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Preface 

This book presents the basic tools of modern analysis within the context of 
what might be called the fundamental problem of operator theory: to cal­
culate spectra of specific operators on infinite-dimensional spaces, especially 
operators on Hilbert spaces. The tools are diverse, and they provide the 
basis for more refined methods that allow one to approach problems that go 
well beyond the computation of spectra; the mathematical foundations of 
quantum physics, noncommutative K-theory, and the classification of sim­
ple C' -algebras being three areas of current research activity that require 
mastery of the material presented here. 

The not ion of spectrum of an operator is based on the more abstract 
notion of the spectrum of an element of a complex Banach algebra. Af­
ter working out these fundament als we turn to more concrete problems of 
computing spectra of operators of various types. For normal operators, this 
amounts to a treatment of the spectral theorem. Integral operators require 
the development of the Riesz theory of compact operators and the ideal C2 

of Hilbert-Schmidt operators. Toeplitz operators require several important 
tools; in order to calculate the spectra of Toeplitz operators with continuous 
symbol one needs to know the theory of Fredholm operators and index, the 
structure of the Toeplitz C' -algebra and its connection with the topology of 
curves, and the index theorem for continuous symbols. 

I have given these lectures several times in a fifteen-week course at 
Berkeley (Mathematics 206), which is normally taken by first- or second­
year graduate students with a foundation in measure theory and elementary 
functional analysis. It is a pleasure to teach that course because many deep 
and important ideas emerge in natural ways. My lectures have evolved sig­
nificantly over the years, but have always focused on the notion of spectrum 
and the role of Banach algebras as the appropriate modern foundation for 
such considerations. For a serious student of modern analysis, this material 
is the essential beginning. 

Berkeley, California 
July 2001 

vii 

William Arveson 
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CHAPTER 1 

Spectral Theory and Banach Algebras 

The spectrum of a bounded operator on a Banach space is best studied 
within the context of Banach algebras, and most of this chapter is devoted 
to the theory of Banach algebras. However, one should keep in mind that 
it is the spectral theory of operators that we want to understand. Many 
examples are discussed in varying detail. While the general theory is elegant 
and concise, it depends on its power to simplify and illuminate important 
examples such as those that gave it life in the first place. 

1.1. Origins of Spectral Theory 

The idea of the spectrum of an operator grew out of attempts to understand 
concrete problems of linear algebra involving the solution of linear equations 
and their infinite-dimensional generalizations. 

The fundamental problem of linear algebra over the complex numbers is 
the solution of systems of linear equations. One is given 

(a) an n x n matrix (aij) of complex numbers, 
(b) an n-tuple 9 = (g1, g2, ... , gn) of complex numbers, 

and one attempts to solve the system of linear equations 

anh + ... + a1nl n = g1, 

(1.1) 
an1h + ... + annln = gn 

for I = (h,···, In) E Cn. More precisely, one wants to determine if the 
system (1.1) has solutions and to find all solutions when they exist. 

Elementary courses on linear algebra emphasize that the left side of (1.1) 
defines a linear operator I H AI on the n-dimensional vector space cn . The 
existence of solutions of (1.1) for any choice of 9 is equivalent to surjectivity 
of A; uniqueness of solutions is equivalent to injectivity of A. Thus the 
system of equations (1.1) is uniquely solvable for all choices of 9 if and only 
if the linear operator A is invertible. This ties the idea of invertibility to the 
problem of solving (1.1), and in this finite-dimensional case there is a simple 
criterion: The operator A is invertible precisely when the determinant of 
the matrix (aij) is nonzero. 

However elegant it may appear, this criterion is oflimited practical value, 
since the determinants of large matrices can be prohibitively hard to com­
pute. In infinite dimensions the difficulty lies deeper than that, because for 
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most operators on an infinite-dimensional Banach space there is no mean­
ingful concept of determinant. Indeed, there is no numerical invariant for 
operators that determines invertibility in infinite dimensions as the deter­
minant does in finite dimensions. 

In addition to the idea of invertibility, the second general principle be­
hind solving (1.1) involves the not ion of eigenvalues. And in finite dimen­
sions, spectral theory reduces to the theory of eigenvalues. More precisely, 
eigenvalues and eigenvectors for an operator A occur in pairs (A, 1), where 
AI = AI. Here, I is a nonzero vector in Cn and A is a complex number. If 
we fix a complex number A and consider the set V>. ~ Cn of aB vectors I 
for which AI = AI, we find that V>. is always a linear subspace of Cn , and 
for most choices of A it is the trivial subspace {O}. V>. is nontrivial if and 
only if the operator A - Al has nontrivial kernei: equivalently, if and only 
if A - Al is not invertible. The spectrum a(A) of A is defined as the set of 
all such A E C, and it is a nonempty set of complex numbers containing no 
more than n elements. 

Assuming that A is invertible, let us now recall how to actually calculate 
the solution of (1.1) in terms of the given vector 9. Whether or not A 
is invertible, the eigenspaces {V>.: A E a(A)} frequently do not span the 
ambient space cn (in order for the eigenspaces to span it is necessary for A 

. to be diagonalizable). But when they do span, the problem of solving (1.1) 
is reduced as follows. One may decompose 9 into a linear combination 

9 = 91 + 92 + ... + 9k, 

where 9j E V>'j' Al, ... , Ak being eigenvalues of A. Then the solution of (1.1) 
is given by 

1= A1191 + A2"l g2 + ... + Xk1gk. 
Notice that Aj =f. 0 for every j because A is invertible. When the spectral 
subspaces V>. faH to span the problem is somewhat more involved, but the 
role of the spectrum remains fundamental. 

REMARK 1.1.1. We have alluded to the fact that the spectrum of any 
operator on Cn is nonempty. Perhaps the most familiar proof involves the 
function I(A) = det(A - Al). One notes that I is a nonconstant polyno­
mial with complex coefficients whose zeros are the points of a(A), and then 
appeals to the fundamental theorem. of algebra. For a proof that avoids 
determinants see [5J. 

The fact that the complex number field is algebraically closed is cen­
tral to the proof that a(A) =f. 0, and in fact an operator acting on areal 
vector space need not have any eigenvalues at all: consider a 90 degree 
rotation about the origin as an operator on ]R2. For this reason, spectral 
theory concerns complex linear operators on complex vector spaces and their 
infinite-dimensional generalizations. 

We now say something about the extension of these results to infinite 
dimensions. For example, if one replaces the sums in (1.1) with integrals, one 
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obtains a dass of problems about integral equations. Rather than attempt 
a general definition of that term, let us simply look at a few examples in 
a somewhat formal way, though it would not be very hard to make the 
following discussion completely rigorous. Here are some early examples of 
integral equations. 

EXAMPLE 1.1.2. This example is due to Niels Henrik Abel (ca 1823), 
whose name is attached to abelian groups, abelian functions, abelian von 
Neumann algebras, and the like. Abel considered the following problem. 
Fix a number 0: in the open unit interval and let 9 be a suitably smooth 
function on the interval (0,1) satisfying g(o:) = O. Abel was led to seek a 
function f for which 

Ix 1 
Q (x_y)Qf(y)dy=g(x) 

on the interval 0: < X < 1, and he wrote down the following "solution": 

f(y) = sin 7l'0: IY g'(x) dx. 
7l' Q (y - x)2-Q 

EXAMPLE 1.1.3. Given a function gE L2(lR), find a function f such that 

(1.2) 1: eixy f(y) dy = g(x), xE R 

The "solution" of this problem is the following: 

1 100 
. f(y) = -2 e-,xYg(x)dx. 

7l' -00 

In fact, one has to be careful about the meaning of these two integrals. But 
in an appropriate sense the solution f is uniquely determined, it belongs to 
L2 (lR), and the Fourier transform operator defined by the left side of (1.2) is 
an invertible operator on L 2 • Indeed, it is a scalar multiple of an invertible 
isometry whose inverse is exhibited above. This is the essential statement 
of the Plancherel theorem [15]. 

EXAMPLE 1.1.4. This family of examples goes back to Vito Volterra (ca 
1900). Given a continuous complex-valued function k(x, y) defined on the 
tri angle 0 ::::: y ::::: x ::::: 1 and given 9 E G[O, 1], find a function f such that 

(1.3) l x k(x, y)f(y) dy = g(x), 0::::: x ::::: 1. 

This is often called a Volterra equation of the first kind. A Volterra equation 
of the second kind involves a given complex parameter>. as weIl as a function 
gE G[O, 11, and asks whether or not the equation 

(1.4) l x k(x, y)f(y) dy - >.j(x) = g(x), 0 :S x :S 1 

can be solved for f. 
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We will develop powerful methods that are effective for a broad dass of 
problems induding those of Example 1.1.4. For example, we will see that the 
spectrum of the operator f H Kf defined on the Banach space G[O, 1J by 
the left side of (1.3) satisfies a(K) = {al. One deduces that for every A =I ° 
and every 9 E G[O, 1], the equation (1.4) has a unique solution f E G[O, 1J. 
Significantly, there are no "formulas" for these solution functions, as we had 
in Examples 1.1.2 and 1.1.3. 

Exercises. The first two exercises illustrate the problems that arise 
when one attempts to develop a determinant theory for operators on an 
infinite-dimensional Banach space. We consider the simple case of diagonal 
operators acting on the Hilbert space 1!2 = 1!2 (N) of all square summable 
sequences of complex numbers. Fix a sequence of positive numbers al, a2, ... 
satisfying ° < E ~ an ~ M < 00 and consider the operator A defined on 1!2 
by 

(1.4) (Ax)n = anxn, n = 1,2, ... , xE 1!2. 

(1.5) 

(1) Show that A is a bounded operator on 1!2, and exhibit a bounded 
operator B on 1!2 such that AB = BA = 1 where 1 is the identity 
operator. 

One would like to have a not ion of determinant with at least these 
two properties: D(l) = 1 and D(ST) = D(S)D(T) for operators 
S, T on [2. It follows that such a "determinant" will satisfy D(A) =I ° for the operators A of (1.4). It is also reasonable to expect that 
for these operators we should have 

D(A) = lim ala2··· an. 
n~oo 

(2) Let al, a2, ... be a bounded monotone increasing sequence of posi­
tive numbers and let Dn = ala2··· an. Show that the sequence Dn 
converges to a nonzero limit D(A) iff 

00 

Thus, this attempt to define a reasonable notion of determinant 
fails, even for invertible diagonal operators of the form (1.4) with 
sequences such as an = nj(n+ 1), n = 1,2, .... On the other hand, 
it is possible to develop adeterminant theory for certain invertible 
operators, namely operators A = 1 + T, where T is a "trace-class" 
operator; for diagonal operators defined by a sequence as in (1.4) 
this requirement is that 

00 

I: 11 - anl < 00. 

n=l 



1.2. THE SPECTRUM OF AN OPERATOR 5 

The following exercises relate to Volterra operators on the Banach 
space G[O, 1] of continuous complex-valued functions I on the unit 
interval, with sup norm 

11111 = sup II(x)l· 
O~x9 

Exercise (3) implies that Volterra operators are bounded, and the 
result of Exercise (5) implies that they are in fact compact opera­
tors. 

(3) Let k(x, y) be a Volterra kernel as in Example (1.1.4), and let f E 
G[O, 1]. Show that the function 9 defined on the unit interval by 
equation (1.3) is continuous, and that the linear map K : f -+ 9 
defines a bounded operator on G[O, 1]. 

(4) For the kernel k(x,y) = 1 for ° :s; y :s; x :s; 1 consider the corre­
sponding Volterra operator V : G[O, 1] -+ G[O, 1], namely 

V f(x) = fox f(y) dy, fE G[O, 1]. 

Given a function 9 E G[O, 1], show that the equation V f = 9 has a 
solution f E G[O, 1] iff gis continuously differentiable and g(O) = O. 

(5) Let k(x, y), ° :s; x, y :s; 1, be a continuous function defined on 
the unit square, and consider the bounded operator K defined on 
G[O, 1] by 

Kf(x) = 11 k(x,y)f(y)dy, O:S;x:S;1. 

Let Bi = {J E G[O, 1] : Ilfll :s; I} be the closed unit ball in G[O, 1]. 
Show that K is a compact operator in the sense that the norm 
closure of the image K Bi of Bi under K is a compact subset of 
G[O, 1]. Hint: Show that there is a positive constant M such that 
for every 9 E KB1 and every x,y E [0,1] we have Ig(x) - g(y)1 ::; 
M·lx-yl· 

1.2. The Spectrum of an Operator 

Throughout this section, E will denote a complex Banach space. By an 
operator on E we meän a bounded linear transformation T : E -+ E; B(E) 
will denote the space of all operators on E. B(E) is itself a complex Banach 
space with respect to the operator norm. We may compose two operators 
A, B E B(E) to obtain an operator product AB E B(E), and this defines 
an associative multiplication satisfying both distributive laws A(B + G) = 
AB + AG and (A + B)G = AB + BG. We write 1 for the identity operator. 

THEOREM 1.2.1. For every A E B(E), the following are equivalent. 
(1) For every y E E there is a unique x E E such that Ax = y. 
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(2) There is an opemtor BE B(E) such that AB = BA = l. 
PROOF. We prove the nontrivial implication (1) ~ (2). The hypothesis 

(1) implies that A is invertible as a linear transformation on the vector space 
E, and we may consider its inverse B : E --t E. As a subset of E EB E, the 
graph of B is related to the graph of A as follows: 

r(B) = {(x,Bx): x E E} = {(Ay,y): y E E}. 

The space on the right is closed in E EB E because A is continuous. Hence the 
graph of Bis closed, and the closed graph theorem implies B E B(E). 0 

DEFINITION 1.2.2. Let A E B(E). 

(1) A is said to be invertible if there is an operator B E B( E) such that 
AB = BA = l. 

(2) The spectrum a(A) of A is the set of all complex numbers A for 
which A - Al is not invertible. 

(3) The resolvent set p(A) of A is the complement p(A) = C \ a(A). 

In Examples (1.1.2)-(1.1.4) of the previous section, we were presented 
with an operator, and various assertions were made about its spectrum. For 
example, in order to determine whether a given operator A is invertible, 
one has exactly the problem of determining whether or not 0 E a(A). The 
spectrum is the most important invariant attached to an operator. 

REMARK 1.2.3. Remarks on opemtor spectm. We have defined the spec­
trum of an operator T E B(E), but it is often useful to have more precise 
information about various points of a(T). For example, suppose there is a 
nonzero vector x E E for which Tx = AX for some complex number A. In 
this case, A is called an eigenvalue (with associated eigenvector x). Obvi­
ously, T - Al is not invertible, so that A E a(T). The set of all eigenvalues of 
T is a subsetof a(T) called the point spectrum of T (and is written ap(T)). 
When E is finite dimensional a(T) = ap(T), but that is not so in general. 
Indeed, many of the natural operators of analysis have no point spectrum 
at all. 

Another type of spectral point occurs when T - A is one-to-one but not 
onto. This can happen in two ways: Either the range of T - A is not closed in 
E, or it is closed but not all of E. Terminology has been invented to classify 
such behavior (compression spectrum, residual spectrum), but we will not 
use it, since it is better to look at a good example. Consider the Volterra 
operator V acting on G[O, 1] as follows: 

V fex) = lax f(t) dt, 0 ::; x ::; 1. 

This operator is not invertible; in fact, we will see later that its spectrum is 
exactly {O}. On the other hand, one may easily check that V is one-to-one. 
The result of Exercise (4) in section 1 implies that its range is not closed 
and the closure.of its range is a subspace of codimension one in G[O, 1]. 
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Exercises. 

(1) Give explicit examples of bounded operators A, B on f2(N) such 
that AB = 1 and BA is the projection onto a closed infinite­
dimensional subspace of infinite codimension. 

(2) Let A and B be the operators defined on g2(N) by 

A(Xl,X2,"') = (O,Xl,X2,"')' 

B(Xl,X2,''') = (X2,X3,X4, ... ), 

for x = (Xl,X2, .. ') E g2(N). Show that II All = IIBII = 1, and 
compute both BA and AB. Deduce that A is injective but not 
surjective, B is surjective but not injective, and that a(AB) =I 
a(BA). 

(3) Let E be a Banach space and let A and B be bounded operators 
on E. Show that 1 - AB is invertible if and only if 1 - BA is 
invertible. Rint: Think about how to relate the formal Neumann 
series for (1 - ABtl , 

(1- ABtl = 1 + AB + (AB)2 + (AB)3 + ... , 
to that for (1 - BA)-l and turn your idea into a rigorous proof. 

(4) Use the result of the preceding exercise to show that for any two 
bounded operators A, B acting on a Banach space, a(AB) and 
a(BA) agree except perhaps for 0: a(AB) \ {O} = a(BA) \ {O}. 

1.3. Banach Aigebras: Examples 

We have pointed out that spectral theory is useful when the underlying field 
of scalars is the complex numbers, and in the sequel this will always be the 
case. 

DEFINITION 1.3.1 (Complex algebra). By an algebra over C we mean 
a complex vector space A together with a binary operation representing 
multiplication x, y E A r-+ xy E A satisfying 

(1) Bilinearity: For 0:, ß E C and x, y, z E A we have 

(0:' X + ß· y)z = 0:' XZ + ß· yz, 

x(o:· y + ß· z) = 0:' xy + ß· xz. 

(2) Associativity: x(yz) = (xy)z. 

A complex algebra may or may not have a multiplicative identity. As a 
rat her extreme example of one that does not, let A be any complex vector 
space and define multiplication in A by xy = 0 for all x, y. When an algebra 
does have an identity then it is uniquely determined, and we denote it by 
1. The identity is also called the unit, and an algebra with unit is called a 
uni tal algebra. A commutative algebra is one in which xy = yx for every 
x,y. 
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DEFINITION 1.3.2 (Normed algebras, Banach algebras). A normed al­
gebra is a pair A, 11 . 11 consisting of an algebra A together with a norm 
11 . 11 : A -+ [0,00) which is related to the multiplication as follows: 

Ilxyll ~ Ilxll'llyll, X,Y E A. 

A Banach algebra is a normed algebra that is a (complete) Banach space 
relative to its given norm. 

REMARK 1.3.3. We tecall a useful criterion for completeness: A normed 
linear space E is a Banach space iff every absolutely convergent series con­
verges. More explicitly, E is complete iff for every sequence of elements 
Xn E E satisfying 2.::n Ilxn 11 < 00, there is an element Y E E such that 

lim IIY - (Xl + ... + xn)11 = 0; 
n-too 

see Exercise (1) below. 

The following examples of Banach algebras illustrate the diversity of the 
concept. 

EXAMPLE 1.3.4. Let E be any Banach space and let A be the algebra 
B(E) of all bounded operators on E, X • Y denoting the operator product. 
This is a unital Banach algebra in which the identity satisfies 11111 = 1. It is 
complete because E is complete. 

EXAMPLE 1.3.5. C(X). Let X be a compact Hausdorff space and 
consider the unital algebra C(X) of all complex valued continuous func­
tions defined on X, the multiplication and addition being defined pointwise, 
Ig(x) = I(x)g(x), U+g)(x) = I(x)+g(x). Relative to the sup norm, C(X) 
becomes a commutative Banach algebra with unit. 

EXAMPLE 1.3.6. The disk algebra. Let D = {z E C : Izl ::; I} be 
the closed unit disk in the complex plane and let Adenote the subspace of 
C(D) consisting of all complex functions I whose restrictions to the interior 
{z : Izl < I} are analytic. Ais obviously a unital subalgebra of C(D). To 
see that it is closed (and therefore a commutative Banach algebra in its own 
right) notice that if In is any sequence in A that converges to I in the norm 
of C(D), then the restriction of I to the interior of D is the uniform limit 
on compact sets of the restrictions In and hence is analytic there. 

This example is the simplest nontrivial example of a lunction algebra. 
Function algebras are subalgebras of C(X) that exhibit nontrivial aspects 
of analyticity. They underwent spirited development during the 1960s and 
1970s but have now fallen out of favor, due partly to the development of 
bett er technology for the theory of several complex variables. 

EXAMPLE 1.3.7. e1(Z). Consider the Banach space e1(Z) of all doubly 
infinite sequences of complex numbers X = (xn ) with norm 

00 

n=-oo 
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Multiplieation in A = fl(Z) is defined by eonvolution: 
00 

(x * Y)n = I: XkYn-k, x,y E A. 
k=-oo 

This is another example of a eommutative unital Banaeh algebra, one that 
is rather different from any of the previous examples. It is ealled the Wiener 
algebra (after Norbert Wiener), and plays an important role in many ques­
tions involving Fourier series and harmonie analysis. It is diseussed in more 
detail in Seetion 1.10. 

EXAMPLE 1.3.8. L1(lR). Consider the Banaeh spaee L1(lR) of all inte­
grable functions on the real line, where as usual we identify functions that 
agree almost everywhere. The multiplication here is defined by convolution: 

1 * g(x) = I: I(t)g(x - t) dt, I,g E L1(lR), 

and for this example, it is somewhat more delicate to check that all the 
axioms for a eommutative Banach algebra are satisfied. For example, by 
Fubini's theorem we have 

I: (I: I/(t)llg(x - t)1 dt) dx = k21/(t)llg(x - t)1 dxdt = 1I/11·llgll, 

and from the latter, one readily deduees that 111 * gll :::; 11/11·llgll· 
Notiee that this Banach algebra has no unit. However, it has a nor­

malized approximate unit in the sense that there is a sequence of funetions 
en E L1(lR) satisfying Ilenll = 1 for all n with the property 

lim lien * 1 - I11 = lim 111 * en - I11 = 0, 1 E L1(lR). 
n-+oo n--+oo 

One obtains such a sequence by taking en to be any nonnegative function 
supported in the interval [-l/n, 1/n] that has integral 1 (see the exercises 
at the end of the section). 

Helson's book [15] is an excellent reference for harmonie analysis on lR 
and Z. 

EXAMPLE 1.3.9. An extremely nonunital one. Banach algebras may not 
have even approximate units in general. More generally, a Banach algebra A 
need not be the closed linear span of the set A 2 = {xy : X, Y E A} of all of its 
products. As an extreme example of this misbehavior, let A be any Banach 
space and make it into a Banach algebra using the trivial multiplication 
xy = 0, x, Y E A. 

EXAMPLE 1.3.10. Matrix algebras. The algebra Mn = Mn(C) of .all 
complex n X n matrices is a unital algebra, and there are many norms that 
make it into a finite-dimensional Banaeh algebra. For example, with respect 
to the norm 

n 

II(aij)11 = L laijl, 
i,j=l 
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Mn becomes a Banach algebra in which the identity has norm n. Other 
Banach algebra norms on Mn arise as in Example 1.3.4, by realizing Mn as 
B(E) where E is an n-dimensional Banach space. For these norms on Mn, 
the identity has norm 1. 

EXAMPLE 1.3.11. Noncommutative group algebras. Let G be a locally 
compact group. More precisely, G is a group as well as a topological space, 
endowed with a locally compact Hausdorff topology that is compatible with 
the group operations in that the maps (x, y) E GxG I-t xy E G and x I-t x-I 

are continuous. 
A simple example is the "ax + b" group, the group generated by dilations 

and translations of the realline. This group is isomorphie to the group of all 

2 x 2 matrices of the form (g I~a) where a, bE lR, a > 0, with the obvious 

topology. A related dass of examples consists of the groups SL(n, lR) of all 
invertible n x n matrices of real numbers having determinant 1. 

In order to define the group algebra of G we have to say a few words 
about Haar measure. Let B denote the sigma algebra generated by the 
topology of G (sets in Bare called Borel sets). A Radon measure is a Borel 
measure J.L : B -+ [0, +ooJ having the following two additional properties: 

(1) (Local finiteness) J.L(K) is finite for every compact set K. 
(2) (Regularity) For every E E B, we have 

J.L(E) = sup{J.L(K) : K ~ E, K is compact}. 

A discussion of Radon measures can be found in [3J. The fundamental 
result of A. Haar asserts essentially the following: 

THEOREM 1.3.12. For any locally compact group G there is a nonzero 
Radon measure J.L on G that is invariant under left translations in the sense 
that J.L(x· E) = J.L(E) for every Borel set E and every x E G. 1f v is another 
such measure, then there is a positive constant c such that v(E) = C • J.L(E) 
for every Borel set E. 

See Hewitt and Ross [16J for the computation of Haar measure for spe­
cific examples such as the ax + b group and the groups SL( n, lR). A proof of 
the existence of Haar measure can be found in Loomis [17J or Hewitt and 
Ross [16J. 

We will write dx for dJ.L(x), where J.L is a left Haar measure on a locally 
compact group G. The group algebra of Gis the space LI(G) of all integrable 
functions I : G -+ C with norm 

11111 = lll(x)1 dx, 

and multiplication is defined by convolution: 

f * g(x) = l l(t)g(C 1x) dt, xEG. 
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The basic facts about the group algebra L1(G) are similar to the commuta­
tive cases L1(Z) and L1(1R)) we have already encountered: 

(1) For I, gE LI(G), 1 * gE LI(G) and we have 111 * gll ~ 11/11·llgll· 
(2) LI(G) is a Banach algebra. 
(3) LI(G) is commutative iff Gis a commutative group. 
(4) LI(G) has a unit iff Gis a discrete group. 

Many significant properties of groups are reflected in their group algebra, (3) 
and (4) being the simplest examples of this phenomenon. Group algebras are 
the subject of continuing research today, and are of fundamental importance 
in many fields of mathematics. 

Exercises. 

(1) Let E be a normed linear space. Show that E is a Banach space 
iff for every sequence of elements Xn E X satisfying Ln Ilxnll < 00, 

there is an element y E X such that 

lim IIY - (Xl + ... + xn)11 = O. n-+oo 

(2) Prove that the convolution algebra LI (IR) does not have an identity. 
(3) For every n = 1,2, ... let CPn be a nonnegative function in LI(IR) 

such that CPn vanishes outside the interval [-l/n, l/n] and 

1:~CPn(t) dt = 1. 

Show that CPI, CP2, . .. is an approximate identity for the convolution 
algebra LI(IR) in the sense that 

lim 11I * CPn - IIII = 0 n-+oo 

for every I E LI(IR). 
(4) Let I E LI(IR). The Fourier transform of I is defined as folIows: 

j(~) = f: eit€ I(t) dt, ~ E IR. 

Show that j belongs to the algebra Coo(lR) of all continuous func­
tions on IR that vanish at 00. 

(5) Show that the Fourier transform is a homomorphism of the convo­
lution algebra LI (IR) onto a sub algebra .A of Coo(lR) which is closed 
under complex conjugation and separates points of IR. 

1.4. The Regular Representation 

Let A be a Banach algebra. Notice first that multiplication is jointly con­
tinuous in the sense that for any xo, Yo E A, 

lim Ilxy - xoyoll = O. 
(x,y)-+(xo,Yo) 
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Indeed, this is rather obvious from the estimate 

Ilxy - xoYo/l = II(x - xo)Y + xo(Y - Yo)11 ::; Ilx - xollllyll + Ilxo/lIIY - Yoll· 
We now show how more general structures lead to Banach algebras, after 

they are renormed with an equivalent norm. Let A be a complex algebra, 
which is also a Banach space relative to some given norm, in such a way 
that multiplication is separately continuous in the sense that for each Xo E A 
there is a constant M (depending on xo) such that for every xE A we have 

(1.6) Ilxxoll ::; M ·llxll and Ilxoxll::; M ·llxll. 
LEMMA 1.4.1. Under the conditions (1.6), there is a constant e > 0 such 

that 
Ilxyll ::; c· Ilx/l Ilyll, x,Y E A. 

PROOF. For every x E Adefine a linear transformation Lx : A -+ A 
by Lx(z) = xz. By the second inequality of (1.6), IILxl1 must be bounded. 
Consider the family of all operators {Lx: /lxii::; 1}. This is is a set of 
bounded operators on A which, by the first inequality of (1.6), is pointwise 
bounded: 

sup /lLx(z)11 < 00, 
IIxll9 

for aB z E A. 

The Banach-Steinhaus theorem implies that this family of operators is uni­
formly bounded in norm, and the existence of e foBows. 0 

Notice that the proof uses the completeness of A in an essential way. 
We now show that if A also contains a unit e, it can be renormed with an 
equivalent norm so as to make it into a Banach algebra in which the unit 
has the "correct" norm Iiell = 1. 

THEOREM 1.4.2. Let A be a complex algebra with unit e that is also a 
Banach space with respect to which multiplication is separately continuous. 
Then the map x E A H Lx E B(A) defines an isomorphism of the algebraic 
structure of A onto a closed subalgebra of B(A) such that 

(1) L e = l. 
(2) For every xE A, we have 

11e11-111xll ::; IILx II ::; eileil /lxii, 
where e is a positive constant. 

In particular, Ilx/l1 = IILxl1 defines an equivalent norm on A that is a Banach 
algebra norm for which llelll = 1. 

PROOF. The map x H Lx is clearly a homomorphism of algebras for 
which L e = 1. By Lemma 1.4.1, we have 

IILxyl1 = /lxyll ::; e· Ilxllllyll, 
and hence IILxl1 ::; clixii. Writing 

/lx/l IILxl1 2: IILx(e/lieIDII = M' 



1.4. THE REGULAR REPRESENTATION 13 

we see that IILxl12 Ilxll/llell, establishing the inequality of (2). 
Since the operator norm Ilxlli = IILxl1 is equivalent to the norm on A 

and since A is complete, it follows that {Lx : x E A} is a complete, and 
therefore closed, subalgebra of ß(A). The remaining assertions follow. 0 

The map x E A I--t Lx E ß(A) is called the left regular representation, or 
simply the regular representation of A. We emphasize that if A is a nonunital 
Banach algebra, then the regular representation need not be one-to-one. 
Indeed, for the Banach algebras of Example 1.3.9, the regular representation 
is the zero map. 

Exercises. Let E and F be normed linear spaces·and let ß(E, F) denote 
the normed vector space of all bounded linear operators from E to F, with 
norm 

HAll = sup{IIAxll : x E E, Ilxll::; I}. 

We write ß(E) for the algebra ß(E, E) of all bounded operators on a normed 
linear space E. An operator A E ß(E) is called compact if the norm-closure 
of {Ax: Ilxll ::; I}; the image of the unit ball under A, is a compact subset 
of E. Since compact subsets of E must be norm-bounded, it follows that 
compact operators are bounded. 

(1) Let E and F be normed linear spaces with E #- {al. Show that 
ß(E, F) is a Banach space iff F is a Banach space. 

(2) The rank of an operator A E ß(E) is the dimension of the vector 
space AE. Let A E ß(E) be an operator with the property that 
there is a sequence of finite-rank operators Al, A2 , ... such that 
IIA - Anll -+ ° as n -+ 00. Show that A is a compact operator. 

(3) Let al, a2, . .. be a bounded sequence of complex numbers and let 
A be the corresponding diagonal operator on the Hilbert space 
p2 = f2(N), 

Af(n) = anf(n), n = 1,2, ... , fE f2. 

Show that A is compact iff limn-too an = 0. 
Let k be a continuous complex-valued function defined on the 

unit square [0,1] x [0,1]. A simple argument shows that for every 
fE G[O, IJ the function Af defined on [O,lJ by 

(1.7) Af(x) = 11 k(x, y)f(y) dy, 0::; x ::; 1, 

is continuous (you may assurne this in the following two exercises). 

(4) Show that the operator A of (1.7) is bounded and its norm satisfies 
IIAII ::; Ilkll oo , II . 1100 denoting the sup norm in G([O, IJ x [0,1]). 

(5) Show that for the operator A of (1.7), there is a sequence of finite­
rank operators An, n = 1,2, ... , such that IIA-Anll -+ ° as n -+ 00 

and deduce that A is compact. Hint: Start by looking at the case 
k(x, y) = u(x)v(y) with u, v E G[G, 1]. 
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1.5. The General Linear Group of A 

Let A be a Banach algebra with unit 1, which, by the results of the previous 
section, we may assume satisfies 11111 = 1 after renorming A appropriately. 
An element x E A is said to be inverlible if there is an element y E A such 
that xy = yx = 1. 

REMARK 1.5.1. If x is an element of A that is both left and right in­
vertible in the sense that there are elements Y1, Y2 E A with XY1 = Y2X = 1, 
then x is invertible. Indeed, that is apparent from the string of identities 

Y2 = Y2 . 1 = Y2 XY1 = 1 . Y1 = Y1· 

We will write A-1 (and occasionally GL(A)) for the set of all invert­
ible elements of A. It is quite obvious that A-1 is a group; this group is 
sometimes called the general linear group of the uni tal Banach algebra A. 

THEOREM 1.5.2. If x is an element of A satisfying IIxll < 1, then 1- x 
is invertible, and its inverse is given by the absolutely convergent Neumann 
series (1-xt 1 = 1+x+x2+ .... Moreover, we have thefollowing estimates: 

-1 1 
(1.8) 11(1 -' x) 11::; 1 -IlxII ' 

(1.9) 111 - (1 _ x)-lll::; IIxll . 
l-lIxll 

PROOF. Since IIxnll ::; IIxlln for every n = 1,2, ... , we can define an 
element z E A as the sum of the absolutely convergent series 

00 

We have 
N 

z(1- x) = (1- x)z = lim (1- x) Lxk = lim (1- xN+l) = 1; 
N-too N-too 

k=l 

hence 1 - x is invertible and its inverse is z. The inequality (1.8) follows 
from 

Since 
00 

1 - z = - L xn = -xz, 
n=I 

we have 111- zll ::; Ilxll·llzll, thus (1.9) follows from (1.8). o 
COROLLARY 1. A- I is an open set in A and x t-7 x-I is a continuous 

map of A -1 to itself. 
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PROOF. To see that A-1 is open, choose an invertible element Xo and an 
arbitrary element h E A. We have Xo + h = xo(1 +xü1h). So if IIxü1hli < 1 
then by the preceding theorem Xo + h is invertible. In particular, if Ilhll < 
Ilxü 111-1, then this condition is satisfied, proving that Xo + h is invertible 
when Ilhll is sufficiently small. 

Supposing that h has been so chosen, we can write 

(xo + hr1 - XÜ1 = (xo(l + xü1h))-1 - XÜ1 = [(1 + xü1h)-1 - 1]· xÜ1. 

Thus for Ilhll < IlxÜ111-1 we have 

II(xo + h)-1 ~ xü111 ~ 11(1 + xü1h)-1 - 111'llxül ll ~ IIX1ü~llll~illx~llll, 

and the last term obviously tends to zero as Ilhll -+ O. o 

COROLLARY 2. A- l is a topological group in its relative norm topology; 
that is, 

(1) (x, y) E A-1 X A-l I--t xy E A-l is continuous, and 
(2) xE A- l I--t x-I E A- l is continuous. 

Exercises. Let A be a Banach algebra with unit 1 satisfying 11111 = 1, 
and let G be the topological group A -1. 

(1) Show that for every element x E A satisfying Ilxll < 1, there is a 
continuous function j : [0,1] -+ G such that j(O) = 1 and j(l) = 
(1-x)-l. 

(2) Show that for every element x E G there is an f > 0 with the 
following property: For every element y E G satisfying IIY - xii< f 

there is an arc in G connecting y to x. 
(3) Let Go be the set of all finite products of elements of Gof the form 

1- x or (1- x)-1, where xE A satisfies Ilxll < 1. Show that Go 
is the connected component of 1 in G. Rint: An open subgroup of 
G must also be closed. 

(4) Deduce that Go is anormal subgroup of G and that the quotient 
topology on G / Go makes it into a discrete group. 

The group r = G / Go is sometimes called the abstract index group of 
A. It is frequently (but not always) commutative even when G is not, and 
it is closely related to the K-theoretic group Kl(A). In fact, Kl(A) is in a 
certain sense an "abelianized" version of r. 

We have not yet discussed the exponential map x E A I--t eX E A-1 of a 
Banach algebra A (see equation (2.2) below), but we should point out here 
that the connected component of the identity Go is also characterized as the 
set of all finite products ofexponentials eXleX2· .. eXn, Xl,X2, ... ,Xn E A, 
n = 1,2, .... When A is a commutative Banach algebra, this implies that 
Go = {eX : x E A} is the range of the exponential map. 
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1.6. Spectrum of an Element of a Banach Algebra 

Throughout this section, A will denote a unital Banach algebra for which 
11111 = 1. One should keep in mind the operator-theoretic setting, in which 
Ais the algebra ß(E) of bounded operators on a complex Banach space E. 

Given an element x E A and a complex number A, it is convenient to 
abuse notation somewhat by writing x - A for x - Al. 

DEFINITION 1.6.1. For every element xE A, the spectrum of xis defined 
as the set 

O'(x) = {A E C : x - A ~ A- l }. 

We will develop the basic properties of the spectrum, the first being that 
it is always compact. 

PROPOSITION 1.6.2. For every x E A, 0'( x) is a closed subset 0/ the disk 
{z E C : Izl :::; IIxll}. 

PROOF. The complement of the spectrum is given by 

C \ O'(x) = {A E C : x - A E A- I }. 

Since A-l is open and the map A E C H x - A E A is continuous, the 
complement of O'(x) must be open. 

To prove the second assertion, we will show that no complex number A 
with lAI> IIxll can belong to a(x). Indeed, for such a A the formula 

x - A = (-A)(I- A-lX), 

together with the fact that IIA-Ixll < 1, implies that x - Ais invertible. 0 

We now prove a fundamental result of Gelfand. 

THEOREM 1.6.3. a(x) i= 0 for every xE A. 

PROOF. The idea is to show that if a(x) = 0, the A-valued function 
/(A) = (x - A)-l is a bounded entire function that tends to zero as A --+ 00; 
an appeal to Liouville's theorem yields the desired conelusion. The details 
are as follows. 

For every Ao ~ O'(x), (x - A)-l is defined for all A sufficiently elose to Ao 
because O'(x) is elosed, and we elaim that 

(1.10) 

in the norm topology of A. Indeed, we can write 

(x - A)-l - {x - Ao)-l = (x - A)-l[(x - Ao) - (x - A)](x - Ao)-l 

= (A - AO)(X - A)-l(x - AO)-l. 

Divide by A - AO, and use the fact that (x - A)-l --+ (x - AO)-l as A --+ AO 
to obtain (1.10). 



1.6. SPECTRUM OF AN ELEMENT OF A BAN ACH ALGEBRA 17 

Contrapositively, assurne that O'(x) is empty, and ehoose an arbitrary 
bounded linear functional p on A. The sealar-valued function 

is defined everywhere in C, and it is clear from (1.10) that 1 has a eomplex 
derivative everywhere satisfying 1'(>') = p((x - >.)-2). Thus 1 is an entire 
funetion. 

Notice that 1 is bounded. To see this we need to estimate II(x _ >.)-111 
for large >.. Indeed. if 1>'1 > Ilxll, then 

II(x - >.)-111 = 1~111(1- >.-lxr 1 11· 

The estimates of Theorem 1.5.2 therefore imply that 

-1 1 1 
II(x - >.) 11::; 1>'1(1- Ilxll/I>.1) = 1>'1-llxll' 

and the right side clearly tends to zero as 1>'1 -+ 00. Thus the function 
>. M 11 (x - >.) -111 vanishes at infini ty. It follows that 1 is a bounded entire 
funetion, which, by Liouville's theorem, must be constant. The constant 
value is 0 beeause 1 vanishes at infinity. 

We eonclude that p( (x - >.) -1) = 0 for every >. E C and every bounded 
linear funetional p. The Hahn-Banach theorem implies that (x - >.)-1 = 0 
for every A E <C. But this is absurd because (x - A)-l is invertible (and 
1 i= 0 in A). D 

The following applieation illustrates the power of this result. 

DEFINITION 1.6.4. A division algebra (over q is a complex associative 
algebra A with unit 1 such that every nonzero element in A is invertible. 

DEFINITION 1.6.5. An isomorphism of Banach algebras A and B is an 
isomorphism 0 : A -+ B of the underlying algebraic structures that is also a 
topological isomorphism; thus there are positive constants a, b such that 

alixii ::; IIO(x)11 ::; bllxll 
for every element x E A. 

COROLLARY 1. Any Banach division algebra is isomorphie to the one­
dimensional algebra <C. 

PROOF. Define 0 : C -+ A by 0(>') = Al. 0 is clearly an isomorphism of 
<C onto the Banach subalgebra Cl of A consisting of all sealar multiples of 
the identity, and it suffices to show that 0 is onto A. But for any element 
xE A Gelfand's theorem implies that there is a complex number A E O'(x). 
Thus x - A is not invertible. Since A is a division algebra, x - A must be 0, 
hence x = O(A), as asserted. D 
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There are many division algebras in mathematics, especially commu­
tative ones. For example, there is the algebra of all rational functions 
r(z) = p(z)Jq(z) of one complex variable, where p and q are polynomials 
with q i' 0, or the algebra of all formal Laurent series of the form L~oo anzn, 
where (an) is a doubly infinite sequence of complex numbers with an = 0 
for sufficiently large negative n. It is significant that examples such as these 
cannot be endowed with a norm that makes them into a Banach algebra. 

Exercises. 

(1) Give an example of a one-dimensional Banach algebra that is not 
isomorphie to the algebra of complex numbers. 

(2) Let X be a compact Hausdorff space and let A = C(X) be the 
Banach algebra of all complex-valued continuous functions on X. 
Show that for every f E C(X), a(f) = f(X). 

(3) Let T be the operator defined on L2[0, 1] by Tf(x) = xf(x), xE 
[0,1]. What is the spectrum of T? Does T have point spectrum? 

For the remaining exercises, let (an: n = 1,2, ... ) be a bounded 
sequence of complex numbers and let H be a complex Hilbert space 
having an orthonormal basis el, e2,' ... 

(4) Show that there is a (necessarily unique) bounded operator A E 
B(H) satisfying Aen = anen+1 for every n = 1,2, .... Such an op­
erator A is called a unilateral weighted shift (with weight sequence 
(an)). 

A unitary operator on a Hilbert space H is an invertible isometry 
U E B(H). 

(5) Let A E B(H) be a weighted shift as above. Show that for every 
complex number A with lAI = 1 there is a unitary operator U = 
U). E B(H) such that U AU-1 = AA. 

(6) Deduce that the spectrum of a weighted shift must be the union of 
(possibly degenerate) concentric circles about z = O. 

(7) Let A be the weighted shift associated with a sequence (an) E loo. 
(a) Calculate IIAII in terms of (an). 
(b) Assuming that an ~ 0 as n ~ 00, show that 

lim IIAn Ii 1/ n = O. n-+oo 

1. 7. Spectral Radius 

Throughout this section, Adenotes a unital Banach algebra with 11111 = 1. 
We introduce the concept of spectral radius and prove a useful asymptotic 
formula due to Gelfand, Mazur, and Beurling. 

DEFINITION 1.7.1. For every x E A the spectral radius of x is defined 
by 

r(x) = sup{IAI : A E a(x)}. 
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REMARK 1.7.2. Since the spectrum of xis contained in the central disk 
of radius Ilxll, it follows that r(x) ::; Ilxll. Notice too that for every ,X E C 
we have r('xx) = I'xlr(x). 

We require the following rudimentary form of the spectral mapping the­
orem. If x is an element of A and f is a polynomial, then 

(1.11) f(a(x)) ~ a(f(x)). 

To see why this is so, fix ,X E a(x)). Since Z M f(z) - f('x) is a polynomial 
having a zero at z = ,x, there a polynomial 9 such that 

f(z) - f(,X) = (z - ,X)g(z). 

Thus 
f(x) - f('x)1 = (x - ,X)g(x) = g(x)(x -'x) 

cannot be invertible: A right (respectively left) inverse of f(x) - f('x)1 gives 
rise to a right (respectively left) inverse of x -'x. Hence f(,X) E a(f(x)). 

As a final observation, we note that for every x E A one has 

(1.12) r(x) :S inf Ilxnll l /n. 
n21 

Indeed, for every ,x E a(x) (1.11) implies that ,Xn E a(xn); hence 

1,Xln = l,Xnl :S r(xn ) :S Ilxnll, 
and (1.12) follows after one takes nth roots. 

The following formula is normally attributed to Gelfand and Mazur, 
although special cases were discovered independently by Beurling. 

THEOREM 1.7.3. For every x E A we have 

lim Ilxnll 1/ n = r(x). 
n-+oo 

The assertion here is that the limit exists in general, and has r(x) as its 
value. 

PROOF. From (1.12) wc have r(x) :S liminfn IlxnI1 1/ n, so it suffices to 
prove that 

(1.13) 
n-+oo 

We need only consider the case x -=f. O. To prove (1.13) choose ,x E C 
satisfying I,XI < 1/r(x) (when r(x) = 0, ,x may be chosen arbitrarily). We 
claim that the sequence {('xx)n : n = 1,2, ... } is bounded. 

Indeed, by the Banach-Steinhaus theorem it suffices to show that for 
every bounded linear functional p on A we have 

n = 1,2, ... , 

where Mp perhaps depends on p. To that end, consider the complex-valued 
function f defined on the (perhaps infinite) disk {z E C : Izl < 1/r(x)} by 

f(z) = P ((1- zx)-l). 
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Note first that f is analytic. Indeed, for Izl < l/IIxil we may expand (1 -
zx)-l into a convergent series 1 + zx + (zx)2 + ... to obtain apower series 
representation for f: 

00 

(1.14) 
n=O 

On the other hand, in the larger region R = {z : 0 < Izl < l/r(x)} we can 
write 

1 
f(z) = -p ((z- l l - X)-l) , 

Z 

and from formula (1.10) it is clear that f is analytic on R. Taken with 
(1.14), this implies that f is analytic on the disk {z : Izl < l/r(x)}. 

On the smaller disk {z : Izl < l/IIxll}, (1.14) gives apower series repre­
sentation for j; but since f is analytic on the larger disk {z : I z I < 1/ r( x) }, it 
follows that the same series (1.14) must converge to j(z) for alllzi < l/r(x). 
Thus we are free to take z = ,\ in (1.14), and the resulting series converges. 
It follo\Vs that p(xn),\n is a bounded sequence, proving the claim. 

Now choose any complex number ,\ satisfying 0 < 1'\1 < l/r(x). By the 
claim, there is a constant M = M),. such that 1,\lnllxlln = II'\xll n ~ M for 
every n = 1,2, .... after taking nth roots, we find· that 

I· 11 nill/n I' M 1
/
n - ~ 1~1~P x ~ l~_}~P 1'\1 - 1'\1' 

By allowingJNto increase to l/r(x) we obtain (1.13). o 
DEFINITION 1.7.4. An element x of a Banach algebra A (with or without 

unit) is called quasinilpotent if 

lim Ilxnll l / n = O. 
n~oo 

Significantly, quasinilpotence is characterized quite simply in spectral 
terms. 

COROLLARY 1. An element x of a unital Banach algebra A is quasinilpo­
tent iff O'(x) = {O}. 

PROOF. xis quasinilpotent {:=:} r(x) = 0 {:=:} O'(x) = {O}. 0 

Exercises. 
(1) Let a}, a2, ... be a sequence of complex numbers such that an -t 0 

as n -t 00. Show that the associated weighted shift operator on f2 

(see the Exercises of Section 1.6) has spectrum {O}. 
(2) Consider the simplex ß n C [0, l]n defined by 

ß n = {(x}, ... ,xn) E [0, l]n: Xl ~ X2 ~ ... ~ xn}. 

Show that the volume of ß n is l/nL Give adecent proof here: For 
example, you might consider the natural action of the permutation 
group Sn 011 the cube [0, l]n and think about how permutations act 
on ß n . 
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(3) Let k(x, y) be a Volterra kernel as in Example 1.1.4, and let K be its 
corresponding integral operator on the Banach space G[O, 1]. Esti­
mate the norms IIKnl1 by showing that there is a positive constant 
M such that for every f E G[O, 1] and every n = 1,2, ... , 

IIKn I11 ~ M~ 11111. n. 
(4) Let K be a Volterra operator as in the preceding exercise. Show 

that for every complex number A ::J 0 and every 9 E G[O, 1], the 
Volterra equation of the second kind K I - AI = 9 has a unique 
solution I E G[O, 1]. 

1.8. Ideals and Quotients 

The purpose of this section is to collect some basic information about ideals 
in Banach algebras and their quotient algebras. We begin with a complex 
algebra A. 

DEFINITION 1.8.1. An ideal in A is linear subspace I ~ A that is invari­
ant under both left and right multiplication, AI + I A ~ I. 

There are two trivial ideals, namely 1= {O} and I = A, and A is called 
simple if these are the only ideals. An ideal is proper if it is not all of A. 

Suppose now that I is a proper ideal of A. Forming the quotient vector 
space AI I, we have a natural linear map x E A f-7 x = X + I E AI I of 
A onto AI I. Since I is a two-sided ideal, one can unambiguously define a 
multiplication in AI I by 

(x + 1) . (y + 1) = xy + I, x,y E A. 

This multiplication makes AI I into a complex algebra, and the natural map 
x f-7 X becomes a surjective hornomorphism of cornplex algebras having the 
given ideal I as its kerne!. 

This information is conveniently summarized in the short exact sequence 
of complex algebras 

(1.15) o -+ I -+ A -+ AI I -+ 0, 

the map of I to A being the inclusion map, and the map of A onto AI I be­
ing x f-7 X. A basic philosophical principle of rnathematics is to determine 
what information about A can be extracted from corresponding information 
about both the ideal land its quotient AI I. For example, suppose that A 
is finite-dimensional as a vector space over C. Then both I and AI I are 
finite-dimensional vector spaces, and from the observation that (1.15) is an 
exact sequence of vector spaces and linear maps one finds that the dimen­
sion of A is determined by the dimensions of the ideal and its quotient by 
way of dim A = dirn I + dirn AI I (see Exercise (1) below). The methods of 
homological algebra provide refinements of this observation that allow the 
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computation of more subtle invariants of algebras (such as K-theoretic in­
variants), which have appropriate generalizations to the category of Banach 
algebras. 

PROPOSITION 1.8.2. Let A be a Banach algebra with normalized unit 1 
and let I be a proper ideal in A. Then for every z E I we have 111 + zll 2: 1. 
In particular, the closure of a proper ideal is a proper ideal. 

PROOF. If there is an element z E I with 111 +zll < 1, then by Theorem 
1.5.2 z must be invertible in A; hence 1 = z-l Z E I, which implies that I 
cannot be a proper ideal. The second assertion follows from the continuity 
of the norm; if 111 + zll 2: 1 for all z E I, then 111 + zll 2: 1 persists for all z 
in the closure of I. 0 

RE MARK 1.8.3. If I is a proper closed ideal in a Banach algebra A with 
normalized unit 1, then the unit of AI I satisfies 

Ilill = inf 111 + zll = 1; 
zEI 

hence the unit of AI I is also normalized. More significantly, it follows that 
a uni tal Banach algebra A with normalized unit is simple iff it is topolog­
ically simple (Le., A has no nontrivial closed ideals; see the corollary of 
Theorem 1.8.5 below). That assertion is false for nonunital Banach alge­
bras. For example, in the Banach algebra /C of all compact operators on 
the Hilbert space €2, the set of finite-rank operators is a proper ideal that is 
dense in /C. Indeed, /C contains many proper ideals, such as the ideal C2 of 
Hilbert-Schmidt operators that we will encounter later on. Nevertheless, /C 
is topologically simple (for example, see [2], Corollary 1 of Theorem 1.4.2). 

More generally, let I be a closed ideal in an arbitrary Banach algebra A 
(with or without unit). Then Aj I is a Banach space; it is also a complex 
algebra relative to the multiplication defined above, and in fact it is a Banach 
algebra since for any x, y E A, 

II±yll = inf Ilxy + zll:::; inf Ilxy + XZ2 + ZlY + ZlZ211 
zEI Zl,Z2EI'..' 

EI 

= inf II(x + zt)(x + z2)11 :::; II±IIIIYII· 
Zl,Z2EI 

Notice, too, that (1.15) becomes an exact sequence of Banach algebras and 
continuous homomorphisms. If 7r : A -+ AI I denotes the natural surjective 
homomorphism, then we obviously have 117r1l :::; 1 in general, and 117r1l = 1 
when A is unital with normalized unit. 

The sequence (1.15) gives rise to a natural factorization of homomor­
phisms as follows. Let A, B be Banach algebras and let w : A -+ B be a 
homomorphism of Banach algebras (a bounded homomorphism of the un­
derlying algebraic structures). Then ker w is a closed ideal in A, and there 
isa unique homomorphism w : Ajkerw -+ B such that for all x E A we 
have w{x) = w(x + kerw). The properties of this promotion of w to ware 
summarized as follows: 
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PROPOSITION 1.8.4. Every bounded homomorphism 01 Banach algebras 
w : A -+ B has a unique lactorization w = w 0 7r, where w is an injec­
tive homomorphism 01 A/kerw to Band 7r : A -+ A/kerw is the natural 
projection. One has Ilwll = Ilwll. 

PROOF. The assertions in the first sentence are straightforward, and we 
prove Ilwll = Ilwll. Prom the factorization w = W07r and the fact that 117r1l ::; 1 
we have Ilwll ::; Ilwll; the opposite inequality follows from 

Ilw(x)11 = Ilw(x)11 = Ilw(x + z)11 ::; Ilwllllx + zll, z E kerw, 

after the infimum is taken over all z E ker w. o 
Before introducing maximal ideals, we review some basic principles of 

set theory. A partially ordered set is a pair (S, ::;) consisting of a set Sand a 
binary relation ::; that is transitive (x ::; y, y ::; z ===;. x::; z) and satisfies 
x ::; y ::; x ===;. x = y. An element x E S is said to be maximal if there 
is no element y E S satisfying x ::; y and y i= x. A linearly ordered subset 
of S is a subset L ~ S for which any two elements x, y E L are related by 
either x ::; y or y ::; x. The set C of all linearly ordered subsets of S is itself 
partially ordered by set inclusion. 

The Hausdorff maximality principle makes the assertion that every par­
tially ordered set has a maximallinearly ordered subset; that is, the partially 
ordered set C has a maximal element. Zorn's lemma makes the assertion 
that every partially ordered set S that is inductive, in the sense that every 
linearly ordered subset of S has an upper bound in S, must contain a maxi­
mal element. While the maximality principle appears to be rat her different 
from Zorn's lemma, they are actually equivalent in any model of set theory 
that is appropriate for functional analysis. Indeed, both Zorn's lemma and 
the maximality principle are equivalent to the axiom of choice. Our experi­
ence has been that most proofs in functional analysis that require the axiom 
of choice, or some reformulation of it in terms of transfinite induction, usu­
ally run more smoothly (and are simpler) when they are formulated so as 
to make use of Zorn's lemma. That will be the way such things are handled 
throughout this book. 

An ideal M in a complex algebra A is said to be a maximal ideal if it 
is a maximal element in the partially ordered set of all proper ideals of A. 
Thus a maximal ideal is a proper ideal M ~ A with the property that for 
any ideal N ~ A, 

M~N ===;. N=M or N=A. 

Maximal ideals are particularly useful objects when one is working with 
unital Banach algebra.<;. 

THEOREM 1.8.5. Let A be a uni tal Banach algebra. Then every maximal 
ideal of A is closed, and every proper ideal 0/ A is contained in some maximal 
ideal. 
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PROOF. For the first assertion, let M be a maximal ideal of A. Remark 
1.8.3 implies that the unit 1 cannot belong to the closure M of M; hence 
M is a proper ideal of A. Since M ~ M, maximality of M implies that 
M = M is closed. 

Suppose now that I is some proper ideal of A, and consider the set P 
of aIl proper ideals of A that contain I. The family of sets P is partiaIly 
ordered'in the natural way by set inclusion, and we claim that it is inductive 
in the sense that every linearly ordered subset C = {Jo; : Q E S} of P has 
an upper bound in P. Indeed, the union Uo;Jo; is an ideal in A because it is 
the union of a linearly ordered family of ideals. It cannot contain the unit 
1 of A because 1 ~ Jo; for every Q E S. Hence Uo;Jo; is an element of P as 
weIl as an upper bound for C. 

Zorn's lemma implies that P has a maximal element M, and M is a 
proper ideal that contains I. It is a maximal ideal because if N is any ideal 
containing M, then N must contain land hence N E P. Since M is a 
maximal element of P, we conclude that M = N. 0 

COROLLARY 1. A uni tal Banach algebra is simple iff it is topologicaIly 
simple. 

Exercises. 

(1) Review 01 linear algebra. Let V and W be finite-dimensional vector 
spaces over C and let T : V -t W be a linear map satisfying 
TV = W, and having kernel K = {x E V: Tx = O}. Then we have 
a short exact sequence of vector spaces 

o --+ K --+ V --+ W --+ O. 

Show that dirn V = dimK + dirn W. Your proof should proceed 
from the definition of the dimension of a finite-dimensional vector 
space as the cardinality of any basis for it. 

(2) More linear algebra. For n = 1,2, ... , let Vi, V2, ... ,Vn be finite­
dimensional vector spaces and set Vo = Vn+1 = 0 (the trivial vector 
space). Suppose that for each k = 0, 1, ... , n we have a linear map 
of Vk to Vk+1 such that the associated sequence of vector spaces 

o --+ VI --+ Vi! --+ ... --+ Vn --+ 0 

is exact. Show that :L:Z=I ( _1)k dirn Vk = O. 
(3) Show that every normed linear space E has a basis B ~ E consisting 

of unit vectors, and deduce that every infinite-dimensional normed 
linear space has a discontinuous linear functional 1 : E -t C. Re­
call that a basis for a vector space V is a set of vectors B with 
the following two properties: every finite subset of B is linearly in­
dependent, and every vector in V is a finite linear combination of 
elements of B. 

(4) Let A be a complex algebra and let I be a proper ideal of A. Show 
that I is a maximal ideal iff the quotient algebra AI I is simple. 
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(5) Let A be a unital Banach algebra, let n be a positive integer, and 
let w : A ~ Mn be a homomorphism of complex algebras such that 
w(A) = Mn, Mn denoting the algebra of all n x n matrices over C. 
Show that w is continuous (where Mn is topologized in the natural 
way by Cn\ Deduce that every linear functional f : A ~ C 
satisfying f (xy) = f (x) f (y), x, Y E A, is continuous. 

1.9. Commutative Banach Algebras 

We now work out Gelfand's generalization of the Fourier transform. Let 
A be a commutative Banach algebra with unit 1 satisfying 11111 = 1. We 
consider the set hom(A, C) of all homomorphisms w : A -+ C. An element 
w E hom(A, C) is a complex linear functional satisfying w(xy) = w(x)w(y) 
for all x, y E A; notice that we do not assume that w is continuous, but as 
we will see momentarily, that will be the case. The Gelfand spectrum of A 
is defined as the set 

sp(A) = {w E hom(A, C) : w =f. O} 

of all nontrivial complex homomorphisms of A. It is also called the maximal 
ideal space of A, since there is a natural bijection of sp(A) onto the set of 
all maximal ideals of A (see Exercise (2) below). 

REMARK 1.9.1. Every element w E sp(A) satisfies w(l) = 1. Indeed, 
for fixed w the complex number A = w(l) satisfies AW(X) = w(l . x) = w(x) 
for every x E A. Sinee the set of eomplex numbers w(A) must eontain 
something other than 0, it follows that A = 1. 

REMARK 1.9.2. Every element w E sp(A) is eontinuous. This is an 
immediate eonsequenee of the ease n = 1 of Exercise (5) of the preeeding 
seetion, but perhaps it is better to supply more detail. Indeed, we claim 
that Ilwll = 1. For the proof, note that kerw is an ideal in A with the 
property that the quotient algebra AI ker w is isomorphie to the field of 
eomplex numbers. Henee ker w is a maximal ideal in A. By Theorem 1.8.5, 
it is closed. Beeause of the decomposition w = w 0 1r where 1r is the natural 
homomorphism of A onto AI ker wand w is the linear map between the two 
one-dimensional Banach spaces AI kerw and C given by w(Ai) = Aw(l) = A, 
we have Ilwll = 1. Henee Ilwll ::; Ilwllll1r11 ::; 1. The opposite inequality is 
clear from Ilwll ~ Iw(l)1 = 1. 

With these observations in hand, one can introduce a topology on sp(A) 
as follows. We have seen that sp(A) is a subset of the unit ball of the dual A' 
of A, and by Alaoglu's theorem the latter is a compact Hausdorff space in its 
relative weak*-topology. Thus sp(A) inherits a natural Hausdorff topology 
as a subspaee of a eompact Hausdorff space. 

PROPOSITION 1.9.3. In its relati~e weak* -topolagy, sp(A) is a campact 
HausdarJJ space. 
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PROOF. n suffiees to show that sp(A) is a weak*-closed subset of the 
unit ball of the dual of A. Notice that a linear functional f : A ~ C belongs 
to sp(A) Hf IIfll $ 1, f(l) = 1, and f(yz) = f(y)f(z) for all y, z E A. These 
eonditions obviously define a weak* -closed subset of the tinit ball of AI. 0 

REMARK 1.9.4. The Gelfand map. Every element x E A gives rise to a 
functiön x : sp(A) ~ C by way of x(w) = w(x), w E sp(A); xis ealled the 
Gelfand transform of x, and x H xis ealled the Gelfand map. The functions 
x are eontiuuous by definition of the weak*-topology on sp(A). For x, y E A 
we have 

x(w)fj(w) = w(x)w(y) = w(xy) = XY(w). 
Moreover, sinee every element w of sp(A) satisfies w(l) = 1, it follows that 
i is the eonstant function 1 in C(sp(A)). It follows that the Gelfand map is 
a homomorphism of A onto a unital subalgebra of C(sp(A)) that separates 
points of sp(A). The previous remarks also imply that Ilxll oo ::; Ilxll, xE A. 

Most signifieantly, the Gelfand map exhibits speetral information about 
elements of A in an expIicit way. 

THEOREM 1.9.5. Let A be a commutative Banach algebra with unit. Por 
every element xE A, we have 

a(x) = {x(p) : p E sp(A)}. 

PROOF. Sinee for any x E A and A E C, ;;=-x = x - A and a(x - A) = 
a(x) - A, it suffices to establish the following assertion: An element x E A 
is invertible iff x never vanishes. 

Indeed, if x is invertible, then there is a y E A such that xy = 1; henee 
x(w)fj(w) = xy(w) = 1, w E sp(A), so that x has no zeros. 

Conversely, suppose that x is a noninvertible element of A. We must 
show that there' is an element w E sp(A) such that w(x) = O. For that, 
eonsider the set xA = {xa : a E A} ~ A. This set is an ideal that does not 
contain 1. By Theorem 1.8.5, xA is eontained in some maximal ideal M ~ A, 
neeessarily closed. We will show that there is an element w E sp(A) such that 
M = kerw. Indeed, AlM is a simple Banach algebra with unit; therefore 
it has no nontrivial ideals at all. Sinee AlM is also eommutative, this 
implies that AlM is a field (for any nonzero element ( E AlM, ( . AlM is a 
nonzero ideal, whieh must therefore contain the unit of AlM). By Corollary 
1 of Theorem 1.6.3, AlM is isomorphie to Co Choosing an isomorphism 
w : AI M ~ C, we obtain a eomplex homomorphism w : A ~ C by way of 
w(x) = w(x + M). It is clear that kerw = M, and finally x vanishes at w 
beeause x E xA ~ M. 0 

Theorem 1.9.5 provides an effective procedure for computing the spee­
trum of elements of any uni tal commutative Banach algebra A. One first 
identifies the Gelfand spectrum sp(A) in conerete terms as a topological 
space and the Gelfand map of A into C(sp(A)). Onee these ealculations 
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have been carried out, the spectrum of an element x E A is exhibited as 
the range of values of x. In the following section we discuss two important 
examples that illustrate the method. 

Exercises. In the first four exercises, Adenotes a commutative Banach 
algebra with unit. 

(1) Show that if Ais nontrivial in the sense that A i- {O} (equivalently, 
1 i- 0), one has sp(A) i- 0. 

(2) Show that the mapping W E sp(A) -+ kerw is a bijection of the 
Gelfand spectrum onto the set of a11 maximal ideals in A. For this 
reason, sp(A) is often ca11ed the maximal ideal space of A. 

(3) Show that the Gelfand map is an isometry Hf IIx2 11 = IIxl1 2 for every 
xE A. 

(4) The radical of A is defined as the set rad(A) of a11 quasinilpotent 
elements of A, 

rad(A) = {x E A: lim Ilxnll l /n = o} . 
n ..... oo 

Show that rad(A) is a closed ideal in A with the property that 
Ajrad(A) has no nonzero quasinilpotents (such a commutative Ba­
nach algebra is ca11ed semisimple). 

(5) Let A and B be commutative unital Banach algebras and let f) : 

A -+ B be a homomorphism of the complex algebra structures such 
that f)(IA) = IB. Do not assume that f) is continuous. 
(a) Show that f) induces a continuous map 0 : sp(B) -+ sp(A) by 

way of O(w) = wo f). 
(b) Assuming that B is semisimple, show that f) is necessarily 

bounded. Hint: Use the closed graph theorem. 
(c) Deduce that every automorphism of a commutative unital 

semisimple Banach algebra is a topological automorphism. 

1.10. Examples: C(X) and the Wiener Algebra 

We now look more closely at two important examples of commutative Ba­
nach algebras. Fo11owing the program described above, we calculate their 
maximal ideal spaces, their Gelfand maps, and describe an application of 
the method to prove a classical theorem of Wiener on absolutely convergent 
Fourier series. 

EXAMPLE 1.10.1. C(X). The Gelfand spectrum of the Banach algebra 
A = C(X) of a11 continuous functions on a compact Hausdorff space X can 
be identified with X in the following way. Every point p E X determines a 
complex homomorphism wp E sp(C(X)) byevaluation: 

wp(f) = j(p), jE C(X). 

The map p I---t wp is obviously one-to-one, and it is continuous by definition 
of the weak*-topology on the dual space of C(X). The work amounts to 
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showing that every W E Sp(C(X)) arises in this way from some point of 
X. The method we use is based on a characterization of positive linear 
functionals on C(X) in terms of an extremal property of their norm (Lemma 
1.10.3). This is a useful technique for other purposes, and we will see it again 
in Chapter 4. 

REMARK 1.10.2. Every compact convex set K ~ C is the intersection of 
all closed half-spaces that contain it. It is also true that K is the intersection 
of all closed disks that contain it. Equivalently, if Zo E C is any point not 
in the closed convex hull of K, then there is a disk D = Da,R = {z E C : 
Iz - al :::; R} such that K ~ D and Zo i= D. The reader is encouraged to 
draw a picture illustrating this geometrie fact. 

LEMMA 1.10.3. Let p be a linear functional on C(X) satisfying Ilpll = 
p(l) = 1. Then, for every f E C(X), 

pU) E conv f(X), 

convf(X) denoting the closed convex hull of the range of f. 
In particular, if f* denotes the complex conjugate of fE C(X), then we 

have pU*) = pU)· 

PROOF. Fix 1 E C(X). In view of Remark 1.10.2, to prove the first 
assertion it suffices to show that every disk D = {z E C : Iz - al :::; R} that 
contains I(X) must also contain pU); equivalently, 

I/(p) - al :::; R, Vp EX===} IpU) - al :::; R. 

But if I/(p)-al :::; R for every p, then 111 -a·lll :::; R. Since Ilpll = p(1) = 1, 
this implies IpU) - al = IpU - a· 1)1 :::; R, as required. 

For the second assertion, let f = g+ih E C(X) with 9 and h real-valued 
continuous functions. By the preceding paragraph, p(g) and p(h) are real 
numbers; hence pU*) = p(g - ih) = p(g) - ip(h) is the complex conjugate 
of pU) = p(g) + ip(h). 0 

THEOREM 1.10.4. The map pE X H wp E sp(C(X)) is a homeomor­
phism 01 X onto the Gelland spectrumoIC(X). This map identifies X with 
sp(C(X)) in such a way that the Gelland map becomes the identity map 01 
C(X) to C(X). 

In particular, the spectrum ollE C(X) is I(X). 

PROOF. In view of the preliminary remarks above, the proof reduces to 
showing that every complex homomorphism W is associated with some point 
pE X, W = wp • Fixing w, we have to show that 

n {p EX: I(p) = wU)} i= 0. 
fEC(X) 

The left side is an intersection of compact subsets of X; so if it is empty, 
then by the finite intersection property there is a finite set of functions 
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fl, ... , In E C(X) such that 

n 

n{p EX: Ik(p) = w(f)} = 0. 
k=l 

Define g E C(X) by 

n 

g(p) = L Ifk(p) - w(fk)1 2 , pEX. 
k=l 

Then g is obviously nonnegative, and by the choice of fk, it has no zeros on 
X. Hence there is an E > ° such that g(p) ? E, P E X. 

Since Ilwll = w(l) = 1 and g - d ? 0, Lemma 1.10.3 also implies that 
w(g - d) ? 0; hence 

w(g)? E·w(l) = E > 0. 

On the other hand, Lemma 1.10.3 also implies that for each k, 

w(lfk - w(fk)112) =w((fk - w(Jk)l)*(fk - w(Jk)l)) 

=Iw(fk - w(fk)1)1 2 = 101 2 = 0, 

and after summing on k we obtain w(g) = 0, contradieting the preceding 
inequality. 0 

EXAMPLE 1.10.5. The Wien er algebra. Consider the space W of all con­
tlnuous functions on the unit circle whose Fourier series converges absolutely, 
that is, all functions f : 1I' -+ C whose Fourier series have the form 

00 

(1.16) f(ei{}) '" L anein{} , 
n=-oo 

where En lanl < 00. One may verify directly that W is a sub algebra of C(lI') 
(because Cl(Z) is a linear space closed under convolution), which obviously 
contains the constant functions. The algebra of functions W is called the 
Wiener algebra. 

In connection with his study ofTauberian theorems in the 1930s, Norbert 
Wiener carried out a deep analysis of the translation-invariant subspaces 
of the Banach spaces Cl(Z) and Ll(~); notice that since both Z and ~ 
are additive groups, they act naturally as groups of isometrie translation 
operators on their respective LI spaces. For example, the kth translate 
of a sequence (an)nEz in Cl(Z) is the sequence (an-k)nEZ, Among other 
things, Wiener proved that the translates of a sequence (an) E Cl(Z) have 
all of Cl (Z) as their closed linear span iff the function f defined in (1.16) 
never vanishes. He did this by establishing the following key property of the 
algebra W. 

THEOREM 1.10.6. If f E Wand f has no zeros on T, then the reciprocal 
1/ f belangs to W. 
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Wiener's original proof of Theorem 1.10.6 was aremarkable exercise in 
hard classical analysis. Subsequently, Gelfand gave an elegant conceptual 
proof using the elementary theory of Banach algebras, basing the critical 
step on Theorem 1.9.5. We now describe Gelfand's proof. 

Consider the Banach algebra A = (l(Z), with multiplication defined by 
convolution *. The unit of A is the sequence 1 = (en ), where eo = 1 and 
en = 0 for n =I O. We show first that sp(A) can be identified with the unit 
circle 11'. 

Indeed, for every .\ E 11' we can define a bounded linear functional w>. on 
A by 

n=-oo 

Obviously, w>.(1) = 1, and one verifies directly that w>.(a * b) =w>.(a)w>.(b). 
Hence w>. E sp(A). 

We claim that every w E sp(A) has the form w>. for a unique point.\ E 11'. 
To see that, fix w E sp(A) and define a complex number .\ by .\ = w((), 
where ( = ((n) is the sequence (n = 1 if n = 1, and (n = 0 otherwise. Then 
( has unit norm in A, and hence 1.\1 = Iw(()1 ::; 11(11 = 1. Another direct 
computation shows that ( is invertible in A, and its inverse is the sequence 
( = ((n), where (n = 1 for n = -1, and (n = Ootherwise. Since 11(11 = 1 
and IVXI = 11/w(()1 = Iw(ÖI ::; 11(11 = 1, we find that 1.\1 = 1. Notice that 
w = w>.. Indeed, we must have w((n) = An = w>.((n) for every n E Z, (n 
being the unit sequence with a single nonzero component in the nth position. 
Since the set {(n : n E Z} obviously has e1(Z) as its closed linear span, it 
follows that w = w>.. Then .\ = w(() is obviously uniquely determined by w. 

These remarks show that the map .\ t-+ w>. is a bijection of 11' on sp(A). 
The inverse of this map (given by w E sp(A) t-+ w(() E 11') is obviously 
continuous, so by compactness of sp(A) it must be a homeomorphism. Thus 
we have identified sp(A) with the unit circle 11' and the Gelfand map with 
the Fourier transform, which carries a sequence a E (l(Z) to the function 
a E C(11') given by 

00 

a(eiO ) = L aneinO . 
n=-oo 

Having computed sp(A) and the Gelfand map in concrete terms, we 
observe that the range of the Gelfand map {a : a E A} is exactly the Wiener 
algebra W. The proof of Theorem 1.10.6 can now proceed as folIows. Let 
f be a function in W having no zeros on 11' and let a be the element of 
A = e1(Z) having Gelfand transform f. By Theorem 1.9.5, there is an 
element b E A such that a * b = 1; hence ö,(A)b(A) = 1, A E 11'. It follows 
that 1/ f = b E W, as asserted. 

Exercises. Let B be the space of all continuous functions f defined on 
the closed unit disk ~ = {z E C : Izi ::; 1}, which can be represented there 
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by a convergent power series of the form 
00 

j(z) = ~:::>nzn, z E ß, 
n=O 

for some sequence ao, al, a2,··· in C satisfying 2:n lanl < 00. 

(1) Prove the following analogue of Wiener's theorem, Theorem 1.10.6. 
If f E B satisfies f(z) =1= 0 for every z E ß, then 9 = 1/ f belongs 
to B. 

In the following exereise, Z+ denotes the additive semigroup of 
all nonnegative integers. 

(2) Let T be the isometrie shift operator that aets on gl(Z+) by 

T(xo, Xl, X2,"') = (0, Xo, XI, X2, ... ), 

and let a = (ao,al,a2,"') E gl(Z+). Show that the set of trans­
lates {a, Ta, T2a, ... } spans gl(Z+) if and only if the power series 

00 

f(z) = I>nzn , Izl ~ 1, 
n=O 

has no zeros in the closed unit disko Rint: Use the previous exercise. 

1.11. Spectral Permanence Theorem 

Let A be a Banaeh algebra with (normalized) unit; A is not neeessarily 
eommutative. Suppose we also have a Banaeh sub algebra B ~ A of A that 
eontains the unit of A. Then for every element X E B it makes sense to 
speak of the speetrum (J B (X) of X relative to B as well as the spectrum 
(J A (x) of x relative to A. There can be significant differences between these 
two versions of the speetrum of x, and we now diseuss this phenomenon. 

PROPOSITION 1.11.1. Let B be a Banach subalgebra of A that contains 
the unit of A. FOT every element xE B we have (JA(X) ~ (JB(X). 

PROOF. This is an immediate consequence of the fact that invertible 
elements of Bare invertible elements of A. 0 

EXAMPLE 1.11.2. Consider the Banaeh algebra A = C('J[') of eontinuous 
functions on the unit circle, and let B be the Banaeh subalgebra generated 
by the eurrent variable «(z) = z, z E 'J['. Thus B is the closure (in the sup 
norm of 'J[') of the algebra of polynomials 

p(z) = ao + alZ + ... + anzn. 

Let us eompute the two speetra (JA() and (JB(). The discussion of C(X) 
in the previous seetion implies that 

(JA() = «('J[') = 'J['. 

We now show that (JB() is the closed unit disk ß ~ C. Indeed, the 
general principles we have developed for eomputing spectra in commutative 
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Banach algebras imply that, in order to compute O'B((), we should first com­
pute the Gelfand spectrum sp(B). We will identify sp(B) with ß. Indeed, 
for every z E ß the maximum modulus principle implies that 

(1.17) Ip(z)1 ~ sup Ip(A)I· 
1>'1=1 

It follows that the linear functional Wz on B defined on polynomials by 
wz(p) = p(z) satisfies IIwzll ~ 1, and hence extends uniquely to a linear 
functional on B, which we denote by the same letter Wz . Obviously, Wz 

belongs to sp(B). The map z E ß t-t Wz E sp(B) is continuous and one-to­
one. It is onto because for every w E sp(B), the complex number z = w(() 
satisfies Izl = Iw(()1 ~ 11(11 = 1, and it has the property that that w(p) = 
p(z) = wz(p) for every polynomial p. Hence w = Wz on B. 

Having identified sp(B) with ß and observing that ( is identified with 
the current variable ((z) = z, z E ß, we can appeal to Theorem 1.9.5 to 
conclude that O'B(() = ß. 

The following result is sometimes called the spectral permanence theo­
rem, since it implies that points in the boundary of O'B(X) cannot be removed 
by replacing B with a larger algebra. 

THEOREM 1.11.3. Let B be a Banach subalgebra of a unital Banach 
algebra A which contains the unit of A. Then for every x E B we have 

OO'B(X) ~ 0' A(X). 

PROOF. It suffices to show that 0 E 00' B (x) =::} 0 E 0' A (x). Contra­
positively, assurne that 0 =I- 0' A (x) and 0 E 00' B (x). Then x is invertible in A 

and there is a sequence of complex numbers An -+ 0 such that An rJ. O'B(X). 
Thus (x - An) -1 is a sequence of elements of B with the property that, since 
inversion is continuous in A-1, converges to x-I as n ---+ 00. It follows that 
x-I = limn(x - An )-l E 13= B, contradicting the fact that 0 E O'B(X). 0 

One can reformulate the preceding result into a more precise description 
of the relation between O'B(X) and O'A(X) as follows. Given a compact set K 
of complex numbers, a hole of K is defined as a bounded component of its 
complement C \ K. Let us decompose C \ O'A(X) into its connected compo­
nents, obtaining an unbounded component 0 00 together with a sequence of 
holes 0 1, O2, ... , 

Of course, there may be only a finite number of holes or none at all. 
We require an elementary topological fact: 

LEMMA 1.11.4. Let 0 be a connected topological space, and let X be a 
closed subset of 0 such that 0 =I- X =I- O. Then OX =I- 0. 
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PROOF. IfaX = 0, then 0 = int(X) U (0 \ X) is a decomposition 
of 0 into disjoint open sets; hence either int(X) = 0 or X = 0, and hence 
int(X) = 0. But this implies that X = int(X)UaX = 0, a contradiction. 0 

COROLLARY 1. Let lA E B ~ A be as above, let x E A, and let 0 be a 
bounded component of C\OA(X). Then either OnO'B(X) = 0 or 0 ~ O'B(X). 

PROOF. Let 0 be a hole of O'A(X). Consider X = 0 n O'B(X) as a closed 
subspace of the topological space O. Since 0 is an open set in C, the 
boundary aoX of X relative to 0 is contained in 

OO'B(X) ~ O'A(X) ~ C \ O. 

Hence onX = 0. Lemma 1.11.4 implies that either X = 0 or X = 0, as 
asserted. 0 

We deduce the following description of 0' B (x) in terms of 0' A (x). 

COROLLARY 2. Let x E B ~ A be as in the previous theorem. Then 
O'B(X) is obtained from O'A(X) by adjoining to it some (and perhaps none) 
of its holes. 

For example, if 0' A (x) is the unit circle, then the only possibilities for 
O'B(X) are the unit circle and the closed unit disko 

Exercises. 

(1) Let A be a unital Banach algebra, let x E A, and let 0 00 be the 
unbounded component of C \ O'A(X). Show that for every A E 0 00 

there is a sequence of polynomials Pl,P2,'" such that 

lim II(x - A1)-1 - Pn(x)11 = O. 
n---+oo 

(2) Let A be a unital Banach algebra that is generated by {I, x} for 
some x E A. Show that O'A(X) has no holes. 

(3) Deduce the following theorem of Runge. Let X ~ C be a compact 
set whose complement is connected. Show that if f(z) = p(z)/q(z) 
is a rational function (p, q being polynomials) with q(z) t- 0 for 
every z EX, then there is a sequence of polynomials h, h, ... 
such that 

sup If(z) - fn(z)l-+ 0, as n -+ 00. 
zEX 

1.12. Brief on the Analytic Functional Calculus 

The analytic functional calculus provides an effective way of forming new 
operators having specified properties out of given ones, in a very general 
context. We will not have to make use of the analytic functional calculus 
in this book. In this section we describe this calculus in some detail, hut 
refer the reader to other sources (such as [12]) for a treatment that includes 
proofs we have omitted. 
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Let C be a simple closed oriented curve in the complex plane C that 
is piecewise continuously differentiable. We refer to such objects simply 
as oriented curves. Thus, an oriented curve C can be parameterized in 
different ways by continuous functions ':Y : [0, 1] -t C that are piecewise 
continuously differentiable, one-to-oneon [0,1), and periodic 'Y(O) = 'Y(1). 
Every continuous function f on C can be integrated around C by either 
forming a limit of appropriate Riemann sums that respect the orient at ion of 
C, or alternatively by choosing a parameterization 'Y : [0,1] -t r consistent 
with the orientation and setting 

fc f(A) dA = 101 fh(t)h'(t) dt. 

The not ion of integral over C generalizes in a straightforward way to 
vector-valued functions, namely to continuous functions f ·defined on C that 
take values in a Banach space E. Fixing such a function f, one considers 
finite oriented partitions P = ho, 'Y1, ... , 'Yn} of the curve C (that is, parti­
tions of C that are consistent with its orientation). With every such partition 
there is a corresponding Riemann sum 

n 

R(f, P) = L fhk)(-Yk - 'Yk-1), 
k=l 

and the techniques of elementary calculus can be adapted in a straightfor­
ward way to show that the limit of these Riemann sums exists (as the norm 
"Pli = maxk !'Yk - 'Yk-ll of the partition P tends to 0) relative to the norm 
topology of E. See Exercise (1) below. ThiIs one can define 

r f(A) dA = lim R(f, P), Je 111'11-+0 

and one has the estimate 

(1.18) Ilfc f(A) dA 11 ::; fc Ilf(A))11 dlAI ::; ~~g IIf(A)lIf(C), 

f(C) denoting the length of C. It follows that for every bounded linear 
functional p on E we have 

p (fc f(A) dA) = fc p(f(A)) dA. 

Reversing the orientation of C has the effect of replacing Je f(A) dA with 
its negative - Je f(A) dA. Thus we have assigned a clear meaning to the 
integral of a continuous function f : C -+ E as an element of E. 

We also require a few facts about the classical notion of winding number. 
Let C be an oriented curve. Then for every A in C \ C we can define an 
integer [1) 

1 1 dz n(C,A) = -2' --,' 
1n eZ-/\ 
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If A belongs to the bounded component of the complement of C then one 
has n( C, A) = 1 when C is oriented counterclockwise and n( C, A) = -1 
otherwise. On the other hand, n(C, A) = 0 if A belongs to the unbounded 
component of C \ C, regardless of orientation. 

A cycle is an element of the abelian group genera ted by oriented curves, 
subject to the relation C + C* = 0, where C* denotes the curve obtained by 
reversing the orientation of C. To review terminology, let S be a set that 
is endowed with an involutory map s t--t s*, SES, and let G(S) be the 
free abelian group generated by S modulo the subgroup generated by s + s*, 
sES. In more concrete terms, the free abelian group generated by S can be 
realized as the abelian group Z(S) of integer-valued functions n : S -+ Z that 
satisfy n(s) = 0 off some finite subset of S, with the pointwise operations 

(m + n)(s) = m(s) + n(s), sES. 

There is a natural notion of linear combinations of elements of Z(S); for 
p, q E Z and m, nE Z(S), p·m+q·n denotes the function s t--t pm(s)+qn(s). 
If we identify elements of S with their image in Z(S) by way of sES t--t X{s}, 

then the elements of Z(S) are linear combinations of elements of S, 

PI . SI + ... + Pn . Sn, Pk E Z, Sk E S. 

The subgroup H ~ Z(S) generated by elements ofthe form s+s* is identified 
with the subgroup of all functions n E Z(S) satisfying n(s) E 2Z if s* = s 
and n(s*) = n(s) if s* i= s (note that for the example in which S consists 
of oriented curves, the case s* = s never occurs). Letting S denote the coset 
s + H E G(S), then s* = -s, and the most general element of G(S) is a 
linear combination 

PI . SI + ... + Pn . Sn· 
The universal property that follows from this construction asserts that 

every function cfJ from S to an abelian group G that satisfies cfJ( s*) = -cfJ( s) 
for alls can be extended uniquely to a group homomorphism ~ : G(S) -+ G, 
which acts on elements of G(S) as folIows: 

~ (tPk' Sk) = tPk' cfJ(Sk)' 
k=1 k=1 

A cycle can be visualized as a conglomerate of several oriented curves, 
traversed one by one, perhaps several times. Every nonzero cycle r can 
be written as a linear combination r = PI G\ + ... + PnGn with nonzero 
integer coefficients Pb where the Ck are oriented curves with the property 
Ck ~ {Cj , Cj} for k i= j. This expression for r is not unique, but the lack 
of uniqueness is characterized by the simple fact that P . S = -P . s*, P E Z, 
SES. Thus the union of sets CI U' .. U Cn (point sets without orientation) is 
uniquely determined, and we think of this set as the underlying point set of r. 
The empty set is the underlying point set of the zero cycle. Fixing>. E C, the 
set of all cycles that do not contain >. is a subgroup of the group of all cycles 



36 1. SPECTRAL THEORY AND BANACH ALGEBRAS 

(it is the universal group of cycles generated by all oriented curves that do 
not contain A) j hence for every such r there is a well-defined winding number 
n(r, A) E Z defined by general principles as above by taking 4>(C) = n(C, A) 
on oriented curves C. The map r 1-+ n(r, A) is a homomorphism of the 
group of all cycles that do not contain A into Z. 

It is important that cycles, like curves, have well-defined interiors. 

DEFINITION 1.12.1. Let r be a cycle. The interior of r is defined as the 
set of all points A E C \ r such that n(r, A) "# 0, and it is written int(r). 

It is a worthwhile exercise to experiment with this definition. For ex­
ample, consider a cycle r consisting of two concentric circles of different 
radii about the origin. If the outer circle and inner circle have the same 
orientation, then that cycle has interior consisting of all points within the 
outer circle that do not belong to the inner circle. If the two circles have 
opposite orientations, then the interior of the cycle consists of the annular 
region lying between the two circles. 

If we are given an open set U t;;; C, a Banach space E, and a continuous 
function f : U --t E, then we have seen how to define the integral of f over 
any oriented curve C t;;; U. The set of all cycles whose underlying point sets 
are contained in U is also a group with a similar universal property, namely 
the universal group generated by the oriented curves contained in U. Thus 
by general principles we have adefinition of 

1r f(A) dA E E 

for all cydes r ~ U, and this integral satisfies 

( f(A) dA = ( f(A) dA + ( f(>") d>". 
Jrl +r2 Jr1 Jr2 

Finally, we introduce the algebra of locally analytic functions on a· com­
pact subset of C. Let X ~ C be compact. By a locally analytic function on 
X we mean an analytic function f defined on some open set U ;2 X. Two 
such functions f (defined on U ;2 X) and 9 (defined on V ;2 X) are said to 
be equivalent if there is an open set W such that X eWe U n V and the 
restrictions of fand 9 to W agree. The set of equivalence dasses of locally 
analytic functions on X forms a complex algebra, whose unit is the dass of 
the constant function f (z) = 1, z E C. This commutative algebra is denoted 
by A(X). 

We now have an effective not ion of cyde, a notion of the integral of a 
vector-valued function over a cyde contained in the interior of its domain, 
and the notion of an algebra of locally analytic functions A(X) associated 
with a compact set X ~ C. These are the basic constituents of the analytic 
functional calculus, which we now describe. 

Let A be a Banach algebra with normalized unit 1 and fix an element 
a E A with spectrum X = a(a). Given f E A(X) we want to define f(a) 
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in a manner consistent with the Cauchy integral theorem. 1'0 do this we 
choose a cycle r with the following properties: 

• f is analytic on rU int(r). 

• rnX = 0. 
• n(r, z) = 1 for all z EX. 

The first and third conditions together imply that there is a representative 
in the dass of f whose domain contains not only X and r, but also all points 
interior to r. The third condition asserts that the cyde winds around every 
point of X exactly once in the positive direction, allowing for cancellations 
as one moves along the various components of r. 

For example, if X is the unit cirde and f is an analytic function defined 
on some annular region U = {z E C : r < Izl < R} where 0 < r < 1 < R < 
00, one may take r to be the union of two cirdes r k = {Izl = rd, k = 1,2, 
where r < rl < 1 < r2 < R, where r2 is oriented in the counterdockwise 
direction, and r I is oriented dockwise. 

Consider the resolvent function (Al - at l . This is certainly defined for 
all A in an open set containing r, and it is a continuous function with values 
in A. Thus we can define 

(1.19) f(a) = -21 . f f(A)(Al - ar l dA. 
7rZ Jr 

The fact is that f(a) depends on neither the particular choice of r nor 
the choice of representative of f (this is an exercise in the use of the Cauchy 
integral theorem of complex analysis). Moreover, f E A(X) H f(a) is a 
unital homomorphism of complex algebras that has the following property: 
For every power series 

f(z) = Co + CIZ + C2z2 + ... 
converging on some open disk {/z/ < R} containing X, the corresponding 
series co1 + Cla + C2a2 + ... is absolutely convergent relative to the norm of 
A, and we have 

00 

f(a) = L cnan. 
n=l 

The reader is referred to pp. 566-·577 of [12] for furt her detail. 

Exercises. 

(1) Let C be an oriented curve in C, let f be a continuous function 
defined on C taking values in a Banach space E, and consider the 
set of all finite oriented partitions P of C. 
(a) Show that for every f > 0 there is a 8 > 0 with the prop­

erty that for every pair of oriented partitions PI, P2 satisfying 
IIPkll :::; 8 for k = 1,2, one has IIRU, Pt) - RU, P2)1I :::; f. 

(b) Verify the estimate (1.18). 

Let T be a bounded operator on a Banach space E. 
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(2) Let D = {z E C : Izl < R} be an open disk containing a(T). Let 
f: D --+ C be an analytic function defined on D, with power series 

00 

z E D. 
n=O 

Show that the infinite series of operators 
00 

n=O 
converges absolutely in the sense that I:n IcnlllTnll < 00. 

(3) Give adefinition of sin T and cos T using power series. 
(4) Use your definitions in the preceding exercise to show that 

(sin T)2 + (cos T)2 = 1. 



CHAPTER 2 

Operators on Hilbert Space 

We now take up the theory of operators on Hilbert space. It is appropri­
ate to develop this subject within the context of C*-algebras, and the most 
basic properties of C* -algebras, their ideals, quotients, and morphisms, are 
worked out in this chapter. We discuss commutative C*-algebras in detail, 
induding the characterization of C(X), the functional calculus for normal 
operators, and the spectral theorem. Unfortunately, the literature of op­
erator theory contains at least three dissimilar statements that are called 
the spectral theorem. The assertions are that normal operators are associ­
ated with multiplication operators, that they are associated with spectral 
measures, and that they admit a Borel functional calculus. While these 
statements are all in some sense equivalent, only the first of them is a clear 
generalization of the idea of diagonalizing a matrix, and that is the one we 
offer as the proper up-to-date formulation of the spectral theorem. 

Throughout this chapter, Hilbert spaces will be assumed separable or 
finite dimensional. This is an unnecessary restriction, since all the results 
we discuss have appropriate generalizations to the inseparable cases. But 
the formulation of the spectral theorem that we use becomes somewhat 
esoteric for inseparable spaces, and in dealing with traces or Hilbert-Schmidt 
operators, the fact that orthonormal bases {eo: : GY E I} are uncountable 
while the corresponding sums of numbers ~o: IIAeo:I12 have only countably 
many nonzero terms can distract attention from the fundamental issues of 
analysis. In some Cases we offer comments to assist the generalizers in 
carrying out their work. 

2.1. Operators and Their C*-Algebras 

In this section, we discuss the operator-theoretic version of the Riesz lemma, 
we introduce some commonly used terminology, and we discuss the multi­
plication algebra of a measure space. Throughout, H will denote a Hilbert 
space with inner product (~, ",), linear in ~ and antilinear in ",. 

The Riesz lemma asserts that every bounded linear functional f on H 
can be represented uniquely as the inner product with a vector ", E H, 

f(~) = (~,,,,), ~EH; 

moreover, one has 11111 = 11",11. The Riesz lemma implies that the mapping 
1 -+ ", is an antz1inear isometry of the dual of H onto H. 

39 
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Every operator A E B(H) gives rise to a complex-valued function of two 
variables [~, 1]] = (A~, 1]), ~,1] E H. Notice that this form is linear in ~ and 
antilinear in 1]; such bilinear forms are called sesquilinear. The sesquilinear 
form associated with A is also bounded in the sense that there is a positive 
constant C such that I[~, 1]]1 ~ CII~IIII1]11 for all ~,1] E H, and the smallest 
such constant is the operator norm C = IIAII. Frequently, the easiest way to 
define a bounded operator is to specify its sesquilinear form. The following 
result guarantees the existence of a unique operator in such definitions, and 
is also called the Riesz lemma. 

PROPOSITION 2.1.1. Por every bounded complex-valued sesquilinear form 
[.,.] on H there is a unique bounded operator A on H such that 

[~, 1]] = (A~, 1]), ~,1]EH. 

PROOF. Fix a vector ~ E Hand consider the linear functional f defined 
on H by f(1]) = [~, 1]], the bar denoting complex conjugation. Since f is a 
bounded linear functional, the Riesz lemma in its above form implies that 
there is a unique vector A~ E H satisfying f(1]) = (1], A~); and after taking 
the complex conjugate we find that the function A : H --+ H that we have 
defined must satisfy 

[~, rt] = (A~, 1]), ~,1]EH. 

It is straightforward to verify that this formula implies that A is a linear 
transformation. It is bounded because 

sup "A~" = sup I[~, 1]]1 < 00. 
11~1I:9 1I~11:9,II1/II:9 

The uniqueness of the operator A is evident from the uniqueness assertion 
of the Riesz lemma for linear functionals. 0 

Similarly, there is a characterization of bounded operators A E B(H, K) 
from one Hilbert space to another in terms of bounded sesquilinear forms 
[.,.] : H x K --+ C by way ofthe identification [~, 1]] = (A~, 1]), ~ E H, 1] E K. 
Note that the inner product on the right is that of K, not H. 

We immediately deduce the existence of adjoints of bounded operators 
from one Hilbert space to another. When more than one Hilbert space is 
involved there might be confusion about the meaning of inner products; 
when we want to be explicit about which inner product is involved we will 
write (~,'TJ)H for the inner product oftwo vectors ~,'TJ E H. 

COROLLARY 1. Let H, K be Hilbert spaces and let A E B(H, K) be a 
bounded operator from H to K. There is a unique operator A* E B(K, H) 
satisfying 

~ E H, 'TJ E K. 
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PROOF. One simply applies the above results to the bOl)nded sesquilin­
ear form [.,.] defined on K x H by [1],~] = (1], A~) to deduce the existence of 
a unique operator A* E ß(K,H) satisfying (A*1],~)H = (1],A~)K, and then 
takes the complex conjugate of both sides. 0 

The case H = K is of particular importance, since we may deduce 
that for every A E ß(H) there is a unique operator A* E ß(H) such that 
(A~, 1]) = (~, A*1]). The basic properties of the mapping A I--t A* are sum­
marized as follows: 

(1) A** = A. 
(2) (,xA + /LB)* = ~A* + jlB*. 
(3) (AB)* = B* A*. . 
(4) IIA*AII = IIAI1 2 . 

Properties (1), (2), (3) together define an involution in a complex algebra. 
Property (4) is the critical relation between the norm in ß(H) to the invo­
lution. It is the characteristic property of a CO-algebra (see Definition 2.2.1 
below). To verify property (4), note that IIA* All is given by 

sup I(A*A~,1])1 = sup I(A~,A1])I:::; sup IIA~IIIIA1]11 = IIAI1 2 

lIell,II1J1I9 Ilell,II1J119 Ilell,II1J119 

while on the other hand, 

IIAI1 2 = sup (A~,A~) = sup (A*A~,~):::; IIA*AII. 
lIell9 lIell9 

We will also make use of standard terminology for various types of op­
erators A E ß(H). An operator A is called normal if it commutes with its 
adjoint, A* A = AA*. An operator A on H is an isometry Hf (A~, A€) = (€, €) 
for every ~ E Hand in turn this is equivalent to the equation A * A = 1. An 
invertible isometry A is characterized by A* A = AA* = 1 and is called 
a unitary operator. A self-adjoint operator with nonnegative spectrum is 
called a positive operator. It is a nontrivial fact that positivity is charac­
terized by the condition (A~,~) 2: 0 for every ~ E H, as we will see. More 
generally, for two self-adjoint operators A and B one writes A :::; B if B - A 
is positive. Finally, a projection is a self-adjoint idempotent: A2 = A = A*. 

The following elementary facts about the geometry of Hilbert spaces will 
be used freely below: 

(1) Every nonempty closed convex set C in a Hilbert space H has a 
unique element of smallest norm; that is, there is a unique element 
xE C such that Ilxll = inf{llyll : Y E C}. 

(2) Let M be a closed linear subspace of H. Then every vector ~ E H 
has a unique decomposition ~ = 6 + 6 where 6 E M and 6 E 
Ml. = {1] EH: (1],M) = {O}}. 

(3) Let P be any projection in B(H). Then M = {~ EH: P~ = 0 is 
a closed subspace of H. Conversely, every closed subspace of H is 
associated in this way with a unique projection P E ß(H). 
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DEFINITION 2.1.2. A C* -algebra 0/ operators is a norm-closed subalgebra 
A ~ B(H) of the algebra of all bounded operators on some Hilbert space, 
which is also closed under the adjoint operation A* = A. 

There are many examples of such C* -algebras. For example, let S ~ 
B( H) be any nonempty set of operators. The intersection of all C* -algebras 
in B(H) that contain S is called the C*-algebra generated by S, often written 
C* (S). It can be realized in somewhat more concrete terms as follows. 
Consider the set P of all finite products TIT2'" Tn , n = 1,2, ... , where 
Tk E S U S*. The set of all finite linear combinations of elements of P is 
obviously the smallest self-adjoint algebra containing S, and hence its norm­
closure is the C*-algebra generated by S. While this "construction" appears 
to exhibit the elements of C* (S) in a systematic way, it is not very useful 
for obtaining structural information about C* (S), since the nature of the 
limits of such linear combinations has not been made explicit. 

A substantial amount of current work in noncommutative analysis has 
gone into determining the properties and structure of the C* -algebra gener­
ated by a finite set of operators that satisfy certain relations. 

The norm topology on B(H) is inappropriate for topological issues that 
require more flexibility, and B(H) has several useful and natural topologies 
that are weaker than the norm topology. We will have to make use of only 
two of them. In general, a locally convex topology can be defined on a 
complex vector space V by specifying a family S of seminorms on V that 
separates the points of V. Given a finite subset F = {I . h,· .. , I . In} ~ S 
and a positive f, one associates a corresponding subset of V: 

UF,f = {x E V: Ixh < f, ... , Ixln < f}. 
The set of all such U F,f is a basic system of neighborhoods of the origin for 
a unique locally convex Hausdorff topology on V. 

For example, the norm topology is defined by the somewhat degenerate 
family S = {li' II}, where II . II is the operator norm. The weak operator 
topology is defined by the family of seminorms lAI = I(A~, 17)1, ~, 17 ranging 
over all vectors in H. The strang operator topology is defined by the family 
of seminorms lAI = IIA~II, where ~ E H. For example, a net of operators 
An E B(H) converges strongly to 0 if and only if for every ~ E H, 

lim IIAn~11 = O. 
n--HXJ 

A von Neumann algebra is a self-adjoint subalgebra of B(H) that con­
tains the identity operator and is closed in the weak operator topology. 
While it is true that von Neumann algebras are C* -algebras of operators, 
they have many properties that are not shared by more general C* -algebras. 
For example, von Neumann algebras contain enough projections to generate 
them as C* -algebras, while more general unital C* -algebras may contain no 
projections other than the triviaIones 0 and 1. The theory of von Neumann 
algebras has undergone extensive development, and it has a different flavor 
from that of the general theory of C* -algebras. It is appropriate to view 
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the theory of von Neumann algebras as a noncommutative generalization of 
measure theory, and to view the theory of C* -algebras as a noncommutative 
generalization of the theory of topological spaces [8]. 

Let S ~ B(H) be a set of operators. The commutant of S is the set of 
all operators T E B(H) satisfying ST = TS for every SES; it is denoted 
by S'. The commutant of any set of operators is an algebra containing the 
identity operator, and one may easily check that S' is a weakly closed unital 
subalgebra 01 B(H). If S = S* is closed under the involution of B(H), then 
S' is a von Neumann algebra. 

We conclude the section with a discussion of multiplication operators on 
Hilbert spaces associated with measure spaces. Let (X, B, J.t) be a a-finite 
measure space; we suppress explicit reference to the a-algebra of sets B 
unless there is cause for confusion. L2(X, J.t) is a Hilbert space, which may 
or may not be separable; the measure space (X, J.t) is called separable when 
L2(X, J.t) is a separable Hilbert space. Every function I E LOO(X, J.t) gives 
rise to an operator Mj that acts as follows: 

(Mj()(p) = I(p)~(p), pE X, ~ E L2(X,J.t). 

LOO(X, J.t) is a commutative C* -algebra with unit relative to its pointwise 
operations and its essential norm 

1111100 = esssup{ll(p)1 : p EX}. 

In more detail, the involution in LOO(X, J.t) is defined by f*(p) = I(p), pE X; 
the norm is 

1111100 = sup{t > 0 : J.t{p EX: II(p)1 > t} > O}; 

and the involution is related to the norm by 111*11100 = 1I111~· 
THEOREM 2.1.3. For every I E LOO(X,J.t) Mj is a bounded operator on 

L2(X,J.t). The map I H Mj is an isometrie *-isomorphism 01 LOO(X,J.t) 
onto a eommutative C*-algebra 01 operators M ~ ß(H). 

PROOF. The key assertion here is IIMjl1 = 1111100' Indeed, the inequality 
~ is clear from the fact that II (p) I ~ 11 1 11 00 for alm ost every p EX, since 
this entails If . ~I ~ llllIool~1 pointwise almost everywhere for ~ E L2(X, J.t), 
hence 111 . ~1I2 ~ 1l111001l~1I2' For the opposite inequality, assume 1 =I- 0 and 
choose a number e, 0 ~ c < 1111100' The set {p EX: II(p)1 > e} has positive 
measure, so by a-finiteness we can find a subset E ~ {p EX: II(p)1 > e} 
having finite positive measure. Thus XE E L2(X,J.t) and from 

If(p) . XE(p) 1 ~ CXE(p), pE X, 

we obtain IIMjxEl/2 ~ clixEl/2 after squaring and integrating. Since XE is 
not the zero element of L2(X, J.t), IIMjll ~ e. The inequality IIMjll ~ 1111100 
follows after one takes the supremum over such e. 

Obviously, 1 H M j is a homomorphism of algebras that carries the 
unit of LOO(X, J.t) to 1, and one may verify Mj = Mf* directly. The set of 
operators {Mj : / E L OO } is norm-closed because Loo is a Banach space. 0 
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The set of operators M = {M f : 1 E L 00 (X, J.t)} is called the multipli­
cation algebra of the measure space (X, J.t). It is an abelian von Neumann 
algebra, since it is c10sed in the weak operator topology, though that is not 
obvious from what has been said. We will look more c10sely at multiplication 
algebras in Chapter 4. 

Let us now compute the spectra of multiplication operators. Since an 
element of Loo(X, J.t) is not a function but an equivalence c1ass of functions 
that agree almost everywhere, the notion of the range of 1 E Loo(X, J.t) must 
be approached with some care. Choose a representative in the c1ass of 1, 
which we will call f. We can use 1 to define a measure mf on the a-algebra 
of Borel sets in C: 

mf(S) = J.t{p EX: 1(p) ES}, 

It is a straightforward exercise to show that every function g that agrees 
almost everywhere with 1 gives rise to the same measure, mg = mf; hence 
this measure depends only on the equivalence class of 1 as an element of 
Loo(X,J.t). If J.t is a finite measure, then so is mf. But if J.t is only a-finite, 
then mf need not be a-finite; indeed, in such cases points of C can have 
infinite mrmeasure (consider the case of a constant function J). In all 
cases, however, mf is a countably additive measure defined on the Borel 
a-algebra of the complex plane. As such it has a uniquely defined c10sed 
support, defined as follows. By the Lindelöf property, the union G of all 
open subsets of C having mrmeasure zero can be reduced to the union 
of a countable subfamily of open sets of measure zero; hence G satisfies 
mf(G) = O. Obviously, G is the largest open set of mf-measure zero. It 
follows that the complement F = C \ G is a closed set with the following 
property: A complex number ,\ belongs to F if and only if for every € > 0 
we have 

(2.1) J.t{p EX: 11(p) -'\1< €} > O. 

Moreover, every point of the complement of F has a neighborhood of m f­
measure zero. 

The set F is called the essential range of f. To reiterate: ,\ belongs to 
the essential range of 1 if and only if every neighborhood of ,\ has positive 
mrmeasure. The essential range of 1 is a compact set F with the property 
that 

1111100 = sup{I'\1 : ,\ E F}. 

THEOREM 2.1.4. For every 1 E Loo(X, J.t), the spectrum 01 the multipli­
cation operator Mf is the essential range oJ J. 

PROOF. If ,\ does not belong to the essential range of J, then there is 
an € > ° such that {p EX: IJ(p) -'\1 < €} = 0, i.e., IJ(P) -'\1 2: € almost 
everywhere (dp,). It follows that the function 

1 
g(p) = J(p) _ ,\' pE X, 
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belongs to L'~O(X,p), and its multiplication operator Mg is a left and right 
inverse of Mf - Al. 

Conversely, suppose A is a point in the essential range of j. We will 
exhibit a sequence of unit vectors 6,6, ... E L2(X, p) with the property 

lim IIMf~n - A~nll = 0, 
n-too 

showing that A E a(Mf). Indeed, {p EX: Ij(p) - AI ~ l/n} is a set of 
positive measure for every n = 1,2, ... , and using a-finiteness of p we find 
a subset 

En ~ {p EX: I f (p) - A I ~ 1/ n } 

satisfying 0 < p(En) < 00. Letting ~n be the unit vector p(En)-1/2XEn one 
has 

pEX, 

and hence IIU - A)~nIIL2 ~ l/n tends to 0 as n ~ 00. o 

Exercises. 

(1) Let [.,.] : H x H ~ C be a sesquilinear form defined on a Hilbert 
space H. Show that [., .] satisfies the polarization formula 

3 

4[~,T}] = I>k [~+ikT},~+ikT}]. 
k=O 

(2) Let A E ß(H) be a Hilbert space operator. The quadratic form 
of A is the function qA : H ~ C defined by qA(~) = (A~, ~). The 
numerical range andnumerical radius of A are defined, respectively, 
by 

W(A) = {qA(~) : II~II = I} ~ C, 

w(A) = SUP{lqA(OI : II~II = I}. 

(a) Show that A is self-adjoint iff qA is real-valued. 
(b) Show that w(A) ~ IIAII ~ 2w(A) and deduce that qA = qB 

only when A = B. Hint: Polarize. 
(3) Show that the adjoint operation A t-+ A* in ß(H) is weakly con­

tinuous but not strongly continuous. Hint: Consider the sequence 
of powers of the unilateral shift S, S2, S3, .... 

(4) Show that the only operators that commute with all operators in 
ß(H) are the scalar multiples of the identity. 

(5) Let C be the closure in the strong operator topology of the set of 
all unitary operators in ß(H). Show that C consists of isometries. 

(6) Show that the unilateral shift S belongs to C by exhibiting a se­
quence of unitary operators Ul, U2,'" that converges to S in the 
strong operator topology. Hint: Consider the matrix of S relative 
to the obvious basis, and look for unitary matrices that strongly 
approximate large n x n blocks of it. 
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(7) Let (X,J1.) be a a-finite measure space and let f : X ~ C be a 
bounded complex-valued Borel function. Show that the essential 
range of f can be characterized as the intersection 

of the closed ranges of all bounded Borel functions 9 : X ~ C that 
agree with falmost everywhere (dJ1.). 

2.2. Commutative C* -Algebras 

DEFINITION 2.2.1. A C*-algebra is a Banach algebra A that is endowed 
with an involution x f----t x* satisfying IIx*xll = IIxll2 for every x E A. 

More explicitly, the involution * is an antilinear mapping of A into itself 
that satisfies (xy)* = y*x*, x** = x, and is related to the norm of A by 
the asserted formula. C* -algebras need not contain a unit. Any norm­
closed self-adjoint subalgebra A of B(H) is a C*-algebra, as we have seen 
in the previous section. On the other hand, abstract C* -algebras are not 
necessarily associated with operators on any specific Hilbert space. 

We now show that every commutative C* -algebra with unit is isomet­
rically *-isomorphic to the algebra C(X) of all complex-valued continuous 
functions on a compact Hausdorff space X. A similar result holds for nonuni­
tal commutative C* -algebras, provided that one is willing to replace X with 
a locally compact Hausdorff space and C(X) with the algebra of continuous 
functions vanishing at infinity. We will confine attention to the unital case 
here; the nonunital generalization can be found in [2], for example. 

This C* -algebraic characterization of spaces has led analysts to think 
of noncommutative C* -algebras as noncommutative generalizations of topa­
logical spaces, and of problems concerning the classification of these alge­
bras up to *-isomorphism as a noncommutative generalization of (algebraic) 
topology. For example, the K-theory of spaces developed by Grothendieck, 
Atiyah, Bott, and others during the period 1955-1965 has now been general­
ized to C* -algebras in a way that provides effective tools for the computation 
of these invariants [8]. Indeed, contemporary work on the classification of 
simple C* -algebras has led to the expectation that the most important sim­
ple C* -algebras are completely determined by their K -theory! Since very 
different topological spaces can have the same K-theory, this is an aspect of 
"noncommutative topology" that is entirely new and has no counterpart in 
the classical theory of topological spaces. 

We begin with abrief discussion of the exponential map in a (perhaps 
noncommutative) unital Banach algebra A. For every element x E A the 
exponential of x is defined by 

(2.2) 
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Notice that this series converges absolutely, since 

and we have the estimate Ilexll ~ elIxii. Obviously, eO = 1. 

REMARK 2.2.2. Rearranging products oj series. Let ao, al, a2, . .. and 
bo,bl ,b2, ... be two sequences of elements of A such that L:n Ilanll < 00, 

L:n Ilbnll < 00, and let x = L:n an, y = L:n bn . Then the product xy is 
given by the series xy = L:n Cn, where 

(2.3) n = 0,1,2, ... , 

the series L:n Cn being absolutely convergent in the sense that L:n Ilcnll < 00. 

The proof is an instructive exercise in making estimates, and is left for the 
reader in Exercise (1) below. 

PROPOSITION 2.2.3. Let x, y be elements oj a uni tal Banach algebra A 
satisjying xy = yx. Then eX+Y = eX eY . 

PROOF. Using formula (2.3), we have 

00 1 1 00 ( 1 ) eXeY = L ,xP,yq = L L -,-,xPyq . 
p,q=O p. q. n=O p+q=n p.q. 

Since xy = yx, the proof of the binomial theorem applies here to give 

n (n) 1 (x + y)n = L k xkyn-k = n! L !!xPyq ; 
k=O p+q=n p q 

hence the right side of the preceding formula becomes 

00 1 L ,(x + yt = eX +Y• 
n. n=O 

o 

Much of the terminology introduced in the preceding section can be 
applied to abstract C* -algebras as weil as C* -algebras of operators. For 
example, a normal element of a C* -algebra is an element that commutes 
with its adjoint, and a unitary element of a unital C* -algebra is an element 
u satisfying u*u = uu* = 1. A unitary element has norm 1, since IIul12 = 
Ilu*ull = 11111 = 1. 

THEOREM 2.2.4. Let A be a eommutative C* -algebra with unit, and let 
X = sp(A) be the Gelfand spectrum of A. Then the Gelfand map is an 
isometrie *-isomorphism of A onto C(X). 
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PROOF. We show first that every W E sp(A) preserves the adjoint in the 
sense that w(x*) = w(x), xE A. Since every xE A can be written uniquely 
in the form x = Xl + iX2 where Xl and X2 are self-adjoint, it suffices to 
show that w(x) is real for any self-adjoint element x E A. To prove this, fix 
x = x* E A, fix t E lR, and consider the exponential 

00 Ct)n 
Ut = eitx = L _z_,_xn . 

n=O n. 

Notice that 

00 Ct)n 00 Ct)n 
(2.4) w(Ut) = ,,_z -w(xn) = ,,_z -w(x)n = eitw(x). 

L..J n! L..J n! 
n=O n=O 

Note, too, that Ut is unitary. Indeed, by inspection of the exponential series 
(noting that tn is real and xn is self-adjoint for every n ~ 0), we have 
u; = e-itx , and hence U;Ut = e-itxeitx = eO = 1 by Proposition 2.2.3. 
Similarly, UtU; = 1. It follows that Ilutll = 1, and thus Iw(ut)1 ::; Ilwll = 1 for 
every t E lR. Using formula (2.4) and the fact that R(itw(x)) = -t<sw(x) , 
we find that 

tE lR. 

Since t E lR is arbitrary, this implies that the imaginary part of w(x) must 
vanish, proving that w( x) is real. 

This shows that the Gelfand map of A to C(X) is self-adjoint in the sense 
that the Gelfand transform of x* is the eomplex eonjugate of the function 
X, for every x E A. It follows that {x: X E A} is a self-adjoint subalgebra 
of C(X) that separates points and eontains the eonstant funetions. The 
Stone-Weierstrass theorem implies that {x : x E A} is norm-dense in C(X). 

We eomplete the proof by showing that the Gelfand map is isometrie. 
We claim first that for x E A, //x2 11 = //xI1 2• Indeed, using the formula 
//z* zll = IIzl1 2 and the faet that x* eommutes with x we have 

II x2 11 = II(x2)*x2111/2 = Ilx*xx*x// 1/ 2 = II(x*x)211 1/ 2 = //x*xll = Ilx//2. 

Replacing x with x2 gives Ilx4 // = Ilx11 4 , and after furt her iteration 

n = 1,2, .... 

The Gelfand-Mazur formula for the speetral radius (Theorem 1.7.3) implies 

Ilxll = IIx2nlll/2n = lim Ilx2nlll/2n = r(x), 
n-too 

while from Theorem 1.9.5, we have 

r(x) = sup{I'\1 : ,\ E a(x)} = sup{lx(w) I : w E sp(A)} = IIxll oo , 

and henee the asserted formula Ilxll = //x// oo . o 
COROLLARY 1. Let A be a (perhaps noneommutative) unital C*-algebra. 

Then the spectrum of any self-adjoint element x of A is real. 
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PROOF. Choose an element x = x* of A, and let B be the norm-closure 
of the set of all polynomials in x. Then B is a commutative C* -subalgebra 
of A that contains the unit of A, hence OA(X) ~ O"B(X). On the other hand, 
Theorem 2.2.4 implies that w(x) is real for every w E sp(B), and hence 
SPA(X) ~ O"B(X) = {w(x) : w E sp(B)} ~ IR. 0 

The following result strengthens the spectral permanence theorem for 
the category of C* -algebras: 

COROLLARY 2. Let A be a unital C* -algebra and let B ~ A be a C*­
subalgebra of A that contains the unit of A. Then for every x E B we have 
O"B(X) = O"A(X). In particular, for every self-adjoint x E A, 

Ilxll = r(x). 

PROOF. We know that O"A(X) ~ CTB(X) in general, and to prove the 
opposite inclusion it suffices to show that for any element x E B which is 
invertible in A one has x-I E B. 

Fix such an x. Then x'x is a self-adjoint element of B that is also 
invertible in A. By the preceding corollary, CT B (x' x) is real. In particular, 
every point of CTB(X'X) is a boundary point. By Theorem 1.11.3, CTB(X'X) = 
8CTB(X'X) ~ CTA(X·X). Since 0 rf. CTA(X'X), 0 rf. CTB(X'X), and hence x'x is 
invertible in B, equivalently, (X'x)-I E B. Obviously, (X*X)-IX' is a left 
inverse of Xi hence x-I = (x'x)-Ix* must belong to B. 

The assertion that Ilxll = r(x) follows after an application of Theorem 
2.2.4 to the C' -subalgebra of A generated by x and 1. 0 

Thus we may compute the spectrum of a Hilbert space operator T rel­
ative to any C'-algebra that contains T and the identity. In particular, 
we may restrict attention to the unital C'-algebra generated by T. This 
is particularly useful in dealing with normal operators, since in those cases 
the generated C' -algebra is commutative. We will pursue applications to 
normal operators in the following section. 

Exercises. 

(1) Prove the assertions made in Remark 2.2.2. 
(2) Let A be a C' -algebra. 

(a) Show that the involution in A satisfies Ilx'll = Ilxll. 
(b) Show that if A contains a unit 1, then 11111 == 1. 

In the following exercises, X and Y denote compact Hausdorff 
spaces, and B : C(X) --t C(Y) denotes an isomorphism of com­
plex algebras. We do not assume continuity of B: 

(3) Let p E Y. Show that there is a unique point q E X such that 

Bf(p) = f(q), fE C(X). 
(4) Show that there is a homeomorphism 4J : Y --t X such that Bf = 

f 0 4J. Hint: Think in terms of the Gelfand spectrum. 
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(5) Conclude that (J is necessarily a self-adjoint linear map in the sense 
that (J(f*) = (J(f)*, fE C(X). 

(6) Formulate and prove a theorem that characterizes unital algebra 
homomorphisms (J : C(X) --+ C(Y) in terms of certain maps <p : 
Y --+ X. Which maps <p give rise to isomorphisms? 

In the remaining exercises, let H be a Hilbert space and let 
T E ß(H)-l be an invertible operator. Define (J : ß(H) --+ ß(H) 
by 

(J(A) = TAT-I, A E ß(H). 

(7) Show that (J is an automorphism of the Banach algebra structure 
of ß(H). 

(8) Show that the map (J : ß(H) --+ ß(H) of the preceding exercise 
satisfies (J(A*) = (J(A)* for all A E ß(H) if and only if T is a scalar 
multiple of a unitary operator. 

2.3. Continuous Functions of Normal Operators 

One can reinterpret Theorem 2.2.4 so as to provide a powerful functional 
calculus for normal operators. Sometimes this functional calculus is referred 
to as a weak form of the spectral theorem, or even as the spectral theorem 
itself; but that is a half-truth at best. The spectral theorem proper will be 
taken up in Section 2.4. 

Throughout this section T will denote a normal operator on a Hilbert 
space H. The spectrum of T is a compact subset X of the complex plane, 
and by the Stone-Weierstrass theorem polynomials in z and Z of the form 

N 

(2.5) f(z) = L Cmn zmzn , zEX, 
m,n=O 

form a unital self-adjoint subalgebra of C(X) that is norm-dense in C(X). 
Given such a function f (or more properly, given the set of coefficients 
{Cmn : 0 :S m, n :S N}), one can write down a corresponding operator 

N 

(2.6) f(T) = L cmnrmT*n. 
m,n=O 

Notice that this much could have been done even if the operator T were not 
normal, since we have been explicit about the order of the factors Tm and 
Tm on the right side of (2.6). However, for nonnormal operators f H f(T) 
is not a well-defined map of functions on X to ß(H), even for holomorphic 
polynomials f(z) = ao + alZ + ... + aNzN (one can easily see why this is 
so by considering the case of nilpotent 2 x 2 matrices acting as operators on 
1(:2). 

But for normal operators, we have: 



2.3. CONTINUOUS FUNCTIONS OF NORMAL OPERATORS 51 

THEOREM 2.3.1. Let T E ß(H) be a normal operator with speetrum 
X ~ C. Then the map that earries polynomials f of the form (2.5) to 
operators of the form f(T) in (2.6) extends uniquely to an isometrie *­
isomorphism of C(X) onto the C* -algebra generated by T and 1. 

PROOF. Let A be the C'-algebra generated by T and 1. We apply 
Theorem 2.2.4 to A a..'l folIows. 

We claim first that the map w E sp(A) H w(T) E Cis a homeomorphism 
of the Gelfand speetrum of A onto X = a(T). Indeed, this map is obviously 
a eontinuous map of sp(A) into C, and it is injeetive beeause if W1 and W2 
are two elements of sp(A) with w1(T) = w2(T), then by Theorem 2.2.4 

w1(T*) = w1(T) = w2(T) = w2(T*), 

and henee W1 and W2 agree on the linear span of all products TmT*n, a dense 
subspaee of A. By eompaetness of sp( A), this map is a homeomorphism of 
sp(A) onto the speetrum of T relative to A which, by Corollary 2 of Theorem 
2.2.4, is X = a(T). 

These remarks identify sp(A) with X in sueh a way that the Gelfand 
map earries an operator of the form f(T) in (2.6) to a polynomial f E C(X) 
of the form f(z) in (2.5). 

We eonclude from Theorem 2.2.4 that the inverse of the Gelfand map 
defines an isometrie *-isomorphism of C(X) onto A that uniquely extends 
the map f H f(T) deseribed above. 0 

Exercises. 

(1) Show that the speetrum of a normal operator T E ß(H) is con­
nected if and only if the C* -algebra generated by T and 1 eontains 
no projeetions other than 0 and 1. 

Consider the algebra C of all continuous functions f : C -+ C. 
There is no natural norm on C, but for every compact subset X s:; C 
there is a seminorm 

Ilflix = sup lf(z)l· 
zEX 

C is a commutative *-algebra with unit. 

(2) Given a normal operator T E ß(H), show that there is a natural 
extension of the funetional calculus to a *-homomorphism f E C -+ 
f(T) E ß(H) that satisfies Ilf(T)1I = Ilflla(T)' 

(3) Continuity of the functional ealeulus. Fix a function fE C and let 
Tl, T2 , . .• be a sequence of normal operators that converges in norm 
to an operator T, limn IITn - TII = O. Show that f(Tn ) converges 
in norm to f(T). 
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2.4. The Spectral Theorem and Diagonalization 

The spectral theorem is a generalization of the familiar theorem from linear 
algebra asserting that a self-adjoint n x n matrix A can be diagonalized; 
more precisely, there is a diagonal matrix D and a unitary matrix U such 
that A = U DU-I. The diagonal components of D are the eigenvalues of 
A listed in some order, repeated according to their multiplicity. A similar 
diagonalization result is valid for normal n x n complex matrices. 

In reading this section one should keep in mind not only the finite­
dimensional case, or the infinite-dimensional case of self-adjoint operators 
having pure point spectrum, but also the case of operators having continuous 
spectrum and no eigenvalues at all , such as the operator X acting on L2 of 
the unit interval [0,1J by 

(2.7) Xf(t) = tf(t), o ::; t ::; 1. 

We assurne that we are given a normal operator A acting on a sepam­
ble infinite-dimensional Hilbert space H. There is an appropriate version 
of the spectral theorem for operators acting on inseparable spaces, which 
we describe briefly at the end of the section. However, we point out that 
operators acting on inseparable Hilbert spaces (in particular, normalones) 
rarely arise in practice. 

In order to properly formulate the spectral theorem we must general­
ize the notion of an orthonormal basis so as to accommodate "continuous" 
bases, and we must introduce a precise not ion of "diagonalizable" operator 
relative to this generalized notion of basis. 

Consider first the classical notion of orthonormal basis for H. This is 
a sequence t: = {eI, e2, ... } of mutually orthogonal unit vectors in H that 
have H as their closed linear span. Fixing such an t: we can define a unitary 
operator W : f.2 -t H as folIows: 

(2.8) 

It is clear that every unitary operator W : f.2 -t H arises in this way 
from a unique orthonormal basis t: for H. We conclude that specifying a 
particula1' orthonormal basis fo1' H is the same as specifying a particula1' 
unitary operntor from f.2 to H. . 

Continuing in this vein, suppose we are also given a normal operator 
A E B(H) that has each of the given basis vectors as an eigenvalue: 

(2.9) k = 1,2, .... 

It follows that the sequence of eigenvalues (ak) belongs to f.oo, and for the 
unitary operator W : f.2 -t H of (2.8) we find that the transformed operator 
B = W-I AW E B(f.2) is a multiplication operator: 

A E f.2, k = 1,2, .... 
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Thus, an operator A acting on H is diagonalized by a given orthonormal 
basis if and only if the unitary operator associated with the basis implements 
an equivalence between A and a multiplication operator acting on f2. 

This not ion of diagonalization is inadequate as it stands, since it involves 
only normal operators having pure point spectrum. However, it can be 
generalized in a natural way so as to include the possibility of continuous 
spectrum. 

DEFINITION 2.4.1. An operator A acting on a separable Hilbert space 
H is said to be diagonalizable if there is a (necessarily separable) Ir-finite 
measure space (X, JL), a function I E L 00 (X, JL), and a unitary operator 
W : L 2 (X, JL) -+ H such that W M f = A W, M f denoting multiplication by 
I: 

(Mf~)(X) = I(x)~(x), 

Notice that a diagonalizable operator is necessarily normal, simply be­
cause multiplication operators are normal. Note, too, that the operator X 
of (2.7) is diagonalizable, since it is already a multiplication operator. Some 
more subtle examples are described in the exercises. The spectral theorem 
asserts that conversely, every normal operator is diagonalizable. We have 
broken the proof into a sequence of three simpler assertions. 

LEMMA 2.4.2. Let Al, A2, ... be a finite or infinite sequence 01 diago­
nalizable operators acting on respective Hilbert spaces H I, H 2, ... , satislying 
sUPn IIAnl1 < 00. Then the direct sum Al EB A2 EB ... is a diagonalizable 
operator on H I EB H2 EB .... 

PROOF. This assertion follows from the fact that the countable direct 
sum of Ir-finite measure spaces is air-finite measure space. In more detail, 
by hypothesis, we may find Ir-finite measure spaces (Xn, JLn), functions In E 
Loo(Xn, JLn), and unitary operators Wn : L2(Xn, JLn) -+ Hn, n = 1,2, ... 
such that 

WnN1fn = An Wn, n = 1,2, .... 
Since An is unitaI'ily equivalent to Mfn' our previous work with multi­
plication operators implies that the norm of In E Loo(Xn, JLn) satisfies 
Illnlloo = IIAnll, hence 

sup Illnlloo = sup IIAnl1 < 00. 
n n 

Let X = Xl U X2 U ... be the disjoint union of sets with the obvious 
Ir-algebra of subsets and consider the measure JL defined on X by 

JL(E) = JLI(E n XI) + JL2(E n X2) + ... 
for Borel sets E ~ X. The measure JL is Ir-finite because each JLn iso 
Moreover, there is a natural identification of L2(X, JL) with the direct sum 
of L2-spaces L2(XI, JLd EB L2(X2, JL2) EB .... Thus the direct sum of uni­
tary operators W = WI EB W2 EB . .. gives rise to a unitary operator from 
L2(X, JL) to H I EB H2 EB .... The unique function I : X -+ C satisfying 
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f fxn = fn belongs to LOO(X,Jl), it determines a bounded multiplication 
operator Mt E B(L2(X,Jl)), and the unitary operator W intertwines Mt 
and Al EB A2 EB .. '. Hence Al EB A2 EB ... is diagonalizable. 0 

LEMMA 2.4.3. Let A be a bounded operator on a separable Hilbert space 
Hand let A be the complex algebra generated by A, A*, and the identity. 
Then there is a (finite 01' infinite) sequence of nonzero A-invariant subspaces 
HI, H2, ... such that: 

(1) H = HI EB H2 EB .. · . 
(2) Each Hn contains a cyclic vector ~n for A: Hn = A~n, n = 1,2, .... 

PROOF. This is a standard exhaustion argument. By Zorn's lemma we 
can find a family of mutually orthogonal nonzero subspaces {Ha: a E I} of 
H, each of wh ich is A-invariant, each containing a vector ~a such that Ha 
is spanned by A~a, and that is maximal with respect to these properties. 
Since H is separable, the index set I must be finite or countable, and we 
can replace it with a subset of the positive integers if we wish. 

It remains only to show that the spaces Ha span H. But if they did 
not then the orthocomplement K of La Ha would be a nonzero A-invariant 
subspace of H (note that since A is a self-adjoint set of operators, the 
orthocomplement of an A-invariant subspace is A-invariant). Picking any 
nonzero vector ~ in K we obtain a nonzero cyclic subspace Ko = A~ ~ K 
that can be adjoined to the family {Ha} to contradict maximality. 0 

The key step folIows: 

LEMMA 2.4.4. Let A be a normal operator on a Hilbert space Hand 
assume that the *-algebra generated by A and the identity has a cyclic vector. 
Then A is diagonalizable. 

PROOF. The cyclic vector hypothesis means that there is a vector ~ E H 
such that the set of vectors A~ is dense in H, where A is the *-algebra 
generated by A and 1. Fix such a vector ~ and let X ~ C be the spectrum of 
A. We will show that there is a finite measure Jl on X with the property that 
Ais unitarily equivalent to the multiplication operator M( E B(L2(X, Jl), 
((z) = Z (z E X) being the current variable function in C(X) ~ LOO(X,Jl). 
Recalling that the functional calculus for normal operators provides a *­
homomorphism f E C(X) r--t f(A) E B(H), we define a linear functional p 
on C(X) by pU) = U(A)~,~). Since 

p(lfI 2 ) = pU f) = (J(A)* f(A)~,~) = Ilf(A)~1I2 ~ 0, 

P is a positive linear functional; hence the Riesz-Markov theorem provides 
a unique finite positive Borel measure Jl on X such that 

Ix f(x)dJl(x) = (J(A)~, ~), fE C(X). 
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If we consider C(X) as a subspace of L2(X, p,), then C(X) is dense, and for 
f,g E C(X) we have 

(J(A)~,g(A)~) = (g(A)* f(A)~,~) = p(gf) 

= Ix f(x)g(x)dp,(x) = (J,g)L2(X,/-I)' 

Thus the map f E C(X) f-t f(A)~ E His an isometry of the dense subspace 
C(X) ~ L2(X, p,) onto the subspace {J(A)~ : j E C(X)} ~ H, which is 
dense in H because ~ is cydic for the *-algebra generated by A and 1. The 
dosure of this operator is a unitary operator W : L2(X, p,) -+ H. 

It remains to verify that for every j E C(X) we have WMf = j(A)W 
(the assertion of Lemma 2.4.4 being that this formula holds for f(z) = z, 
z EX). For that, fix f E C(X). Since C(X) is dense in L2(X, p,) it is 
enough to check that 

WMjg = f(A)Wg, gE C(X). 

But for fixed g, WMf9 = W(Jg) = (fg)(A)~ = f(A)g(A)~ = f(A)Wg. 0 

SPECTRAL THEOREM 2.4.5. Every normal operator acting on a separable 
Hilbert space is diagonalizable. 

PROOF. Let A be the *-algebra generated by A and the identity. By 
Lemma 2.4.3 we can decompose H into a finite or countably infinite direct 
sum of nonzero subspaces H1 EB H2 EB ... such that AHk ~ Hk and the 
restriction of A to Hk has a cydic vector, k = 1,2, .... By Lemma 2.4.4, 
the restriction Ak of A to Hk is diagonalizable. Since the decomposition 

A = Al EB A2 EB ... 

exhibits A as a uniformly bounded orthogonal direct sum of diagonalizable 
operators, Lemma 2.4.2 above implies that A is diagonalizable. 0 

REMARK 2.4.6. Comments on inseparability. If one insists on general­
izing this form of the spectral theorem so as to include normal operators 
acting on inseparable Hilbert spaces, then it is possible to do so but some 
technical changes are necessary. 

The definition of diagonalizable operator must be generalized so as to 
allow inseparable measure spaces that are not (i-finite. Thus one says that 
an operator A E 13(H) is diagonalizable if there is a positive measure space 
(X, f1,), a function f E LOO(X, f1,), and a unitary operator W : L2(X, f1,) -+ H 
such that WMf = AW. One must replace Lemma 2.4.2 with the assertion 
that the direct sum of a uniformly bounded family {Aa : 0: E I} of diag­
onalizable operators is diagonalizable, where I is an index set of arbitrary 
cardinality. The proof of that result is similar to the one given, except that 
one has to construct uncountable direct sums of measure spaces. This re­
quires some care but poses no substantial difficulties. No change is required 
for the key Lemma 2.4.4, but one must replace Lemma 2.4.3 with the as­
sertion that every normal operator is a perhaps uncountable direct sum of 
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normal operators having eyclic veetors. Onee these preparations are made, 
the proof of the speetral theorem ean be pushed through in general. 

Exercises. 

(1) Let X be a Borel space, let f be a bounded complex-valued Borel 
function defined on X, and let J.L and v be two a-finite measures on 
X. The multiplication operator Mf defines bounded operators A on 
L2(X, J.L) and B on L2(X, v). Assuming that J.L and v are mutually 
absolutely continuous, show that there is a unitary operator W : 
L2(X, J.L) -t L2(X, v) such that W A = BW. Hint: Use the Radon­
Nikodym theorem. 

(2) Show that every diagonalizable operator on a separable Hilbert 
space is unitarily equivalent to a multiplication operator Mf aeting 
on L2(X,J.L) where (X,J.L) is a probability space, that is, a measure 
space for which J.L(X) = 1. 

The following exercises concern the self-adjoint operator A de­
fined on the Hilbert space of bilateral sequences H = ~2(Z) by 

A'n = 'n+l + 'n-l, nE Z, 'E f2(Z). 

(3) Show that A is diagonalizable by exhibiting an explicit unitary 
operator W: L2(T,dO/2rr) -t H for which WMf = AW, where f: 
T -t IR is the function f(eie ) = 2eosO. Deduce that the spectrum 
of A is the interval [-2, 2] and that the point spectrum of A is 
empty. 

(4) Let U be the operator defined on L2(1f,dO/2rr) by 

U f(e ilJ ) = f(e- ilJ ), 0::; 0 ::; 2rr. 

Show that U is a unitary operator on L2(1f,dO/2rr) that satisfies 
U2 = 1, and which commutes with A. 

(5) Let B the the set of all operators on L2(1f,dO/2rr) that have the 
form Mf + MgU where f,g E L'x'(1f,dO/2rr) and U is the unitary 
operator of the preceding exercise. Show that Bis *-isomorphic to 
the C*-algebra of all 2 x 2 matrices of functions M2(Bo), where Bo 
is the abelian C* -algebra L 00 (X, J.L), X being the upper half of the 
unit circle X = Tn{z = x+iy E C: y ~ O} and J.L being the 
restriction of the measure da = dO /2rr to X. 

The following exercises ask you to compare the operator A to a 
related operator B that acts on the Hilbert space L2([-2, 2], v), v 
being Lebesgue measure on the interval [-2, 2]. The operator B is 
defined by 

Bf(x) = xf(x), xE [-2,2], fE L2([-2, 2], v). 

(6) Show that B has spectrum [-2,2], that it has no point spectrum, 
and deduce that for every f E C[-2,2] we have IIf(A)1I = IIf(B)II. 
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(7) Show that A and B are not unitarily equivalent. Hint: What is the 
commutant of B? 

(8) Show that A is unitarily equivalent to B $ B. 

2.5. Representations of Banach *-Algebras 

We now discuss some basic facts of representation theory that are best for­
mulated in very general terms. 

DEFINITION 2.5.1. A Banach *-algebra is a Banach algebra A that is 
endowed with an involution x f--t x* satisfying Ilx*11 = Ilxll, x E A. 

Every C* -algebra is, of course, a Banach *-algebra; but we will see many 
examples of Banach *-algebras for which the C*-condition Ilx*xll = IIxl1 2 
fails. 

DEFINITION 2.5.2. A representation of a Banach *-algebra is a homo­
morphism 7r : A -+ B(H) of A into the *-algebra of bounded operators on 
some Hilbert space satisfying 7r(x*) = 7r(x)* for all x E A. 

Notice that we have not postulated that representations 7r are bounded, 
but merely that they are homomorphisms of the complex *-algebra structure. 
The set of all representations of A on a fixed Hilbert space H is denoted 
rep(A, H). The image 7r(A) of A under a *-representation is a self-adjoint 
subalgebra of B( H) that may or may not be closed in the operator norm. A 
representation 7r : A -+ B(H) is said to be nondegenerate if for every e E H, 

7r(x)e = 0, 'v'x E A ~ e = O. 

REMARK 2.5.3. A representation 7r E rep(A, H) is nondegenerate iff 
H = [7r(A)H] is the closed linear span of the set of vectors 

7r(A)H = {7r(x)e : x E A, e EH}. 

More generally, letting N7r = {e EH: 7r(A)e = {O}} be the null space of 
the operator algebra 7r(A), H decomposes into an orthogonal direct sum of 
7r(A)-invariant subspaces: 

H = N7r EB [7r(A)H]. 

See Exercise (1) below. The closed subspace [7r(A)H] is called the essential 
space of 7r. 

Given two representations 7rk E rep(A, Hk), k = 1,2, there is a natural 
not ion of the direct sum of representations 7r1 $ 7r2 E rep(A, HI $ H2 ), 

7r1$7r2(X) = 7r1(X) $ 7r2(X) , xEA. 

A subrepresentation of a representation 7r E rep(A, H) is a representation 
7ro E rep(A, Ho) obtained from 7r by restricting to a 7r(A)-invariant subspace 
Ho ~ H as follows: 

7ro(x) = 7r(x) IHoE B(Ho), xE A. 
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Finally, two representations 7rk E rep(A, Hk), k = 1,2, are said to be 
unitarily equivalent (or simply equivalent) if ihere is a unitary operator 
W : H1 -+ H2 such that W7rl(X)W* = 7r2(X) for every x E A. It is dear 
that equivalent representations are indistinguishable from each other. 

Thus we may paraphrase Remark 2.5.3 as folIows: Every representation 
7r of a Banach *-algebra on a Hilbert space is equivalent to the direct sum 
7r e EB 7ro of a nondegenerate representation 7r e with the zero representation 7ro 
on some Hilbert space. Thus, the representation theory of Banach *-algebras 
reduces to the theory of nondegenerate representations. 

PROPOSITION 2.5.4. Every nonunital Banach *-algebra can be embedded 
as a maximal ideal of codimension 1 in a unital Banach *-algebra for which 
11111 = 1. 

PROOF. Let A be a nonunital Banach *-algebra. The vector space AEBC 
can be made into a *-algebra A by introducing the operations 

(a, A)* = (a*, 3:). 

The element 1 = (0,1) is a unit for A, and we have (a, A) = a + Al. Ob­
viously, A is a maximal ideal of eodimension 1 in A. A beeomes a Banach 
*-algebra by way of the norm II(a, A)II = Ilall + lAI, with respect to which the 
indusion map of A in A is an isometrie *-homomorphism. 0 

The following implies that representations of Banach *-algebras are nec­
essarily bounded. There are many applications of this remarkable result. 

THEOREM 2.5.5. Let 7r E rep(A, H) be a representation of a Banach 
*-algebra A on a Hilbert space H. Then 117r11 ::; 1. 

PROOF. By the preceding remarks, it suffices to eonsider the ease in 
which 7r is nondegenerate. 

We deal first with the case in which A has a unit 1. Because of nonde­
generacy we have 7r(I) = 1 (see Exercise (2), below). Notice that for every 
a E A, O"(7r(a)) ~ O"(a). Indeed, if A E C\O"(a), then (a-A)-l E A, and since 
7r(I) = 1, 7r((a - >.)-1) is the inverse of 7r(a) - >.. Henee >. E C \ O"(7r(a)). 

We show next that 117r(a)II ::; Ilall for every a E A. To see that, we use 
the C* -property of the norm in B(H) to write 

117r(a)11 2 = 117r(a)*7r(a)11 = 117r(a*a)ll· 
Since 7r(a*a) is a self-adjoint element of B(H), its norm agrees with its 
spectral radius, so that by the preceding paragraph, 

117r(a*a)11 = r(7r(a*a)) ::; r(a*a) ::; Ila*all ::; Ila*llllall = Ila11 2 . 

Hence 117r(a)1I ::; lIall· 
Suppose now that A has no unit, and let A be its unital extension 

diseussed in Proposition 2.5.4. The natural extension of 7r to A is 
i(a + >'1) = 7r(a) + >'1, 
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and one readily verifies that ir is a representation of A on H. By what was 
just proved we have Ilirll S; 1, and since A is isometrically included in A, it 
follows that 1111"11 S; 1. 0 

Exercises. 

(1) Let A = A* S;;; ß(H) be a self-adjoint algebra of operators on a 
Hilbert space, and let 

N={~EH:~={O}} 

be the null space of.A. Show that the orthogonal complement of 
N is the closed linear span of AH = {T~ : T E A, ~ E H} and that 
both N and [AH] are A-invariant subspaces. 

(2) Let A be a Banach *-algebra with unit 1, and let 11" E rep(A, H) be 
a representation of A. Show that 11" is nondegenerate Hf 11"(1) = 1H. 

(3) Let A be a Banach *-algebra. A representation 11" E rep(A, H) is 
said to be cyclic if there is a vector ~ E H with the property that 
the set of vectors 1I"(A)~ is dense in H. Show that a representation 
11" E rep( A, H) is nondegenerate Hf it can be decomposed into a 
direct sum of cyclic subrepresentations in the following sense: There 
is a family Hi S;;; H, i E I, of nonzero subspaces of H that are 
mutually orthogonal, 1I"(A)-invariant, that sum to H, and such that 
for each i E I there is a vector ~i E Hi with 1I"(A)~i = Hi . 

(4) Let A be a Banach *-algebra. A representation 11" E rep(A, H) is 
said to be irreducible if the only closed 1I"(A)-invariant subspaces of 
H are the triviaiones {O} and H. Show that 11" is irreducible Hf 
the commutant of 1I"(A) consists of scalar multiples of the identity 
operator. 

(5) Let X be a compact Hausdorff space and let 11" be an irreducible 
representation ofthe C*-algebra C(X) on a Hilbert space H. Show 
that H is one-dimensional and there is a unique point p E X such 
that 

1I"(f) = J(p)l, JE C(X). 

2.6. Borel Functions of Normal Operators 

Let N be a normal operator acting on a Hilbert space H with spectrum 
X S;;; C. We have discussed how to form continuous functions of N of the 
form J(N), J E C(X). We now show how this functional calculus can be 
extended, in a more or less ultimate way, to bounded Borel functions. 

Let X be a compact metrizable space. A complex-valued function de­
fined on X is called a Borel function if it is measurable with respect to 
the Borel a-algebra ß of X, the a-algebra of subsets of X generated by its 
topology. The space of all bounded complex-valued Borel functions on X 
is denoted B(X); it is closed in the sup norm and is a unital commutative 
C* -algebra relative to the pointwise operations and the natural involution 
f*(p) = f(p), P E X. Clearly C(X) S;;; B(X), but the difference between 
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these two C*-algebras is significant. Notice, for example, that while C(X) 
is separable, B(X) is typically inseparablej while C(X) has nontrivial pro­
jections only when X fails to be connected, B(X) is always generated by its 
projections. 

We will show that every representation 7r E rep(C(X), H) can be ex­
tended in a particular way to a representation 7r E rep(B(X), H). 

DEFINITION 2.6.1. A representation 7r E rep(B(X), H) is called a a­

representation if it has the following property: For every uniformly bounded 
sequence 11,12, ... E B(X) which converges pointwise to zero in that 

lim fn(P) = 0, pE X, 
n-too 

the sequence of operators 7r(fn) converges strongly to 0, 

~EH. 

REMARK 2.6.2. It is significant that because 7r is a representation, we can 
replace strong convergence in the definition above with weak convergence. 
To see that the two definitions are equivalent, suppose 7r E rep(B(X), H) 
has the property that for every uniformly bounded sequence 11,12, ... that 
converges pointwise to 0, 7r(fn) converges weakly to O. We claim that 7r is a 
a-representation. Indeed, for fixed ~ E H we have 

(2.10) 117r(f)~112 = (7r(f)~, 7r(f)~) = (7r(f)*7r(f)f" f,) = (7r(f* f)~, ~). 

If 11, 12,.·· is a bounded sequence converging pointwise to 0, then f~fn(P) = 
Ifn(P)l2, P EX, is also a bounded sequence converging pointwise to 0, and 
hence 7r(f~fn) -+ 0 weakly by hypothesis. The identity (2.10) implies that 
7r(fn) -+ 0 strongly, as required. 

THEOREM 2.6.3. Let X be a compact metrizable space and let H be a 
Hilbert space. Every nondegenerate representation 7r E rep(C(X), H) ex­
tends uniquely to a a-representation 7r E rep(B(X), H). 

PROOF. We deal first with uniqueness, and for that some notation will 
be useful. Let B be the a-algebra of all Borel sets in X and let M(X) be the 
Banach space of all complex-valued Borel measures JL : B -+ C. An element 
of M(X) is a function JL : B -+ C satisfying JL(0) = 0, and for every sequence 
of mutually disjoint Borel sets EI, E2 , ... , 

00 

JL(EI U E2 U···) = LJL(En ), 
n=1 

where the right side is interpreted as a convergent series of complex numbers. 
For every measure JL E M(X) there is a smallest positive Borel measure IJLI 
satisfying 

IJL(S)I :::; IJLI(S), SE B, 
and the norm is given by IIJLII = IJLI(X) < 00. 
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Given a a-representation 1T that extends 7r, fix~, 1] E Hand consider the 
set function 11~,T/ : B -+ C defined by 

11€,T/(S) = (1T(XS)~, 1]), SE B. 

It is clear that 11€,T/ is a finitely additive measure because ir preserves the 
algebraic operations of multiplication and addition. We claim that, in fact, 
J.L€,T/ is countably additive. To see this, let EI, E2, . .. be a sequence of 
mutually disjoint Borel sets with union F = UnEn. We have to show that 

n 

J.LE,T/(F) = nl~~ L J.L€,T/(E k). 
k=1 

Letting Fn = EI U ... U En , we have 
n 

J.LE,T/(F) - L J.L€,T/(Ek) = J.LE,T/(F \ Fn ) = (ir(XF\FJ~, 77)· 
k=1 

Since the sequence of functions In = XF\Fn is uniformly bounded and tends 
to zero pointwise, the right side of the preceding formula must tend to zero 
as n -+ 00 because ir is a-representation. 

We claim next that for every I E B(X) we have 

(2.11) 

Indeed, (2.11) is true when I = XE is a characteristic function by definition 
of J.LE,T/' By taking linear combinations it follows for simple functions I; it 
follows in general by an obvious limiting argument, since every function in 
B(X) can be uniformly approximated by a sequence of simple functions (see 
Exercise (1) below). 

To prove uniqueness, let ir and ir' be two a-representations that extend 
the same representation 7f of C(X). It suffices to show that for every I E 
B(X) and ~,77 E H, 

(2.12) (ir(f)~, 77) = (ir'(f)~, 77)· 

Notice that (2.12) holds for all I E C(X) because ir(f) = ir'(f) = 7f(f) in 
that case. Consider the measure J.LE,T/ and its counterpart J.L{,T/ for ir'. Taking 
I E C(X), formulas (2.11) and (2.12) together imply that 

Ix I dJ.LE,T/ = Ix I dJL{,T/' 

and hence J.LE,T/ = JL{,T/ by the uniqueness assertion of the Riesz-Markov 
theorem on the representation of bounded linear functionals on C(X) in 
terms of measures. Applying (2.11) we conclude that for all 9 E B(X), 

(ir(9)~,77) = 1x9dJLE,T/ = 1x9dJL{,T/ = (ir'(9)~,77), 
and uniqueness is proved. 
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Thrning now to existence one simply reverses the argument as folIows. 
Starting with 7r E rep(C(X), H), fix a pair of vectors~, 'f/ E H and consider 
the linear functional 

1 E C(X) H (7r(f)~, 'f/). 

This is a bounded linear functional of norm at most 11~111I'f/1l. By the Riesz­
Markov theorem there is a unique fL€.'f/ E M(X) such that 

(2.13) (7r(f)~, 'f/) = [I dfL€.'f/' 1 E C(X), 

and moreover, IIfL€.'f/11 ~ 1I~1I11'f/11· Notice, too, that the map ~,'f/ H fL€.'f/ E 
M(X) is linear in ~ and antilinear in 'f/. 

Fix a function 1 E B(X). We define an operator ir(f) E B(H) by 
appealing to the Riesz lemma for sesquilinear forms as folIows: Since 

~,'f/H L1dfL€.'f/ 

is a bounded sesquilinear form ofnorm at most 111111I~1I11'f/1I, there is a unique 
operator ir(f) E B(H) such that 

(2.14) (ir(f)~, 'TJ) = LI dJ1.e.TJ' ~,'TJEH. 

Obviously, the operator mapping ir : C(X) -+ B(H) is linear and satisfies 
Ilir(f)1I ~ 11111, for 1 E B(X). It is also clear from the definition (2.13) of the 
measures fL€.'f/ and the defining formula (2.14) for ir that ir(f) = 7r(f) when 
1 E C(X). A straightforward argument (which we omit) shows that ir carries 
real-valued functions to self-adjoint operators, and hence ir(f*) = ir(f)*, 
1 E B(X). 

Thus it remains to show that ir is multiplicative, ir(fg) = ir(f)ir(g), for 
I,g E B(X) and that it satisfies the continuity property of Definition 2.6.1. 

To prove the multiplication property, note first that for every ~,'f/ E H 
and 9 E C(X) we have 9 . J1.€.'f/ = J1.7r(g)e.w Indeed, this follows from the fact 
that for every 1 E C(X), 

[19dfL€.'f/ = (7r(fg)~,'f/) = (7r(f)7r(g)~,'f/) = [ldfL7r(g)€.'f/' 

We claim next that for F E B(X), F . J.L€.'f/ = fLf..ir(F)*'f/' This is a similar 
string of identities, where we note that for 9 E C(X) we have 

L9d(F.J.Lf..'f/) = L9FdJ.Lf..'f/ = L FdJ.L7r(g)f..TJ = (ir(F)7r(g)~,'TJ) 

= (7r(g)~, ir(F)*'f/) = L 9 dfL€.ir(F)*w 
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Finally, we claim that ir(FG) = ir(F)ir(G) , for F, G E B(X). Indeed, 
fixing Fand G and choosing ~, 'TI E H we have 

(ir(FG)~, rJ) = Ix FG dJ-t~,T/ = Ix G dJ-t~,ir(F)'T/ 
= (ir(G)~, ir(F)*rJ) = (ir(F)ir(G)~, rJ). 

The proof that ir is a a-representation is a straightforward application of 
the bounded convergence theorem. Let FI , F2 , • •• be a uniformly bounded 
sequence in B(X) converging pointwise to O. For every ~,rJ in H we have, 

l(ir(Fn)~,1])1 = IIx FndJ-t~'T/I:::; Ix IFnldlJ-t~,T/1 
and the right side tends to 0 as n --7 00 by the bounded convergence theorem, 
since 1J-t~,T/1 is a finite positive measure on X and IFnl is a uniformly bounded 
sequence of functions tending pointwise to zero. In view of Remark 2.6.2, ir 
is a a representation of B(X). 0 

Applying these results to a normal operator N E B(H) we consider the 
continuous functional calculus j E C(a(N)) H j(N). By Theorem 2.6.3 
there is a unique a-representation of the algebra B(a(N)) that extends the 
original. This map is also written as if we were applying bounded Borel 
functions j E B(a(N)) to the operator to obtain j(N). The properties of 
this Borel functional calculus will be exploited in the following section. 

Exercises. 

(1) Show that for every j E B(X) and every f > 0, there is a finite 
linear combination of characteristic functions in B(X) (i.e., a simple 
function) 

9 = CIXEj + C2XE2 + ... + CnXEn 

such that 111 - gll :::; E. Hint: Cover the range j(X) ~ C with a 
finely meshed grid and "puB back." 

(2) Let (X, B) be a Borel space. For every a-finite measure f.1, on X let 
'TrI' be the representation of B(X) on L2(X,f.1,) defined by 

'Tr1J(f)~(p) = j(p)~(p),~ E L2(X,f.1,). 

(a) Show that 'TrI' is a a-representation of B(X) on L2 (X,f.1,). (No­
tice that the definition of a-representation makes good sense 
in this more general context.) 

(b) Given two a-finite measures f.1" v ein (X,B), show that 'TrI' and 
'Trv are unitarily equivalent iff f.1, and v are mutually absolutely 
continuous. 

(c) Deduce that a multiplication operator acting on the L2 space 
of a a-finite measure is unitarily equivalent to a multiplication 
operator acting on the L 2 space of a finite meaSure space. 
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2.7. Spectral Measures 

We have formulated the spectral theorem in terms of diagonalizing operators. 
In this section we present an equivalent formulation of the spectral theorem 
in terms of spectral measures. While this is the more classical form of the 
spectral theorem, it suffers from certain defects (mostly aesthetic) that are 
associated with the somewhat peculiar technology of spectral measures. In 
the defense of spectral measures we point out that they can provide a very 
effective tool for dealing with broader issues, such as the multiplicity theory 
of normal operators. And there are important results that are most clearly 
formulated in terms of spectral measures. Example: Stone's theorem, that 
makes the elegant assertion that a strongly continuous one-parameter group 
of unitary operators is the Fourier transform of a spectral measure on the 
realline. 

Let us first revisit the idea of diagonalizing a normal matrix. Let N be 
a normal operator acting on a Hilbert space H of finite dimension n. There 
is an orthonormal basis el, ... , en for H consisting of eigenvalues of N, 

k = 1, ... ,n, 
where Al, ... , An are complex numbers. There may be repetitions among 
the Ak, but the set {Al, ... , An} is exactly the spectrum of N. 

This decomposition of H into eigenspaces can be reformulated in a basis­
free way as follows. For every A E C let H>. be the eigenspace 

H>. = {~ EH: N~ = '\0. 
The subspaces {H.x : A E C} are mutually orthogonal, they sum to H, 
each is invariant under both N and N*, and H.x is nonzero iff ,\ E a(N). 
These observations can be converted into a structural statement about N 
as follows. Let E.x be the projection onto H.x. The E.x form a system of 
mutually orthogonal projections in ß(H), they sum to 1, E.x =I- 0 ~ ,\ E 
a(N), and we have 

(2.15) N= L '\·E.x. 
>'Eu(N) 

Functions of N can be expressed in a similar way: 

f(N) = L f(A)' E>.. 
>'Eu(N) 

What is peculiar here is that these sums have a multiplicative property that 
runs counter to the intuition of numerical sums, 

( L f('\)· E.x) ( L g('\). E.x) = L f(A)g('\)· E.x, 
.xEu(N) .xEu(N) .xEu(N) . 

a consequence of the fact that the E.x are projections satisfying E.xEJl = 0 
for A =I- {l. 
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In any ease, formula (2.15) expresses the operator Nasa "spectral 
integral" in which the right side represents the integral of the complex­
valued function j(z) = z, z E a(N), against the projection-valued measure 

E(S) = LE)\l S ~ c. 
>'ES 

Despite its somewhat awkward appearanee, the projection-valued function 
A E C r-+ E>. (or the projeetion-valued measure assoeiated with it) contains 
critical information about the operator N. For example, a(N) is the set of 
points A for which E>. i=- O. More significantly, the multiplicity m(A) of an 
eigenvalue ,X E a(N) is given by 

(2.16) m(A) = rankE>. = dirn H>.. 

The function m : a(N) -+ N is called the multiplicity junction of the normal 
operator N. It has these properties: m('x) > 0 for every ,X E a(N), and 

L m('x) = dirn H. 
>'Ea(N) 

Onee one knows the spectrum and the multiplicity function of anormal 
operator N on a finite-dimensional Hilbert space, one knows N up to unitary 
equivalence (see Exercise (1) below). There is a natural generalization of 
this classification of normal operators to the infinite-dimensional case (see 
[2]), but we are not concerned with that here. 

Our goal in this section is to point out how the formula (2.15) can be 
generalized to normal operators acting on infinite-dimensional Hilbert spaces 
by simply reformulating the results of the preeeding section. Let B denote 
the a-algebra of all Borel sets in C. By a speetral measure (on C) we mean 
a function E E B -+ P(E) E B(H) taking projections as values, such that 
P(0) = 0, P(C) = I, and for every sequence EI, E2 , ... of mutually disjoint 
sets, we have 

00 

(2.17) 
n=1 

The sum on the right of (2.17) is interpreted as the limit in the strong 
operator topology of the sequence of partial sums P(Ed + ... + P(En ). The 
fact that this limit exists is a consequence of the following observations. 

PROPOSITION 2.7.1. A spectral measure P has the jollowing properties: 
(1) EI ~ E2 ===} P(EI ) ~ P(E2 ). 

(2) E n F = 0 ===} P(E) ~ P(F). 
(3) For every E, FE B, P(E n F) = P(E)P(F). 

PROOF. The first assertion follows from finite additivity of P, together 
with the decomposition F = Eu (F \ E) and the fact that P(F \ E) ~ O. 

For (2), we can write 

1 = P(E U (C \ E)) = P(E) + P(C \ E). 
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Hence by (1), P(F) :$ P(C \ E) = 1-P(E), the latter being the projection 
onto P(E)Hl.. 

To deduce (3) from (2), one can write P(E) = P(E n F) + P(E \ F), 
P(F) = P(E n F) + P(F \ E), and observe that because of (2), P(E n F), 
P(E \ F), and P(F \ E) are mutually orthogonal projections. 0 

These observations imply that the projections P(Et} , P(E2), ... appear­
ing on the right of (2.17) are mutually orthogonal, so that the infinite sum 
has a dear meaning. 

Starting now with a spectral measure P : B -+ B(H) and a bounded 
Borel function 1 : C -+ C, we want to give meaning to the spectral integral 
J 1 dP. This is done as follows. For every pair of vectors ~,'I/ E H we 
can define a complex-valued measure lle,17 on C by lle,I7(E) = (P(E)~, '1/). 
Then lle,17 is a countably additive complex-valued measure on B whose total 
variation is estimated as follows: 

Moreover, the map of H x H into the space of measures on C defined by 
~,'I/ H lle,17 is linear in ~ and antilinear in TI. Thus we can define a bounded 
sesquilinear form [.,.] on H x H by simple integration, 

[~, 'l/l = fc 1 dlle,l7' 

and a straight forward estimate shows that 

I[~, TI] I :$ sup I/(z)III~IIII'l/11 = 11/1I001I~IIIITlII· 
zEIC 

By the Riesz lemma, there is a unique operator 7r(J) E B(H) satisfying 

~,TI E H, 

and one has 117r(J)1I :$ 11/1100' This defines the operator 7r(J) as a weak 
integral, and we can now interpret it as J 1 dP. 

More precisely, for every spectral measure P defined on C and taking 
values in the set of projections of B(H) and every bounded Borel function 
1 : C -+ C there is a unique operator J 1 dP defined by 

\ (/ 1 dP) ~''I/) = fc I(z) (P(dz)~, '1/), ~,'l/EH. 

We leave it for the reader to verify that 1 H J 1 dP is a a-representation of 
the C*-algebra B(C) of all bounded Borel functions on C, using the methods 
of the preceding section. 

Spectral measures as we have discussed them are more general than 
required for the discussion of bounded normal operators. However, if a 
spectral measure P has compact support in the sense that there is a compact 
subset K ~ C with P(C \ K) = 0, then P is associated with a bounded 
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operator as folIows. Since P is concentrated on K, the function j(z) = z is 
bounded almost everywhere with respect to P, and hence 

N = fc zdP(z) = [ZdP(Z) 

defines a bounded normal operator with the property that 

(2.18) fc f(z) dP(z) = f(N), fE B(C). 

Thus, spectral integrals are simply another way of looking at the functional 
calculus for Borel functions. 

Indeed, if we turn this around by starting with a bounded normal oper­
ator N E ß(H) and asking how to construct its spectral measure P, then 
the reply is simply to apply the characteristic functions of Borel sets to N 
according to the calculus of the preceding section: 

P(E) = XE(N), EEß. 

Because f E B(IJ(N)) t-+ f(N) is a IJ-representation extending the conti nu­
ous functional calculus for N, P can be regarded as a spectral measure that 
is supported on IJ(N). Again, the preceding formula (2.18) simply provides 
areinterpretation of the extended functional calculus as a spectral integral. 

Exercises. 
(1) Let NI E ß(HI) and N2 E ß(H2) be two normal operators acting 

on finite-dimensional Hilbert spaces H I , H2. Show that there is a 
unitary operator W : H2 -+ H2 such that W NI W- I = N2 iff NI 
and N2 have the same spectrum and the same multiplicity function. 

(2) Calculate the spectral measure of the multiplication operator X 
defined on L2 [0, 1] by (X~)(t) = t~(t), ° ::; t ::; 1. 

(3) Aresolution 01 the identity is a function A E lR t-+ P>.. E ß(H) 
from lR to the projections on a Hilbert space with the following 
properties: 

• A ::; f-L ==} P>..::; PI-" 
• Relative to the strong operator topology, 

lim P>.. = 0, lim P>.. = 1. 
>"-+-00 >"-++00 

• (Right continuity) For every A E lR, 

lim PJl = P>... 
Jl-+>"+ 

Early formulations of the spectral theorem made extensive use of 
resolutions of the identity. It was gradually realized that these ob­
jects are equivalent to spectral measures, in much the same way 
that Stieltjes integrals are equivalent to integrals with respect to 
a measure. This exercise is related to the bijective correspondence 
that exists between resolutions of the identity and spectral mea­
sures on the real line. 
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(a) Consider the Borel space (lR, ß) of the real line. Given a 
spectral measure E : ß --+ ß(H), show that the function 
PA = E( (-00, A]), A E lR, is aresolution of the identity. 

(b) Given two spectral measures E, F : ß --+ ß(H) that give rise 
to the same resolution of the identity, show that E = F. 

2.8. Compact Operators 

An operator A on a Hilbert space H is compact if the image of the unit 
ball {A~ : II~II :::; I} is totally bounded. There is an enormous literat ure 
concerning classes of compact operators acting on Hilbert spaces. In this 
seetion we scratch the surface by discussing normal compact operators and 
Hilbert-Schmidt operators. 

Compact normal operators can be diagonalized in the classical sense, in 
that there is an orthonormal basis consisting of eigenvectors. We base this 
on the following assertion about "approximate" eigenvectors. 

PROPOSITION 2.8.1. Let N be a normal operator acting on an infinite­
dimensional Hilbert space H. For every accumulation point A E a(N) there 
is an orthonormal sequence 6, 6, . .. in H such that 

lim IIN~n - A~nll = O. 
n-+oo 

•. PROOF. By the Spectral Theorem we mayassume that H = L 2(X, /-L) 
has been coordinatized by a a-finite measure space and that N = Mj is 
multiplieation by an Loo funetion. By Theorem 2.1.4 the spectrum of N is 
the essential range A of f. 

Since'A is an accumulation point of A, we can find a sequence of distinct 
points An E A that converges to A. For each n choose f n > 0 small enough 
that f n --+ 0 and the disks Dn = {z E C : Iz - Anl < f n}, n = 1,2, ... , 
are mutually disjoint. For each n the set {p EX: f(p) E Dn } has positive 
measure because An belongs to the essential range of f; and bya-finiteness 
there is a subset En ~ {p EX: f(p) E Dn } of finite positive measure, 
n = 1,2, .... Considered as elements of L2(X, /-L), the characteristic func­
tions XEl , XE2' • .. are mutually orthogonal because the sets EI, E2 , • •. are 
mutually disjoint. Moreover, 

If - AI· XEn :::; (If - Anl + IAn - AlhEn :::; (fn + IAn - AI)XEn· 

It follows that 

II(N - A)XEnll :::; (fn + IAn - AI)IIxEn l12 = (fn + IAn - AI)/-L(En)1/2, 

and the orthonormal sequence can be taken as ~n = /-L(En)-1/2XEn , n = 
1,2,.... 0 

We obtain the following description of compact normal operators acting 
on infinite-dimensional separable Hilbert spaces. 
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THEOREM 2.8.2. Let N E B(H) be a compact normal operator. Then 
o E a(N), and a(N) is either finite or has the form {O, AI, A2,"'}' where 
(An) is a sequence of distinct complex numbers converging to O. For each 
A i= 0 in a(N) the space HA = {~ EH: N~ = AO is nonzero and finite­
dimensional. 

Let Ek be the projection onto H>"k' The Ek are mutually orthogonal and 
we have ' 

00 

N= LAkEk' 
k=l 

the partial sums of the series converging in the operator norm to N. In par­
ticular, there is an orthonormal basis el, e2, ... for H consisting of eigen­
vectors of N. 

PROOF. A compact operator on H cannot be invertible; for if it were, 
then some open ball about 0 would be totally bounded, a clear absurdity as 
one sees by considering an orthogonal sequence of vectors having the same 
norm r > O. Hence 0 E a(N). 

We claim that a(N) \ {O} consists of isolated points. Indeed, for every 
accumulation point A E a(N), Proposition 2.8.1 implies that there is an 
orthonormal sequence el,e2,." satisfying IINen - Aenll -+0 as n -+ 00. 

Since N is compact, IINekll -+ 0 as k -+ 00 (see Exercise (1) below); hence 

lAI = lim IIAenll = lim IINen - Aenll = O. 
n-too n-too 

It follows that a(N) \ {O} cannot contain accumulation points of a(N). 
Thus a(N) is either finite or it consists of 0 together with a sequence 

Al, A2, . " of distinct isolated points converging to O. Consider the case where 
a(N) = {O, Al, A2""} is infinite. For each n = 1,2, ... , the characteristic 
function U n = X{>"n} belongs to C(a(N)), and we can express the current 
variable «(z) = z, Z E a(N), as an infinite series 

converging uniformly in the norm of C(a(N)); indeed, we have 

n 00 

II( - L Akuklloo = 11 L Akuklloo = sup IAkl, 
k=l k=n+l k>n 

which tends to 0 as n -+ 00. By the properties of the continuous functional 
calculus it follows that 
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where Ek is the projection Ek = uk(N). Once one has such aseries repre­
sentation 

00 

N= L:AkEk 
k=l 

of N, one easily identifies the range of Ek as {~ EH: N~ = AkO. That 
completes the proof in the case where r:T(N) is infinite. The case of finite 
spectrum will be left for the reader. D 

Turning away from normal operators, let us fix an orthonormal basis 
el, e2, ... for H. A Hilbert-Schmidt operator is an operator A on H with 
the property that 

00 

(2.19) L: JJAen 11 2 < 00. 
n=l 

As we will see, Hilbert-Schmidt operators are not only bounded, but com­
pact. They form an ideal C2 in the C* -algebra K of all compact operators, 
and C2 is a Hilbert space in its own right. 

Most (but not all) of the integral operators that we have encountered are 
Hilbert-Schmidt operators, and that is why the theory of Hilbert-Schmidt 
operators is important for approaching classical problems involving integral 
equations. While in this book we have concentrated on the idea of solv­
ing such equations, Hilbert-Schmidt operators enter into· many aspects of 
operator theory and functional analysis, including the theory of Gaussian 
stochastic processes, representations of the canonical commutation and an­
ticommutation relations of mathematical physics, and the theory of unitary 
representations of locally compact groups. 

We first rephrase the definition of Hilbert-Schmidt operator so as to 
emphasize the role of the trace. Recall that an operator A on H is said to be 
positive if A is self-adjoint and has nonnegative spectrum. This is equivalent 
to the assertion (A~,~) 2: 0 for every ~ EH, as one can see in concrete terms 
by appealing to the spectral theorem and Exercise (5) below. It follows that 
the set B(H)+ of all positive operators on H is a cone, being.closed under 
sums and multiplication by nonnegative scalars. For every positive operator 
A we can define an extended real number trace A E [0, +00] as folIows: 

00 

traceA = ~)Aek,ek)' 
k=l 

el, e2,'" being an orthonormal basis for H, which for the moment we hold 
fixed as A varies. It is clear that 

(2.20) 
trace (A + B) = trace A + trace B, 

trace (AA) = A . trace A 

for A, B E B(H)+ and positive scalars >., with the obvious conventions for 
handling sums and products of extended numbers in (0, +00]. 
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PROPOSITION 2.8.3. The trace has the following properties: 
(1) trace A* A = trace AA*, for any A E B(H). 
(2) For B ~ 0 and U unitary, traceUBU* = traceB. 
(3) The trace does not depend on the choice of basis {ek}. 

71 

PROOF. For (1), consider the double sequence of nonnegative terms 
I(Aep ,eq )1 2 = l(ep ,A*eq )1 2 , p,q = 1,2, .... Summing first on q and then 
on p, we obtain 

00 00 00 

L LI (Aep , eq) 12 = L IIAep 11 2 , 

p=lq=l p=l 
while summing in the opposite order gives 

00 00 00 

L L I(ep , A*eq )1 2 = L IIA*eq Il 2 . 

q=l p=l q=l 

Since the sum of a nonnegative double sequence is independent of the order 
of summation, this proves (1). Assertion (2) follows from it by setting A = 
UBl /2 in (1), noting that B = A*A and UBU* = AA*. 

To prove (3) let JI, h ... be another orthonormal basis and let U be the 
unique unitary operator on H satisfying U ek = fk for k = 1,2,.... Then 
fk = U*eb and for every positive operator B, (2) implies 

00 00 

L(Bfk,fk) = L(BU*ek,U*ek) = traceUBU* = traceB, 
k=l k=l 

as asserted. o 
By (2.20), the set of all positive operators with finite trace is a cone. By 

analogy with integration theory, we define .c} to be the linear space spanned 
by the positive operators having finite trace. Operators in .cl are called 
trace dass operators. Every trace dass operator can be written in the form 

A = PI - P2 + i(P3 - P4 ), 

where Pk is positive and has finite trace. This decomposition is not unique, 
but the basic properties (2.20) imply that there is a unique linear functional 
defined on .c 1 by 

trace A = trace PI - trace P2 + i(trace P3 - trace P4 ). 

Obviously, for every A E .cl and every orthonormal basis el, e2, ... we have 
00 

traceA = L(Aen , en ), 

n=l 

where the series on the right is absolutely convergent. The value trace A of 
the sum does not depend on the choice of basis. 

There is a natural norm on.cl that makes it into a Banach space (namely 
IIAII.C1 = trace IA!), having many important operator-theoretic properties, 
and we refer the reader to [19J for a fuller development. What is important 
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for us here is the relation between [1 and Hilbert-Schmidt operators, which 
we now describe. 

According to (2.19), A is a Hilbert-Schmidt operator precisely when 
trace A* A < 00, equivalently, when A* A E [1. The set of all Hilbert­
Schmidt operators on H is denoted by [2. It is clear that [2 is closed under 
multiplication by scalars, and note that it is closed under addition as weIl. 
Indeed, for any two operators A, B we have the "parallelogram law" 

(2.21) (A + B)*(A + B) + (A - B)*(A - B) = 2A* A + 2B* B, 

from which it follows that 0 ~ (A + B)*(A + B) ~ 2A* A + 2B* B. If both 
A and B belong to [2, then 

trace(A+B)*(A+B) ~ 2 trace A*A + 2 trace B*B < 00; 

hence A + B E [2. 

Thus [2 is a complex vector space, which by Proposition 2.8.3 (1) is 
closed under the adjoint operation. That it is a left ideal is an obvious 
consequence of the defining property (2.19); and since [2 is self-adjoint, it 
must be a two-sided ideal. 

The operator space .c2 has a natural inner product, defined as follows. 
Corresponding to the polarization formula for sesquilinear forms on a com­
plex vector space there is a polarization formula for bounded operators 
A,B E B(H): 

3 

(2.22) 4B* A = I>k(A + ik B)*(A + ik B). 
k=O 

The proof is a similar computation (see Exercise (2) below). If both A and 
B belong to .c2 , then each of the four terms on the right of (2.22) belongs 
to .cl; hence so does B* A, and we have 

3 

4 trace B* A = L ik trace (A + ik B)*(A + ik B). 
k=O 

It follows that one can define an inner product on .c2 ~ follows: 

(2.23) (A,Bh = traceB*A, A,B E .c2 . 

It is significant that this inner product space is complete (see Exercise (3) 
below). .c2 is therefore a Hilbert space. 

PROPOSITION 2.8.4. Every Hilbert-Schmidt operator A is compact, and 
satisfies IIAI1 2 :::; trace A* A. 

PROOF. We first prove the inequality IIAI1 2 :::; traceA* A. Indeed, for 
every unit vector e we can find an orthonormal basis eI, e2, . .. starting with 
el = e. Hence IIAel1 2 :::; L:n IIAen l1 2 = traceA* A, and since e is arbitrary we 
obtain 

IIAI1 2 = sup IIAell2 :::; traceA* A. 
lIell=l 
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To see that every Hilbert-Schmidt operator A is compact, fix an or­
thonormal basis el, e2, ... and for every n ~ 1 let Qn be the projection onto 
the subspace spanned by en+1, en+2, .... Obviously, Fn = A(l - Qn) is a 
finite-rank operator, and by the preceding paragraph we have 

00 

[[A - Fn[[2 = [[AQn[[2::; trace(QnA*AQn) = L [[ Aek[[2. 
k==n+l 

The right side tends to 0 as n --t 00 because Lk [[Aek[[2 < 00. Hence 
A = limn Fn is the norm limit of a sequence of finite-rank operators, and is 
therefore compact. D 

EXAMPLE 2.8.5. Hilbert-Schmidt integral operators. Let (X, J.t) be a 
(separable) O"-finite measure space and let k E L2(X X X, J.t x J.t) be a square­
integrable function of two variables on X. We want to define an integral 
operator A on L2(X,J.t) by way of 

(2.24) A~(x) = Ix k(x, y)~(y) dJ.t(y) , 

but there are several things that have to be checked. 
In the first place, since 

r [k(x, yW dJ.t(x)dJ.t(y) < 00, 
lxxx 

the Fubini theorem implies that for almost every x E X (dJ.t) the section 
k(x,·) belongs to L2(X,dJ.t), and for such x the function y t--+ k(x,y)~(y) 
belongs to L1(X,J.t). This implies that the integral in (2.24) is weH defined 
for almost every x, and writing its value as A~(x), we have the estimate 

[A~(x)[ ::; Ix [k(x, y)[[~(y)[ dJ.t(y). 

Moreover, another application of Fubini's theorem implies that for every 
r] E L2(X, J.t) we have 

r [A~(x)[[r](x)[ dJ.t(x)::; r [k(x, Y)[[r](x)[[~(y)[ dJ.t(x)dJ.t(y), 
lx lxxx 

which by the Schwarz inequality is domina~ed by 

where [[k[[ denotes the norm of k as an element of L2(X x X, J.t x J.t). 
It follows that formula (2.24) defines a linear operator A on L2(X, J.t) 

satisfying [(A~,r])[ ::; [[kllll~1l2llr]1l2 for every ~,r] E L2(X,/L), and hence 
[[All ::; [[k[[. 
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Let us now calculate trace A * A. Choose an orthonormal basis el, e2, ... 
for L1(X, dj.l). For every m, n = 1,2, ... , we have 

(Aem, en) = Ix Aem(x)en(x) dj.l(x) 

= ( k(x, y)en(x)em(y) dj.l(y)dj.l(x). 
lxxx 

Writing Umn(X,y) = en(x)em(y), we find that {umn : m,n = 1,2, ... } is an 
orthonormal basis for L2(X x X, j.l x j.l), and the preceding formula becomes 

(Aem, en) = (k, umn)' 

the inner product on the right being that of L2(X x X,j.l X j.l). It follows 
that trace A * A is given by 

00 00 00 00 00 

L IIAemll2 = L L !(Aem,en)!2 = L L !(k,Umn)!2 = IIk1l2 . 

m=O m=O n=O m=O n=O 

We summarize the results of this discussion as folIows: 

PROPOSITION 2.8.6. Let (X, j.l) be a separable a-finite measure spaee. 
For every /unction k E L2(X X X, j.l x j.l) there is a unique bounded operator 
Ak on L2(X, j.l) satis/ying 

Ak~(X) = Ix k(x, y)~(y) dj.l(y), ~ E L2(X, j.l). 

The map k H Ak is an isometrie isomorphism 0/ the Hilbert spaee L2(X x 
X, j.l x j.l) onto the Hilbert spaee .c2 0/ alt Hilbert-Sehmidt operators on 
L2(X,j.l). 

Exercises. 
(1) Let A be a compact operator on a Hilbert space H. Show that for 

every sequence of mutually orthogonal unit vectors 6, ~2, ... E H 
we have 

!im IIA~nll = o. 
n-too 

Hint: Consider the decreasing sequence of projections Pn defined 
by the decreasing sequence of closed subspaces [~n, ~n+l, ~n+2, . .. ], 
n = 1,2, ... . 

(2) Let el, e2, . .. be an orthonormal basis for a Hilbert space Hand 
let A E ß(H). Show that A is compact iff 

!im !!(1 - En )A(l - En )1I = 0, 
n-too 

where En denotes the projection onto span{ el, ... , en }. 

(3) Verify the polarization formula for bounded operators on a Hilbert 
space H: 

3 * 4B* A = L ik ( A + i k B) (A + i k B) . 
k=O 
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(4) Let IIAI12 = (A, A)~/2 for every Hilbert-Schmidt operator A. 
(a) Let Al, A2, ... be a sequence in C2 that satisfies 

lim IIAm - An l1 2 = o. 
ffi,n-i' 00 
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Show that there is an operator A E ß(H) such that IIAn -

All -+ 0 as n -+ 00. 

(b) Show that C2 is a Hilbert space relative to the inner product 
(2.23). 

(5) Show that a multiplication operator Mj is self-adjoint and has non­
negative spectrum iff (Mj~,~) :2: 0 for every ~ E L2(X, J.L). 

2.9. Adjoining a Unit to a C*-Algebra 

We have discussed the procedure of adjoining a unit to a nonunital Banach 
algebra so as to obtain a unital one. Proposition 2.5.4 describes the corre­
sponding procedure for the category of Banach *-algebras. If one applies the 
latter to a nonunital C*-algebra such as the compact operators K ~ ß(H), 
the result is a unital Banach *-algebra, but its norm fails to satisfy the C* 
condition Ilx*xll = Ilx11 2. Fortunately, one can always renorm this unital­
ization so that it becomes a C* -algebra, without changing the norm on the 
ideal representing the original algebra, in a unique way. The details are as 
folIows. 

Let A be a C*-algebra without unit and let L : A -+ ß(A) be the left 
regular representation of A, in which Lx represents left multiplication by 
x, .f E A. For any Banach algebra, L is a homomorphism of the algebra 
structure of A such that I/Lxll S Ilxll for every x E A. Let Ae denote the set 
of operators on A given by 

Ae = {La + Al: a E A, A E IC}. 

Then Ae is a complex algebra with unit, and we may define an involution in 
Ae by (La + Al)* = La" + .:\1, a E A, A E C. The operator norm determines 
a norm on Ae, which makes it into a normed algebra. Moreover, the natural 
map 7r : A -+ Ae defined by 7r(a) = La is a *-homomorphism satisfying 
7r(a) = ° ===} a = 0, a E A. We will show that (a) there is a C*-algebra 
norm on Ae and (b) with respect to that norm, 7r is an isometry. 

REMARK 2.9.1. Suppose one is given a Banach algebra A that is also 
endowed with an involution * satisfying Ilx*xll :2: I/xl1 2 for all x E A. Then 
A is a C* -algebra: I/xl1 2 = Ilx*xl/, x E A. To see this, note that the given 
inequality implies that IIxl1 2 S IIx*xll s Ilx*11 ·I/xll, so that Ilxll S IIx*1/ for 
all x E A. By replacing x with x* we obtain the opposite inequality; hence 
I/xll = Ilx* 1/. It follows that I/x*xll S Ilx* II . Ilxll = Ilx11 2, providing the other 
half of the asserted equality. 

PROPOSITION 2.9.2. The involution in Ae satisfies IIX* XII = I/XI1 2 for 
every X E Ae, and Ae is closed in the operator norm of ß(A); hence it is 
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a unital C* -algebra. Moreover, the regular representation is an isometrie 
*-isomorphism 01 A onto a maximal ideal 01 eodimension one in Ae. 

PROOF. Notice first that IILal1 = II all for every a E A. Indeed, :S is true 
for any Banach algebra, and the opposite inequality follows for an element 
a of norm 1 because 

IILal1 2: IILa(a*)11 = Ilaa*11 = Ila*1I2 = lIall 2 = 1. 

The set {La: a E A} is obviously an ideal in Ae of codimension at most 
one. If the co dimension were zero, then the identity operator would have 
the form L f for some element 1 E A; that would imply 1 was a unit for A, 
contrary to hypothesis. Hence {La : a E A} has codimension one. Since L 
is an isometry, this ideal must be closed in the operator norm of B(A); and 
since Ae is obtained from this ideal by adjoining the one-dimensional space 
spanned by 1, it follows that Ae must also be norm closed. 

It remains to show that the involution in Ae satisfies IIX* XII = IIXI12. 

By Remark 2.9.1, it is enough to verify the inequality IIXI12 :S IIX* XII for 
X = La + >'1 in Ae. For such an X, we have 

IIXI1 2 = sup II(La + >'1)(b)11 2 = sup Ilab + >'b11 2 

IIbl19 IIbll9 

= sup II(ab + >'b)*(ab + >'b)1I = sup Ilb*(X* X(b))11 
IIbll9 IIbl19 

:S sup IIX* X(b)11 ::; IIX* XII· 
IIbll9 

o 
The following result asserts that C* -algebras have aremarkable property 

of rigidity that is not shared by other types of Banach *-algebras. 

PROPOSITION 2.9.3. Every *-homomorphism 1r : A -+ B 0/ C· -algebras 
has norm at most 1. 1/ 1r has trivial kernel, then it is an isometry. 

PROOF. Suppose first that A has a unit lA. By passing from B to the 
closure of the *-subalgebra 1r(A) if necessary, we mayassume that 1r(A) is 
dense in B. In this case, 1r(IA) is the unit IB of B. Thus we may argue 
as we did for nondegenerate representations. For example, since 1r must 
map invertible elements of A to invertible elements of B, it follows that 
a(1r(x)) ~ a(x) for every element x E A. Corollary 2 of Theorem 2.2.4 
implies that for self-adjoint elements x E A we have 

111r(x)1I = r(1r(x)) :S r(x) = Ilxll, 
so that for general elements Z E A we have 

111r(z)II2 = 111r(z)*1r(x)II = 111r(z·z)II :S IIz·zII = IIzll 2 . 

If, in addition, 1r has trivial kernei, then we claim that 111r(x)II = IIxll 
for every x E A. As above, this reduces to the case where x = x· is self­
adjoint; and by Corollary 2 of Theorem 2.2.4 it is enough to show that x 
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and 1l'(X) have the same spectrum when x = x*. We have already seen 
that 0'( 1l'( x)) ~ 0'( x). For the opposite inclusion, suppose that ,,\ is a point 
of o'(x) that does not belong to o'(1l'(x)). There is a continuous function 
f : o'(x) -+ ~ such that f vanishes on o'(1l'(x)) and f("\) =f O. Since f = ° 
on o'(1l'(x)), we must have f(1l'(x)) = O. Notice that f(1l'(x)) = 1l'(f(x)) (this 
is obvious if f is a polynomial, and it follows for general continuous f by 
an application of the Weierstrass approximation theorem and the previously 
established fact that 1l' is a bounded linear map of A to B). But 1l'(f (x)) = ° 
implies that f(x) = 0 because 1l' has trivial kernel; in turn, f(x) = ° implies 
that f = 0 on o'(x), contradicting the fact that f()...) =f O. 

Now assume that A has no unit and let Ae be the unital extension of A, 
identifying A with its image in N. By adjoining a unit to B if necessary, 
we may assume that B has a unit IB. One may verify directly that the map 
ii' : N -+ B defined by 

ii'(a +)...1) = 1l'(a) + )"'IB 

is a *-homomorphism carrying the unit of Ae to IB. The argument above 
implies that 111l'11 :::; 11ii'11 :::; 1. Finally, assuming that 1l' is one-to-one, we 
claim that ii' is one-to-one. For if a E A and )... =f 0 is a scalar for which 
1l'(a) + )"'IB = ii'(a + )",1) = 0, set f = _)...-la E A. Since 1l'(f) = IB, 1l'(f) 
is a unit for 1l'(A), and since 1l' has trivial kernel, f must be a unit for A, 
contrary to hypothesis. Thus 1l'(a) + )"'IB = ° =} )... = 0 and a = 0, and 
thus ii' is one-to-one as asserted. The preceding paragraphs imply that ii' is 
isometrie; hence 1l' is isometrie. 0 

COROLLARY 1. Let A be a eomplex algebra with involution. If there is 
a norm on A that makes it into a C* -algebra, then that norm is unique. 

PROOF. Let 11 . Ih and 11 . 112 be two (eomplete) Banaeh algebra norms 
on A satisfying Ilx*xllk = Ilxll~ for x E A, and let Ak be the algebra A 
eonsidered as a CO-algebra in eaeh norm respeetively, k = 1,2. The identity 
map of A ean be regarded as a *-isomorphism of Al onto A2 . By Proposition 
2.9.3 this map must be an isometry; hence Ilxlh = IIxl12 for all x E A. 0 

COROLLARY 2. Let A be a nonunital C* -algebra, let 1l' : A -+ N be the 
natural map of A into its unitalization, and endow Ae with its C* -norm. 
Then 1l' is an isometrie *-isomorphism of A onto an ideal of codimension 1 
in Ae . 

Exercises. 

(1) Let A be a nonunital CO-algebra and let 1l' : A -+ N be the natural 
map of A into its unitalization. Considering Ae as a CO-algebra, 
suppose that there is an isometrie *-homomorphism 0' : A -+ B 
of A into another unital C* -algebra B such that 0'( A) is an ideal 
of co dimension 1 in B. Show that there is a unique isometrie *­
isomorphism () : Ae -+ B such that () 01l' = 0'. 
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(2) Let /C be the C*-algebra of compact operators on a Hilbert space 
H. Show that the space of operators {Al + K : A E C, K E /C} is 
a C*-algebra *-isomorphic to /Ce. 

(3) Let X be a compact Hausdorff space and let F be a proper closed 
subset of X. Let A be the ideal of all functions f E C(X) that 
vanish throughout F, f(p) = 0, P E F. Note that A is a C*-algebra 
in its own right. 
(a) Show that A has a unit if and only if F is both closed and 

open. 
(b) Assuming that F is not open, identify the unitalization of A 

in concrete terms by exhibiting a compact Hausdorff space Y 
such that Ae 2:! C(Y), describing the precise relationship of Y 
to X and F. 

2.10. Quotients of C*-Algebras 

In order to discuss compact perturbations of operators on a Hilbert space 
one must bring in the Calkin algebra (the C* -algebra B( H) / /C obtained by 
passing to the quotient modulo compact operators), and that requires some 
basic results about the formation of quotients of C* -algebras. We work out 
the relevant material in this section, in a general setting. 

Throughout, A will denote a C* -algebra that need not contain a unit. 
When no unit is present there is an effective substitute, called an approxi­
mate unit. More precisely, an approximate unit for A is a net {e>. : A E I} 
indexed by an increasing directed set I (which need not be the positive 
integers N and which need not even be countable) that has the following 
properties: 

(1) e>. = e~ and cr(e>.) ~ [0,1]. 
(2) lim>.-too IIxe>. - xii = 0, for every x E A. 

The meaning of the second assertion of (1) requires clarification, since our 
discussion of spectra has so far been limited to uni tal Banach algebras and 
uni tal C* -algebras. The spectrum of an element x of a nonunital C* -algebra 
Ais defined by embedding A in its unitilization Ae; a(x) is then weil defined 
by considering x to be an element of A e. The spectrum of an element of a 
nonunital C* -algebra is a compact set of complex numbers which necessarily 
contains o. 

Significantly, approximate units exist in arbitrary C*-algebras (see The­
orem 1.8.2 of [2], for example); but all we require here is the following: 

LEMMA 2.10.1. Let A be a C* -algebra and let J be a closed left ideal 
in A. Por every element x E J there is a sequence el, e2, ... of self-adjoint 
elements of J such that a(en ) ~ [0,1] and 

lim IIxen - xII = O. n-too 
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PROOF. By adjoining a unit to A if necessary, we can assume that A is 
unital. Suppose first that the given element x is self-adjoint, and define 

en = nx2(1 + nx2r 1 = fn(x), n = 1,2, ... , 

In being the real function 

nt2 

In ( t) = 1 + nt2 ' 

Since In is continuous and vanishes at the origin, en belongs to the closed 
linear span of the positive powers of x, hence en E J. Moreover, since 
0::; In(t) ::; 1 for all t E~, we have O'(en) ~ [0,1]. 

Writing 

Ilxen - xl1 2 = Ilx(1 - en)11 2 = 11(1 - en )x2 (1 - en)11 ::; IIx2(1 - en)ll, 
and using the fact that 1 - In(t) = 1/(1 + nt2 ), we find that 

1 
x2(1 - en) = x2(1 + nx2r 1 = -nx2(1 + nx2)-1 

n 
has norm at most l/n. Thus Ilx2(1- en)11 -+ 0 as n -+ 00, and (2) is proved 
for the case x· = x. 

In the general case, we apply the preceding paragraph to the self-adjoint 
element x·x E J to find a sequence of self-adjoint elements en E J satisfying 
O'(en) ~ [0,1], for which Ilx*x - x*xenll -+ 0 as n -+ 00. In this case we have 

Ilx - xenl1 2 = 11(1- en)x*x(l- en)1I ::; Ilx*x(l- en)lI, 
and (2) follows because the right side tends to 0 as n -+ 00. o 

THEOREM 2.10.2. Every closed ideal in a C· -algebra is self-adjoint. 

PROOF. Let J be a closed ideal in a C* -algebra A and choose an element 
xE J. We have to show that x· E J. By Lemma (2.10.1) there is a sequence 
of self-adjoint elements eI, e2, ... in J such that xen converges in norm to x 
as n -+ 00. Taking adjoints we find that enx* converges to x*; since enx* E J 
it follows that x* E J = J. 0 

Suppose now that we are given a closed ideal J in a C* -algebra A. We 
form the quotient Banach algebra as in Section 1.8. Since J* = J, we can 
introduce an antilinear mapping on cosets by 

(x + J)* = x· + J, x E A, 

and this defines an involution of the quotient algebra A/ J. 

THEOREM 2.10.3. The involution above makes A/ J into a C* -algebra. 

PROOF. It suffices to show that for every element x E A the coset x = 
x + J satisfies IIxl1 2 ::; Ilx*x~. To prove this, consider the following set of 
elements of J: 

E = {e E J: e* = e,O'(e) ~ [0, I]}. 
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We claim that for every x E A, 

(2.25) Ilxll = inf IIx - xell· 
eEE 

Indeed, the inequality ~ is clear from the faet that xe E J for every e E E. 
For the opposite inequality, fix an element k E J and ehoose a sequenee of 
elements el, e2, ... satisfying the eonditions of Lemma 2.10.1 with ken --t k. 
Then 

(x + k)(l- en) = (x - xen) + (k - ken). 

The seeond term on the right tends to 0 as n --t 00, and sinee Ilx + kll 2: 
II(x + k)(l - en)11 for every n, we have 

Ilx + kll 2: liminf Ilx - xenll 2: inf Ilx - xell· 
n--+oo eEE 

If we now take the infimum over all k E J, we obtain 

Ilxll = inf IIx + kll 2: inf Ilx - xell, 
kEJ eEE 

and formula (2.25) is proved. 
To see that IIxl1 2 ~ Ilx*xll, fix x and apply (2.25) as folIows: 

IIxl12 = inf Ilx - xel1 2 = inf 11(1 - e)x*x(l - e)11 
eEE eEE 

~ inf Ilx*x(l- e)1I = Ilx*x + JII = IWxll· 
eEE 

o 

THEOREM 2.10.4. Let A and B be C*-algebras and let 7r : A --t B be 
a *-homomorphism. Then 7r(A) is a C*-subalgebra 0/ B, and the natural 
promotion 0/7r, 

ir: Ajker7r --t B, 

is an isometrie *-isomorphism 0/ Ajker7r onto 7r(A). 

PROOF. The map ir : Ajker7r --t B is a *-homomorphism having ker­
nel {O}. Sinee Aj ker 7r is a C* -algebra Proposition 2.9.3 implies that ir is 
isometrie. Henee its range 7r(A) = ir(Ajker7r) is norm-closed in B. 0 

Exercises. 

(1) Let {el,e2, ... } be an orthonormal basis for a separable Hilbert 
spaee H, and let En be the projeetion on the span of {eI, ... ,en }. 

Show that an operator T E B(H) is eompaet iff 

lim IIT - TEnl1 = 0, 
n--+oo 

and deduee that {En : n E N} is an approximate unit for the 
C* -algebra K. 
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(2) Let U be a unitary operator on a Hilbert space H. Then a(U) ~ 1, 
and hence there is a unique representation p E rep( C (1), H) sittis­
fying p(f) = j(U) for j E C(l). Identify ker pas an ideal in C(l), 
identify the quotient C (1) / ker p in concrete terms as a commu­
tative C* -algebra, and similarly describe the natural factorization 
p = p 0 11", where 

11" : C(l) -+ C(l) / ker p 

is the natural map onto the quotient C* -algebra. 

The remaining exercises relate to the Stone-Cech compactification 
of the real line, and of more general locally compact Hausdorff 
spaces. Let Cb(lR.) be the space of all bounded continuous complex­
valued functions of a real variable. 

(3) Show that there is a compact Hausdorff space ßlR. and an isometric 
*-isomorphism of Cb(lR.) onto C(ßlR.). (Hint: Cb(lR.) is a unital C*­
algebra. You must be explicit about this isomorphism or you will 
have trouble later on.) 

(4) For every t E lR., show that there is a (naturally defined) point 
i E ßlR., and that the map t I-t i is a homeomorphism of lR. onto a 
dense subspace of ßlR.. 

The space ßlR. is called the Stone-Cech compactification of the 
realline R 

(5) Identifying lR. with its image in ßlR., the subspace ßlR. \ lR. is called 
the corona of R Show that the corona is closed (and hence, lR. is an 
open subset of ßlR.). Hint: For whieh points pE ßlR. does evaluation 
at p vanish on the ideal Co(lR.) ~ Cb(lR.)? 

(6) Deduee that the quotient C*-algebra Cb(lR)jCO(lR) is isometrieally 
isomorphie to C(ßlR \ lR). 

A compactijication of lR is a pair (4), Y) where Y is a eompaet 
Hausdorff spaee and 4> : lR -+ Y is a eontinuous map such that 
4>(lR) is dense in Y. 

(7) Show that (t I-t i, ßlR.) is a universal compactification of lR. in the 
following sense: If (4), Y) is any compactifieation of lR., then there 
is a unique extension of 4> : lR. -+ Y to a continuous surjection 
~ : ßlR. -+ Y. Hint: The map 4> induces a *-isomorphism of C(Y) 
onto a unital C*-subalgebra of Cb(lR). 

Your proof above extends easily to give a more general theorem, in 
which lR is replaced by any locally compact noncompaet Hausdorff 
space X (such as lRn, zn, or an open manifold), and one obtains'a 
universal compactifieation ßX ealled the Stone-Ceeh compaetifiea­
tion of X. Formulate this theorem for yourself. 



CHAPTER 3 

Asymptotics: Compact Perturbations and 
Fredholm Theory 

Operator theory modulo compact perturbations should be regarded as a 
study of the "asymptotic" properties of operators. After making this vague 
notion more precise in the context of Hilbert space operators, we take up 
the general theory of compact and Fredholm operators acting on Banach 
spaces and discuss aremarkable asymptotic invariant, the Fredholm index. 

3.1. The Calkin Algebra 

Let H be a separable Hilbert space and let K be the C* -algebra of all 
compact operators on H. We have seen that K is a closed ideal in B(H). 
The quotient C* -algebra C = ß( H) / K is called the Calkin algebra. The 
Calkin algebra is important because it is the repository of all asymptotic 
information about operators on H. The purpose of this section is to discuss 
this aspect of operator theory in preparation for the more precise results to 
follow. 

Let us begin in a simpler, commutative, context. A bounded sequence 
x = (Xl, X2,"') of complex numbers is an element of the C*-algebra Coo, 
where addition, scalar multiplication, and multiplication are defined point­
wise, and the norm is the usual one: 

Ilxlloo = sup Ixnl· 
n::::l 

We want to discuss properties of the sequence X that depend only on the 
behavior of the sequence at infinity, for example, the notion of a convergent 
sequence. Such properties can be expressed in terms of certain functions 
defined on alt of f,oo, such as 

limsup Ixnl = lim (sup{lxn\, IXn+1l, IXn+21, ... }). 
n-too n-too 

Other examples are the limit inferior and the limit superior of the sequence of 
real parts lRxn of the components of x. In particular, a sequence X converges 
if and only if 

lim sup lRxn = lim inf lRxn and 
n-too n-too 

lim sup 'Jxn = lim inf 'Jxn . 
n-too n-too 

One can formalize the idea of an asymptotic invariant as folIows. Let us 
say that a function q; : foo -+ C is asymptotic if it is continuous relative to 
the norm topology of Coo and has the property that for any two sequences 

83 
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x, y E eoo for which limn-too IXn - Ynl = 0, one ha..'l 4>(x) = 4>(Y). Notice 
that we do not require that 4> be a linear functional; in fact, many of the 
important asymptotic properties of sequences, such as the examples above, 
are non!inear. 

The proper domain for asymptotic functions is the quotient C* -algebra 
eoo / co. More precisely, consider the space Co of all sequences x that converge 
to zero: 

!im Xn = 0. 
n-too 

Here Co is a closed ideal in eoo , and the quotient eoo / Co is a commutative 
C* -algebra, whose Gelfand spectrum is identified with the corona ßN \ N of 
the Cech compactification of N. Notice that by their definition, asymptotic 
functions 4> : eoo -+ C promote naturally to continuous functions 

~:eoo/Co-+c 

by way of ~(x + Co) = 4>(x). Conversely, every continuous complex-valued 
function defined on eoo / Co is associated with an asymptotic function defined 
on eoo . 

These remarks show that the asymptotic properties of sequences are 
tied to the quotient C* -algebra eoo / Co, or equivalently, to the corona space 
ßN \ N. The latter is a very mysterious object: It is a compact Hausdorff 
space without isolated points, but whose. topology is so large that no point 
p of ßN \ N can be approached with a sequence Pl,P2, ... of distinct points 
of ßN \ N. In particular, it is not possible to rea!ize this space as a subset of 
any metric space. Thus one does not approach the analysis of asymptotic 
properties by analyzing ßN \ Nasa topological space, but rather by dealing 
directly with concrete properties of the quotient C*-algebra eoo /Co. 

Turning now to operator theory, the noncommutative counterpart of 
eoo is the algebra ß(H) of all bounded operators on a separable infinite­
dimensional Hilbert space H. Let us introduce coordinates in H by choosing 
an orthonormal basis {el,e2,"'}' Let En be the projection of H onto the 
n-dimensional space spanned by el, ... , en . The sequence En is increasing 
in the sense that En ~ En+1, and we have 

!im En = 1 
n-too 

relative to the strong operator topology of ß(H). Choose an operator A E 
ß(H) and consider its matrix (aij) relative to this basis: 

i,j = 1,2, .... 

Notice that the matrix of (1 - En )A(l - En ) is obtained from (aij) by 
replacing the first n rows and columns of (aij) with zeros and leaving the 
remaining entries fixed. Moreover, the result of Exercise (2) of Section 2.8 
implies that A is compact iff 

!im 11(1 - En)A(l - En)11 = O. n-too 
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Thus the ideal K of compact operators in ß(H) becomes the noneommuta­
tive counterpart of the ideal CO of all null-eonvergent sequenees in crx;. 

Similarly, one may consider asymptotic invariants of operators. For ex­
ample, this eould mean a eontinuous function q; : ß(H) -t C with the 
property that q;(A) = q;(B) whenever A - B is compact. As before, such a 
function promotes naturally to a continuous function on the Calkin algebra 

~ : ß(H)jK -t C, 

and every continuous complex function defined on the Calkin algebra arises 
in this way from an asymptotic funetion defined on ß(H). 

The most obvious examplc of an asymptotic invariant of operators A E 
ß( H) is their eoset norm in the Calkin algebra, 

IIA + KII = lim 11(1 - En )A(1- En)ll, n-too 

eorresponding to the eoset norm of sequences x E Roo, 

Ilx+coll = lim II(xn,xn+1,Xn+2, .. ·)lloo. n-too 

Another example is the essential spectrum, or more specifieally the essential 
spectrai radius, 

re(A) = SUp{IAI : A E O'e(T)}. 
Further examples are described in the Exercises. 

Exercises. These exercises concern Banaeh limits and their noncom­
mutative counterparts. Let Roo = ROO(N) denote the Banach space of all 
bounded sequences of complex numbers a = (an : n ~ 1), with the sup 
norm. We regard Roo as a commutative C*-algebra with unit 1 = (1,1,1, ... ) 
relative to the pointwise operations. Let T be the linear operator defined on 
Roo by translating one step to the left and discarding the initial component: 

n = 1,2, .... 

A Banach limit is a linear functional A on Roo satisfying IIAII = A(l) = 1, 
that is translation invariant in the sense that A(Ta) = A(a), a E Roo . For 
the following exercises, A will denote a Banach limit. 

(1) Show that A is a positive linear functional in the sense that 

an ~ 0, n = 1,2, ... ===} A(a) ~ O. 

(2) Show that for every real-valued sequence a E Roo, 

liminf an :S A(a) :S limsupan, 
n~l n~l 

and deduce that A(a) = limn-too an whenever a is a (complex) 
convergent sequence in c; in particular, for every b E Roo and k E co, 

A(b + k) = A(b). 
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(3) For n = 1,2, ... , let an be the linear functional on loo defined by 

() al + a2 + ... + an 
an a = , 

n 
Then an obviously satisfies IIanil = an(l) = 1. By estimating the 
norm, show that limn-too IIan 0 T - an 11 = o. 

(4) (Existence of Banach limits) For every n = 1,2, ... , let K n be the 
closure (in the weak* -topology of the dual of lOO) of the set of linear 
functionals {an,an+1,an+2,"'}' Show that nnKn =f. 0, and that 
every linear functional in this intersection is a Banach limit. 

In the remaining exercises, you will consider "noncommutative" 
Banach limits, as linear functionals on the noncommutative coun­
terpart of loo. Let el, e2, . .. be an orthonormal basis for a Hilbert 
space H, let S E B{ H) be the unilateral shift associated with this 
orthonormal basis by requiring Sen = en+1, n = 1,2, ... , and let 
A be a Banach limit. Define a bounded linear functional p on 
B(H) as folIows: p(A) = A(a), where a = (an) is the sequence 
an = (Aen, en), n = 1,2,.... It is obvious that p is a positive 
linear functional in the sense that A 2: 0 =} p(A) 2: 0, and of 
course p( 1) = 1. 

(5) Show that p(K) = 0 for every compact operator K. 

For the last exercise, it may help to compare the matrix of an 
operator A (relative to a fixed orthonormal basis (en )) to the matrix 
of its kth "translate" Sk* ASk, noting that the latter is obtained 
from the matrix (amn ) of A by deleting the first k rows and columns 
of (amn ) and repositioning the result. How is the matrix of Sk ASk* 
related to (amn )? 

(6) Show that p(S* AS) = p(A) and p(SAS*) = p(A), for every opera­
tor A E B(H). 

3.2. Riesz Theory of Compact Operators 

Let E be a complex Banach space. An operator T E B(E) is said to be 
compact if the image of the unit ball {T~ : II~II :s 1} of E has compact 
closure relative to the nonn topology of E. The set of all compact operators 
on E is denoted by K(E). 

Since bounded sets in finite-dimensional Banach spaces are precompact, 
a finite-rank operator must be compact. The result of Exercise (3) below 
implies that K(E) is a norm-closed two-sided ideal in B(E). In particular, 
any operator T that can be norm-approximated by a sequence of finite-rank 
operators Fn, in the sense that IIT - Fnll -+ 0 as n -+ 00, must be compact. 
If Eis a Hilbert space, then K(E) is the norm closure of the space of finite­
rank operators, and that fact is useful for proving results about compact 
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operators on Hilbert spaces. However, the reader should keep in mind that 
this convenient approximation property can faB for Banach spaces: K(E) 
can be properly larger than the norm closure of the finite-rank operators. 

REMARK 3.2.1. Kerneis and cokernels. We introduce some terminology 
that will be useful throughout the sequel. Suppose that A E B(E) is a 
bounded operator that, for simplicity, we assurne has closed range. There 
are two natural Banach spaces associated with A, namely, its kernel and 
cokernel: 

ker A = {x E E : Ax = O}, coker A = E/AE. 

The not ion of cokernel bears some elaboration. An elementary result from 
the theory of Banach spaces asserts that there is a natural isomorphism 
between the annihilator AE.L ~ E' of AE and the dual space of E/AE. On 
the other hand, the annihilator of AE is precisely the kernel of the operator 
adjoint A' E B(E' ) of A. Thus we conclude that 

dirn coker A = dirn ker A' 

at least for every operator A E B(E) whose range is closed and of finite 
codimension in E. 

For such operators the two integers dirn ker A and dirn coker A provide 
important information about solutions of linear equations of the form 

Ax=y, 

where y is given and x is to be found. The number dirn ker A measures 
the degree of failure of uniqueness of solutions, and the number dirn coker A 
measures the degree of failure of existence of solutions. Much of what follows 
in this chapter has subtle and important implications for understanding 
these numerical invariants and their relation to each other. 

The purpose of this section is to establish the following two general 
results about compact operators and their spectra. 

THEOREM 3.2.2 (Fredholm alternative). Let T E K(E) and let A be a 
nonzero complex number. Then either 

(1) A - T is invertible, or 
(2) ker(A - T) -I {O}. 

Moreover, the kernel of A - T is finite dimensional, the range of A - T is a 
closed subspace of E of finite codimension, and we have 

dimker(A - T) = dimcoker(A - T). 

THEOREM 3.2.3 (Countability of spectrum). Let T be a compact operator 
on an infinite-dimensional Banach space E. Then 0 E a(T), and every 
nonzero point of a(T) is an isolated point of a(T). 
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REMARK 3.2.4. The Fredholm alternative leads to an effeetive proeedure 
for solving linear equations of the form 

(3.1) Tx - >.x = y, 

where T is· a given eompact operator, >. -I- 0 is a eomplex number, and y 
is a given vector in E. One first deterrnines whether or not there are non­
trivial eigenveetors with eig~nvalue >., by earrying out an analysis with the 
specifie information one has about T. If there are no nonzero eigenveetors, 
then equation (3.1) is uniquely solvable for every given Y E E. Otherwise, 
there is a finite linearly independent set of veetors Xb ... , Xn that span the 
eigenspaee {x E E : Tx = >.x}. In this ease the equation has a solution iff 
Y belongs to (>' - T)E; moreover, the general solution x of (3.1) ean be de­
termined from any particular solution Xo as in undergraduate linear algebra 
and differential equations: 

x = Xo + alXl + ... + anxn , 

where ab ... , an are arbitrary eomplex numbers. 
This begs the issue of whether or not y belongs to the range of >. - T. 

To approach that, one first eomputes the adjoint T' E B(E'). Noting that 
the annihilator of (>' - T)E is the dual eigenspaee {g E E' : T' 9 = >.g}, one 
sees from Theorem 3.2.2 that there is a set of n linearly independent linear 
functionals h, ... , fn E E' which span the space {g E E' : T'g = >.g}. Onee 
one has computed such a basis 11, ... , In one may conclude that for a given 
Y E E, (3.1) has a solution iff 

h(Y) = ... = fn(Y) = O. 

Final1y, notice that Theorem 3.2.3 implies that when E is infinite di­
mensional, the spectrum of any compact operator is either just {O} (which 
is, by the Gelfand-Mazur theorem, equivalent to the assertion that T is 
quasinilpotent), or it eonsists of 0 and a finite number of nonzero points, or 
else it has the form 

a(T) = {O} U {Al, A2,"'}' 

where >'1, A2, . .. is a sequence of nonzero complex numbers eonverging to O. 

REMARK 3.2.5. Note first that by rep1acing T with A-lT, we may with­
out 10ss of generality assurne that A = 1 in the assertions of Theorem 3.2.2. 
The kerne1 of 1 - T is finite dimensional. This is an immediate eonsequence 
of Exercise (1) below, since T is a compact operator whose restriction to 
ker(l - T) is the identity operator of ker(l - T). 

Similar1y, if R denotes the closure of (1 - T)E, then R must be of finite 
codimension in E because the annihilator of R in the dual of E is the kerne1 
of the operator 1-T', and T' is compact by the resu1t of Exercise (4) below. 

The proof of the Fredho1m alternative (Theorem 3.2.2) involves three 
steps, which we establish as Lemmas: 
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LEMMA 3.2.6. Let TE K(E), and let M ~ E be a closedsubspace 01 E. 
Then (1 - T)M is closed. 

PROOF. We first point out that it suffices to prove the assertion for 
the case where the restriction of 1 - T is one-to-one. Indeed, let F = 
Mn ker(l- T). By Remark 3.2.5, Fis a finite-dimensional subspace of M, 
and thus it must have a complement, a closed subspace N ~ M with the 
property that N n F = {o} and N + F = M (see Exercise (2) below). It 
follows that (1 - T)M = (1 - T)N, and the restriction of 1 - T to N has 
trivial kernel. 

Thus we mayassurne that Mn ker(l - T) = {al. Pick an element y in 
the closure of (1 - T)M. We will show that y E (1 - T)M. To see that, 
choose a sequence Xn E M such that Xn - TXn ~ y as n ~ 00. We claim 
that Ilxnll is bounded. Indeed, if it is not, then there is a subsequence Xn' of 
Xn such that Ilxn,ll ~ 00. Set en , = IIxn,II-Ixn,. This defines a sequence of 
unit vectors of M for which IITen,-en,11 ~ 0. Since T is a compact operator, 
there must be a subsequence en" with the property that Ten" converges in 
the norm of E. Since lien' - Ten,ll ~ 0, it follows that en" must converge to 
some vector 1, which must be a unit vector in M because each en has these 
properties and M is closed. Finally, we have 1 = TI, contradicting the fact 
that the restriction of 1 - T to M is injective. 

Thus the sequence Xl, X2, ... is bounded. Again, compactness of T im­
plies that there is a subsequence X n' with the property that Txn, converges 
in norm to some vector. Since Xn - TXn ~ y, it follows that Xn' must itself 
converge to some vector X E M, and we have 

X - Tx = lim Xn' - Txn, = y, 
n'--+oo 

and hence y E (1 - T)M. 

LEMMA 3.2.7. Por every compact operator T on E, 

ker(l - T) = {o} <==> (1 - T)E = E. 

PROOF. We first prove ==}. For every n = 0, 1,2, ... , set 

Mn = (l-TtE. 

D 

We have E = Mo 2 MI 2 M2 2 "', each Mn is T-invariant in that 
T Mn ~ Mn, and from Lemma 3.2.6 and an obvious induction it follows that 
Mn is closed. 

We claim that if (l-T)E =I- E, then Mn =I- Mn+! for every n = 0,1, .... 
To see this, assume that there is a vector Xo E E that fails to belong to 
(1 - T)E, and fix n. We will show that (1 - T)nxo ~ Mn+!. Indeed, 
if there were to exist a Yo E E such that (1 - T)nxo = (1 - T)n+!yo, 
then (1 - T)n(xo - (1 - T)yo) = 0. Since we are assuming that 1 - T 
is injective, (1 - T)n is also injective; hence the previous formula implies 
Xo = (1 - T)yo E (1 - T)E, contrary to assumption. 
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Thus, assuming (1-T)E i= E, it follows that the sequence Mo, MI, ... is 
strictly decreasing. For each n = 0,1,2, ... we choose a unit vector en E Mn 
such that 

(3.2) 

Notice that 

(3,3) k ~ 1, n = 0, 1,2, .... 

Indeed, we have 

Ten - Ten+1 = en - [(1 - T)en + Ten+k)]' 

The bracketed term on the right belongs to Mn+1, since Ten+k E Mn+k ~ 
Mn+1 and (1 - T)en E (1 - T)Mn ~ Mn+l . Hence 

1 lien - [(1 - T)en + Ten+k)] II ~ d(en, Mn+!) ~ 2' 

which proves (3.3). Clearly, (3.3) violates the compactness hypothesis on T, 
and hence (1 - T)E = E. 

For the proof of {:=, consider the adjoint operator T' E B(E'). The 
hypothesis (1-T)E = E implies that ker(1-T') = {O}. Since T' is compact 
(see Exercise (4)), the argument just given implies that (1 - T')E' = E'. 
In turn, this implies that ker(1 - T) = {O}. Indeed, every bounded linear 
functional f on E has the form f = go (1- T) by hypothesis; hence for any 
vector x E ker(1 - T) we have f(x) = g«1 - T)x) = 0, and x = 0 follows 
from the Hahn-Banach theorem. 0 

To summarize progress, we have shown that ker(1- T) and coker (1-T) 
are both finite dimensional and that 1 - T has closed range; and we have 
the assertion of Lemma 3.2.7. We now extend the result of Lemma 3.2.7, as 
folIows: 

LEMMA 3.2.8. For every compact operator T on E, 

dimker(1 - T) = dirn coker (1 - T). 

PROOF. Choose a basis Xl,.'" Xm for ker(1 - T) and choose vectors 
Yb ... ,Yn E E whose cosets Yb ... ,Yn are a basis for the cokernel E / (1 -
T)E. Notice that the linear span [Yb ... , Yn] intersects trivially with (1 -
T)E. We have to show that m = n. 

The alternatives m ~ n or m ~ n can be dealt with in turn. Assuming 
first that m ~ n, we choose a closed complement N for ker(1 - T) and 
consider the finite-rank operator F E B(E) defined as zero on N and so as 
to map Xk to Yk for k = 1,2, ... , m. Notice that ker(1 - T) n ker F = {O}. 
The operator T = T + F, being a finite-rank perturbation of T, is compact. 
We claim that 1 - T has trivial kerne!. Indeed, if Tx = x, then X - Tx = 
Fx E (1 - T)E n [YI,.'" Ynl = {O}. Hence X E ker(1 - T) n ker F = {O}, 
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proving the claim. It follows from Lemma 2.4.3 that E = (1 - T)E. Now, 
on the one hand, 

Ej(1 - T)E = [Yb ... , Yn], 
while since (1 - T)E ~ (1 - T)E + FE = (1 - T)E + [Yb . .. ,Ym]' we also 
have 

(1- T)Ej(1 - T)E ~ [Yl,"" Ym]. 
Since E = (1 - T)E, these relations imply that [Yl,"" Yn] ~ [Yb ... , Ym], 
from which we conclude that n = m. 

Assuming that m ~ n, one can construct a finite-rank operator G map­
ping [Xl, ... ,xm] onto [Yl, ... , Yn]. By arguing with the perturbation T + G 
in a similar way one shows that 1 - (T + G) is injective, and argues to the 
conclusion that m can be no larger than n. The reader is asked to fiesh out 
this argument in Exercise (5) below. 0 

PROOF OF THEOREM 3.2.2. We deduce Theorem 3.2.2 from the pre­
ceding discussion as folIows. If 1 - T is not invertible, then ker(1 - T) 
must be nontrivial, since if the kernel is trivial, then by Lemma 3.2.7, 1-T 
is onto, hence invertible. The finite dimensionality of ker(1 - T), and the 
closure and finite codimensionality of (1- T)E, have also been established, 
and Lemma 3.2.8 provides the formula relating the dimensions of the kernel 
and cokernel. 0 

PROOF OF THEOREM 3.2.3. We show first that 0 E a(T). Indeed, if 0 
does not belong to a(T), then T is invertible. Since K(E) is an ideal, it 
follows that 1 = T-IT is compact. This implies that the unit ball in E is 
compact, and hence E is finite dimensional (Exercise (1) below). 

In order to establish the remaining assertions of Theorem 3.2.3, it suffices 
to prove the following: If Al, A2, ... is a sequence of distinct nonzero complex 
numbers in a(T), then 

(3.4) !im An = O. 
n-too 

To prove this, assume that Al, A2, ... is a sequence of distinct nonzero 
points in a(T) that does not converge to O. By passing to a subsequence if 
necessary, we can assurne that there is an f > 0 such that IAnl 2: f for every 
n = 1,2, .... 

Theorem 3.2.2 implies that An - T has nonzero kernel for every n; hence 
we can find a unit vector en such that Ten = Anen for every n. No­
tice that the sequence e}, e2, ... is linearly independent. Indeed, for fixed 
n, At. ... , An are distinct complex numbers, so we can find polynomials 
Pb ... ,Pn such that Pi (Aj) = 8ij for 1 S i, j S n. If some linear combination 
of el, ... , en vanishes, 

alel + ... + anen = 0, 

then after applying Pk(T) to this equation and using Pk(T)ej = 8kjek we 
obtain 

akek = aIPk(T)el + ... + anPk(T)en = Pk(T)(alel + ... + anen) = 0, 
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and hence ak = 0 for all k. 
The subspaces MI, M2, ... defined by Mn = [eI, e2,···, enl are strictly 

increasing with n; hence we can find unit vectors UI, U2, ... such that Uk E 
Mk and d(Uk,Mk- l ) 2: ~ for every k = 2,3, .... Finally, notice that (T­
An)Mn ~ Mn- l for every n 2: 2, simply because each ek is an eigenvector of 
T with eigenvalue Ak. In particular, (T - An)en E Mn- l for n 2: 2. 

It follows that for 1 ::; k < n we have 

TUn - TUk = AnUn + [(T - An)Un - TUkl. 

Since the bracketed vector on the right. belongs to Mn-I, it follows that 

IITun - TUkll 2: d(AnUn, Mn-I) = IAnld(un, Mn-I) 2: f./2, 

and the latter inequality contradicts the compactness hypothesis on T. 0 

Exercises. 

(1) ( a) Let r be areal number satisfying 0 < r < 1. Show that an 
infinite-dimensional Banach space E contains a sequence of 
unit vectors el, e2, ... satisfying liek - ej II 2: r for all j =1= k. 
Hint: Use induction and elementary properties of the quotient 
norm in E / F where F is a finite-dimensional subspace of E. 

(b) Deduce that the unit ball of a Banach space E is compact iff 
E is finite dimensional. 

(2~ (a) Let Pbe a finite-dimensional subspace of a Banach space E. 
Show that there is an operator P E B(E) satisfying p 2 = P 
artd'PE = F. Hint: Pick a basis Xl,"" X n for Fand find 
'bounded linear functionals h, ... , In on E such that li(Xj) = 

8ij. 
(b) Deduce that every finite-dimensional subspace F ~ E is com­

plemented in the sense that there is a closed subspace G ~ E 
with G n F = {O} and G + F = E. 

(c) Show that every closed subspace M ~ E of finite codimension 
in E is complemented. 

(3) Show that for any Banach space E, K(E) is a norm-closed two-sided 
ideal in B(E). 

(4) Let T be a compact operator on a Banach space E. Show that the 
adjoint T' E B(E') is compact. Hint: Use Ascoli's theorem. 

(5) Supply the missing details to the last paragraph of the proof of 
Lemma 3.2.8. 

3.3. Fredholni Operators 

A bounded operator T on a Banach space E is said to be a Fredholm op­
emtor if ker T is finite dimensional and TE is a closed subspace of finite 
codimension in E. More briefly, one says that T has finite-dimensional ker­
nel and cokernel. Notice that the assertion about cokerT is subtle, in that 
one must verify that the range of T is closed, and of finite codimension. In 
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general, there are nonclosed subspaces of Banach spaces that are of finite 
codimension, such as the kerneis of discontinuous linear functionals. On the 
other hand, if a linear subspace R of finite codimension in E is the range of a 
bounded linear operator T E B(E), then R must be closed (see Exercise (1) 
below). Thus, one can make a more symmetrie linear-algebraic definition 
of a Fredholm operator as a bounded operator on E with the property that 
both ker T and coker T = E jT E are finite dimensional as complex vector 
spaces. 

REMARK 3.3.1. Obviously, invertible operators have the Fredholm prop­
erty. A noninvertible example is the unilateral shift acting on e2(N): Its 
range is a closed' subspace of co dimension 1, and its kernel is {O}. In the 
preceding section we have seen that any operator A + T, with T compact and 
A a nonzero scalar, is a Fredholm operator. In this section we summarize the 
basic properties of Fredholm operators and establish an important criterion, 
Atkinson's theorem. These results imply that Fredholmness is an asymptotic 
property in the sense that it is stable under compact perturbations. 

Throughout the section E denotes an infinite-dimensional Banach space, 
and IC(E) denotes the closed ideal of all compact operators in B(E). The nat­
ural homomorphism of B(E) onto the quotient Banach algebra B(E)jIC(E) 
is denoted by T r-t T = T + JC.(E). 

THEOREM 3.3.2 (Atkinson's theorem). A bounded operator T on Eis a 

Fredholm operator iJjT is invertible in B(E)jJC.(E). . 

Before giving the proof, we collect some of its immediate consequences. 
Let F(E) be the set of all Fredholm operators on E. 

COROLLARY 1. A bounded operator T belongs to F(E) Hf there is an 
operator S E B(E) such that 1 - ST and 1 - TS are both compact. 

PROOF OF COROLLARY 1. If T is invertible in B(E)jIC(E}, then its in­
verse is an element of the form S for some S E B(E), and the operators 
1 - ST and 1 - T S must be compact because they map to 0 in the quotient 
algebra. The converse follows immediately from Atkinson's theorem. 0 

COROLLARY 2. The set F(E) of Fredholm operators is open in the norm 
topology of B(E), it is stable under compact perturbations, it contains all 
invertible operators of B(E), and it is closed under operator multiplication. 

PROOF OF COROLLARY 2. Atkinson's theorem implies that F(E) is the 
inverse image ofthe general linear group of B(E)jIC(E) under the continuous 
homomorphism T H T; hence these assertions all follow from the fa<;t that 
the set of invertible elements of a unital Banach algebra A forms agroup 
that is open in the norm topology of A. 0 

The essential spectrum O'e(T) of an operator.TE B(B) is defined as.the 
spectrum of the image T of Tin B(E)jJC.(E). O'e(T) ,js acompact subset of 
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a(T). The following result implies that there are points in the spectrum of 
T that cannot be removed by perturbing T with compact operators. 

COROLLARY 3. Let T be a bounded operator on an infinite-dimensional 
Banach space E. Then ae(T) i= 0, and 

ae(T) ~ n{a(T + K) : K E K(E)}. 

Perhaps it is overkill to present this Corollary as a consequence of Atkin­
son's theorem, since it can be readily deduced from more basic considerations 
(see Exercise (2) below). 

PROOF OF THEOREM 3.3.2. For the proof of Atkinson's theorem, sup­
pose first that t is invertible, and let 8 E B(E) be an operator such that 
S = t-I. From the formulas st = 1 and ts = 1, it follows thatthere are 
compact operators KI, K2 such that 

1-8T=KI, 

We have to show that ker T is finite dimensional and that TE is a closed 
subspace of finite codimension in E. 

For the first assertion, we have 8T = 1 - K 1, so that ker T ~ ker 8T = 
ker(I-KI ), and Theorem 3.2.2 implies that ker(I-Kt) is finite dimensional. 
Consider now the range TE. Since T8 = 1 - K2, we have TE :2 T8E = 
(1 - K2)E, and by Theorem 3.2.2, (1 - K2)E is a closed subspace of E of 
finite codimension. Using elementary linear algebra we ean make an obvious 
induetive argument to find a finite set of vectors VI, ... , Vr such that 

TE = (1 - K2)E + [VI, ... , Vr ], 

exhibiting TE as a closed subspace of finite eodimcnsion in E. 
Conversely, suppose that T is a Fredholm operator on E. Since ker T is 

finite dimensional and TE is a closed subspace of finite codimension, there 
are bounded operators P, Q on E such that p2 = P, Q2 = Q, PE = kerT, 
and QE = TE (see Exercise (2) ofthe preceding section). Notice that since 
P and 1 - Q are finite-rank idempotents, it suffices to show that there is a 
bounded operator 8 on E such that 

(3.5) 8T= 1-P, T8 = Q = 1 - (1 - Q). 

The formulas (3.5) imply that st = ts = 1 in B(E)j/C{E). The operator 
8 is obtained ps folIows. Let N = (1- P)E. The restriction To of T to N is 
an operator with trivial kernel that maps onto TE (since TP = 0). By thc 
closed graph theorem To is an invertible operator. Let 80 E B(TE, N) be 
its inverse. We have 80Tx = x for aU x E N, and T80Y = Y for all y E TE. 
Letting 8 be the composition 8 = 80 0 Q, one finds that formulas (3.5) are 
satisfied. 0 

REMARK 3.3.3. The proof of Atkinson's theorem shows somewhat more 
thanwe have aSSerted,namely that for any bounded operator T on E the 
following three conditions are equivalent: 
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(1) T is a Fredholm operator. 
(2) There is an operator S E B(E) such that 1 - ST and 1 - TS are 

compact. 
(3) There is an operator S E B(E) such that 1 - ST and 1 - TS are 

finite-rank operators. 
In particular, we have the remarkable conelusion that invertibility modulo 
compact operators is the same as invertibility modulo finite-rank operators. 

Exercises. 
(1) Let E be a Banach space and let T be a bounded operator on E 

such that the vector space E IT E is finite dimensional. Show that 
the range of T is elosed. 

The Weyl spectrum oW(T) of a bounded operator T on E is de­
fined as the intersection n{a(T + K) : K E K(E)} of the spectra 
of all compact perturbations of T. It is empty when E is finite 
dimensional. 

(2) Show that when E is infinite-dimensional the essential spectrum 
O'e(T) is a nonempty subset of O'w(T). Use elementary properties 
of Banach algebras and their quotients, but not Atkinson's theorem. 

Let S be the unilateral shift, realized on a Hilbert space H with 
orthonormal basis ej, e2, . .. as the unique bounded operator S sat­
isfying Sen = en+l, n = 1,2, .... 

(3) Show that the essential spectrum ofS is thc unit cirele 

'][' = {,X E C: I,XI = 1}. 

(4) Show that the Weyl spectrum of S is the closed unit disko 

3.4. The Fredholm Index 

We introduce the Fredholm index, develop its basic properties in general, 
and end the section with abrief discussion of the index in the more concrete 
setting of operators on a Hilbert space. 

Let T be a Fredholm operator on a Banach space E. Both vector spaces 
kerT = {x E E : Tx = O} and cokerT = EITE are finite-dimensional, and 
the index of T is defined as the difference 

ind T = dirn ker T - dim coker T. 

The Fredholm alternative (Theorem 3.2.2) becomes the assertion that an 
operator of the form ,X + T, with T compact and ,X a nonzero scalar, is 
a Frcdholm operator of index zero. The unilateral shift S is a Fredholm 
operator with indS = -1 (see Remark 3.3.1). We have also pointed out 
in the last section that thc dimension of coker T is the same as dirn ker T', 
where T' E B(E') is the adjoint of T, so that 

ind T = dim ker T - dim ker T'. 
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This formula is perhaps most useful for operators on Hilbert spaces, where 
one can replace T' with the Hilbert space adjoint T*. 

Atkinson's theorem implies that the product ST of two Fredholm oper­
ators S, TE B(E) is a Fredholm operator. The most important property of 
the index is its logarithmic additivity, 

(3.6) indST = indS + indT, 

which will be proved shortly. Once this formula is established, the remaining 
properties of the Fredholm index follow easily. Thus it is significant that 
formula (3.6) is fundamentally a result in infinite-dimensional linear algebra, 
having not hing to do with the topology of E or B(E). While it is not 
operator-theoretic orthodoxy to do so, we have chosen to present the general 
algebraic result and deduce (3.6) from it. This proof is not only natural from 
a formal point of view, it is also quite transparent. 

For the moment, we shift attention away from the category of Banach 
spaces with bounded linear operators as maps to the category of complex 
vector spaces with linear transformations as maps. Let V be a complex 
vector space. By an operator on V we simply mean a linear transformation 
T : V ~ V, and the set of all such is denoted by C(V), which is a complex 
algebra with unit. Every operator T E C(V) has two vector spaces associated 
with it, namely, its kernel and cokernel 

kerT = {x E V : Tx = O}, cokerT = E/TE. 

T is said to be a Fredholm operator if both of these vector spaces are finite 
dimensional. The set of Fredholm operators on V is denoted by F(V). Every 
operator T E F(V) has an index, namely, 

ind T = dirn ker T - dirn coker T. 

Notice that if E is a complex Banach space and V is its underlying vector 
space structure, then, as we have already seen, a bounded operator belongs 
to F(E) iff it defines an algebraic Fredholm operator on V, that is, F(E) = 
F(V) n B(E). Thus the following result implies the addition formula (3.6) 
for Fredholm operators on Banach spaces. 

THEOREM 3.4.1 (Addition formula). Let V be a complex vector space 
and let A, B be Fredholm operators on V. Then AB is a Fredholm operator, 
and 

indAB = indA + indB. 

We will deduce Theorem 3.4.1 from two more precise formulas, in which 
both defects 

dirn ker A + dirn ker B - dirn ker AB 

and 
dirn coker A + dirn coker B - dirn coker AB 

are cornputed explicitly. 
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LEMMA 3.4.2. Let V be a vector space, and let A, BE F(V). Then 

(3.7) dimker A + dimker B = dimker AB + dim(ker Aj(BV n ker A)). 

PROOF. Noting that ker B <;;;: ker AB we claim 

(3.8) dim(ker AB j ker B) = dim( BV n ker A). 
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To prove this, it is enough to exhibit a linear map L from ker AB onto 
BV n ker A whose kernel is exactly ker B. It is defined by L : x t-+ Bx, 
xE ker AB. Clearly, L(ker AB) <;;;: BV n ker A, and Lx = 0 iff xE ker B. L 
is surjective, since if y has the form y = Bv E ker A for some v E V, then 
ABv = Ay = 0; hence v E ker AB and Lv = Bv = y. 

We now add dimker B + dim(ker Aj(BVnker A)) to both sides of (3.8). 
Since dim(ker AB j ker B) + dirn ker B = dirn ker AB, the left side becomes 

dimker AB + dim(ker Aj(BV n ker A)); 

for a similar reason, the right side becomes 

dirn ker B + dirn ker A, 

and we obtain the asserted formula. o 
LEMMA 3.4.3. Let V be a vector space, and let A, B E F(V). Then 

(3.9) dimcoker A+dimcoker B = dimcoker AB+dim«BV +ker A)jBV). 

PROOF. We first establish an elementary formula. If M is a subspace of 
V of finite codimension, then 

(3.10) dim(VjM) = dim(AVjAM) + dim«M + ker A)jM). 

For the proof, consider the natural linear map L : V j M -+ AV j AM defined 
by L(v+M) = Av+AM. The range of L is obviously AVjAM, and we claim 
that ker L = (M + ker A)jM. Indeed, a coset v + M belongs to the kernel 
of L iff Av + AM = 0 iff Av E AM iff there is an element m E M such that 
A(v - m) = 0, and the latter is equivalent to v E M + ker A. Formula (3.10) 
now follows from a familiar identity of finite-dimensional linear algebra: 

dim domain L = dim ran L + dim ker L. 

Taking M = BV in (3.10), we obtain 

dim(VjBV) = dim(AVjABV) + dim«BV + ker A)jBV). 

If we add dirn V j AV to both sides, the left side becomes . 

dirn coker A + dirn coker B, 

while the right side becomes 

dim(VjAV) + dim(AVjABV) + dim«BV + ker A)jBV). 

Since ABV <;;;: AV, the first two terms sum to dirn VjABV = dimcoker AB, 
completing the proof. 0 
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PROOF. Turning to the proof of Theorem 3.4.1, Lemma 3.4.2 implies 
that 

dirn ker AB ::; dirn ker A + dirn ker B < 00, 

while Lemma 3.4.3 implies 

dirn coker AB ::; dirn coker A + dirn coker B < 00. 

Thus A,B E F(V) => AB E F(V). Now, for any two subspaces M,N of 
a vector space there is an obvious linear map of M onto (N + M)jN with 
kernel N n M; hence Mj(N n M) ~ (N + M)jN. It follows that 

ker Aj BV n ker A ~ (BV + ker A)j BV, 

and in particular, 

dim(ker AjBV n ker A) = dim«BV + ker A)jBV). 

We infer from Lemmas 3.4.2 and 3.4.3 that 

dirn ker A + dirn ker B - dirn ker AB = 
(3.11) 

dirn coker A + dirn coker B - dirn coker AB, 

and the required formula ind AB = ind A + ind B follows after one rearranges 
terms in (3.11). 0 

Returning now to the setting in which E is an infinite dimensional Ba­
nach space, we obtain a fundamental result: 

COROLLARY 1. For any two Fredholm operators A, B on E, the product 
AB is Fredholm, and 

indAB = indA + indB. 

PROOF. Atkinson's theorem implies that F(E) is closed under operator 
multiplication. If we forget the topology of E and apply Theorem 3.4.1, we 
obtain the asserted formula. 0 

COROLLARY 2 (Stability of index). For every Fredholm operator A E 

B(E) and compact operator K, 

ind (A + K) = ind A. 

PROOF. By Atkinson's theorem there is a Fredholm operator BE B(E) 
such that AB = 1 + L with L E JC(E). We have (A + K)B = 1 + L' 
where L' = L - K B E JC(E). As we have al ready pointed out, the Fredholm 
alternative implies that ind (1 + L) = ind (1 + L') = 0; hence ind AB = 
ind (A + K)B = O. Using Corollary 1 one has 

ind (A + K) + indB = ind (A + K)B = indAB = indA + indB, 

and the formula follows after one cancels the integer ind B. o 
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REMARK 3.4.4. Given a Fredholm operator A and an integer n, one can 
find finite-rank operators Fand F' such that 

dimker(A + F) > n, dimcoker(A + F') > n 

(it is an instructive exercise to carry this out with A the unilateral shift). 
In particular, both dimker(A + F) and dimcoker(A + F) fluctuate in an 
unbounded way as F varies over the finite-rank operators. It is quite re­
markable that these fluctuations cancel each other, so that the difference 
dirn ker( A + F) - dirn coker (A + F) remains at the constant value ind A. 

COROLLARY 3 (Continuity of index). Given a Fredholm operator A, 
let Al, A2, ... be a sequence of bounded operators that converges to A, 
limn~oo IIAn - All = O. There is an no such that for n ~ no, An is a 
Fredholm operator with ind An = ind A. 

PROOF. By Atkinson's theorem, F(E) is open, so that An E F(E) for 
sufficiently large n. We can also find a Fredholm operator B such that 
AB = 1 + K with K compact. Writing An = A + Tn with IITnl1 ~ 0 as 
n ~ 00, we can find no so that, for n ~ no, IITnBl1 < 1 and hence 1 + TnB 
is invertible. For such n, we have 

indAn + indB = ind (A + Tn)B = ind (1 + TnB + K). 

The right side vanishes because 1 + TnB + K is a compact perturbation of 
an invertible operator (see Exercise (1) below). On the other hand, 

indA + indB = indAB = ind (1 + K) = 0 

by the Fredholm alternative; hence ind An = -ind B = ind A for sufficiently 
large n. 0 

Finally, let us eonsider the case of Fredholm operators acting on a Hilbert 
spaee H. The unique feature of Hilbert spaee is the existenee of the adjoint 
operation A H A*, earrying ß(H) to itself. One eannot identify A* with 
the Banaeh spaee adjoint A' E ß(H'), as one sees by eonsidering the fact 
that A H A* is an antilinear map, while, for operators A on Banaeh spaces, 
AHA' is a linear map. That is beeause the idcntification of H' with 
H given by the Riesz lemma is not a linear map but an antilinear map. 
But the differenee between A* and A' is slight; and when one is working 
with Hilbert spaces it is eustomary to use A * rat her than A'. Thus for 
Fredholm operators A acting on a Hilbert spaee we have AHl. = ker A*; 
hence dim eoker A = dim ker A * and 

indA = dimker A - dimker A*. 

Exercises. 

(1) Let E be an infinite-dimensional Banach space. 



100 3. ASYMPTOTICS: COMPACT PERTURBATIONS AND FREDHOLM THEORY 

(a) Show that a Fredholm operator Ton E is a compact pertur­
bation of an invertible operator iff its index vanishes. Hint: If 
ind T = 0, show how to construct a finite-rank perturbation of 
T that is one-to-one and onto. 

(b) Deduce the following concrete description of the equivalence 
relation A rv B {::::::} ind A = ind B: Two Fredholm operators 
A and B on E have the same index iff there is an invertible 
operator e such that A - Be is compact. 

(2) Let S be the unilateral shift acting on a Hilbert space H (see the 
Exercises of the preceding section). 
(a) Show that there is no compact operator K such that S + K is 

invertible. 
(b) Let T E F(H) be a Fredholm operator of positive index n. 

Show that there is an invertible operator e E B(H) and a 
compact operator K such that T = s*ne + K. 

(3) (a) Let N be anormal Fredholm operator on a Hilbert space H. 
Show that the index of N vanishes. 

(b) Deduce that the unilateral shift S is not a compact perturba­
tion of a normal operator. 

(4) With S as in the preceding exercises, let SEIl S* E B(H EIl H) be 
the direct sum of S with its adjoint S*. Show that S EIl S* is a 
Fredholm operator and calculate its index. 

(5) Let U be the bilateral shift, defined on a Hilbert space H by its 
action on a bilateral orthonormal basis {en : n E Z} for H by U en = 
en +1, n E Z. Let P be the projection onto the one-dimensional 
space spanned by eo. Show that U - U P is unitarily equivalent 
to the operator S EIl S* of the preceding exercise, and deduce that 
SEIl S* is a compact perturbation of a normal operator. 

(6) Show that the spectrum of SEIl S* is the closed unit disk, but the 
Weyl spectrum of S EB S· is the unit circle. 



CHAPTER 4 

Methods and Applications 

In this chapter, a variety of operator-theoretic methods are developed within 
the context of determining the spectra of Toeplitz operators. 

Let Z+ be the additive semigroup of nonnegative integers, and let A be 
a bounded operator that acts as follows on the Hilbert space g2(Z+): 

00 

( 4.1) (A~)n = I>n-k~k, n = 0,1,2, ... , 
k=O 

where (cn ) is a bilateral sequence of complex numbers. Such an operator A is 
called a Toeplitz operator with associated sequence (cn ). More invariantly, 
a Toeplitz operator is a bounded operator A on a Hilbert space H with 
the property that there is an orthonormal basis eo, el, e2, ... for which the 
matrix (aij) of A relative to this basis depends only on i - j, 

(CO 
C-I C-2 C-3 

) 
Cl Co C-l C-2 

(4.2) (aij) = C2 Cl Co C-l '" . 
C3 C2 Cl CO ... 

Toeplitz operators arise in diverse applications, and a great deal of efIort 
has gone into computing their spectra. The results are definitive for Toeplitz 
operators with "continuous symbol," and these results are presented in Sec­
tion 4.6. For more general Toeplitz operators the results are incomplete, 
and this is an area of continuing research. 

The results of Section 4.6 require tools that have significancc extend­
ing weIl beyond the immediate problem of computing spectra, and we de­
velop these methods in a general context appropriate for broader application. 
Topics treated in this chapter include a discussion of maximal abelian von 
Neumann algebras, the characterization of bounded Toeplitz matrices and 
the not ion of symbol, the structure of the Toeplitz C· -algebra including the 
identification of its Fredholm operators and their relation to the topology 
of curves, the elementary theory of the Hardy space H 2 , and the index the­
orem. We conclude the chapter with a discussion of states of C· -algebras 
and the Gelfand-Naimark theorem. 
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4.1. Maximal Abelian von Neumann Aigebras 

A von Neumann algebra is an algebra M of operators on a Hilbert space H 
that contains the identity operator, is self-adjoint in the sense that M* = M, 
and is closed in the weak operator topology of ß(H). We will not have much 
to say about general von Neumann algebras, but we will look closely at the 
commutative ones. The set of a11 commutative self-adjoint operator algebras 
acting on H is partially ordered with respect to inclusion, and a maximal 
element of this set is called a maximal abelian self-adjoint algebra. They 
are commonly denoted by the colorless acronym MASA. 

REMARK 4.1.1. Since the closure in the weak operator topology of any 
commutative self-adjoint subalgebra of ß(H) is a commutative self-adjoint 
algebra, a MASA is a weakly closed subalgebra, of ß(H). It must contain 
the identity operator, since otherwise, it could be enlarged nontrivially by 
adjoining the identity to it. Hence a MASA is an abelian von Neumann 
algebra. 

Actua11y, a MASA M coincides with its commutant M' = {T E ß(H) : 
TA = AT, A E M}. It is clearly a subset of M' because it is commutative. 
On the other hand, if A E M', then writing A = X + iY with X, Y self­
adjointelements of M' (here we use the fact that M is self-adjoint) we 
find that X must belong to M because the algebra generated by M and 
X is a commutative algebra containing M. Similarly, Y E M, and hence 
M' = M. Finally, A straightforward application of Zorn's lemma shows 
that every self-adjoint family of commuting operators is contained in some 
MASA. 

THEOREM 4.1.2. Let (X, f..L) be a a-finite measure space. Then the mul­
tiplicationalgebra M = {Mf : f E L"O(X,f..L)} is a maximal abelian von 
Neumann algebra in B(L2(X, f..L)). 

PROOF. Let T -::f. 0 be a bounded operator on L2(X,f..L) that commutes 
with every operator in M. We have to show that T E M. 

Consider first the case in which f..L is a finite measure. The constant 
function 1 belongs to L 2 (X f..L ), and we can define a function 9 in L 2 (X, f..L ) 
by 9 = Tl. We will show that gELCO, IIglloo ~ IITII, and T = Mg. Note 
that for every f E LOO(X,f..L) we have fg = MfT1 = TMf1 = Tf. Since 
T -::f. 0, it follows that 9 -::f. 0, and moreover, 

Choosing E ~ X to be a Borel set and taking f = XE, we obtain 

(4.3) fe Igl2 df..L = IIXE91I~ ~ IITII2I1xEII~ = IITII2f..L(E). 

This inequality implies that Ig(p) 1 ~ IITII almost everywhere. Indeed, if 
c 2: 0 is any number such that E = {p EX: Ig(p) 1 > c} has positive 
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measure, then (4.3) implies 

c2JL(E) :::; L Igl2 :::; IITI1 2JL(E), 

and hence c ~ IITII. Since Ilglloo is the supremum of aB such c, we conclude 
that 9 E LOO(X, JL) and Ilglloo ~ IITII· 

We have shown that Mg is a bounded operator that satisfies Mgl = 
Ig = TI for all I E LOO(X,JL); hence Mg = T because LOO(X,JL) is dense in 
L2(X, JL). 

In the general case where JL is er-finite, we decompose X into a sequence 
of disjoint Borel sets of finite measure: 

X =XI uX2 U···. 

Letting JLn be the restriction of JL to X n , JLn(E) = JL(E n Xn), we find that 
L2 decomposes into a direct sum of Hilbert spaces: 

L2(X, JL) = L2(XI , JLI) EB L 2 (X2, JL2) EB .... 

Since the projection of L2(X, JL) onto L2(Xn, JLn) belongs to M (it is the op­
erator that multiplies by the characteristic function of Xn ), it must commute 
with T, and we obtain a corresponding decomposition 

T = Tl EB T2 EB ... , 

where Tn is the restriction of T to L2(Xn, JLn). Since Tn commutes with the 
multiplication algebra of L2(Xn , JLn), the argument just given implies that 
there is a function In E L 00 (Xn, JLn) such that Tn = M j n' and moreover, 
Il/nlloo ~ IITnl1 ~ IITII for every n. Thus the in are uniformly bounded, and 
we can define a function I E LOO(X, JL) via I = in on Xn, n = 1,2, .... The 
desired conclusion T = M j folIows. 0 

Every normal operator N generates a von Neumann algebra W*(N), 
namely the closure in the weak operator topology of the *-algebra gener­
ated by N and 1. Since N is normal, W*(N) is an abelian von Neumann 
algebra; and in some cases it is a maximal abelian von Neumann algebra. 
These are the normal operators that are "multiplicity-free." A comprehen­
sive treatment of multiplicity theory would be inappropriate here, and we 
refer the reader to [2] for more detail. What we do require is the foBowing 
sufficient condition for a multiplication operator to have this useful property. 

THEOREM 4.1.3. Let X be a compact subset of C, let f E C(X) be a 
continuous function that separates points oi X in the sense that I(p) =I- I(q) 
for distinct points p =I- q EX, and let JL be a finite measure on X. 

Consider the multiplication operator Mj E ß(L2(X,JL))' Then W*(Mj) 
is the multiplication algebra M of L2(X, JL), and every operator A that doubly 
commutes Mj, 

(4.4) AMj =MjA 

belongs to M = W*(Mj). 



104 4. METHODS AND APPLICATIONS 

PROOF. Since f separates points of X, the Stone-Weierstrass theorem 
implies that C(X) is generated as a C* -algebra by fand the constant func­
tion 1. Theorem 2.1.3 implies that A = {Mg: g E C(X)} is a C*-subalgebra 
of the multiplication algebra, and in fact, it is the C* -algebra generated by 
the two operators M J and 1. 

We claim now that the closure of A in the weak operator topology is 
the multiplication algebra M. Indeed, for every bounded Borel function 
h: X -+ C there is a uniformly bounded sequence gl,g2, ... of continuous 
functions such that limn gn (p) = h(p) for almost every p EX. Choosing 
such a sequence gn, then for every pair of functions ~,'Tl E L2(X, p,) the 
function ~ij is integrable, so by the dominated convergence theorem 

lim (Mgn~' ry) = lim r gn(p)e(p)ij(p) dp, = r h(p)~(p)ij(p) dp, = (Mh~, ry). 
n~oo n~ooJx Jx 

-weak . 
Hence Mh E A ,and we conclude that M 1S generated as a von Neumann 
algebra by MJ and 1. 

Finally, let A be a bounded operator on L2(X, p,) that commutes with 
MJ and Mj. Then A commutes with the weakly closed algebra generated 
by MJ' Mj, and 1, which, by the preceding paragraphs, contains the mul­
tiplication algebra M. By Theorem 4.1.2, A E M. 0 

REMARK 4.1.4. It is significant that the second hypothesis AMj = MjA 
in (4.4) is redundant. That is a consequence of a theorem of Bent Fuglede 
([19], Proposition 4.4.12), which asserts that any operator that commutes 
with a normal operator N must also commute with its adjoint N*. 

We also remark that the finiteness hypothesis on the measure a can be 
relaxed to a-finiteness, in view of the fact that for mutually absolutely equiv­
alent a-finite measures p" 11 on X, the multiplication algebras of L2(X,p,) 
and L2(X, 11) are naturally unitarily equivalent (Exercise (2) of Section 2.6). 

Finally, we point out that the hypotheses on f can be replaced with the 
hypothesis that f is a bounded Borel function that separates points of X; 
but that generalization requires more information about Borel structures 
than we have at our disposal (see chapter 3 of [2]). 

COROLLARY 1. Let X be the standard operator on L2 [O, 1], 

X~(t) = te(t), ° ~ t ~ 1, ~ E L2 [O, 1J. 

For every operator A that commutes with X, there is a function fE LOO[O, 1J 
such that A = MJ. 

COROLLARY 2. Let {en : n E Z} be a bilateral orthonormal basis for a 
Hilbert space H, and let U be the bilateral shift defined on H by U en = en+ 1, 

nE Z. Then the von Neumann algebra W*(U) generated by U is maximal 
abelian, and consists of all operators in ß(H) that commute with U. 

PROOF. We have seen that U is unitarily equivalent to the multiplication 
operator Me; acting on L2 ('][') by Me;e(z) = ((z)e(z), ( being the current 
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variable ((z) = z, Z E T. Since M( is unitary, any operator commuting with 
it must also commute with its adjoint Me, = M("l. On the other hand, since 
( separates points of T, it follows from Theorem 4.1.3 that any operator 
commuting with {M(, MD must belong to the multiplication algebra of 
L2 (T), and that the multiplication algebra coincides with the von Neumann 
algebra generated by U. 0 

Exercises. 

(1) Show that the unit ball of B(H) is compact in its weak operator 
topology. Rint: Show that the unit ball of B(H) can be embedded 
as a closed subset of a Cartesian product of copies of the complex 
unit disk ß = {z E C : I z I ::; I}, and appeal to the Tychonoff 
theorem. 

In the following exercises, H denotes a separable Rilbert space. 

(2) (a) Let 6,6, ... be a sequence of vectors dense in the unit ball 
of H. Show that 

is a metric on the unit ball of B(H) that is separately contin­
uous in the weak operator topology. 

(b) Show that, with its weak operator topology, the unit ball of 
B(H) is homeomorphic to a compact metric space. 

(3) Deduce that every von Neumann algebra M acting on H contains 
a unital C*-subalgebra A that is (1) separable (i.e., A contains a 
countable norm-dense subset) and (2) weakly dense in M. 

In the following exercises, you will show that every maximal abelian 
von Neumann algebra M c B(H) is unitarily equivalent to the 
multiplication algebra of a finite measure space, and deduce the 
spectral theorem from that result. 

(4) If an abelian von Neumann algebra M c B(H) has a cyclic vector, 
then there is a compact metric space X and a probability measure 
J.l on X such that M is unitarily equivalent to the multiplication 
algebra of L2(X, J.l). Rint: Use Exercise (3). " 

(5) Let M c B(H) be a MASA. Show that there is a sequence of mu­
tually orthogonal cyclic projections in M that sum to the identity. 
Rint: The projection onto any M-invariant subspace must belong 
to M. 

(6) Deduce that every MASA has a cyclic vector, and hence is unitarily 
equivalent to a multiplication algebra as in Exercise (4). 
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(7) Show that every commutative *-subalgebra A ~ B(H) is contained 
in a maximal abelian von Neumann algebra in B(H), and deduce 
the spectral theorem from the result of the preceding exercise. 

4.2. Toeplitz Matrices and Toeplitz Operators 

Starting with a "symbol" (a function in LOO ), we introduce its associated 
Toeplitz operator acting on the Hardy space H 2 and develop the basic re­
lations between the symbol and the operator. Then we discuss the more 
classical not ion of Toeplitz matrix, and relate the two. Historically, Toeplitz 
matrices came first. 

We begin by reviewing some notation and terminology that will be used 
throughout the following sections. L2 will denote the Hilbert space L2('lI', er), 
where er is the normalized length der = dB /21r on the unit circle 'lI' of the 
complex plane. Let ( E C('lI') be the current variable, ((z) = z, z E 'lI'. The 
set {(n : n E Z} of powers of ( is an orthonormal basis for L2, and H2 is 
defined as the closed subspace 

H 2 = [1, (, (2, ... ) 

spanned by the nonnegative powers of (. The orthocomplement of H2 is 
spanned by the negative powers of (, 

H 2J.. = [(n : n < 0). 

Elements of H 2 are functions f in L2 whose Fourier series have the form 
00 

(4.5) f(e iO ) rv L anein/l. 
n=O 

Similarly, LOO denotes the algebra LOO('lI', er). It is a commutative C*­
algebra which, in addition to its norm topology, has a weak* topology defined 
by its natural pairing with Li. The corresponding subace of LOO is denoted 
by Hoo, 

H OO = L oo n H 2. 

By definition, a bounded measurable function f belongs to H OO iff its Fourier 
series has the form (4.5). Given f E Loo, the following observation relates 
membership in H oo to properties of the multiplication operator Mt, and 
implies that Hoo is a weak*-closed unital subalgebra of Loo. 

PROPOSITION 4.2.1. Hoo = {4> E Loo : Mq,H2 ~ H2 }. 

PROOF. Let 4> E LOO. If 4> E Hoo, then für n ;::: 0, 

Mq,(n = (n . 4> E cn . H2 ~ H2; 

hence Mq, leaves H2 = [1, (, (2, ... ) invariant. 
Conversely, if Mq,H2 ~ H2, then 4> = Mq,l E H2. D 
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For every </> E 1"0, let T<jJ E ß( H 2) be the compression of M<jJ to H 2 , 

T<jJ = P+M<jJ IH2, 

P+ denoting the projection of L2 onto H 2. The operator T<jJ is called the 
Toeplitz operator with symbol </>. 

REMARK 4.2.2. The map </> f--t T<jJ is obviously a *-preserving bounded 
linear mapping of the commutative C* -algebra LOO into ß(H2 ), which carries 
the unit of Loo to the identity operator and is positive in the sense that 

</> ~ 0 ==} T<jJ ~ O. 

Certainly, it is not a representation, but it has the following restricted mul­
tiplicativity property. For f E HOC and 9 E 1"0, we have 

(4.6) 

Indeed, the first formula follows from 

Tfg = P+Mgf IH2= P+MgMf IH2= P+MgP+Mf IH2= TgTf' 

using MfH2 ~ H2; the second formula follows from the first by taking 
adjoints. 

A fundamental problem concerning Toeplitz operators is to determine 
a(T<jJ) in terms of the properties of </>. While the answer is known for impor­
tant classes of symbols (e.g., when </> is real-valued, or belongs to Hoo, or 
is continuous), the general problem remains unsolved. The difficulty sterns 
from the fact that the map </> f--t T<jJ fails to be multiplicative. We now direct 
our attention to developing tools for calculating a(Tq,) when </> E C(T). 

A Toeplitz matrix is a matrix of the form (4.2) whose entries aii i,j = 
0,1, ... , depend only on i - j. We first show that Toeplitz matrices corre­
spond to Toeplitz operators T<jJ, and we determine their norm in terms of the 
symbol </>. The unilateral shift is identified in this context as the Toeplitz 
operator S = Tc.. 

PROPOSITION 4.2.3. Let A be a bounded operator on H 2 . The matrix 01 
A relative to the natural basis {(n : n = 0,1,2, ... } is a Toeplitz matrix i./J 
S*AS = A. 

PROOF. The hypothesis on the matrix entries aii = (A(i, (i) of A is 
equivalent to requiring 

i, j = 0, 1,2, .... 

Noting that s(n = (n+1 for n ~ 0 we find that this is equivalent to the 
requirement that 

(S*AS(i,(i) = (AS(j,S(i) = (A(i+1,(i+1) = (A(i,(i) 

for all i, j :2: 0; hence it is equivalent to the formula S* AS = A. 0 
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Thus, in order to determine which Toeplitz matrices (4.2) correspond to 
bounded operators, we must characterize the bounded operators A on H 2 

that have the property S* AS = A. This is accomplished as folIows. Notice 
first that any Toeplitz operator T,p with </i E Loo satisfies S*T,pS = T,p, since 
by (4.6) we have 

S*Tc/>S = Tc,T,pTe, = Tc,c/>Te, = Tc,e,c/> = T,p, 

since (( = 1. Conversely: 

THEOREM 4.2.4 (Characterization of Toeplitz operators). Let A be a 
bounded operator on H2 satisjying S* AS = A. There is a unique function 
</i E LOO such that A = T,p, and one has IIAII = II</illoo. 

PROOF. For every n = 0,1,2, ... let Mn be the following subspace of 
L 2: 

M = [/"-n /"-n+l /"-n+2 1 n ':,,~ ,~ , .... 

We have H 2 = Mo <;;; MI <;;; M2 <;;; ••• and the union UnMn is dense in L2. 
Let U = Me, E 8(L2 ). U is a unitary operator whose restrietion to H2 is the 
unilateralshift S, and it maps Mn into Mn- l for n 2': 1. Thus UnMn <;;; H 2, 
and we can define a sequence of operators An E 8(Mn) as follows: 

An = U-n AUn IMn . 

Each An is obviously unitarily equivalent to A; hence IIAnll = IIAII. More­
over, we claim: 

• The sequence Al, A2, • .• is coherent in the sense that 

(4.7) 

• For every n 2': 1, 

(4.8) 

Indeed, since un~ and UnrJ belong to H 2, we have 

(An+1~, rJ) = (U-(n+l) Aun+1~, rJ) = (Asun~, SUnrJ) 
= (S* Asun~, UnrJ). 

Since S* AS = A, the right side is (Aun~, UnrJ) = (An~, rJ) as (4.7) asserts. 
For (4.8), note that for ~, rJ E H 2 one has 

(P+An~, rJ) = (U-n Aun~, rJ). = (AUn~, UnrJ) = (Asn~, snrJ) 
= (s*n Asn~, 1]) = (A~, 1]). 

It follows from (4.7) that we can use the Riesz lemma to define a unique 
operator .A E 8(L2 ) as a weak limit 

(.A~, 1]) = lim (An~, 1]), ~, 1] E Un~IMn, n.-?oo 
and since IIAnl1 = II All for eveiy n, we have 11.A1I ::; IIAII. We claim that 
.A is a multiplication operator Mc/>, </i E Loo • In view of Corollary 2 of 
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Theorem 4.1.3, this follows from the fact that A commutes with U; indeed, 
for ~,'Tl E Un~lMn we have 

(U-l AU~, 'Tl) = lim (U-l AnU~, 'Tl) = !im (An+1~, 'Tl) = (A~, 'Tl). 
n000 n~oo 

We have IlcPlloo = IIM.p1l = IIAII :::; IIAII. Formula (4.8) implies that the 
compression of A to H2 is A; hence A = T.p. The inequality IIAII = IIT.p11 :::; 
IIcPlloo is obvious, and uniqueness of cP follows from IIT.p1l = IIcPlloo. 0 

In more concrete terms, Theorem 4.2.4 makes the following assertion: 
Let (aij) be a formal Toeplitz matrix 

Co C-I C-2 C-3 
Cl Co C-I C-2 

(aij) = C2 Cl Co C-I 

C3 C2 Cl Co 

where Cn , n E Z, is a doubly infinite sequence of complex numbers. Then 
(aij) is the matrix of a bounded operator iff there is a function cP E Loo with 
Fourier series 

00 

cP(eifJ ),...., L cneinfJ . 
n=-oo 

When such a function cP exists, it is unique, II(aij)11 = IlcPlloo, and in that 
case, the operator defined on C2(Z+) by the matrix 

00 

(A~)n = L Cn-k~k, 
k=O 

is unitarily equivalent to the Toeplitz operator Tcj> E ß(H2 ). The function cP 
is called the symbol of the Toeplitz matrix (aij) or of the operator Tcj>. 

COROLLARY 1. Every Toeplitz operator Tcj>, cP E Loo , satisfies 

inf{IITcj> + KII : K E K} = IITcj>11 = IlcPlloo. 

In particular, the only compact Tocplitz operator is O. 

PROOF. Let S be the unilateral shift acting on H2 by s(n = (n+1, n ~ O. 
It suffices to show that for any operator A E ß(H2) satisfying S* AS = A 
and for any compact operator K we have 

IIA + KII ~ IIAII· 

The hypothesis S* AS = A implies that s*n Asn = A for every n = 1,2, ... ; 
noting that Pn = sn S*7I is the projection onto [(71, (71+1 , ... ] we have 
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The norm of the compression of K to the subspace [(n, (n+ 1, ... J is giVEm by 
IlPnKPnll = Ils·nKsnll, which tends to 0 as n -+ 00 because K is compact 
and Pn .j. O. Thus . 

IIA+KII2: lim IIA+s*nKsnll = IIAII, 
n~oo 

as asserted. o 
Exercises. Let A be a Banach limit on (00 (see the Exercises of Section 

3.1). Given a sequence a = (al, a2,' .. ) E (00 we will write Anan for the 
value of A on a. Let S = TC; be the natural realization of the unilateral shift 
on H2. 

(1) Show that for every operator A E B(H2) there is a unique operator 
4>(A) E B(H2) satisfying 

(4)(A){, fJ) = An(s*n ASn{, 11), {, fJ E H2• 

(2) Show that 4>(A) is a Toeplitz operator (i.e., has the form Tl for 
some f E LOO ) for every A E B(H2). 

(3) Deduce that 4> is a projection of norm 1 of the Banach space B(H2) 

onto the subspace S = {Tl: f E LOO } of all Toeplitz operators on 
H 2, satisfying 4>( ATf) = 4>( A )Tf for f E Hoo and 4>( K) = 0 for 
every compact operator K. 

4.3. The Toeplitz C*-Algebra 

Let H be a Hilbert space having an orthonormal basis eo, el, e2, ... and let 
S be the unique operator defined by Sen = en+l, n 2: O. The operator S 
is called the unilateral shift. The C* -algebra generated by S is of central 
importance in modern analysis; it is called the Toeplitz C* -algebra and is 
often denoted by T. In this section we give a concrete description of the 
Fredholm operators in T; and in the next we calculate their index. 

This is accomplished by relating T to Toeplitz operators with continuous 
symbol. We have seen that S can be realized as the Toeplitz operator 
TC; E B(H2 ), ( being the current variable, and throughout this section we 
take S = TC;' Recall that the map 4> E L OO H T", E B(H2 ) is a positive linear 
map of norm 1, and satisfies Tl = 1. 

PROPOSITION 4.3.1. Let j, 9 E Loo. If one oj the junctions j, 9 is 
continuous, then Tfg - TfTg E K. 

PROOF. Since Tjg = TJg and (TfTg)* = TgTJ, it suffices to prove the 
following assertion: If j E C(1l') and 9 E Loo , then Tfg - TfTg E K. More­
over, since C(1l') is thc norm-closed linear span of the monomials (n, n E Z, 
and K is a norm-closed linear space, we may reduce to the case j = (n and 
gELOO,nEZ. 

If n 2: 0, then (n E H oo , so that by (4.3.1) we have Tfe,n = TfTe,n. Thus 
Tfg - TfTg = ° in this case. 
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If n < 0, say n = -m with m ~ 1, then (n is the complex conjugate 
of the WXJ function (m, and another application of (4.3.1) gives Tf(n = 
T(nTf = S*mTf. Noting that s*mTfsm = Tf (by iterating the basic formula 
S*TfS = Tj valid for any Toeplitz operator) we can write 

TjT(n = Tjs*m = s*mTjsms*m = s*mTj - S*mTf(l- sms*m). 

Hence 

Tf(n - TfT(n = s*mTj - Tfs*m = -S*mTf(l- sms*m), 

which is a finite-rank operator, since 1 - sms*m is the projection onto 
[1,(,(2, ... ,(m-l]. 0 

THEOREM 4.3.2. The Toeplitz C* -algebra T = C*(S) consists of all 
operators of the form T j + K, where f E C(lI') and K is compact. Moreover, 
this decomposition is unique: For f, 9 E C(lI') and K, LEK, 

Tj + K = Tg + L =? f = 9 and K = L. 

PROOF. We claim first that the set of operators 

A = {Tf + K : f E C(lI'), K E K} 

is a C*-algebra. To see this, consider the map p : C(lI') ~ ß(H2)/K given 
by 

pU) = Tj + K, fE C(1I'). 

This defines a self-adjoint linear mapping of C(lI') to the Calkin algebra. By 
Theorem 4.3.1, p is actually a homomorphism of C* -algebras. By Theorem 
2.10.4, p(C(lI')) is a C*-subalgebra of the Calkin algebra; and the inverse 
image of this C*-algebra under the natural projection T E ß(H2 ) I-t l' E 

ß(H2)/K is exactly A. 
Clearly, A contains S = T(, and hence A 2 T On the other hand, for 

n ~ 0 we have Tc;n = sn E T, and for n < 0 we have Tc;n = S*lnl E T; thus 
T(n E T for all n E Z. Using Exercise (1) below, we see that T contains all 
compact operators, and thus 

T(n +K E T, nE Z, K E K. 

Since C (1I') is the norm-closed linear span of the set of functions {(n : n E Z}, 
it follows that T contains all operators Tj + K with f E C(lI'), K compact. 
Hence A ~ T 

Finally, the uniqueness of the representation of operators as compact 
perturbations of Toeplitz operators is an obvious consequence of Corollary 
1 of Theorem 4.2.4. 0 

REMARK 4.3.3. If we compose the linear map f E C(lI') I-t Tj E T with 
the natural homomorphism of T to the Calkin algebra, then we obtain an 
injective *-homomorphism f I-t Tj of C(lI') into the Calkin algebra. Using 
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this map to identify C(1l') with the quotient T IK, we obtain a short exact 
sequence of C*-algebras and *-homomorphisms 

(4.9) o ---+ K ---+ T ---+ C (1l') ---+ 0, 
7r 

7r being the *-homomorphism of T to C{1l') given by 7r{TI + K) = J, J E 
C{1l'), K E K. The sequence (4.9) is called the Toeplitz extension of K by 
C(1l'). The Toeplitz extension is semisplit in the sense that there is a natural 
positive linear map <P : C(1l') -)- T, such that <p(1) = 1, with the property 
that 7r 0 <p is the identity map of C(1l') (namely, <PU) = TI)' It is significant 
that <p is not a *-homomorphism but rather a positive linear map. Indeed, 
we will see later that this extension is not split; more explicitly, there does 
not exist a *-homomorphism () : C(1l') -)- T with the property tlhat 7r 0 () is 
the identity map of C(1l'). The nonexistence of a splitting homomorphism () 
has to do with the Fredholm index (see Exercise (4) below). 

We immediately obtain the following description of the Fredholm oper­
ators in T: 

COROLLARY 1. The Fredholm operators in T are precisely the operators 
of the form TI + K where J is an invertible symbol in C{1l')-l and K E K. 

Consider a Fredholm operator in T, say TI + K where f E C(1l') has no 
zeros on the circle and K is a compact operator. By the stability results of 
Chapter 3 we see that Tf is also a Fredholm operator and 

ind (Tf + K) = ind (TI)' 

We know that for J = (, TI is the shift; hence ind (TI) = -1. However, we 
still lack tools for computing the index of more general Toeplitz operators 
with symbols in C(1l')-l. This issue will be taken up in the following section. 

Exercises. Let eo, el, . .. be an orthonormal basis for a Hilbert space 
H, and realize the unilateral shift S as the unique operator on H satisfying 
Sen = en+1, n ~ O. Let T = C*(S) be the C*-algebra generated by S. 

(1) Show that for every m, n ~ 0, 

sm Sm _ sm+1 s*(n+1) = sm(l - SS*)S*n 

is a rank-one operator and describe this operator in terms of its 
action on eo, el, .... Deduce that T contains the C*-algebra K of 
all compact operators on H. 

(2) Noting that K is a closed ideal in T, identify the quotient C*­
algebra by showing that there is a unique *-isomorphism a : TI K -)­
C(1l') that satisfies a(S + K) = (, where ( is the current variable 
in C(1l'), ((z) = z for all z E 11'. Hint: Show that the image of S in 
the Calkin algebra is a unitary operator whose spectrum is 11'. 

(3) Let K be another Hilbert space, and let W be a unitary operator in 
B(K). Deduce that there is a unique representation 7r : T -)- B(K) 
such that 7r(S) = W. 
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(4) Let T be a Fredholm operator acting on a Hilbert space. 
(a) Assuming that the index of T is nonzero, show that T cannot 

be decomposed T = N + K into a compact perturbation of a 
normal operator N. 

(b) Deduce that the unilateral shift is not a compact perturbation 
of a unitary operator and that the Toeplitz extension (4.9) is 
not split. 

In the following exercises, V denotes an arbitrary isometry acting 
on some (separable) Hilbert space K. The subspaces vn K decrease 
with n, and V is called a pure isometry if nn V n K = {O}. A closed 
subspace !vI ~ K is said to be reducing for V if it is invariant 
under both Vand V*. The (self-adjoint) projections onto reducing 
subspaces are the projections in B(K) that commute with V. 

(5) Show that for every isometry V E B(K) there is a unique decom­
position of K into reducing subspaces K = LEB !vI, where the 
restriction of V to L is a pure isometry and the restriction of V 
to !vI is a unitary operator. Hint: Let N = (V K).l be the or­
thogonal complement of the range of V. Show that VP N 1- vq N 
if P f. q and N EB V N EB V 2 N EB . .. is the orthocomplement of 
!vI = V K n V2 K n V3 K n .... 

(6) Show that the restriction of V to the "pure" subspace L is unitarily 
equivalent to a (finite or infinite) direct sum S EB S EB ... of copies 
of the shift S, and that the number of copies is the dimension of 
N. 

The result of Exercises (5) and (6) asserts that every isometry de­
composes uniquely into a direct sum of two operators, one of which 
is a multiple copy of the unilateral shift, the other being a unitary 
operator. This is called the Wold decomposition of an isometry V, 
after the statistician who discovered the result in connection with 
the theory of stationary Gaussian processes. The following result 
is due to Lewis Coburn (1968), and should be compared with the 
result of Exercise (2). It implies that the Toeplitz C*-algebra is 
universal for all C* -algebras generated by isometries. 

(7) For every isometry V acting on a Hilbert space K, there is a unique 
representation 1f : T -+ B(K) such that 1f(S) = V. Hint: Use the 
Wold decomposition. 

The result of Exercise (7) is sometimes formulated in purely *-algebraic 
terms as follows. Let A be a C* -algebra with unit and let v be an element 
of A. Then the following are equivalent: 

• There is a (necessarily unique) *-ij.omomorphism 1f : T -+ A such 
that 1f(S) = v . 

• v*v = 1. 
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The difference between Exercise (7) and this more abstract uniqueness result 
involves the Gelfand-Naimark theorem, whieh asserts that every abstract 
G* -algebra has a nondegenerate isometrie representation as a G* -algebra of 
operators on some Hilbert space. The Gelfand-Naimark theorem will be 
established in Section 4.8 below. 

4.4. Index Theorem for Continuous Symbols 

Consider the multiplicative group G = G(1l't1 of all complex-valued con­
tinuous functions on the circle that have no zeros. G is a commutative 
topological group relative to its norm topology. We seek a nontrivial ho­
momorphism of G into the additive group Z. This homomorphism is a 
generalization of the winding number, about the origin, of piecewise smooth 
functions in G. We first describe this generalized winding number in some 
detail. Then we relate this topological invariant of functions f E G to the 
index of their Toeplitz operators TI E B(H2 ). Throughout, C X denotes the 
multiplicative group of nonzero complex numbers. 

We begin with a result about the general linear group of a related G*­
algebra G[O,lJ. While one can base that result on the fact that [O,lJ is 
a contractible space, or on the properties of covering maps of spaces, the 
argument we give uses only elementary methods. The reader should keep 
in mind that the range of a function f E G[O, 1J-1 can be very complicated, 
perhaps having nontrivial interior. 

PROPOSITION 4.4.1. For every function F E G[O, 1) such that F(t) f. ° 
for every tE [0,1), there is a function G E G[O, 1) such that 

F(t) = eG(t), 0:::; t:::; 1. 

PROOF. On the domain {z E C : Iz - 11< I}, let logz be the principal 
branch of the logarithm, 

00 (1 )n 
logz = - L - z . 

n=1 n 

The log function is holomorphie, satisfies log 1 = 0, and of course e10g z = z 
for Iz - 11 < 1. Let 

M = sup IF(t)I-1• 
O::;t:5) 

By uniform continuity of F, we can find a finite partition of the interval 
[0,1), 0= to < t1 < ... < tn = 1, such that 

1 
sup lF(t) - F(tk-l)1 < 2M. 

tk-l::;t::;tk 

It fol~ws that for k = 1, ... , n and t E [tk-b tk), 

(4.10) /1 _ F(t) / = IF(t) - F(tk-dl < 1 < ~ < 1. 
F(tk-d lF(tk-dl - 2MIF(tk-1)1 - 2 
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Setting 
Gk(t) = 10g(F(t)jF(tk-d), tk-l ::; t::; tk, 

we find that Gk is continuous, Gk(tk-d = 0, Gk(tk) = 10g(F(tk)jF(tk-d), 
and it satisfies 

F(t) = F(tk_deGk(t) 

throughout the interval [tk-l, tk]' There is an obvious way to piece the 
Gk together so as to obtain a continuous function G : [0,1] -t C, namely 
G(t) = GI (t) for t E [0, tl] and, for k = 2, ... , n, 

G(t) = Gl(td + ... + Gk-l(tk-d + Gk(t), tE [tk-l, tk]' 
It follows that 

F(t) = F(O)eG(t), o ::; t ::; 1. 

Writing F(O) E C X as an exponential F(O) = eZo , we obtain a continuous 

function G satisfying F = /j by way of G(t) = G(t) + Zoo 0 

We can now define the winding number (about the origin) of a function 
fE G = C('l!')-l. The function F: [0, 1]-t CX defined by 

F(t) = f(e 27rit ) 

is continuous, and hence by Proposition 4.4.1 there is a continuous function 
G: [0, 11-t C such that 

(4.11) f(e27rit ) = e27riG(t), 0::; t ::; 1. 

Note that G(l) -G(O) E Z because e27riG(1) = e27riG(O). The function G is not 
uniquely determined, but if G is another such, then G - G is a continuous 
function with 

e27ri(G(t)-G(t)) = f(e 27rit )f f(e 27rit ) = 1, 0 :S t :S 1, 

and hence G(t) and G(t) differ by a constant. It follows that for any choice 
of a continuous function G satisfying (4.11), 

(4.12) #(f) = G(l) - G(O) 

is a well-defined integer. This integer is called the winding number of f. The 
properties of this generalized winding number are summarized as folIows: 

PROPOSITION 4.4.2. Par f, 9 E G = C('l!')-l, 

(1) #(fg) = #(f) + #(g). 
(2) #(f) = n E Z ifJ there is a function h E C('l!') such that f = (neh. 

PROOF. For (1), pick continuous functions F, G : [0, 1]-t C such that 

Then 
f(e27rit)g(e27rit) = e27ri(F(t)+G(t)), 

and the winding number of f 9 is given by 

tE [0,1]. 

tE [0,1], 

F(l) + G(l) - (F(O) + G(O)) = #(f) + #(g). 



116 4. METHODS AND APPLICATIONS 

For (2), consider first the case n = O. If f = eh is the exponential of a 
function hE G('f), then we have 

(4.13) o ::; t ::; 1, 

where F(t) = (27r)-lh(e27rit ). Clearly, F(l) = F(O), so that #(1) = F(l) -
F(O) = O. Conversely, if #(1) = 0, then there is a function F E G[O, 1] such 
that (4.13) is satisfied and F(l) - F(O) = #(1) = O. Since F is periodic, we 
have f = eh, where h E G('f) is the function h(e27rit ) = 27riF(t), 0::; t::; 1. 

To deal with the case of arbitrary n E Z note first. that #( () = 1. Indeed, 
this is immediate from the fact that 

o ::; t ::; 1. 

From the property (1) it follows that #((n) = n for every n E Z; hence 
#((neh) = #((n) +#(eh) = n, as asserted. Conversely, if fE G('f) satisfies 
#(1) = n, consider 9 = C n fE G('f)-l. Using (1) again we have #(g) = 0, 
and by the preceding paragraph there is an h E G('f) such that 9 = eh. 
Thus f = (ng = (neh has the asserted form. 0 

We now complete the computation of the index of Fredholm operators 
in the Toeplitz G· -algebra T: 

THEOREM 4.4.3. Por every f E G = G('f)-l, 

ind Tf = -#(1). 

PROOF. In view of Proposition 4.4.2, it suffices to show that for f = (ne9 

with n E Z and 9 E G('f) we have ind Tf = -no 
We claim first that ind Te9 = O. Indeed, 

o ::; A ::; 1, 

defines a continuous arc of Fredholm operators in B(H2 ) satisfying ind Ao = 
ind 1 = 0 and ind Al = ind Te9. By continuity of the index, we must have 
indA I = indAo = O. 

Notice that the map f E G = G('f)-l I-t ind Tf E Z is a homomorphism 
of abelian groups. For fixed f, 9 E G Proposition 4.3.1 implies that Tfg = 
TfTg + K for some compact operator K. Hence 

ind Tfg = ind (Tfg + K) = ind (TfTg) = ind Tf + ind Tg 

by the stability and additivity properties of the index. Finally, since T( is 
the unilateral shift, its index is -1; hence 

ind Tf = ind T(ne9 = ind T(n + ind Te9 = n . ind T( = -no 

o 
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Exercises. In Exercises (1) through (5), {an: n E Z} denotes a doubly 
infinite sequence of complex numbers that is summable, En lanl < 00, and 
</> is the continuous function defined on the unit circle by 

n=-oo 

As usual, Z denotes the additive group of integers, and Z+ = {O, 1,2, ... } 
denotes the additive semigroup of nonnegative integers. 

(1) Consider the Hilbert space H = .e2 (Z). Show that the convolution 
operator A defined by 

00 00 

(A~)n = L an-k~k = L aj~n-j 
k=-oo j=-oo 

is bounded, and in fact, IIAII ::; Ln lanl. Labor-saving hint: Realize 
A appropriately as Lm amTm where T is a translation operator. 

(2) Show that A is a normal operator by calculating A *, AA *, and 
A*A. 

(3) Determine the spectrum of A in concrete terms. Hint: Ais unitarily 
equivalent to a multiplication operator on some Hilbert space of 
functions L2(X, /1): What is the multiplication operator? 

(4) Assuming that {an} is not a trivial sequence satisfying an = ° for all 
ni- 0, deduce that A has no point spectrum (Le., no eigenvalues), 
determine when it is invertible in terms of </>, and calculate IIAII 
exactly. 

(4.14) 

In Exercises (5) and (6), you will consider a related operator B, 
defined on the subspace K = .e2(Z+) eH by 

00 n 

(B~)n = L an-k~k = L aj~n-j, 
k=O j=-oo 

for n = 0,1,2, ... , ~ E K. 

(5) Show that B* B - BB* is compact, and show that the essential 
spectrum of B is the spectrum of A. 

(6) Specialize the operator B in (4.14) as follows: (B~)n = ~n-l -~n-2 
for n 2: 2, (B~h = ~o, (B~)o = 0. Sketch the essential spectrum 
aAB) of Band calculate the Fredholm index of B - ..\1 for all 
..\ E C \ aA B). Give a clear sketch with an indication of the various 
values of the index; it may help to indicate the points where O"e(B) 
meets the x-axis and the y-axis. Precise numerical computations 
are unnecessary, provided that you have a clear picture and good 
qualitative remarks. 



118 4. METHODS AND APPLICATIONS 

4.5. Some H 2 Ftmction Theory 

In this section, we present several results connecting the function theory 
and the operator theory of the Hardy space H 2. The results are important 
for many aspects of functional analysis, including but certainly not limited 
to the computations of operator spectra that we will carry out in the next 
section. 

We begin with a result characterizing the (closed) subspaces of H 2 that 
are invariant under the unilateral shift. This is a famous result of Arne 
Beurling [6]; it is remarkable because there are very few operators whose 
invariant subspaces are completely known. Indeed, it is not even known 
whether an arbitrary operator on a (separable) Hilbert space H must have 
a closed invariant subspace other than the triviaIones {O} and H. 

An inner lunction is a function 1 E Hoo satisfying I/(eiO)1 = 1 almost 
everywhere on the unit circle. The term "inner" has classical origins, and 
refers to the fact that if 1 is a rational function of a complex variable whose 
restriction to the unit circle has no poles and defines an inner function 
as above, then the zeros of 1 are all contained in the interior of the unit 
disk {z : I z I < 1}. Such rational functions are important in linear systems 
theory (they correspond to "causaI" filters), and in the prediction theory of 
stationary Gaussian random processes. 

For every function 1 E Hoo , the multiplication operator Mf carries H2 

into itself, I· H2 ~ H2 by Proposition 4.2.1; and if 1 is an inner function, 
then M = I· H 2 is a closed subspace of H 2 that is invariant under the 
unilateral shift Te;, = Me;, r H2. 

THEOREM 4.5.1 (Beurlin,g). For every closed shijt-invariant subspace 
M ~ H 2 there is an inner lunction v such that M = v . H 2 . 

A complete proof of Beurling's theorem is outlined in the exercises at the 
end of the section. The following consequence is a classical theorem of the 
brothers Riesz, whose original method was quite different. It has attracted a 
great deal of attention over the years, and far-reaching generalizations have 
been discovered that relate to diverse areas, including (a) effective general- . 
izations of HP theory that can be formulated whenever one has a flow acting 
on aspace [18], (b) the theory of one-parameter groups of automorphisms of 
von Neumann algebras that satisfy a "positive energy" condition [4], and (c) 
the properties of annihilating measures of abstract function algebras [13]. 

THEOREM 4.5.2 (F. and M. Riesz). The set Z = {z E 1[' : I(z) = O} 01 
zeros 01 any nonzero function 1 E H2 is a set 01 Lebesgue measure O. 

PROOF. Fix a function 1 =f 0 in H 2 and consider the closed subspace 
M = [I, (I, (2 I, ... ] of H 2 . Then M =f {O}, it is invariant under the shift 
Te;" and every function in M vanishes almost everywhere on the zero set Z. 
Beurling's Theorem 4.5.1 implies that M contains an inner function v. Since 
Iv(eiO)1 = 1 almost everywhere on 1[', Z must have measure O. 0 
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REMARK 4.5.3. Some remarks on H I . We collect some details relating 
to the function theory of HI that will be used in the proof of the following 
theorem: H I is defined as the space of all functions f E LI whose Fourier 
series has the form 

00 

(4.15) f(ei(J) '" L anein(J. 
n=O 

If g E H 1 is such that its conjugate 9 also belongs to H I , then g must be a 
constant. Indeed, (4.15) implies that all the negative Fourier coefficients of 
g are zero, while gEHl implies that the positive coefficients of g are zero. 
Hence the Fourier series of g is the Fourier series of a constant function, and 
g must be a constant. Let HJ denote the space of all functions f in Hl with 
zero constant term, (1,1) = O. We may conclude from these remarks that 

and H I nHJ = {O}. 

Second, we point out that the product of two functions in H 2 must 
belong to H I . Indeed, if f,g E H2, then fg E LI, and moreover, IlfgllI ~ 
Ilf1!21!g112. Thus for a fixed negative integer n the Fourier coefficient (1g, (n) 
defines a bounded bilinear functional on H 2 x H 2 that vanishes whenever 
fand g are finite sums of the form ao + aI( + ... + ap(P. It follows that 
(1 g, (n) = 0 identically on H 2 x H 2. We conclude that the Fourier series of 
fg has the required form (4.15). 

Finally, let HZ = {f E H2 : (1,1) = O}. Then HZ = [(, (2, (3, ... li hence 
the orthocomplement of H2 in L2 is related to HZ by 

H2.l = H5 = {] : lEHn· 
The following result of Lewis Coburn [7] implies that when a Toeplitz 

operator is a Fredholm operator of index zero, it must be invertible: 

THEOREM 4.5.4 (Coburn). Let</> be any nonzero symbol in LOO • Then 
either kerTcj> = {O} or kerT; = {O}. 

PROOF. We show that if both kerneis are nontrivial, then </> = o. For 
that, choose nonzero functions I, g E H2 such that Tt/>I = T;g = O. With 
P+ E B(H2) denoting the projection onto H2, we have P+</>I = 0, i.e., 

.1 -
</> I E H2 = HZ. Therefore, 

( 4.16) - - 2 
</>1 E Ho· 

Similarly, T;g = 0 implies that P+~g = 0, that is, hE HZ. Therefore, 

(4.17) </>9 E HÖ· 

Multiplying the term of (4.16) by g, we obtain 

~! g E HZ . H2 ~ HÖ, 
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by Remark 4.5.3. On the other hand, multiplying the term of (4.17) by f 
gives 

~lg = 4Jgf E H5' H2 ~ Ha. 
Thus ~lg E Ha n HJ = {O}. Since neither f nor 9 is the zero function, 
the F. and M. Riesz theorem implies that the product /(z)g(z) is nonzero 
for almost every z E 1'. Thus 4Jgf = 0 implies that ~(z) vanishes almost 
everywhere. 0 

Exercises. In these exercises, you will deduce Beurling's theorem from 
the following more general result, which characterizes certain subspaces of 
L2 that are invariant under the unitary multiplication operator U = M, E 

8(L2). Notice that for any such subspace M, the sequence of subspaces 
un M decreases with n. 

Theorem A. Let M ~ L2 be a nonzero closed U-invariant subspace 
of L2 that is pure in the sense that nn~oun M = {O}. There is a function 
v EU'" such that Iv(eiO)1 = 1 almost everywhere on the unit circle and 
M=v·H2 . 

For the following exercises, let M ~ L2 be a nonzero closed subspace 
satisfying the hypotheses of Theorem A. 

(1) Let N= M e UM be the orthocomplement of UM in M. Show 
that N -I {O} and that it is a wandering subspace in the sense that 
for m, n E Z with m -I n we have um N 1- Un N. 

(2) For every operator A ~ B(N) define Ä E B(L2 ) by 

n=-oo 

APN E B(L2 ) denoting the composition of A with the projection 
onto N. Show that Ä belongs to the multiplication algebra M = 
{Mf : f E L OO }. 

(3) Deduce that B(N) is abelian, hence N must be one-dimensional. 

Choose an element v E N with Ilvllp = 1. 

(4) Show that for every m, nE Z with m -I none has (v· zm, V· zn) = 
0, and deduce that Iv( eiO) I = 1 almost everywhere on the unit circle. 

(5) Show that M is spanned by N, U N, U2 N, ... and deduce that M = 
v·H2• 

That completes the proof of Theorem A. 

(6) Deduce Beurling's theorem from Theorem A. 

4.6. Spectra of Toeplitz Operators with Continuous Symbol 

Given a continuous symbol f E C(1I') , we are now in position to give a 
description of CT(Tf). Let us first consider the essential spectrum CTe(Tf) ~ 
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a(Tf). By the exact sequence (4.9) the essential spectrum of Tf is the 
spectrum of fasan element of the commutative C* -algebra C(1l'), namely, 

( 4.18) 

What remains is to determine the other points of the spectrum. Let us 
decompose C\f(1I') into its connected components, obtaining an unbounded 
component 0 00 together with a finite, infinite, or possibly empty set of holes 
0 1,02 , ... , 

C \ f(1I') = 0 00 U 0 1 U 02 U .. , . 

Choose A E C \ f(11'). Then f - A E C(11')-1, and hence Tf - A = Tf->' is a 
Fredholm operator. Consider the behavior of ind (Tf - A) as A varies over 
one of the components Ok of C \ f(11'). Since A I-t Tf - A is a continuous 
function from Ok to the set of Fredholm operators on H2 and since the index 
is continuous, it follows that ind (Tf - A) is constant over Ok. Let nk E Z 
be this integer, k = 00,1,2, .... 

Obviously, noo = ° because Tf - Ais invertible for sufficiently large A (for 
example, when lAI> IITfl!). When holes exist, nk can take on any integral 
value for k = 1,2, .... In such cases Theorem 4.4.3 allows us to evaluate nk 

nk = ind (Tf - A) = ind (TU->')) = -#(1 - A), 

in terms of the generalized winding number of the symbol f about A. Thus 
we have calculated ind (Tf - A) throughout the complement of f(11'). 

If k is such that nk =F 0, then Tf - A is a Fredholm operator of nonzero 
index for all A E Ok. Obviously, such operators cannot be invertible; hence 
0k ~ a(Tf )· On the other hand, if nk = 0, then Tf _>. is a Fredholm 
operator of index zero for all A E Ok. By Theorem 4.5.4 such operators 
must be invertible; hence Ok is disjoint from a(Tf). We assemble these 
remarks ab out Toeplitz operators with continuous symbol into the following 
description of their spectra. 

THEOREM 4.6.1. Let f E C(1I') , and let C \ f(1I') = 0 00 U 0 1 U O2 u .. · be 
the decomposition of the complement of f(1I') into its unbounded component 
0 00 and holes 0k, k 2 1. For each finite k and A E 0k, the winding number 
Wk = #(1 - A) is a constant independent of A. 

The spectrum of Tf is the union of f(11') and the holes 0k for which 
Wk =F 0. 

In particular, the spectrum of a Toeplitz operator with continuous sym­
bol contains no isolated points, and is in fact a connected set. The problem 
of giving a similarly detailed description of the spectra of Toeplitz operators 
with symbol in L 00 remains open in general. However, a theorem of Harold 
Widom asserts that a(Tf) is connected for every f E L OO (see [11]). The 
case of self-adjoint Toeplitz operators is treated in the Exercises below. 

Exercises. 
(1) Let qy E L oo , and consider its associated multiplication operator 

Mt/> E 8(L2 ) and Toeplitz operator Tt/> E 8(H2 ). 
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(a) Given f > 0 such that IITq,/11 ~ fllfll for all f E H 2 , show that 
IIMq,gll ~ fllgll for all 9 E L2• Rint: The union of the spaces 
(nH2, n ~ 0, is dense in L2. 

(b) Prove: If Tq, is invertible, then Mq, is invertible. 
(c) Deduce the spectral inclusion theorem of Rartman and Wint­

ner: For 4J E Loo , a(Tq,) contains the essential range of 4J. 

Let 4J be a real-valued function in Loo and let m < M be the 
essential infimum and essential supremum of 4J, 

m =inf{t ER.: a{z E 11': 4J(z) < t} > O}, 

M =sup{t ER.: a{z E 11': 4J(z) > t} > O}, 

a denoting normalized Lebeggue measure on 1['. Thus, [m, M] is 
the smallest closed interval I <:.;; R. with the property that 4J( z) E I 
almost everywhere da(z). Equivalently, it is the smallest inter­
val containing the essential range of 4J. In the remaining exercises 
you will obtain information about the spectrum of the self-adjoint 
Toeplitz operator Tq,. 

(2) Let A be areal number such that Tep - A is invertible. Show that 
there is a nonzero function f E H 2 such that Tq,1 - AI = 1, 1 
denoting the constant function in H2 . 

(3) Show that (4J - A)1/1 2 = (4J - A)l· I belongs to H 1 and deduce 
that there is areal number c such that (4J(z) - A)lf(zW = c for 
a-almost every z E 1['. 

(4) Deduce that 4J(z) - A is either positive almost everywhere on 11' or 
negative almost everywhere on 1['. Rint: Use the F. and M. Riesz 
theorem. 

(5) Deduce the following theorem ofRartman and Wintner (1954): For 
every real-valued symbol 4J E Loo , 

a(Tq,) = [m, M], 

m and M being the essential inf and essential sup of 4J. 

4.7. States and the GNS Construction 

Throughout this section, A will denote a Banach *-algebra with normalized 
unit 1. A linear functional p : A -+ C is said to be positive if p(x*x) ~ 0 
for every x E A. Astate is a positive linear functional satisfying p(l) = 1. 
This terminology has its origins in the connections between C* -algebras 
and quantum physics, an important subject that is not touched on here. 
Notice that we do not assume that states are bounded, but Proposition 
4.7.1 below implies that this is the case. It is a fundamental result that 
starting with astate p of A, one can construct a nontrivial representation 
'Ir : A -+ B(H). This procedure is called the GNS construction after the 
three mathematicians, I.M. Gelfand, M.A. Naimark, and I.E. Segal, who 
introduced it. The purpose of this section is to discuss the GNS construction 
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in the general context of unital Banach *-algebras. Applications to C*­
algebras will be taken up in Section 4.8. 

PROPOSITION 4.7.1. Every positive linear junctional p on A satisfies the 
Schwarz inequality 

(4.19) Ip(y*x)1 2 ::; p(x*x)p(y*y) 

and moreover, Ilpll = p(l). In particular, every state of A has norm 1. 

PROOF. Considering A as a complex vector space, 

x,y E A H [x,y] = p(y*x) 

defines a sesquilinear form which is positive semidefinite in the sense that 
[x, x] ~ 0 for every x. The argument that establishes the Schwarz inequality 
for complex inner product spaces applies verbatim in this context, and we 
deduce (4.19) from I[x, y]1 2 ::; [x, x][y, y]. 

Clearly, p(l) = p(l*l) ~ 0, and we claim that Ilpll ::; p(l). Indeed, for 
every x E A the Schwarz inequality (4.19) implies 

Ip(x)1 2 = Ip(l *x)1 ::; p(x·x)p(l). 

If, in addition, Ilxll ::; 1, then x*x is a self-adjoint element in A of norm at 
most 1; consequently, 1 - x'x must have a self-adjoint square root y E A 
(see Exercise (2b) below). It follows that p(l - x'x) = p(y2) ~ 0, Le., 
0::; p(x'x) ::; p(l). Substitution into the previous inequality gives Ip(xW ::; 
p(x'x)p(l) ::; p(1)2, and Ilpll ::; p(l) folIows. Since the inequality II pli ~ p(l) 
is obvious, we conclude that Ilpll = p(l). 0 

DEFINITION 4.7.2. Let p be a positive linear functional on a Banach 
*-algebra A. By a G NS pair for p we mean a pair (71', Ü consisting of a 
representation 71' of A on a Hilbert space Hand a vector ~ E H such that 

(1) (Cyclicity) 71'(A)~ = H, and 
(2) p(x) = (7I'(x)~,~), for every x E A. 

Two GNS pairs (71',~) and (71", n are said to be equivalent if there is a 
unitary operator W : H -+ H' such that W~ = e and W7I'(x) = 71"(x)W, 
xE A. 

THEOREM 4.7.3. Every positive linear functional p on a unital Banach *­
algebra A has a GNS pair (71', Ü, and any two GNS pairs for p are equivalent. 

PROOF. Consider the set 

N = {a E A : p(a'a) = O}. 

With fixed a E A, the Schwarz inequality (4.19) implies that for every 
xE A we have Ip(x*a)12 :::; p(a*a)p(x*x), from which it follows that p(a*a) = 
o {=::::} p( x' a) = 0 for every x E A. Thus N is a left ideal: a linear subspace 
of A such that A . N ~ N. 
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The sesquilinear form x, y E A I-t p(y*x) promotes naturally to sesquilin­
ear form (-,.) on the quotient space AIN via 

(x + N, y + N) = p(y*x), 

and for every x we have 

x,y E A, 

(x+N,x+N) =p(x*x) =0 ~ x+N=O. 

Hence AI N becomes an inner product space. Its completion is a Hilbert 
space H, and there is a natural vector ~ E H defined by 

~ = l+N. 

It remains to define 7r E rep(A, H), and this is done as folIows. Since N 
is a left ideal, for every fixed a E A there is a linear operator 7r( a) defined 
on AIN by 7r(a)(x + N) = ax + N, xE A. Note first that 

(4.20) (7r(a)1], () = (1],7r(a*)(), 

for every pair of elements 1] = y + N, ( = z + N E AI N. Indeed, the left side 
of (4.20) is p(z*ay), while the right side is p«a*z)*y) = p(z*ay), as asserted. 

We claim next that for every a E A, 117r(a)II ~ Ilall, where 7r(a) is viewed 
as an operator on the inner product space AIN. Indeed, if lIall ~ 1, then 
for every x E A we have 

(4.21) 
(7r(a)(x + N), 7r(a)(x + N)) = (ax + N,ax + N) = p«ax)*ax) 

= p(x*a*ax). 

Since a*a is a self-adjoint element in the unit ball of A, we can find a 
self-adjoint square root y of 1 - a*a (see Exercise (2b)). It follows that 
x*x - x*a*ax = x*(l - a*a)x = x*y2x = (yx)*yx; hence 

p(x*x - x*a*ax) = p«yx)*yx) 2: 0, 

from which we conclude that p(x*a*ax) ~ p(x*x). This provides an upper 
bound for the right side of (4.21), and we obtain 

(7r(a)(x + N), 7r(a)(x + N)) ~ p(x*x) = (x + N, x + N). 

It follows that 117r(a)1I ~ 1 when lIall ~ 1, and the claim is proved. 
Thus, for each a E A we may extend 7r( a) uniquely to a bounded operator 

on the completion H by taking the closure of its graph; and we denote the 
closure 7r(a) E B(H) with the same notation. Note that (4.20) implies that 
(7r(a)1], () = (1],7r(a*)() for all 1], ( E H, and from this we deduce that 
7r(a*) = 7r(a*), a E A. It is clear from the definition of 7r that 7r(ab) = 
7r(a)7r(b) for a, bE A; hence 7r E rep(A, H). 

Finally, note that (7r,~) is a GNS pair for p. Indeed, 

7r(A)~ = 7r(A)(l + N) = {a + N : a E A} 

is obviously dense in H, and 

(7r(a)~,~) = (a + N, 1 + N) = p(l *a) = p(a). 
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For the uniqueness assertion, let (7r', e) be another GNS pair for p, 
7r' E rep(A, H'). Notice that there is a unique linear isometry Wo from the 
dense subspace 7r(A)~ onto 7r'(A)( defined by Wo : 7r(a)~ H 7r'(a)e, simply 
because for aB a E A, 

(7r(a)~, 7r(a)~) = (7r(a*a)~,~) = p(a*a) = (7r'(a)(, 7r'(a)~'). 

The isometry Woextends uniquely to a unitary operator W: H -+ H', and 
one verifies readily that W~ = ~', and that W7r(a) = 7r'(a)W on the dense set 
of vectors 7r(A)~ ~ H. It follows that (7r,~) and (7r', ~') are equivalent. 0 

REMARK 4.7.4. Many important Banach *-algebras do not have units. 
For example, the group algebras LI (G) of locally compact groups faH to have 
units except when G is discrete. C* -algebras such as K do not have units. 
But the most important examples of Banach *-algebras have "approximate 
units," and it is significant that there is an appropriate generalization of 
the GNS construction (Theorem 4.7.3) that applies to Banach *-algebras 
containing an approximate unit [10], [2]. 

Exercises. 

(1) (a) Fix Q in the interval 0< Q < 1. Show that the binomial series 
of (1 - z)Q has the form 

00 

(1 - zt = 1 - L Cnzn , 
n=l 

where Cn > 0 for n = 1, 2, .... 
(b) Deduce that 

00 

LCn = 1. 
n=l 

(2) (a) Let A be a Banach algebra with normalized unit, and let 
Cl, C2, . •. be the binomial coefficients of the preceding exercise 
for the parameter value Q = !. Show that for every element 
x E A satisfying Ilxll ::; 1, the series 

00 

1- LcnXn 
n=l 

converges absolutely to an element y E A satisfying 

y2 = 1- x. 

(b) Suppose in addition that A is a Banach *-algebra. Deduce that 
for every self-adjoint element x in the unit ball of A, 1 - x has 
a self-adjoint square root in A. 

In the remaining exercises, b. = {z E C : Izl ::; I} denotes the 
closed unit disk and Adenotes the disk algebra, consisting of all 
functions f E C(b.) that are analytic on the interior of b.. 
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. (3) (a) Show that the map 1 f-t f* defined by 

j*(z) = I(z), z E ß, 

makes A into a Banach *-algebra. 
(b) For each z E ß, let wz(f) = I(z), 1 E A. Show that Wz is a 

positive linear functional if and only if z E [-1, 1 J is real. 
( 4) Let p be the linear functional defined on A by 

p(f) = 101 I(x) dx. 

(a) Show that pis astate. 
(b) Calculate a GNS pair (11",~) for p in concrete terms as folIows. 

Consider the Hilbert space L2[0, 1], and let ~ E L2[0, 1J be the 
constant function ~(t) = 1, tE [O,lJ. Exhibit a representation 
11" of A on L2 [0, 1J such that (11",~) becomes a GNS pair for p. 

(c) Show that 11" is faithful; that is, for 1 E A we have 

1I"(f) = 0 ==> 1 = O. 

(d) Show that the closure of 1I"(A) in the weak operator topology 
is a maximal abelian von Neumann algebra. 

4.8. Existence of States: The Gelfand-Naimark Theorem 

Turning our attention to C* -algebras, we now show that every uni tal C*­
algebra has an abundance of states. The GNS construction implies that 
every state is associated with a representation; these two principles combine 
to show that every unital C* -algebra has an isometrie representation as a 
concrete C* -algebra of operators on some Hilbert space. 

Let A be a unital C* -algebra, fixed throughout. A positive element of Ais 
a self-adjoint element with nonnegative spectrum, u(x) ~ [0,00). One writes 
x 2:: O. Notice that x 2 2:: 0 for every self-adjoint element x E A. Indeed, 
one can compute u(x2) relative to any unital C*-subalgebra containing it, 
and if one uses the commutative C*-algebra generated by x and 1, the 
result follows immediately from Theorem 2.2.4 and basic properties of the 
Gelfand map. Significantly, this argument does not imply that z* z has 
nonnegative spectrum for nonnormal elements z E A, and in fact, the proof 
that z* z 2:: 0 in general (Theorem 4.8.3) is the cornerstone of the Gelfand­
Naimark theorem. 

We let A + denote the set of all positive elements of A. It is clear that A + 
is closed under multiplication by nonnegative scalars, but it is not obvious 
that the sum of two positive elements is positive. 

LEMMA 4.8.1. If x, y are two positive elements 01 A, then x+y is positive. 

PROOF. By replacing x, y with AX, Ay for an appropriately small positive 
number A, we can assurne that !lxii :5 1 and IIY!l :5 1. This implies that both 
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x and y have their spectra in the unit interval [0,1]. Hence 1 - x and 1 - Y 
have their spectra in 

{I - A: A E [0, I]} = [-1,0] ~ [-1, +1]. 

Since they are self-adjoint, their norms agree with their spectral radii, and 
we conclude that 111- xii -:; 1 and 111 - yll -:; 1. 

It suffices to show that z = ~(x+y) is positive. z is obviously self-adjoint 
and 

1 1 1 1 111- zll = 11-(1- x) + -(1 - y)11 < - + - = 1. 2 2 - 2 2 
Hence 

a(z) ~ {t E lR: 11- tl-:; I} ~ [0,00). 

o 
LEMMA 4.8.2. If a E A satisfies a(a*a) <:;;; (-00,0], then a = 0. 

PROOF. If a, b are elements of any Banach algebra with unit, then the 
nonzero points of a(ab) and a(ba) are the same (see Exercises (3) and (4) of 
Section 1.2). It follows that a(aa*) ~ (-00,0]. From the preceding lemma 
we conclude that a(a*a + aa*) <:;;; (-00,0]. 

Let a = x + iy be the Cartesian decomposition of a, with x = x* and 
y = y*. Expanding a*a = (x - iy)(x + iy) and aa* = (x + iy)(x - iy) and 
canceling where possible, we obtain 

'a*a + aa* = 2x2 + 2y2. 

Hence -(2x2 + 2y2) 2 0. Adding the positive element 2y2 we find that 
-2x2 2 0, and thus _x2 2 0. Since x2 is a positive element, the preceding 
sentence implies that its spectrum is contained in (-00,0] n [0,00) = {O}; 
hence IIx2 11 = r(x2 ) = 0, and x = ° follows. Similarly, y = 0. 0 

The key result on the existence of positive elements is the following: 

THEOREM 4.8.3. In a uni tal C* -algebra A, every element of the form 
a*a has nonnegative spectrum. 

PROOF. Fix a E A, and consider the following continuous functions 
f,g:lR-+R 

and 

f(t) = {; 
,t 2 0, 
,t < 0, 

g(t) = {o~t ,t 2 0, 
v -L ,t < 0. 

We have f(t)2 - g(t)2 = t and f(t)g(t) = 0, t E R The properties of the 
continuous functional calculus imply that x = f(a*a) and y = g(a*a) are 
self-adjoint elements of A satisfying xy = yx = ° and 

a*a=x2 _ y2. 
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Consider the element ya*ay = y(x2 - y2)y = _y4. The spectrum of ya*ay is 
nonpositive, so that Lemma 4.8.2 implies that ay = O. Hence y4 = -ya* ay = 

0, and since y is self-adjoint, this entails y = O. We conclude that a*a = x2 

is the square of a self-adjoint element of A and is therefore positive. 0 

COROLLARY 1. Let P be a linear functional on a unital C* -algebra A 
satisfying Ilpll = p(l) = 1. Then p is astate. 

PROOF. We have to show that p(a*a) 2: 0 for every a E A. By Theorem 
4.8.3 it is enough to show that for every self-adjoint element x E A having 
nonnegative spectrum, we have p(x) 2: O. More generally, we claim that for 
every normal element z E A, 

p(z) E conva(z). 

To see this, let B be the commutative C* -subalgebra generated by z and 1. 
The restriction Po of p to B satisfies the same hypotheses IIPol1 = po(l) = 1. 
By Theorem 2.2.4, B is isometrically *-isomorphic to C(X), and for C(X) 
this is the result of Lemma 1.10.3. 0 

COROLLARY 2. For every element x in a uni tal C* -algebra A there is a 
state p such that p(x*x) = IIx112. 

PROOF. Consider the self-adjoint element y = x*x, and let B be the sub 
C* -algebra generated by y and the identity. Again, since B ~ C(X) there 
is a complex homomorphism w E sp(B) such that w(y) = Ilyll. Let p be any 
extension of w to a linear functional on A with Ilpll = Ilwll = 1. We also 
have p(l) = w(l) = 1. Thus Ilpll = p(l) = 1, and the preceding corollary 
implies thatp is astate. 0 

Let us examinethe implications of Corollary 2. Fixing an element x E A, 
choose astate p satisfying p(x*x) = Ilx112. Applying the GNS construction 
to p we obtain a Hilbert space H, a vector ~ EH, and a representation 
7r E rep(A, H) with the property 

p(a) = (7r(a)~, ~), aE A. 

Taking a = 1 we have 11~112 = p(l) = 1; hence ~ is a unit vector. Taking 
a = x we find that 117r(x)~112 = p(x*x) = IIx112; hence 117r(x)11 = IIxll. We 
conclude that for every element x E A there is a representation 7rx of A on 
some Hilbert space Hx such that II7rx (x)11 = IIxll. Considering the direct 
sum of Hilbert spaces 

H = tBXEAHx 

and the representation 7r E rep(A, H) defined by 

we see that 7r is an isometrie representation of A on H. Thus we have proved 
the following result: 
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THEOREM 4.8.4 (Gelfand-Naimark). Every unital C* -algebra can be rep­
resented isometrically and *-isomorphically as a C* -algebra of operators on 
some Hilbert space. 

Of course, the Hilbert space (f)XEAHx is never separable, and a natural 
quest ion is whether A can be represented faithfully on a separable Hilbert 
space. There is no satisfactory answer in general, but for the important 
dass of C* -algebras that are generated by a countable set of elements the 
answer is yes (see Exercise (4) below). 

REMARK 4.8.5. Pure states: Irreducible representations. Let A be a 
unital C* -algebra. The set S (A) of all states is a convex set in the unit 
ball of the dual of A, and it is dosed and therefore compact in its relative 
weak*-topology. By the Krein-Milman theorem, S(A) is the dosed convex 
hull of its set of extreme points. 

An extreme point of S(A) is called a pure state. The result ofExercise (6) 
below implies that Corollary 2 can be strengthened so that p(x*x) = IIxl1 2 is 
achieved with a pure state p. It is significant that pure states correspond to 
irreducible representations in the sense that astate p is pure if, and only if, 
its GNS pair (1l',~) has the property that 1l' is an irreducible representation. 
Thus one may infer that for every element x E A there is an irreducible 
representation 1l' E rep(A, H) such that 111l'(x)11 = Ilxll. The reader is referred 
to [2J and [10J for more detail and further applications. 

Exercises. 

(1) Show that the Gelfand-Naimark theorem remains true verbatim for 
C* -algebras without a unit. 

(2) Show that in the disk algebra A, considered as a Banach *-algebra 
with involution J*(z) = I(z), z E ~, there are elements a for which 
the spectrum of a*a is the closed unit disko 

A C* -algebra is separable if it contains a countable norm-dense set. 

(3) Let A be a C*-algebra that is generated as a C*-algebra by a finite 
or countable set of its elements. Show that A is a separable C*­
algebra. 

(4) Show that every separable C*-algebra can be represented (isomet­
rically and *-isomorphically) on a separable Hilbert space. 

(5) Let X be a compact Hausdorff space. Show that for every pE X 
the point evaluation 1 E C(X) I-t f(p) is a pure state of C(X). 

(6) Let A be a unital C*-algebra and let x be an element of A. Show 
that there is a pure state p of A such that p(x*x) = IIx11 2• Hint: 
Apply Exercise (5) to the unital C*-subalgebra Ao ~ A generated 
by x*x, and show that a pure state of Ao can be extended to a pure 
state of A. 
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