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Preface

Ah Love! Could you and I with Him conspire
To grasp this sorry Scheme of things entire!

KHAYYAM

People investigating algebraic groups have studied the same objects in many
different guises. My first goal thus has been to take three different viewpoints
and demonstrate how they offer complementary intuitive insight into the
subject. In Part I we begin with a functorial idea, discussing some familiar
processes for constructing groups. These turn out to be equivalent to the
ring-theoretic objects called Hopf algebras, with which we can then con-
struct new examples. Study of their representations shows that they are
closely related to groups of matrices, and closed sets in matrix space give us
a geometric picture of some of the objects involved.

This interplay of methods continues as we turn to specific results. In Part
II, a geometric idea (connectedness) and one from classical matrix theory
(Jordan decomposition) blend with the study of separable algebras. In Part
I11, a notion of differential prompted by the theory of Lie groups is used to
prove the absence of nilpotents in certain Hopf algebras. The ring-theoretic
work on faithful flatness in Part IV turns out to give the true explanation for
the behavior of quotient group functors. Finally, the material is connected
with other parts of algebra in Part V, which shows how twisted forms of any
algebraic structure are governed by its automorphism group scheme.

I have tried hard to keep the book introductory. There is no prerequisite
beyond a training in algebra including tensor products and Galois theory.
Some scattered additional results (which most readers may know) are
included in an appendix. The theory over base rings is treated only when it is
no harder than over fields. Background material is generally kept in the
background: affine group schemes appear on the first page and are never far
from the center of attention. Topics from algebra or geometry are explained
as needed, but no attempt is made to treat them fully. Much supplementary

v



vi Preface

information is relegated to the exercises placed after each chapter, some of
which have substantial hints and can be viewed as an extension of the text.

There are also several sections labelled “ Vista,” each pointing out a large
area on which the text there borders. Though non-affine objects are excluded
from the text, for example, there is a heuristic discussion of schemes after the
introduction of Spec A with its topology. There was obviously not enough
room for a full classification of semisimple groups, but the results are
sketched at one point where the question naturally arises, and at the end of
the book is a list of works for further reading. Topics like formal groups and
invariant theory, which need (and have) books of their own, are discussed
just enough to indicate some connection between them and what the reader
will have seen here.

It remains only for me to acknowledge some of my many debts in this
area, beginning literally with thanks to the National Science Foundation for
support during some of my work. There is of course no claim that the book
contains anything substantially new, and most of the material can be found
in the work by Demazure and Gabriel. My presentation has also been
influenced by other books and articles, and (in Chapter 17) by mimeo-
graphed notes of M. Artin. But I personally learned much of this subject
from lectures by P. Russell, M. Sweedler, and J. Tate; I have consciously
adopted some of their ideas, and doubtless have reproduced many others.
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PART 1

THE BASIC SUBJECT
MATTER



Affine Group Schemes

1.1 What We Are Talking About

If R is any ring (commutative with 1), the 2 x 2 matrices with entries in R
and determinant 1 form a group SL, (R) under matrix multiplication. This is
a familiar process for constructing a group from a ring. Another such
process is GL, , where GL,(R) is the group of all 2 x 2 matrices with inver-
tible determinant. Similarly we can form SL, and GL, . In particular there is
GL,, denoted by the special symbol G,,; this is the multiplicative group, with
G,.(R) the set of invertible elements of R. It suggests the still simpler example
G,, the additive group: G,(R) is just R itself under addition. Orthogonal
groups are another common type; we can, for instance, get a group by taking
all 2 x 2 matrices M over R satisfying MM' = I. A little less familiar is p,,
the nth roots of unity: if we set p,(R) = {x € R|x" = 1}, we get a group under
multiplication. All these are examples of affine group schemes.

Another group naturally occurring is the set of all invertible matrices
commuting with a given matrix, say with (,1 v2). But as it stands this is
nonsense, because we don’t know how to multiply elements of a general ring
by \/5 (We can multiply by 4, but that is because 4x is just x + x + x + x.)
To make sense of the condition defining the group, we must specify how
elements of R are to be multiplied by the constants involved. That is, we
must choose some base ring k of constants—here it might be the reals, or at
least Z[ﬁ, ﬁ]—and assign groups only to k-algebras, rings R with a
specified homomorphism k — R. (If we can take k = Z, this is no restriction.)
A few unexpected possibilities are also now allowed. If for instance k is the
field with p elements (p prime), then the k-algebras are precisely the rings in
which p = 0. Define then a,(R) = {x € R|x? = 0}. Since p = 0 in R, the bino-
mial theorem gives (x + y)’ = x? + y?, and so a,(R) is a group under
addition.



4 " 1 Affine Group Schemes

We can now ask what kind of process is involved in all these examples. To

begin with trivialities, we must have a group G(R) for each k-algebra R. Also,
if : R > § is an algebra homomorphism, it induces in every case a group
homomorphism G(R)— G(S); if for instance (¢ 5) is in SL,(R), then
oa o) is in SLy(S), since its determinant is ¢(a)p(d) — @(b)p(c)
= @(ad — bc) = ¢(1) = 1. If we then take some : S — T, the map induced
by ¢ o ¢ is the composite G(R) — G(S) — G(T). Finally and most trivially,
the identity map on R induces the identity map on G(R). These elementary
properties are summed up by saying that G is a functor from k-algebras
to groups.

The crucial additional property of our functors is that the elements in
G(R) are given by finding the solutions in R of some family of polynomial
equations (with coefficients in k). In most of the examples this is obvious; the
elements in SL,(R), for instance, are given by quadruples a, b, ¢, d in R
satisfying the equation ad — bc = 1. Invertibility can be expressed in this
manner because an element uniquely determines its inverse if it has one.
That is, the elements x in G,,(R) correspond precisely to the solutions in R of
the equation xy = 1.

Affine group schemes are exactly the group functors constructed by solu-
tion of equations. But such a definition would be technically awkward, since
quite different collections of equations can have essentially the same solu-
tions. For this reason the official definition is postponed to the next section,
where we translate the condition into something less familiar but more
manageable.

1.2 Representable Functors

Suppose we have some family of polynomial equations over k. We can then
form a “ most general possible” solution of the equations as follows. Take a
polynomial ring over k, with one indeterminate for each variable in the
equations. Divide by the ideal generated by the relations which the equa-
tions express. Call the quotient algebra A. From the equation for SL,, for
instance, we get A = k[X , X1,, X3y, X22)/(X 1y X322 — X412 X5, — 1). The
images of the indeterminates in A are now a solution which satisfies only
those conditions which follow formally from the given equations.

Let F(R) be given by the solutions of the equations in R. Any k-algebra
homomorphism ¢: A — R will take our “general” solution to a solution in
R corresponding to an element of F(R). Since ¢ is determined by where it
sends the indeterminates, we have an injection of Homy (4, R)into F(R). But
since the solution is as general as possible, this is actually bijective. Indeed,
given any solution in R, we map the polynomial ring to R sending the
indeterminates to the components of the given solution; since it isa solution,
this homomorphism sends the relations to zero and hence factors through
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the quotient ring A. Thus for this 4 we have a natural correspondence
between F(R) and Hom,(4, R).

Every k-algebra A arises in this way from some family of equations. To
see this, take any set of generators {x,} for 4, and map the polynomial ring
k[{X,}] onto A by sending X, to x,. Choose polynomials { f;} generating the
kernel. (If we have finitely many generators and k noetherian, only finitely
many f; are needed (A.5).) Clearly then {x,} is the “ most general possible”
solution of the equations f; = 0. In summary:

Theorem. Let F be a functor from k-algebras to sets. If the elements in F(R)
correspond to solutions in R of some family of equations, there is a k-algebra A
and a natural correspondence between F(R) and Hom,(A, R). The converse
also holds.

Such F are called representable, and one says that A represents F. We can
now officially define an affine group scheme over k as a representable functor
from k-algebras to groups.

Among our examples, G,, is represented by A = k[X, Y]/(XY — 1), which
we may sometimes write as k[X, 1/X]. The equation for p, has as general
solution an element indeterminate except for the condition that its nth
power be 1; thus A = k[X]/(X" — 1). The functor G,(R) = {x € R|no fur-
ther conditions} is represented just by the polynomial ring k[ X]. As with G,,,
we have GL, represented by A = k[X,,, ..., X2;, 1/(X1; X232 — X112 X21)]
To repeat the definition, this means that each (¢ ) in GL,(R) corresponds
to a homomorphism A — R (namely, X,+a, ..., X,;,—d).

1.3 Natural Maps and Yoneda’s Lemma

There are natural maps from some of our groups to others. A good example
is det: GL, — G,,. Here for each R the determinant gives a map from
GL;(R) to G,,(R), and it is natural in the sense that for any ¢: R — S the
diagram

GL,(S) G,(S)

commutes (i.e., gives the same result either way around). The naturality is
obvious, since there is an explicit formula for det involving just polynomials
in the matrix entries. The next result (which is true for representable functors

on any category) shows that natural maps can arise only from such
formulas.
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Theorem (Yoneda’s Lemma). Let E and F be (set-valued) functors represented
by k-algebras A and B. The natural maps E — F correspond to k-algebra
homomorphisms B — A.

PROOF. Let ¢: B — A be given. An element in E(R) corresponds to a homo-
morphism 4 — R, and the composition B — 4 — R then defines an element
in F(R). This clearly gives a natural map E — F.

Conversely, let ®: E— F be a natural map. Inside E(A) is our “most
general possible” solution, corresponding to the identity map id,: 4 — A.
Applying @ to it, we get an element of F(A4), that is, a homomorphism
¢: B— A. Since any element in any E(R) comes from a homomorphism
A—- R, and

E(4) — E(R)

|

F(4) —— F(R)

commutes, it is easy to see that @ is precisely the map defined from ¢ in the
first step. (]

To elucidate the argument, we work it through for the determinant. In
A=k[X 4, ..., X232, 1/(X11 X3, — X5 X3,)] we compute det of the “ most
general possible” solution (yi! %!2), getting X, X,, — X, X,,. This, an
invertible element of A, determines a homomorphism from B = k[X, 1/X]to
A. Thus det: GL; - G, corresponds to the homomorphism B — A4 sending
X to X1y X35 — X5 X5, All this is basically trivial, and only the reversal of
direction needs to be noticed: E — F gives 4 < B.

Suppose now also that ®@: E — F is a natural correspondence, i.e. is bijec-
tive for all R. Then ®~!: F » E is defined and natural. It therefore corre-
sponds to a homomorphism /: A — B. In the theorem composites obviously
correspond to composites, so @°y: A—->B—+A corresponds to
id=® !> ®: E>F - E. Hence ¢ ° ¢ must be id,. Similarly y © ¢ = idg.
Thus ¥ is ¢ %, and ¢ is an isomorphism.

Corollary. The map E — F is a natural correspondence iff B— A is an
isomorphism.

This shows that the problem mentioned at the end of (1.1) has been
overcome. Unlike specific families of equations, two representing algebras
cannot give essentially the same functor unless they themselves are essen-
tially the same.
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1.4 Hopf Algebras

Our definition of affine group schemes is of mixed nature: we have an
algebra A together with group structure on the corresponding functor.
Using the Yoneda lemma we can turn that structure into something involv-
ing A.

We will need two small facts about representability. The first is obvious:
the functor E assigning just one point to every k-algebra R is represented by
k itself. Second, suppose that E and F are represented by A and B; then the
product

(E x F)(R)={<e,f>|e € E(R), f€ F(R)}

is represented by A ®, B. Indeed, this merely says that homomorphisms
A® B — R correspond to pairs of homomorphisms 4, B— R, which is a
familiar property of tensor products. We can even generalize slightly. Sup-
pose we have some G represented by C and natural maps E—~ G, F-> G
corresponding to C — 4, C — B. Then the fiber product

(E x F)(R) = {<e, /) |e and f have same image in G(R)}

is represented by A ®¢ B.
Now, what is a group? It is a set I" together with maps

mult: ' xI'->T

unit: {e}->T
inv: I'>T
such that the following diagrams commute:
id X mult

I''xI’'xI’ ——I'xT

l mult x id lmull (associativity),
I'xr LLUER r
{e§ xT e xT
R l mult (left unit),
r = r
and
(inv, id)
—I'xT
l l mult (left inverse).

{e} unit r
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There is of course a more familiar equivalent definition where mult is the
only map mentioned as such. To simplify what follows, we have built the
existence assertions into the structure, so that the only axioms needed are
equations (commutative diagrams).

If G is a group functor and R — S an algebra map, the induced map
G(R) — G(S) is a homomorphism; that is, the diagram

G(R) x G(R) G(R)

o

G(S) x G(S) —- G(S)

commutes. Looked at in another way, this says precisely that mult:
G x G— G is a natural map. Similarly unit: {¢} » G and inv: G- G are
natural maps. Thus a group functor is simply a set functor G together with
these three natural maps satisfying the commutative diagrams for associati-
vity and such.

Suppose now G is represented by A; then A ® A represents G x G, and
we can apply Yoneda’s lemma. Hence making G a group functor is the same
as giving k-algebra maps

mult

comultiplication A: A-A®A
counit (augmentation) e: A —»k
coinverse (antipode) S: A— A

such that the diagrams

ARARA 22 A®4 k@4 —2 4®4

] I " I

ARA —>— 4, A = A,
and
A (S, id) A ® A
ke—— A4
commute.

A k-algebra A with specified maps A, ¢, S satisfying these conditions we
will call a Hopf algebra. (Warning: in other contexts “ Hopf algebras ” might
be noncommutative, or graded, or both. And the same objects may be called
“ bialgebras with antipode™.)
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Theorem. Affine group schemes over k correspond to Hopf algebras over k.

As an example of the correspondence, here are A, ¢, and S worked out for
the group scheme G, represented by A = k[X]. Let g, h: A - R be homo-
morphisms with g(X) = r and h(X)=s. We need A: A » A ® A such that
(9. h)A: A>A®A—>Rsends X tor+s. Clearly AX)=X®1+1®X
has this property, and it must then be the map we want, since the Yoneda
correspondence is bijective. Similarly the map & A —k must make
A -k — R give the identity element 0 of G,(R); hence ¢(X) = 0. Finally,
when g(X) = r, we must have g o S(X)= —r; hence S(X)= —X.

The structure for G, is equally simple: on A = k[X, 1/X] we have
A(X)=X® X and ¢(X) =1 and S(X) = 1/X.

It may be useful to have the Hopf algebra axioms written as formulas.
The first says (id ® A)A=(A®id)A and is called coassociativity. If
A@)=Y a;®b;, the second one says a =), &(a;)b;, and the third says
¢(a@) = ), S(a;)b;. In working with the formulas, some writers use Sweedler’s
conventional symbol ) a,,® a to designate the value of A(a), and
2 1) ® 8 @ ag, for (id ® A)A(a).

1.5 Translating from Groups to Algebras

Anything true about groups in general is a fact about group schemes and
hence yields information about Hopf algebras. In groups, for instance, we
know the left unit and inverse are also right unit and inverse. In diagram
form, this says that '

id X unit (id, inv)

I'x{eg ——I'xT r ——TIxT

r
1 l mult and l 1 mult
r

r - {e} unit r

commute. Hence the corresponding Hopf algebra diagrams commute: if
A(@)=) a;®b,, then a =Y a,e(b;)) and e(a) = Y a;S(b,).
A group I' is commutative iff the diagram

twist

I'xI' —— T xT

lmu.. lmn

r = r
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commutes. Hence a group scheme G represented by 4 is commutative iff the
diagram

twist

ARA — A®A

P

commutes, ie. iff interchanging the two tensor factors leaves A(a) un-
changed. Such A are called cocommutative Hopf algebras.

Consider the natural map G — G given by squaring, g+ g2. It is con-
structed from the group operations as (mult) > (diag): G- G x G- G. To
get the corresponding Hopf algebra map, we need to find them: A® A —» 4
giving the diagonal G —» G x G. Now the map A ® A — R corresponding to
two elements ¢, Y in G(R) sends a @ b to p(a)y(b). We want ¢ o m to be the
pair with ¢ =, sending a ® b to ¢(a)p(b) = ¢(ab). Thus m(a ® b) = ab is
the map corresponding to the diagonal embedding of G. Hence then the map
A — A corresponding to squaringis m © A; if A(a) = Y ¢, ®@ b;, it sends a to

a;b;.

2 A well-known simple theorem on groups says that if g2 = e for every g,
then the group is commutative (gh = gh(hg)? = gh*ghg = g*hg = hg). The
hypothesis says that

square

r r
1 ' ] unit
¢ = {¢
commutes, and so the corresponding Hopf algebra statement is that
A" 4
k =k

commutes. Thus we have a theorem on Hopf algebras: if in A(a) = Z a;®b;
we always have Y’ a;b; = £(a), then 4 is cocommutative. One could translate
the group proof step by step to get a Hopf algebra proof, but this is unneces-
sary; the Hopf algebra theorem is a formal consequence of the better-known
result on groups.

Thinking of the usual axioms for groups, we can see that A is the most
important part of a Hopf algebra structure on an algebra A. For suppose we
have a representable functor G and a map A: A - A ® A giving a composi-
tion law on the G(R). If they happen to be groups, the unit and inverses are
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uniquely determined and clearly give natural maps, so by the Yoneda lemma
there are uniquely determined ¢ and S making A a Hopf algebra. Consider
for example n x n matrices with invertible determinant, represented by
k[{X,1, ..., Xu, 1/det]. We might use a non-computational proof to show
that such matrices are invertible and thus form a group. But then we have a
group scheme, and hence S exists. That is, we would know a priori that
something like Cramer’s rule must be true—there are polynomials in the X ;;
and 1/det giving the entries of the inverse matrix.

1.6 Base Change

We originally chose our base ring k somewhat arbitrarily, requiring only
that the defining equations make sense in k. Suppose now that we take a ring
homomorphism k — k'; this could mean expanding k, or it could mean
reading the equations modulo some ideal. Any k’-algebra § becomes a k-
algebra by k — k' — S, and k'-algebra homomorphisms are k-algebra homo-
morphisms for this structure. Any functor F on k-algebras can thus be
evaluated on such § and gives us a functor F,. on k’-algebras. If no ambiguity
arises, we will still write F for F,.; it is simply our original functor “res-
tricted ” to k’-algebras.

Suppose now that F is represented by the k-algebra A, so the elements of
F(R) correspond to k-algebra maps A — R. If § is a k’-algebra, it is a stan-
dard fact that Hom,.(4 ® k', S) =~ Hom, (4, S). Thus base change goes over
to tensor product, and F,. is represented by A’ = A ®, k'. If for instance A4 is
kfa, b,c,d)/(ad — bc — 1), then A’ is k'{a, b, ¢, d]/(ad — bc — 1), and in general
A’ is the algebra over k' coming from the same equations as A.

EXERCISES

1. (a) If R and S are two k-algebras and F is a representable functor, show
F(R x §) = F(R) x F(S).
(b) Show that there is no representable F for which every F(R) has exactly two
elements.
(c) Let F be the functor represented by A = k x k. Show that F(R) has exactly
two elements so long as R has no idempotents except 0 and 1.

2. Let E be a functor represented by A, and let F be any functor. Show that natural
maps @: E — F correspond to elements in F(A).

3. Let E be a functor represented by A4, and let F be any functor. Let ¥: F —» Ebea
natural map with F(R) — E(R) always surjective. Show there is a natural map
®: E— F with ¥ o ® = idg. [Take an element in F(4) mapping onto id, in
E(4)]

4. If the functors G, are representable, and G(R) = lim G,(R), show G is also
representable.

5. Write out A, ¢, and S for the Hopf algebras representing SL,, p,, and a,,.
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6. In k[Xy,, ..., X, 1/det] representing GL,, show that A(X;j) =Y Xu® X,.
What is G(XU)?

7. Let G(R) be all pairs <{a, b) in R with a invertible, and define <{a, b) x
{(a',b'> =<ad', ab’ + b) (this is the composition law for the variable change
X+ aX + b). Show that G is an affine group scheme, and write out A, ¢, and S on
the Hopf algebra.

8. Let the Hopf algebra A4 represent some G. Show that S: A — A is the inverse of
id4 in the group G(4). If ¢(a) = a ® 1 and ¢,(a) = 1 ® a, show that the product
of ¢, and ¢, in G(A ® A)is A: A > A® A. Use this to rederive the A for G, and
G,.

9. (a) Let G be an affine group scheme. Suppose the elements in the various G(R)

do not have uniformly bounded orders, i.e. for each n there is an R for which

g g" is nontrivial on G(R). Show that some G(R) contains an element of
infinite order. [Take id4 in G(4).]

(b) Let H be the p-power roots of unity, i.e. H(R) = {x € R|x"" = 1 for some n}.
Show that H is not representable.

(c) Show H(R) = lim p(R), and thus direct limits of representable functors
need not be representable.

10. Prove the following Hopf algebra facts by interpreting them as statements about
group functors:
(@) SeS=id (b)A-S=(twist)(S®S)A (c)ecS=¢
(d) The map A®A—->A® A sending a®b to (a® 1)A(b) is an algebra
isomorphism.

11. (a) Let G(R) be {X € GLy(R)|XX'=1I}, the matrices with a®+ b*=
1 = ¢? + d? and ac + bd = 0. Show that this is an affine group scheme over

any k.
(b) Show that the determinant gives a homomorphism of G onto p, . Prove that
the kernel consists of all matrices with c= —bandd =a and a®> + b> =1,

and forms an affine group scheme.

(c) Define the circle group to be {{x, y>|x* + y* = 1} with composition given
by the trig addition formulas {x, y>{x', y'> = {xx' — yy', xy' + yx'). Show
that this is a group scheme isomorphic to the kernel in (b).

(d) If k contains an element i with i> = — 1, show {x, y)+ x + iy is a homomor-
phism of the circle group to G,,. If 1/2 is also in k, show that this is an
isomorphism.

(e) If2 =0 in k, show that {x, y>+— x + y is a homomorphism onto 1, , and the
kernel is isomorphic to G,.

(f) If the circle group over k is isomorphic to G,,, show that k must contain 1/2
and i. [An isomorphism ® remains an isomorphism after base change to any
k'. If 1/2 is not in k, we can take k’ to be a field of characteristic 2; there the
circle group cannot be G, because in its Hopf algebra theclassof X + Y — 1
is nilpotent. Thus 1/2 is in k. Hence 1 # —1 in k. Now s = ®({—1, 0>) in
G,(k) has square 1 and is distinct from 1 = ®({1, 0>). In every localization
k, we also have 1+ —1 and so s distinct from 1. Hence the idempotent
(s + 1)/2 in the local ring k, must be zero; this then is true also in k (cf.
(13.2)). Take i = ®(<0, 1)).]



Affine Group Schemes: Examples

2.1 Closed Subgroups and Homomorphisms

A homomorphism of affine group schemes is a natural map G — H for which
each G(R) —» H(R) is a homomorphism. We have already seen the example
det: GL, —» G,,. The Yoneda lemma shows as expected that such maps
correspond to Hopf algebra homomorphisms. But since any map between
groups preserving multiplication also preserves units and inverses, we need
to check only that A is preserved. An algebra homomorphism between Hopf
algebras which preserves A must automatically preserve S and e.

Let y: H — G be a homomorphism. If the corresponding algebra map
B’ < A is surjective, we call  a closed embedding. It is then an isomorphism
of H' onto a closed subgroup H of G represented by a ring B (isomorphic to
B’) which is a quotient of A. This means that H is defined by the equations
defining G together with some additional ones. For example, there is a
closed embedding of p, in G,,, and SL, is a closed subgroup of GL,,.

If one chooses additional equations at random, their solutions cannot be
expected to form a subgroup. If I is an ideal in the algebra A4 representing G,
we can work out the conditions for A/I to give a closed subgroup. The
homomorphisms factoring through A/I must be closed under multiplica-
tion: if g, h: A — R vanish on I, then g - h = (g, h)A must also vanish on I.
This means that A(I) goes to zero under A ® A — A/I ® A/I and thus lies in
(the image of) I® A + A® I. If g is in the subset, its inverse g ° S must also
be in; thus S(I) < I. Finally ¢(I) = 0, since the unit must be in the subset.
Ideals I satisfying these conditions (those needed for A/I to inherit a Hopf
algebra structure) are called Hopf ideals. One such is always I = ker(e),

which corresponds to the trivial subgroup {e}; we call it the augmentation
ideal.

13
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If ®: G — H is any homomorphism, then N(R) = ker[G(R) —» H(R)] is a
group functor, the kernel of ®. Obviously for example ,, is the kernel of the
n-th power map G,, —» G,,, and SL, is the kernel of det: GL, — G,,. Note
that N is normal in G, ie. each N(R) is normal in G(R).

The elements of N(R) can be described as the pairs in G(R) x {e} having
the same image in H(R); that is, N =G xy{e}. Hence if G and H are
represented by 4 and B, we know from (1.4) that N is represented by 4 ® k.
Using the exact sequence Iz — B — k — 0, we find that N is represented by
A/l - A, where Iy is the augmentation ideal. In particular N is a closed
subgroup. For an example take the squaring map G, — G, . Here
A =k[X, 1/X] and B = k[Y, 1/Y], and the homomorphism sends Y to X2.
The ideal I, spanned by the Y™ — 1, is generated by Y — 1. Hence I - A =
(X% — 1)A. Thus the kernel is represented by k[X, 1/X]/(X? — 1). This is
clearly the same as k[X]/(X? — 1) and gives p,, as we know it must.

Homomorphisms G — G,, are called characters of G. In the correspond-
ing Hopf algebra map k[ X, 1/X] — A, the image of X must be an invertible b
in A with A(b) = b® b (whence automatically ¢(b) = 1 and S(b) = b~ !, as
mentioned in the first paragraph); and conversely any such b gives a homo-
morphism. In Hopf algebras such elements are called group-like.

Theorem. Characters of an affine group scheme G represented by A corre-
spond to group-like elements in A.

The group-like elements obviously form a group under multiplication in
A. It is easy to see that this agrees with the operation of pointwise multiplica-
tion of homomorphisms in Hom(G, G,,). We should note also that if b in 4
has A(b)=b®b and eb)=1, then b is group-like, ie. is invertible:
1 = ¢(b) = (S, id)A(b) = (S, id)(b ® b) = S(b)b.

We can similarly see that homomorphisms G — G, correspond to ele-
ments b in A such that A())=b® 1+ 1®b (and then automatically
¢(b) =0 and S(b) = —b). Such b are called primitive. These form under
addition a group corresponding to pointwise addition in Hom(G, G,).

2.2 Diagonalizable Group Schemes

We now begin to take advantage of the fact that we can define group
schemes by constructing Hopf algebras. Let M be any abelian group, and let
k[M] be the group algebra (free module with basis the elements of M,
multiplication induced by that on M). We make this a Hopf algebra by
making the group elements group-like (whence the name): A(m) =m @ m,
g(m) =1, S(m)=m™'. It is easy to see this does give a Hopf algebra, since
the identities need only be verified on basis elements. The corresponding G
are called diagonalizable group schemes. In the finitely generated case we
have seen them before:
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Theorem. Let G represented by A be diagonalizable, and suppose A is a
finitely generated k-algebra. Then G is a finite product of copies of G,, and
various .

ProoF. Take a finite set of algebra generators for k[M] = A, and write them
as finite linear combinations of elements in M. This gives a finite set U S M
generating the algebra. If M’ is the subgroup generated by U, clearly k[M’]
will be a subalgebra, so M’ is all of M. Thus M is a finitely generated abelian
group. Since k[M;® M,] ~ k[M,]® k[M,], we may assume M = Z or
M = Z/nZ. The algebra k[Z] has basis {¢,|n € Z} with e, - e, = e,,,; setting
X = e, we have k[X, 1/X]. As the e, are group-like, A(X) = X ® X, and the
group scheme is G,. Similarly k[Z/nZ] with basis 1=¢,, e, ...,
e,-1 = €]~ ! satisfies ¢} = 1 and represents p,. O

The name “diagonalizable” will be justified in (4.6). But we can already
distinguish these groups Hopf-algebraically over fields. We first need the
following result, which in group language states the independence of
characters.

Lemma. If A is a Hopf algebra over a field k, the group-like elements in A are
linearly independent.

PRrOOF. Suppose b and {b;} are group-like elements with b=y 1,b,. We
may assume the b; are independent. Then 1 = ¢(b) = Y 4;¢(b;) = ¥ 4,. But
Ab)=b®b=7Y 4;4;b;®b; and A(b)=Y LA(b)=) A4b;®b;,. The
b, ® b; are linearly independent, so by comparing coefficients we get 4,4, =0
for i #jand A7 = 4;. As ), 4; = 1, this implies ), 4;b; equals some b;. [J

Theorem. Let k be a field. An affine group scheme is diagonalizable iff its
representing algebra is spanned by group-like elements. There is an anti-
equivalence between diagonalizable G and abelian groups, with G correspond-
ing to its group of characters.

Proor. If A is spanned by group-like elements, they are by the lemma a
basis of A. The character group X is the multiplicative group they form.
Thus we have a bijection k[X ] — 4, and checking on basis elements we see
this preserves the multiplication and the Hopf algebra structure. Thus G is
diagonalizable. Similarly, if M is any abelian group, its elements are the only
group-like elements in k[M], since they span. Thus M is the character group
of the corresponding group scheme.

If now G — H is a homomorphism, it induces a map Xy — X, and this
determines the Hopf algebra map since Xy spans k[X,]. Conversely, any
homomorphism Xy — X¢ induces a Hopf algebra map k[Xy]— k[X¢].
Thus Hom(G, H) ~ Hom(Xy, X;). O

It is the reversal of direction which makes us say we have an
anti-equivalence.
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2.3 Finite Constant Groups

Let I be a finite group. The functor assigning I' to every algebra cannot be
defined by a family of equations (1, Ex. 1), but something very close to it can
be. Let A be k", the functions from I' to k. Let ¢, be 1 on ¢ in I" and 0 on the
other elements; then {e,} is a basis of 4. As a ring 4 is just k x -+ x k: we
have e2 = ¢, and ¢, ¢, = 0 and Z e, = 1. Suppose now R is a k-algebra with
no idempotents except 0 and 1. Then a homomorphism ¢: A4 — R must send
one e, to 1 and the others to 0. Thus these homomorphisms correspond to
elements of T".

Defining A(e,) = Y, - (e, ® e;) gives us a structure on A for which the
induced multiplication of the homomorphims above matches up with the
multiplication in I'. For coassociativity, note that A is simply the map from
k' to k™ T ~ k" ® k" induced by mult: T" x I' - I'. Letting S(e,) be e,,-1,,
with ¢(e,) equal to 1 when o is the unit and 0 otherwise, we in fact get a Hopf
algebra. The group scheme thus defined is called the constant group scheme
for I, again denoted by I if no confusion is likely.

2.4 Cartier Duals

Our final example is again related to characters, but this will not be apparent
until the end; we begin purely algebraically. Recall that if N is a finite-rank
free k-module, then its dual N = Hom,(N, k) is again free, and there is a
natural isomorphism (N°)® ~ N. Furthermore, this process commutes with
the usual operations on modules; in particular S)M ® N)? ~ M @ N®,
Hom(M, N) ~ Hom(N®, M”), and (M ® k')’ ~ M? ® k'. The operations
Hom and ® commute with finite direct sums, so in fact these same facts hold
for finitely generated projective modules (direct summands of finite-rank
free modules). We call a group scheme finite if it is represented by an A
which is a finitely generated projective module. The finite constant groups in
particular are of this type.

Suppose now we take some finite commutative G, represented by 4. In
addition to its module structure, A has the following maps:

A:A-ARA

e A—-k

S:A- A

mARA— A (giving the ring multiplication)
urk— A (giving the k-algebra structure).
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When we dualize, we get on A a very similar collection of maps:
mD: AD - AD ® AD
uP: AP >k
SP: AP - A°
AP: AP ® AP - AP
eP: k — AP.

The following result thus seems inevitable:

Theorem (Cartier Duality). Let G be a finite abelian group scheme repre-
sented by A. Then AP represents another (dual) finite abelian group scheme G.
Here (G®)P ~ G, and Hom(G, H) ~ Hom(HP®, G®).

Proor. The last sentence is obvious. To show that A” is indeed a co-
commutative Hopf algebra is nothing but a collection of verifications, of
which we give samples done by different methods.

(i) AP is associative. This asserts that the diagram

AD®AD®AD _A_Z?LAD®AD

l id®AD 1AD

AD

AP ® AP — AP

commutes. Since Hom(M, N) - Hom(N®, M”) is a bijection, this is equiva-
lent to saying that

ARA®A —22 4@ 4

ARA 2 — 4

commutes, which is one of the axioms for A.

(ii) m® is an algebra homomorphism for the multiplication given by A”.
Indeed, we know that A is an algebra homomorphism for m. Recalling how
one multiplies in a tensor product, we see this asserts commutativity of

ARA—"— 4 — = 4®4
A®A Im@m

twist(2, 3)

ARARARA —m— S ARARA® A.
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In short, the formula Am = (m ® m) (twist(2, 3)) (A ® A)is true. As in (i), the
dual identity is then true, mPAP = (A ® AP) (twist(2, 3)) (m” ® m”); and
that is the assertion we want.

(iii) S is an algebra homomorphism. This says A°(S® ® $°) = S?A®, and
is equivalent to AS = (S ® S)A. The latter is not obviously an axiom, so we
translate it back to group functors to see what it means:

A——a®4 G- GxG

js l S®S Corresponds to ]inv I invXinv
A mult

A— AR A G——GxG

This commutes iff in all G(R) the product of inverses is the inverse of the
product. Since G is abelian, this is true. O

As we have derived this theorem Hopf-algebraically, we do not yet have
any intrinsic description of the functor G”. But we can easily compute G”(k),
the algebra maps A” — k. By duality any linear map ¢: A” — k has the form
0o(f)=f(b) for some b in A. On a product, ¢,(fg) = @, A°(f®g)=
A°(f®g)(b) = (f®g)(Ab), while ¢u(f)ps(g) =1 (b)a(b)= (f® g)(b® b).
Since elements f® g span AP ® A”, the duality theory shows that ¢,
preserves products iff Ab = b ® b. Similarly, since ¢ is the unit of AP, we have
@, preserving unit iff 1 = ¢,(¢) = &(b). Thus G”(k) consists of the group-like
elements in A. Furthermore, if ¢, and @, are in G”(k), their product is
precisely (@y, ¢ )m” = ¢,.. Hence G®(k) as a group is the character group
of G.

But now we can evaluate G°(R) simply by base change. The functor Gg is
represented by A ® R, so (Gg)” by (4 ® R)P; this is just A” ® R, which also
represents (G”)g. Hence G”(R) = (G®)r(R) = (Gg)°(R) = {group-like ele-
ments in 4 @ R}. This allows us to complete the statement of Cartier duality.

Theorem. Forming G® commutes with base change, and G°(R) ~ {group-like
elements in A® R} ~ Hom(Gg, (Gn)r)-

If G and H are any abelian group functors over k, we can always get
another group functor Hom(G, H) by attaching to R the group
Hom(Gg, Hg). This is the functorial version of Hom, and for H = G, itis a
functorial character group; for finite G it is G°. In general it will not be an
affine group scheme even when G and H are; Cartier duality is one case
where it is representable.

Looking back to the previous section, we find the duals of the finite
constant groups are precisely the finite diagonalizable groups; the dual
algebra of k" is k[I']. In general this would not be one of our Hopf algebras,
since it is not commutative. But when I is commutative we can write it as a
product of various Z/nZ and compute that the dual of Z/nZ is p,.
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EXERCISES

11

. (a) Show that there are no nontrivial homomorphisms from G,, to G,.

(b) If k is reduced, show theré are no nontrivial homomorphisms from G,to G,,.
(c) For each 0 # b in k with b2 = 0, find a nontrivial homomorphism from G,
to G,.

. Let I be an ideal in a Hopf algebra 4. Work out the conditions necessary for A/I

to represent a tlosed subgroup which is normal.

. Let I be the augmentatio'r'i ideal in A. Show A = k @ I as a k-module. For x in I

then show A(x)=x® 1 + 1@ x mod I® I.

. (a) Show that the map k[X)/(X? — 1) -k x k sending X to {1, —1) defines a

homomorphism Z/2Z — p, . If 1/2 is in k, show this is an isomorphism.

(b) Show (Z/2Z)(R) corresponds to idempotents (solutions of y* = y) in R.
[Take the image of ¢0,1).] In these terms write out the map
(Z/2Z)(R) - r2(R).

. Elements a in k act on G,(R) = R by « - r = ar. For any G this induces an action

of the « on Hom(G, G,). Show that this is the same as the obvious a-
multiplication on primitive elements in A.

. (a) Let N and H be closed subgroups of G with N normal. If the multiplication

map N x H — G.is bijective, G is called the semi-direct product of N and H.
Show that then there is a homomorphism from G back to H which is identity
on H and has kernel N.

(b) Conversely, let H be any closed subgroup and ®: G — H a homomorphism
which is identity on H. Show that G is the semi-direct product of ker(®)
and H.

(c) Show that the aX + b group (1, Ex. 7) is a semi-direct product of G, and G,,.

. Let k be a ring with nontrivial idlempotents. Show that group-like elements in a

Hopf algebra over k need not be linearly independent.

. (a) Let H be a closed subgroup of a diagonalizable group scheme G over a field.

Show that H is didgonalizable, that all characters of H extend to G, and that
H is definable as the common kernel of a set of characters of G.

(b) Show there is a one-to-one correspondence between closed subgroups of the
diagonalizable G and subgroups of its character group.

. Show that (Z/nZ)” =~ p, and (a,)° ~ a,.
10.

Let F, G, and H be commutative affine group schemes over k. Show that homo-
morphisms F - Hom(G, H) correspond to natural biadditive maps F x G — H.

Group Schemes of Rank 2

(a) If M is a free rank 2 k-module, and &: M — k is linear and surjective, show
ker(e) is free rank 1. [In basis m, n use g(n)m — g(m)n.]

(b) Let A be a Hopf algebra over k which is free of rank 2. Show I = kx for some
x,and Ax =x® 1 + 1 ® x + bx ® x for some b in k. [See Ex. 3]

(c) Show x2 + ax = 0 for some a, so 4 = k[X]/(X? + aX).

(d) Use A(x?) = (Ax)? to show (2 — ab)? = 2 — ab.
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(¢) Show Sx = cx with ¢? = 1. Then use (¢) and 0 = (S, id)Ax to show ¢ = 1 and
ab = 2.

(f) Show g? is the unit for every g in the group scheme.

(8) Conversely, given a, bin k with ab = 2, define G, »(R) = {y € R|y* + ay = 0}
with the product of y and z being y + z + byz. Show that this is an affine
group scheme.

(h) Show G, , is isomorphic to G, , iff a = ua’ and b = u~ ¥’ for some inver-
tible u in k.

(i) Describe G,,, and G,, . If 2 = 0 in k, describe Gg, o.

(i) Show G2, ~ G, ,.



Representations

3.1 Actions and Linear Representations

Let G be a group functor, X a set functor. An action of G on X is a natural
map G x X — X such that the individual maps G(R) x X(R)— X(R) are
group actions. These will come up later for general X, but the only case of
interest now is X(R) = V ® R, where V is a fixed k-module. If the action of
G(R) here is also R-linear, we say we have a linear representation of G on V.
The functor GLy(R) = Autg(V ® R) is a group functor; a linear representa-
tion of G on V clearly assigns an automorphism to each g and is thus the
same thing as a homomorphism G — GL,. If V is a finitely generated free
module, then in any fixed basis automorphisms correspond to invertible
matrices, and linear representations are maps to GL, .

For an example, let V have basis v,, v,, and let G,, act on V by
g.(aw, + Pvy) = gav, + g~ 2Pv,; this is a linear representation. As a homo-
morphism G,, - GL, itsends g to (§ ?2-.). The corresponding Hopf algebra
map of k[X,,, ..., X,,, 1/det] to k[X, 1/X] has

XX, Xm0, X, 0, X, X2

Or again, on the same V we can let G, act by g.(ow, + fv,)=
(x + gB)v, + Bv,. As a map to GL, this sends g to (5 ¢). The Hopf algebra
map as always sends X; to the element in A = k[X] giving the (i, j) matrix
entry:

Xl XX, X0, X, L

Particular linear representations may be of interest in their own right.
Consider for instance binary quadratic forms under change of variable. If we

21
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set x = ax’ + ¢y’ and y = bx’ + dy’ in the form ax? + Bxy + yy?, we get
(a% + abB + b2y)(x')? + (2aca + (ad + bc)B + 2bdy)x'y
+ (ca + cdB + d¥y)(y')

The invertible matrix (¢ ) thus induces a change from the old coefficients
(o, B, ) to new ones; this is a map of 3-space with matrix

a? ab b?
2ac ad + bc 2bd
c? cd d?

One can verify directly that this is a homomorphism GL, — GL3. Ob-
viously it contains information specifically about quadratic forms as well as
about GL,—the orbits are isometry classes. We will touch on this again
when we mention “invariant theory ” in (16.4), but for now we use represen-
tations merely as a tool for deriving structural information about group
schemes. The first step is to use a Yoneda-type arguinent to find the Hopf-
algebra equivalent.

3.2 Comodules

Theorem. Let G be an affine group scheme represented by A. Then linear
representations of G on V correspond to k-linear maps p: V — V ® A such that

Vv —v®A ' v —L2-v®4
l P lid@A and I l id®s
veod -2 . ve44 V —~ LV ®k

commute.

Proor. Let ® be a representation. For the “ general” element id in G(A) we
get an A-linear map ®(id): ¥V ® A — V ® A. This is determined by its restric-
tion to V ~ V ® k, which we call p. As in the Yoneda lemma, naturality says
that for any g: A — R in G(R) the diagram

veod 22 ,.ye4
id®g id®g
VOR —2 , y®R

commutes. Thus on ¥ ® 1 in ¥ ® R we have ®(g) acting by (id ® g) ° p.
Hence @ is determined by p.
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For any k-linear p: V— V' ® A we get in this way at least a natural set
map ®: G(R) — Endg(V ® R). To have a representation, we must first have
the unit in G(R) act as the identity. This says that

vy —L—v®4

%

V®k V®R

must commute for all R. Clearly this is the second statement in the theorem.
The other condition needed is that ®(g)®(h) = ®(gh). Now gh is given by

AL L4422, R, 5o on V the action of ®(gh) is given by

Id®A |d®(g h)

V—">V®A—> VR®A®A —— VAR
The action ®(g)®(h) is given by
v ——p—pV®A id®h V®R p®id V®A®R id®(g, Id)V@R,
or in other words by
vV —Lves 2 vei04 —22 y@R.
These two agree for all g, h iff the first diagram in the theorem commutes.

O

Such a k-module V with k-linear p: V - V ® A4 satisfying (id ® ¢)p =
and (id ® A)p = (p ® id)p is called an A-comodule. One important example
is already available, V = A with p = A. The corresponding representation
(usually infinite-dimensional) is called the regular representation of G.

The direct sum and tensor product of linear representations are again
representations, so the corresponding constructions necessarily work for
comodules. If U and V are comodules, for instance, then

URV-URARV®AxURVRARA —URV®A

is a comodule structure corresponding to the actiong.(u®v)=g.u®g.v.
A submodule W of V is a subcomodule if p(W) = W ® A, which is equivalent
(Ex. 3) to saying that G(R) always maps W ® R to itself. (To make sense of
this we need W ® R — V ® R injective, e.g. W a k-module direct summand;
for simplicity we may as well assume k is a field.) If W is a subcomodule, then
VoV®A-— (V/W)® A factors through V/W and makes V/W a quotient
comodule; it of course corresponds to the representation induced on the
quotient space.

Suppose V is free of finite rank with basis {v;}, and write p(v;) =
Yu®a ;- Then it is easy to see that the g;; are the matrix entries (images of
X ;) in the corresponding map of G to GL, . Thus for example the action of
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G, on V ~ k? given in the previous section corresponds to the comodule
structure

plv)=0v,®1, p2)=v,@X +v,®1.
Since A(X;;) = Y X, ® X,;, the same identity holds for the a;;:

Corollal'y. pr(v,) = Z U; ® Ay, then A(au) = Z i ® Q.

3.3 Finiteness Theorems

The last theorem shows that all linear representations are given by formulas.
Over fields this now implies that both they and the Hopf algebras have
important finiteness properties.

Theorem. Let k be a field, A a Hopf algebra. Every comodule V for A is a
directed union of finite-dimensional subcomodules.

PrOOF. A sum of subcomodules is again one, so it is enough to show that
each v in V is in some finite-dimensional subcomodule. Let {a;} be a basis of
A and set p(v) =Y v;® a;, where all but finitely many v; are zero. Write
A(a;) =Y ripa;® a;. Then

2 p)®a; = (p@id)p(v) = (i[d ® A)p(v) = } v; @ rija; @ ay.

Comparing the coefficients of a, we get p(v) = Y, v; ® r;a;. Hence the
subspace W spanned by v and the v; is a subcomodule. O

Theorem. Let k be a field, A a Hopf algebra. Then A is a directed union of Hopf
subalgebras A, which are finitely generated k-algebras.

PROOF. It is enough to show that every finite subset of A4 is contained in some
such A4,. By the previous result, any finite subset is contained in a finite-
dimensional space V with A(V)S V® A. Let {v;} be a basis of V, with
A(v)) =Y, v;® a;;. Then A(a;;) = Y. ay ® ay, so the span U of {v;} and {a;;}
satisfies A(U)s U® U. If A(@) =) b;® c;, then A(Sa) =) Sc; ® Sb; by
(1, Ex. 10), so the subspace L spanned by U and S(U) satisfies
A(L)S L® L and S(L) < L. Set 4, = k[L]. O

We call an affine group scheme G algebraic if its representing algebra is
finitely generated.

Corollary. Every affine group scheme G over a field is an inverse limit of
algebraic affine group schemes.
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PrOOF. Let G, correspond to the A4, in the theorem. An element of G(R) is a
homomorphism 4 — R and obviously induces a compatible family of homo-
morphisms A, — R; the converse is true since A4 is the direct limit of the A, .
Thus G(R) = lim G,(R). O

3.4 Realization as Matrix Groups

Theorem. Every algebraic affine group scheme over a field is isomorphic to a
closed subgroup of some GL,,.

PRroOF. Let 4 be the Hopf algebra. Let V be a finite-dimensional subcomod-
ule of 4 containing algebra generators. Let {v;} be a basis of ¥, and write
A(v)) =Y v;® a;;. The image of k[X y,, ..., X,,, 1/det] - A4 contains the a;;,
images of X;;. But v; = (¢ ®id)A(v;) = Y &(v;)a;;, so the image contains V
and hence is all of A. O

This result shows that matrices are at the heart of the subject, at least in a
formal sense: every possible multiplication law is just matrix multiplication
in disguise. In the next chapter we will go on to study algebraic matrix
groups in the naive sense, subgroups of GL, (k). The technical goal will be to
show how they correspond to certain of our affine group schemes. The real
benefit will be that this correspondence puts group schemes in a different
light, one that illuminates the intuitive meaning of many ideas to come.

Before we leave the methods of this chapter, however, we should prove
one more result: all representations can be derived from a single faithful
representation.

3.5 Construction of All Representations

Lemma. Let G be an affine group scheme over a field. Every finite-dimensional
representation of G embeds in a finite sum of copies of the regular
representation.

Proor. Let V be the comodule. Let M be V® 4, and make M into a
comodule isomorphic to A" by (id® A): V® A - V'® A ® A. The identity
(d®A)p = (p®id)p says precisely that p: V> M is a map of A-
comodules. It is injective because v = (¢ ® id)p(v). O

Theorem. Let k be a field, G a closed subgroup of GL,. Every finite-
dimensional representation of G can be constructed from its original represen-
tation on k" by the processes of forming tensor products, direct sums,
subrepresentations, quotients, and duals.
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PRrOOF. By the lemma it is enough to construct all the finite-dimensional ¥ in
A™. Such a V is a subcomodule of the direct sum of its coordinate projections
to A, so we may deal just with V in A. The original representation gives us a
Hopf algebra surjection of B = k[X,,, ..., X,,, 1/det] onto A4, and V is
contained in the image of some subspace (1/det){f(X ;)| deg(f) < s}. These
subspaces are B-subcomodules of B, and hence also are A-subcomodules; it
will be enough to construct them.

Let {v;} be the standard basis of k". The representation of GL, has B-
comodule structure p(v;) =Y v;® X;;. For each i the map v, X,; is a
comodule map to B. Thus the polynomials in X;; homogeneous of degree
one are as a comodule the sum of n copies of the original representation. We
can construct {f | f homogeneous of degree s} as a quotient of the s-fold
tensor product of {f| f homogeneous of degree 1}. For s = n this space
contains the one-dimensional representation g det(g). From that we can
construct its dual g+ 1/det(g). Summing the homogeneous pieces we get
{f |deg(f) < s}, and tensoring r times with 1/det(g) gives all we need. [J

Dualization was used here only to construct 1/det(g) and so is not needed for
subgroups of SL,.

EXERCISES

1. Write down the commutative diagrams saying that G x X — X is a group action.
For representable G and X, write down the corresponding algebra diagrams.

2. Let H and N be two affine group schemes, and suppose H acts on N as group
automorphisms n>"*n. Show that {(n, h){n’, k') = {n(*n’), hh’> makes the set
N x H into a group scheme which is the semi-direct product of N and H.

3. Let V be a comodule, W a subspace. Assume k is a field. Show that W is a
subcomodule iff each G(R) maps W ® R into itsell.

4. Over a field, show that an intersection of subcomodules is a subcomodule.

5. Let T be a finite constant group scheme over a field k. Show that n-dimensional
linear representations of I are given by ordinary homomorphisms of I'(k) into
GL,(k).

6. Show that a linear representation of &, on V is given precisely by a linear
T: V - V with T? = 0. Use this to show again that a) = Hom(x,, G,,) is isomor-
phic to a,,.

7. Prove the corollary in (3.2) directly by comparing coefficients in
(id® A)p = (p ®id)p.

8. A coalgebra is a k-space C with maps A: C - C ® C and ¢: C — k satisfying the
coassociativity and counit axioms of Hopf algebras. Prove that over a field k any
coalgebra is a directed union of finite-dimensional subcoalgebras.
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9.

10.

11.

12.

13.

14,

Let G be represented by A, over a field k. Show that any finite-dimensional linear
representation of G factors through an algebraic G, represented by some finitely
generated Hopf subalgebra.

Suppose G is represented by A. Show that G(k) becomes a group of algebra
automorphisms of 4 if we let g act as (id, g)A.

Let V be a finite-dimensional vector space. Show that X(R)=V ® R is re-
presentable (by a polynomial algebra).

(a) Write down the commutative diagrams for a right group action X x G —» X
[so x(gh) = (xg)h]

(b) Work out the comodule-type axioms for right linear representations.

(c) Suppose G acts (on the left) on an X represented by the algebra B. Show that
this gives a right linear representation of G on B.

Let k be a field. Suppose an affine group scheme G acts on an X which is
representable by a finitely generated algebra B. Show X embeds as a G-invariant
subset of a finite-dimensional linear representation. [Take a finite-dimensional
right subrepresentation M of B containing algebra generators and show X (R)
embeds naturally in Hom,(M, R) ~ M° ® R]

(a) Let G be a group functor. Its center Z(G) is defined by letting h in G(R) be in
Z(R)iff for every R — § and every g in G(S) we have h ™ !gh = g. Show Z(G) s
normal in G.

(b) Suppose G is represented by 4. Write down the map ¢: 4 - A ® A corre-
sponding to {g, h)>+> h~'gh. Show it makes A into a comodule.

(c) Suppose also that k is a field. Show that Z(G) is represented by A/I, where I
is the smallest ideal with all ¢(f)=/® 1 mod 4 ® I; in particular, it is a
closed subgroup. [To show h in Z(G) satisfies (id ® h)p(f) =f® 1, take
§ = A® R with g: A > § the obvious map.]

(d) Let char(k) = 3. There is a nontrivial action of Z/2Z as group automor-
phisms of p; (dual to its action on Z/3Z); let G be the semi-direct product.

Show the nonzero element in G(k) = (Z/2Z)(k) is in the center of G(k) but not
in the center of G.
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4.1 Closed Sets in k"

We now start afresh to consider the subject from a different viewpoint. Again
we begin by looking at the solutions of sets of equations, but we consider
only a fixed field k. We call a subset S of k" closed if it is the set of common
zeros of some polynomials {f;} in k[X, ..., X,]. Clearly an intersection of
closed sets is closed. Also, if § is the zeros of { f;} and T the zeros of {g;}, then
S u T is the zeros of { f; g}, so finite unions of closed sets are closed. Thus we
have a topology, the Zariski topology on k".

In k' the only closed sets—zero sets of polynomials—are k! itself and the
finite sets. The topology is thus quite coarse; it will not be HausdorfT, and the
integers for instance are dense in the real line. But this is actually just what
we want: we will only be considering polynomial functions, and a real
polynomial is indeed determined by its values on integers. More generally,
the only maps ¢: S —» T we allow between closed sets are the polynomial
maps, where the coordinates of ¢(s) are given as polynomials in the coordin-
ates of s. It is easy to check that these are continuous in the Zariski topology.

Theorem. Let k = L be fields. Then the Zariski topology on I induces that
on k"

Proor. If § < k" is the zeros of polynomials { f;}, the set T in L' where the f;
vanish is closed there, and T n k" = S. Conversely, let fbein L[ X, ..., X,].
Let {a;} be a basis of L over k, and write f= ) a; f; with f;in k[X, ..., X,].
For p in k" we have f(p) =)’ a; f;(p) equal to 0 iff all fy(p) = 0. Thus the
zeros of f lying in k" form a closed set there. O

28
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If k is finite, the Zariski topology is discrete and contains no information.
Consequently we assume k infinite in the rest of this chapter and in all
subsequent references to closed sets in k". We have then one simple fact to
observe:

Theorem. A nontrivial polynomial in k[X ,, ..., X,] cannot vanish on all points
of k"

Proor. For n = 1, zeros correspond to linear factors, so there are only finitely
many of them. For n > 1 now write f = )’ f, X}, with f; in k[X, ..., X,_,]
not all zero. By induction applied to a nonzero f;, there are ay, ..., a,-,
for which f(ay, ..., a,-1, X,) is nontrivial. This brings us back to n = 1.

]

Corollary. Let h be nontrivial. Then no nontrivial polynomial f can vanish at all
points of the open set {x € k"| h(x) # 0}.

Proor. The polynomial hf would vanish on k", O

4.2. Algebraic Matrix Groups

An affine algebraic group over k in this setting is simply a closed set S with a
group law on it in which mult: § x § - § and inv: § — § are polynomial
maps. (The inclusion {e} — S is automatically a polynomial map.) In general,
a single closed set can carry more than one algebraic group structure. On k?,
for instance, we have not only the obvious coordinate-wise addition but also
the noncommutative group law

K, p, 2Xx, Y, 2y =L{x+x,y+y,z+ 2 + xy).

Matrix multiplication in particular makes SL,(k) and all its closed sub-
groups into algebraic groups, and we call them algebraic matrix groups. At
first sight GL,(k) is not included in this definition, since it is not closed in k"*.
But we can embed GL,(k) in SL,, ,(k) by sending A to (§ $ac: 4). Clearly the
image is closed, defined by equations saying that certain entries are zero.
More generally, any relatively closed subset of GL,(k) has closed image.
Conversely, take any closed set in SL, , , (k). Its inverse image will be the set
in GL, (k) where certain polynomials in the X;; and 1/det are zero. These can
be written in the form f(X)/(det)™, and in GL, (k) they vanish only where the
f(X) vanish. Hence the inverse image is relatively closed. We have thus a
homeomorphism of GL,(k) onto a closed subgroup of SL, , ; (k). In this way
all relatively closed subgroups of GL,(k) become algebraic matrix groups.
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4.3 Matrix Groups and Their Closures

Arbitrary groups of matrices are not our main concern, but we should
record some simple relations between such groups and their closures. Apart
from allowing more general statements of some later theorems, this will be
useful because extension to a larger field involves taking closures.

The basic fact we need is that on an algebraic matrix group S < SL, . ; (k)
the functions x+ bx, x+=>x~1, and x> x " 'bx for fixed b are continuous.
This is clear, since they are given by polynomials, and polynomial maps are
always continuous in the Zariski topology. It is worth mentioning only
because multiplication is not jointly continuous (it is a continuous map
S x §— S, but the topology on S x S is not the product topology).

Theorem. Let S be an algebraic matrix group.
(a) If M is a subgroup, so is its closure M.
(b) If N < M are subgroups with N normal in M, then N is normal in M.
(c) If A, B, C are subsets with the commutators (aba™'b~') of A and B all
in C, then the commutators of A and B are all in C.
(d) If the subgroup M is abelian, nilpotent, or solvable, so is M.
(e) If U is a dense open set in S, then U - U = §.

PRrOOF. (a) The maps x+ bx and x+ xb and x> x~! are actually homeo-
morphisms, since they have inverses of the same form. For bi m M now we
have MbS M S M, so Mb= (Mb)” = M. Thus for y in M we have
yM <M, so yM=(yM)" =M. Hence MM c M. Also M) '=
(M~ 1) = M.

(b) If yisin M, then yNy ' < N = N, soyNy ' = (yNy~')” = N.Then
for b in N the map y+ yby~! takes M into the closed set N and hence takes
M into N. The argument for (c) is similar, and (d) follows from (c), since a
series of normal subgroups with the appropriate commutator properties has
closures of the same sort.

(e ) For any x in S the open set Ux ™! must meet the dense set U~ ! write

vx '=u"' Thenx =upisin U - U. O

As we will see in (5.1), open sets are quite often dense.

4.4 From Closed Sets to Functors

Let S be a subset of k", closed or not. Let I < k[X, ..., X, ] be the ideal of
functions vanishing at all points in S. Dividing by I identifies two polyno-
mials iff they agree on S, and thus the quotient k[X,, ..., X,J/I is the ring of
(polynomial) functions on S. We denote it k[S]. Whenever T 2 S, then ob-
viously k[S] is a quotient of k[T]. Any f vanishing on S will by definition
vanish on the Zariski closure S, and so we have k[S] = k[S].
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Now as in Chapter 1 the algebra A = k[S] defines a functor on k-algebras,
Fs(R) = Hom,(4, R). Tracing through the definitions, we see that this func-
tor has the following meaning: take the set S of n-tuples in k", find the
polynomial relations they all satisfy (the ideal I), and then look in every R
for the n-tuples satisfying those relations. In particular, we have Fs(k) = S.
Indeed, a homomorphism k[X,, ..., X,] =k has the form X ¢, ...,
X, c,; that is, it is evaluation at p = (c,, ..., ¢,) in k". This passes to the
quotient k[S] iff p is in S. Thus if S is closed we recover it from Fs.

Not only do closed sets give us functors, but polynomial maps between
them extend to natural maps. Indeed, let S < k" and T < k™ be closed sets,
with k[S] = k[{X})/I and k[T]=k[{Y;}]/J. Let ¢: S - T be a polynomial
map. Any polynomial function T — k can be composed with ¢ to get a
polynomial function § — k; this is a homomorphism ®: k[T] — k[S]. Con-
versely, let ®: k[T] — k[S] be any homomorphism. For each j choose a
polynomial fi(X,, ..., X,) which in k[S] yields the image of the class of Y;.
Map k" to k™ sending p to (fj(p)). For s in S the elements of J vanish on
(fi(s)), so the map sends S to T. It is trivial to see that it induces the
homomorphism ®. By the Yoneda lemma (1.3), then, polynomial maps
S — T correspond precisely to natural maps Fs — Fr.

Our passage from closed sets to functors also preserves products. Indeed,
for S and T as above, consider the surjection k[Xy, ..., X,, ¥}, ..., ¥,]
— k[S] ® k[T]. If evaluation at (x, y) factors through the quotient, then
x € S and y € T, and conversely. Thus the product § x T is closed in k™*",
given as zeros of the ideal I ® k[Y] + k[X] ® J. Furthermore, no other poly-
nomials vanish on § x T. To see this, let {a;} be a basis of k[S], and write any
nonzero element of k[S]® k[T] as ) a; ® b; with (say) b, # 0. Choose y in
Twith by(y) # 0. Then _ a; b,(y) is nonzero in k[S), so there is an x in § with
Y ai(x)bi(y) # 0. Thus k[S] ® k[T] is exactly the ring of functions on S x T.
But we saw in (1.4) that this tensor product represents the product of the
functors.

The same argument shows that if S is in k" and k S L, then no element of
k[S]® L vanishes at all points of S. Thus k[S]® L = L[S]. The correspond-
ing closed set is the closure of § in . We sum up:

" Theorem. Let k be an infinite field. The closed subsets of k", with polynomial
maps, are precisely equivalent to certain representable functors. The equi-
valence preserves products, and takes closed subsets to closed subfunctors

(represented by quotient rings). Closure in a larger L' corresponds to base
extension.

In particular now suppose S is an affine algebraic group. Let G be the
corresponding functor. Since S x § corresponds to G x G, we get natural
maps G x G — G and G — G and {e} — G. Since the correspondence of maps
is one-to-one, the appropriate identities hold for G since they do for S. Thus
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G is an affine group scheme with G(k) = S. From (3.4) we now obtain the
corresponding result here:

Corollary. Every affine algebraic group is isomorphic to an algebraic matrix
group.

The noncommutative law on k* in (4.2), for example, is the multiplication

. 1 x z
law for matrices (8 ! {)

4.5 Rings of Functions

This equivalence gives a different kind of intuitive insight into the ring
representing a functor: if A represents F, one may think of A as the ring of
functions on the geometric object F. An appropriate formal version of this is
indeed true. The closed set of points k! (the line) has ring k[X], and natural
maps from F to the functor corresponding to k' can by Yoneda’s lemma be
identified with homomorphisms k[X] — A; these in turn are given by ele-
ments of A. Hence we extend the notation and over any base write k[G] for
the (Hopf) algebra representing a (group) functor G.

We have not yet settled the question which representable functors ac-
tually do arise from closed sets. The only answer to this in general is the
following.

Theorem. A k-algebra A is isomorphic to k[S] for some closed set S iff A is
finitely generated and no nonzero element of A goes to zero under all homomor-
phisms to k.

Proor. We know the homomorphisms k[S]— k come from evaluating at
points in S, and by construction a nonzero function in k[S] is nonzero
somewhere on S. Conversely, if 4 is finitely generated it is isomorphic to
k[X,, ..., X,J/I for some n and I. Let S < k" be the set where all fin I vanish.
Again homomorphisms to k are evaluations at points in S. A polynomial
vanishing at such points must lie in I, by the hypothesis on A. Thus the
quotient is exactly k[S]. O

Corollary. For any infinite k the group schemes G,, G,,, GL,, SL, correspond
to G,(k), G,(k), GL,(k), and SL,(k), respectively.

Proor. Take first GL,, represented by k[X,,, ..., X,,, 1/det]). The homo-
morphisms from this to k are evaluations at points in GL,(k); we must show
no element of the ring vanishes on all of GL, (k). But this follows from the
corollary in (4.1). In particular the result now holds for G,, = GL,. The case
of G, is trivial.
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For any R there is a natural bijection (not a group map) SL,(R) x
G,.(R) = GL,(R) sending (4, r) to A - diag(r, 1, ..., 1). Hence there is an
algebra (not Hopf algebra) isomorphism from k[GL,] to k[SL,] ® k[G,,}.
Thus k[SL,] is isomorphic to a subalgebra of k[GL,], and hence like the
latter it has enough homomorphisms to k. O

Note in contrast that p, need not correspond to p,(k); if k is the reals, for
instance, ps(k) is the trivial group.

In general it is not obvious whether a finitely generated k-algebra has
enough homomorphisms. When k is the rationals, for instance,
k[X, YI/(Y?—X®+2) turns out to have enough, while
k[X, Y}/(Y? — X? — 7) has none. But if k is algebraically closed, the Hilbert
Nullstellensatz (A.8) says that the kernels of maps to k give all the maximal
ideals, and that their intersection is the nilradical. Thus in this case the result
is simpler:

Corollary. Let k = k. Then a finitely generated A is a ring of functions on a
closed set iff it is reduced.

Authors who avoid the full generality of affine group schemes sometimes
use an intermediate concept of linear algebraic groups defined over k. These
are introduced by a sort of descent theory (cf. Part V) and correspond to the
group schemes which become algebraic matrix groups over the algebraic
closure. (These are precisely the “ smooth ” groups of Chapter 11.) The affine
algebraic groups in our more naive sense are then referred to as the linear
algebraic groups in which the “k-rational points” G(k) are dense. Over
algebraically closed fields, of course, these two concepts coincide.

4.6. Diagonalizability
We can now justify the terminology in (2.2).

Theorem. Let M be a subgroup of GL, (k). The elements of M can be simultan-

eously diagonalized iff the group scheme G corresponding to M s
diagonalizable.

Proor. The set of matrices diagonal in a given basis is closed. Thus if M is
simultaneously diagonalizable, so is its relative closure M in GL,(k), and we
may assume M = M. After conjugating (which is an isomorphism), we may
assume M is a closed subgroup of the diagonal matrices. But they form a
group isomorphic to G, (k) x -** x G,(k), so G is a closed subgroup of
G, x -* x G,,. The latter is diagonalizable, so its algebra is spanned by
group-likes. The same is automatically true for the quotient Hopf algebra
representing G.
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Conversely, suppose G is diagonalizable, and let {b;} be a basis of k[G]
consisting of group-likes. The action of G < GL, on k" = V makes V an
A-comodule (3.2). For v in V write p(v) = Y, v; ® b;. The comodule identity
gives Y. p(v)® b, =Y 0; @ A(b;) = Y. v; ® b; ® b;, 50 p(v;) = v; ® b;. Hence
for any g:A—-k in M=G(k) we have gv,=g(b)y;. Since
v=Y v;e(b)=Y v; is in the span of the v;, we can from various v get
enough such v; to span k". In such a basis all elements of M are diagonal.

O

EXERCISES

1. Show that the sets {x € k"| f(x) # O} for fin k[X ,, ..., X,] are a basis of open sets
for the Zariski topology on k".

2. Show explicitly that a polynomial map ¢: k" — k™ is continuous in the Zariski
topology.

3. Let A be k[X,, ..., X,J/I. Let S and §’ be the sets in k" and k" where t_he
polynomials in I vanish. Show that 4 equals k[S]iff S is dense in §'and A® k is
reduced.

4. Let ¢: S — T be a polynomial map corresponding to ®: k[T] — k[S]. Show that
k[@(S)] is k[T]/ker(®)

5. Show that {(x, y)|x = y} is closed in k? but would not be closed in the product
topology on k! x k!.

6. (a) Let G be an affine group scheme, H, and H, closed subgroups. Show
(Hy n Hy)(R) = Hy(R) n H,(R) defines a closed subgroup Hy, n H,.
(b) Let k be algebraically closed of characteristic p. In G = G, x G,, let
Hy ={(x,y)|y=0} and H, ={(x, y)|y = x?}. Show that G, H,, and H,
correspond to affine algebraic groups but H, n H, does not.

7. (a) Let k be an infinite field, c in k not a square. Let L = k[/c]. OnV = L ~ k?
with basis 1, \/E the elements of L act by left multiplication. Show that the
invertible elements of L give in this way an algebraic matrix group
G(k) = GL,(k).

(b) Show that the corresponding group scheme G is represented by
kK[X, Y, 1/(X?* — cY?)].

(c) Suppose char(k) # 2. Show that the base-extended group G.. is isomorphic to
G, x G, but that G is not isomorphic to G,, x G,, over k. [Note G(k) is not
simultaneously diagonalizable.]

(d) Suppose char(k) =-2. Show that G,, is isomorphic to G,, x G,.

8. Let A be a Hopf algebra over a field k, and V an A-comodule. Call0 # v in V

semi-invariant if p(v) = v ® b for some b.

(a) Show such a b must be group-like.

(b) If A corresponds to an algebraic matrix group G(k) acting on V, show v is
semi-invariant iff it is an eigenvector for all g in G(k).

(c) Let ¥, be {v|p(v) = v® b}. Show V; is a subspace and @D, V, embeds in V.

(d) Suppose V =@, V,. Show that every subcomodule W satisfies
W= (Wnh)
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9.

10.

IL

12.

Let G be a diagonalizable group scheme over a field k. Show that every linear
representation of G is a direct sum of one-dimensional representations. How are
the one-dimensional representations classified?

Let char(k) # 2. Let B be a nondegenerate symmetric bilinear form on a k-space
V. Let G be the orthogonal group {g € GLy | B(gv, gw) = B(v, w)}. Prove that B is
isotropic, i.e; B(e, ) = 0 for some e+ 0, iff there is a closed subgroup of G
isomorphic to G, [If B(e, e) = 0, find by nondegeneracy an f with B(e, f) = 1.
Adjust by a multiple of e so B(f, /) = 0. Let « in G, send e to ae and fto o™ 'f,
keeping fixed all v with B(v, e) = B(, /') = 0. Conversely, if G,, is in G, diagona-
lize V for the G,-action and consider an eigenvector where G,, acts nontrivially.]

(@) Let S< k" and T < k™ be arbitrary. Show that S x T in k"*™ is dense in
SxT
(b) Let S and T be affine algebraic groups. Let M be a subgroup of S, and

¢: M - T a homomorphism given by polynomials. Show that the extension
of ¢ to M is still a homomorphism.

If H is an affine algebraic group, show that the counit and antipode on k[H] are

given by &(f) = f(e) and (Sf)(x) = f(x"")



PART II
DECOMPOSITION THEOREMS



Irreducible and Connected
Components

5.1 Irreducible Components in k"

Decomposing a space into its connected components is a familiar topologi-
cal idea which is immediately applicable to closed sets in k" and which we
will proceed to generalize to group schemes. But the algebraic nature of our
closed sets makes it easier to approach connectedness via a stronger concept,
irreducibility. Consider for example the zeros of (x2 + y* — 1)x in k2. This
set is connected, but everyone would usually say it is made up of two pieces,
the circle and line which are the zeros of the factors. Minimal pieces of this
kind are easily singled out in the Zariski topology: we call a topological
space irreducible if it is not the union of two proper closed subsets.

Rudimentary topology shows that a space is irreducible iff every non-
empty open set is dense. Obviously then such spaces are not common in the
usual branches of topology. But in k" they regularly occur and have a fami-
liar algebraic meaning,

Theorem. A closed set in k" is irreducible iff its ring of functions is an integral
domain.

ProoF. For any proper closed subset Y of X, there is by definition some
nonzero polynomial function on X which vanishes on Y. Hence if
X =Y, U Y, we have nonzero functions f, and f2 on X with f, f, = 0. Con-
versely, if g, g, = 0, then X is the union of ¥, = {x € X|gi(x) = 0}. Od

Theorem. Every closed set in k" is in a unique way a finite irredundant union of
irreducible closed sets.

39
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Proor. The Hilbert basis theorem (A.5) shows that any nonempty collection
of ideals in k[X,, ..., X,] has a maximal element; hence any nonempty
collection of closed sets in k" has a minimal element. If not all closed sets
were finite unions of irreducible closed sets, we could find a minimal coun-
terexample X. Clearly X could not itself be irreducible. Butif X = Y, v Y,,
then by minimality Y; and Y, would be finite unions of irreducibles, so X
would also be such a union and not a counterexample.

Throwing away unneeded sets, we can now write any closed S as
X, v - v X, with the X; closed irreducible and no X; contained in any
other. Let Y © X be irreducible. An easy induction shows that an irreducible
space is not a finite union of proper closed subsets; hence Y = ) (Y n X))
implies Y = Y n X; for some j. Thus the X; are the maximal irreducible
subsets, and are therefore uniquely determined. O

The X, are called the irreducible components of S.

Corollary. An open subset of S in k" is dense if it meets each irreducible
component.

Corollary. A closed set in k" has only finitely many connected components, each
a union of irreducible components.

Theorem. If S in k" is irreducible and k < L, then the closure of S in L' is
irreducible.

Proor. It is trivial to check in general that when X is dense in Y, then X is
irreducible iff Y is. O

5.2 Connected Components of Algebraic Matrix
Groups

Theorem. Let S be an algebraic matrix group. Let S° be the connected compon-
ent containing the unit e. Then S° is a normal subgroup of finite index; it is
irreducible, and the other irreducible components are its cosets.

PRrROOF. Let § = X, U -+ U X,, be the decomposition into irreducible com-
ponents. We know X, is not contained in any one other X; and hence by
irreducibility is not contained in their union. Thus there is a point x in X,
contained in just one of the irreducible components. But any point g is the
image of x under the homeomorphism y+— gx~!'y: thus each point is in just
one irreducible component. That is, the irreducible components are disjoint,
and hence they equal the connected components.

If x is in S°, then xS° is irreducible and contains x, so xS° < §°; thus
§°S° = §°. Similarly (S°)~! is irreducible and contains e, so it lies in S°. For



5.4 Spec A 41

any g in S the set gS° ! is irreducible containing e, so gS°% ! < §°. Finally,
each coset gS° is the image of S under a homeomorphism and hence is an
irreducible component; there are no others, since the cosets exhaust S.

a

5.3 Components That Coalesce

We want to extend the concept of connectedness to group schemes more
general than matrix groups. To do this we will associate with each of them
some topological space. This space will usually have more points than just
those of a closed set in k", and before we go on it is worth observing that even
in our current material there are indications that we do not have all the
“points” we should have.

Let k be the reals, and in k? consider the closed set S defined by
0=[x?+y? —1][(x — 4)*> + y> — 1]. It is a union of two disjoint circles
which are the irreducible and connected components of S. Their closures
over the complex numbers are again irreducible, but they are now not
disjoint: (2, \/—3) is in both of them. Thus disconnected spaces can
become connected after base extension. And in fact the existence of the
complex intersection point is already reflected in the ring k[S]. Specifically,
no polynomial can equal 1 on one component and 0 on the other, since it
would continue to do so on the complex closures. Thus k[S] is not the full
product of the function rings of the components, and values of a polynomial
on one component influence values on the other.

We can describe what is happening ring-theoretically. The kernel of the
map sending (x, y) to (2, ./ —3) is a maximal ideal of k[S]. Its existence is
enough to connect the two pieces, though it does not correspond to a homo-
morphism to k. [Only over algebraically closed k do all maximal ideals come
from maps to k.] Our set S has “enough ” points in the sense that a nonzero
element of the ring cannot vanish on them all, but for more delicate
questions we can see it might be better to expand our space and include all
the maximal ideals.

If the base ring k is not a field, then even maximal ideals turn out to be not
quite all we want. The kernel of a homomorphism Z[X) — Z, for instance, is
not maximal. The next natural generalization is to prime ideals, and these do
indeed give a satisfactory theory.

5.4 Spec A

The spectrum Spec A of a ring A is the collection of its prime ideals. To see
what topology it should have, consider k". A closed set there is the set where
a certain ideal I of functions vanishes; the corresponding maximal ideals
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(kernels of evaluations) are the ones that contain the ideal I. Corre-
spondingly then in Spec 4 we call a set closed if it has the form Z(I) =
{PeSpec A|[P 21} for some ideal I. As before it is easy to see
N Z(1, )=Z2 (3. 1,) and Z(I) U Z(J) = Z(1J), using for the latter the fact
that a prime containing a product contains one of the factors Thus we have
a topology, the Zariski topology on Spec A.

If A is k[S] for some S < k", the definition makes S homeomorphlc to its
image as a subset of Spec A. Furthermore, the image is dense; for if a closed
set Z(I) contains S, each f in I vanishes at all points of S, so I = {0}. As in
(5.1), it follows that Spec A is irreducible iff S is irreducible. Simple topology
also shows that Spec A is connected if S is. The converse of this is not true,
and the last section shows that we don’t want it to be true.

If p in S corresponds to the maximal ideal P, then evaluating a function at
p is the same as taking its image in A/P ~ k. For a general A, then, one can
intuitively think of elements of 4 as “functions ” on Spec A4, where the value
of fat P is the image of f modulo P. It is possible for such a “function” to
vanish at all P, but at least this condition (f € () P) forces f to be nilpotent
(A.3). Using that remark we can now carry over the proofs in (5.1) almost
verbatim to get the following results.

Theorem. (a) Spec A is irreducible iff A modulo its nilradical is an integral
domain.

(b) If A is noetherian, Spec A is the union of finitely many maximal
irreducible closed subsets.

5.5 The Algebraic Meaning of Connectedness

If an element e in a ring A is idempotent (e* = e), then A is a product of rings
eA x (1 — e)A. Conversely, any expression of A as a product B x C yields
the idempotent e = (1, 0). The next theorem therefore implies that the
difficulty in (5.3) has been avoided: if Spec A is disconnected, the elements of
A can be prescribed independently on the two parts.

Theorem. Idempotents in a ring A correspond to clopen (closed and open) sets
in Spec A.

Proor. If e is idempotent, Z(e) and Z(1 — e) are disjoint closed sets. Every
prime in Spec A contains either e or 1 — e, since e(1 — e) = 0; thus Z(e) is
the complement of Z(1 — ¢) and is clopen. Suppose now e and f are idempo-
tent, Z(e) = Z(f). Then Z(f (1 — e)) = Spec 4,sof(1 — e) is nilpotent. But it
is also idempotent, so f(1 — €)= 0 and f= ¢f. Similarly e = ¢f, and e = f.
Now suppose Z(I) is closed with closed complement Z(J). Then Z(I + J)
is empty, so I +J equals A, since no maximal ideal contains it. Write
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b+ c=1with be Iand ce J. We have Z(I1J) = Z(I) v Z(J) = Spec 4, so
be is nilpotent, say (bc)* = 0. A prime containing b" contains b, so no maxi-
mal ideal contains both b" and ¢". Hence we can write 1 = ub" + vc". We
have Z(ub") = Z(I) and Z(vc") 2 Z(J) and Z(ub") disjoint from Z(vc"), so
Z(ub") = Z(I). But ub" = ub"(ub" + vc") = (ub")*. Thus Z(I) is given by the
idempotent ub". O

Corollary. Spec A is connected iff A has no nontrivial idempotents.

Corollary. If A is noetherian, it has only finitely many idempotents.

PROOF. Spec A has only finitely many connected components. O

Corollary. Let A be a finitely generated algebra over a field. Let T be the set of
maximal ideals. Then Spec A is connected iff its subset T is connected.

Proor. The Nullstellensatz shows that the intersection of the ideals in T is
the nilradical. The proof of the theorem then carries over to produce an
idempotent for each clopen set in T. O

Corollary. Let k be algebraically closed, S closed in k". Then S is connected iff
Spec k[S] is connected.

5.6 Vista: Schemes

The topological space Spec A is not a sufficiently complicated geometrical
object to capture the full structure of A, since the topology is so weak.
Indeed, for a field k, all the spaces Spec k[X, Y)/f(X, Y)for irreducible fare
homeomorphic. Consequently one tries to add more structure while still
keeping a geometric flavor.

For this we return to thinking of 4 as in some sense “functions” on
Spec A. The open sgt Spec A ~Z(f) is canonically homeomorphic to the
spectrum of the localized ring A[f '] = A, so it is reasonable to consider
A, as the “functions” on that open set. Intuitively we are just allowing
rational functions on the set where the denominator does not vanish. One
can show that these “functions” have a reasonable local-determination
property: a “function” on a large open set U =) U, is precisely
determined by a family of “functions” f, on U, in which f, and f; agree on
U, n Uy. This says we have a sheaf of “ functions” (see (15.6)).

For comparison, think of a differentiable or complex-analytic manifold.
There again one has a topological space together with some additional
structure; and again one can describe the structure by a sheaf of functions,
prescribing for each open set which functions are C* or analytic. Thus
X = Spec A with our sheaf on it is a sort of geometric object, and obviously
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it captures the full structure, since A can be recovered from it as the “ func-
tions” defined on the whole space (sheaf-theoretically denoted I'(X, 0y)).
Such spaces-with-sheaves are thus equivalent to our representable functors.
This is the basis for yet another approach to the subject: one can define an
affine group scheme to be such an X = Spec 4 with morphisms X x X - X
and so on satisfying the appropriate axioms.

One major advantage of the sheaf approach is that it can be generalized
in a way which ultimately becomes very important. Some of the most inter-
esting complex manifolds—compact Riemann surfaces—have no noncon-
stant globally defined analytic functions and so are not analytic subsets of
affine n-space. Similarly there are many interesting algebraic objects—closed
subsets of projective space—which do not embed in k" and are not affine
schemes (see (16.2)). But just as complex manifolds are locally like subsets of
n-space, these algebraic objects are locally like affine schemes. Such an
object is called a scheme. It is a topological space with a sheaf of rings
(“functions” prescribed for each open set, with the local determination
property), and it has a covering by open sets each of which, with the sheaf on
it, is isomorphic to some Spec A. A great deal of what we say about rings
and representable functors can be—and eventually must be—generalized to
schemes. There is in fact an important class of non-affine group schemes, the
“ abelian varieties ”; their study includes the theory of nonsingular projective
cubics and classical Jacobian varieties. The word “affine” in various
definitions in this book is present to show that we are not dealing with such
a generalization.

EXERCISES

1. Show that an irreducible topological space containing more than one point
cannot be Hausdorff.

2. (a) Let X be a closed subset of k", and X its closure in I. If X4, ..., X, are the
irreducible components of X, show X, ..., X, are the irreducible compon-
ents of X.
(b) Let S be an algebraic matrix group over k, and § its closure after base
extension. Show that the closure of S° is the connected component (5)°.

3. Show Spec A4 is compact. [If (") Z(I,) is empty, then ) I, = A, so 1 is in some
finite I,, + -~ + I, )

4. Write out the proof of the theorem in (5.4).
5. Show the one-point set {P} is closed in Spec A iff P is maximal.

6. (a) Let ¢: A - B be a ring homomorphism. Show P+ ¢~ !(P) is a continuous
map Spec B — Spec A.
(b) Show Spec A, is canonically homeomorphic to Spec 4 ~Z(f).
(c) Show Spec(A/I) is canonically homeomorphic to Z(I).
(d) Show every irreducible closed subset of Spec 4 is the closure of a point. [In
Z(I) take the point corresponding to the nilradical of A/1.]
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10.

(e) If A is noctherian, show the irreducible components of Spec A correspond to
the minimal primes of A. Deduce that A has only finitely many minimal
primes.

. (a) If A is a finitely generated algebra over a field k, show that a prime ideal P is

maximal iff dim,(A4/P) < oo. [Use the Nullstellensatz.]

(b) Show that if ¢: 4 —» B is a homomorphism of finitely generated k-algebras,
the map Spec B — Spec A takes maximal ideals to maximal ideals.

(c) Give an example of an injection A — B of rings and a maximal ideal P of B
with P N A not maximal in A.

. Let e and f be idempotents. Show ef = fiff Z(f) =2 Z(e).

. (a) Call a function locally constant if the inverse images of points are clopen sets.

If T" is a finite group, show that the corresponding finite constant group
scheme assigns to R the set of locally constant functions Spec R —» T.

(b) Define the constant group scheme for an infinite group I' by assigning to R
the locally constant functions Spec R — I'. Show that this does define a
group functor.

(c) Let M be an abelian group, G the corresponding diagonalizable group
scheme. Show that Hom(G, G,,) is the constant group scheme M.

Let A be finitely generated over a field. Show that X — X n Tisa bijection from
closed sets in Spec A4 to closed sets in the subspace of maximal ideals.



Connected Components and
Separable Algebras

6.1 Components That Decompose

The introduction of Spec A has given us a general definition of connected
components, but a more subtle problem remains. Take for example p,,
represented by 4 = k[X]/(X* — 1). Over the reals there are two points in
Spec A, reflecting the decomposition X* — 1 = (X — 1)(X% + X + 1). But
over the complex numbers the group is isomorphic to Z/3Z, and we get three
components. Thus base extension can create additional idempotents. To
have a complete theory of connected components, we need a fancier version
that will detect these “ potential idempotents.” Over fields—and for the rest
of this part we assume k is a field—the question can be handled using
separable algebras.

6.2 Separable Algebras

Lemma. Let A be a finite-dimensional (commutative) k-algebra. Then A is a
finite product of algebras A;, each of which has a unique maximal ideal consist-
ing of nilpotent elements.

ProoF. Let P in A be prime, so A/P is a finite-dimensional integral domain.
For 0+ [x] in A/P, we have a chain of subspaces [x]A/P 2 [x]*4/P =2
[x]?A4/P =2 - . By finiteness eventually [x]"A/P = [x]"*'A/P. Hence [x]"is a
multiple of [x]"*!, and so [x] is invertible. Thus A/P is a field and P is
maximal. Now if P,, ..., P,,and P, , are primes, we can by maximality find
x; in P; not in P, ,, SO0 X = X, *** X,, is in {7 P; and not in P,,,,. Thus
(Yr*! P, is smaller than ()7 P;. Again this descending chain must stop, so

46
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there are only finitely many primes. Each {P} = Z(P) s closed, so Spec A isa
finite discrete set. By (5.5) then A = [ [4;. The unique prime in 4; is maxi-
mal, and its elements must be nilpotent (A.3). a

Theorem. Let k and k, be the algebraic and separable closures of k. Let A bea
finite-dimensional k-algebra. The following are equivalent:

(1) A®k is reduced.

() AQk~kx - xk

(3) The number of k-algebra homomorphisms A — k equals the dimension
of A.

(4) A is a product of separable field extensions.

(5) A@ky~k,x -+ xk,.
If k is perfect, these are equivalent to

(6) A is reduced.

PROOF. The lemma immediately shows the equivalence of (1) and (2) and of
(4) and (6). Clearly (5) implies (2), and (2) implies (3) because Hom, (A4, k) ~
Hom;(A ® k, k). Recall from field theory now that a finite L over k has at
most dim,(L) maps to k, and has exactly that number iff it is separable. But a
map from A to k also kills all but one of the factors of 4 and vanishes on
nilpotents in that one. Thus (3) is equivalent to (4). If they hold, then all
maps A — k have separable image and thus actually map to k,. The kernels
of the corresponding maps 4 ® k, — k, are primes, and (5) must hold since
the number of these primes equals the dimension. O

An algebra 4 satisfying these equivalent conditions is called separable.

Corollary. Subalgebras, quotients, products, and tensor products of separable
algebras are separable.

PRrooF. The assertion for subalgebras is obvious from (1), the others from (2).
a

Corollary. Let L be any extension of k. Then A is separable over k iff A ®, L is
separable over L.

PROOF. As our copy of k we can take the algebraic closure of k in L. We have
then (A®k) @i L~ A@, L~ (A®, L)®, L. If A® k decomposes as in
(2), clearly A ® L does also; and if A ® L is reduced, so is its subring A @ k.

O

6.3 Classification of Separable Algebras

Since separable algebras over k all look basically the same over k,, classify-
ing them is a descent problem of the type we will study more generally in
Chapter 17. But since usual Galois theory already classifies separable fields,
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we can here get by with only a slight extension of it. Recall that an automor-
phism of k; over k maps each finite Galois L/k to itself, and is nothing more
than a coherent family of such maps for various L; in other words, the
automorphism group ¥ of k, over k is lim; Gal(L/k). A simple Zorn’s lemma
argument shows that any automorphism of L/k extends to k,, so each
%4 — Gal(L/k) is surjective. In particular, any element outside k is moved by
something in %. We say that an action of ¢ on a set X is continuous if X isa
union of sets on each of which the action factors through some Gal(L/k).

Theorem. Separable k-algebras are anti-equivalent to the finite sets on which 4
acts continuously.

PROOF. By definition of anti-equivalence we must for every separable A
construct some finite X 4; we must show the maps A — B are in natural
one-to-one correspondence with maps Xp— X 4; and we must show that
each finite X is isomorphic to some X,. When 4 is a field, we want X,
essentially to be the coset space of the subgroup fixing 4. Galois theory (see
the end of the proof) shows that this can equivalently be stated as
X 4+ = Hom,(4, k). We take this definition in general, with % acting on X ,
through its action on k,;. The images of A all lic in some finite Galois
extension L, so the action is continuous. A homomorphism 4 — B yields by
composition a map Xz — X, commuting with the %-action.

On A ® k, we have ¢ acting by g(a ® 1) = a ® (1), and the ring of fixed
elements is A, since the only fixed elements in k, are in k. But the previous
theorem shows that A ® k, is isomorphic to the ring A’ of functions X 4 — k.
The isomorphism sends a® A to f where f(x) = x(a)A. The function for
a ® a(A) then sends x to x(a)s(1) = a(c ™ 'x(a) - 1) = o(f (¢~ *x)). Thus on A’
we can write down the %-action merely in terms of the %-action on X 4 (and
the intrinsic action on k,). In this way we can reconstruct A from X4 by
taking the fixed elements in A’. We also get a one-to-one correspondence of
maps. For if X5 — X, is a ¥-map, we get a ¥-map A’ — B’ by composition,
and it maps A into B since it sends fixed elements to fixed elements.

It remains only to show that every finite X arises from some A.If Yis X ,
and Z is X, then the disjoint union of Y and Z is X 4«3, so it is enough to
show each orbit in X occurs. Assume therefore that ¢ acts transitively,
X =%x,. Choose a finite Galois L so that the action factors through
Gal(L/k). Let H be the subgroup fixing x,, and let 4 be the subfield of L
fixed by H. By Galois theory, all maps 4 — k, actually map to L and are
conjugate. That is, Gal(L/k) acts transitively on X ,; and the inclusion
A — L is left unchanged precisely by H, the group fixing A. Thus there is a
@-isomorphism X — X 4 sending x, to that inclusion. (]

Porism. Let X be a finite set with continuous %-action. Let A’ be the set of
functions X — ky, with (of )(ox) = o(fx). Then the fixed elements form a
k-space A with A®@k, 3 A'.
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6.4 Etale Group Schemes

A finite group scheme G over k is called etale if k[G] is separable. The last
theorem shows k[G] is anti-equivalent to a set X with %-action. Also,
A: k[G] — k[G] ® k[G] gives a map X x X — X commuting with the %-
action. The dualization here turns the Hopf algebra axioms back into group
axioms (see (1.4)). Hence:

Theorem. Finite etale group schemes over k are equivalent to finite groups
where % is acting continuously as group automorphisms.

In this equivalence, the X with trivial %-action give the finite constant
groups of (2.3), with 4 = k*. Other etale groups become constant groups
after a finite field extension, and may be called “twisted ” constant groups.
For example take p; over the reals. Its algebra is separable, so it is a twisted
form of Z/3Z, the only constant group of order 3. Not having three real
points, it is not isomorphic to Z/3Z, and must correspond to the unique
nontrivial action of the two-element group % on X = Z/3Z. Over the ra-
tionals there are by contrast infinitely many different twisted forms of z/3Z,
one for each quadratic extension. The one which is p; must correspond to
adjoining a cube root of 1, since over that field it becomes a constant group.

6.5 Separable Subalgebras

Let A be a finitely generated k-algebra. If B is any separable subalgebra,
B® k is a separable k-subalgebra of 4 ® k; it is spanned by idempotents, so
by (5.5) its dimension is bounded by the number of connected components
of Spec A ® k. Furthermore, if B, and B, are separable subalgebras, so also
is the composite B, B,, since it is a quotient of B, ® B, . Hence there is a
largest separable subalgebra of 4. We denote it by m, 4. If A’ is another
finitely generated algebra, then my(A4 x A’) = my(A) x mo(A’); we have <
because the projections of my(4 x A')to 4 and A’ must be separable, and =
because a product of separable algebras is separable.

The notation is prompted by geometric interpretation. If 4 represents X,
we let my X be the functor represented by n, A, and think of it as describing
the connected components of X. Certainly each idempotent e is in n, 4,
since k[e] is separable. There may also be nontrivial fields in 7, 4; but since
To(A)® k ~ k x -+ x k, these fields reflect potential idempotents, compon-
ents of X after base extension. The next result shows that n, indeed captures
every such potential idempotent.

Theorem. Let kS L be fields, A a finitely generated k-algebra. Then
(no A)@ L~ no(A ® L).
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Proor. We know that (n, 4 )® L is separable, and the problem is to show
that no(A ® L) is no larger. It is enough to prove this with L expanded to L.
We go in three steps, from k to k, to k to L.

First, mo(A ® k) is separable over k, and hence has a basis X of minimal
idempotents. These are permuted by ¥, so n,(4 ® k,) is isomorphic to kY as
in (6.3); hence the fixed elements (which are in 4) do indeed span it.

Now suppose k = k,; if k # k, then char(k) = p and k is purely insepar-
able over k. Let e = ) a; ® ; be an idempotent in ny(4 ® k). Choose an n
large enough that all A" are in k. Then e = ¢” = Y af" ® AF" is in A.

Finally suppose k = k. Then n, A is spanned by idempotents, and we can
decompose A = [] 4; with my 4, = k. We have no(A ® L) = [] no(4; ® L),
so it is enough to show A® L has no nontrivial idempotents when A does
not. Write A = k[X, ..., X,]/1, and let S be the closed set in k" defined by I;
as k = k, we know by (5.5) that A having no idempotents is equivalent to S
being connected. The closure of S in L”, the zeros of I ® L, is still connected;
hence A ® L has no idempotents. O

.Theorem. 7o(A) @ mo(B) = my(4 ® B).

PROOF. Again ny(A4) ® ny(B) is separable and we need only prove equality of
the dimensions. By the last theorem then we may assume k = k. Decompos-
ing A =[] A; and B =[] B;, we see it is enough to show A ® B has no
idempotents when ny A = ny B = k. As in the previous proof, let the closed
set S in k" be the zeros of an ideal defining A, and find T in k™ similarly for B.
Then S and T are connected, and by (5.5) we simply need to show S x T is
connected. This is easy, even though S x T does not have the product topo-
logy, because {s,} x T~ T and S x {t,} >~ S are connected sets which
together join (s,, ¢;) to (s,, t,). O

The interplay of ideas in this proof is worth attention. For ring spectra in
general a product of connected objects need not be connected: if A for
instance is a Galois field extension of k, then Spec A4 has only one point but
Spec(4 ® A) has several. The statement does hold, however, for closed sets
in k". When k = k, this is enough to imply the result for the spectra. And our
improved notion of connectedness, 7y, is unchanged by base extension.
Thus the geometric argument over k implies in general that 7,(4 ® B) = kif
noA=mn,B=k.

6.6 Connected Group Schemes

Theorem. Let G be an algebraic affine group scheme, A k[G]. The following
are equivalent:

(1) mo G is trivial.

(2) Spec A is connected.
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(3) Spec A is irreducible.
(4) A modulo its nilradical is an integral domain.

PRrOOF. By (5.4) we know (4) is equivalent to (3), wiich implies (2). If Spec A
is connected, m, A is a field; since ¢ maps it to k, it cannot be a proper
extension. Thus (2) implies (1). Suppose now (1) holds, so 75(4 ® k) = k. As
A/nilradical injects into (4 ® k)/nilradical, we may assume k = k. Then
Afnilradical is the ring of functions on the algebraic matrix group G(k). Since
Spec A is connected and k = k, we know from (5.5) that G(k) is connected.
By (5.2) then it is irreducible, and its ring of functions is an integral domain.

O

Such G are of course called connected. For any extension field L of k,
condition (1) shows that G is connected iff G, is connected.

6.7 Connected Components of Group Schemes

The last result might suggest that our introduction of m, was actually un-
necessary for studying group schemes. But in fact, though it could be
avoided in the connected case, it is exactly what we need to analyze the
general case. .

Let G be any algebraic affine group schéeme, A =k[G]. Then
7o(A ® A) = 1y A ® my A, and A miust map the separable algebra n, 4 into
no A ® mo A. Similarly S(n, A) S mo A. Thus my A is a Hopf subalgebra of 4.
That is, n, G becomes an etale finite group scheme. Any map of a separable
algebra to A has image in m, 4, so in particular any homomorphism from G
to an etale group factors through =, G.

Let G° now be the kernel of G — my G. This is a closed normal subgroup
represented by A/(I N my A)A, where [ is the augmentation ideal. Use the
idempotents f; available to write A = @ f; A, corresponding to the decomposi-
tion of m, A into fields. The map &: A — k vanishes on all but one of the f;;
say &(fo) = 1, and set A® = fo A. Then n5(4°) = k, and &(1 — f;) = 0. Hence
I N my A is generated by 1 — f;, and the quotient representing G° is just the
factor A°. In summary:

Theorem. Let G be an algebraic affine group scheme. Then no(k[G]) represents
an etale group mny G, and all maps from G to etale groups factor through the
canonical map G — 1y G. The kernel G° of this map is a connected closed
normal subgroup represented by the factor of k[G] on which ¢ is nonzero. The
construction of no G and G° commutes with base extension.

We call G° the connected component of G. Unlike algebraic matrix groups,
the G here need not have the other f; A isomorphic to A°; this fails in our
introductory example of p, over the reals.
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6.8 Finite Groups over Perfect Fields

Lemma. Let A be a finitely generated k-algebra, I an ideal consisting of
nilpotent elements. Then ny A ~ no(A/I).

ProoF. Since my A is reduced, it injects into mo(A/I); we must show the
dimensions are the same. As I ® k still consists of nilpotents, we may assume
k = k. Then dim(m, A) is the number of connected components of Spec A.
But since I is in every prime ideal, Spec A is homeomorphic to Spec(A4/I).

O

Corollary. Let A be finite-dimensional with nilradical N. If A/N is separable,
To A~ A/N-

Theorem. Let G be a finite group scheme over a perfect field. Then G is the
semi-direct product of G° and n, G.

Proor. Let A be k[G]. Since k is perfect, 4/N is separable, and so
A/N ® A/N is reduced. Hence the map

A—" AR 4 » A/N ® AN

factors through A/N. Thus A/N defines a closed subgroup of G. By the
corollary this subgroup maps isomorphically to n, G in the map whose
kernel is G°. 0O

If G is abelian, the product of course is direct. We can also then apply
Cartier duality (2.4), because G” need not be connected when G is, and from
G” ~ (G”)° x m,(GP) we get a corresponding decomposition of G*° ~ G.
Applying this to the two factors of G, we get a four-fold decomposition.

Corollary. A finite abelian group scheme over a perfect field splits canonically
into four factors of the following types:

(1) etale with etale dual,

(2) etale with connected dual,

(3) connected with etale dual,

(4) connected with connected dual.

If char(k) = 0, all finite group schemes are in fact etale (11.4), and the
other types do not occur. When char(k) = p, however, we know examples of
all four types: Z/qZ with q prime to p is etale with etale dual p,, while Z/pZ
is etale with connected dual p, and vice versa, and &, ~ &} is connected with
connected dual. The Galois theory of (6.4) describes the first two types, and
also (after dualizing) the third. The fourth requires a theory of its own; the
groups are classified by modules over a certain ring, “ Dieudonne modules.”
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EXERCISES

L.

10.

11

12.

13.

Let A be an artinian ring, i.e. one with no infinite descending chains of ideals.
Prove that A is a finite product of rings each of which has a unique maximal ideal
consisting of nilpotents.

. Let k be a perfect field, A and B reduced k-algebras. Show A ® B is reduced.

[Suppose 0+ ¥ a; ® b; is nilpotent. Replace A, B by finitely generated subal-
gebras containing it. Say {a;} independent. Choose a maximal Q not containing
some b;; get a nonzero nilpotent in 4 ® B/Q. Repeat to get one in A/P ® B/Q.
But that is separable.]

. Let G be an affine group scheme over a perfect field. Show that the closed

subscheme G.q defined by k[G]/nilradical is a subgroup.

. (@) Let C be a finite-dimensional cocommutative coalgebra. Show

C” = Hom(C, k) is a k-algebra. Call C coseparable if C” is separable.

(b) Let X(C) = {x € C®k,|&(x) = 1, A(x) = x ® x}. Show C— X(C) is an equi-
valence between finite coseparable C and finite sets with continuous %-
action. [Dualize the algebra theorem.]

(c) An arbitrary coalgebra is called coseparable if it is the directed union of
finite-dimensional coseparable coalgebras. Show C+— X(C) is an equivalence
between these and arbitrary sets with continuous %-action.

. Let A and B be finitely generated. Assume Spec A is connected and no B = k.

Show Spec(4 ® B) is connected.

. Show that SL, is connected. [See (4.5).]

. Let G be an affine group scheme, and write it as lim G, with G, algebraic. Show

that [im G2 and lim m,(G,) make sense; call them G° and 7, G. Prove that G° is
connected and is the kernel of a canonical map G — 7, G.

. Show that a reduced finite group scheme is etale. [G — mo G must be an isomor-

phism, since G° is trivial and remains so after base extension to k.]

. Let G be a finite group scheme. Show the following are equivalent:

(i) k[Grea] is separable.

(ii} Grea is a subgroup.
(iii) G is isomorphic to the semi-direct product of G° and n, G.
[If (i), then Gred X Giea is reduced, whence (ii).]

Let k be an imperfect field, char(k) = 2. Take b in k not a square, and let
G(R) = {y € R|y* = by?*}. Show this is a finite abelian group scheme under addi-
tion. Show G(k) has one element and no(G)(k) has two, so G is not >~ G° x 7, G.

Let A be separable over k, and let B be any k-algebra. Show Hom,(A, B) ~
Hom,(A, B/nilradical).

Let char(k) = p, and let G be an abelian etale finite group scheme. Show that G®

is etale iff dim, k[G] is prime to p, and G” is connected iff dim, k[G] is a power of
p- [Move to k.

If G is a finite abelian group scheme of one of the four types, and H is one of a
different type, show Hom(G, H) is trivial. [Save time by using duality.]
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7.1 Separable Matrices

Separable algebras, besides describing connected components, are related to
a familiar kind of matrix and can lead us to another class of group schemes.
One calls an n x n matrix g separable if the subalgebra k[g] of End(k") is
separable. We have of course k[g] =~ k[X]/p(X) where p(X) is the minimal
polynomial of g. Separability then holds iff k[g] ® k = k[g] ~ k[ X]/p(X) is
separable over k. This means that p has no repeated roots over k, which
is the familiar criterion for g to be diagonalizable over k. (We will extend this
result in the next section.) Then p is separable in the usual Galois theory
sense, its roots are in k,, and g is diagonalizable over k.

If g and h commute and are separable, then g + h and gh are separable,
since they are in the image of k[g] ® k[h]. In particular g® g = (g ® 1) x
(1 ® g) is separable. It follows that the actions of g on spaces built up from k"
as sums, tensor products, quotients, invariant subspaces, and duals are
separable. But by (3.5) this gives us everything:

Theorem. Let g in an algebraic matrix group G(k) = GL,(k) be separable.
Then in any representation of G the element g acts as a separable
transformation.

Corollary. If ¢: G — H is a homomorphism of affine algebraic group schemes
and g in G(k) is separable (in some embedding in GL,), then @(g) is separable.

PRrOOF. We can embed H in some GL,, . O

Applied to isomorphisms, this shows that separability of an element in
G(k) is an intrinsic property independent of the embedding in GL,.

54
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7.2 Groups of Multiplicative Type

Suppose that H is an abelian group consisting of separable matrices. They
generate some separable algebra B. This B is closed in k"7, like all subspaces,
so B n GL,(k) is relatively closed in GL,(k). Hence H is again a group of
separable matrices. It is also still abelian (4.3). Thus we may as well suppose
to begin with that H is an algebraic matrix group. What kind of group can it
be? If we write B®k, = k,e; x - x kye, with the ¢; idempotent, then
ki = @ e;k;, and each g = " A,e; satisfies g(e; v) = Ai(e; v). Thus there is a
basis of k, in which all elements of H are diagonal. If G is the group scheme
corresponding to H, we can thus conclude by (4.6) that G, is diagonalizable.

One says that a group scheme G is of multiplicative type if G, is diagonali-
zable. Most important among such groups are the tori, those where G, isa
finite product of copies of G,,. Indeed, we know by (2.2) that any algebraic
diagonalizable group scheme is a product of copies of G, together with
various B, factors. If it is connected, it can have p, only for n a power of the
characteristic. If also k,[G] is reduced, which is automatic for matrix groups,
there can be no p, at all. In summary:

Theorem. An abelian matrix group H consists of separable matrices iff the

group scheme G corresponding to H is of multiplicative type. If H is connected,
G is a torus.

The use of k rather than k in the definition is only a technical conven-

ience; in fact G is of multiplicative type whenever G; is diagonalizable.
[Ex. 4; or 17, Ex. 4]

7.3 Character Groups

Let G be of multiplicative type, A = k[G]. Let X be the set of group-like
elements in 4 ® k;, the characters of G,,. Since A is given by formulas with
coefficients in k, the automorphisms in the Galois group ¥ map X to X and
thus make the abelian group X into a %-module. Extending our earlier
definition, we call X with this %-action the character group of G. Each x in
X S A®Kk, involves only finitely many coefficients from k,, all of which
then lie in some finite extension L of k; on the orbit of x we have ¥ acting
through Gal(L/k), and thus the %-action is continuous.

Theorem. Taking character groups yields an anti-equivalence between group
schemes of multiplicative type and abelian groups on which 9 = Gall(k, /k) acts
continuously.
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Proor. We can recover 4 from A ® k, as the elements fixed by ¢, and on
A ® k, ~ k[X] the %-action is determined by the action on X, so X deter-
mines A. Any Hopf algebra map A — B extends to k, to give a group homo-
morphism X, — X commuting with the -action. Conversely, as in (2.2)
such a homomorphism gives a Hopf algebra map 4 ® k, -~ B ® k, which
commutes with ¢ and so induces a map 4 — B of the fixed elements.

We still must show that every X occurs. We can always at least form
k,[X] and let A be the fixed elements. Since ¢ preserves the multiplication, 4
is a k-algebra. Our main problem is to prove it is large enough. But since the
9-action is continuous, each orbit Y in X is finite. Sending fto Y’ f(y)yisa
%-isomorphism from k! to the subspace of k[X] spanned by Y. Hence by
(6.3) that subspace indeed arises by base-extension of the fixed elements in it.
Thus we get A ® k, ~ k,[X].

Now the fixed elements in (4 ®,k,) @y, (4@iks) = AR, A®yk, are
A® A. For x in X and ¢ in ¥ we have A(ox)=ox®@ ox = o(x @ x) =
o(Ax), so A commutes with ¢ and maps A to A ® A. Similarly S(4) < A. It
follows that A is a Hopf algebra, since the necessary identities are valid after
base extension to k,. By construction the character group is X. O

Corollary. An algebraic group scheme of multiplicative type is diagonalizable
over a finite Galois extension.

ProoFr. If G is algebraic, X is finitely generated; and an element of ¥ acts
trivially as soon as it acts trivially on the generators. O

7.4 Anisotropic and Split Tori

We can use the previous theorem to show that every torus is nearly made up
of two extreme types. Call a torus split (deploye) if it is actually diagonali-
zable, or in other words the Galois action on the character group is trivial.
At the other extreme, call it anisotropic if it has no nontrivial maps to G,,, or
in other words zero is the only fixed element in the character group.

Theorem. Every torus T has a largest split subtorus T, and a largest anisotro-
pic subtorus T,. The intersection Ty N T, is finite, and T equals T, - T, in the
sense that no proper closed subgroup contains them both.

PROOF. Let A = k[T], with X S A ® k, the character group. If B = A/I re-
presents a closed subgroup of T, the image of X spans B® k,. By (2.2) we
see that the closed subgroups of T are again of multiplicative type, and their
character groups are ¥-module quotients of X. Conversely, any such quo-
tient of X determines a group scheme embedding as a closed subgroup of T.
The proof thus comes down to a study of ¥-modules. And by the last section
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we know that 4 acts on X through some finite quotient I'. The idea is to
come close to decomposing the representation of I'.

Let U, be the subgroup of X where I acts trivially. Since X is torsion-free,
U, is a pure subgroup (nx € U, implies x € U,); hence X/U, is torsion-free,
and the corresponding closed subgroup T, is a torus. Set P(x) = ) r o(x),
mapping X into U,, and let U, be the kernel; again this is a pure subgroup,
and X/U,; defines a subtorus T;.

On U, we have P(x) = (#T')x,so U; n U, = 0. A closed subgroup given
by X/U’ contains T, (resp. T) iff U’ € U, (resp. U,), soindeed T, - T, = T.
For any x we have (#TI')x — P(x) in Uy, so (#T)X < U, + U,. Thus the
character group of T, n T; is killed by (#T), and hence T, n Tj is finite.

If there are no fixed elements in some X/U’, then every x in U, must be in
U'. If now a class [x] in X/U, is fixed by T, then all x — o(x) are in U,, so
(#T)x = P(x) =0 mod U,. As U, is pure, [x] = [0]. Thus T, is indeed ani-
sotropic and contains all other anisotropic subtori of T.

Since P(x) = P(ox), we always have x = o(x) mod U,. Suppose now X/U’
gives a split torus. Each x in U, has x = ¢(x) mod U’, so (#I')x = P(x) = 0;
and then x is in U’, since X/U’ is torsion-free. Thus T is the largest split
subtorus. O

7.5 Examples of Tori

Let D be any finite-dimensional associative k-algebra with unit. For expli-
citness we pick a basis {«;} of D, giving a bijection D ~ k™ The elements of D
act then on k™ by left multiplication. The determinant of such a k-linear map
is called the norm N of the element in D. Clearly N(}, x; «;) is a polynomial in
the x;, and the invertible elements of D are those for which N is invertible.
All this remains true in every D ® R, so we have a group functor G(R) =
invertible elements in D ® R, and it is represented by k[X ,, ..., X,,, 1/N]. As
with GL, in (4.5), the group scheme G for infinite k comes from the algebraic
matrix group G(k) = invertible elements of D. We call G the group scheme of
units of the k-algebra D. It is sometimes denoted GLp . Sometimes also it is
called the “multiplicative group scheme” of D, but of course it is not always
of multiplicative type: if D is the n x n matrix ring, then G = GL,.

Theorem. Let L be a finite Galois extension of k with group T'. Then the torus
corresponding to X = Z[I'] is the group scheme of units of L over k.

PROOF. We get the ring 4 for the torus as the ¥-fixed elements in k,[X]. Since
Gal(k, /L) acts trivially on X, the elements fixed by it are simply those with
coefficients in L. Thus 4 is the ring of elements in L[X] fixed by I". We know
also 4® L ~ L[X]. Now L[X] is just L[y,, y; '], one variable for each o in
I'. The L-homomorphisms L[X]— R ® L thus correspond to giving inver-
tible images u, for the y,. One of these homomorphisms comes from a
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k-homomorphism 4 — R iff it commutes with the I'-action. Since oy, = y,,
this means each u, must be o(u,). Thus the homomorphisms 4 — R corre-
spond naturally to single invertible elements u, in R® L. O

For an explicit example, let k be the reals, with ¥ =T = {e, a}. Then
k{X]=kJfu, u™', v, v7'] with ou=v and ov=u The elements
x = (u + v)/2 and y = (u — v)/2i are fixed by 6. We have x2 + y? = up, so we
can write k[X] = k,[x, y, 1/(x? + y?)]; here the fixed elements are just
k[x, y, 1/(x* + y*)]. The real points in this torus must by the theorem give
us the multiplicative group of the complex numbers; and indeed starting
with the group-like u and v we compute A(x) = x ® x — y ® y and A(y) =
x®y+y®x, so the functor is T(R)={(a, b)|a*+ b* invertible} with
(a, b)(@, b') = (aa’ — bV, ab’ + ba'). '

In Z[T'] here the elements fixed by I are the multiples of e + g, so we get
T, by dividing X by Z(e + o). In the algebra, where the group addition
becomes multiplication, this means we impose the relation uv =1, or
x* + y? = 1. Thus T, is the circle group represented by k[x, y}/(x* + y* — 1).
On the other hand, U, is spanned by e — g, so we get T, by imposing the
relation uv™! =1, or u= v, or y = 0. Thus T, is the multiplicative group,
k[T;] = k[x, x™']. We have T, n T, = y,, corresponding to the fact that
e + o and e — o generate a subgroup of index 2 in X.

In this example we have actually T,(k)T;(k) = T'(k). But now take k to
be the rationals. We can write down the same formulas to define a T split
over L = k(i). And (1, 1) in T'(k) is now not in T,(k)T;(k)—for if (1, 1) =
(a, b)(c, 0) = (ac, bc) with a? + b% = |, then a = b = 1/c and 2a® = 1, which
has no solutions in k. This failure of surjectivity on rational points will be
discussed and analyzed in Chapters 15 and 18.

7.6 Some Automorphism Group Schemes

Let M be a finite-dimensional k-space with some sort of algebraic
structure—perhaps a bilinear multiplication (not necessarily associative), or
even a whole Hopf algebra structure. Inside the functor of linear maps
M ® R - M ® R, let F(R) be those preserving the given structure. The con-
dition that a map preserve the structure is given by polynomial equations in
the matrix entries: for multiplication, e.g., we only need the equations saying
that the product is preserved for basis elements. Thus F is representable.
Hence also the invertible maps M ® R - M ® R preserving the structure
are a closed subgroup of GL, . We call this Aut(M), the automorphism group
scheme of M. If M is a Hopf algebra representing a finite group scheme G, we
call the functor Aut(G) (though formally we should reverse the order of
multiplication, since M and G are anti-equivalent). The functor can equally
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well be defined for infinite-dimensional M, but then it may not be
representable.

Theorem. Let A be a separable k-algebra. Then Aut(A) is etale.

Proor. The group scheme is etale iff it is so after base extension, so we may
assume k= k. Then A =ke, x - x ke,. Take T: A R—> A® R with
Te;=) a;e;. We want (Te;)? = Te; and (Te;)(Te,) = T(e;e,) = 0 and
1= T(1) = T(}, ¢;), so the matrix entries must satisfy a = a;;and a;;a,, = 0
and ) ; a; = 1. These conditions say that for fixed i the aj; are orthogonal
idempotents adding to 1, and that is precisely the functor represented by the
algebra k". Thus the endomorphism functor F is represented by the separ-
able algebra k" x -+ x k". The automorphisms are represented by a localiza-

tion of this algebra, and it again is separable. O

We actually see here that Aut(k x -+ x k) is a constant group scheme,

and looking at its points in k shows it is the permutation group on n
elements.

Corollary. Let G be a finite group scheme which is either etale or of multiplica-
tive type. Then Aut(G) is etale.

ProOF. If G is etale, A = k[G] is a separable algebra, and Aut(G) s a closed
subgroup of the automorphism group of the algebra. Suppose now G is of
multiplicative type. As in the proof of the theorem, we may assume k = k, so
G is diagonalizable. But then its Cartier dual G is a constant group (2.4),
and clearly Aut(G) ~ Aut(G®). O

7.7 A Rigidity Theorem

Theorem. Let G be a connected affine group scheme acting as automorphisms
of an algebraic group scheme T of multiplicative type. Then G acts trivially.

Proor. Clearly the statement is true over k if it is so after extension to
k, so we may assume k=k. Thus T is diagonalizable. Let T.(R) =
{x e T(R)|x"=1}. Each T, is a finite diagonalizable subgroup, and is
mapped to itsell by the automorphisms in G. Since Aut(T,) is etale, G acts
through m,(G), which by assumption is trivial. That is, G acts trivially on T,,.

We now show that | J T, is in an appropriate sense dense in T. We have
k[T] = k[X] for some finitely generated abelian group X, and k[T}] is
k[X/nX]. Let y:k[T]—k[G]®K[T] give the action, and let y(x)=
Y £, ®y. If Y(x) = 1 ® x, we are through. If any other f, is nonzero, take n
large enough that y ¢ nX. Then k[T,] — k[G] ® k[T;] sends the class [x] to
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something other than 1 ® [x], and this is impossible since G acts trivially
on T,. U

Other abelian group schemes of course can have connected groups of
automorphisms; on G,, for instance, G,, acts by x> ax.

Corollary. Let G be connected, T a normal subgroup of multiplicative type.
Then T is central in G.

PROOF. G acts by inner automorphisms. O

EXERCISES

1. Let X be a finite abelian group with #-action. Associated with X we have a finite
etale group (from Chapter 6) and a finite group of multiplicative type (from this
chapter). How are these two group schemes related?

2. Let G and H be algebraic affine group schemes. Show that every homomorphism
from G to H over k is actually defined over a finite extension of k.

3. Let G be of multiplicative type. Show Hom(G, G,) is trivial.

4. (a) Show that an abelian affine group scheme G is of multiplicative type iff k[G)
is a coseparable coalgebra (6, Ex. 4). [Move to k,, observing that a subco-
algebra of a coseparable coalgebra is coseparable.]

(b) For any extension field L, show G is of multiplicative type iff G, is. In
particular, G is of multiplicative type whenever Gy is diagonalizable.

5. Let G be of multiplicative type, V a finite-dimensional linear representation.
Show that V is a direct sum of irreducible subrepresentations. Extend to infinite
V. [Take ay; in k[G] with p(v;))=) v;®ay;, and let C be the subcoalgebra
spanned by the a;;. Show V becomes a module over C® whose submodules are
the subcomodules.]

6. Let G be algebraic of multiplicative type. Show there is a homomorphism from G
to a finite group scheme with kernel a torus.

7. Let ¢: T — T’ be a homomorphism of tori. Show ¢(T;) T, and o(T,) < T,.

8. A homomorphism G, — G is called a one-parameter (multiplicative) subgroup of
G. Let G be a torus. Show that the one-parameter subgroups of G,, are a finitely-
generated abelian group with %-action, and that this group is dual to the charac-
ter group under the obvious pairing into Z = Hom(G,,, G,).

9. Show that over the reals a torus T is anisotropic iff it is a product of copies of the
circle group. [Let o: Z" — Z" be an automorphism of order 2 with no fixed
elements; diagonalize o over the rationals to show it is multiplication by —1.]

10. In the example of (7.5), compute explicitly which rational points in T(k) are in
T (k) Ta(k). '

11. Let G be a finite group scheme. Show there is a closed embedding of G into the
group scheme of units of k[G]”. If G is of multiplicative type, show this embeds G
in a torus.
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12.

13.

14.

15.

16.

17.

18.

19.

20.

Let k=27 and D= Z[ﬂ]. Let G be the group scheme of units of D over k.
Compute the base changes of G to k' = Z/pZ for p = 2, 3, 7. Generalize to other p.

(a) Show that if G, and G, are groups of multiplicative type, sois G, x G,,and
its character group is the sum of those for G, and G,.

(b) Let G, and G, be of multiplicative type with character groups X,, X,.
Suppose there is a ¥-module injection of X, into X,. Show that k[G,]
embeds in k[G,]. Deduce that G, comes from an algebraic matrix group if G,
does.

(c) Let X be a finitely generated torsion-free ¥-module with ¢ acting through
the finite quotient I'. Show X has a ¥-module injection into a finite sum of
copies of Z[I']. [Take Hom,[Z[I'], X] with action (af )(z) = f(z0).]

(d) Show that over infinite fields every torus comes ftrom an algebraic matrix
group.

(a) Let B be a finite-dimensional (commutative) k-algebra. Let G be an affine
group scheme over B. Define the Weil restriction F of G to k by F(R) =
G(R ®, B). Show that F is an affine group scheme over k. [Let a, be a basis
of B. For X;=Y% Y;®ua; in R® B, show each polynomial equation
S(Xy, ..., X,) =0 is equivalent to k-polynomial conditions on the Y;.]

(b) If B/k is a Galois field extension, show Fp~ G x '+ x G.

Let G be a finite group scheme, H any affine group scheme. Show Hom(G, H) is
representable. [Embed it in the Weil restriction of Hyq.]

Let char(k) = 2, let B = k[X]/(X?), and let G = Aut(B). Show that G is a semi-
direct product of &, and G,,, with the &, normal but not the G,,. Hence observe
that G,.q need not be normal in G.

Let char(k) = p. Show Aut(a,) = G,,.

Show Aut(G,) = Z/2Z. Show that Aut(G,, x G,,) is the constant group scheme
GL,(2).

(a) Compute Hom(p,,, p,.).
(b) If G and H are finite of multiplicative type, show Hom(G, H) is etale.

Let H; be a family of closed subgroups of the affine group scheme G, and suppose
Ui H(R) is a group for each R. If k[H,]) = k[G)/I;, show that () I, defines the
smallest closed subgroup containing all H,.



Unipotent Groups

8.1 Unipotent Matrices

As in the last chapter we begin with matrices and then generalize to a class of
group schemes; the matrices involved here are at the other extreme from
separability. What we want is some version of nilpotence, but of course
nilpotent matrices cannot occur in a group, so we modify the definition
slightly. Call an element g in GL,(k) unipotent if g — 1 is nilpotent—
equivalently, all eigenvalues of g should be 1.

If g and h are unipotent and commute, their product is unipotent, since
gh — 1 is the sum of commuting nilpotents g(h — 1) and g — 1 and hence is
nilpotent. In particular the tensor product of unipotent operators is unipo-
tent. The direct sum is so also, and clearly a unipotent map induces unipo-
tent actions on invariant subspaces, quotients, and duals. As in (7.1) this
gives us a persistence theorem:

Theorem. Let g be a unipotent element of an algebraic matrix group. Then g
acts as a unipotent transformation in every linear representation. Homomor-
phisms take unipotent elements to unipotent elements, and unipotence is an
intrinsic property.

8.2 The Kolchin Fixed Point Theorem

Theorem. Let G be a group consisting of unipotent matrices. Then in some
basis all elements of G are strictly upper triangular (i.e., zero below the diag-
onal and 1 on the diagonal).
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Proor. First, this is a fixed point theorem because it is enough to show some
v, # 0in k" is fixed by all g in G. Indeed, G then acts by unipotent maps on

k"/kv,. By induction on the dimension there is a basis [v,), ..., [v,] of the
quotient with each g[v;, ] — [v;+,] lying in k[v;] + --- + k[v;]. Then every g
in G is strictly upper triangular in the basis vy, v,, ..., v,. Furthermore, to

show such a v, exists we may replace k by k; for the equations (g — 1)v, =0
are linear in v,, so they have a nonzero solution in k" if they have one
anywhere.

Let W be a nonzero subspace of minimal dimension mapped to itself by
G. Clearly W is irreducible, i.e. has no nontrivial invariant subspaces. We
want to show that all g — 1 vanish on W. Suppose not. For each g in G we
have Try(g) = dim W, since all eigenvalues are 1; then Trw(g(g’ — 1)) =
Trw(gg') — Trw(g) = 0. Thus the space U = {f € End,(W)| Tr(gf) = 0 for all
g in G} contains g’ — 1 and is nontrivial. If we let G act on End(W) by fi— gf,
the subspace U is invariant.

Let X be an irreducible invariant subspace of U. For each w in W,
sending f to f(w) is a map ¢,,: X - W commuting with the action of G.
Choose some w with ¢,, nonzero on X. Its image is nonzero and G-invariant,
so equals all of W; its kernel is proper in X and G-invariant, so equals zero.
In other words, ¢, is an isomorphism. (This argument is called Schur’s
lemma.) Take fin X with w = ¢, (f) = f(w). By Schur’s lemma again the ring
of linear maps X — X commuting with G is a division ring; but each element
in it must be algebraic over k = k, and so it consists only of the scalars k. For
any v in W the map ¢,, ‘¢, is such a map, so ¢, = A(v)e,, for some A(v) in k.
In particular f(v) is a multiple of w for all v. But clearly such a projection f
has trace 1, which is impossible since fis in U. O

The last paragraph here is a compressed version of some standard algebra
which has nothing specifically to do with unipotence.

Corollary. If a group consists of unipotent matrices, so does its closure.
ProoF. After conjugation, the group will be inside the group U,(k) of all
strictly upper triangular matrices. All elements of U, (k) are unipotent, and

U, (k) is closed. O

The most familiar group of unipotent matrices is U,, which is simply a
copy of G,.

8.3 Unipotent Group Schemes

The last theorem shows us how to define unipotence for arbitrary affine
group schemes: G is unipotent if every nonzero linear representation has a
nonzero fixed vector. For this we must first define fixed vectors, but ob-
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viously we should call v fixed if G acts trivially on the subspace kv. By (3.2)
this is equivalent to p(x) = v ® 1 in the comodule.

Theorem. Let G be an algebraic affine group scheme. The following are
equivalent:

(1) G is unipotent.

(2) In any closed embedding of G in GL,,, some element of GL,(k) conju-
gates G to a closed subgroup of the strict upper triangular group U, .

(3) G is isomorphic to a closed subgroup of some U,.

(4) The Hopf algebra A = k[G] is coconnected, i.e. there is a chain of
subspaces C,<=C,<C,<+ with Co=k and UC,=A and
A(Cr) < Z:) Ci ® Cr—i'

If G comes from an algebraic matrix group, these are equivalent to:

(5) All elements in G(k) are unipotent.

PrOOF. We have (5) equivalent to (3) by the previous theorem, and the first
step in that proof shows also that (1) implies (2). Clearly (2) implies (3), since
by (3.4) we can always embed G in some GL, . Thus we need that (3) implies
(4) and (4) implies (1).

If (4) holds for a Hopf algebra A, and B = A/I is a Hopf algebra quotient,
then taking images of the C; shows that (4) holds for B. Thus we only need to
establish (4) for G = U, . There A = k[{X;|i < j}] with

AX)=X;®1+1®X;;+ Y Xu®X,;.

i<k<j
To X; assign weight j — i, so a monomial [T X7 has weight )" n;;(j — i). Let
C,, be the span of monomials of weight < m. Clearly Co = kand L C,, = 4,
and also C;C; < C,, ;. To show A(C,,) = Y C;® C,,-;, it is enough to show
it for monomials in C,,. By inspection it is true for the X ;;. Then inductively,
if it is true for monomials P, Q of weights r, s, we have A(PQ) = A(P)A(Q)
lying in

(Z Cr® Cr—i)(z Cj®csai) = Z(Cicj®cr—ics*j) = Z Cl’+j® Cr+s—i—j‘

Finally, assume (4) and let p: V>V ® A give a comodule. Let
V,={veV|p()e V®C,}. Clearly ¥ = U V,. If 0 # v is in V,, then p(v)
has the form v’ ® 1, and applying ¢ we find v’ = v, so v is fixed. We can finish
the proof by showing that ¥, = 0 would imply V,,, = 0. We have p(V,,,) <
VRC,,, 50 (id®@A)(V,4,)SV®Y C;®C,, ;. Hence V,, | goes to 0
in the induced map down to ¥V ® A/C,® A/C,. But the (id ® A)p equals
(0 ®id)p. We have V —» V ® A/C, injective since ¥, = 0, and again applying
p ®id we have V - (V ® A4/C,) ® A/C, injective. Hence V,,, = 0. O

Corollary. (a) If G is unipotent, so is any closed subgroup and any group
scheme represented by a Hopf subalgebra.
(b) Let L be an extension field. Then G is unipotent iff Gy is.
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ProOF. The assertion for closed subgroups follows from (3), that for subal-
gebras from (1). If G satisfies (4), so does G.; if G, satisfies (1), so does G,
since p(v) = v ® 1 is a linear equation in v. O

Corollary. (a) If G is unipotent and H algebraic of multiplicative type, there
are no nontrivial homomorphisms G — H.

(b) If G and H are respectively unipotent and multiplicative-type subgroups
of some affine group scheme, then G N H is trivial.

PROOF. (a) We may move to k, as a nontrivial Hopf algebra map remains
nontrivial there. Splitting H into factors and recalling p, < G,,, we see it is
enough to show Hom(G, G,,) is trivial. But a map G— G,, is a one-
dimensional representation and hence is trivial by the definition of
unipotence.

(b) By the previous corollary, G n H is unipotent. Apply (a) to the inclu-
sion of G N H into H. O

8.4 Endomorphisms of G,

Unipotent groups, unlike groups of multiplicative type, have quite different
structure when char(k) # 0. The final two sections illustrate this.

Theorem. If char(k)=0, then Hom(G,, G,)=k. If char(k)= p, then
Hom(G,, G,) is the twisted polynomial ring k[F] with FA = APF; here F is the
map F(x)= xP.

Proor. Homomorphisms G, » G, correspond to elements Q in k[x] with
AQ=Q0®1+1®Q; if @(X)=Y a,X", we must have a(X®1+
1® XY =a(X"®1+1® X"). Clearly a, = 0, and when char(k) =0 we
can have only Q = a; X. Assume now char(k) = p, and suppose r = p"s with
s> 1primetop. Then(X®1+1® X) = (X"®1+ 1® X”"f hasaterm
S(XP' ® X~ V), 50 a, = 0. Thus Q(X) is Y b; X¥.

In Hom(G,, G,) we add by adding the images, which means adding the
Q; we multiply by composition. Clearly F is the homomorphism for
Q(X) = X, and F" then yields X?". Scalar multiplication by b done after F"
gives bX?", and thus the homomorphisms are uniquely written as Y b F.
Clearly Fb = bPF. O

In characteristic p we can obtain nontrivial subgroups of G, as kernels of
these homomorphisms. (In fact this gives all the subgroups—see Ex. 7.) We
have ker F" = a,,,, where a,,(R) = {x € R|x” = 0}, a connected subgroup.
On the other hand ker(F — 1) is represented by k[X]/(X? — X) and is etale,
since X? — X is a separable polynomial. In fact its roots are all in k, the
Galois action is trivial, and ker(F — 1) = Z/pZ.
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8.5 Finite Unipotent Groups

Theorem. Let char(k) =0. Then a nontrivial etale group scheme cannot be
unipotent.

PROOF. Base-extending to k, we may assume we have a finite constant group
scheme, say of order n. When we embed it as an algebraic matrix group, each
g in it satisfies the separable equation X" — 1 = 0. If g is also unipotent,
g = 1. Thus the group is trivial. O

In (11.4) we will show that all finite group schemes in characteristic 0 are
etale, and hence none are unipotent.

Corollary. If char(k) =0, then every unipotent algebraic group scheme is
connected.

PROOF. Since 7,(G) is represented by a Hopf subalgebra, it is unipotent.
a

As we have already seen, these results are false in characteristic p; ex-
plicitly, {(6 )| x” = x} is an upper triangular copy of Z/pZ. We can how-
ever find .some restriction on the unipotent groups using Cartier duality.

Theorem. Let G be a finite abelian group scheme.
(a) G is of multiplicative type iff G is etale.
(b) G is unipotent iff G is connected.

PROOF. Part (a) is essentially already known: pass to k and recallp? = Z/nZ.
If then mo(GP) is nontrivial, ny(G”) is a subgroup of G®” = G of multiplica-
tive type, so G is not unipotent. Suppose on the other hand that G” is
connected, in which case the augmentation ideal I in kK[G”] = A” is nilpo-
tent. Let ¢ =fy, f1, ... be a basis of A” chosen so that final segments are
bases of I, I%, ..., Let 1 = x4, X,, ... be the dual basis of 4. The coefficient of
x;® x, in Ax; is (f; ® fi)(Ax;) = (f; - fi)(x:). This will be zero for j > i and
k = 1, since f; f, will be in a higher power of I than f;. Thus Ax; for i > 1 will
have the form x;® 1+ Y ;<; x;® a;;. Thus in this basis the regular rep-
resentation of G is strictly upper triangular. O

EXERCISES
1. In (8.3), show that statements (1) and (4) are equivalent even for G not algebraic.

2. Show that in statement (4) of (8.3) there is a largest possible choice of the C,, and
that with this choice C,,C, S Cp4n-

3. Let G = lim G, with k[G.] finitely generated subalgebras of k[G]. Show G is
unipotent iff all G, are unipotent.
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10.
11.

. Passing to lim, show the corollary in (8.3) holds for H not algebraic.

. If G is unipotent, show G has a nontrivial homomorphism to G, . [In U,, let H,

be the (a;;) with a;;=0 for j — i <r. Show (a;;)~ ay, x+, is a homomorphism
H, - G,, and glge common kernel of them is H,.,.]

. Let G be of .n.llultiplipative type, H unipotent. Show there are no nontrivial

homomorphisms G — H. [Reduce to G and H algebraic, embed H in U, use the
construction in the previops exercise to reduce to showing Hom(G, G,)is trivial.]

. Show every closed subgroup of G, is the kernel of a homomorphism G, — G, . In

particular, there are no nontrivial ones in characteristic zero. [Let the subgroup
be zeros of P(X). Then P(0)=0 and P(Y + Z) is in the ideal of k[X ® 1,
1® X]=k[Y, Z] generated by P(Y) and P(Z). Write P(Y + Z) — P(Y) —
P(Z) = A(Y, Z)P(Y) + B(Y, Z)P(Z) with degy B < deg P. Compare Y-degrees
to get A=0]

. Let char(k) = p. On 2-space W(R) = {(x, y)| x, y € R} define a multiplication by

(5 ) Y)=(x+ X,y +y +[(x + XY = xf = (x'))p)

where the last term is taken to mean that the binomial coefficients are all divided

by p.

(a) Show W is a commutative group scheme.

(b) Show W is unipotent.

(c) Show W is not annihilated by p (i.e. by the homomorphism g+—g -+ - g),
and so W is not isomorphic to G, x G,.

(d) Look at the process embedding group schemes in GL, and produce an

embedding of W as upper triangular (p + 1) x (p + 1) matrices. Write this
out explicitly for p =2 and p = 3.

. Let G be a finite group scheme, not necessarily commutative. Show that G is

unipotent iff the augmentation ideal in the (noncommutative) algebra k[G]” is
nilpotent.

Let char(k) = p. Show g in GL,(k) is unipotent iff g*" = 1 for some r.

Let char(k) = 0. Show g in GL,(k) is unipotent iff there is a homomorphism
¢: G,— GL, with ¢(1) = g. [Let f = g — 1, a nilpotent matrix, and let h be given
by the (finite) series h = log(g) = f — f2/2 + f3/3 — -+ . Then h is nilpotent; let
o(t) = exp(th) =1 + th + (t*/2')h* + ---). By Ex. 8 this result is false when
char(k) = p.
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9.1 Jordan Decomposition of a Matrix

We now begin to study how some more complicated groups are composed
of unipotent and multiplicative parts. As usual we start with a theorem on
matrices.

Theorem. Let k be a perfect field, g in GL, (k). Then there are unique g, and g,
in GL,(k) such thaf g is separable, g, is unipotent, and g = g;g, = g.9s-
Furthermore, g, and g, are in k[g).

PROOF. Assume first that k is algebraically closed. As in (6.2), the algebra k[g]
is a product of local factors A4;. The residue field of 4; is a finite extension
and so equals k. Let «; be the residue of g. The idempotents in k{g] split the
module k" into @ V; with g — «; nilpotent on V;. As g is invertible, all ; are
nonzero. Let g, be multiplication by o; on V;. Then g, is separable and
commutes with g; and g — g, is nilpotent, so g, = g, 'g is unipotent. The
various X — o; are relatively prime, so there is a polynomial ¢(X ) congruent
to o; modulo (X — &) for each i; then g, equals ¢(g) and lies in k[g].
Similarly g; ! and g, are in k[g].

Let g = SU now be any such decomposition. As g, and g, are polynomials
in g, the S and U commute with them as well as with g. But then §~ g, is
separable and Ug, ! is unipotent. Since they are equal, they both must be
trivial. Thus uniqueness holds.

Finally, suppose k is merely perfect, with ¢ = Gal(k/k). For g in GL, (k)
we get g, and g, in GL,(k). For ¢ in % we have g = o(g) = a(g,)a(g.), and
o(g,)a(g.) is a decomposition of g of the same type. Hence g, = a(g,) and
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gu = o(g,) for all . Consequently g, and g, in fact have entries in k. They are
also then in the k-span of the powers of g, since they are so over k. O

The expression g = g, g, is the (multiplicative) Jordan decomposition.

9.2 Decomposition in Algebraic Matrix Groups

Theorem. Let k be perfect, G a closed subgroup of GL,. For g in G(k) the
elements g, g, are in G(k).

PrOOF. Suppose ¢ is any homomorphism from GL, to some GL, . Then we
know (7.1, 8.1) that ¢(g,) is separable and ¢(g,) is unipotent. They commute
and give ¢(g), so ¢(g,) = ¢(g), and ¢(g,) = ¢(g).; that is, ¢ preserves the
Jordan decomposition. Then any subspace of k" invariant under ¢(g) is also
invariant under ¢(g,) and ¢(g,), since they are polynomials in ¢(g). Hence in
any linear representation of GL, the subspaces invariant under g are invar-
iant under g, and g,; for by (3.3) the representation is a union of finite-
dimensional ones. '

We apply this to the regular representation y of GL, on 4 = k[GL,],
where Y(g)f = (id, g)Af. (Intuitively this is the translation action on func-
tions.) Let J be the ideal defining G. Since A(I)S A® I+ I ® A, and
g(I) = 0, we have y(g)I < I. Hence y(g,)] < I. But the unit e is in G, i.e.,
e(I)=0. For f in I we have then g, (f)= (e g;)(f)= (& g5)A(f)=
&(id, g,)A(f) = e¥(g,)f = 0. Thus.g, vanishes on I, which means g, € G(k).
Similarly g, € G(k). O

The argument at the start of the proof shows now that any homomor-
phism G — H preserves Jordan decompositions. In particular, Jordan de-
composition in an algebraic matrix group is intrinsic, independent of the
choice of an embedding in GL, .

9.3 Decomposition of Abelian Algebraic Matrix
Groups

Theorem. Let k be perfect, S an abelian algebraic matrix group. Let S, and S,
be the sets of separable and unipotent elements in S. Then S, and S, are closed
subgroups, and S is their direct product.

ProoF. Since all elements commute, we know S, and S, are subgroups. They
clearly have trivial intersection, and their product is S by the last theorem. If
S is embedded in GL,, then S,={g € S|(g — 1)" =0}, so S, is closed. By
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(4.6) we can diagonalize S, over k, so there is an M in GL,(k) with
S;=8n M~' (Diag) M. Since the conjugate of the diagonal group is
closed, S, is closed in S by (4.1). 0

This is actually our second decomposition theorem for abelian groups: in
(6.8) we decomposed finite abelian group schemes into connected and etale
factors. Moreover, that result is of the same type, since by (8.5) we see it is
equivalent to a decomposition of the dual into unipotent and multiplicative
parts. As this suggests, the theorem in fact holds for all abelian affine group
schemes. To introduce the version of duality needed for this extension, we
first prove separately a result of some interest in itself.

9.4 Irreducible Representations of Abelian Group
Schemes

Theorem. Let G be an abelian affine group scheme over an algebraically closed
field. Then any irreducible representation of G is one-dimensional.

ProoF. Let V be an irreducible representation, necessarily finite-dimensional
by (3.3). Let {v;} be a basis, and write p(v;) = ¥ v; ® a;;. Recall from (3.2)
that the subspace C spanned by the a;; has A(C) & C ® C. Such a C is called
a subcoalgebra. As k[G] is cocommutative, the map AP: C° ® C? — CP
makes C” into a commutative k-algebra with unit e.

The map (f, x)+ (id, f)o(x) makes C® act on V, and it is trivial to check
that V thus becomes a C”-module. IfC” - V, < V,, then p("y) € ¥y ®C,and
V), is a subrepresentation; thus by assumption V has no nontrivial
C”-submodules. But C” is a product of local rings, and the corresponding
idempotents decompose V into a direct sum; hence C” must act on V
through a single local factor. If M is the maximal ideal of that factor, then
M -V is a submodule, and M - V # V since M" =0 for some n; hence
M -V =0, and C” acts through a residue field. This can only be k, since

k = k. As there are no submodules, dim, V = 1. O

Corollary. Assume k is algebraically closed. If G is abelian and has no nontri-
vial characters, it is unipotent.

PROOF. Any representétion contains an irreducible one, which is one-
dimensional and so by hypothesis trivial. O

9.5 Decomposition of Abelian Group Schemes

Theorem. Let G be an abelian affine group scheme over a perfect field. Then G
is a product G, x G, with G, unipotent and G, of multiplicative type.
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ProoF. In the course of (3.3) we showed that A = k[G] is a directed union of
finite-dimensional subcoalgebras C. Each C” is a finite-dimensional k-
algebra. It has the separable quotient C°/Rad C”, and by (6.8) there is a
canonical section mapping this isomorphically back to n,(C”) inside C”.
Dualizing, we get a subcoalgebra C; and a canonical coalgebra projection
p: C— C,. If E is a larger subcoalgebra, the algebra map E® — C? induces a
map modulo radicals which commutes with the sections. Hence C, < E,,
and the projections are compatible. Thus we get a subcoalgebra A, = U C,
of A with a coalgebra projection p: 4 — A;.

For any C we can find an E large enough that multiplication sends C ® C
into E. There is then a dual map d: E? - C® @ C” which is easily seen
to be an algebra homomorphism. Our canonical section, preceded by
reduction, is a homomorphism q: E® — ny(E”) = EP, and p is defined by
the condition that {f, pb) = {qf, b) for all fin E” and b in E. Like any
algebra homomorphism, 8 commutes with the canonical sections; and the
section on C°® C? is simply q®q by (6.5). Thus for b and ¢ in C
we have (f, p(bc)) = (qf; bc) =<{dqf, b®c>=<(q®@q)f, b®c) =
<df, pb ® pc) = {f, p(b)p(c)>. Hence p(bc) = p(b)p(c), and in particular A,
is closed under multiplication. By cocommutativity, S preserves the co-
algebra structure, so S(4,) < A4,; and taking C = k-1 = C, we see 1 € A,.
Thus A, is a Hopf subalgebra of 4, and p is a Hopf algebra projection.

Let G, be the group scheme represented by A, . Following p by the inclu-
sion, we have homomorphisms G, —» G — G, with composite the identity.
Checking on each G(R), we see that this means G is the direct product of G,
and the kernel G, of G — G;.

The construction of A, commutes with base extension, since
1o(C” ® L) = my(C°) ® L. Hence to prove G, is of multiplicative type and
G, unipotent we. may assume k = k. Then each C°/Rad C? is a product of
copies of k, and the homomorphisms to k are group-like elements spanning
C,. Thus A, is spanned by group-likes, and G, is diagonalizable. Also, any
group-like b in C defines a homomorphism C” — k; such a homomorphism
vanishes on the radical, so b is in C,. Thus the other tensor factor of A,
representing G,, has no nontrivial group-likes. Hence by the previous corol-
lary G, is unipotent. O

This general theorem actually sums up the chapter and implies most of the
earlier results. Indeed, let g be an element of an algebraic matrix group S. Let
G(k) be the closure of the subgroup generated by g. Both G(k) and the
corresponding group scheme G are abelian. Write G = G, x G,. Then g in
G(k) is expressed as g, g, with g, in G,(k) separable and g, in G, (k) unipotent,
and g; and g, commute since they are in G(k). We thus have a Jordan
decomposition in S. In particular this applies to GL,(k). For uniqueness,
suppose g = hyh, is another decomposition. The closed subgroup H gen-
erated by h, and h, contains G; it is still abelian, so H= H, x H,. As
9s9u = hyh, in the direct product, we get g, = h, and g, = h, .
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EXERCISES

1. (Additive Jordan Decomposition) Let k be a perfect field, T an n x n matrix. Show
there are unique R and S with R nilpotent, S separable, RS = SR,andR + S=T.

2. Give an example to show that the Jordan decomposition need not exist over a
field that is not perfect.

3. Let k be algebraically closed, G an algebraic matrix group. Show G is unipotent iff
all elements of finite order have order divisible by char (k). [Use Kolchin’s
theorem to reduce to the abelian case, and look at diagonalizable matrix groups.]

4. Let G be abelian. Show G is of multiplicative type iff Hom(G, G,) is trivial. [Use (7,
Ex. 3 and Ex. 4)]

5. Let G be an algebraic affine group scheme. Prove that the following are
equivalent:

(a) Every linear representation of G has a one-dimensional invariant subspace.

(b) Every irreducible representation is one-dimensional.

(c) In any embedding of G in GL,, some element of GL,(k) conjugates G to a
subgroup of the group T, of upper triangular matrices.

(d) G is isomorphic to a subgroup of some T,.

(e) In k[G] there is a chain of subspaces Co<S C; S C,<S+ with
AC, =Y Ci®C,_;and v C, = k[G] and C, spanned by group-like elements.

Such G are called triangulable or triangularizable.

6. (a) Show that unipotent and diagonalizable groups are triangulable.
(b) Show that a product of two triangulable groups is triangulable.
(c) Show that if G is triangulable, so is G, for any extension field L.
(d) If G is triangulable and Hom(G, G,,) is trivial, show G is unipotent.
(e) If G is triangulable and of multiplicative type, show G is diagonalizable. [Use
(7, Ex. 5).]

7. (a) A coalgebra C is pointed if its minimal subcoalgebras are all one-dimensional.
When k = k, show every cocommutative C is pointed.
(b) Show C is pointed iff every irreducible comodule is one-dimensional. [Reduce
to dim, C < oo and use standard results on C”.]



Nilpotent and Solvable Groups

10.1 Derived Subgroups

We can further extend the Jordan decomposition to nonabelian groups, but
we first need an algebraic formulation of commutator subgroups. Let S be
an algebraic matrix group, and consider the map S x S — S sending x, y to
xyx~'y~!. The kernel I, of the corresponding map k[S] — k[S] ® k[S] con-
sists of the functions vanishing on all commutators in §; that is, the
closed set it defines is the closure of the commutators. Similarly we have a
map $" — § sending xy, yy, ..., X, Yy t0 X, y1x7 yr - x7 Yy L, and the
corresponding map k[S] — ®2" k[S] has kernel I, defining the closure of the
products of n commutators. Clearly then I, 2 I, 21,2 ...,

The commutator subgroup in § is the union over n of the products of n
commutators, so the ideal of functions vanishing onitis I = ﬂ I, . Thus the
closed set defined by I is the closure of the commutator subgroup. By (4.3) it
is a closed normal subgroup of S, and we call it the derived group 2S.
Iterating this procedure, we get a chain of closed subgroups 2"S. Whenever
S is solvable as an abstract group, the sequence 2"S also reaches {e} and
reaches it equally fast (4.3).

All of this can in fact be done in general. Let G be any affine group scheme
over the field k. Certainly we have the maps G2" — G, and they correspond to
k[G] - ®2"k[G] with kernels 1, satisfying I, 21, 2 ... .If fis in I,,, then
A(f) goes to zero in k[GY/I, ® k[G)/I,, since multiplying two products of n
commutators yields a product of 2n commutators. Thus I = () I, defines a
closed subgroup 2G. We call G solvable if 2"G is trivial for some n. If G
comes from the algebraic matrix group S = G(k), the construction shows
that 2G comes from 2S. In particular G then is solvable iff S is solvable. In
any case all commutators in G(R) lie in 2G(R), and 2G is normal in G. For
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any larger field L we have (2G), = 9(Gy), since each I, is defined as the
kernel of a linear map with coefficients in k.

Theorem. Let G be algebraic. If G is connected, so is 9G.

PrOOF. By hypothesis n,k[G] = k. Then n,(®*%[G]) = ®2"(n, k[G]) = k,
and so mo(k[G)/1,) = k since k[G)/I, injects into ®3"k[G]. A nontrivial sep-
arable subalgebra in k[G)/() I, would have nontrivial separable image in
some k[G)/I,, so no(k[G)/() 1,) = k. O

It is instructive to restate this proof geometrically for algebraic matrix
groups. It first shows that the closure of the image of a product of connected
sets is connected, then that the closure of the union of an increasing sequence
of connected sets is connected.

10.2 The Lie-Kolchin Triangularization Theorem

Theorem. Let S be a connected solvable matrix group over an algebraically
closed field. Then there is a basis in which all elements of S are upper triangular
(i.e., zero below the diagonal).

PROOF. As in the unipotent case (8.2), it is enough to show that the elements
in S have a common eigenvector v; for then S acts on k"/kv with connected
solvable image in GL, _,(k), and we use induction. Replacing k" by a mini-
mal invariant subspace V, and S by its image acting there, we may assume
the S-action is irreducible. The closure § is still connected and solvable, so
we may assume S is an algebraic matrix group.

The group 25 is again connected. If we use induction on the least n for
which 2"§ is trivial, then we may assume that for 2§ there is a common
eigenvector v. Let x, be the character of 28 by which it acts on kv. For g in §
and nin 2S we have ngv = gg~'ngv = gy, (g~ 'ng)v = x,(9~ 'ng)gv; thus gv is
also a common eigenvector for 2S5, and the character y,, satisfies
Xgo(n) = 2,9 'ng).

Eigenvectors for different characters are linearly independent, since
p(v) = v® x, and we know by (2.2) that the different x, are independent
Hence there are only finitely many different y,, and the subgroup
H = {g|x,, = x,} has finite index in S. But for each n in 25 the equality
Xo(n) = x,(g~'ng) is a polynomial equation in g, and thus H is closed. A
connected S cannot have a proper closed subgroup of finite index, since by
(5.2) the cosets would disconnect S. Thus H = S, and 28 acts on all gv by the
same character.

Since V is irreducible, the elements gv span V. Thus 2S actson allwin V
by nw = x,(n)w. In other words, S consists of scalar multiplications. But all
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commutators have determinant 1, and hence 28 is inside the special linear
group. Therefore it is a finite subgroup of G,, . But since it is also a connected
matrix group, it must actually be trivial. Thus S is commutative. But we
already know more generally (9.4) that irreducible representations of an
abelian group over k = k are one-dimensional. O

Corollary. Let S be any solvable matrix group over an algebraically closed
field. Then S has a normal subgroup of finite index which can be put in triangu-
lar form.

Proor. The theorem applies to (5)°, and (S: S N §°) = (8§°: §°) < (S: §9)
is finite, 0O

10.3 The Unipotent Subgroup

Theorem. Let S be a connected solvable matrix group over any field. Then the
unipotent elements in S form a normal subgroup which contains all
commutators.

PrOOF. Moving to k, we can apply the theorem and conjugate to get S as a
subgroup of the upper triangular group T, (k). The unipotent elements in
T,(k) are those in the strict upper triangular group U, (k), which is normal
and is the kernel of the map to the commutative diagonal subgroup. [J

Corollary. A connected solvable group of separable matrices is commutative.

This helps indicate why groups of multiplicative type are important. But
it should be said that solvability is definitely a necessary hypothesis. Let S
for example be the group of all rotations of real 3-space. For g in S we have
gg' = 1,50 all complex eigenvalues of g have absolute value 1. The character-
istic equation of g has odd degree and hence has at least one real root. Since
det(g) = 1, it is easy to see that 1 is an eigenvalue. In other words, each
rotation leaves a line fixed, and thus it is simply a rotation in the plane
perpendicular to that axis (Euler’s theorem). Each such rotation is clearly
separable. But obviously the group is not commutative (and not solvable).

Finally, since U, is nilpotent, we have the following result.

Corollary. Let S be a connected solvable algebraic matrix group. Then 28 is
nilpotent.

10.4 Decomposition of Nilpotent Groups

Theorem. Let N be a connected nilpotent algebraic matrix group over a perfect
field. Then the separable and unipotent elements form closed subgroups N, and
N, of which N is the direct product.
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ProOF. The closure of N over k is still nilpotent, and by (9.2) the decomposi-
tion of elements takes place in k, so we may assume k is algebraically closed.
The center of N is an abelian algebraic matrix group to which (9.3) applies. If
the set N, is contained in the center, it will then be a closed subgroup, and
the rest is obvious from the last theorem. Thus we just need to show N, is
central.

Suppose that g in N; fails to commute with some h in N. Triangularize the
group, and choose r > 1 so that the actions of g and h commute on the span
W of the first r basis vectors but fail to commute on the span V of the first
r + 1. Since g is diagonalizable, we can write V = W @ kv where gv = Av for
some scalar A. As V is invariant, hv = uv + w for some w in W. Since g and h
commute on W but not on V, we must have ghv + hgv, which means
gw# Aw. Let h; = h™'g~ 'hg. We have

hygv=2Ah"tww + A%h ‘g 'w=Av — Ah ™ 'w + A2h g~ 'w
and
ghyv=Av — gh™'w + Agh™*g ™ 'w.

As h and g commute on W, the difference of these two is
(g ' +gh™' =22 Yw=h"1g" (A - g)Pw+0.

Thus h,y, which lies in the first subgroup of the descending central series, fails
to commute with g. Repeating the process, we get a noncommuting
h, = hy'g™'h g in the second subgroup, and so on. Since N is nilpotent,
this is impossible. ‘ O

One technical point should be mentioned. Let G be the group scheme
determined by N, and G, and G, the subgroups determined by N, and N, . It
would a priori be possible for G, and G, to have nontrivial (finite connected)
intersection even when N, n N, = {e}. By (8.3), however, that does not in
fact happen here. Thus G is itself the direct product of G, and G,.

We have here extended the abelian matrix group decomposition of (9.3).
The more general abelian theorem (9.5) unfortunately cannot be extended to
arbitrary nilpotent affine group schemes (Ex. 3). (The Lie-Kolchin theorem
similarly fails in general.) Since unipotent and multiplicative type groups are
always nilpotent, we have thus taken the Jordan decomposition about as far
as we can. But there is one further result which is important for the theory of
Borel subgroups: a closed subgroup of the triangular group over k = kis a
semi-direct product of its unipotent subgroup and a diagonalizable group.

10.5 Vista: Borel Subgroups

Solvable groups play an important role in the further structural analysis of
arbitrary algebraic groups. We can do little more here than mention a few of
the major concepts (see also (12.5) on reductive groups). For simplicity we
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consider only connected algebraic matrix groups G over an algebraically
closed field. A maximal connected solvable subgroup B of G is called a Borel
subgroup. Using something like the Lie-Kolchin theorem, one can show that
any two Borel subgroups are conjugate, and thus the structure of B is
intrinsic in the structure of G. Every element actually lies in some Borel
subgroup.

As mentioned above, B has a maximal torus T complementary to its
unipotent subgroup. Any two such tori in B are in fact conjugate. Since
Borel subgroups themselves are conjugate, this shows that all maximal tori
inside G are conjugate. The centralizer C of a maximal torus T is called a
Cartan subgroup of G, and its dimension (unique because of the conjugacy) is
the rank of G. It is always nilpotent. If N is the normalizer of T, then N°
centralizes T by (7.7); in fact also C is connected, so N° = C. The quotient
N/C = W is a finite group of automorphisms of T called the Weyl group of
G. The closed subgroups containing a Borel subgroup (parabolic subgroups)
fall into finitely many conjugacy classes all describable in terms of the Weyl
group.

To illustrate these definitions in a basic case, take G to be GL, (k). The
upper triangular group is a Borel subgroup, and the diagonal group is a
maximal torus T. It is a simple computation to show that T here is its own
centralizer, so G has rank n. Another computation shows that the normalizer
of T is all “monomial ” matrices, those with a single nonzero entry in each
row and column. The Weyl group is therefore isomorphic to the permuta-
tion group on n elements, and it acts on T by permuting the entries.

10.6 Vista: Differential Algebra

Many of the results on unipotent and solvable groups were first introduced
not for structural studies but for use in differential algebra. We can at least
sketch one of the main applications. For simplicity we consider only fields F
of meromorphic functions on regions in C. We call F a differential field if it is
mapped into itself by differentiation. An extension L of such an F is a
Picard-Vessiot extension if it is the smallest differential field which contains

F together with n independent solutions y; of a given linear differential
equation

YO 4 by yT 4+ by + by =0

with the b; in F. It is a standard fact that, restricting the region, we can
always construct n independent meromorphic solutions and so get a Picard-
Vessiot extension.

Let G be the group of automorphisms of the field L which commute with
differentiation and are trivial on F. Any g in G maps a solution y; to another
solution, some linear combination of the y; over the complex field k. But the
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y;j and their higher derivatives generate L over F, so g is determined by its
effect on the y;. Thus we can view G as a matrix group of transformations of
the solution space. In fact, G is even an algebraic matrix group: To see this,
let R be the infinite polynomial ring F[{Y{"}]. Sending Y{” to y” maps R to
L, and L is the fraction field of the image. Every invertible linear map of the
Y; induces an automorphism of R, and the elements of G are those which
pass to the quotient. The condition for that is a collection of polynomial
equations in the matrix entries.

One simple example is y’ — by = 0, whose solution is the exponential of
an integral, exp(f b). The automorphisms must send y to some constant
multiple ay, and thus they form a subgroup of G,,,. It need not be all of G,,; if
for instance F = C(X) and b = 1/2X, then L = C(X'?) and G =p,. The
other basic example is y = b, with solution given by an integral; here 1 and y
are the two independent solutions of y” — (b’/b)y’ = 0. The automorphisms
send y to y + a - 1 and thus form a subgroup of G,, which must be G, or
nothing since char(k) = 0. One says that an equation can be solved “by
quadratures ” if its solutions can be constructed by steps of these two kinds.

The main theorem now is that if G is connected and solvable, the solu-
tions of the equation defining L over F can be constructed from F by
quadratures. The one extra lemma needed is that no element of L outside F
is fixed by G; then we reason as follows. By the Lie-Kolchin theorem, we can
choose a basis of solutions where G is triangular: that is, g(y,) = ¢,, y, and
g(y2) = c12y1 + 22y, and so on. Then g(yy)=g(y,) =c11)1, so
g(y'\ /y1) = y1/y, for all g, and y) /y, is in F. Thus y, can be constructed
from F as the exponential of an integral. Furthermore, g(y,/y,)=
cizfeiy + (€22/¢11)y2/yy and so on, whence g((y2/y:))=g(y2/y:) =
(c22/¢11)(y2/y1) and so on. That is, on the z; = (y;/y, ) for i = 2 we have the
same kind of triangular action as on the y;. By induction we can construct
the z; from F by quadratures. We then get y;/y, by integration.

The assumption that G is connected can be dropped. Indeed, let F° be the
field fixed by G°. The finite group G/G° is solvable, so by ordinary Galois
theory we can get F° from F by adjoining various n-th roots. These can all be
constructed by u'” = exp [ (u'/nu), and then the preceding argument takes
us on from F° to L.

One can show conversely that G is solvable whenever the solutions y; can
be constructed by quadratures. The extra lemma needed is that if L is a
Picard-Vessiot extension containing L, then G’ maps onto G. The result then
follows from the fact that, as we saw, each single adjunction of an integral or
exponential of an integral has abelian automorphism group. (Indeed, the
argument shows that L/F can be constructed by integrals alone iff G is
unipotent, and by exponentials of integrals alone iff G is diagonalizable.)
Using this criterion one can show for instance that the equation y” + xy =0
cannot be solved by quadratures starting from C(x).
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EXERCISES

1. If the affine group scheme G is not solvable, show some G(R) is not solvable.
2. Extend the theorem of (10.1) to nonalgebraic G.
3. Let char(k) = 2. Let G be the closed subgroup

{@ Dlad—bc=1, a*=1=d* b =0=c}

in SL, .

(a) Show G is a finite connected subgroup.

(b) Show that mapping to (ab, cd) is a homomorphism G — a, x a, with central
kernel isomorphic to p,.

(c) Show G is nilpotent but not abelian, so G does not split as g, x (&, x a,).

(d) In the natural representation of G on k2, show there is no v # 0 with p(v) =
v ® b, and thus G is not triangulable.

4. Let S be a connected solvable algebraic matrix group over a perfect field. If the
separable elements form a subgroup, show that S is nilpotent. [S, is normal and

S, N S, is trivial, so S,and S, commute and S = S, x S,. Then S, is connected and
hence abelian.]
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Difterentials

11.1 Derivations and Differentials

The idea on which this part is based is an algebraic version of differentiation
which will serve in all characteristics as a replacement for the “ differential ”
part of real Lie group theory. The crucial feature turns out to be the product
rule. Specifically, let 4 be a k-algebra, M an 4-module. A derivation D of A
into M is an additive map D: A —» M satisfying D(ab) = aD(b) + bD(a). We
say D is a k-derivation if it is k-linear, or equivalently if D(k) = 0. Ultimately
k here will be a field, but for the first three sections it can be any commuta-
tive ring. ‘

Given any derivation D of A into an A[X]-module and any proposed
value for DX, we get a derivation of A[X] by setting D(a, X") = X"D(a,) +
ra, X"~ '(DX); and conversely any D on A[X] is determined by its values on
A and on X. By induction, then, the k-derivations of B = k[X{, ..., X,] are
given by prescribing arbitrarily the values DX;.

We now paraphrase this in a way which will generalize. For the polyno-
mial ring B, let Qg be a free B-module of rank n, and let d: B — Qg be the
derivation for which dX; is the i-th basis element of Qgz. If now D: B> M is
any k-derivation, we can write it uniquely as a composite ¢ °d with
¢: Qg — M a B-module map: just define ¢ on the basis by ¢(dX;)= DX,.
Thus Der(B, M) ~ Homg(Qp, M). Such a “universal” derivation
d: B — Qg will exist in general.

Theorem. Let A be a finitely generated k-algebra. There is an A-module Q4
and a k-derivation d: A— Q4 such that composition with d gives
Der,(A, M) ~ Hom,(Q4, M) for all A-modules M. The pair (Q4, d) is unique
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up to unique isomorphism. If A = k[X y, ..., X,)/I and I is generated by polyno-
mials {f}, then Q4 has module generators dx; and relations

Proor. Write B = k[X, ..., X,], and set Q4 = Qg /I - Qg + B - dI. Then Q,
is an A-module,and d: B - Qg — Q4 factorstod: A - Q,.IfD': A>Misa
k-derivation, the composite D: B—~A— M is a k-derivation, and so
D = ¢ o d for some unique ¢: Qg — M. Since [ kills M, this ¢ vanishes on
I - Qp; since D(I) = 0, it also vanishes on B - dI. Thus ¢ gives an A-module
map Q4 — M, and d: 4 - Q, is universal.

Now suppose the {f;} generate I, so that elements of I are sums ) b; f;.
Obviously Qg /IQg is a free A-module with basis dx,, ..., dx,, where x; is the
image of X;. But d(b; f;) = f;db; + b;df; = b;df; mod I - Q, so the further
relations imposed by dividing by the span of dI all follow from df; = 0.

Finally, uniqueness of (Q4, d) is automatic. For suppose (Q}, d’) is any
other such module. We have d=¢°d and d=y od for unique
0: Q- Q, and Y: Q4 —» Q,. Then Yo = id since d = Yod = (id) ° d, and
similarly @y = id. (This is just the Yoneda lemma in a different setting.)

O

If the base ring k is not plain from context, we write explicitly Q.
Clearly we can also construct Q4 for A not finitely generated just by extend-
ing the preliminary computation to polynomial rings in infinitely many
variables. When S is a closed set in k", the elements of Qs are the (algebraic)
differentials defined on S—combinations of the dx; multiplied by functions.
In general therefore we call Q, the module of differentials of A.

As an example consider A = k[X, Y])/(X*> + Y — 1). Then Q, is gen-
erated by dx and dy with relation 2x dx + 2y dy = 0. If char(k) = 2, this is
free on two generators. When 2 is invertible, however, one can easily show
that Q, is free on the one generator df = x dy — y dx. We have for example
dx= —ydf, since the difference of the two sides s
(1 —y?)dx+ xydy=x*dx+xydy=x-0=0.

This particular 4 can be made into a Hopf algebra (representing the circle
group of (1, Ex. 11)), and for such algebras we will prove several properties
observable here. Hopf algebras.over fields, for instance, will always have free
modules of differentials. Also, the circle has dimension one, and this equals
the rank of Q4 except in a positive-characteristic case where A has nilpotent
elements; in (11.6) we will analyze this in general.

11.2 Simple Properties of Differentials

This section merely lists various properties of derivations and differentials.
The proofs are all simple and will only be sketched.

(@) Quein =~ QL Ok’
The generators and relations are the same.
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(b) Quaxp >y x Qp.

Any (A x B)-module M is a product M, x Mg, and a derivation

A x B— M is given precisely by derivations A - M, and B —» My,
(C) Qs..“g = Q,q ®A S_IA.

When M is an (S”'A)module, we automatically have
Hom,(Q4, M) ~ Homg_,4(Q4 ® S™'A4, M); thus the equality states
merely that any derivation D: A —» M extends uniquely to S™'4. For
uniqueness, note 0 = D(1) = D(s™'s) = s~ !Ds + sD(s!), so the exten-
sion must satisfy D(s™!) = —s~2Ds. For existence, show D(s™'a) =
s~%(sDa — aDs) is a well-defined derivation.

(d) Let B: A — k be an algebra map with kernel I. Then Q, ® 5k = Q,/IQ,
is canonically isomorphic to I/I%.

If N is a k-space where 4 acts via f, we must show Der,(4, N)
isomorphic to Hom,(I/I?, N) ~ Hom,(A/k + I?>, N). Butany D: A -» N
satisfying D(ab) = p(a)D(b) + B(b)D(a) clearly vanishes on I? and gives
a linear map I/I> > N; and conversely any A — I/I* > N gives a
derivation.

(e) Let A be finite-dimensional over a field k. Then Q, = 0iff A is separable.

By (a) we may assume k = k. We have Qx..x, > Q@ x - X Q, =0
by (b). Conversely, write A = [ A4; with 4, local. If Q, = 0, all Q,,=0.
By (d) the ideals m; in A; have m; = m?, and hence m; = 0.

(f) Let B be an algebra, N a B-module. Let C be B® N with multiplication

(b, n)(b', n') = (bb', bn’ + b'n). Then C is a B-algebra. Homomorphisms

A — C are pairs (p, D) where ¢: A— B is a homomorphism and

D: A — N is a derivation for the A-module structure on N induced by ¢.
This is pure computation.

11.3 Differentials of Hopf Algebras

Theorem. Let A be a Hopf algebra with augmentation ideal I. Let n: A — 1/I?
be the map sending k - 1 to zero and projecting 1. Then Q4 ~ A ®, I/I*, and
the universal derivation d is given by d(a)=Y a,® n(b;) where
Al@)=) a;®b;,.

PROOF. Suppose we have any algebra C = B® N as in (11.2). Computing
the group structure on Hom(4, C), we find that (¢, D)(¢’, D') = (¢ - ¢',
@ - D'+ ¢’ - D), where ¢ - ¢’ is the product in Hom(4, B) and (for example)
¢ - D' is the map

Pp®D’ B ® N mult N.

Since we have B — C — B with composite the identity, Hom(4, C) is ac-
tually the semi-direct product of the subgroups {(¢, 0)} and {(¢, D)}, the
latter being the kernel of Hom(4, C) - Hom(A4, B).

A—2 s A®4
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Take now specifically B = 4, with N any A-module, and put ¢ = id,.
The group multiplication sending (e, D) to (¢, 0) - (¢, D) = (¢, ¢ - D) gives
all pairs with first entry ¢. In this way the ordinary derivations 4 —» N
correspond to the derivations D: 4 — N for A4 acting through &. But these we
can compute: by (11.2d) they correspond to Hom,(I/I? N)=~
Hom,(A4 ®, I/1%, N). Explicitly, they all factor uniquely through =, and thus
the universal Do: A —> AQ®I/I*> for them is just a—1® n(a). Then
d = ¢ - D, is computed by

A—— 404 222, 4@ Mo II?) =2 AR I,

which gives the formula. O

Corollary. When A is a Hopf algebra over a field, Q) is a free A-module.

11.4 No Nilpotents in Characteristic Zero

Theorem (Cartier). Hopf algebras over fields of characteristic zero are
reduced.

ProOF. By (3.3) we may assume the Hopf algebra A is finitely generated, so
the k-space I/I? is finite-dimensional. Let the classes of x,, ..., x, be a basis.
Let d; be the map A - I/I* - k taking x; to 1 and the other x; to 0. By (11.3)
then we get a k-derivation D;: A —» A by setting Dy(a) = ) a,d;(b,) [where
Al@)=) a,®b,). We have eD(a) =) e(aMdi(by) = d,-(E g(a)b) = di(a).
Thus Dy(x;) is congruent to 1 modulo [ if i = j and congruent to 0 otherwise.

Suppose now P(X) is a homogeneous polynomial of degree n over k.
Then D; P(x) =Y ; (0P/0X ;)(x)Di(x;). Each nonzero dP/0X ; is homogeneous
of degree n — 1, so (AP/0X;)(x) is in I""'. Thus D,P(x)= (3P/0X;)(x)
mod I". But any derivation D satisfies D(I™) < I™~! by the product rule,
so y = z mod I"™ implies Dy = Dz mod I™~!. By induction then we find

DDyt -+ DY (XY - xM)=myImy! - m! mod I,

while for any other monomial in the x; of the same total degree D7 --- D7!
will give zero mod I. By appropriate application of the D;’s we can thus
single out coefficients of individual monomials in P(x), since all factorials are
nonzero in k. Hence we have proved:

Lemma. The monomials xT' -+ x[ with ). m; = n are k-independent modulo
I"*1 and thus they are a basis of I"/I"**.

To prove now that 4 is reduced, we may extend to k and so assume k is
algebraically closed. It is enough to show that any element of square zero
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vanishes. Suppose y? = 0. If y is not in () I", choose n with y in I" but not in
I"*1 and write y = y, + y, with y, in I"*! and y, a homogeneous polyno-
mial of degree n in the x;. By the lemma y2 in I?" is nontrivial modulo I2"**,
But 0=y = y2 mod I?"*!, This contradiction shows every element of
square zero is in () I".

Since k is algebraically closed, every maximal ideal M of A4 is the kernel of
some g: A — k. The algebra map (translation)

A g®id ~
Tg:A—>A®A — 5 k®A — A

is an isomorphism, since its inverse is T, ,; and T, (M) = I. Hence the ele-
ments of square zero are also in each () M". By the Krull intersection
Theorem (A.6) they are then zero. O

Corollary. All finite group schemes in characteristic zero are etale.

Corollary. Let k be algebraically closed of characteristic zero. Then all alge-
braic affine group schemes come from algebraic matrix groups.

In characteristic p, examples like p, show that the theorem fails; in (11.6)
we will examine which groups satisfy it. But the first part of the proof still
yields some information. We say that a finite group scheme in characteristic
p is of height one if x? = 0 for all x in I (this implies connectedness). We can
then carry through the lemma with all m; less than p.

Corollary. Let G be a finite group scheme of height one in characteristic p. Let
Xy, ..., X, give a basis for 1/I*. Then the monomials x7* -+ x7 with allm; < p
are a basis for k[G). In particular, dim k[G] = p".

11.5 Differentials of Field Extensions

Theorem. Let L/k be a finitely generated field extension. Suppose it is
separably generated, i.e. has the form L 2 E 2 k with E/k pure transcendental
and L/E finite separable; then dim Q, = trdeg., L. Conversely, suppose
dimy Q= trdeg., L, and let dx,, ..., dx, be a basis of Q.. Then the x; are
algebraically independent over k, and L is finite separable over k(x,, ..., x,).

Proor. Let y,, ..., y, be algebraically independent generators for E. As L/E
is separable, it is generated by some one element y, , ;. Multiplying y, ., by
an element of E, we may assume its minimal equation f = 0 has coefficients
in k[yy, ..., y,]. Then L is the fraction field of 4 = k[Y,, ..., Y,,,}/(f). We
know Q,, has generators dy,, ..., dy,, and relation 0 = Y (9//0Y;)(y) dy;,
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and by (11.2c) we know Q, = L-Q,. As y,, is separable, (Of 1Y+ 1))
# 0. Thus the single relation in Q, can be used to eliminate Ay, 41, leaving
basis dy,, ..., dy,.

For the converse, write L 2 F 2 E = k(x,, ..., x,) with L/F finite and F/E
pure transcendental. Since the dx; span Q, , , any derivation on L trivial on k
and on x,, ..., x, must be zero. Hence Q, = 0. In particular Qur =0, and
so L/F is separable by (11.2¢). We can then apply the first part of the
theorem to L/E; we get 0 = dim;, Q x = trdeg.; L = trdeg; F. Since F/E
was pure transcendental, we have E = F. As n = tr.deg, L = tr.deg, F, the
x; must be independent. O

11.6 Smooth Group Schemes

Let G be an algebraic affine group scheme. By Noether normalization (A.7)
we can write k[G] as a finite module over a polynomial ring k[X 4, ..., X,].
The n occurring here is obviously unchanged by base extension. It is
uniquely determined, since it is the transcendence degree of the fraction field
of k[G°}/nilpotents. Intuitively it represents the number of independent par-
ameters involved in expressing elements of G, and we call it the dimension
of G.

Theorem. Let G be an algebraic affine group scheme over a field k. Then
k[G]® k is reduced iff dim G = rank Q.

PROOF. We here prove that equality holds when k[G] ® k is reduced; the
converse will be proved in (13.5) when we have one more piece of algebraic
equipment. Like dim G, the rank of Qg is unchanged by base extension
(11.2a), and hence we may assume k = k. As Q of a product splits up (1 1.2b),
we may assume G = G°. Then k[G] is an integral domain (6.6). Let K be its
fraction field. By (11.2c), the rank of Qg is the K-dimension of Q. Since k
is perfect, the hypothesis of (11.5) is satisfied (A.9), so dim, Q, =
trdeg, K = dim G. d

One need not go all the way to k; if L is any perfect extension of k, and
k[G] ® L is reduced, then so is k[G] ® k, since over a perfect field the tensor
product of reduced rings is reduced (6, Ex. 2).

Groups G with dim G = rank g, are called nonsingular or smooth (Fr.
lisse, Ger. glatt). We observed in the proof that this is unaffected by base
extension. Any G coming from an algebraic matrix group is smooth, and by
(4.5) the converse holds if k = k. The theorem of (11.4) says that all G are
smooth when char (k) = 0. It is true (though not obvious) that smoothness
is equivalent to the following functorial statement: whenever J in R is an
ideal with J? = 0, then G(R) - G(R/J) is surjective. In the next chapter we
will also find a test for smoothness using the Lie algebra of G. But the name
actually comes from geometry.
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11.7 Vista: The Algebro-Geometric Meaning of
Smoothness

The smoothness of algebraic matrix groups is a property not shared by all
closed sets in k. To see what it means, take k = k and let S < k" be an
arbitrary irreducible closed set. Let s be a point in S corresponding to the
maximal ideal J in k[S]. If S is smooth, Qs ® k = Qy5)/JQys; has k-
dimension equal to the dimension of S. (This would in general be called
smoothness at 5.) If S is defined by equations f; = 0, the generators and
relations for Q) show that S is smooth at s iff the matrix of partial deriva-
tives (9f;/0X;)(s) has rank n — dim V. Over the real or complex field this is
the standard Jacobian criterion for the solutions of the system (f; = 0) to
form a C® or analytic submanifold near s. For S to be smooth means then
that it has no cusps or self-crossings or other “singularities ”.

By (11.2d) the condition of smoothness at s is that dim S = dim,(J/J?).
By Nakayama’s lemma the maximal ideal of the local ring k[S]; is generated
by clements giving a k-basis of J/J2, so in this case it is generated by a
number of elements equal to the dimension of k[S]; (in the transcendence-
degree sense or any of several other definitions). Such local rings are called
regular. The lemma in (11.4) is in fact always true for them; in particular they
are always integral domains, which is really the most natural proof of the
postponed part of the last theorem. Still more strikingly, they are always
unique factorization domains.

This in turn has geometric meaning, and the geometry first led to its being
conjectured. The local ring k[S], , where functions have been made invertible
if they are invertible at s, describes the structure of S around s (whence the
name “local ring”). The prime ideals in k[S] correspond to closed irredu-
cible subsets of S; those in k[S];, to the ones passing through s. In particular,
minimal nonzero primes P give the “ hypersurfaces ” through s (and it can be
shown that they all have dimension one less than dim S). Consider now such
a P, and take O # b in P. As P is prime, it contains some irreducible factor h
of b. If k[S], has unique factorization, h generates a prime ideal, so by
minimality P = (h). (Conversely, if every minimal nonzero P is principal,
k[S], has unique factorization.) Thus when S is smooth at s, every hypersur-
face on S going through s is precisely defined in a neighborhood of s by a
single equation.

11.8 Vista: Formal Groups

Let A be a finitely generated Hopf algebra with augmentation ideal I, and let
Xy, ..., X, give a basis of I/I*. When char(k) = 0, we saw in (11.4) that the
monomials x7! -+ x™ gave a basis of I"/I"*!, and for smooth groups we will
prove the same thing in all characteristics. This is not of course enough to
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make the ring a polynomial ring, but it does imply that the completion
(A;)" =lim(A/I") is the formal power series ring k[[x,, ..., x,]]. In the
language of the previous section, this happens whenever k[S];, is a regular
local ring. It corresponds to the fact that whenever dim S =r and S is
smooth at s over the complex numbers, the analytic functions on a neighbor-
hood of s in the usual topology look just like those on a disc around the
origin in r-space.

In our case A maps I into I ® A + A® I, the maximal ideal defining
(e, €) in the product. Hence there is an induced map on completions,
A" k[[xy, ..., xJ] - K[[x}, ..., x;, X1, ..., x/]]. Such a map is described
simply by the r power series F;(x, x) that are the images of the x;. The
¢-axiom shows Fi(x, 0)= F;(0, x)=x;, and coassociativity yields the
identity

F,'(F(x', xu), x"') = F,'(X’, F(x", X’”)).

A family of power series F = (F;) with these two properties is called a formal
group law (the existence of a formal inverse S is here automatic).

Our construction of (F;) from A is clearly not unique, since the choice of
x; could be different. We say that two formal group laws define the same
formal group if one arises from the other by change of variables in k[[x,, ...,
x,]}; we do then have a formal group attached to each smooth affine alge-
braic group scheme. In characteristic zero these formal groups in fact carry
no more information than the Lie algebras studied in the next chapter, but in
characteristic p they capture more of the algebraic group structure. Like
group schemes, formal groups also have number-theoretic (and topological)
importance when defined over base rings other than fields.

One can extend the theory to group laws carried formally by other k-
algebras, including the completions of non-reduced Hopf algebras; the
power series laws would then be distinguished as “ formal Lie groups.” In the
extended version, the formal groups are precisely the representable group
functors on the appropriate category of complete k-algebras (those where
power series can be evaluated). An extension of Cartier duality shows that
formal groups correspond to Hopf algebras which are cocommutative but
not necessarily commutative, and some work on them is phrased in these
terms.

EXERCISES

1. Let A4 be a k-algebra, J the kernel of mult: A ® A — A. Show J/J? =~ Q. [Prove
b—[b® 1 — 1 ® b] has the universal property.]

2. For the circle group, finish proving that Q4 = 4 d6 when 2 is invertible. When
k = Z, show A d0 is a free submodule, and compute Q, /A4 df.

3. Write out complete proofs of the results in (11.2).

4. Let C be an algebra, I an ideal with 12 = 0. Let ¢: A — C be a homomorphism. If
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10.

11.

12.

Y: A—C is a homomorphism congruent to ¢ modulo I, show D=
¥ —@: A—1 is a derivation for the A-module structure on I given by o.
Conversely, any such D gives a homomorphism D + ¢.

. A finite group scheme G over arbitrary k is called etale if Qg = 0. Show that G

is etale if the base-change G, is etale for all maximal ideals M of k. [See (13.2)
and Nakayama’s lemma.]

. Let G be a connected algebraic affine group scheme with augmentation ideal 1.

Show N I"=0. [Assume k = k. If A reduced, embed in A; and use Krull; in
general get N I" < nilradical N. As in (11.4), translations T, give n M" < N for
maximal M. As e is the unit, AMS I®@ A+ AQM,so AM") S Y I*@ M"¥,
0 AM>™ S I"@A+AQM", s0o A(n M")S (N I")® A + A® (N M"). As
N M"< N < I, from (id, €) get » M" < n I". By translation n I" S n M"]

. Let G be a smooth group, H an algebraic group represented by a Hopf subal-

gebra of k[G]. Show H is smooth.

. Let G be smooth and commutative over a perfect field. Show that its unipotent

and multiplicative components are smooth.

. If G is smooth, show 2G is smooth. [Pass to k.]

Let k be an imperfect field, char(k) = p. Take b in k not a p-th power, and let G be
the subgroup of G, x G, defined by y? = bx?. Show k[G] is reduced but G is not
smooth.

Let k be an infinite field, S a closed irreducible subset of k", and A = k[S].

(a) Show the fraction field L of A is separably generated over k. [Note
dim Q4 ® L is unchanged by base extension, and use (A.9) over a perfect
extension).

(b) For some 0+#/ in A, show Q4 is free over A, of rank equal to
dim S[= trdeg., L].

(c) Show the points where S is smooth form an open dense set. [Its complement
is defined by the vanishing of minors in (df;/0X;).]

(d) If S is an algebraic matrix group, show in this way that S is smooth at all
points. [The translations T, are algebra automorphisms.]

(¢) Show the curve y* = x(x? — 1) is smooth, while y? = x* and y? = x?(x — 1)
are smooth at all points except the origin. Draw graphs of these curves.

Let G be an affine group scheme over a field k, char(k) = p. Let A = k[G]. For
any field map k — L we get a group over L represented by A ® L; we can apply
this to the homomorphism x+ x? of k to itself. Let G” be the group scheme thus
defined.

(a) Map k[G'"”] to 4 by a ® a+> a”a. Show that this gives a group homomor-
phism F: G - G"” with height one kernel represented by 4/{x”|x € I}4. One
calls F the Frobenius map.

(b) Show F": G — G'™ has kernel represented by A/{x"|x € I}A.

(c) For perfect k, show a® a+» aa'/? is an isomorphism, so G and G'» are
canonically isomorphic.

(d) Let G be G, over a perfect field, identified with G*” as in (c). Show the map F
is the same as that in (8.4).
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12.1 Invariant Operators and Lie Algebras

Let A be a Hopf algebra. We are going to study the k-linear operators
T: A — A which are translation-invariant. As in the previous part, we begin
by seeing what this means when A4 is the ring of functions on an algebraic
matrix group S. An operator T on functions there is left-invariant iff it
commutes with all the left-translation operators T, defined by (T,/)(x)
= f(gx). Now on A the map f+— f(gx) is (g, x)  A; and since T, makes

A 4, AR A _eid | A

Ty x

X

A > k

commute for all x, we have the formula T, = (g, id)A. (We have used these
operators T, before, e.g. in (11.4).) Then T o T, =T - (g, id)A = (g, T) - A.
If this is to equal T, T=(g,id)A > T for all g in S, we must have
AeT=(d®T)- A

Having reached a purely formal definition, we can use it in general: if 4 is
a Hopf algebra, we say a linear operator T: A — A4 is left-invariant if
AT = (id ® T)A. As a further check that this is the correct concept, one can
verify that simple properties evident in the case of matrix groups remain
valid. For example, T o U is left-invariant if T and U are: we have ATU =
(d®T)AU = (id® T)(id ® U)A = (id ® TU)A. Likewise T+ U is
left-invariant.

The Lie algebra Lie(G) of the group G represented by 4 is the k-space of
all left-invariant derivations D: A — A. If D, and D, are in Lie(G), one can

92
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trivially check that [D,, D,]=D,D, — D, D, is also in Lie(G). This
“bracket” operation has the following three properties, all trivial to verify:

(i) it is k-bilinear,
(1) [D, D] = 0 for all D, and
(iii) [[Dy, D;), D3] +[[D2, D3}, D,] +[[Ds, D1}, D;]=0 (the Jacobi
identity).

Abstractly, any k-space with a “bracket” operation satisfying these three
properties is called a Lie algebra. The Lie algebra is a smaller object than the
Hopf algebra, and frequently is easier to analyze, but it can give substantial
information about G, especially in characteristic zero.

When char(k) = p, there is one additional piece of structure on Lie(G),
because if D is a (left-invariant) derivation, so is its p-fold iterate D. This
operation is related to the other structure by the following identities:

(iv) (AD)? = A?D* for A in k;

(v) [D%, D,] = [Dy, [Dy, ... [Dy, D;] -]}, p-fold iterated brackets;

(vi) (D, + D,)* = D§ + D% + s(D,, D,), where s is a fixed expression built
up from D,, D,, and brackets.

Abstractly, a Lie algebra with such a p-operation is called a restricted or
p-Lie algebra.

12.2 Computation of Lie Algebras

Theorem. Let G be an affine group scheme. There are canonical bijections.
between

(i) Lie(G),
(i) Der(k[G), k), and, when % = 0,
(iii) the points in G(k[t]) mapping to identity in G(k).

PROOF. Let A = k[G]. Simple computation shows that homomorphisms
A — k @ kr reducing to ¢ in k are precisely of the form b g(b) + d(b)r for
an e-derivation d: A — k. Thus the last two sets are identified. Let D: 4 — 4
now be a derivation. Then d = eD: A — k is an e-derivation, a derivation for
the A-module structure on k via ¢. If D is also invariant, then D = (id ® ¢)
AD = (id ® ¢)(id ® D)A = (id ® d)A, so D is determined by d. Conversely, if
d: A — k is an e-derivation, then D = (id ® d)A is a derivation A — A, since
it comes from the universal derivation (this is the construction used in (11.4)).
We compute now that such D are actually invariant. We have (id ® D)Ab =
(id ® (id ® d)A)Ab = (id ® id ® d)(id ® A)Ab; and if Ab=) b;® c;, then
ADb = A(id ® d)Ab = Y A(b))d(c;) = (id ® id ® d)(A ® id)A(b). By coasso-
ciativity these agree. O
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Looking back at the computation of Q,, we see also that Lie(G) spans
Der, (4, A) as an A-module.

Our first definition of Lie(G) gives the Lie algebra properties quickly, but
the e-derivations are often easier to find. We should therefore compute the
bracket in these terms. Say D; = (id ® d;)A for i =1, 2. Then D, D,a=
Dy(Y, aidy(b) = ¥ (id ® dy)A(@My(b) = (id ® d, ® d,)(A ® id)Aa, and si-
milarly for D, D,. Thus [D,, D,] = (id ® [d,, d,])A where [d,, d,] is defined
as (d, ®d, —d,®d,)A. To see also a functorial version, we introduce
R = k[u, v] with u*> =v?=0. Given d, and d,, let g, = ¢+ ud, and
g, = ¢ + vd, in G(R); these are the images of the elements in G(k[t]) under
two maps k[t]— R. It is easy to check g,g, = (¢ + uv[d,, d;])g. gy, so
g19291 '9; ' = ¢ + uv[d,, d,], and we get [d,, d,] by pulling back along the
map k[t] — R sending t to uv. This shows the bracket is related to noncom-
mutativity: two independent first-order infinitesimal elements in G have a
possibly non-trivial cross term commutator.

Corollary. 4 homomorphism G — H induces a Lie algebra map, injective if
G — H is a closed embedding.

Proor. If d: k[G] — k is an e-derivation and ¢: k[H] — k[G] a homomor-
phism preserving ¢, then d o ¢ is an ¢-derivation. Thus d—d ° ¢ is a linear
map Lie(G) — Lie(H). Since ¢ also preserves A, the formula for [d,, d,]
shows [dy ° ¢, d, ° ¢] = [d;, d;] ° ¢. (Computing the p-operation in terms
of d, one can similarly see that in characteristic p it is preserved.) The
identification of Lie(G) with a subgroup of G(k[r]) shows that the map is
injective when G is a closed subgroup. O

Corollary. Let G be an algebraic affine group scheme over a field k. Then
Lie(G) is finite-dimensional, and Lie(G,) = Lie(G) ®, L for any extension L.
The group G is smooth iff dim G = dim, Lie (G).

PROOF. As k[G] is a finitely generated algebra, I is a finitely generated ideal,
and I/I? a finite-dimensional k-space. By (11.2d) we know the e-derivations
A — k are the dual of this space. The first two assertions then are immediate,
and the last follows from (11.3) and (11.6). O

A further interpretation of Lie(G) can come from expanding geometric
intuition to include infinitesimals. If k[ X] represents the line, what “ closed
subset ” is represented by k[t] = k[X]/(X?)? When we restrict a function to
this “subset”, what we know about it is its value at the origin and its first
derivative there. Thus the space must be imagined as having one point with a
first-order infinitesimal neighborhood; it is a sort of disembodied tangent
vector. Mapping k[G] to k[t] maps this space to G and thus picks out a point
of G together with a tangent vector at that point. Hence Lie(G) corresponds
to the tangent space to G at e. This is also reasonable in terms of I/I%, which
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is the functions vanishing at ¢ modulo those vanishing to second order; in
differential geometry tangent vectors are often defined as linear functions on
that space.

12.3 Examples

(a) Let G be GL,. Over k[t] we get Lie(G) as the invertible matrices of
the form I + M. But any such matrix is invertible, its inverse being
I — tM. Also, computation shows that

(I + uM)(I + oN)(I — uM)(I — vN) =1 + uw(MN — NM).

Thus Lie(GL,) is the space of n x nmatrices with [M, N] = MN — NM.
(b) Subgroups G of GL, give subalgebras of Lie(GL,), so Lie(G) can be
computed by testing which I + tM satisfy the equations defining G.
If G = SL,, for instance, we want the I + t™M of determinant 1. Since
any term involving 72 is zero, the computation easily gives det(I + tM) =
1 + t(trace M). Thus Lie(SL,) is all matrices of trace zero.
(c) Let G be {g € GL,|gg' = I}. Trivially

(I +M)I + M) =1+ (M + M),

so Lie(G) consists of all M with M + M' = 0. Suppose now k is a field,
and take n = 2. It is easy to see dim G = 1. In Lie(G), the conditions
on (¢ %) areb + c=0=2a=2d. If char(k) # 2, these show Lie(G) has
dimension 1, and thus we have proved that G is smooth. When
char(k) = 2, however, dim Lie(G) = 3 and G is not smooth. (A detailed
analysis of this group is in (1, Ex. 11).)

(d) In characteristic p, finite groups can have nontrivial Lie algebras, and
indeed finite subgroups can carry the whole Lie algebra of a smooth
group. For example, the embedding p, —» G,, induces an isomorphism
of Lie algebras, since (1+t4)’=1 for every 1 in k. Similarly
Lie(a,) = Lie(G,).

(e) The p-operation in characteristic p can distinguish Lie algebras other-
wise isomorphic. Consider for instance G, and G,,. Their Lie algebras
are one-dimensional, and hence have trivial brackets ([D, D] = 0).
In characteristic zero, no more can be said. But the basis d of
Lie(G,) sends X (a basis of I/I*) to 1, so DX = (ild ® d)AX =
((d®d(X®1+1®X)=1 Then DX =0, so D*X = 0. In charac-
teristic p this says the p-operation kills Lie(G,). Gor G,,, now, the basic d
sends X — 1to 1, so also d(X) = 1. Then DX = (d ®d)(X ® X) = X,
and by induction D’X = X; the p-operation is the identity on Lie(G,,).

(f) If V is a finite-rank free k-module, then Lie(Aut V)=~ End V; this
simply restates (a) without mention of a particular basis. A linear
representation of G on V gives a map G — Aut V' and hence induces
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a Lie algebra homomorphism Lie(G) - End V. A space V with such a
homomorphism is called a representation of the Lie algebra. Such objects,
studied in themselves, can be used to deduce information about
representations of G.

12.4 Subgroups and Invariant Subspaces

Theorem. Let G be an affine algebraic group scheme over a field. Assume G is
smooth and connected, and let H be a proper closed subgroup. Then
dim H < dim G.

ProoF. The group structure is not involved here at all, only the following
result on rings:

Lemma. Let A be an integral domain finitely generated over a field k. Let P be
a nonzero prime ideal. The fraction field of A/P has lower transcendence degree
than the fraction field of A.

ProoF. Write A as a finitely generated module over a polynomial ring k[x,
.++» Xy}, 0 the transcendence degree is n. If P N k[x,, ..., x,] # 0, the images
of the x; will be algebraically dependent. But the fraction field of A/P
will be algebraic over them, and hence it will have lower transcendence
degree. So suppose P N k[x, :* x,] = 0. Then A, contains S~ 'A with § =
K[xy, ..., x,] \{0}. But S™'4 is an integral domain, finite-dimensional over
S k[xy, ..., x,] = k(xy, ..., x,); by (6.2) it must be a field. Thus nonzero
elements of A are invertible in S~ ' 4, hence invertible in 4p, hence not in P;
that is, P = 0. O

Corollary. Let G be connected and smooth, H a smooth subgroup. If Lie(H) =
Lie(G), then H = G.

Proor. The hypotheses force dim H = dim G. O

We saw in the examples that this result can fail when H is not reduced. Its
greatest value thus appears in characteristic zero, and we give one sample of
this.

Lemma. Let G be an affine group scheme over a field k, acting linearly on a
k-space V. Let W be a subspace, and define its stabilizer Hy by

Hw(R) = {g € G(R)|g(W® R) < W® R}.
Then Hy is a closed subgroup of G.
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PROOF. Let {v;} be a basis of ¥ with the subset {v;| j € J} a basis of W. In the
comodule write p(v;) =} v;®a;;. Then g(W® R) < W®R iff g(W)<
W ® R, which says g(a;;) = 0 for j in J and i not in J. Thus Hy is defined by
the vanishing of these a;;. O

Theorem. Let k be a field of characteristic zero. Let G be a connected affine
algebraic group scheme acting linearly on V. A subspace W of V is stable under
G iff it is stable under Lie(G).

Proor. If W is stable under G, it is stable under Lie(G) in G(k[z]). Con-
versely, Hy is smooth since char(k) = 0,so if Lie Hy = Lie G then Hy = G.

a

This allows the analysis of representations in characteristic zero to be
reduced in large part to the theory of Lie algebra representations. The
theorems in Chapter 10 closely resemble results for Lie algebras in charac-
teristic zero.

12.5 Vista: Reductive and Semisimple Groups

Let G be a connected algebraic matrix group over an algebraically closed
field k with char(k) = 0. Generalizing a well-known result for finite groups,
one naturally asks which G are such that all representations are sums of
irreducible representations. This has a quite simple answer in terms of the
structure of G.

Consider connected closed subgroups H of G which are normal and
solvable. If H, and H, are such, so is (the closure of) H, H,; since the
dimensions cannot increase forever, there is actually a largest such
subgroup. We denote it by R and call it the radical of G. By (10.3), the
unipotent elements in R form a normal subgroup U, the unipotent radical.
We call G semisimple if R is trivial, reductive if U is trivial. The theorem then
(for char(k) = 0) is that all representations are sums of irreducibles iff G is
reductive. It is not hard to see this condition implies G reductive (cf. Ex. 20);
the converse is the hard part. We of course know the result for R, since by
(10.3) it is a torus; we also know that this R is central (7.7), which implies
that the R-eigenspaces in a representation are G-invariant. The heart of the
result then is the semisimple case. This can for instance be deduced from the
corresponding result on Lie algebras.

In characteristic p all this fails; representations decompose into irredu-
cibles only for groups of multiplicative type. For reductive G one can how-
ever prove the following “geometric reductivity”, which fortunately is
enough for many purposes. Suppose G acts linearly on V and 0 # vin V is
fixed. Then there is a G-invariant homogeneous polynomial function f on V
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with f'(v) # 0. Thus f = 0 defines a sort of nonlinear invariant complement to
the span of v.

Semisimple groups are in any case important in all characteristics as the
building blocks needed to complement the knowledge of solvable groups.
The marvelous fact is that, even though the reducibility theorem that first
prompted their study fails, semisimple groups have the same complete
classification in all characteristics. Specifically, up to quotients by finite
central subgroups, every semisimple group is a product of some of the
following groups:

(a) SL,

(b, d) the special orthogonal groups (appropriately defined to be smooth in
characteristic 2 (see 12.3c)),

(c) the symplectic groups (thé groups preserving a nondegenerate alter-
nating bilinear form in 2n variables), and in addition to these “ classi-
cal” groups

five others, the “exceptional” groups denoted Eg4, E,, Eg, F,, and G,.

The original proof of this classification for Lie groups over the complex
numbers depended on the corresponding theorem for semisimple Lie
algebras, which is false in characteristic p. The proof in general depends on
the theory of Borel subgroups (10.5). If T is a maximal torus, then conjuga-
tion induces a representation of T on Lie(G), and the characters occurring
(roots) inside the character group X, ~ Z" form a geometric configuration
called a root system. From the original Lie algebra proof one can extract a
classification of root systems corresponding to the list above, and finally one
shows that G up to finite subgroups is determined by its root system.

The group scheme for a given root system can actually be defined over Z.
It thus produces certain simple groups over finite fields. For some of the
exceptional groups, these were previously unknown families of finite simple
groups.

Using the structural analysis of reductive groups, one can show that over
infinite k any reductive G (i.e., reductive over k) actually comes from an
algebraic matrix group. Combining this with further study of solvable
groups, one finds that over infinite perfect k every smooth connected group
comes from an algebraic matrix group.

Finally, reductive groups play a major role in recent work on automor-
phic functions. To take the basic example, let k be the reals. Then SL,(k) acts
on the half-plane {z = x + iy|y > 0} by (¢ )z = (az + b)/(cz + d); this is
transitive, and the circle group K = {(-§ 2)|a? + b? = 1} is the stabilizer of
z=i. Thus the half-plane is the coset space (symmetric space) for K in
SL, (k). The classical modular functions on the half-plane are precisely those
invariant under the “arithmetic subgroup” SL,(Z) or certain subgroups of
it. All such functions can thus be pulled back to be functions on SL, (k) with
certain invariance properties. The same thing then can be done for coset
spaces of other reductive groups. Some of the most recent treatments also
use the group not just for the reals but for the various p-adic completions of
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the rationals, and even for the adele ring (a restricted direct product of the
completions). The adele ring is not a field, or even an integral domain, so the
group scheme ideas here come into play.

EXERCISES

1.

10.

In characteristic p = 2 and p = 3, write out (D, + D,)” in terms of D, D, and
bracket terms.

. Compute the p-operation on Lie(GL,).

. If G is commutative, show [D,, D;] = 0 for all D; in Lie(G). (For this reason Lie

algebras with trivial brackets are called commutative.)

. Show that the group law in G(k[z]) induces the addition on Lie(G).
. With k the reals, let U, be {B € GL,(k)| BB' = I}, the unitary group.

(a) Show U, is an algebraic matrix group over k, and describe the corresponding
group scheme.

(b) Show (U,) ~ GL,.

(c) Compute Lie(U,).

(d) Do the same problems for the special unitary  group
SU, = {Be U,|det; B = 1}.

- Let Sp,, be the symplectic group, the B in GL,, with BB = J, where J = (_? J).

Compute Lie(Sp,,).

. Let G be an affine algebraic group scheme. Show that always dim Lie(G) >

dim G. [Pass to k and note Lie(G,.q) < Lie(G). A ring-theoretic proof is also
possible 1.

. If N is a closed normal subgroup of G, show Lie(N) is an ideal in Lie(G); that is,

[X, Y] is in Lie(N) whenever X is in Lie(N) and Y in Lie(G).

. Let 4 be a k-algebra. Inductively, call a k-linear T: A — A a differential operator

of order < n if for all b in A the map sending a to T(ba) — bT(a) is a differential

operator of order < n — 1. (Zero is taken to be the only one of order < —1.)

(a) Show T of order <0 is T(a) = ca for some fixed c in A.

(b) Show T of order < 1is a sum D + T, where D is a derivation and T; is of
order < 0.

(c) If Tis of order < mand U of order < n,show TU is a differential operator of
order <m + n, and [T, U] = TU — UT is one of order <m +n — 1.

Let A be a Hopf algebra. A linear map ¥: A — k is inductively called a distribu-
tion of order < n (supported at ¢) if for all bin 4 the map a+— y(ab) — e(b)¥/(a) is
a distribution of order < n — 1.

(a) Show that the distributions of order < n are precisely the linear maps 4 — k
vanishing on I"*1,

(b) If ¢ and ¥ are distributions, define their convolution ¢ * Y to be (o, ¥) A.
Show that this is again a distribution, and that convolution makes the space
of all distributions into an associative algebra.

(c) Show that ¢+ (id ® ¢) A is an algebra isomorphism from the distributions
to the left-invariant differential operators.
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

(d) Let char(k) = 0. Let A be finitely generated, and let D;: A — A be a basis of
Lie(A4). Show that the operators D7' --- D" are a basis for the algebra of
left-invariant differential operators.

Let G be an affine algebraic group scheme, char(k) = p. Let Gr be the finite
kernel of F:G—>G» as in (11, Ex. 12). Show Lie(Gf)— Lie(G) is an
isomorphism.

Show that Lie(G) ® L may not equal Lie(G,) for G not algebraic. [Take [[? G
represented by k[X,, X,, X3,...]]

(a) Let G be algebraic. Show Lie(G) ® R is the kernel of G(R[t]) = G(R), and the
conjugation by G(R) gives a linear representation of G. This is called the
adjoint representation Ad: G — Aut (Lie(G)).

(b) Show that the vectors in Lie(G) fixed by the adjoint representation are
precisely Lie(Z(G)), where Z(G) is the center (3, Ex. 14).

(c) Show Lie(Ad): Lie(G) — End Lie(G) sends x to [x, —]

Let k be infinite, char(k)=p. Let G as a set be G, x G, with product
(u, a)(u', a') = (ud', a + uPa’).
(a) Show G is the algebraic matrix group

u 0 0
0 u al}.
0 0 1

(b) Show the center of G(k) is trivial.
(c) Show [x, y] =0 for all x and y in Lie(G).

Let char(k) = 0, G algebraic and connected. Let ¢ and Y be homomorphisms
G — H. If Lie(p) = Lie(y): Lie(G) — Lie(H), show ¢ = y. [Note {g € G|o(g) =
¥(g)} is a closed subgroup.]

Let char(k) = 0, G algebraic and connected. Show G is abelian iff [x, y] = 0 for
all x and y in Lie(G). [Ad and the trivial map G — Aut Lie(G) induce the same Lie
algebra map.]

(a) Let G be algebraic with Lie(G) = 0. Show G is (finite and) etale.

(b) Let G — H be a homomorphism with kernel N. Show Lie(N) is the kernel of
Lie(G) — Lie(H).

(c) If Lie(G) — Lie(H) is injective, G algebraic, then the kernel of G — H is etale.

(d) Let char(k) = 2. Let A, = k[T,, T, ] represent a copy of G,,. Inject 4, into
Ap+1 by T,— T2, ,, and let A = U A,. Show A4 is a Hopf algebra whose
augmentation ideal I satisfies I = I2.

Suppose the regular representation of G is a sum of irreducibles. Show that every
representation is a sum of irreducibles.

Let G be algebraic acting linearly on V. If the vector v in V is fixed by G, show
Lie(G)v = 0. When char(k) = 0, prove the converse.

Let k be algebraically closed, G an algebraic matrix group inside GL,(k). Assume
k" is G-irreducible. Prove G is reductive. [The unipotent radical is normal and
fixes a nontrivial subspace of vectors.]



PART IV

FAITHFUL FLATNESS
AND QUOTIENTS



Faithful Flatness

13.1 Definition of Faithful Flatness

This is primarily a technical chapter introducing another algebraic tool. We
will use it at once to complete the proof of the smoothness theorem (11.6)
and then draw on it throughout the rest of the book. To begin, we call a ring
homomorphism A — B flat if, whenever M — N is an injection of A-modules,
then M ® , B— N ® 4 B is also an injection. For example, any localization
A — S 1A is flat. Indeed, an element m® a/sin M ® S™'4 = §~'M is zero
iff tam = 0 for some t in S; if M injects into N and tam is zero in N, it is zero
in M. What we really want, however, is a condition stronger than flatness
and not satisfied by localizations.

Theorem. Let A — B be flat. Then the following are equivalent:

(1) M > M ®,4 B (sending m to m ® 1) is injective for all M.

(2) M ®,4B =0 implies M = 0.

(3) If M - N is an A-module map and M ® 4 B— N ® 4 B is injective, then
M — N is injective.

Proor. Clearly (1) implies (2). And (2) implies (3); for if the kernel L of
M — N is nonzero, then 0 # L ® B injects into M ® B and is in the kernel of
the map to N ® B. If now we assume (3), we can prove (1) by showing that
M ® B— (M ® B)® B (sendingm® b to (m ® 1) ® b) is injective. But that
is true, since m® ¢ ® d—m ® cd is an A-module map back with composite
the identity. O

An A — B with these properties is called faithfully flat. Clearly we have in
particular A mapped injectively onto a subring of B. More generally, if I is
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an ideal of A, then I = A n IB, since A/I injects into (4/I)® B ~ B/IB.
Note that B is certainly faithfully flat if it is a frec A-module; in particular,
every B is faithfully flat when A is a field.

Theorem. Let A — B be faithfully flat. Then the image of M in M ® B consists
of those elements having the same image under the two maps M ® B —»
M ® B® B sendingm®b tom®b® 1 and m® 1 @ b respectively.

Proor. Let N = M ® B be the kernel of the difference of the two maps.
Clearly M is included in N. By flatness, N ® B is the kernel after tensoring
with B. If we can show this kernel is M ® B, then (N/M)® B = 0, whence
N/M =0 (and N = M) by faithful flatness.

We therefore consider (M ® B)® B 3 (M ® B ® B)® B, where the two
maps send Mm@ bR ctom@b® 1 ®@c and to m® 1 ® b ® c. There is an
A-module map back sending m®e®@f®g to m® e® fyg. If we have
Ym®b®1Q®c = Y m®1®b;®c;, then applying the map back we
get ) m®b;®c; equal to Y m;® 1® b;c;, and this is in the image of
M ® B. O

This refined version of condition (1) in the previous theorem is not needed
now but will be crucial in the descent theory of Part V.

13.2 Localization Properties
Lemma. Let N be an A-module. Then N — Hp max INp IS injective.

Proor. Take 0 # x in N. Then Ax & N is isomorphic to some A/I. Let P 2 1
be maximal. Then (A/I)p # 0, since no element ¢ outside P will have t4 < 1.
Hence 0 # (A/I)p ~ (Ax)p S Np, and x has nonzero image in Np. O

Theorem. Let A — B be a ring homomorphism. The following are equivalent:
(1) A > B is [ faithfully] flat.

(2) Ap — Bp is [ faithfully] flat for all P in Spec A.

(3) Ap — By is [ faithfully] flat for all maximal P.

ProoF. For any A-module M we have (M ® 4 B)p >~ Mp ® 4, Bp; and if M is
already an Ap-module, then M ® 4, B ~ M ® 4 B. Hence (1) implies (2)
quite formally, and obviously (2) implies (3). Assume now (3) just with
flatness, and suppose M — N is injective. Then Mp injects into Np, so by
assumption Mp® 4, Bp injects into Np® 4, Bp. As we noted, this says
(M ®4B)p injects into (N®,B)p. Let K be the kernel of M ®,4B—
N ®,4B. Since localizations are flat, K, is the kernel of (M ® 4 B)p —
(N ® 4 B)p . As we have just seen, this is zero for all maximal P, so K = 0 by
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the lemma. Thus A — B is indeed flat. Finally, assume (3) with faithful
flatness, and suppose M # 0. By the lemma some M is nonzero. By assump-
tion then Mp ® 4, Bp = (M ® 4 B)p is nonzero, so M ® 4 B # 0. O

Porism. If A — B — By is flat for all maximal Q in B, then A — B is flat.

PrOOF. The proof of this is just like the argument in the theorem, using

(M ®4B)o ~ M ® 4(Bg) and applying the lemma to B-modules rather than
A-modules. O

Theorem. Let A — B be flat. The following are equivalent:
(1) A - B is faithfully flat.

(2) Spec B — Spec A is surjective.

(3) PB + B for every maximal ideal P of A.

PROOF. Let A — B be faithfully flat, P in Spec A. Then Ap — Bp is faithfully
flat, so PBp N Ap = PAp. Thus PBp is a proper ideal, and is contained in
some maximal ideal Q' of Bp. The inverse image Q of Q' in B is prime.
Clearly P is inside Q; and any x in 4 outside P is invertible in Bp, and hence
is not in Q. Thus P is the inverse image of Q, and we have (1) implying (2).
Trivially (2) implies (3), since Q contains PB if P is the inverse image of Q.
Assume now (3), and let M be a nonzero module. For 0 # m in M we have
Am =~ A/I for some I, and by flatness (4/I) ® B injects into M ® B, so it is
enough to show 0 # (4/I) ® B = B/IB. But I is contained in some maximal
P, and by assumption B/PB # 0. O

Suppose for illustration that 4 and B are rings of functions on closed sets
in k", with k = k. The maximal ideals P in A4 then correspond to points x in
the set. If PB # B, some maximal ideal of B contains P, and the correspond-
ing point maps to x. Thus when 4 — B is flat, the extra condition involved in
faithful flatness is precisely surjectivity on the closed sets. Condition (2) is
the generalization of that to arbitrary rings.

13.3 Transition Properties
Theorem. If A — B and B — C are [ faithfully] flat, so is A — C.

PrOOF M ®,C~(M®,4B)®;C. 0O

Theorem. Let A— A’ be a ring map. If A— B is [ faithfully] flat, so is
A" — A’ ® 4 B. The converse is also true whenever A — A’ is faithfully flat.

Proor. If M’ is an A’-module, then M' ® 4.(A’' ® 4 B) ~ M’ ® 4 B. Thus the
conditions on 4 — B formally imply those on 4’ -+ A’ ® 4 B. Assume now
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A — A’ is faithfully flat, and let M - N be an A-module injection. Then
M®,A' - N®,A is injective. If A’ 4’ ® B is flat, then (M @ ,A')® 4
(A®,B)=M®,B®,A injects into N® ,B® 4 A'. By faithful flatness
then M ® 4B injects into N®,B, and A— B is flat. If A'> A ®B is
faithfully flat, then M #0 implies M®,A4 #0 and this implies
0+FM®4A)®4(A®B)~M®,B®4 A, whence M ® 4B + 0. J

Corollary. Let R — S be aring map, A and B R-algebras. If the R-algebra map
A — Bis [ faithfully] flat, so is S ® g A — S @ g B. The converse is true if R - S
is faithfully flat.

Proor. Take 4’ = S ®g A. O

We will frequently use this in the simple case where R is a field and S an
extension field.

Corollary. Let R — A and R — B be [ faithfully] flat. Then R - A ®g B is so.
PRrROOF. Both R - 4 and A - A ®3 B are so. O

Theorem. Let A S B be expressed as directed unions of subrings A, < B, . If
all A, - B, are [ faithfully] flat, so is A — B.

Proor. If M is an A-module, we have M ® , B = limM ® 4_B,. But the
direct limit of injective maps is injective. For flatness, then, M — N injective
implies all M®,,B,—»N®,4B, injective, and these imply
M ®,B— N ® 4B injective. Similarly in the faithful case M injects into
M ® 4 B since it injects into all M ® 4, B, . O

13.4 Generic Faithful Flatness

Theorem. Let k be a field, A < B finitely generated k-algebras with A an
integral domain. Then there are nonzero elements a in A and b in B such that
that the map of localizations A, — By is faithfully flat.

ProOF. We proceed by successive localizations, eliminating at each step a
proper closed set on which something goes wrong; eventually we reach an
extension with structure known so explicitly that faithful flatness will be
obvious.

First let N be {x € B|xy = 0 for some 0 # y in A}. Clearly if x is in N,
then Bx < N. Also, if xy = 0 = x'y, then (x + x")yy’ = 0; and yy’ # 0, since
A is a domain. Thus N is an ideal. As B is noetherian, some finite set x,, ...,
x, generates N. If x;y; =0, then y=y, --- y, annihilates N. In B, now
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suppose (a/y")(b/y") = 0 with a in A. Then some y’ab = 0, so b is in N and
yb =0 and b/y" is zero in B,. Replacing A and B by 4, and B,, we may
assume no element of A is a zero-divisor in B.

Let K be the fraction field of 4. By our new assumption, B embeds in
K ® 4 B. This K-algebra is finitely generated (e.g. by k-generators of B), so by
the Noether normalization theorem (A.7) there are elements x,, ..., x, in
K ® 4 B with K[x,, ..., x,] a polynomial ring and K ® 4 B finitely generated
over it. Multiplying the x; by elements of 4, we may assume they are in B.
Take now elements y,, ..., y, in B, enough to generate B as an A-algebra and
also to span K ® , Bas a K[x,, ..., x,]-module. For each i and j choose some
expression of y;y; as Y piuyi with pi in K[xy, ..., x,]. Let ¢ be a common
denominator for the coefficients in the polynomials p;; , so that all of them
liein A[x,,..., x,}. Then the y, span B, over A [x,, ..., x,]. Replacing 4, B by
A., B., we may assume B is a finite module over a polynomial subring
Alxy, ..., %]

Let L be the fraction field of A[x,, ..., x,], and let v,, ..., v, be a basis for
B ® 4(y,, ... xy L; we may choose the v; in B. Each of the y; spanning B over
Alxy, ..., x,] is an L-linear combination of the v;. If g in A[x,,..., x,]
is a common denominator for the rational functions occurring in these
combinations, then vy, ..., v, span B, over A[x,,...,x,],. The surjection
@* A[xy, ..., x,]; — B, has no kernel after we extend coefficients to L; since
@* A[xy, ..., x,], is torsion-free, there is no kernel to begin with. Thus B, is
free of finite rank over A[x,,..., x,],. Finally, let d be some nonzero
coefficient of the polynomial g, and let 4, and B, be A; and B,,. We
have then

Aa—’An[xl’ ceey x,]—+A,[x,, vy xr]g_’Bb'

The first and last stages here are free module extensions, while the middle
one is a localization; thus A, — B, is flat. Let P now be a maximal ideal of
A,. Then PA[x,, ..., x,] does not contain g, since one coefficient is inver-
tible in A,. Hence PA[x,, ..., x,], is a proper ideal, and there is a maximal
ideal of A[x,, ..., x,], lying over P. Thus 4, - A,[x, ..., x,], is faithfully
flat. And the last stage of the extension is faithfully flat because it is free as a
module. O

13.5 Proof of the Smoothness Theorem

We can now supply the missing proof in (11.6).

ProoF. We have an algebraic G with dim G = n = rank Qyg,, and we must
show G is reduced. We may assume k is algebraically closed. The idea of
the following ad hoc proof is to show that at some maximal ideal M the
dim,(M"/M"*!) are the same as in a polynomial subring.
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Let {w;} be a basis of Qy;. The dx for x in k[G] span the differentials, so
over the local ring k[G); some dx,, ..., dx, are a basis. Write the w; in terms
of them, let f be a common denominator for the coefficients, and set
B = k[G],; then dx,, ..., dx, are a basis of Qg . Since dx,, ..., dx, give a basis
for differentials of the fraction field of k[G°]/nilpotents, the x; are indepen-
dent (11.5). Set 4 = k[x,, ..., x,).

Some localization A, — B, is faithfully flat. Let M be a maximal ideal of
k[G] not containing fb. Changing the x; by constants, we may assume they
are in M. Then J = M N A contains the x; and must equal (x,, ..., x,)4,
since that is a maximal ideal. Since A, — k[G]u is a localization of A, - B,,
it is faithfully flat. The x; must span M/M?, as otherwise (11.2d) there would
be a derivation to k extending to B by (11.2c) and yet vanishing on the basis
dx;. Hence by Nakayama’s lemma the x; generate Mk[G]y. Thus
J"UK[G]y = M" k[G]m, so by faithful flatness M"*'k[G]y N A, =
J"*14,.1f a polynomial Y ¢, x* homogeneous of degree n is in M"**, it is
thus in J"*'4,. But it is trivial to check that this is impossible in the
polynomial ring 4. Thus the monomials formed from the basis of M/M? are
independent. Applying an algebra automorphism (translation), we conclude
that the same is true for I. This is the lemma needed in (11.4). O

The lemma of (11.4) could be stated just in terms of the dimensions
dim,(I"/J"* 1), so it is true over a field k iff it is true over k. Thus it holds for
the augmentation ideal (and its translates) in any smooth group. This is
actually a regularity statement (11.7) much stronger than just absence of
nilpotents. In particular we can construct formal Lie groups as in (11.8).

EXERCISES

1. Let A — B be faithfully flat, M an A-module.
(a) If N is a submodule and N®,B =M ®, B, show M = N.
(b) If M ® 4 B is finitely generated over B, show M is finitely generated. [Consider
the span of the M-components in a generating set for M ® 4 B]
(c) Let R be an A-algebra. If R ® 4 B is a finitely generated B-algebra, show R is
finitely generated.

2. Letk =k, and let f* S —» T be a map of closed sets in k". Assume f (S) is dense in T.
Show f(S) actually contains an open dense subset of T. [Replace T by an irredu-
cible component, S by the inverse_image. Apply (13.4) to k[T] < k[S]]

3. Let k = k, and let /: G —» H be a homomorphism of algebraic matrix groups. Show
f(G) is closed. [See (4.3).]

4. Let k = k. If G is a connected algebraic matrix group, show the group-theoretic
commutator subgroup (G, G)is actually closed and hence coincides with 2G. [Let
¥, < (G, G) be the image of G*". Then ¥, is irreducible, ¥, < ¥, . By a dimen-
sion argument this must stabilize, so eventually V,= 2G. Then V, contains a
dense open set, s0 2G = V, V, = V,, < (G, G)]



Faithful Flatness of Hopf
Algebras

14.1 Proof in the Smooth Case

Theorem. Let A = B be Hopf algebras over a field. Then B is faithfully flat
over A.

Proor. Making a field extension does not affect the property, so we may
assume k = k. Since 4 and B are directed unions of finitely generated Hopf
subalgebras 4, € B,, we may assume A and B are finitely generated (13.3).
Let A = k[G] and B = k[F}.

We first assume G is smooth. Let x be the idempotent for which A, is
k[G®], an integral domain. Then A, is a subring of B,, and by (13.4) some
A,, — B,y is faithfully flat. In particular B,, is nontrivial, so xb is not nilpo-
tent and there is a maximal ideal P of B with xb ¢ P. Then

A - Axa - Bxb v BP

is flat.

For any fin F(k) the translation map T,(b) = (/, id) A(b) is an automor-
phism of B. Since AA & 4 ® 4, it induces an automorphism of 4 (namely,
translation by the image of fin G(k)). For any maximal ideal Q in B there is
some T, taking P to Q. Then ¥ — By, factors as

T,-1 T,
A » A » Bp > By
and is flat. Hence 4 — B is flat by (13.2).

Since A,, — B, is faithfully flat, all points in the open set U of G°(k)
where a does not vanish are in the image of F(k). Since G°(k) is connected,
UU = G°(k) by (4.3). But the image of F(k) is a subgroup, so G°(k) is in the
image. If now A, represents another component of G, then B, is nonzero, and
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each map B— B, — k is an element of F(k) mapping to the specified com-
ponent of G(k). The components are cosets of G°(k), which is in the image, so
F(k) — G(k) is surjective. Hence A — B is indeed faithfully flat.

The proof is now complete for matrix groups, and by (11.4) it is complete
in characteristic zero. In the next section we finish it in characteristic p.

14.2 Proof with Nilpotents Present

We first treat the extreme case where the augmentation ideal I of A is
nilpotent; in this case we will show B is actually free over 4. Let N be the
kernel of F— G, so k[N]=C=B/IB. Then F x N~F xgF under
(f, n)—(f; nf); thus B® 4 B— B®, C. This map is B-linear for the left B
multiplication, and hence B ® 4 B is, like B ®, C, a free B-module under that
action.

Choose elements (x;);c s in B whose images [x;] are a k-basis of C; we will
show the x; are an A-basis of B. Form the map ®’ A — B sending the i-th
basis element to x;, and let L be B modulo the image. The map is surjective
modulo I, which implies L = IL. Since some I" = 0, we have L = 0. Thus at
least the x; span B as an A-module.

Tensor with B on the left, getting

®'A ——B

_

B®(®'A)=@®’'B —— B®,B.

The map @’ 4 —» @’ B is injective, since 4 — B is; hence the top line must
be injective if the bottom one is. The map there sends the i-th basis element
of ®’ Bto 1 ® x;. If we reduce everything modulo I, we get a C-linear map
@’ C - C®, C which sends the i-th basis element to 1 ® [x;] and thus is an
isomorphism.

The map ®’ B+ B®, B is surjective, since ®’ A —» Bis. Since B® 4 Bis
free, we can lift back its generators and get a complement to the kernel M.
That is, M is a direct summand of @’ B. Since the map modulo I is injective,
this implies M = IM. As before this implies M = 0, and the proof in this case
is complete.

Finally now we consider any finitely generated A, with char(k) = p. The
nilradical of A is finitely generated, so there is some n such that every
nilpotent x in A satisfies x*" = 0. Thus C = {a”"|a € A} contains no nilpo-
tents. We have k?" = k (since k = k), and it is easy then to see that C is a Hopf
subalgebra of A. Let C represent H. Let N be the kernel of G — H, repre-
sented by D = A ®ck = A/{a”"|e(a) = 0}A; let M be the kernel of F — H,
represented by E = B®ck.
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By group theory we have M x F~F xy F and also N x F~G xyF
under (n, f)— (nf, f). Thus EQ B~ B®:Band D® B~ A®c B. Now C'is
reduced, so we already know C — B is faithfully flat. Since A injects into B,
we conclude that A ®¢ B injects into B ®¢ B. As k — B s of course faithfully
flat, we conclude from this and the isomorphisms that D — E is injective. By
construction D has nilpotent augmentation ideal, so D — E is actually
faithfully flat. The isomorphisms then go back to show A ®cB —+ B®¢B
faithfully flat and hence 4 — B faithfully flat. O

14.3 Simple Applications

Corollary. Let A = B be Hopf algebra integral domains, K < L their fraction
fields. Then B n K = A.

PROOF. Let a, ¢ be in A with a/cin B. Then aisin ¢cB n A. But this equals c4
by faithful flatness, so a/c is in A. O

Corollary. If B is a Hopf algebra integral domain and A a Hopf subalgebra
with the same fraction field, then A = B.

Corollary. Let B be a Hopf algebra integral domain. It is a finitely generated
k-algebra iff its fraction field is a finitely generated field extension.

ProOOF. One implication is obvious. For the other, take generators in B for
the field extension. By (3.3) there is a finitely generated Hopf subalgebra A
containing them. By the previous result A = B. O

Corollary. Let B be a finitely generated smooth Hopf algebra, A a Hopf
subalgebra. Then A is finitely generated.

PrOOF. Suppose we know A @ k is finitely generated over k. Take the A4-
components of a set of generators, and let 4, be the subalgebra they gener-
ate. Then 4, ® k is a subalgebra containing generators,so 4, ®k = A ® k.
Hence A = A,. Thus we may assume k = k.

The idempotents in 4 are in B, so ny(A4) exists and is finite-dimensional;
and the group structure shows 4 is a product of finitely many copies of A°. If
A° is finitely generated, so is A. But localizing at the idempotent giving B°,
we find that A° injects into B®; and B? is an integral domain. It is well known
that an intermediate field in a finitely generated field extension is finitely
generated, so the fraction field of A° is finitely generated, and the last result
applies. 0
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By a different use of faithful flatness this result can be proved with nilpo-
tents present (15, Ex. 10). Perhaps it should be said explicitly that the result
is nontrivial: k[x,, ..., x,] has a great many subalgebras which are not
finitely generated.

14.4 Structure of Finite Connected Groups

Theorem. Let A represent a finite connected group scheme over a perfect field k
of characteristic p. Then A has the form k[ Xy, ..., X, }/(X{, ..., X2™).

Proor. Let I, be the augmentation ideal of 4. By connectedness I 4 is nilpo-
tent. If x? =0 for all x in I 4, then the group has height 1 and the result is
known (11.4). In general we use induction. We assume therefore that the
Hopf subalgebra B = {a”|a € A} is one of these truncated polynomial
algebras, say with generators x; and relations xf = 0. Choose y; in A with
y? = x;, and choose also a set {z;} in A maximal with respect to the require-
ments that z? =0 and that the z; be linearly independent in I, /I5. Let
C = k[{Y}, {Z})/(Y?%, Z%), which maps in the obvious way to 4; we claim
this map is an isomorphism.

Embed B in C by x;— Y?. Then C is a free B-module. By the main
theorem, A is also free over B. As in (14.2), then, it is enough to show that
C/l153C — A/l A is an isomorphism. Clearly C/Ip C is the truncated polyno-
mial algebra k[{ Y}, {Z })/(Y?, Z?). But /I A is a Hopf algebra (representing
a kernel). By definition of B it has height 1, so it too is a truncated polyno-
mial algebra. If a map between two such algebras is an isomorphism modulo
the squares of the maximal ideals, it is a surjection and then by dimension
count a bijection. Since Iz A < I3, we simply have to show that the elements
{y:} and {z;} are a basis for 14/I3.

Take first any element a in I 4, and write a” in I as a polynomial in the x;.
Since k is perfect, we can take the pth root of this, getting a polynomial u in
the y; with u? = a”. Then (a — u)’ = 0, and by maximality of {z;} we can
express a — u modulo I3 in terms of the z;. Now suppose on the other hand
that Y a;y; + Y Bjz; is in I§. Raising to the pth power, we find that
Y afyf =Y afx;isin I . By the known structure of B this implies all o; are
0. But then Y f,z; is in I3, which by definition implies all §; = 0. a

Corollary. Let G be finite and connected. Its order (the dimension of the
representing algebra) is a power of p.

Corollary. Let char(k) = p, and let G be a finite group scheme of order prime to
p. Then G is etale.
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PROOF. Assume k = k. Then by (6.8) G is a semi-direct product of G® and

o(G), and in particular the order of G° divides the order of G. Hence G° is
trivial. 0

EXERCISES

1. Let k be imperfect, with A in k not in k?. Inside G, x G,, show that {(x, y)|x?* =0,
yP = AxF} is a finite connected subgroup not represented by a truncated polyno-
mial algebra. [For the last part, compute dim{a € 4|a® = 0}.]

2. Let G be a finite group scheme over a ring k. If the order of G is invertible in k,
show that G is etale. [See (11, Ex. 5)]



Quotient Maps

15.1 Quotient Maps

We have had subgroups since early in our study, but quotients have not yet
been introduced. This is because they really are more complicated. We can
begin with a simple definition, but the rest of the chapter will be spent
drawing out its consequences, and an existence proof will be postponed to
the next chapter. Throughout we assume k is a field.

We call a homomorphism F — G a quotient map if k[G] — k[F] is injective.
Clearly this property is unaffected by extension of the base field. For matrix
groups it is easy to see what it means:

Theorem. If F and G come from algebraic matrix groups, F — G is a quotient
map iff the image of F(k) is dense in G(k).

Proor. If the image lies in a proper closed subset, a nonzero function in k[G]
vanishing there pulls back to zero in k[F]; and conversely. O

The factorization of maps also trivially works; the image of any k[G] —
k[F] is a ring quotient of k[G] and a Hopf subalgebra of k[F]. Thus:

Theorem. Let F — G be a homomorphism. Then it factors as F — H — G where
F — H is a quotient map and H — G is a closed embedding.

Finally, we already know several properties preserved under passage to
quotient. If for instance F is connected and F — G is a quotient map, then G
is connected, since ny k[G] S 7, k[F). If k[ F] has enough homomorphisms to
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k, so does every subalg;ebra, so G comes from an algebraic matrix group if F
does. Passing then to k, we find that quotients of smooth groups are smooth.
And in (8.3) we showed that quotients of unipotent groups are unipotent.

15.2 Matrix Groups over k

Theorem. Let k = k. If F and G come from algebraic matrix groups, F - G isa
quotient map iff F(k) — G(k) is surjective.

PrOOF. In a quotient map the injection k[G] — k[F] is faithfully flat (14.1),
and surjectivity follows (and was proved explicitly in (14.1)). O

Corollary. Let k = k. In a homomorphism of algebraic matrix groups, the
image is a closed subgroup.

Proor. Apply the factorization theorem in (15.1). O

In this case we see that quotients have the meaning one would naively
expect. But this is a substantial theorem, and definitely fails for k # k. The
squaring homomorphism G,, — G,,, for instance, is a quotient map, but not
every element in k need be a square. We will later investigate the way in
which a quotient map can fail to be surjective. First, however, we fill in
another gap in our earlier material.

15.3 Injections and Closed Embeddings

Tileorem. Let F — G be a homomorphism of affine group schemes over a field.
If the kernel is trivial, the map is a closed embedding.

PrOOF. Replacing G by a closed subgroup, we may assume A = k[G] —
B = k[F] is injective. The two natural maps B— B®, B are elements of
F(B®4B). They agree on A, which means they have the same image in
G(B ® 4 B). Since the kernel is trivial, they are equal. But since A —» B is
faithfully flat, we know by (13.1) that A4 is the set where the two maps
B— B®,B agree. Thus A = B. a

This result holds only for homomorphisms; the obvious set map
G,, — G,, for instance, is injective but does not have closed image. More
interestingly, the use of schemes is crucial, and the corresponding statement
for algebraic matrix groups is false in characteristic p. Suppose indeed that
k = k. The map F(g) = g” is a homomorphism G, — G, and an isomorphism
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on G,(k), but it is not an isomorphism of algebraic groups. Using schemes
we can see that F has a finite connected kernel &, which is just not detected
by points in k. This kernel appears in the theory of algebraic matrix groups
only in indirect ways such as the lack of a polynomial inverse to F.

15.4 Universal Property of Quotients

Theorem. Let F — G be a quotient map with kernel N. Then any homomor-
phism F — H vanishing on N factors through G.

Proor. We first work with the functors. If x and y in some F(R) have the
same image in G(R), then xy~ ! is in N(R), so by hypothesis x and y have the
same image in H(R). That is, if we take the two projections of F x F to F
we find the composites F x ¢ F 3 F — H are the same. Now let A = k[G]
and B = k[F]. We have that the two maps k[H] - B3 B ® 4 B are the same.
But by faithful flatness the equalizer of B3 B® 4 B is 4, and thus k[H] -
k[F] actually has image in k[G]. O

Corollary. If F — G and F — G’ are quotient maps with the same kernel, then
G~G.

15.5 Sheaf Property of Quotients

The last result confirms that we have the right concept of quotient, but its
functor meaning is still obscure, since a quotient map F — G need not map
F(k) onto G(k). By (15.2) however we do know that each element of G(k) is
the image of some point in F(k); in other words, it does appear in the image,
but only after we have made some reasonable extension of k. We now show
that a similar statement holds for the functor as a whole.

Theorem. Let F — G be a homomorphism of affine group schemes over a field k.
It is a quotient map iff it has the following property:
“ For every k-algebra R and every g in G(R) there is a faithfully flat exten-
sion R — S and an element f in F(S) whose image in G(S) is that of g.”

PROOF. Let A = k[G] and B = k[F). If F - G is a quotient map, take g in
G(R) (a map 4 - R) and use it to form S = B®,4 R. Here R — §is faithfully
flat since A — B is. Let f: B— S be the obvious map b—b® 1. Then

A— BL S is the same as 45 R — S, so f in F(S) satisfies the condition.
Conversely, suppose the condition holds, and take R = A. There must be
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some faithfully flat A > S and some f: B S lying over the id: 4 » 4 in

G(A). That is, A — S factors as A - B A S. Then 4 — B is injective since
A-Sis. (]

Note in passing that distinct clement of G(R) stay distinct in G(S); this is
automatic whenever R — S is injective.

The condition in this theorem is clearly the appropriate functorial
definition for quotient group schemes; the naive idea of requiring all F(R) -
G(R) surjective would rule out many cases of interest. The functorial state-
ment can be understood as a “sheaf epimorphism” condition, as the next
section will briefly explain.

15.6 Coverings and Sheaves

Any representable functor F has the following properties:

(a) F(Ry x Ry)=F(R,) x F(R,)
(b) When R — S is faithfully flat, F(R) injects into F(S), and its image is the
equalizer of the two maps F(S) 3 F(S ®g S).

Indeed, (a) is obvious, and (b) follows from the corresponding property of
R—->S3S®RS.

We now paraphrase these properties slightly. Call a finite set of maps
{R— S} a faithfully flat covering if all of them are flat and R — [1S:is
faithfully flat. Then F(R) injects into F([] S;) and is the equalizer of the two
maps to F([] S; ®x [}_[S ;). By (a) we can break up these products, getting
F(R)> [ F(S:) and [] F(S)3[]..; F(S:®xS;). In other words, an ele-
ment of F(R) is given by elements in the F(S;) yielding the same images in the
F(S;®& S;).

To see what kind of condition this is, consider in particular the Zariski
coverings, those where each §; is a localization R 7o all of these are flat, and
faithful flatness means that the ideal generated by the f; is all of R (ie.,
contained in no maximal ideal). Now recall (5.6) that R 7, corresponds to the
basic open set in Spec R where f; does not vanish. Faithful flatness says that
these sets cover Spec R. Furthermore, R, ® R, ;= Ry, corresponds to the
intersection where both f; and Jf; do not vanish. The properties of F thus say
that values on the whole of Spec R are determined by what they give on the
various Spec R, and that values on the Spec R s, agreeing on overlaps
patch together to give something on the whole space. This is the usual
definition of a sheaf on a topological space.

We also have a good many coverings which are not Zariski coverings—
consider the case R = k. But the analogy is close enough that we say a
functor F satisfying (a) and (b) is a sheaf in the “faithfully flat” or “ frqe”
topology.



118 15 Quotient Maps

Our affine group schemes all are functors of this special type, and that lies
behind the behavior of quotients. In a map F — G of sheaves the actual
images of the F(R) may not form a sheaf, because more “ patching together ”
may need to be done: the collapsing may have made compatible in G some
families of values which were not compatible in F. The map is a sheaf
quotient map provided merely that each element of G(R) arises by
patching—in some covering—elements which there come from F. This is
precisely the condition in (15.5).

15.7 Vista: The Etale Topology

The coverings defined in (15.6) are only one possible choice from a wide
range of such “Grothendieck topologies ”. Indeed, there are purely formal
properties which characterize a category of sheaves in such a topology. Even
in our specific context there are several natural variations. The only restric-
tion we put on the R — S; was that they be flat; this was reasonable in view
of (15.5), but in some situations it is awkward because it allows too many
things to count as coverings, and one might want the S; not to be too large. A
common requirement is that the S; be finitely presented (finitely generated
with finitely many defining relations), and this gives the “fppf ” topology
(fidelement plat de presentation finie).

This still allows Spec S; not to look much at all like a piece of Spec R. To
keep it closer, one can require that R — S; be not only flat and finitely
presented but also unramified, i.e. Qs,z = 0. Maps with these three proper-
ties are called etale, and this defines the etale topology. Though these cover-
ings do not capture all the behavior of group schemes with nilpotents, they
are much more manageable than arbitrary flat coverings. If for instance R is
a field, all R-algebras are faithfully flat; but R — S, is etale only when S; is a
separable algebra, and the study of etale coverings becomes simply the study
of sets with Galois action.

The etale topology has had extremely important applications to non-
affine schemes (5.6), where the definitions still make sense because they are
essentially local in nature. The Zariski coverings are among the etale cover-
ings, and the extra complexity of etale coverings seems to make up for the
weakness of the Zariski topology. In particular, cohomology groups can be
defined from the etale topology and have proved to be a good characteristic
p substitute for ordinary simplicial cohomology of complex algebraic var-
ieties. In this way ideas of classical geometry and algebraic topology can be
used in non-classical situations.

EXERCISES

1. Let F— G be a homomorphism of groups of multiplicative type. Show it is a
quotient map iff the map on character groups is injective.
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2. Let k be perfect. Let F — G be a quotient map, G reduced. Show F,.g » G is a

10.

quotient map.

. (a) Let k = k. Let A< B be Hopf algebras, not necessarily finitely generated.

Show the group map F(k) — G(k) is surjective. [If A’ < B is a finitely gen-
erated Hopf subalgebra, A4’ is Hopf and so faithfully flat over A. Take
g: A — k, extend its kernel to a maximal ideal of AA’, show the residue field is
k because a finitely generated algebra. Consider a maximal extension of g to
a Hopf subalgebra.]

(b) Let k =k, B any Hopf algebra over k. Show that the intersection of all
kernels of homomorphisms B — k is the nilradical.

. Let F be commutative, F — G a quotient map with kernel N. Show F is of

multiplicative type iff N and G are of multiplicative type. [Decompose G or F
over k and use (8, Ex. 4 and 6).]

. A quotient map with finite kernel is called an isogeny; it is a separable (resp.

purely inseparable) isogeny if the kernel is etale (resp. connected). Prove:

(a) If F is a connected group scheme and N <3S is etale, then N is central.
[Consider Aut N.]

(b) An inseparable isogeny of connected groups need not have central kernel.
[(7, Ex. 16).]

(c) If T is a torus, multiplication by n is an isogeny T — T; it is separable iff n is
relatively prime to char(k).

(d) Any finite subgroup of a torus is contained in the kernel of some multiplica-
tion by n; if it is etale, n can be chosen relatively prime to char(k).

(e) If : T— T is an isogeny of tori, there exists an isogeny T' - T. If ¢ is
separable, T' —» T can be chosen separable. [Use the universal property of
quotients.]

. Let N and H be closed subgroups of G, with N normal.

(a) Show there is a homomorphism from their semi-direct product to G, with
kernel ~ N n H.

(b) Let NH be the subgroup of G to which the homomorphism is a quotient
map. Show this is the smallest closed subgroup containing N and H.

(c) Let k[N] = k[G)/I and k[H] = k[G]/J. Show k[NH]is k[G)/I A J, where I A J
is the kernel of k[G] > k[G] ® k[G] — k[G)/I ® k[G)/J.

. Let T be a torus, T a subtorus. Show there is a subtorus T” with T’ N T” finite

and T'T" = T. [Let © be an additive map of Xr onto ker(Xy — X7), and set
X1 = Xz /{x| r ano~'(x) = 0}]

. Let T— T" be a quotient map of tori with kernel T". Show that T is split (or

anisotropic) iff T and T” are.

. Let B be a Hopf algebra. If its augmentation ideal I is finitely generated, show B

is a finitely generated k-algebra. [Let A be a finitely generated Hopf subalgebra
containing ideal generators for I; the quotient map has trivial kernel ]

Let B be a finitely generated Hopf algebra, 4 a Hopf subalgebra. Show 4 is
finitely generated. [We have 1, B finitely generated over B, and it equals I, ® 4 B
by flatness. Use (13, Ex. 1).]
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11. Let G be an algebraic affine group scheme. Show that Hom(G, G,,) is a finitely
generated abelian group. [The group-likes span a subalgebra.}

12. Show that a ring map R — [[4 S, is flat iff each R — S; is flat.

13. Let R be a ring, f}, ..., f, in R with ¥ Rf; = R. Suppose we have x; in R, with
xi/1=x;/1 in Ry, . Show there is an x in R with x/1 = x; in R, for all i.
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16.1 Subgroups as Stabilizers

We showed back in (3.4) that an algebraic G can be embedded in the general
linear group of some vector space; we now must refine that so that we can
pick out a specified subgroup as the stabilizer of a subspace. Recall from
(12.4) that if W is any subspace of some V where G acts linearly, the stabi-
lizz' Hy(R)={ge GR)|g(W®R)= W® R} does form a closed
subgroup.

Lemma. Let G act on V and V'. Let W and W' be nonzero subspaces. Then the
stabilizer of W@ W' in V® V' is Hy N Hy-.

ProoF. Clearly Hy-.n Hy S Hygw-. If now say g is not in Hy(R), there is
(in the notation of (12.4)) a basis element v; of W for which gv; has a nonzero
component v; ® « outside W ® R. For any 0 # w' in W’ then g(v; ® w') =
gv; ®g gw’ will not be in W® W ® R. O

Theorem. Let G be an algebraic affine group scheme over a field k, and let H be
a closed subgroup. There is a finite dimensional linear representation of G
containing a subspace whose stabilizer is H.

ProoOF. Let I be the ideal in A = k[G] which defines H. By (3.3) there is a
finite-dimensional subspace V of A containing ideal generators of I and
having A(V) s V® A. Let W=V n 1. If {v;} is a basis of V withv,,...,v,a
basis of W, and Av; = )’ v; ® a;;, then the a;; for j < n < i generate the ideal
for the stabilizer of W. As A(I)S A® I + I ® A, they are all in I. We have
e(I)=0, so for j < n we get v; = (¢, id) A(v;) = Y;», €(v:)a;;. Thus the a;;,
like the v;, generate I.
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Corollary. Such a representation exists with the subspace one-dimensional.

Proor. This is linear algebra (A.2); we can replace V and W by the exterior
powers A"V and A"W without changing the stabilizer. 0O

16.2 Difficulties with Coset Spaces

Before we carry out the construction of quotients, it is worth understanding
why it should be complicated. There is first an obvious problem in construct-
ing an algebraic structure on something like the group-theoretic quotient,
since we know that (G/N)(R) in general will be larger than G(R)/N(R). There
is also a quite different problem, which can be brought out quickly by
considering coset spaces for non-normal subgroups: in the theory we have,
‘they cannot be constructed.

To understand this, take the matrix group G = GL,, with H the upper
triangular group. Here G acts on k% = ke, ® ke, , and H is the stabilizer of
e;. In fact G acts transitively on the set of one-dimensional subspaces; and
since H is the stabilizer of one of them, the coset space is the collection of
those subspaces. But they form the projective line over k, which is basically
different from the kind of subsets of k" that we have considered. In the
complex case, for instance, it is the Riemann sphere, and all analytic func-
tions on it are constant; whereas on subsets of n-space we always have the
coordinate projection functions.

What really needs to be done here is to expand the whole framework to
include non-affine schemes (5.6). The projective line is such a scheme,
covered by two overlapping copies of the ordinary line; and in fact one can
always get coset spaces as schemes. Indeed, we have already seen part of the
proof. If say H < G are algebraic matrix groups, there is some V =~ k" with
G-action where H is the stabilizer of a one-dimensional subspace, and this
matches up the H-cosets with other such subspaces, points in projective
(n — 1)-space. But even if we had the general result, it would take substantial
extra work to show that for normal subgroups the coset space is affine. We
will just give a direct proof of this case.

It will be useful to have in mind another way of considering the problem:
a function on a coset space of G is essentially a function on G invariant under
translation by the subgroup. When G is GL, and H the upper triangular
group, for instance, it is easy to compute that no nonconstant polynomial in
the matrix entries is invariant under all translations by elements of H, and
thus no affine coset space can exist. (What follows from (16.1) is that there
are always semi-invariant functions, ones where each translate of fis a con-
stant multiple of £.) Our problem is to prove the existence of a large collec-
tion of invariant functions for normal subgroups.
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16.3 Construction of Quotients

Lemma. Let V be a linear representation of G. Let N be a closed normal
subgroup defined by the ideal J. Let W be {(we V|p(w)=w® 1 mod V ® J},
the subspace where N acts trivially. Then W is stable under G.

Proor. For matrix groups this is an obvious computation: n(gw)=
g(g™ 'ng)w = gw. In general we do the same thing with generic elements. Let
Rbe A/J ® A, with g: A—> R and n: A — A/J — R the obvious maps. For w
in W write p(w) =Y v,® a; with the a; independent. Then gw =}’ v;®
1®a;, while ngw is (id ® (ng))(id ® A)pw = (id ® (n, g))(p ® id)pw =
(i[d® (n, 9)) Y. p(vi) ® a;. But gw must equal ngw, and (n, g): A® A—>Ris
just the projection. Thus p(v;) becomes v; ® 1 in ¥V ® A/J, and the v; are in
w.

Theorem. Let G be an affine group scheme over a field. Let N be a closed
normal subgroup. Then there is a quotient map G — H with kernel precisely N.

PROOF. Let A = k[G]. We first assume G is algebraic and k = k. By (16.1)
there is a finite-dimensional comodule V containing a vector v for which the
stabilizer of kv is N. We want to juggle this representation until we get N
acting trivially on v. As it is, v = v, satisfies pp = v ® b + Y ;> , v; ® a;; with
a;, in J. The identity Ab = Aa;; = Y, a;, ® a;; shows Ab = b® b modulo
A® A/J. In particular, y = [b] is group-like in A/J, the character by which
N acts on kv. To cancel this we will tensor with a representation containing a
vector on which N acts by ™ *.

If char(k) = p, one technical trick is needed first: take p” so that the Hopf
algebra D = A™ is reduced, as in (14.2). Replace V and v by ®”"'V and
v® -+ ® v. By the lemma in (16.1), this still has the same stabilizer, and b is
replaced by b*". Thus we may assume b € D. If char(k) = 0, we take D = 4,
which is already reduced (11.4).

For each g in G(k), take g - b = (id, g) Ab. The span U of these elements is
contained in D, as AD < D ® D; it is finite-dimensional, being contained in
any subcomodule containing b. We claim U actually is a subcomodule.
Indeed, suppose some A(g - b) had a term outside U ® D. Since no nilpo-
tents are in D, we can find h: A — k not vanishing on the coefficient involved.
But then h - (g - b) would be outside U, which is impossible since it equals
(hg) - b. Thus G acts on U.

For any n in N(R) we have n- (g -b)=g - (g"'ng)- b= x(g 'ng)g - b.
Thus each one-dimensional space k(g - b) is stable under N, and U under the
N-action decomposes as @ U, for various characters ¢ of N. On b itself the
action is by y, since Ab = b® b mod A ® A/J. Take now the representation
of G on the dual space UP. For the N-action, U decomposes as @ UJ . In
particular, there is a nonzero element u” in U} on which N acts by x~".
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Form now the representation of G on V® U”. In this k(v ® u®) has
stabilizer N, and N acts trivially on v ® u”. Let X be the subspace of V ® UP
where N acts trivially. By the lemma X is stable under G. Nothing outside N
acts trivially, since nothing else even stabilizes k(v @ u® ). Thus the homo-

morphism G — Aut X has kernel N, as does the associated quotient map
(15.1).

To get the general case now it is easier to work in terms of invariant
functions.

Lemma. Let G— H be a quotient map with kernel N defined by the ideal
J = Iy k[G). Then k[H] equals

{x € k[G]|Ax = x ® 1 mod k[G]® J},

the subspace of the regular representation where N acts trivially.

Proor. For x in k[H] the counit shows Ax = x ® 1 modulo k[H]® Iy, so
one inclusion is trivial. Conversely, let V be any finite-dimensional subcomo-
dule of the N-invariants. The homomorphism G — GL, vanishes on N and
hence (15.4) factors through H; that is, A: V — V ® k[G] actually maps into
V ® k[H]. Applying (e, id), we see V < k[H]. O

Now in the theorem take G algebraic with no restriction on k. Let
k[G]/J = k[N]. Define B in k[G] to be the N-invariants, as in the lemma. This
is defined by equations over k, so B®k inside k[G;] is the set of
Ni-invariants. Hence B is a Hopf subalgebra, since by the lemma it is so over
k. Also, Iy A < J are k-spaces becoming equal after ® k, so they are actually
equal. Thus k[G] < B has group kernel N.

Finally, let G be arbitrary, with k[G]/J = k[N]. Let B be the N-invariant
functions in k[G]. For each finitely generated Hopf subalgebra 4;, the ideal
J N A; defines a normal subgroup, and BN 4, ={x€ 4;|Ax=x®1
mod A4; ® (4; » J)}. Hence by the previous case all B; are Hopf algebras,
and so B is a Hopf algebra. The corresponding quotient map trivially has N
in its kernel. But I A4 is all of J, since (Ip ~ 4,)4;is all of J N A;, and thus the
kernel is precisely N. O

Corollary. There is a one-to-one correspondence between closed normal sub-
groups and quotients.

In this chapter and the last, we have established the reasonable properties
one would expect quotients to have. In particular, the abelian affine group
schemes over a field form an abelian category (Ex. 12). For the reasons
indicated in (15.3), this is not true for algebraic matrix groups.
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16.4 Vista: Invariant Theory

We have seen that constructing quotients is related to finding functions on G
invariant under a normal subgroup. A similar question arose very early in
the subject known as invariant theory. Consider a finite-dimensional linear
representation V of G—in the classical case G would be GL, or SL, or
perhaps an orthogonal group. Then G acts on the ring of functions on V (a
polynomial ring), and one asks what can be said about the invariant func-
tions. For GL, in characteristic zero there are very classical methods for
computing the invariant polynomials of any given degree, but for years it
was unknown whether essentially new ones occurred in arbitrarily high
degrees—that is, whether or not the ring of invariants was finitely generated.
After computational proofs of special cases, the general result was proved by
Hilbert in 1890 in a famous paper using new abstract methods. Among many
other things, this paper essentially contains the Hilbert basis theorem (A.5).
Using geometric reductivity (12.5) one can now prove finite generation of
invariants for reductive G in all characteristics.

The question of invariants for GL, arose from the obvious problem of
classifying algebraic forms and expressions. In (3.1), for instance, we wrote
out a linear representation corresponding to change of variables in a binary
quadratic form. Clearly the same can be done for forms of higher degree, or
for more variables, or for several forms in the same variables, and so on. The
question whether one such form can be transformed to another by change of
variables is closely related to the invariants, for the answer is no if an
invariant function of the coefficients has different values on the two.

Recent work in the subject in a sense starts from Hilbert’s second paper
(1892), which, in addition to making his original proof constructive, brought
out the connection with algebraic geometry. (This paper contains the Null-
stellensatz (A.8).) Having G operating on V, we want geometrically to form
an orbit space, on which the invariants would be the ring of functions. One
can often carry this out, though exceptional sets may have to be discarded.
The original classification problem is still attacked in this way; the orbit
space may give some version of a “space of moduli ” whose points should be
in reasonable one-to-one correspondence with the equivalence classes of
forms or other algebro-geometric objects.

EXERCISES

1. Show that every homomorphism from G to an abelian affine group scheme
factors through G/2G.

2. Show an affine group scheme G is solvable iff it has a sequence of closed
subgroups {e} = G, <G,_, <--- G with G;/G,_, all abelian.

3. Let k =k. Let G be an algebraic matrix group, N and F closed subgroups
with N normal. Show the set NF = {nf |[n€ N, fe F} is closed. [Inverse image
of a closed set.]
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4.

6.

8.

10.

11

Prove that an algebraic G is triangulable (9, Ex. 6) iff it has a unipotent
normal closed subgroup U with G/U diagonalizable. [If G acts on V, then U
acts trivially on a nonzero subspace V,. The map G — Aut(¥,) factors through
G/U, which will have an eigenvector.]

. (a) If G has a normal subgroup N with N and G/N unipotent, show G is

unipotent. [Same argument as in Ex. 4.]

(b) Show an algebraic G is unipotent iff it has a sequence of closed subgroups
{e} =G, <G,-, <--- <G with each G;/G;,, isomorphic to a closed
subgroup of G,. [See (8, Ex. 5).]

(c) If G is finite connected and unipotent, show it has a sequence
{e} = G, <G,-, <--- <G with each G/G,,, ~a,. [For G < G,, show
ker(F) < G.]

Let F be algebraic, G = F/N. Show dim(N) + dim(G) = dim(F). [Reduce to
smooth connected groups over k, and count transcendence degrees in
N x F~F xsF]

. Let G and H be smooth and connected. Let ¢: G — H be a homomorphism,

and suppose Lie(¢): Lie(G) — Lie(H) is bijective. Show ¢ is a separable isogeny
(15, Ex. 5). [Use (12, Ex. 17) and a dimension count.]

(a) Let ¢: G —» H be a homomorphism, H' € H a closed subgroup. Show that
its inverse image {g € G(R)|¢(g) € H'(R)} is a closed subgroup of G.

(b) Let N be closed normal in G, F closed, N < F. Show there is a closed
embedding F/N — G/N.

(c) For F as above, show there is a representation of G where N acts trivially
and F is the stabilizer of a line. [Let G act on V with F the stabilizer of kv.
Say N acts on kv by y. Form U with N acting diagonally. In V ® UP let X
be the space where N acts trivially. Then kv ® U? = (kv ® U®) n X has
stabilizer F. Pass to an exterior power.]

(d) Show that F as above is the inverse image of F/N.

. Let F be finite, H a closed subgroup. Show the order of H divides the order

of F. [By (6.8) the order of F is the product of orders of F° and m, F: and
H A F9=H° Thus assume F=noF or F=F® Over k the first case is
ordinary group theory, the second trivial by (14.4).]

Let F be finite, N a closed normal subgroup, G = F/N.

(a) Show 7y G ~ my F/mo N and G° =~ F°/N°.

(b) Show the order of F is the product of the orders of G and N. [Reduce to
F = F° or F = g F. In the connected case, recall k[F] free over k[G], and
use N x F~ F xgF]

A p-divisible group scheme or Barsotti-Tate group of corank h is a family of
finite abelian group schemes G, of order p* together with maps i,: G, = G4,
such that

0-G, —L*’G,.+1 ——— Gpyy

is exact for all n.
(a) Prove inductively G, is the kernel of p" in each G, .
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(b) Show there is a homomorphism j: G,,,— G, such that i°j: G,,,— G,
is p". .

(c) Show that0»G, - G,,, % G,—0 is exact. [To get G,,,/G,~ G,,
count orders.]

(d) If0 > N — F = G — 0 is an exact sequence of finite abelian group schemes,
show 0 — G? —» F? - N? - 0 is exact.

(e) If (G,, i) is a p-divisible group, show that (G2, j°) is one also.

12. The axioms for an abelian category, apart from the category axioms, are the

following:

(a) Hom(F, G)is an abelian group, and composition Hom(F, G) x Hom(G, H) -
Hom(F, H) is bi-additive.

(b) Products F x G exist.

(c) Every homomorphism F — G has a kernel and a cokernel. (Here one calls
N — F a kernel if 0 - Hom(X, N) - Hom(X, F) - Hom(X, G) is exact for
all X, and G — H a cokernel if 0 - Hom(H, X) - Hom(G, X) — Hom(F, X)
is exact for all X.)

(d) Every monomorphism (map with kernel zero) is the kernel of something,
and every epimorphism (map with cokernel zero)is the cokernel of something,

Prove that abelian affine group schemes over a field form an abelian category.
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Descent Theory Formalism

17.1 Descent Data

Throughoutthis chapter R — S will be a faithfully flat ring extension. If M is
an S-module, then M ® S is an § ® g S-module in two ways, directly and by
the twist in S® S; that is, (a ® b)(m ® s) may be am ® bs or bm ® as. In
general these two structures are not isomorphic; if for instance M = §/I,
then the annihilator of M ® S is I ® S in one structure and S® I in the
other.

Suppose now that M has been constructed explicitly as N ® S for some
R-module N. Then on M® S = (N® S)® S we can define the R-linear
bijection 0: n® a® b—n ® b ® a which clearly does interchange the two
structures. Up on N® S ® S ® S we can derive three twistings, 6°, 6*, and
62 sending n®a®@bR®cto n®c®bPaor n®c®a®born®Rb®
a® c, respectively. These satisfy 8! = §°92, and all can be defined directly
from 0: if 6(m ® a) = ), m; ® a;, then

CMmOua)=Y m@u®a,
'mAOua)=Y m®@a;Qu
Pm®a®@u)=) ma,u.

In general, if M is any S-module, we say that descent data on M are given
by a bijection : M® S > M ® S which is an isomorphism from one
(S ® S)-structure to the other and satisfies 0' = §°6? in the notation above.
We next show that such a 0 is precisely what is needed to “ go down ” from
the S-module to the R-module, recapturing N from M. The rest of the
chapter will then be spent merely reformulating this in various ways. There
are interesting abstract settings for this, but the treatment here will be very
much down to earth, laying the groundwork for the next chapter.

131
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17.2 The Descent Theorem

Theorem. Let R — S be faithfully flat. Then R-modules are naturally equiva-
lent to S-modules with descent data.

ProOF. From N we have already constructed M = N ® S and descent data
6. By faithful flatness (13.1) we can identify N with {me M|0(m® 1) =
m®1}. If ¢: N> N' is an R-homomorphism, it induces an S-map
V=0®id: N® S > N'® S commuting with descent data. Conversely, let
“Y: N®S - N ® S be any S-homomorphism which commutes with descent
data, ie. (Y ®id)) =6 (Y ®id). For nin N we have 0(n® 1)=n® 1, so
Y(n)® 1 = 0'(Y(n)® 1) and hence y(n) is in N'. Thus ¢ induces an R-linear
map ¢: N — N’, and clearly ¢ ® id = .

We thus have modules over R corresponding to certain pairs (M, ), with
homomorphisms of these pairs corresponding to the homomorphisms over
R. The problem is to show the “effectiveness” of the descent, the fact that
every (M, 0) comes from an R-module. Clearly our only hope is to try
N={me M|0(m®1)=m® 1}. We have to prove that (n, s)sn is an
isomorphism N ® S — M. Once this is true, 6 will indeed be the descent data
on N®S; for n®a®b becomes an®b in M® S, and O(an® b) =
0((a®@b)n® 1) = (b®a)(n®1)= (b ® a)(n® 1) = bn @ a, the image of
n®ba.

By definition N is the kernel of the difference of two maps, and we write
this an exact sequence

0-N-MI3IM®S.
By flatness this yields an exact sequence
0-NRS-MRSIMR®S®S;

the two mapssendm®@ stom ® 1 ® sand to (m ® 1) ® s. Viewing M as an
R-module, we get by faithful flatness

0-M->-MRS3IMRPS®S,;

here the two maps send m®@stom® 1®sand tom®@s® 1.
We map one of these sequences down to the other, using# on M ® S and
8° on M ® S® S. We have

0n®@s)=0((1®s)n®1))=(s®@1)Pr®1)=(s@n®1)=sn®1;

as 0 is bijective, at least our map N® S — M is injective. But ° is also
bijective, so all of the kernel M will come from N ® S provided that the
diagram commutes.

It is enough to check commutativity on each element m ® a. Mapped
down by 0, this becomes some Y m; ® a;. The two images of that in
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M®S®S are ) m;®1®a; and ) m;® a;® 1. On the other hand, the
two images of m ® a in the first sequencearem®@ 1 @ aand m ® 1)@ a =
0’(m® 1®a). Mapped down by 6° these become 0°Mm® 1 ®a)=

m®1®a and °PM® 1Qa)=0'm®1®@a)=Y m;®a;® 1, since
0°0% = 0. O

17.3 Descent of Algebraic Structure

It is trivial but crucial that in this equivalence ® g corresponds to ®s, with
0 ®ses 0’ thedescent dataon M @s M’ @ S ~ (M ® S) ®ses(M’ ® S). The
point of this is as follows. Suppose for instance that our R-module N has a
bilinear multiplication N x N — N. This can be restated as a module map
N® N — N. It corresponds then to a map M ®s M - M commuting with
descent data, i.e., making

MOS)®ses(M®S) —— M®S
000 0
MR®S)Qses(M®S) — M®S

commute. Reinterpreted, this diagram says that 6 preserves the multiplica-
tion on M ® S. Since everything has been formulated in terms of module
maps, the converse is valid: if M has a multiplication and descent data
preserving the multiplication, then both M and the multiplication come
from R. .

This argument holds not only for multiplication but also for any other
structure given by maps between tensor powers: a bilinear form, a comulti-
plication, etc. For finitely generated projective modules, duals go to duals
under the equivalence, so these can be included. Without trying to be pre-
cise, we can say that almost any “algebraic” structure on M can be used here.
In each case the condition for descent of the extra structure is that 8 should
preserve it.

Since R — § is faithfully flat, identities between maps hold over R iff they
hold over S. Thus for instance the multiplication N x N — N is associative,
or satisfies the Jacobi identity, iff the same is true on M. Even some existence
statements are the same. Suppose for example that there is a unit element m
for the multiplication in M. Then m ® 1 is a unit element for M ® S. Since 0
preserves multiplication and units are unique, 0(m ® 1) = m® 1. Thus m is
in the descended module N, and so N has a unit element. Anything uniquely
determined similarly descends. Existence statements without uniqueness
may not go down: N ® S may for instance have nontrivial idempotents
when N does not.
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17.4 Example: Zariski Coverings

The nature of the condition 6! = §°9? can be illustrated by Zariski coverings
(15.6). Let fy, ..., f, generate the unit ideal of R; set R; = R, and S =[] R;,
so R — § is faithfully flat. A module M over § has the form | | M; with M, an
Ri-module. We have S®S =[] R,®R;=[]R;;, where R;=R;®
Ry, =R, . In M®S =[] M;®R; the R;; component is M;®R; =
(M;);,, while in the twisted structure the R;; component is (M,),,. An
isomorphism 6 between these two is thus a family of isomorphisms
0:;: (My);, = (M), over R;;. If we interpret {Spec R} as an open covering of
Spec R, the M; give objects on the open sets, and the 6;; are isomorphisms
between them on overlaps.
We have S® S® S = [[ Ry =[] Ry,ss,- On

M®RS®S=[|M;®R;®R,
the maps induced by 6 act by
8°: M;®R,®R, > M, ®R,®R,
0': M;® R;® R, » M, ® R, ® R;
0*: Mi(®R;®R, > M;®R,®R,.

The condition ' = §°9* then says that 6, localized to R, agrees with
0,0;;. Thus descent data are *patching information”, isomorphisms on
overlaps which are compatible on multiple overlaps. Our theorem here says
then that an R-module, R-algebra, etc. can be constructed by taking ones
over the various R; with compatible isomorphisms over R;;.

The general result of course covers much more ground; in the next chap-
ter, for instance, R and S will usually be fields. But one can still think of
descent data as patching information for a covering in the fpqc topology.

17.5 Construction of Twisted Forms

Suppose N is a given R-module, possibly with some additional algebraic
structure. An S/R-form of N, or twisted form split by S, is another R-module
with the same type of structure which becomes isomorphic when tensored
with S. Such objects obviously correspond to giving different descent data
on N®S. Suppose that we have some descent data y: N@S®S —
N®S®S, while 8(n ® a® b) = n® b ® a gives the original descent data.
As 6 is bijective, we can write Y = 0¢. This ¢ does not go between different
S ® S-structures but is an actual automorphism of N ® S @ §; and any such
¢ gives an isomorphism . This reduction to automorphisms is the advan-
tage gained from having N already at hand.
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We can extend ¢ to automorphisms of N® S® S® S in three ways,
leaving one factor fixed each time. Explicitly, if p(n® a®b)=3y n,®
a; @ b;, these are

@) n®u®a®b)=Y n@u®a;® b,
(dl(p)(n®a®u®b)=En,-®a,-®u®b.~
(@) n®a®bOu)=Y n,®a; @b, ® u.

We can then compute y' = 8'(d'p) and % = 6*(d*¢p) and ¢° = 6'(d°%)0>.
Here for example is the last one. We have y(n® a® b) = 0p(n ® a® b) =
O(Z n®a®b;) = Z n®b;® a;, so

YVn®a®@ub) =Y n®b®ua;

and 0'(d°)P*n®a@ub)=0'(d°%)n@RuRa@b)=0'Y n®OuU®
a®b)=) n®b,®u® a;.

Since 0%0% = id, we see that Yy Y2 = Y iff (d°¢)(d%p) = d'¢. This then is
the condition for descent data in terms of the automorphism ¢. The de-
scended module, consisting of them =Y n,® a, withm® 1 = fp(m @ 1),is

Pn®aled n®a®1)= Y n®1®a}

Now different ¢ give different subsets of N ® S, but these different objects
may be isomorphic. For most purposes one really wants to know the iso-
morphism classes. But we can compute them equally well, for the basic
theorem shows that two forms are isomorphic over R iff there is an isomor-
phism over § commuting with the descent data.

Explicitly, let  and ¥’ be descent data. For an S-automorphism 4 of
N ® S, we want to know when y'(1® id) = (A® id)y. Let d'A be A ® id, so
if A{n®a)=) n,®a;, then (d'A)n®a®u)= %: n;® a; ® u. The map
d°1=0(d'2)0 is also an automorphism, with (d°A)n@u®a)=Y n,®
u®a;. Writing = 0p and y' = 0¢’, we see that ¢ and ¢’ give 'iso-
morphic objects iff for some 1 we have ¢’(d'1) = (d°A)p, or equivalently
@' =@ p(d'2)"".

17.6 Twisted Forms and Cohomology

We can put the equations of (17.5) into a more recognizable framework. Let
G = Aut(N) be the automorphism group functor (7.6) of the structure N.
There are two obvious R-algebra homomorphisms S —S® S, namely
d°(a)=1®a and d'(a) = a® 1. Our d°1 and d'A in G(S ® S) are precisely
derived from A in G(S) by the functoriality of G; that is, d°A and d'A are the
images of A induced by the algebra maps d° and d'. Similarly d°, d'¢, and
d*¢ are the results of taking ¢ in G(S ® S) and using the three algebra maps
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d:S®S->S®S®S, where d* inserts a 1 after the ith place. The calcula-
tions thus involve nothing but G.

For any group functor G, now, we can consider the elements ¢ in
G(S ® S) withd'p = (d°p)(d*¢); they are called 1-cocycles. Two such, ¢ and
@', are called cohomologous if ¢’ = (d°A)p(d*A)~! for some A in G(S). It is
easy to check in general that this is an equivalence relation, just as it was
when G = Aut(N). The set of equivalence classes (cohomology classes) is
denoted H'(S/R, G). It is a set with a distinguished element, the class of
@ = e; if G is abelian, the product of cocycles is a cocycle, and H! is a group.
In these terms now we sum up (17.5):

Theorem. The isomorphism classes of S/R-forms of N correspond to
H'(S/R, Aut(N)).

One would define H°(S/R, G) to be the elements A in G(S) with
d°A = d'2; but whenever G is an fpgc sheaf (15.6), this is nothing but G(R). If
G is abelian, it is possible to define higher cohomology groups (Ex. 10). For
G = G,, these were first introduced by Amitsur and are often called Amitsur
cohomology. From the sheaf viewpoint our cohomology is Cech cohomo-
logy for the covering Spec S — Spec R.

It is possible to read the theorem either way, and information about
twisted forms can be used to compute cohomology. Let R be a field, for
example, and N a finite-dimensional vector space with no other structure. A
twisted form of N is some other vector space N' with N® S ~ N’ ® S. Since
the rank of the free module N ® § is uniquely determined, N’ has the same
dimension as N and thus is R-isomorphic to N. Since Aut(N)= GL,, we
have:

Corollary. If R is a field, H(S/R, GL,) is trivial.

17.7 Finite Galois Extensions

Suppose that S/R is a finite Galois field extension with group I'. If G is any
group functor satisfying G(4 x B) = G(A4) x G(B), we can rewrite our coho-
mology in terms of I'-actions.

All that is needed is to rewrite the tensor products involved. Galois theory
tells us that S® S is isomorphic to [[r S under the map sending a® b to
p(a)b in the p-coordinate. For convenience write [[rS as the functions
I — S, s0a® b goes to the f with f (p) = p(a)b. The mapd®: § — S ® S sends
a to 1®a, so d%a is in these terms the constant function f(p) = a, while
d'a=a® 1 gives f(p) = p(a). At the next level we have S ® S ® S isomor-
phic to [—[rer, where the image of a® b® c is the function h with
h(o, ) = a(a)r(b)c. If f corresponds to a ® b, then d®(@a® b) = 1® a® b, so
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@d°f)o, 1) = t(a)b = f(r). Similarly d'(a®b)=a® 1 @b gives in these
terms (d'f)(o, 7) = o(a)b = f (o). Finally

(@f)(o, 7) = ola)e(b) = [(=~ o(@)b] = f (+~ o),

Now we consider G(S)3 G(S® S)F G(S® S® S). By hypothesis we
can break these up, so that for instance G(S ® S) = G([ [r S) = [[r G(S) can
be identified with functions f: I' — G(S). These “ functions ” are merely keep-
ing track of which coordinate is which in the product, and the d' here are
given by the same formulas as above: the I'-action on G(S) is just the one
induced by functoriality by its action on S. We have now that f: I' - G(S) is
a cocycle iff f(¢) = f(r) - tf(r” o). Setting p = 7~ !5, we can rewrite the
equation as f(zp) = f(t) - 1f(p).

Clearly we can define these concepts using just the I'action. Let I be any
group acting as automorphisms of a group F. The maps f: I - F satisfying
f(o7) = f (o) - of () are the 1-cocycles or crossed homomorphisms (they are
homomorphisms when the action is trivial). The ones cohomologous to fare
those of the form o cf(o)[o(c)]! for some fixed ¢ in F; this is the
definition that matches up with ours for G(S), and one can easily check that

it is an equivalence relation in general. The set of equivalence classes is
denoted H'(T,, F).

Theorem. Let S/R be finite Galois with group T, and let G be a group functor
taking products to products. Then H'(S/R, G) ~ H'(T', G(S)).

Here finally is our first sample application:

Corollary. Let k be a perfect field. Let F be an affine algebraic group scheme
over k which is isomorphic to G, over k. Then actually F ~ G,.

Proor. The Hopf algebra isomorphism k[X]=k[G,]~k[F]®k is
determined by the element corresponding to X and hence is actually defined
over some finite extension S of k. As k is perfect, S/k is separable, and we can
expand it to be finite Galois. It is enough then to show H!(S/k, Aut(G,)) is
trivial, and by the theorem it suffices to show HY([, Aut(G,)(S))
= H'(T, Autg(G,)) is trivial. But in (8.4) we computed all maps G, — G,
over a field; the only automorphisms are the scalars, Auts(G,) = G,,(S). By
the theorem again H'(T, G,,(S)) = H'(S/k, G,,). But we know from (17.6)
that G,, = GL, has trivial H! over fields. a

This argument illustrates one pleasant feature of Galois cohomology: it -
requires only the values of G in fields. Over rings with nilpotents there are
non-scalar automorphisms of G,, and so for S/k inseparable we cannot
reduce the computation to G,, . In fact there do exist nontrivial forms of G,
over imperfect fields (Ex. 8).
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17.8 Infinite Galois Extensions

In the last corollary we saw that a certain question over an infinite extension
k/k could be reduced to computation over finite extensions. Here we formu-
late where that can be done more generally. Let L/k be an infinite Galois
extension, with group ¢; the most important case is where L is the separable
closure k;. We assume that G is a sheaf for which G(L ® L) is the union of
G(S ® S) for finite subextensions S/k. This is automatically true if G is an
algebraic affine group scheme, since k[G] is finitely generated. In this situa-
tion we will see that H'(L/k, G) can be expressed as a Galois cohomology
group.

Let 95 = Gal(L/S), so 9/%s ~ Gal(S/k). By (17.7), the elements of
G(S ® S) correspond to functions %/%s — G(S). For S < T, it is easy to
check that the inclusion G(S ® S) — G(T ® T) is the obvious map combin-
ing /% —9/9s with G(S® S)— G(T® T). Thus G(L® L) is the func-
tions % — G(L) constant on cosets of some % . (Every such function occurs,
for it has only finitely many values; they all lie in some G(T), and we can
expand to get S = T.) These functions are simply the continuous functions f
from ¢ to G(L) with the discrete topology. An element in G(S® S) is a
cocycle iff it is one in G(L ® L), and hence the cocycle condition on f looks
exactly as it did before. In general, if F is any group on which ¥ acts
continuously (6.3), we can define H'(%, F) to be the continuous cocycles
modulo /'~ ¢f[o(c)] ™ !; this is the Galois cohomology H* of % in F, or of L/k.

Theorem. If G is algebraic and L/k infinite Galois with group %, then
H'(L/k, G) = H (%, G(L)).

In (18.5) we will show the usefulness of this by proving that for smooth G
we always have H!(k/k, G) = H'(k,/k, G). As a more immediate example,
we can rederive our earlier classification of separable algebras (6.3). Over k;
each one becomes k; x -*+ x kg, and thus they are precisely the forms of
k x -+ x k. Clearly Aut, (k, x --+ x k) is the symmetric group S,, with ¢
acting trivially. Thus separable algebras correspond to homomorphisms
% — §,, i.e. continuous actions of % on an n-element set. Two are isomorphic
when the functions are conjugate by an element of S,, i.e. when there is a
bijection of the sets taking one action to the other.

EXERCISES

1. Let N be a finitely generated free (or projective) R-module corresponding to
descent data (M, 8). Show A*N corresponds to (A*M, A¥@). Compute the descent
data on M” giving N°.

2. Show H'(S/R, F x G)~ H'(S/R, F) x H\(S/R, G).

3. Let G be etale, L/k a purely inseparable field extension. Show H!(L/k, G) is
trivial.
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10.

11

12.

. Let M be an abelian group, G the diagonalizable group scheme represented by

k[M].

(a) If Spec R is connected, show Autg(G) ~ Aut(M).

(b) If L/k is a purely inseparable field extension, show H'(L/k, Aut(G))is trivial.
(c) Show that any affine group diagonalizable over k is diagonalizable over &, .

. Write out explicitly the statement that H'(T', G, (L)) is trivial for L/k Galois.

. Let S/R be a finite Galois field extension. Show every vector space M over S has

M®S ~[]rM under m® s {p(s)m). Show that descent data on M then
become a collection of R-linear automorphisms h,: M > M with h,(sm)=
a(s)h(m) and h, h. = h,.. What is the descended module?

. Let G be finite and connected. Show that H'(k, /k, G) is trivial.
. Let k be an imperfect field, with b in k not in k?. In G, x G, let G be the subgroup

{(x, ¥)| ¥* = x + bxP}. Show that this is a form of G, not isomorphic to G, over k.

. Let N be an R-module with some algebraic structure. Show that Aut(N) is a sheaf

in the fpgqc topology.

(a) Let G be an abelian group functor. Let d: ®"S —» ®"*!S insert a 1 after the
ith place. Define d: G(®" S) - G(®"*! §) by d = Y (—1)* d*. Show dd = 0,
so that one can define groups H™(S/R, G) as kernel modulo image at each
stage.

(b) For R — S faithfully flat and n > 1, show H"(S/R, G,) = 0. [The sequence
S>®"SL®" 1S4 @25 - will be exact if it is after ®S. Define
s': ®@"S - ®" 'S by multiplying a;,+, and a;., . If s is the alternating sum
of the s, show s(d ® id) + (d ® id)s = id.]

(c) Let @, ¢: S — T be two homomorphisms of faithfully flat R-algebras. Show
they induce the same map H"(S/R, G) - H"(T/R, G).[Again use the s' with ¢
and  to construct an h with hd + dh = G(®" ¢) — G(®"¥).]

(a) Let I be a group acting as automorphisms of a group F which is abelian. Let
C"(T, F) be all the maps I'" - F, and define d: C* — C"*! by

df(al’ ---,0',,+1)=0'| f(o'z, ceny an+1)
+ Z’i(—l)‘f(al, e 004 gy -ney 0n+1)
+ (=1 (oy, ..., on).

Show that dd = 0, so that one can define H'(T, F) to be the kernel modulo
the image.

(b) In the situation of (17.7) with G commutative, show that H*(T', G(S)) agrees
with the H*(S/R, G) defined in the previous exercise.

Let S/R be a field extension. Show that every form of &, is isomorphic to a,. [See
(7, Ex. 17)]
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18.1 A Cohomology Exact Sequence

Theorem. Let F be an affine algebraic group scheme over a field k. Let F —+ G
be a quotient map with kernel N. Then there is a function G(k) - H*(k/k, N)
for which the sequence

1 - N(k) - F(k) - G(k) > H'(k/k, N) - H"(k/k, F) - H"(k/k, G)

is exact, i.e., the elements in the image at each place are those mapped to the
trivial element. If F is commutative, the maps are homomorphisms.

ProOF. The maps on H' are the natural ones induced from the maps on
cocycles. Since N — G is trivial, it in particular sends cocycles to the identity,
so H'(N) — H'(G) is trivial. Conversely, let o in F(k ® k) be a cocycle trivial
in H'(G). Write e = (d°[4])[«](d'[A])~! for some [4] in G(k). We know by
(15.2) that F(k)— G(k) is surjective, so we can lift [] to some A in F(k). Let
B = (d°A)x(d'A)~*. This is a cocycle in the same class as «. It goes to e in
G(k ® k), so it comes from N(k ® k). Thus the class comes from N.

To construct the connecting map, take some [A] in G(k) S G(k) and lift it
to A in F(k). Let a be (d°1)(d'A)~!. Since d°[4] = d'[A], we have [a] = e in
G(k® k), so « comes from N. It is a cocycle there since it is so after the
injection into F. The lifting A of [4] is not unique, but any other one is vA for
some v in N(k), and d°(vA) d*(vA)~! = d°(v)ad'(v)~! is in the same class.
Thus the map is well defined, and clearly it is a homomorphism if F is
commutative.

Consider [A][p] with p in F(k). We can choose Ap as the lifting, and then
d°(hp)d' (Ap)~ = d°(2) d°(p) d*(p)~* d*(1)* = d°(2) d* (A)"*, since d°(p) =
d'(p). Thus [4] and [Ap] have the same image. Conversely, suppose [u] has the

140
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same image as [A], say d°(1)d'(A)'=d°(v)[d°(u)d () '] d'(v) ' =
d°(vu) d'(vu)~! for some v in N(k). Then d°(A~'vu)=d*'(A"'vu), so
p = A~y is in F(k) by faithful flatness of k — k (see (15.6)), and [A][p] = [u])-
Thus we have exactness at G(k).

Finally, our o = d°(4) d*(4)™! is by construction in the trivial class of
H'(F). Conversely, let B be a cocycle in N trivial in H'(F), say
B = d°(2) d*(A)~*. Since B goes to e in G, we have d°[1] = d*[1]. Thus [] lies
in G(k) and gives f. O

18.2 Sample Computations

(a) By (17.6) we know H'(k/k, G,,) is trivial. But 1 - p, - G, > G, — 1l is
an exact sequence of group schemes. The theorem then gives
H'(k/k, n,) ~ G,,(k)/G (k)" _

(b) Direct computation will show H'(k/k, G,) = 0. Explicitly, let {1} U {b};
be a basis of k over k, and suppose A=a® 1 + Y a,® b, is a cocycle.
This says a®1®1+)a@b®1+1®a®1+) 1®@a;®b; =
a®1®1+ Y a;® 1 ®b;. Comparing the terms with last entry 1, we
get Y a;® b+ 1®a=0,s0 A equals a® 1 — 1 ®a and is the trivial
class. [In fact H'(S/R, G,) = 0 for any R — § faithfully flat (17, Ex. 10).]

(c) Now when char(k) = p, we have from (8.4) the sequence

F

0-a,-G,

Hence H'(k/k, &,) = k/k®.
(d) Likewise when char(k) = p we have the sequence

G,-0.

F—-id

0-2Z/pZ - G,

G,—0..

Hence H'(k/k, Z/pZ) = k/{x" — x|x € k}.
(¢) Suppose char(k) =0, and let U be unipotent. By (16, Ex. 5) there is a
chain of subgroups

U=Uyo U2 2oU,={e}
with each U, /U,,, a closed subgroup of G,; since char(k) = 0, the non-
trivial U;/U,,, must be ~ G,, as G, has no subgroups (8, Ex. 7). By
induction then we get H'(k/k, U) = 0, for we have
H*(k/k, U;)— H'(k/k, U) - H(k/k, G,)

exact with both ends trivial. The same result actually holds for smooth
connected unipotent groups over any perfect field, since there also there
is a chain with quotients ~ G,.
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18.3 Principal Homogeneous Spaces

Let G be an affine group scheme over a ring k, and let X be a representable
functor on which G acts (3.1). Following the usual definition for groups, we
say the action is simply transitive, or X is formally principal homogeneous, if
for each pair of points in X (R) there is a unique element in G(R) taking the
second to the first. In other words, the map G x X — X x X sending (g, x)
to (gx, x) should be bijective.

Clearly G itself under multiplication has such a structure. Moreover, this
is almost the only example, since for any x in X (k) the map g+>gx is a
bijection G — X preserving the G-action. The interest arises only from the
seemingly minor fact that an X satisfying the definition may have X(k)
empty. We do not however want the emptiness to extend too far, and we call
X a principal homogeneous space (or torsor) for G only if X(S) # @ for some
k — S faithfully flat.

This type of structure is actually very familiar in one case, for it includes
Galois theory. Indeed, suppose k is a field, L a finite Galois extension with
group I'. If G is the constant group scheme I, then the X represented by L is
principal homogeneous for G. In fact, G x X ~ X x X is precisely the iso-
morphism L ® L ~ [], L ~ k" ® L that was used in (17.7). The existence of
this isomorphism, i.e., being a principal homogeneous space for the constant
group, turns out also to be the right definition of a Galois extension of rings
(and (17.7) remains valid). One can also in some cases extend Galois theory
to connected G and purely inseparable field extensions.

One more example must be mentioned, though it involves non-affine
groups. A nonsingular cubic curve X in the projective plane over the ra-
tionals may well have no rational points on it. But one can associate with it
another cubic J, its Jacobian, also defined over the rationals. This J has
rational points, and has a composition law making it a (non-affine) algebraic
group scheme; and X is a principal homogeneous space for J. Questions of
which fields contain solutions of which cubics thus turn into questions about
the principal homogeneous spaces for Jacobians.

18.4 Principal Homogeneous Spaces and
Cohomology

Let G be a fixed affine group scheme, A = k[G]. The structure of principal
homogeneous space X for G is one to which descent theory applies. If
k[X] = N, the structure on N is given by a multiplication N® N — N and
an action map N - A ® N; the axioms are that certain diagrams commute,
that N has a map to some faithfully flat k-algebra, and that a certain map



18.4 Principal Homogeneous Spaces and Cohomology 143

N ® N - A® N is an isomorphism. All this holds iff it holds for (N ® S) ®s
N®S)>N®Sand N®S—->AQN®S~(A®S)®s(N®S).
Furthermore, whenever X(S) # §, we know X; is isomorphic to Gs as a
principal homogeneous space over Gs. Such X are therefore classified by an
H*, where the group involved is that of principal homogeneous space auto-
morphisms of G.

To compute this, let ¢: G — G be a principal homogeneous space auto-
morphism over k. Then ¢(g)= ¢(g ‘- e¢) = gp(e) for all g. Thus ¢ is
determined by ¢(e), which clearly can be taken to be any element in G(k).
The bijection ¢ ¢(e) from Aut, to G(k) reverses order of multiplication,
but then @+ ¢(e)~! is an isomorphism. All this is true after base change
from k to any k', so we have computed the functor: Autpy(G) is isomorphic
to G itself. Hence we know the classification.

Theorem. Let k — S be faithfully flat, G an affine group scheme over k. The

principal homogeneous spaces for G having a point in S are classified by
H'(S/k, G).

For an example, let k be a field, G = Z/pZ. The isomorphism N ® N ~
N ® k[G] forces N to be separable of dimension p, and the group action
forces it to be either k x --- x k or a Galois extension field of degree p.
Suppose first that p is prime to char(k) and a pth root of unity ,, is in k. Then
from {, we get an isomorphism Z/pZ ~ p,, and in these terms the extensions
are classified by H'(k/k, p,) = G,,(k)/G,(k)’ (Kummer theory). If we sup-
pose rather that p = char(k), then the computation in that case (18.2) shows
the extensions are classified by H'(k/k, Z/pZ)~ k/{x? — x|x € k} (Artin-
Schreier theory).

Apart from such direct applications, the theorem gives for every G a
canonical descent problem, one to which we can reduce questions about
H'(S/k, G) or other structures with automorphism group G. The next sec-

tion is an example of this. In many cases also there is an automatic choice for
S:

Theorem, Let G be an algebraic affine group scheme over a field k. Let X bea

principal homogeneous space. Then k[X] is finitely generated, and X (k) is
nonempty.

PROOF. We know some X5 = Gs, so k[X]® S ~ k[G] ® S is finitely gen-
erated over S. As k — S is faithfully flat, it follows as in (14.3) that k[X] is
finitely generated. The last result then follows from the Nullstellensatz.

O

Corollary. In this situation principal homogeneous spaces correspond to
H'(k/k, G).
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18.5 Existence of Separable Splitting Fields

Theorem. Let G be a smooth affine group scheme over a separably closed field
k. Then H'(k/k, G) is trivial.

PrOOF. Let A = k[G] and B = k[X] for some principal homogeneous space
X. As in the last theorem, we know B is finitely generated. We must prove
X (k) is nonempty. Suppose first that G is etale. Then A is separable, and
A®k~ B®k, so B is separable. As k is separably closed, B=k x *-* x k,
and the result holds. Now in general we have by (6.7) an exact sequence
15 G°—> G -ny,G— 1, so by (18.1) it is enough to show that H!(G®) is
trivial. Thus we may assume G is connected.

Now A® k ~ B® k is an integral domain, so B is a domain; let L be its
fraction field. We know that Q, is free of rank equal to the transcendence
degree. Properties of differentials (11.2) show that the same is true for
Queii, for Qe i, for Qe i, and finally for Q. Thus Q has a basis dx,,
..., dx, with n = tr.deg,, L. We may assume the x; are in B. The module
Qp /Y, Bdx; is annihilated by tensoring with L, and is finitely generated since
B is; thus some b # 0 in B annihilates it, and Qp, = Qp ®p B, is spanned by
the dx;.

Let C be k[x,, ..., x,]. By (11.5) this is a polynomial ring. By (13.4) there is
some faithfully flat C, — (B,),. As k is infinite, we can find a homomorphism
of C = k[x,, ..., x,] to k which sends ¢ to a nonzero value and so extends to
C.. Let M be the kernel of this. By faithful flatness D = B,,/M B,, is nonzero.
Since dx; = d(x-constant) is in dM, we have Qp= Qs /(MQp, +
B,, dM) = 0. The Nullstellensatz shows D has a quotient E which is a finite
field extension of k, and Qg = 0 since E is a quotient of D. Then E is
separable (11.2), so E = k. Thus B— B,,—» D — E is a point in X(k). O

Corollary. Let G be smooth over any field k. Then H'(k/k, G) ~ H'(k, /k, G).

ProoF. Both of them classify principal homogeneous spaces. g

In this situation we can compute H! as Galois cohomology (17.8).

Corollary. Let N be a finite-dimensional k-space with some algebraic structure.
If Aut(N) is smooth, then any k/k-form of N is actually isomorphic to N over
k.

Corollary. Let F — G be a quotient map of affine algebraic group schemes, and
assume the kernel N is smooth. Then F(k,)— G(k,) is surjective, and there
is an exact sequence

1 N(k) - F(k) > G(k) » H'(k,/k, N) > H(k,/k, F) - H(k/k, G).
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PrOOF. Surjectivity holds because over k, the next term in the sequence
(18.1) is H'(k/k,, N). This surjectivity is now all that is needed to run
through the construction again. a

18.6 Example: Central Simple Algebras

Descent theory is of course most valuable when the objects involved are
uncomplicated over sufficiently large extensions. Consider for instance cen-
tral simple algebras, i.e. finite-dimensional associative k-algebras that are
simple and have center k. Early in the study of these one usually proves (1)
the only ones over k are the algebras of all n x n matrices, and (2) any C is
central simple over k iff C® k is central simple over k. In our present
language, these results say that the central simple algebras are the twisted
forms of matrix algebras. Thus they will be classified once we understand the
automorphisms of matrix algebras.

Theorem. Let M be the algebra of n x n matrices over a field k. Then all
automorphisms of M are inner. The same is true over k[t] where 12 = 0.

ProoF. We first work over k. Let V = k" be the space on which M operates.
Inside M let I, be {(a;;)|a;;=0 for j+ r}. Then each I, is a left ideal,
M = @ I,, and evaluation at the rth basis vector is an M-module isomor-
phism I, S V. Thus each I,, like V, is an irreducible module.

Let T: M > M be an automorphism, and give V a new M-module struc-
ture Vr by a - v = T(a)v. This is a finitely generated M-module, so there is a
surjection ®™ M = @™ @ I, - V. As in Schur’s lemma, the map is injective
on any I, where it is nonzero. But dim; I, = dim, V = dim,(V7), so some
I, 3 Vy. Thus there is an isomorphism c¢: V — V¢, This ¢ is an invertible
element of M, and c(av) = a - (cv) = T(a)cv for all a and v, so cac™! = T(a).

Now take the case of k[z]. As before we get @™ @ I, mapping onto Vr.
Reducing this modulo T we get the situation over k, with 1, /tI, irreducible
and dimensions the same, so some I, — V; is an isomorphism mod . But the
k[t]-structure on V; is unchanged from that on V, so Vr like I, is a free
k{t]-module. As in the argument of (14.2), it follows that I, — V; is actually
bijective. The conclusion now follows as before. a

Theorem. The map GL, — Aut(M) is a quotient map with kernel G,,, and
Aut(M) is smooth.

ProoF. It is trivial to compute that the kernel is the scalar matrices G,,. We
know GL,(k) —» Aut(M)(k) is surjective. As GL,(k) is connected, this implies
Aut(M) is connected; it also implies dim Aut(M) is n?> — 1 (see (16, Ex. 6)
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and note that the dimension depends only on the reduced subgroup). The
k[t] computation shows that 0 — Lie(G,,) —» Lie(GL,) — Lie(Aut(M)) — 0 is
exact. Thus dim, Lie(Aut(M)) = n*> — 1, and Aut(M) is smooth by (12.2).
The quotient of GL, is a smooth subgroup with the same Lie algebra, so by
(12.4) it equals Aut(M).

The quotient GL, /G,, is called the projective general linear group, PGL,,.

Corollary. The central simple algebras of dimension n? over k are classified by
H'(k/k, PGL,).

Corollary. Every central simple algebra is split by some separable field
extension.

Proor. PGL, is smooth. d

Corollary. Let C be a central simple algebra. Then all automorphisms of C are
inner.

ProoF. Consider 1 - G,, —» GLc — Aut(C)— 1, where GL¢ is the group
scheme of units (7.5) of C. This is exact after extending to k, where it becomes
the sequence of the theorem; hence it is exact as it stands. Then GLc(k) -
Aut(C) is surjective by (18.1), since the next term H'(k/k, G,,) is trivial.

a

Since G,, is central in GL,, a further step can be taken here, constructing
a map H'(k,/k, PGL,) — H?(k,/k, G,); this map is actually injective
(H'(GL,) is trivial). These injections exist for each n; one can show that their
images exhaust H(k, /k, G,,), and that classes for different n have the same
image iff they yield the same element in the Brauer group (i.e., are matrix
algebras over the same division ring).

Any other object with automorphism group PGL, has exactly the same
classification. For example, projective (n — 1)-space has automorphism
group PGL,; one can show that descent theory works for such non-affine
spaces, and hence there are twisted forms of projective space (Brauer-Severi
varieties) corresponding to central simple algebras. Or consider Aut(GL,).
Transpose inverse is an automorphism of order 2 that is not inner, but it is
essentially the only one, and 1 » PGL, - Aut(GL,) - Z/2Z — 1 is exact.
Some cohomology classes come from H'(PGL,), and they define twisted
forms of GL, (inner forms) which correspond to central simple algebras;
these forms are in fact the GLc that we considered above. There are however
other classes and other (outer) forms given by unitary groups [see (12, Ex. 5)].
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18.7 Example: Quadratic Forms and the Arf
Invariant

Quadratic forms are another type of structure uncomplicated over alge-
braically closed fields, and descent theory can be applied to them. Even in
the simplest case we can see some interesting results. On k2 let Q be the
quadratic form Q(xe, + ye,) = xy. It is a fact that over k every nondegener-
ate rank 2 quadratic form looks like Q, even in characteristic 2. Such forms
are therefore classified by H'(k/k, Aut(Q)).

It is easy to compute that (¢ 5) preserves the form iff ac = 0 = bd and
ad + bc = 1. Clearly then Aut(Q) has dimension at least 1. If we take
a = 1+ a'tand so on in k[7], the conditions become b’ = ¢’ =0 =4’ + d, so
dim Lie(Aut(Q)) = 1. Thus Aut(Q) is a smooth group of dimension 1. (It is
the correct orthogonal group when char(k) = 2; the M with MM* = I do not
give a smooth group (12.3).)

The group Aut(Q) is not connected: it has a homomorphism onto Z/2Z.
The natural proof of this in higher rank associates with Q a “ Clifford alge-
bra” where Aut(Q) acts and where it is easy to define the map. But we can
just write it out explicitly for rank 2. The algebra k[Z/2Z] is generated by an
idempotent, and thus can be written as k[X]/(X? — X)withAX = X ® 1 +
1®X -2X®X. For g=(¢ }) in Aut(Q) we set D(g) = bc. We have
bebe = be(1 — ad) = be, so this gives a point in Z/2Z; and computation
shows D(gg’) = D(g) + D(g') — 2D(g)D(g’), so D: Aut(Q)—Z/2Z is a
homomorphism.

There is always a homomorphism Z/2Z — p,, intuitively sending O to 1
and 1 to —1; functorially it sends an x with x> = x to 1 — 2x. For ¢ in
Aut(Q) we have det(g) = 1 — 2D(g). Thus if char(k) # 2, the map P is simply
the determinant pulled back from p, to the isomorphic group’ Z/2Z. In
characteristic 2, however, D captures information lost in det(g), which is
always 1.

It is easy to see that ker D is defined by ac = 0 = bd and ad = 1 and is
isomorphic to G,, under the map (¢ 5)—a. Hence there is an exact
sequence

1 G, (k) > Aut(Q)(k) » Z/2Z — H*(k/k, G,,) - H*(k/k, Aut(Q))
— H(k/k, Z/22).

As H'(k/k, G,,) is trivial, we see that forms of rank 2 are classified by an
invariant in H'(k/k, Z/2Z). In higher rank 2n they will similarly have an
invariant there, though it may not determine them, since the special ortho-
gonal group ker(D) may have nontrivial cohomology.

All this is independent of char(k); only now does a difference arise. If
char(k) # 2, then Z/2Z ~p,, and the invariant is in H!(k/k, p)~
G,(k)/Gn(k)?; it is of course the (signed) discriminant. If char(k) = 2, the
invariant lies in H'(k/k, Z/2Z ~ k/{x* — x|x ek} and is called the Arf
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invariant. To understand how characteristic 2 is different, we need only the
group-scheme fact that det: Aut(Q)— p, factors through Z/27; descent
theory then tells us which cohomology group contains the substitute for the
discriminant.

18.8 Vanishing Cohomology over Finite Fields

Theorem. (Lang) Let k be a finite field, and G an affine algebraic group scheme
which is connected. Then H'(k/k, G) is trivial.

ProoF. (Steinberg) Let k have g elements, and let g(«) = «? be the Frobenius
automorphism of k over k. We compute using Galois cohomology. The
cocycles are maps to G(k) from the finite quotients of Gal(k/k), all of which
are cyclic generated by the image of o. It will be enough to show that
@(x) = x~'o(x) is a surjective map on G(k). Indeed, suppose a cocycle sends
o to some element y. Write y = x 'g(x). The cocycle then sends o2 to
yo(y) = x~'6?(x), and similarly by induction sends ¢" to x ~ 6"(x); hence its
class is trivial (take ¢ = x71).

Let A = k[G]. If we embed G in GL,, all the coordinates of a(x) are the
qth powers of the coordinates of x, and hence o: G(k) - G(k) is actually
induced by the k-algebra map o,: 4 — A4 sending fto f% The map ¢ thus
extends to the functor, corresponding to ¢, = (S, d,) A on A. Since a(x) =
x@(x), we have f? = a,(f) = (id, o) A(Sf) for all fin A.

Choose f}, ..., f, to span a finite-dimensional subcomodule V containing
algebra generators of A. Then ff = (id, @o) A, S V- @o(4) =Y. fipo(A).
Induction now shows that we can take any polynomial in the f; with
coefficient in ¢,(A4) and reduce it to have all exponents less than q. Hence A
is a finitely generated module over B = ¢y(A). This implies first of all that
under 4 — B the dimension cannot go down. But since G is connected, 4
modulo its nilradical is a domain (6.6), and from (12.4) we see then that the
kernel of ¢, must be contained in the nilradical. Hence any y: 4 — k in G(k)
factors through ¢, to give some B — k. Let M be the kernel, a maximal ideal
of B. As B injects into A, we know By, injects into Ay, and thus 4y is a
nontrivial finitely generated By-module. By Nakayama’s lemma then
MAy # Ay, and so MA # A. Any homomorphism x: A - A/MA — k then
satisfies o(x) = y. 0O

Corollary. If 1 - N —» F - G — 1 is exact with N connected and k finite, then
F(k) — G(k) is surjective.

Corollary. All finite division rings are commutative.
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Proor. They are central simple over their finite centers, and matrix algebras
for n > 1 are not division rings. O

The theorem also applies to (18.7); once one shows ker(D) is connected, it

follows that a nondegenerate quadratic form of even rank over a finite field
is determined by its discriminant or Arf invariant.

EXERCISES

1.
2.

Show H*(k/k, SL,,) is trivial.

Let char(k) = p. Compute H'(k/k, Z/p*Z) by embedding in the group W of
(8, Ex. 8).

. Let F — G be a quotient map with kernel N. Let g be in G(k), and let X be its

inverse image in F, the x in F(R) mapping to g in G(R). Show X is a principal
homogeneous space for N, and compute its cocycle.

. Let k be a ring, G an affine group scheme, X a principal homogeneous space. If

k — k[G] is faithfully flat, show k — k[X] is faithfully flat.

. Let S and T be faithfully flat over k. Show that any k-algebra map S — T induces

a map H!(S/k, G) — H'(T/k, G) which is injective and the same as for any other
map S — T. [Either compute or (simpler) interpret on principal homogeneous
spaces.]

. Let G be an affine group scheme with k — k[G] faithfully flat.

(a) Consider the collection of faithfully flat k — S with S either countable or
having no larger cardinality than k[G]. Show every principal homogeneous
space for G is split by some such S. [See Ex. 4]

(b) Show there is a set H'(/k, G) = lim H'(S/k, G) which corresponds to all
principal homogeneous spaces. [See Ex. 5.

(c) Suppose F — G is a homomorphism and k[G] — k[F] is faithfully flat. Let N
be the kernel. Show k — k[F] and k — k[N] are faithfully fiat.

(d) In the situation of (c), prove the exact sequence (18.1) for the H'(/k).

. The Picard group Pic(k) is H!'(/k, G,); its elements correspond to invertible

modules, twisted forms of the k-module k.

{(a) Show the multiplication in H* corresponds to tensor product of modules.

(b) Show invertible modules are finitely generated (13, Ex. 1).

(c) Show an invertible module with one generator is free. [Tensor 0 — I —
k — M — 0 with S; note that module surjections k — k are isomorphisms.}

(d) If k is local, show Pic(k) = 1. [Get a generator modulo the maximal ideal and
use Nakayama’s lemma.]

(e) Show every invertible module is split by a Zariski covering. [For prime P we
get a generator m of Mp. Then M/km is annihilated by ® k, for some f ¢ P.
These f for various P generate the unit ideal.]

. Let k be a field. Let d be a derivation of the ring of n x n matrices over k, i.e.

k-linear satisfying d(XY) = XdY + YdX. Show dX = UX — XU for some fixed
matrix U. [Construct an automorphism over k[z].)
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9.

10.

11.
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Let X and Y be principal homogeneous spaces for G. Show that any map
¢: X - Y commuting with the G-action is an isomorphism. [To show X(S)
nonempty when Y(S) is, use the sheaf property for

X(S) X(T) /= X(T®sT)

A

Y(§) —— Y(T) — 3 Y(T®sT)]

(a) Let X be a principal homogeneous space for G split by S. Produce a cocycle
defining X. [For x in X(S) get g in G(S ® S) relating d°x and d'x.]

(b) Let X be a functor on k-algebras which is a sheaf for the fpgc topology.
Suppose G x X - X makes X formally principal homogeneous, and X (S) is
non-empty for some k — S faithfully flat. Show X is a principal homogeneous
space, i.e., is representable. [Construct a representable Y with the same
cocycle.]

Let N be some module with algebraic structure, and assume G = Aut(N) is
representable. Let N’ be a twisted form of N. Define a functor X = Isom(N, N’)
by X(T) = Isom(Nr, N7). Show that X is a principal homogeneous space for G.



Appendix: Subsidiary Information

A.1 Directed Sets and Limits

A relation < on a set [ is a partial ordering if it is reflexive (i < i), transitive
(i <Jj, j< k implies i < k), and essentially asymmetric (i < j, j < i implies
i = j). It is directed if in addition for every i and j there is some k with both
i<k and j<k. A direct limit system is a family of sets (S;);c,, with I
directed, together with maps ¢;: S; - S; for each i < j which are compatible
with each other (¢;; = id and ¢,;¢; = ¢,; for i < j < k).

The direct limit lim S; of the system is the disjoint union of the S; with
elements identified by the transition maps, ie. {(s, i>|s € S;} modulo
s, iy ~{@ji(s), j>. A collection of maps f;: S; —» T; compatible with the tran-
sition maps induce a map lim S; — lip T;; this is significant even when all T;
are equal. If all f; are injections, so is the limit map. If all S, are subsets of one
set, and the @ ;; are inclusions, lip §; is the (directed) union.

If the S; are groups, rings, etc., and the ¢; are homomorphisms, the limit
acquires the same structure. (Elements in different S; or §; are added or
multiplied by passing to some S, containing images of them both.) The
direct limit commutes in all ways with tensor product; that is, if M; and N;
are modules over S; and all maps are compatible,

(lim M) ®ps,(lim Ni) = lim(M, ®s,N;).

Dually, a family (P;);c is an inverse limit system if for i < j we have
compatible “ projection ” maps n;;: P; — P;. The inverse limit lim P; is the set
of compatible families of elements, ie., {(p;)|p; € P;, m;(p;) = p;}. This in-
herits any algebraic structure preserved by the n;;. If g;: N; — P; are compa-

tible maps, they induce a map lim N; — ljm P;; this is significant even when
all N; are equal.
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A.2 Exterior Powers

Let ¥V be an R-module. In V®---® V = ®"V, divide by the submodule
generated by all v, ® - - ® v, where some two v, are equal; the quotient A"V
is the rth exterior power. One writes v, A---Av, for the image of
), ® - ®v,. Since V;RV,P® v, +1,Qv;® - ®v,= (v, +v,)®
(vl + 1)2)6<)“'®l)r)'~ (vl®vl®'”®vr)_ (vz®02®'“®vr)’ we have
vy AUy AttAV, = —D, AUy A'cr AT, and then by induction any permuta--
tion ¢ of the entries multiplies by sgn(o).

If V has a basis e,, ..., e,, then a slight change of the standard basis gives
the following basis for ®" V:

(@) e, ® - ®e;, with iy <iy < <i,
(b) €, ®  ® e;, — 5gn(0)eq,) ® @ ey, With iy < iy <+ <,
(c) e;, ® * ® e;, with some two subscripts equal.

Elements of type (b) and (c) are in the submodule. Simple computation
shows they span it, since a term like (e, + pe,) ® (Ae; + pe,)is a combina-
tion of e,®e, and e, ®e, and e¢; e, — (—1)e;®e,. Hence the
e, A Ae, with iy <iy < -+ <, are a basis of @ V.

If g: V - Vis linear, it induces ®"g: ®" V — ®" V; this clearly preserves
the submodule and hence induces A'g: A"V — A"V with v; A---Ap, >
g(;) A+~ Ag(v,). If g and h are linear, A"(gh) = A"(g)A"(h). When in particu-
lar r = n, then A"V has rank 1, and A"(g) is multiplication by a scalar called
det(g). This defines the determinant, a multiplicative map from Endg(V) to
R.

Let W be the submodule of V spanned by basis elements e, ..., ¢,, and
setw=-¢e, A -Ag,. Ifg: V= Vhasg(W)< W,clearly (A'g)(w) € Rw. Con-
versely, suppose (A'g)w = Aw. If g is invertible, A"g is invertible, so 1 is
invertible in R. Now W equals {v € V|vAw=0in A" 'V}; forifv =) ae
then vAaw =Y., oe; Ae; A~--Aeg,), and the terms are independent. But
for v in W we have 0=vAw, so 0= (A""g)vAw)=gvA(A'gw=
Algv A w), whence go Aw = 0 and gv is in W. Thus an invertible g maps W to
itself iff A"g maps A"W ~ Rw to itself inside A"V.

A.3 Localization, Primes, and Nilpotents

Let R be aring. Let S be a subset which contains 1, does not contain 0, and is
closed under multiplication. Let S™'R be the pairs {(r, s> |r € R, s€ S}
modulo the equivalence relation where (r, s) ~ {r’, s> iff t(rs' — sr') = 0 for
some ¢t in S. Write r/s for the class of {r, s). Adding and multiplying as for
fractions makes S™ 'R into a ring. The map r—r/1 is a homomorphism
R - S7'R, and any ¢: R —» R’ with ¢(s) invertible for all s in S factors
uniquely through S~ !R. If R is a domain, we can take S = R {0}, and then
SR is the fraction field of R. For any fnot nilpotent we can take S = {1,
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f2,...}; here S™!R is usually denoted R . If M is an R-module and we begin
with pairs {m, s), we can similarly construct S™'M; it is isomorphic to
S™1R ®x M. Every ideal of S™'R has the form $~*I for some ideal I of R.

An ideal is maximal if it is proper ( # R) and not contained in any other
proper ideal. The union of any directed family of proper ideals is an ideal,
and is proper since 1 is not in it; thus Zorn’s lemma says that any proper
ideal is contained in a maximal ideal. If P is maximal, R/P is a field. More
generally, anjideal P is prime if R/P is a domain. In that case S = R\ P is
closed under multiplication; here S™!R is usually denoted R, . This Rp is a
local ring; that is, it has a unique maximal ideal, PRp.

Domains of course have no nontrivial nilpotents, so a nilpotent element f
in R is in all prime ideals. Conversely, if f is not nilpotent, take a maximal
ideal I in A ; its inverse image in R is prime and does not contain f. Thus the
set N of nilpotent elements in R is an ideal equal to the intersection of all
prime ideals. One calls N the nilradical, and says R is reduced if N = 0.

A.4 Noetherian Rings

Let R be a ring. The following conditions are equivalent:

(1) Every ideal is a finitely generated R-module.

(2) There are no infinite strictly increasing sequences of ideals.

(3) Any nonempty family of ideals contains an ideal not included in any
other one of the family.

[For (1)= (2), note that the union of an increasing sequence will have a
finite set of generators, all occurring at some finite stage. For (2) = (3), take
an ideal and keep replacing by a larger one as long as you can. For (3)= (1),
consider a subideal maximal among those finitely generated; any element
outside it could be adjoined to give a larger one.]

Such R are called noetherian. If R is noetherian, so is every quotient or
localization, since ideals in these all come from ideals in R. By induction any
submodule M of R" is finitely generated. [Take my, ..., m, in M whose last
coordinates generate the projection of M onto the last summand; then
M =Y Rm; + (M n (R"! x {0}).]. Hence any submodule of a finitely gen-
erated R-module (quotient of R") is finitely generated.

A.5 The Hilbert Basis Theorem

Theorem. Let R be noetherian. Then the polynomial ring R[X] is also
noetherian. :

PrOOF. Let J = R[X] be an ideal. Let I, be the elements of R occurring as
coefficient of X" in a polynomial of degree < n in J. Each I, is an ideal of R,
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and I, < I, < . Hence eventually I, = I, = ‘--. Each I, is finitely gen-
erated; pick a finite set of f, ; of degree n in J with leading coefficients
generating I,. By induction on degree (cancelling the leading term) we see
that every element in J is a sum of multiples of the f, ; for n <r. O

If in particular k is a field, then by induction k[ X, ..., X,] is noetherian.
Hence all finitely generated k-algebras (quotients of k[X, ..., X,]) are
noetherian.

A.6 The Krull Intersection Theorem

Theorem. Let R be a noetherian local ring with maximal ideal 1. Then
(\w I" = 0.
m

Proor. Choose generators a,, ..., a, of I, and take indeterminates X, ...,
X,. Inside R[X,, ..., X,], let S, be the set of homogeneous f of degree n for
which f(ay, ...,a,)isin N I™. Let J be the ideal generated by all S,,. As R[X,,
.., X,] is noetherian, we can find a finite set {f;} in U S, generatirig J. Let
d; = deg(f;) and d = max(d;). Suppose now b is in » I"; it is then in [?*1,
and so can be written as f(ay, ..., a,) for some f homogeneous of degree
d + 1. By definition this fis in S5, , S J. Write f=)_ g; f;. Since fand the f;
are homogeneous, we can drop from the g; all terms of the wrong degree,
which just cancel each other. Thus we may assume g; is homogeneous; its
degree is d + 1 —d; > 0. Then b= f(ay, ..., a,) =Y, gilay, ..., a,) filay, -,
a,) is in I{~ I"). Thus N I" = I(n I™). The conclusion then follows from a
lemma: '

Nakayama’s Lemma. Let R be a local ring with maximal ideal I, and M a
finitely generated R-module. If 1 - M = M, then M = 0.

ProoOF. If M # 0, choose nonzero generators m;, ..., m, for it with s minimal.
Write m, = Y ¢;m; with ¢; in I. Then (1 —¢y)m; =33 e;m;;and 1 — ¢4 is
invertible, since it is not in the unique maximal ideal I. Hence m,, ..., m,
generate M. This contradicts the minimality of s.

Corollary. If R is any noetherian ring, then

ﬂ’ maximal ﬂm lm = 0

PrOOF. For 0 # x in R choose I containing {a|ax = 0}. Then x/1 is nonzero
in R;, so x/1 by the theorem is not in some (IR;)", and hence x ¢ I™.

O
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A.7 The Noether Normalization Lemma

Theorem. Let k be a field, R a finitely generated k-algebra. There is a subring S
of R such that S is a polynomial ring and R is a finitely generated S-module.

PRrOOF. Let 4 be k[X 4, ..., X,] with R ~ A/I. Consider n-tuples y,, ..., y,in

A for which A is a finitely generated module over k[y,, ..., y,]. Choose one
with as many y; as possible in I, say y, ., ..., y, in I. If z; is the image of y;,
then R is a finite module over S = k[z,, ..., z,]; we must show the z; are
independent.

If they are dependent, there is a nonzero polynomial f(Y,, ...,
Y,)=Y a, Y* with w, =f(yy, ..., y,) in L. Set w, = y; — y;* where m; = M’
and M is bigger than all «. We have

wi=f(y, Vit +wa, o, Y+ W)

=Y ag(yjrtmet o tmA 4 Jower degree in ).

Our choice of the m; makes all the y,-exponents here distinct, so looking at
the largest one we see we have an equation for y, whose leading term has
nonzero constant coefficient. If its degree is N, we can by induction write all
powers of y, as polynomials in the w; times 1, y;, ..., )i ~*. Hence these
powers of y, spank[y,,...,y,] = k[y;, wa,...,w]over k[wy,w,,...,w,].If 4
is spanned by elements g; over k[y,, ..., y,), it is then spanned over k[w;, ...,
Wrs Yrs1s ---» Ya] DY the g;y4 with j < N, and thus it is a finitely generated
module. But the n-tuple (wy, ..., w,, y,+1, ..., V) has the additional element
w, in I, and by the choice of y,, ..., y, this is impossible. 0

A.8 The Hilbert Nulistellensatz

Theorem. (a) Let 0 # R be a finitely generated algebra over a field k. Then R
has a k-algebra homomorphism to the algebraic closure k.

(b) Every maximal ideal in R is the kernel of such a homomorphism.

(¢) The intersection of the maximal ideals is the nilradical of R.

PROOF. (a) Write R as a finite module over S = k[z,, ..., z,]. Let P be the
ideal (z,, ..., z,) of S. If PR = R, then PRp = Rp, so Rp = 0 by Nakayama’s
lemma for Sp; this is impossible since 0 # Sp € Rp. Thus R/PR is nonzero
and is a finite-dimensional algebra over S/P = k. Dividing by a maximal
ideal, we get a finite extension of k, which will embed in k.

(b) For any maximal I, the algebra R/I is finitely generated and hence
maps to k. The kernel of R —» R/I — k cannot be bigger than I.
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(c) If fin R is not nilpotent, R is finitely generated and thus as above has
a map to k. The subring image of R —» R — k is finitely generated and hence
is a field, so the kernel is maximal and clearly cannot contain f. O

Corollary. Let k = k. The maximal ideals of k[X ,, ..., X,] all correspond to
n-tuples (ay, ..., a,) in k" and have the form (X, — a,, ..., X, — a,).

A9 Separably Generated Fields

Theorem. Let k be a perfect field, L a finitely generated field extension. Then
there is a pure transcendental subextension E such that L over E is algebraic
and separable.

PrOOF. Write L = k(xy, ..., x,) and use induction on n. If xy, ..., x, are
algebraically independent, set E = L. If not, say x,, ..., x,_, are a transcen-
dence basis. Then x, is algebraic over k(x,, ..., x,_,), and there is a nonzero
polynomial f'in k[ X ,, ..., X,] with f(x,, ..., x,) = 0. If we choose such an f of
lowest possible total degree, it will clearly be irreducible in k[ Xy, ..., X,]. If
(in characteristic p) all X; occur in f only as X7, then f=Y c.(X,)’ =
() ci’?X*)P, and the c)/? are in k since k is perfect; this is impossible by
irreducibility. It will no longer matter which variable was x,, so we may
renumber and suppose X, occurs with an exponent not divisible by p. The
X,,..., X, are now algebraically independent, while x, satisfies the equation
f(Xyx3,..0,x,)=0. :
Suppose this factors in k(x,, ..., x,)[X,], say

[= gl(XlY Xz, ...,X,). g_Z(Xl’ xZ,..., Xr)
hy(xa, ...y X,) hy(xs, ..y x,)

Then in k[X,, ..., X,] we have fh h, = g,g,. As f is irreducible there, it
divides either g, or g, , and that factor therefore has at least as high a degree
in X,. Thus fis a minimal equation for x, over k(x,, ..., x,). It involves X,
to some power not divisible by p, so it is separable. Thus L is separable
algebraic over L, = k(x,, ..., x,). By induction L, is separable algebraic
over some pure transcendental E, and L then is so also. O

A.10 Rudimentary Topological Terminology

A topology on a set X is a collection of subsets (closed sets), including X and
the empty set, such that finite unions and arbitrary intersections of closed
sets are closed. The complements of closed sets are called open. The closure
of a subset is the smallest closed set containing it. A subset with closure X is



A.10 Rudimentary Topological Terminology 157

dense. If Y is any subset, the intersections of closed sets with Y (relatively
closed sets in Y) give a topology on Y.

One calls X disconnected if it is a disjoint union of two closed sets;
otherwise, X is connected. Overlapping connected sets have connected
union, so X is a disjoint union of maximal connected sets, its connected
components. They are closed sets, because the closure of a connected set is
connected.

A function between topological spaces is continuous if inverse images of

closed sets are closed. A homeomorphism is a continuous bijection with con-
tinuous inverse.
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Demazure, M., Gabriel, P. Groupes Algebriques I (Amsterdam: North-Holland,
1970). A 700 page book giving a more general and thorough account of most of
the material we have discussed.

Demazure, M., Grothendieck, A., et al. Seminaire de Geometrie Algebrique: Schemas
en Groupes, Lecture Notes in Math. # 151, 152, 153 (New York: Springer, 1970).
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Hochschild, G. Introduction to Affine Algebraic Groups (San Francisco: Holden-
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emphasis is on characteristic zero and relation with Lie algebras.

Humphreys, J. Linear Algebraic Groups (New York: Springer, 1975). Much like
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Sweedler, M. Hopf Algebras (New York: Benjamin, 1969). Purely Hopf-algebraic,

often with no commutativity assumptions. The cocommutative case corre-
sponds to formal group theory.
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Action of an affine group scheme 21
Adjoint representation of G 100
Affine algebraic group 29

Affine group scheme 5

Algebra 3

Algebraic affine group scheme 24
Algebraic matrix group 29
Anisotropic torus 56
Anti-equivalence 15

Antipode 8

Arf invariant 147

Artin-Schreier theory 143
Augmentation ideal 13
Automorphism group scheme 58

Base change 11
Borel subgroup 77

Cartan subgroup 77
Cartier duality 17

Center of a group scheme 27
Central simple algebra 145
Character 14

Charater group 55

Clopen set 42

Closed embedding 13
Closed set, closure 156
Closed set in kn 28

Closed set in Spec 4 42
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Closed subgroup
Coalgebra 26
Coassociativity 9
Cocommutative Hopf algebra

Coconnected Hopf algebra 64
Cocycle 136, 137

Cohomology class
Cokernel 127

Commutative Lie algebra 99
Comodule 23

Connected affine group scheme 51
Connected component of G 51

Connected set, connected component
Constant group scheme

13

136, 137

Continuous function 157
Continuous ¥-action 48
Coseparable coalgebra 53
Crossed homomorphism

Dense set 157
Déployé, see Split
Derivation 83

Derived group 73

Descent data
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16, 45

137

Diagonalizable group scheme
Differential field 77
Differential operator 99

Differentials of an algebra 84
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14

Dimension of an algebraic G 88

Direct limit

151
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Distribution (supported ate) 99 Krull intersection theorem 154

Dual, see Cartier duality Kummer theory 143

Etale finite group scheme 49, 91 Lie algebra 93

Etale topology 118 Lie-Kolchin triangularization theorem 74
Euler’s theorem 75 Linear algebraic group defined overk 33
Exterior power 152 Linear representation 21

Faithfully flat covering 117 Local ring 153

Faithfully flat ring map 103 Localization 152

Faithfully flat (fpgc) topology 117

Fiber produgct 7

Finite group scheme 16 Maximal ideal 153

Fixed element 64 Multiplicative type, group of 55
Flat ring map 103,

Form, see Twisted form

Formal group law, formal group, formal Nakayama’s lemma 154

Lie group 90 Natural correspondence 6
Formally principal homogeneous Natural map 5

space 142 Nilradical 153
fppf topology 118 Noether normalization lemma 155
Frobenius homomorphism 91 Noetherian ring 153
Functor 4 Nonsingular, see Smooth

Normal closed subgroup 14

Nullstellensatz 155
Grothendieck topology 118

Group scheme of units of D 57
Group-like element 14 One-parameter subgroup 60 -
Order of a finite group scheme 112

Height one, finite group of 87
Hilbert basis theorem 153
Homomorphism of group schemes 13
Hopf algebra 8

Hopf ideal 13

Parabolic subgroup 77
p-Divisible group 126

Picard group 149

Picard-Vessiot extension 77
Pointed coalgebra 72
Polynomial map 28

Prime ideal 153

92 Primitive element 14

Principal homogeneous space 142

Ideal in a Lie algebra 99
Idempotent 19
Invariant operator
Inverse limit 151
Invertible module 149
Irreducible representation 63
Irreducible set, irreducible

component 39, 40
Isogeny 119

Quotient map 114

Radical of G 97

Rank of a smooth group 77

Jacobi identity 93 Rational point 33

Jordan decomposition 69, 70 Reduced ring 153
Reductive group 97
Regular local ring 89

Kemel of a group scheme map 14 Relatively closed set 157

Kolchin fixed point theorem 62 Regular representation 23
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Representable functor 5
Representation, see Linear representation
Representation of a Lie algebra 96
Ring of functions on S 30

Root system 98

Scheme 44

Schur’s lemma 63
Semi-direct product 19
Semi-invariant element 34
Semisimple group 97
Separable algebra 47
Separable matrix 54

Sheaf 43

Sheaf in fpqc topology 117
Smooth group scheme 88
Solvable group scheme 73
Spec A 41

Split torus 56

Strictly upper triangular 62
Subcomodule 23
Symplectic group 99
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Tate-Barsotti group, see p-Divisible group
Topology 156

Torsor, see Principal homogeneous space
Torus 55

Triangulable group scheme 72

Twisted form 134

Unipotent group scheme 63
Unipotent matrix 62
Unipotent radical 97
Unitary group 99

Weil restriction 61
Weyl group 77

Yoneda lemma 6

Zariski covering 117
Zariski topology on k# 28
Zariski topology on Spec 4 42





