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Preface 

This book is designed as a text for a first-year graduate algebra course. 
As necessary background we would consider a good undergraduate linear 
algebra course. An undergraduate abstract algebra course, while helpful, 
is not necessary (and so an adventurous undergraduate might learn some 
algebra from this book). 

Perhaps the principal distinguishing feature of this book is its point of 
view. Many textbooks tend to be encyclopedic. We have tried to write one 
that is thematic, with a consistent point of view. The theme, as indicated 
by our title, is that of modules (though our intention has not been to write 
a textbook purely on module theory). We begin with some group and ring 
theory, to set the stage, and then, in the heart of the book, develop module 
theory. Having developed it, we present some of its applications: canonical 
forms for linear transformations, bilinear forms, and group representations. 

Why modules? The answer is that they are a basic unifying concept 
in mathematics. The reader is probably already familiar with the basic 
role that vector spaces play in mathematics, and modules are a generaliza
tion of vector spaces. (To be precise, modules are to rings as vector spaces 
are to fields.) In particular, both abelian groups and vector spaces with a 
linear transformation are examples of modules, and we stress the analogy 
between the two--the basic structure theorems in each of these areas are 
special cases of the structure theorem of finitely generated modules over a 
principal ideal domain (PID). As well, our last chapter is devoted to the 
representation theory of a group G over a field F, this being an important 
and beautiful topic, and we approach it from the point of view of such 
a representation being an F( G)-module. On the one hand, this approach 
makes it very clear what is going on, and on the other hand, this application 
shows the power of the general theory we develop. 

We have heard the joke that the typical theorem in mathematics states 
that something you do not understand is equal to something else you can
not compute. In that sense we have tried to make this book atypical. It 
has been our philosophy while writing this book to provide proofs with a 
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maximum of insight and a minimum of computation, in order to promote 
understanding. However, since in practice it is necessary to be able to com
pute as well, we have included extensive material on computations. (For 
example, in our entire development in Chapter 4 of canonical forms for 
linear transformations we only have to compute one determinant, that of 
a companion matrix. But then Chapter 5 is almost entirely dedicated to 
computational methods for modules over a PID, showing how to find canon
ical forms and characteristic polynomials. As a second example, we derive 
the basic results about complex representations of finite groups in Section 
8.3, without mentioning the word character, but then devote Section 8.4 to 
characters and how to use them.) 

Here is a more detailed listing of the contents of the book, with em
phasis on its novel features: 

Chapter 1 is an introduction to (or review of) group theory, including 
a discussion of semidirect products. 

Chapter 2 is an introduction to ring theory, covering a variety of stan
dard topics. 

In Chapter 3 we develop basic module theory. This chapter culminates 
in the structure theorem for finitely generated modules over a PID. (We 
then specialize to obtain the basic structure theorem for finitely generated 
Abelian groups.) We feel that our proof of this theorem is a particularly 
insightful one. (Note that in considering free modules we do not assume the 
corresponding results for vector spaces to be already known.) Noteworthy 
along the way is our introduction and use of the language of homological 
algebra and our discussion of free and projective modules. 

We begin Chapter 4 with a treatment of basic topics in linear alge
bra. In principle, this should be a review, but we are careful to develop as 
much of the theory as possible over a commutative ring (usually a PID) 
rather than just restricting ourselves to a field. The matrix representation 
for module homomorphisms is even developed for modules over noncommu
tative rings, since this is needed for applications to Wedderburn's theorem 
in Chapter 7. This chapter culminates in the derivation of canonical forms 
(the rational canonical form, the (generalized) Jordan canonical form) for 
linear transformations. Here is one place where the module theory shows its 
worth. By regarding a vector space V over a field F, with a linear transfor
mation T, as an F[X]-module (with X acting by T), these canonical forms 
are immediate consequences of the structure theorem for finitely generated 
torsion modules over a PID. We also derive the important special case of 
the real Jordan canonical form, and end the chapter by deriving the spectral 
theorem. 

Chapter 5 is a computational chapter, showing how to obtain effectively 
(in so far as is possible) the canonical forms of Chapter 4 in concrete cases. 
Along the way, we introduce the Smith and Hermite canonical forms as well. 
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This chapter also has Dixon's proof of a criterion for similarity of matrices 
based solely on rank computations. 

In Chapter 6 we discuss duality and investigate bilinear, sesquilinear, 
and quadratic forms, with the assistance of module theory, obtaining com
plete results in a number of important special cases. Among these are the 
cases of skew-symmetric forms over a PID, sesquilinear (Hermitian) forms 
over the complex numbers, and bilinear and quadratic forms over the real 
numbers, over finite fields of odd characteristic, and over the field with two 
elements (where the Arf invariant enters in the case of quadratic forms). 

Chapter 7 has two sections. The first discusses semisimple rings and 
modules (deriving Wedderburn's theorem), and the second develops some 
multilinear algebra. Our results in both of these sections are crucial for 
Chapter 8. 

Our final chapter, Chapter 8, is the capstone of the book, dealing with 
group representations mostly, though not entirely, in the semisimple case. 
Although perhaps not the most usual of topics in a first-year graduate 
course, it is a beautiful and important part of mathematics. We view a 
representation of a group G over a field F as an F(G)-module, and so this 
chapter applies (or illustrates) much of the material we have developed in 
this book. Particularly noteworthy is our treatment of induced representa
tions. Many authors define them more or less ad hoc, perhaps mentioning as 
an aside that they are tensor products. We define them as tensor products 
and stick to that point of view (though we provide a recognition principle 
not involving tensor products), so that, for example, Frobenius reciprocity 
merely becomes a special case of adjoint associativity of Hom and tensor 
product. 

The interdependence of the chapters is as follows: 

o 
1 o 
1 

o 
1 

4.1-4.3 

1 
4.4-4.6 o 

1 o 
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We should mention that there is one subject we do not treat. We do 
not discuss any field theory in this book. In fact, in writing this book we 
were careful to avoid requiring any knowledge of field theory or algebraic 
number theory as a prerequisite. 

We use standard set theoretic notation. For the convenience of the 
reader, we have provided a very brief introduction to equivalence relations 
and Zorn's lemma in an appendix. In addition, we provide an index of 
notation, with a reference given of the first occurrence of the symbol. 

We have used a conventional decimal numbering system. Thus a refer
ence to Theorem 4.6.23 refers to item number 23 in Section 6 of Chapter 
4, which happens to be a theorem. Within a given chapter, the chapter 
reference is deleted. 

The symbol 0 is used to denote the end of a proof; the end of proof 
symbol 0 with a blank line is used to indicate that the proof is immediate 
from the preceding discussion or result. 

The material presented in this book is for the most part quite standard. 
We have thus not attempted to provide references for most results. The 
bibliography at the end is a collection of standard works on algebra. 

We would like to thank the editors of Springer-Verlag for allowing 
us the opportunity, during the process of preparing a second printing, to 
correct a number of errors which appeared in the first printing of this book. 
Moreover, we extend our thanks to our colleagues and those readers who 
have taken the initiative to inform us of the errors they have found. Michal 
Jastrzebski and Lyle Ramshaw, in particular, have been most helpful in 
pointing out mistakes and ambiguities. 

Baton Rouge, Louisiana William A. Adkins 
Steven H. Weintraub 
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Chapter 1 

Groups 

In this chapter we introduce groups and prove some of the basic theorems in 
group theory. One of these, the structure theorem for finitely generated abelian 
groups, we do not prove here but instead derive it as a corollary of the more 
general structure theorem for finitely generated modules over a PID (see Theorem 
3.7.22). 

1.1 Definitions and Examples 

(1.1) Definition. A group is a set G together with a binary opemtion 

·:GxG-+G 

satisfying the following three conditions: 

(a) a· (b· c) = (a· b) . c for all a, b, c E G. (Associativity) 
(b) There exists an element e E G such that a· e = e . a = a for all a E G. 

(Existence of an identity element) 
(c) For each a E G there exists abE G such that a·b = b·a = e. (Existence 

of an inverse for each a E G) 

It is customary in working with binary operations to write a . b rather 
than ·(a, b). Moreover, when the binary operation defines a group structure 
on a set G then it is traditional to write the group operation as abo One 
exception to this convention occurs when the group G is abelian, i.e., if 
ab = ba for all a, bEG. If the group G is abelian then the group opera
tion is commonly written additively, i.e., one writes a + b rather than abo 
This convention is not rigidly followed; for example, one does not suddenly 
switch to additive notation when dealing with a group that is a subset of 
a group written multiplicatively. However, when dealing specifically with 
abelian groups the additive convention is common. Also, when dealing with 
abelian groups the identity is commonly written e = 0, in conformity with 
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the additive notation. In this chapter, we will write e for the identity of gen
eral groups, i.e., those written multiplicatively, but when we study group 
representation theory in Chapter 8, we will switch to 1 as the identity for 
multiplicatively written groups. 

To present some examples of groups we must give the set G and the 
operation· : G x G ----> G and then check that this operation satisfies (a), 
(b), and (c) of Definition 1.1. For most of the following examples, the fact 
that the operation satisfies (a), (b), and (c) follows from properties of the 
various number systems with which you should be quite familiar. Thus 
details of the verification of the axioms are generally left to the reader. 

(1.2) Examples. 

(1) The set Z of integers with the operation being ordinary addition of 
integers is a group with identity e = 0, and the inverse of m E Z is 
-m. Similarly, we obtain the additive group Q of rational numbers, R 
of real numbers, and C of complex numbers. 

(2) The set Q* of nonzero rational numbers with the operation of ordinary 
multiplication is a group with identity e = 1, and the inverse of a E Q* 
is l/a. Q* is abelian, but this is one example of an abelian group that 
is not normally written with additive notation. Similarly, there are the 
abelian groups R * of nonzero real numbers and C* of nonzero complex 
numbers. 

(3) The set Zn = {O, 1, ... ,n -I} with the operation of addition modulo n 
is a group with identity 0, and the inverse of x E Zn is n-x. Recall that 
addition modulo n is defined as follows. If x, y E Zn, take x + y E Z 
and divide by n to get x + y = qn + r where 0 :=::: r < n. Then define 
x + y (mod n) to be r. 

(4) The set Un of complex nth roots of unity, i.e., Un = {exp((2k7ri)/n) : 
o :=::: k :=::: n - I} with the operation of multiplication of complex num
bers is a group with the identity e = 1 = exp(O), and the inverse of 
exp((2k7ri)/n) is exp((2(n - k)7ri)/n). 

(5) Let Z~ = {m : 1 :=::: m < nand m is relatively prime to n}. Under the 
operation of multiplication modulo n, Z~ is a group with identity l. 
Details of the verification are left as an exercise. 

(6) If X is a set let Sx be the set of all bijective functions f : X ----> X. 
Recall that a function is bijective ifit is one-to-one and onto. Functional 
composition gives a binary operation on S x and with this operation 
it becomes a group. Sx is called the group of permutations of X or 
the symmetric group on X. If X = {I, 2, ... , n} then the symmetric 
group on X is usually denoted Sn and an element a of Sn can be 
conveniently indicated by a 2 x n matrix 

2 
a(2) 
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where the entry in the second row under k is the image o:(k) of k 
under the function 0:. To conform with the conventions of functional 
composition, the product 0:{3 will be read from right to left, i.e., first 
do {3 and then do 0:. For example, 

( 1 2 3 4) (1 2 3 4) (1 2 3 4) 
32413412=4132' 

(7) Let GL(n, R) denote the set of n x n invertible matrices with real 
entries. Then GL(n, R) is a group under matrix multiplication. Let 
SL(n, R) = {T E GL(n, R): detT = I}. Then SL(n,R) is a group 
under matrix multiplication. (In this example, we are assuming famil
iarity with basic properties of matrix multiplication and determinants. 
See Chapter 4 for details.) GL(n, R) (respectively, SL(n, R)) is known 
as the general linear group (respectively, special linear group) of degree 
n over R. 

(8) If X is a set let P(X) denote the power set of X, i.e., P(X) is the set 
of all subsets of X. Define a product on P(X) by the formula AL.B = 
(A \ B) U (B \ A). A L. B is called the symmetric difference of A and 
B. It is a straightforward exercise to verify the associative law for the 
symmetric difference. Also note that AL.A = 0 and 0L.A = AL.0 = A. 
Thus P(X) with the symmetric difference operation is a group with 0 
as identity and every element as its own inverse. Note that P(X) is an 
abelian group. 

(9) Let C(R) be the set of continuous real-valued functions defined on R 
and let V(R) be the set of differentiable real-valued functions defined 
on R. Then C(R) and V(R) are groups under the operation of function 
addition. 

One way to explicitly describe a group with only finitely many elements 
is to give a table listing the multiplications. For example the group {I, -I} 
has the multiplication table 

whereas the following table 

1 
-1 

1 
1 

-1 

-1 
-1 

1 
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e a b c 
e e a b c 
a a e c b 
b b c e a 
c c b a e 

is the table of a group called the Klein 4-group. Note that in these tables 
each entry of the group appears exactly once in each row and column. 
Also the multiplication is read from left to right; that is, the entry at the 
intersection of the row headed by a and the column headed by {3 is the 
product a{3. Such a table is called a Cayley diagram of the group. They 
are sometimes useful for an explicit listing of the multiplication in small 
groups. 

The following result collects some elementary properties of a group: 

(1.3) Proposition. Let G be a group. 

(1) The identity e oj G is unique. 
(2) The inverse b oj a EGis unique. We denote it by a-I. 
(3) (a-I)-I = a Jor all a E G and (ab)-I = b-Ia-I Jor all a, bEG. 
(4) IJ a, bEG the equations ax = band ya = b each have unique solutions 

in G. 
(5) IJ a, b, c E G then ab = ac implies that b = c and ab = cb implies that 

a= c. 

Proof. (1) Suppose e' is also an identity. Then e' = e'e = e. 
(2) Suppose ab = ba = e and ab' = b'a = e. Then b = eb = (b'a)b = 

b' (ab) = b' e = b', so inverses are unique. 
(3) a(a- I ) = (a-I)a = e, so (a-I)-l = a. Also (ab)(b-Ia- I ) 

a(bb- I )a- I = aa- I = e and similarly (b-Ia- I )(ab) = e. Thus (ab)-I 
b-Ia- I . 

(4) x = a-Ib solves ax = band y = ba- I solves ya = b, and any 
solution must be the given one as one sees by multiplication on the left or 
right by a-I. 

(5) If ab = ac then b = a-I(ab) = a-I(ac) = c. D 

The results in part (5) of Proposition 1.3 are known as the cancellation 
laws for a group. 

The associative law for a group G shows that a product of the elements 
a, b, c of G can be written unambiguously as abc. Since the multiplication 
is binary, what this means is that any two ways of multiplying a, b, and c 
(so that the order of occurrence in the product is the given order) produces 
the same element of G. With three elements there are only two choices for 
multiplication, that is, (ab)c and a(bc), and the law of associativity says 
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that these are the same element of G. If there are n elements of G then 
the law of associativity combined with induction shows that we can write 
ala2 ... an unambiguously, i.e., it is not necessary to include parentheses 
to indicate which sequence of binary multiplications occurred to arrive at 
an element of G involving all of the ai. This is the content of the next 
proposition. 

(1.4) Proposition. Any two ways of multiplying the elements all a2, ... , an 
in a group G in the order given (i. e., removal of all parentheses produces 
the juxtaposition ala2 ... an) produces the same element of G. 

Proof. If n = 3 the result is clear from the associative law in G. 
Let n > 3 and consider two elements g and h obtained as products 

of all a2, ... , an in the given order. Writing g and h in terms of the last 
multiplications used to obtain them gives 

and 

Since i and j are less than n, the induction hypothesis implies that the 
products al ... ai, aHl ... an, al ... aj, and aj+l'" an are unambiguously 
defined elements in G. Without loss of generality we may assume that i :::; j. 
If i = j then 9 = h and we are done. Thus assume that i < j. Then, by the 
induction hypothesis, parentheses can be rearranged so that 

and 

h = «al ... ai)(aHl'" aj»(aj+l ... an). 

Letting A = (al'" ai), B = (aHl'" aj), and C = (aj+l'" an) the in
duction hypothesis implies that A, B, and C are unambiguously defined 
elements of G. Then 

g = A(BC) = (AB)C = h 

and the proposition follows by the principle of induction. o 

Since products of n elements of G are unambiguous once the order has 
been specified, we will write ala2'" an for such a product, without any 
specification of parentheses. Note that the only property of a group used 
in Proposition 1.4 is the associative property. Therefore, Proposition 1.4 is 
valid for any associative binary operation. We will use this fact to be able to 
write unambiguous multiplications of elements of a ring in later chapters. A 
convenient notation for al ... an is I1~=l ai. If ai = a for all i then I1~=1 a is 
denoted an and called the nth power of a. Negative powers of a are defined 



6 Chapter 1. Groups 

by a-n = (a-1)n where n > 0, and we set aD = e. With these notations the 
standard rules for exponents are valid. 

(1.5) Proposition. If G is a group and a E G then 

(1) aman = am+n, and 
(2) (am)n = amn for all integers m and n. 

Proof. Part (1) follows from Proposition 1.4 while part (2) is an easy exercise 
using induction. D 

1.2 Subgroups and Cosets 

Let G be a group and let H <:;:; G be a subset. H is called a subgroup of G 
if H together with the binary operation of G is a group. The first thing to 
note is that this requires that H be closed under the multiplication of G, 
that is, ab is in H whenever a and b are in H. This is no more than the 
statement that the multiplication on G is defined on H. Furthermore, if H 
is a subgroup of G then H has an identity e' and G has an identity e. Then 
e' e = e' since e is the identity of G and e' e' = e' since e' is the identity of 
H. Thus e' e = e' e' and left cancellation of e' (in the group G) gives e = e'. 
Therefore, the identity of G is also the identity of any subgroup H of G. 
Also, if a E H then the inverse of a as an element of H is the same as the 
inverse of a as an element of G since the inverse of an element is the unique 
solution to the equations ax = e = xa. 

(2.1) Proposition. Let G be a group and let H be a nonempty subset of 
G. Then H is a subgroup if and only if the following two conditions are 
satisfied. 

(1) Ifa,bEHthenabEH. 
(2) If a E H then a-I E H. 

Proof. If H is a subgroup then (1) and (2) are satisfied as was observed in 
the previous paragraph. If (1) and (2) are satisfied and a E H then a-I E H 
by (2) and e = aa- I E H by (1). Thus conditions (a), (b), and (c) in the 
definition of a group are satisfied for H, and hence H is a subgroup of G. 

D 

(2.2) Remarks. (1) Conditions (1) and (2) of Proposition 2.1 can be replaced 
by the following single condition. 

(1)' If a, bE H then ab- I E H. 
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Indeed, if (1)' is satisfied then whenever a E H it follows that e = 
aa-1 E H and then a-I = ea-1 E H. Thus a E H implies that a-I E H. 
Also, if a, bE H then b-1 E H so that ab = a(b- 1 )-1 E H. Therefore, (I)' 
implies (1) and (2). The other implication is clear. 

(2) If H is finite then only condition (1) of Proposition 2.1 is necessary 
to ensure that H is a subgroup of G. To see this suppose that H is a finite 
set and suppose that a, b E H implies that ab E H. We need to show that 
a-I E H for every a E H. Thus let a E H and let Ta : H ---> H be defined by 
Ta(b) = abo Our hypothesis implies that Ta(H) ~ H. If Ta(b) = Ta(c) then 
ab = ac and left cancellation in the group G (Proposition 1.3 (5)) shows 
that b = c. Hence Ta is an injective map and, since H is assumed to be 
finite, it follows that Ta is bijective, so the equation ax = c is solvable in 
H for any choice of c E H. Taking c = a shows that e E H and then taking 
c = e shows that a-I E H. Therefore, condition (2) of Proposition 2.1 is 
satisfied and H is a subgroup of G. 

(3) If G is an abelian group with the additive notation, then H ~ Gis 
a subgroup if and only if a - b E H whenever a, b E H. 

(2.3) Proposition. Let I be an index set and let Hi be a subgroup of G for 
each i E I. Then H = niEI Hi is a subgroup of G. 

Proof. If a, bE H then a, bE Hi for all i E I. Thus ab- 1 E Hi for all i E I. 
Hence ab- 1 E Hand H is a subgroup by Remark 2.2 (1). 0 

(2.4) Definition. Let G and H be groups and let f : G ---> H be a function. 
Then f is a group homomorphism if f(ab) = f(a)f(b) for all a, bEG. A 
group isomorphism is an invertible group homomorphism. If f is a group 
homomorphism, let 

Ker(J) = {a E G: f(a) = e} 

and 
Im(J) = {h E H : h = f(a) for some a E G}. 

Ker(J) is the kernel of the homomorphism f and Im(J) is the image of f. 

It is easy to check that f is invertible as a group homomorphism if and 
only if it is invertible as a function between sets, i.e., if and only if it is 
bijective. 

(2.5) Proposition. Let f : G ---> H be a group homomorphism. Then Ker(J) 
and Im(J) are subgroups of G and H respectively. 

Proof. First note that f(e) = f(ee) = f(e)f(e), so by cancellation in H 
we conclude that f(e) = e. Then e = f(e) = f(aa- 1) = f(a)f(a- 1 ) for 
all a E G. Thus f(a- 1 ) = f(a)-1 for all a E G. Now let a, b E Ker(J). 
Then f(ab- 1) = f(a)f(b- 1) = f(a)f(b)-l = ee- 1 = e, so ab- 1 E Ker(J) 
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and Ker(f) is a subgroup of G. Similarly, if f(a), f(b) E Im(f) then 
f(a)f(b)-l = J(ab- 1) E Im(f), so Im(f) is a subgroup of H. 0 

(2.6) Definition. Let S be a subset of a group G. Then (S) denotes the 
intersection of all subgroups ofG that contain S. The subgroup (S) is called 
the subgroup generated by S. If S is finite and G = (S) we say that G is 
finitely generated. If S = {a} has only one element and G = (S) then we 
say that G is a cyclic group. 

(2.7) Proposition. Let S be a nonempty subset of a group G. Then 

(S) = {a1a2··· an: n E Nand ai or ail E S for 1 ~ i ~ n}. 

That is, (S) is the set of all finite products consisting of elements of S or 
inverses of elements of S. 

Proof. Let H denote the set of elements of G obtained as a finite product of 
elements of S or S-l = {a- 1 : a E S}. If a, bE H then ab-1 is also a finite 
product of elements from sus-I, so ab-1 E H. Thus H is a subgroup of G 
that contains S. Any subgroup K of G that contains S must be closed under 
multiplication by elements of S U S-l, so K must contain H. Therefore, 
H=(S). 0 

(2.8) Examples. You should provide proofs (where needed) for the claims 
made in the following examples. 

(1) The additive group Z is an infinite cyclic group generated by the num
ber l. 

(2) The multiplicative group Q* is generated by the set S = {lip: p is a 
prime number} U {-I}. 

(3) The group Zn is cyclic with generator l. 
(4) The group Un is cyclic with generator exp(27riln). 
(5) The even integers are a subgroup of Z. More generally, all the multiples 

of a fixed integer n form a subgroup of Z and we will see shortly that 
these are all the subgroups of Z. 

(6) If a = (~~~) then H = {e,a,a2 } is a subgroup of the symmetric 
group S3. Also, S3 is generated by a and (3 = (~ ~ ~). 

(7) If (3 = n ~~) and, = (g~) then S3 = ((3, ,). 
(8) A matrix A = [aij] is upper triangular if aij = 0 for i > j. The 

subset T(n, R) ~ GL(n, R) of invertible upper triangular matrices is 
a subgroup of GL(n, R). 

(9) If G is a group let Z(G), called the center of G, be defined by 

Z(G) = {a E G : ab = ba for all bEG}. 

Then Z(G) is a subgroup of G. 
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(10) If G is a group and x E G, then the centralizer of x is the subset C(x) 
of G defined by 

C (x) = {a E G : ax = xa}. 

C(x) is a subgroup of G and C(x) = G if and only if x E Z(G). Also 
note that C(x) always contains the subgroup (x) generated by x. 

(11) If G is a group and a, bEG, then [a, bJ = a-1b-1ab is called the com
mutator of a and b. The subgroup G' generated by all the commutators 
of elements of G is called the commutator subgroup of G. Another 
common notation for the commutator subgroup is [G, GJ. See Exercise 
22 for some properties of the commutator subgroup. 

(12) A convenient way to describe some groups is by giving generators and 
relations. Rather than giving formal definitions we shall be content to 
illustrate the method with two examples of groups commonly expressed 
by generators and relations. For the first, the quaternion group is a 
group with 8 elements. There are two generators a and b subject to 
the three relations (and no others): 

We leave it for the reader to check that 

For a concrete description of Q as a subgroup of GL(2, C), see Exercise 
24. 

(13) As our second example of a group expressed by generators and rela
tions, the dihedral group of order 2n, denoted D2n , is a group gener
ated by two elements x and y subject to the three relations (and no 
others): 

Again, we leave it as an exercise to check that 

D { 2 n-l 2 n-l} 2n= e,x,x, ... ,x ,y,yx,yx, ... ,yx . 

Thus, D2n has 2n elements. The dihedral group will be presented as 
a group of symmetries in Section 1.6, and it will be studied in detail 
from the point of view of representation theory in Chapter 8. 

(2.9) Definition. The order ofG, denoted IGI, is the cardinality of the set G. 
The order of an element a E G, denoted o( a) is the order of the subgroup 
generated bya. (In general, IXI will denote the cardinality of the set X, 
with IXI = 00 used to indicate an infinite set.) 

(2.10) Lemma. Let G be a group and a E G. Then 

(1) o(a) = 00 if and only if an # e for any n > O. 
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(2) If o( a) < 00, then o( a) is the smallest positive integer n such that 

(3) ak = e if and only if o(a) I k. 

Proof. (1) If an i- e for any n > 0, then aT i- as for any r i- s since aT = as 
implies aT- S = e = as- T, and if r i- s, then r - s > 0 or s - r > 0, which is 
excluded by our hypothesis. Thus, if an i- e for n > 0, then I (a) I = 00, so 
o(a) = 00. If an = e then let am be any element of (a). Writing m = qn + r 
where 0 ::; r < n we see that am = anq+T = anqaT = (an)qaT = eqaT = aT. 
Thus (a) = {e, a, a2 , ... , an-I} and o(a)::; n < 00. 

(2) By part (1), if o(a) < 00 then there is an n > 0 such that an = e and 
for each such n the argument in (1) shows that (a) = {e, a, ... , an-I}. If 
we choose n as the smallest positive integer such that an = e then we claim 
that the powers ai are all distinct for 0 ::; i ::; n - 1. Suppose that ai = a j 

for 0 ::; i < j ::; n - 1. Then aj - i = e and 0 < j - i < n, contradicting the 
choice of n. Thus o(a) = n = smallest positive integer such that an = e. 

(3) Assume that ak = e, let n = o(a), and write k = nq + r where 
o ::; r < n. Then e = ak = anq+T = anqaT = aT. Part (2) shows that we 
must have r = 0 so that k = nq. D 

We will now characterize all subgroups of cyclic groups. We start with 
the group Z. 

(2.11) Theorem. If H is a subgroup of Z then H consists of all the multiples 
of a fixed integer m, i.e., H = (m). 

Proof. If H = {O} we are done. Otherwise H contains a positive integer 
since H contains both nand -n whenever it contains n. Let m be the 
least positive integer in H. Then we claim that H = {km : k E Z} = (m). 
Indeed, let n E H. Then write n = qm + r where 0 ::; r < m. Since n E H 
and m E H, it follows that r = n - qm E H because H is a subgroup of 
Z. But 0 ::; r < m so the choice of m forces r = 0, otherwise r is a smaller 
positive integer in H than m. Hence n = qm so that every element of H is 
a multiple of m, as required. D 

We now determine all subgroups of a cyclic group G. Assume that G = 

(a) and let H be a subgroup of G such that H i- {e}. If H contains a power 
a -m with a negative exponent then it also contains the inverse am, which 
is a positive power of a. Arguing as in Theorem 2.11, let m be the smallest 
positive integer such that am E H. Let as be an arbitrary element of Hand 
write s = qm + r where 0 ::; r < m. Then aT = as- qm = as(am)-q E H 
since as and am are in H. Thus we must have r = 0 since r < m and 
m is the smallest positive integer with am E H. Therefore, s = qm and 
as = (am)q so that all elements of H are powers of am. 

If a is of finite order n so that an = e then n must be divisible by 
m because e = an E H so that n = qm for some q. In this case, H = 
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{e, am, a2m , ... ,a(q-l)m}. Therefore, IHI = q = n/m. However, if the order 
of a is infinite, then H = {e, a±m, a±2m, ... } = (am) is also infinite cyclic. 
Thus we have proved the following result. 

(2.12) Theorem. Any subgroup H of a cyclic group G = (a) is cyclic. More
over, either H = (e) or H = (am) where m is the smallest positive power of 
a that is in H. If G is infinite then m is arbitrary and H is infinite cyclic. 
If IGI = n then min and IHI = n/m. If m is any factor of n then there is 
exactly one subgroup H of G of order n/m, namely, H = (am). 

The above theorem gives a complete description of cyclic groups and 
their subgroups. From this description, it is easy to see that any two cyclic 
groups of order n are isomorphic, as well as any two infinite cyclic groups 
are isomorphic. Indeed, if G = (a) and H = (b) where IGI = IHI = n then 
define! : G -+ H by !(am ) = bm for all m. One checks that f is a group 
isomorphism. In particular, every cyclic group of order n is isomorphic to 
the additive group Zn of integers modulo n (see Example 1.2 (3)), and any 
infinite cyclic group is isomorphic to the additive group Z. 

(2.13) Definition. Let G be a group and H a subgroup. For a fixed element 
a E G we define two subsets of G: 

(1) The left coset of H in G determined by a is the set aH = {ah : h E H}. 
The element a is called a representative of the left coset aH. 

(2) The right coset of H in G determined by a is the set H a = {ha : h E 

H}. The element a is called a representative of the right coset H a. 

Remark. Unfortunately, there is no unanimity on this definition in the math
ematical world. Some authors define left and right cosets as we do; others 
have the definitions reversed. 

A given left or right coset of H can have many different representatives. 
The following lemma gives a criterion for two elements to represent the same 
coset. 

(2.14) Lemma. Let H be a subgroup of G and let a, bEG. Then 

(1) aH = bH if and only if a-1b E H, and 
(2) Ha = Hb if and only if ab- I E H. 

Proof. We give the proof of (1). Suppose a-1b E H and let b = ah for some 
hE H. Then bh' = a(hh') for all h' E Hand ah l = (ah)(h-Ih l ) = b(h-Iht} 
for all hI E H. Thus aH = bH. Conversely, suppose aH = bH. Then 
b = be = ah for some h E H. Therefore, a-Ib = h E H. 0 



12 Chapter 1. Groups 

(2.15) Theorem. Let H be a subgroup of G. Then the left cosets (right cosets) 
of H form a partition of G. 

Proof. Define a relation L on G by setting a "'L b if and only if a-1b E H. 
Note that 

(1) a"'La, 
(2) a "'L b implies b "'L a (since a-1b E H implies that b-1a = (a- 1b)-1 E 

H), and 
(3) a "'L band b "'L c implies a "'L c. 

Thus, L is an equivalence relation on G and the equivalence classes of L, 
denoted [alL, partition G. (See the appendix.) That is, the equivalence 
classes [alL and [b]L are identical or they do not intersect. But 

[alL = {b E G : a "'L b} 

= {b E G : a- 1b E H} 

= {b E G : b = ah for some h E H} 

=aH. 

Thus, the left cosets of H partition G and similarly for the right cosets. 0 

The function ¢a : H --+ aH defined by ¢a(h) = ah is bijective by 
the left cancellation property. Thus, every left coset of H has the same 
cardinality as H, i.e., laHI = IHI for every a E G. Similarly, by the right 
cancellation law the function 1/Ja(h) = ha from H to Ha is bijective so that 
every right coset of H also has the same cardinality as H. In particular, 
all right and left cosets of H have the same cardinality, namely, that of H 
itself. 

(2.16) Definition. If H is a subgroup of G we define the index of H in G, 
denoted [G : H], to be the number of left cosets of H in G. The left cosets 
of H in G are in one-to-one correspondence with the right cosets via the 
correspondence aH +-+ H a -1 = (aH) -1. Therefore, [G : H] is also the 
number of right cosets of H in G. 

(2.17) Theorem. (Lagrange) If H is a subgroup of a finite group G, then 
[G: H] = IGI/IHI, and in particular, IHI divides IGI. 
Proof. The left cosets of H partition G into [G : H] sets, each of which has 
exactly IHI elements. Thus, IGI = [G: H]IHI. 0 

(2.18) Corollary. If G is a finite group and a E G then o(a) IIGI. 
Proof. o 
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(2.19) Corollary. If IGI = n, then an = e for all a E G. 

Proof. D 

(2.20) Corollary. If IGI = p where p is prime, then G is a cyclic group. 

Proof. Choose a E G with a i- e and consider the subgroup H = (a). Then 
H i- {e}, and since IHI I IGI = p, it follows that IHI = p, so H = G. D 

(2.21) Remark. The converse of Theorem 2.17 is false in the sense that if 
m is an integer dividing IGI, then there need not exist a subgroup H of G 
with IHI = m. A counterexample is given in Exercise 31. It is true, however, 
when m is prime. This will be proved in Theorem 4.7. 

(2.22) Definition. If G is any group, then the exponent of G is the smallest 
natural number n such that an = e for all a E G. If no such n exists, we 
say that G has infinite exponent. 

If IGI < 00, then Corollaries 2.18 and 2.19 show that the exponent of 
G divides the order of G. 

There is a simple multiplication formula relating indices for a chain of 
subgroups K <:;; H <:;; G. 

(2.23) Proposition. Let G be a group and H, K subgroups with K <:;; H. If 
[G : KJ < 00 then 

[G: KJ = [G: H][H : KJ. 

Proof. Choose one representative ai (1 ::; i ::; [G: HJ) for each left coset of 
H in G and one representative bj (1 ::; j ::; [H : KJ) for each left coset of 
K in H. Then we claim that the set 

consists of exactly one representative from each left coset of K in G. To 
see this, let cK be a left coset of K in G. Then c E aiH for a unique 
ai so that c = aih. Then h E bjK for a unique bj so that c = aibjk for 
uniquely determined ai, bj k. Therefore, cK = aibjK for unique ai, bj , and 
we conclude that the number ofleft cosets of Kin G is [G : H][H : KJ. D 

(2.24) Remark. If IGI < 00 then Proposition 2.23 follows immediately 
from Lagrange's theorem. Indeed, in this case [G : KJ = IGI/IKI = 
(IGI/IHI)(IHI/IKI) = [G : H][H : KJ. 

(2.25) Examples. 

(1) If G = Z and H = 2Z is the subgroup of even integers, then the 
cosets of H consist of the even integers and the odd integers. Thus, 
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[Z : 2Z] = 2. Since Z is abelian, it is not necessary to distinguish 
between left and right cosets. 

(2) If G = Z and H = nZ, then [Z : nZ] = n where the coset m+H consists 
of all integers that have the same remainder as m upon division by n. 

(3) Let G = 8 3 = {e, a,a2 , (3, a(3, a 2(3} where a = nii) and (3 = 
(~ i ; ). If H = ((3), then the left cosets of H in G are 

H={e,(3} aH = {a, a(3} 

while the right cosets are 

H = {e, (3} 

Note that, in this example, left cosets are not the same as right cosets. 
(4) Let G = GL(2, R) and let H = SL(2, R). Then A, B E GL(2, R) are 

in the same left coset of H if and only if A-I B E H, which means that 
det(A -1 B) = 1. This happens if and only if det A = det B. Similarly, 
A and B are in the same right coset of H if and only if det A = det B. 
Thus in this example, left cosets of H are also right cosets of H. A set 
of coset representatives consists of the matrices 

{[~ ~] :aER*}. 

Therefore, the set of cosets of H in G is in one-to-one correspondence 
with the set of nonzero real numbers. 

(5) Groups of order :::; 5. Let G be a group with IGI :::; 5. If IGI = 1, 2, 3, or 
5 then Corollary 2.20 shows that G is cyclic. Suppose now that IGI = 4. 
Then every element a =1= e E G has order 2 or 4. If G has an element a 
of order 4 then G = (a) and G is cyclic. If G does not have any element 
of order 4 then G = {e, a, b, c} where a2 = b2 = c2 = e since each 
nonidentity element must have order 2. Now consider the product abo If 
ab = e then ab = a2 , so b = a by cancellation. But a and b are distinct 
elements. Similarly, ab cannot be a or b, so we must have ab = C. A 
similar argument shows that ba = c, ac = b = ca, bc = a = cb. Thus, G 
has the Cayley diagram of the Klein 4-group. Therefore, we have shown 
that there are exactly two nonisomorphic groups of order 4, namely, 
the cyclic group of order 4 and the Klein 4-group. 

The left cosets of a subgroup were seen (in the proof of Theorem 2.14) 
to be a partition of G by describing an explicit equivalence relation on G. 
There are other important equivalence relations that can be defined on a 
group G. We will conclude this section by describing one such equivalence 
relation. 

(2.26) Definition. Let G be a group and let a, bEG. Then a is conjugate to 
b if there is agE G such that b = gag-I. It is easy to check that conjugacy 
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is an equivalence relation on G. The equivalence classes are called conjugacy 
classes. Let [aJe denote the conjugacy class of the element a E G. 

(2.27) Proposition. Let G be a group and let a E G. Then 

l[aJel = [G: C(a)J 

where C(a) is the centralizer of the element a. 

Proof. Since 

gag- 1 = hah- 1 {::} g-lh E C(a) 

{::} gC(a) = hC(a), 

there is a bijective function ¢ : [aJe --> G/C(a) = the set of left cosets of 
C(a), defined by ¢(gag- 1 ) = gC(a), which gives the result. 0 

(2.28) Corollary. (Class equation) Let G be a finite group. Then 

IGI = IZ(G)I + :L)G: C(a)J 

where the sum is over a complete set of nonconjugate a not in Z(G). 

Proof. Since I[alel = 1 if and only if a E Z(G), the above equation is noth
ing more than the partition of G into equivalence classes under conjugation, 
with the observation that all equivalence classes consisting of a single ele
ment have been grouped into IZ(G)I. 0 

1.3 Normal Subgroups, Isomorphism Theorems, and 
Automorphism Groups 

If G is a group, let P* (G) denote the set of all nonempty subsets of G and 
define a multiplication on P* (G) by the formula 

ST = {st : s E S, t E T} 

where S, T E P* (G). Since the multiplication in G is associative it follows 
that the multiplication in P* (G) is associative, so that parentheses are not 
necessary in multiplications such as STUV. If S = {s} then we will write 
sT or Ts instead of {s}T or T{s}. In particular, if H is a subgroup of G 
and a E G then the left coset aH is just the product in P* (G) of the subsets 
{a} and H of G and there is no ambiguity in the notation aH. The subset 
{e} E P*(G) satisfies eS = Se = S for all S E P*(G). Thus P*(G) has an 
identity element for its multiplication, namely, {e}, and hence P* (G) forms 
what is called a monoid (a set with an associative multiplication with an 
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identity element), but it is not a group except in the trivial case G = {e} 
since an inverse will not exist (using the multiplication on p. (G» for any 
subset 8 of G with 181 > 1. If 8 E P*(G) let 8-1 = {S-1 : s E 8}. Note, 
however, that 8-1 is not the inverse of 8 under the multiplication ofP*(G) 
except when 8 contains only one element. If H is a subgroup of G, then 
H H = H, and if IHI < 00, then Remark 2.2 (2) implies that this equality 
is equivalent to H being a subgroup of G. If H is a subgroup of G then 
H- l = H since subgroups are closed under inverses. 

Now consider the following question. Suppose H, K E P* (G) are sub
groups of G. Then under what conditions is HK a subgroup of G? The 
following lemma gives one answer to this question; another answer will be 
provided later in this section after the concept of normal subgroup has been 
introduced. 

(3.1) Lemma. If Hand K are subgroups ofG then HK is a subgroup if and 
only if HK = KH. 

Proof. If H K is a subgroup, then H K contains all inverses of elements of 
HK. Thus, HK = (HK)-1 = K- IH- l = KH. 

Conversely, suppose that HK = KH. Then HK is closed under in
verses since (HK)-1 = KH = HK, and it is closed under products since 
(HK)(HK) = HKHK = HHKK = HK. Thus, HK is a subgroup by 
Proposition 2.1. 0 

The equality H K = K H is an equality of subsets of G; it should not 
be confused with element by element commutativity. In terms of elements, 
HK = KH means that any product hk (h E H, k E K) can also be written 
klhl for some kl E K, hI E H. If G is abelian this is of course automatic. 

We now consider the question of when the subset of P* (G) consisting 
of all the left cosets of a subgroup H is closed under the multiplication on 
P*(G). 

(3.2) Definition. If H is a subgroup of G then G/ H ~ P*(G) will denote 
the set of all left eosets of H in G. It is called the coset space of H in G. 

Consider two left cosets of H, say aH and bH. If (aH)(bH) = eH, 
then ab E eH, and hence eH = abH. Therefore, to ask if G / H is closed 
under multiplication is to ask if the equation (aH)(bH) = abH is true for 
all a, bEG. 

(3.3) Lemma. If H is a subgroup of G, then (aH)(bH) = abH for all a, bE 
G if and only if eHe- l = H for all c E G. 

Proof. Suppose eHe- l = H for all e E G. Then eH = He for all e E G, so 

(aH)(bH) = a(Hb)H = a(bH)H = abHH = abH. 
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Conversely, if (aH)(bH) = abH for all a, bEG, then 

for all c E G. Replacing c by c-1 (since c-1 E G) gives an inclusion c-1 H c ~ 
H and multiplying on the left by c and the right by c-1 gives H ~ cHc-1• 

Hence, cHc- 1 = H for all c E G. 0 

(3.4) Definition. A subgroup N of G is said to be normal, denoted N <J G, 
if aNa- 1 = N for all a E G. 

(3.5) Remark. The argument in Lemma 3.3 shows that N is normal in G 
if and only if aN a -1 ~ N for all a E G. This is frequently easier to check 
than the equality aNa- 1 = N. Also note that Definition 3.4 is equivalent 
to aN = Na for all a E G. 

(3.6) Proposition. If N <J G, then the coset space GIN ~ P*(G) forms a 
group under the multiplication inherited from P*(G). 

Proof. By Lemma 3.3, GIN is closed under the multiplication on P* (G). 
Since the multiplication on P* (G) is already associative, it is only necessary 
to check the existence of an identity and inverses. But the coset N = eN 
satisfies 

(eN)(aN) = eaN = aN = aeN = (aN)(eN), 

so N is an identity of GIN. Also 

(aN)(a- 1 N) = aa-1 N = eN = N = a-IaN = (a- 1 N)(aN) 

so that a-IN is an inverse of aN. Therefore, the axioms for a group struc
ture on GIN are satisfied. 0 

(3.1) Definition. If N <J G, then GIN is called the quotient group of G by 
N. 

(3.8) Remark. If N <J G and IGI < 00, then Lagrange's theorem (Theorem 
2.17) shows that IGINI = [G: N] = IGI/INI. 

(3.9) Examples. 

(1) If G is abelian, then every subgroup of G is normal. 
(2) SL(n, R) is a normal subgroup of GL(n, R). Indeed, if A E GL(n, R) 

and B E SL(n,R) then 

det(ABA- 1 ) = (det A)(det B) (det A)-l = 1 
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so that ABA-l E SL(n,R) for all A E GL(n,R) and B E SL(n,R). 
The quotient group GL(n,R)/SL(n,R) is isomorphic to R*, the mul
tiplicative group of nonzero real numbers. This will follow from The
orem 3.11 (to be proved shortly) by considering the homomorphism 
det : GL(n, R) ~ R*. The details are left as an exercise. 

(3) The subgroup T(n, R) of upper triangular matrices is not a normal 
subgroup of GL(n, R). For example, take n = 2 and let A = [~~] and 
B = [~~]. Then ABA-l = [~l~] f/. T(2,R). A similar example can 
be constructed for any n > 1. Thus the set of cosets GL(n, R)IT(n, R) 
does not form a group under the operation of coset multiplication. 

(4) If a = (~; ~), then H = {e, a, a2 } is a normal subgroup of the sym
metric group 83 (check it). If 13 rt. H then the cosets are Hand j3H. 

(5) Let K = (13) <;;;; 83 where 13 = (~~ ~). Then the left cosets of Kin G 
are 

K = {e,f3} aK = {a, af3} 

where a is the permutation defined in Example 3.9 (4). Then 

K(aK) = {e, aHa, aj3} = {a, aj3, a 2 , a 2 j3} =I- aK. 

Therefore, the product of two cosets of K is not a coset of K, and 
in particular, K is not a normal subgroup of 83 , A straightforward 
calculation shows that aKa- 1 =I- K. 

(3.10) Proposition. Let f : G ~ H be a group homomorphism. Then 
Ker(f) <l G. 

Proof. Let a E G and bE Ker(f). Then 

f(aba- 1 ) = f(a)f(b)f(a- 1 ) = f(a)ef(a)-l = e 

so aba- 1 E Ker(f) for all b E Ker(f), a E G and Ker(f) is normal by 
Remark 3.5. 0 

In fact, Proposition 3.10 describes all possible normal subgroups of a 
group G. To see this let N <l G and define a function 7r : G ~ GIN by the 
formula 7r( a) = aN. By the definition of multiplication on GIN we see that 

7r(ab) = abN = (aN)(bN) = 7r(a)7r(b). 

Thus, 7r is a group homomorphism (called the natural projection or simply 
natural map) from G to GIN. Note that Ker(7r) = N and therefore N is 
the kernel of a group homomorphism. Since N was an arbitrary normal 
subgroup of G, it follows that the normal subgroups of G are precisely the 
kernels of all possible group homomorphisms from G to some other group. 

We now present some general results, which are commonly called the 
noether isomorphism theorems. Similar results will also be seen in the 
theory of rings and the theory of modules. 
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(3.11) Theorem. (First isomorphism theorem) Let f : G -+ H be a group 
homomorphism with kernel K. Then G I K ~ Im(f) (~ means is isomorphic 
to). 

Proof. Define a function I : G I K -+ Im(f) by the formula I (aK) = f (a). 
The first thing that needs to be checked is that this is a well-defined function 
since the coset aK may also be a coset bK. It is necessary to check that 
f(a) = f(b) in this case. But aK = bK if and only if a-1b E K, which 
means that f(a-1b) = e or f(a) = f(b). Therefore, I is a well-defined 
function on G I K. Also 

1«aK)(bK» = l(abK) = f(ab) = f(a)f(b) = l(aK)I(bK) 

so that I is a homomorphism. I is clearly surjective and Ker(f) = K which 
is the identity of G I K. Hence I is an isomorphism. 0 

Recall from Lemma 3.1 that the product H K of two subgroups H, K 
is a subgroup if and only if HK = KH. There is a simple criterion for this 
commutativity. 

(3.12) Lemma. Let H, K be subgroups of G. If either H or K is normal in 
G, then H K is a subgroup of G. 

Proof. Suppose K <l G. Then aK = Ka for all a E G. In particular, HK = 
KH, so HK is a subgroup. 0 

(3.13) Theorem. (Second isomorphism theorem) Let Hand N be subgroups 
of G with N <l G. Then HI(H n N) ~ HNIN. 

Proof. Let 7r : G -+ GIN be the natural map and let 7ro be the restriction 
of 7r to H. Then 7ro is a homomorphism with Ker(7ro) = H n N. Thus, 

HI(H n N) = HI Ker(7ro) ~ Im(7ro), 

But the image of 7ro is the set of all cosets of N having representatives in 
H. Therefore, Im(7ro) = HNIN. 0 

(3.14) Theorem. (Third isomorphism theorem) Let N <lG, H <lG and assume 
that N ~ H. Then 

GIH ~ (G/N)/(H/N). 

Proof. Define a function f: GIN -+ GIH by the formula f(aN) = aH. It 
is easy to check (do it) that this is a well-defined group homomorphism. 
Then 

Ker(f) = {aN: aH = H} = {aN: a E H} = H / N. 

The result then follows from the first isomorphism theorem. o 
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(3.15) Theorem. (Correspondence theorem) Let N <l G and let 7r : 
G -+ GIN be the natural map. Then the function H 1-+ HI N defines a 
one-to-one correspondence between the set of all subgroups of G containing 
N and the set of all subgroups of GIN. This correspondence satisfies the 
following properties. 

(1) HI ~ H2 if and only if HdN ~ H2IN, and in this case 

[H2: HI] = [H2IN: HdN]. 

(2) H <l G if and only if HIN <l GIN. 

Proof. Letting 

8 1 = {H: H is a subgroup of G containing N} 

and 

8 2 = {subgroups of GIN}, 

define Q : 8 1 -+ 8 2 by Q(H) = HIN = Im(7rIH)' Suppose HdN = H21N 
where Hi> H2 E 8 1 , We claim that HI = H2. Let hI E HI' Then hlN E 

H2IN, so hlN = h2N where h2 E H2. Therefore, HI ~ H2 and a similar 
argument shows that H2 ~ HI so that HI = H2. Thus Q is one-to-one. If 
K E 82 then 7r- 1 (K) E 8 1 and Q(7r-l(K») = K so that Q is surjective. We 
conclude that Q is a 1 - 1 correspondence between 8 1 and 8 2 . 

Now consider properties (1) and (2). The fact that HI ~ H2 if and 
only if HdN ~ H21N is clear. To show that [H2 : HI] = [H2IN : H2IN] it 
is necessary to show that the set of cosets aHI (for a E H2) is in one-to-one 
correspondence with the set of cosets aHdN (for a E H2IN). This is left 
as an exercise. 

Suppose H <l G. Then HIN <l GIN since 

(aN)(HIN)(aN)-l = (aHa-1)IN = HIN. 

Conversely, let HI N be a normal subgroup of GIN. Then if 7rl : 
GIN -+ (GIN)/(HIN) is the natural map we see that Ker(7rl 07r) = H. 
Thus, H <l G. 0 

The following result is a simple, but useful, criterion for normality of 
a subgroup: 

(3.16) Proposition. Let H be a subgroup ofG with [G: H] = 2. Then H <lG. 

Proof. Let a E G. If a E H then certainly aHa- 1 = H. If a ¢. H then 
G = H U aH (since [G : H] = 2), so the left coset of H containing a is 
G \ H. But also G = H U Ha (since [G: H] = 2), so the right coset of H 
containing a is G \ H. Hence, aH = Ha so that aHa- 1 = H for all a E G 
andH<lG. 0 
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(3.17) Definition. If G is a group then an automorphism of G is a group 
isomorphism ¢ : G --t G. Aut(G) will denote the set of all automorphisms 
of G. Under the operation of functional composition Aut(G) is a group; in 
fact, it is a subgroup of the symmetric group 8G on the set G (Example 1.2 
(6)). 

(3.18) Examples. 

(1) Aut(Z) ~ Z2. To see this let ¢ E Aut(Z). Then if ¢(1) = r it follows 
that ¢(m) = mr so that Z = 1m (¢) = (r). Therefore, r must be a 
generator of Z, i.e., r = ±l. Hence ¢(m) = m or ¢(m) = -m for all 
mEZ. 

(2) Let G = {(a, b) : a, bE Z}. Then Aut(G) is not abelian. Indeed, 

Aut( G) ~ GL(2, Z) = { [: :]: a, b, c, d E Z and ad - bc = ±1 } . 

(3) Let V be the Klein 4-group. Then Aut(V) ~ 83 (exercise). 

(3.19) Definition. If a E G define Ia : G --t G by Ia(b) = aba-l. Then 
Ia E Aut(G). An automorphism ofG of the form Ia for some a EGis called 
an inner automorphism or conjugation of G. All other automorphisms are 
called outer automorphisms of G. Let Inn( G) denote the set of all inner 
automorphisms of G. Define a function cI> : G --t Aut(G) by cI>(a) = Ia. 
Thus Im( cI» = Inn( G). 

(3.20) Proposition. cI> is a group homomorphism with Im(cI» = Inn(G) and 

Ker(cI» = Z(G). 

Recall (Example 2.8 (9)) that Z(G) denotes the center ofG, i.e., 

Z (G) = {a E G : ab = ba for all bEG}. 

Proof. cI>(ab)(c) = Iab(c) = (ab)c(ab)-l = a(bcb-l)a- l = Ia(h(c» = Ia 0 

h(c). Thus cI> is a homomorphism, and the rest is clear. 0 

(3.21) Corollary. Inn(G) ~ GjZ(G). 

Proof. 

(3.22) Example. 

o 

(1) The group 83 has Z(83 ) = {e} (check this). Thus Inn(83) ~ 83. Recall 
that 83 = {e, a, a 2 ,,8, a,8, a 2,8} (see Example 2.8 (6)). Note that a and 
,8 satisfy a 3 = e = ,82 and a,8 = a 2,8. The elements a and a 2 have 
order 3 and ,8, a,8, and a 2 ,8 all have order 2. Thus if ¢ E Aut(83) 
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then </>(0:) E {0:,0:2} and </>«(3) E {(3, 0:(3, 0:2(3}. Since 8 3 is generated by 
{o:, (3}, the automorphism </> is completely determined once </>(0:) and 
</>«(3) are specified. Thus I Aut(83)1 ::; 6 and we conclude that 

Aut(83 ) = Inn(83 ) ~ 8 3 , 

(2) If G is abelian then every nontrivial automorphism of G is an outer 
automorphism. 

In general it is difficult to compute Aut( G) for a given group G. There 
is, however, one important special case where the computation is possible. 

(3.23) Proposition. Aut(Zn) ~ Z~. 

Proof. Recall that Z~ = {m : 1 ::; m < nand (m, n) = I} with the operation 
of multiplication modulo n, and Zn = {m : 0 ::; m < n} = (1) with the 
operation of addition modulo n. Let </> E Aut(Zn). Since 1 is a generator 
of Zn, </> is completely determined by </>(1) = m. Since </> is an isomorphism 
and 0(1) = n, we must have o(m) = 0(</>(1)) = n. Let d = (m, n), the 
greatest common divisor of m and n. Then n I (n/d)m, so (n/d)m = 0 in 
Zn. Since n is the smallest multiple of m that gives 0 E Zn, we must have 
d = 1, i.e., m E Z~. 

Also, any m E Z~ determines an element </>m E Aut(Zn) by the formula 
</>m(r) = rm. To see this we need to check that </>m is an automorphism 
of Zn. But if </>m(r) = </>m(s) then rm = sm in Zn, which implies that 
(r - s)m = 0 E Zn. But (m, n) = 1 implies that r - s is a multiple of n, 
i.e., r = s in Zn. 

Therefore, we have a one-to-one correspondence of sets 

given by 
¢m r--> m. 

Furthermore, this is an isomorphism of groups since 

1.4 Permutation Representations 
and the Sylow Theorems 

D 

If X is any set, then the set 8x = {one-to-one correspondences f : X --> X} 
is a group under functional composition. 8x is called the symmetric group 
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on X or group of permutations of X. A permutation group is a subgroup 
of Sx for some set X. The following theorem, due to Cayley, si,.)ws that all 
groups can be considered as permutation groups if the set X is appropriately 
chosen: 

(4.1) Theorem. (Cayley) Any group G is isomorphic to a subgroup of the 
symmetric group Sa. 

Proof Define <P : G ~ Sa by the formula <p(a)(b) = abo That is, <P(a) is the 
function on G that multiplies each bEG by a on the left. By Proposition 
1.3 (4) and (5) it follows that each <P(a) is a bijective function on G so that 
<P(a) E Sa. Also <P is a group homomorphism since 

<P(ab)(c) = (ab)c = a(bc) = <P(a)(bc) = <p(a)(<P(b)(c)) = (<P(a) 0 <p(b))(c). 

Now 
Ker( <p) = {a E G : ab = b for all bEG} = {e}. 

Thus, <P is injective, so by the first isomorphism theorem G ~ Im(<p) <;;;; Sa. 
o 

(4.2) Remark. The homomorphism <P is called the left regular representa
tion of G. If IGI < 00 then <P is an isomorphism only when IGI :::; 2 since if 
IGI > 2 then ISal = IGI! > IGI. This same observation shows that Theo
rem 4.1 is primarily of interest in showing that nothing is lost if one chooses 
to restrict consideration to permutation groups. As a practical matter, the 
size of Sa is so large compared to that of G that rarely is much insight 
gained with the use of the left regular representation of G in Sa. It does, 
however, suggest the possibility of looking for smaller permutation groups 
that might contain a copy of G. One possibility for this will be considered 
now. 

By a permutation representation of G we mean any homomorphism 
<p : G ~ S x for some set X. The left regular representation is one such 
example with X = G. Another important example, where IXI may be 
substantially smaller than IGI, is obtained by taking X = G/H where H is 
a subgroup of G. We are not assuming that H is normal in G, so the coset 
space G / H is only a set, not necessarily a group. Define <PH: G ~ Sa / H 
by the formula <PH(a)(bH) = abH. 

(4.3) Proposition. If H is a subgroup ofG then <PH: G ~ Sa/H is a group 
homomorphism and Ker (<p H) is the largest normal subgroup of G contained 
in H. 

Proof If abH = acH, then bH = cH, so <PH(a) is a one-to-one function on 
G/H and it is surjective since <PH(a)(a-1bH) = bH. Thus, <PH(a) E Sa/H. 
The fact that <PHis a group homomorphism is the same calculation as that 
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used to show that <I> was a group homomorphism in the proof of Cayley's 
theorem. Thus, Ker( <I> H) <J G and if a E Ker( <I> H) then <I> H (a) acts as the 
identity on G / H. Thus, aH = <I> H (a) (H) = H so that a E H. Therefore, 
Ker(<I>H) is a normal subgroup of G contained in H. Now suppose that 
N <JG and N ~ H. Let a E N. Then <I>H(a)(bH) = abH = ba' H = bH since 
b-1ab = a' E N ~ H. Therefore, N ~ Ker(<I>H) and Ker(<I>H) is the largest 
normal subgroup of G contained in H. 0 

As an example of the usefulness of Proposition 4.3, we will indicate 
how to use this result to prove the existence of normal subgroups of certain 
groups. 

(4.4) Corollary. Let H be a subgroup of the finite group G and assume that 
IGI does not divide [G : HI!. Then there is a subgroup N ~ H such that 
N =f. {e} and N <J G. 

Proof. Let N be the kernel of the permutation representation <I> H. By Propo
sition 4.3 N is the largest normal subgroup of G contained in H. To see 
that N =f. {e}, note that G/N ~ 1m (<I>H) , which is a subgroup of SG/H. 
Thus, 

IGI/INI = I Im(<I>H)IIISG/HI = [G: HI!. 

Since IGI does not divide [G : HI!, we must have that INI > 1 so that 
N =f. {e}. 0 

(4.5) Corollary. Let H be a subgroup of the finite group G such that 

(IHI, ([G : HI - I)!) = 1. 

Then H <JG. 

Proof. Let N = Ker( <I> H ). Then N ~ H and G / N ~ Im( <I> H) so that 

(IGI/IN!) I [G: HI! = (IGI/IHI)!. 

Therefore, 

(IGI/IH!) . (IHI/IN!) I [G : HI! 

so that (IHI/IN!) I ([G : HI - I)!. But IHI and ([G : HI - I)! have no 
common factors so that IHI/INI must be 1, i.e., H = N. 0 

(4.6) Corollary. Let p be the smallest prime dividing IGI. Then any subgroup 
of G of index p is normal. 

Proof. Let H be a subgroup of G with [G : HI = p and let r = IHI = IGI/p. 
Then every prime divisor of r is 2 p so that 

(lHI, ([G : H] - I)!) = (r, (p - I)!) = 1. 

By Corollary 4.5, H <J G. o 
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The following result is a partial converse of Lagrange's theorem: 

(4.1) Theorem. (Cauchy) Let G be a finite group and let p be a prime 
dividing IGI. Then G has a subgroup of order p. 

Proof. If we can find an element a of order p, then (a) is the desired sub
group. To do this consider the set 

x = {a = (ao, ai, ... , ap-d : ai E G and aOal··· ap-l = e}. 

Then we have a permutation representation of the group Zp on X where 
the homomorphism ¢ : Zp ~ S x is given by 

Note that (ai··· ap) = (ao··· ai_d- l so that ¢(i)(a) EX. 
We may define an equivalence relation on X by a '" b if ¢(i)(a) = b 

for some i. Then X is partitioned into equivalence classes, and it is easy to 
see that each equivalence class consists of either exactly one or exactly p 
elements of X. If nl and np denote the number of equivalence classes with 
1 and p elements respectively, then 

IXI = nl . 1 + np . p. 

Now X has IGIP-l elements (since we may choose ao, ... , ap-2 arbi
trarily, and then ap-l = (ao··· ap_2)-1), and this number is a multiple of 
p. Thus we see that nl must be divisible by p as well. Now nl ?: 1 since 
there is an equivalence class {( e, ... , e)}. Therefore, there must be other 
equivalence classes with exactly one element. All of these are of the form 
{(a, ... ,an and by the definition of X, such an element of X gives a E G 
with aP = e. 0 

(4.8) Remark. Note that Corollary 4.6 is a generalization of Proposition 
3.16. Proposition 4.3 and its corollaries are useful in beginning a study 
of the structural theory of finite groups. One use of permutation repre
sentations in the structure theory of finite groups is the proof of Cauchy's 
theorem presented above. The next is in proving the Sylow theorems, which 
are substantial generalizations of Cauchy's theorem. We begin our presen
tation of the Sylow theorems by indicating what we mean by an action of 
a group on a set. 

(4.9) Definition. Let G be a group and let X be a set. By an action of G 
on X we mean a permutation representation <J> : G ~ Sx. In general, we 
shall write gx for <J>(g)(x). The fact that <J> is a homomorphism means that 
g(hx) = (gh)x for all g, h E G and x E X, while ex = x where e EGis 
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the identity. Associated to x E X there is a subset Gx of X and a subgroup 
G(x) of G defined as follows: 

(1) Gx = {gx : 9 E G} is called the orbit of x. 
(2) G(x) = {g E G: gx = x} is called the stabilizer ofx. 

(4.10) Lemma. Let the group G act on a finite set X. Then 

for each x E G. 

Proof. Since 

IGxl = [G : G(x)] 

gx = hx {:? g-lh E G(x) 

{:? gG(x) = hG(x), 

there is a bijective function ¢ : Gx ---> G/G(x) defined by ¢(gx) = gG(x), 
which gives the result. 0 

(4.11) Lemma. Let the group G act on a finite set X. Then 

IXI = ~)G : G(x)] 

where the sum is over a set consisting of one representative of each orbit of 
G. 

Proof. The orbits of G form a partition X, and hence IXI = L IGxl where 
the sum is over a set consisting of one representative of each orbit of G. 
The result then follows from Lemma 4.10. 0 

(4.12) Remark. Note that Lemma 4.11 generalizes the class equation (Corol
lary 2.28), which is the special case of Lemma 4.11 when X = G and G 
acts on X by conjugation. 

(4.13) Definition. (1) If p is a prime, a finite group G is a p-group if I G I = 

pn for some n ?: 1. 
(2) H is a p-subgroup of a group G if H is a subgroup of G and H is a 

p-group. 
(3) Let G be an arbitrary finite group, p a prime, and pn the highest power 

of p dividing IGI (i.e., pn divides IGI, but pn+l does not). H is a p
Sylow subgroup of G if H is a subgroup of G and IHI = pn. 

The three parts of the following theorem are often known as the three 
Sylow theorems: 

(4.14) Theorem. (Sylow) Let G be a finite group and let p be a prime dividing 

IGI· 
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(1) G has a p-Sylow subgroup, and furthermore, every p-subgroup of G is 
contained in some p-Sylow subgroup. 

(2) The p-Sylow subgroups of G are all mutually conjugate. 
(3) The number of p-Sylow subgroups of G is congruent to 1 modulo p and 

divides IGI. 

Proof. Let m = IGI and write m = pnk where k is not divisible by p and 
n ~ 1. We will first prove that G has a p-Sylow subgroup by induction on 
m. If m = p then G itself is a p-Sylow subgroup. Thus, suppose that m > p 
and consider the class equation of G (Corollary 2.28): 

(4.1) IGI = IZ(G)I + ~)G: G(a)] 

where the sum is over a complete set of nonconjugate a not in Z (G). There 
are two possibilities to consider: 

(1) For some a, [G : G(a)] is not divisible by p. In that case, IG(a)1 = 
IGI/[G : G(a)] = pnk' for some k' dividing k. Then p divides IG(a)1 
and IG(a)1 < IGI, so by induction G(a) has a subgroup H of order pn, 
which is then also a p-Sylow subgroup of G. 

(2) [G: G(a)] is divisible by p for all a rt Z(G). Then, since IGI is divisible 
by p, we see from Equation (4.1) that p divides IZ(G)I. By Cauchy's 
theorem (Theorem 4.7), there is an x E Z(G) of order p. Let N = (x). 
If n = 1 (Le., p divides IGI, but p2 does not) then N itself is a p-Sylow 
subgroup of G. Otherwise, note that since N ~ Z(G), it follows that 
N <JG (Exercise 21). Consider the projection map 7r: G --+ GIN. Now 
IGINI = pn-1k < IGI, so by induction, GIN has a subgroup H with 
IHI = pn-l, and then 7r- 1(H) is a p-Sylow subgroup of G. 

Thus, we have established that G has a p-Sylow subgroup P. Let X 
be the set of all subgroups of G conjugate to P. (Of course, any subgroup 
conjugate to P has the same order as P, so it is also a p-Sylow subgroup 
of G.) The group G acts on X by conjugation, and since all elements of 
X are conjugate to P, there is only one orbit. By Lemma 4.11, we have 
IXI = [G: G(P)]. But P ~ G(P), so [G : G(P)] divides k and, in particular, 
is not divisible by p. Thus, IXI is relatively prime to p. 

Now let H be an arbitrary p-subgroup of G, and consider the action 
of H on X by conjugation. Again by Lemma 4.11, 

(4.2) IXI = I)H: H(x)]. 

Since IXI is not divisible by p, some term on the right-hand side of Equation 
(4.2) must not be divisible by Pi since H is a p-group, that can only happen 
if it is equal to one. Thus, there is some p-Sylow subgroup pI of G, conjugate 
to P, with hP'h-1 = pI for all h E H, Le., with HP' = pI H. But then 
Lemma 3.1 implies that HP' is a subgroup of G. Since 
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IHP'I = IHIIP'I/IHnp'l 

(see Exercise 17), it follows that H P' is also a p-subgroup of G. Since pI 
is a p-Sylow subgroup, this can only happen if HP' = P', i.e., if H ~ P'. 
Thus part (1) of the theorem is proved. 

To see that (2) is true, let H itself be any p-Sylow subgroup of G. Then 
H ~ P' for some conjugate P' of P, and since IHI = IP'I, we must have 
H = P' so that H is conjugate to P. This gives that X consists of all the 
p-Sylow subgroups of G, and hence, IXI = [G: G(P)] divides IGI. Now take 
H = P. Equation (4.2) becomes 

(4.3) IXI = 2:[P : P(x)]. 

Then, for x = P, [P: P(x)] = 1, while if x is a representative of any other 
orbit, [P : P(x)] is divisible by p, showing that IXI is congruent to 1 modulo 
p. Thus part (3) is verified. D 

The Sylow theorems are a major tool in analyzing the structure of 
finite groups. In Section 1.7, as an application of these theorems, we will 
classify all finite groups of order::; 15. 

1.5 The Symmetric Group and Symmetry Groups 

Recall that if X = {1, 2, ... ,n} then we denote Sx by Sn and we can write 
a typical element a E Sn as a two-rowed array 

( 1 2 ... n) 
a = a(1) a(2) .. . a(n) . 

This notation is somewhat cumbersome so we introduce a simpler notation 
which is frequently more useful. 

(5.1) Definition. An element i E X = {1, 2, ... ,n} is fixed by a E Sn if 
.:t( i) = i. a E Sn is an r-cycle or cycle of length r if there are r integers 
il, i2, ... ,ir E X such that 

... , 

and such that a fixes all other i E X. The r-cycle a is denoted (il i2 ... ir)' 
If a is an r-cycle, note that o(a) = r. A 2-cycle is called a transposition. 
Two cycles a = (h· .. ir) and f3 = (jl ... js) are disjoint if 

{il, ... ,ir}n{jl,'" ,js}=0. 

That is, every element moved by a is fixed by f3. 
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As an example of the increased clarity of the cycle notation over the 
2-rowed notation, consider the following permutation in 89 . 

( 1 2 3 4 5 6 7 8 9) 
0:= 3 9 7 4 2 1 6 8 5 . 

0: is not a cycle, but it is a product of disjoint cycles, namely, 

0: = (1376)(952)(4)(8). 

Since I-cycles represent the identity function, it is customary to omit them 
and write 0: = (1376)(952). This expression for 0: generally gives more 
information and is much cleaner than the 2-rowed notation. There are, 
however, two things worth pointing out concerning the cycle notation. First 
the cycle notation is not unique. For an r-cycle (i1 ... ir) there are r different 
cycle notations for the same r-cycle: 

The second observation is that the cycle notation does not make it clear 
which symmetric group 8n the cycle belongs to. For example, the transpo
sition (12) has the same notation as an element of every 8n for n ~ 2. 

In practice, this ambiguity is not a problem. We now prove a factor
ization theorem for permutations. 

(5.2) Lemma. Disjoint cycles commute. 

Proof. Suppose 0: and {3 are disjoint cycles in 8n , and let i E X = 
{I, 2, ... ,n}. If i is fixed by both 0: and (3 then o:{3(i) = i = (3o:(i). If 
0: moves i, then 0: also moves o:(i), and thus, f3 fixes both of these el
ements. Therefore, o:f3(i) = o:(i) = (3o:(i). Similarly, if (3 moves i then 
o:{3(i) = (3(i) = (3o:(i). 0 

(5.3) Theorem. Every 0: E 8 n with 0: =I- e can be written uniquely (except 
for order) as a product of disjoint cycles of length ~ 2. 

Proof. We first describe an algorithm for producing the factorization. Let k1 
be the smallest integer in X = {I, 2, ... ,n} that is not fixed by 0: (k1 exists 
since 0: =I- e) and then choose the smallest positive r1 with o:rl(k1) = k1 
(such an r1 exists since 0(0:) < 00). Then let 0:1 be the r1-cycle 

0:1 = (k1 0:(k1) 0:2(k1) ... o:r1 -1(k1». 
Now let Xl = X \ {kb 0:(k1)' ... ,o:r1 -1}. 

If every k E Xl is fixed by 0: then 0: = 0:1 and we are finished. Otherwise 
let k2 be the smallest integer in Xl not fixed by 0: and then let r2 be the 
smallest positive integer with o:r2 (k2) = k2. Then let 0:2 be the r2-cycle 
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It is clear from the construction that 0:1 and 0:2 are disjoint cycles. Contin
uing in this manner we eventually arrive at a factorization 

of 0: into a product of disjoint cycles. 
We now consider the question of uniqueness of the factorization. Sup

pose that 
0: = 0:10:2 ... O:s = (31(32 ... (3t 

where each of these is a factorization of 0: into disjoint cycles of length 
2: 2. We must show that s = t and O:i = (3q,(i) for some 1> E Ss. Let 
m = max{s,t}. If m = 1 then 0: = 0:1 = (31 and uniqueness is clear. We 
proceed by induction on m. Suppose that m > 1 and let k be an element 
of X that is moved by 0:. Then some O:i and (3j must also move k. Since 
disjoint cycles commute, we can, without loss of generality, suppose that 
0:1 and (31 move k. Since none of the other O:i or (3j move k, it follows that 

o:f(k) = o:i'(k) = (3f(k) for all t. 

Thus, 0(0:1) = 0((31) = r = smallest r with o:r(k) = k. Hence, 

0:1 = (k o:(k) ... o:r-1(k)) = (31. 

Multiplying by 0:11 gives a factorization 

0:110: = 0:2· . ·O:s = (32 ... (3t, 

and the proof is completed by induction on m. 

(5.4) Corollary. Every 0: E Sn is a product of tmnspositions. 

D 

Proof. By Theorem 5.3, it is sufficient to factor any cycle as a product of 
transpositions. But 

(i1i2 ... ir) = (i1ir)(i1ir-d ... (i1i2) 

is such a factorization. D 

In contrast to the uniqueness of the factorization of a permutation into 
disjoint cycles, writing a permutation as a product of transpositions is not 
very well behaved. First, the transpositions may not commute. For example, 
(13)(12) = (123) =I- (132) = (12)(13). Second, the factorization is not 
uniquely determined, e.g., (123) = (13)(12) = (13)(12)(23)(23). There 
is, however, one observation that can be made concerning this factorization; 
namely, the number of transpositions occurring in both factorizations is 
even. While we have shown only one example, this is in fact a result that is 
true in general. Specifically, the number of tmnspositions occurring in any 
factorization of a permutation as a product of tmnspositions is always odd 
or always even. This will be verified now. 



1.5 The Symmetric Group and Symmetry Groups 31 

If a = (il ... ir) then a = (il ir) ... (il i2) so that an r-cycle a can 
be written as a product of (o( a) - 1) transpositions. Hence, if a f:. e E Sn 
is written in its cycle decomposition a = al ... as then a is the product of 
f(a) = E:=l(o(ai) -1) transpositions. We also set f(e) = O. Now suppose 
that 

a = (al bl )(a2 b2) ... (at bt ) 

is written as an arbitrary product of transpositions. We claim that f(a) - t 
is even. To see this note that 

(ail i2 ... ir bjl ... js)(ab) = (ajl ... js)(bil ... ir) 

and (since (ab)2 = e) 

(ajl ... js)(bil ... ir)(ab) = (ail i2 ... irbjl ... js) 

where it is possible that no ik or jk is present. Hence, if a and b both 
occur in the same cycle in the cycle decomposition of a it follows that 
f(a· (ab» = f(a) - 1, while if they occur in different cycles or are both 
not moved by a then f(a· (ab)) = f(a) + 1. In any case 

f(a· (a b)) - f(a) == 1 (mod 2). 

Continuing this process gives 

0= fee) = f(a· (atbt)··· (albd) == f(a) + t (mod 2). 

We conclude that any factorization of a into a product of t transpositions 
has both f(a) and t even or both odd, which is what we wished to verify. 
Because of this fact we can make the following definition. 

(5.5) Definition. A permutation a E Sn is even if a can be written as a 
product of an even number of transpositions. a is odd if a can be written as 
a product of an odd number of transpositions. Define the sign of a, denoted 
sgn(a), by 

sgn(a) = {~1 if a is even, 
if a is odd. 

The argument in the previous paragraph shows that a permutation cannot 
be both even and odd. Thus sgn : Sn - {1, -1} is a well-defined junction, 
and moreover, it is a group homomorphism. The kernel of sgn, i.e., the 
set of even permutations, is a normal subgroup of Sn called the alternating 
group and denoted An. 

(5.6) Remark. Note that the above argument gives a method for computing 
sgn(a). Namely, decompose a = al ... as into a product of cycles and 
compute f(a) = E:=l(o(ai) - 1). Then sgn(a) = 1 if f(a) is even and 
sgn(a) = -1 if f(a) is odd. 
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There is an alternative method that does not require that a be first 
decomposed into a product of cycles. We have defined a as a bijection of 
{l, ... ,n}. Let 

na) = I{(i, j) : 1 :::; i < j :::; nand a(j) < a(i)}l. 

Then sgn(a) = 1 if na) is even and sgn(a) = -1 if na) is odd. We leave 
the proof of this as an exercise for the reader. 

(5.7) Proposition. IAnl = n! /2. 

Proof. Since sgn : Sn - {l, -1} is a group homomorphism, the first iso
morphism theorem gives 

Sn/An ~ Im(sgn) = {1, -1}. 

Thus, n! = ISnl = 21Anl. o 

(5.8) Proposition. If n > 2 then An is generated by all the 3-cycles in Sn. 

Proof. An element of An is a product of terms of the form (ij)(kl) or 
(ij)(ik) where i,j,k,l are distinct. (If n = 3, only the latter product is 
possible.) But 

(ij)(i k) = (i kj) 

and 
(ij)(kl) = (ikj)(ikl) 

so that every element of An is a product of 3-cycles. o 

If G is a group recall (Definition 2.26) that two elements a, bEG are 
conjugate if b = cac- I for some c E G. In general, it is not easy to determine 
if two elements of G are conjugate, but for the group Sn there is a simple 
criterion for conjugacy based on the cycle decomposition (factorization) of 
a, (3 E Sn. We will say that a and (3 have the same cycle structure if their 
factorizations into disjoint cycles produce the same number of r-cycles for 
each r. 

(5.9) Proposition. (1) If a E Sn and (3 = (i l ... ir) is an r-cycle, then 
a(3a- 1 is the r-cycle (a(i l ) ... a(ir )). 

(2) Any two r-cycles in Sn are conjugate. 

Proof. (1) If j ~ {a( i l ), ... ,a( ir)} then a-I (j) is fixed by (3 so that 
a(3a- l (j) = j. Also 

a(3a- l (a(ir_d) = a(ir ) 

a(3a- l (a(ir)) = a(id 

so that a(3a- 1 = (a(id ... a(ir )). 
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(2) Let /3 = (i1 ... q and , = (j1 ... jr) be any two r-cycles in 8n. 
Define a E 8n by a(ik) = jk for 1 ::; k ::; r and extend a to a permutation 
in any manner. Then by part (1) a/3a-1 = ,. 0 

(5.10) Corollary. Two permutations a, /3 E 8 n are conjugate if and only if 
they have the same cycle structure. 

Proof. Suppose that ,a,-1 = /3. Then if a = a1 .,. as is the cycle decom
position of a, it follows from Proposition 5.9 (1) that 

/3 -1 ( -1)( -1) ( -1) = ,a, = ,a1/ ,a2, . .. ,as, 
is the cycle decomposition of /3. Thus, a and /3 have the same cycle struc
ture. 

The converse is analogous to the proof of Proposition 5.9 (2); it is left 
to the reader. 0 

(5.11) Example. Let H = {e,(12)(34),(13)(24),(14)(23)} ~ 84 . Then H 
is a subgroup of 84 isomorphic with the Klein 4-group, and since H consists 
of all permutations in 84 with cycle type (ab)(cd) (where a,b,c,d are all 
distinct), it follows from Corollary 5.10 that H <184 , Let K = {e, (12)(34)}. 
Then K is a normal subgroup of H (since H is abelian), but K is not normal 
in 84 since any other permutation of cycle type (ab)(cd) can be obtained 
from (12)(34) by conjugation in 8 4 , Therefore, normality is not a transitive 
property on the set of all subgroups of a group G. 

Let X c Rn. By a symmetry of X we mean a function f : R n ---+ Rn 
such that f(X) ~ X and Ilx - yll = Ilf(x) - f(y)11 for all x,y ERn. The 
set of all symmetries of X under functional composition forms a group, 
called the symmetry group of X. If X = Pn C;;; R2 is a regular polygon 
with n vertices then a symmetry is completely determined by the action 
on the vertices (since it is easy to see from the triangle inequality that 
lines must go to lines and adjacent vertices must go to adjacent vertices) 
so that we get a permutation representation of the symmetry group of Pn , 

denoted D 2n , as a subgroup of 8n . D 2n is called the dihedral group of 
order 2n. If Pn is taken on the unit circle centered at (0,0) with one vertex 
at (1,0) then the symmetries of Pn are the rotations through an angle of 
Ok = 2k7r In around (0,0) for 0 ::; k < n and the reflections through the 
lines from each vertex and from the midpoint of each side to the center of 
the circle. (There are always n such distinct lines.) Thus ID2nl = 2n when 
there are n rotations and n reflections. If we let a be the rotation through 
the angle 01 and /3 the reflection through the x-axis, then 



34 Chapter 1. Groups 

It is easy to check that o(a) = n and that /3a/3 = a-I. If the vertices of 
Pn are numbered n, 1, 2, ... , n -1 counterclockwise starting at (1,0), then 
D2n is identified as a subgroup of Sn by 

a ~ (12 ... n) 

/3 ~ {(1 n -1)(2n - 2) ... ((n - 1)/2 (n + 1)/2) 
(In -1)(2n - 2) ... (n/2 -1 (n/2) + 1) 

when n is odd, 
when n is even. 

Thus, we have arrived at a concrete representation of the dihedral group 
that was described by means of generators and relations in Example 2.8 
(13). 

(5.12) Examples. 

(1) If X is the rectangle in R2 with vertices (0, 1), (0, 0), (2, 0), and (2, 1) 
labelled from 1 to 4 in the given order, then the symmetry group of X 
is the subgroup 

H = {e,(13)(24), (12)(34), (14)(23)} 

of S4, which is isomorphic to the Klein 4-group. 
(2) D6 ~ S3 since D6 is generated as a subgroup of S3 by the permutations 

a = (123) and /3 = (23). 
(3) Ds is a (nonnormal) subgroup of S4 of order 8. If a = (1234) and 

/3 = (13) then 

Ds = {e, a, a 2, a 3, /3, a/3, a 2/3, a 3/3}. 

There are two other subgroups of S4 conjugate to Ds (exercise). 

1.6 Direct and Semidirect Products 

(6.1) Definition. If Nand H are groups the (external) direct product of 
Nand H, denoted N x H, is the cartesian product set N x H with the 
multiplication defined componentwise, i. e., 

(n, h)(n', h') = (nn', hh'). 

It is easy to check that N x H is a group with this multiplication. 
Associated to N x H there are some natural homomorphisms 

7rN : N x H ---> N ((n, h) f---+ n) 

7rH : N x H ---> H ((n, h) f---+ h) 

~N : N ---> N x H (n f---+ (n, e)) 

~H : H ---> N x H (h f---+ (e, h)). 
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The homomorphisms 7rN and 7rH are called the natural projections while 
~N and ~H are known as the natural injections. The word canonical is used 
interchangeably with natural when referring to projections or injections. 
Note the following relationships among these homomorphisms 

Ker(7rH) = Im(~N) 
Ker(7rN) = Im(~H) 
7rH 0 ~H = IH 

7rN 0 ~N = IN 

(Ie refers to the identity homomorphism of the group G). In particular, 
N x H contains a normal subgroup 

and a normal subgroup 

ii = Im(~H) = Ker(7rN) ~ H 

such that Nnii = {(e,e)} is the identity in N x Hand N x H = Nii. 
Having made this observation, we make the following definition. 

(6.2) Definition. Let G be a group with subgroups Nand H such that 

N n H = {e} and N H = G. 

(1) If Nand H are both normal, then we say that G is the internal direct 
product of Nand H. 

(2) If N is normal (but not necessarily H), then we say that G is the 
semidirect product of Nand H. 

The relationship between internal and external direct products is given 
by the following re~ult. We_have already observed that N x H is the internal 
direct product of Nand H, which are subgroups of N x H isomorphic to 
Nand H respectively. 

(6.3) Proposition. If G is the internal direct product of subgroups Nand 
H, then G ~ N x H. 

Proof. Let a E G. Then a = nh for some n E N, hE H. Suppose we may 
also write a = nIhl for some nl E N, hI E H. Then nh = nIh l so that 
n-Inl = hhll EN n H = {e}. Therefore, n = nl and h = hI so that the 
factorization a = nh is unique. 

Define f : G ...... N x H by f(a) = (n, h) where a = nh. This function is 
well defined by the previous paragraph, which also shows that f is a one-to
one correspondence. It remains to check that f is a group homomorphism. 
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Suppose that a = nh and b = nl hl. Then ab = nhnl hl. We claim that 
hnl = nlh for all nl E N and h E H. Indeed, (hnlh- l )nll E N since N is 
normal in G and h(nlh-ln1l ) E H since H is normal. But N n H = {e}, 
so hnlh-ln1l EN n H = {e}, and thus, hnl = nlh. Therefore, 

so that f is a group homomorphism, and, hence, a group isomorphism since 
it is a one-to-one correspondence. 0 

(6.4) Examples. 

(1) Recall that if G is a group then the center of G, denoted Z(G), is the 
set of elements that commute with all elements of G. It is a normal 
subgroup of G. Now, if Nand H are groups, then it is an easy exercise 
(do it) to show that ZeN x H) = ZeN) x Z(H). As a consequence, 
one obtains the fact that the product of abelian groups is abelian. 

(2) The group Z2 x Z2 is isomorphic to the Klein 4-group. Therefore, the 
two nonisomorphic groups of order 4 are Z4 and Z2 x Z2. 

(3) All the hypotheses in the definition of internal direct product are nec
essary for the validity of Proposition 6.3. For example, let G = 83 , 

N = A 3 , and H = ((12)). Then N <JG but H is not a normal subgroup 
of G. It is true that G = N Hand N n H = {e}, but G '1- N x H since 
G is not abelian, but N x H is abelian. 

(4) In the previous example 8 3 is the semidirect product of N = A3 and 
H = ((12)). 

(6.5) Lemma. If G is the semidirect product of Nand H then every a E G 
can be written uniquely as a = nh where n E Nand h E H. 

Proof. By hypothesis, G = NH, so existence of the factorization is clear. 
Suppose a = nlhl = n2h2. Then n2lnl = h2hll E NnH = {e}. Therefore, 
nl = n2 and hl = h2. 0 

According to this lemma, G is set theoretically the cartesian product 
set N x H, but the group structures are different. 

If G is the semidirect product of Nand H, then the second isomor
phism theorem (Theorem 3.12) shows that 

H = H/(H n N) ~ (HN)/N = (NH)/N = G/N. 

Thus, H is determined once we have N. A natural question is then, given 
groups N and It, ident!fy all groups G such that_G is the semidirect product 
of subgroups N and H where N ~ N and H ~ H. As one answer to 
this problem, we will present a construction showing how to produce all 
semidirect products. We start with the following definition: 
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(6.6) Definition. Let Nand H be groups. An extension of N by H is a 
group G such that 

(1) G contains N as a normal subgroup. 
(2) GIN ~ H. 

The first isomorphism theorem shows that for G to be an extension 
of N by H means that there is an exact sequence of groups and group 
homomorphisms 

1 --+ N ~ G 2.. H --+ 1. 

In this sequence, 1 = {e} and exactness means that 7r is surjective, B is 
injective, and Ker(7r) = Im(B). 

The extension G of N by H is a split extension if there is a homomor
phism a : H -+ G such that 7r 0 a = 1H • In this case we say that the above 
sequence is a split exact sequence. 

The relationship between semidirect products and extensions is given 
by the following result: 

(6.7) Proposition. G is a semidirect product of Nand H if and only if G 
is a split extension of N by H. 

Proof. Suppose G is a semidirect product of Nand H with N <l G. Define 
7r : G -+ H by 7r(a) = h where a = nh. Lemma 6.5 shows that 7r is well 
defined. To see that 7r is a homomorphism, note that hln2hll = n~ E N 
whenever hl' n2 E N (because N <l G). Thus, 

so 7r is a homomorphism. It is clear that Im(7r) = H and Ker(7r) = N. Let 
a: H -+ G be the inclusion map, i.e., a(h) = h. Then 7r 0 a(h) = h for all 
hE H, so the extension determined by 7r is split. 

Conversely, assume that G is a split extension of N by H with 
7r : G -+ H and a : H -+ G the homomorphisms given by the definition 
of split extension. Then N = Ker(7r) <l G and ii = Im(a) is a subgroup of 
G. Suppose that a E N n ii. Then 7r(a) = e and a = a(h) for some h E H 
so that h = 7r(a(h» = 7r(a) = e. Therefore, a = a(e) = e, and we conclude 
that Nnii = {e}. Now let a E G and write 

a = (a· a(7r(a»-l) . a(7r(a» = nh. 

Clearly, hE ii and 

7r(n) = 7r(a· a(7r(a»-l) = 7r(a)7r(a(7r(a»-l) = 7r(a)7r(a)-l = e, 

so n E N. Therefore, G is a semidirect product of Nand ii ~ H. 0 
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(6.8) Remark. Comparing the definitions of semidirect product and direct 
product, we see that if G is the semidirect product of N and H with H 
normal (in addition to N), then G is in fact the (internal) direct product of 
these subgroups. Of course, in an abelian group every subgroup is normal, 
so for abelian groups the notion of semidirect product reduces to that of 
direct product. In particular, we see from Proposition 6.7 that given a split 
exact sequence of abelian groups 

1--->N~G~H--->1 

we have that G ~ N x H. 

We now consider a way to construct split extensions of N by H, which 
according to Proposition 6.7 is equivalent to constructing semidirect prod
ucts. Let Nand H be groups and let ¢ : H ---+ Aut(N) be a group ho
momorphism. We will write ¢h E Aut(N) instead of ¢(h). Then define 
G = N )q </> H = N )q H to be the set N x H with the multiplication 
defined by 

(nl' hl )(n2, h2) = (nl¢h1 (n2), hlh2). 

We identify N and H with the subsets N x {e} and {e} x H, respectively. 

(6.9) Theorem. With the above notation, 

(1) G = N )q</> H is a group, 
(2) H is a subgroup of G and N <J G, 
(3) G is a split extension of N by H, and 
(4) hnh- l = ¢h(n) for all h E H ~ G and n E N ~ G. 

Proof. (1) (e, e) is easily seen to be the identity of G. For inverses, note that 

(¢h_1(n-I),h-I)(n,h) = (¢h-1(n-I). ¢h-1(n),h-1h) 

= (¢h-1(e),e) = (e,e) 

and 

(n, h)(¢h-1 (n- l ), h- l ) = (n¢h(¢h-1 (n- l ), hh- l ) 

= (n¢e(n- l ), e) = (nn-l,e) = (e,e). 

Thus, (n,h)-l = (¢h_1(n-I),h-I). 
To check associativity, note that 

«nl' hd(n2' h2))(n3, h3) = (nl¢h1 (n2), h1h2)(n3, h3) 

= (nl¢h1(n2)¢hlh2(n3),h1h2h3) 

= (nl¢h1 (n2)¢hl (¢h2(n3)), hlh2 h3) 

= (nl¢h1 (n2¢h2(n3)), hlh2h3) 

= (n!,hd(n2¢h2(n3),h2h3) 

= (n!, hd«n2' h2)(n3, h3)). 
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(2) It is clear from the definition that Nand H are subgroups of G. 
Let 7r : N )q¢ H -+ H be defined by <p(n, h) = h. Then 7r is a group 
homomorphism since 7r((nl, h1 )(n2, h2)) = 7r(nl<phl (n2), h1h2) = hlh2 = 
7r(nl, ht}7r(n2, h2) and N = Ker(7r), so N <J G. 

(3) Let a : H -+ G be defined by a(h) = (e, h). Then a is a homomor
phism and 7r 0 a = IH. 

(4) 

(6.10) Examples. 

(e, h)(n, e)(e, h)-l = (e, h)(n,e)(e, h-1 ) 

= (<ph(n),h)(e,h- 1 ) 

= (<Ph(n)<Ph(e),hh- 1 ) 

= (<Ph(n), e). 

o 

(1) Let <P : H -+ Aut(N) be defined by <p(h) = IN for all h E H. Then 
N )q ¢ H is just the direct product of Nand H. 

(2) If <p: Z2 -+ Aut(Zn) is defined by 1 f-+ <pl(a) = -a where Z2 = {O, I}, 
then Zn )q¢ Z2 ~ D2n . 

(3) The construction in Example (2) works for any abelian group A in 
place of Zn and gives a group A )q ¢ Z2. Note that A )q ¢ Z2 ~ A X Z2 
unless a2 = e for all a E A. 

(4) Zp2 is a nonsplit extension of Zp by Zp. Indeed, define 7r : Zp2 -+ Zp by 
7r(r) = r (mod p). Then Ker(7r) is the unique subgroup of Zp2 of order 
p, i.e., Ker(7r) = (p) <;;;; Zp2. But then any nonzero homomorphism 
a : Zp -+ Zp2 must have I Im( a) I = p and, since there is only one 
subgroup of Zp2 of order p, it follows that Im(a) = Ker(7r). Therefore, 
7r 0 a = 0 =I- Izp so that the extension is nonsplit. 

(6.11) Remark. Note that all semidirect products arise via the construction 
of Theorem 6.9 as follows. Suppose G = N H is a semidirect product. Define 
<P : H -+ Aut(N) by <Ph(n) = hnh-l. Then the map <I> : G -+ N )q¢ H, 
defined by <I>(nh) = (n, h), is easily seen to be an isomorphism. Note that 
<I> is well defined by Lemma 6.5 and is a homomorphism by Theorem 6.9 
(4). 

1. 7 Groups of Low Order 

This section will illustrate the group theoretic techniques introduced in this 
chapter by producing a list (up to isomorphism) of all groups of order at 
most 15. The basic approach will be to consider the prime factorization of 



40 Chapter 1. Groups 

IGI and study groups with particularly simple prime factorizations for their 
order. First note that groups of prime order are cyclic (Corollary 2.20) so 
that every group of order 2, 3, 5, 7, 11, or 13 is cyclic. Next we consider 
groups of order p2 and pq where p and q are distinct primes. 

(7.1) Proposition. If p is a prime and G is a group of order p2, then G ~ Zp2 
or G ~ Zp x Zp. 

Proof. If G has an element of order p2, then G ~ Zp2. Assume not. Let 
e =1= a E G. Then o(a) = p. Set N = (a). Let bEG with b ~ N, and set 
H = (b). Then N ~ Zp and H ~ ZP' and by Corollary 4.6, N <I G and 
H <lG; so 

by Proposition 6.3. o 

(7.2) Proposition. Let p and q be primes such that p > q and let G be a 
group of order pq. 

(1) If q does not divide p - 1, then G ~ Zpq. 
(2) If q I p - 1, then G ~ Zpq or G ~ Zp >'l <f> Zq where 

cP : Zq --+ Aut(Zp) ~ Z; 

is a nontrivial homomorphism. All nontrivial homomorphisms produce 
isomorphic groups. 

Proof. By Cauchy's theorem (Theorem 4.7) G has a subgroup N of order 
p and a subgroup H of order q, both of which are necessarily cyclic. Then 
N <lG since [G : N] = q and q is the smallest prime dividing IGI (Corollary 
4.6). Since it is clear that N n H = (e) and NH = G, it follows that G is 
the semidirect product of Nand H. 

The map cP : H --+ Aut(N) given by (/Jh(n) = hnh- 1 is a group homo
morphism, so if q does not divide I Aut(N) I = I Aut(Zp)1 = IZ;I = p - 1, 
then cP is the trivial homomorphism. Hence cPh = IN for all h E H, i.e., 
nh = hn for all h E H, n EN. Hence H <I G and G ~ Zp x Zq ~ Zpq (see 
Exercise 11). If q I p - 1 then there are nontrivial homomorphisms 

cP : Zq --+ Aut(N) ~ Z; 
and for some homomorphism cP, 

G ~ Zp >'l<f> Zq. 

Therefore, if N = (a) and H = (b), then G = (a, b), subject to the relations 

aP = e, 

where r q == 1 (mod p). If r = 1 then cP is trivial, H is normal, and G ~ 
Zp x Zq. Otherwise, G is nonabelian. We leave it as an exercise to verify 
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that all choices of r =F 1 produce isomorphic groups. Thus, if q I p -1, then 
there are exactly two nonisomorphic groups of order pq. 0 

(7.3) Corollary. If IGI = 2p, where p is an odd prime, then G ~ Z2p or 
G~ D2p • 

Proof. The only nontrivial homomorphism ¢ : Z2 - Aut{Zp) = Z; is the 
homomorphism 1 f-+ ¢l with ¢l{a) = -a. Apply Example 6.10 (2). 0 

(7.4) Remark. The results obtained so far completely describe all groups of 
order ~ 15, except for groups of order 8 and 12. We shall analyze each of 
these two cases separately. 

Groups of Order 8 

We will consider first the case of abelian groups of order 8. 

(7.5) Proposition. If G is an abelian group of order 8, then G is isomorphic 
to exactly one of the following groups: 

(I) Zs, 
(2) Z4 x Z2, or 
(3) Z2 x Z2 X Z2. 

Proof. Case 1: Suppose that G has an element of order 8. Then G is cyclic 
and, hence, isomorphic to Zs. 

Case 2: Suppose every element of G has order 2. Let {a, b, c} ~ G \ { e } 
with c =F abo Then H = (a, b) is a subgroup of G isomorphic to Z2 x Z2. 
Furthermore, H n (c) = (e) and H(c) = G so that 

G ~ H x (c) ~ Z2 X Z2 X Z2. 

Case 3: If G does not come under Case 1 or Case 2, then G is not cyclic 
and not every element has order 2. Therefore, G has an element a of order 
4. We claim that there is an element b ¢. (a) such that b2 = e. To see this, 
let c be any element not in (a). If c2 = e, take b = c. Otherwise, we must 
have o{c) = 4. Since IG/(a)1 = 2, it follows that c2 E (a). Since a2 is the 
only element of (a) of order 2, it follows that c2 = a2 • Let b = ac. Then 

b2 = a2c2 = a4 = e. 

Proposition 6.3 then shows that 

Since every abelian group of order 8 is covered by Case 1, Case 2, or 
Case 3, the proof is complete. 0 
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Now consider the case of nonabelian groups of order 8. 

(7.6) Proposition. If G is a nonabelian group of order 8, then G is isomor
phic to exactly one of the following two groups: 

(1) Q = the quaternion group, or 
(2) DB = the dihedral group of order 8. 

Proof. Since G is not abelian, it is not cyclic so G does not have an element 
of order 8. Similarly, if a2 = e for all a E G, then G is abelian (Exercise 8); 
therefore, there is an element a E G of order 4. Let b be an element of G 
not in (a). Since [G : (a)] = 2, the subgroup (a) <J G. But IG/(a)1 = 2 so 
that b2 E (a). Since o(b) is 2 or 4, we must have b2 = e or b2 = a2. Since 
(a) <J G, b-1ab is in (a) and has order 4. Since G is not abelian, it follows 
that b-1ab = a3 . Therefore, G has two generators a and b subject to one of 
the following sets of relations: 

(1) a4 = e, 
(2) a4 = e, 

b-1ab = a3 ; 

b-1ab = a3 • 

In case (1), G is isomorphic to DB, while in case (2) G is isomorphic to 
Q. We leave it as an exercise to check that Q and DB are not isomorphic. 

o 

(7.7) Remarks. (1) Propositions 7.5 and 7.6 together show that there are 
precisely 5 distinct isomorphism classes of groups of order 8; 3 are abelian 
and 2 are nonabelian. 

(2) DB is a semidirect product of Z4 and Z2 as was observed in Example 
6.10 (2). However, Q is a nonsplit extension of Z4 by Z2, or of Z2 by Z2 X Z2. 
In fact Q is not a semidirect product of proper subgroups. 

Groups of Order 12 

To classify groups of order 12, we start with the following result. 

(7.8) Proposition. Let G be a group of order p2q where p and q are distinct 
primes. Then G is the semidirect product of a p-Sylow subgroup H and a 
q-Sylow subgroup K. 

Proof. If p > q then H <J G by Corollary 4.6. 
If q > p then 1 + kq I p2 for some k ~ O. Since q > p, this can 

only occur if k = 0 or 1 + kq = p2. The latter case forces q to divide 
p2 -1 = (p+ 1)(p-1). Since q > p, we must have q = p+ 1. This can happen 
only if p = 2 and q = 3. Therefore, in the case q > p, the q-Sylow subgroup 
K is a normal subgroup of G, except possibly when IGI = 22 ·3 = 12. 
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To analyze this case, let K be a 3-Sylow subgroup of a group G of 
order 12. If K is not normal in G, then the number of 3-Sylow subgroups 
of G is 4. Let these 3-Sylow subgroups be K I , K 2, K 3, and K 4. Then 
Kl U K2 U K3 U K4 accounts for 9 distinct elements of G. 

The remaining elements, together with the identity e, must form the 
2-Sylow subgroup H of G. Hence, we must have H <l G. 

Therefore, we have shown that at least one of H (a p-Sylow subgroup 
of G) or K (a q-Sylow subgroup of G) is normal in G. Since it is clear that 
H n K = (e) and HK = G, it follows that G is a semidirect product of H 
~K D 

(7.9) Proposition. A nonabelian group G of order 12 is isomorphic to exactly 
one of the following groups: 

(1) A4 , 

(2) D12 , or 
(3) T = Z3 )q </> Z4 where ¢ Z4 ---> Aut(Z3) ~ Z2 is the nontrivial 

homomorphism. 

Proof. Let H be a 2-Sylow subgroup and K a 3-Sylow subgroup of G. By 
Proposition 7.8 and the fact that G is nonabelian, exactly one of H and K 
is normal in G. 

Case 1: Suppose H <lG. Then K is not normal in G. Since [G : KJ = 4, 
there is a permutation representation <I>K : G ---> 84. By Proposition 4.3, 
Ker(<I>K) is the largest normal subgroup of G contained in K. Since K has 
prime order and is not normal, it follows that G is injective so that 

It is an easy exercise to show that A4 is the only subgroup of 84 of order 
12; therefore, G ~ A4 if the 2-Sylow subgroup is normal in G. 

Case 2: Suppose K <l G and H ~ Z4. In this case 

where ¢ : Z4 ---> Aut(K) is a nontrivial homomorphism, but the only non
trivial automorphism of Z3 is a I-t a-I where K = (a). In this case G ~ T. 

Case 3: Suppose K <l G and H ~ Z2 X Z2. Let K = (a) and let 

¢ : H ---> Aut(K) ~ Z2 

be the conjugation homomorphism. Then H ~ (Ker(¢)) x Z2, so let 
Ker(¢) = (c) and let d E H with ¢(d) =I- lK. Then c-Iac = a and 
d-1ad = a-I = a2 . Let b = ac. Then o(b) = 6, d tJ- (b), and 

d-1bd = d-Iacd = d-Iadc = a2c = (ac)-I = b- I. 

Thus, G ~ D 12. D 
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It remains to consider the case of abelian groups of order 12. 

(7.10) Proposition. If G is an abelian group of order 12, then G is isomor
phic to exactly one of the following groups: 

(1) Z12, or 
(2) Z2 x Z6' 

Proof. Exercise. o 

By combining the results of this section we arrive at the following table 
of distinct groups of order at most 15. That is, every group of order::; 15 
is isomorphic to exactly one group in this table. 

Table 7.1. Groups of order :S 15 

Abelian Nonabelian Total 
Order Groups Groups Number 

1 {e} 1 
2 Z2 1 
3 Z3 1 
4 Z4 2 

Z2 X Z2 
5 Z5 1 
6 Z6 83 2 
7 Z7 1 
8 Zs Q 5 

Z4 X Z2 Ds 
Z2 X Z2 X Z2 

9 Zg 2 
Z3 X Z3 

10 ZlO DlO 2 
11 Zu 1 
12 Z12 A4 5 

Z2 X Z6 D12 

Z3 ><Iq, Z4 
13 Z13 1 
14 Z14 D14 2 
15 Z15 1 
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1.8 Exercises 

1. Prove that Z; is a group. (See Example 1.2 (5).) 
2. Prove that 1'(X) (Example 1.2 (8)) with the symmetric difference operation 

is a group. 
3. Write the Cayley diagram for the group 83 • 

4. Write the Cayley diagram for the group Zi2. 
5. Let G be a group, 9 E G, and define a new multiplication· on G by the 

formula a· b = agb for all a, bEG. Prove that G with the multiplication· is 
a group. What is the identity of Gunder .? If a E G what is the inverse of 
a under·? 

6. Suppose that G is a set and . is an associative binary operation on G such 
that there is an element e E G with e . a = a for all a E G and such that for 
each a E G there is an element bEG with b· a = e. Prove that (G,·) is a 
group. The point of this exercise is that it is sufficient to assume associativity, 
a left identity, and left inverses in order to have a group. Similarly, left can 
be replaced with right in the hypotheses. 

7. Prove that R· x R is a group under the multiplication defined by 

(a, b)(c, d) = (ac, ad + b). 

Is this group abelian? 

8. Prove that if a2 = e for all a in a group G, then G is abelian. 
9. Let V ~ GL(2, R) be the set 

Prove that V is a subgroup of GL(2, R) that is isomorphic to the Klein 
4-group. 

10. For fixed positive integers bo, mo, and no consider the subset 8 C GL(3, Z) 
defined by 

8 = { [g r ~ 1 : mo I m, no I n, bo I b }. 

When is 8 a subgroup? The notation a I b for integers a and b means that a 
divides b. 

11. Let G be a group and let a, bEG be elements such that ab = 00. 
(a) Prove that o(ab) I o(a)o(b). 
(b) If ab = 00 and (a) n (b) = (e), show that 

o(ab) = lcm{o(a), o(b)}. 

(lcm{ n, m} refers to the least common multiple of the integers n and 
m.) 

(c) If ab = ba and o(a) and o(b) are relatively prime, then o(ab) = o(a)o(b). 
(d) Give a counterexample to show that these results are false if we do not 

assume commutativity of a and b. 
12. If u : G -+ H is a group homomorphism then o(u(a)) I o(a) for all a E G 

with o(a) < 00. If u is an isomorphism then o(u(a» = o(a). 
13. (a) A group G is abelian if and only if the function f : G -+ G defined by 

f(a) = a-l is a group homomorphism. 
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(b) A group G is abelian if and only if the function 9 : G -+ G defined by 
g(a) = a2 is a group homomorphism. 

14. Let G be the multiplicative group of positive real numbers and let H be 
the additive group of all reals. Prove that G ~ H. (Hint: Remember the 
properties of the logarithm function.) 

15. Write all the subgroups of 83. 
16. Let G be a group and let Hi, H2 be subgroups of G. Prove that Hi U H2 is 

a subgroup of G if and only if Hi ~ H2 or H2 ~ Hi. Is the analogous result 
true for three subgroups Hi, H 2, H 3 ? 

17. If G is a finite group and Hand K are subgroups, prove that 

IHIIKI == IHnKIIHKI· 

18. Prove that the intersection of two subgroups of finite index is a subgroup of 
finite index. Prove that the intersection of finitely many subgroups of finite 
index is a subgroup of finite index. 

19. Let X be a finite set and let Y ~ X. Let G be the symmetric group 8x and 
define Hand K by 

H = {f E G : fey) = y for all y E Y} 

K = {f E G : fey) E Y for all y E Y}. 

If IXI = n and IYI = m compute [G : H], [G: Kl, and [K: Hl. 
20. If G is a group let Z(G) = {a E G : ab = ba for all bEG}. Then prove 

that Z(G) is an abelian subgroup of G. Z(G) is called the center of G. If 
G = GL(n, R) show that 

Z(G) = {a1n : a E R*}. 

21. Let G be a group and let H ~ Z(G) be a subgroup of the center of G. Prove 
that H <lG. 

22. (a) If G is a group, prove that the commutator subgroup G' is a normal 
subgroup of G, and show that GIG' is abelian. 

(b) If H is any normal subgroup of G such that G I H is abelian, show that 
G'~H. 

23. If G is a group of order 2n show that the number of elements of G of order 
2 is odd. 

24. Let Q be the multiplicative subgroup of GL(2, C) generated by 

[ 0 i] A = i 0 

(a) Show that A and B satisfy the relations A4 = I, A2 = B2, B- 1 AB = 
A -1. (Thus, Q is a concrete representation of the quaternion group.) 

~b) Prove that IQI = 8 and list all the elements of Q in terms of A and B. 
c) Compute Z(Q) and prove that QIZ(Q) is abelian. 
d) Prove that every subgroup of Q is normal. 

25. Let n be a fixed positive integer. Suppose a group G has exactly one subgroup 
H of order n. Prove that H <l G. 

26. Let H <lG and assume that G I H is abelian. Show that every subgroup K ~ G 
containing H is normal. 

27. Let Gn be the multiplicative subgroup of GL(2, C) generated by 



28. 

29. 
30. 

31. 

32. 

33. 

34. 

35. 

36. 
37. 

38. 

39. 

40. 

41. 

42. 
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where, = exp(21l'i/n). Verify that Gn is isomorphic to the dihedral group 
D 2n . (See Example 2.8 (13).) 
Let G be a group of order n. If G is generated by two elements of order 2, 
show that G 9;' Z2 X Z2 if n = 4 and G 9;' Dn if n > 4. 
Let G be a nonabelian group of order 6. Prove that G 9;' 83 . 

(a) If H <J G and [G: H] = n, then show that an E H for all a E G. 
(b) Show that the result in part (a) is false if H is not normal in G. 
Show that the alternating group A4 of order 12 does not have a subgroup 
of order 6. (Hint: Find at least 8 elements of A4 that are squares, and apply 
Exercise 30.) 
Recall (Definition 4.13) that a group G is called a p-group if IGI = pn for 
some integer n ~ 1. 
(a) If G is a p-group, show that Z(G) =I=- (e). (Hint: Use the class equation 

(Corollary 2.28).) 
(b) If IGI = pn, show that G has a subgroup of order pm for every 0 :S m :S n. 

Let G = {[~ n E GL(2, R)}. Prove that G is a subgroup of GL(2, R) and 
that G is isomorphic to the group R· x R with the multiplication defined 
in Exercise 7. 

b) Find all homomorphisms <p : Z7 -+ Z16. ~a) Find all homomorphisms <p : Z -+ Zn. 

c) What is a condition on finite cyclic groups G and H that ensures there 
is a homomorphism <p : G -+ H other than the zero homomorphism? 

Let Hom(Zn, Zm) be the set of all group homomorphisms from Zn to Zm. Let 
d be the greatest common divisor of m and n. Show that I Hom(Zn, Zm)1 = d. 
If n is odd, show that D4n 9;' D 2n X Z2. 
Write the class equations (Corollary 2.28) for the quaternion group Q and 
the dihedral group Ds. 
Verify that the alternating group A5 has no nontrivial normal sub~oups. 
(Hint: The class equation.) (The trivial subgroups of a group G are t e} and 
G.) A group with no nontrivial normal subgroups is called simple. It is 
known that An is simple for all n =I=- 4. 

Suppose that G is an abelian group of order n. If min show that G has a 
subgroup of order m. Compare this result with Exercise 31. 
(a) Write each of the following permutations as a product of disjoint cycles: 

0=0 2 3 4 5 n 5 4 1 2 

/3= 0 2 3 4 5 6 7 ~) 1 3 6 5 7 4 

,= 0 2 3 4 5 6 7 8 n 3 4 5 6 7 8 9 

b= 0 2 3 4 5 6 7 8 n· 8 9 2 1 4 3 6 

(b) Let a E 8lO be the permutation 

a= 0 2 3 4 5 6 7 8 9 10) 
5 4 1 7 10 2 6 9 8 . 

Compute o( a) and calculate a IDD • 

Let H ~ 8n be defined by H = {f E 8n : J(I) = I}. Prove that H is a 
subgroup of 8 n that is isomorphic to 8 n -l. Is H <J 8n ? 
(a) Prove that an r-cycle is even (odd) if and only if r is odd (even). 
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(b) Prove that a permutation (j is even if and only if there are an even 
number of even order cycles in the cycle decomposition of (j. 

43. Show that if a subgroup G of 8n contains an odd permutation then G has a 
normal subgroup H with [G : H] = 2. 

44. For a E 8n , let 

45. 

46. 

47. 

1<a) = I{(i, j) : 1 ~ i < j and a(j) < a(inl. 

(For example, if 

( 1 2 3 4 5) 
a = 2 5 1 4 3 E 85, 

then 1<a) = 5.) Show that sgn(a) = 1 if 1<a) is even and sgn(a) = -1 if 
1< a) is odd. Thus, 1 provides a method of determining if a permutation is 
even or odd without the factorization into disjoint cycles. 
(a) Prove that 8n is generated by the transpositions (12), (13), ... , (1 n). 
(b) Prove that 8n is generated by (12) and (12 ... nJ. 
In the group 84 compute the number of permutations conjugate to each of 
the following permutations: e = (1), a = (12), (3 = (123), 'Y = (1234), and 
h = (12)(34). 
(a) Find all the subgroups of the dihedral group Ds. 
(b) Show that Ds is not isomorphic to the quaternion group Q. Note, how

ever, that both groups are nonabelian groups of order 8. (Hint: Count 
the number of elements of order 2 in each group.) 

48. Construct two nonisomorphic nonabelian groups of order p3 where p is an 
odd prime. 

49. Show that any group of order 312 has a nontrivial normal subgroup. 
50. Show that any group of order 56 has a nontrivial normal subgroup. 
51. Show Aut(Z2 x Z2) ~ S3. 
52. How many elements are there of order 7 in a simple group of order 168? (See 

Exercise 38 for the definition of simple.) 
53. Classify all groups (up to isomorphism) of order 18. 
54. Classify all groups (up to isomorphism) of order 20. 
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Rings 

2.1 Definitions and Examples 

(1.1) Definition. A ring (R, +,.) is a set R together with two binary op
emtions + : R x R --+ R (addition) and· : R x R --+ R (multiplication) 
satisfying the following properties. 

(a) (R, +) is an abelian group. We write the identity element as O. 
(b) a· (b· c) = (a· b) . c (- is associative). 
(c) a· (b+c) = a· b+a·c and (b+c)·a = b· a+c·a (- is left and right 

distributive over + ). 
As in the case of groups, it is conventional to write ab instead of a . b. 

A ring will be denoted simply by writing the set R, with the multiplication 
and addition being implicit in most cases. If R ¥= {O} and multiplication on 
R has an identity element, Le., there is an element 1 E R with al = la = a 
for all a E R, then R is said to be a ring with identity. In this case 1 ¥= 0 
(see Proposition 1.2). We emphasize that the ring R = {O} is not a ring 
with identity. 

Convention. In Sections 2.1 and 2.2, R will denote an arbitmry ring. 
In the rest of this book, the word "ring" will always mean "ring with iden
tity. " 

If the multiplication on R is commutative, Le., ab = ba for all a, bE R, 
then R is called a commutative ring. The standard rules of sign manipu
lation, which are familiar from the real or complex numbers, are also true 
in a general ring R. The verification of the following rules are left as an 
exercise. 

(1.2) Proposition. Let R be a ring. Then if a, b, c E R the following rules 
are valid. 

(1) aO = Oa = O. 
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(2) (-a)b = a(-b) = -Cab). 
(3) ab = (-a)( -b). 
(4) a(b - c) = ab - ac and (a - b)c = ac - bc. 
(5) If R has an identity then (-l)a = -a. 
(6) If R has an identity then 1 =J O. 

If a =J 0 and b =J 0 are elements of R such that ab = 0 then a and b 
arc called zero divisors of the ring R. Note that 0 is not a zero divisor. 
If R has an identity, an clement a E R is a unit if a has a multiplicative 
inverse, that is, if there is abE R with ab = 1 = ba. R* will denote the set 
of all units of R. R* is a group, called the group of units of R. 

(1.3) Lemma. Let R be a ring and a =J 0 an element of R that is not a 
zero divisor. If b, c E R satisfy ab = ac, then b = c. Similarly, if ba = ca, 
then b = c. 

Proof. If ab = ac, then 

0= ab - ac = a(b - c), 

and since a is not a zero divisor and a =J 0, this implies that b - c = 0, i.e., 
b = c. The other half is similar. 0 

(1.4) Definition. (1) A ring R is an integral domain if it is a commutative 
ring with identity such that R has no zero divisors. 

(2) A ring R with identity is a division ring if R* = R\ {O}, i.e., every 
nonzero element of R has a multiplicative inverse. 

(3) A field is a commutative division ring. 

Thus, a commutative ring R with identity is an integral domain if and 
only if the equation ab = 0 (for a, b E R) implies that a = 0 or b = O. R is 
a division ring if and only if the equations ax = band ya = b are solvable 
in R for every b E R and a =J 0 E R. 

(1.5) Proposition. A finite integral domain is a field. 

Proof. Let R be a finite integral domain and let a =J 0 E R. Define ¢a 
R -+ R by ¢a(b) = abo Suppose that ¢a(b) = ¢a(c). Then ab = ac, so b = c 
by Lemma 1.3. Therefore, ¢a is an injective function on the finite set R 
so that IRI = l¢a(R)I, and hence, ¢a(R) = R. In particular, the equation 
ax = 1 is solvable for every a =J 0 and R is a field. 0 

(1.6) Remark. The conclusion of Proposition 1.5 is valid under much weaker 
hypotheses. In fact, there is a theorem of Wedderburn that states that the 
commutativity follows from the finiteness of the ring. Specifically, Wedder
burn proved that any finite division ring is automatically a field. This result 
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requires more background than the elementary Proposition 1.5 and will not 
be presented here. 

(1.7) Definition. If R is a ring with identity, then the characteristic of R, 
denoted char(R), is the smallest natural number n such that n· 1 = o. If 
n·1 =f 0 for all n E N, then we set char(R) = o. 

(1.8) Proposition. If R is an integral domain, then char(R) = 0 or char(R) 
is prime. 

Proof. Suppose that char(R) = n =f o. If n is composite, then we may 
write n = r s where 1 < r < n and 1 < s < n. Then, by the definition of 
characteristic, r·1 =f 0 and s·l =f O. But 0 = n·1 = (r ·l)(s ·1). Therefore, 
the ring R has zero divisors. This contradicts the fact that R is an integral 
domain, so n must be prime. 0 

(1.9) Definition. A subset S of a ring R is a subring if S, under the oper
ations of multiplication and addition on R, is a ring. Thus S is a subring 
of R if and only if S is an additive subgroup of R that is closed under 
multiplication. 

We will now present a number of examples of rings. Many of the math
ematical systems with which you are already familiar are rings. Thus the 
integers Z are an integral domain, while the rational numbers Q, the real 
numbers R, and the complex numbers C are fields. 

(1.10) Examples. 

(1) 2Z = {even integers} is a subring of the ring Z of integers. 2Z does 
not have an identity and thus it fails to be an integral domain, even 
though it has no zero divisors. 

(2) Zn, the integers under addition and multiplication modulo n, is a ring 
with identity. Zn has zero divisors if and only if n is composite. Indeed, 
if n = rs for 1 < r < n, 1 < s < n then rs = 0 in Zn and r =f 0, s =f 0 
in Zn, so Zn has zero divisors. Conversely, if Zn has zero divisors then 
there is an equation ab = 0 in Zn with a =f 0, b =f 0 in Zn. By choosing 
representatives of a and b in Z we obtain an equation ab = nk in Z 
where we may assume that 0 < a < nand 0 < b < n. Therefore, every 
prime divisor of k divides either a or b so that after enough divisions 
we arrive at an equation rs = n where 0 < r < nand 0 < s < n, i.e., 
n is composite. 

(3) Example (2) combined with Proposition 1.5 shows that Zn is a field if 
and only if n is a prime number. In particular, we have identified some 
finite fields, namely, Zp for p a prime. 

(4) There are finite fields other than the fields Zp. We will show how to 
construct some of them after we develop the theory of polynomial rings. 
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Table 1.1. Multiplication and addition for a field with four elements 

+ 0 1 a b 0 1 a b 
0 0 1 a b 0 0 0 0 0 
1 1 0 b a 1 0 1 a b 
a a b 0 1 a 0 a b 1 
b b a 1 0 b 0 b 1 a 

For now we can present a specific example via explicit addition and 
multiplication tables. Let F = {O, 1, a, b} have addition and multipli
cation defined by Table 1.1. One can check directly that (F, +, .) is a 
field with 4 elements. Note that the additive group (F, +) ~ Z2 X Z2 

and that the mUltiplicative group (F*,·) ~ Z3. 
(5) Let Z[i] = {m + ni : m, n E Z}. Then Z[i] is a subring of the field of 

complex numbers called the ring of gaussian integers. As an exercise, 
check that the units of Z[i] are {±1, ±i}. 

(6) Let d =1= 0,1 E Z be square-free (i.e., n 2 does not divide d for any 
n> 1) and let Q[Vd] = {a + bVd : a, bE Q} ~ C. Then Q[Jd] is a 
subfield of C called a quadratic field. 

(7) Let X be a set and P(X) the power set of X. Then (P(X), 6, n) 
is a commutative ring with identity where addition in P(X) is the 
symmetric difference (see Example 1.2 (8)) and the product of A and 
B is An B. For this ring, 0 = 0 E P(X) and 1 = X E P(X). 

(8) Let R be a ring with identity and let Mm,n(R) be the set of m x n 
matrices with entries in R. If m = n we will write Mn (R) in place of 
Mn,n(R). If A = [aij] E Mm,n(R) we let entij(A) = aij denote the 
entry of A in the ith row and lh column for 1 ::; i ::; m, 1 ::; j ::; n. If 
A, BE Mm,n(R) then the sum is defined by the formula 

entij(A + B) = entij(A) + entij(B), 

while if A E Mm,n(R) and B E Mn,p(R) the product AB E Mm,p(R) 
is defined by the formula 

n 

entij(AB) = L entik(A) entkj(B). 
k=l 

In particular, note that addition and mUltiplication are always defined 
for two matrices in Mn(R), and with these definitions of addition and 
multiplication, Mn(R) is a ring with identity, called a matrix ring. The 
identity of Mn(R) is the matrix In defined by entij(In) = Oij where Oij 
is the kronecker delta 

{ I ifi=j, 
Oij = 0 if i =1= j. 
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There are mn matrices Eij (1 ::; i ::; m, 1 ::; j ::; n) in Mm,n that 
are particularly useful in many calculations concerning matrices. Eij 
is defined by the formula entkl(Eij) = OkiOlj, that is, Eij has a 1 in the 
ij position and 0 elsewhere. Therefore, any A = [aij) E Mm,n(R) can 
be written as 

m n 

(1.1) A = LLaijEij . 
i=l j=l 

Note that the symbol Eij does not contain notation indicating which 
Mm,n(R) the matrix belongs to. This is determined from the context. 
There is the following matrix product rule for the matrices Eij (when 
the matrix multiplications are defined): 

(1.2) 

In case m = n, note that Eli = Eii , and when n > 1, EllE12 = E12 
while E12Ell = o. Therefore, if n > 1 then the ring Mn(R) is not 
commutative and there are zero divisors in Mn(R). The matrices Eij E 

Mn(R) are called matrix units, but they are definitely not (except for 
n = 1) units in the ring Mn(R). A unit in the ring Mn(R) is an 
invertible matrix, so the group of units of Mn(R) is called the general 
linear group GL(n, R) of degree n over the ring R. 

(9) There are a number of important subrings of Mn(R). To mention a 
few, there is the ring of diagonal matrices 

the ring of upper triangular matrices 

and the ring of lower triangular matrices 

Tn(R) = {A E Mn(R) : entij(A) = 0 if i < j}. 

All three of these subrings of Mn (R) are rings with identity, namely the 
identity of Mn(R). The subrings of strictly upper triangular matrices 
STn and strictly lower triangular matrices STn do not have an identity. 
A matrix is strictly upper triangular if all entries on and below the 
diagonal are 0 and strictly lower triangular means that all entries on 
and above the diagonal are o. 

(10) Let F be a subfield of the real numbers R and let x, y E F with x > 0 
and y > o. Define a subring Q( -x, -yj F) of M 2 (C) by 

Q( -x, -yj F) = 

{ [ a+bFx eA+dy'Xy] . } eA - dy'Xy a _ bFx . a, b, e, d E F . 
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(In these formulas Fx and FY denote the square roots with positive 
imaginary parts.) It is easy to check that Q( -x, -y; F) is closed under 
matrix addition and matrix multiplication so that it is a subring of 
M2(C). Let 

1 = [~ ~], 
. [0 FY] 
J= FY 0 ' 

i= [7 -Fo], 
and k = [_}xy ~]. 

Then Q( -x, -y; F) = {al + bi + cj + dk : a, b, c, dE F}. Note that 

{ 
i2 = -xl, j2 = -yl, k 2 = -xyl 
ij = -ji = k 
ik = -ki = xj 
kj = -jk = yi. 

If h = al + bi + cj + dk E H, let h = al - bi - cj - dk. Then 

hh = (a2 + xb2 + yc2 + xyd2 )l 

so that if h t= 0 then h is invertible, and in particular, h-1 = ah where 
a = 1/(a2 + xb2 + yc2 + xyd2). Therefore, Q( -x, -y; F) is a division 
ring, but it is not a field since it is not commutative. Q( -x, -y; F) is 
called a definite quaternion algebra. In case F = R, all these quater
nion algebras are isomorphic (see Exercise 13 for some special cases 
of this fact) and H = Q( -1, -1; R) is called the ring of quaternions. 
(The notation is chosen to honor their discoverer, Hamilton.) Note that 
the subset 

{±l, ±i, ±j, ±k} 

of H is a multiplicative group isomorphic to the quaternion group Q of 
Example 1.2.8 (12). (Also see Exercise 24 of Chapter 1.) In case F is 
a proper subfield of R, the quaternion algebras Q( -x, -y; F) are not 
all mutually isomorphic, i.e., the choice of x and y matters here. 

(11) Let A be an abelian group. An endomorphism of A is a group homo
morphism f : A -+ A. Let End(A) denote the set of all endomorphisms 
of A and define multiplication and addition on End(A) by 

(f + g)(a) = f(a) + g(a) (addition of functions), 

(fg)(a) = f(g(a)) (functional composition). 

With these operations, End(A) is a ring (exercise). In general, End(A) 
is not commutative. The group of units of End(A) is the automorphism 
group of A. 

(12) Let Z+ denote the set of all nonnegative integers. If R is a ring with 
identity, let R[X] denote the set of all functions f : Z+ -+ R such that 
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fen) = 0 for all but a finite number of natural numbers n. Define a 
ring structure on the set R[X] by the formulas 

(f + g)(n) = fen) + g(n) 
n 

(fg)(n) = L f(m)g(n - m). 
m=O 

It is easy to check that R[X] is a ring with these operations (do it). 
R[X] is called the ring of polynomials in the indeterminate X with 
coefficients in R. Notice that the indeterminate X is nowhere men
tioned in our definition of R[X]. To show that our description of R[X] 
agrees with that with which you are probably familiar, we define X as 
a function on Z+ as follows 

X(n) = {01 if n = 1, 
if n i:- 1. 

Then the function xn satisfies 

Xn(m) = {01 if m = n, 
if m =I- n. 

Therefore, any f E R[X] can be written uniquely as 

00 

f = Lf(n)Xn 
n=O 

where the summation is actually finite since only finitely many fen) =I
O. Note that X O means the identity of R[X], which is the function 
1 : Z+ -+ R defined by 

l(n) = {I if n = 0, 
o if n > O. 

We do not need to assume that R is commutative in order to define 
the polynomial ring R[X], but many of the theorems concerning poly
nomial rings will require this hypothesis, or even that R be a field. 
However, for some applications to linear algebra it is convenient to 
have polynomials over noncommutative rings. 

(13) We have defined the polynomial ring R[X] very precisely as functions 
from Z+ to R that are 0 except for at most finitely many nonnegative 
integers. We can similarly define the polynomials in several variables. 
Let (z+)n be the set of all n-tuples of nonnegative integers and, if R 
is a commutative ring with identity, define R[X1 , ••• , Xn] to be the set 
of all functions f : (z+)n -+ R such that f(a) = 0 for all but at most 
finitely many a E (z+)n. Define ring operations on R[X1 , ... , Xn] by 
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{ 
(f + g)(a) = f(a) + g(a) } 

(fg)(a) = L f((3)gb) 
13+1'='" 

Define the indeterminate Xi by 

Xi(a) = {~ if a = (6i1 , ... , 6in ), 
otherwise. 

If a = (a1, ... , an) E (z+)n we write X'" = Xfl X~2 ... X;:n and we 
leave it as an exercise to check the following formula, which corresponds 
to our intuitive understanding of what a polynomial in several variables 
is. If f E R[X1' ... ' Xn] then we can write 

where a", = 0 except for at most finitely many a E (z+)n. In fact, 
a", = f(a). Note that R is a subring of R[X1, ... , Xn] in a natural way, 
and, more generally, R[X1' ... ,Xn- 1] is a subring of R[X1, ... ,Xn]. 

(14) If R is a ring with identity then the ring of formal power series R[[X]] 
is defined similarly to the ring of polynomials. Specifically, R[[X]] is 
the set of all functions f : Z+ ~ R with the same formulas for addition 
and multiplication as in R[X]. The only difference is that we do not 
assume that fen) = 0 for all but a finite number of n. We generally 
write a formal power series as an expression 

00 

f(X) = Lanxn . 
n=O 

Since we cannot compute infinite sums (at least without a topology 
and a concept of limit), this expression is simply a convenient way to 
keep track of fen) for all n. In fact, an = fen) is the meaning of the 
above equation. With this convention, the multiplication and addition 
of formal power series proceeds by the rules you learned in calculus for 
manipulating power series. A useful exercise to become familiar with 
algebra in the ring of formal power series is to verify that f E R[[X]] 
is a unit if and only if f(O) is a unit in R. 

(15) Let G be a group and let R be a ring with identity. Let R(G) be the 
set of all functions f : G ~ R such that f(a) =1= 0 for at most a finite 
number of a E G. Define multiplication and addition on R(G) by the 
formulas 

(f + g)(a) = f(a) + g(a) 

(fg)(a) = L f(b)g(b- 1a). 
bEG 

Note that the summation used in the definition of product in R(G) is 
a finite sum since feb) =1= 0 for at most finitely many bEG. The ring 
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R( G) is called the group ring of G with coefficients from R. This is a 
ring that is used in the representation theory of groups. ':'he product 
in R(G) is called the convolution product. If S is only a semigroup (a 
set with an associative binary operation) then one can form a similar 
ring called the semigroup ring R(S). If S is a monoid, R(S) is a ring 
with identity. We leave the details to the reader, but we point out that 
the semigroup ring R(Z+) is nothing more than the polynomial ring 
R[XJ. 

This list of examples should be referred to whenever new concepts for 
rings are introduced to see what the new concepts mean for some specific 
rings. 

We conclude this introductory section by commenting that the gener
alized associative laws proved for groups in Proposition 1.1.4 is also valid 
for multiplication in a ring since the proof of the group theoretic result used 
only the associative law for groups; inverses and the group identity were 
not used. In particular, if R is a ring and all,'" an are elements of R, then 
the product n~=l ai is well defined so that we can define an (n ~ 1), and if 
R has an identity we can also define aO = 1. Since a ring has two operations 
related by the distributive laws, there should be some form of generalized 
distributive law valid for rings; this is the content of the following result: 

(1.11) Proposition. Let R be a ring and let aI, ... , am, bl , ... , bn E R. 
Then 

m n 

(al + ... + am)(b l + ... + bn) = L I>ibj. 
i=l j=l 

Proof. For m = 1 the proof is by induction on n using the left distributive 
law. Then proceed by induction on m. D 

Recall that the binomial coefficients are given by (~) = n!/(r!(n-r)!). 
The binomial theorem is proved by induction on n, exactly the same as the 
proof for real numbers; we leave the proof as an exercise. 

(1.12) Proposition. (Binomial theorem) Let R be a ring with identity and 
let a, b E R with ab = ba. Then for any n E N 

Proof. Exercise. D 
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2.2 Ideals, Quotient Rings, and 
Isomorphism Theorems 

A function f : R ---> S, where Rand S are rings, is a ring homomorphism if 

f(a + b) = f(a) + f(b) 

and 

f(ab) = f(a)f(b) for all a, b E R. 

If f is invertible (i.e., there exists a ring homomorphism g : S ---> R such 
that fog = Is and go f = lR), then we say that f is a ring isomorphism. 
As with group homomorphisms, f is invertible as a ring homomorphism if it 
is a bijective function. If f is a ring homomorphism, then we let Ker(f) = 
{a E R : f(a) = O} and Im(f) = {b E S : b = f(a) for some a E R}. 
Thus Ker(f) and Im(f) are the kernel and image, respectively, of f when 
viewed as a group homomorphism between the abelian group structures 
on Rand S so that Ker(f) and Im(f) are abelian subgroups of R and S 
respectively. Moreover, since f also preserves multiplication, it follows that 
Ker(f) and Im(f) are subrings of Rand S respectively. From our study of 
groups we know that not every subgroup of a group can be the kernel of 
a group homomorphism-the subgroup must be normal. In the case of a 
ring homomorphism f : R ---> S, Ker(f) is automatically normal since R is 
an abelian group under addition, but the multiplicative structure imposes 
a restriction on the subring Ker(f). Specifically, note that if a E Ker(f) 
and r E R, then f(ar) = f(a)f(r) = Of(r) = 0 and f(ra) = f(r)f(a) = 
f(r)O = 0 so that ar E Ker(f) and ra E Ker(f) whenever a E Ker(f) and 
r E R. This is a stronger condition than being a subring, so we make the 
following definition. 

(2.1) Definition. Let R be a ring and let I <;;; R. We say that I is an ideal 
of R if and only if 

(1) I is an additive subgroup of R, 
(2) r I <;;; I for all r E R, and 
(3) Ir <;;; I for all r E R. 

A subset I <;;; R satisfying (1) and (2) is called a left ideal of R, while 
if I satisfies (1) and (3), then I is called a right ideal of R. Thus an ideal 
of R is both a left and a right ideal of R. Naturally, if R is commutative 
then the concepts of left ideal, right ideal, and ideal are identical, but for 
noncommutative rings they are generally distinct concepts. 

We have already observed that the following result is true. 

(2.2) Lemma. If f : R ---> S is a ring homomorphism, then Ker(f) is an 
ideal of R. 
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Every ring R has at least two ideals, namely, {O} and R are both 
ideals of R. For division rings, these are the only ideals, as we ... ee from the 
following observation. 

(2.3) Lemma. If R is a division ring, then the only ideals of R are Rand 
{OJ. 

Proof. Let I ~ R be an ideal such that I =I- {OJ. Let a =I- 0 E I and let 
b E R. Then the equation ax = b is solvable in R, so bEl. Therefore, 
I=R. 0 

(2.4) Corollary. If R is a division ring and f : R -+ S is a ring homomor
phism then f is injective or f == O. 

Proof. If Ker(f) = {OJ then f is injective; if Ker(f) = R then f == o. 0 

(2.5) Remarks. (1) In fact, the converse of Lemma 2.2 is also true; that 
is, every ideal is the kernel of some ring homomorphism. The proof of this 
requires the construction of the quotient ring, which we will take up next. 

(2) The converse of Lemma 2.3 is false. See Remark 2.28. 

If I ~ R is an ideal then the quotient group Rj I is well defined since 
I is a subgroup (and hence a normal subgroup) of the additive abelian 
group R. Let 7r : R -+ Rjl, defined by 7r(r) = r + I, be the natural 
projection map. We will make the abelian group Rj I into a ring by defining 
a multiplication on Rj I. First recall that coset addition in Rj I is defined 
by (r + 1) + (s + 1) = (r + s) + I. Now define coset multiplication by the 
formula (r + 1) (s + 1) = r s + I. All that needs to be checked is that this 
definition is independent of the choice of coset representatives. To see this, 
suppose r + 1= r' + I and s + I = s' + I. Then r' = r + a and s' = s + b 
where a, bEl. Thus, 

r's' = (r + a) (s + b) 

= rs + as + rb + ab 

=rs+c 

where c = as+rb+ab E I because I is an ideal. Therefore, rs+I = r's' +1 
and multiplication of cosets is well defined. By construction the natural 
map 7r : R -+ Rj I is a ring homomorphism so that I = Ker( 7r) is the 
kernel of a ring homomorphism. Note that if R is cOIDIDutative then Rj I 
is commutative for any I, and if R has an identity and I is a proper ideal 
then 1 + I is the identity of the quotient ring Rj I. If a, b E R we will use 
the notation a == b (mod I) to mean a - bEl, i.e., a + 1= b + I. This is 
a generalization of the concept of congruence of integers modulo an integer 
n. 

The noether isomorphism theorems for groups, Theorems 1.3.11 to 
1.3.15, have direct analogues for rings. 
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(2.6) Theorem. (First isomorphism theorem) Let f : R ~ 8 be a ring 
homomorphism. Then R/ Ker(J) ~ Im(J). (~ means ring isomorphism.) 

Proof. Let K = Ker(J). From Theorem 1.3.11 we know that j : 
R/K ~ Im(J), defined by j(a + K) = f(a), is a well-defined isomorphism 
of groups. It only remains to check that mUltiplication is preserved. But 

j((a + K)(b + K)) = j(ab + K) = f(ab) = f(a)f(b) = j(a + K)j(b + K), 

so j is a ring homomorphism and hence an isomorphism. o 

(2.7) Theorem. (Second isomorphism theorem) Let R be a ring, 1 ~ R an 
ideal, and 8 ~ R a subring. Then 8 + 1 is a subring of R, 1 is an ideal of 
8 + 1, 8 n 1 is an ideal of 8, and there is an isomorphism of rings 

(8 + 1)/1 ~ 8/(8 n 1). 

Proof. Suppose that s, s' E 8, a, a' E 1. Then 

(s + a)(s' + a') = ss' + (as' + sa' + aa') E 8 + 1, 

so 8 + 1 is closed under multiplication and hence is a subring of R. (It is 
already an additive subgroup from the theory of groups.) The fact that 1 
is an ideal of 8 + 1 and 8 n 1 is an ideal of 8 is clear. Let 7r : R ~ R/l be 
the natural homomorphism and let 7ro be the restriction of 7r to 8. Then 7ro 
is a ring homomorphism with Ker(7ro) = 8 n 1 and the first isomorphism 
theorem gives 8/(8 n 1) = 8/ Ker(7ro) ~ Im(7ro). But Im(7ro) is the set of 
all cosets of 1 with representatives in 8. Therefore, Im( 7ro) = (8 + 1) /1. 0 

(2.8) Theorem. (Third isomorphism theorem) Let R be a ring and let 1 and 
J be ideals of R with 1 ~ J. Then J /1 is an ideal of R/l and 

R/J ~ (R/I)/(J/!). 

Proof. Define a function f: R/l ~ R/J by f(a +!) = a + J. It is easy to 
check that this is a well-defined ring homomorphism. Then 

Ker(J) = {a + 1 : a + J = J} = {a + 1 : a E J} = J /1. 

The result then follows from the first isomorphism theorem. o 

(2.9) Theorem. (Correspondence theorem) Let R be a ring, 1 ~ R an ideal 
of R, and 7r : R ~ R/l the natural map. Then the function 8 I-> 8/1 
defines a one-to-one correspondence between the set of all subrings of R 
containing 1 and the set of all subrings of R/l. Under this correspondence, 
ideals of R containing 1 correspond to ideals of R/l. 

Proof. According to the correspondence theorem for groups (Theorem 
1.3.15) there is a one-to-one correspondence between additive subgroups 



2.2 Ideals, Quotient Rings, and Isomorphism Theorems 61 

of RI I and additive subgroups of R containing I. It is only necessary to 
check that under this correspondence (which is H 1-+ HI I) sui-rings corre
spond to subrings and ideals correspond to ideals. We leave this to check 
as an exercise. 0 

(2.10) Lemma. Let R be a ring and let {Sa}aEA be a family of subrings 
(resp., ideals) of R. Then S = naEA Sa is a subring (resp., ideal) of R. 

Proof. Suppose a, b E S. Then a, b E Sa for all 0: E A so that a - b and 
ab E Sa for all 0: E A. Thus, a - b and ab E S, so S is a subring of R. If each 
Sa is an ideal and r E R then ar and ra E Sa for all 0: E A so ar, ra E S 
and S is an ideal. 0 

(2.11) Definition. If X ~ R is a subset then the subring generated by X 
is the smallest subring of R containing X and the ideal generated by X 
is the smallest ideal of R containing X. By Lemma 2.10 this is just the 
intersection of all subrings (resp., ideals) containing X. We will use the 
notation (X) to denote the ideal generated by X. 

(2.12) Lemma. Let X ~ R be a nonempty subset of a ring R. 

(1) The subring of R generated by X is the sum or difference of all finite 
products of elements of X. 

(2) If R is a ring with identity, then the ideal of R generated by X is the 
set 

(3) If R is a commutative ring with identity, then the ideal of R generated 
by X is the set 

RX = {trixi: ri E R, Xi EX, n:::: I} . 
• =1 

Proof. (2) Every ideal containing X certainly must contain RX R. It is only 
necessary to observe that RX R is indeed an ideal of R, and hence it is the 
smallest ideal of R containing X. Parts (1) and (3) are similar and are left 
for the reader. 0 

(2.13) Remarks. (1) The description given in Lemma 2.12 (2) of the ideal 
generated by X is valid for rings with identity. There is a similar, but more 
complicated description for rings without an identity. We do not present it 
since we shall not have occasion to use such a description. 

(2) If X = {a} then the ideal generated by X in a commutative ring 
R with identity is the set Ra = {ra : r E R}. Such an ideal is said to be 
principal. An integral domain R in which every ideal of R is principal is 
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called a principal ideal domain (pm). The integers Z are an example of a 
pm. Another major example of a pm is the polynomial ring F[X] where 
F is a field. This will be verified in Section 2.4. 

There is another useful construction concerning ideals. If R is a ring 
and h, ... , In are ideals of R then we define the sum ofthe ideals h, ... , In 
by 

n 

L Ii = {al + ... + an : ai E Ii for 1::; i ::; n}. 
i=1 

We also define the product of the ideals h, .. . ,In by 

(1 ::; i ::; n) and m ;. "'bit,"'Y} . 

(2.14) Lemma. If II, ... , In are ideals of R then L:~=1 Ii is an ideal of R. 
In fact, L:~=1 Ii is the ideal generated by the union Ui'=1 h 

Proof. Exercise. o 

(2.15) Definition. An ideal M in a ring R is called maximal if M f Rand 
M is such that if I is an ideal with M ~ I ~ R then I = M or I = R. 

(2.16) Theorem. Let R be a ring with identity and let I f R be an ideal of 
R. Then there is a maximal ideal of R containing I. 

Proof. Let S be the set of all ideals J of R that contain I and are not 
equal to R. Then S f 0 since I E S. Partially order S by inclusion and let 
C = {Ja}aEA be a chain in S. Let J = UaEAJa . Then J is an ideal of R since 
if a, bE J, r E R, it follows that a, bE Ja for some a because C is a chain 
(Le., J a ~ J{3 or J{3 ~ Ja for every a, (3 E A). Thus a-b, ab, ar, ra E Ja ~ J, 
so J is an ideal. Furthermore, J f R since 1 f: Ja for any a. Thus J is an 
upper bound for the chain C so Zorn's lemma implies that S has a maximal 
element M and a maximal element of S is clearly a maximal ideal of R. 0 

(2.17) Corollary. In a ring with identity there are always maximal ideals. 

Proof· o 

(2.18) Theorem. Let R be a commutative ring with identity. Then an ideal 
M of R is maximal if and only if RIM is a field. 

Proof. Suppose RIM is a field. Then 0 f 1 E RIM, so MfR. But the 
only ideals in a field are {O} and the whole field, so the correspondence 
theorem shows that there are no ideals of R properly between M and R. 
Thus, M is maximal. 
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Conversely, suppose that M is a maximal ideal. It is necessary to show 
that every a = a + M E RIM has an inverse if a t- 0 E RIM, i.e., if 
a fj. M. Consider the ideal Ra + M of R. Since a E Ra + M and a fj. M, it 
follows that Ra + M = R since M is assumed to be maximal. In particular, 
ra + m = 1 for some r E R, m E M. Let r = r + M. Then 

ra= (r+M)(a+M) = ra+M = (1-m) +M = 1 +M = I E RIM. 

Thus, a-I = r and RIM is a field. o 

(2.19) Definition. An ideal P in a commutative ring R is said to be prime 
if P t- Rand P is such that if ab E P then a E P or bE P. An element 
pER is prime if the ideal Rp = (P) is a prime ideal. 

(2.20) Theorem. Let R be a commutative ring with identity. Then an ideal 
P of R is prime if and only if RIP is an integral domain. 

Proof. Suppose P is a prime ideal. Then P t- R, so RIP t- {O}. Hence RIP 
is a ring with identity 1 + P. Given a = a + P, b = b + PERI P, suppose 
ab = O. Then (a + P)(b + P) = P, so ab + P = P and ab E P. Since P 
is a prime ideal, this implies that a E P or b E P, i.e., a = 0 or b = O. 
Therefore, RIP is an integral domain. 

Conversely, suppose RIP is an integral domain and suppose that ab E 

P. Then ab = 0 E RIP. Therefore, a = 0 or b = 0, i.e., a E P or b E P. 
Thus P is a prime ideal. 0 

(2.21) Theorem. Let R be a commutative ring with identity and let I be an 
ideal. If I is maximal, then I is prime. 

Proof. If I is maximal then RI I is a field and hence an integral domain. 
Therefore, I is prime by Theorem 2.20. 

More directly, suppose that I ~ R is not prime and let a, b E R with 
a fj. I, b fj. I, but ab E I. Let 

J = {x E R: ax E I}. 

Then I ~ J since I is an ideal, and J is clearly an ideal. Also, J t- I since 
bE J but b fj. I, and J t- R since 1 fj. J. Therefore, I is not maximal. The 
theorem follows by contraposition. 0 

(2.22) Corollary. Let f : R ---> S be a surjective homomorphism of commu
tative rings with identity. 

(1) If S is a field then Ker(f) is a maximal ideal of R. 
(2) If S is an integral domain then Ker(f) is a prime ideal of R. 

Proof. RI Ker(f) ~ Im(f) = S. Now apply Theorems 2.20 and 2.18. 0 
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(2.23) Examples. 

(1) We compute all the ideals of the ring of integers Z. We already know 
that all subgroups of Z are of the form nZ = {nr : r E Z}. But if 
s E Z and nr E nZ then s(nr) = nrs = (nr)s so that nZ is an ideal of 
Z. Therefore, the ideals of Z are the subsets nZ of multiples of a fixed 
integer n. The quotient ring ZjnZ is the ring Zn of integers modulo 
n. It was observed in the last section that Zn is a field if and only if n 
is a prime number. 

(2) Define ¢ : Z[X] ---+ Z by ¢(ao + a1X + ... + anxn) = ao. This is a 
surjective ring homomorphism, and hence, Ker( ¢) is a prime ideal. In 
fact, Ker( ¢) = (X) = ideal generated by X. 
Now define 'Ij; : Z[X] ---+ Z2[X] by 

'Ij;(ao + a1X + ... + anxn) = ao + a1X + ... + anXn 

where ai = 7r(ai) if 7r : Z ---+ Z2 is the natural projection map. Z2[X] 
is an integral domain (see Section 2.4), so Ker('Ij;) is a prime ideal. In 
fact, 

Ker('Ij;) = {ao + a1X + ... + anXn : ai is even for all i} 

= (2) = ideal generated by 2. 

Next consider the map 'Ij;' : Z[X] ---+ Z2 defined by 

'Ij;'(ao + a1X + ... + anxn) = ao = 7r(ao). 

Then Ker( 'Ij;') is a maximal ideal since 'Ij;' is a surjective ring homomor
phism to the field Z2' In fact, 

Ker('Ij;') = (2, X) = ideal generated by {2, X}. 

Note that (X) 5. (2, X) and (2) ~ (2, X). Thus, we have some exam
ples of prime ideals that are not maximal. 

(3) Let G be a group and R a ring. Then there is a map 

aug : R( G) ---+ R 

called the augmentation map defined by 

aug (Lrg.g) = Lrg 
gEG gEG 

where we have denoted elements of R( G) by the formal sum notation 
L9EG r 9 . 9 rather than the formally equivalent functional notation 
I: G ---+ R with I(g) = rg . We leave it as an exercise to check that aug 
is a ring homomorphism. The ideal I = Ker( aug) ~ R( G) is called the 
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augmentation ideal. If R is an integral domain, then I is prime, and if 
R is a field, then I is maximal. 

(4) Let F be a field and let Tn(F) be the ring of n x n upper triangular 
matrices with entries in F, and let STn(F) be the subring of strictly 
upper triangular matrices. Then STn (F) is an ideal in the ring Tn (F) 
and the quotient 

where Dn(F) is the ring of n x n diagonal matrices with entries in F. 
To see this define a ring homomorphism ¢ : Tn(F) -+ Dn(F) by 

a1n 1) [a
1l a2n 0 

· . · . · . 
ann 0 

o 

o o 
It is easy to check (do it) that ¢ is a ring homomorphism and that 
Ker(¢) = STn(F) and Im(¢) = Dn(F), so the result follows from the 
first isomorphism theorem. 

The next result is an extension to general commutative rings of the 
classical Chinese remainder theorem concerning simultaneous solution of 
congruences in integers. For example, the Chinese remainder theorem is 
concerned with solving congruences such as 

x == -1 (mod 15) 

x == 3 (mod 11) 

x == 6 (mod 8). 

(2.24) Theorem. (Chinese remainder theorem) Let R be a commutative ring 
with identity and let It, ... ,In be ideals of R such that Ii + I j = R for all 
i =I- j. (A collection of such ideals is said to be coprime or relatively prime.) 
Given elements a1, ... ,an E R there exists a E R such that 

a == ai (mod Ii) for 1::::: i ::::: n. 

Also, b E R is a solution of the simultaneous congruence 

x == ai (mod Ii) (1::::: i ::::: n) 

if and only if 
b == a (mod It n ... n In). 

Proof. We will first do the special case of the theorem where a1 = 1 and 
aj = 0 for j > 1. For each j > 1, since It + I j = R, we can find bj E It 
and Cj E I j with bj + Cj = 1. Then n;=2(bj + Cj) = 1, and since each 
bj El l , it follows that 1 = n;=2(bj + Cj) E It + n;=2 I j . Therefore, there 
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is (}:1 E hand /31 E n;=2Ij such that (}:1 + /31 = 1. Observe that /31 solves 
the required congruences in the special case under consideration. That is, 

/31 = 1 (mod Id 
/31 = 0 (mod I j ) for j =I- 1 

since /31 - 1 E hand /31 E n;=2Ij <;;:; Ij for j =I- 1. 
By a similar construction we are able to find /32, ... , /3n such that 

/3i = 1 (mod Ii) 

/3i = 0 (mod I j ) for j =I- i. 

Now let a = a1/31 + ... + an/3n. Then 

a = ai (mod Ii) (1 ~ i ~ n). 

Now suppose also that b = ai (mod Ii) for all i. Then b - a 0 
(mod Ii) so that b - a E Ii for all i, Le., 

n 

b-aE nh 
i=l 

The converse is clear. o 

There is another version of the Chinese remainder theorem. In order to 
state it we will need to introduce the concept of cartesian, or direct, product 
of rings. We will only be concerned with finite cartesian products. Thus let 
R1' ... ' Rn be finitely many rings and let n~=l Ri = Rl X ... x Rn denote 
the cartesian product set. On the set n~=l Ri we may define addition and 
multiplication componentwise, Le., 

(al, ... , an) + (b1, ... , bn) = (al + bI, ... , an + bn ) 

(aI, ... ,an)(bl, ... ,bn) = (a l b1, ... ,anbn ), 

to make n~=l Ri into a ring called the direct product of Rl' ... ' Rn. Given 
1 ~ i ~ n there is a natural projection homomorphism 7ri : n;=l R j ---+ Ri 
defined by 7ri(aI, . .. , an) = ai. 

(2.25) Corollary. Let R be a commutative ring with identity and let h, ... , In 
be ideals of R such that Ii + I j = R if i =I- j. Define 

n 

f : R ---+ II RI Ii 
i=l 

by f(a) = (a+h, ... , a+In). Then f is surjective and Ker(f) = hn·· ·nIn. 
Thus 

n 

RI(h n ... n In) ~ II RI h 
i=l 
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Proof. Surjectivity follows from Theorem 2.24, and it is clear from the 
definition of f that Ker(J) = I1 n ... n In. 0 

Surpose that we take R = Z in Corollary 2.25. Let m E Z and let 
m = TIi=l p~i be the factorization of m into distinct prime powers. Then if 
Ii = (P~') it follows that Ii + Ij = Z if i =I- j. Moreover, (m) = I1 n ... n Ik 
so that Corollary 2.25 applies to give an isomorphism of rings 

k 

Zm ~ IIZp;i. 
i=l 

A practical method of applying the Chinese remainder theorem in Eu
clidean domains will be presented in Section 2.5. (This class of rings, defined 
there, includes the integers Z.) 

We conclude this section by computing all the ideals of the full matrix 
ring Mn{R) where R is a commutative ring with identity. To do this we will 
make use of the matrix units Eij introduced in Example 1.10 (8). Recall 
that Eij has a 1 in the ij position and 0 elsewhere. 

(2.26) Theorem. Let R be a ring with identity and let I be an ideal of 
Mn{R). Then there is an ideal J ~ R such that I = Mn{J). 

Proof. First note that if J is any ideal of R then Mn (J) is an ideal of 
Mn{R). This follows immediately from the definition of multiplication and 
addition in Mn{R). Now suppose that I is an ideal in Mn{R), and define 

J = {a E R: there exists A E I with entl1{A) = a}. 

Observe that J is an ideal. Indeed, if a, b E J, r E R then a = 
entl1 (A), b = entl1{B) for some A,B E I. Then a - b = entl1 {A - B), 
ra = entl1{{rEl1A)), and ar = entl1(A(rEll)). But A - B, (rEll)A, and 
A(rEll) are all in I since I is an ideal. Therefore, J is an ideal of R. 

Now we show that I = Mn(J). First observe that 

Elk (.t aijEij) Ell = aklEll E I. 
',J=l 

Thus, whenever A E I every entry of A is in J since the above calculation 
shows that every entry of A can be moved to the 1,1 position of some 
matrix in I. Hence, I ~ Mn(J). But Mn(J) is generated by elements aEij 
where a = entl1(A) for some A E I. Since aEij = Ei1 AE1j E I because I 
is an ideal, it follows that each generator of Mn (J) is in I, so Mn (J) ~ I, 
and we conclude that Mn(J) = I. 0 

(2.27) Corollary. If D is a division ring then Mn(D) has no nontrivial 
proper ideals, i.e., the only ideals are {O} and Mn(D}. 
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Proof. The only ideals of Dare {O} and D so that the only ideals of Mn(D) 
are {O} = Mn( {O}) and Mn(D). 0 

(2.28) Remark. Note that Corollary 2.27 shows that commutativity is a 
crucial hypothesis in Theorem 2.18. One might conjecture that an ideal M 
of any ring R (with identity) is maximal if and only if RIM is a division 
ring. But this is false since (0) is a maximal ideal of Mn(D) (by Corollary 
2.27), but clearly, Mn(D) is not a division ring. 

2.3 Quotient Fields and Localization 

If F is a field and R is a subring of F then R is an integral domain and the 
smallest subfield of F containing R is the subset 

Q(R) = {alb E F: a,b E R, b ~ O}. 

Of course, if c ~ 0 E R then alb = (ac)/(bc) E F since alb just means 
ab- 1 . Thus Q(R) is obtained from R in the same manner in which the 
rational numbers Q are obtained from the integers Z. We will now consider 
the converse situation. Suppose we are given an integral domain R. Can 
we find a field F that contains an isomorphic copy of R as a subring? The 
answer is yes, and in fact we will work more generally by starting with a 
commutative ring R and a subset 8 of R of elements that we wish to be able 
to invert. Thus we are looking for a ring R' that contains R as a subring 
and such that 8 <;;;; (R')*, i.e., every element of 8 is a unit of R'. In the case 
of an integral domain R we may take 8 = R \ {O} to obtain Q(R). 

(3.1) Definition. If R is a commutative ring, a subset 8 of R is said to be 
multiplicatively closed if the product of any two elements of 8 is an element 
of8. 

Note that if 8' is any nonempty subset of R, then the set 8 consisting of 
all finite products of elements of 8' is multiplicatively closed. If 8' contains 
no zero divisors, then neither does 8. 

(3.2) Definition. Let R be a commutative ring and let 0 ~ 8 <;;;; R be a mul
tiplicatively closed subset of R containing no zero divisors. The localization 
of R away from 8 is a commutative ring Rs with identity, and an injective 
ring homomorphism ¢ : R -+ Rs such that for all a E Rs there are b E R 
and c E 8 such that ¢(c) is a unit in Rs and a = ¢(b)¢(C)-l. If R is an 
integml domain and 8 = R \ {O} then we call Rs the quotient field of R 
and we denote it Q(R). 
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(3.3) Remark. If S ~ R*, then R together with the identity map lR : R -+ R 
is the localization Rs. In particular, if R is a field then any localization of 
R just reproduces R itself. 

(3.4) Definition. Let S ~ R \ {O} be a nonempty multiplicatively closed 
subset of R containing no zero divisors, and let (Rs, ¢) and (R~, ¢') be 
localizations of R away from S. Rs and R~ are said to be equivalent 
if there is an isomorphism f3 : Rs -+ R~ such that f3 0 ¢ = ¢', i. e., the 
following diagram of rings and ring homomorphisms commutes: 

Rs 

R 
<I> <1>' 

./ '\. 
f3 

---+ R~ 

(3.5) Theorem. Let R be a commutative ring. If S ~ R \ {O} is a mul
tiplicatively closed subset containing no zero divisors, then there exists a 
localization Rs away from S, and Rs is unique up to equivalence. 

Proof. Define a relation rv on R x S by setting (a, b) rv (c, d) if and only 
if ad = be. Observe that rv is an equivalence relation. Symmetry and re
flexivity are clear. To check transitivity suppose that (a, b) rv (c, d) and 
(c, d) rv (e, f). Then ad = bc and cf = de. Therefore, adf = bcf and 
bcf = bde so that adf = bde. But d is not a zero divisor and d -I- 0 since 
dES so by Lemma 3.1, af = be. Therefore, (a, b) rv (e,1) and rv is 
transitive and, hence, is an equivalence relation. 

Let Rs = R x S / rv be the set of equivalence classes of the equivalence 
relation rv. We will denote the equivalence class of (a, b) by the suggestive 
symbol a/b. Note that (a, b) rv (ac, bc) whenever e E S (S is multiplica
tively closed, so bc E S whenever b, c E S). Thus alb = (ac)/(bc) for every 
c E S. Define ring operations on Rs by the formulas 

a c ac 
b d bd 

a e ad+bc 
b+d= bd 

Note that bd E S since S is multiplicatively closed. Since the symbol alb 
denotes an equivalence class, it is necessary to check that these opera
tions do not depend upon the choice of representative of the equivalence 
class used in their definition. To check this, suppose that alb = a' /b' and 
c/ d = c' / d'. Then ab' = ba' and cd' = dc' so that acb'd' = bda' c' and thus 
(ac)/(bd) = (a'c')/(b'd') and the multiplication formula is well defined. 
Similarly, 

(ad + bc )b' d' = ab'dd' + bb' cd' 

= ba'dd' + bb'dc' 

= (a'd' + b'c')bd, 

so addition is also well defined. 
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We leave to the reader the routine check that these operations make Rs 
into a commutative ring with identity. Observe that 0/ s = 0/ s', s / s = s' / s' 
for any s, s' E Sand 0/ s is the additive identity of Rs, while s/ s is the 
multiplicative identity. If s,t E S then (s/t)(t/s) = (st)/(st) = 1 E Rs so 
that (S/t)-l = t/ s. 

Now we define ¢ : R ----+ Rs. Choose s E S and define ¢s : R ----+ Rs 
by ¢s(a) = (as)/s. We claim that if s' E S then ¢S' = ¢s. Indeed, ¢s(a) = 
(as)/s and ¢sl(a) = (as')/s', but (as)/s = (as')/s' since ass' = as's. Thus 
we may define ¢ to be ¢s for any s E S. 

Claim. ¢ is a ring homomorphism. 

and 

Indeed, if a, b E Rand s E S then 

¢(ab) = abs 
s 

abs2 

s2 

as bs 
s s 

= ¢(a)¢(b) 

¢(a + b) = (a + b)s = as2 + bs2 

s s2 

as bs 
=-+-

s s 
= ¢(a) + ¢(b). 

Note that ¢(I) = s/ s = IRs and 

a 0 
Ker( ¢) = {a E R : - = - } 

s s' 
= {a E R : as' = 0 for some s' E S} 

= {O} 

since S contains no zero divisors. Therefore, ¢ is an injective ring homo
morphism. Suppose that alb E Rs where a E Rand b E S. Then 

~ = as . ~ = ¢(a)(¢(b))-l. 
b s bs 

Therefore, we have constructed a localization of R away from S. It remains 
only to check uniqueness up to equivalence. 

Suppose that ¢ : R ----+ Rs and ¢' : R ----+ R~ are two localizations 
of R away from S. Define fJ : Rs ----+ R~ as follows. Let a E Rs. Then 
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we may write a = ¢(b)(¢(e))-1 where b E Rand e E S, and we define 
j3(a) = ¢'(b)(¢'(e))-1. 

Claim. 13 is well defined. 

If ¢(b)(¢(e))-I = a = ¢(b')(¢(e,))-I then ¢(b)¢(e') = ¢(b')¢(e) and 
hence ¢(be') = ¢(b'e). But ¢ is injective so be' = b'e. Now apply the homo
morphism ¢' to conclude ¢'(b)(¢'(c))-1 = j3(a) = ¢'(b')(¢'(e,))-I so 13 is 
well defined. 

Claim. 13 is bijective. 

Define, : R's ---+ Rs by ,(a') = ¢(b')(¢(e,))-1 if a' = ¢'(b')(¢'(e,))-I 
for some b' E R, e' E S. Exactly as for 13, one checks that, is well defined. 
Then if a E Rs, write a = ¢(b)(¢(e))-I and compute 

,(j3(a)) = ,(¢'(b)(¢'(e))-l) 

= ¢(b)(¢(c))-1 

=a. 

Similarly, one shows that j3([(a')) = a' so that 13 is bijective. 
It remains to check that 13 is a homomorphism. We will check that 13 

preserves multiplication and leave the similar calculation for addition as an 
exercise. Let al = ¢(bl)(¢(Cl))-l and a2 = ¢(b2)(¢(C2))-I. Since ¢ is a ring 
homomorphism, aIa2 = ¢(bIb2)(¢(C1C2))-1 so that 

j3( a1 a2) = q/ (b i b2)( ¢' (CI C2) )-1 
= (¢' (bt)( ¢' (C1))-1 )(¢'(b2)( ¢'(C2) )-1) 

= j3(aI)j3(a2). 

This completes the proof of Theorem 3.5. 

(3.6) Examples. 

(1) Q(Z) = Q. 
(2) Let p E Z be a prime and let Sp = {1, p, p2, ... } <.;;; Z. Then 

Zsp = {~ E Q : b is a power of p}. 

o 

(3) Let R be an integral domain, let P <.;;; R be a prime ideal and let S = 
R \ P. Then the definition of prime ideal shows that S is a multiplica
tively closed subset of R and it certainly contains no zero divisors since 
R is an integral domain. Then Rs is isomorphic to a sub ring of the 
quotient field Q(R). In fact 

Rs = {~ E Q(R) : b rf- p}. 
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Rs is said to be R localized at the prime ideal P. It is an example of 
a local ring, that is, a ring with a unique maximal ideal. For Rs the 
maximal ideal is¢(P) ~ Rs. 

(4) Let d #- 0,1 E Z be an integer that is square-free, i.e., whose prime 
factorization contains no squares, and then define Z [v'd] = {a + bVd : 
a, b E Z}. It is easy to check that Z[v'd] is a subring of the complex 
numbers C and thus the quotient field Q(Z[v'd]) can be identified with 
a subfield of the complex numbers. In fact, 

Q(Z[Vd]) = Q[v'd] = {a + bVd: a,b E Q}. 

(5) Let F be a field and let F[X] be the ring of polynomials in the indeter
minate X (see Example 1.10 (12)). Then F[X] is an integral domain 
(see Section 2.4 for a proof) and its quotient field is denoted F(X). 
It consists formally of quotients of polynomials in one variable, called 
rational functions over F. 

2.4 Polynomial Rings 

Let R be a commutative ring with identity. The polynomial ring R[X] was 
defined in Example 1.10 (12). Recall that an element f E R[X] is a function 
f : Z+ -+ R such that f(n) #- 0 for at most finitely many nonnegative 
integers n. If X E R[X] is defined by 

X(n) = {I ~f n = 1, 
o If n #- 1, 

then every f E R[X] can be written uniquely in the form 

where the sum is finite since only finitely many an = f(n) E R are not O. 
With this notation the multiplication formula becomes 

where 
n 

Cn = L ambn - m · 

m=O 

It is traditional to denote elements of R[X] by a symbol f(X) but it 
is important to recognize that f(X) does not mean a function f on the set 
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R evaluated at X; in fact, X is not an element of R. However, there is a 
concept of polynomial function, which we now describe. 

Let S be another commutative ring with identity, let ¢ : R -+ S be 
a ring homomorphism such that ¢(1) = 1, and let u E S. Define a map 
¢ ... : R[X] -+ S by the formula 

¢ ... (ao + a1X + ... + anxn) = ¢(ao) + ¢(at}u + ... + ¢(an)un. 

We leave it as an exercise to check that ¢ ... is a ring homomorphism from 
R[X] to S. It is called the substitution homorphism determined by ¢ : 
R -+ S and u E S. If R is a subring of S and ¢ : R -+ S is the inclusion 
homomorphism (Le., ¢(r) = r), then ¢ ... just substitutes the element u E S 
for the indeterminate X in each polynomial f(X) E R[X]. If Ker(¢ ... ) = 
{O} then R[X] can be identified with a subring of S, and this is a way 
we frequently think of polynomials. However, it may not be the case that 
Ker(¢ ... ) = {O}. For example, if R = R, S = C and u = i, then Ker(¢ ... ) = 
(X2 + I). In general, we let R[u] = Im(¢ ... ). 

The above discussion is formalized in the following result, the details 
of which are left to the reader. Note that R can be viewed as a subring of 
R[X] via the identification a I---> a· 1. 

(4.1) Theorem. (Polynomial substitution theorem) Let Rand S be commu
tative rings with identity, let ¢ : R -+ S be a ring homomorphism with 
¢(1) = 1, and let u E S. Then there is a unique ring homomorphism 
¢ ... : R[X]-+ S such that ¢ ... (X) = u and ¢ ... IR = ¢. 

Proof. Exercise. o 

If f(X) = E:=o amxm f:. 0 E R[X] we define the degree of f, denoted 
deg(f(X)), by 

deg(f(X)) = maxim : am f:. O}. 

Thus if n = deg(f (X)) then we may write f (X) = E~=o amxm. We define 
deg(O) = -00, and for convenience in manipulating degree formulas, we set 
-00 < nand -00 + n = -00 for any n E Z+. The coefficient an is called 
the leading coefficient of f(X), while ao is called the constant term. If the 
leading coefficient of f(X) is 1, then f(X) is a monic polynomial. 

(4.2) Lemma. Let R be a commutative ring and let f(X),g(X) E R[X]. 
Then 

(1) deg(f(X) + g(X)) ::; max{deg(f(X)),deg(g(X))}; 
(2) deg(f(X)g(X))::; deg(f(X)) + deg(g(X)); and 
(3) equality holds in (2) if the leading coefficient of f(X) or g(X) is not 

a zero divisor. In particular, equality holds in (2) if R is an integral 
domain. 

Proof (1) is clear from the addition formula for polynomials. 
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For (2) and (3), suppose deg(f(X)) = n ~ 0 and deg(g(X)) = m ~ O. 
Then 

Therefore, 

f(X) = ao + alX + ... + anXn 

g(X) = bo + blX + ... + bmXm 
with an =f. 0 

with bm =f. O. 

f(X)g(X) = aobo + (aobl + aIbo)X + ... + anbmXm+n 

so that deg(f(X)g(X)) :0::::: n + m with equality if and only if anbm =f. o. If 
an or bn is not a zero divisor, then it is certainly true that anbm =f. O. 

The case for f(X) = 0 or g(X) = 0 is handled separately and is left to 
the reader. 0 

(4.3) Corollary. If R is an integral domain, then 

(1) R[X] is an integral domain, and 
(2) the units of R[X] are the units of R. 

Proof. (1) If f(X) =f. 0, g(X) =f. 0, then 

deg(f(X)g(X)) = deg(f(X)) + deg(g(X)) ~ 0 > -00, 

and thus, f(X)g(X) =f. O. 
(2) If f(X)g(X) = 1 then deg(f(X)) + deg(g(X)) = deg(l) = O. 

Thus, f(X) and g(X) are both polynomials of degree 0, i.e., elements of R. 
Therefore, they are units not only in R[X] but in R also. 0 

We now consider the division algorithm for R[X] where R is a com
mutative ring. Let f(X) = ao + alX + ... + anXn E R[X] and let g(X) = 
bo + b1X + ... + bm_1Xm- 1 + xm be a monic polynomial in R[X] of degree 
m ~ 1. If n ~ m, let ql(X) = anXn- m. Then heX) = f(X) - g(X)ql(X) 
has degree :0::::: n - 1. If deg(h(X)) ~ m then repeat the process with f(X) 
replaced by h (X). After a finite number of steps we will arrive at a poly
nomial fs(X) of degree < m. Letting q(X) = ql(X) + ... + qs(X) and 
reX) = f(X) - g(X)q(X) we obtain an equation f(X) = g(X)q(X) +r(X) 
where deg(r(X)) < deg(g(X)). What we have described is the familiar long 
division process for polynomials. 

(4.4) Theorem. (Division algorithm) Let R be a commutative ring, let 
f(X) E R[X], and let g(X) E R[X] be a monic polynomial. Then there are 
unique polynomials q(X) and reX) in R[X] with deg(r(X)) < deg(g(X)) 
such that 

f(X) = g(X)q(X) + reX). 

Proof. Existence follows from the algorithm described in the previous para
graph. Now consider uniqueness. Suppose there are two such decomposi
tions f(X) = g(X)q(X) + reX) and f(X) = g(X)ql(X) + rl(X) with 
deg(r(X)) < deg(g(X)) and deg(rl(X)) < deg(g(X)). Then 
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g(X)(ql(X) - q(X)) = reX) - rl(X), 

Since g(X) is a monic polynomial, taking degrees of both sides gives 

deg(g(X)) + deg(ql(X) - q(X)) = deg(r(X) - rl(X)) < deg(g(X)). 

This forces deg(ql(X) - q(X)) = -00, Le., ql(X) = q(X). It then follows 
that rl(X) = reX), so uniqueness is established. 0 

(4.5) Corollary. (Remainder theorem) Let R be a commutative ring and let 
a E R. Then for any f(X) E R[X] 

f(X) = (X - a)q(X) + f(a) 

for some q(X) E R[X]. 

Proof. By the division algorithm we may write f(X) = (X - a)q(X) +r(X) 
where deg(r(X)) :::; O. Therefore, reX) = r E R. Apply the substitution 
homomorphism X ~ a to get f(a) = (a - a)q(a) + r so that r = f(a). 0 

(4.6) Corollary. Let R be a commutative ring, f(X) E R[X], and let a E R. 
Then f(a) = 0 if and only if X - a divides f(X). 

Proof. o 

(4.7) Corollary. Let R be an integml domain and let f(X) =f. 0 E R[X] be a 
polynomial of degree n. Then there are at most n roots of f(X) in R, i.e., 
there are at most n elements a E R with f(a) = O. 

Proof. If n = 0 the result is certainly true since f(X) = ao =f. 0 and thus 
f(a) = ao =f. 0 for every a E R, Le., f(X) has no roots. 

Now let n > 0 and suppose, by induction, that the result is true for 
polynomials of degree < n. If there are no roots of f(X) in R, then there is 
nothing to prove. Thus suppose that there is at least 1 root a E R. Then by 
Corollary 4.6, X - a divides f(X), so we may write f(X) = (X - a)q(X) 
where deg(q(X)) = n - 1. By the induction hypothesis, there are at most 
n -1 roots of q(X) in R. Now let b be any root of f(X) so that 0 = feb) = 
(b - a)q(a). Hence b = a or b is a root of q(X). We conclude that f(X) has 
at most (n - 1) + 1 = n roots in R. 0 

(4.8) Remark. This result is false if R is not an integral domain. For example 
if R = Z2 X Z2 then all four elements of R are roots of the quadratic 
polynomial X 2 - X E R[X]. 

(4.9) Corollary. Let R be an integml domain and let f(X), g(X) E R[X] 
be polynomials of degree:::; n. If f(a) = g(a) for n + 1 distinct a E R, then 
f(X) = g(X). 
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Proof. The polynomial h(X) = f(X) - g(X) is of degree :::; n and has 
greater than n roots. Thus h(X) = 0 by Corollary 4.7. 0 

In the case R is a field, there is the following complement to Corol
lary 4.9. 

(4.10) Proposition. (Lagrange Interpolation) Let F be a field and let ao, aI, 
... , an be n + 1 distinct elements of F. Let Co, CI, ... , Cn be arbitrary (not 
necessarily distinct) elements of F. Then there exists a unique polynomial 
f(X) E F[X] of degree:::; n such that f(ai) = Ci for 0 :::; i :::; n. 

Proof. Uniqueness follows from Corollary 4.9, so it is only necessary to 
demonstrate existence. To see existence, for 0 :::; i :::; n, let Pi(X) E F[X] 
be defined by 

(4.1) 

n 

(4.2) f(X) = L CiPi(X) 
i=O 

to conclude the proof. o 

(4.11) Remark. The polynomial given in Equation (4.2) is known as La
grange's form of the interpolation polynomial. Of course, the interpolation 
polynomial is unique, but there is more than one way to express the inter
polation polynomial; in the language of vector spaces (see Chapter 3), this 
is simply the observation that there is more than one choice of a basis of 
the vector space Pn(F) of polynomials in F[X] of degree at most n. The 
set {Pi (X) : 0 :::; i :::; n} is one such basis. Another basis of P n (F) is the set 
of polynomials Po(X) = 1 and 

for 1 :::; i ::::: n. Any polynomial f(X) E F[X] of degree at most n can be 
written uniquely as 

n 

(4.3) f(X) = L (tiPi(X). 
i=O 

The coefficients (ti can be computed froID the values f(ai) for 0 :::; i :::; n. 
The details are left as an exercise. The expression in Equation (4.3) is 
known as Newton's form of interpolation; it is of particular importance in 
numerical computations. 
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(4.12) Theorem. Let F be a field. Then F[X] is a principal ideal domain 
(PID). 

Proof. Let I be an ideal of F[X]. If 1= {O} then I is a principal ideal, so 
suppose that I =f. {O}. Choose g(X) E I such that g(X) =f. 0 and such that 
deg(g(X» :5 deg(f(X» for all f(X) E 1\ {O}. We claim that 1= (g(X». 
Since F is a field, we may multiply g(X) by an element of F to get a monic 
polynomial, which will also be in I. Thus we may suppose that g(X) is a 
monic polynomial. Let f(X) E I. Then by the division algorithm we may 
write f(X) = g(X)q(X)+r(X) where deg(r(X» < deg(g(X». But r(X) = 
f(X) - g(X)q(X) E I, so r(X) must be 0 since g(X) was chosen to have 
minimal degree among all nonzero elements of I. Thus f(X) = g(X)q(X) 
and we conclude that 1= (g(X». Since I was an arbitrary ideal of F[X], 
it follows that F[X] is a PID. 0 

(4.13) Remarks. (1) If I is a nonzero ideal of F[X], then there is a unique 
monic polynomial of minimal degree in I. This is an immediate consequence 
of the proof of Theorem 4.12. 

(2) Both the statement and proof of Theorem 4.12 will be generalized 
to the case of Euclidean domains in Section 2.5 (Theorem 5.19). 

If R is a PID that is not a field, then it is not true that the polynomial 
ring R[X] is a PID. In fact, if 1= (P) is a nonzero proper ideal of R, then 
J = (p, X) is not a principal ideal (see Example 2.23 (2». It is, however, 
true that every ideal in the ring R[X] has a finite number of generators. 
This is the content of the following result. 

(4.14) Theorem. (Hilbert basis theorem) Let R be a commutative ring in 
which every ideal is finitely generated. Then every ideal of the polynomial 
ring R[X] is also finitely generated. 

Proof. The ideal (0) ~ R[X] is certainly finitely generated, so let I ~ R[X] 
be a nonzero ideal. If f(X) E R[X] is not zero, we will let lc(f(X» denote 
the leading coefficient of f(X). For n = 0,1,2, ... , let 

In = {a E R: lc(f(X» = a for some f(X) E I of degree n} U {O}. 

Note that In is an ideal of R for all n. Since lc(f(X» = lc(Xf(X», it 
follows that In ~ In+! for all n. Let J = U~=oIn. Then J is an ideal of 
R and hence is finitely generated, and since the sequence of ideals In is 
increasing, it is easy to see that J = In for some n. Also, 1m is finitely 
generated for any m. For 0 :5 m :5 n, let 

generate 1m and choose fmj(X) E I such that 

deg(fmj(X» = m and 
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for all 0 $ m $ n and 1 $ j $ km . Let 

1 = (fmj(X) : 0 $ m $ n, 1 $ j $ km}. 

Claim. 1=1. 

Suppose that f(X) E I. If f(X) = 0 or deg(f(X)) = 0 then f(X) E 1 
is clear, so assume that deg(f(X)) = r > 0 and proceed by induction on r. 
Let a = lc(f(X)). If r $ n, then a E I r , so we may write 

Then lc(I:~';;l Cdri(X)) = a so that 

kr 

deg(J(X) - LCdri(X)) < r 
i=l 

and f(X) - I:~';;l Cdri(X) E lby induction. Thus, f(X) E lin case r $ n. 
If r > n then a E Ir = In so that 

Then, as above, 

and hence f(X) E lby induction on r. 
Thus, I ~ 1 and the other inclusion is clear. Hence I is finitely gener-

ated. 0 

(4.15) Corollary. Let R be a commutative ring in which every ideal is finitely 
genemted. Then every ideal of R[Xl' ... ,Xnl is finitely genemted. 

Proof. This follows from Theorem 4.14 by induction on n since it is an easy 
exercise to verify that 

o 

(4.16) Corollary. Let F be a field. Then every ideal in the polynomial ring 

is finitely genemted. 

Proof· o 



2.5 Principal Ideal Domains and Euclidean Domains 79 

The theory of principal ideal domains will be studied in Section 2.5. 
At the present time we have two major examples of PIDs, namely, Z and 
F[X] for F a field, to which the theory will apply. Further examples will 
be given in Section 2.5. We will conclude this section with the following 
concept, which is defined by means of polynomials. 

(4.17) Definition. Let F be a field. F is said to be algebraically closed if 
every noneonstant polynomial f(X) E F[X] has a root in F. 

(4.18) Remarks. 

(1) According to Corollary 4.6, F is algebraically closed if and only if the 
nonconstant irreducible polynomials in F[X] are precisely the polyno
mials of degree 1. 

(2) The complex numbers C are algebraically closed. This fact, known 
as the fundamental theorem of algebra, will be assumed known 
at a number of points "in the text. We shall not, however, present a 
proof. 

(3) If F is an arbitrary field, then there is a field K such that F ~ K and 
K is algebraically closed. One can even guarantee that every element 
of K is algebraic over F, i.e., if a E K then there is a polynomial 
f(X) E F[X] such that f(a) = O. Again, this is a fact that we shall 
not prove since it involves a few subtleties of set theory that we do not 
wish to address. 

2.5 Principal Ideal Domains and Euclidean Domains 

The fundamental theorem of arithmetic concerns the factorization of an 
integer into a unique product of prime numbers. In this section we will 
show that the fundmental theorem of arithmetic is also valid in an arbitrary 
principal ideal domain. At present we have only two major examples of 
PIDs, namely, Z and F[X] for F a field. Some examples will be presented of 
other PIDs. We will start by defining precisely the concepts of factorization 
needed to state and prove the extension of the fundamental theorem of 
arithmetic. 

(5.1) Definition. Let R be an integml domain and let a, bE R \ {O}. 

(1) a and b are associates if a = ub for some unit u E R. We can define 
an equivalence relation on R by setting a rv b if and only if a and b are 
associates in R. 

(2) a divides b (written a I b) if b = ac for some c E R. 
(3) A nonunit a is irreducible if a = be implies that b or c is a unit. 
(4) A nonunit a is prime if a I bc implies that a I b or a I c. 
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(5.2) Remark. Let R be an integral domain and let a, b E R \ {a}. 

(1) a and b are associates if and only if a I band b I a. 
(2) Recall that (a) denotes the ideal of R generated by a. Then a I b if and 

only if (b) ~ (a) and a and b are associates if and only if (a) = (b). 
(3) a is a prime element of R if and only if (a) is a prime ideal. 
(4) If a I b then au I bv for any units u, v. 
(5) If a I b and a is not a unit, then b is not a unit. Indeed, if b is a unit then 

be = 1 for some c E R and b = ad since a I b. Then (ad)e = 1 = a(de) 
so, a is a unit also. 

(6) If p is a prime in R and pial'" an then pi ai for some i (exercise). 

(5.3) Lemma. Let R be an integral domain. If a E R is prime, then a is 
irreducible. 

Proof. Let a E R be prime and suppose that a = be. Then a I b or a I e. 
To be specific, suppose that a I b so that b = ad for some d E R. Then 
a = be = ade, and since R is an integral domain, Lemma 1.3 shows that 
de = 1 so that e is a unit. Thus a is irreducible. 0 

If R = Z then the concepts of prime and irreducible are the same, so 
that the converse of Lemma 5.3 is also valid. In fact, we shall show that the 
converse is valid in any PID, but it is not valid for every integral domain 
as the following examples show. 

(5.4) Examples. 

(1) Let F be a field and let 

R = F[X2, X 3] 

= {p(X) E F[X] : p(X) = ao + a2X2 + a3X3 + ... + anxn}. 

Then X 2 and X 3 are irreducible in R, but they are not prime since 
X 2 I (X3)2 = X6, but X 2 does not divide X3, and X3 I X 4 X 2 = X6, 
but X 3 does not divide either X 4 or X2. All of these statements are 
easily seen by comparing degrees. 

(2) Let Z[H] = {a + bH : a, b E Z}. In Z[A] the element 2 is 
irreducible but not prime. 

Proof. Suppose that 2 = (a + bH)(e + dH) with a, b, c, dE Z. Then 
taking complex conjugates gives 2 = (a - bH) (c - dH), so multiplying 
these two equations gives 4 = (a2 + 3b2)(c2 + 3d2). Since the equation 
in integers 0:2 + 3/]2 = 2 has no solutions, it follows that we must have 
a2 +3b2 = lor c2 +3~ = 1 and this forces a = ±1, b = 0 or c = ±1, d = O. 
Therefore, 2 is irreducible in Z[A]. Note that 2 is not a unit in Z[A] 
since the equation 2(a + bH) = 1 has no solution with a, bE Z. 
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To see that 2 is not prime, note that 2 divides 4 = (1 + H)(l-H) 
but 2 does not divide either of the factors 1 + H or 1 - H in Z[R]. 
We conclude that 2 is not a prime in the ring Z[R]. 0 

(5.5) Definition. Let R be an integral domain and let A be a subset of R 
containing at least one nonzero element. We say that d E R is a greatest 
common divisor (gcd) of A if 

(1) dlaforallaEA,and 
(2) if e E Rand e I a for all a E A, then e I d. 

If 1 is a gcd of A, then we say that the set A is relatively prime. We say 
that m =I- 0 E R is a least common multiple (lem) of A if 0 f{. A, if 

(1) almforallaEA,and 
(2) if e E R and a I e for all a E R, then m I e. 

Note that any two gcds of A are associates. Thus the gcd (if it exists) is 
well defined up to multiplication by a unit. The following result shows that 
in a PID there exists a gcd of any nonempty subset of nonzero elements. 

(5.6) Theorem. Let R be a PID and let A be a subset of R containing at 
least one nonzero element. 

(1) An element d E R is a gcd of A if and only if d is a generator for the 
ideal (A) generated by A. 

(2) If A = {aI, ... ,an} is finite and ai =I- 0 for 1 :s: i :s: n, then an element 
mER is a lem of A if and only if m is a generator of the ideal 

Proof. (1) Suppose that d is a generator of the ideal (A). Certainly d I a 
for each a E A since a E (A) = (d). Also, since d E (A), it follows that 
d = L~=l riai for rll· .. ,rn E R and all· .. ,an E A. Therefore, if e I a for 
all a E A, then e I d so that d is a gcd of A. 

Conversely, suppose that d is a gcd of the set A and let (A) = (c). 
Then d I a for all a E A so that a E (d). Hence, 

(c) = (A) ~ (d). 

But, for each a E A, a E (c) so that cia. Since d is a gcd of A, it follows 
that c I d, Le., (d) ~ (c). Hence (c) = (d) and d is a generator of the ideal 
(A). 

(2) Exercise. 0 

(5.7) Corollary. Let R be a PID and a E R \ {O}. Then a is prime if and 
only if a is irreducible. 
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Proof. Lemma 5.3 shows that if a is prime, then a is irreducible. Now assume 
that a is irreducible and suppose that a I bc. Let d = gcd {a, b}. Thus a = de 
and b = df. Since a = de and a is irreducible, either d is a unit or e is a 
unit. If e is a unit, then a I b because a is an associate of d and d I b. If d is 
a unit, then d = ar' + bs' for some r', s' E R (since d E (a, b)). Therefore, 
1 = ar + bs for some r, s E R, and hence, c = arc + bsc. But a I arc and 
a I bsc (since a I bc by assumption), so a I c as required. D 

(5.8) Corollary. Let R be a PID and let I <:;;; R be a nonzero ideal. Then I 
is a prime ideal if and only if I is a maximal ideal. 

Proof. By Theorem 2.21, if I is maximal then I is prime. Conversely, sup
pose that I is prime. Then since R is a PID we have that I = (p) where p 
is a prime element of R. If I <:;;; J = (a) then p = ra for some r E R. But p 
is prime and hence irreducible, so either r or a is a unit. If r is a unit then 
(P) = (a), i.e., I = J. If a is a unit then J = R. Thus I is maximal. D 

(5.9) Definition. Let R be a ring. We say that R satisfies the ascending 
chain condition (ACe) on ideals if for any chain 

h <:;;;h <:;;;I3 <:;;; .•• 

of ideals of R there is an n such that Ik = In for all k ~ n, i.e., the chain 
is eventually constant. A ring that satisfies the ascending chain condition 
is said to be Noetherian. 

The following characterization of Noetherian rings uses the concept of 
maximal element in a partially ordered set. Recall what this means (see the 
appendix). If X is a partially ordered set (e.g., X <:;;; P(Y) where the partial 
order is set inclusion), then a maximal element of X is an element m E X 
such that if m ::; x for some x EX, then m = x. That is, a element m E X 
is maximal if there is no element strictly larger than m in the partial order 
of X. For example, if 

X = {(2), (3), (12)} 

is a set consisting of the given ideals of the ring Z with the partial order 
being inclusion of sets, then both (2) and (3) are maximal elements of X. 

(5.10) Proposition. Let R be a ring. The following conditions on R are 
equivalent. 

(1) R is Noetherian. 
(2) Every ideal of R is finitely generated. 
(3) Every nonempty subset of ideals of R has a maximal element. 

In particular, a PID is Noetherian. 

Proof. (1) =:} (3) Suppose that S = {IoJaEA is a nonempty set of ideals of 
R that does not have a maximal element. 
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Then choose h E 5. Since 5 does not have a maximal element, there is 
an element 12 E 5 such that h ~ 12. Similarly, lz is not a maximal element 

so there is 13 E S such that 12 ~ 13. In this manner we can construct a 
strictly increasing chain of ideal in R, which contradicts the assumption 
that R satisfies the ACC. Therefore, 5 must contain a maximal element if 
R satisfies the ACC. 

(3) =* (2) Let I be an ideal of R and consider the family 5 of all 
finitely generated ideals of R that are contained in I. By hypothesis, there 
is a maximal element J E 5. Let a E I. Then the ideal J + (a) E 5 and it 
contains J. Since J is maximal in 5, it follows that J = J + (a), i.e., a E J. 
Therefore, I = J and I is finitely generated. 

(2) =* (1) Suppose that every ideal of R is finitely generated. Let 

be a chain of ideals of R and let I = U:=l In. Then I is an ideal of R so that 
I = (aI, ... ,am) for some ai E R. But ai E 1= U:=l In for 1 ::; i ::; m so 
ai E In, for some ni. Since we have a chain of ideals, it follows that there 
is an n such that ai E In for all i. Thus, for any k ~ n there is an inclusion 

so that h = I = In for all k ~ nand R satisfies the ACC on ideals. 0 

(5.11) Remark. In light of Definition 5.9 and Proposition 5.lD, the Hilbert 
basis theorem (Theorem 4.14) and its corollary (Corollary 4.15) are often 
stated: 

If R is a commutative Noetherian ring, then the polynomial ring 
R[Xl' ... ,XnJ is also a commutative Noetherian ring. 

(5.12) Theorem. (Fundamental theorem of arithmetic) Let R be a PID. 
Then any nonzero a E R can be written as a = UPI ... Pn where u is a unit 
and each Pi is a prime. Moreover, this factorization is essentially unique. 
That is, if a = vql ... qm where v is a unit and each qi is a prime, then 
m = n and for some permutation (J E Sn, qi is an associate of PU(i) for 
1 ::; i ::; n. 

Proof. We first prove existence of the factorization. Let a i= a E R. Then 
if a is a unit we are done and if a is a prime we are done. Otherwise write 
a = albl where neither al nor bl is a unit. (Recall that in a PID, prime 
and irreducible elements are the same.) Thus (a) ~ (b l ). If bl is a prime, 
stop. Otherwise, write bl = a2b2 with neither a2 nor b2 a unit. Continue in 
this way to get a chain 
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By the ascending chain condition, this must stop at some (bn ). Therefore 
bn is a prime and we conclude that every a¥-O E R that is not a unit is 
divisible by some prime. 

Therefore, if a¥-O is not a unit, write a = P1Cl where Pl is a prime. 
Thus (a) ~ (Cl). If Cl is a unit, stop. Otherwise, write Cl = P2C2 with P2 

a prime so that (Cl) ~ (C2). Continue in this fashion to obtain a chain of 
ideals 

(a) ~ (Cl) ~ (C2) ~ .... 
By the ACC this must stop at some Cn , and by the construction it follows 
that this Cn = U is a unit. Therefore, 

a = P1Cl = P1P2C2 = ... = P1P2··· PnU 

so that a is factored into a finite product of primes times a unit. 
Now consider uniqueness of the factorization. Suppose that 

a = POPl ... Pn = qOql ... qm 

where Pl, ... ,Pn, ql, ... ,qm are primes while Po and qo are units of R. We 
will use induction on k = mini m, n}. If n = 0 then a is a unit, so a = qo and 
hence m = o. Also m = 0 implies n = o. Thus the result is true for k = O. 
Suppose that k > 0 and suppose that the result is true for all elements 
b E R that have a factorization with fewer than k prime elements. Then 
Pn I qOql ... qm, so Pn divides some qi since Pn is a prime element. After 
reordering, if necessary, we can assume that Pn I qm. But qm is prime, so 
qm = PnC implies that C is a unit. Thus, Pn and qm are associates. Let 

a' = a/Pn = POPl ... Pn-l = (qOC)ql ... qm-l· 

Then a' has a factorization with fewer than k prime factors, so the induction 
hypothesis implies that n - 1 = m - 1 and qi is an associate of PCT(i) for 
some a E Sn-l, and the argument is complete. 0 

(5.13) Corollary. Let R be a PID and let a¥-O E R. Then 

where Pl1 ... ,Pk are distinct primes and u is a unit. The factorization is 
essentially unique. 

Proof. o 

(5.14) Remark. Note that the proof of Theorem 5.12 actually shows that if 
R is any commutative Noetherian ring, then every nonzero element a E R 
has a factorization into irreducible elements, i.e., any a E R can be factored 
as a = UPl ... Pn where u is a unit of Rand Pl, ... ,Pn are irreducible (not 
prime) elements, but this factorization is not necessarily unique; however, 
this is not a particularly useful result. 
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For non-Noetherian rings we do not even have the factorization into 
irreducible elements. Examples 5.15 (4) and (5) are examples. 

(5.15) Examples. 

(1) In F[X2, X3] there are two different factorizations of X6 into irre
ducible elements, namely, (X2)3 = X 6 = (X3)2. 

(2) In Z[Al there is a factorization 

4 = 2· 2 = (1 + /=3)(1 - /=3) 

into two essentially different products of irreducibles. 
(3) If F is a field and p(X) E F[X] is an irreducible polynomial, then 

p(X) is prime since F[X] is a PID. Thus the ideal (P(X») is maximal 
according to Corollary 5.8. Hence the quotient ring F[X]/(P(X») is 
a field. If p E Z is a prime number let F p denote the field Zp. Then 
F2[X]/(X2+X +1) is a field with 4 elements, F3[X]/(X2+1) is a field 
with 9 elements, while F 2 [X]/ (X3 + X + 1) is a field with 8 elements. 
In fact, one can construct for any prime p E Z and n ~ 1 a field F q 

with q = pn elements by producing an irreducible polynomial of degree 
n in the polynomial ring Fp[X]. (It turns out that Fq is unique up to 
isomorphism, but the proof of this requires Galois theory, which we do 
not treat here.) 

(4) Let H(C) be the ring of complex analytic functions on the entire com
plex plane. (Consult any textbook on complex analysis for verification 
of the basic properties of the ring H(C).) The units of H(C) are pre
cisely the complex analytic functions J : C --t C such that J{z) =f. 0 
for all z E C. Furthermore, if a E C then the function z - a divides 
J{z) E H(C) if and only if J(a) = O. From this it is easy to see (exer
cise) that the irreducible elements of H{C) are precisely the functions 
(z - a)J{z) where J(z) =f. 0 for all z E C. Thus, a complex analytic 
function g{z) can be written as a finite product of irreducible elements 
if and only if 9 has only finitely many zeros. Therefore, the complex 
analytic function sin{z) cannot be written as a finite product of irre
ducible elements in the ring H{C). (Incidentally, according to Remark 
5.14, this shows that the ring H(C) is not Noetherian.) 

(5) LetR be the subring of Q[X] consisting of all polynomials whose con
stant term is an integer, Le., 

R = {f(X) = ao + a1X + ... + anxn E Q[X] : ao E Z} . 

The units of R are the constant polynomials ±1. Note that for any 
nonzero integer k, there is a factorization X = k(X/k) E R, and neither 
factor is a unit of R. This readily implies that X does not have a 
factorization into irreducibles. (Again, Remark 5.14 implies that R is 
not Noetherian, but this is easy to see directly: 
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(X) ~ (X/2) ~ (X/4) ~ (X/B) ~ ... 

is an infinite ascending chain.) 

Both of the examples of PIDs that we currently have available, namely, 
Z and F[X] for F a field, actually have more structure than just that 
of a PID. Specifically, both Z and F[X] have a measure of the size of 
elements, Inl for n E Z and deg(p(X» for p(X) E F[X], together with a 
division algorithm, which allows one to divide one element by another with 
a remainder "smaller" than the divisor. In fact the division algorithm was 
precisely what was needed to prove that Z and F[X] are principal ideal 
domains. We formalize this property of Z and F[X] with the following 
definition. 

(5.16) Definition. An integml domain R is a Euclidean domain if there is a 
function v : R \ {O} ---+ Z+ = N U {O} such that 

(1) for all a, bE R \ {O}, v(a) ::; v(ab); and 
(2) given a, bE R with a =f. 0, there are q, r E R with b = aq + r such that 

r = 0 or vCr) < v(a). 

(5.17) Examples. 

(1) Z together with v(n) = Inl is a Euclidean domain. 
(2) If F is a field, then F[X] together with v(p(X» = deg(p(X» is a 

Euclidean domain (Theorem 4.4). 

(5.18) Lemma. If R is a Euclidean domain and a E R\{O}, then v(l) ::; v(a). 
Furthermore, vel) = v(a) if and only if a is a unit. 

Proof. First note that vel) ::; vel· a) = v(a). If a is a unit, let ab = 1. Then 
v(a) ::; v(ab) = v(l), so vel) = v(a). Conversely, suppose that vel) = v(a) 
and divide 1 by a. Thus, 1 = aq+r where r = 0 or vCr) < v(a) = vel). But 
v(l) ::; vCr) for any r =f. 0, so the latter possibility cannot occur. Therefore, 
r = 0 so 1 = aq and a is a unit. 0 

(5.19) Theorem. Let R be a Euclidean domain. Then R is a PID. 

Proof. Let I ~ R be a nonzero ideal and let 

S = {v(a): a E 1\ {O}} ~ z+. 

This set has a smallest element no. Choose a E I with v(a) = no. We claim 
that 1= Ra. Since a E I, it is certainly true that Ra ~ I. Now let bEl. 
Then b = aq+r for q, r E R with r = 0 or vCr) < v(a). But r = b- aq E I, 
so v(a) ::; vCr) if r =f. O. Therefore, we must have r = 0 so that b = aq ERa. 
Hence, I = Ra is principal. 0 
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In a Euclidean domain R the classical Euclidean algorithm for finding 
the gcd of two integers works for finding the gcd of two elemen".;; of R. This 
algorithm is the following. Given aI, a2 E R \ {O} write 

al = a2qI + a3 

a2 = a3q2 + a4 

a3 = a4q3 + a5 

with a3 = 0 or v(a3) < v(a2) 

with a4 = 0 or v(a4) < v(a3) 

with a5 = 0 or v(a5) < v(a4) 

Since v(a2) > v(a3) > v(a4) > ... , this process must terminate after a finite 
number of steps, i.e., an+1 = 0 for some n. For this n we have 

Claim. an = gcd{al,a2}. 

Proof. If a, b E R then denote the gcd of {a, b} by the symbol (a, b). The
orem 5.5 shows that the gcd of {a, b} is a generator of the ideal generated 
by {a, b}. 

Now we claim that (ai, ai+l) = (ai+I' ai+2) for 1 :S: i :S: n - 1. Since 
ai = ai+Iqi + ai+2, it follows that 

xai + yai+1 = x(ai+lqi + ai+2) + yai+1 

= (Xqi + y)ai+1 + xai+2· 

rai+1 + sai+2 = rai+1 + s(ai - ai+Iqi) 

= sai + (r - qi)ai+1 

so that (ai+I' ai+2) ~ (ai, ai+I). Hence, (ai, ai+l) = (ai+1, ai+2), and we 
conclude 

But (an-I, an) = an since an I an-I, and the claim is proved. o 

This result gives an algorithmic procedure for computing the gcd of two 
elements in a Euclidean domain. By reversing the sequence of steps used to 
compute d = (a, b) one can arrive at an explicit expression d = ra + sb for 
the gcd of a and b. We illustrate with some examples. 

(5.20) Examples. 

(1) We use the Euclidean algorithm to compute (1254, 1110) and write it 
as r1254 + sl110. Using successive divisions we get 
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1254 = 1110· 1 + 144 

1110 = 144·7 + 102 

144 = 102 . 1 + 42 

102 = 42·2 + 18 

42 = 18·2 + 6 

18 = 6·3 + o. 

Thus, (1254, 1110) = 6. Working backward by substituting into suc
cessive remainders, we obtain 

6 = 42 -18·2 

= 42 - (102 - 42·2) ·2 = 5·42 - 2·102 

= 5· (144 - 102·1) - 2 . 102 = 5 . 144 - 7·102 

= 5· 144 - 7· (1110 - 7 . 144) = 54· 144 - 7· 1110 

= 54· (1254 - 1110·1) - 7·1110 

= 54 . 1254 - 61 . 1110. 

(2) Let f(X) = X 2 - X + 1 and g(X) = X3 + 2X2 + 2 E Z3[X], Then 

g(X) = Xf(X) + 2X + 2 

and 

f(X) = (2X + 2)2. 

Thus, U(X), g(X» = (2X + 2) = (X + 1) and X + 1 = 2g(X) -
2Xf(X). 

(3) We now give an example of how to solve a system of congruences in a 
Euclidean domain by using the Euclidean algorithm. The reader should 
refer back to the proof of the Chinese remainder theorem (Theorem 
2.24) for the logic of our argument. 
Consider the following system of congruences (in Z): 

x == -1 (mod 15) 

x == 3 (mod 11) 

x == 6 (mod 8). 

We apply the Euclidean algorithm to the pair (88, 15): 

88 = 15·5 + 13 

15 = 13·1 + 2 

13 = 2·6 + 1 

2 = 1· 2. 

Now we substitute backward to obtain 
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1 = 13 - 2·6 

= 13 - (15 - 13·1) ·6= -15·6 + 13·7 

= -15 . 6 + (88 - 15 . 5) . 7 = 88 . 7 - 15 . 41 

= 616 - 15 . 41, 

so 616 == 1 (mod 15) and 616 == 0 (mod 88). Similarly, by applying the 
Euclidean algorithm to the pair (120, 11), we obtain that -120 == 1 
(mod 11) and -120 == 0 (mod 120), and by applying it to the pair 
(165, 8), we obtain -495 == 1 (mod 8) and -495 == 0 (mod 165). Then 
our solution is 

x == -1 . (616) + 3· (-120) + 6· (-495) = -3946 (mod 1320) 

or, more simply, 
x == 14 (mod 1320). 

We will now give some examples of Euclidean domains other than Z 
and F[X]. If d =1= 0,1 E Z is square-free, we let Z[Jd] = {a+b01 : a, bE Z}. 
Then Z [Jd] is a subring of the field of complex numbers C and the quotient 
field of Z [Jd] is the quadratic field 

Q[Jd] = {a + bVd: a, bE Q}. 

(5.21) Proposition. lid E {-2, -1, 2, 3} then the ring Z[Jd] is a Euclidean 
domain with v(a + b01) = la2 - db2 1. 

Proof. Note that v(a + b01) = la2 - db2 1 2: 1 unless a = b = O. It is a 
straightforward calculation to check that v(of3) = v(o)v(f3) for every 0, 

f3 E Z[Jd]. Then 
v(of3) = v(o)v(f3) 2: v(o), 

so part (1) of Definition 5.16 is satisfied. 
Now suppose that 0, f3 E Z[Jd] with f3 =1= O. Then in the quotient field 

of Z[Jd] we may write 0/ f3 = x + yVd where x, y E Q. Since any rational 
number is between two consecutive integers and within 1/2 of the nearest 
integer, it follows that there are integers r, s E Z such that Ix - rl $ 1/2 
and Iy - sl $ 1/2. Let 'Y = r + 801 and 8 = f3«x - r) + (y - 8)01). Then 

0= f3(x + YVd) = f3'Y + 8. 

Since r, 8 E Z, it follows that 'Y E Z[Jd] and 8 = 0 - f3'Y E Z[Jd] also. 
Then 

But 

v(8) = v(f3)v«x - r) + (y - s)Vd) 

= v(f3)I(x - r)2 - d(y - 8)21. 
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I(x - r)2 - d(y - s)21 ::; Ix - rl2 + Idlly - sl2 

::; (1/2)2 + 3(1/2)2 = 1. 

The only possibility for equality is when Ix - rl = Iy - sl = 1/2 and d = 3. 
But in this case 

I(x - r)2 - d(y - s)21 = 11/4 - 3/41 = 1/2 < 1. 

Therefore, we always have I(x - r? - d(y - s)21 < 1 and we conclude that 
v(8) < v(f3). Hence Z[Vd] is a Euclidean domain. 0 

Complementary to Proposition 5.21, we have the following result: 

(5.22) Proposition. If d < 0 then Z[Vd] is a PID if and only if d = -lor 
d= -2. 

Proof. If d = -lor d = -2 then by Proposition 5.21, Z[Vd] is a Euclidean 
domain and hence a PID. For the converse we need the following lemma. 

(5.23) Lemma. 2 is not a prime in Z[Vd]. 

Proof. Either d or d - 1 is even so that 2 1 d( d - 1). But 

d( d - 1) = d2 - d = (d + vd)( d - vd), 

so 2 1 (d+ Vd)(d - Vd) but neither (d+ Vd)/2 nor (d- Vd)/2 are in Z[Vd]. 
Thus 2 divides the product of two numbers, but it divides neither of the 
numbers individually, so 2 is not a prime element in the ring Z[Jd]. 0 

We now return to the proof of Proposition 5.22. We will show that if 
d ::; -3 then 2 is an irreducible element of Z[ Vd]. Since in a PID, irreducible 
and prime are the same concept (Corollary 5.7), it will follow that Z[Vd] 
cannot be a PID because Lemma 5.23 shows that 2 is not a prime in Z[ Vd]. 

Suppose 2 = a(J for a,(J E Z[v'd] with a and (J not units. Then we 
must have v(a) > 1 and v(f3) > 1. Therefore, 

4 = v(2) = v(a)v((J), 

and since v(a), v((J) EN it follows that v(a) = v(f3) = 2. Thus if 2 is not 
irreducible in Z[Vd] there is a number a = a + bVd E Z[Vd] such that 

v(a) = a2 - db2 = ±2. 

But if d ::; -3 and b =1= 0 then 

a2 - db2 = a2 + (-d)b2 2:: 0 + 3 . 1 > ±2, 

while if b = 0 then 
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when a E Z. Hence, if d:S: -3 there is no number a E Z[v'd] with v(a) = 2, 
and we conclude that 2 is irreducible in Z[v'd]. Therefore, Pro}.-.)sition 5.22 
is proved. 0 

(5.24) Remarks. 

(1) A complex number is algebraic if it is a root of a polynomial with 
integer coefficients, and a subfield F ~ C is said to be algebraic if 
every element of F is algebraic. If F is algebraic, the integers of F are 
those elements of F that are roots of a monic polynomial with integer 
coefficients. In the quadratic field F = Q [Al, every element of the 
ring Z[Al is an integer of F, but it is not true, as one might expect, 
that Z[Al is all of the integers of F. In fact, the following can be 
shown: Let d =f. 0, 1 be a square-free integer. Then the ring of integers 
of the field Q [Jd] is 

{ 
Z[v'd] 

Z [1±2v'd] 
if 

if 

d == 2, 3 (mod 4), 

d == 1 (mod 4). 

In particular, the ring of integers of the field Q[Al is the ring 

{ ( -1+;=3) } R = a + b 2 : a, b E Z . 

We leave it as an exercise for the reader to prove that R is in fact a 
Euclidean domain. (Compare with Proposition 5.22.) 

(2) So far all the examples we have seen of principal ideal domains have 
been Euclidean domains. Let 

R = {a + b (1 + ~) : a, b E Z} 
be the ring of integers of the quadratic field Q[J-19]. Then it can 
be shown that R is a principal ideal domain but R is not a Euclidean 
domain. The details of the verification are tedious but not particularly 
difficult. The interested reader is referred to the article A principal 
ideal ring that is not a Euclidean ring by J.C. Wilson, Math. Magazine 
(1973), pp. 34-38. For more on factorization in the rings of integers 
of quadratic number fields, see chapter XV of Theory of Numbers by 
G. H. Hardy and E. M. Wright (Oxford University Press, 1960). 
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2.6 Unique Factorization Domains 

We have seen in Section 2.5 that the fundamental theorem of arithmetic 
holds for any PID. There are, however, rings that are not PIDs for which 
the fundamental theorem of arithmetic holds. In this section we will give a 
result that allows for the construction of such rings. 

(6.1) Definition. An integral domain R is a unique factorization domain 
(UFD) if every nonzero element a of R can be written essentially uniquely 
as a = UPl ... Pr where u is a unit and each Pi is an irreducible element of 
R. Essentially uniquely means that if a = vql ... qs where v is a unit and 
each qj is irreducible, then r = s and, after reordering (if necessary), qi is 
an associate of Pi. By collecting associate primes together, we may write 
(essentially uniquely) 

a = U1P'{'1 ... p'('t 

where Pi is not an associate of Pj if i i=- j. This is called the prime factor
ization of a and the primes Pi are called the prime factors or prime divisors 
ofa. 

(6.2) Lemma. Let R be a UFD. 

(1) A n element a E R is irreducible if and only if it is prime. 
(2) Any nonempty set of nonzero elments of R has a greatest common 

divisor. 

Proof. (1) Suppose a E R is irreducible and a I be. Thus ad = bc for some 
d E R. Writing b, c, and d as a product of units and irreducible elements 
gives 

auldl ... dr = U2 bl ... bsU3Cl ... Ct 

where each bi , Cj, and dk is irreducible and each Ui is a unit. By uniqueness 
of factorization of bc, it follows that the irreducible element a is an associate 
of some bi or Cj and, hence, a I b or a I c. 

(2) We prove this in the case that the set in question is {a, b} consisting 
of two elements and leave the general case for the reader. Let Pl,.· . ,Pr 
denote all the primes that are a prime factor of either a or b. Then we may 
Nrite 

and 

where 0 ~ mi and 0 ~ ni for each i. Let k i = min{mi,ni} for 1 ~ i ~ r 
and let 

d = p~l . .. p~r. 

We claim that d is a gcd of a and b. It is clear that d I a and d I b, so let e 
be any other common divisor of a and b. Since e I a, we may write a = ec 
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for some c E R. Taking prime factorizations of e, a, and c and applying 
the unique factorization assumption, we conclude that any pri.ne factor of 
e must also be a prime factor of a and the power of the prime that divides 
e can be no more than the power that divides a. Thus, since e also divides 
b, we may write 

where fi :$ min{mi, nil = k i . Therefore, every prime factor of e is also a 
prime factor of d and the power of the prime factor dividing e is at most 
that which divides d. Thus e I d and d is a gcd of a and b. 0 

Our goal is to prove that if R is a UFD then the polynomial ring R[X] 
is also a UFD. This will require some preliminaries. 

(6.3) Definition. Let R be a UFD and let f(X) =I- 0 E R[X]. A gcd of the 
coefficients of f(X) is called the content of f(X) and is denoted cont(J(X». 
The polynomial f(X) is said to be primitive if cont(J(X» = 1. 

Note that the content of f(X) is only uniquely defined up to multipli
cation by a unit of R. If f(X) is a nonzero polynomial then we can write 
f(X) = c!I (X) where !I (X) is primitive and c is the content of f(X). 

(6.4) Lemma. (Gauss's lemma) Let R be a UFD and let f(X), g(X) be 
nonzero polynomials in R[X]. Then 

cont(J(X)g(X» = cont(J(X» cont(g(X». 

In particular, if f(X) and g(X) are primitive, then the product f(X)g(X) 
is primitive. 

Proof. Write f(X) = cont(J(X»!I(X) and g(X) = cont(g(X»g1(X) 
where !I (X) and g1(X) are primitive polynomials. Then 

f(X)g(X) = cont(J(X» cont(g(X»!I(X)g1(X), 

so it is sufficient to check that !I(X)g1(X) is primitive. Now let 

!I(X) = ao + a1X + ... + amxm 

and 

and suppose that the coefficients of !I (X)g1 (X) have a common divisor d 
other than a unit. Let p be a prime divisor of d. Then p must divide all of 
the coefficients of !I (X)g1 (X), but since !I (X) and g1 (X) are primitive, 
p does not divide all the coefficients of !I (X) nor all of the coefficients of 
g1(X). Let ar be the first coefficient of !I(X) not divisible by p and let b. 
be the first coefficient of g1 (X) not divisible by p. Consider the coefficient 
of xr+. in !I (X)gl (X). This coefficient is of the form 
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By hypothesis p divides this sum and all the terms in the first parenthesis 
are divisible by p (because p I bj for j < s) and all the terms in the second 
parenthesis are divisible by p (because pi ai for i < r). Hence p I arbs and 
since p is prime we must have pi ar or pi bs, contrary to our choice of ar 

and bs . This contradiction shows that no prime divides all the coefficients 
of h(X)gl(X), and hence, h(X)gl(X) is primitive. 0 

(6.5) Lemma. Let R be a UFD with quotient field F. If f(X) =f. 0 E F[X], 
then f(X) = ah (X) where a E F and h (X) is a primitive polynomial in 
R[X]. This factorization is unique up to multiplication by a unit of R. 

Proof. By extracting a common denominator d from the nonzero coefficients 
of f(X), we may write f(X) = (lld)J(X) where J(X) E R[X]. Then let 
a = cont(J(X))ld = cld E F. It follows that f(X) = ah(X) where h(X) 
is a primitive polynomial. Now consider uniqueness. Suppose that we can 
also write f(X) = f3h(X) where h(X) is a primitive polynomial in R[X] 
and f3 = alb E F. Then we conclude that 

(6.1) adh(X) = cbh (X). 

The content of the left side is ad and the content of the right side is cb, so 
ad = ucb where u E R is a unit. Substituting this in Equation (6.1) and 
dividing by cb gives 

uh(X) = h(X). 

Thus the two polynomials differ by multiplication by the unit u E R and 
the coefficients satisfy the same relationship f3 = alb = u(cld) = ua. 0 

(6.6) Lemma. Suppose R is a UFD with quotient field F. If f(X) E R[X] 
has positive degree and is irreducible in R[X], then f(X) is irreducible in 
F[X]. 

Proof. If f(X) E R[X] has positive degree and is irreducible in R[X] then 
J(X) is primitive since cont(j(X)) I f(X) in R[X]. Suppose that f(X) 
is reducible in F[X]. Thus f(X) = 91(X)92(X) where gi(X) E F[X] and 
deggi(X) > 0 for i = 1 and 2. Then gi(X) = adi(X) where ai E F and 
fi(X) E R[X] is primitive. Thus, 

and the product h(X)h(X) is primitive by Gauss's lemma. Thus, by 
Lemma 6.5, f(X) and h(X)h(X) differ by multiplication by a unit of 
R, which contradicts the irreducibility of f(X) in R[X]. Thus, we conclude 
that f(X) is irreducible in F[X]. 0 



2.6 Unique Factorization Domains 95 

(6.7) Corollary. Let R be a UFD with quotient field F. Then the irreducible 
elements of R[X] are the irreducible elements of R and the primitive poly
nomials f(X) E R[X] which are irreducible in F[X]. 

Proof o 

(6.8) Theorem. If R is a UFD, then R[X] is also a UFD. 

Proof Let F be the quotient field of R and let f(X) i- 0 E R[X]. Since 
F[X] is a UFD, we can write 

f(X) = PI (X) ... Pr(X) 

where Pi(X) E F[X] is an irreducible polynomial for 1 $ i $ r. By Lemma 
6.5, Pi(X) = aiqi(X) where ai E F and qi(X) E R[X] is a primitive 
polynomial. Thus, we have 

f(X) = Cql (X) ... qr(X) 

where c = al'" a r E F. Write c = alb where a, b E R. Then taking 
contents we get 

cont(bf(X)) = cont(aql(X)" ·qr(X)) = a 

by Gauss's lemma. Thus, bcont(J(X)) = a, so b I a and cont(J(X)) = c E 

R. Each qi(X) is irreducible in F[X], and hence, it is irreducible in R[X]. 
Since R is a UFD, write c = udl ... ds where each di is prime in R and 
u E R is a unit. Thus we have a factorization 

of f(X) into a product of irreducible elements of R[X]. 
It remains to check uniqueness. Thus suppose we also have a factor

ization 

f(X) = vbl ... btq~ (X) ... q~(X) 

where each qHX) is a primitive polynomial in R[X] and each bi is an irre
ducible element of R. By Corollary 6.7, this is what any factorization into 
irreducible elements of R[X] must look like. Since this also gives a factor
ization in F[X] and factorization there is unique, it follows that r = k and 
qi(X) is an associate of q~(X) in F[X] (after reordering if necessary). But 
if primitive polynomials are associates in F[X], then they are associates in 
R[X] (Lemma 6.5). Furthermore, 

cont(J(X)) = vb l '" bt = ud l '" ds, 

so s = t and bi is an associate of di (after reordering if necessary) since R 
is a UFD. This completes the proof. 0 
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(6.9) Corollary. Let R be a UFD. Then R[X1' ... ,Xn ] is also a UFD. In 
particular, F[Xb ... ,Xn ] is a UFD for any field F. 

Proof. Exercise. o 

(6.10) Example. We have seen some examples in Section 2.5 of rings that 
are not UFDs, namely, F[X2, X 3 ] and some of the quadratic rings (see 
Proposition 5.22 and Lemma 5.23). We wish to present one more example 
of a Noetherian function ring that is not a UFD. Let 

be the unit circle in R2 and let I ~ R[X, Y] be the set of all polynomials 
such that f(x,y) = ° for all (x,y) E 8 1. Then I is a prime ideal ofR[X, Y] 
and R[X, Yl/ I can be viewed as a ring of functions on 8 1 by means of 

f(X, Y) + I r-> I 

where I(x,y) = f(x,y). We leave it for the reader to check that this is 
well defined. Let T be the set of all f(X, Y) + I E R[X, Y]/ I such that 
I(x, y) =1= ° for all (x, y) E 8 1. Then let the ring R be defined by localizing 
at the multiplicatively closed set T, i.e., 

R = (R[X, Yl/ I)T . 

Thus, R is a ring of functions on the unit circle, and a function in R is a 
unit if and only if the function never vanishes on 8 1. 

Claim. R is not a UFD. 

Proof. Let g(x, y) = x2 + (y - 1)2 and hex, y) = x2 + (y + 1)2 E R. Then 

gh(x, y) = (x2 + (y - 1)2)(x2 + (y + 1)2) 

= X4 + x2«y _ 1)2 + (y + 1)2) + (y2 _ 1)2 

= X4 + x 2 «y _ 1)2 + (y + 1)2) + x4 

so that x divides gh in R, but clearly x does not divide either 9 or h 
(since neither 9 nor h is zero at both (0,1) and (0, -1) E 8 1 , but x is). 
Therefore the ideal (x) ~ R is not prime. The proofis completed by showing 
that x is an irreducible element of the ring R. To see this suppose that 
x = !1h where neither is a unit. Then we must have V(h) = {(O, I)} and 
V(h) = {(O, -I)} (or vice versa), where V(g) means the set of zeros of the 
function g. Since hand h are continuous functions, it follows that h does 
not change sign on 8 1 \{(0, I)} and h does not change sign on 8 1 \{(0, -I)}. 
Therefore, x = hh will not change sign on the set 8 1 \ {(O, 1), (0, -I)}, 
and this contradiction shows that x must be an irreducible element of R. 

o 
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In general, the problem of explicitly determining if a polynomial in 
R[X] is irreducible is difficult. For polynomials in Z[X] (and hence in Q[X]) 
there is a procedure due to Kronecker that in principle can determine the 
factors of an integral polynomial in a finite number of steps. For this method 
see, for example, Modern Algebra by B.L. van der Waerden, Vol. I, p. 77. We 
shall content ourselves with the following simple criterion for irreducibility, 
which is sometimes of use. An example of its use will be in Corollary 6.12. 

(6.11) Theorem. (Eisenstein's criterion) Let R be a UFD with quotient field 
F. Let f(X) = ao + a1X + ... + anxn (an =f. 0) be in R[X] and suppose 
that pER is a prime such that 

p does not divide an, 

p I ai for 0 $ i $ n - 1, 

p2 does not divide ao. 

Then f(X) is irreducible in F[X]. 

Proof. If we write f(X) = cont (f (X) )It (X) then It (X) is a primitive poly
nomial that also satisfies the hypotheses of the theorem. Thus without loss 
of generality we may suppose that f(X) is a primitive polynomial. If there 
exists a factorization of f(X) into factors of degree;::: 1 in F[X] then by 
Lemma 6.6 there is also a factorization in R[X]. Thus, suppose that we can 
write f(X) = g(X)h(X) where g(X), heX) E R[X]. From Gauss's lemma 
we must have that g(X) and heX) are primitive polynomials. Suppose 

g(X) = bo + b1X + ... + blXl 

heX) = Co + c1X + ... + CmXm 

with i, m ;::: 1, blCm =f. 0, and i + m = n. Since p I ao = boCo but p2 does 
not divide ao, it follows that p I bo or p I Co but not both. To be specific, 
suppose that pi bo but that p does not divide Co. Not all the coefficients of 
g(X) are divisible by p since g(X) is primitive. Let bi be the first coefficient 
of g(X) that is not divisible by p so that 0 < i $ i < n. Then we have 

But P I ai and p I bj for j < i, so p I biCo. But p does not divide bi and 
p does not divide Co, so we have a contradiction. Therefore, we may not 
write f(X) = g(X)h(X) with deg g(X) 2: 1, deg heX) 2: 1, i.e., f(X) is 
irreducible in F[X]. 0 

The following is a useful consequence of Eisenstein's criterion: 

(6.12) Corollary. Let p be a prime number and let fp(X) E Q[X] be the 
polynomial 
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XP-l 
fp(X) = Xp-l +Xp-2 + ... +X + 1 = --. 

X-I 

Then fp(X) is irreducible. 

Proof. Since the map g(X) ~ g(X + 1) is a ring isomorphism of Q[X], it 
is sufficient to verify that fp(X + 1) is irreducible. But p (by Exercise 1) 
divides every binomial coefficient (~) for 1 :::; k < p, and hence, 

(X + I)P-l 
fp(X + 1) = = Xp-l + pXp-2 + ... + p. 

(X + 1)-1 

Thus, fp(X + 1) satisfies Eisenstein's criterion, and the proof is complete. 
D 

2.7 Exercises 

1. 

2. 

3. 

4. 

5. 

Prove the binomial theorem (Proposition 1.12). Give a counterexample if 
a and b do not commute. If p is a prime number, prove that the binomial 
coefficient (~) is divisible by p for 0 < k < p. Give an example to show that 
this result need not be true if p is not prime. 
Let R be a ring with identity and let a E R. The element a is said to be 
nilpotent if an = 0 for some n E N. It is said to be idempotent if a2 = a. 
Prove the following assertions. 
(a) If R has no zero divisors, then the only nilpotent element of R is 0 and 

the only idempotent elements of R are 0 and 1. 
(b) No unit of R is nilpotent. The only idempotent unit of R is 1. 
(c) If a is nilpotent, then 1 - a is a unit. (Hint: Geometric series.) If a is 

idempotent, then 1 - a is idempotent. 
(d) If R is commutative and N = {a E R : a is nilpotent}, show that N is 

an ideal of R. 
(e) Provide a counterexample to part (d) if R is not commutative. 

(Note that in parts (b)-(e), the ring R is allowed to have zero divisors.) 
For the ring P(X) of Example 1.10 (7), show that every A E P(X) satisfies 
the equation A2 = A. If P(X) is an integral domain, show that IXI = 1. 
Continuing with the ring P(X), let a E X and define fa = {A E P(X) : 
a rt A}. Prove that fa is a maximal ideal of P(X). What is P(X)/ fa? For a 
finite set X determine all of the ideals of P(X) and show that every maximal 
ideal is an ideal fa for some a EX. 
Prove Lemma 2.12 (1) and (3). 

6. Let R be a ring with identity. Show that R is a division ring if and only if it 
has no left or right ideals other than {O} and R. 

7. 

8. 

9. 

(a) Solve the equation 6x = 7 in the ring Z19, if possible. 
(b) Solve the equation 6x = 7 in the ring Z20, if possible. 
If Rand S are rings with identities, prove that (R x S)* = R* x S*. (Recall 
that R* denotes the group of units of the ring R.) 
Compute all the ideals, prime ideals, and maximal ideals of the ring Z60. 
What are the nilpotent elements of Z60? 
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10. Let R be a ring and let ROP ("op" for opposite) be the abelian group R, 
together with a new multiplication a . b defined by a . b = ba, where ba 
denotes the given multiplication on R. Verify that ~P is a ring and that the 
identity function 1R : R -> ~P is a ring homomorphism if and only if R is 
a commutative ring. 

11. (a) Let A be an abelian group. Show that End(A) is a ring. (End(A) is 
defined in Example 1.10 (11).) 

(b) Let F be a field and V an F-vector space. Show that EndF(V) is a ring. 
Here, EndF(V) denotes the set of all F-linear endomorphisms of V, i.e., 

EndF(V) = {h E End(V) : h(av) = ah(v) for all v E V, a E F}. 

In this definition, End(V) means the abelian group endomorphisms of V, 
and the ring structure is the same as that of End(V) in part (a). 

12. (a) Let R be a ring without zero divisors. Show that if ab = 1 then ba = 1 
as well. Thus, a and b are units of R. 

(b) Show that if a, b, c E R with ab = 1 and ca = 1, then b = c, and thus 
a (and b) are units. Conclude that if ab = 1 but ba of- 1, then neither a 
nor b are units. 

(c) Let F be a field and F[X] the polynomial ring with coefficients from 
F. F[Xl is an F-vector space in a natural way, so by Exercise 11, R = 
EndF(F[X]) is a ring. Give an example of a, b E R with ab = 1 but 
ba of- 1. 

13. (a) Let x and y be arbitrary positive real numbers. Show that the quaternion 
algebras Q(-x, -y;R) and Q(-l, -l;R) are isomorphic. 

(b) Show that the quaternion algebras Q( -1, -3; Q), Q( -1, -7; Q), and 
Q( -1, -11; Q) are all distinct. 

(c) Analogously to Example 1.10 (10), we may define indefinite quaternion 
algebras by allowing x or y to be negative. Show that, for any nonzero 
real number x and any subfield F of R, Q(l, x; F) and Q(l, -x; F) are 
isomorphic. 

(d) Show that for any nonzero real number x, Q(l, x; R) and Q(l, 1; R) are 
isomorphic. 

(e) Show that for any subfield F of R, Q(I, 1; F) is isomorphic to M2(F), 
the ring of 2 x 2 matrices with coefficients in F. (Thus, Q(l, 1; F) is not 
a division ring.) 

14. Verify that Z[i]/ (3 + i) ~ ZlO. 
15. Let F be a field and let R ~ F[X] x F[Y] be the subring consisting of all 

pairs (f(X), g(Y» such that 1(0) = g(O). Verify that F[X, Yl/{XY) ~ R. 
16. Let R be a ring with identity and let J be an ideal of R. Prove that 

Mn(R/I) ~ Mn(R)/Mn(I). 

17. Let F be a field and let R = {[~~] E M 2 (F)}. Verify that R is a ring. Does 

R have an identity? Prove that the set J = { [g ~] E R} is a maximal ideal 
of R. 

18. (a) Given the complex number z = 1 + i, let ifJ : R[X] -> C be the substitu
tion homomorphism determined by z. Compute Ker(ifJ). 

(b) Give an explicit isomorphism between the complex numbers C and the 
quotient ring R[Xl/ (X2 - 2X + 2). 

19. Let R = e([o, 1]) be the ring of continuous real-valued functions on the 
interval [0,1]. Let T ~ [0,1]' and let 

J(T) = {f E R : I(x) = ° for all x E T}. 

(a) Prove that J(T) is an ideal of R. 
(b) If x E)O, It-and M", = J({x}), prove that M", is a maximal ideal of R 

and R M", = R. 
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(c) If S ~ R let 

V(S) = {x E J: /(8) = 0 for all / E S}. 

Prove that S is a closed subset of [0,1]. (You may quote appropriate 
theorems on continuous functions.) 

(d) If J ~ R is any ideal, then prove that V(J) i= 0. (Hint: Suppose that 
V(J) = 0 and construct a function / E J such that /(x) i= 0 for all 
x E [0,1]. Conclude that J = R. At some point in your argument you 
will need to use the compactness of [0,1].) 

(e) Prove that any maximal ideal M of R is M", for some x E [0,1]. 
20. Let R ~ S be commutative rings with identity and let d E R be an element 

such that the equation a2 = d is solvable in S but not in R, and let Jd 
denote a solution to the equation in S. Define a set R[Jd] by 

R[v'd] = {a + bv'd : a, bE R} ~ S. 

(a) Prove that R[Jd] is a commutative ring with identity. 
(b) Prove that Z[Jd] is an integral domain. 
(c) If F is a field, prove that F[Jd] is a field. 

21. (a) If R = Z or R = Q and d is not a square in R, show that R[Jd] ~ 
R[X]/(X2-d) where (X2-d) is the principal ideal of R[X] generated 
by X 2 - d. 

(b) If R = Z or R = Q and d1 , d2, and dI/d2 are not . squares in R \ {O}, 
show that R[Jd1 ] and R[Jd2] are not isomorphic. 
(The most desirable proof of these assertions is one which works for both 
R = Z and R = Q, but separate proofs for the two cases are acceptable.) 

(c) Let Rl = Zp[X]/(X2 - 2) and R2 = Zp[Xl!(X 2 - 3). Determine if 
Rl ~ R2 in case p = 2, p = 5, or p = 11. 

22. Recall that R* denotes the group of units of the ring R. 
(a) Show that (Z[A])* = {±1, ±A}. 
(b) If d < -1 show that (Z[JdJ)* = {±1}. 
( c) Show that 

Z [(l+A)]* = {±1 ±l+A ± -l+A} 
2 '2' 2 . 

(d) Let d> 0 E Z not be a perfect square. Show that if Z[Jd] has one unit 
other than ±1, it has infinitely many. . 

(e) It is known that the hypothesis in part (d) is always satisfied. Find a 
unit in Z[Jd] other than ±1 f~~ ~ :s: d:S: 15, d i= 4, 9. 

23. Let F ;2 Q be a field. An element a E F is said to be an algebraic integer if 
for some monic polynomial p(X) E Z[X], we have p(a) = O. Let dE Z be a 
nonsquare. 
(a) Show that if a E F is an algebraic integer, then a is a root of an irre

ducible monic polynomial p(X) E Z[X]. (Hint: Gauss's lemma.) 
(b) Verify that a + bJd E Q[Jd] is a root of the quadratic polynomial 

p(X) = X2 - 2aX + (a2 - b2 d) E Q[X]. 
(c) Determine the set of algebraic integers in the fields Q[v'3] and Q[v'5]. 

(See Remark 5.24 (1).) 
24. If R is a ring with identity, then Aut(R), called the automorphism group of 

R, denotes the set of all ring isomorphisms ¢ : R ---> R. 
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(a) Compute Aut(Z) and Aut(Q). 
(b) Compute Aut(Z[Vd]) and Aut(Q[Vd]) if d is not a square in Z or Q. 
(c) If a i= 0 E Q,b E Q let cPa.b : Q[X1 -+ Q[X] be the substitution homo-

morphism determined by X ~ aX + b. Prove that cPa.b E Aut(Q[X]). 
What is cP;;~? 

(d) If cP E Aut(Q[X]) prove that there are a i= 0, bE Q such that cP = cPa.b. 
25. Let w = exp(271"ijn) E C and let R = Q[w]. Show that Aut(R) ~ Z;. 
26. Let R be a commutative ring with identity. Prove that Mn(R[X]) ~ 

Mn(R)[X]. 
27. Let R be a commutative ring with identity and let f = ao + alX + ... + 

anxn E R[X] where an i= O. We know that if R is an integral domain 
then the units of R[X] are the units of R (Corollary 4.3). This exercise will 
investigate when f is a unit, a zero divisor, or is nilpotent when R is not 
assumed to be an integral domain. 
(a) Prove that f is a unit in R[X] if and only if ao is a unit in R and 

al, ... , an are nilpotent. (Hint: If bo + blX + ... + bmXm is the inverse 
of f, prove by induction on r that a~+1bm_r = o. Conclude that an is 
nilpotent and apply Exercise 2 (c).) 

(b) Prove that f is nilpotent if and onlr if ao, aI, ... ,an are nilpotent. 
(c) Prove that f is a zero divisor in RlX] if and only if there is a nonzero 

a E R such that af = O. (Hint: Choose a nonzero polynomial g = 
bo + blX + ... + bmxm of least degree m such that f!J. = o. If m = 0 we 
are done. Otherwise, anbm = 0 and hence ang = 0 (because (ang)f = 
an(gf) = 0 and deg(ang) < degg). Show by induction that an-rg = 0 
for (0::; r ::; n). Conclude that bmf = 0.) 

28. Factor the polynomial X2 + 3 into irreducible polynomials in each of the 
following rings. 

~b~ ~~fil: 
29. Let F = Z5 and consider the following factorization in F[X]: 

3X3 + 4X2 + 3 = (X + 2)2(3X + 2) 

= (X + 2)(X + 4)(3X + 1). 

Explain why (*) does not contradict the fact that F[X] is a UFD. 

30. For what fields Zp is X 3 + 2X2 + 2X + 4 divisible by X2 + X + I? 

31. In what fields Zp is X 2 + 1 a factor of X 3 + X2 + 22X + 15? 
32. Find the gcd of each pair of elements in the given Euclidean domain and 

express the gcd in the form ra + sb. 
(a) 189 and 301 in Z. 
(b) 1261 and 1649 in Z. 
(c) X4 - X 3 + 4X2 - X + 3 and X 3 - 2X2 + X - 2 in Q[X]. 

~d~ X4 + 4 and 2X3 + X2 - 2X - 6 in Z3[X]. 
e 2 + Hi and 1 + 3i in Zfi]. 
f -4 + 7i and 1 + 7i in Z[i]. 

33. Express X4 - X2 - 2 as a product of irreducible polynomials in each of the 
fields Q, R, C, and Z5. 

34. Let F be a field and suppose that the polynomial xm - 1 has m distinct 
roots in F. If kim, prove that Xk - 1 has k distinct roots in F. 

35. If R is a commutative ring, let F(R, R) be the set of all functions f : R -+ R 
and make F(R, R) into a ring by means of addition and multiplication of 
functions, Le., (fg)(r) = f(r)g(r) and (f + g)(r) = fer) + g(r). Define a 
function cfI : R[X]-+ F(R, R) by 
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36. 

<'PU(X))(r) = rf>rU(X)) = fer) 

for all r E R. 
(a) Show that <'P is injective if R is an infinite integral domain. 
(b) Show that <'P is not injective if R is a finite field. 
Let f(X) E Zp[X]. Show that f(XP) = U(X))P and that the map 
<'PU(X)) = U(X))P is a ring homomorphism. 

37 Let F be a field and consider the substitution homomorphism 

rf> : F[X, Y] ~ F[T] 

such that rf>(X) = T2 and rf>(Y) = T3. Show that Ker(rf» is the principal 
ideal generated by y2 - X3. What is Im(rf»? 

38. Prove Proposition 4.10 (Lagrange interpolation) as a corollary of the Chinese 
remainder theorem. 

39. Let F be a field and let ao, aI, ... , an be n + 1 distinct elements of F. 
If f : F ~ F is a function, define the successive divided differences of f, 
denoted J[ ao, ... ,ai], by means of the inductive formula: 

f[ ] - J[ao, .. , ,an-2, an]- J[ao, ... ,an-2, an-I] 
ao, ... ,an - . 

an - an-l 

Prove that the coefficient of Pi (X) in Equation (4.3) (Newton's interpolation 
formula) is the divided difference J[ao, ... ,ai]. 

40. (a) If f(X) E R[X] and Z E C satisfies fez) = 0, show that fez) = 0 (where 
Z is the complex conjugate of z). 

(b) Let ro, rl, ... , rk be distinct real numbers, let Zl, ... , Zm be distinct 
complex numbers with Zj "I ze for 1 ~ j, £ ~ m, and let 80, ... , 8k E R, 
WI, ... , Wm E C. Prove that there is a polynomial f(X) E R[X] such 
that f(ri) = 8i for 0 ~ i ~ k, while f(zj) = Wj for 1 ~ j ~ m. What 
degree can we require for f(X) in order to have a uniqueness statement 
as in Proposition 4.10? 

41. Let F be a field and let f,g E F[X] with degg ~ 1. Show that there are 
unique fo, It, ... , f d E F[X] such that deg fi < deg 9 and 

42. 

43. 

Let K and L be fields with K ~ L. Suppose that I(X), g(X) E K[X]. 
(a) If I(X) divides g(X) in L[X], prove that f(X) divides g(X) in K/X]. 
(b) Prove that the greatest common divisor of f(X) and g(X) in K XJ is 

the same as the greatest common divisor of f(X) and g(X) in L[X . (We 
will always choose the monic generator of the ideal (f(X), g(X) as the 
greatest common divisor in a polynomial ring over a field.) 

(a) Sup-pose that R is a Noetherian ring and I ~ R is an ideal. Show that 
R/ I is Noetherian. 

(b) If R is Noetherian and S is a subring of R, is S Noetherian? 
(c) Suppose that R is a commutative Noetherian ring and S is a nonempty 

multiplicatively closed subset of R containing no zero divisors. Prove 
that Rs (the localization of R away from S) is also Noetherian. 
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44. If R is a ring (not necessarily commutative) and f(X) = ao + alX + ... + 
anXn E R[X], then we say that f(X) is regular of degree n if an is a unit 
of R. Note, in particular, that monic polynomials are regular and if R is a 
field then all nonzero polynomials in R[X] are regular. Prove the following 
version of the division algorithm: 

45. 

46. 

47. 

48. 

49. 

Let f(X) E R[X] and let g(X) E R[X] be a regular polynomial of degree n. 
Then there are unique polynomials ql(X), rl(X), q2(X), and r2(X) E R[X] 
such that degrl(X) < n, degr2(X) < n, 

f(X) = ql(X)g(X) + rl(X) 

and 

The two equations represent the left and right divisions of f(X) by g(X). In 
the special case that g(X) = X - a for a E R, prove the following version of 
these equations (noncommutative remainder theorem): 

Let f(X) = al + alX + ... + anXn E R[X] and let a E R. Then there are 
unique q.c(X) and q'R(X) E R[X] such that 

f(X) = q'R(X)(X - a) + !'R(a) 

and 
f(X) = (X - a)q.c(X) + f.c(a) 

where 
n 

f'R(a) = L akak and f.c(a) = L akak 
k=O k=O 

are, respectively, the right and left evaluations of f(X) at a E n. (Hint: Use 
the formula 

X k _ ak = (X k- I + X k- 2a + ... + Xa k- 2 + ak-1)(X - a) 

= (X - a)(Xk- 1 + aXk- 2 + ... + ak- 2 X + ak-I). 

Then multiply on either the left or the right by ak and sum over k to get 
the division formulas and the remainders.) 
Let R be a UFD and let a and b be nonzero elements of R. Show that 
ab = [a, b](a, b) where [a, b] = lcm{a, b} and (a, b) = gcd{a, b}. 

Let R be a UFD. Show that d is a gcd of a and b (a, bE R \ {O}) if and only 
if d divides both a and b and there is no prime p dividing both aid and bid. 
(In particular, a and b are relatively prime if and only if there is no prime p 
dividing both a and b.) 
Let R be a UFD and let {ri}f=1 be a finite set of pairwise relatively prime 
nonzero elements of R (Le., ri and rj are relatively prime whenever i # j). 
Let a = n~1 ri and let ai = alri. Show that the set {a;}f=1 is relatively 
prime. 
Let R be a UFD and let F be the quotient field of R. Show that d E R is a 
square in R if and only if it is a square in F (i.e., if the equation a2 = d has 
a solution with a E F then, in fact, a E R). Give a counterexample if R is 
not a UFD. 
Let x, y, z be integers with gcd{ x, y, z} = 1. Show that there is an integer a 
such that gcd{x + ay,z} = 1. (Hint: The Chinese remainder theorem may 
be helpful.) 
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50. According to the Chinese remainder theorem there is an isomorphism of 
rings rP : Z60 ~ Z3 X Z4 X Z5. Compute rP(26), rP(35), rP- 1(2, 3,4), and 
rP- 1 (1, 2, 2). 

51. Solve the system of simultaneous congruences: 

x == -3 (mod 13) 

x == 16 (mod 18) 

x == -2 (mod 25) 

x == 0 (mod 29). 

52. Solve the system of simultaneous congruences: 

x == 6 (mod 21) 
x == 9 (mod 33) 
x == 2 (mod 37). 

53. For what values of a (mod 77) does the following system of simultaneous 
congruences have a solution? 

x == 6 (mod 21) 
x == 9 (mod 33) 
x == a (mod 77). 

54. (a) Solve the following system of simultaneous congruences in Q[Xl: 

f(X) == -3 (mod X + 1) 

f(X) == 12X (mod X2 - 2) 

f(X) == -4X (mod X 3 ). 

~b) Solve this system in Z5 tXj' 
c) Solve this system in Z3 X . 
d) Solve this system in Z2 X . 

55. Suppose that ml, m2 E Z are not relatively prime. Then prove that there are 
integers aI, a2 for which there is no solution to the system of congruences: 

x == al (mod md 
x == a2 (mod m2)' 

56. Let R be a UFD. Prove that 

f(X, Y) = X4 + 2y2 x 3 + 3y3 X2 + 4Y X + 5Y + 6y2 

is irreducible in the polynomial ring R[X, Y]. 
57. Prove that if R is a UFD and if f(X) is a monic polynomial with a root in 

the quotient field of R, then that root is in R. (This result is usually called 
the rational root theorem.) 

58. Suppose that R is a UFD and S s;;: R\ {O} is a multiplicatively closed subset. 
Prove that Rs is a UFD. 

59. Let F be a field and let F[[Xl] be the ring of formal power series with 
coefficients in F. If f = ~:=o anXn =j=. 0 E F, let oU) = min{n : an =j=. O} 
and define 0(0) = 00. aU) is usually called the order of the power series f. 
Prove the following facts: 
(a) aUg) = aU) + o(g). 
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~b) O({ + g) ~ min{ oU), o(g n. 
c) f 9 if and only if 0(1) $ o(Q). 
d) f is a unit if and only if 0(1) = o. 

(e) If f #- 0 then f is an associate of X°(f). Conclude that X is the only 
irreducible (up to multiplication by a unit) element of F[[X]]. 

(f) F[[XI] is a PID. In fact, every ideal is generated by Xk for some k. 
(g) Is F[ X]] a Euclidean domain? 

60. If F is a field, let F((X» denote the set of all formal Laurent series with 
coeffients in F, i.e., 

F((X» = {~ anXn : an E F, m E Z is arbitrary} 

where the ring operations are defined as for F[[X]]. Prove that F((X» is 
isomorphic to the quotient field of the integral domain F[[X]]. 

61. Let R be a commutative ring and let S = R[Tl, ... ,Tn]. Define f(X) E S[X] 
by 

n 

f(X) = IT (X -1i) 
i=1 

n 

= L(-lrO'r(Tl, ... ,Tn)Xn-r. 
r=O 

(a) Show that 

l::5il <···<ir ::5n 

Thus, 0'1 = Tl + ... + Tn and Un = Tl ... Tn. 0' r is called the rth elemen
tary symmetric function. Therefore, the coefficients of a polynomial are 
obtained by evaluating the elementary symmetric functions on the roots 
of the polynomial. 

(b) If g(X) = n~=1 (1 - TiX), show that the coefficient of xr is (-It O'r, 
i.e., the same as the coefficient of x n - r in f(X). 

(c) Define Sr(Tl, ... ,Tn) = T[ + ... + T;' for r ~ 1, and let So = n. Verify 
the following identities (known as Newton's identities) relating the power 
sums Sr and the elementary symmetric functions Uk. 

r-l 
L(-l)kO'kSr-k + (-lrrO'r = 0 (1 $ r $ n) 
k=O 

n 

L(-l)kO'kSr-k = 0 (r > n). 
k=O 

(Hint: Do the following calculation in S[[X]], where I means derivative 
with respect to X: 

Now multiply by g( X) and compare coefficients of X r - 1 .) 
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62. Let p E Z be a prime and define 

R= {a= (aI, a2, a3, ... ): 

ak E (Z/pkZ), ak+! == ak (mod pk) for all k 2 I}. 

(a) Show that R is a ring under the operations of componentwise addition 
and multiplication. 

(b) Show that R is an integral domain. (Note that R contains Z as a subring 
so that char(R) = 0.) 

(c) Let 
P = {a E R: al = 0 E Z/pZ}. 

Show that every element of R \ P is invertible. Show that P is a proper 
ideal of R. (Thus, P is the unique maximal ideal in R and so R is a local 
ring.) 

(d) For a E R \ {O} define v(a) to be pn-l if n is the smallest value of k 
such that ak =1= 0 E Z/pkZ. Show that v : R \ {O} --+ Z+ makes R into a 
Euclidean domain. 

Remark. The ring R plays an important role in mathematics; it is known as 
the ring of p-adic integers and its quotient field is known as the field of p-adic 
numbers. 



Chapter 3 

Modules and Vector Spaces 

3.1 Definitions and Examples 

Modules are a generalization of the vector spaces of linear algebra in which 
the "scalars" are allowed to be from an arbitrary ring, rather than a field. 
This rather modest weakening of the axioms is quite far reaching, including, 
for example, the theory of rings and ideals and the theory of abelian groups 
as special cases. 

(1.1) Definition. Let R be an arbitrary ring with identity (not necessarily 
commutative) . 

(1) A left R-module (or left module over R) is an abelian group M together 
with a scalar multiplication map 

·:RxM-M 

that satisfy the following axioms {as is customary we will write am in 
place of ·(a, m) for the scalar multiplication of mE M by a E R). In 
these axioms, a, b are arbitrary elements of Rand m, n are arbitrary 
elements of M. 

(a!)a(m + n) = am + an. 
(b!)(a + b)m = am + bm. 
(c!) (ab)m = a(bm). 
(d!)lm = m. 

(2) A right R-module (or right module over R) is an abelian group M 
together with a scalar multiplication map 

·:MxR-M 

that satisfy the following axioms (again a, b are arbitrary elements of 
Rand m, n are arbitrary elements of M). 

(a,.)(m + n)a = ma + na. 
(br)m(a + b) = ma + mb. 
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(cr)m(ab) = (ma)b. 
(dr )m1 = m. 

(1.2) Remarks. 

(1) If R is a commutative ring then any left R-module also has the struc
ture of a right R-module by defining mr = rm. The only axiom that 
requires a check is axiom (cr ). But 

m(ab) = (ab)m = (ba)m = beam) = bema) = (ma)b. 

(2) More generally, if the ring R has an antiautomorphism (that is, an 
additive homomorphism ¢ : R ~ R such that ¢(ab) = ¢(b)¢(a)) then 
any left R-module has the structure of a right R-module by defining 
ma = ¢(a)m. Again, the only axiom that needs checking is axiom (cr ): 

(ma)b = ¢(b)(ma) 

= ¢(b)(¢(a)m) 

= (¢(b)¢(a))m 

= ¢(ab)m 

= m(ab). 

An example of this situation occurs for the group ring R( G) where R 
is a ring with identity and G is a group (see Example 2.1.10 (15)). In 
this case the antiautomorphism is given by 

We leave it as an exercise to check that ¢ : R( G) ~ R( G) is an 
antiautomorphism. Thus any left R( G)-module M is automatically a 
right R( G)-module. 

(3) Let R be an arbitrary ring and let Rap ("op" for opposite) be the 
ring whose elements are the elements of R, whose addition agrees with 
that of R, but whose multiplication . is given by a . b = ba (where 
the multiplication on the right-hand side of this equation is that of 
R). Then any left R-module is naturally a right RaP-module (and vice
versa). In fact, if M is a left R-module, define a right multiplication 
of elements of Rap (which are the same as elements of R) on M by 
m·a = am. As in Remark 1.2 (1), the only axiom that requires checking 
is axiom (cr ). But 

m· (a· b) = (a· b)m = (ba)m = beam) = b(m· a) = (m· a) . b. 

The theories of left R-modules and right R-modules are entirely par
allel, and so, to avoid doing everything twice, we must choose to work on 
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one side or the other. Thus, we shall work primarily with left R-modules 
unless explicitly indicated otherwise and we will define an R-module (or 
module over R) to be a left R-module. (Of course, if R is commutative, Re
mark 1.2 (1) shows there is no difference between left and right R-modules.) 
Applications of module theory to the theory of group representations will, 
however, necessitate the use of both left and right modules over noncommu
tative rings. Before presenting a collection of examples some more notation 
will be introduced. 

(1.3) Definition. Let R be a ring and let M, N be R-modules. A function 
I : M ~ N is an R-module homomorphism il 

(1) I(ml + m2) = I(ml) + l(m2) lor all ml! m2 EM, and 
(2) I(am) = al(m) lor all a E Rand mE M. 

The set of all R-module homomorphisms from M to N will be de
noted HomR(M, N). In case M = N we will usually write EndR(M) rather 
than HomR(M, M)j elements of EndR(M) are called endomorphisms. If 
I E EndR(M) is invertible, then it is called an automorphism of M. The 
group of all R-module automorphisms of M is denoted AutR(M) (Aut(M) 
if R is implicit). If I E HomR(M, N) then we define Ker(f) ~ M and 
Im(f) ~ N to be the kernel and image of I considered as an abelian group 
homomorphism. 

(1.4) Definition. 

(1) Let F be a field. Then an F -module V is called a vector space over F. 
(2) II V and W are vector spaces over the field F then a linear transfor-

mation from V to W is an F -module homomorphism from V to W. 

(1.5) Examples. 

(1) Let G be any abelian group and let g E G. If n E Z then define the 
scalar multiplication ng by 

{ 

g + ... + 9 (n terms) if n > 0, 

ng = 0 ifn = 0, 

(-g) + ... + (-g) (-n terms) if n < O. 

Using this scalar multiplication G is a Z-module. Furthermore, if G 
and H are abelian groups and I : G ~ H is a group homomorphism, 
then I is also a Z-module homomorphism since (if n > 0) 

I(ng) = I(g + ... + g) = I(g) + ... + I(g) = nl(g) 

and I( -g) = - I(g)· 
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(2) Let R be an arbitrary ring. Then Rn is both a left and a right R-module 
via the scalar multiplications 

and 
(b1 , ... ,bn)a = (b1a, ... ,bna). 

(3) Let R be an arbitrary ring. Then the set of matrices Mm,n(R) is both 
a left and a right R-module via left and right scalar multiplication of 
matrices, i.e., 

and 
entij(Aa) = (entij(A))a. 

(4) As a generalization of the above example, the matrix multiplication 
maps 

and 

Mm(R) x Mm,n(R) ----> Mm,n(R) 

(A, B) f-----7 AB 

Mm,n(R) x Mn(R) ----> Mm,n(R) 

(A, B) f-----7 AB 

make Mm,n(R) into a left Mm(R)-module and a right Mn(R)-module. 
(5) If R is a ring then a left ideal I <:;; R is a left R-module, while a right 

ideal J <:;; R is a right R-module. In both cases the scalar multiplication 
is just the multiplication of the ring R. 

(6) If R is a ring and I <:;; R is an ideal then the quotient ring R/ I is both 
a left R-module and a right R-module via the multiplication maps 

and 

R x R/I ----> R/I 

(a, b + 1) f-----7 ab + I 

R/I x R ----> R/I 

(a + I, b) f-----7 ab + I. 

(7) M is defined to be an R-algebra if M is both an R-module and a ring, 
with the ring addition being the same as the module addition, and the 
multiplication on M and the scalar multiplication by R satisfying the 
following identity: For every r E R, ml, m2 EM, 

(Ll) 
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For example, every ring is a Z-algebra, and if R is a commutative ring, 
then R is an R-algebra. Let R and S be rings and let ¢ : R --+ S 
be a ring homomorphism with Im(¢) ~ C(S) = {a E S : ab = ba 
for all b E S}, the center of S. If M is an S-module, then M is also 
an R-module using the scalar multiplication am = (¢(a))m for all 
a E R and m E M. Since S itself is an S-module, it follows that S 
is an R-module, and moreover, since Im(¢) ~ C(S), we conclude that 
S is an R-algebra. As particular cases of this construction, if R is a 
commutative ring, then the polynomial ring R[X) and the matrix ring 
Mn(R) are both R-algebras. 

(8) If M and N are R-modules then HomR(M, N) is an abelian group via 
the operation (f + g)(m) = f(m) + g(m). However, if we try to make 
HomR(M, N) into an R-module in the natural way by defining af by 
the formula (af)(m) = a(f(m)) we find that the function af need not 
be an R-module homomorphism unless R is a commutative ring. To 
see this, note that 

(af)(rm) = a(f(rm)) = a(r(f(m))) = arf(m). 

This last expression is equal to r(af)(m) = raf(m) if R is a commu
tative ring, but not necessarily otherwise. Thus, if R is a commutative 
ring, then we may consider HomR(M, N) as an R-module for all M, 
N, while if R is not commutative then HomR(M, N) is only an abelian 
group. Since EndR(M) is also a ring using composition of R-module 
homomorphisms as the multiplication, and since there is a ring ho
momorphism ¢ : R --+ EndR(M) defined by ¢(a) = a 1M where 1M 
denotes the identity homomorphism of M, it follows from Example 1.5 
(7) that EndR(M) is an R-algebra if R is a commutative ring. 

(9) If G is an abelian group, then Homz(Z, G) ~ G. To see this, define 
q, : Homz(Z, G) --+ G by q,(f) = f(I). We leave it as an exercise to 
check that q, is an isomorphism of Z-modules. 

(10) Generalizing Example 1.5 (9), if M is an R-module then 

HomR(R, M) ~ M 

as Z-modules via the map q, : HomR(R, M) --+ M where q,(f) = f(I). 
(11) Let R be a commutative ring, let M be an R-module, and let S c 

EndR(M) be a subring. (Recall from Example 1.5 (8) that EndR(M) 
is a ring, in fact, an R algebra.) Then M is an S-module by means of 
the scalar multiplication map S x M --+ M defined by (f, m) f-+ f(m). 

(12) As an important special case of Example 1.5 (11), let T E EndR(M) 
and define a ring homomorphism ¢ : R[X) --+ EndR(M) by sending 
X to T and a E R to aIM. (See the polynomial substitution theorem 
(Theorem 2.4.1).) Thus, if 
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then 
4>(f(X)) = a01M + alT + ... + anTn. 

We will denote 4>(f(X)) by the symbol f(T) and we let Im(4)) = R[T]. 
That is, R[T] is the subring of EndR(M) consisting of "polynomials" 
in T. Then M is an R[T] module by means of the multiplication 

f(T)m = f(T)(m). 

Using the homomorphism 4> : R[X] --+ R[T] we see that M is an R[X]
module using the scalar multiplication 

f(X)m = f(T)(m). 

This example is an extremely important one. It provides the basis for 
applying the theory of modules over principal ideal domains to the 
study of linear transformations; it will be developed fully in Section 
4.4. 

(13) We will present a concrete example of the situation presented in Ex
ample 1.5 (12). Let F be a field and define a linear transformation 
T : F2 --+ F2 by T(ul, U2) = (U2, 0). Then T2 = 0, so if f(X) = 
ao + alX + ... + amxm E F[X], it follows that f(T) = a01F2 + alT. 
Therefore the scalar multiplication f(X)u for u E F2 is given by 

f(X)· (Ul,U2) = f(T)(Ul,U2) 

= (ao1F2 + alT)(ul, U2) 

= (aoul + alu2,aOu2). 

3.2 Submodules and Quotient Modules 

Let R be a ring and M an R-module. A subset N ~ M is said to be 
a submodule (or R-submodule) of M if N is a subgroup of the additive 
group of M that is also an R-module using the scalar multiplication on 
M. What this means, of course, is that N is a submodule of M if it is a 
subgroup of M that is closed under scalar multiplication. These conditions 
can be expressed as follows. 

(2.1) Lemma. If M is an R-module and N is a nonempty subset of M, 
then N is an R-submodule of M if and only if aml + bm2 E N for all 
ml, m2 E N and a, bE R. 

Proof. Exercise. o 
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If F is a field and V is a vector space over F, then an F-submodule of 
V is called a linear subspace of V. 

(2.2) Examples. 

(1) If R is any ring then the R-submodules of the R-module R are precisely 
the left ideals of the ring R. 

(2) If G is any abelian group then G is a Z-module and the Z-submodules 
of G are just the subgroups of G. 

(3) Let f : M -t N be an R-module homomorphism. Then Ker(f) ~ M 
and Im(f) ~ N are R-submodules (exercise). 

(4) Continuing with Example 1.5 (12), let V be a vector space over a 
field F and let T E EndF(V) be a fixed linear transformation. Let VT 
denote V with the F[X)-module structure determined by the linear 
transformation T. Then a subset W ~ V is an F[X)-submodule of the 
module VT if and only if W is a linear subspace of V and T(W) ~ W, 
i.e., W must be a T-invariant subspace of V. To see this, note that 
X . w = T(w), and if a E F, then a . w = aw-that is to say, the 
action of the constant polynomial a E F[X) on V is just ordinary 
scalar multiplication, while the action of the polynomial X on V is 
the action of T on V. Thus, an F[X)-submodule of VT must be a T
invariant subspace of V. Conversely, if W is a linear subspace of V 
such that T(W) ~ W then Tm(w) ~ W for all m ~ 1. Hence, if 
f(X) E F[X) and w E W then f(X) . w = f(T)(w) E W so that W is 
closed under scalar multiplication and thus W is an F[X)-submodule 
ofV. 

(2.3) Lemma. Let M be an R-module and let {NaJoEA be a family of sub
modules of M. Then N = n:'EA No is a submodule of M. 

Proof. Exercise. o 

We now consider quotient modules and the noether isomorphism the
orems. Let M be an R-module and let N ~ M be a submodule. Then N 
is a subgroup of the abelian group M, so we can form the quotient group 
MIN. Define a scalar multiplication map on the abelian group MIN by 
a(m + N) = am + N for all a E R, m + N E MIN. Since N is an R
submodule of M, this map is well defined. Indeed, if m + N = m' + N then 
m-m' EN so that am-am' = a(m-m') E N so that am+N = am' +N. 
The resulting R-module MIN is called the quotient module of M with re
spect to the submodule N. The noether isomorphism theorems, which we 
have seen previously for groups and rings, then have direct analogues for 
R-modules. 

(2.4) Theorem. (First isomorphism theorem) Let M and N be modules 
over the ring R and let f : M -t N be an R-module homomorphism. Then 
M I Ker(f) ~ Im(f). 
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Proof. Let K = Ker(f). From Theorem 1.3.10 we know that] : MIK -+ 

Im(f) defined by ](m+K) = f(m) is a well-defined isomorphism of abelian 
groups. It only remains to check that] is an R-module homomorphism. But 
](a(m+K» = ](am+K) = f(am) = af(m) = a](m+K) for all m E M 
and a E R, so we are done. 0 

(2.5) Theorem. (Second isomorphism theorem) Let M be an R-module and 
let Nand P be submodules. Then there is an isomorphism of R-modules 

(N + P) IP ~ NI (N n P). 

Proof. Let 7r : M -+ M I P be the natural projection map and let 7ro be 
the restriction of 7r to N. Then 7ro is an R-module homomorphism with 
Ker(7ro) = N n P and Im(7ro) = (N + P)IP. The result then follows from 
the first isomorphism theorem. 0 

(2.6) Theorem. (Third isomorphism theorem) Let M be an R-module and 
let Nand P be submodules of M with P ~ N. Then 

MIN ~ (MIP)/(NIP). 

Proof. Define f : MI P -+ MIN by f(m+P) = m+N. This is a well-defined 
R-module homomorphism and 

Ker(f) = {m + P : m + N = N} = {m + P : mEN} = NIP. 

The result then follows from the first isomorphism theorem (Theorem 2.4). 
o 

(2.7) Theorem. (Correspondence theorem) Let M be an R-module, N a 
submodule, and 7r : M -+ MIN the natural projection map. Then the func
tion P 1-+ PIN defines a one-to-one correspondence between the set of all 
submodules of M that contain N and the set of all submodules of MIN. 

Proof. Exercise. o 

(2.8) Definition. If S is a subset of an R-module M then (S) will denote 
the intersection of all the submodules of M that contain S. This is called 
the submodule of M generated by S, while the elements of S are called 
generators of (S). 

Thus, (S) is a submodule of M that contains S and it is contained in 
every submodule of M that contains S, i.e., (S) is the smallest submodule 
of M containing S. If S = {Xl, ... ,Xn } we will usually write (Xl, ... ,Xn ) 
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rather than ({Xl, ... ,xn }) for the submodule generated by 8. There is the 
following simple description of (8). 

(2.9) Lemma. Let M be an R-module and let 8 ~ M. If 8 = 0 then (8) = 

{O}, while (8) = {2=~=1 aiSi: n E N, ai E R, Si E 8,1:S: i:S: n} if 8 -I- 0. 

Proof. Exercise. o 

(2.10) Definition. We say that the R-module M is finitely generated if 
M = (8) for some finite subset 8 of M. M is cyclic if M = (m) for 
some element m EM. If M is finitely generated then let J1( M) denote the 
minimal number of generators of M. If M is not finitely generated, then let 
J1(M) = 00. We will call J1(M) the rank of M. 

(2.11) Remarks. 

(1) We have J1({0}) = 0 by Lemma 2.9 (1), and M -I- {O} is cyclic if and 
only if J1(M) = l. 

(2) The concept of cyclic R-module generalizes the concept of cyclic group. 
Thus an abelian group G is cyclic (as an abelian group) if and only if 
it is a cyclic Z-module. 

(3) If R is a PID, then any R-submodule M of R is an ideal, so J1(M) = l. 
(4) For a general ring R, it is not necessarily the case that if N is a sub

module of the R-module M, then J1(N) :s: J1(M). For example, if R is 
a polynomial ring over a field F in k variables, M = R, and N ~ M 
is the submodule consisting of polynomials whose constant term is 0, 
then J1(M) = 1 but J1(N) = k. Note that this holds even if k = 00. We 
shall prove in Corollary 6.4 that this phenomenon cannot occur if R is 
a PID. Also see Remark 6.5. 

If M is a finitely generated R-module and N is any submodule, then 
MIN is clearly finitely generated, and in fact, J1(MIN) :s: J1(M) since 
the image in MIN of any generating set of M is a generating set of MIN. 
There is also the following result, which is frequently useful for constructing 
arguments using induction on J1(M). 

(2.12) Proposition. Suppose M is an R-module and N is a submodule. If 
Nand MIN are finitely generated, then so is M and 

J1(M) :s: J1(N) + J1(MIN). 

Proof. Let 8 = {Xl, ... ,xd ~ N be a minimal generating set for N and if 
7r : M -+ MIN is the natural projection map, choose T = {Yl, ... ,yp} ~ M 
so that {7r(yt), ... ,7r(Yp)} is a minimal generating set for MIN. We claim 
that 8 U T generates M so that J1(M) :S k + £ = J1(N) + J1(MIN). To see 
this suppose that X E M. Then 7r(x) = al7r(yt) + ... + ai7r(Yi). Let Y = 
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aIYI + .. ·+a£y£ E (T). Then 7r(x-y) = 0 so that x-y E Ker(7r) = N = (8). 
It follows that x = (x - y) + Y E (8 U T), and the proof is complete. D 

(2.13) Definition. If {Net}etEA is a family of R-submodules of M, then the 
submodule generated by {Net}etEA is (UetEA Net). This is just the set of all 
sums n et1 + ... + n etk where net, E Net,. Instead of (UetEA Net), we will use 
the notation LetEA Net; if the index set A is finite, e.g., A = {I, ... ,m}, 
we will write NI + ... + N m for the submodule generated by N I , ... ,Nm . 

(2.14) Definition. If R is a ring, M is an R-module, and X is a subset of 
M, then the annihilator of X, denoted Ann(X), is defined by 

Ann(X) = {a E R : ax = 0 for all x EX}. 

It is easy to check that Ann(X) is a left ideal of R, and furthermore, 
if X = N is a submodule of M, then Ann(N) is an ideal of R. If R is 
commutative and N = (x) is a cyclic submodule of M with generator x, 
then 

Ann(N) = {a E R : ax = a}. 

This fact is not true if the ring R is not commutative. As an example, let 
R = Mn(R) = M and let x = Ell be the matrix with a 1 in the 11 position 
and 0 elsewhere. It is a simple exercise to check that Ann(Ell ) consists of 
all matrices with first column 0, while Ann((Ell )) = (0). 

If R is commutative and N is cyclic with generator x then we will 
usually write Ann(x) rather than Ann((x)). In this situation, the ideal 
Ann(x) is frequently called the order ideal of x. To see why, consider the 
example of an abelian group G and an element g E G. Then G is a Z-module 
and 

Ann(g) = {n E Z : ng = O} 

= (p) 

where p = o(g) if o(g) < 00 and p = 0 if (g) is infinite cyclic. 

Example. Let F be a field, V a vector space, T E EndF(V) a linear trans
formation, and let VT be the F[X] module determined by T (Example l.5 
(12)). If v E V then 

Ann(v) = {f(X) E F[X] : f(T)(v) = O}. 

Note that this is a principal ideal (g(X)) since F[X] is a PID. 

(2.15) Proposition. Let R be a ring and let M = (m) be a cyclic R-module. 
Then M ~ R/ Ann(m). 

Proof. The function f : R -+ M defined by f(a) = am is a surjective R
module homomorphism with Ker(f) = Ann(m). The result follows by the 
first isomorphism theorem. D 
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(2.16) Corollary. If F is a field and M is a nonzero cyclic F -module then 
M~F. 

Proof. A field has only the ideals {O} and F, and 1· m = m =I- 0 if m =I- 0 
is a generator for M. Thus, Ann(m) =I- F, so it must be {O}. D 

If M is an R-module and I ~ R is an ideal then we can define the 
product of I and M by 

1M = {taimi: n E N, ai E I, mi EM}. 
>=1 

The set 1M is easily checked to be a submodule of M. The product 1M 
is a generalization of the concept of product of ideals. If R is commutative 
and I ~ Ann(M) then there is a map 

R/I x M -+ M 

defined by (a + I)m = am. To see that this map is well defined, suppose 
that a + 1= b + I. Then a - bEl ~ Ann(M) so that (a - b)m = 0, i.e., 
am = bm. Therefore, whenever an ideal I ~ Ann(M), M is also an R/I 
module. A particular case where this occurs is if N = M / I M where I is any 
ideal of R. Then certainly I ~ Ann(N) so that M/IM is an R/I-module. 

(2.17) Definition. Let R be an integral domain and let M be an R-module. 
We say that an element x E M is a torsion element if Ann(x) =I- {O}. Thus 
an element x E M is torsion if and only if there is an a =I- 0 E R such 
that ax = O. Let Mr be the set of torsion elements of M. M is said to be 
torsion-free if Mr = {O}, and M is a torsion module if M = Mr. 

(2.18) Proposition. Let R be an integral domain and let M be an R-module. 

(1) Mr is a submodule of M, called the torsion submodule. 
(2) M/Mr is torsion-free. 

Proof. (1) Let x, y E Mr and let c, dE R. There are a =I- 0, b =I- 0 E R such 
that ax = 0 and by = O. Since R is an integral domain, ab =I- O. Therefore, 
ab(cx + dy) = bc(ax) + ad(by) = 0 so that cx + dy E Mr. 

(2) Suppose that a =I- 0 E Rand a(x + Mr) = 0 E (M/Mr)r. Then 
ax E Mn so there is a b i= 0 E R with (ba)x = b(ax) = O. Since ba i= 0, it 
follows that x E Mn i.e., x + Mr = 0 EM/Mr. D 

(2.19) Examples. 

(1) If G is an abelian group then the torsion Z-submodule of G is the 
set of all elements of G of finite order. Thus, G = Gr means that 
every element of G is of finite order. In particular, any finite abelian 
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group is torsion. The converse is not true. For a concrete example, take 
G = Q/Z. Then IGI = 00, but every element of Q/Z has finite order 
since q(P/q + Z) = P + Z = 0 E Q/Z. Thus (Q/Z)'T = Q/Z. 

(2) An abelian group is torsion-free if it has no elements of finite order 
other than o. As an example, take G = zn for any natural number n. 
Another useful example to keep in mind is the additive group Q. 

(3) Let V = F2 and consider the linear transformation T : F2 ---+ F2 
defined by T(Ul' U2) = (U2' 0). See Example 1.5 (13). Then the F[X] 
module VT determined by T is a torsion module. In fact Ann(VT) = 
(X2). To see this, note that T2 = 0, so X2 . U = 0 for all U E V. Thus, 
(X2) ~ Ann(VT). The only ideals of F[X] properly containing (X2) 
are (X) and the whole ring F[XJ, but X tJ- Ann(VT) since X . (0, 1) = 
(1, 0) =I- (0, 0). Therefore, Ann(VT) = (X2). 

The following two observations are frequently useful; the proofs are left 
as exercises: 

(2.20) Proposition. Let R be an integml domain and let M be a finitely gen
emted torsion R-module. Then Ann(M) =I- (0). In fact, if M = (Xb ... ,xn ) 

then 
Ann(M) = Ann(xl) n ... n Ann(xn) =I- (0). 

Proof. Exercise. o 

(2.21) Proposition. Let F be a field and let V be a vector space over F, i.e., 
an F -module. Then V is torsion-free. 

Proof. Exercise. o 

3.3 Direct Sums, Exact Sequences, and Hom 

Let Ml , ... , Mn be a finite collection of R-modules. Then the cartesian 
product set Ml x ... x Mn can be made into an R-module by the operations 

(Xl, ... ,xn) + (Yb ... ,Yn) = (Xl + Yl, ... ,Xn + Yn) 
a(xl, ... ,Xn) = (axl, ... ,axn) 

where the 0 element is, of course, (0, ... ,0). The R-module thus con-
structed is called the direct sum of Ml , ... ,Mn and is denoted 

Ml EB ... EB Mn ( or E9 Mi) . 
i=l 
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The direct sum has an important homomorphism property, which, in 
fact, can be used to characterize direct sums. To describe this, ::,.lppose that 
fi : Mi ---+ N are R-module homomorphisms. Then there is a map 

f : MI EB ... EB Mn ---+ N 

defined by 
n 

f(XI, ... ,xn ) = Lfi(Xi). 
i=l 

We leave it as an exercise to check that f is an R-module homomorphism. 
Now consider the question of when a module M is isomorphic to the 

direct sum of finitely many submodules. This result should be compared 
with Proposition 1.6.3 concerning internal direct products of groups. 

(3.1) Theorem. Let M be an R-module and let M I , ... ,Mn be submodules 
of M such that 

(1) M = MI + ... + M n , and 
(2) for 1 ~ i ~ n, 

Mi n (MI + ... + Mi - l + M i +l + ... + Mn) = O. 

Then 

Proof. Let fi : Mi ---+ M be the inclusion map, that is, fi(X) = x for all 
x E Mi and define 

f : MI EB ... EB Mn ---+ M 

by 
f(XI,'" ,xn ) = Xl + ... +xn· 

f is an R-module homomorphism and it follows from condition (1) that f is 
surjective. Now suppose that (Xl, ... ,xn ) E Ker(f). Then Xl + .. . +xn = 0 
so that for 1 ~ i ~ n we have 

Xi = -(Xl + ... + Xi-l + Xi+! + ... + xn). 

Therefore, 

Xi E Mi n (MI + ... + Mi - l + Mi+! + ... + Mn) = 0 

so that (Xl, . .. ,Xn ) = 0 and f is an isomorphism. o 

Our primary emphasis will be on the finite direct sums of modules just 
constructed, but for the purpose of allowing for potentially infinite rank 
free modules, it is convenient to have available the concept of an arbitrary 
direct sum of R-modules. This is described as follows. Let {MjhEJ be 
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a family of R-modules indexed by the (possibly infinite) set J. Then the 
cartesian product set I1 jE J M j is the set of all the indexed sets of elements 
(Xj)jEJ where Xj is chosen from M j . This set is made into an R-module by 
the coordinate-wise addition and scalar multiplication of elements. More 
precisely, we define 

(Xj )jEJ + (Yj )jEJ = (Xj + Yj )jEJ 

a(Xj)jEJ = (aXj)jEJ· 

For each k E J there is an R-module homomorphism 1fk : I1jE J M j --; Mk 

defined by 1fk((Xj)jEJ) = Xj, that is, 1fk picks out the element of the indexed 
set (Xj)jEJ that is indexed by k. We define the direct sum of the indexed 
family {Mj}jEJ of R-modules to be the following submodule ffijEJ M j of 
I1jE J M j: 

E9 M j = {(Xj)jEJ : Xj = 0 except for finitely many indices j E J}. 
jEJ 

It is easy to check that tfJjEJMj is a submodule of I1 jE J M j . 

To get a feeling for the difference between direct sums and direct prod
ucts when the index set is infinite, note that the polynomial ring R[X], as an 
R-module (ignoring the multiplicative structure), is just a countable direct 
sum of copies of R, in fact, the nth copy of R is indexed by the monomial 
xn. However, the formal power series ring R[[X]], as an R-module, is just a 
countable direct product of copies of R. Again, the nth copy of R is indexed 
by the monomial xn. Each element of the polynomial ring has only finitely 
many monomials with nonzero coefficients, while an element of the formal 
power series ring may have all coefficients nonzero. 

The homomorphism property of the finite direct sum of R-modules 
extends in a natural way to arbitrary direct sums. That is, suppose that 
N is an arbitrary R-module and that for each j E J there is an R-module 
homomorphism /j : M j --; N. Then there is a map f : tfJjEJMj --; N 
defined by f( (Xj )jEJ) = LjEJ /j (Xj). Note that this sum can be considered 
as a well-defined finite sum since Xj = 0 except for finitely many indices j E 
J. (Note that this construction does not work for infinite direct products.) 
We leave it as an exercise to check that f is an R-module homomorphism. 

The characterization of when an R-module M is isomorphic to the 
direct sum of submodules is essentially the same as the characterization 
provided in Theorem 3.1. We state the result, but the verification is left as 
an exercise. 

(3.2) Theorem. Let M be an R-module and let {Mjllo be a family of 
submodules such that 
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Then 

Prool. Exercise. o 

(3.3) Definition. II M is an R-module and Ml c; M is a submodule, we say 
that Ml is a direct summand 01 M, or is complemented in M, il there is 
a submodule M2 c; M such that M ~ Ml EB M2. 

(3.4) Example. Let R = Z and M = Zp2. If Ml = (P) then Ml is not 
complemented since Ml is the only subgroup of M of order p, so condition 
(2) of Theorem 3.1 is impossible to satisfy. 

The concept of exact sequences of R-modules and R-module homo
morphisms and their relation to direct summands is a useful tool to have 
available in the study of modules. We start by defining exact sequences of 
R-modules. 

(3.5) Definition. Let R be a ring. A sequence 01 R-modules and R-module 
homomorphisms 

is said to be exact at Mi i/1m(fi) = Ker(fi+l). The sequence is said to be 
exact il it is exact at each Mi. 

As particular cases of this definition note that 

(1) 0 ----t Ml ~ M is exact if and only if I is injective, 
(2) M ~ M2 ----t 0 is exact if and only if 9 is surjective, and 
(3) the sequence 

(3.1) 

is exact if and only if I is injective, 9 is surjective, and 1m(f) = Ker(g). 
Note that the first isomorphism theorem (Theorem 2.4) then shows 
that M2 ~ M / 1m (f) . M / 1m(f) is called the cokernel of I and it is 
denoted Coker (f) . 

(3.6) Definition. 

(1) The sequence (3.1), il exact, is said to be a short exact sequence. 
(2) The sequence (3.1) is said to be a split exact sequence (or just split) 

il it is exact and i/1m(f) = Ker(g) is a direct summand 01 M. 
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In the language of exact sequences, Proposition 2.12 can be stated as 
follows: 

(3.7) Proposition. Let 0 ----+ Ml ----+ M ----+ M2 ----+ 0 be a short exact 
sequence of R-modules. If Ml and M2 are finitely genemted, then so is M, 
and moreover, 

Proof· o 

(3.8) Example. Let p and q be distinct primes. Then we have short exact 
sequences 

(3.2) 

and 

(3.3) 

where ¢>(m) = qm E Zpq, f(m) = pm E Zp2, and 'l/J and 9 are the canonical 
projection maps. Exact sequence (3.2) is split exact while exact sequence 
(3.3) is not split exact. Both of these observations are easy consequences of 
the material on cyclic groups from Chapter 1; details are left as an exercise. 

There is the following useful criterion for a short exact sequence to be 
split exact. 

(3.9) Theorem. If 

(3.4) 

is a short exact sequence of R-modules, then the following are equivalent: 

(1) There exists a homomorphism 0 : M ----> Ml such that 0 0 f = 1M,. 
(2) There exists a homomorphism f3 : M2 ----> M such that 9 0 f3 = 1M2 • 

(3) The sequence (3.4) is split exact. 
If these equivalent conditions hold then 

M ~ Im(f) EB Ker(o) 

~ Ker(g) EB Im(/3) 

~ Ml EB M 2 . 

The homomorphisms 0 and f3 are said to split the exact sequence (3.4) 
or be a splitting. 

Proof Suppose that (1) is satisfied and let x E M. Then 

o(x - f(o(x))) = o(x) - (0 0 f)(o(x)) = 0 

since 0 0 f = 1M,. Therefore, x - f (o( x)) E Ker( 0) so that 

M = Ker(o) + Im(f). 
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Now suppose that f(y) = x E Ker(a) n Im(f). Then 

0= a(x) = a(f(y)) = y, 

and therefore, x = f(y) = O. Theorem 3.1 then shows that 

M ~ Im(f) EEl Ker(a). 

Define f3 : M2 --+ M by 

(3.5) f3(U) = v - f(a(v)) 

where g( v) = u. Since 9 is surjective, there is such a v EM, but it may 
be possible to write u = g( v) for more than one choice of v. Therefore, we 
must verify that f3 is well defined. Suppose that g(v) = u = g(v'). Then 
v - v' E Ker(g) = Im(f) so that 

(v - f(a(v))) - (v' - f(a(v'))) = (v - v') + (f(a(v') - f(a(v))) 

E Im(f) n Ker(a) 

= {O}. 

We conclude that f3 is well defined. Since it is clear from the construction 
of f3 that go f3 = 1Jlh, we have verified that (1) implies (2) and that 
M ~ Im(f) EEl Ker(a), i.e., that (3) holds. 

The proof that (2) implies (1) and (3) is similar and is left as an 
exercise. 

Suppose that (3) holds, that is, M ~ M' EEl Mil where M' = Ker(g) = 

Im(f). Let 7rl : M --+ M' and 7r2 : M --+ Mil be the projections, and 
[ : Mil --+ M be the inclusion. Note that 7rl 0 f : Ml --+ M' and 9 0 [ : 

Mil --+ M2 are isomorphisms. Define a : .M --+ Ml by a = (7rl 0 f)-I 07rl 

and f3: M2 --+ M by f3 = [0 (g 0 [)-1. Then a 0 f = 1Ml and go f3 = 1M2 , 

so (1) and (2) hold. 0 

If M and N are R-modules, then the set HomR(M, N) of all R-module 
homomorphisms f : M --+ N is an abelian group under function addition. 
According to Example 1.5 (8), HomR(M, N) is also an R-module provided 
that R is a commutative ring. Recall that EndR(M) = HomR(M) denotes 
the endomorphism ring of the R-module M, and the ring multiplication is 
composition of homomorphisms. Example 1.5 (8) shows that EndR(M) is 
an R-algebra if the ring R is commutative. Example 1.5 (10) shows that 
HomR(R, M) ~ M for any R-module M. 

Now consider R-modules M, M I , N, and N I , and let </> : N --+ N I , 

'l/J : M --+ MI be R-module homomorphisms. Then there are functions 

and 
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defined by 
¢*(f) = ¢o f for all f E HomR(M, N) 

and 
'Ij;*(g) = 9 0 'Ij; for all 9 E HomR(M1 , N). 

It is straightforward to check that ¢*(f+g) = ¢*(f)+¢*(g) and 'Ij;*U+g) = 
'Ij;*(f) + 'Ij;*(g) for appropriate f and g. That is, ¢* and 'Ij;* are homomor
phisms of abelian groups, and if R is commutative, then they are also 
R-module homomorphisms. 

Given a sequence of R-modules and R-module homomorphisms 

(3.6) 

and an R-module N, then HomR( ,N) and HomR(N, ) produce two 
sequences of abelian groups (R-modules if R is commutative): 

and 

(3.8) 

A natural question is to what extent does exactness of sequence (3.6) 
imply exactness of sequences (3.7) and (3.8). One result along these lines 
is the following. 

(3.10) Theorem. Let 

(3.9) 

be a sequence of R-modules and R-module homomorphisms. Then the se
quence (3.9) is exact if and only if the sequence 

(3.10) 

is an exact sequence of Z-modules for all R-modules N. 
If 

(3.11) 

is a sequence of R-modules and R-module homomorphisms, then the se
quence (3.11) is exact if and only if the sequence 

(3.12) 

is an exact sequence of Z-modules for all R-modules N. 
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Proof. Assume that sequence (3.9) is exact and let N be an arbitrary R
module. Suppose that f E HomR(N, M) and ¢*(I) = O. Then 

0= ¢ 0 f(x) = ¢(I(x)) 

for all x E N. But ¢ is injective, so f(x) = 0 for all x E N. That is, f = 0, 
and hence, ¢* is injective. 

Since 'I/J 0 ¢ = 0 (because sequence (3.9) is exact at M), it follows that 

'I/J* (¢* (I)) = 'I/J 0 ¢* (I) = 'I/J 0 ¢ 0 f = 0 

for all f E HomR(N, M). Thus Im(¢*) ~ Ker('I/J*). It remains to check 
the other inclusion. Suppose that 9 E HomR(N, M) with 'I/J*(g) = 0, i.e., 
'I/J(g(x)) = 0 for all x E N. Since Ker('I/J) = Im(¢), for each x E N, we 
may write g(x) = ¢(y) with y E MI. Since ¢ is injective, y is uniquely 
determined by the equation g(x) = ¢(y). Thus it is possible to define a 
function f : N ~ MI by f(x) = y whenever g(x) = ¢(y). We leave it as an 
exercise to check that f is an R-module homomorphism. Since ¢*(I) = g, 
we conclude that Ker('I/J*) = Im(¢*) so that sequence (3.10) is exact. 

Exactness of sequence (3.12) is a similar argument, which is left as an 
exercise. 

Conversely, assume that sequence (3.10) is exact for all R-modules 
N. Then ¢* is injective for all R-modules N. Then letting N = Ker(¢) 
and ~ : N ~ MI be the inclusion, we see that ¢*(~) = ¢ 0 ~ = O. Since 
¢* : HomR(N, M I ) ~ HomR(N, M) is injective, we see that ~ = 0, i.e., 
N = (0). Thus, ¢ is injective. 

Now letting N = MI we see that 

0= ('I/J* 0 ¢*)(lMJ = 'I/J 0 ¢. 

Thus Im(¢) ~ Ker('I/J). Now let N = Ker('I/J) and let ~ : N ~ M be the 
inclusion. Since 'I/J*(~) = 'l/Jo~ = 0, exactness of Equation (3.10) implies that 
~ = ¢*(o) for some 0 E HomR(N, Md. Thus, 

Im(¢) 2 Im(~) = N = Ker('I/J), 

and we conclude that sequence (3.9) is exact. 
Again, exactness of sequence (3.11) is left as an exercise. o 

Note that, even if 

is a short exact sequence, the sequences (3.10) and (3.12) need not be short 
exact, i.e., neither 'I/J* or ¢* need be surjective. Following are some examples 
to illustrate this. 
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(3.11) Example. Consider the following short exact sequence of Z-modules: 

(3.13) 

where ¢( i) = mi and 'lj; is the canonical projection map. If N = Zn then 
sequence (3.12) becomes 

<p. 
0----+ Homz{Zm, Zn) ----+ Homz{Z, Zn) ----+ Homz(Z, Zn), 

which, by Example 1.5 (1O), becomes 

so that 
Homz{Zm, Zn) = Ker{¢*). 

Let d = gcd{m, n), and write m = m'd, n = n'd. Let f E Homz{Z, Zn). 
Then, clearly, ¢*(f) = 0 if and only if ¢*(f)(l) = O. But 

¢*(f)(l) = f{m· 1) = mf{l) = m'df{l). 

Since m' is relatively prime to n, we have m'df{l) = 0 if and only if df(l) = 
0, and this is true if and only if f(l) E n'Zn. Hence, Ker(¢*) = n'Zn ~ Zd, 
i.e., 

(3.14) 

This example also shows that even if 

is exact, the sequences (3.10) and (3.12) are not, in general, part of short 
exact sequences. For simplicity, take m = n. Then sequence (3.12) becomes 

(3.15) 

with ¢* = 0 so that ¢* is not surjective, while sequence (3.10) becomes 

~3.16) 

Since Homz(Zn, Z) = 0 and Homz(Zn, Zn) ~ Zn, sequence (3.16) becomes 

o ----+ 0 ----+ 0 ~ Zn 

and 'lj;* is certainly not surjective. 

These examples show that Theorem 3.10 is the best statement that 
can be made in complete generality concerning preservation of exactness 
under application of HomR. There is, however, the following criterion for 
the preservation of short exact sequences under Hom: 
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(3.12) Theorem. Let N be an arbitrary R-module. If 

(3.17) o ---+ MI ~ M ~ M2 ---+ 0 

is a split shori exact sequence of R-modules, then 

and 

are split shori exact sequences of abelian groups (R-modules if R is com
mutative). 

Proof. We will prove the split exactness of sequence (3.18); (3.19) is similar 
and it is left as an exercise. Given Theorem 3.10, it is only necessary to 
show that 'l/J* is surjective and that there is a splitting for sequence (3.18). 
Let (3 : M2 ---> M split the exact sequence (3.17) and let f E HomR(N, M2). 
Then 

'l/J* 0 (3*(J) = 'l/J*({3 0 1) 
= ('l/Jof3) of 

= (1M2) of 

= (lHomR(N,M2») (J). 

Thus, 'l/J* 0 (3* = 1HomR (N,M2) so that 'l/J* is surjective and {3* is a splitting 
of exact sequence (3.18). 0 

(3.13) Corollary. Let M I , M2, and N be R-modules. Then 

(3.20) 

and 

(3.21) 

The isomorphisms are Z-module isomorphisms (R-module isomorphisms if 
R is commutative). 

Proof. Both isomorphisms follow by applying Theorems 3.12 and 3.9 to the 
split exact sequence 

where L(m) = (m, 0) is the canonical injection and 7r(ml' m2) = m2 is the 
canonical projection. 0 
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(3.14) Remarks. 

(1) Notice that isomorphism (3.20) is given explicitly by 

where f E HomR(N, MI EEl M2) and ll'i(ml, m2) = mi (for i = 1,2); 
while isomorphism (3.21) is given explicitly by 

where f E HomR(MI EEl M2, N), LI : MI --+ MI EEl M2 is given by 
LI(m) = (m, 0) and L2 : M2 --+ MI EEl M2 is given by L2{m) = CO, m). 

(2) Corollary 3.13 actually has a natural extension to arbitrary (not nec
essarily finite) direct sums. We conclude this section by stating this 
extension. The proof is left as an exercise for the reader. 

(3.15) Proposition. Let {MihEl and {Nj}jEJ be indexed families (not 
necessarily finite) of R-modules, and let M = EEliEIMi' N = EEljEJNj . Then 

Proof. Exercise. 

HomR{M, N) ~ rr( EBHomR{Mi , N j )). 

iEI jEJ 

3.4 Free Modules 

o 

(4.1) Definition. Let R be a ring and let M be an R-module. A subset S ~ M 
is said to be R-linearly dependent if there exist distinct Xl, .•• ,Xn in Sand 
elements aI, ... ,an of R, not all of which are 0, such that 

A set that is not R-linearly dependent is said to be R-linearly independent. 

When the ring R is implicit from the context, we will sometimes write 
linearly dependent (or just dependent) and linearly independent (or just 
independent) in place of the more cumbersome R-linearly dependent or 
R-linearly independent. In case S contains only finitely many elements 
Xl, X2, ... ,Xn , we will sometimes say that Xl, X2, •.• ,Xn are R-linearly de
pendent or R-linearly independent instead of saying that S = {Xl, ... ,xn } 

is R-linearly dependent or R-linearly independent. 
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(4.2) Remarks. 

(1) To say that S ~ M is R-linearly independent means that whenever 
there is an equation 

where Xl, ... ,Xn are distinct elements of S and all ... ,an are in R, 
then 

(2) Any set S that contains a linearly dependent set is linearly dependent. 
(3) Any subset of a linearly independent set S is linearly independent. 
(4) Any set that contains 0 is linearly dependent since 1·0 = O. 
(5) A set S ~ M is linearly independent if and only if every finite subset 

of S is linearly independent. 

(4.3) Definition. Let M be an R-module. A subset S of M is a basis of M 
if S generates M as an R-module and if S is R-linearly independent. That 
is, S ~ M is a basis if and only if M = {O}, in which case S = 0 is a basis, 
or M =I- {O} and 

(1) every X E M can be written as 

for some Xl, ... ,Xn E Sand aI, ... ,an E R, and 
(2) whenever there is an equation 

where Xl, ... ,Xn are distinct elements of Sand aI, ... ,an are in R, 
then 

It is clear that conditions (1) and (2) in the definition of basis can be 
replaced by the single condition: 

(1') S ~ M is a basis of M =I- {O} if and only if every X E M can be written 
uniquely as 

X = al Xl + ... + anxn 

for al, ... ,an E R and Xl, ... ,Xn E S. 

(4.4) Definition. An R-module M is a free R-module if it has a basis. 

(4.5) Remark. According to Theorem 3.2, to say that S = {Xj}jEJ is a 
basis of M is equivalent to M being the direct sum of the family {Rx j h EJ 
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of sub modules of M, where Ann(xj) = {a} for all j E J. Moreover, if J is 
any index set, then N = ffijEJRj , where Rj = R for all j E J, is a free R
module with basis 8 = {ej}jEJ, where ej EN is defined by ej = (8jkhEJ' 
Here, 8jk is the kronecker delta function, i.e., 8jk = 1 E R whenever j = k 
and 8jk = ° E R otherwise. N is said to be free on the index set J. 

(4.6) Examples. 

(1) If R is a field then R-linear independence and R-linear dependence in 
a vector space V over R are the same concepts used in linear algebra. 

(2) Rn is a free module with basis 8 = {el' ... ,en} where 

ei = (0, ... ,0,1,0, ... ,0) 

with a 1 in the ith position. 
(3) Mm,n(R) is a free R-module with basis 

8 = {Eij : 1 ::; i ::; m, 1 ::; j ::; n}. 

(4) The ring R[X] is a free R-module with basis {xn : n E Z+}. As in 
Example 4.6 (2), R[X] is also a free R[X]-module with basis {I}. 

(5) If G is a finite abelian group then G is a Z-module, but no nonempty 
subset of Gis Z-linearly independent. Indeed, if g E G then IGI· g = ° 
but IGI -I- 0. Therefore, finite abelian groups can never be free Z
modules, except in the trivial case G = {a} when 0 is a basis. 

(6) If R is a commutative ring and I <;;; R is an ideal, then I is an R
module. However, if I is not a principal ideal, then I is not free as an 
R-module. Indeed, no generating set of I can be linearly independent 
since the equation (-a2)al + ala2 = ° is valid for any aI, a2 E R. 

(7) If Ml and M2 are free R-modules with bases 8 1 and 8 2 respectively, 
then Ml ffi M2 is a free R-module with basis 8~ U 8~, where 

8~ = {(x, 0) : x E 8d and 8~ = {(a, y) : y E 82 }. 

(8) More generally, if {Mj}jEJ is a family of free R-modules and 8 j <;;; M j 

is a basis of M j for each j E J, then M = ffijEJMj is a free R-module 
and 8 = UjEJSj is a basis of M, where Sj <;;; M is defined by 

Informally, 8j consists of all elements of M that contain an element of 
8 j in the /h component and ° in all other components. This example 
incorporates both Example 4.6 (7) and Example 4.6 (2). 

Example 4.6 (5) can be generalized to the following fact. 
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(4.7) Lemma. Let M be an R-module where R is a commutative ring. Then 
an element x E M is R-independent if and only if Ann(x) = {a}. In par
ticular, an element a E R is an R-independent subset of the R-module R if 
and only if a is not a zero divisor. 

Proof. Exercise. o 

(4.8) Proposition. Let R be an integml domain and let M be a free R
module. Then M is torsion-free. 

Proof. Let M have a basis S = {XjhEJ and let x E Mr. Then ax = 0 for 
some a#-O E R. Write x = LjEJ ajxj. Then 

0= ax = ~)aaj)xj. 
jEJ 

Since S is a basis of M, it follows that aaj = 0 for all j E J, and since 
a#-O and R is an integral domain, we conclude that aj = 0 for all j E J. 
Therefore, x = 0, and hence, Mr = (0) so that M is torsion-free. 0 

The existence of a basis for an R-module M greatly facilitates the 
construction of R-module homomorphisms from M to another R-module 
N. In fact, there is the following important observation. 

(4.9) Proposition. Let M be a free R-module with basis S, let N be any 
R-module, and let h : S -+ N be any function. Then there is a unique 
f E HomR(M, N) such that lis = h. 

Proof. Let S = {XjhEJ. Then any x E M can be written uniquely as 
x = LjEJ ajxj where at most finitely many aj are not O. Define I: M -+ N 
by 

I(x) = Lajh(xj). 
jEJ 

It is straightforward to check that I E HomR(M, N) and that lis = h. 0 

Remark. The content of Proposition 4.9 is usually expressed as saying that 
the value of a homomorphism can be arbitrarily assigned on a basis. 

(4.10) Corollary. Suppose that Mis a free R-module with basis S = {XjhEJ. 

Then 
HomR(M, N) s:! II N j 

jEJ 

where N j = N for all j E J. 

Proof. Define cP : HomR(M, N) -+ TIjEJ Nj by cp(f) = (f(Xj)jEJ. Then cP 
is an isomorphism of abelian groups (R-modules if R is commutative). 0 
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(4.11) Theorem. Let R be a commutative ring and let M and N be finitely 
generated free R-modules. Then HomR(M, N) is a finitely generated free 
R-module. 

Proof. Let B = {VI, ... ,vm} be a basis of M and C = {WI, ... ,wn} a basis 
of N. Define lij E HomR(M, N) for 1 ::; i ::; m and 1 ::; j ::; n by 

if k = i, 
if k =f i. 

lij is a uniquely defined element of HomR(M, N) by Proposition 4.9. 
We claim that {Iij : 1 ::; i ::; m; 1::; j ::; n} is a basis of HomR (M, N). 

To see this suppose that I E HomR(M, N) and for 1 ::; i ::; m write 

Let 
m n 

9 = LLaijlij. 
i=1 j=1 

Then 
g(Vk) = akIwI + ... + aknWn = I(Vk) 

for 1 ::; k ::; m, so 9 = I since the two homomorphisms agree on a basis 
of M. Thus, {lij : 1 ::; i ::; m; 1::; j ::; n} generates HomR(M, N), and 
we leave it as an exercise to check that this set is linearly independent and, 
hence, a basis. 0 

(4.12) Remarks. 

(1) A second (essentially equivalent) way to see the same thing is to write 
M ~ EB~IR and N ~ EB'J=IR. Then, Corollary 3.13 shows that 

m n 

HomR(M, N) ~ EB EB HomR(R, R). 
i=1 j=1 

But any I E HomR(R, R) can be written as I = 1(1) . 1R. Thus 
HomR(R, R) ~ R so that 

m n 

HomR(M, N) ~ EBEBR. 
i=1 j=1 

(2) The hypothesis of finite generation of M and N is crucial for the va
lidity of Theorem 4.11. For example, if R = Z and M = EBl'Z is the 
free Z-module on the index set N, then Corollary 4.10 shows that 

00 

Homz(M, Z) ~ II Z. 
I 
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But the Z-module TIr' Z is not a free Z-module. {For a proof of this fact 
(which uses cardinality arguments), see I. Kaplansky, Infinite Abelian 
Groups, University of Michigan Press, (1968) p. 48.) 

(4.13) Proposition. Let M be a free R-module with basis 8 = {Xj}jEJ. If 
I is an ideal of R, then 1M is a submodule of M and the quotient module 
M / I M is an R/ I -module. Let 11" : M ---+ M / I M be the projection map. 
Then M/IM is a free R/I-module with basis 11"(8) = {1I"(Xj)}jEJ. 

Proof. Exercise. o 

(4.14) Proposition. Every R-module M is the quotient of a free module and 
if M is finitely generated, then M is the quotient of a finitely generated free 
R-module. In fact, we may take p,(F) = p,(M). 

Proof. Let 8 = {Xj}jEJ be a generating set for the R-module M and let 
F = ffijEJRj where Rj = R be the free R-module on the index set J. Define 
the homomorphism '¢ : F ---+ M by 

,¢«aj)jEJ) = Lajxj. 
jEJ 

Since 8 is a generating set for M, '¢ is surjective and hence M ~ F / Ker( '¢). 
Note that if 181 < 00 then F is finitely generated. (Note that every module 
has a generating set 8 since we may take 8 = M.) Since M is a quotient of 
F, we have p,(M) :::; p,(F). But F is free on the index set J (Remark 4.5), 
so p,(F) :::; IJI, and since J indexes a generating set of M, it follows that 
p,(F) :::; p,(M) if 8 is a minimal generating set of M. Hence we may take F 
with p,(F) = p,(M). 0 

(4.15) Definition. If M is an R-module then a short exact sequence 

o ----+ K ----+ F ----+ M ----+ 0 

where F is a free R-module is called a free presentation of M. 

Thus, Proposition 4.14 states that every module has a free presenta
tion. 

(4.16) Proposition. If F is a free R-module then every short exact sequence 

o ----+ Ml ----+ M L F ----+ 0 

of R-modules is split exact. 

Proof. Let S = {Xj}jEJ be a basis ofthe free module F. Since f is surjective, 
for each j E J there is an element Yj E M such that f(Yj) = Xj' Define 
h : S ---+ M by h(xj) = Yj. By Proposition 4.9, there is a unique {3 E 
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HomR(F, M) such that ,Bls = h. Since f o,B(Xj) = Xj = IF(xj) for all 
j E J, it follows that f 0 ,B = IF, and the result follows from Theorem 
3.9. 0 

(4.17) Corollary. 

(1) Let M be an R-module and N ~ M a submodule with MIN free. Then 
M ~ N ffi (MIN). 

(2) If M is an R-module and F is a free R-module, then M ~ Ker(f) ffi F 
for every surjective homomorphism f : M ---+ F. 

Proof. (1) Since MIN is free, the short exact sequence 

0--+ N --+ M --+ MIN --+ 0 

is split exact by Proposition 4.16 Therefore, M ~ N ffi (MIN) by Theorem 
3.9. 

(2) Take N = Ker(f) in part (1). o 

(4.18) Corollary. Let N be an arbitrary R-module and F a free R-module. 
If 

( 4.1) 
1> ,p o --+ Ml --+ M --+ F --+ 0 

is a short exact sequence of R-modules, then 

is a (split) short exact sequence of abelian groups (R-modules if R is com
mutative). 

Proof. By Proposition 4.16, the sequence (4.1) is split exact, so the corollary 
follows immediately from Theorem 3.12. 0 

(4.19) Remark. It is a theorem that any two bases of a free module over 
a commutative ring R have the same cardinality. This result is proved 
for finite-dimensional vector spaces by showing that any set of vectors of 
cardinality larger than that of a basis must be linearly dependent. The 
same procedure works for free modules over any commutative ring R, but 
it does require the theory of solvability of homogeneous linear equations 
over a commutative ring. However, the result can be proved for RaPID 
without the theory of solvability of homogeneous linear equations over R; 
we prove this result in Section 3.6. The result for general commutative rings 
then follows by an application of Proposition 4.13. 

The question of existence of a basis of a module, that is, to ask if a 
given module is free, is a delicate question for a general commutative ring R. 
We have seen examples of Z-modules, namely, finite abelian groups, which 
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are not free. We will conclude this section with the fact that all modules 
over division rings, in particular, vector spaces, are free modules. In Section 
3.6 we will study in detail the theory of free modules over a PID. 

(4.20) Theorem. Let D be a division ring and let V be a D-module. Then 
V is a free D-module. In particular, every vector space V has a basis. 

Proof. The proof is an application of Zorn's lemma. 
Let S be a generating set for V and let Bo ~ S be any linearly in

dependent subset of S (we allow Bo = 0). Let T be the set of all linearly 
independent subsets of S containing Bo and partially order T by inclusion. 
If {Bi} is a chain in T, then UBi is a linearly independent subset of S 
that contains Bo; thus, every chain in T has an upper bound. By Zorn's 
lemma, there is a maximal element in T, so let B be a maximal linearly 
independent subset of S containing Bo. We claim that S ~ (B) so that 
V = (S) ~ (B). Let v E S. Then the maximality of B implies that V U {v} 
is linearly dependent so that there is an equation 

m 

Laivi + bv = 0 
i=1 

where VI, '" ,Vm are distinct elements of B and all ... ,am, bED are not 
all O. If b = 0 it would follow that L::I aivi = 0 with not all the scalars 
ai = O. But this contradicts the linear independence of B. Therefore, b i- 0 
and we conclude 

m 

V = b-I(bv) = L( -b-Iai)Vi E (B). 
i=1 

Therefore, S ~ (B), and as observed above, this implies that B is a basis 
ofV. 0 

The proof of Theorem 4.20 actually proved more than the existence of 
a basis of V. Specifically, the following more precise result was proved. 

(4.21) Theorem. Let D be a division ring and let V be a D-module. If S 
spans V and Bo ~ S is a linearly independent subset, then there is a basis 
B of V such that Bo ~ B ~ S. 

Proof. o 

(4.22) Corollary. Let D be a division ring, and let V be aD-module. 

(1) Any linearly independent subset of V can be extended to a basis ofV. 
(2) A maximal linearly independent subset of V is a basis. 
(3) A minimal generating set of V is a basis. 

Proof. Exercise. o 
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Notice that the above proof used the existence of inverses in the division 
ring D in a crucial way. We will return in Section 3.6 to study criteria that 
ensure that a module is free if the ring R is assumed to be a PID. Even 
when R is a PID, e.g., R = Z, we have seen examples of R modules that 
are not free, so we will still be required to put restrictions on the module 
M to ensure that it is free. 

3.5 Projective Modules 

The property of free modules given in Proposition 4.16 is a very useful one, 
and it is worth investigating the class of those modules that satisfy this 
condition. Such modules are characterized in the following theorem. 

(5.1) Theorem. The following conditions on an R-module P are equivalent. 

(1) Every short exact sequence of R-modules 

splits. 
(2) There is an R-module pi such that p EB pi is a free R-module. 
(3) For any R-module N and any surjective R-module homomorphism 'IjJ : 

M ---+ P, the homomorphism 

is surjective. 
(4) For any surjective R-module homomorphism ¢> : M ---+ N, the homo

morphism 

is surjective. 

Proof. (1) => (2). Let 0 ---+ K ---+ F ---+ P ---+ 0 be a free presentation of 
P. Then this short exact sequence splits so that F ~ P EB K by Theorem 
3.9. 

(2) => (3). Suppose that F = P EB pI is free. Given a surjective R
module homomorphism 'IjJ : M ---+ P, let 'IjJ' = 'IjJ EB Ip' : M EB pi ---+ P EB pi = 
F; this is also a surjective homomorphism, so there is an exact sequence 

o ---+ Ker( 'IjJ') ---+ M EB pi £ F ---+ O. 

Since F is free, Proposition 4.16 implies that this sequence is split exact; 
Theorem 3.12 then shows that 
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is a surjective homomorphism. Now let I E HomR{N, P) be arbitrary and 
let f' = ~ 0 I, where ~ : P - P EB pI is the inclusion map. Then there 
is an 1 E HomR{N, M EB PI) with 'I/J~(1) = I'. Let 71" : M EB pI - M 
and 71"' : P EB P' - P be the projection maps. Note that 71"' 0 ~ = Ip and 
'I/J 0 71" = 71"' 0 'I/J'. Then 

'I/J.{7I" 0 1) = 'I/J 0 (71" 0 1) 

Therefore, 'I/J. is surjective. 

= 71"' 0 'I/J' 0 1 
= 71"' 0 f' 
=(7I"'o~)ol 

=1· 

(3) ::::} (4). Let 0 ----+ K ----+ F ~ P ----+ 0 be a free presentation of 
P. By property (3), there is a (3 E HomR(P, F) such that 'I/J*({3) = Ip, i.e., 
'l/Jo{3 = Ip. Let t/J: M - N be any surjective R-module homomorphism and 
let I E HomR(P, N). Then there is a commutative diagram of R-module 
homomorphisms 

F~P----+O 

if 
M~N----+O 

with exact rows. Let S = {Xj}jEJ be a basis of F. Since t/J is surjective, 
we may choose Yj E M such that t/J(Yj) = 1 0 'I/J(Xj) for all j E J. By 
Proposition 4.9, there is an R-module homomorphism g : F - M such 
that g(Xj) = Yj for allj E J. Since t/Jog(Xj) = t/J(Yj) = I o 'I/J(Xj) , it follows 
that t/J 0 g = 1 0 'I/J. Define 1 E HomR(P, M) by 1 = go {3 and observe that 

t/J. (1) = t/J 0 (g 0 (3) 

=lo'I/Jo{3 

= lolp 

=f. 

Hence, t/J* : HomR(P, M) - HomR(P, N) is surjective. 
( 4) ::::} (I). A short exact sequence 

o ----+ Ml ----+ M ~ P ----+ 0, 

in particular, includes a surjection 'I/J : M - P. Now take N = P in part 
(4). Thus, 

'I/J. : HomR(P, M) - HomR(P, P) 

is surjective. Choose (3: P - M with 'I/J.({3) = Ip. Then {3 splits the short 
exact sequence and the result is proved. 0 
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(5.2) Definition. An R-module P satisfying any of the equivalent conditions 
of Theorem 5.1 is called projective. 

As noted before Theorem 5.1, projective modules are introduced as the 
class of modules possessing the property that free modules were shown to 
possess in Proposition 4.16. Therefore, we have the following fact: 

(5.3) Proposition. Free R-modules are projective. 

Proof. D 

(5.4) Corollary. Let R be an integml domain. If P is a projective R-module, 
then P is torsion-free. 

Proof. By Theorem 5.1 (2), P is a submodule of a free module F over R. 
According to Proposition 4.8, every free module over an integral domain is 
torsion-free, and every submodule of a torsion-free module is torsion-free. 

D 

(5.5) Corollary. An R-module P is a finitely genemted projective R-module 
if and only if P is a direct summand of a finitely genemted free R-module. 

Proof. Suppose that P is finitely generated and projective. By Proposition 
4.14, there is a free presentation 

o ---. K ---. F ---. P ---. 0 

such that F is free and J.L(F) = J.L(P) < 00. By Theorem 5.1, P is a direct 
summand of F. 

Conversely, assume that P is a direct summand of a finitely generated 
free R-module F. Then P is projective, and moreover, if P EB pI ~ F then 
F / pI ~ P so that P is finitely generated. D 

(5.6) Examples. 

(1) Every free module is projective. 
(2) Suppose that m and n are relatively prime natural numbers. Then 

as abelian groups Zmn ~ Zm EB Zn. It is easy to check that this iso
morphism is also an isomorphism of Zmn-modules. Therefore, Zm is 
a direct summand of a free Zmn-module, and hence it is a projective 
Zmn-module. However, Zm is not a free Zmn module since it has fewer 
than mn elements. 

(3) Example 5.6 (2) shows that projective modules need not be free. We 
will present another example of this phenomenon in which the ring R is 
an integral domain so that simple cardinality arguments do not suffice. 
Let R = Z[Al and let I be the ideal I = (2, 1 + A) = (ab a2). It 
is easily shown that I is not a principal ideal, and hence by Example 
4.6 (6), we see that I cannot be free as an R-module. We claim that I 
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is a projective R-module. To see this, let b = 1 - v'-5 E R, let F be a 
free R-module with basis {SI' S2}, and let 41: F -+ I be the R-module 
homomorphism defined by 

41(rlsl + r2s2) = rIal + r2a2· 

Now define an R-module homomorphism a : 1-+ F by 

a(a) = -aSl + ((ab)/2)s2' 

Note that this makes sense because 2 divides ab for every a E I. Now 
for a E I, 

41 0 a(a) = 41( -aSl + ((ab)/2)s2) 

= -aal + ((ab)/2)a2 

= -aal + aa2b/2 

= -2a+ 3a 

=a 

so that a is a splitting of the surjective map 41. Hence, F 9! Ker( 41) ffi I 
and by Theorem 5.1, I is a projective R-module. 

Concerning the construction of new projective modules from old ones, 
there are the following two simple facts: 

(5.7) Proposition. Let {PjhEJ be a family of R-modules, and let P = 
ffijEJPj . Then P is projective if and only if Pj is projective for each j E J. 

Proof. Suppose that P is projective. Then by Theorem 5.1, there is an 
R-module P' such that P ffi P' = F is a free R-module. Then 

F=PffiP'= (ffiPj)ffiP', 
jEJ 

and hence, each Pj is also a direct summand of the free R-module F. Thus, 
Pj is projective. 

Conversely, suppose that Pj is projective for every j E J and let Pj be 
an R-module such that Pj ffi Pj = Fj is free. Then 

P ffi ( ffi Pj) 9! ffi (pj ffi Pj) 
jEJ jEJ 

Since the direct sum of free modules is free (Example 4.6 (8», it follows 
that P is a direct summand of a free module, and hence P is projective. D 
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(5.8) Proposition. Let R be a commutative ring and let P and Q be finitely 
generated projective R-modules. Then HomR(P, Q) is a finitely generated 
projective R-module. 

Proof. Since P and Q are finitely generated projective R-modules, there are 
R-modules P' and Q' such that PffiP' and QffiQ' are finitely generated free 
modules. Therefore, by Theorem 4.11, HomR(P ffi P', Q ffi Q') is a finitely 
generated free R-module. But 

HomR(P ffi p', Q ffi Q') ~ HomR(P, Q) ffi HomR(P, Q') 

ffi HomR(P', Q) ffi HomR(P', Q') 

so that HomR(P, Q) is a direct summand of a finitely generated free R
module, and therefore, it is projective and finitely generated by Corollary 
5.5. 0 

Example 5.6 (3) was an example of an ideal in a ring R that was 
projective as an R-module, but not free. According to Example 4.6 (6), an 
ideal I in a ring R is free as an R-module if and only if the ideal is principal. 
It is a natural question to ask which ideals in a ring R are projective as 
R-modules. Since this turns out to be an important question in number 
theory, we will conclude our brief introduction to the theory of projective 
modules by answering this question for integral domains R. 

(5.9) Definition. Let R be an integral domain and let K be the quotient 
field of R. An ideal I <;;: R is said to be invertible if there are elements 
aI, ... ,an E I and bl , ... ,bn E K such that 

(5.1) bJ <;;: R for 1::; i::; n, and 
(5.2) albl + ... + anbn = 1. 

(5.10) Examples. 

(1) If I <;;: R is the principal ideal I = (a) where a =1= 0, then I is an 
invertible ideal. Indeed, let b = l/a E K. Then any x E I is divisible 
by a in R so that bx = (l/a)x E R, while a(l/a) = 1. 

(2) Let R = Z[A] and let 1= (2, 1 + A). Then it is easily checked 
that I is not principal, but I is an invertible ideal. To see this, let 
al = 2, a2 = 1 + A, bl = -1, and b2 = (1- A)/2. Then 

albl + a2b2 = -2 + 3 = 1. 

Furthermore, a l b2 and a2b2 are in R, so it follows that b21 <;;: R, and 
we conclude that I is an invertible ideal. 

The following result characterizes which ideals in an integral domain 
R are projective modules. Note that the theorem is a generalization of 
Example 5.6 (3): 
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(5.11) Theorem. Let R be an integral domain and let I ~ R be an ideal. 
Then I is a projective R-module if and only if I is an invertible ideal. 

Proof. Suppose that I is invertible and choose aI, ... ,an E I and b1 , ... ,bn 
in the quotient field K of R so that Equations (5.1) and (5.2) are satisfied. 
Let ¢ : Rn ---+ I be defined by 

and define (3 : I ---+ R n by 

Note that abi E R for all i by Equation (5.1). Equation (5.2) shows that 

for every a E I. Therefore ¢ 0 (3 = lp and Theorem 3.9 implies that I is a 
direct summand of the free R-module R n , so I is a projective R-module. 

Conversely, assume that the ideal I ~ R is projective as an R-module. 
Then I is a direct summand of a free R-module F, so there are R-module 
homomorphisms ¢ : F ---+ I and (3 : I ---+ F such that ¢ 0 (3 = 1r. Let 
S = {Xj}jEJ be a basis of F. Given x E I, (3(x) E F can be written 
uniquely as 

(5.3) (3(X) = L CjXj. 
jEJ 

For each j E J, let 'ljJj(x) = Cj. This gives a function 'ljJj : I ---+ R, which is 
easily checked to be an R-module homomorphism. If aj = ¢(Xj) E I, note 
that 

(5.4) for each x E I, 'ljJj(x) = 0 except for at most finitely many j E J; 
(5.5) for each x E I, Equation (5.3) shows that 

x = ¢((3(x)) = L 'ljJj(x)aj. 
JEJ 

Given x -I 0 E I and j E J, define bj E K (K is the quotient field of 
R) by 

(5.6) 

The element bj E K depends on j E J but not on the element x -I 0 E I. 
To see this, suppose that x' -I 0 E I is another element of I. Then 
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so that 1/Jj(x)/x = 1/Jj(x')/x'. Therefore, for each j E J we get a uniquely 
defined bj E K. By property (5.4), at most finitely many of the bj are not 
o. Label the nonzero bj by bl , ... , bn . By property (5.5), if x#- 0 E I then 

Cancelling x "I- 0 from this equation gives 

where al, ... , an E I and b1 ... , bn E K. It remains to check that bjI <;;;: R 
for 1 ::; j ::; n. But if x#- 0 E I then bj = 1/Jj(x)/x so that bjx = 1/Jj(x) E R. 
Therefore, I is an invertible ideal and the theorem is proved. 0 

(5.12) Remark. Integral domains in which every ideal is invertible are known 
as Dedekind domains, and they are important in number theory. For ex
ample, the ring of integers in any algebraic number field is a Dedekind 
domain. 

3.6 Free Modules over a PID 

In this section we will continue the study of free modules started in Sec
tion 3.4, with special emphasis upon theorems relating to conditions which 
ensure that a module over a PID R is free. As examples of the types of 
theorems to be considered, we will prove that all submodules of a free R
module are free and all finitely generated torsion-free R-modules are free, 
provided that the ring R is a PID. Both of these results are false without 
the assumption that R is a PID, as one can see very easily by consider
ing an integral domain R that is not a PID, e.g., R = Z[X], and an ideal 
I <;;;: R that is not principal, e.g., (2, Xl <;;;: Z[X]. Then I is a torsion-free 
submodule of R that is not free (see Example 4.6 (6)). 

Our analysis of free modules over PIDs will also include an analysis of 
which elements in a free module M can be included in a basis and a criterion 
for when a linearly independent subset can be included in a basis. Again, 
these are basic results in the theory of finite-dimensional vector spaces, but 
the case of free modules over a PID provides extra subtleties that must be 
carefully analyzed. 

We will conclude our treatment of free modules over PIDs with a fun
damental result known as the invariant factor theorem for finite rank sub
modules of free modules over a PID R. This result is a far-reaching gener
alization of the freeness of submodules of free modules, and it is the basis 
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for the fundamental structure theorem for finitely generated modules over 
PIDs which will be developed in Section 3.7. 

We start with the following definition: 

(6.1) Definition. Let M be a free R-module. Then the free rank of M, 
denoted free-rankR(M), is the minimal cardinality of a basis of M. 

Since we will not be concerned with the fine points of cardinal arith
metic, we shall not distinguish among infinite cardinals so that 

free-rankR(M) E z+ U {oo}. 

Since a basis is a generating set of M, we have the inequality J..L(M) < 
free-rankR(M). We will see in Corollary 6.18 that for an arbitrary commu
tative ring R and for every free R-module, free-rankR(M) = J..L(M) and all 
bases of M have this cardinality. 

(6.2) Theorem. Let R be a PID, and let M be a free R-module. If N ~ M 
is a submodule, then N is a free R-module, and 

free-rankR(N) :::; free-rankR(M). 

Proof. We will first present a proof for the case where free-rankR(M) < 00. 

This case will then be used in the proof of the general case. For those who 
are only interested in the case of finitely generated modules, the proof of 
the second case can be safely omitted. 

Case 1. free-rankR(M) < 00. 

We will argue by induction on k = free-rankR(M). If k = 0 then 
M = (0) so N = (0) is free of free-rank O. If k = 1, then M is cyclic so 
M = (x) for some nonzero x E M. If N = (0) we are done. Otherwise, let 
I = {a E R : ax EN}. Since I is an ideal of Rand R is a PID, I = (d); 
since N cI (0), del O. If yEN then y = ax = rdx E (dx) so that N = (dx) 
is a free cyclic R-module. Thus free-rankR(N) = 1 and the result is true 
for k = l. 

Assume by induction that the result is true for all M with free-rank k, 
and let M be a module with free-rankR(M) = k+ l. Let S = {Xl, ... ,xk+d 
be a basis of M and let Mk = (Xl, ... ,Xk). If N ~ Mk we are done by 
induction. Otherwise N n Mk is a submodule of Mk which, by induction, is 
free of free-rank £ :::; k. Let {YI, ... ,ye} be a basis of N n Mk. By Theorem 
2.5 

N/(N n Mk) ~ (N + Mk)/Mk ~ M/Mk = (Xk+l + Mk). 

By the k = 1 case of the theorem, (N + Mk)/Mk is a free cyclic submodule 
of M/Mk with basis dXk+1 + Mk where d cI O. Choose YHI E N so that 
YHI = dXk+l + x' for some x' E Mk· Then (N + Mk)/Mk = (YHI + Mk). 
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We claim that S' = {Yl, ... ,Ye, YHl} is a basis of N. To see this, let yEN. 
Then Y + Mk = aHl(YHl + Mk) so that Y - aHIYHl E N n Mk, which 
implies that Y - aHIYHl = alYl + ... aeYe. Thus S' generates N. Suppose 
that alYl + .. ·+aHIYHl = O. Then aHl(dxk+l +x')+alYl + .. ·+aeYe = 0 
so that aHldxk+l E Mk. But S is a basis of M so we must have ae+ld = 0; 
since d ic 0 this forces aHl = o. Thus alYl + ... + aeYe = 0 which implies 
that al = ... = ae = 0 since {Yl, ... ,ye} is linearly independent. Therefore 
S' is linearly independent and hence a basis of N, so that N is free with 
free-rankR(N) :::; £ + 1 :::; k + 1. This proves the theorem in Case 1. 

Case 2. free-rankR(M) = 00. 

Since (0) is free with basis 0, we may assume that N ic (0). Let S = 

{Xj}jEJ be a basis of M. For any subset K ~ J let MK = ({XdkEK) 
and let NK = N n M K. Let T be the set of all triples (K, K', I) where 
K' ~ K ~ J and f : K' --t NK is a function such that {f(k)}kEK' is a 
basis of N K. We claim that T ic 0. 

Since N ic (0) there is an x ic 0 E N, so we may write x = alxJt + ... + 
akxjk. Hence x E NK where K = {jl, ... ,jd. But MK is a free R-module 
with free-rankR(MK ) :::; k < 00 and NK is a nonzero submodule. By Case 
1, N K is free with free-rankR(N K) = £ :::; k. Let {Yl, ... ,ye} be a basis of 
N K, and let K' = {jl, ... ,je}, and define f : K' ---> NK by f(ji) = Yi for 
1 :::; i :::; £. Then (K, K', I) E T so that Tic 0, as claimed. 

Now define a partial order on T by setting (K, K', I) :::; (L, L', g) if 
K ~ L, K' ~ L', and giK' = f. If {(Ka, K~, fa)}aEA ~ T is a chain, then 
(UaEA K a , UaEA K~, F) where FiK;" = fa is an upper bound in T for 
the chain. Therefore, Zorn's lemma applies and there is a maximal element 
(K, K', I) of T. 

Claim. K = J. 

Assuming the claim is true, it follows that MK = M, NK = NnMK = 
N, and U(k)hEK' is a basis of N. Thus, N is a free module (since it has 
a basis), and since S was an arbitrary basis of M, we conclude that N has 
a basis of cardinality:::; free-rankR(M), which is what we wished to prove. 

It remains to verify the claim. Suppose that K ic J and choose j E 

J \ K. Let L = K U {j}. If NK = NL then (K, K', I) ~ (L, K', I), 
contradicting the maximality of (K, K', I) in T. If NK ic NL, then 

By Case 1, (NL + MK )/MK is a free cyclic submodule with basis dXj + MK 
where d ic O. Choose z E NL so that z = dXj + w for some w E MK. 
Then (NL + MK)/MK = (z + MK). Now let L' = K' U {j} and define 
f' : L' --t N L by 

J'(k) = {:(k) if k E K', 
if k = j. 
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We need to show that {1'(k)hEL' is a basis of N L. But if x E NL then 
x + MK = CZ + MK for some c E R. Thus x - cz E MK n N = NK so that 

x - cz = L bkf(k) 
kEK' 

where bk E R. Therefore, {J(k)}kEL' generates N L. 
Now suppose EkEL' bkJ'(k) = O. Then 

bjz + L bkf(k) = 0 
kEK' 

so that 
dbjXj + bjw + L bkf(k) = O. 

kEK' 

That is, dbjxj E MK n (Xj) = (0), and since S = {Xe}i'EJ is a basis 
of M, we must have db j = O. But d =I 0, so bj = O. This implies that 
EkEK' bkf(k) = O. But {J(k)hEK' is a basis of N K , so we must have 
bk = 0 for all k E K'. Thus {J'(k)hEL' is a basis of N L. We conclude that 
(K, K', J) ~ (L, L', 1'), which contradicts the maximality of (K, K', J). 
Therefore, the claim is verified, and the proof of the theorem is complete. 

D 

(6.3) Corollary. Let R be a PID and let P be a projective R-module. Then 
P is free. 

Proof. By Proposition 4.14, P has a free presentation 

O~K~F~P~O. 

Since P is projective, this exact sequence splits and hence F ~ P EB K. 
Therefore, P is isomorphic to a submodule of F, and Theorem 6.2 then 
shows that P is free. D 

(6.4) Corollary. Let M be a finitely generated module over the PIn Rand 
let N ~ M be a submodule. Then N is finitely generated and 

p,(N) -:; p,(M). 

Proof. Let 

O~K~F~M~O 

be a free presentation of M such that free-rank(F) = p,(M) < 00, and let 
NI = ¢-I(N). By Theorem 6.2, NI is free with 

p,(NI ) -:; free-rank(NI ) -:; free-rank(F) = p,(M). 

Since N = ¢(NI ), we have p,(N) -:; p,(Nd, and the result is proved. D 



146 Chapter 3. Modules and Vector Spaces 

(6.5) Remark. The hypothesis that R be a PID in Theorem 6.2 and Corol
laries 6.3 and 6.4 is crucial. For example, consider the ring R = Z[X] and 
let M = Rand N = (2, X). Then M is a free R-module and N is a sub
module of M that is not free (Example 4.6 (6)). Moreover, R = Z[A]' 
P = (2, 1 + A) gives an example of a projective R-module P that is 
not free (Example 5.6 (3)). Also note that 2 = f1(N) > f1(M) = 1 and 
2 = f1(P) > 1 = f1(R). 

Recall that if M is a free module over an integral domain R, then M is 
torsion-free (Proposition 4.8). The converse of this statement is false even 
under the restriction that R be a PID. As an example, consider the Z
module Q. It is clear that Q is a torsion-free Z-module, and it is a simple 
exercise to show that it is not free. There is, however, a converse if the 
module is assumed to be finitely generated (and the ring R is a PID). 

(6.6) Theorem. If R is a PID and M is a finitely generated torsion-free 
R-module, then M is free and 

free-rankR(M) = f1(M). 

Proof. The proof is by induction on f1(M). If f1(M) = 1 then M is cyclic 
with generator {x}. Since M is torsion-free, Ann(x) = {a}, so the set {x} 
is linearly independent and, hence, is a basis of M. 

Now suppose that f1(M) = k > a and assume that the result is true 
for all finitely generated torsion-free R-modules M' with f1(M') < k. Let 
{Xl, ... ,xd be a minimal generating set for M, and let 

for some a =1= a E R}. 

Then MIMI is generated by {X2 + M l , ... , Xk + Md so that f1(MIMd = 

j ::; k - 1. If ax E Ml for some a =1= a E R, then from the definition of M l , 
b(ax) E (Xl) for some b =1= a. Hence X E Ml and we conclude that MIMI 
is torsion-free. By the induction hypothesis, MIMI is free of free-rankj. 
Then Corollary 4.17 shows that M ~ Ml ffi (M I Md. We will show that Ml 
is free of free-rank 1. It will then follow that 

k = f1(M) ::; f1(Md + f1(MIMd = 1 + j, 
and since j ::; k -1, it will follow that j = k -1 and M is free offree-rank = 
k. 

It remains to show that Ml is free of rank 1. Note that if R is a field 
then Ml = R . Xl and we are done. In the general case, Ml is a submodule 
of M, so it is finitely generated by C ::; k elements. Let {Yl, ... ,yt} be 
a generating set for Ml and suppose that aiYi = biXl with ai =1= a for 
1 ::; i ::; C. Let qo = al ... af· 

Claim. Ifax = bXl with a =1= a then a I bqo· 
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To see this note that x = 2:f=l CiYi so that 

f. 

qox = L CiqOYi 
i=l 

f. 

= L ci(qO/ai)aiYi 
i=l 

f. 

= L ci(qO/ai)bix 1 
i=l 

Therefore. 

bqoxl = aqox = a (t,Ci(qo/ai)bi) Xl· 

Since Ml is torsion-free, it follows that 

and the claim is proved. 
Using this claim we can define a function 4> : Ml -t R by 4>(x) = 

(bqo)/a whenever ax = bXl for a #- o. We must show that 4> is well defined. 
That is, if ax = bX1 and a'x = b'x, then (bqo)/a = (b'qo)/a'. But ax = bXl 
and a'x = b'X1 implies that a'bxl = a'ax = ab'xl so that a'b = ab' because 
M is torsion-free. Thus a'bqo = ab'qo so that (bqo)/a = (b'qo)/a' and 4> is 
well defined. Furthermore, it is easy to see that 4> is an R-module homo
morphism so that Im(4)) is an R-submodule of R, i.e., an ideal. Suppose 
that 4>(x) = O. Then ax = bXl with a#-O and 4>(x) = (bqo)/a = 0 E R. 
Since R is an integral domain, it follows that b = 0 and hence ax = O. Since 
M is torsion-free we conclude that x = o. Therefore, Ker(4)) = {O} and 

Ml ~ Im(4)) = Rc. 

Hence, Ml is free of rank 1, and the proof is complete. o 

(6.7) Corollary. If M is a finitely generated module over a field F, then M 
is free. 

Proof. Every module over a field is torsion-free (Proposition 2.20). 0 

(6.8) Remark. We have already given an independent proof (based on Zorn's 
lemma) for Corollary 6.7, even without the finitely generated assumption 
(Theorem 4.20). We have included Corollary 6.7 here as an observation that 
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it follows as a special case of the general theory developed for torsion-free 
finitely generated modules over a PID. 

(6.9) Corollary. If M is a finitely generated module over a PID R, then 
M ~ Mr EB (M/Mr ). 

Proof. There is an exact sequence of R-modules 

Hence, M/Mr is finitely generated and by Proposition 2.18, it is torsion
free, so Theorem 6.6 shows that M/Mr is free. Then Corollary 4.17 shows 
that M ~ Mr EB (M/Mr ). D 

The main point of Corollary 6.9 is that any finitely generated module 
over a PID can be written as a direct sum of its torsion submodule and 
a free submodule. Thus an analysis of these modules is reduced to study
ing the torsion submodule, once we have completed our analysis of free 
modules. We will now continue the analysis of free modules over a PID R 
by studying when an element in a free module can be included in a basis. 
As a corollary of this result we will be able to show that any two bases 
of a finitely generated free R-module (R a PID) have the same number of 
elements. 

(6.10) Example. Let R be a PID and view R as an R-module. Then an 
element a E R forms a basis of R if and only if a is a unit. Thus if R is 
a field, then every nonzero element is a basis of the R-module R, while if 
R = Z then the only elements of Z that form a basis of Z are 1 and -1. 
As a somewhat more substantial example, consider the Z-module Z2. Then 
the element u = (2, 0) E Z2 cannot be extended to a basis of Z2 since if v 
is any element of Z2 with {u, v} linearly independent, the equation 

au + f3v = (1, 0) 

is easily seen to have no solution a, f3 E Z. Therefore, some restriction on 
elements of an R-module that can be included in a basis is necessary. The 
above examples suggest the following definition. 

(6.11) Definition. Let M be an R-module. A torsion-free element x =I- 0 E M 
is said to be primitive if x = ay for some y E M and a E R implies that a 
is a unit of R. 

(6.12) Remarks. 

(1) If R is a field, then every nonzero x E M is primitive. 
(2) The element x E R is a primitive element of the R-module R if and 

only if x is a unit. 
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(3) The element (2, 0) E Z2 is not primitive since (2, 0) = 2 . (1, 0). 
(4) If R = Z and M = Q, then no element of M is primitive. 

(6.13) Lemma. Let R be a PID and let M be a free R-module with basis 
S = {Xj}jEJ. If x = LjEJajXj E M, then x is primitive if and only if 
gcd({aj}jEJ) = 1. 

Proof. Let d = gcd({aj}jEJ). Then x = d(LjEJ(aj/d)xj), so if d is not a 
unit then x is not primitive. Conversely, if d = 1 and x = ay then 

= ay 

= a(L:bjxj) 
jEJ 

= L:abjxj. 
jEJ 

Since S = {Xj}jEJ is a basis, it follows that aj = abj for all j E J. That 
is, a is a common divisor of the set {aj}jEJ so that a I d = 1. Hence a is a 
unit and x is primitive. D 

(6.14) Lemma. Let R be a PID and let M be a finitely generated R-module. 
If x E M has Ann(x) = (0), then we may write x = ax' where a E Rand 
x' is primitive. (In particular, if M is not a torsion module, then M has a 
primitive element.) 

Proof. Let Xo = x. If Xo is primitive we are done. Otherwise, write Xo = alxl 
where al E R is not a unit. Then (xo) ~ (Xl)' To see this, it is certainly 
true that (xo) C;;; (Xl). If the two submodules are equal then we may write 
Xl = bxo so that Xo = alXl = albxO, i.e., (1 - alb) E Ann(xo) = (0). 
Therefore, 1 = alb and al is a unit, which contradicts the choice of al. 

Now consider Xl. If Xl is primitive, we are done. Otherwise, Xl = 
a2X2 where a2 is not a unit, and as above we conclude that (Xl) ~ (X2)' 
Continuing in this way we obtain a chain of sub modules 

(6.1) 

Either this chain stops at some i, which means that Xi is primitive, or (6.1) 
is an infinite properly ascending chain of submodules of M. We claim that 
the latter possibility cannot occur. To see this, let N = U:1 (Xi). Then N 
is a submodule of the finitely generated module M over the PID R so that 
N is also finitely generated by {Yl,"" yd (Corollary 6.4). Since (xo) c;;; 
(Xl) C;;; "', there is an i such that {Yl, ... ,yd c;;; (Xi)' Thus N = (Xi) and 
hence (Xi) = (Xi+l) = "', which contradicts having an infinite properly 
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ascending chain. Therefore, Xi is primitive for some i, and if we let x' = Xi 
we conclude that X = ax' where a = ala2··· ai. 0 

(6.15) Remark. Suppose that M is a free R-module, where R is a PID, and 
x E M. Then Ann(x) = (0), so x = ax' where x' is a primitive element of 
M. If S = {Xj}jEJ is a basis of M, then we may write x' = "EjEJbjXj so 
that 

x = ax' = Labjxj = LCjXj. 
jEJ jEJ 

Since gcd({bj}jEJ) = 1 (by Lemma 6.13) we see that a = gcd({cj}jEJ). 
The element a E R, which is uniquely determined by x up to multiplication 
by a unit of R, is called the content of x E M and is denoted c(x). (Compare 
with the concept of content of polynomials (Definition 2.6.3).) Thus, any 
x E M can be written 

(6.2) x = c(x) . x' 

where x' is primitive. 

(6.16) Theorem. Let R be a PID and let M be a free R-module with 

rank(M) = k = J.L(M) = free-rank(M). 

If x E M is primitive, then M has a basis of k elements containing x. 

Proof. Assume first that k < 00 and proceed by induction on k. Suppose 
k = 1 and let M have a basis {Xl}. Then x = aXI for some a E R. Since x 
is primitive, it follows that a is a unit so that (x) = (Xl) = M, hence {x} 
is a basis of M. 

The case k = 2 will be needed in the general induction step, so we 
present it separately. Thus suppose that M has a basis {Xl, X2} and let 
x = rXI + SX2 where r, s E R. Since x is primitive, gcd{r, s} = 1, so we 
may write ru + sv = 1. Let x~ = -VXI + UX2. Then 

Xl = ux - sx~ 

and 
X2 = vx + rx~. 

Hence, (x, x~) = M. It remains to show that {x, x~} is linearly indepen
dent. Suppose that ax + bx~ = o. Then 

a(rxi + SX2) + b( -VXI + UX2) = O. 

Since {Xl, X2} is a basis of M, it follows that 

ar - bv = 0 

and 



3.6 Free Modules over a PID 151 

as + bu = o. 
Multiplying the first equation by u, multiplying the second by v, and adding 
shows that a = 0, while multiplying the first by -s, multiplying the second 
by r, and adding shows that b = O. Hence, {x, x;} is linearly independent 
and, therefore, a basis of M. 

Now suppose that J.L(M) = k > 2 and that the result is true for all free 
R-modules ofrank < k. By Theorem 6.6 there is a basis {Xl, ... ,xd of M. 

Let x = 2:7=1 aiXi· If ak = 0 then x E M1 = (Xl, ... ,Xk-1), so by induc
tion there is a basis {x,x;, ... ,X~_l} of M1. Then {x,x;, ... ,X~_l' xd is 

a basis of M containing x. Now suppose that ak i=- 0 and let y = 2:7~; aixi. 
If y = 0 then x = akXk, and since x is primitive, it follows that ak is a unit 
of R and {Xl, ... ,Xk-1, x} is a basis of M containing x in this case. If 
y i=- 0 then there is a primitive y' such that y = by' for some b E R. In 
particular, y' E M1 so that M1 has a basis {y', x;, ... ,x~_l} and hence 
M has a basis {y', X2, ... ,x~_l' xd. But x = akXk + y = akXk + by' and 
gcd(ak' b) = 1 since x is primitive. By the previous case (k = 2) we conclude 
that the submodule (Xk' y') has a basis {x, y"}. Therefore, M has a basis 
{x, x;, ... ,X~_l'Y"} and the argument is complete when k = J.L(M) < 00. 

If k = 00 let {Xj hEJ be a basis of M and let x = 2:~=1 aixji for 
some finite subset I = {i1, ... ,in} ~ J. If N = (Xj" ... ,XjJ then x is 
a primitive element in the finitely generated module N, so the previous 
argument applies to show that there is a basis {x, x;, ... ,x~} of N. Then 
{x, x;, ... ,x~} U {Xj} jEJ\I is a basis of M containing x. 0 

(6.17) Corollary. If M is a free module over a PID R, then every basis of 
M contains J.L(M) elements. 

Proof In case J.L(M) < 00, the proof is by induction on J.L(M). If J.L(M) = 1 
then M = (x). If {Xl, X2} ~ M then Xl = a1x and and X2 = a2X so that 
a2X1 - a1X2 = 0, and we conclude that no subset of M with more than one 
element is linearly independent. 

Now suppose that J.L(M) = k > 1 and assume the result is true for all 
free R-modules N with J.L(N) < k. Let S = {XjhEJ ~ M be any basis of 
M and choose xES. Since x is primitive (being an element of a basis), 
Theorem 6.16 applies to give a basis {x, Y2, ... ,yd of M with precisely 
J.L(M) = k elements. Let N = M/(x) and let n : M ----; N be the projection 
map. It is clear that N is a free R-module with basis n(S) \ {n(x)}. By 
Proposition 2.12 it follows that J.L(N) 2: k -1, and since {n(Y2), ... ,n(Yk)} 
generates N, we conclude that J.L(N) = k - 1. By induction, it follows that 
lSI - 1 < 00 and lSI - 1 = k - 1, i.e., lSI = k, and the proof is complete in 
case J.L(M) < 00. 

In case J.L(M) = 00, we are claiming that no basis of M can contain a 
finite number k E Z+ of elements. This is proved by induction on k, the 
proof being similar to the case J.L(M) finite, which we have just done. We 
leave the details to the reader. 0 
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(6.18) Corollary. Let R be any commutative ring with identity and let M be 
a free R-module. Then every basis of M contains J.L(M) elements. 

Proof. Let I be any maximal ideal of R (recall that maximal ideals exist 
by Theorem 2.2.16). Since R is commutative, the quotient ring R/ I = K 
is a field (Theorem 2.2.18), and hence it is a PID. By Proposition 4.13, 
the quotient module M / I M is a finitely generated free K -module so that 
Corollary 6.17 applies to show that every basis of M / I M has J.L( M / I M) 
elements. Let S = {Xj}jEJ be an arbitrary basis of the free R-module M 
and let 7r : M -+ M / I M be the projection map. According to Proposition 
4.13, the set 7r(S) = {7r(Xj)}jEJ is a basis of M/IM over K, and therefore, 

Thus, J.L(M) = IJI, and the corollary is proved. D 

(6.19) Remarks. 

(1) If M is a free R-module over a commutative ring R, then we have 
proved that free-rank(M) = J.L(M) = the number of elements in any 
basis of M. This common number we shall refer to simply as the rank 
of M, denoted rankR(M) or rank(M) if the ring R is implicit. If R is 
a field we shall sometimes write dimR(M) (the dimension of Mover 
R) in place of rankR(M). Thus, a vector space M (over R) is finite 
dimensional if and only if dimR(M) = rankR(M) < 00. 

(2) Corollary 6.18 is the invariance of rank theorem for finitely generated 
free modules over an arbitrary commutative ring R. The invariance of 
rank theorem is not valid for an arbitrary (possibly noncommutative) 
ring R. As an example, consider the Z-module M = EElnENZ, which 
is the direct sum of countably many copies of Z. It is simple to check 
that M ~ M EEl M. Thus, if we define R = Endz(M), then R is a 
noncommutative ring, and Corollary 3.13 shows that 

R = Endz(M) 

= Homz(M, M) 

~ Homz(M, M EEl M) 

~ Homz(M, M) EEl Homz(M, M) 

~ REElR. 

The isomorphisms are isomorphisms of Z-modules. We leave it as an 
exercise to check that the isomorphisms are also isomorphisms of R
modules, so that R ~ R2, and hence, the invariance of rank does 
not hold for the ring R. There is, however, one important class of 
noncommutative rings for which the invariance of rank theorem holds, 
namely, division rings. This will be proved in Proposition 7.1.14. 
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(6.20) Corollary. If M and N are free modules over a PID R, at least one of 
which is finitely generated, then M ~ N if and only ifrank(M) .= rank(N). 

Proof. If M and N are isomorphic, then p,(M) = p,(N) so that rank(M) = 
rank(N). Conversely, if rank(M) = rank(N), then Proposition 4.9 gives a 
homomorphism f : M -+ N, which takes a basis of M to a basis of N. It is 
easy to see that f must be an isomorphism. 0 

(6.21) Remark. One of the standard results concerning bases of finite
dimensional vector spaces is the statement that a subset 8 = {Xl, ... ,xn } 

of a vector space V of dimension n is a basis provided that 8 is either a 
spanning set or linearly independent. Half of this result is valid in the cur
rent context of finitely generated free modules over a PID. The set {2} c:;; Z 
is linearly independent, but it is not a basis of the rank 1 Z-module Z. 
There is, however, the following result. 

(6.22) Proposition. Let M be a finitely generated free R-module of rank = k 
where R is a PID. If 8 = {Xl, ... ,X k} generates M, then 8 is a basis. 

Proof. Let T = {ej }j=l be the standard basis of Rk. Then there is a homo
morphism ¢ : Rk -+ M determined by ¢(ej) = Xj' Since (8) = M, there is 
a short exact sequence 

o --+ K --+ Rk ~ M --+ 0 

where K = Ker(¢). Since M is free, Corollary 4.16 gives Rk ~ Mtf)K, and 
according to Theorem 6.2, K is also free of finite rank. Therefore, 

k = rank(M) + rank(K) = k + rank(K) 

and we conclude that rank(K) = O. Hence ¢ is an isomorphism and 8 is a 
bas~. 0 

We will conclude this section with a substantial generalization of The
orem 6.2. This result is the crucial result needed for the structure theorem 
for finitely generated modules over a PID. 

(6.23) Theorem. (Invariant factor theorem for submodules) Let R be a 
PID, let M be a free R-module, and let N c:;; M be a submodule (which is 
automatically free by Theorem 6.2) of rank n < 00. Then there is a basis 
8 of M, a subset {Xl, ... ,xn } c:;; 8, and nonzero elements Sl, ... , Sn E R 
such that 

(6.3) is a basis of N 

and 

(6.4) for 1:S i :S n - 1. 
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Proof. If N = (0), there is nothing to prove, so we may assume that N =I- (0) 
and proceed by induction on n = rank(N). If n = 1, then N = (y) and {y} 
is a basis of N. By Lemma 6.14, we may write y = c(y)x where x E M is a 
primitive element and c(y) E R is the content of y. By Theorem 6.16, there 
is a basis S of M containing the primitive element x. If we let Xl = X and 
Sl = c(y), then SlXl = Y is a basis of N, so condition (6.3) is satisfied; (6.4) 
is vacuous for n = 1. Therefore, the theorem is proved for n = 1. 

Now assume that n > 1. By Lemma 6.14, each yEN can be written as 
y = c(y) . y' where c(y) E R is the content of y (Remark 6.15) and y' E M 
is primitive. Let 

s = {(c(y)): YEN}. 

This is a nonempty collection of ideals of R. Since R is Noetherian, Propo
sition 2.5.10 implies that there is a maximal element of S. Let (c(y)) be 
such a maximal element. Thus, yEN and y = c(y) . x, where X E M is 
primitive. Let Sl = c(y). Choose any basis T of M that contains x. This is 
possible by Theorem 6.16 since X E M is primitive. Let Xl = X and write 
T = {xdUT' = {xdu{xjhEJ'. Let Ml = ({xjhEJ') and let Nl = MInN. 

Claim. N = (SlXl) EB N l · 

To see this, note that (SlXl) n Nl <;;; (Xl) n Ml = (0) because T is a 
basis of M. Let zEN. Then, with respect to the basis T, we may write 

(6.5) z = alxl + L bjxj. 
jEJ' 

Let d = (Sl' ad = gcd {Sl' ad. Then we may write d = USI + val where u, 
v E R. If w = uy + vz, then Equation (6.5) shows that 

w = uy + vz 

= (USI + vadxl + L vbjxj 
jEJ' 

= dXl + L vbjxj. 
jEJ' 

Writing w = c( w) . w' where c( w) is the content of wand w' E M is 
primitive, it follows from Lemma 6.13 that c( w) I d (because c( w) is the 
greatest common divisor of all coefficients of w when expressed as a linear 
combination of any basis of M). Thus we have a chain of ideals 

(Sl) <;;; (d) <;;; (c(w)), 

and the maximality of (Sl) in S shows that (Sl) = (c(w)) = (d). In partic
ular, (Sl) = (d) so that Sl I aI, and we conclude that 

z = bl(SlXd + L bjxj. 
jEJ' 
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That is, Z E (SlX1) + N 1. Theorem 3.1 then shows that 

N 9:! (SlX1) EEl N 1, 

and the claim is proved. 
By Theorem 6.2, N1 is a free R-module since it is a submodule of the 

free R-module M. Furthermore, by the claim we see that 

rank(N1 ) = rank(N) - 1 = n - 1. 

Applying the induction hypothesis to the pair N1 ~ M 1, we conclude that 
there is a basis S' of M1 and a subset {X2' ... ,xn } of S', together with 
nonzero elements S2, ... ,Sn of R, such that 

(6.6) is a basis of N1 

and 

(6.7) for 2 ::; i ::; n - 1. 

Let S = S' U {Xl}. Then the theorem is proved once we have shown that 
Sl I S2' 

To verify that Sl I S2, consider the element S2X2 E N1 ~ N and 
let Z = SlX1 + S2X2 E N. When we write Z = c(z) . z' where z' E M 
is primitive and c(z) E R is the content of z, Remark 6.15 shows that 
c(z) = (Sl' S2). Thus, (Sl) ~ (c(z)) and the maximality of (Sl) in S shows 
that (c(z)) = (Sl), i.e., Sl I S2, and the proof of the theorem is complete. 0 

(6.24) Example. Let N ~ Z2 be the submodule generated by Y1 = (2,4), 
Y2 = (2, -2), and Y3 = (2, 10). Then c(yt} = C(Y2) = C(Y3) = 2. Further
more, 2 divides every component of any linear combination of Y1, Y2, and 
Y3, so SI = 2 in the notation of Theorem 6.23. Let VI = (1,2). Then 
Yl = 2Vl. Extend VI to a basis of Z2 by taking V2 = (0,1). Then 

(6.8) Nl = N n ((0, 1)) = ((0, 6)). 

To see this note that every z E Nl can be written as 

where al, a3, a3 E Z satisfy the equation 

Thus, 4al = -4a2 - 4a3, and considering the second coordinate of z, we 
see that z = (Zl' Z2) where 

Z2 = 4al - 2a2 + 10a3 = -6a2 + 6a3 = 6(a3 - a2). 

Therefore, {Vl, vd is a basis of Z2, while {2Vl' 6V2} is a basis of N. To 
check, note that Yl = 2Vl, Y2 = 2Vl - 6V2, and Y3 = 2Vl + 6V2· 
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(6.25) Remark. In Section 3.7, we will prove that the elements {SI' ... ,sn} 
are determined just by the rank n submodule N and not by the particular 
choice of a basis S of M. These elements are called the invariant factors of 
the submodule N in the free module M. 

3.1 Finitely Generated Modules over PIDs 

The invariant factor theorem for submodules (Theorem 6.23) gives a com
plete description of a submodule N of a finitely generated free R-module 
M over a PID R. Specifically, it states that a basis of M can be chosen so 
that the first n = rank(N) elements of the basis, multiplied by elements 
of R, provide a basis of N. Note that this result is a substantial general
ization of the result from vector space theory, which states that any basis 
of a subspace of a vector space can be extended to a basis of the ambient 
space. We will now complete the analysis of finitely generated R-modules 
(R a PID) by considering modules that need not be free. If the module M 
is not free, then, of course, it is not possible to find a basis, but we will 
still be able to express M as a finite direct sum of cyclic submodulesj the 
cyclic submodules may, however, have nontrivial annihilator. The following 
result constitutes the fundamental structure theorem for finitely generated 
modules over principal ideal domains. 

(7.1) Theorem. Let M =1= 0 be a finitely generated module over the PID R. 
If /L(M) = n, then M is isomorphic to a direct sum of cyclic submodules 

such that 

(7.1) R =1= Ann(wd :::2 Ann(w2) :::2 .•• :::2 Ann(wn ) = Ann(M). 

Moreover, for 1 :::; i < n 

~7.2) 

Proof. Since /L( M) = n, let {VI, ... ,vn } be a generating set of M and 
define an R-module homomorphism </>: Rn --+ M by 

n 

</>(aI, ... ,an) = L aivi· 
i=1 

Let K = Ker( </». Since K is a submodule of Rn, it follows from Theorem 
6.2 that K is a free R-module of rank m :::; n. By Theorem 6.23, there is a 
basis {Yl, ... ,Yn} of Rn and nonzero elements SI, ... ,Sm E R such that 



(7.3) 

and 

(7.4) 
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is a basis for K 

for 1 ~ i ~ m - 1. 

Let Wi = ¢(Yi) E M for 1 ~ i ~ n. Then {WI, ... ,Wn } generates M 
since ¢ is surjective and {YI, ... ,Yn} is a basis of Rn. We claim that 

By the characterization of direct sum modules (Theorem 3.1), it is sufficient 
to check that if 

(7.5) 

where ai E R, then aiwi = 0 for all i. Thus suppose that Equation (7.5) is 
satisfied. Then 

o = al WI + ... + an Wn 

= al¢{YI) + ... + an¢(Yn) 

= ¢(aIYI + ... + anYn) 

so that 

alYI + ... + anYn E Ker(¢) = K = (SIYI, ... ,SmYm). 

Therefore, 
alYI + ... + anYn = blslYI + ... + bmsmYm 

for some bl , ... ,bm E R. But {YI, ... ,Yn} is a basis of R n , so we conclude 
that ai = bisi for 1 ~ i ~ m while ai = 0 for m + 1 ~ i ~ n. Thus, 

aiWi = bisi¢(Yi) = bi¢(SiYi) = 0 

for 1 ~ i ~ m because SiYi E K = Ker(¢), while aiWi = 0 for m+ 1 ~ i ~ n 
since ai = 0 in this case. Hence 

Note that Ann(wi) = (Si) for 1 ~ i ~ m, and since Si I Si+l, it follows 
that 

Ann(wI) :;;;? Ann(w2) :;;;? ••• :;;;? Ann(wm ), 

while for i > m, since (Yi) n Ker(¢) = (0), it follows that Ann(wi) = (0). 
Since Si I Sn for all i and since Ann(wi) = (Si), we conclude that snM = O. 
Hence, Ann(wn ) = (sn) = Ann(M) and Equation (7.1) is satisfied. Since 

M/(Rwi+l + ... + Rwn ) ~ RWI EB··· EB RWi, 

Equation (7.2) follows from Equation (7.1). The proof is now completed 
by observing that Ann(wi) =I- R for any i since, if Ann(wi) = R, then 
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RWi (0), and hence, M could be generated by fewer than n elements. 
But n = J.1(M), so this is impossible because J.1(M) is the minimal number 
of generators of M. 0 

A natural question to ask is to what extent is the cyclic decomposition 
provided by Theorem 7.1 unique. Certainly, the factors themselves are not 
unique as one can see from the example 

Z2 ~ Z· (1,0) EEl Z . (0,1) 

~ Z . (1,0) EEl Z . (1,1). 

More generally, if M is a free R-module of rank n, then any choice of basis 
{ VI, . .. ,vn } provides a cyclic decomposition 

with Ann(vi) = 0 for all i. Therefore, there is no hope that the cyclic factors 
themselves are uniquely determined. What does turn out to be unique, 
however, is the chain of annihilator ideals 

Ann(wd :;;;;> .•• :;;;;> Ann(wn ) 

where we require that Ann(wi) i- R, which simply means that we do not 
allow copies of (0) in our direct sums of cyclic submodules. We reduce the 
uniqueness of the annihilator ideals to the case of finitely generated torsion 
R-modules by means of the following result. If M is an R-module, recall 
that the torsion submodule MT of M is defined by 

MT = {x EM: Ann(x) i- (On. 

(7.2) Proposition. If M and N are finitely generated modules over a PID 
R, then M ~ N if and only if MT ~ NT and rank MjMT = rank NjNT. 

Proof. Let 1> : M --+ N be an isomorphism. Then if x E M T , there is 
an a i- 0 E R with ax = O. Then a1>(x) = 1>(ax) = 1>(0) = 0 so that 
¢(x) E NT' Therefore, 1>(MT) ~ NT' Applying the same observation to 1>-1 
dhows that 1>(MT) = NT' Thus, 1>IMT : MT --+ NT is an isomorphism; if 7r : 
N --+ NjNT is the natural projection, it follows that Ker(7r o ¢) = MT. The 
first isomorphism theorem then gives an isomorphism M j M T ~ N j NT' 
Since M j MT and N j NT are free R-modules of finite rank, they are isomor
phic if and only if they have the same rank. 

The converse follows from Corollary 6.20. 0 

Therefore, our analysis of finitely generated R-modules over a PID R is 
reduced to studying finitely generated torsion modules M; the uniqueness 
of the cyclic submodule decomposition of finitely generated torsion modules 
is the following result. 
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(7.3) Theorem. Let M be a finitely genemted torsion module over a PID R, 
and suppose that there are cyclic submodule decompositions 

(7.6) 

and 

(7.7) 

where 

(7.8) Ann(wd :2 ... :2 Ann(wk) =I- (0) with Ann( Wl) =I- R 

and 

(7.9) with Ann(zl) =I- R. 

Then k = rand Ann(wi) = Ann(zi) for 1::::; i ::::; k. 

Proof. Note that Ann(M) = Ann(wk) = Ann(zr). Indeed, 

Ann(M) = Ann(Rwl + ... + RWk) 

= Ann(wl) n··· n Ann(wk) 

= Ann(wk) 

since Ann(wd :2 ... :2 Ann(wk). The equality Ann(M) = Ann(zr) is the 
same argument. 

We will first show that k = r. Suppose without loss of generality that 
k 2:: r. Choose a prime pER such that (P) :2 Ann(wl), i.e., p divides the 
generator of Ann(wd. Then (P) :2 Ann{wi) for all i. Sincep E Ann(M/pM), 
it follows that M/pM is an R/pR-module and Equations (7.6) and (7.7) 
imply 

(7.10) 

and 

(7.11) 

Suppose that pRWi = RWi. Then we can write apwi = Wi for some a E R. 
Hence, ap - 1 E Ann(wi) ~ (P) by our choice of p, so 1 E (P), which 
contradicts the fact that p is a prime. Therefore, pRWi =I- RWi for all i 
and Equation (7.10) expresses the R/pR-module M/pM as a direct sum of 
cyclic R/pR-modules, none of which is (0). Since R/pR is a field (in a PID 
prime ideals are maximal), all R/pR-modules are free, so we conclude that 
M/pM is free of rank k. Moreover, Equation (7.11) expresses M/pM as a 
direct sum of r cyclic submodules, so it follows that k = /-t(M/pM) ::::; r. 
Thus, r = k, and in particular, Rzi/{pRzi ) =I- 0 since, otherwise, M/pM 
could be generated by fewer than k elements. Thus, (P) :2 Ann(zi) for all 
i; if not, then (p) + Ann{zi) = R, so there are a E R and c E Ann{zi) such 
that ap + c = 1. Then Zi = apZi + CZi = apZi E pRzi , so Rzi/(pRzi ) = 0, 
and we just observed that Rzi/{pRzi ) =I- O. 
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We are now ready to complete the proof. We will work by induction 
on R(Ann(M)) where, if I = (a) is an ideal of R, then R(I) is the number 
of elements (counted with multiplicity) in a prime factorization of a. This 
number is well defined by the fundamental theorem of arithmetic for PIDs. 
Suppose that R(Ann(M)) = 1. Then Ann(M) = (P) where pER is prime. 
Since Ann(M) = Ann(wk) = Ann(zk) = (P) and since (P) is a maximal 
ideal, Equations (7.8) and (7.9) imply that Ann(wi) = (P) = Ann(zi) for 
all i, and the theorem is proved in the case R(Ann(M)) = 1. 

Now suppose the theorem is true for all finitely generated torsion R
modules N with R(Ann(N)) < R(Ann(M)), and consider the isomorphisms 

(7.12) 

and 

(7.13) 

where Ann(wl) = ... = Ann(ws) = Ann(zd = ... = Ann(zt) = (P) and 
Ann(ws+l) i- (p), Ann(zt+l) i- (p) (s and t may be 0). Then Ann(pM) = 
(a/p) where Ann(M) = (a), so R(Ann(pM)) = R(Ann(M))-l. By induction 
we conclude that k - s = k - t, i.e., s = t, and Ann(pwi) = Ann(pzi) for 
s < i :::; k. But Ann(pwi) = (adp) where Ann(wi) = (ai). Thus Ann(wi) = 
Ann(zi) for all i and we are done. D 

Since RWi ~ R/ Ann( Wi) and since R/ I and R/ J are isomorphic R
modules if and only if I = J (Exercise 10), we may rephrase our results as 
follows. 

(7.4) Corollary. Finitely generated modules over a PID R are in one-to-one 
correspondence with finite nonincreasing chains of ideals 

Such a chain of ideals corresponds to the module 

M = R/h ffi .. · ffi R/In. 

Note that I1(M) = n and if h+l = ... = In = (0) but hi- (0), then 

M ~ R/h ffi··· ffi R/Ik ffi Rn-k. 

We will use the convention that the empty sequence of ideals (n = 0) cor
responds to M = (0). 

Proof· D 

(7.5) Definition. If M is a finitely generated torsion module over a PID R 
and M ~ RWI ffi··· ffi RWn with Ann(wi) "2 Ann(wHd (1:::; i :::; n - 1) 
and Ann(wi) =1= R, then the chain of ideals Ii = Ann(wi) is called the chain 
of invariant ideals of M. 
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Using this language, we can express our results as follows: 

(7.6) Corollary. Two finitely generated torsion modules over a PID are iso
morphic if and only if they have the same chain of invariant ideals. 

Proof· o 

(7.7) Remark. In some cases the principal ideals Ann( Wj) have a preferred 
generator aj. In this case the generators {aj Yi=1 are called the invariant 
factors of M. 

The common examples are R = Z, in which case we choose aj > ° so 
that aj = IZ/ Ann(wj)l, and R = F[X], where we take monic polynomials 
as the preferred generators of ideals. 

(7.8) Definition. Let R be a PID, and let M be a finitely generated torsion 
R-module with chain of invariant ideals 

We define me(M) = Sn and co(M) = S1··· Sn. 

Note that me(M) and co(M) are only defined up to multiplication by a 
unit, but in some cases (R = Z or R = F[X]) we have a preferred choice of 
generators of ideals. In these cases me(M) and co(M) are uniquely defined. 
Concerning the invariants me(M) and co(M), there is the following trivial 
but useful corollary of our structure theorems. 

(7.9) Corollary. Let M be a finitely generated torsion module over a PID 
R. 

(1) If a E R with aM = 0, then me(M) I a. 
(2) me(M) divides co(M). 
(3) If pER is a prime dividing co(M), then p divides me(M). 

Proof. (1) Since Ann(M) = {sn) = {me(M») by Theorem 7.1 and the 
defintion of me(M), it follows that if aM = 0, i.e., a E Ann(M), then 
me(M) I a. 

(2) Clearly Sn divides S1 ... Sn. 
(3) Suppose that p I S1··· Sn = co(M). Then p divides some Si, but 

{Si) ;2 {sn), so Si I Sn· Hence, p I Sn = me(M). 0 

(7.10) Remark. There are, unfortunately, no standard names for these in
variants. The notation we have chosen reflects the common terminology in 
the two cases R = Z and R = F[X]. In the case R = Z, me(M) is the 
exponent and co(M) is the order of the finitely generated torsion Z-module 
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(= finite abelian group) M. In the case R = F[X] of applications to lin
ear algebra to be considered in Chapter 4, me(VT ) will be the minimal 
polynomial and co(VT ) will be the characteristic polynomial of the linear 
transformation T E HomF(V) where V is a finite-dimensional vector space 
over the field F and VT is the F[X]-module determined by T (see Example 
1.5 (12)). 

There is another decomposition of a torsion R-module M into a direct 
sum of cyclic submodules which takes advantage of the prime factorization 
of any generator of Ann(M). To describe this decomposition we need the 
following definition. 

(7.11) Definition. Let M be a module over the PID R and let pER be a 
prime. Define the p-component Mp of M by 

Mp = {x EM: Ann(x) = (pn) for some n E Z+}. 

If M = Mp , then M is said to be p-primary, and M is primary if it is 
p-primary for some prime pER. 

It is a simple exercise to check that submodules, quotient modules, and 
direct sums of p-primary modules are p-primary (Exercise 54). 

(7.12) Theorem. If M is a finitely generated torsion module over a PID R, 
then M is a direct sum of primary submodules. 

Proof. Since M is a direct sum of cyclic submodules by Theorem 7.1, it 
is sufficient to assume that M is cyclic. Thus suppose that M = (x) and 
suppose that 

Ann(x) = (a) = (p?" .p~n) 

where Pi, ... ,Pn are the distinct prime divisors of a. Let qi = a/p~i. Then 
1 = (ql, ... ,qn) = gCd{ql' ... ,qn}, so there are bl , ... ,bn E R such that 

(7.14) 

Let Xi = biqix, Then Equation (7.14) implies that 

x = Xl + ... +xn 

so that 
M = (x) = (Xl) + ... + (xn). 

Suppose that y E (Xl) n ((X2) + ... + (xn)). Then 
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where if; = qI/p? Therefore, {p~', ql} ~ Ann(y), but (p~', qt} = 1 so that 
Ann(y) = R. Therefore, y = O. A similar calculation shows that 

so by Theorem 3.1, M ~ (Xl) EB··· EB (xn). c 

Combining Theorems 7.1 and 7.12, we obtain the following result: 

(7.13) Theorem. Any finitely generated torsion module M over a PID R is 
a direct sum of primary cyclic submodules. 

Proof. Suppose M ~ RWI EB·· 'EBRwn as in Theorem 7.1. Then if Ann(wi) = 
(Si), we have Si I Si+l for 1 :::; i :::; n - 1 with Sl =f. 1 and Sn =f. 0 (since M 
is torsion). Let Pb ... ,Pk be the set of distinct nonassociate primes that 
occur as a prime divisor of some invariant factor of M. Then 

where the divisibility conditions imply that 

for 1:::; j :::; k. 

Then the proof of Theorem 7.12 shows that M is the direct sum of cyclic 
submodules with annihilators {p;'i : eij > O}, and the theorem is proved. 

D 

(7.14) Definition. The prime powers {p;ii : eij > 0, 1 :::; j :::; k} are called 
the elementary divisors of M. 

(7.15) Theorem. If M and N are finitely generated torsion modules over a 
PID R, then M ~ N if and only if M and N have the same elementary 
divisors. 

Proof. Since M is uniquely determined up to isomorphism from the invari
ant factors, it is sufficient to show that the invariant factors of M can be 
recovered from a knowledge of the elementary divisors. Thus suppose that 

is the chain of invariant ideals of the finitely generated torsion module M. 
This means that Si I Si+l for 1 :::; i < n. Let PI, ... ,Pk be the set of distinct 
nonassociate primes that occur as a prime divisor of some invariant factor 
of M. Then 
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(7.15) 

where the divisibility conditions imply that 

(7.16) for 1::; j ::; k. 

Thus, the elementary divisors of Mare 

(7.17) 

We show that the set of invariant factors (Equation (7.15)) can be recon
structed from the set of prime powers in Equation (7.17). Indeed, if 

1 ::; j ::; k, 

then the inequalities (7.16) imply that 8 n is an associate of p~' ... p%k. Delete 

from the set of prime powers in set (7.17), and repeat the process with 
the set of remaining elementary divisors to obtain 8 n -1' Continue until all 
prime powers have been used. At this point, all invariant factors have been 
recovered. Notice that the number n of invariant factors is easily recovered 
from the set of elementary divisors of M. Since 81 divides every 8i, it follows 
that every prime dividing 81 must also be a prime divisor of every 8i. 

Therefore, in the set of elementary divisors, n is the maximum number of 
occurrences of peij for a single prime p. D 

(7.16) Example. Suppose that M is the Z-module 

Then the elementary divisors of Mare 2 2 , 2 2 , 3, 32 , 5, 7, 72 . Using the 
algorithm from Theorem 7.15, we can recover the invariant factor descrip
tion of M as follows. The largest invariant factor is the product of the 
highest power of each prime occurring in the set of elementary divisors, 
i.e., the least common multiple of the set of elementary divisors. That is, 
82 = 72 . 5 . 32 . 22 = 8820. Note that the number of invariant factors of 
M is 2 since powers of the primes 2, 3, and 7 occur twice in the set of ele
mentary divisors, while no prime has three powers among this set. Deleting 
72 , 5, 32 , 22 from the set of elementary divisors, we obtain 81 = 7.3.22 = 84. 
This uses all the elementary divisors, so we obtain 

M ~ Z84 X Z8820. 
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We now present some useful observations concerning the invariants 
me(M) and co(M) where M is a torsion R-module (R a PID). See Definition 
7.8 for the definition of these invariants. The verification of the results that 
we wish to prove require some preliminary results on torsion R-modules, 
which are of interest in their own right. We start with the following lemmas. 

(7.17) Lemma. Let M be a module over a PID R and suppose that x E MT" 
If Ann(x) = (r) and a E R with (a, r) = d (recall that (a, r) = gcd{a, r}), 
then Ann(ax) = (rid). 

Proof. Since (rld)(ax) = (ald)(rx) = 0, it follows that (rid) <;;;; Ann(ax). 
If b(ax) = 0, then r I (ba), so ba = rc for some c E R. But (a, r) = d, so 
there are s, t E R with rs + at = d. Then rct = bat = bed - rs) and we see 
that bd = r(et + bs). Therefore, bE (rid) and hence Ann(ax) = (rid). 0 

(7.18) Lemma. Let M be a module over a PID R, and let Xl, ... ,Xn E MT' 
with Ann(xi) = (ri) for 1 :S i :S n. If {rb ... ,rn } is a pairwise relatively 
prime subset of R and X = Xl + ... + x n , then Ann(x) = (a) = (rr~=l ri)' 

Conversely, if y E MT' is an element such that Ann(y) = (b) = (rr~=l Si) 
where {Sl,"" sn} is a pairwise relatively prime subset of R, then we may 
write Y = Yl + ... + Yn where Ann(Yi) = (Si) for all i. 

Proof. Let X = Xl + ... + x n . Then a = rr~=l ri E Ann(x) so that (a) <;;;; 

Ann(x). It remains to check that Ann(x) <;;;; (a). Thus, suppose that bx = O. 
By the Chinese remainder theorem (Theorem 2.2.24), there are Cl, ... ,Cn E 
R such that _ {I (mod (ri)), 

Ci = 0 (mod (rj)), if j =j:. i. 

Then, since (rj) = Ann(xj), we conclude that CiXj = 0 if i =j:. j, so for each 
i with 1 :S i :S n 

Therefore, bCi E Ann(xi) = (ri), and since Ci == 1 (mod (ri)), it follows that 
ri I b for 1 :S i :S n. But {rl' ... ,rn } is pairwise relatively prime and thus 
a is the least common multiple of the set {rl' ... ,rn }. We conclude that 
a I b, and hence, Ann(x) = (a). 

Conversely, suppose that Y E M satisfies Ann(y) = (b) = (rr~=l Si) 
where the set {Sl' ... ,sn} is pairwise relatively prime. As in the above 
paragraph, apply the Chinese remainder theorem to get Cl, ... ,en E R 
such that _ {I (mod (Si)), 

Ci= 0 (mod (Sj)), ifj=j:.i. 

Since b is the least common multiple of {Sl' ... ,sn}, it follows that 

1 == Cl + ... + Cn (mod (b)), 
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and hence, if we set Yi = CiY, we have 

YI + ... + Yn = (CI + ... + cn)y = y. 

Since (b, cil = (TIj#iSj), Lemma 7.17 shows that Ann(Yi) = Ann(ciY) = 
(sil' D 

(1.19) Proposition. Let R be a PID and suppose that M is a torsion R
module such that 

M ~ RWI EB ... RWn 

with Ann( Wi) = (til. Then the prime power factors of the ti (1 ::; i ::; n) 
are the elementary divisors of M. 

Proof. Let PI, ... ,Pk be the set of distinct nonassociate primes that occur 
as a prime divisor of some ti' Then we may write 

(7.18) 

where UI, ... ,Un are units in R and some of the exponents eij may be O. 
The proof of Theorem 7.12 shows that 

RWi ~ RZil EB ... RZik 

where Ann(zij) = (p;'jl' For notational convenience we are allowing Zij = 0 
for those (i,j) with eij = O. Therefore, 

(7.19) M ~ EBRzij 
i,j 

where Ann(zij) = (PjiJ). Let S = {pjij} where we allow multiple occur
rences of a prime power pe, and let 

Let m be the maximum number of occurrences of positive powers of a single 
prime in S. If 

(7.20) for 1::; j ::; k, 

we define 

(7.21 ) 

Note that fmj > 0 for 1 ::; j ::; k. 
Delete {pi"", ... ,p,"'k} from the set S and repeat the above process 

with the remaining prime powers until no further positive prime powers are 
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available. Since a prime power for a particular prime p is used only once at 
each step, this will produce elements Sl, ... ,Sm E R. From the inductive 
description of the construction of Si, it is clear that every prime dividing Si 
also divides Si+1 to at least as high a power (because of Equation (7.21». 
Thus, 

for 1:S i < m. 

Therefore, we may write 

(7.22) 

where 

(7.23) { Iii . f > O} - { ear; . > O} Pj . ij - P(3 . eo (3 

where repetitions of prime powers are allowed and where 

(7.24) for 1:S j :S k 

by Equation (7.20). 
For each pfii (1 :S i :S m), choose Wij E S with Ann(wij) = (Pfii) 

and let Xi = Wil + ... + Wik. Lemma 7.18 shows that Ann(xi) = (Si) for 
1 :S i :S m, and thus, 

k k 

RXi ~ R/(Si) ~ Ef1R/(pfii) ~ Ef1RWij. 
j=l j=l 

Equation (7.19) then shows that 

0,(3 

~ RX1 EB ... EB RXm 

where Ann(xi) = (Si). Since Si I Si+1 for 1 :S i < m, it follows that 
{Sl, ... ,sm} are the invariant factors of M, and since the set of prime 
power factors of {Sl' ... ,Sm} (counting mUltiplicities) is the same as the 
set of prime power factors of {h, ... ,tn } (see Equation (7.23», the proof 
is complete. 0 

(1.20) Corollary. Let R be a PID, let M 1 , ... ,Mk be finitely generated 
torsion R-modules, and let M = EBf=l Mi. If {di1 , ... ,dili } is the set of 
elementary divisors of M i , then 
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S = {dij : 1 :=:; i :=:; k; 1 :=:; j :=:; fd 

is the set of elementary divisors of M. 

Proof. By Theorem 7.1, 

where Ann(wij) = (Sij) and Sij I Si,j+l for 1 :=:; j :=:; rio The elementary 
divisors of Mi are the prime power factors of {Sil' ... ,Sir,}. Then 

k 

M = EBMi ~ EBRWij 
i=l i,j 

where Ann(wij) = (Sij). The result now follows from Proposition 7.19. 0 

(7.21) Proposition. Let R be a PID, let M I , ... ,Mk be finitely generated 
torsion R-modules, and let M = EB7=1 Mi. Then 

(7.25) me(M) = lcm{me(MI), ... ,me(Mk)} 

k 

(7.26) co(M) = II CO(Mi). 
i=l 

Proof. Since Ann(M) = n7=1 Ann(Mi), Equation (7.25) follows since 
(me(Mi)) = Ann(Mi). Since co(M) is the product of all invariant factors of 
M, which is also the product of all the elementary divisors of M, Equation 
(7.26) follows from Corollary 7.20. 0 

The special case R = Z is important enough to emphasize what the 
results mean in this case. Suppose that M is an abelian group, i.e., a Z
module. Then an element x E M is torsion if and only if nx = 0 for 
some n > O. That is to say, x E MT if and only if o(x) < 00. Moreover, 
Ann(x) = (n) means that o(x) = n. Thus the torsion submodule of M 
consists of the set of elements of finite order. Furthermore, M is finitely 
generated and torsion if and only if M is a finite abelian group. Indeed, if 
M = (Xl, ... ,Xk) then any X E M can be written x = nlxl + ... + nkxk 
where 0 :=:; ni :=:; O(Xi) < 00 for 1 :=:; i :=:; k. Therefore, IMI :=:; TI7=10(Xi). 
Hence, the fundamental structure theorem for finitely generated abelian 
groups takes the following form. 

(7.22) Theorem. Any finitely generated abelian group M is isomorphic to 
zr EB MI where IMII < 00. The integer r is an invariant of M. Any finite 
abelian group is a direct sum of cyclic groups of prime power order and 
these prime power orders, counted with multiplicity, completely characterize 
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the finite abelian group up to isomorpism. Also any finite abelian group is 
uniquely isomorphic to a group 

where Si I Si+l for all i. 

Proof. o 

Given a natural number n it is possible to give a complete list of all 
abelian groups of order n, up to isomorphism, by writing n = p~1 ... p~k 
where pI, ... ,Pk are the distinct prime divisors of n. Let M be an abelian 
group of order n. Then we may write M as a direct sum of its primary 
components 

M ~ Mp1 EB ... EB Mpk 

where IMpi I = p~i. Then each primary component MPi can be written as a 
direct sum 

where 

and 

M . ~ Z e1 ffi ••• ffi Z e·, 
~ ~. W W ~ •• 

Furthermore, the main structure theorems state that M is determined up 
to isomorphism by the primes PI, ... ,Pk and the partitions eil, ... ,eit of 
the exponents rio This is simply the statement that M is determined up to 
isomorphism by its elementary divisors. Therefore, to identify all abelian 
groups of order n, it is sufficient to identify all partitions of ri, i.e., all ways 
to write ri = eil + ... + eit as a sum of natural numbers. 

(7.23) Example. We will carry out the above procedure for n = 600 = 
23 . 3 . 52. There are three primes, namely, 2, 3, and 5. The exponent of 2 
is 3 and we can write 3 = 1 + 1 + 1, 3 = 1 + 2, and 3 = 3. Thus there are 
three partitions of 3. The exponent of 3 is 1, so there is only one partition, 
while the exponent of 5 is 2, which has two partitions, namely, 2 = 1 + 1 
and 2 = 2. Thus there are 3·1·2 = 6 distinct, abelian groups of order 600. 
They are 
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where the groups on the right are expressed in invariant factor form and 
those on the left are decomposed following the elementary divisors. 

We will conclude this section with the following result concerning the 
structure of finite subgroups of the multiplicative group of a field. This 
is an important result, which combines the structure theorem for finite 
abelian groups with a bound on the number of roots of a polynomial with 
coefficients in a field. 

(7.24) Theorem. Let F be a field and let G ~ F* = F \ {O} be a finite 
subgroup of the multiplicative group F*. Then G is a cyclic group. 

Proof. According to Theorem 7.1, G is isomorphic to a direct sum 

where, if we let ki = O(Zi) = order of Zi, then k i I kH1 for 1 :S i :S n - 1 
and 

Ann(G) = Ann(zn) = (kn)Z. 

In the language of Definition 7.8, me(G) = kn . This means that zkn = 1 
for all Z E G. Now consider the polynomial 

(7.27) 

Since F is a field, the polynomial P(X) has at most kn roots, because degree 
P(X) = kn (Corollary 2.4.7). But, as we have observed, every element of 
G is a root of P(X), and 

Thus, we must have n = 1 and G S;! (Z1) is cyclic. o 

(7.25) Corollary. Suppose that F is a finite field with q elements. Then F* 
is a cyclic group with q - 1 elements, and every element of F is a root of 
the polynomial xq - X. 

Proof. Exercise. o 

(7.26) Corollary. Let 

Gn = {e 27ri(k/n) : O:S k:S n -I} ~ C*. 

Then Gn is the only subgroup of C* of order n. 
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Proof. Let H be a finite subgroup of C* with IHI = n. Then every element 
z of H has the property that zn = 1. In other words, z is a root of the 
equation xn = 1. Since this equation has at most n roots in C and since 
every element of On is a root of this equation, we have z E On- Thus, we 
conclude that H <;;;; On and hence H = On because n = IHI = IOnl. D 

3.8 Complemented Submodules 

We will now consider the problem of extending a linearly independent sub
set of a free R-module to a basis. The example {2} <;;;; Z shows that some 
restrictions on the subset are needed, while Theorem 6.16 shows that any 
primitive element of a finitely generated free R-module (R a PID) can be 
extended to a basis. 

(8.1) Definition. Let M be an R-module and S <;;;; M a submodule. Then 
S is said to be complemented if there exists a submodule T <;;;; M with 
M ~ SE9T. 

Let M be a finitely generated free R-module with basis {VI, ... ,vn } 

and let S = (VI, ... ,vs). Then S is complemented by T = (Vs+I, ... ,vn). 
This example shows that if W = {WI, ... ,wd is a linearly independent 
subset of M, then a necessary condition for W to extend to a basis of Mis 
that the sub module (W) be complemented. If R is a PID, then the converse 
is also true. Indeed, let T be a complement of (W) in M. Since R is a PID, 
T is free, so let {Xl, ... ,xr } be a basis of T. Then it is easy to check that 
{WI, ... ,Wk, Xl, ... ,Xr } is a basis of M. 

(8.2) Proposition. Let R be a PID, let M be a free R-module, and let S be 
a submodule. Consider the following conditions on S. 

(1) S is complemented. 
(2) MIS is free. 
(3) If xES and X = ay for some y E M, a -=I 0 E R, then yES. 

Then (1) =:;.. (2) and (2) =:;.. (3), while if M is finitely generated, then 
(3) =:;.. (1). 

Proof. (1) =:;.. (2). If S is complemented, then there exists T <;;;; M such that 
S E9 T ~ M. Thus, MIS ~ T. But T is a submodule of a free module over 
a PID R, so T is free (Theorem 6.2). 

(2) =:;.. (3). Suppose MIS is free. If XES satisfies X = ay for some 
y E M, a -=I 0 E R, then a(y + S) = S in MIS. Since free modules are 
torsion-free, it follows that y + S = S, i.e., yES. 
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(3) => (1). Let M be a finite rank free R-module and let S ~ M be a 
submodule satisfying condition (3). Then there is a short exact sequence 

(8.1) o ----+ S ----+ M ~ MIS ----+ 0 

where 7r is the projection map. Condition (3) is equivalent to the statement 
that MIS is torsion-free, so MIS is free by Theorem 6.6. But free modules 
are projective, so sequence (8.1) has a splitting a: MIS -t M and Theorem 
3.9 shows that M ~ S EB Im(a), i.e., S is complemented. 0 

(8.3) Remarks. 

(1) A submodule S of M that satisfies condition (3) of Proposition 8.2 
is called a pure submodule of M. Thus, a submodule of a finitely 
generated module over a PID is pure if and only if it is complemented. 

(2) If R is a field, then every subspace S ~ M satisfies condition (3) so that 
every subspace of a finite-dimensional vector space is complemented. 
Actually, this is true without the finite dimensionality assumption, but 
our argument has only been presented in the more restricted case. The 
fact that arbitrary subspaces of vector spaces are complemented follows 
from Corollary 4.21. 

(3) The implication (3) => (1) is false without the hypothesis that M be 
finitely generated. As an example, consider a free presentation of the 
Z-module Q: 

o ----+ S ----+ M ----+ Q ----+ O. 

Since MIS ~ Q and Q is torsion-free, it follows that S satisfies con
dition (3) of Proposition 8.1. However, if S is complemented, then a 
complement T ~ Q; so Q is a submodule of a free Z-module M, and 
hence Q would be free, but Q is not a free Z-module. 

(8.4) Corollary. If S is a complemented submodule of a finitely generated 
R-module (R a PID), then any basis for S extends to a basis for M. 

Proof. This was observed prior to Proposition 8.2. o 

(8.5) Corollary. If S is a complemented submodule of M, then rankS = 
rankM if and only if S = M. 

Proof. A basis {VI, ... ,vm } of S extends to a basis {VI, ... ,vn } of M. But 
n = m, so S = (VI, ... ,vn ) = M. 0 

If M = Z and S = (2), then rankS = rankM but M i- S. Of course, 
S is not complemented. 

(8.6) Corollary. If S is a complemented submodule of M, then 

rankM = rankS + rank(MIS). 
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Proof. Let S = (Vl, . .. , vm ) where m = rank S. Extend this to a basis 
{Vl, ... ,vn } of M. Then T = (Vm+l, ... ,vn ) is a complement of Sin M 
and T ~ MIS. Thus, 

rankM = n = m + (n - m) = rankS + rank(MIS). 0 

(8.7) Proposition. Let R be a PID and let f : M ---- N be an R-module 
homomorphism of finite-rank free R-modules. Then 

(1) Ker(f) is a pure submodule, but 
(2) Im(f) need not be pure. 

Proof. (1) Suppose x E Ker(f), a =j:. 0 E R, and y E M with x = ay. Then 
0= f(x) = f(ay) = af(y). But N is free and, hence, torsion-free so that 
f(y) = O. Hence, condition (3) of Proposition 8.2 is satisfied, so Ker(f) is 
complemented. 

(2) If f : Z ---- Z is defined by f(x) = 2x, then Im(f) = 2Z is not a 
complemented submodule of Z. 0 

(8.8) Proposition. Let R be a PID and let f : M ---- N be an R-module 
homomorphism of finite-rank free R-modules. Then 

rankM = rank(Ker(f)) + rank(Im(f)). 

Proof. By the first isomorphism theorem, Im(f) ~ M I Ker(f). But Ker(f) 
is a complemented submodule of M, so the result follows from Corollary 
8.6. 0 

(8.9) Corollary. Let R be a PID and let M and N be finite-rank free 
R-modules with rank(M) = rank(N). Let f E HomR(M, N). 

(1) If f is a surjection, then f is an isomorphism. 
(2) If f is an injection and Im(f) is complemented, then f is an isomor

phism. 

Proof. (1) By Proposition 8.8, rank(Ker(f)) = 0, i.e., Ker(f) = (0), so f is 
an injection. 

(2) By Proposition 8.8, rankN = rankM = rank(Im(f)). Since Im(f) 
is complemented by hypothesis, f is a surjection by Corollary 8.5. 0 

(8.10) Proposition. Let R be a field and let M and N be R-modules with 
rank(M) = rank(N) finite. Let f E HomR(M, N). Then the following are 
equivalent. 

(1) f is an isomorphism. 

(8.11) Proposition. Let M be a finite-rank free R-module (R a PID). If 
Sand T are pure submodules, then 
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(2) f is an injection. 
(3) f is a surjection. 

Proof. Since R is a field, Im(f) is complemented (by Remark 8.3 (2)), so 
this is an immediate consequence of Corollary 8.9. 0 

(8.11) Proposition. Let M be a finite-rank free R-module (R a PID). If 5 
and T are pure submodules, then 

rank(5 + T) + rank(5 n T) = rank 5 + rank T. 

Proof. Note that if 5 and T are pure submodules of M, then 5 nTis also 
pure. Indeed, if ay E 5 n T with a i= 0 E R, then y E 5 and yET since 
these submodules are pure. Thus, y E 5 n T, so 5 nTis complemented by 
Proposition 8.2. Then 

(5 + T)/T ~ 5/(5 n T). 

By Corollary 8.6, we conclude 

rank(5 + T) - rank(T) = rank(5) - rank(5 n T). 

o 

(8.12) Remark. It need not be true that 5 + T is pure, even if 5 and Tare 
both pure. For example, let 5 = ((I, 1)) <;;: Z2 and let T = ((I, -1)) <;;: Z2. 
Then 5 and T are both pure, but 5 + T i= Z2, so it cannot be pure. In fact, 
2· (1,0) = (2, 0) = (I, 1) + (I, -1) E 5 + T, but (1,0) tf. 5 + T. 

3.9 Exercises 

1. If M is an abelian group, then Endz(M), the set of abelian group endomor
phisms of M, is a ring under addition and composition of functions. 
(a) If M is a left R-module, show that the fmiction </> : R -> Endz(M) 

defined by </>( r) (m) = rm is a ring homomorphism. Conversely, show 
that any ring homomorphism </> : R -> Endz (M) determines a left R
module structure on M. 

(b) Show that giving a right R-module structure on M is the same as giving 
a ring homomorphism </> : ROP -> Endz (M). 

2. Show that an abelian group G admits the structure of a Zn-module if and 
only if nG = (0). 

3. Show that the subring Z[~l of Q is not finitely generated as a Z-module if 

~ ~ z. 
4. Let M be an S-module and suppose that R c:; S is a subring. Then M is also 

an R-module by Example 1.5 (10). Suppose that N c:; M is an R-submodule. 
LetSN={sn:sES, nEN}. 
(a) If S = Q and R = Z, show that SN is the S-submodule of M generated 

by N. 
(b) Show that the conclusion of part (a) need not hold if S = Rand R = Q. 
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5. Let M be an R-module and let A, B, and C be submodules. If C <:;:: A, prove 
that 

An (B + C) = (A n B) + C. 

This equality is known as the modular law. Show, by example, that this 
formula need not hold if C is not contained in A. 

6. Let R be a commutative ring and let S <:;:: R\ {O} be a multiplicatively closed 
subset of R containing no zero divisors. Let M be an R-module. Mimicking 
the construction of Rs (Theorem 2.3.5), we define Ms as follows. Define a 
relation"" on M x S by setting (x, s) "" (y, t) if and only if utx = usy 
for some u E S. Verify that this is an equivalence relation (see the proof 
of Theorem 2.3.5). We will denote the equivalence class of (x, s) by the 
suggestive symbol x/s. 
(a) Prove that Ms is an Rs-module via the operation (a/ s )(x/t) = (ax)/(st). 
(b) If f : M ---> N is an R-module homomorhism, show that fs : Ms ---> Ns 

defined by fs(x/s) = f(x)/s is an Rs-module homomorphism. 
(c) If x E M, show that x/I = 0 in Ms if and only if Ann(x) n S # 0. 

7. Let R <:;:: F[X] be the subring 

R = U(X) E F[X] : f(X) = ao + a2 X 2 + ... + anXn}. 

Thus, f(X) E R if and only if the coefficient of X is O. Show that F[X] is a 
finitely generated R-module that is torsion-free but not free. 

8. Show that Q is a torsion-free Z-module that is not free. 
9. (a) Let R be an integral domain, let M be a torsion R-module, and let N 

be a torsion-free R-module. Show that HomR(M, N) = (0). 
(b) According to part (a), Homz(Zm, Z) = (0). If n = km, then Zm is a 

Zn-module. Show that 

10. Let R be a commutative ring with 1 and let I and J be ideals of R. Prove 
that R/ I ~ R/ J as R-modules if and only if I = J. Suppose we only ask 
that R/ I and R/ J be isomorphic rings. Is the same conclusion valid? (Hint: 
Consider F[X]/(X - a) where a E F and show that F[Xl!(X - a) ~ F as 
rings.) 

11. Prove Theorem 2.7. 
12. Prove Lemma 2.9. 
13. Let M be an R-module and let f E EndR(M) be an idempotent endomor

phism of M, i.e., f 0 f = f· (That is, f is an idempotent element of the ring 
EndR(M).) Show that 

M ~ (Ker(f)) EEl (Im(f)). 

14. Prove the remaining cases in Theorem 3.10. 
15. Let R be a PID and let a and b E R be nonzero elements. Then show 

that HomR (R/ Ra, R/ Rb) ~ R/ Rd where d = (a, b) is the greatest common 
divisor of a and b. 

16. Compute Homz(Q, Z). 
17. Give examples of short exact sequences of R-modules 
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and 

such that 

~a) MI ;:: N I , M ~ N, M2 2:: N2~ 
b) MI = N I , M'F N, M2 = N2, 
c) MI 'F N I , M ~ N, M2 ~ N2. 

18. Show that there is a split exact sequence 

o ---> mZmn ---> ZTnn ---> nZTnn ---> 0 

of ZTnn-modules if and only if (m, n) = 1. 
19. Let NI and N2 be submodules of an R-module M. Show that there is an 

exact sequence 

where 'Ij;(x) = (x, x) and ¢(x, y) = x - y. 
20. Let R be an integral domain and let a and b be nonzero elements of R. Let 

M = R/R(ab) and let N = Ra/R(ab). Then M is an R-module and N is a 
submodule. Show that N is a complemented submodule in M if and only if 
there are u, v E R such that ua + vb = 1. 

21. Let R be a ring, M a finitely generated R-module, and ¢ : M -t R n a 
surjective R-module homomorphism. Show that Ker(¢) is finitely generated. 
(Note that this is valid even when M has submodules that are not finitely 
generated.) (Hint: Consider the short exact sequence: 

22. 

o ---> K ---> M ..!:..... R n ---> o. ) 

Suppose that 

0 MI 
1> M 

1>' 
M2 0 ---> ---> ---> ---> 

if 
1jJ 19 

1jJ' 
lh 

0 ---> NI ---> N ---> N2 ---> 0 

is a commutative diagram of R-modules and R-module homomorphisms. 
Assume that the rows are exact and that f and h are isomorphisms. Then 
prove that 9 is an isomorphism. 

23. Let R be a commutative ring and S a multiplicatively closed subset of R 
containing no zero divisors. If M is an R-module, then Ms was defined in 
Exercise 6. Prove that the operation of forming quotients with elements of 
S is exact. Precisely: 

(a) Suppose that M' .L M .!!c, Mil is a sequence of R-modules and homo
morphisms which is exact at M. Show that the sequence 

M ' fs M 9S Mil s--t s--t S 

is an exact sequence of Rs-modules and homomorphisms. 
(b) As a consequence of part (a), show that if M' is a submodule of M, then 

M~ can be identified with an Rs-submodule of Ms. 
(c) If Nand Pare R-submodules of M, show (under the identification 

of part (b)) that (N + P)s = Ns + Ps and (N n P)s = Ns n Ps. 
(That is, formation of fractions commutes with finite sums and finite 
intersections. ) 

(d) If N is a submodule of M show that 
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(M/N)s ~ (Ms)/(Ns). 

(That is, formation of fractions commutes with quotients.) 
24. Let F be a field and let {h(X)}~o be any subset of F[X] such that 

deg Ji(X) = i for each i. Show that {Ji(X)}~O is a basis of F[X] as an 
F-module. 

25. Let R be a commutative ring and consider M = R[X] as an R-module. Then 
N = R[X2] is an R-submodule. Show that M/N is isomorphic to R[X] as 
an R-module. 

26. Let G be a group and H a subgroup. If F is a field, then we may form the 
group ring F(G) (Example 2.1.9 (15)). Since F(G) is a ring and F(H) is 
a subring, we may consider F(G) as either a left F(H)-module or a right 
F(H)-module. As either a left or right F(H)-module, show that F(G) is free 
of rank [G : H]. (Use a complete set {gi} of coset representatives of H as a 
basis.) 

27. Let Rand S be integral domains and let 1/11, ... , 1>n be n distinct ring 
homomorphisms from R to S. Show that 1>1, ... , 1>n are S-linearly indepen
dent in the S-module F(R, S) of all functions from R to S. (Hint: Argue by 
induction on n, using the property 1>i(ax) = 1>i(a)1>i(x), to reduce from a 
dependence relation with n entries to one with n - 1 entries.) 

28. Let G be a group, let F be a field, and let 1>i : G -> F* for 1 :S i :S n 
be n distinct group homomorphisms from G into the multiplicative group 
F* of F. Show that 1>1, ... , 1>n are linearly independent over F (viewed as 
elements of the F-module of all functions from G to F). (Hint: Argue by 
induction on n, as in Exercise 27.) 

29. Let R = Z30 and let A E M 2 ,3(R) be the matrix 

A = [6 1 
2 

-1 ] 3 . 

Show that the two rows of A are linearly independent over R, but that any 
two of the three columns are linearly dependent over R. 

30. Let V be a finite-dimensional complex vector space. Then V is also a vector 
space over R. Show that dimR V = 2 dime V. (Hint: If 

B = {VI, . . . ,Vn } 

is a basis of V over C, show that 

is a basis of V over R.) 
31. Extend Exercise 30 as follows. Let L be a field and let K be a subfield of L. 

If V is a vector space over L, then it is also a vector space over K. Prove 
that 

dimK V = [L : K] dimL V 

where [L : K] = dimK L is the dimension of L as a vector space over K. 
(Note that we are not assuming that dimK L < 00.) 

32. Let K ~ L be fields and let V be a vector space over L. Suppose that 
B = {ua }aEr is a basis of Vas an L-module, and let W be the K-submodule 
of V generated by B. Let U ~ W be any K -submodule, and let U L be the 
L-submodule of V generated by U. Prove that 

UL nw = u. 
That is, taking L-linear combinations of elements of U does not produce any 
new elements of W. 
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That is, taking L-linear combinations of elements of U does not produce any 
new elements of W. 

33. Let K <;;: L be fields and let A E Mn(K), b E M n,l(K). Show that the matrix 
equation AX = b has a solution X E M n ,l (K) if and only if it has a solution 
X E Mn,l(L). 

34. Prove that the Lagrange interpolation polynomials (Proposition 2.4.10) and 
the Newton interpolation polynomials (Remark 2.4.11) each form a basis of 
the vector space Pn(F) of polynomials of degree:::; n with coefficients from 
F. 

35. Let F denote the set of all functions from Z+ to Z+, and let M be the 
free Q-module with basis F. Define a multiplication on M by the formula 
(fg)(n) = fen) + g(n) for all f, 9 E F and extend this multiplication by 
linearity to all of M. Let fm be the function fm(n) = 8m,n for all m, n 2': O. 
Show that each fm is irreducible (in fact, prime) as an element of the ring 
1'v1. Now consider the function fen) = 1 for all n 2': O. Show that f does not 
have a factorization into irreducible elements in 1H. (Hint: It may help to 
think of f as the "infinite monomial" 

xt(O) X[(1) ... X!r,(m) .... ) 

(Compare this exercise with Example 2.5.15.) 
36. Let F be a field, and let 

I = {Pa(X) : Pa(X) is an irreducible monic polynomial in F[X]}. 

We will say that a rational function heX) = f(X)/g(X) E F(X) is proper 
if deg(f(X)) < deg(g(X)). Let F(X)pr denote the set of all proper rational 
functions in F[X]. 
(a) Prove that F(X) ~ F[X] CD F(X)pr as F-modules. 
(b) Prove that 

{ Xl . } 
B = (PQ(X))k: p,,(X) E I; 0:::; J < deg(po(X)), k 2: 1 

is a basis of F(X)pr as an F-module. The expansion of a proper rational 
function with respect to the basis B is known as the partial fraction 
expansion; it should be familiar from elementary calculus. 

37. Prove that Q is not a projective Z-module. 
38. Let 

39. 

40. 

R = {f : [0, 1] --+ R: f is continuous and f(O) = f(l)} 

and let 

M = {f : [0, 1] --+ R: f is continuous and f(O) = - f(l)}. 

Then R is a ring under addition and multiplication of functions, and M is 
an R-module. Show that M is a projective R-module that is not free. (Hint: 
Show that M EB M ~ REB R.) 
Show that submodules of projective modules need not be projective. (Hint: 
Consider pZp2 <;;: Zp2 as Zp2-modules.) Over a PID, show that submodules 
of projective modules are projective. 
(a) If R is a Dedekind domain, prove that R is Noetherian. 
(b) If R is an integral domain that is a local ring (i.e., R has a unique 

maximal ideal), show that any invertible ideal I of R is principal. 
(c) Let R be an integral domain and S <;;: R \ {O} a multiplicatively closed 

subset. If I is an invertible ideal of R, show that Is is an invertible ideal 
of Rs. 
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( d) Show that in a Dedekind domain R, every nonzero prime ideal is maxi
mal. (Hint: Let M be a maximal ideal of R containing a prime ideal P, 
and let S = R \ M. Apply parts (b) and (c).) 

41. Show that Z[R] is not a Dedekind domain. 
42. Show that Z[X] is not a Dedekind domain. More generally, let R be any 

integral domain that is not a field. Show that R[X] is not a Dedekind domain. 
43. Suppose R is a PID and M = R(x) is a cyclic R-module with Ann M = (a) i= 

(0). Show that if N is a submodule of M, then N is cyclic with AnnN = (b) 
where b is a divisor of a. Conversely, show that M has a unique submodule 
N with annihilator (b) for each divisor b of a. 

44. Let R be a PID, M an R-module, x E M with Ann(x) = (a) i= (0). Factor 
a = up~' ... pZk with u a unit and PI, ... , Pk distinct primes. Let y E M 
with Ann(y) = (b) i= (0), where b = u'p';" ... p';k with 0 ::; mi < ni for 
1::; i ::; k. Show that Ann(x + y) = (a). 

45. Let R be a PID, let M be a free R-module of finite rank, and let N s:; M be a 
submodule. If MIN is a torsion R-module, prove that rank(M) = rank(N). 

46. Let R be a PID and let M and N be free R-modules of the same finite rank. 
Then an R-module homomorphism f : M ---+ N is an injection if and only if 
N I Im(J) is a torsion R-module. 

47. Let u = (a,b) E Z2. 
(a) Show that there is a basis of Z2 containing u if and only if a and bare 

relatively prime. 
(b) Suppose that u = (5,12). Find a v E Z2 such that {u,v} is a basis of 

Z2. 
48. Let M be a torsion module over a PID R and assume Ann(M) = (a) i= (0). 

If a = p~' ... p~k where PI, ... ,Pk are the distinct prime factors of a, then 
show that MPi = qiM where qi = alp~i. Recall that if pER is a prime, 
then Mp denotes the p-primary component of M. 

49. Let M be a torsion-free R-module over a PID R, and assume that x E M is 
a primitive element. If px = qx' show that q I p. 

50. Find a basis and the invariant factors for the submodule of Z3 generated by 
Xl = (1,0, -1), X2 = (4,3, -1), X3 = (0,9,3), and X4 = (3,12,3). 

51. Find a basis for the submodule of Q[X]3 generated by 

II = (2X-1,X,X2+3), h = (X+1,2X,2X2-3). 

52. Determine the structure of Z3 I K where K is generated by Xl = (2,1, -3) 
and X2 = (1, -1, 2). 

53. Let R = R[X] and suppose that M is a direct sum of cyclic R-modules with 
annihilators (X - 1)3, (X2 + 1)2, (X - 1)(X2 + 1)4, and (X + 2)(X2 + 1)2. 
Determine the elementary divisors and invariant factors of M. 

54. Let R be a PID and let pER be a prime. Show that submodules, quotient 
modules, and direct sums of p-primary modules are p-primary. 

55. An R-module M is said to be irreducible if (0) and M are the only sub
modules of M. Show that a torsion module M over a PID R is irreducible 
if and only if M = R(x) where Ann(x) = (p) where p is prime. Show that 
if M is finitely generated, then M is indecomposable in the sense that M is 
not a direct sum of two nonzero submodules if and only if M = R(x) where 
Ann(x) = (0) or Ann(z) = (pe) where p is a prime. 

56. Let M be an R-module where R is a PID. We say that M is divisible if for 
each nonzero a E R, aM = M. 
(a) Show that Q is a divisible Z-module. 
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(b) Show that any quotient of a divisible R-module is divisible. It follows 
for example that Q/Z is a divisible Z-module. 

(c) If R is not a field, show that no finitely generated R-module is divisible. 
57. Determine all nonisomorphic abelian groups of order 360. 

58. Use elementary divisors to describe all abelian groups of order 144 and 168. 

59. Use invariant factors to describe all abelian groups of orders 144 and 168. 

60. If p and q are distinct primes, use invariant factors to describe all abelian 
groups of order 
(a) p2q2, 
(b) p4q, 
(c) p5. 

61. If p and q are distinct primes, use elementary divisors to describe all abelian 
groups of order p3l. 

62. Let G, H, and K be finitely generated abelian groups. If G x K ~ H x K, 
show that G ~ H. Show by example that this need not be true if we do not 
assume that the groups are finitely generated. 

63. Determine all integers for which there exists a unique abelian group of order 
n. 

64. Show that two finite abelian groups are isomorphic if and only if they have 
the same number of elements of each order. 

65. Let p be a prime and assume that a finite abelian group G has exactly k 
elements of order p. Find all possible values of k 

66. Find a generator for the cyclic group F* where F is each of the following 
fields (see Example 2.5.15 (3)): 
(a) F 2 [X]/(X 2 + X + 1). 
(b) F 3 [X]/(X 2 + 1). 

67. Let 

o --t Ml .!!... M2 ~ ... ..!!:... Mn+l --t 0 

be an exact sequence of finite rank free modules and homomorphisms over a 
PID R. That is, /1 is injective, In is surjective, and Im(fi) = Ker(fi+l) for 
1 ::; i ::; n - 1. Show that 

n+l 

2) -If+l rank(Mi) = O. 
i=l 

68. If I(X1 , '" ,Xn ) E R[Xl' ... ,Xn ], the degree of I is the highest degree of 
a monomial in I with nonzero coefficient, where 

deg(X~' ... x~n) = il + ... + in. 

Let F be a field. Given any five points {VI, ... ,vs} <:;; F2, show that there 
is a quadratic polynomial I(X1 , X 2 ) E F[Xl' X 2 ] such that I(Vi) = 0 for 
1 ::; i ::; 5. 

69. Let M and N be finite-rank free R-modules over a PID R and let f E 
HomR(M, N). If S <:;; N is a complemented submodule of N, show that 
1- 1 (S) is a complemented submodule of M. 

70. Let R be a PID, and let I : M --+ N be an R-module homomorphism of 
finite rank free R-modules. If S <:;; N is a submodule, prove that 

rank(r 1 (S)) = rank(SnIm(f)) +rank(Ker(f)). 
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71. Let !viI ~ M ~ M2 be a sequence of finite-rank R-modules and R
module homomorphisms, where R is a PID, and assume that Im(f) is a 
complemented submodule of M. 

72. 

73. 

74. 

(a) Show that 

rank(Im(g 0 f) = rank(Im(f)) - rank(Im(f) n Ker(g». 

(b) Show that 

rank(Im(g 0 f) = rank(Im(f) + Ker(g)) - rank(Ker(g». 

If R is a field, then all submodules of R-modules are complemented, so 
these formulas are always valid in the case of vector spaces and linear 
transformations. Show, by example, that they need not be valid if Im(f) 
is not complemented. 

Let R be a PID, and let M, N, and P be finite rank free R-modules. Let f : 
M --+ N and 9 : M --+ P be homomorphisms. Suppose that Ker(f) ~ Ker(g) 
and Im(f) is a complemented submodule of N. Then show that there is a 
homomorphism h : N --+ P such that 9 = h 0 f. 
Let F be a field and let V be a vector space over F. Suppose that f, 9 E 
V· = HomF(V, F) such that Ker(f) ~ Ker(g). Show that there is a E F 
such that 9 = af. Is this same result true if F is replaced by a PID? 
Let R be a PID and let M be a finite rank free R-module. Let Ck(M) denote 
the set of complemented submodules of M of rank k. Let G be the group of 
units of the ring EndR(M). 
(a) Show that (cp, N) 1--+ cp(N) determines an action of the group G on the 

set Ck(M). 
(b) Show that the action defined in part (a) is transitive, i.e., given N i , 

N2 E Ck(M) there is cp E G that sends Ni to N 2. 



Chapter 4 

Linear Algebra 

The theme of the present chapter will be the application of the structure theo
rem for finitely generated modules over a PID (Theorem 3.7.1) to canonical form 
theory for a linear transformation from a vector space to itself. The fundamental 
results will be presented in Section 4.4. We will start with a rather detailed in
troduction to the elementary aspects of matrix algebra, including the theory of 
determinants and matrix representation of linear transformations. Most of this 
general theory will be developed over an arbitrary (in most instances, commuta
tive) ring, and we will only specialize to the case of fields when we arrive at the 
detailed applications in Section 4.4. 

4.1 Matrix Algebra 

We have frequently used matrix rings as a source of examples, essentially 
using an assumed knowledge of matrix algebra (particularly matrix multi
plication). The present section will give the primary formulas of the more 
elementary aspects of matrix algebra; many of the proofs will be left as 
exercises. In this section, we do not assume that a ring R is commutative, 
except when explicitly stated. 

Let R be a ring. By an m x n matrix over R we mean a rectangular 
array 

[an a12 
a," j a21 a22 a2n 

A= . : = [aij] 

amI am2 amm 

where aij E R for 1 ::; i ::; m, 1 ::; j ::; n. One can treat a matrix more 
formally as a function f : I x J -+ R where I = {I, 2, ... , m}, J = 
{I, 2, ... , n}, and f(i,j) = aij, but we shall be content to think of a 
matrix in the traditional manner described above as a rectangular array 
consisting of m rows and n columns. Let Mm,n (R) denote the set of all m x n 
matrices over R. When m = n we will write Mn(R) instead of Mn,n(R), 
which is consistent with the notation introduced in Example 2.1.10 (8). If 
A = [aij] E Mm,n(R), then aij is called the ijth entry of A; there are times 
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when it will be convenient to denote this by entij(A) = aij' The index i is 
referred to as the row index, and by the ith row of A we meh.l the 1 x n 
matrix 

rowi(A) = [ail ain 1 , 

while the index j is the column index and the jth column of A is the m x 1 
matrix 

[ 
alj 1 

colj(A) = :.' 
am} 

If A,B E Mm,n(R) then we say that A = B if and only if entij(A) 
entij(B) for all i, j with 1 :::; i :::; m, 1 :::; j :::; n. 

The first order of business is to define algebraic operations on Mm,n(R). 
Define an addition on Mm,n(R) by 

whenever A, B E Mm,n(R). It is easy to see that this operation makes 
Mm,n(R) into an abelian group with identity Om,n (the m x n matrix with 
all entries equal to 0 E R). We shall generally write 0 rather than Om,n 
for the zero matrix in Mm,n(R). The additive inverse of A E Mm,n(R) 
is the matrix -A defined by entij( -A) = - entij(A). Now let a E R 
and A E Mm,n(R), and define the scalar product of a and A, denoted 
aA E Mm,n(R), by entij(aA) = a entij(A). Similarly, Aa E Mm,n(R) 
is defined by entij(Aa) = entij(A) a. In the language to be introduced 
in Chapter 7, these scalar multiplications make Mm,n(R) into an (R, R)
bimodule (Definition 7.2.1), i.e., Mm,n(R) is both a left R-module and a 
right R-module under these scalar multiplications, and a(Ab) = (aA)b for 
all a, bE R and A E Mm,n(R). 

The addition and scalar multiplication of matrices arise naturally from 
thinking of matrices as functions f : I x J ---+ R, namely, they correspond to 
addition and scalar multiplication of functions. However, multiplication of 
matrices is motivated by the relationship of matrices to linear transforma
tions, which will be considered in Section 4.3. For now we simply present 
matrix multiplication via an explicit formula. We can multiply a matrix 
A E Mm,n(R) and a matrix B E Mn,p(R) and obtain a matrix AB (note 
the order) in Mm,p(R) where AB is defined by the formula 

n 

entij(AB) = L entik(A) entkj(B). 
k=l 

Thus to multiply a matrix A by B (in the order AB) it is necessary that 
the number of columns of A is the same as the number of rows of B. 
Furthermore, the formula for entij(AB) involves only the ith row of A and 
the jth column of B. The multiplication formula can also be expressed as 
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where the formula for multiplying a row matrix by a column matrix is 

Let In E Mn(R) be defined by entij(In) = {jij where {jij is the kronecker 
{j function, i.e., {jii = 1 and (jij = 0 if i i- j. The following lemma contains 
some basic properties of matrix multiplication. In part (c), the concept of 
center of a ring is needed. If R is a ring, then the center of R, denoted 
G(R), is defined by 

G(R) = {a E R : ab = ba for all bE R}. 

Note that G(R) is a subring of Rand R is commutative if and only if 
R = G(R). 

(1.1) Lemma. The product map Mm,n(R) x Mn,p(R) ---7 Mm,p(R) satisfies 
the following properties (where A, B, and G are matrices of appropriate 
sizes and a E R): 

(1) A(B + G) = AB + AG. 
(2) (A+B)G=AG+BG. 
(3) a(AB) = (aA)B and both equal A(aB) when a E G(R). 
(4) ImA = A and AIn = A. 
(5) rowi(AB) = [rowi(A)]B. 
(6) colj(AB) = A[colj(B)]. 
(7) The product map Mm,n(R) x Mn,p(R) x Mp,q(R) ---7 Mm,q(R) satisfies 

the associative law A(BG) = (AB)G. 

Proof. Exercise. o 

Remark. The content of the algebraic properties in Lemma 1.1 is that 
Mm,n(R) is a left Mm(R)-module and a right Mn(R)-module. Note that 
Mn(R) is a ring by (1), (2), and (7). The verification of (7) is an unenlight
ening computation, but we shall see in Remark 3.7 that this associativity is 
a consequence of the fact that composition of functions is associative. (In
deed, the basic reason for defining matrix multiplication as we have done 
is to make Proposition 3.6 true.) Also note that Mn(R) is an algebra over 
R by Lemma 1.1 (3) if R is commutative, but not otherwise. 

Recall (from Example 2.1 (8)) that the matrix Eij E Mn(R) is defined 
to be the matrix with 1 in the ilh position and 0 elsewhere. Eij is called 
a matrix unit, but it should not be confused with a unit in the matrix ring 
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Mn(R)j unless n = 1 the matrix unit Eij is never a unit in Mn(R). We 
recall the basic properties of the matrices Eij in the following ~emma. 

(1.2) Lemma. Let {Eij: 1:::; i, j:::; n} be the set of matrix units in Mn(R) 
and let A = [aij] E Mn(R). Then 

(1) EijEkl = OjkEil. 
(2) I:~=l Eii = In· 
(3) A = I:~j=l aijEij = I:~j=l Eijaij. 
(4) EijAEkl = ajkEil. 

Proof. Exercise. o 

Remark. When speaking of matrix units, we will generally mean the ma
trices Eij E Mn(R). However, for every m, n there is a set {Eij}~lj=l ~ 
Mm,n(R) where Eij has 1 in the (i,j) position and 0 elsewhere. Then, with 
appropriately adjusted indices, items (3) and (4) in Lemma 1.2 are valid. 
Moreover, {Eij}~lj=l is a basis of Mm,n(R) as both a left R-module and 
a right R-module. Hence, if R is commutative so that rank makes sense 
(Remark 3.6.19), then it follows that rankR(Mm,n(R)) = mn. 

If a E R the matrix aln E Mn(R) is called a scalar matrix. The set of 
scalar matrices {aln : a E R} ~ Mn(R) is a subring of Mn(R) isomorphic 
to R, via the isomorphism a f-+ aln. Note that (aln)A = A(aln) for all 
a E C(R), A E Mn(R), where C(R) is the center of R. Let v: R --t Mn(R) 
be the ring homomorphism v(a) = aln. Then there is the following result. 

(1.3) Lemma. If R is a ring, then 

C(Mn(R)) = v(C(R)). 

That is, the center of Mn(R) is the set of scalar matrices where the scalar 
is chosen from the center of R. 

Proof. Clearly v(C(R)) ~ C(Mn(R)). We show the converse. Let A E 

C(Mn(R)) and let 1 :::; j :::; n. Then AE1j = EljA and Lemma 1.1 (5) 
and (6) show that 

COlk(AE1j ) = A[colk(Elj)] = Ojk coh(A) 

and 
rowk(E1jA) = [rowk(E1j)]A = Olk rowj(A). 

Comparing entries in these n pairs of matrices shows that aja = 0 if s i- j 
and au = ajj. Since j is arbitrary, this shows that A = auln is a scalar 
matrix. Since A must commute with all scalar matrices, it follows that 
au E C(R). 0 
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A unit in the ring Mn(R) is a matrix A such that there is some matrix B 
with AB = BA = In. Such matrices are said to be invertible or unimodular. 
The set of invertible matrices in Mn(R) is denoted GL(n,R) and is called 
the general linear group over R of dimension n. Note that GL(n, R) is, in 
fact, a group since it is the group of units of a ring. 

If A = [aij] E Mm,n(R), then the transpose of A, denoted At E 

Mn,m(R), is defined by 

The following formulas for transpose are straightforward and are left as an 
exercise. 

(1.4) Lemma. Let R be a ring. 

(1) If A, BE Mm,n(R), then (A + B)t = At + Bt. 
(2) If R is commutative, if A E Mm,n(R) and BE Mn,p(R), then (AB)t = 

BtAt. 
(3) If R is commutative and A E GL(n,R), then (At)-l = (A-l)t. 

Proof. o 

There is a particularly important R-module homomorphism from 
Mn(R) to R defined as follows: 

(1.5) Definition. Define the R-module homomorphism Tr : Mn(R) ....... R by 

n n 

Tr(A) = I: entii(A) = I: aii· 
i=l i=l 

The element Tr(A) E R is called the trace of the matrix A E Mn(R). 

The following is a simple but important result: 

(1.6) Lemma. Let R be a commutative ring. 

(1) If A E Mm,n(R) and BE Mn,m(R), then 

Tr(AB) = Tr(BA). 

(2) If A E Mn(R) and S E GL(n, R), then 

Tr(S-l AS) = Tr(A). 
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Proof. (1) 

m 

Tr(AB) = L entii(AB) 
i=l 
m n 

i=l k=l 
n m 

k=l i=l 
n 

k=l 
= Tr(BA). 

(2) Tr(S-l AS) = Tr(SS-l A) = Tr(A). o 

(1.7) Definition. If R is a ring and A, BE Mn(R), then we say that A and 
B are similar if there is a matrix S E GL(n, R) such that S-l AS = B. 

Similarity determines an equivalence relation on Mn(R), the signifi
cance of which will become clear in Section 4.3. For now, we simply note 
that Lemma 1.6 (2) states that, if R is commutative, then similar matrices 
have the same trace. 

(1.8) Definition. Let R be a ring and let {Eij }i,j=l ~ Mn(R) be the set of 
matrix units. Then we define a number of particularly useful matrices in 
Mn(R). 

(1) For a E Rand i =j:. j define 

The matrix Tij (a) is called an elementary transvection. Tij (a) differs 
from In only in the ilh position, where Tij(a) has an a. 

(2) If a E R* is a unit of Rand 1 ~ i ~ n, then 

is called an elementary dilation. Di(a) agrees with the identity matrix 
In except that it has an a (rather than a 1) in the ith diagonal position. 

(3) The matrix 

Pij = In - Eii - E jj + Eij + Eji 

is called an elementary permutation matrix. Note that Pij is obtained 
from the identity In by interchanging rows i and j (or columns i and 
j). 
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(1.9) Definition. If R is a ring, then matrices of the form Di({3), Tij(O:), and 
P;j are called elementary matrices over R. The integer n is not included 
in the notation for the elementary matrices, but is determined from the 
context. 

Examples. Suppose n = 3 and 0: E R*. Then 

Another useful class of matrices for which it is convenient to have an 
explicit notation is the set of diagonal matrices. 

(1.10) Definition. A matrix A E Mn(R) is diagonal ifentij(A) = 0 whenever 
i i= j. Thus, a diagonal matrix A has the form A = 2:7=1 aiEii in terms 
of the matrix units Eij . We shall use the notation A = diag(a1' ... , an) to 
denote the diagonal matrix A = 2:7=1 aiEii' In particular, the elementary 
matrix Di ({3) = diag(l, ... , 1, (3, 1, ... , 1) where the {3 occurs in the ith 
diagonal position. 

Note the following formula for multiplication of diagonal matrices: 

This observation will simplify the calculation in part (3) of the following 
collection of basic properties of elementary matrices. 

(1.11) Lemma. Let R be a ring. 

(1) If 0:, (3 E Rand i i= j, then Tij(o:)Tij({3) = Tij(O: + (3). 
(2) If 0: E Rand i i= j, then Tij (0:) is invertible and [Tij (0: )]-1 = Tij (-0:). 
(3) If (3 E R* and 1 ~ i ~ n, then Di ({3) is invertible and Di ({3)-l 

Di({3-1). 
(4) Pi~ = In, so Pij is invertible and is its own inverse. 

Proof. (1) 

Tij (o:)Tij ({3) = (I + o:Eij)(I + (3Eij) 

= 1+ (0: + (3)Eij 

= Tij(O: + (3) 

since Elj = 0 if i i= j. 
(2) Tij(o:)Tij( -0:) = Tij(O) = In. 
(3) Di({3)Di({3-1) = diag(l, ... , (3, ... ,1) diag(l, ... , (3-1, ... ,1) 

In by Equation (1.1). 
( 4) Exercise. 0 
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The matrices Tij(a), Di(a), and Pij are generalizations to arbitrary 
rings of the elementary matrices used in linear algebra. This f&..:t is formal
ized in the next result. To simplify the statement we introduce the following 
notation. Suppose R is a ring and A E Mm(R). The left multiplication by 
A is a function 

LA : Mm,n(R) --+ Mm,n(R) 

defined by LA(B) = AB. Similarly, if G E Mn(R), the right multiplication 
by G is the function 

'Rc : Mm,n(R) --+ Mm,n(R) 

defined by 'Rc(B) = BG. Note that LA is a right Mn(R)-module homo
morphism, while'Rc is a left Mm(R)-module homomorphism. 

(1.12) Proposition. Let R be a ring, let a E R, f3 E R*, and m, n E N be 
given, and let A E Mm,n(R). 

(1) LTi;(a)(A) = Tij(a)A is obtained from A by replacing rowi(A) by 
a[rowj(A)] + rowi(A) and leaving the other rows intact. 

(2) LDi(,B)(A) = Di(f3)A is obtained from A by multiplying rowi(A) by f3 
on the left and leaving the other rows intact. 

(3) LPi;(A) = PijA is obtained from A by interchanging rowi(A) and 
row j (A) and leaving the other rows intact. 

Proof. (1) Tij(a)A = (J + aEij)A = A + aEijA. By Lemma 1.1 (5), 
rowk(EijA) = 0 if k :f:. i and rowi(EijA) = [rowi(Eij)]A = rowj(A) since 

where the 1 is in the jth position. Thus, rowk(Tij(a)A) = rowk(A) if k :f:. i 
while rowi(1"ij(a)A) = rowi(A) + a [rowj (A)]. 

(2) Di(f3)A = (J -Eii+f3Eii)A = A+(f3-1)EiiA. The same calculation 
as in part (1) shows that rowk(Di(f3)A) = rowk(A) if k :f:. i while 

(3) This is a similar calculation, which is left as an exercise. 0 

There is a corresponding result that relates right multiplication by 
elementary matrices to operations on the columns of a matrix. We state 
the result and leave the verification (using Lemma 1.1 (6» to the reader. 

(1.13) Proposition. Let R be a ring, let a E R, f3 E R*, and m, n E N be 
given, and let A E Mm,n(R). 
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(1) RTij(a)(A) = ATij(O:) is obtained from A by replacing colj(A) by 
[coli (A)]o: + colj(A) and leaving the other columns intact. 

(2) R Di (!3)(A) = ADi ({3) is obtained from A by multiplying COli(A) by (3 
on the right and leaving the other columns intact. 

(3) R Pij (A) = APij is obtained from A by interchanging COli (A) and 
colj(A) and leaving the other columns intact. 

Proof. D 

We conclude this introductory section by introducing the notation of 
partitioned matrices. Partitioning matrices into smaller submatrices is a 
technique that is frequently useful for verifying properties that may not be 
as readily apparent if the entire matrix is viewed as a whole. Thus, suppose 
that A E Mm,n(R). If m = ml + ... + mr and n = nl + ... + n s, then we 
may think of A as an r x s block matrix 

where each block Aij is a matrix of size mi x nj with entries in R. Two 
particularly important partitions of A are the partition by rows 

and the partition by columns 

Consider the problem of multiplying two partitioned matrices. Thus, 
suppose that 

A= 
[At, A" ] 

Arl Ars 

and 

[ B" B"] B= . 

Bsl Bst 

are partitioned matrices. Can the product G = AB be computed as a 
partitioned matrix G = [Gij ] where Gij = I:~=l AikBkj? The answer is yes 
provided all of the required multiplications make sense. In fact, parts (5) 
and (6) of Lemma 1.1 are special cases of this type of multiplication for 
the partitions that come from rows and columns. Specifically, the equation 



4.1 Matrix Algebra 191 

rowi(AB) = [rowi(A)]B of Lemma 1.1 (5) translates into a product of 
partitioned matrices 

where Ai = rowi(A), while the equation colj(AB) = A[colj(B)] of Lemma 
1.1 (6) translates into another product of partitioned matrices 

where B j = colj(B). 
For the product of general partitioned matrices, there is the following 

result. 

(1.14) Proposition. Let R be a ring, and let A E Mm,n(R), B E Mn,p(R). 
Suppose that m = ml + ... + m s , n = nl + ... + nt, and P = PI + ... + Pu, 
and assume that A = [Aij] and B = [Bij] are partitioned so that Aij E 
Mm;,n; (R) while Bij E Mn;,p; (R). Then the matrix C = AB has a partition 
C = [Cij ] where Cij E Mm;,p; (R) and 

t 

Cij = L AikBkj. 
k=1 

Proof. Suppose 1 :::; a :::; m and 1 :::; {3 :::; p. Then 

n 

(1.2) enta i9( C) = L aa'Yb'Yi9' 
1'=1 

In the partition of C given by m = ml + ... + ms and P = PI + ... + Pu, we 
have that entai9(C) is in a submatrix Cij E Mm;,p; (R) so that entai9(C) = 
entwT(Cij ) where 1 :::; w :::; mi and 1 :::; T :::; Pj' Thus we have a partition of 
rowa(A) and coli9(B) as 

and 

[ 
colT~Blj) 1 

coli9(B) = : . 

colT (Btj) 

From Equation (1.2) we conclude that 



192 Chapter 4. Linear Algebra 

entWT ( Gij ) = entu,B ( G) 
n 

nl n2 nt 

= L au,bu, + L au,bu, + ... + L au,bu, 
,=1 ,=nl +1 ,=nt-l +1 

= entwT(AilBlj) + entwT(Ai2B2j) + ... + entwT(AitBtj). 

and the result is proved. o 

A particularly useful collection of partitioned matrices is the set of 
block diagonal matrices. A partitioned matrix 

is said to be a block diagonal matrix if r = s and if Aij = 0 whenever i =f:. j. 
The submatrices Aii are the diagonal blocks, but note that the blocks Aii 
can be of any size. Generally, we will denote the diagonal blocks with the 
single subscript Ai. If 

o II 
is a block diagonal matrix, then we say that A is the direct sum of the 
matrices AI, ... ,Ar and we denote this direct sum by 

A = Al EB ... EB Ar. 

Thus, if Ai E Mmi,ni (R), then Al EB· . 'EBAr E Mm,n(R) where m = L~=l mi 
and n = L~=l ni· 

The following result contains some straightforward results concerning 
the algebra of direct sums of matrices: 

(1.15) Lemma. Let R be a ring, and let AI, ... ,Ar and B l , ... ,Br be 
matrices over R of appropriate sizes. (The determination of the needed size 
is left to the reader.) Then 

(1) (EBi=lAi) + (EBi=lBi) = EBi=l (Ai + Bi ), 
(2) (EBi=lAi ) (EBi=lBi ) = EBi=l (AiBi), 
(3) (EBi=lAi)-l = EBi=lAi l if Ai E GL(ni' R), and 
(4) Tr(EBi=lAi ) = L~=l Tr(Ai) if Ai E Mmi(R). 

Proof. Exercise. o 
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The concept of partitioned matrix is particularly convenient for de
scribing and verifying various properties of the tensor product (also called 
the kronecker product) of two matrices. 

(1.16) Definition. Let R be a commutative ring, let A E Mm"n, (R), and let 
BE Mm2 ,n2(R). Then the tensor product or kronecker product of A and 
B, denoted A 0 BE Mm,m2 ,n,n2(R), is the partitioned matrix 

(1.3) [ 
Cll 

C~'I 
where each block Cij E Mm2n2 is defined by 

There is a second possibility for the tensor product. A 0 B could be 
defined as the partitioned matrix 

(1.4) 

where each block Dij E Mm1n1 (R) is defined by 

Dij = A(entij(B)) = Abij . 

We shall see in Section 7.2 that the two versions of the tensor product arise 
because of different possibilities of ordering standard bases on the tensor 
product of free modules of finite rank. Since there is no intrinsic difference 
between the two possibilities, we shall use the definition in Equation (1.3) 
as the definition of the tensor product of matrices. 

(1.17) Examples. 

o b 0] 
a 0 b 
o dO' 
cOd 

The following result is an easy consequence of the partitioned multi
plication formula (Proposition 1.14): 

(1.18) Lemma. Let R be a commutative ring and let Al E Mm"n, (R), 
A2 E Mn"T,(R), BI E Mm2 ,n2(R), and B2 E Mn2 ,T2(R). Then 
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Proof. By Proposition 1.14, Gij , the (i,j) block of (AI 0 Bd(A2 0 B2)' is 
given by 

n, 
Gij = L (entik(AdBd (entkj(A2)B2) 

k=I 

= (~(entik(Ad entkj(A2))) B IB2, 

o 

(1.19) Corollary. Let R be a commutative ring, let A E Mm(R), and let 
BE Mn(R). Then 

Proof. o 

(1.20) Lemma. If A E Mm(R) and B E Mn(R), then 

Tr(A 0 B) = Tr(A) Tr(B). 

Proof. Exercise. o 

4.2 Determinants and Linear Equations 

Throughout this section, we will assume that R is a commutative ring. 

(2.1) Definition. Let R be a commutative ring and let D : Mn(R) -+ R 
be a function. We say that D is n-linear (on rows) if the following two 
conditions are satisfied. 

(1) If B is obtained from A by multiplying a single row of A by a E R then 

D(B) = aD(A). 

(2) If A, B, G E Mn(R) are identical in all rows except for the ith row 
and 

rOWi(G) = rowi(A) + rowi(B), 

then 
D(G) = D(A) + D(B). 
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Furthermore, we say that D is alternating if D(A) = 0 for any matrix 
A that has two rows equal. D : Mn(A) -> R is said to be a determinant 
function if D is n-linear and alternating. 

Note that property (2) does not say that D(A + B) = D(A) + D(B). 
This is definitely not true if n > 1. 

One may also speak of n-linearity on columns, but Proposition 2.9 
will show that there is no generality gained in considering both types of 
n-linearity. Therefore, we shall concentrate on rows. 

(2.2) Examples. 

(1) Let Dl and D2 be n-linear functions. Then for any choice of a and bin 
R, the function D: Mn(R) -> R defined by D(A) = aDl(A) +bD2(A) 
is also an n-linear function. That is, the set of n-linear functions on 
Mn(R) is closed under addition and scalar multiplication of functions, 
i.e., it is an R-module. 

(2) Let a E Sn be a permutation and define Da : Mn(R) -> R by the 
formula 

Da(A) = ala(1)a2a(2)·· ·ana(n) 

where A = [aij]. It is easy to check that Da is an n-linear function, 
but it is not a determinant function since it is not alternating. 

(3) Let f : Sn -> R be any function and define Df : Mn(R) -> R by the 
formula D f = LaESn f(a)Da. Applying this to a specific A = [aij] E 
Mn(R) gives 

Df(A) = L f(a)ala(1)a2a(2)·· ·ana(n)· 
aESn 

By examples (1) and (2), Df is an n-linear function. 
(4) If n = 2 and c E R, then Dc(A) = c(alla22 - a12a2I) defines a deter

minant function on M 2 (A). 

The first order of business is to prove that there is a determinant func
tion for every n and for every commutative ring R and that this determinant 
function is essentially unique. More precisely, any determinant function is 
completely determined by its value on the identity matrix In. Note that for 
n = 1 this is clear since D([a]) = D(a[l]) = aD([l]) for every 1 x 1 matrix 
[a] by property (1) of n-linearity. The strategy for verifying existence and 
essential uniqueness for determinant functions is to first verify a number 
of basic properties that any determinant function must satisfy and then 
from these properties to derive a formula that must be used to define any 
determinant function. It will then only remain to check that this formula, 
in fact, defines a determinant function. 
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(2.3) Lemma. Let D : Mn(R) --t R be n-linear. Ifrowi(A) = 0 for some i, 
then D(A) = O. 

Proof. Since rowi(A) = 0 . rowi(A), property (1) of n-linearity applies to 
show that D(A) = O· D(A) = O. 0 

(2.4) Lemma. Let D : Mn (R) --t R be a determinant function. If i =I- j and 
Pij is the elementary permutation matrix determined by i and j, then 

D(PijA) = -D(A) 

for all A E Mn(R). (That is, interchanging two rows of a matrix multiplies 
D(A) by -1.) 

Proof. Let Ak = rowk(A) for 1 ::::: k ::::: n, and let B be the matrix with 
rowk(B) = rowk(A) whenever k =I- i, j while rowi(B) = rowj(B) = Ai+Aj . 
Then since D is n-linear and alternating, 

~+~ ~ ~ 
0= D(B) = D = D + D 

Ai + Aj Ai + Aj Ai + Aj 

Ai Ai Aj Aj 

=D +D +D +D 

Ai Aj Ai Aj 

Ai Aj 

=D +D 

Aj Ai 

= D(A) + D(PijA) 

by Proposition 1.12. Thus, D(P;jA) = -D(A), and the lemma is proved. 
. 0 

(2.5) Remark. Lemma 2.4 is the reason for giving the name "alternating" 
to the property that D(A) = 0 for a matrix A that has two equal rows. 
Indeed, suppose D has the property given by Lemma 2.4, and let A be a 
matrix with rows i and j equal. Then PijA = A, so from the property of 
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Lemma 2.4 we conclude D(A) = -D(A), i.e., 2D(A) = O. Thus, if R is a 
ring in which 2 is not a zero divisor, the two properties are equivalent, but 
in general the property of being alternating (as given in Definition 2.1) is 
stronger (Exercise 16). 

(2.6) Lemma. Let D : Mn(R) -+ R be a determinant function. If i =I- j, 
a E R, and Tij (a) is an elementary tmnsvection, then 

D(Tij(a)A) = D(A). 

(That is, adding a multiple of one row of A to another row does not change 
the value of D(A).) 

Proof. Let B be the matrix that agrees with A in all rows except row i, 
and assume that rowi(B) = a rowj(A). Let A' be the matrix that agrees 
with A in all rows except row i and assume that rowi(A') = rowj(A). Then 
D is alternating so D(A') = 0 since rowi(A') = rowj(A) = rowj(A'), and 
thus, D(B) = aD(A') = 0 since D is n-linear. Since Tij(a)A agrees with A 
except in row i and 

rowi(Tij(a)A) = rowi(A) + a rowj(A) = rowi(A) + rowi(B) 

(see Proposition 1.12), it follows from property (2) of n-linearity that 

D(Tij(a)A) = D(A) + D(B) = D(A). 

o 

Let Ei = rowi(In) for 1 ::; i ::; n, and consider all n x n matrices 
formed by using the matrices Ei as rows. To develop a convenient notation, 
let On denote the set of all functions w : {I, 2, ... , n} -+ {l, 2, ... , n}, 
and if wE On, let Pw denote the n x n matrix with rowi(Pw) = EW(i)' For 
example, if n = 3 and w(l) = 2, w(2) = 1, and w(3) = 2, then 

Pw~ [H ~l 
If w E On is bijective so that w E Sn, then Pw is called a permutation 
matrix. If w = (i j) is a transposition, then Pw = Pij is an elementary 
permutation matrix as defined in Section 4.1. In general, observe that the 
product PwA is the matrix defined by 

rowi(pwA) = roww(i) (A). 

According to Proposition 1.12 (3), if w E Sn is written as a product of 
transpositions, say w = (i 1 j 1)(i2 h) '" (it jt), then 

Pw = PidlPi2h ... Pititln 
= InPidl Pi2 ], ... Pitit · 
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Since w- 1 = (it jt)(it- 1 jt-d ... (i1 jd, the second equality, together with 
Proposition 1.13 (3), shows that 

COli(Pw ) = EW-l(i)· 

Therefore, again using Proposition 1.13 (3), we see that APw is the matrix 
defined by 

COli(APw ) = COlw -l(i)(A). 

To summarize, left multiplication by Pw permutes the rows of A, following 
the permutation w, while right multiplication by Pw permutes the columns 
of A, following the permutation w- l . 

Recall that the sign of a permutation fJ, denoted sgn(fJ), is +1 if fJ is 
a product of an even number of transpositions and -1 if fJ is a product of 
an odd number of transpositions. 

(2.7) Lemma. Let R be a commutative ring and let D : Mn(R) --+ R be a 
determinant function. If w E On I then 

(1) D(Pw ) = 0 if w ~ Snl and 
(2) D(Pw ) = sgn(w)D(In) if wE Sn. 

Proof. (1) If w ~ Sn then w(i) = w(j) for some i =I j so that Pw has two 
rows that are equal. Thus, D(Pw) = O. 

(2) If wE Sn, write w = (i1 i j ) ... (idt) as a product of transpositions 
to get (by Proposition 1.12) 

By Lemma 2.4, we conclude that 

and the lemma is proved. 

Now let A = [aij] E Mn(R) and partition A by its rows, i.e., 

where Ai = rowi(A) for 1 :::; i :::; n. Note that 

Ai = [ail ... ain] 

= [ail 0 ... 0] + [0 ai2 0 ... 0] + ... + [0 ... 0 ain] 

= ailEl + ai2E2 + ... + ainEn 
n 

= LaijEj , 
j=l 

o 
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and thus, 

(2.1) [ 

2:Z1=1 a1h Eh 1 
A = 2:12=1 a212 E12 . 

2:;n=l anjnEjn 

If D is a determinant function, we may compute D(A) using (2.1), the 
n-linearity of D, and Lemma 2.7 as follows: 

(2.2) = [L sgn(w)a1w(1)'" anw(n)] D(In). 
wESn 

Thus, we have arrived at the uniqueness part of the following result since 
formula (2.2) is the formula which must be used to define any determinant 
function. 

(2.8) Theorem. Let R be a commutative ring and let a E R. Then there is 
exactly one determinant function Da : Mn(R) ----+ R such that Da(In) = a. 
Thus Da = aD1, and we let det = D 1. 

Proof. If there is a determinant function D a , then according to Equation 
(2.2), Da must be given by 
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(2.3) Da(A) = a (L sgn(a)alo-(l) ... ano-(n») . 
o-ESn 

It remains to check that Equation (2.3) in fact defines a determinant func
tion on Mn(R). It is sufficient to check this with a = 1 since a scalar 
multiple of a determinant function is also a determinant function. If we let 
f(a) = sgn(a) . 1, then Dl = Df as defined in Example 2.2 (3), and as 
observed in that example, D f is an n-linear function for each f : Sn -+ R. 
In particular, Dl is n-linear and it remains to check that it is alternating. 
To verify this, suppose that A E Mn(R) has rowi(A) = rowj(A) with i =I- j. 
Then for 1 ::; k ::; n we have aik = ajk. If a E Sn, let a' = a 0 (ij). We 
claim that 

(2.4) alo-(l)·· ·ano-(n) = alo-I(l)·· ·ano-I(n)· 

This is because a(k) = a'(k) if k =I- i, j so that ako-(k) = ako-I(k)' while 
a'(i) = a(j) and a'(j) = a(i) so that aio-I(i) = aio-(j) = ajo-(j) and ajo-I(j) = 
ajo-(i) = aio-(i). Hence Equation (2.4) is valid. But sgn(a') = -sgn(a), so 

sgn(a)al 0-(1) ... ano-(n) + sgn(a')alo-/(l) ... an o-I(n) = o. 

But a ....-t a' gives a pairing of the even and odd permutations in Sn, and 
hence, we conclude 

L (sgn(a)alo-(l)··· ano-(n) + sgn(a')alo-I(l)··· ano-I(n» 
sgn(o-)=l 

= o. 

Therefore, Dl is a determinant function on Mn(R) and Theorem 2.8 is 
proved. 0 

(2.9) Corollary. Let A = [aij] E Mn(R) be an upper (resp., lower) triangular 
matrix, i.e., aij = 0 for i > j (resp., i < j). Then 

n 

det(A) = all ... ann = II aii· 
i=l 

Proof. If a E Sn is not the identity permutation, then for some i and j, 
a(i) > i and a(j) < j, so in either case, 

alo-(l) ... ano-(n) = 0, 

and the result follows by Equation (2.3). o 
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Our determinant functions have been biased towards functions on the 
rows of matrices. But, in fact, we can equally well consider functions on 
the columns of matrices. Perhaps the simplest way to see this is via the 
following result: 

(2.10) Proposition. If A E Mn(R) then det(A) = det(At). 

Proof. Let A = [aij]. Then 

det(A) = L sgn( a )al 0'(1) ... an u(n) 

= L sgn( a )au-l (0'(1» 0'(1) ... au-l (u(n» u(n) 

= det(At). 

Here we have used the fact that sgn(a- 1) = sgn(a) and that 

au-l(u(I» 0'(1) ... au-l(u(n» u(n) = au-l(l) 1 ... au-len) no 

This last equation is valid because R is commutative and {a( 1), ... , a( n)} 
is just a reordering of {I, ... , n} for any a E Sn. D 

(2.11) Theorem. If A, B E Mn(R) then 

det(AB) = det(A) det(B). 

Proof. Define DB : Mn(R) -+ R by DB(A) = det(AB). Since rowi(AB) = 
[rowi(A)]B, it is easy to check (do it) that DB is n-linear and alternating. 
Thus DB is a determinant function, so by Theorem 2.8, DB(A) = adet(A) 
where a = DB(In) = det(B). D 

This result is an example of the payoff from the abstract approach 
to determinants. To prove Theorem 2.11 directly from the definition of 
determinant as given by Equation (2.3) is a somewhat messy calculation. 
However, the direct calculation from Equation (2.3) is still beneficial in that 
a more general product formula is valid. This approach will be pursued in 
Theorem 2.34. 

(2.12) Corollary. If R is a commutative ring, A E Mn(R), and S E 

GL(n, R), then 
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det(S-l AS) = det(A). 

That is, similar matrices have the same determinant. 

Proof. Exercise. o 

Similarly to the proof of Theorem 2.11, one can obtain the formula for 
the determinant of a direct sum of two matrices. 

(2.13) Theorem. If R is a commutative ring, Ai E Mni (R) for 1 :::; i :::; 1', 

and A = EBi=l Ai, then 

r 

det(A) = II det(Ai). 
i=l 

Proof. It is clearly sufficient to prove the result for l' = 2. Thus suppose 
that A = A1 EBA2. We may write A = (A1 EBInJ(/n, EBA2)' Then Theorem 
2.11 gives 

det(A) = (det(A1 EB In2 )) (det(/nl EB A2))' 

Therefore, if det(A1 EB In2 ) = det(Ad and det(/nl EB A2) = det(A2), then 
we are finished. We shall show the first equality; the second is identical. 

Define D1 : Mnl (R) ---> R by D1 (B) = det(B EB In2 ). Since det is 
(n1 + n2)-linear and alternating on Mn,+n2 (R), it follows that D1 is n1-
linear and alternating on Mnl (R). Hence, (by Theorem 2.8), D1(A1) = 
adet(Ad for all A1 E Mnl (R), where a = D1(/n,) = det(In, EB In2 ) = 1, 
and the theorem is proved. 0 

Remark. Theorem 2.13 and Corollary 2.9 can both be generalized to a 
formula for block triangular matrices. (See Exercise 13.) 

There is also a simple formula for the determinant of the tensor product 
of two square matrices. 

(2.14) Proposition. Let R be a commutative ring, let A E Mm(R), and let 
BE Mn(R). Then 

det(A 0 B) = (det(A)t (det(B))m . 

Proof. By Corollary 1.19, A 0 B = (A 0 In)(Im 0 B). By Example 1.17 
(2), 1m 0 B = EB~l B, so det(/m 0 B) = det(B)m by Theorem 2.13. We 
leave it as an exercise to verify that the rows and columns of the matrix 
A 0 In can be permuted to obtain that A 0 In is (permutation) similar to 
EBi=l A (Exercise 50). The proof is then completed by another application 
of Theorem 2.13. 0 



4.2 Determinants and Linear Equations 203 

We will now consider cofactor expansions of determinants. If A E 
Mn(R) and 1 :::; i,j :::; n, let Aij be the (n - 1) x (n - 1) matrix obtained 
by deleting the ith row and lh column of A. 

(2.15) Theorem. (Laplace expansion) Let R be a commutative ring and let 
A E Mn(R). Then 

(1) 

and 

(2) 

n 

~)-1)k+jakidet(Akj) = 8ij det(A) 
k=l 

n 

~) -1)k+j aik det(Ajk) = 8ij det(A). 
k=l 

Proof. If A E Mn(R) and 1 :::; i, j :::; n, let 

n 

Dij(A) = ~) -1)k+jaki det(Akj). 
k=l 

That is, Dij(A) E R is defined by the left-hand side of equation (1). We 
claim that the function Dij : Mn(R) -+ R is a determinant function for all 
i, j. Note that the function A ........ akidet(Akj) is n-linear on Mn(R). Since 
a linear combination of n-linear functions is n-linear, it follows that Dij is 
n-linear. It remains to check that it is alternating. To see this, suppose that 
A E Mn(R) is a matrix with rows p and q equal. If k =f:. p, q, then A kj has 
two rows equal, so det (Akj) = 0 in this case. Thus, 

(2.5) 

Note that the assumption that rowp(A) = rowq(A) means that api = aqi. 
To be explicit in our calculation, suppose that p < q. Then the matrix Aqj 
is obtained from Apj by moving row q - 1 of Apj to row p and row t of Apj 
to row t + 1 for t = p, ... , q - 2. In other words, 

where wE Sn-l is defined by w(t) = t for t < p and t 2:: q, while w(q-1) = p 
and w(t) = t + 1 for t = p, ... , q - 2. That is, w is the (q - p)-cycle 
(p, p + 1, ... , q - 1). Then by Lemma 2.7 

det(Aqj ) = det(PwA) = sgn(w) det(Apj) = (_1)q-p-l det(Apj). 

Equation (2.5) then shows that Dij(A) = 0, and hence Dij is alternating. 
Therefore, Dij is a determinant function, so by Theorem 2.8 

(2.6) 
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for all A E Mn(R). A direct calculation shows that Dij(In) = Oij, so that 
Equation (2.6) yields (1) of the theorem. 

Formula (2) (cofactor expansion along row j) is obtained by applying 
formula (1) to the matrix At and using the fact (Proposition 2.10) that 
det(A) = det(At). 0 

(2.16) Definition. If A E Mn(R), then we define the cofactor matrix of A, 
denoted Cofac(A), by the formula 

and we define the adjoint of A, denoted Adj(A), by 

Adj(A) = (Cofac(A))t. 

The following result should be familiar for matrices with entries in a 
field, and the proof is the same: 

(2.17) Theorem. Let A E Mn(R). 

(1) A(Adj(A)) = (Adj(A))A = det(A)In. 
(2) A is invertible if and only if det(A) is a unit in R, and in this case, 

A-1 = (det(A))-l Adj(A). 

Proof. Formula (1) follows immediately from Theorem 2.15. If A E Mn(R) 
is invertible, then there is a matrix B such that AB = BA = In. Thus 
(det(A))(det(B)) = 1 so that det(A) E R*. Conversely, if det(A) is a unit, 
then B = (det(A))-l Adj(A) satisfies AB = BA = In by formula (1). 0 

(2.18) Remark. The definition of inverse of a matrix requires that AB = 

BA = In, but as a consequence of Theorem 2.17, we can conclude that a 
matrix A E Mn(R) is invertible provided that there is a matrix BE Mn(R) 
such that AB = In. Indeed, if AB = In then (det(A))(det(B)) = 1, so 
det(A) is a unit in R, and hence, A is invertible. 

(2.19) Examples. 

(1) A matrix A E Mn(Z) is invertible if and only if det(A) = ±l. 
(2) If F is a field, a matrix A E Mn(F[X]) is invertible if and only if 

det(A) E F* = F \ {a}. 
(3) If F is a field and A E Mn (F [X]) , then for each a E F, evaluation of 

each entry of A at a E F gives a matrix A(a) E Mn(F). If det(A) = 
f(X) =1= 0 E F[X], then A(a) is invertible whenever f(a) =1= O. Thus, 
A(a) is invertible for all but finitely many a E F. 
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As an application of our results on determinants, we shall present a 
determinantal criterion for the solvability of homogeneous linear equations 
when the coefficients can be from an arbitrary commutative ring. This 
criterion will involve some ideals of R generated by various determinants of 
submatrices of matrices over R. We will start by defining these ideals. 

To state the results in a reasonably compact form it is convenient 
to introduce some appropriate notation. If p, mEN with p ~ m, let 
Qp,m denote the set of all sequences a = (ib ... , ip) of p integers with 
1 ~ i1 < i2 < ... < ip ~ m. Note that the cardinality of the set Qp,m 
is IQp,ml = r;)· Suppose A E Mm,n(R). If a E Qp,m and 13 E Qj,n, let 
A[a I 13] denote the submatrix of A consisting of the elements whose row 
index is in a and whose column index is in 13. If a E Qp,m then there is 
a complementary sequence Ii E Qp-m,m consisting of the integers in {I, 
2, ... ,m} not included in a and listed in increasing order. To give some 
examples of these notations, let 

[
all a12 a13 a14] 

A = a21 a22 a23 a24 . 
a31 a32 a33 a34 

If a = (1, 3) E Q2,3 and 13 = (2, 3) E Q2,4, then 

A[a I 13] = [a12 a13 ] 
a32 a33 

while a = 2 E Q1,3 and fj = (1, 4) E Q2,4 so that 

A[a I fj] = [a21 a24]. 

(2.20) Definition. If R is a commutative ring and A E Mm,n(R), then a txt 
minor of A is the determinant of any submatrix A[a 113] where a E Qt,m, 
13 E Qt,n' The determinantal rank of A, denoted D-rank(A), is the laryest 
t such that there is a nonzero txt minor of A. 

(2.21) Definition. If R is any commutative ring, A E Mm,n(R), and 1 ~ 
t ~ min{m,n}, let 

Ft(A) = ({detA[a I 13]: a E Qt,m, 13 E Qt,n}) S;;; R. 

That is, Ft(A) is the ideal of R generated by all the txt minors of A. We 
set Fo{A) = Rand Ft{A) = 0 if t > min{m, n}. Ft{A) is called the tth_ 
Fitting ideal of A. The Laplace expansion of determinants {Theorem 2.15} 
shows that Ft+1{A) S;;; Ft{A). Thus there is a decreasing chain of ideals 

R = Fo{A) ;2 F1{A) ;2 F2{A) ;2 .... 

If R is a PID, then Ft{A) is a principal ideal, say Ft{A) = (dt{A)) where 
dt{A) is the greatest common divisor of all the txt minors of A. In this 
case, a generator of Ft{A) is called the tth-determinantal divisor of A. 
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(2.22) Definition. If A E Mm,n(R), then the M-rank(A) is defined to be the 
largest t such that Ann(Ft(A» = o. 

(2.23) Remarks. 

(1) M-rank(A) = 0 means that Ann(F1 (A» -I- O. That is, there is a nonzero 
a E R with a aij = 0 for all aij . Note that this is stronger than saying 
that every element of A is a zero divisor. For example, if A = [2 3] E 

M 1,2(Z6), then every element of A is a zero divisor in Z6 but there is 
no single nonzero element of Z6 that annihilates both entries in the 
matrix. 

(2) If A E Mn(R), then M-rank(A) = n means that det(A) is not a zero 
divisor of R. 

(3) To say that M-rank(A) = t means that there is an a -I- 0 E R with 
a· D = 0 for all (t + 1) x (t + 1) minors D of A, but there is no nonzero 
b E R which annihilates all txt minors of A by multiplication. In 
particular, if det A [0: I ,B] is not a zero divisor of R for some 0: E Qs,m, 
,B E Qs,n, then M-rank(A) 2: s. 

(2.24) Lemma. If A E Mm,n(R), then 

o ~ M-rank(A) ~ D-rank(A) ~ min{m,n}. 

Proof. Exercise. D 

We can now give a criterion for solvability of the homogeneous linear 
equation AX = 0, where A E Mm,n(R). This equation always has the trivial 
solution X = 0, so we are looking for solutions X -I- 0 E Mn,l(R). 

(2.25) Theorem. Let R be a commutative ring and let A E Mm,n(R). The 
matrix equation AX = 0 has a nontrivial solution X -I- 0 E Mn,l (R) if and 
only if 

M-rank(A) < n. 

Proof. Suppose that M-rank(A) = t < n. Then Ann(Ft+1(A» -I- 0, so 
choose b -I- 0 E R with b· Ft+1 (A) = O. Without loss of generality, we may 
assume that t < m since, if necessary, we may replace the system AX = 0 
by an equivalent one (i.e., one with the same solutions) by adding some 
rows of zeroes to the bottom of A. If t = 0 then baij = 0 for all aij and we 

m.y toke X ~ [!l. Then X" 0 E Mn.,(R) and AX ~ o. 

Thus, suppose t > o. Then b rt. Ann(Ft(A» = 0, so bdetA[o: I ,B] -I- 0 
for some 0: E Qt,m,,B E Qt,n. By permuting rows and columns, which does 
not affect whether AX = 0 has a nontrivial solution, we can assume 0: = 
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(1, ... , t), f3 = (1, ... , t). For 1 :::; i :::; t + 1 let f3i = (1,2, ... ,7, ... , t + 1) E 
Qt,t+1 where 7 indicates that i is deleted. Let di = (-1 )t+Hi det A [a: I f3i]. 
Thus db ... , dt+1 are the cofactors of the matrix 

Al = A[(I, ... , t + 1) I (1, ... , t + 1)] 

obtained by deleting row t + 1 and column i. Hence the Laplace expansion 
theorem (Theorem 2.15) gives 

(2.7) { L:~!'~ aijdj = 0 1 :::; i :::; t, 

L:~!'~ aijdj = det A[(I, . .. , t, i) I (1, ... , t, t + 1)] t < i :::; m. 

{
Xi = bdi ~f 1 :::; i :::; ~ + 1, 
Xi = 0 If t + 2 :::; z :::; n. 

Then X =f. 0 since Xt+1 = b det A[a: I f3] =f. o. But Equation (2.7) and the 
fact that b E Ann(Ft+l (A)) show that 

o 

o 
= bdetA[(I, ... ,t,t+l) I (1, ... ,t,t+l)] 

bdetA[(I, ... ,t,m) I (1, ... ,t,t+l)] 
=0. 

Thus, X is a nontrivial solution to the equation AX = o. 
Conversely, assume that X =f. 0 E Mn,I(R) is a nontrivial solution to 

AX = 0, and choose k with Xk =f. o. We claim that Ann(Fn(A)) =f. O. If 
n > m, then Fn(A) = 0, and hence, Ann(Fn(A)) = R =f. (0). Thus, we 
may assume that n :::; m. Let a: = (1, ... , n) and for each f3 E Qn,m, let 
B{3 = A[a: I f3]. Then, since AX = 0 and since each row of B{3 is a full row 
of A, we conclude that B{3X = O. The adjoint matrix formula (Theorem 
2.17) then shows that 

(detB{3)X = (AdjB{3)B{3X = 0, 



208 Chapter 4. Linear Algebra 

from which we conclude that Xk det B{3 = O. Since f3 E Qn,m is arbitrary, 
we conclude that Xk . Fn(A) = 0, i.e., Xk E Ann(Fn(A)). But Xk =I- 0 so 
Ann(Fn(A)) =I- 0, and we conclude that M-rank(A) < n and the proof is 
complete. 0 

In case R is an integral domain we may replace the M-rank by the 
ordinary determinantal rank to conclude the following: 

(2.26) Corollary. If R is an integral domain and A E Mm,n(R), then AX = 
o has a nontrivial solution if and only if D-rank(A) < n. 

Proof. If I ~ R, then Ann(I) =I- 0 if and only if I = 0 since an integral 
domain has no nonzero zero divisors. Therefore, in an integral domain, 
D-rank(A) = M-rank(A). 0 

The results for n equations in n unknowns are even simpler: 

(2.27) Corollary. Let R be a commutative ring. 

(1) If A E Mn(R), then AX = 0 has a nontrivial solution if and only if 
det A is a zero divisor of R. 

(2) If R is an integral domain and A E Mn(R), then AX = 0 has a 
nontrivial solution if and only if det A = o. 

Proof. If A E Mn(R) then Fn(A) = (detA), so M-rank(A) < n if and only 
if det A is a zero divisor. In particular, if R is an integral domain then 
M-rank(A) < n if and only if det A = o. 0 

There are still two other concepts of rank which can be defined for 
matrices with entries in a commutative ring. 

(2.28) Definition. Let R be a commutative ring and let A E Mm,n(R). Then 
we will define the row rank of A, denoted row-rank(A), to be the maximum 
number of linearly independent rows in A, while the column rank of A, de
noted col-rank(A) is the maximum number of linearly independent columns. 

(2.29) Corollary. 

(1) If R is a commutative ring and A E Mm,n(R), then 

max:{row-rank(A), col-rank(A)} :::; M-rank(A) :::; D-rank(A). 

(2) If R is an integral domain, then 

row-rank(A) = col-rank(A) = M-rank(A) = D-rank(A). 

Proof. Exercise. o 
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(2.30) Remarks. 

(1) If R is an integral domain, then all four ranks of a matrix A E Mm.n(R) 
are equal, and we may speak unambiguously of the rank of A. This will 
be denoted by rank(A). 

(2) The condition that R be an integral domain in Corollary 2.29 (2) is 
necessary. As an example of a matrix that has all four ranks different, 
consider A E M4 (Z21O) defined by 

[
0 2 3 

A= 2 0 6 
303 
000 

We leave it as an exercise to check that 

row-rank(A) = 1 

col-rank(A) = 2 

M-rank(A) = 3 

D-rank(A) = 4. 

As a simple application of solvability of homogeneous equations, we 
note the following result: 

(2.31) Proposition. Let R be a commutative ring, let M be a finitely gener
ated R-module, and let 8 ~ M be a subset. If 181 > J.L(M) = rank(M), then 
8 is not R-linearly independent. 

Proof. Let J.L(M) = m and let T = {WI. ... ,wm} be a generating set for M 
consisting of m elements. Choose n distinct elements {VI, ... ,vn } of 8 for 
some n > m, which is possible by our hypothesis 181 > J.L(M) = m. Since 
M = (WI, ... ,wm ), we may write 

with aij E R. Let A = [aij] E Mm.n(R). Since n > m, it follows that 
M-rank(A) ~ m < n, so Theorem 2.25 shows that there is an X i- 0 E 

Mn •1 (R) such that AX = O. Then 

(2.8) 

=0 

since AX = O. Therefore, 8 is R-linearly dependent. o 
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(2.32) Corollary. Let R be a commutative ring, let M be an R-module, and 
let N <;;; M be a free submodule. Then rank(N) ::::; rank(M). 

Proof. Ifrank(M) = 00, there is nothing to prove, so assume that rank(M) = 
m < 00. If rank(N) > m, then there is a linearly independent subset of M, 
namely, a basis of N, with more than m elements, which contradicts Propo
sition 2.31. 0 

(2.33) Remark. Corollary 2.32 should be compared with Theorem 3.6.2, 
concerning submodules of free modules over a PID. Also, note that the 
condition that N be free is necessary (see Remark 3.6.5). 

The following result, known as the Cauchy-Binet theorem, general
izes the formula for the determinant of a product (Theorem 2.11) to allow 
for products of possibly nonsquare matrices. One use of this formula is to 
investigate the behavior of the rank of matrices under products. 

(2.34) Theorem. (Cauchy-Binet formula) Let R be a commutative ring and 
let A E Mm,n(R), B E Mn,p(R). Assume that 1 ::::; t ::::; min{m, n, p} and 
let 0: E Qt,m, (3 E Qt,p. Then 

det(AB[o: I (3]) = L det(A[o: I,]) det(B[, I (3]). 
,EQ"n 

Proof. Suppose that 0: = (0:1, ... , o:d, (3 = ((31, ... , (3t) and let C 
AB[o: I (3]. Thus, 

so that 

n 

= L a"'i kbk (3J 
k=l 

C = [2:~=1 ~""kbk(3, 

2:~=1 a""k bk(3, 

2:~=1 ~""kbk(3, 1 
2:~=1 a""k bk(3, 

Using n-linearity of the determinant function, we conclude that 

(2.9) 

If k i = k j for i =I j, then the ith and lh rows of the matrix on the right are 
equal so the determinant is O. Thus the only possible nonzero determinants 
on the right occur if the sequence (k1' ... , kt ) is a permutation of a sequence 
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, = (,1, ... ,t) E Qt,n' Let a E St be the permutation of {l, ... , t} such 
that ,i = ka(i) for 1 ::::; i ::::; t. Then 

(2.10) [ 

bk1 (31 

det : 

b kt (31 

. . . b k1 f3t 1 
". : = sgn(a) det Bb I ,13]. 

b kt f3t 

Given, E Qt,n, all possible permutations of, are included in the summa
tion in Equation (2.9). Therefore, Equation (2.9) may be rewritten, using 
Equation (2.10), as 

det C = L (L sgn(a)a011'U(l) ... aotTU(t)) det B[,I ,13] 
"YEQt.n aESt 

= L det A[a I,] det Bb I ,13], 
"YEQt,n 

which is the desired formula. o 

(2.35) Examples. 

(1) The Cauchy-Binet formula gives another verification of the fact that 
det(AB) = detAdetB for square matrices A and B. In fact, the only 
element of Qn,n is the sequence, = (1, 2, .. , ,n) and Ab I,] = A, 
Bb I ,] = B, and ABb I ,] = AB, so the product formula for 
determinants follows immediately from the Cauchy-Binet formula. 

(2) As a consequence of the Cauchy-Binet theorem, if A E Mm,n(R), and 
B E Mn,p(R) then 

(2.11) D-rank{AB) ::::; min{D-rank(A), D-rank(B)}. 

To see this, let t > min{D-rank(A), D-rank(B)} and suppose that 
a E Qt,m, ,13 E Qt,p' Then by the Cauchy-Binet formula 

det(AB[a I ,13]) = L det(A[a I,]) det(Bb I ,13]). 
"YEQt,n 

Since t > min{D-rank(A), D-rank(B)}, at least one of the determi
nants det A[a I,] or det Bb I ,13] must be 0 for each, E Qt,n' Thus, 
det(AB[a I ,13]) = 0, and since a and ,13 are arbitrary, it follows that 
D-rank(AB) < t, as required. 

Equation (2.11) easily gives the following result, which shows that de
terminantal rank is not changed by multiplication by nonsingular matrices. 

(2.36) Proposition. Let A E Mm,n(R) and let U E GL(m, R), V E 

GL(n, R). Then 
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D-rank(UAV) = D-rank(A). 

Proof. Any matrix B E Mm,n(R) satisfies D-rank(B) s:: min{m, n} and 
since D-rank(U) = nand D-rank(V) = m, it follows from Equation (2.11) 
that 

D-rank(U AV) s:: min{D-rank(A), n, m} = D-rank(A) 

and 
D-rank(A) = D-rank(U- 1(UAV)V-l) s:: D-rank(UAV). 

This proves the result. D 

We will conclude this section by giving a version of the Laplace ex
pansion theorem that allows for expansion of det A along a given set of 
rows rather than a single row. The choice of rows along which expansion 
takes place is given by an element a E Qt,n' Recall that if I E Qt,n then 
9 E Qn-t,n denotes the complementary sequence. With these preliminaries 
out of the way, the general Laplace expansion theorem can be stated as 
follows: 

(2.37) Theorem. (Laplace expansion) Let A E Mn(R) and let a E Qt,n (1 s:: 
t s:: n) be given. Then 

(2.12) det A = L (_1)s(a)+sb) det(A[a I I]) det(A[a I 9]) 
'YEQt.n 

where 
t 

s(r)=L'j 
j=1 

for any 1= (rl, ... "t) E Qt,n' 

Proof. The proof is essentially similar to the proof of Theorem 2.15 (which 
is a special case of the current theorem). If A E Mn(R), define 

(2.13) Da(A) = L (-l)s(a)+sb)det(A[a I l])det(A[a I 9])· 
'YEQt.n 

Then Da Mn(R) ---+ R is easily shown to be n-linear as a function on 
the columns of A E Mn(R). To complete the proof, it is only necessary 
to show that Da is alternating and that Da(In) = l. Thus, suppose that 
colp(A) = colq(A), and to be specific, assume that p < q. If p and q are 
both in I E Qt,n, then A[a I Il will have two columns equal so that 

detA[a I Il = 0, 

while, if both p and q are in 9 E Qn-t,n, then det A[a I 9l = O. Thus, in the 
evaluation of Da(A) it is only necessary to consider those I E Qt,n such 
that pE, and q E 9, or vice-versa. Thus, suppose that pE" q E 9 and 
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define a new sequence 'Y' E Qt,n by replacing p E 'Y by q. Then 9' agrees 
with 9 except that q has been replaced by p. Thus 

(2.14) s(-y') - s(-y) = q - p. 

Now consider the sum 

(_l)sb) det(A[a 1 'Y]) det(A[a 19]) + (-lyb') det(A[a 1 'Y']) det(A[a 19']), 

which we denote by S(A). We claim that this sum is O. Assuming this, 
since'Y and 'Y' appear in pairs in Qt,n, it follows that Da(A) = 0 whenever 
two columns of A agree; thus Da is alternating. It remains to check that 
S(A) = o. 

Suppose that p = 'Yk and q = 91. Then'Y and 'Y' agree except in the 
range from p to q, as do 9 and 9'. This includes a total of q - p + 1 entries. 
If r of these entries are included in 'Y, then 

'Y1 < ... < 'Yk = P < 'Yk+1 < ... < 'Yk+r-1 < q < 'Yk+r < ... < 'Yt 

and 
A[a 1 'Y'] = A[a 1 'Y]Pw-l 

where w is the r-cycle (k + r - 1, k + r - 2, ... ,k). Similarly, 

A[a 1 9'] = A[a 1 9]Pw' 

where w' is a (q - p + 1 - r )-cycle. Thus, 

(_l)S(')") det(A[a 1 'Y']) det(A[a 1 9']) 
= (_1)sb')+(r-1)+(q-p)-r det(A[a 1 'Y]) det(A[a 19]). 

Since s(-y') + (q - p) - 1 - s(-y) = 2(q - p) - 1 is odd, we conclude that 
S(A) = o. Thus Da is alternating, and since it is straightforward to check 
that Da(In) = 1, the result is proved. 0 

Applying formula (2.12) to At in place of A, gives the Laplace expan
sion in columns: 

(2.15) det A = L (_ly(a)+sb) det(A[-y 1 a]) det(A[91 a]). 
')'EQt.n 

Note that if t = 1 then Q1,n = {I, 2, ... , n} so that A[i 1 j] = aij 

while Afi 1 J) = A ij , so Theorem 2.37 includes Theorem 2.15 as a special 
case. 
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4.3 Matrix Representation of Homomorphisms 

Before beginning with the procedure of associating a matrix with a ho
momorphism between free modules, we would like to make some remarks 
about the ticklish situation that arises for a noncommutative ring. We will 
only need this once, at the very end of Section 7.1, so the reader who is 
only interested in the commutative case may (and is well advised to) skip 
the more general situation. 

Difficulties already arise in the simplest case. Let R be a ring and 
let us consider a free R-module M of rank 1 with basis E = {v}. Then 
M = {rv : r E R}. We wish to give "coordinates" to the elements of M, 
i.e., identify the elements of M with the elements of R, and clearly, there is 
only one reasonable choice here, namely, that, in the basis [3, rv should have 
coordinate [rv]B = [r]. Now consider f E EndR(M). We wish to represent 
f by a matrix with respect to the basis E, and again there is only one 
reasonable choice: if f ( v) = sv, then f should have coordinate matrix in 
the basis E given by [f]B = [s]. (Note that f is not "left-multiplication 
by s" unless s E C(R), the center of R. Indeed, 9 : M ---> M defined by 
g(m) = sm is not an R-endomorphism unless s E C(R), as then g(rm) = 
srm oF Tsm = rg(m) in general. Of course, there is no problem if R is 
commutative.) Now, the theory we are about to develop will tell us that for 
any m E NJ, we may calculate f (m) by 

[f(7n)]B = [f]B[m]B. 

However, when we try to apply this to m = rv, we get f(m) = f(rv) = 
rf(v) = r(sv) = (rs)v, so [j(m)]B = [rs] while [f]s[m]B = [S][T] = [ST]. If 
R is commutative, these are equal, but in general they are not. 

On the other hand, this formulation of the problem points the way to 
its solution. Namely, recall that we have the ring ROP (Remark 3.1.2 (3)) 
whose elements are the elements of R, whose addition is the same as that of 
R, but whose multiplication is given by r· s = ST, where on the right-hand 
side we have the multiplication of R. Then, indeed, the equation 

[rs] = [s] . [r] 

is valid, and we may hope that this modification solves our problem. This 
hope is satisfied, and this is indeed the way to approach coordinatization 
of R-module homomorphisms when R is not commutative. 

Now we come to a slight notational point. We could maintain the above 
notation for multiplication in ROP throughout. This has two disadvantages: 
the practical-that we would often be inserting the symbol ".", which is 
easy to overlook, and the theoretical-that it makes the ring ROP look 
special (i.e., that for any "ordinary" ring we write multiplcation simply by 
juxtaposing elements, whereas in ROP we do not), whereas ROP is a perfectly 
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good ring, neither better nor worse than R itself. Thus, we adopt a second 
solution. Let op : R ---> ROP be the function that is the identity un elements, 
i.e., op(t) = t for every t E R. Then we have op(sr) = op(r) op(s), where the 
multiplication on the right-hand side, written as usual as juxtaposition, is 
the multiplication in ROP. This notation also has the advantage of reminding 
us that t E R, but op(t) E ROP. 

Note that if R is commutative then ROP = Rand op is the identity, 
which in this case is a ring homomorphism. In fact, op : R ---> ROP is a ring 
homomorphism if and only if R is commutative. In most applications of 
matrices, it is the case of commutative rings that is of primary importance. 
If you are just interested in the commutative case (as you may well be), 
we advise you to simply mentally (not physically) erase "op" whenever 
it appears, and you will have formulas that are perfectly legitimate for a 
commutative ring R. 

After this rather long introduction, we will now proceed to the for
mal mathematics of associating matrices with homomorphisms between free 
modules. 

If R is a ring, M is a free R-module of rank n, and B = {VI, ... ,vn } 

is a basis of M, then we may write V E M as v = alvl + ... + anVn for 
unique aI, ... ,an E R. This leads us to the definition of coordinates. Define 
1jJ : M ---> M n ,I(RDP) by 

[
oP(ad 1 

1jJ(v) = : = [V]B. 

op(an) 

The n x 1 matrix [v] B is called the coordinate matrix of v with respect to 
the basis B. 

Suppose that B' = {v~, ... ,v~} is another basis of M and define the 
matrix Pg, E Mn(ROP) by the formula 

(3.1) 

That is, colj (pS,) = [Vj]B'. The matrix pS, is called the change of basis 
matrix from the basis B to the basis B'. Since Vj = L~=l 8ijVi, it follows 
that if B = B' then pS = In. 

(3.1) Proposition. Let M be a free R-module of rank n, and let B, B', and 
B" be bases of M. Then 

(1) for any v E M, [V]B' = PS,[V]B; 
(2) pS" = PS:,pS,; and 
(3) pS, is invertible and (ps,) -1 = pS'. 

Proof. (1) Note that Mn,I(ROP) is an R-module where the operation of R 
on Mn,l(ROP) is given by rA = A op(r) for r E R, A E Mn,l(ROP). Then 
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'IjJ' : M -+ Mn ,I(ROP), 

defined by 'IjJ'(v) = [V]BI, is an R-module homomorphism, as is 

'IjJ" : M -+ M n ,I(ROP), 

defined by 'IjJ"(v) = PB',[V]B. To show that 'IjJ" = 'IjJ' we need only show 
that they agree on elements of the basis B. If B = {VI, '" ,vn }, then 
[Vi]B = ei = Eil E M n ,I(R) since Vi = 2::.7=1 8ijvj. Thus, 

as required. 
(2) For any V E M we have 

( B' B) B' (B ) PBI/PB' [V]B = PBI/ PBI[V]B 

B' = PBI/[V]BI 

= [V]BI/ 

= PB'I/[V]B' 

B' B B Therefore, PBI/PBI = PBI/· 
(3) Take B" = B in part (2). Then 

Thus, PB'I is invertible and (PB',) -1 = pg'. D 

(3.2) Lemma. Let R be a ring and let M be a free R-module. If B' is any 
basis of M with n elements and P E GL(n, ROP) is any invertible matrix, 
then there is a basis B of M such that 

P=PB',. 

Proof. Let B' = {vi, ... ,v~} and suppose that P = [Op(Pij)]. Let Vj = 

'[~=IPijV~. Then B = {VI, ... ,vn } is easily checked to be a basis of M, 
and by construction, ps, = P. D 

Remark. Note that the choice of notation for the change of basis matrix 
PB'I has been chosen so that the formula in Proposition 3.1 (2) is easy to 
remember. That is, a superscript and an adjacent (on the right) subscript 
that are equal cancel, as in 

The same mnemonic device will be found to be useful in keeping track of 
superscripts and subscripts in Propositions 3.5 and 3.6. 
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(3.3) Definition. Let M and N be finite rank free R-modules with bases 
B = {Vi, ... ,Vm} and C = {Wi, ... ,wn} respectively. Fo, each f E 
HomR(M,N) define the matrix of f with respect to B, C, denoted [fl~, 
by 

(3.2) for 1::; j ::; m. 

If f E EndR(M) and B is a basis of M, then we will write [flB in place 
of [flg· 

(3.4) Remarks. 

(1) Note that every matrix A E Mn,m(ROP) is the matrix [fl~ for a unique 
f E HomR(M, N). Indeed, if B = {Vi, ... ,vm} and C = {Wi, ... ,wn} 
are bases of M and N respectively, and if A = [op( aij)], then define f E 

HomR(M, N) by f(vj) = L~=l aijWi. Such an f exists and is unique 
by Proposition 3.4.9; it is clear from the construction that A = [Jl~. 
Thus the mapping f f-+ [fl~ gives a bijection between HomR(M, N) 
and Mn,m(ROP). 

(2) Suppose that R is a commutative ring. Then we already know (see 
Theorem 3.4.11) that HomR(M, N) is a free R-module of rank mn, as 
is the R-module Mn,m(R); hence they are isomorphic as R-modules. A 
choice of basis B for M and C for N provides an explicit isomorphism 

<J>~ : HomR(M, N) ---t Mn,m(R), 

defined by <J>~(f) = [fl~. We leave it as an exercise for the reader to 
check that <J>~(fij) = Eji where {Eji}j=l~i is the standard basis of 
Mn,m(R), while {lij }~lj=l is the basis of HomR(M, N) constructed 
in the proof of Theorem 3.4.11. 

Note that if 1M : M ---t M denotes the identity transformation and B, 
B' are two bases of M, then 

so that the change of basis matrix from the basis B to the basis B' is just 
the matrix of the identity homomorphism with respect to the matrix B on 
the domain and the basis B' on the range. 

(3.5) Proposition. With the above notation, if v E M then 
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m 

j=l 

= t bj (~aijWi) 

~ t (~bja,}, 
Therefore, [f(v)Jc = [2:7'=1 op(bja1j) ... 2:7'=1 op(bjanj)]t = [J]~[V]B' 

D 

(3.6) Proposition. If M, N, and P are free R-modules with bases B, C, and 
V, respectively, and f : M --t Nand 9 : N --t Pare R-module homomor
phisms, then 

[g 0 f]~ = [g]~[f]~· 

Proof. By Proposition 3.5, if v E M then 

[g]~ ([J]~[V]B) = [g]~[J(v)Jc 
= [g(f(v))]v 

= [(g 0 J)(v)]v 

= [g 0 f]~[V]B' 

Choosing v = Vj = lh element of the basis B so that 

[V]B = Ej1 E M n ,l (ROP), 

we obtain 

[g]~ (colj([f]~)) = [g]~ ([f]~[Vj]B) 
= [g 0 f]~[Vj]B 

= colj ([g 0 f]~) 

for 1 :S j :S n. Applying Lemma 1.1 (6), we conclude that 

[g 0 f]~ = [g]~[f]~ 

as claimed. D 
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(3.7) Remark. From this proposition we can see that matrix multiplication 
is associative. Let M, N, P, and Q be free R-modules with bh.ues l3, C, 'D, 
and £ respectively, and let f : M -+ N, g : N -+ P, and h : P -+ Q be 
R-module homomorphisms. Then, by Proposition 3.6, 

[hlF ([gl~[Jl~) = [hlF ([g 0 fl~) 
= [h 0 (g 0 f)l~ 
= [( hog) 0 fl ~ 
= [h 0 gl~ [fl~ 
= ([hlF[gl~) [fl~· 

By Remark 3.4 (1), every matrix is the matrix of a homomorphism, so asso
ciativity of matrix multiplication follows from the associativity of functional 
composition. (Actually, this proves associativity for matrices with entries 
in ROP, but then associativity for matrices with entries in R follows from 
the observation that R = (ROP)OP. Also observe that we used associativity 
in the proof of Proposition 3.1, but we did not use this proposition in the 
proof of Proposition 3.6, so our derivation here is legitimate.) 

(3.8) Corollary. Let M and N be free R-modules of rank n. Let l3 be a basis 
of M and let C be a basis of N. Then a homomorphism f E HomR(M, N) 
is an isomorphism if and only if the matrix [fl~ E Mn(ROP) is invertible. 

Proof. Suppose g = f- 1 E HomR(N, M). Then, by Proposition 3.6, 

and similarly, 

In = [fl~[gl~· 

Thus, [Jl~ is an invertible matrix. The converse is left as an exercise. 0 

(3.9) Corollary. Let R be a ring and let M be a free R-module of rank n. 
Then EndR(M) is isomorphic (as a ring) to Mn(ROP). If R is a commuta
tive ring, then this isomorphism is an isomorphism of R-algebras. 

Proof. If l3 is a basis of M, let 

<PB : EndR(M) -+ Mn(ROP) 

be defined by <PB(f) = [JlB. According to Proposition 3.6, <PB is a ring 
homomorphism, while it is a bijective map by Remark 3.4. If R is commu
tative, it is an R-algebra isomorphism by Lemma 1.1 (3). 0 

(3.10) Remark. From Lemma 1.3 and Corollary 3.9 we immediately see that 
if R is a commutative ring and M is a free R-module of finte rank, then 
the center of its endomorphism ring is 
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That is, a homomorphism f : M --+ M commutes with every other homo
morphism g : M --+ M if and only if f = r· 1M for some r E R. 

For the remainder of this section we shall assume that the ring R is 
commutative. 

(3.11) Proposition. Let R be a commutative ring, let M and N be free R
modules, and let f E HomR(M, N). 

(1) Ifrank(M) < rank(N), then f is not surjective. 
(2) Ifrank(M) > rank(N), then f is not injective. 
(3) If rank(M) = rank(N) is finite and f is injective, then N/Im(f) is a 

torsion R-module. 
(4) Ifrank(M) = rank(N) is finite and R is an integral domain, then f is 

injective if and only if N /Im(f) is a torsion R-module. 

Proof. (1) By the definition of rank (Definition 3.2.9), if f were surjective, 
then we would have rank(N) :-:::: rank(M). 

(2) If f were injective, N would contain a free submodule Im(f) of 

rank(Im(f)) = rank(M) > rank(N), 

contradicting Corollary 2.32. 
(3) Let f be an injection, and let 7r : N --+ N /Im(f) be the projection. 

Suppose that N / Im(f) is not torsion, and let n E N /Im(f) be an element 
with Ann(n) = (0). Let n E N with 7r(n) = n. Then Im(f) nRn = (0), and 
hence, 

N :;;::> Im(f) EB Rn, 

which is a free module of rank(M) + 1 = rank(N) + 1, contradicting Corol
lary 2.32. 

(4) Let R be an integral domain and assume that N / Im(f) is a torsion 
'TIodule. Pick a basis {WI, ... ,wn } of N. Since N /Im(f) is a torsion mod
ule, there exists Vi E M and Ci -I- 0 E R with f (Vi) = CiWi for 1 :-:::: i :-:::: n. 
Suppose v E M and f(v) = O. Then the set 

is linearly dependent by Proposition 2.31, so let 

be an equation of linear dependence with not all of {a, aI, ... , an} equal 
to zero. Then 
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0= af(v) 

=f(av) 

= f (- taiVi) 
z=l 

i=l 
n 

= - LCiaiWi. 
i=l 

Since {WI, ... , wn } is a basis of N and R is an integral domain, it follows 
that ai = 0 for all i. Hence av = 0 and thus v = 0 (similarly), and we 
conclude that f is an injection. 0 

(3.12) Remark. The assumption that R is an integral domain in Proposition 
3.11 (4) is necessary. Let R = Zmn and set M = N = R. Let f : M -+ N 
be defined by f(v) = mv. Then Zmn/Im(f) ~ Zn is a torsion Zmn-module, 
but f is not injective. 

The relationship between invertibility of homomorphisms and invert
ibility of matrices allows one to conclude that a homomorphism between 
free R-modules of the same finite rank is invertible if it has either a left or 
a right inverse. 

(3.13) Proposition. Let M and N be free R-modules of finite rank n, let B 
be a basis of M, and let C be a basis of N. If f E HomR(M, N), then the 
following are equivalent. 

(1) f is an isomorphism. 
(2) f has a right inverse, i.e., there is a homomorphism g E HomR(N, M) 

such that fg = IN. 
(3) f has a left inverse, i.e., there is a homomorphism h E HomR(N, M) 

such that hf = 1M. 
(4) f is a surjection. 
(5) [fl~ is an invertible matrix. 
(6) [flg has a right inverse. 
(7) [flg has a left inverse. 

Proof. The equivalence of (5), (6), and (7) follows from Remark 2.18, while 
the equivalence of (1), (2), and (3) to (5), (6), and (7), respectively, is a 
consequence of Corollary 3.8. 

Now clearly (1) implies (4). On the other hand, assume that f is a 
surjection. Then there is a short exact sequence 

O~Ker(f) ~M~N ~O. 
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This sequence splits since N is free so that there is an R-module homomor
phism 9 : N -+ M such that fg = IN, i.e., 9 is a right inverse for f. Thus 
(4) implies (2), and the proof is complete. 0 

(3.14) Remark. In Proposition 3.13 (4) it is not possible to replace surjective 
by injective. It is true that if f has a left inverse, then f is injective, but 
the converse need not be true. For example, f : Z -+ Z by f(x) = 2x is 
injective, but it is not left invertible. However, in case the ring R is a field, 
the converse is valid. This is the content of the following result. 

(3.15) Proposition. Let F be a field and let M and N be vector spaces over 
F of dimension n. Then the following are equivalent. 

(1) f is an isomorphism. 
(2) f is injective. 
(3) f is surjective. 

Proof. This is simply a restatement of Corollary 3.8.10. o 

(3.16) Proposition. Let M and N be free R-modules with bases 8, 8' and 
C, C' respectively. If f : M -+ N is an R-module homomorphism, then [fl~ 
and [fl~; are related by the formula 

(3.3) 13' C 13 ( 13)-1 [fb = Pc' [flc P13' . 

Proof. Since f = IN 0 f 0 1M, Proposition 3.6 shows that 

(3.4) 

c C 13' 13' (13) -1 . ( ) But [INJc, = Pc, and [IMl13 = P13 = P13' , so EquatlOn 3.3 follows 
from Equation (3.4). 0 

We now give a determinantal criterion for the various properties of a 
homomorphism. 

(3.17) Proposition. Let M and N be free R-modules with rank(M) = 
rank(N) finite. 

(1) f is surjective (and hence an isomorphism) if and only if in some (and, 
hence, in any) pair of bases 8 of M and C of N, det([fl~) is a unit of 
R. 

(2) f is injective if and only if in some (and, hence, in any) pair of bases 
8 of M and C of N, det([fl~) is not a zero divisor in R. 

Proof. (1) is immediate from Proposition 3.13 and Theorem 2.17 (2), while 
part (2) follows from Corollary 2.27. 0 
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(3.18) Definition. 

(1) Let R be a commutative ring. Matrices A, B E Mn,m(R) are said to 
be equivalent if and only if there are invertible matrices P E GL(n, R) 
and Q E GL(m, R) such that 

B=PAQ. 

Equivalence of matrices is an equivalence relation on Mn,m(R). 
(2) If M and N are finite mnk free R-modules, then we will say that R

module homomorphisms f and 9 in HomR(M, N) are equivalent if 
there are invertible endomorphisms hI E EndR(M) and h2 E EndR(N) 
such that hdhl1 = g. That is, f and 9 are equivalent if and only if 
there is a commutative diagmm 

M ..!....,. N 

1 hl 1 h2 

M ~ N 

where the vertical maps are isomorphisms. Again, equivalence of ho
momorphisms is an equivalence relation on HomR(M, N). 

(3.19) Proposition. 

(1) Two matrices A, BE Mn,m(R) are equivalent if and only if there are 
bases 8, 8' of a free module M of mnk m and bases C, C' of a free 
module N of mnk n such that A = [fl~ and B = [fl~:. That is, two 
matrices are equivalent if and only if they represent the same R-module 
homomorphism with respect to different bases. 

(2) If M and N are free R-modules of mnk m and n respectively, then 
homomorphisms f and 9 E HomR(M, N) are equivalent if and only if 
there are bases 8, 8' of M and C, C' of N such that 

[fl~ = [gl~:· 

That is, f is equivalent to 9 if and only if the two homomorphisms are 
represented by the same matrix with respect to appropriate bases. 

Proof. (1) Since every invertible matrix is a change of basis matrix (Lemma 
3.2), the result is immediate from Proposition 3.16. 

(2) Suppose that [fl~ = [gl~:. Then Equation (3.3) gives 

(3.5) 8 8' C 8 ( 8)-1 [flc = [glc' = Pc' [glc P8' . 

The matrices pB, and Pg, are invertible so that we may write (by Corollary 
3.9) Po, = [hd8 and Fg, = [h2lc where hI E EndR(M) and h2 E EndR(N) 
are invertible. Thus Equation (3.5) gives 

[fl~ = [h2lc[gl~ ([h1l8)-1 = [h2ghl1l~· 
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Hence, f = h2gh1l and f and 9 are equivalent. 
The converse statement is left as an exercise. o 

Using the invariant factor theorem for submodules (Theorem 3.6.23), 
it is possible to explicitly describe the equivalence classes under the equiv
alence relations of equivalence of homomorphisms and equivalence of ma
trices if one restricts the ring R to be a PID. This is the content of the 
following result. 

(3.20) Proposition. Let R be a PID and let f : M --+ N be an R-module 
homomorphism between a free R-module M of mnk m and a free R-module 
N of mnk n. Then there is a basis 13 = {VI, ... ,vm } of M, a basis 
C = {WI, ... ,wn } of N, and nonzero elements 81, ... ,Sr of R, where 
r = rank Im(f), such that Si I Si+l for 1 ::; i ::; r - 1 and such that 

(3.6) 
if 1 ::; i ::; r, 
ifi > r. 

That is, the matrix of f with respect to the bases 13 and C is 

(3.7) 

where Dr = diag(sl' ... ,Sr). 

Proof. By the invariant factor theorem for submodules (Theorem 3.6.23), 
there is a basis C = {WI, ... ,wn } of N and elements 81, ... ,sr E R such 
that Si I Si+l for 1 ::; i ::; r - 1 and {SI WI, ... ,Sr wr} is a basis for the 
submodule Im(f) ~ N. Now choose any subset {VI, ... ,vr } ~ M such that 
f(vi) = SiWi for 1 ::; i ::; r. By Proposition 3.B.B, Ker(f) is a submodule of 
M of rank m - r, Thus, we may choose a basis {vr+l' ... ,vm } of Ker(f). 

Claim.. 13 = {VI, ... ,Vr , Vr+l' ... ,vm } ~ M is a basis of M. 

To verify the claim, suppose that V E M. Then f(v) E Im(f), so we 
may write 

r 

f(v) = L ad(vi) 
i=1 

r 

= Lf(aivi). 
i=1 

Therefore, f(v - 2:~=1 aivi) = 0 so that V - 2:~=1 aiVi E Ker(f), and hence, 
we may write 

r m 

V - Laivi = L aivi· 
i=l i=r+l 

It follows that 13 generates M as an R-module. 
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To check linear independence, suppose that I::l aivi = O. Then 

m r 

0= L ad(vi) = L ai(siwi). 
i=1 i=1 

Since {SI WI, .. , ,Srwr} is linearly independent, this implies that ai = 0 for 
1 :::; i :::; r. But then 

m 

L aiVi =0, 
i=r+l 

and since {Vr+b .. , ,vm } is a basis of Ker(J) , we conclude that ai = 0 for 
all i, and the claim is verified. 

It is clear from the construction that 

where Dr = diag( SI, . " ,sr)' This completes the proof. o 

(3.21) Remark. In the case where the ring R is a field, the invariant factors 
are all 1. Therefore, if f : M -+ N is a linear transformation between finite
dimensional vector spaces, then there is a basis B of M and a basis C of N 
such that the matrix of f is 

[fl~ = [~ ~]. 
The number r is the dimension (= rank) of the subspace Im(J). 

(3.22) Corollary. Let R be a PID and let M and N be free R-modules of 
rank m and n respectively. Then homomorphisms f and g E HomR(M, N) 
are equivalent if and only if the subspaces Im(J) and Im(g) have the same 
invariant factors as submodules of N. In particular, if R is a field, then f 
and g are equivalent if and only if 

rank(Im(J)) = rank(Im(g)). 

Proof. Exercise. o 

If M = N, then Proposition 3.16 becomes the following result: 

(3.23) Proposition. Let f E EndR(M) and let B, B' be two bases for the 
free R-module M. Then 

B (B)-1 [flB' = PB,[flB PB' . 
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Proof. 0 

Proposition 3.23 applies to give a result analogous to Proposition 3.19 
for similarity of matrices in Mn(R). Recall (Definition 1.7) that two matri
ces A and B in Mn(R) are similar if there is a matrix S E GL(n, R) such 
that B = S-l AS. For homomorphisms, the definition is the following: 

(3.24) Definition. Let R be a commuative ring and let M be a free R-module 
of rank n. If f, 9 E EndR(M), then we say that f and 9 are similar if there 
is an invertible homomorphism h E EndR(M) such that 9 = h- 1 fh. 

In this situation, Proposition 3.19 becomes the following result: 

(3.25) Corollary. 

(1) Two matrices A, B E Mn(R) are similar if and only if there are bases 
Band B' of a free R-module M of rank nand f E HomR(M) such 
that A = [f]13 and B = [1]13" That is, two n x n matrices are similar 
if and only if they represent the same R-module homomorphism with 
respect to different bases. 

(2) Let M be a free R-module of rank n and let f, 9 E EndR(M) be endo
morphisms. Then f and 9 are similar if and only if there are bases B 
and B' of M such that 

[f]13 = [g]13'. 

That is, f is similar to 9 if and only if the two homomorphisms are 
represented by the same matrix with respect to appropriate bases. 

Proof. Exercise. o 

(3.26) Remark. Let R be a commutative ring and T a set. A function ¢ : 
Mn(R) ---> T will be called a class function if ¢(A) = ¢(B) whenever A and 
B are similar matrices. If M is a free R-module of rank n, then the class 
function ¢ naturally yields a function ¢ : EndR(M) ---> T defined by 

¢(f) = ¢([I]13) 

where B is a basis of M. According to Corollary 3.25, the definition of ¢ is 
independent of the choice of basis of M because ¢ is a class function. The 
most important class functions that we have met so far are the trace and 
the determinant (Lemma 1.6 (2) and Corollary 2.12). Thus, the trace and 
the determinant can be defined for any endomorphism of a free R-module 
of finite rank. We formally record this observation. 

(3.27) Proposition. Let R be a commutative ring and let M be a finite rank 
free R-module. 
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(1) There is an R-module homomorphism Tr : EndR(M) -+ R defined by 

where B is any basis of M. Tr(f) will be called the trace of the homo
morphism f; it is independent of the choice of basis B. 

(2) There is a multiplicative function det : EndR(M) -+ R defined by 

det(f) = det ([1]8) 

where B is any basis of M. det(f) will be called the determinant of the 
homomorphism f; it is independent of the choice of basis B. 

Proof· o 

Note that multiplicativity of the determinant means 

det(fg) = det(f) det(g). 

Since det(1) = 1, it follows that f is invertible if and only if det(f) is a unit 
in R. 

Since similar matrices represent the same endomorphism with respect 
to different bases, one goal of linear algebra is to find a matrix B similar 
to a given matrix A such that B is as simple as possible. This is equivalent 
(by Corollary 3.25) to finding a basis of a free R-module so that the matrix 
[f]8 of a given homomorphism f is as simple as possible. When R is a 
field, this is the subject of canonical form theory that will be developed in 
detail in the next section. For now we will only indicate the relationship 
between direct sum decompositions of free R-modules and decompositions 
of matrices. 

(3.28) Proposition. Let R be a commutative ring, and let M1, M 2 , N1, and 
N2 be finite rank free R-modules. If Bi is a basis of Mi and Ci is a basis of 
Ni (i = 1, 2), then let B1 U B2 and C1 U C2 be the natural bases of M1 EB M2 
and N1 EB N2 respectively (see Example 3·4·6 (7)). If fi E HomR(Mi , Ni) 
for i = 1, 2, then 11 EB h E HomR(M1 EB M2, N1 EB N2) and 

[11 EB h]~:~~2 = [fd~: EB [h]~;. 

Proof. Exercise. o 

We now specialize to the case of endomorphisms. 

(3.29) Definition. Let M be an R-module and let f E EndR(M). A submod
ule N ~ M is said to be invariant under f (or an invariant submodule of 
J) if f(x) EN whenever x E N. 
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(3.30) Proposition. Let R be a commutative ring, let M be a free R module 
of rank m, and let f E HomR(M). If B = {Vi, ... ,vrn} is a basis of M 
then the matrix [J]B has the block form 

where A E Mr(R) if and only if the submodule N = (Vi, ... , vr ) is an 
invariant submodule of f. 

Proof. If [J]B = [tij] then the block form means that tij = 0 for r + 1 :::; i :::; 
n, 1 :::; j :::; r. Thus, if 1 :::; j :::; r it follows that 

n r 

f(vj) = LtijVi = LtijVi E N. 
i=1 i=1 

Since N is generated by VI, ... , Vr , the result follows. o 

(3.31) Remark. As a special case of this result, a matrix [J]B is upper trian
gular if and only if the submodule (Vi, ... ,Vk) (where B = {VI, ... ,vrn}) 
is invariant under f for every k (1 :::; k :::; m). 

In Proposition 3.30, if the block B = 0, then not only is (VI, ... , Vk) 
an invariant submodule, but the complementary submodule (Vk+l, ... , vrn) 
is also invariant under f. From this observation, extended to an arbitrary 
number of blocks, we conclude: 

(3.32) Proposition. Let M be a free R-module of rank m, let f E EndR(M), 
and let A = [f]B E Mrn(R). Then A is similar to a block diagonal matrix 
B = Al EB ... EB Ak where Ai E Mri (R) (rl + ... + rk = n) if and only if 
there are free submodules M I , ... , Mk of M such that 

(1) Mi is an invariant submodule of f which is free of rank ri, and 
(2) M ~ MI EB ... EB Mk. 

Proof. o 

The case of this result when ri = 1 for all i is of particular importance. 
In this case we are asking when A is similar to a diagonal matrix. To state 
the result in the manner we wish, it is convenient to make the following 
definition. 

(3.33) Definition. If M is a free R-module of rank m and f E EndR(M), 
then a nonzero x E M is called an eigenvector of f if the cyclic submodule 
(x) of M is invariant under f. That is, x#-O E M is an eigenvector of 
M if and only if f(x) = ax for some a E R. The element a E R is called 
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an eigenvalue of f. The eigenmodule ( or eigenspace) of f corresponding to 
the eigenvalue a is the submodule Ker{f - aIM). 

If A E Mn(R) then by an eigenvalue or eigenvector of A, we mean an 
eigenvalue or eigenvector of the R-module homomorphism 

defined by TA(V) = Av. We shall usually identify Mn,l(R) with Rn via the 
standard basis {Eil : 1 ::; i ::; n} and speak of T A as a map from Rn to Rn. 

In practice, in studying endomorphisms of a free R-module, eigenvalues 
and eigenvectors play a key role (for the matrix of f depends on a choice 
of basis, while eigenvalues and eigenvectors are intrinsically defined). We 
shall consider them further in Section 4.4. 

(3.34) Corollary. Let M be a free R-module of rank m, let f E EndR(M), 
and let A = [flB E Mm(R). Then A is similar to a diagonal matrix 
diag(al, ... ,am) if and only if there is a basis of M consisting of eigenvec
tors of A. 

Proof· o 

(3.35) Definition. A matrix which is similar to a diagonal matrix is said 
to be diagonalizable. An endomorphism f E EndR(M) is diagonalizable if 
M has a basis B such that [flB is a diagonal matrix. A set S = {lihEI of 
endomorphisms of M is said to be simultaneously diagonalizable if M has 
a basis B such that [filB is diagonal for all i E I. 

The concept of diagonalizability of matrices with entries in a field will 
be studied in some detail in Section 4.4. For now we will conclude this 
section with the following result, which we shall need later. 

(3.36) Theorem. Let R be a PID, let M be a free R-module of finite rank 
n, and let S = {Ii : M --t MhEI be a set of diagonalizable R-module 
endomorphisms. Then the set S is simultaneously diagonalizable if and only 
if S consists of commuting endomorphisms, i. e., there is a basis B of M 
with [filB diagonal for all i E I if and only if fdi = /ifi for all i, j. 

Proof. For simplicity, we assume that we are dealing with a pair of R
module endomorphisms if, g}; the general case is no more difficult. First 
suppose that B = {Vl' ... ,vn} is a basis of M in which both [flB and [glB 
are diagonal. Then f(vi) = AiVi and g(Vi) = lLiVi for 1 ::; i ::; n. Then 

f(g( Vi)) = f(lLivi) = lLig( Vi) = lLiAiVi 

= AilLiVi = Aig(Vi) = g(AiVi) 

= g{f(Vi», 

so fg and gf agree on a basis of M and hence are equal. 
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Conversely, suppose that fg = gf and let >'1, ... ,>'k be the distinct 
eigenvalues of f, and let J.L1, ... ,J.Li be the distinct eigenvalues of g. Let 

(3.8) 

(3.9) 

Mi = Ker(f - >'i1M) 

N j = Ker(g - {Lj1M) 

(1::; i ::; k) 
(1 ::; j ::; f). 

Then the hypothesis that f and 9 are diagonalizable implies that 

(3.10) 

and 

(3.11) 

First, we observe that Mi is g-invariant and N j is f-invariant. To see 
this, suppose that v E Mi' Then 

f(g(v)) = g(f(v)) = g(>'iV) = >'ig(V), 

i.e., g(v) E Ker(f - >'i1M) = Mi' The argument that N j is f-invariant is 
the same. 

To prove this, let v E Mi. Then, by Equation (3.11) we may uniquely 
write 

(3.12) v = WI + ... +Wi 

where Wj E Nj • The claim will be proved once we show that Wj E Mi for 
all j. Since v E M i , 

(3.13) 

But N j is f-invariant, so f(wj) E N j for all j. But 

(3.14) 

Comparing Equations (3.13) and (3.14) and using Equation (3.11), we see 
that >'iWj = f( Wj) for 1 ::; j ::; f, i.e., Wj E Mi for all j, and the claim is 
proved. 

To complete the proof of the theorem, note that since R is a PID, 
each of the submodules Mi n N j is a free R-module (Theorem 3.6.2), so let 
Bij = {Vij} be a basis of Mi n Nj . According to the claim, we have 

k '-

M ~ E9 E9(Mi n N j ) 

i=l j=l 

so that B = Ui,jBij is a basis of M consisting of common eigenvectors of f 
and g, i.e., [J]B and [9]B are both diagonal. 0 
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(3.37) Remark. The only place in the above proof where we used that R is 
a PID is to prove that the joint eigenspaces Mi n N j are free submodules of 
M. If R is an arbitrary commutative ring and f and g are commuting diago
nalizable endomorphisms of a free R-module M, then the proof of Theorem 
3.36 shows that the joint eigenspaces Mi n N j are projective R-modules. 
There is a basis of common eigenvectors if and only if these submodules are 
in fact free. We will show by example that this need not be the case. 

Thus, let R be a commutative ring for which there exists a finitely 
generated projective R-module P which is not free (see Example 3.5.6 (3) 
or Theorem 3.5.11). Let Q be an R-module such that P EB Q = F is a free 
R-module of finite rank n, and let 

where PI = P2 = P and Ql = Q2 = Q. Then M is a free R-module ofrank 
2n. Let Al i- A2 and /-ll i- /-l2 be elements of R and define f, g E EndR(M) 
by 

and 

g(Xl' Yl, X2, Y2) = (/-llXl, /-l2Yl, /-l2 X2, /-llY2) 

where Xi E Pi and Yi E Qi for i = 1, 2. Then f is diagonalizable with 
eigenspaces 

Ml = Ker(f - Al1M) = PI EB Ql ~ F 

M2 = Ker(f - A2 1M) = P2 EB Q2 ~ F 

and g is diagonalizable with eigenspaces 

Nl = Ker(g - /-lllM) = Pi EB Q2 ~ F 

N2 = Ker(g - /-l21M) = Ql EB P2 ~ F. 

Moreover, fg = gf· However, there is no basis of common eigenvectors of 
f and g since the joint eigenspace Ml n Nl = PI is not free. 

4.4 Canonical Form Theory 

The goal of the current section is to apply the theory of finitely generated 
modules over a PID to the study of a linear transformation T from a finite
dimensional vector space V to itself. The emphasis will be on showing how 
this theory allows one to find a basis of V with respect to which the matrix 
representation of T is as simple as possible. According to the properties of 
matrix representation of homomorphisms developed in Section 4.3, this is 
equivalent to the problem of finding a matrix B which is similar to a given 
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matrix A, such that B has a form as simple as possible. In other words, we 
are looking for simply described representatives of each equivalence class of 
matrices under the equivalence relation of similarity. 

We will start by carefully defining the module structures that are de
termined by linear transformations. This has already been mentioned in 
Example 3.1.5 (12), but we will repeat it here because of the fundamental 
importance of this construction. 

Let F be a field, let V be a finite-dimensional vector space over F 
(i.e., V is a free F-module of finite rank), and let T : V -+ V be a linear 
transformation (i.e., T is an F-module homomorphism). Let R = F[X] be 
the polynomial ring with coefficients from F. Recall (Theorem 2.4.12) that 
R is a principal ideal domain. Let 

¢ : R -+ HomF(V) 

be the F-algebra homomorphism determined by ¢(X) = T (see Section 
2.4). To be explicit, if f(X) = ao + a1X + ... + anXn then 

(4.1) 

Then V becomes an R-module via the scalar multiplication 

( 4.2) (f(X)) . v = ¢(f(X))(v) 

for each f(X) E R = F[X] and v E V. Combining Equations (4.1) and 
(4.2) we see that the R-module structure on V determined by T is given by 

(4.3) 

Note that each T E EndF(V) will induce a different R-module structure 
on the same abelian group V. To distinguish these different module struc
tures, we will write VT for the vector space V with the R-module structure 
described by Equation (4.3). When there is no chance of confusion, we will 
sometimes write V for the R-module VT . Again we note that the module 
VT has been previously introduced in Example 3.1.5 (12). 

Note that scalar multiplication of a vector v E VT by the constant 
polynomial ao E F[X] is the same as the scalar multiplication aov, where 
ao is considered as an element of the field F and v E V. This is an immediate 
observation based on Equation (4.3). It is also worth pointing out explicitly 
that an R-submodule N of the R-module VT is just a subspace of V that 
is T-invariant. Recall (Definition 3.29 and also Example 3.2.2 (4)) that this 
means that T(v) E N for all v E N. 

We will begin our study by computing the R-module homomorphisms 
between two R-modules VT and Ws and by relating this computation to 
the similarity of linear transformations. 

( 4.1 ) Proposition. Let V and W be vector spaces over the field F, and 
suppose that T E EndF(V), S E EndF(W). Then 
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(4.4) HOmF[Xj(VT, Ws) = {U E HomF(V, W) : UT = SU}. 

Proof. Suppose U E HOmF[Xj(VT , Ws). As we observed above, the F[X]
module action on V and W reduces to the F-module action (Le., scalar 
multiplication). Thus U E HomF(V, W). Let v E V and w E W. Then 
X· v = T(v) and X· w = S(w). Then, since U is an F[X]- module homo
morphism, we have 

U(T(v)) = U(X· v) = X· U(v) = S(U(v)). 

Since v E V is arbitrary, we conclude that UT = SU. 
Conversely, suppose that U : V --+ W is a linear transformation such 

that UT = SU. We claim that 

(4.5) U(J(X) . v) = f(X) . U(v) 

for all v E V and f(X) E F[X]. But Equation (4.5) is satisfied for polyno
mials of degree 0 since U is a linear transformation, and it is satisfied for 
f(X) = X since 

U(X· v) = U(T(v)) = S(U(v)) = X· U(v). 

Since F[X] is generated by the constant polynomials and X, it follows 
that Equation (4.5) is satisfied for all polynomials f(X), and hence, U E 

HOmF[Xj(VT, Ws). 0 

(4.2) Theorem. Let V be a vector space over the field F, and let T I , T2 E 
EndF(V). Then the R-modules VT1 and VT2 are isomorphic if and only if 
TI and T2 are similar. 

Proof. By Proposition 4.1, an R-module isomorphism (recall R = F[X]) 

P : VT2 --+ VT1 

consists of an invertible linear transformation P : V --+ V such that PT2 = 
TIP, Le., TI = PT2P-I. Thus VTl and VT2 are isomorphic (as R-modules) 
if and only if the linear transformations TI and T2 are similar. Moreover, 
we have seen that the similarity transformation P produces the R-module 
isomorphism VT2 to VT1 . 0 

This theorem, together with Corollary 3.25, gives the theoretical un
derpinning for our approach in this section. We will be studying linear 
transformations T by studying the R-modules VT , so Theorem 4.2 says 
that, on the one hand, similar transformations are indistinguishable from 
this point of view, and on the other hand, any result, property, or invariant 
we derive in this manner for a linear transformation T holds for any trans
formation similar to T. Let us fix T. Then by Corollary 3.25, as we vary 
the basis B of V, we obtain similar matrices [T]B. Our objective will be to 
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find bases in which the matrix of T is particularly simple, and hence the 
structure and properties of T are particularly easy to understand. 

(4.3) Proposition. Let V be a vector space over the field F and suppose that 
dimF(V) = n < 00. 1fT E EndF(V), then the R-module (R = F[X]J VT is 
a finitely generated torsion R-module. 

Proof. Since the action of constant polynomials on elements of VT is just 
the scalar multiplication on V determined by F, it follows that any F
generating set of V is a priori an R-generating set for VT . Thus /L(VT) ::; 
n = dimF(V), (Recall that /L(M) (Definition 3.2.9) denotes the minimum 
number of generators of the R-module M.) 

Let v E V. We need to show that Ann(v) i=- (0). Consider the elements 
v, T(v), ... , Tn(v) E V. These are n+1 elements in an n-dimensional vector 
space V, and hence they must be linearly dependent. Therefore, there are 
scalars ao, al, ... ,an E F, not all zero, such that 

(4.6) 

If we let f(X) = ao + alX + ... + anXn, then Equation (4.6) and the 
definition of the R-module structure on VT (Equation (4.3)) shows that 
f(X)v = 0, i.e., f(X) E Ann(v). Since f(X) i=- 0, this shows that Ann(v) i=
~. 0 

This innocent looking proposition has far reaching consequences, for it 
means that we may apply our results on the structure of finitely generated 
torsion modules over a PID R to the study of VT . Henceforth, we will fix 
a finite-dimensional vector space V over F and T E EndF(V), We begin 
with the following observation. 

(4.4) Corollary. There is a polynomial f(X) E F[X] of degree at most n 
with f(T) = O. 

Proof. By Theorem 3.7.1, Ann(VT ) = Ann(v) for some v E VT . But the 
proof of Proposition 4.3 shows that Ann(v) contains a polynomial f(X) of 
degree at most n. Thus f(X) E Ann(VT) so that f(X)w = 0 for all w E VT , 
i.e., f(T)(w) = 0 for all w E V. Hence f(T) = 0 as required. 0 

(4.5) Remark. It is worth pointing out that the proofs of Proposition 4.3 
and Corollary 4.4 show that a polynomial g(X) is in Ann(VT) if and only 
if g(T) = 0 E EndF(V). 

In Section 3.7 we had two decompositions of finitely generated tor
sion R-modules, namely, the cyclic decomposition (Theorem 3.7.1) and the 
cyclic primary decomposition (Theorem 3.7.13). Each of these decomposi
tions will produce a canonical form for T, namely, the first will produce 
the rational canonical form and the second will give the Jordan canonical 
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form. Moreover, Theorem 3.7.12 applied to the R-module VT produces an 
important direct sum decomposition, which we will refer to as the primary 
decomposition theorem for the linear transformation T. We will begin by 
studying the cyclic decomposition of VT. 

According to Theorem 3.7.1, the torsion R-module VT can be written 
as a direct sum of k = JL(VT ) cyclic R-submodules 

(4.7) 

such that Ann(vi) = (Ji(X)) for 1 ::; i ::; k and 

(4.8) (h(X)) ;2 (h(X)) ;2 ... ;2 (Jk(X)). 

Equation (4.8) is equivalent to the condition 

(4.9) for 1 ::; i < k. 

Theorem 3.7.3 shows that the ideals (/i(X)) for 1 ::; i ::; k are uniquely 
determined by the R-module VT (although the generators {Vb ... ,vd are 
not uniquely determined), and since R = F[X], we know that every ideal 
contains a unique monic generator. Thus we shall always suppose that fi(X) 
has been chosen to be monic. 

(4.6) Definition. 

(1) The monic polynomials h(X), ... , fk(X) in Equation (4.8) are called 
the invariant factors of the linear transformation T. 

(2) The invariant factor A(X) of T is called the minimal polynomial 
mT(X) ofT. 

(3) The characteristic polynomial CT(X) of T is the product of all the 
invariant factors ofT, i.e., 

(4.10) CT(X) = h(X)h(X) ... fk(X), 

(4.7) Remark. In the language of Definition 3.7.8, we have 

(4.11) mT(X) = me(VT ) and CT(X) = CO(VT)' 

(4.8) Lemma. Ann(VT) = (mT(X)), 

Proof. This is immediate from Equation (3.7.1). o 

(4.9) Corollary. mT(X) is the unique monic polynomial of lowest degree 
with 

mT(T) = O. 
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Proof. An ideal I of F[X] is generated by a polynomial of lowest degree in 
I. Apply this observation to Ann(VT)' recalling the description of Ann(VT) 
in Remark 4.5. 0 

(4.10) Corollary. 

(1) If q(X) E F[X] is any polynomial with q(T) = 0, then 

mT(X) I q(X). 

(2) mT(X) divides CT(X). 
(3) If p(X) is any irreducible polynomial dividing CT(X), then p(X) divides 

mT(X). 

Proof. This is a special case of Corollary 3.7.9. o 

(4.11) Lemma. 

(1) IfVT is cyclic, say VT = R/(f(X»), then 

dimF(V) = deg(f(X)). 

(2) IfVT ~ RV1 $ .. ·$RVk where Ann(vi) = (fi(X») as in Equation (4.7), 
then 

k 

(4.12) L deg(fi(X» = dim(V) = deg(cT(X». 
i=l 

(3) The following are equivalent: 

(a) VT is cyclic. 
(b) deg(mT(X)) = dim(V). 
(c) mT(X) = CT(X). 

Proof. (1) Suppose that VT = Rv. Then the map "l : R --+ VT defined by 

"l(q(X» = q(T)(v) 

is surjective and VT ~ R/Ker("l) as F-modules. But Ker("l) = (f(X»), 
and as F-modules, R/(f(X») has a basis {1, X, ... ,xn-1} where n = 
deg(f(X». Thus, dimF(V) = n = deg(f(X». 

(2) and (3) are immediate from (1) and the definitions. 0 

(4.12) Definition. Let f(X) = xn + an_1xn-1 + ... + a1X + ao E F[X] 
be a monic polynomial. Then the companion matrix C(f(X)) E Mn(F) of 
f(X) is the n x n matrix 



4.4 Canonical Form Theory 

0 0 0 0 
1 0 0 0 
0 1 0 0 

(4.13) C(f(X)) = 

0 0 1 0 
0 0 0 1 

(4.13) Examples. 

(1) For each >. E F, C(X - >.) = [>.) E Ml(F). 
(2) diag(alo· .. ,an) = EEli=lC(X - ai). 

(3) C(X2+1)= [~ ~1]. 
(4) If A = C(X - a) EEl C(X2 - 1), then 

A~[~~~l 

-aD 
-al 
-a2 

-an-2 
-an-l 
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(4.14) Proposition. Let f(X) E F[X) be a monic polynomial of degree n, 
and let T : F n --t F n be defined by multiplication by A = C(f(X», i.e., 
T(v) = Av where we have identified F n with Mn,l(F). Then mT(X) = 
f(X). 

Proof. Let ej = colj(In). Then from the definition of A = C(f(X» (Equa
tion (4.13», we see that T(el) = e2, T(e2) = e3, ... , T(en-l) = en. There
fore, T"(el) = er+l for 0 ~ r ~ n - 1 so that {elo T(el), ... ,Tn-l(el)} is 
a basis of Fn and hence (Fn)T is a cyclic R-module generated by el. Thus, 
by Lemma 4.11, deg(mT(X)) = n and 

But 

Le., 

Tn(el) + an_lTn-l(ed + ... + alT(el) + aOel = o. 

Therefore, f(T)(el) = 0 so that f(X) E Ann(el) = (mT(X»). But 
deg(f(X)) = deg(mT(X» and both polynomials are monic, so f(X) = 
mT(X). 0 
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(4.15) Corollary. In the situation of Proposition 4.14, let 

B = {v, T(v), ... ,Tn-l(V)} 

where v = el = coh(In). Then B is a basis of Fn and [TJB = C(f(X)). 

Proof. This is clear from the calculations in the proof of Proposition 4.14. 
o 

(4.16) Corollary. Let V be any finite-dimensional vector space over the field 
F, let T E EndF(V), and suppose that the R-module VT is cyclic with 
Ann(VT) = (f (X)). Then there is a basis B of V such that 

[TJB = C(f(X)). 

Proof. If VT = Rv then we may take 

B = {v, T(v), ... ,Tn-l(v)} 

where n = dim(V). o 

(4.17) Theorem. (Rational canonical form) Let V be a vector space of di
mension n over a field F and let T E EndF(V) be a linear transformation. 
If {h(X), ... ,fk(X)} is the set of invariant factors of the F[XJ-module 
VT , then V has a basis B such that 

(4.14) [TJB = C(h(X)) EB C(h(X)) EB··· EB C(Jk(X)). 

Proof. Let VT ~ RVl EB ... EB RVk where R = F[XJ and Ann(vi) = (/i(X)) 
and where fi(X) I fi+l(X) for 1 :::; i < k. Let deg(h) = ni' Then Bi = 
{Vi, T(Vi), ... ,Tn,-l(Vi)} is a basis of the cyclic submodule RVi. Since 
submodules of VT are precisely the T-invariant subspaces of V, it follows 
that TIRvi E EndF(Rvi) and Corollary 4.16 applies to give 

(4.15) 

By Equation (4.12), nl + ... + nk = n, and hence, B = U~lBi is a basis of 
V and Proposition 3.32 and Equation (4.15) apply to give Equation (4.14). 

o 

(4.18) Corollary. Two linear transformations Tl and T2 on V have the same 
rational canonical form if and only if they are similar. 

Proof. Two linear transformations Tl and T2 have the same rational canon
ical form if and only if they have the same invariant factors, which occurs if 
and only if the R-modules VT1 and VT2 are isomorphic. Now apply Theorem 
4.2. 0 
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(4.19) Corollary. Every matrix A E Mn(F) is similar to a unique matrix in 
rational canonical form. 

Proof. Regard A E Mn(F) as defining a linear transformation TA : 
F n -t F n by TA(V) = Av. Then A is similar to B E Mn(F) as matri
ces if and only if TA is similar to TB as elements of EndF(Fn). Thus we 
may apply Theorem 4.17 and Corollary 4.18. 0 

We now pause in our general development in order to see how to com
pute CT(X) and to prove a famous result. We will need the following simple 
lemma: 

(4.20) Lemma. Let F be a field and let I(X) E F[X] be a monic polynomial 
of degree n. Then the matrix Xln - CU(X)) E Mn(F[X]) and 

(4.16) det (Xln - CU(X))) = f(X). 

Proof. Let I(X) = xn + an_lXn-l + ... + alX + ao E F[X]. The proof 
is by induction on n = degU). If n = 1, the result is clear. Now suppose 
that n > 1, and compute the determinant of Equation (4.16) by cofactor 
expansion along the first row; applying the induction hypothesis to the first 
summand. 

x 0 0 0 ao 
-1 X 0 0 al 

0 -1 
det(Xln - CU(X))) = det 

0 0 a2 

0 0 -1 X an-2 
0 0 0 -1 X +an-l Ix ... 0 

-1 ... 0 

= Xdet : ... : 
o ... -1 
o ... 0 

0 al 

0 a2 

X ~-, 1 
-1 X +an-l 

X 0 
-1 0 

0 -1 
0 

= X (Xn- l + an_l X n- 2 + ... + al) 

+ ao( _l)n+1( _l)n-l 

= xn + an_lXn- l + ... + alX + ao 

0 1.1 
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= f(X), 

and the lemma is proved. o 

(4.21) Definition. If A E Mn(F) then we will denote the polynomial 
det(XIn - A) E F[X] by CA(X) and we will call CA(X) the characteris
tic polynomial of the matrix A. 

We will prove that the characteristic polynomial of a linear transfor
mation T (as defined in Definition 4.6 (3» is the characteristic polynomial 
of any matrix representation of T. 

(4.22) Lemma. If A and BE Mn(F) are similar, then CA(X) = CB(X). 

Proof. Suppose that B = p-l AP for some P E GL(n, F). Then det P t= 0 
and (detp)-l = detp-l. Hence, 

CB(X) = det(XIn - B) 
= det(XIn - p-l AP) 

= det(p-l(XIn - A)P) 

= (detp-1)(det(XIn - A»(detP) 

= det(XIn - A) 

= CA(X). 

o 

(4.23) Proposition. Let V be a finite-dimensional vector space over a field 
F and let T E EndF(V). If B is any basis of V, then 

(4.17) CT(X) = C[T)s(X) = det(XIn - [T]B). 

Proof. By Lemma 4.22, if Equation (4.17) is true for one basis, it is true 
for any basis. Thus, we may choose the basis B so that [T]B is in rational 
canonical form, i.e., 

k 

(4.18) [T]B = EBC(fi(X» 
i=l 

where h(X), ... ,fk(X) are the invariant factors of T. If deg(fi(X» = ni, 
then Equation (4.18) gives 

k 

( 4.19) XIn - [T]B = EB(XIn; - C(/i(X))). 
i=l 

Equation (4.19) and Theorem 2.11 imply 
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C[T)S{X) = det{Xln - [T)B) 
k 

= II det(X1n; - C(/i(X))) 
i=l 

by Lemma 4.20 
i=l 

which gives Equation (4.17). o 

(4.24) Corollary. (Cayley-Hamilton theorem) Let T E EndF(V) be any 
linear transformation on a finite-dimensional vector space V and let B be 
any basis ofV. Let A = [T)B E F[X). Then 

cA(T) = o. 

Proof. By Proposition 4.23, CA(X) = CT(X) and mT(X) I CT(X). Since 
mT(T) = 0, it follows that cT(T) = 0, i.e., cA(T) = O. 0 

(4.25) Remark. The Cayley-Hamilton theorem is often phrased as A linear 
transformation satisfies its characteristic polynomial. From our perspec
tive, the fact that cT(T) = 0 is a triviality, but it is a nontrivial result that 
CT(X) = CA(X) where A = [T)B. However, there is an alternate approach 
in which the characteristic polynomial of a linear transformation is defined 
to be CA(X) where A is some matrix representation of T. From this per
spective, the Cayley-Hamilton theorem becomes a nontrivial result. It is 
worth pointing out that the Cayley-Hamilton theorem is valid for matrices 
with entries in any commutative ring; of course, the invariant factor theory 
is not valid for general rings so a different proof is needed (see Exercise 56). 
In fact, we shall sketch a second proof of the Cayley-Hamilton theorem in 
the exercises which is valid for any commutative ring R. From the point of 
view of the current section, the utility of Proposition 4.23 and Corollary 
4.24 is that we have an independent method of calculating the characteris
tic polynomial. Further techniques for computing the invariant factors of a 
given linear transformation will be presented in Chapter 5. 

(4.26) Example. Let V be an n-dimensional vector space over the field F, 
and if >. E F, define a linear transformation T : V ...... V by T(v) = >.v 
for all v E V. Then, considering the F[X)-module VT , we have Xv = >.v, 
i.e., (X - >.)v = 0 for every v E V. Thus X - >. = mT(X) since X - >. 
is the monic polynomial of lowest possible degree (namely, degree 1) with 
mT(T) = O. Then CT(X) = (X - >.)n since deg(cT(X» = n and the only 
prime factor of CT(X) is (X - >.) by Corollary 4.10 (3). Then the rational 
canonical form of T is 
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n 

EB C(X - A) = AIn. 
i=l 

Of course, this is the matrix of T in any basis of V. Also note that Vr ~ 
RVI EEl ... EEl RVn has rank n over R with each cyclic submodule RVi !:::< 

Rj (X - A) having dimension lover the field F. 

(4.27) Example. Let B = {VI, ... ,vn } be a basis of the n-dimensional 
vector space V, and let T : V ~ V be defined by T(Vi) = AiVi where 
Ai E F. Assume that the Ai are all distinct, i.e., Ai =I Aj for i =I j. Then 
each subspace (Vi) is a T-invariant subspace and hence a submodule of the 
F[XJ-module Vr . Therefore, 

where Ann{vi) = (X - Ai). Note that 

so Proposition 3.7.21 implies that 

mr{X) = me(Vr) 

= lcm{me(Rvd, ... , me(Rvn)} 

i=l 

= f(X). 

Also by Proposition 3.7.21, we see that cr(X) = f(X). Therefore mr(X) = 
cr(X) and Lemma 4.11 (3) shows that the R-module Vr is cyclic with 
annihilator (f(X)). Thus the rational canonical form of Tis 

0 0 0 0 -aD 
1 0 0 0 -al 
0 1 0 0 -a2 

[TJBo = C(f(X)) = 

0 0 1 0 -an-2 
0 0 0 1 -an-I 

where f{X) = xn + an_IXn- 1 + ... + alX + aD and the basis Bo is chosen 
appropriately. 

This example actually illustrates a defect of the rational canonical 
form. Note that [TJB = diag(AI, A2, ... ,An), which is a diagonal matrix. 
By comparison, we see that [TJB is much simpler than [TJBo and it reflects 
the geometry of the linear transformation much more clearly. Our next 
goal is to find a canonical form that is as "simple" as possible, the Jordan 
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canonical form. When a transformation has a diagonal matrix in some basis, 
this will indeed be its Jordan canonical form. This special case is important 
enough to investigate first. 

(4.28) Definition. 

(1) A linear transformation T : V ~ V is diagonalizable if V has a basis 
such that [TJB is a diagonal matrix. 

(2) A matrix A E Mn(F) is diagonalizable if it is similar to a diagonal 
matrix. 

(4.29) Remark. Recall that we have already introduced the concept of diago
nalizability in Definition 3.35. Corollary 3.34 states that T is diagonalizable 
if and only if V posseses a basis of eigenvectors of T. Recall that v =1= 0 E V 
is an eigenvector of T if the subspace (v) is T-invariant, i.e., T( v) = AV for 
some A E F. The element A E F is an eigenvalue of T. We will consider 
criteria for diagonalizability of a linear transformation based on properties 
of the invariant factors. 

(4.30) Theorem. Let T : V ~ V be a linear transformation. Then T is 
diagonalizable if and only if mT(X) is a product of distinct linear factors, 
i.e., 

t 

mT(X) = IT (X - Ai) 
i=1 

where AI, ... ,At are distinct elements of the field F. 

Proof. Suppose that T is diagonalizable. Then there is a basis B of V such 
that [TJB = diag(ab ... ,an). By reordering the basis B, if necessary, we 
can assume that the diagonal entries that are equal are grouped together. 
That is, 

t 

[TJB = EB Ai1ni 
i=1 

where n = nl + ... + nt and the Ai are distinct. If 

then let Bi = {ViI, ... ,Vin,} and let Vi = (Bi). Then T( v) = AiV for all 
v E Vi, so Vi is a T-invariant subspace of V and hence an F[XJ-submodule 
of VT . From Example 4.26, we see that me(Vi) = X -Ai, and, as in Example 
4.27, 

t 

mT(X) = me(VT) = IT (X - Ai) 
i=1 

as claimed. 
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Conversely, suppose that mT(X) = rI~=l (X -Ai), where the Ai are dis
tinct. Since the X -Ai are distinct irreducible polynomials, Theorem 3.7.13 
applied to the torsion F[XJ-module provides a direct sum decomposition 

(4.20) 

where Ann(Vi) = (X - Ai). In other words, Vi is a T-invariant subspace of 
V and Ti = Tlvi satisfies Ti - Ai = 0, i.e., T(v) = AiV for all v E Vi. Then, 
by Example 4.26, if Vi has a basis Bi = {Vi!' ... ,Vin.}, then [TiJBi = AiIni' 
and if B = U~=lBi' then B is a basis of V by Equation (4.20) and [TJB = 
EB~=l AiIni' so T is diagonalizable. 0 

(4.31) Corollary. Let T E EndF(V) be diagonalizable. Then the exponent of 
(X - Ai) in the characteristic polynomial CT(X) is equal to the number of 
times that Ai appears on the diagonal in any diagonal matrix [TJB. 

Proof. If Ai appears ni times on the diagonal in a diagonal matrix repre
sentation of T, then 

ni = dimF Ker(T - Ai1V). 

This number depends only on T and not on any particular diagonalization 
of T. Now suppose that [TJB = EB~=lAiIn" let Vi = Ker(T - Ai1v), and let 
Ti = Tlv; as in the proof of Theorem 4.30. Then by Proposition 3.7.21 

CT(X) = co(T) 

= co(Td ... co(Tt ) 

= CT1 (X) ... CT, (X) 

= (X - Al)n1 ••• (X - At)n, 

as claimed. o 

Since, by Proposition 4.23, we have an independent method for calcu
lating the characteristic polynomial CT(X), the following result is a useful 
sufficient (but not necessary) criterion for diagonalizability. 

(4.32) Corollary. Let V be an n-dimensional vector space and let T E 

EndF(V) be a linear transformation. If the characteristic polynomial CT(X) 
is a product of distinct linear factors, then mT(X) = CT(X) and hence T 
is diagonalizable. 

Proof. Suppose that CT(X) = rI~l (X - Ai) where the Ai are distinct. Since 
every irreducible factor of CT(X) is also a factor of mT(X), it follows that 
CT(X) divides mT(X). But since mT(X) always divides CT(X) (Corollary 
4.10), it follows that mT(X) = CT(X). The diagonalizability of T then 
follows from Theorem 4.30. 0 
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(4.33) Remark. It is interesting to determine the cyclic decomposition of 
VT when T is diagonalizable. By Theorem 4.30, we have 

and 

CT(X) = (X - AI)nl ... (X - At)nk 

where the Ai are distinct and n = dim(V) = nl + ... + nt. If k = 
max{ nl, ... ,nt} then rank(VT ) = k, VT ~ RVI EEl ••• EEl RVk, and the in
variant factors of the torsion R-module VT are the polynomials 

where (..) {I if i ::; j, 
to t,J = ° .f. . 

1 t > J. 

for 1::; i ::; k, 

The following special case of Theorem 4.30 will be useful to us later. 

(4.34) Corollary. Suppose that V is a finite-dimensional vector space over 
a field F and let T : V ~ V be a linear transformation such that Tk = 
1 v. Suppose that F is a field in which the equation zk = 1 has k distinct 
solutions. Then T is diagonalizable. 

Proof. Let the solutions of zk - 1 be 1 = (0, ... ,(k-l. Then Xk - 1 = 
TI7':-01 (X - (i) is a product of distinct linear factors. By hypothesis, Tk -
1 v = 0, so T satisfies the polynomial equation X k - 1 = 0, and hence 
mT(X) divides Xk -1. But then mT(X) is also a product of distinct linear 
factors, and hence T is diagonalizable. 0 

(4.35) Remark. Note that the hypothesis on the field F is certainly satisfied 
for any k if the field F is the field C of complex numbers. 

From Theorem 4.30, we see that there are essentially two reasons why a 
linear transformation may fail to be diagonalizable. The first is that mT(X) 
may factor into linear factors, but the factors may fail to be distinct; the 
second is that mT(X) may have an irreducible factor that is not linear. For 
example, consider the linear transformations Ti : F2 ~ F2, which are given 
by multiplication by the matrices 

and 

Note that mT1 (X) = X 2 , so Tl illustrates the first problem, while mT2(X) = 
X 2 + 1. Then if F = R, the real numbers, X2 + 1 is irreducible, so T2 pro
vides an example of the second problem. Of course, if F is algebraically 
closed (and in particular if F = C), then the second problem never arises. 
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We shall concentrate our attention on the first problem and deal with the 
second one later. The approach will be via the primary decomposition theo
rem for finitely generated torsion modules over a PIn (Theorems 3.7.12 and 
3.7.13). We will begin by concentrating our attention on a single primary 
cyclic R-module. 

(4.36) Definition. Let>.. be in the field F and let n E N. An n x n Jordan 
block with value >.. is the matrix 

>.. 1 0 0 0 
0 >.. 1 0 0 

(4.21) J>.,n = E Mn(F). 

0 0 0 >.. 1 
0 0 0 0 >.. 

Note that J>.,n = >..In + Hn where 

n-1 

Hn = L Ei ,H1 E Mn(F). 
i=l 

That is, Hn has a 1 directly above each diagonal element and 0 elsewhere. 
Calculation shows that 

n-k 

(J>.,n - >..In)k = H~ = L Ei,Hk =f. 0 for 1::; k ::; n - 1, 
i=l 

but 
(J>.,n - >..In)n = H;:: = O. 

Therefore, if we let T>.,n : Fn ---- F n be the linear transformation obtained 
by multiplying by J>.,n, we conclude that 

mT).,n (X) = (X - >..)n = CT).,n 

(since deg(cT).,n(X)) = n) so that Lemma 4.11 (3) shows that the F[X]
module (Fn )r).,n is cyclic. 

(4.37) Proposition. Let V be a finite-dimensional vector space over the field 
F, and suppose that T E EndF(V) is a linear transformation such that 
the R-module VT is a primary cyclic R-module. Suppose that Ann(VT) = 
((X - >..)n), and let v E V be any element such that VT = Rv. Then 

B = {Vk = (T - >"lv)n-k(v): 1::; k::; n} 

is a basis of V over F and 
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Proof First we show that B is a basis of V. Since dim V = n by Lemma 
4.11 (3), and since B has n elements, it is only necessary to h~lOW that B 
is linearly independent. To see this, suppose that E~=l akvk = 0 where 
all"" an E F. Then E~=l ak(T - AIv)n-k(v) = 0, Le., 

n 

g(X) = Lak(X - A)n-k E Ann(v) = Ann(V). 
k=l 

But deg(g(X» < n, so this can only occur if g(X) = 0, in which case 
al = ... = an = O. Thus B is linearly independent and hence a basis of V. 

Now we compute the matrix [T]8' To do this note that 

T(Vk) = T ((T - A)n-k(v») 

= (T - A)(T - A)n-k(v) + A(T - A)n-k(v) 

= (T - A)n-(k-l)(v) + A(T - A)n-k(v) 

Therefore, [T]8 = J)",n, as required. 

if k ?: 2, 
if k = 1. 

o 

(4.38) Theorem. (Jordan canonical form) Let V be a vector space of di
mension n over a field F and let T : V -+ V be a linear tmnsformation. 
Assume that the minimal polynomial mT(X) ofT factors into a product of 
(not necessarily distinct) linear factors. (Note that this hypothesis is auto
matically satisfied in case F is an algebmically closed field and, in particular 
if F = C.) Then V has a basis B such that 

s 

[T]8 = J = E9Ji 

i=l 

where each Ji is a Jordan block. FUrthermore, J is unique up to the order 
of the blocks. (The matrix J is said to be in Jordan canonical form.) 

Proof. Let VT ~ EB!=l Vi be the primary decomposition of the torsion F[X]
module VT (see Theorem 3.7.12). According to the proof of Theorem 3.7.12, 
each Vi is the Pi (X)-primary component of VT for some irreducible polyno
mial Pi(X) dividing me(VT) = mT(X), so by the assumption on mT(X), 
each Pi(X) is linear, Le., Pi(X) = X - Ai for some Ai E F. According to 
Theorem 3.7.13, each module Vi has a decomposition into primary cyclic 
submodules 

for 1 ~ i ~ t. 

By Proposition 4.37, there is a basis Bij of W ij in which the restriction of 
T to Wij (recall that submodules of VT are T-invariant subspaces of V) is a 
Jordan block. Let B = Ui,jBij . Then B is a basis of V and [T]8 is in Jordan 
canonical form. 
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It remains to show uniqueness of the Jordan canonical form, but this is 
immediate from the fact that the blocks are in one-to-one correspondence 
with the elementary divisors of the module VT-the elementary divisor 
corresponding to J).,q is (X - A)q. 0 

We have already briefly encountered eigenvalues of linear transforma
tions (see Definition 3.35 and Remark 4.29). We now consider this concept 
in more detail and relate it to the canonical form theory just developed. 
Recall that A E F is an eigenvalue of T : V -. V if T(v) = AV for some 
nonzero v E V. The nonzero element v is an eigenvector of T corresponding 
to A. 

(4.39) Lemma. Let V be a finite-dimensional vector space over a field F and 
let T E EndF(V) be a linear transformation. If A E F, then the following 
are equivalent. 

(1) A is an eigenvalue ofT. 
(2) X - A divides mT(X). 
(3) X - A divides CT(X). 

Proof. (1) ::::} (2). Let v be an eigenvector of T corresponding to A. Then 

(X - A) E Ann(v) 2 Ann(VT) = (mT(X)), 

so X - A divides mT(X). 
(2) ::::} (1). Immediate from Theorem 3.7.1 and Lemma 3.7.17. 
(2) {::} (3). mT(X) and CT(X) have the same irreducible factors (Corol-

lary 4.10). 0 

For convenience, we restate Corollary 3.34 and Theorem 4.30 in the 
current context. 

(4.40) Theorem. Let T : V -. V be a linear transformation of a finite
dimensional vector space over the field F. Then the following are equivalent: 

(1) T is diagonalizable. 
(2) mT(X) is a product of distinct linear factors. 
(3) V has a basis consisting of eigenvectors of T. 

Proof. (1) {::} (2) is Theorem 4.30, while (1) {::} (3) is Corollary 3.34. 0 

(4.41) Remark. Since diag(A1' ... ,An) = EElf=1 J).;,1, we see that if T is 
diagonalizable, then the Jordan canonical form of T is diagonal. 

(4.42) Definition. Let T E EndF(V). Then a nonzero vector v E V is 
a generalized eigenvector of T corresponding to the eigenvalue A E F if 
p(T)(v) = 0 for p(X) = (X - A)k for some k > o. 
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In other words, v :j:. 0 is a generalized eigenvector of T corresponding 
to the eigenvalue A if v is in the (X - A)-primary component vf the F[X]
module VT. 

(4.43) Lemma. If {Vi}i=l are generalized eigenvectors of T corresponding 
to distinct eigenvalues, then they are linearly independent. 

Proof. Decompose 

(4.22) 

by the primary decomposition theorem (Theorem 3.7.12). After reordering, 
if necessary, we may assume that Vi E Vi for 1 ~ i ~ r. If L~=l aiVi = 0 
then it follows that aiVi = 0 since Equation (4.22) is a direct sum, so ai = 0 
since Vi :j:. O. 0 

(4.44) Theorem. The following are equivalent for a linear transformation 
T: V -4 V. 

(1) T has a Jordan canonical form. 
(2) V has a basis B consisting of generalized eigenvectors ofT. 
(3) mT(X) is a product of (not necessarily distinct) linear factors. 

Proof. (1) => (2). If [T]B is in Jordan canonical form then the basis B 
consists of generalized eigenvectors. 

(2) => (3). Let B = {Vb ... ,vn } be a basis of V, and assume 

(T - Ai)ki(Vi) = 0, 

i.e., each Vi is assumed to be a generalized eigenvector of T. Then 

is a product of linear factors. 
(3) => (1). This is Theorem 4.38. o 

Now we define some important invariants. 

(4.45) Definition. Let T : V -4 V be a linear transformation and let A E F 
be an eigenvalue of T. 

(1) The algebraic multiplicity of the eigenvalue A, denoted Valg(A), is the 
highest power of X - A dividing CT(X). 

(2) The geometric multiplicity of the eigenvalue A, denoted Vgeom(A) is the 
dimension (as a vector space over F) of Ker(T - Al v ). 
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(4.46) Remarks. 

(1) Ker(T - A1v) = {v E V : T(v) = AV} is called the eigenspace of A. 
(2) {v E V : (T - A)k(v) = 0 for some kEN} is called the generalized 

eigenspace of the eigenvalue A. Note that the generalized eigenspace 
corresponding to the eigenvalue A is nothing more than the (X - A)
primary component of the torsion module VT. Moreover, it is clear 
from the definition of primary component of VT that the generalized 
eigenspace of T corresponding to A is Ker(T - Al v Y where r is the 
exponent of X - A in mT(X) = me(VT). 

(3) Note that Lemma 4.43 implies that distinct (generalized) eigenspaces 
are linearly independent. 

(4.41) Proposition. Let A be an eigenvalue of the linear transformation T E 

EndF(V) where V is a finite-dimensional vector space over F. Then the 
geometric multiplicity of A is the number of elementary divisors of VT that 
are powers of (X - A). In particular, 

(4.23) 

Proof. First note that 1::; Vgeom(A) since A is an eigenvalue. Now let VT ~ 
EB~=l Vi be the primary decomposition of the F[X]-module VT, and assume 
(by reordering, if necessary) that V1 is (X -A)-primary. Then T-A : Vi -+ Vi 
is an isomorphism for i > 1 because Ann(Vi) is relatively prime to X - A 
for i > 1. Now write 

V1 ~ W1 EB •.. EB Wr 

as a sum of cyclic submodules. Since V1 is (X - A)-primary, it follows that 
Ann(Wk) = ((X - A)qk) for some qk ~ 1. The Jordan canonical form of 
Tlwk is J>.,qk (by Proposition 4.37). Thus we see that Wk contributes 1 to 
the geometric multiplicity of A and qk to the algebraic multiplicity of A. 0 

( 4.48) Corollary. 

(1) The geometric multiplicity of A is the number of Jordan blocks J>.,q in 
the Jordan canonical form of T with value A. 

~2) The algebraic multiplicity of A is the sum of the sizes of the Jordan 
blocks of T with value A. 

(3) If mT(X) = (X - A)qp(X) where (X - A) does not divide p(X), then 
q is the size of the largest Jordan block of T with value A. 

(4) If Al, ... , Ak are the distinct eigenvalues ofT, then 

JL(VT) = max{Vgeom(Ai) : 1 ::; i::; k}. 

Proof. (1), (2), and (3) are immediate from the above proposition, while (4) 
follows from the algorithm of Theorem 3.7.15 for recovering the invariant 
factors from the elementary divisors of a torsion R-module. 0 
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(4.49) Corollary. The following are equivalent for a linear tronsformation 
T E EndF(V). 

(1) T is diagonalizable. 
(2) If AI, ... ,Ak are the distinct eigenvalues ofT, then 

k 

L Vgeom(Ai) = dimF(V). 
i=l 

(3) mT(X) is a product of linear factors, and for each eigenvalue A, 

Proof. D 

(4.50) Remark. The importance of the Jordan canonical form of a linear 
transformation can hardly be over-emphasized. All of the most important 
invariants of a linear transformation: its characteristic and minimal polyno
mials, its elementary divisors, its eigenvalues, and their algebraic and geo
metric multiplicities, can all be read off from the Jordan canonical form, and 
the (generalized) eigenspaces may be read off from the basis with respect 
to which it is in this form. 

We have seen that in order for T to have a Jordan canonical form, the 
minimal polynomial mT(X) must be a product of linear factors. We will 
conclude this section by developing a generalized Jordan canonical form to 
handle the situation when this is not the case. In addition, the important 
case F = R, the real numbers, will be developed in more detail, taking into 
account the special relationship between the real numbers and the complex 
numbers. First we will do the case of a general field F. Paralleling our 
previous development, we begin by considering the case of a primary cyclic 
R-module (compare Definition 4.36 and Proposition 4.37). 

(4.51) Definition. Let f(X) E F[X] be a monic polynomial of degree d. The 
nd x nd generalized Jordan block corresponding to f(X) is the nd x nd 
matrix (given in blocks of d x d matrices) 

N 
C(f(X» 

o 
o 

o 
N 

o 
o 

o 
o 

C(f(X» 
o 

where N is the d x d matrix with ent1d(N) = 1 and all other entries o. 
J!(X),n is called irreducible if f(X) is an irreducible polynomial. Note, in 
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particular, that the Jordan matrix J:>..,n is the same as the irreducible Jordan 
block J(X-:>..),n' 

(4.52) Proposition. Let T : V ~ V be a linear transformation, and as
sume that VT = Rv is a (primary) cyclic R-module such that Ann( v) = 
Ann{VT) = (f(x)n), where f(X) is an (irreducible) polynomial of de
gree d. Define B as follows: Let Vk = f(T)n-k(v) for 1 ~ k ~ nand 
let Vkj = Tj-1(Vk) for 1 ~ j ~ d. Then let 

Then B is a basis of V over F and [TJB is an (irreducible) nd x nd gener
alized Jordan block corresponding to f(X). 

Proof. This is a tedious computation, entirely paralleling the proof of Propo
sition 4.37; we shall leave it to the reader. 0 

(4.53) Remark. Note that if f(X) = X - .x, then Proposition 4.52 reduces 
to Propositon 4.37. (Of course, every linear polynomial is irreducible.) 

(4.54) Theorem. (Generalized Jordan canonical form) Let V be a vector 
space of dimension n over a field F and let T : V ~ V be a linear trans
formation. Then V has a basis B such that 

s 

[TJB = J' = EeJ: 
i=l 

where each JI is an irreducible generalized Jordan block. Furthermore, J' 
is unique up to the order of the blocks. (The matrix J' is said to be in 
generalized Jordan canonical form.) 

Proof. Almost identical to the proof of Theorem 4.38; we leave it for the 
reader. 0 

Now let F = R be the field of real numbers. We will produce a ver
sion of the Jordan canonical form theorem which is valid for all matrices 
with entries in R. This canonical form will be somewhat different than the 
generalized Jordan canonical form of Theorem 4.54. 

Recall (Theorem 4.44) that a linear transformation T : V ~ V, where 
V is a finite-dimensional vector space over a field F, has a Jordan canonical 
form if and only if the minimal polynomial mT(X) is a product of (not 
necessarily distinct) linear factors. Of course, this says that all of the roots of 
mT(X), i.e., all eigenvalues ofT, are included in the field F. This condition 
will be satisfied for all polynomials over F if and only if the field F is 
algebraically closed. The field C of complex numbers is algebraically closed 
(although we shall not present a proof of this fact in this book), but the field 
R of real numbers is not. In fact, X 2 + 1 is a polynomial over R that does not 
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have any roots in R. Therefore, any linear transformation T E EndR (R2) 
such that mT(X) = X2 + 1 cannot have a Jordan canonical fOhn. There is, 
however, a very simple variant of the Jordan canonical form which is valid 
over R and which takes into account the special nature of R as it relates 
to the complex numbers. We will start by analyzing polynomials over R. 

Recall that if Z E C then z denotes the complex conjugate of z, i.e., if 
z = a+bi, then z = a-bi. Then ~(z+z) = a, while ~(z-z) = band z E R 
if and only if z = z. The conjugation map on C extends in a natural way to 
an involution a: C[X]- C(X] defined by a(f(X» = ](X) where ](X) is 
the polynomial determined by conjugating all the coefficients of f(X), i.e., 
if f(X) = ao + a1X + ... + anxn then ](X) = ao + a1X + ... + anxn. 
Thus a : C(X] - C[X] is a ring homomorphism such that a2 = lC[xJ' and 
f(X) E R[X] if and only if ](X) = f(X). If f(X) E C(X] and z E C is 
a root of f(X), then a simple calculation shows that z is a root of ](X). 
Thus if f(X) E R[X] and z E C is a root of f(X), then z is also a root of 
f(X). By Corollary 2.4.6 it follows that whenever z E C \ R is a root of 
f(X), then the polynomial (X - z)(X - z) divides f(X) in C[X]. But if 
z = a + bi, where a, b E R and b t= 0, then 

(X - z)(X - z) = «X - a) - bi)«(X - a) + bi) 
= ((X - a)2 + b2 ). 

Since the polynomial (X - a)2 + b2 has real coefficients and divides the 
real polynomial f(X) in the ring C[X], it follows from the uniqueness part 
of the division algorithm (Theorem 2.4.4) that the quotient of f(X) by 
(X - a)2 + b2 is in R[X]. From this observation and the fact that C is 
algebraically closed, we obtain the following factorization theorem for real 
polynomials. 

(4.55) Lemma. Let f(X) E R[X]. Then f(X) factors in R[X] as 

(4.24) I(X) ~"(g(X - c;)m.) (J] {(X - aj)' +~r') 
where Ci E R, aj, bj E R with bj t= 0, and a E R. 

Proof. The real roots Cll ... ,Cr of f(X) give the first factor, while if Zj = 
aj + ibj is a complex root, then (X - aj)2 + b; divides f(X), so we may 
argue by induction on the degree of f(X). 0 

Note that the factorization of Equation (4.24) implies that if Zj is 
a nonreal root of f(X) of multiplicity nj, then Zj is a root of the same 
multiplicity nj. 

(4.56) Definition. Given Z = a + bi E C with b t= ° and r E N, let i:\ E 
M2r(R) be defined by , 
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(4.25) [A 
12 0 0 

~l 
0 A 12 0 

JR - . 
z,r - ~ 

0 0 A 
0 0 0 

where A = [~-;,b]. J~r is said to be a real Jordan block corresponding to 

ZEC\R. 

(4.57) Theorem. (real Jordan canonical form) Let V be a finite-dimensional 
vector space over R and let T : V -> V be a linear transformation. Then 
there is a basis B of V such that 

s 

[T]B = EBJi 

i=l 

where J i = JAi,ki is an ordinary Jordan block corresponding to Ai E R, or 
J i = J!,ki is a real Jordan block corresponding to some Zi E C \ R. 

Proof. By the primary decomposition theorem (Theorem 3.7.13), we may 
suppose that the R[X]-module VT is a primary cyclic R[X]-module, say 
VT = R[X]u. Thus, Ann(VT) = (p(Xn where (by Lemma 4.55) 

(4.26) p(X) = X - c 

or 

(4.27) p(X) = (X - a)2 + b2 with b =I- O. 

In case (4.26), T has a Jordan canonical form Jc,r; in case (4.27) we will 
show that T has a real Jordan canonical form J~r where Z = a + bi. 

Thus, suppose that p(X) = (X _a)2+b2 and let Z = a+bi. By hypothe
sis VT is isomorphic as an R[X]-module to the R[X]-module R[X]/(p(Xn. 
Recall that the module structure on VT is given by Xu = T(u), while the 
module structure on R[Xl/ (p(Xn is given by polynomial multiplication. 
Thus we can analyze how T acts on the vector space V by studying how X 
acts on R[Xl/(p(Xn by multiplication. This will be the approach we will 
follow, without explicitly carrying over the basis to V. 

Consider the C[X]-module W = C[Xl/(p(Xn. The annihilator of W 
is p(xy, which factors in C[X] as p(XY = q(xyq(XY where q(X) = 
«X - a) + bi). Since q(XY and q(XY are relatively prime in C[X], 

(4.28) 

for 91(X) and 92(X) in C[X]. Averaging Equation (4.28) with it's complex 
conjugate gives 
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1 = q(Xr (gl (X) ; 92(X)) + q(Xr (g2(X) ; 91 (X)) 

= f(X) + ](X). 

Thus, by Theorem 3.7.12, we may write 

( 4.29) W = C[x]j(p(Xn = (v) EB (w), 

where v = f(X) + (p(Xn, W = ](X) + (p(Xn, Ann(v) = (q(Xn and 
Ann(w) = (q(xt). Equation (4.29) provides a primary cyclic decomposi
tion of C[X]j(p(Xn and, as in the proof of Theorem 4.37, 

C = {q(Xr-kw : 1 ::; k ::; r} U {q(Xr-kv : 1 ::; k ::; r} 

is a basis of W = C[X]j(p(Xn over C. For 1 ::; k ::; r, let 

1 
Vk = 2" (q(Xr- kw + q(Xy-kv) E W 

and 

Note that 'fh = Vk and'ilh = Wk since v = w, where the conjugation map 
on W = C[X]j(p(Xn is induced from that on C[X]. Therefore Vk and 
Wk are in R[X]j(p(xt). Moreover, Vk + iWk = q(Xr-kw and Vk - iWk = 
q(xt-kv. Therefore, the set 

B = {VI, WI, 712, W2, ... ,Vr , Wr } <;: R[X]j(p(Xn 

spans C[X]j (p(Xn, and hence, it is a basis. Since B is linearly independent 
over C, it is also linearly independent over R, and since 

dimRR[X]j(p(Xn = degp(XY = 2r, 

it follows that B is a basis of R[X]j(p(Xn over R. 
Now we compute the effect of multiplication by X on the basis B. Since 

X = q(X) + (a - bi) and X = q(X) + (a + bi), 

XVk = X (~(q(Xy-kw + q(Xy-kv)) 

1 1 
= 2" (q(X) + (a - bi)) q(xy-kw + 2" (q(X) + (a + bi)) q(Xy-kv 

= ~ (q(Xy-(k-l)W + q(xy-(k-l)V) 

+ a (~(q(Xr-kw + q(xr-kV)) + b (;i (q(X)r-kw - q(xr-kv )) 

= {Vk- 1 + aVk + bWk if k :::: 2, 
aVk + bWk if k = 1. 
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Similarly, 

X { Wk-I - bVk + aWk if k ~ 2, 
Wk = 

-bVk + aWk if k = 1. 

Thus, if 8: R[X]/(p(Xn -+ R[X]/(p(Xn denotes multiplication by 
X, then [8]/3 = J!\, and since 8 corresponds to T under the isomorphism 
VT ~ R[X]/(P(Xi), the proof is complete. 0 

(4.58) Remark. It is worthwhile to compare the real Jordan canonical form 
derived in Theorem 4.57 with the generalized Jordan canonical form deter
mined by Theorem 4.54. Suppose that I(X) = «X - a)2 + b2)2. Then the 
real Jordan block determined by f(X) is 

J!bi,2 = [~ ~b ~ Jb] 
o 0 b a 

while the generalized Jordan block determined by I(X) is 

[
0 -(a2+b2) 0 1 ] 
1 2a 0 0 

J!(X),2 = 0 0 0 _(a2 + b2) . 

o 0 1 2a 

(4.59) Corollary. If V is a finite-dimensional real vector space of dimension 
at least 2, then every linear transformation T : V -+ V has a 2-dimensional 
invariant subspace. 

Proof. T has an elementary divisor of the form 

{ (X - ct for r ~ 2, 
«X - a)2 + b2t for r ~ 1, 

or T is diagonalizable. If Tis diagonalizable, the result is clear, while if the 
real Jordan canonical form of T contains a block Jc,r (r ~ 2) the vectors 
corresponding to the first two columns of Jc,r generate a two-dimensional 
invariant subspace. Similarly, if the real Jordan canonical form contains a 
block J~r (r ~ 1), then the vectors corresponding to VI and WI constructed 
in the proof of Theorem 4.57 generate a T-invariant subspace. 0 

(4.60) Remark. If a linear transformation possesses an eigenvalue, then it 
has an invariant subspace of dimension 1. Corollary 4.59 is of interest in 
that it states that if a linear transformation of a real vector space does not 
have any eigenvalues, then at least there is the next best thing, namely, a 
two-dimensional invariant subspace. If F is a field that has an irreducible 
polynomial f(X) of degree n, then multiplication by A = C(f(X)) on Fn 
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is a linear transformation with no invariant subspace of dimension less than 
n. Thus Corollary 4.59 depends on the special nature of the real numbers. 

At this point we would like to reemphasize the remark prior to Propo
sition 4.3. 

(4.61) Remark. Our entire approach in this section has been to analyze a 
linear transformation T by analyzing the structure of the F[X]-module VT. 

Since Tl and T2 are similar precisely when VTl and VT2 are isomorphic, each 
and every invariant we have derived in this section---{;haracteristic and min
imal polynomials, rational, Jordan, and generalized Jordan canonical forms, 
(generalized) eigenvalues and their algebraic and geometric multiplicities, 
etc.-is the same for similar linear transformations Tl and T2. 

4.5 Computational Examples 

This section will be devoted to several numerical examples to illustrate 
the general canonical form theory developed in Section 4.4. In Chapter 
5, further techniques will be presented using an analysis of equivalence of 
matrices over a PID. Throughout this section it will be assumed that the 
reader is familiar with the procedure for solving a system AX = B of linear 
equations over a field F by the process of row reduction of the matrix [A B]. 
This procedure is a standard topic in elementary linear algebra courses; it 
will be developed in the more general context of matrices with entries in a 
PID in Section 5.2. 

(5.1) Example. Construct, up to similarity, all linear transformations T : 
F6 ___ F6 with minimal polynomial 

Solution. If mT(X) = (X - 5)2(X - 6)2, then we must have 

CT(X) = (X - 5)i(X - 6)j 

where i + j = 6 = dim(F6 ) and 2 ::; i, 2 ::; j. This is because mT(X) 
divides CT(X) (Corollary 4.10 (2)), and mT(X) and CT(X) have the same 
irreducible factors (Corollary 4.10 (3)). 

Suppose i = 2 and j = 4. Then 5 has algebraic multiplicity 2, and 2 
is the size of the largest Jordan block with eigenvalue 5, so there is exactly 
one such block. Also 6 has algebraic multiplicity 4, and 2 is the size of its 
largest Jordan block, so either it has two blocks of size 2, or one block of 
size 2 and two of size 1. Thus the possibilities for the Jordan canonical form 
of Tare 
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5 1 0 0 0 0 
0 5 0 0 0 0 

J5 ,2 ED J6 ,2 ED J6 ,2 = 
0 0 6 1 0 0 
0 0 0 6 0 0 
0 0 0 0 6 1 
0 0 0 0 0 6 

and 
5 1 0 0 0 0 
0 5 0 0 0 0 

J5 ,2 ED J6 ,2 ED J6 ,1 ED J6 ,1 = 
0 0 6 1 0 0 
0 0 0 6 0 0 
0 0 0 0 6 0 
0 0 0 0 0 6 

If i = 4 and j = 2, then there is a similar analysis, with the roles of 
5 and 6 reversed. The possibilities for the Jordan canonical form of T are 
then 

J6 ,2 ED J5 ,2 ED J5,2 or J6,2 ED J5,2 ED J5,1 ED J5,1. 

If i = 3 and j = 3, then for each eigenvalue we must have one block of 
size 2 and one of size 1. This gives the single possibility 

5 1 0 0 0 0 
0 5 0 0 0 0 

J5 ,2 ED J5 ,1 EEl J6 ,2 EEl J6 ,1 = 0 0 5 0 0 0 
0 0 0 6 1 0 
0 0 0 0 6 0 
0 0 0 0 0 6 

for the Jordan canonical form of T. 0 

(5.2) Example. Construct, up to similarity, all linear transformations T with 
characteristic polynomial CT(X) = (X - 8)1, minimal polynomial mT(X) = 
(X - 8)3, and 8 an eigenvalue of geometric multiplicity 4. 

Solution. Since deg(cr(X)) = 7, T is a linear transformation of a 7-
dimensional vector space V, which we may take to be F 7 , since we are 
working up to similarity, and 8 is the only eigenvalue of T. Thus the Jordan 
blocks in the Jordan canonical form of Tare JS,r. Since mT(X) has degree 
3, the largest Jordan block has size 3, so the block sizes must be 3, 3, 1, or 3, 
2,2, or 3, 2, 1, 1, or 3, 1, 1, 1, 1. Since the geometric multiplicity of 8 is equal 
to 4, there must be 4 Jordan blocks (Corollary 4.48 (1)), and the only ways 
to partition 7 into 4 parts are 7 = 4+1+1+1 = 3+2+1+1 = 2+2+2+1, 
these being the possible block sizes (Corollary 4.48 (2)). Comparing these 
last two lists, there is only only coincidence; thus there is only one possi
bility for T: 
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8 1 0 0 0 0 0 
0 8 1 0 0 0 0 
0 0 8 0 0 0 0 

J S,3 EB J S,2 EB JS,1 EB JS,l = 0 0 0 8 1 0 0 
0 0 0 0 8 0 0 
0 0 0 0 0 8 0 
0 0 0 0 0 0 8 

D 

In contrast to the first two examples, the problems which generally 
arise are not to construct matrices in Jordan canonical form, but rather 
to find the Jordan canonical form of a given linear transformation (or ma
trix). In this, Proposition 4.23 is our starting point, telling us how to find 
the characteristic polynomial. (We do not wish to address at this point the 
problem of practical methods for computing the characteristic polynomial, 
but simply assume that this is done. Chapter 5 will contain further in
formation, which will be of computational interest in computing canonical 
forms.) 

(5.3) Example. Let V = F3 and let T : V --+ V be the linear transformation 
with matrix 

[Tic = A = [! 2 -;.1 ;] 
-2 -1 4 

where C is the standard basis on F3. Find out "everything" about T. 

Solution. A calculation of the characteristic polynomial CT(X) shows that 

CT(X) = det(XIa - A) 

= X 3 - 6X2 + 11X - 6 

= (X - l)(X - 2)(X - 3). 

Since this is a product of distinct linear factors, it follows that Tis diago
nalizable (Corollary 4.32), mT(X) = CT(X), and the Jordan canonical form 
of T is J = diag(l, 2, 3). Then the eigenvalues of T are 1, 2, and 3, each of 
which has algebraic and geometric multiplicity 1. 

Since mT(X) = CT(X), it follows that VT is a cyclic F[X]-module and 
the rational canonical form of T is 

[0 0 6] 
C(mT(X» = R = 1 0 -11 . 

o 1 6 

We now compute the eigenspaces of T. This is a straightforward matter 
of solving systems of linear equations. The details are left to the reader. If 
VA = Ker(T - )'lv), then we find 
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Thus, if 

B ~ {[: J.[~J.[m, 
then [T]B = J. Also, if 

p~[: ~ !] 
is the matrix whose columns are the vectors of B, then p-I AP = J = 
diag(l, 2, 3). Finally, if we let 

then 

Ann(v) = ((X - l)(X - 2)(X - 3») = (mT(X») = Ann(VT)' 

Thus, v is a cyclic vector for the F[X]-module VT . If we let 

~ ~ {v, Tv,T'v} ~ {m, m, [:~]} 
be the basis of V given by Corollary 4.16, then [T]BI = R, and if Q is the 
matrix whose columns are the column vectors of Bf , then Q-I AQ = R. D 

(5.4) Example. Let V = F3 and let T : V --t V be the linear transformation 
with matrix with respect to the standard basis C 

Find out "almost everything" about T. 

Solution. We compute 

CT(X) = det(XI3 - A) 

= X 3 - 5X2 + 8X - 4 

= (X - l)(X - 2)2. 

We see at this point that we have two possibilities: 
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(a) va lg{l) = vgeom {l) = 1 and valg(2) = vgeom (2) = 2. 

In this case T is diagonalizable and the Jordan canonical form is J = 
diag{l, 2, 2). Also mT{X) = (X - 1){X - 2), so the F[X]-module VT has 
invariant factors ft(X) = X - 2 and h(X) = (X -1)(X - 2), and VT has 
rank 2 as an F[XJ-module. Thus, T has the rational canonical form 

[2 0 0] 
R = C(ft(X)) EB C(h(X)) = 0 0 -2 . 

o 1 3 

(b) va lg(l) = vgeom (l) = 1 and valg(2) = 2, vgeom (2) = 1. 

In this case T is not diagonalizable, and the eigenvalue 2 has a single 
Jordan block, so its Jordan canonical form is 

[1 0 0] 
J = J1,1 EB J2,2 = 0 2 1 . 

002 

Also, mT(X) = (X -1)(X _2)2 = CT(X) so that VT is a cyclic F[X]-module 
(Lemma 4.11 (3)) and T has the rational canonical form 

[0 0 4] 
R=C(mT{X)) = 1 0 -8 . 

o 1 5 

To decide between these two alternatives, we may proceed in either of 
two ways: 

(1) Compute vgeom (2). If it is 2, we are in case (a), and if it is (I), we are 
in case (b). 

(2) Compute (T - 1){T - 2) = {T - Iv)(T - 2 . Iv). If it is 0 we are in 
case (a), if it is not, we are in case (b). 

Since we are in any event interested in (generalized) eigenvectors, we 
choose the first method. We find 

so we are in case (a) here. Also, 

so in the basis B = {VI, V2, V3} (note the order), [T]a = J. o 
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(5.5) Example. Let V = F3 and let V -+ V be the linear tmnsformation 
with the matrix 

[ 5 -5 7] 
[Tlc = A = -4 7 -6 

-5 7 -7 
in the standard basis C. Find out "almost everything" about T. 

Solution. We compute that CT(X) = (X - 1)(X - 2)2, exactly the same 
as in Example 5.4. Thus, we have the same two possibilities and we will 
proceed in the same way. Now we find that 

Ker(T - 2 . Iv) ~ ( [~ ] ) ~ (V2), 

so in this example we are in case (b). To find the basis for the Jordan 
canonical form, we find a vector V2 E F3 with (T - 2)(V3) = V2. By solving 
a system of linear equations we find that we may take 

v, ~ [ ~~] 
Also, 

Ker(T -Iv) ~ ([ ~~]) ~ (v,). 

Thus, if B = {Vb V2, V3} (note the order), then B is a basis of F3 and 
[TJB =J. 

As a practical matter, there is a second method for finding a suitable 
basis of F3. Note that dim(Ker(T - 2 ·lv )2) = 2. Pick any vector v~, which 
is in Ker(T - 2 .lv)2 but not in Ker(T - 2 ·lv), say v~ = [2 0 -It 
Then let v~ = (T - 2)(v;) = [-1 -2 -It If B' = {Vb V~, V;}, then we 
also have [TJBI = J. 0 

(5.6) Example. Let V be a vector space over F of dimension 8, let B = 
{viH=l be a basis of V, and suppose that T E EndF(V) is a linear tmns
formation such that 

[TJB=A 

= J2,2 EEl J2,2 EEl h,l EEl J1,2 EEl J1,1 

2 1 0 0 0 0 0 0 
o 2 0 0 0 0 0 0 
002 1 0 0 0 0 
000 2 0 0 0 0 
o 0 0 0 2 000 
o 0 0 0 0 1 1 0 
o 0 0 0 0 0 1 0 
o 0 0 0 000 1 
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That is, [T]B is already in Jordan canonical form. Compute IL{VT), the 
cyclic decomposition of VT, and the rational canonical form of T. 

Solution. Since vgeom (2) = 3 and vgeom (l) = 2, it follows from Corollary 
4.48 (4) that IL(VT) = 3. Moreover, the elementary divisors ofT are (X _2)2, 
(X - 2)2, (X - 2), (X _1)2, and (X -1), so the invariant factors are (see 
the proof of Theorem 3.7.15): 

Since 

h(X) = (X - 2)2(X - 1)2 

h(X) = (X - 2)2(X - 1) 

!I(X) = (X - 2). 

Ann(v2) = Ann(v4) = ((X - 2)2) 

Ann(vs) = ((X - 2)) 
Ann(v7) = ((X - 1)2) 

Ann(vs) = ((X - 1)), 

it follows (by Lemma 3.7.18) that 

Ann(w3) = (h(X)) 

Ann(w2) = (h(X)) 

Ann(wt} = (!I(X)) 

and the rational canonical form R of T is the matrix 

R = C(!I(X)) EB C(h(X)) EB C(h(X)). 

Moreover, Q-I AQ = R if Q E Ms(F) is the invertible matrix 

0 0 0 0 0 1 4 12 
0 0 0 0 1 2 4 8 
0 0 1 4 0 0 0 0 

Q=~= 
0 1 2 4 0 0 0 0 
1 0 0 0 0 0 0 0 
0 0 0 0 0 1 2 3 
0 0 0 0 1 1 1 1 
0 1 1 1 0 0 0 0 

where 
C = {WI, W2, TW2, T 2w2' w3, TW3, T2W3, T3W3}. 

0 
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(5.7) Remark. We have given information about the rational canonical form 
in the above examples in order to fully illustrate the situation. However, as 
we have remarked, it is the Jordan canonical form that is really of interest. 
In particular, we note that while the methods of the current section produce 
the Jordan canonical form via computation of generalized eigenvectors, and 
then the rational canonical form is computed (via Lemma 3.7.18) from the 
Jordan canonical form (e.g., Examples 5.3 and 5.6), it is the other direction 
that is of more interest. This is because the rational canonical form of T can 
be computed via elementary row and column operations from the matrix 
Xln - [Th~. The Jordan canonical form can then be computed from this 
information. This approach to computations will be considered in Chapter 
5. 

We will conclude this survey of computations by sketching the algo
rithm that has been used in the previous examples to compute a basis of V 
in which a given linear transformation T E EndF(V) is in Jordan canonical 
form. The Jordan canonical form can be computed solely by solving sys
tems of homogeneous linear equations, provided the eigenvalues of T are 
available. It should, however, be emphasized again that the computation of 
eigenvalues involves solving a polynomial equation. 

Suppose that T E EndF(V) has mT(X) = (X - >.t q(X) where q(>.) =I
O. Then the primary decomposition theorem allows one to write 

VT 9:: WI EB ..• EB Wt EB V 

where Wi = F[X)Wi is cyclic with Ann(wi) = ((X - >.ti) and 

W = WI EB •.• EB Wt 

is the generalized eigenspace of the eigenvalue >.. By rearranging the order 
of the r i if necessary we may assume that 

(and of course rl + ... + rt = lIa lg (>').) We will let 

denote the distinct rio It is the vectors Wi that are crucial in determining the 
Jordan blocks corresponding to the eigenvalue>. in the Jordan canonical 
form of T. We wish to see how these vectors can be picked out of the 
generalized eigenspace W corresponding to >.. First observe that 

B {s ST1-I ST2-I ST,-I} = WI. WI. ... , WI, W2, ... , W2, ... , Wt , 

where S = T - >'lv, is a basis of W. This is just the basis (in a different 
order) produced in Theorem 4.38. It is suggestive to write this basis in the 
following table: 
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Table 5.1. Jordan basis of T 

WI Wk 1 

SWI SWkl 

Wk1+1 Wk2 

SWkl+1 SWk2 

Wt 

ST1-I Wl ST1-I Wk1 ST2- IWk l+1 ST2- IWk 2 ST,-IWt 

(Of course, W is an F[X]-module of rank t, and as we observe from 
Table 5.1, t = dimp Ker(T - A1v), as we expect from Corollary 4.48 (4).) 
Note that the linear span of each column is the cyclic submodule Wi = RWi 

while the last k rows form a basis of Ker(T - Al v )k. As a concrete example 
of this scheme, suppose that T : FI3 -+ FI3 is multiplication by the matrix 

A = J2,4 EEl h,4 EEl J2 ,2 EEl J2 ,2 EEl J2 ,1. 

Using the standard basis on FI3 the above table becomes 

Table 5.2. Jordan basis of T : F13 -+ F13 

e4 es 
e3 e7 

e2 e6 elO eI2 
el e5 eg ell eI3 

Thus, the bottom row is a basis of Ker(T - 2 . 1 v ), the bottom two rows are 
a basis of Ker(T - 2 . 1 V )2, etc. These tables suggest that the top vectors 
of each column are vectors that are in Ker(T - Al V)k for some k, but 
they are not also (T - A1v)w for some other generalized eigenvector w. 
This observation can then be formalized into a computational scheme to 
produce the generators Wi of the primary cyclic submodules Wi' 

We first introduce some language to describe entries in Table 5.1. It 
is easiest to do this specifically in the example considered in Table 5.2, as 
otherwise the notation is quite cumbersome, but the generalization is clear. 
We will number the rows of Table 5.1 from the bottom up. We then say (in 
the specific case of Table 5.2) that {eI3} is the tail of row 1, {elO, e12} is 
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the tail of row 2, the tail of row 3 is empty, and {e4, es} is the tail of row 
4. Thus, the tail of any row consists of those vectors in the row that are at 
the top of some column. 

Clearly, in order to determine the basis B of W it suffices to find the 
tails of each row. We do this as follows: 

For i = 0, 1, 2, ... , let V~i) = Ker(Si) (where, as above, we let S = 
T - A1v). Then 

{O} = V(O) c V(I) c V(2) c ... c V(r) = W. 
A-A-A- -A 

Let di = dim(V~i)) so that 

0= do < dl :::; d2 :::; ... :::; dr = VaJg(A). 

Note that r is the smallest value of i for which di = VaJg(A), where r is as 
above, i.e., where mT(X) = (X - Atq(X) with q(A) =I=- O. This observation 
is useful for determining r without first computing mT(X) explicitly. In 
particular, we will have r = 1, Le., dl = VaJg(A), if and only if the generalized 
eigenspace of T corresponding to A is the eigenspace of T corresponding to 
A. Note that in any case V~r) = W, so V~r+1) = V~r), and dr+1 = dr. 

Observe that for 1 :::; i :::; r, row i of Table 5.1 has length di - di - b 

and hence, its tail has length 

We make the following observation: 

Let vii+1) be any complement of V~i) in V~i+1), i.e., any subspace of 
V(i+I) such that 

A 

V~i+1) = V~i) EB vit +1) 

Then S(Vii+I)) and V~i-I) are both subspace of V~i) and 

To see this, let v E S(V~+I)) n V~i-I). Then v = S(v) for some v E 

V~+1), and also Si-l(V) = O. But 

0= Si-I(v) = Si-I(S(V)) = Si(v) 

. 1· hOb th d fi . . f V(i+I) Imp les t at v = , y e e mtlOn 0 A • 

Now for our algorithm. We begin at the top, with i = r, and work 
down. By Claim 5.8, we may choose a complement V~) of V~i-I) in V~i), 

-(i+I) =(i) 
which contains the subspace S(V A ). Let V A be any complement of 
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S(V(i+1»). V(i) Th b· £ V(i). h ·1 f . f'T' bl 5 1 A In A· en a asiS or A gIves t e tal 0 row Z 0 ~a e . . 
-(r+1) =(r) -(r) 

(Note that V A = {O}, so at the first stage of the process V A = V A 

is any complement of vir-1) in vir) = W. Also, at the last stage of the 
(0) -(1) (1) =(1) -(2) 

process VA = {O}, so V A = VA and V A is any complement of S(V A ) 

in VP), the eigenspace of T corresponding to A.) 

(5.9) Example. We will illustrate this algorithm with the linear transforma
tion T : F13 ---+ F13 whose Jordan basis is presented in Table 5.2. Of course, 
this transformation is already in Jordan canonical form, so the purpose is 

(i) -(i) =(i) 
just to illustrate how the various subspace VA ,V A ,and V A relate to the 
basis B = {eI, ... ,e13}. Since there is only one eigenvalue, for simplicity, 
let V;(i) = Vi, with a similar convention for the other spaces. Then 

V5 = V4 = F13 

V4 = (eI, ... ,e13) 

V3 = (eI, e2, e3, e5, e6, e7, eg, elO, ell, e12, e13) 

V2 = (eI, e2, e5, e6, eg, elO, ell, e12, e13) 

V1 = (eI, e5, eg, ell, e13) 

Vo = {O}, 

while, for the complementary spaces we may take 

V5 = {O} 

V 4 = (e4' es) 

V3 = (e3, e7) 

V 2 = (e2' e6, elO, e12) 
V 1 = (eI, e5, eg, ell, e13). 

Since V4 = F 13, we conclude that there are 4 rows in the Jordan table of 

T, and since V 4 = V 4, we conclude that the tail of row 4 is {e4' es}. Since 
S(e4) = e3 and S(es) = e7, we see that S(V4) = V3 and hence the tail 
of row 3 is empty. Now S(e3) = e2 and S(e7) = e6 so that we may take 

V 2 = (elO' e12), giving {elO' e12} as the tail of row 2. Also, S(e2) = e1, 
S(e6) = e5, S(elO) = eg, and S(e12) = ell, so we conclude that V 1 = (e13), 
i.e., the tail of row 1 is {e13}. 

Examples 5.3 and 5.4 illustrate simple cases of the algorithm described 
above for producing the Jordan basis. We will present one more example, 
which is (slightly) more complicated. 

(5.10) Example. Let V = F4 and let T : V ---+ V be the linear transformation 
with the matrix 
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in the standard basis C. Find the Jordan canonical form of T and a basis 
B of V such that [TJB is in Jordan canonical form. 

Solution. We compute that 

Thus, there is only one eigenvalue, namely, 2, and va lg (2) = 4. Now find the 
eigenspace of 2, i.e., 

so dl = 2. We also find that 

VP) = Ker((T - 2 .lv)2) = V, 

so d2 = 4. Hence, we choose {Wi> W2} ~ V so that 

VP) EB (Wi> W2) = V 

in order to obtain a Jordan basis of V. 
Take 

Then compute 

and 

Setting 

Vl = (T - 2 ·lv)(wl), 
V3 = (T - 2 ·lv)(w2), 
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we obtain a basis 8 = {Vb V2, V3, V4} such that [1']8 = J. The table 
corresponding to Table 5.1 is 

We also note that VT ~ RV2 EB RV4 so that ",(VT ) = 2. 

4.6 Inner Product Spaces and Normal 
Linear Transformations 

o 

In this section we will study vector spaces possessing an additional struc
ture, that of an inner product, as well as endomorphisms of these spaces 
which are "normal," normality being a property defined in terms of an inner 
product. 

(6.1) Definition. Let V be a vector space over F = R or C. An inner 
product on V is a function ( : ) : V x V -+ F such that for all u, v, w E V 
and a E F, 

(1) (u+v:w)=(u:w)+(v:w), 
(2) (au: v) = a(u: v), 
(3) (u: v) = (v : u), and 
(4) (u:u»Oifu=l=O. 

A vector space V, together with an inner product ( : ) is called an inner 
product space. 

The bar in Definition 6.1 (3) refers to conjugation in the field F. Of 
course, if F = R, conjugation in F is trivial, but it is convenient to handle 
the real and complex cases simultaneously. 

(6.2) Examples. 

(1) The standard inner product on Fn is defined by 

n 

(u: v) = LUjVj. 

j=1 

-t -
(2) If A E Mm,n(F), then let A* = A where A denotes the matrix ob-

tained from A by conjugating all the entries. A * is called the Hermitian 
transpose of A. If we define 

(A : B) = Tr(AB*) 
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then ( : ) defines an inner product on Mm,n(F). If we identify Fn with 
M 1,n(F), then this inner product agrees with the inner product in (1). 

(3) Suppose that T : V -+ W is an injective linear transformation. If W is 
an inner product space, then T induces an inner product on V by the 
formula 

In particular, every subspace of an inner product space inherits an 
inner product. 

(4) Let V = C([O, 1], F) be the F-vector space of continuous F-valued 
functions on the unit interval [0, 1]. Then an inner product on V is 
defined by 

(f : g) = 101 
f(x)g(x) dx. 

(6.3) Definition. If V is an inner product space, then Ilvll = (v : v)1/2 E R 
is called the norm of v. 

The norm of a vector v is well defined by Definition 6.2 (4). There are 
a number of standard inequalities related to the norm. 

(6.4) Proposition. If V is an inner product space with inner product ( : ), 
if u, v E V and a E F, then 

(1) lIaull = lailiull, 
(2) Ilull > 0 if u I- 0, 
(3) (Cauchy-Schwartz) I(u: v)1 :5 Ilullllvll, and 
(4) (Triangle inequality) Ilu + vii :5 Ilull + IIvll· 

Proof. (1) and (2) are immediate from the definitions. 
(3) Let u, v E V be arbitrary and let x E R. By Definition 6.1 (4), 

(u + xv: u + xv) ~ 0 

(and the inequality is strict unless u is a multiple of v). Thus, 

0:5 (u + xv: u + xv) 

= lIul1 2 + ((u : v) + (v: u))x + IIvl1 2x2 

= IIul1 2 + 2(Re(u : v))x + IIvl1 2x2 

:5 IIul1 2 + 21(u: v)lx + IIv11 2x2 . 

Since this holds for all x E R, we conclude that 

is a real quadratic function, which is always nonnegative. Thus, the dis
criminant of f(x) must be nonpositive, i.e., 
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and the Cauchy-Schwartz inequality follows immediately from this. 
(4) By the Cauchy-Schwartz inequality, 

Hence, 

Re(u: v) ~ I(u: v)1 ~ IIvllllvil. 

IIu+vll 2 = (u+v: u+v) 

= IIull2 + (u : v) + (v: u) + IIvll2 

= IIull2 + 2Re(u: v) + IIvll2 
~ IIull2 + 211ullllvil + IIvll 2 

= (liull + IIvll)2. 
Taking square roots gives the triangle inequality. o 

(6.5) Remark. The Cauchy-Schwartz inequality implies that, if u and v are 
nonzero, then 

(u: v) 
-1 ~ IIuli IIvil ~ 1. 

Thus, we can define the angle between u and v by means of the equation 

(u: v) 
cosO = IIuli IIvll' 0~O~7r. 

It is this equation that allows us to introduce the geometric idea of angle 
into an arbitrary real or complex vector space by means of the algebraic 
notion of inner product. 

(6.6) Definition. If V is an inner product space, then vectors u, v E V 
are said to be orthogonal if (u : v) = o. A subset S ~ V is said to be 
orthogonal if every pair of distinct vectors in S is orthogonal. S is said to 
be orthonormal if S is orthogonal and if every vector in S has norm 1. 

(6.7) Proposition. Let V be an inner product space and let S ~ V be an 
orthogonal set of nonzero vectors. Then S is linearly independent. 

Proof. Suppose that Ul, ... ,Uk are distinct elements of S and suppose that 
there is an equation 

alul + ... + akuk = 0 

where all ... ,ak E F. Then, for 1 ~ i ~ k, 

0= (0: Ui) 

= (alul + ... + akUk : Ui) 

= al(ul : Ui) + ... + ak(uk : Ui) 

= ai( Ui : Ui). 

But (Ui : Ui) > 0, so we conclude that ai = 0 for all i. o 



272 Chapter 4. Linear Algebra 

Proved in exactly the same manner as Proposition 6.7 is the following 
useful fact. 

(6.8) Lemma. Let V be an inner product space and suppose that B = 
{ VI, ... ,Vn } is an orthonormal basis of V. Then for any u E V, the coor
dinate matrix of u is 

Proof. Exercise. o 

The classical Gram-Schmidt orthogonalization process allows one to 
produce an orthonormal basis of any finite-dimensional inner product space; 
this is the content of the next result. 

(6.9) Theorem. Every finite-dimensional inner product space V has an or
thonormal basis. 

Proof. Let C = {UI' ... ,Un} be any basis of V. We will produce an or
thonormal basis inductively. Let VI = udllulli. Now assume that an or
thonormal set {VI, ... ,Vk} has been chosen so that 

(VI, ... ,Vt) = (UI ... ,Ut) 

for 1 ~ t ~ k. Then define 

k 

Vk+! = Uk+1 - L(Uk+! : Vj)Vj, 
j=1 

and set Vk+! = vk+dllvk+dl. We leave to the reader the details of verifying 
the validity of this construction and the fact that an orthonormal basis has 
been produced. 0 

(6.10) Definition. Suppose that V is an inner product space and W ~ V is 
a subspace. Let 

W1.. = {u E V: (u : w) = 0 for all wE W}. 

The subspace W 1.. of V is called the orthogonal complement of W. 

(6.11) Proposition. Let V be a finite-dimensional inner product space and 
let W ~ V be a subspace. Then 

(1) wnw1.. = (0), 
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(2) (WJy- = W, 
(3) dim W + dim WJ. = dim V, and 
(4) V~WEBWJ.. 

Proof. Choose an orthonormal basis B = {VI,.'" vn } of V in which 
{Vb ... ,Vk} is a basis of W. This is possible by the algorithm of Theo
rem 6.9. Then 

WJ. = (Vk+I, ... ,vn ). 

This equation immediately implies (2) and (3). (1) is clear and (4) follows 
from (1) and (3). 0 

(6.12) Remark. If V is a vector space over F, its dual space V* is defined 
to be V* = HomF(V, F). If V is finite-dimensional, then, by Corollary 
3.4.10, V and V* have the same dimension and so are isomorphic, but in 
general there is no natural isomorphism between the two. However, an inner 
product on V gives a canonical isomorphism ¢ : V -+ V* defined as follows: 
For y = V, ¢(y) E V* is the homomorphism ¢(y)(x) = (x : y). To see that 
¢ is an isomorphism, one only needs to observe that ¢ is injective since 
dim V = dim V*. But if y i=- 0 then ¢(y)(y) = (y : y) > 0, so ¢(y) i=- 0 and 
Ker(¢) = (0). 

(6.13) Theorem. Let V be a finite-dimensional inner product space. Then 
for every T E EndF(V) there exists a unique T* E EndF(V) such that 

(Tv: w) = (v : T*w) 

for all v, wE V. T* is called the adjoint ofT. 

Proof Let w E V. Then hw : V -+ F defined by hw(v) = (Tv: w) is an 
element of the dual space V*. Thus (by Remark 6.12), there exists a unique 
w E V such that 

(Tv: w) = (v : w) 

for all v E V. Let T*(w) = w. We leave it as an exercise to verify that 
T* E EndF(V). 0 

(6.14) Lemma. Let V be an inner product space and let S, T E EndF(V). 
Then (ST)* = T*S*. 

Proof Exercise. o 

(6.15) Lemma. Let V be a finite-dimensional inner product space and let B 
be an orthonormal basis of V. If T : V -+ V is a linear transformation and 
[T)B = A = [aij), then 
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Proof. Let B = {Vb ... ,Vn }. IfT*(vi) = E~=lbkiVk' then, according to 
Lemma 6.8, 

bji = (T*(Vi) : Vj) 

= (Vj : T*(Vi)) 

= (T(vj) : Vi) 
n 

= (L:akjVk : Vi) 
k=l 

= (iij. 

-t 
Thus, [T*]B = A , as required. o 

(6.16) Definition. Let V be an inner product space, and let T : V -+ V be a 
linear transformation. 

(1) T is normal ifTT* = T*T, i.e., ifT commutes with its adjoint. 
(2) T is self-adjoint if T = T*, i.e., if T is its own adjoint. 
(3) T is unitary if T* = T- 1 • 

Let A E Mn(F) be an n x n matrix. 

(1') A is normal if AA* = A* A. 
(2') A is self-adjoint if A = A*. 
(3') A is unitary if AA* = In. 

(6.17) Remarks. 

(1) If T is self-adjoint or unitary, then it is normal. 
(2) If F = C, then a self-adjoint linear transformation (or matrix) is called 

Hermitian, while if F = R, then a self-adjoint transformation (or ma
trix) is called symmetric. If F = R, then a unitary transformation (or 
matrix) is called orthogonal. 

(3) Lemma 6.15 shows that the concept of normal is essentially the same 
for transformations on finite-dimensional vector spaces and for matri
ces. A similar comment applies for self-adjoint and unitary. 

The importance of unitary transformations arises because of the fol
lowing geometric property which characterizes them. 

(6.18) Proposition. Let T : V -+ V be a linear transformation on the finite
dimensional inner product space V. The following are equivalent: 

(1) T is unitary. 
(2) (Tu: Tv) = (u : v) for all u, V E V. 
(3) IITvll = IIvll for all V E v. 
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Proof (1) => (2). Let u, v E V. Then 

(Tu : Tv) = (u: T*Tv) 
= (u: T-1Tv) 

= (u : v). 

(2) => (1). (u : v) = (Tu : Tv) = (u: T*Tv), so 

(u:T*Tv-v)=O for all u, v E V. 

Taking u = T*Tv - v shows that (u: u) = o. Thus u = 0, i.e., 

T*Tv = v for all v E V. 

Therefore, T*T = 1 v, and since V is finite dimensional, this shows that 
T* = T- 1. 

(2) => (3). Recall that IITvl12 = (Tv: Tv). 
(3) => (2). Let u, v E V. Then 

IIT(u + v)112 = (T(u + v) : T(u + v)) 

while similarly 

= (Tu : Tu) + (Tu : Tv) + (Tv: Tu) + (Tv: Tv) 

= (u: u) + 2Re«Tu: Tv» + (v: v), 

(u + V : V + v) = (u : u) + 2Re « u : v)) + (v : v). 

Thus, we conclude that 

Re«Tu : Tv)) = Re(u : v). 

Applying the same argument to u + iv, we obtain 

Re«Tu: iTv)) = Re«Tu: T(iv)) = Re(u: iv). 

But it is easy to check that 

Re«x : iy)) = Im«x : y)) 

for any x, y E V, so we have 

(Tu : Tv) = (u : v) 

for all u, v E V. o 

The following result collects some useful properties of normal transfor
mations. 

(6.19) Lemma. Let V be a finite-dimensional inner product space and let 
T : V -+ V be a normal tmnsformation. 



276 Chapter 4. Linear Algebra 

(1) If f(X) E F[X] then f(T) is normal. 
(2) IITvl1 = IIT*vll for all v E V. 
(3) Ker T = (1m T).l . 
(4) IfT2v = 0 then Tv = o. 
(5) v E V is an eigenvector for T with eigenvalue A if and only if v is an 

eigenvector for T* with eigenvalue A. 

Proof. (1) This follows immediately from the fact that (aTn)* = a(T*)n 
and the definition of normality. 

(2) 

IITvl12 = (Tv: Tv) = (v : T*Tv) 

= (v : TT*v) = (T*v : T*v) 

= IIT*vI12. 
(3) Suppose that (u : Tv) = 0 for all v E V. Then (T*u : v) = 0 for 

all v E V. Thus T*u = O. By (2) this is true if and only if Tu = 0, i.e., 
u E (1m T).l if and only if u E Ker T. 

(4) If T 2v = 0 then Tv E KerT n ImT = (0) by (3). 
(5) By (1), the linear transformation T - >.I is normal. Then by (2), 

II(T - >.I)vll = 0 if and only if II(T* - AI)vll = 0, i.e., v is an eigenvector of 
T with eigenvalue A if and only if v is an eigenvector of T* with eigenvalue 
A. 0 

(6.20) Theorem. Suppose that V is a finite-dimensional inner product space 
and T : V --+ V is a normal linear transformation. 

(1) The minimal polynomial mT(X) is a product of distinct irreducible 
factors. 

(2) Eigenspaces of distinct eigenvalues of T are orthogonal. 
(3) If V is a complex inner product space, then T is diagonalizable. 

Proof. (1) Let p(X) be an irreducible factor of mT(X). We need to show 
that p2(X) does not divide mT(X). Suppose it did and let v E V with 
p2(T)(v) = 0 but p(T)(v) =f:. 0 (such a v E V exists by Theorem 3.7.1 
and Lemma 3.7.17, or see Exercise 43 in Chapter 3). By Lemma 6.19 (1), 
U = p(T) is normal, and U2 (v) = ° but U(v) =f:. 0, contradicting Lemma 
6.19 (4). 

(2) Suppose that TV1 = Al VI and TV2 = A2V2 where VI and V2 are 
nonzero and Al =f:. A2. Then 

(VI: V2) = «.),1 - A2)-1(T - A2I)V1 : V2) 

= (AI - A2)-1(V1 : (T - A2)*V2) 

=0, 

since V2 is a eigenvector of T* with eigenvalue A2 by Lemma 6.19 (5). 
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(3) Every irreducible polynomial over C is linear, so by (1), mT(X) is 
a product of distinct linear factors and so T is diagonalizable. 0 

(6.21) Corollary. (Spectral theorem) If V is a finite-dimensional complex 
inner product space and T : V -+ V is a normal tmnsformation, then V 
has an orthonormal basis of eigenvectors of T. 

Proof. By Theorem 6.20 (3), T is diagonalizable and by (2) the eigenspaces 
are orthogonal. It is only necessary to choose an orthonormal basis of each 
eigenspace. 0 

(6.22) Remark. If V is a real vector space and T is normal, T may not 
be diagonalizable, but from Theorem 6.20 it follows that the real Jordan 
canonical form of T (cf. Theorem 4.57) will consist of 1-by-1 ordinary Jor
dan blocks or 2-by-2 real Jordan blocks. For example, the second case 
occurs 

The case of self-adjoint linear transformations (which are automatically 
normal) is of particular importance; such transformations are diagonalizable 
even in the real case. 

(6.23) Theorem. (Spectral theorem, self-adjoint case) Suppose that V is an 
inner product space and T : V -+ V is a self-adjoint linear tmnsformation. 

(1) All of the eigenvalues ofT are real. 
(2) V has an orthonormal basis of eigenvectors ofT. 

Proof. We consider first the case F = C. In this case (I) is immediate from 
Lemma 6.19 (5) and then (2) follows as in Corollary 6.2l. 

Now consider the case F = R. In this case, (I) is true by definition. 
To prove part (2), we imbed V in a complex inner product space and apply 
part (I). Let Ve = V Ee V and make Ve into a complex vector space by 
defining the scalar multiplication 

(6.1) (a + bi)(u, v) = (au - bv, bu + av). 

That is, V EeO is the real part of Ve and DEe V is the imaginary part. Define 
an inner product on Ve by 

(6.2) «Ub VI) : (U2' V2» = (UI : U2) + (VI: V2) + i«VI : U2) - (UI : V2». 

We leave it for the reader to check that Equations (6.1) and (6.2) make Ve 
into a complex inner product space. Now, extend the linear transformation 
T to a linear transformation Te : Ve -+ Ve by 

Tc(u, v) = (T(u), T(v». 

(In the language to be introduced in Section 7.2, Ve = C ®R V and Te = 
Ie ®R T.) It is easy to check that Te is a complex linear transformation of 
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Ve, and in fact, Te is self-adjoint. By part (1) applied to Te we see that all 

the eigenvalues of Te are real and mTc (X) is a product of distinct (real) 

linear factors. Thus, mTc(X) E R[XJ. If f(X) E R[XJ, then 

(6.3) f(Tc)(u, v) = (f(T)(u), f(T)(v)). 

Equation (6.3) shows that mT(X) = mTc(X) and we conclude that T is 

diagonalizable. Part (2) is completed exactly as in Corollary 6.21. 0 

4.7 Exercises 

1. Suppose R is a finite ring with IRI = s. Then show that Mm,n(R) is finite 

with IMm,n(R)1 = smn. In particular, IMn(R)1 = sn 2
• 

2. Prove Lemma 1.1. 

3. Prove Lemma 1.2. 

4. (a) Suppose that A = [al . .. am] and B E Mm,n(R). Then show that 

AB = L:::l ai rowi(B). 
(b) Suppose 

and B E Mm,n(R). Then show that BC = L:~=l Ci coli(B). 

This exercise shows that left multiplication of B by a row matrix pro

duces a linear combination of the rows of B and right multiplication of 

B by a column matrix produces a linear combination of the columns of 

B. 
5. Let S <:;: M2(R) be defined by 

Verify that S is a subring of M2(R) and show that S is isomorphic to the 

field of complex numbers C. 

6. Let R be a commutative ring. 

(a) If 1 ::; j ::; n prove that E jj = P1/ EllPlj . Thus, the matrices E jj are 

all similar. 
(b) If A, B E Mn(R) define [A, BJ = AB - BA. The matrix [A, BJ is called 

the commutator of A and B and we will say that a matrix C E Mn(R) 

is a commutator if C = [A, BJ for some A, B E Mn(R). If i # j show 

that Eij and Eii - E jj are commutators. 
(c) If C is a commutator, show that Tr(C) = O. Conclude that In is not a 

commutator in any Mn(R) for which n is not a multiple of the charac

teristic of R. What about 12 E M2(Z2)? 

7. If S is a ring and a E S then the centralizer of a, denoted C(a), is the set 

C(a) = {b E S ; ab = bal. That is, it is the subset of S consisting of elements 

which commute with a. 
(a) Verify that C(a) is a subring of S. 
(b) What is C(I)? 
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(c) Let R be a commutative ring and let S = Mn(R). If A = Di({3) for 
{3 =1= 1 E R* then compute C(A). 

8. A matrix N E Mn(R) is nilpotent if N k = 0 for some k. 
(a) If F is field of characteristic 0 and N E MnJ,F) is nilpotent, show that 

there is a matrix A E Mn(F) such that A = In + N for any natu
ral number m. (Hint: The binomial series may be helpful.) Are there 
problems if we do not assume that char(F) = o? 

(b) Let N = [g~] E M2(Q). Show that there is no matrix A E M2(Q) such 
that A2 = N. 

9. Show that there are infinitely many A E M2(R) such that A2 = o. 
10. A matrix P E Mn(R) is idempotent if p2 = P. Give an example, other than 

o or In, of a diagonal idempotent matrix. Give an example of a nondiagonal 
2 x 2 idempotent matrix. Show that if P is idempotent, then T- 1 PT is also 
idempotent for all T E GL(n, R). 

11. Let A E Mn(R). We say that A has constant row sums if the sum of the 
entries in each row is a constant a E R, i.e E7=1 aij = a for 1 ~ i ~ n. We 
define constant column sums similarly. 
(a) Show that A has constant row sums if and only if 

for a E R and that A has constant column sums if and only if 
[1··· l]A={3[l ... l]for{3ER. 

(b) Prove that if A and B E Mn(R) both have constant row sums, then so 
does AB. 

(c) Prove that if A and B E Mn(R) both have constant column sums, then 
so does AB. 

12. Prove Proposition 1.13. 
13. Prove Lemma 1.15. 
14. Let R be a commutative ring. Verify the following formulas for the kronecker 

product of matrices: 
(a) A® (B+ C) = A®B+ A ® C. 
(b) (A®B)t=At®Bt. 

15. Prove Lemma 1.20. 
16. Give an example of a function D : Mn (Z2) -> Z2 which is n-linear and 

satisfies D(PijA) = -D(A) = D(A), but which is not alternating. 

17. A matrix A E Mn(R) is symmetric if At = A and it is skew-symmetric if 
At = - A and all the diagonal entries of A are zero. 
(a) Let Vi be the set of symmetric matrices and V2 the set of skew-symmetric 

matrices. Show that VI and V2 are both submodules of V = Mn(R). If 
2 is a unit in R show that V = VI $ V2. 

(b) Let A E Mn(R) be skew-symmetric. If n is odd, show that det(A) = o. 
If n is even, show det(A) is a square in R. 

18. If P", is a permutation matrix, show that p.;;-l = p!. 
19. Let Rand S be commutative rings and let f : R -> S be a ring homomor

phism. If A = [aij] E Mn(R), define f(A) = [f(aij») E Mn(S). Show that 
det f(A) = f(det A). 

20. Let R be a commutative ring and let H be a subgroup of the group of units 
R* of R. Let N = {A E GL(n, R) : detA E H}. Prove that N is a normal 
subgroup of GL( n, R) and that GL( n, R) / N ~ R* / H. 
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21. (a) Suppose that A has the block decomposition A = [1: 12 ]. Prove that 
detA = (det Al)(det A2). 

(b) More generally, suppose that A = [Ai;] is a block upper triangular (re
spectively, lower block triangular) matrix, Le., Ai. is square and Aij = 0 
if i > j (respectively, i < j). Show that det A = TIi(det Aii). 

22. If R is a commutative ring, then a derivation on R is a function 8 : R -> R 
such that 8(a + b) = 8(a) + 8(b) and 8(ab) = a8(b) + 8(a)b. 
(a) Prove that 8(al ... an) = L::=l (al ... ai-18(ai)ai+1 ... an). 
(b) If 8 is a derivation on R and A E Mn(R) let Ai be the n x n matrix 

obtained from A by applying 8 to the elements of the ith row. Show that 
8(detA) = L::=l detAi. 

23. If A E Mn(Q[X]) then detA E Q[X]. Use this observation and your knowl
edge of polynomials to calculate det A for each of the following matrices, 

::h:: d[1"" 2~ ;~TIDnl ]. 
2 3 1 9 - X 2 

(b) A~ [1 ,:x <x JJ 
24. Let F be a field and consider the "generic" matrix [Xij] with entries in the 

polynomial ring F[Xij] in the n2 indeterminants Xi· (1 :::; i, j :::; n). Show 
that det[Xij] is an irreducible polynomial in F[Xi;(. (Hint: Use Laplace's 
expansion to argue by induction on n.) 

25. Let A E Mn(Z) be the matrix with entii(A) = 2 (1 :::; i :::; n), entij(A) = 1 
if Ii - jl = 1, and entij(A) = 0 if Ii - jl > 1. Compute det(A). 

26. Let An E Mn(Z) be the matrix with entii(An) = i for 1 :::; i :::; n and aij = 1 
if i 0/= j. Show that det(An) = (n - 1)!' 

27. Let A E Mn(Z) be a matrix such that entij(A) = ±1 for all i and j. Show 
that 2n - l divides det(A). 

28. Let R be a commutative ring and let a, b E R. Define a matrix A(a, b) E 
Mn(R) by entii(A(a, b» = a for all i and enti;(A(a, b» = b if i 0/= j. Compute 
det(A(a, b». (Hint: First find the Jordan canonical form of A(a, b).) 

29. Let V (Xl, ... , Xn) be the Vandermonde determinant: 

(a) Prove that 

det V(Xl, ... ,xn ) = II (Xi - Xj). 
l:5i<j:5n 

(b) Suppose that h, ... ,tn+l are n + 1 distinct elements of a field F. Let 
Pi (X) (1:::; i:::; n+ 1) be the Lagrange interpolation polynomials deter
mined by h, ... ,tn+l. Thus, 

B= {H(X), ... ,Pn+l(X)} 
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is a basis of the vector space 'PnJF) of polyno~als in FrX] of degree at 
most n. But A = {1, X, ... , X '} IS also a basis of 'Pn. !:;h"w that 

V(tt, ... , t n +!) = pif. 

30. If R is an integral domain let A E GL(n, R) and let B E Mn(R). 
(a) Prove that there are at most n elements a E R such that det(aA+B) = O. 

If R is a field, conclude that aA + B is invertible except for finitely many 
values of a E R. 

(b) If R = Z2 X Z2 verify that every a E R satisfies the equation a2 - a = O. If 
A = 12 and B = [~~] show that part (a) is false without the assumption 
that R is an integral domain. 

31. Recall that Qp,n is the set of sequences a = (ii, ... ,ip) of p integers with 
1 ~ i l < i2 < ... < ip ~ n. Thus there are (;) elements of Qp,n and we 
can order these elements lexicographically, Le., (ii, ... ,ip) < (jl, .. , ,jp) if 
il < jl or il = it, ... , ir-l = jr-l and ir < jr for some 1 < r ~ p. For 
example, the lexicographic ordering of Q2,4 is (1, 2) < (1, 3) < (1, 4) < 
(2, 3) < (2, 4) < (3, 4). If A E Mn(R) then the set of (;)2 elements 
{det A[a I ,B] : a,,B E Qp,n} can be arranged, using the lexicographic ordering 
on Q ,n into a matrix Cp(A) called the pth compound matrix of A. 
(a) IF A, B E Mn(R) then verify (using the Cauchy-Binet theorem) that 

Cp(AB) = Cp(A)Cp(B). 

(b) Show that Cp (ln) = 1(;). 
(c) Prove that if A is invertible, then Cp(A) is also invertible, and give a 

formula for Cp(A)-I. 

32. If A E Mm,n(R) then det(AAt) 2: O. (Hint: Use the Cauchy-Binet theorem.) 

33. If A = [aii] E Mn(C), then let A = [aii] where aii denotes the complex 
conjugate of aij and let A* = X. Show that det(AA*) 2: O. 

34. Let F and K be fields with F ~ K. Then Mn(F) ~ Mn(K). If A E Mn(F) 
and A is invertible in Mn(K), prove that A is invertible in Mn(F). That is, 

GL(n, K) n Mn(F) = GL(n, F). 

35. (a) If A E Mm,n(R) then rank (A) = rank(AtA). Give an example to show 
that this statement may be false for matrices A E Mm,n(C). 

(b) If A E Mn(C) show that rank (A) = rank(A* A). 
36. If A E Mn(R) has a submatrix A[a I 'Yl = Ot where t > n/2, then det(A) = O. 
37. Prove Lemma 2.24. 
38. Let R be any subring of the complex numbers C and let A E Mm,n(R). 

Then show that the matrix equation AX = 0 has a nontrivial solution X E 
Mn,I(R) if and only if it has a nontrivial solution X E Mn,I(C), 

39. Prove Corollary 2.29. 
40. Let R be a commutative ring, let A E Mm,n(R), and let BE Mn,p(R). Prove 

that 
M-rank(AB) ~ min{M-rank(A), M-rank(B)}. 

41. Verify the claims made in Remark 2.30. 
42. Let F be a field with a derivation D, Le., D : F --> F satisfies D(a+b) = a+b 

and D(ab) = aD(b)+D(a)b. Let K = Ker(D), Le., K = {a E F: D(a) = O}. 
K is called the field of constants of D. 
(a) Show that K is a field. 
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(b) If Ul, ... , Un E F, define the Wronskian of Ul, ... , Un E F by 

D(un) Un 1 
Dn-~(un) , 

where Di = Do··· 0 D (i times). Show that Ul, ... , Un E F are linearly 
dependent over K if and only if W(Ul, ... ,Un) = O. 

43. Let R be a commutative ring and let A = laij] E Mn(R) be a matrix such 
that all is not a zero divisor. If n ::::: 2 prove that a~12 det(A) = det(B) where 
B E Mn-l(R) is the matrix with entij = AI(l, i + 1) I (1, j + 1)] for 1 ::; 
i, j ::; n - 1. (This formula is sometimes called Choi's pivotal condensation 
formula. It provides another inductive procedure for the computation of 
determinants. ) 

44. Prove the following facts about the adjoint of a matrix A E Mn(R) (in part 
c~, assume that R = C): 
a If A is diagonal, then Adj(A) is diagonal. 
b If A is symmetric, then Adj(A) is symmetric. 
c) If A is Hermitian, then Adj(A) is Hermitian. 
d) If A is skew-symmetric, then Adj(A) is symmetric or skew-symmetric 

according as n is odd or even. 
45. Let R be an arbitrary ring. 

(a) If A E Mm,n(R) and BE Mn,p(R), show that 

(op(AB»t = op(Bt) op(At). 

(b) If A E Mn(R) is invertible, show that 

Op(A-l)t = (op(At»-l. 

46. Let P3 = {I(X) E Z[X] : deg f(X) ::; 3}. Let A = {I, X, X 2, X3} and 

B = {I, X, X(2), X(3)} 

where XCi) = X(X - 1) ... (X - i + 1). 
(a) Verify that A and B are bases of the Z-module P3. 
(b) Compute the change of basis matrices pf and P.:1.. 
(c) Let D: P3 --> P3 be differentiation, i.e., D(f(X» = !'(X); e.g., 

D(X3 + 2X) = 3X2 + 2. 

Compute [D]A and [D]B. 
(d) Let ~ : P3 --> P3 be defined by ~(f(X» = f(X + 1) - f(X), e.g., 

~(X3 + 2X) = ((X + 1)3 + 2(X + 1» - (X3 + 2X) = 3X2 + 3X + 3. 

Verify that ~ is a Z-module homomorphism and compute [~]A and 
[~]B. 

47. Show that the vectors (1, 2, 1), (2, 3, 3), and (3, 2, 1) form a basis of R3 
and that the vectors (3, 2, 4), (5, 2, 3), and (1, 1, -6) form a second basis. 
Calculate the matrix of transition from the first basis to the second. 

48. If A E Mn(R), then the columns of A form a basis of R n if and only if det(A) 
is a unit in R. 
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49. Let R be a commutative ring. We will say that A and B E Mn(R) are 
permutation similar if there is a permutation matrix P such tl ..... t p- l AP = 
B. Show that A and B are permutation similar if and only if there is a free 
R-module M of rank n, a basis B = {Vl' ... ,vn } of M, and a permutation 
(j E Sn such that A = [fJ8 and B = [flc where f E EndR(M) and C = 
{Vu(l), ... ,Vu(n)}' 

50. Let R be a commutative ring, and let 

be the basis of Mm,n(R) consisting of the matrix units in the given order. 
Another basis of Mm,n(R) is given by the matrix units in the following order: 

C = {Ell, ... ,Eml , E l2 , ... ,Em2 , ... ,Eln ... ,Emn}. 

If A E Mm(R) then CA E EndR(Mm,n(R)) will denote left multiplication by 
A, while R8 will denote right multiplication by B, where B E Mn(R). 
(a) Show that AEij = L:;:'=l akiEkj and EijB = L::=l bjiEil. 
(b) Show that [CAJ8 = A ® In and [CAlc = In ® A. Conclude that A ® In 

and In ® A are permutation similar. 
(c) Show that [R8J8 = 1m ® Bt and [RAlc = Bt ® 1m. 
(d) Show that [CA 0 R8J8 = A ® Bt. 

This exercise provides an interpretation of the tensor product of ma
trices as the matrix of a particular R-module endomorphism. Another 
interpretation, using the tensor product of R-modules, will be presented 
in Section 7.2 (Proposition 7.2.35). 

51. Give an example of a vector space V (necessarily of infinite dimension) over 
a field F and endomorphisms f and g of V such that 
(a) f has a left inverse but not a right inverse, and 
(b) g has a right inverse but not a left inverse. 

52. Let F be a field and let A and B be matrices with entries in F. 

b) Show that rank A ® B) = (rank(A))(rank(B)). ~a) Show that rank~A EB B) = (rank(A)) + (rank(B)). 

c) Show that rank AB) ~ rank(A) + rank(B) - n if BE Mn,m(F). 
53. Let M be a free R-module of finite rank, let f E EndR(M), and let g E 

EndR(M) be invertible. If v E M is an eigenvector of f with eigenvalue A, 
show that g(v) is an eigenvector of gfg-I with eigenvalue A. 

54. Let M be a finite rank free R-module over a PID R and let f E EndR(M). 
Suppose that f is diagonalizable and that M = Nl EB N2 where NI and N2 
are f-invariant submodules of M. Show that g = fiN; is diagonalizable for 
i = 1, 2. 

55. Let A E Mn(R), and suppose 

CA(X) = det(XIn - A) = Xn + alXn- 1 + ... + an-IX + an. 

(a) Show that al = - 'fr(A) and an = (_1)n det(A). 
(b) More generally, show that 

ar = (-It I: detA[a I aJ. 
O!:EQr,n 

56. Prove the Cayley-Hamilton theorem for matrices A E Mn(R) where R is 
any commutative ring. (Hint: Apply the noncommutative division algorithm 
(Exercise 44 of Chapter 2) and the adjoint formula (Theorem 2.17).) 

57. Let A E Mn(F) where F is a field. 
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(a) Show that det(Adj(A» = (det(A»n-l if n ~ 2. 
(b) Show that Adj(Adj(A» = (det(A»n-2 A if n > 2 and that 

Adj(Adj(A» = A if n = 2. 

58. Let F be a field and let A E Mn(F). Show that A and At have the same 
minimal polynomial. 

59. Let K be a field and let F be a subfield. Let A E Mn(F). 
Show that the minimal polynomial of A is the same whether A is considered 
in Mn(F) or Mn(K). 

60. An algebraic integer is a complex number which is a root of a monic polyno
mial with integer coefficients. Show that every algebraic integer is an eigen
value of a matrix A E Mn(Z) for some n. 

61. Let A E Mn(R) be an invertible matrix. 
(a) Show that det(X- 1 In - A-I) = (_x)-n det(A -1 )CA(X). 
(b) If 

CA(X) = Xn + a1 X n- 1 + ... + an-IX + an 

and 
C A-I (X) = Xn + b1 X n- 1 + ... + bn- 1 X + bn , 

then show that bi = (-l)ndet(A-l)an _i for 1 S; i S; n where we set 
ao = 1. 

62. If A E Mn(F) (where F is a field) is nilpotent, i.e., Ak = 0 for some k, 
prove that An = O. Is the same result true if F is a general commutative 
ring rather than a field? 

63. Let F be an infinite field and let :F = {AjhEJ <;;; Mn(F) be a commuting 
family of diagonalizable matrices. Show that there is a matrix B E Mn(F) 
and a family {fj (X) hEJ <;;; F[X] of polynomials of degree S; n - 1 such that 
Aj = fj(B). (Hint: By Theorem 3.36 there is a matrix P E GL(n, F) such 
that 

P- 1 A j P = diag(Alj, ... ,Anj). 

Let t 1, . . . ,tn be n distinct points in F, and let 

Use Lagrange interpolation to get a polynomial fj(X) of degree S; n-l such 
that fj(t;) = Aij for all i, j. Show that {fj(X)}jEJ works.) 

64. Let F be a field and V a finite-dimensional vector space over F. Let S E 
EndF(V) and define Ads: EndF(V) --> EndF(V) by 

Ads(T) = [S, T] = ST - TS. 

(a) If S is nilpotent, show that Ads is nilpotent. 
(b) If S is diagonalizable, show that Ads is diagonalizable. 

65. Let Nl, N2 E Mn(F) be nilpotent matrices. Show that Nl and N2 are similar 
if and only if 

rank(N~) = rank(N~) for all k ~ 1. 

66. Let F be an algebraically closed field and V a finite-dimensional vector space 
over F. 
(a) Suppose that T, S E EndF(V). Prove that T and S are similar if and 

only if 
dim(Ker(T - A1v /) = dim(Ker(S - A1v)k) 

for all A E F and kEN. (This result is known as Weyr's theorem.) 
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(b) Suppose that T E EndF(V) has Jordan canonical form ffif=IJ>'i,ni' If T 
is invertible, show that T- I has Jordan canonical form ffir=IJ>.;-l,ni 

67. Let F be an algebraically closed field and V a finite-dimensional vector space 
over F. 
(a) If T E EndF(V), show that there is a basis B = {VI, ... ,vn } of V such 

that Vi = (VI, ... ,Vi) is a T-invariant subspace of V. Conclude that 
[T]B is an upper triangular matrix. (Hint: Since F is algebraically closed 
T has an eigenvalue, say Al with associated eigenvector VI. Choose a 
complementary subspace W to (VI)' define TI E EndF(W) by TI = 'TroT 
where'Tr: V --- W is the projection. Now argue by induction.) 

(b) If T, S E EndF(V) commute then there is a basis B of V such that both 
[T]B and [S]B are upper triangular. 

(c) Show that the converse of part (b) is false by finding two upper triangular 
matrices which do not commute. 

( d) While the converse of part (b) is not true, show that two upper triangular 
matrices are "almost" commutative in the following sense. Verify that 
the commutator matrix [A, B] = AB - BA of two upper triangular 
matrices is a nilpotent matrix. 

68. Find matrices in M3(Q) with minimal polynomials X, X 2 , and X3. 
69. Find the characteristic and minimal polynomial of each of the following 

matrices: 

(a) [~ g ~]; 
o 1 c 

(b) [~ 6 g]; 
001 

70. If A E Mn(F) (F a field) has characteristic polynomial 

CA(X) = X2(X _1)2(X2 -1), 

what are the possibilities for the minimal polynomial mA(X)? 
71. Let V be a vector space and T : V --- V a linear transformation. Assume 

that mT(X) is a product of linear factors. Show that T can be written as a 
sum T = D + N where D is a diagonalizable linear transformation, N is a 
nilpotent linear transformation, and DN = ND. Note that the hypotheses 
are always satisfied for an algebraically closed field (e.g., C). 

72. Show that the matrices 

[0 1 0] 001 
100 

and 

are similar in M3(Z3). 
73. For each of the following matrices with entries in Q, find !lj the characteristic polynomial; 

2 the eigenvalues, their algebraic and geometric multiplicities; 
3 bases for the eigenspace!'! and generalized eigenspaces; 
4 Jordan canonical form (if it exists) and basis for V = Qn with respect to 

which the associated linear transformation has this form; 
(5) rational canonical form and minimal generating set for VT as Q[X]

module. 

(a) [~ (b) 

(c) [g (d) 
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(e) [
-2 0 0 
1 1 0 
2 0 1 

-1 0 0 

(f) 

1 
-2 
5 
-1 

74. In each case below, you are given some of the following information for 
a linear transformation T : V ~ V, V a vector space over the complex 
numbers C: (1) characteristic polynomial for Tj (2) minimal polynomial for 
Tj (3) algebraic multiplicity of each eigenvaluej (4) geometric multiplicity 
of each eigenvaluej (5) rank(VT) as an C[X]-modulej (6) the elementary 
divisors of the module VT. Find all possibilities for T consistent with the 
given data (up to similarity) and for each possibility give the rational and 
Jordan canonical forms and the rest of the data. 
(a) CT(X) = (X - 2)4(X - 3)2. 
(b) CT(X) = X2(X - 4f and mT(X) = X(X - 4)3. 
(c) dim V = 6 and mT(X) = (X + 3?(X + 1)2. 

~d) CT(X) = X(X - 1)4(X - 2)5, V~eom(1) = 2, and vgeom (2) = 2. 
e) CT(X) = (X - 5)(X - 7)(X - 9)(X - 11). 
f) dim V = 4 and mT(X) = X - 1. 

75. Recall that a matrix A E Mn(F) is idempotent if A2 = A. 
(a) What are the possible minimal polynomials of an idempotent A? 
(b) If A is idempotent and rank A = r, show that A is similar to B 

Ir EB On-r. 
76. If T : C n ~ C n denotes a linear transformation, find all possible Jordan 

canonical forms of a T satisfying the given data: 
(a) CT(X) = (X - 4)3(X - 5? 
(b) n = 6 and mT(X) = (X - 9)3. 
(c) n = 5 and mT(X) = (X - 6nX - 7). 
(d) T has an eigenvalue 9 with algebraic multiplicity 6 and geometric mul

tiplicity 3 (and no other eigenvalues). 
(e) T has an eigenvalue 6 with algebraic multiplicity 3 and geometric mul

tiplicity 3, and eigenvalue 7 with algebraic multiplicity 3 and geometric 
multiplicity 1 (and no other eigenvalues). 

77. (a) Show that the matrix A E M3(F) (F a field) is uniquely determined up 
to similarity by CA(X) and mA(X). 

(b) Give an example of two matrices A, BE M4(F) with the same charac
teristic and minimal polynomials, but with A and B not similar. 

78. Let A E Mn(C). If all the roots of the characteristic polynomial CA(X) are 
real numbers, show that A is similar to a matrix B E Mn(R). 

79. Let F be an algebraically closed field, and let A E Mn(F). 
(a) Show that A is nilpotent if and only if all the eigenvalues of A are zero. 
(b) Show that Tr(Ar) = Al + ... + A~ where AI, ... , An are the eigenvalues 

of A counted with multiplicity. 
(c) If char(F) = 0 show that A is nilpotent if and only if Tr(Ar) = 0 for all 

r E N. (Hint: Use Newton's identities, Exercise 61 of Chapter 2.) 
80. Prove that every normal complex matrix has a normal square root, i.e., if 

A E Mn(C) is normal, then there is a normal BE Mn(C) such that B2 = A. 
81. Prove that every Hermitian matrix with nonnegative eigenvalues has a Her

mitian square root. 
82. Show that the following are equivalent: 

~a) U E Mn(C) is unitary. 
b) The columns of U are orthonormal. 
c) The rows of U are orthonormal. 

83. (a) Show that every matrix A E Mn(C) is unitarily similar to an upper 
triangular matrix T, i.e., U AU· = T, where U is unitary. 

(b) Show that a normal complex matrix is unitarily similar to a diagonal 
matrix. 
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84. Show that a commuting family of normal matrices has a common basis of 
orthogonal eigenvectors, Le., there is a unitary U such that U AjU· = Dj 
for all Aj in the commuting family. (Dj denotes a diagonal matrix.) 

85. A complex matrix A E Mn(C) is normal if and only if there is a polynomial 
f(X) E C[X] of degree at most n - 1 such that A· = f(A). (Hint: Apply 
Lagrange interpolation.) 

86. Show that B = E9Ai is normal if and only if each Ai is normal. 
87. Prove that a normal complex matrix is Hermitian if and only if all its eigen

values are real. 
88. Prove that a normal complex matrix is unitary if and only if all its eigenvalues 

have absolute value 1. 
89. Prove that a normal complex matrix is skew-Hermitian (A· = -A) if and 

only if all its eigenvalues are purely imaginary. 

90. If A E Mn(C), let H(A) = HA + A·) and let 8(A) = ~(A - A*). H(A) is 
called the Hermitian part of A and 8(A) is called the skew-Hermitian part 
of A. These should be thought of as analogous to the real and imaginary 
parts of a complex number. Show that A is normal if and only if H(A) and 
8(A) commute. 

91. Let A and B be self-adjoint linear transformations. Then AB is self-adjoint 
if and only if A and B commute. 

92. Give an example of an inner product space V and a linear transformation T : 
V -- V with T·T = lv, but T not invertible. (Of course, V will necessarily 
be infinite dimensional.) 

93. (a) If 8 is a skew-Hermitian matrix, show that 1 - 8 is nonsingular and the 
matrix 

U = (1 + 8)(1 - 8)-1 

is unitary. 
(b) Every unitary matrix U which does not have -1 as an eigenvalue can be 

written as 
U = (1 + 8)(1 - 8)-1 

for some skew-Hermitian matrix 8. 
94. This exercise will develop the spectral theorem from the point of view of 

projections. 
(a) Let V be a vector space. A linear transformation E : V -- V is called 

a projection if E2 = E. Show that there is a one-to-one correspondence 
between projections and ordered pairs of subspaces (V1, V2 ) of V with 
V1 E9 V2 = V given by 

E t-+ (Ker(E), Im(E». 

(b) If V is an inner product space, a projection E is called orthogonal if E = 
E*. Show that if E is an orthogonal projection, then Im(E)-L = Ker(E) 
and Ker(E)-L = Im(E), and conversely. 

( c) A set of (orthogonal ) projections {E1 , ••• , E r } is called complete if 
EiEj = 0 for i f= j and 

Iv = E1 + ... + E r . 

Show that any set of (orthogonal) projections {E1 , ••. , E r } with EiEj = 
o for i f= j is a subset of a complete set of (orthogonal) projections. 

(d) Prove the following result. 

Let T : V -- T be a diagonalizable (resp., normal) linear transformation 
on the finite-dimensional vector space V. Then there is a unique set of 



288 Chapter 4. Linear Algebra 

distinct scalars {A1, ... ,Ar} and a unique complete set of projections 
(resp., orthogonal projections) {E1, ... ,Er} with 

T = A1E1 + ... + ArEr . 

Also, show that {Adi=l are the eigenvalues of T and {Im(Ei)}i=l are 
the associated eigenspaces. 

(e) Let T and {Ed be as in part (d). Let U : V -+ V be an arbitrary 
linear transformation. Show that TU = UT if and only if EiU = U Ei 
for 1 < i < r. 

(f) Let F-be an infinite field. Show that there are polynomials Pi(X) E F[X] 
for 1 ~ i ~ r with Pi(T) = Ei. (Hint: See Exercise 63.) 



Chapter 5 

Matrices over PIDs 

5.1 Equivalence and Similarity 

Recall that if Ti : V -+ V (i = 1, 2) are linear transformations on a finite
dimensional vector space V over a field F, then Tl and T2 are similar if and 
only if the F[X]-modules VTl and V T2 are isomorphic (Theorem 4.4.2). Since 
the structure theorem for finitely generated torsion F[X]-modules gives a 
criterion for isomorphism in terms of the invariant factors (or elementary 
divisors), one has a powerful tool for studying linear transformations, up 
to similarity. Unfortunately, in general it is difficult to obtain the invariant 
factors or elementary divisors of a given linear transformation. We will 
approach the problem of computation of invariant factors in this chapter by 
studying a specific presentation of the F[X]-module VT . This presentation 
will be used to transform the search for invariant factors into performing 
elementary row and column operations on a matrix with polynomial entries. 
We begin with the following definition. 

(1.1) Definition. If R is a ring and Mis a finitely genemted R-module, then 
a finite free presentation of M is an exact sequence 

(1.1) 

Note that M ~ Coker(¢) and the free presentation is essentially an 
explicit way to write M as a quotient of a finite-rank free R-module by a 
finite-rank submodule. 

While every finitely generated R-module has a free presentation (Def
inition 3.4.15), it need not be true that every finitely generated R-module 
has a finite free presentation as in Definition 1.1; however, if the ring R is 
a PID, then this is true. 

(1.2) Lemma. Let R be a PID and let M be a finitely genemted R-module 
with J.L(M) = n. Then there is a finite free presentation 

(1.2) 

with m $ n. 
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Proof. By Proposition 3.4.14, there is a free presentation 

Since R is a PID, Theorem 3.6.2 implies that K is a free R-module of rank 
m:::; n, so Equation (1.2) is valid. 0 

Recall (Definition 4.3.14) that two R-module homomorphisms f and 9 
from Rm to Rn are equivalent if and only if there is a commutative diagram 

Rm f 1n 1 hl ---+ h2 

Rm -.!!-. Rn 

where hI and h2 are R-module isomorphisms. That is, 9 = h2fhll. 
Also, matrices A, B E Mn,m(R) are equivalent if B = PAQ for some 
P E GL(n, R) and Q E GL(m, R). 

(1.3) Proposition. Let R be a commutative ring and let f, g: R m ---- Rn be 
R-module homomorphisms. If f is equivalent to g, then 

Coker(f) ~ Coker(g). 

Proof. Let M = Coker f and N = Coker(g). Since f and 9 are equivalent 
there is a commutative diagram of R-modules and homomorphisms 

RmL1n~M---+O 1 hl h2 

Rm -.!!-. Rn ~ N ---+ 0 

where the hi are isomorphisms and 7fi are the canonical projections. Define 
¢ : M ---- N by ¢(x) = 7f2(h2(Y)) where 7fl(Y) = x. It is necessary to check 
that this definition is consistent; i.e., if 7fl (Yl) = 7fl (Y2), then 7f2 (h2 (Yl)) = 
7f2(h2(Y2)). But if 7fl(Yl) = 7fl(Y2), then Yl - Y2 E Ker(7fl) = Im(f), so 
Yl - Y2 = f(z) for some z E Rm. Then 

so 7f2h2(Yl - Y2) = 0 and the definition of ¢ is consistent. We will leave it 
to the reader to check that ¢ is an R-module isomorphism. 0 

In order to apply Proposition 1.3 to our F[X]-modules VT , it is neces
sary to produce a finite free presentation of VT . We now show how to use 
a basis of V to produce a finite free presentation of the F[X]-module VT . 

Thus, we assume that V is a finite-dimensional vector space over a field F 
and T : V ---- V is a linear transformation. Define 
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'l/JB: F[Xln ---> V 

by 'l/JB (ej) = Vj for 1 ::; j ::; n where A = {el' ., . ,en} is the standard basis 
of the free F[Xl-module F[Xln and B = {VI, ... ,vn} is a given basis of V. 
Thus, 

(1.3) 'l/JB(h(X), ... ,fn(X)) = h(T)(vd + ... + fn(T)(vn) 

for all (h(X), ... ,fn(X)) E F[Xln. Let K = Ker('l/JB). If A = [TlB then 
A = [aijl E Mn(F) where 

n 

(1.4) T(vj) = I>ijVi. 
i=1 

Let 
n 

(1.5) Pj (X) = X ej - L aijei E F[Xln for 1 ::; j ::; n. 
i=1 

(1.4) Lemma. K ~ F[Xl n is free of rank nand C = {PI (X), ... ,Pn(Xn is 
a basis of K. 

Proof. It is sufficient to show that C is a basis. First note that 

n 

= X'l/JB(ej) - L aij'l/JB(ei) 
i=1 

n 

= T(vj) - LaijVi 
i=1 

=0 

by Equation (1.4). Thus pj(X) E K = Ker('l/JB) for all j. By Equation (1.5) 
we can write 

n 

(1.6) Xej = Pj(X) + L aijei· 
i=1 

By repeated uses of this equation, any 

n 

H(X) = Lgj(X)ej E F[Xln 
j=1 

can be written as 
n n n 

(1.7) H(X) = Lgj(X)ej = L hj (X)Pj (X) + L bjej 
j=1 j=1 j=1 
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where bj E F. If H(X) E K then it follows from Equation (1.7) that 
:Ej=l bjej E K, and applying the homomorphism 1/J we conclude that 
:Ej=lbjVj = 0 E Vj but {v!, ... ,vn } is a basis of V, so we must have 
b1 = ... = bn = O. Therefore, 

generates K as an F[X]-submodule. 
To show that C is linearly independent, suppose that 

n 

L hj (X)Pj (X) = O. 
j=l 

Then 
n n 

Lhj(X)Xej = L hj(X)aijei 
j=l i,j=l 

and since {eI, ... , en} is a basis of F[x]n, it follows that 

(1.8) 
n 

hi(X)· X = L hj(X)aij. 
j=1 

If some hi(X) =f. 0, choose i so that hi(X) has maximal degree, say, 

(1 ~ j ~ n). 

Then the left-hand side of Equation (1.8) has degree r + 1 while the right
hand side has degree ~ r. Thus hi(X) = 0 for 1 ~ i ~ n and C is a basis of 
K. 0 

We can summarize the above discussion as follows: 

(1.5) Proposition. Let V be a vector space of dimension n over the field F, 
let T : V --+ V be a linear transformation, and let B be a basis of V. Then 
there is a finite free presentation of VT 

(1.9) 

in which the matrix of <PB in the standard basis of F[x]n is 

Xln - [T]B. 

Proof. If <PB(ej) = Pj(X) as in Equation (1.5), then pj(X) = colj(Xln - A) 
where A = [T]B. Thus [<PB]A = Xln - A, and sequence (1.9) is exact by 
Lemma 1.4. 0 

According to our analysis, VT ~ Coker(<PB). It is worthwhile to see this 
isomorphism in a simple explicit example. 
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(1.6) Example. Let F be a field, let V = F2, and let T : V - V be defined 
by T(Ul' U2) = (U2' 0) (cf. Example 3.1.5 (13)). If B = {Vb V2} is the 
standard basis on F2, then 

where 

f(X) = ao + a1X + ... + anXn 

g(X) = bo + blX + ... + bmXm. 

Since A = [T1B = [g~], we have XI2 - A = [~Jl] so that 

4> ([f(X)]) = [Xf(X) - g(X)] 
B g(X) Xg(X)' 

Note that 

[ f(X)] = [ao + b1 ] + [XJ(X) - g(X)] 
g(X) bo Xg(X) 

where 

g(X) = g(X) - bo 
X 

J(X) = f(X) + g(X) - ao - b1 . 

X 

Since f(X) and g(X) are arbitrary, we see that 

(1.10) 

as F-modules, while as an F[Xl-module, 

(1.11) 

Equation (1.11) follows from Equation (1.10), the observation 

X.[~]=[~]+[~], 

and the fact that [~] E Im(4)B). It follows immediately that 

F[X1 2 /Im(4)B) ~ VT 

as F[Xl-modules. 

(1.7) Theorem. Let F be a field and let A, B E Mn(F) be matrices. Then 
A is similar to B if and only if the polynomial matrices X In - A and 
XIn - BE Mn(F[X]) are equivalent. 
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Proof. If A and B are similar, then B = P-1AP for some P E GL(n, F). 
Then 

(XIn - B) = (XIn - p- l AP) = P-I(XIn - A)P 

so (XIn - A) and (XIn - B) are equivalent in Mn(F[X]). 
Conversely, suppose that (XIn - A) and (XIn - B) are equivalent in 

Mn(F[X]). Thus there are matrices P(X), Q(X) E GL(n, F[X]) such that 

(1.12) (XIn - B) = P(X)(XIn - A)Q(X). 

Now, if V is a vector space of dimension n over F and B is a basis of V, 
then there are linear transformations TI and T2 on V such that [TIJB = A 
and [T2JB = B. By Proposition 1.5, there are injective homomorphisms 

such that Coker(¢>i) 9:: VT; and the matrix of ¢>i with respect to the standard 
basis on F[XJn is (X In - A) and (X In - B) for i = 1, 2 respectively. By 
Equation (1.12), the F[XJ-module homomorphisms ¢>l and ¢>2 are equiva
lent. Therefore, Proposition 1.3 applies to give an isomorphism of VT1 and 
VT2 as F[XJ-modules. By Theorem 4.4.2, the linear transformations TI and 
T2 are similar, and taking matrices with respect to the basis B shows that 
A and B are also similar, and the theorem is proved. 0 

This theorem suggests that a careful analysis of the concept of equiva
lence of matrices with entries in F[XJ is in order. Since it is no more difficult 
to study equivalence of matrices over any PID R, the next two sections will 
be devoted to such a study, after which, the results will be applied to the 
computation of invariant factors and canonical forms for linear transforma
tions. We will conclude this section by carefully studying the relationship 
between generating sets of a module M that has two different finite free 
presentations. 

(1.8) Example. Let R be a commutative ring and let M be an R-module 
with two equivalent finite free presentations. That is, there is a commutative 
diagram of R-modules and homomorphisms 

(1.13) 

where hI and h2 are isomorphisms. If A = {el' ... ,en} is the standard 
basis on Rn , then V = {VI, ... ,vn} and W = {WI, ... ,wn } are generating 
sets of the R-module M, where Vi = 7l'1(ei) and Wj = 71'2 (ej). Note that 
we are not assuming that these generating sets are minimal, i.e., we do not 
assume that J.L(M) = n. From the diagram (1.13) we see that the generators 
Vi and Wj are related by 
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(1.14) 

Let us analyze this situation in terms of matrix representations of the homo
morphisms. All matrices are computed with respect to the standard bases 
on Rm and Rn. Thus, if A = [f], B = [9], Q = [hI], and P = [h2], then the 
commutativity of diagram (1.13) shows that B = P AQ-l. Furthermore, if 
p- 1 = [Pij]' then Equation (1.14) becomes 

Wj = 7rl(h2"l(ej)) 
n 

= 7rl (I>:jei) 
i=l 

n 

(1.15) = LP:jVi. 
i=l 

That is, Wj is a linear combination of the Vi where the scalars come from 
the lh column of p-l in the equivalence equation B = PAQ-l. 

(1.9) Example. We will apply the general analysis of Example 1.8 to a spe
cific numerical example. Let M be an abelian group with three generators 
VI, V2, and V3, subject to the relations 

6Vl + 4V2 + 2V3 = 0 

-2Vl + 2V2 + 6V3 = o. 

That is, M = Z3 / K where K is the subgroup of Z3 generated by Yl 
(6,4,2) and Y2 = (-2,2,6), so there is a finite free presentation of M 

(1.16) o --+ Z2 ~ Z3 ~ M --+ 0 

where T A denotes multiplication by the matrix 

[6 -2] 
A= ; ~ . 

We wish to find B = P AQ equivalent to A where B is as in Proposition 
4.3.20. If 

[~ 
0 

~2] Q = [~ ~1] , P= 1 and 
-2 

then 

B~PAQ~ [~ H 
(We will learn in Section 3 how to compute P and Q.) Then 
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p-'~ [~ ~ ~l 
Therefore, Wl = 3Vl + 2Vl + V3, W2 = 2Vl + V2, and W3 = V3 are new 
generators of M, and the structure of the matrix B shows that 2Wl = 0 
(since 2Wl = 6Vl + 4V2 + 2V3 = 0), lOw2 = 0, and W3 generates an infinite 
cyclic subgroup of M, i.e., 

5.2 Hermite Normal Form 

In this section and the next, we will be concerned with determining the sim
plest form to which an m x n matrix with entries in a PID can be reduced 
using multiplication by unimodular matrices. Recall that a unimodular ma
trix is just an invertible matrix. Thus, to say that A E Mn(R) is unimodular 
is the same as saying that A E GL(n, R). Left and right multiplications by 
unimodular matrices gives rise to some basic equivalence relations, which 
we now define. 

(2.1) Definition. Let R be a commutative ring and let A, B E Mm,n(R). 

(1) We say that B is left equivalent to A, denoted B ,s A, if there is a 
unimodular matrix U E GL(m, R) such that B = U A. 

(2) We say that B is right equivalent to A, denoted B ~ A, if there is a 
unimodular matrix V E GL(n, R) such that B = AV. 

(3) We say that B is equivalent to A, denoted B ~ A, if there are unimod
ular matrices U E GL(m, R) and V E GL(n, R) such that B = UAV. 

Each of these relations is an equivalence relation, and we would like 
to compute a simple form for a representative of each equivalence class 
in an algorithmic manner. (Equivalence of matrices has been introduced 
in Definition 4.3.18, and, in fact, if R is a PID then we have described the 
equivalence classes of matrices under the relation of equivalence in Proposi
tion 4.3.20. What we will concentrate on at the present time are algorithmic 
aspects of arriving at these representatives.) This will require the ability to 
construct a number of unimodular matrices. The elementary matrices in
troduced in Definition 4.1.8 provide some examples of unimodular matrices 
over any commutative ring, and we will see that for a Euclidean domain, 
every unimodular, i.e., invertible, matrix is a product of elementary matri
ces. The following fundamental result describes an inductive procedure for 
constructing unimodular matrices with a prescribed row or column. 
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(2.2) Theorem. Let R be a PID, let aI, ... , an E R, and let d = 
gcd{aI, ... ,an}' Then there is a matrix A E Mn(R) such that 

(1) rowl(A)=[al ... an],and 
(2) det(A) = d. 

Proof. The proof is by induction on n. If n = 1 the theorem is trivially 
true. Suppose the theorem is true for n - 1 and let Al E M n - l (R) be a 
matrix with rowI(Ad = [al ... an-d and det(AI) = dl = gcd{aI, ... , 
an-d. Since 

d=gcd{al' ... ,an} 

=gcd{gcd{al' ... ,an-I}, an} 

= gcd{dI, an}, 

it follows that there are u, v E R such that udl - van = d. Now define A 
by 

A= 
o 

~ ~ an-IV 
dl d l .. . ----at u 

Since dl I ai for 1 :::; i :::; n - 1, it follows that A E Mn(R) and rowl(A) = 
[al ... an]. Now compute the determinant of A by cofactor expansion 
along the last column. Thus, 

det(A) = udet(AI) + (-l)n+l an det(Aln ) 

where A ln denotes the minor of A obtained by deleting row 1 and column n. 
Note that A ln is obtained from Al by moving rowl (AI) = [al . .. an-I] 
to the n -1 row, moving all other rows up by one row, and then multiplying 
the new row n -1 (= [al . . . an-I]) by v / d l . That is, using the language 
of elementary matrices 

Thus, 

Hence, 

A ln = Dn- l (v/dd Pn-l,n-2 ... P3,2P2,IAI. 

detAIn = (:J (_1)n-2 detAl 

= (_1)n-2v . 

detA = udetAI + (-l)n+l an detAln 
= udl + (-1)n+lan(-1)n- 2v 

= udl - van 

=d. 

Therefore, the theorem is true for all n by induction. o 
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(2.3) Remark. Note that the proof of Theorem 2.2 is completely algorith
mic, except perhaps for finding u, v with udl - van = d; however, if R is a 
Euclidean domain, that is algorithmic as well. It is worth noting that the ex
istence part of Theorem 2.2 follows easily from Theorem 3.6.16. The details 
are left as an exercise; however, that argument is not at all algorithmic. 

(2.4) Corollary. Suppose that R is a PID, that aI, ... , an are relatively 
prime elements of R, and 1 :::; i :::; n. Then there is a unimodular matrix Ai 
with rowi(Ai) = [al . .. an] and a unimodular matrix Bi with COli (Bi) = 
[al ... an ( 

Proof. Let A E Mn(R) be a matrix with 

rowl(A)=[al ... an] 

and det A = 1, which is guaranteed by the Theorem 2.2. Then let Ai = PliA 
and let Bi = At Pli where Pli is the elementary permutation matrix that 
interchanges rows 1 and i (or columns 1 and i). 0 

(2.5) Example. We will carry through the construction of Theorem 2.2 in 
a specific numerical example. Thus let R = Z and construct a unimodular 
matrix A E GL(3, Z) with 

rowl(A) = [25 15 7]. 

Since 2·25 - 3·15 = 5, we may take Al = [2; Ii]. Then 3 . 5 - 2·7 = 1, 
so the induction step will give 

[
25 15 7] 

A= 3 2 0 . 
10 6 3 

Then det A = 1, so A is unimodular. Furthermore, if we wish to compute a 
unimodular matrix B E GL( 4, Z) with 

rowl(B) = [25 15 7 9] 

then we may use the matrix A in the induction step. Observe that 10-9 = 1, 
so the algorithm gives us a matrix 

[
25 15 7 9] 
3 2 0 0 

B= 10 6 3 0 
25 15 7 10 

that is unimodular and has the required first row. 
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(2.6) Lemma. Let R be a PID, let A=/:-O E Mm,l(R), and let d = gcd(A) 
(i.e., d is the gcd of all the entries of A). Then there is a unimodular matrix 
U E GL(m, R) such that 

Moreover, if R is a Euclidean domain, then U can be taken to be a product 
of elementary matrices. 

Proof. We may write blal + ... + bmam = d=/:-O where A = [al am]t 
and bl , ... , bm E R. Then 

bl (~ ) + ... + bm (a;) = 1 

SO {b l , ... , bm } is relatively prime. By Theorem 2.2 there is a matrix U1 E 

GL(m, R) such that rowl(Ud = [b1 bm ]. Then 

U,A ~ li.l 
and Ci = Uilal + ... + Uimam so that d I Ci for all i 2: 2. Hence Ci = (Xid for 
(Xi E R. Now, if U is defined by 

then Proposition 4.1.12 shows that 

This completes the proof in the case of a general PID. 
Now suppose that R is a Euclidean domain with Euclidean function v: 

R \ {O} -+ Z+. We shall present an argument, which is essentially a second 
proof of Lemma 2.6 in this case. This argument is more constructive in 
that only elementary row operations, i.e., left multiplications by elementary 
matrices, are used. Hence the U constructed will be a product of elementary 
matrices. Let v(A) = min{v(aj) : 1 ~ j ~ m} and suppose that v(A) = 

v(ai). Then PliA = [,61 ,6m]t has v(,6t} ~ v(,6j) for j 2: 2. Each,6i 
can be written as ,6i = li,61 + ri where ri = 0 or v(ri) < V(,61). Therefore, 
subtracting lirowl(PliA) from rowi(P1iA) gives a matrix 
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where rj = 0 or v(rj) < V(f3I). If some rj =I- 0 then we have found a 
matrix Al left equivalent to A via a product of elementary matrices for 
which V(AI) < v(A). We can repeat the above process to find a sequence 
of matrices 

left equivalent to A via a product of elementary matrices such that 

(1) v(aii- ll ) > v(aiil ) for all i > 1, and 
(2) ayl = 0 or v(a;i)) < v(aii )) for j ~ 2. 

Since condition (1) can only occur for finitely many Ai, it follows that 

we must have ay) = 0 for j ~ 2 for some Ai, Le., 

for some U E GL(m, R), which is a product of elementary matrices. It 

remains to observe that aii ) = b is a gcd of the set {all ... , am}. But the 
equation 

shows that bE (aI, ... , am) and 

shows that (aI, ... ,am) <;;; (b), i.e., (b) = (aI, ... ,am) and the lemma is 
proved. D 

Given an equivalence relation '" on a set X, a complete set of repre
sentatives of '" is a subset P <;;; X such that P has exactly one element from 
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each equivalence class. Thus, P is a complete set of representatives of rv if 
each x E X is equivalent to a unique a E P. The cases we wish to consider 
concern some equivalence relations on a commutative ring R. A complete 
set of nooassociates of R is a subset P S;; R such that each element of R is 
an associate of a unique bE P, i.e., if a E R then there is a unique bE P 
and a unit u E R* such that b = au. Similarly, if I S;; R is an ideal, then a 
complete set of residues modulo I consists of a subset of R, which contains 
exactly one element from each coset a + I. If I is the principal ideal Ra for 
some a E R, then we speak of a complete set of residues modulo a. 

(2.7) Examples. 

(1) If R = Z, then a complete set of nonassociates consists of the nonneg
ative integers; while if mE Z is a nonzero integer, then a complete set 
of residues modulo m consists of the m integers 0, 1, ... , Iml - 1. A 
complete set of residues modulo 0 consists of all of Z. 

(2) If F is a field, then a complete set of nonassociates consists of {O, I}; 
while if a E F \ {O}, a complete set of residues modulo a is {O}. 

(3) If F is a field and R = F[X] then a complete set of nonassociates of R 
consists of the monic polynomials together with O. 

(2.8) Definition. Let R be a commutative ring, let P S;; R be a complete set 
of nonassociates of R, and for each a E R let P(a) be a complete set of 
residues modulo a. Then a matrix A = [aij] E Mm,n(R) is said to be in 
Hermite normal form (following P, P(a») if A = 0 or A =I- 0 and there is 
an integer r with 1 ~ r ~ m such that 

(1) rowi(A) =I- 0 for 1 ~ i ~ r, rowi(A) = 0 for r + 1 ~ i ~ m; and 
(2) there is a sequence of integers 1 ~ nl < n2 < ... < nr ~ m such 

that aij = 0 for j < ni (1 ~ i ~ r), aini E P \ {O} (1 ~ i ~ r), and 
ajni E P(ainJ for 1 ~ j < i. 

Thus, if the matrix A is in Hermite normal form, then A looks like the 
following matrix: 

Table 2.1. Hermite normal form 

0 0 aln1 * * aln2 * alns * ... alnr . .. * 0 0 0 0 0 a2n2 * a2ns * ... a2nr * 0 0 0 0 0 0 0 a3ns * ... a3nr * 

0 0 0 0 arnr * 0 0 0 0 0 0 

0 0 0 0 0 0 
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where * denotes an entry that can be any element of R. If R is a field and 
P = {O, I} while pea) = {O} for every a f:. 0, then in the Hermite normal 
form we will have aini = 1 while ajni = 0 if j < i. The resulting matrix is 
what is usually called a reduced row echelon matrix and it is used to solve 
systems of linear equations Ax = b over a field. 

Our main result on left equivalence of matrices is that if R is a PID 
then every matrix is left equivalent to one in Hermite normal form. 

(2.9) Theorem. Let R be a PID, P <;;;; R a complete set of nonassociates, and 
pea) (a E R) a complete set of residues modulo a. Then any A E Mm,n(R) 
is left equivalent to a matrix H in Hermite normal form. If R happens to 
be Euclidean, then H = U A where U is a product of elementary matrices. 

Proof. The proof is by induction on the number of rows m. If m = 1 and 
A f:. 0 let nl be the first index with aln, f:. o. Then let ualn, = bIn, E P. 
Then B = uA is in Hermite normal form. Now suppose that m > 1 and 
that every matrix in Mm-1,n(R) (for arbitrary n) is left equivalent (using 
a product of elementary matrices if R is Euclidean) to a matrix in Hermite 
normal form. Let nl be the smallest integer such that coIn, (A) f:. O. Let 
(coln,(A))t = [al am] and let d = gcd{a!, ... ,am}. Then d f:. 0 
and, by Lemma 2.6, there is an invertible matrix U1 E GL(m, R) (which 
may be taken as a product of elementary matrices if R is Euclidean) such 
that 

Al = U1A = 
[ OOd:. * Bl *] 

where Bl E Mm-1,n-l (R). By the induction hypothesis, there is an in
vertible matrix V E GL(m - 1, R) (which may be taken as a product of 
elementary matrices if R is Euclidean) such that V Bl is in Hermite normal 
form. Let 

U2 = [~ ~]. 
Then U2A 1 = A2 is in Hermite normal form except that the entries alni 
(i > 1) may not be in P( ain,). This can be arranged by first adding a 
multiple of row 2 to row 1 to arrange that aln2 E P(a2n2)' then adding 
a multiple of row 3 to row 1 to arrange that aln3 E P(a3n3)' etc. Since 
aij = 0 if j < ni, a later row operation does not change the columns before 
ni, so at the end of this sequence of operations A will have been reduced 
to Hermite normal form, and if R was Euclidean then only elementary row 
operations will have been used. D 

If we choose a complete set of nonassociates for R so that it contains 1 
(as the unique representative for the units) and a complete set of represen
tatives modulo 1 to be {O}, then the Hermite form of any U E GL(n, R) is 
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In. This is easy to see since a square matrix in Hermite normal form must 
be upper triangular and the determinant of such a matrix is the product 
of the diagonal elements. Thus, if a matrix in Hermite normal form is in
vertible, then it must have units on the diagonal, and by our choice of 1 as 
the representative of the units, the matrix must have alii's on the diago
nal. Since the only representative modulo 1 is 0, it follows that all entries 
above the diagonal must also be 0, i.e., the Hermite normal form of any 
U E GL(n, R) is In. 

If we apply this observation to the case of a unimodular matrix U with 
entries in a Euclidean domain R, it follows from Theorem 2.9 that U can be 
reduced to Hermite normal form, i.e., In, by a finite sequence of elementary 
row operations. That is, 

El ... E1U = In 

where each Ej is an elementary matrix. Hence, U = Ei l ... Ell is itself a 
product of elementary matrices. Therefore, we have arrived at the following 
result. 

(2.10) Theorem. Let R be a Euclidean domain. Then every invertible matrix 
over R is a product of finitely many elementary matrices. 

Proof. o 

(2.11) Remark. If R is not Euclidean then the conclusion of Theorem 2.10 
need not hold. Some explicit examples of matrices in GL(2, R) (R a PID), 
which cannot be written as a product of elementary matrices, have been 
given by P. M. Cohn in the paper On the structure of the GL2 of a ring, 
Institut des Hautes Etudes Scientifiques, Publication #30 (1966), pp. 5-
54. A careful study of Lemma 2.6 shows that the crucial ingredient, which 
Euclidean domains have that general PIDs may not have, is the Euclidean 
algorithm for producing the gcd of a finite subset of elements. 

(2.12) Example. Let R = Z, P = Z+, and for each m =I- 0 E Z, let 

P(m) = {O, 1, ... ,Iml- I}. 

Let P(O) = Z. Thus we have chosen a complete set of nonassociates for Z 
and a complete set of residues modulo m for each m E Z. We will compute 
a Hermite normal form for the integral matrix 

[4 2 9 5] 
A= 6 3 4 3 . 

8 4 1 -1 

The left multiplications used in the reduction are Ul , ... , U7 E GL(3, Z), 
while Al = U1A and Ai = UiAi - l for i > 1. Then 
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[ ~I 1 

~] [i 1 -5 ~2] UI = 1 Al = UIA 3 4 
0 4 1 -1 

[ !3 
0 

~] [~ 
1 -5 ~2] U2 = 1 A2 = U2AI = 0 19 

-4 0 0 21 

[~ 
0 

~9] [~ 
1 -5 -2] U3 = 10 A3 = U3A2 = 0 1 27 

-1 0 2 -2 

[~ 
0 

~] [~ 
1 -5 -2] U4= 1 A4 = U4A3 = 0 1 27 

-2 0 0 -56 

[~ 
0 JI ] [~ 

1 -5 -2] U5 = 1 A5 = U5A4 = 0 1 27 
0 0 0 56 

[~ 
5 

~] [~ 
1 0 133] 

U6 = 1 A6 = U6A5 = 0 1 27 
0 0 0 56 

[~ 
0 T] A, ~ U,A, ~ [~ 1 0 21] U7 = 1 0 1 27 . 
0 0 0 56 

The matrix A7 is the Hermite normal form associated to the matrix A 
(using the system of representatives P and P( m)). 

A natural question to ask is whether the Hermite normal form of A 
guaranteed by Theorem 2.9 is unique. Certainly one can get a different 
Hermite normal form by changing the complete set of nonassociates or the 
complete set of residues modulo a E R, but if we fix these items then the 
Hermite normal form is uniquely determined, independent of the precise 
sequence of operations needed to achieve this form. This is the content of 
the next result. 

(2.13) Theorem. Let R be a PID, P ~ R a complete set of non associates and 
P(a) a complete set of residues modulo a for each a E R. If A E Mm,n(R) 
then the Hermite normal form of A is unique. 

Proof. Without loss of generality we may assume that A =f:. O. First note 
that the number of nonzero rows in any Hermite normal matrix H, which 
is left equivalent to A, is just rank(A). To see this, suppose the Hermite 
normal matrix H has r nonzero rows, let 1 ~ nl < ... < nr ~ n be 
the integers guaranteed by Definition 2.8, and let a = (1, 2, ... ,r) and 
J3 = (n}, n2, ... ,nr ). Then detH[a I J3] = aInla2n2 ... arnr =f:. O. Thus, 
rank(H) ?: r and any submatrix of H with more than r rows will have a row 
of zeros. Hence, rank(H) = r, and since rank is preserved by equivalence 
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(Proposition 4.2.36), it follows that 

r = rank(H) = rank(A). 

Now suppose that A k, H and A k, K where H and K are both in 
Hermite normal form. Then there is a unimodular matrix U such that H = 
UK, and by the above paragraph, both H and K have r = rank ( A) nonzero 
rows. Let 1 ~ nl < n2 < ... < nr ~ n be the column indices for K given by 
the definition of Hermite normal form and let 1 ~ tl < t2 < ... < tr ~ n 
be the column indices for H. We claim that ti = ni for 1 ~ i ~ r. Indeed, 
nl is the first nonzero column of K and tl is the first nonzero column of Hj 
but colj(H) = U colj(K) and U is invertible, so nl = tl' Then we conclude 
that for j = nl = tl, h1n1 t 0, k1n1 t 0, and 

[ h~nll_ [k~ll' 
: -U : ' . . 
o 0 

so k1n1 Usl = 0 for 8 > 1, and hence, Usl = 0 for 8 > 1. Therefore, 

U = [U~l ;J. 
If H = [rowh~H)] and K = [rowk~K)] where HI,Kl E Mm-1,n(R) then 

HI = U1K1 and HI and Kl are in Hermite normal form. By induction on 
the number of rows we can conclude that nj = tj for 2 ~ j ~ r. Moreover, 

by partitioning U in the block form U = [~~~ ~~~] where Un E Mr(R) 
and by successively comparing coin; (H) = U coin; (K) we conclude that 
U21 = 0 and that Ul1 is upper triangular. Thus, 

U12] , 

U22 

[U~' 
U12 Ulr 

U22 U2r 

U= . 
0 0 Urr 

0 

and detU = Ul1 ... u rr (det(U22)) is a unit of R. Therefore, each Uii is 
a unit of Rj but hin; = uiikini for 1 ~ i ~ r so that hin; and kin; are 
associates. But hin; and kin; are both in the given complete system of 
nonassociates of R, so we conclude that h ini = kin; and hence that Uii = 1 
for 1 ~ i ~ r. Therefore, each diagonal element of Ul1 must be 1. Now 
suppose that 1 ~ 8 ~ r - 1. Then 

m 

hs,nS+l = L us,')'k')',ns+l 
,),=1 

= ussks,ns+l + Us ,8+1 k s+l,ns+l 
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since uS'Y = 0 for r < s while k'YnS+l = 0 if r > s + 1. Since Uss = 1, we 
conclude that 

Therefore, 

and since hs,ns+l and ks,n8 +1 are both in P(ks+l,nS+l)' it follows that 
hs,nB+l = ks,nS+l and, hence, Us,s+l = 0 for 1 ~ s ~ r - 1. 

We now proceed by induction. Suppose that us,s+j = 0 for 1 ~ j < r-1 
(we just verified that this is true for j = 1) and consider 

m 

hs,ns+j+l = L US'Yk'Y,nS+j+l 
'1=1 

= Us,s+j+lks+j+l,nB+j+l + Ussks,nS+j+l 

= Us,s+j+lks+j+l,ns+j+l + ks,nB+j+l· 

Therefore, hs,ns+Hl = ks,ns+Hl since they both belong to the same residue 
class modulo ks+j+l,ns+Hl. Hence us,s+j+l = O. Therefore, we have shown 
that U has the block form 

U= [6 
and, since the last m - r rows of H and K are zero, it follows that H = 
UK = K and the uniqueness of the Hermite normal form is proved. 0 

We will conclude this section with the following simple application of 
the Hermite normal form. Recall that if R is any ring, then the (two-sided) 
ideals of the matrix ring Mn(R) are precisely the sets Mn(J) where J is an 
ideal of R (Theorem 2.2.26). In particular, if R is a division ring then the 
only ideals of Mn(R) are (0) and the full ring Mn(R). There are, however, 
many left ideals of the ring Mn(R), and if R is a PID, then the Hermite 
normal form allows one to compute explicitly all the left ideals of Mn(R), 
namely, they are all principal. 

(2.14) Theorem. Let R be a PID and let J ~ Mn(R) be a left ideal. Then 
there is a matrix A E Mn(R) such that J = (A), i.e., J is a principal left 
ideal of Mn(R). 

Proof. Mn(R) is finitely generated as an R-module (in fact, it is free of 
rank n2), and the left ideal J is an R-submodule of Mn(R). By Theo
rem 3.6.2, J is finitely generated as an R-module. Suppose that (as an 
R-module) 

J = (Bl' ... ,Bk ) 

where Bi E Mn(R). Consider the matrix 
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There is an invertible matrix P E Mnk(R) such that PB is in Hermite 
normal form. Thus, 

(2.1) 

and if we partition P = [Pij ] into blocks where Pij E Mn(R), it follows 
from Equation (2.1) that 

Therefore, A E J and hence the left ideal (A) ~ J. Since 

where Q = p-1 = [Qij], it follows that Bi = QilA. Therefore, J ~ (A), 
and the proof is complete. 0 

5.3 Smith Normal Form 

In contrast to the relatively complicated nature of the Hermite normal 
form, if multiplication by nonsingular matrices is allowed on both the left 
and the right, then one can reduce a matrix A over a PID R to a par
ticularly simple form. The existence of this simple diagonal form, known 
as the Smith normal form, has essentially already been proved in Propo
sition 4.3.20. Combining this with Theorem 2.10 will provide a reasonably 
efficient procedure for the computation of the invariant factors of a linear 
transformation. Additionally, this same computational procedure produces 
the change of basis map that puts a matrix (or linear transformation) in 
rational canonical form. We will also consider applications of the Smith 
normal form to the solution of linear diophantine equations. 

(3.1) Theorem. Let R be a PID and let A E Mm.n(R). Then there is a 
U E GL(m, R) and a V E GL(n, R) such that 
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(3.1) UAV= [~r ~] 

where r = rank(A) and Dr = diag(sl' ... ,sr) with Si i- 0 (1 ::; i ::; r) and 
Si I Si+1 for 1 ::; i ::; r - 1. Furthermore, if R is a Euclidean domain, then 
the matrices U and V can be taken to be a product of elementary matrices. 

Proof. Consider the homomorphism T A : Rn -+ R m defined by multiplica
tion by the matrix A. By Proposition 4.3.20, there is a basis B of Rn and 
a basis C of Rm such that 

(3.2) [TA1~ = [~r ~] 
where Dr = diag(sI, ... ,sr) with Si i- 0 (1 ::; i ::; r) and Si I Si+1 for 
1 ::; i ::; r - 1. If C' and B' denote the standard bases on Rm and Rn 
respectively, then the change of basis formula (Proposition 4.3.16) gives 

(3.3) 

Since A = [TA1~: and since the change of basis matrices are invertible, 
Equation (3.3) implies Equation (3.1). The last statement is a consequence 
of Theorem 2.10. 0 

(3.2) Remarks. 

(1) The matrix [~r ~] is called the Smith normal form of A after H. J. 

Smith, who studied matrices over Z. 
(2) Since the elements Sl, •.• ,sr are the invariant factors of the submodule 

Im(TA ), they are unique (up to multiplication by units of R). We shall 
call these elements the invariant factors of the matrix A. Thus, two 
matrices A, B E Mm,n(R) are equivalent if and only if they have the 
same invariant factors. This observation combined with Theorem 1. 7 
gives the following criterion for the similarity of matrices over fields. 

(3.3) Theorem. Let F be a field and let A, BE Mn(F). Then A and B are 
similar if and only if the matrices Xln -A and Xln -B E Mn(F[X]) have 
the same invariant factors. 

Proof· o 

(3.4) Remark. If R is a Euclidean domain then A can be transformed into 
Smith normal form by a finite sequence of elementary row and column 
operations since every unimodular matrix over R is a finite product of 
elementary matrices (Theorem 2.10). It is worthwhile to describe explic
itly an algorithm by which the reduction to Smith normal form can be 
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accomplished in the case of a Euclidean domain R with degree function 
v : R \ 0 -+ Z+. The algorithm is an extension (to allow both row and 
column operations) of the second proof of Lemma 2.6. If A E Mm,n(R) is 
a nonzero matrix, let 

v(A) = min{v(aij) : 1 ::; i ::; mj 1::; j ::; n}. 

By using a sequence of row and column exchanges we can assume that 
v(an) = v(A). Then if i > 1, we may write ail = anbi + bil where bil = 
o or v(bil ) < v(an). By subtracting bi rowl (A) from rowi(A) we obtain 
a matrix A(1) in which every element of coh(A(l») is divisible by an or 
v(A(1») < v(A). If we are not in the first case, repeat the process with A 
replaced by A(1). Since v(A) is a positive integer, this process cannot go 
on indefinitely, so we must eventually arrive at a matrix B with bn I bil 
for 2 ::; i ::; m. By applying a similar process to the elements of the first 
row, we may also assume that elementary row and column operations have 
produced a matrix B in which bn I bil and bn I blj for 2 ::; i ::; m and 
2 ::; j ::; n. Then subtracting multiples of the first row and column of B 
produces an equivalent matrix E = [bnJ EB C where C E Mm-l,n-l. We 
may arrange that bn divides every element of C. If this is not the case 
already, then simply add a row of C to the first row of E, producing an 
equivalent matrix to which the previous process can be applied. Since each 
repetition reduces v(E), only a finite number of repetitions are possible 
before we achieve a matrix B = [bnJ EB C in which bn divides every entry 
of C. If C is not zero, repeat the process with C. This process will end with 
the production, using only elementary row and column operations, of the 
Smith normal form. 

(3.5) Example. It is worthwhile to see this algorithm in practice, so we will 
do a complete example of the computation of the Smith normal form of 
an integral matrix. A simple method for producing U E GL(m, R) and 
V E GL(n, R) so that U AV is in Smith normal form is to keep track of 
the elementary row and column operations used in this reduction. This can 
be conveniently accomplished by simultaneouly applying to 1m each row 
operation done to A and to In each column operation performed on A. 
This process is best illustrated by a numerical example. Thus let 

-1] 1 E M3,4(Z). 
16 

We shall reduce A to Smith normal form by a sequence of row and column 
operations, and we shall keep track of the net effect of these operations by 
simultaneously performing them on 13 (for the row operations) and 14 (for 
the column operations). We will use the arrow t---> to indicate the passage 
from one operation to the next. 
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f3 

~ [H~] [! 
~ [~H] [~ 

~ [~ ~!~] [~ 

~[~ ~! n [~ 
~U ~!~] [~ 
~[~ ~d] [~ 

u 

A 

1 -3 -11] 
-1 -3 
-4 0 16 

-1 -3 1] 
1 -3 -1 

-4 0 16 

-1 -3 1] 
3 3 -3 
o 12 12 

~ ~ ~3) 
o 12 12 

~ 1~ l~J 
~ ~ O~] o 12 

s 

[~ 
[~ 
[~ 
[~ 
[~ 
[~ 

Then U AV = S and S is the Smith normal form of A. 

f4 
o 0 
1 0 
o 1 
o 0 
o 0 
1 0 
o 1 
o 0 
o 0 
1 0 
o 1 
o 0 

1 3 
1 0 
o 1 
o 0 
1 2 
1 -1 
o 1 
o 0 

1 2 
1 -1 
o 1 
o 0 

V 

~] 
~] 
~] 
T] 
~] 

-;2] 
-1 
1 

(3.6) Remark. Theorem 3.3 and the algorithm of Remark 3.4 explain the 
origin of the adjective rational in rational canonical form. Specifically, the 
invariant factors of a linear transformation can be computed by "ratio
nal" operations, i.e., addition, subtraction, multiplication, and division of 
polynomials. Contrast this with the determination of the Jordan canonical 
form, which requires the complete factorization of polynomials. This gives 
an indication of why the rational canonical form is of some interest, even 
though the Jordan canonical form gives greater insight into the geometry 
of linear transformations. 

The ability to compute the invariant factors of a linear transformation 
by reduction of the characteristic matrix Xfn - [TJs to Smith normal form 
has the following interesting consequence. 

(3.7) Proposition. Let F be a field and let A E Mn(F). Then A is similar 
to the transposed matrix At. 
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Proof. Consider the matrix Xln -A E Mn(F[X]). Then there are invertible 
matrices P(X), Q(X) E GL(n, F[X]) such that 

(3.4) P(X)(Xln - A)Q(X) = diag(sl(X), ... , sn(X)) 

where Si(X) I Si+1(X) for 1 ::; i ::; n -1. Taking the transpose of Equation 
(3.4) shows that 

Q(X)t(Xln - At)P(X)t = diag(sl(X), ... , sn(X)). 

Thus, A and At have the same invariant factors and hence are similar. 0 

This result cannot be extended to matrices over arbitrary rings, even 
PIDs, as the following example shows: 

(3.8) Example. Let R be a PID, which is not a field, and let pER be a 
prime. Consider the matrix 

Claim. A is not similar to At. 

Proof. Suppose that T = [tii] E M3(R) satisfies the matrix equation AT = 
TAt. Then 

(3.5) 

which implies that 

(3.6) 

From Equation (3.6), we conclude that t32 = t23 = t33 = 0, t12 = t21. 
t13 = t31 = pt22 = ps for some s E R. Therefore, T must have the form 

[
tl1 t12 PS] 

T = t12 sO, 
ps 0 0 

and hence, det(T) = _p2 s3. Since this can never be a unit of the ring R, 
it follows that the matrix equation AT = TAt has no invertible solution T. 
Thus, A is not similar to At. 0 
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(3.9) Remark. Theorem 1.7 is valid for any commutative ring R. That is, 
if A, B E Mn(R), then A and B are similar if and only if the polynomial 
matrices XIn - A and XIn - B are equivalent in Mn(R[X]). The proof we 
have given for Theorem 1. 7 goes through with no essential modifications. 
With this in mind, a consequence of Example 3.8 is that the polynomial 
matrix 

[
X -p 0 1 

XI3 - A = 0 X -1 E M3(R[X]) 
o 0 X 

is not equivalent to a diagonal matrix. This is clear since the proof of 
Proposition 3.7 would show that A and At were similar if Xh - A was 
equivalent to a diagonal matrix. 

What this suggests is that the theory of equivalence for matrices with 
entries in a ring that is not a PID (e.g., R[X) when R is a PID that is 
not a field) is not so simple as the theory of invariant factors. Thus, while 
Theorem 1. 7 (extended to A E Mn (R» translates the problem of similar
ity of matrices in Mn(R) into the problem of equivalence of matrices in 
Mn(R[X]), this merely replaces one difficult problem with another that is 
equally difficult, except in the fortuitous case of R = F a field, in which 
case the problem of equivalence in Mn(F[X)) is relatively easy to handle. 

The invariant factors of a matrix A E Mm,n(R) (R a PID) can be 
computed from the determinantal divisors of A. Recall (see the discus
sion prior to Definition 4.2.20) that Qp,m denotes the set of all sequences 
a: = (iI, ... ,ip) of p integers with 1::; i l < i2 < ... < ip ::; m. If a: E Qp,m, 
(3 E Qj,n, and A E Mm,n(R), then A[a: I {3] denotes the submatrix of A 
whose row indices are in a: and whose column indices are in {3. Also recall 
(Definition 4.2.20) that the determinantal rank of A, denoted D-rank(A), 
is the largest t such that there is a submatrix A[a: I {3] (where a: E Qt,m and 
(3 E Qt,n) with det A[a: I (3] i= O. Since R is an integral domain, all the ranks 
of a matrix are the same, so we will write rank (A) for this common num
ber. For convenience, we will repeat the following definition (see Definition 
4.2.21): 

~3.10) Definition. Let R be a PID, let A E Mm,n(R), and let k be an integer 
such that 1 ::; k ::; min{m, n}. If detA[a: I {3] = 0 for all a: E Qk,m, 
(3 E Qk,n, then we set dk(A) = O. Otherwise, we set 

dk(A) = gcd{detA[a: I {3] : a: E Qk,m, {3 E Qk,n}. 

dk(A) is called the kth determinantal divisor of A. For convenience in some 
formulas, we set do(A) = 1. 

(3.11) Lemma. Let R be a PID and let A, B E Mm,n(R). Suppose that A is 
equivalent to B and that 1 ::; k ::; min {m, n}. Then dk (A) is an associate 
of dk(B). 
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Proof. Suppose UAV = B where U E GL(m, R) and V E GL(n, R). If 
a E Qk,m and (3 E Qk,n, then the Cauchy-Binet theorem (ThelJcem 4.2.34) 
shows that 

(3.7) detB[a I (3] = L detU[a I w]detA[w I r]detV[r I (3]. 
weQk,m 
TEQk,n 

Thus, if dk(A) = 0 then det B[a I (3] = 0 for all a E Qk,n, (3 E Qk,n and 
hence dk(B) = o. If dk(A) =f. 0 then dk(A) I det A[w I r] for all w E Qk,m, 
r E Qk,n, so Equation (3.7) shows that dk(A) I det B[a I (3] for all a E Qk,m, 
(3 E Qk,n' Therefore, dk(A) I dk(B). 

Since it is also true that A = U- l BV-l , we conclude that dk(A) = 0 
if and only if dk(B) = 0 and if dk(A) =f. 0 then 

so dk(A) and dk(B) are associates. 0 

Now suppose that R is a PID and that A E Mm,n(R) is in Smith 
normal form. That is, we suppose that rank (A) = rand 

where Dr = diag( 81, ... , 8 r ) with 8i =f. 0 (1 ::; i ::; r) and 8i I 8i+l for 
1::; i::; r -1. If a = (iI, i2 ... ,ik) E Qk,r then detA[a I a] = 8il ... 8ik' 

while det A[(3 I 'Y] = 0 for all other (3 E Qk,m, 'Y E Qk,n' Then, since 8i I 8i+l 

for 1 ::; i ::; r - 1, it follows that 

{ 
81 .•. 8k if 1 < k < r 

(3.8) dk(A) = 0 if r + 1 ~ k ::; min{m, n}. 

From Equation (3.8) we see that the diagonal entries of A, i.e., 81, ... , 8 r , 

can be computed from the determinantal divisors of A. Specifically, 

(3.9) 

81 = dl(A) 
d2 (A) 

82 = d1(A) 

dr(A) 
8 r = dr-l(A)' 

By Lemma 3.11, Equations (3.9) are valid for computing the invariant 
factors of any matrix A E Mm,n(R). 
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(3.12) Examples. 

(1) Let 

[
-2 

A= ~ ~3 ~~] E M3(Z). 
2 -1 

Then the Smith normal form of A is diag(1, 1,8). To see this note that 
ent31 (A) = 1, so d1 (A) = 1; 

det A[(1, 2) I (1, 2)J = 6 and det A[(2, 3) I (2, 3)J = 11, 

so d2(A) = 1, while det A = 8, so d3 (A) = 8. Thus, sl(A) = 1, s2(A) = 
1, and s3(A) = 8. 

(2) Let 

[
X(X -1)3 0 

B= 0 X-1 
o 0 

1] E M,(Q[X). 

Then d1 (B) = 1, d2 (B) = X(X - 1), and d3 (X) = X2(X - 1)4. 
Therefore, the Smith normal form of B is diag(1, X(X -1), X(X -1)3). 

Let M be a finitely generated R-module (where R is a PID) and choose 
a finite free presentation of M 

where TA denotes multiplication by the matrix A E Mm,n(R). If A is put 
in Smith normal form 

where Dr = diag( S1, ... , sr) with Si i- 0 for all i and Si I Si+1 for 1 ::; i ::; 
r - 1, then by Proposition 1.3 

Therefore, we see that the Si i- 1 are precisely the invariant factors of the 
torsion submodule MT of M. This observation combined with Equation 
(3.9) provides a determinantal formula for the invariant factors of M. We 
record the results in the following theorem. 

(3.13) Theorem. Let R be a PID and let A E Mm,n(R). Suppose that the 

Smith normal form of A is [~r g). Suppose that Si = 1 for 1 ::; i ::; k (take 

k = 0 if Sl i- 1) and Si i- 1 for k < i ::; r. If M = Coker(TA) where 
TA : Rn ---+ Rm is multiplication by A, then 

(1) f.t(M) = m - k; 
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(2) rank(M/M-r) = m - r; 
(3) the invariant factors of M-r are ti = Sk+i for 1 ~ i ~ r - t.,; and 

dk+l(A) . 
(4) ti = d . (A) for 1 ~ z ~ r - k. 

k+.-l 

Proof. All parts follow from the observations prior to the theorem; details 
are left as an exercise. 0 

If we apply this theorem to the presentation of VT from Proposition 
1.5, we arrive at a classical description of the minimal polynomial mT(X) 
due to Frobenius. 

(3.14) Theorem. (Frobenius) Let V be a finite dimensional vector space over 
a field F and let T : V ---+ V be a linear transformation. Let B be any basis 
of V, let [T]B = A E Mn(F), and let d{X) = dn-1{XIn - A). Then 

CT(X) 
(3.11) mT(X) = d(X) . 

Proof. CT(X) = det(XIn - A) = dn(X). Since mT(X) is the highest de
gree invariant factor of VT (Definition 4.4.6 (2», formula (3.11) follows 
immediately from Theorem 3.13 (4). 0 

The determinantal criterion for invariant factors also allows one to 
prove the following fact. 

(3.15) Theorem. Let F be a field and let A, B E Mn(F). If K is field that 
contains F as a subfield, then A and B are also in Mn(K). If A and B are 
similar in Mn(K), then they are similar in Mn{F). 

Proof. This follows immediately from Theorem 3.3 and the following obser
vations. 

(1) If f{X) and g{X) #- 0 are in F[X], then the quotient and remainder 
upon division of f{X) by g{X) in K[X] are, in fact, in F[X]. To see 
this, divide f{X) by g{X) in F[X] to get 

f{X) = g{X)q(X) + r(X) 

where q(X), r(X) E F[X] and degr(X) < degg(X). The uniqueness 
of division in K[X] shows that this is also the division of f(X) by g{X) 
inK[X]. 

(2) Let h(X), ... , fk(X) E F[X]. Then the greatest common divisor of 
these polynomials is the same whether they are considered in F[X] or 
in K[X]. This follows from (1) because the greatest common divisor can 
be computed by the Euclidean algorithm, which only uses the division 
algorithm. 
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If A and B E Mn(F) are similar in Mn(K), then the polynomial ma
trices Xln - A and Xln - B have the same invariant factors in K[X]. 
But since the invariant factors are computed as quotients of determinantal 
divisors, and since Xln - A and Xln - B are in Mn(F[X]), we conclude 
from items (1) and (2) above that the invariant factors of both polynomial 
matrices are in F[X]. Hence A and B are similar in Mn(F). 0 

(3.16) Remark. The content of Theorem 3.15 is that in order to determine 
if two matrices are similar, we may, without loss of generality, assume that 
they are matrices over a large (e.g., algebraically closed) field. This obser
vation is useful, for example, in Theorem 5.13 (see Remark 5.14). 

Let A E Mm,n(R) (R a PID) be a matrix of rank r and let S1. ... , 
Sr be the invariant factors of A. Then, by definition, Si =I- 0, Si I SiH for 

1 :::; i :::; r - 1 and A is equivalent to r ~r g 1 where Dr = diag(SI' ... ,sr). 

Let PI, ... , Pk be a complete set of nonassociate primes that occur as prime 
divisors of some invariant factor. Then for appropriate nonnegative integers 
eij and units Ui of R, we have 

(3.12) 

SI = Ulp~l1 p~12 ••• p~lk 

S2 = U2p~21 p~22 ... p~2k 

Since Si I Si+1. it follows that 

(3.13) (1:::;j:::;k). 

The prime power factors {p ;i j : eij > O}, counted according to the number 
of times each occurs in the Equation (3.12), are called the elementary di
visors of the matrix A. Of course, the elementary divisors of A are nothing 
more than the elementary divisors of the torsion submodule of Coker(TA), 
where, as usual, T A : Rn --+ Rm is multiplication by the matrix A (Theorem 
3.13 (3)). For example, let 

A = diag(12, 36, 360, 0, 0). 

A is already in Smith normal form, so the invariant factors of A are 12 = 
22 . 3, 36 = 22 . 32, and 360 = 23 . 32 . 5. Hence the elementary divisors of 
A are 

(3.17) Theorem. Let R be a PID and let A, B E Mm,n(R). Then A and B 
are equivalent if and only if they have the same mnk and the same set of 
elementary divisors (up to multiplication by a unit). 
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Proof. According to Remark 3.2 (2) (uniqueness of the invariant factors), 
A and B are equivalent if and only if they have the same invarlant factors. 
Since the invariant factors determine the elementary divisors, it follows that 
equivalent matrices have the same set of elementary divisors. Conversely, 
we will show that the set of elementary divisors and the rank determine the 
invariant factors. Indeed, if 

15,j5,k 

then 8 r is an associate of p~' ... p~k. Delete {p~', ... ,p~k} from the set 
of elementary divisors and repeat the process with the set of remaining 
elementary divisors to obtain 8 r -1. Continue this process until all the ele
mentary divisors have been used. At this point the remaining 8i are 1 and 
we have recovered the invariant factors from the set of elementary divisors. 

D 

(3.18) Remark. The argument of Theorem 3.17 is essentially a reproduction 
of the proof of Theorem 3.7.15. 

(3.19) Example. It is worthwhile to present a complete example illustrating 
the process of recovering the invariant factors from the elementary divisors. 
Thus, suppose that A E M 7 ,6(Z) is a rank 5 matrix with elementary divisors 

Then 85 = 23 . 32 . 7 . 112 = 60984. Deleting 23, 32, 7, 112 from the set of 
elementary divisors leaves the set 

Thus, 84 = 22 . 32 . 11 = 396. Deleting 22, 32, 11 leaves the set {2, 22,32} 
so that 83 = 22.32 = 36. Deleting 22 and 32 gives a set {2} so that 82 = 2. 
Since the set obtained by deleting 2 from {2} is empty, we must have that 
81 = 1. Therefore, A is equivalent to the matrix 

1 0 0 0 0 0 
0 2 0 0 0 0 
0 0 36 0 0 0 
0 0 0 396 0 0 
0 0 0 0 60984 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

The next result is useful if an equivalent diagonal matrix (not neces
sarily in Smith normal form) is known. 
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(3.20) Proposition. Suppose that R is a PID and A E Mm,n(R) is a matrix 
of rank r, which is equivalent to the matrix 

where Dr = diag(tl' ... ,tr)' Then the prime power factors of the ti (1 ~ 
i ~ r) are the elementary divisors of A. 

Proof. Let p be any prime that divides some ti and arrange the ti according 
to ascending powers of p, i.e., 

where (p, qi) = 1 for 1 ~ i ~ r and 0 ~ el ~ e2 ~ ... ~ er • Then the 
exact power of p that divides the determinantal divisor dk(A) is pe1+'+ek 

for 1 ~ k ~ r and hence the exact power of p that divides the kth invariant 
factor sk(A) = dk(A)/dk-I(A) is pe k for 1 ~ k ~ r. (Recall that do(A) is 
defined to be 1.) Thus pe k is an elementary divisor for 1 ~ k ~ r. Applying 
this process to all the primes that divide some ti completes the proof. 0 

(3.21) Remark. Proposition 3.20 is a matrix theoretic version of Proposition 
3.7.19. The proof presented above is simpler than the proof of Proposition 
3.7.19, because we now have the determinantal divisor description of the in
variant factors. The following result is a consequence of Proposition 3.20 in 
exactly the same way that Corollary 3.7.20 is a consequence of Proposition 
3.7.19. 

(3.22) Corollary. Let BE Mm,n(R), C E Mp,q(R), and let 

A=BEBC= [~ ~]. 
Then the elementary divisors of A are the union of the elementary divisors 
of Band C. 

Proof. If UIBVI and U2CV2 are in Smith normal form, then setting U = 
UI EB U2 and V = VI EB V2 we see that 

[
Dr 0 0 0] 

UAV = 0 0 0 0 
o 0 Es 0 
000 0 

where Dr = diag(d!, ... ,dr ) and Es = diag(tl , ... ,ts). Therefore, A is 
equivalent to the block matrix 
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o 
Es 
o 

and Proposition 3.20 applies to complete the proof. 

(3.23) Example. Let F be a field, and let 

A = diag(X2(X _1)2, X(X _1)3, X -1, X) E M4(F[X]). 

Then by Proposition 3.20, the elementary divisors of A are 

X, (X - 1)3, 

so the invariant factors are given by 

s4(A) = X2(X - 1)3 

s3(A) = X(X - 1)2 

s2(A) = X(X - 1) 

sl(A) = 1. 

Therefore, A is equivalent to the matrix 

5.4 Computational Examples 

(X - 1), X 

o 

This section will be devoted to some computational examples related to 
the Smith normal form. Specific computations to be considered include the 
reduction of matrices to rational and Jordan canonical form, generators 
and relations for finitely generated abelian groups, and linear diophantine 
equations. We will start with some examples of reduction of matrices to 
canonical form. These calculations are supplemental to those of Section 
4.5, and it is recommended that the reader review the discussion there. In 
particular, note that the use of elementary row and column operations to 
produce the Smith normal form is also a particularly efficient technique if 
one is only interested in producing the characteristic polynomial of a linear 
transformation, which was the starting point for the calculations in Section 
4.5. 

(4.1) Example. Let V be a four-dimensional vector space over Q with basis 
B = {Vl, V2, V3, V4} and let T : V --> V be a linear transformation with 
matrix [TJB given by 
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[nBd~ [l 
-4 1 

~l E M,(Q). 
-3 0 
-1 1 
-1 -1 

Compute the rational canonical form of T, and if it exists, compute the 
Jordan canonical form. 

Solution. To compute the rational canonical form of T we compute the 
Smith normal form of the matrix XI4 - A E M4(Q[X]). Since Q[X] is a 
Euclidean domain, we may compute the Smith normal form by means of a 
finite sequence of elementary row and column operations on X 14 - A. We 
will use the symbol ....... to indicate the passage from one matrix to another 
by means of finitely many row or column operations. We will write the row 
operations to the left of the matrix, and the column operations to the right 
to keep a record of the row and column operations performed. They will be 
recorded by means of the elementary matrices, which were left (or right) 
multiplied to obtain the given matrix. Thus, the symbol 

indicates that An is obtained from An- 1 by multiplying on the right by 
Tij (a)D2 (a'), while An+l is obtained from An by multiplying on the left 
by D1 ({3)P23(-r). (See Propositions 4.1.12 and 4.1.13.) 

With these preliminaries out of the way, our calculations are as follows: 

[X -2 4 -1 -3] -2 X+3 0 -2 
XI4 - A = 0 1 X-I -2 

-1 1 1 X 

[ I 
-1 -1 -X] D1( -1) -2 X+3 0 -2 

H4 t--> 

X~2 1 X-I -2 
4 -1 -3 

[~ 
-1 -1 -X ] T21 (2) X+ 1 -2 -2X -2 

T41(-(X - 2)) t--> 1 X-I -2 
X+2 X-3 X2 - 2X - 3 

[I 
0 0 

o ] T12~1~ X+l -2 -2X-2 
t--> 1 X-I -2 T13 1 

X+2 X-3 X2 - 2X - 3 T14(X) 

~ [I 
0 0 

o ] P23 I X-I -2 
X+I -2 -2X -2 
X+2 X-3 X2 - 2X - 3 
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~ [~ 
0 0 

o 1 T42~-~X + 2H 1 X-I -2 
T32 - X + 1 0 _X2 -1 

X 20+ 1 0 -X2-1 

[~ 
0 ° JJ T23 ( -(X - 1» 1 0 

f-> 
0 X2 + 1 T24(2) 

0 X2 + 1 D3(-I) 

~ [i ° 0 )J 1 ° T43( -1). 0 X2 + 1 
0 0 

Therefore, XI4 - A is equivalent to diag(I, 1, X 2 + 1, X 2 + 1) so that 
the nonunit invariant factors of A are X 2 + 1 and X 2 + 1. The minimal 
polynomial of Tis S4(X) = X2 + 1 while CT(X) = (X2 + 1)2. Since the 
companion matrix of X 2 + 1 is 

2 [0 -1] C(X + 1) = 1 0 ' 

it follows that the rational canonical form of T is 

(4.1) 

Since mT(X) does not split into linear factors over the field Q, it follows 
that T does not possess a Jordan canonical form. 

Our next goal is to produce a basis 8' of V such that [T]BI = R. Our 
calculation will be based on Example 1.8, particularly Equation (1.15). 
That is, supposing that 

P(X)(XI4 - A)Q(X) = diag(I, 1, X2 + 1, X2 + 1) 

then 
VT ~ Q[X]WI EB Q[X]W2 

where Wj = "L,:=I Pi,)+2vi if P(X)-1 = [Pij ]. But from our caclulations 
above (and Lemma 4.1.11), we conclude that 

P(X)-1 = PI4 D I( -I)T21( -2)T41 (X - 2)P23T32 (X + I)T42 (X + 2). 

Therefore, 

(4.2) [
X-2 X+2 0 1] 

P(X)-1 = -2 X + 1 1 0 
o 1 0 0 . 

-1 0 0 0 

Thus, WI = V2 and W2 = VI each have annihilator (X2 + 1), and hence, 
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13' = {W1, T(wt} = -4V1 - 3V2 - V3 - V4, W2, T(W2) = 2V1 + 2V2 + V4} 

is a basis of V such that [TJB' = R. Moreover, S-l AS = R where 

[

0 -4 
1 -3 

S = 0 -1 

o -1 

~;] B' o 0 = PB . 

o 1 

o 

(4.2) Remark. Continuing with the above example, if the field in Example 
4.1 is Q[i], rather than Q, then mT(X) = X 2 + 1 = (X + i)(X - i), 
so T is diagonalizable. A basis of each eigenspace can be read off from 
the caclulations done above. In fact, it follows immediately from Lemma 
3.7.17 that Ann((X - i)wj) = (X + il for j = 1,2. Thus, the eigenspace 
corresponding to the eigenvalue -i, that is, Ker(T + i), has a basis 

{(X - i)W1' (X - i)wd 

and similarly for the eigenvalue i. Therefore, diag(i, i, -i, -i) = S1 1 AS1 , 

where 

[ 
-4 2 + i -4 2 - i] 

-3 + i 2 -3 - i 2 
Sl = -1 0 -1 0 . 

-1 1 -1 1 

(4.3) Example. Let V be a vector space over Q of dimension 4, let 13 = 
{V1' V2, V3, V4} be a basis of V, and let T : V ----> V be a linear transforma
tion such that 

[11B ~ [~ 
2 1 

~1] -1 -1 
4 -1 -2 . 

-2 -1 2 

Compute the Jordan canonical form ofT. 

Solution. As in Example 4.1, the procedure is to compute the Smith normal 
form of X 14 - A by means of elementary row and column operations. We 
will leave it as an exercise for the reader to perform the actual calculations, 
and we will be content to record what is needed for the remainder of our 
computations. Thus, 

(4.3) P(X)(XI4 - A)Q(X) = diag(l, 1, X-I, (X - l)(X + 1)2) 

where 

P(X) = T43 (X - 1)D3(1/4)T34(1)T42( -(X - 1))T32(X - 1)D2(1/4) 

. P23T41 (1)T31 (2)T21 (-X)D1 (-1)P12 
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and 

Q(X) = TI2 (X + 1)TI3(1)TI4(-1)P24D3(4)D4(2) 

. T23(-(X -1))T24(X + 3)D4(2)T34 ( -(X + 1)). 

Therefore, we can immediately read off the rational and Jordan canonical 
forms of T: 

R= 0 0 0 
010 

[
1 0 0 

o 1 0 0 [
1 0 0 0 1 

and J = 0 0 -1 1 . 

001 o 0 0 -1 

It remains to compute the change of basis matrices which transform 
A into Rand J, respectively. As in Example 4.1, the computation of these 
matrices is based upon Equation (1.15) and Lemma 3.7.17. We start by 
computing p(X)-I: 

p(X)-1 = PI2DI( -1)T21 (X)T31 ( -2)T41 ( -1)P23D2(4) 

. T32( -(X - 1))T42(X - 1)T34( -1)D3(4)T43( -(X - 1))14 

[
X -(X -1) 
-1 0 

- -2 4 
-1 X-I 

X+3 
o 
o 

-(X -1) 

~ll o . 
1 

Therefore, we see from Equation (1.15) that the vector 

v = (X + 3)VI - (X - 1)v4 

is a cyclic vector with annihilator (X -1), i.e., v is an eigenvector of T with 
eigenvalue 1. We calculate 

v = (T + 3)(VI) - (T - 1)(v4) 

= (3VI + V2 + 2V3 + V4) - (-VI + V2 - 2V3 + V4) 

= 4(VI + V3). 

Let WI = (1/4)v = VI + V4. 
Also, the vector W2 = -VI + V4 is a cyclic vector with annihilator 

«(X -1)(X+1)2) (again by Equation (1.15)). Ifw3 = T(W2) = -VI-4v3+V4 
and W4 = T2(W2) = -5VI + 4V2 + 5V4, then {W2' W3, W4} is a basis for 
Q[X]W2' and hence 8' = {WI, W2, W3, W4} is a basis of V in which T is in 
rational canonical form, i.e., 

[
1 0 
o 0 

[T]B' =R= o 1 
o 0 

o 0 1 o 1 
o 1 . 

1 -1 
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Moreover, S-1 AS = R where 

(4.4) 

and 

(4.5) 

-1 
o 
o 
1 

-1 
o 

-4 
1 

4 8' -5] 
~ =P8· 

Now for the Jordan canonical form. From Lemma 3.7.17, we see that 

Equation (4.5) implies that 

w~ = (X + 1)2w2 = -8V1 + 4V2 - 8V3 + 8V4 

is an eigenvector of T with eigenvalue 1. Let w~ = (X - 1)w2 = -4V3 and 
let w~ = (X + l)w~ = -4V1 + 4V2 + 4V4 (see Proposition 4.4.37). Then 

B" { I I '} = W1, w2 , W3, w4 

is a basis of V in which T is in Jordan canonical form. In particular, 
U- 1 AU = J = [T]8 11 where 

8" [0011 U=P8 = 

-8 
4 

-8 
8 

4 
-4 
o 
-4 

(4.4) Remark. The theory developed in this chapter, as illustrated by the 
above examples, allows one to compute the rational canonical form of any 
matrix in Mn(F) (and hence any linear transformation T : V ---+ V) using 
only the operations ofthe field F. Nothing more involved than the division 
algorithm for polynomials is needed to be able to reduce the characteristic 
matrix Xln - A E Mn(F[X]) to Smith normal form. Once one has the 
rational canonical form (and the transforming matrix), there are two steps 
to computing the Jordan canonical form. First, one must be able to factor 
each invariant factor into irreducible factors (which must be linear if A 
has a Jordan normal form). This step is the difficult one; factorization of 
polynomials is known to be difficult. To get an appreciation for this, see 
any book on Galois theory. Assuming the first step has been completed, 
the second step in computing the Jordan canonical form is the application 
of Lemma 3.7.17 and Proposition 4.4.37, as in the above example. 

The main applications of the Smith normal form and the description 
of equivalence of matrices via invariant factors and elementary divisors are 
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to the similarity theory of matrices over fields, as illustrated by the above 
examples. There are, however, some other applications of the Smith normal 
form. Two of these applications are to the computation of the structure of 
a finitely generated abelian group given by generators and relations and the 
use of the Smith normal form in the problem of solving systems of linear 
equations over PIDs. We will consider examples of both of these problems, 
starting with abelian groups defined by generators and relations. 

(4.5) Example. One explicit way to describe an abelian group is by giving 
generators and relations. This is expressed by saying that M = (Xl, ... ,xn ) 

where the generators Xi are subject to the relations 

(4.6) 

where A = [aij] E Mm,n(Z), We can express this more formally by saying 
that M = zn / K where K is the subgroup of zn generated by 

(4.7) 

Here, {el' ... ,en} is the standard basis of zn. If 7r : zn --+ M is the 
natural projection map, then 7r(ei) = Xi. We can compute the structure 
of an abelian group given by generators Xb •.. ,Xn subject to relations 
(4.6) by using the invariant factor theorem for submodules of a free module 
(Theorem 3.6.23). That is, we find a basis {Vb ... ,vn } of zn and natural 
numbers 8b ... ,8r such that {8l Vb ... ,8r vr } is a basis of the relation 
subgroup K ~ zn. Then 

Note that some of the factors Zs; may be O. This will occur precisely when 
8i = 1 and it is a reflection of the fact that it may be possible to use 
fewer generators than were originally presented. The elements 81, ... ,8r 

are precisely the invariant factors of the integral matrix A E Mm,n(Z). To 
see this, note that there is an exact sequence 

zm ~ zn ~ M --+ 0 

where ¢(e) = Ate. This follows from Equation (4.7). Then the conclusion 
follows from the analysis of Example 1.8, and Example 1.9 provides a nu
merical example of computing the new generators of M. 
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(4.6) Example. By a system of m linear equations over Z in n unknowns 
we mean a system 

anXI + al2 X 2 + ... + alnXn = bl 

a2l x I + a22 X 2 + ... + a2nXn = b2 
(4.8) 

where aij E Z and bi E Z for all i, j. System (4.8) is also called a linear 
diophantine system. We let A = [aij] E Mm,n (Z), X = [Xl . .. Xn ]t, and 
B = [bl bm ( Then the system of Equations (4.8) can be written in 
matrix form as 

(4.9) AX=B. 

Now transform A to Smith normal form 

(4.10) 

where U E GL(m, Z), V E GL(n, Z), and Dr = diag(sl, ... ,sr) with 
Si i- 0 and Si I Si+l for 1 :.-:::: i :.-:::: r - 1. Thus, Equation (4.9) becomes 

(4.11) 

Setting Y = V-I X = [YI 

tions 

( 4.12) 

Ym]t gives the equivalent system of equa-

SIYI = CI 

S2Y2 = C2 

SrYr = Cr 

o = Cr+l 

0= em. 

The solution of the system (4.12) can be easily read off; there is a solution 
if and only if Si I Ci for 1 :.-:::: i :.-:::: rand Ci = 0 for r + 1 :.-:::: i :.-:::: m. If there is a 
solution, all other solutions are obtained by arbitrarily specifying the n - r 

parameters Yr+l, ... ,Yn' Observing that X = VY we can then express the 
solutions in terms of the original variables Xl, ... ,Xn . 
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We will illustrate the method just described with a numerical example. 

(4.7) Example. Consider the linear diophantine system AX = B where 

A ~ [~ ~l ~~ :: ] and B ~ [1~] . 
We leave it as an exercise for the reader to verify (via elementary row and 
column operations) that if 

and 
~ !1 -;2] 
o 1 -1 
001 

then 

U AV = [~ ~ ~ ~O 1 = B. 
o 0 12 

Let 

C~UB~ UJ 
Then the system AX = B is transformed into the system BY = C, i.e., 

This system has the solutions 

Yl = 1 

3Y2 = 6 

12Y3 = 12. 

where t = Y4 is an arbitrary integer. We conclude that the solutions of the 
original equation AX = B are given by X = VY, i.e., 

[
1 1 

X = VY = 0 1 o 0 
o 0 

where t is an arbitrary integer. 

2 
-1 
1 
o 

-2] [1] [5 -2t] 2 2 1 + 2t 
-1 1 - 1 - t 
1 t t 

(4.8) Remark. The method just described will work equally well to solve 
systems of linear equations with coefficients from any PID. 
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5.5 A Rank Criterion for Similarity 

Given two matrices A and B E Mn(F) (F a field) one way to determine 
if A and B are similar is to determine the invariant factors of both A and 
B, e.g., by reducing both Xln - A and Xln - B to Smith normal form. 
If the invariant factors are the same, then the matrices are similar. This 
approach, however, is not particularly amenable to providing an explicit 
description of the set 

VA = {B E Mn(F) : B is similar to A} 

by means of polynomial equations and inequations in the entries of the 
matrix B. Note that V A is just the orbit of A under the group action 

(P, A) 1-+ PAP- 1 

of GL(n, F) on Mn(F). 
Another approach is via Weyr's theorem (Chapter 4, Exercise 66), 

which states that if F is algebraically closed, then A is similar to B if and 
only if 

(5.1) 

for all A E F and kEN. This can be reduced to a finite number of rank con
ditions if the eigenvalues of A are known. But knowledge of the eigenvalues 
involves solving polynomial equations, which is intrinsically difficult. 

(5.1) Example. As a simple example of the type of equations and inequa
tions that can be derived from Equation (5.1) to describe an orbit under 

similarity, one can show that A = [~~] is similar to B = [~:] if and only 
if B is in one of the following sets of matrices: 

81 = { [ ~ n: b # 0 } 

82 = { [ ! ~]: c # 0 } 

83 = { [~ ~]: bc # 0, a + d = 2, ad - bc = 1 } . 

We leave the verification of this description of the orbit of A as an exercise. 

In this section we will present a very simple criterion for the similar
ity of two matrices A and B (linear transformations), which depends only 
on the computation of three matrices formed from A and B. This has the 
effect of providing explicit (albeit complicated) equations and inequations 
for the orbit V A of A under similarity. Unlike the invariant factor and ele
mentary divisor theory for linear transformations, which was developed in 
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the nineteenth century, the result we present now is of quite recent vin
tage. The original condition (somewhat more complicated than the one we 
present) was proved by C. I. Byrnes and M. A. Gauger in a paper published 
in 1977 (Decidability criteria for the similarity problem, with applications 
to the moduli of linear dynamical systems, Advances in Mathematics, Vol. 
25, pp 59-90). The approach we will follow is due to J. D. Dixon (An iso
morphism criterion for modules over a principal ideal domain, Linear and 
Multilinear Algebra, Vol. 8, pp. 69-72 (1979)) and is based on a numerical 
criterion for two finitely generated torsion modules over a PID R to be 
isomorphic. This result is then applied to the F[X]-modules VT and Vs, 
where S, T E EndF(V), to get the similarity criterion. 

(5.2) Lemma. Let R be a PID and let a and b be nonzero elements of R. If 
d = (a, b) = gcd{a, b}, then 

HomR(Rj(a), Rj(b)) ~ Rj(d). 

Proof. This is essentially the same calculation as Example 3.3.11. We leave 
it to the reader. 0 

(5.3) Lemma. Let R be a PID, and let 

and 

be two finitely generated torsion R-modules. Then 

n m 

HomR(M, N) ~ EBEBRj(Si, tj). 
i=1 j=1 

Proof. This follows immediately from Lemma 5.2 and Proposition 3.3.15. 
o 

(5.4) Definition. If R is a PID and M is a finitely generated torsion R
module, then let 

n 

£(M) = Lki 
i=1 

where {p~', ... ,p~n} is the set of elementary divisors of M. 

In the language of Section 7.1, £(M) is the length of the R-module M. 
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(5.5) Definition. Let M and N be finitely genemted torsion R-modules (R 
a PID). Then let 

(M : N) = f(HomR(M, N)). 

The notation (M : N) is suggestive of an inner product, and it is pre
cisely for this reason that the notation was chosen. The following result 
gives some facts concerning (M : N), which are reminiscent of basic prop
erties of inner products, and the main theorem (Theorem 5.7) is analogous 
to the Cauchy-Schwartz inequality. 

(5.6) Proposition. Let R be a PID and let M, N, and P be finitely genemted 
torsion R-modules. Then 

(1) (M(fJN: P) = (M: P) + (N: P)i 
(2) (M: M) ~ 0 with equality if and only if M = {O}i 
(3) (M: N) = (N : M). 

Proof. All three parts are immediate consequences of Lemma 5.3. 0 

(5.7) Theorem. Let M and N be finitely genemted torsion modules over a 
PID R. Then 

(M : N)2 :S (M : M)(N : N). 

Equality holds if and only if M S = Nt for some relatively prime integers s 
and t. 

Proof We may write 

(5.2) 

and 

(5.3) 

Let PI, ... , Pr be the distinct primes of R that divide some elementary 
divisor of either M or N; by Proposition 3.7.19, these are the distinct 
prime divisors of the Si and t j . Let 

c = lcm{Ann(M), Ann(N)} = p~' ... p~r 

and let k = kI + ... + kr . Let R k be identified with the vector space of 1 x k 
matrices over R, and consider each A E R k as a block matrix 

where Ai E Rki. Given any divisor a of c, write 

and define v(a) E Rk by 

v(a) = [v(at} ... v(ar ) 1 
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where 
1 0 ... 01 

with ei ones. Then define 
n 

v(M) = L V(Si) 
i=1 

and 
m 

v(N) = L v(tj ). 
j=1 

Notice that the matrix v(M) determines M up to isomorphism since one 
can recover the elementary divisors of M from v(M). To see this, choose 
the largest ti :::: 0 such that v(M) - V(p~i) has nonnegative entries. Then 
p~i is an elementary divisor of M. Subtract V(p~i) from v(M) and repeat 
the process until the zero vector is obtained. (See the proof of Proposition 
3.7.19.) 

L t eil e·. t fjI fjr d d fi d . { f} e S· = PI ... P" . = P ... p an e ne ··1 = mIn e·1 ·1 2 r 'J 1 r, 2J 2, J 

for 1 ~ l ~ r. Then 
(Si' tj) = (p~ijl ... p~ij,). 

If ( : ) denotes the standard inner product on R k, then 

r 

(5.4) (V(Si) : v(t j )) = Ldijl 
1=1 

Therefore, 

n m 

(v(M) : v(N)) = L L(V(Si) : v(tj)) 
i=I j=1 

n m 

i=I j=1 

= (M: N). 

Similarly, (M : M) = (v(M) : v(M)) and (N : N) = (v(N) : v(N)). By the 
Cauchy-Schwartz inequality in R k we conclude that 

(M : N)2 = (v(M) : V(N))2 

~ (v(M) : v(M))(v(N) : v(N)) 

= (M : M)(N : N), 

as required. Moreover, equality holds if and only if v(M) and v(N) are 
linearly dependent over R, and since the vectors have integral coordinates, 
it follows that we must have v(M) and v(N) linearly dependent over Q, 
i.e., 

sv(M) = tv(N) 
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where sand t are relatively prime natural numbers. But 

so that MB ~ Nt since we observed above that v(W) determines the ele
mentary divisors, and hence, the isomorphism class of a finitely generated 
torsion R-module W. 0 

(5.8) Corollary. Let M and N be finitely generated torsion R-modules. Then 
M ~ N if and only if 

(1) £(M) = £(N), and 
(2) (M: N)2 = (M : M)(N : N). 

Proof. M ~ N certainly implies (1) and (2). Conversely, suppose that (1) 
and (2) are satisfied. Then by Theorem 5.7, MB ~ Nt for relatively prime 
integers sand t. But 

s£(M) = £(MB) 

= £(Nt) 

= U(N) 

= U(M) 

so s = t. Since sand t are relatively prime, it follows that s = t = 1, and 
hence, M ~ N. 0 

(5.9) Remark. If MB ~ Nt for relatively prime integers sand t, then it is an 
easy consequence of the uniqueness of the primary cyclic decomposition of 
a finitely generated torsion R-module (Theorem 3.7.15) that M ~ pt and 
N ~ pB where P is a finitely generated torsion R-module. 

We now wish to apply Corollary 5.8 to derive a simply stated rank 
criterion for the similarity of two linear transformations. We will start by 
computing matrix representations for some basic linear transformations. 
Let V be a finite-dimensional vector space over a field F and let l3 = 
{ VI, . .. ,vn } be a basis of V. Then a basis of End p (V) is given by C = 

{fij }i=IJ=1 where 

Under the F-algebra isomorphism cI> : Endp(V) -+ Mn(F) given by cI>(f) = 
[f]8, we have cI>(fij) is the matrix unit Eji . 

Given a linear transformation T E Endp(V), define two linear trans
formations LT E Endp(Endp(V)) and RT E Endp(Endp(V)) by 

(5.5) LT(U) = TU 

and 

(5.6) RT(U) = UT. 

That is, LT is left multiplication by T and RT is right multiplication by 
T in the F-algebra Endp(V). Let us now order the basis C of Endp(V) as 
follows: 
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C = {Ill, hI, ... ,ln1, !t2, .,. ,122, ... ,ln2, ... ,Inn}. 

With these notations there is the following result. (Recall that the ten
sor product (or kronecker product) of matrices A and B was defined in 
Definition 4.1.16 as a block matrix [Cij ] where Cij = aijB.) 

(5.10) Lemma. Let T E EndF(V) with [T]s = A = [aij]. Then 

(5.7) 

and 

(5.8) 

Proof. Note that 

Tlij(vk) = T(8ikVj) 

= 8i k T (Vj) 
n 

= 8ik LaljVI 
1=1 

n 

= L alj8ikVI 
1=1 

This equation immediately gives [£T]C = A ® In. 
A similar calculation gives lijT = L~=l ail/lj, so Equation (5.8) is also 

satisfied. 0 

(5.11) Corollary. Let S, T E EndF(V), and define 

Ts, T E EndF(EndF(V)) 

by 
TS,T(U) = SU - UT. 

II [S]s = A and [T]s = B, then 

(5.9) 

Prool. Since Ts , T = £s - R T , the result is immediate from Lemma 5.10. 
o 

If S, T E EndF(V), we will let (as usual) Vs and VT denote the 
F[X]-module structures on V determined by Sand T respectively. Then 
by Proposition 4.4.1, we know that 
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HOmF[Xj(VT, Vs) = {U E EndF(V) : UT = SU}. 

Thus, we have an identification 

(5.10) Homp[Xj(VT, Vs) = Ker(Ts,T), 

and hence: 

(5.12) Lemma. dimF HOmF[Xj(VT, Vs) = n2 - rank{A <'9 In - In <'9 Bt). 

Proof. By Proposition 3.8.8, we have 

dimF (Ker(Ts,T») + dimF (Im(Ts,T)) = dimF EndF(V) = n2 . 

The result then follows from Equation (5.10). 

We can now give the proof of Dixon's theorem. 

o 

(5.13) Theorem. (Dixon) Let V be a vector space of finite dimension n 
over an algebraically closed field F, and let S, T E EndF(V) be linear 
transformations. Let B be a basis of V and let A = [S]B, B = [TJB. Then 
Sand T are similar if and only if 

Proof. To simplify the notation, we will let 

with a similar definition for r AB and rBB. Since VT ~ Vs as F[X]-modules 
if and only if Sand T are similar (Proposition 4.4.2), it follows that if S 
and T are similar then 

as F[X]-modules. Hence, they have the same rank as F-modules, and thus 
r AA = r AB = rBB follows immediately from Lemma 5.12. 

Conversely, assume that 

(5.11) 

Since F is assumed to be algebraically closed, the elementary divisors of 
any finitely generated torsion F[X]-module Ware of the form (X - Ai)ki . 

Since 
t 

W ~ E9F[X]/((X - Ai)ki ), 

i=1 

it follows that 
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t 

(5.12) leW) = L ki = dimF W. 
i=l 

In particular, Lemma 5.12 shows that 

and 

(VT : Vs) = n2 - rAB 

(VT : VT) = n2 - rBB 

Equation (5.11) then gives 

(VT : VS)2 - (VT : VT)(VS : Vs) = n2(r AA + rBB - 2r AB) 

+ (dB - rAArBB) 
= n2(y'rAA - y'rBB)2 

2 O. 

By Theorem 5.7 

Thus, 
(VT : VS)2 = (VT : VT)(Vs : Vs). 

Since £(VT) = £(Vs) = n, Corollary 5.8 then shows that VT ~ Vs as F[X]
modules. Hence T and S are similar. D 

(5.14) Remark. The restriction that F be algebraically closed in Theorem 
5.13 is not necessary. Indeed, let K be an algebraically closed field con
taining F (see Remark 2.4.18 (3)) and consider A = [S]B and B = [T]B E 
Mn(F). Then A is similar to B in Mn(F) if and only if A is similar to B in 
Mn(K) (Theorem 3.15) and the rank condition in Theorem 5.13 does not 
depend upon which field we are using. 

The computation of HomR(M, N) where M and N are finitely gen
erated torsion R-modules over a PID R (Lemma 5.3) is also useful for 
some applications other than Theorem 5.13. We will give one such exam
ple. Suppose that V is a finite-dimensional vector space over a field F and 
T E EndF(V). The centralizer of T in the ring EndF(V) is 

G(T) = {U E EndF(V) : TU = UT}. 

Note that, according to Proposition 4.4.1, 

The F-algebra generated by T, namely, F[TJ, is certainly contained in the 
centralizer G(T). There is a theorem of Frobenius, which computes the 
dimension of G(T) over F. This result is an easy corollary of Lemma 5.3. 
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(5.15) Theorem. (Frobenius) Let F be a field, V a finite-dimensional vector 
space over F, and T E Endp(V). If h(X), ... , fk(X) (where fi(X) divides 
fHI (X) for 1 :<::; i :<::; k - 1) are the invariant factors of T, then 

k 

(5.13) dimpC(T) = Z)2k - 2i + 1) deg(/i(X)). 
i=l 

Proof. By Lemma 5.3, 

k k 

C(T) = Endp[xJ(VT) ~ EBEBF[Xl/(h(X), fj(X)). 
i=1 j=l 

But (fi(X), /j(X)) = (frnin{i,j}(X)), so 

k 

dimFC(T) = L degfrnin{i,j}(X). 
i,j=1 

But 

I{(i, j): 1:<::; i, j:<::; k and min{i, j} = t}1 = 2k- 2t+ 1, 

so 
k 

dimp C(T) = L(2k - 2t + 1) deg ft(X) 
t=1 

as required. o 

We have observed above that F[T] <;;; C(T). As a corollary of Frobe
nius's theorem, there is a simple criterion for when they are equal, i.e., a 
criterion for when every linear transformation that commutes with T is a 
polynomial in T. 

(5.16) Corollary. Let T E Endp(V). Then F[T] = C(T) if and only if 
mT(X) = CT(X), i.e., if and only if VT is a cyclic F[X]-module. 

Proof. First note that dimp F[T] = deg mT(X) and if {Ji(X)}f=l are the 
invariant factors of T, then mT(X) = h(X). By Equation (5.13) 

k 

dimp C(T) = L(2k - 2i + 1) deg fi(X) 
i=l 

k-l 

= dimp F[T] + L(2k - 2i + 1) deg h(X). 
i=l 

From this we see that C(T) = F[TJ if and only if k = 1, i.e., if and only if 
VT is a cyclic F[X]-module. 0 
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(5.17) Corollary. If T E EndF(V) then dimF C(T) ;?: n = dimF(V). 

Proof. Since n:=l fi(X) = CT(X), it follows that 

k k 

dimFC(T) = ~)2k - 2i + l)degfi(X);?: Ldegfi(X) = n. 
i=l i=l 

(5.18) Example. The Jordan matrix J>., n is cyclic, so 

o 

It is easily checked that a basis of F[J>., nl consists of the n matrices Ai = 
J~, n for 0 :S i :S n - 1. That is, a matrix A = [aij 1 commutes with J>., n if 
and only if it is upper triangular and constant on the lines parallel to the 
main diagonal. 

5.6 Exercises 

1. Compute a finite free presentation of the Z-module 

2. Compute two distinct finite free presentations of the R[X]-module (P3)D, 
where P3 denotes the real vector space of polynomials of degree at most 3 
and D E EndR('P3 ) is the differentiation map. 

3. Let M be an abelian group with three generators Vl, V2, and V3, subject to 
the relations 

2Vl - 4V2 - 2V3 = 0 
lOVl - 6V2 + 4V3 = 0 
6Vl - 12v2 - 6V3 = o. 

Assuming the matrix identity 

show that M s;< Z2 EEl Z14 EEl Z, and find new generators Wl, W2, and W3 such 
that 2Wl = 0, 14w2 = 0, and W3 has infinite order. 

4. Use Theorem 3.6.16 to give an alternative proof of Theorem 2.2. 
5. Construct a matrix A E GL(4, Z) with 

rowl(A) = [12 -10 9 8]. 

6. Construct a matrix A E GL(3, Q[Xj) with 
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coh(A) = [X(X -1) X2 X + If. 

7. Construct a matrix A E M3(Z[i]) with 

row2(A) = [1 - 2i 1 + 3i 3 - i] 

and with detA = 2 + i. 

8. :d:C: ea[!20f re ~ll]0::3::~ices to Hermite normal form: 

2 1 -1 

(b) B = [g 1 ~ X 22XX] E M3(Q[X]). 
2-X 0 0 

(c) c= [~=~ 3!i] EM2(Z[i]). 

9. Write the unimodular matrix 

[5 3 4] 
A = 3 1 3 E M3(Z) 

635 

as a product of elementary matrices. 

10. Let R = Z[A]. Show that no matrix [~ ~] with a = 2 and c = 1- A 
is left equivalent to a matrix in Hermite normal form. 

11. Same as Exercise 10 with R = Q[X2, X 3] and a = X 2, C = X3. 
12. Let R be a PID. Show that there is a one-to-one correspondence between 

the left ideals of Mn(R) and the R-submodules of M1,n(R). 

13. ~a7d[ T~:h ~1~ :Z~"",h ofth' full","ng =t,ire, 

(b) [122 164 68 ] E M3(Z). 
4 -4 8 

[
X(X-l)3 0 0] 

(c) 0 (X - 1) 0 E M 3 (Q[X]). 
o 0 X 

(d) [-=-V~ ~i -2f3t 2i] E M2(Z[i]). 

14. Find the invariant factors and elementary divisors of each of the following 
matrices: 
(a) 

[ g -4 ~ X 7 ;;X] E M3(Z5[X]). 
2+4X 5 0 

(b) diag(20, 18, 75,42) E M4(Z). 
(c) diag (X(X - 1)2, X(X _1)3, (X - 1), X). 

15. Let R be a PID and let A E Mm,n(R) with m < n. Extend Theorem 2.2 

by proving that there is a matrix B = [.11] E Mn(R) (so that A1 E 



16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 
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Mn-m,n(R)) such that det B is an associate of dm(A), the mth determinantal 
divisor of A. (Hint: First put A in Smith normal form.) 
Let S = {VI, ... ,vk} ~ Mn,l(R) where R is a PID. Show that S can 
be extended to a basis of Mn,l(R) if and only if dk(A) = 1, where 
A=[VI Vk]. 
Suppose that A E M3(Z) and detA = 210. Compute the Smith normal form 
of A. More generally, suppose that R is a PID and A E Mn(R) is a matrix 
such that det A is square-free. Then compute the Smith normal form of A. 
Let A E M n (Z) and assume that det A i= O. Then the inverse of A exists in 
Mn(Q), and by multiplying by a common denominator t of all the nonzero 
entries of A-I, we find that tA- 1 E Mn(Z). Show that the least positive 
integer t such that tA- 1 E Mn(Z) is t = ISn(A)1 where sn(A) is the nth 

invariant factor of A. 
Let A, B E Mn(Z) such that AB = kIn for some k i= O. Show that the 
invariant factors of A are divisors of k. 
Let R be a PID and let A E Mn(R), B E Mm(R). Show that the elementary 
divisors of A0B are the product of elementary divisors of A and of B. More 
precisely, if pT is an elementary divisor of A 0 B where pER is a prime, then 
pT = pkpl where pk is an elementary divisor of A and pI is an elementary 
divisor of B, and conversely, if pk is an elementary divisor of A and pI is an 
elementary divisor of B, then pHI is an elementary divisor of A 0 B. 
Let A E M4(F) where F is a field. If A has an invariant factor seX) of degree 
2 show that the Smith normal form of XI4 - A is diag(l, 1, seX), seX)). 
Conclude that cAlX) is a perfect square in F[X]. 
Find all integral solutions to the following systems AX = B of equations: 

(a) A = D 
(b) A = [~ 
(c) A= [~ 

-1 
o 
2 

-1 
o 

~] , 

01
] , 

-1 

19 30] 
14 22 ' 

B= 

B= 

B= 

Show that the matrices A = [~ 
similar. 
Show that the matrices 

[~ 
1 

~] 0 
4 

are similar in Ah(Z7). 
Show that the matrices 

[~ 
1 

~] 0 
0 

are similar in M3(Z3). 

[:] . 

[n· 
[~] . 

nand B = [ 16 
232 

-1 ] -15 in M 2 (Q) are 

[~ 
4 

~] and 4 
1 

[g 
1 n and 1 
0 

Find the characteristic polynomial, invariant factors, elementary divisors, 
rational canonical form, and Jordan canonical form (when possible) of each 
of the matrices from Exercise 73 of Chapter 4. Additionally, find bases of 
Qn with respect to which the matrix (or linear transformation) is in rational 
or Jordan canonical form. Do this exercise by reducing X In - A to Smith 
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canonical form and compare your results with the same calculations done in 
Chapter 4. 

27. Find an example of a unimodular matrix A E M3(Z) such that A is not 
similar to At. (Compare with Example 3.8.) 

28. Show that the matrix A = [2~ ~] is not equivalent in M2(Z[X]) to a 

diagonal matrix. (Hint: Use Fitting ideals.) 
29. Let zn have the standard basis {e1, ... , en} and let K ~ zn be the sub

module generated by Ji = 2:7=1 aijej where aij E Z and 1 ::; i ::; n. Let 
A = [aij] E Mn (Z) and let d = det A. Show that Z/ K is torsion if and only 
if detA = d#-O and if d#-O show that IZ/KI = IdI-

30. Suppose that an abelian group G has generators Xl, X2, and X3 subject to 
the relations Xl - 3X3 = 0 and Xl + 2X2 + 5X3 = O. Determine the invariant 
factors of G and IGI if G is finite. 

31. Suppose that an abelian group G has generators Xl, X2, and X3 subject to 
the relations 2X1 - X2 = 0, Xl - 3X2 = 0, and Xl + X2 + X3 = O. Determine 
the invariant factors of G and IGI if G is finite. 

32. Verify the claim of Example 5.1. 
33. Let F be a field and let A E Mn(F), B E Mm(F). Show that the matrix 

equation 
AX -XB =0 

for X E Mn,m(F) has only the trivial solution X = 0 if and only if the 
characteristic polynomials CA(X) and CB(X) are relatively prime in F[X]. 
In particular, if F is algebraically closed, this equation has only the trivial 
solution if and only if A and B have no eigenvalues in common. 

34. Let F be a field. Suppose that A = A1 Ell A2 E Mn(F) where A1 E Mk(F) 
and A2 E Mm(F) and assume that CAl (X) and CA2 (X) are relatively prime. 
Prove that if B E Mn(F) commutes with A, then B is also a direct sum 
B = B1 Ell B2 where B1 E Mk(F) and B2 E Mm(F). 

35. Let F be a field. Recall that C(f(X)) denotes the companion matrix of the 
monic polynomial J(X) E F[X]. If deg(f(X)) = nand deg(g(X)) = n, show 
that 

rank(C(f(X)) 0 1m - In 0 C(g(X))) = deg(lcm{J(X), g(X)}). 

36. Let V be a finite-dimensional vector space over a field F and let T E 
EndF(V). Prove that the center of C(T) is F[T]. 
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Bilinear and Quadratic Forms 

6.1 Duality 

Recall that if R is a commutative ring, then HomR(M, N) denotes the set 
of all R-module homomorphisms from M to N. It has the structure of an R
module by means of the operations (f + g)(x) = f(x) + g(x) and (af)(x) = 
a(f(x)) for all x E M, a E R. Moreover, if M = N then HomR(M, M) = 
EndR(M) is a ring under the multiplication (fg)(x) = f(g(x». An R
module A, which is also a ring, is called an R-algebra if it satisfies the 
extra axiom a(xy) = (ax)y = x(ay) for all x, yEA and a E R. Thus 
EndR(M) is an R-algebra. Recall (Theorem 3.4.11) that if M and N are 
finitely generated free R-modules (R a commutative ring) of rank m and n 
respectively, then HomR(M, N) is a free R-module of rank mn. 

In this section R will always denote a commutative ring so that 
HomR(M, N) will always have the structure of an R-module. 

(1.1) Definition. If M is an R-module, then HomR(M, R) is called the dual 
module of M and is denoted M* . 

(1.2) Remark. If M if free of rank n then M* = HomR(M, R) ~ Rn ~ M 
by Corollary 3.4.10. Note, however, that this isomorphism is obtained by 
choosing a basis of M* and M. One particular choice of basis for M* is 
the following, which is that described in the proof of Theorem 3.4.11 if the 
basis {I} is chosen for R. 

(1.3) Definition. If M is a free R-module and B = {Vb' .. ,vn} is a basis 
of M, then the dual basis of M* is defined by B* = {vi, ... ,v~} where 
vi E M* is defined by 

* () 1: {I if i = j 
Vi Vj = Uij = 0 if i =f. j. 

(1.4) Example. Let R = Z and M = Z2. Consider the basis B = {VI = 
(1,0), V2 = (0, I)}. Then vi(a, b) = a and v2(a, b) = b. Now consider the 
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basis C = {Wi = (1,1), W2 = (1,2)}. Then (a,b) = (2a - b)Wi + (b - a)w2 
so that wi ( a, b) = 2a - b and w~ (a, b) = b - a. Therefore, vi =f. wi and 
v~ =f. w~. Moreover, if V = {Ui = (1,0), U2 = (1, I)} then ui(a, b) = a - b 
and U2 (a, b) = b so that ui =f. vi even though Ui = Vi. The point is that 
an element vi in a dual basis depends on the entire basis and not just the 
single element Vi. 

(1.5) Proposition. Let M be a free R-module of finite rank n and let B = 
{ Vi, ... ,vn} be a basis of M. Then B* = {vi, ... ,v~} is a basis of M*. 

Proof. B* is the basis produced in the proof of Theorem 3.4.11. 0 

(1.6) Corollary. Let M be a free R-module of finite rank n and let B = 
{Vi, ... ,vn} be a basis of M. Then the map w ; M -+ M* defined by 

W(taiVi) = taivi 
i=i i=i 

is an R-module isomorphism. 

Proof. o 

The isomorphism given in Corollary 1.6 depends upon the choice of a 
basis of M. However, if we consider the double dual of M, the situation 
is much more intrinsic, i.e., it does not depend upon a choice of basis. Let 
M be any R-module. Then define the double dual of M, denoted M**, 
by M** = (M*)* = HomR(M*, R). There is a natural homomorphism 
'" ; M -+ M** = HomR(M*, R) defined by 

"'(V)(w) = w(v) 

for all v E M and wE M* = HomR(M, R). 

(1. 7) Theorem. If M is a free R-module, then the map", ; M -+ M** is 
injective. If rank( M) < 00 then", is an isomorphism. 

Proof. Suppose that v =f. 0 E M. Let B be a basis of M. If v = aivi + 
... + an Vn where ai =f. 0 and {Vi, . " ,Vn} ~ B, then we can define an 
element w E M* by w(vd = 1 and w(w) = 0 for all w =f. Vi E B. Then 
"'( v)(w) = w( ai Vi + ... + an Vn) = ai =f. O. Hence, '" is injective. 

Now suppose that rank(M) < 00 and let B = {Vb' .. ,vn } be a basis 
of M. Let B* = {vi, ... ,v~} be the dual basis of M* and let B** = 
{vi*, ... ,v~*} be the basis of M** dual to the basis B* of M*. We claim 
that ",(Vi) = vi* for 1 ~ i ~ n. To see this, note that 
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Since 17(Vi) and vt agree on a basis of M*, they are equal. Hence, 17(M) 2 
(vi*, ... ,v~*) = M** so that 17 is surjective, and hence, is an i:',,)morphism. 

D 

(1.8) Remark. For general R-modules M, the map 17 : M ---. M** need not 
be either injective or surjective. (See Example 1.9 below.) When 17 happens 
to be an isomorphism, the R-module M is said to be reflexive. According 
to Theorem 1.7, free R-modules of finite rank are reflexive. We shall prove 
below that finitely generated projective modules are also reflexive, but first 
some examples of nonreflexive modules are presented. 

(1.9) Examples. 

(1) Let R be a PID that is not a field and let M be any finitely generated 
nonzero torsion module over R. Then according to Exercise 9 of Chap
ter 3, M* = HomR(M, R) = (0). Thus, M** = (0) and the natural 
map 17 : M ---. M** is clearly not injective. 

(2) Let R = Q, and let M = EBnENQ be a vector space over Q of countably 
infinite dimension. Then M* ~ TInEN Q. Since 

M = EB Q <:: II Q, 
nEN nEN 

we see that M* ~ M EB M' where M' is a vector space complement of 
M = EBnENQ in M*. Then 

M** ~ M' EB (M')* 

so that M** contains a subspace isomorphic to M*. But EBnENQ is 
countably infinite, while the infinite product TInEN Q ~ M* is un
countable (the decimal representation identifies every real number with 
an element of TInEN Q). Therefore, 17 : M ---. M** cannot be surjective 
by cardinality consideration and we conclude that M is not a reflexive 
Q-module. 

Let Ml and M2 be R-modules and let M = M 1 EBM2. Then according to 
Corollary 3.3.13, M** ~ Mi* EBM2'. In order to study reflexivity for direct 
sums and summands, it is necessary to identify carefully this isomorphism. 
To this end, define 

by lJ!(w) = (Wl' W2), where Wi E Mt* is defined by wi(Bi ) = W(Bi 07l"i) 

for each Bi E Mt = HomR(Mi , R). 7l"i : Ml EB M2 ---. Mi is the canonical 
projection map. Similarly, define 
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by 
q,(W1, w2)(B) = w1(B 0 ~t) + w2(B 0 ~2) 

where B E (M1 EB M2)* and ~i : Mi ----+ M1 EB M2 is the canonical injection. 

(1.10) Lemma. \II and q, are inverse R-module homomorphisms. 

Proof. Let w E (M1 EB M2)** and let B E (M1 EB M2)*' Then 

and 

and 

q, 0 \II(w) (B) = q,(W1, w2)(B) 

= w1(B 0 ~1) + w2(B 0 ~2) 

= w(B 0 ~1 0 7l't) + w(B 0 ~2 07l'2) 

= w(B 0 ~1 07l'1 + B 0 ~2 07l'2) 

= w(B 0 (~1 07l'1 + ~2 07l'2)) 

= w(B 0 1M1EB M 2 ) 

= w(B), 

(\II 0 q,(Wl,W2))(B1,B2) = \II(q,(Wl,W2))(B1,B2) 

Therefore, 

= (q,(W1, w2)(B l 0 7l't), q,(Wl, w2)(B2 0 7l'2)) 

= (w1(Bl 0 7l'1 0 ~1),W2(B2 0 7l'2 0 ~2)) 

= (wl(Bd,W2(B2)) 

= (Wl,W2)(B1,B2). 

and the lemma is proved. o 

Now let 'f/i : Mi ----+ Mt* (i = 1,2) and'f/ : Ml EB M2 ----+ (Ml EB M2)** 
be the natural maps into the double duals. 

(1.11) Lemma. Using the notation introduced above, there is a commutative 
diagram 

Mi* EB M2* 

That is, 
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Proof. 

(('ljJ 0 1]) (VI, V2)) (WI, W2) = IIJ (1](Vl' V2)) (WI, W2) 

= (1](Vl' V2)(Wl 07l"d, 1](Vl' V2)(W2 071"2)) 

= ((WI 0 7I"l)(Vl, V2), (W2 0 7I"2)(Vl, V2)) 

= (wl(vd, W2(V2)) 

= ((1]1, 1]2)(Vl, V2)) (WI, W2). 

o 

(1.12) Lemma. (1) 1] : Ml EEl M2 ---> (Ml EEl M2)** is injective if and only if 
1]i : Mi ---> Mt* is injective for each i = 1, 2. 

(2) Ml EEl M2 is reflexive if and only if Ml and M2 are reflexive. 

Proof. Both results are immediate from Lemma 1.11 and the fact that IIJ is 
an isomorphism. 0 

(1.13) Proposition. If P is a projective R-module, then 1] : P ---> P** is 
injective. If P is also finitely generated, then P is reflexive. 

Proof. Since P is projective, there is an R-module P' such that PEEl P' ~ F 
where F is a free R-module (Theorem 3.5.1), and furthermore, if P is finitely 
generated, then F may be taken to have finite rank (Corollary 3.5.5). The 
result now follows from Lemma 1.12 and Theorem 1.7. 0 

The remainder of this section will be concerned with the relationship 
between submodules of an R-module M and submodules of the dual module 
M*. The best results are obtained when the ring R is a PID, and the 
module M is a finite rank free R-module. Thus, we will make the following 
convention for the rest of the current section. 

Convention. For the remainder of this section R will denote a PID and M 
will denote a free R-module of finite rank unless explicitly stated otherwise. 

(1.14) Definition. 

(1) If N is a submodule of M, then we define the hull of N, denoted 

Hull(N) = {x' EM: rx' E N for some r =I- 0 E R }. 

If A is a subset of M, then we define Hull(A) = Hull( (A)). 
(2) If A is a subset of M then define the annihilator of A to be the following 

subset of the dual module M* : 

K(A) = Ann(A) 

= {w E M* : Ker(w) :2 A} 

= {w E M* : w(x) = 0 for all x E A} 

t;;;M*. 
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(3) If B is a subset of M* then define the annihilator of B to be the 
following subset of M: 

K*(B) = Ann(B) 

(1.15) Remarks. 

= {x EM: w(x) = 0 for all WEB} 

r:;;;.M. 

(1) If N is a submodule of M, then M/ Hull(N) is torsion-free, so Hull(N) 
is always a complemented submodule (see Proposition 3.8.2); further
more, Hull(N) = N if and only M/N is torsion-free, i.e., N itself is 
complemented. In particular, if R is a field then Hull(N) = N for all 
subspaces of the vector space M. 

(2) If A is a subset of M, then the annihilator of A in the current context 
of duality, should not be confused with the annihilator of A as an 
ideal of R (see Definition 3.2.13). In fact, since M is a free R-module 
and R is a PID, the ideal theoretic annihilator of any subset of M is 
automatically (0). 

(3) Note that Ann(A) = Ann(Hull(A)). To see this note that w(ax') = 
o {o} aw(x') = O. But R has no zero divisors, so aw(x') = 0 if and only 
if w(x') = o. Also note that Ann(A) is a complemented submodule 
of M* for the same reason. Namely, aw(x) = 0 for all x E A and 
a i- 0 E R {o} w(x) = 0 for all x E A. 

(4) Similarly, Ann(B) = Ann(Hull(B)) and Ann(B) is a complemented 
submodule of M for any subset B r:;;;. M* . 

The concepts of annihilators of subsets of M and M* will be used to 
get a duality between submodules of M and M*. But since annihilators 
of subsets are complemented submodules, we see immediately that it is 
necessary to restrict any correspondence between submodules of M and 
M* to the set of complemented submodules. Thus, if M if a free R-module, 
then we will denote the set of all complemented submodules by C(M). The 
following result is a collection of straightforward properties of annihilators. 
The verifications are left as an exercise. 

(1.16) Proposition. Let M be a free R-module of finite rank, let A, AI, and 
A2 be subsets of M, and let B, B I , and B2 be subsets of M*. Then the 
following properties of annihilators are valid: 

(1) If Al r:;;;. A2, then K(Ad :2 K(A2). 
(2) K(A) = K(Hull(A)). 
(3) K(A) E C(M*). 
(4) K( {O}) = M* and K(M) = {O}. 
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(5) K*(K(A)):;2 A. 

(1*) If B1 C;;;; B 2, then K*(Bd :;2 K*(B2). 
(2*) K*(B) = K*(Hull(B)). 
(3*) K*(B) E C(M). 
(4*) K*({O}) = M and K*(M*) = {O}. 
(5*) K(K*(B)) :;2 B. 

Proof. Exercise. D 

The following result is true for any reflexive R-module (and not just 
finite rank free modules). Since the work is the same, we will state it in 
that context: 

(1.17) Lemma. Let Mbe a reflexive R-module and let "l : M ---t M** be 
the natural isomorphism. Then for every submodule T of M*, we have 
"l(K*(T)) = K(T) C;;;; M**. 

Proof. Let w E K(T). Then w = "l(x) for some x E M. For any t E T, 

t(x) = "l(x)(t) = w(t) = 0 

because wE K(T). Therefore, x E K*(T) by definition and hence K(T) C;;;; 

"l(K*(T)). 
Conversely, if x E K* (T) then 

0= t(x) = "l(x)(t) 

for any t E T so "l(x) E K(T) by definition. Thus, "l(K*(T)) C;;;; K(T), and 
the lemma is proved. D 

(1.18) Theorem. Let M be a free R-module of finite rank, let S be a com
plemented submodule of M, and let T be a complemented submodule of M* . 
Then 

rank(M) = rank(S) + rank(K(S)), 

and 

rank(M*) = rank(T) + rank(K*(T)). 

Proof. Let 8 1 = {V1' ... ,vd be a basis of S. Since S is complemented, it 
follows (Corollary 3.8.4) that 8 1 extends to a basis 

of M. Let 8* = {vi, ... ,v;;"} be the basis of M* dual to 8. If i :::; k and 
j > k then Vj(Vi) = o. Therefore, 
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If W E K(S), then we may write W = 2:7'=1 ajv;, and if 1 S; i S; k, then 

m 

0= W(Vi) = Lajvj(vi) = ai' 
j=l 

Therefore, W = 2:j:k+1 ajv;, and hence, 

K(S) = (Vk+1"" ,v;;') 

so that rank(K(S)) = m - k = rank(M) - rank(S). 
Similarly, 

rank(M*) = rank(T) + rank(K(T)) 

= rank(T) + rank(ry(K*(T))) 

= rank(T) + rank(K*(T)) 

where the last equality is valid because ry : M ~ M** is an isomorphism, 
and hence, it preserves ranks of submodules. 0 

(1.19) Theorem. Let M be a free R-module of finite rank. Then the function 

K : C(M) ~ C(M*) 

is a one-to-one correspondence with inverse K*. 

Proof. We claim that for every complemented submodule S <;;;; M and T <;;;; 

M*, we have 

K*(K(S)) = S 

and 

K(K*(T)) = T. 

We will prove the first of these equalities; the second is similar. 
First note the K*(K(S)) "2 S for every complemented submodule S <;;;; 

M by Proposition 1.16 (5), so Corollary 3.8.5 implies that it suffices to show 
that rank( K* (K (S))) = rank( S). But 

rank(S) = rank(M) - rank(K(S)) 

and 
rank(K(S)) = rank(M*) - rank(K*(K(S))) 

by Theorem 1.18. Since rank(M) = rank(M*), the result follows. 0 



6.1 Duality 349 

(1.20) Definition. If M and N are R-modules and f E HomR{M, N) then 
the adjoint of f is the function f* : N* --4 M* defined by f*(uJ) = w 0 f, 
that is, 

for all x E M. 

(1.21) Remarks. 

(f*{w»)(x) = w(f{x» 

(1) f*: N* --4 M* is an R-module homomorphism. 
(2) Ad: HomR(M, N) --4 HomR(N*, M*), defined by Ad(f) = f*, is an 

R-module homomorphism. 
(3) If M and N are free, Ker(f) is always a complemented submodule of 

M, but Im(f) need not be complemented. (See Proposition 3.8.7.) 

(1.22) Theorem. Let M and N be free R-modules of finite rank and let 
f E HomR(M, N). Then 

(1) Ann(Im(f» = Ker(f*) ~ N*, 
(2) rank(Im(f*» = rank(Im(f»), and 
(3) Im(f*) = Ann(Ker(f» ~ M* iflm(f*) is a complemented submodule 

ofM*. 

Proof. (1) Let w E N*. Then 

wE Ker(f*) # f*(w) = 0 

#wof=O 

#w(f(x» =0 VxEM 

# w{y) = 0 Vy E Im(f) 

# wE Ann(Im(f». 

(2) Since f* : N* --4 M*, Proposition 3.8.8 gives 

rank(N*) = rank(Im(f*» + rank(Ker(f*» 

while Theorem 1.18 shows 

rank(N) = rank(Im(f» + rank(Ann(Im(f»). 

Since rank(N) = rank(N*), (2) follows from (1). 
(3) Now let r E M*. Then 

r E Im(f*) # r = f*(w) for some w E N* 

# r(x) = w(f(x» "Ix E M. 

If x E Ker(f) then f(x) = 0, so w(f(x» = O. Therefore, r(x) = 0, and we 
conclude that r E Ann(Ker(f». Hence, Im(f*) ~ Ann(Ker(f». 

By Theorem 1.18 and part (2), 

rank(Ann(Ker(f») = rank(M) - rank(Ker(f» 

= rank(Im(f» = rank(Im(f*». 

Since Im(f*) is assumed to be complemented, we conclude that Im(f*) = 
Ann(Ker(f». 0 



350 Chapter 6. Bilinear and Quadratic Forms 

(1.23) Corollary. Let F be a field, let V and W be finite-dimensional vector 
spaces over F, and let f E HomF(V, W). Then 

(1) f is injective if and only if f* is surjective; 
(2) f is surjective if and only if f* is injective; and 
(3) f is an isomorphism if and only if f* is an isomorphism. 

Proof· D 

(1.24) Proposition. Let M and N be free R-modules of finite rank with bases 
Band C, respectively, and let f E HomR(M, N). Then 

Proof. Let B = {V;}i=l and C = {Wj}~l' If A = [aij] 

[bij ] = [f*m:, then by definition 

[f]g and B = 

and 

But then 

m 

f( Vj) = 2: akjWk 

k=l 

n 

f*(w;) = 2: bkiVk' 
k=l 

aij = w;U(Vj)) 
= (w; 0 f)(Vj) 

= U*(w;))(Vj) 
= bji . 

6.2 Bilinear and Sesquilinear Forms 

D 

In this section we present an introduction to an important branch of math
ematics that is the subject of much study. Throughout this section R will 
be a commutative ring with 1 and all R-modules will be free. 

(2.1) Definition. A conjugation on R is a function c : R -+ R satisfying 

(1) c(c(r)) = r for all r E R; 
(2) c(rl + r2) = c(rd + c(r2) for all rl, r2 E R; and 
(3) c(rlr2) = c(rt}c(r2) for all rl, r2 E R. 
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That is, a nontrivial conjugation of R is a ring automorphism, which has 
order 2 as an element of the group Aut(R). 

(2.2) Examples. 

(1) Every ring has the trivial conjugation c(r) = r. Since Aut(Q) = {IQ}, 
it follows that the trivial conjugation is the only one on Q. The same 
is true for the ring Z. 

(2) The field C has the conjugation c(z) = z, where the right-hand side 
is complex conjugation. (This is where the name "conjugation" for a 
function c as above comes from.) 

(3) The field Q[v'd] and the ring Z[v'd] (where d is not a square) both 
have the conjugation c( a + bVd) = a - bVd. 

Because of Example 2.2 (2), we will write r, instead of c(r), to denote 
conjugation. 

(2.3) Definition. Let M be a free R-module. A bilinear form on M is a 
function ¢ : M x M -+ R satisfying 

(1) ¢(rlxl + r2X2, y) = rl¢(xb y) + r2¢(x2, Y), and 
(2) ¢(x, rlYl + r2Y2) = rl¢(x, Yl) + r2¢(x, Y2) 

for all Xl, X2, Yl, Y2 EM, and rl, r2 E R. 
A sesquilinear form on M is a function ¢ : M x M -+ R satisfying (1) 

and 

(2") ¢(x, rlYl + r2Y2) = rl¢(x, yd + r2¢(x, Y2) 

for a nontrivial conjugation r 1---+ r on R. 

Observe that this notion is a generalization of the notion of inner prod
uct space that we considered in Section 4.6. Some (but not all) authors use 
the term "inner product space" to refer to this more general situation. 
(Strictly speaking, in the second part of the definition we should say that ¢ 
is sesquilinear with respect to the given conjugation, but we shall assume 
that we have chosen a particular conjugation and use it throughout.) 

(2.4) Definition. Let R be a ring with conjugation and let M and N be 
R-modules. A map! : M -+ N is called an antihomomorphism if 

!(rlml + r2m2) = rl!(ml) + r2!(m2) 

We observed in Section 6.1 that there is no canonical isomorphism 
from M to its dual module M*j however, a bilinear form produces for us a 
canonical map, and, conversely, a map produces a canonical form. (Here we 
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do not necessarily have isomorphisms, but we shall investigate this point 
shortly.) 

(2.5) Proposition. 

(1) Let ¢ be a bilinear (resp., sesquilinear) form on M. Then o:</> 
M ---> M*, defined by 

o:</>(y)(x) = ¢(x, y) 

is an R-homomorphism (resp., R-antihomomorphism). 
(2) Let 0: : M ---> M* be an R-homomorphism (resp., R-antihomo

morphism). Then ¢o. : M x M ---> R, defined by 

¢o.(x, y) = o:(y)(x) 

is a bilinear (resp., sesquilinear) form on M. 

Proof. Exercise. o 

(2.6) Examples. 

(1) Fix s E R. Then ¢(r1, r2) = r1sr2 (resp., = r1sT2) is a bi- (resp., 
sesqui-) linear form on R. 

(2) ¢(x, y) = xty is a bilinear form on Mn,l(R), and ¢(x, y) = xty is a 
sesquilinear form on Mn ,l(R). Note that y is obtained from y by entry 
by entry conjugation. 

(3) More generally, for any A E Mn(R), ¢(x, y) = xtAy is a bilinear form, 
and ¢(x, y) = xtAy is a sesquilinear form on M n,l(R). 

(4) Let M = Mn,m(R). Then ¢(A, B) = Tr(AtB) (resp., ¢(A, B) = 
Tr(AtB)) is a bi- (resp., sesqui-) linear form on M. 

(5) Let M be the space of continuous real- (resp., complex-) valued func
tions on [0, 1]. Then 

¢U, g) = 11 f(x)g(x) dx 

is a bilinear form on the R- (resp., C-) module M. If M is the space 
of continuous complex-valued functions on [0, 1], then 

¢U, g) = 11 f(x)g(x) dx 

is a sesquilinear form on the C-module M. 

We will often have occasion to state theorems that apply to both bi
linear and sesquilinear forms. We thus, for convenience, adopt the language 
that ¢ is a bls-linear form means ¢ is a bilinear or sesquilinear form. Also, 
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the theorems will often have a common proof for both cases. We will then 
write the proof for the sesquilinear case, from which the proof for the bi
linear case follows by taking the conjugation to be trivial (i.e., r = r for all 
r E R). 

We will start our analysis by introducing the appropriate equivalence 
relation on bls-linear forms. 

(2.7) Definition. Let 4>1 and 4>2 be bls-linear forms on free R-modules Ml 
and M2 respectively. Then 4>1 and 4>2 are isometric if there is an R-module 
isomorphism f : Ml ~ M2 with 

for all x, y E MI. 

(If there is no danger of confusion, we will call Ml and M2 isometric.) The 
map f is called an isometry. 

Our object in this section will be to derive some general facts about 
bls-linear forms, to derive canonical forms for them, and to classify them 
up to isometry in favorable cases. Later on we will introduce the related 
notion of a quadratic form and investigate it. We begin by considering the 
matrix representation of a b/s-linear form with respect to a given basis. 

(2.8) Definition. Let M be a free R-module of rank n with basis B = 
{Vb'" ,vn } and 4> a bls-linear form on M. Define the matrix of 4> with 
respect to the basis B, denoted [4>]8, by 

1 ~ i, j ~ n. 

(2.9) Proposition. (1) Let M be a free R-module of rank n with basis Band 
let 4> be a bilinear form on M. Then for any x, y EM, 

(2.1) 

(2) If 4> is a sesquilinear form on M and x, y E M, then 

(2.2) 

Proof. Just as a linear transformation is determined by its values on a basis, 
a b/s-linear form is determined by its values on pairs of basis elements. 
According to Example 2.6 (3), the right-hand sides of equations (2.1) and 
(2.2) define such forms, and the two sides clearly agree on each pair (Vi, V j) . 

o 

(2.10) Definition. If M is a free R-module, then we will denote the set of 
all bilinear forms on M by Bilin(M) , and if R has a conjugation, then we 
will denote the set of all sesquilinear forms on M by Seslin(M). Each of 
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these sets is an R-module in a natural way, i. e., via addition and scalar 
multiplication of R-valued functions. 

(2.11) Corollary. Let M be a free R-module of rank n. Then there are R
module isomurphisms 

(2.3) Bilin(M) ~ Mn(R) 

and 

(2.4) Seslin(M) ~ Mn(R) 

given by 

where B is any basis of M. 

Proof. Proposition 2.9 gives a bijection, and it is easy to check that it is a 
homomorphism (in both cases). 0 

(2.12) Remarks. 

(1) Note that this corollary says that, in the case of a free module of finite 
rank, all forms arise as in Example 2.6 (3). 

(2) We have now seen matrices arise in several ways: as the matrices of 
linear transformations, as the matrices of bilinear forms, and as the 
matrices of sesquilinear forms. It is important to keep these different 
roles distinct, though as we shall see below, they are closely related. 

One obvious question is how the matrices of a given form with respect 
to different bases are related. This is easy to answer. 

(2.13) Theorem. Let ¢ be a bls-linear form on the free R-module M of rank 
n. Let Band C be two bases for M. If P = pffi is the change of basis matrix 
from C to B, then 

(2.5) 

Proof. By definition, [¢Jc is the unique matrix with 

¢(x, y) = [x]2[¢]c[YJc. 

But, also, 
¢(x, y) = [X]h[¢]B[Y]B, 

and if P =~, then Proposition 4.3.1 gives 

[X]B = P[xJc and [Y]B = P[yJc. 

Thus, 
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yielding the theorem. 

¢(x, y) = (P[xlc)t [¢lB (P[Yle) 

= [xl2 (pt[¢lBP) [Yle 

o 

(2.14) Remark. Note that the matrix P is nonsingular (Proposition 4.3.1) 
and that every nonsingular matrix arises in this way (Proposition 4.3.2). 
The relation A f'V B if A and B are matrices of the same b/s-linear form 
with respect to different bases is clearly an equivalence relation, and the 
above theorem states that this equivalence relation is given by A f'V B if and 
only if A = pt BP for some invertible matrix P. In the case of a bilinear 
form, this relation becomes A = pt BP and is known as congruence. There 
is no generally accepted name in the sesquilinear case; we shall refer to it as 
conjugate congruence. Note that this relation is completely different from 
the relation of similarity. 

(2.15) Remark. We shall often have occasion to speak of det(¢) in this 
section. By this, we mean det(A), where A is the matrix of ¢ in some basis. 
Note that this is well defined up to multiplication by a unit of R of the form 
rr, for if B is the matrix of ¢ in a different basis, then B = pt AP, for some 
invertible matrix P. Then det(B) = rrdet(A) where det(P) = r is a unit, 
and for any r we may find such a matrix P, e.g., P = diag(r, 1, 1, ... ). 

On the other hand, this observation gives an invariant of a bls-linear 
form: If ¢i and ¢2 are two forms with the equation det(¢t} = rrdet(¢2) 
having no solution for r a unit in R, then ¢i and ¢2 are not isometric. 

(2.16) Lemma. Let M be a free R-module of mnk nand ¢ a bls-linear 
form on M. Let B be a basis of M and B* the dual basis of M*. Then 
[¢lB = [a",lg.· 

Proof. Let B = {Vb'" ,Vn }. We claim that 

n 

a",(Vj) = L ¢(Vi' Vj)V;' 
i=i 

In order to see that this is true we need only check that a",(Vj)(Vk) 
¢(Vk' Vj), which is immediate from the definition of a", (see Proposition 
2.5). Then from the definition of A = [a",lg. (Definition 4.3.3), we see that 
A is the matrix with entij(A) = ¢(Vi' Vj), and this is precisely the definition 
of [¢]B (Definition 2.8). 0 

We shall restrict the forms we wish to consider. 

(2.17) Definition. Let M be a free R-module. 
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(1) A bilinear form ¢ on M is said to be symmetric if ¢(x, y) = ¢(y, x) 
for all x, y EM. 

(2) A bilinear form ¢ on M is said to be skew-symmetric if ¢(x, y) = 
-¢(y, x) for every x, y E M, and ¢(x, x) = 0 for every x E M. 

(3) A sesquiiinear form ¢ on M is said to be Hermitian if¢(x, y) = ¢(y, x) 
for every x, y E M. 

(4) If 2 is not a zero divisor in the ring R, then a sesquilinear form ¢ 
on M is said to be skew-Hermitian if ¢(x, y) = -¢(y, x) for every x, 
yEM. 

(2.18) Remarks. 

(1) We do not define skew-Hermitian if 2 divides 0 in R. 
(2) Let ¢ be a b/s-linear form on M and let A be the matrix of ¢ (with 

respect to any basis). Then the conditions on ¢ in Definition 2.17 
correspond to the following conditions on A: 

(a) ¢ is symmetric if and only if At = Aj 
(b) ¢ is skew-symmetric if and only if At = -A and all the diagonal 

entries of A are zeroj 
(c) ¢ is Hermitian if and only if A =I- A and At = Aj and 
(d) ¢ is skew-Hermitian if and only if A =I- A and At = -A (and hence 

every diagonal entry of A satisfies a = -a). 
(3) In practice, most forms that arise are one of these four types. 

We introduce a bit of terminological shorthand. A symmetric bilinear 
form will be called (+ 1 )-symmetric and a skew-symmetric bilinear form 
will be called (-1 )-symmetricj when we wish to consider both possibilities 
simultaneously we will refer to the form as c-symmetric. Similar language 
applies with c-Hermitian. When we wish to consider a form that is ei
ther symmetric (bilinear) or Hermitian (sesquilinear) we will refer to it 
as (+ 1 )-symmetric b Is-linear, with a similar definition for (-I)-symmetric 
b Is-linear. When we wish to consider all four cases at once we will refer to 
an c-symmetric b/s-linear form. 

(2.19) Definition. The c-symmetric bls-linear form ¢ is called non-singular 
if the map 0.<1> : M --+ M* is bijective. It is called non-degenerate if 0.<1> : 

M --+ M* is injective. Note that if R is a field and M has finite rank, then 
these notions are equivalent. 

(2.20) Proposition. Let V be a finite-dimensional vector space over a field F, 
and let ¢ be an c-symmetric bls-linear form on V. Then ¢ is non-singular 
if and only if it is non-degenerate, which is the case if and only if, for every 
y =I- 0 E V, there is an x E V with 

o.q,(Y)(x) = ¢(x, y) =I- o. 
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Proof. Since at/> is a homomorphism (or antihomomorphism) between vector 
spaces of the same dimension, in order to show that it is an isomorphism (or 
antiisomorphism) we need only show that it is injective, i.e., that Ker(at/» =1= 

(O). But 

Ker(at/» = {y E V : aq,(Y)(x) = rfJ(x, y) = 0 for every x E V}. 

o 

To give a criterion for non-singularity over a ring, we need to use the 
matrix representation of a form. 

(2.21) Theorem. Let M be a free R-module of finite rank, and let rfJ be an 
e-symmetric bls-linear form on M. 

(1) The form rfJ is non-singular if and only if in some (and hence in every) 
basis B of M, det([rfJ]s) is a unit in R. 

(2) The form rfJ is non-degenerate if and only if in some (and hence in 
every) basis B of M, det([rfJ]s) is not a zero divisor in R. 

Proof. This follows immediately from Lemma 2.16 and Proposition 4.3.17. 
o 

Note that if N is any submodule of M, the restriction rfJN = rfJlN of 
any e-symmetric bls-linear form on M to N is an e-symmetric bls-linear 
form on N. However, the restriction of a non-singular bls-linear form is 
not necessarily non-singular. For example, let rfJ be the bls-linear form on 
M 2,I(R) with matrix [~~]. If NI = ([~]) and N2 = ([~]), then rfJIN1 is 
non-singular, but rfJIN2 is singular and, indeed, degenerate. 

The following is standard terminology: 

(2.22) Definition. Let rfJ be an e-symmetric bls-linear form on M. A sub
module N ~ M is totally isotropic if rfJlN is identically zero. 

Thus, in the above example, N2 is a totally isotropic subspace of M. 
Recall that in studying free modules, we found it useful to decompose 

them into direct sums, and in studying a vector space with a linear trans
formation, we found it useful to decompose it into a direct sum of invariant 
subspaces. There is an analogous, and similarly useful notion in our present 
context, which we now introduce. 

(2.23) Definition. Let rfJ be an e-symmetric bls-linear form on M. 

(1) Two submodules NI and N2 of M are orthogonal if rfJ(nl, n2) = 0 for 
every nl E N I, n2 E N 2. 

(2) M is the orthogonal direct sum of two submodules NI and N 2, written 
M = NI .1. N 2, if M = NI ffi N2 and NI and N2 are orthogonal. 
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(2.24) Remark. Let N1 have a basis Bb N2 a basis B2, and let M = N1 (fJN2, 
in which case B = B1 U B2 is a basis of M. Then M = N1 1. N2 if and only 
if 

[¢]B = [~ ~]. 
Conversely, if [¢]B is of this form, and if N1 (resp., N 2) denotes the span of 
B1 (resp., B2), then M = N1 1. N 2. In this case we will also say ¢ = ¢1 1. ¢2 
where ¢i = ¢IMi • 

(2.25) Definition. Let ¢ be an c-symmetric b/s-linear form on M. The kernel 
of ¢, denoted MO = MO(¢) ~ M, is defined to be 

MO = Ker(a",) = {y EM: ¢(x, y) = 0 for all x EM}. 

As a first step in studying forms, we have the following decomposition: 

(2.26) Proposition. Let M be a finite mnk free module over a PID R, and let 
¢ be an c-symmetric b/s-linear form on M. Then ¢ is isometric to ¢o 1. ¢1 
defined on MO 1. M 1, where ¢o is identically zero on MO and ¢1 is non
degenemte on M 1. Furthermore, ¢o and ¢1 are uniquely determined up to 
isometry. 

Proof. Note that MO is a pure submodule of M (since it is the kernel of a 
homomorphism (Proposition 3.8.7)) and so it is complemented. Choose a 
complement M 1. Then M1 is free and M ~ M°(fJM1. We let ¢o = ¢IMo and 
¢1 = ¢IM, . Of course MO and M1 are orthogonal since MO is orthogonal 
to all of M, so we have M = MO 1. M1 with ¢ = ¢o 1. ¢1. Also, if 
m1 E M1 with ¢1 (m~, m1) = 0 for all m~ E Mb then ¢( m, md = 0 for all 
mE M, i.e., m1 E MO. Since M = MO (fJ M 1, MO n M1 = (0) and so ¢1 is 
non-degenerate. 

The construction in the above paragraph is well defined except for the 
choice of M 1. We now show that different choices of M1 produce isometric 
forms. Let rr : M --+ M I MO = M'. Then M' has a form ¢' defined as 
follows: If x', y' EM', choose x, y E M with rr(x) = x' and rr(y) = y'. 
Set ¢'(x', y') = ¢(x, y), and note that this is independent of the choice 
of x and y. But now note that regardless of the choice of M 1 , not only is 
rrlMl : M1 --+ M' an isomorphism, but is in fact an isometry between ¢1 
and ¢'. 0 

The effect of this proposition is to reduce the problem of classifying 
c-symmetric b/s-linear forms to that of classifying non-degenerate ones. It 
also says that the following definition does indeed give an invariant of such 
a form. 

(2.27) Definition. Let ¢ be an c-symmetric b/s-linear form on a finite mnk 
free module M over a PID R. If ¢ is isometric to ¢o 1. ¢1 with ¢o identically 
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zero and ¢l non-degenerate on M 1, then ¢l is called the non-degenerate 
part of ¢ and we set rank(¢) = rank(MI)' 

(2.28) Example. Let ¢ be the symmetric bilinear form on M = M3,I(Z) 
with matrix (with respect to the standard basis) 

A = [-;'1 !3 =~]. 
-1 -1 -3 

Then det(A) = 0, so ¢ is degenerate. Routine computation shows that 
Ker(a",) = {X EM: AX = O} is the rank 1 subspace spanned by VI = 
(2, 1, _1)t. Note that 

[ 2 1 0] 
det 1 0 1 = 1 

-1 0 0 

so that VI, V2 = [1 0 0]\ and V3 = [0 1 O]t form a basis B for M. 
Then we let MI be the submodule spanned by V2 and V3' The matrix of ¢l 
in this basis is 

and 

(2.29) Definition. Let ¢ be an c-symmetric bls-linear form on M and let 
N be a submodule of M. Then N 1-, the orthogonal complement of N, is 
defined to be 

N1- = {x EM: ¢(x, y) = 0 for all YEN}. 

(2.30) Examples. 

(1) M1- = MO. 
(2) If N ~ M O , then N1- = M. 
(3) Let ¢ be the b/s-linear form on M2,1 (R) whose matrix with respect to 

the standard basis is 

(a) [~ n; 
(b) [i ~]; 
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(c) [~ ~ land 

(d) [~ ~]. 
Let NI = ([ ~]) and N2 = ([ ~] ). Then in the above cases we have 

(a) Nt = N2, Nt = N I , M = NI .1 Nt, M = N2.l Nt; 

(b) Nt = ([ !2])' Nt = M, M = Hull(NI.l Nt); 

(c) Nt = N I , Nt = N2; 
(d) Nt = N2, Nt = M, M = NI .1 Nt. 

(2.31) Lemma. Let N be a submodule of M and suppose that ¢>IN is non
degenemte. Then N n N.L = (0). Conversely, if N n N.L = (0), then ¢>I N is 
non-degenemte. 

Proof. If'ljJ = ¢>IN, then 

(2.6) N n N.L = Ker( CY'I/,). 

The result follows immediately from Equation (2.6). o 

(2.32) Proposition. Let R be a PID, ¢> an c-symmetric b/ s-linear form 
on a free R-module M, and N ~ M a submodule of finite mnk. If ¢>IN is 
non-degenemte, then M = Hull(N .1 N.L). If ¢>IN is non-singular, then 
M=N.lN.L. 

Proof. Let 'ljJ = ¢>IN. If m E M, then fm : N -t R, defined by fm(n) = 
¢>( n, m), is an R-module homomorphism, i.e., f E N*. Since CY,p is assumed 
to be injective, it follows that Im( CY1/J) is a submodule of N* of rank n 
where n = rank(N) = rank(N*). Thus, N* /Im(CY1/J) is a torsion R-module 
by Proposition 4.3.11, and hence there are r E R and no E N such that 
r f m = CY1/J (no); in case CY1/J is an isomorphism, we may take r = 1. If ml = 
rm - no, then for every n EN, we have 

¢>(n, ml) = ¢>(n, rm - no) 

= r¢>(n, m) - ¢>(n, no) 

= rfm(n) - CY1/J(no)(n) 

=0, 

i.e., ml E N.L. Thus, rm = no + ml, where no EN, and ml E N.L. Thus, 
M = Hull(N+N.L) (or M = N+N.L ifr = 1). But NnN.L = (0) by 
Lemma 2.31, yielding the proposition. 0 

(2.33) Remark. Note that in Lemma 2.31 and Proposition 2.32 there is no 
restriction on ¢>, just on ¢>IN. The reader should reexamine Examples 2.30 
in light of the above lemma and proposition. 
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(2.34) Corollary. Let R be a PID and M a free R-module of finite rank. Let 
N be a pure submodule of M with ¢IN and ¢IN.!. both non-singular. Then 

Proof. We have M = N ..1 N.L = (N.L).L ..1 N.L. But it is easy to check 

that (N.L).L ;2 N, so they are equal. 0 

Now, a bit of obvious notation: n¢ denotes ¢ ..1 ..1 ¢ (where there 
are n summands). We now come to the first classification result. Note that 
it suffices to classify non-degenerate forms. 

(2.35) Theorem. Let R be a PID, and let ¢ be a non-degenerate skew
symmetric bilinear form on a free R-module M of finite rank. Then ¢ is 
classified up to isometry by M* /Im(Q.p), a torsion R-module. Both M and 
M* /Im(Q.p) have even rank, say 2n and 2k respectively. The invariant 
factors of M* / Im(Q.p) are of the form 

Furthermore, ¢ is isometric to 

(n _ k) [0 1]..1 [0 el]..l [ 0 
-1 0 -el 0 -e2 

e2 ] ..1 ... ..1 [0 ek ] • o -ek 0 

Proof. Let rank(M) = rank(M*) = m. Then Q = M* / Im(Q.p) is a torsion 
R-module of rank q, and hence it is determined by its invariant factors. We 
will write the invariant factors of the submodule Im(Q.p) as /1, 12, ... , fm 
where /1 = ... = fm-q = 1, fm-q+1 # 1 and fi I fHI for m-q+1 :::; i < m. 
(See Proposition 3.6.23.) It is evident then that Q ~ EB:'I R/ fiR. 

Clearly, M* /Im(Q.p) is an invariant of the isometry class of ¢. We need 
to show, conversely, that this determines ¢, or in other words, that the 
sequence /1,12, ... , fm determines ¢. In fact, we will show this by showing 
that ¢ is isometric to the form given in the statement of the theorem, with 
m = 2n, q = 2k, and 

The proof is by induction on the rank of M. If rank(M) = 1, then the 
only possible skew-symmetric form on M is [0], which is degenerate, and 
hence this case is excluded. If rank(M) = 2, then ¢ must have a matrix in 

some (and, hence, in any) basis of the form [~e ~], and so the theorem is 
true in this case also. 

Now for the inductive step. Assume the theorem is true for all free 
R-modules of rank less than m. By Proposition 3.6.23, we may choose a 
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basis {WI, ... ,wm } of M* such that {hWI, ... ,fmwm} is a basis of the 
submodule Im(a¢). Since h I hi .. · I fm, we see that Im(a¢) ~ hM*, 
i.e., ¢(VI' V2) is divisible by h for every VI, V2 E M. Let Xl, ... , Xm be the 
dual basis of M, that is, Wi(Xj) = Oij' Let YI EM with a¢(Yd = hWI. If 
aXI + byl = 0, then 

0= ¢(XI' aXI + byd 

= a¢(xI' xd + b¢(XI' YI) 

= bfI. 

Thus, b = 0 and hence a = 0 also. Thus, {Xl, YI} is linearly independent. 
Let N be the submodule of M with basis B = {Xl, yd. If 1/J = ¢IN, then 1/J 
has the matrix 

[1/JJB = [-~l ~]. 
Note that N is a pure submodule. To see this, suppose az = bXI +CYI where 
a, b, C E R; by cancelling common factors we can assume that gcd {a, b, c} = 
1. Then ¢(XI' az) = ¢(XI' bXI + cyd = ch, while ¢(XI' az) = a¢(x, z) = 
adh since ¢(VI' V2) is divisible by h for all VI, V2 EM. Thus, ad = c, i.e., 
a I c. 

A similar computation with ¢(YI' az) shows that a I b, so a is a common 
divisor of a, b, and c, i.e., a is a unit and zEN. By Proposition 2.32, 
M = Hull(N ~ N-L). But, in fact, M = N ~ N-L. To see this, let us 
consider the form ¢' defined by 

¢'(VI' V2) = fll¢(vl' V2). 

Then N -L is also the orthogonal complement of N with respect to ¢' and 
¢'IN is non-singular, so M = N ~ N-L, i.e., ¢ = 1/J ~ ¢l with ¢l = ¢INL 

Note that N* jlm(a,p) has "invariant factors" (in the above sense) 
hand h, so we see that h = h. Then the "invariant factors" of 
(N-L)* j Im(a¢,) are 13, ... , fm' and the theorem follows by induction. 0 

(2.36) Corollary. Let R be a PID, and let ¢ be a non-singular skew
symmetric bilinear form on a free R-module M of finite rank. Then 
rank(M) = 2n is even, and ¢ is isometric to 

Proof. o 

Remark. Recall that over a field, ¢ is non-degenerate if and only if it is 
non-singular, so Corollary 2.36 classifies skew symmetric forms over a field. 
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(2.37) Examples. 

(1) Consider the skew-symmetric bilinear form ¢ over Z with matrix 

[ 0 2 0 -2] 
= -2 0 -2 -8 

A 0 2 0 4 . 
2 8 -4 0 

According to the theory, to classify ¢ we need to find the "invariant 
factors" of Z4 / AZ4. To do this, we apply elementary row operations: 

[ i2 
2 0 -2] 0 -2 -8 
2 0 4 
8 -4 0 

[ ~2 2 0 -2] 0 -2 -8 
---to 2 0 4 

0 8 -6 -8 

[ ~2 2 0 -2] 0 -2 -8 ---to 0 0 6 
0 0 -6 0 

from which we see that the invariant factors are (2, 2, 6, 6) and, hence, 
that ¢ is isometric to 

(2) Let A be any invertible n x n skew-symmetric matrix over a field F, 
i.e., At = -A and the diagonal entries are O. Then A is the matrix of 
a non-singular skew-symmetric form over F, and hence, pt AP = mJ 

where m = n/2 and J = [~1 ~]. Then 

det(A)(det(p))2 = det(nJ) = l. 

In particular, det(A) is a square in F. Now let R = Z[Yj where Y = 
{Xij : 1 ~ i < j ~ n}, that is, R is the polynomial ring over Z in 
the (;) indeterminates Xij for 1 ~ i < j ~ n. Let F = Q(Y) be the 
quotient field of R and let A E Mn(F) be the skew-symmetric matrix 
with entij = Xij for 1 ~ i < j ~ n, entij = -Xji for 1 ~ j < i ~ n, 
and entii = o. Then det(A) = P(Xij)2 for some element P(Xij ) E F. 
But R is a UFD, and hence, the equation Z2 = det(A) has a solution 
in F if and only if it has a solution in R. Thus, P(Xij ) E R, and since 
P(Xij ) is a root of a quadratic equation, there are two possibilities for 
the solution. We choose the solution as follows. Choose integers Xij so 
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that the evaluation of the matrix A at the integers Xij gives the matrix 
mJ. Then choose P(Xij ) so that the polynomial evaluation P(Xij) = 
det(mJ) = 1. Then we will call the polynomial P(Xij ) E Z[Xij ] the 
generic Pfaflian and we will denote it Pf(A). 
If S is any commutative ring with identity, then the evaluation Xij f--t 

bij induces a ring homomorphism 

Under this homomorphism, the generic skew-symmetric matrix A is 
sent to the skew-symmetric matrix B = [bijJ. Since determinants 
commute with ring homomorphisms, we find 

We conclude that the determinant of every skew-symmetric matrix 
over any commutative ring is a square in the ring, and moreover, the 
square root can be chosen in a canonical manner via the Pfaffian. 

(2.38) Remark. The case of skew-Hermitian sesquilinear forms is quite dif
ferent. For example, the form [iJ (i refers to the complex number i) is a 
non-singular form over C (or over the PID Z[iJ), a module of odd rank. 
Also, consider the following two non-singular forms: 

[ i 0] <Pl = 0 i [ i 0] 
<P2 = 0 -i . 

We leave it to the reader to check the following facts: 

(1) <Pl and <P2 are not isometric. 

(2) <Pl is not isometric to any form with matrix [~z ~]. 
(3) <P2 is not isometric to [~l ~] over Z[iJ, but is isometric to it over C. 

We shall not discuss these forms any further. 

Now we come to the case of symmetric bilinear or Hermitian sesquilin
ear forms. 

(2.39) Definition. A (+l)-symmetric bls-linear form <p on an R-module M 
is called diagonalizable if <p is isometric to the form 

for some elements al, a2, ... , an E R. Here [ad denotes the form on 
R whose matrix is [ail, i.e., the form <p(r1, r2) = rlaiT2. (The terminol
ogy "diagonalizable" is used because in the obvious basis <p has the matrix 
diag(al, a2, ... ,an).) 
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Note that the notion of diagonalizability for a form is quite different 
than the notion of diagonalizability for a linear transformation; in terms of 
matrices, a form 4> is diagonalizable if its matrix is (conjugate )-congruent 
to a diagonal matrix, while a linear transformation is diagonalizable if its 
matrix is similar to a diagonal matrix. 

(2.40) Definition. A symmetric bilinear form 4> on a module M over a ring 
R is called even if 4>(x, x) E 2R for every x E M. If 4> is not even, it is 
called odd. 

Here, 2R denotes the principal ideal of R generated by 2. Note that if 
2 is a unit in R, then every form over R is even. 

(2.41) Lemma. A symmetric bilinear form 4> on a module M is even if and 
only if for some (and hence for every) basis B = {vihEI of M, 4>(Vi' Vi) E 
2R for every i E I. 

Proof. Since 4> is symmetric, it follows that 

4>(x + y, x + y) = 4>(x, x) + 4>(x, y) + 4>(y, x) + 4>(y, y) 

= 4>(x, x) + 24>(x, y) + 4>(y, y) 

for any x, y E M. Given this observation, the rest of the proof is left to the 
reader. 0 

(2.42) Theorem. Let 4> be a non-singular (+l)-symmetric bls-linear form on 
a module M of finite rank over a field R. If char(R) = 2 and 4> is symmetric 
bilinear, assume also that 4> is odd. Then 4> is diagonalizable. 

Proof. We prove this by induction on rank(M). If rank(M) = 1, then 4> = 
raj, and there is nothing to prove. Thus, suppose that the theorem is true 
for rank(M) < n and let rank(M) = n. 

First, we claim that there is an x E M with 4>(x, x) i- O. If char(R) = 2 
and 4> is symmetric bilinear, this is true by hypothesis. Otherwise, pick y E 
M. If 4>(y, y) i- 0, set x = y. If 4>(y, y) = 0, pick z E M with 4>(y, z) i- O. 
Such a z exists because 4> is assumed to be non-singular. If 4>(z, z) i- 0, set 
x = z. Otherwise, note that for any r E R, 

4>(ry + z, ry + z) = 4>(ry, ry) + 4>(ry, z) + 4>(z, ry) + 4>(z, z) 

= r4>(y, z) + r4>(y, z). 

If char(R) i- 2 set x = ry + z with r = 4>(y, Z)-l. If char(R) = 2 and 4> is 
Hermitian, let a E R with a i- a, and set x = ry + z with r = a4>(y, Z)-l. 
Then, in any case, we have 4>(x, x) i- O. 

Let N be the subspace of M spanned by x. By construction, 4>IN is 
non-singular, so M = N -1 Nl. by Proposition 2.32. But then rank(Nl.) = 
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rank(M)-l and ¢ = ¢IN.L is non-singular (since ¢(x, x)det(¢) = det(¢) i= 
0). Thus, unless char(R) = 2 and ¢ is symmetric bilinear, we are done. 

If char(R) = 2 and ¢ is symmetric bilinear, we cannot apply induction 
yet as we do not know that the form ¢ is odd. Indeed, it is possible that ¢ 
is even and so there is more work to be done. 

First, consider the case rank(M) = 2. Let a = 4>(x, x) and choose a 
basis {x, X2} of M. Then, in this basis ¢ has the matrix 

with a =I o. Let e = b/a. Then 

[! ~] [~ ~] [~ ~] = [~ ~] 
(with d = ae2 + c) and ¢ is diagonalized. 

Now suppose that rank(M) ~ 3. Find x as above with ¢(x, x) = a =I 0 
and write M = N J.. N1. as above. Pick y E N1.. If ¢(y, y) =I 0, then 
¢IN.L is odd and we are done (because we can apply induction). Thus, 
suppose ¢(y, y) = O. Since ¢ = ¢IN.L is non-singular, there is z E N1. with 
¢(y, z) = b =I o. If ¢(z, z) =I 0, then ¢ is odd and we are again done by 
induction. Thus suppose ¢(z, z) = O. Let MI be the subspace of M with 
basis {x, y, z} and let ¢I = ¢IMl • Then, in this basis ¢I has the matrix 

[~ 
0 i] A= 0 
b 

Let e = b/a and 

[: eel P= 1 o , 
0 1 

and note that det(P) = 1. Then 

PAP~ [~ 0 

(b:a)e 1 be 
(b + a)e be 

in a basis, which we will simply denote by {x', y', z'}. Now let N be the 
subspace of M spanned by x', and so, as above, M = N J.. N 1.. But now 
¢ = ¢IN.L is odd. This is because y' E N1. and ¢(y', y') = be =I O. Thus, 
we may apply induction and we are done. 0 

(2.43) Example. We will diagonalize the symmetric bilinear form with ma
trix 
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over Q. The procedure is to apply a sequence of elementary row/column 
operations. If A is symmetric and E is any elementary matrix, then Et AE 
is also symmetric. We indicate the matrices and record the results. 

[: 
1 

~l Al = TI2(1)AT21(1) = 0 
3 

[~ 
0 

+l A2 = T21(-1/2)AITI2(-1/2) = -1/2 
1/2 

A, ~T,,(-5/2)A,Td-5/2) ~ [~ 0 
o 1 -1/2 -1/2 

1/2 -25/2 

A, ~ T,,(I)A,T,,(I) ~ [~ 0 -tl -1/2 
0 

The reader should not be under the impression that, just because we 
have been able to diagonalize symmetric or Hermitian forms, we have been 
able to classify them. However, there are a number of important cases where 
we can achieve a classification. 

(2.44) Corollary. Let ¢ be a non-degenerate symmetric bilinear form on a 
module M of finite rank over a field R of characteristic not equal to 2 in 
which every element is a square. (Note that R = C satisfies this hypothesis.) 
Then ¢ is determined up to isometry by rank ( M). If rank( M) = n then ¢ 
is isometric to n[l]. 

Proof. This follows immediately from Theorem 2.42 and Remark 2.15. 0 

(2.45) Corollary. Let ¢ be a non-degenerate symmetric bilinear form on a 
module M of finite rank over a finite field R of odd characteristic. Then ¢ 
is determined up to isometry by rank(M) and det(¢), the latter being well 
defined up to multiplication by a square in R. Let x E R be any element 
that is not a square, and let rank(M) = n. If det(¢) is a square, then 
¢ is isometric to n[l]. If det(¢) is not a square, then ¢ is isometric to 
(n - 1)[1] ~ [x]. 

Proof. By Theorem 2.42 we know that ¢ is isometric to the form 

h] ~ h] ~ ... ~ [rn] 



368 Chapter 6. Bilinear and Quadratic Forms 

for some ri E R. Note that the multiplicative group R* has even order, 
so the squares form a subgroup of index 2. Then det(¢) is a square or a 
nonsquare accordingly as there are an even or an odd number of nonsquares 
among the {rd. Thus, the theorem will be proved once we show that the 
form [ri] ..1 h] with ri and rj both nonsquares is equivalent to the form 
[1] ..1 [s] for some s (necessarily a square). 

Thus, let [¢]B = [r~ ~] in a basis B = {VI, V2} of M. R has an odd 

number of elements, say 2k + 1, of which k + 1 are squares. Let A = {a2rl : 
a E R} and B = {1-b2r2 : b E R}. Then A and B both have k+1 elements, 
so An B =I- 0. Thus, for some ao, bo E R, 

i.e., 

a6rl + b6r2 = 1. 

Let N be the subspace of M spanned by aOVl + bov2. Then ¢IN = [1] and 
M = N ..1 N.l., so, in an appropriate basis, ¢ has the matrix [~~], as 
claimed. o 

(2.46) Corollary. Let ¢ be a non-degenerate symmetric bilinear form on a 
module M of finite rank over a finite field R of characteristic 2. Then ¢ 
is determined up to isometry by n = rank( M) and whether ¢ is even or 
odd. If n is odd, then ¢ is odd and is isometric to n[l]. If n is even, then 
either ¢ is odd and isometric to n[l], or ¢ is even and ¢ is isometric to 

(n/2) [~ ~l 
Proof. Since R* has odd order, every element of this multiplicative group 
is a square. If ¢ is odd then, by Theorem 2.42, ¢ is diagonalizable and then 
¢ is isometric to n[l] as in Corollary 2.44. 

Suppose that ¢ is even. Note that an even symmetric form over a field 
of characteristic 2 may be regarded as a skew-symmetric form. Then, by 
Corollary 2.36, n is even and ¢ is isometric to (n/2) [~~]. 0 

(2.47) Theorem. (Witt) Let ¢ be a (+l)-symmetric bls-linear form on a 
module M of finite rank over a field R. If char(R) = 2, assume also that ¢ 
is Hermitian. Let Nl and N2 be submodules of M with ¢IN, and ¢I N 2 non
singular and isometric to each other. Then ¢IN.1. and ¢IN.1. are isometric. 

1 2 

Proof. If Nl = N 2, then N:f = Nt, and there is nothing to prove; so we 
assume Nl =I- N 2. Let ¢i = ¢IN" and let f : Nl ---+ N2 be an isometry 
between ¢l and ¢2. 

We prove the theorem by induction on n = rank(Nd = rank(N2). Let 
n = 1. Let m = rank(M). If m = 1 the theorem is trivial. 

Let m = 2. Let VI generate Nl and V2 = f(vd generate N 2, so 
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Then M has bases Bi = {Vi, vf} with vf E N/-, i = 1, 2, and hence 
[¢lB; = diag(a, bi ) for i = 1, 2, with bi and b2 both nonzero. By Theorem 
2.13, there is an invertible matrix P with 

and taking determinants shows that ab2 = ccab1 (where c = det(P)); so 
g: Nf ---- NJ: defined by g(vt) = c-Ivi- gives an isometry between ¢IN-L 

1 

and ¢IN-L. 
2 

Next let m 2': 3 and consider the submodule NI2 of M with basis 
{VI, V2}, where VI generates N I, and V2 = f(vd generates N2. Then 

(Since we are assuming NI i= N2, VI and V2 are linearly independent in M 
and so NI2 has rank 2.) Consider ¢I N 12' Either it is non-singular or it is 
not. 

First suppose that ¢I N 12 is non-singular. Then, by the case m = 2 we 
have that ¢IN-LnN and ¢IN-LnN are isometric, and hence, 

1 12 2 12 

are also isometric. But in this case M = NI2 ..1 Nf2' from which it readily 
follows that 

yielding the theorem. 
Now suppose ¢IN12 is singular. Then there is a 0 i= w E NI2 with 

¢(v, w) = 0 for all V E N 12 . Suppose there is a V3 E M with ¢(V3, w) i= O. 
(Such an element V3 certainly exists if ¢ is non-singular on M.) Of course, 
V3 tJ- NI 2, so {VI, V2, V3} form a basis for a submodule Nl 23 of M of rank 
3 and ¢IN1 23 is non-singular. (To see this, consider the matrix of ¢ in the 
basis {VI, w, V3} of NI23.) Now for i = 1, 2, 

N123 = Ni..l (N/- nN123 ) 

and WEN/- n N I23 with ¢(w, w) = 0, so there is a basis {w, Wi} of 

N/- n N I23 with ¢ having matrix [~;J in that basis (with ai = ai). We 
claim that any two such forms are isometric, and this will follow if, given 
any a E R with a = a, there is abE R with 

[~~][~ !][~ n=[~ ~]. 
If char(R) i= 2, take b = -a/2 (and note that b = b). If char(R) = 2, let 
c E R with c i= c (which exists as we are assuming that ¢ is Hermitian) 
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and let b = ac/(c+c). Hence, ¢IN.l.nN and ¢IN.l.nN are isometric, and 
1 123 2 123 

M = N 123 1- Nt23 (as ¢IN!23 is non-singular); so, as in the case ¢IN!2 is 
non-singular, it follows that ¢IN.L and ¢IN.L are isometric. 

! 2 

It remains to deal with the case that ¢(v, w) = 0 for every v E M. 
We claim that in this case Nt = Nt, so the theorem is true. To see this, 
let Bl 2 = {VI, V2} and extend Bl 2 to a basis B = {VI, .. , ,vm } of M. Let 
A = [¢JB. Then 

with a i= 0 and a2 - bb = 0, and we may assume w E N12 is given by 

[WJB = [a -b 0 ... 0 Jt 

(as w is well defined up to a scalar factor). Then ¢( Vi, w) = 0 for i = 3, 
... , m implies that there exist scalars Ci so that 

i = 3, ... ,m. 

If we let P be the matrix defined by 

enti;(P) = 1 

ent2i(P) = -c; 
ent;j(P) = 0 

i = 3, ... ,m 

otherwise, 

then 

ptAP = [~ ~] 
(the right-hand side being a block matrix). This is [¢JB' in the basis 

and then Nt = Nt is the subspace with basis 

{w, v~, ... ,v;"}. 

This concludes the proof of the theorem in case n = l. 
Now we apply induction on n. Assume the theorem is true for 

rank(Nd = rank(N2 ) < n, 

and let 
rank(Nd = rank(N2 ) = n. 

Let VI E Nl with ¢(Vl' vd i= 0, and let V2 = f(vd E N 2; so 
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Note that such an element exists by the proof of Theorem 2.42. Let Nll 
be the subspace of M generated by Vl and let N2 1 be the subspace of M 
generated by V2. Then 

M = Nll ..l (N/i n Nl)..l Nt = N2l ..l (NA n N 2)..l Nf. 

Then the case n = 1 of the theorem implies that 

(Nft n Nd ..l Nt and (Ndi n N 2) ..l Nf 

are isometric, and then the inductive hypothesis implies that Nt and Nt 
are isometric, proving the theorem. 0 

This theorem is often known as Witt's cancellation theorem because 
of the following reformulation: 

(2.48) Corollary. Let ¢l, ¢2, and ¢3 be forms on modules of finite rank 
over a field R, all three of which are either symmetric or Hermitian. If 
char(R) = 2, assume all three are Hermitian. If ¢l is non-singular and 
¢l ..l ¢2 and ¢l ..l ¢3 are isometric, then ¢2 and ¢3 are isometric. 

Proof. o 

(2.49) Remark. Witt's theorem is false in the case we have excluded. Note 
that 

[1 0 0] o 0 1 
o 1 0 

and 

are isometric forms on (F2)3, as they are both odd and non-singular, but 

[ ~ ~] and [ ~ ~ ] 
are not isometric on (F2)2, as the first is even and the second is odd. 

Now we come to the very important case of symmetric bilinear forms 
over R and Hermitian forms over C. 

(2.50) Definition. If ¢ is a symmetric bilinear form over R, or a Hermitian 
form over C, on a module M, then ¢ is said to be positive definite if 
¢(v, v) > 0 for every v i 0 E M. If ¢(v, v) < 0 for every v i 0 E M, then 
¢ is said to be negative definite. 

(2.51) Theorem. (Sylvester's law of inertia) Let ¢ be a non-degenerate sym
metric bilinear form over R = R, or Hermitian form over R = C, on a 
module M of finite rank over R. Then ¢ is isometric to 
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r[l] ~ s[-I] 

with r+s = n = rank( M). Furthermore, the integers rand s are well defined 
and ¢> is determined up to isometry by rank( ¢» = n, and signature ( ¢» = 
r - s. 

Proof. Except for the fact that rand s are well defined, this is all a direct 
corollary of Theorem 2.42. (Any two of n, r, and s determine the third, and 
we could use any two of these to classify ¢>. However, these determine and 
are determined by the rank and signature, which are the usual invariants 
that are used.) Thus, we need to show that rand s are well defined by ¢>. 

To this end, let M+ be a subspace of M of largest dimension with ¢>IM+ 
positive definite. We claim that r = rank( M+). Let B = {VI, ... , vn } be a 
basis of M with 

If Ml = (VI, ... , vr ), then ¢>IMl is positive definite. Thus, rank(M+) ~ r. 
This argument also shows that if M_ is a subspace of M of largest possible 
dimension with ¢>IM_ negative definite, then rank(M_) ~ s. 

We claim that r = rank(M+) and s = rank(M_). If not, then the 
above two inequalities imply 

so M+nM_ =1= {o}. Let x =1= 0 E M+nM_. Then ¢>(x, x) > 0 since x E M+, 
while ¢>(x, x) < 0 since x E M_, and this contradiction completes the proof. 

We present an alternative proof as an application of Witt's theorem. 
Suppose 

are isometric. We may assume rl S r2. Then by Witt's theorem, sl[-I] and 
(r2 - 1'1) [1] ~ S2 [-1] are isometric. As the first of these is negative-definite, 
so is the second, and so rl = r2 (and hence SI = S2). 0 

(2.52) Remark. If ¢> is not assumed to be non-degenerate then applying 
Theorem 2.51 to the non-degenerate part of ¢> (Definition 2.27) shows that 
a symmetric bilinear form over R = R or a Hermitian form over R = C is 
isometric to 

r[l] ~ s[-I] ~ k[O] 

with l' + s = rank(¢» = rank(M) - k, and with rand s well defined by ¢>. 
Again, we let signature(¢» = '!' - S. 

Of course, we have a procedure for determining the signature of ¢>, 
namely, diagonalize ¢> and inspect the result. In view of the importance of 
this case, we give an easier method. 
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(2.53) Proposition. Let ¢ be a symmetric bilinear form over R = R, or a 
Hermitian form over R = C, on a module M of finite mnk over R, and let 
A = [¢]B for some basis B of M. Then 

(1) rank(¢) = rank(A); 
(2) all of the eigenvalues of A are real; and 
(3) signature(¢) = r-s, where r (resp., s) is the number of positive (resp., 

negative) eigenvalues of A. 

Proof. It is tempting, but wrong, to try to prove this as follows: The form 
¢ is diagonalizable, so just diagonalize it and inspect the diagonal entries. 
The mistake here is that to diagonalize the form ¢ we take pt AP, whereas 
to diagonalize A we take PAp-I, and these will usually be quite different. 
For an arbitrary matrix P there is no reason to suppose that the diagonal 
entries of pt AP are the eigenvalues of A, which are the diagonal entries of 
PAP-I. 

On the other hand, this false argument points the way to a correct 
argument: First note that we may write similarity as (J5)-1 AP. Thus if P 
is a matrix with pt = (P)-l, then the matrix B = pt AP will have the 
same eigenvalues as A. 

Let us regard A as the matrix of a linear transformation a on Rn where 
R = R or R = C. Then A is either real symmetric or complex Hermitian. 
In other words, a is self-adjoint in the language of Definition 4.6.16. But 
then by Theorem 4.6.23, there is an orthonormal basis B = {VI, ..• ,vn } of 
Rn with B = [alB diagonal, i.e., p-l AP = B where P is the matrix whose 
columns are VI, ... , Vn , and furthermore B E Mn(R), where n = rank(A). 
But then the condition that B is orthonormal is exactly the condition that 
pt = (P)-I, and we are done. 0 

There is an even handier method for computing the signature. Note 
that it does not apply to all cases, but when it does apply it is easy to use. 

(2.54) Proposition. Let ¢ be a symmetric bilinear form over R = R or a 
Hermitian form over R = C, on an R-module M of finite mnk n. Let B 
be any basis for M and let A = [¢]B. Set 8o(A) = 1, and for 1 :::; i :::; n, 
let 8i (A) = det(Ai ), where Ai = A[(I, 2, ... , i) I (1, 2, ... , i)] is the ith 
principal submatrix of A, i.e., the i x i submatrix in the upper left-hand 
corner. 

(1) If 8i (A) =I- 0 for all i, then 

(2.7) signature(¢) = I{i : 8i(A) and 8i- I (A) have the same sign} I 
-I{i : 8i (A) and 8i- I (A) have opposite signs}l. 

(2) ¢ is postive definite if and only if 8i (A) > 0 for all i. 
(3) ¢ is negative definite if and only if (-I)i8i(A) > 0 for all i. 
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Proof. We first prove part (1) by induction on n. The proposition is trivially 
true if n = 1. Assume it is true if rank(M) < n, and consider M with 
rank(M) = n. Write Equation (2.7) as 

(2.8) signature( ¢) = r' (A) - s' (A). 

Of course, r'(A) + s'(A) = n. Let B = {VI, ... ,vn }, let N ~ M be the 
subspace with basis B' = {Vb' .. ,vn-d, and let 'I/J = ¢IN. Set B = ['I/J)BI. 
Then B = An-I. so det(B) #- 0 by hypothesis, and thus 'I/J is non-singular. 
Let C' = {WI, ... ,wn-d be a basis of N with ['l/Jlc l diagonal, say, 

['l/JJct = diag(cl' ... ,cn-d· 
Then, by definition, 

signature('I/J) = I{i : Ci > O}I-I{i : Ci < O}I 

with rl + Sl = n - 1. By induction we have 

signature('I/J) = r'(B) - s'(B), 

with r'(B) + s'(B) = n - 1, so r'(B) = rl and s'(B) = Sl. Now, since 
¢IN = 'I/J is non-singular, we have M = N -1. Nl.. Hence dim(Nl.) = 1; 
say Nl. = (wn ). Then C = {WI. ... ,wn } is a basis of M, and [¢lc = 
diag( Cl, ••. ,cn) with Cn = ¢( W n, wn). Also, by definition, 

signature(¢) = I{i : Ci > O}I-I{i : Ci < O}I 

=r-s 

with r + s = n. Note also that det(B) and Cl ... Cn-l have the same sign, 
as do det( A) and Cl ... Cn , as they are determinants of matrices of the same 
form with respect to different bases. Now there are two possibilities: 

(a) Cn > O. In this case, signature(¢) = signature('I/J) + 1, so r = rl + 1 
and s = Sl. But also det(An - 1 ) and det(A) have the same sign, so 
r'(A) = r'(B) + 1 and s'(A) = s'(B); hence, r'(A) = r and s'(A) = s, 
so 

signature(¢) = r'(A) - s'(A). 

(b) Cn < O. Here the situation is reversed, with r = rb s = Sl + 1, and also 
r'(A) = r'(B), s'(A) = s'(B) + 1, again yielding 

signature(¢) = r'(A) - s'(A). 

Thus, by induction, part (1) is proved. 
(2) In light of (1), we need only prove that ¢ positive definite implies 

that all 8i (A) are nonzero. But this is immediate as 8i (A) = det(¢INJ, 
Ni = (VI, ... ,Vi), and ¢IN; is non-singular since ¢(v, v) #- 0 for every 
V E M (so Ker(a",) = (0), where 'I/J = ¢IN;}. 
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(3) Observe that 4> is negative definite if and only if -4> is positive 
definite; thus (3) follows from (2). 0 

(2.55) Example. Diagonalize the symmetric bilinear form over R with ma
trix 

A = [T ~6 l3 :]. 
o 1 1 -1 

To do this, calculate that the determinants of the principal minors are 

giving 3 sign changes, so this form diagonalizes to 

[
-1 0 0 0] o -1 0 0 
o 0 -1 0 . 
o 0 0 1 

Although we do not use it here, we wish to remark on a standard 
notion. In the following definition 4> may be arbitrary (i.e., 4> need not be 
c-symmetric) : 

(2.56) Definition. Let 4> be a bilinear form on M such that 0.p : M ---> M* 
is an isomorphism. Let f E EndR(M). Then fT : M ---> M, the adjoint of 
f with respect to 4>, is defined by 

(2.9) 4>(f(x), y) = 4>(x, fT(y)) for all x, y E M. 

To see that this definition makes sense, note that it is equivalent to 
the equation 

or in other words, 
0.p 0 fT = f* 0 0.p, 

i.e., fT = 0;1 0 f* o0.p where f* is the adjoint of f as given in Definition 
1.20. 

Note that fT and 1* are quite distinct (although they both have the 
name "adjoint"). First, 1* : M* ---> M*, while fT : M ---> M. Second, 1* is 
always defined, while fT is only defined once we have a form 4> as above, 
and it depends on 4>. On the other hand, while distinct, they are certainly 
closely related. 

Now when it comes to finding a matrix representative for fT, there 
is a subtlety we wish to caution the reader about. There are two natural 
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choices. Choose a basis B for M. Then we have the dual basis B* of M*. 
Recall that [f*]B. = ([f]B)t (Proposition 1.24), so 

[JT]B = [o:;l]g· ([f]B)t [o:",]g •. 

On the other hand, if B = {Vi}, then we have a basis C* of M* given by 
C* = {o:",(Vi)}. Then there is also a basis C dual to C* (using the canonical 
isomorphism between M and M**). By definition, [o:]g. = In, the identity 
matrix, where n = rank(M), so we have more simply 

The point we wish to make is that in general the bases B* and C* 
(or equivalently, B and C) are distinct, so care must be taken. There is, 
however, one happy (and important) case where B* = C* and B = C. As 
the reader may check, this is true if and only if the basis B is orthonormal 
with respect to ¢, i.e., if ¢(Vi' Vj) = 8ij . In this case [¢]B = In, so we see 
that ¢ has an orthonormal basis if and only if ¢ is isometric to n[l], and 
we have seen situations when this is and is not possible. 

6.3 Quadratic Forms 

This section will be devoted to some aspects of the theory of quadratic 
forms. As in the previous section, R will denote a commutative ring with 1 
and all modules are assumed to be free. 

(3.1) Definition. Let M be a free R-module. A quadratic form <I> on M is a 
function <I> : M -+ R satisfying 

(1) <I>(rx) = r2<I>(x) for any r E R, x E M; and 
(2) the function ¢ : M x M -+ R defined by 

¢(x, y) = <I>(x + y) - <I>(x) - <I>(y) 

is a (necessarily symmetric) bilinear form on M. 

In this situation we will say that <I> and ¢ are associated. The quadratic 
form <I> is called non-singular or non-degenerate if the symmetric bilinear 
form ¢ is. 

A basic method of obtaining quadratic forms is as follows: Let ¢ be any 
(not necessarily symmetric) bilinear form on M and define the symmetric 
bilinear form ¢ on M by 

¢(x, y) = ¢(x, y) + ¢(y, x). 

(Of course, if ¢ is symmetric then ¢(x, y) = 2¢(x, y).) The function 
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iP:M-+R 

defined by 
iP(x) = 'IjJ(x, x) 

is a quadratic form on M with associated bilinear form ¢. 

(3.2) Theorem. Let M be a free module over the ring R. 

(1) Let iP be a quadratic form on M. Then the associated bilinear form ¢ 
is uniquely determined by iP. 

(2) Let ¢ be a symmetric bilinear form on M. Then ¢ is associated to a 
quadratic form iP if and only if ¢ is even (see Definition 2.40). 

(3) If 2 is not a zero divisor in Rand ¢ is an even symmetric bilinear 
form, then the associated quadratic form iP is uniquely determined by 
¢. 

Proof. Part (1) is obvious from Definition 3.1 (2) and is merely stated for 
emphasis. To prove (2), suppose that ¢ is associated to iP. Then for every 
xEM, 

4iP(x) = iP(2x) = iP(x + x) = 2iP(x) + ¢(x, x). 

Thus, 

(3.1) ¢(x, x) = 2iP(x) 

and ¢ is even. 
Conversely, suppose that ¢ is even. Let B = {vihEI be a basis for M 

and choose an ordering of the index set I. (Of course, if rank(M) = n is 
finite, then I = {I, ... ,n} certainly has an order, but it is a consequence 
of Zorn's lemma that every set has an order.) To define 'IjJ(x, y) it suffices to 
define 'IjJ(Vi' Vj) for i, j E I. Define 'IjJ(Vi' Vj) as follows: 'IjJ(Vi' Vj) = ¢(Vi' Vj) 
if i < j, 'IjJ(Vi' Vj) = 0 if j < i, and 'IjJ(Vi' Vi) is any solution of the equation 
2'IjJ( Vi, Vi) = ¢( Vi, Vi). Since ¢ is assumed to be even, this equation has a 
solution. Then iP(x) = 'IjJ(x, x) is a quadratic form with associated bilinear 
form ¢. 

(3) This is a direct consequence of Equation (3.1). 0 

(3.3) Lemma. (1) Let iPi be a quadratic form on a module Mi over R with 
associated bilinear form ¢i, for i = 1, 2. Then iP : MI EB M2 -+ R, defined 
by 

<I>(XI,X2) = <I>1(xd + iP2(X2), 

is a quadratic form on MI EB M2 with associated bilinear form ¢I ..L ¢2. (In 
this situation we write iP = iP I ..L iP2 .) 

(2) Let ¢i be an even symmetric bilinear form on M i , i = 1, 2, and let 
iP be a quadratic form associated to ¢I ..L ¢2. Then <I> = iPI ..L <I>2 where <I>i 
is a quadratic form associated to ¢i, i = 1, 2. Also, iP I and iP2 are unique. 
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Proof. (1) First we check that 

<P(r(xl, X2» = <P(rxl' rX2) 

= <Pl(rxd + <P2(rx2) 
= r2<pl (Xl) + r2<P2(X2) 

= r2(<pl(Xl) + <P2(X2)) 

= r2<p(Xl, X2). 

Next we need to check that 

where ¢ = ¢l ..1 ¢2. Since ¢ = ¢l ..1 ¢2, we have 

(3.3) 

¢«Xl' X2), (Yl, Y2)) = ¢«Xl' 0), (Yb 0)) + ¢«Xl' 0), (0, Y2)) 

+ ¢«O, X2), (Yl, 0)) + ¢«O, X2), (0, Y2)) 

On the other hand, 

<P(XI + Yl, X2 + Y2) = <PI (Xl + yd + <P2(X2 + Y2) 

= <PI(XI) + <PI(yI) + ¢1(XI, yI) 

+ <P2(X2) + <P2(Y2) + ¢2(X2, Y2) 

= cI>(Xl' X2) + <p(y!, Y2) + ¢1 (Xl, YI) + ¢2(X2, Y2), 

which together with Equation (3.3) gives Equation (3.2), as desired. 
(2) Set <PI = <PIMI and <P2 = <PIM2. Uniqueness is trivial, as <P certainly 

determines <PI and <P2. D 

We call <P the orthogonal direct sum of <PI and <P2. Thus Lemma 3.3 
tells us that the procedures of forming orthogonal direct sums of associated 
bilinear and quadratic forms are compatible. 

It follows from Theorem 3.2 that if 2 is not a zero divisor in R, the 
classification problem for quadratic forms over R reduces to that for even 
symmetric bilinear forms. (Recall that if 2 is a unit of R, then every sym
.netric bilinear form is even.) Thus we have already dealt with a number of 
important cases-R = R, R = C, or R a finite field of odd characteristic. 
We will now study the case of quadratic forms over the field F2 of 2 ele
ments. In this situation it is common to call a quadratic form <P associated 
to the even symmetric bilinear form ¢ a quadratic refinement of ¢, and we 
shall use this terminology. Note that in this case condition (1) of Definition 
3.1 simply reduces to the condition that <p(0) = 0, and this is implied by 
condition (2)-set Y = o. Thus, we may neglect condition (1). 

(3.4) Proposition. Let ¢ be an even symmetric bilinear form on a module 
M over the field R = F 2 . 
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(1) If <PI and <P2 are two quadratic refinements of </;, then 

is an R-linear function f : M -t R, i. e., f E M*. 
(2) If <PI is any quadratic refinement of ¢ and f E M* is arbitrary, then 

<P2 = <PI + f is also a quadratic refinement of ¢. 

Proof. These are routine computations, which are left to the reader. 0 

Suppose now that M is a module of finite rank n over R = F 2 • Then 
any even symmetric bilinear form ¢ on M has IM·I = IMI = 2n quadratic 
refinements. We have already classified these forms in Corollary 2.46. If 
rank(¢) = 2m (necessarily even), then ¢ is isometric to 

(n - 2m)[O) 1- m [~ ~]. 
We will now see how to classify quadratic forms on M. By Lemma 3.3, 
we may handle the cases </; identically zero and ¢ non-singular separately. 
(Of course, we are interested in classifying ¢ up to isometry. An isometry 
has the analogous definition for quadratic forms as for bilinear forms: Two 
quadratic forms <Pi on R-modules M i , i = 1, 2, are isometric if there is an 
R-isomorphism f : Ml -t M2 with <P2(f(x)) = <PI (x) for every x E Md 

First we will deal with the case where ¢ is identically zero. 

(3.5) Proposition. Let M be a free F2 -module of rank n and let ¢ be the 
identically zero bilinear form on M. Then a quadratic refinement <P of ¢ is 
simply an element <P E M*. There are two isometry classes of these. One, 
containing one element, consists of 0 E M*. The other, containing 2n - 1 
elements, consists of all <P E M* \ {OJ. 

Proof. In this case, Definition 3.1 (2) says 

<P(x + y) = <P(x) + <P(y), 

i.e., <P : M -t F2 is a homomorphism, so <P E M*. Clearly, the zero ho
momorphism is not isometric to any nonzero homomorphism. On the other 
hand, a nonzero homomorphism <P is uniquely determined by <P-1(0), a 
subspace of M of rank n - 1, and there is an automorphism of M taking 
anyone of these to any other. 0 

Of course, the case we are really interested in is the classification of 
quadratic refinements of a non-singular form. We prepare for this classifi
cation with the following elementary lemma. 

(3.6) Lemma. Define two function e : N -t Nand 0 : N -t N by means of 
the following recursions: 
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e(l) = 3, 0(1) = 1 

e(m) = 3e(m - 1) + oem - 1), oem) = 30(m - 1) + e(m - 1) 

for m > 1. Then for every mEN, 

e(m) = 2m - 1 (2m + 1) and oem) = 2m - 1 (2m - 1). 

Proof. The proof is a routine induction. o 

(3.7) Proposition. Let <I> be a quadratic refinement of a non-singular even 
symmetric bilinear form on a module M of (necessarily) even rank n = 2m 
over F 2. Then either 

(a) 1<1>-1(0)1 = e(m) and 1<1>-1(1)1 = oem), or 
(b) 1<1>-1(0)1 = oem) and 1<1>-1(1)1 = e(m). 

Furthermore, among the 22m such quadratic forms, there are e(m) 
forms <I> with 1<1>-1(0)1 = e(m) and oem) forms <I> with 1<1>-1(0)1 = oem). 

Proof. The proof is by induction on m. Let m = 1. Then M has a basis 
B = {x, y} in which [¢lB = [~~], where ¢ is the bilinear form associated 
to <1>. Then M = {O, x, y, x + y}. Of course, <1>(0) = 0, and then from 
Definition 3.1 (2), 

1 = ¢(x, y) = <I>(x + y) + <I>(x) + <I>(y) 

so we see that <I>(z) = 1 for z either exactly one of x, y, and x + y (3 
possibilities) or for all three of them (1 possibility). Since, in this case, the 
above equation is the only condition on <1>, all possibilities indeed occur. 
This is precisely the statement of the proposition in case m = 1. 

Now suppose the proposition is true for rank(M) < 2m, and let 
rank(M) = 2m. Choose an element x f 0 of M, let y E M with ¢(x, y) = 1 
(which exists since ¢ is non-singular), let M1 be the subspace of M with 
basis B = {x, y}, and let M2 = Mcf. Then M = M1 .1 M2, ¢ = ¢1 .1 ¢2, 
and <I> = <1>1.1 <1>2, where ¢i = ¢IM; and <l>i = <l>IM;. Now 

0= <I>(X1' X2) = <I>(X1) + <I>(X2) 

implies that either <I>(X1) = <I>(X2) = 0 or <I>(xd = <I>(X2) = 1. If 4.>1 and 4.>2 
are both as in part (a) (resp., both as in part (b)), the first (resp., second) 
case arises for e(l)e(m - 1) = 3e(m - 1) values of (Xl. X2), and the other 
for o(l)o(m - 1) = oem - 1) cases. Thus, 

1<1>-1(0)1 = 3e(m - 1) + oem - 1) = e(m) 

by Lemma 3.6. If <1>1 is as in (a) and <1>2 as in (b) (resp., vice-versa), then 
the first (resp., second) case arises for e(l)o(m - 1) = 30(m - 1) values of 
(Xl, X2), and the other for o(l)e(m-l) cases. Thus, Lemma 3.6 again gives 
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1~-1(0)1 = 30(m - 1) + e(m - 1) = oem). 

This proves the first claim of the proposition, but also the second, as we 
see that ~ is in case (a) if either ~1 and ~2 are both in (a) or both in 
(b), and in case (b) if one of them is in (a) and the other in (b), and this 
gives exactly the same recursion. (We need not check o( m) separately since 
e(m) + oem) = 22m = IMI.) 0 

Given this proposition we may define a "democratic" invariant of ~: 
We let each x E M ''vote'' for ~(x) and go along with the majority. This is 
formalized in the following definition. 

(3.8) Definition. Let ~ be a quadratic refinement of a non-singular even 
symmetric bilinear form on a module M of rank 2m over F 2 • The Arf 
invariant Arf(~) E F2 is defined by 

Arf(~) = 0 if 1~-1(0)1 = e(m) and 1~-1(1)1 = oem) 

and 
Arf(~) = 1 if 1~-1(0)1 = oem) and 1~-1(1)1 = e(m). 

The form ~ is called even or odd according as Arf(~) = 0 or 1. 

Note that the proof of Proposition 3.7 yields the following: 

(3.9) Corollary. Arf(~l .1 ~2) = Arf(~d + Arf(~2). 
Proof· o 

(3.10) Theorem. Let ~ be a quadratic refinement of a non-singular even 
symmetric bilinear form on a module M of rank 2m over F 2 • Then {~} 
falls into two isometry classes. One, containing e( m) elements, consists of 
all ~ with Arf(~) = 0, and the other, containing oem) elements, consists 
of all ~ with Arf(~) = 1. 

Proof. 1~-1(0)1 is certainly an invariant of the isometry class of ~, so two 
forms with unequal Arf invariants cannot be isometric. It remains to prove 
that all forms ~ with Arf( ~) = 0 are isometric, as are all forms ~ with 
Arf(~) = 1. 

First let m = 1, and let </> be the bilinear form associated to ~. Since 
</> is non-singular, there are x, y E M with </>(x, y) = 1. 

Then 
</>(x, x + y) = </>(x, x) + </>(x, y) = 1, 

and similarly, </>(y, x + y) = 1. Thus, </> is completely symmetric in x, y, 
and z = x + y. In the proof of Proposition 3.7, we saw that there are four 
possibilities for ~: 
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<I>(X) = 1 
<I>(X) =0 
<I> (x) =0 
<I>(x) = 1 

<I>(y) = 0 
<I>(y) = 1 
<I>(y) = 0 
<I>(y) = 1 

<I>(z) = 0 
<I>(z) = 0 
<I>(z) = 1 
<I>(z) = 1. 

The first three have Arf(<I» = 0; the last one has Arf(<I» = 1. But then 
it is easy to check that AutF2 (M) ~ 8 3 , the permutation group on 3 ele
ments, acting by permuting x, y, and z. We observed that ¢ is completely 
symmetric in x, y, and z, so 8 3 leaves ¢ invariant and permutes the first 
three possibilites for <I> transitively; hence, they are all equivalent. (As there 
is only one <I> with Arf(<I» = 1, it certainly forms an equivalence class by 
itself. ) 

Now let m > 1. We have that <I> is isometric to <I>l 1. ... 1. <I>m (by 
Lemma 3.3) and 

Arf(<I» = Arf(<I>d + ... + Arf(<I>m) 

(by Corollary 3.9), so Arf(<I» = 0 or 1 accordingly as there are an even 
number or an odd number of the forms <I>i with Arf(<I>i) = 1. Each <I>i has 
rank 2, and we have just seen that all rank 2 forms <I>i with Arf(<I>i) = 0 are 
isometric. Thus to complete the proof we need only show that if W is the 
unique rank 2 form with Arf (w) = 1, then W 1. W is isometric to <I>~ 1. <I>~ 
with Arf(<I>D = 0 for i = 1, 2. 

Let ¢ be the bilinear form associated to <I> = w 1. w and let M have a 
basis B = {Xl. Yl, X2, Y2} in which 

[0 1 0 0] 
1 0 0 0 

[¢lr~ = 0 0 0 1 . 

o 0 1 0 

(Such a basis is called symplectic.) Let f : M -+ M be defined by 

where 
X~ = Xl + X2, y~ = Yl, x~ = X2, y~ = Yl + Y2· 

It is easy to check that f is an isometry of ¢, i.e., that ¢U(u), f(v)) 
¢( u, v) for all u, v EM. (It suffices to check this for basis elements.) This 
implies that f is invertible, but in any case, direct computation shows that 
p = 1M. Also, it is easy to check that 

B' {' , , '} = Xl' Yl, X2, Y2 

is a symplectic basis as well. 
Then if MI is the subspace of M spanned by {x~, YH, i = 1, 2, then 

¢ = ¢~ 1. ¢~ with ¢~ non-singular for i = 1, 2, and hence, <I> = <I>~ 1. <P~, 
where <I>~ = <I>IM;. But now 
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iP~ (xi) = iP(xi) = iP(Xl + X2) 

= iP(Xl) + iP(X2) + ¢(Xl' X2) 

=1+1+0=0 

iP~ (yD = iP(yD = iP(Yl) = 1 

iP~ (x~ + yD = iP(x~ + y~) 
= iP(xi) + iP(yD + ¢(x~, yD 
= 0+ 1 + 1 = 0, 

so iP~ is indeed a form with Arf( iPD = o. Similarly, 

iP~(x~) = 1, iP~(y~) = 0, iP~(x~ + y~) = 0 

so that Arf(iP~) = 0, and we are done. o 

We have been careful to give an intrinsic definition of Arf( iP )-one that 
does not depend on any choices. However, there is an alternate extrinsic 
definition, which is useful for calculations. 

(3.11) Proposition. Let ¢ be a non-singular even symmetric bilinear form 
on M, a module of rank 2m over F 2 , and let 

be a symplectic basis for M, i. e., a basis in which 

(1) If iP is a quadratic refinement of ¢, then 

n 

Arf(iP) = L iP(Xi)iP(Yi). 
i=l 

(2) Let c = (a}, b}, ... ,am, bm) E (F2)2m be arbitrary. If v E M, then 
v = E;:l (rixi + SiYi), for ri, Si E F2 , and we define 

m m m 

iPc(v) = L riSi + L airi + L bisi · 
i=l i=l i=l 

The function iPc : M --t F2 is a quadratic refinement of ¢, and 

m 

Arf(iP) = L aibi· 
i=l 

Proof. Exercise. o 
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(3.12) Remark. The reader should not get the impression that there is 
a canonical CPc obtained by taking c = (0, ... ,0) of which the others are 
modifications; the formula for CPc depends on the choice of symplectic basis, 
and this is certainly not canonical. 

We will now give a brief discussion of the concept of isometry groups. 
The definitions will be given in complete generality, and then we will spe
cialize to the case of fields of characteristic #- 2 and prove a theorem of 
Cartan and Dieudonne concerning the generation of isometry groups by 
reflections. The theory of reflections will also allow us to give a second 
(much easier) proof of Witt's theorem for quadratic forms over fields of 
characteristic #- 2. 

(3.13) Definition. 

(1) Let ¢ be an arbitmry bls-linear form on a free module M over a ring 
R. Then the isometry group Isom( ¢) is defined by Isom( </» = 

{f E AutR(M) : ¢(f(x), f(y)) = ¢(x, y) for all x, y EM}. 

(2) Let cp be an arbitmry quadmtic form on a free module M over a ring 
R. Then the isometry group Isom(CP) is defined by 

Isom(CP) = {f E AutR(M) : cp(f(x)) = cp(x) for all x EM}. 

Consider the situation where cp and ¢ are associated. In many cases 
cp and ¢ determine each other, so Isom(CP) = Isom(¢). (In particular, this 
happens if R is a field of characteristic not equal to 2.) In the other cases, 
cp determines ¢, so Isom(CP) ~ Isom(¢). 

There is a simple matrix criterion for an R-module isomorphism of M 
to be an isometry: 

(3.14) Proposition. Let ¢ be an arbitmry bls-linear form on a free module 
M of finite mnk over a ring R, and let 13 be a basis of M. If f E AutR(M), 
then f E Isom( ¢) if and only if 

(3.4) 

Proof. If x, y E M, then we have 

(3.5) 

But 

</>(f(x), f(y)) = [f(x)]~[¢]s[f(y)]s 

= ([f]s[x]s)t [¢]s ([l]s[iI]s) 

= [x]~ ([f]~[¢]s[7]s) [ills. 
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(3.6) ¢(x, y) = [xl~[¢18[Yl8 

for all x, Y E M. Comparing Equation (3.5) and Equation (3.6) gives the 
result. 0 

(3.15) Corollary. Let ¢ be a non-degenerate bls-linear form on a free module 
M over a ring R, and let f E EndR(M) be such that 

¢(f(x), f(y)) = ¢(x, y) for all x, y E M. 

Then f is an injection. Furthermore, if M has finite rank, then f is an 
isomorphism (and hence f E Isom(¢)). 

Proof. Let 0 '" y E M. Since ¢ is non-degenerate, there is an x E M with 
¢(x, y) '" O. Then ¢(f(x), f(y)) '" 0, so f(y) '" O. 

In case M has finite rank, the proof of Proposition 3.14 applies to show 
that Equation (3.4) holds. Since, by Proposition 2.21, det(¢) is not a zero 
divisor, det(f) is a unit, and so f is an isomorphism. 0 

(3.16) Remarks. 

(1) If M has infinite rank then f need not be an isomorphism in the 
situation of Corollary 3.15. For an example, let M = Qoo = EB~1 Q 
with ¢ the bilinear form on M given by 

00 

¢((Xb X2, ···),(Yb Y2, ... )) = LXiYi. 
i=l 

Then f : M ~ M, defined by 

f((Xb X2, ... )) = (0, Xl, X2, ... ), 

satisfies the hypothesis of Corollary 3.15, but it is not an isomorphism. 
(2) Some authors use the term "the orthogonal group of ¢" for what we are 

calling the isometry group of ¢, while other call the isometry group of ¢ 
"the orthogonal/unitary/symplectic group of ¢" when ¢ is symmetric 
bilinear/Hermitian/skew-symmetric, so beware! 

(3.17) Example. Let M = R2, and let ¢(x, y) = (x : y) be the standard 
inner product on M. Thus, if we use the standard basis on R2, then [¢l = 12, 
so f E EndR(R2) is an isometry if and only if 

Geometrically, this means that an isometry of R 2 is determined by a pair 
of orthonormal vectors of R 2, namely, the first and second columns of (fl. 
Hence, the isometries of R 2 (with respect to the standard inner product) 
are one of the two types: 
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(3.7) 

(3.8) 

[
COS 0 

Po = sinO 

[
COS 0 

rO/2 = sinO 

- sin 0] 
cosO 

sin 0 ] 
- cosO . 

The isometry Po is the counterclockwise rotation through an angle of (), 
while 

rO/2 = Po 0 ro 

is the orthogonal reflection of R 2 through a line through the origin making 
an angle of 0/2 with the x-axis. (Check that this geometric description of 
rO/2 is valid.) In particular, Equations (3.7) and (3.8) show that an isometry 
of R2 is a reflection if and only if its determinant is -1, while any isometry 
is a product of at most 2 reflections. The theorem of Cartan-Dieudonne is 
a far reaching generalization of this simple example. 

(3.18) Definition. Let R be a field with char(R) i= 2 and let -1> be a quadratic 
form on an R-module M. Let Ml be a finite rank submodule of M with 
-1>iM1 non-singular. Set M2 = Mcf, so M = Ml ..1 M2. The reflection of M 
determined by Ml is the element fMl E AutR(M) defined as follows: 

Let x E M and write x uniquely as x = Xl + X2, where Xl E Ml , 
X2 E M2. Then 

fMl (x) = -Xl + X2' 

If Ml = (y) with -1>(y) i= 0, then we write fMl = fy and call fy the 
hyperplane reflection determined by y. 

(3.19) Lemma. Let M, -1>, Ml , and y be as in Definition 3.18, and let ¢ be 
the symmetric bilinear form associated to -1>. 

(1) fMl E Isom(-1», and (fMJ 2 = 1M. 
(2) If g E Isom(-1», then gfMlg-l = fg(M!)' 
(3) fy is given by the formula 

for all x E M. 

Proof. Exercise. o 

Since a hyperplane reflection fw is an isometry, it is certainly true that 
-1> (x) = -1>(fw(x)). The following lemma gives a simple criterion for the 
existence of a hyperplane reflection that interchanges two given points. 

(3.20) Lemma. Let -1> be a quadratic form on M over a field R with 
char(R) i= 2. Let X, y, and w = X - Y E M satisfy 

-1>(x) = -1>(y) i= 0 and -1>(w) i= o. 
Then fw(x) = y. 
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Proof Exercise. 0 

As an easy application of reflections, we will present another proof of 
Witt's theorem (Theorem 2.47). The difficult part of the proof of Theorem 
2.47 was the n = 1 step in the induction. When reflections are available, 
this step is very easy. 

(3.21) Theorem. (Witt) Let 4> be a quadratic form on a module M of finite 
rank over a field R of characteristic =1= 2. Let Nl and N2 be submodules 
of M with 4>INl and 4>IN2 non-singular and isometric to each other. Then 
4>IN.L and 4>IN.L are isometric. 

1 2 

Proof As in the case of Theorem 2.47, the proof is by induction on n = 
rank(Nl ) = rank(N2). Thus, suppose that n = 1 and let Vl generate Nl 
and V2 generate N2. Since Nl and N2 are non-singular and isometric, we 
may assume that 4>(Vl) = 4>(V2) =1= o. Let ¢ be the symmetric bilinear form 
associated to 4>. Then 4>(Vl + V2) = 24>(Vl) + ¢(Vl, V2) and 4>(Vl - V2) = 
24>(vd - ¢(Vl, V2). If both 4>(Vl + V2) and 4>(Vl - V2) are zero, then it 
follows that 4>(Vl) = O. Thus, either 4>(Vl +V2) =1= 0 or 4>(Vl -V2) =1= O. Since 
N2 is also generated by -V2, we may thus assume that 4>(Vl - V2) =1= O. If 
W = Vl - V2 then Lemma 3.20 shows that the reflection fw takes Vl to V2, 
and hence it takes Nt to Nl:, and the theorem is proved in case n = l. 

The inductive step is identical with that presented in the proof of 
Theorem 2.47 and, hence, will not be repeated. 0 

The next two lemmas are technical results needed in the proof of the 
Cartan-Dieudonne theorem. 

(3.22) Lemma. Let ¢ be a non-singular symmetric bilinear form on the finite 
rank R-module M, where R is a field of characteristic different from 2. If 
f E Isom(¢), then 

Ker(J - 1M) = (Im(J - 1M».1 . 

Proof. Suppose x E Ker(J - 1M) and y E M. Then f(x) = x and 

¢(x, (J - 1M )(y» = ¢(x, fey) - y) 

= ¢(x, fey»~ - ¢(x, y) 

= ¢(J(x), fey»~ - ¢(x, y) 

=0. 

Thus, x E (Im(J - 1M) ).1. Conversely, if x E (Im(J - 1M».1, then 
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¢(J(x) - x, f(y» = ¢(J(x), f(y» - ¢(x, f(y) 

= ¢(x, y) - ¢(x, f(y)) 

= ¢(x, y - f(y)) 

= o. 

Since f is invertible, this implies that f(x) - x E M.L 
Ker(J -1M)' 

(3.23) Corollary. With the notation of Lemma 3.22: 

(1) (Ker(J -lM )).L = Im(J -1M). 

{O}, so x E 

o 

(2) (J - 1M)2 = 0 if and only if Im(J - 1M) is a totally isotropic subspace. 

Proof. (1) is immediate from Lemma 3.22. 
(2) Note that a subspace N ~ M is totally isotropic (Definition 2.22) 

if and only if N ~ N.L. Then Im(J - 1M ) is totally isotropic if and only if 

But Equation (3.9) is valid if and only if (f - 1M)2 = O. o 

(3.24) Theorem. (Cartan-Dieudonne) Let q> be a nonsingular quadratic 
form on a vector space M of dimension n over a field R with char(R) -=I 2. 
Then any 9 E Isom( q» is a product of::; n hyperplane reflections. 

Proof. Let ¢ be the associated bilinear form. The proof is by induction on n. 
If n = 1, then Isom(q» = {±1}, where -1 is the unique reflection. Since 1 
is a product of 0 reflections, the result is clear for n = 1. So assume the the
orem holds for nonsingular quadratic forms on vector spaces of dimension 
< n, and let 9 E Isom(q» = Isom(¢). We will consider several cases. 

Case 1. There exists x E Ker(g - 1) such that q>(x) -=I o. 
Let N = (x). If y E N.L, then we have 

¢(g(y), x) = ¢(g(y), g(x)) = ¢(y, x) = o. 

Thus, glN"- E Isom(¢IN"-) and by induction glN"- is a product of::; n - 1 
reflections of N.L. Each reflection of N.L can be extended (by x ~ x) to a 
reflection of M and hence 9 is a product of ::; n - 1 reflections of M. 

Case 2. There is x E M with q>(x) -=I 0 and q>(x - g(x)) -=I O. 

By Lemma 3.20, if w = x - g(x), then there is a hyperplane reflection 
fw E Isom(q» such that fw(g(x» = x. Thus x E Ker(fw 0 9 - 1), and 
hence, by Case 1, f w 0 9 is a product of ::; n - 1 reflections. Therefore, 9 is 
a product of ::; n reflections. 

Case 3. dim(M) = 2. 
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If (>(x) :/: 0 for all x:/:o E M, then this follows from the first two 
cases. Thus, suppose there exists x:/: 0 E M with (>(x) = o. Choose y E M 
such that ¢J(x, y) :/: 0, which is possible since (> is non-singular. Since 
¢J(x, rx) = r¢J(x, x), it is clear that B = {x, y} is a linearly independent 
subset of M and, hence, a basis. Replacing y by a multiple of y, we may 
assume that ¢J(x, y) = 1. Furthermore, if r E R, then 

¢J(y + rx, y + rx) = ¢J(y, y) + 2r¢J(x, y) 

so by replacing x with a multiple of x we can also assume that ¢(y, y) = o. 
That is, we have produced a basis B of M such that 

[¢J)8 = [~ ~]. 

If 9 E Isom(¢), then [9)8 = [~:] satisfies (Proposition 3.14) 

[a c] [0 1] [a b] = [0 1] 
bd 10 cd 10· 

This equation implies that 

[g]8 = [~ a~l] or [g)8 = [b~l ~]. 
Since 

[~ a~l] = [a~l ~] [~ ~], 
we are finished with Case 3 when we observe that [b~l ~] is the matrix of 

a reflection, for all b :/: 0 E R. But if g(x) = by and g(y) = b-1x, then 
x + by E Ker(g - 1M) and Case 1 implies that 9 is a reflection. 

Case 4. dim(M) ;:::: 3, (>(x) = 0 for all x E Ker(g - 1M)' and whenever 
(>(x) :/: 0, (>(x - g(x)) = o. 

Note that Case 4 simply incorporates all the situations not covered by 
Cases 1, 2, and 3. Our first goal is to show that in this situation, Im(g -1M) 
is a totally isotropic subspace. We already know (by hypothesis) that 

(>(x - g(x)) = 0 whenever (>(x):/: O. 

Thus, suppose that y i- 0 and (>(y) = o. We want to show that 

(>(y - g(y)) = o. 
Choose Z E M with ¢(y, z) i- 0 and consider the two-dimensional subspace 
N = (y, z) with basis B = {y, z}. If 1/; = ¢IN, then 

_ [0 ¢J(y, z)] 
[1/;]8 - ¢(y, z) ¢(z, z) 
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so 'IjJ is non-singular. Hence, we may write ¢ = 'IjJ ..L 'IjJ' where 'IjJ' is non
singular on N.L and dim N.L = dim M - 2 > O. Thus, there exists x 1= 0 E 

N.L with <I>(x) = \}f'(x) 1= 0, but ¢(x, y) = O. Then ¢(y ± x, y) = 0 so that 

<I>(y ± x) = <I>(x) 1= O. 

The hypotheses of Case 4 then imply that 

<I>(x - g(x)) = <I>((y + x) - g(y + x)) = <I>((y - x) - g(y - x)) = 0, 

and from this we conclude that <I>(y - g(y)) = 0 and we have verified that 
Im(g - 1M) is a totally isotropic subspace of M. 

By Lemma 3.23, it follows that (g - 1M)2 = O. Hence, the minimum 
polynomial of 9 is (X - 1)2 (since 9 = 1M is a trivial case), and therefore, 
det 9 = 1 (Chapter 4, Exercise 55). Now Ker(g - 1M ) is assumed to be 
totally isotropic (one of our hypotheses for Case 4). Thus, 

Ker(g -1M ) s:;; (Ker(g -1M )).L = Im(g -1M)' 

Since (g _1)2 = 0, we have Im(g - 1M ) s:;; Ker(g -1M ) and conclude that 
Im(g - 1M) = Ker(g - 1M)' By the dimension formula (Propostion 3.8.8), 

n = dim(Im(g - 1)) + dim(Ker(g - 1)) = 2dim(Ker(g - 1)), 

and hence, n is even. 
To complete the proof, suppose that 9 E Isom( <I» satisfies the hypothe

ses of Case 4, and let fz be any hyperplane reflection. Then g' = fz 0 9 is an 
isometry with det(g') = -1, and hence g' does not fall under Case 4, so it 
must be covered by Case 1 or Case 2. Thus, it follows that g' is a product 
of m :::: n reflections. Since m must be odd (in order to get a determinant 
of -1) and n is even, it follows that m :::: n - 1. Therefore, 9 is a product 
of :::: n reflections and the proof is complete. 0 

We conclude with some corollaries of this theorem. 

(3.25) Corollary. Suppose dim M = n. 

(1) If 9 E Isom( <I» is the product of r :::: n reflections, then 

dim (Ker(g - 1M)) :2 n - r. 

(2) If Ker(g -1) = (0), then 9 cannot be written as a product of fewer than 
n reflections. 

Proof. (1) Let 9 = fYl ... fYr and let N j = Ker(fYj - 1). Then 

N n ... n NT s:;; Ker(g - 1M)' 

Since dimNj = n - 1, it follows that (Proposition 3.8.10) 
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dim(N1 n··· n Nr ) 2': n - r. 

(2) This follows immediately from (1). 

(3.26) Corollary. 

o 

(1) If dim M = 2 then every isometry of determinant -1 is a reflection. 
(2) If dim M = 3 and 9 is an isometry of determinant 1, then 9 is the 

product of 2 reflections. 

Proof. Exercise. o 

6.4 Exercises 

1. Give an example of a field F with no/exactly one/more than one nontrivial 
conjugation. 

2. Let 4> be a b/s-linear form (or cI> a quadratic form) on a free R-module N and 
let f : M ...... N be an R-module homomorphism. Show that 1*(4)) defined 
by 

U*(4)))(x, y) = 4>U(x), fey)), 

or 1* ( cI> ), defined by 
U*(cI>))(x) = cI>U(x)), 

is a b/s-linear (or quadratic) form on M. 
3. Let 4> be an even symmetric bilinear form over a PID R in which 2 is prime 

(e.g., R = Z) and suppose that det(4)) 1. 2R. Show that rank(4)) is even. 
4. Note that n [~ ~] is a form satisfying the conditions of Exercise 3, for any n. 

It is far from obvious that there are any other even symmetric non-singular 
forms over Z, but there are. Here is a famous example. Consider the form 4> 
over Z with matrix 

2 1 0 0 0 0 0 0 
1 2 1 0 0 0 0 0 
0 1 2 1 0 0 0 0 

Es = 0 0 1 2 1 0 0 0 
0 0 0 1 2 1 0 1 
0 0 0 0 1 2 1 0 
0 0 0 0 0 1 2 0 
0 0 0 0 1 0 0 2 

(a) Show that det(4)) = 1. 
(b) Show that signature( 4» = 8, where 4> is regarded as a form over R. 

5. (a) Let 4> be a b/s-linear form on a module M over a ring R. Suppose 
R is an integral domain. If there is a subspace H ~ M with rank(H) > 
(1/2) rank(M), which is totally isotropic for 4>, show that 4> is degenerate. 
(b) Suppose that 4> is either an even symmetric bilinear form on a module 

M over a ring R or a Hermitian form on a module M over a field R. If 
4> is non-singular and there is a totally isotropic subspace H ~ M with 
rank(H) = (1/2) rank(M), show that 4> is isometric to 

(rank(M)/2)[~ ~]. 
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6. Let <I> be a quadratic form associated to a bilinear form cjJ. Derive the fol
lowing identities: 
(a) 2<I>(x + y) = 2cjJ(x,y) + cjJ(x,x) + cjJ(y,y). 
(b) <I>(x + y) + <I>(x - y) = 2(<I>(x) + <I>(y». 
The latter equation is known as the polarization identity. 

7. Prove Proposition 2.5. 
8. The following illustrates some of the behavior that occurs for forms that are 

not c-symmetric. For simplicity, we take modules over a field F. Thus cjJ will 
denote a form on a module Mover F. 

9. 

(a) Define the right/left/two-sided kernel of cjJ by 

M~ = {y EM: cjJ(x, y) = 0 for all x E M} 

M lo = {y EM: cjJ(y, x) = 0 for all x E M} 

MO = {y EM: cjJ(x, y) = cjJ(y, x) = 0 for all x EM}. 

Show that if rank(M) < 00, then M~ = {O} if and only if Mt = {O}. 
Give a counterexample if rank(M) = 00. 

(b) Of course, MO = M~ n Mt. Give an example of a form cjJ on M (with 
rank(M) < 00) where M~ 1= {O}, Mt 1= {O}, but MO = {O}. We say that 
cjJ is right/left non-singular if M~ = {O}lMt = {O} and non-singular if 
it is both right and left non-singular. 

(c) If N ~ M, define 

N: = {y EM: cjJ(x, y) = 0 for all x E N} 

with an analogous definition for N/-. Let N.L = N: n N/-. Give an 
example where these three subspaces of M are all distinct. 

(d) Suppose that N ~ M is a subspace and cjJlN is non-singular. Show that 
M = NEB N: and M = NEB NI.L. Give an example where M 1= NEB N.L. 
Indeed, give an example where N is a proper subspace of M but N.L = 
{O}. 

Let R be a PID, M a free R-module of rank 4, and let cjJ be a non-degenerate 
skew-symmetric form on M. Show that cjJ is classified up to isometry by 
det( cjJ) and by 

gcd{cjJ(v, w) : v, w EM}. 

10. Let R be a PID, and let cjJ be a skew-symmetric form on a free R-module M. 
If det(cjJ) is square-free, show that cjJ is classified up to isometry by its rank. 

11. Classify the following forms over Z (as in Theorem 2.35): 

(a) 

(b) 

[ 

0 1 
-1 0 
-1 -5 
1 3 

-2 -2 
-1 3 

1 
5 
o 

-3 
7 

-4 

-1 
-3 
3 
o 
-6 
-5 

2 1] 2 -3 
-7 4 
6 5 
o 1 

-1 0 

[i 
o -6 -6 -6 -8] o -6 -7 -7 -9 
6 0 -1 -5 -7 
7 1 0 -6 -8 
7 5 6 0 0 
9 7 8 0 0 

12. Find the signature of each of the following forms over R. Note that this also 
gives their diagonalization over R. 
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[~ 40 9] 
[ -J1 

-11 

-J2] (a) 50 12 (b) 3 
12 3 -12 

[ ~4 -4 6] [1 3 g] (c) 13 -12 (d) 3 9 
-12 18 4 5 

[' 1 

0 0 0 

1] 
1 2 1 0 0 

(e) o 1 2 1 0 
o 0 1 0 1 
o 0 0 1 -2 
o 0 0 0 1 

Also, diagonalize each of these forms over Q. 
13. Carry out the details of the proof of Lemma 2.41. 
14. Analogous to the definition of even, we could make the following definition: 

Let R be a PID and p a prime not dividing 2 (e.g., R = Z and p an odd 
prime). A form f/J is ~ary if f/J(x, x) E pR for every x E M. Show that if f/J is 
'frary, then f/J(x, y) E pR for every x, y E M. 

15. Prove Proposition 3.4. 
16. Prove Lemma 3.6. 
17. Prove Proposition 3.11. 
18. Prove Lemma 3.19. 
19. Prove Lemma 3.20. 
20. Let f E AutR(M) where R = R or C and where rank(M) < 00. If fk = 1M 

for some k, prove that there is a non-singular form f/J on M with f E Isom(f/J). 
21. Diagonalize the following forms over the indicated fields: 

(a) 4 6] 7 8 
8 2 

4 -1] -2 10 
10 4 

(b) 

22. A symmetric matrix A = [ai;] E Mn(R) is called diagonally dominant if 

aii 2:: L lai;1 
;#i 

for 1 :::; i :::; n. If the inequality is strict, then A is called strictly diagonally 
dominant. Let f/J be the bilinear form on R n whose matrix (in the standard 
basis) is A. 
(a) If A is diagonally dominant, show that f/J is positive semidefinite, i.e., 

f/J(x, x) 2:: 0 for all x ERn. 
(b) If A is strictly diagonally dominant, show that f/J is positive definite. 

23. Let f/J be an arbitrary positive (or negative) semidefinite form. Show that f/J 
is non-degenerate if and only if it is positive (negative) definite. 

24. Let R be a ring with a (possibly trivial) conjugation. Show that 

{P E GL(n, R) : pt = (pfl} 

is a subgroup of GL(n, R). If R = R, with trivial conjugation, this group is 
called the orthogonal group and denoted O(n), and if R = C, with complex 
conjugation, it is called the unitary group and denoted U(n). 
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25. Let A E M2(C) be the matrix of a Hermitian form, so 

A= [~ ~] 
with a, c E R. Find an explicit matrix P with pt = (p)-I such that pt AJ5 
is diagonal. 

26. Let F be an arbitrary subfield of C and </J a Hermitian form on an F-module 
M of finite rank. Show how to modify the Gram-Schmidt procedure to 
produce an orthogonal (but not in general orthonormal) basis of M, i.e., a 
basis B = {VI, ... ,vn } in which </J(Vi, Vi) = 0 if i i- j. 

27. Let R be a commutative ring and let A E Mn(R) be a skew-symmetric 
matrix. If P E Mn(R) is any matrix, then show that pt AP is also skew
symmetric and 

Pf(ptAP) = det(P)Pf(A). 

28. Let A E Mn(C) be a Hermitian matrix. Show that A is positive definite if 
and only if A -1 is positive definite. More generally, show that the signature of 
A -1 is the signature of A. (We say that A is positive definite if the associated 
Hermitian form </J(x, x) = xtAx is positive definite.) 

29. If V is a real vector space, then a nonempty subset C ~ V is a cone if a, 
bEe =} a + bEe and a E C, a > 0 E R =} aa E C. Prove that the set of 
positive definite Hermitian matrices in Mn(C) is a cone. 

30. If A is a real symmetric matrix prove that there is a E R such that A + aIn 
is positive definite. 

31. If A E Mm,n(C), show that A* A and AA* are positive semidefinite Hermi
tian matrices. 

32. Let A, B E Mn(C) be Hermitian and assume that B is positive definite. 
Prove that the two Hermitian forms determined by A and B can be simul
taneously diagonalized. That is, prove that there is a nonsingular matrix P 
such that pt BP = In and pt AP = diag(A1, ... , An). (Hint: B determines 
an inner product on C n .) 



Chapter 7 

Topics in Module Theory 

This chapter will be concerned with collecting a number of results and construc
tions concerning modules over (primarily) noncommutative rings that will be 
needed to study group representation theory in Chapter 8. 

7.1 Simple and Semisimple Rings and Modules 

In this section we investigate the question of decomposing modules into 
"simpler" modules. 

(1.1) Definition. If R is a ring (not necessarily commutative) and M =f. (0) 
is a nonzero R-module, then we say that M is a simple or irreducible R
module if (0) and M are the only submodules of M. 

(1.2) Proposition. If an R-module M is simple, then it is cyclic. 

Proof. Let x be a nonzero element of M and let N = (x) be the cyclic 
submodule generated by x. Since M is simple and N =f. (0), it follows that 
M=N. 0 

(1.3) Proposition. If R is a ring, then a cyclic R-module M = (m) is simple 
if and only if Ann( m) is a maximal left ideal. 

Proof. By Proposition 3.2.15, M ~ R/ Ann(m), so the correspondence the
orem (Theorem 3.2.7) shows that M has no submodules other than M and 
(0) if and only if R has no submodules (i.e., left ideals) containing Ann(m) 
other than R and Ann(m). But this is precisely the condition for Ann(m) 
to be a maximal left ideal. 0 

(1.4) Examples. 

(1) An abelian group A is a simple Z-module if and only if A is a cyclic 
group of prime order. 
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(2) The hypothesis in Proposition 1.3 that M be cyclic is necessary. The 
Z-module A = Z~ has annihilator 2Z but the module A is not simple. 

(3) Consider the vector space F2 (where F is any field) as an F[x]-module 
via the linear transformation T(Ul' U2) = (U2, 0). Then F2 is a cyclic 
F[X]-module, but it is not a simple F[X]-module. Indeed, 

F2 = F[X] . (0, 1) 

but N = {(u,O) : U E F} is an F[X]-submodule of F2. Thus the 
converse of Proposition 1.2 is not true. 

(4) Let V = R 2 and consider the linear transformation T : V --> V defined 
by T(u, v) = (-v, u). Then the R[X]-module VT is simple. To see 
this let w = (Ul, vd i- 0 E V and let N be the R[X]-submodule of 
VT generated by w. Then wEN and Xw = T(w) = (-Vl' ud EN. 
Since any (x, y) E V can be written as (x, y) = aw + {3Xw where 
a = (XUl + yvd/(ui + vi) and {3 = (yul - xvd/(ui + vn, it follows 
that N = VT and hence VT is simple. 

(5) Now let W = C 2 and consider the linear transformation T : W --> W 
defined by T(u, v) = (-v, u). Note that T is defined by the same for
mula used in Example 1.4 (4). However, in this case the C[X]-module 
WT is not simple. Indeed, the C-subspace C· (i, 1) is aT-invariant 
subspace of W, and hence, it is a C[X]-submodule of WT different 
from W and from (0). 

The following lemma is very easy, but it turns out to be extremely 
useful: 

(1.5) Proposition. (Schur's lemma) 

(1) Let M be a simple R-module. Then the ring EndR(M) is a division 
ring. 

(2) If M and N are simple R-modules, then HomR(M, N) i- (0) if and 
only if M and N are isomorphic. 

Proof. (1) Let f i- 0 E EndR(M). Then Im(J) is a nonzero submodule of 
M and Ker(J) is a submodule of M different from M. Since M is simple, it 
follows that Im(J) = M and Ker(J) = (0), so f is an R-module isomorphism 
and hence is invertible as an element of the ring EndR(M). 

(2) The same argument as in (1) shows that any nonzero homomor-
phism f : M --> N is an isomorphism. 0 

We have a second concept of decomposition of modules into simpler 
pieces, with simple modules again being the building blocks. 

(1.6) Definition. If R is a ring (not necessarily commutative), then an R
module M is said to be indecomposable if it has no proper nontrivial com-
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plemented submodule MI, i.e., if M = MI EB M2 implies that MI = (0) or 
MI=M. 

If M is a simple R-module, then M is also indecomposable, but the 
converse is false. For example, Z is an indecomposable Z-module, but Z is 
not a simple Z-module; note that Z contains the proper submodule 2Z. 

One of the major classes of modules we wish to study is the following: 

(1.7) Definition. An R-module M is said to be semisimple if it is a direct 
sum of simple R-modules. 

The idea of semisimple modules is to study modules by decomposing 
them into a direct sum of simple submodules. In our study of groups there 
was also another way to construct groups from simpler groups, namely, the 
extension of one group by another, of which a special case was the semidirect 
product. Recall from Definition 1.6.6 that a group G is an extension of a 
group N by a group H if there is an exact sequence of groups 

1 ---+ N ---+ G ---+ H ---+ 1. 

If this exact sequence is a split exact sequence, then G is a semidirect 
product of N and H. In the case of abelian groups, semidirect and direct 
products coincide, but extension of N by H is still a distinct concept. 

If G is an abelian group and N is a subgroup, then the exact sequence 

(0) ---+ N ---+ G ---+ H ---+ (0) 

is completely determined by the chain of subgroups (0) ~ N ~ G. By 
allowing longer chains of subgroups, we can consider a group as obtained 
by multiple extensions. We will consider this concept within the class of 
R-modules. 

(1.8) Definition. 

(1) If R is a ring (not necessarily commutative) and M is an R-module, 
then a chain of sub modules of M is a sequence {Mi}i=o of submodules 
of M such that 

(1.1) 

The length of the chain is n. 
(2) We say that a chain {Nj}j=o is a refinement of the chain {Md~o 

if each Mi is equal to N j for some j. Refinement of chains defines a 
partial order on the set C of all chains of submodules of M. 

(3) A maximal element of C (if it exists) is called a composition series of 
M. 
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(1.9) Remarks. 

(1) Note that the chain (1.1) is a composition series if and only if each of 
the modules Mi/Mi - l (1 SiS n) is a simple module. 

(2) Our primary interest will be in decomposing a module as a direct sum 
of simple modules. Note that if M = EBi=l Mi where Mi is a simple 
R-module, then M has a composition series 

n 

(0) ~ Ml ~ Ml EB M2 ~ ... ~ E9 Mi = M. 
i=l 

On the other hand, if M = EB~lMi' then M does not have a compo
sition series. In a moment (Example 1.10 (2» we shall see an example 
of a module that is not semisimple but does have a composition se
ries. Thus, while these two properties-semisimplicity and having a 
composition series-are related, neither implies the other. However, 
our main interest in composition series is as a tool in deriving results 
about semisimple modules. 

(1.10) Examples. 

(1) Let D be a division ring and let M be a D-module with a basis 
{Xl, ... ,xm }. Let Mo = (0) and for 1 SiS n let Mi = (Xl, ... ,Xi). 
Then {Mi}i=o is a chain of submodules of length n, and since 

Mi/Mi- l = (Xl, ... ,Xi)/(Xl, ... ,Xi-l) 
~ DXi 

~D, 

we conclude that this chain is a composition series because D is a 
simple D-module. 

(2) If p is a prime, the chain 

is a composition series for the Z-module Zp2. Note that Zp2 is not 
semisimple as a Z-module since it has no proper complemented sub
modules. 

(3) The Z-module Z does not have a composition series. Indeed, if {li }f=o 
is any chain of submodules of length n, then writing h = (al), we can 
properly refine the chain by putting the ideal (2al) between h and 
10 = (0). 

(4) If R is a PID which is not a field, then essentially the same argument 
as Example 1.10 (3) shows that R does not have a composition series 
as an R-module. 
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(1.11) Definition. Let M be an R-module. If M has a composition series let 
i(M) denote the minimum length of a composition series for M. If M does 
not have a composition series, let i(M) = 00. i(M) is called the length of 
the R-module M. If i(M) < 00, we say that M has finite length. 

Note that isomorphic R-modules have the same length, since if f 
M ---+ N is an R-module isomorphism, the image under f of a composition 
series for M is a composition series for N. 

(1.12) Lemma. Let M be an R-module of finite length and let N be a proper 
submodule (i.e., N f. M). Then leN) < i(M). 

Proof. Let 

(1.2) (0) = Mo ~ Ml ~ ... ~ Mn = M 

be a composition series of M oflength n = i(M) and let Ni = NnMi ~ N. 
Let ¢: Ni ---+ Mi/Mi - 1 be the inclusion map Ni ---+ Mi followed by the pro
jection map Mi ---+ Mi/Mi - 1 . Since Ker(¢) = N i - 1 , it follows from the 
first isomorphism theorem that Ni/Ni - 1 is isomorphic to a submodule of 
Mi/Mi- 1 • But (1.2) is a composition series, so Mi/Mi- 1 is a simple R
module. Hence Ni = Ni- 1 or Ni/Ni- 1 = Mi/Mi- 1 for i = 1, 2, ... ,n. By 
deleting the repeated terms of the sequence {Ni}i=o we obtain a composi
tion series for the module N of length ~ n = i(M). Suppose that this com
position series for N has length n. Then we must have Ni/Ni- 1 = Mi/Mi- 1 

for all i = 1, 2, ... ,n. Thus Nl = MI, N2 = M2, ... , Nn = Mn, i.e., 
N = M. Since we have assumed that N is a proper submodule, we con
clude that the chain {Ndi=o has repeated terms, and hence, after deleting 
repeated terms we find that N has a composition series of length < i(M), 
that is, leN) < i(M). 0 

(1.13) Proposition. Let M be an R-module of finite length. Then every 
composition series of M has length n = l(M). Moreover, every chain of 
submodules can be refined to a composition series. 

Proof. We first show that any chain of submodules of M has length ~ i(M). 
Let 

(0) = Mo ~ Ml ~ ... ~ Mk = M 

be a chain of submodules of M of length k. By Lemma 1.12, 

0= i(Mo) < l(Ml) < ... < i(Mk) = l(M). 

Thus, k ~ l(M). 
Now consider a composition series of M of length k. By the definition 

of composition series, k ~ l(M) and we just proved that k ~ l(M). Thus, 
k = i(M). If a chain has length l(M), then it must be maximal and, hence, 
is a composition series. If the chain has length < l(M), then it is not a 
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composition series and hence it may be refined until its length is €(M), at 
which time it will be a composition series. 0 

According to Example 1.10 (1), if D is a division ring and M is a 
D-module, then a basis S = {Xl, ... ,xn } with n elements determines a 
composition series of M of length n. Since all composition series of M must 
have the same length, we conclude that any two finite bases of M must have 
the same length n. Moreover, if M had also an infinite basis T, then M 
would have a linearly independent set consisting of more than n elements. 
Call this set {Yl, ... ,yd with k > n. Then 

is a chain of length > n, which contradicts Proposition 1.13. Thus, every 
basis of M is finite and has n elements. We have arrived at the following 
result. 

(1.14) Proposition. Let D be a division ring and let M be a D-module with 
a finite basis. Then every basis of M is finite and all bases have the same 
number of elements. 

Proof. o 

An (almost) equivalent way to state the same result is the following. 
It can be made equivalent by the convention that DOC refers to any infinite 
direct sum of copies of D, without regard to the cardinality of the index 
set. 

(1.15) Corollary. If D is a division ring and Dm ~ Dn then m = n. 

Proof· o 

We conclude our treatment of composition series with the following 
result, which is frequently useful in constructing induction arguments. 

(1.16) Proposition. Let 0 ---> K ...!:.... M ~ L ---> 0 be a short exact 
sequence of R-modules. If K and L are of finite length then so is M, and 

€(M) = €(K) + €(L). 

Proof. Let 

(0) = Ko ~ Kl ~ ... ~ Kn = K 

be a composition series of K, and let 

(0) = Lo ~ Ll ~ ... ~ Lm = L 
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be a composition series for L. For 0 ~ i ~ n, let Mi = </J(Ki ), and for 
n + 1 ~ i ~ n + m, let Mi = 1jJ-l(Li_n ). Then {Mi}~iom is a chain of 
submodules of M and 

for 1 ~ i ~ n 
for n + 1 ~ i ~ n + m 

so that {Mi}~iom is a composition series of M. Thus, £(M) = n + m. 0 

(1.17) Example. Let R be a PID and let M be a finitely generated torsion 
R-module. We may write M as a finite direct sum of primary cyclic torsion 
modules: 

k 

M ~ EfjR/(p:i). 
i=l 

Then it is an easy exercise to check that M is of finite length and 

k 

£(M) = Lei. 
i=l 

We now return to our consideration of semisimple modules. For this 
purpose we introduce the following convenient notation. 

If M is an R-module and 8 is a positive integer, then 8M will denote 
the direct sum M EB· .. EB M (8 summands). More generally, if r is any index 
set then r M will denote the R-module r M = EB"(HM"( where M"( = M for 
all, E r. Of course, if In = 8 < 00 then r M = 8M, and we will prefer the 
latter notation. 

This notation is convenient for describing semisimple modules as direct 
sums of simple R-modules. If M is a semisimple R-module, then 

(1.3) 

where Mi is simple for each i E I. If we collect all the simple modules in 
Equation (1.3) that are isomorphic, then we obtain 

(1.4) 

where {M"'}"'EA is a set of pairwise distinct (Le., M", ~ MfJ if a t (3) 
simple modules. Equation (1.4) is said to be a simple factorization of the 
semisimple module M. Notice that this is analogous to the prime factor
ization of elements in a PID. This analogy is made even more compelling 
by the following uniqueness result for the simple factorization. 

(1.18) Theorem. Suppose that M and N are semisimple R-modules with 
simple factorizations 
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aEA 
and 

(1.6) N ~ EB (A(3N(3) 
(3EB 

where {Ma}aEA and {N(3}(3EB are the distinct simple factors of M and N, 
respectively. If M is isomorphic to N, then there is a bijection'!/J : A -+ B 
such that Ma ~ N..p(a) for all 0: E A. Moreover, If al < 00 if and only if 
IA..p(a) I < 00 and in this case If a I = IA..p(a) I· 

Proo]. Let 4> : M -+ N be an isomorphism and let 0: E A be given. We may 
write M ~ Ma ffiM' with M' = ffi."EA\{a} (f."M.,,) ffif~Ma where f~ is fa 
with one element deleted. Then by Proposition 3.3.15, 

HomR(M, N) ~ HomR(Ma, N) ffi HomR(M', N) 

(1.7) ~ (EB A(3 HomR(Ma, N(3)) ffi HomR(M', N). 
(3EB 

By Schur's lemma, HomR(Ma, N(3) = (0) unless Ma ~ N(3. Therefore, 
in Equation (1.7) we will have HomR(Ma, N) = 0 or HomR(Ma, N) ~ 
A(3 HomR(Ma, N(3) for a unique {3 E B. The first alternative cannot occur 
since the isomorphism 4> : M -+ N is identified with (4) 0 [1, 4> 0 [2) where 
[1 : Ma -+ M is the canonical injection (and [2 : M' -+ M is the injection). 
If HomR(Ma, N) = 0 then 4> 0 [1 = 0, which means that 4>IM", = O. This is 
impossible since 4> is injective. Thus the second case occurs and we define 
!/J(o:) = (3 where HomR(Ma,Ne) # (0). Thus we have defined a function 
'!/J : A -+ B, which is one-to-one by Schur's lemma. It remains to check that 
'!/J is surjective. But given (3 E B, we may write N ~ N(3 ffi N'. Then 

HomR(M, N) ~ HomR(M, N(3) ffi HomR(M, N') 

and 
HomR(M, N(3) ~ IT (IT HomR(Ma, N(3)). 

aEA ra 
Since 4> is surjective, we must have HomR(M, N(3) # (0), and thus, Schur's 
lemma implies that 

HomR(M, N(3) ~ IT Hom(Ma , N(3) 
ra 

for a unique 0: E A. Then '!/J(o:) = (3, so '!/J is surjective. 
According to Proposition 3.3.15 and Schur's lemma, 

HomR(M, N) ~ IT (EB HomR(f aMa, A(3N(3)) 
aEA (3EB 

~ IT HomR(f aMa, A..p(a)N..p(a)). 
aEA 
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Therefore, cP E HomR(M, N) is an isomorphism if and only if 

cPa = cPlr aM", : r a MOl. -t A"pCOl.)N"pCOl.) 

is an isomorphism for all a E A. But by the definition of 1/J and Schur's 
lemma, MOl. is isomorphic to N"pCOl.)' Also, r a MOl. has length Ir 01.1, and 
A"pCOl.)N"pCOl.) has length IA"pCOl.) I, and since isomorphic modules have the same 
length, Ira) I = IA"pcOl.) I, completing the proof. 0 

(1.19) Corollary. Let M be a semisimple R-module and suppose that M has 
two simple factorizations 

with distinct simple factors {MOI.}OI.EA and {N,B},BEB. Then there is a bijec
tion 1/J : A -t B such that MOl. ~ N"pCa) for all a E A. Moreover, Ir 01.1 < 00 

if and only if IA"pCOl.) I < 00 and in this case Ir 01.1 = IA"pCOl.) I· 

Proof. Take cP = 1M in Theorem 1.18. o 

(1.20) Remarks. 

(1) While it is true in Corollary 1.19 that MOl. ~ N"pCOl.) (isomorphism as 
R-modules), it is not necessarily true that MOl. = N"pCOl.)' For example, 
let R = F be a field and let M be a vector space over F of dimension 
s. Then for any choice of basis {ml' ... ,ms } of M, we obtain a direct 
sum decomposition 

M ~ Rml EEl ••• EEl Rms · 

(2) In Theorem 1.18 we have been content to distinguish between finite and 
infinite index sets r 01., but we are not distinguishing between infinite 
sets of different cardinality. Using the theory of cardinal arithmetic, 
one can refine Theorem 1.18 to conclude that Ira I = IA"pcOI.) I for all 
a E A, where lSI denotes the cardinality of the set S. 

We will now present some alternative characterizations of semisimple 
modules. The following notation, which will be used only in this section, 
will be convenient for this purpose. Let {MihEJ be a set of submodules of 
a module M. Then let 

iEJ 

be the sum of the submodules {Mi hE!' 

(1.21) Lemma. Let M be an R-module that is a sum of simple submodules 
{MihEJ, and let N be an arbitrary submodule of M. Then there is a subset 
J ~ I such that 
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M ~ N EfJ ((BMi). 
iEJ 

Proof. The proof is an application of Zorn's lemma. Let 

s = {p ~ I: Mp ~ (BMi and Mp nN = (O)}. 
iEP 

Partially order S by inclusion and let C = {Po}oEA be an arbitrary chain 
in S. If P = UoEAPo , we claim that PES. Suppose that P (j. S. Since 
it is clear that Mp n N = (0), we must have that Mp '1= EfJiEPMi. Then 
Theorem 3.3.2 shows that there is some Po E P, such that Mpo nMp' =f:. (0), 
where P' = P\ {po}. Suppose that 0 =f:. x E Mpo nMp'. Then we may write 

(1.8) 

where XPi =f:. 0 E MPi for {PI, ... ,Pk} ~ P'. Since C is a chain, there is 
an index Q; E A such that {Po, PI, ... ,Pk} ~ Po. Equation (1.8) shows 
that MPa '1= EfJiEPaMi, which contradicts the fact that Po E S. Therefore, 
we must have PES, and Zorn's lemma applies to conclude that S has a 
maximal element J. 

If this were not true, then there would be an index io E I such that 
Mio rt N + M J. This implies that Mio rt Nand Mio rt M J. Since Mio n N 
and Mio nMJ are proper submodules of Mio ' it follows that Mio nN = (0) 
and Mio nMJ = (0) because Mio is a simple R-module. Therefore, {io }UJ E 
S, contradicting the maximality of J. Hence, the claim is proved. 0 

(1.22) Corollary. If an R-module M is a sum of simple submodules, then 
M is semisimple. 

Proof. Take N = (0) in Theorem 1.21. 

(1.23) Theorem. If M is an R-module, then the following are equivalent: 

(1) M is a semisimple module. 
(2) Every submodule of M is complemented. 
(3) Every submodule of M is a sum of simple R-modules. 

o 

Proof. (1) =* (2) follows from Lemma 1.21, and (3) =* (1) is immediate 
from Corollary 1.22. It remains to prove (2) =* (3). 

Let MI be a submodule of M. First we observe that every submodule of 
MI is complemented in MI. To see this, suppose that N is any submodule of 
MI. Then N is complemented in M, so there is a submodule N' of M such 
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that N(J)N' ~ M. But then N +(N'nMd = MI so that N(J)(N'nMI ) ~ 
M I , and hence N is complemented in MI. 

Next we claim that every nonzero submodule M2 of M contains a 
nonzero simple submodule. Let m E M2, m #- O. Then Rm ~ M2 and, 
furthermore, R/ Ann(m) ~ Rm where Ann(m) = {a E R : am = O} is a 
left ideal of R. A simple Zorn's lemma argument (see the proof of Theorem 
2.2.16) shows that there is a maximal left ideal I of R containing Ann(m). 
Then 1m is a maximal submodule of Rm by the correspondence theorem. 
By the previous paragraph, 1m is a complemented submodule of Rm, so 
there is a submodule N of Rm with N (J) I m ~ Rm, and since 1m is a 
maximal submodule of Rm, it follows that the submodule N is simple. 
Therefore, we have produced a simple submodule of M 2 • 

Now consider an arbitrary submodule N of M, and let NI ~ N be 
the sum of all the simple submodules of N. We claim that NI = N. Nl 
is complemented in N, so we may write N ~ NI (J) N2. If N2 #- (O) then 
N2 has a nonzero simple submodule N', and since N' ~ N, it follows that 
N' ~ N 1 • But Nl n N2 = (O). This contradiction shows that N2 = (O), i.e., 
N = N 1 , and the proof is complete. 0 

(1.24) Corollary. Sums, submodules, and quotient modules of semisimple 
modules are semisimple. 

Proof. Sums: This follows immediately from Corollary 1.22. 
Submodules: Any submodule of a semisimple module satisfies condition 

(3) of Theorem 1.23. 
Quotient modules: If M is a semisimple module, N ~ M is a submod

ule, and Q = M / N, then N has a complement N' in M, i.e., M ~ N (J) N'. 
But then Q ~ N', so Q is isomorphic to a submodule of M, and hence, is 
semisimple. 0 

(1.25) Corollary. Let M be a semisimple R-module and let N ~ M be a 
submodule. Then N is irreducible (simple) if and only if N is indecompos
able. 

Proof. Since every irreducible module is indecomposable, we need to show 
that if N is not irreducible, then N is not indecomposable. Let NI be a 
nontrivial proper submodule of N. Then N is semisimple by Corollary 1.24, 
so Nl has a complement by Theorem 1.23, and N is not indecomposable. 

o 

(1.26) Remark. The fact that every submodule of a semisimple R-module 
M is complemented is equivalent (by Theorem 3.3.9) to the statement that 
whenever M is a semisimple R-module, every short exact sequence 

O--+N--+M--+K--+O 

of R-modules splits. 
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(1.27) Definition. A ring R is called semisimple if R is semisimple as a left 
R-module. 

Remark. The proper terminology should be "left semisimple," with an anal
ogous definition of "right semisimple," but we shall see below that the two 
notions coincide. 

(1.28) Theorem. The following are equivalent for a ring R: 

(1) R is a semisimple ring. 
(2) Every R-module is semisimple. 
(3) Every R-module is projective. 

Proof. (1) * (2). Let M be an R-module. By Proposition 3.4.14, M has a 
free presentation 

o -----t K -----t F -----t M -----t 0 

so that M is a quotient of the free R-module F. Since F is a direct sum 
of copies of R and R is assumed to be semisimple, it follows that F is 
semisimple, and hence M is also (Corollary 1.24). 

(2) * (3). Assume that every R-module is semisimple, and let P be 
an arbitrary R-module. Suppose that 

(1.9) o -----t K -----t M -----t P -----t 0 

is a short exact sequence. Since M is an R-module, our assumption is that 
it is semisimple and then Remark 1.26 implies that sequence (1.9) is split 
exact. Since (1.9) is an arbitrary short exact sequence with P on the right, 
it follows from Theorem 3.5.1 that P is projective. 

(3) * (1). Let M be an arbitrary submodule of R (Le., an arbitrary 
left ideal). Then we have a short exact sequence 

o -----t M -----t R -----t RIM -----t o. 
Since all R-modules are assumed projective, we have that RIM is pro
jective, and hence (by Theorem 3.5.1) this sequence splits. Therefore, 
R 9! M EB N for some submodule N ~ R, which is isomorphic (as an 
R-module) to RIM. Then by Theorem 1.23, R is semisimple. 0 

(1.29) Corollary. Let R be a semisimple ring and let M be an R-module. 
Then M is irreducible (simple) if and only if M is indecomposable. 

Proof. 0 

(1.30) Theorem. Let R be a semisimple ring. Then every simple R-module 
is isomorphic to a submodule of R. 

Proof. Let N be a simple R-module, and let R = EBiEI Mi be a simple 
factorization of the semisimple R-module R. We must show that at least 
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one of the simple R-modules Mi is isomorphic to N. If this is not the case, 
then 

HomR(R, N) 9:: HomR(EBMi , N) 9:: II HomR(Mi , N) = (0) 
iEI iEI 

where the last equality is because HomR(Mi , N) = (0) if Mi is not iso
morphic to N (Schur's lemma). But HomR(R, N) 9:: N =1= (0), and this 
contradiction shows that we must have N isomorphic to one of the simple 
submodules Mi of R. D 

(1.31) Corollary. Let R be a semisimple ring. 

(1) There are only finitely many isomorphism classes of simple R-modules. 
(2) If {Mah.EA is the set of isomorphism classes of simple R-modules and 

then each r a is finite. 

Proof. Since R is semisimple, we may write 

where each N/3 is simple. We will show that B is finite, and then both 
finiteness statements in the corollary are immediate from Theorem 1.30. 

Consider the identity element 1 E R. By the definition of direct sum, 
we have 

1 = I:: r/3n/3 
/3EB 

for some elements r/3 E R, n/3 E N/3, with all but finitely many r/3 equal to 
zero. Of course, each N/3 is a left R-submodule of R, i.e., a left ideal. 

Now suppose that B is infinite. Then there is a f30 E B for which 
r/3o = O. Let n be any nonzero element of N/3o. Then 

n = n ·1 = n(I:: r(3n/3) = I:: (nr/3)n(3, 
/3EB /3EB\ {/3o} 

so 

Thus, 

n E N/3o n( EB N(3) = {O}, 
(3EB\{(3o} 
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by the definition of direct sum again, which is a contradiction. Hence, B is 
finite. 0 

We now come to the basic structure theorem for semisimple rings. 

(1.32) Theorem. (Wedderburn) Let R be a semisimple ring. Then there is 
a finite collection of integers nl, ... , nk, and division rings Db ... , Dk 
such that 

k 

R ~ EBEndD;(D~i). 
i=1 

Proof. By Corollary 1.31, we may write 

k 

R~ E9niMi 
i=1 

where {MiH=1 are the distinct simple R-modules and nI, ... , nk are pos
itive integers. Then R is anti-isomorphic to ROP, and 

ROP ~ EndR(R) 
k k 

~ HomR( EBniMi' E9niMi) 
i=1 i=1 

k 

~ EBHomR(niMi, niMi) 
i=1 

k 

~ E9EndR(ni Mi), 
i=1 

by Schur's lemma. Also, by Schur's lemma, EndR(Mi) is a division ring, 
which we denote by E i , for each i = 1, ... , k. Then it is easy to check 
(compare the proof of Theorem 1.18) that 

EndR(niMi) ~ EndE;(E~;). 

Setting Di = E?, the proof is completed by observing that EndEi (E~i) is 
anti-isomorphic to EndD, (Dfi). 0 

Remark. Note that by Corollary 4.3.9, EndD(Dn ) is isomorphic to Mn(DOP). 
Thus, Wedderburn's theorem is often stated as, Every semisimple ring is 
isomorphic to a finite direct sum of matrix rings over division rings. 

(1.33) Lemma. Let D be a division ring and n a positive integer. Then 
R = EndD(Dn ) is semisimple as a left R-module and also as a right R
module. Furthermore, R is semisimple as a left D-module and as a right 
D-module. 
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Proof Write Dn = Dl EI1 D2 EI1 ... EI1 Dn where Di = D. Let 

and let 

Mi = {f E EndD(Dn): Ker(f) "2 EeDk}' 
ki'i 

Nj = {f E EndD(Dn) : Im(f) ~ D j }, 

Pij = Mi n N j • 

Note that Pij 8:! DOP. Then 

as a left R-module, and 

as a right R-module. We leave it to the reader to check that each Mi (resp., 
N j ) is a simple left (resp., right) R-module. Also, 

as a right (resp., left) D-module, and each Pij is certainly simple (on either 
side). 0 

(1.34) Corollary. A ring R is semisimple as a left R-module if and only if 
it is semisimple as a right R-module. 

Proof. This follows immediately from Theorem 1.32 and Lemma 1.33. 0 

Observe that R is a simple left R-module (resp., right R-module) if 
and only if R has no nontrivial proper left (resp., right) ideals, which is 
the case if and only if R is a division algebra. Thus, to define simplicity 
of R in this way would bring nothing new. Instead we make the following 
definition: 

(1.35) Definition. A ring R with identity is simple if it has no nontrivial 
proper (two-sided) ideals. 

Remark. In the language of the next section, this definition becomes "A 
ring R with identity is simple if it is simple as an (R, R)-bimodule." 

(1.36) Corollary. Let D be a division ring and n a positive integer. Then 
EndD(Dn) is a simple ring that is semisimple as a left EndD(Dn)-module. 

Conversely, if R is a simple ring that is semisimple as a left R-module, 
or, equivalently, as a right R-module, then 

for some division ring D and positive integer n. 
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Proof. We leave it to the reader to check that EndD(Dn) is simple (compare 
Theorem 2.2.26 and Corollary 2.2.27), and then the first part of the corol
lary follows from Lemma 1.33. Conversely, if R is semisimple we have the 
decomposition given by Wedderburn's theorem (Theorem 1.32), and then 
the condition of simplicity forces k = 1. 0 

Our main interest in semis imp Ie rings and modules is in connection 
with our investigation of group representation theory, but it is also of in
terest to reconsider modules over a PID from this point of view. Thus let 
R be a PID. We wish to give a criterion for R-modules to be semisimple. 
The following easy lemma is left as an exercise. 

(1.37) Lemma. Let R be an integral domain. Then R is a semisimple ring 
if and only if R is a field. If R is a field, R is simple. 

Proof. Exercise. o 

From this lemma and Theorem 1.28, we see that if R is a field, then 
every R-module (i.e., vector space) is semisimple and there is nothing more 
to say. For the remainder of this section, we will assume that R is a PID 
that is not a field. 

Let M be a finitely generated R-module. Then by Corollary 3.6.9, we 
have that M ~ FEEl M r , where F is free (of finite rank) and Mr is the 
torsion submodule of M. If F i= (0) then Lemma 1.37 shows that M is 
not semisimple. It remains to consider the case where M = Mn i.e., where 
M is a finitely generated torsion module. Recall from Theorem 3.7.13 that 
each such M is a direct sum of primary cyclic R-modules. 

(1.38) Proposition. Let M be a primary cyclic R-module (where R is a PID 
is not a field) and assume that Ann(M) = (pe) where pER is a prime. If 
e = 1 then M is simple. If e > 1, then M is not semisimple. 

Proof. First suppose that e = 1, so that M ~ Rj (p). Then M is a simple 
R-module because (p) is a prime ideal in the PID R, and hence, it is a 
maximal ideal. 

Next suppose that e > 1. Then 

(0) i= pe-l M ~ M, 

and pe-l M is a proper submodule of M, which is not complemented; hence, 
M is not semisimple by Theorem 1.23 (2). 0 

(1.39) Theorem. Let M be a finitely generated torsion R-module (where R 
is a PID that is not a field). Then M is semisimple if and only if me(M) 
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(see Definition 3.7.8) is a product of distinct prime factors. M is a simple 
R-module if and only if 

me(M) = co(M) = (P) 

where pER is a prime. 

Proof. First suppose that M is cyclic, and me(M) = (p~1 ... p~k). Then 
the primary decomposition of M is given by 

and M is semisimple if and only if each of the summands is semisimple, 
which by Proposition 1.38, is true if and only if 

Now let M be general. Then by Theorem 3.7.1, there is a cyclic de
composition 

M ~ RWI EB .•. EB RWn 

such that Ann(wi) (Si) and Si I Si+l for 1 :::; i :::; n - 1. Then M is 
semisimple if and only if each of the cyclic submodules RWi is semisimple, 
which occurs (by the previous paragraph) if and only if Si is a product of 
distinct prime factors. Since Si I Si+l, this occurs if and only if Sn = me( M) 
is a product of distinct prime factors. The second assertion is then easy to 
verify. 0 

(1.40) Remark. In the two special cases of finite abelian groups and linear 
transformations that we considered in some detail in Chapters 3 and 4, 
Theorem 1.39 takes the following form: 

(1) A finite abelian group is semisimple if and only if it is the direct product 
of cyclic groups of prime order, and it is simple if and only if it is cyclic 
of prime order. 

(2) Let V be a finite-dimensional vector space over a field F and let 
T : V ---> V be a linear transformation. Then VT is a semisimple F[X]
module if and only if the minimal polynomial mT(X) of T is a product 
of distinct irreducible factors and is simple if and only if its character
istic polynomial CT(X) is equal to its minimal polynomial mT(X), this 
polynomial being irreducible (see Lemma 4.4.11.) If F is algebraically 
closed (so that the only irreducible polynomials are linear ones) then 
VT is semisimple if and only if T is diagonalizable and simple if and 
only if V is one-dimensional (see Corollary 4.4.32). 
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7.2 Multilinear Algebra 

We have three goals in this section: to introduce the notion of a bimodule, to 
further our investigation of "Hom," and to introduce and investigate tensor 
products. The level of generality of the material presented in this section 
is dictated by the applications to the theory of group representations. For 
this reason, most of the results will be concerned with modules over rings 
that are not commutative; frequently there will be more than one module 
structure on the same abelian group, and many of the results are concerned 
with the interaction of these various module structures. We start with the 
concept of bimodule. 

(2.1) Definition. Let Rand S be rings. An abelian group M is an (R, S)
bimodule il M is both a left R-module and a right S -module, and the com
patibility condition 

(2.1) r(ms) = (rm)s 

is satisfied lor every r E R, m EM, and s E S. 

(2.2) Examples. 

(1) Every left R-module is an (R, Z)-bimodule, and every right S-module 
is a (Z, S)-bimodule. 

(2) If R is a commutative ring, then every left or right R-module is an 
(R, R)-bimodule in a natural way. Indeed, if M is a left R-module, 
then according to Remark 3.1.2 (1), M is also a right R-module by 
means of the operation mr = rm. Then Equation (2.1) is 

r(ms) = r(sm) = (rs)m = (sr)m = s(rm) = (rm)s. 

(3) If T is a ring and Rand S are subrings of T (possibly with R = S = T), 
then T is an (R, S)-bimodule. Note that Equation (2.1) is simply the 
associative law in T. 

(4) If M and N are left R-modules, then the abelian group HomR(M, N) 
has the structure of an (EndR(N), EndR(M»-bimodule, as follows. If 
I E HomR(M, N), 4> E EndR(M), and 't/J E EndR(N), then define 
14> = 1 0 4> and 't/JI = 't/J 0 I. These definitions provide a left EndR(N)
module and a right EndR(M)-module structure on HomR(M, N), and 
Equation (2.1) follows from the associativity of composition of func
tions. 

(5) Recall that a ring T is an R-algebra, if T is an R-module and the R
module structure on T and the ring structure of T are compatible, i.e., 
r(tlt2) = (rtl)t2 = tl(rt2) for all r E Rand h, t2 E T. If T happens 
to be an (R, S)-bimodule, such that r(ht2) = (rtl)t2 = t1(rt2) and 
(tlt2)S = tl(t2S) = (tlS)t2 for all r E R, s E S, and h, t2 E T, then we 
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say that T is an (R, S)-bialgebra. For example, if Rand S are subrings 
of a commutative ring T, then T is an (R, S)-bialgebra. 

Suppose that M is an (R, S)-bimodule and N ~ M is a subgroup of the 
additive abelian group of M. Then N is said to be an (R, S)-bisubmodule 
of M if N is both a left R-submodule and a right S-submodule of M. If 
Ml and M2 are (R, S)-bimodules, then a function f : Ml ~ M2 is an 
(R, S)-bimodule homomorphism if it is both a left R-module homomor
phism and a right S-module homomorphism. The set of (R, S)-bimodule 
homomorphisms will be denoted HOm(R,S)(M1 , M2)' Since bimodule ho
momorphisms can be added, this has the structure of an abelian group, 
but, a priori, nothing more. If f : Ml ~ M2 is an (R, S)-bimodule ho
momorphism, then it is a simple exercise to check that Ker(f) ~ Ml and 
Im(f) ~ M2 are (R, S)-bisubmodules. 

Furthermore, if N ~ M is an (R, S)-bisubmodule, then the quotient 
abelian group is easily seen to have the structure of an (R, S)-bimodule. 
We leave it as an exercise for the reader to formulate and verify the noether 
isomorphism theorems (see Theorems 3.2.3 to 3.2.6) in the context of (R, S)
bimodules. It is worth pointing out that if M is an (R, S)-bimodule, then 
there are three distinct concepts of submodule of M, namely, R-submodule, 
S-submodule, and (R, S)-bisubmodule. Thus, if X ~ M, then one has three 
concepts of submodule of M generated by the set X. To appreciate the 
difference, suppose that X = {x} consists of a single element x E M. Then 
the R-submodule generated by X is the set 

(2.2) Rx = {rx : r E R}, 

the S-submodule generated by X is the set 

(2.3) xS = {xs : S E S}, 

while the (R, S)-bisubmodule generated by X is the set 

n 

(2.4) RxS = {L: riXSi : n E N and ri E R, Si E S for 1 ::; i ::; n}. 

i=l 

(2.3) Examples. 

(1) If R is a ring, then a left R-submodule of R is a left ideal, a right 
R-submodule is a right ideal, and an (R, R)-bisubmodule of R is a 
(two-sided) ideal. 

(2) As a specific example, let R = M2 (Q) and let x = [~ g]. Then the left 
R-submodule of R generated by {x} is 
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the right R-submodule of R generated by {x} is 

while the (R,R)-bisubmodule of R generated by {x} is R itself (see 
Theorem 2.2.26). 

When considering bimodules, there are (at least) three distinct types 
of homomorphisms that can be considered. In order to keep them straight, 
we will adopt the following notational conventions. If M and N are left 
R-modules (in particular, both could be (R, S)-bimodules, or one could be 
an (R, S)-bimodule and the other a (R, T)-bimodule), then HomR(M, N) 
will denote the set of (left) R-module homomorphisms from M to N. If M 
and N are right S-modules, then Hom_s(M, N) will denote the set of all 
(right) S-module homomorphisms. If M and N are (R, S)-bimodules, then 
HOm(R,S)(M, N) will denote the set of all (R, S)-bimodule homomorphisms 
from M to N. With no additional hypotheses, the only algebraic structure 
that can be placed upon these sets of homomorphisms is that of abelian 
groups, Le., addition of homomorphisms is a homomorphism in each situa
tion described. The first thing to be considered is what additional structure 
is available. 

(2.4) Proposition. Suppose that M is an (R, S)-bimodule and N is an 
(R, T)-bimodule. Then HomR(M, N) can be given the structure of an 
(S, T)-bimodule. 

Proof. We must define compatible left S-module and right T-module struc
tures on HomR(M, N). Thus, let f E HomR(M, N), s E S, and t E T. 
Define sf and ft as follows: 

(2.5) sf(m) = f(ms) for all m E M 

and 

(2.6) ft(m) = f(m)t for all m E M. 

We must show that Equation (2.5) defines a left S-module structure on 
HomR(M, N) and that Equation (2.6) defines a right T-module structure 
on HomR(M, N), and we must verify the compatibility condition sUt) = 
(sJ)t. 

We first verify that sft is an R-module homomorphism. To see this, 
suppose that rl, r2 E R, ml, m2 E M and note that 

sft(rlml + r2m2) = f«rlml + r2m2)s)t 

= f«rlmds + (r2m2)s)t 

= f(rl(mls) + r2(m2s))t 

= (rd(mls) + r2f(m2s)) t 
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= (rtf(mlS))t + (rd(m2s))t 

= r1(f(m1S)t) + r2(f(m2S)t) 

= T1(sft)(m1) + T2(sft)(m2), 

where the third equality follows from the (R, S)-bimodule structure on M, 
while the next to last equality is a consequence of the (R, T)-bimodule 
structure on N. Thus, sft is an R-module homomorphism for all s E S, 
t E T, and f E HomR(M, N). 

Now observe that, if Sl, S2 E S and m E M, then 

(sl(sd)) (m) = (sd)(ms1) 

= f((ms1)S2) 

= f(m(sl s2)) 

= ((SlS2)J) (m) 

so that HomR(M, N) satisfies axiom (cd of Definition 3.1.1. The other 
axioms are automatic, so HomR(M, N) is a left S-module. Similarly, if tb 
t2 E T and m E M, then 

((ftt}t2) (m) = ((ft1)(m»)t2 

= (f(m)lt) t2 

= f(m)(t1 t2) 

= (f(t1t2») (m). 

Thus, HomR(M, N) is a right T-module by Definition 3.1.1 (2). We have 
only checked axiom (cr ), the others being automatic. 

It remains to check the compatibility of the left S-module and right 
T-module structures. But, if s E S, t E T, f E HomR(M, N), and m E M, 
then 

((sJ)t) (m) = (sf)(m)t = f(ms)t = (ft)(ms) = s(ft)(m). 

Thus, (sJ)t = s(ft) and HomR(M, N) is an (S, T)-bimodule, which com
pletes the proof of the proposition. 0 

Proved in exactly the same way is the following result concerning the 
bimodule structure on the set of right R-module homomorphisms. 

(2.5) Proposition. Suppose that M is an (S, R)-bimodule and N is a (T, R)
bimodule. Then Hom_R(M, N) has the structure of a (T, S)-bimodule, via 
the module operations 

(tJ)(m) = t(f(m» and (fs)(m) = f(sm) 

where s E S, t E T, f E Hom_R(M, N), and m E M. 

Proof. Exercise. o 
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Some familiar results are corollaries of these propositions. (Also see 
Example 3.1.5 (10).) 

(2.6) Corollary. 

(1) If M is a left R-module, then M* = HomR(M, R) is a right R-module. 
(2) If M and N are (R, R)-bimodules, then HomR(M, N) is an (R, R)
bimodule, and EndR(M) is an (R, R)-bialgebra. In particular, this is the 
case when the ring R is commutative. 

Proof. Exercise. o 

Remark. If M and N are both (R,8)-bimodules, then the set of bimod
ule homomorphisms HOm(R,S)(M, N) has only the structure of an abelian 
group. 

Theorem 3.3.10 generalizes to the following result in the context of 
bimodules. The proof is identical, and hence it will be omitted. 

(2.7) Theorem. Let 

(2.7) 

be a sequence of (R,8)-bimodules and (R,8)-bimodule homomorphisms. 
Then the sequence (2.7) is exact if and only if the sequence 

is an exact sequence of (T, 8)-bimodules for all (R, T)-bimodules N. 
If 

(2.9) 

is a sequence of (R,8)-bimodules and (R,8)-bimodule homomorphisms, 
then the sequence (2.9) is exact if and only if the sequence 

(2.10) 

is an exact sequence of (8, T)-bimodules for all (R, T)-bimodules N. 

Proof. o 

Similarly, the proof of the following result is identical to the proof of 
Theorem 3.3.12. 

(2.8) Theorem. Let N be a fixed (R, T)-bimodule. If 

(2.11) 
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is a split short exact sequence of (R, S)-bimodules, then 

is a split short exact sequence of (T, S)-bimodules, and 

is a split short exact sequence of (8, T)-bimodules. 

Proof. o 

This concludes our brief introduction to bimodules and module struc
tures on spaces of homomorphisms; we turn our attention now to the con
cept of tensor product of modules. As we shall see, Hom and tensor products 
are closely related, but unfortunately, there is no particularly easy defini
tion of tensor products. On the positive side, the use of the tensor product 
in practice does not usually require an application of the definition, but 
rather fundamental properties (easier than the definition) are used. 

Let M be an (R, 8)-bimodule and let N be an (8, T)-bimodule. Let F 
be the free abelian group on the index set M x N (Remark 3.4.5). Recall 
that this means that F = EB(m,n)EMxNZ(m,n) where Z(m,n) = Z for all 
(m, n) EM x N, and that a basis of F is given by 8 = {e(m,n)}cm,n)EMXN 
where e(m,n) = (OmkOnl)(k,l)EMXN, that is, e(m,n) = 1 in the component of 
F corresponding to the element (m, n) EM x Nand e(m,n) = 0 in all other 
components. As is conventional, we will identify the basis element e(m,n) 
with the element (m, n) E M x N. Thus a typical element of F is a linear 
combination 

L C(m,n)(m,n) 
(m,n)EMxN 

where C(m,n) E Z and all but finitely many of the integers c(m,n) are O. Note 
that F can be given the structure of an (R, T)-bimodule via the multipli
cation 

(2.14) 

where r E R, t E T, and Cb ... ,Ck E Z. 
Let K ~ F be the subgroup of F generated by the subset HI UH2UH3 

where the three subsets HI, H 2, and H3 are defined by 

HI = {(mi +m2, n) - (ml' n) - (m2' n): mb m2 EM, n E N} 
H2 = {(m, ni + n2) - (m, nd - (m, n2) : m E M, nl, n2 EN} 

H3 = {(ms, n) - (m, sn) : m E M, n E N, s E 8}. 
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Note that K is an (R, T)-submodule of F using the bimodule structure 
given by Equation (2.14). 

With these preliminaries out of the way, we can define the tensor prod
uct of M and N. 

(2.9) Definition. With the notation introduced above, the tensor product of 
the (R, 8)-bimodule M and the (8, T)-bimodule N, denoted M ®s N, is the 
quotient (R, T)-bimodule 

M®sN=FjK. 

If 7r : F -+ FjK is the canonical projection map, then we let m ®s n = 
7r((m, n)) for each (m, n) E M x N ~ F. When 8 is clear from the context 
we will frequently write m ® n in place of m ®s n. 

Note that the set 

(2.15) {m®sn: (m,n) EM x N} 

generates M ®s N as an (R, T)-bimodule, but it is important to recognize 
that M ®s N is not (in general) equal to the set in (2.15). Also important 
to recognize is the fact that m ® s n = (m, n) + K is an equivalence class, so 
that m ® n = m' ® n' does not necessarily imply that m = m' and n = n'. 
As motivation for this rather complicated definition, we have the following 
proposition. The proof is left as an exercise. 

(2.10) Proposition. Let M be an (R,8)-bimodule, N an (8, T)-bimodule, 
and let m, mi EM, n, ni EN, and s E 8. Then the following identities 
hold in M ®s N. 

(2.16) 

(2.17) 
(2.18) 

Proof. Exercise. 

(ml + m2) ® n = ml ® n + m2 ® n 

m ® (nl + n2) = m ® nl + m ® n2 

ms®n= m®sn. 

o 

Indeed, the tensor product M ®s N is obtained from the cartesian 
product M x N by "forcing" the relations (2.16)-(2.18), but no others, 
to hold. This idea is formalized in Theorem 2.12, the statement of which 
requires the following definition. 

(2.11) Definition. Let M be an (R, S)-bimodule, N an (8, T)-bimodule, and 
let M x N be the cartesian product of M and N as sets. Let Q be any 
(R, T)-bimodule. A map 9 : M x N -+ Q is said to be 8-middle linear if it 
satisfies the following properties (where r E R, s E 8, t E T, m, mi E M 
and n,ni EN): 
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(1) germ, nt) = rg(m, n)t, 
(2) g(ml + m2, n) = gem!, n) + g(m2' n), 
(3) gem, nl + n2) = gem, nl) + gem, n2), and 
(4) gems, n) = gem, sn). 

Note that conditions (1), (2), and (3) simply state that for each mE M 
the function gm : N --+ Q defined by gm(n) = gem, n) is in Hom_T(N, Q) 
and for each n E N the function gn : M --+ Q defined by gn(m) = gem, n) 
is in HomR(M, Q). Condition (4) is compatibility with the 8-module struc
tures on M and N. 

If 7r : F --+ M ®s N = F / K is the canonical projection map and 
t : M x N --+ F is the inclusion map that sends (m, n) to the basis element 
(m, n) E F, then we obtain a map () : M x N --+ M ® N. According 
to Proposition 2.10, the function () is 8-middle linear. The content of the 
following theorem is that every 8-middle linear map "factors" through (J. 

This can, in fact, be taken as the fundamental defining property of the 
tensor product. 

(2.12) Theorem. Let M be an (R,8)-bimodule, N an (8, T)-bimodule, Q 
an (R, T)-bimodule, and 9 : M x N --+ Q an 8-middle linear map. Then 
there exists a unique (R, T)-bimodule homomorphism 9 : M ®s N --+ Q 
with 9 = 9 0 (J. Furthermore, this property chamcterizes M ® s N up to 
isomorphism. 

Proof. If F denotes the free Z-module on the index set M x N, which is used 
to define the tensor product M ®s N, then Equation (2.14) gives an (R, T)
bimodule structure on F. Since F is a free Z-module with basis M x N 
and 9 : M x N --+ Q is a function, Proposition 3.4.9 shows that there is 
a unique Z-module homomorphism g' : F --+ Q such that g' 0 t = 9 where 
t : M x N --+ F is the inclusion map. The definition of the (R, T)-bimodule 
structure on F and the fact that 9 is 8-middle linear implies that g' is in 
fact an (R, T)-bimodule homomorphism. Let K' = Ker(g'), so the first iso
morphism theorem provides an injective (R, T)-bimodule homomorphism 
g" : F I K' --+ Q such that g' = g" 07r' where 7r' : F --+ F I K' is the canonical 
projection map. Recall that KeF is the subgroup of F generated by 
the sets HI, H2 , and H3 defined prior to Definition 2.9. Since 9 is an 8-
middle linear map, it follows that K ~ Ker(g') = K', so there is a map 
7r2 : F I K --+ F I K' such that 7r2 0 7r = 7r'. 

Thus, g : M x N --+ Q can be factored as follows: 

(2.19) 

Recalling that F I K = M ® s N, we define 9 = g" 0 7r2. Since () = 7r 0 t, 

Equation (2.19) shows that g = go (J. 

It remains to consider uniqueness of g. But M ®s N is generated by 
the set {m ®s n = Oem, n) : m E M, n EN}, and any function 9 such 
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that go fJ = 9 satisfies gem ® n) = g(fJ(m, n)) = gem, n), so 9 is uniquely 
specified on a generating set and, hence, is uniquely determined. 

Now suppose that we have (R, T)-bimodules Pi and 8-middle linear 
maps fJi : M x N -+ Pi such that, for any (R, T)-bimodule Q and any 
8-middle linear map 9 : M x N -+ Q, there exist unique (R, T)-bimodule 
homomorphisms gi : Pi -+ Q with 9 = gi 0 (}i for i = 1, 2. We will show 
that PI and P2 are isomorphic, and indeed that there is a unique (R, T)
bimodule isomorphism ¢ : PI -+ P2 with the property that (}2 = ¢ 0 (}I. 

Let Q = P2 and 9 = (}2' Then by the above property of PI there is 
a unique (R, T)-bimodule homomorphism ¢ : PI -+ P2 with (}2 = ¢ 0 (}1. 

We need only show that ¢ is an isomorphism. To this end, let Q = PI and 
9 = (}I to obtain 'lj; : P2 -+ PI with (}I = 'lj; 0 (}2. Then 

(h = 'lj; 0 (}2 = 'lj; 0 (¢ 0 (}I) = ('lj; 0 ¢) 0 (}I' 

Now apply the above property of PI again with Q = PI and 9 = (}I' Then 
there is a unique 9 with 9 = 9 0 (}l, i.e., a unique 9 with (}I = 9 0 (}I. 

Obviously, 9 = 1Pl satisfies this condition but so does 9 = 'lj; 0 ¢, so we 
conclude that 'lj; 0 ¢ = 1Pl' 

Similarly, ¢o'lj; = 1p2, so 'lj; = ¢-I, and we are done. 0 

(2.13) Remarks. 

(1) If M is a right R-module and N is a left R-module, then M ®R N is 
an abelian group. 

(2) If M and N are both (R, R)-bimodules, then M ®R N is an (R, R)
bimodule. A particular (important) case of this occurs when R is a 
commutative ring. In this case every left R-module is automatically a 
right R-module, and vice-versa. Thus, over a commutative ring R, it 
is meaningful to speak of the tensor product of R-modules, without 
explicit attention to the subtleties of bimodule structures. 

(3) Suppose that M is a left R-module and 8 is a ring that contains R as 
a subring. Then we can form the tensor product 8 ® R M which has the 
structure of an (8, Z)-bimodule, i.e, 8 ®R M is a left 8-module. This 
construction is called change of rings and it is useful when one would 
like to be able to multiply elements of M by scalars from a bigger ring. 
For example, if V is any vector space over R, then C ®R V is a vector 
space over the complex numbers. This construction has been implicitly 
used in the proof of Theorem 4.6.23. 

(4) If R is a commutative ring, M a free R-module, and ¢ a bilinear form 
on M, then ¢ : M x M -+ R is certainly middle linear, and so ¢ induces 
an R-module homomorphism 

¢:M®RM-+R. 
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(2.14) Corollary. 

(1) Let M and M' be (R,8)-bimodules, let Nand N' be (8, T)-bimodules, 
and suppose that I : M -+ M' and 9 : N -+ N' are bimodule homo
morphisms. Then there is a unique (R, T)-bimodule homomorphism 

(2.20) I ® 9 = I ®s 9 : M ®s N --- M' ®s N' 

satisfying (I ® g)(m ® n) = I(m) ® g(n) lor all mE M, n E N. 
(2) II M" is another (R,8)-bimodule, N" is an (8, T)-bimodule, and f" : 

M' -+ M", g" : N' -+ N" are bimodule homomorphisms, then letting 
I ® 9 : M ® N -+ M' ® N' and f' ® g' : M' ® N' -+ M" ® N" be defined 
as in part (1), we have 

(I' ® g')(1 ® g) = (I' f) ® (g'g) : M ® N --- M" ® N". 

Proof. (1) Let F be the free abelian group on M x N used in the definition of 
M®sN, and let h: F -+ M'®sN' be the unique Z-module homomorphism 
such that hem, n) = I(m) ®s g(n). Since I and 9 are bimodule homomor
phisms, it is easy to check that h is an 8-middle linear map, so by Theorem 
2.12, there is a unique bimodule homomorphism h : M ® N -+ M' ® N' 
such that h = h 0 () where () : M x N -+ M ® N is the canonical map. Let 
I®g = h. Then 

(I ® g)(m ® n) = hem ® n) = h 0 (}(m, n) = hem, n) = I(m) ® g(n) 

as claimed. 
(2) is a routine calculation, which is left as an exercise. o 

We will now consider some of the standard canonical isomorphisms 
relating various tensor product modules. The verifications are, for the most 
part, straightforward applications of Theorem 2.12. A few representative 
calculations will be presented; the others are left as exercises. 

(2.15) Proposition. Let M be an (R,8)-bimodule. Then there are (R,8)
bimodule isomorphisms 

R®RM~M and M®s8~M. 

Proof. We check the first isomorphism; the second is similar. Let I : 
R x M -+ M be defined by I(r, m) = rm. It is easy to check that I is 
an R-middle linear map, and thus Theorem 2.12 gives an (R,8)-bimodule 
homomorphism 1 : R ®R M -+ M such that 1<r ® m) = rm. Define 
9 : M -+ R ®R M by gem) = 1 ® m._Then 9 is an (R,8)-bimodule homo
morphism, and it is immediate that I and 9 are inverses of each other. 0 
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(2.16) Proposition. Let R be a commutative ring and let M and N be R
modules. Then 

Proof. The isomorphism is given (via an application of Theorem 2.12) by 
m CQ n r---. n CQ m. 0 

(2.17) Proposition. Let M be an (R,8)-bimodule, N an (8, T)-bimodule, 
and P a (T, U) -bimodule. Then there is an isomorphism of (R, U) -bimodules 

(M CQs N) CQT P ~ M CQs (N CQT P) . 

Proof. Fix an element pEP and define a function 

fp : M x N -+ M 0s (N CQT P) 

by 
fp(m, n) = m CQs (n CQT p). 

fp is easily checked to be 8-middle linear, so Theorem 2.12 applies to give 

an (R, T)-bimodule homomorphism Tv : M 0s N -+ M 0s (N CQT P). Then 
we have a map f : (M CQs N) x P -+ M CQs (N CQT P) defined by 

f((m CQ n), p) = Tv(m CQ n) = m CQ (n 0 p). 

But f is T-middle linear, and hence there is a map of (R, U)-bimodules 

J: (M CQs N) CQT P -+ M CQs (N CQT P) 

satisfying J((mCQn)CQp) = mCQ(nCQp). Similarly, there is an (R, U)-bimodule 
homomorphism 

g: M CQs (N CQT P) -+ (M CQs N) CQT P 

satisfying g(m CQ (n CQ p)) = (m CQ n) CQ p. Clearly, gJ (respectively J9) is the 
identity on elements of the form (m CQ n) CQ p (respectively, m 0 (n 0 p)), and 
since these elements generate the respective tensor products, we conclude 
that J and 9 are isomorphisms. 0 

(2.18) Proposition. Let M = tBiEIMi be a direct sum of (R,8)-bimodules, 
and let N = tBjEJNj be a direct sum of (8, T)-bimodules. Then there is an 
isomorphism 

M CQs N ~ EBEB (Mi CQs N j ) 
iEI jEJ 

of (R, T)-bimodules. 

Proof. Exercise. o 
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(2.19) Remark. When one is taking Hom and tensor product of various 
bimodules, it can be somewhat difficult to keep track of precisely what 
type of module structure is present on the given Hom or tensor product. 
The following is a useful mnemonic device for keeping track of the various 
module structures when forming Hom and tensor products. We shall write 
RMS to indicate that M is an (R,8)-bimodule. When we form the tensor 
product of an (R,8)-bimodule and an (8, T)-bimodule, then the resulting 
module has the structure of an (R, T)-bimodule (Definition 2.9). This can 
be indicated mnemonically by 

(2.21) 

Note that the two subscripts "8" on the bimodules appear adjacent to 
the subscript "8" on the tensor product sign, and after forming the tensor 
product they all disappear leaving the outside subscripts to denote the 
bimodule type of the answer (= tensor product). 

A similar situation holds for Hom, but with one important differ
ence. Recall from Proposition 2.4 that if M is an (R,8)-bimodule and N 
is an (R, T)-bimodule, then HomR(M, N) has the structure of an (8, T)
bimodule. (Recall that HomR(M, N) denotes the left R-module homomor
phisms.) In order to create a simple mnemonic device similar to that of 
Equation (2.21), we make the following definition. If M and N are left R
modules, then we will write M r\1R N for HomR(M, N). Using r\1R in place 
of ®R, we obtain the same convention about matching subscripts disap
pearing, leaving the outer subscripts to give the bimodule type, provided 
that the order of the subscripts of the module on the left of the r\1 R sign are 
reversed. Thus, Proposition 2.4 is encoded in this context as the statement 

RMS and RNT ===} SMR r\1R RNT = sPT . 

A similar convention holds for homomorphisms of right T-modules. 
This is illustrated by 

Hom_T(RMT , sNT ) = SNT r\1-T TMR = sPR, 

the result being an (8, R)-bimodule (see Proposition 2.5). Note that we 
must reverse the subscripts on M and interchange the position of M and 
N. 

We shall now investigate the connection between Hom and tensor prod
uct. This relationship will allow us to deduce the effect of tensor products 
on exact sequences, using the known results for Hom (Theorems 2.7 and 
2.8 in the current section, which are generalizations of Theorems 3.3.10 and 
3.3.12). 

(2.20) Theorem. (Adjoint associativity of Hom and tensor product) Let 
Ml and M2 be (8, R)-bimodules, N a (T,8)-bimodule, and P a (T, U)
bimodule. If'ljJ : M2 --+ Ml is an (8, R)-bimodule homomorphism, then 
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there are (R, U)-bimodule isomorphisms 

such that the following diagram commutes: 

Homs(Ml, HomT(N, P)) 

(2.22) 1 <1>1 

HomT(N @s M 1 , P) 

Proof Define cI>i : Homs(Mi , HomT(N, P» -+ HomT(N@s M i , P) by 

cI>i(l)(n@m) = (I(m»(n) 

where f E Homs(Mi' HomT(N, P», m E M i , and n E N. It is easy to 
check that cI>i(l) E HomT(N @s M, P) and that cI> is a homomorphism of 
(R, U)-bimodules. The inverse map is given by 

(Wi(g)(m» (n) = g(m@ n) 

where g E HomT(N @s M, P), m E M, and n E N. To check the commu
tativity of the diagram, suppose that f E Homs(M, HomT(N, P), n E N, 
and m2 E M 2 . Then 

«cI>2 0 'lj;*) (I» (n @ m2) = (cI>2(1 0 'lj;» (n@ m2) 

= «(10 'lj;)(m2)) (n) 

= f('lj;(m2»)(n) 

= (4)1(1)) (n@ 'lj;(m2)) 

= (cI>I(1» «(1n @'lj;)(n@ m2» 

= (1n @ 'lj;)* (cI>1 (I» (n @ m2) 

= ((1N @'lj;)* 0 cI>I(1)) (n@m2). 

Thus, cI>2 0 'lj;* = (IN @ 'lj;)* 0 cI>1 and diagram (2.22) is commutative. 0 

There is an analogous result concerning homomorphisms of right mod
ules. In general we shall not state results explicitly for right modules; they 
can usually be obtained by obvious modifications of the left module results. 
However, the present result is somewhat complicated, so it will be stated 
precisely. 

(2.21) Theorem. Let Ml and M2 be (R, 5)-bimodules, N an (5, T)-bimodule, 
and P a (U, T)-bimodule. If'lj; : M2 -+ Ml is an (R, 5)-bimodule homomor
phism, then there are (U, R)-bimodule isomorphisms 
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such that the following diagram commutes: 

Hom_s(Ml, Hom-T(N, P)) 

(2.23) 1 ~l 

Hom-T(MI ®s N, P) Hom-T(M2 ®s N, P) 

Proof. The proof is the same as that of Theorem 2.20. o 

Remark. Note that Theorems 2.20 and 2.21 are already important results 
in case Ml = M2 = M and 'IjJ = 1M. 

As a simple application of adjoint associativity, there is the following 
result. 

(2.22) Corollary. Let M be an (R,8)-bimodule, N an (8, T)-bimodule, and 
let P = M ®s N (which is an (R, T)-bimodule). If M is projective as a 
left R-module (resp., as a right 8-module) and N is projective as a left 8-
module (resp., as a right T-module), then P is projective as a left R-module 
(resp., as a right T-module). 

Proof. To show that P is projective as a left R-module, we must show that, 
given any surjection f : A ---+ B of R-modules, the induced map 

is also surjective. By hypothesis, M is projective as a left R-module so that 

is surjective. Also, N is assumed to be projective as a left 8-module, so the 
map 

is also surjective. But, by Theorem 2.20, if C = A or B, then 

It is simple to check that in fact there is a commutative diagram 

Homs(N, HomR(M, A)) <!:l; Homs(N, HomR(M, B)) 

1 Wl 1 W2 

HomR(P, A) f. 
---+ 

and this completes the proof. o 
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One of the most important consequences of the adjoint associativity 
property relating Hom and tensor product is the ability to prove theorems 
concerning the exactness of sequences of tensor product modules by appeal
ing to the theorems on exactness of Hom sequences, namely, Theorems 2.7 
and 2.8. 

(2.23) Theorem. Let N be a fixed (R, T)-bimodule. If 

(2.24) 

is an exact sequence of (8, R)-bimodules, then 

(2.25) 

is an exact sequence of (8, T)-bimodules, while if (2.24) is an exact sequence 
of (T, 8)-bimodules, then 

(2.26) 

is an exact sequence of (R, 8)-bimodules. 

Proof. We will prove the exactness of sequence (2.26); exactness of sequence 
(2.25) is similar and it is left as an exercise. According to Theorem 2.7, in 
order to check the exactness of sequence (2.26), it is sufficient to check that 
the induced sequence 

(2.27) o --+ HomR(N ®T M 2 , P) --+ HomR(N ®T M, P) 

--+ HomR(N ®T M1, P) 

is exact for every (R, U)-bimodule P. But Theorem 2.20 identifies sequence 
(2.27) with the following sequence, which is induced from sequence (2.24) 
by the (T, U)-bimodule HomR(N, P): 

(2.28) 0 --+ HomT(M2 , HomR(N, P)) --+ HomT(M, HomR(N, P)) 

--+ HomT(M1 , HomR(N, P)). 

Since (2.24) is assumed to be exact, Theorem 2.7 shows that sequence (2.28) 
is exact for any (R, U)-bimodule P. Thus sequence (2.27) is exact for all 
P, and the proof is complete. 0 

(2.24) Examples. 

(1) Consider the following short exact sequence of Z-modules: 

(2.29) q, '" o --+ Z --+ Z --+ Zm --+ 0 

where </J(i) = mi and 'If; is the canonical projection map. If we take 
N = Zn, then exact sequence (2.25) becomes 
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(2.30) 

By Proposition 2.15, exact sequence (2.30) becomes the exact sequence 

(2.31) 

where (¢)(i) = mi. Thus Zm ® Zn ~ Coker(¢). Now let d = gcd(m, n) 
and write m = m'd, n = n'd. Then the map J; is the composite 

Z <Pi Z <P2 Z 
n -----+- n -----+ n 

where 4>1(i) = m'i and 4>2(i) = di. Since gcd(m', n) = 1, it follows 
that 4>1 is an isomorphism (Proposition 1.4.11), while Im(4)2) = dZn. 
Hence, Coker(J;) ~ ZnjdZn ~ Zd, i.e., 

Zm®Zn ~ Zd· 

(2) Suppose that M is any finite abelian group. Then 

M®z Q = (0). 

To see this, consider a typical generator x ® r of M ®z Q, where x E M 
and r E Q. Let n = IMI. Then nx = 0 and, according to Equation 
(2.18), 

x ® r = x ® n(rjn) = xn ® (rjn) = 0 ® (rjn) = O. 

Since x E M and r E Q are arbitrary, it follows that every generator 
of M ® Q is O. 

(3) Let R be a commutative ring, 1 ~ R an ideal, and M any R-module. 
Then 

(2.32) (Rjl) ®R M ~ MjlM. 

To see this consider the exact sequence of R-modules 

0--+1 ~ R --+ Rjl --+ O. 

Tensor this sequence of R-modules with M to obtain an exact sequence 

But according to Proposition 2.15, R®RM ~ M (via the isomorphism 
q,(r ® m) = rm), and under this identification it is easy to see that 
Im(t® 1) = 1M. Thus, (RjI) ®R M ~ MjlM, as we wished to verify. 

Example 2.32 (1) shows that even if a sequence 
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is short exact, the tensored sequence (2.25) need not be part of a short exact 
sequence, Le., the initial map need not be injective. For a simple situation 
where this occurs, take m = n in Example 2.32 (1). Then exact sequence 
(2.30) becomes 

¢®l 
Zn ----- Zn ----- Zn ----- o. 

The map ¢ 0 1 is the zero map, so it is certainly not an injection. 
This example, plus our experience with Hom, suggests that we consider 

criteria to ensure that tensoring a short exact sequence with a fixed module 
produces a short exact sequence. We start with the following result, which 
is exactly analogous to Theorem 2.8 for Hom. 

(2.25) Theorem. Let N be a fixed (R, T)-bimodule. If 

(2.33) 

is a split short exact sequence of (8, R)-bimodules, then 

(2.34) 

is a split short exact sequence of (8, T)-bimodules, while if (2.33) is a split 
short exact sequence of (T, 8)-bimodules, then 

(2.35) 

is a split short exact sequence of (R, 8) -bimodules. 

Proof. We will do sequence (2.34); (2.35) is similar and is left as an exercise. 
Let a : M --+ Ml split ¢, and consider the map 

Then 

(( a 0 1) (¢ 0 1)) (m 0 n) = (a¢ 0 1)( m 0 n) = (1 0 1) (m 0 n) = m 0 n 

so that ¢ 01 is an injection, which is split by a 01. The rest of the exactness 
is covered by Theorem 2.23. 0 

(2.26) Remark. Theorems 2.7 and 2.23 show that given a short exact se
quence, applying Hom or tensor product will give a sequence that is exact 
on one end or the other, but in general not on both. Thus Hom and tensor 
product are both called half exact, and more precisely, Hom is called left 
exact and tensor product is called right exact. We will now investigate some 
conditions under which the tensor product of a module with a short exact 
sequence always produces a short exact sequence. It was precisely this type 
of consideration for Hom that led us to the concept of projective module. 
In fact, Theorem 3.5.1 (4) shows that if P is a projective R-module and 
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is a short exact sequence of R-modules, then the sequence 

is short exact. According to Theorem 3.3.10, the crucial ingredient needed 
is the surjectivity of 'I/J* and this is what projectivity of P provides. For 
the case of tensor products, the crucial fact needed to obtain a short exact 
sequence will be the injectivity of the initial map of the sequence. 

(2.27) Proposition. Let N be an (R, T)-bimodule that is projective as a left 
R-module. Then for any injection t : Ml --+ M of (8, R)-bimodules, 

is an injection of (8, T)-bimodules. If N is projective as a right T-module 
and t : Ml --+ M is an injection of (T, 8)-bimodules, then 

is an injection of (R, 8)-bimodules. 

Proof. First suppose that as a left R-module N is free with a basis {nj}jEJ. 
Then N ~ tBjEJRj where each summand R j = Rnj is isomorphic to R as 
a left R-module. Then by Proposition 2.18 

Ml ®R N ~ $(M1 ®R R j ) = $M1j 
jEJ jEJ 

where each M1j is isomorphic to Ml as a left 8-module, and similarly 
M®RN ~ tBjEJMj , where each Mj is isomoprhic to M as a left 8-module. 
FUrthermore, the map t ® 1 : Ml ® R N --+ M ® R N is given as a direct sum 

$ (tj : M1j --+ Mj ) 
jEJ 

where each tj agrees with t under the above identifications. But then, since 
t is an injection, so is each tj, and hence so is t ® 1. 

Now suppose that N is projective as a left R-module. Then there is a 
left R-module N' such that N tB N' = F where F is a free left R-module. 
We have already shown that 

is an injection. But using Proposition 2.18 again, 



430 Chapter 7. Topics in Module Theory 

so we may write ~01 = ~l 6h2 where (in particular) ~l = ~01 : M 1 0 R N -+ 

M 0R F. Since ~ 01 is an injection, so is ~b as claimed. Thus the proof is 
complete in the case that N is projective as a left R-module. The proof in 
case N is projective as a right T-module is identical. 0 

Note that we have not used the right T-module structures in the above 
proof. This is legitimate, since if a homomorphism is injective as a map of 
left 8-modules, and it is an (8, T)-bimodule map, then it is injective as an 
(8, T)-bimodule map. 

(2.28) Corollary. Let N be a fixed (R, T)-bimodule that is projective as a 
left R-module. If 

(2.36) 

is a short exact sequence of (8, R)-bimodules, then 

(2.37) 

is a short exact sequence of (8, T)-bimodules; while if (2.36) is an exact 
sequence of (T, 8)-bimodules and N is projective as a right T-module, then 

(2.38) 

is a short exact sequence of (R, 8)-bimodules. 

Proof. This follows immediately from Theorem 2.23 and Proposition 2.27. 
o 

(2.29) Remark. A module satisfying the conclusion of Proposition 2.27 is 
said to be flat. That is, a left R-module N is flat if tensoring with all short 
exact sequences of right R-modules produces a short exact sequence, with 
a similar definition for right R-modules. Given Theorem 2.23, in order to 
prove that a left R-module N is fiat, it is sufficient to prove that for all right 
R-modules M and submodules K, the inclusion map ~ : K -+ M induces 
an injective map 

~ 01: K 0R N ----> M 0R N. 

Thus, what we have proven is that projective modules are flat. 

In Section 6.1 we discussed duality for free modules over commutative 
rings. Using the theory developed in the current section, we will extend por
tions of our discussion of duality to the context of projective (bi-)modules. 

(2.30) Definition. Let M be an (R,8)-bimodule. The dual module of M is 
the (8, R) -bimodule M* defined by 

HomR(M, R). 
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In particular, if M is a left R-module, i.e., take 8 = Z, then the dual module 
M* is a right R-module. The double dual of M is defined to be 

M** = Hom_R(M*, R). 

As in Section 6.1, there is a homomorphism TJ : M ---+ M** of (R,8)
bimodules defined by 

(TJ(v))(W) = w(v) for all v E M, W E M* 

and if TJ is an isomorphism, then we will say that M is reflexive. 

If M is an (R, S)-bimodule, which is finitely generated and free as a 
left R-module, then given any basis B of M, one may construct a basis of 
M* (as a right R-module) exactly as in Definition 6.1.3 and the proof of 
Theorem 6.1.7 goes through verbatim to show that finitely generated free R
modules are reflexive, even when R need not be commutative. FUrthermore, 
the proofs of Theorems 3.5.8 and 6.1.13 go through without difficulty if one 
keeps track of the types of modules under consideration. We will simply 
state the following result and leave the details of tracing through the module 
types as an exercise. 

(2.31) Proposition. Let M be an (R, S)-bimodule, which is finitely generated 
and projective as a left R-module. Then the dual module M* is finitely 
generated and projective as a right R-module. Furthermore, M is reflexive 
as an (R, S)-bimodule. 

Proof. Exercise. See the comments above. o 

If M is an (R,8)-bimodule and P is an (R, T)-bimodule, then define 

( : M* x P ---+ HomR(M, P) 

by 

((W, p)) (m) = w(m}p for W E M*, PEP, and m E M. 

Then ( is 8-middle linear and hence it induces an (8, T}-bimodule homo
morphism 

given by 

(2.39) (((w ® p))(m) = w(m)p 

for all w E M*, PEP, and m EM. 

(2.32) Proposition. Let M be an (R, S)-bimodule, which is finitely generated 
and projective as a left R-module, and let P be an arbitrary (R, T)-bimodule. 
Then the map 



432 Chapter 7. Topics in Module Theory 

( : M* ®R P ---+ HomR(M, P) 

defined by Equation (2.39) is an (8, T)-bimodule isomorphism. 

Prool. Since ( is an (8, T)-bimodule homomorphism, it is only necessary 
to prove that it is bijective. To achieve this first suppose that M is free of 
finite rank k as a left R-module. Let B = {Vl, ... ,Vk} be a basis of M and 
let {vi, ... ,vA;} be the basis of M* dual to B. Note that every element of 

M* ®R P can be written as x = L~=l vi ® Pi for PI. ... ,Pk E P. Suppose 
that ((x) = 0, i.e., (((x))(m) = 0 for every m E M. But ((X)(Vi) = Pi so 
that Pi = 0 for 1 S; i S; k. That is, x = 0 and we conclude that (is injective. 

Given any I E HomR(M, P), let 

k 

xf = Lvi ® I(Vi). 
i=l 

Then (((Xf))(Vi) = I(Vi) for 1 S; i S; k, i.e., ((Xf) and I agree on a basis 
of M; hence, ((x f) = I and ( is a surjection, and the proof is complete in 
case M is free of rank k. 

Now suppose that M is finitely generated and projective, and let N be 
a left R-module such that F = M EEl N is finitely generated and free. Then 
( : F* ®R P ---- HomR(F, P) is a Z-module isomorphism, and 

F* ®R P = (M EEl N)* ®R P 9! (M* EEl N*) ®R P 9! (M* ®R P) EEl (N* ®R P) 

while 

where all isomorphisms are Z-module isomorphisms. Under these isomor
phisms, 

- - -
(F = (M EEl (N 

(M : M* ®R P ---+ HomR(M, P) 

(N : N* ®R P ---+ HomR(N, P). 

- - -Since (F is an isomorphism, it follows that (M and (N are isomorphisms as 
well. In particular, (M is bijective and the proof is complete. 0 

(2.33) Corollary. Let M be an (R,8)-bimodule, which is finitely generated 
and projective as a left R-module, and let P be an arbitrary (T, R)-bimodule. 
Then 

as (8, T)-bimodules. 

Proof. From Proposition 2.32, there is an isomorphism 
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M* ®R P* ~ HomR(M, P*) 

= HomR(M, HomR(P, R)) 
~ HomR(P ®R M, R) 

= (P®R M)*. 

(by adjoint associativity) 

(2.34) Remark. The isomorphism of Corollary 2.33 is given explicitly by 

¢(f ® g)(P ® m) = I(m)g(p) E R 

where I E M*, 9 E P*, pEP, and m E M. 

o 

We will conclude this section by studying the matrix representation of 
the tensor product of R-module homomorphisms. Thus, let R be a commu
tative ring, let M I , M 2, NI, and N2 be finite rank free R-modules, and let 
Ii: Mi ~ Ni be R-module homomorphisms for i = 1, 2. Let mi be the rank 
of Mi and ni the rank of Ni for i = 1, 2. If M = Ml ®M2 and N = Nl ®N2, 
then it follows from Proposition 2.18 that M and N are free R-modules of 
rank mInI and m2n2, respectively. Let I = h ® h E HomR(M, N). We 
will compute a matrix representation for I from that for h and h. To do 
this, suppose that 

A = {aI, ... ,amJ 
B = {bl , ... ,bnJ 

C = {CI' ... ,cm2 } 

V = {dI, ... ,cn2 } 

are bases of MI, NI, M 2 , and N 2 , respectively. Let 

and 

£ = {al ® Cl, al ® C2, ... ,al ® Cm2 , 

a2 ® CI, a2 ® C2, ... ,a2 ® Cm2 , 

:F = {bl ® dI, b1 ® d2 , .•. ,bl ® dn2 , 

b2 ® dI, b2 ® d2, ... ,b2 ® dn2 , 

Then £ is a basis for M and:F is a basis for N. With respect to these bases, 
there is the following result: 
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(2.35) Proposition. With the notation introduced above, 

[II 0 hl~ = [ltl: 0 [hl~ . 

Proof. Exercise. o 

Recall that the notion of tensor product of matrices was introduced in 
Definition 4.1.16 and has been used subsequently in Section 5.5. If [lIlt: = 
A = [aijl and [hlb = B = [.Bij], then Proposition 2.35 states that (in block 
matrix notation) 

There is another possible ordering for the bases £ and :F. If we set 

£' = {ai 0 Cj : 1 ~ i ~ ml, 1 ~ j ~ m2} 

and 
:F' = {bi 0 dj : 1 ~ i ~ nl, 1 ~ j ~ n2} 

where the elements are ordered by first fixing j and letting i increase (lex
icographic ordering with j the dominant letter), then we leave it to the 
reader to verify that the matrix of II 0 h is given by 

7.3 Exercises 

1. Let M be a simple R-module, and let N be any R-module. 
(a) Show that every nonzero homomorphism f : M -> N is injective. 
(b) Show that every nonzero homomorphism f : N -> M is surjective. 

2. Let F be a field and let R = {[~ :] : a, b, c E F} be the ring of upper 
triangular matrices over F. Let M = F2 and make M into a (left) R-module 
by matrix multiplication. Show that EndR(M) ~ F. Conclude that the 
converse of Schur's lemma is false, i.e., EndR(M) can be a division ring 
without M being a simple R-module. 

3. Suppose that R is a D-algebra, where D is a division ring, and let M be an 
R-module which is of finite rank as a D-module. Show that as an R-module, 
f(M) :::; rankD(M). 

4. An R-module M is said to satisfy the decending chain condition (DCC) on 
submodules if any strictly decreasing chain of submodules of M is of finite 
length. 
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(a) Show that if M satisfies the DCC, then any nonempty set of submodules 
of M contains a minimal element. 

(b) Show that £(M) < 00 if and only if M satisfies both the ACC (ascending 
chain condition) and DCC. 

5. Let R = {[~ ~] : a, b E R; CEQ}. R is a ring under matrix addition and 
multiplication. Show that R satisfies the ACC and DCC on left ideals, but 
neither chain condition is valid for right ideals. Thus R is of finite length as 
a left R-module, but £(R) = 00 as a right R-module. 

6. Let R be a ring without zero divisors. If R is not a division ring, prove that 
R does not have a composition series. 

7. Let f : Ml -+ M2 be an R-module homomorphism. 
(a) If f is injective, prove that £(Mr) S £(M2). 
(b) If f is surjective, prove that £(M2) S £(Mr). 

8. Let M be an R-module of finite length and let K and N be submodules of 
M. Prove the following length formula: 

9. 

£(K + N) + £(K n N) = £(K) + £(N). 

!b< g~:~~:: ~~~P:)$ Zqm). 
c) Compute £~G) where G is any finite abelian group. 
d) More generally, compute £(M) for any finitely generated torsion module 

over a PID R. 
10. Compute the length of M = F[XJ!(J(X») as an F[Xl-module if f(X) is 

a polynomial of degree n with two distinct irreducible factors. What is the 
length of M as an F-module? 

11. Let F be a field, let V be a finite-dimensional vector space over F, and let 
T E EndF(V). We shall say that T is semisimple if the F[X]-module VT is 
semisimple. If A E Mn(F), we shall say that A is semisimple if the linear 
transformation TA : F n -+ F n (multiplication by A) is semisimple. Let F2 
be the field with 2 elements and let F = F2 (Y) be the rational function field 
in the indeterminate Y, and let K = F[XJ!(X2 + Y). Since X2 + Y E F[X] 
is irreducible, K is a field containing F as a subfield. Now let 

Show that A is semisimple when considered in M2 (F) but A is not semisimple 
when considered in M 2 (K). Thus, semisimplicity of a matrix is not neces
sarily preserved when one passes to a larger field. However, prove that if L 
is a subfield of the complex numbers C, then A E Mn(L) is semisimple if 
and only if it is also semisimple as a complex matrix. 

12. Let V be a vector space over R and let T E EndR(V) be a linear transforma
tion. Show that T = S + N where S is a semisimple linear transformation, 
N is nilpotent, and SN = NS. 

13. Prove that the modules Mi and Nj in the proof of Lemma 1.33 are simple, 
as claimed. 

14. Prove Lemma 1.37. 
15. If D is a division ring and n is a positive integer, prove that EndD(Dn) is a 

simple ring. 
16. Give an example of a semisimple commutative ring that is not a field. 
17. (a) Prove that if R is a semisimple ring and I is an ideal, then R/ I is 

semisimple. 
(b) Show (by example) that a subring of a semisimple ring need not be 

semisimple. 
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18. Let R be a ring that is semisimple as a left R-module. Show that R is simple 
if and only if all simple left R-modules are isomorphic. 

19. Let M be a finitely generated abelian group. Compute each of the following 
groups: 

~~~ ~~::~~;~~~: 
(c) M ®z Q/Z. 

20. Let M be an (R,8)-bimodule and N an (8, T)-bimodule. Suppose that 
LXi ® Yi = 0 in M ®s N. Prove that there exists a finitely generated 
(R,8)-bisubmodule Mo of M and a finitely generated (8, T)-bisubmodule 
No of N such that LXi ® Yi = 0 in Mo ®s No. 

21. Let R be an integral domain and let M be an R-module. Let Q be the 
quotient field of R and define cjJ : M -+ Q ®R M by cjJ(x) = 1 ® x. Show that 
Ker(cjJ) = Mr = torsion submodule of M. (Hint: If 1 ® X = 0 E Q ®R M 
then 1 ® X = 0 in (Re- I ) ®R M ~ M for some e =I- 0 E R. Then show that 
ex = 0.) 

22. Let R be a PID and let M be a free R-module with N a submodule. Let Q be 
the quotient field and let cjJ: M -+ Q ®R M be the map cjJ(x) = 1 ® x. Show 
that N is a pure submodule of M if and only if Q. (cjJ(N» n Im(cjJ) = cjJ(N). 

23. Let R be a PID and let M be a finitely generated R-module. If Q is the 
quotient field of R, show that M ®R Q is a vector space over Q of dimension 
equal to rankR(M/Mr). 

24. Let R be a commutative ring and 8 a multiplicatively closed subset of R 
containing no zero divisors. Let Rs be the localization of R at 8. If M is 
an R-module, then the Rs-module Ms was defined in Exercise 6 of Chapter 
3. Show that Ms ~ Rs ®R M where the isomorphism is an isomorphism of 
Rs-modules. 

25. If 8 is an R-algebra, show that Mn(8) ~ 8 ®R Mn(R). 
26. Let M and N be finitely generated R-modules over a PID R. Compute 

M ®R N. As a special case, if M is a finite abelian group with invariant 
factors 81, ... , 8t (where as usual we assume that 8i 

divides 8i+1), show that M ®z M is a finite group of order n;=1 8~t-2i+1. 

27. Let F be a field and K a field containing F. Suppose that V is a finite
dimensional vector space over F and let T E EndF(V). If l3 = {Vi} is a 
basis of V, then C = {I} ® l3 = {I ® Vi} is a basis of K ®F V. Show that 
[1 ® Tlc = [T]s. If 8 E EndF(V), show that 1 ® T is similar to 1 ® 8 if and 
only if 8 is similar to T. 

28. Let V be a complex inner product space and T : V -+ V a normal linear 
transformation. Prove that T is self-adjoint if and only if there is a real inner 
product space W, a self-adjoint linear transformation 8 : W -+ W, and an 
isomorphism cjJ : C ®R W -+ V making the following diagram commute. 

C®RW 

l~ 
V 

29. Let R be a commutative ring. 

l®S 
--+ 

T 
--+ 

(a) If land J are ideals of R, prove that 

C®RW 

l~ 
V 

R/l ®R R/J ~ R/(l + J). 

(b) If 8 and T are R-algebras, I is an ideal of 8, and J is an ideal of T, 
prove that 
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where (I, J) denotes the ideal of SQ9RT generated by IQ9RT and SQ9RJ. 
30. (a) Let F be a field and K a field containing F. If f(X) E F[X], show that 

there is an isomorphism of K-algebras: 

K Q9F (F[XI/(f(X»)) ~ K[XI/(f(X»). 

(b) By choosing F, f (X), and K appropriately, find an example of two fields 
K and L containing F such that the F-algebra K Q9F L has nilpotent 
elements. 

31. Let F be a field. Show that F[X, Y] ~ F[X] Q9F F[Y] where the isomorphism 
is an isomorphism of F-algebras. 

32. Let G 1 and G2 be groups, and let F be a field. Show that 

F(G1 x G2 ) ~ F(G1 ) Q9F F(G2 ). 

33. Let R and S be rings and let f : R -> S be a ring homomorphism. If N 
is an S-module, then we may make N into an R-module by restriction of 
scalars, i.e., a· x = f(a)· x for all a E R and x E N. Now form the S-module 
Ns = S Q9R N and define 9 : N -> Ns by 

g(y) = 1 Q9y. 

Show that 9 is injective and g(N) is a direct summand of Ns. 
34. Let F be a field, V and W finite-dimensional vector spaces over F, and let 

T E EndF(V), S E EndF(W), 
(a) If 0: is an eigenvalue of S and (3 is an eigenvalue of T, show that the 

product 0:(3 is an eigenvalue of S Q9 T. 
(b) If S and T are diagonalizable, show that S Q9 T is diagonalizable. 

35. Let R be a semisimple rin~, M an (R, S)-bimodule that is simple as a left R
module, and let P be an (R, T)-bimodule that is simple as a left R-module. 
Prove that 

M· Q9R P = { EO ndR(M) if P ~ M as left R-modules 
otherwise. 

36. Let R be a commutative ring and M an R-module. Let 

M®k = M Q9 ... Q9 M, 

where there are k copies of M, and let S be the submodule of M®k generated 
by all elements of the form ml Q9 ... Q9 mk where mi = mj for some i i' j. 
Then A k (M) = M®k / S is called an exterior algebm. 
(a) Show that if M is free of rank n, then Ak(M) is free and 

(b) As a special case of part (a), 

if k S n 
if k > n. 

Show that HomR(A n(M), R) may be regarded as the space of determi
nant functions on M. 
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Group Representations 

8.1 Examples and General Results 

We begin by defining the objects that we are interested in studying. Recall 
that if R is a ring and G is a group, then R( G) denotes the group ring of 
G with coefficients from R. The multiplication on R( G) is the convolution 
product (see Example 2.1.10 (15)). 

(1.1) Definition. Let G be a group and F a field. A (left) F-representation 
of G is a (left) F(G)-module M. 

In other words, M is an F vector space, and for each 9 E G we have 
a linear transformation a(g) : M -> M given by the action of 9 regarded 
as 19 E F(G) on M. These linear transformations satisfy a(e) = 1M and 
a(g2g1)(m) = a(g2)(a(gt)(m)) for all m E M and 9 E G. Note then that 

a(g-l)a(g) = a(e) = 1M 

so that a(g-l) = a(g)-I. In particular, each a(g) is invertible, i.e., a(g) E 

Aut(M). 
Conversely, we may view an F-representation of G on M, where M is 

an F vector space, as being given by a homomorphism a : G -> Aut(M). 
Then we define an F(G)-module structure on M by 

(L agg) (m) = L aga(g)(m). 
gEG gEG 

In this situation, we say that the representation is defined by a. 
We will denote a representation as above by M, when we wish to 

emphasize the underlying vector space, or (more often) by a, when we wish 
to emphasize the homomorphism, and we will use the term representation 
instead of F-representation, when F is understood. Occasionally (as is often 
done) we shall omit a when it is understood and write g(m) for a(g)(m). 
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(1.2) Definition. The degree deg(M) of a representation M is 

dimF(M) E {O, 1,2, ... } U {oo}. 

Two F-representations Ml and M2 of G, defined by O'i : G -+ Aut(Mi) 
for i = 1, 2, are said to be isomorphic (or equivalent) if they are isomorphic 
as F( G)-modules. Concretely, this is the case if and only if there is an 
invertible F-linear transformation f : Ml -+ M2 with 

for every m E Ml, g E G. 

We will be considering general groups G and fields F, though our 
strongest results will be in the case G is finite (and F satisfies certain 
restrictions). Accordingly, we will adopt the following notational conven
tion throughout this chapter: n will always denote the order of G. (The 
reader should note that many variables in this chapter will range over the 
set {O, 1,2, ... } U {oo}, and the comment of Remark 7.1.20 (2) is rele
vant here. Namely, distinction is made between finite and infinite, but no 
distinction is made between sets of different infinite cardinality.) 

Since we are considering F( G)-modules, we make some elementary re
marks about F( G) itself. 

(1) F(G) is an F-algebra. 
(2) F(G) is an (F(G), F(G))-bimodule, as well as an (F(K), F(H))

bimodule for any pair of subgroups K and H of G. 
(3) F( G) is commutative if and only if G is abelian. 
(4) If G has torsion (i.e., elements of finite order), then F(G) has zero 

divisors. For let g E G with gm = 1. Then 

(1 - g)(1 + g + ... + gm-l) = 0 E F(G). 

(5) Any F(G)-module is an (F(G), F)-bimodule. 

It will be useful to us to single out the following class of fields F: 

(1.3) Definition. Let G be a finite group. A field F is called good for G (or 
simply good) if the following conditions are satisfied. 

(1) The characteristic of F is relatively prime to the order of G. 
(2) If m denotes the exponent of G, then the equation xm - 1 = 0 has m 

distinct roots in F. 

Remark. Actually, (2) implies (1), and also, (2) implies that the equation 
Xk - 1 = 0 has k distinct roots in F, for every k dividing m (Exercise 34, 
Chapter 2). Furthermore, since the roots of X k - 1 = 0 form a subgroup 
of the multiplicative group F*, it follows from Theorem 3.7.24 that there is 
(at least) one root ( = (k such that these roots are 
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We shall reserve the use of the symbol ( (or (k) to denote this. We further 
assume that these roots have been consistently chosen, in the following 
sense: 

If kl divides k2' then «(k2)k2/kl = (k1 • 

Note that the field C (or, in fact, any algebraically closed field of 
characteristic zero) is good for every finite group, and in C we may simply 
choose (k = exp(27ri/k) for every positive integer k. 

In this chapter we will have occasion to consider HomR, EndR, or 
®R for various rings of the form R = F(H), where H is a subgroup of 
G (or R = F, in which case we may identify R with F«(l))). We adopt 
the notational convention that Hom, End, and ® mean HomF, EndF, and 
®F, respectively, and HomH, EndH , and ®H mean HomR, EndR, and ®R, 
respectively, for R = F(H). 

(1.4) Examples. 

(1) Let M be an F vector space of dimension 1 and define a: G ~ Aut(M) 
by a(g) = 1M for all 9 E G. We call M the trivial representation of 
degree 1, and we denote it by T. 

(2) M = F( G) as an F( G)-module. This is a representation of degree n. 
As an F vector space, M has a basis {g : 9 E G}, and an element 
goEGactsonMby 

M is called the (left) regular representation of G and it plays a crucial 
role in the theory. We denote it by R = R( G). 

(3) Permutation representations. Let P be a set, P = {pihEI, and suppose 
we have a homomorphism a : G ~ Sp = Aut(P) (see Remark 1.4.2). 
Let M = F(P) be the free F-module with basis P. Then G acts on 
F(P) by the formula 

giving a representation of degree IPI. Note that the regular represen
tation is a special case of this construction, obtained by taking P = G. 
As an important variant, we could take P = G/H = {gH}, the set 
of left cosets of some subgroup H of G. (This concept was used in a 
preliminary way in Section 1.4.) 
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(4) If M1 and M2 are two representations of G, defined by 0'1 and 0'2, 

then M1 \l) M2 is a representation of G defined by 0'1 \l) 0'2. Note that 
deg(M1 \l) M 2 ) = deg(Md + deg(M2)' 

(5) If M1 and M2 are two representations of G, defined by 0'1 and 0'2, 

then M1 0 M2 is a representation of G defined by 0'1 00'2. Note that 
deg(M1 0 M 2 ) = (deg(Md)(deg(M2))' 

(6) Let G = Zn = (g : gn = 1) be cyclic of order n and let F be a 
field that is good for G. We have the one-dimensional representations 
(h : G -t Aut(F) ~ F* defined by 

(h(g)=(k fork=O, ... ,n-1. 

These are all distinct (i.e., pairwise nonisomorphic) and eo = T. 

(7) Let 
G = D2m = (x, y : xm = 1, y2 = 1, xy = yx-1) 

be the dihedral group of order 2m, and let F be a field that is good 
for G. The representations of D2m are described in Tables 1.1 and 1.2, 
using the following matrices: 

(1.1 ) and 

(Note that it is only necessary to give the value of the representation 
on the two generators x and y.) 

Table 1.1. Representations of D2m (m odd) 

Representation x y 

1 
-1 
B 

degree 
1 
1 
2 

Table 1.2. Representations of D2m (m even) 

Representation x y degree 

tP++ = T 1 1 1 

tP+- 1 -1 1 

tP-+ -1 1 1 

tP-- -1 -1 1 
¢k Ak B 2 

1 ::; k ::; (m - 1)/2 

1 ::; k ::; (m/2) - 1 
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(8) Suppose that M has a basis B such that for every 9 E G, [0"(g)J8 is 
a matrix with exactly one nonzero entry in every row and column. 
Then M is called a monomial representation of G. For example, the 
representations of D2m given above are monomial. If all nonzero en
tries of [0"(g)J8 are 1, then the monomial representation is called a 
permutation representation. (The reader should check that this defi
nition agrees with the definition of permutation representation given 
in Example 1.4 (3).) 

(9) Let X = {I, X, x2 , ..• } with the multiplication xixj = xi+j. Then 
X is a monoid, Le., it satisfies all of the group axioms except for the 
existence of inverses. Then one can define the monoid ring exactly as 
in the case of the group ring. If this is done, then F(X) is just the 
polynomial ring F[xJ. Let M be an F vector space and let T: M -+ M 
be a linear transformation. We have already seen that M becomes an 
F(X)-module via xi(m) = Ti(m), for m E M and i 2 o. Thus, we 
have an example of a monoid representation. Now we may identify Z 
with 

{ -2 -1 1 2 } ... , x , x , , x, x, .... 

If the linear transformation T is invertible, then M becomes an F(Z)
module via the action xi(m) = Ti(m) for m E M, i E Z. 

(10) As an example of (9), let T : F2 -+ F2 have matrix [~~] (in the 
standard basis). Then we obtain a representation of Z of degree 2. If 
char(F) = p > 0, then TP = I F 2, so in this case we obtain a represen
tation of Zp of degree 2. 

(11) Let c : R(G) -+ F be defined by 

If we let G act trivially on F, we may regard c as a map of F
representations 

c: R(G) -+ T. 

We let Ro (G) = Ker( c). The homomorphism c is known as the augmen
tation map and Ro (G) is known as the augmentation ideal of R( G). 
It is then, of course, an F-representation of G. 

(12) If F is a subfield of F' and M is an F-representation of G, then M' = 
F' 0F M is an F'-representation of G. An F'-representation arising in 
this way is said to be defined over F. 

(13) If Mi is an F-representation of Gi , defined by O"i for i = 1, 2, then 
M1 EB M2 is a representation of G1 x G2 , defined by 

(0"1 EB 0"2)(g1> g2) = 0"1 (g1) EB 0"2 (g2) 

(Compare with Example 1.4 (4).) 

for gi E G i . 
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(14) If Mi is an F-representation of Gi, defined by ai for i = 1, 2, then 
MI ® M2 is a representation of G I x G2, defined by 

(Compare with Example 1.4 (5).) 
(15) If a: G -+ Aut(M) is injective, then a is called faithful. If not, let K = 

Ker(a). Then a determines a homomorphism a' : GIK -+ Aut(M), 
which is a faithful representation of the group G I K. 

(16) Let I : GI -+ G2 be a group homomorphism and let a : G2 -+ Aut(M) 
be a representation of G2 • The pullback of a by I, denoted f* (a), 
is the representation of GI , defined by f*(a) = a 0 I, i.e., f*(a) 
GI -+ Aut(M) by 

J*(a)(g) = a(f(g)) for 9 E G I . 

(17) Let M be an F-representation of G, so M is an F(G)-module. Then 
for any subgroup H of G, M is also an F(H)-module, i.e., an F
representation of H. 

(18) Let H be a subgroup of G and let M be an F-representation of H, 
i.e., an F(H)-module. Then F(G) ®F(H) M is an F(G)-module, i.e., an 
F-representation of G. 

(1.5) Definition. 

(1) M is an irreducible representation of G il M is an irreducible F(G)
module. (See Definition 7.1.1.) 

(2) M is an indecomposable representation of G il M is an indecomposable 
F(G)-module. (See Definition 7.1.6.) 

One of our principal objectives will be to find irreducible represen
tations of a group G and to show how to express a representation as a 
sum of irreducible representations, when possible. The following examples 
illustrate this theme. 

(1.6) Example. Let F be good lor Zn. Then the regular representation 'R.(Zn) 
is isomorphic to 

(}o El7 (}I El7 ••• El7 (}n-I. 

Prool. Consider the F-basis {I, g, ... ,gn-I} of 'R.(Zn). In this basis, a(g) 
has the matrix 

o 0 0 1 
1 0 0 0 
o 1 0 0 

o 0 0 0 
o 0 1 0 
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which we recognize as c(xn -1), the companion matrix of the polynomial 
xn - 1. Hence, 

mu(g)(X) = Cu(g)(X) = xn - 1. 

By our assumption on F, this polynomial factors into distinct linear factors 

n-l 

xn - 1 = II (X _ (k). 

k=O 

Hence, a(g) is diagonalizable, and indeed, in an appropriate basis B, it has 
matrix 

Each of the eigenspaces is an F(Zn)-submodule, so we see immediately that 

o 

(1.1) Example. Let F = Q, the rational numbers, and let p be a prime. 
Consider the augmentation ideal no ~ n = Q(Zp). If 9 is a generator of 
Zp and T = a(g) : no -+ no, then 

(XP - 1) 
mT(X) = CT(X) = (X _ 1) , 

which is irreducible by Corollary 2.6.12. Hence, by Remark 7.1.40 no is 
an irreducible Q-representation of Zpo (Strictly speaking, to apply Remark 
7.1.40 we must consider not a, but 7r*(a) where 7r : Z -+ Zp is the canonical 
projection, and apply Exercise 2.) Note that no Q9Q C is the augmentation 
ideal in C(G), and no Q9Q C is not irreducible and, in fact, is isomorphic 
to 

01 EB ... EB Op-l. 

(In fact, this statement is true without the requirement that p be prime.) 

(1.8) Example. Let F be good for D2m . 

(1) Each of the F(D2m )-modules cPk of Example 1.4 (7) is irreducible, and 
they are distinct. 

(2) If, for m even, we define cPm/2 by cPm/2(X) = Am/2 and cPm/2(Y) = B, 
then 

cPm/2 ~ 1/J-+ EB 1/J--. 
(3) Let P be the set of vertices of a regular m-gon, and let D2m act on P 

in the usual manner (Section 1.5). Then, as F(D2m )-modules, 

ifm is odd, 
ifm is even. 
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(4) For the regular representation, we have 

Proof. We leave this as an exercise for the reader. 

ifm is odd, 
ifm is even. 

o 

(1.9) Definition. Let M and N be F-representations ofG. The multiplicity 
m of M in N is the largest nonnegative integer with the property that mM 
is isomorphic to a submodule of N. If no such m exists, i. e., if mM is 
isomorphic to a submodule of N for every nonnegative integer m, we say 
that the multiplicity of M in N is infinite. 

If the multiplicity of M in N is m, we shall often say that N contains 
M m times (or that N contains m copies of M). If m = 0, we shall often 
say that N does not contain M. 

(1.10) Lemma. Let G be a group. Then the regular representation n contains 
the trivial representation T once if G is finite, but it does not contain T if 
G is infinite. 

Proof. Let M be the submodule of n consisting of all elements on which G 
acts trivially. Let m E M. Then we may write 

m= Lagg 
gEG 

where ag E F. 

By assumption, gom = m for every go E G. But 

and 

gom = L ag(gog) 
gEG 

m = L agOg(gog). 
gEG 

Therefore, agOg = ag for every g E G and every go E G. In particular, 

(1.2) 

for every go E G. 
Now suppose that G is finite. Then by Equation (1.2) 

m = Laeg = ae(L:g) where ae E F, 
gEG gEG 
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i.e., M = (L::9EG g) as an F-module. Therefore, M is one-dimensional over 
F, so that M = T. 

On the other hand, if G is infinite, Equation (1.2) implies that ag i- 0 
for all g E G whenever ae i- O. But the group ring F(G) consists of finite 
sums L::9EG agg, so this is impossible. Hence, we must have ae = 0 and 
M = (0). 0 

(1.11) Corollary. If G is an infinite group, then R is not semisimple. 

Proof. Suppose that n were semisimple. Then by Theorem 7.1.30, R would 
contain the simple R-module T, but by Lemma 1.10, it does not. 0 

(1.12) Example. Consider Example 1.4 (10). This is an F-representation of 
Z, which is indecomposable but not irreducible: it has T as a subrepresen
tation (consisting of vectors in F x {O}). Indeed, if T is a linear transfor
mation on M, Remark 7.1.40 gives a criterion for M to be a semisimple 
F(X)-module. 

The following lemma, incorporating the technique of averaging over 
the group, is crucial: 

(1.13) Lemma. Let G be a finite group and F a field with char(F) = 0 or 
prime to the order of G. Let VI and V2 be F-representations of G defined 
by (Ji : G -+ Aut(Vi) for i = 1,2, and let n = IGI· Let f E Hom(VI, V2 ) and 
set 

(1.3) 

(1.4) Av(f) = f. 

Proof. We need to show that for every go E G and every VI E VI, 

But 
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= ~ L 0"2 (go) 0"2 ((ggo)-l)f(O"l (ggo)) (VI). 
n gEC 

Let g' = ggo. As 9 runs through the elements of G, so does g'. Thus, 

Av(f)(O"l(gO)(Vt)) = ~ L 0"2(gO)0"2(g'-1)f(0"1(g'))(vt) 
g/EC 

= 0"2 (go) (~ L 0"2(9'-1)f(0"1(9'))) (vt) 
g/EC 

= 0"2 (go) Av(f)(vt) 

as required, so Equation (1.3) is satisfied. 
Also, if f E Homc(Vi, V2), then for every 9 E G, 

Hence, in this case 

Hence, Equation (1.4) is satisfied. o 

Now we come to one of the cornerstones of the representation theory 
of finite groups. 

(1.14) Theorem. (Maschke) Let G be a finite group. Then F(G) is a 
semisimple ring if and only if char(F) = 0 or char(F) is relatively prime to 
the order of G. 

Proof First, consider the case where char(F) = 0 or is relatively prime to 
the order of G. By Theorems 7.1.28 and 7.1.23, it suffices to show that 
every submodule M1 of an arbitrary F(G)-module M is complemented. 

Let t : M1 -t M be the inclusion. We will construct 1f : M -t Ml with 
1ft = 1M!. Assuming that, we have a split exact sequence 
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so Theorem 3.3.9 applies to show that M ~ Ml EB Ker(7r), and hence, Ml 
is complemented. 

Now, MI is a subvector space of M, so as an F-module MI is comple
mented and there is certainly a linear map p : M -> MI with p~ = 1M, . 
This is an F-module homomorphism, but there is no reason to expect it to 
be an F( G)-module homomorphism. We obtain one by averaging it. (Since 
we are dealing with a single representation here, for simplicity we will write 
g(v) instead of a(g)(v).) 

Let 7r = Av(p). By Lemma 1.13, 7r E Homc(M, Md. We have p~ = 
1M, ; we need 7r~ = 1M, . Let v E MI. Then, since Ml is an F( G)-submodule, 
g(v) E MI for all 9 E G, so p(~(g(v))) = g(v) for all 9 E G. Then 

as required. 

1 
7r(~(v)) =;;: Lg-Ip(g(~(v))) 

gEC 

=~LV 
gEC 

nv 
n 

=v 

Now suppose that char(F) divides the order of G. Recall that we have 
the augmentation map c as defined in Example 1.4 (11), giving a short 
exact sequence of F(G)-modules 

(1.5) o --+ Ro --+ R ~ 7 --+ o. 

Suppose that R were semisimple. Then c would have a splitting a, so by 
Theorem 3.3.9, R ~ Ro EB a(7). Since this is a direct sum, Ro n a(7) = (0). 
On the other hand, a(7) is a trivial subrepresentation in R, so by the proof 
of Lemma 1.10, 

However, 

a(7) = {a L 9 : a E F}. 
gEC 

c ( a L g) = ac (L g) = an = 0 E F 
gEC gEC 

since char(F) I n. Thus, a(7) ~ Ro, contradicting Ro n a(7) = (0). 0 
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(1.15) Example. Consider Example 1.4 (10) again, but this time with 
F = F p , the field of p elements. Then TP = [~i] = [~~], so we may 
regard T as giving an F-representation of Zp. As in Example 1.12, this is 
indecomposable but not irreducible. 

Having proven that F( G) is semisimple in favorable cases, we collect 
the relevant results of Section 7.1 into an omnibus theorem. 

(1.16) Theorem. Let G be a finite group and F a field with char(F) = 0 or 
prime to the order of G. Then the following are valid. 

(1) An F-representation of G is indecomposable if and only if it is irre
ducible. 

(2) Every irreducible F-representation of G is isomorphic to a subrepre
sentation ofF(G). 

(3) Every F -representation of G is a projective F( G)-module. 
(4) Every F -representation of G is semisimple, and if M is written as 

for distinct irreducibles {MdiEI' 

then Si E {O, 1, 2, ... } U {oo} is well determined. 
(5) There are only finitely many distinct irreducible F -representations of 

G (up to isomorphism), and each has finite multiplicity in F(G). 

Proof. o 

(1.17) Corollary. Let G be a finite group and F a field with char(F) = 
o or prime to the order of G. Then every irreducible F -representation of 
G has degree at most n and there are at most n distinct irreducible F
representations of G, up to isomorphism. 

Proof. If Mi is irreducible, then Theorem 1.16 (2) implies that Mi is a 
subrepresentation of F(G), so 

deg(Mi) ~ deg(F(G» = n. 

If {MdiEI are all of the distinct irreducible representations, then by The
orem 1.16 (2), M = tBiEIMi is a subrepresentation of F(G). 

Hence, deg(M) ~ deg(F(G», so that 

111= L 1 ~ L deg(Mi) ~ deg(F(G» = n, 
iEI iEI 

as claimed. o 

The second basic result we have is Schur's lemma, which we amplify a 
bit in our situation. 
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(1.18) Lemma. (Schur) Let R be an F-algebra. 

(1) Let M be a simple R-module. Then EndR(M) is a division ring 
containing F in its center. If F is algebraically closed, then every 
¢ E EndR(M) is a homothety (i.e., is multiplication by an element 
of F) and EndR(M) ~ F. 

(2) LetMl andM2 be two distinct (i.e., nonisomorphic) simpleR-modules. 
Then HomR(M1 , M 2 ) = (0). 

Proof. Much of this is a restatement of Schur's lemma (Proposition 7.1.5). 
If D = EndR(M), then clearly D "2 F, where we regard a E F as the 
endomorphism given by (left) multiplication by a. If ¢ ED, then ¢(am) = 
a¢( m) for all m EM, so F is contained in the center of D. 

Now suppose that F is algebraically closed and ¢ E EndR(M). Then 
the characteristic polynomial of ¢ splits into linear factors in F, so, in 
particular, ¢ has an eigenvalue a E F. Then Ker(¢ - a) is a nontrivial 
submodule of M. Since M is simple, this implies Ker(¢ - a) = M, i.e., 
¢=a. 0 

(1.19) Example. Here is an example to see that if M is a simple R-algebra 
and F is not algebraically closed, then EndR(M) need not consist solely 
of homotheties. Let R = R(Z4) and M = R2 with the action of Z4 = 
{1, g, g2, g3} given by the matrix 

a(g) = [~ -~n. 
It is easy to check that 

under the isomorphism [~ --;.b] ........ a + bi. 

We close this section with the following lemma, which will be important 
later. 

(1.20) Lemma. Let G be a finite group and F a good field. Let a : 
G --+ Aut(M) be an F-representation of G of finite degree. Then for each 
9 E G, the linear transformation a(g) : M --+ M is diagonalizable. 

Proof. Since g E G, we have that gk = 1 for some k dividing m = exponent 
(G). Since F is good, the lemma follows immediately from Theorem 4.4.34. 

o 
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8.2 Representations of Abelian Groups 

Before developing the general theory, we will first directly develop the rep
resentation theory of finite abelian groups over good fields. We will then 
see the similarities and differences between the situation for abelian groups 
and that for groups in general. 

(2.1) Theorem. Let G be a finite group and F a good field for G. Then 
G is abelian if and only if every irreducible F -representation of G is one
dimensional. 

Proof. First assume that G is abelian and let M be an F-representation of 
G. By Corollary 1.17, if deg(M) is infinite, M cannot be irreducible. Thus 
we may assume that deg(M) < 00. Now the representation is given by a 
homomorphism a: G -+ Aut(M), so 

a(g)a(h) = a(gh) = a(hg) = a(h)a(g) for all g, h E G. 

By Lemma 1.20, each a(g) is diagonalizable, so 

s = {a(g) : 9 E G} 

is a set of mutually commuting diagonalizable transformations. By Theorem 
4.3.36, S is simultaneously diagonalizable. If B = {VI, ... ,Vk} is a basis of 
M in which they are all diagonal, then 

(thUS showing directly that M is semisimple). Hence M, is simple if and 
only if k = 1, i.e., if and only if deg(M) = 1. 

Conversely, let M be a one-dimensional representation of G. Then the 
representation is defined by a homomorphism a : G -+ Aut(M) ~ F*, and 
F* is, of course, abelian, so that 

(2.1) a(g)a(h) = a(h)a(g) for all g, h E G. 

By assumption, every irreducible representation of G is one-dimensional, 
so Equation (2.1) is valid for every irreducible representation of G. Since 
every representation of G is a direct sum of irreducible representations, 
Equation (2.1) is valid for every representation of G. In particular, it is 
valid for R(G), the regular representation of G. If ao is the homomorphism 
defining the regular representation, and we consider 1 E R( G), then for any 
g, hE G, 

and G is abelian. 

(ao(g)ao(h))(l) = (ao(h)ao(g))(l) 

ao(g)(h) = ao(h)(g) 

gh= hg 

o 
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(2.2) Theorem. Let G be a finite group and F a good field for G. Then G 
is abelian if and only if G has n distinct irreducible F -representations. 

Proof. Let G be abelian. We shall construct n distinct F-representations of 
G. By Theorem 3.7.22, we know that we may write G as a direct sum of 
cyclic groups 

(2.2) 

with n = nl ... ns. Since F is good for G, it is also good for each of 
the cyclic groups Zn;> and by Example 1.4 (6), the cyclic group Zn, has 
the ni distinct F-representations (h for 0 ::; k ::; ni - Ij to distinguish 
these representations for different i, we shall denote them (J~i. Thus, (J~i : 

Zni -4 F*. If 1l"i : G -4 Zn, denotes the projection, then 

(2.3) 

defines a one-dimensional representation (and, hence, an irreducible repre
sentation) of G. Thus, 

{(J~i1l"i: 1::; i::; s, 0::; k::; ni -I} 

is a collection of n irreducible F-representations of Gj by Corollary 1.17, 
this is all of them. 

On the other hand, suppose that G is not abelian, and let {MihEI be 
the set of irreducible representations of G. Since G is not abelian, Theorem 
2.1 implies that deg(Mi) > 1 for some i. Then, as in the proof of Corollary 
1.17, 

III = L 1 < L deg(Mi) ::; deg(F(G)) = n, 
iEI iEI 

so III < n, as claimed. o 

(2.3) Corollary. Let G be a finite abelian group and F a good field for G. If 
M I , ... , Mn denote the distinct irreducible F-representations of G, then 

n 

F(G) = EBMi . 

i=1 

(In other words, every irreducible representation of G appears in the regular 
representation with multiplicity one.) 

Proof. If M = EBi=1 M i , then by Theorem 1.16 (2), M is a subrepresentation 
of'R. But deg(M) = n = deg(R), so M = R. 0 

(2.4) Corollary. Let G be a finite abelian group and F a good field for G. If 
M is an irreducible representation of G, then 
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EndG{M) = F. 

Proof. Clearly, F ~ EndG{M) ~ End{M) = F. (Every F{G)-homomor
phism is an F-homomorphism and M is one-dimensional.) 0 

(2.5) Proposition. Let G be a group and suppose that Q = G/[G, G] is 
finite. Let F be a good field for Q. Then G has IQI distinct one-dimensional 
F -representations. 

Proof. If 7r is the canonical projection 7r : G -+ Q, then for anyone
dimensional F-representation 0' : Q -+ Aut{F), its pullback 7r*{a) = a7r 
is a one-dimensional F-representation of G, and by Theorem 2.2, we 
obtain IQI distinct representations in this way. On the other hand, if 
0" : G -+ Aut{F) = F* is anyone-dimensional representation of G, then 
a'I[G,G] is trivial (as F* is abelian). Thus, 0" factors as a7r, so it is one of 
the representations constructed above. D 

8.3 Decomposition of the Regular Representation 

(3.1) Definition. Let G be a finite group. A field F is called excellent for 
G or simply excellent if it is algebraically closed of characteristic zero or 
prime to the order of G. 

Observe that an excellent field is good and that the field C is excellent 
for every G. Our objective in this section is to count the number of irre
ducible representations of a finite group G over an excellent field F, and 
to determine their multiplicities in the regular representation F{G). The 
answers turn out to be both simple and extremely useful. 

(3.2) Definition. A representation P of G is called isotypic (of type M) if 
for some positive integer m and some irreducible representation M of G, P 
is isomorphic to mM. 

(3.3) Lemma. Let F be an excellent field for G, and let P and Q be isotypic 
representations of G of the same type. If P ~ m1M and Q ~ m2M, then 
as F -algebras 

(3.1) 

Proof. Let ¢ : P -+ m1M and 1/J : Q -+ m2M be the isomorphisms (of 
F{G)-modules). Let 0i : M -+ m1M be the inclusion of M as the ith 

summand, and let {3j : m2M -+ M be the projection onto the lh summand. 
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If f E Homa(P, Q), consider the following composition of F(G)-module 
homomorphisms (which we will call hi): 

M "'i M <1>-1 P f Q '" M {3j M 
---- m1 ---- ---- ---- m2 ---- . 

Then hi E Enda(M), and since F is excellent for G, Lemma 1.18 (Schur's 
lemma) implies that hi is given by multiplication by some element aji E F. 
Then the isomorphism of the lemma is given by 

o 

Remark. Note that this isomorphism depends on the choice of isomorphisms 
¢ and 'IjJ. This dependence is nothing more than the familiar fact that the 
matrix of a linear transformation depends on a choice of bases. 

The following theorem, proved by Frobenius in 1896, is fundamental: 

(3.4) Theorem. (Frobenius) Let F be an excellent field for the finite group 
G. 

(1) The number of distinct irreducible F -representations of G is equal to 
the number t of distinct conjugacy classes of elements of G. 

(2) If{Mi}~=1 are the distinct irreducible F-representations ofG, then the 
multiplicity of Mi in the regular representation n of G is equal to its 
degree di = deg(Mi) for 1 ~ i ~ t. 

(3) L~=1 d; = n = IGI· 

Convention. We adopt the notational convention henceforth that t will al
ways denote the number of conjugacy classes of the group G. 

Proof. If {Mi };=1 are the distinct irreducible representations of G (the 
number of these being finite by Theorem 1.16 (5)), then by Theorem 1.16 
(2) we have 

(3.2) 
q 

n~EBmiMi 
i=1 

for some positive integers m1, ... ,mq. 
(1) We shall prove this by calculating dimF C in two ways, where C is 

the center of n, i.e., 

C = {r En: rr' = r'r for all r' En}. 

C is clearly an F -algebra. 
First we compute dimF (C) directly. Let {Gi }~=1 be the sets of mutually 

conjugate elements of G, i.e., for each i, and each g1 and g2 E Gi , there 
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is agE G with gl = gg2g- 1. Since conjugacy is an equivalence relation, 
{Cd~=l is a partition of G. For 1 :::; i :::; t, let Ci E R be defined by 

(3.3) Ci = L g. 
gECi 

For each element 9 of G, we have the following equality in R: 

cig = (L 9i) 9 
giECi 

= L g(g-lgig) 
giECi 

= L gg: 
g;ECi 

where the fourth equality holds because Ci is a conjugacy class. This im
mediately implies that 

(3.4) 

the F-vector space spanned by these elements. 
On the other hand, suppose that we have an element 

x = Lagg EC. 
gEe 

Then for any go E G, we have goxgo1 = xgOgo1 = X. But 

which implies that 

for all g, go E G. 

That is, any two mutually conjugate elements have the same coefficient, 
and hence, C ~ (C1' ... ,Ct). Together with Equation (3.4), this implies that 
C = (C1' ... ,Ct), and since C1, ... ,Ct are obviously F-linearly independent 
elements of R, it follows that 
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(3.5) dimF(C) = t. 

Now for our second calculation of dimF(C). We know in general that 

(3.6) 'R 3:! Homn.('R, 'R) = Endn.('R). 

We will calculate dimF(C') where C' is the center of Endn.('R). Of course, 
dimF(C') = dimF(C) by Equation (3.6). But 

Endn.('R) = Homn.('R, 'R) 
q q 

3:! Homn.( EBmiMi' EBmjMj ) 
i=l j=l 

q q 

3:! EBEBHomn.(miMi, mjMj). 
i=l j=l 

By Schur's lemma, Homn.(Mi , M j ) = (0) for i =f. j, and by Lemma 3.3, 

Homn.(miMi, miMi) 3:! Mmi (F) 

so that 
q 

(3.7) 'R 3:! Endn.('R) 3:! EB Mmi (F) 
i=l 

as F -algebras. It is easy to see that 

(3.8) 

where Ci is the center of the matrix algebra Mmi (F); but by Lemma 4.1.3, 
Ci = F Imi ~ Mmi (F) so that dimF(Ci ) = 1. By Equation (3.8), it follows 
that 

Hence, q = t, as claimed. 
(2) We shall prove this by calculating dimF(Mi ) in two ways. First, by 

definition, 

(3.9) 

Second, we have Homn.('R, M i ) 3:! Mi as 'R-modules, and we calculate the 
dimension of this. Now 

q 

Homn.('R, M i ) 3:!Homn.(EBmj M j , Mi) 
j=l 

3:! Homn.(miMi, M i ) 

3:! M 1,m; (F) 
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by Schur's lemma and Lemma 3.3 again. This matrix space has dimension 
mi over F, so mi = di , as claimed. 

(3) By part (2) and Equation (3.7), 

as claimed. 

n = dimFCR.) 
q 

= dimF ( EB Mm; (F) ) 
i=l 

q 

= L dimF(Mm ; (F» 
i=l 

q 

=Lm~ 
i=l 

o 

(3.5) Remark. Note that this theorem generalizes the results of Section 8.2. 
For a group G is abelian if and only if every conjugacy class of G consists of 
a single element, in which case there are n = IGI conjugacy classes. Then G 
has n distinct irreducible F-representations, each of degree 1 and appearing 
with multiplicity 1 in the regular representation (and n = E~=112). 

(3.6) Warning. Although the number of conjugacy classes of elements of Gis 
equal to the number of distinct irreducible F -representations of G (if F is an 
excellent field for G), there is no natural one-to-one correspondence between 
the set of conjugacy classes and the set of irreducible F -representations. 

(3.1) Example. Consider the dihedral group 

G = D2m = (x, y: xm = 1, y2 = 1, xy = yx-1). 

For m odd, G has the following conjugacy classes: 

{1}, {x, x m- 1 }, {x2, x m- 2}, ... , 

{x(m-l)/2, x(m+l)/2}, {y, xy, x 2y, ... ,xm-ly}. 

There are (m + 3)/2 conjugacy classes and in Example 1.4 (7), we con
structed (m + 3)/2 distinct irreducible representations over a good field F, 
so by Theorem 3.4 we have found all of them. 

For m even G has the following conjugacy classes: 

{1} { m-l} {2 m-2} {m-l m+l} { m} , x, x ,X , x , ... , X 2 , X 2 ,X 2 , 

{Xiy : i is even}, {Xiy : i is odd}. 
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There are ~ + 3 of these and in Example 1.4 (7) we also constructed ~ + 3 
irreducible representations over a good field F, so again we have found all 
of them. 

Note also that the decomposition in Example 1.8 (4) is as predicted 
by Theorem 3.4. 

(3.8) Example. Let us construct all irreducible C-representations of the 
quaternion group G = Qs. Recall that 

Qs = {±I, ±i, ±j, ±k}, 

and it is straightforward to compute that it has conjugacy classes 

{I}, {-I}, {±i}, {±j}, {±k}. 

(See Example 2.1.10 (10), where we denote Qs by Q.) 
Thus, we have five irreducible representations whose degrees satisfy 

2:~=l d~ = 8, which forces dl = d2 = d3 = d4 = 1 and d5 = 2. (Actually, it 
is unnecessary here to find the number of conjugacy classes, for the Equation 
2:~=l d~ = 8 only has the solutions 

(2, 2), (1, 1, 1, 1, 1, 1, 1, 1), and (1, 1, 1, 1, 2). 

The first of these is impossible since we must have some di = 1 = deg(r), 
and the second cannot be right because G is nonabelian, so the third must 
apply.) 

Note that C = {±I} is the center of G, and so C <J G, and we have an 
exact sequence 

I----C----G~V----I 

where V ~ Z2 EB Z2. Since V is abelian of order 4, it has four I-dimensional 
representations and their pullbacks give four I-dimensional (and hence cer
tainly irreducible) representations of G. 

To be precise, let 

V = {I, [, J, K : [2 = J2 = K2 = 1, [J = K}. 

Then n : G --+ V is defined by n(±I) = 1, n(±i) = I, n(±j) = J, and 
n(±k) = K. The representations of V are the trivial representation ao = r 
(and n*(r) = r) and the representations ai for i = 1, 2, 3 given by 

is: 

al : 
a2 : 
a3 : 

al(I) = 1, 
a2(I) = -1, 
a3(I) = -1, 

al(J) = -1, 
a2(J) = 1, 
a3(J) = -1, 

al(K) =-1 
a2(K) = -1 
a3(K) = 1. 

We also need to find a two-dimensional representation p of Qs. Here it 
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p(±l) = [~1 

p(±i) = [ ~i 

p(±j) = [~i 

p(±k) = [~1 
Note that in the matrices, i is the complex number i. We must check that pis 
irreducible. This can be done directly, but it is easier to make the following 
observation. If p were not irreducible it would have to be isomorphic to 
1l'*(ai) EEl 11'* (aj) for some i, j E {O, 1,2, 3}, but it cannot be, for p(-I) is 
nontrivial, but (1l'*(ai) EEl 11'* (aj»( -1) is trivial for any choice of i and j. 

(3.9) Example. Let us construct all irreducible C-representations of the 
alternating group A4 of order 12. Recall that A4 is the subgroup of the 
symmetric group 84 consisting of the even permutations, and it is a semidi
rect product 

where 

and 

v ~ Z2 EEl Z2 
= {I, (12)(34), (13)(24), (14)(2 3)} 

= {I, I, J, K} 

8 ~ Z3 = {I, (123), (13 2)} = {I, T, T2}. 

We compute that A4 has 4 conjugacy classes 

{I}, {I, J, K}, {T, TI, T J, TK}, 

so we expect 4 irreducible representations whose degrees satisfy 2::=1 d~ = 
12, giving d1 = d2 = d3 = 1 and d4 = 3. (Alternatively, we find that V is 
the commutator subgroup of G, and so we have exactly 3 one-dimensional 
representations of G by Proposition 2.5. Then the equation 2:~=1 d~ = 12 
and d1 = d2 = d3 = 1 with di > 1 for i > 3 forces t = 4 and d4 = 3.) 

The three one-dimensional representations of G are 11'* (Oi) for 0 ~ i ~ 
2, where 0i are the representations of the cyclic group 8 constructed in 
Example 1.4 (6). 

Now we need to find a three-dimensional representation. Let 

M = C 4 = {(Zl, Z2, Z3, Z4) : Zi E C, 1 ~ i ~ 4}. 

Then 8 4 , and hence, A4 , acts on C 4 by permuting the coordinates, Le., 
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g(Zl, Z2, Z3, Z4) = (Zg(l), Zg(2)' Zg(3), Zg(4») 

Consider 

for 9 E 84 , 

Mo = {(Zl' Z2, Z3, Z4) : Zl + Z2 + Z3 + Z4 = O}. 

This subspace of M is invariant under 84 , so it gives a three-dimensional 
representation 0: of 84 , and we consider its restriction to A4 , which we 
still denote by 0:. We claim that this representation is irreducible, and the 
argument is the same as the final observation in Example 3.8: The subgroup 
V acts trivially in each of the representations 71'*(0;) for i = 0, 1, 2, but 
nontrivially in the representation 0:. 

(3.10) Example. Let us construct all irreducible C-representations of the 
symmetric group 84 . We have a semidirect product 

where V is the same as in Example 3.9 and 

W = (T, U: T3 = U 2 = 1, TU = UT2) ~ D6 ~ 83 

where T = (123) as before and U = (12). By Corollary 1.5.10, 84 has 5 
conjugacy classes, so we look for a solution of L:~=l d; = 24 = [84[. This 
has the unique solution 

As before, we obtain an irreducible representation of 84 from every irre
ducible representation of W, and by Example 1.4 (7), W has the irreducible 
representations '¢+ = r, '¢_, and ¢l, so we have irreducible representations 
71'*(r) = r, 71'*(,¢+), and 71'*(¢d of degrees 1, 1, and 2, respectively. 

We need to find two three-dimensional irreducible representations. For 
the first we simply take the representation 0: constructed in Example 3.9. 
Since the restriction of 0: to A4 is irreducible, 0: itself is certainly irreducible. 

For the second, we take 0:' = 71'*('¢_) 00:. This is also a three
dimensional representation of 84 (which we may now view as acting on 
Mo by 

o:'(g)(v) = '¢_7I'(g)0:(v) for v E Mo 

since '¢_7I'(g) = ±1). Since 0:' restricted to A4 agrees with 0: restricted to A4 
and the latter is irreducible, so is the former. To complete our construction, 
we need only show that 0: and 0:' are inequivalent. We see this from the fact 
that o:(U) has characteristic polynomial (X - 1)2(X + 1), while o:'(U) has 
characteristic polynomial (X -1)(X + 1)2. (The reader may wonder about 
the representation 71'*('¢_) 0 71'* (¢l), but this is isomorphic to 71'* (¢l), so it 
gives nothing new.) 

We conclude this section with the following result: 
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(3.11) Theorem. (Burnside) Let F be an excellent field for the finite group 
G and let p: G - Aut{V) be an irreducible F- representation of G. Then 

{p{g): 9 E G} 

spans EndF (V). 

Proof. We first claim that for any field F, if Po : G - Aut(F( G)) is the 
regular representation of G, then {Po(g)} is a linearly independent set in 
Aut(F(G)). For suppose 

a = L agPo(g) = O. 
gEO 

Then 
0= a(1) = L agg 

gEO 

so ag = 0 for each 9 E G. 
Now let F be an excellent field for G. Then by Theorem 3.4 we have 

an isomorphism c/> : Vo - F{G) with Vo = E9:=1 di Vi , Po : G - Aut{Vo), 
where Pi: G - Aut(Vi) are the distinct irreducible F-representations of G. 
Choose a basis Bi for each Vi and let B be the basis of Vo that is the union 
of these bases. If Mi{g) = [Pi(g))Bp then for each 9 E G, [PO(g))B is the 
block diagonal matrix 

diag(M1{g), M2 (g), ... ,M2 (g), ... ,Mt{g), ... ,Mt(g)) 

where Mi{g) is repeated di = dim{Vi) times. (Of course, Ml{g) = [1) ap
pears once.) By the first paragraph of the proof, we have that the dimension 
of {po(g) : 9 E G} is equal to n, so we see that 

where qi is the dimension of the span of {Pi (g) : 9 E G}. But this span is a 
subspace of End{Vi), a space of dimension d~. Thus, we have 

t t 

n ::; L qi ::; L d~ = n 
i=l i=l 

where the latter equality is Theorem 3.4 (3), so we have qi = ~ for 1 ::; i ::; 
t, proving the theorem. 0 
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8.4 Characters 

In this section we develop the theory of characters. In practice, characters 
are a tool whose usefulness, especially in characteristic zero, can hardly be 
overemphasized. We will begin without restricting the characteristic. 

(4.1) Definition. Let a: G ....... Aut(M) be an F-representation of G of finite 
degree, and let B be a basis of M. The character of the representation a is 
the function X.,. : G ....... F defined by 

(4.1) x.,.(g) = Tr([a(g)]B). 

Recall that Tr denotes the trace of a matrix or a linear transformation. 
This is independent of the choice of the basis B by Proposition 4.3.27. By 
the same logic, it is the case that if two representations are equivalent, then 
their characters are equal. It is one of the great uses of characters that, 
under the proper circumstances, the converse of this is true as well. 

(4.2) Examples. 

(1) If a = dr, then X.,.(g) = d for every 9 E G. 
(2) If a is any representation of degree d, then X.,.(l) = d. 
(3) If a is the regular representation of G, then X.,.(l) = n = IGI and 

X.,.(g) = 0 for all 9 i= 1. (To see this, consider [a(g)] in the basis 
{g : 9 E G} of F(G).) 

(4.3) Lemma. If gl and g2 are conjugate elements of G, then for any rep
resentation a, 

(4.2) 

Proof. If g2 = gglg-\ then 

X.,.(g2) = x.,. (gglg-l) 

= Tr ([a(gglg-l)]B) 

= Tr ([a(g)]B[a(gl)]B[a(g)]I/) 

= Tr ([a(gl)]B) 

= X.,.(gl). 

o 

(4.4) Proposition. Let a1 and a2 be two representations of the group G. 
Then 
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Proof. (1) is obvious, and (2) follows immediately from Proposition 7.2.35 
and Lemma 4.1.20. 0 

Our next goal is to derive the basic orthogonality results for charac
ters. Along the way, we will derive a bit more: orthogonality for matrix 
coefficients. 

(4.5) Proposition. Let F be an excellent field for the group G, let Vi be 
irreducible representations of G, given by (Ti : G ~ Aut(Vi), and let Bi be 
a basis of Vi, for i = 1, 2. 

For 9 E G, let 

and 

(1) Suppose that V1 and V2 are distinct. Then for any i1, j1, i 2 , j2, 

(4.3) 

(2) Suppose that V1 = V2 (so that (T1 = (T2) and B1 = B2. Let d = deg(Vi). 
Then 

(4.4) ! '" p. . (g)q . . (g-l) = {lid if i1 = i2 and j1 = i2, 
L...J '1 31 '232 0 th· n gEG 0 erwzse. 

(Note that in this case Pij(g) = %(g), of course.) 

Proof. Let!3i be the projection of V1 onto its ith summand F (as determined 
by the basis B1 ) and let Clj be the inclusion of F onto the lh summand of 
V2 (as determined by the basis B2 ). Then f = Clj!3i E Hom(Vb V2 ). Note 
that [Clj!3il:~ = Eji where Eji is the matrix with 1 in the jith position and 
o elsewhere (see Section 5.1). Let us compute Av(f). By definition 

Direct matrix calculation shows 

(4.5) 

P1j (g)qi2 (g-l ) 
P2j (g)qi2 (g-l ) ... ... J 
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so the sums in question are just the entries of [Av(f)]:~ (as we vary i, j 
and the entry of the matrix.) 

Consider case (1). Then Av(f) E Homa(Vb V2 ) = (0) by Schur's 
lemma, so f is the zero map and all matrix entries are 0, as claimed. 

Now for case (2). Then Av(f) E Homa(V, V) = F, by Schur's lemma, 
with every element a homothety, represented by a scalar matrix. Thus all 
the off-diagonal entries of [Av(f)]131 are 0, showing that the sum in Equation 
(4.4) is zero if i l -:f. h. Since 0"1 = 0"2, we may rewrite the sum (replacing 9 
byg-1)as 

showing that it is zero if j1 -:f. i 2. 
Consider the remaining case, where i1 = j2 = i and jl = i2 = j. As 

A v(f) is a homothety, all of the diagonal entries of its matrix are equal, so 
we obtain a common value, say x, for 

for any i, j (by varying the choice of f and the diagonal element in ques
tion). 

Now consider 

Since there are d summands, we see that the diagonal entries of Av(fo) are 
all equal to dx. But fo is the identity! Hence, Av(fo) = fo has its diagonal 
entries equal to one, so dx = 1 and x = 1/ d, as claimed. 0 

(4.6) Corollary. Let F be an excellent field for G with char(F) = p -:f. 0, and 
let V be an irreducible F -representation of G. Then deg(V) is not divisible 
by p. 

Proof. If d = deg(V), then the above proof shows that dx = 1 E F, so that 
d -:f. ° E F. 0 

(4.7) Corollary. (Orthogonality of characters) Let F be an excellent field 
for G, and let VI and V2 be irreducible representations of G defined by 
O"i : G --+ Aut(Vi) for i = 1, 2. Then 

if V1 and V2 are distinct, 
if VI and V2 are isomorphic. 

Proof. If Vi has degree di , this sum is equal to 
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which is 0 if V1 and V2 are distinct. If V1 and V2 are isomorphic of degree 
d, then, since isomorphic representations have the same character, we may 
assume that V1 = V2 • The terms with i f:. j are all zero, so the sum is 

d 

LPjj{g)Qjj{g-l) = d{l/d) = l. 
j=l 

o 

Proposition 4.5 and Corollary 4.7 have a generalization, as follows: 

(4.8) Proposition. Given the same hypothesis and notation as Proposition 
4.5, let h be a fixed element of G. 

(I) Suppose that V1 and V2 are distinct. Then for any i 1 , j1, i 2 , and h, 
we have 

(2) Suppose that V1 = V2 • Then if i1 f:. j2, 

(3) For any two representations V1 and V2 , 

1 "{ -1 { 0 if V1 and V2 are distinct, 
;;; L....G X<Tl hg )X<T2 (g ) = (1/ d)x<Tl (h) if Vt = V2 is of degree d. 

gE 

Proof. The prooffollows that of Proposition 4.5, with f = aj{3ia1{h). Then 
the matrix corresponding to that in Equation (4.5) is 

First suppose that Vt and V2 are distinct. Then, again, Av(f) = 0, so 
all the matrix entries are zero, yielding {l),and then the first assertion of 
(3) follows as in the proof of Corollary 4.7. 
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Now suppose that Vl = V2 . Then, again, Av(f) is a homothety, so 
the off-diagonal matrix entries are zero, yielding (2), while all the diagonal 
entries are equal. Set i = j and call the common value in this case Xj, i.e., 

this sum being independent of i. As in the proof of Corollary 4.7, the sum 
we are interested in is 

t,t, (~~P"(h9)'I;;(g-,)) ~ t, ( ~ ~P;;(h9)q;;(g-,)) 
= Xl + ... +Xd 

where the first equality follows from part (2). 
Now consider 

Then Av(fo) is a homothety, and all of its diagonal entries are equal to 
Xl + ... + Xd, so 

Tr(Av(fo)) = d(Xl + ... + Xd). 

But fo = al(h), so 

Then 

d(Xl + ... + Xd) = Tr(Av(fo)) 
1 = - L Tr(al(g-lhg)) 
n gEG 

= .! L Tr(al(h)) 
n 

gEG 

= Tr(al(h)) 

= XU! (h), 

yielding the desired equality. 

(4.9) Remarks. 

o 

(1) We should caution the reader that there are in fact three alternatives in 
Proposition 4.5: that Vl and V2 are distinct, that they are equal, or that 
they are isomorphic but unequal. In the latter case the sum in Equation 
(4.4) and the corresponding sum in the statement of Proposition 4.8 
may vary (see Exercise 14). Note that we legitimately reduced the third 
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case to the second in the proof of Corollary 4.7; the point there is that 
while the individual matrix entries of isomorphic representations will 
differ, their traces will be the same. 

(2) We should caution the reader that the sum in Proposition 4.8 (2) with 
i1 = h but j1 =I- i2 may well be nonzero and that the quantities 
Xl> •.. ,Xd in the proof of the proposition may well be unequal (see 
Exercise 15). 

Given a finite group G and an excellent field F, let G have conjugacy 
classes 

Gl> ... ,Gt 

(in some order) and irreducible representations 

eT1, ••• ,eTt 

(in some order). 

(4.10) Definition. The character table of G is the matrix A E Mt(F) defined 
by A = [aij] = [Xi(Cj)] where Xi = Xu, and Cj E Gj . 

Let IGil be the number of elements of Gi . Then Corollary 4.7 gives a 
sort of orthogonality relation on the rows of A; namely, 

(4.7) 

(Recall that Oij = 1 if i = j and 0 if not.) 
From this, we can immediately write down B = A-1; namely, 

(4.11) Lemma. B = [bij] = [I~il Xj(C;l)] . 

Proof. The equation AB = I is the equation ~~=1 aikbkj = Oij, which is 
immediate from Equation (4.7). 0 

Now let us interpret B. 

(4.12) Definition. Let f : G ~ F be a function with the property that 
whenever gl and g2 E G are conjugate, then f (gl) = f (g2). Then f is 
called a class function on G. 

Clearly, f : G ~ F is a class function if and only if it is constant on 
each conjugacy class Gi (1 ~ i ~ t). Thus the space of class functions is 
clearly an F-vector space of dimension t, with basis B = {h, ... ,It} where 
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Ii (g) = {1 if 9 E C:i' o otherwIse. 

(4.13) Lemma. Let F be an excellent field for G. Then 

A = {Xl, ... ,Xt} 

is a basis for the space of class functions on G. 

Proof. By Lemma 4.3, the characters are class functions. There are t of 
them, so to show that they are a basis it suffices to show that they are 
linearly independent. Suppose 

where ai E F 

where, as in Definition 4.10, we have written Xi for Xu.· Note that xi, 
defined by xi(g) = Xi(g-l), is also a class function. Then for each i, 

(aIXI + a2X2 + ... + atXt)xi = 0 

and averaging over the group 

~ L aIXI(g)xi(g) + a2X2(g)xi(g) + ... + atXt(g)Xi(g) = O. 
gEC 

But, by the orthogonality relations, this sum is just ai/n, so that ai/n = 0 
and ai = 0 for each i, as required. 0 

(4.14) Remark. If X is the character of the representation V defined by 
a : G -+ Aut(V), then X*(g) = X(g-l) is indeed the character of a rep
resentation; namely, with the given action of G, V is a left F(G)-module. 
The action of G given by 9 t-+ a(g-l) gives V the structure of a right F( G)
module. Then V* = Homc(V, F(G)) is a left F(G)-module with character 
X*. (In terms of matrices, if B is a basis for V, B* is the dual basis of V* , 
and X* is defined by a* : G -+ Aut(V*), then 

[a*(g)]B* = [a(g-l)]~.) 

(4.15) Proposition. Let A and B be the above matrices, and let Xi and Ii 
be defined as above. Then for every 1 ~ i ~ t, 

(1) Xi = l:~=l aij!i, and 

(2) fi = l:~=l bijXj· 

Proof. (1) is easy. We need only show that both sides agree on Ck for 1 ~ 
k ~ t. Since !i(Ck) = bjk' 

as claimed. 

t 

L aij!i(ck) = aik = Xi(Ck) 
j=l 
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Now (1) says that the change of basis matrix P; is just A. Then 

P~ = (p;)-l = A-I = B, 

giving (2). 

As a corollary, we may derive another set of orthogonality relations. 

'(4.16) Corollary. Let gil g2 E G. Then 

t { 0 if g1 and g2 are not conjugate, ?: Xj (g1)Xj (g21) = leol if g}, g2 E Ci . 
3=1 • 

o 

Proof. We may assume g1 = Ci and g2 = Ck for some i, k. Then by the 
definition of fk and Proposition 4.15 (2), 

Oki = fk(Ci) 

= (tbkjXj) (Ci) 
3=1 

yielding the corollary. o 

We now define an important quantity. 

(4.17) Definition. Let G and F be arbitrary and let V and W be two F
representations of G. The intertwining number of V and W is 

i(V, W) = (V, W) = dimFHomG(V, W). 

(4.18) Lemma. Let G be finite, F a field of characteristic 0 or prime to the 
order of G, and let V and W be two f-representations of G. Then 

(1) i(V, W) = i(W, V); 
(2) if V ~ EBiEI PiMi and W ~ EBiEI qiMi are the decompositions of V and 

W into irreducibles, then 

i(V, W) = ~::>iqi dimF(End(Mi))j 
iEI 
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(3) if F is excellent for G and V is irreducible, then i(V, W) is the multi
plicity of V in W; 

( 4) if F is excellent for G, then V is irreducible if and only if i (V, V) = 1; 
(5) if F is excellent for G and char(F) = 0, then 

i(V, W) = (V, W) = (Xv, Xw) = ~ I: Xv(g)XW(g-I). 
gEG 

Proof. Note that the hypotheses imply that R is semisimple, and recall 
Schur's lemma. The proof then becomes straightforward, and we leave it 
for the reader. 0 

Remark. If G is finite, F is of characteristic zero or prime to the order of 
G, and V is of finite degree, then we have 

i(V, W) = dimF V* i8lF(G) W. 

This follows directly from Theorem 7.1.28 and Proposition 7.2.32. 

Here we see the great utility of characters-if F is excellent for G and 
of characteristic zero, we may use them to compute intertwining numbers. 
In particular, we have: 

(4.19) Corollary. If F is excellent for G and is of chamcteristic zero and 
WI and W 2 are two F -representations of G of finite degree, then WI and 
W 2 are isomorphic if and only if XWl = XW2 • 

Proof. Clearly, WI and W 2 are isomorphic if and only if i(V, WI) = i(V, W 2) 
for every irreducible V. But, by Lemma 4.18 (3), this is true if XW1 = Xw2 • 

The converse is trivial. 0 

We could continue to work over a suitable excellent field of character
istic 0, but instead, for the sake of simplicity, we will take F = C (the field 
of complex numbers). We note that C has the field automorphism z I---> Z 

of complex conjugation, with ZI + Z2 = ZI + Z2, ZIZ2 = ZIZ2, and ~ = z. 
If a : G ---- Aut(V) is any complex representation, its conjugate (j : 

G ---- Aut(V) is another representation, and Xu = Xu. By Lemma 4.18 (3), 
if G is finite, then a is isomorphic to (j if and only if 

Xu = Xu = Xu, 

i.e., if and only if Xu is real valued. 
We have the following important result: 

(4.20) Lemma. Let a : G ---- Aut(V) be a complex representation of the 
finite group G. Then for every g E G, 
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Proof. Let 9 E G. Then 9 has finite order k, say. By Lemma 1.20, V has a 
basis B with [cr(g)]8 diagonal, and in fact, 

where ( = exp(21Tijk), d = deg(V), and aI, ... ,ad E Z. Then 

[cr(g-1)]8 = ([cr(9)]8)-1 = diag(Ca " C a2 , ... ,cad). 

But (-a = (a for any a, so 

d d 

Xu(g-l) = Tr ([cr(g-1)]8) = L C a, = L (a, = Tr ([cr(g)]8) = Xu(g). 
i=l i=l 

D 

(4.21) Consequence. IfF = C, then Xu(g-l) may be replaced by Xu(g) in 
results 4.7,4.8,4.11,4.16, and 4.18. 

A further consequence is that complex characters suffice to distinguish 
conjugacy classes. To be precise: 

(4.22) Proposition. Let gl and g2 E G. Then gl and g2 are conjugate if and 
only if for every complex character X of G, 

Proof. The only if is trivial. As for the if part, suppose that X(gl) = X(g2) 
for every complex character. Then by Lemma 4.20, 

so if Xl, ... ,Xt are the irreducible characters, 

t t t 

LXj(gt)Xj(g;-l) = LXj(91)xj(9t) = L IXj(gl)1 2 > ° 
j=l j=l j=l 

since each term is nonnegative and Xl (gt) = 1 (Xl being the character ofthe 
trivial representation T). Then by Corollary 4.16, gl and g2 are conjugate. 

D 

(4.23) Proposition. Let G be a finite group. Then every complex character 
of G is real valued if and only if every element in G is conjugate to its own 
inverse. 
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Proof. Suppose that every 9 is conjugate to g-l. Then for every complex 
character X, X(g) = X(g-l) = X(g), so X(g) is real. 

Conversely, suppose that Xi (g) is real for every irreducible complex 
representation ai and every 9 E G. Since al = 'T, X1(g) = 1, so 

t t 

0< LXj(g)2 = LXj(g)Xj((g-1)-1) 
j=1 j=1 

so 9 and g-1 are conjugate by Corollary 4.16 again. o 

Lemma 4.20 also gives a handy way of encoding the orthogonality rela
tions (Corollaries 4.7 and 4.16) for complex characters. Recall the character 
table A = [aij] = [Xi(Cj)] of Definition 4.10. Let 

(4.24) Proposition. The above matrix C is unitary, i.e., C- 1 = d. (See 
Definition 4.6.16.) 

Proof. We leave this for the reader. o 

Using this result, we may generalize Proposition 4.23. 
Let us call a conjugacy class Ci self-inversive if for some (and hence 

for every) Ci E Ci , we also have <-1 E Ci . 

(4.25) Proposition. The number of self-inversive conjugacy classes of G is 
equal to the number of irreducible complex characters of G that are real 
valued. 

Proof. We outline the proof and leave the details to the reader. We make 
use of the above matrix C. Consider the diagonal elements of CCt . From 
the fact that Xi = Xi if Xi is real valued and is the character of a distinct 
:rreducible if not, we see that the ith diagonal entry of CCt is 1 if Xi is real 
valued and zero if not. Thus Tr( CCt ) is equal to the number of real-valued 
characters. 

Now consider the diagonal elements of CtC. From the fact that ci l E 

Ci if Ci is self-inversive, and is in a different conjugacy class if not, we see 
that the ith diagonal entry of ctc is 1 if Ci is self-inversive and zero if not. 
Thus Tr( ctC) is equal to the number of self-inversive conjugacy classes, 
and since Tr(CtC) = Tr(CCt ), the proposition follows. 0 

(4.26) Corollary. If G has odd order, no nontrivial irreducible character of 
G is real valued. 
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Proof. Suppose that ghg- 1 = h-1. Then gihg-i = h if i is even or h-1 if 
i is odd. In particular, gnhg-n = h- l (recall that n = IGD. i;ut gn = 1, 
so this gives h = h-1, i.e., h2 = 1. Since n is odd, this give h = 1, and the 
corollary follows from Proposition 4.25. 0 

We now determine the idempotents in C(G). In our approach the ir
reducible representations and their characters have been central, and the 
idempotents are of peripheral importance, but there is an alternative ap
proach in which they play a leading role. 

(4.27) Proposition. For i = 1, ... ,t let ei E C(G) be defined by 

(4.8) 

where Xi are the characters of the irreducible representations O'i of G and 
di = deg(O'i) = Xi(l). Then 

(1) e; = ei and ejei = 0 for i =I- j, and 
(2) e1 + ... + et = 1. 

Proof. (1) We compute 

Setting g1 = g, g2 = hg-I, and recalling that Xj(gh- 1) = Xj(h-lg), Equa
tion (4.9) becomes 

The interior sum, and hence the double sum, is zero if i =I- j by Proposition 
4.8. If i = j the interior sum is nXi(h-1 )/di (again by Proposition 4.8), and 
so in this case the double sum is 

(2) Let X be the character of the regular representation. If el + ... +et = 
EhEG ahh, then by Example 4.2 (3) 

Now 

1 -1 
ah = -x(h (el + ... + ed)· 

n 
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i=l 
n 

= LXi(1)xi(h-1) 
i=l 

={O ifh1=1 
n ifh=1 

where the third equality is by Proposition 4.8 and the last is by Corollary 
4.16. Thus, a1 = 1 and ah = ° for h 1= 1, giving e1 + ... + et = 1. 0 

We will use idempotents to prove the following result: 

(4.28) Theorem. Let di = deg(CTi) for i = 1, ... , t be the degrees of the 
irreducible complex representations of G. Then for each i, di divides n, the 
order ofG. 

Proof. We begin with the following observation: Let M be a finitely gen
erated torsion-free (and, hence, free) Z-module, and set N = Q 12) M. If 
r E Q has the property that rM <;;;; M, then r E Z. To see this, let b be a 
primitive element of M, which exists by Lemma 3.6.14. If r = p/q with p 
and q relatively prime, then rb E M implies that b = qb' for some b' EM, 
which by primitivity implies that q = ±1. 

Let ( = exp(27ri/m), with m the exponent of G. For fixed i, let Mi be 
the Z-submodule of C(G) spanned by 

{(kgei: k = 0, ... ,m - 1, 9 E G}. 

(Here we consider C(G) as an additive abelian group.) Since e~ = ei, we 
have 

n n 2 ( -1)) di ei = di ei = Xi(g 9 ei E Mi. 

This immediately implies (nldi)(Mi) <;;;; M i, so nidi E Z and d i divides n, 
as claimed. 0 
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We now present some typical examples of the use of characters and 
their properties. In the first two examples we show how to Uhe the basic 
Theorem 3.4 (and the orthogonality relations (Corollary 4.7)) to find all 
complex characters of a group (without first finding all the irreducible rep
resentations), and in the third we show how to use Lemma 4.18 to find the 
decomposition of a complex representation into irreducibles. 

(4.29) Example. Let us determine all the irreducible complex chamcters of 
the alternating group A 5 , of orner 60. 

First we determine that A5 has 5 conjugacy classes: {I}, { all products 
of two disjoint 2-cycles }, { all 3-cycles } each constitute a conjugacy class, 
while { all 5-cycles } splits into two conjugacy classes (with the property 
that if 9 is in one of them, g2 is in the other). Thus, as representatives for 
the conjugacy classes we may take Cl = 1, C2 = (1 2)(34), C3 = (1 23), 
C4 = (12345), and C5 = (13524). It may be checked that the conjugacy 
classes have sizes 1, 15, 20, 12, and 12 respectively. Thus there are five 
irreducible representations whose degrees di satisfy E~=l d~ = 60, which 
has the unique solution dl = 1, d2 = 3, d3 = 3, d4 = 4, and d5 = 5. Thus, 
we have determined the degrees of the irreducible representations. 

Denote the irreducible representations by a1, a3, a~, a4, and a5 with 
characters Xl, X3, X~, X4, and X5· We of course have al = T, the trivial 
representation, with Xl(g) = 1 for all 9 E G. 

Consider the representation f3 on C5 given by letting A5 act by per
muting the coordinates, i.e., 

g(Zl' ..• ,Z5) = (Zg(l),'" ,Zg(5»)' 

This is a permutation representation and the trace of any element is easy 
to compute. For 9 E A5, X/3(g) = I{i : g(i) = i}l· Of course X/3(I) = 5, 
and we observe that X/3(C2) = 1, X/3(C3) = 2, and X/3(C4) = X/3(C5) = O. We 
compute (X/3, X/3) (noting that xh = X/3) and obtain 

( 1222 
X/3, X/3) = 60 (1 ·5 + 15 . 1 + 20 . 2 

+ 12 . 02 + 12 . 02) 

=2 

so f3 has two irreducible components. We compute 

1 
(Xl, X/3) = 60 (1·1·5 + 15·1·1 + 20·1·2 

+ 12· 1 ·0+ 12· 1 ·0) 

=1 

so T = a1 of degree one is one of them. The complement of T is then an 
irreducible representation of degree 4, so is a4. Furthermore, since f3 = 
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rEB a4, we have X/3 = Xl + X4, i.e., X4 = X/3 - Xl. We thus compute 
X4(1) = 4, X4(C2) = 0, X4(C3) = 1, and X4(C4) = X4(C5) = -l. 

Next we consider the representation 'Y on C 10 given by the action of 
A5 permuting coordinates, where now C 10 is coordinatized by the 10 sets 
{i, j} of unordered pairs of distinct elements of {I, ... ,5}. Again, 

X'Y(g) = I{{i, j}: g({i, j}) = {i, j} }I. 

Then X'Y(I) = 10, X'Y(C2) = 2, X'Y(C3) = 1, and X'Y(C4) = X'Y(C5) = o. Again, 
X; = X'Y' and 

1 
(X'Y' X'Y) = 60 (1· 102 + 15 . 22 + 20 . 12 

+ 12 . 02 + 12 . 02) 

=3, 

so 'Y has three irreducible components. We compute 

1 
(r, X'Y) = 60 (1 . 1· 10 + 15 . 1 . 2 + 20 . 1· 1 

+ 12 . 1 . 0 + 12 . 1 . 0) 

= 1, 

and since we have already computed X4, we may compute 

1 
(X4, X'Y) = 60 (1· 4·10 + 15·0·2 + 20·1·1 

+12·(-1)·0+12·(-1)·0) 

= 1, 

so the complement of r EB a4 in 'Y is an irreducible representation of degree 
5, so it is a5. Also, X5 = X'Y - X4 - X}, and we compute 

X5(1) = 5, X5(C3) = -1, 

We are left with the task of finding X3 and X~. Let us at this point 
write down what we know of the character table of A5: 

C l C2 C3 C4 C5 

al 1 1 1 1 1 
a3 3 X2 X3 X4 X4 
a~ 3 Y2 Y3 Y4 Y5 
a4 4 0 1 -1 -1 
a5 5 1 -1 0 0 

Our task is to determine the unknown entries. Set Zi = Xi + Yi for 
2 :::; i :::; 5. First we note that if R is the regular representation 
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so 

X'R. = Xl + 3X3 + 3X~ + 4X4 + 5Xs. 

Evaluating this on C2 gives (using Example 4.2 (3)) 

so Z2 = -2, and by evaluation on C3, C4, and Cs we obtain Z3 = 0, Z4 = 
Zs = 1. Now let us use orthogonality. 

o = (X3, Xl) = 1 ·3· 1 + 15 . X2 . 1 + 20 . X3 . 1 

+ 12 . X4 . 1 + 12 . Xs . 1 

0= (X3, X4) = 1 ·3·4 + 15· X2 ·0+ 20· X3 . 1 

+ 12 . X4 . (-1) + 12 . Xs . (-1) 

0= (X3, Xs) = 1 ·3·5 + 15· X2 . 1 + 20· X3 . (-1) 

+ 12 . X4 . 0 + 12 . Xs . 0 

so we obtain a linear system 

15x2 + 20X3 + 12(x4 + xs) = -3 
20X3 12(x4 + xs) = -12 

15x2 20X3 = -15 

with solution X2 = -1, X3 = 0, X4 + Xs = 1. Then also Y2 = -1, Y3 = 0, 
Y4 + Ys = 1, and so, since Z4 = 1, X4 = Xs = x, say, Y4 = Xs = y, say, with 
x + Y = 1. Thus, it remains to determine x and y. We observe that As is a 
group in which each element is conjugate to its inverse, so by Proposition 
4.23 all of its characters are real valued, and so 

X3 = X;, 

We use orthogonality once more to get 

0= (X3, X~) = 1 . 3·3 + 15· (-1) . (-1) + 20·0·0 

+ 12· X· Y + 12· y. x, 

so xy = -1, which together with x + y = 1 gives 

x = (1 + .;5)/2 and y = (1 - .;5)/2 

(or vice-versa, but there is no order on X3 and X~, so we make this choice). 
Hence, we find the complete "expanded" character table of As: 
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C1 C2 C3 C4 C5 
1 15 20 12 12 

a1 1 1 1 1 1 
a3 3 -1 0 (1 + VS)/2 (1- VS)/2 
a' 3 3 -1 0 (1 - VS)/2 (1 + VS)/2 
a4 4 0 1 -1 -1 
a5 5 1 -1 0 0 

(We call this the "expanded" character table of A5 because we have 
included on the second line, as is often but not always done, the number of 
elements in each conjugacy class. Note that there is no canonical order for 
either conjugacy classes or representations, so different character tables for 
the same group may "look" different.) 

(4.30) Example. Let us show how to determine all the irreducible complex 
characters of the symmetric group 85 of order 120. 

First we see from Corollary 1.5.10 that 85 has seven conjugacy classes, 
with representatives 1, (12), (123), (12)(34), (1234), (123)(45), and (12345), 
so we expect seven irreducible representations. One of them is r, of course, 
and another, also of degree 1, is E: given by E:(g) = sgn(g) = ±1 E Aut(C), 
the sign of the permutation g. 

Observe that the representations f3 and "I of A5 constructed in Example 
4.29 are actually restrictions ofrepresentations of 85 , so the representations 
a4 and a5 of A5 constructed there are restrictions of representations a4 and 
a5 of 85. Since a4 and as are irreducible, so are a4 and as. Furthermore, 
since a4 and a5 are irreducible, so are E: 0 a4 and E: 0 a5 (by Exercise 13), 
and we may compute that the characters of a4 and E: 0 a4 (respectively, as 
and E: 0 (5) are unequal, so these representations are distinct. 

Hence, we have found six irreducible representations, of degrees 1, 1, 
4, 4, 5, 5, so we expect one more of degree d, with 

"0 d = 6. If we call this a6, then we have (using xCa-) for Xu, for conve
nience), 

X(R) = x(r) + X(E:) + 4x(a4) + 4X(E: 0 (4) 

+ 5X(os) + 5X(E: 0 (5) + 6X(06) 

enabling us to determine X(06). We leave the details for the reader. 

(4.31) Example. It is easy to check from Example 3.9 that A4 has the 
following expanded character table (where we have listed the conjugacy 
classes in the same order as there): 
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C1 C2 C3 C4 

1 3 4 4 
r = 7r*(00) 1 1 1 1 

7r*(Od 1 1 ( (2 

7r*(02) 1 1 (2 ( 
a 3 -1 0 0 

with ( = exp(27ri/3). We wish to find the decomposition of the tensor 
product of any two irreducible representations. The only nontrivial case is 
a ® a. Recall that Xa®a = (Xa)(Xa), and thus has values 9, 1,0,0 on the 
four conjugacy classes. We compute 

1 
(a ® a, a) = 12 (1·3·9 + 3· (-1) . 1) = 2, 

and for i = 0, 1, or 2 

(a®a, 7r*(Oi)) = 112 (1.1.9+3.1.1) = 1, 

so 

(4.32) Remark. It is perhaps natural to conjecture that two groups with 
identical character tables must be isomorphic. This is, in fact, false! The 
groups Ds and Qs (the dihedral and quaternion groups of order 8) are two 
distinct groups with the same character table. We leave the verification to 
the reader. 

(4.33) Remark. It is clearly a necessary condition for a representation to 
be defined over a field F (cf. Example 1.4 (12)) that its character takes 
its values in F. However, this condition is not sufficient. For example, if 
u is the representation p of Qs defined in Example 3.8, then Xu is real 
valued but u cannot be defined over R. (It is known in this situation that 
some finite multiple of the given representation can be defined over F. For 
example, here 2u can be defined over R.) Again we leave the verification 
to the reader. 

8.5 Induced Representations 

In this section we develop an important and powerful method of construct
ing representations, the technique of induction. First, however, we consider 
restriction. 
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(5.1) Definition. Let G be a group, H a subgroup of G, and V an F(G)
module. The restriction of V to H, Res~(V), is V regarded as an F(H)
module. (In other words, we have the same underlying vector space, but we 
restrict our attention to the action of the subring F(H) ofF(G).) 

If G is understood, we will often write ResH(V); if both G and H 
are understood, we will often write Res(V). As well, we may often write 
VH = Res~(Va), using subscripts to denote the group that is operating. 
Finally, we may sometimes simply write V for Res~(V) when it is clear 
from the context what is meant. 

Let Va be a representation of G and H ~ G a subgroup. Clearly, if VH 
is irreducible, then so is Va, but the converse need not hold. For example, 
if H = (1), Res~(V) = deg(V)r. As a nontrivial example of restriction, let 
G = D2m and H = Zm. Then, in the notation of Examples 1.4 (6) and (7), 

Res(4)i) = (h EB Om-i· 

(5.2) Example. Let H be a subgroup of G. Then 

Res~(F(G)) = [G: HlF(H), 

since F(G) is a free left F(H)-module of rank [G: Hl (with a basis given 
by a set of right coset representatives). 

Now we come to induction. 

(5.3) Definition. Let G be a group, H a subgroup of G, and W an F(H)
module. Then the induction of W to G, denoted Ind~(W), is given by 

Ind~(W) = F(G) Q9F(H) W. 

Note that this makes sense as we may regard F(G) as an (F(G), F(H))
bimodule, and then the result of induction is an F( G)-module. If V = 
Ind~(W), we say that V is induced from W and call V an induced repre
sentation. 

(5.4) Lemma. deg(Ind~(W)) = [G: H] deg(W). 

Proof. As a right F(H)-module, F(G) is free of rank [G : H] (with basis 
given by a set of left coset representatives). 0 

(5.5) Example. Let G be an arbitrary group and H a subgroup of G. Then 
for the regular representation F (H) of H, we have 

Ind~(F(H)) = F(G), 

the regular representation of G. This is immediate, for it is just the equality 
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F(G) ®F(H) F(H) = F(G). 

In particular, setting H = (1), we have Ind~(T) = F(G). 

Let us now give a criterion that will enable us to recognize induced 
representations. 

(5.6) Theorem. Let V = Ind~(W) and identify W with 

W 1 = F(H) ®F(H) W ~ F(G) ®F(H) W = V. 

Let {gihEI be a complete set of left coset representatives of H in G, with 
gl = 1, and let Wi = gi(Wd. Then 

(1) V = EEliEIWi ; 
(2) the action of G on V permutes the Wi, i.e., for every 9 E G and for 

every i E I, g(Wi ) = Wj for some j E I; 
(3) this permutation is tmnsitive, i.e., for every i, j, there is agE G with 

g(Wi) = Wj; and 
(4) H = {g E G: g(W1) = Wd. 

Conversely, let V be an F(G)-module and suppose there are subspaces 
{WihEI of V such that (1), (2), and (3) hold. Define H by (4), and set 
W = W 1 • Then 

V = Ind~(W). 

Proof. The first statement of the proposition is clear from the isomorphism 

F(G) = EB giF(H) 
iEI 

of right F(H)-modules. As for the converse, note that there is a one-to-one 
correspondence 

{Wi} ~ {left cosets of H} 

given by 
Wi ---- {g E G : g(W1 ) = Wi}. 

Pick coset representatives {gihEI with gl = 1. Define a function 0: 

G x W -t V by o:(g,w) = g(w). This clearly extends to an F-linear trans
formation 0: : F(G) x W -t V, and since 

o:(gh, w) = gh(w) = g(hw) = o:(g, hw) 

it readily follows that 0: is F(H)-middle linear and so defines 

a: F(G) ®F(H) W -t V. 

Now we define f3 : V -t F(G) ®F(H) W. Since V = EElWi , it suffices to 
define f3 : Wi -t F( G) ®F(H) W for each i E I. We let f3( Wi) = gi ® g;l (Wi)' 
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for Wi E Wi. Let us check that li and f3 are inverses of each other, estab
lishing the claimed isomorphism. 

First, 

Now each 9 E G can be written as 9 = gih for a unique i E I and h E H. 
Thus, for W E W, 

as required. 

f3li(g 18) w) = f3(g(w)) 

= f3(gi h(W)) 

= f3(gi(hw)) 

= gi 18) hw 

= gih 18)w 

=gl8)w, 

o 

We make two observations. First, if V itself is irreducible, the condition 
of transitivity is automatic (for I:9EG g(W1 ) is a subrepresentation of V, 
which must then be V itself). Second, our choice of WI was arbitrary; we 
could equally well have chosen some other Wi. 

This second observation yields the following useful result: 

(5.7) Corollary. Let H be a subgroup of G. Let go E G be fixed and set 
K = gol Hgo. Let aH : H --+ Aut(W) be a representation of H, and let aK : 
K --+ Aut(W) be the representation of K defined by aK(g) = aH(gOggol) 
for 9 E K. Then 

Proof. Let V = Ind~(W). Then we may identify W with WI in the state
ment of Theorem 5.6. Then K = {g E G : g(Wi ) = Wi} acting on W by 
the above formula, so V = Ind~(W) as well. 0 

As a corollary of Theorem 5.6, we may identify two types of represen
tations as induced representations. 

(5.8) Corollary. 

(1) Let V be a transitive permutation representation on the set P = {pihEI 
and let H = {g E G : g(Pl) = PI}. Then V = Ind~(T). 

(2) Let V be a transitive monomial representation with respect to the basis 
B = {bi }, and let H = {g E G : gJFbl ) = Fbd. Let a = FbI as a 
representation of H. Then V = IndH(a). 

Proof. o 
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Observe from Theorem 5.6 that W is certainly a subrepresentation of 
Res~ Ind~(W). We will consider this point in more detail later. However, 
this observation is enough to enable us to identify some induced represen
tations already. 

For example, if G = D2m and cPi is one of the 2-dimensional represen
tations of G defined in Example 1.4 (7), then each cPi, which is a monomial 
representation, is induced from H = Zm, a subgroup of G of index two. If 
(}i is the representation of that name of H in Example 1.4 (6), i S m/2, 
then Ind~((}i) = cPi, and if i > m/2, Ind~((}i) = cPm-i. This also illus
trates Corollary 5.7, for if 9 = Y (in the notation of Example 1.4 (7» and 
aH = (}i, then K = Hand aK = (}m-i and Ind~((}i) = Ind~((}m_i). ( Of 
course, Res~(cPi) = (}i EB (}m-d 

Let us now concentrate on the case of a normal subgroup H of G and 
a representation a : H -+ Aut(W). If a' is defined by a'(h) = a(ghg-1) 
for some fixed 9 E G, we call a' a conjugate of a, or more precisely, the 
conjugate of a by g. 

Let {a j } be a complete set of conjugates of a = a 1. Note that if we let 

N(a) = {g E G: a': H -+ Aut(W) defined by a'(h) = a(ghg-1) 

is a representation of H isomorphic to a} 

then N(a) is a subgroup of G containing Hand [G: N(a)] is the number 
of conjugates of a. (Note also that all the subgroups N(aj ) are mutually 
conjugate.) The subgroup N(a) is known as the inertia group of a. 

(5.9) Corollary. Let H be a normal subgroup of G and a: H -+ Aut(W) a 
representation of H. Then if a' is any conjugate of a, 

Ind~(a') = Ind~(a). 

Proof. This is a special case of Corollary 5.7. o 

(5.10) Corollary. Let H be a normal subgroup of G and a : H -+ Aut(W) 
a representation of H. Let {aj } be a complete set of conjugates of a = a 1. 
Then 

Res~ Ind~(a) = [N(a) : H] EBj a j . 

Proof. Let {gil be a set of right coset representatives of H, with gl = 1, 
and let ai : H -+ Aut(W) be defined by ai(h) = a(g;lhgi ). Then 

by Theorem 5.6. But in the statement of the corollary we have just grouped 
the ai into isomorphism classes, there being [N(a) : H] of these in each 
class. 0 
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(5.11) Theorem. (Clifford) Let H be a normal subgroup of G. Let p : 
G -+ Aut(V) be an irreducible representation of G, and let a : H -+ 

Aut(W) be any irreducible component of Res~ (p). Let {aj } be a complete 
set of conjugates of a = 0'1, and set Vj = E9EG g(W1), where the sum is 
taken over the left coset representatives of H such that the conjugate of a 
by g is isomorphic to a j . Set K = {g E G : g(V1) = V1}. Then V1 is an 
irreducible representation of K and 

Furthermore, K = N(a). 

Proof. First consider V' = E9EG g(Wt}. This is an F( G)-submodule of V, 
but V was assumed irreducible, so V' = V. Next observe that instead of 
summing over 9 E G, we may instead sum over left coset representatives of 
H. FUrther note that the representation of H on g(Wt} is the conjugate of 
a by g, so we may certainly group the terms together to get V = Ej Vj. 

Now each Vj is a sum of subspaces Wj , which are isomorphic to a j as 
an F(H)-module, so by Lemma 7.1.20, each Vj is in fact isomorphic to a 
direct sum of these. 

We claim that V = EBjVj. Consider U = V1 n E j >l Vj. Then U is an 
F(H)-submodule of V1, and so is isomorphic to m1M1 for some m1. Also, 
U is an F(H)-submodule of E j >l Vj, and so is isomorphic to EBj>l mjWj 
for some {mj}. By Corollary 7.1.19, m1 = m2 = ... = 0, so U = (0), as 
required. 

If a j is the conjugate of a by gj E G, then gj(V1) = Vj, so G permutes 
the subspaces Vj transitively. Then by Theorem 5.6, we obtain 

Also, V1 is irreducible, for if it contained a nonzero proper subrepresenta
tion VI, then Ind~(V{) would be a nonzero proper subrepresentation of V, 
contradicting the irreducibility of V. 

Finally, 9 E K if and only if the conjugate by 9 of W 1 is isomorphic to 
W1 . But this is exactly the condition for 9 E N(a). 0 

(5.12) Corollary. Let H be a normal subgroup of G. Let p: G -+ Aut(V) be 
an irreducible representation of G, and let a = 0'1 : H -+ Aut(Wt} be any 
irreducible component of Res~ (p). Then 

(1) Res~(p) is a semisimple representation of H. 
(2) In the decomposition of Res~(p) into a direct sum of irreducible rep

resentations EBmj Uj , all of the Uj are conjugate to 0'1 (and so are 
mutually conjugate), all conjugates of 0'1 appear among the Uj , and all 
the multiplicities mj are equal. 

(3) Res~(p) = mEBj a j for some m E {1, 2, 3, ... } U {oo}, where {aj} is 
a complete set of conjugates of 0'1 . 
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(4) Let HI = {g E G g(WI ) = Wd. Then H ~ HI ~ N(a), and 
m::; [N(a) : HI]. 

Proof. (1) In the notation of the proof of Theorem 5.11, we have that, as 
an F(H)-module, V = ~g(Wd, so V is a sum of simple F(H)-modules 
and hence is semisimple by Lemma 4.3.20. 

(2) Clearly, all the Uj are conjugate to 0'1 and all conjugates appear. 
Let VI be as in Theorem 5.11, with VI = E9:'\ ki(WI) for some group 
elements ki E G. Then if gj is as in the proof of Theorem 5.11, 

mjWj 9:! Vj 

= gj(VI) 
ffll 

= EB gj(ki(Wt}) 
i=1 

9:! mi Wj 

so mj = mi by Corollary 7.1.18. 
(3) This is merely a restatement of (2). 
(4) Since g(Wd = WI for 9 E HI, VI = ~j g(WI) where the summa-

tion is over left coset representatives of HI in N ( a ). 0 

Remark. It is not true that m = [N(a) : HI], or even that m divides 
[N(a) : HI], in general. Let G = Z3 have the representation p = T E9 (JI 
on V = C2 and let H = {I}. Let W = {(z, z) E C2}. Then N(a) = G, 
HI = H, so [N(a) : HI] = 3, but m = 2. 

As a consequence of Clifford's theorem we have the following result: 

(5.13) Corollary. Let H be a normal subgroup ofG, and let p: G - Aut(V) 
be an irreducible representation ofG. Then ifRes~(V) is not isotypic, there 
is a proper subgroup K of G containing H and an irreducible representation 
VI of K such that V = Ind~(Vj.). 

Proof. Suppose Res~(V) is not isotypic. Let WI be an irreducible F(H)
submodule of Res~(V), and set VI = ~g g(Wt} where the sum is over all 
9 E G with g(WI) isomorphic to WI as an F(H)-module, and let K = 
{g E G : g(Vl) = VI}. Then, as above, VI is an irreducible F(K)-module. 
Note K ~ Hand K ¥- G as Res~(V) is not isotypic. Then Ind~(Vi) is an 
F(G)-submodule of V, but as V is irreducible, it is equal to V. 0 

We may use Corollary 5.13 to sharpen Theorem 4.28. 

(5.14) Theorem. Let G be a finite group and A an abelian normal subgroup 
of G. If V is an irreducible complex representation of G, then d = deg(V) 
divides [G : A]. 
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Proof. We prove this by induction on n = IGI. Let V be defined by 
a : G --+ Aut('Q' Let W = Res~(V). By Corollary 5.13, if W is not iso
typic, V = IndK(Vt} for some proper subgroup K of G containing H and 
some irreducible representation VI of K. Then deg(VI) divides [K : HJ, so 
deg(V) = [G: K] deg(VI) divides [G : KJ[K : H] = [G : HI. 

If W is isotypic, then W = dWI for some one-dimensional representa
tion WI of A, or, in other words, a : A --+ Aut(W) = Aut(V) is given by 
a(g) = multiplication by some complex number A(g) for each g E A. (Also, 
for any hE G, A(hgh-I ) = A(g), g EA.) 

Now for each m consider a®m on V 0··· 0 V. By Exercise 20, this is 
an irreducible representation of Gm = G x ... x G. Let 

H is a subgroup of Am and hence a normal subgroup of Gm, and it acts 
trivially on v®m, so we obtain an irreducible representation of Gm / H, 
which is irreducible as a®m is. Hence, by Theorem 4.28, the degree ~ of 
this representation divides the order of Gm / H . 

Note, however, that H has a subgroup 

{(gl,'" ,gm-l,g11· .. g;;;~I): gi E A} 

isomorphic to Am-I, so if a = IAI, then dm divides nm /am- I = a(n/a)m 
for every m, which implies that d divides n/a = [G: AJ, as claimed. 0 

We now return to the general study of induction. 

(5.15) Lemma. Let K ~ H ~ G be subgroups. 

(1) (Transitivity of restriction) For any representation V of G, 

Res~ Res~(V) = Res~(V). 

(2) (Transitivity of induction) For any representation W of K, 

Ind~ Ind~(W) = Ind~(W). 

Proof. (1) is trivial. As for (2), 

Ind~ Ind~(W) = F(G) ®F(H) (F(H) ®F(K) W) 

= (F(G) ®F(H) F(H)) ®F(K) W 

= F( G) 0F(K) W 

= Ind~(W) 

where the second equality is just the associativity of the tensor product 
(Theorem 7.2.17). 0 
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The next formula turns out to be tremendously useful, and we will see 
many examples of its use. Recall that we defined the intertwining number 

i(V, W) = (V, W) 

of two representations in Definition 4.17. 

(5.16) Theorem. (Frobenius reciprocity) Let F be an arbitmry field, G an 
arbitmry group, and H a subgroup of G. Let W be an F-representation of 
H and V an F -representation of G. Then 

(Ind~(W), V) = (W, Res~(V)). 

Proof. By definition, 

But 

(Ind~(W), V) = dimF HomF(G)(Ind~(W), V). 

HomF(G)(Ind~(W), V) = HOmF(G) (F(G) 0F(H) W, V) 

= HOmF(H)(W, HOmF(G) (F(G), V)) 

= HOmF(H) (W, V) 

where the second equality is the adjoint associativity of Hom and tensor 

product (Theorem 7.2.20). Again, by definition, 

o 

One direct consequence of Frobenius reciprocity occurs so often that 
it is worth stating explicitly. 

(5.17) Corollary. Let F be an excellent field for G. Let W be an irreducible 
F-representation of H and Van irreducible F-representation ofG. Then the 
multiplicity of V in Ind~(W) is equal to the multiplicity ofW in Res~(V). 

Proof. Immediate from Theorem 5.16 and Lemma 4.18 (3). o 

As an example of the use of Frobenius reciprocity let us use it to provide 
an alternate proof of part (2) of the fundamental Theorem 3.4. Let F be an 
excellent field for G and M an irreducible F-representation of G of degree 
d. Let m be the multiplicity of Min F(G). We wish to show m = d. 

Let H = (1) and recall from Example 5.5 that F(G) = Ind~(T). Then 
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as claimed. 

m = (M, F(G)) 

= (F(G), M) 

= (Ind~(T), M) 

= (T, Res~(M)) 
= (T, dT) 

=d 

(5.18) Example. Consider A4 from Example 3.9, and let F = C. We have a 
split extension 

1 ----+ V ----+ A4 ~ S ----+ 1 

with V ~ Z2 ED Z2. V has 4 irreducible representations, all of degree 1: T, 

and three others, which we shall simply denote by A1, A2, and A3. A4 has 
4 irreducible representations: 7r*«(h) for i = 0, 1,2 of degree 1 and Q of 
degree 3. Then 

so 

(since 

(Ind~4(T), 7r*(Oi)) = (T, Res~4(7r*(Oi))) 

= (T, T) 

= 1, 

2 

Ind~4(T) = EB7r*(Oi) 
i=O 

deg(Ind~4(T)) = [A4 : V] deg(T) = 3·1 = 3 

and the right-hand side is a representation of degree 3). Also, for i = 0, 1, 2 
and j = 1, 2, 3 

0= (Aj, T) = (Aj, Res~(-71·*(Oi))) = (Ind~(Aj), 7r*(Oi)), 

so we must have Ind~(Aj) = Q (as both are of degree 3). 
Continuing with this example, since we have a split extension, we have 

a subgroup S of A4 isomorphic to Z3, and we identify S with Z3 via this 
isomorphism. (We have given S and this isomorphism explicitly in Example 
3.9). Now S has three irreducible representations 00 = T, 01 , and O2 . Because 
we have a splitting, Res:4(7r*(Oi)) = Oi, or, more generally, 

Dij = (Rest4(7r*(Oj)), Oil 

= (7r*(Oj), Indt4(Oi)); 

since Indt4(Oi) has degree 4, this gives 

Indt4(Oi) = 7r*(Oi) ED Q for i = 0, 1, 2. 
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Here is another useful consequence of Frobenius reciprocity: 

(5.19) Proposition. Let G be a group and H an abelian subgroup of G. Let 
F be an excellent field for G. Then every irreducible F -representation of G 
has degree at most [G : H]. 

Proof. Let V be an irreducible representation of G. Then Res~(V) is a 
representation of H and so contains an irreducible representation W, which 
is one-dimensional, since H is abelian. Then 

the equality being Frobenius reciprocity, so V is a subrepresentation of 

Ind~(W). But deg (Ind~(W)) = [G: H], so deg(V) ~ [G: H]. 0 

Example. Note that D 2m has an abelian subgroup of index 2 and its irre
ducible complex representations all have dimension at most 2. The same is 
true for Qs. Also, A4 has an abelian subgroup of index 3 and its irreducible 
complex representations all have dimension at most 3. 

Now we determine the character of an induced representation. In order 
to state this most simply, we adopt in this theorem the following nonstan
dard notation: If H is a subgroup of G and W an F -representation of H 
with character XW, we let Xw be the function on G defined by 

- () _ {xw(g) if 9 E H, 
Xw 9 - 0 if 9 rJ. H. 

(5.20) Theorem. Let H be a subgroup of G of finite index k, and let W be 
an F-representation of H of finite degree. Set V = Ind~(W). If {gi}f=1 is 
a complete set of left coset representatives of H, then for any 9 E G, 

k 

xv(g) = L XW(g;1 ggi ). 
i=1 

Proof. We know that we may write 

k k 

V = EBgi(W) = EBWi 
i=1 i=1 

and that every element of G acts by permuting {Wd. To be precise, if we 
let Hi = giHg;1, then 

so if 9 rJ. Hi, then g(Wi ) = Wj for some j =1= i. On the other hand, if the 
representation of Hi on Wi is given by O'i : Hi ~ Aut(Wi ), with 0'1 = 0', 
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then for 9 E Hi, ai(g) = a(g:;lggi) = a(g'). Now Ii WI ---> Wi by 
Ii (W) = gi (w) is an isomorphism with 

for all 9 E Hi and Wi E Wi, so 

Tr(ai(g)) = Tr(a(g')). 

Now Xv(g) is the trace of a matrix representing the operation of g. 
Choose a basis for V that is a union of bases for the Wi. Then if 9 E G with 
9 rJ. Hi, the action of 9 on Wi contributes nothing to Xv(g); while if 9 E Hi, 
it contributes Tr(a(g')) = Xw(g') to Xv(g), yielding the theorem. 0 

(5.21) Example. In Example 4.29, we found the character table of A 5 . Let 
us here adopt an alternate approach, finding the irreducible characters via 
induced representations. We still know, of course, that they must have de
grees 1, 3, 3, 4, 5 and we still denote them as in Example 4.29. 

Of course, 0:1 = T. The construction of 0:4 was so straightforward that 
an alternative is hardly necessary, but we shall give one anyway (as we shall 
need most of the work in any case). Let G = A5 and let H = A4 included 
in the obvious way (as permutations of {I, 2, 3, 4} ~ {I, 2, 3, 4, 5}. Then 
a system of left coset representatives for H is 

{I, (12)(45), (12)(35), (13)(25), (2 3)(15)} = {gl, ... ,g5}. 

We choose as representatives for the conjugacy classes of G 

{I, (14)(23), (123), (12345), (1352 4)} = {Cl' ... ,C5}. 

Of course, g:;l(Cl)gi = gi for every i. Otherwise, one can check that 
g:;l(Cj)gi rJ. H except in the following cases: 

and 

(Note that (123) = C3 and that while (132) is conjugate to it in A5 , it is 
not conjugate to it in A4 , so we have written the permutation explicitly.) 

Let W = T and consider Ind~(W) = V. Then by Theorem 5.20, it is 
easy to compute Xv: 

xv(cd = 5, 

Then 
1 

(Xv, Xv) = 60 (52 + 15 . 1 + 20 . 22) = 2 

and T appears in V with multiplicity 1 by F'robenius reciprocity (or by cal
culating (Xv, Xl) = 1), so V contains one other irreducible representation, 
V = T EEl 0:4, and X4 = Xv - Xl, giving the character of 0:4· 
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Now, following Example 3.9, let W = 7r*(Od (or 7r*(02)) and consider 
Ind~(W) = V. Again, it is easy to compute Xv: 

XV(C1) = 5, XV(C2) = 1, 

XV(C3) = exp(27ri/3) + exp(47ri/3) = -1, 

XV(C4) = XV(C5) = o. 
Now T does not appear in W by F'robenius reciprocity, so that implies here 
(by considering degrees) that V is irreducible (or alternatively one may 
calculate that (Xv, Xv) = 1) so V = a5 and its character is given above. 

Now we are left with determining the characters of the two irreducible 
representations of degree 3. To find these, let H = Z5 be the subgroup 
generated by the 5-cycle (1 234 5). Then H has a system of left coset 
representatives 

{1, (14)(23), (243), (142), (234), (143), 

(12)(34), (13)(24), (123), (134), (124), (13 2)} 

= {gl, ... , gld· 

Again, gil (C1)gi = C1 for every i. Otherwise, one can check that gil (Cj)gi t/:. 
H except in the following cases: gll(C4)gl = C4, gll(C5)gl = C5, and 
g21((1 2 3 4 5))g2 = (15432) = (12345)-1 and g21((1 3 5 2 4))g2 = 
(14253) = (13524)-1. 

Now let W = OJ and let V = Ind~(W). Again by Theorem 5.20 we 
compute Xv-h) = 12, XV(C2) = XV(C3) = 0, and 

XV(C4) = exp(27ri/5) + exp(87ri/5) } 
XV(C5) = exp(47ri/5) + exp(67ri/5) 

XV(C4) = exp(47ri/5) + exp(67ri/5) } 
XV(C5) = exp(27ri/5) + exp(87ri/5) 

if j = 1 or 4, 

if j = 2 or 3. 

In any case, one has that T does not appear in V (by either F'robenius 
reciprocity or calculating (xv, Xl) = 0) and a4 and a5 each appear in 
V with multiplicity 1 (by calculating (XV,X4) = (XV,X5) = 1), so their 
complement is an irreducible representation of degree 3 (which checks with 
(Xv,Xv) = 3), whose character is Xv - X4 - X5· 

Choose j = 1 (or 4) and denote this representation by a3, and choose 
j = 2 (or 3) and denote this representation by a~ (and note that they are 
distinct as their characters are unequal). Then we may calculate that 

x3(Cd = x;(cd = 3 

X3(C2) = X;(C2) = -1 

X3(C3) = X;(C3) = 0 

X3(C4) = 1 + exp(27ri/5) + exp(87ri/5) = (1 + ,;5)/2 

X3(C5) = 1 + exp(47ri/5) + exp(67ri/5) = (1 - ,;5)/2 

and vice-versa for X~, agreeing with Example 4.29. 
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Our last main result in this section is Mackey's theorem, which will 
generalize Corollary 5.10, but, more importantly, give a criterion for an 
induced representation to be irreducible. We begin with a pair of subgroups 
K, H of G. A K-H double coset is 

KgH = {kgh: k E K, hE H}. 

It is easy to check that the K-H double cosets partition G (though, unlike 
for ordinary cosets, they need not have the same cardinality). 

We shall also refine our previous notation slightly. Let a : H ~ Aut(W) 
be a representation of H. For 9 E G, we shall set Hg = g-1 H 9 and we will 
let ag be the representation ag : Hg ~ Aut(W) by ag(h) = a(ghg-1), for 
hE Hg. Finally, let us set Hg = Hg n K. We regard any representation of 
H, given by a: H ~ Aut(W), as a representation of Hg byag and, hence, 
as a representation of Hg by the restriction of ag to Hg. (In particular, this 
applies to the regular representation F(H) of H.) 

(5.22) Theorem. (Mackey) As (F(K), F(H))-bimodules, 

F(G) ~ EBF(K) Q9F(Hg) F(H) 
9 

where the sum is taken over a complete set of K -H double coset represen
tatives. 

Proof. For simplicitYl-let us write the right-hand side as EBg(F(K)Q9F(H))g. 
Define maps 0 and {3 as follows: 

For g' E G, write g' as g' = kgh for k E K, h E H, and 9 one of 
the given double coset representatives, and let 0(g1 ~ (k Q9 hLa. We must 
check that 0 is well defined. Suppose that g' = kgh with k E K and 
h E H. We need to show (li Q9 h)g = (k Q9 h)g. Now kgh = g' = kgh gives 

g-1k-1kg = hh- 1, and then 

(k Q9 h)g = (k(k- 1k) Q9 (hh- 1)h)g 

= (k Q9 g-1(k-1k)g(hh-1)h)g 

= (k Q9 h)g, 

as required. Then 0 extends to a map on F( G) by linearity. Conversely, 
define {3g on K x H by (3g(k, h) = kgh E G and extend {3g to a map 

(3g : F(K) x F(H) ~ F(G) 

by linearity. Then for any x E H g , we have 
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so {3g is F{Hg)-middle linear and so defines 

'Jg : (F(K) ® F(H))g -+ F(G). 

Set 'J = n'Jg • Then it is easy to check that a and 'J are inverses of each 
other, yielding the theorem. 0 

Note that the subgroup Hg depends not only on the double coset KgH, 
but on the choice of representative g. However, the modules involved in the 
statement of Mackey's theorem are independent of this choice. We continue 
to use the notation of the preceding proof. 

(5.23) Proposition. Let 9 and 9 be in the same K -H double coset. Then 
(F{K) ® F{H))g is isomorphic to (F(K) ® F(H))g as (F(K), F(H))
bimodules. 

Proof. Let 9 = kgh with k E K, h E H, and define a: K x H -+ K x H by 
a(k, h) = (kk, hh). Extend to 

a : F{K) x F(H) -+ F(K) x F(H) 

by linearity, thus giving 

a : F(K) x F(H) -+ (F(K) ® F{H))g. 

We show that a is middle linear: 

and 

Let x E Hg be arbitrary. Then 

a(kx, h) = kxk ® hh 

= k(xk) ® hh 
= k ® g-l(xk)ghh 

a(k, g-lxgh) = kk ® hg-1xgh 

= k ® (y-1kg)hg-1xgh. 

But 9 = kgh, so 

(y-1kg)hg-1xgh = y-1kgh(h-1g-1k-1)x(kgh)h 

= g-lxkghh, 

and these are equal. Hence, we obtain a map 

a : (F(K) ® F(H»g --> (F(K) ® F(H»g. 

Its inverse is constructed similarly, so a is an isomorphism. o 

Remark. Note that a depends on the choice of k and h, which may not be 
unique, but we have not claimed that there is a unique isomorphism, only 
that the two bimodules are isomorphic. 
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(5.24) Corollary. For any F-representation W of H, 

9 9 

Proof. By Theorem 5.22 and associativity of the tensor product (Proposi
tion 7.2.17), we have the following equalities among F(K)-modules. 

Ind~(W) = F(G) 0F(H) W 

= (EB F(K) 0F(Hg ) F(H)) 0F(H) W 
9 

= EB F(K) 0F(Hg) (F(H) 0F(H) w) 
9 

= EB F(K) 0F(Hg) W 
9 

(Note that although Hg is a subgroup of H, its action on F(H) is not the 
usual action, so one needs to check that F(H) is indeed an (F(Hg), F(H))
bimodule, but this is immediate.) 0 

In the final term in the statement of the corollary, we have denoted 
the representation by Wg to remind the reader of the action of H g. 

(5.25) Lemma. Let G be a finite group, H a subgroup of G, and F a field 
of characteristic zero or relatively prime to the order of H. Let W be an 
F-representation of H defined by a : H ~ Aut(W) and set V = Ind~(W). 
Then 

Enda(V) ~ EBHomHg(Wg, Res~t(W)) 
9 

where the direct sum is over a complete set of H -H double cosets, Hg = 
Hg n H, and Wg is the representation of Hg on W defined by O'g. 

Proof. The required isomorphism is a consequence of the following chain of 
equalities and isomorphisms. 

Enda(V) = Homa(V, V) 

= HomH(W, V) 

as in the proof of Frobenius reciprocity 

~ HomH(V, W) 

as by our assumption on F, F(H) is semisimple 
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= HOmF(H)( EBF(H) ®F(Hg ) w, W) 
9 

= EB HOmF(H) (F(H) ®F(Hg ) W, W) . 
9 

Now note that in the first W above, Hg is operating by ag; while in the 

second, it is operating by a 

= EBHomF(Hg ) (Wg , Res:t(W)) 
9 

by adjoint associativity of Hom and tensor product (Theorem 7.2.20). 0 

(5.26) Corollary. 

(1) Let G be a finite group, H a subgroup of G, and F a field of chamcter
istic zero or relatively prime to the order of H. Let W be a represen
tation of H and set V = Ind~(W). Then Endc(V) = F if and only 
if EndH(W) = F and HomHg (Wg, Res~t (W)) = 0 for every 9 E G, 
9 rt H. 

(2) Let F be an algebmically closed field of chamcteristic zero or relatively 
prime to the order of G. Then V is irreducible if and only if W is 
irreducible and, for each 9 E G, 9 rt H, the H 9 -representations Wg 
and Res~ (W) are disjoint (i. e., have no mutually isomorphic irre-

9 

ducible components). In particular, if H is a normal subgroup of G, V 
is irreducible if and only if W is irreducible and distinct from all its 
conjugates. 

Proof. Note Endc(V) contains a subspace isomorphic to EndH(W) (given 
by the double coset representative 9 = 1). Also, under our assumptions V 
is irreducible if and only if Endc(V) = F, and similarly for W. 0 

(5.27) Example. Let H = Zm and G = D2m • Then the representations Oi 
and Om-i of H are conjugate, so for i i:- mj2, Ind~(Oi) is irreducible. Of 
course, this representation is just ¢i. 

(5.28) Example. Let H = A5 and G = 8 5 • As a system of coset representa
tives, we choose {1, (125 4)} = {gI, 92}. Note that 

g2(12 3 4 5)g21 = (13524) = (12345)2. 

Thus, if we let a 1 be the representation a3 of A5 (in the notation of Ex
ample 4.29) we see that its conjugate a2 = a;, a distinct irreducible repre
sentation. Hence by Corollary 5.26, Ind~(a3) = Ind~(a;) is an irreducible 
representation of degree 6, and by Theorem 5.20 we may compute its char
acter, giving an alternative to the method of Example 4.30. 
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(5.29) Example. Let H = V and G = A4 in the notation of Example 5.18. 
Then the representations AI, A2, and A3 of H are mutually conjugate, so 
Ind~(Ai) is irreducible and is equal to Q for i = 1, 2, 3, verifying the result 
of Example 5.18. 

(5.30) Example. Let m be such that p = 2m -1 is prime. Then S = Zp acts 
on V = (Zj2)m by cyclically permuting the elements of V other than the 
identity. (This may most easily be seen by observing that GL(m, F 2 ) has 
an element of order p.) Thus, we may form the semidirect product 

I---*V---*G~S---*1 

with G a group of order n = 2m (2m -1). G has the one-dimensional complex 
representations 7r*(Oi) for i = 0, ... ,p - 1. Also, if (1 is any nontrivial 
complex representation of V, G has the representation Ind~«(1) of degree 
[G: Vl = 2m -1. Now (1 is disjoint from all its conjugates (as Ker«(1) may be 
considered to be an F 2-vector space of dimension m-l, and GL(m-l, F 2 ) 

does not have an element of order p), so by Lemma 5.25, (1 is irreducible. 
As (2m - 1)2 + 2m-1(1)2 = n, these 2m complex representations are all of 
the irreducible complex representations of G. (Note that if m = 2, then 
G = A4 , so this is a generalization of Example 5.29.) 

8.6 Permutation Representations 

We have already encountered permutation representations, but because of 
their particular importance, we wish to discuss them here further. We shall 
restrict our attention to complex representations, so that we may use the 
full power of character theory. We begin with a bit of recapitulation. 

(6.1) Definition. Let P = {Pi};EI be a set and (1 : G --> Aut(P) a homo
morphism. Then (1 defines a representation on CP (=complex vector space 
with basis P) by 

We will often call this representation (1 as well. 

For simplicity, we shall assume throughout that G and P are both 
finite, though some of our results hold more generally. 
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(6.2) Definition. Let pEP. Then 

Op = Orbit(p) = {p' E P : O'(g)(p) = p' for some 9 E G} 

Gp = Stab(p) = {h E G : O'(h)(p) = pl. 

Note that Orbit(p) is a subset of P and Stab(p) is a subgroup of G. 
(Orbit(p) and Stab(p) have been previously defined in Definition 1.4.9.) 

(6.3) Definition. A nonempty subset Q of P is a domain of transitivity for 
0' if O'(g)(q) E Q for every 9 E G and q E Q. If P is the only domain of 
transitivity for 0' (which holds if and only if Op = P for every pEP) then 
0' is called transitive, otherwise intransitive. 

The following is obvious: 

(6.4) Lemma. Let Ql, ... ,Qk partition P into domains of transitivity. Then 

Proof. o 

Recall the following basic result of Corollary 5.8: 

(6.5) Theorem. Let 0' be a transitive permutation representation ofG on P. 
Let pEP and set H = Gp . Then 

0' = Ind~(r). 

Proof. o 

(Recall that in this situation all of the subgroups Gp , for pEP, are 
conjugate and we may choose H to be anyone of them.) 

Because of Lemma 6.4, we shall almost always restrict our attention 
to transitive representations, though we state the next two results more 
generally. 

(6.6) Proposition. Let P be partitioned into k domains of transitivity under 
the representation 0' of G. Then the multiplicity of r in CP is equal to k. 

Proof. By Lemma 6.4, we may assume k = 1. But then, by Theorem 6.5 
and Frobenius recipocity, 

(r, 0') = (r, Ind~(r» = (Res~(r), r) = 1. 

o 
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We record the following simple but useful result: 

(6.7) Lemma. Let ai be a permutation representation of a on a set Pi for 
i = 1, 2. Then 0'1 and 0'2 are equivalent if and only if for each 9 E G, 

Proof. We know that 0'1 and 0'2 are equivalent if and only if their characters 
Xl and X2 are equal. But if X is the character of a permutation representa
tion a of G on a set P, then its character is given by 

X(g) = I{p E P : a(g)(p) = p}l· 

o 

(6.8) Definition. A partition of P into subsets {QihEI is called a partition 
into domains of imprimitivity for a if for every 9 E G and every i E I there 
exists a j E I with a(g)(Qi) = Qj. If the only partitions into domains of 
imprimitivity are either the partition consisting of the single set Q = P, or 
the partition into subsets of P consisting of single elements, then a is called 
primitive, otherwise imprimitive. 

(Note that an intransitive representation of G is certainly imprimitive.) 
Let G be transitive, Q a subset of P with the property that for every 

9 E G, either a(g)(Q) = Q or a(g)(Q) n Q = 0. Set 

H = {g E G : a(g)(Q) = Q}. 

Then H is a subgroup of G, and if {gd are a set of left coset represen
tatives of H, then Qi = gi(Q) partitions P into domains of imprimitivity. 
Furthermore, all partitions into domains of imprimitivity arise in this way. 
Note that H acts as a group of permutations on Q. We have the following 
result, generalizing Theorem 6.5, which also comes from Corollary 5.8. 

(6.9) Theorem. Let a be a transitive permutation representation of G on 
P, Q a domain of imprimitivity for a, and H = {g E G : a(g)(Q) = Q}. 
If p denotes the permutation representation of H on Q given by p(h)(q) = 
a(h)(q) for hE H, q E Q, then p is a transitive permutation representation 
of H on Q and 

Proof. o 

We have the following useful proposition: 

(6.10) Proposition. Let a be a transitive permutation representation of G 
on a set P, and let pEP. 
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(1) Let P be partitioned into a set of domains of imprimitivity {Qi} with 
p E Ql, and let 

H = {g E G: a(g)(Qd = Qt}. 

Then there are [G : H] sets in the partition, each of which has [H : Gp ] 

elements. 
(2) Let H be a subgroup of G containing Gp , and let 

Q = {a(g)(p) : 9 E H}. 

Then Q is one element in a partition of G into [G : H] domains of 
imprimitivity, each of which contains [H : Gp ] elements. 

Proof. Clear from the remark preceding Theorem 6.9, identifying domains 
of imprimitivity with left cosets. 0 

(6.11) Corollary. A transitive permutation representation a ofG on a set P 
is primitive if and only if some (and hence every) Gp is a maximal subgroup 
ofG. 

Proof· o 

(6.12) Corollary. Let a be a transitive permutation representation on a set 
P with IFI prime. Then a is primitive. 

Proof. By Proposition 6.10, the cardinality of a domain of imprimitivity for 
G must divide [G : Gp ] = IPI, and so consists of either a single element or 
~~~ 0 

We now introduce another sort of property of a representation. 

(6.13) Definition. A permutation representation a of a group G on a set P 
is k-fold transitive if P has at least k elements and for any pair (PI, ... ,Pk) 
and (ql, ... ,qk) of k-tuples of distinct elements of P, there is agE G with 
a(g)(pi) = qi for i = 1, ... ,k. 2-fold transitive is called doubly transitive. 

(6.14) Examples. 

(1) Note that I-fold transitive is just transitive. 
(2) The permutation representation of D2n on the vertices of an n-gon is 

doubly transitive if n = 3, but only singly (= I-fold) transitive if n > 3. 
(3) The natural permutation representation of Sn on {I, ... , n} is n-fold 

transitive, and of An on {I, ... ,n} is (n-2)-fold (but not (n-I)-fold) 
transitive. 

(4) The natural permutation representation of Sn on (ordered or un
ordered) pairs of elements of {I, ... ,n} is transitive but not doubly 
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transitive for n > 3, for there is no 9 E Sn taking {(1,2), (2,3)} to 
{(1,2), (3,4)}. 

Doubly transitive permutation representations have two useful prop
erties. 

(6.15) Proposition. Let a be a doubly transitive permutation representation 
of G on a set P. Then a is primitive. 

Proof. Suppose a is not primitive, and let Q be a domain of imprimitivity, 
with pI, P2 E Q and P3 rJ. Q. Then there is no 9 E G with a(g)(Pl) = Pl, 
and a(g)(p2) = P3, so a is not doubly transitive. The proposition follows 
by contraposition. 0 

(6.16) Theorem. Let a be a transitive permutation representation of G on 
a set P. Then a is doubly transitive if and only if a = T EB a' for some 
irreducible representation a' of G. 

Proof. Since a is a permutation representation, its character X is real valued. 
Note that X2 is the character of the permutation representation a ® a 

on P x P. Let k be the number of orbits of a ® a on P x P. Note that 
k = 2 if a is doubly transitive (the orbits being {(P, p) : pEP} and 
{(p, q) : p, q E P, p #- q}). and k > 2 otherwise. Then, by Lemma 6.4, 

k = (a®a, T) 
1 =:;;: LX2(g) 

gEG 

1 
= :;;: L X(g)x(g) 

gEG 

1 
= :;;: L X(g)X(g) 

gEG 

= (X, X)· 

Note that T is a subrepresentation of a by Lemma 6.4; also note that 
(X, X) = 2 if and only if in the decomposition of a into irreducibles there 
are exactly two distinct summands, yielding the theorem. 0 

(6.17) Example. The representation (3 of Example 4.29 was doubly transitive 
and decomposed as T EB a4, a4 irreducible. The representation 'Y of Example 
4.29 was not doubly transitive; 'Y ® 'Y had three orbits on {I, ... ,5} x 
{l, ... ,5}, and 'Y decomposed into a sum T EB a4 EB a5 of three distinct 
irreducibles. 

(6.18) Remark. The converse of Proposition 6.15 is false. For example, let 
p be a prime and consider the permutation representation of D 2p on the 
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vertices of a p-gon. By Corollary 6.12, this representation is primitive, but 
for P > 3 it is not doubly transitive. 

(6.19) Example. The action of a group on itself by left multiplication is a 
permutation representation. Of course, this is nothing other than the regu
lar representation, which we have already extensively studied. Instead, we 
consider the action of a group on itself by conjugation, i.e., 'Y(g)(h) = ghg-1 

for all g, h E G. Let us determine some examples of this representation. 
Of course, if G is abelian, this representation is just nT. In any case, the 
orbits of this representation are just the conjugacy classes. In general, if 
C1 , ••• ,Ct are the conjugacy classes of G (in some order), we will let 'Yi be 
'Yon Ci, so 

'Y = 'Yl EB ... EB 'Yt· 

(1) Consider D2m for m odd. Then (cf. Example 3.7) we have 

C 1 = {1}, C 2 = {x, x m- 1}, ... , C(m+l)/2 = {x(m-l)/2, x(m+l)/2}, 

C(m+3)/2 = {y, xy, ... ,xm-ly}. 

Then 'Yl = T, and for i = 2, ... ,( m + 1) /2, 'Yi is a nontrivial representation 
containing T as a subrepresentation. Since D2m only has one nontrivial 
one-dimensional representation, namely, 1/1-, we see that 

'Yi = T EB 1/1- for 2 ~ i ~ (m + 1)/2. 

We are left with the action on C(m+3)/2, and we claim this is 

FP = T EB f/ll EB··· EB f/l(m-l)/2 

(cf Example 1.4 (7)), where P = { vertices of a regular m-gon }. This 
may be seen as follows: C(m+3)/2 consists of the elements of order exactly 
two in D2m , and each such fixes exactly one vertex of P. Thus we have a 
one-to-one correspondence 

C(m+3)/2 +--t P 

by 
xiy --. vertex Pi fixed by xiy 

and further, for any 9 E D2m , g(Xiy)g-1 fixes the vertex g(Pi), so the two 
actions of G are isomorphic. 

(2) Consider D2m for m even. Then (cf. Example 3.7) we have 

C 1 = {1}, C 2 = {x, x m- 1}, ... , Cm/ 2 = {x1f-1, x1f+l}, 

C 1f+1 = {x1f}, C1f+2 = {Xiy: i is even}, C1f+3 = {Xiy: i is odd}. 

Again, 'Yl = 'Y1f+l = T and 'Yi = TEB1/1+- for i = 2, ... ,m/2 (as conjugation 
by x is trivial on Ci but conjugation by y is not). We will determine the 
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lagt two representations by computing their characters. Of course, 1 acts 
trivially, ag does x m / 2 , being central, so 

Also, xj(xiy)x-j = Xi+2j y , so for i =I m/2, x j fixes no element and 

for j =I ;. 

Now Y(Xiy)y-l = yxi = x-1y, so y fixes xiy when 2i = 0, i.e., i = 0 or 
m/2. Hence, if m/2 is odd, 

while if m/2 is even 

and 

Similarly, if m/2 is odd, 

and 

while if m/2 is even, 

and 

Now by computation with the irreducible characters of D2m (which may 
be read off from Example 1.4 (7)) we see the following: 

For m/2 odd, 

For m/2 even, 

and 

where 
"(' = ¢2 tfJ ¢4 tfJ ¢6 tfJ ... tfJ ¢k, 

with k = (m - 1)/2 for m odd and k = rq. - 1 for m even. 
(3) Consider A4 . We adopt the notation of Example 3.9. One may then 

check that the following table is correct, where an entry is the number of 
elements of the given conjugacy clags fixed by the given element (and hence 
the trace of that element in the representation on that conjugacy clags): 
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1 I T T2 

{1} 1 1 1 1 
{I, J, K} 3 3 0 0 

{T, TI, TJ, TK} 4 0 1 1 
{T2 T21 T 2J T2 K} , , , 4 0 1 1 

Then computation with the characters of A4 (cf. Example 4.31) gives 

1'1 = T 

1'2 = T EB 11"* ({h) EB 11"*(02 ) 

1'3 = 1'4 = T EB Q:. 

8.7 Concluding Remarks 

In this section we make three remarks. The first is only a slight variation of 
what we have already done, while the last two are results that fit in quite 
naturally with our development, but whose proofs are beyond the scope of 
this book. 

(7.1) Definition. Let F be a field of characteristic zero or prime to the order 
of the finite group G. The F -representation ring RF (G) of the group G is 
the free Z-module with basis {O"d!=l1 the irreducible F -representations of G. 
The elements 0" = L!=1 miO"i of RF(G) are called virtual representations, 
and those with mi 2: 0 for all i are called proper representations. 

The formation of RF(G) is a special case of a more general construc
tion. 

(7.2) Definition. Let n be a ring. Let F be the free abelian group with basis 

{P : P is a projective n-module}, 

and let N be the subgroup spanned by 

{M - M1 - M 2 : there is a short exact sequence of n-modules: 

o --t M1 --t M --t M2 --t O}. 

Then let K(n) = FIN. 

Thus RF(G) = K(F(G)). This equality is as Z-modules. But RF(G), 
in fact, has more structure. Recall that we have defined the intertwining 
number of two representations V and W of G, which we shall here denote 
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by ia. Then ia extends by linearity to RF(G). It is easy to check that ia 
is then a symmetric bilinear form on RF(G). (If F is algebraically closed, 
this form is isometric to t[1J, and the irreducible F-representations {O"j}}=l 
of G form an orthonormal basis of RF(G) with respect to ia.) 

Also, let H be a subgroup of G, W a virtual F-representation of H, 
and V a virtual F-representation of G. Then Frobenius reciprocity is the 
equality 

ia(Ind~(W), V) = iH(W, Res~(V)), 
which says that in a certain sense induction and restriction are adjoints 
of each other. This can be made precise: induction and restriction are an 
example of what is known as a pair of "adjoint functors." 

Finally, note that the tensor product of representations extends by 
linearity to RF(G), so RF(G) has the structure of a commutative ring (or 
Z-algebra) as well. Note too that we may form the character of a virtual 
representation-the character of 2::=1 miO"i is 2::=1 miXO"i. In the special 
case where F = C, if {O"i}~=l are the irreducible complex representations of 
G with characters {Xi}~=1> then the map 0" 1-+ Xu gives a ring isomorphism 
between Rc(G) (under direct sum and tensor product) and Z[Xb ... ,XtJ 
(under sum and product). 

(7.3) Remark. The reader will recall that we defined a good field F for 
G in Definition 1.3 and an excellent one in Definition 3.1. We often used 
the hypothesis of excellence, but in our examples goodness sufficed. This 
is no accident. If F is a good field and F' an excellent field containing F, 
then all F'-representations of G are in fact defined over F, Le., every F'
representation is of the form V = F' ®F W, where W is an F(G)-module. 
(In other words, if V is defined by 0" : G ---+ Aut(V), then V has a basis B 
such that for every 9 E G, [0"(9)J8 is a matrix with coefficients in F.) This 
was conjectured by Schur and proven by Brauer. We remark that there is no 
proof of this on "general principles"; Brauer actually proved more, showing 
how to write all representations as linear combinations of particular kinds 
of induced representations. (Of course, in the easy case where G is abelian, 
we showed this result in Corollary 2.3.) 

(7.4) Remark. In Theorem 4.28, we proved that the degrees di of complex 
irreducible representations of G are divisors of n, the order of G. If F is 
an algebraically closed field of characteristic p prime to the order of G, all 
we showed was that the degrees of the irreducible F-representations are 
prime to p (Corollary 4.6). In fact, it is the case that the degrees di are 
independent of the characteristic (assuming, of course, that (p, n) = 1), 
and, indeed, one can obtain the characteristic p representations from the 
complex ones. 
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8.8 Exercises 

1. 

2. 

Verify the assertions of Example 1.8 directly (Le., not as consequences of our 
general theory or by character computations). In particular, for (3) and (4), 
find explicit bases exhibiting the isomorphisms. 
Let 11" : G --+ H be an epimorphism. Show that a representation 0' of H is 
irreducible if and only if 11"*(0') is an irreducible representation of G. 

3. Let H be a subgroup of G. Show that if Res~(O') is irreducible, then so is 0', 
but not necessarily conversely. 

4. 
5. 
6. 

Verify the last assertion of Example 1. 7. 
Show that T and 'Ro are the only irreducible Q-representations of Zp. 
Find all irreducible and all indecomposable F p-representations of Zp. (F p 
denotes the unique field with p elements.) 

7. In Example 3.8, compute 11"* (8i ) ® p in two ways: by finding an explicit basis 
and by using characters. 

8. Do the same for the representations 11"* (8i ) ® a of Example 3.9. 
9. In Example 3.8 (resp., 3.9) prove directly that p (resp., a) is irreducible. 

10. In Example 3.10, verify that the characteristic polynomials of a(U) and 

11. 
12. 

a'(U) are as claimed. Also, verify that 11"*(1/1-) ® 1I"*(4)d = 11"*(4)1) both 
directly and by using characters. 
Verify that Ds and Qs have the same character table (cf. Remark 4.32). 
Show that the representation p of Qs constructed in Example 3.8 cannot be 
defined over R, although its character is real valued, but that 2p can (cf. 
Remark 4.33). 

13. Let F and G be arbitrary. If a is an irreducible F -representation of G and 
f3 is a I-dimensional F-representation of G, show that a ® f3 is irreducible. 

14. Find an example to illustrate Remark 4.9 (1). (Hint: Let G = D6.) 
15. (a) Find an example to illustrate both phenomena remarked on in Remark 

4.9 (2). (Hint: Let G = D6.) 
(b) Show that neither phenomenon remarked on in Remark 4.9 (2) can occur 

if h is in the center of the group G. 
16. Prove Lemma 4.18. 

Prove Proposition 4.24. 17. 
18. Show that the following is the expanded character table of 84: 

T 

a 
11"* (4)d 

1I"*(1/1-)®a 
11"* (1/1-) 

C1 C2 C3 C4 C5 
1 6 3 8 6 
1 1 111 
3 1 -1 0 1 
2 0 2 -1 0 
3 -1 -1 0 1 
1 -1 1 1 -1 

19. Show that the following is the expanded character table of 85 in two ways
by the method of Example 4.30 and the method of Example 5.28. 

C1 C2 C3 C4 C5 C6 C7 
1 10 15 20 20 30 24 

T 1 1 1 1 1 1 1 
~4 4 2 0 1 -1 0 1 
~5 5 1 1 -1 1 -1 0 
a6 6 0 -2 0 0 0 1 

e ® Ci5 5 -1 1 -1 -1 1 0 
e ® Ci4 4 -2 0 1 1 0 -1 

e 1 -1 1 1 -1 -1 1 
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20. Let F, G1 , and G2 be arbitrary. If O"i is an irreducible F-representation of Gi 

for i = 1,2, show that 0"1 ® 0"2 is an irreducible F -representation of G1 x G2 • 

21. If G1 and G2 are finite and F is excellent for G1 x G2 , show that all irre
ducible F-representations of G1 and G2 are as in the last problem. (Hint: 
Use Theorem 3.4.) Also, show this without any restrictions. 

22. Compute the "multiplication table" for irreducible complex representations 
of 84 , Le., for any two irreducible representations 0"1 and 0"2, decompose 
0"1 ® 0"2 into a direct sum of irreducibles. (Hint: Use characters.) 

23. Do the same for A5 • 

24. Do the same for 85 . 

25. Let P1 and P2 be disjoint sets and let O"i be a permutation representation 
of G on Pi for i = 1, 2. Show that 0"1 EB 0"2 is a permutation representation 
of G on H U P2 and that 0"1 ® 0"2 is a permutation representation of G on 
H x P2 . 

26. Verify all the group and character computations of Example 5.21. 
27. Find all systems of domains of imprimitivity for the permutation action of 

D2m on the vertices of a regular m-gon. 
28. Determine the conjugation representation of 84 on itself (cf. Example 6.19). 
29. (a) Let G be the nonabelian group of order 21. Find all irreducible complex 

representations of G. 
(b) More generally, let p and q be primes with p dividing q - 1, and let G 

be the nonabelian group of order pq. Find all irreducible complex rep
resentations of G. (Hint: They are all either one-dimensional or induced 
from one-dimensional representations.) 

30. Let 0" : G ---> Aut(V) be an irreducible representation of G. If 9 E Z(G), the 
center of G, show that 0"(9) is a homothety. 



Appendix 

A.I Equivalence Relations and Zorn's Lemma 

If X is a set, a binary relation on X is a subset R of X x X. If (x, y) E X x X 

it is traditional to write xRy or x !!:. y instead of (x, y) E R. The second 
notation is frequently shortened to x rv y and the relation is denoted by rv 

rather than R. 

(A.I) Definition. A binary relation rv on X is an equivalence relation if the 
following conditions are satisfied. 

(1) x rv X for all x E X. (reflexivity) 
(2) x rv y implies y rv x. (symmetry) 
(3) x rv y and y rv Z implies x rv z. (transitivity) 

Ifx E X then we let [xl = {y EX: x rv y}. [xl is called the equivalence 
class of the element x EX. 

Let X be a nonempty set. A partition of X is a family of nonempty 
subsets {Ai hEI of X such that Ai n Aj = 0 if i =I j and X = UiEI Ai. Thus 
a partition of X is a collection of subsets of X such that each element of 
X is in exactly one of the subsets. 

Partitions and equivalence relations are essentially the same concept 
as we see from the following two propositions. 

(A.2) Proposition. If rv is an equivalence relation on X, then the family of 
all equivalence classes is a partition of X. 

Proof. By Definition A.1 (1), if x E X, then x E [xl. Thus the equivalence 
classes are nonempty subsets of X such that 

X= U[xl. 
",EX 
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Now suppose that [x] n [y] =f 0. Then there is an element Z E [x] n [y]. 
Then x '" Z and y '" z. Therefore, by symmetry, z '" y and then, by 
transitivity, we conclude that x '" y. Thus y E [x] and another application 
of transitivity shows that [y] ~ [x] and by symmetry we conclude that 
[x] ~ [y] and hence [x] = [y]. 0 

(A.3) Proposition. If {AihEI is a partition of X, then there is an equiva
lence relation on X whose equivalence classes are precisely the subsets Ai 
for i E I. 

Proof. Define the relation '" on X by the rule x '" y if and only if x and 
y both are in the same subset Ai' Properties (1) and (2) of the definition 
of an equivalence relation are clear. Now check transitivity. Suppose that 
x'" y and y '" z. Then x and y are in the same Ai, while y and z are in the 
same subset, which must be the same Ai that contains x since the family 
{A;} is pairwise disjoint. Thus, '" is in fact an equivalence relation. 

Now suppose that x E Ai' Then from the definition of '" we have that 
x '" y if and only if y E Ai' Thus [x] = Ai and the proposition is proved. 0 

Remark. The partition of a set X into equivalence classes following an 
equivalence relation is a concept that is used repeatedly in the construction 
of quotient objects in algebra. 

Now we give a brief introduction to Zorn's lemma. 

(A.4) Definition. Let X be a nonempty set. A binary relation :5 on X is 
said to be a partial order if it satisfies the following: 

(1) x:5 x for all x E X. (reflexivity) 
(2) x:5 y and y :5 x implies x = y. 
(3) x:5 y and y :5 z implies x :5 z. (tmnsitivity) 

The standard example of a partially ordered set is the power set P(Y) 
of a nonempty set Y, where A :5 B means A ~ B. 

If X is a partially ordered set, we say that X is totally ordered if 
whenever x, y E X then x :5 y or y :5 x. A chain in a partially ordered set 
X is a subset C c X such that C with the partial order inherited from X 
is a totally ordered set. 

If S ~ X is nonempty, then an upper bound for S is an element Xo E X 
(not necessarily in S) such that 

s:5 Xo forall sES. 

A maximal element of X is an element m E X such that 

if m:5 x, then m = x. 
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Thus, m is maximal means that, whenever m and x are comparable in the 
partial order on X, x :=£ m. It is possible for a partially ordere~ set to have 
many maximal elements, and it is possible for a partially ordered set to 
have no maximal elements. The most important criterion for the existence 
of maximal elements in a partially ordered set is Zorn's lemma. 

(A.5) Proposition. (Zorn's Lemma) Let X be a partially ordered set and 
assume that every chain in X has an upper bound. Then X has a maximal 
element. 

It turns out that Zorn's lemma is equivalent to the axiom of choice. 
We refer the reader to Section 16 of Naive set theory by P.R. Halmos for 
a detailed discussion of the derivation of Zorn's lemma from the axiom of 
choice. It is worth pointing out that many of the results proved using the 
axiom of choice (or its equivalent, Zorn's lemma) turn out to be equivalent 
to the axiom of choice. We mention only that the existence of a maximal 
ideal in a ring with identity (Theorem 2.2.16) is one such result. 
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Index of Notation 

This list consists of all the symbols used in the text. Those without a page 
reference are standard set theoretic symbols; they are presented to establish 
the notation that we use for set operations and functions. The rest of the 
list consists of symbols defined in the text. They appear with a very brief 
description and a reference to the first occurrence in the text. 

Symbol Description Page 

C set inclusion 
A~B A ~ B but A #.B 
n set intersection 
U set union 
A\B everything in A but not in B 
AxB cartesian product of A and B 
IAI cardinality of A (ENU{oo}) 
I:X-+Y function from X to Y 
a ~ I(a) a is sent to I(a) by I 
Ix: X -+ X identity function from X to X 
liz restriction of I to the subset Z 
N natural numbers = {I, 2, ... } 
e, I group identity I 
Z integers 2 
Z+ nonnegative integers 54 
Q rational numbers 2 
R real numbers 2 
C complex numbers 2 
Q* nonzero rational numbers 2 
R* nonzero real numbers 2 
C* nonzero complex numbers 2 
Zn integers modulo n 2 
Z* n integers relatively prime to n (multiplication mod n) 2 
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8x ,8n symmetric group 2 
Un complex nth roots of unity 2 
GL(n, R) general linear group over R of degree n 3 
SL(n, R) special linear group over R of degree n 3 
P(X) power set of X 3 
A!:::"B symmetric difference of A and B 3 
C(R) continuous real-valued functions on R 3 
V(R) differentiable real-valued functions on R 3 
a-I inverse of a in G 4 
Il~=l ai product of aI, ... , an in G 5 
am a to the m th power in G 5 
Ker(f) kernel of homomorphism f 7 
Im(f) image of homomorphism f 7 
(8) subgroup generated by 8 7 
T(n, R) upper triangular n x n matrices 8 
Z(G) center of G 8 
C(x) centralizer of x E G 9 
[a, b] commutator of a and b 9 
G',[G,G] commutator subgroup of G 9 
Q quaternion group 9 
D2n dihedral group 9 
IGI order of G 9 
o(a) order of a E G 9 
aH,Ha left and right cosets of H 11 
[G:H] index of H in G 12 
[ale conjugacy class of a 15 
P*(G) nonempty subsets of G 15 
G/H coset space of H 16 
N<JG N is a normal subgroup of G 17 
C>! is isomorphic to 19 
Aut(G) automorphism group of G 21 
Inn(G) inner automorphisms of G 21 
fa conjugation by a 21 
(m, n) greatest common divisor of m and n 22 
~H permutation representation on G / H 23 
Gx orbit of x 26 
G(x) stabilizer of x 26 
(il i2 ... ir) r-cycle 28 
sgn(a) sign of the permutation a 31 
An alternating group 31 
NxH external direct product of N and H 34 
N><I",H semidirect product 38 
R* group of units of ring R 50 
char(R) characteristic of R 51 
Z[i] Gaussian integers 52 
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Q[v'd] quadratic field 52 
Mm,n(R) m x n matrices over R 52 
Mn(R) ring of n x n matrices over R 52 
entij(A) ilh entry of matrix A 52 
Oij kronecker delta 52 
Eij matrix units 53 
Dn(R) diagonal matrices 53 
Tn(R) upper triangular matrices 53 
Tn(R) lower triangular matrices 53 
Q(-x, -y; F) definite quaternion algebra 54 
H ring of quaternions 54 
End(A) endomorphism ring of abelian group A 54 
R[X] polynomial ring in indeterminate X 55 
R[Xl, ... ,Xn] polynomial ring in Xl, ... , Xn 55 
R[[X]] formal power series ring in X 56 
R(G) group ring 57 
(;) binomial coefficient 57 
RjI quotient ring 59 
RXR, RX 61 
(X) ideal generated by set X 61 
PID principal ideal domain 62 
'LIi sum of ideals 62 
fIIi product of ideals 62 
TI~ direct product of rings 66 
Rs localization of R away from 8 68 
Q(R) quotient field of integral domain R 68 
Z[v'd] 72 
F(X) rational functions in X 72 
R[u] "polynomials" in u 73 
deg(f(X)) degree of polynomial I(X) 73 
Pn(F) polynomials of degree ~ n 76 
gcd greatest common divisor 81 
km least common multiple 81 
ACC ascending chain condition 82 
Fp field with p elements 85 
UFD unique factorization domain 92 
cont(f(X)) content of polynomial I(X) 93 
ROP opposite ring of R 99 
Aut(R) automorphism group of ring R 100 
F((R)) formal Laurent series 105 
HomR(M, N) R-module homomorphisms from M to N 109 
EndR(M) R-module endomorphims of M 109 
AutR(M) R-module automorphisms of M 109 
Rn 110 
C(8) center of 8 111 
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VT F[X]-module structure on V determined by T 113, 232 
(8) submodule generated by 8 114 
p,(M) rank of M 115 
L.No sum of submodules No 116 
Ann(X) annihilator of X 116 
Mr torsion submodule of M 117 
E9iEI Mi direct sum of modules Mi 118 

I1 jE J Mj direct product of modules Mj 120 
Coker (f) cokernel of homomorphism f 121 
¢*, ¢* induced homomorphisms 123 
free-rankR(M) free rank of Mover R 143 
c(x) content of x 150 
dimR(M) dimension of a vector space 152 
me(M) minimal exponent of M 161 
co(M) characteristic order of M 161 
Mp p-component of M 162 
rowi(A) ith row of matrix A 183 
colj(A) lh column of matrix A 183 
In n X n identity matrix 184 
GL(n, R) general linear group over R 186 
At transpose of A 186 
Tr(A) trace of A 186 
Tij(a) elementary transvection 187 
Di(a) elementary dilation 187 
Pij elementary permutation matrix 187 
diag(al, ... , an) diagonal matrix L.~=l aiEii 188 
LA left multiplication by A 189 
RA right multiplication by A 189 
AE9B direct sum of matrices 192 
AI8lB tensor product of matrices 193 
On 197 
Pw permutation matrix 197 
det(A) determinant of A 199 
Cofac(A) cofactor matrix of A 204 
Adj(A) adjoint matrix of A 204 
Qp,m 205 
A[a 1,8] submatrix of A 205 
D-rank(A) determinantal rank of A 205 
Ft(A) tth Fitting ideal of A 205 
M-rank(A) 206 
row-rank(A) 208 
col-rank(A) 208 
rank(A) 209 
op opposite function 214 
[V]B coordinate matrix of v using basis B 215 
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Pg, change of basis matrix 215 
[1]~ matrix of 1 E HomR(M, N) 217 
[1]5 matrix of 1 E EndR(M) 217 
det(f) determinant of 1 E EndR(M) 227 
Tr(f) trace of 1 E EndR(M) 227 
TA multiplication by A 229 
mT(X) minimal polynomial of T 235 
CT(X) characteristic polynomial of T 235 
C(f(X)) companion matrix of I(X) 237 
CA(X) characteristic polynomial of matrix A 240 
J)..,n Jordan block 246 
Valg (>') algebraic multiplicity of eigenvalue >. 249 
vgeom (>') geometric multiplicity of eigenvalue >. 249 
J{fx),n generalized Jordan block 251 
Jz,r real Jordan block 254 
( : ) inner product 269 
A* Hermitian transpose 269 
11·11 norm 270 
WJ.. orthogonal complement 273 
T* adjoint of T 273 
Cp(A) pth compound matrix of A 281 
B£A B is left equivalent to A 296 
B!!:,A B is right equivalent to A 296 
B~A B is equivalent to A 296 
£(M) 329 
(M:N) 329 
C(T) centralizer of T 335 
M* dual module of M 341 
8* dual basis 341 
M** double dual of M 342 
Hull(N) 345 
K(A) annihilator of A ~ M 345 
K*(B) annihilator of B ~ M* 346 
C(M) set of complemented submodules of M 346 
1* adjoint of 1 349 
Ad(f) adjoint of 1 349 
r conjugate of r 351 
0:</>,4>0 352 
[4>]5 matrix of form 4> 353 
Bilin(M) bilinear forms on M 353 
Seslin(M) sesquilinear forms on M 353 
(± 1 )-symmetric 356 
c-symmetric 356 
Nl ..1 N2 orthogonal direct sum 357 
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MO = MO(cp) kernel of b/s-linear form cp 358 
N.L orthogonal complement 359 
ncp cp -L ... -L cp (n summands) 361 
Pf(A) Pfaffian of A 364 
signature (cp) 372 
P adjoint of 1 375 
<PI -L <P2 orthogonal sum of <PI and <P2 378 
e(m),o(m) 380 
Arf( <p) Arf invariant of <P 381 
Isom(1) isometry group of cp 384 
1M, reflection determined by Mi 386 
1y hyperplane reflection determined by y 386 
C(M) length of module M 399 
sM,fM direct sum of s (f) copies of M 401 
MJ 403 
HomR(M, N) left R-module homomorphisms 414 
Hom_s(M, N) right S-module homomorphisms 414 
HOm(R,S)(M, N) (R, S)-bimodule homomorphisms 414 
M0sN tensor product of modules 418 
109 tensor product of homomorphisms 421 
RMS M is an (R, S)-bimodule 423 
RMS0s SNT bimodule type of tensor product 423 
SMR rDRRNT bimodule type of Hom 423 
DCC descending chain condition 434 
n in Chapter 8, n = IGI 439 
( (or (k) primitive root of X k - 1 in F 440 
7 trivial representation 440 
al EB a2 direct sum of representations 441 
al 0 a2 tensor product of representations 441 
()k one-dimensional representation 441 
E : R(G) --+ F augmentation map 442 
j*(a) pullback of a by 1 443 
Av(J) average of 1 446 
t number of conjugacy classes of G 454 
Q8 quaternion group 458 

X" character of a 462 
i(V, W) intertwining number 469 
Resg(V) restriction of V to H 480 
IndH(W) induction of W to G 480 
N(a) inertia group of a 483 
Hg 492 
Hg 492 
RF(G) F -representation ring of G 502 
K(R) 503 
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abelian groups, 1 
generators and relations, 325 
representations of, 451 
structure theorem for finitely 

generated, 168 
action of a group, 25 
adjoint 

associativity of Hom and tensor 
product, 423 

of homomorphism, 349, 375 
of linear transformation, 273 
matrix, 204 

algebra 
definite quaternion, 54 
exterior, 437 
fundamental theorem of, 79 
R-, 110, 184 

algebraic, 79, 91 
integer, 91, 100, 284 
multiplicity, 249 

algebraically closed, 79 
alternating, 195 

group, 31, 43, 47, 459, 475 
annihilator, 116, 345 
antiautomorphism, 108 
Arf invariant, 381 
ascending chain condition (ACC), 

82 
associates, 79 
associativity 

generalized, 57 

in a group, 1, 4 
in a ring, 5, 49 
of matrix multiplication, 219 

augmentation 
ideal, 65, 442 
map, 65, 442 

automorphism 
group, 21, 54, 109 
inner, 21 
outer, 21 
ring, 101 
R-module, 109 

averaging over a group, 446 

basis, 129 
extension of, 171 
symplectic, 382 
of vector space, 134 

bialgebra, 413 
bijective function, 2 
bimodule, 183, 412 
binomial theorem, 57 
bisubmodule, 413 
b/s-linear form, 352 
Burnside's theorem, 461 
Byrnes, C. 1., 329 

cancellation laws in a group, 4 
Cartan-Dieudonne theorem, 388 
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Cauchy-Binet theorem, 210 
Cauchy-Schwartz inequality, 270 
Cauchy's theorem, 25 
Cayley diagram, 4 
Cayley-Hamilton theorem, 241, 

284 
Cayley's theorem, 23 
center 

of a group, 8 
of a ring, 111, 184 
of EndR(M), 220 

centralizer of element, 8 
in a ring, 335 

chain, 508 
of invariant ideals, 160 
of submodules, 397 
length of, 397 
refinement of, 397 

change of basis, 215 
for b/s-linear form, 354 

change of rings, 420 
character, 462 

orthogonality of, 464 
table, 467 

characteristic 
of a ring, 51 
polynomial, 235, 240 

Chinese remainder theorem, 65, 88 
Choi's pivotal condensation, 282 
class 

equation, 15 
function, 226, 467 

Clifford's theorem, 484 
cofactor 

expansion, 203 
matrix, 204 

Cohn, P. M., 303 
cokernel, 121, 290 
column index, 183 
commutator 

of elements, 9 
matrix, 278 
subgroup, 9 

companion matrix, 236 

complemented submodule, 121, 
171 

complete 
set of nonassociates, 301 
set of representatives, 300 
set of residues, 301 

composition series, 397 
compound matrix, 281 
congruence, 355 

conjugate, 355 
conjugacy classes, 15, 454 

self-inversive, 472 
conjugate, 14 
conjugation, 21, 350, 501 
content 

of element, 150 
of polynomial, 93 

convolution product, 57 
coprime ideals, 65 
correspondence theorem 

for groups, 20 
for modules, 114 
for rings, 60 

coset 
double, 492 
left/right, 11 
representative, 11 
space, 16 

cycle, 28 
disjoint, 28 
structure, 32 

cyclic 
group, 8 
module, 115, 156 
VT , 113, 232 

Dedekind domain, 142, 178 
degree 

of polynomial, 73 
of representation, 439 

derivation, 280 
descending chain condition (DCC), 

434 
determinant, 199 



cofactor expansion of, 203 
function, 195 
of bls-linear form, 355 
of homomorphism, 227 
Laplace expansion of, 203 

determinantal 
criteria for homomorphisms, 222 
divisor, 205, 312 
formula for invariant factors, 

314 
rank, 205 

diagonalizable, 229 
form, 364 
linear transformation, 243 
simultaneously, 229 

dihedral group, 9, 33 
representations of, 441, 457 

dimension, 152 
direct product 

(external) of groups, 34 
(internal) of groups, 35 
of modules, 120 
of rings, 66 

direct sum 
of matrices, 192 
of modules, 118 
of representations, 441 

direct summand, 121 
divided differences, 102 
divides, 79 
division algorithm, 74 

noncommutative, 103 
division ring, 50, 396 
Dixon, J. D., 329, 334 
domain 

Euclidean, 67, 77, 86 
integral, 50 
of imprimitivity, 498 
of transitivity, 497 
principal ideal, 62, 142 
unique factorization, 92 

dual 
basis, 341 
double, 342, 431 
module, 341, 430 
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space, 273 

eigenmodule, 229 
eigenspace, 229 

generalized, 250 
eigenvalue, 229, 243, 247 
eigenvector, 228, 243, 247 

generalized 248 
Eisenstein's criterion, 97 
elementary 

dilation, 187 
divisors, 163, 316 
matrix, 187 
permutation matrix, 187 
symmetric functions, 105 
transvection, 187 

endomorphism 
of abelian group, 54 
of R-module, 109 

equivalence 
class, 507 
relation, 507 

equivalent 
homomorphisms, 223, 290 
left, 296 
matrices, 223, 290, 296 
right, 296 

Euclidean 
algorithm, 86 
domains 67, 77, 86 

even 
bilinear form, 365, 381 
permutation, 31 

exact 
half, 428 
left, 428 
right, 428 

exact sequence 
of groups, 37 
of R-modules, 121 
short, 121 
split, 37, 121 

exponent of a group, 13 
extension, 37 
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split, 37 
exterior algebra, 437 

field, 50, 170 
algebraically closed, 79 
excellent for representation, 453 
good for representation, 439 
of constants, 281 
of p-adic numbers, 106 
quadratic, 52 

finite free presentation, 289 
Fitting ideal, 205, 340 
fiat, 430 
form 

bilinear, 351 
b/s-linear, 352 
even, 365, 381 
Hermitian, 356 
negative definite, 371 
non-degenerate, 356 
non-singular, 356 
odd, 365, 381 
positive definite, 371 
quadratic, 376 
rank of, 359 
sesquilinear, 351 
skew-Hermitian, 356 
skew-symmetric, 356 
symmetric, 356 

free 
on an index set, 130 
module, 129, 142 
presentation, 133 
rank, 143 
torsion-, 117 

Frobenius, 336, 454 
formula for minimal polynomial, 

315 
reciprocity, 487 

fundamental theorem 
of algebra, 79 
of arithmetic, 83, 91 

Gauger, M. A., 329 
Gaussian integers, 52 

Gauss's lemma, 93 
general linear group, 3, 53, 186 
Gram-Schmidt, 272, 394 
greatest common divisor (gcd), 22, 

81 
group, 1 

abelian, 1 
alternating, 31, 43, 47, 459 
automorphism, 21, 54 
character of, 462 
cyclic, 8 
dihedral, 9, 33, 441, 457 
finitely generated, 7 
general linear, 3, 53, 186 
given by generators and rela-

tions, 8, 325 
inertia, 483 
isometry, 384 
Klein 4-, 3 
of order::; 5, 14 
of order::; 15, 44 
p-,26 
permutation, 2, 23 
quaternion, 8, 46, 54, 458 
quotient, 17 
simple, 47 
special linear, 3 
symmetric, 2, 22, 460 
unitary, 394 

Hamilton, 54 
Hermite normal form, 301 
Hermitian 

form, 356 
matrix, 274 
skew-, 356 
transpose, 269 

Hilbert basis theorem, 77 
homomorphism 

anti-, 351 
bimodule, 412 
group, 7 
ring, 58 
R-module, 109 



homothety, 450 
hull, 345 
hyperplane reflection, 386 

ideal, 58 
augmentation, 65, 442 
Fitting, 205 
generated by a set, 61 
invertible, 140 
left and right, 58 
maximal, 62 
order, 116 
prime, 63 
principal, 61 
product of, 62 
sum of, 62 

idempotent, 98, 473 
matrix, 279 

image 
of group homomorphism, 7 
of ring homomorphism, 58 
of R-module homomorphism 109 

indeterminate, 55 
index of a subgroup, 12 
induction of representation, 480 

transitivity of, 486 
injection, natural, 35 
inner product, 269 

space, 269, 351 
integral domain, 50 
intertwining number, 469, 487 
invariant factor, 156, 161 

determinantal formula for, 314 
of linear transformation, 235 
of matrix, 308 
theorem for submodules, 153, 

224 
invariant 

submodule, 227 
subspace, 113, 227 

inverse, left/right, 221, 283 
irreducible 

element, 79 
module, 179, 395 
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representation, 443 
isometric, 353 
isometry, 353 

group, 384 
isomorphism 

group, 7 
ring, 58 

isomorphism theorems (noether) 
for groups, 19 
for modules, 113 
for rings, 60 

Jordan 
block, 246 
canonical form, 247, 264 
generalized - block, 251 
generalized - canonical form, 

252 
irreducible generalized - block, 

251 
real - block, 254 
real - canonical form, 254 

kernel 
of b / s-linear form, 358 
of group homomorphism, 7 
of ring homomorphism, 58 
of R-module homomorphism, 

109 
Kronecker, 97 

delta, 52 
product, 193, 279 

Lagrange interpolation, 76, 280 
Lagrange's theorem, 12 
Laplace expansion theorem, 203, 

212 
least common multiple, 81 
length, 329, 399 
linear 

n- - transformation, 194 
subspace, 112 
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transformation, 109 
linearly 

dependent, 128 
independent, 128, 209 

localization, 68, 175 

Mackey's theorem, 492 
Maschke's theorem, 447 
matrix 

adjoint, 204 
block, 190 
block diagonal, 192 
change of basis, 215 
cofactor, 204 
column, 182 
commutator, 278 
companion, 236 
compound,281 
coordinate, 215 
diagonal, 53, 188 
diagonalizable, 229 
diagonally dominant, 393 
elementary, 188 
Hermitian, 274 
invertible, 186 
lower triangular, 53 
nilpotent, 278, 284 
normal, 274 
of homomorphism, 217 
orthogonal, 274 
partitioned, 190 
permutation, 197 
positive definite, 394 
product, 52 
reduced row echelon, 302 
representation of b / s-linear 

form, 353 
ring, 52 
row, 182 
scalar, 185 
self-adjoint, 274 
similar, 187 
skew-Hermitian, 287 
skew-symmetric, 279 

strictly diagonally dominant, 
394 

strictly lower triangular, 53 
strictly upper triangular, 53 
symmetric, 274, 279 
transpose, 186 
unimodular, 186 
unitary, 274 
units, 53, 184 
upper triangular, 53 
Vandermonde, 280 
Wronskian, 282 

maximal element, 82, 508 
middle linear map, 418 
minimal polynomial, 235 

Frobenius formula for, 315 
minor, 205 
modular law, 175 
module 

cyclic, 115, 156 
divisible, 179 
finitely generated, 115 
free, 129 
indecomposable, 179, 395 
irreducible, 179, 395 
left/right, 107 
primary, 162 
projective, 138, 145, 231, 345, 

425 
R-, 109 
rank of, 115 
reflexive, 343, 431 
semisimple, 397 
simple, 395 
torsion, 117 
torsion-free, 117, 146 

monoid, 15, 442 
multiplication 

left/right, 189, 332 
scalar, 107, 183 

multiplicatively closed, 68 
multiplicity 

algebraic, 249 
geometric, 249 
of representation, 445 



negative definite, 371 
Newton identities, 105, 286 
Newton interpolation, 76 
nilpotent, 98 

matrix, 279, 284 
Noetherian ring, 82 
non-degenerate 

b/s-linear form, 356 
part of b/s-linear form, 359 
quadratic form, 376 
skew-symmetric form, 361 

non-singular 
bilinear form, 356 
quadratic form, 376 

norm, 270 
normal, 274 
normal form 

generalized Jordan, 252 
Hermite, 301 
Jordan, 247, 264 
real Jordan, 254 
Smith, 308 

odd 
bilinear form, 365, 381 
permutation, 31 

opposite ring, 98, 108, 214 
orbit, 26, 328, 496 
order 

of a group, 9 
of an element, 9 

orthogonal, 271 
complement, 272, 359 
direct sum, 357, 378 
group, 385 
submodules, 357 
transformation 274 

orthogonality of characters, 464 
orthonormal, 271 

basis, 272 

p-
component, 162 
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group, 26 
primary, 162 
subgroup, 26 
Sylow subgroup, 26 

partial fraction expansion, 178 
partial order, 508 
partition, 507 
permutation, 2 

even, 31 
group, 23 
matrix, 197 
odd, 31 
sign of, 31 
similar, 282 

Pfaffian, 364 
PID (principal ideal domain), 62, 

142,329 
polarization identity, 392 
polynomial 

constant term of, 73 
content of, 93 
degree of, 73 
function, 72 
leading coefficient of, 73 
monic, 73 
primitive, 93 
regular, 103 
substitution, 73 

positive definite, 371, 394 
power set, 3 
primary decomposition theorem, 

235 
primary module, 162 
prime 

divisors, 92 
element in a ring, 63, 79 
factor, 92 
factorization, 92 
ideal, 63 

primitive 
element, 148 
polynomial, 93 

product 
convolution, 57 
direct, 34, 35, 66, 120 
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kronecker, 193 
of ideal and module, 117 
of ideals, 62 
of matrices, 183 
of partitioned matrices, 191 
scalar, 183 
semi direct , 35 
tensor, 193, 417, 441 

projection, 287 
natural, 18, 34 
orthogonal, 288 

projective module, 138, 145, 231, 
345, 406, 425 

quadratic form, 376 
isometric, 379 
orthogonal direct sum of, 378 

quadratic refinement, 378 
quaternion 

group, 9, 46, 54, 458 
ring, 54 

quotient 
field, 68 
group, 17 
module, 113 
ring, 59 

rank 
column, 208 
determinantal, 205, 211 
free, 143 
invariance of, 152 
M-,206 
of a matrix, 209 
of a module, 115, 152, 172, 347 
of form, 359 
row, 208 

rational canonical form, 238, 310 
rational function 

field of, 72 
proper, 178 

rational root theorem, 104 
reflection, 386 

relation 
binary, 507 
equivalence, 507 

relatively prime 
ideals, 65 
set of elements, 81 

remainder theorem, 75 
noncommutative, 103 

representation, 438 
defined over F, 442 
degree of, 439 
direct sum of, 441 
equivalent, 439 
faithful, 443 
imprimitive, 498 
indecomposable, 443 
induced, 479 
intransitive, 497 
irreducible, 443 
isomorphic, 439 
isotypic, 453 
left regular, 23, 440 
monomial, 442 
multiplicity of, 445 
permutation, 23, 440, 442, 496 
primitive, 498 
proper, 503 
pullback, 443 
restriction of, 480 
ring, 502 
tensor product of, 441, 443 
transitive, 497 
trivial, 440 
virtual, 503 

restriction of representation, 480 
transitivity of, 486 

ring, 49 
characteristic of, 51 
commutative, 49 
division, 50 
of formal power series, 56 
group, 57, 108, 438 
local, 72 
matrix, 52, 67 
Noetherian, 82 



of p-a<lic integers, 106 
of quaternions, 54 
opposite, 99, 108, 214 
polynomial, 55 
quotient, 59 
representation, 502 
semigroup, 57 
semisimple, 406, 447 
simple, 409 
with identity, 49 

row index, 183 

scalar 
multiplication, 107 
product, 183 

Schur's lemma, 396, 450 
self-adjoint, 274 
semidirect product, 35 
semigroup, 57 
semisimple 

linear transformation, 435 
module, 397 
ring, 406, 447 

sesquilinear form, 351 
signature, 372 
similarity 

of homomorphisms, 226 
of matrices, 187, 310, 328 

simple 
factorization, 401 
group, 47 
module, 395 
ring, 409 

Smith normal form, 308 
solvability of linear equations, 178, 

206,208 
over Z, 326 

spectral theorem, 276, 287 
self-adjoint case, 277 

split, 121 
stabilizer, 26, 497 
subgroup, 6 

commutator, 9 
generated by S, 8 
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normal,17 
of F*, 170 
p-,26 
p-Sylow,26 

submodule, 112 
complemented, 121, 171 
generated by a set, 114 
generators of, 114 
pure, 172 
sum of, 116 
torsion, 117, 158 

subring,51 
generated by a set, 61 

subspace, 113 
invariant, 113, 227 

substitution homomorphism, 73 
sum 

direct, 118, 120, 127 
of submodules, 116 

Sylow's theorem, 26 
Sylvester's law of inertia, 371 
symmetric 

difference, 3 
c-,356 
bilinear form, 356 
group, 2, 22, 460, 478 
matrix, 274 
skew-, 356 
transformation, 274 

symmetry, 33 
symplectic basis, 382 

tensor product 
of bimodules, 417 
of matrices, 193, 202, 283, 333, 

433 
of representations, 441, 443 

torsion 
element, 117 
free, 117 
module, 117 
submodule, 117 

totally isotropic, 357 
trace, 186 
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transitive, 499 
transpose, 186 

Hermitian, 269 
transposition, 28 
triangle inequality, 270 

unique factorization domain 
(UFD),92 

unit, 50 
unitary, 274 

vector space, 109 

VVedderburn, 50, 407 
Witt's cancellation theorem, 371 
Witt's theorem, 368, 372, 387 

zero divisor, 50 
Zorn's lemma, 62, 135, 144, 154, 

377, 509 
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