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To the memory of my parents 



Preface 

To the Teacher. This book is designed to introduce a student to some 
of the important ideas of algebraic topology by emphasizing the re
lations of these ideas with other areas of mathematics. Rather than 
choosing one point of view of modem topology (homotopy theory, 
simplicial complexes, singular theory, axiomatic homology, differ
ential topology, etc.), we concentrate our attention on concrete prob
lems in low dimensions, introducing only as much algebraic machin
ery as necessary for the problems we meet. This makes it possible to 
see a wider variety of important features of the subject than is usual 
in a beginning text. The book is designed for students of mathematics 
or science who are not aiming to become practicing algebraic topol
ogists-without, we hope, discouraging budding topologists. We also 
feel that this approach is in better harmony with the historical devel
opment of the subject. 

What would we like a student to know after a first course in to
pology (assuming we reject the answer: half of what one would like 
the student to know after a second course in topology)? Our answers 
to this have guided the choice of material, which includes: under
standing the relation between homology and integration, first on plane 
domains, later on Riemann surfaces and in higher dimensions; wind
ing numbers and degrees of mappings, fixed-point theorems; appli
cations such as the Jordan curve theorem, invariance of domain; in
dices of vector fields and Euler characteristics; fundamental groups 
and covering spaces; the topology of surfaces, including intersection 
numbers; relations with complex analysis, especially on Riemann sur-

vii 



viii Preface 

faces; ideas of homology, De Rham cohomology, Cech cohomology, 
and the relations between them and with fundamental groups; meth
ods of calculation such as the Mayer-Vietoris and Van Kampen theo
rems; and a taste of the way algebra and "functorial" ideas are used 
in the subject. 

To achieve this variety at an elementary level, we have looked at 
the first nontrivial instances of most of these notions: the first ho
mology group, the first De Rham group, the first Cech group, etc. 
In the case of the fundamental group and covering spaces, however, 
we have bowed to tradition and included the whole story; here the 
novelty is on the emphasis on coverings arising from group actions, 
since these are what one is most likely to meet elsewhere in mathe
matics. 

We have tried to do this without assuming a graduate-level knowl
edge or sophistication. The notes grew from undergraduate courses 
taught at Brown University and the University of Chicago, where about 
half the material was covered in one-semester and one-quarter courses. 
By choosing what parts of the book to cover-and how many of the 
challenging problems to assign-it should be possible to fashion courses 
lasting from a quarter to a year, for students with many backgrounds. 
Although we stress relations with analysis, the analysis we require or 
develop is certainly not "hard analysis." 

We start by studying questions on open sets in the plane that are 
probably familiar from calculus: When are path integrals independent 
of path? When are I-forms exact? (When do vector fields have po
tential functions?) This leads to the notion of winding number, which 
we introduce first for differentiable paths, and then for continuous 
paths. We give a wide variety of applications of winding numbers, 
both for their own interest and as a sampling of what can be done 
with a little topology. This can be regarded as a glimpse of the general 
principle that algebra can be used to distinguish topological features, 
although the algebra (an integer!) is fairly meager. 

We introduce the first De Rham cohomology group of a plane do
main, which measures the failure of closed forms to be exact. We 
use these groups, with the ideas of earlier chapters, to prove the Jor
dan curve theorem. We also use winding numbers to study the sin
gularities of vector fields. Then I-chains are introduced as convenient 
objects to integrate over, and these are used to construct the first ho
mology group. We show that for plane open sets homology, winding 
numbers, and integrals all measure the same thing; the proof follows 
ideas of Brouwer, Artin, and Ahlfors, by approximating with grids. 

As a first excursion outside the plane, we apply these ideas to sur-
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faces, seeing how the global topology of a surface relates to local 
behavior of vector fields. We also include applications to complex 
analysis. The ideas used in the proof of the Jordan curve theorem are 
developed more fully into the Mayer-Vietoris story, which becomes 
our main tool for calculations of homology and cohomology groups. 

Standard facts about covering spaces and fundamental groups are 
discussed, with emphasis on group actions. We emphasize the con
struction of coverings by patching together trivial coverings, since 
these ideas are widely used elsewhere in mathematics (vector bundles, 
sheaf theory, etc.), and Cech cocycles and cohomology, which are 
widely used in geometry and algebra; they also allow, following 
Grothendieck, a very short proof of the Van Kampen theorem. We 
prove the relation among the fundamental group, the first homology 
group, the first De Rham cohomology group, and the first Cech co
homology group, and the relation between cohomology classes, dif
ferential forms, and the coverings arising from multivalued functions. 

We then turn to the study of surfaces, especially compact oriented 
surfaces. We include the standard classification theorem, and work 
out the homology and cohomology, including the intersection pairing 
and duality theorems in this context. This is used to give a brief in
troduction to Riemann surfaces, emphasizing features that are acces
sible with little background and have a topological flavor. In partic
ular, we use our knowledge of coverings to construct the Riemann 
surface of an algebraic curve; this construction is simple enough to 
be better known than it is. The Riemann-Roch theorem is included, 
since it epitomizes the way topology can influence analysis. Finally. 
the last part of the book contains a hint of the directions the subject 
can go in higher dimensions. Here we do include the construction and 
basic properties of general singular (cubical) homology theory, and 
use it for some basic applications. For those familiar with differential 
forms on manifolds, we include the generalization of De Rham theory 
and the duality theorems. 

The variety of topics treated allows a similar variety of ways to use 
this book in a course, since many chapters or sections can be skipped 
without making others inaccessible. The first few chapters could be 
used to follow or complement a course in point set topology. A course 
with more algebraic topology could include the chapters on funda
mental groups and covering spaces, and some of the chapters on sur
faces. It is hoped that, even if a course does not get near the last third 
of the book, students will be tempted to look there for some idea of 
where the subject can lead. There is some progression in the level of 
difficulty, both in the text and the problems. The last few chapters 
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may be best suited for a graduate course or a year-long undergraduate 
course for mathematics majors. 

We should also point out some of the many topics that are omitted 
or slighted in this treatment: relative theory, homotopy theory, fibra
tions, simplicial complexes or simplicial approximation, cell com
plexes, homology or cohomology with coefficients, and serious ho
mological algebra. 

To the Student. Algebraic topology can be thought of as the study of 
the shapes of geometric objects. It is sometimes referred to in popular 
accounts as "rubber-sheet geometry." In practice this means we are 
looking for properties of spaces that are unchanged when one space 
is deformed into another. "Doughnuts and teacups are topologically 
the same." One problem of this type goes back to Euler: What re
lations are there among the numbers of vertices, edges, and faces in 
a convex polytope, such as a regular solid, in space? Another early 
manifestation of a topological idea came also from Euler, in the 
Konigsberg bridge problem: When can one trace out a graph without 
traveling over any edge twice? Both these problems have a feature 
that characterizes one of the main attractions, as well as the power, 
of modern algebraic topology-that a global question, depending on 
the overall shape of a geometric object, can be answered by data that 
are collected locally. Since these are so appealing-and perhaps to 
capture your interest while we turn to other topics-they are included 
as problems with hints at the end of this Preface. 

In fact, modern topology grew primarily out of its relation with 
other subjects, particularly analysis. From this point of view, we are 
interested in how the shape of a geometric object relates to, or con
trols, the answers to problems in analysis. Some typical and histor
ically important problems here are: 

(i) whether differential forms w on a region that are closed (dw = 
0) must be exact (w = djL) depends on the topology of the region; 

(ii) the behavior of vector fields on a surface depends on the topol
ogy of the surface; and 

(iii) the behavior of integrals f dx/YR(x) depends on the topology 
of the surface l = R(x), here with x and y complex variables. 

In this book we will begin with the first of these problems, working 
primarily in open sets in the plane. There is one disadvantage that 
must be admitted right away: this geometry is certainly flat, and lacks 
some of the appeal of doughnuts and teacups. Later in the book we 
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will in fact discuss generalizations to curved spaces like these, but at 
the start we will stick to the plane, where the analysis is simpler. The 
topology of open sets in the plane is more interesting than one might 
think. For example, even the question of the number of connected 
components can be challenging. The famous Jordan curve theorem, 
which is one of our goals here, says that the complement of a plane 
set that is homeomorphic to a circle always has two components-a 
fact that will probably not surprise you, but whose proof is not so 
obvious. We will also spend some time on the second problem, which 
includes the popular problem of whether one can "comb the hair on 
a billiard ball." We will include some applications to complex anal
ysis, later discussing some of the ideas related to the third problem. 

To read this book you need a basic understanding of fundamental 
notions of the other topology, known as point set topology or general 
topology. This means that you should know what is meant by words 
like connected, open, closed, compact, and continuous, and some of 
the basic facts about them. The notions we need are recalled in Ap
pendix A; if most of this is familiar to you, you should have enough 
prerequisites. Because of our approach via analysis, you will also 
need to know some basic facts about calculus, mainly for functions 
of one or two variables. These calculus facts are set out in Appendix 
B. In algebra you will need some basic linear algebra, and basic no
tions about groups, especially abelian groups, which are recalled or 
proved in Appendix C. 

There will be many sorts of exercises. Some exercises will be rou
tine applications of or variations on what is done in the text. Those 
requiring (we estimate) a little more work or ingenuity will be called 
problems. Many will have hints at the end of the book, for you to 
avoid looking at. There will also be some projects, which are things 
to experiment on, speculate about, and try to develop on your own. 
For example, one general project can be stated right away: as we go 
along, try to find analogues in 3-space or n-space for what we do in 
the plane. (Some of this project is carried out in Part XI.) 

Problem 0.1. Suppose X is a graph, which has a finite number of 
vertices (points) and edges (homeomorphic to a closed interval), with 
each edge having its endpoints at vertices, and otherwise not inter
secting each other. Assume X is connected. When, and how, can you 
trace out X, traveling along each edge just once? Can you prove your 
answer? 
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Exercise 0.2. Let v, e, andfbe the number of vertices, edges, and 
faces on a convex polyhedron. Compute these numbers for the five 
regular solids, for prisms, and some others. Find a relation among 
them. Experiment with other polyhedral shapes . 

• =6, e= 12, f=8 

(Note: This problem is "experimental." Proofs are not expected.) 
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PART I 

CALCULUS IN THE PLANE 

In this first part we will recall some basic facts about differentiable 
functions, forms, and vector fields, and integration over paths. Much 
of this should be familiar, although perhaps from a different point of 
view. At any rate, several of these notions will be needed later, so 
we take this opportunity to fix the ideas and notation. And of course, 
we will be looking particularly at the role played by the shapes (to
pology) of the underlying regions where these things are defined. For 
the facts that we use, see Appendix B either for precise statements 
or proofs. Most of this material is included mainly for motivation, 
and will be developed from a purely topological point of view later; 
one fact proved in the first chapter-that a closed I-form on an open 
rectangle is the differential of a function-will be used later. 

In the second chapter we will see that for any smooth path not 
passing through the origin, it is possible to define a smooth function 
that measures how the angle is changing as one moves along the path. 
This gives us a notion of winding number-how many times a closed 
path "goes around" the origin. Facts about changing variables in in
tegrals are used to see what happens to integrals and winding numbers 
when paths are reparametrized and deformed. The third section in
cludes a reinterpretation of the facts from the first chapter in vector 
field language, and gives a physical interpretation of these ideas to 
fluid flow. Although we will not use these facts in the book, we will 
study vector fields later, and it should be useful to have some feeling 
for them, if you don't already. 



CHAPTER 1 

Path Integrals 

la. Differential Forms and Path Integrals 

In this chapter, U will denote an open set in the plane 1R2, for ex
ample, the unshaded part of 

A smooth or C(6 '" Junction on U is a function f: U -IR such that all 
partial derivatives of all orders' exist and are continuous. In partic
ular, its partial derivatives aJlax and aJlay are C(6 '" functions on U. 
Since in this chapter we will only consider C(6 '" functions, we will 
sometimes just call them functions . 

A functionJ on U is called locally constant if every point of U has 
a neighborhood on which J is constant. 

I We will never need more than continuous second derivatives, and often much less. 
The few functions that we actually use , however, will be infinitely differentiable . 
The extra hypotheses are included so we never have to worry about differentiating 
any function we meet. The analytically inclined reader may enjoy supplying minimal 
hypotheses for each assertion. 

3 



4 1. Path Integrals 

Exercise 1.1. Prove that a function on an open set U in the plane is 
locally constant if and only if it is constant on each connected com
ponent of U. In other words, defining a locally constant function on 
U is the same as specifying a constant for each of its connected com
ponents. 

If f is locally constant, then af/ax = 0 and al/ay = 0 (identically, 
as functions on U), as follows immediately from the definitions of 
partial derivatives. The converse is also true and only slightly harder: 

Proposition 1.2. If f is a smooth function on U, then f is locally 
constant if and only if af / ax = 0 and af / ay = O. 

Proof. The point is that, in a rectangular neighborhood of a point of 
U, tbe condition af/ax = 0 means thatfis independent of x, i.e., that 
f is constant along horizontal lines. Likewise af / ay = 0 means that f 
is constant along vertical lines, and both conditions make f constant 
in the rectangle. 0 

It may not be much, but there is a grain of topology in this: 

Corollary 1.3. The open set U is connected if and only if every smooth 
function f in U with af / ax = 0 and af / ay = 0 is constant. 0 

A differential Ijorm, or just a Ijorm, on U is given by a pair of 
smooth functions p and q on U. We will usually denote a I-form by 
W, and we will write W = pdx + qdy. This can be regarded as just a 
formal notation, with the dx and dy there merely to indicate what we 
will do with I-forms, namely integrate them over paths. The pair of 
functions (p, q) can also be identified with a vector field on U. For 
this interpretation, see §2c in Chapter 2. 

By a smooth path (just called a path in this chapter) in U, we mean 
a mapping -y: [a, b]~ U from a bounded interval into U that is con
tinuous on [a, b] and differentiable in the open interval (a, b); in ad
dition, to avoid any trouble at the endpoints, we assume the two com
ponent functions of -y can be extended to ~oo functions in some 
neighborhood of [a,b]. So -y(t) = (x(t),y(t», where x and y are re
strictions of smooth functions on an intervaf (a - 10, b + E), for some 

2 In fact, there are many extensions of these functions to such neighborhoods, but 
we will never care about values outside the interval [a, b]. The assumption is useful 
to assure that the derivatives of these functions are continuous on the whole closed 
interval [a, b]. 
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positive number E. We call 'Y(a) the initial point of 'Y, and 'Y(b) the 
final point; 'Y(a) and 'Y(b) are called the endpoints, and we say that 'Y 
is a path from 'Y(a) to 'Y(b). 

With w = p dx + q dy as above, and 'Y a path given by the pair of 
functions 'Y(t) = (x(t),y(t», the integral I"/w ofw along 'Y is defined 
by the formula 

1 w = rb (P(X(t) , y(t» dx + q(x(t) , y(t» dy) dt. 
"/ Ja dt dt 

Note that the integrand is continuous on [a, b], so the integral exists, 
as a limit of Riemann sums. 

The question we will be concerned with is this: given a I-form w 
on U, when does the integral I"/w depend only on the endpoints 'Y(a) 
and 'Y(b) of 'Y, and not on the actual path between them? 

Language is usually abused here, saying the integral is "independent 
of path." This happens whenever there is a "potential function": 

Proposition 1.4. If w = af / ax dx + af / ay dy, for some «6"" function f 
on an open set containing the path 'Y, then 

L w = f('Y(b» - f('Y(a». 

Proof. Since, by the chain rule, 

d ~ dx ~ ~ 
- (/('Y(t))) = - (x(t),y(t» - + - (x(t),y(t»-, 
& ~ & ~ & 

the integral is 

1 w = rb !!.. (/('Y(t»)dt = f('Y(b» - f('Y(a» , 
"/ Ja dt 

the last step by the fundamental theorem of calculus. o 
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We write df= af/axdx + af/aydy for this I-form, and say that w 
is the differential of f if w = df. 

Exercise 1.5. Show that df= dg on U if and only iff - g is locally 
constant on U. 

For an example, take U to be the right half plane, i.e., the set of 
points (x,y) with x> D. Consider the functionfthat measures the an
gle in polar coordinates, measured counterclockwise from the x-axis. 
Analytically, f(x,y) = tan-I(y/x), so 

I (Y) I (1) df = -- dx + - dy 
1 + (Y/X)2 x2 1+ (Y/X)2 X 

For example, if -y is any path in U from (1, -1) to (2,2), then 
J-ydf= 'Tr/2, since that is the change in angle between the two points. 

Although the function fix, y) = tan -I (y / x), at least as it stands, is 
not defined where x = D, the expression we found for df makes sense 
everywhere except at the origin, and is a smooth I-form on the open 
set ~2, {(D, D)}. Let us denote this I-form by w1'l: 

-ydx + xdy 2 

w1'l = ~ 2 on ~ ,{(D,D)}. 
+y 

In fact, although y /x cannot be extended across the y-axis, the func
tion tan-I(y/x) can, at least away from the origin. This is clear if we 
think of it geometrically as the angle in polar coordinates, which can 
be extended, for example, to the complement of the negative x-axis: 
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("')~o< • ., 

~ L~=o 

-1t<~<o 

However, there is trouble in trying to extend this angle function to 
be well defined everywhere on ~2 \ {(O, O)}. In fact, we can use our 
last proposition to show that there is no smooth function g on ~2 \ {(O, O)} 
with dg = oo,'}. For example, if 'Y(t) = (cos(t), sin(t», O:s t:s 21T, is the 
counterclockwise path around the unit circle, we calculate using the 
definition of the path integral: 

{oo,'} = f1f (-sin(t) • (-sin(t» + cos(t) . cos(t» dt 

= f1f 1 dt = 21T. 

Since "1(0) = 'Y(21T), it follows from Proposition 1.4 that oo,'} cannot be 
the differential of any function. 

Exercise 1.6. On which of the following open sets U is there a smooth 
function g with dg = 00" on U? Prove your answers. (i) The upper half 
plane {(x,y): y > O}. (ii) The union of the upper half plane and the 
right half plane. (iii) The left half plane. (iv) The lower half plane. 
(v) The complement of the negative x-axis. (vi) The annulus 
{(x,y): I <X2 + l < 2}. (vii) Challenge. The points of the form 
(ret cos(t) , ret sin(t» , 0 < t < 41T, 112 < r < 2. 

Exercise 1.7. Is 00 = (xlix + ydy)/(x2 + y2)2 the differential of a func
tion on ~2 \ {(O, O)}? 

lb. When Are Path Integrals Independent of Path? 

It will be useful to generalize the notion of smooth path in order to 
allow integration over a sequence of such paths. Let us define a seg
mented path "I to be a sequence of paths "11, "12, ... ,"In, where each 
"Ii is a smooth path, and the final point of each "Ii is the initial point 
of the next 'Yi+lo for i = 1, 2, ... , n - 1. 
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Q 

p 

We sometimes write 'Y = 'YI + ... + 'Yo for this segmented path. The 
initial point of 'Y is defined to be the initial point of 'YI, and the final 
point of'Y is defined to be the final point of 'Yo. The segmented path 
is closed if the final point of 'Yo is the initial point of 'YI' If W is a 1-
form on an open set containing (the images of) these paths, we define 

f W = f W + f W + ... + f W. 
'I )'11 '12 'In 

If 'Y is a segmented path in U from P to Q, and w = df in U, then it 
follows from Proposition 1.4 (the "interior endpoints" canceling) that 

L w = f(Q) - f(P) . 

We'll show now that the converse of this is also true: 

Proposition 1.S. Let w be a 110rm on U. The following are equiv
alent: (i) f'Y w = f 6 W for all segmented paths 'Y and l5 in U with the 
same initial and final points; (ii) f T W = 0 for all segmented paths 
T in U that are closed; and (iii) w = df for some smooth function f 
on U. 

Proof. The preceding remark shows that (iii) implies (i). To show 
that (ii) implies (i), we use the notion of the inverse of a path 
(1: [a,b]~U, which is the path (1-1: [a,b]~U defined by 
(1-I(t) = (1(b + a - t); note that the integral of any w along (1-1 is the 
negative of the integral of w along (1 (cf. Exercise 2.12). Given'Y and 
8 as in (ii), form the closed segmented path T which is first the se
quence of paths making up 'Y, and then the inverses of the paths that 
make up 8, but taken in the reverse order. Then fTW = J'Iw - Jaw, 
from which the fact that (ii) implies (i) follows. That (i) implies (ii) 
is obvious, by comparing a closed path with a constant path. To show 
that (i) implies (iii), it is enough to find such a function on each 
connected component of U, so we can assume U is connected, and 
hence path-connected (see Appendix A2). Choose and fix an arbitrary 
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point Po in U, and define a function f on U by the formula 

f(P) = J"Y 00, 

9 

where'Y is any segmented path from Po to Pin U. (See Exercise 1.9 
below.) By assumption, this is a well-defined function on U. We claim 
that aflax = p and aflay = q, where 00 = pdx + qdy. For the first, we 
must look at the limit of 

f(x + ax,y) - f(x,y) 

ax 

as ax approaches zero, and P = (x, y) is any point in U. To estimate 
this, let (J be the path from (x,y) to (x + ax,y) given by the formula 
(J(t) = (x + t, y) 0::0:;; t::O:;; ax, assuming for the moment that ax is pos
itive. Let'Y be any segmented path from Po to P. 

P = (x,y) _-+-_ (x + 8x,y) 

CI 

Po = (Xo,Yo) 

Since 'Y + (J is a segmented path from Po to (x + ax, y), 

f(x + ax,~ - f(x,y) = ~(L+cr 00 - L (0) = ~ (L (0) 

= ~ (Ax p(x + t,y)dt. 
axJo 

By the mean value theorem, this last expression is equal to p(x*, y) 
for some x* between x and x + ax. Letting ax~ 0, we have, since 
p is continuous, 

1 iAx lim- p(x+t,y)dt = p(x,y), 
ax-->oax 0 

as required. If ax is negative, use instead the path (J(t) = (x - t,y), 
o ::0:;; t::o:;; laxl, and the argument is the same, with the modification 

~ (L (0) = I~I £axlp(X - t, y)( -1) dt 

1 (Iaxl 
= laxlJo p(x-t,y)dt=p(x*,y), 
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with x + at :5x* :5x. The proof that dfjay = q is similar, interchang
ing the roles of x and y, and is left as an exercise. D 

Exercise 1.9. Show that an open set U in the plane is connected if 
and only if there is a segmented path between any two points of U. 
Challenge. Can you show that any two points in a connected open 
set can be connected by an are, i.e., a path that is one-to-one, and 
whose tangent vector never vanishes? 

1 c. A Criterion for Exactness 

We want a practical criterion to tell if a given I-form 00 is the dif
ferential of some function without going to the work of constructing 
such a function. We shall need another fact from calculus, the equal
ity of mixed partial derivatives: ajax(af/ay) = a/ay(af/ax). This 
translates to a simple 

Criterion 1.10. 00 = p dx + q dy cannot be the differential of a func
tion unless aq / ax = ap / ay. 

This necessary condition, however, is not always sufficient. For 
example, if 00" is the I-form on U = ~2 \ {(O, O)} that we looked at 
earlier, you can verify easily that 00" satisfies this condition-either 
by direct calculation, or by the fact that any point in U has a neigh
borhood on which the restriction of 00" is the differential of a func
tion-but we have seen that 00" cannot be the differential of any func
tion on U. We also saw that the restrictions of 00" to some simpler 
open sets, like the right half plane, are the differentials of functions. 
We will see that it is the topology of U that is controlling this situ
ation. 

A 2-form on U is an expression hdxdy, where h is a '€'" function 
on U. Logically, as before, a 2-form can be identified with the func
tion h that defines it, with the "dxdy" playing only a formal role. 
The notation indicates that we will use 2-forms for integrating over 
two-dimensional regions. All we will need is double integrals II R h dx dy 
over rectangles R = [a, b] x [c, d], defined as limits of Riemann sums. 

If 00 = pdx + qdy is a I-form on U, define doo to be the 2-form 

( aq ap) doo = --- dxdy. 
ax ay 
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So our criterion can be stated: if w = df, then doo = 0; or simply that 
d(df) = 0 for all functions f. 

Let R = [a, b] X [c, d] be a closed (bounded) rectangle, and con
sider the four boundary segments: 

(a,d) 
Y3 

(b,d) '-. 
/ 

Y4/'-. R / f' Y2 

'-. 
(a,c) / (b,c) 

YI 

In formulas, 

'Yl(t) = (t, c), a =5 t=5 b; 'Y2(t) = (b, t), c=5t=5d; 

'Y3(t) = (t, d), a =5 t=5 b; 'Y4(t) = (a, t), c=5t=5d. 

We will need Green's theorem for a rectangle (see Appendix B). 
This says that if 00 is a I-form on an open set containing the rectangle 
R, then 

where 

roo = f oo+f oo-foo-f oo. 
JaR "'II "'12 "'13 "'14 

We will need only the following consequence: 

Lemma 1.11. If dw = 0, then faRW = 0, i.e., 

100 +1 00 =1 00 +1 00 • 
~ ~ ~ ~ 

We can apply this to show that, on the plane, or a half plane, or 
any rectangle, the necessary condition doo = 0 is actually sufficient 
for integrals to be path-independent: 

Proposition 1.12. Let U be a product of two open finite or infinite 
intervals, i.e., 

U = {(x,y):a<x<b and c<y<d}, 
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with -00:5 a < b:5 00 and -00:5 c < d:5 00. If w is any Ilorm on U 
such that dw = 0, then there is a function f on U with w = df. 

Proof. Fix a point Po = (Xo,Yo) in U. For P = (x,y) in U, letf(P) = f'Yw, 
where "( = "(I + "(2 is the path shown: 

(xo,Y) 
Y2 

"- (x,y) 

/ 

YI/ I' 

(xo,yo) (x,yo) 

Assume for the moment that x ~ Xo and y ~ Yo. The formulas are 
"(I(t) = (xo, Yo + t), 0:5 t:5 Y - Yo, and "(2(t) = (xo + t, y), O:s t:5 x - Xo. 
The last calculation in the proof of Proposition 1.8 shows that af I ax = p, 
where w = pdx + qdy. If y <Yo, the same is true, replacing "(I(t) by 
(xo, Yo - t), 0:5 t:s Yo - y; and similarly if x < Xo, replace "(2(t) by 
(xo - t,y), 0:5 t:5xo - x. 

Similarly, define a function g by g(P) = f 'Y. w, where "(* is the path 
that first goes horizontally from (xo, Yo) to (x, Yo) and then goes ver
tically from (x,Yo) to (x,y). The same argument, again left as an ex
ercise, shows that aglay = q. Our assumptions on U imply that the 
closed rectangle with opposite comers at Po and P is contained in U, 
so that Green's theorem can be applied, and it follows from Lemma 
1.11 thatf(P) is equal to g(P). It follows that aflax = p and aflay = q, 
which means that df = w. 0 

Exercise 1.13. Show that the proposition is also true when U is the 
inside ofadisk, i.e., U= {(x,y): (x- a)2 + (y - b)2<r}. Can you prove 
it when U is any convex region, or any starshaped region? (Convex 
means that the straight line between any two points in the region is 
contained in the region, and starshaped means that there is a point Po 
in the region such that for any point P in the region, the straight line 
from Po to P is contained in the region.) 

A I-form w is called closed if dw = 0, and it is exact if w = dffor 
some functionf. So all exact forms are closed, and the last proposition 
says that, when U is a rectangle, all closed forms are exact. There 
are many other regions U for which this is true, besides rectangles 
and those in the preceding exercise. For example, if U is the union 
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of any two rectangles, each as in the proposition, then any closed 1-
form w in U is exact. 

To see this, let UI and U2 be the two open rectangles whose union 
is U. By the proposition, there are functionsfl in UI andJi in U2 such 
that dfl = w on UI and df2 = w on U2. Since UI n U2 is connected, 
and since d(Ji - fl) = w - w = 0 on UI n U2, it follows that f2 - fl is 
a constant function on UI n U2. If we replacef2 by f2 - c, where c is 
this constant, we can assume}; andf2 agree on UI n U2 • This means 
that there is a functionfon U= UI U U2 whose restriction to UI isfl 
and whose restriction to U2 isf2. Moreover, df= won all of U, since 
this condition is a local condition, to be verified at each point of U; 
and every point is either in UI or U2, where we know dfl = w and 
dJi = w. 

In fact, this argument proves: 

Lemma 1.14. Suppose UI and U2 are open sets, and UI n U2 is con
nected. Let U = UI U U2, and let w be a I-form on U. If the restric
tions of w to Uland U 2 are both exact, then w is exact on U. D 

The connectedness of U I n U2 is crucial for this. For example, sup
pose U I and U2 are the regions indicated, with the shaded overlap, 
and the origin outside in the middle. 

Let w be the restriction of W{j to U, then W{j is the differential of a 
function on each of the regions, but not on their union, as can be seen 
by integrating w along a path around the origin in U. 

Exercise 1.15. Show that if U is a union of open sets UI , •••• Un. 
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and w is a I-form on U such that the restriction of w to each Ui is 
exact, and (UI U U2 U ... U Ui) n Ui+1 is connected for I ::5 i::5 n - I, 
then w is exact on U. 

If w is a closed I-form in an open set U, although w may not be 
exact on all of U, it follows from Proposition 1.12 that it is always 
locally exact. That is, any point in U has a neighborhood (say rect
angular), so that the restriction of w to this neighborhood is the dif
ferential of a function. This can be used to calculate path integrals, 
by cutting the path into pieces, on each of which Proposition 1.4 can 
be applied: 

Proposition 1.16. Ifw is a closed I-form on U, and y: [a,b]~U is 
a smooth path, then there is a subdivision a = to < tl < ... < tn = b 
and a collection of open subsets UI> ... , Un of U so that y maps 
[ti-I> til into Ui, and the restriction of w to Ui is the differential of a 
function J;. Let Pi = y(t;). Then, for any such choices, 

L w = (f1(P1) - ft(Po» + (fiP2) - (f2(Pd) 

+ ... + (fn(Pn) - fn(Pn- I». 
Proof For each point P in 'V([a, b]), choose a neighborhood Up of P 
on which the restriction of w is exact. The open sets 'V-I(Up) form an 
open covering of the compact interval [a, b], so a finite number of 
them cover the interval. From this it is not hard to construct the sub
division. One quick way to do it is to use the Lebesgue covering 
lemma (see §A4 of Appendix A), which guarantees that, if the sub
division is small enough, each subinterval will be mapped into one 
of the neighborhoods Up. Having fixed such a subdivision, choose 
one of these open sets containing the image of [ti- I, til, call it Ui' and 
choose a functionJ; on Ui with dJ; = won Ui. Let 'Vi: [ti-I> t;]~ Ui be 
the restriction of 'V to [ti- I> t;]. Then 

f~w=fw+fw+···+fw 
, 'YI 'Y2 'Yn 

n n 

= 2: (J;('Vi(t;)) - J;('Vi(ti- I») = 2: (J;(P;) - HPi- I». 0 
i=1 i=1 

The following two lemmas will be used in Part III to prove the 
Jordan curve theorem. They are special cases of general theorems to 
be proved in Chapter 9, but we can prove them directly with the 
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methods of this section. For any positive number r, let 'YP,T be the 
counterclockwise circle of radius r about P: 

'Ypit) = P + r(cos(21Tt), sin(21Tt)), O:5t:51. 

Lemma 1.17. Suppose U = ~2\{p}, and let r>O. Ifw is a closed 
110rm on U such that f ¥P.r W = 0, then w is exact. 

Proof. Let U\> U2 , U3 , and U4 be the half planes to the right of P, 
above P, to the left of P, and below P. By Proposition 1.12, there 
are functions j; on Uj , unique up to the addition of constants, with 
dj; = w on Uj • By adjusting the constants, we may assume 12 = II on 
UI n U2, and.f3 = f2 on U2 n U3, and!4 =13 on U3 n U4. Then 14 = II + c 
on U4 nUl for some constant c. By Proposition 1.16, f,,/p.rw = c. The 
hypothesis implies that c = 0, which means exactly that the four func
tions j; agree on overlaps, so define a function I on U such that 
df=w. 0 

Lemma 1.IS. Suppose U = ~2 \ {P, Q}, and let 0 < r < Ip - QI. II w 
is a closed 110rm on U such that f ¥P.r W = 0 and f ¥Q.r W = 0, then w 
is exact. 

Proof. The proof is similar. Suppose for definiteness that Q is located 
to the southwest of P. Let UI be the half plane to the right of P, and 
choose II on UI so that w = dll on UI • Let U2 be the half plane above 
P, and choosef2 on U2 so that w = dfz on U2 , and 12 = lIon UI n U2. 
Let U3 be the quarter plane to the left of P and above Q, and choose 
h on U3 so that w = dl3 on U3, and.f3 = J2 on U2 n U3• 

U2 

Q 

Let U4 be the quarter plane to the right of Q and below P, and 
choose!4 on U4 so that w = dJ4 on U4 , and J4 = h on U3 n U4, Then 
J4 and JI differ by a constant on U4 nUl, and the hypothesis that 
f,,/p,rw = 0 implies as in the preceding lemma that this constant is O. 
Let Us be the half plane to the left of Q, and choose Js on Us such 
that w = dis on Us and is = 13 on U3 n Us. Let U6 be the half plane 
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below Q, and choose 16 on V 6 such that w = dl6 on V 6 and 16 = Is on 
Vs n V6• The hypothesis that LQ" W = 0 implies that/6 = 14 on V4 n V6 • 

The functions j; on Vi agree on overlaps, defining a function I on V 
such that w = dl, which completes the proof in this case. 

The proof when Q is located southeast of P, or the special cases 
when P and Q are on a horizontal or vertical line, are similar and left 
to the reader. D 

Problem 1.19. Generalize the preceding lemmas from one or two to 
n points. 

For any point P = (xo,Yo), define the I-form wP,~ on ~2 \ {P} by the 
formula 

-(y - Yo) dx + (x - xo)dy 

(x - XO)2 + (y - YO)2 

Problem 1.20. For any two points P and Q, show that the I-form 
w = WP.~ - wQ,~ is exact on ~2 \ L, where L is the line segment from 
P to Q. Challenge. Find a function whose differential is w. 



CHAPTER 2 

Angles and Deformations 

2a. Angle Functions and Winding Numbers 

Any point in the plane can be expressed in polar coordinates, i.e., it 
can be written in the form (r cos( {}), r sin( {}» for some r ;::: 0 and some 
real number {}. The radius r is unique, being the distance from the 
origin, or the square root of the sums of the squares of the Cartesian 
coordinates. At the origin, r = 0, and {} can be any number. We often 
denote the origin simply by 0 instead of (0,0). Except for the origin, 
the angle {} is determined only up to adding integral multiples of 2'iT. 
We call any of these numbers an angle for the point. 

Suppose 'Y: [a, b] ~ ~2 \ {O} is a «6" path to the complement of the 
origin, given in Cartesian coordinates by 'Y(t) = (x(t),y(t)). We want 
to describe this in polar coordinates, that is, to find «6" functions r(t) 
and {}(t) so that 

(2.1) 'Y(t) = r(t)(cos({}(t», sin({}(t») = (r(t) cos({}(t» , r(t)sin({}(t))) 

for all a:$ t:$ b. There is no problem with the function r: it is the 
distance from the origin, defined by 

r(t) = ii'Y(t)ii = V X(t)2 + y(t)2. 

The angle function is not so simple. At any time t, there are many 
possible angles to choose, all differing by multiples of 2'iT. If we choose 
them say all lying in the interval (-'iT, 'iT] they would be unique, but 
then would not vary continuously if the point crosses the negative 
x-axis. 

17 
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The initial angle can be chosen arbitrarily. In other words, choose 
any number {} a so that 

'Y(a) = (x(a) , y(a» = (r(a) cos({}a) , r(a) sin({}a». 

We will require that our function {}(t) satisfy the initial condition 
{}(a) = {}a. Motivated by the discussion in § Ib, we have a candidate 
for the derivative {}'(t), which is the rate of change of angle: it should 
be 

-y(t)x'(t) + x(t)y'(t) -y(t)x'(t) + x(t)y'(t) 
{}' (t) = = --"----::----'-'-'--~ 

X(t)2 + y(t)2 r(t)2 

So we can define {}(t) to be the unique function with this initial con
dition and this derivative. That is, we define {}(t) by 

- 11 -y(T)X'(T) + X(T)y'(T) 
{}(t) - {}a + 2 dT. 

a r(T) 

Proposition 2.2. With these definitions, the functions r(t) and t)(t) 
are ~oo functions, and equation (2.1) is satisfied for all t in [a, b] . 

Proof. The function r(t) is ~oo since it is a composite of ~oo functions, 
and {}-(t) is ~oo since it is the integral of a C{6oo function. Let 

u(t) = (cos({}(t»,sin({}-(t») and v(t) = (-sin({}(t»,cos({}(t))). 

These are perpendicular unit vectors for all t. We want to show that 

I 
- 'Y(t) = u(t) 
r(t) 

for all t. We are assuming that they are equal for t = a. It suffices to 
show that both sides of this equation have the same dot product with 
vectors u(t) and v(t), since the difference (l/r(t»'Y(t) - u(t) would then 
be perpendicular to two independent vectors, and so would be zero. 
For the right side of the equation u(t), these dot products are iden
tically I and 0, respectively, so it suffices to prove that the same is 
true for the left side. Since we know the equality of the vectors for 
t = a, it suffices to prove that the derivatives of these dot products 
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vanish. We are therefore reduced to showing that 

!!.- (_1 'Y(t). U(t») == 0 and !!.- (_1 'Y(t)· V(t») - O. 
dt r(t) dt r(t) 

These are simple verifications, using the usual rules of calculus. 
Omitting the variable t, and writing f in place of r'(t), etc., the first 
of these derivatives is 

rx - xf rj - yf x . y . 
-,;.-cos( {}) + -,;.- sin( {}) + f {}( - sin( {}» + ; {} (cos( {}» 

1 . . 
= ? (cos({})[';'x - xrf + y';'{}] + sin({})[';'y - yrf - x';'{}]). 

Using the identities rf = xi + yy and r2,ft = -yx + xj, one sees that the 
terms in brackets vanish. The proof that the other derivative vanishes 
is similar and left as an exercise. 0 

Exercise 2.3. (a) Show that this function {}(t) is unique, and that in 
fact it is the only continuous function with {}(a) = {}a such that (2.1) 
holds. (b) Show that if {}a is replaced by {}a + 2'TTn for some n, then 
the corresponding angle function is {}(t) + 2'TTn. 

Using this angle function, we can define the (total signed) change 
in angle of the path 'Y to be {}(b) - {}(a). Note by the preceding ex
ercise that this is independent of the choice of initial angle. Equiva
lently, this change in angle is 

ib-y(t)X'(t)+X(t)y'(t) dt = r -ydx+xdy _ r 
a r(t)2 J-y ~ + l - J/)a. 

If a segmented path does not pass through the origin, i.e., it is a 
path in 1R2 \ {O}, we want to define its winding number, which should 
be the "net" number of times 'Y goes around the origin, counting the 
counterclockwise motion as positive, and the clockwise motion as 
negative. In other words, it is the total signed change in angle, di
vided by 2'TT. We will denote it by W('Y,O), the "0" indicating that 
we are going around the origin. What we have just done shows what 
the definition should be. We define the winding number of'Y around 
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the origin by 

W('Y,O) = _1 f w{\ = _1 f -ydx + xdy 
21T "Y 21T"Y x2 + l . 

Proposition 2.4. For any closed segmented path that does not pass 
through the origin, the winding number of the path around the origin 
is an integer. 

Proof. The fonnula given before the proposition defines a number 
W('Y, 0) for any segmented path 'Y that does not pass through the or
igin. Suppose 'Y starts at P and goes to Q, and we choose an angle 
{}p for P. We claim that {}p + 21TW('Y, 0) is an angle for Q. This will 
prove the result, for when P = Q it says that {}p and {}p + 21TW('Y, 0) 
define the same angle, so they must differ by an integer multiple of 
21T. 

It suffices to prove the claim for a smooth path, since if 'Y is a sum 
of smooth paths, the assertion for each of them implies it for the sum. 
But when 'Y: [a.b]--,)~2\{0} is smooth, {}p+21TW('Y,0) is just the 
value of our angle function {}(t) at t = b, starting with {}(a) = {}p, so 
the result follows from Proposition 2.2. 0 

Exercise 2.5. Use Proposition 1.16 to give another proof of this 
proposition. 

Exercise 2.6. Let 'Y(t) = (kcos(nt), ksin(nt)), 0 ~ t ~ 21T, where k is a 
positive number and n is an integer. Show that W('Y, 0) = n. 

In earlier centuries, before modem rigor required functions to be 
single-valued, the I-fonn w{\ would have been written as the differ
ential d{} of the multivalued function {}. (In fact, this is still a common 
and useful notation for this I-fonn, as long as one realizes that {} is 
not a function, so that Proposition 1.4 is not contradicted!) The graph 
of this multivalued function can be visualized in 3-space, as the locus 
of points (x. y. z) of the fonn (rcos({}), rsin(b), {}) for some r> 0 and 
real number {}. This is closely related to the polar coordinate mapping 

p: {(r,{}): r>O} --,) ~2\{O}, (r, {}) ~ (rcos({}), rsin({}». 

Picturing these together: 
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1 (x,y,z) t----> (x,y) 

This illustrates the fact that, although the distance from the origin 
is a continuous function on ~2 \ {O}, the counterclockwise angle from 
the x-axis cannot be defined continuously. What we have proved, 
however, is that one can define such an angle continuously along a 
curve. Proposition 2.2 (with Exercise 2.3) can be expressed geomet
rically as follows: 

Corollary 2.7. Let 'Y: [a, b] ~ ~2 \{O} be a smooth path with starting 
point Pa = (racos(tJa), rasin(tJa». Then there is a unique smooth path 
1: [a, b]~ R, where R = {(r, tJ): r> O} is the right half plane, with 
starting point (ra, tJa), and with po 1= 'Y. D 

We say that the path 'Y is the lifting of the path 'Y with starting point 
(ra,1}a)' On the picture, 
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\ 

\ 

! 
• • 
a b "( 

Problem 2.8. Show that the locus of points (r cos( {}), r sin( {}), {}) is 
one connected component of the surface in the complement of the 
z-axis in 1R3 defined by the equation y' cos(z) = X· sin(z). 

Exercise 2.9. Show that every point in 1R2 \ {O} has a neighborhood 
V such that p-l(V) is a disjoint union of open sets Vi' each of which 
is mapped homeomorphic ally (in fact, diffeomorphic ally) by p 
onto V. 

This exercise verifies that p is a "covering map," a class of maps 
we will study in Chapter 11. Corollary 2.7 is a special case of a 
general theorem about covering maps. 

Winding numbers can be described around any point P = (xo, Yo) in 
place of the origin. One can do this either by translating everything, 
or directly by using the form 

-(y - Yo) dx + (x - xo)dy 

(x - XO)2 + (y - YO)2 
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Exercise 2.10. For any closed segmented path -y: [a, b]~ ~2 \ {P}, 
define the winding number W(-y,P) of -y around P by the formula 

W(-y,P) = _1 f wp,,'t. 
2-rr J.., 

Generalize the assertions of this section to these winding numbers. 

2b. Reparametrizing and Deforming Paths 

Path integrals do not depend on the parametrization of the path, in 
the following sense. Suppose w is a I-form on an open set U in the 
plane, and -y: [a, b] ~ U is a smooth path, and suppose IP: [a', b'] ~ [a, b] 
is a C(6'" function (as usual, extending to a neighborhood of [a', b'D 
that maps a' to a and b' to b. The path -y ° IP is called a reparame
trization of -y. 

Lemma 2.11. With these assumptions, 

f w = f W. J..,.'!' .., 

Proof. Write w = pdx + qdy, and -yet) = (x(t),y(t)), and calculate, us
ing the chain rule and change of variables formulas: 

J..,.", w = f' [p(x(IP(s)),y(IP(s)))' (xoIP)'(s) 

+ q(x(IP(s)),y(IP(s)))' (yoIP)'(s)] ds 

f' [p(x(IP(s)) , y(IP(s))) . x' (IP(s)) 

+ q(x(IP(s)) , y(IP(s))) . y'(IP(s))] . (IP)'(s) ds 

f [p(x(t) , yet)) . x'(t) + q(x(t),y(t)) . y'(t)]dt = J.., w. D 

Exercise 2.12.1f-y: [a,b]~U is a path in U, let -y-I: [a,b]~U be 
the same path traveled backward: -y-I(t) = -y(a + b - t). Show that 

Show more generally that if IP: [a', b'] ~ [a, b] is any C(6'" function that 
maps a' to b and b' to a, then f..,o'!'w = - f..,w. 
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The following problem shows how one could avoid dealing with 
segmented paths: by turning around the comers very slowly! 

Problem 2.13. (a) Construct a '(6"" mapping 'P from [0,1] to [a, b] 
taking 0 to a and 1 to b, such that all derivatives of'P vanish at 0 
and at 1. (b) Use this to show that any smooth path can be repara
metrized to a path with the same endpoints but such that all deriva
tives vanish at the endpoints. (c) If "YI: [a, b] ~ U and "Y2: [b, c] ~ U 

are '(6"" paths with "YI(b) = "Y2(b), and all derivatives of"Y1 and "Y2 vanish 
at b, verify that the path "Y: [a, c]~ U that agrees with "YI on [a, b] 
and "Y2 on [b, c] is a '(6"" path. (d) If"y ="YI + ... +"Yn is a segmented 
path, show that there is a '(6"" path "Y*: [0, n] ~ U, so that the restric
tion of "Y* to [k - 1, k] is a reparametrization of "Yk for each k. 

Problem 2.14. Given a I-form 00 on an open set U, show that the 
following are equivalent: (i) there is a function f on U with df= 00; 
(ii) I'Y 00 = I8 00 whenever "Y and 8 are '(6"" paths in U with the same 
initial and final points; and (iii) I'Y 00 = 0 whenever "Y is a '(6"" closed 
path in U (i.e., with the initial point equal to the final point). 

Problem 2.15. Given a I-form 00 on an open set U, show that the 
following are equivalent: (i) doo = 0; (ii) I.Roo = 0 for all closed rect
angles R contained in U; and (iii) every point in U has a neighborhood 
such that I.Roo = 0 for all closed rectangles R contained in the neigh
borhood. Is the same true if rectangles are replaced by disks? 

Next we tum to the question of what happens when the path is 
moved, or deformed. We consider first the case of a deformation of 
paths with fixed endpoints. This will be given by a family of paths 
"Y .. for simplicity all defined on the same interval [a, b], with the pa
rameter s varying in another interval which we take to be the unit 
interval [0, 1]. We will assume this is a smooth family, in the sense 
that the coordinates of the point "Yit) are smooth functions of both s 
and t. This means that we are given a mapping H from [a, b] X [0, 1] 
to U, which we assume is '(6"" (this, as usual, means that the two 
coordinate functions can be extended to be infinitely differentiable 
functions on some open neighborhood of the rectangle). We assume 
that H(a, s) = P and H(b, s) = Q for all 0:'5 s:'5 1. Set "Yit) = H(t, s), 
so each "Ys is a path in U from P to Q. 
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H -
o 

a b 

We call H a smooth homotopy from the path 'Yo to the path 'YI' We 
say that two paths from an interval [a, b] to U, with the same initial 
and final points, are smoothly homotopic in U if there is such a ho
motopy from one to the other. 

Proposition 2.16. If 'Y and l) are smoothly homotopic paths from P 
to Q in an open set U, and w is a closed I-form in U, then 

Proof. First we sketch a proof using only ideas from calculus. Let V 
be a neighborhood of the rectangle R = [a, b] X [0, 1] mapped into U 
by an extension of H, and let x(t, s) and y(t, s) be the coordinate func
tions of this mapping from V to U. Define a "pull-back" form w* on 
V by the formula 

w* = (P(X(t, s), y(t, s» ax + q(x(t, s), y(t, s» ay) dt 
at at 

+ (P(X(t, s), y(t, s» ax + q(x(t, s), y(t, s» ay ) ds. 
as as 

A little calculation, left to you, shows that dw* = 0 on V. By Green's 
theorem, we therefore know that the integral of w* around the bound
ary of R must be zero. Simpler calculations show that the integral of 
w* along the bottom of the rectangle is J'/ w, that along the top is 
Jaw, and that the integrals along the two sides are zero. Putting this 
all together gives the required equality. 

Here is another proof, more topological in flavor. Each point in 
the image H(R) of the rectangle has a neighborhood on which w is 
exact. Applying the Lebesgue lemma, it follows that, if we subdivide 
the rectangle small enough, by choosing 

a = to < tl < ... < tn = b and 0 = So < Sl < ... < Sm = 1 , 

then each subrectangle RiJ = [ti-I> til x [Sj_1> sJ is mapped by H into 
an open set Ui,j on which w is the differential of some function fiJ. 
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Since w is the differential of a function on Ui,j' the integral of w 0 H 

around the boundary of R i,j is zero, i.e. , the integral along the bottom 
and right side of R i,j is the same as the integral along the left side and 
top. Now J-yw is the integral of w along the bottom and right side of 
the original rectangle, and one can successively replace integrals over 
the bottom and right sides by integrals over the left and top sides, of 
each of the small rectangles, until one has the integral over the left 
and top sides of the whole rectangle, which is Jsw. 

More succinctly , integrate w over all the boundaries of the small 
rectangles. Each inside edge is integrated over twice, once in each 
direction, which leaves the integrals over the outside, giving 

0=2:( w=( w=fw-(w . 
iJ JaRij JaR "Y Jr. o 

There is another kind of deformation or homotopy that is also im
portant. This is a deformation of closed paths, through a family of 
closed paths, but allowing the endpoints to vary , It is given by a ~oo 

mapping H from a rectangle [a, b] x [0,1] into U, with the property 
that H(a , s) = H(b , s) for every s in [0, 1]. Each of the paths "is given 
by "iit) = H(t, s) is a closed path, starting and ending at the point 
'T(s) = H(a, s) = H(b , s). These endpoints are allowed to vary along 
the path 'T . 

(a, 1 ) (b,l) 

~ H -
(a , O) (b , O) 
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We call H a smooth homotopy from the path 'Y = 'Yo to the path 
8 = 'Y .. and we say that two closed paths 'Y and 8 are smoothly ho
motopic if there is such a smooth homotopy between them. 

Proposition 2.17. If y and {) are smoothly homotopic closed paths in 
an open set U, and w is a closed I-form in U, then 

Proof. Either of the proofs of the last proposition works for this one. 
The only point to notice is that the integrals of W over the two sides 
of the rectangle may not be zero, but since the two paths given by H 
on these two sides are the same (namely or), these integrals fTW can
cel. The details are left as an exercise. 0 

When U is the complement of a point P, and W = (l/2'll')Wp,lb this 
specializes to the important: 

Corollary 2.18. If y and {) are smoothly homotopic closed paths in 
1R2 \{P}, then W(y,P)=W({),P). 

Of course, it is crucial for this that the homotopy stays in the com
plement of the point P! 

Problem 2.19. Prove that being smoothly homotopic is an equiva
lence relation. 

2c. Vector Fields and Fluid Flow 

We defined a I-form on an open set U in the plane to be a pair of 
smooth functions p and q on U. Such a pair of functions can also be 
identified with a vector field on U, which assigns to each point (x, y) 
in U the vector 

V(x, y) = p(x, y)i + q(x, y)j . 
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The vector field corresponding to the I-form Wa is perpendicular 
to the position vector, pointing in a counterclockwise direction, with 
length that is the inverse of the distance to the origin: 

The path integral 

!pdx+ qdy = Ib (P(X(t),y(t» dx + q(x(t),y(t» dy) dt 
'Y a dt dt 

can be written, using the dot product, as 

f V('Y(t»· 'Y'(t) dt = f (V('Y(t» 'II~:~:~II) 11'Y'(t)11 dt, 

which is the integral of the projection of the vector field along the 
tangent to the curve. (For this last formula, we must assume the tan
gent vector is not zero.) If the vector field represents a force, it is the 
work done by the force along the curve. 

The translation of the equation W = dj, or p = aj / ax and q = aj / ay, 
into vector field language says that the corresponding vector field is 
the gradient of f 

aj aj 
grad(f) = -i + -j. 

ax ay 

The function j (or sometimes - f) is called a potential function. 
We'll finish this chapter with a quick sketch of the interpretation 

of these ideas for case where the vector field gives the velocity of a 
fluid flowing in an open set in the plane. So V(x,y) is the velocity 
vector at (x,y). We assume the flow is in a steady state, which means 
that, as written, this velocity vector depends only on the point (and 
not on time). Let p and q be the components of V, as above. 
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The integral f -y p dx + q dy represents the circulation of the fluid along 
the path 'Y, per unit of time. This can be seen from the interpretation 
as the integral of the projection of the velocity vector in the tangent 
direction along the curve. There is another important integral, 
f-yqdx - pdy, that represents the flUX of the fluid across the path 'Y 
(per unit of time). To see this, let N(t) = (-dy jdt, dxjdt) be the nor
mal vector, which is perpendicular to and 90° counterclockwise from 
the tangent vector. 

Then 

Lb
( dx dY) = q(x(t),y(t))- - p(x(t),y(t))- dt 

a dt dt 

f V('Y(t))· N(t) dt = f (V('Y(t)) 'I;~;~II) "'Y'(t)" dt. 

This is the integral of the projection of the velocity vector in the nor
mal direction, which measures the flow across 'Y, from right to left 
in the direction along 'Y, per unit of time. 

The flow is called irrotational if the circulation around all small 
closed loops is zero. By Problem 2.15, this is true precisely when 
dw=O, i.e., aqjax-apjay=o. The function aqjax-apjay is called 
the curl of the vector field. 

The flow is called incompressible if the net flow across small closed 
loops is zero. Applying Problem 2.15 to the I-form qdx - pdy, this 
is equivalent to the condition that apjax + aqjay = O. The function 
ap j ax + aq j ay is called the divergence of the vector field. 

Exercise 2.20. If R is a rectangle (or disk) in U, show that the integral 
of the curl (identified with the 2-form (aqjax - apjay)dxdy) over R 
is the circulation around aR, and the integral of the divergence is the 
flux across aR. 

If the open set U is a simple one, such as an open rectangle or disk, 
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and if the flow is irrotational, then we know that there is a potential 
functionj, i.e., V= grad(f). If the fluid is also incompressible, the 
equation we just found says that 

01 01 -+- = 0 ox2 ol ' 
which is the condition for j to be a harmonic function. 

Although we have no topological excuses for them, here are a handful 
of typical applications of and variations on these notions. 

Exercise 2.21. (a) Show that the following functions are harmonic: 
(i) a + bx + cy for any a, b, c; (ii) x2 -l; (iii) log(r), r = V xl + y2 
on the complement of the origin. (b) Find all harmonic polynomial 
functions of x and y of degree at most three. (c) Find all harmonic 
functions that have the form h(r). 

Problem 2.22. (a) State and prove an analogue of Green's theorem 
when R is the region between two rectangles, one contained in the 
other. (b) State and prove an analogue of Green's theorem when R 
is a disk, or the region between two concentric disks. 

Problem 2.23. If R is a region, with boundary dR, for which Green's 
theorem is known, prove the following two formulas of Green, for 
functions j and g on a region containing the closure of R: 

1 ( og ag ) (i) j. --dx + -dy 
aR oy ax 

= fLv· (:~ + ::~) + grad(f)' grad(g») dxdy; 

1 ( og Og) (aj OJ) (ii) j- --dx + -dy - g. --dx + -dy 
aR oy ox oy ox 

( (02g 02g) (01 (1)) = II j. -2+- -g. -+- dxdy. 
R ox ol ox2 ol 

Problem 2.24. (a) If j is harmonic in R and vanishes on fiR, show 
that j must be identically zero. (b) If two harmonic functions on R 
have the same restriction to oR, show that they must agree everywhere 
on R. 
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Problem 2.25. If f is harmonic on a disk, show that the value of f 
at the center of the disk is the average value of f on the boundary of 
the disk. 

Exercise 2.26. If V(x,y) = -(1/27r)(x,y)/II(x,y)1I2 and 'Y is a closed 
path not passing through the origin, show that the flux across 'Y is the 
winding number W('Y,O), i.e., W('Y, 0) = f:V('Y(t»· N(t)dt. 

These physical notions suggest a way to generalize the notion of a 
winding number to higher dimensions. Iff is a C(6'" map from a rect
angle or disk R to 1R3 \ (0), let Nf(P) be the cross product of the col
umns of the Jacobian matrix of f at P, and let 

V(x,y,z) = (l/47r)(x,y,z)/II(x,y,z)W. 

It is a good project to develop a notion of an "engulfing number," 
setting W(f,O) = ffR V(ftP»·Nf(P). 



PART II 

WINDING NUMBERS 

The notion of winding numbers is generalized to arbitrary continuous 
paths, and the facts we proved in the smooth case using calculus are 
proved here by purely topological arguments. We also look at what 
happens when the point being wound around is varied. Finally, we 
use the idea of winding numbers to define the degree of a mapping 
from one circle to another, and to define the local degree of a mapping 
from one open plane set to another. 

In Chapter 4 there are several applications of winding numbers, 
some written out, and many left as exercises and problems. Many of 
these results generalize to higher dimensions; the names attached to 
some of them refer to these generalizations. 



CHAPTER 3 

The Winding Number 

3a. Definition of the Winding Number 

For any point P in the plane, and any sector with vertex at P, we can 
define a continuous (even «6") angle function on the sector, although 
the choice is unique only up to adding integral multiples of 21l'. Here 
angles are measured with reference to P, counterclockwise from the 
horizontal line to the east of P: 

\ 

\ 

\ 
\ 

(x,y) 

\ 

\ 

p 

If p = pp is the corresponding polar coordinate map: 

p(r,{}) = P+(rcos({}),rsin({}», 

a sector is the image of a strip {(r, (}): r> 0 and {}! < {} < {}z}, where 
{}! and {}2 are any real numbers with 0 < {}2 - {}! :::; 21l'. The fact that 
this {} is a continuous function on the sector can be seen directly, 

35 
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using formulas like the arc tangent, or topologically as follows: p is 
one-to-one and continuous from the strip onto the sector, and it maps 
small open rectangles {( r, {t): a < r < b, a < {t < ~} onto small open 
sectors (bounded by two straight lines and arcs of two circles), so pis 
open as well as continuous; it is therefore a homeomorphism (in fact 
a diffeomorphism). This means that rand {t are continuous functions 
of x and y. 

For any continuous path 'Y: [a, b]~ []~f \ {P}, we define its winding 
number W( 'Y, P) as follows: 

Step 1. Subdivide the interval into a = to::5 t1 ::5 ... ::5 tn = b, so that 
each subinterval [ti- h til is mapped into some sector with vertex at P. 
Such a subdivision exists by the Lebesgue lemma, since each point 
in the image of'Y is contained in some such sector. 

Step 2. Choose such a sector Vi containing 'Y([t;-h ta) and a corre
sponding angle function {ti on V;, for 1 ::5 i::5 n. Let Pi = 'Y(t;), 0 ::5 i ::5 n. 
Define 

W('Y,P) 

Each term represents the net change in angle along that part of the 
path. 

Proposition 3.1. (a) The definition of a winding number is indepen
dent of the choices made in Steps I and 2. (b) If Y is a closed path, 
i.e., yCa) = yCb), then W(y,P) is an integer. 

Proof. (a) To see that it is independent of the choices of the sectors 
V; and the angle functions {t;, suppose V;' and {t;' were other choices. 
Then {t; and {}-/ would differ by a constant (in fact, a mUltiple of 2"IT) 
on the component of the intersection of V; and U;' that contains 
'Y([t;-h t;]). So the difference in the values of {t; at the two points P;-l 

and P; is the same as the difference in values of {t;' at these two 
points, and adding over i shows that the winding number doesn't 
change. 

So it is enough to show that the definition is independent of the 
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choice of subdivision. Suppose we add one point to a given subdi
vision that satisfies the condition in Step 1, say by inserting a point 
t* between some ti- 1 and ti. If Vi and tti are chosen for [ti-I> ti], these 
same Vi and tti can also be chosen for the two subintervals [tH , t*] 
and [t*, til. And if p* = 'Y(t*), then 

(tti(Pi) - ttlP*» + (ttlP*) - tti(Pi- 1» = tti(P) - tti(Pi-l)' 

so again the sum is unchanged. It follows that if we insert any finite 
number of points into a given subdivision, the definition of the wind
ing number will not change. But then, if two subdivisions both satisfy 
the condition in Step I, the common refinement of both of them, ob
tained by including all division points for each, will define the same 
winding number as each of them. 

(b) In general, the claim is that, even when 'Y is not closed, if tta 
is an angle for the initial point 'Y(a) , then tta + 2'IT· W('Y,P) is an angle 
for the endpoint 'Y(b). When the path is closed, this implies that W('Y,P) 
is an integer. This claim is evident for the restriction of 'Y to each 
subinterval [tH' til on which there is a continuous angle function, and 
the general case follows by adding up the results (or inducting on the 
number of subintervals). D 

Exercise 3.2. Show that if 'Y is smooth, this definition agrees with 
that in Chapter 2. 

Exercise 3.3. Show that if 'Y: [a, b] --') V is a closed path, and V is 
an open set in ~2 \ {P} on which there is a continuous angle function 
(for example, a sector with vertex at P), then W('Y, P) = O. 

Exercise 3.4. Show that winding numbers are invariant by transla
tion, in the following sense. Let 'Y: [a, b] --') ~2 \ {P}, and let v be any 
vector in the plane. Let'Y + v be the path defined by ('Y + v)(t) = 'Y(t) + v. 
Show that 

W('Y+v,P+v) = W('Y,P). 

Problem 3.5. Show that for any continuous path 'Y: [a,b]--')~2\{p}, 
there are continuous functions r: [a, b] --') ~+ (the positive real num
bers) and tt: [a,b]--')~, so that 

'Y(t) = P+(r(t)cos(tt(t»,r(t)sin(tt(t))), a5t5b. 

Show that r is uniquely determined, and tt is uniquely determined up 
to adding a constant integral multiple of 2'IT. Show in fact that 
r(t) = 11'Y(t) - pll, and if 'Y' denotes the restriction of 'Y to the interval 
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[a, t] (so "/(u) = 'Y(u) for a:5 u:5 t), and -3a is an angle for 'Y(a), then 
one may take 

-3(t) = -3a + 2'TT' W('Y t , P). 

Equivalently, for any choice of -3a , there is a unique continuous map
ping ')i: [a,b]~{(r,-3): r>O} such that ppo')i ="1 and ')i(a) = (r(a),-3a), 

where pp is the polar coordinate mapping. Such a ')i is called a lifting 
of "I with starting point (r(a) , -3a). 

3b. Homotopy and Reparametrization 

Suppose R = [a, b] X [c, d] is a closed rectangle, and f: R~ ~2 is a 
continuous mapping. The restrictions of f to the four sides of the 
rectangle define four paths "II, "12, "13, and "14: 

'YI(t) = f(t, C), 

'Y2(S) = f(b, S), 

/ 

/ 

'YI 

'Y3(t) = f(t, d), 
'Y4(S) = f(a, s), 

r 
--------

Theorem 3.6. For any point P not in f(R), 

a:5t:5b; 
c:5s:5d. 

W('Yh P)+W('Y2,P) = W('Y3,P) + W('Y4,P), 

Proof. In fact, the second proofs we gave for Proposition 2.16 and 
2.17 work equally well in this case. As there, use the Lebesgue lemma 
to subdivide the rectangle into subrectangles Ri.j , such that f maps 
R;.j into a sector Ui,j (with vertex at P), on which there is a continuous 
angle function -3iJ• Then, by the canceling of inside edges as before, 

W(flaR, P) = 2: W(flaRiJ , P) , 
iJ 

where W(fl aR , P) is defined by the equation 

W(flaR, P) = W('Yh P) + W('Y2, P) - W('Y3, P) - W('Y4, P), 
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and W(fiaRij' P) is defined similarly as the signed sum of the winding 
numbers around the small rectangles. But these winding numbers around 
the small rectangles are all zero, since each Ri•j is mapped into a re
gion where there is an angle function {}iJ' So 

W('Yh P) + W('Y2,P) - W('Y3,P) - W('Y4,P) = O. 0 

This theorem implies that the winding numbers have the same in
variance under homotopies as in the smooth case considered in §2b. 
Again, there are two kinds of homotopies we want to consider, first 
for paths with fixed endpoints, and second for closed paths. If 
'Y: [a,b]~U and 8: [a,b]~U are paths with the same initial and 
final points, a homotopy from 'Y to 8 with fixed endpoints is a con
tinuous mapping H: [a, b] x [0, l]~ U such that 

H(t,O) = 'Y(t) and H(t, 1) = 8(t) forall a::5 t::5 b; 

H(a, s) = 'Y(a) = 8(a) and H(b, s) = 'Y(b) = 8(b) for all 0::5 s::5 I. 

The paths 'Ys defined by 'Ys(t) = H(t, s) give a continuous family of 
smooth paths from 'Yo = 'Y to 'Y I = 8. The paths 'Y and 8 are called 
homotopic with fIXed endpoints if there is such a homotopy H. 

On the other hand, if'Y and 8 are closed paths in U, again defined 
on the same interval [a, b], a homotopy from 'Y to 8 through closed 
paths is a continuous H: [a, b] x [0, l]~ U, such that 

H(t,O) = 'Y(t) and H(t, 1) = 8(t) 

H(a, s) = H(b, s) 

for all a ::5 t ::5 b ; 

for all 0 ::5 s::5 I . 

The paths 'Y and 8 are called homotopic closed paths if there is such 
a homotopy H. 

Exercise 3.7. Prove that the relation of being homotopic with fixed 
endpoints, or as closed paths, is an equivalence relation. 

Corollary 3.8. If two paths 'Y and 8 in 1R2 \ {P} are homotopic. either 
as paths with the same endpoints, or as closed paths, then 

W('Y,P) = W(8,P). 

Proof. This is an immediate consequence of the theorem, applied to 
the homotopy H = f. In the first case, the winding numbers of the 
constant paths from the sides of the rectangle are both zero, and in 
the second case they are the same, so their winding numbers cancel 
in~re~. 0 

We next consider what happens to the winding number by a change 
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of parameter, generalizing what we saw in the last chapter in the smooth 
case. 

Corollary 3.9. Let y: [a, b] ~ lI,f \{P} be a continuous path, and 
cp: [c, d] ~ [a, b] a continuous function. 

(a) If cp(c) = a and cp(d) = b, then W( yo cp, P) = W( y, P). 
(b) If cp(c) = band cp(d) = a, then W( yo cp, P) = - W( y, P). In partic

ular, if y-l(t) = y(a + b - t), a ~ t~ b, then 

W('Y-1,P) = -W('Y,P). 

Proof. For (a), define f: [a,b] x [c,d]~U by the formula 

f(t, s) = 'Y(min(t + 'P(s) - a, b». 
y(b) 

y 

Then f is continuous, since the minimum or composite of two con
tinuous functions is continuous. The paths from the sides of f are 
'Yl = 'Y, 'Y4 = 'Yo'll, and 'Yz and 'Y3 are constant paths at the point 'Y(b). 
So Theorem 3.6 applies and gives (a). Similarly for (b), use 

f(s, t) = 'Y(max(t + 'P(s) - b, a». 

In this case 'Yl = 'Y, 'Yz = 'Yo'll, and 'Y3 and 'Y4 are constant. 0 

Exercise 3.10. Give a direct proof of Corollary 3.9 from the defi
nition of the winding number, in case the change of coordinates'll is 
a monotone increasing or monotone decreasing function. (Monotone 
increasing means that 'P(t) < 'P(s) if t < s.) 

As another application, we have the "dog-on-a-Ieash" theorem of 
Poincare and Bohl. This says if the leash is kept shorter than the 
distance from the walker to the fire hydrant, then the walker and the 
dog both wind around the hydrant the same number of times: 
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P /' ..... 
Hydrant 

Ii(t) 

~ vI Dog ------;;!t) 
/' Man 

/' 
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Theorem 3.11 (Dog-on-a-Leash). Suppose y: [a, b]~ R2 \{P} and 
5: [a, b] ~ R2 \ {P} are closed paths, and the line segment between 
y(t) and 8(t) never hits the point P. Then 

W(,,(,P) = W(8,P). 

Proof. Define H: [a, b] X [0, l]~ R2 by the formula 

H(t,s) = (1- s)"(t) + s8(t), as tS b, 0 ss S l. 

This is a continuous homotopy from "( to 8 through closed paths. The 
hypotheses imply that r maps the rectangle into R2 \ {Pl. The result 
therefore follows from Corollary 3.8. 0 

Corollary 3.12. Ify: [a,b]~R2 and 8: [a,b]~R2 are closed paths 
such that IIy(t) - 8(t)11 < IIy(t) - pil for all t in [a, b], then 
W(y,P) = W(8,P). 

Proof. The hypothesis implies that neither path hits P, and that the 
line segment between "(t) and 8(t) doesn't hit P. 0 

Exercise 3.13. Show that if U is an open rectangle (bounded or un
bounded), then any two paths from [a, b] to U with the same end
points are homotopic, and any two closed paths in U are homotopic. 
Show that the same is true for any convex open set U. Can you prove 
it when U is just starshaped? 

Problem 3.14. Let"( and 8 be paths from an interval to R2 \ {P} with 
the same endpoints. Show that the following are equivalent: 

(i) "( and 8 are homotopic in R2 \ {P}; 
(ii) W(,,(, P) = W(8, P); and 

(iii) if:Y and 8 are liftings of "( and 8 with the same initial point, as 
in Problem 3.5, then :y and 8 have the same final point. 

Problem 3.15. Let"( and 8 be closed paths from a closed interval to 



42 3. The Winding Number 

~2 \ {Pl. Show that 'Y and 3 are homotopic through closed paths in 
~2 \ {P} if and only if W('Y,P) = W(3,P). 

3c. Varying the Point 

We want to study what happens to the winding number if a closed 
path 'Y: [a, b] ~ ~2 is fixed, and the point P is allowed to vary, but 
always so that the path does not pass through P. Let us denote the 
image of the path 'Y by Supp('Y), and call it the support of 'Y, i.e., 

Supp('Y) = 'Y([a, b]). 

Since the interval is compact, the support is a compact, and hence 
closed and bounded, subset of the plane. The complement of the sup
port is an open set, which may have many-even infinitely many
connected components, each of which is open. Since the support is 
bounded, however, there is one connected component of ~2 \ Supp('Y) 
that contains all points outside some large disk; this component is 
called the unbounded component. 

Proposition 3.16. As afunction ofP, thefunction W('Y,P) is constant 
on each connected component of ~2 \ Supp( 'Y). It vanishes on the un
bounded component. 

o 

Proof. For the first statement, we must show that W( 'Y, P) is a locally 
constant function of P in ~2 \ Supp( 'Y). Given P, choose a disk around 
P contained in ~2\SUpp('Y). We must show that W('Y,P' ) = W('Y,P) 
for all p' in the disk. Let v = p' - P be the vector from P to P'. By 
Exercise 3.4, 

W('Y,P) = W('Y+v,P+v) = W('Y+V,P'). 

The homotopy H(t, s) = 'Y(t) + sv, a:5 t:5 b, 0:5 S, :5 1, is a homotopy 
through closed paths from 'Y to 'Y + v that never hits the point pI, 
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so 

W('Y + v, PI) = W('Y, PI). 

To show that the winding number vanishes on the unbounded com
ponent, it suffices to show it vanishes on one such point. For ex
ample, we can take P far out on the negative x-axis, so that the sup
port of 'Y is contained in a half plane to the right of P. But then there 
is an angle function on this half plane, so the winding number is zero 
by Exercise 3.3. 0 

The following exercise gives alternative proofs of the proposition: 

Exercise 3.17. (a) Prove directly from the definition that for any path 
'Y, whether closed or not, the function P~ W('Y, P) is continuous on 
the complement of Supp('Y), and approaches zero when Ilpll goes to 
infinity. (b) Use (a) and the fact that, when'Y is closed, W('Y,P) takes 
values in the integers to give another proof of the proposition. (c) For 
a closed path 'Y, show directly that W('Y,P) is constant on path com
ponents of ~2 \ Supp('Y) by applying Theorem 3.6 to the mapping 
nt, s) = 'Y(t) - (1(s) and the point P = 0, where (1 is any path in 
~2 \ Supp('Y). 

3d. Degrees and Local Degrees 

If I is any closed interval, and C is any circle, a continuous closed 
path 'Y from I to an open set U is essentially the same thing as a 
continuous mapping from C into U: 

cO 
~ 

I· /, 
I • 1 • 

This can be realized explicitly as follows. Let us assume that 1= [0, 1], 
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since this is the most common convention. Suppose C has center (Xo, Yo) 
and radius r. Let <p: I~C be the function that wraps I around C: 

<p(t) = (xo, Yo) + (rcos(2'TTt), rsin(2'TTt», 0:5 t:5 1. 

So <p is a one-to-one mapping of I onto C, except that <p(0) = <p(1). 
It follows that if F is a mapping from C into an open set U, then 
'Y = F 0 <p is a mapping from I to U with 'Y(O) = 'Y( 1), and that any such 
'Y can be realized in this way for a unique F. 

Lemma 3.18. The mapping 'Y is continuous if and only if F is con
tinuous. 

Proof. In fact, <p realizes C as the quotient space of I with its end
points 0 and 1 identified. Concretely, this means that a subset X of 
C is open in C if and only if <p -I(X) is open in I. This is easy to verify 
directly, or one can argue that the quotient space is a compact Haus
dorff space, and the induced mapping from it to C, being continuous 
and one-to-one, must be a homeomorphism. If follows that for an 
open subset V of U, F-1(V) is open if and only if 'Y-1(V) = <p -I(F-I(V» 
is open, which proves the lemma. 0 

For any continuous F: C ~ ~2 \ {P}, we can define the winding number 
of F around P, denoted W(F,P), to be the winding number W('Y,P) 
of the path 'Y = F 0 <po 

Exercise 3.19. Identify ~2 with the complex numbers C, and let 
f C~ C be the mapping that takes a complex number z to its nth 
power 1', where n is an integer. Let C be any circle centered at the 
origin, and let F be the restriction of f to C. Show that W(F, 0) = n. 
If flz) = -z, show that W(F,O) = 1. 

Proposition 3.20. Suppose C is the boundary of the closed disk D, 
and F: C ~ ~2 \ {P} extends to a continuous function from D to ~2 \ {P}. 
Then W(F, P) = o. 
Proof. If D is the disk of radius r about the point (xo, Yo) as 
above, and 'Y: [0, 1]~ ~2 \ {P} is the path corresponding to F, and 
F: D~ ~2 \ {P} is such an extension of F, then 

H(t,s) = F(xo,Yo)+s(rcos(2'TTt),rsin(2'TTt»), 
0:5t:51, 0:5s:51, 

gives a homotopy from 'Y to the constant path at the point F«xo, Yo». 
This homotopy stays inside ~2 \ {P}, and since the winding number 
of a constant path is zero, the claim follows from Corollary 3.8. 0 
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Problem 3.21. If Fo and FI are mappings from a circle C to U, cor
responding to paths 'Yo and 'YI from [0, 1] to U, show that 'Yo and 'YI 
are homotopic through closed paths if and only if Fo and FI are ho
motopic mappings, i.e., there is a continuous mapping 

H: C X [0, 1] ~ U 

with H(P X 0) = Fo(P) and H(P X 1) = FI(P) for all Pin C. 

Problem 3.22. Show that the converse of Proposition 3.20 is true: if 
W('Y, P) = 0, then 'Y has a continuous extension to a map from D to 
~2 \ {Pl. 

Problem 3.23. Let C be a circle centered at the origin, and let F: C ~ ~2 
be a continuous mapping such that the vector F(P) is never tangent 
to the curve C at P, i.e., the dot product F(P) • P is not zero for all 
Pin C. Show that W(F, 0) = 1. 

The same idea lets us define the degree of any continuous mapping 
F from one circle C to another circle C', which measures how many 
times the first circle is wound around the second by F. Let P' be the 
center of the circle C', and define the degree of F by the formula 

deg(F) = W(F, P'). 

Exercise 3.24. Show that one could take any point inside C' in place 
of P'. 

Exercise 3.25. (a) Show that if F is not surjective, then its degree is 
zero. (b) Give an example of a surjective mapping from C to C' that 
has degree zero. (c) Show that if F and G are homotopic mappings 
from C to C', i.e., if there is a continuous mapping H from C X [0, 1] 
to C', with F(Q) = H(Q X 0) and G(Q) = H(Q Xl) for all Q in C. 
then F and G have the same degree. (d) Show that if C is the boundary 
of the disk D, then F extends to a continuous mapping from D to C' 
if and only if F is homotopic to a constant mapping from C to C', 
and then the degree of F is zero. 

Problem 3.26. (a) Prove that two mappings from C to C' have the 
same degree if and only if they are homotopic. (b) Deduce that, if C 
is the boundary of the disk D, and the degree of a mapping is zero, 
then the mapping extends to a continuous mapping from D to C'. (c) 
Deduce also that if Sl is the unit circle centered at the origin, and 
F: Sl ~ Sl is a continuous mapping with degree n, then F is homo-
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topic to the mapping that takes (cos(t}), sin(t}» to (cos(nt}), sin(nt})), 
i.e., in the terminology of complex numbers, the restriction of the 
nth power mapping z t-+ z' to the unit circle. 

Problem 3.27. If F: C ~ C' and G: C' ~ C" are continuous mappings 
of circles, what can you say about the relation among the degrees of 
F, G, and the composite GoF? Can you prove your answer? 

These ideas can also be used to define an important notion of a 
local degree. Suppose U and V are open sets in the plane, and F: U~ V 
is a continuous mapping, and let P be a point in U. Assume that P 
has some small neighborhood such that F(Q) ¥- F(P) for all Q in that 
neighborhood with Q ¥- P. Choose a positive number r so that no point 
within a distance r of P has the same image as P, and let C,(P) be 
the circle of radius r about P. Then F restricts to a continuous map
ping from ClP) to Ilf \ {F(P)}. 

F 

Define the local degree ofF at P, denoted degp(F), to be the winding 
number of this mapping of the circle around the point F(P). In other 
words, degp(F) = W('Y" F(P» , where 

'Ylt) = F(P + r(cos(21Tt), sin(21Tt))), 0 s t s 1 . 

To know that this is well defined, we need 

Lemma 3.28. This winding number is independent of choice of r. 

Proof. Ifr' isanother,H(t, s) = F(P + «(1- s)r + sr')(cos(21Tt), sin(21Tt») 
gives a homotopy from 'Yr to 'Yr" 0 

Equivalently, the local degree of F at P is the winding number of 
the mapping from the unit circle Sl to itself given by 

F(P + rQ) - F(P) 

Q t-+ IIF(P + rQ) - F(p)II' 

Problem 3.29. Show that if F: 1R2~ 1R2 is a linear mapping, given 
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by a (2 x 2)-matrix, and the determinant is not zero, then the local 
degree of F at the origin is + 1 if this determinant is positive, and -1 
if this determinant is negative. 

Problem 3.30. Show that if F: U ~ V is a ~'" mapping, and the Ja
cobian determinant of F is not zero at P, then the local degree is 
defined, and is + 1 or -1, depending on the sign of this determinant. 

Problem 3.31. Suppose F: C~ C is given by a complex polynomial. 
Show that the local degree of F at a complex number z is the mul
tiplicity of z as a root of F(T) - F(z). (This multiplicity is the highest 
power of T - z that divides F(T) - F(z).) 

Problem 3.32. If F: C ~ C' is a map between circles in the plane, 
and P is a point in C such that F(Q) # F(P) for all Q in a neighbor
hood of P in C, give a precise definition of a local degree of F at P; 
this should be + 1 if F is increasing at P, -1 if F is decreasing, and 
o if F has a local maximum or minimum at P (all expressed in terms 
of counterclockwise angles). Show that if p' is any point of C' such 
that p-l(p') is finite, then 

deg(F) = 2: degpF, 
PEF- 1(P') 

where degpF is the local degree of Fat P. This implies in particular 
that the right side is independent of choice of P'. 



CHAPTER 4 

Applications of Winding Numbers 

4a. The Fundamental Theorem of Algebra 

The set C of complex numbers is identified as usual with the real 
plane ~2, the number z = x + iy being identified with the point (x, y). 
We will use the fact that for any complex polynomial 

g(T)=aor+a1r- I+ ... +an-1T+an, 

with coefficients ai complex numbers, the mapping z ~ g(z) is a con
tinuous mapping from C to C. This follows from the fact that addition 
and multiplication of complex numbers are continuous. The goal of 
this section is to show that, if n > 0 and ao # 0, then the polynomial 
has a root, i.e., g(z) = 0 for some z. We may divide by ao, so we can 
assume g(T) has leading coefficient ao = 1. If g(T) has no root, g is 
a mapping of C into the complement of the origin. 

Restrict g to a circle Cr of radius r centered at the origin. This gives 
a mapping from Cr to C \ {O}, which we denote by gr. Since gr extends 
to a continuous mapping of the disk Dr of radius r into C \ {O}, it 
follows from Proposition 3.20 that the winding number W(g" 0) must 
be zero. The idea is to compare gr with the mappingJ,. given similarly 
by the polynomial.fiT) = r. The restriction of this to the circle is 
J,.(z) = z\ and a simple calculation shows that W(J,., 0) = n (see Ex
ercise 3.19) . We will apply the Dog-on-a-Leash Theorem 3.11 to show 
that, for r sufficiently large, J,. and gr must have the same winding 
number, which will be the desired contradiction. For this, it suffices 
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to show that for r sufficiently large, 

If,.(z) - g,(z)1 < If,.(z) - 01 

Now If,.(z) - 01 = Iznl = 1"', and 

for zEC,. 

If,.(z) - g,(z)1 = lalzn- I + ... + an-Iz + ani 
:s lallr"-I + ... + lan-dr + lanl, 
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which is less than I'" if r is large, e.g., if laA < ri/n for all i. This 
completes the proof of 

Proposition 4.1 (Fundamental Theorem of Algebra). Any complex 
polynomial of degree greater than zero has a root. 

If Zl is a root of g(D, then g(D = (T - zd' h(D, where h(D is a 
polynomial of degree n - 1. By induction, we see that g(D factors 
into linear factors: g(D = ao' I17=I(T - z;). 

Exercise 4.2. (a) Suppose! C~ C is a continuous function such that 
for some R > 0, Iftz)1 < Izln for Izl = R. Show that zn + f(z) = 0 has a 
solution z with Izl < R . (b) Suppose g: C ~ C is a continuous function 
such that g(z) / zn approaches a nonzero constant as Izl ~ 00. Show that 
g is surjective. 

There is another topological proof of the Fundamental Theorem of 
Algebra that is in some ways even simpler, but requires a little more 
about the local structure of a mapping given by a polynomial. One 
shows that g extends to a continuous mapping of the Riemann sphere 
to itself, taking the point at infinity to itself (which is essentially what 
the above calculation showed), and which is an open mapping (see 
Problem 3.31, and § 19a for details). The image is compact, so closed, 
and since both open and closed, it is the whole sphere. 

4b. Fixed Points and Retractions 

One of the most important applications of topological ideas in other 
areas of mathematics, and in science in general, is to give criteria to 
guarantee that a continuous mapping from a space to itself must have 
a point that is mapped to itself. 

We start with the case of a closed interval [a, b]. We claim that 
any continuous function! [a,b]~[a,b] must have a fixed point. This 
can be "seen" by looking at the graph of the mapping: 
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b -+---+------,1"-

a -+------,1'-----1-

a b 

To prove it rigorously, consider the function g(x) =f(x) - x. This is 
a continuous function on the interval [a, b], with g(a) 2: 0 and g(b):::; O. 
Since the image g([a, b]) of the interval by g must be connected, it 
must contain the interval [g(b), g(a)], so it must contain O. This means 
that g(x) = 0 for some x, which says that fix) = x. 

This is closely related to another property of an interval: that there 
is no continuous mapping from an interval [a, b] onto its endpoints 
[a, b] that maps a to a and b to b. This fact is obvious since the image 
of a connected set must be connected. In general if Y is a subspace 
of a topological space X, a retraction from X to Y is a continuous 
mapping r: X - Y such that reP) = P for all P in Y. In this case Y is 
called a retract of X. So there is no continuous retraction of an in
terval onto its boundary. This proves again that any continuous func
tion f from the interval [-I, 1] to itself must have fixed points, for 
otherwise the mapping Xf-7 (x - f(x»/ix - f(x)i would be a continuous 
retraction of [-I, I] onto {-I, I}. 

Next we tum to the case of a closed disk D. We first show there 
is no retraction onto its boundary circle C = aD, and then use this as 
above to show that any map from the disk to itself must have a fixed 
point. 

Proposition 4.3. There is no retraction from a closed disk onto its 
boundary circle. 

Proof. If C is the boundary of the disk D, the identity mapping from 
C to itself has degree 1. A retraction would give an extension of the 
identity mapping to a mapping from D to C, which would imply by 
Proposition 3.20 that the degree is O. 0 

Proposition 4.4 (Brouwer). Any continuous mapping from a closed 
disk to itself must have a fixed point. 

Proof. We may assume the disk D is the unit disk centered at the 
origin, with boundary C the unit circle (see Exercise 4.7 below). Sup-
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pose f D ~ D is a continuous mapping with no fixed point. The idea 
is to define a mapping h: D ~ C that takes a point P to the point in 
C hit by the ray from f(P) to P: 

r(p) 

hlP) 

This mapping h will be the identity on C, so will be a retraction 
of D onto C. To finish the proof, we must verify that h is continuous. 
To do this, we find an explicit formula for h. We know that 

P - f(P) 
U=---lip - f(p)11 ' h(P) = P + t· U with 

and t is the positive number determined by the property that Ilh(P)11 = 1. 
A little calculation shows that 

t = - P • U + VI - P • P + (p. U)2 

is such a positive number. With this t, the above formula for h is then 
continuous, and is easily checked to be the identity on C. D 

The following exercise gives a proof with less calculation: 

Exercise 4.5. Iff D2~ D2 has no fixed point, define g: D2~ [R2 \ {O} 
by setting g(P) = P - f(P). Show that g(P) . P > 0 for all P in Sl, so 
the restriction of g to Sl is homotopic to the identity mapping of Sl 
(by the homotopy H(P x s) = (l - s)P + s g(P». Apply Proposition 
3.20. 

Exercise 4.6. Deduce Proposition 4.3 from Proposition 4.4. 

One says that a topological space X has the fixed point property if 
every continuous mapping f X ~ X has some fixed point, i.e., there 
is a point P in X withf(P) = P. So any closed interval and any closed 
disk have the fixed point property. 

Exercise 4.7. Show that a space that is homeomorphic to a space 
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with the fixed point property has the fixed point property. Show that 
if Y is a retract of a space X that has the fixed point property, then 
Y has the fixed point property. 

Exercise 4.8. Which of the following spaces have the fixed point 
property? (i) a closed rectangle; (ii) the plane; (iii) an open interval; 
(iv) an open disk; (v) a circle; (vi) a sphere S2; (vii) a torus Sl x Sl; 
and (viii) a solid torus Sl x D2. 

Exercise 4.9. Let D be a disk with boundary circle C, and letf D~ ~2 
be a continuous mapping. Suppose P is a point in ~2 that is not in 
the image C, and the winding number of the restriction f Ie of f to C 
around P is not zero. Show that there is some point Q in D such that 
f(Q) =P. 

Exercise 4.10. Suppose D and D' are disks with boundary circles C 
and C'. Suppose f D ~ ~2 is a continuous mapping that maps C into 
C', such that the degree of this map from C to C' is not zero. Show 
that f(D) must contain D' . 

Exercise 4.11. Show that if f D2~ ~2 \ {O} is a continuous mapping, 
there is some P in Sl = aD2 and some A > 0 such that f(P) = A ' P, and 
there is some Q in Sl and some fl. < 0 such that f(Q) = fl. . Q. 

Exercise 4.12. Suppose F is a continuous mapping from the positive 
octant {(x, y, z): x ~ 0, y ~ 0, z ~ O} to itself. Show that there is a unit 
vector P in this octant, and a nonnegative number A, such that 
F(P) = A'P. 

Exercise 4.13. If all the entries of a (2 x 2)-matrix are nonnegative, 
show by direct calculation that at least one of its eigenvalues must be 
nonnegative. Prove the same for a (3 x 3)-matrix A. 

Exercise 4.14. Iff D2 ~ ~2 is a continuous mapping, show that either: 
(i) there is either some point Q E D2 such that f(Q) = Q; or (ii) there 
is some PI in Sl and some AI> 1 such thatf(Pd = Al . Ph and there 
is some point P2 in Sl and some A2 < 1 such thatf(P2) = A2' P2 . 

Exercise 4.15. If f C~C is a continuous mapping with no fixed 
point, show that degree off must be 1. In particular, iff has no fixed 
point, show that f must be surjective. 
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Exercise 4.16. Iff: C ~ Il\f is continuous and W(j, P) # 0, show that 
every ray emanating from P meetsflC). 

Exercise 4.17. If f: D2~ ~2 is continuous and flP)· P # 0 for all P 
in Sl, show that there is some Q in D2 with flQ) = O. 

Problem 4.18. Let DOD = {(ao, aI, a2, ... ): ~;=oa/:s I}, the unit ball 
in the metric space of infinite sequences such that ~;=o a/ < 00. (a) 
Find a continuous mappingj: D'" ~ D'" that has no fixed point. (b) Find 
a continuous retraction of DOD onto S'" = {(ao, aI, ... ): ~;=oa/ = I}. 

4c. Antipodes 

The antipode of a point in a circle C or sphere S is the opposite point, 
i.e., the point hit by the ray from the point through the center. We 
denote the antipode of P by P*. With the center at the origin, p* = - P. 
The antipodal map is the mapping that takes each point to its anti
pode. 

Exercise 4.19. Show that the degree of the antipodal map from a 
circle to itself is 1. 

Lemma 4.20 (Borsuk). If C and C' are circles, and j: C ~ C' is a 
continuous map such that flP*) = flP)* for all P, then the degree of 
fis odd. 

Proof. There is no loss of generality in assuming C = C' = SI. Let 
'Y(t)=flcos(t),sin(t»,O:st:s'IT. Since 'Y('IT) = -'Y(O), the change in 
angle along 'Y must be 2'ITn + 'IT for some integer n. So W('Y, 0) = n + 1/2. 

Now let 

aCt) = flcos(t + 'IT), sin(t + 'IT» = -'Y(t) , 
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It follows easily from the definition of the winding number that 
W(a, 0) = W('Y, 0), and so deg(f) = W('Y, 0) + W(a, 0) = 2n + 1. 0 

Lemma 4.21. There is no continuous mapping f from a sphere S to 
a circle C such that f(P*) = f(P)* for all P in S. 

Proof. Again we can take S = S2. Consider the mapping g: D2~ C 
given by the formula 

g(x,y) = f«x,y, Yl-x2 -l». 
This is continuous, since the projection from the upper hemisphere 
of the sphere to the disk (being one-to-one and continuous) is a ho
meomorphism, and g is the composite of f with the inverse. Now 
g(P*) = f(P*) = f(P)* = g(P)* for P in Sl, so by Lemma 4.20 the de
gree of the restriction of g to Sl must be odd. But since this map 
extends over the disk, its degree must be zero, a contradiction. 0 

Proposition 4.22 (Borsuk-Vlam). For any continuous mapping 
f S ~ ~2 from a sphere S to the plane, there is a point P in S such 
that f(P) = f(P*). 

So there are always two antipodal points on the earth with the same 
temperature and humidity-or any other two real values, provided 
they vary continuously over the earth. 

Proof. We may take S = S2. If there is no such P, consider the func
tion g: S2~SI given by 

f(P) - f( -P) 
g(P) 

IIf(p) - f( - p)ll· 

Then g(-P) = -g(P), contradicting Lemma 4.21. o 

A fact which was unquestionably obvious until people started look
ing for a proof is the fact that open sets of different dimensions cannot 
be homeomorphic. (The fact that they cannot be diffeomorphic can 
be reduced, using Jacobian matrices, to the fact that vector spaces of 
different dimensions cannot be isomorphic.) The fact that there are 
continuous maps from intervals onto squares makes the assertion less 
obvious than might have been thought. The first case is easy: an open 
interval cannot be homeomorphic to an open set in the plane or any 
~n, for the reason that removing a point disconnects an interval, but 
does not disconnect an open set in ~n, n ~ 2. The next case is less 
obvious: 
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Corollary 4.23 (Invariance of Dimension). An open set in 1R2 cannot 
be homeomorphic to an open set in IRn for n::=: 3. 

Proof. In fact, no subset of the plane can be homeomorphic to a set 
which contains a solid ball in IRn, n::=: 3, for a homeomorphism from 
a ball Dn (of some small radius) in the plane would embed a two
sphere S2 C D3 C Dn in the plane, contradicting the proposition. 0 

As you must expect, these results are also true in higher dimen
sions, but more machinery is needed to extend the proofs. We'll come 
back to this in the last part of the book. 

Exercise 4.24. Show that iff C ---+ C' is a map between circles such 
that fiP*) = fiP) for all P, then the degree off is even. 

Exercise 4.25. If f C ---+ 1R2 \ {Q} is a continuous mapping such that 
Q lies on the line segment between fiP) and fiP*) for all P in C, show 
that the winding number of f around Q is odd. 

Exercise 4.26. Suppose D is a disk with boundary C, andf: D---+ 1R2 
is a continuous mapping such thatfiP*) = -fiP) for all Pin C. Show 
that there is some point Q in D with fiQ) = O. 

Exercise 4.27. If f and g are continuous real-valued functions on a 
sphere S such that fiP*) = -fiP) and g(P*) = - g(P) for all P, show 
thatf and g must have a common zero on the sphere. 

Exercise 4.28. State and prove the analogue of the Borsuk-Ulam 
theorem for mappings from a circle to IR. 

Exercise 4.29. Iff C ---+ C' is a continuous mapping between circles 
such that fiP*) #- fiP) for all P, show that deg(f) #- 0, so f must be 
surjective. 

Problem 4.30. Letf S---+S' be a continuous mapping between spheres. 
Show that if fiP) #- fiP*) for all P, then f must be surjective. 

Exercise 4.31. Letf C---+ C be continuous. If deg(f) #- 1, show that 
there is a P in C with fiP) = P and there is a Q in C with fiQ) = Q* . 
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4d. Sandwiches 

A pleasant application of the Borsuk-Ulam theorem is the so-called 
ham sandwich problem: to cut both slices of bread and the ham be
tween in two equal parts with one slice of a knife. 

Suppose we have three bounded objects A, B, C in space. The prob
lem is to show that there is one plane that cuts each of them in half 
(by volume). Here is what we need to know about the volume of each 
object X = A, B, or C: 

(i) For any fixed line l, there is a unique point in l such that the 
plane perpendicular to l through the point cuts X in half. Call this 
point PI•X ' 

(ii) The point in (i) varies continuously as the line varies continu
ously. More precisely, take a big sphere S with X inside, and 
consider for each Q E S the line l(Q) going from Q to its antipodal 
point. Then the map from Q to PI(Q),X is continuous. 

These properties are intuitively evident, and follow from elemen
tary properties of volume, For example, the first follows from the 
fact that the volume on one side increases continuously as the point 
moves along the line. We will take them as axioms, or consider only 
objects for which we know them. (For a detailed discussion, see Chinn 
and Steenrod (1966).) 

Given a body X inside a sphere S as above, define a continuous 
real-valued function Ix: S~ IR by defining fx(Q) to be the distance 
from Q to the point PI(Q),x. Note that fx(Q*) = d - fxCQ) , where d is 
the diameter of the sphere, and Q* is the antipodal point to Q, 
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Now for three bodies, take S containing all three, and consider the 
mapping g: S ~ ~2 given by 

g(Q) = (fA(Q) - fdQ) ,fB(Q) - fdQ». 

Then g(Q*) = -g(Q) for all Q, so by Proposition 4.22 some Q must 
be mapped to the origin, which means that P1(Q),A = P1(Q),B = P1(Q),C, as 
required. This proves 

Proposition 4.32 (Stone-Tukey). Given three bounded measurable 
objects A, B, and C in space, there is a plane that divides each in 
half by volume. 

The same idea is used in the following proposition, which looks 
quite different. 

Proposition 4.33 (Lustemik-Schnirelman-Borsuk). It is impossible 
to cover a sphere with three closed sets, none of which contains a 
pair of antipodal points. 

Proof. Suppose the sphere S is covered by three such closed sets K\ , 
K2 , and K 3 • For each i, define a real-valued continuous function.fi on 
S, whose value at P is the minimum distance from P to K; (see the 
following exercise). Consider the mapping g: S~ ~2 given by 

g(P) = (fl(P) -HP) ,f2(P) - HP». 

By Proposition 4.22, there is a point P with g(P*) = g(P). For such 
P, .fi(P) - jj(P) = .fi(P*) - jj(P*) for all i and j. But P must be in one 
of the sets K;, and p* in another Kj • Since P fI. Kj and p* fI. K;, 

o > -jj(P) = .fi(P) - liP) = .fi(P*) - jj(P*) = .fi(P*) > 0, 

a contradiction. D 

Exercise 4.34. Show that for any compact set K in space, the function 
p on ~3 that maps a point P to its distance from K is continuous. Note 
by compactness that if p(P) = r, then there is a point Q in K of dis
tance r from P. 

Exercise 4.35. Show that the unit ball D3 is not the union of three 
closed sets, each with diameter less than 2. 

Exercise 4.36. Show that the "three" in Proposition 4.33 cannot be 
replaced by "four." 
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Exercise 4.37. State and prove the analogue of Proposition 4.33 for 
a circle. 

Exercise 4.38. Show how Proposition 4.33 implies Lemma 4.21, and 
hence Proposition 4.22. 

Exercise 4.39. For a subset X of a sphere, let X* = {P*: P EX}. Sup
pose A, B, and C are disjoint closed subsets in a sphere, none con
taining a pair of antipodal points. Show that the six sets A, B, C, A * , 
B*, and C* cannot cover the sphere. 

Problem 4.40. True/False. If a sphere is a union of two closed sets 
A and B, then either A or B must contain a closed connected set X 
such that X* = X. 

It is an excellent project to try to generalize the results of this chap
ter, including the exercises, to higher dimensions, assuming, for ex
ample, that there is no continuous retraction from Dn onto sn-l, and 
that there is no continuous mapping/from the sphere Sn to the sphere 
Sn-l such thatftP*) = ftP)* for all P. This will be carried out in Chap
ter 23. 



PART III 

COHOMOLOGY AND HOMOLOGY, I 

We have seen that the topology of an open set U in the plane is related 
to the question of whether all closed I-forms on U are exact. This is 
formalized by introducing the vector space HI U of closed forms mod
ulo exact forms. What we learned in the first few chapters amounts 
to some calculations of these fIrst De Rham cohomology groups. There 
is also a Oth De Rham group HOU, which measures how many con
nected components U has. 

A central theme will be how the topology of a union U U V of two 
open sets compares with the topology of U and V and the intersection 
un v. We construct a linear map from H°(U n V) to HI(U U V), and 
describe the kernel and cokernel of this map. We use these groups 
and this map to prove the famous Jordan curve theorem, which says 
that any subset of the plane homeomorphic to a circle separates the 
plane into exactly two connected pieces, an "inside" and an "out
side. " 



60 Part III. Cohomology and Homology, I 

This is one of those facts that seem intuitively evident, although a 
complicated enough maze may raise a few doubts. In fact, it went 
unquestioned until mathematicians realized that continuous mappings 
can be pretty horrible-for example, that there can be a continuous 
mapping from an interval onto a square. When X is a closed polygon, 
it is not too hard to give an elementary proof, and you might enjoy 
seeing if you can. 

A basic question, which motivates Chapter 6 and the continuation 
in Chapter 9, stems from three different ways one can compare two 
closed paths 'Y and & in an open set U in the plane, supposing for 
simplicity that they are differentiable: 

(1) Are the winding numbers of 'Y and & around all points not in U 
the same? 

(2) Are all integrals of closed i-forms w on U along 'Y and & the 
same? 

(3) Are the paths homotopic, or related by deformations of some kind? 

In studying questions like this, we will find it useful to generalize 
and formalize some of the ideas of previous chapters. In Chapter 6, 
paths and segmented paths are generalized to the notion of I-chains, 
which are arbitrary sums and differences of (nonconstant) paths. We 
define what it means for two such chains to be homologous: the dif
ference should be a linear combination of boundaries of maps of a 
rectangle into the region. For an open set in the plane, we show that 
this notion is equivalent to saying that the two chains have the same 
winding number around all points outside the open set. The main 
technique is to approximate general paths by rectangular paths along 
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sides of a grid. 3 We introduce the first homology group H1U, which 
is the group of closed I-chains up to homology, and a Oth group HoU, 
which is a free abelian group on the connected components of U. In 
Part V we will develop general tools for computing these homology 
and cohomology groups. 

3 The use of grids in these chapters follows ideas of L.E.J. Brouwer, E. Artin, and 
L. Ahlfors, see Ahlfors (1979). 



CHAPTER 5 

De Rham Cohomology and the Jordan 
Curve Theorem 

5a. Definitions of the De Rham Groups 

Define, for an open set U in the plane: the zeroth De Rham group, 

HOU = {locally constant functions on U}. 

This is a vector space, by the ordinary addition of functions, and 
multiplication of functions by real scalars. As we have seen, to give 
a locally constant function on U is the same as giving a constant on 
each connected component of U. If U has n connected components, 
then HOU is an n-dimensional vector space; if Ub ... , Un are the 
connected components of U, and ei is the function that is i on Ui and 
o on Uj for all j~ i, then ei, ... , en is a basis for HOU. Similarly, 
if U has infinitely many components, HOU is an infinite-dimensional 
vector space. 

The closed i-forms on U also form a vector space, since the sum 
of closed forms, and a constant times a closed i-form, are also closed. 
The exact i-forms on U are a subspace of this vector space, since 
d(fl + f2) = dj; + df2 and d(cf) = cdf. Whenever we hav~ a subspace 
W of a vector space V, we can form the quotient space V /W of equiv
alence classes: two vectors in V are equivalent if their difference is 
in W (see Appendix C). Define the first De Rham cohomology group 
of U, denoted H1U, by 

H1U = {closed i-forms on U}/{exact i-forms on U}. 

63 



64 5. De Rham Cohomology and the Jordan Curve Theorem 

If W is a I-form on U, we may write [w] for the equivalence class in 
H1U containing the I-form w. 

Later we will have general methods for calculating H1U. In this 
section we use the ideas of Part I to compute a few simple examples. 
For any point P = (xo, Yo), let Wp denote the I-form 

1 I - (y - Yo) dx + (x - xo) dy 

Wp = 27T Wp,,~ = 27T (x - XO)2 + (y - Yo)2 

We have seen that Wp is a closed I-form on any open set not con
taining P. 

Proposition 5.1. (a) If U is an open rectangle, then H1U = O. (b) If 
U= ~2\ {P}, then [wp] is a basis for H1U. (c) IfU= ~2\{p,Q}, with 
P -,.6 Q, then [wp] and [wQ] form a basis for H1U. 

Proof. Assertion (a) is a translation of Proposition 1.12. To prove 
(b), fix a positive number r, and let 'YP,r denote the counterclockwise 
circle of radius r about P: 

'Yp,r(t) = P + r(cos(27Tt), sin(21l't)), 

Note first that [wp] is not 0 in H1U, for if Wp were exact, its integral 
around 'YP,r would be zero by Proposition 1.4, and we know that this 
integral is 1. Let W be any closed I-form on U, and let c = f"'/p"w. To 
show that [wp] spans H1U, it suffices to show that W - c· Wp is exact, 
for then [w] = c· [wp] in H1U. Now W - c· Wp is a closed I-form on 
U whose integral along 'Y is 0, and Lemma 1.17 implies that such a 
form is exact. 

For (c), fix a positive number r less than the distance between P 
and Q. To see that [wp] and [wQ] are linearly independent, we must 
show that a' Wp + b· wQ is not exact unless a and b are both zero. 
The integral of this form along 'YP,r is a, and the integral along 'YQ,r 

is b, and by Proposition 1.4, these integrals must vanish if the form 
is exact. To show that [wp] and [wQ] span H1U, let W be any closed 
I-form on U. Let a = f"'/p" W and let b = f"'/Q,' W. To complete the proof 
of (c), we must show that W - a' Wp - b· wQ is exact on U, for then 
[w] = a' [wp] + b· [wQ] in H1U. Now W - a' Wp - b· wQ is a closed 1-
form on U whose integrals along 'YP,r and 'YQ,r both vanish, and an 
appeal to Lemma 1.18 completes the proof. 0 

Problem 5.2. Generalize the proposition from one and two to n points. 

There is one other result we will need later in this chapter: 
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Proposition 5.3. If A is a connected closed subset of ~2, and P and 
Q are points in A, then [wp] = [wQ] in Hl(~2 \A). 

Proof. In order to show that W = Wp - wQ is exact on ~2 \ A it suffices 
by Proposition 1. 8 to show that f'Y W = 0 whenever -y is a segmented 
closed path in ~2 \A. But 

L W L Wp- LWQ = W(-y,P)-W(-y,Q). 

Now Proposition 3.16 implies that the winding numbers W(-y,P) and 
W(y, Q) are equal, since P and Q belong to the same connected com
ponent of ~2 \ Supp( -y) . D 

Exercise 5.4. With A as in the proposition, and P in A, show that 
[wp] = 0 in Hl(~2 \A) if and only if A is unbounded. 

5b. The Coboundary Map 

Our basic tool for studying HOU and HIU, and hence the topology of 
U, will be a method to study the relations among these groups for 
open sets U, V and their union U U V and intersection un V. 

u 
u v 

That there might be some relation can be seen already in Lemma 
1.14. This showed, for example, that if un V is connected, i.e., 
HO(Un V) has dimension at most one, and if H1U= 0, and H1V= 0, 
then HI(U U V) must vanish as well. We want to generalize this to 
more complicated open sets. 

For any two open sets U and V in the plane, we will define a linear 
map 

To do this, we will need the following basic fact: 

Lemma 5.5. Given open sets U and V in ~2, any C(6'" function on 
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un V can be written as the difference 01 two ~oo functions, one that 
extends to a ~oo lunction on U, the other to a ~oo function on v. 
Proof. This is a consequence of the existence of a partition of unity, 
for the simple (but not so trivial) case of the covering of U U V by 
the open sets U and V. This says that there are ~oo functions 'P and 
IjI on U U V such that 'P + IjI == I on U U V, such that the closure (in 
U U V) of the support of 'P is contained in U, and the closure (in 
U U V) of the support of IjI is contained in V. (The support of a func
tion is the set where it is not zero.) For the proof, see Appendix B2. 

To use it to prove the lemma, given a ~oo function I on un V, 
define lIon U by the rule 

_ {1jI.1 on un V, 
II - 0 on u\unv. 

The assumption on the support of IjI insures that any point in the set 
U \ un V has a neighborhood disjoint from the support of 1jI, from 
which it follows that II is ~oo on all of U. Similarly, define a ~oo 
function 12 on V by 

{-'P.I on un V, 
o on V\ un V. 

Thenll-fi=(IjI+'P)I=lon unv, as required. o 

Construction of 8: HO(UnV)-7HI(UUV). Given a locally con
stant function I on U n V, use the lemma to find ~oo functions II and 

12 on U and V respectively so that 1= II -12 on un V. Since I is 
locally constant, 

dj;-dI2 = d(fI-12) = dl = 0 onUnV. 

This means dll and dl2 agree on un V, so there is a unique I-form 
won U U V that agrees with dj; on U and with dl2 on V. This I-form 
w is closed, since it is even exact on each of U and V. 

We define 8(f) to be the equivalence class in HI(U U V) deter
mined by this closed form w, i.e., 8(f) = [w]. For this to be well 
defined, we must see how w depends on the way we write I as the 
difference j; - AWe claim that a different choice would lead to a 
closed I-form that differs from w by an exact I-form. To see this, 
suppose II I and fi I were another choice of functions on U and V with 
II' - N = Ion un V. (These primes have nothing to do with deriv
atives!) Let w' be the I-form on un V that is dN on U and is dN 
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on V. Now sincefl' - H = t. - f2 on un v, 
/.'-fl = H-f2 
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on un V, so there is a 'fJ"" function g on U U V that is fl' - fl on U 
and isH - f2 on V. Then dg = w' - w, as required. 

Lemma 5.6. The mapping 13 is a linear mapping of vector spaces, 
i.e., 5(/+ g) = 13(/) + 13(g) and 13(c·f) = c ·13(/),for f, g locally con
stant functions, and c a constant. 

Proof. This is just a matter of making the choices "linearly," and is 
better (and probably easier) to check for yourself than to read. Write 
f= fl - f2 and g = g, - g2 as in the construction of 0(/) and o(g). 
Thenf+ g = (/1 + gl) - (/2 + g2). If wf is the I-form that is dfl on U 
and df2 on V, and Wg is the I-form that is dg l on U and dg2 on V, 
then wf+ Wg is the I-form that is d(/I + gl) on U and d(f2 + g2) on 
V. Therefore 8(/+ g) is represented by the I-form wf+ wg , which by 
definition represents the sum 8(/) + 8(g). This proves that 8 preserves 
sums. The proof that it preserves multiplication by a scalar is similar, 
and left as an exercise. 0 

This map 8 is called the coboundary map. In order to use it to 
compare un V with U U V, we need a description of its kernel and 
its image. The following two propositions do this. 

Proposition 5.7. A locally constant function f on un V is in the ker
nel of 8 if and only if there are locally constant functions fl on U and 
f2 on V so that f= fl - f2 on un V. In particular, if U and V are 
connected, then the kernel of 8 consists of the constant functions on 
unv. 
Proof. If f= fl - fi with fl and fi locally constant on U and V, these 
can be chosen for the construction of 8(f), and the corresponding 
form W is zero. Conversely, if 8(/) is zero, the form W of the con
struction from an equation f= fl - f2 must be exact. Write W = dg. 
Then dfl = dg on U, and df2 = dg on V. This means thatfl - g is lo
cally constant on U, and f2 - g is locally constant on V. And 

f = fl - f2 = (/1 - g) - (fi - g) 

is the difference of two such functions. 
If U and V are connected, locally constant functions on them must 

be constant, and since f is the difference of two such functions, f is 
also constant. 0 
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Exercise 5.S. Show that if U and V are connected, and HI(U U V) = 0, 
then un V is also connected. 

Proposition 5.9. The class [w] of a closed I-form won U U V is in 
the image of () if and only if the restrictions of w to U and to V are 
exact. In particular, if HIU = 0 and HIV= 0, then () is surjective. 

Proof. By construction, if w is in the image of &, there are functions 
fl on U andJz on V with w = dfl on U and w = df2 on V. Conversely, 
if there are such functions, the functionf= fl - f2 on un V is locally 
constant, since df= dfl - df2 = W - W = 0 on un V, and [w] = &(f) 
by construction. D 

5c. The Jordan Curve Theorem 

If X is a closed subset of the plane, there is a close relation between 
the topology of X and the topology of its complement. We prove some 
important cases of this fact here. 

Theorem 5.10 (Jordan Curve Theorem). If xc 1R2 is homeomorphic 
to a circle, then its complement 1R2 \ X has two connected components, 
one bounded, the other unbounded. Any neighborhood of any point 
on X meets both of these components. 

Proof. Let P and Q be any two points in X. By considering a homeo
morphism of X with the circle, we can write X as a union of two 
subsets A and B, each homeomorphic to a closed interval, with 
AnB={p,Q}. 

We will apply the results of the preceding section to the open sets 
U = 1R2 \A and V= 1R2 \B. Note that 

U U V = 1R2 \ {P, Q} and U n V = 1R2 \ X . 

To show that 1R2 \ X has two components, we want to show that the 
dimension of If1(U n V) = If1(1R2 \ X) is 2. 
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We know from Proposition 5.1(c) that Hi(U U V) = Hi(l~2 \ {P, Q}) 
is a vector space of dimension 2, with a basis the classes of Wp and 
wQ. Each of U and V is the complement of a subset homeomorphic 
to an interval. We will need an analogue of the Jordan curve theorem, 
but where the circle is replaced by an interval: 

Theorem 5.11. If Y C 1R2 is homeomorphic to a closed interval, then 
1R2 \ Y is connected. 

We postpone a discussion of this theorem to the end of this section, 
and show now how to use it to prove the Jordan curve theorem. Con
sider the boundary map 

8: if(unV)=if(1R2\X) ~ Hi(UUV) =Hi(1R2\{p,Q}). 

Our goal is to show that the image and kernel of 8 are both one di
mensional, which will imply by the rank-nullity theorem (see Ap
pendix C) that HO(1R2 \ X) is two dimensional, which means that 1R2 \ X 
has two connected components. 

Since, by Theorem 5.11, U and V are connected, we can apply 
Proposition 5.7, so the kernel of 8 consists of the constant functions 
on 1R2 \ X, which is therefore one dimensional. We claim that the im
age of 8 consists of those linear combinations a' [wp] + b· [wQ] of the 
basis elements that have a + b = O. This means that [wp] - [wQ] forms 
a basis for the image of 8, and completes the proof of the claim that 
the image is one dimensional. 

By Proposition 5.9, the image of 8 consists of those linear com
binations a . [wp] + b . [wQl such that the restrictions of a . Wp + b . WQ 
to U and to V are exact. Since P and Q are in the same connected 
component of 1R2 \ U and of 1R2 \ V, it follows from Proposition 5.3 
that Wp - wQ is exact on U and on V. If a + b = 0, it follows that 
a' wp+ b· wQ = a' (wp - wQ) is exact on Uandon V, soa' [wp] + b· [wQ] 
is in the image of 8 if a + b = O. Conversely, suppose the restriction 
of W = a . Wp + b· wQ to U (and to V) is exact. Let 'Y = 'YO.r be a circle 
about the origin, with r so large that X is contained inside this circle. 
Since W is exact on U, Proposition 1.4 guarantees that f.y W = O. Since 
P and Q are inside the circle, f.., Wp = I and f.., wQ = 1, so 

o = L W = a' L Wp + b . J.., wQ = a + b. 

This completes the proof that 1R2 \ X has two connected compo
nents. Note that since X is bounded, one of these components must 
contain everything outside some large disk; this is the unbounded 



70 5. De Rham Cohomology and the Jordan Curve Theorem 

component, while the other must be bounded. To verify the last as
sertion of the theorem, suppose N is a neighborhood of some point 
in X. We may divide X into two pieces, as in the preceding discus
sion, so that one of them, say A, lies entirely in N. Take two points, 
say Po and Phone in each of the two components of [R2 \ X. 

x 

By Theorem 5.11, [R2 \ B is connected, so there is a path 'Y(t), 0::5 t::5 1, 
from Po to PI in [R2 \ B. This path must hit A, for if it didn't, it would 
connect the two points in [R2 \ X. By looking at the first and last time 
the path hits A, i.e., the minimal and maximal t such that 'Y(t) is in 
A (which is a closed set in [0, 1]), it follows that N must contain points 
of both components: for t near to but less than the minimum, 'Y(t) will 
be in N and the component of Po, and for t near to but greater than 
the maximum, 'Y(t) will be in N and the other component. 0 

Remark 5.12. (1) It follows in particular that X is nowhere dense: 
no point has a neighborhood contained in X. Note that an arbitrary 
continuous image of a circle or interval need not have this property. 

(2) The fact that points on X are "accessible" from both sides is 
strengthened in Problem 10.24. 

Proof of Theorem 5.11. The proof of Theorem 5.11 uses the same 
ideas, but with one new wrinkle. Choose a homeomorphism from the 
interval [0, 1] to Y. Let A be the subset of Y corresponding to the left 
half of the interval [0,1/2], and B the subset corresponding to the right 
half e 12, 1], and Q = A n B the point corresponding to 1 f2. 

y 

• • • ~ A 
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We apply the basic construction to U = ~2 \ A and V = ~2 \ B, with 
U n V = ~2 \ Y and U U V = ~2 \ {Q}. It might seem that little will be 
gained by this, since each of U, V, and un V is of the same form: 
the complement of a subset homeomorphic to an interval. But we will 
see that some progress has been made. 

Suppose ~2 \ Y is not connected, and let Po and PI be points in two 
different connected components. The claim we will prove is: Po and 
P I must be in different connected components of ~2 \ A or in different 
connected components of ~2 \ B (or both). We use the map 

8: If(U n V) = If(~2 \ Y) ~ HI(U U V) = HI(~2 \ {Q}). 

Now HI(~2 \ {Q}) is generated by the class [wQ] of wQ. By Propo
sition 5.9 the image of 8 consists of classes a· [wQ] such that a· wQ 
is exact on U and V. If a· WQ is exact on U, the integral of a· wQ 
around a large circle is zero, which implies that a = O. So the image 
of 8 is zero. In other words, every locally constant function on ~2 \ Y 
is in the kernel of 8. 

By Proposition 5.7, a function f in the kernel of 8 must have the 
form fl - fz, where fl and f2 are locally constant functions on U and 
on V, respectively. Takefto be any locally constant function on un V 
that takes on different values at the two points Po and PI> which is 
possible since they are in different components. If the claim were 
false, and Po and PI were in the same component of U and of V, then 
each offl andf2 would have to take on the same values at Po and PI. 
But then their differencefwould also take on the same values, which 
is a contradiction. 

The progress made by proving this claim comes from the fact that 
the two sets A and B are smaller than Y. To take advantage of this, 
we can argue as follows: Let YI be one of the halves of Y such that 
Po and PI are in different components of ~2 \ Y I • Repeat the argu
ment, cutting YI into two pieces (corresponding to cutting the half 
interval [0,1/2] or P/2, 1] into equal pieces). For one of the two pieces, 
say Y2 , by the same argument, the two points Po and PI are still in 
different components of ~2 \ Y2 • Continuing in this way, we get a 
nested sequence of subsets 

Y ::) YI ::) Y2 ::) Y3 ::) ••• ::) Yn ::) ••• 

with the property that Po and PI are in different components of ~2 \ Yn 

for all n, with the intersection of all these subsets Yn being a single 
point Pin Y. 

Since the complement of a point is connected, there is a path from 
Po to PI in ~2 that doesn't pass through P. Some neighborhood N of 
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P is disjoint from this path, and, for large n, Y. is contained in N. 
But this forces Po and PI to be in the same component of ~2 \ Y., a 
contradiction. This finishes the proof of Theorem 5.11, and hence of 
the full Jordan curve theorem. 0 

5d. Applications and Variations 

The same ideas can be used to calculate the number of connected 
components of the complements of many other subsets in the plane. 
For many of these variations, we need the following generalization of 
Proposition 5.1, which will be proved in Chapter 9 (see §9c and 
Lemma 9.1). 

(*) Let K be a compact, nonempty subset of the plane. (a) If K is 
connected, then Hl(~2 \ K) is one-dimensional, generated by [wp] 
for any PEK. (b) If K is not connected, and P and Q are in differ
ent components of K, then [wp] and [wQ] are linearly independent 
in Hl(~2 \ K); if K has exactly two connected components, then 
[wp] and [wQ] form a basis for Hl(~2 \ K). 

Exercise 5.13. Show that, if A and B are compact connected subsets 
in the plane such that An B is not connected (and not empty), then 
~2 \ (A U B) is not connected. 

Exercise 5.14. Show that if Y is a subset of the plane homeomorphic 
to a closed rectangle or a closed disk, then the complement is con
nected. 

Exercise 5.15. Show that if X is a subset of the plane homeomorphic 
to a closed annulus, then the complement has two connected com
ponents. 

Exercise 5.16. Show that if X is a subset of the plane homeomorphic 
to a figure 8, or a "theta" 8, then the complement has three connected 
components. 

Here is a simple application of the Jordan curve theorem. Let D be 
a closed disk, DO its interior, and C its boundary circle. 
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Proposition 5.17. Let f D~ ~2 be a continuous, one-to-one map
ping. Then ~2 \f(C) has two connected components, which are 

f(DO) and ~2 \f(D) . 

In particular, fiDe) is an open subset of the plane. 

Proof. Recall that a continuous, one-to-one mapping on a compact 
set such as D or C must be a homeomorphism onto its image. So the 
Jordan curve theorem applies to the image of C, and its complement 
has two connected components. The first displayed set is connected 
since it is the continuous image of a connected space, and the second 
is connected by Exercise 5.14. They are disjoint, and their union is 
~2 \f(C). It follows immediately that they must be the two compo
nents of ~2 \f(C). In particular, since the components of an open 
subset of the plane are open, it follows thatf(DO) is open. 0 

The following is another intuitively "obvious" result that is not so 
easy to prove by hand (try it!): 

Corollary 5.18 (lnvariance of Domain). If U is an open set in the 
plane, and F: U ~ ~2 is a continuous, one-to-one mapping, then F( U) 
is an open subset of ~2, and F is a homeomorphism of U onto F(U). 

Proof. Take any P in U, and a closed disk D containing P and con
tained in U. By the proposition, the image of the interior of the disk 
must be open. This gives an open neighborhood of the image point 
in F(U), which implies that F(U) is open, and that F is a homeo
morphism of U with F(U). 0 

In particular, if two subsets of the plane are homeomorphic, and 
one is an open subset, the other must also be open. So if one is a 
domain (a connected open subset), the other must be as well. 

Another application is another proof of a result from Chapter 4. 

Corollary 5.19. There is no subset of the plane that is homeomorphic 
to a two-sphere. 

Proof. Suppose f: S ~ ~2 maps the sphere homeomorphic ally onto a 
subset X of ~2. Let A and B be the upper and lower closed hemi
spheres, with intersection C, and let A ° = A \ C and BO = B \ C. Note 
that A is homeomorphic to a disk, with C corresponding to the bound
ary. The complement of the image f( C) of the circle in the plane has 
two connected components, and by the proposition (applied to the 
map from A to the plane),J(AO) must be one of them. Sincef(AO) is 
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contained inf(A), it must be the bounded component. The same rea
soning applies to the map from B, so f(BO) must also be the bounded 
component of the complement off(C). But thenf(AO) = f(BO) , which 
contradicts the fact that f is one-to-one. D 

This section concludes with a few related results, mostly in the 
form of exercises and problems, which can be sampled according to 
your interest or perseverance. The next proposition verifies that a Jor
dan curve winds once around each point inside. (This result will not 
be used elsewhere.) 

Proposition 5.20. Let C be a circle, F: C ~ ~2 a one-to-one, con
tinuous mapping. Then W(F, P) = ± 1 for P in the bounded component 
of lI,f \ F(C). 

Proof. In the course of the proof, we will make several assertions 
about winding numbers, leaving their proofs as exercises in using the 
properties proved in Chapter 3. The mapping F is a homeomorphism 
onto its image X = F(C). By the Jordan curve theorem, the comple
ment has two components, and we know the winding number is 0 for 
points in the unbounded component, and it is constant in the bounded 
component. So it suffices to find one point P with W(F, P) = ± 1. 
Take a horizontal line L that has points of X on both sides of it. Take 
a point 0 on L so that X lies in the half plane to the right of O. Let 
Sand T be the nearest and farthest points from 0 in X n L, and let M 
and N be points on X below and above L such that no other points 
of X lie on the line segments from 0 to M and from 0 to N. 

o T 

The points M and N correspond by F to two points m and n of the 
circle C. Let A be the image by F of the counterclockwise arc from 
m to n, and let B be the image of the other clockwise arc from m to 
n. Let "fA be a closed path starting at 0, going along the segment to 
M, then traveling along A to N, and back to 0 along the segment; 
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define 'YB similarly using B in place of A. We choose these paths along 
A and B by using the mapping F, so that 

W('YA,P) - W('YB,P) = W(F,P) 

for all P not in X or the line segments from 0 to M or N. 
The answer will depend on whether the point T is in A or in B. 

Suppose first that T is in A. Then W('YB, T) = 0, so W('YB, T') = ° for 
all T' in A n L. For a point Q on the line between 0 and S, W( 'YB, Q) = 1. 
It follows that S is not in A, so it must be in B. Since W( 'Y A, Q) = 1, 
we must have W('YA,S) = 1, and therefore W('YA,S') = 1 for all S' in 
B n L. Let S' be the point in B n L that is farthest from 0, and let T' 
be the point in A n L that is closest to 0, and let P be any point on 
L between S' and T'. Then 

W(F, P) = W('YA, P) - W('YB, P) = W('YA, S') - W('YB, T') 1. 

If T is in B, a similar argument shows that W(F, P) = -1. 0 

The proof gives a criterion to tell whether the winding number is 
+ 1 or -1: it is + 1 when four points M, N, S, and T chosen as in 
the proof have the same relative position as the four corresponding 
points of the circle. (This proof, from Ahlfors (1979), also shows 
directly, without the Jordan curve theorem, that the complement of 
X has at least two components.) 

It is a fact that if X is a subset of ~2 homeomorphic to a circle, 
then the bounded component of the complement is homeomorphic to 
an open disk, and the unbounded component is homeomorphic to a 
disk minus a point. In fact, the Riemann mapping theorem of complex 
analysis implies that any connected plane domain with H1U = ° is 
analytically isomorphic to (in particular, diffeomorphic to) an open 
disk. Even more is true: any homeomorphism of SI with X can be 
extended to a homeomorphism from ~2 onto ~2, mapping the inside 
and outside of the circle to the two components of ~2 \ X. This last 
is called the Schoenflies theorem. For elementary (but not so simple) 
proofs, see Newman (1939). This is a case where the analogue in 
higher dimensions is more complicated: a homeomorphism of S2 in 
~3, or of sn- I in ~n for n;::: 3, will separate the space into two con
nected components, as we will see in Chapter 23, but the inside need 
not be homeomorphic to an open disk; for a picture of a counterex
ample, "Alexander's homed sphere," see Hocking and Young (1988). 
However, if the embedding extends to an embedding of a product of 
Sn-I with an interval into ~n, then this wild behavior cannot occur 
(see Bredon (1993), §19). 
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Problem 5.21. Prove the following strong form of Euler's theorem. 
Let X be a subset of the plane that is a union of v 2:: 1 points and e 2:: ° 
edges. The edges are assumed to be images of continuous maps from 
[0,1] to [R2, each of which maps ° and 1 into the set of vertices, and 
maps the open interval (0, 1) one-to-one into the complement of the 
set of vertices. In addition, these open edges are assumed to be dis
joint. Suppose X has k connected components. Show that [R2 \ X has 
f= e - v + k + 1 connected components, i.e., 

v - e + f = 2 + (k - 1). 

You may enjoy comparing your argument in the last problem with 
that given in Rademacher and Toeplitz (1957), § 12, as well as the 
applications given there to the problem of coloring maps. Can you 
spot where they make implicit assumptions amounting to what we 
proved in this chapter? 

Problem 5.22. Show that the following graphs cannot be embedded 
in the plane: (i) the graph with vertices PI , P2, P3, Ql , Q2, Q3, with 
an edge between each Pi and each Qj; and (ii) the graph with five 
vertices, and an edge between each pair of distinct vertices. (It is a 
theorem of Kuratowski that any finite graph not containing a subgraph 
homeomorphic to one of these two examples can be embedded in the 
plane.) 

Problem 5.23. Let U be any connected open set in the plane. (a) 
Show that if X C U is homeomorphic to a closed interval, then U \ X 
is connected. (b) Show that if XC U is homeomorphic to a circle, 
then U \ X has two connected components. (c) If X C U is a graph as 
in Problem 5.1, show that U \ X has e - v + k + 1 connected com
ponents. 

Exercise 5.24. Show that Theorem 5.11, the Jordan curve theorem 
(without mention of bounded or unbounded components), and the re
sult of Problem 5.21 remain valid when [R2 is replaced by a sphere. 

Problem 5.25. Find two graphs in a sphere that are homeomorphic, 
but such that there is no homeomorphism of the sphere taking one 
onto the other. 

Problem 5.26. Show that there is no one-to-one continuous map from 
a Moebius band into the plane. 
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Problem 5.27. Suppose X is a subset of the plane homeomorphic to 
a circle, and PI and P 2 are points in the complement that are joined 
by a path that crosses X n times. Show that PI and P 2 are in the same 
component of the complement if n is even, and the opposite com
ponent if n is odd. (A complete answer should include a precise def
inition of what it means for a path to cross X at a point!) 

It is again an excellent project to speculate on the higher-dimen
sional generalizations of the results of this chapter. For example, if 
you assume the fact that if X is any subset of [Rn homeomorphic to a 
sphere Sn-I (resp. a ball Dn), then [Rn \X has two (resp. one) connected 
components, can you state and prove the invariance of domain for 
open sets in [Rn? 

Problem S.2S. A topological surface with boundary is defined to be 
a Hausdorff space such that every point P has a neighborhood homeo
morphic either to the open disk DO = {(x, y): .i + l < I} or the half 
disk {(x,y) E DO: y ~ O}, with P corresponding to the origin; P is an 
interior or boundary point according to which case occurs. (a) Show 
that this notion is well defined: a point cannot be both an interior 
point and a boundary point. (b) Show that homeomorphic surfaces 
have homeomorphic boundaries (so the Moebius band is not homeo
morphic to a cylinder). 



CHAPTER 6 

Homology 

6a. Chains, Cycles, and BoU 

As we have seen, it frequently happens that one wants to compute 
winding numbers or integrals along a succession of paths, counting 
some positively and some negatively. For example, the integral around 
the boundary of a rectangle is the sum of integrals over two of its 
sides, minus the sum of the integrals over the other two sides. In this 
section we formalize these ideas, by introducing the notion of a 1-
chain. A I-chain 'Y in U is an expression of the form 

'Y = nl'Yl + n2'Y2 + ... + nr'Yr, 

where each 'Yi is a continuous path in U, and each ni is an integer. 
For simplicity, so we will not have to mention the interval each path 
might be defined on, we will take all paths from now on to be defined 
on the unit interval [0, 1]. The paths that are constant, that is, that 
map [0,1] to one point of U, can be ignored in the present story. For 
example, their winding numbers are zero, all integrals over them are 
zero. We will agree that if we meet a sum "Lni'Yi where some of the 
'Yi are constant paths, we simply throwaway any constant paths that 
occur. Another way to say this is that we identify two expressions 
"Lni'Yi and "Ln;'Y; if their difference "Lni'Yi - "Ln;'Y; is a linear combi
nation of constant paths. 

We will make this notion more precise in a moment, but for now 
we note that, whatever it means, it is clear how we should define the 

78 
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winding number of a I-chain 'Y with respect to P: 

W('Y,P) = n1W('Yt. P) + ... +nrW('Y"P); 

this will be defined provided P is not in the support of any of the 
paths 'Yi. In Chapter 9 we will also define the integral of a closed 1-
form along a path, and it will extend additively in the same way to 
integrals over I-chains. Two I-chains should be regarded as the same 
when each path occurs with the same multiplicity in both I-chains. 
A I-chain will have a unique expression as shown, provided the paths 
'Yi are all taken to be distinct and nonconstant, and all the coefficients 
are taken to be nonzero. (There is also the zero I-chain, written'Y = 0, 
which has no paths at all.) 

To make this precise, define a I-chain in U to be a function that 
assigns to every nonconstant path in U some integer, with the property 
that the function is zero for all but a finite number of paths. If 
'Yl, ... , 'Yr are the paths for which the value is not zero, and the 
value of this function on 'Yi is ni, we write the I-chain as 
nl'Yl + ... + nr'Yr. From this definition it is clear how to add and 
subtract I-chains: one just adds or subtracts the corresponding values 
on each path, or the coefficients in such expressions. In this way the 
I-chains form an abelian group,4 with the operation in the group writ
ten additively. Any path 'Y is identified with the I-chain 1· 'Y, the 
corresponding function taking the value 1 on 'Y and 0 on all other 
paths. 

In practice, we will not use this "functional" terminology, but just 
write I-chains as formal linear combinations of paths. Either way, 
specifying a I-chain is the same as specifying a finite number of paths, 
and assigning an integer to each. It should be emphasized that in this 
definition two paths are the same only if defined by exactly the same 
mapping. However, the following problem indicates some common 
variations that are possible. 

Problem 6.1. Call two paths equivalent if they differ by a monotone 
increasing reparametrization. Show that this is an equivalence rela
tion. Show how to define an abelian group of I-chains by using equiv
alence classes of paths instead of paths. Do the same if paths are 
called equivalent when they are homotopic with the same endpoints. 

4 If you are familiar with the language from algebra, the chains are elements of the 
free abelian group on the set of nonconstant paths. See Appendix C for more about 
free abelian groups. 
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Some particular paths and I-chains will be important. For any two 
points P and Q, the straight path from P to Q will be the path 

'Y(t) = P + t (Q - P) = (1 - t) P + t Q, O::5t::5l. 

If R is a bounded rectangle with sides parallel to the axes, the 
boundary aR of R is the I-chain 'YI + 'Y2 - 'Y3 - 'Y4, where each 'Yi is 
the straight path shown: 

(a,d) 
13 

(b,d) , 
/ 

14 /, R /r'- 12 

, 
(a,c) / (b,c) 

11 

If R = [a, b] X [c, d], then 'YI is the straight path from (a, c) to (b, c), 
'Y2 from (b, c) to (b, d), 'Y3 from (a, d) to (b, d), and 'Y4 from (a, c) to 
(a, d). 

If D is a disk of radius r around a point P, the boundary 'Y = aD 
is the counterclockwise path around the circle 

"(t) = P + (rcos(21Tt), rsin(21Tt», 

We want to define the notion of a closed I-chain, also called a 1-
cycle. This should mean that each point occurs as many times as an 
initial point as it does as a final point, counting multiplicities cor
rectly. For example, any closed path, such as the preceding aD, is a 
closed I-chain, and the boundary aR of a rectangle is closed. The 
precise definition is as follows. For 'Y = nl'Yl + ... + nr'Yr, if 'Yi is a 
path from Pi to Qi' we define 'Y to be a closed I-chain if for each 
point T occurring as a starting or ending point of any 'Yi' 

Exercise 6.2. Verify that the sum or difference of closed I-chains is 
closed. 

Define a O-chain in U to be a formal finite linear combination 
mlP I + ... + msPs of points in U, with integer coefficients. Pre
cisely, it is a function from U to 71. that is zero outside a finite set (or 
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an element of the free abelian group on the set of points of U). In 
practice it means to pick out a finite set of points and assign a positive 
or negative multiplicity to each. For any I-chain 'Y = nl'Yl + ... + nr'Y" 
where 'Yi: [0, I]~ U is a path, define the boundary a'Y of'Y to be the 
O-chain 

a'Y = n.('Y.(1) - 'Yl(O)) + ... + nr('Yr(1) - 'Yr(O)). 

The preceding definition of a closed I-chain can be said simply in 
this language: a I-chain is closed exactly when its boundary is zero. 

Let ZoU be the group of O-chains. A O-chain ~ is called a O-bound
ary if there is a I-chain 'Y such that ~ = a'Y. These O-boundaries form 
a subgroup of ZoU which is denoted by BoU. For example, if P and 
Q are in the same component of U, then the O-chain Q - P is in BoU, 
since it is the boundary of any path from P to Q. The quotient group 
ZoU /BoU is called the Oth homoLogy group of U, and is denoted HoU: 

HoU = ZoU /BoU. 

We will see that although the groups ZoU and BoU are large (even 
uncountable), the quotient group is small: it simply measures how 
many connected components U has: 

Proposition 6.3. The group HoU is canonically isomorphic to the free 
abelian group on the set of path-connected components of u. 
Proof. Let F be the free abelian group on the set of path-connected 
components of U. The map that takes a point to the path component 
containing it determines a surjective homomorphism from ZoU to F. 
We claim that the kernel of this homomorphism is exactly the group 
of boundaries BoU. This will conclude the proof, since such a ho
momorphism determines a canonical isomorphism of ZoU /BoU with 
F (see Appendix C). Any boundary is in the kernel, since the end
points of a path must be in the same component. Conversely, if a 
O-cycle is in the kernel, the total of the coefficients appearing in front 
of points in any given component must be zero. Such a O-cycle can 
be written (not necessarily uniquely) in the form L(Qi - Pi), where, 
in each term, Pi and Qi are in the same component. As we saw before 
the proof, such a O-cycle is a boundary. 0 

We will use this proposition to determine the number of connected 
components of U, by finding other ways of calculating HoU. If we 
show that HoU has rank n, we will know that U has exactly n con
nected components. This depends on the algebraic fact that a free 
abelian group has a well-defined rank; this is proved in Appendix C. 
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(Alternatively, one could replace all the integer coefficients in all our 
O-chains and I-chains by real numbers. Then we would find that HoU 
is a real vector space of dimension n, where n is the number of com
ponents, and appeal to the fact that a vector space has a well-defined 
dimension.) 

There is a homomorphism from HoU to the integers 71., defined by 
the map that takes each connected component of U to I. In other 
words, it takes the class of a O-cycle ~ = "i.n;P; to the sum "i.n; of the 
coefficients. This is called the degree homomorphism. It is an iso
morphism exactly when U is connected. 

6b. Boundaries, H\U, and Winding Numbers 

The group of I-chains on U is denoted CIU. The subgroup of closed 
I-chains, or I-cycles, is denoted ZI U. There are some closed I-chains 
in U, called I-boundaries, that playa particularly simple role. They 
will tum out to be exactly those I-chains for which winding numbers 
around points not in U vanish, and for which all integrals of closed 
I-forms in U also vanish. These come from boundaries of continuous 
mappings f from a square R = [0, 1] x [0, 1] into U. For such a map
ping, define the I-chain ar by the formula 

af = 'VI + 'V2 - 'V3 - 'V4' 

where 'VI> 'V2' 'V3, and 'V4 are the paths obtained by restricting r to the 
four sides of the square, as in §3b. (We should note here that one or 
more of these four paths 'VI could be constant paths, in which case 
we omit them from the formula for af.) We call a I-chain 'V a bound
ary, or a boundary I-chain, or I-boundary, in U if it can be written 
as a finite linear combination (with integer coefficients) of boundaries 
of such maps on rectangles. Two closed I-chains in U are homologous 
if the difference between them is a boundary in U. 

We will need to know that some other I-chains are boundaries. The 
following lemma considers what happens when one reparametrizes, 
subdivides, or deforms a path. 

Lemma 6.4. (a) Let 'Y: [0, 1] ~ U be a path. Let '1': [0, 1] ~ [0, 1] be 
a continuous function. If '1'(0) = 0 and '1'( 1) = 1, then 'Y - 'YO 'I' is a 
boundary in U; if '1'(0) = 1 and cp( 1) = 0, then 'Y + 'YO 'I' is a boundary. 

(b) Let y. [0, l]~ U be a path, let 0:$ c:$ 1, and let (F and T be 
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the restriction of'Y to [0, c] and [c, 1], but scaled to be defined on 
the unit interval, i. e . , 

cr(t) = -y(c· t), 0 ~ t ~ 1; T(t) = -y(c + (1 - c) . t), 0 ~ t ~ 1. 

Then 'Y - (T - T is a boundary in U. 
(c) If'Y and l) are paths in U that are homotopic, either as paths 

with the same endpoints, or as closed paths, then 'Y - l) is a boundary 
in U. 

Proof. Part (a) was proved in the course of proving Corollary 3.9. 
Part (b) is trivial if c = 0 or c = 1. Otherwise, we construct a mapping 
f: [0,1] x [0, l]~ U as indicated in the following diagram: 

y(l) 

y 

A little scratch-work in analytic plane geometry produces the formula 
for f: 

f( ) = {-y(t) if s ~ t, 
t, s -y(c. s + (1 - c) . t) if s ~ t. 

Note that the two expressions for f agree where s = t, so they define 
a continuous mapping. Moreover, f(t,O) = -y(t), f(1, s) = -y(1), 
nt, 1) = T(t), and f(O, s) = cr(s), so af = -y - T - cr, which proves (b). 
Part (c) follows directly from the definition. 0 

Exercise 6.S. Show that if U is starshaped, then every closed I-chain 
on U is a I-boundary. 

The I-boundaries form a subgroup, denoted B1U, of the group Z,U 
of l-cycles. The quotient group ZIU /B,U is called the first homology 
group of U, and is denoted HIU. One of our aims in this book will 
be to study and use this group. We will see that, as the Oth group 



84 6. Homology 

BoU measures the simplest topological fact about U-how many con
nected components it has-the 1st group HIU measures how many 
"holes" there are in U. Two closed I-chains are homologous exactly 
when they have the same image in HIU, in which case we say that 
they define the same homology class. 

The support Supp('Y) of a I-chain 'Y in the plane is the union of the 
supports of the paths that appear in 'Y with nonzero coefficients. If P 
is a point not in the support, we define the winding number of 'Y 
around P to be 

Proposition 6.6. If Y is a closed I-chain, then,Jor any P not in the 
support of y, W(y,P) is an integer. 

Proof. Let 'Y = nl'YI + ... + nr'Yr be any I-chain, with 'Yj a path. For 
each point T that occurs as an endpoint of any of the paths 'Yj, choose 
an angle {tr for T with respect to P. (Such an angle is measured coun
terclockwise from a horizontal line to the right from P; it is deter
mined only up to adding multiples of 2'IT.) If 'Yj is a path from Pj to 
Qj, then W('YioP) = (l/2'IT)({tQi - {tp) + Nj for some integer Nj. There
fore, 

W('Y,P) 

Suppose a'Y = L~=I nj(Qj - Pj) = mlTI + ... + msTs. Then we have 

I r 

W('Y,P) = -(ml{tr, + ... + ms{tr) + L njNj . 
2'IT j=1 

In particular, if'Y is closed, i.e., a'Y = 0, then the first sum vanishes, 
so W( 'Y, P) is an integer. 0 

Lemma 6.7. If y is a I-boundary in ~2 , {P}, then W( y, P) = o. If two 
I-chains differ by a I-boundary in ~2, {P}, then they have the same 
winding number around P. 

Proof. If 'Y = ar is the boundary of a map from [0, 1] x [0, 1] into 
~2, {P}, Theorem 3.6 implies that W('Y, P) = O. For a general bound
ary 'Y=LnlaC), W('Y,P) = LnjW(aC,P) =0. 0 
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Proposition 6.8. If 'Y is a closed I-chain on ~2, then the function 
P ~ W( 'Y, P) is constant on connected components of ~2 \ Supp( 'Y), 
and vanishes on the unbounded component. 

Proof. To show that the function is locally constant, it suffices to 
show that it is constant on a disk D about a point P that does not 
meet the support of 'Y. We want to show that W('Y, P) = W('Y, Q), with 
Q a point of D. Let v be the vector from P to Q. Let 'Y = ~~=lni'Yi' 
with each 'Yi a path. We know from Exercise 3.4 that 
W('Y,P)=W('Y+v,P+v)=W('Y+v,Q), where 'Y+v is the I-chain 
~~=lni('Yi + v), so it is enough to show that 

W('Y, Q) = W('Y + v, Q). 

By the lemma, this follows if we verify that the difference of the 
I-chains 'Y and 'Y + v is a I-boundary in ~2 \ {Q}. Define mappings C 
from [0, 1] X [0, 1] to ~2 \ {Q} by the formula 

C(t, s) = 'Yi(t) + s· v. 

The boundary of C has the paths 'Yi and 'Yi + v on the bottom and top, 
and straight line paths from endpoints of 'Yi to their translations by v, 
along the sides. The fact that 'Y is closed means that these straight 
line paths from the sides cancel in the sum ~~=Ini(ar;). Therefore, 

, " 
2: ni(an = 2: ni'Yi - 2: ni('Yi + v) = 'Y - ('Y + v). 
i=1 i=1 i=1 

This shows that 'Y - ('Y + v) is a boundary in ~2 \ {Q}. and concludes 
the proof that the function is locally constant. On the unbounded com
ponent, we may take the point P far to the left of the support of 'Y, so 
that there is one angle function {} defined on all the paths occurring 
in 'Y. With 'Y = ~;= lni'Yi, and 'Yi a path from Pi to Q;, we have 
W('Y, P) = (l/2'lT)~~= In;({}(QJ - {}(PJ), which is zero since the 
boundary of y is zero. 0 

6c. Chains on Grids 

A grid G will be a finite union of lines in the plane, each parallel to 
x-axis or the y-axis, with at least two horizontal and two vertical lines. 
These lines cut the plane into a finite number of rectangular regions, 
some bounded and some unbounded. By a rectangular I-chain for a 
given grid we shall mean a I-chain fJ.. of the form fJ.. = nlO"I + ... + n,O"" 
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where each (1j is a straight path along one of the sides of the bounded 
rectangles, from left to right or from bottom to top. 

-+--f---_ bounded 

-unbounded 
---+-++--+-+-+---+--~ 

Let R I, . . . ,Rr be the bounded rectangles for the grid G, num
bered in any order, and choose a point Pi in the interior of R for each 
i. The next lemma proves an elementary but important fact: a closed 
rectangular I-chain is completely determined by its winding numbers 
about these points. 

Lemma 6.9. If /L is a closed rectangular I-chain for G, then 

Jl. = n.iJR. + ... + n,iJR, , 

where ni = W(/L, Pi)' 

Proof. Since the winding number of iJRi around Pj is 1 if i = j and 0 
otherwise, the winding number of each side of the displayed equation 
around each Pj is the same. Let or = Jl. - z,niiJRi be the difference, which 
has winding number zero around each Pj' We must show that or is 
zero as a I-chain. Suppose an edge (1 occurs in or with nonzero coef
ficient m. Suppose that (1 is a vertical or horizontal line between two 
rectangles R and R' of the grid, with R to the left of or above R'. 
Assume first that R is bounded: 

R R' 

R 

/ 

R' 

The trick is to consider the closed I-chain or' = or - m' aR. Let P and 
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pi be interior points in Rand R', respectively. Since W(aR,p) = 1 
and W(aR, Pi) = 0, we have 

W(T',P) = W(T,P) - m· W(aR,p) = -m, 

W(T', Pi) = W(T, Pi) - m· W(aR, Pi) = 0. 

But the edge IT does not appear in T', so P and pi belong to the same 
connected component of the complement of the support of T', which 
implies by Proposition 6.8 that W(T' , P) = W(T' , Pi), a contradiction. 
If R is unbounded, and R' is bounded, the argument is similar, using 
T' =T+m·aR' . 0 

Next we need an approximation lemma that will assure that, for 
the purposes of winding numbers and integration, all paths and I-chains 
can be replaced by rectangular I-chains. 

Lemma 6.10. Let 'Y be any I-chain in an open set U. Then there is 
a grid G, and a rectangular I-chain JL for G, with the support of JL 
contained in U, such that 'Y - JL is a I-boundary in U. If 'Y is closed, 
then JL is also closed. 

Proof. By Lemma 6.4(b) we can subdivide any of the paths that occur 
in 'Y, and the difference between 'Y and the I-chain with subdivided 
paths will be a boundary. Using the Lebesgue lemma as usual to sub
divide, we may therefore assume that each path 'Yj occurring in 'Y maps 
[0,1] into some open rectangle Uj contained in U. Let Pj and Qj be 
the starting and ending points of 'Yj. Take any grid G that has a vertical 
and horizontal line passing through each Pj and each Qj. Let j.Lj be a 
rectangular I-chain for G that goes from P j to Q;, involving only edges 
on the closed rectangle with comers at Pj and Qj; in particular, the 
boundary of j.Lj is Qj - Pj. (Note that j.Lj is in Uj, so j.Lj is a chain in 
U.) 

"""'"' 
Qi Pi 

1 1 
'\. '\. 

I 
----.-

I 1'1 _( Ie ~ I' -1 

~ 
) 

I 1'1 Pi 
"- "-

'- Qi 

I I I 

1 1 1 
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It suffices to verify that "yj - jJ.j is a boundary in Vj, for if "Y = 'Lnj"yj, 
then jJ. = 'LnjjJ.j will be the required rectangular I-chain, with 
"Y - jJ. = 'Lnj("Yi - jJ.;) a boundary. But since "Yi - jJ.; is a closed I-chain 
on a starshaped open set V;, this follows from Exercise 6.5. D 

We are now ready to prove the main goal of this chapter: that the 
geometric condition for I-cycles to be homologous in an open set is 
equivalent to the numerical condition of having the same winding 
number around all points outside the open set. 

Theorem 6.11. Suppose yand 5 are closed I-chains on an open set 
V in the plane. Then the following are equivalent: 

(1 ) y and 5 are homologous, i. e ., y - 5 is a boundary in V; and 

(2) W(y,P) = W(5,P)for all points P not in V. 

Proof. We saw in Lemma 6.7 that (1) implies (2). For the converse, 
by looking at T = "Y - 8, it suffices to show that if T is a closed I-chain 
such that W(T,P) = 0 for all P rt. V, then T is a boundary. By Lemma 
6.10, there is a closed rectangular I-chain jJ. for some grid G so that 
T - jJ. is a boundary in V. By Lemma 6.9, jJ. = 'LniJRi> where 
nj= W(jJ.,PJ. 

We claim that nj = 0 unless the entire closed rectangle Rj is con
tained in V. For if Q is a point of R; that is not in V, then W(T, Q) = 0 
by assumption, so W(jJ., Q) = 0 by Lemma 6.7. Since the straight line 
from P j to Q lies in the complement of the support of jJ., it follows 
from Proposition 6.8 that W(jJ., Pi) = W(jJ., Q), so ni = W(jJ., Pi) = O. 

Pi 

Rj 

u 

It follows that jJ. = 'LniaR;, with each R; contained in V, and such a 
I-chain is visibly a boundary in V. So T = (T - jJ.) + jJ. is also a 
boundary. D 

For example, if V = 1R2 \ {P} is the complement of a point, two 
I-cycles are homologous in V exactly when their winding numbers 
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around P coincide. In other words, the winding number gives an iso
morphism 

b1 1-4 W('Y,P), 

where b1 denotes the class of a I-cycle 'Y in the homology group. 

Exercise 6.12. Suppose V = 1R2 \ {PI> ... , Pn} is the complement of 
n points in the plane. Show that the mapping that takes a closed 1-
chain 'Y to (W( 'Y, PI), . . . , W( 'Y, P n» determines an isomorphism of 
HIV with the free abelian group lLn. 

Exercise 6.13. State and prove the analogue of Theorem 6.11 when 
'Y and & are arbitrary I-chains in V with the same boundary. 

6d. Maps and Homology 

If 'Y = nl'Yl + ... + nr'Yr is a I-chain in an open set V, with 'Yj paths, 
and F: V ~ V'is a continuous mapping from V to another open set 
V', define F *'Y to be the I-chain in V' defined by 

F *'Y = nl(F 0 'YI) + ... + nr(F 0 'Yr). 

F also maps O-chains in V to O-chains in V': F *('i.m;Pj) = 'i.m;F(Pj). 

Exercise 6.14. Show that 'Y 1-4 F *'Y is a homomorphism from the group 
of I-chains in V to the group of I-chains in V'. If 'Y is a closed 1-
chain, show that F*'Y is also closed. Show in fact that F*(rJ'Y) = rJ(F*'Y) 
for any I-chain. Show that if'Y is a boundary in V, then F*'Y is a 
boundary in V'. 

From this exercise and Theorem 6.11, we deduce the following 
fact, which is not so obvious from the definition of the winding num
ber: 

Proposition 6.15. If 1 and () are closed I-chains in V with the same 
winding number around all points not in V, then F *1 and F *() are 
closed I-chains in V' with the same winding number around all points 
not in V'. 0 

For example, take V to be the region inside one disk D and outside 
a disjoint union of closed disks AI> ... ,An contained in D. Let 'Y 
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be a circular path in U containing the disks Ai, and let 'Yi be a circular 
path around Ai' 

Since'Y and L'Yi have the same winding numbers around each point 
not in U, we conclude that for any F: U ~ U', and any Q ft. U', 

W(F*'Y,Q) = W(F°'Yl>Q) + ... +W(F°'Yn,Q). 

Here is an application, which is a substantial generalization of Ex
ercise 4.9. 

Corollary 6.16. Let F: U~ [R2 be a continuous mapping, and sup
pose y is a closed I-chain in U such that W( y, P) = 0 for all points 
P not in U. Let Q be a point in [R2, not in F(Supp(y», such that 
W(F * y, Q) ~ O. Then there is a point P in U such that W( y, P) ~ 0 
and F(P) = Q. 

Proof. Let Z = p-l(Q), a closed (conceivably empty) subset of U dis
joint from Supp('Y) . Apply the proposition to the open set if = U \ Z, 
the restriction of F to if, and the I-chains 'Y and 8 = O. If the assertion 
of the corollary is false, then W('Y,P) = 0 for all P in Z, so W('Y,P) = 0 
for all P not in if, so 'Y is homologous to 0 in if. But since Q is 
not in F(if), the fact that W(F *'Y, Q) ~ 0 shows that F *'Y is not ho
mologous to 0 in F(if), contradicting Proposition 6.15. 0 

For example, with U the complement of the gray area, the I-chain 
'Y that is the sum of the paths shown has a nonzero winding number 
only around points in the striped area, so any point with W(F *'Y, Q) ~ 0 
would be the image of a point from one of the striped regions. 
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Problem 6.17. Under the conditions of the corollary, assume that, at 
each point P of rl(Q), the local degree of Fat P is defined. Show 
that 

W(F *'Y, Q) L degp(F) . W( 'Y, P) . 
PEF- 1(Q) 

Problem 6.18. Let E be the closed set obtained from a closed disk 
D by removing the interiors of k disjoint disks D I , •• • , Dk contained 
in D, for some k~ O. Let C be the boundary of D, and Cj the bound
ary of D j • Suppose F: E~ ~2 is a continuous mapping such that for 
each point P in any of the boundary circles, the vector from P to 
P + F(P) is not tangent to that circle. Show that, if k ¥- I, there must 
be a point Q in E with F(Q) = O. What about the case k = I? 

6e. The First Homology Group for General Spaces 

The general definitions of this chapter make sense without change for 
any topological space, although, of course, one does not have wind
ing numbers in arbitrary spaces. Any topological space X has abelian 
groups ZOX of O-chains, Be)( of O-boundaries, with Oth homology group 
He)( = ZOX/Be)(, which is canonically isomorphic to the free abelian 
group on the set of path-connected components of X. Similarly, one 
has the abelian group C IX of I-chains on X, with the subgroups ZIX 
of I-cycles and I-boundaries BIX, and the 1st homology group 
HIX = ZIX/BIX. There are no changes in the definitions, other than 
replacing a "U" by an "X." 
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Exercise 6.19. Show that a continuous mapping F: X ~ Y determines 
a homomorphism from ZIX to ZIY taking BIX to BIY. 

This determines a homomorphisms of the quotient groups, denoted 

F*: HIX ~ H1Y. 

Exercise 6.20. Show that if F: X ~ Y and G: Y ~ Z are continuous, 
then (GoFh = G*oF* as homomorphisms from HIX to HIZ. If F is 
the identity map on X, show that F * is the identity map on HIX. 

The result of this exercise is expressed by saying that the diagram 

F* 
HIX .. HtY 

(G-F~ /0. 
HtZ 

commutes: starting with an element in the upper left group H1X, map
ping it to HIZ by either route gives the same answer. 

For example, if Z = X, and F and G are homeomorphisms that are 
inverses to each other, so that G ° F is the identity map of X, then 
(GoFh is the identity map of HIX, so the composite 

F* G* 
HIX ~ H1Y ~ HtX 

is the identity map on HIX. Similarly FoG is the identity map on Y, 
so G* 0 F * is the identity map on HIY. It follows that F * and G* are 
inverse isomorphisms between HIX and HIY. In particular, 

Proposition 6.21.lf X and Yare homeomorphic, then HIX and HIY 
are isomorphic abelian groups. 

Similarly, if Y is contained in X, and r: X ~ Y is a continuous re
tract, the identity map on H1Y must factor into a composite of ho
momorphismsHtY~HIX~HIY. For example, ifHtX= 0, andH1Y#0, 
this shows that there can be no such retract. 

Exercise 6.22. Compute HtX for X a circle and for X a disk, and 
show again that a circle is not a retract of the disk it bounds. 

Two continuous maps F and G from X to Y are homotopic if there 
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is a continuous mapping H: X x [0, 1] ~ Y such that F(x) = H(x, 0) 
and G(x) = H(x, 1) for all x in X. 

Proposition 6.23. If F and G are homotopic maps from X to Y, then 
F* = G*. 

Proof. If 'Y = "Zn;'Y; is a I-cycle on X, set C(t, s) = H('Y;(t) , s). Then 
F *'Y - G*'Y = "Zn;aC, the other terms canceling each other since 'Y is 
a cycle. 0 

A subspace Y of a space X is called a deformation retract if there 
is a continuous retract r: X ~ Y such that the identity map from X to 
X is homotopic to the map i 0 r, where i is the inclusion of Y in X. A 
space X is called contractible if it contains a point that is a defor
mation retract of X. 

Exercise 6.24. (a) Show that the circle SI C ~2 \ {O} is a deformation 
retract. (b) Give an example of a retract that is not a deformation 
retract. (c) Show that any two maps from any space to a contractible 
space are homotopic. In particular, every point in a contractible space 
is a deformation retract of the space. 

Exercise 6.25. Show that if Y is a deformation retract of X, then the 
map from HIY to HIX determined by the inclusion of Y in X is an 
isomorphism. Show that HI(X) = 0 if X is contractible. 

Exercise 6.26. Show that F: X ~ Y determines a homomorphism from 
ZoX to ZoY taking BoX to BoY, and so a homomorphism, also denoted 
F*, from HoX to HoY. Verify the analogues of the assertions in Ex
ercises 6.19 and 6.20, and Propositions 6.21 and 6.23. 

If X is a subspace of the plane that is not open, one does have a 
notion of the winding number around points not in X, but the situation 
is more complicated, as the following problems indicate. 

Problem 6.27 (For those who know the Tietze extension theorem). 
Suppose X and X' are closed subsets of the plane, and F: X ~ X' is 
a continuous mapping. Suppose 'Y and 8 are two closed I-chains on 
X such that W('Y,P) = W(8,P) for all P not in X. Show that 
W(F *'Y, P') = W(F *8, P') for all P' not in X'. 

Problem 6.28. Let X be a closed set in the plane. Show that if'Y and 
8 are homologous I-cycles on X, then W('Y,P) = W(8,P) for all P not 
in X. Is the converse true? 



PART IV 

VECTOR FIELDS 

A mapping from an open set in the plane to the plane can be regarded 
as a vector field, and winding numbers can be used to define the index 
of a vector field at a singularity. The ideas of Chapter 6 can be used 
to relate sums of indices to winding numbers around regions. This is 
applied to show that vector fields on a sphere must have singularities: 
one cannot comb the hair on a billiard ball. The same ideas are used 
in the next chapter to study more interesting surfaces. These chapters 
are inserted here to indicate some other interesting things one can do 
with winding numbers; a reader in a hurry to move on can skip to 
Part V or VI. 

Chapter 8 sketches how some of the ideas we have studied in the 
plane and on the sphere can be studied on more general surfaces. It 
gives us a first chance to study some spaces other than plane regions 
and spheres. In particular, we see how the "global" topology of the 
surface puts restrictions on the "local" data of indices of a vector 
field. We use this to discuss the Euler characteristic of a surface. 
Some of the arguments in this section will depend on geometric con
structions that will only be sketched, usually by drawing pictures 
showing how to deform one surface into another. Later in the chapter 
we discuss briefly what it would take to make these arguments rig
orous, and later in the book we take up the study of surfaces more 
systematically. 



CHAPTER 7 

Indices of Vector Fields 

7 a. Vector Fields in the Plane 

We want to look at continuous vector fields on an open set U in the 
plane, but allowing them to have a finite number of singularities. A 
singularity will be a point at which either the vector field is not de
fined, or a point where it is defined and is zero. A vector field on U 
with singularities in Z will therefore be a continuous mapping 

V: U \ Z ~ 1R2 \ {O}, 

where Z is a finite set in U. For vector fields arising from flow of a 
fluid, the singularities may arise from "sources," where fluid is en
tering the system, or "sinks," where it is leaving, or some other dis
continuity. 

Given such a vector field V, to each point P in U one can define 
an integer called the index of Vat P, denoted IndexpV. To do this, 
take a disk Dr of some radius r about P that does not meet Z at any 
point except (perhaps) P. Let C be the boundary of this disk. The 
restriction Vic, of V to C is a mapping from this circle to 1R2 \ {O}, so 
it has a winding number (by §3d). Define the index to be this winding 
number: 

IndexpV = W(vlc" 0). 

Lemma 7.1. (a) This definition is independent of choice of r. 

(b) If P is not in Z, then IndexpV = O. 

97 



98 7. Indices of Vector Fields 

Proof. The proof of (a) is the same as that of Lemma 3.28, and (b) 
follows from Proposition 3.20. 0 

From the definition, the index at P depends only on the restriction 
of V to an arbitrarily small neighborhood of P. Here are some ex
amples of vector fields with singularities at the origin, with the cor
responding indices; the calculations are left as exercises. Instead of 
drawing vectors at many points, it is more useful to draw some flow 
lines, i.e., curves that are tangent to the vector field at each point. 

Vector field V(x, y) Index at 0 

• o 
) 

(2) (-y, x) 

(3) (y, -x) 

( -y X) 
(4) x2 + l' x2 + l 
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(5) (x,y) 1 

(6) (-x, -y) 1 

(7) (y,x) -1 

2 

Note that (2) and (3) are opposite as vector fields, as are (5) and (6), 
but have the same index. Similarly, (4) is a positive multiple of (2). 
These are special cases of Exercise 7.4, which shows that the mag
nitude and sign of the vectors does not affect the index (which ex
plains why the flow lines, without even their sense of direction, de
termine the indices). 

Exercise 7.2. Construct, for each integer n, a vector field with a sin
gularity at the origin with index n. 

Exercise 7.3. Let Vo and VI be continuous vector fields in a punctured 
neighborhood U of P, and suppose there is a continuous mapping 
H: U X [0, 1] ~ /R2 such that 

for all Q in U; H(Q X 0) = Vo(Q), 

H(Q X t)~O for all Q and all 0 :s; t :s; 1. 

Show that Vo and VI have the same index at P. 
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Exercise 7.4. Show that if p is any continuous function defined in a 
punctured neighborhood of P that is always positive or always neg
ative in this neighborhood, then the index at P of p . V is the same as 
the index at P of V. 

The following proposition relates the behavior of a vector field along 
the boundary of a region to the indices of the vector field at singular 
points inside: 

Proposition 7.5. Let V be a vector field with singularities in U. Sup
pose 'Y is a closed I-chain in U whose support does not meet the 
singular set Z of V, such that W( 'Y, P) = ° for all P not in U. Then 

W(V*'Y,O) = L W('Y,P)·lndexpV. 
PEZ 

Proof. Let Z = {Ph' .. , Pr}, and let Dh ... , Dr be disjoint closed 
disks centered at the points Ph ... , P" all contained in U. Let 'Yj 
be the standard counterclockwise path around the boundary of D j , and 
let nj = W('Y,P j). Then 'Y and nl'Yl + ... + nr'Yr have the same wind
ing number around every point outside U \ Z. It follows from Prop
osition 6.15 that 

W(V*'Y,O) = n1W(V°'Yl,0) + ... + nrW(V°'Y" 0) , 

and this is the assertion to be proved. o 

Corollary 7.6. If W(V *'Y, 0) # 0, then V must have at least one non
vanishing index at a point P with W( 'Y, P) ~ 0. 0 

The simplest case of the proposition is: 

Corollary 7.7. If U contains a closed disk D, and V has no singu
larities on the boundary circle C of D. Then 

W(vlc, 0) = L IndexpV. 
PED 

If W(vlc, 0) ~ 0, V must have a singularity with nonvanishing index 
inside D. 0 

Problem 7.S. Generalize this discussion to allow the singularity set 
Z to be infinite but discrete, i.e., Z is a closed subset of U such that 
each P in Z has a neighborhood Up in U such that Up n Z = {P}. Show 
that the sum in Proposition 7.5 is automatically finite. 
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Problem 7.9. Letfbe a Cf6'" function defined in V, defining a gradient 
vector field V = grade!) on V. A point P is a critical point for f if 
the gradient vanishes at P, and P is called nondegenerate if the "Hes
sian" at P, 

if a2f (a2f )2 -(P)'-(P) - -(P) 
ax2 a/ axay 

is not zero. (a) Show that, if P is a nondegenerate critical point, then 

Indexp(V) = {_ 11 if f has a local maximum or minimum at P, 
otherwise (when P is a saddle point). 

(b) Suppose D is a disk in V with boundary C, andfhas only non
degenerate critical points in D, with none on the boundary, and f is 
constant on C. Show that the number of local maxima plus the num
ber of local minima is one more than the number of saddle points. 
"On a circular island, the number of peaks plus the number of valleys 
is one more than the number of passes. " 

7b. Changing Coordinates 

Later we want to define the index of a vector field on a surface other 
than an open set in the plane. To do this, the essential point is to 
know that a change of coordinates does not change the index. This 
result, which is intuitively obvious from pictures of vector fields, takes 
some care to state and a little work to prove. To state it, suppose 
'P: V ~ V'is a diffeomorphism from one open set in the plane onto 
another; that is, 'P is Cf6"', one-to-one, and onto, and the inverse map 
'P -I: V' _ V is also a Cf6x mapping. At any point P in V, we have the 
Jacobian matrix 

[
au au] -(P) -(P) 

_ ax ay 
J~,p - av av ' 

-(P) -(P) 
ax ay 

where 'P(x,y) = (u(x,y), v(x,y» in coordinates. This gives a linear 
mapping from vectors in jR2 to vectors in jR2 (see Appendix C). If V 
is a continuous vector field in V, define the vector field 'P* V in V' 
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by the formula 

('P*V)(P') = J",AV(P» , 

where P is the point in U mapped to P' by 'P, i.e., P = 'P-1(P'). If V 
has singularities in the set Z, V' will have singularities in 'P(Z). 

Lemma 7.10. With V and 'P*V as above, then,for any Pin U, 

Index",(pl 'P* V) = Indexp V . 

The proof of this lemma is given in Appendix D. We will also want 
to compare the indices of two different vector fields on a surface. The 
following lemma will be used to reduce to the case where they agree 
in a neighborhood of some point. We say that two vector fields V 
and Wagree on a set A if V(P) = W(P) for all P in A. The proof is 
also in Appendix D. 

Lemma 7.11. Suppose V and Ware continuous vector fields with no 
singularities on an open neighborhood U of a point P. Let D CUbe 
a closed disk centered at P. Then..!here is a vector field if with no 
sJ!tgularities on U such that: (i) V and V agree on U \ D; and (ii) 
V and W agree on some neighborhood of P. 

7c. Vector Fields on a Sphere 
A vector field V on a sphere S assigns to each point P in S a vector 
V(P) in the tangent space TpS to S at P, the mapping from P to V(P) 
being continuous. If S = S2 is the standard sphere, and P = (x,y, z), 
the tangent space is 

TpS = {(a, b, c): (a, b, c)· (x,y, z) = ax + by + cz = O}. 

As before, we may allow a finite set Z of singularities. In fact, one 
of our goals is to show that any vector field on sphere must have 
singularities. 
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We want to flatten out the sphere, say by stereographic projection 
from a point on the sphere, so that the vector field determines a cor
responding vector field on the plane, and we will use what we know 
about vector fields on the plane. 

(0,0,1) 

.--------+----~-- y 

x 

We need the following, whose proof is left as an exercise: 

Lemma 7.12. The inverse cp of this polar coordinate mapping takes 
(x, y) in the plane to 

( 2x 2y X2+l-1) S2, 
'P(x, Y) = x2 + l + l' ~ + l + l' x2 + l + 1 in 

The Jacobian matrix J""p of cp at P = (x,y) maps 1R2 one-to-one onto 
the tangent space to S2 at the point cp(P), If V is a vector field on S2, 
and cp*V is the vector field on 1R2 defined by the equation 

J'P,p«'P*V)(P)) = V('P(P)) , 

then cp*V is continuous at P if V is continuous at cp(P). 

Now suppose V is a continuous vector field with no singularities 
on S2. Then 'P*V is a vector field on 1R2 with no singularities. Let Cr 

be a large circle centered at the origin in the plane. We know from 
Corollary 7.7 that the winding number of 'P*V around C r must be 
zero. To get a contradiction, we must use the fact that V is continuous 
and nonzero at the north pole. For r large, Cr can be thought of as a 
small circle around the north pole. The winding number of 'P*V around 
such a circle is not zero, even though it comes from a vector field 
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that is not zero in the disk near the north pole. This can be seen by 
unraveling what happens to a vector field on the sphere when the 
sphere is flattened out. Think of the vectors as attached to a small 
band, which is turned over: 

The winding number of this vector field around this circle is 2, which 
shows that no such vector field can exist. 

Problem 7.13. Give an analytic proof of the fact that this winding 
number is 2. 

This shows more than the fact that a vector field on a sphere must 
have singularities. If V is a vector field on S2 with singularities in a 
finite set Z that does not include the north pole, we can define the 
index IndexpVat a point P of Z to be the index of <p*V at the cor
responding point <p -I(p). Then the proof shows that, for any such 

2 vector field V on S , 

2: IndexpV = 2. 
PEZ 

In order to include the north pole in these considerations, we also 
consider a stereographic projection from the south pole. To make the 
orientations match in our two charts, we first reflect in the x-axis. So 
we define $: 1R2 ~ S2 by 

( _ 2x - 2y - x2 -l + 1) 
$(x,Y) = \,x2+l+ l' x2 +/+ l' x2 +/+ 1 . 

Exercise 7.14. Show that the composite <p -1 0 $ takes z = x + iy to 
l/z. 
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Now for any vector field V with a finite number of singularities on 
S2, and any point P, we can define IndexpVas either the index of 
'I'*V or of I/I*V at the corresponding point. It follows from Lemma 
7.10 that these indices agree, if both are defined. In fact, we could 
use a stereographic projection from any point; all the coordinate trans
formations as above are C(6"". 

Proposition 7.15. For any vector field with singularities V on S2, 

2: IndexpV = 2. 
PEZ 

Proof. Instead of arguing as we did above, we can argue in two steps: 

Step 1. There is a vector field Von S2 with LpEZ Indexp(V) = 2. For 
example, if W is the vector field on ~2 given in (8), i.e., 
W(x, y) = (x2 -l, 2xy), then V = '1'* W is a vector field on the com
plement of the north pole with one singularity of index 2 at the south 
pole. A short calculation shows that V extends continuously to the 
north pole, with value there the vector (-2,0,0). 

Step 2. We show that the sum of the indices of any two such vector 
fields V and Won S2 is the same. Let P be a point where neither has 
a_singularity. By Lemma 7.11, replacing V by another vector field 
V with the same indices as V, we can assume that V and Wagree in 
some neighborhood of P. Then using stereographic projection from 
P, one has two vector fields on the plane that agree outside some 
large disk that contains all the singularities of either vector field. Tak
ing a larger circle Cn their winding numbers around Cr will be the 
same, and an application of Corollary 7.7 shows that the sum of their 
indices is the same. 0 

Exercise 7.16. Give an alternative proof of Step 1 by finding a vector 
field on S2 with two singular points, each with index 1. 

Problem 7.17. (a) If f S2~ ~3 is a continuous mapping, show that 
there is some point Pin S2 and some real number A so thatfiP) = AP. 
(b) If f S2 ~ S2 is a continuous mapping, show that there is some 
point P in S2 such that fiP) = P or fiP) = - P. 

Problem 7.18. Give a mathematical formulation and proof of the 
statement: "On a spherical planet, the number of peaks plus the num
ber of valleys is two more than the number of passes." 



CHAPTER 8 

Vector Fields on Surfaces 

8a. Vector Fields on a Torus and Other Surfaces 

Let us look next at a surface X which is a torus, i.e., the surface of 
a doughnut. This can be realized concretely in several ways: as a 
surface of revolution, by an explicit equation in 3-space, as a Carte
sian product Sl x Sl, or by taking a square or rectangle and identifying 
opposite edges: 

It is clear by any of these descriptions that there are vector fields 
on X that have no singularities at all. In order to state the analogue 
of Proposition 7.15 for a torus, we need to define the index of a vector 
field at a point on X. One way to do this is to realize X as a quotient 
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space of the plane ~2, identifying two points if their difference is in 
the lattice 71? This amounts to identifying the opposite sides of the 
unit square [0,1] x [0, 1]. We have a mapping 

aEd giving a vector field V on X is the same as giving a vector field 
V on ~2 that is unchanged by translation by any vector in 7l? . We 
can define the index Indexp V to be the index of the corresponding 

- 2 vector field V at any point of ~ that maps to P. As before, we allow 
a finite set Z of singularities, and require V to be continuous outside 
Z. Then we have the analogous proposition: 

Proposition 8.1. For any vector field with singularities V on a 
torus X, 

2: Indexp V ° . 
PEZ 

Proof. Take a square R = [a, a + 1] x [b, b + 1] so that the image in 
X of the boundary aR does ,.!lot hit the singularity set Z. Look at the 
corresponding vector field V..9n a neighborhood of R. By Proposition 
~5 the winding number of V around aR is the sum of the indices of 
V inside R. This winding number is zero, since the vector field is the 
same on opposite sides of the square. And the indices inside are the 
indices of Von X. 0 

For example, realizing X as a surface of revolution in space as in 
the above picture, the projection of a vertical vector (0,0,1) onto the 
tangent space at each point gives a vector field with singularities at 
the four points with horizontal tangents. The indices at the points at 
the top and bottom (where the height has local maximum and mini
mum) are + 1, while those at the two saddle points are -1. 

Exercise 8.2. Show that the following formula defines a diffeomorph
ism of ~2 /71..2 = Sl X Sl with a surface of revolution in ~3. Take 0< r < R 
and define the map by 

(x, y) ~ (R + rcos(21TY» . (0, COS(21TX), sin(21Tx» 
+ rsin(21TY)· (1,0,0). 
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Find the vector field on the plane corresponding to the above vector 
field, and verify that the indices are 1, -1, -1, and 1. 

We want to generalize what we have just seen from the sphere and 
torus to other surfaces, in particular to the surface of a doughnut with 
g holes, or a "sphere with g handles": 

We will argue geometrically and rather loosely for now, and post
pone until later a discussion of what needs to be done to make the 
arguments precise and rigorous. From the second picture, taking V to 
be the vector field with V(P) the projection on the tangent space TpX 
of a vertical vector (0,0,1) as before, we see that there are two points 
with index 1 (at the top and bottom), and 2g points with index -1 
(at the saddles). This gives one vector field the sum of whose indices 
is 2 - 2g. The claim is that this is always the case. 

Theorem 8.3 (Poincare-Hopf). Let X be a sphere with g handles. 
For any vector field V with singularities on X, the sum of the indices 
of V at the singular points is 2 - 2g. 

Proof. Having seen one such vector field, it is enough to show that 
any two vector fields have the same sum of indices. By Lemma 7.11, 
we can take a disk in X where both have no singularities, and modify 
one so that they agree on such a disk. The idea of the proof is to 
mimic the proof for a sphere: take a circle C in such a disk, and punch 
out a smaller disk D (inside the circle) from the surface, and spread 
the complement X \ D out on the plane. The two vector fields will 
then have the same winding number around the curve C, so they will 
have the same sum of indices by Proposition 7.5. 
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For g> 0, however, this complement is not diffeomorphic (or ho
meomorphic) to a plane domain . However, it can be realized with a 
mapping <p: X \ D~ 1R2 that is a local diffeomorphism, i.e., every point 
P in X \ D has a neighborhood that is mapped diffeomorphically (with 
a diffeomorphic inverse) onto its image. To visualize this, look first 
at the torus. The complement of a disk is formed of two bands joined 
together. The mapping <p from X \ D can be visualized by picturing 
the bands over the plane. 

/ 

The image of the circle C goes around near the boundary. We can 
define the winding number W(VlC. 0) by cutting C up into pieces , each 
of which is mapped one-to-one by <p into the plane, and using the 
usual definition on these pieces. We can also define the index of V 
at a point P of X \ D by using the local diffeomorphism <p* to identify 
V with a vector field <p*V near <pep), and defining IndexpV to be 
the index of <p* V at <pcP). To finish the proof, it is enough to show 
that 

2: IndexpV = W(vlc, 0) . 
PEXIJJ 

To see this, one can add some crosscuts, being careful not to go through 
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any singularities, and apply Proposition 7.5 to the restriction of V to 
each of the pieces. 

As usual, the added pieces get counted twice with opposite signs, so 
they cancel, and one is left with the displayed equation. 

The same works for any genus g, although the visualization is a 
little harder. We claim that, when a closed disk D is removed from 
X, the complement can be realized over the plane as indicated (for 
g= 3): 

Once we have this, the same argument completes the proof of the 
theorem. To realize X \ D this way, an essential point is that, as a 
larger and larger disk is removed from X, the complements are all 
diffeomorphic. To aid in visualization, the situation for g = 1 is re
done this way on a separate page. The picture after that shows a disk 
with "fingers," which can be sewn to the back of the above figure, 
giving a sphere with g handles. 
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Exercise 8.4. Describe a vector field on X that has exactly 2g - 2 
singular points, each with index -1. 

It is time to discuss what it might take to make this sort of argument 
rigorous. First, of course, one should give precise definitions of all 
the objects involved: surfaces, a sphere with g handles, a vector field 
on a surface, and the index of a vector field at a point. This not being 
a course on manifolds, we will not go through all the details (but see 
Appendix D for somE: of them). A key point, however, is that a sur
face is covered by the images of coordinate charts 'P,,: U,,~X, that 
are homeomorphisms from open sets U" in the plane to open sets 
'P,,( U IX) in X, and the change of coordinate mappings 'P~ -I a 'P", defined 
from part of U" to part of U~, should be '{6"". For the sphere, for 
example, stereographic projections from the two poles gave coordi
nate charts 'P and ljI, and for the torus, the mapping p: ~2~ X = Sl X Sl, 
restricted to small open sets in the plane, gives charts on X. 

A vector field V on X then determines a vector field V" on U", and 
these are related by the condition that ('P~ -I a 'P"MV,,) = V ~ on the open 
subsets where both are defined. In fact, a vector field on X can be 
defined as a collection of such vector fields V"' related by these com
patibilities under changes of coordinates. The index of V at a point 
P in X can be defined as the index of V" at the point P", if 'P,,(P IX) = P. 
The key Lemma 7.10 implies that this is independent of choice of 
chart near P. Note that the surface X is assumed to have a differen
tiable structure, but that the vector field is only assumed to be con
tinuous in the complement of a finite set. 

The description of surfaces via cutting and pasting, which we have 
indicated in pictures, could be done explicitly in coordinates, as a 



8b. The Euler Characteristic 113 

large and not very pleasant exercise. For example, one can verify that 
removing a slightly larger disk from a surface gives diffeomorphic 
complements. The tools for doing this sort of argument properly are 
developed systematically in the subject of differential topology, see 
Milnor (1965), Wallace (1968), and Guillemin and Pollack (1974). 

Exercise 8.5. What can you say about the number of peaks, valleys, 
and passes on a planet shaped like a sphere with g handles? 

Exercise 8.6. Does a sphere with g handles have the fixed point prop
erty? 

8b. The Euler Characteristic 

Suppose X is a compact surface, and we have a triangulation of X. 
This means that X is cut into pieces homeomorphic to triangles, fitting 
together along the edges. We will have a certain number v of vertices 
(points), a number e of edges (homeomorphic to closed intervals), 
and a number / of faces (homeomorphic to closed triangles). These 
homeomorphisms are assumed to take the ends of intervals to two 
distinct vertices, and the three boundary pieces of a triangle onto three 
distinct edges. 

As you may have discovered in an exercise in the Preface, the 
number v - e + / is independent of the triangulation: 

Proposition 8.7. For any triangulation 0/ a sphere X with g handles, 

v - e + / = 2 - 2g . 

Proof. The idea is to construct a vector field V on X with one sin
gularity of index 1 for each vertex, one of index -1 for each edge, 
and one of index 1 for each face. Then the proposition follows from 
the Poincare-Hopf theorem. To do this, do a "barycentric subdivi-
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sion": put a new vertex in each edge, and one in each face, and con
nect them as shown. 

Then construct a vector field on X, so that in each triangle it looks 
like: 

Construct it first along the edges: on the old edges pointing from the 
old vertices to the new ones added in the middle of the edges, and 
on the new edges pointing toward the new vertices in the faces; then 
fill in over the new triangles to make it continuous. If this is done, 
one has a vector field V whose singularities are at the vertices, and 
whose indices are: + 1 if P is an old vertex; -1 if P is a new vertex 
along an edge; and + 1 if P is a new vertex in a face. There are v of 
the first, e of the second, andf of the third, so by the Poincare-Hopf 
theorem, v·(+1)+e·(-1)+f·(+1)=2-2g. D 

The number v - e + f, for any triangulation, which is the same as 
the sum of the indices of any vector field, is called the Euler char
acteristic of the surface. 

Exercise 8.8. Construct a triangulation on the sphere with g handles, 
and verify the proposition for this triangulation. 
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Problem 8.9. (a) Show that, for any triangulation of a sphere with 
g handles: 

(i) 2e = 3f; 

(ii) e:5 1/2 v' (v - 1); and 

(iii) v 2= 112(7 + V 49 - 24(2 - 2g». 

(b) Find lower bounds for v, e, and f for g = 0 and g = 1, and 
construct triangulations achieving these lower bounds. 

If N is the largest integer less than or equal to the number 
112(7 + V49 - 24(2 - 2g», it is a fact that any map on X can be col
ored with N colors, and N is the smallest number for which this is 
true. See Rademacher and Toeplitz (1957) and Coxeter (1989). Sur
prisingly, this is much easier for g> 0 than for g = o. 

Exercise 8.10. Generalize Proposition 8.7 to allow arbitrary convex 
polygons for faces in place of triangles. 

Problem 8.11. Suppose a sphere with g handles is decomposed as in 
the preceding exercise, but with each polygon having the same num
ber p of edges, and assume that each vertex lies on the same number 
q of edges. (a) Show that l/p + l/q = 1/2 + (1- g)/e. (b) When g = 0, 
find all positive integers p, q, and e that satisfy this equation, and 
show that all possibilities are realized by the boundaries of the five 
platonic (regular) solids. 

A sphere with g handles can be oriented, i.e., one can coherently 
(continuously) define a notion of counterclockwise (or "which way is 
up") in the neighborhood of any point. (See Appendix D for a precise 
definition.) It is a fact that the only compact surfaces that can be 
oriented are diffeomorphic to spheres with g handles. At least with 
the assumption that the surface can be triangulated we will prove this 
in Chapter 17. There are also compact surfaces that cannot be ori
ented. One example is the projective plane ~p2, which can be real
ized as a quotient space of the sphere S2, by identifying each point 
with its antipodal point. The projection from S2 to ~p2 is two-to-one, 
but a local diffeomorphism. One can also get ~p2 by taking the upper 
hemisphere, and identifying opposite points on the boundary equator, 
which is the same as identifying opposite points on the boundary of 
a disk. Hence the projective plane can also be realized by identifying 
the opposite sides of a rectangle as shown: 
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Exercise 8.12. Construct a vector field on ~p2 that has one singular 
point with index I. Show that the sum of the indices of any vector 
field on ~p2 is 1. Triangulate ~p2 and compute its Euler character
istic. 

Another nonorientable surface is the Klein bottle, which can be 
realized by identifying the opposite sides of a rectangle as shown: 

Exercise 8.13. What is the Euler characteristic of the Klein bottle? 

The Moebius band is a nonorientable surface whose boundary is a 
circle: 

tL---_+~ 
Or one may construct a Moebius band by taking an annulus, and iden
tifying opposite points of one of the boundary circles: 
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Exercise 8.14. (a) Show that these two descriptions agree. (b) What 
do you get when you sew two Moebius bands together along their 
boundary circles? 

Exercise 8.15. Find a vector field on the Moebius band with the 
boundary behavior shown and one singular point. 

What is the index at the singular point? 

Starting with any surface, one can cut out a disk, and paste back 
in a Moebius band, by identifying points on the boundary circles. This 
is called a crosscap. 

Project 8.16. Investigate the surfaces that arise this way, especially 
the sums of indices of vector fields and the notion of Euler charac
teristic. What do you get when you do this to a sphere? What happens 
to the Euler characteristic of a surface when this is done to it? What 
is the Euler characteristic of the surface obtained by punching h dis
joint disks from a sphere with g handles, and sewing h Moebius bands 
onto their boundaries. Can you realize the Klein bottle this way? Can 
two of these be homeomorphic, if you start with a different g and h? 
When? 

There is a beautiful proof of the Poincare-Hopf theorem for a com
pact surface X that is oriented, using an inner product, varying con-
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tinuously, on each tangent space. (If the surface is embedded in 3-space, 
one can identify each tangent space TpX as a subspace of 1R3 , and use 
the standard inner product on 1R3.) To show that two vector fields V 
and Won X have the same sum of indices, triangulate X so all the 
singularities of V or W are inside triangles, and so that each triangle 
contains at most one singularity. 

If P is a singular point in a triangle T, one can see that the number 
IndexpV - IndexpW is the change in angle of the vector field V - W 
around the boundary of T, divided by 2'TT; this change in angle is zero 
if there is no singularity in T. Adding over all the triangles, noting 
the cancellations along the edges, the theorem follows. (See Hopf 
(1983).) 

There is a related proof, closer to our first proof for a torus. As 
we will see in Chapter 17, the surface X can be realized by identifying 
sides as indicated on a plane polygon R with 4g sides: 

~2 ~I 

Exercise 8.17. Show that the resulting surface is a sphere with g 
handles. 

Given vector fields V and Won X, one can find such a realization 
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of X so that none of the edges go thro~h sin~ularities of V or W. 
Then V and W determine vector fields Vand Won the polygon, and 

2: Indexp V - Indexp W = 2: Indexp V - Indexp W 
PEX PER 

1 -= - (change in angle of V - W around aR) = 0, 
2'lT 

the last since the changes over identified edges of the boundary can
cel. 

We saw that the Euler characteristic is 2 - 2g by looking at the 
vector field of a fluid flowing down the surface, or the gradient of 
the height function for the surface sitting nicely in space. That picture 
also shows how one can build up the topology of X by looking at the 
portion of X whose height is at most h, and seeing how the topology 
changes as h increases. One sees that changes occur only when the 
height crosses the singularities, and that the change there is controlled 
by the indices of these singularities. This is the beginning of the beau
tiful subject of Morse theory. See Milnor (1963). 

There is an important method for reducing some problems about 
nonorientable surfaces to the case of orientable surfa.£es. For a non
orientable surface_X, there is an orientable surface X and a two-to
one mappirtg p: X ~ X, which is a local diffeomorphism. The two 
points in X over a point P in X correspond to the two ways t2, orient 
X near P. For example, if X is the projective plane, then X is the 
sphere. We will discuss this in more detail when we come to covering 
spaces, see § 16a. 

Probl~ 8.18. Show that a vector field V on X d.!:,termines a vector 
field V on X, and that the sum of the indices of V is twice the sum 
of the indices of V. Deduce that if X is any compact surface, the sum 
of indices of all vector fields with singularities on X is the same. If 
X is the surface constructed by sewing h Moebius .!>ands to a sphere 
with g handles with h disks removed, show that X is a sphere with 
2g + h - 1 handles. 



PART V 

COHOMOLOGY AND 
HOMOLOGY, II 

In Chapter 9 the first homology group HI U of a plane region U is 
computed for a plane region "with n holes." The notion of the integral 
of a closed ~'" i-form over any continuous path or any i-chain is 
defined. We show that these integrals are the same over homologous 
i-chains. This leads to useful methods for computing integrals and 
winding numbers, and relating the two notions; these are described 
in the third section. 

The last section of Chapter 9, which is optional, takes a look at 
how these ideas are used in complex analysis. This is written as a 
(very) short course in complex analysis. It is self-contained, except 
for some calculations left as exercises, but in practice it will probably 
be most useful to those who have seen some of it before. For ex
ample, if you have seen Cauchy's formula and the residue theorem 
for regions such as disks and rectangles, this will show how the ideas 
of topology lead to the appropriate generalizations involving winding 
numbers. (This section includes all the analysis that will be needed 
when we study Riemann surfaces in Part X.) 

The basic theme of the Mayer-Vietoris story in Chapter 10 is to 
find relations among the homology and cohomology groups of two 
open sets and their union and intersection. This possibility of com
paring different homology groups Hk , for different k as well as dif
ferent spaces, is a salient feature of algebraic topology. For coho
mology, the beginnings of this story were seen in Chapter 5. This 
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chapter proves analogous results for homology, and then completes 
the cohomology story. This package of results, called the Mayer
Vietoris theorem, gives a powerful tool for calculating homology and 
cohomology groups. 

It will be evident that the cohomology and homology groups behave 
in a similar, or more precisely, dual fashion. This duality will be 
made explicit in Part VIII. In fact, the proof of the full Mayer-Vie
toris theorem for cohomology of plane domains will depend on this 
duality. 



CHAPTER 9 

Holes and Integrals 

9a. Multiply Connected Regions 

Let U be an open set in the plane, and let A = /R2 \ U. We know that 
for a fixed closed chain 'Y in an open set U, the function P ~ W( 'Y, P) 
is constant on connected components of /R2 \ Supp('Y). It is therefore 
constant on connected components of A, since each connected com
ponent of A is contained in some connected component of /R2 \ Supp('Y). 
If A is a connected component of /R2 \ U, we write W('Y,A) for the 
value of W( 'Y, P) for all P in A, and call it the winding number of 'Y 
around A. Note that the connected components of a closed set such 
as /R2 \ U are closed, but they need not be path-connected (see Ex
ercise 9.5). 

Our goal is to calculate the first homology group of U, at least if 
this complement A is not too complicated. The idea is to find a closed 
path or I-chain that "goes once" around each "piece" of A, and to 
show that these give a free basis for H1U. The following lemma gives 
a precise statement and rigorous proof that this is possible: 

Lemma 9.1. Suppose A is a disjoint union of two closed sets Band 
C, with B bounded. Then there is a closed I-chain I'in U such that 
W(I', P) = I for all Pin Band W(I',P) = 0 for all Pin C. 

Proof. By the compactness of B, there is a positive E so that every 
point of B is at least distance E away from any point of C. Take a 

123 
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grid G so that its bounded (closed) rectangles cover B, but such that 
none of these rectangles meets both Band C, and so that none of the 
infinite rectangles meets B. This can be achieved by taking an infinite 
grid so that the distances between parallel lines is less than £/Y2, 
and letting G be the collection of lines that hit B. 

The idea is to define 'Y to be the sum of the boundaries of the 
(closed) bounded rectangles in the grid that meet B: 

Clearly 'Y is a closed I-chain, since it is the sum of closed I-chains. 
We claim next that 'Y is a I-chain in U. To see this, suppose an edge 
CT occurs with a nonzero coefficient in 'Y, but that CT is not contained 
in U . We know that CT cannot meet C, since it is in a rectangle 
that meets B, and none of the rectangles meets both. So CT must meet 
B. But then each of the two (bounded) rectangles that CT separates 
meets B, so they occur in the displayed sum. Their contributions to 
CT therefore cancel, which shows that CT cannot occur in 'Y. 

Next we show that W( 'Y, P) = I for P in B . Any point P in B is in 
one of the closed bounded rectangles, say RI , and we let Q be a point 
in the interior of RI . Using the fact that P and Q are in the same 
component of the complement of the support of 'Y, we have 
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W('Y, P) = W('Y, Q) = L W(ilRko Q) = W(ilRIo Q) = 1. 
k 

Similarly, if PEC, then W('Y,P) = LkW(ilRkoP) =0. D 

A I-chain 'Y having the property of the lemma is certainly not unique, 
but any other I-chain with this property would have the same winding 
numbers around all points not in U, and it follows from Theorem 6.11 
that it would be homologous to 'Y. 

We next describe what it means for U to have "n holes." First we 
describe the "infinite" part of the complement A, denoted by A,,,, which 
will be a closed set with the property that winding numbers of closed 
I-chains in U around points in A,,, are always zero. In most examples 
it is obvious what A"" should be, but the general definition is a little 
complicated. Certainly A"" should contain any unbounded connected 
component of A; to assure that we get a closed set, we define A"" by 
the following: 

A", = {P E A: for any 10 > 0 there is a connected subset C 
of A containing a point within distance 10 of P 
and a point farther than I /10 from the origin}. 

Lemma 9.2. The set A", is a closed subset of A, and W(y,P) = o for 
all closed I-chains y in U and all points P in A"" . 

Proof. If P is in the closure of A"" take a sequence P n in A"" ap
proaching P, and a connected set en as in the definition for P n for 
some En, with En ~ 0 as n ~ 00. It follows immediately that P is in 
A"". For any compact subset K of U, it follows from the definition 
that any point of A"" is in the unbounded component of ~2 \ K. Note 
that the support of any I-chain is compact. By Proposition 6.8 the 
winding number of any closed I-chain around a point of A", must be 
zero. D 

Note that A"" can have more than one connected component, or it 
can be empty. Now suppose that 

~2 \ U = Al U A2 U . . . U An U A"" , 

where each Ai' 1::5 i::5 n, is a connected, closed, bounded, nonempty 
set, and these n + 1 sets are disjoint. Such an open set U is sometimes 
called multiply connected, or (n + I)-connected. Not every U has such 
a complement, see Exercise 9.5. 
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By Lemma 9.1, for each i between I and n there is a closed chain 
'Yi in V so that W('Yi ,Ai) = 1, and W('Yi ,A) = 0 for j;:of i. Such I-chains 
are not unique, but any other choices are homologous to these. 

Proposition 9.3. Any closed I-chain y on V is homologous to the 1-
chainm,y,+ ... +mnYn, wheremi=W(y,Ai). 

Proof. With mi = W('Y,A i), '1 and ~mi'Yi have the same winding num
bers around all points not in V, and the result follows from Theorem 
6.11. 0 

The integers mj = W('Y,A j) are uniquely determined by the homol
ogy class '1, again by Theorem 6.11. In other words: 

CoroUary 9.4. The homology classes of the closed chains y" ... , Yn 
form a free basis of H, V, giving an isomorphism H, V == zn. 

Exercise 9.5. (a) Let V be the set of points (x, y) such that Iyl < 1 or 
2n < x < 2n + 1 for some integer n. Show that Aoo is the union of an 
infinite number of connected components. (b) Let A be the union of 
the interval {(O,y): O:5y:5 I} and the set {(x,sin(l/x»:x>O}. Show 
that A is closed and connected, but not path-connected. (c) Let A be 
the union of the origin and the points (I/n,O) for n a positive integer. 
Show that each point of A is a connected component of A, but the 
origin has no neighborhood disjoint from the other components. 

Exercise 9.6. Show that if V C V' and V is n-connected, and V'is 
n' -connected, and n > n', then there is no retract from V' onto V. 

Problem 9.7. (a) Show that if V is the complement of the set N of 
nonnegative integers (identify n with (n,O», then H,V is isomorphic 
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to the free abelian group on the points in N. In particular, HIV is not 
finitely generated. (b) Compute HIV when V is the complement of 
the set in Exercise 9.5(c). 

Problem 9.S. (a) If V is bounded, show that A" is a connected com
ponent of R2 \ V. (b) If the plane is identified with the complement 
of the north pole in a sphere S (by stereographic projection, see §7c), 
show that the union of Ace and the north pole is the connected com
ponent of the complement of V in S that contains the north pole. 

Problem 9.9. Generalize Corollary 9.4 as follows. Suppose V is any 
open set in the plane, and K is a compact subset of V that has n con
nected components K1, • • • ,Kn. There is a homomorphism 

HI(V\K) ~ HIV(f)7Lffi . .. (f)7L == HIVffi7Ln , 

defined as follows. Given a closed I-chain 'Y on V \ K, the first com
ponent of this map takes the class of 'Y in HI (V \ K) to the class of 'Y 
in HI V, and the other components take the class of 'Y to the winding 
numbers of'Y around the components K), ... , Kn. Show that this 
homomorphism is an isomorphism. 

9b. Integration over Continuous Paths and Chains 

We want to define the notion of the integral f-y w of a closed ~'" I-form 
w on an open set V over an arbitrary closed path 'Y in V. We cannot 
use calculus, but the idea we used for defining the winding number 
works perfectly well. If 'Y is defined on an interval [a, b], subdivide 
the interval into a = 10 S II S ... S tn = b, so that each subinterval 
[Ii-I, til is mapped by 'Y into some open rectangle Vi contained in V. 
Such a subdivision exists by the Lebesgue lemma, since each point 
in the image of'Y is contained in some such rectangle. The restriction 
of w to Vi is exact (by Proposition 1.12), so we may find a ~oc func
tion j; on Vi such that dj; = w on Vi. Let Pi = 'Y(li), 0 SiS n. Define 
the integral f"Y w by 

L w = (HPI) - HPo» + (.fz(P2) - fz(PI) 

+ ... + (fn(Pn) - fn(Pn- 1». 
The proof that this definition is independent of choices is almost 

the same as that of Proposition 3 .1. Since the intersection of two 
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rectangles containing 'Y([ti- 1, ti)) is connected, and J; is unique up to 
adding a constant on a connected set, the sum is independent of choices 
of Ui and j;. The rest of the proof is identical, by observing that re
fining a subdivision by adding a point doesn't change the answer. 

If 'Y is a C(6'" path, it follows also from Proposition 1.16 that this 
definition of J'/w agrees with that using calculus. 

We extend the notion to all I-chains 'Y = nl'Yl + ... + nr'Yn with 
'Yi paths, by linearity: 

( w = nl ( w + ... + nr ( W. 
),/ )'/1 ),/, 

Note that the winding number is a special case of integral: 

where, if P = (xo, Yo), 

wp = -Wplt 21T . 

W('Y,P) = f.v Wp, 

-(y - Yo) dx + (x - xo) dy 

(x - XO)2 + (y - Yo)2 

Exercise 9.10. If W = df is exact, and'Y is a I-chain with boundary 
iJ'Y = ":imjPj, show that J'/w = ":imd(p). In particular, J'/df= 0 if'Y is 
closed. 

Proposition 9.11. If y and S are homologous I-chains in U, then 

Proof. The proof is the same as the proof of Lemma 6.7, which refers 
to Theorem 3.6. One simply changes winding numbers to integrals, 
sectors UiJ to open rectangles, and angle functions 1}ij to arbitrary 
functions J;J with dJ;J = w on UiJ. 0 

It follows in particular that the integral of w is the same over two 
paths that are homotopic closed paths, or homotopic paths with the 
same endpoints. It also follows that the integrals are unchanged by 
the reparametrization of paths. 

Corollary 9.12. Given two closed I-chains y and S on U, the fol
lowing are equivalent: 

(1) W(y,P) = W(S,P) for all P not in U; 
(2) J'/w = Jaw for all closed I-forms w on U; and 
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(3) '}'- (j is a boundary I-chain in U. 

Proof. The implications (3):::} (2):::} (1) 
(1)¢::>(3) is Theorem 6.11. 

have just been seen, and 
D 

Corollary 9.13. Let U be any open set in the plane. Then the fol
lowing are equivalent: 

(1) We'}', P) = 0 for all closed chains'}' in U and all P fI. U; 
(2) I"Y W = 0 for all closed chains '}' in U and all closed 110rms w 

on U; 
(3) every closed I-chain is a boundary: H1U = 0; and 
(4) every closed 110rm won U is exact: H1U = O. 

These conditions hold whenever U is I-connected, i.e., ~2 \ U = A.,. 

Proof. The equivalence of the first three conditions follows from the 
preceding corollary. We have (4):::} (2) by Exercise 9.10. Con
versely, (2) implies that I"Y W = fr, w whenever 'Y and 8 are segmented 
paths with the same endpoints, and w is any closed I-form; we saw 
in Chapter I that this makes w exact, which is (4). D 

We know that homotopic closed paths are homologous. 

Problem 9.14. (a) Show that homologous closed paths must be ho
motopic when U is an open rectangle or any convex open set. (b) Do 
the same when U is the complement of a point, or an annulus 

U = {(x,y):rI 2«x-xo)2+(Y-Yo)2<r/}. 

(c) Challenge. What if U is the complement of two points? 

Problem 9.15. Suppose 'Y = 'ini'Yi is a closed I-chain in an open set 
U such that each '}'i is a <{SO<> path. If 'Y is homologous to zero, show 
that one can write 'Y = 'im/af), where each fj is a <{S'" map from the 
unit square to U. 

Problem 9.16. If X is any closed, connected subset of the plane, and 
U is a bounded connected component of ~2 \ X, show that every closed 
I-form on U is exact. 

Problem 9.17. (a) If w, = p(x,y, t)dx + q(x,y, t)dy is a continuously 
varying family of closed <{SO<> I-forms on U, i.e., the functions p and 
q are continuous on U x [a, b], show that the function t~ I-yw, is a 
continuous function of t. (b) Use this to give another proof of Prop
osition 3.16. 
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9c. Periods of Integrals 

With U an (n + I)-connected region as above, and 00 any closed l-fonn 
on U, define the period (or module of periodicity) of 00 around Ai to 
be the integral of 00 along 'Yi' with 'Yi as defined just before Proposition 
9.3. By Proposition 9.11, this is independent of choice of 'Yi' Denote 
this period by Pi(W) or P(w,AJ 

Pi(W) = P(w,Ai) = {w. 

These numbers detennine integrals of 00 along any closed path, pro
vided one knows the winding number of the path around each Ai: 

Proposition 9.18. For any closed I-chain y and closed l{orm 00, 

L 00 = W('Y,A.)P.(w) + W('Y,A2)P2(W) + ... +W('Y,An)Piw). 

Proof. Since 'Y and Li W('Y,AJ . 'Yi are homologous, this follows from 
Proposition 9.11. 0 

Applying Corollary 9.12, we have: 

Corollary 9.19. A closed l{orm 00 on U is exact if and only if all of 
its periods P;(w) are zero. 

For integrals along paths that are not closed, if 'Y and 8 are two 
paths with the same endpoints, applying the proposition to 'Y - 8, we 
have 

L 00- Jaw = m.p.(w) + m2P2(w) + ... + mnPn(w) , 

with m., ... , mn integers. This means that the integral is detennined 
up to adding integral combinations of the periods. For example, when 
U = ~2 \ {P} and 00 = WP.i) (see Problem 2.10), there is only one pe
riod, which is 2'7T, and we recover the fact that the integral is deter
mined up to integral multiples of 2'7T. 

Exercise 9.20. Compute the integral I'Yw, where 00 is the I-form 

_ ~ -ydx+ (x- n)dy 
W-L.J 2 2 ' 

n=. (x-n) +y 

and 'Y(t) = (tcos(t),tsin(t)), 0:5t:56'7T. 
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Exercise 9.21. Show that, given U as above, for any real numbers 
Ph ... , Pn there is a closed I-form 00 with these periods. 

This means that the linear mapping from the vector space of closed 
I-forms on U to IW, W~(PI(W), .•• , Pn(w), is surjective, and by 
Corollary 9. 19 the kernel is the space of exact I-forms. This sets up 
an isomorphism (see §Cl) 

{closed I-forms on U}/{exact I-forms on U} == IRn, 

i.e., the De Rham group HI U is an n-dimensional vector space. If Pi 
is any point in A;. 1:5 i:5 n, the classes [wPJ form a basis for HI(U). 

Problem 9.22. (a) Suppose n = 2, and the periods of 00 are PI and 
lJ2' Let P and Q be two fixed points in U. Show that if the periods 
are not zero, and the ratio ptlp2 is rational, there is a number r so 
that if 'Y and 8 are any two paths from P to Q, then f"Y 00 - f I) 00 is an 
integer times r. (b) Show that, if PI/P2 is not rational, and U is con
nected, there is no such r. 

9d. Complex Integration 

The plane 1R2 can be identified with the complex numbers C, the pair 
(x, y) being identified with z = x + iy. Functions on open sets in the 
plane will be written as functions of z. 

A complex 110rm 00 on an open set U in the plane is given by a 
pair of ordinary (real) I-forms WI and 002, written in the form 

00 = WI + iW2' 

Define dw = dWI + i dW2, and for a function f = u + iv, with u and v 
real-valued functions on U, set df= du + idv. The form 00 is closed 
if dw = 0, and exact if 00 = df. For example, we have the I-form dz 
defined by dz = dx + i dy. A complex I-form can by multiplied by a 
complex-valued function: if 00 is as above, and f= u + iv, then f· 00 

is the complex I-form 

f' 00 = (u + iv)' (WI + i(2) = (UWI - V(2) + i(UW2 + VWI)' 

Exercise 9.23. (a) Iff= u + iv, with u and v~., functions, show that 
the I-formf{z)dz is closed if and only if u and v satisfy the Cauchy
Riemann equations: 

au 
ax 

av 
ay and 

au 
ay 

av 
ax 
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(b) Show that if the conditions in (a) are satisfied, then the complex 
derivative f'(a) = limz--->a(J(z) - f(a»/(z - a) exists at each point a 
in U. 

Let us calIf analytic if its real and imaginary parts satisfy the Cau
chy-Riemann equations. For example, iff is locally expandable in a 
power series, then f is analytic, so f(z) dz is closed. Indeed, if 
f(z) = L;=oaiz - zor in a disk around zo, thenf= dg on that disk, with 

~ an +1 
g(z) = LJ -- (z - zor . 

n=O n + 1 

For an example that is closed but not exact, consider dz/z on the 
complement of the origin: 

dz dx + idy (x - iy)(dx + i dy) 
= 

z x+iy x2+l 

= xdx+ydy +i -ydx+xdy 

~+l x2 +l 
= d(1og(r» + iw~ 

Similarly, dz/(z - a) = d(log(lz - aln + iWa.ih with wa.~ as defined in 
Chapter 2. 

If -y is a path or chain in U, the integral of 00 = WI + iW2 along -y is 
defined by 

L 00 = L WI + i L 002' 

For example, if 'Y(t) = a + r' eit , O:s t:s 2'11', is a circle around the point 
a, then 

f ~ = i f Wa.~ = 2'11'i. 
,/z-a '/ 

In general, if 'Y is any chain not containing a in its support, we see 
similarly that 

f ~ = if Wa.~ = 2'11'i' W(-y, a). 
,/z-a '/ 

The main fact about complex integrals is 

Theorem 9.24 (Cauchy Integral Theorem). If l' is a closed chain in 
U whose winding number around any point not in U is zero, and f 
is an analytic function in U, then for any a in U that is not in the 
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support 0/ 'Y, 

I f f(z) W(-y,a)'f(a) = -. -dz. 
2m -y z - a 

Proof. Look at F(z) = (f(z) - f(a»/(z - a), which is analytic on U \ {a}. 
Using the formula proved just before the statement of the theorem, 
the displayed formula is equivalent to the formula f-yF(z)dz = O. Let 
I>lt) = a + re2-rrit, 0:5 t:5 I, with r small enough so the disk of radius 
r around a is contained in U. Let n = W(-y, a). Since 
W(-y, P) = n' W(I>" P) for all P rt. U \ {a}, we know by Corollary 9.12 
that LF(z)dz=n'fa,F(z)dz, so it suffices to prove that 
lim,......ofa,F(z)dz = O. But by Exercise 9.23(b), F(z) has a limit as z 
approaches a, and the fact that fa,F(z)dz approaches zero as the ra
dius goes to zero follows easily (see Exercise B.8). 0 

The simplest form of Cauchy's formula is when -y is a circle about 
a. Since the right side of Cauchy's formula is expandable in a power 
series in a neighborhood of a, this implies in particular the fact that 
any analytic function is locally expandable in a power series. 

Exercise 9.25. (a) Let U be an open set containing two concentric 
circles and the region between them. For a in the region between the 
circles, show that 

f(a) = -l-f f(z) dz - -I-f f(z) dz 
27ri -y,Z - a 27ri -y,Z - a ' 

where "Ir and "I. are counterclockwise paths around the larger and 
smaller circle. (b) Deduce Riemann's theorem on removable singu
larities: if / is analytic and bounded in a punctured neighborhood of 
a point b, then/extends to an analytic function in a full neighborhood 
of b. 

A related application is to the general residue theorem. If / is an
alytic in a punctured neighborhood of a point a (i.e., in some U \ {a}, 
for U a neighborhood of a), the residue of f at a, denoted Resa(f), 
is defined by 

Resa(f) = ~ r f(z) dz , 
2m Ja 

where I> is a small counterclockwise circle around a. By the Cauchy 
integral theorem, this is independent of the circle chosen. 

Exercise 9.26. If/is given by a converging series L;=-m cn(z - ar in 
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a punctured neighborhood of a (i. e. ,f has at most a pole at a), show 
that Resa(f) = C-l. 

Theorem 9.27 (Residue Theorem). Iff is analytic in U\{al, ... ,ar}, 

and y is a closed I-chain in U \ {aI, ... , ar} such that W( y, P) = 0 
for all P not in U, then 

1 r 

-.!.f(z)dz = L W('Y,ai)·Resa,(f). 
2'7Tl "1 i=l 

Proof. Take disjoint small circles 8i around ai. Then, with ni = W('Y, ai), 
'Y and Ln,-8i have the same winding number around all points not in 
U \ {aJ, ... , arlo It follows from Corollary 9.12 that the integral of 
the closed I-form .f(z) dz around 'Y and around Lni8i gives the same 
answer. 0 

Problem 9.28. Extend the residue theorem to allow f to be analytic 
outside any discrete set S in U (i.e., each point in U has a neigh
borhood containing at most one point of S). 

Exercise 9.29. Suppose U is an (n + I)-connected open set as in the 
first section, with ~2 \ U = Al U ... U An U A"" and f is analytic on 
U; let lJi be the period of f(z) dz around Ai. Show that. for a closed 
chain 'Y on U, 

Exercise 9.30. Deduce the Cauchy Integral Theorem directly from 
the Residue Theorem. 

Suppose now fis meromorphic in U, i.e., near every point a in U 
one can write .f(z) = (z - at . h(z), with h analytic at a, h(a) oj:. 0, and 
m an integer. The order off at a, denoted orda(f), is defined to be 
this integer m. 

Exercise 9.31. Show that, withf and h as above, if 8 is the boundary 
of a disk about a such that h is nowhere zero in the disk, then 

orda(f) = W(fo 8, 0) . 

Theorem 9.32 (Argument Principle). Suppose f is meromorphic in 
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U, and 'Y is a closed I-chain in U not passing through any zero or 
poLe off, such that W( 'Y, P) = 0 for aLL P not in U. Then 

W(f°-Y,O) = 2: W(-y, a)' ordif) , 

where the sum is over the (finitely many) zeros or poLes a for which 
W( 'Y, a) ,., O. 

Proof. If {a" ... , ar} are the zeros and poles around which -y has 
a nonzero winding number (see Problem 9.28), take a small circle 8; 
around a; as in the proof of the Residue Theorem. Applying Propo
sition 6.15 to the mappingf: U \ {a" ... , ar}~ U' = C \ {O}, we get 
the formula W(f°-Y, 0) = ~~~, W(-y, a;)' W(f°8;, 0). D 

The following problems give the analytic interpretation, and a typ
ical application, of the Argument Principle: 

Problem 9.33. (a) If f is meromorphic at a, show that 

orda(f) = ResaC)· 

(b) Under the conditions of the Argument Principle, use the Res
idue Theorem to show that 

1 ff'(Z) - --dz 
21Ti 'I f(z) 

2: W(-y, a)' orda(f). 
a 

(c) Show directly that 

I ff'(Z) 
-. -dz = W(f0-Y,O) 
2m 'I f(z) 

by interpreting the integrand as d(log(f(z» = d(loglf(z)l) + i . d(arg(ftz», 
with loglftz)1 a well-defined function, and arg(f(z» the multivalued 
angle function. 

Problem 9.34. (a) Let U,f, and -y be as in the Argument Principle. 
If g is analytic function on U, show that 

~f g(z/'(z) dz = 2: W(-y, a)· g(a)· orda(f). 
2m 'I f(z) a 

(b) Suppose the restriction of f to a closed disk D around Zo in U 
is one-to-one, and let -y be the boundary of D. Show that the function 



136 9. Holes and Integrals 

that takes w to (l/21Ti) Lzj'(z)/(f(z) - w)dz defines an inverse func
tion to f in a neighborhood of f(zo). 

The following is Rouche' s theorem: 

Problem 9.35. Suppose the chain 'Y is homologous to zero in U, and 
suppose f and g are analytic functions in U such that 

if(z) - g(z)i < if(z)i + ig(z)i 

for all z in the support of 'Y. Show that 

2: W('Y, a)' orda(f) = 2: W('Y, a) . orda(g)· 
a a 

In particular, if the winding number of 'Y is 1 for points a in some 
region V, and the winding number is zero elsewhere, then f and g 
have the same number of zeros in V, counting multiplicities. 



CHAPTER 10 

Mayer-Vietoris 

lOa. The Boundary Map 

For open sets U and V in the plane (or any topological space) we will 
define a homomorphism 

iJ: HI(UUV) ~ Ho(UnV), 

called the boundary map.5 To do this we need a lemma. 

Lemma 10.1. If'Y is a I-cycle on V U V, there are I-chains 'YI on V 
and Y2 on V such that YI + Y2 is homologous to Y on U U V. 

Proof. We know from Lemma 6.4(b) that if a path is subdivided, it 
is homologous to the sum of the paths into which it is divided. By 
the Lebesgue lemma, each path occurring in "I can be subdivided so 
that the image of each piece is in U or in V. So "I is homologous to 
a sum 2. njTi> where each Tj is a path in U or in V (or both). Then "II 

can be taken to be the sum of those njTj for which Tj is a path in V, 
and "12 can be the sum of the others. 0 

Construction of the boundary map iJ: HI(U U V)~ Ho(U n V). Re
call that HI(U U V) = ZI(U U V)/BI(U U V) is the group of I-cycles, 

5 This symbol a is certainly overworked in this subject. So far we have used it for 
the boundaries of I-chains and for maps of rectangles. Rather than introducing dif
ferent notations for the different uses, we try for clarity by saying in each case to 
what sort of object the "iJ" is being applied. 

137 
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modulo the subgroup of I-boundaries, on U U V. And 
Ho(U n V) = Zo(U n V)/Bo(U U V) is the group of O-cycles modulo 
O-boundaries on un V. We will write ['y] for the homology class in 
HI (U U V) defined by a I-cycle 'V on U U V, and we write m in 
Ho(U n V) for the class defined by a zero cycle' on un V. 

Given a homology class IX in HI(U U V), by the lemma, we may 
choose a I-cycle that represents IX and has the form 'VI + 'V2' where 
'VI is a I-chain on U and 'V2 is a I-chain on V; in symbols, ['VI + 'V2] = IX. 
Since the boundary of this I-cycle is zero, we have a('VI) = -a(-y2). 
This O-cycle a('VI) = -a('V2) is a O-cycle on U and on V, so it is a 0-
cycle on unv. We define a:HI(UUV)-7Ho(UnV) by sending IX 
to the class of this O-cycle: 

a(IX) = a (['V I + 'V2]) = [a('VI)] = -[a('V2)]. 

Note that, although the zero cycle a('VI) = -a('V2) is a boundary on U 
and on V, it need not be a boundary on un V: 

The hardest part of our task is to show that this class [a'Vl] is well 
defined. 

Lemma 10.2. The class of a')'l in Ho(U n V) is independent of the 
choice of ')'1 and ')'2· 

Proof. Before giving the proof, we need a more canonical way to 
subdivide our I-chains, by cutting each one exactly in half. For any 
path 'V: [0,1]-7 U, define the I-chain S('V) by the formula S('V) = (J + T, 

where (J and T are the restrictions of 'V to the two halves of the in
terval, but rescaled as in Lemma 6.4(b). Extend this operator S lin
early to all I-chains 'V = 'i, ni'Vi by setting S('V) = 'i, niS('Vi). It follows 
from this definition that the boundary of the I-chain S('V) is the same 
as the boundary of 'V. 
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If r: [0, 1] X [0, 1] ~ U is a map of the unit square, we can simi
larly subdivide r into four pieces r O), r(2), r(3), and r(4) as indicated: 

n l ) nZ) 

Each restriction is rescaled to be a map from [0,1] x [0,1] to U. In 
formulas, 

r(I)(t, s) = r(lM, 1/2JS), r(Z)(t, s) = r(llz + 1/2/, 11zs) , 

r(3)(t, s) = r(llzt, liz + 1/2JS), r(4)(t, s) = [(1/2 + 1/2t, liz + 1/2JS). 

It is clear from the picture, and easy to verify from the formulas, that 
this subdivision is compatible with taking the boundary, i.e., 

scar) = ar(1) + ar(2) + ar(3) + a[<4) , 

the inside boundaries canceling as usual. 
Now we prove the lemma. Suppose the class a is also represented 

by the cycle 'YI' + 'Y2' for I-chains 'YI' on U and 'Y2' on V. Since both 
sums represent 'Y, we know that ('YI + 'Y2) - ('YI' + 'Yz') is a boundary 
on UU V, so we can write 

('YI + 'Y2) - ('YI' + 'Y2') = ~ njac 

for some maps r j from rectangles to U U V. We must show that 
[0'YI] = [0'YI'] in Ho(U n V), i.e., that O"YI - l1"YI' is a boundary of some 
I-chain on un v. We apply the subdivision operator S to each side 
of the displayed equation. On the left, each of the four I-chains is 
replaced by another with the same support and the same boundary. 
On the right, each ac is replaced by a sum of the boundaries of the 
four subdivisions of C. SO we have an equation of the same form, 
but with all the C's cut into quarters. The operator S can be applied 
again, which subdivides each of these quarters into quarters, and so 
on, dividing the smaller squares into quarters. When applied p times, 
we have an equation 

SP('YI)+SP('Y2)-SP('Y)')-SI'('Yz') = ~njSP(or). 

By the Lebesgue lemma, the restrictions of r j to small enough por
tions of the rectangles must be mapped into U or into V. It follows 
that for some large p the right side of this equation can be written in 
the form T) + Tz, where T) is a I-boundary on U and T2 is a I-boundary 
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on V. This gives an equation of I-chains: 

SP('Yl) - SP('Yl') - 71 = SP('Y2') - SP('Y2) + 72. 

The left side is a I-chain on U, the right side a I-chain on V, so the 
I-chain they define is a I-chain on un V. And the boundary of this 
chain is 

a(SP('Yl) - SP('Yl') - 71) = a'Yl - a'Yl' - a71 = a'Yl - a'Yl' , 

which shows that a'Yl - a'Yl' is a O-boundary on un V, and completes 
~~~ 0 

Lemma 10.3. The boundary operator a: H 1(UU V)~Ho(Un V) is a 
homomorphism of abelian groups. 

Proof. This follows readily from the definition. For if a is represented 
by 'Yl + 'Y2, and a' is represented by 'Yl' + 'Y2', with 'Yl and 'Yl' I-chains 
on U and 'Y2 and 'Y2' I-chains on V, then a ± a' is represented by 
('Yl ± 'Yl') + ('Y2 ± 'Y/), so 

a(a ± a') = [a('Y1 ± 'Yl')] = [a('Yl)] ± [a('Yl')] = aa ± aa'. 0 

lOb. Mayer-Vietoris for Homology 

If U1 C u2 , we saw in Chapter 6 that there are homomorphisms from 
HOU1 to HOU2 and from H1U1 to H1U2. Given two open sets U and V 
we therefore have a diagram 

HP 

/~ 
a - Ho(UnV) 

The Mayer-Vietoris story gives the relations among all these groups 
and homomorphisms. This can be described in a series of assertions, 
moving from right to left in the diagram. 

MV(i). Any element in Ho(U U V) is the sum of the images of an ele
ment in HoU and an element in HoV. 
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Proof. Any O-chain that represents an element in Ho(U U V) can be 
written as a sum of a O-chain in U and a O-chain in V. 0 

MV(ii). An element in HoU and an element in HoV have the same 
image in Ho(U U V) if and only if they come from some element in 
Ho(Un V). 

Proof. Let b and c be O-chains representing elements in HoU and H 0 V. 
If they have the same image in Ho(U U V), there is a I-chain 'Y on 
U U V with a'Y = b - c. By subdividing the paths in 'Y to be suffi
ciently small, so that the image of each subdivided path is contained 
in U or in V, we may find I-chains 'YI on U and 'Y2 on V so that 
a('Y1 + 'Y2) = a'Y. Then b - a'Yl = c + a'Y2, and the left side of this is a 
O-chain on U, and the right side is a O-chain on V, so 
a = b - a'Yl = c + a'Y2 is a O-chain on un V. Since a is homologous 
to b on U and to c on V, the class in Ho(U n V) represented by a maps 
to the classes represented by b in HoU and c in HoV. The converse 
is immediate from the definitions. 0 

MV(iii). An element in Ho(U n V) maps to zero in HoU and in HoV 
if and only if it is the image by a of some element in HI(U U V). 

Proof. We saw during the definition of the boundary a that a bound
ary always has this form. Conversely, if ~ = a'Yl and ~ = a'Y2 for I-chains 
'YI on U and 'Y2 on V, then m = a(a), where a is the class represented 
by the I-cycle 'YI - 'Y2· 0 

MV(iv). An element in H 1CU U V) maps to zero in HoCU n V) if and 
only if it is the sum of an element coming from HI U and an element 
coming from HIV. 

Proof. If a = hi + 'Y2] for some I-cycle 'YI on U and some I-cycle 
'Y2 on V, we may take 'YI and 'Y2 for the I-chains in the definition of 
the boundary, so a(a) = [a'Yd = O. Conversely, if a is in the kernel 
of a, and we write a = hi + 'Y2], with 'Yi as in the definition of the 
boundary, then a'Yl = -a'Y2 is a O-boundary on un V, so a'Yl = aT for 
some I-chain T on un V. Therefore, 

a = [('YI - T) + ('Y2 + T)], 

and 'YI - T is a I-cycle on U and 'Y2 + T is a I-cycle on V. 0 

MV(v). An element in HIU and an element in HIV have the same 
image in HI(U U V) if and only if they come from some element in 
HI(Un V). 
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Proof. Let 13 and "I be I-cycles on U and V representing the two 
elements. If they have the same image in HI(U U V), there is an equa
tion 

13-"1 = LniaC 

for some maps C from [0, 1] x [0, 1] to U U V. We apply the sub
dividing operator S, which was introduced in the proof of Lemma 
10.2, to this equation. As in that lemma, if S is applied sufficiently 
many times, the images of the subdivided rectangles will be contained 
in U or in V, and we will have an equation 

SPI3 - SP'Y = L niSP(aC) = 81 + 82 , 

where 81 is a I-boundary on U and 82 is a I-boundary on V. Lemma 
6.4(b) proves that S takes a I-cycle to a I-cycle that is homologous 
to it. So snl3 - 81 = SP'Y + 82 is a I-cycle on un V that is homologous 
to 13 on U and to "I on V, as required. Again, the converse is 
obvious. 0 

In the case of open sets in the plane, there is one more assertion 
that completes the Mayer-Vietoris story. 

MV(vi). If U and V are open subsets of the plane, an element in 
HI (U n V) is zero if and only if its images in HI U and in HI V are 
zero. 

Proof. If "I is a I-cycle representing the element in HI (U n V), if its 
images are zero in HIU and HIV, then the winding number W('Y,P) 
is zero for all P not in U and all P not in V. This means that W( "I, P) 
vanishes for all P not in un V, and by Theorem 6.11 this implies 
that "I is homologous to zero on un V. 0 

Exercise 10.4. If HI U = ° and HI V = 0, show that the kernel of a is 
zero. If in addition un V is connected, show that HI(U U V) = 0. 

Exercise 10.5. If U and V are connected, show that the image of a 
consists of all classes in Ho( un V) of degree zero. 

Exercise 10.6. Show that if U and V are connected, and HI(U U V) = 0, 
then un V is also connected. 

Exercise 10.7. If un V is connected, and HI(U n V) = 0, show that 
HI (U U V) is isomorphic to the direct sum of HI U and HI V. 

Exercise 10.S. If the homomorphism from HI(Un V) to HIV is in-
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jective, show that the homomorphism from HIU to HI(U U V) is also 
injective. 

Exercise 10.9. Suppose A and B are disjoint closed subsets in a space 
X, and HIX = O. Show that if X \ A and X \ B are path-connected, then 
X \ (A U B) is also path-connected. 

Let us use Mayer-Vietoris to work out an example. We start with 
a familiar situation, with U and V as simple as possible, which arises 
when we take the union of two open sets each diffeomorphic to disks. 

Suppose U and V are connected, with HI U = 0 = HI V. Suppose un V 
has m;::: 1 connected components. We claim that HI(U U V) is a free 
abelian group with m - 1 generators. By MV(iv), the boundary map 
iJ is injective. and by MV(iii), the image of iJ consists of elements of 
Ho(U n V) that restrict to zero in HoU = lL and HoV = lL. Now Ho(U n V) 
is the free abelian group on the m connected components of U n v. 
so the image of iJ is the kernel of the homomorphism from this free 
abelian group to 7L that maps each component to 1. It is easy to see 
that this kernel is the free abelian group on m - 1 generators, which 
completes the proof. For example, if the components of un V are 
numbered WI> ...• Wm • and ei is the class that puts coefficient 1 in 
front of Wi' -1 in front of Wi+1> and 0 in front of the other com
ponents, then the classes el> ••. , em-I form a basis for this kernel. 

In particular, this recovers the fact that if U is the complement of 
a point, then HIU = 7L. 

Exercise 10.10. Use Mayer-Vietoris to recover the fact that, if U is 
the complement of n points in the plane, then HIU is a free abelian 
group with n generators. Show that small circles around each of the 
points gives a basis for HIU. 
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lOco Variations and Applications 

The assertions of the Mayer-Vietoris story can be put in fancy lan
guage (but with no change in content) as follows. Define, for k = 0 
and k = 1, a homomorphism 

+ : HkU(J)HN ~ Hk(UU V) 

that takes a pair (13, -y) to the sum of the image of 13 and the image 
of -y in HiUU V). In this language, MV(i) says that this homomor
phism from HoUffiHoV~Ho(UUV) is surjective. Similarly, define 
a homomorphism 

- : Hiun V) ~ HkU(J)HkV 

that sends a class IX to the pair (13, --y), where 13 is the image of IX 

in HkU and -y is the image of IX in HN. Assertion MV(ii) says that 
the image of this homomorphism from Ho( U n V) to HoU (J) Ho V is the 
kernel of the homomorphism from HoU(J)HoV to Ho(UU V). 

Given a sequence . . . ~ An- 1 ~ An ~ An+ 1 ~ • • • of abelian groups 
and homomorphisms between them, the sequence is called exact at 
An if the kernel of the map from An to An+ 1 is equal to the image of 
the map from An- 1 to An. The sequence is called exact if it is exact 
at every group in the sequence. For example, the exactness of a se
quence A~B~O (at B) means precisely that the map from A to B 
is surjective, and the exactness of O~ A ~ B (at A) means that the 
map from A to B is injective. Assertions MV(i)-MV(vi) can be sum
marized in the 

Theorem 10.11 (Mayer-Vietoris Theorem for Homology). For any 
open sets U and V of a topological space, the sequence 

H1(Un V)~HIUffiHIV~HI(UU V) 

~Ho(Un V)~HoU(J)HoV~Ho(UU V)~O 

is exact. If U and V are open subsets of the plane, the sequence 

O~Hl(Un V)~HIUffiHIV~HI(UU V) 

~Ho(Un V)~HoUffiHoV~Ho(UU V)~O 

is exact. 

Exercise 10.12. Verify that the exactness of the Mayer-Vietoris se
quence at each term is indeed equivalent to the assertions MV(i)
MV(vi). 
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Exercise 10.13. Suppose A and B are disjoint closed subsets in the 
plane. Use Mayer-Vietoris to construct an isomorphism 

H I(lR2 \ (A U B» == HI(lI~? \ A) Ee H I(lR2 \ B). 

Show that the number of connected components of 1R2 \ (A U B) is one 
less than the sum of the numbers of connected components of 1R2 \ A 
and of 1R2 \ B. Generalize to any finite number of disjoint closed sub
sets. 

Exercise 10.14. Let U be an open subset of the plane, and K a com
pact subset of U. Show that H I(U\K)==HIUEeHI(1R2 \K). If K has 
n connected components, recover the isomorphism HI (U \ K) == HI U Ee 7Ln 

of Problem 9.9. 

Exercise 10.15. If X is a finite graph (see Problem 5.21) with v ver
tices and e edges, and X has k connected components, show that HIX 
is a free abelian group with e - v + k generators. 

Exercise 10.16. If X is a finite graph in the plane with k connected 
components, show that H I(1R2 \ X) is a free abelian group with k gen
erators. 

Problem 10.17. For any nonempty space X, we considered in §9a 
the degree homomorphism deg: Hr)( ~ 7L that takes the class of a zero 
cycle 'in;?; to t!le sum 'in; of the coefficients. The reduced Oth ho
mology group Hr)( of a space X is definectto be the kernel of this 
J!!.ap. So X is path-connected if and only if Hr)( is zero. (a) Show that 
Hr)( is a free abelian group with rank one less that the number of 
path-connected components of X. (b) Show that, if un V is not empty, 
there is an exact sequence 

HI(Un V)~HIU(f)HIV~HI(UU V) 
a- -- -+-~Ho(Un V)~HoUEeHoV~Ho(UU V)~O. 

This often simplifies computations, since the groups involved are a 
little smaller. 

Problem 10.1S. Let U be a connected open set in S2, and let X be a 
subset of S2 homeomorphic to a closed interval such that all of X 
except for the endpoints is contained in U. Show that U \ X is dis
connected if and only if the endpoints of X lie in the same connected 
component of S2 \ U. 

Problem 10.19. If X is an open set in the plane, and Hr)( and HIX 
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have finite ranks, the Euler characteristic of X, denoted X(X), is de
fined by 

x(X) = rank(HoX) - rank(H1X). 

Suppose U and V are open sets in the plane, and three of the four 
open sets U, V, un V, and U U V have homology of finite ranks. 
Show that the fourth does also, and that 

x(U U V) + X(U n V) = X(U) + X(V)· 

Using the Mayer-Vietoris theorem, homology groups can be used 
instead of cohomology to prove the Jordan Curve Theorem: 

Problem 10.20. With U and Vas in the proof of Theorem 5.10, show 
that the image of the boundary map 

a:H1(UUV)=H1(1R2 \{P,Q}) ~ Ho(UnV)=Ho(lR2 \X) 

is free with one generator, and deduce that HO(1R2 \X) is a free abelian 
group with two generators, so the complement of X has two connected 
components. Similarly with U and Vas in the proof of Theorem 5.11, 
show that the image of a is zero, and deduce that HO(1R2 \ Y) is a free 
abelian group with one generator, so 1R2 \ Y is connected. 

The following are some complements to the Jordan Curve Theorem 
that can be proved by combining Mayer-Vietoris with Corollary 9.4 
or Problem 9.9: 

Problem 10.21. A compact set K of an open set U is said to separate 
two points if they belong to different connected components of U \ K. 
Prove the following version of "Alexander's Lemma": If Y and Z are 
compact subsets of U, with Y n Z connected, and P and Q are two 
points in U \ (Y U Z) that are not separated by Y or by Z, then they 
are not separated by Y U Z. 

Problem 10.22. Let X be a subset of the plane homeomorphic to a 
circle, P a point on X, and D a disk centered at P. Let A be an open 
arc of X containing P and contained in D, and let B be the comple
mentary closed arc. Let E be a disk centered at P that doesn't meet 
B. Show that if two points in E are not separated by X, then they can 
be connected by a path in D \ X. 

Problem 10.23. Let X be a subset of the plane homeomorphic to a 
circle, U a connected component of the 1R2 \ X. Show that, for any 
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E > 0, there is a 8> 0 such that any two points of V within distance 
8 of each other can be connected by a path in the intersection of V 
with a disk of radius E. Note that this is false when X is homeo
morphic to an interval. 

Problem 10.24. Let X be a subset of the plane homeomorphic to a 
circle, P a point on X, and Q a point not on X. Show that there is a 
path 'Y: [0, l]~ ~2 with 'Y(O) = Q, 'YO) = P, and 'Y(t) ft X for 0 ~ t < 1. 

Problem 10.25. Suppose Y and Z are compact, connected subsets of 
an open set V, and Y n Z has n connected components. (a) Show that 
V \ (Y U Z) has at least n connected components. (b) If V \ Y and V \ Z 
are connected, show that V \ (Y U Z) has exactly n connected com
ponents. 

IOd. Mayer-Vietoris for Cohomology 

The Mayer-Vietoris story for cohomology is similar to-in fact, dual 
to-that for homology. If V' is an open subset of a plane open set 
V, the restriction of I-forms from V to V' takes closed forms on V 
to closed forms on V', and exact forms on V to exact forms on V', 
so we have a linear map of vector spaces 

HI(U)~HI(V'). 

There is also a linear map lfJ(U)~ lfJ(U') that takes a locally constant 
function on V to its restriction to U'. If U and V are open sets in the 
plane, we therefore have a diagram 

HOV HIV 

HI(VUV) HI(VnV) 

H1V 

where the maps in each diagram are determined by restrictions, and 
8 is the coboundary map defined in Chapter 5. The Mayer-Vietoris 
story for De Rham cohomology, for open sets in the plane, is the 
combination of six assertions: 
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MV(i). An element in If(UU V) maps to zero in lfu and in lfv if 
and only if it is zero. 

MV(ii). An element in lfu and an element in lfv have the same 
image in If( u n V) if and only if they come from some element in 
If(UU V). 

MV(iii). An element in If(U n V) maps to zero in Hl(U U V) if and 
only if it is the difference of an element coming from lfu and an 
element coming from lfv. 

MV(iv). An element in HI(UU V) maps to zero in HIU and HIV if 
and only if it is the image by {) of an element in If(U n V). 

MV(v). An element in HIU and an element in HIV have the same 
image in HI(U n V) if and only if they come from some element in 
HI(UU V). 

MV(vi). Any element in HI(U n V) is the difference of an element 
coming from HIU and an element coming from HIV. 

Of these, MV(i) and MV(ii) are straightforward exercises, and 
MV(iii) and MV(iv) are Propositions 5.7 and 5.9. We prove the non
trivial assertion in MV(v). Given closed I-forms a on U and ~ on V, 
such that there is a function f on U n V with a - ~ = df on U n V, we 
must construct a closed I-form w on U U V that differs from a by an 
exact form on U, and from ~ by an exact form on V. That is, we 
want functions fl on U and f2 on V such that 

a-dfl = ~-df2 
on un V. In other words, we want dfl - df2 = df. So it will be enough 
to find fl and f2 so that fl - f2 = f on U n V. The existence of such f 
follows from Lemma 5.5. 

The last case, MV(vi), however is not so obvious. We postpone 
the proof until Chapter 15, where we make rigorous the "duality" 
between homology and cohomology. With this duality, in fact, all six 
assertions for cohomology will be seen to follow from the six asser
tions for homology. D 

The cohomology version of Mayer-Vietoris also has its concise 
expression as an exact sequence. Define linear maps 

+ : Jt(UUV) ~ HkUffiHkV 
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by sending a class to the pair consisting of the restrictions of the class 
to each open set. Define linear maps 

- : HkU~HkV ~ H\Un V) 

by taking a pair (WI, W2) to the difference wdunv - w21unv of its re
strictions. As in the case for homology, the assertions MV(i)-MV(vi) 
are equivalent to the exactness of a sequence: 

Theorem 10.26 (Mayer-Vietoris Theorem for Cohomology). For any 
open sets U and V in the plane, the sequence 

o~I-f(UU V)~I-fU(fJI-fv~I-f(Un V) 

.3,.HI(UU V)~HIU(fJHlv~HI(Un V)~O 

is exact. 

It is probably worth remarking that the choice of signs "+" and 
"-" in both the homology and cohomology versions of Mayer-Vie
toris is perfectly arbitrary; those we have chosen will be convenient 
later. 

The following two exercises use Mayer-Vietoris for cohomology, 
including MV(vi), to strengthen some facts we saw in Chapter 9: 

Exercise 10.27. Suppose A and B are disjoint closed subsets in the 
plane. Use Mayer-Vietoris to construct an isomorphism 

HI(~2\(AUB» == HI(~2\A)EBHI(~2\B). 

Generalize to the complement of any finite number of disjoint closed 
subsets. 

Exercise 10.28. If K is a compact subset of an open set U, and K 
has n connected components, construct an isomorphism 

HI(U\K) == HIU(fJIR\ 

where the maps to the second factor are given by periods around the 
components of K. 

Exercise 10.29. If U is not empty, define ifu to be the quotient 
space I-fu fIR of the locally constant functions on U by the subspace 
of constanl functions. This is called the reduced Oth cohomology group. 
So dim(I-fU) = dim(I-fU) - 1, and U is connected exactly when 
ifu is zero. Show that, if un V is not empty, there is an exact 
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sequence 

0->.> jjJ(UU V)~ jjJUffijjJV~jjJ(U n V) 

~Hl(UU V)~H1U(f)H1V~Hl(Un V)->.>O. 

The result in the following problem was proved by Brouwer: 

Problem 10.30. Let K be any compact connected subset of 1R2, U a 
connected component of 1R2 \ K. Show that the boundary au of U is 
connected. Is the same true if K is only closed and connected in 1R2? 



PART VI 

COVERING SPACES AND 
FUNDAMENTAL GROUPS, I 

In Chapter 11 we introduce the notion of covering maps, which are 
generalizations of the polar coordinate mapping, and study their basic 
properties. Facts about lifting paths and homotopies will generalize 
what we saw for this special case, which amounted to the basic prop
erties of winding numbers. Many coverings, including the polar co
ordinate mapping, are examples of G-coverings, arising from an ac
tion of a group G on a space, and we emphasize those that arise this 
way. 

We have studied closed paths, and seen that homotopic paths have 
similar properties. In Chapter 12 we formally introduce the funda
mental group, which is the set of homotopy equivalence classes of 
closed paths starting and ending at a fIxed point, the equivalence given 
by homotopy. In the last section we see how it is related to the fIrst 
homology group. 



CHAPTER 11 

Covering Spaces 

lla. Definitions 

If X and Y are topological spaces, a covering map is a continuous 
mapping p: Y ~ X with the property that each point of X has an open 
neighborhood N such that p-l(N) is a disjoint union of open sets, each 
of which is mapped homeomorphic ally by ponto N. (If N is con
nected, these must be the components of p -1(N).) One says that p is 
evenly covered over such N. Such a covering map is called a covering 
o/X. 

An isomorphism between coverings p: Y ~ X and p': Y' ~ X is a 
homeomorphism 'P: Y ~ Y' such that p' 0 'P = p. A covering is called 
trivial if, in the definition, one may take N to be all of X. Equiva
lently, a covering is trivial if it is isomorphic to the projection of a 
product X x T onto X, where T is any set with the discrete topology 
(all points are closed). So any covering is locally trivial. 

153 
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The first nontrivial covering is the mapping p: IR--+Sl given by 
p({}) = (cos(2'IT{}), sin(2'IT{}»: 

( . ) ( . ) ( . ) ( . ) p 

or in a vertical picture: 

We saw in Chapter 2 that the polar coordinate mapping 

p : {(r, {}) E 1R2: r> O} --+ 1R2 \ {(O, O)} 

o 

given by p(r, {}) = (r cos(tt), r sin( {})), is a covering. Another is the 
mapping Pn: Sl--+ Sl, for any integer n ~ 1, given by 

(cos(2'IT{}), sin(2'IT{}» ~ (cos(2'ITn{}), sin(2'ITn{})), 

or, using complex numbers, by z--+ zn; this can be visualized by join
ing the loose ends in the last picture. 

Exercise 11.1. Show that the following are covering maps, where 
C* = C \ {O} is the group of nonzero complex numbers: (i) the nth 
power mapping C* --+ C*, z--+ z"; and (ii) the exponential mapping 
exp: C--+ C*. 

Exercise 11.2. Let p: Y --+ X be a covering. If X' is any subspace of 
X, verify that the restriction Y' = p-l(X')--+X' is a covering. 

Exercise 11.3. If p: Y --+ X is a covering of an open subset X in the 
plane, show that Y can be given the structure of a differentiable sur
face in such a way that p is a local diffeomorphism. The components 
V of p-l(N), for N a connected open set in X over which the covering 
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is trivial, together with the homeomorphisms of N with V given by 
the inverse of p, give charts covering Y. Similarly, any covering of 
any manifold has a natural manifold structure. 

Exercise 11.4. Show that if X is connected, all fibers of a covering 
Y ~ X have the same cardinality. 

When each p-l(X) has cardinality a finite number n, the covering 
is called an n-sheeted covering. It should be emphasized, however, 
that one cannot distinguish n different "sheets," unless the covering 
is trivial. 

If p: Y~X is a covering, andf:Z~X is a continuous mapping, 
a continuous mapping 1: Z ~ Y such that poI = f is called a lifting 
off, 

In the next section we will discuss the question of whether such lift
ings exist. The following lemma discusses uniqueness: if Z is con
nected, a lifting is determined by where it maps anyone point. 

Lemma 11.5. Let p: Y~X be a covering, and let Z be a connected 
topological space. Suppose 11 and 12 are continuous mappings from 
Z to Y such that po 11 = P 012' If 11 (z) = 12(z) for one point z in Z, 
then 11 = 12' 

Proof. It suffices to show that the set in Z where the mappings agree 
is open, and its complement where they disagree is also open. If w 
is in the set where they agree, take a neighborhood N of po j;(w) that 
is evenly covered by p. Let p-l(N) be a disjoint union of open sets 
Nex , with each Nex , mapped homeomorphically to N by p. By conti
nuity, 11 and 12 must map a neighborhood V of w into the same Nex , 
and since po 11 = P 012, 11 and 12 must agree on V. Similarly, if w is 
in the set where the mappings do not agree, 11 and 12 must map a 
neighborhood V of w into two different (and hence disjoint) Nex's, so 
they disagree on V. 0 
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11 b. Lifting Paths and Homotopies 

The work we did in studying the winding number will be abstracted 
and formalized in the following propositions. In §2a we saw that de
fining an angle function amounted to lifting a closed path -y in 1R2 \ {O} 
to a path 'Y in the right half plane so that the composite of 'Y with the 
polar coordinate covering p is the given path -y; the difference in sec
ond coordinates of 'Y from start to end is then the change in angle 
along -y . We will now see that this is a general property of covering 
spaces. 

Proposition 11.6 (Path Lifting). Let p: Y~X be a covering, and let 
y: [a,b]~X be a continuous path in X. Let y be a point of Y with 
p(y) = y(a). Then there is a unique continuous path y: [a, b] ~ Y such 
that yea) = y and po YCt) = yet) for all t in the interval [a, b]. 

Proof. The uniqueness comes from Lemma 11.5. When the covering 
is trivial, the proposition is obvious: there is a unique component of 
Y that contains y and maps homeomorphically to the component of X 
that contains -y([a, b]), and one must simply lift the path to that com
ponent using the inverse homeomorphism. For the general case, we 
apply the Lebesgue lemma (Appendix A) to the open sets -y-I(N), 
where N varies over open sets in X that are evenly covered by p. This 
gives a subdivision a = to:5 ... :5 tn = b such that each -y([I;_1> til) is 
contained in some open set that is evenly covered by p. By the trivial 
case, there is a lifting of the restriction of -y to [to, t l ], giving a path 
in Y from y to some point YI' Similarly, there is a lifting of the re
striction of -y to [tl> t2] that starts at YI; and one proceeds in n steps 
until one has lifted the whole path. 0 

It follows in particular that the final point 'Y(b) of the lifting is de
termined by -y and by the initial point Y . We denote this point by Y * -y , 
so 

y*-y = 'Y(b). 

If this is applied to the polar coordinate covering, and y = (ro, 1}0) and 
y * -y = (rl> 1} I) are the initial and final points of the lifting of a path 
-y, then the difference 1}1 -1}0 is the total change of angle along -y. 

Exercise 11.7. Verify this last statement. 

One consequence of the path-lifting proposition is the fact that any 
covering of an interval must be trivial. 
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The fact that homotopic paths in ~2 \ {O} with the same endpoints 
have the same total change of angle around zero is equivalent to the 
fact that their liftings are homotopic. This too is a general fact about 
coverings. 

Proposition 11.8 (Homotopy Lifting). Let p: Y---+X be a covering, 
and let H be a homotopy of paths in X, i.e., H: [a,b] X [0, 1]---+X is 
a continuous mapping. Let 'Yo(t) = H(t, 0), a:S t :s b, be the initiaipath. 
Suppose 'Yo is a lifting of 'Yo.Jhen there is a unique lifting H of H 
wh~e initialpa!..h is 'Yo, i.e., H: [a,b] X [0, 1]---+Yis continuous, with 
poH =H and H(t, 0) = 'Yo(t), a:S t:s b. 

Proof. The proof is very much the same as for Proposition 11.6. First 
apply the Lebesgue lemma to know that there are subdivisions 
a = to < tl < ... < tn = b and 0 = So < Sl < ... < Sm = 1 so that if RiJ 
is the rectangle [ti- lo til X [Sj-lo sJ, then eac!!.H(Ri) is contained in an 
evenly covered open set. Then the lifting H is constructed over each 
piece RiJ' say first working across the bottom row, lifting the restric
tion of H to RI,lo R2,lo ' .. , Rn,lo then doing the same for the next 
row R I ,2, R2,2, .• , , Rn,2, and so on until the entire rectangle has been 
covered. 0 

If H is a homotopy of paths from x to x' in X, i.e" H(a, s) = x and 
H(b, s) = x' for allO:S s:S 1, and if.:yo is a path from y to y', then the 
lifted homotopy H is a homotopy of paths from y to y', (The fact that 
H is constant on the sides of the rectangle is guaranteed by the unique
ness of the lifting of the restriction of H to these sides.) In particular, 
if H is a homotopy from 'Yo to 'Y lo then 

y * 'Yo = Y * 'YI . 

For the polar coordinate mapping, this is the preceding assertion about 
homotopic paths having the same change of angle. 

Exercise 11.9. Use the homotopy lifting proposition to show that 
homotopic closed paths in [R2 \ {O} have the same winding number. 
(The paths in the homotopy are assumed to be closed, but the end
points can vary during the homotopy.) 

Exercise 11.10. Use the homotopy lifting proposition to prove that 
any covering of a rectangle (closed or open) must be trivial. Deduce 
the same for any space homeomorphic to a rectangle, such as a disk. 

Exercise 11.11. Suppose p: Y ---+ X is a covering map, with X a locally 
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connected space (any neighborhood of a point contains a connected 
neighborhood of the point). (a) Show that X is a union of connected 
open sets N such that each connected component of p-I(N) is mapped 
homeomorphic ally by ponto N. (b) Let Y' be a connected component 
of Y. Show that image X' = p(Y') is a connected component of X, and 
the restriction Y' ~ X' is a covering map. 

Exercise 11.12. Suppose p: Y ~ X and p': Y' ~ X are covering maps, 
and 'P: Y ~ Y' is a continuous map such that p' 0'P = p. Suppose X, 
Y, and Y' are connected, and X is locally connected. Show that 'P is 
a covering map. 

Exercise 11.13. If p: S' ~ S is an n-sheeted covering, and S is a com
pact surface, show that S' is also a compact surface. Show, using 
vector fields and/or triangulations, that the Euler characteristic of S' 
is n times the Euler characteristic of S. If Sand S' are spheres with 
g and g' handles, show that g' = ng - n + I. 

Exercise 11.14. Let X be the space that consist of two circles A and 
B joined at a point P. Let Y be a space that is two circles and four 
half-circles, joined as shown, and let p: Y ~ X be mapping that takes 
each piece of Y to the correspondingly labeled piece of X as indicated: 

A 

Show that p is a three-sheeted covering. Let -y be the path in X, start
ing at P, that goes first around the circle A counterclockwise, then 
around B counterclockwise, then around A clockwise, then around B 
clockwise. Find the three liftings of -y. Deduce that -y is not homotopic 
to the constant path at P. Use this to solve Problem 9.14. 

lIe. G-Coverings 

Many important covering spaces arise from the action of a group G 
on a space Y, with X the space of orbits. Recall that an action of a 
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group G on Y (on the left) is a mapping G x Y~Y, (g,y)~g.y, 
satisfying: 

(1) g. (h· y) = (g. h) . y for all g and h in G and y in Y; 
(2) e· y = y for all y in Y, where e is the identity in G; and 
(3) the mapping y ~ g . y is a homeomorphism of Y for all g in G. 

In other words, G defines a group of homeomorphisms of Y. Two 
points y and y' are in the same orbit if there is an element g in G 
that maps one to the other: y' = g. y. Since G is a group, this is an 
equivalence relation. Let X = Y /G be the set of orbits, or equivalence 
classes. There is a projection p: Y ~ X that maps a point to the orbit 
containing it. The space X is equipped with the quotient topology 
(i.e., a set U in X is defined to be open when p-l(U) is open in Y). 

Exercise 11.15. (a) The group 71. acts on IR by translation: n· r = r + n. 
Show that the quotient IR~ 1R/71. can be identified with the covering 
map from IR to Sl described in the first section. 

(b) Show that the polar coordinate covering map is the quotient of 
the right half plane by a 7l.-action. 

(c) The group G =1J-Ln of nth roots of unity (which is a cyclic group 
of order n) in C acts by multiplication on Sl, regarded as the complex 
numbers of absolute value 1. Compare the quotient map with the cov
ering Pn: Sl ~ Sl described in § 11 a. 

For another example, the group with two elements acts on the 
n-sphere with the nontrivial element taking a point to its antipodal 
point; i.e., G = {± 1} == 7l./2Z acts on Sn, with ±1 . P = ±P. The quo
tient space is the real projective space IRlPn, and the quotient mapping 
Sn~ IRlPn is a two-sheeted covering. 

We say that G acts evenl/ if any point in Y has a neighborhood V 
such that g . V and h . V are disjoint for any distinct elements g and h 
in G. 

Exercise 11.16. The group j.Ln of nth roots of unity acts on C by 

6 The standard tenninology for the notion we are calling "even" is the mouthful 
"properly discontinuous." The word "discontinuous" does not mean that anything 
is not continuous or otherwise badly behaved; it means that the orbits are discrete 
subsets of Y. The word "properly" refers to the fact that every compact set only 
meets finitely many of its translates. If this were not bad enough, the use of "prop
erly discontinuously" in the literature is inconsistent, in that often it is only required 
that each point have a neighborhood V such that at most finitely many translates 
g. V of V can intersect. In this case the word "freely" is added, so our "evenly" is 
then "freely and properly discontinuously." 



160 11. Covering Spaces 

multiplication. Show that the action is not even, but that the action 
on the open subset C* = C \ {O} is even. 

Lemma 11.17. If a group G acts evenly on Y, then the projection 
p: Y~Y/G is a covering map. 

Proof. The map p is continuous, and open since for V open in Y, the 
set p-l(p(V)) is the union of open sets g' V, g E G. If V is taken as 
in the definition of an even action, then this union is a disjoint union. 
It is enough to prove that for such V, the mapping from each g . V to 
p(V) induced by p is a bijection, for then it follows that p is evenly 
covered over p(V). This is a straightforward verification: since 
p(g' y) = pry) for y in V, it is surjective; if p(g' YI) = p(g' Y2), there 
is some h in G with h· g . YI = g . Y2, and the fact that the action is 
even implies that h is the identity. 0 

A covering p: Y ~ X is called a G-covering if it arises in this way 
from an even action of G on Y. An isomorphism of G-coverings is 
an isomorphism of coverings that commutes with the action of G; i.e., 
an isomorphism of the G-covering p: Y ~ X with the G-covering 
p': Y' ~ X is a homeomorphism <p: Y ~ Y' such that p' 0 <p = p and 
<p(g' y) = g' <p(y) for g in G and Y in Y. The trivial G-covering of X 
is the product X X G ~ X, where G acts by (left) multiplication on 
the second factor. 

Lemma 11.1S. Any G-covering is locally trivial as a G-covering, 
i.e., if p: Y~X is a G-covering, then any point in X has a neigh
borhood N such that the G-covering p-l(N)~N is isomorphic to the 
trivial G-covering N x G~ N. 

Proof. In fact, if N = p(V) as in the proof of Lemma 11.17, such a 
local trivialization is given by 

p-l(N) :3 g' v ~ p(v) X g E N x G. 0 

Exercise 11.19. Verify that the actions described in Exercise 11.15 
are all even. Show that the action of 7l..n on IRn by translation is even. 
Identify the quotient IRn /7l..n with the n-dimensional torus 
(sl)n = Sl X ... X Sl. 

Exercise 11.20. Show that any two-sheeted covering has a unique 
structure of G-covering, where G = 7l../27l.. is the group of order two. 

Exercise 11.21. Show that the three-sheeted covering of Exercise 11.14 
is not a G-covering. 
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Exercise 11.22. A section of a covering p: Y ~ X is a continuous 
mapping s: X ~ Y such that po s is the identity mapping of X. Show 
that if a G-covering has a section, then the covering is a trivial 
G-covering. 

Exercise 11.23. If p: Y ~ X = Y /G is a G-covering that is trivial as 
a covering, show that it is isomorphic to the trivial G-covering. 

Exercise 11.24. Letp: Y~X= Y/G be a G-covering, and let 'PI and 
'P2 be isomorphisms of G-coverings from Y to Y. If X is connected, 
and 'PI and 'P2 agree at one point of Y, show that 'PI = 'P2. 

Exercise 11.25. Let G be the subgroup of the group of homeomor
phisms of the plane to itself generated by the translation (x, y) ~ (x + 1, y) 
and by the mapping (x, y) ~ ( - x, y + 1). Show that this action of G 
on ~2 is even, and identify the quotient ~2 /G with the Klein bottle. 

Exercise 11.26. Let G be the subgroup of the group of homeomor
phisms of the plane to itself generated by the translation 
(x, y) ~ (x + 1, -y). Show that this action is even, and identify the 
quotient with a Moebius band. 

Exercise 11.27. If G acts evenly on a space Y, and H is a subgroup 
of G, show that H also acts evenly. Show that the natural map from 
Y /H to Y /G is a covering mapping. If n is the index of H in G, this 
is an n-sheeted covering. Carry this out when G is the group of trans
formations of the plane from Exercise 11.25, and H is the subgroup 
generated by the two homeomorphisms (x, y) ~ (x + 1, y) and 
(x, y) ~ (x, y + 2). Identify ~2 /H with a torus, and describe the re
sulting two-sheeted covering of the Klein bottle. 

Exercise 11.28. If a finite group G acts on a Hausdorff space Y, and 
there are no fixed points (i.e., no y is fixed by any g in G except the 
identity element), show that the action is even. 

Exercise 11.29. If G acts evenly as a group of diffeomorphisms of 
a differentiable manifold Y, show how to give Y /G the structure of 
a differentiable manifold in such a way that the projection Y ~ Y /G 
is a local diffeomorphism. 

Exercise 11.30. Let G =Jj.J.n be the group of nth roots of unity, as in 
Exercise 11.15. The odd-dimensional sphere s2m-1 can be realized as 

S2m-l = {(z!> ... , zm) E em: Izd2 + ... + IZml2 = I}. 
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The group G acts on S'lm-I by ,. (Zh ... , zm) = ('Zh ... , 'zm). Show 
that this action is even. When n is prime, the quotient space S'lm-I/Jl.n 
is a manifold called a Lens space. 

Exercise 11.31. Suppose CSJ is a topological group, i.e., a topological 
space which is also a group such that the multiplication and inverse 
maps are continuous. Suppose G is a discrete subgroup of CSJ, i.e., 
there is a neighborhood N of the identity e in CSJ such that N n G = {e}. 
Show that left multiplication by G on CSJ is an even action. This makes 
CSJ a G-covering of the space G\CSJ of right cosets of G in CSJ. Many 
of our coverings have this form, e.g., IW~(Slr is the quotient by 
the subgroup zn; exp: C~ C* is the quotient of C by 2-rriZ. 

Exercise 11.32. Let y= IW\{O}, let r be any real number but 0, 1, 
or -1. Let G = Z act on Y by m' v = ,mv for m E Z, v E Y. Show that 
the action is even, and show that Y /G is homeomorphic to the product 
SI X sn-I. 

Problem 11.33 (For those who know about quaternions). The three
sphere S3 can be identified with the set of unit quaternions: 

S3 = {r + xi + yj + zk: ? + r + l + l = I}, 

which makes it a topological group. Identify 1R3 with the set of pure 
quaternions {xi + yj + zk}. For q E S3, the mapping v ~ q . v . q - J de
fines an orthogonal transformation of 1R3 with determinant 1, i.e., an 
element of SO(3). Show that the resulting map S3~SO(3) is a sur
jective homomorphism of groups, with kernel {± I}. Deduce that this 
is two-sheeted covering. (This is the spin group Spin(3), which, with 
its generalizations Spin(n)~ SO(n) for all n;:::: 3, appear frequently in 
modem mathematics and physics.) 

Problem 11.34. Suppose G is a subgroup of the group of distance
preserving transformations of the plane 1R2, that satisfies a uniformity 
condition: there is ad> 0 such that for all points P in the plane and 
all g in G other than the identity, Ilg' P - pil ;:::: d. 

(a) Show that the action of G on the plane 1R2 is even. Let 
p: 1R2 ~ 1R2/G = X be the resulting G-covering. Defme a distance function 
onXby 

dist(Qh Q2) = Min{IIP1 - P 211: p(P1) = QI andp(P2) = Q2}' 

(b) Show that this distance function defines a metric on X. 
(c) Prove the analogous result for uniform actions on 1R3 (or on any 
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locally compact metric space). This puts a geometric structure on the 
quotient space X which is locally Euclidean. The reader is invited to 
look at the resulting "locally Euclidean geometry" on X for some of 
the groups we have seen. For a general discussion, with a list of 
possibilities for ~2 and ~3, see Nikulin and Shafarevich (1987). 

lId. Covering Transfonnations 

For any covering p: Y --+ X there is a group Aut(Y IX) of covering 
transformations, or deck transformations: 

Aut(Y IX) = {<p: Y --+ Y : <p is a homeomorphism and p 0 <p = p} . 

This is a group by composition of mappings, and it acts on Y in the 
sense of the preceding section; it is called the automorphism group 
of the covering. 

Exercise 11.35. If Y --+ X is a trivial n-sheeted covering, and X is 
connected, show that Aut(Y IX) is isomorphic to the symmetric group 
on n letters. 

Exercise 11.36. If p: Y --+ X is the covering of Exercise 11.14, show 
that Aut(Y IX) contains only the identity element. 

If the covering is a G-covering, there is a canonical homomorphism 
from G to Aut(Y IX) that takes g to the homeomorphism y 1--+ g . y. By 
the definition of even action, this homomorphism is injective. It need 
not be surjective; for example, it is not surjective if the covering is 
a trivial G-covering, see Exercise 11.35. 

Proposition 11.37. If p: Y --+ X is a G-covering, and Y is connected, 
then the canonical homomorphism G--+ Aut(Y IX) is an isomorphism. 

Proof. Fix any point y in Y. Given <p in Aut(Y IX), since y and <p(y) 
lie in the same orbit, there is a g in G such that g' y = <p(y). The 
covering transformation determined by g and <p both take y to <p(y), 
so by Lemma 11.5 they coincide. 0 

For a G-covering, G acts transitively on each fiber p-l(X) of p; that 
is, for y and y' in a fiber, there is a gin G with g' y = y'. In addition, 
this action is faithful: the element g taking y to y' is unique. The 
following proposition gives a converse to this: 
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Proposition 11.38. Let p: Y-+X be a covering, with Y connected 
and X locally connected. Then Aut(Y IX) acts evenly on Y. If Aut(Y IX) 
acts transitively on a fiber of p, then the covering is a G-covering, 
with G = Aut(Y IX). 
Proof. We show first that the action is even. For yin Y, let N be a 
neighborhood of p(y) evenly covered by p, and let V be the neigh
borhood of y mapping homeomorphically to N by p. If 'P and 'P' are 
distinct covering transformations, then 'P(V) and 'P'(V) must be dis
joint, for if not, then 'P -1 0 'P' has a fixed point in V, and Lemma 11.5 
implies that 'P -I 0 'P I is the identity. 

Let G = Aut(Y IX). The covering p factors into the composite of 
the projection Y -+ Y IG followed by a mapping ft: Y /G-+ X. It fol
lows easily from the definitions that this p is a covering mapping; 
indeed, any open connected set of X that is evenly covered by p is 
evenly covered by p. If x is a point in X such that G acts transitively 
on p -l(X), then the fiber of p over x has only one point. By Exercise 
11.4, all fibers of p have one point, so p is a homeomorphism. It fol
lows that p is a G-covering. 0 

Problem 11.39. Let p: Y -+ X be a covering, with Y connected and X 
path-connected. Let xEX, and set S = p-I(X). Any automorphism of 
the covering restricts to a permutation of S, and the automorphism is 
determined by this restriction, so Aut(Y IX) C Aut(S). Show that 

Aut(Y IX) == {'P E Aut(S): 'P(z * 0") = 'P(z) * 0" for all z E S 
and all closed paths 0" at x}. 



CHAPTER 12 

The Fundamental Group 

12a. Definitions and Basic Properties 

The aim of this section is to make the homotopy equivalence classes 
of paths that start and end at a fixed point in a space into a group. 
We will see later how this group tells us about the covering spaces 
of X, as well as determining the first homology and cohomology groups 
(when X is an open set in the plane). In this chapter it will be con
venient again to have all paths defined on the same interval. So a 
path in a topological space X will be a continuous map "(: [0, 1]~X. 
We say that "'I is a path from the point x = "'1(0) to the point x' = "'1(1). 
In this chapter a homotopy of paths will always fix the endpoints x 
and x', i.e., H(O, s) = x and H(1, s) = x' for all 0 ~ s ~ 1. 

If U is a path from a point x to a point x', and T is a path from x' 
to a point x', there is a product path, denoted U· T, which is a path 
from x to x'. It is the path that first traverses u, then T, but it must 
do so at double speed to complete the trip in the same unit time: 

( ) { U(2t) , 0 ~ t ~ 112, 
U·T t = 

T(2t - 1), 1 12 ~ t ~ I . 

If U is a path from x to x', there is an inverse path U -[ from x' to x: 

O~t~l. 

For any point x, let ex be the constant path at x: 

eit) = x, O~t~l. 
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Exercise 12.1. Show that, for paths from a point x to a point X', the 
relation of being homotopic is an equivalence relation. 

Next we verify that, up to homotopy, these operations satisfy (where 
defined!) the group axioms. For example, if 0" is a path from x to x', 
there is a homotopy from the path Ex' 0" to 0". This is done by adjusting 
the time of waiting at x, as indicated in the diagram: 

cr 

We write down the corresponding homotopy, which is constant on 
the vertical and slanted lines drawn; on horizontal lines, it is the same 
as indicated on the top and bottom, but adjusted proportionally: 

{

X, 

H(t,s) = 0"(t- 1f2(I-S)), ----- l/2CI-s):5t:5l. 
1 - 112(1 - s) 

Exercise 12.2. Construct a homotopy from 0" • Ex' to 0". 

In these cases, and those that follow, it is not hard to write down 
explicit formulas for the homotopy, using a little plane geometry to 
map rectangles and triangles onto each other, to interpolate between 
the values we want on boundary lines. It may be worth pointing out 
that one could also appeal to general results about maps between con
vex sets that guarantee the existence of such maps; the formulas them
selves are not important. 

If 0" is a path from x to x', '1" a path from x' to x", and /Jo is a path 
from x' to x", there is a homotopy from (0"' '1") • /Jo to 0"' ('1"' /Jo) con
structed similarly from the diagram 
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Exercise 12.3. (a) Write down the homotopy indicated by this dia
gram. (b) Define the path (1 • or . J.L by the formula 

{
(1(3t) , 0:5 t:5 1/3, 

(1' or' J.L(t) = or(3t -1), 113:5 t:5 %, 
J.L(3t - 2), 213:5 t:51. 

Show that (1' or' J.L is homotopic to the paths «(1' or)' J.L and (1' (or' J.L). 

There is also a homotopy from the path (1 . (1 -1 to the constant path 
Ex' This family of paths does part of the trip specified by (1, rests at 
the point it has reached, then returns. This is indicated on the fol
lowing diagram, but note that this time the function is not constant 
on the diagonal lines: 

The homotopy is 

{
(1(2t) , 0:5 t:5 1/2(1 - s), 

H(t, s) = (1(1 - s), 112(1 - s):5 t:5 1/2(1 + s), 

(1(2 - 2t), 1/2(1 + s) :5 t:5 1 . 
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We need one more homotopy: if two paths a and a' are homotopic 
by a homotopy HI, and T and T' are homotopic by a homotopy H 2 , 

then a' T and a'· T' are homotopic, by the homotopy 

H(t, s) = {
HI(2t,S), 0:5t:51/2, 

H 2(2t-l,s), 112:5t:51. 

Now, for a point x in X, a loop at x is a path that starts and ends 
at x. Define the fundamental group of X with base point x, denoted 
'TTI(X,X), to be the set of equivalence classes of loops at x, where the 
equivalence is by homotopy (see Exercise 12.1). We write ['y] for the 
class of the loop 'Y. The identity is the class e = [Ex] of the constant 
path Ex' Define a product by [a]' [T] = [a' T]. The last displayed ho
motopy implies that this product is well defined on the equivalence 
classes. The others imply the equations 

e' [a] = [a], [a]' e = e, [a]' [a-I] = e, 

([a] . [T])' [11-] = [a]' ([T] . [11-]), 

in 'TTI(X,X). Since (a-I)-I = a, the equation [a-I]. [a] = e follows. So 
this product makes 'TTI(X,X) into a group. From Exercise 12.3(b) we 
deduce that the product ([a] . [T]) . [11-] is also equal to [a' T' 11-]. 

It should be emphasized that endpoints must be fixed during the 
homotopies discussed here. Otherwise any loop 'Y would be homo
topic to a constant loop, by the homotopy H(t, s) = "((1 - s)t). 

If f X ~ Y is a continuous function, and fix) = y, then f determines 
a homomorphism of groups 

h: 'TT\(X,x) ~ 'TT\(Y,y) , 

that takes [a] to [faa]. 

Exercise 12.4. Verify that this is well defined and a group homo
morphism. 

The fundamental group is a "covariant functor, on the category of 
pointed spaces." This means that, if we also have a map g: Y ~ Z 
with g(y)=z, so that we also have g*: 'TT\(Y,Y)~'TT\(Z,z), then 
(gofh = g*of*, i.e., the diagram 

f* 1t\(X, x) ~ 1t\(y, y) 

(goj)~ ~* 
1t\(2, z) 
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commutes. In addition, if/is the identity, then/*: '7TI(X,X)~'7TI(X,X) 
is the identity mapping. 

Some of the simple applications of fundamental groups use nothing 
more than this functoriality. For example, if we know that '7T 1 (X, x) 
is a "complicated" group, and '7TI(Y,Y) is a "simple" group, so that 
there are no homomorphisms of groups such that the composite 
'7TI(X,X)~'7TI(Y,X)~'7TI(X,X) is the identity, then there can be no 
continuous maps f X ~ Y and g: Y ~ X such that go/ is the identity 
map on X. For example, if '7TI(X,X) is not the trivial group, and '7TI(Y,Y) 
is trivial, then X cannot be embedded in Y as a retract. 

Exercise 12.5. Show that '7TI(D2 , x) = {e} for any x in the disk, and 
that the winding number determines an isomorphism of '7TI(SI, (1,0)) 
with 7L. Deduce that Sl is not a retract of D2. 

Exercise 12.6. Show that if X C [W is a subspace that is starshaped 
about the point x, then '7TI(X,X) = {e}. 

Although the definition of fundamental group depends on the choice 
of base point, one gets the same group (up to isomorphism) if one 
chooses another base point, at least if X is path-connected, or if the 
two points can be connected by a path. Suppose T is a path from x 
to x'. Define a map 

T#: '7TI(X,X) ~ '7TI(X,X ') 

by ['Y] ~ [T- 1. ('Y' T)] = [(T- 1. 'Y)' T]. As before, this is well defined, 
and is a homomorphism of groups. It is an isomorphism, since (T- 1)# 
gives the inverse homomorphism from '7TI(X,X' ) to '7TI(X,X). 

Exercise 12.7. (a) Verify these assertions. (b) If T' is another path 
from x to x', show that 

(T')#[-y] = [pr l • (T#[-y])' [p], 

where p is the loop T -I . T'. In particular, if T and T' are homotopic 
paths from x to x', they determine the same isomorphism on funda
mental groups. In general, the displayed equation means that the iso
morphism from '7TI(X,X) to '7TI(X,X' ) depends on the choice of path 
from x to x' only up to inner automorphism. 

For this reason, if X is a path-connected space, one often speaks 
of "the fundamental group" of X, without referring to a base point. 
This will cause no confusion as long as we are only interested in the 
group up to isomorphism. 
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The fundamental group of a ball Dn or of ~n is trivial, say by Ex
ercise 12.6. We have seen that the circle has an infinite cyclic fun
damental group. Let's look next at the n-sphere Sn, for n 2:: 2. This is 
almost as simple as it seems. The complement of any point in Sn is 
homeomorphic to ~n, so any loop that misses any point is homotopic 
to the constant loop. Although it is possible for a continuous loop to 
map onto the n-sphere, for any such n, this is not a serious obstruc
tion. We will see a more general reason later, but for now it can be 
seen directly: 

Exercise 12.S. Show that any path in Sn, n 2:: 2, is homotopic to a 
path whose image contains no neighborhood of any of its points. De
duce that the fundamental group of Sn is trivial if n 2:: 2. 

Exercise 12.9. Show that the fundamental group of a Cartesian prod
uct is the product of fundamental groups of the spaces: 

'TTI(X x Y,x x y) == 'TTI(X,X) x 'TTI(Y,y). 

Problem 12.10: If @ is a topological group, show that 'TTI(@, e) is 
commutative. 

12b. Homotopy 

Two continuous maps 10: X - Y and II: X - Y are homotopic if there 
is a continuous mapping H: X X [0, 1] - Y such that H(z, 0) = Jo(z) and 
H(z, 1) = !I(z) for all points z in X; H is a homotopy Irom 10 to II' We 
want to say that homotopic maps determined the same homomor
phism on fundamental groups, but to make this precise we must keep 
track of base points. Let x be a base point in X, and let Yo = Jo(x) and 
YI = !I(x). The mapping T(t) = H(x, t) is a path from Yo to YI' 

Proposition 12.11. The diagram 

~1tI(Y,yo) 

1t.(X, x) 1 't# 

~1t.(Y,y.) 
commutes, i.e., T#o(Joh = (fl)*' 

Proof. Let 'Y be a loop at x. We need to construct a homotopy from 
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the path or -I . «fo ° 'Y) . or) to the path II ° 'Y. Consider the homotopy h 
from [0, 1] X [0, 1] to Y given by h(t, s) = H('Y(t) , s): 

h 
t 

y 

This provides a kind of homotopy between the path or-I. «/0 ° 'Y) . or) 
around the two sides and the bottom of the square and the path II ° 'Y 
that goes across the top. D 

1\ 

1\ 

~ ~ 

Exercise 12.12. Turn this into a homotopy from or-I«foo'Y). or) to 
II ° 'Y by constructing a continuous map from the square to itself that 
is the identity on the top side, is constant on the two sides, and maps 
the bottom side to the three sides, as indicated. 

As a special case, we have the 

Corollary 12.13. If /o(x) = II (x) = y, and H is a homotopy from /0 to 
II such that H(x, s) = y lor all s, then 

(/0)* = (fl)* : 'lT1(X,X) ~ 'lT1(Y,y). 

Two spaces X and Y are said to have the same homotopy type if 
there are continuous maps f X ~ Y and g: Y ~ X such that go I is hom-
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otopic to the identity map of X and fo g is homotopic to the identity 
map of Y. The map f is called a homotopy equivalence if there is such 
a g. 

Exercise 12.14. (a) Show that having the same homotopy type is an 
equivalence relation. (b) Show that a homotopy equivalence f X ~ Y 
determines an isomorphismf*: 1T1(X,X)~1TI(Y,fix» of fundamental 
groups. In particular, if i: X ~ Y embeds X as a deformation retract 
of Y, then i*: 1T1(X,X)~1TI(Y,i(x» is an isomorphism. 

Exercise 12.15. Classify the following spaces according to homotopy 
type: (i) a point; (ii) a closed disk; (iii) a circle; (iv) ~2; (v) ~n; (vi) the 
complement of a point in the plane; (vii) two circles joined at a point; 
(viii) an annulus; and (ix) the complement of two points in the plane. 

Exercise 12.16. Show that the mapping from S2 to itself that takes 
(x,y,z) to (-x, -y,z) is homotopic to the identity mapping, and the 
mapping that takes (x,y,z) to (x,y, -z) is homotopic to the antipodal 
mapping. 

Exercise 12.17. Iff sn ~ Sn is a continuous mapping such that fiP) #- P 
for all P, show that f is homotopic to the antipodal mapping. If 
f(P) #- - P for all P, show that f is homotopic to the identity map
ping. 

Problem 12.18. If n is odd, show that the identity mapping on sn is 
homotopic to the antipodal mapping. 

It is a general fact that for even n, the antipodal map on Sn is not 
homotopic to the identity map. We will prove this in Chapter 23. 

Problem 12.19. An orthogonal (n + 1) x (n + 1) matrix determines a 
mapping from Sn to itself. Show that two such mappings are ho
motopic if and only if they have the same determinant. If n is even, 
show that such a mapping is homotopic to the identity if the deter
minant is 1, and to the antipodal mapping if the determinant is - 1. 

Problem 12.20. Compute the fundamental group of the space GLi([R) 
of (2 x 2)-matrices with positive determinant, which gets its topology 
as an open subspace of [R4. 
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12c. Fundamental Group and Homology 

For any topological space X, with base point x in X, there is a ho
momorphism from the fundamental group 1TI(X,X) to the homology 
group H1X, that takes the class ['Y] of a loop 'Y at x to the homology 
class of 'Y, regarded as a closed path or I-chain. It takes the constant 
path Ex at x to O. The fact that it is well defined amounts to the fact 
that homotopic paths define the same homology class, as we saw in 
Lemma 6.4. The same lemma showed that the homology class of a 
product a . 'I" of loops is the sum of the homology classes of the loops, 
which shows that the mapping is a homomorphism of groups. 

Exercise 12.21. If f X ~ Y is a continuous mapping, and fix) = y, 
show that the following diagram commutes: 

f* 
1t1(X, x) -- 1t1(Y, y) 

t t -f* 

Since H1X is an abelian group, this homomorphism must vanish on 
all commutators a· b . a -I b -I in 1T 1 (X, x), so it must vanish on the 
commutator subgroup [1TI(X,X),1TI(X,X)] that consists of all finite 
products of commutators. This is a normal subgroup of 1TI(X,X), and 
the quotient group is sometimes called the abelianized fundamental 
group of X, and denoted 1Tl(X,X)abel' So we have a homomorphism 

1TI(X,X)abel = 1TI(X,X)/[1Tl(X,X), 1TI(X,X)] ~ HIX, 

Since the fundamental group 1TI(X,X) depends only on the path
connected component of X that contains x, we cannot expect the fun
damental group to determine the homology group for disconnected 
spaces. But except for this, the fundamental group determines the 
homology group: 

Proposition 12.22. If X is a path-connected space, then the canonical 
homomorphism from 7TI(X,X)abel to H1X is an isomorphism. 

Proof. We must define a homomorphism from the abelian group ZIX 
of I-cycles to 1TI(X,X)abel, and show that the I-boundaries B1X map 
to zero. This will give a map back from H1X to 1TI(X,X)abel. To define 
the map, let 'Y = Lini'Yi be a I-cycle, with paths 'Yi going from points 
a(i) to b(i) in X. For each point c that occurs as an endpoint of any 



174 12. The Fundamental Group 

'Yi, choose a path Te from x to c. Let 'Y/ be the loop at x defined by 
I -I 

'Yi = Ta(l)' 'Yi . Tb(i) , 

where we are using the notation of Exercise 12.3(b). Define the map 
from ZIX to 'TT\(X,X).bel by sending 'Y = Lini'Yi to the class of 
TIi[ 'Y/J\ note that the order in products is unimportant since the group 
'TTl (X, X).bel is abelian. 

We verify first that this is independent of the choice of paths Te' 
Suppose Te is another path from x to c, for each c. Let "1/ = l' a(/) • 'Y i . 1'b(1) -I. 
Let {}c be the loop 1'c' Te- I. Then ["1/] = [{}a(i)]' ['Y/J' [{}b(/)-I], so 

n ['Y/ri = n ['Y/r i • (n [{}a(i)r i • n [{}b(i)r n) = n ['Y/r' , 
I I , I I 

the last equation using the fact that 'Y is a I-cycle, so each point c 
occurs as many times as a starting point a(i) as ending point b(i). 

It follows from the definition that this map is a homomorphism 
from ZIX to 'TTl (X, X).bel' We next verify that this homomorphism maps 
boundary cycles to zero. It suffices to show that 'Y maps to zero when 

'Y = (If = 'YI + 'Y2 - 'Y3 - 'Y4, 

where f: [0, I] X [0, I]~X is a continuous mapping, and the bound
ary is as described in §6a. Let TI and T2 be paths from x to the starting 
and ending points of 'YI, and let T3 and T4 be paths from x to the 
starting and ending points of 'Y3' Then 'Y maps to the class of 

[TI . 'YI . T2 -I] • [T2' 'Y2 . T4 -I] . [T4' 'Y3 -I. T3 -I] • [T3 . 'Y4 -I. TI- 1] 

= [TI . 'YI . 'Y2' 'Y3 -I. 'Y4 -I. TI- I] = [(TI . 'YI . 'Y2)' (TI . 'Y4' 'Y3)-1]. 

To see that this last class is trivial in 'TTI(X,X), it suffices to show that 
the paths TI . 'YI . 'Y2 and TI . 'Y4 . 'Y3 are homotopic with fixed endpoints. 
For this it is enough to show that 'YI . 'Y2 and 'Y4' 'Y3 are homotopic with 
fixed endpoints. This is evident from the picture: 

14 13 13 
'\. '\. 
/ / 

0: r - 14 0: 12 -
"- "-
/ / 

11 12 11 

An explicit homotopy is given by the formula 
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{
f(2t(1 - s), 2ts), 

H(t, s) = 
f«2t - 1)s + 1 - s, (2t - 1)(1 - s) + s), 
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Os t S 1/2, 

1/2 StS1. 

Finally, we must check that the two homomorphisms we have de
fined are inverse to each other. It is immediate from the definitions 
that the composite 

'lTI(X,X)abel ~ HIX ~ 'lTI(X, X) abel 

is the identity. For the other composite, for a 1-cycle 'Y = 2,ini'Yi, and 
'Y/ defined as above, the element IIib/r; in 'IT,(X,X)abel maps to 

using the fact that the boundary of'Y is zero. D 

So far, all the fundamental groups we have calculated explicitly 
have been abelian, in which case the proposition says that 
'lTI(X,x)~H,(X). We will soon calculate other examples with a non
abelian fundamental group. For now, however, we can appeal to Ex
ercise 11.14 to find an example with a nonabelian fundamental group. 



PART VII 

COVERING SPACES AND 
FUNDAMENTAL GROUPS, II 

In this part we will see that the two basic notions of covering spaces 
and fundamental groups are intimately related. In Chapter 13 we see 
how knowledge of the fundamental group controls the possible cov
erings a space may have: coverings correspond to subgroups of the 
fundamental group. There is a universal covering, from which all other 
coverings can be constructed. In Chapter 14 we use this the other way 
to prove the Van Kampen theorem, which relates the fundamental 
group of a union of two spaces to the fundamental groups of the two 
spaces and the fundamental group of their intersection. This can be 
regarded as the analogue for the fundamental group of the Mayer
Vietoris theorem for the homology group. The proof we give depends 
on a correspondence between G-coverings and homomorphisms from 
the fundamental group to G. 

Caution to Beginners. The theorems relating coverings and the fun
damental group are stated in their natural generality, with various 
technical conditions about the spaces involved. This has two advan
tages: you will have a reasonably complete story when you are fin
ished, and the precise conditions sometimes help in shaping the proofs. 
However, this also has a large disadvantage: the proliferation of these 
technical conditions can get in the way of the main ideas. At least 
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for a first reading, it is probably a good idea to simply assume all 
spaces arising are reasonably behaved-for example, that they are 
open sets in the plane or a surface or manifold, or perhaps a finite 
graph. These cases, in fact, will suffice for the applications consid
ered in this text. 



CHAPTER 13 

The Fundamental Group 
and Covering Spaces 

13a. Fundamental Group and Coverings 

We first have the basic: 

Proposition 13.1. If p: Y -+ X is a covering, and p(y) = x, then the 
induced homomorphism p*: '7T1(Y,Y)-+ '7T1(X,X) is an injection. 

Proof. This is a consequence of the lifting properties of Chapter 11. 
We must show that the kernel of p* is {e}. If a is a loop at y, and 
p* [a] = e, there is a homotopy H from po a to th~ constant path Ex 

at x. By homotopy lifting, H lifts to a homotopy H from a to some 
path. Since JLmaps the sides and top of the unit square to the point 
x, its lifting H (by uniqueness <2f path-lifting) maps the sides and top 
of the square to the point y. So H is a homotopy from a to the constant 
path Ey, and [a] = e, as required. 0 

Exercise 13.2. (a) If a is a loop at x, and IT is the unique lifting of 
a to a path starting at y, show that IT ends at y if and only if its class 
is in the image of P*, i.e., [a] Ep*(1TI(Y,y». (b) If a and a' are two 
paths in X from x to x', and IT and fj' are the lifts to paths in Y starting 
at y, show that fj and fj' have the same endpoint if and only if [a'· a-I] 

is in p*( 1T1(Y' y». In the notation of § 11 b, 

y*a = y*a' ¢:::> [a' . a-I] EP*(1TJ(Y,y». 

179 
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Exercise 13.3. If y' is another point in Y with p(y') = x, and y and 
y' can be connected by a path in Y, show that the image of 7T\(Y, y') 
in 7I"\(X,x) is a subgroup conjugate to the image of 7I"\(Y,y). In fact, 
if (J' is a path from y' to y, and 'Y = P 0 (J' is its image, show that 

P*(7I"\(Y,y'» = ['Y]. P*(7I"\(Y,y»· br\ . 

Given a covering p: Y ~ X, for any point y with p(y) = x, and any 
loop (J' at x, we defined y * (J' to be the endpoint of the lift of (J' that 
starts aty. This pointy*(J' is also inp-\(x). We saw in §l1b that if 
(J" is a loop homotopic to (J', then y * (J" = Y * (J'. For any homotopy 
class [(J'] in 71" \ (X , x), we can therefore define y * [(J'] to be y * (J'. This 
defines a right action of the fundamental group 7I"\(X,x) on the fiber 
p-\(x): 

y x [(J'] f-+ y* [(J'], 

taking y x [(J'] to the endpoint of the lift of (J' that starts at y. 

Exercise 13.4. Show that this is a right group action; in particular, 
y * ([ (J'] . [,.]) = (y * [(J']) * [,.]. If Y is path-connected, show that this ac
tion is transitive: for any y and y' in p-\(x) there is some [(J'] with 
y * [(J'] = y'. Show that the subgroup that acts trivially on a point y is 
exactly P*(7T\(Y,y». For fixed y, show that this defines a one-to-one 
correspondence between set of right cosets 1T\(X,X)/P*(1T\(Y,y» and 
the fiber p-\(x). In particular, the index of the subgroup P*(1T\(Y,y» 
in 7I"\(X,x) is the number of sheets of the covering. 

We saw in the last chapter that fundamental groups provide an ob
struction to the existence of mappings: if there is no map between the 
groups, there cannot be a map between the spaces. The following 
proposition shows that, in the case of covering maps, the converse 
holds: if the fundamental groups say there may be a map, then there 
will be. Recall that a space X is locally path-connected if any neigh
borhood of any point contains a neighborhood that is path-connected. 

Proposition 13.5. Suppose p: Y~X is a covering, andf. Z~X is a 
continuous mapping with Z a connected and locally path-connected 
space. Let x EX, y E Y, z EZ, be points with p(y) = f(z) = x. In order 
If!! there to be a continuous mapping J Z~ Y with po J = I and 
H(z) = y, it is necessary and sufficient thath(7T\(Z,z» be contained 
in P*(7T\(Y,y»: 
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y 

/-1] 
/~/ P 

Z-X 
/ 

Such a lifting j, when it exists, is unique. 

Proof. The necessity is clear from the functoriality of the fundamental 
group, and the uniqueness is a special case of Lemma 11.5. For the 
converse, to construct j, given a point w in Z, choose a path 'Y in Z 
from z to w, and let a = / 0 'Y, which is a path starting at x in X. Define 
j(w) to be y * a; that is, j(w) is the endpoint of the path that lifts a 
and starts at y. We must first show that this is independent of the 
choice of path. If 'Y' is another path from z to w, then 
/o('Y"'Y-I)=a"a- 1 is a loop atx. By the hypothesis, [a"a- I ] is 
in the image of p*. By Exercise 13.2(b) it follows that (j' and (j end 
at the same point. 

We must verify that this mapping j is continuous at the point w. 
Let N be any neighborhood of .f{w) that is evenly covered by p, let 
V be the open set in p-I(N) that maps homeomorphic ally onto Nand 
that contains j(w), and choose a path-connected neighborhood U of 
w so that.f{U)CN. We need to show that! maps U into V. For all 
points w' in U, we may find a path Ct from w to w' in U, and then 
we can use 'Y' Ct as the path from z to w'. The lifting of 

/ 0 ('Y . Ct) = (f ° 'Y) • (f ° Ct) is obtained by first lifting / 0 'Y to (j, then 
lifting /0 Ct. Since the latter lifting stays in V, this shows that 
.f{U)C~ 0 

Corollary 13.6. Let X be a connected and locally path-connected 
space. Let p: Y --7 X and p': y' --7 X be two covering maps, with Y and 
Y' connected and let p(y) = x and p'(y') = x. In order for there to be 
an isomorphism between the coverings preserving the base points, it 
is necessary and sufficient that 

P*(7rI(Y,y)) = p' *(7r I(Y' ,y')). 

Proof. The necessity is clear, and if these subgroups agree, the prop
osition gives maps '1': Y --7 y' and 1\1: Y' --7 Y preserving the base points 
and compatible with projections. (Note that X being locally path-con
nected implies that covering spaces Y and Y' are also locally path
connected.) Applying Lemma 11.5 to 1\10'1' and '1'01\1 shows that they 
are isomorphisms. 0 
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Exercise 13.7. Show that two connected coverings of such an X are 
isomorphic, with an isomorphism that may not preserve base points, 
if and only if the images of their fundamental groups are conjugate 
subgroups of the fundamental group of X. 

A path-connected space X is called simply connected if its funda
mental group is the trivial group. Note that this is independent of 
choice of the base point. In the preceding proposition, if Z is simply 
connected, it follows that the liftings J always exist. 

Corollary 13.8. A simply connected and locally path-connected space 
has only trivial coverings. 

Proof. Suppose p: Y ~ X is a covering, with X simply connected. Fix 
x in X, and for each y Ep-l(X) apply the proposition to get a unique 
continuous map Sy: X ~ Y with Sy(x) = y and pOSy the identity on X. 
This gives an isomorphism from the trivial covering X x p-I(X) to Y, 
by x X yf--+Sy(x). D 

Exercise 13.9. Verify that this map is a homeomorphism from the 
space X x p-I(X) onto Y. 

Problem 13.10. The hypotheses of locally path-connected are needed 
for the truth of Propositions 13.5 and the two corollaries. Challenge. 
Find an example of a path-connected space X with trivial fundamental 
group that has a nontrivial connected covering p: Y~X. 

13b. Automorphisms of Coverings 

Our next goal is to relate the fundamental group of X to the auto
morphism group of a covering of X. Let p: Y ~ X be a covering, with 
base point y in Y chosen so that p(y) = x, and assume Y is path-con
nected. We want to make 'TTI(X,X) act on the left on Y. Given an 
element [cr] in 'TTI(X,X) and a point z in Y, we therefore want to define 
a point [cr] . z in Y. Let y' = y * [cr] be the endpoint of the lift of cr to 
a path that starts at y. Choose a path 'Y from y to z in Y. Since 
p(y') = p(y) = x, and po 'Y is a path starting at x, we have a point 
y' * (p ° 'Y) that is the endpoint of the lift of the path po 'Y that starts 
at y'. We want to define [cr] . z to be the point y' * (p ° 'Y). Denote this 
pointy'*(p°'Y) temporarily by w(z,cr,'Y): 
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y' [cr]·z = w(z.cr.y) 

y 

Equivalently, w(z, a, 'Y) = (y * a) * (p ° 'Y) = y * (a· (p ° 'Y». Sup
pose, however, that we chose another path 'Y' from y to z. To have 
w(z, a, 'Y') = w(z, a, 'Y), we want the lifts of a . (p ° 'Y') and a· (p ° 'Y) 
that start at y to end at the same point. By Exercise 13.2(b), this is 
the case precisely if the class [(a· (p 0'Y')) . (a' (p ° 'Y»-I] is in 
P*(7TI(Y,y». Note that 'Y'. 'Y- I is a loop at y, and so 

[(a· (p0'Y'». (a' (p0'Y»-I] = [(a' (p0'Y'). (po('Y- I». a-I)] 
= [a]' [po('Y'. 'Y- I)]. [arl 
= [a]' p*([-y" 'Y- I]). [arl , 

which is an element of [a] ·P*('ll'I(Y,y»· [arl. To know that this is 
in P*('ll'I(Y,y», we need P*('ll'I(Y,y» to be a normal7 subgroup of 
'll'1(X,X). In this case we see that w(z, a, 'Y) is independent of choice 
of 'Y, and depends only on z and the homotopy class [a] of a. 

Assume then thatp*('ll'I(Y,y» is a normal subgroup of 'll'1(X, x). The 
above construction determines a mapping 

[a] X z ~ [a]' z, 

where [a]' z = w(z, a, 'Y). Note that [a]· z is in the same fiber of pas 
z. Next we want to show that this is a left action of 'll'1(X,X) on Y. 
The fact that ([a] • [T]) . Z = [a] . ([T] . z) follows readily from the -def
inition. For if 'Y is a path from y to z, then the lift of T • (p ° 'Y), starting 
at y, is a path from y to [T]' z. It follows that [a]' ([T]' z) is the end
point of the lift of the path a' (T . (p ° 'Y» that starts at y. The path 
(a' T) . (p ° 'Y) is homotopic to a· (T' (po 'Y», so its lift at y has the 
same endpoint, and this endpoint is ([a] . [T]) . z. The fact that [Ex] . Z = Z 

7 Recall that a subgroup H of a group G is a nonnal subgroup if g . H . g -I C H for 
all g in G. 
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follows from the fact that [E .. J . z = (y * E .. ) * 'Y = Y * 'Y, and y * 'Y = z by 
definition. 

To prove that, for fixed [u], the map z~ [u]· z is continuous, we 
assume in addition that X is locally path-connected. To see the con
tinuity near a point z, take, as in the preceding proposition, a path
connected neighborhood N of p(z) that is evenly covered by p. Let V 
and V' be the components of p-l(N) that contain z and z' = [u]· z. 
We must show that [u] . V is contained in V'. For v in V, let a be a 
path from z to v in V. If'Y is a path from y and z, then 'Y. a can be 
used as the path from y to v, from which it follows that [u] . v is the 
endpoint of the lift of po a that starts at z'. This lift is in V', which 
concludes the proof of continuity. 

Summarizing, we have constructed a homomorphism from 'lTl(X, x) 
to the group Aut(Y /X) of covering transformations. We claim next 
that this is surjective. Let <p: Y ~ Y be a covering transformation, and 
suppose <p(y) = y'. It suffices to find an element [u] in 'lTl(X,X) with 
[u] . y = y', since, Y being connected, two covering transformations 
that agree at one point must be identical. Let 'Y be a path from y to 
y'. Let u = p 0 'Y. Then [u] . y is the endpoint of the lift of the path u 
that starts at y. Since this lift is 'Y, [u]· Y = y', as required. 

Finally, we compute the kernel of this homomorphism from 'lTl(X,X) 
to Aut(Y /X). As in the preceding step, it suffices to see which [u] 
act trivially on y, and this happens when the lift of u at y ends at y, 
i.e., when [u] is in P*('lTl(Y,y». Putting this all together, we have 
the: 

Theorem 13.11. Let p: Y~X be a covering, with Y connected and 
X locally path-connected, and let p(y) = x. If p*( 7Tl(Y' y» is a normal 
subgroup of 7Tl(X,X), then there is a canonical isomorphism 

'lTl(X,X)/P*('lTl(Y,y» ~ Aut(Y/X). 

The covering is a G-covering, with G being the quotient group 
7Tl(X, x)/p*( 7Tl(Y' y». 

The last statement follows from Proposition 11.38. A covering p: Y ~ X 
is called regular if P*('lTl(Y,y» is a normal subgroup of'lTl(X,x). 

Exercise 13.12. Still assuming Y connected and X locally path-con
nected, but without assuming H = P*('lTl(Y,y» is a normal subgroup 
of 'lTl(Y'Y)' let N be the normalizer of H in 'lTl(X,X), i.e., N is the 
subgroup of elements g in 'lTl(X,X) such that g. H· g-l C H. Show that 
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N acts on the left on Y, and that this detennines an isomorphism 

NIH == Aut(Y IX) . 
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Exercise 13.13. Show that the following are equivalent (with Y con
nected and X locally path-connected): (i) the covering is regular; 
(ii) the action of Aut(Y IX) on p -lex) is transitive; and (iii) for every 
loop (J' at x, if one lifting of (J' is closed, then all liftings are closed. 

Exercise 13.14. Show that any G-covering p: Y~X, with Y con
nected and locally path-connected, is a regular covering. 

Corollary 13.15. If p: Y ~ X is a covering, with Y simply connected 
and X locally path-connected, then 7Tl(X,X) ==Aut(YIX). 

Corollary 13.16. If a group G acts evenly on a simply connected and 
locally path-connected space Y, and X = Y IG is the orbit space, then 
the fundamental group of X is isomorphic to G. 

In fact, we know by Proposition 11.37 that G is canonically iso
morphic to the group of automorphisms of Y over X. Choosing a point 
yin Y over a point x in X detennines an isomorphism of 1Tl(X,X) with 
Aut(Y IX) = G. 0 

In general, the isomorphism of G with 1Tl(X,X) depends on the choice 
of base point y, but only up to inner automorphism. In particular, in 
case the group is abelian, the isomorphism is independent of choices. 
For example, this corollary, applied to the mapping from ~ to Sl, 
implies again that 1Tl(SI, x) = Z. 

Applied to the two-sheeted covering p: Sn ~ ~pn from the sphere 
to the projective space, it follows that 

1Tl(IRPn, x) = Z/2Z for n?: 2, 

where x is any point in IRpn. 
This can be used to give a more conceptual explanation of some

thing we saw in Chapter 4: if n ?: 2, there can be no continuous map
ping from Sn to Sl with g( - P) = - g(P) for all P. Such a map would 
define a continuous mapping h: IRpn~ IRpl on quotient spaces: 

S" ~Sl 

p t /5'/~ t p' 

~1Jl>"h~lJl>l, 
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where p': Sl---+ 1RiP>1 is the corresponding mapping for n = 1. Since 
1T1(1RiP>1, h(x» == Z, the mapping h*: 1T1(1RiP>\ x)---+ 1T1(1RiP>1, h(x» must 
be trivial. Choosing a point yin Sn with p(y) = x, by Proposition 13.5 
there is a continuous mapping h from lRiP>n to Sl so that p' 0 h = hand 
h(x) = g(y). Now hop and g are two mappings from Sn to Sl that map 
y to g(y), and both, when followed by p', are the map hop. By Lemma 
11.5, hop = g. But hop always takes P and -P to the same point, 
while g never does. So such g cannot exist. 

Exercise 13.17. (a) Compute the fundamental group of the Lens spaces 
of Exercise 11. 30. (b) If the Klein bottle is constructed by identifying 
sides as shown: 

b 

-0-
show that the fundamental group has two generators a and b, with 
one relation abab- I = e. In particular, the fundamental group is not 
abelian. (c) The torus is a two-sheeted covering of the Klein bottle, 
as in Exercise 11.27. Describe the image of the fundamental group 
of the torus in the fundamental group of the Klein bottle, and verify 
that it is a normal subgroup. 

Exercise 13.18. If p: Y ---+ X is the three-sheeted covering of Exercise 
11.14, show that P*(1TI(Y,y» is not a normal subgroup of 1T1(X,X). 
In particular, 1T1(X,X) is not an abelian group. 

13c. The Universal Covering 

In this section we assume that X is a connected and locally path
connected space. A covering p: Y ---+ X is called a universal covering 
if Y is simply connected. It follows from Corollary 13.6 that such a 
covering, if it exists, is unique, and unique up to canonical isomor
phism if base points are specified. As we have seen, the fundamental 
group of X will be isomorphic to the automorphism group of this 
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covering. The aim of this section is to show that, if one additional 
property is satisfied, a universal covering always exists. 

Suppose we have a universal covering p: Y ~ X. Any point in X 
has an evenly covered path-connected neighborhood N. Any loop (J 

in N lifts to a loop cr in Y, and, since Y is simply connected, this loop 
is homotopic in Y to a constant path. It follows that the loop (J = p 0 cr 
is homotopic to a constant path in X. A space X is called semilocally 
simply connected if every point has a neighborhood such that every 
loop in the neighborhood is homotopic in X to a constant path. So 
being semilocally simply connected is a necessary condition for the 
existence of a universal covering. Note that if X is locally simply 
connected, i.e., if every neighborhood of a point contains a neigh
borhood that is simply connected, then X is semilocally simply con
nected. 

The spaces one generally meets, and those we have considered in 
this book, are all locally simply connected. Any open set in the plane 
or in [Rn, or any manifold, or any finite graph, is locally simply con
nected. In fact, one has to work a little to produce spaces that are not 
locally simply connected or semilocally simply connected. 

Exercise 13.19. For a positive integer n, let Cn be the circle of radius 
1/2n centered at the point (1/2", 0). Let C C ~2 be the union of all 
the circles Cn; C is sometimes called a clamshell. (a) Show that C is 
connected and locally path-connected, but not semilocally simply 
connected. Let X be the cone over C, i. e., X C [R3 is the union of all 
line segments from points in C to the point (0,0, 1). (b) Show that 
X is semilocally simply connected but not locally simply connected. 

Suppose we have a universal coveringp: Y~X, withp(y) =x. For 
any point z in Y, there is a path 'Y from y to z, which is unique up to 
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homotopy since Y is simply connected. The image ex = p 0 "I is a path 
from x to p(z), unique up to homotopy (with fixed endpoints). Con
versely, given a path ex in X starting at x, it detennines a point z = y * ex 
in Y. This identifies Y, at least as a set, with the set of homotopy 
classes of paths in X that start at a given point x. The idea to the proof 
of the following theorem is to use this observation in reverse, by using 
these homotopy classes to construct the universal covering. 

Theorem 13.20. A connected and locally path-connected space X has 
a universal covering if and only if it is semilocally simply connected. 

Proof. To construct a universal covering, fix x in X and define X to 
be the set of homotopy classes [-y] of paths "I in X that start at x, the 
homotopies as usual being required to fix endpoJEts. Assigning to 
each such class its en~oint defines a function u: X-X. Our task is 
t.2, put a topology on X so that this is a covering map, and show that 
X is simply connected. 

Call an open set N in X good if N is path-connected, and every 
loop in N at a point z in N is homotopic to the constant path ez in X,.:.. 
If "I is a path from x to a point z in N, let Nh ) be the subset of X 
consisting of the homotopy classes ["I' ex], where ex is any path in N 
that starts at z. Note that N['Y) depends only on the homotopy class [-y] 
of "I. Here are some of the properties of these sets: 

(I) if J3 is a path in a good N starting at the endpoint of "I, then 
Nh · 13)=N['Y); 

(2) if a good N is contained in a good N', then Nh ) C N'h); and 
(3) if "I and "I' are two paths from x to a point z in a good N, then 

N)'Y) = Nh ,) if "I and "I' are homotopic, and N)'Y) n N['Y') = 0 
otherwise. 0 

Exercise 13.21. Verify these properties. 

Now define a subset 0 of X to be open if, for any [-y] in 0, there 
is a good neighborhood N of the endpoint of "I with N['Y) cO. It fol
low§..from properties (1) and (2) that these open sets fonn a topology 
on X, and that each of these sets N['YJ is open, and the projection from 
NI'Y) to N is continuous. In fact, this projection is a homeomorphism, 
the inverse being given by the map that takes w in N to ["I' ex], where 
ex is any path in N from the endpoint of "I to w. This is independent 
of choice of ex, since if ex' is another, ex and ex' are homotopic in X, 
so "I' ex is homotopic to "I' ex'. This projection is continuous since for 
smaller good N~ N' maps to N'['Y)' 

The map u: X - X is evenly covered over any good N, since the 
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inverse image of N is a disjoint union of the open sets N[-Yl' where ['Y] 
varies over the homotopy classes of paths from x to any given point 
z of N. 

For any path 'Y starting at x in X, and for s between 0 and 1, let 
'Ys be the eath defined by 'Yit) = 'Y(st), 0:5 t:5 1. The mapping 
.y: [0, 1] ~ X defined by .y(s) = ["(s] is the unique lift of 'Y to a path 
iQ. X that starts at the base point t= [Ex]. In particular, it is a p,~th in 
X from £ to ['Y], showing that X is connected. Any loop in X at £ 
has the form .y for a unique loop 'Y at x. For .y to be a loop, the 
endpoint 'YI = 'Y must be homotopic to the constant path at x, which 
implies by the lifting of homot~ies that .y is homotopic to the con
stant path at £. This shows that X is simply connected, and completes 
the proof of the theorem. 0 

Problem 13.22. (a) Suppose X is locally simply connected. Show 
that, if p: Y~X and q: Z~Y are covering maps, thenpoq: Z~X is 
also a covering map. (b) Find a counterexample to (a) when X is a 
clamshell. 

13d. Coverings and Subgroups of the 
Fundamental Group 

The theorem of the preceding section will determine correspondence 
between subgroups of the fundamental group and coverings. For the 
following proposition, assume that X is connected, locally path-con
nected, and semi locally simply connected, so that X has a universal 
covering. 

Proposition 13.23. (a) For every subgroup H of '1T1(X,X) there is a 
connected covering PH: Y H~ X, with a base point YH E PH -I(x) so that 
the image of'1TI(YH, YH) in '1T1(X, x) is H. Any other such covering (with 
choice of base point) is canonically isomorphic to this one. 

(b) If K is another subgroup of '1T1(X,X) containing H, there is a 
unique continuous mapping PH,K: YH~ YK that maps YH to YK and is 
compatible with the projections to X. This mapping is a covering map
ping, and if H is a normal subgroup of K, it is a G-covering with 
G=K/H. 

Proof. Let u: X ~ X bejl universal covering, with u(£) = x, and iden
tify EI(X,x) with Aut(X/!D. ~y subgroup H of_'1TI(X,x) acts evenly 
on X, and the quotient X~X/H= YH makes X the universal cov-
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ering of YH. The fundamental group of YH (with base point YH the 
imas,e of x) is canonically isomorphic to H. The projection from YH 

to X/'ITl(X,X) =X is a covering, and the image of its fundamental 
group in 'ITl(X,X) is H. !! H is ~ntained in K, there is a canonical 
map on the orbit spaces X /H ~ X / K. The remaining verifications are 
left to the reader, using the results of the preceding section. 0 

As seen in the pr2,.of, the covering YH~X corr~sponding to H can 
be id£.l1tified with X/H~X, where H acts on X as a subgroup of 
Aut(X/X) = 'ITl(X,X). The regular coverings correspond to normal 
subgroups H. This means (see Exe~ise 13.14) that every connected 
G-covering p: Y~X has the form X/H~X, with 

'ITl(X,x)/H == Aut(Y/X) == G. 

The correspondence of the proposition is similar to that seen in 
Galois theory, where subgroups correspond to field extensions, smaller 
subgroups corresponding to larger extensions. Here smaller subgroups 
of the fundamental group correspond to larger coverings of the space: 

X,x {e} 
~ n 

X,X 

H 
n 
K 
n 
G 

If H is a normal subgroup of K, then the covering YH~ YK is a K/H
covering. 

For example, if X = Sl is a circle, the coverings correspond to 
subgroups of 'IT 1 (Sl , (1, 0)) = 7L. The trivial group corresponds to the 
universal covering ~ ~ S\ and the subgroups 7Ln C 7L correspond to 
the n-sheeted covering Pn: Sl~Sl considered in §l1a. Up to iso
morphism, these are the only connected coverings of a circle. 

Exercise 13.24. If 'ITl(X,X) is abelian, show that every connected cov
ering of X is regular. 

One simple space whose universal covering we have not yet con
structed is the figure 8 space 
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or the join of two circles at a point. This universal covering can be 
constructed as an infinite tree. Here part of it is pictured with seg
ments of decreasing size, so that they don't overlap in the plane, but 
one should imagine that they are all of the same lengths. 

b 

a 
a 

b 

b a 
a 

b a 

b 

a 

a 

b 

Each segment maps to one of the loops of the figure 8 space, the 
horizontal segments to one and the vertical segments to the other. 

Problem 13.25. (a) Show that this space is simply connected, and is 
the universal covering of the figure 8 space X. (b) If you know what 
a free group is, show that a free group with two generators acts evenly 
on this universal covering, with orbit space X. Deduce that the fun
damental group of X is this free group. (c) Generalize to the space 
obtained by joining n circles at a point. 

In Chapter 14 we will see a more general method of calculating 
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fundamental groups, which will include another proof of the result of 
the preceding problem. 

The covering corresponding to the commutator subgro~ of the fun
damental group of X is a covering we may denote by X.bel: 

X.bel = i';[1Tl(X, x), 1Tl(X, x)] ~ X. 

This is a G-covering, with G = 1Tl(X, X)/[1Tl(X, x), 1Tl(X,X)], which is 
the first homology group HlX by Proposition 12.22. It is sometimes 
called the universal abelian covering of X. In general a covering is 
called abelian if it is regular with abelian automorphism group. 

Exercise 9.26. Show that any connected abelian covering of X has 
the form X.bel/H, for some subgroup H of HlX, 

We saw in Chapter 6 that for open sets in the plane, the homology 
class of a closed I-chain is determined by winding numbers around 
points not in the set. The next exercise shows that this is true for 
other nice subsets, but the following problem shows it is not true in 
general. 

Exercise 13.27. Suppose X is a subset of the plane that is contained 
in some open set U for which there is a retract r: U ~ X. Show that 
a closed I-chain 'Y on X is homologous to zero if and only if W( 'Y, P) = 0 
for all P not in X. 

Problem 13.28. Challenge. Let X be the clamshell of Exercise 13.19. 
Give an example of a closed path 'Y on X such that W( 'Y, P) = 0 for 
all P not in X, but such that 'Y is not a I-boundary on X. 

Exercise 13.29. The universal covering of the complement of the 
origin in the plane can be realized as the right half plane, via the 
polar coordinate mapping (r,{})~(rcos({}),rsin({}», and as the en
tire complex plane C via the mapping z~exp(z). Find an isomorph
ism between these coverings. 



CHAPTER 14 

The Van Kampen Theorem 

14ao G-Coverings from the Universal Covering 

In this section X will denote a connected, locally path-connected, and 
semilocaUy jimply connected space, so X has a universal covering, 
denoted u: X ~ X. All spaces will have base points, and aU maps will 
be assumed to take base points to b~se points. The base point of X 
is denoted x, and the base point of X over x is denoted x. 

We have seen in §13d that for every G-covering p: Y~X, with Y 
connected, and with base point y, there is a surjective homomorphism 
of '1T,(X,x) onto G. If H is the kel"!!,el of this homomorphism, so 
G "= 'IT,(X,x)/H, Y is the quotient of X by the action of H, with y the 
image of x. We want to extend this correspondence to G-coverings 
that may not be connected. In this case there will only be a homo
morphism from 7T,(X,X) to G, which need not be surjective. Here we 
will set up this correspondence between G-coverings and homomor
phisms directly and rather briefly, omitting some verifications. Other 
ways to carry this out, with a more general context for these con
structions, together with more details about the verifications, are de
scribed §16d and §16e. 

Suppose P: 7T,(X,X)~G is a homomorphism from the fundamental 
group of X to any group G . We will construct from P a G-covering 
pp: Yp ~ X, together with a base point YP ig Yp over x. Give G the 
discretej:opology, so the Cartesian product X X G is a product of cop
ies of X, one for each element in G. The group 7T, (X, x) acts on the 
left on X X G by the rule 

[u]o(zXg) = [u]ozXgop([ur') = [u]ozXg'p([u]r', 
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for [(J] E 'lTl(X, x), z EX, g E G. Here [(J] . z is the action of 'lTl(X, x) 
on X that was described in §13b, and g' p([(Jrl) is the product in 
the group G. Define Yp to be the quotient of X x G by this action of 
'lTl(X, x): 

Yp = XX G/'lTl(X, x) , 

and let YP be the image of the point f x e in Yp. Let (z X g) denote 
the image in Yp of the "point z X g in X X G. No~ that, by the above 
action of 'lTl(X,X) on X X G, we have, for z in X, g in G, and [(J] in 
'lTl(X, x), 

([(J]'ZXg) = (zXg·p([(J]». 

Define Pp: Yp ~ X by taking (z X g) to u(z). 
The group G acts on Yp by the formula h· (z X g) = (z X h· g), for 

hand g in G and z in X. (Note that using the right side of G for the 
left action of 'lTl(X, x) frees up the left side of G for a left action of 
G!) We claim that this is an even action, making Pp: Yp~X a G
covering. To prove th~, let N be any open set in X over which the 
universal covering u: X ~ X is trivial. By Lemma 1l.18 there is an 
isomorphism of u-1(N) with the product covering N X 'lTl(X,X), on 
which 'lTl(X,X) acts on the left on the second factor. This gives ho
meomorphisms 

pp-l(N) == (NX 'lTl(X, x» X G/'lTl(X, x) == NXG, 

the latter homeomorphism by «u X [(J]) X g)~ U X g' p([(J]). (The map 
back takes u X g to «u X e) X g).) These homeomorphisms are com
patible with the projections to N, and it follows that, over N, the 
action of G is even and the covering is a G-covering. Since X is 
covered by such open sets N, the same is true for the map Pp from 
Yp to X. 

Conversely, suppose p: Y ~ X is a G-covering, with a base point Y 
over x. From this we construct a homomorphism p from 'lTl(X,X) to 
G. For each [(J] in 'lTl(X,X) the element p([(JD in G is determined by 
the formula 

p([ (J]) . Y = Y * (J , 

where Y * (J is the endpoint of the lift of the path (J that starts at y. 
We will need two facts about this operation: 

(i) (z*(J) *,. = z* «(J''') for z Ep-l(X), (J a loop at x, and,. a 
path starting at x; 

(ii) g' (z*'Y) = (g. z) *'Y for g E G, z Ep-l(X), and'Y a path 
starting at x. 
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The first of these facts is immediate from the definition. The second 
follows from the fact that if 'Y is lifting of -y starting at z, then the 
path tt--') g. 'Y(t), 0:5 t:5 1, is a lifting of -y that starts at g. z. The 
endpoint of this path, which is (g. z) * -y by definition, is g. 'YO), and 
since 'Y(l) = z * -y, (ii) follows. 

We claim now that the p defined above is a homomorphism. This 
is a calculation, using (ii) and (i): 

(p([cr])· p([,.])). y = p([cr])· (p([,.]). y) = p([cr])· (y*,.) 
= (p([cr])·y)*,.=(y*cr)*,. 
= y*(cr·,.)=p([cr]·[,.])·y. 

Proposition 14.1. The above constructions determine a one-to-one 
correspondence between the set of homomorphisms from '7TI(X,X) to 
the group G and the set of G-coverings with base point, up to iso
morphism: 

Hom(1TI(X,X),G) B {G-coverings}/isomorphism. 

Proof. Given a G-covering p: Y ~ X with base points, from which we 
constructed a homomorphism p, we must now show that the given 
covering is isomorphic to the coveri!!.Spp: Yp~X constructed from p. 
To map Yp to Y, we need to map X x G to Y, and show that orbits 
by 1TI(X,X) have the same image. For this we identify the universal 
covering X as the space of homotopy classes of paths in X starting 
at x. Define a map 

XXG~Y, 

This is easily checked to be continuous. We must check that an equiv
alent point ([cr] . [-y]) x (g. p([cr])-I) maps to the same point. By (i) 
and (ii), this point maps to 

(g·p([cr])-I)·(y*(cr·-y» = (g·p([cr])-I)·«y*cr)*-y) 
= «g. p([cr])-I) . (y * cr» *-y 
= (g. «y * cr) * cr -I» * [-y] 

(g. (y* (cr· cr- I))) * [-y] = (g. y) * [-y], 

as required. Since the map takes the same values on equivalent points, 
it gives a mapping from the quotient Yp to Y, which is a mapping of 
covering spaces of X. This is easily checked to be a mapping of G
coverings, from which it follows that it must be an isomorphism. 

Conversely, starting with a homomorphism p, we constructed a G-
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covering Yp ~ X, from which we constructed another homomorphism, 
say p. We must verify that p = p. Now for [0'] in 1Tl(X,X), 

p([O'])'(xXe) (.fXe)*O' = (x*O'Xe) 
= ([O']'xXe) = (xXe'p([O']» = (xXp([O']» 
= p([O'D' (xx e). 

This shows that p([O']) = p([O']), which concludes the proof. 0 

Exercise 14.2. If p: Y ~ X is the G-covering corresponding to a ho
momorphism p: 1Tl(X,X)~ G, and X' is a subspace of X that also has 
a universal covering, with x in X', show that the restriction p -l(X')~ X' 
of this covering to X' is the G-covering corresponding to the com
posite homomorphism poi*, where i*: 1Tl(X',X)~1Tl(X,X) is induced 
by the inclusion i of X' in X. 

Exercise 14.3. Show that, if base points are ignored, two G-coverings 
Yp and Yp' are isomorphic G-coverings if and only if the homomor
phisms p and p' are conjugate, i.e., there is some gin G such that 

p'([O']) = g' p([O']). g-l for all [0'] E 1Tl(X,X). 

14b. Patching Coverings Together 

Suppose X is a union of two open sets U and V. A covering of X 
restricts to coverings of U and V, which are isomorphic over un V. 
Conversely, suppose we have coverings P2: Yl ~ U and P2: Y2 ~ V, 
and we have an isomorphism of coverings 

it: Pl-l(U n V)~ P2 -l(U n V) 

of un v. Then one may patch (or "glue," or "clutch") these together 
to get a covering p: Y ~ X, together with isomorphisms of coverings 

'PI: Yl~p-l(U), 'P2: Y2~p-l(V) 

of U and of V, so that, over un V, it = 'P2"1 °'Pl' 
One can construct Y as the quotient space of the disjoint union 

Yl U Y2, by the equivalence relation that identifies a point Yl in 
Pl-l(U n V) with the point it(Yl) in P2 -l(U n V). (See Appendix A3.) 
Since it is compatible with maps to X, one gets a mapping P from Y 
to X. Since the map from Y l to Y is a homeomorphism onto its image 
p-1U, which is open in Y, and similarly Y2 maps homeomorphically 
onto P -1 V, one sees that the restriction of P to the inverse image of 
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U is isomorphic to YI ~ U, and the restriction over V is isomorphic 
to Y2~ V. From this it follows in particular that p is a covering map. 

If each of Y I ~ U and Y2~ V is a G-covering, for a fixed group 
G, and {} is an isomorphism of G-coverings, then Y ~ X gets a unique 
structure of a G-covering in such a way that the maps from YI and 
Y2 commute with the action of G. 

Occasionally the following generalization is useful. Suppose we have 
a collection Xa of open sets, a E 91, whose union is X, and a collec
tion Pa: Ya ~ Xa of covering maps. Suppose, for each a and [3, we 
have an isomorphism 

{}~a: Pa-I(XanX~) ~ p~-I(XanX~) 

of coverings of Xa n X~. Assume these are compatible, i.e., 

(I) {}aa is the identity on Va; and 
(2) {}"Ya={}"y~o{}~a onpa-I(XanX~nX"y) for all a, [3, "(Ed. 

Then one can patch these coverings together to obtain a covering 
p: Y~X. One has isomorphisms 'Pa: Ya~ p-I(Xa) of coverings of Xa, 
such that {}~a = 'P~-I 0 'Pa on Pa -1(Xa n X~). In addition, the space Y is 
the union of the open sets 'Pa(Ya). 

One constructs Y as the quotient space UaE.Id YaiR of the disjoint 
union of the Ya by the equivalence relation determined by the {}~a's. 
The assertions about Y and the 'Pa are general facts about patching 
spaces together, as proved in Appendix A3. The map p is determined 
by the equations p°'Pa == Pa on Va. Since 'Pa is a homeomorphism of 
Ya onto p-I(Xa), it follows that p is a covering map. 

If each Pa: Ya~Xa is a G-covering, with fixed G, and each 6~a is 
an isomorphism of G-coverings, then there is a unique action of G 
on Y so that each 'Pa commutes with the action of G, i.e., 
'Pa(g' Ya) = g' 'Pa(Ya) for g in G and Ya in Va' This gives the patched 
covering p: Y ~ X the structure of a G-covering, so that each 'Pa is 
an isomorphism of G-coverings. 

14c. The Van Kampen Theorem 

The Van Kampen theorem describes the fundamental group of a union 
of two spaces in terms of the fundamental group of each and of their 
intersection, under suitable hypotheses. Let X be a space that is a 
union of two open subspaces U and V. Assume that each of the spaces 
U, V and their intersection U n V is path-connected, and let x be a 
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point in the intersection. Assume also that all these spaces X, U, V, 
and un V have universal covering spaces; this is the case, for ex
ample, if X is locally simply connected. We have a commutative dia
gram of homomorphisms of fundamental groups: 

1t1(U,x) 

y~ 
ItI(Un V, x) 

1t1(V, x) 

The maps are induced by the inclusions of subspaces, and commu
tativity means that jl ° i l = jz ° i2. 

We will describe how '!T,(X,x) is determined by the other groups 
(and the above maps between them). The description will not be di
rect, but will be by a universal property. Note that any homomor
phism h from '!TI(X,X) to a group G determines a pair of homomor
phisms hI = hoj, from '!TI(U,X) to G and h2 = hojz from '!TI(V,X) to 
G; the two homomorphisms h,oi, and h2oi2 from '!T,(Un V,x) to G 
determined by these are the same. The Van Kampen theorem says 
that '!TI(X,X) is the "universal" group with this property. 

1t1(U,x) 

y~ 
G. 

Theorem 14.4 (Seifert-van Kampen). For any homomorphisms 

hI: '!TI(U,X)~G and h2: '!T,(V,x)~G, 

such that h, ° i, = h2 ° i2, there is a unique homomorphism 

h: '!T,(X,x) ~ G, 

such that hOj, = h, and h oj2 = h2• 

Exercise 14.5. Show that '!T,(X, x), together with the homomorphisms 
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jl and h, is detennined up to canonical isomorphism by the universal 
property. 

Exercise 14.6. Use the universal property to show that 1T1(X,X) is 
generated by the images of 1T1(U,X) and 1T1(V,X). Can you prove this 
assertion directly? 

A version of the Van Kampen theorem was found first by Seifert, 
and the theorem is also known as the Seifert-Van Kampen theorem. 
The version given here, via universal properties, was given by Fox, 
see Crowell and Fox (1963). The usual proof of the Van Kampen 
theorem (without the hypotheses that the spaces all have universal 
coverings) is rather technical, and for it we refer to Crowell and Fox 
(1963) or Massey (1991). Here we will give a quick proof, due to 
Grothendieck (see Godbillon (1971», using the correspondence be
tween homomorphisms from fundamental groups to a group G and 
G-coverings. The assumptions assure that each of the spaces X, U, 
V, and un V has a universal covering space, and that homomor
phisms from their fundamental groups to a group G correspond to 
G-coverings. 

In particular, the homomorphisms hi and h2 detennine G-coverings 
Y I ~ U and Y2~ V, together with base points YI and Y2 over x. The 
fact that hi 0 i I is equal to h20 i2 means that the restrictions of these 
coverings to un V are isomorphic G-coverings, and since un V is 
connected, there is a unique isomorphism between these G-coverings 
that maps the base point YI to the base point Y2. (The uniqueness is 
a special case of Exercise 11.24.) By the construction of the preceding 
section, these two coverings patch together, using this isomorphism 
over the intersection. This gives a G-covering Y ~ X that restricts to 
the two given G-coverings (and has the same base point). This 
G-covering corresponds to a homomorphism h from 1T1(X,X) to G, 
and the fact that the restricted coverings agree means precisely that 
hojl = hi and h oj2 = h2· D 

Corollary 14.7. If U and V are simply connected, then X is simply 
connected. 

Note the important hypothesis in all these theorems, that all spaces, 
induding the intersection un V, are connected. It does not apply to 
the annulus, written as a union of two sets homeomorphic to disks! 

Exercise 14.8. If V is simply connected, show thatjl: 1T1(U, x)~ 1T1(X, x) 
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is sUljective, with kernel the smallest normal subgroup of 'TT\(X,x) that 
contains the image of i\: 'TT\(V n V, x)~ 'TT\(V, x). 

Corollary 14.9. If V n V is simply connected, then, for any G, 

Hom('TT\(X,x),G) = Hom('TT\(V,x),G) x Hom('TT\(V,x),G). 

This means that 'TT\(X,x) is the free product of 'TT\(V,x) and 'TT\(V,x). 

Exercise 14.10. If V n V is simply connected, show that the inclusion 
mappings j\ and j2 are one-to-one. 

The following is a useful generalization of Van Kampen's theorem, 
which can be used to compute the fundamental group of an increasing 
union of spaces, each of whose fundamental groups in known. The 
proof is identical to that of the preceding theorem, using the general 
patching construction of the preceding section. 

Suppose a space X is a union of a family of open subspaces Xa , 

a E.iJ., with the property that the intersection of any two of these 
subspaces is in the family. Assume that X and each Xa is path-con
nected and has a universal covering, and that the intersection of all 
the Xa contains a point x. When XII is contained in Xa let iall be the 
map from 'TT \ (XII , x) to 'TT\ (Xa , x) determined by the inclusion, and let 
ja be the map from 'TT\(Xa,x) to 'TT\(X,x) determined by inclusion. 

Theorem 14.11. With these hypotheses, 7T\(X,X) is the direct limit of 
the groups 7T\(XaoX). That is,for any group G, and any collection of 
homomorphisms ha from 7T\ (Xa , x) to G such that h(3 = ha 0 ia(3 when
ever X(3CXa, there is a unique homomorphism hfrom 7T\(X,X) to G 
such that ha = hojafor all a. D 

The preceding theorem is recovered by taking the family to consist 
of V, V, and vn V. 

Although this version of Van Kampen's theorem is stated with each 
subspace Xa. open in X, it can often be applied to subspaces that are 
not open. For example, if each Xa is contained in an open set Va, of 
which it is a deformation retract, with VII e Va. whenever XII exa , 

and the hypotheses of Theorem 14.11 apply to these Va, then 'TT\(X, x) 
is the direct limit of the groups 'TT\(Xa,x). This follows from the fact 
that each 'TT\(Xa, x)~ 'TT\(Va,x) is an isomorphism. Without some such 
hypotheses, however, the theorem is false. For example, if A and B 
are copies of a cone over a clamshell (see Exercise 13.19), joined 
together at the one point where all the circles are tangent, then the 
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spaces A and B are simply connected, and A n B is a point, but A U B 
is not simply connected. (In fact, A U B is an example of a space that 
is not simply connected but which has no nontrivial connected cov
erings.) 

Exercise 14.12. Show if a space X is a union of a family of open 
subspaces Xa such that the intersection of any two sets in the family 
is also in the family, then H1X is the direct limit of the groups H1Xa • 

14d. Applications: Graphs and Free Groups 

One simple application of the Van Kampen theorem is a result we 
looked at earlier: the n-sphere Sn is simply connected if n ?: 2. To see 
this now, write the sphere as a union of two hemispheres each homeo
morphic to n-dimensional disks, with the intersection homeomorphic 
to Sn-l. It follows from Corollary 14.7 that the fundamental group of 
Sn is trivial. (The assumption n?: 2 is used to confirm that S·-l is 
connected.) 

Consider next a figure 8: 

This is the union X of two circles U and V meeting at a point x. Let 
'YI and 'Y2 be loops, one around each circle. The fundamental group 
of each circle is infinite cyclic, generated by the classes of these loops. 
It follows that to give a homomorphism from 'iT,(X,x) to a group G 
is the same as specifying arbitrary elements gl and g2 in G: there is 
a unique homomorphism from 'iTl(X,X) to G mapping l'Y,] to gl and 
['Y2] to g2' This means that 'iT,(X,x) is thefree group on the generators 
['Yd and ['Y2]' 

Exercise 14.13. Let a = l'Yd and b = l'Y2]' Show that every element 
in 'iT1(X,X) has a unique expression in the form 

where the mj are integers, all nonzero except perhaps the first and 
last. The identity element is e = aObo. 

The· free group on two generators a and b can be constructed di-
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rectly (and algebraically) as the set of all words of this form, with 
products defined by juxtaposition of words, canceling to get a legit
imate word. It is straightforward (if a little awkward) to show by hand 
that this forms a group, and to see that it satisfies the above universal 
property. With the use of the VanKampen theorem, we can avoid 
this, by constructing the free group as the fundamental group of this 
figure 8 space. 

The free group Fn on n generators a., ... , an is defined similarly: 
it is generated by these elements, and, for any group G and any ele
ments gh ... , gn in G, there is a unique homomorphism from Fn 
to G taking a; to g; for 1 :::s i:::s n. Again, it can be constructed purely 
algebraically using words in these letters, or as a fundamental group: 

Exercise 14.14. Verify that the fundamental group of the space ob
tained by joining n circles at a point is the free group on n generators. 
Use this to show that the fundamental group of the complement of n 
points in the plane is free on n generators. 

Exercise 14.15. Let X be a connected finite graph. (a) Show that, for 
any edge between two distinct vertices, X is homotopy equivalent to 
the graph obtained by removing the edge and identifying its two end
points. (b) Show that X is homotopy equivalent to the graph obtained 
by joining n circles at a point, where, if the graph has v vertices and 
e edges, n = e - v + 1. (c) Show that n is the "connectivity" of the 
graph, i.e., the largest number of edges one can remove from the 
graph (leaving the vertices), so that what is left remains connected. 

One can use this result to give a simple proof of a rather surprising 
fact about free groups. 

Proposition 14.16.lfG is afree group on n generators, and H is a 
subgroup of G that has finite index d in G, then H is a free group, 
with dn - d + 1 generators. 

Proof. Take G to be the fundamental group of a connected graph X 
that has v vertices and e edges, with n = e - v + 1. For simplicity we 
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assume each edge of X connects two distinct vertices. The subgroup 
H corresponds to a connected covering p: Y ---+ X with d sheets, with 
the fundamental group of Y isomorphic to H. It is not hard to verify 
that Y is a connected graph. In fact, the d points over each of the 
vertices of X can be taken as vertices of Y, and (since a covering is 
trivial over an interval), the d components of the inverse image of 
each edge are edges of Y. Since Y is a graph, its fundamental group 
is free, with 

de - dv + 1 = d(e - v + 1) - d + 1 = dn - d + 1 

generators. o 

If U is the plane domain that is the complement of two points, then 
U has the figure 8 as a deformation retract. So U has the same fun
damental group. In particular, this is not an abelian group. For ex
ample, the path "(1' "(2' "(1-1. "(2- 1 is not homotopic to a constant path 
(although all integrals of all closed I-forms over this path are trivial). 

Problem 14.17. Use the Van Kampen theorem to compute the fun
damental groups of the complement of n points (or small disks) in: 
(1) a two-sphere; (2) a torus; and (3) a projective plane. 

Problem 14.18. Describe the fundamental group of ~2 \ Z, where Z 
is the set Z of all integers, or the set Z2 of lattice points, or any infinite 
discrete set. 

Problem 14.19. Show that a free group on two generators contains 
a subgroup that is not finitely generated, in fact, a subgroup that is 
a free group on an infinite number of variables. 

Problem 14.20. Use the Van Kampen theorem to compute the fun
damental groups of: (1) the sphere with g handles; (2) the complement 
of n points in the sphere with g handles; and (3) the sphere with h 
crosscaps. 



PART VIII 

COHOMOLOGY AND 
HOMOLOGY, III 

We have seen that coverings of a space can be described by giving 
coverings on open sets and patching together the coverings over the 
intersections ofthese open sets. In particular, one can start with trivial 
coverings over small open sets, and patch them together, and any 
covering arises this way. This process is formalized in Chapter 15, 
and the data that describe such coverings made into Cech cohomology 
classes. For G-coverings, when G is an abelian group, these classes 
form a group which we see is "dual" to the homology group, i.e., it 
is isomorphic to the group of homomorphisms from the first homol
ogy group into G. 

This is applied to show that the first De Rham group H1X of an 
open set in the plane is isomorphic to the dual Hom(H1X, ~) of the 
homology group, which gives the culmination of our experience that 
the homology group and the De Rham group are measuring the same 
thing about X. This allows us to translate results about homology into 
corresponding results about cohomology, and in particular to finish 
the proof of the Mayer-Vietoris theorem for cohomology. (Another 
proof of this fact will be given in the last chapter of this book.) 

Chapter 16, which is optional, contains several miscellaneous vari
ations, applications, and generalities on the same themes, with many 
of the details left as exercises. The patching construction is used to 
describe the orientation covering of a manifold. The construction of 
a covering of a plane domain from a closed I-form, which follows 
from the general results of Chapter 15, is carried out here directly 
using the language of "germs" of functions; in particular, the cov-
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erings are seen as graphs of multivalued functions, similar to the polar 
coordinate covering of Part I. We also describe briefly another co
homology theory. 

The last few sections of Chapter 16 generalize the constructions 
relating coverings with actions of groups and group homomorphisms 
that were used in Chapters 14 and 15. The added generality, while 
not needed in this book, may help to make the constructions more 
understandable by putting them in their natural context. In addition, 
the exercises (with their hints) carry out proofs of general facts about 
these constructions, special cases of which were used in Part VII. 



CHAPTER 15 

Cohomology 

15a. Patching Coverings and Cech Cohomology 

Since a G-covering is locally trivial, it can be constructed by patching 
together trivial coverings. In this section we specify exactly what data 
are needed to carry this out. First, we need to know what this pasting 
data looks like. 

Lemma 15.1. IfY=X x G~X is the trivial G-covering, and h: X~G 
is any locally constant function, then the mapping 

x x g I-? X X g . h(x) 

from Y to Y is an isomorphism of G-coverings, and every isomor
phism ofG-coverings has thisformfor a unique locally constantfunc
tion h. 

Proof. It is evident that such a map is continuous and compatible with 
left multiplication by G, so it is an isomorphism of G-coverings. Con
versely, if 'P: Y ~ Y is compatible with left multiplication by G, 'P 
must take each point x x g to x X g' h(x) for some h(x) in G. For 'P 
to be continuous, the map XI-? h(x) must be locally constant. 0 

If p: Y ~ X is any G-covering, one can find a collection 
au == {Va: a E.sa} of open sets whose union is X such that the restric
tion of the covering to each U a is a trivial G-covering. Choose iso
morphisms of G-coverings 

'Pa: Va X G ~ p-'(U,J. 

207 
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On the overlaps Ua n U[3 that are not empty we have "transition" iso
morphisms 

given by the restriction of <Pa followed by the restriction of <P[3 -I. These 
transition isomorphisms have the form x x g ~ x X g . ga[3(x) for some 
(unique) locally constant functions ga[3: Ua n U!,>~ G, by the preced
ing lemma. The collection of these ga!'> satisfy three properties: 

(i) gaa = e 
(ii) g!'>a = (g",!,»-I 

(iii) g",!,> = ga!,> • gp-y 

(the identity in G) for all n; 
for all n, 13; and 
on Ua n U[3 n U-y for all n, 13, 'Y. 

The first two of these are obvious, and the last follows from the equa
tion <p-y -I 0 <p", = <p-y -I 0 <p[3 0 <P!,> -I 0 <p",. A collection {g",!'>} of locally con
stant functions8 satisfying (i)-(iii) is called a Cech cocycle on au with 
coefficients in G. 

Conversely, given au and a Cech cocycle {ga!'>} on au with coeffi
cients in G, one can use it as "gluing data" to construct a G-covering, 
together with a trivialization over each Ua , so that the resulting co
cycle is the given one. To do this, take the disjoint union of all the 
products U", x G (where G has the discrete topology, i.e., its points 
are open), and define an equivalence relation by defining x x g in 
Ua x G to be equivalent to x x g' ga!'>(x) in U!'> x G for x in Ua n Up. 
Properties (i)-(iii) guarantee precisely that this is an equivalence re
lation. Define Y to be the set of equivalence classes, with the quotient 
topology. Since the equivalence relation is compatible with left mul
tiplication by G and with the projections to X, the space Y gets an 
action of G and a projection p from Y to X so that the resulting maps 
Ua x G~ Yare G-maps and compatible with the maps to X. In other 
words, this is the patching described in § 14b, using the transition 
functions {t!'>"" where {tp",(x x g) = x x g . g",!,>(x). 

The cocycle is not uniquely determined by the G-covering, even 
with a fixed choice of au, since it depends on the choice of triviali
zations <p",. But if {<p",'} is another choice of trivializations, using the 
lemma again, there is for each n a unique locally constant function 

8 Note that if the collection U is chosen so that every Ua n Up is connected, then 
these gap are constant, i.e., they are just elements of G. This case will suffice for 
our applications, and the reader is invited to make this simplifying assumption from 
the start. 
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ha: V a ~ G so that the diagram 

UxG q> a 

n-'(U.) ~ 1 xxg~xxg·h.(x) 
Va xG 

commutes. From this it follows that the cocycle {gal3'} for the trivial
izations 'Pa' is related to that {gal3} for the 'Pa by the equations 

gal3' = (ha)-" gal3' h13 • 

Two Cech cocycles {gal3} and {gal3'} are said to be cohomologous if 
there are locally constant functions ha: V a ~ G such that 
gal3' = (ha)-' . gal3' hl3 on Va n VI3 for all n, 13 such that Va n VI3 is 
nonempty. This is easily checked to be an equivalence relation, and 
the equivalence classes are called tech cohomology classes on OU, with 
coefficients in G. The set of these is denoted HI(ou';G). 

Exercise 15.2. Verify that the G-coverings constructed from coho
mologous cocycles are isomorphic. 

Exercise 15.3. Let OU be a covering of an annulus by three sets ho
meomorphic to disks, as shown: 

For g in G let c(g) be the cocycle determined by setting gl2 = g23 = e 
and g31 = g. (a) Show that every Cech cocycle on OU with coefficients 
in G is cohomologous to such a cocycle, and show that c(g) is co
homologous to c(g') if and only if g and g' are conjugate in G. This 
gives a bijection between the set of conjugacy classes in G and H'(OU; G). 
(b) If G is cyclic of prime order, show that the coverings correspond
ing to any two distinct elements that are not the identity in G are 
isomorphic as coverings, but not as G-coverings. 
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What we have done in this section amounts to setting up a one-to
one correspondence between HI(au; G) and 

{G-coverings of X that are trivial over each V,,}/=. 

If the Va are chosen to be simple open sets like disks or rectangles, 
or any simply connected and locally path-connected open sets, then 
every covering is trivial over them (by Corollary 13.8), so we will 
have all G-coverings of X classified by Cech cohomology classes. 
Thus we have: 

Proposition 15.4. If each Va is simply connected and locally path
connected, then the set of G-coverings of X, up to isomorphism, is 
in one-to-one correspondence with the Cech cohomology set HI(au; G). 

Now suppose X is a connected space that has a universal covering. 
From Exercise 14.3 we know that the set of G-coverings up to iso
morphism is in one-to-one correspondence with the set of homomor
phisms from 'lT1(X,X) to G, up to conjugacy. Putting this together, 
and continuing to assume that the open sets in au are simply con
nected, we have 

Corollary 15.5. With these assumptions, there is a bijection 

HI(6U; G) +-+ Hom('lT.(X, x), G)/conjugacy. 

I5b. Cech Cohomology and Homology 

If we want to have a well-defined homomorphism from 'IT.(X,x) to 
G, not just up to conjugacy, we know that we must consider coverings 
Y~X together with a base point yin Y over x. To do this with the 
patching, for those open sets Va that contain x, fix the local trivial
izations 'Pa: Va X G~p-I(Va) so that 'Pa(x x e) = y. The correspond
ing cocycle then has gall(x) = e whenever x is in Va n VII; another 
cocycle defines an isomorphic covering preserving base points when 
it is of the form (ha)-I . gal3 . hl3' with ha: Va~ G locally constant with 
the restriction that ha{x) = e whenever x is in Va' Such equivalence 
classes form a set we can denote by HI(6U, x; G). This sets up bijec
tions 

HI(6U, x; G) +-+ {G-coverings with base point}/= 
+-+ Hom('lTI(X,x), G). 
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We will need a prescription to make the homomorphism p from 
1TI(X,X) to G explicit, when the covering is given as above by a co
cycle. As one should expect, the answer is the product of values of 
the transition functions as one moves around a path, just as the wind
ing number is the sum of changes in angle. If 'Y is a loop at x, sub
divide the unit interval, 0 = to < tl < ... < tn = 1 such that 'Y maps 
each subinterval [ti-I. t;] into one of the open sets Ua(i)' Let Xi = 'Y(tJ. 

Lemma 15.6. The homomorphism p: 7TI(X,X)~G corresponding to 
the G-covering p: Y ~ X takes the homotopy class of 'Y to 

p(['Y)) = hi' h2 • •••• hn- I . hn' 

where hi = ga(l)a(Hl)(Xi) for 1::5 i::5 n - 1, and hn = ga(n)a(l)(Xn)' 

Proof. Let'Y be the lift of'Y starting at y. We must compute 'Y(ti) for 
each i. At the start, )1(0) = Y = 'Pa(llx x e). For 0::5 t::5 t l , by conti
nuity, 'Y(t) = 'Pa(l)('Y(t) x e). So 

'Y(tl) = 'Pa(I)(XI x e) = 'Pa(2ixl X e' ga(l)a(2)(XI» = 'Pa(2)(XI X hi)' 

Going along each piece of the path in the same way, we find 

'Y(tJ = 'Pa(O(Xi X hi ..... hi-I) = 'Pa(Hl)(Xi x hi ..... hJ. 

At the end, this gives 

'Y(1) = 'Pa(l)(x x hi ..... hn) = (hi' .... hn)' 'Pa(I)(X x e) 
= (hi' .... hn) • y . 

Since 'Y(1) = p([-y)) . y by definition, the lemma follows. D 

Now we specialize to the case where G is an abelian group. In this 
case any homomorphism from 1TI(X, x) to G must send any commu
tator aba-Ib- I in 1TI(X,X) to the identity of G, so it must define a 
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homomorphism on the abelian quotient group 'IT I (X, X)abel' By Prop
osition 12.22, we have an isomorphism 'lT1(X,X)abel=HIX. And con
jugate homomorphisms to an abelian group must be equal. Putting all 
this together, and assuming X and 0l1, are as in Proposition 15.4, we 
have: 

Corollary 15.7 (Hurewicz). If G is abelian, there are canonical bi
jections 

HI(Ol1,; G) ~ Hom('lTI(X, x), G) ~ {G-coverings ofX}/= 

~ Hom('lTI(X,x)/['lTI(X, x), 'IT I (X, x)] , G) 
~ Hom(HIX, G). 

For a space X that may not be connected, we have: 

Corollary 15.8. If X is a locally simply connected space, and 0l1, is 
a collection of simply connected open sets whose union is X, then 
there are canonical bijections 

HI (0l1,; G) ~ {G-coverings of X} / = ~ Hom(H IX, G) . 

Proof. To give a G-covering of X is the same as giving a G-covering 
of each connected component of X, and to give a homomorphism 
from HIX to G is the same as giving a homomorphism from the first 
homology group of each connected component of X to G. So the re
sult follows from Corollary 15.7. 0 

If G is abelian, the Cech cocycles on 0l1, with coefficients in G form 
an abelian group, by multiplication: {gal3}' {gal3'} = {gal3}' {gal3'}. Call 
a cocycle {gal3} a coboundary if there are ha: U a ~ G for each a such 
that gal3 = ha -I. hfl. 

Exercise 15.9. Assume that G is abelian. Show that the coboundaries 
form a subgroup of the cocycles, and that HI(Ol1,; G) is the quotient 
group of cocycles modulo coboundaries. (Caution: If G is not abe
lian, HI(Ol1,; G) has no natural group structure, see Exercise 15.3.) If 
G is abelian, give Hom(H, G) the structure of an abelian group, for 
any group H. Show that the bijections of Corollary 15.7 are iso
morphisms of abelian groups. 

Exercise 15.10. Define the Oth Cech group Jf(Ol1,; G) for an open 
covering 0l1, of a space X with coefficients in a group by defining a 
class (or cocycle-there is no equivalence relation) to be a collection 
of locally constant functions ga: Ua~ G such that go. = gl3 on Ua n U13 • 
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Show that !f(at!; G) is the direct product of copies of G, one for each 
connected component of X. In particular, for X open in the plane, 
!f(at!;~) is isomorphic to the space !f(X) of locally constant func
tions. 

15c. De Rham Cohomology and Homology 

We want to compare the De Rham group HIX with the first homology 
group H1X, when X is an open set in the plane. If W is a closed I-form, 
and "I a closed I-chain, we defined the integral I-yw in Chapter 9. For 
fixed w, this map "I ~ !-v W is a homomorphism from the group ZIX 
of closed I-chains to II\t Proposition 9. 11 says that this integral is the 
same for homologous I-chains. In other words, the map vanishes on 
I-boundaries B1X, and therefore defines a homomorphism from H1X 
to ~. Let us denote this homomorphism, at least temporarily, by 'Pw, 
so that 'Pw(['Y]) = I-yw. 

The set Hom(HIX,~) of homomorphisms from H1X to ~ has a nat
ural structure of vector space: the sum 'P + 1\1 of two homomorphisms 
is defined by ('P + 1\1)(["1]) = 'P(b]) + l\I(b]), and multiplication of 'P 
by a scalar r by (r· 'P)(b]) = r· 'P(b]). (Note that this works for any 
group in place of HIX.) The above map that assigns 'Pw to the closed 
1-form W is a linear mapping of vector spaces 

{closed I-forms on X} ~ Hom(HIX,~). 

This follows from the equation !-v(rlwl + rzwz) = I-yrlWl + I-yrzwz. If 
the I-form w is exact, the homomorphism 'Pw is zero. In fact, if w = dj, 
and "I is any I-chain, with boundary 0"1 = ~m;Pj, then 

It follows that the above mapping vanishes on the subspace of exact 
I-forms, so it defines a linear map on the quotient space HIX. That 
is, we have a natural linear map of vector spaces 

If ~ EHIX and a EHtX, we may write simply Ia~ in place of I-yw, 
where w is a representative of ~ and "I a representative of a. The goal 
of this section is to show that this mapping is always an isomorphism. 
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Theorem 15.11.lfX is an open set in the plane, then the canonical 
homomorphism 

is an isomorphism. 

The fact that this map is one-to-one is not hard to see, for if a closed 
I-form w has all integrals f'Yw vanishing for all closed paths 'Y on X, 
we know from Proposition 1. 8 that w is exact. The fact that every 
homomorphism comes from a I-form, however, will take some work. 
As a warm-up you may consider the special case: 

Exercise 15.12. Show that the homomorphism HIX ~ Hom(HIX, ~) 
is an isomorphism when X is multiply connected. 

Exercise 15.13. Show that, if V is an open subset of X, the diagram 

HIX ~ BIV 

t t 
Hom(H,X, IR) ---+ Hom(H, V, IR) 

commutes, where the map on the bottom is determined by the map 
from HIV to HIX, 

In order to prove the theorem, we specialize the results of § I5b to 
the case where G = ~ is the additive group of real numbers, and X 
is an open set in the plane. Let au = {Va: IX E~} be a collection of 
open rectangles whose union is X. We may find such a collection so 
that any point in X is contained in only finitely many Va (see Lemma 
A.20 and Lemma 24.10). By Corollary 15.8 we have a bijection be
tween Hom(HIX, ~) and HI(au; ~). To prove the theorem we will con
struct a map from HI(au;~) to the De Rham group HIX, and then 
show that all these maps are compatible and isomorphisms. 

An element of HI(au;~) is determined by a tech cocycle {ga~}, 
where the ga~ are locally constant functions on Va n V~. We want to 
produce from this a closed I-form w on X, well defined up to the 
addition of an exact I-form. If we can find some «6" functions fa on 
Va so thatfa - f~ = ga~ on Va n V~, then dfa = dh on the overlaps, so 
there is a unique I-form won V that is dfa on each Va. This will be 
the I-form we are after. The existence of such functions fa follows 
from a general lemma: 

Lemma 15.14. Let {fafJ} be a collection of «6" junctions,jafJ on Va n V fJ , 
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satisfying the cocycle conditions: (i) faa = 0; (ii) f{3a = -fa{3; and (iii) 
fay = fa{3 + f{3y on Va n V{3 n Vr Then there are C(J,'" functions fa on Va, 
for all a, such that 

fa - fr. = far. on Va n Vr.. 

Proof. In order to solve these equations fa - fr. = far., we use the ex
istence of a partition of unity subordinate to the covering OJL (Appen
dix B2). This says there are C(J,'" functions 'Pa on X, with the closure 
of the support of 'Pa (in X) contained in Va, with only finitely many 
'Pa nonzero in a neighborhood of any point, and with La 'Pa == 1. For 
each (l and ~ define a C(J,'" function hOor. on Va by the formula 

h r. = {'Pr. "far. on Va n Vr., 
a 0 on Va \ Van V r. . 

Now set fa = Lr. har.. It is an easy exercise to verify that har. and fa 
are C(J,'" functions. To complete the proof, we calculate: 

'Y 'Y 

= 2: 'Pifar.) = (2: 'P'Y)rar. = 1 ·far. = far.. 0 
'Y 'Y 

We must verify that the construction made before the lemma gives 
a well-defined map from Hl(OJL;~) to HIX. Suppose first that {fa'} is 
another collection of functions, withfa' on Va such thatfa' - Jr.' = gar. 
on Van V f3 , giving rise to the I-form w' that is dfa' on Va. The 
functions fa' - fa on Va agree on the overlaps, so define a function f 
on X; and w' - w = df, so w' and w define the same element of HIX. 
We must also show that if {gar.'} is a Cech cocycle that is cohomolo
gous to {gar.}, then they determine the same class in HIX. We are 
given locally constant functions ha on Va such that 

Iffa - fr. = gar. on Va n Vr., then (fa - ha) - (fr. - hr.) = gar.' on Va n Vr.' 
and since each ha is locally constant, d(fa - ha) = dfa, so they define 
the same I-form. 

Summarizing what we have so far, we have maps 

H1X ~ Hom(HIX, IR) 

I t 
Hl(ll ; IR) ~ {IR -coverings} /= . 
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We want to show that all of these maps are bijections, and that 
going once clockwise around the diagram, starting at any place, is 
the identity map on that vector space. We have proved that the top 
horizontal map in this diagram is one-to-one. It therefore suffices to 
show that a trip around the diagram, starting with an element P in 
Hom(H1X,IIl), takes p to itself. Let {fal3} be a cocycle for the covering 
Pp: Yp~X defined from this homomorphism. Use Lemma 15.14 to 
write fal3 = fa - fl3' and let w be the I-form that is dfa on U a' It follows 
from Proposition 12.22 that H1X is generated by the classes of closed 
paths in X. To conclude the proof, it therefore suffices to show that 

L w = p(['y]) 

when "I is any closed path in X. Both sides depend only on the con
nected component of X containing the image of "I, so we may assume 
X is connected. Subdivide the path as in Lemma 15.6, and let "Ii de
note the restriction of "I to the ith piece [ti-!' tJ By Lemma 15.6, 
p(['YD = L7~lhio where hi = fa(l)a(i+I)(Xi) for 1 ::5 i::5 n, with cr(n + 1) = cr(1). 
Therefore, 

n n 

p(['YD 2:fa(i)(Xi) - fa(i+I)(Xi) = 2:fa(i)(Xi) - fa(i)(Xi-l) 
;=1 i~l 

iLdfa(i) = iLw = i w. 
;=1 -V, 1=1 "V, -v 

This completes the proof of Theorem 15.11. o 
Corollary 15.15. There are canonical bijections 

HIX ~ Hom(H1X,IIl) ~ {ill-coverings}/= ~ Hl(au; Ill). 

Exercise 15.16. Verify directly that the maps of this corollary are 
linear maps between vector spaces. 

The theorem can be used to calculate the De Rham group of more 
complicated sets in the plane than multiply connected sets, even when 
it may be difficult to write down differential forms explicitly: 

Problem 15.17. (a) Show that if X is the complement of the set N 
of nonnegative integers, then HIX is isomorphic to the space of all 
infinite sequences (aO,al, ... ) of real numbers. In particular, HIX 
is infinite dimensional. (b) Compute HIX when X is the complement 
of the set (0, I, 112, 1/3, 114, ... ). (c) What if X is the complement 
of any infinite discrete set? 
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Now that we have explicitly identified the De Rham cohomology group 
with the dual of the homology group, we can finish the proof of the 
Mayer-Vietoris theorem stated in §IOd for the De Rham groups. What 
was missing is the assertion MV(vi) that the map denoted" -" from 
H1UffiHIV to Hl(U n V) is surjective. We also have a linear map 

H1UffiHIV ~ Hom(Hl(U)EBHl(V)'~) 

that takes a pair (a, 13) to the homomorphism that takes a pair (a, b) 
in H1(U)EBH1(V) to faa + fb 13. It is a simple exercise to verify, using 
Theorem 15.11, that this map is also an isomorphism. 

The homomorphism "-" from HI (U n V) to HI U EB HI V determines 
a homomorphism 

Hom(Hl(U)EBHl(V)'~) ~ Hom(H1(Un V),~), 

and it is a general fact, proved in Appendix C (Lemma C.IO), that, 
since the map that determines it is one-to-one, this map is surjective. 
Consider the diagram 

)0 

Hom(H.(U)$H.(V), IR) - Hom(H.(Un V),IR) 

where the maps are as just described. We know that each of the ver
tical maps is an isomorphism, and that the bottom horizontal map is 
surjective. It follows that the top horizontal map is also surjective, 
which is the assertion to be proved, provided we check that the dia
gram commutes. But this is entirely straightforward. Given a class 
(a,l3) in H1UffiHIV, going either way around the diagram, it goes 
to the homomorphism that takes an element 'Y in H1(U n V) to the 
number f'Y a - f'Y 13· D 

In fact, the whole Mayer-Vietoris sequence in cohomology is dual 
to, and can be deduced from, the Mayer-Vietoris sequence in ho
mology. The Oth De Rham group lfx is dual to the Oth homology 
group HQX, as follows. For any function f on X and any O-cycle 
~ = "'2:.mj Pj on X, define fiX) = "'2:.mJ(PJ. Iff is locally constant, and ~ 
is a O-boundary, then fiX) = 0, as follows from the fact that f must 
take the same values at the two endpoints of any path. This deter-
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mines a linear map 

lfx ~ Hom(HoX, ~), 

Exercise 15.18. Use the fact that HoX is the free abelian group on 
the connected components of X to prove that this map from lfx to 
Hom(HoX, ID is an isol!!.orphism. Show that the reduced groups are 
also dual: lfx == Hom(H oX, ~). 

For simplicity now, for any abelian group A, write A * for Hom(A, ~). 
Note that a homomorphism A ~ B determines a linear map B* ~ A * . 
A direct sum decomposition A = B E9 C determines a direct sum de
composition A * = B* E9 C*. The dual to the Mayer-Vietoris homol
ogy sequence is the sequence of vector spaces: 

0-Ho(UU V)* ~ HoU*$ HoV* ....=..... Ho(Un V)* 

LH1(UUV)* ~H1U*$H1V*""=""'Hl(UnV)*- 0 

The fact that the homology sequence is exact (Theorem 10.5) implies 
that this is an exact sequence of vector spaces (see Appendix C2). 
The isomorphisms from the preceding section can be used to map 
each term in the Mayer-Vietoris cohomology sequence to the cor
responding term in the above sequence: 

0- JIO(UuV) ~ HOUmHoV ""=""'H°(UnV) L H1(UUV) 

~Hlu*mH1V*""="'" Hl(UnV)*-O. 
Problem 15.19. (a) Show that each square in the above diagram com
mutes. (b) Use this to deduce the exactness of the cohomology se
quence from the exactness of the homology sequence. 
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Variations 

16a. The Orientation Covering 

Every manifold M has a canonical two-sheeted covering p: M~M, 
called the orientation covering, whose fiber over a point P is the two 
ways to orient M at P. Cech cocycles provide a convenient way to 
construct this covering. Let G = { ± I} be the group of order two, and 
take an open covering au = {U(l} of M to be images of the coordinate 
charts 'P(l: V(l~UaCM, with V(l open in IW. The Jacobian determi
nant of the change of coordinates from V(l to Vi3 has a locally constant 
sign, which gives a locally constant function from Ua n U i3 to {± I}. 
The_chain rule for lacobians implies that this is a cocycle. Define 
p: M~M to be the resulting {±l}-covering. An orientation of M can 
be define!! to be a section of this covering, i.e., a continuous mapping 
IT: M ~ M such that po IT is the identity map on M. 

Exercise 16.1. (a) Show that this orientation covering is independent 
01 the choice of coordinate charts. (b) If M is connected, show that 
M has one or two connected compone1}!.s: one if M is nonorientable, 
two if M is orientable. (c) Show that M is always orientable. 

Exercise 16.2. When M = !R1P2 show that the orientation covering is 
isomorphic to the covering S2 ~ !R1P2. Do the same for !RlPn , n > 2. 
Identify the orientation covering for the Klein bottle. 

219 
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16b. Coverings from I-Forms 

From Corollary 15.7 and Theorem 15.11 we have a canonical bijec
tion 

HIX ~ {~-coverings of X}/=-. 

It follows that there is an ~-covering p.,: X., ~ X of an open set X in 
the plane corresponding to a closed I-form w on X, with two I-forms 
giving isomorphic coverings when their difference is exact. To con
struct this covering, following the procedure given in § 15c, one takes 
a collection au of open sets Ua on each of which w = dla for some 
function 10. , and then uses the transition functions gal3 = 10. - 113 to patch 
together trivial ~-coverings of each U a into a global ~-covering of 
X. In this section we describe a more direct way to construct this 
covering. 

The idea is to put all graphs of functions I on open subsets of X 
such that dl= w together into one big covering space. A good lan
guage for describing this is that of germs. A germ of a C(6" function 
at a point P in X is an equivalence class of C(6" functions defined in 
neighborhoods of P. Two functions lIon a neighborhood NI and.li 
on N2 are defined to be equivalent if there is a neighborhood N of P 
contained in NI nN2 such that/l and/2 are equal on N. 

u 

These germs can be added, multiplied, and differentiated, just like 
functions on definite open sets. 

Exercise 16.3. Verify that this is an equivalence relation, and that 
these operations preserve equivalence classes. 

A germ at P has a value at P (the value I(P) of any representative 
f), but it does not have a value at any other point. The idea is simply 
that we only care about functions near the point P, and we allow 
ourselves to shrink the neighborhoods arbitrarily. Given a function I 
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on a neighborhood of P, the equivalence class containing it is called 
the germ defined by f at P. 

Since derivatives of germs make sense, it makes sense to say that 
the differential of a germ at a point is a given I-form; if the I-form 
is w = P dx + q dy, the differential of a germ of f at P is w if 

af af 
- (P) = p(P) and - (P) = q(P) . 
ax ay 

If w is a closed I-form on X, define X", to be the set of all germs of 
functions at points of X whose differential is w. We will make this 
into a topological space, so that the map p", : X", ~ X, that takes a germ 
to the point at which it is a germ, is a covering map. For each open 
set N in X and functionf on N such that df= won N, define a basic 
open set Nf in X",: 

Nf = {germs at points of N defined by f} . 

A set in X", is defined to be open if it is a union of basic sets Nf . 

If N is an open set in X such that w is exact on N (for example, 
any open disk or rectangle in X), then PO) -I(N) is a disjoint union of 
the open sets Nf , where f runs through all functions on N whose dif
ferential is w. The point is that if f is one such function, then all 
others, on N or on any open subset of N, are of the form f + c for 
some locally constant function c. This shows that the covering is triv
ial over N, and, since any point in X has such neighborhoods, this 
shows that we have a covering space: 

p",: X",~ X. 

In addition, this is an ~-covering. The action of a real number on X", 
takes a germ to the sum of the germ and the real number. The pre
ceding discussion shows that this is an even action of ~ on X"" and 
that the covering is an ~-covering. 

Exercise 16.4. Verify that when X = ~2, {(O, O)} and w = d{}, then 
the polar coordinate covering of X is a connected component of X",. 

Choosing any functionf on any connected open subset N of X with 
df= won N determines a connected component of X",. Namely, this 
is the connected component containing the open set Nf . 

Exercise 16.5. Show that this component is the union of all open sets 
of the form N'!, with N' a connected open set in X and df' = w on N' 
such that there is a chain of connected open sets N = No, 



222 16. Variations 

N1 , • • • , NT = N' in X, with functions /; on Ni such that d/; = w, and 
/; = /;+1 on Ni n Ni+ l • 

In general, there is a natural bijection between X", and the product 
X x ~, that takes a germ at P to the pair P x r, where r is the value 
of the germ at P. If ~ is has its usual topology, this bijection is con
tinuous, but it is not a homeomorphism. In the polar coordinate ex
ample, each connected component of X", maps to a closed submani
fold of the product X x IR; these are the graphs of the multi valued 
functions "-3 + c." In general, however, this need not be the case. 
Problem 6.22 shows that, when X is the complement of two points 
P and Q, and w is a linear combination r d-3 p + s d-3 p with r / s irra
tional, the sheets of a component of X", can come arbitrarily close 
together, if regarded as a subset of X x IR. With this understanding, 
the connected components of X", can be regarded as the multivalued 
functions on X whose differential is w-but their graphs need not be 
closed in X x ~. 

Problem 16.6. (a) Show that this covering POl: X", ~ X is isomorphic 
to the covering constructed with cocycles. (b) Show directly that I-forms 
that differ by an exact form determine isomorphic coverings. 

Problem 16.7. Assume X is connected, and let Y be a connected 
component of X",. Show that Y ~ X is a G-covering, where G is the 
period module, i.e., G is the subgroup of IR generated by the periods 
of w; these periods are the numbers f"'lw, as "I varies over loops at x 
(or equivalently, closed I-chains on X). 

16c. Another Cohomology Group 

In addition to the De Rham and tech cohomology groups, there are 
cohomology groups HO(X; G) and HI(X; G) that one can assign to any 
topological space X, where G can be any abelian group. Lacking smooth 
functions and I-forms to evaluate on points and paths, one makes 
these groups directly out of objects that are defined by their values 
on points and paths. Define a O-cochain to be an arbitrary function 
from X to G. Define a I-cochain to be a function from the set of all 
continuous paths on X to G, with the requirement that the function 
takes all constant paths to the identity element 0 in G. Note that, 
unlike the case of O-chains or I-chains, cochains can assign nonzero 
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elements of G to arbitrarily many elements. Since the set of functions 
from any set to an abelian group G is an abelian group (by adding 
the values in G), the O-cochains form a group denoted CO(X;G), and 
the l-cochains form a group CI(X;G). 

If a: X ~ G is a O-cochain, define the coboundary Sa to be the 
l-cochain whose value on a path 'Y is a('Y(1» - a('Y(O». Define the 
Oth cohomology group HO(X; G) be the set of O-cochains whose boundary 
is zero. 

Exercise 16.8. Show that giving an element of YO(X; G) is equivalent 
to giving a function from the set of path-connected components of X 
to G. Deduce an isomorphism HO(X;G)=Hom(HoX,G). 

If c is a l-cochain, it defines a homomorphism from the I-chains 
CIX to G by the formula C(Lni'Yi) = Lnic('Y). A l-cochain c is called 
a l-cocycle if c(af) = ° for all continuous f: [0,1] x [0, l]~X. The 
l-cocycles form a subgroup ZI(X;G) of CI(X;G). Every coboundary 
Sa is a l-cocycle, so the l-coboundaries form a subgroup B I (X; G) of 
ZI(X; G). The quotient group is the first cohomology group 

HI(X;G) = ZI(X;G)/BI(X;G). 

There is a natural homomorphism from HI(X; G) to Hom(XIX, G), 
that takes the class of a l-cocycle c to the homomorphism that takes 
the homology class of a I-cycle 'Y to the element c('Y). 

Exercise 16.9. Verify that this is a well-defined homomorphism. 

Proposition 16.10. The homomorphism HI(X;G)~Hom(HIX, G) is 
an isomorphism. 

Proof. To give a homomorphism from HIX = ZIX/BIX to G is equiv
alent to giving a homomorphism from ZIX to G that vanishes on BIX; 
that is, 

Hom(HIX, G) = Kemel(Hom(ZIX, G)~ Hom(BIX, G». 

We have homomorphisms 

BI(X; G) ~ ZI(X; G) ~ Hom(ZIX, G) ~ Hom(BIX, G), 

where the middle map takes the cocycle c to the homomorphism 
'Y~ c('Y). The assertion of the proposition is easily seen to be equiv
alent to the assertion that this sequence is exact at the two middle 
groups. 

The fact that the image of each map is contained in the next is the 
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content of the preceding exercise. To prove the opposite inclusions, 
we need to choose arbitrarily a point Xa in each path component Xa 
of X, and choose for each point y in X an arbitrary path 'Ty starting at 
the chosen point Xa of the component containing y and ending at y. 

Suppose c in ZI(X; G) maps to the zero homomorphism from ZIX 
to G. We want to construct a O-chain whose coboundary is c. Define 
the O-chain a by the formula a(y) = c('Ty). We claim that (8a)('Y) = c('Y) 
for all paths 'Y. In fact, 

(8a)('Y) = a('Y(l» - a('Y(O» = c('T-y(I) - c('T-y(O»' 

and c('T'Y(I) - c('T'Y(O» = c('Y) since 'T'Y(I) - 'T'Y(O) - 'Y is a I-cycle, and c is 
assumed to vanish on I-cycles. 

To finish the proof, we must show that if f: ZIX ~ G is a homo
morphism that vanishes on B IX, then f comes from some I-cocycle 
c. Define the cochain c by the formula 

c('Y) = f('Y + 'T'Y(O) - 'T'Y(I» 

for any path 'Y. Equivalently, for any I-chain 'Y, c('Y) = f('Y - "L.m;'Ty), 
where "L.m;y; = iJ('Y). In particular, if'Y is a I-cycle, c('Y) = f('Y) , and 
if'Y=iJr, c(iJf) =f(iJf) =0. So c is a I-cocycle that maps tof. 0 

This proposition implies that HI(X; G) is isomorphic to the Cech 
group HI (au; G), provided au is a suitable cover of a nice space, so 
that Corollary 15.7 applies. 

Exercise 16.11. When X is an open set in the plane, and G = IR, 
construct homomorphisms HOX ~ HO(X; IR) and HIX ~ HI(X; IR) from 
the De Rham groups to these cohomology groups, and show that they 
are isomorphisms. 

There is also a Mayer-Vietoris theorem for these cohomology groups. 
If U' is an open subset of U there are natural restriction maps from 
HO(U; G) to HO(U'; G) and from HI(U; G) to HI(U'; G). If X is a union 
of two open sets U and V, there is a coboundary map 

8: H°(UnV;G) ~ HI(UUV;G). 

To define this, given a O-cocycle a on un V, extend a to a O-cochain 
ii on all of U U V by defining ii to be zero on all points not in un V. 
Then define the I-cocycle 8(a) on U U V whose value on a path 'Y is 
obtained by writing 'Y = 'Y I + 'Y2 + 'T, where 'Y I is a I-chain on U, 'Y2 a 
I-chain on V, and'T is a I-boundary (see the proof of Lemma 10.2), 
and setting 8(a)('Y) = ii(iJ'YI). 
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Problem 16.12. Show that this definition is independent of choices, 
and verify that the resulting Mayer-Vietoris sequence 

o ~ JIO(UuV;G) ~ HO(U;G)$HO(V;G) ~ HO(Un V;G) 

-4 Hl(UU V;G) ~ Hl(U;G) $ Hl(V;G) ~ Hl(Un V;G) 

is exact. 

16d. G-Sets and Coverings 

In this section and the next we describe two general constructions, 
which may help to put the constructions of § 14a in context. The ex
ercises verify the assertions made about these constructions. 

Let p: Y ~ X = Y /G be a G-covering, without base point for the 
moment. Suppose T is any set, and we have a left action of G on T; 
we say that T is a G-set. Give T the discrete topology, so an action 
of G on T is a mapping from G x T to T satisfying properties (1) and 
(2) of § llc. The group G acts on the left on Y X T by the formula 
g. (y x t) = g' y x g. t. Define YT to be the space of orbits: 

YT = (Yx T)/G. 

Write (y x t) in YT for the orbit containing y x t. Let PT: YT~ X be 
the mapping that sends (y x t) to p(y). 

Exercise 16.13. Show that the mappingpT: YT~X is a covering map. 

If T and T' are sets with G-actions, a map of G-sets is a function 
ql: T ~ T' such that ql(g' t) = g . ql(t) for all t in T and g in G. A map 
of G-sets is an isomorphism if it is bijective, so there is an inverse 
mapping of G-sets from T' to T. A map ql: T ~ T' of G-sets deter
mines a continuous mapping from Y x T to Y X T', taking y x t to 
y x ql(t). This is compatible with the actions of G, so it determines a 
continuous mapping from YT to YT', taking (y x t) to (y x ql(t», which 
commutes with the projections to X. If ql is an isomorphism, this is 
an isomorphism of coverings. Conversely, we have: 

Exercise 16.14. Let p: Y~X = Y /G be a G-covering, with Y con
nected. Show that the two G-sets determine isomorphic coverings of 
X if and only if the G-sets are isomorphic. Show in fact that any 
continuous mapping f from Y T to Y T' commuting with the projections 
to X comes from a map of G-sets from T to T'. 
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Exercise 16.15. If T ~ T' and T' ~ T" are maps of G-sets, show that 
the composite of YT~ YT, and YT'~ YT" is the mapping detennined by 
the composite T~T". 

Suppose the action of G on a set T is transitive: for any tl and t2 
in T, there is some g in G such that g' tl = t2. If a point t is chosen, 
let He G be the subgroup of elements of G that fix t, i.e., 
H = {g E G: g' t = t}. Then the G-set G IH of left cosets is isomorphic 
to the G-set T, by mapping the coset gH containing g to the point 
g' t. 

Exercise 16.16. Show that two transitive G-sets are isomorphic if and 
only if the corresponding subgroups of G are conjugate. 

In Exercise 11.27 we saw how a subgroup H of G detennines a 
covering YIH~X. 

Exercise 16.17. If T = G IH is a set of left cosets, show that the cov
ering YT~X is isomorphic to the covering YIH~X. 

Exercise 16.18. If T is a disjoint union of G-sets Ta , show that the 
covering YT~ X is a disjoint union of the coverings YT. ~ X. 

An arbitrary G-set T is a disjoint union of its orbits Ta. By the 
preceding exercises the corresponding covering YT~ X is a disjoint 
union of coverings of the fonn Y IHa, for Ha subgroups of G. 

Now suppose X is conneSled and locally path-connec~d, and has 
a universal covering space X ~ X. Choose a point £ of X lying over 
x in X. We have seen that, with these choices, the universal covering 
is a 'lT1(X,x)-covering. So everx action of the fundamental group on 
a set T detennines a covering XT~X, Combining what we have just 
proved with Proposition 13.23, we have: 

Proposition 16.19. Every cOJ.,ering of X is isomorphic to one obtained 
from the universal covering X ~ X by a left action of 1T1(X,X) on some 
set T. This covering is connected if and only if the action on T is 
transitive. Two such coverings are isomorphic if and only if the 1T1(X,X)
sets are isomorphic. 

A left action of a group G on a set T is the same as a homomor
phism of G to the group Aut(T) of pennutations of T. Two such 
homomorphisms give isomorphic G-sets exactly when the homo-
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morphisms are conjugate. In particular, taking G = 1l'1(X,X) and 
T= {l, ... , n}, so Aut(T) is the symmetric group @S. on n letters, 
we have a canonical bijection 

in-sheeted coverings of Xl/=. ~ Hom(1l'1(X,x),@Sn)/conjugacy. 

16e. Coverings and Group Homomorphisms 

Suppose p: Y~X is a G-covering, and $: G~G' is any homomor
phism of groups. If we make G' into a left G-set, the construction of 
the preceding section can be used to construct a covering of X that is 
locally a product X x G' ~ X. We want to do this in such a way that 
this covering can be made into a G' -covering. The simplest way to 
make G' into a left G-set is by defining, for g in G and g' in G', 
g . g' to be $(g) . g', the latter using the group product in G'. How
ever, we will use another, which will allow us to define a compatible 
left action of G' on the result. Define the left action of G on G' by 

g' g' = g' '$(g-I) = g' '$(g)-I for g E G and g' E G' . 

It is straightforward to check that this is a left action of G on G'. 
Now define p($): Y($)~X to be the covering constructed from this 
left G-set. That is, Y($) is the quotient of Y x G' by the left action 
of G by g . (y x g') = (g. y x g' '$(g -I), with projection from Y($) to 
X determined by p on the first factor. Make G' act on Y($) by 
g' . (y x h') = (y x g' . h'). 

Exercise 16.20. Show that Y($)~X is a G'-covering of X. If Y has 
a base point y, Y($) gets the base point (y x e). When p is the uni
versal covering of X, this is the construction of Proposition 14.1. 

Exercise 16.21. If Yp ~ X is the G-covering determined by a ho
momorphism p: 11'1 (X ,x) ~ G, and $: G ~ G' is a homomorphism, show 
that the G'-covering Yp($)~X constructed from Yp~X and $ is iso
morphic to the G' -covering Y IJJop ~ X. 

Exercise 16.22. Let p: Y ~ X be a G-covering, with Y connected. Let 
$I:G~G' and $2:G~G' be two homomorphisms. Show that, if 
base points are taken into account, the coverings Y($I) and Y($2) are 
isomorphic if and only if $1 and $2 are equal. Without base points, 
they are isomorphic if and only if $1 and $2 are conjugate, i.e., there 
is some g' in G' such that $2(g) = g' '$I(g)' (g,)-I for all g in G. 
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Exercise 16.23. Show that if G is abelian, anx G-covering of X is 
obtained from the universal abelian covering X abel ~ X by a unique 
homomorphism 1\1: H,X~G. 

16f. G-Coverings and Cocyc1es 

In § 16d we constructed from a G-covering p: Y ~ X and a left action 
of G on a set T, a new covering PT: YT~X, where YT is the quotient 
of (Y x T)/G, with G acting simultaneously on the left on Yand on 
T. This can also be described by a cocycle. Take a cocycle {ga!3} of 
transition functions from a trivialization of the covering Y ~ X over 
OJL = {U a}, and use them to glue together the disjoint union of the 
Va X T, identifying x X t in Va X T with x X g!3a(x)· tin V!3 X T if x is 
in van V!3. 

Exercise 16.24. Verify that this covering defined by a cocycle is iso
morphic to that defined in § 16d. 

If 1\1: G~ G' is a homomorphism of groups, then 1\1 determines a 
map 

1\1*: H'(6U; G) ~ H'C6U; G') 

that takes a class represented by a cocycle {ga!3} to the class of {1\I(ga!3)}. 
(Exercise: Verify that this is well defined.) This means that any G
covering of X that is trivial over each Va determines a G' -covering 
of X, also trivial over each Va: if the G-covering is constructed by 
gluing the products Vax G with the transition functions 
x X g ~ x X g . ga!3(x) , then the corresponding G' -covering is con
structed by gluing the products Va X G' with the transition functions 
x X g' ~x X g'. l\I(ga!3(x». 

Problem 16.25. Show that this construction of a G' -covering from a 
G-covering agrees with the construction in § 16d as the quotient of 
Y X G' by the action of G: g. (y X g') = g. y X g'. l\I(g-I): In partic
ular, it is independent of choice of OJL. 

Exercise 16.26. A homomorphism 1\1: G~ G' determines a map from 
Hom(1TI(X,X), G) to Hom(1TI(X,X), G'), taking p to 1\10 p. Show that 
this is compatible with the bijections of Proposition 14.1. 
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In our definition of Cech cohomology Hl(UU; G) there has been no 
topology on the group G, or, more accurately, we have equipped G 
with the discrete topology. Cech cohomology is also important when 
G is a group with a more interesting topology. One can define a set 
Hl(UU; G) the same way, requiring the functions gal3 and ha in the def
inition to be continuous maps from V 0.13 and Va to G, respectively. 
From a cocycle {fal3} one constructs in the same way a (principal) G
bundle, i.e., a space Y, on which G acts continuously, with a mapping 
p: Y ~ X so that p(g' Y) = p(y), locally isomorphic to the projection 
X x G~ X (but in this product G is a topological space, not neces
sarily discrete). 

If the topological group G acts continuously on the left on a space 
V, then a G-bundle determines a bundle with fiber V. The construction 
is as in the discrete case: take trivial coverings Va X V, and glue them 
together using the identifications from Va X V to VI3 X V over Va n VI3 
by X X v~x X gl3a(X)' v; or one may construct the quotient (Y X V)/G. 
The fundamental example is the case G = GLn IR (with its usual to
pology as an open subset of IRn2

), with V = IRn, and the resulting bun
dle is called a vector bundle of rank n. 

Problem 16.27. For n = I, and UU a covering of a plane open set V 
as above, show that the homomorphism from Hl(UU; {± I}) to 
Hl(UU; GL1 IR) determined by the inclusion of {± I} in GL1 IR is an iso
morphism. Equivalently, giving a line bundle is equivalent to giving 
a two-sheeted covering. Prove this directly. Compute this group for 
V an annulus. Over a circle in the annulus you should find two line 
bundles, corresponding to a cylinder and a Moebius band. 

Problem 16.28. Show how to make the set of all tangent vectors to 
the sphere S2 C 1R3 into a vector bundle of rank 2. Generalize to con
struct the tangent bundle of an arbitrary manifold. 



PART IX 

TOPOLOGY OF SURFACES 

The goal is to extend what we have done for open sets in the plane 
to open sets in surfaces, especially compact orientable surfaces. Some 
of this is straightforward generalization, valid for any surface, given 
basic notions about coordinate charts, but there are some new features 
that are special to the compact and orientable case. 

We show that every compact orientable surface is homeomorphic 
to a sphere with g handles, at least under the assumption that the 
surface can be triangulated. Any such surface can be realized by tak
ing a convex polygon with 4g sides, and making suitable identifica
tions on the boundary. From this description it is routine to compute 
the fundamental group and first homology group. 

In Chapter 18 we show that for any differentiable surface X, there 
is a canonical isomorphism between the De Rham group HIX of closed 
mod exact I-forms, and the dual group Hom(H1X, IR) to the homology 
group. This leads to a definition and calculation of an intersection 
pairing on the homology group HIX. 

Note: A surface is assumed to be connected unless otherwise stated. 
See Appendix D for foundational facts about surfaces. 



CHAPTER 17 

The Topology of Surfaces 

17a. Triangulation and Polygons 
with Sides Identified 

Our aim in this section is to show that a compact orientable surface 
is homeomorphic to a sphere with handles, under the assumption that 
the surface can be triangulated. The idea is to "flatten" it out, to 
realize the surface as a polygon in the plane, with certain identifi
cations on the boundary edges, and then, by cutting and pasting, to 
simplify these realizations until we can recognize the result. 

A triangulation of a compact surface X has a finite number f of 
faces, each of which is a subset of X homeomorphic to an ordinary 
(closed) triangle in the plane, with three edges homeomorphic to closed 
intervals, and three vertices that are points. Two edges can meet only 
at a vertex, and two faces meet only at one vertex or exactly along 
a common edge; in the latter case the faces are called adjacent. There 
are many choices for such homeomorphisms between plane triangles 
and faces of the triangulation. In order to be able to compare the 
homeomorphisms on adjacent faces in X, we first choose a homeo
morphism of each edge on X with the interval [0,1]. We can then 
find homeomorphisms of each face on X with a plane triangle so that, 
on the edges, the maps are those determined by these homeomorphisms: 

233 
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/1-+ (l-t)P + tQ 

o ) 

If two triangles correspond to adjacent faces, this means that the re
sulting homeomorphism between corresponding sides PQ and P' Q' 
is given by the "affine" map (1- t)P + tQ~(1- t)P' + tQ'. When 
we identify sides of polygons, it will always be by such affine homeo
morphisms, so there will be no ambiguity in the results. 

An orientation of X determines a counterclockwise direction around 
the boundary of each triangle, with adjacent triangles determining op
posite directions along their common edge: 

p 

s· 

Choose one face 'T! in the triangulation, and choose a homeomor
phism of'T! with a plane triangle II! == T!, with counterclockwise ori
entation. Choose a face 'T2 adjacent to 'T!, and extend the homeomor
phism along their common edge to a homeomorphism of'T2 with a 
triangle T2 adjacent to T!: 

p ....-----..." 

s 
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Choose T2 so the union of TI and T2 is a convex quadrilateral II2. 
This gives a homeomorphism from 'TI U'T2 to II2. Now choose 'T3 ad
jacent to 'TI or 'T2 (if 'T3 is adjacent to both, choose one of them ar
bitrarily), and extend the map from the common edge of'T3 and the 
(chosen) 'TI or'T2 to a homeomorphism from 'T3 to a triangle T3 adjacent 
to the corresponding side of II2. Let II3 be the resulting five-sided 
polygon, which we can take to be convex: 

s 

p 

s 

The arrows indicate the identification made in the map from the 
figure on the right onto that on the left. Continue in this way, until 
all f of the faces have been used. We then have a convex polygon 
III = II with f + 2 sides. Each side of II will correspond to a common 
edge of two faces on X, and each edge occurring this way will cor
respond to two such sides of II. Thus the sides of II will be paired 
off, and we have a continuous map from II to X that realizes X as a 
quotient space of II, obtained by identifying corresponding points on 
corresponding sides. Note that, when traveling around II in a coun
terclockwise direction, one travels along two corresponding sides in 
opposite directions. 

This realization of X as an identification space of a polygon is half 
way to our goal. The data used in constructing X from the polygon 
can be encoded by taking an alphabet with m letters, with m = 1f2(f + 2), 
and writing down a sequence of 2m symbols, each of which is a letter 
a in the alphabet, or its "inverse" a -I, with each of these symbols 
occurring just once. For example, the space constructed by making 
the identifications indicated in the following diagram 
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can be described by the code ala2a 3a 2 -lal -Ia3 -I. 

Exercise 17.1. Show that this code represents a torus. 

Exercise 17.2. If the number of sides is four, show that X is homeo
morphic to a sphere or a torus. 

There is a good deal of arbitrariness in the choice of polygon and 
its code, even for a given triangulation and ordered choice of faces 
of X. The polygon can certainly be replaced by any other convex 
polygon with the same number of sides. (For simplicity, one may use 
a regular polygon.) Of course, even when the polygon and the iden
tifications are fixed, the choice of alphabet is arbitrary, as is the choice 
of which of a pair of corresponding sides is written as a letter a of 
the alphabet and which as a -\. In addition, the place where one starts 
listing the sides is arbitrary, and the code can therefore by cyclically 
permuted. Note that the identifications are made by identifying cor
responding points on corresponding sides; some vertices of IT may 
become identified by this, and others may not. 

17b. Classification of Compact Oriented Surfaces 
For the rest of the argument we do not need the triangulation, but 
only this description as a polygon with sides identified according to 
a code. We want to prescribe some rules for simplifying a polygonal 
presentation of a surface. We proceed in several steps. By Exercise 
17.2 we can assume the polygon has 2m sides, with m~3. 

Step 1. If a letter a and its inverse a -I occur successively in the code, 
they can both be omitted. That is, X is homeomorphic to the surface 
obtained from a convex polygon with 2m - 2 sides, using the same 
code in the same order but with a and a-I omitted. This can be seen 
from the pictures 



17b. Classification of Compact Oriented Surfaces 237 

y 

x 
---~x 

x 

The point is that if one first carries out the identification of a with 
a -I, one gets a space homeomorphic to a convex polygon, so that the 
remaining identifications are prescribed by the code with a and a-I 

omitted. 

Step 2. It can be assumed that all the vertices of the polygon map to 
the same point of X. To show this, it suffices, if not all the vertices 
have the same image, to show how to increase by one the number of 
vertices mapping to a given point x, without changing the total num
ber of vertices. There is a side, say labeled a, that joins two vertices, 
one of which is mapped to x and the other to a point y not equal to 
x. Let ~ be the side of II adjacent to a at the point mapping to y. 
Draw the diagonal -y as shown on the polygon, and cut off the triangle 
formed by a, ~, and -y, and attach it to the polygon by identifying ~ 
with ~-I: 

~-I 

y 

x 

The surface X is the identification space of this new polygon, and it 
has the same number of sides, but one more vertex mapping to x. 

Step 3. By steps 1 and 2 we may assume that all vertices map to the 
same point x in X, and that no edge is adjacent to its inverse. We 
claim next that for any edge a there must be an edge ~ lying between 
a and a -I so that ~ -I lies between a -I and a; that is, in a code, after 
cyclically permuting if necessary, they occur in the order 

Q. -I Q.-I ... a ... t-' ••• a ... t-' ••• 

If not, we could construct the identification space X by first identi-
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fying (X with (X -I, and then separately doing all the identification pre
scribed by edges lying (counterclockwise) between (X and (X -\ and 
those prescribed by edges lying (counterclockwise) between (X -I and 
(X. The two endpoints of (X never get identified in this process, con
tradicting the assumption that all the vertices map to the same point 
of x. 

Now we simplify the code as follows: Choose an edge (x, and take 
an edge f3 so that the edges (x, f3, (X - I, and f3 -I occur in this order, 
but perhaps with other edges in between some of these (denoted A, 
B, C, and D in the following diagram). Perform the following se
quence of cutting and pasting moves: 

y 

D 

y / c 

I)-I 

c 

I)-I 

,-I 
A 

A 
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This gives a new polygon with the same properties and the same num
ber of vertices, which also represents X, but now it has a successive 
sequence 8· -y' 8- 1 • -y-I. In addition, if other such sequences occurred 
elsewhere in the polygon (i.e., in one of the parts labeled A, B, C, 
or D), such sequences are not disturbed by this procedure. So we may 
continue this process, until we have represented X as a polygon with 
sides identified according to a code 

(17.3) 
f.I. -I f.I. -I f.I. -I f.I. -I f.I. -I f.I.- 1 

<XI • I-'I • <XI • I-'I • <X2 • I-'2 • <X2 • I-'2 ••••• <Xg ' I-'g' <Xg • I-'g • 

~I 

This is called a normal form. From this one can see directly that the 
identification space is a sphere with g handles. First make the iden
tification of each ~i with ~i-I: 
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or 
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Then identify each ai with ai-I: 

Theorem 17.4. If X is a (triangulable) compact orientable surface. 
then X is homeomorphic to a sphere with g handles for some non
negative integer g. 

A similar procedure leads to a normal form for nonorientable com
pact surfaces. The projective plane can be realized by the code a' a. 
identifying the opposite sides of a "two-sided" polygon 

a a 

Problem 17.5. Show that a (triangulable) compact nonorientable sur-
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face has a normal form given by a code 0.1' 0.1 • 0.2 • 0.2' .••• o.h· o.h, 
for some positive integer h. 

For a discussion of triangulation of arbitrary compact surfaces, to
gether with a more modern proof of Theorem 17.4, see Armstrong 
(1983). 

17c. The Fundamental Group of a Surface 

The normal form representation of a compact orientable surface X as 
a 4g-sided polygon IT with sides identified according to the code (17.3) 
can be used to compute the fundamental group of X. Let x be the 
point in X that is the image of the vertices in IT, and let o.i and l3i be 
the loops in X that are the images of the corresponding sides of IT. 

Let F2g be the free group on 2g generators ai' b l , ••• , a g , bg • 

There is a homomorphism of groups from F 2g to the fundamental group 
'lT1(X,X) that takes ai to o.i and bi to l3i for l:5i:5g. We claim first 
that the element 

b -I b -I b -I b -I b -I b- I cg = al' I' al • I • a2' 2' a2 • 2 ••.•• a g ' g' a g • g 

in F 2g maps to the identity element of 'IT I (X, x) by this homomorphism. 
In fact, the product path 

R -I R -I R -I R -I R -I R-I 
0.1 • PI • 0.1 • PI • 0.2 • P2 • 0.2 • P2 ••..• o.g' pg' o.g • Pg 

is homotopic to the constant path at x, since the corresponding path 
around the sides of IT is homotopic to a constant path in IT (since IT 
is convex), and composition with the continuous map from IT to X 
gives a homotopy in X. 

Let Ng be the least normal subgroup of F2g containing cg , i.e., Ng 

is the subgroup generated by all elements of the form U' cg ' u- I for 
all u in F2g • From what we have just seen, Ng is in the kernel of the 
homomorphism from F2g to 'lT1(X,X), so we have a homomorphism 

F2g /Ng - 'lTI(X,X). 

Proposition 17.6. This homomorphism F2g/Ng-'lTI(X,x) is an iso
morphism. 

Proof. We will apply the Van Kampen theorem. Let U be the image 
in X of the complement of a small disk in the middle of IT, and let 
V be the image in X of an open set that contains this disk as shown: 
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Let K be the image of the boundary of II in X. This K is a graph 
that consists of 2g loops at x, so 'IT,(K, x) is the free group on gen
erators ai, bl , ••• , ag , bg , i.e., 'IT,(K, x) = F2g • By radial projection 
from the center of the disk, one sees that K is a deformation retract 
of U. We therefore have an isomorphism 

'ITI(U, x) =:; 'ITI(K, x), 

so 'ITI(U,X) is also the free group F 2g on the same generators. Now V 
is homeomorphic to a disk, so 'ITI(V,X) = kt} is trivial, and un V has 
a circle for a deformation retract, so 'ITI(U n V,x) = 7L The inclusion 
of un V in U takes a generator of 'IT I (U n V, x) to the element 
c g = al' bl ·al- I • ... ·bg- ' • By Van Kampen's theorem, for any group 
G, to give a homomorphism from 'ITI(X, x) to G is the same as giving 
a homomorphism from 'IT I(U, x) = F 2g to G (and a homomorphism from 
'ITI(V,X) = {e} to G) in such a way that the composite 

7L = 'IT1(Un V,x) - 'ITI(U,X) - G 

takes a generator of 7L to the identity element of G. This means pre
cisely that one has a homomorphism from F 2g to G such that cg maps 
to the identity, or equivalently, that Ng maps to the identity. That is, 

Hom('IT,(X,x), G) = Hom(F2g/Ng , G). 

This implies that the map from F2g/Ng to 'ITI(X,X) is an isomorphism, 
cf. Exercise 14.5. (See also Exercise 14.8, which applies to this sit
uation directly.) 0 

Corollary 17.7. Thefirst homology group HIX is afree abelian group 
of rank 2g, with basis the image of the loops ai, f31, •.• , ag , ~g. 

Proof. Let A2g be the free abelian group on 2g generators. The ca
nonical map from F2g to A2g maps Ng to 0, since cg is in the com
mutator subgroup. This determines a homomorphism from 
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'Tl'1(X,X) =F2g/Ng to A2g , and therefore a homomorphism 

H1(X) = 'Tl'1(X,X)/['Tl'}(X,X),'Tl'I(X,X)] ~ A2g • 

Since the images of a}, b1, ... , ag , bg generate H1(X), and their 
images in A2g are linearly independent, it follows that they are linearly 
independent in H}(X) and that this map is an isomorphism. 0 

In particular, since the rank of a free abelian group is an invariant 
of the group, this shows that the number g of Theorem 17.4 is in
dependent of choices, and depends only on the topology of X. It is 
called the genus of the surface. Together with what we saw in Chapter 
8, this shows that for any triangulation of X, the number v of vertices, 
e of edges, and! of faces satisfies the Euler equation 

v - e + ! = 2 - 2g . 

Problem 17.8. For an nonorientable compact surface with normal 
form al . a} . a2 . a2' .... ah . ah as in Problem 17.5, show that the 
fundamental group is the quotient of the free group Fh on h generators 
a}, ... , ah by the least normal subgroup that contains the element 
a}2. a22 . .... a/. Show that the first homology group is isomorphic 
to 7lJJ(h-l)tf) (71./271.). In particular, the number h is independent of all 
choices. 

Exercise 17.9. Prove that for any triangulation of a compact non
orientable surface, with h as above, the number v of vertices, e of 
edges, and! of faces satisfies the Euler equation 

v-e+! = 2-h. 

For homology there is no need to use paths with the same base points. 
It will be convenient to change the paths ai and ~i to paths that we 
denote by ai and bi as shown: 

Exercise 17.10. Show that the loops ai and a i define the same classes 
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in HI(X), and similarly for ~i and bi. In particular, the 2g classes 
determined by a 1> b 1, • • • , ag , b g form a free basis for H I (X) . 

The polygonal normal form of a surface can also be used to de
scribe its universal covering space. When g == 0, of course, X is a 
sphere, so simply connected. When g == 1, X is a torus, which we 
have seen has the plane 1R2 as its universal covering. One can con
struct this universal covering from its representation as a rectangle 
with sides identified, by pasting the sides together but without iden
tifying opposite sides. For g 2: 2, the universal covering can be re
alized in a similar way by gluing together copies of the polygon IT, 
but one cannot do this in a metrical way in the ordinary plane. How
ever, in a hyperbolic plane this can be done, and one can see that the 
universal covering can be realized as a hyperbolic plane. The hyper
bolic plane is homeomorphic to an open disk (or to 1R2), so from this 
one sees that for all g 2: 2 the universal covering is an open disk. For 
more on the hyperbolic plane, see Hilbert and Cohn-Vossen (1952). 

Exercise 17.11. Give another proof of the results of this section by 
computing the fundamental group of the complement of 2g disjoint 
disks in a two-sphere, and then showing what happens when one sews 
g handles (each homeomorphic to Sl x [0, 1]) onto pairs of the bound
aries of these disks. 

Problem 17.12. Compute the fundamental group and first homology 
group of the space obtained from a surface X of genus g by removing 
n disjoint disks or points. 

There is another important operation on the first homology group 
HIX of an oriented compact surface, an intersection pairing, that as
signs a number «1, T) to two classes (1 and T in HIX. If the classes 
are represented by loops that meet each other transversally in a finite 
number of points, this number is the sum of the numbers ± 1 assigned 
to each point of intersection, with the number ± 1 assigned according 
to the following picture: 

't 

+1 -I 
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The number is + 1 if the direction from (J' to ,. is counterclockwise, 
and -1 if it is clockwise. (Note that this notion depends on having 
an orientation for X.) What takes some proof is showing that this 
gives a well-defined number: that any two classes in H1X have rep
resentatives that meet transversally (which is not difficult), and then 
that the number one gets is independent of choices (which is more 
difficult). Rather than doing this directly, we will construct this in
tersection pairing by another procedure in the next chapter, by relating 
it to the wedge product of I-forms. 



CHAPTER 18 

Cohomology on Surfaces 

I8a. I-Forms and Homology 

On any «6'" surface X, just as on an open set in the plane, we have a 
notion of «6'" functions, I-forms, and 2-forms w, and we have linear 
maps d, that take a functionfto a i-form df, and a I-form w to a 2-
form dw. (See Appendix D3 for definitions and basic properties.) 
Therefore we have a notion of a i-form w being closed (dw = 0) or 
exact (w = df for some f). All exact forms are closed, so we can 
define the first De Rham cohomology group as before: 

HIX = {closed I-forms onX}/{exact I-forms onX}. 

Just as in the case of open sets in the plane, if -y: [a, b] ~ X is a 
continuous path, and w is a closed I-form on X, we can define an 
integral J-yw. As before, if -y is differentiable, this can be done by 
calculus: J-yw = J:-y*w. In general, as in the plane, we can subdivide 
the interval by a = to::;; t(::;; ... ::;; tn = b, so that -y([ti- 1 , ta) is con
tained in an open set Vi on which w = dj;, and then 

f w = i/;(-y(tJ) - /;(-y(ti- 1))· 

-y i=l 

The same argument as in §9b shows that this is independent of choices. 
As before, this extends from integrals over paths to integrals over 1-
chains, and the same argument shows that the integral over a bound-

247 
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ary is zero, and that the integral of df over a cycle is zero. It follows 
that we again have a canonical map 

HIX ~ Hom(HIX, IR) 

that takes the class of w to the homomorphism [-y] ~ f.v w. 
We want to calculate HIX when X is a compact oriented surface. 

In particular, we want to show that this canonical map is an iso
morphism. This could be done by the Mayer-Vietoris argument (which 
generalizes from open sets in the plane), but we will do it by explicitly 
constructing a basis, which will be useful later. 

We take a model of X as in § I7c , with a basis for HIX given by 
the loops aI, b l , .. . , ag , bg as indicated in the picture there. For 
each loop a; we will construct a closed I-form U; , and for each b; a 
closed I-form 13;, and we will show that the classes of these 2g I-forms 
form a basis of HIX. The forms U; and 13; will depend on several 
choices , but we will see that their classes in HIX depend only on the 
homology classes of the 2g loops aI , b l , . . . , ag , bg • 

For each of these loops we can find an open set V containing it that 
is diffeomorphic to an annulus U = {(x , y): a2 < x2 + / < e2}, with the 
loop corresponding to a counterclockwise circle around the middle of 
the annulus , i.e. , to the path t~(bcos(21Tt),bsin(21Tt», 0:5 t:5 I , for 
some a<b<e: 

We take these neighborhoods V to be disjoint , except for those con
taining the same a; and b;, which can be taken to intersect in a set 
diffeomorphic to an open rectangle. 
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Consider one such loop, either ai or bi , and fix such a diffeo
morphism <p from a neighborhood V of the loop to such an annulus 
U. From Exercise B.14 we can find a C(6'" function \jJ on the plane that 
is identically I outside the big circle and identically 0 inside the small 
circle. In fact, for any E with 0 < E < 1/2 (c - a), we can find \jJ so 
that 

{ I if x2 + l ;::: (c - d, 
\jJ(x,y) = 0 if x2 + l:5 (a + d. 

The function \jJ 0 <p is a C(6oc function on V that is constant on a neigh
borhood of the boundary of V. Its differential d( \jJ 0 <p) is therefore a 
I-form that is identically zero on a neighborhood of the boundary of 
V. We can therefore define a C(6'" I-form on all of X by defining it to 
be d(\jJ 0 <p) on V, and identically 0 outside V. This is certainly a closed 
I-form. In fact, its restriction to V is exact, and its restriction to an 
open set V' with V U V' = X is zero. (Note that the form is not exact 
on X, however, as follows for example from the following lemma.) 
This is the I-form we wanted to construct. We denote it by (Xi if the 
given loop is ai, and l3i if the given loop is hi' 

Lemma 18.1. These 110rms (Xi and f3i have integrals: 

(i) (l3i = 0 
Jbj 

(ii) 1 (Xi = 0 
aj 

Jor all i andj, and L
j 

l3i = {b ~! ~~'; 
Joralliandj, and ((X.={-1 if i=j, 

Jbj I 0 if i ¥- j . 

Proof. This is a direct calculation. All of the assertions that integrals 
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vanish follow from the fact that they are integrals of I-forms over a 
loop, and these forms are exact on an open set containing the loop. 
For the integral of 13; along a;, cut a; into two pieces, one inside the 
annulus as shown, the other outside. 

For the piece inside the annulus, 13; is the differential of a function 
whose value at the initial point is 0 and at the end point is 1, so the 
integral of 13; along this piece is 1. For the second, 13; is identically 
zero. So the integral is I + 0 = I, as asserted. The argument is similar 
for the integral of (X; along b;, but this time the function is I at the 
initial point and 0 at the final point of the part of the path in the 
annulus, so the integral is -1. 0 

Proposition 18.2. (1) The canonical map HIX ~ Hom(H1X, JR.) is an 
isomorphism. 

(2) The classes of the l-forms Ul, {31, ... , ug, {3g form a basis 
for HIX. 

Proof. The same argument as in the plane shows that this canonical 
map is one-to-one. For if W is a closed I-form and I'Yw = 0 for all 
closed paths 'Y, then one can define a functionf on X by fixing a point 
Po and defining f(P) to be the integral of w along any path from Po 
to P. The assumptions make this a well-defined function, and the 
proof that df= w is the same as for open sets in the plane (see Prop
osition 1.8); indeed, the assertion df= w is a local assertion, so it can 
be verified on coordinate neighborhoods. 

To see that the canonical map is subjective, a homomorphism 
h: H1X ~ JR. is determined by its values on a basis, so suppose h([aj]} = rj 
and h([bj]} = Sj for some numbers rj and Sj' I $,j$, g. By the lemma, 
the closed I-form w = Lf=l(r; 13; - s;(X;)has IaJw = rj and IbjW = Sj, which 
means that the canonical map takes W to h. 0 

Exercise 18.3. Show that for closed I-forms W on the surface X one 
has a "module of periods" story as in Chapter 9: if the integrals of 
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CI) along the basic loops are known, all integrals are determined. Show 
in fact that if I aj CI) = rj and h CI) = Sj' then for any closed i-chain 'Y, 

g 

Joy CI) = ~ (miri + nisi), 

for some integers mi and ni. 

Note in particular that the classes [(Xi] and [13i] of (Xi and 13i in HIX 
are determined by their integrals, so are independent of the choices 
we made in defining them. They depend in fact only on the choice 
of the basis for HIX determined by the ai and bi • 

18b. Integrals of 2-Forms 

Once an orientation of our surface is chosen, one can integrate '(600 

2-forms. The integral of the 2-form v on X will be a real number, 
denoted II x v. More generally, if X is any oriented surface, and v is 
a 2-form with compact support (i.e., which is identically zero outside 
a compact subset of X), one can define IIxv by the following pro
cedure. Choose an atlas of coordinate charts 'Pa: Ua--,;X, say with 
each Ua an open rectangle in the plane, with all charts compatible 
with the given orientation, and satisfying the condition that any point 
of X has a neighborhood meeting only finitely many 'Pa(Ua) (see Ap
pendix A4 and Lemma 24.10). 

To give a 2-form v on X is the same as giving a 2-form vadxdy 
on Ua (which the same as prescribing a function Va on Ua), such that 
these 2-forms are compatible under changes of coordinates. First sup
pose v is a 2-form that is zero except on a compact subset of one of 
the open sets 'PiUa). Then one can define the integral of v by 

II v = II vadxdy, 
x Ua 

where the integral on the right is the ordinary Riemann integral of a 
'(600 (or continuous) function Va on a rectangle. In general, choose a 
partition of unity {I/Ia} so that the closure of the support of each I/Ia is 
contained in 'Pa(Ua). Define the integral of v to be the sum of the 
integrals of the I/Ia v, i. e. , 
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where the integral of each t\s",v is defined by the preceding case, since 
it is zero except on 'P",(U",). Note by the compactness of the support 
of v that only finitely many t\s",v can be nonzero, so this sum is finite. 

Exercise 18.4. (a) Verify that this definition is independent of the 
choice of partition of unity and the choice of coordinate charts. 
(b) Verify that the integral is linear: ffx(rlvl + r2v2) = ffxrlvl + ffxr2v2 
for 2-forms VI and V2 and real numbers rl and r2. (c) Show that, if 
the other orientation is chosen, then the integral changes sign. 

We need the following version of the Green-Stokes theorem for a 
surface: 

Proposition 18.5. If v = dw, where w is a Ilorm with compact sup
port on an oriented surface X, then ff x v = o. 
Proof. Choosing an atlas and partition of unity as in the definition, 
since w = ~",t\s",w, 

Now t\s",w is a I-form with compact support on 'P",(U",), which cor
responds to a I-form /-1-", with compact support on the open rectangle 
U",. By definition, ffxd(t\s",w) = ffu.d(/-I-a), so it suffices to prove that 
this last integral is zero. But /-1-0< has compact support, so it vanishes 
on the boundary of the rectangle. By Green's theorem for a rectangle 
(Lemma 1. 11), 

D 

18c. Wedges and the Intersection Pairing 

If X is a compact oriented surface, and w and /-I- are I-forms on X, 
we can define a real number (w, /-1-) by the formula 

(w, /-1-) = ffxw/\/-I-. 

where w /\ /-I- is the wedge product (Appendix D3). From basic prop
erties of the wedge product (see Exercise D.7) we have: 
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(i) (riwi + r2w2, /-1) = rl(wl, /-1) + r2(w2, /-1) for I-forms WI, W2, and 
/-1, and real numbers rl and r2; 

(ii) (w, /-1) = -(/-1, w) for any I-forms wand /-1; and 
(iii) (dj, /-1) = 0 for a function j and a closed I-form /-1. 

Condition (i) says that (w, /-1) is linear in the first factor. Similarly, 
or using (ii), it is linear in the second, i.e., it is a bilinear pairing. 
Condition (ii) says that this pairing is skew-symmetric. Condition (iii), 
together with (ii), says that (w, /-1) = 0 if either w or /-1 is exact. It 
follows that we can define a mapping 

HIX X HIX ~ ~, [w] x [/-1] ~ (w, /-1) = IIxw/\ /-1. 

The point is that, since the integral vanishes when either is exact, the 
result is independent of choice of a closed I-form in an equivalence 
class. This is also a bilinear and skew-symmetric pairing. 

Lemma 18.6. Let {Xi and f3i be the 110rms constructed in §18a. Then 
({Xi, (Xj) = 0 = (f3i' f3j) jor all i and j, and 

_ {I if i = j, 
(ai' 13) - 0 if i"# j . 

Proof. As in Lemma 18. 1, this is a direct calculation. The pairings 
that are asserted to be 0 are evident, since in these cases the wedge 
products of the forms are zero. This uses the fact that a wedge product 
w /\ /-1 vanishes where either w or /-1 vanishes, and the fact that w /\ w = 0 
for any I-form w. It therefore suffices to verify that (ai' 13,) = 1, i.e., 
that II x ai /\ l3i = 1, for all i. The form ai /\ l3i vanishes off the region 
that is the intersection of the two annuli around the loops ai and bi , 

and this region is diffeomorphic to a rectangle. In a coordinate patch 
we have the picture 

b· ,,' 
'V / 

aj 

On this rectangle, ai = dj; and l3i = dg i , where j; is a function that is 
o on the right side of the rectangle and I on the left side, and gi is a 
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function that is 0 on the top of the rectangle and 1 on the bottom. If 
R is this rectangle, 

II n;A 13; = JJ d};Adg; = II d(k dg;) = Lk dg;, 
x R R 

the last step by Green's theorem on the rectangle R. Now since dg; 
vanishes on the bottom and top edges of the rectangle, /;. dg; is zero 
on all sides of the rectangle except for the left vertical edge 'Y4, where 
it is equal to dg;. So 

r k dg; = -] dg; = -(ghil» - g;('YiO») = -(0 - 1) = 1, 
JaR 'Y4 

which finishes the proof. 0 

Exercise 18.7. For any closed I-form w on X, show that 

(nj'w) = Lw and (l3j'w) = iw. 
J J 

Exercise 18.8. Show that, for any closed I-forms f.L and v, 

Proposition 18.9. The pairing H1X X H1X ~ IR is a perfect pairing, 
i.e.,for any linear map q;: H1X~IR, there is a unique win H1X such 
that q;(p,) = (Cd, p,) for all p, in H1X. 

Taking 'P = 0, this says in particular that if wE H1X and (w, f.L) = 0 
for all f.L in H1X, then w = O. 

Proof. In this proof we identify closed I-forms with the classes they 
define in H1X. If w = ~f=l(r;n; + s;I3;) in H1X, then by Lemma 18.6 
we have 

g 

(w,l3) = 2: (r;(n;, 13) + s;(I3;, 13) = rj' 
;=1 

g 

(w, n) = -(nj' w) = -2: (r;(nj, n;) + s;(nj' 13;» = -Sj' 
i=l 

The homomorphism determined by w therefore takes nj to -Sj and I3j 
to rj. If this homomorphism is zero, all Sj and rj must be zero, which 
means that w is zero in H1X. Conversely, any homomorphism 'P is 
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determined by the values it takes on a basis of HIX, and if we define 
rj to be cp(l~j) and Sj = -cp«(X), the same equations show that 
00 = ~f=l(ri(Xi + sJ3i) is a class in HIX with (00, /-1) = cp(/-1) for all /-1. 0 

Corollary 18.10. For any 'Y in HIX, there is a unique class 001 in 
HIX such that J1P- = JJxOO11\p-jor all p- in HIX. 

Proof. Given 'Y, the map /-1~ J-y /-1 is a homomorphism from HIX to 
IR, so the proposition gives a unique class oo-y with the required 
property. 0 

Exercise 18.11. (a) For 'Y = ai, the corresponding class ooa; is repre
sented by the form (Xi; and for 'Y = bi , the corresponding class oob; is 
represented by the form ~i. This shows again that the classes of the 
forms (Xi and ~i depend only on the choice of ai, ... , bg • (b) Show 
that the map from HIX to HIX taking 'Y to oo-y is a homomorphism. 

Problem 18.12. Suppose 'Y is represented by a map from the circle 
Sl to X that extends to a diffeomorphism from an annulus containing 
Sl to an open subset of X. Use this annulus as in § 17 a to construct a 
differential form 00 that vanishes outside the image of the annulus, 
and, on the annulus, is the differential of a function that increases 
from 0 to 1 as one moves from the inside to the outside of the annulus. 
Show that 00 represents the class oo-y of the corollary. 

We can use the corollary to define an intersection number (<T, 'T) 
for any <T and 'T in HIX, as we indicated at the end of the last chapter. 
Namely, let 00" and OOT be the cohomology classes given by the cor
ollary, and define (<T, 'T) to be (00", ooT), i.e., 

Proposition 18.13. (1) This pairing is a bilinear skew-symmetric pairing 
on HIX, i.e., 

(mlcrl + m2cr2, 'T) 
(cr, ml'Tl + m2'T2) = 

('T, cr) 

ml(cr I , 'T) + m2(cr2, 'T) , 
ml(cr, 'TI) + m2(cr, 'T2), 
-(cr, 'T), 

jor all <T, T, (7'1, (7'2, TI, T2 in HIX and all integers ml and m2. 
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(2) With the basis aj and bj for H1X as before, (aj, a) = (b j, b) = 0 
for all i and j, and 

_ {I if i = j, 
(aj, b) - 0 if i ~ j . 

(3) The number (u, T) is always an integer. 
(4) For any u in HIX, the map T~ (u, T) is a homomorphism from 

H1X to lL, and every homomorphism from H1X to lL arises in this way 
from a unique u in HIX, 

Proof. Part (1) follows from the corresponding assertions for the pair
ing ( , ) on cohomology classes. Part (2) follows from Lemma 18.6 
and Exercise 18.11: for example, (aj, bj ) = (ai> 13), which is 1 if i = j 
and 0 otherwise. Since the aj and bj form a basis for HIX, (3) follows 
from (1) and (2). The proof of (4) is the same as before: the element 
u = "Lr.aj + sjbj has (u, a) = -Sj and (u, b) = rj, with this time rj and 
Sj integers, and a homomorphism is determined by arbitrarily speci
fying the integers to which each element of a basis maps. 0 

Problem 18.14. Suppose u and'T are represented by maps from Sl 
to X that extend to diffeomorphisms of annuli with open sets in X, 
so that the images cross transversally at a finite number of points. 
Show how to assign numbers + 1 or - 1 to each intersection point 
(see the end of §17), in such a way that (u,'T) is the sum of these 
numbers. 

It should be pointed out that, as we have constructed it here, the 
intersection pairing uses a differentiable structure on the surface. 
However, as the preceding problem indicates; it really depends only 
on the topology. 

Problem 18.15. Prove this assertion. 

18d. De Rham Theory on Surfaces 

We have concentrated on the first De Rham group HIX. As in the 
plane, on any surface one has the Oth group HOX, which is the space 
of locally constant functions on X. If X is connected, such functions 
are constant, and HOX is just the space ~ of constant functions. 
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We can define the second De Rham group H2X of a differentiable 
surface X by 

H2X = {2-fonns on X}/{exact 2-fonns on X}. 

If X is a compact oriented surface, it follows from Proposition 18.5 
that integration defines a canonical map 

[v] ~ II v. 
x 

It is easy to see that this map is surjective, by constructing a fonn v 
that vanishes outside one coordinate neighborhood 'Pa(Ua), and in Ua 
has an expression Va dx dy, with Va a nonnegative function with given 
integral. We claim that, in fact, this canonical map is an isomor
phism. This is equivalent to the 

Claim 18.16. If IIx v = 0, then v must be exact. 

Equivalently, the dimension of H2X is (at most) one. With this, we 
will know all the De Rham cohomology groups of a compact surface 
of genus g: 

HOX = IR, HIX = IRffi2g, H2X = IR. 

We will show how to extend the Mayer-Vietoris story to include 
the second cohomology group, which will in particular prove this claim. 
We will also see that if X is not compact, or if X is not orientable, 
then H2X = 0: every closed 2-form is exact. 

Exercise 18.17. Show directly from the definition that, if U is an 
open rectangle, every 2-fonn is exact. Conclude that H 2U = 0 if U is 
diffeomorphic to an open rectangle. 

Exercise 18.18. Suppose a surface X is a disjoint union of a finite or 
infinite number of open sets Ui • Show that specifying a k-fonn on X 
is the same as specifying a k-fonn on each Ui , and specifying a class 
in HkX is the same as specifying a class in HkUi for each i. In other 
words, HkX is the direct product of the groups HkUi • 

We want to compare the cohomology groups for different open sets. 
Note first that if UI is a subset of U2 , any differential function or 
fonn on U2 detennines by restriction a differential function or fonn 
on U I • This restriction commutes with the boundary maps d (which 
amounts to the obvious fact that partial derivatives of a function re-
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stricted from a larger open set to a subset are the restrictions of the 
partial derivatives). This means that restriction takes closed forms to 
closed forms, and exact forms to exact forms, and hence determines 
linear maps, also called restriction maps: 

H k(U2) ~ Hk(UI), k = 0,1,2. 

Exercise 18.19. If UI C U2 C U3 , show that the restriction map from 
Hk(U3) to Hk(UI) is the composite of the restriction map from Hk(U3) 

to H k(U2) followed by the restriction map from H k(U2) to Hk(UI). 

Exercise 18.20. If U and V are open sets in a surface X, and 00 is a 
k-form on un V (with k = I or 2), show that there are k-forms WI on 
U and 002 on V so that 00=001-002 on unv. 

Given open sets U and V in a surface X, the contructions of Chapter 
10 extend without change, giving a coboundary map 

8: HO(Un V) ~ HI(UUV). 

The Mayer-Vietoris properties MV(i)-MV(v) of §IOd continue to 
hold for these spaces and maps. Similarly, we construct a coboundary 
map 

8:HI(UnV) ~ H2(UUV). 

The construction of a map from {closed I-forms on un V} to H2(U U V) 
proceeds exactly as before: Given a closed I-form 00 on un V, use 
Exercise 18.20 to write 00 as WI - 002, with WI and 002 I-forms on U 
and V, respectively. The 2-forms dWI and dW2 agree on un V, so 
there is a unique 2-form fJ. on U U V that agrees with dWI on U and 
with dW2 on V. Define 8(00) to be the class of this 2-form fJ.: 8(00) = [fJ.]. 
Exactly as before, one checks that this is independent of the choice 
of WI and 002, and is a linear map. To see that it defines a homo
morphism on the quotient space 

HI(U n V) = {closed I-forms on un V}/{exact I-forms on un V}, 

we must show that the map just defined vanishes on the exact I-forms. 
If 00 = dl, write I = II -/2, with II and 12 functions on U and V, re
spectively. Then in our construction of the coboundary of 00 we may 
take WI = dll and 002 = d12, from which it follows that dWI and dW2 are 
both zero, so fJ. = 0 and 8([00]) = 0, as required. 

We claim next that properties (i)-(v) continue: 

MV(vi). Given 00 in HI(U n V), 8(00) = 0 if and only if 00 = a - ~ lor 
some a in HIU and ~ in HIV. 
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MV(vii). Given J.L in H2(U U V), J.L restricts to zero in H 2U and H2V 
if and only if J.L = 8(w) for some w in HI(U n V). 

MV(viii). Given a in H2U and f3 in H2V, a and f3 have the same 
restriction to H2(U n V) if and only if a and f3 are the restrictions of 
some element in H2(U U V). 

The proofs are exactly the same as before, and are left as exercises. 
In addition, we have, as an immediate consequence of Exercise 18.20: 

MV(ix). Any class J.L in H2(U n V) can be written as the difference 
of a class a in H 2U and a class f3 in H2V. 

Putting this together, using the fancy language as before, we have 
the full 

Theorem 18.21 (Mayer-Vietoris Theorem). For any open sets U and 
V in a surface, there is an exact sequence 

o - H°(U uV) ~ HOU EEl HOV ----=- HO(U n V) 

~ HI(UU V) ~ HIU EEl HIV ----=- HI(U n Y) 

~ H2(UU V) ~ H 2U EEl H2y --=- H2(U n Y) - o. 
Problem 18.22. Use Mayer-Vietoris to show that H2X = 0 for any 
open subset of the plane. 

Proposition 18.23. If X is a surface diffeomorphic to a sphere with 
g handles, then dim H2X = 1. 

Proof. We can write X as the union of the same two open sets U and 
Y that we used in the proof of Proposition 17.6. Since V is diffeo
morphic to an open disk, H IY=O=H2V, see Exercise 18.17. We 
leave it as an exercise to show similarly that H 2U = o. We know that 
HI(U n V) == lit The proof of Proposition 17.6 shows that the map 
from HIU to HIX induced by inclusion is an isomorphism. It follows 
from this and Proposition 18.2 that the restriction map from HIX to 
HIU is an isomorphism. The relevant part of the Mayer-Vietoris se
quence is therefore 

HIX ~ HIUffiO ~ HI(Un V) ~ H2X ~ OEBO. 

lt follows that the map from HI(U n V) to H2X is an isomorphism. 
Since HI(U n V) == IR, this shows that H2X is one dimensional. 0 
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Exercise 18.24. Give another proof of the proposition by writing X 
as a union of a sphere with 2g disjoint disks removed, and the union 
of g handles, each diffeomorphic to a cylinder Sl X (0, o. 

Exercise 18.25. If X is a nonorientable compact surface, use Mayer
Vietoris to show that H2X = O. If X is written in normal form as in 
Problem 17.5, show that the dimension of HIX is h - 1. Show that 
for all the compact surfaces, if triangulated with v vertices, e edges, 
andjfaces, 

v - e + j = dim(JtX) - dim(HIX) + dim(H2X) . 

Problem 18.26. (a) If f Y~X is a differentiable map of surfaces, 
show how to define pull-backsj*w of forms from X to Y, determining 
mapsj*: HkX ~Hky for k = 0, 1,2. (b) Iff is an n-sheeted covering 
map, show how to define push-forwards f*w of forms from Y to X, 
definingj*: Hky~ HkX. (c) Withfas in (b), show that the composite 
h of*: HkX ~ HkX is multiplication by n. (d) If X is a compact non
orientable surface, and f: X ~ X is its orientation covering, show that 
If xf*w = 0 for any 2-form w on X. Conclude again that H2X = O. 

We will see in Chapter 24 that there are corresponding homology 
groups HzX, with a corresponding Mayer-Vietoris sequence, and iso
morphisms H2X == Hom(H zX, ~). We will also see in Chapter 24 that 
H2X vanishes for any noncompact surface. 



PART X 

RIEMANN SURFACES 

Many of the ideas about covering spaces, homology, and cohomol
ogy, can be used in the study of Riemann surfaces. A Riemann sur
face is a differentiable surface with a complex analytic structure. 
Compact Riemann surfaces arise by taking a finite-sheeted covering 
of the complement of a finite set in the two-sphere S2, and then filling 
in appropriately over the branch points. We prove the Riemann-Hur
witz formula that computes the genus (number of handles) of a surface 
arising this way. 

If F(z, w) is an irreducible polynomial in two complex variables, it 
defines w as an algebraic function of z, and one is interested in the 
behavior of integrals of the form Idz/w, or more generally IR(z, w)dz, 
where R is any rational function. Associated with F there is a complex 
plane curve F(z, w) = 0; as a subset of ([} it is, except for a possible 
finite number of singularities, a Riemann surface, and the above pro
cess compactifies this surface. One of the key discoveries of the nine
teenth century was how the topology of this surface, i.e., the genus 
g, controls much of the analysis related to the algebraic function w 
and its integrals. The integrals between two points are defined up to 
"periods," which are integrals along classes in the first homology 
group of the Riemann surface. 

In Chapter 21 we use what we have learned about the topology and 
differential forms on a surface to prove the celebrated Riemann-Roch 
theorem, which shows how that topology (genus) of a surface controls 
the kinds of meromorphic functions and forms one can find on the 
surface. We also prove the Abel-Jacobi theorem, which similarly re-
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lates the possible integrals on the surface to its topology. We prove 
these theorems only for Riemann surfaces that are known to arise 
from a plane curve, i.e., from an irreducible polynomial F(Z, W). (It 
is true that all compact Riemann surfaces arise this way, but we do 
not prove this here.) In this case there is a short proof of Weil that 
uses the algebraic notion of adeles, together with the few facts from 
analysis and topology that we have available. 



CHAPTER 19 

Riemann Surfaces 

19a. Riemann Surfaces and Analytic Mappings 

A Riemann surface X is a connected surface with a special collection 
of coordinate charts 'Pa: V a ~ X. As before, Va is a subset of 1R2, but 
now we identify 1R2 with the complex numbers C. The requirement 
to be a Riemann surface is that the change of coordinate mappings 
'P~a from Va~ C Va to V[3a C V[3 are not just C€"', but they must also be 
analytic, or holomorphic. Recall (see §9d) that an analytic function 
f on an open set in C is a complex-valued function that is locally 
expandable in a power series, i.e., at each point Zo in the open set, 
there is a power series L;~oan(z - zor that converges to f(z) for all z 
in some neighborhood of Zo. As before, another atlas of charts is 
compatible with a given one (and defines the same Riemann surface) 
if the changes of coordinates from charts in one to charts in the other 
are all analytic. 

Any Riemann surface has a natural orientation. This follows from 
the fact that, when the analytic changes of coordinates are written out 
in terms of their real and imaginary parts, the Jacobian of the result 
has positive determinant. We will consider only connected Riemann 
surfaces. 

Exercise 19.1. Show that in fact, if w = f(z) , with w = u + iv and 
z = x + iy, the determinant of the Jacobian of the map from (x,y) to 
(u, v) is the square of the absolute value of the complex derivative 
f'(z). 

263 
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We have seen several examples of Riemann surfaces. Of course, 
( itself is one, with the identity coordinate chart (~C, and any open 
subset of ( (or any Riemann surface) is also a Riemann surface. The 
sphere S2 is a compact Riemann surface, with the charts given by 
spherical projection from the north and south poles. Indeed, we saw 
(Exercise 7. 14) that the change of coordinates mapping in this case 
is given by the map z~ liz from (\ {O} to (\ {O}. (When we speak 
of S2, it will always be regarded as a Riemann surface with these 
coordinate charts.) The torus [R2/Z2 == (/(Z + Zi) is a compact Rie
mann surface, using the projections from small open sets in ( to the 
quotient for coordinate charts. 

Any compact oriented surface can be given a structure of a Rie
mann surface (as we shall see later), but, except for the sphere S2, 
there are infinitely many nonequivalent Riemann surfaces with the 
same underlying surface. For example, if A C ( is any lattice, i.e., 
a subgroup generated by two elements that give a basis for ( as a 
real vector space, then (I A is likewise a compact Riemann surface. 
These are all homeomorphic (and diffeomorphic) to each other, but 
they are generally not isomorphic Riemann surfaces (see Exercise 
19.17). This is part of the general subject of "moduli of Riemann 
surfaces" -the study of the set of all Riemann surfaces of a given 
genus-that we can only hint at in this book. 

If X is a Riemann surface, it makes sense to say that a function 
f: X ~ ( is analytic (or holomorphic): f is analytic if for each coor
dinate chart <P"': U",~X, the compositefo<p", is an analytic function 
on the open set U '" in C. More generally, if X and Y are Riemann 
surfaces, a mappingf: X ~ Y is analytic at a point P in X if there are 
charts <p: U ~ X and t/!: V ~ Y mapping to neighborhoods of P and 
f(P), respectively, so thatf(<p(U) C t/!(V), and the composite t/!-I ofo 'fJ 
is an analytic function from U to V: 

x y 

o o 
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This condition is independent of the choice of coordinates <p and tV. 
In fact, we can choose both U and V to be disks centered at the origins, 
with these origins mapped to P and f(P). In this case the composite 
h=tV-1ofo<p has the form h(Z)=L~=la"zn, for some converging power 
series. As we will soon see, the order of vanishing of h at the origin, 
i.e., the smallest integer e such that ae ¥= 0, is independent of the 
choice of coordinates. This integer is called the ramification index of 
fat P, and we will denote it by ef(P)' or just e(P) when one function 
f is being considered. (Iff is constant, of course, h is identically 0, 
and e = co, but we will not be interested in constant maps.) The point 
P is called a ramification point for f if ef(P) > 1. 

We claim next that we can change the coordinate chart <p so that 
the composite tV -I of 0 <p is the function z ~ ze. To see this, write 
h(z) = l· g(z), where g(z) is an analytic function at the origin and 
g(O) ¥= O. (g(z) = L~=oan+ezn.) Such an analytic function g, possibly in 
a smaller disk around the origin, can be written as the eth power of 
an analytic function k(z); for example, g(z)/ae maps 0 to 1, so maps 
a neighborhood of 0 to the right half-plane, so one can compose it 
with a branch of the log function 

oc 1 
log(z) = -2: -(1 - z)" 

n=1 n 
for Iz - 11 < 1 , 

and then set 

k(z) = a' expC 10g(g(Z)/ae») , 

where a is any eth root of ae and exp(z) = L~=o(1/n!)zn. 

Exercise 19.2. Verify that k(z)e = g(z) in some disk containing the 
origin. Show that there are exactly e choices for such k (up to shrink
ing the disks they are defined on), obtained by the e choices for the 
eth root a of ae • 

Now we have written h(z) = (z· k(z»" where k is an analytic func
tion with k(O) ¥= O. The mapping z ~ z· k(z) is an analytic isomor
phism in some neighborhood of the origin, since its derivative does 
not vanish at the origin. Therefore, we can define a new coordinate 
chart (j5 (from some small disk V' to X) so that (j5 (z) = <p(z . k(z» for 
all small z. It follows that, with this new coordinate chart (j5, the 
composite tV of 0 (j5 is just the map z ~ ze, as required. 

The mapping z ~ ze is familiar: it maps 0 to 0, and outside the 
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origin it is an e-sheeted covering map. This shows that there are 
neighborhoods U of P and V of f(P) so that f maps U to V, and the 
mapping U \ {P}~ V \ {f(P)} is an e-sheeted covering. This shows in 
particular that the number e is independent of choices, and in fact 
depends only on the topology of the map f near P. 

Note another important consequence of this local structure: a non
constant analytic mapping is always an open mapping, i.e., the image 
of any open set is open. In particular, if X is compact and Y is not 
compact, the only analytic mappings from X to Yare constants. When 
Y = C this openness is a strong form of the maximum principal: one 
cannot have a point Po such that I f(Po) I ~ I f(P) I for P in a neighbor
hood of Po. 

Proposition 19.3. Let f: X ~ Y be a nonconstant analytic map be
tween compact Riemann surfaces. 
(1) There are a finite number of ramification points. Let R ex be 

the set of ramification points, and set S = fiR) e Y. 

(2) The map from X V-I(S) to Y \ S determined by f is an n-sheeted 
covering map for some finite number n. This integer n is called 
the degree of f. 

(3) For any point Q in Y, ~PEf-'cQ)eJP) = n. 

Proof. (1) follows from the fact that for any point P, there is a neigh
borhood of P that contains no other ramification point, using the com
pactness of X to cover it by a finite number of such neighborhoods. 
It follows similarly thatrl(Q) is finite for all points Q in Y (consider 
a possible limit point of the setrl(Q». 

To prove (2), let Q fI. S, and rl(Q) = {PI, ... ,Pn}. There are 
neighborhoods Ui of Pi and Vi of Q such that f maps Ui homeomor
phically onto Vi. Shrinking the Ui if necessary, we may assume they 
are disjoint, and that Vi contains no point of S. For any connected 
neighborhood Vof Q contained in vln ... nvn , let U/ = Ui nf-I(V); 
note that f maps each U/ homeomorphic ally onto V. We claim that 
for V sufficiently small, rl(V) is the disjoint union of the sets U/, 
from which it follows that V is evenly covered, so f is a covering in 
a neighborhood of Q. To prove this claim, suppose on the contrary 
that there is a sequence of neighborhoods Ni of Q whose intersection 
is {Q}, such that there is a point P/ in rl(NJ with P/ not in 
UI U ... U Un. By the compactness of X, a subsequence of these P; 
must have a limit point P' in X. By the continuity off, f(P') = Q, so 
P' = Pj for some j. But this contradicts the assumption that the points 
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P;' are not in Uj for all i andj. (In fact, having proved (2), it follows 
that the whole neighborhood V= nVi is evenly covered.) 

For (3), again letf-I(Q) = {PI' ... , Pm}, and find neighborhoods 
Ui of Pi and Vi of Q such that f maps Ui onto Vi, so that in local 
coordinates it is the map z >-+ Ze(Pf ) , so it is elPi) to I except at the 
point Pi' Again if V is a neighborhood of Q contained in the inter
section of the Vi' but not containing any other point of S, then there 
are ~ef(Pi) points over a point Q' in V except for the point Q. By 
(2), this sum must be the number n of sheets of the covering. 0 

A meromorphic function f on a Riemann surface X is the same as 
an analytic function f: X --+ S2 from X to the Riemann sphere. Equiv
alently, f is an analytic function from X \ S to C, with S a discrete 
subset of X, and for each point P in X, there is a coordinate chart 
'P: U--+X taking 0 to P, so that on U\ {P}, fo 'P(z) = l· g(z), for some 
integer k and some analytic function g that is nonvanishing in U. The 
integer k is called the order of fat P, and is denoted ordp(f). It is 
independent of the choice of the local coordinate. If k is positive, one 
says that f has a zero of order k, or vanishes to order k, and if k is 
negative, we say that f has a pole of order - k. 

Exercise 19.4. Show that f is meromorphic at P if and only if there 
is a coordinate chart as above and an integer k so that the function 
Z-k'(fo'P)(z) is bounded as z approaches O. 

In terms of the mapping f X --+ S2, the order off at P is positive if 
f(P) = 0, negative if f(P) = 00, and zero otherwise. If f(P) = 0, the 
order off at P is just the ramification index ef(P) off at P. Similarly, 
if f(P) = 00, the order of f at P is minus the ramification index at P, 
since liz is a local parameter for the Riemann sphere at 00. If X is 
compact, we know that the sum of the ramification indices over any 
point in S2 is the degree n off. Assertion (3) of the proposition says 
that f takes on all values the same number of times, counting mul
tiplicity correctly. In particular, for the values 0 and 00, this gives: 

Corollary 19.5. For any nonconstant meromorphic function f on a 
compact Riemann surface X, 

L ordp(f) = O. 
PEX 

Exercise 19.6. Let Pt(z) and P2(Z) be polynomials in z of degrees d t 
and d2 , with no common factors. (a) Show thatf(z) = PI(z)lp2(z) de-
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tennines an analytic mapping from S2 = C n {oo} to itself. (b) Show 
that the degree of this mapping is the maximum of the integers d l and 
d2 • (c) Show that the ramification index of this mapping at 00 is idl - d2i. 
(d) Show that every analytic mapping from S2 to S2 has this form. 

19b. Branched Coverings 

If Y is a Riemann surface, and p: X ~ Y is a covering mapping, then 
there is a unique structure of a Riemann surface on X so that p is an 
analytic mapping. In fact, one can choose charts 'Pa: Ua ~ Y for Y so 
that each 'Pa(Ua) is evenly covered by p; each component Va,; of 
p-I('Pa(Ua» maps homeomorphically to 'Pa(Ua) by p, and the com
posite 

Ua ~ 'Pa(Ua) ~ Va.; 

of 'Pa and the inverse of p, gives a coordinate chart on X. It is straight
forward to verify that the changes of coordinates for these charts are 
analytic, so define a Riemann surface structure on X. 

Exercise 19.7. If Y is a Riemann surface, and G is a group acting 
evenly on Y by analytic isomorphisms, show that Y /G can be given 
the structure of a Riemann surface so that Y ~ Y /G is analytic. 

An important case of this is the fact that the universal covering X of 
a Riemann surface is a Riemann surface, and the fundamental group 
'll'1(X, x) acts as a group of analytic isomorphisms of X. When X = S2, 
X = X; when X = C/ A for a lattice A, X = C. It is a fact of complex 
analysis (the uniJormization theorem) that in all other cases, the uni
versal covering is isomorphic to the upper half plane H (or an open 
disk). The automorphisms of H all have the fonn z~(az+b)/(cz+d) 
where (~ ~) is a real matrix of detenninant I. This means that X can 
be realized as the quotient of H by a subgroup of SL2(~)/{±I} acting 
evenly on H. We will not have more to say about this situation, which 
is a fundamental area of mathematics in its own right. 

In the last section we saw that any (nonconstant) analytic map X ~ Y 
of compact Riemann surfaces determines a finite-sheeted covering 
X \f-I(S)~ Y\ S, for some finite set S in Y. Our goal in this section 
is to reverse this process. Given a Riemann surface Y, a finite subset 
S of Y, and a finite-sheeted topological covering p: X" ~ Y \ S, by what 
we just proved, )(' gets a structure of a Riemann surface so that this 
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mapping is analytic. We want to "fill in" the missing points over the 
points of S, embedding r in a Riemann surface X, so that we have 
an analytic mapping/from X to Y compatible with the given covering: 

Xo C X 

p 1 1/ 
Y\S c Y. 

If Y is compact, we want X to be compact. In general, we want the 
mapping/to be proper: for any compact set K of Y, the inverse image 
rI(K) should be a compact set in X. The problem is local on Y: we 
need to fill in the covering over each point of S. We will look first 
at the "local model" of a Riemann surface-an open disk. 

Let D = {z: Izl < I}, DO = D \ {O}. We know all about the coverings 
of DO. In fact, its fundamental group is lL (since it contains a circle 
as a deformation retract), so connected finite-sheeted coverings cor
respond to subgroups of finite index in lL, and the only such subgroups 
of lL are the groups elL for e a positive integer. The e-sheeted covering 
corresponding to this subgroup is 

Z f--o? ze. 

This means that if p: EO ~ DO is any e-sheeted connected covering, 
there is a homeomorphism 1\1: DO ~ eo so that po 1\1 = Pe. 

This homeomorphism 1\1 is not uniquely determined, depending, as 
we know, on a choice of where a base point is mapped. In particular, 
there are exactly e such homeomorphisms, corresponding to the e 
points of eo over a given base point. The other choices of 1\1 have the 
form z f--o? l\I(tk' z), where tk = exp(2'7Tkij e) is one of the eth roots of 
unity, 1 s k S e - 1. 

It is now clear how to fill in the covering p: eo ~ DO. Define E to 
be the union of eo with one other point, and put the structure of a 
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Riemann surface on E so that the extension of IjI from DO to D, map
ping 0 to the added point, is an isomorphism of D with E. Note that 
this does not depend on the choice of 1jI, since the map z ~ ~k • z is 
an analytic isomorphism. 

Now return to the given covering p: X"~ Y\ S. Given Q in S, we 
can find a coordinate chart '1': D~ <p(D) = U C Y, with D the open 
unit disk in the plane, and '1'(0) = Q, such that U does not contain 
any other point of S but Q. Let if = U \ {Q}. The covering p restricts 
to a covering of if, so p-I(if) is a disjoint union of connected open 
sets Vlo, ... , Vmo, with each Vio~ if a connected covering, say with 
ei sheets. By what we just saw, one can find homeomorphisms 
ljIi: DO ~ vt such that the diagram 

wO 'IIi @v;o 
-

, H"; j j P 

0·0 cp 

~uo 

commutes, i.e., P(ljIi(Z)) = <p(zei), with ljIi unique up to first mUltiplying 
z by an eith root of unity. We can therefore add one point to each 
Vio, getting spaces Vi so that each ljIi extends to a homeomorphism 
from D to Vi' Taking these extensions as charts, the disjoint union 
of the Vi becomes a Riemann surface. The map from vt to if extends 
to an analytic map from Vi to U that has ramification index ej at the 
added point. 

If this is done at each point of S, one gets a space X that is the 
union of X" with a finite number of points. These local charts give X 
the structure of a Riemann surface (noting that the added charts are 
compatible with the given charts on X"), and the covering p is ex
tended to an analytic mapping f: X ~ Y. 

Exercise 19.8. Verify that this defines a Riemann surface X, and the 
map f is analytic and proper. 
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These results are summarized in the following proposition: 

Proposition 19.9. Let Y be a Riemann surface, S a finite subset of 
Y, andp: X"~ Y\ S afinite-sheeted covering map, with X" connected. 
Then there is an embedding of X" as an open subset of a Riemann 
surface X that is a union of X" and a finite set, so that p extends to 
a proper analytic mapping from X to Y. 

Exercise 19.10. Show that X, with its Riemann surface structure, is 
unique up to canonical isomorphism: if X" C X' ~ Y is another, there 
is a unique isomorphism of Riemann surfaces from X to X I compatible 
with the inclusions of X" and mappings to Y. 

Exercise 19.11. Extend the proposition to the case where S is an 
infinite but discrete subset of Y. 

One reason for the importance of this proposition is that, since we 
know the fundamental group of Y \ S (see Problem 17.12 for the gen
eral case), we know all possible finite-sheeted coverings. The main 
case of concern to us will be Y = S2, with S a set of r points. By 
choosing disjoint arcs from a base point Qo to these points, we can 
number the points S = {Qt, ... , Qr} so that the arcs to them occur 
in this order, going counterclockwise around Qo. Then one can con
struct loops (1t, ... , (1r that go from Qo along an arc to a point near 
Qi' make a counterclockwise circle around Qi' and go back along the 
arc to Qo. 
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Exercise 19.12. Show that 1T)(S2 \ {Q), ... , Qr}, Qo) is the free group 
Fr on the generators <T), ••• , <Tn modulo the least normal subgroup 
containing <T)' •••• <Tr • This is isomorphic to a free group on r - 1 
generators <T), ••• , <Tr -). 

Remark 19.13. In §16d we described a correspondence between n
sheeted coverings of a space and actions of its fundamental group on 
a finite set T with n elements. To give an action of this fundamental 
group on a set T is the same as giving r permutations s), ... , Sr of 
T, with the requirement that S) ••..• Sr is the identity permutation. 
So any such data determine a branched covering of the sphere. The 
classical way to do this was to use the fact that the complement of 
the r arcs drawn is simply connected, so a covering over this is a 
disjoint union of r copies of it. Labeling these by elements of T, the 
permutations are used to describe how to glue the sheets together across 
the arcs, to get the Riemann surface X. (Note, however, that the arcs 
are only a tool used to give nice generators for the fundamental group, 
and are not necessary for describing the covering.) 

Exercise 19.14. (a) Carry out this construction, and show that it agrees 
with that described before. (b) Show that the covering corresponding 
to this choice of permutations is connected if and only if they generate 
a transitive subgroup of the automorphisms of T. (Recall that a group 
of permutations is transitive if, for any elements t) and t2 of T, there 
is a permutation in the group that takes t) to t2') (c) Let X be the 
corresponding Riemann surface, withf: X~S2 the analytic mapping. 
For each i, write T as a disjoint union of sets Ti•j so that Si permutes 
the elements of each Ti,j cyclically. Show that there is one point of 
X over Qi for each set Ti,j' and the cardinality of Ti,j is the ramification 
index of f at this point. 

19c. The Riemann-Hurwitz Formula 

Given an analytic mapping f: X ~ Y between compact Riemann sur
faces, our next aim is to describe the topology of X in terms of the 
topology of Y and the local behavior around the branch points. 
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Theorem 19.15 (Riemann-Hurwitz). Letf: X~ Y be an analytic map 
of degree n between compact Riemann surfaces. If Y can be trian
gulated, so can X, and the genus gx of X and the genus gy of Yare 
related by the formula 

2gx - 2 = n(2gy - 2) + L (ef(P) - 1). 
PEX 

Proof. By refining the triangulation of Y if necessary, for example, 
using the barycentric subdivision described in §8b, we can assume 
the triangulation has the property that each point Q of S is a vertex 
in the triangulation. We will construct from this an explicit triangu
lation of X. It is simplest to describe the vertices and the "open" 
edges (homeomorphic to (0,1)) and the open faces (homeomorphic 
to the interior of a plane triangle) of this triangulation of X: these are 
exactly the components of the inverse images by f of the corre
sponding vertices, open edges, and open faces of the triangulation of 
Y. The point is that each of the open edges and faces on Y is in the 
locus where the map is a covering, and, since edges and faces are 
simply connected, the restriction of the covering to each of them is 
trivial, which means that there are n subsets of X that map homeo
morphically onto each of them, and these are the specified open edges 
and faces. 

For each closed edge and face on Y the triangulation specifies a 
homeomorphism with a closed interval or a closed triangle. Com
posing with the projections, we have compatible homeomorphisms of 
the open edges and faces on X with the interiors of these intervals or 
triangles. To see that we have a triangulation, we must verify that 
these homeomorphisms extend to the closed intervals and triangles. 
This is clear when the image edges or triangles in Y do not have 
vertices in S, since in that case the coverings are trivial over the entire 
closed triangle. The same argument shows that the homeomorphisms 
extend (uniquely, by continuity) to the closures of the intervals and 
triangles, except possibly in an arbitrarily small neighborhood of a 
vertex mapping to a point in rl(S). To see that it extends continu
ously to such points is a local question, so we can assume we are in 
the situation z ~ ze of the mapping from the disk to itself. The cor
responding vertex is sent to the center of the disk, and the continuity 
of the map at the vertex follows from the fact that Izl ~ 0 if and only 
if Izel~o. The following picture shows the two types of behavior: 



274 

I 

//q 
I / 

I / ~ 
1/ 4'-..J 

I / / 
/ 

1/ / 
1// 

<J-q 

x 

y 

19. Riemann Surfaces 

" " \ , \. \ , \. \ , \. \ , \. \ 

, " \ , \. \ 

q .'<J 
Now suppose the triangulation of Y has v vertices, e edges, andf 

faces. By the construction of the triangulation of X, it has n"l faces 
and n' e edges. But the number of vertices is not n' v, since over 
each point Q of S there may be fewer than n points. In fact, by the 
equation "2,ef(P) = n, the sum taken over the points P inr'(Q), the 
number of points over Q is n - "2,(ef(P) - 1). It follows that the num
ber of vertices in the triangulation of X is nov - "2,(ef(P) - 1), with 
the sum over all P inr'(S), or in X, since ef(P) = 1 if P is not in 
r 1 (S). The Euler characteristic of X is therefore 

nov - L (e/P) - 1) - n 0 e + n of = n(v - e + f) - L (ef(P) - 1). 
PEX PEX 

Replacing the left side by 2 - 2gx , and v - e + f by 2 - 2gy, the for
mula of the proposition results. D 

Exercise 19.16. Give an alternative proof of the theorem by trian
gulating Y so that each point of S lies inside a face, and no face 
contains two points of S. 

For example, when Y = S2, we have Riemann's formula 

L (ef(P) - 1) = 2gx + 2n - 2. 
PEX 

If X is also the sphere, this gives 

L (ef(P)-1) 
PEX 

2n-2. 



19c. The Riemann-Hurwitz Fonnula 275 

The Riemann-Hurwitz formula can be useful to limit the possibil
ities for mappings between Riemann surfaces. Consider for example 
a nonconstant analytic mapping! CIA-CIA', where A and A' are 
two lattices in C. Since both have genus 1, it follows from the Rie
mann-Hurwitz formula that ef(P) = 1 for all P, i.e., f must be un
ramified. Now f lifts to an analytic mapping 1: C-C so that the 
diagram 

1 
C~C 

p t t p' 

C/A~ Cli\., 

commutes. In fact, since C is simply connected, the composite fo p 
lifts through the covering p' by Proposition 13.5, to produce a con
tinuous map " and 1 is automatically analytic since the projections 
from C to the quotient spaces are local isomorphisms. Similarly, since 
f is unramified, 1 is also unramified. From the topology one can see 
also that 1 extends continuously to a map from S2 = C n {oo} to itself, 
taking 00 to 00. From Exercise 19.4 this extension, also denoted 1, is 
an analytic mapping from S2 to S2. If the degree of 1 is n, the sum 
ofthe ef(p) - 1 can be at most n - 1 (since ramification can take place 
only over (0), and this contradicts the Riemann-Hurwitz formula un
less n = 1. By Exercise 19.6, we deduce that J(z) = Az + 1-.1. for some 
complex numbers A and 1-.1., with A ~ O. In particular, A' A + 1-.1. cA'. 
Conversely, any such A and 1-.1. determine an analytic mapping f. This 
puts strong restrictions on the relations between the lattices, and on 
the possible maps f. 

Exercise 19.17. (a) Show that for any lattice A there is a nonzero 
complex number a so that a . A is generated by 1 and T, where T is 
a number in the upper half plane. So every C/ A is isomorphic to one 
of the form C/ClL + Z· T). (b) Show that for two numbers T and T' in 
the upper half plane, C/(Z + Z· T) is isomorphic to C/(Z + 7L. T') if 
and only if T' = (aT + b)/(cr + d) for some integers a, b, e, d with 
ad - be = 1. (c) Show that the only analytic maps from the Riemann 
surface C/(7L + 7L. T) to itself that take the image of 0 to itself are 
given by multiplication by an integer n, unless T satisfies a quadratic 
polynomial with integer coefficients. 

It follows from the preceding exercise that the set of compact Rie
mann surfaces that are isomorphic to some C / A are in one-to-one 
correspondence with the space H/S~(Z) of orbits of the discrete group 



276 19. Riemann Surfaces 

SL2(Z) on the upper half plane H. In particular, not all such Riemann 
surfaces are isomorphic as Riemann surfaces, although they are all 
diffeomorphic to Sl x Sl. We will see later that every compact Rie
mann surface of genus 1 has the form Cj A, so HjSL2(Z) is the mod
uli space of compact Riemann surfaces of genus 1. 

Exercise 19.18. Let/: X ~ Y be a nonconstant analytic map between 
compact Riemann surfaces. Show that gx ;:::: gy, and gx > gy unless gy = 0 
or gy = 1 or I is an isomorphism. 



CHAPTER 20 

Riemann Surfaces and Algebraic Curves 

20a. The Riemann Surface of an Algebraic Curve 

If F(Z, W) is a polynomial in two variables, with complex coeffi
cients, that is not simply a constant, its zero set 

C = {(z, w) E c2: F(z, w) = o} 

is called a "complex affine plane curve." Identifying C2 with R4 , C 
is defined by two real equations: the vanishing of the real and imag
inary parts of F(z, w). We may therefore expect C to be a surface, 
and this expectation is generally true, except that, just as in the case 
of real curves, C may have singularities. We will use the construction 
of the preceding section to "remove" these singularities, and also add 
some points over them and "at infinity," to get a compact Riemann 
surface. In fact, if F is not irreducible, the surface we get will be the 
disjoint union of the surfaces we get from the irreducible factors of 
F, so we assume for now that F is an irreducible polynomial, i.e., it 
has no nontrivial factors but constants. Write 

F(Z, W) = ao(Z)Wn + a\(Z)Wn-\ + ... + an-\(Z)W + aiZ), 

with a;(Z) a polynomial in Z alone, and ao(Z) "" o. We may also as
sume that n is positive, for otherwise F = bZ + c, and C is isomorphic 
to C, given by the projection to the second factor. We will need a 
little piece of algebra. Let F w = aF / aw, which is a polynomial of 
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278 20. Riemann Surfaces and Algebraic Curves 

degree n - 1 in W: 

iJF 1 2 
Fw = - = n· ao(Z)W'- + (n - 1)· al(Z)W'- + ... + an-I(Z). 

iJW 

Lemma 20.1. There are polynomials B(Z, W), C(Z, W), and d(Z), 
with d(Z) ¥- 0, so that 

B(Z, W) . F(Z, W) + C(Z, W) . F w(Z, W) = d(Z). 

Proof. We use the lemma of Gauss (Appendix C3): if F is irreducible 
in iC[Z, W], then F is also irreducible in iC(Z)[W], where C(Z) is the 
field of rational functions in Z. The equation of Lemma 20.1 can be 
found (and computed) from the Euclidean algorithm in the ring 
iC(Z)[W], as follows. Divide F by F w to get, after clearing denomi
nators, an equation of polynomials 

bo·F = QI·Fw+R" 
where bo E iC[Z] , and R, is a polynomial of degree less than n - 1 in 
W. If the degree of RI in W is positive, divide Fw by R1 , getting an 
equation 

b,·Fw = Q2·RI +R2; 

continuing, find equations b;· R;_I = Q;+I . R; + Ri+l> until for some k, 
RH , has degree 0 in W. Note that RH , 0;6 0, since otherwise Rk would 
divide RH , then Rk- 2, ... , and finally Fw and F, contradicting the 
fact that F is irreducible. 

Set d = RH I. To find an equation of the form required amounts to 
showing that d is in the ideal in iC[Z, W] generated by F and F w; this 
ideal contains R, by the first equation, then R2 by the second, and so 
on, until finally it contains RHI = d. 0 

If one takes an equation as in the lemma so that B, C, and d are 
not all divisible by any nonconstant polynomial in Z, then d will be 
unique up to multiplication by a constant; this d is called the dis
criminant of F with respect to W. For our purposes any d will do. 

Exercise 20.2. For F = W2 + b(Z)W + c(Z), show that 
d(Z) = b(Z)2 - 4c(Z). For F = W 3 + b(Z)W + c(Z), show that 
d(Z) = 4b(Z)3 + 27c(Z)2. 

Let P be the first projection from C to iC: p(z, w) = z. We will show 
that, if a finite number of points are removed, p becomes a covering 
map. 
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Lemma 20.3. There is a finite subset S of C such that the projection 
from C \ P -I(S) to C \ S is a finite covering with n sheets. 

Proof. From Lemma 20.1 we draw the conclusion that if z E C and 
d(z)"# 0, then there is no w with F(z, w) = 0 and Fw(z, w) = O. This 
means that the equation F(z, W) = 0 has no multiple roots. If in ad
dition ao(z)"# 0, then this equation has n distinct roots. We take S to 
be the set where ao(z) . d(z) "# O. 

Suppose Zo ft. S, and let WI, ... , Wn be the roots of the equation 
F(zo, W) = O. We want to find analytic functions gl, ... , g. defined 
in a neighborhood of Zo so that gbo) = Wi and F(z, gi(Z» == O. One way 
to do this is to apply the implicit function theorem, either for a subset 
of 1R4 defined by two real equations, or the complex analogue for a 
subset of C2 defined by one equation. Another is to use the Argument 
Principle. For this, take small disjoint closed disks around these n 
points, and let 'Vi be a counterclockwise path around the boundary of 
the disk around Wi. For z near Zo and W on a circle 'Vi, F(z, w)"# 0 by 
continuity. For z near Zo, 

I f Fw(z,w) 
- dw = 1 
21Ti 'Ii F(z, w) , 

since the integral is an integer that is I when z = Zo, and it varies 
continuously with z. This means that there is exactly one root of the 
equation F(z, W) = 0 inside 'Vi. In fact, from Problem 9.34, this root 
is given by the formula 

1 i Fw(z,w) 
glz) = - w dw. 

21Ti 'Ii F(z, w) 

In particular, take U to be a disk around Zo where all these functions 
gi are defined, and set Vi = {(z, gb»: z E U}. Since these points give 
all possible roots of F(z, W) = 0 over z in U, we see that p-I(U) is 
the union of open sets Vi' and p maps each Vi homeomorphically onto 
V, with an inverse given by Zt-+(Z,gi(Z». 0 

Now regard C C S2 = C U {co} as usual, and enlarge S by including 
the point at infinity in it. By the lemma, we have a covering map 
r~s2 \ S, with r = {(z, w): F(z, w) = 0 and z ft. S}. This covering 
map gives r the structure of a Riemann surface, except that we must 
prove it is connected: 

Lemma 20.4. If F(Z, W) is irreducible, then r is connected. 

Proof. Let yo be a connected component of r. If r is not connected, 
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then the covering X" ~ S2 \ S restricts to a covering yo ~ S2 \ S with 
m < n sheets (see Exercise 11.11). For each z not in S, let el(z), 
e2(z) , ... , em(z) be the elementary symmetric functions in the m val
ues of won the points in p-l(Z) n YO. That is, el(z) is the sum of these 
m values, e2(z) is the sum of all products of pairs of these values, and 
so on until em(z) is the product of all m values. These functions ei are 
clearly analytic on S2 \ S. They are in fact meromorphic on S2, as 
follows from the fact that, for a in S, after multiplying by some (z - a)\ 
the roots w;(z) approach 0 (see Exercise 19.4). Consider the poly
nomial 

G = W" - el(Z)W"-1 + e2(Z)W"-2 - ... + (-l)mem(Z) 

in C(Z)[W]. For any z not in S, 

G(z, W) Il (W-w(P)), 
PEp-'(z)nY" 

F(z, W) ao(z) Il (W - w(P» . 
PEp-lIz) 

It follows that G divides F in C(Z)[W], since the remainder obtained 
by dividing F by G would be a polynomial whose coefficients are 
rational functions of Z vanishing on an infinite set. This contradicts 
the irreducibility of F, and completes the proof. 0 

By Proposition 19.9 this covering can be extended to a compact 
Riemann surface X, together with an analytic map f: X ~ S2. This Rie
mann surface is called the Riemann surface of the algebraic curve C 
or of the polynomial F. It is easily seen to be independent of choice 
of S. In fact, the following exercise shows more. 

Exercise 20.5. A point P = (zo, wo) is called a nonsingular point of 
C if either: (i) F w(zo , wo) ¥- 0; or (ii) Fz(zo, wo) ¥- 0; or both. (a) Show 
that the canonical map from X" to C extends to an isomorphism of a 
neighborhood in X with C in a neighborhood of P. (b) Show that the 
ramification index of z: X ~ S2 at the corresponding point is 1 in case 
(i), and the order of vanishing at Wo of the function w ~ F(zo , w) in 
case (ii). 

It is a theorem in analysis that every compact Riemann surface is 
the Riemann surface of an algebraic curve. The problem for proving 
this is to produce the meromorphic functions "z" and "w" on X. It 
is not at all obvious that there are any nonconstant merom orphic func
tions. For those that arise as branched coverings of S2 (which is the 
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same as producing one nonconstant meromorphic function z), it is not 
obvious how to produce another not in (z); once one produces a 
meromorphic function w that takes n distinct values on the n points 
in X over some given point of S2, however, it is not hard to see that 
w satisfies some irreducible equation F(z, w) == 0, and that X is the 
Riemann surface of this polynomial. 

Let us work out the example with F(Z, W) = W 3 + Z 3W + Z. By 
Exercise 20.2, d(Z) = 4Z9 + 27Z2 , so the possible branch points are 
where z = 0, z = 00, and the solutions of Z7 = -27/4. The points of C 
over the finite points are nonsingular. Over ° there is one point (0,0), 
and the ramification index of z: X ~ S2 is 3. Over each of the seventh 
roots of -27/4 there are two points, so one of each must have ram
ification index 2 and the other must be unramified. The point at in
finity can be analyzed by making the substitution Z' = I/Z, but one 
can see from the Riemann-Hurwitz formula that the sum of the num
bers ez(P) - 1 for the points P over 00 must be odd, so there must be 
two points over 00, with ramification indices 2 and 1. The genus gx 
of the Riemann surface is given by 

2gx - 2 = -2n + ~(eiP) - 1) = -6 + 2 + 7 . 1 + 1, 

so the genus is 3. 

Exercise 20.6. For each of the following polynomials, compute a set 
S as in Lemma 20.3, compute the ramification indices of the points 
over S in the Riemann surface, and compute the genus of the Riemann 
surface: (i) W2 - n~_.(Z - ai), a., ... , am distinct complex num
bers; (ii) 4W3 - 3Z2W + Z3 - 2Z; (iii) W 3 - Z6 + I; (iv) W 3 - 3W2 + Z6; 
and (v) W" + zm + l. 

Exercise 20.7. (a) If a compact Riemann surface X has a mero
morphic function with only one pole of order 1, show that X is iso
morphic to S2. (b) If X has a meromorphic function with two poles 
of order 1, or one pole of order 2, show that it gives a two-sheeted 
covering X ~ S2. (c) Show that, for a given set of 2g + 2 points in 
S2, there is, up to isomorphism, exactly one two-sheeted covering that 
branches at these points. 

20b. Meromorphic Functions on a 
Riemann Surface 

The meromorphic functions on a Riemann surface X form a field, 
which we denote by M(X) or just M. If X is the Riemann surface of 
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the polynomial F(Z, W), then the functions Z and w (which come from 
the two projections of C C C2 to the axes) are seen as in Lemma 20.4 
to be meromorphic functions on X, as are any rational functions of Z 

and w. Such rational functions form a subfield of M, which we can 
denote by C(z, w). 

Proposition 20.8. Every meromorphic function on X is a rational 
function of Z and w: 

M = M(X) = C(z, w) 
= C(z) + C(z)· w + C(z)· w2 + ... + C(z)· w·- I . 

Proof. Note first that any element in C(z)[w] can be written as a poly
nomial of degree at most n - 1 is w, as seen by dividing by F. So it 
suffices to show that any meromorphic function h on X is in C(z)[w]. 

From Lemma 20.1 we have an equation 

d(z)·h = B(z,w)·F(z,w)·h+C(z,w)·Fw(z,w)·h 

= C(z,w)·Fw(z,w)·h, 

so it suffices to show that Fw(z, w)· h is in C(z)[w]. For z not in the 
branch set S, let PI, . . . , P n be the points of X over z. Then 

• 
F(z, W) = ao(z)· TI (W - w(Pj », 

j=1 

• 
Fw(z, W) ao(z)·2: TI (W - w(P) , 

i=1 i"'i 

so, for 1 ::;; k::;; n, 

h(Pk)· F w(z, w(Pk» = ao(z)· h(Pk) . TI (w(Pk) - w(Pj». 
i"'k 

Now consider the expression 
n 

ao(z) . 2: h(Pi) • TI (T - w(Pj». 
i=1 j"'i 

On the one hand, as in Lemma 20.4, this can be written in the form 
"i,~-=~bm(z)Tm with each bm meromorphic on S2, so bm E C(z). On the 
other hand, the preceding calculation shows that 

h(Pk)· Fw(z, w(Pk» = ao(z)· h(Pk)· TI (w(Pk) - w(Pj» 
n-l 

= 2: bm(z)w(Pk)m . 
m=O 
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This means that h· Fw(z, w) and Lbm(z)wm agree on the complement 
of a finite set, which implies that they are equal. 0 

Exercise 20.9. If Fizo, wo) ¥= 0, show that the ramification index of 
z: X ~ S2 at the point corresponding to (zo, wo) is one more than the 
order of the meromorphic function F w(z, w) at (zo, wo). 

With Y = S2 and f X ~ Y the mapping given by z, and with 
p: r ~ f" = Y \ S the covering space obtained by throwing away the 
branch points, consider the three groups: 

Aut(r If") {continuous '1': r~ r: p a 'I' = 'P}; 

Aut(XIY) = {analytic h: X~X:foh = h}; 

Aut(M(X)/C(z» = {field homomorphisms {): M(X)~M(X): {) is 

the identity on C(z)}. 

The first is topological, the second analytic, the third algebraic. We 
claim that they are the same, after reversing the order of multipli
cation in the third group: 

Aut(r If") == Aut(XIY) == Aut(M(X)/C(z)rpp • 

Exercise 20.10. Prove this by showing that every deck transformation 
'I' extends uniquely to an analytic isomorphism h, and showing that 
every automorphism of M(X) that is the identity on C(z) has the form 
ft-+foh for a unique h. If you know some Galois theory, show that 
M(X) is a Galois extension of C(z) if and only if the covering r of 
f" is a regular covering. Show that the Riemann surfaces of two al
gebraic curves are isomorphic if and only if their fields of mero
morphic functions are isomorphic C-algebras. Show that for any finite 
group G there is a Galois extension L of C(z) whose Galois group 
is G. 

In fact, for a given compact Riemann surface Y, to give a compact 
Riemann surface X with a nonconstant analytic map from X to Y is 
equivalent to giving a finite-sheeted topological covering r ~ f" of 
the complement of a finite set, or to specify a finite extension M(X) 
of the field M(Y) of meromorphic functions. In this setting, the sim
ilarity seen in Proposition 13.23 between coverings and field exten
sions is more than just an analogy. 

In most expositions the Riemann surface of a polynomial is con
structed, following Weierstrass, by starting with a germ of an analytic 
function w(z) satisfying the equation F(z, w(z» = 0, and analytically 
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continuing it around the plane. This approach, however, does not take 
advantage of the fact that the algebraic curve C is already, except for 
the modification and addition of a finite number of points, the desired 
Riemann surface. 

Problem 20.11. Carry out this construction, using the ideas of § 16b, 
and show that it gives the same Riemann surface. 

20c. Holomorphic and Meromorphic I-Forms 

For any differentiable surface, as in Chapter 9, we can consider not 
just real differentiable 1-forms but complex ones as well, where a 
complex 1-form is given by WI + iW2, with WI and W2 real 1-forms. 
Again we can consider closed and exact forms, with WI + iW2 being 
closed (resp. exact) when each of WI and W2 is closed (resp. exact). 
The corresponding group of closed complex 1-forms modulo exact 
complex I-forms is denoted HI(X;C). It is a complex vector space, 
which can be identified with HI(X)$iHI(X). If X is compact of ge
nus gx, H I (X; C) is a complex vector space of dimension 2gx . 

When X is a compact Riemann surface, and not just a differentiable 
surface, there are some special closed complex I-forms, called holo
morphic 1-forms. They are the I-forms that in local coordinates 
'Pa: Ua~X, with Ua C C, have the form 

!a dz = (ua + iva)(dx + i dy) = (ua dx - Va dy) + i(va dx + Ua dy), 

where/o,(z)=!a(x+iy)=ua(x,y)+iva(x,y) is an analytic function. To 
define a global I-form, using the notation of § 19a, we must have 

d'PJ3a 
where 'PJ3a I = --

dz 

is the complex derivative. As before, the Cauchy-Riemann equations 
aua/ax = ava/ay and aua/ay = -ava/ax say that such a I-form is closed. 

The holomorphic 1-forms form a complex vector space, sometimes 
denoted 0.1.0(X), or just 0.1.0. A holomorphic I-form W is exact pre
cisely when there is an analytic function g on X with dg = w. In par
ticular, if X is compact, every analytic function is constant, and so if 
W is exact, then W = O. This means that the natural map from 0.1,0 to 
HI(X; C) is injective. We regard 0.1.0 as a complex subspace of HI(X; C). 
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There is also a notion of an antiholomorphic I-form. This is a I-form 
that locally has the fonn 

fa dz = (Ua - iva)(dx - i dy) = (Ua dx - Va dy) + i( -Va dx - Ua dy) 

with fa = Ua + iVa an analytic function as above. Again these form a 
complex vector space, denoted OO.I(X) or 0°,1, and again these are 
closed forms, and the only antiholomorphic fonns which are exact 
are differentials of complex conjugates g of complex analytic func
tions. Again, for X compact, we regard 0°,1 as a subspace of HI(X; C). 

It follows readily from the definitions that no nonzero I-form can 
be both holomorphic and antiholomorphic: 0 1,0 n 0°.1 = O. For any 
surface X the space HI(X; C) has a complex conjugation operator, that 
takes W = WI + iW2 to W = WI - iW2' This is not a complex linear map, 
but is conjugate linear: it is linear as a map of real spaces, and for 
a complex number c, cw = cwo Complex conjugation takes 0 1,0 to 0°.1 
and 0°,1 to 0 1.°. The following is one of the major "existence theo
rems" about compact Riemann surfaces: 

Theorem. For a compact Riemann surface X, HI(X; C) = Ol.°EBOO. I . 

Equivalently, dim(OI,o) = dim(Oo, I) = gx. 

In light of the preceding paragraph, the theorem is equivalent to 
showing that there are gx linearly independent holomorphic I-fonns 
on X. We will say nothing about the proof of this theorem for a gen
eral compact Riemann surface, except to say that producing such 1-
forms is closely related to producing meromorphic functions, which 
we have already discussed. For example, if WI and W2 are two in
dependent holomorphic I-forms, then W2 = f· WI, where f is a non
constant meromorphic function. When the Riemann surface comes 
from an algebraic curve, however, we will prove this theorem in the 
next chapter. If the curve has a sufficiently nice fonn, however, it 
can be proved directly, as in the following problems: 

Problem 20.12. Suppose F(Z, W) = L7=oa;(Z)Wn- i is the polynomial 
as in §20a, and assume: (i) the curve C is nonsingular, i.e., there are 
no points (zo, wo) at which F, F w, and Fz all vanish; and (ii) the degree 
of ai(Z) as a polynomial in Z is at most i, and if Ai is the coefficient 
of Zi in ai' the equation L7=0 Ait n- i = 0 has n distinct roots. (a) Show 
that X has n points over 00 E S2. (b) Show that h = F w(z, w) has a pole 
of order n - 1 at each of these n points. (c) Show that the genus of 
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X is (n - I)(n - 2)/2. (d) Show that 

{ 
g(z, w) 

-=-----dz: g is a polynomial of degree at 
Fw(z,w) } 

most n - 3 in z and w , 

which is a complex vector space of dimension gx. 

The following problem generalizes this to allow the curve C to have 
the simplest possible singularities: simple nodes. A node is a point 
where the two partial derivatives vanish, but the Hessian 

( a2F)2 _ a2F. a2F 
azaw ai aw2 

is not zero. Geometrically, this means the curve C has two nonsin
gular branches that cross transversely; in particular, there are two points 
of the Riemann surface over a node of C. The corresponding picture 
of a real curve (W 2 = Z2 + Z3) is: 

Problem 20.13. Generalize the preceding problem to allow C to have 
a certain number 8 of nodes, but no other singularities, but continue 
to assume (ii). Show that the genus of X is (n - I)(n - 2)/2 - 8, and 
that the holomorphic I-forms on X are exactly those that have the 
form (g(z, w)/Fw(z, w»dz where g is a polynomial of degree at most 
n - 3 in z and w that vanishes at the nodes of c. 

It is an important fact from the theory of algebraic curves that, after 
suitable algebraic transformations, every algebraic curve can be put 
in the form considered in the preceding problem. Note that it is nec
essary to allow singularities, since not every genus has the form 
(n - l)(n - 2)/2. For a nice discussion of this, see Griffiths (1989). 
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One can also consider meromorphic I-forms on X, which can be 
defined as for holomorphic I-forms, locally given by fadz, but with 
fa only required to be meromorphic. If W is a meromorphic I-form, 
the order of W at a point P, denoted ordp( w), is defined to be the order 
of vanishing of fa at the corresponding point in a coordinate disk. For 
example, when X = S2, and W = dz = _(Z,)-2 dz', with z' = liz, then 
W has a pole of order 2 at the point at infinity. In general, we have 

Proposition 20.14. For any nonzero meromorphic ljorm w on a 
compact Riemann surface X, 

L ordp(w) = 2gx - 2. 
PEX 

Proof. It is enough to prove the formula for one such w, since any 
other has the form h . W for some meromorphic function h, and 

L ordp(h· w) = L ordp(h) + ordp(w) = 0 + L ordp(w) 
PEX PEX PEX 

by Corollary 19.5. Assume that X comes equipped with a nonconstant 
meromorphic function! X~S2. We take W = df= f*(dz). Near a point 
P of X, where the mapping in local coordinates is t~ te, a mero
morphic form on S2 with local expression g(z) dz pulls back to one 
on X with local expression g(te)ete- I dt. Therefore ordp(w) = 
(e/P) - 1) + e/P) ordf(p)(dz), and since the sum of e/P) for P map
ping to the point at infinity is n, and ord.,,(dz) = -2, 

L ordp(w) = L (ef(P) - 1) + n(-2); 
PEX PEX 

this is 2gx - 2 by the Riemann-Hurwitz formula. o 

Another proof can be given by appealing to the result of Chapter 
8. Given a meromorphic I-form W with local expressionfadz, define 
a vector field V whose expression in the same local coordinates is 
given by Va = Ilfa, i.e., if fa = Ua + iVa, then 

Exercise 20.15. Verify that these Va define a vector field V on X, 
and that IndexpV = -ordp(w). 

Proposition 20.14 therefore also follows from Theorem 8.3. 
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Exercise 20.16. Reverse the argument in the above proof to give an
other proof of the Riemann-Hurwitz formula for f: X ~ Y, under the 
assumption that Y has a nonzero meromorphic I-form. 

Define the residue of a meromorphic I-form w at a point P on a 
Riemann surface X, denoted Respw, to be (l/27Ti)fy w, where"y is a 
small counterclockwise circle around P not surrounding any point ex
cept P where w is not holomorphic. 

Exercise 20.17. (a) Show that this is well defined. (b) If z is a local 
coordinate at P, and w = f(z)dz, with f(z) = ~~=_manzn, show that 
Resp(w) = a_I. 

Proposition 20.18 (Residue Formula). If w is a meromorphic I-form 
on a compact Riemann surface X, then 

2: Resp(w) = o. 
PEX 

Proof. We know that we can realize X as a polygon II with sides 
identified. From the construction we see that the map from II to X 
can be taken to be differentiable, and, moving the sides slightly, we 
may assume the image of each side is disjoint from the set of poles 
of w. The I-form w then determines a closed I-form Wi on II, and 
we must show that the sum of the integrals of Wi around small circles 
around the poles of Wi is zero. Corollary 9.12 implies that this sum 
is the same as the integral of Wi around the boundary of II, and this 
integral vanishes since the integrals over the sides that get identified 
in X cancel in pairs. D 

The following problem gives another proof for Riemann surfaces 
coming from algebraic curves: 

Problem 20.19. (a) Prove the Residue Formula directly when X = S2. 
(b) With z: X ~ S2 as in §20b, and w = fdz, withfE M(X), show that, 
for QES2, 

2: Resp(fdz) = ResQ(gdz) , 
PEz-'(Q) 

where g in C(z) is the trace of the C(z)-linear endomorphism of M(X) 
that is left mUltiplication by f. (c) Deduce the Residue Formula for 
w =fdz from (a) and (b). 
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20d. Riemann's Bilinear Relations and the Jacobian 

We have seen that the space nl.O(X) of holomorphic I-forms on X is 
a subspace of the De Rham group HI(X; C). The way nl,o(X) sits in 
HI(X; C) is important both in studying functions on X and in studying 
the moduli of Riemann surfaces of given genus. Here we indicate how 
some of this is related to the facts about homology that we proved in 
Chapter 18. For this we use the pairing (00, v) == ffxwA v defined on 
closed I-forms and their cohomology classes, but extended linearly 
to those with complex coefficients as usual. When applied to holo
morphic I-forms, there are two simple consequences of the definition: 

(i) (00, v) == 0 if 00 and v are holomorphic; and 
(ii) i· (00, w) > 0 if 00 is nonzero and holomorphic. 

The first follows from the fact that dz A dz == O. For the second, if, in 
local coordinates, 00 == fez) dz == f(z)(dx + i dy), then 

i'wAw == i·lf(z)12(dx+idy)A(dx-idy) == 2If(zWdxAdy, 

which is strictly positive wherever f is not zero, so its integral is pos
itive. 

Taking a basis ai' ... , ag , b l , ••• , bg for homology as in Chapter 
18, and applying Exercise 18.8, we deduce, for 00 and v holomorphic 
as above: 

Proposition 20.20 (Riemann's Bilinear Relations). 

(1) ~IiwLiv == ~IivLiw; 
(2) i· ~ (Ii 00 Li W - Ii W Li (0) > O. 

Corollary 20.21. There is a unique basis WI, • . • , Wg for the space 
of holomorphic Ijorms so that 

1 Wk == { I if j == k, 
ai 0 otherwise. 

Proof. This follows immediately from the fact that HI(X; C) is the 
direct sum of nl,o(X) and no,I(X), together with the fact that inte
grating over cycles gives an isomorphism HI(X; C) == Hom(HIX, C), 

D 
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The integrals of this basis over the other basis elements b l , ••• , bg 

carry important information. Let 

TOk = 1 Wo J, J' 
b. 

l~j,k~g. 

This gives a (g x g)-matrix of complex numbers Z = (Tj,k), called the 
(normalized) period matrix corresponding to the homology basis. This 
matrix Z is far from arbitrary. It follows from what we have just seen 
that Z is nonsingular. Moreover, 

Corollary 20.22. (z) The matrix Z is symmetric, i.e., Tk.j = Tj,k' (ii) 
The matrix Im(Z) whose entries are the imaginary parts of the entries 
of Z is a positive-definite symmetric matrix. 

Proof. (i) is an immediate consequence of the first of Riemann's bi
linear relations, applied to the forms Wj and Wk' 

(ii) follows from the second, applied to a form W = 'Lj= I tjWj, with 
tj arbitrary real numbers, not all zero: 

° < i· (w, (0) = i' 2: tA(Tk,j - Tj.k) = 22: t/k(lm(Tj,k)' 0 
j,k j,k 

Of course, the period matrix is not unique, depending as it does 
on the choice of a homology basis, but if another basis is chosen, 
with the same intersection numbers, they will differ by a nonsingular 
matrix with integral entries that preserves this intersection pairing. 

As in the plane, integrals between two points on X are determined 
up to these periods. Periods also playa role in a fundamental theorem 
of Abel, which concerns the question of when one can find a mero
morphic function on a given Riemann surface with zeros and poles 
of given orders at given points. 

Exercise 20.23. Show that for X = 82 , for any finite set of points Pi 
and any given integers mj, provided 'Lmi = 0, there is a meromorphic 
function f on X with ordpi(f) = mi for all i. 

For g> 0, taking any basis WI, .•• , Wg of the holomorphic 1-
forms, we have a mapping from the homology group HIX to Cg given 
by 

It follows from what we have seen above that this map embeds HIX 
in Cg as a lattice, i.e., the image of the basis elements ai, ... , bg 
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fonn a basis for cg as a real vector space. If this lattice is denoted 
by A, then the quotient space (and group) Cg I A is called the Jacobian 
of X, and denoted J(X); it is homeomorphic to ~2g 17L2g , so to the 
Cartesian product of 2g circles. 

If P and Q are any two points in X, they detennine a point denoted 
[Q - P] in J(X), by the fonnula 

[Q - P] = (f WI, ••• , f Wg ) E Cg I A = J(X) , 

where the notation means to integrate along any path from P to Q; 
the resulting vector is defined up to an element in A. Similarly, given 
any O-cycle D = 'imiPi of degree zero on X, one can define a point 
[D] in the Jacobian by writing D = 'i(Qj - Pj) and setting [D] equal 
to 'i[Qj - Pj]. Equivalently, fix a point Po in X, and define the Abel
Jacobi mapping A: X ~J(X) by the fonnula A(P) = [P - Po]. Then 
['imRJ = 'imiA(Pi). 

Exercise 20.24. §how that this gives a well-defined homomorphism 
from the group ZJ( of O-cycles of degree zero on X to J(X). 

The map from HIX to Cg can be defined intrinsically, without 
choosing a basis of holomorphic I-fonns, as the map 

where n1,o(X)* is the dual space of complex-valued functions on n1,o(X). 
This gives J(X) = nl,o(X)* IHI(X) , without choices. 

The divisor Div(f) of a meromorphic function f is the O-cycle 
'i ordp(f)P. In the next chapter we will prove Abel's theorem that a 
zero cycle D = 'imRi is the divisor of a meromorphic function if and 
only if its degree 'imi is zero and [D] is zero in J(X). Equivalently, 
D is the boundary of a I-chain 'Y such that f'Y W = 0 for all holomorphic 
l-fonns w. We will also l'rove the Jacobi inversion theorem that the 
Abel-Jacobi map from ZJ( to J(X) is surjective. 

20e. Elliptic and Hyperelliptic Curves 

Before turning to the general situation it may be helpful to work out 
the simplest nontrivial case in detail. Consider a Riemann surface of 
the fonn CIA, where A is a lattice. By Exercise 19.17 we may choose 
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such a lattice to be generated by I and 1", where 1" is in the upper half 
plane. Realizing X by identifying the sides of the parallelogram 

the images of the indicated sides can be taken as the standard basis 
al and b l for HIX. Now X has a natural holomorphic I-form w, whose 
pull-back to C is just the I-form dz, with z the standard coordinate 
on IC. The integral of w along al is clearly 1, and the integral of w 
along bl is 1". (Note that the corresponding period matrix is Z= (1"), 

in agreement with Corollary 20.22.) The mapping from HIX to C = cg, 
'Y I--? f'Y w, has image A generated by 1 and 1". Fix the point Po in X to 
be the image of the origin in C. The Abel-Jacobi mapping from X 
to CIA then takes a point P to [P - Pol = f:o w. By looking at this 
mapping on the parallelogram spanned by I and 1", we see that this 
mapping is an isomorphism, i.e., A: X ~ CIA. 

Now suppose X is any compact Riemann surface of genus 1, which 
we assume to have a nonzero holomorphic I-form w. We have the 
mapping HIX ~ C taking a homology class 'Y to L w. The image is 
a lattice A in C. If we take a basis ai, b l for HIX as usual, we can 
take w so that fa, W = I, in which case A is generated by 1 and 
1" = fbI w. As a very special case of Corollary 20.22 it follows that 1" 

is in the upper half-plane. Fix a point Po in X. 

Proposition 20.25. The Abel-Jacobi mapping 

X ~ CIA, P I--? [P-Pol = (w, 
Jpo 

is an isomorphism of X with CIA. 

Proof. Since the Abel-Jacobi mapping is analytic and nonconstant, 
it is unramified by the Riemann-Hurwitz formula, and therefore a 
covering map. We know from Chapter 13 that all finite coverings of 
CIA are given by subgroups of the fundamental groups, which means 
that X has the form Cj A', where A' C A is a subgroup of finite index. 
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But we proved directly that for any X of this fonn, the Abel-Jacobi 
map is an isomorphism. D 

If a Riemann surface X is a two-sheeted covering of SZ with four 
branch points, then by the Riemann-Hurwitz fonnula it has genus 1. 
By changing the map by an automorphism of SZ one can take these 
four branch points to be 0, 1, 00, and another A E C. It follows easily 
(see below for a more general situation) that X is the Riemann surface 
of the curve WZ = Z(Z - l)(Z - A). Since dz/w is a holomorphic 1-
fonn on this Riemann surface, we know from what we have just seen 
that if we fix Po on X, the map 

l
Pdz lP dz 

P~ -
Po w PoVz(z - l)(z - A) 

gives an isomorphism from X to C/ A. We will see that every Rie
mann surface of genus 1 is isomorphic to those arising this way, at 
least under the assumption that X comes from an algebraic curve. 
Most complex analysis texts have a chapter on such "elliptic inte
grals." (The Weierstrass ,p-function is used to find a two-sheeted 
branched covering from C / A to Sz.) 

We end this brief excursion by looking at the special case of Rie
mann surfaces that can be realized as two-sheeted branched coverings 
of the sphere. By the Riemann-Hurwitz fonnula, such a covering 
must have an even number of branch points, namely, 2gx + 2. By 
Exercise 20.7, there is only one two-sheeted covering of SZ with a 
given set of an even number of branch points. If these are the points 
a[, ... , am in C, possibly together with the point 00 (if m is odd), 
this can be realized as the Riemann surface of the algebraic curve 

m 

W2 - TI (Z - aj) = o. 
j=[ 

These curves, and the corresponding Riemann surfaces, are called 
hyperelliptic. All Riemann surfaces of genus 2 are in fact hyperellip
tic, but for genus greater than 2, not all Riemann surfaces arise this 
way. 

The topology of a hyperelliptic surface can be seen directly, by 
cutting slits in the sphere along arcs from a[ to az, a3 to a4, . . . , a2g+ [ 

to azg+z. 
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The two-sheeted covering over the complement of these slits is trivial, 
so the Riemann surface can be constructed as in the picture: 

Exercise 20.26. If m = 2gx + 2, verify that the I-forms i dz/w, for 
0:5 i:5 g - I, are holomorphic, and therefore give a basis for the hol
omorphic I-forms. 



CHAPTER 21 

The Riemann-Roch Theorem 

2Ia. Spaces of Functions and I-Forms 

Fix a compact Riemann surface x, and let g = gx be its genus, M its 
field of meromorphic functions, and 0 the space of meromorphic 1-
forms on X. A divisor D = L.mpP on X is just another word for a 0-
chain. That is, it assigns an integer mp to each point P in X, with 
only finitely many being nonzero. We say that the order of D at P 
is mp, and write ordp(D) = mp. The divisors on X form an abelian 
group. As for O-chains, the degree of a divisor is the sum of the 
coefficients: deg(D) = ~mp. If E = ~npP is another divisor, we write 
E ~ D to mean that np ~ mp for all P in X. A divisor D is called 
effective if each coefficient mp is nonnegative, i.e., D ~ o. 

Any nonzero meromorphic function f on X determines a divisor 

Div(f) = L. ordp(f) P . 

Similarly, any nonzero meromorphic I-form W on X determines a di
visor 

Div(w) = L.ordp(w)p. 

Corollary 19.5 and Proposition 20.14 say that 

deg(Div(f» = 0 and deg(Div(w» = 2g - 2. 

Our goal in this chapter is to fmd meromorphic functions and I-forms 
with prescribed, or at least controlled behavior. For example, we want 
to find functions with poles only at certain points, and with the orders 

295 
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of poles at these points not exceeding some bounds. For a divisor 
D = L mpP on X let 

L(D) = {fEM: ordp(f) ~ -mp for all P EX} 
= {fEM: Div(f) + D ~O}. 

This set of functions L(D) is a complex subspace of M. Similarly, let 

.o.(D) = {w E.o.: ordp(w) ~ mp for all P EX} 
= {w E.o.: Div(w) ~D}, 

a complex subspace of .0.. For example, .0.(0) is the space .0.1.0 of 
holomorphic I-forms on X. Note that L(D) allows poles at the points 
P where mp> 0, while .o.(D) requires zeros at the same points. 

Lemma 21.1. (a) L(D) = 0 if deg(D) < 0, and .o.(D) = 0 if 
deg(D) > 2g - 2. 

(b) For any D and any point Q in X, L(D) CL(D + Q), and 
.o.(D) :J .o.(D + Q). In addition, 

dim(L(D + Q)/L(D»:5 1 and dim(.o.(D)/.o.(D + Q» :5 I . 

(c) L(D) and .o.(D) are finite-dimensional vector spaces. 

Proof. (a) follows from the fact that deg(Div(f» = 0 and 
deg(Div(w» = 2g - 2. To prove (b), fix a local coordinate function z 
at Q, and let m = ordQ(D). Any f in L(D + Q) has a local expression 
h(z)/zm+l, with h holomorphic at O. The map which assigns h(O) to 
f determines a homomorphism of complex vector spaces from L(D + Q) 
to C, whose kernel is exactly L(D). This shows that either 
L(D) = L(D + Q) or the quotient L(D + Q)/L(D) is one dimensional. 
Similarly, any w in .o.(D) has a local expression h(z)~dz for h,hol
omorphic, and assigning h(O) to w determines a map from .o.(D) to 
C whose kernel is .o.(D + Q). 

It follows from (b) that L(D) is finite dimensional if and only if 
L(D + Q) is finite dimensional. Since one can get from any D to a 
divisor of negative degree by a finite number of subtractions of a 
point, the fact that L(D) is finite dimensional follows from (a). Sim
ilarly for .o.(D), one can add points until the degree gets larger than 
2g-2. 0 

Exercise 21.2. If D:5 E, show that 

dim(L(E» - dim(L(D» :5 deg(E) - deg(D). 

One sees from the preceding proof that dim(L(D»:S deg(D) + 1. 
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For example, L(O) = C has dimension 1. If D = Q is a point, however, 
we see from Exercise 20.7 that L(Q) is also C unless X=- S2. 

Exercise 21.3. If X = S2, show that dim(L(D» = deg(D) + 1 when
ever deg(D) ~ -1. 

Lemma 21.4. (a) For any nonzero meromorphic functionf and any 
divisor D, 

dim(L(D» = dim(L(D + Div(f)). 

(b) For any nonzero meromorphic I-form wand any divisor D, 

dim(!1(D» = dim(L(Div(w) - D». 

Proof. We have isomorphisms 

L(D) ~ L(D + Div(f», 

and 

L(Div(w) - D) ~ !1(D) , 

from which the lemma follows. 

h ~ h'f, 

h ~ h·w, 

D 

Although it has been fairly easy to get an upper bound for the size 
of L(D) , it is not so easy to get lower bounds, i.e., to show that there 
must be functions with given poles. When X comes from an algebraic 
curve, however, Proposition 20.8 gives a first step, for at least one 
divisor. Take z: X ~ S2 as in that proposition, and let E be the divisor 
of poles of z, that is, 

E = 2: eiP)P. 
z(P)=OO 

This is a divisor of degree n on X, where n is the degree of the map
ping z. 

Lemma 21.5. For this divisor E, there is a constant k such that for 
all integers m, 

dim(L(mE» ~ deg(mE) + 1 - k = mn + 1 - k. 

Proof. We need the following fact: for any meromorphic function h 
on X, there is a nonzero polynomial p(z) in C[z] and an integer t so 
that p(z)' h is in L(tE). To prove this, we need only find p(z) so that 
p(z)' h has no poles outside E, and one sees that II(z - z(P»-OrdP(h) , 
the product over all P such that z(P)"# 00 and ordp(h) < 0, is such a 
polynomial. 
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We saw in Proposition 20.8 (see Lemma C.19) that M is a vector 
space over lC(z) of dimension n. By the fact proved in the preceding 
paragraph, we can find a basis hi, ... , hn for Mover lC(z) and an 
integer t so that each hi is in L(tE). Now for m = t + s, s ~ 0, the 
(s + 1) . n functions t· hi' 0 $, j $, s, 1 $, i $, n, are all in L(mE). This 
means that, for such m, the dimension of L(mE) is at least 
(m - t + 1) . n = mn + 1 - k for some constant k. Increasing k if nec
essary, one may also achieve this inequality for the finite number of 
m with 0 $, m < t. The inequality is automatic for m < 0 and any k ~ 0, 
so the lemma is proved. 0 

Lemma 21.6. There are integers k and N so that 

dim(L(D» ~ deg(D) + I - k 

for all divisors D on X, with equality 

dim(L(D» = deg(D) + 1 - k if deg(D) ~ N. 

Proof. Choose E as above, and define k to be the smallest integer so 
that Lemma 21.5 holds for k. Suppose that D is a divisor on X such 
that D $, mE for some integer m. It follows from Exercise 21.2 that 

dim(L(D)) ~ deg(D) + dim(L(mE» - deg(mE) ~ deg(D) + 1 - k, 

which proves the required inequality for such a divisor D. Given any 
divisor D on X, there is a nonzero meromorphic function h such that 
D - Div(h) $, mE for some integer m. Indeed, as in the preceding lemma, 
one can take h to be II(z - z(p)trdp(D), the product over all P with 
z(P) ¥- 00. Then by Lemma 21.4(a) and the result just proved, 

dim(L(D» = dim(L(D - Div(h))) 
~ deg(D - Div(h» + 1 - k = deg(D) + 1 - k. 

By the minimality of k, there is some divisor Do such that the di
mension of L(Do) is deg(Do) + 1 - k. From Exercise 21.2 it follows 
that for any divisor D such that D ~ Do, 

dim(L(D» $, deg(D) + dim(L(Do» - deg(Do) $, deg(D) + I - k, 

so dim(L(D» = deg(D) + 1 - k for any such D. 
Let N = deg(Do) + k. If the degree of D is at least N, then the degree 

of D - Do is at least k, so the dimension of L(D - Do) is at least 
k + 1 - k = 1. There is therefore a nonzero function fin L(D - Do), 
which means that D + Div(f) ~ Do, and so 

dim(L(D» = dim(L(D + Div(!)) 
= deg(D + Div(f» + 1 - k deg(D) + 1 - k, 

which proves the lemma. o 
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There can be only one integer k with the second property in the 
lemma, so k depends only on the Riemann surface X. We will see in 
§21c that k is the genus of X, and that N can be taken to be 2g - 2. 

21b. Adeles 

Lemma 21.1 (b) says that each of the two subspaces L(D) C L(D + Q) 
and n(D + Q) C n(D) are either equalities or subspaces of codimen
sion one. These cannot both be subspaces of codimension one, for if 
w is in n(D) andfis in L(D + Q), thenf· w is a meromorphic I-form 
with at most one simple pole at Q; the Residue Formula then implies 
that ResQ(f' w) = 0, which means that f· w does not have a pole at 
Q, and hence either w is in n(D + Q) orfis in L(D). We will even
tually see that one of these inclusions is an equality exactly when the 
other is not, and this is the core of the proof of the Riemann-Roch 
theorem. What we will do in this section is to prove a kind of local 
version of this assertion. 

For a point P in X, let us denote by Mp the germs of meromorphic 
functions at P. These germs are defined as in §16b, by taking equiv
alence classes of meromorphic functions in neighborhoods of P, two 
being equivalent if they agree on some (punctured) neighborhood of 
P. If z is a local coordinate at P, any such germ has a unique power 
series expansion ~;=_manzn. Iffis in Mp , and w is a meromorphic 1-
form on X, the residue Resp(f' w) can be defined to be 1/2'ITi times 
the integral of f' w around a small counterclockwise circle around P. 
In local coordinates, f' w can be written ~bnzn dz, and this residue is 
b- t • 

Define an adele on X to be the assignment of a germfp of a mero
morphic function at P for every point P in X, with the property that 
ordp(fp);::: 0 (i.e.,Jp is holomorphic at P) for all but finitely many P. 
We write f= (fp) for the adele defined by such a collection of func
tionsfp. These adeles form a complex vector space, which we denote 
by R. Any meromorphic function f on X determines an adele, by as
signing the germ off at P to each P, so the field M of meromorphic 
functions is a subspace of R. An adele can be thought of as a kind 
of "discontinuous function" on X. Since there is no relation between 
the "values" fp at different points of X, it is remarkable that they can 
be a useful tool. 

If f = (fp) is an adele, then Resp(fp' w) = 0 for all but finitely many 
P (those wherefp or w has a pole). We can therefore add the residues 
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Resp(fp . U) over all P in X, getting a complex number. In other words, 
U) defines a homomorphism 

<p",: R ~ C, f = (fp) ~ 2: Resp(fp' U), 

PEX 

which is a linear map of complex vector spaces. If D = LmpP is a 
divisor such that U) is in O(D), and ordp(fp) ~ -mp for all P, then 
fp' U) is holomorphic at P, so the residue is zero. Define R(D) C R by 
the formula 

R(D) = {f = (fp) E R: ordp(fp) ~ -ordp(D) for all P EX}. 

This means that the homomorphism <p", vanishes on R(D). In addition, 
the Residue Formula says that if these fp all come from one mero
morphic function f on X, then LpEX Resp(f' U) = 0, so <p", also van
ishes on the subspace M of R. It follows that <p", determines a ho
momorphism (still denoted <p.,) 

<p",: R/(R(D) + M) ~ C. 

Define SeD) to be this complex vector space R/(R(D) + M), and de
fine O'(D) to be the dual space 

O'(D) = S(D)* = HomdR/(R(D) + M), C). 

Then 'P., is an element of this space O'(D). What we have done is 
construct a natural homomorphism from OeD) to O'(D), taking U) to 
<p.,. In the next section we will show that this homomorphism is an 
isomorphism. 

Exercise 21.7. Show that the homomorphism from OeD) to O'(D) is 
injective, and that a meromorphic I-form U) is in OeD) if and only if 
<p", vanishes on R(D). 

In this section we prove that O'(D) has some properties we would 
like O(D) to have. As in the preceding section, the main idea is to 
compare O'(D) and O'(D + Q) for Q a point in X. 

Since R(D) is contained in R(D + Q), there is a canonical surjection 
from R/(R(D) + M) onto R/(R(D + Q) + M), i.e., from SeD) onto 
SeD + Q). The kernel is (R(D + Q) + M)/(R(D) + M). 

Lemma 21.8. For any divisor D and point Q, 

dim«R(D + Q) + M)/(R(D) + M» ~ 1, 

with equality if and only if L(D) = L(D + Q). 
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Proof. Choose a germ gQ at Q such that ordQ(gQ) = -ordQ(D) - 1, 
and let gp = 0 for P ~ Q. The adele g = (gp) gives a generator of the 
quotient space in the lemma. Indeed ifJ= (fp) is any adele in R(D + Q), 
then there is some scalar A so that J - Ag is in R(D). This element 
will be nonzero exactly when there is no h in M with g - h in R(D), 
which says exactly that there is no h in L(D + Q) that is not in 
L~. 0 

Let k be the integer from Lemma 21.6. 

Lemma 21.9. 

(a) If D is a divisor such that dim(L(D» = deg(D) + 1 - k, then 
R(D) + M = R, so SeD) = 0 and fl'(D) = O. 

(b) For any D the space SeD) has finite dimension, so its dual space 
fl'(D) has the same finite dimension. 

(c) For any divisor D and point Q, fl'(D + Q) is a subspace oj fl'(D) , 
and 

dim(fl'(D)/fl'(D + Q» :::; 1, 

with equality if and only if L(D) = L(D + Q). 
(d) For any nonzero meromorphic Junction J on X, 

dim(fl'(D + Div(f))) :;: dim(fl'(D». 

Proof. If dim(L(D» = deg(D) + 1 - k, then for any point Q we know 
that dim(L(D + Q» = deg(D + Q) + 1 - k (see Exercise 21.2), i.e., 
L(D + Q) ~ L(D). By the preceding lemma, this means that 
R(D + Q) C R(D) + M. Continuing to add points to D + Q, we see 
that R(E) C R(D) + M for all divisors E such that E ~ D. But any ele
ment of R is in R(E) for some such E, so R = R(D) + M, which 
proves (a). 

For (b), take a sequence of surjections S(D)-S(D + QI)_ 
SeD + QI + Q2)- ... -SeE), until E is large enough so (a) implies 
that See) is zero. Lemma 21.8 implies that the kernel of each of these 
surjections is at most one dimensional, so by induction each SeD) 
must be finite dimensional. 

Dual to the exact sequence 

o ~ (L(D + Q) + M)/(L(D) + M) ~ SeD) ~ SeD + Q) ~ 0 

is the exact sequence 

o ~ fl'(D + Q) ~ fl'(D) ~ «L(D + Q) + M)/(L(D) + M»* ~ O. 

This shows that the inclusion fl'(D + Q) ~ fl'(D) is either an iso-
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morphism or its cokemel has dimension one. By the preceding lemma, 
we see that the latter occurs exactly when L(D) = L(D + Q), which 
proves (c). 

For (d), there is a natural isomorphism from R(D + Div(f)) to R(D) 
that takes f to f· f. This determines an isomorphism from S(D + Div(f)) 
to S(D), and, taking duals, from O'(D) to O'(D + Div(f)). 0 

Lemma 21.10. For any divisor D on X, 

dim(L(D)) = deg(D) + 1 - k + dim(O'(D)). 

Proof. This equation is certainly true if deg(D) ~ N, with N as in 
Lemma 21.6, for then dim(L(D)) = deg(D) + 1 - k and dim(O'(D)) = 0 
by Lemma 21.6 and Lemma 21.9(a). Since we can get between any 
two divisors by successively adding and subtracting points, it suffices 
to show that the equation is true for a divisor D if and only if it is 
true for D + Q, where Q is any point. Comparing the two equations, 
what must be proved is that 

dim(L(D + Q)) - dim(L(D)) + dim(O'(D)) - dim(O'(D + Q)) = 1, 

and this is simply a translation of (c) in the preceding lemma. 0 

Let 0' be the union of all O'(D), taken over all divisors D. An 
element of 0' is a homomorphism from R to C which vanishes on M 
and vanishes on some (unspecified) R(D). The space n of mero
morphic differentials on X maps to n', and we want to see that this 
is an isomorphism. We have seen that if w is any nonzero mero
morphic differential, any other can be written in the form f· w for 
some meromorphic functionJ. This means that n is a one-dimensional 
vector space over the field M. The space 0' is also a vector space 
over M, by the rule that if f is in M and '1': R~ C, then f· 'I' is the 
homomorphism which takes f to 'P(f' f). 

Lemma 21.11. The dimension of 0' over M is 1. 

Proof. We know that 0' is not zero, for example, by applying the 
preceding lemma for D of small degree to see that O'(D) ~ O. To 
complete the proof we must show that two elements 'I' and I\! in 0' 
cannot be independent over M. If this were the case, then for any 
elements hi, ... , hn of M which are independent over C, it would 
follow that hl'P, ... , hn'P, hll\!, ... , hnl\! are elements of 0' which 
are independent over C. Take a divisor E which is large enough so 
that 'I' and I\! are in O'(E). Suppose the functions hi are a basis for 
L(D) for some D. Then the 2n products hi'P and hil\! are in O'(E - D), 
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so 

dim(!l'(E - D» ~ 2dim(L(D» ~ 2(deg(D) + 1 - k). 

By Lemma 21.10, 

dim(O'(E - D» = k - 1 - deg(E - D) + dim(L(E - D». 

Now deg(E - D) = deg(E) - deg(D), and L(E - D) = 0 provided 
deg(E - D) < O. So if we take any D with deg(D) > deg(E), the dis
plays lead to the inequality 

2(deg(D) + 1 - k) s; deg(D) - deg(E) + k - 1 , 

which says that deg(D) s; 3k - 3 - deg(E). But we may take D of 
arbitrarily large degree, which is a contradiction. D 

The canonical homomorphism from the space 0 of meromorphic 
differentials to the space 0' is a homomorphism of vector spaces over 
the field M. It is not identically zero by Exercise 21.7, since one can 
certainly find meromorphic differentials wand adeles f such that there 
is exactly one point P at which Ip . w has a simple pole. But since 
both vector spaces have dimension one over M, it follows that the 
map O~ 0' is an isomorphism. We saw at the beginning that the 
subspace O(D) of 0 is mapped into O'(D) by this map, and it follows 
from Exercise 21.7 that O(D) maps isomorphic ally onto O'(D). So 
we have proved 

Proposition 21.12. The canonical map O(D)~O'(D) is an iso
morphism. 

Exercise 21.13. Given germs 11, ... ,In of meromorphic functions 
at distinct points PI> ... , Pn of X, and integers ml> ... , mn , show 
that there is a meromorphic function I so that ordpi(f - /;) ~ mi for 
1 s; i s; n. 

2Ie. Riemann-Roeh 

From Lemma 21.10 and Proposition 21.12 we have the formula 

(*) dim(L(D» = deg(D) + 1 - k + dim(O(D» 

for all divisors D on X, valid for some integer k which we do not yet 
know. We can specialize (*) to some cases where we know some-
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thing. For example, if we take D = 0, L(O) = C, and the formula says 
that I = 0 + I - k + dim(O(O», i.e., that the space of holomorphic 
I-forms has dimension k. Fix any meromorphic divisor 00, and let K 
be the divisor of 00, which we know is a divisor of degree 2g - 2. 
Applying Lemma 21.4(b) with D = K, we get 

dim(O(K» = dim(L(K - K» = dim(L(O» = I, 

and applying the same lemma with D = 0, we get 

dim(L(K» = dim(O(O» = k. 

Now apply (*) with D = K, yielding 

k = (2g - 2) + I - k + 1 , 

which means that k must be g. So we have proved: 

Theorem 21.14 (Riemann-Roch Theorem). If X is the Riemann sur
face of an algebraic curve, then for any divisor D on X, 

dim(L(D» = deg(D) + I - g + dim(O(D» 
= deg(D) + I - g + dim(L(K - D», 

where K is the divisor of any nonzero meromorphic Ijorm on X. 

Corollary 21.15. The space of holomorphic differentials has dimen
sion g. 

This proves that H'(X;C) = OI,O(X)EBOO,I(X). 

Corollary 21.16. dim(L(D» ~ deg(D) + 1 - g, with equality when
ever deg(D) ~ 2g - I. 

Corollary 21.17. For any two points P and Q on X, there is a mero
morphic Ijorm cp with simple poles at P and Q and no other poles. 

Proof. Riemann-Roch for D = -P - Q gives 

o = -2+ l-g+dim(O(-P-Q», 

or dim(O( -P - Q» = g + 1. This means that there is a meromorphic 
1-form 'P that is in O( - P - Q) but not in 0(0). Since the sum of the 
residues is zero, 'P must have simple poles at both P and Q, with the 
residue at Q being minus the residue at P. D 

Corollary 21.18. If gx = 0, then X is isomorphic to S2. 

Proof. Take any point P. Since dim(L(P» ~ deg(P) + 1 - g = 2, there 
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is a nonconstant meromorphic function f with at most one pole. This 
is a mapping from X to S2 of degree 1, so is an isomorphism. 0 

Exercise 21.19. If gx = 1, show that there is an analytic mapping 
f: X ~ S2 of degree 2. Deduce that X is the Riemann surface of a 
curve W2 = Z(Z - l)(Z - A), A ~ 0, 1. 

Exercise 21.20. Assume that g = gx ~ 1. (a) Show that there are g 
distinct points PI, ... ,Pg on X so that a(P1 + ... + Pg) = O. 
(b) Show that there are points PI,..., P g on X so that 
a(P1 + ... + Pg) ~ O. (c) If g ~ 2, show that there is an analytic 
mapping f: X ~ S2 of degree at most g. In particular, if g = 2, X is 
hyperelliptic. 

Exercise 21.21. Show that the I-form 'P of Corollary 21.17 is unique 
up to multiplying by a nonzero scalar and adding a holomorphic 1-
form. Show that there is a unique such 'P whose residue at P is 1, 
whose residue at Q is -1, and so that I -y 'P is purely imaginative for 
all closed paths 'Y in X \ {P, Q}. 

Exercise 21.22. A real-valued function u on a Riemann surface is 
harmonic if it is locally the real part of an analytic function. A func
tion which is harmonic in a punctured neighborhood of a point P is 
said to have a logarithmic pole at P if, with z a local coordinate at 
P, there is a nonzero real scalar a so that u - a . 10g(lzl) extends to be 
harmonic in a neighborhood of P. Show that for any two points P 
and Q on X, there is a harmonic function u on X \ {p, Q} that has 
logarithmic poles at P and Q. 

Exercise 21.23. For any point P on X, show that there is a mero
morphic differential 'P on X with a double pole at P. Deduce that there 
is a harmonic function u on X \ {P} so that, if z = x + iy is a local 
coordinate at P, then u - x/(x2 + l) is harmonic near P. 

Historically, the arguments went in the reverse order: harmonic 
functions were found with the properties in the preceding exercises, 
and these were used to find meromorphic I-forms and to prove Rie
mann-Roch. By regarding harmonic functions as integrals of fluid 
flows or electric fields on X, one can give intuitive arguments for 
their existence, say by putting sources and sinks at the points P and 
Q. For a lively discussion along these lines, see Klein (1893). 

Exercise 21.24. Given any sequence Ph P2 , ••• ,Pn , ••• of points 
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in X, show that there are exactly g positive integers k, all in the in
terval [1, 2g - 1], such that 

L(P, + ... +Pk-I) = L(p, + ... +Pk). 

When all Pi are taken to be a fixed point P, these integers are called 
the Weierstrass gaps at P. 

Exercise 21.25. Suppose D and E are divisors on X such that D + E 
is the divisor of a meromorphic I-form. Prove Brill-Noether rec
iprocity: dim(L(D» - dim(L(E» = If2(deg(D) - deg(E». 

Exercise 21.26. If z: X ~ S2 is an analytic mapping of degree n, and 
Q in S2 is a point such that z -I(Q) = {P I, ••. , P n} has n distinct 
points, use Riemann-Roch to show that there is a meromorphic func
tion w on X so that w(P I), ... , w(P n) are distinct complex numbers. 
If F(z, w) = 0 is the irreducible equation for w over (:(z) (with de
nominators cleared), show that X is isomorphic to the Riemann sur
face of F. 

Once one knows Riemann-Roch for a general compact Riemann 
surface X, the preceding exercise shows that X comes from an alge
braic curve. 

Exercise 21.27. Show that the Riemann surface X of the polynomial 
W4 + Z4 - 1 = 0 has genus 3, but X is not hyperelliptic. Show in fact 
that dimO(2P) = 1 for all P in X. 

2Id. The Abel-Jacobi Theorem 

In this section we prove the assertions made in §20d. The first is 
Abel's criterion for when a divisor D = '2:.miPi is a divisor of a mero
morphic function: it must have degree zero and be in the kernel of 
the Abel-Jacobi map. We use the notation of that section. 

Theorem 21.28 (Abel's Theorem). There is a meromorphic function 
f on X with Div(f) = D if and only if deg(D) = 0 and [D] = 0 in J(X). 

We first sketch the proof of the necessity of these conditions. Sup
pose f is a nonconstant meromorphic function on X, giving a mapping 
of degree n from X to s2, with branch set S. Corollary 19.5 shows 
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that deg(Div(f» = O. Fix a point Po in X. Consider the mapping from 
S2 \ S to J(X) that takes a point Q to the point L7=1 [Pi - Po], where 
PI ... , Pn are the points of X in rl(Q). It is not hard to see that 
this extends continuously to the branch points, giving a continuous 
mapping from S2 to J(X). Since S2 is simply connected, by Propo
sition 13.5 this mapping factors: S2~ Cg ~ U / A. By looking locally, 
one can verify that each of the g coordinate maps are analytic func
tions on S2. But analytic functions on S2 are constant, so the given 
map from S2 to J(X) must be constant. The fact that the value at 0 
is equal to the value at 00 is precisely the condition that 
[Div(f)] = [L ordp(f) . P] = 0 in J(X). 

We tum now to the converse. Let D be a divisor of degree zero in 
the kernel of the Abel-Jacobi map. We must show that D is the divi
sor of a meromorphic function. The motivation for the proof comes 
from the fact that if J is a meromorphic function on X, and we set 
'P = dJ/J, then'P is a meromorphic differential on X with at most sim
ple poles and, in fact, for any P, Resp('P) = ordp(f). We will look for 
a meromorphic I-form 'P with at most simple poles among the points 
appearing in D, such that Resp('P) = ordp(D) for all P. Then we will 
define a function J on X by the formula J(P) = exp(f~o 'P), where Po 
is a fixed point. Provided this is well defined, it will satisfy the equa
tion 'P = dJlJ, and so we will have ordp(j) = ordp(D) for all P, so 
Div(f) =D. 

Since the degree of D is zero, we may write D = L~=I(Pi - Q;), for 
some points PI,"" Qr (not necessarily unique). Let 
S={P., ... ,P"Q., ... ,Qr}' We know by Corollary 21.17 that 
there is a meromorphic I-form 'Pi with simple poles at Pi and Qi (only), 
and with residues I at Pi and -1 at Qi' Let 'P = ~~=I 'Pi' We want to 
defineJ(P) = exp(f~o'P), where the integral is along any path from Po 
to P in X \ S. This will be well defined provided the integral of 'P 
along any closed path T in X \ S is in 2-rrilL. The form 'P is only defined 
up to the addition of a holomorphic I-form, so the proof of the Abel
Jacobi theorem is reduced to the 

Claim 21.29. There is a holomorphic I{orm w so that fA(fI- w) is 
in 2 TrilL Jor all I-cycles T on X \ S. 

We need the following refinement of Exercise 18.8. We take 2g 
closed arcs aj and bj as in §17c. Cutting the surface open along these 
arcs, we realize it as the identification space of a plane polygon II 
with sides identified. These choices can be made so that the map from 
II to X is a diffeomorphism on the interior of II, and has a ~"" exten-
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sion to a neighborhood of II. By means of this map I-forms on X 
correspond to I-forms on II. Let 00 be a closed I-form on X, and 
define a function h on the closure of II by the formula h(P) = f~ow, 
for some fixed point Po in II. Let 'I' be a closed I-form defined on a 
neighborhood of the union of these 2g arcs in X, so 'I' determines a 
I-form on a neighborhood of the boundary all of II. 

Lemma 21.30. 

Proof. Note first that if P and p' are corresponding points of the 
boundary edges aj and aj -I of II, then 

h(P) - h(P' ) = - L 00 , 
} 

as one sees by integrating along a path from p' to P, noting that the 
integrals over corresponding parts of aj and aj -I cancel. 

Therefore 

Lh'P+ L_,h'P 
J J 

L (h(P) - h(P I » 'P(P) 
J 

( (- ( (0)'1' = - ( w· ( 'I' 
Jaj Jbj Jbj Jaj 

Similarly if Q and Q' are corresponding points of bj and bj - I , then 

h(Q) - h(Q') = Lw, 
J 

so 

Lh'P+L_,h'P 
J J 

L (h(Q) - h(Q'» 'P(Q) 
J 
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Adding over all the edges of the boundary of IT gives the identity of 
~~~. 0 

To apply the lemma in our situation, the arcs aj' bj must be taken 
so that none of them goes through a point of S. Let U j be a path from 
Qj to P j which does not hit any of the arcs aj or bj . 

Lemma 21.31. For any holomorphic Ijorm won X, 

Proof. We apply the preceding lemma. We must evaluate Ianh<p, with 
h(P) = I~o w. The Residue Formula in the polygon IT gives 

in h<p = (21Ti) ~ Resp(h<p) = (21Ti)(~ h(P;) - ~ h(Q;)) , 

the last since <pj has simple poles, with residues 1 and -1 at P j and 
Qj. And 

by definition. So Lemma 21.30 gives the required conclusion. 0 

The hypothesis that D is in the kernel of the Abel-Jacobi map means 
that there is a I-cycle 'Y such that L~= I I!Ii W = I ~ w for all holomorphic 
i-forms w. So we have, for all holomorphic w, 

We can now prove Claim 21.29. Since a basis of H,(X \ S) is given 
by the cycles aj' bj , and small circles around the points in S (either 
by Mayer-Vietoris or Problem 17.12), it suffices to find a holo
morphic I-form w such that the integral of <p - w around all these 
cycles is in 21TiZ. Note that for any such <p, the integral around a 
small circle around a point in S is in 21TiZ, since all the residues of 
<p are integers. To start, let 'A.j = I aj <p. Subtracting the holomorphic 
1-form L'A.j Wj from <p, we can assume that I aj <p = 0 for all j. The pre
ceding formula, with w = Wk, gives 

(21Ti) f Wk = ( <p. 
"Y Jb, 
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Write 'Y = "J.mA + njbj , with integer coefficients mj' nj. Then 

L ook = ~ ( mj Ii ook + nj ii ook) 

g g 

= mk + ~ nj ii ook = mk + ~ nj ik ooj. 

the last step by the symmetry of Corollary 20.22. But now if we set 
00 = 27Ti"J.njooj, this shows that fbk (IP - 00) = 27Timk. Therefore 

1 (IP-OO)= -1 00 = - 27Til2:njooj= - 27Tink, 
ale ale ak 

and this completes the proof of the claim, and hence of Abel's theorem. 

Theorem 21.32 (Jacobi Inversion). The Abel-Jacobi map from the 
group of cycles of degree zero to the Jacobian J(X) is surjective. 

This means that we have an exact sequence 

° ~ C* ~ M(X)* ~ Zo(X) ~ J(X) ~ 0, 

which realizes the torus J(X) = Cg / A as the quotient of the group of 
divisors of degree zero by the subgroup of divisors of meromorphic 
functions. 

The proof, which we only sketch, requires a few basic facts about 
holomorphic mappings of several complex variables. Let Xg be the g
fold Cartesian product of X with itself, which is a g-dimensional com
plex manifold. Let 

U g : xg ~ J(X) 

be the map which takes (PI, ... , Pg ) to A(LP j - gPo), where A is 
the Abel-Jacobi map, and Po is any fixed point on X. It suffices to 
prove that ug is surjective. The Jacobian J(X) = P / A gets the struc
ture of a complex manifold so that the quotient mapping Cg ~ J(X) 
is a local isomorphism. 

Exercise 21.33. Verify that ug is a holomorphic (analytic) mapping 
of complex manifolds. 

We claim next that there are distinct points PI, . . . , P g in X such 
that the Jacobian determinant of ug at the point (PI' ... , Pg ) is not 
zero. Once this is verified, it follows that the image of ug contains 
an open set. Since the image of the Abel-Jacobi map is a subgroup, 
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and J(X) is compact, it follows that the image must be all of J(X). 
To prove the claim, take any distinct points PI, . . . , P g' Let Zj be 
a local coordinate at Pj , and write Wi = /;,j dZj near Pj . 

Exercise 21.34. Verify that, in suitable coordinates, the Jacobian ma
trix of cxg at (PI, ... , Pg) is (/;,j(Pj)), 

Now take the points PI, ... , Pg as in Exercise 21.20(a). If the 
Jacobian determinant det(/;.j(P)) of cxg vanishes at (PI, ... ,Pg), 

then there are g complex numbers AI, ... , Ag , not all zero, such 
that 

(AIWI + ... + AgWg)(P) = 0 

for all j. But this means that n(P I + ... + Pg) is not zero, which 
contradicts Exercise 21.20(a). 



PART XI 

HIGHER DIMENSIONS 

This last part is designed to introduce the reader to a few of the higher
dimensional generalizations of the ideas we have studied in earlier 
chapters, both to unify these ideas, and to indicate a few of the di
rections one may go if one continues in algebraic topology. It is not 
written as the culmination or goal of the rest of the course, but rather 
as a brief introduction to the general theory. How accessible or useful 
it may be depends on several factors, such as background in manifold 
theory, and ability to generalize from the special cases we have seen 
to higher dimensions (an ability, it seems to me, often underestimated 
in our teaching). For systematic developments of the ideas of this 
part, the books of Bredon (1993), Bott and Tu (1980), Greenberg and 
Harper (1981), and Massey (1991) are recommended. 

We have studied the first homology group H1X, the fundamental 
group 'lTl(X,X), and the first De Rham cohomology group H1X, which 
were sufficient to capture most of the topology of the spaces we have 
been most concerned with: open sets in the plane and surfaces, and 
an occasional graph. Each of these is the first in a sequence of groups 
that are used to study similar questions for higher-dimensional spaces. 
In contrast to many earlier chapters, the tone in this final part is de
signed to be more formal, concise, and abstract; we are depending 
on your experience with special cases and low-dimensional examples 
for motivation. 

We start by recalling some three-dimensional calculus, to indicate 
the sort of "topology" these higher groups might measure. Then we 
take a quick look at knots in 3-space, mainly because knot theory is 
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an interesting and important subject in its own right, and also because 
it gives us a chance to use some of the tools developed in earlier 
chapters. We also define the higher homotopy groups of a space and 
the De Rham cohomology groups. 

In the next chapter we define higher homology groups, and prove 
their basic properties. We indicate some of the ways they can be used 
to extend ideas we have looked at in the plane or on surfaces to higher 
dimensions. In particular, they give a simple extension of the notion 
of degree, and they lead to generalizations of the Jordan curve theo
rem. 

In the final chapter we include a couple of "diagram chasing" facts 
from algebra, one of which can be used to compare different ho
mology and cohomology groups, the other to construct long exact 
sequences such as Mayer - Vietoris sequences. (Having proved this 
once and for all, one does not have to keep doing the same sort of 
manipulations we have done to define boundary and coboundary maps.) 
Finally, we give proofs of the basic duality theorems between ho
mology and De Rham cohomology on manifolds. 

The sections involving higher De Rham cohomology on manifolds 
are written for those with a working knowledge of differential forms 
on differentiable manifolds. A reader without this background can 
skip or skim this part (or stick to low dimensions and/or open sets 
in ~n). The construction of higher homology groups and its appli
cations to higher-dimensional analogues of the theorems we saw at 
the beginning of the course do not depend on any of this, however, 
and a reader who has mastered the earlier chapters should be able to 
work through this without any gaps. We have included Borsuk's theo
rem that maps of spheres that preserve antipodal pairs have odd de
gree, since this allows generalizing all the results we proved about 
winding numbers to higher dimensions. 

A few remarks about other approaches may be in order. It is pos
sible to define the degree of a mapping of a sphere to itself without 
the notions of homology, and to prove many of its properties. Those 
with a knowledge of differential topology can do this by approxi
mating a continuous map by a differentiable one, and following the 
pattern of Problem 3.32 for the winding number. (For a nice discus
sion in the ~oo context, see Milnor (1965)). There are also elementary 
approaches using simplicial approximations, although considerable care 
is required to make the arguments rigorous. (In fact, the difficulties 
in this approach seem to us much greater than those involved in de
veloping general homology theory-not to mention the fact that, hav
ing done the latter, one can apply it in many other situations.) 
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We might also mention that we have used cubes rather than the 
simplices that are common in many other treatments. Simplices have 
a slight advantage that one has no "degenerate" maps to ignore, but 
cubes are simpler for homotopies and product spaces in general, and 
they are more convenient for integrating differential forms. (In fact, 
it is not hard-as we do in §24d-to use cubes to calculate the sim
plicial homology of spaces that are triangulated.) 

Finally, a word on terminology: here manifolds always are assumed 
to have a countable basis for their topology. 



CHAPTER 22 

Toward Higher Dimensions 

22a. Holes and Forms in 3-Space 

On an open set U in [R3 we have: O-forms, which are just C(;oo functions 
on U; Ijorms, which are expressions 

pdx + qdy + rdz, 

where p and q and rare C€oc functions on U; 2-forms, which are expres
sions 

udydz + vdxdz + wdxdy, 

where u and v and w are C(;oo functions on U; and 3-forms, which are 
expressions 

hdxdydz, 

where h is a C(;oo function on U. 
These fonns are designed for integrating, just as in the plane. A 0-

fonn is evaluated at points. The integral of a I-fonn over a differ
entiable path 'Y: [a, b] ~ U is defined exactly as for the plane: 

f pdx + qdy + rdz = ib (P('Y(t» dx + q('Y(t» dy + r('Y(t» dz) dt, 
"I a dt dt dt 

where 'Y(t) = (x(t) , y(t), z(t». A 2-fonn can be integrated over a dif-

317 
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ferentiable map f: R-,; U from a rectangle R = [a, b] x [c, d] to U: 

II udydz + vdxdz + wdxdy = 
r 

If( a(y,z) a(x,z) a(x,y)) 
u(f(s, t)) --+ v(f(s, t)) --+ w(f(s, t)) --" ds dt , 

a(s, t) a(s, t) a(s, t) 
R 

where, for [(s,t) = (x(s, t),y(s,t), z(s,t)), and a(x,y)/a(s,t) denotes 
ax/as ay/at- ax/at ay/as, and similarly for the other terms. A 3-
form is integrated over a differentiable map II: B -'; U where B is a 
rectangular box [a, b] x [c, d] X [e,f]: 

Iff Iff a(x,y,z) 
hdxdydz = h(II(s, t, u)) dsdtdu, 

a(s, t, u) 
II B 

where II(s, t, u) = (x(s, t, U),y(s, t, U),z(s, t, u)), and a(x,y,z)/a(s,t,u) 
denotes the Jacobian determinant. 

The differential df of a O-form f is a I-form defined by 

af af af 
df = -dx+-dy+-dz. 

ax ay az 

The fundamental theorem of calculus gives I'/df= f('Y(b)) - f('Y(a)) 
for'Y a path as above. The differential of a I-form is a 2-form: 

d(pdx + qdy + rdz) 

= (ar _ aq) dydz + (ar _ ap ) dxdz + (aq _ ap ) dxdy, 
~ ~ b ~ b ~ 

and Green's theorem (for rectangles in the plane) gives II rdw = Iarw, 
where the integral around the boundary of the rectangle is defined as 
in Part 1. Finally, the differential of a 2-form is a 3-form: 

d(udydz + vdxdz + wdxdy) = (au _ av + aw) dxdydz, 
ax ay az 

and Stokes theorem says that III II dw = IIall w. 

Exercise 22.1. State and prove Stokes' theorem for a box, and define 
the boundary of II as a sum and difference of the restrictions of II to 
the six sides of the box, assigning correct signs to each so the above 
formula holds. 

We define the differential of a 3-form to be O. A simple calculation 
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using the equality of mixed derivatives shows that if f is a O-form, 
then d(df) = 0, and if w is a I-form, then d(dw) = O. A k-form w is 
closed if dw = 0, and exact if w = dlJ- for some (k - I)-form IJ-. So all 
exact forms are closed, and we have the same question as in the plane: 
when are closed forms exact? We can define the De Rham groups 
ltv as before: for k = 0, 1, 2, or 3, 

HkV = {closed k-forms on V}/{exact k-forms on V}. 

The question becomes: How does the topology of V influence the size 
of the vector spaces HkV? 

For I-forms, the answer is very similar to the case of open sets in 
the plane. A closed I-form w on V is exact if and only if integral of 
w over paths in V depend only on the endpoints, or all integrals over 
closed paths are zero. For example, if U is the complement of the z
axis, the I-form w = ( -y dx + x dy) / (~ + /) is closed but not exact; 
as we know, an integral of w around a circle in the xy-plane is 21T. 
Notice that taking a point or a closed ball out of ~3 does not count 
as a "hole" as far as I-forms in 3-space is concerned. In fact: 

Exercise 22.2. Show that if HI U = 0 then every closed I-form on V 
is exact. 

For 2-forms, however, if U is the complement of a point, there are 
closed forms that are not exact. For example, let 

xdydz - ydxdz + zdxdy 
w = 

Exercise 22.3. Show that w is closed. Fix a positive number p, and 
let f: [0,21T] x [_1/21T, 1/21T]~ ~3 be the spherical coordinate map
ping, i.e., 

f(tt, <p) = (p cos({) cos(<p), p sin({) cos(<p), p sin(<p». 

Compute the integral of w over f, and deduce that w is not exact. 

Exercise 22.4. Use this 2-form w to define the engulfing number around 
o of a differentiable map from S2 to ~3 \ {O}. Can you prove any an
alogues of the winding number? 

We will see in the next chapter how to define second homology 
groups H2U that have the same relation to 2-forms and H2U as the 
first homology H1U has to I-forms and HIV. 

Some of these ideas may be more familiar in vector field language: 
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a I-form pdx + qdy + rdz can be identified with the vector field 
pi + qj + rk, the 2-form udydz + vdxdz + wdxdy with the vector field 
ui - vj + wk, and the 3-form hdxdydz with the function h. In this 
language, the differential df of a function corresponds to the gradient 
grad(f), the differential of a I-form to the curl of a vector field, and 
the differential of a 2-form becomes the divergence of a vector field: 

ox of of 
grad(f) = -i+-j +-k; 

ox oy oz 

curl(pi + qj + rk) = (or _ Oq)i + (OP _ or)j + (Oq _ OP)k; 
oy oz oz ox ox oy 

ou ov ow 
div(ui + vj + wk) = - + - + -; 

ox oy OZ 

and the equations dod = 0 say that curl 0 grad = 0 and div 0 curl = o. 
The integral of the vector field corresponding to a 2-form over a sur
face can be interpreted as the integral of a dot product with an out
ward-pointing normal. 

Problem 22.5. (a) Generalize the discussion of §2c to fluid flows on 
open sets in 3-space. Interpret the engulfing number as the flux across 
a surface of a flow with source at the origin (see Exercise 2.26). 
(b) Define harmonic functions of three variables, and generalize Ex
ercise 2.21 and Problems 2.22-2.25. 

22b. Knots 

A knot is a subset K of rR3 or the 3-sphere S3 that is homeomorphic 
to a circle. Call two knots equivalent if there is a homeomorphism of 
rR3 (or S3) with itself that takes one homeomorphic ally onto the other, 
and is orientation-preserving. (For a precise definition of "orientation
preserving," see §23c.) A weaker notion is similarity, which is the 
same except ignoring orientation, so "mirror image" knots are always 
similar. The generalized Jordan curve theorem, which we will prove 
in the next chapter, implies that the complement of X is connected, 
that its first homology group is infinite cyclic, and its other homology 
groups vanish. In particular, these groups are the same for all knots. 
However, the fundamental group 'iT I (S3 \ X) or 'iT I (rR3 \ X) can some
times be used to distinguish knots from each other. Note that these 
fundamental groups are the same for similar knots, so they can be 
used as a possible invariant. 
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Exercise 22.6. If K C ~3 is a knot, and ~3 is identified with the com
plement of a point in S3, by stereographic projection, show that the 
fundamental group of ~3 \ K is isomorphic to the fundamental group 
of S3 \K. 

The standard embedding K = Sl C ~2 C ~3 C S3 is called the trivial 
knot, and any knot equivalent to this is called trivial. We want to use 
fundamental groups to give one example of a knot that is not trivial. 
We will do this by identifying S3 C ~4 = (:2 with the set of pairs (z, w) 
of complex numbers such that Izl2 + Iwl2 = 1, and constructing a knot 
K that is the intersection of S3 with a complex plane curve that has 
a singUlarity at the origin. This is more than a convenient way to find 
an example: the knots that arise this way are important invariants of 
singularities of plane curves! In this language, the trivial knot can be 
realized as the intersection of S3, with the "curve" w = o. 

Exercise 22.7. Show that the fundamental group of the complement 
of the trivial knot is isomorphic to Z. Show, in fact, that the circle 
{CO, w): Iwl = I} is a deformation retract of the complement of circle 
{(z,O): Izl = I} in S3. 

In nature coverings often arise by starting with a mapping that is 
not a covering, but becomes one after throwing away a locus where 
it fails to be a covering. We have seen this for an analytic mapping 
between Riemann surfaces in Chapter 19, where only a finite set had 
to be thrown away. With appropriate hypotheses, such a mapping is 
called a "branched covering," with the bad set the "branch locus." 
Here is another example. Consider the mapping /: (} ~ ([2 given by 
the formula/(u, v) = (u, v3 + uv). The inverse image of a point (z, w) 
has three points if the equation v3 + zv = w has three distinct solutions 
for the variable v, and one or two points otherwise. 

Exercise 22.8. Show that rl(z, w) has three points if and only if 
4i + 27w2 ¥- o. If 4z3 + 27w2 = 0, but (z, w) ¥- (0,0), the inverse im
age has two points, and for (z, w) = (0,0), the inverse image has one 
point. 

Let V C (:2 be the plane curve 4z3 + 27w2 = 0, which is the branch 
locus of the above mapping f. Let K be the intersection of V with S3: 

V = {(z,w):4z3 +27w2=0}, K = vns3 • 

We claim first that K is homeomorphic to a circle. 



322 22. Toward Higher Dimensions 

Exercise 22.9. Show that the mapping e2'frit ~ ( _ae4'frit, beMrit ), where 
a is the positive solution to the equation 4a3 + 27a2 = 27 and 
b = ~, is a homeomorphism of S I onto K. 

We will consider the mapping (:2 \rl(V)~ (:2 \ V determined by 
j, and the restriction 

p: Y=r l (S3\K) ~ S3\K=X, (u,v) ~ (u,v3+uv). 

Take x = (1, 0) as the base point in X, and y = (1, 0) as the base point 
in Y. Note that p-I(X) = {(1, 0), (1, i), (1, -i)}. 

Claim 22.10. (1) p is a three-sheeted covering map; (2) Y is con
nected; and (3) p is not a regular covering. 

It follows from this claim that 'TT1(S3 \ K, x) is not abelian, since 
every connected covering of a manifold with an abelian fundamental 
group is regular. In particular, K is not a trivial knot. We leave the 
proofs of (1)-(3) as exercises, with the following comments. The 
essential point of (1) is showing that the roots of a polynomial are, 
locally where the roots are distinct, continuous functions of the coef
ficients. In fact, they are analytic functions, by the same argument 
as in §20a. For (2), it suffices to show that the three points of rl(x) 
can be connected by paths. Consider the loop -y(t) = (e2'frit, 0), O:s t:s 1, 
at x. This lifts to the loop :V1(t) = (e2'frit,O) at y, and to the path 
:;;2(t) = (e2'frit, ie'frit) that goes from (1, i) to (1, -i) in Y. 

Exercise 22.11. Find a path of the form <r(t) = (A(t), iJl.(t», O:s t:s 1, 
with A(t) > 0 and Jl.(t);::: 0 for all t, that goes from (1,0) to (1, i) in Y. 

This exercise shows that Y is connected, and since :;; I is closed, 
and 12 is not, the covering is not regular. 

In fact, up to equivalence, K is an example of a torus knot. The 
torus T = rFe II? sits in S3 by the mapping that takes (x, y) to 
«(1/V2)i'frix, (1/V2)e2'friY). For any relatively prime pair of positive 
integers p and q, the image in the torus of the line with equation 
qy = px in ~2 is a knot that winds p times around the torus one way 
while it winds q times around the other way. This is called a torus 
knot of type (p, q). 

Exercise 22.12. (a) Show that the knot K = V n S3 considered above 
is equivalent to a torus knot of type (2,3). (b) Show that for relatively 
prime positive integers p and q the intersection of zq = w P with S3 is 
a torus knot of type (p, q). 
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The VanKampen theorem can be used to calculate the fundamental 
group of the complement of any torus knot. The 3-sphere is the union 
of two solid tori 

so T=A n B = {(z, w): Izl = Iwl = 1/Y2} is a torus. 

Problem 22.13. If K is a torus knot of type (p, q) in T, show that 
the fundamental groups of A \ K, B \ K, and T\ K are infinite cyclic, 
and the generator of the fundamental group of T \ K maps to the pth 
and qth powers of generators of the fundamental groups of A \ K and 
B \ K. Apply the Van Kampen theorem to show that the fundamental 
group of S3 \ K has two generators a and b, and one relation a P • bq = e, 
i.e., the fundamental group is F2/N, where F2 is the free group on a 
and b, and N is the least normal subgroup containing aP ' bq• 

For a knot of type (2,3), for example, one can see again that this 
group is not abelian by mapping it onto the symmetric group @:i3 on 
three letters, sending a to the transposition (1 2) and b to the per
mutation (1 2 3). 

There are many knots that are not torus knots. For example, one 
can take a torus knot, and take a small tube around it, which is ho
meomorphic to another torus, and put a torus knot on this. Repeating 
this construction arbitrarily often gives a class of knots which, re
markably, are exactly the knots one gets from singularities of plane 
curves. There are many other knots, however. Moreover, there are 
some "wild" knots, such as "Antoine's necklace": 

The fundamental group of the complement of this knot is not even 
finitely generated. A piece of this is an embedding of a closed interval 
in ~3 such that the complement is not simply connected. 
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22c. Higher Homotopy Groups 

The higher homotopy groups 'IT k(X , x) are easier to define than higher 
homology or cohomology groups, although their calculation turns out 
to be far more challenging. Fix a base point So in the sphere S\ say 
the north pole: So = (0, ... ,0,1). Define 'ITiX,x) to be the set of 
homotopy classes of maps from Sk to X that map So to x; here a ho
motopy between two such maps must preserve basepoints throughout 
the homotopy, i.e., H is a continuous map from Sk x [0, 1] to X, with 
H(so x t) = x for all 0::5 t::5 1. One can also define 'ITk(X, x) as the set 
of homotopy classes of maps from the standard k-cube [k to X that 
map the boundary of the cube to x, with homotopies also mapping 
the boundary to x throughout. 

Exercise 22.14. (a) Show that these two definitions agree by showing 
that Sk is homeomorphic to the space obtained by identifying all points 
of the boundary of [k to a point. (b) Show that 'ITk(X, x) = 0 for all 
k> 0 if X is contractible. (c) Show that a map f: X ~ Y determines 
mapsf*: 'ITk(X,x)~'ITlY,f(x)), which are functorial, and that maps 
that are homotopic through basepoint-preserving homotopies deter
mine the same map on homotopy groups. (d) Show that 'ITk(Sn, so) = 0 
for O<k<n. 

The sets 'ITiX,x) can be made into groups, much as for the fun
damental group. Using the definition by cubes, one can "multiply" 
two maps f and A from [k to X, defining f· A by using the first 
coordinate: 

A _ {f(2t l ' t2 , ••• ,tk), 0::5 II ::5 1/2, 
f· (t l ,···, tk ) - 1 

A(2tl -1,t2 , ••• ,tk), /2::5tl ::51. 

Exercise 22.15. (a) Show that this operation is well defined on ho
motopy classes, and makes 'ITlX,x) into a group. (b) Show that the 
maps f* of Exercise 22.14 are homomorphisms of groups. 

Problem 22.16. Show that, for all k> 1, the group 'ITk(X,X) is abe
lian. 

It is a fact that 'IT .(S·, so) = Z, although this is quite a bit harder to 
prove. Note that this gives a strong notion of degree for maps of sn 
to sn: it defines the degree, and shows that maps are classified up to 
homotopy by their degree. In the next chapter we will use chains to 
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define homology groups Hk(X), which are easier to calculate, and we 
will show that Hisn) = 7L and Hlsn) = 0 for all k> 0, k =Ie- n. In stark 
contrast with the homology groups, for k> n, the groups 'ITk(sn, so) 
need not be trivial. 

Exercise 22.17. Identifying S3 with {(z, w) E C2: Izl2 + Iwl2 = I}, show 
that the map that takes (z, w) to w / z E C C S2 determines a continuous 
mapping from S3 to S2. 

It is a fact that 'IT3(S2, so) =:; 7L, with generator given by the mapping 
of the preceding exercise, which is called a Hop! mapping (see Hilton 
(1961». We will show in the next chapter that the fibers of the Hopf 
mapping are circles that are "linked" together in S3, which is at least 
an indication of the nontriviality of the Hopf map. It should be pointed 
out, however, that in spite of enormous effort, which have produced 
calculations of many special cases, the groups 'ITlSn, so) are far from 
known in general. 

22d. Higher De Rham Cohomology 

All of the discussion of §22a generalizes to n variables, a k-form 
being an expression 

2./;li2' . . ikdxil dxi2 ... dxik = 2./Jdx[ 

the sum over all 1:5 i. < ... < ik :5 n, with the coefficients h1i2' . . ik 

C{6'" functions on an open set in IW. There is a differential d that takes 
a k-form to a (k + I)-form, and again dod = O. For U open in ~n one 
then gets De Rham groups HkU, the space of closed k-forms modulo 
the space of exact k-forms. The main complication is in keeping track 
of the signs. This is best done by introducing formally the "exterior 
algebra" structure that is already apparent in the plane and 3-space: 
one allows the differentials to be written in arbitrary order, but put 
in a sign whenever they are interchanged: dydx = -dxdy, together 
setting dxdx = O. (The usual notation for this exterior product is the 
wedge "/\," so one writes dx /\ dy in place of our dx dy.) Working this 
out properly belongs in an advanced calculus course. 

As with surfaces, one can define k-forms on an arbitrary differ
entiable manifold as collections of k-forms on the coordinate neigh
borhoods of a chart that transform properly on overlaps. If you know 
about differential forms on a manifold, it is not difficult to generalize 
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the idea of De Rham cohomology. Again there are differentials d from 
k-forms to (k + I)-forms, with dod = O. In this section we will assume 
familiarity with notions of manifolds and differential forms. If this 
applies to you, fine; if not, you can either stick to low dimensions 
where we have done it by hand, or assume this formalism in gen
eral-or you can turn immediately to the next chapter, which does 
not depend on any of this. 

If X is a differentiable manifold, one can define the De Rham co
homology group HkX as the vector space of closed k-forms modulo 
the subspace of exact k-forms. If f: X ~ Y is a differentiable map, 
there is a notion of pull-back of k-forms from Y to X, taking CJ) on Y 
to f*CJ) on X. This commutes with the differential, so determines a 
(functorial) homomorphism /*: Hky ~ HkX. 

Exercise 22.18. If X is a disjoint union of a finite or infinite number 
of manifolds Xi' show that HkX is the direct product of the HkXi , i.e., 
specifying a class on X is the same as specifying a class on each Xi . 

The Mayer-Vietoris exact sequence is defined with almost no change 
from the case with HO and HI. To define 

&:Hk(UnV) ~ Hk+I(UUV), 

as before, one uses a partition of unity subordinate to an open cov
ering X = U U V by U and V to write a closed k-form CJ) on un V as 
the difference III - 112 of a k-form ilion U and a k-form 112 on V; 
there is a closed (k + I)-form on U U V that is dillon U and dll2 on 
V, and this (k + I)-form represents the image in Hk+I(U U V) of the 
class represented by CJ) in F(U n V). As before (and see §24a), one 
proves: 

Mayer-Vietoris Theorem 22.19. For any open sets U and V in a 
manifold of dimension n, there is an exact sequence 

0- HO(UuV) -4HoUeHoV ~ HO(UnV) 

-4 HI(UuV) -4 HIUeHIV ~ HI(UnV) -4 
... _ ... 

-4 H"(UUV) -4 H"UeH"V ~ Hn(UnV) - 0 

To calculate these groups, one needs in addition the 

Poincare Lemma 22.20. If p: X x ~~X is the projection, then 
p*: HkX~Hk(X x~) is an isomorphism. 
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The inverse isomorphism to p* is S*: Hk(X x ~)~Hk(X), where S 

is the embedding x ~ x x 0 of X in X x ~. The problem is to show 
that p* 0 s* = (s 0 p)* is the identity. The idea of the proof is to con
struct a linear map H from the space of k-forms on X x ~ to the space 
of (k - I)-forms on X x ~, for each k, such that for any form w on 
XX~, 

(22.21) w - p* os*(w) = d(H(w» + H(d(w». 

(Note that the two H's and the two d's in this equation are defined 
on different spaces of forms!) It follows that if w is closed, then 
w - p*os*(w) = d(H(w», so w and p*os*(w) defme the same De Rham 
cohomology class. 

Problem 22.22. Show that any k-form w on X x ~ has a unique 
expression as a sum of a k-form not involving dt, where t is the co
ordinate on ~, and one of the form dt /\ fJ., where fJ. is, in local co
ordinates, a sum of expressions f· dx[, with the Xi coordinates on X, 
andfis a function on the product of the coordinate neighborhood with 
R Define H of such a form to be the form obtained by integrating 
fJ. with respect to the variable in ~ (so forms not involving dt are 
mapped to 0). For example, if XC~n, and fJ. is the formfdx[, then 
H(dt/\fJ.) is the form gdx[, where 

g(Xl, ... ,x.,t) = J:f(Xl' . .. ,xn,s)ds. 

Show that this operator is well defined and satisfies (22.21). 

For any real number t, if St: X ~ X x ~ maps x to x X t, then, since 
pOSt is the identity, it follows that St*: Hk(X X ~)~Hk(X) is the in
verse to p*: Hk(X)~Hk(X x ~). In particular, the maps St* are the 
same for all t. This implies that if F: X x ~~ Y is differentiable, all 
the maps Ft: X~ Y, Flx) = F(x x t), determine the same maps 
Ft*: HkY~HkX. Indeed, Ft = Fost , so Ft* = st*oF* is independent 
of t. 

Problem 22.23. (a) Use the Poincare lemma and Mayer-Vietoris to 
calculate the De Rham cohomology of ~n, S", and ~n \ {O}. (b) Show 
that the (n - 1)-form Wn-l defined on ~n \ {O} by 

n 

L(_1)i-lXi dx1/\ . .. /\dxi-1/\dxi+1/\ . .. /\dxn 

i=l 

(xi + . . . + X~)"/2 
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is closed and gives a generator of Hn- 1(lRn \{O}). If f: sn-l---+ IRn \ {O} 
is differentiable, this can be used to define a higher-dimensional winding 
number, or "engulfing number": W(j,O) is the integral off*wn-l over 
sn-l, divided by the integral of W n-l over Sn-l. 

22e. Cohomology with Compact Supports 

There is another way to use differential forms to construct coho
mology groups, for open sets in IRn or any ~'" manifolds, which we 
sketch briefly here. These cohomology groups are called De Rham 
groups with compact supports, and denoted H~X, the subscript c 
standing for "compact." These are defined exactly as for the ordinary 
De Rham groups, but using differential forms with compact support, 
i.e., forms for which there is some compact set K contained in X such 
that the form vanishes identically outside K. Define H~X to be the 
quotient space of the closed k-forms with compact support by the 
subspace of forms that are differentials of (k - I)-forms with compact 
support. 

If X is compact, of course, all forms have compact support, so 
H~X = HkX. In spite of this and the similarity of definition, however, 
these groups are quite different on noncompact manifolds. For ex
ample, locally constant functions on a noncompact connected space 
can never have compact support unless they are identically zero: 

H~X = 0 if X is connected and not compact. 

In fact, we will see that the theories Hk and H~ behave in an opposite, 
or dual, way. By using a partition of unity as in Chapter 18, if X is 
an oriented n-manifold, one can integrate an n-form with compact 
support over the whole manifold. Using Stokes' theorem, it follows 
similarly that the integral of the differential of a closed (n - I)-form 
with compact support is zero, so one has a map 

It is easy to produce n-forms that are positive on a small piece of a 
coordinate neighborhood, and zero elsewhere, to see that this map is 
not zero. We will see in Chapter 24 that, if X is connected as well, 
then this map is an isomorphism. 

Exercise 22.24. If X is a disjoint union of a finite or infinite number 
of open sets Xi, show that H~X is the direct sum of the H~Xi' i.e., 
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specifying a class on X is the same as specifying a class on each Xi' 
except that all but a finite number must be zero. 

There is a Mayer-Vietoris exact sequence for cohomology with 
compact supports, but it is different from that without supports. First 
of all, there are no restriction maps, since if W has compact support 
on an open set, its restriction to an open subset may no longer have 
compact support. In fact, the maps go the other way: if VI is an open 
subset of Vz, any k-form W with compact support on VI extends by 
zero outside VI to define a k-form with (the same) compact support 
on Vz. Since any point in Vz \ VI has a neighborhood not meeting the 
support of w, this extension is <:(6"". This extension commutes with the 
differential map d, so determines a linear map 

H~(VI) ~ H~(Uz). 

In particular, for two open sets V and V, we have diagrams 

H~(V) 

/~ 
H~(VUV) . 

H~(V) 

We want to define a coboundary map 8: H~(UU V)~H!+I(Vn V). 
Given a class in H~(U n V), represent it by a closed k-form W with 
compact supports. We can write W as a sum WI + Wz, with WI and W2 
k-forms with compact supports in V and V, respectively. In fact, if 
tVI + tVz = I is a partition of unity subordinate to V and V, then WI = tVI • W 

and Wz = tVz· W are such forms. Let" be the (k + I)-form on V n V 
that is (the restriction 00 dWI . From the equation 0 = dw = dWI + dW2, 
we have dWI = -dwz on V n V, so the support of" is contained in 
the intersection of the supports of WI and Wz. In particular, " has 
compact support on V n V. Clearly" is closed. Set 

8([wD = ["l. 

It is not hard to verify that this is independent of the choice, and it 
is the familiar (by now) argument (and see §24a) to prove the 

Mayer-Vietoris Theorem 22.25 (Compact Supports). For open sets 
V and V in an n-dimensional manifold, there is an exact sequence 
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o - m(Un V) ~ H~U E9 H~V --=--. H~(U UV) 

~ H~(UnV) ~ H~UE9H~V --=--. H~(UUV) ~ 
... _ ... 

~ H~(unv) ~ H~UE9H~V ~ H~(UUV) - o. 
As before, to complete the basic tools for calculating these groups, 

we need to compare a manifold X and X x IR. This time the projection 
p from X x IR to X determines homomorphisms 

p*: H~(X x IR) ~ H~-I(X), 

by "integrating along the fiber," as follows. As in Problem 22.22, 
one can write a k-form with compact support of X x IR as a sum of 
a form not involving dt, and a k-form dt 1\ fJ., where fJ. is, in local 
coordinates, a sum of expressions f· dxl , with the Xi coordinates on 
X, and f a function on X x IR. Define p* of such a form dt 1\ f· dxl to 
be g . dxl , where 

g(xt. ... ,xn) = f/(X1, ... ,xn,t)dt 

(so forms not involving dt are mapped to zero). Note that these in
tegrals are really over finite intervals, by the assumption of compact 
support. One checks that this is well defined, and that p*(dw) = d(p*w), 
so p* determines a map on cohomology classes as indicated. If 
s: X ~ X x IR is the inclusion X ~ x x 0, there is a map 

s*: H~-I(X) ~ H~(X x IR) 

determined by sending a form w to p(t) dt 1\ w, where p is any function 
with compact support on IR such that f':"" p(t) dt = 1. One checks that 
this commutes with d, so defines a map on cohomology, and that 
p* 0 s * is the identity. 

Poincare Lemma 22.26 (Compact Supports). For any manifold X, 
p*: H~(X X IR) ~ H~-I(X) is an isomorphism. 

Problem 22.27. Prove this by constructing an operator H from k
forms with compact support to (k - I)-forms with compact support 
on X x IR. This operator should vanish on forms without "dt," and 
take dt 1\ fJ., where fJ. is, in local coordinates, a sum of expressions 
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f· dx/, to g' f.L, with 

g(XI, ... ,xn,t) = L/(Xl,' .. ,xn,s)ds 

-Lo p(s)ds (/(Xh ... ,xn,s)ds. 

Show that for any k-form w with compact support, w - s*p*w = 
d(H(w)) + H(d(w)) , and deduce that P* and s* determine inverse iso
morphisms. 

Exercise 22.28. Calculate H~X, when X is 1Rn, Sn, and IRn \ {O}. 



CHAPTER 23 

Higher Homology 

23a. Homology Groups 

The groups HeX and H,X are the beginning of a series of abelian 
groups HkX, defined for any topological space X. Define a k-cube in 
X to be a continuous map r: [k ~ X, where [k is the k-dimensional 
cube, i.e., [= [0, 1], so 

[k = [0,1] x ... x [0, 1] C IRk. 

For any such mapping r, and any integer i between 1 and k, and any 
o :5 S :5 1, define a (k - 1 )-cube a: r, which is obtained by restricting 
r to the slice of the ith coordinate at s: 

a:r:[k-'~X, a:r(t" .. . ,tk-,)=f(t" ... ,ti-"S,ti , ... ,tk-,). 

Call r degenerate if, for some i, aIr is a constant function of s, and 
nondegenerate otherwise. (When k = 1, r is a path, and degenerate 
is the same as a constant path.) By convention, [0 = {O}, so as O-cube 
is given by a point in X; no O-cube is regarded as degenerate. 

Let eX be the free abelian group on the nondegenerate k-cubes in 
X, so an element of CkX is a finite linear combination Ln,,.f a' with 
e, a k-cube in X and na an integer. An element of CkX is called a 
cubical k-chain on X. It is useful to regard any finite linear combi
nation Lnara of arbitrary k-cubes as an element of CkX, by simply 
discarding any degenerate k-cube ra that appears. (In other words, 
CkX is identified with the quotient of the free abelian group on all k
cubes in X, modulo the subgroup generated by degenerate k-cubes.) 

332 
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If f: It~X is a k-cube in X, its boundary af in Ck-IX is defined 
by the formula 

k 

af = L(-li(a?f-a:f), 
;=1 

which is the sum of the 2k faces of f, each with a coefficient of + 1 
or -1. (Note that, even if f is nondegenerate, some of the a?f or 
at f occurring in the formula can be degenerate, so they are dis
carded.) This is extended linearly to a homomorphism 

a: CkX ~ Ck-IX 

by the formula a(Lnafa) = Lna(afa). A k-chain is called a k-cycle if 
its boundary is zero; the k-cycles form a subgroup ZkX of CkX. The 
boundaries of (k + I)-chains form a subgroup BkX of CkX. 

Exercise 23.1. Show that for any (k + I)-cube f, a(af) = 0 in Ck-IX. 

From this exercise it follows that BkX is a subgroup of ZkX, so we 
can define the kth homology group of X to be quotient 

HkX = ZkX/BkX . 

Exercise 23.2. (a) Show that HkX = 0 if X is a point and k> O. (Note 
that this would not be true if degenerate cubes had not been dis
carded.) (b) Verify that for k = 0 and k = I, these are the groups we 
studied in Chapter 6. (c) Show how any continuous mappingf: X ~ Y 
determines homomorphisms h: HkX ~ HkY, and show that these are 
functorial in the sense of Exercise 6.20. (d) Construct homomor
phisms from '7TlX,x) to HkX that are compatible with the maps of 
(c) and Exercise 22.14. 

Proposition 23.3. If f and g are homotopic maps from X to Y, then 
hand g* determine the same homomorphisms from HkX to HkY. 

Proof. Suppose H: X x [0, I]~ Y is a homotopy from f to g, and 
f: Ik ~ X is a k-cube; define a (k + I)-cube R(f) by the formula 

R(f)(s, t l , ••• ,tk) = H(f(tt. ... ,tk) x s) . 

If Lnaf a is a k-cycle, a little calculation shows that the boundary of 
LnaR(f a) is Lna(fo fa) - Lna(g 0 fa), which completes the proof. A 
more elegant way to see this is to extend R by linearity to a map 
R: CkX ~ CH IX, R(Lnaf J = LnaR(f a). Then a formal calculation shows 
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that 

g*-!* = aoR+Roa 

as homomorphisms from CkX to CkX. Then if z is a k-cycle, 

g*(z) - !*(z) = a 0 R(z) + R 0 a(z) = a(R(z)) , 

which shows that g*(z) and !*(z) differ by a boundary. o 
It follows from the proposition that if Y C X is a deformation re

tract, then HkY --7 HkX is an isomorphism for all k. For example, if X 
is contractible, then HkX = 0 for all k> o. 

23b. Mayer-Vietoris for Homology 

To calculate the higher homology groups of more interesting spaces, 
we want to extend the Mayer-Vietoris sequence to these higher groups: 
if U and V are open subsets of a space, there is an exact sequence 

... --4 HiunV) ~ HkU $ HoV ~ Hk(UUV) 

--4 Hk_l(un V) ~ Hk_1U$ Ht_1V ~ Hk_I(UUV) ~ ... 
The idea is very much as in Chapter 10. The key is the definition of 
the "boundary maps" a: H k( U U V) --7 H k - 1 (U n V). For this, we show 
that any class in Hk( U U V) can be represented by a k-cycle z that is 
a sum of a chain cIon U and a chain C2 on V. Then aCI = -aC2 is a 
cycle on un V, and this represents the image class in Hk-I(U n V). 

To carry out the construction of the boundary map, we need a sys
tematic way to subdivide k-cubes and chains into sums of smaller 
chains, generalizing the constructions we used in Chapter 10. Given 
a k-cube f: /k--7 X, we define S(n to be the sum of the 2k k-cubes 
obtained by restricting f to each of the 2k subcubes obtained by sub
dividing the cube: 
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Each of these restrictions must be renormalized, to be defined on the 
cube Ik with sides of length 1. In symbols, 

S(f) = ~f 810 ••• ,Ek' 

the sum over all 2k choices of Ei = 0 or 1, and f EI , ... ,Ek is the k-cube 
defined by the formula 

f 81o •. . ,Ek(tl , ••• ,tk) = fef2(tl + El), ... ,1/2(tk + Ek»' 

This is extended by linearity to give a homomorphism S: CkX ~ CkX, 
i.e., by defining S(~nafa) = ~naS(fa). If the boundary of S(f) is cal
culated, all the terms corresponding to inner faces cancel, and one 
gets the result of subdividing the boundary of f. In symbols, 

(23.4) aes = sea, 
as homomorphisms from C kX to C k-IX, 

Exercise 23.5. Verify this formula. 

We can iterate this subdivision operation, defining for any k-chain 
c new k-chains S(c), S2(C) = S(S(c» , S3(C) = S(S(S(c))), and so on. 

Lemma 23.6. If X is a union of two open sets U and V, and c is a 
k-chain on X, then, for sufficiently large p, SP(c) can be written as a 
sum Cl + C2 where Cl is a k-chain on U and C2 is a k-chain on V. 

Proof. This is an immediate consequence of the Lebesgue lemma, 
since, if f: Ik~ X is a k-cube, the image of each k-cube appear
ing in SP(f) is the image of a subcube of Ik with sides of length 
1/~. D 

To use this construction and lemma, we want to know that, if z is 
a k-cycle, then S(z) is a k-cycle defining the same homology class as 
z. For this we proceed as follows. Let a: [0, l]~ [0,1] be defined 
by the formula 

{ 2t, 0 ~ t ~ 1/2, 
aCt) = 1 

1, /2~t~l. 

If f is a k-cube in X, define a k-cube A(f) by the formula 

A(f)(tl , ... ,tk) = f(a(tl), ... ,a(tk»' 

Note that the "first comer" A(f>o,. .. ,0 of this k-cube is f, and all the 
other A(f)EIo' .. ,Ek are degenerate. Extend this by linearity as usual to 
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a homomorphism A: CkX ~ CkX. (If k = 0, define A to be the identity 
map.) By the observation just made, we have 

(23.7) SoA = I, 

where I: CkX ~ CkX is the identity map. Now define, for a k-cube f, 
a (k + 1 )-cube H(f) by the formula 

H(f)(s, t" ... , tk) = [«(1 - s)a(t,) + st" ... , (1 - s)a(tk) + stk), 

and extend by linearity to a homomorphism H: CkX ~ Ck+,X. (If k = 0, 
set H = 0.) Note that a?(H(f» = A(f) and a:(H(f» = f. From this one 
sees that 

(23.8) aoH+Hoa = I-A, 

as homomorphisms from C kX to C kX. 

Exercise 23.9. Verify this formula. 

For each p "2. 1, define a homomorphism Rp: C kX ~ Ck+ ,X by the 
formula 

Rp=SoHo(/+S+S2 + ... +SP-'). 

Then we have, for all p "2. 1, the identity 

(23.10) aoRp+Rpoa = SP-I. 

In fact, this is a formal calculation, following from (23.4), (23.7), 
and (23.8), as follows. Whenp= 1, R, =SoH, and 

aoSoH + SoHoa 
SoaoH+SoHoa 
So(aoH + Hoa) = So(/- A) 
S-SoA=S-I. 

For p> 1, Rp=R,oSp, where Sp=I+S+ ... +SP-'. We use the 
case p = 1 in the form a 0 R, = S - I - R, 0 a, and we use the fact that 
a commutes with Sp by (23.4), together with the identity 
9' -I = (S - I) 0 Sp. Calculating, we have 

as asserted. 

aoR, oSp + Rpoa 
(S -1- R, oa)oSp + Rpoa 
(S - /)oSp + (-Rl oa)oSp + Rpoa 
SP-I- R, ospoa + Rpoa 
SP -1- Rpoi) + Rpoa =SP -I, 



23b. Mayer-Vietoris for Homology 337 

Now suppose that X = U U V. The definition of the boundary ho
momorphism from HiU U V) to Hk-I(U n V) depends on the follow
ing lemma: 

Lemma 23.11. (a) Any homology class in H,;K can be represented 
by a cycle z on X of the form z = CI + C2, where CI is a k-chain on U 
and C2 is a k-chain on V. (b) The (k - I)-chain aCI = -aC2 is a cycle 
on un V, and its homology class in Hk-I(U n V) is independent of 
choice of CI and C2' 

Proof. For (a), take any cycle c that represents the homology class. 
By Lemma 23.6, for some p ~ 1, the chain S Pc can be written as the 
sum of a chain cion U and a chain C2 on V. By (23.10), 

SPc - c = a(Rp(c» + Ria(c» = a(Rp(c» , 

from which it follows that z = SPc is a cycle representing the same 
homology class as c. 

For (b), suppose z' = CI' + C2' is another representative of the same 
form for the same homology class. There is a (k + I)-chain w on X 
with a(w) = z' - z. By Lemma 23.6, there is a p ~ 1 such that Spew) 
can be written as a sum of a chain on U and a chain on V. Applying 
(23.10) to the chain a(w), we have 

z' - z = a(w) = SP(a(w» - Ria(a(w))) - a(Rp(z' - z» 
= a(SP(w» - a(Rp(z' - z» = a(SP(w) - Rp(z' - z». 

From the formula for Rp it follows that Rp takes a chain on U to a 
chain on U and a chain on V to a chain on V. We know that z' - z 
is a sum of a chain on U and a chain on V, and it follows that Rp(z' - z) 
is also. It follows that there are (k + I)-chains YI and Y2 on U and V 
such that Spew) - Rp(z' - z) = YI + Y2, so 

Z' - Z = a(YI + Y2) . 

This means that we have an equality of k-chains 

CI' - CI - a(YI) = -(C2' - C2 - a(Y2» ' 

the left side of which is a chain on U and the right side is a chain on 
V. This chain, denoted x, is a chain on un V, and it follows that 

a(x) = a(cl') - a(CI) , 

so the cycles a(cl') and a(cl) differ by a boundary on un V, as 
asserted. D 

Define a: HkX~Hk-I(Un V) by taking the homology class [z] of 
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a cycle z of the form CI + C2 with CI and C2 chains on V and V, to the 
homology class [a(cI)] of the cycle a(cI) = -a(C2) on V n V. It fol
lows from Lemma 23.11 that this definition makes sense. The proof 
that it is a homomorphism, and that the resulting Mayer-Vietoris se
quence is exact, is precisely the same as in Chapter 10, so will not 
be repeated; the general algebra for this will be described in §24a. 

In fact, the above argument shows something more. Let X be any 
space, and au = {Va: a E.sil} any open covering of X. Let Ck(X)i1U be 
the subgroup of Ck(X) consisting of linear combinations of nonde
generate k-cubes f: /k ~ X such that the image of f is contained in 
one (or more) of the open sets Va. These cubes are said to be small 
with respect to au. The boundary operator maps Ck(X)i1U to Ck_I(X)i1U, 
so we can define the corresponding homology groups Hk(X)i1U. There 
is a natural map from Hk(X)i1U to Hk(X). The following proposition 
says that we can always calculate homology by using chains that are 
small with respect to any convenient covering. 

Proposition 23.12. The natural map Hk(X)i1U~ Hk(X) is an isomor
phism. 

Exercise 23.13. Use (23.4), (23.7). (23.8), and (23.10) to prove this 
proposition. 

This proposition also gives a more concise way to construct the 
Mayer-Vietoris exact sequence: 

Exercise 23.14. For au = {V, V}, construct a homomorphism from 
Hk(X)i1U to Hk-I(V n V), and show that there is a long exact sequence 

.. . ~Hk(Vn V)~HkV(f)HN~HiX)i1U~Hk_I(Vn V)~ . ... 

Combine with the proposition to get the full Mayer-Vietoris se
quence. 

The following is a useful general consequence of the Mayer-Vietoris 
sequence. 

Exercise 23.15. Suppose a space X is a union of some open sets 
VI, ... , Vp such that all homology groups Hk(y) vanish for any 
intersection Y = ViI n ... n Vi, of these open sets and all k> o. (a) 
Show that HiX) = 0 for k ~ p. (b) If, in addition, each intersection 
Y is connected, and p ~ 2, show that Hp-I(X) = O. (c) Finally, if each 
intersection Y is connected and nonempty, show that Hk(X) = 0 for all 
k>O. 
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23c. Spheres and Degree 

We saw that Sn is simply connected if n ~ 2, so HIS n = 0. With Mayer
Vietoris, one can calculate the homology groups of all spheres Sn. 
One can cover Sn by two open sets U and Veach homeomorphic to 
open disks in IRn, whose intersection is homeomorphic to Sn-I X f' for 
an open interval f'. Mayer-Vietoris gives an isomorphism 

i): Hk(Sn) -=+ Hk-\(sn-I xf') =:; H k-\(sn-I) 

for all k > 1. From this one sees that 

H (Sn) =:; {7L if k = ? or n, 
k ° otherwise. 

Exercise 23.16. Show that the complements of the south and north 
poles (0, ... ,0, -1) and (0, ... ,0,1) satisfy the conditions for U 
and V, and use Mayer-Vietoris to complete the proof of this calcu
lation. 

Equipped with homology groups, the definition of the degree of a 
continuous map I: Sn ~ Sn is easy: Since HnSn =:; 71.., the induced map 
1*: HnSn~ HnSn is multiplication by an integer, and this integer is 
defined to be the degree of I, denoted deg(f). Equivalently, if [z] is 
a generator for Hnsn, deg(f) is the integer such that/*([z]) = deg(f)· [z]. 
(Note that using the other generator -[z] leads to the same degree.) 

Exercise 23.17. (a) Show that homotopic maps from sn to sn have 
the same degree. (b) Show that if f: Sn ~ Sn extends to a continuous 
map from Dn+ 1 to S", then deg(f) = 0. (c) Show that if f and g are 
maps from sn to sn, then deg(gof) = deg(g)· deg(f). (d) Show that 
for any integer d and any n ~ 1 there are maps f: Sn ~ sn of degree d. 

In fact the converses of (a) and (b) of the preceding exercise are 
true, but more difficult. 

Having the notion of degree, we can define the generalization of 
winding number: the engulfing number W(f, P) of a continuous map 
I: sn-I ~ IRn \ {P} around P. This can be defined to be the degree of 
the map that follows f by projection onto a sphere around P, i.e., 
define W(f, P) to be the degree of the map 

I(x) -P 
x t-+ . 11/(x) - pil 
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Problem 23.18. (a) Show that, as a function of P, this number is 
constant on connected components of IW \f(sn-I). (b) State and prove 
an n-dimensional analogue of the dog-on-a-leash theorem. (c) Show 
that for f Sn~ IRn \ {OJ differentiable, this definition agrees with that 
in Problem 22.23. 

Similarly, one can define the local degree of a continuous mapping 
f U ~ V between open sets in IRn at a point P in U, provided there 
is a neighborhood Up of P such that no other point of Up has the same 
image as P. This is the degree of the mapping 

f(P + rx) - f(P) 
x ~ ~----'----=---'----

Ilf(P + rx) - f(P)11 ' 
sn-I ~ sn-I, 

for any positive r so that Up contains the ball of radius r around P. 
This can be used for example to define the notion of a homeomor
phism from IRn to IRn (or Sn to Sn, or X to X for any oriented manifold) 
being orientation preserving or orientation reversing, according as 
the local degree at any point is + 1 or -1. 

Exercise 23.19. (a) Show that this local degree is a continuous func
tion of the point, so the notion of orientation preserving or reversing 
is well defined. (b) Show that a homeomorphism of sn is orientation 
preserving or reversing according as its degree is + 1 or -1. Show 
that a homeomorphism of IRn extends to a homeomorphism of 
Sn = IRn U {oo}, whose degree therefore determines whether the origi
nal map is orientation preserving. (c) For a diffeomorphism, show 
that the local degree is given by the sign of the determinant of the 
Jacobian. 

With the concept of degree, the following assertions of Borsuk and 
Brouwer are proved just as before, and the proofs are left as exercises. 

Theorem 23.20. (1) There is no retraction from Dn+ I onto Sn. 
(2) Any continuous mapping from a closed disk Dn to itself must 

have a fIXed point. 

Exercise 23.21. Generalize the results of Exercises 4.9-4.17. 

Problem 23.22. Show that the degree of the antipodal map from sn 
to Sn is 1 if n is odd and -1 if n is even. In particular, the antipodal 
map is not homotopic to the identity if n is even. 
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Problem 23.23. (a) Show that no even-dimensional sphere can have 
a nowhere vanishing vector field. (b) Construct on every odd-dimen
sional sphere a nowhere vanishing vector field. 

To extend the results about antipodal mappings, we need the fol
lowing generalization of Borsuk's Lemma 4.20. As there, we denote 
by p* = -P the antipode of a point Pin Sn. 

Theorem 23.24. Letf: sn~sn be a continuous map. 

(a) If f(P*) = f(P)* for all Pin Sn, then the degree off is odd. 
(b) If f(P*) = f(P) for all P in Sn, then the degree off is even. 

The proof of this requires some new ideas, and is postponed to 
Appendix E. Assuming this theorem, we can draw the expected con
sequences: 

Corollary 23.25. (a) Ifm < n, there is no continuous mappingf: Sn~Sm 
such that f(P*) = f(P)* for all P in Sn. 

(b) Any continuous mapping f: Sn ~ IRn must map some pair of an
tipodal points to the same point. 

(c) An open set in IRn cannot be homeomorphic to an open set in 
IRm ifn~m. 

(d) It is impossible to cover Sn with n + 1 closed sets, none of which 
contains a pair of antipodal points. 

Exercise 23.26. Prove this corollary. 

Problem 23.27. Let f: Sn ~ Sn be continuous. (a) If f(P*) #- f(P) for 
all P, show that deg(f) is odd. (b) If f(P*) #- f(P) * for all P, show 
that deg(f) is even. (c) Show that the only nontrivial group that can 
act freely on an even-dimensional sphere is the group with two ele
ments. 

Exercise 23.28. Show that if n > 1 any continuous mapping from Sn 
to IRr must map some pair of antipodal points to the same point. 

Exercise 23.29. Prove that if n + 1 bounded measurable objects are 
given in IRn, then there is a hyperplane that cuts each in half. 

Exercise 23.30. (a) State and prove n-dimensional analogues of Ex
ercises 4.24-4.31 and 4.34-4.39. (b) Define the index of a vector 
field on an open set in IRn at an isolated singular point, and state and 
prove the n-dimensional analogues of Proposition 7.5 and its corol
laries. 
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Exercise 23.31. Use Mayer-Vietoris to compute the homology groups 
of a torus Sl x Sl, or of any product Sm x Sn. 

Homology can be used to define a notion of degree in many other 
contexts. Here is an important illustration. A link in ~3 is a disjoint 
union of knots. Equivalence is defined just as for knots. A link can 
be nontrivial even if all the knots occurring in it are trivial. There is 
a linking number that measures how many times two knots intertwine 
with each other. 

o ±I 

Suppose K and L are disjoint knots. Define a mapping 

x-y 

xXy ~ I~_YII' 

±2 

which assigns to the pair (x, y) the direction from x to y. This mapping 
F determines a homomorphism F *: H2(K x L) --') H2(S2). Both of these 
homology groups are isomorphic with 7L. Choosing orientations of 
each identifies them with 7L, and then F * is multiplication by some 
integer, which is defined to be the linking number I(K,L). If a stan
dard orientation is fixed for S2, the sign of I(K, L) depends on ori
entations chosen for K and L; it changes sign if either of these ori
entations are changed. The linking number also changes sign if the 
roles of K and L are reversed. Note that if K and L are far apart, then 
F will not be surjective, so this linking number is zero. 

Exercise 23.32. (a) Show that the linking number of the two circles 
in Exercise 22.7 is ± 1, and therefore the linking number of two fibers 
of the Hopf mapping of Exercise 22.17 is ± 1. (b) Show that the 
intersection of a small sphere S3 around a singUlarity of a plane curve 
that is a node (see §20c) is two circles whose linking number is ± 1. 

It is a fact (see §24c) that the top homology group HnX of an ori
ented n-manifold X is Z (the orientation determining a choice of gen
erator). It follows that any continuous map f: X --') Y between oriented 
n-manifolds has a degree. 
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Problem 23.33. (a) Show that if X is a compact oriented surface, 
then HzX =- lL. (b) If X is a compact nonorientable surface, show that 
HzX = O. (c) Iff X ~ Y is a nonconstant analytic map between com
pact Riemann surfaces, show that the degree defined by homology is 
the same as the number of sheets of the corresponding branched cov
ering. 

23d. Generalized Jordan Curve Theorem 

There is a vast generalization of the Jordan curve theorem to higher 
dimensions. This can be stated as follows: 

Theorem 23.34. If xeS' is homeomorphic to a sphere Sm, then m ::5 n, 
and m < n unless X = S'. If m < n, the homology groups of the com
plement are 

{
lL EB lL if m = n - 1 and k = 0, 

Hk(Sn\X) =- lL if m<n-l and k=O or k=n-l-m, 

o otherwise. 

In particular, the complement has two components if m = n - 1, and one 
ifm<n-l. 

The essential point of this theorem is the assertion that the ho
mology of the complement is the same for all embeddings of Sm in 
Sn. The proof follows the pattern for the Jordan Curve Theorem in 
the plane very closely, using the full Mayer-Vietoris theorem. We 
discuss only the new features, leaving details to the reader. First we 
have the analogous result for embeddings of cubes in Sn. 

Proposition 23.35. If X C Sn is homeomorphic to r, then S" \ X is 
connected and Hk(Sn \ X) = 0 for all k > o. 
Proof. This is by induction on m, the case m = 0 being clear since 
the complement of a point is homeomorphic to [R", so contractible. 
For m > 0 write r as the union of two halves whose intersection is 
homeomorphic to r- I ; this makes X a union of two subspaces A and 
B. Applying Mayer-Vietoris to U = Sn \ A and V = Sn \ B, and know
ing about U U V by induction, we have 

O=Hk+I(UUV) ~ Hk(UnV) ~ HkUEBHN. 

From this it follows that if z is a k-cycle on Sn \ X that is not a bound-
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ary, then it is not a boundary on Sn \ A or sn \ B. Continuing to cut 
the cubes in half, passing to the limit as in Chapter 5, we find that 
z is not a boundary on Sn \ {x} for x a point, from which the conclusion 
follows easily. 0 

To prove the theorem, also by induction on m, write X as the union 
of two closed sets A and B homeomorphic to the upper and lower 
hemispheres of the sphere Sm. Each of A and B is homeomorphic to 
fR, and AnB is homeomorphic to Sm-I. Applying Mayer-Vietoris 
and the proposition to U = sn \ A and V = Sn \ B, we get 

o ~ Hk+1(S" \A n B) ~ Hk(S" \X) ~ 0 

if k> 0, and 

O~HI(sn\A nB)~Ho(S" \X)~HoUtJJHoV~Ho(S" \A nB)~O. 

We know about Sn \ An B by induction, so the first display computes 
Hk(sn \X) for k> O. If m < n - 1, H1(Sn \A nB) = 0, and the second 
gives 

o ~ Ho(S" \X) ~ ltJJl ~ l ~ 0, 

from which it follows easily that Ho(S" \ X) == l. If m = n - 1, then 
H1(sn \ An B) == l, and from 

° ~ l ~ Ho(S" \X) ~ ltJJl ~ l.. ~ ° 
we find similarly that Ho(Sn \X) == lEBl... If m = n, from 

° ~ Ho(Sn\X) ~ lEBl ~ ltJJl.. ~ ° 
we see that Ho(Sn \ X) = 0, so X = Sn. From this it follows that no 
larger sphere can be embedded in Sn, since an n-dimensional sub
sphere would already map to the whole Sn. 0 

Exercise 23.36. State and prove analogous results for X C ~" homeo
morphic to a sphere. 

Exercise 23.37. If F: Dn~ [Rn is continuous and one-to-one, show 
that IRn \ F(sn-I) has two connected components, one the image of the 
interior of Dn , the other the complement of F(D"). Deduce the in
variance of domain: if U is open in ~n, and F: U ~ IRn is a one-to
one continuous mapping, then F(U) is open. Prove the invariance of 
dimension: open sets in [Rn and IRm cannot be homeomorphic if n ¥- m. 

It is also true that if F: S"~ IRn+1 is an embedding, then its en-
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gulfing number around points in the two components of the comple
ments is ± 1 for the bounded component and 0 for the unbounded 
component (see Proposition 5.20), but this requires more machinery. 

Exercise 23.38. Suppose A and B are disjoint closed subsets of Sn, 
n > 1, and two points are given in the complement of A U B. Show 
that if A and B do not separate these points, neither does A U B. 

The Mayer-Vietoris sequence can also be used to show that a com
pact nonorientable surface cannot be topologically embedded in ~3. 
We sketch a proof in the following problems: 

Problem 23.39. (a) Show that if X e ~3 is homeomorphic to a Moe
bius band, then Hk(~3 \ X) == 7L if k = 0 or 1, and Hk(~3 \ X) = 0 oth
erwise. (b) With X as in (a), if Yex corresponds to the boundary 
circle, show that the map 

HI(~3 \ X) ~ HI(~3 \ y) == 7L 

determined by the inclusion of ~3 \ X in ~3 \ Y takes a generator of 
the first group to twice a generator of the second. 

Suppose a subspace X of ~3 were homeomorphic to the projective 
plane. Write X as a union of a space A homeomorphic to a Moebius 
band and B homeomorphic to a disk, with A n B homeomorphic to 
the boundary circle of each. Then with U = ~3 \ A, V = ~3 \ B, Mayer
Vietoris and Exercise 23.36 give an exact sequence 

Hl(~3 \A)E90 ~ Hl(~3 \A n B) ~ Ho(~3 \X). 

By the preceding problem, the image of a generator of HI(~3 \A n B) 
maps to an element IX in Ho(~3 \ X) that is nonzero, but 2· IX = O. 
However, we know that the Oth homology group of any space is a 
free abelian group, which has no such element. 

Problem 23.40. Show similarly that none of the nonorientable com
pact surfaces can be embedded in ~3. 

The following problem generalizes two of the main results of Chap
ters 6 and 9: 

Problem 23.41. Let U be an open subset of ~n. (a) Show that two 
classes in Hn-IU are equal if and only if they map to equal classes 
in H._I(~n \ {P}) for all P not in U. (b) Show that if the complement 
of U in S· = ~. U {co} is a disjoint union of m + 1 compact connected 
sets, then H.-l U is a free abelian group on m generators. 



CHAPTER 24 

Duality 

24a. Two Lemmas from Homological Algebra 

We frequently want to compare different homology and cohomology 
groups, when we have exact Mayer-Vietoris sequences for each, and 
maps between them. Assuming that most of the maps are isomor
phisms, we want to deduce that the others are as well. There is a 
general algebraic fact that can be used for this: 

Lemma 24.1 (Five-Lemma). Given a commutative diagram 

A--B --C--D __ E 

! 
A'-- B' -- C' -- D' __ E' 

of abelian groups, such that the rows are exact sequences, and all 
the vertical maps but the middle one are isomorphisms, then the mid
dle map from C to C' must also be an isomorphism. 

The proof is by a "diagram chase," which is much easier and en
joyable to do for oneself than to follow when someone else does it. 
Here is how to show that the map is one-to-one. If c in C maps to 0 
in C', then its image in D maps to 0 in D' (by commutativity of the 
diagram), so c maps to 0 in D (since D~D' is injective), so c comes 
from some element b in B (by exactness of the top row). The element 
b maps to an element b' in B' that maps to 0 in C' (why?), that 

346 
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therefore comes from an element a' in A'. This element a' comes 
from some element a in A, and this element a must map to b since 
they have the same images in B'. Since a maps to 0 in C, and b maps 
to c, c must be o. 
Exercise 24.2. (a) Prove similarly that C ~ C' is surjective. (b) Show 
that the five-lemma is also valid under the following weaker as
sumptions, still assuming the rows are exact: (i) each square either 
commutes or commutes up to sign, i.e., the composite going around 
one way is plus or minus the composite going around the other way; 
and (ii) the maps B~B' and D~D' are isomorphisms, A~A' is 
surjective, and E ~ E' is injective. 

If you like this diagram chasing, there is a general process that 
constructs long exact sequences, which can be used to construct all 
the Mayer-Vietoris sequences we have seen. For this, one has a com
mutative diagram of abelian groups 

where the rows are exact, and the composite of any two successive 
maps in the columns is zero. One says that the columns are chain 
complexes. The diagram is abridged to saying one has a short exact 
sequence of chain complexes 

o ~ C*' ~ C* ~ C*" ~ o. 
For each chain complex (column) one can form homology groups. 
For the center column, 

HiC*) = Zk(C*)/Bk(C*) , 
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where Zk(C*) = Kemel(Ck~ Ck- l ) are the k-cycles, and Bk(C*) = 
Image(Ck+1 ~ Ck) are the k-boundaries. Similarly for the other two 
columns. There are maps from Hk(C*') to Hk(C*) and from Hk(C*) 
to Hk(C*'), determined by the horizontal maps in the diagram. For 
example, the map from C/ maps Zk(C*') to Zk(C*) and BiC*') to 
Bk(C*), so it determines a homomorphism on the quotient group. The 
interesting maps are boundary homomorphisms 

0: HlC*") ~ Hk-I(C/). 

To define these, take a representative i' in ZlC*") of a class in HiC*'). 
Choose an element c in C k that maps onto z". Let c be the image of 
c in Ck-1- Then c maps to 0 in Ck-/', since it has the same image 
there as z" does, and z" is a cycle. So c comes from an element c' in 
Ck- l '. 

Exercise 24.3. Show that this element c' is a (k - I)-cycle, and its 
homology class in Hk-I(C*') is independent of choices of the repre
sentative z" and the element c that maps onto z". 

The homology class of c' is defined to be the boundary of the ho
mology class of z": o([z"]) = [c']. One checks easily that 0 is a ho
momorphism of abelian groups. 

Proposition 24.4. The resulting sequence 

••• --'? Hk+ ICC /') --'? Hk(C *') --'? Hk(C *) --'? Hk(C/,) --'? Hk-I(C/') --'? •• 

is exact. 

The proof is some more diagram chasing, which again we leave as 
an exercise. There is a similar result when the vertical maps in the 
diagram go up rather than down. Usually then the indexing is by up
per indices, so we have "cochain complexes" 

C*: .. . ~Ck-I~Ck~Ck+I~ . .. 

A short exact sequence o~ C*' ~ C* ~ C*" ~ 0 determines a long 
exact sequence of their cohomology groups 

.. . ~Hk-I(C*")~Hk(C*')~Hk(C*) 
~Hk(C*")--'?Hk+I(C*')~ .. 

Let us see how some of the Mayer-Vietoris sequences we have 
seen earlier fall out of this formalism. For example, if X is a ~"" 
manifold, and CkX denotes the vector space of ~oo k-forms on X, and 
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U and V are open sets in X, there is an exact sequence 

o ~ C*(U u V) ~ C*(U) EEl C*(V) ~ C*(U n V) ~ 0 

of cochain complexes. The first map takes a form w on U U V to the 
pair (wlu,wlv), and the second takes a pair (WI>W2) to the difference 
wdunv - w2lunv. The exactness of this sequence is clear from the def
initions except for the surjectivity of the second map, and that was 
proved using a partition of unity in Chapter 10. The Mayer-Vietoris 
sequence then results immediately from Proposition 24.4. 

Similarly, for cohomology with compact support, one has a short 
exact sequence of cochain complexes 

o ~ ct(U n V) ~ Ct(U) EEl ct(V) ~ Ct(U U V) ~ 0, 

where the first map takes a form w on un V to the pair (wu, -wv), 
where WU denotes the extension by 0 from un V to U, and similarly 
for V; the second map takes (WI>W2) to Wl uUV +wtuv. Again, ex
actness follows from a partition of unity argument, and the Mayer
Vietoris exact sequence results. 

For homology, if a space X is a union of open sets U and V, let 
CtCX)"U denote the k-chains that are small with respect to the covering 
au = {U, V} of X. Then there is an exact sequence 

o ~ c*(Un V) ~ C*(U)EElC*(V) ~ C*(X)'lL ~ 0 

of chain complexes, the first taking a chain on un V to the pair con
sisting of its images on U and on V, and the second taking a pair to 
the difference of their images on X. The exactness is immediate, giv
ing an exact sequence 

~ HHl(C*(X)"U) ~ Hiun V) ~ HiU)EElHiV) 

~ HiC*(X)'lL) ~ Hk-I(U n V) ~ 

To complete the proof, one appeals to Proposition 23.12, which says 
that Hk(C*(X)'lL) = HiC*(X» = Hk(X), 

Exercise 24.5. If 0 ~ C' ~ C~ C" ~ 0 is an exact sequence of free 
abelian groups, and G is any abelian group, show that 

o ~ Hom(C", G) ~ Hom(C, G) ~ Hom(C', G) ~ 0 

is also an exact sequence. IfO~C*'~C*~C*"~O is an exact se
quence of complexes of free abelian groups, this gives an exact se
quence O~Hom(C*",G)~Hom(C*,G)~Hom(C*',G)~O of co
chain complexes, and hence an exact sequence of cohomology groups. 
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Exercise 24.6. Let C * and C *' be chain complexes with boundary 
maps denoted ih: Cc~ Ck- 1 and iJ/: Ck' ~ Ck- 1', respectively. Define 
a map of chain complexes f*: C * ~ C *' to be a collection of homo
morphisms.fk: Ck~C/ that commute with the boundary maps. Show 
that such mapsh determines homomorphisms from HiC*) to Hk(C/). 
Call two maps f* and g* chain homotopic if there is a collection of 
maps, Hk: Ck~Ck+l' such that 

gk-fk = iJk+loHk+Hk-loiJk 

for all k. Show that f* and g* then determine the same maps from 
Hk(C*) to Hk(C*') for all k. 

If C*' ~ C* is a map of chain complexes such that each C/ ~ Ck 
is one-to-one, one can define ct to be Ck/Ck', getting an exact se
quence O~C*'~C*~C*/C*'~O, so a long exact homology se
quence. For example, if Y is a subspace of a topological space X, 
then C*Y~C*X is one-to-one, so one can define a quotient chain 
complex C*X/C*Y. The homology groups of this complex are de
noted Hk(X, y), and are called the relative homology groups. They 
fit in a long exact sequence 

.. . ~Hk+l(X, Y)~Hk(Y)~Hk(X)~Hk(X, Y)~Hk-l(Y)~' .. 

For suitably nice spaces, these relative groups are isomorphic to the 
homology groups of the space obtained by collapsing (identifying) Y 
to a point. In many treatments of algebraic topology, these relative 
groups, and the above sequence, are used for calculation in most sit
uations where we have used the Mayer-Vietoris sequence. 

24b. Homology and De Rham Cohomology 

In this section we want to prove that the De Rham cohomology groups 
HkX of a manifold are dual to the homology groups HkX, i.e., we 
want to construct an isomorphism 

HkX"':;' Hom(HkX, IR), 

generalizing what we did for surfaces for k = 1. The idea is similar: 
one wants to integrate k-forms over k-cubes. This makes sense for 
differentiable k-cubes, but there is a problem of how to define this 
for continuous k-cubes that are not differentiable-a problem that we 
avoided for k = 1 by cutting up the path, locally writing the k-form 
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as the differential of a (k - I)-form J.L, and evaluating J.L over the end
points of the subdivided path. For k> 1, unless the restriction of the 
k-cube to its boundary is differentiable, this will not work. A more 
systematic procedure, that does work, is to show that the homology 
HkX can be computed by using only differentiable cubes. 

A cube f: /k ~ X is a «6" cube if it extends to a «6" mapping on 
some neighborhood of the cube /k C lit. Define C;X to be the free 
abelian group on the nondegenerate «6" k-cubes. The boundary a from 
the k-chains to the (k - i)-chains takes «600 cubes to «6" cubes, so we 
can define the «6" homology groups H;X to be the quotient of the 
closed «6" k-chains modulo the subgroup consisting of boundaries of 
«6" (k + i)-chains. There is an obvious map 

which, in the language of the preceding section, is given by the map 
of chain complexes C;X ~ C*X. We will show that this is an iso
morphism. 

If w is a k-form on X, and f: /k~ X is a «6" cube, we can define 
the integral of w over f by 

Ir w = Ll*(W), 
where f*(w) is the pull-back form; a form on the cube can be written 

f(x i> • • . , Xk) dx 1 /\ dx2 /\. • . /\ dxb 

and the integral of such a form is the usual Riemann integral of the 
continuous function f on the cube. 

Exercise 24.7. Prove "Stokes' theorem" in this context: if w is a 
(k - i)-form, then 

r dw = r w. 
Jr Jar 

From Stokes' theorem, it follows as in the case k = 1 that there is 
a map 

dx ~ Hom(H;X, IR), 

We will see that this is also an isomorphism. Combining these two 
isomorphisms will give the duality we were after. 
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To prove these isomorphisms, we need to know that the groups 
H; X have many of the same properties as the purely topological groups 
HkX, For example, 

Exercise 24.8. (a) Show that a C(5'" mapping f: X ~ Y of manifolds 
determines functorial homomorphismsh: H;X~H;Y. (b) If two maps 
from X to Yare homotopic by a C(5'" mapping F: X X l' ~ Y (where I' 
is an open interval containing [0, 1]), then they determine the same 
homomorphisms. (c) Deduce that H;U = 0 for k> 0, and H~U = 7L 
if U is a starshaped open set in ~n. 

Similarly, one has Mayer-Vietoris exact sequences just as for the 
groups HkX, and compatible with the maps from groups H; to the 
Hk • In fact, the same construction works in the C(5" case, noting that 
the subdivision operators used to cut cubes into small pieces preserve 
C(5'" chains. One modification needs to be made in our proof, however, 
since the operator A we used in Chapter 23 used a function that is 
only piecewise differentiable. 

Exercise 24.9. Change the function a used in §23b to a C(5'" function 
from [0, 1] to [0, 1] such that a(O) = 0 and a(t) = 1 if t;::::: 1/2. With 
any such a, show that, for any chain r, SoA(f) - r is a boundary. 
Use this to complete the proof of Mayer-Vietoris for these groups. 

To prove these isomorphisms, we need a way to build up arbitrary 
manifolds out of simple pieces. The following general lemma will 
suffice for our purposes. Let us call an open rectangle in ~n an open 
rectangular solid with sides parallel to the axes, i.e., an open set of 
the form (ai, bl ) x ... X (an, bn). 

Lemma 24.10. If X is an open set in ~n, then X can be written as 
the union of two open sets U and V such that each of U and V and 
U n V is a disjoint union of open sets, each of which is a finite union 
of open rectangles. 

Proof. Take compact sets KI C K2 C ... as in the Lemma A.20. 
Construct a sequence of open sets Up as follows. Let UI be a finite 
union of rectangles covering KI , with the closure of each contained 
in the interior of K2 • Let U2 be a finite union of rectangles covering 
K2 \ Int(KI), with the closure of each contained in the interior of K3 • 

Inductively, let Up be a finite union of rectangles that covers the com
pact set Kp \ Int(Kp _ d, the closure of each contained in the interior of 
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Kp+l and in the complement of K p- 2 , and not meeting Up- 2 • Now let 
U be the union of the union of all Up with p even, and let V be the 
union of the union of all Up with p odd. D 

Lemma 24.11. If X is a differentiable n-manifold, then X can be 
written as the union of two open sets U and V such that each of U 
and V and U n V is a disjoint union of open sets, each of which is a 
finite union of open sets diffeomorphic to open sets in IR". 

Proof. The argument is the same. Remark A.21 shows that X is a 
union of compact sets Kl C K2 C ... with the same properties. Then 
the preceding proof, with "rectangle" replaced by "open set diffeo
morphic to an open set in IRn" goes over without change. D 

Theorem 24.12. For any manifold X the natural maps lI';X ~ HkX 
are isomorphisms. 

Proof. Let us write "T(X)" for the statement that the maps from 
lI';X to HkX are isomorphisms for all k. There are three tools: 

(1) T(U) is true when U is an open rectangle in IRn. 
(2) If U and V are open in a manifold, and if T(U), T(V), and T(U n V) 

are true, then T(U U V) is true. 
(3) If X is a disjoint union of open manifolds Xa, and each T(Xa) is 

true, then T(X) is true. 

With what we have seen, each of these is easy to prove. (1) follows 
from the fact that H;U and HkU vanish for k>O, and both are nat
urally isomorphic to Z when k = 0, cf. Exercise 24.8. (2) follows 
from the fact that we have Mayer-Vietoris exact sequences for each, 
with compatible maps between them: 

H;unV-H;UeH;V- H;UUV-H':.-lunV-H;_IUeH;Y 

~ ~ ~ ~ ~ 
Hk U n V - Hk U e Hk V - Hk Uu V - Hk_1 un V - Hk_1U e Hk_1 V 

so the five-lemma shows that the middle map is an isomorphism if 
the others are. (3) follows from the fact that to specify a class of either 
kind on X is equivalent to specifying a class on each Xa , with all but 
a finite number of these classes being zero (i.e., HkX is the direct 
sum of the groups HkXa , and similarly for H;). 

We can now use these tools to prove the theorem. We first show 
that T(X) is true whenever X C IR" is a finite union of open rectangles. 
This is by induction on the number of rectangles. (1) takes care of 
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one rectangle, and if X is a union of p rectangles, let U be the union 
of p - 1 of them and let V be the other. Then T(U) and T(V) are true 
by induction, and T(U n V) is true since un V is also a union of at 
most p - 1 rectangles, since the intersection of two rectangles is either 
empty or a rectangle. Then T(X) is true by (2). 

Next we show that T(X) is true whenever X is an open set in ~n. 
By Lemma 24.10 one can write X as a union of two open sets U and 
V, such that each of U and V and un V is a disjoint union of open 
sets, each of which is a finite union of open rectangles. Applying the 
preceding step and (3) we know that T(U) and T(V) and T(U n V) 
are true, and by (2) again we know that T(X) is true. 

Note that since a diffeomorphism between manifolds determines an 
isomorphism between the corresponding groups, it follows that T(X) 
is true for any set diffeomorphic to an open set in ~n. The same in
ductive argument as for rectangles shows that T(X) is true when X is 
a finite union of open sets, each diffeomorphic to an open set in ~n. 
For the general case, Lemma 24.11 shows that any manifold X is a 
union of two open sets U and V such that each of U and V and U n V 
is a disjoint union of open sets, each of which is diffeomorphic to a 
finite union of open sets in ~n. By the last step and (3) again, T(U) 
and T(V) and T(U n V) are true, and a final application of (2) shows 
that T(X) is true. 0 

Theorem 24.13. For any manifold X the natural maps from H"x to 
Hom(H;X, ~) are isomorphisms. 

Proof. The proof follows exactly the same format, with T(X) being 
the statement that these maps are isomorphisms for all k. Once (1)
(3) are proved, in fact, the proof is identical. The proof of (1) is the 
same, and (3) follows from the fact that to specify a class of either 
kind is equivalent to specifying a class on each Xa (i.e., HkX is the 
direct product of the groups HkXa , and similarly for Hom(H;X, ~». 
To prove (2), we need to compare the cohomology Mayer-Vietoris 
sequence with the dual of the Mayer-Vietoris sequence in homology. 
For brevity write H';X* in place of Hom(H;X, ~). We have a diagram 

An application of the five-lemma, together with the following ex-
ercise, finishes the proof. 0 
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Exercise 24.14. Show that this diagram commutes. 

These theorems justify the use of «6"" techniques in studying the 
topology of a differentiable manifold. For example, they show that 
the De Rham groups depend only on the underlying topology of the 
manifold. Combining the isomorphisms of the two theorems, one has 
justified writing Iz w for z a continuous k-cycle and w a closed «6"" k
form on a manifold. 

Problem 24.15. Show that for U open in ~n. two classes 'Tl and 'T2 

in Hn- 1 U are equal if and only if IT, w = IT2 w for all closed (n - 1)
forms won U. 

Exercise 24.16. Let X be an n-manifold that can be covered by a 
finite number of open sets such that any intersection of them is dif
feomorphic to a convex open set in ~n. (It is a fact, proved by using 
a Riemannian metric and geodesics, that any compact manifold has 
such an open cover.) Show that each HkX is a finitely generated abe
lian group, and that each HkX and H~X is a finite-dimensional vector 
space. 

24c. Cohomology and Cohomology 
with Compact Supports 

In higher dimensions, except in simple cases in the Poincare lemmas, 
we have not yet used the higher-dimensional versions of wedging forms 
that we used on surfaces in Chapter 18. In general the wedge w t'l.L 
of a k-form w and an I-form I.L is a (k + I)-form. This operation is 
linear in each factor, and satisfies the identities: 

(i) I.LAw=(-lt ' WAI.L; and 
(ii) d(wA I.L) = dWAI.L + (-ltWAdl.L. 

Again, we assume these properties from advanced calculus. If either 
w or I.L has compact support, then w A I.L has compact support, since 
the support of the wedge product is contained in the intersection of 
the supports of the factors. It follows from (ii) that the wedge product 
of two closed forms is closed, and that, if one is closed and the other 
is exact, the wedge product is exact. From this it follows that the 
wedge product determine products on the cohomology groups 

A : dx X H'X ~ Hk+'X 
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and 

each by the formula [w] x [fJ.]i-7 [w]A [fJ.] = [wAfJ.]' 

Exercise 24.17. Verify that these are well-defined bilinear mappings. 
Show that the first satisfies the formula [fJ.] A [w] = ( - Itt [w] A [fJ.]. 
Prove that these products are associative where defined. 

Now suppose X is oriented. As we saw in §22e, integrating over 
the manifold gives a mapping H~X ~ II\t So we have homomorphisms 

HkX x H~-kX ~ H~X ~ IR. 

This determines linear maps qjJx: HkX ~ Hom(H~-k X, IR). Explicitly, 
qjJx takes the class of a closed k-form w to the homomorphism that 
takes the class of a closed (n - k)-form fJ. with compact support to 
the integral Ix w A fJ.. 

Theorem 24.18. For any oriented manifold X the duality maps 

qjJx: HkX ~ Hom(H~-kX, IR) 

are isomorphisms. 

Proof. The proof is almost identical to that for Theorems 24.12 and 
24.13. This time, for (1), note that HOU = ~ and H~U =- ~ for U an 
open rectangle, and all other groups vanish, by the Poincare lemmas; 
and since 1 E ~U maps to the nonzero homomorphism that is inte
gration over U, the map is an isomorphism. For (2), one again has 
maps from the Mayer-Vietoris sequence for Hk to the dual of the 
sequence for the H~-k. This time the signs involved in the definition 
mean that the key square in the diagram only commutes up to sign, 
but that is good enough to apply the five-lemma, cf. Exercise 24.2. 
We leave the calculation of these signs as an exercise. 0 

This duality theorem has several corollaries that were not obvious 
before. For example, the simple fact that H~X = 0 whenever X is a 
connected but not compact manifold implies the 

Corollary 24.19. If X is a connected, oriented, but noncompact n
manifold, then HnX = o. 

Corollary 24.20. If X is a connected oriented n-manifold, then the 
map H~~IR, wi-7fxw, is an isomorphism. 
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Proof. Since HOX = IR, it follows from the theorem that H~X is one 
dimensional, and we have seen that the map H~ ~ IR is not zero. 

D 

Problem 24.21. Let X be a nonorientable connected n-manifold, and 
let p: X ~ X be the orientation covering of § 16a. (a) Construct maps 
p*: H~X ~ H~X and p*: H~X ~ H~X so that p* 0 p* .... = 2 ..... and 
p* °P*w = W + T*W, where T: X ~ X is the nontrivial deck transfor
mation. (b) Deduce that p* embeds H~X as the subspace of H~X 
consisting of classes of the form W + T*W. (c) Show that H~X = O. In 
particular, if X is compact, then HnX = O. 

Corollary 24.22 (Poincare Duality). If X is a compact oriented n
manifold, then the pairing HkX X Hn-kX ~ IR is a perfect pairing, i.e., 
for any linear map lp: F-kX ~ IR, there is a unique w in HkX such 
that lp(JL) = Ixw/\JLjor all JL in Hn-kX. 

Problem 24.23. (a) Use this corollary to prove that dx is finite di
mensional. (b) If n = 2m, with m odd, show that the dimension of 
HmX is even, and deduce that the Euler characteristic 

n 

L (-ltdim(HkX) 
k=O 

must be even. 

This puts strong restrictions on the homology and cohomology groups 
of a compact oriented n-manifold. For example, the dimension of HkX 
must equal the dimension of Hn-kX. The skew-commutative algebra 
structure on the direct sum of the cohomology groups is also useful 
in many applications. 

As we saw for Riemann surfaces these duality theorems can be used 
to define an intersection number (0:,13) for homology classes 0: in HpX 
and 13 in H n-pX, when X is an oriented n-manifold. As in that case, 
it is possible to do this directly and geometrically, by finding repre
sentative cycles that meet transversally, and counting the points of 
intersection with an appropriate sign. This takes quite a bit of work, 
however, and one can use duality to define the intersection number 
quickly: A class 0: in HpX determines a linear map from HPX to IR 
by .... ~ I a .... , and by Poincare duality there is a unique class w" in 
Hn-pX so that Ia .... = Ixw,,/\ .... for all .... in HPX. By the same construction, 
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~ in Hn-pX determines wj3 in HPX. So we can define 

(a,~) = !xwa I\Wj3. 

This is a bilinear pairing, satisfying (~, a) = (-IY"(n-p)(a, ~). The fact 
that (a, ~) is always an integer, however, is not so obvious from this 
definition, although it can often be verified directly by making con
structions for representatives of Wa and wj3, as we did for surfaces in 
Chapter 18. 

Exercise 24.24. Suppose X is oriented but not necessarily compact, 
and X has an open cover as in Exercise 24.16. Construct a homo
morphism 

characterized by the equality fa J..L = f X Wa 1\ J..L for all J..L in HPX. 

Exercise 24.25. Suppose a topological space is a union of an increas
ing family of open subsets Ui, U I C U2 C .... Show that any ele
ment of HtX is the image of an element of some HtUi , and that ai 

in HtUi and aj in HkUj determine the same element of HkX if and 
only if there is some m ~ max(i,j) such that ai and aj have the same 
image in HkUm • This is expressed by saying that HkX is the direct 
limit of the HkU;, and written 

HkX = lim HkU; . 
~ 

Exercise 24.26. Suppose a manifold X is an increasing union of open 
subsets Ui, U I C U2 C .... (a) Use duality to deduce that giving a 
class 'T] in HkX is equivalent to giving a collection of classes 'T]i in 
HkUi for all i such that 'T]i restricts to "li if i > j. This says that HkX 
is the inverse limit of the HkUi , and is written 

HkX= ~HkUi' 

(Note that this is not obvious from the definition of De Rham groups, 
even for open sets in ~n.) (b) Show that H~X is the direct limit of 
the H~Ui: 

In fact, one can construct cohomology groups H\X; lL) for any space 
X, which are finitely generated abelian groups for manifolds as in 
Exercise 24.16, and one can find an analogue of the wedge product 



24d. Simplicial Complexes 359 

for these groups; after proving appropriate duality theorems, one has 
a construction of the intersection pairing whose values are integers. 
This could be a next chapter, if this book didn't end here. At least 
now we can give a quick definition of these groups, or of cohomology 
groups Hk(X; G) with coefficients in any abelian group G, general
izing directly the discussion in §16c. Define a k-cochain to be an 
arbitrary function that assigns to every nondegenerate k-cube in X an 
element of G; these form a group Ck(X; G). If c is a k-cochain, define 
the coboundary 8(c) of c to be the (k + l)-cochain defined by the 
formula 8(c)(f) = c(af), where a cochain is extended linearly to be 
defined on all chains. Then 8 0 8 = 0, so one can define 
Hk(X; G) = Zk(X; G)/Bk(X; G), where Zk(X; G) is the group of k-co
cycles (whose boundary is zero), and Bk(X; G) is the group of k-co
boundaries (of (k - l)-cochains). 

Exercise 24.27. Prove that these groups satisfy the same properties 
as homology groups, but "dual." For example, maps f: X ~ Y deter
mine (functorial) homomorphisms f*: Hky ~ HkX, homotopic maps 
determine the same maps on cohomology groups. State and prove the 
Mayer-Vietoris theorem for these groups. Construct homomorphisms 
from Hk(X; G) to Hom(H kX, G), and show that these are isomor
phisms if G = lIt 

Project 24.28. If G is an abelian group, and UU is an open covering 
of a space X, define and study Cech groups Hk(UU; G) generalizing 
the groups H'(UU; G) studied in Chapter 15. 

24d. Simplicial Complexes 

We have seen the usefulness of triangulating a surface. Many spaces 
that arise in nature, including many which are not manifolds, admit 
triangulations. When a space is triangulated, there is a much smaller 
chain complex that can be used to compute its homology. The general 
methods of §24a can be used to show that this complex computes the 
same homology as that using cubical chains. 

A (finite) abstract simplicial complex is a finite set V, called the 
vertices, and a collection K of subsets of V, called the (abstract) sim
plices, with the property that every subset of a simplex is a simplex. 
One usually assumes also that every set {v} for v in V is a simpllx, 
and one says that K is the simplicial complex. An n-simplex is a set 
a in K with n + 1 elements. A subset T of a simplex a is called a 
face of a. 
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A set of n + 1 points Po, . . ,P n in a vector space is called af-
finely independent ifthere is no relation toPo + tlP I + ... + tnPn = 0 
with to, ... , tn real numbers satisfying to + t I + ... + tn = 0 with 
not all ti = O. Equivalently, the vectors PI - Po, P2 - Po, ... , Pn - Po 
are linearly independent. In this case the set of points 

{toPo + tlP I + ... + tnPn: li2:0, 10 + II + ... + tn = I} 

is called the (geometric) simplex spanned by the points. It is homeo
morphic to an n-dimensional disk. 

The realization IKI of an abstract simplicial complex K can be con
structed by taking the vertices V to be the basis vectors for a vector 
space, and defining IKI to be the union of the geometric simplices 
spanned by the abstract simplices in K. In practice one often takes 
the vertices in a smaller vector space, provided those in any simplex 
are affinely independent, and two geometric simplices are either dis
joint or meet only along common faces. 

We want to write down a chain complex for the simplicial complex 
K. This is simplest if K is ordered. This means that a partial ordering 
is given for the vertices, such that the vertices of each simplex are 
totally ordered. Each simplex a then has a unique representation 
a = (vo, ... ,vn) where the vertices of a are listed in order. The chain 
complex C *K of the ordered simplicial complex K is defined as fol
lows: CnK is the free abelian group on the n-simplices of K, and the 
boundary iJ: CnK ~ Cn-IK is defined by 

n 

(24.29) iJ«vo,··. ,Vn» = 2:<-1)i(vo,'" ,Vi- \>Vi+ I,··· ,Vn). 

i= O 

Exercise 24.30. Verify that the composite iJ 0 iJ: CnK ~ Cn- 2K is zero. 

The nth homology group Hn(C*K) of this complex is denoted HnK. 

Exercise 24.31. Suppose K has a vertex Vo with the property that for 
every simplex a in K, the subset consisting of a and va is also in K; 
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denote this simplex by (vo, (J). (Geometrically, IKI is a cone with 
vertex vo.) Assume that K is ordered so that Vo comes before all other 
vertices. Define maps H: CnK ~ Cn+IK by the formula 

( ) == {(vo, (J) if Vo is not a vertex of (J, 

H (J 0 'f' f 1 Vo IS a vertex 0 (J. 

Show that a 0 H + H 0 a is the identity map on C n K for n > O. Deduce 
that HnK == 0 for n> 0, and that HoK == 7L. 

A subcomplex L of a simplicial complex K is subset of the simplices 
in K such that whenever a simplex (J is in L, so are all its faces; then 
L is a simplicial complex, with its vertices a subset of the vertices of 
V. An ordering of K determines an ordering of L, and one has a ca
nonical map C*L~C*K, determining homomorphisms HnL~HnK 
on homology groups. If LI and L2 are subcomplexes of K, the inter
section LI n L2 and union LI U L2 are also sUbcomplexes. These maps 
determine an exact sequence of chain complexes 

O~C*(LI nL2)~ C*L I ffiC*L2~C*(LI UL2)~0, 

which determines a long exact Mayer-Vietoris sequence 

.. . ~Hn+I(LI UL2)~Hn(LI nL2)~HnLI ffiHnL2 
~Hn(LI UL2)~' .. 

We want to compare the homology of K with the homology of its 
geometric realization IK I. For each ordered simplex (J == (vo, . . . ,v n) 
we need to define a cubical n-chain [., == f(vo, .. . ,v.) in IKI. If n == 0, fO' 
is the constant O-chain at Vo. If n == 1, f 0' is the path from Vo to 
VI: fO'(t) == tvl + (1 - t)vo· In general, define fO': r~ IKI inductively 
by the formula 

f O'(tl, ... ,tn) == tnvn + (1 - tn) f(yo, ... ,y._.>(tl , ... ,tn-I)' 

Writing this out, we have 

n 

(24.32) fO'(tI,"" tn) == 2: tk(1 - tk+I)' .... (1 - tn)v*, 
k=O 

where, when k == 0, to is set equal to 1. 

Proposition 24.33. (a) The map (J'~ fO' determines a homomorphism 
C*K ~C*IKI of chain complexes. (b) The induced homomorphisms 
H$ ~ HnlKI are isomorphisms. 
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Proof. For (a), we must show that afa = L7=o(-IYf(vo ... ,~;, ... ,vn) ,where 

the " denotes an omitted vertex. From the definition of af a as 

L~= I ( -1 y( a?f a - a: fa), this follows from the following three calcu
lations, which are simple exercises, using (24.32): 

(i) alf a = f(v" ... ,vn); 

I 
(ii) ai fa is a degenerate (n - 1 )-cube if i > 1; and 

(iii) a~f a = f(vo, .... ~;, ... ,vn)· 

The proof of (b) will be by the (by now) familiar induction using 
Mayer-Vietoris, as follows. If LJ and L2 are subcomplexes of K, we 
have a commutative diagram 

o - C*(IL\ II ~I) --=--+- C*ILJI E9 C*I~I ~ C*(ILJ U ~I) - 0 . 

This gives a corresponding commutative diagram of long exact se
quences, and the five-lemma shows that if (b) is true for LJ and L2 
and LJ n L2, then (b) is also true for LJ U L2 . 

We can now prove (b) by induction on the number of simplices in 
the simplicial complex K. Take any vertex v of K. Let L J be the 
subcomplex consisting of all simplices of K that are contained in a 
simplex of K that contains v, and let L2 be the subcomplex consisting 
of all simplices of K that do not contain v. Then (b) is known for L J 

by Exercise 24.31, and (b) is known for L2 and L\ n L2 by induction 
on the number of vertices. The preceding argument then shows that 
(b) holds for K=LJ UL2 • 0 

Corollary 24.34. If K and L are simplicial complexes whose geo
metric realizations are homeomorphic, then HnK=HnLfor all n. 

Proof. This follows from the fact that a homeomorphism between 
spaces induces an isomorphism between their homology groups. 0 

In the early days of algebraic topology, the homology of a compact 
space X was defined by triangulating the space, i.e., finding a homeo
morphism between some IK I and X, and taking the homology H *K. 
With this as the definition the assertion of the preceding corollary
that homology is a topological invariant of the space-was a serious 
problem. 

The preceding discussion depended on a choice of ordering of the 
simplicial complex, which is how one would usually use the result in 



24d. Simplicial Complexes 363 

calculations. The following exercise shows how this can be circum
vented: 

Exercise 24.35. For an abstract simplicial complex K, define C,.K to 
be the quotient of the free abelian group on the set of symbols 
(vo, ... ,vn), where Vo, ... , Vn is an (ordered) set of vertices span
ning an n-simplex of K, modulo the subgroup generated by relations 

(vo, ... ,vn) - sgn(T)(vT(O), ... ,vT(n», 

for all permutations T in the symmetric group n+1 , where sgn(T) = ± 1 
is the sign of the permutation. Then CnK is a free abelian group of 
rank equal to the number of n-simplices, but with basis elements only 
specified up to multiplication by ± 1. (a) Show that formula (24.29) 
determines a boundary map iJ: CnK --+ Cn-IK, with iJ 0 iJ = O. (b) Given 
an ordered n-simplex (vo, ... ,vn), define f(vo ... . ,vn) to be f(bo, .. . ,bn), 

where bk is the barycenter of the simplex spanned by the first k + 1 
vertices, i.e., bk = I/(k + l)(vo + VI + ... + Vk). Define a map from 
C*K to C*IKI by sending (vo, ... , vn) to the sum 
~sgn(T)f(vT(O)' .. "VT(n»' the sum over all T in @Sn+I' Show that this de
termines a homomorphism of chain complexes, and show that the 
resulting map in homology is an isomorphism. (c) Show that an or
dering of K determines an isomorphism of the complex defined earlier 
with the complex defined in this exercise. 

Problem 24.36. If C; is the number of i-simplices in K, show that the 
Euler characteristic is the alternating sum of the numbers of simplices: 

~(-lic; = ~(-l); dim(H;(IKI» , 

generalizing what we have seen for surfaces. 

Problem 24.37. (a) If OU = {Un V E V} is a finite collection of open 
sets whose union is a space X, define a simplicial complex, called 
the nerve of OU and denoted N(OU) , by taking V to be the vertices, and 
defining the simplices to be the subsets S such that the intersection 
of the Uv for V in S is nonempty. Verify that N(OU) is a simplicial 
complex. 

(b) If K is any simplicial complex, and v is a vertex in K, define 
an open set St(v) in IKI, called the star of v, to be the union the 
"interiors" of the simplices that contain v, i.e., St(v) is the comple
ment in IKI of the union of those Icrl for which cr does not contain v. 
Show that the open sets {St(v), V E V} form an open covering of IKI, 
and that the nerve of this covering is the same as K. 
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(c) Suppose UU is an open covering of X as in (a), with the property 
that for all vo, ... , Vr in V, Uvo n ... n UVr is connected and 
HiUvo n ... n Uv,) = 0 for all k> O. Construct a homomorphism of 
chain complexes from C*(N(UU» to C*X, and show that it determines 
an isomorphism from Hk(N(UU» to HkX for all k. 



APPENDICES 

These appendices collect some facts used in the text. The beginnings of 
Appendices A, B, and C state definitions and basic results from point set 
topology, calculus, and algebra that should be reasonably familiar, together 
with proofs of a few basic results that may be slightly less so. Each of these 
appendices ends with some more technical results that may be consulted as 
the need arises. Appendix D contains two technical lemmas about vector 
fields in the plane, as well as some basic definitions about coordinate charts 
and differential forms on surfaces. Appendix E contains a proof of Borsuk's 
general theorem on antipodal maps that was stated in Chapter 23. 

Conventions and Notation 

A closed rectangle in ~2 has sides parallel to the axes, so is a subset of the 
form [a,b] x [c,d], with a<b and c<d. An open rectangle is a product 
of two open intervals, usually finite, but we occasionally allow them to be 
infinite. 

The unit intervall is [0, I] = {x E~: 0 ~ x ~ I}. 
The n-dimensional disk Dn is 

Dn = {(Xl, ... ,Xn)E~n:XI2+ ... +xn2~1}. 

The n-sphere S" is 

S" = {(Xl,· .. ,xn+I)E~n+I:XI2+ ... +Xn+/= 1}. 

The origin (0,0, ... ,0) in ~n is often denoted simply by O. 



APPENDIX A 

Point Set Topology 

AI. Some Basic Notions in Topology 

A topology on a set X is a collection of subsets, called the open sets, in
cluding X itself and the empty set, such that any union of open sets is open, 
and any finite intersection of open sets is open. A topological space is a set 
X together with a topology. A collection of open sets is a basis for the open 
sets if any open set is a union of sets in the basis. For example, if X is a 
metric space, the open balls B.(x) = {y EX: distance (y,x) < e} form a basis 
for a topology on X. In particular, Euclidean space IRn with its usual distance 
function is a topological space. A neighborhood of a point in a topological 
space is an open set containing the point-or, occasionally, any set con
taining such an open set. 

Any subset Y of a topological space is a topological space with the induced 
topology: the open sets are those of the form un Y, for U open in X. Such 
Y is called a topological subspace of X. In particular, any subset of IRn is a 
topological space. A subset Y is closed if its complement is open. A map 
f: X - Y from one topological space to another is continuous if 11(U) is 
open in X for every open set U in Y. A bijectionf: X - Y is a homeomorph
ism if f and 1 1 are continuous. 

A topological space X is Hausdorff if, for any two distinct points in X, 
there are disjoint open sets, one containing one of the points, the other con
taining the other. Any metric space is Hausdorff. Although we seldom need 
to assume spaces are Hausdorff, the reader will lose little by assuming that 
all spaces occurring in the book are Hausdorff. 

A subset K of a space X is called compact, if, for any collection of open 
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sets {Ua: a E stl} such that K is contained in the union of the Ua, there is a 
finite subset {a(I), ... , a(m)} of stl so that K is contained in the union 
Ua(l) U ... U Ua(m). The following are some basic facts about compact spaces: 

(A. 1 ) Iff: X -+ Y is continuous, and K is a compact subset of X, then f(K) 
is a compact subset of Y. 

(A.2) A compact subset of a Hausdorff space is closed. 
(A.3) If f: X -+ Y is continuous and bijective, and X is compact and Y is 

Hausdorff, then f is a homeomorphism. 
(A.4) A subset K of~' is compact if and only if it is closed and bounded. 

Exercise A.S. If K and L are disjoint compact subsets in a Hausdorff space 
X, show that there are disjoint open sets in X, one containing K, the other 
containing L. 

Exercise A.6. If K is compact, and, for each positive integer n, A. is a 
nonempty subset of K, show that there is a limit point, i.e., a point P in K 
such that every neighborhood of P meets A. for an infinite number of in
tegers n. 

Exercise A.7. (a) Show that a rectangle [a,b] x [c,d] is homeomorphic to 
the closed unit disk {(x,y): ~ + l::; I}. (b) Show that ~2 is homeomorphic 
to the open unit disk {(x,y): ~ + l < I}. 

A subset X of ~. iE convex if, for any points P and Q in X, the line 
segment {t· P + (1 - t)· Q: 0::; t::; I} from P to Q is contained in X. 

Problem A.S. Show that any compact, convex subset of ~. that contains a 
nonempty open set is homeomorphic to the closed unit disk 

D' = {(XI, ... ,x.):x/+ ... +x.2::;1}. 

If aK is the boundary of K, i.e., aK is the set of points of K such that every 
neighborhood contains points inside and outside K, show that there is a ho
meomorphism from K to Dn that maps aK homeomorphically onto the boundary 
Sn-I = aDn • 

If X and Yare topological spaces, the Cartesian products U x V of open 
sets U in X and V in Y form a basis for a topology in the Cartesian product 
X X Y, called the product topology. 

If X and Y are topological spaces, the disjoint union X il Y is a topological 
space. A set in the disjoint union is open when it is the union of an open 
set in X and an open set in Y. More generally, if {Xa: a E.sIl} is any collection 
of topological spaces, the disjoint union ilXa is a topological space, with 
open sets disjoint unions of open sets in each Xa. 

Any set X can be made into a topological space with the discrete topology, 
in which every subset of X is open. Equivalently, all points are open. 
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The interior of a subset A of a topological space, denoted Int(A), is the 
set of points that have a neighborhood contained in A. The closure of a 
subset A, denoted A, is the intersection of all closed sets containing A. 

A2. Connected Components 

A topological space X is connected if it cannot be written as a union of two 
nonempty disjoint sets, each of which is open in X. 

Exercise A.9. Show that each of the following is equivalent to X being 
connected: (i) X has no nonempty proper subset that is both open and closed; 
(ii) X cannot be written as the union of two nonempty disjoint closed subsets; 
and (iii) there is no continuous mapping from X onto the discrete space 
{O, I}. 

The following are basic facts about connected spaces: 

(A.lO) Iff: X - Y is a continuous, surjective mapping, and X is connected, 
then Y is connected. 

(A.I1) If X is a subspace of a space Y, and X is connected, then the closure 
X of X in Y is also connected. 

(A.12) If X is a union of a family of subspaces Xa , each of which is con
nected, and each pair of which have nonempty intersection, then X 
is connected. 

(A.I3) The connected subsets of IR are the intervals. 

A connected component of X is a connected subset that is not contained 
in any larger connected subset. Each connected component is closed in X. 
Any two connected components of X are disjoint. The union of all connected 
subsets of X containing a point x is a connected component, called the con
nected component of x in X. The space X is a disjoint union of its connected 
components. 

Exercise A.14. Let XC 1R2 be the union of the points (0,0), (0,1), and the 
lines {lin} x [0, 1], n = 1, 2, .... Show that these are the connected com
ponents of X, but whenever X is written as the union of two open and closed 
subsets, the points (0,0) and (0, 1) belong to the same subset. 

A space is called locally connected if for every neighborhood V of every 
point x, there is a connected open neighborhood U of x that is contained 
in V. 

Exercise A.IS. If X is locally connected, show that all the connected com
ponents of X are open in X. 
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A space X is path-connected if, for any two points x and y in X, there is 
a continuous mapping 'Y from an interval [a, b] to X that maps a to x and b 
to y. A space is locally path-connected if every neighborhood of every point 
contains a path-connected neighborhood of the point. 

Exercise A.16. If X is locally path-connected, show that all the connected 
components of X are path-connected and open in X. 

In particular, for U open in the plane or IRn, the connected components 
of U are open and path-connected. 

A3. Patching 

If a topological space X is the union of two sets A and B, both open or both 
closed, and f; A ~ Y and g; B ~ Y are continuous mappings from A and B 
to a space Y, such that f and g agree on A n B, then there is a unique con
tinuous mapping h from X to Y that agrees with f on A and with g on B. 

If Y is a topological space, and R is any equivalence relation on Y, the 
set Y /R of equivalence classes is given the quotient topology; a set U is 
open in Y /R exactly when its inverse image in Y is open. If f; Y ~ Z is a 
continuous mapping that maps all points in each equivalence class to the 
same point, then f determines a continuous mapping 7: Y / R ~ Z so that the 
composite Y~Y/R~Z isf. 

Suppose YI and Y2 are two spaces, with open subsets VI of YI and V2 of 
Y2 , and a homeomorphism -It; UI ~ U2 is given between them. Then one can 
patch (or glue, or clutch) the spaces YI and Y2 together, to form a space Y. 
There will be maps 'PI; YI ~ Y and 'P2; Y2~ Y; Y will be the union of the 
open subsets 'PI(YI) and 'Pz(Yz), each 'Pi will map Yi homeomorphic ally onto 
'PI(Yi), with 'PI(UI) = 'Pz(Uz), and -It will be the composite 'Pz -1 0 'PIon UI. 

One can construct Yas the quotient space YlilYz!R, where R is the equiv
alence relation consisting of pairs (UI ,-It(UI» for UI in UI , and of course the 
symmetric pairs (-It(UI), UI), together with all pairs (YI ,YI) for YI in Y1 and 
all pairs (Yz, yz) for Yz in Yz· 
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More generally, suppose we have a collection fa of spaces, for a in an 
index set 91., and, for each a and (3 in 91., we have an open subset Ua~ of 
fa, and a homeomorphism 

it~a: Ua~ -'» U~a. 

These should satisfy the conditions: 

(1) Uaa = fa, and itaa is the identity on fa; and 
(2) for any a, (3, and 'Y in 91., it~a(Uap n Ua-y) C U~-y and 

In particular, it a~ 0 it pa is the identity on U a~' Set 

where R is the equivalence relation: Ya in fa is equivalent to Y~ in fp if and 
only if Ya E Ua~, Y~ E U~a, and itpa(Ya) = y~. 

Let 'Pa be the map from fa to f that takes a point to its equivalence class. 
Give f the quotient topology, which means that a set U in f is open if and 
only if each 'Pa -I(U) is open in fa. 

Lemma A.17. (1) Each ~a<fa) is open in f; 
(2) ~a is a homeomorphism of fa onto ~a(fa); 
(3) f is the union of the sets ~a(fa); 
(4) ~a<UafJ) = ~fj(Ufja); and 
(5) on Uafj' iJfja = ~fJ-I 0 ~a' 

Proof. The fact that 'Pa is one-to-one onto its image, and the assertions (3)
(5), are set-theoretic verifications, and left to the reader. The topology on 
f is defined to make each 'Pa continuous. To prove (1) and (2), it suffices 
to verify that if U is open in some fa, then 'f'a(U) is open in f, i.e., that, 
for all (3, 'P~ -1('Pa(U» is open in f~. But 'P~ -1('Pa(U» = it~a(U n Ua~), which 
is open since un Uap is open in Uail and itpa is a homeomorphism. D 

Exercise A.IS. Make a similar construction if each Ua~ is a closed subset 
of fa. 

A4. Lebesgue Lemma 

We make frequent use of the following lemma: 

Lemma A.19. (Lebesgue Lemma). Given any covering of a compact metric 
space K by open sets, there is an 13 > 0 such that any subset of K of diameter 
less than 13 is contained in some open set in the covering. 
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Proof. If not, there is for every integer n a subset An of K with diameter 
less than lin and not contained in any open set of the covering. From the 
fact that K is compact it follows that there is a limit point P, see Exercise 
A.6. Let U be an open set of the covering that contains P, and take r > 0 
so all points within distance r of P are contained in U. There must be (in
finitely many) n with 1/ n < r /2 such that An meets the open ball of radius 
r/2 around P. But such A. must be contained in U, a contradiction. 0 

The following lemma will be used in Appendix B to construct a partition 
of unity: 

Lemma A.20. If U is an open set in ~n, there is a sequence of compact 
subsets K I , Kz, ... , whose union is U, and so that 

KI C Int(Kz) C Kz C Int(K3) C ... C Kn C Int(Kn+ l ) C .... 

Proof. Start with any countable sequence of open sets Ui that cover U 
such that the closure Ui is compact and contained in U; for example, 
one can take the Ui to be balls at centers with rational coordinates and 
rational radii. Take KI = UI . Then take Kz = UI U ... U Up, where p is 
minimal such that KI is contained in UI U ... U Up, and so on: if 
Km = UI U ... U Us, take Km+ I = UI U .. U U, where t is minimal so that 
Km is contained in VI U ... U V,. 0 

Remark A.21. The lemma is true, with the same proof, when V is replaced 
by any manifold whose. topology has a countable basis of open sets. 



APPENDIX B 

Analysis 

B 1. Results from Plane Calculus 

We list the basic results from calculus that were used in Chapters I and 2. 
As in those chapters, for simplicity, differentiable functions on a closed 
interval or rectangle are assumed to have differentiable extensions to some 
open neighborhood. Integrals of continuous functions on a closed interval, 
or a closed rectangle, are defined as limits of Riemann sums. The next five 
basic facts from calculus are stated for easy reference, in the form we need. 
Consult your favorite calculus book for proofs. 

(B. I) Fundamental Theorem of Calculus. If a continuous function f is the 
derivative of a function F on an interval [a, b], then 

ff(X)dx = F(b)-F(a). 

(B.2) Mean Value Theorem. Iff is continuous on an interval [a,b], there 
is an x* with a < x* < b such that 

1 Lb - f(x) dx = f(x*). 
b-a a 

(B.3) Chain Rule. If y(t) = (x(t),y(t)), a:=; t:=; b is a differentiable path on 
an interval [a, b], and f is a differentiable function on a neighborhood of 
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,},([a, b D, then fo 'Y is differentiable on [a, b], and 

d ~ ~ ~ ~ 
-(f(,,/(t))) = -(x(t),y(t»- + -(x(t),y(t»-. 
& ~ & ~ & 

(B.4) Equality of Mixed Partial Derivatives. Iff is a ~oo function on an 
open set in the plane, then 

(B.S) Fubini's Theorem. If f is a continuous function on a rectangle 
R = [a, b] x [c, d], then 

JJf(x,y)~dy = f[ff(x,Y)dY]~ = f[ff(x,Y)~]dY. 
R 

Proposition B.6 (Green's Theorem for a Rectangle). Ifp and q are contin
uously differentiable functions on a rectangle R = [a, b] x [c, d], then 

II (:: -:~) ~dy = f p(x, c)~ + f q(b,y)dy 
R 

- fp(X,d)~- f q(a,y)dy. 

Proof. By Fubini's theorem and the fundamental theorem of calculus, 

JJ::~dY = f[J:::~]dY = f[q(b,y)-q(a,Y)]dY; 
R 

II:~ ~dy = f [J::~ dY]~ = f [p(x,d) - p(x, c)]~. 
R 

Green's theorem results by subtracting these two equations. o 

Writing W = p(x,y)~ + q(x,y)dy, this says that 

fJ dW = 1 w+l w-i w-i W, 
'VI "12 "13 "14 

R 

where 'VI> 'V2, 'V3, and "/4 are the four sides of the rectangles, as in 
Chapter 1. 

Corollary B.7. If dw = 0, then 

( w+l W 
),YI 12 

i w+l w. 
'Y3 'Y4 
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Exercise B.S. Iffis continuous on [a,b], and If(t)I:SM on [a,b], show 
that II:.t(t) dtl :s M· (b - a). 

The following result will be used in Appendix D: 

Lemma B.9. Iff is a C(6"" function in a neighborhood of P = (a, b) in 1R2, 
with f(P) = 0, then there are C(6"" functions fl and fz so that 

f(x,y) = (x - a)!I(x,y) + (y - b)fz(x,y) 

in a neighborhood of P. 

Proof. We may assume P = (0,0). By the fundamental theorem of calculus 
and the chain rule, 

f(x, y) = (~- (f(tx, ty)) dt 
Jo at 

= x [I af (tx, ty) dt + y [I af (tx, ty) dt . 
Jo ax Jo ay 

The functions 

fl(x, y) = (I af (tx, ty) dt and fz(x, y) 
Jo ax 

are the required C(6"" functions. 

B2. Partition of Unity 

llaf 
-(tx,ty)dt 

o ay 

D 

For construction of the Mayer-Vietoris sequence for open sets in the plane, 
we need the following result: 

Proposition B.10 (Partition of Unity). Suppose an open set V in IRn is the 
union of a sequence VI, V2 , ••• of open sets with the property that each 
point is contained in Vi for only finitely many i. Then there is a sequence 
of nonnegative C(6"" functions rpi on V such that the closure (in U) of the 
support of rpi is contained in Vi' and };~~I rpi == 1 on V. 

(We will construct these functions so that only finitely many <Pi are nonzero 
in a neighborhood of any point of V, so the sum is a well-defined C(6"" func
tion.) 

Proof. There are several steps. 
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Step 1. There is a '(6'" function f on IR that is zero on the negative half line 
and positive on the positive half line. Such a function is 

if x>O, 

if x:s O. 

Exercise B.11. Verify that this is infinitely differentiable by showing that 
any derivative of exp(-l/x) has the fonu (P(x)/xm)exp(-l/x) for some 
polynomial P and some exponent m. 

Step 2. Given a bounded rectangle (a., b.) x ... x (an, bn), there is a '(6'" 

function h in IRn that is positive on the rectangle, and zero outside the rect
angle. In fact, the function g(x) = f(x) ·f(l - x) is positive on (0, 1) and zero 
outside this interval, and this leads to the required function 

n ( ) 
x·-a· 

h(x., . .. , xn) = IIg bl
, _ I, • 

1=1 I a, 

Step 3. If A is a compact subset of V, there are '(6'" functions (Ji so that the 
closure of the support of (Ji is contained in Vi' and the sum 2~=. (Ji is every
where positive on A. To construct them cover A by a finite number of rect
angles Ra such that the closure of each Ra is contained in some Vi' and use 
Step 2 to construct ha that are positive on Ra and zero outside. Take (J. to 
be the sum of those ha such that Ra is contained in V., let (J2 be the sum 
of those among the others such that the closure of the support is contained 
in V2> and continue in this way until all ha are used; set the other (Ji equal 
to zero. 

Step 4. To complete the proof, write V as an increasing union of compact 
sets K. C K2 C ... as in Lemma A.20. Let Aj = Kj \ Int(Kj_.) (where we set 
Kj = 0 for j:S 0). Let Wj = Int(Kj +.) \ Kj- 2• Note that Aj is a compact subset 
of the open set Wj . Apply Step 3 to each compact set Aj C Wj with its open 
covering {Vi n W), obtaining functions (Jij so that the closure of the support 
of (Jij is contained in Vi n Wj and with 2~=. (Jij everywhere positive on Aj . 
Define ljIi to be the sum 2~~. (Jij' Only finitely many (at most three) tenus 
in this sum are nonzero in some neighborhood of any point, so ljIi is a '(6"" 

function the closure of whose support is contained in Vi . The sum 
IjI = 2~=. ljIi is similarly a '(6'" function, and I\J is positive on each Aj , so it is 
positive on all of V. Now 

'Pi 

satisfies all the required conditions. o 

Exercise B.12 (Partition of Unity for Arbitrary Coverings). Suppose 
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au = {U",: a E .Ill} is an arbitrary open covering of an open set U in IRn. Show 
that there is a sequence of nonnegative ~oo functions 'PI , 'P2, . . . on U such 
that: (i) the closure (in U) of the support of 'Pi is contained in some open 
set Ua(i); (ii) for each P in U there is a neighborhood of P such that only 
finitely many 'Pi are nonzero on the neighborhood; and (iii) L~= I 'Pi == 1. 

Exercise B.13. Extend these results on partitions of unity to the case where 
U is any manifold that has a countable basis of open sets. 

Exercise B.14. For 0 <'1 <'2 construct a ~oo function IjJ on the plane that 
vanishes on the disk of radius '1 centered at the origin, and is identically 1 
outside the disk of radius '2 centered at the origin, and takes values in the 
interval (0,1) between the two circles. 



APPENDIX C 

Algebra 

Cl. Linear Algebra 

In this book, unless otherwise stated, vector spaces are real vector spaces. 
The vector space IRn consists of n-tuples (XI, . . . ,xn) of real numbers, with 
coordinatewise addition and multiplication by scalars. A set of elements {e.,} 
is a basis for a vector space if every element in the space has a unique 
expression in the form ~aea, for some real numbers Xa with only finitely 
many Xa nonzero. A vector space isfinite dimensional if it has a finite basis. 
The number of elements in a basis is independent of choice of basis, and is 
the dimension of the space; the dimension of V is denoted dim(V). Choosing 
a basis el, ... , en for V sets up an isomorphism of V with IW, with the 
vector Xlel + ... + Xnen in V corresponding to (XI' ... ,xn) in IRn. The 
standard basis of IRn is the basis {e;} where ei has a 1 for its ith coordinate, 
and zeros for the other coordinates. 

If L: V~ W is a linear mapping, the kernel Ker(L) is the subspace of V 
consisting of vectors mapped to zero, and the image Im(L) is the subspace 
of W consisting of vectors that can be written L(v) for some v in V. 

The rank-nullity theorem asserts that if L: V ~ W is a linear mapping of 
finite-dimensional vector spaces, 

dim(Ker(L» + dim(lm(L» = dim(V). 

If W is a subspace of a vector space V, the quotient space V /W is defined 
to be the set of equivalence classes of elements of V, two vectors in V being 
equivalent if their difference is in W. This set V /W has a natural structure 
of a vector space, so that the mapping from V to V /W that takes a vector 
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to its equivalence class is a linear mapping of vector spaces. The kernel of 
this mapping from V to V /W is W. 

Conversely, if V ~ U is a surjective linear mapping of vector spaces, and 
W is the kernel, this determines an isomorphism of V /W with U. 

Suppose L: V ~ V'is a linear mapping of vector spaces, and W is a sub
space of V, and W' a subspace of V'. If L(W) is contained in W', then L 
determines a linear mapping. 

V/W ~ V'/W' 

of quotient spaces, which takes the class of v in V to the class of L(v) in 
V'. 

If V and Ware vector spaces, the direct sum VE9W can be defined as the 
set of pairs (v, w), with v in V and w in W, with addition defined by 
(v, w) + (v', w') = (v + v', w + w'), and multiplication by scalars by 
r' (v, w) = (r' v, r' w). For example, IR' is the direct sum of n copies of R 
More generally, given any collection Va of vector spaces, for IX in some 
index set .sIl, an element of direct sum E9Va is determined by specifying a 
vector Va in Va for each IX in .sIl, with the added condition that Va can be 
nonzero for only finitely many IX. Addition and multiplication by scalars are 
defined component by component, as for two factors. The same definition, 
but without the restriction that only finitely many are nonzero, defines the 
direct product, denoted IIVa • 

For vectors u = (XI, ... ,x,) and v = (YI' ... ,y,) in IR', the dot product 
is the number U' v = XIYI + ... + XnYn' The length of u is Ilull = VU:U. The 
projection of u on v is the vector tv, where t = (u' v)/(v' v); the length of 
this projection is lu· vl/llvll. 

An m by n matrix A = (ai.j) determines a linear mapping L: IRn ~ IRm that 
takes ej to L(e) = 'J.7'=laj.jej. Every linear mapping from IR' to IRm arises from 
a unique such matrix. If M: IRm~ IRI corresponds to an I by m matrix B = (aj,k), 
the composite MoL: IRn ~ IRI corresponds to the product matrix B . A, where 
the (i, J) entry of B' A is 'J.~~lbi.kak.j' We need this mainly for (2 x 2) ma-

trices, where a matrix A = [~ ~] is a matrix, the linear mapping corre

sponding to A takes a vector.v = (x,y) to the vector (ax + by, ex + dy). The 
determinant of A, denoted det(A), is ad - bc. If the determinate is nonzero, 
A is invertible, with inverse 

A-I = _1_[ d -b]. 
ad-bc -c a 

The invertible (2 x 2)-matrices form a group, denoted GL2 R This group 
has a topology, determined by its embedding as an open subset of 1R4: the 
complement of the set of (a, b, c, d) with ad - bc = O. 

Exercise C.I. Show that the product GLzIR x GLzIR~GLzIR, A XB~A 'B, 
and the inverse map GL21R~ GL21R, A ~ A -I, are continuous mappings. 
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Lemma C.2.1f det(A) > 0, there is a path y. [a, b] ~ GL21R such that ')'(a) = A 

and y(b) = [b ~J. If det(A) < 0, there is a path y: [a, b] ~ GL21R such that 

')'(a)=Aand')'(b)=[b -~J. 
Proof. We will find a sequence of paths, each taking the matrix to a simpler 
one. For example, by multiplying a column of a matrix by t, with t varying 
in [a, 13], for a and 13 positive, we can find a path changing the lengths of 
the column. In particular, we can assume the first column of A is a unit 
vector, so it can be written in the form (cos({}), sin({})) for some {} in [0, 2'IT]. 
Then the path 

(t) = [COS(t) Sin(t)] . A 
"( -sin(t) cos(t) , 

takes A to a matrix whose first column is (1,0). Then one can gradually 
project the second column on the line perpendicular to the first, via the path 

() = [ 1 (1 - t)b] 
"(t 0 d ' 

to get to a matrix where the second column is (0, d). Changing the length 
of the second column as at the beginning, we can get it either to (0,1) or 
to (0, -1), as asserted. 0 

Problem C.3. Generalize to GLn IR, showing that GLn IR has two connected 
components for all n;::' 1. 

C2. Groups; Free Abelian Groups 

A set of elements in a group G generates G if every element in G can be 
written as a (finite) product of elements in the set and inverses of elements 
in the set. 

If H is a subgroup of a group G, a left coset is a subset of G of the form 
g. H = {g. h: hE H}. The group G is a disjoint union of its left cosets; gl 
and g2 are in the same left coset exactly when there is an element h in H 
with gl . h = g2. The set of left cosets is denoted by G /H. There is a natural 
map 'IT from G onto G /H that takes an element in G to the coset containing 
it. A subgroup H is a normal subgroup if, for all g in G and h in H, g . h . g-I 
is in H. In this case G/H gets the structure of a group, in such a way that 
the natural map 'IT: G~G/H is a homomorphism of groups. 

The identity element in a group G is usually denoted bye, or eG if there 
is chance of confusion. If <p: G ~ G' is a homomorphism of groups, the 
kernel N = {g E G: <p(g) = ed is a normal subgroup of G, denoted Ker(<p). 
Then <p determines a one-to-one homomorphism ip: G /Ker( <p) ~ G' such that 
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<p = (j) 0 1T. If <p is surjective, then (j) is an isomorphism. More generally, if 
N is any normal subgroup of G, a homomorphism from G/N to a group G' 
determines a homomorphism from G to G' such that N is contained in its 
kernel. The image <peG) of any homomorphism <p: G~ G' is a subgroup of 
G', denoted Im(<p), and <p determines an isomorphism of G/Ker(<p) with 
Im(<p). If NeG and N' C G' are normal subgroups, and <p: G~ G' is a ho
momorphism such that <peN) eN', then <p determines a homomorphism 
(j): G/N~G'/N'. 

The set of homomorphisms from G to G' is denoted by Hom(G, G'). So 
if N is a normal subgroup of G, 

Hom(G/N,G') ~ {<pEHom(G,G'):<p(N)=ed. 

An important normal subgroup of a group G is the commutator subgroup, 
denoted [G, G]. This consists of all finite products 

g,h,g,-'h,-' . g2h2g2 -lh2 -I •...• g.h,.g. -'h. -I, 

for elements g I, hi, gh h2' . . . , g., h. in G. The normality of this subgroup 
comes from the identity g. (ab)· g-I = (g. a· g -I). (g. b· g-I). If A is an abelian 
group, any homomorphism of G to A sends all commutators to the identity, 
so 

Hom(G/[G,G],A) ~ Hom(G,A). 

We usually use an additive notation for the product in abelian groups, 
writing g + h instead of g. h, with the identity element denoted o. The group 
of integers under addition, which is the infinite cyclic group, is denoted l. 
The abelian group with just one element is often denoted o. If A is an abelian 
group, and X is any set, the set of functions from X to A has a natural 
structure of abelian group, with (f + g)(x) = f(x) + g(x). In particular, if G 
is any group, the set of homomorphisms Hom(G,A) has the structure of an 
abelian group. 

Exercise C.4. If <p: G~ G' is a homomorphism of groups, show that the 
mapping from Hom(G',A) to Hom(G,A) that takes IjI to ljIo<p is a homo
morphism of abelian groups. 

If A and B are abelian groups, the direct sum A EB B is the set of pairs 
(a, b), with a in A and b in B, with addition defined by 
(a, b) + (a', b') = (a + a', b + b'). More generally, given any collection Aa 
of abelian groups, the direct sum EBAa consists of collections faa}, with aa 
in Aa , with the condition that aa can be nonzero for only finitely many 0:. 

Addition is defined component by component, as for two factors. For ex
ample, l' is the direct sum of n copies of l. The same definition, but with
out the restriction that only finitely many are nonzero, defines the direct 
product, denoted IIAa. 

Exercise C.S. If an abelian group C contains subgroups A and B such that 
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every element of C can be written as a sum of an element in A and an 
element in B, and A n B = {O}, show that A EEl B is isomorphic to C. 

Exercise C.6. For any collection A" of abelian groups, and any abelian 
group B, construct an isomorphism 

Hom(EElA" ,B) == II Hom(A" ,B) . 

An abelian group A is a free abelian group, with basis {ea}, if every ele
ment in the group has a unique expression in the form Lnaea, for some in
tegers na, with only finitely many na nonzero. If the number of elements in 
a basis is a finite number n, we say A is a free abelian group of rank n. As 
we will see below, this number is independent of choice of basis. 

Exercise C.7. (a) If A and B are free abelian groups, show that AEElB is 
free abelian, and if the ranks are finite, rank(AEElB) = rank(A) + rank(B). 
(b) If F is free abelian, and A is abelian, and Ij): A - F is a surjective ho
momorphism, show that A is isomorphic to the direct sum of F and Ker(Ij)). 

More generally, a set {e,,} of elements in an abelian group A is called 
linearly independent if no linear combination of them is zero, i.e., there is 
no set of integers {na }, with only finitely many nonzero, but not all zero, 
such that Lnae" = O. The maximum number of elements in a linearly inde
pendent set in A is called the rank of A . We will prove at the end of this 
section that any two maximal linearly independent sets have the same num
ber of elements, at least when this number is finite. 

Unlike the case with vector spaces, however, a maximal set of linearly 
independent elements in an abelian group need not generate the group. For 
example, a finite abelian group has no independent elements. Even for groups 
with no elements of finite order, however, it is not true: 

Exercise C.S. Show that the rank of the abelian group II) of rational numbers 
is 1. 

For any set X, the free abelian group on X, denoted F(X), can be defined 
as the set of finite formal linear combinations Lnxx, with nx integers, the 
sum over a finite subset of X. The addition is defined coordinate-wise: 
Lnxx + Lmxx = L(nx + mx)x. More precisely, define F(X) to be the set of 
functions from X to 1L. that are zero except on a finite subset of X. This is 
an abelian subgroup of the abelian group of functions from X to 1L.. To the 
function f: X -1L. is associated the expression 'i/(x)x. The element x cor
responds to the function that takes x to I and all other elements of X to zero. 
These elements form a basis for F(X). 

For any abelian group A, and any function Ij) from a set X to A, there is 
a unique homomorphism from F(X) to A that takes LnxX to Lnxlj)(x). In par
ticular, if Ij): X - Y is any function, it determines a homomorphism from 
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F(X) to F(Y), taking ~nxX to ~nx<p(x), or taking n\x\ + ... + n,xr to 
n\<p(x\) + ... + nr<p(xr). 

Exercise C.9. If <p: X ~ Y is one-to-one, show that F(X) ~ F(Y) is one-to
one, and if <p: X ~ Y is surjective, show that F(X)~ F(Y) is surjective. 

If A is an abelian group, then the set of homomorphisms Hom(A, IR) from 
A to IR forms a real vector space, with scalar multiplication by the rule 
(rf)(x) = r ·f(x) forfin Hom(A, IR), r a real number, and x inA. If <p: A~A' 

is a homomorphism of abelian groups, then there is a linear mapping 
<p*: Hom(A', IR)~ Hom(A, IR) of vector spaces, defined by the formula 
<p*(f) = fo <po 

Lemma C.I0.lffP:A~A' is one-to-one, then fP* is surjective. 

Proof. We need some preliminaries. There exists a set W3 = {x,,: a E stl} of 
elements in A', such that: 

(i) no fmite linear combination ~n..x" with integer coefficients is in the 
image of <p unless all nIl are zero; and 

(ii) W3 is maximal with this property. 

This is a consequence of Zorn's lemma, exactly as in the proof that every 
vector space has a basis. Of course, there may be many such sets W3, but 
we fix one. It follows that for any element x in A', there is a nonzero integer 
n and integers n", all zero except for finitely many, so that nx - ~n..x" is 
in <p(A); otherwise one could enlarge W3 by adding x to it. Therefore for any 
x in A' there is at least one equation of the form 

(C.Il) 

with y in A, n not O. 
Given f in Hom(A, IR), we define g in Hom(A', IR) by setting 

1 
g(x) = - (f(y)) , 

n 

for any integer n;60 and yEA so that (C.Il) holds. To see that g is well 
defined, suppose also 

mx = ~m..x" + <p(z) , 

with z EA and m;6 O. Then 

(mnx - m<p( y)) - (nmx - n<p(z)) 

<p(nz) - <p(my) = <p(nz - my) . 
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By (i), this element must be zero, and since q> is one-to-one, nz must be 
equal to my. Therefore, 

I 
-(f(z» 
m 

as required. 

1 
-(f(nz» 
mn 

I 
-(f(my» 
mn 

1 
-(mJ(y» 
mn 

I 
-(f(y» , 
n 

The proof that g is a homomorphism is similar, for if x and x' are two 
elements of A', write 

Then mn(x ± x') = ~(mna ± nma)xa + q>(my ± nz), so 

I I I 
g(x ± x') = - (f(my ± nz» = - J(y) ± - J(z) = g(x) ± g(x') . 

mn n m 

And, by definition, if x = q>(y), then g(x) = J(y) , so q>*(g) = J. D 

Corollary C.12. Suppose S is a set with n elements in an abelian group A, 
and S is a maximal set oj linearly independent elements. Then the dimension 
oj Hom(A, IR) is equal to n. In particular, any two maximal sets oj linearly 
independent elements in A have the same number oj elements. 

Proof Let F be the free abelian group on S, and q>: F~A the natural map. 
The linear independence of S assures that q> is one-to-one. The maximality 
of S assures that the set 00 considered in the proof of the lemma is empty. 
The proof of the lemma shows that the map q>* from Hom(A, IR) to Hom(F, IR) 
is an isomorphism. The functions that take value I on a given element in 
S, and value 0 on the other elements, give a basis of Hom(F, IR) with n 
elements, and this shows that the dimension of Hom(A, IR) is n. Note that 
if S were a maximal set of linearly independent elements that were infinite, 
the same argument shows that Hom(A, IR) == Hom(F, IR) is infinite 
dimensional. D 

Exercise C.13. Show conversely that if Hom(A, IR) has finite dimension n, 
then A has rank n. 

Exercise C.14. If B~C is surjective, with kernel A, show that if two of 
the three abelian groups A, B, and C have finite ranks, so does the third, 
and rank(B) = rank(A) + rank(C). 

Given homomorphism q>: A~B and 1/1: B~C, one says that the sequence 
A ~ B ~ C is exact, or exact at B if the image of q> is equal to the kernel 
of 1/1. To say that the sequence O~ A ~ B is exact is the same as saying the 
map from A to B is one-to-one, and to say that A~B~O is exact is the 
same as saying the map from A to B is surjective. 
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Problem C.1S. If A-B-C is exact at B, show that the dual sequence 
Hom(C, IR)- Hom(B, IR)- Hom(A, IR) is exact at Hom(B, IR). 

A sequence Ao-A I - ••• -An-An+ 1 of abelian groups and homo
morphisms between them is called exact if it is exact at each of the groups 
A;, for 1:s i:Sn. 

Problem C.16. Show that if O-A I - ••• -An-O is exact, and each of 
the abelian groups A; has finite rank, then 

n 

2: (-Ii rank(A;) O. 
;=1 

C3. Polynomials; Gauss's Lemma 

For any field K the ring of polynomials K[X] in a variable X over K is a 
unique factorization domain. In fact, every nonzero Pin K[X] has a unique 
factorization P = a' lIP;"i, with a in K and each P; an irreducible polynomial 
that is monic.9 This follows from the fact that one has a division algorithm 
for polynomials, just as one has for integers. In particular, any finite col
lection of nonzero polynomials has a greatest common divisor, which is 
unique if, in addition, it is required to be monic. The quotient field of K[X], 
consisting of all ratios P /Q, Q ~ 0, is denoted K(X). 

The ring of polynomials K[X, Y] in two variables X and Y is a subring of 
the ring K(X)[y], which, by what we have just seen, is a unique factori
zation domain. 

Lemma C.17 (Gauss). Let F be a polynomial in K[X, Y]. If F is irreducible 
in K(X) [Y], then F is irreducible in K[X, Y]. 

Proof. Given F in K[X, Y], write F = ao(X) + al(X)Y + ... + an(X)yn, with 
a;(X) in K[X]. The greatest common divisor of ao(X), ... , anCX) is called 
the content of F, and denoted c(F). Call F primitive if c(F) = 1. 

We show first that the product of two primitive polynomials is also 
pnmltlve. To see this, suppose F = ao + al Y + ... + anyn and 
G = bo + b l Y + ... + bm ym are primitive. Suppose a nonconstant polyno
mial p = p(X) divides all the coefficients of F· G. Take the minimal i and 
j such that p does not divide a; and bj • Then the coefficient of yi+j in F· G 
has the form 

9 A monic polynomial is one of the form Xm + a1Xm- 1 + ... + am' 
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Since all the tenns but the first are divisible by p, and the first is not, this 
is a contradiction. 

It follows from this that for any two polynomials F and G in K[X, Y), 
c(F' G) = c(F)' c(G). To see this, write F = c(F)· F l , G = c(G)' G l , with 
Fl and G l primitive. Then F· G = c(F) . c(G)' Fl' G l , and Fl . G l is prim
itive, from which it follows that the content of F· G is c(F)· c(G). 

Given any nonzero G in K(X)[Y) , one can write G = g . G l , with g in 
K(X) and G l a primitive polynomial in K[X, Y). Now suppose F is an ir
reducible polynomial in K[X, Y), and that F factors in K(X)[Y) into G· H, 
with both G and H of positive degree in Y. Write G = g' G l , H = h· HI, 
with G l and HI primitive, and g = p/q, h = r/s, withp, q, r, s EK[X). Then 
q·s·F=p·r·GI·HI in K[X,Y). It follows that q·s·c(F)=p·r. Hence 
F = c(F)' Gl • HI, which contradicts the irreducibility of F in K[X, Y). D 

Exercise C.tS. Show that, for any field K, K[X, Y) is a unique factorization 
domain. Generalize to polynomials in n variables. 

If P is a polynomial in K[X), the residue class ring K[X)/(P) is the set 
of equivalence classes of polynomials in K[X), two being equivalent when 
their difference is divisible by·P. The residue classes K[X)/(P) have the 
structure of a ring so that the natural map K[X]-K[X]/(P) is a homo
morphism of rings. 

Lemma C.t9. If P has degree n, then the images of I, X, ... ,xn - l form 
a basis for K[Xl/(P) over K. 

Proof. These elements span, since, by dividing by P, any polynomial is 
equivalent to a polynomial of degree less than n. They are linearly inde
pendent, since no nonzero polynomial of degree less than n is divisible 
by P. D 

Exercise C.20. Show that K[X]/(P) is a field if and only if P is irreducible. 



APPENDIX D 

On Surfaces 

D 1. Vector Fields on Plane Domains 

The object of this section is to prove Lemmas 7.10 and 7.11; we refer to 
Chapter 7 for notation. Suppose <p: U -') U' is a diffeomorphism from one 
open set in the plane onto another. If <p(x,y) = (u(x,y), v(x,y» in coordi
nates, at any point Pin U, we have the Jacobian matrix 

[
au (P) au (P)] 

J~.P = ~~ ~~ , 
-(P) -(P) 
ax oy 

which we regard as a linear mapping from vectors in ~2 to vectors 
in ~2 (see Appendix C). If V is a continuous vector field in U, the 
vector field 'P* V in U' is defined by the formula 

(<p*V)(P' ) = J~.p(V(P», 

where P is the point in U mapped to p' by cp, i.e., P = cp-l(p l ). If V has 
singularities in the set Z, cp* V will have singularities in cp(Z). 

Lemma D.l. Index~(p)(cp*V) = IndexpV. 

Proof. There is no loss in generality by assuming that P and P' are the origin 
0, that U is a disk containing the origin, and that V is not zero in U\{O}. 

387 
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Let J be the Jacobian of 'P at O. Our first goal is to show that 

(D.2) 

This will reduce the problem to the easier case of a linear mapping. We 
want to construct a homotopy from 'P to J. Define 

{~'P(t. Q), 
QXt ~ t 

J(Q), 
K: UX [0, 1] ~ 1R2, 

O<t::::; 1, 

t=O. 

Claim D.3. This mapping K is C(6"'. 

To prove this claim, we use Lemma B.9, replacing U by a smaller disk 
if necessary, so we can write 

with C(6'" functions Ul, U2, VI , and V2' Then 

K«x, y) x t) = (XUI(tx, ty) + YU2(tx, ty), XVI(tX, ty) + yvitx, ty» 

for all 0:5 t:5 I, and this expression is clearly C(6"'. 

Now H(Q x t) = (K, hey) gives a homotopy from J * V to 'P* V in the sense 
of Exercise 7.3, and (D.2) follows from that exercise. 

We are therefore reduced to showing that Indexo(J* V) = Indexo(V) for any 
invertible linear mapping J. Now we use Lemma C.2 to know that there is 
a path in the space of invertible matrices from J either to the identity matrix 

I, or to the matrix I' = [~ ~ I J. If such a path is given by a formula t ~ J" 

a:5 t:5 b, then the homotopy H(Q x t) = (J,)*(V) gives a homotopy from 
J*V to I*Vor to I'*V, and the same exercise shows that the index doesn't 
change. Of course I*V= V, so all that remains is to prove that 
IndeXo(I' *V) = IndeXo(V). 

If Vex, y) = (p(x, y), q(x, y», then by the definition of I' *, 

(I'*V)(x,y) = (p(x, -y), -q(x, -y». 

So one is reduced to the elementary problem of showing that if 
F(x,y) = (p(x,y), q(x,y», and R(x,y) = (x, -y), the mappings RoFoR and 
F, when restricted to a small circle, have the same winding number around 
the origin. This is easy to do directly from the definition of winding number, 
and we leave the details as an exercise. (This is also special case of the fact 
that the degree of a composite of mappings of circles is the product of the 
degrees of the mappings, see Problem 3.27. In this way one can argue di
rectly with any linear mapping J, since J * V = J 0 VO J -[ .) D 

Now we consider the other lemma from Chapter 7. 
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Lemma D.4. Suppose V and Ware continuous vector fields with no sin
gularities on an open set U containing a point ~ Let D CUbe a closed 
disk centered at,.!'. Then there is a vector fieJd V with no singularities on 
U such that (i) V and V agree on U \ D; (ii) V and Wagree on some neigh
borhood of P. 

Proof. Suppose first that the dot product V(P) . W(P) is positive. Shrinking 
the disk, we may assume that V(Q) . W(Q) > 0 for all Q in D. As in Step 2 
of the proof of Proposition B.lO (see Exercise B.14), there is a ~~ function 
p that is identically 1 in a neighborhood of P, and identically 0 outside D, 
and taking values in [0,1]. Let 

-V(Q) = (1 - p(Q»V(Q) + p(Q)W(Q). 

Then V(Q)' V(Q) > 0 for all Q in U, so V has no singularities, and con
ditions (i) and (ii) are clear. 

For the general case, it therefore suffices to find a vector field VI with 
no singularities that agrees with V outside D, and such that VI(P)' W(P) is 
positive. This can be done by rotating V inside D. With the same func
tion p, and -fr the angle from the vector V(P) to the vector W(P), we can 
take 

[ COS(P(Q)-fr) -Sin(p(Q)-fr)] . V(Q) 
sin (p(Q)-fr) cos(p(Q )-fr) . D 

D2. Charts and Vector Fields 

We start with a brief definition of a (smooth) surface X, and define what 
we mean by a vector field on X and the index of a vector field at a point 
on X. A surface X with an atlas of charts is a Hausdorff topological space, 
equipped with a collection of homeomorphisms 

with Ua open in the plane [R2, and 'Pa(Ua) open in X; the a are in some index 
set. The surface X should be the union of these open sets 'Pa(Ua). Let 
Ua~ = 'Pa -1('Pa(Ua) n 'P~(U~». These charts determine change of coordi
nate mappings 'P~a = 'P~ -I 0 'Po<' which are homeomorphisms from U 0<13 to 
U13a • 
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qIOl 

U~U~ _____________ qlP_Ol _________ ~~ ~. 

To give X a differentiable, or smooth, structure, the requirement is that these 
changes of coordinates CPJ3a should be '(6'" mappings for all n and ~. One 
then has a notion of a differentiable function on an open subset U of X: it 
is function f such that f 0 CPa is differentiable on CPa -1 (U) n U a for all n. 

Another collection of charts {Wa': Ua'~ X} is said to be equivalent to this 
one if all the changes of coordinates from one to the other are all '(6"', i.e., 
all CPa -1 0Wa' are '(6'" where defined. We say that this collection defines the 
same surface. More precisely, a smooth (or '(6"') surface is the topological 
space X together with an equivalence class of families of charts. For the 
sphere S2, the two mappings cP and W we obtained from stereographic pro
jection in §7c form a family of charts. Stereographic projection from other 
points gives charts that are compatible in this sense. 

If f is a '(6'" function on some open set in 1R3, and X is the locus where 
f(x,y, z) = ° and grad(f) ¥ 0, then X is a smooth surface. If for example 
(aflaz)(p) ¥ 0, the implicit function theorem says that projection from X to 
the xy-plane is locally one-to-one near P, and the inverse to this projection 
provides a chart near P. 

If X is a surface given by charts as above, a vector field V on X can be 
defined as a compatible collection of vector fields Va in each of the coor
dinate neighborhoods U a' The compatibility means that 

(CPJ3a)*(Valuap) = vJ3lup.' 

where (CPJ3a)* is defined as in the preceding section. The vector field has a 
singularity at a point P in X if, with some n such that CPa(P a) = P, the cor
responding Va has a singularity at Pa in Ua. By Lemma D.I the index of 
Va at Pais independent of choice of coordinate chart. This index is defined 
to be the index of V at P. 

The surface X is orientable if it has an atlas of charts such that all the 
determinants of the lacobians of the change of coordinate mappings are pos
itive. An orientation is a choice of such an atlas, with two atlases defining 
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the same orientation if all changes of coordinates from one to the other have 
positive detenninants of Jacobians. An orientable surface has two orienta
tions, with two orientations defining the opposite orientation if all changes 
of coordinates from one to the other have negative Jacobian detenninants. 

D3. Differential Forms on a Surface 

If '1': u~ U' is a diffeomorphism from one open set in the plane to another, 
and 00 = fdx + gdy is a f.(j,oo I-fonn on U', one can define a pull-back I-fonn 
'1'*00 on U by the fonnula 

'P*(fdx+gdy) = f('P(X,y)).(au(X,y)dx+ au (x, y)dy) 
ax ay 

+ g('P(x,y». (av (x,y)dx + av (x,y)dy) 
ax ay 

= ((f0'P). au + (go '1') . av) dx 
ax ax 

+ ((f ° '1') . au + (g ° '1') • av) dy , 
ay ay 

where 'P(x,y) = (u(x,y), v(x,y». Similarly, if 00 = hdxdy is a 2-fonn on U', 
the pull-back 2-fonn '1'*00 on U is defined by the fonnula 

( auav auav) 
'P*(hdxdy) = (h°'P). -- - -- dxdy. 

axay ayax 

Exercise D.S. (a) If 1jI: U' ~ U' is a diffeomorphism, and 00 is a I-fonn or 
2-fonn on U', show that 'P*(IjI*oo) = (ljIo '1')*(00). (b) Show that 'P*(dj) = d('P*f) 
for a f.(j,oo functionf on U', and 'P*(doo) = d('P*oo) for 00 a I-fonn on U'. 

Given a surface X with an atlas of charts 'Pa: U a ~ X as in §D2, a function 
(or O-fonn) is given by a collection of functions fa on Ua such that they 
agree on the overlaps: fa = fll ° 'Plla on U all· Define a onejorm 00 on X to be 
a collection of I-fonns OOa on Ua that agree on the overlaps, i.e., such that 

ooalua~ = ('Plla)*(oolllu",,) 

for all pairs a and 13. A two-form is defined likewise, taking the OOa to be 
2-fonns on Ua. 

If f is a f.(j," function (or zerojorm) on X, its differential df is a I-fonn, 
defined to be the I-fonn d(f°'Pa) on Ua • Similarly, if 00 is a I-fonn on X, 
given by I-fonns OOa on Ua, the differential of 00 is the 2-fonn doo defined 
to be the 2-fonn dOOa on Ua • 
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Exercise D.6. (a) Verify that these formulas define I-forms and 2-forms on 
X. (b) Verify that d is linear, i.e., d(riwi + r2w2) = rld(wl) + r2d(w2) for real 
numbers rl and r2 and O-forms or I-forms WI and 002' (c) Verify that d(df) = O. 
(d) Show that for k = 0, I, and 2, a k-form for one atlas determines a k
form for any other atlas, and that this is compatible with the definition of 
differential. 

There is also a wedge product /\ that takes two I-forms 00 and IL and 
produces a 2-form 00/\ IL. For an open set U in the plane, if 00 = fdx + gdy, 
and IL = hdx + kdy, for f, g, h, and k C(&'" functions on U, then 

w/\IL = (fdx+gdy)/\(hdx+kdy)=(f·k-g·h)dxdy. 

If 00 and IL are I-forms on X given on Ua by Wa and lLa, respectively, then 
00 /\ IL is the 2-form given on Ua by Wa /\ lLa, with Wa /\ lLa defined by the 
displayed formula. Iffis a function and 00 is a I-form (or 2-form), then/' 00 
(defined locally by fa' Wa) is a I-form (or 2-form). 

Exercise D.7. (a) Verify that W/\IL is a 2-form. (b) Verify the following 
properties of the wedge product: 

(i) 

for 001,002, and IL I-forms, andfl andf2 functions; 

(ii) IL/\W = -w/\IL 

for IL and 00 I-forms; and 

(iii) 

for f a function and IL a I-form. 

In fact, all the results of this appendix generalize from two to n dimen
sions, leading to the notion of a smooth manifold of dimension n, a vector 
field on a manifold, the index of a vector field, an orientation of a manifold, 
k-forms on a manifold (0::::; k::::; n), with differential from k-forms to (k + 1)
forms, wedge products of k-forms and I-forms being (k + I)-forms, with sim
ilar properties. 
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Proof of Borsuk's Theorem 

This appendix contains a proof of Borsuk's theorem as stated in §23c. It 
assumes a knowledge of §23a and §23b. 

So far in this book we have considered chains 2:n;fj with integer coeffi
cients n j • In fact, one can use coefficients in any abelian group G, and one 
gets chains Ck(X; G), cycles Zk(X; G), and boundaries Bk(X; G), so homol
ogy groups Hk(X; G) = Zk(X; G)/Bk(X; G). All the formal properties proved 
about ordinary homology groups extend without change to these groups, and 
many of the calculations are similar. For example, the Mayer-Vietoris theo
rem is true without change. 

It is often useful to look at coefficients in 71./p71., the integers modulo a 
prime p. In this case there is a natural homomorphism from each HiX) to 
Hk(X; 71./p71.,) obtained by reducing all coefficients modulo p. This gives 
homomorphisms 

These homomorphisms are isomorphisms if X is a sphere, as one sees by 
tracing through the Mayer-Vietoris argument computing the homology of a 
sphere. The following exercise shows that it is not always an isomorphism, 
however. 

Exercise E.1. (a) Show that the above map is an isomorphism if X is a 
compact oriented surface. (b) Show that, for X the real projective plane, or 
any compact surface, H2(X; 71./271.) = 71./271.. 

These homology groups are particularly useful when p = 2. In fact, every-
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thing becomes a little easier, since one can ignore all signs entirely. Since 
these are the only ones we will consider here, we denote them by RkX: 

RkX = Hk(X; 1./21.). 

Similarly, we denote by C~ the chain complex C*(X;1./2l.). 
It follows from the isomorphism Hn(Sn)/2Hn(sn) == Rn(sn) that for any 

continuous map f: Sn~sn, the degree of f is odd if the homomorphism 
f*: Rn(sn) ~ Rn(sn) is not zero, and even if f* is zero. We denote the an-

tipodal map by 

T: Sn ~ So. 

Let 11": sn~ !RlIln be the two-sheeted covering map that identifies antipodal 
points. We will prove Borsuk's theorem by using the chain complex and 
homology of these spaces and maps with coefficients in 1./21.. For this we 
need a general lemma. 

Let 11": X ~ Y be any two-sheeted covering map, and let T: X ~ X be the 
map which interchanges the two points in 11" -I(p) for each P in Y. The cor
responding map 11"*: C~ ~ C*Y of chain complexes is surjective. In fact, 
if f: Ik~ Y is a k-cube, there are exactly two k-cubes Al and A2 = To Al in 
X with 11" 0 Aj = f. This is proved exactly as we proved the lifting of hom
otopies in § lIb. The mapping f 1-+ Al + A2 determines a homomorphism 
t*: C*Y~ C*X of chain complexes, called the transfer (see Problem 18.26). 
A chain is in the kernel of 11"* exactly when each cube To A occurs with the 
same coefficient as A. We therefore have an exact sequence of chain com
plexes 

(E.2) 

This gives a long exact sequence in homology: 

Lemma E.3. (i) Lett X~X be a continuous map such thatfoT= Tof, and 
let g: Y~ Y be the map determined by the condition go 7T = 7T Of. Then the 
diagram 

0 -c*y ~CX * ~c*y -0 

g*! f.! g.! 

0 -C.Y ~C*X ~cy • -0 
commutes. 

(ii) Let t X ~ X be a continuous map such that fo T = f, and let g: Y ~ Y 
be the map determined by the condition g07T= 7T Of. Then the diagram 
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0 -c*y ~ C*X ~ c*y -0 
01 f*l g*l 

0- c*y ~c*x ~ C*Y -0 
commutes. 

Proof. Both of these are straightforward from the definitions. The right squares 
commute by functoriality: g* 0 'IT * = (g 0 'IT)* = (fo 'IT)* = f* 0 'IT *. For the left 
squares, let f be a cube in Y, AI and A2 its two liftings, so 
f*t*[f] = [fo AI] + [fo A2]. In case (i), fo AI and fo A2 are the two liftings 
of go f, so t*g*[f] = [fo Ad + [fo A2], as required. In case (ii), 
foA 2 = foToA I = foAl' so f*t*[f] = 2[foAd = o. 0 

It follows from this lemma that the corresponding maps between the long 
exact homology sequences commute. We apply this now to X = sn, Y = IRpn, 
'IT: X ~ Y the covering, and T the antipodal map. The long exact sequence 
arising from (E.2) takes the form 

o - HnY ~ fi.x ~ HnY ~ fin_IY - 0 
- a-

0- Hn_IY - Hn_2Y - 0 - ... 

- a - t* - 1t -
- 0 - HIY - HoY ~ HoX ~ HoY -- O. 

Since HnX= 7L127L, we must have HnY¥-O, so t*: HnY~HnX is an iso
morphism. Hence 'IT*:HnX~HnY is zero, so a:HnY~Hn-IY is an iso
morphism. Continuing, we see that a: H;Y~H;_IY is ari isomorphism for 
all i = I, ... , n. In particular, H;Y = 7L127L for i = 0, ... , n. 

Now supposef: S"~Sn is a map withfoT= Tof. Borsuk's theorem (Theorem 
23.24(a» states that the degree of f is odd, which is equivalent to saying 
thatf*: HnX~HnX is an isomorphism. Applying Lemma E.3(i), we have 
commuting diagrams 

fiY~HX 
n == 11 

g* 1 f* 1 
- t* -
HnY~ HnX , 

the right diagrams valid for i = I, ... , n. Since g*: HoY ~ Ho Y is an iso
morphism, it follows from the right squares and induction on i that the ho
momorphism g*:H;Y~H;Y is an isomorphism for every i=O, ... , n. 
Then the left square implies thatf*: HnX ~ HnX is an isomorphism as well, 
and this completes the proof. 

Similarly, iff: sn~sn is a map withfoT= f, we have by (ii) of the lemma 
a commutative diagram 
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iif~HX 

01 = 1·1 
Hnf ~ .. H~. 

This implies that f*: Iinx ~ Iinx is zero, which means that f has even de
gree, and completes the proof of Theorem 23.24. 0 

The constructions of this section are part of a general development of P. A. 
Smith to study spaces equipped with periodic transformations like T. For a 
proof of Borsuk's theorem using simplicial approximations, see Armstrong 
(1983). For a proof using differential topology, see Guillemin and Pollack 
(1974). 



Hints and Answers 

Hints and/or answers are given for some of the exercises and problems, 
especially those used in the text, or those that are hard. 

0.1. Hint: The answer depends only on the numbers of edges that emanate 
from each vertex. What happens to these numbers when you travel, erasing 
the edges as you travel over them? When do you get stuck at a vertex? 

Answer: There is always an even number of vertices such that the number 
of edges emanating from the vertex is odd (if an edge has both ends at a 
vertex, it counts twice). If this number is greater than 2, the graph cannot 
be traced. If the number is 2, it can be traced, but only by starting at one 
of these, and (necessarily) ending at the other. If the number is 0, you can 
start anywhere, and will end at where you start. To see that one can do it 
under these conditions, one way is to make any trip, starting at an odd vertex 
if there are two such, continuing until you get stuck. Then make another 
trip, but adding a side trip along untraveled roads, until you (necessarily) 
get back to the old route at the same point. Each trip becomes longer, until 
the whole is traced. 

0.2. See Chapter 8. 

1.6. All but (vi). 

1. 7 . Yes. Find such a function by integrating. 

1.9. For the challenge, if P is in the closure of the points one can connect 
to Po by such an arc, take a disk D around Pin U, take an are from Po to 
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a point inside D, and look at the first time the arc hits the boundary of D 
with inward pointing tangent; splice on to this arc (see §B2 for similar con
structions) to get to any point inside D. 

I. 13. See Chapter 9 for more general results. 

1.20. For the challenge, use the law of cosines. 

2.3. Show that the derivative of {}(t) must be 

-y(t)x'(t) + x(t)y'(t) 

X(t)2 + y(t)2 

Or show that two such functions differ by a multiple of 271', which must be 
o by continuity. 

2.9. Consider neighborhoods given in polar coordinates by {}, < {} < {}2 and 
r, <r<r2, with {}2-{}' <271'. 

2.13. See §B2 for the construction of such functions. 

2.19. For formulas see Chapter 12, and use Problem 2.13. 

2.22. Either argue directly, as in Appendix B, or use polar coordinates to 
map a rectangle onto the disk, and integrate the pull-back of the I-form as 
in the first proof of Proposition 2.16. 

2.24. Apply Green's formula (i) with g = f. 

2.25. Hint: Apply Green's formula (ii), where R is the region inside the 
disk and outside a small disk around the point, with g of the form a + b log(r), 
where r is the distance from the center of the disk. Pass to the limit as the 
radius of the small disk approaches O. 

3.4. Use the definition. Choices of subdivision and sector Vi and {}i for "Y 
and P determine the same subdivision for "Y + v, choices Vi + v for sectors, 
and translated angle functions, so that the changes in angle along each piece 
are the same for each. 

3.5. Use Exercise 2.9. See §llb for a generalization. 

3.7. See Chapter 12 for formulas. 

3.10. Apply the Lebesgue lemma to "y0Cf', to obtain a subdivision 
a' s; to'S; ... S; tn' = b' , such that "Y ° Cf' maps each subinterval into a sector. 

3.13. In the starshaped case, show that any closed path is homotopic to a 
constant path, and use Exercise 3.7. 

3.15. Use Problem 3.14 to construct a homotopy between the lifted paths. 

3.22. Use Problem 3.21 and Problem 3.14. 

3.23. Use a homotopy H(P x s) = (l - s)F(P) ± sP, which is a homotopy 
from F to the mapping P~P or to P~ -P. 

3.25. Part (d) uses Problem 3.22. 
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3.27. The degree of OoF is the sum of the degrees of F and O. For the 
proof, use Problem 3.26. 

3.29. Use the fact that the group GL2(1R) of two by two invertible matrices 
has two connected components, cf. Appendix C. 

3.30. Deform from the map to its linear approximation. See §D1. 

3.31. See § 19a for the local structure of general analytic mappings. 

3.32. Compute the change in angle of F along the arcs between points in 
r1(p'). 

4.6. If r were a retraction, F(P) = -r(P) would have no fixed point. 

4.7. Given a mapping f of Y to itself, consider the composite i of 0 r, where 
i is the inclusion of Y in X and r is the retract. 

4.8. (i). Note that (ii) and (iv) are homeomorphic. 

4.11. Compare the restriction of f to Sl with the identity mapping and the 
antipodal mapping, using the dog-on-a-Ieash theorem. Or look at fixed points 
of x~ ±f(x)/lf(x)l. 

4.12. The unit vectors in the octant form a space homeomorphic to a disk, 
and, if no such vector is mapped to zero, then F(P)/IIF(P)1i must have a 
fixed point. 

4.13. Use the preceding exercise. 

4.14. Look at the mapping P ~ f(P) - P, and use Exercise 4.11. 

4.15. Show thatfis homotopic to the antipodal map. 

4.17. See Problem 3.23. 

4.18. MapD"" to S""by a formula (aO,al, .. . )~(t,aO,al' .. . ). 

4.24. See the proof of Lemma 4.20. 

4.27. See Lemma 4.21. 

4.30. If not, do a spherical projection from a point not in the image. 

4.31. Iff(P)~P for all P,fis homotopic to the antipodal map, while if 
f(P) ~ p* for all P, f is homotopic to the identity map. 

4.38. Choose three arcs covering the circle without antipodal points, and 
look at their inverse images in the sphere. 

4.39. Look atAUB*, BUC*, and CUA*. 

4.40. Tennis anyone? 

5.4. If A is unbounded, the same proof shows that Wp is exact. If A is bounded, 
the integral of Wp around a large circle is nonzero. 
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5.13. Take U = 1R2 \ A, V = 1R2 \ B, and show that the image of & and the 
kernel of & each have dimension at least 1. 

5.14. Divide the rectangle in half, with the intersection an interval. Argue 
as in Theorem 5.1, and use the fact (*) to know about the first cohomology 
groups of the complements. 

5.16. Write X = A U B, with A and B homeomorphic to circles, and A n B 
a point or homeomorphic to an interval. 

5.21. Induct on e. Let A be the union of the vertices and e - I ofthe edges, 
and let B be the other (closed) edge, and set U = 1R2 \ A and V = 1R2 \ B, 
arguing separately the cases when B has one endpoint or two, and, when 
two, whether they are in the same component of A or not. 

5.22. Analyze the connected components of the complement as the edges 
are added. 

5.23. Take V= 1R2\X, so UU V= 1R2 and un V= U\X. 

5.~.~ Q 
5.26. Look at the image of a circle around the band, and the image of its 
complement. 

5.27. For example, the situation should look locally-via a homeomor
phism-like the two axes crossing at the origin. 

5.28. Both follow from Corollary 5.18. 

6.5. If 'Y=~nl'fi' then 'Y=~ni(ari)' where C(t,s)=(1-s)·'Y;(t)+s·po, 
where Po is the point with respect to which U is starshaped. 

6.12. Use Theorem 6.11. See §9a for generalizations. 

6.14. If r: [0,1] x [0, 1] - U, the boundary of Fo r is F *(ar). 

6.17. See Proposition 7.5 and Problem 7.8. 

6.18. See Problem 3.23. 

6.24. (b) A point on a circle is a retract but not a deformation retract. 

6.25. Use Exercise 6.20 and Proposition 6.23 to show that r * is the inverse 
isomorphism to i*. 

6.27. If P' is a point not in X', use Tietze to extend F to a continuous 
mapping from an open neighborhood U of X to 1R2 \ {P'}. Apply Theorem 
6.11. 



Hints and Answers 401 

6.28. The converse is false! For a counterexample, see Problem 13.28. 

7.2. Consider (!R(x + iy)", ~(x + iyn and (!R(x + iy)", - ~(x + iy)"), where 
!R and ~ denote the real and imaginary parts. 

7.3. If 'Y is a path around P as usual, H°'Y gives a homotopy in Ilf\{O} 
from Vo°'Y to VI°'Y. 

7.4. In the first case, consider the homotopy 

H(t, s) = s· V('Yr(t)) + (1 - s)· p('Ylt))· V('Yr(t)) , 

o S t s 1, 0 s s s 1, where 'Y r is a path around a small circle around P. For 
the second, compare V and - V. 

7.8. If an infinite number of points Pj in Z have W('Y,Pj ) =F 0, such points 
lie in a bounded set, so they must have a limit point P. Since P cannot be 
in U, W('Y,P) = 0, and this contradicts Proposition 6.8. 

7.9. Recall thatfhas a local maximum (resp. minimum) at P if the Hessian 
is positive and (azJ/a~)(p) < 0 (resp. (a1ja~)(p) > 0); and f has a saddle 
point at P if the Hessian is negative. Use Problem 3.30. 

7.13. Show that 

(~*V)(x, y) = [Y~~ /::x2l [:: :~~: ~n ' 
with (a, b) a nonzero vector, and where p(x,y) and q(x,y) approach zero as 
Ixl and Iyl approach infinity. Restrict to a large circle, and do a homotopy 

(see Appendix D), to deform [:::~~:~n first to [:], and then to [b]. 
7.16. See the first picture in this section. 

7.17. Look at Yep) = f(P) - U(P)· P)P. 

8.4. Thinking of a horizontal doughnut with g holes, put a source on top 
between each of the holes, and a sink directly under each source. 

8.5. #peaks + #valleys - #passes = 2 - 2g. 

8.6. No. 

8.lD. Triangulate each of the polygons by putting a new vertex in its center. 

8.12. Lift the vector field or triangulation to S2. 

8.13. O. 

8.14. (b) A Klein bottle. 

8.15. -1. 
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9.6. There is no homomorphism from 7Ln' onto 7L n if n > n', see Exercise 
C.I4. 

9.7. For (a), take a small circle "Ij around i for each iE N, and show that 
any closed I-chain is homologous to a finite sum 2,n j"lj. The answer is the 
same for (b), since the spaces are homeomorphic, for example by the map 
z~ I/z from C \ {O} to C \ {O}. 

9.9. The fact that the map is one-to-one follows from Theorem 6.11. For 
surjectivity, one can produce I-cycles with arbitrary winding numbers around 
each K j by Lemma 9.1, so the essential point is to show that the map from 
HI(V \ K) to HI V is surjective. Take a grid so that no rectangle meets a point 
of K and a point not in U. If "I is a I-cycle on V, we know "I is homologous 
to a sum of the form 2,niaRi' Let "I' = 2,R;nK=OniaRi . Then "I' is a I-cycle on 
V \ K that is homologous to "I on V. (See also Exercise 10.14.) 

9.14. Consider the path . See Exercise 11.14. 

9.15. Use Corollary 9.12. If each "Ij is 't:"', so are all the constructions made 
in the proof that "I is a boundary. 

9.16. Show that 1R2 \ V is connected. Note that if V is any connected com
ponent of [R2 \ X, then V C V U X and V meets X, so the union of any such 
V with X is connected. 

9.17. For (a), take a subdivision and rectangles V; as in the definition, but 
with the additional properties that each side of each Vj is of length at most 
1, and the closure of V; is contained in V. Let OJ be the point in the center 
of Vj • Given a point to, and an E > 0, show that there is a 8 > 0 so that 

Ip(x, y, t) - p(x, y, to)1 < E/2n and Iq(x, y, t) - q(x, y, to) I < E/2n 

for It - tol < 8. For each such t, leth" be the function on Vj so that d(h,,) = w, 
on V; and such that h"(O;) = O. Use the construction of Proposition 1.12, 
with the fact that the integrals are taken over segments of length at most 112 
(see Exercise B.8) to show that Ih,,(p) - h"o(p)1 < E/2n for all P in Vi' and 
for all It - tol < 8. Deduce that for It - tol < 8, 

n 

2: ((hiPj) - h"o(P;)) - (h"cP j-,) - h"oCPj-,)) 
i=l 

:S 2n'(E/2n) = E. 

For (b), note that integral-valued locally constant functions are constant, and 
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they vanish if they are small. 

9.20. 53'IT. 
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9.21. Let Pi be any point in Ai' and set W = ~ ~iWPi' where wPi is the I-form 
(1/2'IT)wp;.il that measures change in angle around Pi. 

9.22. For (b), use the equation displayed after Corollary 9.19, with 
(m\> m2) = (1,0) and (0, 1). 

9.23. Approximate u(a + Ax + illy) - u(a) by (aulax)(a)Ax + (aulay)(a) lly, 
and similarly for v. 

9.25. For (b), take 'Y. a circle of radius E around the singUlarity, and let E 

approach O. 

9.28. See Problem 7.8. 

9.31. See Exercise 7.4. 

9.35. Use the dog-on-a-Ieash theorem (Theorem 3.11). 

10.5. On a path-connected space, O-cycles of degree zero are boundaries. 

10.14. Apply Mayer-Vietoris, with V = [R2 \ K. Use Corollary 9.4 to cal
culate HIV. 

10.18. Identify S2 with [R2U{oo}. Suppose X\Xnu={p,Q}, with P and 
Q in [R2. Let V = S2 \ X. Use Mayer-Vietoris to see that un V is discon
nected exactly when H 1U_H1(S2\{p,Q}) is zero, or equivalently, when 
W( 'Y, P) = W( 'Y, Q) for all I-cycles 'Y on U. 

10.19. See Problem C.16. 

10.20. Use Corollary 9.4 to compute H1U, H1V, and H1(UUV); and com
pute the kernel of a. For the last part, argue as in the proof of Theorem 5.11, 
using the inclusion of Ho(Un V) in Ho(U)(BHo(V) to show that if points Po 
and P I are in different connected components of U and V, then they are in 
different connected components of un V. 

10.21. Use Exercise 10.14 with MV(iii) and MV(iv). 

10.22. Apply Alexander's lemma, with the compact sets X and aD UB. 

10.23. If not, find points p. and Q. within distance lin that cannot be so 
joined, and apply the preceding problem to a limiting point P. 

10.24. Let E. = lin, and take corresponding 8. > 0 from the preceding 
problem. Take a sequence of points Q. in the same component as Q, with 
the distance from Q. to P at most 8./2. Connect Qn to Qn+1 by a path in a 
disk of radius En. Join these paths together, with the nth path defined on a 
subinterval of length I 12n . 

10.25. Use Problem 9.9 with MV(iii) and MV(iv). 
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10.28. Take V = [R2 \ K, and use the isomorphism described after Exercise 
9.21. 

10.30. If not, use grids to find a closed path 'Y in [R2 \ au that has different 
winding numbers about two points of au. Note that au c K. Since 'Y is 
connected and does not meet au = V \ U, 'Y must be contained in U or in 
[R2 \ V. If 'Y is contained in U, then'Y has the same winding number about 
all points in K, since K is connected and contained in [R2 \ U; this contradicts 
the fact that au c K. If 'Y does not meet V, since V is connected, the winding 
number of 'Y is constant around points in V, contracting the fact that 
aucV. 

If K is closed and connected, the same is true. To see it, let K be the 
closure of Kin S2 = [R2 U {oo}, let P be a point in U, and apply the preceding 
case to KCS2\{P}=R2. 

11.1. For (ii) you can use the identity exp(x + iy) = eX(cos(y) + i sin(y». 

11.4. Show that the set in X where the cardinality is n is open and closed. 

11.10. Write an open rectangle as an increasing union of closed rectangles. 

11.11. For (a), when X is locally connected, the evenly covered neighbor
hoods N can be taken to be connected, and if p-I(N) is a disjoint union of 
open sets Na , each mapping homeomorphically to N, then these Na are the 
connected components of p-I(N). (b) follows, since Y' will be a union of 
those Na that it meets. 

11.13. For the triangulation, use the lifting propositions to lift any trian
gulation of S to a triangulation of S'. 

11.15. For (b), for n E l. and (r, -l1) in the right half plane, the action is 
given by n' (r, -l1) = (r, -l1 + 2'ITn). 

11.22. The map from X x G to Y by x x g~ g' sex) is a G-isomorphism. 

11.23. Use the preceding exercise. 

11.24. It's enough to look where the covering is trivial, as in the proof of 
Lemma 11.5. 

11.28. Given y in Y, take disjoint neighborhoods Ug of g' y, one for each 
g in G, and let V be the intersection of the open sets g -I . U g • 

11.39. Given such an automorphism IP of S, define an automorphism of the 
covering by the formula y * 'Y ~ lP(y) * 'Y for any yES and any path 'Y starting 
at x. Show that this is independent of choices. 
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12.1. Use the same fonnulas as in the preceding displays, but for the second 
variable s. 

12.3. For (a), 

H(t, s) T(4t-s-l), 

f.L (4t ; ~ ~ 2), 1/4(2 + s) ~ t ~ 1. 

12.5. To compute 'Tr1(SI, (1,0», see Problem 3.14, which is an easy con
sequence of the propositions in Chapter 11. 

12.6. Use the homotopy H(v, s) = sx + (1 - s)v. 

12.8. Cut the path into a finite number pieces that map into hemispheres, 
say, and replace each piece by a homotopic arc with the same endpoints, 
for example an arc along a great circle. 

12.10. 

12.12. 

If a and T are loops at e, consider the homotopy H(t, s) = a(t) . T(S). 

Map (t,s) to 

{ 

(0,1 - 2t), 

(4t+2S-2 s) 
3s + 1 ' , 112(1 - s) ~ t ~ 1/4(S + 3), 

(1, 4t - 3), 

Follow this by h to achieve the homotopy. 

12.15. (i), (ii), (iv), and (v) are equivalent; (iii), (vi), and (viii) are equiv
alent; (vii) and (ix) are equivalent. 

12.18. For Sl, let H«xi ,X2) x s) = rotation by s· 'Tr acting on (XI, X2). For 
larger n, use the same fonnulas for each successive pair of the n + 1 co
ordinates on Sn C IRn+ I . 

12.20. Show that it has a circle SO(2) as a defonnation retract. 

13.10. Take xc 1R2 to be the union of the lines L(n) = {lin} x [0, I], for 
all positive integers n, and three lines L= [-1, 1] x {I}, M={-I} x [0, 1], 
and N = [-1,0] x {OJ. Let X be the point (0,0). Take two copies XI and X2 

of X, and denote by subscripts the corresponding lines and points in XI and 
X2• Take Y to be the disjoint union of XI and X2 , topologized as usual except 
near the points XI and X2. For a disk U of radius E < 1 about (0,0) in the 
plane, define a neighborhood U(Xi) in Xi by 

U(XI) = (NI n U) u U (L(n)1 n U) u U (L(nh n U), 
nodd neven 

U(X2) = (N2 n U) u U (L(n)2 n U)U U (L(n)1 n U) . 
nodd neven 
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This space Y is connected, and the natural map from Y to X is a covering 
map. 

13.12. The proof is exactly the same as for the theorem. 

13.17. By Corollary 13.16, the answer to (a) is 7L/n7L. For (b), the fun
damental group is the group of translations of the plane described in Exercise 
11.25. The subgroup in (c) is generated by a and b2 • 

13.21. For (1), note that -y. ex is homotopic to (-y.~). (!~-l. ex). For (3), if 
-y. ex is homotopic to -y' .~, with ex and ~ paths in N from z to w, then ex. ~-l 
is homotopic to Ez in X, so -y is homotopic to -y. (ex· ~-l), so to (-y. ex). ~-l, 
so to (-y' . ~). ~-l, so to -y' . (~. ~-l), and so to -y'. 

13.22. Take Y to be the union of IR with a copy X. of a clamshell-but 
without its outer circle-attached at each point n in 7L C IR, and map Y to 
X by wrapping IR around the outer circle of X once between each integer. 
Take z~ Y to be a covering that is nontrivial over a different circle of each 
X •. 

13.27. For ¢;, write -y as a boundary on U, and apply r to both sides. 

13.28. Let -y be a path which, on [0,1/2] first goes around C1 counterclock
wise, then C2 counterclockwise, then C1 clockwise, then C2 clockwise. On 
[1/2,3/4] it does the same but using C3 and C4, and so on, on intervals of 
length 1/2· using the circles C2n- 1 and C2n • For all k there are homomor
phisms from the fundamental group to the free group Fk with k generators, 
obtained by using the first k circles (see Problem 13.25 or §14d). The image 
of [-y] in F 2. is a commutator of n elements, but not of fewer than n elements. 
So [-y] cannot be the commutator of any finite number of elements. 

13.29. (r,{})~log(r)+H}. 

14.5. If f and f' were two such groups, the universal property for each 
would give maps from f to f' and from f' to f, and the two composites 
f ~ f' ~ f and f' ~ f ~ f' would be the identity maps by the uniqueness 
of such homomorphisms. 

14.6. The subgroup of '1Tl(X,X) that is generated by these images has the 
same universal property. It can be proved directly by subdividing the paths. 

14.10. Take G = '1Tl(U, x) and then G = '1Tl(V, x). 

14.13. See Problem 13.25 for the uniqueness. 

14.15. If X' is X with an edge collapsed, map X' back to X as indicated: 
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a 

The map is the identity except on edges adjacent to the vertex the edge is 
collapsed to. Send this vertex to the midpoint of the collapsing edge, and 
send half of each edge adjacent to this vertex to half of the edge that was 
collapsed, and spread the other half over the full edge. Check that the two 
composites are homotopic to the identity maps on X and X' . 

14.17. For one point in a torus, the complement has a figure 8 as a defor
mation retract. 

14.18. It is a free group on a countably infinite number of generators. Use 
Theorem 14. 11. 

14.19. The complement of an infinite discrete set in the plane is a covering 
space of the complement of a point in a torus. 

14.20. The sphere with two handles can be obtained by joining the com
plements of disks in two tori. For another approach, see Chapter 17. 

15.17. See Problem 9.7. The answer is the same for (b), and (c), see Prob
lem 14.18. 

15.19. See Chapter 24 for more general results. 

16.5. Show that the set defined this way is open and closed. 

16.6. With 00 = dfa on Va' trivialize the covering over Va, by mapping 
POl -1(Ua)~ Va X IR by taking a germfat P to P X (f(P).,.. fa(P». Check that 
ga~ = fa - fr, are transition functions for this covering. If 00' = 00 + dg, let 
fa' = fa + g, and one obtains the same transition functions. 

16.11. HOX ~ HO(X; IR) comes from the fact that a locally constant function 
is a function on X with coboundary zero; H1X ~ Hl(X; IR) comes from the 
fact that a closed I-form defines by integration a function on paths that is 
a l-cocycle. It follows from Proposition 16.10 and Theorem 15.11 (and 
Exercise 15.18) that these maps are isomorphisms. 

16.12. Use the ideas of Lemma 10.2. (Caution: Proposition 16.10 and Mayer
Vietoris for homology can be used directly for example when G = IR, but 
not in general.) See §24a for the general story. 

16.13. Since the given covering is locally isomorphic to the trivial G-cov-
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ering, it suffices to prove that PT is a trivial covering when the given cov
ering is the trivial G-covering. If the given covering is the projection from 
the product X x G -+ X, there is a canonical mapping 

YT = «X x G) x T)/G -+ X x T 

determined by the map «x x g) x t)-x x g-I. t. To see that this is well 
defined on orbits, note that, for h in G, 

h· «x x g) x t) = «x x h· g) x h· t) 
- xX(hg)-lh·t = xXg-1.t. 

Check that this is a homeomorphism, with its inverse determined by sending 
x x t to «x x e) x t). 

16.14. For any y in Y and t in T, there is a unique element <I>(y, t) in T' so 
that 

f«y x t» = (y x <I>(y, t» for all y in Y and t in T. 

For fixed t, the mapping y - <I>(y, t) from Y to T' is locally constant, since 
it is constant on each piece of p-I(N), for N an evenly covered set in X. 
But since Y is connected, a locally constant function is constant; therefore 
<I>(y, t) = Ip(t) for some function Ip: T -+ T'. To see that Ip is a map of G-sets, 
calculate: 

(y x Ip(g' t» = f«y x g' t» = f«g-I . y x t» 
= (g-l·yXIp(t» = (yXg'lp(t», 

from which the equation Ip(g' t) = g . <p(t) follows. By the definition, the 
mapping from YT to YT' determined by Ip is f. 

16.17. There is a mapping from Y /H to (Y x G /H)/G that takes the H-orbit 
of a point y to the G-orbit of the point y x H. The inverse mapping from 
(Y x G /H)/G-+ Y /H is given by sending the G-orbit of y x gH to the H
orbit of g-I . y. 

16.22. By Exercise 16.14, an isomorphism f Y(I/II)-+ Y(1/I2) is given by a 
map Ip: G' -+ G' of G-sets. So 

(i) f«z x g'» = (z X Ip(g'» for all z E Y and g' E G'; and 
(ii) Ip(g' '1/I1(g-I» = Ip(g') 'I/Iz(g-I) for all g' E G' and g E G. 

Since f preserves base points, 

f«y x e» = (y X Ip(e» = (y x e), 

so we must have Ip(e) = e. Since f is a mapping of G'-coverings, we must 
have 

f«z x g'» = f(g' . (z x e» = g' -j«z x e» = g'. (z X e) = (z X g'). 

Therefore Ip(g') = g' for all g', and applying (ii) with g' = e we see that 
I/II(g -I) = 1/12(g-l) for all g in G, so 1/11 = 1/12' 



Hints and Answers 409 

16.24. Over Va, where p-I(Va) == Va X G, identify (p-I(Va) X T)/G with 
the product Va X T by (x X g X t)~x X g-I. t. The transition from Va X T 
to V~ X T is 

x X t ~ (x X eXt) ~ (x X gaf\(x)· eXt) ~ x X gafl(X)-1 . t = x X gfla(x)· t. 

16.25. Consider first the case of a trivial covering Y = X X G. Then 

(Y X G')/G = «X X G) X G')/G ~ X X G', x X g X g' ~ x X g' .1\J(g). 

Choose trivializations p - \ Va) == VaX G ofthe covering p, so thatthe resulting 
transitions are given by the cocycle {gafl}. Identify p,-I(Va) with Va X G' by 
the displayed isomorphism. The transition from Va X G' to VfI X G' (over 
van VfI) is 

x X g' ~ (x X e X g') ~ (x X gaj3(x) . e X g') ~ x X g' ·1\J(gaj3(x» . 

16.28. The transition functions are given by the Jacobian determinants of 
the change of coordinate mappings. 

17.10. 

17.12. The fundamental group is the free group with 2g + n generators 
ai' b l , ••• , ag , bg , d l , ••• , dn , divided by the least normal subgroup 
containing 

b -I b -I b -I b -I d d cg = al· I· al . I •.... ag • g. ag • g • I····· n· 

The result is a free group on 2g + n - 1 generators, if n 2: 1 (since one can 
write dn in terms of the other generators). 

18.3. These integers are determined by writing the class of 'Y in terms of 
the basis: b] = ~f=l(m;[a;] + n;[b;]). 
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18.4. If {I\J~'} is another partition of unity subordinate to another atlas of 
charts, 

The linearity is immediate from the definitions. For the opposite orientation, 
one can use the same charts but with the x and y axes interchanged, so in 
local coordinates the form v is expressed as -v"dydx, and all the integrals 
get replaced by their negatives. 

18.7. Since the I-forms a j and I3j form a basis for H'X, it suffices to prove 
these formulas when w is one of the I-forms aj or I3j. Lemmas 18.1 and 
18.6 imply these formulas. For example, (aj' a j) and faj aj are both 0, as 
are (l3j , I3j) and h I3j, and (aj , 13;) and faj I3j are both 1 if i = j, and ° oth
erwise. Finally, (l3j ,aj) = -(aj,l3j), and -(aj,l3j) and fbja j are both -1 if 
i = j and ° otherwise. 

18.8. By linearity, it is enough to do it for f..l = a j and f..l = 13;, and it then 
follows from Exercise 18.7 and Lemma 18.1. 

18.11. See Exercise 18.7 for (a). 

18.12. Changing the aj and hj if necessary, one can assume they cross the 
annulus transversally. Calculate for f..l = a j and I3j as above. 

18.14. Use Problem 18.12. 

18.15. It suffices to show that another choice of differentiable structure gives 
the same intersection numbers for pairs taken from basis elements aj and hj • 

18.20. Use a partition of unity, as in Lemma 5.5. 

18.22. If H2U = ° and H2V = 0, it follows from this and the Mayer-Vietoris 
sequence in § 16 that H2( U U V) = 0. Use Exercise 18. 18 and the fact that X 
can be built from rectangles, see Lemma 24.10. 

18.25. One can realize the surface by removing h disks from a sphere, and 
gluing in h Moebius bands. Apply Mayer-Vietoris. 

18.26. IfJis a finite covering, and g is a function on Y, defineJ*(g) to be 
the function whose value at x is the sum of the values of g at the points of 
J-'(x). A similar definition works for forms. 

19.1. f'(z) = Ux + ivx = Vy - iuy, and the Jacobian determinant is uxvy - vxuy-

19.4. Apply Riemann's theorem on removable singularities (Exercise 9.25). 

19.6. For (d), multiply the function by a suitable P2(Z)/P,(z) so that the 
result has no poles, so is constant. 
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19.8. This follows from the fact that the map Z ~ z· from D to D is proper, 
and the fact that only finitely many points are added. 

19.17. (b) If A·(Z+b')CZ+b, A'T'==aT+b, A·I ==CT+d; the de
terminant is ± 1 exactly when A' (Z + b') == Z + b, and it is positive if T 
and T' are both in the upper half plane. 

20.5. To prove that C is a Riemann surface near such a point, show that 
one or the other projection to an axis is a local isomorphism. 

20.6. The genus in each case is: (i) (m - 2)/2 if m is even, (m - 1)/2 if m 
is odd; (ii) 0; (iii) 4; (iv) 1; and (v) (m - I)(m - 2)/2. 

20.7. (c) With the notation of Exercise 19.12, the covering is given by 
assigning each (Ij to the unique transposition (l 2). 

20.12. The assumptions in (ii) guarantee that X has n distinct points over 
00, all therefore with ramification index 1. To see this, set z' == I/z and w' = w/z; 
they satisfy an equation G(z', w') = };7=ob;(z')(W,)"-1 = 0, where 
bj(z') = (z'iall/z') is a polynomial in z' with constant term Aj; the n roots 
to the equation };7=o Aj r i = 0 give n points on X over 00. 

Consider the zeros and poles of the meromorphic function h. To see what 
happens at the points over 00, make the change of coordinates as above. A 
calculation shows that h = (z,)I-nGw'(z', w'), so h must have pole of order 
n - 1 at each of these n points. At the other points of X, i.e., the points of 
C, h has no poles, so by Corollary 19.5 the sum of the orders of zeros of 
h at the points of C must be n(n - 1). By Exercise 20.9, this sum is the 
sum of e(P) - lover all ramification points of the mapping z: X ~ S2. Apply 
Riemann-Hurwitz to prove (c). 

The space of polynomials of degree at most n - 3 in Z and W has a basis 
the monomials Zi Wi with i + j ~ n - 3, and the number of these is 

(n-2)+(n-3)+ ... +2+ 1 = (n-I)(n-2)/2. 

If we verify that g' dz/h is a holomorphic I-form for each g = ZiWi , it fol
lows that we have produced gx holomorphic I-forms, showing at once that 
these are all of the holomorphic I-forms, and that their dimension is gx. At 
the points in C, the form dz/h is holomorphic, as follows from the equation 

o = d(F(z,w» = F.(z,w)dz+Fw(z,w)dw, 

so dz/h = -dw/F.(z, w), and one of the denominators is nonzero at each 
point of C. At infinity, since dz = -(z,)-2dz', 

.. dz 
z'w1--

Fw(z, w) 
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from which we see that these I-forms are also holomorphic at points over 
00. 

20.13. The proof is essentially the same, except that Fw(z, w) vanishes at 
the 28 points of X lying over the nodes, as well as at the branch points. 
Note that the space of polynomials of degree at most n - 3 vanishing at 8 
points always has dimension at least (n - l)(n - 2)/2 - 8, so the construc
tion produces at least gx independent holomorphic I-forms. But since 
dim(OI,o) $ g, the inequalities are equalities-which shows, in fact, that 
conditions to vanish at the nodes are all independent. 

20.16. Compare the sum of the orders of f*oo with those of 00, for 00 a 
meromorphic I-form on y, 

20.17. See Exercise 9.26. 

20.19. For (a), since the residue is linear, it is enough to prove it when 
00 = (z - a)m dz, a E C, mE 7L. (b) can be reduced to a local calculation, over 
a disk in S2, where one has explicit formulas for the map z. 

20.24. The point is that, up to periods, integrating from P to Q and then 
from Q to R is the same as integrating from P to R, 

21.2. Write E = D + QI + ... + Q, and apply Lemma 21.1 r times. 

21.13. Define the adele f to be /; at Pi and 0 elsewhere. Take D of large 
degree so that M + R(D) = R, and with ordp,(D) 2: mi for all i. There is there
fore anfin M so thatf-f is in R(D). 

21.20, For (a), if points PI"'" Pk have been found so that 
dim(O(PI + ... + Pk» = g - k, and k<g, take any nonzero 00 in 
O(PI + .. , + Pk), and let PHI be any point which is not a zero of w. For 
(b), change the last Pg to be a zero of 00'= 0 in O(PI + ... + Pg-I)' For 
points as in (b), Riemann-Roch implies that dim(L(PI + ... + Pg» 2: 2, so 
there is a nonconstant function with at most g poles. 

21.21. Multiplying <p by a scalar, we may arrange so the residues of <p at 
P and Q are as stated. This <p is unique up to adding a holomorphic oo. Take 
aj' bj , ooj as in §20d, with the aj and bj not passing through P or Q. Use 
Corollary 20.22 to show that there are unique complex numbers Aj so that 
the integral of <p - ~Ajooj over the cycles ak and bk are all purely imaginary. 

21.22, Take <p as in the preceding exercise, and take u to be an integral of 
the real part of <po 

21.23, An element in O( -2P) that is not in 0(0) must have a double pole, 
since it cannot have a residue at P. Multiply by a scalar to get <p + dz/z2 

holomorphic near P, change <p by a holomorphic I-form to get all its periods 
purely imaginary, and integrate the real part of <p to get u. 

21.24. Consider the sequence C=L(O)CL(PI)CL(PI +P2)C . .. ,with 
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the dimensions going up by ° or 1 at each step, reaching dimension g when 
k=2g-1. 

21.25. Apply Riemann-Roch, with E = K - D. 

21.27. The holomorphic differentials have the form [(a + bz + cw)/w] dz, 
with a, b, c E C. Check that no such form vanishes to order 2 at any point 
ofX. 

22.1. See the proof of Green's theorem in Appendix B. For the correct 
signs, see §23a. 

22.2. Extend the definition of integral over continuous paths as in the plane, 
and use the same arguments as in the planar case. 

22.3. 4'Tr. 

22.4. If F: S2~1R3\{O}, define W(F,O) to be (l/4'Tr)IIForW. 

22.6. Use Van Kampen, with one open set a ball around the missing point. 

22.7. A homotopy is H«z, w) x s) = (sz, Yl- ilzI21:1). 

22.9. To show the map is surjective, if (z, w) is in K, let z' = -z/a and 
w' = w/b, and verify that (Z,)3 = (W,)2 and Iz'l = Iw'l = 1. 

22.11. For example, with p(t) = 1 - t, one may take 

A = If2(_p2 + Y 4 + 4p3 + p4) and IL = VA=P. 
22.13. The generators for the fundamental groups of A \ K and B \ K are the 
circles around the middles of the solid tori. The generator for the funda
mental group of T \ K is a path as indicated: 

To appeal to Van Kampen, A and B must be replaced by open neighborhoods 
of which they are retracts. 
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22.14. For (a), construct a mapping from [0, It to Sk that maps the bound
ary to So, and is a homeomorphism from the interior of the cube to the 
complement of so. For (d), show that a map from Sk to sn, with k < n, is 
homotopic to one that misses the south pole, say by triangulating Sk into 
small simplices, and approximating the map by a "simplicial" map. See, 
e.g., Hilton (1961). 

22.16. Find homotopies that stretch and slide between the maps indicated 
in the diagram: 

r x x 

r A r x A x x x 

x x A 

x x r 

x x x A x r A r 

A x x 

For example, the second homotopy maps (t l , ••• , tk , s) to 

{
f<3tl' (3t2 - 2s)/(3 - 2s), t3 , ••• ,tk), O:s tl :s 1/3 , 2s/3:S t2 :S 1, 
A(3tl - 1, 3t2/(3 - 2s), t3 , ••• ,tk), 213:S tl :s 1,0:s tl :s 1 - 2s/3, 
x, otherwise. 

The third slides the squares around clockwise. 

22.22. Details can be found in many texts, e.g., Bott and Tu (1980). 

22.23. The form is closed by calculation, and it is not exact by Stokes theo
rem, since its integral over Sn-I is not zero. 

22.27. See Bott and Tu (1980). 

23.1. This is formal, using the identities 

for i<j, 

and s and s' each taking values 0 and 1. The signs cancel because of the 
shift in subscript from j to j - 1. 

23.5. Check that (a? - a!) oS = So (a? - a!). 
23.15. Induct on p, and use Mayer-Vietoris for U = VI U ... U Up-I and 
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V= Vp- Note that vn V= (VI n V) u ... U (Vp _ 1 n V), so the inductive 
hypotheses imply to V, V, and V n V. 

23.17. For (d), argue by induction, using Mayer-Vietoris. If g: S"-I_S"-I 
has degree d, show thatf: S"_Sn given by the formula 

f(XI, ... ,Xn+l) = (g(XI' ... ,xn),X"+I) 

also has degree d. 

23.19. For (c), use Problem C.3 and the n-dimensional version of Lemma 
B.9; see the proof of Claim D.3. 

23.22. Induct on n, comparing the action of the antipodal map with the 
Mayer-Vietoris isomorphism. 

23.23. For (a), such a vector field gives a mapf: s"_sn that has no point 
P mapped to P or to - P. Such a map is homotopic to the identity and to 
the antipodal map. Use the preceding problem. For (b), consider the map
ping (XI,X2," . ,Xn+I)-(X2,-XI,'" ,xn+l>-xn), 

23.26. For (a), regard SmCS", and note that a mapf: Sn_Sn that is not 
surjective has degree zero. The other proofs are essentially the same as in 
Chapter 4. 

23.27. In the situation of (a), there is a homotopy from f to a map g to 
which Theorem 23.24 applies, given by homotopic to the map g given by 

f(P) - sf(P*) 

H(P x s) = Ilf(P) - sf(p*)II' 

For (b) show similarly thatfis homotopic to a map g with g(P*) = g(P) for 
all P. (c) Any automorphism g without fixed points has degree - 1, so if g 
and h are nontrivial automorphisms, since g . h has degree 1, g . h must be 
the identity. 

23.28. Lift to a map from sn to sn and apply Problem 23.27. 

23.31. If m=n, HMmxs") is Z for k=O and k=n+m, and ZEeZ if 
k = n, and 0 for other k. If m ¥- n, the answer is Z for k = 0, m, n, and 
m + n, and 0 for other k. For the proof, induct on n, using sm x V and 
Sm x V, with V and V as before. 

23.36. Identify ~n with the complement of a point Pin sn, and use Mayer
Vietoris for this open set and a small neighborhood of P. 

23.37. See Proposition 5.17 and Corollary 5.18. 

23.39. Cut the band in half: 
exact sequence 

. Look at the 
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and the maps to the terms in the corresponding sequence with A and B re
placed by Any and B n Y, and X replaced by Y. 

23.41. Use n-dimensional grids, and generalize the arguments of Chapters 
6 and 9. 

2..1.5. The fact that C" is free abelian means that one can find a subgroup 
C" of C that maps isomorphically onto C", and then C is the direct sum of 
E" and the image of C'; and Hom( - ,G) preserves direct sums. 

24.7. This amounts to an identity on [k, which is proved just as in the case 
of Green's theorem for a rectangle by a calculation using Fubini's theorem, 
as in Proposition B.6. 

24.9. This is the higher-dimensional version ofreparametrization for paths. 
Here, for any k-cube r, SoA(r) - r = aA, where 

A(s, t l , • •• ,tk) = r(s '1X(2t l ) + (1 - s)· t l , • •• ,s '1X(2tk) + (1 - s)· tk), 

noting that the other terms in the boundary are degenerate. Defining Sp and 
Rp by the same formulas as in §23b, one calculates that 

SP-l = aoRp+Rpoa+(SoA-J)oSp, 

and the rest of the proof is the same as before. 

24.14. This is clear except where the coboundary and dual of the boundary 
are involved. Let W = WI - W2 be a closed (k - I)-form representing a class 
[w] in H"-I(U n V), with WI and W2 (k - I)-forms on U and V, and let z = CI + C2 

represent a class [z] in lI';(U U V), where CI and C2 are chains on U and V 
respectively. Then 

/)([w))([z)) = L dWI + Ldw2 = L. WI + L W2 = [w](a([z)). 

24.15. See Problem 23.41. 

24.16. Use Mayer-Vietoris and induct on the number of open sets in the 
cover. 

24.21. Set (p*w)(x) = W(YI) + W(Y2) where p -I(X) = {YI ,Y2}' For (c), note 
that Ix p*w = 0 for any n-form W with compact support on X. 

24.23. For (a), use HkX:::= (Hn-kX)* :::= «HkX)*)*, and the general fact that 
if V is a vector space isomorphic to (V*)* , then V must be finite dimensional. 
For (b), use the linear algebra fact that a finite-dimensional vector space 
with a nondegenerate skew-symmetric form must be even dimensional. 

24.24. Since the spaces are finite dimensional, H~-PX is isomorphic to (HPX) * . 

24.25. This follows from the fact that all cubes r have compact image in 
X. (Compare the special case used in the argument in §5c.) 
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24.26. (b) follows from the definitions, just as for homology. 

24.27. Use Exercise 24.S. 

417 

24.36. Consider for each n the exact sequences O~Zn~Cn~Bn-1 ~ 0 
and O~Bn~Zn~Hn~O, and use Problem C.16. 

24.37. For (c), fix an ordering on N(au). For each vertex v, choose a point 
Cv in Uv , regarded as a O-chain on Uv • If (vo, VI) is a I-simplex, then, since 
Uvo U UV\ is connected, there is a path from Vo to VI in Uvo U UV\' which de
termines a I-chain C(VO.VI). Construct, by induction on n, for each n-simplex 
(vo, ... ,vn), a chain c(vo ..... v.) in Cn(UvoU ... U Uv), such that 

n 

a(c(vo .. . .. v) = 2: (-l)ic(vo .. . .. Vi •. . .• v.)· 
;=0 

The existence of c(vo .. . .. v.) follows from the fact that the right side is an 
(n - I)-cycle on Uvo U ... U Uv., and Hn-l(Uvo U ... U UvJ = 0 by Ex-
ercise 23.1S(b). This gives a map C*(N(au»~ C~. To see that the resulting 
map on homology is an isomorphism, induct on the number of open sets; 
take any V and construct subcomplexes LI and L2 as in the proof of Prop
osition 24.33, and compare the corresponding Mayer-Vietoris sequence for 
LI and L2 with that of the covering of X by Uvand Uv'>'v Uv'. 

A.6. If not, each point has a neighborhood meeting only finitely many, and 
K would be contained in a finite union of such neighborhoods. 

A.8. Without loss of generality, one may assume K contains a neighbor
hood of the origin. Map aK to sn-I by mapping P to P Illpll. This is contin
uous and bijective, so a homeomorphism. Let f: Sn-I ~ aK be the inverse 
map. Define F: D n ~ K by F(O) = 0, and F(P) = IIPII· j{P fllPll) for P "# O. Then 
F is continuous and bijective, so a homeomorphism. 

A.16. A connected and locally path-connected space is path-connected, as 
seen by showing that the set of points that can be connected to a given point 
by a path is open and closed. 

B.12. Find a countable covering of U and so that each open set in the cov
ering is contained in some U a' and so that any point has a neighborhood 
that only meets finitely many of the open sets. 

B.14. With g as in Step (2), let hex) = f~g(t) dtl f6g(t) dt, and set 
$(x, y) = her - rl)/r2 - rl), where r = II(x, y)ll. 

C. 7. If {ea} is a basis for F, and \p( ea ) = ea , these ea generate a free abelian 
subgroup F of A, and A is the direct sum of Ker(\p) and F by Exercise C.S. 

C.IS. Let (l be the map from A to B, 13 the map from B to C, and let C' 
be the image of 13, 13': B ~ C' the induced surjection . Iff in Hom(B, IR) maps 
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to 0 in Hom(A, IR), f vanishes on the image of a. Since B /Image(a) = C' , 
there is a homomorphism g' from C' to IR such that g' 0 W = f By the lemma, 
there is a homomorphism g from C to IR that restricts to g' on C'. Then 
go f3 = f, which means that g in Hom( C, IR) maps to f. 
C.16. Let B =A2/Al' and show that there are exact sequences 

O-AI-A2-B-O and O-B-A3- ... -An-O. 
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Index of Symbols 

For some general notation, see page 
365. 

CQ,OO, smooth, 3 
I-form, differential, 4 
J~w, integral of I-form along smooth 

path, 5 
along segmented path, 8 
along a continuous path or I-chain, 

127, 132 
d, df, differential of function, form, 

6,247,318,326,329,391 
w{}, I-form for angle, 6 
aR, boundary of rectangle, 11, 80 
",p,p path around circle, 15 
Wp,{}, I-form for angle around P, 16, 

22 
{}(t), angle function along path, 18 
W(""O), winding number around 0, 

19 
:y, lifting of path, 21, 156 
W("" P), winding number of", around 

P, 23, 36, 84 
",-t, inverse of path, 23, 165 
grad (f), gradient, 28 
Supp(",), support of path or chain, 

42 
W(F,P), winding number, 44, 328 
deg(F), degree of mapping of cir

cles,45 

degp(F), local degree, 46 
D, disk, 50 
C = aD, boundary circle of disk, 50, 

80 
P*, antipode of P, 53 
HOU, Oth De Rham cohomology 

group, 63 
HI U, 1 st De Rham cohomology 

group, 63 
[w], cohomology class of form w, 64 
Wp = (]I27T)wp,{), 64 
0, coboundarymap, 65-67, 224, 326 
I-chain, 78-79 
O-chain, 80-81 
ZoU, group of O-chains on U, 81, 91 
BoU, group of O-boundaries on U, 81, 

91 
HoU = ZoU /BoU, Oth homology group 

on U, 81, 91 
C]U, group of I-chains on U, 82, 91 
ZIU, group of I-chains on U, 82, 91 
B 1 U, group of I-boundaries on U, 83, 

91 
H]U=ZIU/B1U, 1st homology group 

on U, 83, 91 
F *, map on chains or homology in

duced by F, 89, 92 
IndexpV, index of vector field at 

point, 97, 104, 107 
vic, restriction of V to C, 97 

421 
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TpS, tangent space, 102 
g, genus of surface, 108, 112 
IRp2, projective plane, 115 
W('Y,A), winding number around set 

A, 123 
A"" infinite part of complement, 125 
(n + I)-connected plane domain, 125 
lJj(w) = lJ(w,A j), period, 130 
Resif), residue off at a, 133 
ordif), order off at a, 134 
a, boundary map, 137-140, 334 
S, subdivision operator, 139, 334-

335 
MV(i) to MV(vi), Mayer-Vietoris 

properties, 140-142, 148, 258 
+, -, maps on homology and co
_ homology, 144, 148-149 

HoX, reduced homology group, 145 
flOx, reduced cohomology group, 

149 
n-sheeted covering, 155 
y * 'Y, endpoint of lift of 'Y starting at 

y, 156-157 
IRpn, real projective space, 159 
Aut(Y IX), group of deck transfor-

mations, 163 
0"' T, product of paths, 165 
En constant path at x, 165 
'!TI(X,X), fundamental group of X at 

x, 168 
['Y], class of loop 'Y in '!TI(X,X), 168 
e = [Ex], identity in '!TI(X, x), 168 
T#, map induced by path T, 169 
'!TI(X, X)abeh 173 
y * [0"], endpoint of lift of 0" starting 

at y, 180 
[0"] . z, left action of fundamental 

group on covering, 182-184 
PH: YH~X' covering from 

He '!TI(X, x), 189 
.Kabel, universal abelian covering, 192 
Pp: Yp ~ X, covering from 

p: '!TI(X,X)~G, 193-194 
(z x g), element of Yp from z E Y, 

gEG,194 

Index of Symbols 

HI(fJU;G), first Cech cohomology set, 
209 

E[(fJU,x;G), with base point, 210 
M~M, orientation covering, 219 
p",: X"'~X, covering from I-form, 

221 
HO(X;G), HI(X;G), cohomology, 

222-225 
YT~X, covering from G-set and G

covering, 225 
Y(IjI)~X, covering from 1jI: G~G' 

and G-covering, 227 
aj and bj, basic loops on a surface, 

244 
(0", T), intersection number, 245-246, 

255-256, 357-358 
(J.j and I3j, basic I-forms on a surface, 

248-251 
ffxv, integral of 2-form on surface, 

251 
1'1, wedge of forms, 252, 325, 355, 

392 
(w,I1), intersection number for 1-

forms, 252, 289 
H 2X, second De Rham group, 257 
e(P) = e/P) , ramification index, 265 
ordp(f) , 267 
CIA, Riemann surface of genus 1, 

264, 275-276, 291-293 
gx, genus of Riemann surface X, 273 
Fw(Z, W), partial derivative, 277-278 
M = M(X) , field of meromorphic 

functions, 281 
C(z, w), field of rational functions in 

z and w, 282 
n = nl,o = nl,o(X), space of holo-

morphic I-forms, 284 
nO,1 = nO.I(X), antiholomorphic 1-

forms, 285 
ordp(w), order of meromorphic 1-

form, 287 
Resp( w), residue of meromorphic 1-

form, 288, 299 
WI, • • • , wg , basis of holomorphic 

I-forms, 289 



Index of Symbols 

Z = (Tj.k), period matrix, 290 
A, Abel-Jacobi mapping, 291 
Div(!), divisor off, 291, 295 
ordp(D), order of divisor at point, 295 
deg(D), degree of divisor, 295 
E 2: D, E - D is effective, 295 
Div(w), divisor of meromorphic 1-

fonn,295 
L(D), functions with poles allowed 

at D, 296 
a(D), meromorphic I-fonns with 

zeros at D, 296 
E, divisor of poles, 297 
f = (jp), adele, 299 
R, space of adeles, 299 
R(D), adeles with poles allowed at 

D,300 
SeD) = R/(R(D) + M), 300 
a'(D), dual space to SeD), 300 
ai, union of all a'(D), 302 
HkU, De Rham cohomology group, 

319,325 
'lTiX, x), higher homotopy group, 324 
H;X, De Rham cohomology with 

compact supports, 328 
af, boundary slices, 332 
CkX, k-chains on X, 332 
a, af, boundary of cube or chain, 333 
HkX = ZkX/BkX, homology group, 

333 
R, R(f), operator on chains, 333 

423 

A, A(r), operator on chains, 335 
Rp, operator on chains, 335 
Hk(X)CiJl, homology with small cubes, 

338 
a, boundary homomorphism, 348 
H;X, homology using <(;x cubes, 351 
qjJx, duality map, 356 
Hk(X; Z), Hk(X; G), cohomology 

groups, 358-359 
IKI, realization of simplicial com

plex, 360 
C*K, chain complex of simplicial 

complex, 360, 363 
HnK, homology group of simplicial 

complex, 360 
fa, cubical chain of simplex, 361 
Int(A), interior of A, 369 
A, closure of A, 369 
Ker, kernel, 378, 380 
1m, image, 378, 381 
V /W, quotient space, 378 
VEBW, EBV", direct sum, 379, 381 
IIV", direct product, 379, 381 
v' w, dot product, 379 
Ilvll, length of v, 379 
GLnlR, invertible matrices, 379-380 
G /H, quotient group, 380 
Hom(G, G'), set of homomor

phisms, 381 
F(X), free abelian group on X, 382 
H k (X), homology with Z/2Z coef

ficients, 393 



Index 

abelian covering, 192 
abelianized fundamental group, 173 
Abel-Jacobi mapping, 291-292 
Abel-Jacobi theorem, 291, 306-311 
Abel's theorem, 291, 306 
abstract simplicial complex, 359 
action of group on space, 158-159 
adele, 299 
adjacent faces, 233 
affinely independent vectors, 360 
Alexander's Lemma, 146 
analytic function, 132-133, 263, 264 
angle function, 6-7 

along path, 17-19,36-37 
antiholomorphic I-forms, 284 
antipode, antipodal map, 53-55, 172, 

340-341 
Antoine's necklace, 323 
approximation lemma, 87 
Argument Principle, 134-135 
atlas of charts, 389 
automorphism group of covering, 

163, 182-186, 189 

barycentric subdivision, 113, 273, 
363 

basis 
of free abelian group, 382 
of vector space, 378 

bilinear pairing, 253 
Borsuk-Ulam theorem, 54, 185,341, 

393-396 
boundary, 77, 368 

circle, 50, 80 
map, 137-140, 337-338 
I-chain, 82 

branched coverings, 268-272, 279, 
321 

branch locus, 321 
Brill-Noether reciprocity, 306 
Brouwer theorems, 50, 150, 340 

Cartesian product, 170, 368 
Cauchy integral theorem, formula, 

132-133 
Cauchy-Riemann equations, 131 
Cech 

with base point, 210 
coboundary, 212 
cocycle, 208 
cohomology class, group, 209, 

212, 228-229 
chain, 78-82, 332 
chain complex 

chain homotopy of maps of, 350 
exact sequence of, 347 
homology of, 347 
map of, 350 

425 
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chain rule, 373-374 
change in angle, 19, 36-37 
change of coordinates, 389 
chart, 389 
circulation of fluid, 29 
clamshell, 187, 192 
closed form, 12,247,319 
closed I-chain, 80 
closure, 369 
coboundmy map, 65-68, 223, 326 
coboundmy of cochain, 223 
cochain, 222 
cochain complex, 348 
code for triangulation of surface, 235-

236, 241-242 
cohomology, 222-225, 358-359; see 

also De Rham 
of cochain complex, 348 
with coefficients, 349 

coloring, 76, 115 
commutator subgroup, 173 
commute (diagram), 92 
compact, 367-368 
complex conjugation operator, 285 
complex integration, 131-136 
complex I-form, 131 
cone, 361 
conjugate homomorphisms, 196 
connected component, 369 
connected space, 369 
continuous map, 367 
contractible space, 93 
convex, 12, 368 
covering 

map, 153 
n-sheeted, 155 
from I-form, 220-222 
of space, 153 
transformation, 163 

critical point, nondegenerate, 101 
crosscap, 117, 203 
cube, k-cube, 332 

«600, 351 
curl, 29, 320 
curve 

Index 

complex affine plane, 277 
of a polynomial, 277 
Riemann surface of, 277-281 

cycle, 82 

deck transformation, 163 
deformation retract, 93 
degenerate cube, 332 
degree 

of divisor, 295 
homomorphism on O-cycles, 82 
of mapping of circles, 45, 53-55 
of mapping of oriented manifolds, 

342-343 
of mapping of spheres, 324, 339 

De Rham cohomology groups, 63-
65, 256-260, 325-328 

with compact supports, 328-331 
and homology, 213-216 

differentiable function on a surface, 
390 

differential form, 4, 247, 251, 317, 
391 

differential of function, form, 6, 247, 
318, 326, 329, 391 

differential topology, 113 
dimension of vector space, 378 
direct limit, 200-201, 358 
direct product, 379, 381 
direct sum, 379, 381 
discrete set, 100, 134, 203, 271 
discrete topology, 153,368 
discriminant, 278 
disjoint union, 368 
divergence, 29, 320 
divisor, 295 

of function, 291, 295 
of meromorphic I-form, 295 

Dog-on-a-Leash theorem, 41 
duality, 148, 213, 223, 350-359 

edge, 233 
effective divisor, 295 



Index 

eigenvalues, 52 
elliptic curve, 291-293 
endpoint of path, 5 
engulfmg number, 31, 319, 328, 339 
equality of mixed partial derivatives, 

374 
Euler characteristic, xii, 113-119, 

146, 357, 363 
Euler's equation, theorem, 75, 113, 

244, 260, 363 
even action, 159, 161 
evenly covered, 153 
exact form, 12, 247, 319 
exactness of forms, 10-16 
exact sequence, 144, 348, 384-385 
exponential mapping, 154, 192,265 

face, 233, 359 
final point of path, 5 
Five-Lemma, 346-347 
fixed point, 49-53, 340 
fixed point property, 51 
fluid flow, 28-31, 305, 320 
flux of fluid, 29 
free abelian group, 382 

on a set, 382 
free group, 191,201-203 
free product, 200 
Fubini's theorem, 374 
functor, functorial, 92, 168, 326, 359 
fundamental group, 168-172 

and coverings, 179-182, 189-192 
and homology, 173-175 

fundamental theorem of algebra, 48-
49 

fundamental theorem of calculus, 373 

Galois theory, 190, 283 
Gauss's Lemma, 385 
G-covering, 158-164 

isomorphism of, 160 
trivial, 160 

generators of group, 380 

427 

genus, 244, 273, 281, 285-286 
geometry, locally Euclidean, 162-

163 
germ, 230-231, 283-284 
gradient, 28, 320 
graph (finite), xi, 75-76, 145,202 
Green's formulas, 30 
Green's theorem for a rectangle, 11, 

374 
grid, 85 
groups acting on spheres, 341 
G-sets, maps and isomorphisms of, 

225 

ham sandwich theorem, 57, 341 
harmonic function, 30-31, 305 
Hausdorff space, 367 
Hessian, 101, 286 
holes, 125 
holomorphic function, 264 
holomorphic I-form, 284-285, 294 
homeomorphism, 367 
homologous I-chains, 82, 88 
homology class, 84 
homology group, 81, 83, 332-334 

of chain complex, 347 
with coefficients, 393 

homomorphism from G-covering, 
194-195, 211 

homotopic 
maps, 92, 170, 324, 333 
paths, 39 

homotopy 
of closed paths, 27, 39, 165 
equivalence, 172, 202 
groups, 324-325 
of paths with fixed endpoints, 25, 

39 
type, 171-172 

Hopf mapping, 325 
Hurewicz theorem, 212 
hyperbolic plane, 245 
hyperelliptic curve, Riemann sur

face, 293-294, 306 
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incompressible flow, 29 
independent of path, integral, 5, 8 
index of vector field at point, 97, 102, 

104, 107, 112,287,341,387, 
390 

initial point of path, 5 
integral 

of k-form over a k-cube, 351 
of I-form along a smooth path, 5, 

317 
along a continuous path or chain, 

127, 213, 247 
of 2-form, 251-252, 318 

integrating along a fiber, 330 
interior, 77, 369 
intersection pairing 

on manifold, 357-359 
on surface, 245-246, 252-256 

invariance of dimension, 55, 341, 344 
invariance of domain, 73, 344 
inverse limit, 358 
inverse of path, 23, 165 
irrotational flow, 29 
isomorphism of coverings, 153 

Jacobian matrix or determinant, 47, 
54,263,311,387 

Jacobian of Reimann surface, 291 
Jacobi Inversion Theorem, 291, 310 
Jordan curve theorem, 59-60, 68-77, 

146 
generalized, 343-345 

Klein bottle, 116, 161, 186,219,401 
knot, 320 

equivalence of, 320 
fundamental group of comple

ment, 320-323 
similarity of, 320 
trivial, 321 

Konigsberg bridges, xi-xii 
Kuratowski theorem, 76 

lattice, 264, 290-291 
Lebesgue Lemma, 371-372 
left coset, 380 
Lens space, 162, 186 
lifting 

of homotopy, 157 
of mapping, 155, 180-181 
of path, 21, 156 

Index 

linearly independent, 382, 384 
link, linking number, 325, 342 
local degree, 46, 340 
locally connected space, 157-158, 

369 
locally constant, 3 
locally path-connected space, 180, 

370 
locally simply connected, 187 
logarithmic pole, 305 
log function, 265 
loop at a point, 168 
Lustemik -Schnirelman-Borsuk 

theorem, 57, 341 

manifold, 315 
matrix, 379 
Mayer-Vietoris 

for cohomology, 147-150, 217-
218, 258-259, 326, 348-349 

for cohomology with compact 
supports, 329-330, 349 

for homology, 140-147, 334-339, 
349,352 

for simplicial complexes, 362 
mean value theorem, 373 
meromorphic function, 134, 267, 

281-284 
meromorphic I-form, 287 
module of periodicity, 130 
moduli of Riemann surfaces, 264, 

275-276, 289 
Moebius band, 77, 116, 161, 229, 

345 
Morse theory, 119 
multiplicity of root, 47, 136 



Index 

multiply connected, 125 

neighborhood, 367 
nerve of open covering, 363 
node, 286 
nondegenerate cube, 332 
nonorientable surface, 115, 241, 244, 

345 
can't be embedded in 3-space, 345 

nonsingular point of complex curve, 
280 

normal form of a surface, 239, 241-
242 

normal subgroup, 183, 380 
normalizer, 184 

open mapping, 266 
open rectangle in [Rn, 352 
orbit, 159 
order of meromorphic function at 

point, 134, 267 
orientable, 390 
orientation, 390 

covering, 219, 357 
of manifold, 219 
preserving or reversing, 340 
of Riemann surface, 263 

oriented surface, 115, 390 
orthogonal matrix, 172 

partition of unity, 66, 375-377 
patching spaces, 370 
patching coverings, 196-197, 207-

210 
path, 4, 36, 164 
path-connected space, 370 
path integrals, 3-16 
peaks, valleys, passes, 101, 105, 113 
perfect pairing, 254 
period, 130-131 
period matrix, 290 
period module, 130, 222, 250-251 

429 

Poincan!-Bohl theorem, 40 
Poincare duality, 357 
Poincare-Hopf theorem, 108, 117-

118 
Poincare Lemma, 326-327, 330-331 
polar coordinate mapping, 20-23, 

154, 192, 221 
pole, of order k, 134, 267 
potential function,S, 28 
product of paths, 165 
projection from space to quotient 

space, 159 
projection of a vector on another, 379 
projective plane, liS, 219 
properly discontinuous, 159 
proper mapping, 269 

quaternions, 162 
quotient space, 378 
quotient topology, 370 

ramification index, 265-267 
ramification point, 265-267 
rank-nullity theorem, 378 
rank of abelian group, 382, 384 
rectangular I-chain, 85 
reduced homology group, 145 
regular covering, 184, 190 
relative homology groups, 350 
reparametrization of a path, 23, 40, 

82 
residue, 133-134,288,299 
Residue Formula, 288 
Residue Theorem, 134 
restriction maps in cohomology, 68, 

147,258 
retract, retraction, 50, 340 
Riemann 

mapping theorem, 75 
theorem on removable singulari

ties, 133 
Riemann-Hutwitz formula, 272-276, 

288 
Riemann-Roch theorem, 303-306 
Riemann's bilinear relations, 289 
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Riemann's formula, 274 
Riemann surface, 263 

of algebraic curve, 277-281 
Rouche's theorem, 136 

saddle point, 10 I 
Schoenflies theorem, 75 
section of covering, 161 
segmented path, 7 
Seifert-van Kampen theorem, 198 
semilocally simply connected, 187 
separate, 146, 345 
simplex, simplices, 359-360 
simplicial complex, 359 

chain complex of, 360 
ordered, 360 

simply connected space, 182 
singularity 

of curve, 277, 280, 286, 321 
of vector field, 97 

skew-symmetric pairing, 253 
small cubes, 338 
smooth function, 3 
smooth homotopy, 25, 27 
smooth path, 4 
spheres, 339 
sphere with g handles, 108, 112, 118, 

203, 241, 259 
spherical coordinate mapping, 319 
spin group, 162 
standard basis, 378 
star of vertex, 363 
starshaped, 12, 83 
Stokes' theorem, 318, 351 
Stone-Tukey theorem, 57, 341 
straight path, 80 
subcomplex of complex, 361 
subspace, 367 
surface, 106-ll9, 231, 233-260, 

389-391 
with boundary, 76 
classification of, 236-242 
cohomology on, 247-260 

Index 

fundamental group of, 242-245, 
272 

homology of, 243 
smooth,390 

tangent bundle, 229 
tangent space, 102, 118 
topological group, 162 
topological space, 367 
torus, 106, 186 
torus knot, 322-323 
transfer, 260, 394 
transitive action, 163, 226, 272 
triangulation, 113, 233-242, 273 
trivial covering, 153 

uniformization theorem, 268 
unique factorization domain, 385 
universal abelian covering, 192 
universal covering, 186-192, 193-

196, 226 
of surface, 245 

universal property, 198 

Van Kampen theorem, 197-201 
vector bundle, 229 
vector field, 27, 97, ll2, 287, 319-

320 
on spheres, 102-105, 341 
on surface, 390 

vertex, 233, 361 

wedge product of forms, 252, 325, 
355, 392 

Weierstrass gaps, 306 
Weierstrass $J-function, 293 
winding number, 19,23,36, 73, 84, 

157,328 
around a set, 123 

zero of order k, 267 
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82 BOTT/Tu. Differential Forms in Algebraic Complex Variables. 

Topology. 109 LEHTO. Univalent Functions and 
83 WASHINGTON. Introduction to Cyclotomic TeichmUller Spaces. 

Fields. 2nd ed. 110 LANG. Algebraic Number Theory. 
84 IRELAND/RoSEN. A Classical Introduction III HUSEMOLLER. Elliptic Curves. 

to Modern Number Theory. 2nd ed. 112 LANG. Elliptic Functions. 
85 EDWARDS. Fourier Series. Vol. II. 2nd ed. 113 KARATZAS/SHREVE. Brownian Motion and 
86 VAN LINT. Introduction to Coding Theory. Stochastic Calculus. 2nd ed. 

2nd ed. 114 KOBLITZ. A Course in Number Theory and 
87 BROWN. Cohomology of Groups. Cryptography. 2nd ed. 
88 PIERCE. Associati ve Algebras. 115 BERGERIGOSTIAUX. Differential Geometry: 
89 LANG. Introduction to Algebraic and Manifolds, Curves, and Surfaces. 

Abelian Functions. 2nd ed. 116 KELLEy/SRINIVASAN. Measure and Integral. 
90 BR0NDSTED. An Introduction to Convex Vol.!. 

Polytopes. 117 SERRE. Algebraic Groups and Class Fields. 
91 BEARDON. On the Geometry of Discrete 118 PEDERSEN. Analysis Now. 

Groups. 119 ROTMAN. An Introduction to Algebraic 
92 DIESTEL. Sequences and Series in Banach Topology. 

Spaces. 



120 ZIEMER. Weakly Differentiable Functions: 149 RATCLIFFE. Foundations of 
Sobolev Spaces and Functions of Bounded Hyperbolic Manifolds. 
Variation. 150 EISENBUD. Commutative Algebra 

121 LANG. Cyclotomic Fields I and II. with a View Toward Algebraic 
Combined 2nd ed. Geometry. 

122 REMMERT. Theory of Complex Functions. 151 SILVERMAN. Advanced Topics in 
Readings in Mathematics the Arithmetic of Elliptic Curves. 

123 EBBINGHAUS/HERMES et al. Numbers. 152 ZIEGLER. Lectures on Polytopes. 
Readings in Mathematics 153 FULTON. Algebraic Topology: A 

124 DUBROYIN/FoMENKOINOYIKOY. Modern First Course. 
Geometry-Methods and Applications. 154 BROWN/PEARCY. An Introduction to 
Part III. Analysis. 

125 BERENSTEIN/GAY. Complex Variables: An 155 KASSEL. Quantum Groups. 
Introduction. 156 KECHRIS. Classical Descriptive Set 

126 BOREL. Linear Algebraic Groups. 2nd ed. Theory. 
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Theory of Groups. 4th ed. 179 DOUGLAS. Banach Algebra Techniques in 

Operator Theory. 2nd ed. 



180 SRIV ASTA V A. A Course on Borel Sets. 192 HIRSCH/LACOMBE. Elements of Functional 
181 KRESS. Numerical Analysis. Analysis. 
182 W ALTER. Ordinary Differential 193 COHEN. Advanced Topics in 

Equations. Computational Number Theory. 
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