere 
along c (we will assume that a E ]0, '17/2[, so this surface really is a cone). 
Slitting the cone along the generator through c(0) and applying it to the plane, 
we consider what happens to the latitude circ1e c(t) under this transformation. 
It becomes a circular arc of radius cot a and length 2'17 cos a. At t = ° the 
tangent vector to this segment is X(O), and X(t) is a parallel (constant) vector 
field along this arc when considered as a vector field on the plane. 

4.2.6 DefinitioDS. Let c(t) = f o u(t) be a curve on a surf ace f: U -+ 1R3 with 
c(t) :F O. 
i) The ordered pair of tangential vector fields el(t) : = c(t)/lc(t)l, e2(t), 

along c, where e2(t) satisfies le2(t)1 = 1, e2(t)· el(t) = 0, and (el(t), e2(t» 
has the same orientation as (fu.(u(t»'/u.(u(t», is called the Frenetframe 
ofc. 

ii) I<.(t) : = e2(t)· «Vel(t)/dt)/lc(t)1 is the geodesic curvature of c. 

Remark. The Frenet frame of a curve c on a surface generalizes the Frenet 
frame of a plane curve (see (1.4», and geodesic curvature generalizes the 
curvature of a plane curve. It is easy to see that Frenet frames are unique. 
Moreover, the Frenet frame along c and the geodesic curvature of c are 
invariantly de:6.ned with respect to orientation-preserving change of variables. 
If t(s) is a change of variables and c(s) = c o t(s), then R.(S) = ± I<.(t(s», 
the sign being the sign of dt/ds (see (1.3.2». In the case that c(t) is a unit­
speed curve, Ic(t)1 = 1, we have el(t) = c(t) and VC(t)/dt = 1<.(t)e2(t). 
Therefore I<.(t) = ± IVc(t)/dtl (see (1.4». ' 

4.3 Geodesics 
Continuing our study of geometric quantities on surfaces which generalize 
familiar objects in the plane, we now investigate the analog of straight Iines. 

4.3.1 Definition. A curve c(t) = fo u(t) on a surfacef: U -+ 1R3 is a geodesic 
if Vc(t)/dt = O. 
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4.3 Geodesics 

4.3.2 Proposition (A characterization of geodesics). For a regular curve 
c(t) = 1 0 u(t) on a surlace J, the lollowing conditions are equivalent: 

i) Kg(t) = O. 
ii) Jf Sl-+ t(s) is a change 01 variable on c such that c(s) = c o t(s) is a 

unit-speed curve, then c(s) is a geodesic. 

PROOF 

Kg(t) = O <? Kg(S) = O by (4.2.6) 

~ Vc'(s) _ O b (426) 
~ ds - y ... o 

Remark. Proposition (4.3.2) is the generalization of (1.4.2), which charac­
terizes straight lines in the plane. Notice that it follows immediately from the 
definition of a geodesic that Ic(t)1 is a constant. Provided that Ic(t)1 # O, this 
means that geodesics are parameterized proportional to arc length. Proposi­
tion (4.3.2) says that a regular curve can be reparameterized to be a geodesic 
if and only if Kit) == o. Regular curves satisfying "it) = O are sometimes 
called pre-geodesics. 

In the plane, where Vc(t)/dt = dc(t)/dt, it follows that a curve c(t) is a 
geodesic if and only if c(t) = At + B for some constant vectors A and B. 
Therefore c(t) is a straight line provided c(t) is regular (and hence A # O). 

4.3.3 Proposition. Suppose c(t) = 1 0 u(t) is a geodesic. Jfu(t) = (ul(t), u2(t)), 
then c(t) = L.k it«t)J,.. o u(t), and combining the equations VC(t)/dt = O and 
(4.1.2) (*), we see that u(t) must satislY 

ijk(t) + ') u'(t)U'(t)rt o u(t) = O. 
f:1 

Conversely, if u(t) satisjies the above equation, c = 10 u(t) is a geodesic. 

4.3.4 Theorem. Let X E Tu.! be a tangent vector to a surlace f. Then lor 
sufficiently smallt! > O there exists a unique geodesic c(t) = 1 0 u(t), It I < t", 

satislying the initial conditions u(O) = uo, c(O) = X. 

PROOF. This follows immediately from (4.3.3) and the existence and unique­
ness theorem for systems of ordinary differential equations, with initial 
conditions u'(O) = u~, u'(O) = ~', where X = L., rlu·(uo). O 

4.3.5 An example. AII the nonconstant geodesics on a sphere (f = I(u, v) 01 
(3.3.7)) are great circ/es. Recall that 

I(u, v) = (cos u·cos v, cos u·sin v, sin u), (u, v) E ]-17/2, 17/2[ x !R. 

Since luu(u, v) = -/(u, v) = n(u, v), Viu/du = O. ConsequentIy, the v = 
constant curves, the meridians, are geodesics. Let co(t) be one of these 
meridians with co(O) = 1(0, O) and caII co(O) = Xo. 

Now consider an arbitrary tangent vector X E T(u •.•• J. If X = O, the 
geodesic with tangent vector X passing through I(uo, vo) is the constant 
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curve c(t) = f(uo, vo). If X =F O, we might as weH assume that IXI = 1, since 
the geodesics throughf(uo, vo) with initial conditions X or XII XI are different 
parameterizations of the same curve. 

Now there exists a rotation B of the sphere in 1R3 such that B o co(O) = 
f(uo, vo) and TBXo = X. Since B leaves the tirst fundamental form invariant, 
it must take geodesics into geodesics. Also B takes meridians into great 
circJes on the sphere. Consequently c(t) = B o c(t) is a geodesic on the 
surface 1 = B of with the initial conditions c(O) = f(uo, vo), c(O) = X. We 
know c(t) is agreat circJe. 

Of course, c(t) is a curve on the surfaceland not on the surfacef In order 
to concJude that aH geodesics on f are great circJes, it is now necessary to 
show that there exists a change of variables 4> detined on a neighborhood Vo 
of (uo, vo) with values in a neighborhood U of (O, O) such that 

flV. = B o f o 4>. 

Then c(t) = f o u(t) where u(t) = 4> -1(0, t). We proceed as foHows. Since f 
is regular there exists neighborhoods Uo of (O, O) and Wo of f(O, O) on the 
sphere such that f: Uo - Wo is a diffeomorphism (see (0.5.2)). Restricting f 
to a smaHer neighborhood if necessary, we may assert that there is a neighbor­
hood Vo of (uo, vo) such that fi Vo: Vo - B(Wo) = B o f( Uo) is a diffeo­
morphism. Now let 

4> = (fI UO)-l o B-1 o (fI Vu)' 

It is easy to check that 4> has the required properties. 

Coordinate systems in which some of the coordinate curves are geodesics 
play an important part in computations as weH as in qualitative resuIts in 
the differential geometry of surfaces. 

4.3.6 Lemma (The existence of geodesic orthogonal coordinates). Let c(s) = 

10 v(s), SE 1, be a curve on a surface l: V _ 1R3. Fix So E 1 and c'(so) =F O. 
Then there exists a change of variables 4>: U - V', where V' is an open 
neighborhood of v(so) such that f = 10 4> and u = 4> -1 o v satisjies: 
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i) The curve c(s) = f o u(s), for Is - sol sufficiently small, is given by 
u1 = O, u2 = S. 

ii) The curves u2 = constant are geodesics parameterized by arc length. 
The curves u1 = constant meet these curves orthogonally. The segment 
of any u2 = constant geodesic between the curves u1 = a and u1 = b 
has length b - a. 

iii) The parameters u are an orthogonal coordinate system for f That is, 
g12 = O. Moreover, gll = 1 and, of course, g22 > O. Conversely, if the 
matrix of the jirst fundamental form satisjies 

(g'j) = (~ ~J, 
then (ii) is valid. 



4.3 Geodesics 

In the special case that the initial curve c(s) is a unit-speed geodesic, 
g22(0, u2) = 1, g22.1(0, u2) = O, and rlJ(o, u2) = Olor ali i,j, k. 

Figure 4.2 Geodesic coordinates 

4.3.7 Definition. Coordinates satisfying (ii) or (iii) above are called geodesic 
coordinates (with respect to a curve u' = constant). The curves u' = 

constant are called parallel curves. If, in addition, the curve u' = O is a 
geodesic parameterized by arc length then these coordinates are sometimes 
called Fermi coordinates, aIthough they had already been considered by 
Gauss. 

PROOF (of Lemma 4.3.6). 1. Since c'(so) =F O, we may assume, after possibly 
restricting the domain of definition of c, that c'(s) =F O for SE i. This being 
done, we may assert the existence of the Frenet frame e,(s), eis). For each 
selletc(t,s) =10 v(t,s) bethegeodesicwithc(O,s) = c(s)and(8cJ8t)(0,s) = 
e2(S)' Each of these geodesics is defined for t < E(S) and by shrinking the 
domain of definition of c(s) again, if necessary, we may assume that there is 

an E' > O such that E(S) > E' for SE i. 
2. The mapping (1, s) E (-E', E') X lc-+ (v'(t, s), v2(t, s)) E V is differen­

tiable because the vf(t, s) are solutions to the equation for geodesics and those 
solutions depend smoothly on the initial conditions c(s), e2(s), which in turn 
are differentiable in s. At the point (O, sol, the matri x of first derivatives of 
this mapping (the Jacobian matrix) represents vectors which are mapped by 
dl into e2(sO) and c'(so). Consequently, they are linearly independent. The 
inverse function theorem, (0.5.1), implies that </>(t, s) = (v'(t, s), v2(t, s» is 
locally a change of variables. 

3. At this point, let us change notation and write (u" u2 ) instead of (t, s). 
Now (i) is immediate from the definition of v and u. Also the curves u2 = 
constant are unit-speed geodesics by definition. This implies that gll = l and 
also that 

ii k + 2: lifutrt = O for u' = t, u2 = constant. 
foi 

Therefore rt, = r~, = O. But 

n, = ~ 2: gll(gn.l + gll.l - gll.l) = g12g21.1 = O. 
1 
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Since g12 = -g12/det(glk)' the equation above implies g12g21,l = ° or 
!(g~2b = O. Since gI2(0, u2) = (inner product of el(s) with e2(s) along 
c(s» ::: 0, it follows that gl2 = 0, Of course, g22 = det(glk) > O. This proves 
(ii) and the first part of (iii). (To see that the curves u1 = a and ul = b cut 
off an arc of length b - a on any geodesic u2 = constant, simply observe 
that u1 = s is arc length on the curve u2 = constant.) 

4. We now prove the second part of (iii). Suppose gll = 1, g12 = 0, and 
g22 > O. By (4.2.4), fiI = nI = O. Therefore Vfu'/oul = ~I rid;" = o. In 
other words, the curves u2 = constant are unit-speed geodesics cutting the 
curves u1 = constant orthogonally. Any one ofthe curves u1 = constant may 
serve as basis curve. 

5. Suppose c(s) is a unit-speed geodesic. Then 

d ( () ( VeI Ve2 Ve2 ° = ds el s ·e2 s» = (JS.e2 + liS·el = liS·el' 

Similarly, Ve2Jds·e2 = ° since e2·e2 = 1. Consequently, Ve2/ds = O. In 
geodesic coordinates, e2(s) = fu' and we may apply (4.1.2) (*) with (e, F) = 
(1, O). This yields 

rMo, u2) = rMO, u2) = O. 
By (4.2.4), rr2 = tg22g22.1' Therefore g22,1(0, u2) = O. Also, 2rMO, u2) = 
g22,2(0, U2)/g22 = O and 2Q2(0, u2) = -g22.1(0, U2)Jgll = O. O 

4.3.8 PrOPOSitiOD. In geodesic coordinates, K(u) = -(~),llJ~. 

PROOF. By (4.3.6) and (4.2.4), fii = fi2 = rh = O and rf2 = (log ~) l' 
Therefore . 

K = R1212 = g22nl.2 - g22r~2.1 + g22(nlr~2 - r~2r~l) 
g22 g22 

= -(log ~).ll - «log~)1)2 = _ (~ll. 
g22 O 

If one writes ( ~),ll + K(~) = O, this tums into a differential equation 

for V g22(UI, ug). It will be used below, e.g., in the proofs of (4.4.2) and 
(4.4.6). Cf. also example (3.9.1). 

4.3.9 Theorem. Let f: U -+ 1R3 be a surface in geodesic coordinates. Then a 
geodesic of the form 

c = {c(t) := f(t, u~) I to :::; t :::; tI} 

is shorter than any curve b = {b(s) : = f o u(s) I So :::; S :::; SI} from Po = 
f(to, ug) to PI = f(t b ug): 

L(b) 2::: L(c). 

PROOF 
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4.4 Surfaces of Constant Curvature 

Figure 4.3 A curve in a geodesic coordinate system 

Remark. The geodesic u2 = u~ in a geodesic coordinate system is said to be 
embedded in a field of geodesics. In the previous theorem we compared the 
length of such a geodesic c with a curve b which lies within such a field. If c 
and b have the same end points, then L(b) ~ L(c). If b does not lie in a field 
of geodesics, then it is possible that L(b) < L(c). For example, consider a 
region on the unit sphere of (3.3.7), namely 

f(u, v) = (cos u·cos v, cos u·sin v, sin u), lui < 7T/4, Ivi < 7T/2. 
Using (4.3.5) we see that (u, v) are actually geodesic coordinates based on the 
curve v = O. However, we may add to this region a patch of surface which 
meets this piece of a sphere smoothly and joins a neighborhood of ]0, - 7T/2[ 
to a neighborhood of ]0, + 7T/2[ around the back in such a way that it contains 
a curve b of length approximately 2 which, of course, is strict1y less than 7T. 

But 7T is the length of the geodesic c(t) = f(O, t), -7T/2 ~ t ~ 7T/2. 

b 
+ 

Figure 4.4 

4.4 Surfaces of Constant Curvature 

~ 
~ 

4.4.1 DefinitioD. Two surfaces f: U -+ ~3 and /: V -+ ~3 are isometric if 
there exists a diffeomorphism c/>: V -+ U such that 

gq,<vMC/>X, dc/>Y) = Kv(X, Y) 

for ali v E Vand X, Y E Tv~2. 

Remark. The map c/> is called an isometry. It is a diffeomorphism which does 
not stretch the length of vectors or change angles. It is c1ear that isometry is 
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an equivalence relation between surfaces, and that the definition involves only 
the intrinsic geometry of a surface. If e/>: V ~ U is an isometry, then for 
all X, Y E Tvl. 

g4J(v,(df o de/> o dJ-I X, df o de/> o dJ-IY) = g.(X, Y). 

To check whether a map e/> is an isometry, it is only necessary to verify 
that g4J(v,(de/>];, de/>h) = gv(];,h) = giJ. This is because g and g are bilinear and 
the coordinate vectors form a basis at each point. 

An example. The cylinder f(u, v) = (h(u), k(u), v) with h'2 + k'2 = 1, 
(u, v) E 1 x IR, is isometric to the strip in the plane defined by J(u, v) = 
(u, v, O) E 1R3, (u, v) E 1 x IR. The map e/> = id: 1 x IR ~ 1 x IR is an isometry, 
glk = It fk = 81k = glk' 

Both the cylinder and the plane have zero Gauss curvature. The foIlowing 
theorem will show that this condition characterizes all surfaces which are 
(IocaIly) isometric to the plane; in other words, all surfaces which may be 
mapped ditfeomorphicaIly onto a piece of the plane without any stretching. 

4.4.2 Theorem. Let f: U ~ 1R3 be a surface. The fol/owing conditions are 
equivalent. 

i) K(u) == O. 
ii) There exist local coordinates in which glle = 81k• 

iii) Paral/el translation is independent of path. 
iv) The surfacefis locally isometric to an open set ofthe Euclidean plane !R2 • 

Remark. As usual, the use of the word "local" means that the statements 
hold true for a sufficient!y small simply connected neighborhood of any point 
u E U. In fact, the theorem fails "globally"; the conditions are not equivalent 
in the large. For example, consider the doubly covered annulus 

(
U2 _V2 2uv ) 

f(u,v)= _~,~,O, 
vu-+v- u+v 

° < a < u' + v2 < b. 

Certainly K = 0, but (ii) and (iv) fail globaIly. 

PROOF. O. Notice that (ii) and (iv) are c1early equivalent. 
1. (i) => (ii). By using (4.3.6), we may assume thatfis presented locaIly in 

geodesic coordinates based on a geodesic; so-called Fermi coordinates. The 

assumption that K = ° implies that (vg;).ll = ° (see (4.3.8». Therefore 

(vg;).l is a function ofthe second coordinate only. But since g22.1(0, u') = ° 
in geodesic coordinates, it foIlows that g •• ,! = O. Since g2l0, u') = 1, it 
must be that g.2 = 1. 

In geodesic coordinates, gll = 1 and gl. = O. Therefore gu = 81k• 

2. (ii) => (iii). Given (ii) it foIlows from the coordinate formula for paralle1 
translation, (4.1.2)(*), that parallel translation on f is identical to parallei 
translation in the plane, and (iii) is true in the plane. 
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4.4 Surfaces of Constant Curva ture 

3 (iii) => (iv). Let (ul, u2) be geodesic parallei coordinates based on a geodesic 
(O, u2). We wish to show that the curves (u~, u2) are also geodesics. Consider 

the unit vector a = e2/~(u~, O) E T(uo'.o)1R2. Since the curve u2 = ° is a 
geodesic and e2 is perpendicular to it, the parallel translation of a along u2 = ° 
to the point (O, O) must be a unit vector perpendicular to u2 = ° at (O, O). 

Therefore it is e2/ ~(O, O). Since u1 = ° is a unit-speed geodesic, the parallel 
translate of e2/~(0, O) along this curve is simply the tangent vector to this 

curve. Its value at u~ is e2/~(0, u~). Now parallel translation ofthis vector 
along u2 = u~ to (u~, u~) preserves orthogonality and length, so the parallel 

translate of e2/~(0, u~) at (u~, u~) is e2/v' g2lu~, u~). 
Since we are assuming that parallel translation is independent of path, 

the parallel translate of a along u1 = u~ at the point (u~, u~) must be 

e2/~(u~, u~). Therefore e2/~ is a parallei vector field along u1 = u~. 
This means that u1 = u~ is a geodesic. Even more, it means that g22(U~, u2) 
is a constant function of u2• Using the geodesic equation of (4.3.3), it follows 
that r~2 = O. By (4.2.4), r~2 = - g22.d2g11 • Therefore gdul, u~) = 

g2l0, u~) = 1, since g22 is a constant function. 
In geodesic parallel coordinates, gll = 1 and g12 = 0, so we now have 

shown that gjk = Ojk> and (iv) follows from step ° above. 
4. (iv) => (i). K is invariant under change of variables. So if fis isometric 

to the plane, then K = O. O 

4.4.3 We will now give a geometric interpretation of parallel vector fields 
along a curve c = f o u on a surface f. In (3.7.7), we defined the osculating 
developable of a surface, and in (3.7.8) and (4.2.5) an example was given 
which used the osculating developable to interpret parallel translation on the 
sphere. We will now do this in general. Of course, the osculating developable 
is not an intrinsic geometric object on a surface, so for the moment we are 
leaving the realm of intrinsic differential geometry. 

Lemma. Let c(t) = f o u(t) be a curve on a surface f Suppose the osculating 
developable off along c(t) is given by 

g(s, t) = sY(t) + c(t). 

Jf X(t) is a tangential vector field on f along c(t), then X(t) is also a 
tangential vector field on g along c(t) = g(O, t). Furthermore, X(t) is 
parallel along c, considered as a curve on J, if and only if X(t) is parallel 
along c, considered as a curve on g. 

4.4.4 Corollary. The developable surface g is locally isometric to the plane. 
Therefore X(t) is parallel along c(t) if and only if X(t) is parallel along 
c(t) in the Euclidean sense when considered as a vector field along a curve 
in the plane. 
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PROOF. Along c(t) the tangent spaces of I and g agree: Tu(tJ" = T(o.t)g. 
iherefore V X/dt = pr dX/dt is the covariant derivative of X along c(t) on 
both/and g. This proves the lemma. The corollary now follows from (4.4.2) 
and the fact that g has zero Gauss curvature. D 

4.4.5 Examples of surfaces with constant Gauss curvature 

1. The Euclidean plane: I(u, v) = (u, v, O) has K = O. 
2. The sphere olradius r > 0:1' = (r·cos u·cos v, r·cos u·sin v, r·sin u) has 

curvature K = l/r 2 • To see this consider geodesic coordinates îi = ur, 
î! = v based on the equator u = O. Since the equator is a geodesic, these 
are Fermi coordinates. Let/(u, î!) = J'(u/r, î!). An easy calculation shows 
that 

gll=n=l, g22 = n = r 2 COS2(~), 

and (4.3.8) allows us to calculate K = -(vg;;;),ll/vg;;; = l/r 2• 

3. The "pseudosphere" of (3.9.1) which is the surface of revolution gener­
ated by a tractrix: 

I(u, v) = (h(u) cos v, h(u) sin v, k(u)) 

with 

h(u) = rrUIT, k(u) = f VI - e 2tlT dt, r > O, 

n = h'2 + k'2 = 1, k/2 = O, n = h2. 

These are geodesic parallei coordinates and, by (4.3.8), K = -1/r 2 • 

4.4.6 Proposition. Suppose I is a surface with Gauss curvature K = Ko, a 
constant. Then in Fermi coordinates 

ds 2 = du2 + cos2(VKou) dv2, 

Here cos( v'Kau) is interpreted as cosh( V - Kou) when Ko < O. 

PROOF. By (4.3.7), gll = 1 and g12 = O, so in Fermi coordinates based on 
a geodesic u = O, 

ds 2 = du2 + g22 dv2 

with g22(0, v) = 1 and g22.1(0, v) = O. We may as sume Ko oF O, since the 
case Ko = O foIIows immediately from (4.4.2). By (4.3.8), (vg;;;),ll + 
Ko v'fu = O. With the given initial conditions, this equation has the unique 
solution 

v'fu = cos( VKou). o 
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4.5 Example and Exercises 

We will now use this "normal" form for the line element ds 2 on a surf ace 
of constant Gauss curvature to generalize (4.4.2). 

4.4.7 Theorem. Suppose f: U -)- ~3 and /: (J -)- ~3 are two surfaces with 
constant Gauss curvature. The surfaces f and / have the same constant 
Gauss curvature if and only if they are locally isometric. Under these 
conditions, given unit vectors Xo E Tuof and 20 E TvJ, there exists a neigh­
borhood Uo ofuo and Vo ofvo and an isometry "': Vo -)- Uo with "'(vo) = Uo 
and d", o d/- 1 20 = df-l Xo. 

PROOF. 1. Suppose f and / have the same constant Gauss curvature. Given 
Uo E U (resp. Vo E V) and Xo E TuoJ a unit vector (resp. 20 E TuJ), let c(t) = 
J o u(t) (resp. c(t) = J o v(t)) be the unit-speed geodesic with Uo = u(O) and 
c(O) = Xo (resp. Vo = v(O) and c(O) = 20), Introduce Fermi coordinates 
(u, v) near Uo based upon the geodesic c (resp. (ii, v) near Vo based upon the 
geodesic c). The points J(uo) and /(vo) correspond to the coordinate (O, O). 
By (4.4.6), the line elements of J and / are in exactly the same form, which 
means that the local diffeomorphism induced by letting u = ii and v = v is 
a local isometry. 

2. Suppose J and / are locally isometric. Then K(uo) = K(vo) for every 
Uo EU and Vo E V.jand/have the same constant Gauss curvature. O 

4.5 Examples and Exercises 

4.5.1 The geodesics on a surf ace of revolution.1 Let / be a surface of revolution as 
defined in (3.3.7,3). We will consider those surfaces given in the special form: 

/(u, v) = (r(u) cos v, r(u) sin v, u), r > O. 

Recall this is the surface generated by rotating the curve (r(u), O, u) about 
the z-axis. The curves v = Vo = constant are called meridians. They are 
geodesics. The curves u = Uo = constant are called paral/el circles. They 
are circles of radius equal to r(uo). 

Let TO! denote the collection of nonzero tangent vectors on f. If X E T°/, 
define lI(X) to be the angle between X and the parallel circle u = Uo (here 
X E T(uo.vo)/)' Le., 

lI(X) : = arc cos(X·!v(uo, vo)/I Xlr(uo». 

The mapping 

<1>: TO/ ---+ iii, 

defined by X 1-+ r(uo) cos lI(X), determines almost ali the geodesics on f. 
Prove the following theorem due to Clairaut: A curve c(t) = /(u(t), v(t» 
on / which satisfies u(t) #- O is a pre-geodesic if and only if <I>(c(t» is a 
constant. (This theorem, which expresses the conservation of the angular 
momentum <1>, is a special case of a more general result about surfaces 
which may be expressed in local coordinates whose line element has a 
specific form (Liouville line element). See (5.7.5).) 

1 See Darboux [A6], Volume III, Book 6, Chapter 1. 
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Clairaut's theorem enables us to give a qualitative description of the 
geodesics on a surface of revolution. To simpIify matters, let us assume that 
the surface/possesses an "equator." By this we mean that r(u) ~ r(O) with 
equality if and only if u = O, and for every u+ > O in the domain of defini­
tion there exists a unique u_ < O such that r(u+) = r(u_). In other words, 
to every northern latitude circle there corresponds exactIy one southern 
latitude circle and conversely. This boils down to an assumption about the 
shape of the meridian curve; in particular, r(u) must have a strict local 
maximum at u = O. 

Let 80 be an angle small enough to insure the existence of a pair u+, u_ 
in the u-parameter interval such that r(O) cos 80 = r(u+) = r(u_). 

Show: (i) There exists a geodesic which (a) cuts the equator at an angle 
of 80, (b) crosses every parallei circle u = constant for u_ ~ u ~ u+, (c) lies 
entirely in the region of the surface of revolution with u_ ~ u ~ u+, and 
(d) meets the parallel circles u = U + and u = u _ tangentiaIIy. 

Since rotation, u ..... u, v ..... v + vo, is an isometry of a surface of rev­
olution, the above result characterizes every geodesic which crosses the 
equator at a sufficientIy shaIIow angle. 

(ii) The equator itself is a geodesic. More generaIIy, on any surface of 
revolution a parallei circle u = Uo = constant is a geodesic if and only if 
r'(uo) = O. 

4.5.2 Examples of surfaces of revolution with an equator.1 The surfaces of revolu­
tion with constant curvature K = 1 of (3.9.1, ii) aII have equators of length 
2170. By using the fact that these surfaces are 10caIIy isometric to the sphere 
of constant curvature K = 1 (for which o = 1), show: (i) If o is irrational, a 
geodesic which crosses the equator making a sufficiently small angle ()o 

(small enough so that the geodesic is defined for aII values of r, see (4.5.1) 
will never c10se up smoothly. Consequently, the equator is an isolated 
c10sed geodesic. (ii) If o is rational, i.e., o = pjq withp andq relatively prime, 
then aII geodesics which cross the equator making a sufficientIY small angle 
80 # O must be smoothly c10sed curves of length 217q. Consequently, any 
small perturbation of the initial conditions defining the equatorial geodesic 
wiII be the initial cond.itions of a cIosed geodesic. 

1 See Darboux [A6], Volume III, Book 6, Chapter 1. 
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Two-Dimensional 5 
Riemannian Geometry 

In the previous chapter, we considered the intrinsic geometry of a surface 
f: U -+ 1R3. Many geometric properties of surfaces were presented in terms of 
the open set U, together with the positive definite inner product gu on each 
T uIR2 (Le., in terms of the first fundamental form). The geometric properties 
were those invariant under change of variable. 

We did, however, continue to distinguish between surfaces which were 
isometric but not congruent. For example, we made a distinction between the 
cylinder and the plane in (4.4). The cylinder is locally isometric to the plane, 
but there does not exist an isometry of IRa which maps the plane into the 
cylinder, even locally. This distinction is not an intrinsic one, and involves 
reference to the ambient space IRa, and to the respective mappings which 
define the plane and the cylinder. 

In this chapter, we will make two important generalizations of the notion 
of a surface. First, a (local) surface will be defined to be an open set U c 1R2, 
together with a positive definite inner product gu on each Tu1R2• The inner 
product is not required to be derived from some f: U -+ IRa. It is only required 
to be differentiable as a function of U E U. Second, the idea of a manifold will 
be introduced. A two-dimensional manifold is a topological space which, 
locally, is homeomorphic to an open set in 1R2. For example, each point on the 
sphere S2 in IRa has a neighborhood homeomorphic to an open set in 1R2, but 
the entire manifold S2 does not have this property. We will want to consider 
manifolds on which a positive definite inner product is defined at each point, 
i.e., Riemannian manifolds. 
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5 Two-Dimensional Riemannian Geometry 

5.1 Local Riemannian Geometry 

Let S(2) denote the set of ali real symmetric, positive definite 2 x 2 matrices 
(gjk)' An element of S(2) corresponds to the matrix representation of a 
positive definite quadratic form on the vector space ~2 (see (3.2.1)). As a set, 
S(2) may be considered an open subset of the three-dimensional space of ali 
2 x 2 symmetric matrices, and as such we may speak of differentiable maps 
from ~2 into S(2), meaning that the induced map from ~2 to ~3 is differen­
tiable. 

5.1.1 Definitions. i) Let U be an open subset of ~2. A Riemannian metric on U 
is a differentiable map 

g: U-+ S(2). 

Notation: We will denote a Riemannian metric on U by (U, g). 
If (U, g) and (V, g) are two sets with Riemannian metrics, theyare 

equivalent if they are isometric. In other words, they are equivalent if 
there exists a diffeomorphism </>: V -+ U such that 

g,,(v,(d</>X, d</>Y) = gv(X, Y) for ali X, Y E Tv~2 and ali v E V. 

If (U, g) and (V, g) are equivalent via an orientation-preserving diffeo­
morphism </> (det d</> > O), they are said to be positively equivalent. 

ii) A (local) surface with Riemannian metric is an equivalence cIass of sets 
with Riemannian metric. 

A (local) oriented surface with Riemannian metric is a cIass of sets 
with a Riemannian metric which are positively equivalent. 

We will use M to denote one of these equivalence cIasses. In general, 
M will be wriUen in terms of one of the (U, g) and we will caII (U, g) a 
coordinate system of M. The elements of U will correspond to points of 
M and these points will be denoted by the letters p, q, r, .... 

Remark. If f: U -+ ~3 is a surf ace in the sense of Chapters 3 and 4, it defines 
a surface with a Riemannian metric, namely the equivalence cIass of (U, g) 
with gu = fu· 

We will now prove that ali the geometric objects of Chapter 4, which may 
be defined in terms of the Riemannian metric gu = fu and which are invariant 
under change of variables, may be generalized to geometric objects on a 
surf ace with Riemannian metric. To wit: 

5.1.2 Lemma. Let M be a surface with a Riemannian metric. Let (U, g) be a 
coordinate systemfor M. 
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5.1 Local Riemannian Geometry 

i) Let c be a curve on M, represented by u(t), ta ::; t ::; t1• Then the 
length of c, L(c), and the energy of c, E(c), dejined by 

L(c) : = fll JL gi~ou(t)ili(t)U~(t) dt 
Jto f.k 

1 fll E(c) : = 2: L gi~oU(t)Ui(t)W(t) dt, 
10 i.k 

are invariantly dejined. 
ii) Dejine the Christoffel symbols r~ by 

rfl : = ~ L gkl(gU.i + gU.1 - gii./) 
I 

and the covariant derivative of the basis vector jields ei(u) by 

Vei(u) " r~ ( ) ~ := L, ij ou ek u, 
uU ~ 

1 ::; i,j, k ::; 2. 

Jf X is a vector jield on M, the covariant differential V X, and the 
divergence div X, may be dejined asfollows. In terms ofthe coordinates 
(U, g), X may be written as Lk gk(u)eiu). Then V X: TuIR2 --+ TuIR2 is 
the linear transformat ion corresponding to the matrix 

(V X(u>n = (o~:SU) + ~ g'(u)r~1 ou) 

(see (4.1.5» and 

div X = trace V X = .~ L ""o k (vggk), 
vg k uU 

where g = det(gik)' (Compare with (4.1.7, 1». 
AII of these quantities are invariantly dejined. 

iii) The covariant derivative V X(t)Jdt of a vector jield X(t) along a curve 
c(t) in M may be dejined in terms of a coordinate system (U, g) by 
using theformula (4.1.2(*». Let X(t) = Lk gk(t)e~ o u(t). Then 

V Xd(t) = L (e~(t) + L si(t)ui(t)r~1 o u(t»)e~ o u(t). 
t ~ i,j 

Using this dejinition, we may now speak of paratlel vector jields X(t) 
along c(t), i.e., vector jields satisfying V X(t)Jdt = O. 

iv) The Frenet frame of a regular curve c(t) on an orientable surf ace M is 
dejinable exactly as in (4.2.6). 

v) Geodesics as in (4.3.1). 
vi) The curvature tensor, dejined on (U, g) as in (3.8.4), is coordinate 

invariant. It is given by 
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5 Two-DimensionaI Riemannian Geometry 

vii) The Gauss curvature K is invariantly defined. With respect to (U, g), 
it is K = Rl212/det(gti). 

PROOF. The above definitions involve tangent vectors, curves, and the 
Riemannian metric, alI of which may be expressed in terms of a local coordi­
nate system, (U, g). What needs to be verified is that these definitions are 
independent of choice of coordinate system. 

1. Suppose </>: (V, g) -'>- (U, g) is an isometry. This means that 

ouk ou' 
gtlv) = "'> ovt evi gk'(</>(V». ti 

From this it is cIear that length and energy are invariant under change of 
coordinates. 

2. To show that the expression (4.1.2(*» for the covariant derivative is 
coordinate invariant, it suffices to verify the transformation law (4.1.3) for the 
Christoffel symbols. This may be done by direct calculation. If such a calcula­
tion is not to your taste, here is an alternate proof. First express gpq and r~q 
in terms of gtk and rlk • Now consider (4.1.3) as an identity in which the r~i 
appear linearly, with coefficients of the form eul/ev", e2ul/ev"ev· and their 
products. 

We now cIaim that, given Uo E U, there is a surf ace f: U -'>- 1R3 such that 
the giluo) and r~(uo), defined by f, agree with those given by the Riemannian 
metric on U at Uo. We have already verified (4.1.3) for surfacesf: U -'>- 1R3, and 
the identity will then folIow in the Riemannian case. 

To prove the cIaim, observe first that it is certainly possible to construct 
anfwith the required glluo). We may then introduce a change ofvariables 
</>: (vl, v2)f-+ (ul, u2) with euk/evl = Sr at Uo and (e2uk/eu" eu')(uo) arbitrary. 
Using the transformation law for the Christoffel symbols, (4.1.3), it folIows 
that for an appropriate choice of </> the mapping 1 = f o </> will have the 
required Christoffel symbols. 

From this (ii) and therefore (iii)--(vii) folIow: alI the quantities are param­
eter-invariant. The only loose end is the invariance of RUik' but this folIows 
directly from the definition of Rlljk. O 

Before continuing with our general development of the subject of surfaces 
with a Riemannian metric, let us pau se to consider a very important example. 

5.1.3 The hyperbolic plane (the Poincare half-plane) H:. 
The surface H~ is the set U: = {Cu, v) E 1R2 Iv> O}, together with the 
Riemannian metric ds 2 := (r 2 du2 + r2 dv2)/V2 , r> O (see (3.4.2». Recall 
that this notation for the metric is equivalent to glk = (r 2/v2)Stk. 

Introduce geodesic coordinates based on a horizontal line v = Vo > O as 
folIows: u = îi, v = exp( - îi/r), (îi, îi) E IR x IR. Computing (glk), using the 
transformation law for the first fundamental form under change of variables, 
we get gll = 1, g12 = O, g22 = r 2 exp(2îi/r). Therefore, by (4.3.8), K = 
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(-~).11/~ =-I/r2. The hyperbolic plane H: has constant Gauss 
curvature equal to -1/r2. 

Notice that the line element tfs2 of H: in the (u, v) coordinates is equal to 
the Euclidean line element du2 + dv2 multiplied by a function, i.e., it is 
proportional to the Euclidean line element. Because of this, angles measured 
in the Euclidean upper half-plane are equal to angles measured in the metric 
ofn:. 

Remark. Given two surfaces with Riemannian metric (U, g) and (O, g), a 
mapping </>: U -+ O is conformal if g~(uMt/>(X), dt/>(Y)) = '>'(u)giX, Y) for 
aII X, Y E TU. Here.>.: U -+ IR is a real strictly positive differentiable function. 
It is straightforward to prove that if </> is conformal, t/> preserves angles. In 
the above example, the identity is a conformal mapping. 

The hyperbolic plane provides a negative answer to a very natural question 
that may have already occurred to the astute reader. Is it true that every 
surface with Riemannian metric (U, g) can be realized as a surfacef: U -+ 1R3? 
(That is, the metric induced by the mapping f is isometric to g.) In 1901, 
David Hilbert proved that H: cannot be realized as a surface in 1R3.1 None­
theless, each point p E H: has a neighborhood V which may be realized as 
a surfacef: V -+ 1R3. In fact, we have aII but proved this already. The pseudo­
sphere of (4.4.5) is a surf ace in 1R3 with constant negative Gauss curvature 
-1/r 2• But Theorem 4.4.7 says any two such surfaces of the same constant 
Gauss curvature are locally isometric. 

There is not a globally defined isometry, however. Brietly, H: is simply 
connected and complete (for precise definitions, see (6.6.2) and (6.4.4), 
respectively) and the pseudosphere is neither. Any global isometry would 
preserve these properties. A proof of Hilbert's nonexistence theorem may be 
found in Hopf [AII] or do Carmo [AS]. 

5.1.4 A brief word about transformation groups. Let E be a set and G a group. 
The group G acts on E as a transformation group if there exists a mapping 
G x E -+ E; (g, x) 1-+ gx such that 

(glg2)X = gl(g2X) 

and 

ex = x, where e E G is the identity element. 

For each g E G, the map g: E -+ E; X 1-+ gx is a bijection since g-l is its inverse. 
Of course, a group G may act on a set E in more than one way. 

An action of G on E is transitive provided that for each pair Xl' X2 E G 
there exists a g E G such that gX, = X2' 

Given X E E, the isotropy subgroup G x is the set of aii g E G such that 
gx = x. It is easy to check that Gx is in fact a subgroup. 

1 Hilbert, D. Ober Fllichen von konstanter Gausscher Kriimmung. Trans. Amer. Math. 
Soc. 2, 87-99 (1901). For further references, see Nirenberg [AI2]. 
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5 Two-Dimensional Riemannian Geometry 

5.1.5 Definition. SL(2, ~), the special linear group in dimension 2, is the group 
of aII real (2 x 2)-matrices with determinant = 1. 

We may define an action of SL(2, ~) on H: as follows. First introduce 
the complex variable z = u + iv. The points (u, v) in the upper half-plane 
correspond to z = u + iv, v > O. Given g = (~~) E SL(2, ~), let gz = 
(az + b)J(cz + d). 

Figure 5.1 Geodesic circIes in the Poincare half-plane 

It is easy to verify that (g, z) 1-+ gz is an action of SL(2, ~) on H:. In fact: 

5.1.6 Proposition. The group SL(2, ~) acts as a group of isometries on H~. 
Moreover, the action is transitive (even stronger, given any two unit tangent 
vectors to H;, there exists a g E SL(2, ~) such that dg maps one into the 
other). The isotropy subgroup of any point of H: is isomorphic to SO(2), 
the group of rotations of the Euclidean plane. 

PROOF. 1. Let u + iv = z and (az + b)J(cz + d) = z. If we write dz di 
for du2 + dv2, the line element for H~ at z may be written ds 2(z) = 

-4r2 dz diJ(z - i)2. (Recall i = u - iv). An easy calculation shows that 
di = d«az + b)J(ez + d)) = dzJ(cz + d)2 and therefore ds 2(z) = ds 2(z). 
This means that Zl-+ z is an isometry. 

2. If z = i, then z = Ci + iiJ = (ai + b)J(ci + d) = (bd + ac)J(c2 + d 2) + 
i(IJ(c2 + d 2)). Now, given any (Ci, îi) with îi > 0, there exists a g = (~~), 

with ad - bc = 1, such that g maps (0, 1) into (Ci, îi). Namely, let d = 0, 

e = IJVv, a = Ci/V-g, and b = - Vv. Therefore SL(2, ~) acts transitively 
onH:. 

3. The isotropy group of z = i is the group of aII matrices (~~) with bd + 
ac = 0, c2 + d 2 = 1, and ad - bc = 1. This implies that, for some 
</> E [O, 277], a = d = cos </> and b = - c = sin </>. Conversely, given </> E [0, 277], 
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(
COS </> - sin </»' 

sin </> cos </> 

is an element of the isotropy group of z = i. Therefore SL(2, ~)j = SO(2[, 
i.e., the isotropy group of SL(2, ~) at i is SO(2). 

The isotropy groups of any z and z' are conjugate to one another. For, 
if g E SL(2,~) takes z to gz = z', then Gz' = gGz g-l. Therefore aII 
isotropy groups of this action are isomorphic to SO(2). Combining this 



5.2 The Tangent Bundle and the Exponential Map 

result with (2) above also proves that SL(2, ~) acts transitively on the unit 
tangent vectors of H;. O 

5.1.7 The geodesics 00 H; are, modulo parameterization, circles or straight 
Iines (in the Euclidean sense) which meet the boundary v = O orthogonally. 
To prove this it is sufficient to establish the result in the case r = 1, since 
the identity map from Hf to H; is a homothetic transformation with 
constant = r (i.e., a conform al map with '\(u) == r). Such a map must preserve 
geodesics. (Proof: exercise.) 

In H'f., gll = l/v2, g,2 = O, and g22 = l/v2. Therefore n, = r~2 = 
r'f.2 = O and r~, = - r~2 = - r~, = l/v. The differential equations for 
geodesics, (4.3.3), can therefore be written in the form 

.. 2ziv O u- v = , 
'2 '2 

v+~=O. 
v 

If zi = O, then u = constant. In this case the geodesic is a line orthogonal 
to v = O. 

If zi f= O, the first equation implies that In( zi/v2) = constant and therefore 
zi = cv2 f= O for some constant c. Similarly, the second equation implies 
zi2 + v2 = bv2 > O for some constant b. Combining these two equations gives 
(dv/du)2 = v2/zi2 = b/C2V2 - 1. Therefore (u - a)2 + v2 = b/c2 for some 
constant a. This is a circle with center on v = O. Hence the circle meets v = O 
orthogonally. 

5.2 The Tangent Bundle and the Exponential Map 
The notion ofthe tangent bundle TU of U c ~2 was introduced in (0.4). We 
recall briefly some notation and basic facts. First, 11" = 11"u: TU -? U denotes 
the projection. The inverse image 1T- 1(U) of u is precisely T v1R2 • The canonica! 
identification TU ~ U X ~2 allows us to define a differentiable structure on 
TU (i.e., as a sub set of ~4) and therefore it makes sense to speak of differenti­
able functionsj: TU -? ~ or differentiable mappings X: U -? TU. 

Suppose now that (U, g) and (V, g) are two coordinate systems for a 
surface M. There must be an isometry e/>: V -? U, that is, a diffeomorphism 
with g(de/>, de/» = g(_, _). The tangential of e/>, 

Te/>: TV -? TU, 

must also be a diffeomorphism (for definition, see (0.4)). Moreover, Te/> is 
compatible with the projections; 11"u o Te/> = e/> o 11"v. Also, Te/>ITv~2 maps Tv~2 
onto T<1>(V)~2 isometricaIly. Using this we may make the foIlowing definitions. 

5.2.1 Definitioos. Let M be a surface with a Riemannian metric. 
i) Let (V, g) and (U, g) be representations of M and e/>: V -? U an 

isometry. We will say that Xv E Tv~2 C TV is equivalent to Xv E 

Tu~2 c TUprovided Te/>(v, Xv) = (u, Xu), i.e., e/>(v) = uand de/>vXv = Xv' 
A tangent vector to M is an equivalence c1ass of such vectors. 
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ii) Every tangent vector X to M determines an element of M. If X is 
represented by (u, Xu) E Tu~2 c: TU, the point p E M represented by 
u E U is called the base point of the tangent vector X. The base point of 
X is defined independently of choice of coordinate systems. 

iii) The tangent bundle of M, denoted by T M, is the set of aH tangent 
vectors of M, together with the map 1T: T M -+ M which maps X E T M 
to its base point. If U is a representative of M, TU together with 
1Tu: TU -+ U is caHed a representation of TM. The tangent bundle TM 
of M has a natural differentiable structure inherited from the differen­
tiable structure of its representatives. This differentiable structure is 
clearly independent of the choice of representative. 

iv) The inverse image 1T- 1(p) ofa pointp E Munder the bundle projection 
1T: TM -+ M is caHed the tangent space of Mat p. Notation: T"M. 
The space T"M consists of precisely those vectors in TM with base 
point equal to p. If T M is represented by TU and p is represented by u, 
T"M is represented by Tu~2. Via this identification, T"M has the 
structure of a two-dimensional real vector space with a positive 
definite inner product g" defined by gu. 

v) Given XETM, the norm of X, IXI, is defined by IXI := IXul := 
vgu(Xu, Xu), where Xu E Tu~2 is a representative of X. 

vi) Let" > O. By B.M we will mean the set of aH X E T M with I XI < ". 
The set B. c: TM is an open set because, in a representation TU, 
B.M is represented by the set of aH Xu with IXul < ". This set is the 
inverse image of the open interval]- ", ,,[ under the continuous func­
tion v: TU -+ ~ that carries Xu into IXul. 

Remark. For each PE M, B.M Iî T"M is the open disc B.(O) centered at the 
origin in T "M. Let X E T "M. Given a sufficiently smaH" > O (" depends on X), 
there exists a unique geodesic c(t), Iti < ", in M with c(O) = X (this follows 
from (4.3.4)). We shall denote this geodesic by cx. 

We now want to use this fact in order to construct a map from B.(O) onto a 
neighborhood of pin M. To be precise, the map we will use is X E B.(O) -+ cx(1). 
Even more, we would like to do this simultaneously for aH p E M in a suffi­
ciently small neighborhood of a point Po E M. 

5.2.2 Lemma. Let M be a surface with a Riemannian metric and let Po E M. 
Then there exists an open n(dghborhood Mo ofpo and an" = "(Po) > O such 
that the map BEMo -+ M given by X -+ cx(l) is defined and dijferentiable. 
Consequently, il 1TX E M o and IXI < ", then tX, O :5 t :5 1, gets mapped 
into a geodesic cx(t). 

PROOF. 1. We will do everything in a coordinate system (U, g) of M. The 
point Po will be represented by Uo. 
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2. The differential equations (4.3.3)(*) for a geodesic can be written in the 
form 

(;k = - 2: v'virt(u). 
'.1 

Let u(t; u, X), v(t; u, X) be the solution of these equations which have 
the initial value (u, X) E U X 1R2 ~ TU when t = O. Applying well-known 
theorems of the theory of ordinary differential equations (see Hurewicz, 
Lectures on Ordinary Differential Equations, M.I.T. Press, 1958), there 
exists a neighborhood W = ]-21J, 21J[ x B~o(uo) x B~(O) of (O, uO, O) E IR x 
U X 1R2 on which the map <1>: W ~ U X 1R2 given by 

(t, u, X) 1-+ (u(t; u, X), v(t; u, X)) 

is differentiable. Here B~ denotes the disk of radius p in the Euclidean 
metric. 

3. Since B~(uo) is relatively compact in U, there exists a y > O such that, for 
every u E B~(uo), X . X = (x~ + x~) ::; y2guCX, X). 

Set ~ = TJlJjy, and define Uo = B~(uo). From the differential equations 
above, it follows that for IJ #- O the following identities hold: 

u(t; u, X) = u(tlJ, u, XjlJ), v(t; u, X) = IJv(tlJ; u, XjlJ). 

Now Iti < 2"'*"" ItlJl < 21J and, if guCX, X) < ~2, 

(XjlJ)·(XjlJ) ::; y2gu(XjlJ, XjlJ) ::; y2~2j1J2 = "1 2• 

Therefore <1> is defined and differentiable on ]- 2, 2[ X B.Uo, where 

B.Uo = {XE TUo I g,,(Xl(X, X) < ~2}. 

4. Let Ux be the representative of Cx in (U, g). Suppose X E B.Uo. Since 
ux(t) = u(t, 'TTX, X), the map X ~ ux(l) is differentiable. Since ux(t) = 
U(l, 'TTX, X) = u(l, 'TTX, tX) = utx(l), the set {tX 10::; t ::; l} is mapped 
onto {ux(t) I O ::; t ::; I}. D 

Figure 5.2 

5.2.3 Definition. The map 

B.Mo ~ M; XI-+ cx(l) 

is called the exponential map and is usually denoted by "exp." The open 
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sets M o and B.Mo corresponding to a given point Po e Mare defined in 
(5.2.2), where the existence and smoothness of exp is proved. 

Remark. The name exponential mapping comes from the theory of Lie 
groups. In the simplest possible case, the map T11R+ -+ IR+ given by t~ el is 
a map from the tangent space TtlR + of the multiplicative group IR + of positive 
reals (which we may identify with the additive group IR) into IR +. 

5.2.4 Lemma. Let M be a surface with Riemannian metric. Let Po E M. Then 
Po has a neighborhood M o c M such that, for some € > O, the map 

17 x exp: B.Mo -+ M x M defined by x~ (l7X, exp X) 

is an injeclive dijJeomorphism (in other words, a dijJeomorphismfrom B.Mo 
onto an open subset of M x M). 

PROOF. First translate the c1aim into a statement for a local coordinate system 
(U, g). Let Uo E Ube a representative ofpo. The map 17 x exp: B.Uo -+ U x U 
exists and is differentiable by (5.2.2). Using (0.5.1), it will suffice to show that 
the differential of 17 x exp is injective at (uo, O). Toward that end, consider the 
curve (uo + tXo, IX) in B.Uo. This curve passes through (uo, O) when I = O. 
What is its image in M x M under 17 x exp? Using the notation of (5.2.2), 
we seethatitis (uo + tXo, u(t; Uo + tXo, X)). Thisis becauseu(l; Uo + IXo, tX) 
= u(t; Uo + tXo, X). Thus d(l7 x exp)(Uo.O)(Xo, X) = (Xo, X + Xo), and 
therefore d( 17 X exp )(uo.o) is injective. D 

As an easy corollary of this lemma, we have the following: 

5.2.5 Theorem. Let Po be a point on M, a surface with a Riemannian metric. 
Then there exists a neighborhood M o c M ofpo and a p = p(po) > O such 
that: 

i) Any two points q, rE M o may be joined by a unique geodesic cor = colt), 
O :S t :s 1, of length < p. 

ii) The map M o x M o -+ TM given by (q, r)~ colO) is dijJerentiable. 
iii) For every q E M o the map expo: BiO) c ToM -+ M is an injective 

dijJeomorphism (a dijJeo onto an open subset of M). 

PROOF. Let (U, g) be a coordinate system for M. Let Uo E U. Choose p and 
U~ 3 Uo as in (5.2.4), making 

17 x exp: BpU~ -+ U x U 

an injective diffeomorphism. Choose Uo containing Uo small enough so that 
(17 x exp)(BpU~) ::::> Uo x Uo' Therefore 

(17 x exp)-l: Uo x Uo -+ BpU~ 

is an injective diffeomorphism. What does this mean? Given v and w in Uo, 
(17 x exp)-l(v, w) = X E TvIR2 is a tangent vector and ux(t), O:s t :S 1, 
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represents a geodesic of length = IXI < p. Moreover, cx(t) joins v to w. 
This proves (i) and (ii). (Why is cx(t) "unique"?) 

Since expv BP(O) = pr o (1T X exp I B.Ub (') Tv ~2), where pr: U x U --? U 
is projection onto the second factor, (iii) follows. O 

5.2.6 Definition. Let M be a surface with Riemannian metric. Suppose p > ° 
is such that expp restricted to B.(O) c TpM is an injective diffeomorphism 
from B.(O) into M. Then the image of BP(O) is called the p-disc with center 
p. It is denoted by BP(p). 

The set BP(p) = expp B.(O) consists of precisely those points in M 
which may be joined to p by a geodesic of length less than p. (We know 
that every point in B.(p) may be joined to p by a geodesic of length < p. 
The converse follows from (5.3.4), below.) 

5.3 Geodesic Polar Coordinates 

5.3.1 Definition. Let M be a surface with a Riemannian metric. Let p E M 
be a point in M and let p > O be such that B.(p) is a p-disk with center atp. 
Let {el(p), e2(p)} be an orthonormal basis of TpM. 

i) The coordinate system </>: B.(O) c TpM == R2 --? B.(p), defined by 
(vI, v2) t-+ expiLi viei(P)), is known as (Riemannian) normal coordinates. 

ii) Geodesic polar (or simply polar) coordinates on B.(p) are the coordinates 

</>: ]0, p[ x ~--?B.(p) - {p}: (r, O)t-+expircos Oel(p) + rsin Oeip)). 

The curves r = constant are called geodesic circles centered at p. 

Geod. line 

Figure 5.3 Geodesic polar coordinates 

Remarks. i) Riemannian normal coordinates may be defined with respect to 
coordinate system (U, g) as follows. Let Uo E U be a representative of p. 
Choose {e1(uo), e2(uO)} an orthonormal basis of Tuo~2 with respect to the 
metric guo. Define </>: B.(O) --? B.(uo) by (vI, v2) t-+ expuo(v1e1 + v2e2). 
Clearly </> is a diffeomorphism. Let g(_, _) : = g(d</>, d</» be the induced 
metric on BiO). Then (B.(O), g) is a Riemannian coordinate system for 
B.(O). 
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ii) In order to make' geodesic polar coordinates into a coordinate system in 
the usual sense, the 8 variable must be restricted to lie in an open interval 
of length < 217. For example, 

.p: ]0, p[ x ]-17, 17[ -+ Bp(uo) - {-pte,; ° :s; t < I}. 

We have to remove an entire radius. 

5.3.2 Proposition (Gauss-Lemma). 2 Polar coordinates are geodesic coordinates 
based an a geodesic circle. 

PROOF. Let (U, g) be a coordinate system on M. As in the remark above, we 
may define 

.p: V:= ]-p,p[ x ]-l7,l7[-+Bp(uo) 

(v' , v2)i-? expuO<v' cos v2e, + v' sin v2e2) =: (u\ u2). 

We shall show that this is a geodesic coordinate system when v' > O. To 
do this we shall use (4.3.6 (iii», which means we must show that in these 
coordinates Ku = 1, K12 = 0, and K22 > O. Now consider 

Buk BUl 
gjj = 2: gkl 8vl 8vl 

k,l 

on V. Since uk(O, v2) = u~ = constant for k = 1,2, gdO, v2) = O. Fixing 
v2 = v~ and letting v' = tE] - p, p[ vary parameterizes a unit-speed geodesic. 
Therefore Ku = 1 and, for v' > 0, rt, = rr, = O. By definition of rrh 

"" -21(2 - -) 2 -22 - ° ~ g gn,l - gU,1 = g g2l,l = . 
I 

But K22 = g22/det(Klk) =1 0, which means that g21,l = ° for v' > ° and 
therefore for v' ;::: ° by continuity. K,2(0, v2) = ° implies that g,2 == O. O 

Our first application of the fact that geodesic polar coordinates are 
geodesic coordinates will be to show that geodesics have length minimizing 
properties analogous to those of straight lines in the plane, at least locally. 

5.3.3 Definitions. On a surface M with Riemannian metric, 
i) a curve c = c(t), to :s; t :s; t" from Po = c(to) to q = c(t, ) is minimizing 

if, for any curve b = b(s), So :s; s :s; s,' from Po = b(so) to P, = b(S,), 
L(b) ;::: L(c); 

ii) a curve c = c(t), tEl, on M is locally minimizing if, for every to E l, 
there exists a closed interval 10 C I containing to as interior point and 
on which cllo is minimizing. 

5.3.4 Theorem. Let Bp(p) be a p-disk centered at PE M. 
i) For every q E BP(p), the geodesic c = cpq = c(t), ° :s; t :s; 1, defined in 

(5.2.5), is minimizing. 

• See footnote 12 of Chapter 6, 
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ii) If b = b(s), So ~ s ~ S1> is any other curve Irom p = b(so) to q = b(Sl)' 
then L(b) ~ L(c) with equality if and only ifthere exists a diffeomorphism 
t: [SO,Sl] -+ [0,1] with dtJds ~ O and b(s) = c(t(s)). 

PROOF. 1. Without loss of generality q #- p and L(c) = ro > O. 
2. We may further as sume that given any comparison curve b(s), So ~ s ~ S1> 

then b(s) #- p for s > so. Introduce geodesic polar coordinates (5.3.1 (ii)) 
on B.(p) - {pl. Here (r, O) E ]0, p[ x IR, and we may arrange it so that 
O(c(t)) = o. 

3. Suppose b(s) E B.(p) for ali SE [so, Sl]. As in (2.1.3) one proves the 
existence of differentiable functions O: [so, Sl] -+ IR and r: [so, sd -+ ]0, p[ 
such that 

b(s) = expir(s) cos O(s )e1 + r(s) sin O(s )e2) 

(this may also be proved directly). It follows that for E > O sufficient1y small, 

L(b I [so + E, sd) = f· vr'(s)2 + g220'(S)2 ds ~ r(sl) - r(so + E) 
SO+E 

= L(c) - r(so + E). 

Since r(so + E) -+ O as E -+ O, L(b) ~ L(c). 

Figure 5.4 Geodesics are locally minimizing 

4. Suppose b(s) leaves the set Bp(p). This means that there exists an S2 < Sl 
such that b I [so, S2] c Bp(P) and L(c) < r(s2) < p. Therefore L(b) ~ 
r(s2) > L(c). 

5. Suppose L(b) = L(c). Looking at the inequality in (3), we see that the 
only way to get equality is for O'(s) == O and r'(s) ?: o. Therefore O(s) == o. 
Letting t(s) = r(s)/ro, where ro = L(c), produces the required change of 
parameter. O 

5.3.5 Theorem (A characterization of geodesics). A curve b = b(s), So ~ 
s ~ S10 on M is locally minimizing if and only if there exists a smooth 
mapping t: [so, sd 1-+ [0,1] with dtJds ~ O such Ihat b(s) = c(t(s)), where 
c is a geodesic. 

PROOF. By (5.3.4), b is locally minimizing implies that b is locally ofthe form 
c(t(s)). Conversely, (5.2.5) and (5.3.4) together show that geodesics are 
locally minimizing, since length remains unchanged under a change of 
parameters s 1-+ I(S) with dtJds ~ O. O 
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5.4 Jacobi Fields 
5.4.1 Definition. Let c = c(t), O :5 t :5 a, be a unit-speed geodesic on M. A 

vector field Y(t) along c is a lacobifield provided gc<t>(c(t), Y(t)) = O, i.e., 
Y is orthogonal to c, and 

(*) 
V2y 
dt 2 (t) + K o c(t)Y(t) = o. 

This definition is cIearly coordinate invariant, i.e., independent of the 
choice of a coordinate system (U, g) on M. It will be useful to have (*) 
expressed in terms of the Frenet frame el(t), e2(t) on c. We may write 
Y(t) = Y2(t)e2(t) for some smooth function y(t). Then (*) is equivalent to 

ji(t) + K o c(t)y(t) = o. 
This follows since Vlea(t)(dt l = O. As a further consequence of this, 

gc<t>(C(t), V~;t)) = gc(t)(el(t), y(t)ea(t) + y(t) V~?)) = o. 

5.4.2 Proposition. Let c(t) be a unit-speed geodesic (lc(t)1 = 1). Given 
ao, al E R, there exists a unique lacobifield Y(t) = y(t)elt) with y(O) = ao, 
y(O) = al. O 

This follows directly from the existence and uniqueness theorem for 
ordinary differential equations. 

5.4.3 Lemma (How to produce a Jacobi field). Let c(t), O :5 t :5 a, be a 
geodesic with Ic(t)1 = 1 and caII c(O) = p. Let c(t) denote the segment 
tc(O), O :5 t :5 a, in the tangent space T"M. Let A E T"M be a vector or­
thogonal to C(O). Then 

Y(t) : = (d exp,,)c<tltA) E Tc(t)M 

is a lacobi field along c(t). Moreover, Y(t) satisfies the initial conditions 
Y(O) = O and VY(dt(O) = A. (Here we consider tA as an element ofT;;<f>M" 
via the canonical identification.) Since a lacobi field Y(t) is completely 
determined by the initial conditions Y(O), (V Y(dt)(O), every lacobifield Y(t) 
with Y(O) = O may be written in the above form. 

PROOF. 1. Without loss of generality we may assume that A #- O. Furthermore, 
solutions to the Jacobi equation (*) form a vector space; in particular, if 
Y(t) is a Jacobi field so is a· Y(t), aER. Therefore we may assume that 
lAI = 1. 

2. Consider the orthonormal basis {elp), e2(P)} = {C(O), A} in T"M. For 
sufficiently small 3, ~ > O, we will define </>: [O, a + 3[ x l-~, ~[~M by 

(r, O) 1-+ expp(r cos O el(P) + r sin Oe2(P)). 
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/ ~:/ 

Figure 5.5 Generation of a Jacobi field by variation through geodesics 

For sufficiently small r > O, this is a polar coordinate system centered at p. 
We need to show that there exists II > O and fi > O so that </> is defined. 
Notice that </>(t, O) is defined for tE [O, al; in fact, </>(t, O) = c(t). Moreover, 
</>([0, al, O) is compact. If U c TpM is the domain of definition of expp, then 
</>([0, al, O) !ies in expp(U), an open set. The existence of the required fi > O 
and II > O now follow from the compactness of </>([0, al, O). 

Let {el(t), e2(t)} be the Frenet frame along c(t) with {el (O), e2(0)} = 

{el(p), e2(p)}, We consider the (t, O) coordinate having coordinate basis 
{el(t, O), e2(t, O)}. Now Y(t) = (a</>jaO)(t, O) = d</>(e2(t, O», so if we write 
Y(t) = y(t)e2(t), then y(t)2 = I Y(t)12. Wherever </> is a coordinate system, 
its first fundamental form (glJ) must have g22(t, O) = y(t)2. In fact, </> will be a 
coordinate system in a neighborhood of any point (t, O) where y(t) =F O, i.e., 
where Y(t) =F O. On such a neighborhood, we have geodesic polar coordinates 
and hence, by (5.3.2), geodesic coordinates. This allows us to use the formula 
for Gauss curvature: 

K = -(VK;;).11 
g22 

of (4.3.8), where we consider (t, O) = (u\ u2). Since g22(t, O) = y(t)2, the 

above formula implies that at least for tE /where y(t) =F O, 

(*) ji(t) + K o c(t)y(t) = O. 

How do we handle the points where y(t) = Y(t) = O? Such points must 
be isolated: for if to were a nonisolated point of this set, then Y(to) would be 
the unique Jacobi field with Y(to) = VY(to)jdt = O, i.e., Y(t) = O, con­
tradicting the fact that VY(O)jdt = A =F O. Now y(t) is defined and differenti­
able for all t and satisfies (*) except at isolated points. It follows by continuity 
of y(t) that y(t) satisfies the equation (*) everywhere. 

3. We now calculate (VYjdt)(O). Letting (t, O) = (u\ u2), the geodesic 
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c(t) is representable as cf> o u, where ul(t) = t, u2(t) = O, and Y(t) = 
dcf>(e2(ul(t), u2(t») = dcf>(t(Ojou2» = t(ocf>Jou2)(t, O). Using (4.1.2), 

VdY (O) = Iim VdY (t) = Iim (e2(t, O) + L tr~leit, O») = e2(0) 
t t~O t t~o k 

= e2(p) = A. D 

Remark. It follows from (3) of the proof that in geodesic polar coordinates, 

(ul, u2) = (t, O) 1-+ expp(t cos Oel + t sin Oe2), v' g22(t, 00) is equal to the 
lengthoftheuniqueJacobifield Y(t) along r 80(t) = expp(tcos 00el + tsin 00e2) 
with Y(O) = O and (V YJdt)(O) = - sin 00el + cos 00e2' 

5.4.4 PropositioD. Let Y(t) = y(t)e2(t) be a Jacobi field along c(t) with 
y(O) = O, j(O) = 1. Then we have thefollowing Taylor series expansionfor 
y(t) at t = O: 

t 3 
y(t) = t - K o c(0)'6 + .... 

PROOF. Immediate from the differential equation 

ji + K o c(t)· y(t) = O. D 
We now use this proposition to prove several interesting results about the 

geometry of M near p. We assume BP(p) is an embedded geodesic disk. 

5.4.5 PropositioD. i) Let L(r) be the length of a geodesic circle S:(p) of radius 
r in Bip). Then wehave thefollowing Tay/orexpansionfor L(r) al r = O: 

r 3 
L(r) = 21Tr - 21TK(P)'6 + .... 

ii) Let A(r) be the area of the r-disk B.(p) centered at p, r ::s; p. Then we 
have the fo/lowing Taylor expansion for A(r) at r = o: 

r 4 
A(r) = 1Tr 2 - 1TK(p)·U + .... 

Remark. The notion of the area of a subset of M is defined in (5.6.6). 

As an immediate corollary of (5.4.5) we get a strikingtheorem which 
relates Gauss curvature to the deviation of the geometric functions L(r) and 
A(r) on a surface M from the corresponding Euclidean quantities. 

5.4.6 Theorem. Let L(r) and A(r) be defined as in (5.4.5). Then 

K(P) = Iim 21Tr -3 L(r) . ~ = Iim 1Tr 2 -4 A(r). 12. 
T~O r 1T T~O r 7T 

PROOF of (5.4.5). Let {el(p), e2(p)} be an orthonormal basis of TpM. The 
unit circle in TpM is b(s) = cos s· el(p) + sin s· e2(p), and the geodesic 
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circles Si(P) may be expressed as c(s) = expp rb(s), O ::::; s ::::; 2,.. Using 
(5.4.3) we may interpret c'(s) = (dexpp)T5(s)rb'(s) as the value at t = r of 
the Jacobi field Y(t; s) = (d expp)t5(,) tb'(S) along expp tb(s), O ::::; t ::::; r. Since 
Ib'(s)1 = 1, (5.4.4) implies that I Y(r; s)1 = r - K(p) ·r 3/6 + ... for r smaIl. 
Therefore 

(2" (2" ( r3 ) 
L(Si(P» = Jo I Y(r, s)1 ds = Jo r - K(p)· 6 +. .. ds 

and 

fTf2" JTf2" ( t3 ) A(BT(P» = o o I Y(t, s)1 ds dt = o o t - K(p)'6 + . .. ds dt, 

which proves the proposition. o 

5.5 Manifolds 

We wiII now introduce the second generalization of the idea of a surface. Up 
to now, we have required a surface to be representable in terms of one single 
coordinate system (U, g). This restriction wiII now be dropped. It wiII now 
be possible to treat, for example, the entire sphere S2 in ~3 as a surface. Until 
now, we have had to consider only a part of S2, e.g., S2 minus half of agreat 
circIe as in (3.3.7). 

Furthermore, it wiII be useful to aIlow our generalized surfaces to have 
arbitrary dimension, and not restrict them to dimension 2. We have already 
seen that investigating surfaces of dimension 2 leads to the introduction of 
the tangent bundle, a four-dimensional object. 

5.5.1 Definitions. i) A topological manifold M of dimension n is a Hausdorff 
topological space with a countable basis such that there exists a 
family of homeomorphisms {Ua: Ma ~ Ua C ~n}aeA from open sets 
Ma c M to open sets Ua C ~n and Ua Ma = M. These homeo­
morphisms will usually be denoted by (Ua, Ma), and they are called 
coordinate systems or charts for M. The collection (ua, Ma)aeA is called 
a (topological) atlas for M. 

ii) An atlas (ua, Ma)aeA is a differentiable atlas if, for every (a, fJ) E A X A, 
thehomeomorphismupo (ua I Ma () M p)-l: uaCMa () Mp)~uP(Mp () Ma) 
is a diffeomorphism. 

iii) Two atlases (ua, Ma)aeA and (ua" Ma')a'eA' are equivalent if the union 
of these atlases is a differentiable atlas. 

iv) A differentiable manifold is a topological manifold together with an 
equivalence cIass of differentiable atlases. 

Remark. For the case n = dim M = 2, a manifold is also called a surface. 
These will be the focus of our study. 

105 



5 Two-Dimensional Riemannian Geometry 

It is c1ear that (iii) defines an equivalence relation. For two equivalent 
atlases (ua, Ma)aeA and (ua" Ma')a'eA' every Ua' o u;\ (a, a') E A X A' is a 
diffeomorphism. Note: From now on, when we speak of an atlas we will always 
mean a differentiable atlas. 

-1 
Uţ3 ou", 

e:u:0 
Uţ3~------1"" 

Figure 5.6 Change of coordinates 

The concept of differentiable manifold aIIows us to define what it means 
for a function F: M -7 N between differentiable manifolds to be a differenti­
able function. 

5.5.2 Definition. Suppose M and N are differentiable manifolds and F: M -7 N 
is a continuous function. Then Fis differentiable if, for atlases (ua, Ma)aeA 
of M and (ve, Ne)eeB of N, the function 

is differentiable for aII (a, fi) E A x B. 
This definition is independent of the choice of atlases as one may readily 

see from the equality 

Vp' o F o U;;.I = (vp. o ViI) o (Ve o F o U;I) o (ua o U;;.I). 

EXAMPLE. A curve c: 1-7 M is differentiable provided: for every chart 
(Ua, Ma), el (1 n c- I(Ma» is represented by a differentiable function 
Ca: tEl n c- I (Ma) -7 ua(Ma). We consider I as a one-dimensional differen­
tiable manifold with atIas con si sting of the single chart (id,/). 

5.5.3 Some examples of (differentiable) surfaces and maoifolds 
1. The sphere M = S~(O) = {(x, y, z) E 1R3 I x 2 + y2 + Z2 = r 2} with the 

topology induced from 1R3. Since it is a subset of 1R3, M is Hausdorff and has 
a countable basis of open sets. We may define an atlas consisting oftwo charts, 
{u+, M+}, {u_, M_}, as foIIows: 
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M+ = M - {(O, 0, -r)}; M_ = M - {(O, 0, r)} 

( rx ry ) 
u+(x, y, z) = (r + z)' (r + z) 

( rx ry ) 
u_(x, y, z) = (r _ z)' (r _ z) =: (g, 'TJ). 

The maps u+ and u_ are stereographic projections from the south and 
north poles, respectively. 

x 

Figure 5.7 Stereographic projection from North Pole; u-CP) = P' 

Let (x, y, z) = U: 1 (X, 'TJ). Then 

x = ce + 'TJ2 + r2)' 

and the map 

Y = ce + 'TJ2 + r2)' 

-1 _ (r2g r2'TJ) 
u+ o u_ (g, 'TJ) - (g2 + 'TJ2)' (e + 'TJ2) 

is a diffeomorphism ofu_(M_ n M +) = !R2 - {(O, O)} onto u+(M+ n M_) = 
!R2 - {(O, O)}. It is easy to see that det (d(u+ o u: 1» < O. 

2. The projective plane M = P2. Consider the set 

p2 : = {{x, -x} I x E !R3, Ixl = i}. 

We detine a topology on Mas follows. Let S2 : = {x E !R3 Ilxl = i} = Stea). 
Consider the mapping cp: S2 -+ p2 given by x 1-+ {x, -x}. If B C S2 lies in 
an open hemisphere, rp I B: B -+ p2 is injective. As a basis for the topology 
of p2 we will take the collection of sets rp(B), where B c S2 !ies in an open 
hemisphere of S2. 

If (ua, S~)aeA is a differentiable atlas for S2 which has the property that each 
S~ !ies in an open hemisphere, Ua o (rpl S~)-t, (CP(S~»aeA is a differentiable 
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atlas for P2. For exa,mple, we may take the atlas (u±, M ±) of S2 which was 
developed in (l) above and subdivide it to give an atlas of S2 with the required 
property. Thus p2 is a differentiable surface. AIso, our construction makes 
<p: S2 ~ p2 a differentiable mapping. 

We certainly expect differentiable manifolds to have alI the general 
properties that 10caIly defined surfaces have. In particular, the notion of a 
tangent vector should be a natural one. In the interest of clarity, we will 
restrict ourselves to the case of surfaces. The general case (arbitrary dimen­
sion) may be treated in the same manner. 

5.5.4 Definition. Let M and N be differentiable surfaces. 
i) Suppose (u., M.) is a chart for M and PE M •. The vector space 

TUa(p)1R2 is a representation of the tangent space of Mat p. A vector 
X. E TUa(p)1R2 is a representative of a tangent vector to Mat p. 

ii) Suppose (u., M.) and (u~, M~) are two charts on M andp E M. () M~. 
The representatives X. E TUa(p)1R2 and X~ E TUp(p)1R2 are equivalent (or 
represent the same tangent vector) provided X~ = d(u~ o U;l)X •. 

iii) The equivalence of (ii) is an equivalence relation. An equivalence class 
of vectors is called a tangent vector to M at p. 

iv) The set of tangent vectors to Mat p carries a vector space structure 
determined by the vector space structure of any one of its representa­
tions. This vector space is called the tangent space to Mat p, and will 
be denoted by TpM. 

Remark. These definitions are compatible with the corresponding definitions 
of tangent vector and tangent space for surfaces (U, g), (S.l.l). We will now 
define the tangent bundle of a differentiable manifold. Toward that end, we 
first show that UpeM TpM has a naturally defined differentiable atlas. 

5.5.5 Proposition. Let M be a differentiable surface. Let TM:= UpeM TpM 
denote the union of ali tangent spaces to points PE M. Let 1T: TM ~ M be 
the projection mapping XH> p when X E TpM. Then TM is a four-dimen­
sional differentiable manifold whose differentiable structure is determined by 
that of M: Given (u., M.).eA, an atlas for TM is defined by (Tu., TM.).eA, 
where TM. = UpeMa TpM and Tu.: TM. ~ TU. is the map XE TpMH> 
X. E TUa(p)1R2, where X. is a representative of X. 

With this differentiable structure on TM, the projection 1T: TM ~ M is 
differentiable. 

PROOF. l. First we define a topologyfor TM as follows. The map Tu.: TM. ~ 
TU. is bijective and its image is an open subset of 1R2 x 1R2. A set Sin 
TM. is open if and only if Tu.(S) is open in 1R2 x 1R2. 

2. The bijection 

Tu~ o Tu; 1 : Tu.(T(M. () M~)) ~ TuiT(M~ () M.)) 
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is in the form d(up o U;;l) and is thus a diffeomorphism. Therefore the 
topology on TMa is independent of the choice of coordinates. Further­
more, this implies that (Tua, TM.).EA is a differentiable atlas. 

3. If (ua" Ma')a'EA' is an atlas which is equivalent to (u., Ma).EA, then 
(Tua" TMa').'EA' is an atlas equivalent to (Tua, TMa)aEA' This follows 
direct1y from the definitions and is easy to check. Therefore the differenti­
able structure of TM is determined by the differentiable structure of M. 

4. It remains to show that 7T: TM -+ M is differentiable. This is a local 
question, so let us consider 7T ITMa. In terms of the coordinate chart 
(Tua, TMa), 7Tl = Ua o 7T o Tu;;l, where 7Tl: TV. = V. X 1R2 -+ V. is the 
projection onto the first factor. It follows that 7T is differentiable. O 

5.5.6 DefinitioD. The tangent bundle T M of a differentiable surface M is the 
four-dimensional differentiable manifold defined in (5.5.5). 

It is now possible to define vector fields on M. 

5.5.7 Definition. A vector field on M is a differentiable mapping X: M -+ TM 
which satisfies 7T o X = ido In other words, X(p) E T"M. 

Remark. A chart (ua, Ma) of M defines two linearly independent vector fields 
on Ma, namely vector fields represented by the basis vector fields e1(u.), eiu.) 
on TVa• However, it is not always possible to find two linearly independent 
vector fields defined on all of M. In fact, it can be proved that if M is a 
compact surface, the existence of two globally defined linearly independent 
vector fields implies that M is a torus. That such vector fields do exist on a 
torus follows from (3.3.7 (ii)): The vector fields desired can be constructed 
by taking the tangent vectors to the globally defined parameter curves 
corresponding to the (u, v) coordinates. 

5.5.8 DefioitioD. A surface with a Riemannian metric is a differentiable 
surface such that, for each p E M, T"M has a positive definite inner product 
which is a differentiable function ofp E M. In terms ofan atlas (ua, M.).eA, 
this means that, for every a E A, there exists a ga( , ): V. -+ S(2) such 
that given (a,{3) EA X A,Upou;;l:ua(MarlMp)f---+uP(MprlMa) is an 
isometry. 

A manifold with a Riemannian metric is defined analogously. 

Remark. This definition includes two different ways to think about the metric 
on a surface. First, it may be conceived of as an inner product g( , ) on each 
T"M which in terms of a chart (ua, M.) corresponds to an inner product 
ga on Va. Using the notation of (5.5.5), 

g(X, Y) = g.(TuaX, TuaY) for X, Y E T"M. 
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The requirement that the inner product be a differentiable function of p is 
equivalent to requiring each ga to be differentiable. EquivalentIy, one could 
require that, given any two differentiable fields X, Y, the function p 1-+ 

g(X(p), Y(p» be differentiable. 
One may reverse the procedure and consider the Riemannian metric as 

being given by the collection (Ua, ga)aeA corresponding to an atlas (ua, Ma)aeA 
of M. The identification of TMa with TUa via TUa defines an inner product 
on each TpM, p E M. If P EMail M p, there are two different ways to define 
an inner product on T pM. The question is: Do they agree? The answer is yes 
if and only if Up o U;;l: uiMa Il Mp) ~ up(Ma Il Mp) is an isometry. 

In sections (5.1) through (5.4) we considered surfaces with Riemannian 
metrics which were representable in terms of a single coordinate system (U, g). 
All ofthe concepts and definitions we introduced there as well as the theorems 
and propositions concerning them carry over word for word to surfaces (and 
manifolds!) with a Riemannian metric. For example, let c: 1 ~ M be a curve 
(see the example preceding (5.5.3». The vectors c(t) E Tc<t)M are well defined 
and therefore we may also define 

L(c) : = r V gc<t)(c(t), c(t» dt 

E(c) := ~ i gc<t,(c(t), c(t» dt, 

the length and energy of c. 
To end this section we now define the concept of an orientable surj'ace. 

(This concept is only of interest for surfaces (and manifolds) which cannot 
be represented in terms of a single coordinate system. If a surface consists 
of a single chart then it trivially satisfies the definition.) 

5.5.9 Definition. Let M be a differentiable surf ace (or manifold). 
i) M is said to be orientable if there exists an atlas (ua, Ma) with the 

following property: 

det(d(up o U;;l» > O for all (o:, f3) E A x A. 

The atIas itself is also said to be orientable. 
ii) Two orientable atIases have the same orientation provided their union 

is orientable. This is an equivalence relation among orientable atIases 
on M. An equivalence cIass is also called an orientation. 

iii) An oriented manifold is a manifold together with a distinguished 
orientation, designated as positive. A chart belonging to one of the 
atlases is called a positively oriented chart. 

EXAMPLES AND DISCUSSION. 1. If M is orientable and connected, there exist 
exactly two orientations of M (i.e., two equivalence cIasses of atlases under 
the equivalence relation in (ii). (Proof: exercise.) 
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2. Not every surface (or manifold) is orientable. For example, the projec­
tive plane p2 defined in (5.5.3, 2) is not orientable. To see this, consider the 
antipoda! map i: S2 -+ S2 which maps X 1-+ -x. In terms of the atlas for S2 
defined in (5.5.3, 1), 

It follows that this map reverses orientation. '" Now assume that p2 possesses 
an oriented atlas (ua, P~)aEA. Recall that rp: S2 -+p2 is the map X 1-+ {x, -x}. 
The sets rp-lP~ can be divided into sets S~ u iS~ in such a way that 
rp: S~ -+ p2 and rp: iS~ -+ p2 are diffeomorphisms. Thus (ua o rp, S~)aEA U 

(ua o rp, iS~)aEA is an orientable atlas for S2. But i: S~ -+ iS~ has the 
coordinate representation id: ua(P~) -+ uaCP~). This is a contradiction since 
i is orientation reversing, but id: uaCP~) -+ uaCP~) is not. 

5.6 Differential Forms 

5.6.1 More linear algebra. We continue the development of (3.2.1). Let T be 
a real vector space of dimension n. For our purposes, n will usually be 
equal to 2. 

1. The dua! space T'" of T is the set .ft'(T, ~) of linear mappings w: T -+ ~, 

together with the natural vector space structure 

(aw)(X) = aw(X). 

The elements of T'" are called l-forms or linear functiona!s (on T). If 
ei> 1 :5 i :5 n, is a basis of T, we may define a basis el, 1 :5 j :5 n, of T"', 
the dua! basis, by the equations 

el(el) = 8/. 
2. Letfk' 1 :5 k :5 m, be a basis for another vector space S. If L: S -+ T 

is a linear mapping, we may write Lfk = LI aLei for some n x m-matrix (aD. 
The dual mapping L *: T* -+ S* of L is the mapping defined by the relation 
L"'(w) = woL. ThisimpliesthatL*(el) = eioL = LI aip. (ThematrixofL* 
is the transpose of the matrix of L.) If L is bijective then L * is also bijective 
and L * -1: S* -+ T* may be written in terms of a basis as L * - ljk = Li brei, 
where the matrix (bn satisfies Li brat = 8~. (In other words, (bn = 

(!(am- l .) 

3. The direct sum T EB T of T with itself is the set of pairs (X, Y) E T x T 
with the vector space structure: 

(Xl' Yl) + (X2, Y2) = (Xl + X2, Yl + Y2) 

a(X, Y) = (aX, aY). 

4. A 2-form on T is a mapping Q: T EB T -+ ~ which is bilinear and 
skew-symmetric: 

i) Q(aX + bY, Z) = aQ(X, Z) + bQ(Y, Z), 

• If j(" '1) = ('rI/), {(j o U +, M +), (u _, M _)} is an orientable atlas for S". 
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ii) O(X, Y) = -O(Y, X). 
(Note: Linearity in the second variable follows from (ii) together with (i), 
where X, Y, Z E T and a, b E IR.) 

The set A 2T* of aII 2-forms on T is a vector space with the following 
addition and scalar multiplication: 

(O + O')(X, Y) = O(X, Y) + O'(X, Y) 

(aO)(X, Y) = aO(X, Y). 

For n = 2 we will show that A2T* has dimension = 1. To wit, if eh e2 is a 
basis for T, we detine an element el /1 e2 E A2T* by 

el /1 e2(X, Y) = e7J2 - g27J1 = det(g,7J), 

where X = LI fel and Y = Li7Jiei' If O is an arbitrary element of A 2T*, 

O(X, Y) = L f7JiO(eh ei) 
1.1=1.2 

= (gl7J2 - gV)O(eh e2) = A(e1 /1 e2)(X, Y), 

where A = O(eh e2). Therefore el /1 e2 spans A2T*. 
5. Let L: S -+ T be a linear mapping as in (2) above. Then we may detine 

the mapping A2L*: A2T* -+ A2S* by (A2UO)(X, Y) = O(LX, LY). 
In the special case that dim S = dim T = 2, 

(A2L*0)(f1,f2) = 0(Lf1' Lf2) = O(eh e2)·det(aD, 

where Lfk = LI aleel' But by (3) this equation implies that A2L*(e1 /1 e2) = 
det(anp /lf2. 

6. Suppose f3: T x T -+ IR is a quadratic form on T. Then f3 detines an 
associated linear mapping Lp : T -+ T*, namely 

X -+ f3(X, ). 

Note that Lp is bijective if and only if, for every X =F O, there exists a Y such 
that f3(X, Y) =F O. A quadratic form with the above property is called non­
degenerate. For example, a positive definite quadratic form is nondegenerate. 
Another way to characterize a nondegenerate form is: f3 is nondegenerate if 
and only if its matrix representation has nonzero determinant. A very 
important fact about a nondegenerate quadratic form f3 is that we may use it 
to identify T with T* by means of the bijection L p • 

We would now Iike to generalize the above definitions to surfaces. In order 
to do this we must, among other things, generalize the idea of a direct sum of 
vector spaces to its counterpart for tangent bundles. 

5.6.2 Definition. Let M be a differentiable surface. The direct sum TM EB TM 
of the tangent bundle of M with itself is the disjoint union UpeM TpM EB 
T pM. The projection mapping 1T EB 1T: T M EB T M -+ M is the mapping 
detined by 

112 
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5.6.3 PropositioD. TM EB TM can be given the structure of a six-dimensional 
differentiable manifold which we also denote by TM EB TM: lf (ua, Ma)aeA 
is an atlas of M, we may define an atlas (Tua EB Tua, TMa EB TMa)aeAfor 
TMEBTMby 

TUa EB Tua: TMa EB TMa -+ TUa EB TUa = Ua EB 1R2 EB 1R2 

(X, Y) E TpM EB TpMr+ (uip), Xa, Ya) E Ua EB TUa(p)1R2 EB TUa(p)1R2. 

Here Xa and Ya are representatives of X and Y with respect to the chart 
(Ua, Ma)' 

PROOF. Exaetly analogous to the proof of (5.5.5). As with TM, the differenti­
able strueture of TM EB TM is eompletely determined by the differentiable 
strueture of M. O 

5.6.4 DefioitioD. On a differentiable manifold, 
i) a l-form on M is a differentiable mapping 

W: TM -+ IR 

which has the following property: for every PE M, w I TpM: TpM -+ IR 
is a l-form, Le., w ITpME T:M:= (TpM)*; 

ii) a 2-form on M is a differentiable mapping 

n: TMEB TM -+ IR 

with the following property: for every pE M, ni TpM EB TpM E 
A2T:M. 

Remarks. 1. What happens in local eoordinates, Le., terms of a ehart (Ua, Ma) 
on M? A l-form w on M determines a l-form W a: TUa = Ua x 1R2 -+ IR 
via wa(Xa) = w(X). Here Xa is the representative of X. 

2. On Ua we have the natural eoordinate basis (el(ua), e2(ua)). Let 
(du!, du~) denote the dual basis. The l-form W a may be written as w. = 
2, a,(u.) du~, where a,(u.) are differentiable funetions of u •. Conversely w. 

determines a l-form on M •. 
3. If (u., Ma) and (up, M p) are two eharts on M, then 

is a bijeetive linear map. By (5.6.1,2), the dual mapping d(up o U;l)* is 
given by 
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Therefore, if wfJ = ~,bt..ufJ) du~ and Wa = ~I al(ua) du~ are representatives 
of a l-form W with respect to two different charts, then 

d(ufJ o U;;1)*wfJ = L: bt..ufJ) aaU: du~ = Wa, 
'.1 Ua 

al(ua) = L: b,(ufJ) :~ . 
, a 

This last formula tells us how the components of l-forms transform under 
a change of coordinates. 

4. A 2-form !l on a surf ace M is represented with respect to every chart 
(ua, Ma) by !la: TUa Ei:> TUa ~~, where !laCXa, Ya} = !l(X, Y), Xa, Ya 
being the representatives of X and Y. 

5. At each point of Ua the 2-form du~ A du~ is a basis for the one-dimen­
sional vector space of 2-forms: If Xa = ~I ~:.el and Y = !, TJ~e" then 

du~ A du~: (X a, Ya) ~ ~~TJ: - TJ!~:' 

Therefore !la may be written as !la = A(ua} du! A du~, where A(ua} is a 
differentiable function from Ua to ~. 

6. How does A(ua} transform under a change of coordinates? Suppose !l 
is a 2-form whose representation with respect to (ua, Ma) is A(ua} du! A du: 
and with respect to (ufJ' M fJ) is B(ufJ} du~ A du:. By (5.6.1,5), 

A2 d(ufJ o U;;1)* du~ A dU: = det(d(ufJ o U;;1» du~ A dU:. 

Therefore 

5.6.5 Proposition. (Definition of differential forms via local coordinates). 
Dijferential forms may be defined in terms of local coordinates. Let 
(ua, Ma)aeAbean atlasfor M. Supposeforeverya eA a l-form W a: TUa~ ~ 
is specijied and that, for every (a, f3) e A X A, 

(*) 

Then the l-form w: TM ~ R given by w(X) = wa(Xa}, where Xa is the 
representation of X in the a-coordinate system, is well defined. 

Similarly, given a 2-form !la: TUa EB TUa ~ ~ corresponding to each 
(Ua, Ma) such that 

(**) A2 d(UfJ o U;;1)*!lfJ = !la 

for all(a,f3} eA X A, the2-form !l:TMEBTM~~definedby!l(X, Y}:= 
!liXa, Ya), where Xa, Ya are representatives of X and Y in the a-coordinate 
system, is well defined. The forms W and !l are dijferentiable since each W a 
and !la is dijferentiable. 

PROOF. The only possible problem arises when Y, X e T Mare represented 
in two coordinate systems by Xa, Ya and XfJ, YfJ , respectively. Then 
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"well defined" means wiXa) = wiXp) and Qa(Xa, Ya) = QP(Xp, Yp). But 
this follows immediately from the transformation "laws" (*) and (**) com­
bined with the results of the previous section, (5.6.4). D 

This method of defining forms is useful for constructing examples of 
differential forms. 

5.6.6 Examples 
1. Suppose f: M - IR is a differentiable function. The differential of fis 

the l-form 

df: TM_IR, 

where Xa = representative of X in TUa• For example, the dual l-forms 
du!, du~ corresponding to the basis vector fields e1(u), e2(u) of Ua are in fact 
the differentials of the coordinate functions u~: Ma _ IR. 

2. Suppose M has a Riemannian metric, g, given in each coordinate 
system (ua, Ma) by (Ua, ga)' Using (5.6.1, 6), TpM is isomorphic to nM = 

(T pM)* by means of the mapping 

Lgp: XeTpM~gp(X, )eT;M. 

Thus a vector field defines a l-form and conversely: if X is represented 
locally by Xa = 21 g~(Ua)el(Ua), the l-form corresponding to X is 

W a = L g!j(ua)g~(ua) du~. 
1./ 

3. Suppose M is oriented. Then we may define a 2-form, dM, called the 
area-element of M as follows: With respect to a positively oriented atlas 

(ua, Ma)aeA, dM(ua):= v'giua)·du! 1\ du~, where giua):= det(gali(ua)). 

Since gp(up)(det(d(up o u; 1)))2 = giua), the transformation law (**) of (5.6.5) 
is satisfied and dM is well defined. 

4. Suppose X is a vector field on M, M oriented. Then with respect to a 
positively oriented atlas (ua, Ma)aeA, the l-form ix dM defined locally by 

W a : = vg;( - g~ du! + g~ dun, 

where Xa = 21 g~elua), is well defined. To see this, note that 

Remark. Sometimes ix dM is called the interior product of X with dM. One 
can easily see that ix dM coincides with the l-form Y~ dM(X, Y). Moreover, 
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ir X, Y rorm a positiveJy oriented basis ror T.M, 

iz dM(Y) = dM(X, Y) = vg(X, X)g(Y, Y) - g(X, ni. 
One verifies this firsl ror a local represenlalion dM,. of dM and (X, Y) -
(e,(u .. , e:Ju,,))). The l·form iz. dM has a geometric interpretation. Given 
X E T.M, we define X' by 

X' - Lg-'iz. dM, i.e., g(X', ) = iz dM "'" dM(X, ) 

and claim Ihat if X #- O, {X, X'} is an orthogonal, posilively oriented basis 
of T.M and X' has Ihe same length as X. Indeed, g(X, X') = L.X'(X) = 
dM(X, X) = O. Since X' #- O, eilher dM(X, X') or dM(X', X) is equal 

10 v'g(X, X)g{X', X'), depending on whether{X, X'} or{X', X} is positively 
oriented. Bul we know Ihal g(X', X'} _ dM(X, X') > 0, hence {X, X'} is 

positively oriented and g(X', X') = v'g(X, X)g(X', X'). 

We shall use this remark to obtain a geometric inlerpretalion of Gauss' 
theorem (S .6.9). 

The main rea$On for developing differential forms is Ihat they allow us to 
define line and area integrals on a surface, M. We start by defining the 
two-dimensional analog or a piecewise smoolh curve. 

5.6.7 Deftnltion. Let F denote a closed subset of the plane which is homeo­
morphic 10 the disk and whose boundary 8Fis a piecewise smooth simple 
closed curve whose exterior angles are aII strictly less than ." (see (2.I.S) 
for definition or exterior angle). A (singular) polygon on M is a smooth 
map P: F -+ M. (If oF consists of three smooth curves, P is called a 
(singular) simplex.) The mapping PI8F will be denoted by 8P. If we 
consider fJF a parameterized curve in the plane, 8P paramelerizes a piece­
wise smooth curve in M. We make the convention that fJF will always be 
paramelerized $O lhat its rotalion number is equal to +1. Tbe coordinates 
on Fc. R2 will bedenoted by (t',t 3). 

- o M 
o 

Figure 5.8 An example or a palygon on a surface M 
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5.6.8 Definition (Integral of a I-form on a curve). Given a I-form w on M 

and a curve c: 1 ---')o M, 1 compact, the integral fc w is defined to be 

L w:= i w(c)dt. 

(Integral of a 2·form on a polygon). Given a 2-form on M and a polygon 
P: F ---')o M, the integral ffp n is defined to be 

Note that these integrals are invariant under an orientation-preserving 
change of variables of the curve or of the polygon. 

We now state and prove the most important result of this section; Gauss' 
theorem relating the integral of the divergence of a vector field X on a 
polygon P to the line integral of ix dM on P. The next theorem generalizes 
the well-known Stokes theorem of two-dimensional calculus. When M = 1R2 
with the standard metric, then dM = du1 fi du2, and the two theorems 
coincide. 

5.6.9 Theorem (Gauss). Let M be an oriented surface with a Riemannian 
metric. Let X be a vector field on M. Then for every polygon P: F ---')o M, 

f L (div X) dM = t ix dM. 

(Note: The last remark of (5.6.8) tells us that the integral on the right-hand 
side is well defined.) 

PROOF. 

1. Without loss of genera!ity, we may assume that P !ies entirely 
within one coordinate system. For if not, then we may subdivide F into 
{F.}, 1 ::; p::; k, so that each p. := PIF" !ies inside a coordinate system. 
Then if the theorem is true for each p., 

2:f f div X dM = 2:1 ix dM. 
p p. p ~p. 

The left-hand side is equal to ffp (div X) dM by definition. The right-hand 
side is equal to Lp ix dM for the following reason: Every inner edge of 

Ul E;.E;k Pp appears twice and is traversed once in each direction. Therefore 
the integrals cancel out on each inner edge, leaving (div X) dM integrated 
over OP. 

2. Suppose now that P(F) !ies entirely in one coordinate patch u: U ---')o M, 
U C 1R2. Then X may be written as glel + g2e2. Therefore div X = 
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l/vi 2, (olu')( v'i ~), dM = v'i dul "du2 , and ix dM = - ev'i dul + 

ev'i du2• By the well-known Stokes theorem for two dimensions, 

f f (Of2 - OfI) du l du2 = f j; du l + f. du2. JF OUl ou2 JaF 1 2 

WhenfI = _g2v'i andf2 = +ev'i, this gives the required result. O 

Remark. We can make a "physical" interpretation of the line integral in 
Gauss' theorem. Let oP be parameterized (locally) by c(t), Ic(t)1 = 1. Let 
{eI(t) = c(t), e2(t)} be the Frenet frame of C(l). We may write XI c(t) as 
X(t) = e(t)eI(t) + g2(t)e2(t). Then using the remark in (5.5.6,4), 

ix dM(c(t» = gC<ll(X'(t), c(t» = _g2(t), 

where X'(t) = -g2(t)eI(t) + e(t)e2(t). Therefore the integrand is equal to 
- X(t)· e2(t). Since e2(t) is the inward pointing normal to P at c(t), the line 
integral measures the "flow" of X out of the region P. 

5.6.10 Suppose M is a compact oriented surf ace. 
i) A polygonal decomposition IT of M is a finite family {Pp : Fp ~ M}, 

1 ::;; p ::;; k, of orientation-preserving polygons on M (i.e., polygons on M 
such that Pp is an orientation-preserving differentiable mapping) which 
satisfy 

and if r =ţ s, either P, () p. is empty or consists of a corner of both polygons 
or an entire edge of both polygons. Note: A corner of PP(Fp ) in this context 
is the image under Pp of a corner of the boundary of Fp • 

ii) Given a 2-form, n, on M and a polygonal decomposition IT of M, we 
define 

fI n:= Lff n. 
M p. Pp 

Figure 5.9 Polygonal decomposition 
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5.6.11 PropositioD. Suppose II = {Pp} and II' = {P~} are two polygonal 
decompositions of a surface Mas defined in (5.6.10, il. Jf n is a 2-form, then 

(*) 

This means that ffM n, which is defined in terms of a polygonal decom-

position, is in fact independent of the choice of such a decomposition. 

PROOF. To prove (*), consider {Pp n P;,} which is also a polygonal decom­

position. Now each side of (*) is equal to 2;p,p' ffpp"p~, n, and hence they are 

equal to each other. O 

We conclude the chapter with a resuIt that will have important applications 
in Chapter 6. 

5.6.12 Theorem (Gauss' theorem for compact surfaces). Let M be a compact 
surface with Riemannian metric. Then if X is a vector field on M, 

IL (div X)dM = O. 

PROOF. Write the integral, in terms of some polygonal decomposition II, as 
asum and apply (5.6.9) to each summand, Each edge appears as a curve on 
two polygons, with opposite orientations, and the corresponding line integrals 
cancel each other. 

5.7 Exercises and Some Further Results 

5.7.1 The gradient. The gradient vector field of a differentiable function 
.p: M -+ IJ;! is the vector field p ....... Lg;' d.pp • Recall thatLgp : T.M -+ r:M 
is the isomorphism X ....... g.(X, ) (see 5.6.1,6). The gradient is usually 
denoted by grad .p(p) or simply grad.p. 

The gradient vector field generalizes the Euclidean notion of a gradient. 
If U c 1J;!2 is a subset of the plane and.p: U -+ R is a differentiable function, 
grad.p = (o.p/ou' )e, + (0.p/ou2)e2' If X = x' e, + x2e2 is a tangent vector 
at Uo E U, the directional derivative of .p in the direction X is equal to 
X· grad .p(p) = x' (O.p/OU' ) + x2(0.p/OU2). Similarly, if .p: M -+ IJ;! and 
XE T.M, then 

d.p(X) = g.(X, grad .p). 

i) Suppose M is orientable and X is a vector field on M. Using (5.6.6), we 
may define dM and ix dM. Prove: i~x dM = .pix dM for any real-valued 
function.p: M -+ R 

ii) In terms of a coordinate system (ua, Ma) on M, show: 

( ./. '" IJ( ) o.po 11;;' ( ) grad 'f')a = L., g Ua -0-' - el Ua • 
',1 uUa 
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5.7.2 Let fF(M) denote the set of differentiable functions on M. fF(M) has a 
natural structure of an algebra over !R, the operations being defined point­
wise. The Laplace-Beltrami operator is the mapping 8: fF(M) ~ fF(M) 
defined by 

8rţJ: = div grad rţJ. 

It is easy to convince yourself that if rţJ is differentiable, then so is 8rţJ, 
justifying the c1aim that 8(fF(M» c fF(M). 

Prove: 

divrţJX = rţJ div X + drţJX 
diV(rţJ1 grad rţJ2) = rţJ1 tJ.rţJ. + g(grad rţJ1, grad rţJ.). 

Use Gauss's theorem (5.6.9) to show 

f L rţJ1 tJ.rţJ. + g(grad rţJ" grad rţJ.) dM = L rţJ1 â!n' ds, 

where ârţJ.Jân = drţJ.(n), and n is the outward pointing normal to the bound­
ary curve P (see (5.6.7». The above equation immediately implies 

These are Green' s formulae. 

5.7.3 A function rţJ: M ...... !R is said to be harmonic if tJ.rţJ = 0.1t can be shown that 
each p E M has a neighborhood vii on which a harmonic function rp: vii ...... IR 
exists whieh satisfies drp # O. The conjugate harmonic function X is the 
harmonic function defined (up to sign) by the relations g(grad rp, grad X) = O, 
g(grad X, grad X) = g(grad rp, grad rp). 

If (ua, Ma) is a ehart such that (u!, zra) are conjugate harmonic funetions, 
then the Ua = (u!, u~) are called isothermal (or conforma/) coordinates. It 
was first proved by Liehtenstein4 that isothermal eoordinates always exist. 

The line element in isothermal coordinates looks like 

(du1). + (du')' 
ds' = (1')' au, u 

a(u\ u') # O. 

Conversely, if the line element ds 2 has the above form, then the coordinate 
functions u1 and u' are harmonie. This is because the Laplace-Beltrami 
operator for sueh a line element may be written in the form 

«â'rţJJ(âu1)2) + (â2rţJJ(âu2)2» 
8rţJ = a(u\ u') • 

3 For further details about the Laplacian on a Riemannian manifold, seeBerger et al. [B3]. 

• Lichtenstein, L. Beweis des Satzes, dass jedes hinreichend kleine, im wesentlichen stetig 
gekriimmte, singularitătenfreie FIăchenstuck auf einen Teil einer Ebene zusammen­
hăngend und in den kleinsten Teilen ăhnlich abgebildet werden kann. Abh. KgI. Preuss. 
Akad. Wiss. Berlin, Phys.-Math. K1asse, 1911, Anhang, Abhandlung VI, 1-49. 
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Suppose efo: (v' , v2) ....... (u' , u2) is a change of variables between isothermal 
coordinate systems (a conformal mapping). Prove: The functions u' (v\ v2), 

u2( vI, v2) satisfy the Cauchy-Riemann equations: 

OU' ou2 

ov' = ov2' 

It follows from elementary complex analysis that efo can be written as a 
holomorphic function from an open set in the complex plane C = u' + iu2 

into the complex plane C = v' + iv2 • 

In other words, the existence of isothermal coordinates on a surface M 
with a Riemannian metric implies that M can be given a complex structure, 
making it a Riemann surface in the sense of complex function theory. 

5.7.4 More about minimal surfaces. Supposef: U -+ 1R3 is a parameterized surface 
in the sense of (3.1.1). If x, y, and zare the coordinates in 1R3, we may 
consider x o f(u), y o f(u), and z o f(u) as functions on the surface M, 
represented in the coordinate chart and metric (U, g) = (U, 1). Here 
gu = Iu is the first fundamental form. 

Show: 
t..f(u) : = (t..(x o f(u», t..(y o f(u», t..(z o f(u») = 2H(u)n(u), 

where H is the mean curvature and n is the unit normal vector field on the 
surfacej. 

Remark. This formula can be found in the proof of (6.2.9). 

It follows from this formula that minimal surfaces, surfaces f which 
satisfy H = O, are characterized by the fact that their three coordinate 
functions are harmonic. 

Problem: State and prove an analogous result for minimal surfacesf: U -+ IRn 
in Euclidean n-space. 

Suppose (v!, v2 ) are local isothermal parameters on a minimal surface M 
in 1R3. (We may choose v' to be equal to one of the coordinate functions, 
e.g., x o f(u). Then v2 will be the harmonic conjugate of v' . See (5.7.3).) 
Show: The 1R3-valued function f(v' , v2) is representable as the real part of a 
holomorphic function F(v2 + iv2): C -+ C3. (Hint: Use (5.7.3).) 

Also, show: The Cauchy-Riemann equation simply that F' = !V' - fv 2 -

ifv' "# O, F'2 = O. In other words, F is a holomorphic curve in C3 with 
F'2 = O. Conversely, if F is a holomorphic curve in C3 with F' "# O, F'2 = O, 
then its real part determines a minimal surface in 1R3. 

This intimate connection between minimal surfaces and complex function 
theory is the basis for a highly developed theory of minimal surfaces.5 

5.7.5 A Liouville line element on a surface M is a line element of the form 

ds 2 = (A - B)(A~ du2 + m dv2), (u, v) E U C 1R2, 

where A, A, depend on u only and B, B, depend on v only.6 

• See Nitsche, J. C. C. On new resuIts in the theory of minimal surfaces. Bul/. Amer. 
Math. Soc. 71, 195-270 (1965); or the references of footnote 10 of chapter 3. 

• See Darboux [A7), Part III, Book VI, Chapter 1. 
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Prave: The surfaces of revolution of (3.3.7, 3) are presented in coordinates 
which have a Liouville line element. 

Prave: The lines of curvature on a surface of second order (3.7.3) deter­
mine a Liouville line element. For example, the line element on the ellipsoid 
is ds 2 = grad .p(v) dv2 + grad .p(w) dw2 (ef. (3.9.5». 

The most important property of a surface (U, g) with a Liouville line 
element is the existence of a nontrivial function <Il: TOU --+ ~ which is 
constant on any one-parameter family {c(t)} of tangent vectors to a geodesic 
c(t). As a special case of this we obtain Clairaut's theorem (4.5.1). Here 
TOU = {Xe TU IX#- O}. If XE TOU, let 

<Il(X) : = A(u(7T X» cos2 O(X) + B(V(7T X» sin2 O(X), 

where O(X) is equal to the angle between X and the tangent to the v-param­
eter curve. 

Prave (Liouville's theorem): A curve c(t) = (u(t), v(t» with u(t) #- O is 
(after possibly a reparameterization) a geodesic if and only if <Il(c(t» = 
constant. 

Out line of proof. For an appropriate choice of a constant c, the functions 

u':= f A,VA - cdu + f B,Vc - Bdv 

, J'. A, f B, 
v:= VA_c du - vc_Bdv 

define a new coordinate system in which 

ds 2 = dU'2 + (A - c)(c - B) dV'2. 

It then follows from (4.3.6) that the curves v' = constant are geodesics, 
i.e., v' = (A,/V A - c)u - (B,/V c - B)v = O implies that (u(t), v(t» is 
(after possibly a reparameterization) a geodesic. The function <Il assumes the 
value C on the tangent vectors (B, V A - c, A, V c - B) to this geodesic. 

Remark. On a surface with a Liouville line element, there exists two non­
degenerate differentiable functions on TOU which are constant on families 
{c(t)} of tangent vectors to geodesics c(t). Namely <Il(X) and g(X, X)/2, 
the energy. In general, only the latter function exists. Given a surface with 
Riemannian metric, it is usually not possible to introduce coordinates whose 
line element is a Liouville line element. 



The Global Geometry 
of Surfaces 6 

In this chapter, we will consider some problems in the global differential 
geometry of surfaces. A "global" problem can be described as one which 
in general cannot be stated locally in terms of one coordinate system on a 
surf ace with a Riemannian metric, but must necessarily involve the total 
behavior of the surface. Most often, this total behavior is related to the 
topology of the surface. For example, Theorem (6.3.5) equates the integral 
of the curvature function K(p) over a compact surface M with a topological 
invariant of M (the Euler characteristic). Neither of these two quantities can 
be described completely in terms of a single coordinate system. 

Some of the theorems concern surfaces in Euclidean 3-space. Others treat 
abstract surfaces which are not realized in 3-space and are concerned entirely 
with intrinsically definable quantities. 

When it is possible to do so without additional work, we will state and 
prove theorems for Riemannian manifolds. Otherwise, we will stick to 
surfaces and indicate what the appropriate generalization to manifolds 
would be. 

6.1 Surfaces in Euc1idean Space 

6.1.1 A subset M of 1R3 is an embedded surface or simply a surface if, in the 
induced topology on M, there exists a family (fa, Ua)aEA of parameterized 
surfaces fa: Ua -+ 1R3 in the sense of (3.1.1) satisfying 
i) eachfa: Ua-+Ma is a homeomorphism of Ua onto an open subset Ma 

ofM; 
ii) the sets Ma cover M, Le., Ua Ma = M. 

The homeomorphisms Ua =f;1: M a-+ Ua will be referred to as charts 
or coordinate systems, and will be denoted by (ua, Ma). 
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It is easy to verify that the family (ua, Ma)aeA defines a topological atlas 
for M. The next lemma will show that this is a differentiable atlas and M is a 
differentiable surface in the sense of (5.5.1). 

Remark. More generally, we may define embedded m-dimensional sub­
manifolds of IRn (n ;;:: m) to be subsets of IRn with the induced topology such 
that there exists a family (fa, Ua)aeA (where Ua is an open set in IRm and 
fa: Ua ~ IRn is a regular map) satisfying (i) and (ii) above. The next lemma 
has a straightforward generalization to submanifolds. For cIarity, we restrict 
ourselves to the case when m = 2 and n = 3. 

6.1.2 Lemma. Let M be a surface in 1R3 and let (ua, Ma)aeA be an atlas for M 
as defined in (6.1.1). 
i) In the induced topology, M is a topological surface and the atlas 

(ua, Ma)aeA is a differentiable atlas for M. Any two such atlases are 
equivalent. 

ii) The tangent space TpM at PE M is represented by T.a<p,/ c Tp IR3 

whenever PE Ma. In particular, if PE Ma n M~, T.aep)f = T.pep)f. 
Therefore the restriction of the Euclidean inner product of 1R3 to T pM is 
well defined. This inner product defines a Riemannian metric on M: in 
local coordinates 

g.a(P)( *, *) = (dfa).a<p)( *) . (dfa).a<p)( *). 

PROOF. 1. As a subset of 1R3, the induced topology on M must be Hausdorff 
and have a countable basis. Moreover, for each PE M there exists an 
a = a(p) such that ua: Ma ~ Ua c 1R2 is a homeomorphism. AII that remains 
to be shown is that the homeomorphism 

u~ o U;;l: uiMa n M~) ~ uiM~ n Ma) 

is a diffeomorphism. 
Let PE Ma n M~. Now fa = U;;l: Ua ~ Ma c 1R3 is a parameterized 

surface (and therefore a regular map of constant rank = 2). We may apply 
the basic result (0.5.2) which asserts the existence of a neighborhood W of 
p in 1R3 and a diffeomorphism ga: W ~ Wa, where Wa is a neighborhood of 
(uip), O) E 1R2 X IR, such that ga satisfies 

ga o fa(u~, u~) = (u~, u~, O). 

Consequently, if Uip) is a sufficiently small neighborhood of ua(P) E Ua, 
then u;;ll Uip) = g;;ll Ub). 

Similarly, there exists a diffeomorphism g~ from W onto a neighborhood 
W~ of (u~(P), O) E 1R2 X IR so that g~ o f~ is, 10caIly, a linear injection. There­
fore u~ o U;;l is equal to g~ o g;;ll Uip) on a sufficiently small neighborhood 
of ua(p). Since g~ o g;;l is a diffeomorphism and u~ o U;;l is equal to the 
restriction of g~ o g;;l to a linear subspace, u~ o U;;l is itself differentiable. 
Therefore u~ o U;;l is a diffeomorphism. 
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2. Let p E Ma n M p. Suppose fa I ua(Ma n M p) and fp I up(Ma n Mp) are 
two parameterized surfaces (in the sense of Chapter 3) which are re1ated by 
the change of variables t/>ap = Ua o (up I M p n M a)-l = f;l o fp I up(Mp n Ma), 
i.e.,fp = la o t/>ap. According to (3.2.5), gu.<P) = Iu.<p) and gU6<P) = Iu,<p) define 
the equivalent metrics, as one would expect. This shows that the restriction 
of the Euclidean inner product to M defines a Riemannian metric on M as 
defined in (5.5.8). O 

Examples of surfaces in IRa may be found in Chapter 3. In (3.3.7), the 
spherefrestricted to (u, v) E ]-71/2, 71/2[ x ]-71,71[, and the torus g restricted 
to (u, v) E ]-71, 71[ X ]-11",71[, are both surfaces. We have not considered the 
entire sphere or the entire torus in these examples. This is because the surfaces 
in Chapter 3 had to be defined in terms of a single coordinate system. 

One of the most important ways in which surfaces in IRa and submanifolds 
of IR" arise are as the level sets of differentiable functions on 1R3 or IR". 
The next theorem describes 8ufficient conditions for the leve1 sets 

{x E IR" I .fJ(x) = c} 

of a differentiable map .fJ: R" -+-lRk to be 8ubmanifolds of IR". 

6.1.3 Theorem. Suppose D is an open set in IR" and .fJ: D -+- IRk is a differen­
tiable map, where O S k s n. /f a E .fJ(D) is a regular value of.fJ (i.e.,for aii 
pE .fJ-1(a), d.fJp: TplR" -+- TalRk is onto, or equivalently t:b/Jp has rank = k), 
then M = .fJ-1(a) is an (n - k)-dimensional submanifold ofIR". 

Note: M is not necessarily connected. Consider .fJ(x, y) = r - r and 
a"# O. 

PROOF. We will consider the case n = 3, k = 1, the case of surfaces in 1R3. 
The general case is similar (see Edwards, Advanced Calculus of Several 
Variables, Academic Press, 1973, pp. 196-200). We will show that, given 
p E M, there exists a parameterized surf ace f: U -+- 1R3 in the sense of Chapter 
3 such thatf(U) = M' is an open subset of M containingp, andf: U -+- M' 
is a homeomorphism. 

We may assume, without los8 of generality, that a = O, since we may 
replace .fJ by .fJ - a without affecting the regularity of the function. Since 
t:b/Jp: TpIR3 -+- ToR is onto, the implicit function theorem (0.5.2) a8serts the 
existence of open neighborhoods V and V' of p E 1R3 and a diffeomorphism 
h: V-+- V' such that h(P) = p and .fJ o h: V -+-IR is a linear, onto mapping 
ofthe form 

(xl, r, r) E V 1-+ rE IR, .fJ o h(P) = O. 

Let M' = V' n M and h-1M' = U' c 1R2 = {(xl, x2, x3) E 1R3 1 r = O}. 
Then f = h I U': U' -+- M' c M c IRa is the desired parameterized sur­
fuce. O 
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6.1.4 Example. S~(xo) = {x E ~3 Ilx - xol = r}, r > O, the sphere of radius 
r centered at Xo E ~3. 

Define .p: ~3 -+ R by x f-+ Ix - Xo 12• First, note that r 2 is a regular value 
of.p. If .p(x) = r 2, then d.pix - xo) = ~i [(O/OXj)(~l (Xl - xt)2)]ixl - xl» = 
2 ~j (Xl - xl»2 = 2r2 > O. The induced Riemannian metric on S;(xo) can 
be written explicitly in terms of the chartj' I ]-17/2, "IT/2[ x ]-"lT,"IT[ which 
was introduced in (4.4.5,2). Since iT. j' = r2, it follows that iT is a chart 
for S;(O). The surfaces S~ = S~(O) and S;(xo) differ by a translation in ~3 
which does not disturb the geometry of the surface. All the calculations of 
the metric g, of the Gauss' curvature, etc., carry over without change. In 
particular, K = l/r2 • 

We can now give a second proof of the fact that geodesics on the sphere 
consist of arcs of great circles. To do this we will use the characterization of 
geodesics as curves which locally measure length (see (5.3.4)). Suppose c is a 
nontrivial, i.e., nonconstant, geodesic on M = S~. Choose Po and Pl two 
different points on c which are not antipodal points, and such that the arc 
c' of c which connects Po to Pl is the unique length minimizing geodesic from 
Po to Pl (cf. (5.2.5)). 

Let d be the uniquely determined arc of agreat circle which connects Po to 
Pl whose length is strictly less than "lTr. We will now prove that, after possibly 
a reparameterization, c' = d. 

The reflection a of S~ through the plane determined by d is an isometry 
which fixes d. In fact the only fixed points of S; are the points on the great 
circle determined by d, which includes Po and Pl. The length-minimizing 
geodesic c' connecting Po to Pl is mapped into a length-minimizing geodesic 
ac' connecting apo = Po to apl = Pl. By the uniqueness of minimizing 
geodesics between Po and Pl' ac' = c', and therefore c' lies on the great circle 
determined by d. Therefore c' = d up to parameterization. 

More generally, S~-l(XO) = {x E ~n Ilx - xol = r}, r > O, the hyper­
sphere in ~n of radius r and centered at X o is an (n - l)-dimensional sub­
manifold of ~n. It may also be shown that geodesics on S~-l(XO) consist of 
segments of great circles. The proof is similar. 

6.1.5 More examples. 1. The torus. Let 

.p(x) = .p(X"X2,X3):= (V(Xl )2 + (r)2 _ a)2 + (X3)2. 

If O < b < a, b2 is a regular value of.p. For if x E M = .p-'(b), then (Xl )2 + 
(r)2 > O and d.px(Y) = 2b2 for the following value of y = (y" y2, y3): 

j._ .tV(Xl )2 + (X2)2 - a 
y.- V(Xl)2+(X2)2 ' 

j = 1,2, y3 : = r. 

The values of the map g(u, v), defined in (3.3.7), lie in M, so this is the 
familiar torus in Euclidean space. By changing to cylindrical coordinates, it 
is easily seen that this is a torus, symmetric about the (r, lI)-plane, with 
radii a and b. 
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2. A surface of second order (see (3.7.3». Let O < c < b < a, p ~ {a, b, c}, 
p < a. Let (x, y, z) denote the coordinates in 1R3. Define 

._ x2 y2 Z2 
.p(x,y,z).- -- + b-- + -- - 1. 

c-p -p a-p 

If (x, y, z) E .p-1(0), d.p(x, y, z) = 2.p(x, y, z) + 2 = 2. Therefore O is a 
regular value of.p. 

3. Matrixgroups.IfweidentifyMn = spaceofalIn x nmatriceswithlRn', 

then various cJassical groups appear as submanifolds of Euc1idean space. 
First we restrict our attention to GL(n, IR) = {A I det A i= O}. Since det: 
M n -J> IR is a continuous function, GL(n, IR) is an open set in IRn2 • Byexercise 
(6.8.12) det: GL(n, IR) -J> IR is a differentiable function alI of whose values 
are regular values. lf tA denotes the transpose of A, consider the map 
S: GL(n, IR) -J> GL(n, IR) given by S(A) = tA· A. ActualIy S(A) is a symmetric 
matrix, so we may consider S as a map from IRn2 to IRn(n + 1)/2. Let 1 denote the 
identity matrix. Then O(n) = {A E M n I S(A) = I}, the orthogonal group, 
is a sub-manifold of dimension n2 - (n(n + 1)/2) = (n(n - 1)/2) in M n, 

since 1 is a regular value of S. (The proof is left as an exercise.) The group 
SO(n) = {A E O(n) I det A = l} is called the special orthogonal group. It 
corresponds to orientation-preserving rotations of Euc1idean n-space. 

AlI the above submanifolds of IRn2 which we have been calling groups are 
indeed groups under matrix multiplication. For example, if det A i= O and 
det B i= O, then det A· B = det A· det B i= O, and A-l exists and has nonzero 
determinant. Thus GL(n, IR) is a group. Similarly, if det A = det B = + 1, 
then det A· B = + 1 and if S(A) = S(B) = 1 then S(A· B) = t(AB) (AB) = 

tBtAAB = tBB = 1, so O(n) and SO(n) are also subgroups of GL(n, IR). A 
group G with the structure of a differentiable manifold in which the mapping 
(g, h) E G x G 1-+ gh- 1 E G is differentiable is called a Lie grouP. We may 
check that the above groups are Lie groups. The multiplicat ion on GL(n, IR) 
is given in each coordinate by polynomials. Hence (g, h) 1-+ gh -1 is a C'" map 
from GL(n, IR) x GL(n, IR) to GL(n, IR). We have just shown that O(n) is a 
c10sed sub-manifold ofGL(n, IR). Hence O(n) x O(n) c GL(n, IR) x GL(n, IR) 
is a c10sed submanifold and the inc1usion map is continuous. Thus the restric­
tion of the map (g, h) 1-+ gh- 1 to O(n) x O(n) is a C'" map. For more details 
and an introduction to Lie groups, see Wamer [B19] or Spivak [A17]. Cf. also 
(5.1.5.). 

4. Graphs of differentiable functions. Let A c IRm be an open set and 
f: A -J> IRn a differentiable function. The set 

graphf:= {(x, y) E IRm+n I x EA, Y = f(x)} 

is a submanifold of IRm+n. lndeed, graphfis the image of the regular map 
1#: A -J> IRm+n (rank m) given by fix) = (x,f(x». 

An application of the implicit function theorem (0.5.2) shows that every 
submanifold of IRn of dimension k is locally the graph of a differentiable 
functionffrom some open set A c IRk into IRn - k • 
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6.1.6 Proposition. A sur/ace M c IR" is orientable if and only if there exists a 
continuous function n: M -+ S2 = SUD), p 1-+ n(p), such that n(p) is a unit 
normal vector to Mat p., i.e., n(p) 1. TpM. 

PROOF. 1. Let (ua, Ma)aeA be a positive atlas for M. For PE Ma define na(p) to 
be the Gauss normal vector to the surface fa = U;l: Ua -+ 1R3. If p E M~ we 
have fo = fa o (ua o Upl) and det d(ua o Upl) > D hence np{p) = nip). (See 
the proof of (3.3.6).) Consequently, n(p) is well defined and obviously 
continuous. 

2. Conversely, suppose n: M -+ S2 is a continuous unit normal vector 
field as in the statement ofthe proposition. Let (ua, Ma)aeA be any atlas of M. 
We construct a positive atlas out of this atlas as follows. The chart (ua, Ma) 
remains unchanged if the Gauss normal vector field associated with fa = 

U; 1: U a -+ 1R3 agrees with n on M n' If the Gauss normal vector field associated 
withfa is equal to -n, then replace (Ua, Ma) with the chart (s o Ua, Ma), where 
s: 1R2 -+ 1R2 is the (orientation-reversing) refiection (U\ u2) -+ (-U\ u2). The 
new atlas is c1early an orientable atlas. O 

Remark. If M is the level set at a regular value of a differentiable real valued 
function .p: IRn -+ IR, as in (6.1.3), then n(p) = grad .p(p)/Igrad .p(p)1 defines 
a unit normal vector field on M. Consequently, every component of M is 
orientable. 

We may now extend the uniqueness theorem (3.8.8) for parameterized 
surface patches to oriented surfaces M c IR". 

6.1.7 Proposition. Suppose M and M* are oriented and connected surfaces in 
IR". Then there exists an isometry B of IRa such that BM = M* if and only 
if there exists a dijfeomorphism </>: M -+ M* which preserves the first 
fundamental form and preserves the second fundamental form up to sign. 

PROOF. 1. Using (6.1.6), we know it is possible to choose positive atlases 
(ua, Ma)aeA and (ut, M:)~eB for M and M*, respectively, such that the 
Gauss normal vector fields n and n* on the parameterized surface patches 
fa: U -+ 1R3 andft: U: -+ 1R3 define global continuous mappings n: M -+ S2 
and n*: M* -+ S2. Suppose </>: M -+ M* is a diffeomorphism satisfying the 
hypotheses of the proposition. Without loss of generality, we may assume 
that </> preserves second fundamental forms, for if necessary we may change 
the orientation of M* and thereby change the sign of each n* associated to 
(u'f, M:)OeB' Applying (3.8.8) to each fa: Ua -+ 1R3, a E A, we may assert 
the existence of an isometry Ba: 1R3 -+ IR" such that BalMa = </>IMa. Since 
Bal Ma n Ma' = </>1 Ma n Ma' = Ba' I Ma n Ma' and M is connected, it 
follows that Ba = Ba' for all a, a' EA. Thus the required isometry exists. 

2. Conversely, suppose B is an isometry of 1R3 with BM = M*. It follows 
that </> = BIM is an isometry, </>: M -+ M*. Certainly </> is one-to-one and 
onto. Given a E A, fa = u; 1: Ua -+ Mac 1R3 is a local surface patch on 
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M and Boia: Ua--'>-BMa C 1R3 is a surface patch on M*. By (6.1.2), 
u: o B o (ua 1 Ma () B-1Mt)-1 is a diffeomorphism. If we choose the sign 
of n so that dBn = n*, it follows from (3.2.5) and the proof of (3.3.6) that 
the first and second fundamental forms are invariant under 4> = BIM. O 

We end this section with our first result in global differential geometry, a 
result which is not only interesting in and of itself, but also has a number 
of useful app!ications. 

6.1.8 Theorem. On a compact surlace M C 1R3 , there must exist a point p E M 
where K{P) > O. 

PROOF. Consider the continuous function p --'>-lpl2 on M. By compactness 
of M, there exists a Po E M where this function assumes its maximum. 
Let 1: U --'>- 1R3 be a local representation of M with 1(0) = Po. Locally, 
Ipl2 = I/(u)12 = 1/(0)12 + 2dlo(u)f(0) + d2Jo(u, u)f(O) + dlo(u)·dlo(u) + 3rd 
and higher order terms. Since 1(0) = Po is the point where the maximum 
value is obtained, I(O)·dfo = O. Therefore 1(0) = a·n(O) #- O, and the 
quadratic terms in the expansion of Ipl2 = I/(u) 1 2 may be written in the form 

aIlo(u, u) + lo(u, u) ~ O. 

Since 10 is positive definite and a #- O, aIlo must also be a definite quadratic 
form. Therefore K(p) = det Ilo/det 10 > O. O 

A somewhat more geometric but equivalent proof of this theorem goes 
as follows. Since M C 1R3 is compact, it !ies inside the region bounded by 
some sphere S~(O) of sufficiently large radius centered at the origin. Let r 
shrink until S~(O) has a first point (or points) of contact with M. Let Po be 
one ofthese points offirst contact. By exercise (6.8.12), ali normal curvatures 
of Mat p must have the same sign and have absolute value equal to or greater 
than I/r. It follows that K(p) ~ l/r 2 • 

6.2 Ovaloids 

In this section we will investigate a very interesting and important class of 
surfaces called convex surfaces. These are compact surfaces with strictly 
positive Gauss curvature. In 1R3, they turn out to be precisely the boundaries 
of bounded convex sets (see (6.2.3»).1 

6.2.1 DefinitioD. A compact surface M c 1R3 which has strictly positive 
Gauss curvature is called an ovaloid. In German, ovaloids are known as 
"Eifiăche," literally egg-surfaces, a name apparently due to Blaschke [A2] 
and one that is quite suggestive of their appearance. 

1 Our convex surfaces are referred to by many mathematicians as "strictly convex" sur­
faces. The c1ass of .. convex" surfaces in this terminology inc1udes those surfaces with 
K?: o. 
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In Chapter 2, section 3, we showed that a simply cIosed curve in the 
plane was convex (in the sense that it lay on one side of its tangent !ine at 
each point) if and only if its curvature was nonnegative. This result can 
easily be sharpened to say that a simply cIosed plane curve !ies strictly on 
one side of each of its tangent lines if and only if its curvature is strictly 
positive. We shall prove analogous results for ovaloids. 

EXAMPLE. The eJlipsoid (3.7.3) with p < c, e.g., p = O. To show that K > O 
is equivalent to showing that the second fundamental form, II, is definite 
(see (3.6.3». To prove this, write the equation for the ellipsoid M in the form 

3 

L a!(x!)2 = 1, 
!= 1 

Let Xo E M. For x E M near to Xo we may express the coordinates of x as 
foJlows: 

Xl = Xb + ",1 + tQI("" ",) + third and higher order terms. 

Here Q! is quadratic in '" = ("'\ ",2, ",3), and x + ",!ies in the tangent space 
to M at Xo (i.e., 2: alxb",1 = O). 

The quadratic terms satisfy 

LlaIXbQI("" ",) + L al(",1)2 = O. 

This is a consequence of substituting Xl = Xb + ",1 + ... into 2:f al(x!)2 = 1 
and looking at the quadratic terms. This relation shows that the normal 
component 2:1 aA(xl - xh) = 2:1 a!xhQ!("" ",) i' O whenever '" i' O, hence 
K> O. 

6.2.2 Theorem (Hadamard's characterization of ovaloids). 2 Suppose M C 1R3 
is an ovaloid. Then 

i) M is orientable; 
ii) given an orientat ion of M, the normal map n: M"""* S2 which it dejines 

is a diffeomorphism; 
iii) M is strictly convex: for every PE M, M /ies entirely on one side of the 

tangent space TpM; here TpM is considered as a plane through pin 1R3 • 

PROOF. i) Since K(p) > O, the second-order osculating surface to Mat p is 
an elliptic paraboloid (see (3.6.3». We can choose n(p) to be the unit normal 
pointing in the direction of the positive axis of this paraboloid. The vector 
field n(p) is cIearly continuous and, by (6.1.6), M is orientable. 

ii) In terms of a local representationf: U"""* 1R3 of M, K i' O is equivalent 
to the condition that -dnu or the Weingarten map -dnu o df;;l is bijective 
(see (3.5.5». Therefore dnp: TpM"""* Tn<p)S2 is a bijection and, by the inverse 
function theorem (0.5.1), n: M"""* S2 is a local diffeomorphism. 

2 Radamard, J. Sur certaines proprietes des trajectoires en dynamique. J. Math. Pures 
Appl. (5) 3, 331-387 (1897). For a modern version of Radamard's theorem which 
incJudes convex hypersurfaces in IR" +1 (submanifolds of dimension n whose second 
fundamental form is positive definite), see Ropf [AI2] or Chern [A61. 
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6.2 Ovaloids 

Now this means that n(M) c S2 is open and compact. It is certainly 
nonempty. Therefore n(M) = S2, i.e., n is onto. 

We wiII now prove thatn is injective. Choosepo E M and Ietp~ = n(po) E S2. 
Let Uo be an open neighborhood of Po and Ub a neighborhood of p~ chosen 
so that n: Uo -* Ub is a diffeomorphism. Let m denote the inverse of n, that 
is, m = (nlUo)-l: Ub -* Uo. We c1aim that m may be extended to a con­
tinuous function m: S2 -* M which satisfies n o m = ido It foIlows from this 
that m(S2) eMis open, nonempty and compact, which implies that m is 
surjective. Thus, if n(p) = n(q), there exists p' and q' in S2 with m(p') = p, 
m(q') = q. Applying n to these two equations implies that p' = q' and p = q. 
Hence n is one-to-one. 

The proof of the existence of the continuous extension of m to aII of S2 
uses the weIl-known idea of monodromy from complex analysis. Let p~ E S2. 
Join p~ to p~ by means of a curve c' = c'(t), O :::; t :::; 1, on S2 which has no 
self-intersections (for example, by a length-minimizing arc of agreat circ1e = 
a Iength-minimizing geodesic). 

Since n: M -* S2 is a local diffeomorphism, it is possible to extend 
m: Ub -* Uo to a mapping m: U'(c') -* M, where U'(c') is a neighborhood 
of c', and n om = ido We prove this c1aim as follows. Suppose t* = the first 
value of t for which this is not possible. Certainly t* > O, since c(O) = 

P~E Ub. Let c(t) = moc'(t), O:::; t < t*. As t-*t*, c(t) approaches a 
well-defined Iimiting value which we wiIl denote by c(t*): for, since M is 
compact, there exist positive constants k, k' such that 

for allp E M and ali X E T.M. This means that a sequence {c'(t l)} on S2, with 
ti < t*, Iim l ti = t*, is Cauchy if and only if {c(tz) = m o c'(t l)} is Cauchy 
inM. 

For a suitably small neighborhood U(c(t*)) of c(t*), ni U(e(t*)) is a 
diffeomorphism of U(e(t*)) with some subset of S2 which contains c'(t*). 
Obviously this diffeomorphism extends past t*. This means that t* = 1 and 
we have the required extension of m to a neighborhood of e'. 

Suppose c" = c"(t), O :::; t :::; 1, is some other curve on S2 connectingp~ to 
p~. There exists a homotopy c., O :::; s :::; 1, with e' = co, c" = Ci (i.e., e, is a 
continuously varying one-parameter family of curves which begins at e' and 
ends at c"). But since the value of m(pD is undisturbed by sufficiently small 
continuous changes of the curve by which it is defined (a small change of c' 
stiII remains in U'(e*)), it follows that m(p~) is defined independent of the 
choice of the curve c'. This proves the existence of a globaIly defined inverse 
of n, from which (ii) follows. 

To prove (iii) consider the "support function" h: M -* ~ of M at any 
Po E M which is defined by p f-+ h(p) : = n(po)· (p - Po). The statement of 
(iii) is equivalent to proving that h does not change sign. Since M is compact, 
h assumes a minimum at some Pl E M. At Pl, O = dh., = n(po)· dh" i.e., 
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6 The Global Geometry of Surfaces 

n(po) = ± n(pl)' If Pl #- Po, then, by (ii), n(po) = - n(pl)' This means that 
h(P) = -n(pl)'(P - Po). We may write 

h(p) = -n(Pl)'(p - Po) = -n(pl)'(p - Pl + Pl - Po) 

= - n(pI) . (p - PI) + h(PI)' 

For values of P near Pl> the first term is negative by our choice of n, con­
tradicting the choice of PI as the point where h assumes its minimum. There­
fore PI = Po and h(p) ~ O for ali P E M. Moreover h(p) > O if P #- Po. For 
if h(p) = O then h assumes its minimum value at P and the previous argument 
applies. O 

6.2.3 Corollary. Given P E M, a surface and n(p) a unit normal to Mat P, let 
Jt;, : = {q E 1R3 ! n(p)· (q - p) ~ O}. Jt;, is the closed halj-space bounded by 
TpM and containing the point P + n(p). If M is an ovaloid, let K = 
nPEM Jt;,. By the previous theorem, part (iii), M c K. K is a convex set. 
That is, ifr, s E K the line segment, Ts,joining r to s is also in K. Furthermore, 

if K denotes the interior of K, K is not empty and M = K - i. If rE K 
thenn(p)·(p - r) < O for allp EM. 

PROOF. Since Jt;, is convex for each P E M, so is K = nPEM Jt;,. Further, any 
P E M cannot be in K because each neighborhood (in 1R3) of P must contain 

points which do not belong to Jt;,. Thus K c K - M. 
Given Po E K, we have, for ali pE M, n(p)· (p - Po) ::;; O. If there is a 

PI E M with n(pI)' (PI - Po) = O then PI = Po. Indeed, otherwise there exist 
pi E M near PI with n(pi)' (Pl - Po) > O since d(n(p)· (p - PO))Pl = 
dnp1 . (PI - Po) + n(pI)' dpP1 = dnp1 ' (PI - Po) #- O. 

To show that K - M #- 0 we prove: If P~ E M and .. = .. (p~) > O suffi­
ciently small then, for Po = P~ + ..n(p~), g(P) = n(p)·(p - Po) < O for ali 
PE M. Let PI E M such that a = g(PI) ~ g(p) for alI PE M. Assume a ~ O. 
Since O = dgP1 = dnp1'(PI - Po), we have PI - Po = an(pI)' From g(p) = 
n(p)·(p - Po) = n(p)·(p - p~) + ..n(p)·n(p~) ::;; a it folIows that 

!PI - p~! ::;; !PI - Pol + !Po - p~! ::;; a + .. ::;; 2 ... 

Hence, if .. -+ O, PI -+ p~. On the other hand, for Pl near P~, 

g(PI) = n(PI)-(PI - Po) = n(PI)'(P1 - p~) - .. n(PI)·n(p~) < O, 

a contradiction to g(PI) ~ O. 
Finally, to prove that Po E K - M implies Po E K we observe that 

SUPPEM n(p)·(p - Po) < O. This is true also for p' sufficiently near Po. O 

6.2.4 Definition. Let (klJ) be a symmetric 2 x 2 matrix. The adjoint transposed 
matrix of (kli) is the matrix 
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Clearly ~j kj,Jl = Sl det(k1j). Thus, if k = det(klj) of O, then (kljjk) is 
the inverse matrix of (klj)' 

In preparation for the next theorems ofthis section, we prove two algebraic 
lemmata. 

6.2.5 Lemma. If(kik) and (k:1m) are related by the equations k:1m = ~i.k ala~kik' 
where a : = det(ak) of O, then their respective adjoint transposes are related 
by 

k1k = L: blb~f(lm·a2, 
l.m 

where L.f b~ak = Sic. 

PROOF. Compute. In the case where k = det(kik) of O, this follows from the 
usual transformation law relating the inverse matrices of (k1k) and (k:1m) 
(see (5.6.1,2)): 

o 

6.2.6 Lemma. Suppose (hik) and (htk) are 2 x 2 positive definite symmetric 
matrices with det(hik) = det(htk)' Then det(hik - h~) :::; O with equality if 
and only if (hik) = (h~). 

PROOF. Both the hypotheses and the conclusions of this lemma are inde­
pendent of transformations of the form h1m = L.i.k ala~hjk (or il = AHtA), 
where det A of O. It follows from our results (3.5.2) and (3.5.3) on the prin­
cipal curvature directions that a matrix A = (alc) exists such that 

H= AHtA = . _ (1 O) 
O 1 ' 

To see this, we consider H as the fundamental matrix of a first fundamental 
form and H* as the fundamental matrix of a second fundamental form. Then 
a pair {Xl' X2} of H-orthonormal vectors exists for which 

Xf-+H*(X, X); H(X, X) = 1 

assumes its maximum at minimum, respectively. 
Take as A the matrix carrying the natural basis of 1R2 into {Xl> X2}. 

Then det(H - H*) = (1 - al)(l - a2) = -(va;: - -va;)2, since ala2 = 
det il* = det il = 1 and al > O, a2 > O. This proves the lemma. O 

Geometric application of the above results 

1. Let M be an orientable surface in IRa and let (u, M') be a chart on M. 
With respect tof= u- 1 : U~M' c IRa, define the coefficients hik(U) ofthe 
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second fundamental form. If (v, M") is another similarly oriented ehart an~ 
h,m(v) are the eorresponding eoeffieients of II, then for u E u(M' II M"), 

OUIOUk 
h,m(v(u» = ~ '" "'" hlk(U). 

I.k uV uV 

If we write A = (OUI/ovl)lv, this equation may be written as 

fj = AHtA. 

The determinants of the tirst fundamental forms are related by 

g(v(u» = (det A)2. g(u). 

Lemma (6.2.5) yields 

Le., this expression is independent of ehange of eoordinates. Thus it gives . 
globally well-detined funetion on M. 

2. Let M and M* be two orientable surfaees in 1R3 • Suppose </>: M -+ M 
is an isometry, i.e., a diffeomorphism whieh preserves the tirst fundamentE 
forms. If (u, M') is a ehart for M, then (u o </>-\ </>M') is a ehart for M*. S~ 
we may write M and M* loeally in terms of the same parameters. Sinee </> i 
an isometry, gik(U) = g~(u). Let h~(u(P» = h'lk(u o </>-l(</>(p»). This detine 
a function on M. By (1) above, 

(*) " fic:..*_lk_----'..:h_Ik I k(P) := L.hlk-
i.k g u(p) 

is a well-detined funetion on M. It represents twiee the differenee of the Gaus 
eurvature funetions. We shall need k(p) for 

6.2.7 Lemma (The Herglotz integral formula 3). Suppose M and M* ar 
ovaloids in 1R3 . By (6.2.2), both M and M* are orientable, which means tha 
after a choice of orientation the mean curvature functions Hand H* ar 
defined. Suppose there exists </>: M -+ M*, an isometry. Fix Xo E 1R3• The, 
the following integral formula ho/ds: 

(**) J L k(p)n(p)·(p - xo) dM = J L 2H(p) dM - J L 2H*(</>(P» dM 

where k(p) is defined in (*) above. 

PROOF. 1. Let (u, M') be a ehart for M and (u o </> -1, </>M') the assoeiated ehal 
of M*. Iff = u- 1 : U -+ 1R3, we will show that 

(1) 

3 Herglotz, G. Dber die Starrheit der Einflăchen. Abh. Math. Sem. Univ. Hamburg 1~ 
127-129 (1943). 
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6.2 Ovaloids 

Both sides of (1) are invariant under change of coordinates: For the 
right-hand side this was shown above. If we write fk = 2.rfTee, and let 
~ = 2.k 1i*'kfUg, then the left-hand side equals div X, where X = 2.1 g'f. (see 
(4.1.7)). Therefore we choose to verify (1) in Fermi coordinates. In such 
coordinates r1k(UO) = O, g(uo) = 1, and ogJoul(uo) = O, which makes the 
left-hand side of (1) equal to 

(2) 2:1i~lkfk + 2:1i*lkhlkn. 
I.k I.k 

We apply the Mainardi-Codazzi equations (3.8.3 (ii)): hlk.l - h!l.k = O, 
which imply 

" Ii*'k =.1 .2 - 22.1 - 12.2 - = {1î*11 + 1i*21 - h* h* - O (k 1) 

f" h~12 + h~222 = -hT2.1 + hT1.2 = O (k = 2). 

This in turn implies that the first term of (2) is equal to zero. Therefore the 
left- and right-hand sides of (1) are equal. 

2. Using (1), 

Since 

! 2:1i*lkg1k = ! (h:2gU - 2hT2g12 + hT1g22) = 2: h1ţg*lk = 2H* 
g I.k g I.k 

and the second sum on the right-hand side in (3) may be written as div X, 

where X = 2.. ~J. and ~ = 2.k (h*lkJg)fk·(f - xo), integrating (3) over M 
yields 

(4) f' Î 2: h*lk h,~, (f - xo) dM = -fI 2H* dM. 
JM I.k g M 

(fM div X = O by Gauss's theorem (5.6.12).) If M = M* the formula is true 
with the * deleted. Call this formula (4'). The difference between this formula 
(4) and (4') is (**). O 

We now use the Herglotz integral formula to establish a famous result due 
to Cohn-Vossen and Herglotz.4 

• Cohn-Vossen proved this theorem for analytic surfaces in 1927. The methods he 
emp!oyed were different from those presented here. Herglotz' proof is in the paper in 
footnote 3. He makes use of an idea of Blaschke. See Blaschke, W. Ober eine geometrische 
Frage von Euklid bis heute. Hamburger Mathematische Einzelschriften, 23. H. Leipzig 
and Berlin: Teubner, 1938. For a discussion of the history of this problem as well as 
some further results in this area of research, see Efimov, N. W. FIăchenverbiegung im 
GrojJen; mit einem Nachtrag von E. Rembs und K. P. Grotemeyer. Berlin: Akademie­
Verlag,1957. 
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6 The Global Geometry of Surfaces 

6.2.8 Theorem (Rigidity of ovaloids). Let M and M* be two ovaloids which are 
isometric, i.e., there exists an isometry </>: M -+ M*. Then there exists an 
isometry B of Euclidean 3-space which maps M onto M* and which satisjies 
BIM=</>. 

PROOF. 

1. Using </>, we mayintroduce coordinates simultaneously on M and M*. 
Choose normal vector fie1ds n on M and n* on M* so that II and II* are both 
positive definite (see the proof of (6.2.2». Since </> is an isometry, K* = K, 
g* = g, and therefore h = det(h1k) = K·g = K*·g* = h*. We c1aim that 
(h1k) = (Mk)' The theorem follows from this claim byan application of (6.1.7). 

By (6.2.6), the c1aim will follow if we can show that det(hik - hrk) = O. 
2. By (6.2.3) there exists an Xo E 1R3 for which n(p)·(p - xo) < O, for ali 

pEM. Also, 

L (h*lk - Iilk)h1k = -2 det(h1k) + h;2hll - 2ht2h12 + ht1h22 
I,k 

= - det(h;';. - h1k) ~ O 

by (6.2.6). Therefore k(P) ~ O and (6.2.7) implies 

IL 2HdM - IL 2H* dM ~ O. 

Since we could interchange M and M* and derive the analogous inequality, 
it must be that 

f f k(p)n(p).(p - xo) dM = O. 

The fact that n(p)·(p - xo) < O implies that k(p) = O, hence 

det(h1k - h::C) = O. o 
6.2.9 Lemma (The Minkowski integral formulae).5 Let M be a compact 

orientable surface in 1R3 • Then the fo//owing integral formulae hold: 

i) - IL H(p)n(p)·(p - Xo) dM = IL dM. 

ii) - IL H(P) dM = IL K(p)n(p)·(p - Xo) dM. 

PROOF. 1. Let f: U -+ R 3 be a local representation of M by a positively 
oriented chart. We show that 

(a) 
1 & L . ~ <li (Vggl"fk) = 2Hn. 

I,k vg uU 

Since both sides of (a) are clearly invariant under choice of coordinates, it 
suffices to prove (a) in Fermi coordinates where glk.'(UO) = O and glk(UO) = 81k• 

The left-hand side is then equal to ZI.' glkh1kn = 2Hn by definition. 

5 Minkowski, H. Volumen uod Oberfiache. Math. Ann. 57,447--495 (1903). 
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2. Taking the inner product of (a) with (f - xo), we get 

Hn·(f - xo) = ,II'": 2: :. {(Vggl"fk)·(f - xo)} - \- 2: Vgglkglk, 
2v g I,k vUI 2v g I,k 

The last term is equal to -1. Statement (i) follows from Gauss's theorem 
(5.6,9). 

3. To prove (ii) we proceed in a similar fashion. First, if f is a local 
representation of M, 

(b) 1 o( lilk) 
, 1'": 2: 81 Vg - fk = 2Kn. 
vg I,k u g 

To prove this, we use the fact (established in the proof of (6.2.7» that 

g,l = LIIi~~ = O. Therefore the left-hand side of (b) is equal to 

~ 2:lilkhlkn = 2(!!.)n = 2Kn. 
g I,k g 

4. Taking the inner product of (b) with (f - xo), 

Kn·(f - xo) = _1_ 2: -; (Vg lilk fk.(f - xo») - _1_ vi 2: hlk glk' 
2Vg I.k au g 2Vg I,k g 

The last term is equal to - H. Statement (ii) now follows from Gauss's 
theorem (5.6.9). o 

We end this section with a famous result of Liebmann6 which characterizes 
the sphere as the only compact connected surface in IRa with constant curvature. 

6.2.10 Theorem.Let M be a compact connected surface in IRa with K = constant. 
Then K = r2 > O and M = Sf,r. a sphere ofradius l/r. 

PROOF. 1. By (6.1.8), M must have at least one point of positive curvature 
and therefore K > O. Setting K = r2 = constant, 

1 
- det(hlk - rglk) = K - 2rH + r2 = 2r2 - 2rH. 
g 

~o(r) := f Li det(htk - rgtk) dM = 2r 2 f L dM - 2r f L H dM 

~l(r):= fLidet(htk - rgtk)n·(p - xo)dM 

= 2 f L Kn· (p - xo) dM - 2r f L Hn· (p - xo) dM 

= -2 f L H dM + 2r f L dM (by (6.2.9». 

Thus ~o(r) = r ~l(r). 

6 Liebmann, H. Eine neue Eigenschaft der Kugel, in Nachr. KgI. Ges. Wiss. Gottingen, 
Math.-Phys. Klasse, 44-55 (1899). For further references, see the book of Efimov referred 
to in footnote 4. 
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2. Since K > O we may choose a normal vector field n making II positive 
definite. Since M is an ovaloid, there exists an Xo E ~3 for which n(p)· 
(p - xo) < O for aII pE M (see (6.2.3». Since det(h1k) = K·det(glk) = 

r 2 ·det(glk) = det(rglk)' (6.2.6) implies that det(h1k - rglk) :s; O, with equality, 
if and only if h1k = rglk' Therefore Llo(r) :s; O and Lll(r) ~ O which, combined 
with the equality Llo(r) = r Lll(r), implies that Llo(r) = Lll(r) = O. Therefore 
h1k = rglk, where ris a positive constant. This means that M consists entirely 
of umbilic points and, by (3.5.11), M must be a sphere of radius = Ilr. O 

6.3 The Gauss-Bonnet Theorem 

In this section we will prove one of the most important results in the global 
theory of surfaces. In contrast to the results in (6.2), which deal with the 
surfaces in Euclidean space, the Gauss-Bonnet theorem is a theorem of 
intrinsic differential geometry. In order to appreciate its fuIl significance, 
some familiarity with the topology of compact orientable surfaces is neces­
sary. This may be found in Seifert and Threlfall, Lehrbuch der Topologie, 
Chelsea, New York, N.Y., Lefschetz, S., Introduction to Topology, Prince­
ton University Press, Princeton, N.I., 1949, or Massey, W. S., Algebraic 
Topology, Harcourt Inc, New York, N.Y., 1967. 

In preparation for the proof of Theorem (6.3.2), consider a coordinate 
system (U, g) with ds 2 = (dUl)2 + gddu2)2, i.e., geodesic coordinates. In 
this situation, El(U) = (Ofeul)(u), E2(u) = (e/eu2)/..;g;;, is an orthonormal 
2-frame on (U, g). Let u(t), tEl, be a curve in (U, g) with g(li, li) = 1. If 
el(t), eit) is the Frenet frame on u(t), then the geodesic curvature of u is 
given by Kg(t) = g("Vel(t)/dt, eit» as in (4.2.6). 

6.3.1 Proposition. Under the above conditions, there exists a differentiable 
function O(t), tEl, such thal 

(1) el(t) = cos O(t)· El(u(t» + sin 0(t)E2(u(t». 

The function O(t) is uniquely determined up to integral multiples of 21T 
and satisjies 

(2) 

Remark. This proposition generalizes (1.4.1) and (2.1.3) (where the analogous 
re suit was proved for curves in Euclidean space) to curves on surfaces with 
a Riemannian metric. In the Euclidean case, we defined O(t) with respect to 
a parallel translation invariant orthonormal 2-frame, namely el> e2' Such a 
2-frame does not in general exist on a surface with K ~ O (see (4.4.2». 

PROOF. 1. The existence and uniqueness, modulo 21T, of O(t) satisfying (1) 
follows by an argument identical to the one in (2.1.3). 

2. We may write eit) as follows: 

e2(t) = - sin O(t)El(u(t» + cos 0(t)E2(u(t». 
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Since g(Eh Ek) = 81k, g(V EI/dt, Ek) + g(Eh V Ek/dt) = O, so, in particular, 
g(VEddt, EI) = O. Therefore 

Kg(t) = 8(t) + g(VEl/dt, E2)(t). 

But V El/dt = Ll,k Ulnlek and q2 = Vi,dVi, fil = r~l = r~l = O in 
geodesic coordinates (see (4.2.4)). From this, equation (2) follows. D 

6.3.2 Theorem (Gauss-Bonnet, local version).7 Let M be an oriented surface 
with Riemannian metric. Suppose P: F -+ M is a dijJeomorphism of a 
polygon F onto a subset of M. If ai' O ~ j ~ k, denote the exterior angles 
at the vertices of P(F) and K. = the geodesic curva ture of the boundary 
curve oP (traversed in the positive sense). Then 

(*) ff K dM + i Kg dt + 2 ai = 211. Jp 8P J 

Figure 6.1 Gauss-Bonnet theorem 

PROOF. 1. Suppose P lies entirely in one geodesic coordinate system (ul, u2). 
By (4.3.8), K may be written as div X: 

K = - Vi.ll = _1 {~(Wg(-(Vib)) + ~ O} Vi Vi OUl Vi ou2 ' 

where X = (- Vi,dVi)el' Using the divergence theorem (5.6.9), 

fI K dM = I. Vie tJu2 - Vie dul = -I. Vi,l du2• 
P uo/lP uo/lP 

We may parameterize oP to be a unit-speed, positively oriented, simply 

• Bonnet, O. Memoire sur la theorie generale des surfaces. J. de l'Ecole Polytechnique 19, 
H.32, 1-146 (1848). The important special case of a geodesic triangle (see (6.3.3 (ii))) was 
treated by Gauss in the "Disquisitiones." 
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c10sed curve u(t) = ,(ul(t), u2(t)), tEl. Let II = [af> bl], O $; j $; k, be sub­
intervals on which ui = u o II is smooth. By (6.3.1), 

-i vK,l du2 = L: (f O(t) dt - j' ICg(t) dt). 
"oap I 11 11 

We c1aim that LI Il O(t) dt + LI al = 2'IT, which will prove the theorem 
in this special case. J 

2. Proof of claim. If the metric g were the Euc1idean metric, i.e., if g = 
g22 = 1, then the c1aim would be precisely the Umlaufsatz (2.2.1). We now 
reduce the general case to the Euc1idean case as follows. On U, let 

ds.· = (dul)' + g'2,(du2)', O $; T $; 1, 

be a family of line elements with 

g.2. = T + (l - T)g2" 

For T = O, ds8 is the given line element on U and, for T = 1, dsf is the 
Euc1idean line element. Notice that each ds~, O $; T $; 1, is in fact a line 
element since g'22 is always strictly positive. For any TE [O, 1], we can detine 
the exterior angles a'l and the functions 0'1 as above. These functions will be 
continuous in T, for 

cos O (t) = g,(E'h u) h E E /. ~ , .~, w ere '1: = el; ,. : = e2 v g,,2 
V g,(u, u) 

sin (} (t) = g,(E,., u) 
, v'g.(u, u) 

cosa'l= .1 • v' g,(U(al)' u(al»)' v g.(u(bJ-l), u(bl_l» 
Furthermore, for every T the number 

2'ITn, : = L:f O,(t) dt + L: a'l = L: (8,(bl_l) - 8,(al)) + a'l 
I ~ J J 

is a multiple of 2'IT. Thus n, must be a constant integer, since it depends 
continuously on T: no = n, = nl = 2'IT, since 2'ITnl = 2'IT. This proves the 
c1aim. 

3. We now remove the restriction that P: F -+ M has values lying inside 
of a single geodesic coordinate system. Given P: F -+ M, we may subdivide 
Finto {F.}, 1 $; p $; J, so that each F. is a polygon and p. = PjF. has values 
lying in some geodesic coordinate system. For each p we have 

(*) II K dM + f ICg dt = 2'IT + L: (fJI. - 'IT), 
p. ap. J. 

where the sum on the right is taken over all the vertices of p. and aJ. = 'IT - fiJ.' 
Denote the number of vertices of the subdivision {F.} by v. Denote the 

number of edges by e and the number of faces or surfaces by f. Then 
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6.3 The Gauss-Bonnet Theorem 

v - e + f = 1. This can be proved as follows: If each Fp is a triangle, it 
follows from induction on the number of triangles since adjoining a triangle 
to a triangulation (Le., a subdivision by triangles) does not change the sum 
f - e + v = 1. Given a general subdivision into polygons, retining it to a 
triangulation does not change the sumf - e + v (proof by induction onf). 

Summing over p, the left-hand side becomes ffp K dM + f~p Kg dt since 
the inner edges are each traversed twice, once in each direction, and thus 
cancel out. The right-hand side may be computed as follows. First, 27rj­
~p ~,. {Jf. = ~f (Jf + 2mJ, where zi is the sum of the inner vertices and ~f is 
taken over the exterior vertices, Le., vertices of F. Now, ~p ~f. (-7r) = 
-27r1! + ~f (-7r), where e is the number of internal edges. Since -e + zi = 

-e + v, the right-hand side is thus equal to 27r(f - e + v) + ~f ({J, - 7r) 
=&-L~ O 

6.3.3 Corollaries. i) If {J, : = 7r - af are the interior angles at the k corners 
of the polygon P, then 

I f K dM + i Kg dt = L, {Jf + (2 - k)7r. Jp ~p , 
ii) (Gauss' theorema elegantissimum). If the k edges of the polygon Pare 

geodesics (Kg = O), then ffp K dM = ~f {Jf + (2 - k)7r. In particular, 

for k = 3 (a geodesic triangle): 

f{Jf = 7r + IL KdM. 

iii) Suppose K = Ko = constant and the edges of Pare geodesics. Let 

A(P) = ffp dM be the area of P. Then ~J {J! = (k - 2)7r + KoA(P). 
Jf, in addition, P is a triangle, then ~! (J! = 7r + Ko' A (P) ;:: O. In 
words, the sum of the interior angles of a geodesic triangle on a surface 
of constant curvature Ko is equal to 7r plus Ko times the area of the 
interior ofthe triangle. If Ko < O, then A(P) ~ -7rfKo. 

iv) If K ~ O, then there cannot exist a geodesic 2-gon, since that would 
mean ~ {J! ~ O, a contradiction. 

Theorem (6.3.2) has some very important applications to the theory of 
compact orientable surfaces with a Riemannian metric, namely the relation-

ship between ffM K dM and the Euler characteristic of M, which we now 

detine. 

6.3.4 Definitions. Suppose M is a differentiable orientable compact surface. 
Let il : = {P p: Fp -+ M Il ~ p ~ f} be a polygonal subdivision as detined 
in (5.6.10). Let v be the number of vertices of il (that is the sum of the 
points of M which are the images of the vertices of some Fp ). Let e be the 
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sum of the edges of TI, defined similarly, and let/be the sum of the faces 
of TI. The Euler characteristic 01 M (with respect to TI) is the number 

Xrr(M) = I - e + v. 

A polygon Pp : F -+ M is orientation-preserving if, for any positively 
oriented chart (ua, Ma), 

Ua o Pp : Fp () P ;l(Ma) C 1R2 -+ Ua C 1R2 

is orientation-preserving. 
In part 3 of the proof of (6.3.2) the sum 1- e + v (with respect to a 

subdivision of a polygon F) was introduced and it was shown thatl - e + v 
is always equal to +1. The Euler characteristic Xrr(M) is a generalization of 
this number to polygonal subdivisions of compact orientable surfaces, M. 
As the proof of the previous theorem shows, Xrr(M) remains unchanged bya 
refinement of TI. Thus we may assume, without loss of generality, that in our 
definition of Xrr(M) the polygons of TI are aH triangles (or, if need be, 
quadrilaterals ). 

EXAMPLES. 1. M = S2, the sphere. The polygonal subdivision TI of S2 defined 
by projection onto an inscribed tetrahedron allows us to compute Xrr(S2) = 
4 - 6 + 4 = 2. 

2. M = T 2 , the torus, may be subdivided by using three meridians and 
three paraHel curves. The resulting polygonal subdivision consists of quadri­
laterals with a total of 1= 9 faces, e = 18 edges, and v = 9 vertices. Thus 
Xrr(T2 ) = o. 

3. Let M o be a compact oriented surface and let Xrro be a polygonal sub­
division of Mo. We may assume that TIo contains a quadrilateral, say Po, 
introducing it if necessary bya subdivision of one of the polygons of TIo. This 
wilI not alter Xrro(Mo). It is possible to construct a new surf ace M = M o + H 
by a process known as "attaching a handle H." Consider the torus with the 
quadrilateral subdivision TI~ defined in (2) above. Let one of the quadrilaterals 
of TI~ be labelled P~. Then Mo - Po andH = T2 - P~ bothhave boundaries 
which consist of four smooth curves which we may identify (see Figure 6.3). 
The resulting surface M inherits a polygonal subdivision, TI, equal to the 
union of TIo - {Pol and TI~ - {P~}. Moreover, Xrr(M) = Xrro(Mo) - 2. This 
is becausewe have deleted two faces, fouredges, and fourvertices from TIo u TI~. 

~i~)~ ~ /.,. 
Mo + H = M 

Figure 6.2 Attaching a handle 
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6.3 The Gauss-Bonnet Theorem 

Definition. A surface of genus g is a surface which is diffeomorphic to S2 with 
g ~ O handles attached. By the above construction, such a surface has a 
polygonal subdivision II with Xn(M) = 2 - 2g. 

6.3.5 Theorem (The Gauss-Bonnet theorem for c10sed surfaces). Let M be 
a compact oriented surface with a Riemannian metric and let 71" be a poly-

hedral subdivision of M. Then ffM K dM = 271"' Xn(M). 

6.3.6 Corollary. The Euler characteristic of M is independent of the choice 
of polyhedral subdivision of M or the orientation of M. 

PROOF. 1. We proceed exactiy as in part 3 of the proof of Theorem (6.3.2). 
First of aII, formula (*) is valid for each p. Summing over p, the left-hand 

side becomes fJM K dM; aII of the edges cancel pairwise since each one 

appears twice, with opposite orientation. The right-hand side adds up to 
271"'Xn(M) because we have 271" for each face, -71" for each time an edge 
ends in a vertex (twice), and L.fp f3fp equals 271" times the number of vertices. 
This proves the theorem. 

2. To prove the coroIIary, simply observe that the left-hand side of the 
equation (*) depends only on M and its Riemannian metric, while the 
right-hand side is defined in terms of numbers which are independent of 
the orientation of M. O 

6.3.7 Theorem. Suppose M is a compact orientable surface with a Riemannian 
metric. 

i) If X(M) ~ O (resp. > O), then there exists apE M with K(p) ~ O 
(resp. > O). 

ii) If X(M) :5 O (resp. < O), then there exists apE M with K(P) :5 O 
(resp. < O). 

iii) lf K > O, then X(M) > O. [More precisely, x(M) = 2, for this is the 
only possible positive value of the Euler characteristic.] This implies 
that M is dijJeomorphic to S2. 

iv) If K = O, then ,«M) = o. This implies that M is dijJeomorphic to T2. 
v) If K < o, then x(M) < o. [More precisely, M is a sphere with two or 

more handles.] 

The proof [with the exception of the bracketed statements] foIIows 
directly from (6.3.5). [The bracketed statements foIIow from the c1assification 
theorem for compact orientable surfaces. Namely, any such surface is 
diffeomorphic to a sphere with g ~ O handles (see Massey, loc. cit.).] 

We end this section with an interesting application of the Gauss-Bonnet 
theorem to the theory of curves in ~3. 

6.3.8 Theorem (Jacobi).8 Suppose c(t), O :5 t :5 w, is a regular closed curve 

• Jacobi, C. G. J. Ober einige merkwiirdige Curventheoreme. Schumacher's Astro­
nomische Nachr. 20, Nr. 463, 115-120 (1842). 
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in IRa on which c(t) and c(t) are /inearly independent. Let (el(t), e2(t), ea(t» 
be the unique Frenet frame of c. Suppose the c/osed curve e2(t), O :5 t :5 w, 
which /ies on S2 is simple (i.e., without selj-intersections). Then this curve 
divides S2 into two sets of equal area = 217. 

PROOF. We may assume, without loss of generality, that t is arc length on c(t). 
Define r(t) by 

Since e2(t) = -K(t)el(t) + T(t)ea(t) and e2(t)·e2(t) = O, the vector fields 

El(t) ;= (-cos r(t»el(t) + (sin r(t»ea(t) 

and 
E2(t) ;= (sin r(t»el(t) + (cos r(t»ea(t) 

are the unit tangent and the unit normal vector fields on e2(t), respectively. 
This means that (El(t), E2(t» is the Frenet frame of e2(t) on S2 since 
(el(t), ea(t» span T e2(t)S2. 

Thus 

which implies 

Suppose P is one of the connected subsets of S2 bounded by eit), 
O :5 t:5 w. By the Jordan curve theorem, P is a "polygon." Since K = 1 on 
S2, Theorem (6.3.2) implies 

IL 1 dM + t r dt = IL dM = 217. o 

6.4 Completeness 

In this section M will always be assumed to be a connected Riemannian 
manifold. When M is required to have dimension = 2, i.e., when M is a 
surface, this will be indicated. 

6.4.1 Definition. The distance dep, q) between two points p and q in M is the 
infimum of the Iength L(c) of alI piecewise smooth curves c which join 
p toq. 

We wish to show that d( , ) actuaIly defines a metric on M in the usual 
sense. In other words, 
i) dep, q) ~ O (equality * p = q); 
ii) d(p,q) = d(q,p); and 

iii) d(p, q) + d(q, r) ~ d(p, r) (triangle inequality). 
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6.4.2 Theorem. The distance function d(p, q) defines a metric on M. Moreover, 
the metric topology is equivalent to the topology of M. 

PROOF. 1. Certainly d(p, q) ~ 0, d(p, p) = 0, and d(p, q) = d(q, p). Also the 
triangle inequality folIows easily from the definition of d( , ). 

2. Suppose d(p, q) = O. Consider a geodesic disk B.(p) centered at p. By 
(5.3.4), d(p, q) > ° for alI q rţ B.(p) and for any q E B.(p), d(p, q) ~ ° with 
equality if and only if p = q. ActualIy, only smooth curves are considered 
in the proof of (5.3.4). But piecewise smooth curves may also be admitted. 
One uses the fact that geodesic (polar) coordinates (u\ u2) have the charac­
teristic property that any curve connecting (uă, ug) to (ut, uD must have 
length at least lut - uăI. This is because the distance between orthogonal 
trajectories to the "u1 = constant" curves are given by the difference in the 
parametervalues ofthese trajectories. This completes the proofthat dis a metric. 

3. A basis for the open sets in the metric topology consists of embedded 
geodesic disks B.(p), P > O,p E M. These we know are open sets in the usual 
topology. Conversely, given a neighborhood U(p) of p, there exists a P > ° 
with Bp(P) C U(p). O 

We know from Chapter 5, section 3, that for p > ° sufficiently small B.(p) 
is a geodesic p-disk. (Recall that a geodesic disk is the image of B.(O) C TpM 
under expp on which exppIB.(O) is a diffeomorphism.) The maximal radius 
Pm(P) such that B.(p) is a geodesic disk for alI P < Pm(P) is in general a 
function of p and cannot be explicitly computed from knowledge of the 
curvature of M alone. The number Pm(P) is called the radius of injectivity at p. 
We know that Pm(P) is positive, but it may be arbitrarily small as shown by the 
example of the pseudosphere (3.9.1 (iii)). Likewise, Pm(P) may be equal to 
+00. This happens for any point in Euclidean n-space. 

By Theorem (5.2.5), for every p E M, there exists a neighborhood M(p) 
of p and a P = p(p) > ° such that, for every q E M (p), B.( q) is a geodesic 
disk. If K eMis a compact set, then there exists a finite set {Pj} c K such 
that {M(Pj)} covers K. Therefore, if P < p(K) = minj {p(Pj)}, B.(q) is a 
geodesic disk for alI q E K. We rewrite this result as follows. 

6.4.3 Proposition. Let K be a compact set in M, a surface with Riemannian 
metric. Then there exists a number P = p(K) > 0, depending only on K, 
such that, for ali PE K, exppIB.(O): B.(O) 4- M is an injective diffeo­
morphism: B.(p) = expp B.(O) is an embedded geodesic disk of radius p. 

When we defined the exponential map in (5.2), its domain of definition 
was a suitably small neighborhood ofthe zero vectors in TM. The objects of 
interest in Riemannian geometry in the large are those surfaces or manifolds 
M for which expp is defined on alI of TpM. 

6.4.4 Definition. A surface (or manifold) is said to be geodesically complete 
if the exponential map is defined on alI of T M. 
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An important theorem of Hopf and Rinow 9 characterizes geodesic 
completeness in several ways. Among other things, it states that M is 
geodesicalIy complete if and only if M is complete in the metric d( , ) defined 
in (6.4.1). (A metric space is complete if and only if every Cauchy sequence 
converges.) We wilI not prove this completely, but content ourselves with 
proving half of the equivalence. 

6.4.5 Lemma. Suppose M is complete as a metric space. Then M is geodesically 
complete. 

Note: The hypothesis is certainly satisfied if M is compact. 

PROOF. 1. Let X E TpM be a unit vector. We wish to show that the geodesic 
cx(t) = expp tX is defined for alI tE IR + = {t E IR I t ~ O}. We know that cx(t) 
is defined for an interval of the form [O, t*[. Let {In} be a sequence in [O, t*[ 
with Iimn tn = t*. Since d(expp tkX, expp tzX) :o; Itk - tzl, {Pn = expp tnX} 
is a Cauchy sequence. The assumption that M is metricalIy complete implies 
that there exists a q E M with Iimn Pn = q. ' 

2. According to (5.2.5), there exists a neighborhood M o of q and a p > O 
such that for every p* E Mo the exponential map expp is defined on RiO) c T pM. 

By choosing n large enough to make t* - tn < p/2, we may insure that 
Pn E M o• This means that the geodesic ray emanating from cx(tn) with initial 
direction cx(tn) E TpnM is defined for alI Iti < p, so that cx(t) is defined for 
tE [O, tn + p). But tn + P > t*, and thus cx(t) is defined for alI t ~ O. D 

The most important property of geodesically complete surfaces and 
manifolds is contained in the following theorem. 

6.4.6 Theorem (Hopf-Rinow).9 Suppose M is geodesically complete and 
connected. Then any two points of M may be joined by a minimal geodesic 
whose length is equal to dep, q). 

Note: For the definition of "minimal geodesic," see (5.3.3). 

Before proving the theorem, the reader is urged to notice that the converse 
of the theorem is not true. For example, the interior of the unit-disk of 1R2 
with the Euclidean metric satisfies the conclusion of the theorem (any two 
points may be joined by a straight line (minimal geodesic) lying inside the 
disk), but is not complete. 

PROOF. 1. Without loss of generality, we may as sume that dep, q) = r > O. 
Let p be such that O < p < r and expplBiO) is a diffeomorphism from 
B.(O) c TpM to Bip). Choose € satisfying O < € < p, and define S = S.(p) 
to be equal to expp S.(O), where S.(O) is the hypersphere of radius €, centered 
at O ETpM. 

• Hopf, H., and Rinow, W. Uber den Begritf der vollstăndigen ditferentialgeometrischen 
FIăchen. Math. Ann. 116, 749-766 (1938). 
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Since Sis compact, there exists a Po E S such that d(po, q) s dep', q) for 
ali p' E S. Let X E TpM be the unique unit tangent vector such that Po = 

expp €X. We will show that expp r X = q and thus c(t) = expp tX, ° S t S r, 
is a minimal geodesic from p to q. 

2. Toward that end, we shall prove that for tE [O, r], 

«t») d(c(t), q) = r - t. 

We know that «(t) holds for t = €. Since every curve from p to q must pass 
through S, 

r = dep, q) = min(d(p, p') + dep', q)) = € + d(po, q) = € + d(c(€), q), 
p'sS 

which implies «€)). Similarly, «t» holds for all t s €. 
Suppose now that to E [O, r] is the supremum of ali t' such that «t) holds 

for t E [O, t'[. By the paragraph above, to ~ €. By continuity of both sides of 
the equation d(c(t), q) = r - t, it follows that «to» holds. 

s 
S' 

Figure 6.3 Construction of a minimal geodesic 

Suppose that to < r. We will arrive at a contradiction. Let S' be a small 
hypersphere centered at c(to) with radius €', ° < €' < r - to. If p~ E S' is a 
point on S' whose distance from q is the minimum for ali points on S', and 
c'(t), to S t S to + €', is the minimal geodesic from c(to) to p~, then 

d(c(to), q) = min(d(c(to), q') + d(q', q) = €' + d(p~, q), 
q'eS' 

i.e., 

(*) d(p~, q) = (r - to) - €'. 

But p~ = c(to + €). To prove this, first observe that 

dep, p~) ~ dep, q) - d(p~, q) = r - (r - to) + €' = to + €'. 

But since the composite curve c I [0, tol followed by c' has length to + €' S 
dep, p~), it follows that it is an unbroken geodesic, i.e., p~ = c'(€) = c(to + €). 
The relation (*) now implies ((to + €')), contradicting the definition of to. 
Therefore to = r and «r) is our claim. O 

Remarks. 1. The careful reader is encouraged to pinpoint exactly where in 
the proof the hypothesis of geodesic completeness was used. 
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2. Minimal geodesic joins between two points need not be unique. The 
simplest example is the sphere on which any two antipodal points may be 
joined by uncountably many minimal geodesics. 

3. In the special case that M is simply connected and the curvature is non­
positive, a strengthened version of Theorem (6.4.6) will be proved, albeit 
in a quite different way (see (6.6.4». 

6.5 Conjugate Points and Curvature 

In this section M will always denote a complete surface with a Riemannian 
metric. The first few results obtained may be generalized to complete 
Riemannian manifolds, with little or no changes in the proofs. The com­
parison theorems are somewhat harder in the general case. 

We shall have need to refer to section 5.4, which provides some basic 
results conceming Jacobi fields. 

6.5.1 Definition. Let c = c(t), t ;:: O, be a geodesic ray on M with c(O) = p 
and c(O) 1= O. Let c(t) = tc(O), t;:: O, be the ray in TpM for which 
expp c(t) = c(t). A point c(t1), t1 ;:: O, is said to be conjugate to p = c(O) 
(along c I [O, td) provided 

d(expp)C<ll): TC<ll)(TpM) -+ TC<ll)M 

is not bijective, i.e., expp: TpM -+ M is not regular at C(t1)' 

Remarks. 1. A conjugate point of c(O) along c can only occur for some 
t1 > O, since (d expp)o is bijective (see (5.2.4»). 

2. Since d(expp)c<I)E(t) = c(t) 1= O, the kemel of the linear map (d expp)c(t) is 
always in the complement of the one-dimensional linear subspace of 
TpM(!<I) determined by E(t). In fact, the proof of the next proposition will 
imply that the kemel is orthogonal to the line spanned by 2:(t). 

Figure 6.4 A conjugate point 

6.5.2 Proposition. The following statements are equivalent,' 
i) q = c(t1) is conjugate to p = c(O) along c I [O, td. 

ii) There exists a non trivial lacobifield Y(t) along c(t), O ::o; t ::o; t1> t1 > O, 
with Y(O) = Y(t1) = O. 

PROOF. Using (5.4.3), we may assert the existence, for t sufficiently small, of a 
nontrivial Jacobi field Y(t) with Y(O) = O and A = (VYJdt)(O) 1= O, where 
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A is orthogonal to C(O). In fact, Y(t) may be written in the form 

Y(t) = (d expp)c<t)tA. 

This expres sion for a Jacobi field is valid for arbitrarily large t. The proof 
of (5.4.3) carries over verbatim to the case of a geodesic c, defined on an 
arbitrary nonempty open intervalle ~, where c(J) lies within some co­
ordinate chart (u, M o) of M. 

Thus Â E TC<tl)(TpM) is a nonzero element of the kernel of (d expp)C<t,) if 
and only if the Jacobi field Y(t) that is determined by A = Â/t, satisfies 
Y(t1) = O. This proves the proposition. D 

We are now in a position to generalize the results of Theorems (4.3.9) and 
(5.3.4) about the length-measuring properties of geodesics. 

6.5.3 Theorem. Suppose c = c(t), O ~ t ~ a, a > O, is a unit-speed geodesic 
on M which contains no conjugate points, i.e., no point of c is conjugate to 
c(O) along c. Then for any curve b which is sufficiently close to c and joins 
c(O) to c(a), L(b) ~ L(c). 

PROOF. Consider the differentiable function cf>: ]- 8, a + 8[ x ]- .. , .. [ -+ M 
defined by 

(r, O) t-+ expp«r cos O)e,(p) + (r sin 0)e2(p)), 

where{e1(p), e2(p)} = {C(O), A} is an orthonormal basis ofTpM. This function 
was introduced in the proof of (5.4.3), where the existence and regularity 
(for r > O) of cf> is proved for sufficiently small .. > O, 8 > O. Locally, the 
map cf>1{r > O} is a coordinate map. In fact for r > O, cf> defines (Iocally) polar 
coordinates which, by (5.3.2), are geodesic coordinates based upon an arc of 
the geodesic circle expp{Sr(O)}. Suppose b = b(s), So ~ S ~ SI> is a curve rrom 
c(O) = b(so) to c(a) = b(S1) which is sufficiently close to c to lie within the 
range of cf>. As in (4.3.9), the length of b between parallel curves u1 = r = 

r1 = constant and u' = r = r2 = constant is equalto or greater than Ir2 - rIi 
= distance between these parallel curves = length of c(t) between these 
curves. Therefore L(b) ~ L(c). D 

Remark. This theorem has the following partial converse: Suppose c contains 
a point in its interior which is conjugate to c(O). Then in every neighborhood 
of c there exists a curve b joining c(O) to c(a) which is strictly shorter than c. 

The proof of this result uses the second variation formula for the length 
integral, and, while not difficult, is long, and we prefer to omit it. 'O 

In the limit case, where the end-point c(a) is conjugate to c(O) along c, it is 
not possible to say in general whether c is locally the shortest curve from c(O) 
to c(a) or not. The situation is rather like the case of a real valued function 

10 For a proof of this resuIt, see Gromoll-Klingenberg-Meyer [A61 ar Kobayashi, S. 
On conjugate and cut loci. In: Studies in Global Geometry and Analysis [B91, ar Bishop 
and Crittenden [B21. 
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f(x) with ['(xo) = ["(xo) = O. The function f may or may not have a local 
minimum at Xo. 

6.5.4 Examples of Jacobi fields. On a surface of constant curvature K = Ko 
the differential equation for a Jacobi field is ji(t) + Koy(t) = O (see (5.4.1)). 
ActualIy the Jacobi field is Y(t) = y(t)e2(t), where e2(t) is a unit normal 
vector field along the geodesic in question. We are interested in solutions 
with y(0) = O, y(O) = a '1 O. 

y(t) = a sin(t· VKo), 

y(t) = at, 

y(t) = a sinh(t· yIjK'J), 

if Ko > O, 

if Ko = O, 

ifKo < O. 

Thus conjugate points occur only in the case Ko > O, since the functions at 

and a sinh(t· yIjK'J) have no zeros when I > O. 

If the curvature of M is not constant it is still possible, under certain 
conditions, to obtain qualitative information about the occurrence of con­
jugate points. The main resuIt we wiJl prove along these lines is Theorem 
(6.5.6). To prove this theorem, we wilI need the folIowing resuIt from the 
theory of ordinary differential equations. 

6.5.5 Lemma (Sturm comparison theorem)Y LeI U(/) be a solution to 
u(t) + A(t)u(t) = O with u(O) = O, zi(O) = 1, and V(I) a solulion 10 V(I) + 
B(t)v(t) = O with v(O) = O, v(O) = 1. Suppose A(t) ;:: B(t). lf a and bare 
the jirst zeros, after I = O, of U(/) and v(t), respectively, lhen a :5 b. 
Furthermore, for to, tl satisfying O < to < tl < a, V(tl)U(tO) ;:: u(t1)v(tO) 

and v(t1) ;:: u(t1). 

(lf A(t) > B(l), then a < b, Vl(tl)U(tO) > u(t1)v(tO)' and v(t1) > U(ll ).) 

PROOF. 1. Since zi(O) = v(O) = 1, U(I) > O for aII t, O < t < a, and V(I) > 
O for alI 1, O < I < b. Assume that a > b. We have 

O = 1: u(v + Bv) - v(u + Au) dl = (ui! - vu)lg + f (B - A)uv dl. 

Since A(t) ;:: B(f), the integrand (B - A)uv on the right is nonpositive in 
the interval [O, b], which means that ui! - vulg = u(b)i!(b) is nonnegative. 
But u(b) > O and i!(b) < O, a contradiction. 

2. Suppose O < I < a. Since 

0= f u(v + Bv) - v(u + Au)dl 

= (ui! - VU)lb + f(B - A) uv dl :5 (ui! - vu) [, 

11 Sturm, J. C. F. Memoire sur Ies equations dilferentieIIes du second ordre. J. Math. 
Pures App/. 1, 106-186 (1836). 
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6.5 Conjugate Points and Curvature 

(d/dt)(log v(t)) ~ (d/dt)(log u(t)). Thus if ° < to :5 tI < a, v(tl)u(tO) ~ 
u(tl)v(to). Now 

Iim v(to)/u(to) = 1 and u(O) = v(O) = ° 
to-O 

imply that V(tl) ~ U(tl). 
3. If A(t) > B(t), an analogous proof gives the sharper results. D 

6.5.6 Theorem. Suppose c(t), t ~ 0, is a unit-speed geodesic. Define K(t) = 
K o c(t). 
i) lf K(t) :5 Kl for aII t, then c(O) has no conjugate points along c for 

tE [O, '!T/vRd. (lf K(t) < Kh c(O) has no conjugate points along c for 

tE [0, 7T/vRd.) 
ii) lf ° < Ko :5 K(t) for aII t, then c(t) must have at least one conjugate 

point in 10, 7T/vRo1. (If Ko < K(t), then c(O) must have a conjugate point 

in 10, '!T/vRo[.) 

In case K' :5 0, we interpret '!T/R to be +00. 

PROOF. 1. Suppose K(t):5 Kl and assume Kl > O. Let B(t) = K(t), 
A(t) = Kh and apply (6.5.5) above. The solution u(t) is equal to 

sin(tvRl)/vRl . Thus v(t) cannot vanish for t < 7T/vRh which means 
that any nontrivial Jacobi field along c(t) with initial value = ° cannot 

have another zero in 10, 7T/vRl [. By Proposition (6.5.2), c(t) has no con­

jugate points in 10, 7T/vRl [. 
2. The other cases of (i), as well as (ii) are proved analogously. (The sharp in-

equalities follow from the sharp inequalities of (6.5.5).) D 

Remark. This result can be interpreted as a comparison theorem, comparing, 
qualitatively, the placement of conjugate points along geodesics on a surface 
of bounded curvature with the well-known distribution of conjugate points 
on an appropriate surface of constant curvature Kl or Ko. See the examples 
in (6.5.4). 

These examples also show that the inequalities in (6.5.6) are the best 
possible ones. 

6.5.7 Corollary. Suppose c(t), t ~ 0, is a geodesicon which Ko :5 K o c(t) :5 Kl. 

Then c(O) has no conjugate points along c for tE [O, 7T/vRl [ and at least 

one conjugate point in ['!T/vRh 7T/VKo1. 

Since we are assuming M to be complete in this section, it is worth noticing 
what the condition K ~ Ko > ° implies for complete surfaces. First of aII, 
Theorem (6.5.6) implies that every geodesic segment of length greater than 

7T/vRo has a conjugate point in its interior (with respect to the initial point). 
By the converse to (6.5.3), which we stated but did not prove, such a 
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geodesic segment cannot measure length, so it is not a minimal geodesic 
connecting its end-points. Therefore we have the following theorem. 

6.5.8 Theorem (Bonnet).12 On a complete surface M with K ~ Ko > O, the 

distance between any two points is at most 7T/VKo• Therefore, M is a 
complete bounded metric space and hence is compact. 

As we pointed out at the beginning of this section, the results about 
conjugate points hold true for n-dimensional Riemannian manifolds. Bonnet's 
theorem also generalizes. The necessary curvature inequalities involve 
sectional curvature. 

6.6 Curvature and the Global Geometry 
of a Surf ace 

In this section, M will always be a complete surface with a Riemannian metric. 
The assumption that the Gauss curvature of a surface M lies in some pre­
determined interval has some important consequences for the geometry of M. 
The results of the previous section will play a central part in the discussion. 

6.6.1 Theorem. Suppose K ~ Kl on M. Then a geodesic segment of length < 
7T/VK1 is the shortest curve joining its end-points when compared with ali 
curves remaining in a sufficiently small neighborhood of the segment. 

This follows directly from (6.5.6) together with (6.5.3). 

It is easy to see that if K ~ Klo a geodesic of length 7T/VK1 need not be a 
minimal geodesic joining its end-points: First of all, this could happen 
because M was not simply connected. For example, on the fiat torus (K == O), 
there exist cIosed geodesics which can be considered as joining a point p to 
itself, and d(p, p) = O. 

A simply-connected counterexample may be constructed as follows: 
Consider a surface ofrevolution that looks like two globes ofradius = 1, con­
nected by a very narrow neck-an hourglass with a tapered waist. The 
curvature on the globular parts can be bounded above by a constant equal 
to 1, while the curvature of near the waist will be negative. Consequently, 
K ~ Kl = 1 on this surface. However, the parallel circIe at the waist will be a 
cIosed geodesic (by (4.5.1)). Since we may make the waist as small as we like, 

the cIosed geodesic can be m~de to have length strictly less than 7T/VK1 = 7T. 

12 Bonnet, O. Sur quelques proprietes des lignes geodesiques. C.R. Acad. Sci. Paris 40, 
1311-1313 (1855). Actually, Bonnet proved the following result: The "outer diameter" 
of an ovaloid (Le., the maximum distance, in Euclidean space, between a pair of points 
on the ovaloid) is bounded above by "Iv min K. A proof of the theorem stated above 
may be found in Gromoll-Klingenberg-Meyer [B9] or Kobayashi-Nomizu [B13]. 
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6.6 Curvature and the Global Geometry of a Surface 

Figure 6.5 Hourglass with curvature s K, = 1 

In this example, K takes on some strict1y negative values (on the waist). 
On compact surfaces which are simply connected and satisfy ° < K :5: K" 
the conc1usion of (6.6.1) holds even globally, i.e., a geodesic segment of 

length :5: 1T/v'K (not just < 1T/v'K) is the shortest curve joining its end-points 
when compared with ali curves on M. A compact simply-connected surface 
with K > ° is isometric to a convex surface in Euclidean space, that surface 
being unique up to rigid motions of Euc1idean space (see (6.8.1». 

Unfortunately, we cannot prove this result here. 
See (6.8.3) for more discussion on this subject as well as references [A6) 

(the Kobayashi artic1e), [B9), and [B13). 

6.6.2 LemmaP Let K :5: Kl an M. Define p = 1T/v'Kl . Suppose c = c(t), 
O S t s a, is a unit-speed geodesic Iram p = c(O) ta q = c(a), a < p. Let 
b = b(s), So :5: s :5: Si> be another curvefrom p ta q which may be written as 

b(s) = expp b(s), 

where b(s) is a curve [ying in BP(O) c TpM with b(so) = 0, b(s,) = ac(O). 
Then L(b) ~ L(c). 

Note: Compare this result with (5.3.4). There the conc1usion is stronger, 
but the hypothesis is also stronger; p must be less than the injectivity radius 
atp. 

PROOF. Since K :5: K" itfollows from (6.5.6 (i» and (6.5.1) that exp.: BP(O) --+ M 
is a local diffeomorphism. By means of this diffeomorphism, the Riemannian 
metric g on M induces a Riemannian metric g on BiO): 

g~(g, Y) : = gexppjJ(d exp. g, d exp. Y). 
13 The proof depends on the " Gauss lemma .. which says that radial geodesics emanating 
from p cut geodesic circles (centered at p) orthogonally. This follows from (5.3.2). For a 
more general proof, which works for manifolds, see Gromoll-Klingenberg-Meyer [B91. 
p. 137. or Bishop-Crittenden [B2], p. 147. 
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6 The Global Geometry of Surfaces 

With respect to this metric, expplBiO) is a local isometry. Observe that polar 
coordinates in BiO) are geodesic polar coordinates for the surface (BiO), g). 
The theorem now follows from (5.3.4) applied to (Bp(O), g). O 

As the example of the hourglass surface with a narrow waist and curvature 
K s; KI = 1 shows, closed geodesics need not be "Iong" in the sense that 
no a priori lower bound on their length can be predicted from an upper 
bound on the Gauss curva ture. However, the situation is not hopeless. Let us 
take a closer look at the hourglass example. Consider this waist geodesic, c, to 
be a geodesic segment whose initial point is equal to its end-point. Any family 
of curves which describes a deformation of the geodesic c into the trivial 
geodesic formed by the initial-point (= end-point) of c (keeping the initial­
point-end-point fixed) contains curves which are "long" in the sense that 

Figure 6.6 Deformation of the cIosed waist-geodesic 

they will have length ~ 2/VKI = 21T. This may be seen intuitively by looping 
a curve over one ofthe hemispheres. We wiU now make this precise. Suppose 
Co = co(t), O s; t s; 1, and Cl = CI(t), O s; t s; 1, are two curves from p to q. 
The curves Co and CI are said to be homotopic if there exists a continuous 
function h: [O, 1] x [O, 1]---+ M such that each c.(t) = het, s), O s; t s; 1, is a 
curve fromp to q and co(t) = het, O) and cl(t) = het, 1) are the given initial 
curves. The family c., O s; s s; 1, is called a homotopy from Co to CI' 

6.6.3 Lemma (Klingenberg).14 Let Co and CI be two distinct geodesics Irom p 
to q with L(co) s; L(cI)' Suppose c., O s; s s; 1, is a homotopy Irom Co to CI' 

Then, if K s; KI' there exists So E [0,1] such that 

L(c,.) + L(co) ~ 21T/VKI. 

14 See Klingenberg, W. Dber riemannsche Mannigfaltigkeiten mit positiver Kriimmung. 
Comment. Math. Helv. 35,47-54 (1961). 
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6.6 Curvature and the Global Geometry of a Surface 

Remarks. 1. Before proving this lemma, note its relevance to the preceding 
discussion. Let Cl be the waist-geodesic and let Co be the constant 
"geodesic"; co(t):: p. Then, since L(co) = O, the lemma implies the 
above claim. 

2. The inequality in the lemma is best possible as is shown by the example of 
antipodal points on a sphere connected by great semi-circles. 

3. The lemma has interesting consequences in the case that Kl ~ O. Since we 

interpret 2TT/v'Kl = +00 in this case, it means that two distinct geodesics 
fromp to q cannot be homotopic. In particular, a closed geodesic cannot be 
homotopic to a constant curve. This fact will be exploited in Theorem 
(6.6.4) below. 

Figure 6.7 Homotopy (Adapted from Manfredo P. do Carmo, Differential Geometry of 
Curoes and Surfaces, Prentice-Hall, Inc., 1976, p. 389.) 

PROOF. Let TT/VKl = p. Since K ~ Kh (6.5.6) implies that alI geodesics 
emanating from pare free of conjugate points in Bip). By (6.5.2), this means 
that expp BiO) is regular (Le., of maximal rank). If L(co) ~ p there is nothing 
to prove, so we might as well assume L(co) < p. Let Co = co(t) = tc(O), 
O ~ t ~ to, be the line segment in TpM which begins at O E TpM, satisfies 
co(t) = expp co(t), and ends at il = co(to) E Bp(O). 

For sufficiently small s, the curves c. may be lifted to curves C. from O to il 
which lie in BiO), Le., there exist curves C. such that c.(t) = expp c.(t). The 
curves c.(t) depend continuously on s. (Since exppIBp(O) is a local diffeo­
morphism each C. must end at il.) 

But such a lifting C. cannot exist for ali s E [0,1]. For, since Cl is a geodesic, 
this would force Cl to be equal to c o, contradicting the assumption that 
Co =F Cl' Therefore to each E > O there must exist an s = S(E) E [O, l[ such 
that the curve C. C Bp(O), defined above, comes within distance E of the 
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boundary of B.(O), The length of the curve C. must be at least 2p - 2e -
L(ca). Consequently, by (6.6.2), L(c.) + L(ca) ~ 2p - 2e. But thisinequality 
holds for aII e > O, and therefore the lemma foIIows. D 

Remark. This lemma and its proof carry over word-for-word to Riemannian 
manifolds. 

We wiII now use this lemma to prove a famous theorem of Hadamard. 

6.6.4 Theorem (Hadamard).15 Suppose M is connected, simply connected, and 
complete with K :5 O everywhere on M. Then for every p E M, 

(*) exp,,: T"M -+ M 

is a bijective dijJeomorphism. (In other words, M is dijJeomorphic to 1R2.) 

Moreover, there exists a unique minimal geodesic joining any two points, 
p andq, in M. 

Remarks. 1. The theorem holds under the slightly weaker condition that 
there are no geodesic segments with conjugate points on M (cf. (6.8.4». 

2. The last statement sharpens the resuIt (6.4.6) of Hopf and Rinow; we wiII 
prove this without using (6.4.6). 

3. The fact that (*) is injective also foIIows from (6.3.3 (iv». 

PROOF. I. The assumption that K :5 O aIIows us to use (6.5.6) and (6.5.2) to 
concIude that (*) is regular (maximal rank) and therefore is a local diffeo­
morphism. As in (6.2.2 (ii», we can show that (*) is onto: Suppose q E M. 
Consider a curve b = b(s), Sa :5 s :5 SI> joining p to q. We may lift this 
curve to T"M, via the inverse of exp", to a curve b = b(s), Sa :5 s :5 SI> 

which connects O E T"M to a point ii E T"M. We have exp" b(s) = b(s). 
This means that q = exp" ii. Note: That exp" is onto can also be deduced 
from (6.4.6). 

2. We wiII now show that (*) is one-to-one: Suppose there exists iia;'iil E T"M 
with exp" iia = exp" iil = q E M. Let Ct(t), O :5 t :5 1, be the line segments 
from O to ii" i = O, 1. Then CI(I) = exp" Cl(t), i = O, 1, are geodesics from 
p to q. Since M is simply connected, Ca is homotopic to cl . This contradicts 
remark (3) to (6.6.3) unless Ca = Cl' But Ca = Cl implies that qa = ql' 

3. Let PE M. From the above discussion, it foIIows that Bip) is a geodesic 
disk for alI p > O. Given q E M, choose p > dep, q). Then q E Bip) and, 
by (5.3.4), there exists a unique geodesic from p to q. 

6.7 Closed Geodesics and the 
Fundamental Group 

In this section, M wiIl always be assumed to be complete. A nonconstant 
geodesic c = c(t), O :5 t :5 w, is said to be closed of period w ifC(w) = c(O). 
c is called prime if w is the smallest positive number w' such that c( w') = c(O). 

,. Hadamard, J. Les surfaces il courbures opposees. J. Math. Pures Appl. (5) 4, 27-73 
(1898). 
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EXAMPLES. 1. Parameterized great circles are cIosed geodesics on the sphere 
M = S2 whose period is 21T. Also, multiply covered great circles (of period 
21Tk, k = 1,2, ... ) are cIosed geodesics. 

2. Let M be the Hat torus. M is the quotient of the Euclidean plane, 1R2, 

under the operation of 7L x 7L defined by 

«m, n), (u, v» E 7L x 7L X 1R2f-+ (u + m, v + n) E 1R2. 

The geodesics of 1R2, the straight lines u(t) = alt + ao, v(t) = b1t + bo with 
a~ + bi =1= O, cover geodesics on M. The latter are cIosed geodesics if and 
only if a11b1 or b11a1 is rational. 

We want to investigate how elements ofthe fundamental group of M and, 
more generally, certain fixed-point free isometries can give rise to cIosed 
geodesics. 

Fixp E M and let aCt), O :::; t :::; 1, be a continuous curve which begins and 
ends at p; aCO) = a(l) = p. Denote by D(P) the set of all such curves. If 
f3 E D(p), we may consider the curve 

{ a(2t), 
f3 * aCt) = f3(2(1 _ t)), 

ifO:::;t:::;! 

if!:::;t:::;l, 

that is, f3 * a is the curve a followed by f3. Let 1 E D(p) be the constant curve. 
Denote by [a] the set of curves in D(p) which are homotopic to a via a homo­
topy which fixes p. The operation * is assocÎative up to homotopy. It is easy 
to check that if [f3] = [f3'] and [a] = [a'], then [f3 * a] = [f3' * a'], [1 * a] = 

[a]; and if a- 1(t) = a(1 - t), then [a * q:-1] = [1]. Therefore the operation 
[a] * [f3] = [a * f3] is well defined and, with that operation, ([a] I a E Q(p)} is a 
group with identity = [1] and [a]-l = [a-l]. This group is called the 
fundamental group of M at p, and is denoted by 1Tl(P). See Massey, loc. cit., 
for more details. 

o: E 1l1p) p • " • P -1 E 1l1q) 

Figure 6.8 

If M is connected and q is another point of M, then 1Tl(P) is isomorphic to 
1Tl(q). If p is a curve connectingp to q, then for [a] E 1Tl(P), [p * a * p-1] E 1T1(q), 
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and the map [a] 1-+ [p * a * p-1] is an isomorphism. In this case we write 
'lT1(M) for the fundamental group of M (at any point). 

EXAMPLES. I. 'lT1(S2) = {[Il}, since every curve a E Q(p), pE S2, is contrac­
tible, i.e., homotopic to the constant curve c (t) == p. 

2. 'lT1(T2) = 7L x 7L, where 7L = integers. To see this, consider the standard 
torus in 1R3 (3.3.7). Since the fundamental group does not depend upon the 
choice of metric, but only upon the topology of the manifold, we are free to 
choose a convenient model. Let a denote the closed geodesic which forms the 
internal latitude line. Fix PE a and let fi be the longitude circle (a closed 
geodesic also) through p. If am = a * a * ... * a, a- m = (am)-l, etc., then it 
can be shown that every curve y E Q(p) is homotopic to unique curve of the 
form am * fin for some (m, n) E 7L x 7L (proof left as an interesting exercise 
for the reader). This correspondence is a group isomorphism. 

We shall assume the existence of a simply-connected covering surface upon 
which the fundamental group acts as deck transformations. (For a complete 
discussion, see Singer-Thorpe [AI6].) 

Let M be the simply-connected covering surface of M and let 

JL:M-+M 

be the covering projection-a local homeomorphism with the property that 
M possesses an atlas (ua, Ma)aeA such that, for each a EA, JL -l(Ma) is a family 
(Ma,);eI of open sets with JLIMa,: Ma, -+ Ma being a diffeomorphism. We now 
define a differentiable atlas (ual' MaJa.neA xl for M with ua, = Ua o CJLIMa,). 
UPk o U;;' 1 = Up o u;; 1 shows that this is indeed a differentiable atlas. The local 
representation of JL on U is Ua o JL oUa, = ido Thus JL: M -+ M is differentiable. 
Moreover, we may define a Riemannian metric on M which will make JL a 
local isometry, i.e., for each fi E M, dJL,,: Tj;M -+ T.pM shall be an isometry. 
This requires the following scalar product g" on TpM: 

gp(X, Y) = g.,,(dJLpX, dJLj,Y) for alI X, Y E TpM. 

Now let r denote the fundamental group M, considered as a group of 
deck transformations of M. In particular, if y E r, then JL o y = JL. This implies 
that y must be a local isometry of M. 

The conjugacy class of y is the set {y' y y' -1 I y' E r}. For y = 1, the con­
jugacy class is {1}. 

We may now formulate and prove the main result of this section. 

6.7.1 Theorem. Let M be compact and let y =F 1 be an element of r, the 
fundamental group of M. Then there exists a y-invariant geodesic c in M, 
i.e., yc(t) = c(t + w)for ali t E R Here 1~(t)1 = 1 and w = J(c(O), yc(O)), 
where J is the distance function on M. Under JL: M -+ M, c projects onto a 
closed geodesic c = JL o c in M of period w. The closed geodesic c is a 
representative of the conjugacy class of y. 
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PROOF. 1. On the universal covering surface M of M, 'l' operates as a fixed­
point free isometry: For suppose 'l'(fi) = fi. Then, if (u., M.) is a coordinate 
chart containingp, 'l' has the local expression u. o JL o 'l' o JL -1 0 U;;I: U. -+ U •. 
But since JL o 'l' = JL, this map is equal to the identity. This means that 
'l' = identity near p. By the simple connectivity of M, 'l' = id on M which 
means 'l' = 1 is the neutral element of r. Contradiction. 

2. Consider the functionf(p) = d(p, 'l'fi) on M. Since 

d(p, 'l'fi) s d(p, ij) + d(ij, 'l'ij) + d('l'ij, 'l'fi) = d(ij, 'l'ij) + 2d(p, ij), 

fis a continuous function. Let {Pn} be a sequence on M such that limn f(Pn) = 
W = inff. Fix Po E M, and let dj2 = diameter of M = maximum distance 
dep, q) between two points in M. Then, for every n ~ 1, there exists a 'l'n E r 
such that d('l'nfimPo) < d. Therefore the sequence {'l'nfin} lies in the compact 
set {fi E M I d(fio, fi) s d} (this set is bounded and M is complete). Therefore 
{'l'nfin} has a limit point, say fi'. For sufficiently large n, d('l'fin,fin) = 

d«'l'n'Y'Y;;I)'l'nPn, 'l'nfin) is near w and 'l'nPn is near fi'. Thus for large n, 'l'n'Y'Y;;lfi' 
is near to fi'. But within a fixed distance of fi' there can only be a finite number 
of dijferent points 'l'n'l''l';;lP'. Therefore there exists a 'l'o E r such that for an 
infinite number of n, 'l'n'Y'Y;;lp' = 'l'o'Y'Yolji'. But this means that 

d('l'o'Y'Yo 1p', p') = w. 
Define 'l'o 1p' = p. 

3. Let c(t), tE IR, be a geodesic with C(O) = fi, c(w) = 'l'fi. Since M is 
geodesicaUy complete, such a curve exists by (6.4.6). We will prove that 
'l'c(t) = c(t + w) for all t. By definition this is true for t = O. It will also 
hold for tE [0, w] unless the geodesics c(t + w), t ~ 0, and c(t), t ~ 0, have 
different tangent vectors at their common initial point c(w). But if this were so, 
then we would have 

d(e(t), ye(t)) < d(e(t), e(w)) + d(ye(O), ye(t)) = w, 

which contradicts the definition of w. Thus 'l'c(t) = c(t + w) on [O, w] and 
hence for aU t E IR. 

The image c(t) = JLc(t) of c under JL is therefore a c10sed geodesic: 
c(t + w) = c(t). O 

Remark. The geodesic c(t) need not be unique. For example, consider the 
flat torus whose universal covering is the Euclidean plane (see example 2 
above). lf c(t) is a line in the plane invariant under 'l' of. 1, then any integral 
translation of c(t) is also 'l'-invariant. A similar situation holds true for the 
projective plane, covered by S2 (see (5.5.3, 2)). 

A further existence theorem for c10sed geodesics on compact surfaces M 
is the following. 

6.7.2 Theorem. Suppose 'l': M -+ M is an isometry of M which has no fixed 
points. Then there exists a 'l'-invariant geodesic c = c(t), t E IR, i.e., y o c(t) = 

c(t + w) for ali t. lf 'l' is of finite order, i.e., if there exists an n > 1 such 
that 'l'n = 1, then c is dosed with period nw. . 
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PROOF. Consider the functionf(p) = dep, yp). As in the proof of (6.7.1), we 
can easily show that f is continuous. Since M is compact, f assumes a mini­
mum value, say w, at some point p. Since y is fixed-point free, w = d(p, yp) 
> O. Let c(t) be a unit-speed geodesic with c(O) = p and c(w) = yp. As in 
the proof of (6.7.1), we can show that y o c(t) = c(t + w). If yR = id, then it 
follows immediately that c(t), O s t S nw, is closed. D 

EXAMPLES. 1. The fiat torus M with universal covering M = 1R2. (Example 1 
above.) Every translation 1': 1R2 --+ 1R2 induces an isometry T on M. The 
isometry T is the identity if and only if 1'(0, O) E 7L x 7L. Suppose l' does not 
generate the identity. Then there exists a T-invariant closed geodesic if and 
only if f satisfies 

1'(0, O) E i(J! X i(J! - 7L x 7L, 

where i(J! = field of rationals. 
2. The sphere S2 (see 5.7). The antipodal map is an isometry of order two. 

The closed geodesics, whose existence is proved in the above theorem, are the 
great circles. 

The results of this section may be generalized to Riemannian manifolds. 
The interested reader is referred to Kobayashi, S. Differential Geometry and 
Transformation Groups [BI4], Chapter 3. A few of these theorems can be 
found in section 6.8 below. 

To conclude, we prove a theorem of Preissmann which makes explicit the 
consequences of Theorem (6.7.1) for compact surfaces with K:s; O. 

6.7.3 Theorem (Preissmann).16 Let M be a compact surface with K S O. Then: 
i) r is infinite. 

ii) Every element y oi 1 of r has infinite order. 
iii) For each y oi 1 in r there exists a y-invariant unit-speed geodesic in M. 

lf K < O, this geodesic is unique up to choice of initial point. 
iv) lf K < O, every abelian subgroup of r is an infinite cyc/ic group. 

Remark. If K S O, the conclusions of statements (iii) and (iv) need not be true. 
They faiI, for example, on the fiat torus, Example 1 above. 

PROOF. 1. By (6.6.4), the universal covering M of M is diffeomorphic to 1R2 
and therefore is noncompact. It follows that r is infinite. 

2. Let y E r, y oi 1. By (6.7.1), there exists a y-invariant geodesic c: yc = 
c(t + w) for alI t, where w = d(c(O), c(w)). By (6.6.4), we may conclude that 
for alI positive integers n, ync(O) = c(nw) oi C(O). Therefore y has infinite 
order. 

,. Preissmann, A. Quelques proprietes globales des espaces de Riemann. Comment. 
Math. He/v. 15, 175-216 (1943). See also Cartan [B4], note III. The proof given there is 
unfortunately not completely correct, and the cIaimed existence of two geodesics in a 
given homotopy cIass is false if K < O. 
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3. Suppose K < O. To prove (iii), it suffices to show that if c(t) and c'(t), 
tE IR, are y.invariant geodesics in M, i.e., 

yc(t) = c(t + w); yc'(t) = c(t + w'), 

then c'(t) = c(t + to) for some fixed to. 

c(O)c(w) -( ) 1'(c(O)c(w)) 

II '" ~'"' 

j ________ !b-~-)------- 1'2:~,(W) 
C'(O)C'(w) C'(w) c'(O)C'(w) 

Figure 6.9 Geodesic quadriJaterals 

To see this, consider the geodesic quadrilateral with vertices c(O), c(w), 
c'(w), and C'(O). By (6.4), this figure is uniquely defined. If this quadrilateral 
were nondegenerate, the sum of the angles at the vertices wou1d be 27T. This 
is bccause y is an isometry which maps the edge c(O)c'(O) into the edge 
c(w)c'(w') and maps the geodesics c and c' into themselves. But by Corollary 
(6.3.3 (ii)) to the Gauss-Bonnet theorem, the sum of the interior angles of a 
geodesic quadrilateral must be < 27T when K < O. Therefore the quadrilateral 
is degenerate which means there must exist a to E IR with c'(t) = c(t + tol 
for ali t. 

4. Suppose y and y' are nontrivial commuting elements in 1'. Let c(t), 
t E IR, and c'(t), t E IR, be the corresponding invariant geodesics in iI. By (iii), 
theyareuniqueuptochoiceofinitialpoints. Sincen' = y'y, n'C = y'yc = y'c. 
In other words, y' c is y.invariant. By (iii), we may conc1ude that y' c = c 
up to choice of initial point. But this means that c is y' ·invariant, sa, by (iii), 
e = e' up to choice of initial point. We reparameterize so that e(t) = e'(t) 
for ali t. Let Bil(t)) be a geodesic disk centered at c(t) for any fixed t. If 
p > O is sufficiently small, then for ali integers k and 1, either yky'IC(t) = 
c(t + kw + Iw') is equal ta c(t) ar yky'IC(t) !ies outside Bn(c(t)). Therefore 
there must be some Wo > O sa that w = mwo and w' = m' Wo for some 
integers m, m'. Thus yky'IC(t) = c(t + (km + Im')wo) for ali k,1 integers. 
Therefore there must be an element 'l'a E l' which generates a cyclic group 
(infinite by (ii)) containing y and y'. The element 'l'a E l' is determined by the 
equation yoc(t) = c(t + wo). O 

6.8 Exercises and Some Further Results 
6.8.1 Recall that an ovaloid is a compact surface in 1R3 with K > O «6.2». As a 

surface with Riemannian metric, it must be diffeomorphic to S2 by (6.3.5). 
A natural question ta ask is: Given a surface M diffeomorphic to S2 and 
endowed with a metric for which K > O, does there exist an ovaloid in 1R3 
which is isometric to M? The answer is yes. This existence theorem was 
partially proved by H. Weyl. A complete proof in the real analytic case 
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was given by H. Lewy. The theorem for differentiable M was proved 
independently by Alexandrov, working with Pogorelov, and by Nirenberg. 
Their respective proofs are quite different in method.17 

6.8.2 The second part of the Sturm comparison theorem (6.5.5) and its applica­
tion (6.5.6) has the foIIowing geometric interpretation. 

Suppose M and M* are surfaces with Riemannian metric whose curva­
ture functions K and K* satisfy max K s; min K*, which we will write for 
short as K s; K*. Suppose c and c* are two geodesic arcs, parameterized by 
arc length, on M and M*, respectively, whose lengths are both equal to a. 
Assume that a s; 1r/V max K*. This insures that both segments are free of 
conjugate points in their interior. Suppose further that Y(t) and Y*(t) 
are Jacobi fields along c(t) and c*(t), respectively, with Y(O) = Y*(O) and 
/VY(O)/ = /VY*(O)/. Then /Y(t)/ ;::: /Y*(t)/. 

This is the infinitesimal version of the Alexandrov comparison theorem 
for geodesic triangles.18 We will state one special case of the theorem here. 
The proof, which involves introducing polar coordinates and integration 
of the inequality of the above theorem, is left as an exercise. 

Under the conditions and assumptions above, consider two geodesic 
arcs emanating from a point p E M. Denote these geodesics by c and c' and 
suppose that they have end points q and q', respectively. Let the length of c 
equal that of c' and denote their common length by a which we wiII assume 

is equal to or less than 1r/Vmax K*. Let c* and c*' be two geodesic seg­
ments in M*, emanating from a point p* E M*, whose lengths are also 
equal to a and whose end points are q* and q*', respectively. Suppose the 
angle at p between c and c' is equal to the angle at p* between c* and c*'. 
Then ifthis angle is sufficiently small, d(q, q') ;:,; d(q*, q*'). (See Figure 6.10). 

<JC, q' {j: ". 
p p* 

(,,: c* 

q q* 

M M* 

Figure 6.10 Geodesic triangles 

17 Weyl, H. Ober die Bestimmung einer geschlossenen konvexen FIăche durch ihr Linien­
element. Vierteljahrsschrift Naturforsch. Gesellschaft Ziirich, 1916, 40-72. Lewy, H. On 
the existence of a c10sed surface realizing a given Riemannian metric. Proc. Nat. Acad. 
Sci. U.S.A. 24,104-106 (1938). Alexandrov, A. D. [BI]. Pogorelov, A. V. De/ormation o/ 
convex sur/aces. Gosudarstv. Izdat. Tehn-Teor. Li!., Moscow-Leningrad (1951) (Russian). 
English review: MR 12, 400. German translation: Berlin, Akademie-Verlag, 1955. 
Nirenberg, L. The Weyl and Minkowski problems in differential geometry in the large. 
Comm. Pure Appl. Math. 6, 337-394 (1953). 

,. Alexandrov, A. D. [Bl]. 
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6.8.3 Suppose M is a surface with Riemannian metric which is diffeomorphic to 
S2 and on which K s K" The example ofthe hourglass surface in (6.6.1) 
iIIustrates that it is not possible to estimate the injectivity radius solely on 
the basis of an upper bound on the curvature alone. 

However, if the curvature also satisfies O < Ko S K, we can say some­
thing. First of aII, M can be realized as an ovaloid in [R3 (see 6.8.1). A 
result due to Pogorelov states that for aII PE M the injectivity radius Pm(P) 

is at least 1T/VK,.' 9 On the other hand, we know from (6.5.8) that the most 

it can be is 1T/VKo. Therefore 1T/VK, S Pm(P) S 1T/VKo for aII pE M. 
This implies that the intrinsic diameter d(M) = sUP •.• eM d(q, p) also satisfies 

1T/VK, S d(M) S 1T/VKo. 
The example of the sphere of constant curvature Ko (resp. K, ) shows that 

these bounds are best possible. For a sphere of curvature K', P = Pm(P) = 
1T/vK. 

The theorem of Pogorelov is equivalent to the fact that on an ovaloid M 
with Ko S K S K" a c10sed geodesic must have length at least 21T/VK, . 
Moreover, a c10sed geodesic on M which has no self-intersection can have 
length at most 21T/VKo. These estimates are sharp, as the example of a 
sphere of constant curvature shows. 

6.8.4 Show: Suppose M is a complete, simply-connected surface with a 
Riemannian metric. If for some P EMail geodesic rays emanating from P 

are free of conjugate points, then exp.: T.M ->- M is a diffeomorphism, 
and therefore the injectivity radius Pm(P) = 00. (Hint: Use the lifting 
technique of (6.6.3).) 

6.8.5 In (6.7), we proved the existence of c10sed geodesics on compact surfaces 
which were not simply connected. It turns out that c10sed geodesics always 
exist, even on compact simply-connected surfaces-i.e., surfaces which are 
diffeomorphic to S2. The proof of this fact requires techniques beyond 
those developed in this book. 

In fact, if M is diffeomorphic to S2 there must exist at least three 
different simple c10sed geodesics. This result is due to Lusternik and 
Schnirelmann. Moreover, there exists such a surface with exact1y three 
simple closed geodesics and no more. 

Consider an ellipsoid with three different axes. If the ratios of the 
lengths of the axes are sufficiently close to 1, then the only simple closed 
geodesics are the ellipses which occur as the intersection of the ellipsoid 
with the coordinate planes?O 

19 Pogorelov, A. V. A theorem regarding geodesics on closed convex surfaces. Math. Sb. 
N.S. (18), (60), 181-183 (1946) (Russian with English summary). English review: MR 8, 
16. The praof is not quite complete. For a different praof, see Klingenberg, W. Neue 
Ergebnisse liber konvexe F1ăchen. Comm. Math. Helv. 34,17-36 (1960). 

20 Lusternik, L., and Schnirelmann, L. Sur le problem de trois geodesiques fermees sur 
surfaces de genus O. C.R. Acad. Sci. Paris 189, 269-271 (1929). An excellent presentation 
of this and other results may be found in Lusternik, L. The topology of function spaces 
and the calculus of variations in the large. Trudy Math. Inst. Steklov 19 (1947) (Russian)­
translated into English in Translations of Math. Monographs, VoI. 16, A.M.S., Provi­
dence, R.I., 1966. See also the forthcoming book Klingenberg, W., Lectures on Closed 
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6.8.6 Suppose Miii compact and K < O on M. It foIlows from (6.7.1) and (6.7.3) 
that every non trivial conjugacy cIass in the fundamental group l' corre­
sponds to exactly one cIosed geodesic (up to parameterization). It can be 
deduced from the structure of the fundamental group of such a surface 
(which must have negative Euler characteristic) that there must be an 
infinite number of different unparameterized prime cIosed geodesics on M. 
This means that we count only those cIosed geodesics which are not a 
covering of some other cIosed geodesic. For a discussion of the structure of 
l' for a surface M with K < O, see Seifert-ThrelfaIl, Lehrbuch der Topologie, 
Chelsea, New York, or Kobayashi [B14]. 

This result has been strengthened by E. Hopf, who proved that the 
subset Per TM = {Xe TM I exp tX, t e ~ is a closed geodesic} is dense 
in TM.21 

6.8.7 Let M be a compact surface with Riemannian metric. A pair of distinct 
points (p, p') in M is called a .. Wiedersehen" pair if each geodesic 
emanating from p passes through p' and conversely. For example, the 
north and south of a compact surface of revolution is a "Wiedersehen " pair. 

Prove: On the eIIipsoid (3.7.3), both pairs of diametricaIly opposite 
umbilic5 are "Wiedersehen" pairs. See (3.9.5.). 

An oriented surface M is called a "Wiedersehensflăche" if every p e M 
belongs to a "Wiedersehen" pair ("flăche" = surface in German). This 
name is due to Blaschke, who observed that such a surface must be homeo­
morphic to S·. It was a long-standing open problem as to whether or not a 
"Wiedersehensflăche" was necessarily isometric to a sphere with constant 
curvature. The question was resolved, affirmatively, in 1963 by L. Green in a 
paper with the punning title " Auf Wiedersehensflăchen." 22 (It is in English.) 

6.8.8 There exist compact surfaces on which aII geodesics are cIosed and have 
the same length but which are not isometric to a sphere of constant 
curvature. The first examples of such surfaces were constructed by ZoIl, 
who used an idea due to Darboux. The surfaces are called Zoll surfaces. 
Recently, Riemannian manifolds with the same property have been 
investigated by Weinstein, Berger, and others.23 

Geodesics. Springer-Verlag, Berlin-Heidelberg-New York, 1978. Jacobi had a1ready 
investigated the behavior of geodesics on eIlipsoids in his Vorlesungen iiber Mechanik, 
Winter-Semester 1842/43, Konigsberg. See Darboux lA7], Volume III, Book VI, 
Chapter 1. 
01 Hopf, E. Statistik der geodiitischen Linien in Mannigfaltigkeiten negativer Kriim­
mung. Ber. Verh. Săch. Akad. Wiss. Leipzig 91, 261-304 (1939). For more recent 
developments, see Anosov, D. V. Geodesic flows on cIosed Riemannian manifolds with 
negative curvature. Trudy Mat. Inst. Steklov 90 (1967) (Russian)-English translation: 
Proc. Steklov Inst. Math. 90 (1967), A.M.S., Providence, R.I., 1969. 
00 Green, L. Auf Wiedersehensfliichen. Ann. of Math. 78, 289-299 (1963). 
o. See Darboux lA7], Part III, Book 6, Chapter 1. ZoIl, O. Dber Fliichen mit Scharen 
geschlossener geodiitischer Linien. Math. Ann. 57, 108-133 (1903). See also Berger, M. 
Lectures on Geodesics in Riemannian Geometry. Tata Institute of Fundamental Research, 
Bombay, 1965, and Besse, A., Manifolds ali of whose Geodesics are Closed. Springer­
Verlag, Berlin-Heidelberg-New York, 1977. 
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6.8.9 Suppose M is a surface which is homeomorphic to a torus. By the Gauss­
Bonnet theorem for compact surfaces, (6.3.5), any metric on M must 
satisfy J M K dM = O. Thus, if there is apE M with K(p) > O, there must 
also be a p' E M with K(p') < O. 

The Ilat torus satisfies K'" O (see the second example in (6.7». By 
(6.5.6 (i», the Ilat torus is free of conjugate points. A converse of this 
result has been proved by E. Ropf: Suppose M is homeomorphic to a torus 
and let M have a Riemannian metric, g, in which no geodesic has a 
conjugate point. Then this metric satisfies K '" O, i.e., (M, g) is the Ilat 
torus.24 

6.8.10 Suppose M is a compact Riemannian surface. For any PE M, the cut 
locus, C(p), of p is defined as foIlows: 

Associated to each tangent vector X E s~ M c:: TpM there exists a weIl­
defined extended real number t(X) > O for which 
a) the unique geodesic cx(t) = expp tX with initial condition X is length­

measuring on [O, t(X)]; 
b) for every t > t(X), dep, cx(t» < t. 

The map CR(t) i--). t(X)X E TpMis continuous. Theimage ofthis map is a 
non-self-intersecting cJosed curve in TpM. The image of this curve under 
expp is C(p) = {cx(t(X»! X E S~M}. 

The complement of C(p) in M may be contracted radially onto p: Each 
such point q is ofthe form expp(toXo), to < t(Xo), and cxo(t), O ,.;; t ,.;; to is a 
minimal geodesic from p to q. Contract by sliding q along cxo(t) to p. Thus 
M\C(p) is homeomorphic to the 2-cell B,(O) = {XETpM; !X! < l}. 
We may consider Mas B,(O) modulo the foIlowing identification of the 
boundary points oB,(O) = S~M: Set X - X' if expp(t(X)X) = expp 

(t(X')X') E C(p). Note: If q E C(p), there need not exist more than one 
minimizing geodesic from p to q. 

The topology of M is completely determined by the topological structure 
of C(p). For example, if M = S2, a sphere of constant curvature, C(p) 
is equal to the antipodal point of p. If M is the Ilat torus (see (6.7», C(p) 
consists of two circJes which cross at one point. The same is true for the 
standard embedding of the torus in ~ (see 3.3.7). 

The cut-Iocus was first investigated by Poincare (he called it "ligne de 
partage ").2' Myers and others continued the study and cJarified the 
concepts. For a detailed discussion of the cut-Iocus, see the articJe by 
Kobayashi in [A6]. For a description of cIassical as well as recent results 
we refer the reader to an article of R. Karcher."6 

More recentIy, it has been shown by Buchner et al. that the cut-Iocus 
of a Riemannian manifold is stable in the foIlowing sense: Let M be a 

2. Hopf, E. Closed surfaees without conjugate points. Proc. Nat. Acad. Sci. U.S.A. 34, 
47-51 (1948). 

25 Poincare, H. Sur les Iignes geodesiques des surfaces convexes. Trans. Amer. Math. 
Soc. 6, 237-274 (1905). 

26 Karcher, H. Schnittort und konvexe Mengen in vollstandigen riemannschen Mannig­
faltigkeiten. Math. Ann. 177, 105-121 (1968), and also Anwendungen der Alexandrows­
ehen Winkelvergleichsatze. Manuscripta Math. 2, 77-102 (1970). 
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manifold with a Riemannian metric g. Consider p E M and C(p) c M. Let 
g be another Riemannian metric which is close to g in some natural sense, 
and let C(p) be the cut-Iocus of pin the g metric. Then for almost ali p E M 
and a large generic class of metrics on M, there exists a homeomorphism 
</>: M - M such that </>IC(p) - C(p) is also a homeomorphism. 

However, it is possible to construct cut loci which are not triangulable, 
i.e., cannot be decomposed into polygons. This has been done for surfaces 
by Gluck and Singer.27 

6.8.11 Open surfaces in the large. A detailed study of complete open (i.e., non­
compact) surfaces was initiated by Cohn-Vossen. We mention only the 
following resuIt. Suppose M is a complete open surface on which the Gauss 
curvature is everywhere positive. Then M is diffeomorphic to the plane 
and fM K dM ~ 27T. Moreover, there are no closed geodesics on M and 
every geodesic has at most one self-intersection from which it runs off to 
infinity in both directions (it leaves every compact subset of M). Any two 
complete geodesics must intersect and through each p E M there passes at 
least one complete geodesic without self-intersection?· An example (really 
the example!) of such a surface on which aII these properties may be verified 
directly is the paraboloid of revolution in 1l\l3. 

6.8.12 (i) Let c(t) be a unit-speed curve in Il\ln with the property that !c(t)12 has a 
local maximum at to. Let Po = c(to) and p2 = Ipol2. Show: K(to) ~ lip, 
where K(tO) = !C(to) I (which is equal to the fust curvature of c(t) at to if 
it Îs defined). 

(ii) Let M be a surface in Il\ln with M c {x E Il\lnllxl ~ p}. Show: If 
Po E M satisfies IPol = p, then any curve c(f) on M with c(O) = po must 
have normal curvature with absolute value not less than lip at t = O. 
Moreover, the sign of the normal curvature at t = O will be the same for 
any such curve. 

(iii) Let M and Po E M be as in (ii). Show: K(p) ~ Ilp2. 
(iv) The map det: GL(n, Il\l) -+ Il\l is differentiable since the determinant 

of a matrix is a polynomial in the entries of the matrix. Show: Every value 
of det: GL(n, Ihl) _Il\l is a regular value. (Hint: Consider A E GL(n, Ihl) as 
(Al, ... , An) where A' is the ith column of A. Then det(Al, ... , tA', . .. , An) 
= t det A. Use this fact to find a tangent vector Xto GL(n, Il\l) at A satisfy­
ing d(det)A(X) i= O. See (6.1.5, 3).) 

27 Singer, D., and Gluck, H. The existence of non-triangulable cut loci. Bul/. Amer. 
Math. Soc. 82,4, July 1976, pp. 599-602. Buchner, M. Thesis, Harvard University, 1974. 

28 These last results may be generalized to complete, open Riemannian manifolds of 
positive curvature. See GromoIl, D., and Meyer, W. On complete open manifolds of 
positive curvature. Ann. of Math. 90, 75-90 (1969). 
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