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Preface 

The term "weakly differentiable functions" in the title refers to those inte
grable functions defined on an open subset of R n whose partial derivatives 
in the sense of distributions are either LP functions or (signed) measures 
with finite total variation. The former class of functions comprises what 
is now known as Sobolev spaces, though its origin, traceable to the early 
1900s, predates the contributions by Sobolev. Both classes of functions, 
Sobolev spaces and the space of functions of bounded variation (BV func
tions), have undergone considerable development during the past 20 years. 
From this development a rather complete theory has emerged and thus has 
provided the main impetus for the writing of this book. Since these classes 
of functions play a significant role in many fields, such as approximation 
theory, calculus of variations, partial differential equations, and non-linear 
potential theory, it is hoped that this monograph will be of assistance to a 
wide range of graduate students and researchers in these and perhaps other 
related areas. Some of the material in Chapters 1-4 has been presented in 
a graduate course at Indiana University during the 1987-88 academic year, 
and I am indebted to the students and colleagues in attendance for their 
helpful comments and suggestions. 

The major thrust of this book is the analysis of pointwise behavior of 
Sobolev and BV functions. I have not attempted to develop Sobolev spaces 
of fractional order which can be described in terms of Bessel potentials, 
since this would require an effort beyond the scope of this book. Instead, 
I concentrate on the analysis of spaces of integer order which is largely 
accessible through real variable techniques, but does not totally exclude 
the use of Bessel potentials. Indeed, the investigation of pointwise behavior 
requires an analysis of certain exceptional sets and they can be conveniently 
described in terms of elementary aspects of Bessel capacity. 

The only prerequisite for the present volume is a standard graduate 
course in real analysis, drawing especially from Lebesgue point theory and 
measure theory. The material is organized in the following manner. Chap
ter 1 is devoted to a review of those topics in real analysis that are needed 
in the sequel. Included here is a brief overview of Lebesgue measure, V' 
spaces, Hausdorff measure, and Schwartz distributions. Also included are 
sections on covering theorems and Lorentz spaces-the latter being neces
sary for a treatment of Sobolev inequalities in the case of critical indices. 
Chapter 2 develops the basic properties of Sobolev spaces such as equiva
lent formulations of Sobolev functions and their behavior under the opera-
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tions of truncation, composition, and change of variables. Also included is a 
proof of the Sobolev inequality in its simplest form and the related Rellich
Kondrachov Compactness Theorem. Alternate proofs of the Sobolev in
equality are given, including the one which relates it to the isoperimetric 
inequality and provides the best constant. Limiting cases of the Sobolev 
inequality are discussed in the context of Lorentz spaces. 

The remaining chapters are central to the book. Chapter 3 develops the 
analysis of pointwise behavior of Sobolev functions. This includes a dis
cussion of the continuity properties of functions with first derivatives in 
LP in terms of Lebesgue points, approximate continuity, and fine conti
nuity, as well as an analysis of differentiability properties of higher order 
Sobolev functions by means of V-derivatives. Here lies the foundation for 
more delicate results, such as the comparison of V-derivatives and dis
tributional derivatives, and a result which provides an approximation for 
Sobolev functions by smooth functions (in norm) that agree with the given 
function everywhere except on sets whose complements have small capacity. 

Chapter 4 develops an idea due to Norman Meyers. He observed that 
the usual indirect proof of the Poincare inequality could be used to es
tablish a Poincare-type inequality in an abstract setting. By appropriately 
interpreting this inequality in various contexts, it yields virtually all known 
inequalities of this genre. This general inequality contains a term which in
volves an element of the dual of a Sobolev space. For many applications, 
this term is taken as a measure; it therefore is of interest to know precisely 
the class of measures contained in the dual of a given Sobolev space. For
tunately, the Hedberg-Wolff theorem provides a characterization of such 
measures. 

The last chapter provides an analysis of the pointwise behavior of BV 
functions in a manner that runs parallel to the development of Lebesgue 
point theory for Sobolev functions in Chapter 3. While the Lebesgue point 
theory for Sobolev functions is relatively easy to penetrate, the corre
sponding development for BV functions is much more demanding. The 
intricate nature of BV functions requires a more involved exposition than 
does Sobolev functions, but at the same time reveals a rich and beautiful 
structure which has its foundations in geometric measure theory. After the 
structure of BV functions has been developed, Chapter 5 returns to the 
analysis of Poincare inequalities for BV functions in the spirit developed 
for Sobolev functions, which includes a characterization of measures that 
belong to the dual of BV. 

In order to place the text in better perspective, each chapter is con
cluded with a section on historical notes which includes references to all 
important and relatively new results. In addition to cited works, the Bib
liography contains many other references related to the material in the 
text. Bibliographical references are abbreviated in square brackets, such as 
[DLJ. Equation numbers appear in parentheses; theorems, lemmas, corollar
ies,and remarks are numbered as a.b.c where b refers to section b in chapter 
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a, and section a.b refers to section b in chapter a. 
I wish to thank David Adams, Robert Glassey, Tero Kilpeliiinen, 

Christoph Neugebauer, Edward Stredulinsky, Tevan Trent, and William 
K. Ziemer for having critically read parts of the manuscript and supplied 
many helpful suggestions and corrections. 

WILLIAM P. ZIEMER 
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1 

Preliminaries 
Beyond the topics usually found in basic real analysis, virtually all of the 
material found in this work is self-contained. In particular, most of the in
formation contained in this chapter will be well-known by the reader and 
therefore no attempt has been made to make a complete and thorough pre
sentation. Rather, we merely introduce notation and develop a few concepts 
that will be needed in the sequel. 

1.1 Notation 

Throughout, the symbol n will generally denote an open set in Euclidean 
space Rn and 0 will designate the empty set. Points in Rn are denoted by 
x = (Xl"'" xn), where Xl E RI, 1 ~ i ~ n. If x, Y E Rn, the inner product 
of X and y is 

and the norm of X is 

n 

X· Y = LXiYi 
i=l 

Ixi = (x· x)I/2. 

If u: n ---. RI is a function defined on n, the support of u is defined by 

spt u = n n {x: u(x) =f. a}, 

where the closure of a set S c Rn is denoted by S. If Sen, S compact 
and also Sen, we shall write S cc n. The boundary of a set S is defined 
by 

as = S n (Rn - S). 

For E c Rn and x E Rn , the distance from x to E is 

d(x, E) = inf{lx - YI : Y E E}. 

It is a simple exercise (see Exercise 1.1) to show that 

Id(x, E) - d(y, E)I ~ Ix - yl 

whenever x, y E Rn. The diameter of a set E C Rn is defined by 

diam(E) = sup{lx - yl : x, y E E}, 
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and the characteristic function E is denoted by XE. The symbol 

B(x, r) = {y : Ix - yl < r} 

denotes the open ball with center x, radius rand 

B(x,r) = {y: Ix - yl ~ r} 

will stand for the closed ball. We will use a(n) to denote the volume of the 
ball of radius 1 in Rn. If a = (all ... ' an) is an n-tuple of non-negative 
integers, a is called a multi-index and the length of a is 

n 

and a! = al!a2!··· an!. The partial derivative operators are denoted by 
Di = a / aXi for 1 ~ i ~ n, and the higher order derivatives by 

D '" - D"'1 D"'n _ al"'l 
- 1 ... n - a "'1 a "'n· 

Xl ... Xn 

The gradient of a real-valued function u is denoted by 

Du(x) = (Dlu(x), ... , Dnu(x)). 

If k is a non-negative integer, we will sometimes use Dku to denote the 
vector Dku = {D"'u}I"'I=k. 

We denote by CO(n) the space of continuous functions on n. More gen
erally, if k is a non-negative integer, possibly 00, let 

and 

ck(n) = {u: u:n -+ Rl,D"'u E CO(n), 0 ~ lal ~ k}, 

ci(n) = Ck(n) n {u: spt u compact, spt u en}, 

Ck(IT) = ck(n) n {u : D"'u has a continuous extension to IT, 0 ~ lal ~ k}. 

Since n is open, a function u E Ck(n) need not be bounded on n. However, 
if u is bounded and uniformly continuous on n, then u can be uniquely 
extended to a continuous function on IT. We will use Ck (n; Rm) to denote 
the class of functions u: n -+ Rm defined on n whose coordinate functions 
belong to Ck(n). Similar notation is used for other function spaces whose 
elements are vector-valued. 
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If 0 < a ::; 1, we say that u is Holder continuous on n with exponent a 
if there is a constant C such that 

lu(x) - u(y) I ::; Clx - yl''', x, yEn. 

We designate by cO,"(n) the space of all functions u satisfying this condi
tion on n. In case a = 1, the functions are called Lipschitz and the constant 
C is denoted by Lip( u). For functions that possess some differentiability, 
we let 

Note that Ck,,,(O) is a Banach space when provided with the norm 

IDi3u (x) - Di3u (y) I 
sup sup I I + max sup IDi3 u(x)l· 

1i3I=k x,yHl x - Y " O~Ii319 xEn 
xi-y 

1.2 Measures on Rn 

For the definition of Lebesgue outer measure, we consider closed n-dimen
sional intervals 

I = {x : ai ::; Xi ::; bi , i = 1, ... , n} 

and their volumes 
n 

v(I) = II (bi - ai). 
i=l 

The Lebesgue outer measure of an arbitrary set E c Rn is defined by 

lEI = inf {f: v(h) : E C U h, Ik an interval} 
k=l k=l 

(1.2.1) 

A set E is said to be Lebesgue measurable if 

(1.2.2) 

whenever A eRn. 
The reader may consult a standard text on measure theory to find that 

the Lebesgue measurable sets form a cr-algebra, which we denote by A; that 

is 

(i) 0,Rn E A. 

(ii) If E l , E 2 , ..• E A, then 
00 

(1.2.3) 
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(iii) If E E A, then Rn - E E A. 

Observe that these conditions also imply that A is also closed under count
able intersections. It follows immediately from (1.2.2) that sets of measure 
zero are measurable. Also recall that if E1 , E2 , • •• are pairwise disjoint 
measurable sets, then 

(1.2.4) 
i=l i=l 

Moreover, if El C E2 C ... are measurable, then 

(1.2.5) 

and if El :J E2 :J ... , then 

(1.2.6) 

provided that IEkl < 00 for some k. 
Up to this point, we find that Lebesgue measure possesses many of the 

continuity properties that are essential for fruitful applications in analysis. 
However, at this stage we do not yet know whether the a-algebra, A, con
tains a sufficiently rich supply of sets to be useful. This possible objection 
is met by the following result. 

1.2.1. Theorem. Each closed set CeRn is Lebesgue measurable. 

In view of the fact -that the Borel subsets of Rn form the smallest a
algebra that contains the closed sets, we have 

1.2.2. Corollary. The Borel sets of Rn are Lebesgue measurable. 

Proof of Theorem 1.2.1. Because of the subadditivity of Lebesgue mea
sure, it suffices to show that for a closed set CeRn, 

(1.2.7) 

whenever A c Rn. This will follow from the following property of Lebesgue 
outer measure, which follows easily from (1.2.1): 

IAUBI = IAI + IBI (1.2.8) 

whenver A, BERn with d(A,B) = inf{lx-yl : x E A, y E B} > O. Indeed, 
it is sufficient to establish that IAUBI ~ IAI+IBI. For this purpose, choose 
e > 0 and let 

00 

Au B C U Ik where 
k=l 
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00 

L:v(h) < IAUBI +e. (1.2.9) 
i=1 

Because d(A, B) > 0, there exists disjoint open sets U and V such that 

AeU, BeV. (1.2.10) 

Clearly, the covering of A U B by {Ik} can be modified so that, for each k, 

(1.2.11) 

and that (1.2.9) still remains valid. However, (1.2.10) and (1.2.11) imply 

00 

L: v(Ik) ~ IAI + IBI· 
i=1 

In order to prove (1.2.7), consider A e Rn with IAI < 00 and let Gi = 
{x: d(x, G) :5 Iii}. Note that 

d( A - Gi , A n G) > 0 

and therefore, from (1.2.8), 

(1.2.12) 

The proof of (1.2.7) will be concluded if we can show that 

.lim IA - Gil = IA - GI· 
t--+oo 

Note that we cannot invoke (1.2.5) because it is not known that A - Gi is 
measurable since A is an arbitrary set, perhaps non-measurable. Let 

Ti = An {x: i ~ 1 < d(x, G) :5 ~ } (1.2.13) 

and note that since G is closed, 

(1.2.14) 

which in turn, implies 

00 

IA-GI :5IA-Gj l+ L:ITil. (1.2.15) 
i=j 

Hence, the desired conclusion will follow if it can be shown that 

(1.2.16) 
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To establish this, first observe that d(Ti' T j ) > 0 if Ii - il ~ 2. Thus, we 
obtain from (1.2.8) that for each positive integer m, 

IQ T2il = ~ IT2il ~ IAI < 00, 

It T2i-11 = 10 T2i-11 ~ IAI < 00. 
,=1 ,=1 

This establishes (1.2.16) and thus concludes the proof. o 

1.2.3. Remark. Lebesgue measure and Hausdorff measure (which will be 
introduced in Section 1.4) will meet most of the applications that occur 
in this book, although in Chapter 5, it will be necessary to consider more 
general measures. We say that J.L is a measure on Rn if J.L assigns a non
negative (possibly infinite) number to each subset of Rn and J.L(0) = O. It 
is also accepted terminology to call such a set function an outer measure. 
Following (1.2.2), a set E is called J.L-measurable if 

J.L(A) = J.L(A n E) + J.L(A n (Rn - E)) 

whenever A c Rn. A measure J.L on Rn is called a Borel measure if every 
Borel set is J.L-measurable. A Borel measure J.L with the properties that each 
subset of Rn is contained within a Borel set of equal J.L measure and that 
J.L(K) < 00 for each compact set KeRn is called a Radon measure. 

Many outer measures defined on Rn have the property that the Borel sets 
are measurable. However, it is sometimes necessary to consider a larger (J'

algebra of sets, namely, the Buslin sets, (often referred to as analytic sets). 
They have the property of remaining invariant under continuous mappings 
on Rn , a property not enjoyed by the Borel sets. The Suslin sets of Rn can 
be defined in the following manner. Let N denote the space of all infinite 
sequences of positive integers topologized by the metric 

where {ail and {bi} are elements of N. Let Rn x N be endowed with the 
product topology. If 

p : Rn x N ---+ Rn 

is the projection defined by p(x, a) = x, then a Suslin set of R n can be 
defined as the image under p of some closed subset of R n x N. 

The main reason for providing the preceding review of Lebesgue measure 
is to compare its development with that of Hausdorff measure, which is 
not as well known as Lebesgue measure but yet is extremely important in 
geometric analysis and will play a significant role in the development of 
this monograph. 
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1.3 Covering Theorems 

Before discussing Hausdorff measure, it will be necessary to introduce sev
eral important and useful covering theorems, the first of which is based on 
the following implication of the Axiom of Choice. 

Hausdorff Maximal Principle. If E is a family of sets (or a collection 
of families of sets) and if {UF : F E F} E E for any subfamily F of E 
with the property that 

F e G or G e F whenever F, G E F, 

then there exists E e E which is maximal in the sense that it is not a subset 
of any other member of E. 

The following notation will be used. If B is a closed ball of radius r, let 
E denote the closed ball concentric with B with radius 5r. 

1.3.1. Theorem. Let 9 be a family of closed balls with 

R == sup{diamB : B E 9} < 00. 

Then there is a subfamily F e 9 of pairwise disjoint elements such that 

{UB : B E 9} e {UE : B E F}. 

In fact, for each B E 9 there exists Bl E F such that B n Bl =I- 0 and 
B eEl. 

Proof. We determine F as follows. For j = 1,2, ... let 

9 j = 9 n {B : R < diam B < l! 1 } , 23 - 23-

and observe that 9 = U~19j. Now proceed to define Fj e 9j inductively 
as follows. 

Let Fl e 91 be an arbitrary maximal subcollection of pairwise disjoint 
elements. Such a collection exits by the Hausdorff maximal principle. As
suming that F l , F 2 , •.. , Fj -1 have been chosen, let F j be a maximal pair
wise disjoint sub collection of 

{ 
j-l } 

9j n B: B n B' = 0 whenever B' E U Fi . 
,=1 

(1.3.1) 

Thus, for each BE 9j, j ~ 1, there exists Bl E UtlFi such that BnBl =I-
0. For if not, the family FJ consisting of B along with all elements of Fj 
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would be a pairwise disjoint subcollection of (1.3.1), thus contradicting the 
maximality of Fj . Moreover, 

diam B :s; 2~1 = 2 ~ :s; 2 diam Bl 

which implies that Be fh. Thus, 

and the conclusion holds by taking 

00 

o 

1.3.2. Definition. A collection 9 of closed balls is said to cover a set 
E c R n finely if for each x E E and each e > 0, there exists B(x, r) E 9 
and r < e. 

1.3.3. Corollary. Let E c R n be a set that is covered finely by g, where 
9 and F are as in Theorem 1.3.1. Then, 

E - {UB : B E F*} c {UB : B E F - F*} 

for each finite collection F* C F. 

Proof. Since Rn - {UB : B E F*} is open, for each x E E - {UB : B E F*} 
there exists BEg such that x E Band B n [{UB : B E F*}l = 0. From 
Theorem 1.3.1, there is Bl E F such that B n Bl :f. 0 and Bl ~ B. Now 
Bl ¢ F* since B n Bl :f. 0 and therefore 

x E {UB : B E F - F*}. o 

The next result addresses the question of determining an estimate for 
the amount of overlap in a given family of closed balls. This will also be 
considered in Theorem 1.3.5, but in the following we consider closed balls 
whose radii vary in a Lipschitzian manner. The notation Lip(h) denotes 
the Lipschitz constant of the mapping h. 

1.3.4. Theorem. Let S cUe R n and suppose h : U ---+ (0,00) is Lipschitz 
with Lip(h) :s; A. Let 0: > 0, /3 > ° with AO: < 1 and A/3 < 1. Suppose the 
collection of closed n-balls {B(s, h(s)) : s E S} is disjointed. Let 

Sx = S n {s : B(x, o:h(x)) n B(s, /3h(s),) :f. o}. 
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Then 

(1 - >"(3)/(1 + >..a) ::5 h(x)/h(s) ::5 (1 + >"(3)/(1 - >..a) (1.3.2) 

whenever s E Sx and 

where card(Sx) denotes the number of elements in Sx. 

Proof. If s E Sx, then clearly Ix - sl ::5 ah(x) + f3h(s) and therefore 

Now, 

Ih(x) - h(s)1 ::5 >"Ix - sl ::5 >..ah(x) + >"f3h(s), 

(1 - >..(3)h(s) ::5 (1 + >..a)h(x), 

(1- >..a)h(x) ::5 (1 + >..(3)h(s). 

Ix - sl + h(s) ::5 ah(x) + (13 + l)h(s) 
::5 o:h(x) + (13 + 1)[(1 + >"0:)/(1 - >..(3)]h(x) 

= -yh(x) 

where -y = 0: + (13 + 1)(1 + >"0:)/(1 - >../3). Hence 

B(s,h(s)) C B(x,-yh(x)) whenever s E Sx' 

Since {B(s, h(s))} is a disjoint family, 

L IB(s, h(s))1 ::5IB(s,-yh(x))1 
sESz 

or from (1.3.3) 

(1.3.3) 

card(Sx)a(n)[(l+>"o:)(l->"/3)-lh(x)]n::5 L o:(n)h(s)n ::5 o:(n)[-yh(x)]n. 0 
sESz 

We now consider an arbitrary collection of closed balls and find a sub
cover which is perhaps not disjoint, but whose elements have overlap which 
is controlled. 

1.3.5. Theorem. There is a positive number N > 1 depending only on n 
so that any family 8 of closed balls in Rn whose cardinality is no less than 
Nand R = sup{ r : B( a, r) E 8} < 00 contains disjointed subfamilies 8 1 , 

8 2 , ••• , 8N such that if A is the set of centers of balls in 8, then 

N 

A C U {UB : B E 8 i }. 

i=1 
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Proof. 
Step I. Assume A is bounded. 
Choose Bl = B(ab rd with rl > ~R. Assuming we have chosen B l , ... , 

Bj-l in B where j ~ 2 choose B j inductively as follows. If Aj = A '" 
uf:t Bi = 0, then the process stops and we set J = j. If Aj f. 0, continue 
by choosing B j = B( aj, r j) E B so that aj E Aj and 

3 
rj> 4sup{r: B(a,r) E B,a E A j }. (1.3.4) 

If Aj f. 0 for all j, then we set J = +00. In this case limj-+oo rj = 0 
because A is bounded and the inequalities 

imply that 
{B(aj,rj/3) : 1 ~ j ~ J} is disjointed. (1.3.5) 

In case J < 00, we clearly have the inclusion 

A C {UBj : 1 ~ j ~ J}. (1.3.6) 

This is also true in case J = +00, for otherwise there would exist B(a, r) E 
B with a E n~lAj and an integer j with rj ~ 3r/4, contradicting the 
choice of Bj • 

Step II. We now prove there exists an integer M (depending only on n) 
such that for each k with 1 ~ k < J, M exceeds the number of balls Bi 
with 1 ~ i ~ k and Bi n Bk f. 0. 

First note that if ri < lOrk, then 

B(ai' ri/3) C B(ak' 15rk) 

because if x E B(ai' ri/3), 

Ix - akl ~ Ix - ail + lai - akl 

~ lOrk/3 + ri + rk 

~ 43rk/3 < 15rk· 

Hence, there are at most (60)n balls Bi with 

1 ~ i ~ k, Bi n Bk f. 0, and ri ~ 10rk 

because, for each such i, 

B(ai' ri/3) C B(ak' 15rk), 

and by (1.3.4) and (1.3.5) 
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To complete Step II, it remains to estimate the number of points in the set 

For this we first find an absolute lower bound on the angle between the two 
vectors 

ai - ak and aj - ak 

corresponding to i, j E I with i < j. Assuming that this angle a < 7r /2, 
consider the triangle 

and assume for notational convenience that Tk = 1, d = laj - akl. Then 

10 < T' < la· - akl < T' + 1 and la· - a·1 > T' • • - • • J - • 

because i E I, ak 'I. B j , B j n Bk '" 0, and aj 'I. B i . Also 

4 
10 < T' < d < T' + 1 < -T' + 1 • _. 3 • 

because j E I, ak 'I. B j , B j n Bk '" 0, and (1.3.4) applies to Ti. 
The law of cosines yields 

hence lal > arccos .822> O. Consequently, the rays determined by aj - ak 

and ai - ak intersect the boundary of B(ak' 1) at points that are separated 
by a distance of at least v'2(1 - cos a). Since the boundary of B( ak, 1) 



12 1. Preliminaries 

has finite Hn-1 measure, the number of points in I is no more than some 
constant depending only on n. 

Step III. Choice of B1, ... , B M in case A is bounded. 
With each positive integer j, we define an integer Aj such that Aj = j 

whenever 1 :5 j :5 M and for j > M we define Aj+l inductively as follows. 
From Step II there is an integer Aj+l E {1, 2, ... , M} such that 

Bj+l n {UBi: 1:5 i:5 j,Ai = Aj+d = 0. 

Now deduce from (1.3.6) that the unions of the disjointed families 

covers A. 
Step IV. The case A is unbounded. 
For each positive integer £, apply Step III with A replaced by E£ = 

A n {x : 3(£ - l)R :5 Ixl < 3£R} and B replaced by the subfamily C£ of B 
of balls with centers in E£. We obtain disjointed subfamilies Bf, . .. ,B~ of 
Cl such that 

M 

El C U{UB: B E Bf}. 
i=l 

Since P n Q = 0 whenever P E Bl, Q E Bm and m ~ £ + 2, the theorem 
follows with 

00 00 

B U BU-1 B U BU - 1 
1= 1 '''., M= M 

l=l l=l 

00 00 

B M +1 = U B~l, " . ,B2M = U B~L-
l=l l=l 

andN=2M. o 

We use this result to establish the following covering theorem which 
contains the classical result of Vitali involving Lebesgue measure. An in
teresting and novel aspect of the theorem is that the set A is not assumed 
to be IL-measurable. The thrust of the proof is that the previous theorem 
allows us to obtain a disjoint subfamily that provides a fixed percentage of 
the IL measure of the original set. 

1.3.6. Theorem. Let IL be a Radon measure on Rn and suppose :F is a 
family of closed balls that covers a set A c Rn finely, where IL(A) < 00. 

Then there exists a countable disjoint subfamily g of :F such that 

IL(A - {UB : BEg}) = o. 
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Proof. Choose e > 0 so that e < liN, where N is the constant that appears 
in the previous theorem. Then:F has disjointed subfamilies B1, ... ,BN such 
that 

N 

A c U{UB : B E Bi } 

i=l 

and therefore 
N 

Jl(A) :::; L Jl( {U(A n B) : B E Bd)· 
i=l 

Thus, there exists 1 :::; k :::; N such that 

which implies 

Jl(A - {UB : B E Bd) :::; (1 - 1/N)Jl(A). 

Hence, there is a finite subfamily Bkl of Bk such that 

Now repeat this argument by replacing A with A1 = 1 - {UB : B E BkJ 
and :F with :F1 = :F n {B : B n {UB : B E BkJ = 0} to obtain a finite 
disjointed subfamily Bk2 of :F1 such that 

Thus, 
Jl(A - {UB: B E Bkl U Bk2 }):::; (I-liN + e)2Jl(A). 

Continue this process to obtain the conclusion of the theorem with 

o 

1.3.7. Lemma. Let Jl and v be Radon measures on Rn. For each positive 
number a let 

{ Jl[B(x,r)] } 
Eo; = x: ~~~ v[B(x, r)] > a . 

Then, Jl(Eo;) ~ av(Eo;). 

Proof. By restricting our attention to bounded subsets of Eo;, we may 
assume that Jl(Eo;) , v(Eo;) < 00. Let U :J Eo; be an open set. For e > 0 
and for each x E Eo;, there exists a sequence of closed balls B(x, ri) C U 
with ri -+ 0 such that 

Jl[B(x, ri)] > (a + c)v[B(x, ri)]. 
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This produces a family :F of closed balls that covers Ea finely. Hence, by 
Theorem 1.3.6, there exists a disjoint subfamily g that covers v almost all 
of Ea. Consequently 

(0 + c)v(Ea) ~ (0 + c) L v(B) ~ L J.L(B) ~ J.L(U). 
BEg BEg 

Since c and U are arbitrary, the conclusion follows. o 

If f is a continuous function, then the integral average of f over a ball of 
small radius is nearly the same as the value of f at the center of the ball. 
A remarkable result of real analysis states that this is true at (Lebesgue) 
almost all points whenever f is integrable. The following result provides a 
proof relative to any Radon measure. The notation 

denotes 

1 f(y) dJ.L(Y) 
Tn(x,r) 

J.L[B(x, r)r1 r f(y) dJ.L(Y). J B(x,r) 

1.3.8. Theorem. Let J.L be a Radon measure on Rn and f a locally inte
grable function on Rn with respect to J.L. Then 

lim 1 f(y) dJ.L(Y) = f(x) 
r-O Tn(x,r) 

for J.L almost all x E Rn. 

Proof. Note that 

1 f(y)dJ.L(Y) - f(X)1 ~ 1 If(y) - g(Y)ldJ.L(Y) 
Tn(x,r) Tn(x,r) 

+ 1 Ig(y) - f(x)ldJ.L(Y) 
Tn(x,r) 

and if 9 is continuous, the last term converges to Ig(x) - f(x)1 as r -+ O. 
Letting L(x) denote the upper limit of the term on the left, we obtain 

L(x) ~ sup 1 If(Y) - g(Y)ldJ.L(Y) + Ig(x) - f(x)l. 
r>O Tn(x,r) 

Hence, 

{x: L(x) > o} C {x: sup 1 If(Y) - g(Y)ldJ.L(Y) > 0/2} 
r>O Tn(x,r) 
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U {x: Ig(x) - l(x)1 > a/2}, 

and therefore, by the previous lemma, 

J-L({x: L(x) > a}) :::; 2/a { II - gldJ-L + 2/a ( II - gldJ-L. JRn JRn 
Since JRn II - gldJ-L can be made arbitrarily small with appropriate choice 
of g, cf. Section 1.6, it follows that J-L({x: L(x) > a}) = 0 for each a > O. 

o 

1.3.9. Remark. If J-L and v are Radon measures with J-L absolutely con
tinuous with respect to v, then the Radon-Nikodym theorem provides 
IE Ll(Rn, v) such that 

J-L(E) = L I(x) dv(x). 

The results above show that the Radon-Nikodym derivative I can be taken 
as the derivative of J-L with respect to Vi that is, 

for v almost all x E Rn. 

lim J-L[B(x,r)] = I(x) 
r--tO v[B(x, r)] 

1.4 Hausdorff Measure 

The purpose here is to define a measure on Rn that will assign a reason
able notion of "length," "area" etc. to sets of appropriate dimension. For 
example, if we would like to define the notion of length for an arbitrary set 
E eRn, we might follow (1.2.1) and let 

A(E) = inf {~diamAi: E C iQ Ai,}, 

However, if we take n = 2 and E = {(t, sin(l/t)) : 0 :::; t :::; 1}, it is easily 
seen that A(E) < 00 whereas we should have A(E) = 00. The difficulty with 
this definition is that the approximating sets Ai are not forced to follow 
the geometry of the curve. This is changed in the following definition. 

1.4.1. Definition. For each 'Y ~ 0, c > 0, and E C Rn , let 

Hi (E) ~ inf {t, at> )2-7 diam(Ai)7 , E c Q Ai, diam A; < e } . 
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Because HI(E) is non-decreasing in e, we may define the "( dimensional 
Hausdorff measure of E as 

H'Y(E) = lim HJ(E). 
e-O 

(1.4.1) 

In case "( is a positive integer, ab) denotes the volume of the unit ball 
in R'Y. Otherwise, ab) can be taken as an arbitrary positive constant. 
The reason for requiring a( "() to equal the volume of the unit ball in R'Y 
when,,( is a positive integer is to ensure that H'Y(E) agrees with intuitive 
notions of ",,(-dimensional area" when E is a well-behaved set. For example, 
it can be shown that H n agrees with the usual definition of n-dimensional 
area on an n-dimensional C1 submanifold of Rn+k, k ~ O. More generally, 
if I: Rn --+ Rn+k is a univalent, Lipschitz map and E C Rn a Lebesgue 
measurable set, then L JI = Hn[/(E)] 

where J I is the square root of the sum of the squares of the n x n deter
minants of the Jacobian matrix. The reader may consult [F4, Section 3.2] 
for a thorough treatment of this subject. Here, we will merely show that 
H n defined on Rn is equal to Lebesgue measure. 

1.4.2. Theorem. II E eRn, then Hn(E) = lEI. 

Proof. First we show that 

H:(E) ::; lEI for every e > O. 

Consider the case where lEI = 0 and E is bounded. For each '" > 0, let 
U :::> E be an open set with lUI < ",. Since U is open, U can be written as 
the union of closed balls, each of which has diameter less than e. Theorem 
1.3.1 states that there is a subfamily F of pairwise disjoint elements such 
that 

U c {UB : B E F}. 

Therefore, 

BiE:F B;E:F 

B;E:F 

=5n L IBil 
B;E:F 

::; 5n lUI < 5n "" 

which proves that Hn(E) = 0 since e and", are arbitrary. The case when E 
is unbounded is easily disposed of by considering En B(O, i), i = 1,2, .... 
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Each of these sets has zero n-dimensional Hausdorff measure, and thus so 
does E. 

Now suppose E is an arbitrary set with lEI < 00. Let U ::) E be an open 
set such that 

lUI < lEI + 17· (1.4.2) 

Appealing to Theorem 1.3.6, it is possible to find a family F of disjoint 
closed balls B 1,B2 , ..• , such that U~lBi C U, diam Bi < c:, i = 1,2, ... , 
and 

(1.4.3) 
i=l 

Let E* = U~l(EnBi) and observe that E = (E-E*)UE* with IE-E*I = 
o. Now apply (1.4.1) and (1.4.2) to conclude that 

00 

H:(E*) S LTna(n)(diamBi)n 
i=l 

i=l 

i=l 
= lUI S lEI + 17· 

Because c: and 17 are arbitrary, it follows that Hn(E*) S lEI. However, 
Hn(E) S Hn(E-E*)+Hn(E*) with Hn(E-E*) = 0 because IE-E*I = O. 
Therefore, Hn(E) S lEI. 

In order to establish the opposite inequality, we will employ the isodi
ametric inequality which states that among all sets E c R n with a given 
diameter, d, the ball with diameter d has the largest Lebesgue measure; 
that is, 

(1.4.4) 

whenever E eRn. For a proof of this fact, see [F4, p. 197]. From this the 
desired inequality follows immediately, for suppose 

00 

LTna(n)(diamEit < H:(E) + 17 
i=l 

where E c U~lEi. Applying (1.4.3) to each Ei yields 

00 00 

lEI S L IEil S LTna(n)(diamEit < H:(E) + 17, 
i=l i=l 
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which implies, lEI:::; Hn(E) since c and 1] are arbitrary. 0 

1.4.3. Remark. The reader can easily verify that the outer measure, H', 
has many properties in common with Lebesgue outer measure. For example, 
(1.2.4), (1.2.5), and (1.2.6) are also valid for H' as well as the analog 
of Corollary 1.2.2. However, a striking difference between the two is that 
lEI < 00 whenever E is bounded whereas this may be false for HI(E). One 
important ramification of this fact is the following. A Lebesgue measurable 
set, E, can be characterized by the fact that for every c > 0, there exists 
an open set U :J E such that 

IU-EI < c. (1.4.5) 

This regularity property cannot hold in general for H'. 
The fact that HI(E) may be possibly infinite for bounded sets E can be 

put into better perspective by the following fact that the reader can easily 
verify. For every set E, there is a non-negative number, d = d(E), such 
that 

H'(E) = 0 if I> d 

H'(E) = 00 if 1< d. 

The number d(E) is called the Hausdorff dimension of E. 

Finally, we make note of the following elementary but useful fact. Sup
pose f: Rk ---+ Rk+n is a Lipschitz map with Lip(J) = M. Then for any set 
ECRk 

(1.4.6) 

In particular, sets of zero k-dimensional Hausdorff measure remain invari
ant under Lipschitz maps. 

1.5 £P Spaces 

For 1 :::; p :::; 00, Lfoc(f2) will denote the space consisting of all measurable 
functions on f2 that are pth_power integrable on each compact subset of f2. 
LP(f2) is the subspace of functions that are pth_power integrable on f2. In 
case the underlying measure is f..l rather than Lebesgue measure, we will 
employ the notation Lfoc(f2; f..l) and V(f2, f..l) respectively. The norm on 
V(f2) is given by 

Ilulip;n = (10 lulPdX) lip 

and in case p = 00, it is defined as 

Ilulloo,n = eSSn sup lui· 

(1.5.1) 

(1.5.2) 
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Analogous definitions are used in the case of V(n; /L) and then the norm 
is denoted by 

liu lip,I';!1' 

The notation f u( x) dx or sometimes simply f u dx will denote integration 
with respect to Lebesgue measure and f u d/L the integral with respect to 
the measure /L. Strictly speaking, the elements of V(n) are not functions 
but rather equivalence classes of functions, where two functions are said 
to be equivalent if they agree everywhere on n except possibly for a set of 
measure zero. The choice of a particular representative will be of special 
importance later in Chapters 3 and 5 when the pointwise behavior of func
tions in the spaces Wk,p(n) and BV(n) is discussed. Recall from Theorem 
1.3.8 that if u E Ll(Rn), then for almost every Xo ERn, there is a number 
z such that 

1 u(y )dy ~ z as r ~ 0+, 
h(xQ,r) 

where f denotes the integral average. We define u(xo) = z, and in this 
way a canonical representative of u is determined. In those situations where 
no confusion can occur, the elements of V(n) will be regarded merely as 
functions defined on n. 

The following lemma is very useful and will be used frequently through
out. 

1.5.1. Lemma. If u 2:: 0 is measurable, p > 0, and Et = {x : u(x) > t}, 
then 

(1.5.3) 

More generally, if /L is a measure defined on some u-algebra of R n , u 2:: 0 
is a /L-measurable junction, and n is the countable union of sets of finite 
/L measure, then 

(1.5.4) 

The proof of this can be obtained in at least two ways. One method is to 
employ Fubini's Theorem on the product space n x [0,00). Another is to 
observe that (1.5.3) is immediate when u is a simple function. The general 
case then follows by approximating u from below by simple functions. 

The following algebraic and functional inequalities will be frequently used 
throughout the course of this book. 

Cauchy's inequality: if e > 0, a, bE Rl, then 

(1.5.5) 
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and more generally, Young's inequality: 

I bl IcalP [blc]p l 

a <--+--
- P p' 

where p > 1 and lip + lip' = 1. 
From Young's inequality follows Holder's inequality 

In uv dx :::; Ilullp;ollvlipl;o, p ~ 1, 

1. Preliminaries 

(1.5.6) 

(1.5.7) 

which holds for functions u E IJ'(n), v E IJ" (0,). In case p = 1, we 
take p' = 00 and Ilvllpl;o = esso sup Ivl. Holder's inequality can be ex
tended to the case of k functions, Ul, ... , Uk lying respectively in spaces 
LPI (0,), ... , IJ'k (0,) where 

k 

L~=1. 
i=l Pi 

(1.5.8) 

By an induction argument and (1.5.7) it follows that 

In Ul··· Uk dx :::; Ilulllp1;o .. ·llukllpk;O' (1.5.9) 

One important application of (1.5.7) is Minkowski's inequality, which states 
that (1.5.3) yields a norm on IJ'(n). That is, 

(1.5.10) 

for p ~ 1. Employing the notation 

t udx = 10,1-1 In udx, 

another consequence of Holder's inequality is 

(1.5.11) 

whenever 1 :::; P :::; q and 0, c Rn a measurable set with 10,1 < 00. 

We also recall Jensen's inequality whose statement involves the notion 
of a convex function. A function A: Rn -+ Rl is said to be convex if 

whenever Xl, X2 E Rn and 0 :::; t :::; 1. Jensen's inequality states that if A is 
a convex function on Rn and E c R n a bounded measurable set, then 

A (Ie f(X)dX) :s Ie A(f(x)]dx (1.5.12) 
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whenever f E L 1 (E). 
A further consequence of Holder's inequality is 

(1.5.13) 

where p ~ q ~ r, and l/q = >"/p+ (1- >..)/r. In order to see this, let Q: = >"q, 
f3 = (1 - >..)q and apply Holder's inequality to obtain 

where z = p/>..q and y = r/(I- >..)q. 
When endowed with the norm defined in (1.5.1), LP(r!), 1 ~ p ~ 00, 

is a Banach space; that is, a complete, linear space. If 1 ~ p < 00, it is 
also separable. The normed dual of LP(r!) consists of all bounded linear 
functionals on LP(r!) and is isometric to LP' (r!) provided p < 00. Hence, 
LP(r!) is reflexive for 1 < p < 00. We recall the following fundamental result 
concerning reflexive Banach spaces, which is of considerable importance in 
the case of LP(r!). 

1.5.2. Theorem. A Banach space is reflexive if and only if its closed unit 
ball is weakly sequentially compact. 

1.6 Regularization 

Let cp be a non-negative, real-valued function in Co(Rn) with the property 
that 

f cp(x)dx = 1, spt cp C B(O, 1). JRn 
An example of such a function is given by 

( ) _ {CexP(-I/(I- lxI2 )] if Ixl < 1 
cp x - ° if Ixl 2 1 

(1.6.1) 

(1.6.2) 

where C is chosen so that JRn cp = 1. For c > 0, the function CPc:(x) == 
c-ncp(x/c) belongs to Co(Rn) and spt CPc: C B(O, c). CPc: is called a regular
izer (or mollifier) and the convolution 

uc:(x) == CPc: * u(x) == f cpc:(x - y)u(y)dy JRn (1.6.3) 

defined for functions u for which the right side of (1.6.3) has meaning, 
is called the regularization (mollification) of u. Regularization has several 
important and useful properties that are summarized in the following the
orem. 
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1.6.1. Theorem. 

(i) If U E Ltoc(Rn), then for everyc > 0, U e E coo(Rn) and DO('Pe*u) = 
(D°'Pe) * U for each multi-index a. 

(ii) u,,(x) -+ u(x) whenever x is a Lebesgue point for u. In case U is 
continuous then U e converges uniformly to U on compact subsets of 
Rn. 

(iii) If U E V(Rn ), 1 ~ P < 00, then Ue E V(Rn ), lIuelip ~ lIullp, and 
lime-+o lIue - ullp = o. 

Proof. For the proof of (i), it suffices to consider lal = 1, since the case of 
general a can be treated by induction. Let el,' .. ,en be the standard basis 
of Rn and observe that 

ue(x + hei) - ue(x) = f lh Di'Pe(X - Z + tei)u(z)dtdz iRn 0 

= lh f Di'Pe(X - Z + tei)u(z)dzdt. 
o iRn 

As a function of t, the inner integral on the right is continuous, and thus 
(i) follows. 

In case (ii) observe that 

Iue(x) - u(x)1 ~ J 'Pe(x - y)lu(y) - u(x)ldy 

~ sUP'Pc-n f lu(x) - u(y)ldy -+ 0 
iB(x,e) 

as c -+ 0 whenever x is a Lebesgue point for u. Clearly the convergence 
is locally uniform if u is continuous because u is uniformly continuous on 
compact sets. 

For the proof of (iii), Holder's inequality yields 

lue(x)1 = IJ 'Pe(x - Y)U(Y)dyl 

~ (J 'Pe(x - Y)dY) lip' (J 'Pe(X _ Y)lu(Y)IPdY) lip 

The first factor on the right is equal to 1 and hence, by Fubini's theorem, 

f luelPdx ~ f f 'Pe(x - y)lu(y)IPdydx iRn iRn iRn 
~ f f 'Pe(x - y)lu(y)IPdxdy iRn iRn 
= r lu(y)IPdy. iRn 
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Consequently, 
(1.6.4) 

To complete the proof, for each 'f] > 0 let v E Co(Rn) be such that 

(1.6.5) 

Because v has compact support, it follows from (ii) that Ilv - v"llp < 'f/ for 
E sufficiently small. Now apply (1.6.4) and (1.6.5) to the difference v - u 
and obtain 

Hence u" ---- u in V(Rn) as E ---- O. o 

1.6.2. Remark. If u E Ll(D), then u,,(x) == <P" * u(x) is defined provided 
xED and E < dist(x, aD). It is a simple matter to verify that Theorem 
1.6.1 remains valid in this case with obvious modification. For example, if 
u E C(D) and D' cc D, then u" converges uniformly to u on D' as E ---- O. 

Also note that (iii) of Theorem 1.6.1. implies that mollification does 
not increase the norm. This is intuitively clear since the norm must take 
into account the extremities of the function and mollification, which is an 
averaging operation, does not increase the extremities. 

1. 7 Distributions 

In this section we present a very brief review of some of the elementary 
concepts and techniques of the Schwartz theory of distributions [SCH] that 
will be needed in subsequent chapters. The notion of weak or distributional 
derivative will be of special importance. 

1.7.1. Definition. Let D c Rn be an open set. The space g'(D) is the 
set of all <P in Cgo (D) endowed with a topology so that a sequence {<pd 
converges to an element <P in g'(D) if and only if 

(i) there exists a compact set KeD such that spt <Pi C K for every i, 
and 

(ii) limi--->oo D°<pi = D°<p uniformly on K for each multi-index a. 

The definition above does not attempt to actually define the topology 
on g'(D) but merely states a consequence of the rigorous definition which 
requires the concept of "generalized sequences" or "nets," a topic that 
we do not wish to pursue in this brief treatment. For our purposes, it 
will suffice to consider only ordinary sequences. It turns out that g'(D) 
is a topological vector space with a locally convex topology but is not 



24 1. Preliminaries 

a normable space. The dual space, 9'(0), of 9(0) is called the space of 
(Schwartz) distributions and is given the weak*-topology. Thus, Ti E 9(0) 
converges to T if and only if Ti(cp) -+ T(cp) for every cp E 9(0). 

We consider some important examples of distributions. Let p, be a Radon 
measure on 0 and define the corresponding distribution by 

T(cp) = J cp(x)dJL 

for all cp E 9(0). Clearly T is a linear functional on 9(0) and IT(cp)1 ~ 
1p,I(spt cp)llcplioo, from which it is easily seen that T is continuous, and thus a 
distribution. In this way we will make an identification of Radon measures 
and the associated distributions. 

Similarly, let f E Lioc(O), p ~ 1, ahd consider the corresponding signed 
measure p, defined for all Borel sets E c Rn by 

p,(E) = Ie f(x)dx 

and pass to the associated distribution 

f(cp) = [ cp(x)f(x)dx. JRn 
In the sequel we shall often identify locally integrable functions with their 
corresponding distributions without explicitly indicating the identification. 

1.7.2. Remark. We recall two facts about distributions that will be of 
importance later. A distribution T on an open set 0 is said to be positive if 
T(cp) ~ 0 whenever cp ~ 0, cp E 9(0). A fundamental result in distribution 
theory states that a positive distribution is a measure. Of course, not all 
distributions are measures. For example, the distribution defined on Rl by 

T(cp) = J cp'(x)dx 

is not a measure since it is not continuous on 9(0) when endowed with 
the topology of uniform convergence on compact sets. 

Another important fact is that distributions are determined by their local 
behavior. By this we mean that if two distributions T and S on 0 have 
the property that for every x E 0 there is a neighborhood U such that 
T(cp) = S(cp) for all cp E 9(0) supported by U, then T = S. For example, 
this implies that if {Oo} is a family of open sets such that UOo = 0 and 
T is a distribution on 0 such that T is a measure on each 0 0 , then T is a 
measure on O. This also implies that if a distribution T vanishes on each 
open set of some family :F, it then vanishes on the union of all elements of 
:F. The support of a distribution T is thus defined as the complement of 
the largest open set on which T vanishes. 
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We now proceed to define the convolution of a distribution with a test 
function cp E .9'(n). For this purpose, we introduce the notation cp(x) = 
cp( -x) and 7 x cp(y) = cp(y - x). The convolution of a distribution T defined 
on Rn with cp E .9'(n) is a function of class Coo given by 

(1. 7.1) 

An obvious but important observation is 

T * cp(O) = T( 70CP) = T( cp). 

If the distribution T is given by a locally integrable function f then we 
have 

(T * cp)(x) = J f(x - y)cp(y)dy 

which is the usual definition for the convolution of two functions. It is easy 
to verify that 

whenever cp, 'ljJ E.9'. 
Let T be a distribution on an open set n. The partial derivative of T is 

defined as 
DiT(CP) = -T(DiCP) 

for cp E .9'(n). Since DiCP E .9'(n) it is clear that DiT is again a distribu
tion. Since the test functions cp are smooth, the mixed partial derivatives 
are independent of the order of differentiation: 

and therefore the same equation holds for distributions: 

Consequently, for any multi-index a the corresponding derivative of T is 
given by the equation 

Finally, we note that a distribution on n can be multiplied by smooth 
functions. Thus, if T E .9"(n) and f E COO(n), then the product fT is a 
distribution defined by 

(fT)(cp) = T(fcp), cp E .9'(n). 

The Leibniz formula is easily seen to hold in this context (see Exercise 1.5). 
The reader is referred to [SCH] for a complete treatment of this topic. 
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1.8 Lorentz Spaces 

We have seen in Lemma 1.5.1 that if 1 E L1(Rn), 120, then its integral 
is completely determined by the measure of the sets {x : 1 (x) > t}, t E R1. 
The non-increasing rearrangement of I, (defined below) can be identified 
with a radial function 1 having the property that for all t E R1, {x : 1 (x) > 
t} is a ball centered at the origin with the same measure as {x : 1 (x) > t}. 
Consequently, 1 and 1 have the same integral. Because 1 can be thought 
of as a function of one variable, it is often easier to employ than I. We 
introduce a class of spaces called Lorentz spaces which are more general 
but closely related to £P spaces. Their definition is based on the concept 
of non-increasing rearrangement. Later in Chapter 2, we will extend basic 
Sobolev inequalities in an £P setting to that of Lorentz spaces. 

1.8.1. Definition. If 1 is a measurable function defined on Rn, let 

E{ = {x: I/(x)1 > s}, (1.8.1) 

and let the distribution function of 1 be denoted by 

(1.8.2) 

Note that the distribution function of 1 is non-negative, non-increasing, 
and continuous from the right. With the distribution function we associate 
the non-increasing rearrangement 01 1 on (0, (0) defined by 

f*(t) = inf{s > 0 : af(s) $ t}. (1.8.3) 

Clearly f* is non-negative and non-increasing on (0, (0). Further, if af is 
continuous and strictly decreasing, then f* is the inverse of a f' that is, 
f* = ail. It follows immediately from the definition of f*(t) that 

(1.8.4) 

and because a f is continuous from the right, that 

af(f*(t)) $ t. (1.8.5) 

These two facts lead immediately to the following propositions. 

1.8.2. Proposition. f* is continuous from the right. 

Proof. Clearly, f* (t) 2 f* (t + h) for all h > O. If f* were not continuous 
at t, there would exist y such that f*(t) > y > f*(t+h) for all h > O. But 
then, (1.8.5) would imply that af(Y) $ af(f*(t+h)) $ t+h for all h > O. 
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Thus, af(Y) ~ t and therefore, f*(t) ~ y, a contradiction. o 

1.8.3. Proposition. ares) = af(s) for all s > O. 

Proof. Because f* is non-increasing, it follows from the definition of ar (t) 
that 

af'(s) = sup{t > 0: ret) > s}. (1.8.6) 

Hence, f* (a f (s )) ~ s implies a f (s) 2': a r (s). For the opposite inequal
ity, note from (1.8.6) that ift > ares), then f*(t) ~ s and consequently, 
af(s) ~ af(j*(t)) ~ t, by (1.8.5). Thus, af(s) ~ ares) and the proposi
tion is established. 0 

1.8.4. Proposition. Let {Ii} be a sequence of measurable functions on R n 

such that {Ifil} is a non-decreasing sequence. If If(x)1 = limi->oo Ih(x)1 for 
each x E Rn, then a fi and ft increase to a f and f* respectively. 

Proof. Clearly 
00 

Efi C Ef and U Eli = Ef 
8 8 S S 

i=l 

for each s and therefore a fi (s) --- a f (s) as s --- 00. It follows from definition 
of non-increasing rearrangement, that ft (t) ~ ft+ 1 (t) ~ f* (t) for each t 
and i = 1,2, .... Let get) = limi->OO ft(t). Since ft(t) ~ get) it follows from 
(1.8.5) that af;[g(t)] ~ afi [ft(t)] ~ t. Therefore, 

af[g(t)] = lim afi [get)] ~ t 
'->00 

which implies that f*(t) ~ get). But get) ~ f*(t) and therefore the proof 
is complete. 0 

1.8.5. Theorem. If f E £P, 1 ~ p < 00, then 

[/ ] 
lip [ roo ] lip 

IflP = 10 [r(t)]pdt (1.8.7) 

Proof. This follows immediately from Lemma 1.5.1 and the fact that f 
and f* have the same distribution function (Proposition 1.8.3). 0 

We now introduce Lorentz spaces and in order to motivate the following 
definition, we write (1.8.7) in a more suggestive form as 

( rOO ) lip 
IIfilp = 10 [t l/p r(t)]pdtjt 
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It is sometimes more convenient to work with the average of f* than 
with f* itself. Thus, we define 

lit j**(t) = - j*(r)dr. 
t 0 

1.8.6. Definition. For 1 ::; p < 00 and 1 ::; q ::; 00, the Lorentz space 
L(p, q) is defined as 

L(p,q) = {f: f measurable on R n , IIfll(p,q) < oo} 

where Ilfll(p,q) is defined by 

(1.8.8) 

{
1000 [[t1/Pj**(tW~t]1/q, 1 ::; p < 00, 1 ::; q < 00 

IIfll(p,q) = 

supt1/ p j**(t), 
t>o 

It will be shown in Lemma 1.8.10 that 

L(p,p) = £P. 

1 ::; p ::; 00, q = 00. 

(1.8.9) 

The norm above could be defined with f** replaced by f* in case p > 1 
and 1 ::; q < 00. This alternate definition remains equivalent to the original 
one in view of Hardy's inequality (Lemma 1.8.11) and the fact that f** ~ f* 
(since f* is non-increasing). For p > 1, the space L(p, 00) is known as the 
Marcinkiewicz space and also as Weak LP. In case p = 1, we clearly have 
L(I, 00) = L1. With the help of Lemma 1.5.1, observe that 

t j*(r)dr = tj*(t) + roo af(s)ds 
10 1r (t) 

and therefore 
11,00 j**(t) = j*(t) + - af(s)ds. 
t r (t) 

(1.8.10) 

For our applications it will be necessary to know how the non-increasing 
rearrangement behaves relative to the operation of convolution. The next 
two lemmas address this question. Because g** is non-increasing, note that 
in the following lemma, the first and second conclusions are most interesting 
when t ::; rand t ~ r, respectively. 

1.8.7. Lemma. Let f and g be measurable functions on Rn where sup{f(x): 
x E Rn} ::; a and f vanishes outside of a measurable set E with lEI = r. 
Let h = f * g. Then, for t > 0, 

h**(t) ::; arg**(r) 
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and 
h**(t) ~ o:rg**(t). 

Proof. For a > 0, define 

x _ {g(X) if Ig(x)1 ~ a 
ga( ) - asgng(x) if Ig(x)1 > a 

and let 
ga(x) = g(x) - ga(x). 

Then, define functions hl and h2 by 

h = f * g = f * ga + f * ga 
= hl + h2. 

29 

From elementary estimates involving the convolution and Lemma 1.5.1, 
we obtain 

sup{h2(x) : x E Rn} ~ sup{!(x) : x E E}lIgali l ~ 0: 100 O:g(s)ds (1.8.11) 

because ga(x) = 0 whenever Ig(x)1 ~ a. Also 

and 

IIh211l ~ IIflllllgalll ~ o:r 100 
O:g(s)ds. 

Now set a = g*(r) in (1.8.11) and (1.8.12) and obtain 

h**(t) = ~ lt h*(y)dy ~ IIhll oo 

~ IIhlll oo + IIh21100 
~o:rg*(r)+o: [00 O:g(s)ds 

ig.(r) 

~ 0: [rg*(r) + [00 o:g(S)dS] 
ig.(r) 

= o:rg**(r). 

(1.8.12) 

(1.8.13) 

The last equality follows from (1.8.10) and thus, the first inequality of the 
lemma is established. 
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To prove the second inequality, set a = g*(r) and use (1.8.12) and (1.8.13) 
to obtain 

th**(t) = lot h*(y)dy ~ lot hi(y)dy + lot h;(y)dy 

by (1.8.10). 

~ tllh11l 00 + 1000 
h;(y)dy = tllh11l 00 + IIh2111 

~ to. rg*(t) + a r 100 ag(s)ds 
g*(r) 

~ar [tg*(t) +100 ag(S)ds] 
g*(r) 

~ artg**(t) 

o 

1.8.8. Lemma. II h, I, and g are measurable functions such that h = I*g, 
then lor any t > 0 

h**(t) ~ tj** (t)g** (t) + 100 j*(u)g*(u)du. 

Proof. Fix t > O. 
Select a doubly infinite sequence {Yi} whose indices ranges from -00 to 

+00 such that 

Let 

where 

Yo = j*(t) 

Yi ~ Yi+l 
.lim Yi = 00 
0--+00 

.lim Yi = O. 
1-+-00 

00 

I(z) = L li(Z) 
i=-oo 

{ 
0 if I/(z)1 ~ Yi-l 

li(Z) = I(z) - Yi-l sgn/(z) if Yi-l < I/(z)1 ~ Yi 
Yi - Yi-l sgn/(z) if Yi < I/(z)l· 

Clearly, the series converges absolutely and therefore, 

h = I * g = C~oo Ii) * g 

= (too Ii) *g+ (~/i) *g 
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with 
h**(t) ::; hi*(t) + h;*(t). 

To evaluate h;*(t) we use the second inequality of Lemma 1.8.7 with 
Ei == {z : If(z)1 > Yi-d = E and 0: = Yi - Yi-l to obtain 

00 

h;*(t) ::; L(Yi - Yi-l)O:j(Yi-l)g**(t) 
i=l 

00 

= g**(t) L O:f(Yi-d(Yi - Yi-l). 

i=l 

The series on the right is an infinite Riemann sum for the integral 

and provides an arbitrarily close approximation with an appropriate choice 
of the sequence {Yi}. Therefore, 

h;*(t) ::; g**(t) roo O:f(y)dy. 
ir(t) 

By the first inequality of Lemma 1.8.7, 

00 

hi*(t) ::; L(Yi - Yi-dO:j(Yi-l)g**(O:j(Yi-l))' 
i=l 

(1.8.14) 

The sum on the right is an infinite Riemann sum tending (with proper 
choice of Yi) to the integral, 

We shall evaluate the integral by making the substitution Y = f*(u) and 
then integrating by parts. In order to justify the change of variable in the 
integral, consider a Riemann sum 

00 

L O:f(Yi-l)g**(O:f(Yi-l))(Yi - Yi-l) 

i=l 

that provides a close approximation to 

By adding more points to the Riemann sum if necessary, we may assume 
that the left-hand end point of each interval on which O:f is constant is 
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included among the Yi. Then, the Riemann sum is not changed if each Yi 
that is contained in the interior of an interval on which af is constant, is 
deleted. It is now an easy matter to verify that for each of the remain
ing Yi there is precisely one element, Ui, such that Yi = !*(Ui) and that 
af(f*(ui)) = Ui' Thus, we have 

00 

L af(Yi-l)g**(af(Yi-l))(Yi - Yi-l) 

i=l 

00 

= L ui-lg**(Ui-l)(f*(Ui) - !*(Ui-l)) 
i=l 

which, by adding more points if necessary, provides a close approximation 
to -100 

ug**(u)dj*(u). 

Therefore, we have 

rf"(t) 
hi*(t) ::::; 10 af(y)g**(af(y))dy 

= -100 
ug** (u)dj* (U) 

= -ug**(u)j*(u)lf' + 100 
j*(u)g*(u)du 

::::; tg**(t)j*(t) + 100 
j*(u)g*(u)du. (1.8.15) 

To justify the integration by parts, let ,X be an arbitrarily large number 
and choose Uj such that t = Ul ::::; U2 ::::; ... ::::; Uj+l = 'x. Observe that 

j 

,Xg**(,X)j*(,X) - tg** (t)j* (t) = L Ui+lg**(Ui+l)[j*(Ui+l) - j*(Ui)] 
i=l 

j 

+ L j*(ui)[g**(ui+dui+l - g**(Ui)Ui] 
i=l 

j 

= L Ui+lg** (Ui+l)[j* (Ui+l) - j*(Ui)] 
i=l 

j 

::::; L Ui+lg** (Ui+l)[j* (Ui+l) - j*(Ui)] 
i=l 
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j 

+ L f* (Ui)g* (Ui) [Ui+1 - Ui]' 
i=1 

This shows that 

>..g**(>..)f*(>..) - tg**(t)f*(t) ~ 1>' ug** (u)df* (u) + 1>' f*(u)g*(u)du. 

To establish the opposite inequality, write 

j 

>..g**(>..)f*(>..) - tg**(t)f*(t) = L uig**(Ui)[f*(Ui+1) - f*(Ui)] 
i=l 

j 
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+ L f*(Ui+l)[g**(Ui+1)Ui+l - g**(UdUi] 
i=l 

j 

= L Uig** (Ui)[f* (Ui+l) - f*(Ui)] 
i=1 

j 

~ L uig**(Ui)[f*(Ui+l) - f*(Ui)] 
i=1 

j 

+ L f*(Ui+1)g*(Ui+l)[Ui+1 - Ui]' 
i=l 

Now let>.. --+ 00 to obtain the desired equality. Thus, from (1.8.15), (1.8.14), 

and (1.8.10), 

hi*(t) + h;*(t) ~ g**(t) [tf*(t) + ['XJ Cif(Y)dY] + 100 f*(u)g*(u)du 
if*(t) t 

~ tf**(t)g**(t) + 100 f*(u)g*(u)du. 0 

1.8.9. Lemma. Under the hypotheses of Lemma 1.8.8, 

h**(t) ~ 100 f**(u)g**(u)du. 

Proof. We may as well assume the integral on the right is finite and then 
conclude 

lim uf**(u)g**(u) = O. (1.8.16) 
1'--+00 
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By Lemma 1.8.8 and the fact that /* ::; /**, we have 

h**(t) ::; tj**(t)g**(t) + 100 
/*(u)g*(u)du 

::; tj**(t)g**(t) + 100 
j**(u)g*(u)du. 

Note that since /* and g* are non-increasing, 

.!i. j**(u) = .!.[j*(u) - j**(u)] 
du u 

and 

d~ ug**(u) = g*(u) 
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(1.8.17) 

for almost all (in fact, all but countably many) u. Since /** and g** are 
absolutely continuous, we may perform integration by parts and employ 
(1.8.16) and (1.8.17) to obtain 

h**(t) ::; tj**(t)g**(t) + uj**(u)g**(u)lr' 

+ 100 
[j**(u) - j*(u)]g**(u)du 

= l°°[j**(u) - j*(u)]g**(u)du 

::; 100 
j**(u)g**(u)du. o 

We conclude this section by proving some lemmas that provide a com
parison between various Lorentz spaces. We begin with the following that 
compares £P and L(p,p). 

1.8.10. Lemma. If 1 < p < 00 and lip + lip' = 1, then 

Ilfllp::; Ilfll(p,p) ::; p'llfllp, 

Proof. Since /* ::; /**, 
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The second inequality follows immediately from the definition of J**(t) and 
the inequality 

[ [00 [ lip r ] P d ll/P [ [00 d ] l/p io x x io f(t)dt: ~ plio [x l / p f(x)jP : 

which is a consequence of the following lemma with r = p - 1. 0 

The next result is a classical estimate, known as Hardy's inequality, which 
gives information related to Jensen's inequality (1.5.12). If f is a non
negative measurable function defined on the positive real numbers, let 

11X F(x) = - f(t)dt, 
x 0 

x> O. 

Jensen's inequality gives an estimate of the pth power of F; Hardy's in
equality gives an estimate of the weighted integral of the pth power of F. 

I.S.11. Lemma (Hardy). If 1 ~ p < 00, r ~ 0 and f is a non-negative 
measurable function on (0,00), then with F defined as above, 

Proof. By an application of Jensen's inequality (1.5.12) with the measure 
t(r/p)-ldt, we obtain 

(lX f(t)dt)P = (lX f(t)t1-(r!P)t(r/p)-ldt)P 

~ (~r-l xr(l-l/p) l x [f(t)jPtp-r-l+r/Pdt. 

Then by Fubini's theorem, 

< (~r-l 100 x-l-(r/p) (l X [f(t)]Ptp-r-l+(r/p)dt) dx 

= (~r-l 100 [f(t)jPtp-r-l+(r/p) (100 x-1-(r/p)dx) dt 

= (~r 100 [f(t)tJPrr-ldt. 0 
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The following two lemmas provide some comparison between the spaces 
L(p, q) and L(p, r). 

1.8.12. Lemma. 

J**(x) < (lJ.) l/q Ilfll(p,q) < e1/e IIfll(p,q) . 
- p x1/ p - x1/ p 

Proof. 

(lIfll(p,q»)q = 100 [t1/p J**(tW~t 

~ 13: [J**(t)]qt(q/p)-ldt 

~ [J**(xW 13: t(q/p)-ldt 

= E[J**(x)]qxp/q. 
q 

The first inequality follows by solving for J**(x) and the second by ob-

( ) l/q 
serving that: ~ ql/q ~ e1/e. o 

1.8.13. Lemma (Calderon). If 1 < p < 00 and 1 ~ q < r < 00, then 

( ) 
(l/q)-(l/r) 

Ilfll(p,r) ~ ~ Ilfll(p,q) ~ e1/ellfll(p,q)· 

Proof. 

and the first inequality follows by taking the rth root of both sides. The 
second follows by the same reasoning as in the previous lemma. 0 



Exercises 37 

Exercises 

1.1. Prove that if E c Rn is an arbitrary set, then the distance function 
to E is Lipschitz with constant 1. That is, if d( x) = d( x, E), then 
Id(x) - d(y)1 :5 Ix - yl for all x, y ERn. 

1.2. (a) Prove that if E is a set with HQ(E) < 00, then Hf3(E) = ° for 
every (3 > a. 

(b) Prove that any set E c Rn has a unique Hausdorff dimension. 
See Remark 1.4.3. 

1.3. Give a proof of Lemma 1.5.1. More generally, prove the following: 
Let cp: [0,00] ---+ [0,00] be a monotonic function which is absolutely 
continuous on every closed interval of finite length. Then, under the 
conditions of Lemma 1.5.1, prove that 

{ cpoudp,= roo p,(Et)cp'(t)dt. iRn io 

1.4. Prove that ck,Q(n) is a Banach space with the norm defined in Sec
tion 1.1. 

1.5. Let f E C(f'(Rn) and T a distribution. Verify the Leibniz formula 

where we say (3 :5 a provided (3i :5 ai for 1 :5 i :5 n. 

1.6. Prove that if T is a distribution and cp E C(f(Rn), then T * cp E 
C(f'(Rn) and D(T * cp) = (DT) * cp where D denotes any partial 
derivative of the first order. This may be accomplished by analyzing 
difference quotients and using the fact that Th(DT) = D(ThT). 

1.7. Lemma 1.8.13 shows that if 1 < p < 00 and 1 < q < r < 00, then 

L(p,q) c L(p,q) c L(p,r) C L(p, 00). 

Give examples that show the above inclusions are strict. 

1.8. As we have noted in Remark 1.4.3, the measure H'Y does not satisfy 
the regularity property analogous to (1.4.5). However, it does have 
other approximation properties. Prove that if A c Rn is an arbitrary 
set, there exists a Gc5-set G ::> A such that 

H'Y (A) = H'Y(G). 
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It can also be shown (although the proof is not easy) that if A is a 
Suslin set, then 

H'(A) = sup{H'(K): K C A,K compact,H'(K) < oo}. 

See [F4, 2.10.48]. 

1.9. Prove the statement that leads to (1.8.10), namely, if f E Ll(Rn), 
then 

t f*(r)dr = tf*(t) + J<Xl O!f(s)ds. 
Jo f*(t) 

Hint: Consider the graph of f and employ Lemma 1.5.1. 

1.10. Another Hausdorff-type measure often used in the literature is Haus
dorff spherical measure, HJ. It is defined in the same manner as H' 
(see Definition 1.4.1) except that the sets Ai are taken as n-balls. 
Clearly, H' (E) :::; HJ (E) for any set E. Prove that HJ (E) = 0 
whenever H'(E) = o. 

1.11. Suppose u is a function defined on an open set n c Rn with the 
property that it is continuous almost everywhere. Prove that u is 
measurable. 

1.12. Using only basic information, prove that the class of simple functions 
is dense in the Lorentz space L(p, q). 

1.13. Let J.L be a Radon measure on Rn. As an application of Theorem 1.3.6 
prove that any open set U C Rn is essentially (with respect to J.L) the 
disjoint union of n-balls. That is, prove that there is a sequence of 
disjoint n-balls Bi C U such that 

1.14. Let J.L be a Radon measure on Rn. Let I be an arbitrary index set 
and suppose for each O! E I, that Eo. is an J.L-measurable set with the 
property that 

lim J.L[Eo. n B(x, r)] = 1 
r-+O J.L[B(x, r)] 

for every x E Eo.. Prove that Uo.EI Eo. is J.L-measurable. 

1.15. From Exercise 1.1 we know that the distance function, d, to an arbi
trary set E is Lipschitz with constant 1. Looking ahead to Theorem 
2.2.1, we then can conclude that d is differentiable almost everywhere. 
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Prove that if E is a closed set and d is differentiable at a point x ¢ E, 
then there exists a unique point €(x) E E nearest x. Also prove that 

Dd( ) = x - €(x) 
x d(x)' 

1.16. (a) If f is a continuous function defined on Rn, prove that its non
increasing rearrangement 1* is also continuous. Thus, continu
ous functions remain invariant under the operation of rearrange
ment. 

(b) Now prove that Lipschitz functions also remain invariant under 
rearrangement. For this it will be necessary to use the Brunn
Minkowski inequality. It states that if E and Fare nonempty 
subsets of Rn, then 

where E + F = {x + y : x E E, y E F}. 

(c) Looking ahead to Chapter 2, prove that if f E W1,P(Rn ), then 
1* E W1,P(Rn ). Use part (b) and Theorem 2.5.1. 

(d) Show by an example that C1(Rn) does not remain invariant 
under the operation of rearrangement. 

1.17. Let U E CO(Rl). For each h =f. 0, let Uh be the function defined by 

() u(x + h) - u(x) 
Uh X = h . 

Prove that Uh -+ u' in the sense of distributions. 

1.18. Let {Ui} be a sequence in V(Rn) that converges weakly to U in 
V(Rn), p > 1. That is, 

for every v E V' (Rn). Prove that DO!Ui -+ DO!u in the sense of 
distributions for each multi-index O!. 

Historical Notes 

1.2. The notion of measures has two fundamental applications: one can be 
used for estimating the size of sets while the other can be used to define 
integrals. In his 1894 thesis, E. Borel (cf. [BOD essentially introduced what 
is now known as Lebesgue outer measure to estimate the size of sets to assist 
his investigation of certain pathological functions. Lebesgue [LEI] used 
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measures as a device to construct his integral. Later, when more general 
measures were studied, Radon (1913) for example, emphasized measure 
as a count ably additive set function defined on a a-ring of sets whereas 
Caratheodory (1914) pursued the notion of outer measures defined on all 
sets. 

1.3. The material in this section represents only a very small portion of the 
literature devoted to differentiation theory and the related subject of cover
ing theorems. Central to this theory is the celebrated theorem of Lebesgue 
[LE2] which states that a locally integrable function can be represented 
by the limit of its integral averages over concentric balls whose radii tend 
to zero. Theorem 1.3.8 generalizes this result to the situation in which 
Lebesgue measure is replaced by a Radon measure. This result and the 
covering theorems (Theorems 1.3.5 and 1.3.6) which lead to it are due to 
Besicovitch, [BEl], [BE2]. The proof of Theorem 1.3.5 was communicated 
to the author by Robert Hardt. The original version of Theorem 1.3.6 is due 
to Vitali [VI] who employed closed cubes and Lebesgue measure. Lebesgue 
[LE2] observed that the result is still valid if cubes are replaced by gen
eral sets that are "regular" when compared to cubes. A sequence of sets 
{Ek} is called regular at a point Xo if Xo E n~=lEk' diam(Ek) -+ 0 and 
lim infk ..... o p(Ek) > 0 where p(Ek) is defined as the infimum of the numbers 
ICI/IEkl with C ranging over all cubes containing Ek. In particular, one is 
allowed to consider coverings by nested cubes or balls that are not neces
sarily concentric. However, in the case when Lebesgue measure is replaced 
by a Radon measure, Theorem 1.3.6 no ionger remains valid if the balls in 
the covering are allowed to become too non-concentric. At about the time 
that Besicovitch made his contributions, A.P. Morse developed a theory 
which allowed coverings by a general class of sets rather than by concentric 
closed balls. The following typifies the results obtained by Morse [MSE2]: 
Let A c Rn be a bounded set. Suppose for each x E A there is a set H(x) 
satisfying the following two properties: (i) there exist M > 0 independent 
of x and r(x) > 0 such that 

B(x, r(x)) C H(x) C B(x, Mr(x)); 

(ii) H(x) contains the convex hull of the set {y} U B(x, r(x)) whenever 
y E H(x). Then a conclusion similar to that in Theorem 1.3.5 holds. 

Another useful covering theorem due to Whitney [WH] states than an 
open set in Rn can be covered by non-overlapping cubes that become 
smaller as they approach the boundary. Theorem 1.3.5 is a similar result 
where balls are used instead of cubes and where the requirement of disjoint
ness is replaced by an estimate of the amount of overlap. This treatment 
is found in [F4, Section 3.1]. 

Among the many results concerning differentiation with respect to irreg
ular families is the following interesting theorem proved in [JMZ]: Suppose 
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u is a measurable function defined on Rn such that 

Then, for almost every x E Rn, 

lim 111-1 h1u(y) - u(x)ldy = 0 

where the limit is taken over all bounded open intervals 1 containing the 
point x. This result is false if u is assumed only to be integrable. Such ir
regular intervals are useful in applications concerning parabolic differential 
equations, where it is natural to consider intervals of the form C x [0, r2], 

where C is an (n - I)-cube of side-length r. 
For further information pertaining to differentiation and coverings, the 

reader may consult [DG], [F4, Section 2.8]. 

1.4. CaratModory [CAY] was the first to introduce "Hausdorff" measure in 
his work on the general theory of outer measure. He only developed linear 
measure in Rn although he indicated how k-dimensional measure could be 
defined for integer values of k. k-dimensional measure for general positive 
values of k was introduced by Hausdorff [HAU] who illustrated the use 
of these measures by showing that the Cantor ternary set has fractional 
dimension log 2/ log 3. 

1. 7. There are various ways of presenting the theory of distributions, but 
the method employed in this section is the one that reflects the original 
theory of Schwartz [SCH] which is based on the duality of topological vector 
spaces. The reader may wish to consult the monumental work of Gelfand 
and his collaborators which contains a wealth of material on "generalized 
functions" [GEl], [GE2], [GE3], [GE4], [GE5]. 

1.8. Fundamental to the notion of Lorentz spaces is the classical concept 
of the non-increasing rearrangement of a function which, in turn, is based 
upon a notion of symmetrization which transforms a given solid in R3 
into a ball with the same volume. There are a variety of symmetrization 
procedures including the one introduced by J. Steiner [ST] in 1836 which 
changes a solid into one with the same volume and at least one plane of 
symmetry. The reader may consult the works by P6lya and Szego [PS] or 
Burago and Zalgaller [BUZ] for excellent accounts of isoperimetric inequal
ities and their connection with symmetrization techniques. In 1950 G.G. 
Lorentz [LOl], [L02], first discussed the spaces that are now denoted by 
L(p, 1) and L(p, 00). Papers by Hunt [HU] and O'Neil [0] present interest
ing developments of Lorentz spaces. Much of this section is based on the 
work of O'Neil and the main results of this section, Lemmas 1.8.7-1.8.9, 
were first proved in [0]. The reader may consult [CA2J, [CA3], [LP], [PEl 
for further developments in this area. 
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Sobolev Spaces and Their 
Basic Properties 
This chapter is concerned with the fundamental properties of Sobolev 
spaces including the Sobolev inequality and its associated imbedding the
orems. The basic Sobolev inequality is proved in two ways, one of which 
employs the co-area formula (Section 2.7) to obtain the best constant in the 
inequality. This method relates the Sobolev inequality to the isoperimetric 
inequality. 

The point-wise behavior of Sobolev functions will be discussed in Chap
ters 3 and 4 and this will entail a method of defining Sobolev functions 
on large sets, sets larger than the complement of sets of Lebesgue measure 
zero. It turns out that the appropriate null sets for this purpose are de
scribed in terms of sets of Bessel capacity zero. This capacity is introduced 
and developed in Section 2.6 but only to the extent needed for the analysis 
in Chapters 3 and 4. The theory of capacity is extensive and there is a vast 
literature that relates Bessel capacity to non-linear potential theory. It is 
beyond the scope of this book to give a thorough treatment of this topic. 

One of the interesting aspects of Sobolev theory is the behavior of the 
Sobolev inequality in the case of critical indices. In order to gain a better 
appreciation of this phenomena, we will include a treatment in the context 
of Lorentz spaces. 

2.1 Weak Derivatives 

Let u E Lfoc(n). For a given multi-index a, a function v E Lfoc(n) is called 
the a th weak derivative of u if 

(2.1.1) 

for all <p E C~ (n). v is also referred to as the generalized derivative of u 
and we write v = DOI U • Clearly, DOI U is uniquely determined up to sets 
of Lebesgue measure zero. We say that the a th weak derivative of u is a 
measure if there exists a regular Borel (signed) measure J.l on n such that 

(2.1.2) 
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for all cp E C(f(n). In most applications, lal = 1 and then we speak of u 
whose partial derivatives are measures. 

2.1.1. Definition. For p ~ 1 and k a non-negative integer, we define the 
Sobolev space 

The space Wk,p(n) is equipped with a norm 

which is clearly equivalent to 

L IIDO:ullp;n. 
lo:l~k 

(2.1.3) 

(2.1.4) 

(2.1.5) 

It is an easy matter to verify that Wk,p(n) is a Banach space. The space 
W;,p(n) is defined as the closure of C(f(n) relative to the norm (2.1.4). 
We also introduce the space BV(n) of integrable functions whose partial 
derivatives are (signed measures) with finite variation; thus, 

BV(n) = Ll(n) n {u : DO:u is a measure, IDctul(n) < 00, lal = I}. 
(2.1.6) 

A norm on BV(n) is defined by 

lIuIlBV(n) = lIulkn + L IDO:ul(n). (2.1. 7) 
Ict l=1 

2.1.2. Remark. Observe that if u E Wk,p(n) U BV(n), then u is deter
mined only up to a set of Lebesgue measure zero. We agree to call these 
functions u continuous, bounded, etc. if there is a function 'IT such that 
'IT = u a.e. and 'IT has these properties. 

We will show that elements in Wk,p(n) have representatives that permit 
us to regard them as generalizations of absolutely continuous functions 
on Rl. First, we prove an important result concerning the convergence of 
regularizers of Sobolev functions. 

2.1.3. Lemma. Suppose u E Wk,p(n), p ~ 1. Then the regularizers of u 
(see Section 1.6), U g , have the property that 

limo lIug - Ullk,p;n' = 0 
g-+ 
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whenever 0' cc O. In case 0 = R n , then limc;-to Iluc; - ullk,p = O. 

Proof. Since 0' is a bounded domain, there exists eo > 0 such that eo < 
dist(O',oO). For e < eo, differentiate under the integral sign and refer to 
(2.1.1) to obtain for x E 0' and lad:::; k, 

DQuc;(x) = e-n i D~cp (x ~ y) u(y)dy 

= (-1) IQ1 e-n i D~cp (x ~ y) u(y)dy 

= e-n i cp ( x ~ y) DQu(y)dy 

= (DQu)c;(x) 

for each x EO'. The result now follows from Theorem 1.6.1(iii). 0 

Since the definition of a Sobolev function requires that its distributional 
derivatives belong to V, it is natural to inquire whether the function pos
sesses any classical differentiability properties. To this end, we begin by 
showing that its partial derivatives exist almost everywhere. That is, in 
keeping with Remark 2.1.2, we will show that there is a function 'it such 
that 'it = u a.e. and that the partial derivatives of 'it exist almost every
where. However, the result does not give any information concerning the 
most useful concept of total differential, the linear approximation of the 
difference quotient. This topic will be pursued in Chapter 3. 

2.1.4. Theorem. Suppose u E V(O). Then u E WI,P(O), p ;::: 1, if and 
only if u has a representative 'it that is absolutely continuous on almost 
all line segments in 0 parallel to the coordinate axes and whose (classical) 
partial derivatives belong to V(O). 

Proof. First, suppose u E WI,P(O). Consider a rectangular cell in 0 

R == [aI, bl ] x ... x [an, bn] 

all of whose side lengths are rational. We know from Lemma 2.1.3 that the 
regularizers of u converge to u in the Wl~'%(O) norm. Thus, writing x E R 
as x = (x, Xi) where x E Rn - l and Xi E [ai, bd, 1 :::; i :::; n, it follows from 
Fubini's Theorem that there is a sequence {ek} ---> 0 such that 

lim fbi IUk(X, Xi) - u(x, Xi)IP + IDuk(X, Xi) - Du(x, xi)IPdxi = 0 
k-+oo Jai 

for almost all X. Here, we denote UC;k = Uk. Since Uk is smooth, for each 
such x and for every "7 > 0, there is M > 0 such that for b E [ai, bi], 

IUk(X,b) - uk(x,ai)l:::; l~i IDuk(X,Xi)ldxi 
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::; l~i IDu(x, xi)ldxi + TJ 

for k > M. If {Uk (x, ai)} converges as k -. 00, (which may be assumed 
without loss of generality), this shows that the sequence {ud is uniformly 
bounded on [ai, bil. Moreover, as a function of Xi, the Uk are absolutely 
continuous, uniformly with respect to k, because the Ll convergence of 
DUk to Du implies that for each c > 0, there is a 8 > 0 such that 
IE IDuk(X,Xi)ldxi < c whenever Hl(E) < 8 for all positive integers k. 
Thus, by the Arzela-Ascoli theorem, {Uk} converges uniformly on [ai, bil 
to an absolutely continuous function that agrees almost everywhere with 
u. This shows that U has the desired representative on R. The general case 
follows from the familiar diagonalization process. 

Now suppose that u has such a representative U. Then urp also possesses 
the absolute continuity properties of U, whenever rp E 00'(0.). Thus, for 
1 ::; i ::; n, it follows that 

J uDirp dx = - J DiUrp dx 

on almost every line segment in 0. whose end-points belong to Rn - spt rp 
and is parallel to the ith coordinate axis. Fubini's Theorem thus implies 
that the weak derivative DiU has DiU as a representative. 0 

2.1.5. Remark. Theorem 2.1.4 can be stated in the following way. If u E 
LP(0.), then u E Wl,p(0.) if and only if u has a representative u such that 
u E Wl,P(A) for almost all line segments A in 0. parallel to the coordinate 
axes and IDul E LP(0.). For an equivalent statement, an application of 
Fubini's Theorem allows us to replace almost all line segments A by almost 
all k-dimensional planes Ak in 0. that are parallel to the coordinate k-planes. 

It is interesting to note that the proof of Theorem 2.1.4 reveals that 
the regularizers of u converge everywhere on almost all lines parallel to the 
coordinate axes. If u were not an element of Wl,p(0.), but merely an element 
of Ll(0.), Fubini's theorem would imply that the convergence occurs only 
Hl-a.e. on almost all lines. Thus, the assumption u E Wl,p(0.) implies 
that the regularizers converge on a relatively large set of points. This is an 
interesting facet of Sobolev functions that will be pursued later in Chapter 
3. 

Recall that if u E LP(Rn), then Ilu(x + h) - u(x)llp -. 0 as h -. O. A 
similar result provides a very useful characterization of Wl,p(Rn). 

2.1.6. Theorem. Let 1 < p < 00. Then u E wl,p(Rn) if and only if 
u E LP(Rn) and 

(J I u(x + ~~I- u(x) IP dX) lip = Ihl-lllu(x + h) - u(x)llp 
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remains bounded for all h E Rn. 

Proof. First assume u E C(f(Rn). Then 

u(x+h)-u(x) I11h' ( h) h 
Ihl = ThI 0 Du x + tThi . Thl dt , 

so by Jensen's inequality (1.5.12), 

IU(X+h)-U(X)I P I11h'l ( h)IP 

h :::; ThI 0 Du x + tThi dt. 

Therefore, 

or 
Ilu(x + h) - u(x)llp :::; IhlllDullp· 

By Lemma 2.1.3, this holds whenever u E W1,P(Rn ). 

Conversely, if ei is the ith unit basis vector, then the sequence 

{ u(x + edk) - u(x)} 
11k 

is bounded in V(Rn). Hence, by Theorem 1.5.2, there exists a subsequence 
(which will be denoted by the full sequence) and Ui E V(Rn) such that 

u(x + edk) - u(x) 
11k -t Ui 

weakly in V(Rn). Thus, for cp E g, 

1 d 1· 1 [U(X + eilk) - U(X)] ()d UiCP x = 1m Ik cP x x 
F k-oo F 1 

= lim ( u(x) [cp(x - edk) - cp(x)] dx 
k-oo}Rn 11k 

= - ( uDiCP dx. 
}Rn 

This shows that 
DiU = Ui 

in the sense of distributions. Hence, u E W1,P(Rn ). 

2.1.7. Definition. For a measurable function u: n -t Rl, let 

u+ = max{u,O}, u- = min{u,O}. 

o 
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2.1.8. Corollary. Let u E W1,P(D), p 2: 1. Then u+, u- E W1,P(D) and 

D + = {DU if U > 0 
U 0 ifu~O 

Du- = {O if u 2: 0 
Du if u < O. 

Proof. Because u has a representative that has the absolute continuity 
properties stated in Theorem 2.1.4, it follows immediately that u+, u- E 
W1,P(D). The second part of the theorem is reduced to the observation 
that if f is a function of one variable such that l' exists a.e., then (f+), = 

f"X{f>O}' D 

2.1.9. Corollary. If D is connected, u E W1,P(D), p 2: 1, and Du = 0 a.e. 
on D, then u is constant on D. 

Proof. Appealing to Theorem 2.1.4, we see that u has a representative 
that assumes a constant value on almost all line segments in D parallel to 
the coordinate axes. D 

2.1.10. Remark. The corollary states that elements of W1,P(D) remain 
invariant under the operation of truncation. One of the interesting aspects 
of the theory is that this, in general, is no longer true for the space Wk,P(D). 
Motivated by the observation that u+ = H 0 u where H is defined by 

H(t) = {t t 2: 0 o t < 0 

we consider the composition H 0 u where H is a smooth function. It was 
shown in [MA2] and [MA3] that it is possible to smoothly truncate non
negative functions in W 2 ,p. That is, if H E Coo (Rl) and 

for j = 1,2, then there exists C = C(p, M) such that for any non-negative 
v E C(f(Rn) 

/IDa H(v)llp ~ C/lD2vllp 

for 1 < p < n/2 and any multi-index a with lal = 2. Here D 2v denotes the 
vector whose components consist of all second derivatives of v. However, 
it is surprising to find that this is not true for all spaces Wk,p. Indeed, it 
was established in [DA1] that if 1 ~ p < n/k, 2 < k < n, or 1 < p < n/k, 
k = 2, and H E COO(Rl) with H(k)(t) 2: 1 for It I ~ 1, then there exists a 
function u E wk,p(Rn) n coo(Rn) such that H(u) rf. Wk,P(Rn). The most 
general result available in the positive direction is stated in terms of Riesz 
potentials, Ia * f (see Section 2.6), where f is a non-negative function in 
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U. The following result is due to Dahlberg [DA2]. Let 0 < 0: < nand 
1 < p < n/o:. Let HE coo(Rl) have the property that 

supltj-1H(j)(t)l:::; M < 00 

t>O 

for j = 0,1, ... , 0:*, where 0:* is the smallest integer 2: 0:. If f E U(Rn) 
and f 2: 0, then there exists 9 E U(Rn) such that 

H(Ia * g) = Ia * 9 a.e. 

and Ilgllp :::; Cllfllp where C = C(o:,p, n, M). The case of integral 0: was 
treated in [AD4] and in this situation the result can be formulated as 

IID'Y[H(Ia * f)]llp :::; Cllfll~ 

for any multi-index, with hi = k. 
To continue our investigation of the calculus of Sobolev functions, we con

sider the problem of composition of a suitable function with u E W 1,P(!1). 
Before doing so, we remind the reader of the analogous problem in Real 
Variable theory. In general, if f and 9 are both absolutely continuous func
tions, then the composition, fog, need not be absolutely continuous. Recall 
that a function, f, is absolutely continuous if and only if it is continuous, of 
bounded variation, and has the property that If(E)1 = 0 whenever lEI = O. 
Thus, the consideration that prevents fog from being absolutely continu
ous is that fog need not be of bounded variation. A result of Vallee Poussin 
[PO] states that fog is absolutely continuous if and only if l' 0 9 . g' is 
integrable. An analogous result is valid in the context of Sobolev theory, cf. 
[MM1J, [MM2], but we will consider only the case when the outer function 
is Lipschitz. 

2.1.11. Theorem. Let f : Rl --+ Rl be a Lipschitz function and u E 
W 1,P(!1), p 2: 1. If f 0 u E U(!1), then f 0 U E W 1,P(!1) and for almost all 
x E!1, 

D(f 0 u)(x) = 1'[u(x)]. Du(x). 

Proof. By Theorem 2.1.4, we may assume that u is absolutely continuous 
on almost all line segments in !1. Select a coordinate direction, say the 
ith, and consider the partial derivative operator, D i . On almost all line 
segments, A, in!1 parallel to the ith coordinate axis, f ou is clearly absolutely 
continuous because f is Lipschitz. Moreover, 

Di(f 0 u)(x) = f'[u(x)]. DiU(X) (2.1.8) 

holds at all x E A such that DiU(X) and 1'[u(x)] both exist. Note that if 
DiU(X) = 0, then Di(f 0 u)(x) = 0 because 

lJ[u(x + hei) - f[u(x)]1 < Mlu(x + hei) - u(x)1 
Ihl - Ihl 
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where M is the Lipschitz constant of f and ei is the ith coordinate vector. 
Thus, letting N = A n {x : DiU(X) = O}, we have that (2.1.8) holds on N. 
Now let 

P = (A - N) n {x : DiU(X) exists and DiU(X) t O} 

and note that PUN occupies HI-almost all of A. From classical consid
erations, we have that if S c P and HI[U(S)] = 0, then HI(S) = O. In 
particular, if we let E = {y: f'(y) fails to exist}, then Hl[u-I(E)np] = O. 
Since (2.1.8) holds if x E A - u-I(E) n P and DiU(X) exists, it follows 
therefore that (2.1.8) holds at HI-almost all points of A. At all such x, we 
may conclude that 

(2.1.9) 

Once it is known that the set of x E 0 for which (2.1.8) holds is a mea
surable set, we may apply Fubini's Theorem to conclude that f 0 u sat
isfies the hypotheses of Theorem 2.1.4. This is a consequence of the fact 
that the functions on both sides of (2.1.8) are measurable. In particular, 
f' 0 u is measurable because f' agrees with one of its Borel measurable 
Dini derivates almost everywhere. 0 

2.2 Change of Variables for Sobolev Functions 

In addition to the basic facts considered in the previous section, it is also 
useful to know what effect a change of variables has on a Sobolev function. 
For this purpose, we consider a bi-Lipschitzian map 

T: 0 --+ 0'. 

That is, for some constant M, we assume that both T and T-I satisfy, 

IT(x) - T(y)1 ~ Mix - yl, for all x, yEO, 

IT-1(x') - T-1(y')1 ~ Mix' - y'l, for all x',y' EO'. (2.2.1) 

In order to proceed, we will need an important result of Rademacher which 
states that a Lipschitz map T: R n --+ R m is differentiable at almost all 
points in Rn. That is, there is a set E C R n with lEI = 0 such that for 
each x E R n - E, there is a linear map dT(x): R n --+ R m (the differential 
of T at x) with the property that 

lim IT(x + y) - T(x) - dT(x, y)1 = o. 
y-+O Iyl (2.2.2) 
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In order to establish (2.2.2) it will be sufficient to prove the following 
result. 

2.2.1. Theorem. If f: Rn -+ R1 is Lipschitz, then for almost all x ERn, 

lim f(x + y) - f(x) - Df(x)· y = o. 
y-o Iyl 

Proof. For vERn with Ivl = 1, and x ERn, let ,(t) = f(x + tv). Since f 
is Lipschitz, , is differentiable for almost all t. 

Let df (x, v) denote the directional derivative of f at x. Thus, df (x, v) = 
,'(0) whenever ,'(0) exists. Let 

Nv = Rn n {x: df(x,v) fails to exist}. 

Note that 

N {I· f(x+tv)-f(x) 1· . ff(x+tV)-f(X)} 
v = x: 1m sup > 1m In , 

t-O t t-O t 

and is therefore a Borel measurable set. However, for each line). whose 
direction is v, we have H1(Nv n).) = 0, because f is Lipschitz on ).. 
Therefore, by Fubini's theorem, INv I = O. Note that on each line). parallel 
to v, 1 df(x, v)cp(x)dx = -1 f(x)dcp(x, v)dx 

for cp E C({'(Rn). Because Lebesgue measure remains invariant under or
thogonal transformations, it follows by Fubini's Theorem that 

r df(x, v)cp(x)dx = - r f(x)dcp(x, v)dx JRn JRn 
=- r f(x)Dcp(x).vdx JRn 
= - t r f(x)Djcp(x)· Vj dx 

j=1 JRn 

= t r Djf(x)cp(x)· Vj dx 
j=1 JRn 

= r cp(x)Df(x). v dx. JRn 
Because this is valid for all cp E C({,(Rn), we have that 

df(x, v) = D f(x) . v, a.e. x ERn. (2.2.3) 
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Now let Vl, V2,'" be a countable dense subset of sn-l and observe that 
there is a set E with lEI = 0 such that 

df(x,Vk) = Df(x)· Vk (2.2.4) 

for all x E Rn - E, k = 1,2, .... 
We will now show that our result holds at all points of Rn - E. For this 

purpose, let x E Rn - E, Ivl = 1, t > 0 and consider the difference quotient 

Q(x, v, t) =- f(x + tv) - f(x) - D f(x) . v. 
t 

For v, v' E sn-l and t > 0 note that 

IQ(x, v, t) _ Q(x, v', t)1 = If(x + tv) - f(x + tv') + (v - v') . Df(x)1 
t 

::; Mlv - v'l + Iv - v'I·IDf(x)1 ::; M(n + l)lv - v'l (2.2.5) 

where M is the Lipschitz constant of f. Since the sequence {vd is dense in 
sn-l, there exists an integer K such that 

c 
Iv-vkl <2(n+1)M forsome kE{1,2, ... ,K} (2.2.6) 

whenever v E sn-l. For Xo ERn - E, we have from (2.2.4) the existence 
of {j > 0 such that 

c 
IQ(xo, Vk, t)1 < 2" for 0 < t < {j, k E {I, 2, ... ,K}. (2.2.7) 

Since 
IQ(xo, v, t)1 ::; IQ(xo, Vk, t)1 + IQ(xo, v, t) - Q(xo, Vk, t)1 

for k E {I, 2, ... ,K}, it follows from (2.2.7), (2.2.5), and (2.2.6) that 

c c 
IQ(xo, v, t)1 < 2" + 2" = c 

whenever Ivl = 1 and 0 < t < (j. o 

Recall that if L: Rn --... Rn is a linear mapping and E C Rn a measurable 
set, then 

IL(E)I = IdetLIIEI· 

It is not difficult to extend this result to more general transformations. 
Indeed, if T: Rn --... Rn is Lipschitz, we now know from Theorem 2.2.1 
that T has a total differential almost everywhere. Moreover, if T is also 
univalent, one can show that 

Hn[T(E)] = L JT dx for every measurable set E, (2.2.8) 
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where JT is the Jacobian ofT. From this follows the general transformation 
formula 

r f 0 T JT dx = r f dx 
lE IT(E) 

(2.2.9) 

whenever f is a measurable function. We refer the reader to [F4; 3.2.3] for 
a proof. 

We are now in a position to discuss a bi-Lipschitzian change of coordi
nates for Sobolev functions. 

2.2.2. Theorem. Let T: R n -> R n be a bi-Lipschitzian mapping as in 
(2.2.1). If U E W1,p(n), p 2: 1, then v = U 0 T E W1,P(V), V == T-1(n), 
and 

Du[T(x)]· dT(x,e) = Dv(x)· e 
for a.e x E n and for all e ERn. 

(2.2.10) 

Proof. Let Ue: be a sequence ofregularizers for u, defined on n' cc n, (see 
Section 1.6). Then Ve: == Ue: 0 T is Lipschitz on V' = T-1(n' ) and because 
Ve is differentiable almost everywhere (Theorem 2.2.1), it follows that 

n 

DiVe:(X) = L Djue:[T(x)]DiTj(X) (2.2.11 ) 
j=l 

for a.e. x E V'. Here we have used the notation T = (Tl, T2, ... ,Tn) where 
the Tj are the coordinate functions of T. They too are Lipschitz. (2.2.11) 
holds at all points x at which the right side is meaningful, i.e., at all points 
at which T is differentiable. If M denotes the Lipschitz constant of T, we 
have from (2.2.11) that 

(2.2.12) 

In view of the fact that 

M-n :::; JT(x) :::; M n for a.e. x ERn, 

(2.2.12) implies that there exists a constant C = C(n, M) such that 

IDve:(x)JP :::; ClDue:[T(x)JIP . JT(x), a.e. x, 

and therefore 

r IDve:IPdx:::; C r IDue:IPdx lv' lo 
from (2.2.9). A quick review of the above analysis shows that in fact, we 
have 

(2.2.13) 
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Also, 

(2.2.14) 

From 2.2.11 we see that the regularizers U c converge to u in the norm of 
W 1,P(O') whenever 0' cc O. Thus, (2.2.13) and (2.2.14) imply that {vc } 

is a Cauchy sequence in W 1,P(O'), and thus converges to some element 
v E W 1,P(V') with 

Ilvlh,p;v1 ::; Cllulh,p;ol ::; ClluI11,P;O' (2.2.15) 

Since uc(x) --+ u(x) for a.e. x E 0, it is clear that v is defined on V with 
v = u 0 T. Moreover, v E W 1,P(V') whenever V' cc V and (2.2.15) shows 
that, in fact, v E W 1,p(V). Finally, observe that (2.2.10) holds by letting 
E --+ 0 in (2.2.11). 0 

2.3 Approximation of Sobolev Functions by 
Smooth Functions 

From Theorem 1.6.1, we see that for each u E Wk,P(O), there is a sequence 
of C8"(O) functions, {uc }, such that U c --+ U in Wk,P(O') for 0' cc O. The 
purpose of the next important result is to show that a similar approximation 
exists on all of 0 and not merely on compact subsets of O. 

We first require a standard result which concerns the existence of a Coo 
partition of unity subordinate to an open cover. 

2.3.1. Lemma. Let E C Rn and let Q be a collection of open sets U such 
that E C {UU : U E G}. Then, there exists a family F of non-negative 
functions f E cgo (Rn) such that 0 ::; f ::; 1 and 

(i) for each f E F, there exists U E Q such that spt feU, 

(ii) if K c E is compact, then spt f n K =I- 0 for only finitely many 
f EF, 

(iii) 2:.fE J" f(x) = 1 for each x E E. 

Proof. Suppose first that E is compact, so that there exists a positive 
integer N such that E C U~l Ui , Ui E Q. Clearly, there exist compact sets 
Ei C Ui such that E C U~ 1 Ei. By regularizing XEil the characteristic 
function of Ei , there exists gi E Cgo(Ui ) such that gi > 0 on Ei. Let g = 
2:.;:1 gi and note that g E COO (Rn) and that g > 0 on some neighborhood of 
E. Consequently, it is not difficult to construct a function hE coo(Rn) such 
that h > 0 everywhere and that h = g on E. Now let F = {Ii : fi = gi/h, 
1 ::; i ::; N} to obtain the desired result in case E is compact. 
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If E is open, let 

Ei = En B(O, i) n { x : dist(x, 8E) 2: ~ } . 

Thus, Ei is compact and E = U~lEi' Let Qi be the collection of all open 
sets of the form 

un {int Ei+1 - Ei- 2 } 

where U E Q. (We take Eo = E-1 = 0). The elements of Qi provide an 
open cover for Ei - int Ei- 1 and therefore possess a partition of unity Fi 
with finitely many elements. Let 

00 

s(x) = L L g(x) 
i=l gEFi 

and observe that only finitely many positive terms are represented and that 
s(x) > 0 for x E E. A partition of unity for the open set E is obtained by 
defining 

F = {I : I (x) = ~ for some 9 E Fi if x E E, } 
I(x) = 0 if x f/. E. 

If E c Rn is arbitrary, then any partition of unity for the open set 
{UU: U E Q} provides one for E. 0 

Clearly, the set 

s = Ck(O) n {u: Ilullk,p;f! < oo} 

is contained in Wk,P(O) and therefore, since Wk,P(O) is complete, S c 
Wk,P(O). The next result shows that S = Wk,P(O). 

2.3.2. Theorem. The space 

is dense in Wk,P(O). 

Proof. Let Oi be subdomains of 0 such that 0i cc 0i+1 and U~l 0i = O. 
Let F be a partition of unity of 0 subordinate to the covering {0i+1 -!1i-1}, 
i = 0,1, ... , where 0 0 and 0_1 are taken as the null set. Thus, if we let Ii 
denote the sum of the finitely many I E F with spt Ie 0i+1 - !1i-1, then 
Ii E CO'(0i+1 - !1i-1) and 

00 

Lli == 1 on O. (2.3.1) 
i=l 
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Choose c > O. For U E Wk,P(O), there exists Ci > 0 such that 

spt «(fiU)eJ c OHI - ITi-I. 

II(fiU)ei - fiulik,p;o < cTi. 
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(2.3.2) 

With Vi == (liu)ep (2.3.2) implies that only a finite number of the Vi can 
fail to vanish on any given 0' cc 0, and therefore V == L:1 Vi is defined 
and belongs to Coo (0). For x E Oi, we have 

i 

U(X) = L h(X)U(X), 
j=1 

i 

V(X) = L(hU)ej (x) by (2.3.2) 
j=1 

and consequently, 

i 

Iiu - vlik,p;oi ~ L li(hU)ej -hulik,p;o < c. 
j=1 

The conclusion follows from the Monotone Convergence theorem. 0 

The approximating space Coo (0) n {U: liullk,p;O < oo} admits functions 
that are not smooth across the boundary of 0 and therefore it is natural to 
ask whether it is possible to approximate functions in Wk,P(O) by a nicer 
space, say 

COO(IT) n {u: Ilulik,p;o < oo}. (2.3.3) 

In general, this is easily seen to be false by considering the domain 0 defined 
as an n-ball with its equatorial (n-1)-plane deleted. The function U defined 
by U == 1 on the top half-ball and U == -Ion the bottom half-ball is clearly 
an element of Wk,P(O) that cannot be closely approximated by an element 
in (2.3.3). The difficulty here is that the domain lies on both sides of part 
of its boundary. If the domain 0 possesses the segment property, it has 
been shown in [AR2, Theorem 3.18] that the space (2.3.3) is then dense in 
Wk,P(O). A domain 0 has the segment property iff or each x E 80, there is 
an r > 0 and a vector Vx ERn such that if y E ITnB(x, r), then y+tvx EO 
for all 0 < t < 1. 

2.4 Sobolev Inequalities 

One of the main objectives of this monograph is to investigate the many 
inequalities that allow the V-norm of a function to be estimated by the 
norm of its partial derivatives. In this section the Sobolev inequality, which 
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is of fundamental importance, will be established for functions in the space 
W~,p(n). We will return to the topic of Sobolev-type inequalities in Chapter 
4. 

2.4.1. Theorem. Let n eRn, n > 1, be an open domain. There is a 
constant C = C(n,p) such that if n > p, p ~ 1, and u E W~,p(n), then 

Ilullnp/(n-p);O ~ CIiDullp;o. 

If p > nand n bounded, then u E C Cn) and 

sup lui ~ Clnll/n-l/PIIDullp;o. 
o 

Proof. First assume that u E cO'(n) and that p = 1. Clearly, for each i, 
1 ~ i ~ n, 

lu(x)1 ~ iX~IDiU(Xl, ... ,t, ... 'Xn)ldt 

where t occupies the ith component of the vector in the integrand. Therefore 

(2.4.1) 

If this inequality is integrated with respect to the first variable, Xl, and 
then Holder's inequality is applied, we obtain 

(/

00 ) l/(n-l) 
~ -00 ID1U(t, X2,"" xn)ldt 

. f! (i: i: IDiuldXidXl) l/(n-l) (2.4.2) 

Continuing this procedure and thus integrating (2.4.1) successively with 
respect to each variable, we obtain 
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and therefore, using the fact that the geometric mean is dominated by the 
arithmetic mean, 

(IIa -)l/n<.!.~a- a->O 
J ~ J' J - , 

- n j=l 
we have 

n (1 )l/n 11 n Ilulin/(n-l) :::; II IDiuldx :::; ;; L IDiUldx 
i=l Rn Rn i=l 

Vn :::; -IIDulll- (2.4.3) 
n 

This establishes the result in case p = 1. The result in full generality can 
be obtained from (2.4.3) by replacing lui by powers of lui. Thus, if q > 1, 

II luqlIin/(n-l) :::; Vn r IID(lulq)lldx 
n JRn 

:::; q Vn r lulq-1lDuldx 
n JRn 

:::; qVnlllulq-lllpIIiDullp, 
n 

by Holder's inequality. Now let q = (n - 1)p/(n - p) to obtain the desired 
result for the case 1 :::; p < nand u E Co(n). Now assume u E wg,p(n) 
and let {Ui} be a sequence of functions in C[[' (n) converging to u strongly 
in wg,p(n). Then, with p* = np/(n - p), an application of the inequality 
to Ui - Uj yields 

Ilui - Uj lip' :::; Cllui - Uj Ikp" 
Thus, Ui -+ U in V· (n) and the desired result follows. This completes the 
proof in case 1 :::; p < n. 

In case p > nand n bounded, let {Ui} be a sequence such that Ui E 
Co(n) and Ui -+ U W1,p(n). The proof is thus reduced to the case when 
u E c[['(n). Now select x E Rn and because u has compact support, note 
that 

(2.4.4) 

where Ax is any ray whose end-point is x. Let sn-l(x) denote the (n - 1)
sphere ofradius 1 centered at x and denote by Ax((J) the ray with end-point 
x that passes through (), where () E sn-l(x). By integrating (2.4.4) over 
sn-l(x) we obtain 

r lu(x)ldHn - 1((}):::; r 
Jsn-l(x) Jsn-l(x) 

. r IDu(r)ldH1(r)dHn - 1((}) 
J Ax (In 
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where r = Ix - yl. Thus, for any x E Rn , 

( ) 
lip' 

w(n - l)lu(x)1 ::; IIDullp 1 Ix - yl(l-n)p' dy , 
sptu 

(2.4.6) 

where w(n-1) = Hn-l[sn-lj. We estimate the potential on the right side 
of (2.4.6) in the following way. Let B(x, R) be the ball such that IB(x, R)I = 
Ispt ul. Observe that for each y E spt u - B(x, R) and Z E B(x, R) - spt u, 
we have 

Ix - yl(l-n)p' ::; Ix - zl(l-n)p' 

and because Ispt u - B(x, R)I = IB(x, R) - spt ul, it therefore follows that 

1 Ix - yl(l-n)p' dy::; r Ix - yl(l-n)p' dy. 
spt u-B(x,R) J B(x,R)-spt u 

Consequently, 

1 Ix - yl(l-n)p' dy::; ( Ix - yl(l-n)p'dy. 
spt u J B(x,R) 

(2.4.7) 

However, 

(2.4.8) 

where r = (1 - n)p' + nand o:(n) is the volume of the unit n-ball. But 
o:(n)Rn = Ispt ul and therefore 

(2.4.9) 

The second inequality of the theorem follows from (2.4.9), (2.4.8), and 
(2.4.6). To show that u E C(n) when p > n, let {ud E cO'(n) be a 
sequence converging to u in W~,p(n). Apply the second inequality of the 
theorem to the difference Ui - Uj and obtain that {ud is fundamental in 
the sup norm on n. 0 

The first part of Theorem 2.4.1 states that the £Po norm of u can be 
bounded by Ilulil,p, the Sobolev norm of u, where p* = np/(n - p). It is 
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possible to bound a higher V' norm of u by utilizing higher order deriva
tives of u as shown in the next theorem. Observe that the proof is slightly 
different from that of Theorem 2.4.1 in case k = 1, P > n. 

2.4.2. Theorem. Let 0 c R n be an open set. There is a constant C = 
C(n, k,p) such that if kp < n, p ~ 1, and u E W;'P(O), then 

Ilull p.;!1 ~ Cllullk,p;!1, where p* = np/(n - kp). (2.4.10) 

If kp> n, then u E C(O) and 

. k 1 n k 
( )

-1 1 + (dlam(K)) (k _ 1)! k - P liD ullp;K (2.4.11) 

where K = spt u and C = C(k,p, n). 

Proof. When kp < n, the proof proceeds by induction on k. Observe that 
Theorem 2.4.1 establishes the case k = 1. 

Now assume for every v E W;-I,p(O) that 

(2.4.12) 

where 
qk-l = np/(n - kp + p). 

An application of (2.4.12) to v = Dju, 1 ~ j ~ n, yields 

(2.4.13) 

However, (2.4.12) holds with v replaced by u and this, combined with 
(2.4.13), implies 

(2.4.14) 

Since kp < n, we have qk-l < n and therefore, Theorem 2.4.1 implies 

(2.4.15) 

where q = nqk-I!(n - qk-l) = np/(n - kp). (2.4.14) and (2.4.15) give the 
desired conclusion. 

In order to treat the case kp > n, first assume u E Co(O) and for each 
yEO use the Taylor expansion of u to obtain, with the notation of Section 
1.1, 
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where 

and 

To estimate lu(y)l, note that 

IKllu(y)1 ~ [[lPx(Y)1 + IRx(y)ll dx 

and employ Holder's inequality to obtain 

k-1 
~ IKI1/pl L (diamK)lal~IIDaullp;K. 

n. 
lal=O 

Similarly, to estimate the remainder term, we have 

r IRx(y)ldx ~ (diam(K))kk L ~ r1 r (1 _ t)k-1 
1K lal=kn.10 1K 

. IDau((l - t)x + ty)ldxdt 

(2.4.16) 

(2.4.17) 

~ (diam(K))kk L ~ r1 r (1 - t)k-1(1 _ t)-n 
lal=k n. 10 1Kt 

. IDau(z)ldzdt, 

where K t = Tt(K) and Tt(x) = (l-t)x+ty. Note that IKtl = (l-t)nIKI. 
Consequently, by Holder's inequality and kp > n, we obtain 

r IRx(y)ldx ~ IKI1/pl (diam(K))kk L ~ 
1K lal=k n. 

11 (1 - t)k-1(1 - t)-nII Dau ll p;K(1- t)n/pl dt 

~ IKI1/pl (diam(K))kk L ~! (k - ~) -lIIDaullp;K' 
lal=k 

which, along with (2.4.16) and (2.4.17), establishes the desired inequality. 
If u E W;,P(O), let {ud be a sequence of smooth functions converging to 
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U in W;,P(D). The application of (2.4.1) to each Ui thus establishes the 
inequality for U E W;,P(D). To conclude that U E CO ([2) , apply (2.4.11) to 
the difference Ui - Uj and obtain that {ud is fundamental in the sup norm 
oo~ 0 

2.4.3. Remark. An important case to consider in the previous two the
orems is D = Rn. In this situation, Wk,P(Rn) = w;,p(Rn) (see Exercise 
2.1) and therefore the results apply to Wk,P(Rn). 

Observe that for p > n, the proof of Theorem 2.4.1 as well as that of 
Theorem 2.4.2 yields more than the fact that U is bounded. Indeed, U is 
Holder continuous, which we state as a separate result. 

2.4.4. Theorem. If U E WJ,P(D), p > n, then U E CO''''([2), where 0: = 
1- nip. 

Proof. Assume U E CJ(D) and select xED. Let B = B(x, r) be an 
arbitrary ball and choose z E B n D. Then, 

where >'x(O) is the ray whose end-point is x and passes through the point 
0,0 E sn-l(x). Proceeding as in (2.4.5) and (2.4.6), we obtain 

lip' 
w(n - 1)lu(x) - u(z)1 ::; I/Du/lp (L Ix - yl(l-n)p' dY) (2.4.18) 

But, 

(L Ix - yl(l-n)p' dY) lip' = b-lo:(n))llp'rI-nlp 

where 'Y and o:(n) are as in (2.4.8). Since the smooth functions are dense 
in WJ,P(D), we find that (2.4.18) holds for U E WJ,P(D) and for almost all 
x, z. 0 

An interesting aspect of the Sobolev inequality is the limiting case kp = 
n. This will be considered separately in Chapter 2, Section 2.4. 

2.5 The Rellich-Kondrachov Compactness 
Theorem 

As a result of the inequalities proved in the previous section, it follows 
that the Sobolev spaces W;,P(D) are continuously imbedded in If (D) 
where p. = nPI(n - kp), if kp < n. In case kp > n, the imbedding is 
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into the space Co (0) , and if kp > n + mp, it can easily be shown that 
the imbedding is into Cm(n). In this section it will be shown that the 
imbedding possesses a compactness property if we allow a slightly larger 
target space. Specifically, we will show that the injection map from W;'P(O) 
into either Lq(O), q < p*, or Cm(n) has the property that the closure of an 
arbitrary closed set in W;'P(O) is compact in the range space. That is, the 
image sets are precompact. We recall here that a set S in a metric space 
is said to be totally bounded if for each f: > 0, there are a finite number of 
points in S such that the union of balls of radius f: with centers at these 
points contains S. 

2.5.1. Theorem. Let 0 C Rn be a bounded domain. Then, if kp < nand 
p ~ 1, W;,P(O) is compactly imbedded in Lq(O) where q < np/(n - kp). If 
kp> n + mp, W;,P(O) is compactly imbedded in Cm(n). 

Proof. Consider the first part of the theorem and let B C W;,P(O) be 
a bounded set. We will show that B is a compact set in Lq(O). Since 
C~(O) is dense in W;,P(O), we may assume without loss of generality that 
B C C~(O). For convenience, we will also assume that lIullk,p;O :::; 1 for all 
u E B. 

For f: > 0, let Ue be the regularization of u. That is, Ue = U * CPe where 
CPe is the regularizer (see Section 1.6). If U E B, then 

and 

lue(x)l:::; r lu(x - y)ICPe(y)dy 
iB(O,e) 

:::; f:-n sup cpllull1 

:::; f:-nsup{cp(y): y ERn}, 

IDue(x)l:::; r Iu(x - y)IIDCPe(y)ldy 
iB(O,e) 

~ f:- n- 1 sup{IDcp(y)1 : y E Rn}lIull1 
:::; f:- n- 1 sup{IDcp(y)I : y ERn}. 

Therefore, if we let Be = {ue : U E B}, it follows that Be is a bounded, 
equicontinuous subset of CO(O). With the help of Arzela's theorem, it fol
lows that Be is precompact in L1(0). Next, observe that 

lu(x) - ue(x)l:::; r lu(x) - u(x - y)ICPe(y)dy 
iB(O,e) 

:::; r r1 IDu ol'(t) . 1"(t)ICPe(y)dtdy 
iB(O,e) io 

:::; r r1
lDu(x - ty)IIYICPe(y)dtdy 

iB(O,e) io 
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where ,(t) = t(x - y) + (1 - t)x = x - ty. Consequently, Fubini's theorem 
leads to 

r lu(x) _ ue(x)ldx:::; r r1 r IDu(x - ty)llyl'Pe(y)dxdtdy 
iRn iB(O,e)iO iRn 

:::; E k IDuldx:::; E. 

Thus, B is contained within an E-neighborhood of Be in L1(0). Since Be is 
precompact in L1(0) it is totally bounded. That is, for every r > 0, there 
exist a finite number of balls in L1(0) of radius r whose union contains 
Be. Hence, B is totally bounded and therefore precompact in L1(0). This 
establishes the theorem in case q = 1. 

If 1:::; q < np/(n - kp), refer to (1.5.13) to obtain 

where 

Ilullq :::; Ilull~llull~;t(n_kp) 

A = l/q - (n - kp)/np . 
1 - (n - kp)/np 

Then, by Theorem (2.4.2) 

which implies that bounded sets in W;,P(O) are totally bounded in U(O) 
and therefore precompact. 

The second part of the theorem follows immediately from Theorem 2.4.4 
and Arzela's theorem in case k = 1. The general case follows from repeated 
applications of this and Theorem 2.4.1. 0 

2.5.2. Remark. The results of Sections 2.4 and 2.5 are stated in terms 
of functions in W;'P(O). A natural and important question is to identify 
those domains 0 for which the results are valid for functions in Wk,P(O). 
One answer can be formulated in terms of those domains of 0 having the 
property that there exists a bounded linear operator 

(2.5.1) 

such that L(u)lrl = u for all u E Wk,P(O). We say that 0 is an (k,p)
extension domain for Wk,P(O) if there exists an extension operator for 
Wk,P(O) with 1 :::; p :::; 00, k a non-negative integer. We will refer to 
this definition extensively in Chapter 4, and if the context makes it clear 
what indices k and p are under consideration, for brevity we will use the 
term extension domain rather than (k,p)-extension domain. Clearly, the 
results of the previous two sections are valid for u E Wk,P(O) when 0 
is a bounded extension domain. Indeed, by Lemma 2.3.1 there exists a 
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function f E C~(Rn) such that f == 1 on O. Thus, if U E Wk,P(O), then 
f· L(u) E W;,P(O') where 0' is some bounded domain containing spt f. It 
is now an easy matter to check that the results of the previous two sections 
are valid for the space Wk,P(O) by employing W;,P(O'). 

A fundamental result of Calderon-Stein states that every Lipschitz do
main is an extension domain. An open set 0 is a Lipschitz domain if its 
boundary can be locally represented as the graph of a Lipschitz function de
fined on some open ball of Rn-l. This result was proved by Calderon [CAl] 
when 1 < p < n and Stein [ST] extended Calderon's result to p = 1,00. 
Later, Jones [JO] introduced a class of domains that includes Lipschitz 
domains, called (e,O) domains, which he proved are extension domains 
for Sobolev functions. A domain 0 is called an (e,O) domain if whenever 
x, y E Rn and Ix - yl < 0, there is a rectifiable arc 'Y C 0 joining x to y 
and satisfying 

and 
d(z Rn _ 1'"\) > elx - zilY - zl £ 11 

, H _ Ix _ yl or a z on 'Y. 

Among the interesting results he obtained is the following: If 0 C R2 is 
finitely connected, then 0 is an extension domain if and only if it is an 
(e,O) domain for some values of e, 0> o. 

2.6 Bessel Potentials and Capacity 

In this section we introduce the notion of capacity which is critical in 
describing the appropriate class of null sets for the treatment of pointwise 
behavior of Sobolev functions which will be discussed in the following chap
ter. We will not attempt a complete development of capacity and non-linear 
potential theory which is closely related to the theory of Sobolev spaces, 
for these topics deserve a treatment that lies beyond the scope of this expo
sition. Instead, we will develop the basic properties of Bessel capacity and 
refer the reader to other sources for further information, cf. [HMJ, [MEl], 
[AD6]. 

The Riesz kernel, 100 0 < a < n, is defined by 

where 
7rn / 220.r(a/2) 

'Y(a) = r(n/2 - a/2) . 

The Riesz potential of a function f is defined as the convolution 

1 1 f(y)dy 
10. * f(x) = -() I I . 'YaRn X - Y n-o. 



2.6. Bessel Potentials and Capacity 65 

The precise value of 'Y( a) is not important for our purposes except for the 
role it plays in the Riesz composition formula: 

10. * 1f3 = 10.+f3, a > 0, f3 > 0, a + f3 < n 

cf. [ST, p. 118). 
Observe that 10. * f is lower semicontinuous whenever f 2:: O. Indeed, if 

Xi - X, then IXi - ylo.-n f(y) - Ix - ylo.-n f(y) for all y ERn, and lower 
semicontinuity thus follows from Fatou's lemma. 

The Riesz potential leads to many important applications, but for the 
purpose of investigating Sobolev functions, the Bessel potential is more 
suitable. For an analysis of the Bessel kernel, we refer the reader to [ST, 
Chapter 5) or [DO, Part III) and quote here without proof the facts relevant 
to our development. 

The Bessel kernel, go., a > 0, is defined as that function whose Fourier 
transform is 

90.(X) = (2rr)-n/2(1 + IxI2)-0./2 

where the Fourier transform is 

j(x) = (2rr)-n/2 J e-ix .y f(y)dy. (2.6.1) 

It is known that go. is a positive, integrable function which is analytic except 
at x = O. Similar to the Riesz kernel, we have 

go. * gf3 = go.+f3, a, f3 2:: o. (2.6.2) 

There is an intimate connection between Bessel and Riesz potentials 
which is exhibiteq by go. near the origin and infinity. Indeed, an analysis 
shows that for some C > 0, 

go.(x) '" C!xl(1/2)(0.-n-l)e-1xl as Ixl- 00. 

Here, a(x) '" b(x) means that a(x)/b(x) is bounded above and below for 
all large Ixl. Moreover, it can be shown that 

if 0 < a < n. Thus, it follows for some constants C1 and C2 , that 

g (x) < ~e-c2Ixl 
0. - Ixln-o. 

for all x E Rn. Moreover, it also can be shown that 

ID ()I < C1 -C21xl go. x _ Ixln-0.+1 e . 

(2.6.3) 

(2.6.4) 
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From our point of view, one of the most interesting facts concerning 
Bessel potentials is that they can be employed to characterize the Sobolev 
spaces Wk,P(Rn). This is expressed in the following theorem where we 
employ the notation 

La,p(Rn ), > 0 1 < < a , _p_oo 

to denote all functions u such that 

for some I E V(Rn). 

2.6.1. Theorem. II k is a positive integer and 1 < p < 00, then 

Moreover, il u E Lk,p(Rn) with u = ga * I, then 

where C = C(a,p, n). 

Remark. The equivalence of the spaces Lk,p and Wk,p fails when p = 1 or 
p= 00. 

It is also interesting to observe the following dissimilarity between Bessel 
and Riesz potentials. In view ofthe fact that ligalil ::; C, Young's inequality 
for convolutions implies 

(2.6.5) 

On the other hand, we will see in Theorem 2.8.4 that the Riesz potential 
satisfies 

(2.6.6) 

where q = np/(n - ap). However, an inequality of type (2.6.6) is possible 
for only such q, cf. (Exercise 2.19), thus disallowing an inequality of type 
(2.6.5) for la and for every I E V. 

We now introduce the notion of capacity, which we develop in terms of 
the Bessel and Riesz potentials. 

2.6.2. Definition. For a > 0 and p > 1, the Bessel capacity is defined as 

Ba,p(E) = inf{li/ll~ : ga * I ;?: 1 on E, I ;?: O}, 

whenever E c Rn. In case a = 0, we take Ba,p as Lebesgue measure. The 
Riesz capacity, Ra,p, is defined in a similar way, with ga replaced by la. 
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Since go(x) ~ Io(x), x ERn, it follows immediately from definitions 
that for 0 < a < n, 1 < p < n, there exists a constant C = C(a,p, n) such 
that 

Ro,p(E) ~ CBo,p(E), whenever E eRn. 

Moreover, it can easily be shown that 

Ro,p(E) = 0 if and only if Bo,p(E) = 0, 

(Exercise 2.5). 
We now give some elementary properties of capacity. 

2.6.3. Lemma. For 0 ~ a < nand 1 < p < 00, the following hold: 

(i) B o ,p(0) = 0, 

(ii) If E1 c E2 , then Bo,p(Ed ~ Bo,p(E2 ), 

(iii) If Ei C R n, i = 1,2, ... , then 

(2.6.7) 

(2.6.8) 

Proof. (i) and (ii) are trivial to verify. For the proof of (iii), we may assume 
that 2:::1 Bo,p(Ei ) < 00. Since each term in the series is finite, for each 
c > 0 there is a non-negative function Ii E V(Rn) such that 

go * fi > 1 on Ei, Ilfillp < Bo,p(Ei) + Tic. 

Let f(x) = sup{li(x) : i = 1,2, ... }. Clearly, go * f 2: 1 on U~lEi and 
f(x)P ~ 2:::1 fi(X)P. Therefore, 

Another useful characterization of capacity is t:.e following: 

Bo,p(E) = inf{ inf go * f(x)} -p = {sup inf go * f(x)}-P 
f xEE f xEE 

(2.6.9) 

where f E V(Rn), f 2: 0 and Ilfllp ~ 1 (Exercise 2.4). 
Although Lemma 2.6.3 states that Bo,p is an outer measure, it is fruitless 

to attempt a development in the context of measure theory because it can 
be shown that there is no adequate supply of measurable sets. Rather, we 
will establish other properties that show that the appropriate context for 
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Ba,p is the theory of capacity, as developed by Brelot, Choquet, [BRTl, 
[CHl· 

2.6.4. Lemma. If {Ii} is a sequence in V(Rn) such that IlIi - flip -+ ° 
as i -+ 00, p > 1, then there is a subsequence {li j } such that 

ga * fij (x) -+ ga * f(x) 

for Ba,p-q.e. x E Rn. 

(We employ the time-honored convention of stating that a condition 
holds Ba,p-q.e., an abbreviation for Ba,p-quasi everywhere, if it holds at all 
points except possibly for a set of Ba,p-capacity zero.) 

Proof. It follows easily from the definition of Ba,p capacity that if f E 
V(Rn), then Iga * f(x)1 < 00 for Ba,p-q.e. x ERn. Thus, for c > 0, 

Ba,p({x: Iga * fi(X) - ga * f(x)1 ~ c} = Ba,p({x: Iga * (Ii - f)(x)1 ~ c}) 

:5 c-Plili - fll~· 

Consequently, there exists a subsequence {li j } and a sequence of sets E j 

such that 

with 
Ba,p(Ej) :5 c2- j . 

Hence, ga*fij -+ ga*f uniformly on Rn -U~lEj, where Ba,p (U~lEj) :5 
c. Now a standard diagonalization process yields the conclusion. 0 

2.6.5. Lemma. If {Ii} is a sequence in V(Rn), p > 1, such that fi -+ f 
weakly in LP (Rn ), then 

(2.6.10) 

for Ba,p-q.e. x E Rn. If in addition, it is assumed that each fi ~ 0, then 

ga * f(x) :5 liplinf ga * fi(X) for x E Rn (2.6.11) 
' .... 00 

and 
ga * f(x) = liplinf ga * Ii (x) (2.6.12) 

' .... 00 

for Ba,p-q.e. x E Rn. 

Proof. Under the assumption that fi -+ f weakly in V(Rn), by the 
Banach-Saks theorem there exists a subsequence of {Ii} (which will be 
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denoted by the full sequence) such that 

i 

·-1"" f gi = Z ~ j 

j=l 

69 

converges strongly in V(Rn) to f. Lemma 2.6.4 thus yields a subsequence 
of {gi} (denoted by the full sequence) such that 

go. * f(x) = lim go. * gi(X) 
~-->oo 

for Bo.,p-q.e. x E Rn. However, for each x E Rn, 

liminf go. * fi(X) :::; lim go. * gi(X), 
7,--+00 1.-+00 

which establishes the first inequality in (2.6.10). The second part of (2.6.10) 
follows from the first by replacing Ii and f by - fi and - f respectively. 

In the complement of any ball, B, containing the origin, Ilgo.llp';Rn-B :::; 
00, by (2.6.3). Thus, (2.6.11) follows from the weak convergence of Ii to f. 
(2.6.12) follows from (2.6.11) and (2.6.10). 0 

2.6.6. Lemma. For every set E c Rn 

Bo.,p(E) = inf{ Bo.,p(U) : U :J E, U open}. 

Proof. Since go. is continuous away from the origin, the proof of the lower 
semicontinuity of go. * f when f ~ 0 is similar to that for the Riesz potential 
given at the beginning of this section. The lemma follows immediately from 
this observation. 0 

The lemma states that Bo.,p is outer regular. To obtain inner regularity 
on a large class of sets, we will require the following continuity properties 
of Bo.,p. 

2.6.7. Theorem. If {Ed is a sequence of subsets of Rn, then 

Bo.,p (liminf Ei) :::; liminf Bo.,p(Ei). 
'1.-+00 '1,-+00 

If E1 C E2 C ... , then 

If K1 :J K2 :J ... are compact sets, then 

(2.6.13) 

(2.6.14) 

(2.6.15) 
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Proof. For the proof of (2.6.14) assume that the limit is finite and let Ii 
be a non-negative function in V(Rn) such that gOt * fi ~ 1 on Ei with 

(2.6.16) 

Since IIfill~ is a bounded sequence of real numbers, Theorem 1.5.2 asserts 
the existence of f E LP(Rn) and a subsequence of {fd that converges 
weakly to f. Hence, (2.6.12) implies that there exists a set BeE = U~l Ei 
with BOt,p(E - B) = 0 such that gOt * f ~ 1 on B. Therefore, 

BOt,p(E) = BOt,p(B) ::; Ilfll~ 

::; liminf IIlill~ 
<->00 

from (2.6.16). If 
i 00 

Ai = un Ek , 

j=l k=j 

then {Ai} is an ascending sequence of sets whose union equals lim inf Ei. 
Therefore, since Ai C Ei for i ~ 1, (2.6.14) implies (2.6.13) because 

BOt,p (li~~f Ei) = BOt,p CQ Ai) 

= .lim BOt,p(Ai ) 
<->00 

Finally, it {Kd is a descending sequence of compact sets, Lemma 2.6.6 
provides an open set U ::> n~l Ki such that 

for an arbitrarily chosen c > o. However, Ki C U for all sufficiently large i 
and consequently BOt,p(Ki ) ::; BOt,p(U). (2.6.15) is now immediate and the 
proof is complete. 0 

(2.6.14) states that BOt,p is left-continuous on arbitrary sets whereas 
(2.6.15) states that BOt,p is right continuous on compact sets. The impor
tance of these two facts is seen in a fundamental result of Choquet [CH, 
Theorem 1] which we state without proof. 

2.6.8. Theorem. Let C be a non-negative set function defined on the Borel 
sets in Rn with the following properties: 
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(i) C(0) = 0, 

(ii) If Bl C B2 are Borel sets, then C(Bd ~ C(B2), 

(iii) If {Bd is a sequence of Borel sets, then C (U~IBi) ~ 2::1 C(Bi ), 

(iv) C is left continuous on arbitrary sets and right continuous on compact 
sets. 

Then, for any Sus lin set A c Rn, 

sup{ C(K) : K c A, K compact} = inf{ C(U) : U ::> A, U open}. 

Any set A for which the conclusion of the theorem applies is called C
capacitable. In view of Lemma 2.6.3 and Theorem 2.6.8, the following is 
immediate. 

2.6.9. Corollary. All Suslin sets are Ba,p-capacitable. 

The usefulness of Theorem 2.6.8 and its attending corollary is quite clear, 
for it reduces many questions concerning capacity to the analysis of its 
behavior on compact sets. 

We now introduce what will eventually result in an equivalent formula
tion of Bessel capacity. 

2.6.10. Definition. For 1 < p < 00, and E c Rn a Suslin set, let M(E) 
denote the class of Radon measures J.L on Rn such that J.L(Rn - E) = 0. We 
define 

ba,p(E) = sup{J.L(Rnn (2.6.17) 

where the supremum is taken over all J.L E M(E) such that 

(2.6.18) 

Clearly, 
(2.6.19) 

where the infimum is taken over all v E M(E) with v(Rn) = 1. We have 
that 

IIga * vllp' = sup {Ln ga * V • f dx : f ~ 0, IIfllp ~ 1 } 

= sup {Ln ga * f dv : f ~ 0, Ilfllp ~ I} , 

and thus obtain 

(2.6.20) 
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where v E M(E), v(Rn) = 1, and I ~ 0 with II/lIp ::; 1. 
Recall from (2.6.9) that if E c Rn, then 

BO/.,p(E) = {sup inf gO/. * I(x)}-P 
f xEE 

where I E lJ'(Rn), I ~ 0 and 1I/IIp ::; 1. By considering measures concen
trated at points, this is easily seen to be 

BO/.,p(E)-l/P = sup infJgO/. * I dv 
f v 

where I and v are the same as in (2.6.20). 

(2.6.21) 

We would like to conclude that there is equality between (2.6.20) and 
(2.6.21). For this purpose, assume E c Rn is a compact set and let 

F(J, v) = J gO/. * I dv (2.6.22) 

where I E lJ'(Rn), I ~ 0, 1I/IIp ::; 1 and v E M(E), v(Rn) = 1. Clearly 
F is linear in each variable and is lower semicontinuous in v relative to 
weak convergence. Since the spaces in which I and v vary are compact we 
may apply the following minimax theorem, which we state without proof, 
to obtain our conclusion, [FA]. 

Minimax Theorem. Let X be a compact Hausdorff space and Y an ar
bitrary set. Let F be a real-valued function on X x Y such that, lor every 
y E Y, F(x,y) is lower semicontinuous on X. II F is convex on X and 
concave on Y, then 

inf sup F(x, y) = sup inf F(x, y). 
xEX yEY yEY xEX 

We thus obtain the following result. 

2.6.11. Lemma. lIKe R n is compact, then 

(2.6.23) 

Our next task is to extend (2.6.23) to a more general class of sets. For 
this purpose, observe that if E c Rn is a Suslin set, then 

bO/.,p(E) = sup{bO/.,p(K) : K c E, K compact}. (2.6.24) 

To see this, for each Suslin set E, let J.L E M(E) with IlgO/. * J.Lllpl ::; 1. If 
K c E is compact, then v = J.LIK has the property that v E M(E) with 
IlgO/. * vllpl ::; 1. Since J.L is a regular measure, we have 

J.L(E) = sup{J.L(K): K C E,K compact}, 
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and therefore 

bk,p(E) = SUp{bk,p(K) : K c E, K compact}. (2.6.25) 

From (2.6.25), (2.6.23), and Corollary 2.6.9 we conclude the following. 

2.6.12. Theorem. If E c Rn is a Buslin set, then 

Thus far, we have developed the set-theoretic properties of BOt,p. We now 
will investigate its metric properties. 

2.6.13. Theorem. For p > 1, ap < n, there exists a constant C 
C(a,p, n) such that 

C-1rn- Otp < B [B(x r)] < Crn- Otp - o:,p , _ 

whenever x E Rn and 0 < r :::; 1/2. 

Proof. Without loss of generality, we will prove the theorem only for B(O, r) 
and write B(r) = B(O, r). Let f E V(Rn), f :2: 0, have the property that 

gOt * f :2: 1 on B(2). (2.6.26) 

By a change of variable, this implies 

(2.6.27) 

for x E B(2r). From (2.6.3) and (2.6.4), there exists C = C(a,p, n) such 
that 

and therefore 

gOt (x ~ y) :::; Clx _ yIOt-nrn-Ote-lx-ylr-l 

:::; Clx - yIOt-nrn-Ote-2Ix-yl (r :::; 1/2) 

:::; C2rn- OtgOt (x - y) (r:::; 1/2). 

Consequently, from (2.6.27), 

(r :::; 1/2). 



74 2. Sobolev Spaces and Their Basic Properties 

However, 

Hence, 
Bo:,p[B(2r)] ~ C2Prn-O:Pllfll~, r ~ 1/2, 

for every 1 E U(Rn) satisfying (2.6.26). Thus, 

Bo:,p[B(2r)] ~ C2Pr n-o:p Bo:,p[B(2)], r ~ 1/2, 

from which the conclusion follows. 
For the proof of the first inequality of the theorem, let 1 E U(Rn), 

12: 0, be such that go: * 12: 1 on B(r). Then 

IB(r)1 ~ r go: * 1 dx ~ IB(rW/q' IIgo: * Il1q, 
iB(r) 

where q = p* = np/(n-ap). It follows from (2.6.3) that go: ~ Clo:. Because 
there is no danger of a circular argument, we employ the Sobolev inequality 
for Riesz potentials (Theorem 2.8.4) to obtain 

rn-o:p ~ CIIIII· 

Taking the infimum over all such 1 establishes the desired inequality. D 

The case ap 2: n requires special treatment. 

2.6.14. Theorem. lip> 1, ap = nand 0 < r < 1, there exists C = 
C(n, r) such that 

C-1(logr-1)1-p ~ Bo:,p[B(x,r)] ~ C(logr-1)1-P 

whenever 0 < r ~ r < 1 and x E Rn. 

Proof. As in the proof of the previous theorem, it suffices to consider only 
the case x = O. Let f-L be a Radon measure such that f-L[Rn - B(r)] = 0 and 
Ilgo: * f-Lllp' ~ 1, where we write B(r) = B(x, r). Because of the similarity 
between the Riesz and Bessel kernels discussed at the beginning of this 
section, there exists a constant C independent of r such that 

r (fo: * f-L)P' dx ~ C r (go: * f-L)P' dx ~ C. 
iB(l) iRn 

If Iyl ~ rand Ixl 2: r, then Ix - yl ~ Ixl + Iyl ~ Ixl + r ~ 21xl and 
therefore 

p' 

C 2: 1 (fo: * f-L)P'dx = 1 (r Ix - ylo:-ndf-L(y)) dx 
r::=;lxl9 r::=;lxl9 iRn 

2: C1[f-L(RnW' 1 Ixl-ndx 
r::=;lxl9 

= Cdf-L(RnW'[logr-1]. 
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Thus, by Theorem 2.6.12, it follows that 

To establish the opposite inequality, let Ar denote the restriction of 
Lebesgue measure to B(r). Since go: ~ 10:, we have 

go: * Ar(X) ~ C f Ix - ylo:-ndy. 
lB(r) 

(2.6.28) 

If Ixl ~ r Ir, Iyl ~ r, then Ix - yl ~ cr where c(r) = 1 + llr. That is, 
B(r) C B(x,cr). Therefore, 

f Ix - ylo:-ndy ~ f Ix _ ylo:-ndy 
1 B(r) 1 B(x,cr) 

~ C(r)rO: 

which, by (2.6.28), implies 

go: * Ar(X) ~ C(r)rO: if Ixl ~ rlr. (2.6.29) 

If Iyl ~ rand r Ir < Ixl ~ 1, then Ix - yl ~ Ixl - Iyl ~ Ixl - r > c(r)lxl, 
where now c(r) = 1 - r. Hence, 

go:*Ar(X) ~ C f Ix-ylo:-ndy ~ C1rnlxl0:-n if rlr < Ixl ~ 1. (2.6.30) 
lB(r) 

If Ixl > 1, then (2.6.3) yields 

(2.6.31 ) 

Thus, (2.6.29), (2.6.30), and (2.6.31) yield 

Ilgo: * Arllp' ~ Crn(logr-1)1/p'. 

Appealing again to Theorem 2.6.12, we establish the desired result. 0 

2.6.15. Remark. In case ap > n, it is not difficult to show that there is a 
constant C = C(a,p, n) such that 

whenever E i= 0. See Exercise 2.6. 
Because Bo:,p[B(x, r)] ~ rn-o:p one would expect that Bessel capacity 

and Hausdorff measure are related. This is indeed the case as seen by the 
following theorem that we state without proof, [MEl], [HM]. See Exercises 
2.15 and 2.16. 

2.6.16. Theorem. If p > 1 and ap ~ n, then Bo:,p(E) = 0 if Hn-o:p(E) < 
00. Conversely, if Bo:,p(E) = 0, then Hn-o:p+c(E) = 0 for every E > O. 
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2.7 The Best Constant in the Sobolev Inequality 

There is a fundamental relationship between the classical isoperimetric in
equality for subsets of Euclidean space and the Sobolev inequality in the 
case p = 1. Indeed, it was shown in [FF) that the former implies the latter 
and, as we shall see in Remark 2.7.5 below, the converse is easily seen to 
hold. 

We will give a method that gives the best constant in the Sobolev In
equality (Theorem 2.4.1), by employing an argument that depends critically 
on a suitable interpretation of the total variation for functions of several 
variables. This is presented in Theorem 2.7.1 and equality (2.7.1) if referred 
to as the co-area formula. This is a very useful tool in analysis that has 
seen many applications. We will give a proof for only smooth functions but 
this will be sufficient for our purposes. 

2.7.1. Theorem. Let u E C(j(Rn). Then 

(2.7.1) 

Before giving the proof of this theorem, let us first consider some of 
its interpretations. In case n = 1, the integrand on the right-hand side 
involves Hausdorff O-dimensional measure, HO• HO (E) is merely the number 
of points (including 00) in E and thus, the integrand on the right side of 
(2.7.1) gives the number of points in the set u-1(t) n n. This is equivalent 
to the number of times the graph of u, when considered as a subset of 
R2 = {(x, yn, intersects the line y = t. In this case (2.7.1) becomes 

In lu'ldx = J N(y)dy (2.7.2) 

where N(y) denotes the number of points in u-1(y) n n. (2.7.2) is known 
as the Banach Indicatrix formula, [SK, p. 280). 

The Morse-Sard Theorem [MSE1), [SA), states that a real-valued func
tion u of class cn defined on Rn has the property that Hl[u(N)) = 0 where 
N = {x : Du(x) = O}. For example, if we consider a function u E C~(R2), 
an application of the Implicit Function theorem implies that u-1(t) n n is 
a I-dimensional class C2 manifold for a.e. t. In this case, Hl[U-1(t) n n) 
is the length of the curve obtained by intersecting the graph of u in R3 by 
the hyperplane z = t. Thus, the variation of u, In IDuldx, is obtained by 
integrating the length of the curves, n n u-1(t), with respect to t. 

The co-area formula is known to be valid for Lipschitzian functions. (We 
will see in Chapter 5, that another version is valid for BV functions.) The 
proof in its complete generality requires a delicate argument from geometric 
measure theory that will not be given here. The main obstacle in the proof 
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is to show that if u is Lipschitz, then 

where N = {x : D(x) = O}. Once this has been established, the remainder 
of the proof follows from standard arguments. Because our result assumes 
that u E Cn , we avoid this difficulty by appealing to the Morse-Sard the
orem referred to above. In preparation for the proof, we first require the 
following lemma. 

2.7.2. Lemma. If U c R n is a bounded, open set with C 2 boundary, then 

Proof. By the Gauss-Green theorem, 

r divrpdx = r rp(x). l/(x)dHn - 1(x) lu leu 
where 1/ is the unit exterior normal. Hence 

To prove the opposite inequality, note that 1/ is a C1 vector field of unit 
length defined on au and so may be extended to a c1 vector field V 
defined on Rn such that IV (x) I ::; 1 for all x E Rn, cf. Theorem 3.6.2. If 
'lfJ E C[f(Rn) and 1'lfJ1 ::; 1, then with rp = 'lfJV, we have 

r divrpdx = r 'lfJ(y)dHn- 1(y) lu leu 
so that 

sup {L div rp : rp E CJ(Rn; Rn), sup Irpl ::; 1 } 

> sup {!au 'lfJ dHn- 1 : 'lfJ E Cgo(Rn), sup 1'lfJ1 ::; I} = Hn-1(aU). 0 

Proof of Theorem 2.7.1. We first consider linear maps L: Rn ~ R1. 
Then there exists an orthogonal transformation f: Rn ~ Rn and a non
singular transformation g such that f(NJ..) = R\ f(N) = Rn -\ (N = 
ker L) and 

L=gopof 
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where p: Rn ~ Rl is the projection. For each y E Rl, p-l(y) is a hy
perplane that is a translate of the subspace p-l(O). The inverse images 
p-l(y) decompose Rn into parallel (n - I)-dimensional slices and an easy 
application of Fubini's theorem yields 

whenever E is a measurable subset of Rn. Therefore 

If(E)1 = lEI = [ Hn-1[E np-l(y)]dy iRl 
= [ Hn-1[f(E) np-l(y)]dy 

iRl 
= [ Hn-1[E n f-l(P-l(y))]dy. 

iRl 

(2.7.3) 

Now use the change of variables z = g(y) and observe that the last integral 
above becomes 

(2.7.4) 

But III = IDLI and thus (2.7.4) establishes Theorem 2.7.1 for linear maps. 
We now proceed to prove the result for general u as stated in the theorem. 

Let N = {x: Du(x) = O} and for each t E Rl, let 

Et = Rn n {x: u(x) > t} 

and define a function ft : Rn ~ Rl by 

f - {XEt if t;:::: 0 
t - . 

-XRn-Et If t < O. 

Thus, 

Now consider a test function cp E C[f(Rn - N), such that sup Icpl < 1. 
Then, by Fubini's theorem, 

[ u(x)cp(x)dx = [ [ h(x)cp(x)dtdx iRn iRn iRl 

= [ [ ft(x)cp(x)dxdt. iRl iRn (2.7.5) 
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Now (2.7.5) remains valid if cp is replaced by anyone of its first partial 
derivatives. Since Du =/: 0 in the open set Rn - N, the Implicit Function 
theorem implies that u-1(t) n (Rn - N) is an (n -I)-manifold of class Cn. 
In addition, since spt cp C Rn - N, it follows from the Divergence theorem 
that 

r divcpdx= r cp(x).v(x)dHn-1(x). 
JEt J(8Et )n(Rn-N) 

Therefore, if cp is now taken as cp E Co(Rn - Nj Rn) with sup Icpl ::; 1, we 
have 

- r Du. cp dx = r u· div cp dx = r r div cp dxdt 
JRn JRn JRl JEt 

= r r cp(x) . v(x)dHn-1(x)dt 
JRl J(Rn-N)n8Et 

::; r Hn-1[(Rn - N) n u-1(t)]dt 
JRl 

::; r Hn-1[u-1(t)]dt. 
JRl 

However, the sup of (2.7.6) over all such cp equals 

(2.7.6) 

In order to prove the opposite inequality, let Lk: Rn --+ Rl be piecewise 
linear maps such that 

and 

Let 

lim r ILk - uldx = 0 
k-+ooJRn 

E; = Rn n {x: Lk(X) > t}, 

X~ = XEk. t 

(2.7.7) 

(2.7.8) 

From (2.7.7) it follows that there is a countable set S C Rl such that 

lim r IXt - X~ldx = 0 
k-+oo JRn 

(2.7.9) 

whenever t f/. S. By the Morse-Sard theorem and the Implicit Function 
theorem, we have that u-1(t) is a closed manifold of class cn for all t E 
Rl - T where Hl(T) = O. Redefine the set S to also include T. Thus, for 
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t rt S, and E > 0, refer to Lemma 2.7.2 to find cp E C[f(Rn;Rn) such that 
Icpl ::; 1 and 

Let M = JRn Idiv cpldx and choose ko such that for k ~ ko, 

For k ~ ko, 

ILt divcpdx - L; divcpdx ::; M in IXt - x~ldx < ~. 
Therefore, from (2.7.10) and (2.7.11) 

Hn-l[u- 1(t)]::; { divcpdx+:' 
JEt 2 

Thus, for t rt s, 

::; { divcpdx+E 
JE; 

= ( cp. v dHn - 1 + E 

JaE; 
::; Hn-l[Lkl(t)] + E. 

Hn-l[U- 1 (t)] ::; liminf Hn-l[Lk 1(t)]. 
k-+oo 

Fatou's lemma, (2.7.8), and (2.7.4) imply 

(2.7.10) 

(2.7.11) 

o 

Theorem 2.7.1 is a special case of a more general version developed by 
Federer [F1] which we state without proof. 

2.7.3. Theorem. If X and Yare separable Riemannian manifolds of class 
1 with 

dimX = m ~ k = dimY 
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and f : X ....... Y is a Lipschitzian map, then 

whenever A c X is an Hm-measurable set. Moreover, if g is an H m 

integrable function on X, then 

Here, J f (x) denotes the square root of the sum of squares of the deter
minant of the k x k minors of Jacobian matrix of f at x. 

The proof of Theorem 2.7.1 above is patterned after the one by Fleming 
and Rishel [FR] which establishes a similar result for BV functions. Their 
result will be presented in Chapter 5. 

We now give another proof of Theorem 2.4.1 that yields the best constant 
in the case p = 1. 

2.7.4. Theorem. If u E Co(Rn ), then 

Proof. For t 2: 0, let 

At = {x : lu(x)1 > t}, B t = {x : lu(x)1 = t} 

and let Ut be the function obtained from u by truncation at heights t and 
-t. If 

f(t) = lIutlln/Cn-l), 
then clearly 

IUt+hl::; IUtl + hXA t 

f(t + h) ::; f(t) + hIAtICn-l)/n (2.7.12) 

for h > 0. It follows from the Morse-Sard theorem that for a.e. t > 0, Bt is 
an (n - 1 )-dimensional manifold of class 00 and therefore, an application 
of the classical isoperimetric inequality yields 

(2.7.13) 

It follows from (2.7.12) that f is an absolutely continuous function with 

f'(t) ::; IAtICn-l)/n 
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for a.e. t. Therefore, with the aid of (2.7.13), it follows that 

The co-area formula, Theorem 2.7.1, shows that the last integral equals 

thus establishing the theorem. 

From the inequality 

one can deduce the inequality 

r IDuldx, iRn 

Ilulip. ::; np(n - l)/(n - p) IIDullp 

by replacing u in (2.7.14) by uq where q = p(n -l)/(n - p). Then 

by Holder's inequality. 

o 

(2.7.14) 

(2.7.15) 

Of course, one cannot expect the constant in (2.7.15) to be optimal. 
Indeed, Talenti [TAl has shown that the best constant C(n,p) is 

C( ) -1/2 -1/2 (p - 1) l-(l/p) [ f(l + (n/2))f(n) ] l/n 

n,p = 7r n n _ p f(n/p)f(l + n - (n/p)) 

where 1 < p < n. 

2.7.5. Remark. The proof of Theorem 2.7.4 reveals that the classical 
isoperimetric inequality implies the validity of the Sobolev inequality when 
p = 1. It is not difficult to see that the converse is also true. 

To that end let KeRn be a compact set with smooth boundary. Let 
dK(X) denote the distance from x to K, 

dK(X) = inf{lx - yl : y E K}. 
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It is well-known and easy to verify that dK(X) is a Lipschitz function with 
Lipschitz constant 1. (See Exercise 1.1.) Moreover, Rademacher's theorem 
(Theorem 2.2.1) implies that dK is totally differentiable at almost every 
point x with IDdk(X)1 = 1 for a.e. x ERn. For each h > 0, let 

and observe that Fh is a Lipschitz function such that 

(i) Fh(X) = 1 if x E K 

(ii) Fh(X) = 0 if dK(X) ~ h 

(iii) IDFh(X)1 ~ h-1 for a.e. x ERn. 

By standard smoothing techniques, Theorem 2.7.4 is valid for Fh because 
Fh is Lipschitz. Therefore 

Since IDdK(X)1 = 1 for a.e. x E Rn, the co-area formula for Lipschitz maps, 
Theorem 2.7.3, implies that 

where 0 < th < h. Because K is smoothly bounded, it follows that 

and thus, the isoperimetric inequality is established. 
Of course, by appealing to some of the more powerful methods in geo

metric measure theory, the argument above could be employed to cover the 
case where the compact set K is a Lipschitz domain. By appealing to the 
properties of Minkowski content, cf. [F4, Section 3.2.39], it can be shown 
that the above proof still remains valid. 

2.8 Alternate Proofs of the Fundamental 
Inequalities 

In this section another proof of the Sobolev inequality (2.4.10) is given 
which is based on the Hardy-Littlewood-Wiener maximal theorem. This 
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approach will be used in Section 2.9, where the inequality will be treated 
in the case of critical indices, kp = n. 

We begin by proving the Hardy-Littlewood-Wiener maximal theorem. 

2.8.1. Definition. Let I be a locally integrable function defined on Rn. 
The maximal function of I, M (f), is defined by 

M(f)(x) = sup {1 I/(y)ldy : r > o} . 
Tn(x,r) 

2.8.2. Theorem. II I E LP(Rn), 1 < p ::; 00, then M(f) E V(Rn) and 
there exists a constant C = C(p, n) such that 

Proof. For each t E Rl, let At = {x: M(f)(x) > t}. From Definition 2.8.1 
it follows that for each x E At, there exists a ball with center x E At, such 
that 

1 I/ldy > t. 
Tnx 

(2.8.1) 

If we let :F be the family of n-balls defined by :F = {Bx : x E At}, then The
orem 1.3.1 provides the existence of a disjoint subfamily {Bl , B 2 , ... , Bk, ... } 
such that 

k=l 

and therefore, from (2.8.1), 

or 

(2.8.2) 

We now assume that 1 < p < 00, for the conclusion of the theorem 
obviously holds in case p = 00. For each t E Rl, define 

Then, for all x, 

and thus, 

f ( ) - {/(X) if I/(x)1 ~ t/2 
t x - 0 if I/(x)1 < t/2. 

I/(x)1 ::; Ilt(x)1 + t/2, 

M(f)(x) ::; M(ft)(x) + t/2 

{x: M(f)(x) > t} C {M(ft)(x) > t/2}. 
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Applying (2.8.2) with f replaced by !t yields 

2· 5n 1 2· 5n 1 IAtl ::::; I{M(!t)(x) > t/2}1 ::::; -t- l!tldy = -t- Ifldy. 
Rn {lfI~t/2} 

(2.8.3) 
Now, from Lemma 1.5.1, and (2.8.3), 

where J.L is a measure defined by J.L(E) = IE Ifldx for every Borel set E. 
Thus, appealing again to Lemma 1.5.1, we have 

{ (Mf)Pdx = p2P. ~n roo J.L({lfl > t})dtp-1 
iRn p- io 

= p2P . 5n { Iflp-1dJ.L 
p -1 iRn 

= p2P . 5n ( IflPdx < 00. 

p -1 iRn 

Since p > 1. This establishes the theorem. o 

For 0 < 0: < n, we recall from Section 2.6 the definition of the Riesz 
potential of f of order 0:: 

1 1 f(y)dy 
10 * f(x) = Iaf(x) = -() I I - . 'YO: Rn x_yn a 

The following lemma is the final ingredient necessary to establish the 
Sobolev inequality for Riesz potentials. 

2.8.3. Lemma. If 0 < 0: < n, (3 > 0, and 0 > 0, then there is a constant 
C = C(n) such that for each x ERn, 

(i) ( If(Y)ld~::::; Coo M(f)(x) 
i B(x,6) Ix - yin a 
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(ii) r If(y)ldy ~ CO-~ M(f)(x). 
i Rn-B(x,8) Ix - yl/3+n 

Proof. Only (i) will be proved since the proof of (ii) is similar. For x E Rn 

and 0 > 0, let the annulus be denoted by 

A (x, ;k' 2kO+l) = B (x, ;k) - B (x, 2k: l ) , 

and note that 

r If(y)ldy = t r If(y)ldy 
i B(x,8) Ix - yin-a k=O i A(x,l<, 2k~1) Ix - yln-Ct 

00 ( 0 ) Ct-n r 
~ L 2k+l if 0 Ifldx k=O B(x,'2k") 

00 (l)Ct-n ( 0 )ct 1 
=a(n)L 2" 2k h 0 Ifldx 

k=O B(x,'2k") 

~ coa M(f)(x), 

where a(n) denotes the volume of the unit n-ball. This proves (i). D 

We now will see that the Sobolev inequality for Riesz potentials is an 
easy consequence of the above results. 

2.8.4. Theorem. Let a > 0, 1 < p < 00, and ap < n. Then, there is a 
constant C = C(n,p) such that 

whenever f E V(Rn). 

Proof. For 8 > 0, Holder's inequality implies that 

r If(Y~I_Ct dy ~ w(n _ l)llfllp ( roo rn-l-P'(n-Ct)dr) lip' 
iRn-B(x,8) Ix - yl i8 

where r = Ix - yl. The integral on the right is dominated by oCt-(nlp) since 
ap < n, and therefore, by Lemma 2.8.3(i), 

(2.8.4) 

If we choose 
= (M(f)(X))-Pln 

8 IIfllp , 
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then (2.8.4) becomes 

110: (f) (x) I :5 C[M(f)(x)]I-(o:p/n)lIfll;/n 

or, 
IIo:(f)(xW' :5 C[M(f)(x)]Pllfll~o:p/n)p·. 

An application of Theorem 2.8.2 now yields the desired conclusion. 0 

2.8.5. Remark. If we are willing to settle for a slightly weaker result in 
Theorem 2.8.4, an easy proof is available that also provides an estimate of 
the constant C that appears on the right-hand side of the inequality. Thus, 
if n is a domain with finite measure, f E LP(n), and p :5 q < p*, we can 
obtain a bound on IIIo:(f)lIq by a method that essentially depends only on 
Holder's inequality. 

For this purpose, let ~ = 1 - (~ - ~) and note that because q < p* , 

(2.8.5) 

for each fixed x ERn. As in the proof of (2.4.7), if IB(x,R)1 = Inl, then 

1 ! w(n - l)R(o:-n)r+n Ix - yl(o:-n)r dy :5 Ix - yl(o:-n)r dy = --'-.,....---'-.,...---
n B(x,R) (a - n)r + n 

w(n - l)lnl'Y _ 
= [( ) 1 ( ) = C(a, r, n) (2.8.6) a-nr+nan'Y 

where "y = ((a - n)r)/n + 1. For each fixed x, observe that 

Ix - yl(o:-n)lf(y)1 = (Ix _ yl(o:-n)rlf(y)IP) l/q 

. (Ix - yl(o:-n)r/p') . If(y)IPO (2.8.7) 

where 8 = ~ -~. Because? + ~ +8 = 1, we may apply Holder's inequality 
to the three factors on the right side of (2.8.7) to obtain 

IIo:(f)(x)l:5 (In Ix - YI(o:-n)rlf(YWdY) l/q 

. (In Ix - yl(o:-n)r dY) l/p' (In If(Y)IPdY) 0 

Therefore, by Fubini's theorem and (2.8.6), 

In (Io:f)qdx:5 In In Ix - yl(o:-n)rlf(y)IPdxdy 

. C(a, 8, n) q, 'lIfll~qO 
p 

:5 C(a, 8, n) . IIfll~' C(a, 8, n) q, ·lIfll~qo. 
p 



88 2. Sobolev Spaces and Their Basic Properties 

Thus, 

IIIa/llq ~ C(a, 6, n)(l/q)+(l/P') II/lip 
~ C(a, 6, f!)l/rll/llp. 

2.8.6. Remark. It is an easy matter to see that Theorem 2.8.4 provides 
another proof of Theorem 2.4.2. Indeed, if u E C~(Rn), recall from (2.4.5) 
that for every x E Rn, 

lu(x)1 ~ C(n)/t(IDul). (2.8.8) 

In fact, if we employ the Riesz composition formula which states that 

Ia * I{3 = Ia+{3, a + f3 < n, 

an application of (2.8.8) to the derivatives of u gives the estimate 

From Theorem 2.8.4 we have 

if kp < n. Thus, 
lIulip• ~ CIIDkulip ~ Cllullk,p 

which is the conclusion in (2.4.10) when f! = Rn. 
Of course, one could also employ Theorem 2.6.1 which states that each 

u E Wk,P(Rn) can be represented as u = gk*/ for some / E lJ'(Rn), where 
II/lip'" Ilullk,p;Rn. Then, in view of the fact that gk ~ Clk, (2.4.10) follows 
from Theorem 2.8.4. 

2.9 Limiting Cases of the Sobolev Inequality 

In previous sections all Sobolev-type inequalities were established under 
the restriction kp f. n. We now treat the case kp = n in the context of 
Riesz potentials and since the Riesz kernel Ia is defined for all positive 
numbers a, we will therefore replace the integer k by a. 

When ap = n, one might hope that Ia * / is bounded because p* ---+ 00 

as ap ---+ n. However, while boundedness is trivially true when n = 1, it 
is false when n > 1. As an example, consider u(x) = I log IxII 1- 2/(n-l)j 

clearly u E W1,n(B(0,r)) for r < 1, but u ¢ £oo(B(O,r)). Although an 
£00 estimate cannot, in general, be obtained it is possible to obtain results 
that provide a good substitute. Our first result below offers exponential 
integrability as a substitute for boundedness. We begin with a simple and 
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elegant proof of this fact which follows easily from the estimate discussed 
in Remark 2.8.5. 

2.9.1. Theorem. Let f E V(n), p > 1, and define 

g = I n / p * f. 
Then there are constants C1 and C2 depending only on p and n such that 

Proof. Let p ::; q < 00 and recall from Remark 2.8.5 the estimate 

III"fllq ::; C(a, 8, n)l/rllfllp , 

where 1 = 1 - (1 _ 1) 
r p q' 

w(n -l)lnl"Y 
C(a, 8, 0,) = [( ) 1 ( ) , a-nr+nan"Y 

and 
(a - n)r ,= +1. 

n 
In the present situation, ap = n, and therefore 

np 
(a-n)r+n= ( )' 

pq+ p-q 

Thus, we can write 

(2.9.1) 

(2.9.2) 

where K1 and K are constants that depend only on p and n. Thus, since 
,q/r = 1, from (2.9.2) we have 

In Iglqdx ::; cq/rllfll~ 
::; (qK)q/rlnlllfll~ = (qK)l+(q/pl) ·llnlllfll~. 

N ow replacement of q by p' q (which requires that q > p - 1) yields 

In IgIP'qdx::; (plqK)l+qlnlllfll~'q. 

In preparation for an expression involving an infinite series, substitute an 
integer k, k > p - 1, for q to obtain 



90 2. Sobolev Spaces and Their Basic Properties 

for any constant C > O. Consequently, 

[ 00 1 ( I I ) p' k 00 kk (K ') k 

Jr. L k! CII~II dx ~ pi Klnl L (k - I)! C~ 
n k=ko P k=ko 

where ko = [Pl. The series on the right converges if CP' > eKp' and thus 
the result follows from (1.5.12) when applied to the terms involving k < ko 
and the monotone convergence theorem. 0 

By appealing to a different method, we will give another proof of expo
nential integrability that gives a slightly stronger result than the one just 
obtained. 

2.9.2. Theorem. Let f E V(Rn), sptf C B where B is a ball of radius R, 
and let p = n/a > 1. Then, for any c > 0, there is a constant C = C(c, n,p) 
such that 

t [n I In/p(f)(x) IP'] 
B exp Wn-l IIfilp - c dx ~ C. (2.9.3) 

Proof. Clearly, we may assume that IIfilp = 1. Then, 

Ia(f)(x) = [ f(y)lx - yla-ndy + [ f(y)lx - yla-ndy 
J B(:c,6) J B-B(:c,6) 

where x E Band 0 < 8 ~ R. By Lemma 2.8.3(i), the first integral on the 
right is dominated by C8aM(f)(x). By Holder's inequality and the fact 
that IIfilp = 1, the second integral on the right can be estimated as follows: 
if r = Ix - yl, then 

[ f(y)lx - yla-ndy ~ w(n - 1) [ r(a-n)p'+n-1dr [ 
R ]l/P' 

JB-B(:c,6) J6 

= [w(n - 1) log(R/8)ll/p'. 

Thus 
IIa(f)(x)1 ~ C8a M(f)(x) + (w(n - 1) log(R/8))1/P'. 

If we choose 

then we have 

or 
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since ap = n. Because II/lIp = 1, the conclusion now follows immediately 
from Theorem 2.8.2. 0 

2.9.3. Remark. Inequality (2.9.3) clearly implies that if {3 < n/w(n - 1), 
then there is a constant C = C({3,n,p) such that 

1 [I In/p(f) (x) IP'] h exp {3 II/lIp dx ::; C, (2.9.4) 

thus recovering inequality (2.9.1). 
Although it is of independent mathematical interest to determine the 

best possible constants in inequalities, in some applications the sharpness 
of the constant can play a critical role. 

The sharpness of the Sobolev imbedding theorem in the case of critical 
indices has had many different approaches. For example, in [HMTJ, it was 
shown that the space WJ,n(f!) could not be embedded in the Orlicz space 
Lcp(f!) where cp(t) = exp(ltln/(n-l) - 1). On the other hand, with this 
Sobolev space, it was shown by Moser [MOS] that (2.9.4) remains valid for 
{3 = n/w(n - 1); that is, e can be taken to be zero in (2.9.3). Recently, 
Adams [AD8] has shown that (2.9.4) is valid for {3 = n/w(n - 1) with no 
restriction on a. 

Theorems 2.9.1 and 2.9.2 give one version of a substitute for boundedness 
in the case ap = n. We now present a second version which was developed 
by Brezis and Wainger [BW]. 

For this, recall the definition of the Bessel kernel, go, introduced in (2.6.1) 
by means of its Fourier transform: 

Also, recall that the space of Bessel potentials, Lo,p(Rn), is defined as all 
functions u such that u = go * I where I E LV (Rn). The norm in this space 
is defined as lIullo,p = II/lIp. Also, referring to Theorem 2.6.1, we have in 
the case a is a positive integer, that this norm is equivalent to the Sobolev 
norm of u. 

For the development of the next result, we will assume that the reader 
is familiar with the fundamental properties of the Fourier transform. 

2.9.4. Theorem. Let u E L,-,q(Rn) with iq > n, 1 ::; q ::; 00 and let 
ap = n, 1 < p < 00. II lIullo,p ::; 1, then 

(2.9.5) 

Proof. Because C(f(Rn) is dense in Li,q(Rn) relative to its norm and 
also in the topology induced by uniform convergence on compact sets, it is 
sufficient to establish (2.9.5) for u E C(f(Rn). 
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Let cp,,,, E coo(Rn) be functions with sptcp compact, cp == (27r)-n/2 
on some neighborhood of the origin, and cp +", == (27r)-n/2 on Rn. Since 
U E COO(Rn), U may be written in terms of the inverse Fourier transform 
as 

U(x) = J eix·yu(y)cp(y/ R)dy + J eix·yu(y)'r/(Y/ R)dy 

== Ul(X) + U2(X), 

where R 2: 2 is a positive constant to be determined later. 

(2.9.6) 

The proof will be divided into two parts. In Part 1, the following inequal
ity will be established, 

while in Part 2, it will be shown that 

for some {j > O. The conclusion of the theorem will then follow by taking 

Proof of Part 1. We proceed to estimate Ul as follows: 

where 

and 
k ( ) _ cp(y/R) 

R Y - (1 + lyI2)0/2 . (2.9.7) 

Note that U = go * f (see Section 2.6) and therefore 

Ilfllp = Ilullo,p ~ 1. 

Consequently, in order to establish Part 1 it will be sufficient to show that 

We now define a function L such that i = cp. Note that L is a rapidly 
decreasing function and thus, in particular, L E Ll(Rn) n coo(Rn). Let 
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From (2.9.7) we have that 

(27r)-n/2 KR(Y) = LR(Y) . ga(Y) 

and 
(27r)-n/2 KR = LR * ga. 

Let B(R) be the ball of radius R centered at the origin. Define two functions 
G1 and G2 by a a 

Then 

G~(X) = ga(X)XB(R-l)(X) 

G~(x) = ga(x) - G~(x). 

(27r)-n/2 KR(X) = LR * G~(x) + LR * G~(x). 
An application of Young's inequality yields 

and it is easily verified that 

while from (2.6.3) and ap = n, it follows that 

IIG~lIl ::; CR-n/p. 

Similarly, from (2.6.3) we see that 

ga(x) ::; Cllxla-ne-c2Ixl 

and therefore 

since R > 2. Hence, 

because 

(2.9.8) 

(2.9.9) 
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Thus, from (2.9.8), and (2.9.9) we have 

\\KR\\pl ~ C(logR)l/P', (2.9.10) 

thereby establishing Part 1. 

Proof of Part 2. We write U2 as follows: 

(2.9.11) 

where 

(2.9.12) 

and 
g(y) = u(y)(27l")n/2(1 + \y\2)l/2. 

By assumption, U E L1,q(Rn), and therefore it follows from definition that 
9 E Lq(Rn) with u = gl * g. In order to establish Part 2, it suffices to show 
that 

\\KR\\ql ~ CR-o for some 8> O. 

First, consider the case q = 1. Since eq > n by assumption, we have 
e> n. Now write 

\K (x)\ = IJe iX .Y 'rJ(y/R)dy 1< J \'rJ(y/R)\dy 
R (1 + \y\2)l/2 - \y\l' 

Recall that 'rJ vanishes in some neighborhood of the origin, say for all y such 
that \y\ < cR. Thus, for all x, 

\KR(x)\ ~ r \'rJ(y/~)\dy 
} Rn-B(O,€R) \y\ 

~ C 100 rn-1-1dr 
lOR 

~ CRn - 1 

since e > n. Thus, Part 2 is established if q = 1. 
Now consider q > 1, so that q' < 00 and without loss of generality, let 

e < n. Since cp + 'rJ == (27l")-n/2 on Rn, (2.9.12) can be written as 

cp(y/ R) 
(1 + \y\2)l/2' 

Thus, we have 
(2.9.13) 
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where 
LR(X) = Rn L(Rx), L(y) = cp(y). 

We can rewrite (2.9.13) as 

KR(X) = j[gt(X) - gt(x - y)]LR(y)dy (2.9.14) 

because 
(27r)-n/2 = cp(O) = (27r)-n/2 r e-iO·y L(y)dy. 

JRn 
To estimate J Igt(x - y) - gt(x)lq' dx we write 

r Igt(x - y) - gt(xW' dx = r Igt(x - y) - gt(xW' dx 
J Rn J1xl:::;2lyl 

+ r Igt(x - y) - gt(xW' dx 
J1xl>2lyl 

=h+h. 

Now 

h 5, C ( r Igt(x - y)lq' dx + r Igt(X)lq'dX) 
J1xl91yl J1xl:::;2lyl 

5, C ( r Igt(x - y)lq' dx + r Igt(XW'dX) 
J1x-yl9lyl J1xl91yl 

5, ClyIU-n)q'+n, 

by (2.6.3). To estimate 12 , note that gt is smooth away from the origin, 
and therefore we may write Igt(x - y) - gt(x)1 5, IDgt(z)1 ·Iyl where z = 
t(x - y) + (1 - t)x = x - ty for some t E [0,1]. Since, Izl ~ 1/(2Ixl) when 
Ixl > 21yl we have, with the help of (2.6.4), 

r Igt(x - y) - gt(xW' dx 5, C r e-c1x1Ixl(t-n-l)q'lylq'dx 
J1xl>2lyl J1xl>2lyl 

5, Iylq' r e-c1x1Ixl(£-n-l)q'dx 
JRn 

5, Clylq'· 

Consequently, combining the estimates for hand 12 , we have 

(2.9.15) 

where 8 = [(£ + 1 - n)q' + n]/q' > o. Referring to (2.9.14), we estimate 
IIKRllq' with the aid of Minkowski's inequality and (2.9.15) as follows: 
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::; C J IL R (y)llyI6dy 

= CRn - 6 J IL(Ry)IIRyI6dy 

::; CR-6. 

The integral J IL(z)llzI 6dz is finite because t = tp and thus L is rapidly 
decreasing. The proof of Part 2 is now complete and the combination of 
Parts 1 and 2 completes the proof of the theorem. 0 

2.10 Lorentz Spaces, A Slight Improvement 

In this section we turn to the subject of Lorentz spaces which was intro
duced in Chapter 1, Section 8. We will show that the Sobolev inequality 
for Riesz potentials (Theorem 2.8.4) as well as the development in Chapter 
2, Section 9, can be improved by considering Lorentz spaces instead of LP 
spaces. 

We begin by proving a result that is similar to Young's inequality for 
convolutions. 

2.10.1. Theorem. If h = f * g, where 

then hE L(r,s) where 
1 1 1 
-+--1=
Pl P2 r 

and s ~ 1 is any number such that 

Moreover, 

1 1 1 -+- >-. 
ql q2 - S 

Proof. Let us suppose that ql, q2, S are all different from 00. Then, by 
Lemma 1.8.9, 

(ll h ll(r,8)Y = faoo(xl;rh**(XW~ ::; faoo [Xl/T 100 J**(t)g**(t)dtr d: 
= faoo [Y;;T faY J** (~) g** (~) ~~ r d:. (2.10.1) 
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The last equality is by the change of variables x = l/y, t = l/u. Now use 
Hardy's inequality (Lemma 1.8.11) to obtain, 

tX> [_1 [Y j** (.!.) g** (.!.) dU] S dy 
10 yl/r 10 U U u2 Y 

:::; rsl°O [yl-(l/r) f**(l/y~r*(l/Y) r d:; 

= rS {oo[Xl+(lfr)j**(X)g**(xW dx , 
10 x 

by letting y = l/x. 
Since 8/ql + 8/q2 2: 1, we may find positive numbers ml, m2 such that 

1 1 1 8 1 8 
-+-=1 and -:::;-, -:::;
ml m2 ml ql m2 q2 

Therefore ql :::; 8ml, q2 :::; 8m2. An application of Holder's inequality with 
indices mI, m2, yields 

100 [xl/Pl f**(xW [x l/P2 g**(xW 
( 1I hll( ))S < rS dx r,s - 0 xl/ml xl/m2 

:::; rS [100 [Xl/pl j**(x)]Sml ~] l/ml 

. [100 [Xl/P2 g** (x )]sm2 d: ] 

= rS(lIfll(Pl,smd)S(lIgll(P2,sm2)Y' 

Thus, by Lemma 1.8.13 

IIhll(r,s) :::; rllfll(Pl,sml)lIgllp2,sm2) 

:::; el/eel/erllfll(Pl ,qd IIgll(P2,q2) 

:::; 3rllfll(Pl ,qd IIgll(P2,q2)' 

Similar reasoning leads to the desired result in case one or more of ql, 
q2, 8 are 00. 0 

As an application of Theorem 2.10.1, consider the kernel fa(x) == Ixl a- n 

which is a constant multiple of the Riesz kernel that was introduced in 
Chapter 2, Section 6. For simplicity of notation in this discussion, we omit 
the constant ,(a)-l that appears in the definition of fa(x). Observe that 
the distribution function of fa is given by 

aI,,(t) = I{x: Ixl a- n > t}1 
= I{x : Ixl < tl/(a-n)}1 

= a(n)tn/(a-n) 
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and because I~ is the inverse of the distribution function, we have I~ (t) = 
c,Jn) )(a-n)/n. It follows immediately from definition that 

J**(t) = (_n_) t(a-n)/n 
a a(n)a 

and therefore that Ia E L(nl(n-a),oo).lfwe form the convolution Ia *f 
where f E LP = L(p,p), then Theorem 2.10.1 states that 

Ia * f E L(q,p) 

where 
lIn-a 1 a - = - + -- - 1 = - - -. 
q p n p n 

Moreover, it follows from Lemma 1.8.13 that L(q,p) c L(q, q) and thus we 
have an improvement of Theorem 2.8.4 which allows us to conclude only 
that Ia * f E Lq. As a consequence of Theorem 2.10.1, we have the following 
result that is analogous to Theorem 2.8.4. 

2.10.2. Theorem. If f E L(p, q) and ° < a < nip, then 

Ia * f E L(r, q) 

and 

where 

IlIa * fll (r,q) :::; lila II (n/(n-a),oo) IIfil (p,q) 

= Cllfll(p,q) 

1 1 a 
= 

r p n 

We now consider the limiting case of 11pl + 11p2 == 1 in Theorem 2.10.1. 
In preparation for this, we first need the following lemma. 

2.10.3. Lemma. Let cp be a measurable function defined on (0,1) such 
that tcp(t) E V(O, 1; dtlt), p > 1. Then, 

11(1 + Ilogt/)-1 11 cp(s)ds ll LP (o,l;dt/t) :::; P ~ l"tcp(t)lb(o,l;dt/t). 

Proof. By standard limit procedures, we may assume without loss of gen
erality that cp E Ll(O, 1) is non-negative and bounded. Let 

r1 (11 )P dt 1=10 (1 + Ilogt/)-P t cp(s)ds t' 
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Since 

1= (p ~ 1) 11 (11 <P(S)dS) P d(l -logt)-p+1 

integration by parts yields 

1= -p- t (11 <P(S)dS)P-1 (l-logt)-p+1<p(t)dt, 
p -1 Jo t 

and Holder's inequality implies 

I:::; p ~ 1 11 (1 + IlogtD-1 11 <p(s)dsll~-;tO,l;dtlt)lIt<p(t)lb(o,l;dtlt)' 
from which the conclusion follows. 

99 

o 

2.10.4. Remark. Before proving the next theorem, let us recall the fol
lowing elementary proof concerning convolutions. If I, 9 E L1(Rn) we may 
conclude that 

r r I/(x - y)g(y)ldxdy = r Ig(y)I' r I/(x - y)ldxdy JRn JRn JRn JRn 
= r Ig(y)I.1I/111 dy JRn 
= 11/111 . IIgll1 < 00. 

Thus, the mapping y - I(x - y)g(y) E L1(Rn) for almost all x E Rn and 
1 * 9 E L1(Rn). 

In the event that one of the functions, say I, is assumed only to be an 
element of L(p, q), p > 1, q ~ 1, while 9 E L1(Rn), then the convolution 
need not belong to L1(Rn), but it will at least be defined. To see this, let 

{
I if I(x) > 1 

h(x)= I(x) if -l:::;/(x):::;l 
-1 if I(x) < -1 

and let h = 1 - h. Then h * 9 is defined because h is bounded. We 
will now show that h E L1(Rn) thus implying that h * 9 is defined and 
therefore, similarly for 1 * g. In order to see that h \: L1(Rn) let 

1 ( ) - {/(X) if I/(x)1 > 1 
2 X - 0 if I/(x)l:::; 1. 

Clearly 012 ( S) = of (1) if 0 < S < 1 and 012 ( s) = of ( s) if S ~ 1. Conse
quently 

Thus, since I; is non-increasing, 1;(t) vanishes for all t ~ Of (1) and it 
is easy to see that f*(t) = 1;(t) for all t < Of (1). We may assume 



100 2. Sobolev Spaces and Their Basic Properties 

that q > p for, if q ::; p, then Lemmas 1.8.13 and 1.8.10 imply that 
f E L(p, q) C L(p,p). Consequently, by Young's inequality for convolu
tions, f * g is defined. In fact, f * g E £1'. With q > p and a = aj(l), we 
have 

00 > dt > dt > dt 100 f**(t)q 100 f*(t)q 1a f*(t)q 
o t1-(q/p} - 0 t1-(q/p} - 0 t1-(q/p} 

~ (j(q/p}-l 1a f*(t)qdt 

= (j(q/p}-l 1a 1; (t)qdt 

= (j(q/p}-1 100 1; (t)qdt 

where (j E [0, a]. Since J:J(t) vanishes for t ~ a whereas i2(t) ~ 1 for t < a, 
it therefore follows that 

thus showing that 12 is integrable because 12 and 1; have the same distri
bution function. Therefore h is integrable. 

2.10.5. Lemma. Let 1 < p < 00, 1 ::; ql ::; 00, 1 ::; q2 ::; 00 be such 
that l/ql + 1/q2 < 1 and set l/r = l/ql + 1/q2' Assume f E L(P,ql) and 
g E (p', q2) n Ll(Rn) and let u = f * g. Then 

[ (I [ u*(t) ]r dt]l/r 
io 1 + Ilogtl t ::; Cllfll(p,qd . (lIgll(pf,q2) + Ilglld 

where C depends only on p, ql, and q2. 

Proof. Note from the preceeding remark, that u is defined. For simplicity 
we set Ilfll(p,qil and IIgll = Ilgll(pf ,q2} + Ilglk Also, for notational convenience 
in this discussion, we will insert a factor of (q / p) 1/ q in the definition of the 
Ilfll(p,q}; thus, 

Ilfll(p,q} = 

( ) 
l/q 

lJ.. supt1/p f**(t), 
P t>o 

We distinguish two cases: 

(i) r < 00 

1 ::; p < 00, q = 00. 
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(ii) T = 00 (i.e. ql = q2 = 00). 

(i) The case T < 00. Recall from Lemma 1.8.8 that for every t > 0, 

u**(t) :::; tj**(t)g**(t) + 100 j*(s)g*(s)ds. (2.10.2) 

Clearly, the following inequalities hold for every s > 0: 

j*(s) :::; j**(s) :::; Sll/p Ilfll (p,q,), (2.10.3) 

g*(s) :::; g**(s) :::; Sl~P' Ilgll(p',q2)' (2.10.4) 

g*(s) :::; g**(s) :::; ~llgI11' (2.10.5) 
s 

For t < 1, it follows from (2.10.2), (2.10.3), and (2.10.4) that, 

u**(t) :::; t t1~P t1~P' Ilfll(p,Q')llgll(p',Q2) + 11 j*(s)g*(s)ds 

+ i oo 
j*(s)g*(s)ds. (2.10.6) 

From (2.10.3) and (2.10.5) we have that 

i oo 
j*(s)g*(s)ds :::; p[llfll(p,q,) ·llgI11]. 

This in conjunction with (2.10.6) yields 

u**(t) :::; pllfllllgil + 11 j*(s)g*(s)ds. (2.10.7) 

By Lemma 2.10.3, (2.10.7), and (2.10.4) we have 

11(1 + Ilogtl)-lu**(t)llu(O,l;dt/t) :::; Gllfllllgil + Clltj*(t)g*(t)IILT(O,l;dt/t) 

= Cllfllllgil + Cllt1/P j*(t)t1/P' 

. g*(t)llu(O,l;dt/t) 

:::; Cllfllllgil + Cllfll(p,q,) Ilgll(p',Q2)' 

(ii) The case T = 00. By (2.10.7), (2.10.3), and (2.10.4) we have, for t < 1, 

u**(t) :::; pllfllllgil + I log tillfll(p,oo) Ilgll(p' ,00) 

and therefore 

11(1 + Ilogtl)-lu**(t)lluX>(O,l) :::; Cllfllllgll· o 

2.10.6. Theorem. Let 1 < P < 00, 1 :::; q1 :::; 00, 1 :::; q2 :::; 00 be such 
that 1/q1 + 1/q2 < 1 and set l/T = 1/q1 + 1/q2' Assume f E L(p, qd and 
gEL(p',qdnL1 andletu=f*g. Then 
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(ii) if r :::; 00, there exists positive numbers C = C(p, ql, q2) and M = 
M(IQI) such that h eC1uj"' dx :::; M 

for every f and 9 with Ilfll(p,q,) :::; 1 and Ilgll(p',Q2) + Ilglll :::; 1. 

Before proceeding with the proof, let us see how this result extends the 
analogous one established in Theorem 2.9.1. To make the comparison, take 
one of the functions in the above statement of the theorem, say f, as 
the Riesz kernel, I n / p • As we have seen from the discussion preceeding 
Theorem 2.10.2, f E L(p', 00). The other function 9 is assumed to be 
an element of £P(n) where n is a bounded set. Thus, by Lemma 1.8.10, 
9 E L(p, p) n Ll (Rn). In this context, ql = 00 and q2 = P > 1 thus proving 
that this result extends Theorem 2.9.1. 

Proof. Consider part (i) first. Because u*(t) is non-increasing we have that 

* it ds it ds lu (rW (l-logs)-r - :::; u*(sr(1-logs)-r-
o s 0 s 

for every t < 1. The first integral equals (1 -logt)-r+l Ir - 1 with r > 1 
and Lemma 2.10.5 implies that I(t) ----> 0 as t ----> 0 where I(t) denotes the 
second integral. Note that there exists a constant K = K(r) such that 

lu*(t)( :::; K(l + IlogtI)I(t)l/(r-l), 0 < t < 1. (2.10.8) 

With Q c Rn any bounded measurable set, we have with the help of 
Lemma 1.5.1, 

{ , (IQI , to , 
JQ exp(Clu(x)1r dx = Jo exp(Clu*(t)1r dt = Jo exp(Clu*(t)1r dt 

l 1Q' , 
+ exp(Clu*(t)lr dt 

to 
(2.10.9) 

where 0 < to < IQI. Because u* is non-increasing, it is only necessary to 
show that the first integral is finite. For this purpose, choose to < 1 so that 
cr' KI(to)l/(r-l) < 1. Then, from (2.10.8), 

exp(Clu*(t)lr' :::; (eltY~ 

where 0: = cr'KI(to)l/(r-l). Thus, part (i) of the theorem is established. 
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For the proof of (ii), Lemma 2.10.5 and the fact that u*(t) is non
increasing allow us to conclude that for 0 < t < 1, 

where IIIII = Ilfll(p,q!) and IIgll = Ilgll(pl,Q2) + IlgliI- Therefore, 

lu*(t)( :::; K(l-logt)II/I(lIgl(· 

Similar to part (i), the proof of (ii) now follows from (2.10.9) by choosing 
KG < 1. 0 

Exercises 

2.2. If I and g are integrable functions defined on Rn such that 

J Irpdx = J grpdx 

for every function rp E Go(Rn ), prove that 1= g almost everywhere 
on Rn. 

2.3. Prove the following extension of the Rellich-Kondrachov compactness 
theorem. If n is a domain having the extension property, then 

is a compact imbedding if mp < n, 1 :::; q :::; np/(n - mp) and m a 
non-negative integer. 

2.4. Verify the following equivalent formulation of Bessel capacity: 

Ba,p(E) = inf {1 go. * I(X)}-P 
f xEE 

= {sup 1 go.*/(X)}-P 
f xEE 

where I E V(Rn), 12: 0, and 1I/IIp 2: 1. 

2.5. Prove that the Riesz and Bessels capacities have the same null sets; 
that is, Ro.,p(E) = 0 if and only if Bo.,p(E) = 0 for every set E eRn. 
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2.6. Show that there is a constant C = C(a,p,n) such that 

provided ap > nand E is non-empty. 

2.7. As an extension of Corollary 2.1.9, prove that if n is connected and 
u E Wk,p(n) has the property that DO:u = 0 almost everywhere on 
n, for all lal = k, then u is a polynomial of degree at most k - 1. 

2.8. Let 1 < p, kp < n. If KeRn is a compact set, let 

'Yk,p(K) = inf{IIull~,p : u ~ 1 on a neighborhood of K, 

u E C8"(Rn)}. 

With the aid of Theorem 2.6.1, prove that there exists a constant 
C = C(p, n) such that 

C-1 Bk,p(K) ~ 'Yk,p(K) ~ CBk,p(K). 

2.9. Show that for each compact set KeRn, 

2.10. Prove that there exists a sequence of piecewise linear maps 

satisfying (2.7.7) and (2.7.8). See the discussion in Exercise 5.2. 

2.11. Suppose that u: Rn ---+ Rl is Lipschitz with IIDulll;Rn < 00. Define 
au: Rl ---+ Rl by au(t) = I{x : u(x) > t}l. Since au is non-increasing, 
it is differentiable almost everywhere. 

(a) Prove that for almost all t, 

(b) Prove that equality holds in (a) if 

I{x : Du(x) = O}I = o. 

2.12. Theorem 2.8.4 gives the potential theoretic version of Theorem 2.4.2, 
but observe that the latter is true for p = 1 whereas the former is 
false in this case. To see this, choose Ii ~ 0 with JRn lidx = 1 and 
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spt fi C B(O, Iii). Prove that 10. * fi -t 10. uniformly on Rn - B(O, r) 
for every r > O. Thus conclude that 

The right side tends to 

But 

f_ Ixl-ndx -t 00 as r -t O. 
} B(O,r) 

2.13. Show that Theorem 2.8.4 is false when ap = n. For this consider 

f(x) = lxi-a log 1;1 Ixl ~ 1 { ( ) 
-a(l+e)/n 

o Ixl > 1 

where c > O. Then f E £P since ap = n but 10. * f(O) = 00 whenever 
a(1 + c) In ~ 1. 

2.14. Prove the following extension of Theorem 2.8.2. Suppose Ifllog(2 + 
If I) is integrable over the unit ball B. Then Mf E L1(B). To prove 
this, note that (with the notation of Theorem 2.8.2) 

Now use (2.8.3) and Exercise 1.3. 

2.15. There is a variety of methods available to treat Theorem 2.6.16. Here 
is one that shows that B1,p(K) = 0 if Hn-p < 00, 1 < p < n. 

STEP 1. Use Exercise 2.8 to replace B1,p(K) by rl,p(K). 

STEP 2. There exists C = C(n, k) such that for any open set U :J K, 
there exist an open set V :J K and u E w~,p(Rn) such that 

(i) u ~ 0 

(ii) spt u C U 

(iii) K eVe {x: u(x) = I} 

(iv) JRn IDulPdx ~ C. 
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To prove Step 2, first observe that H;-P(K) < 00 (see Exercise 
1.10). Since K is compact, there exists a finite sequence of open balls 
{B(ri)}, i = 1,2, ... ,m, such that 

m m 

K C U B(ri) C U B(2ri) C U 
i=l i=l 

and 
00 

L a(n - p)r;-P ~ H;-P(K) + 1. 
i=l 

Let V = U~l B(ri) and define Ui to be that piecewise linear function 
such that Ui = 1 on B(ri), Ui = 0 on Rn - B(2ri). Let 

U = max{ui : i = 1,2, ... ,m} 

to establish Step 2. 

STEP 3. For each positive integer k, let 

Uk = { x : d(x, K) < ~ } . 

Employ Step 2 to find corresponding Uk such that 

for k = 1,2, .... 

STEP 4. Use Theorem 2.5.1 to find a subsequence {ukl and U E 
w~,p(Rn) such that Uk -+ U weakly in w~,p(Rn) and Uk -+ U strongly 
in £P. Hence, conclude that U = 1 almost everywhere on K and that 
U = 0 on Rn - K. 

STEP 5. Conclude from Theorem 2.1.4 that IKI = 0 and therefore 
that U = O. 

STEP 6. Use the Banach-Saks theorem to find a subsequence {Uk} 
such that 

1 j 

Vj = -:- LUk 
J k=l 

converges strongly to U in w~,p(Rn). Thus, I!Dvil!p -+ 0 as j -+ 00. 

But 

for each j = 1,2, .... 
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2.16. In this problem we sketch a proof ofthe fact that 1'1,p(K) = 0 implies 
Hn-p+e(K) = 0 whenever c > O. The proof requires some elementary 
results found in subsequent chapters. 

STEP 1. For each positive integer i, there exists Ui E GOO(Rn ) such 
that Ui 2: 1 on a neighborhood of K and 

Let v = E~l Ui and conclude that v E W1,p(Rn). Also note that 
K C interior {x: v(x) 2: k} whenever k 2: 1. Therefore, for x E K, 

where 

lim infv(x, r) = 00 
r--+O 

v(x,r) = 1 v(y)dy. 
h(x,r) 

STEP 2. For all x E K and c > 0, 

limsuprp - n - e ( IDvlPdy = 00. 
r--+O J B(x,r) 

If this were not true, there would exist k < 00 such that 

rp - n - e ( IDvlPdy ::; k 
JB(x,r) 

for all small r > O. For all such r, it follows from a classical version 
of the Poincare inequality (Theorem 4.2.2) that 

Thus conclude that 

Iv(x, r /2) - v(x, r) I ::; Gre/ p 

for all small r > O. Therefore, the sequence {v(x, 1/2j )} has a finite 
limit, contradicting the conclusion of Step 1. 

STEP 3. Use Lemma 3.2.1 to reach the desired conclusion. 

2.17. At the end of Section 2.3 we refer to [AR2] for the result that GOO(n) 
is dense in Wk,p(n) provided n possesses the segment property. Prove 
this result directly if the boundary of n can be locally represented as 
the graph of a Lipschitz function. 

2.18. Show that GO,l(n) = W1,OO(n) whenever n is a domain in Rn. 
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2.19. This problem addresses the issue raised in (2.6.6). If f E V(Rn) and 
ap < n, then Theorem 2.8.4 states that 

where q = p*. A simple homogeneity argument shows that in order 
for this inequality to hold for all f E V, it is necessary for q = p*. 
For 8 > 0, let Tof(x) = f(8x). Then 

IlIa * (Tof)l!q ~ 8-n/P llfll p 

and 

Hence, 

thus requiring 
1 1 a 
- = - --
q p n 

Historical Notes 

2.1. It is customary to refer to the spaces of weakly differentiable func
tions as Sobolev spaces, although various notions of weak differentiability 
were used before Sobolev's work, [S02]; see also [SOl], [S03]. Beppo Levi 
in 1906 and Tonelli [TO] both used the class of functions that are abso
lutely continuous on almost all lines parallel to the coordinate axes, the 
property that essentially characterizes Sobolev functions (Theorem 2.1.4). 
Along with Sobolev, Calkin [CAl and Morrey [MOl] developed many of 
the properties of Sobolev functions that are used today. Although many 
authors contributed to the theory of Sobolev spaces, special note should be 
made of the efforts of Aronszajn and Smith, [ARS1], [ARS2], who made a 
detailed study of the pointwise behavior of Sobolev functions through their 
investigations of Bessel potentials. 

2.2. Theorem 2.2.1 was originally proved by Rademacher [RA]. The proof 
that is given is attributed to C.B. Morrey [MOl, Theorem 3.1.6]; the proof 
we give appears in [S]. In our development, Rademacher's theorem was 
used to show that Sobolev functions remain invariant under composition 
with bi-Lipschitzian transformations. However, it is possible to obtain a 
stronger result by using different techniques as shown in [Z3]. Suppose 
T : Rn --> Rn is a bi-measurable homeomorphism with the property that 
it and its inverse are in Wl~'~(Rn, Rn), p > n - 1. If u E Wl~'~(Rn) where 
p = p[p - (n - 1)]-1, then u 0 T E Wl~';(Rn). With this it is possible to 
show that if u E Wl~':(Rn) and T is a K-quasiconformal mapping, then 
u 0 T E Wl~':(Rn). 
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2.3. Theorem 2.3.2 is due to Meyers and Serrin, [MSE]. 

2.4. Theorem 2.4.1 is the classical Sobolev inequality [SOl], [S02], which 
was also developed by Gagliardo [GAl], Morrey [MOl]' and Nirenberg 
[NI2]. The proof of Theorem 2.4.1 for the case p < n is due to Nirenberg 
[NI2]. 

2.5. Theorem 2.5.1 originated in a paper by Rellich [RE] in the case p = 
2 and by Kondrachov [KN] in the general case. Generally, compactness 
theorems are of importance in analysis, but this one is of fundamental 
importance, especially in the calculus of variations and partial differential 
equations. There are variations of the Rellich-Kondrachov result that yield 
a slightly stronger conclusion. For example, we have the following result 
due to Frehse [FRE]: Let !1 c Rn be a bounded domain and suppose 
Ui E W 1,P(!1), 1 s p < n, is a bounded sequence of functions with the 
property that for each i = 1,2, ... , 

for all i.p E W 1,P(!1) n LOO(!1). Then there exist U E W 1,P(!1) and a subse
quence such that Ui -+ U strongly in w1,Q(!1), whenever q < p. 

2.6. Potential theory is an area of mathematics whose origins can be traced 
to the 18th century when Lagrange in 1773 noted that gravitational forces 
derive from a function. This function was labeled a potential function by 
Green in 1828 and simply a potential by Gauss in 1840. In 1782 Laplace 
showed that in a mass free region, this function satisfies what is now known 
as Laplace's equation. The fundamental principles of this theory were de
veloped during the 19th century through the efforts of Gauss, Dirichlet, 
Riemann, Schwarz, Poincare, Kellogg, and many others, and they consti
tute today classical potential theory. Much of the theory is directed to the 
understanding of boundary value problems for the Laplace operator and its 
linear counterparts. With the work of H. Cartan [CARl], [CAR2], in the 
early 1940s, began an important new phase in the development of potential 
theory with an approach based on a Hilbert-space structure of sets of mea
sures of finite energy. Later, J. Deny [DE] enriched the theory further with 
the concepts and techniques of distributions. At about the same time, po
tential theory and a general theory of capacities were being developed from 
the point of view of an abstract structure based on a set of fundamental 
axioms. Among those who made many contributions in this direction were 
Brelot [BRT] , Choquet [CH], Deny, Herve, Ninomiya, and Ohtsuka. The 
abstract theory of capacities is compatible with the recent development of 
capacities associated with non-linear potential theory which, among other 
applications, is used to study questions related to non-linear partial differ
ential equations. The first comprehensive treatment of non-linear potential 
theory and its associated Bessel capacity was developed by Meyers [MEl], 
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Havin and Maz'ya [HM], and Resetnjak [RES]. Most of the material in 
Section 2.6 has been adopted from [MEl]. 

2.7. The co-area formula as stated in Theorem 2.7.3 was proved by Fed
erer in [F1]. In the case m = 2, k = 1, Kronrod [KR] used the right side of 
(2.7.1) to define the variation of a function of two variables. Fleming and 
Rishel [FR] established a version of Theorem 2.7.1 for BV functions. An
other version resembling the statement in Theorem 2.7.3 for BV functions 
appears in [F4, Section 4.5.9]. 

The proof of the best possible constant in the Sobolev inequality (The
orem 2.7.4) is due to Fleming and Federer [FF]. Their result can be stated 
as follows: 

na(n) = sup IIDul1 
Ilulin/(n-l) 

where the supremum is taken over all u E cgo(Rn). Talenti [TA] extended 
this result to the case p > 1 by determining the constant C(n,p) defined 
by 

He showed that 

IIDullp 
C(n,p) = sup lIullp •• 

l-(l/p) [ n ll/n 
C(n,p) = 7r- 1/ 2n-1/ 2 (p - 1) ~(1 + 2" )r(n) n 

n - p r( - )r(l + n - -) p p 

He also showed that if the supremum is taken over all functions which 
decay rapidly at infinity, the function u that attains the supremum in the 
definition of C(n,p) is of the form 

u(x) = (a + blxIP/(P-l))l-n/p 

where a and b are positive constants. This leads to the following obser
vation: in view of the form of the extremal function, it follows that if 0 
is a bounded domain and if u E WJ'P(O) has compact support, then by 
extending u to be zero outside of 0, we have 

Brezis and Lieb [BL] provide a lower bound for the difference of the two 
sides of this inequality for p = 2. They show that there is a constant C(O, n) 
such that 

C(O,n)llull~q,<:x)) + Ilull~. ::; C(n,p)IIDull~ 
where q = n/(n - 2) and lIull(q,oo) denotes the weak Lq-norm of u (see 
Definition 1.8.6). 

2.S. The maximal theorem 2.8.2 was initially proved by Hardy-Littlewood 
[HL] for n = 1 and for arbitrary n by Wiener [WI]. The proofs of Theorem 
2.8.4 and its preceding lemma are due to Hedberg [HE1]. 
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2.9. The proof of exponential integrability in Theorem 2.9.1 is taken from 
[GT] while the improved version that appears in Theorem 2.9.2 was proved 
by Hedberg [HEl]. The question concerning sharpness of this inequality has 
an interesting history. Trudinger [TR] proved (2.9.1) for Sobolev functions 
in Wk,p, n/p = k, with the power p' replaced by n'. However, when n/p > 1, 
Strichartz [STR] noted that Trudinger's result could be improved with the 
appearance of the larger power p'. The reason why Trudinger's proof did 
not obtain the optimal power is that the case of k > 1 was reduced to the 
case of k = 1 by using the result that if u E Wk,p, k ~ 2, kp = n, then 
u E w1,n. However, in this reduction argument, some information is lost 
because if U E Wk,p then u is actually in a better space than w1,n. In fact, 
by appealing to Theorem 2.10.3, we find that the first derivatives are in the 
Lorentz space L( n, p) c Ln. This motivated Brezis and Wainger to pursue 
the matter further in [BW] where Theorem 2.9.4 and other interesting 
results are proved. The sharpness of the Sobolev imbedding theorem in the 
case of critical indices was also considered in [HMTJ, where it was shown 
that the space W~,n(r2) could not be imbedded in the Orlicz space L",(r2) 
where rp(t) = exp(ltln/(n-l) - 1). 

The other question of sharpness of the inequality pertains to the constant 
f3 that appears in (2.9.4). It was shown in [MOS] that (2.9.4) remains valid 
for f3 = n/w(n - 1) in the case of Sobolev functions that vanish on the 
boundary of a domain. The optimal result has recently been proved by 
Adams [AD8] where (2.9.4) has been established for f3 = n/w(n - 1) and 
all a > O. 

2.10. Most of the material in this section was developed by Brezis and 
Wainger [BW] although Theorems 2.10.1 and 2.10.2 and due to O'Neil [0]. 
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Pointwise Behavior of 
Sobolev Functions 
In this chapter the pointwise behavior of Sobolev functions is investigated. 
Since the definition of a function U E Wk,P(r!) requires that the kth-order 
distributional derivatives of u belong to V(r!), it is therefore natural to 
inquire whether the function u possesses some type of regularity (smooth
ness) in the classical sense. The main purpose of this chapter is to show 
that this question can be answered in the affirmative if interpreted ap
propriately. Although it is evident that Sobolev functions do not possess 
smoothness properties in the usual classical sense, it will be shown that if 
u E Wk,P(Rn ), then u has derivatives of order k when computed in the 
metric induced by the V-norm. That is, it will be shown for all points 
x in the complement of some exceptional set, there is a polynomial Px of 
degree k such that the V-norm of the integral average of the remainder 
lu - Pxl over a ball B(x, r) is o(rk). Of course, if u were of class ok, then 
the V-norm could be replaced by the sup norm. 

We will also investigate to what extent the converse of this statement is 
true. To this end, it will be shown that if u has derivatives of order k in the 
LP-sense at all points in an open set r!, and if the derivatives are in V(r!), 
then u E Wk,P(r!). This is analogous to the classical fact that if a function 
u defined on a bounded interval is differentiable at each point and if u' is 
integrable, then u is absolutely continuous. In order to further pursue the 
question of regularity, it will be established that u can be approximated in a 
strong sense by functions of class Of., e ::; k. The approximants will have the 
property that they are close to u in the Sobolev norm and that they agree 
pointwise with u on large sets. That is, the sets on which they do not agree 
will have small capacity, thus establishing a Lusin-type approximation for 
Sobolev functions. 

3.1 Limits of Integral Averages of 
Sobolev Functions 

In this and the next two sections, it will be shown that a Sobolev function 
u E Wk,P(r!) can be defined everywhere, except for a set of capacity zero, 
in terms of its integral averages. This result is analogous to the one that 
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holds for integrable functions, namely, if u E L1, then 

1 lu(y) - u(x)ldy --+ 0 as r --+ 0 
h(x,r) 
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for almost all x E Rn. Since our result deals with Sobolev functions, the 
proof obviously will require knowledge of the behavior of the partial deriva
tives of u. The development we present here is neither the most efficient nor 
elegant. These qualities have been sacrificed in order give a presentation 
that is essentially self-contained and clearly demonstrates the critical role 
played by the gradient of u in order to establish the main result, Theorem 
3.3.3. Later, in Section 3.10, we will return to the subject of Lebesgue points 
and prove a result (Theorem 3.10.2) that extends Theorem 3.3.3. Its proof 
will employ the representation of Sobolev functions as Bessel potentials 
(Theorem 2.6.1) and the Hardy-Littlewood maximal theorem (Theorem 
2.8.2). 

In this first section, it will be shown that the limit of integral averages 
of Sobolev functions exist at all points except possibly for a set of capacity 
zero. We begin by proving a lemma that relates the integral average of u 
over two concentric balls in terms of the integral of the gradient. 

3.1.1. Lemma. Let u E W 1,P[B(xo,r)], p ~ 1, where Xo ERn and r > o. 
Let 0 < fJ < r. Then 

r-n [ u(y)dy-fJ-n [ u(y)dy = .!.r-n [ [Du(y)·(y-xo)]dy 
iB(xo,r) iB(xo,6) n iB(xo,r) 

- .!.fJ-n [ [Du(y) . (y - xo)]dy 
n iB(xo,6) 

- .!. [ Iy - xol-n[Du(y) . (y - xo)]dy. 
n i B(xo,r)-B(xo,6) 

(3.1.1) 

Proof. Define JL on R1 by 

Define a vector field V by V(y) = JL(ly - xol)(y - xo). Since u is the 
strong limit of smooth functions defined on B(xo, r) (Theorem 2.3.2), an 
application of the Gauss-Green theorem implies 

[ u(y)divV(y)dy=- [ Du(y)·(y-xo)JL(ly-xol)dy. (3.1.2) 
iB(xo,r) iB(xo,r) 

An easy calculation of div V establishes equation (3.1.1). o 
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3.1.2. Lemma. Let f be a positive real number such that fp < n, p 2: 1, 
and let u E W1,P(Rn ). Then 

(3.1.3) 

for all x ERn. 

Proof. (i) We suppose first of all that u vanishes outside a bounded set. 
Let x E Rn and for each positive integer j, define a Coo vector field Yj on 
Rn by 

[
1 ] (1/2)(£-n) 

Yj(y)= y+IY_XI2 (y-x). 

Since lui E W1,P(Rn ) (by Corollary 2.1.8), lui is therefore the strong limit 
of smooth functions with compact support. Therefore, by the Gauss-Green 
theorem, 

{ divYj(y)lu(y)ldy = - ( Yj(y). D(lul)(y)]dy. JRn JRn 
Moreover, since ID(lul)l = IDul a.e., 

{ divYj(y)lu(y)ldy ~ ( Yj(y)IDu(y)ldy. JRn JRn (3.1.4) 

By calculating the divergence on the left-hand side of (3.1.4) one obtains 

Ln D + Iy - xl 2 f1
/

2
)(t-n-2) [fly - xl 2 + y] lu(y)ldy 

( [1 ] (1/2)(l-n) 
~ JRn y + Iy - x 21 Iy - xIIDu(y)ldy. 

The inequality (3.1.3) now follows, in this case, when j ----> 00. 

(ii) The general case. Let TJ be a Coo function on R, such that 0 ~ TJ ~ 1, 
TJ(t) = 1 when t ~ 1 and TJ(t) = 0 when t 2: 2. Define 

Uj(Y) = u(Y)TJ(j-llyl) 

for y E Rn. By applying (i) to Uj and then letting j ----> 00, one can verify 
(3.1.3) in the general case. 0 

3.1.3. Lemma. Let £ be a positive real number and k a positive integer 
such that (k+£-l)p < n. Then there exists a constant C = C(n,k,f) such 
that 
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This follows from Lemma 3.1.2 by mathematical induction. 0 

We are now in a position to prove the main theorem of this section 
concerning the existence of integral averages of Sobolev functions. 

3.1.4. Theorem. Let k be a positive integer such that kp < n, p > 1, let n 
be a non-empty open subset of Rn and let u E Wk,p(n). Then there exists 
a subset E of n, such that 

and 

exists for all x E n - E. 

lim 1 u(y)dy 
6->0+ h(x,6) 

Proof. (i) We suppose first of all that n = Rn. Define 

g(y) = L IDOu(y)1 
lol=k 

(3.1.5) 

(3.1.6) 

for y E Rn. Then 9 E LP (Rn). Let E be the set of all those points x of Rn 
for which 

(Ik * g)(x) = 00. (3.1.7) 

Then, from the definition of Riesz capacity (Definition 2.6.2), 

and therefore from (2.6.7), 

Bk,p(E) = O. 

Consider x E Rn '" E. By (3.1.1), 

f u(y)dy - 8-n f u(y)dy =.!:. f [Du(y) . (y - x)]dy 
1 B(x,l) 1 B(x,6) n 1 B(x,l) 

- .!:.8-n f [Du(y) . (y - x)]dy 
n lB(x,6) 

- .!:. f Iy - xrn[Du(y) . (y - x)]dy. (3.1.8) 
n 16<ly-xl<1 

When k = 1, it follows from (3.1.6) and (3.1.7) that 

f Iy - xI1-nIDu(y)ldy < 00. 
lB(x,l) 

(3.1.9) 
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When k > 1, it follows from Lemma 3.1.3 with l = 1 and k -1 substituted 
for k, that 

which, by (3.1.6) and (3.1. 7), is finite. Thus (3.1.9) still holds when k > 1. 
By (3.1.9) 

lim [ Iy - xl-n[Du(y) . (y - x)]dy 
6-+0+ J6<ly-xl<1 

(3.1.10) 

exists. It also follows from (3.1.9) that 

lim [ Iy - xI1-nIDu(y)ldy = 0, 
6-+0+ J B(x,6) 

hence 
6-n [ [Du(y) . (y - x)]dy --+ 0 

JB(x,6) 
(3.1.11) 

as 6 --+ 0+. It now follows from (3.1.8), (3.1.10), and (3.1.11) that the limit 
in (3.1.5) exists. 

(ii) The general case. Let n be an open set of Rn. There exists an in
creasing sequence {'Pj} of non-negative Coo functions on Rn, with compact 
supports, and spt 'Pj C n for all j such that the interiors of the sets 

{x: x E Rn and 'Pj(x) = I} 

tend to n as j --+ 00. Define 

Uj(x) = {o'Pj(X) . u(x) x E n 
x¢n. 

By applying (i) to each of the functions Uj, one can easily prove the theorem 
in this case. 0 

3.2 Densities of Measures 

Here some basic results concerning the densities of arbitrary measures are 
established that will be used later in the development of Lebesgue points 
for Sobolev functions. 

3.2.1. Lemma. Let JL ~ 0 be a Radon measure on Rn. Let 0 < A < 00 

and 0 < 0: ::; n. Suppose for an arbitrary Borel set A C Rn that 

I. JL[B(x, r)] \ 
1m sup > 1\ 

r-+O rOt 
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for each x E A. Then there is a constant C = C(o, n) such that 

Jl(A) ~ C>.HO«A). 
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Proof. Assume Jl(A) < 00 and choose e > o. Let U :) A be an open set 
with Jl(U) < 00. Let 9 be the family of all closed balls B(x, r) C U such 
that 

x E A, 0 < r < e/2, Jl[B(x, r)] > >.. 
rO< 

Clearly, 9 covers A finely and thus, by Corollary 1.3.3, there is a disjoint 
subfamily F C 9 such that 

A C [U{B: B E F*}] U [U{B: B E F - F*}] 

whenever F* is a finite subfamily of F. Thus, by Definition 1.4.1, 

H~(A) ~ C L (8(:)) 0< + C50< L C(:)) 0< 
BE:F" BE:F -:F" 

where 8(B) denotes the diameter of the ball B. Since F C 9 and F is 
disjoint, we have 

L (8(:)) 0< ~ C>.-l L Jl(B) 
BE:F BE:F 

~ C>.-l Jl(U) < 00. 

Since 

C50< L C(:)) 0< 
BE:F-:F" 

can be made arbitrarily small with an appropriate choice of F* , we conclude 

H~e(A) ~ C>.-l Jl(U). 

Since Jl is a Radon measure, we have that Jl(A) = inf{Jl(U) : U :) A, U 
open}. Thus, letting e -+ 0, we obtain the desired result. 0 

3.2.2. Lemma. Let Jl ~ 0 be a Radon measure on Rn that is absolutely 
continuous with respect to Lebesgue measure. Let 

A = Rn n {x: lim sup Jl[B(~,r)] > O}. 
r-+O r 

Then, HO«A) = 0 whenever 0 ~ 0 < n. 

Proof. The result is obvious for 0 = 0, so choose 0 < 0 < n. For each 
positive integer i let 

Ai = Rn n {x: Ixl < i,limsup Jl[B(~,r)] > C 1 } 
r-+O r 
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and conclude from the preceding lemma that 

(3.2.1) 

Since Ai is bounded, JL(Ai) < 00. Therefore HO(Ai) < 00 from (3.2.1). 
Since a < n, Hn(Ai) = 0 and therefore IAil = 0 from Theorem 1.4.2. The 
absolute continuity of JL implies JL(Ai) = 0 and consequently HO(Ai) = 0 
from (3.2.1). But A = U~lAi' and the result follows. 0 

3.2.3. Corollary. Suppose u E V(Rn ), 1 5:. p < 00, and let 0 5:. a < n. If 
E is defined by 

E = {x: limsupr-o { lu(x)IPdx > o} , 
r--+O } B(x,r) 

then HO(E) = O. 

Proof. This follows directly from Lemma 3.2.2 by defining a measure JL as 

o 

3.3 Lebesgue Points for Sobolev Functions 

We will now prove the principal result of the first three sections (Theorem 
3.3.3) which is concerned with the existence of Lebesgue points for Sobolev 
functions. We will show that if u E wk,p(Rn), then 

lim 1 lu(y) - u(x)IPdx = 0 
r--+O h(x,r) 

for Bk,p-q.e. x E Rn. This is stronger than the conclusion reached in Theo
rem 3.1.4, which only asserts the existence of the limit of integral averages. 
However, in case u E W1,P(Rn ), the existence of the limit of integral av
erages implies the one above concerning Lebesgue points. In this case, we 
can use the fact that lu - pi E Wl~'~(Rn) for each real number p and then 
apply Theorem 3.1.4 to conclude that 

lim 1 lu(y) - pldy 
r-+oh(x,r) 

exists for B1,p-q.e. x E Rn. Of course, the exceptional set here depends on p. 
The object of Exercise 3.1 is to complete this argument. This approach fails 
to work if u E Wk,P(Rn ) since it is not true in general that lui E Wk,P(Rn ), 
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cf. Remark 2.1.10. 

3.3.1. Lemma. Let k be a non-negative integer and A,p real numbers such 
that p > 1, kp < n, and k < A < nip. If 

then 
8>.-k 1 u(y)dy --+ 0 

h(x,15) 

as 8 --+ 0+, for all x E Rn except for a set E with B>.,p(E) = O. 

(3.3.1 ) 

(3.3.2) 

Theorem 3.1.4 states that the integral averages converge to a finite value 
at all points in the complement of a Bk,p-null set. This lemma offers a slight 
variation in that the integral averages when multiplied by the factor 8>'-k 
converge to 0 on a larger set, the complement of a B>.,p-null set. At some 
points of this larger set, the integral averages may converge to infinity, but 
at a rate no faster than 8k ->'. 

Proof of Lemma 3.3.1. (i) Suppose k = O. It follows from Corollary 3.2.3 
that 

8p>.-n [ lu(y)IPdy --+ 0 
JB(x,15) 

(3.3.3) 

as 8 --+ 0+, for all x E Rn except for a set E with Hn->'P(E) = O. From 
the definition of Hausdorff measure, for e > 0 there is a countable number 
of sets {Ei} such that E C UEi and ~(diamEi)n->.p < e. Each Ei is 
contained in a ball Bi ofradius ri where ri = diamEi . Therefore, with the 
aid of Theorem 2.6.13, 

00 00 

B>.,p(E) ::; 2: B>.,p(Ei ) ::; C 2: r~->'P ::; Ce. 
i=l i=l 

Since e is arbitrary, we have that B>.,p(E) = O. 
Now consider x E Rn - E. From Holder's inequality, there is a constant 

C = C(n,p) such that 

8>'-n I [ U(Y)dyl ::; C [8>.p-n [ lu(y)IPdY] lip 
} B(x,15) } B(x,15) 

(3.3.2) now follows from (3.3.3) and (3.3.4), and (i) is established. 
(ii) Now suppose k > O. Let E be the set of all x for which 

1 n Iy - xl>.-n [2: IDaU(Y)I] dy = 00. 

R lal=k 

(3.3.4) 

(3.3.5) 
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Then R>.,p(E) = 0 and therefore B>.,p(E) = 0 by (2.6.8). 
Consider x E Rn - E. When k = 1, it follows from (3.3.5) that 

r Iy - xl>.-k+1-nIDu(y)ldy < 00. 

iB(x,l) 
(3.3.6) 

When k > 1, we replace f by). - k + 1 and k by k - 1 in Lemma 3.1.3 and 
again derive (3.3.6) from (3.3.5). For x E Rn - E, we now show that 

O>.-k r Iy - xll-nIDu(y)ldy -+ 0, 
i8<ly-xl<1 

(3.3.7) 

as 0 ! O. Let r E (0,1) be arbitrary. Clearly 

O>.-k 1 Iy - xll-nIDu(y)ldy -+ 0 
r<ly-xl<1 

(3.3.8) 

as 0 ! O. When 0 < 0 < r we have 

O>.-k r Iy - xll-nIDu(y)ldy::; r Iy - xl>.-k+1-nIDu(y)ldy. 
i8<ly-xl<r i B(x,r) 

(3.3.9) 
It follows from (3.3.6) that the right-hand side of (3.3.9) approaches zero 
as r ! O. (3.3.7) now follows from (3.3.8) and (3.3.9). 

Clearly, 

r Iy - xIlDu(y)ldy < 00. 
iB(x,l) 

(3.3.10) 

Since). - k - n < 0, it follows that 

o>.-k-n r Iy - xIIDu(y)ldy::; r Iy - xl>.-k+1-nIDu(y)ldy, 
i B(x,8) i B(x,8) 

so that by (3.3.6), 

o>.-k-n r Iy - xIIDu(y)ldy -+ 0 
i B(x,8) 

(3.3.11) 

as 0 ! O. By putting r = 1 in Lemma 3.1.1, one can obtain (3.3.2) from 
Lemma 3.1.1, (3.3.10), (3.3.11), and (3.3.7). 0 

3.3.2. Theorem. Let f, k be integers such that k :::: 1, 0 ::; k ::; f and 
fp < n, p > 1. Let u E wk,p(Rn) and for each x E Rn and r > 0 put 

Then 

ux,r = 1 u(y)dy. 
Ts(x,r) 

r(i-k)p 1 lu(y) - ux,rlPdy -+ 0 
Ts(x,r) 

(3.3.12) 
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as r ! 0, for all x E Rn except for a set E with Bl,p(E) = O. 

Proof. We proceed by induction on k. Suppose to begin with that k = o. 
It follows from Corollary 3.2.3 that 

(3.3.13) 

for all x E Rn, except for a set E' with Hn-lp(E') = 0 and therefore 

Bl,p(E') = O. (3.3.14) 

We now have, for x E Rn - E', 

r(l-(n/p» [ r Iu(y) - ux,rIPdy]l/P :::; r(l-(n/p)) [ r IU(Y)lPdy]l/P 
J B(x,r) J B(x,r) 

+ r(l-(n/p)) IUx,r I r dy [ ]

l/P 

J B(x,r) 
(3.3.15) 

But by Lemma 3.3.1, 
(3.3.16) 

as r ! 0, for all x E Rn except for a set E" with Bl,p(E") = O. (3.3.12) now 
follows from (3.3.13), (3.3.15), and (3.3.16) in the case k = O. 

Now suppose that k > 0 and that the theorem has been proved for all 
functions of Wk-1,p(Rn). Let U E Wk,P(Rn). By the Poincare inequality, 
which we shall prove in a more general setting later in Chapter 4 (for 
example, see Theorem 4.4.2), 

r(l-k)p-n r Iu(y) - ux,rlPdy :::; Cr[l-(k-l)]p-n r I Du(y)IPdy, 
J B(x,r) J B(x,r) 

(3.3.17) 
for all x E Rn , where C depends only on n. By the induction assumption, 
there exists a set F', with 

Bl,p(F') = 0 (3.3.18) 

and 
r[l-(k-l)]p-n r IDiU(Y) - (Diu)x,rIPdy -+ 0 

J B(x,r) 
(3.3.19) 

as r ! 0, for all x E Rn - F'. But 
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+ I(DiU)x,rl f dy , [ ll/P 

JB(x,r) 
(3.3.20) 

and by Lemma 3.3.1 
rl-(k-l)(Dou) -+ 0 

Z X,T (3.3.21) 

as r ! 0, for all x E Rn, except for a set F" with 

Bl,p(F") = o. 

(3.3.12) now follows from (3.3.17), (3.3.19), (3.3.20), and (3.3.21). This 
completes the proof. D 

3.3.3. Theorem. Let k be a positive integer such that kp < n, let n be an 
open set of Rn and let u E Wk,p(n). Then 

1 lu(y) - u(x)IPdy -+ 0 
h(x,r) 

as r ! 0, for all x E n, except for a set E with Bk,p(E) = o. 

(3.3.22) 

Proof. (i) When n = Rn, (3.3.22) follows from Theorem 3.3.2 and Theorem 
3.1.4. 

(ii) When n is arbitrary, the theorem can be derived from (i) as in the 
proof of Theorem 3.1.4. D 

3.3.4. Corollary. Let k be a positive integer such that kp < n, let n be an 
open set of Rn and let u E Wk,p(n). Then 

lim 1 lu(y)IPdy exists and = lu(x)IP 
r---+O+ h(x,r) 

for all x E n, except for a set E with Bk,p(E) = o. 

(3.3.23) 

3.3.5. Remark. Theorem 3.3.3 states that on the average, the oscillation 
of u at x is approximately equal to u(x) at Bk,p-q.e. x E n. This can 
also be stated in terms of the classical concept of approximate continuity, 
which will be used extensively in Chapter 5. A function u is said to be 
approximately continuous at Xo if there exists a measurable set A such 
that 

lim IB(xo, r) n AI = 1 
T---+O IB(xo, r)1 

(3.3.24) 

and u is continuous at Xo relative to A. It is not difficult to show that if 
u has a Lebesgue point at Xo then u is approximately continuous at Xo. 

A proof of this is given in Remark 4.4.5. Thus, in particular, Theorem 
3.3.3 implies that u E W1,P(Rn) is approximately continuous at B1,p-q.e. 
x ERn. 
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Approximate continuity is a concept from measure theory. A similar con
cept taken from potential theory is fine continuity and is defined in terms 
of thin sets. A set A c Rn is said to be thin at Xo relative to the capacity 
Bk,p if 

Ii [Bk'P[A n B(xo, r)l] i/(p-i} dr < 00. 

10 Bk,p[B(xo, r)l r (3.3.25) 

A function u is finely continuous at Xo if there exists a set A that is thin 
at Xo and 

lim u(x) = u(xo). 
Z--+Xo 
x~A 

It follows from standard arguments in potential theory that A can be taken 
as a measurable set. In the case of the capacity, B i ,2, which is equivalent 
to Newtonian capacity, these definitions are in agreement with those found 
in classical potential theory. In view of the fact that 

for any set A c Rn , it follows that (3.3.25) implies 

lim IB(xo, r) n (Rn - A)I = 1, 
r--+O IB(xo,r)1 

and therefore fine continuity implies approximate continuity. 
We now will show that the approximate continuity property of Sobolev 

functions can be replaced by fine continuity. First, we need the following 
lemma. 

Lemma. If {Ai} is a sequence of sets each of which is thin at Xo, then 
there exists a sequence of real numbers {ri} such that 

00 

U Ai n B(xo, ri) 
i=i 

is thin at xo. 

Proof. Because Ai is thin at Xo, it follows that there exists a sequence 
{ri} -+ 0 such that 

Bk p[Ai n B(xo, rdl 0 . 
, -+ as Z -+ 00. 
Bk,p[B(xo, rill 

We may assume the ri to have been chosen so that 

(i [Bk'P[Ai n B(xo, r)l] i/(p-i) dr < T(i+i}. 

10 Bk,p[B(xo, r)l r 
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Then, 

r1 [Bk,P[Ai n B(xo, r) n B(xo, ri)]] l/(p-l) dr 
10 Bk,p[B(xo, r)] r 

(i [Bk,p[Ai n B(xo, r) n B(xo, ri )]] l/(p-l) dr 
10 Bk,p[B(xo, r)] r 

+ r1 [Bk,p[Ai n B(xo, r) n B(xo, ri )]] l/(p-l) dr 
1ri Bk,p[B(xo, r)] r 

T(i+ 1) + Bk [A- n B(xo r.)]l/(P-l) 11 [ 1 ] l/(p-l) dr 
< ,p" • C n-kp ri r r 

< 2-(i+l) + B [A n B( )]l/(P-l)C [1 1 ] 
k,p i Xo, ri 1 - Bk,p[B(xo, ri)J1/(p-l) 

< 2-i for ri sufficiently small. 

Since capacity is countably subadditive, the result easily follows. 0 

For ease of exposition, we now restrict our attention to u E W 1,p(Rn). 
Again, we see the important role played by the growth of the gradient in 
order to obtain some regularity at a given point. 

Theorem. Let Xo ERn, p > 1, and suppose u E w1,p(Rn) has the property 
that 

r rp- n r IDulPdx dr < 00. 
1 [ jl/(P-l) 

10 1 B(xo,r) r 

Suppose also that 

lim 1 u(y)dy = U(Xo). 
r->O Tn(xo,r) 

Then u is finely continuous at Xo. 

Proof. For each c > 0, let 

A(xo, c) = Rn n {x: lu(x) - u(xo)1 > c}. 

For r > 0, let 
Vr(x) = CPr(x)[u(x) - u(2r)] 

where CPr is a smooth function such that CPr == 1 on B(xo, r), spt CPr C 
B(xo,2r), IDCPrl :::; Cr- 1 and where 

u(2r) = 1 udx. 
Tn(xo,2r) 



3.3. Lebesgue Points for Sobolev Functions 125 

Because of the assumption u(2r) ---+ u(xo) as r --+ 0, note that for all 
sufficiently small r, 

Vr(x) ~ c:/2 for x E A(xo, c:) n B(xo, r). 

Therefore, by appealing to Exercise 2.8, which allows BI,p to be expressed 
in terms of a variational integral, there exists C = C(p, n) such that 

BI,p[A(xo, c:) n B(xo, r)) :::; C(2c:- I)P [ IDvrlPdx 
lB(xo,2r) 

:::; C(2c:- I )p [ IDulPdx 
lB(xo,2r) 

+ (C2c:- I r- l )p [ lu - u(2r)IPdx. (3.3.26) 
lB(xo,2r) 

An application of Poincare's inequality (cf. Theorem 4.4.2) yields 

[ lu - u(2r)IPdx :::; CrP [ IDulPdx 
lB(xo,2r) lB(xo,2r) 

and therefore (3.3.26) can be written as 

BI,p[A(xo, ~~~ B(xo, r)) :::; Cc:-IrP-n [ IDulPdx, 
r lB(xo,2r) 

which directly implies that A(xo,C:) is thin at Xo. Now let C:j be a sequence 
tending to O. By the preceding lemma, there is a decreasing sequence rj --+ 0 
such that 

00 

A= U[A(xo,C:j)nB(xo,rj)) 
j=l 

is thin at Xo. Clearly 
lim u(x) = u(xo) 

3:-+Xo 
xERn-A 

and the theorem is established. 0 

It can be shown that 

[ rp-n [ IDulPdx dr < 00 
I [ jl/(P-I) 

1o lB(xo,r) r 
(3.3.27) 

for BI,p-q.e. Xo E Rn cf. [ME3). Therefore, with Theorem 3.3.3, we obtain 
the following. 

Corollary. If u E WI,P(Rn) then u finely continuous at all points except 
for a set of BI,p capacity zero. 
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Observe that Corollary 3.2.3 implies 

limsuprp - n [ IDulPdx = 0 
r-+O J B(xo,r) 

(3.3.28) 

for Hn-p-a.e. Xo E Rn. Although (3.3.27) implies (3.3.28) for each Xo, the 
exceptional set for the former is larger than that for the latter. 

3.4 V-Derivatives for Sobolev Functions 

In the previous three sections, the continuity properties of Sobolev func
tions were explored through an investigation of Lebesgue points and fine 
continuity. We now proceed to analyze their differentiability properties. We 
begin by proving that Sobolev functions can be expanded in a finite Tay
lor series such that for all points in the complement of an exceptional set, 
the integral average of the remainder term tends to 0, (Theorem 3.4.2). In 
keeping with the spirit of this subject, it will be seen that the exceptional 
set has zero capacity. Observe that Theorem 3.3.3 provides the first step 
in this direction if we interpret the associated polynomial as one of degree 
o and the remainder at x as lu(y) - u(x)l. 

When k, m are integers such that 0 ~ m ~ k, (k - m)p < nand 
u E wk,p(Rn), it follows from Theorem 3.1.4 that there exists a subset E 
of Rn such that 

Bk-m,p(E) = 0 (3.4.1) 

and 
lim 1 DOu(y)dy 

r-+O+ h(x,r) 
(3.4.2) 

exists for all x E Rn - E and for each multi-index a with 0 ~ lal ~ m. 
Thus, for all such x, we are able to define the Taylor polynomial p~m) in 
the usual way: 

(3.4.3) 

(Recall the notation introduced in Section 1.1.) Observe that when u is a 
em function on Rn , Taylor's theorem can be expressed in the form 

u(y) = p~m-1)(y) + m L ~! [11(1- t)m-1 
lol=m 0 

. DOu[(l - t)x + tyjdtj (y - x)O. (3.4.4) 

3.4.1. Theorem. Let 1 ~ m ~ k and suppose (k - m)p < n. Let u E 
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Wk,P(Rn ) and E be the set described in (3.4.1) and (3.4.2). Then 

( lu(y) - p~m)(y)IPdy ::; rm L ~ { (1 - t)m-1 [ j1/P 1 

i B(x,r) lo:l=m a. io 

. en ( IDO:u(y) - DO:u(x)IPdy dt [ j1/P 

i B(x,tr) 
(3.4.5) 

and 

[ j1/P 1 1 lu(y) - p~m-l}(y)IPdy ::; rm L ~ 1 (1 - t)m-1 
B(x,r) lo:l=m a. 0 

(3.4.6) 

for all x E Rn except for a set E' :J E with Bk-m,p(E') = o. 

Proof. (i) Suppose first of all that u is a em function on Rn. Let x E Rn, 
r > 0 and put B = B(x, r). Let cp be a function of V' (B) with Ilcpllpl ::; 1 
where p' is the conjugate of p. By (3.4.3) and (3.4.4), 

( [u(y) - p~m)(y)lcp(y)dy = L ~ (1- t)m-1 iB a. lo:l=m 

. [In {DO:u((1- t)x + ty) - DO:u(x)}(y - X)o:cp(Y)dY] dt. 

Hence, by Holder's inequality, 

1
1 [u(y) - p~m)(Y)lcp(Y)dYI ::; rm L ~ 11 (1 - t)m-1 

B lo:l=m a. 0 

. [lnIDO:U((1- t)x + ty) _ Do:u(x)IPdY] lip dt. 

By making the substitution z = x + t(y - x) in the right-hand side and 
then taking the supremum over all cp, one obtains (3.4.5). 

The inequality (3.4.6) can be derived similarly. 
(ii) Now let u be an arbitrary function of Wk,P(Rn). By Theorem 3.3.3, 

there exists a set E' :J E, with Bk-m,p(E') = 0 such that 

(3.4.7) 
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when 0 ~ lal ~ m and x E Rn - E'. 
Consider x E Rn - E'. There exists a constant M (depending on x), such 

that 

(3.4.8) 

for allial = m and all C > O. Let {!Pel be a sequence of regularizers as 
discussed in Section 1.6. Thus, !Pe E C8"(Rn), 

(3.4.9) 

spt !Pe C B(O,£) and 
sup !Pe(x) ~ c£-n (3.4.10) 

xERn 

for all £ (where C depends only on n), while 

(3.4.11) 

as £ ! 0, for 0 ~ lal ~ m and x E Rn - E'. Put Ue = !Pe * u. Each Ue E 
coo(Rn)nWk,p(Rn). Let us denote by (3.4.5)e and (3.4.6)e the inequalities 
(3.4.5) and (3.4.6) with U replaced by U e . Since U e is smooth we know 
that (3.4.5)e and (3.4.6)e are valid. By (3.4.11) and Fatou's lemma, the 
lower-limit as £ ! 0 of the left-hand side of (3.4.5)e and (3.4.6)e is greater 
than or equal to the left-hand side of (3.4.5) and (3.4.6). The result of the 
theorem will thus follow from Theorem 1.6.1(ii) and Lebesgue's Dominated 
Convergence theorem when we show for each a with lal = m and r > 0 
fixed, that the following function of t, 0 ~ t ~ 1, is bounded; that is, 

rn [ IDaue(y)IPdy ~ Mrn 
iB(x,tr) 

(3.4.12) 

where M is independent of £. 

We now proceed to establish (3.4.12). For any measurable subset E of 
Rn, we have (when lal = m) 

lIDaue(y)IPdY = llLn !Pe(Y - Z)Dau(z)dzI
P 

dy, 

hence by (3.4.10) 

[ IDaue(y)IPdy ~ CP£-(np) [ [[ IDaU(Z)ldZ]P dy. 
iE iE iB(y,e) 

Thus, when p > 1, we have by Holder's inequality 

(3.4.13) 
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so that 

[ IDClue(y)IPdy ~ Cc:-n [[ IDClu(z)IPdzdy, 
J E JEJB(y,e) 

(3.4.14) 

where C depends only on nand p. When p = 1, (3.4.14) follows from 
(3.4.13). 

When tr ~ 3c:, we let E be the ball with center x and radius tr. Since 
B(y, c:) C B(x, 4c:) when y E B(x, tr), (3.4.14) implies that 

[ IDClue(y)IPdy ~ Cc:-n [ [ IDClu(z)IPdzdy. 
J B(x,tr) J B(x,tr) J B(x,4e) 

It now follows from (3.4.8) and (3.4.12) holds in the case where tr ~ 3c:. 
When tr > 3c:, we have 

and a double application of (3.4.14) yields 

[ IDClue(y)IPdy ~ Cc:-n [ [ IDClu(z)IPdzdy 
J B(x,tr) J B(x,3e) J B(x,4e) 

+ Cc:-n [ [IDClu(z)IPdzdy 
J3e'5:.1y-xl<tr J B(y,e) 

and by (3.4.8) 

~ c'tnrn + Cc:-n [ [IDClu(w + y)IPdwdy 
J3e~ly-xl<tr J B(O,e) 

~ c'tnrn + Cc:-n [ [ [ IDClU(y)IPdY] dw 
J B(O,e) J2e~ly-xl<tr+e 

so that 
[ IDClue(y)IPdy ~ c"tnrn. 

JB(x,tr) 

Thus (3.4.12) is established. o 

3.4.2. Theorem. Let 0 ~ m ~ k and suppose (k - m)p < n. Let u E 

Wk,P(Rn). Then, 

as r ! 0, for all x E Rn, except for a set F with 

Bk-m,p(F) = O. 
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This is the main result of this section. In particular, it states that the 
integral average over a ball of radius r of the remainder term involving the 
formal Taylor polynomial of degree k tends to 0 as r --+ 0 at a speed greater 
than rk at almost every point. If a Taylor polynomial of smaller degree is 
considered, the integral average tends to 0 at perhaps a slower speed, but 
on a larger set. 

Proof of Theorem 3.4.2. When m = 0, the theorem reduces to Theorem 
3.3.3. Suppose m > O. By Theorem 3.3.3, 

1 IDau(y) - Dau(x)IPdy --+ 0 
h(x,r) 

as r ! 0, for all lal = m for all x E Rn , except for a set F with 

Bk-m,p(F) = O. 

Consider x E Rn - F and an a with lal = m. Define 

for r > O. By (3.4.15), 7J(r) --+ 0 as r ! 0, hence 

11 (1- t)m-17J(tr)dt --+ 0 

(3.4.15) 

(3.4.16) 

(3.4.17) 

r ! O. The required result now follows from (3.4.16), (3.4.17), and Theorem 
3.4.1. 0 

3.5 Properties of V-Derivatives 

In this section we consider arbitrary functions that possess formal Taylor se
ries expansions and investigate their relationship with those functions that 
have Taylor series expansions in the metric of £P, such as those discussed 
in the previous section. 

3.5.1. Definition. Let E eRn. A bounded function u defined on E 
belongs to Tk(E), k > 0, if there is a positive number M and for each 
x E E there is a polynomial Px (.) of degree less than k of the form 

P ( ) _ ""' ua(x) ( )a xy-~--,-y-x , 
a. 

lal~O 

(uo =u) (3.5.1) 

whose coefficients U a satisfy 

lua(x)1 :5 M for x E E, 0:5 lal < k, 
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and 
Ua(y) = Da Px(Y) + Ra(x, y) 

whenever x, y E E and where Ra(x, y) :S Ciy - xl k - 1al , 0 :S 10:1 < k. 
The class t k (E) is defined as all functions U on E such that for each 

x E E there is a polynomial Px (.) of degree less than or equal to k of the 
form (3.5.1) such that for 0 :S 10:1 :S k, 

whenever x, y E E with IRa(x, y)1 :S ely - xl k - 1al and 

lim Ra(x, y) = 0 
y-+x Iy - xl k - 1al 

uniformly on E. 
As a mnemonic, Tk(E) and tk(E) may be considered as classes of func

tions that possess formal Taylor series expansions relative to E whose re
mainder terms tend to 0 "big 0" or "little 0," respectively. 

3.5.2. Remark. Clearly, if U E Tk(E) then U a is locally Lipschitz on E, 
o :S 10:1 < k. If E is an open set, note that the derivatives Dau exist on E, 
o :S 10:1 < k, and that 

Dau(x) = Da Px(x) = ua(x) for x E E. 

Since IDa Px(x)1 :S M for x E E, it follows that U E Wl~~l'P(E) for every 
p 2: 1. The space tk(E) may be considered as the class of functions on E 
that admit formal Taylor series expansions of degree k. Of course, if E were 
open and U E ek(E), then U would have an expansion as in Definition 3.5.1 
with 

1 L ,Dau(x)(y - x)a. 
0:. 

O~lal9 

Moreover, if u E ek (Rn) and E c Rn, then the restriction of u to E, 
ulE, belongs to tk(F) for each compact set FeE. One of the reasons for 
identifying the class t k (E) is that it applies dire~tly to the Whitney exten
sion theorem [WH], which we state here without proof. We will provide a 
different version in Section 3.6. 

3.5.3. Whitney Extension Theorem. Let E c R n be compact. If u E 

t k (E), k > 0 an integer, then there exists u E ek (Rn) such that for 0 :S 
1,81 :S k 

D{3u(x) = D{3 Px(x) for all x E E. 

In view of this result, it follows that u E tk(E) if and only if u is the 
restriction to E of a function of class ek(Rn). 
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We now introduce another class of functions similar to those introduced 
in Definition 3.5.1 but different in the respect that the remainder term 
is required to have suitable decay relative to the V-norm instead of the 
Loo-norm. The motivation for this definition is provided by the results 
established in Section 4 concerning Taylor expansions for Sobolev functions. 

3.5.4. Definition. For 1 :5 p :5 00, k a non-negative integer, and x E 
Rn, Tk,P(x) will denote those functions u E V for which there exists a 
polynomial PxO of degree less than k and a constant M = M(x, u) such 
that for 0 < r < 00 

1 lu(y) - Px(y)IPdy :5 Mrk. ( ) ~P 
h(x,r) 

(3.5.2) 

When p = 00, the left side of (3.5.2) is interpreted to mean esssupyEB(x,r) 
lu(y) - Px(y)l. Tk,p(x) is a Banach space if for each u E Tk,P(x) the norm 
of u, lIuIlTk,P(x), is defined as the sum of lIullp , the absolute value of the 
coefficients of Px , and the smallest value of M in (3.5.2). 

3.5.5. Definition. A function u E Tk,P(x) belongs to tk,P(x) if there is a 
polynomial of degree less than or equal to k such that 

(1 lu(y) - Px(Y)IPdY) lip = o(rk) as r -+ O. 
h(x,r) 

(3.5.3) 

Note that if u E Tk,P(x) the polynomial Px is uniquely determined. To 
see this write 

where 

( 1 IRx(y)IPdY) lip :5 Mrk. 
h(x,r) 

If Px were not uniquely determined, we would have u(y) = Qx(Y) + Rx(Y), 
where Rx satisfies an integral inequality similar to that of Rx. 

Let Sx(Y) = Px(Y) - Qx(Y). In order to show that Sx == 0, first note that 

1 ISx(y)ldY:5 (1 ISx(Y)IPdY) lip :5 Crk, 0 < r < 00. 
h(x,r) h(x,r) 

Now let Lx be the sum of terms of Sx of lowest order and let Mx = Sx - Lx. 
Thus, Lx has the property that for each A E Rl, Lx (Ay + x) = A a Lx (y + x), 
where a is an integer, 0 < a :5 k - 1. Since Mx is a polynomial of degree 
at most k - 1, we have 

1 IMx(y)ldy :5 Crk- l , 0 < r < 00. 
h(x,r) 
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It follows from the inequality ILx(Y)1 :::; ISx(Y)1 + IMx(Y)1 that 

ra 1 ILx(y)ldy = 
h(X.l) 

= 1 ILx(y)ldy 
h(x.r) 

:::; Crk + Crk- 1 , 0 < r < 00. 
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This is impossible for all small r > 0 if a < k - 1 and Lx is non-zero. If 
a = k - 1, then Mx == 0 and the term Crk - 1 above can be replaced by O. 

A similar argument holds in case u E tk·p(x). 
Obviously, tk(E) C tk·p(x) and Tk(E) C Tk·p(x) whenever x E E and 

p :::: 1. We now consider the question of the reverse inclusion. For this 
purpose, we first need the following lemma. 

3.5.6. Lemma. Let k be a non-negative integer. Then there exists cp E 
C~(Rn) with sptcp C {Ixl :::; I} such that for every polynomial P on Rn 
of degree :::; k and every e > 0, 

CPe * P = P 

Proof. Let V = C~(B) where B is the closed unit ball centered at the 
origin and let W denote the vector space of all m-tuples {yo:} whose compo
nents are indexed by multi-indices a = (all a2,"" an) with 0 :::; lal :::; k. 
The number m is determined by k and n. Define a linear map T: V -+ W 
by 

thus, 

where 0 :::; lal :::; k and xO: = Xfl X~2 ••• x~n. 
Note that vector space, range T, has the property that range T = W for 

if not, there would exist a vector, a = {ao:} orthogonal to range T. That 
is, 

~ ao:yo: = 0 whenever y = {yo:} E range T. 

This implies, 
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Select 1/ E V such that 1/ > 0 in {x : Ixl < I}. Now define 'Ij; by 'Ij; = ~ aaxa1/ 
and note that 'Ij; E V. Therefore, 

which implies ~ aaxa = 0 whenever Ixl < 1. But this implies that all m 
numbers aa = 0, a contradiction. Thus, range T = W. In particular, this 
implies there is cp E V such that 

r cp(x)dx = 1, JRn 
Since any polynomial Q of degree no greater than k is of the form 

it follows that 

Q(z) = L baza, 
O~lal~k 

r cp(z)Q(z)dz = Q(O). JRn 
Given a polynomial P = P(x) as in the statement of the lemma, let z = 
(x - y)/c and set Q(z) = P(x - cz) to obtain the desired result. D 

The next theorem is the main result of this section. Roughly speaking, 
it states that if a function possesses a finite Taylor expansion in the V
sense at all points of a compact set E, then it has a Taylor expansion in 
the classical sense on E. It is rather interesting that we are able to deduce 
a Loo-conclusion from a V-hypothesis. A critical role is played by the 
existence of a smoothing kernel cp that leaves all polynomials of a given 
degree invariant under the action of convolution. 

3.5.7. Theorem. Let E C Rn be closed and suppose u E Tk,P(x), 1 ::; P ::; 
00, k > 0, with IluIITk,p(x) ::; M for all x E E. Then u E Tk(E). Also, if E 
is compact and if u E tk,P(x) for all x E E with (3.5.3) holding uniformly 
on E, then u E tk(E). 

In view of Whitney's Extension theorem (Theorem 3.5.3), note that a 
function satisfying the second part of the theorem is necessarily the restric
tion of a function of class ck(Rn). In the next section, we will investigate 
Whitney's theorem in the context of V. 

Proof of Theorem 3.5.7. Let cp E C(f(Rn) be the function obtained in 
Lemma 3.5.6 such that 

CPc * P(x) = P(x) (3.5.4) 
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whenever P is a polynomial of degree less than k, e > 0, and x E Rn. Note 
that (3.5.4) implies 

(3.5.5) 

Since U E Tk,P(xo) for all Xo E E, we have for Xo and x E E, 

U(y) = PXo (y) + R(xo, y) (3.5.6) 

and 
u(y) = Px(Y) + R(x, y) (3.5.7) 

where ( )'~ i IR(x*,y)IPdy :::; Mrk, (3.5.8) 
B{x',r) 

with x* either Xo or x. Now let e = Ix - xol and for 0 :::; 1{31 < k consider 

1= Df3cpg * u(x). 

For each fixed Z ERn, define Rz as Rz(x) = R(z, x) whenever x ERn. 
From (3.5.6) and (3.5.5) it follows that 

1= Df3cpg * Pxo(x) + Df3cpg * Rxo(x) 

= Df3 PXo (x) + Df3cpg * Rxo (x). 

Similarly, using (3.5.7) and (3.5.5), we have 

Therefore, 

1= Df3 Px(x) + Df3cpg * Rx(x) 

= Uf3(x) + Df3cpg * Rx(x). 

Df3px(x) = Df3pxo (x) + [Df3cpg * (Rxo - Rx)](x) 

= Df3 Pxo(x) 

+ J e-{n+1f3I )Df3cp [(X~y)] [R(xo,y)-R(x,y)]dy. 

Because cp == 0 on Ixl > 1, the last integral is taken over B(x,e). Since 
B(x, e) C B(xo, 2e), the integral is dominated by 

C [1 IR(xo, y)ldy + 1 IR(x, Y)ldY] e- 1f31 
JB{xo,2g) h{x,g) 

(3.5.9) 

where C depends on an upper bound for IDf3cpl. Jensen's inequality and 
(3.5.8) implies that (3.5.9) is bounded by CMek- 1f31 , thus proving U E 
Tk(E). 
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A similar proof establishes the second assertion of the theorem. Indeed, 
as before we obtain 

Df3 Px(x) = Df3 PXQ (x) + [Df3<pe * (RxQ - Rx)](x) 
= Df3pxQ (x) 

+ J e-(n+If31l Df3<p [(X ~ y)] [R(xo, y) - R(x, y))dy 

~ C [1 IR(xo, y)ldy + 1 IR(x, Y)ldY] e- 1f31 . 
k(XQ,2e) k(x,e) 

Since (3.5.3) is assumed to hold uniformly on E, for 'r/ > 0 arbitrary, the 
last expression is dominated by 'r/ek- 1f31 = 'r/lx - xol k- 1f31 provided Ix - xol 
is sufficiently small. The compactness of E is used in this case to ensure 
that IRf3(x, y)1 ~ Clx - ylk-If31 whenever x, y E E. 0 

3.6 An V-Version of the Whitney Extension 
Theorem 

We now return to the Whitney Extension Theorem (Theorem 3.5.3) that 
was stated without proof in the previous section. It states that for a com
pact set E C Rn , a function u is an element of t k (E) if and only if it is the 
restriction to E of a function of class ck(Rn). The result we establish here, 
which was first proved in [CZ), is slightly stronger in that the full strength 
of the hypothesis u E tk(E) is not required. Instead, our hypothesis requires 
that u E tk,P(x) for all x E E with (3.5.3) holding uniformly on E. 

We begin by proving a lemma that establishes the existence of a smooth 
function which is comparable to the distance function to an arbitrary closed 
set. 

3.6.1. Lemma. Let A c Rn be closed and for x E Rn let d(x) = d(x,A) 
denote the distance from x to A. Let U = {x : d(x) < 1}. Then there is a 
function 8 E COO(U - A) and a positive number M = M(n) such that 

M-1d(x) ~ 8(x) ~ Md(x), x E U - A, 

ID<:t8(x)1 ~ C(a)d(x)l-I<:tl, x E U - A, lal ;::: o. 

Proof. Let h(x) = 2~d(x), x E U - A, and consider a cover of U - A by 
closed balls {B(x, h(x))}, with center x and radius h(x), x E U - A. From 
Theorem 1.3.1 there is a countable set S C U - A such that {B(s, h(s)) : 
s E S} is disjointed and 

Rn - A ~ {UB(s, 5h(s)) : s E S} ~ U - A. 
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With a = (3 = 10 and ,\ = 210' we infer from Lemma 1.3.4 that 

1 :3 ::; h(x)/h(s) ::; 3 for s E Sx. 
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(3.6.1 ) 

Let (}(x) = HO(Sx) ::; C(n) and let TJ : R1 ---+ [0,1] be of class Coo with 

TJ(t) = 1 for t ::; 1, TJ(t) = 0 for t ~ 2. 

Now define 1j; E coo(Rn) by 1j;(x) = 1](lxi) and Vs E Coo(U) by 

vs(x) = h(s)1j; [(:h(S~)] for s E S, x E U. 

Note that spt Vs C B(s, 10h(s)), Vs == h(s) on B(s, 5h(s)) and from (3.6.1) 
that 

IDavs(x)1 ::; h(s)N(a)[5h(s)r 1al 

::; 5-laI3Ial-1 N(a)h(x)Ha l for s E Sx, 

where N(a) is a bound for IDf31j;I, 1(31 ::; lal. Now define 

8(x) = L vs(x) = L vs(x) for x E U. 
sES sESx 

Clearly, 

d~~) = h~) ::; 8(x) ::; 3{}(x)h(x) = 230{}(X)d(X) 

and 

The following is only a prelude to the V-version of the Whitney exten
sion theorem, although its proof supplies all of the necessary ingredients. 
Its hypothesis only invokes information pertaining to the spaces Tk,P(x) 
(bounded difference quotients) and not the spaces tk,P(x) (differentiabil
ity). In particular, the theorem states that if u is Lipschitz on A (the case 
when k = 1) then u can be extended to a Lipschitz function on an open 
set containing A. This fact is also contained in the statement of Theorem 
3.5.7. 

3.6.2. Theorem. Let A C R n be closed and let U = {x : d(x, A) < I}. 
If u E V(U), 1 ::; P ::; 00, and there is a positive constant M such that 
IluIITk,p(x) ::; M for all x E A, where k is a non-negative integer, then there 
exists U E Ck- 1,1(U) such that Df3u (x) = Df3 Px(x) for x E A, 0 ::; 1(31 < k. 

Proof. Let 8 denote the function determined in Lemma 3.6.1. Define u = u 
on A and for x E U - A let 

u(x) = 'P15(x) * u(x) (3.6.2) 
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where <P is the function determined by Lemma 3.5.6 and where 

Thus, u is defined at x as the convolution of <P8(x) and u evaluated at x. 
Because both <P and 8 are of class Coo it is easily verified that u E Coo (U

A). For x E U, let x* be a point in A such that Ix - x*1 = d(x) = d(x, A). 
Because U E Tk,P(x) we may write 

(3.6.3) 

where 

By substituting this expression into (3.6.2), we obtain 

D{3u(x) = D{3 [<P8(x) * Px' (x)] + D{3 [<P8(x) * Rx' (x)] 

= (D{3<P8(x) * Px' (x) + f R{3(x, y)Rx' (y)dy 

= <P8(x) * (D{3Px')(x) + f R{3(x,y)Rx·(y)dy (3.6.4) 

where R{3(x,y) = D{3{8(x)-n<p[(x - y)8(X)-1]}. Applying Lemma 3.5.6 to 
the first term on the right side of (3.6.4) we obtain 

(3.6.5) 

We wish to estimate the remainder term in (3.6.5) which requires an anal
ysis of R{3(x, y). It can be shown that 

and consequently 

If R{3(x, y)Rx' (Y)dyl ::; C(f3)d(x)-n- I{31 C IRx·(y)ldy. 
JS(x,8) 

(3.6.6) 

Because 8(x) is comparable to d(x) (Lemma 3.6.1) and Ix - x*1 = d(x), it 
follows that B(x,8(x)) C B(x*, Kd(x)) for some K > o. Therefore from 
(3.6.3) and Holder's inequality, 

[ IRx.(y)ldy::; M[Kd(x)]n+k 
JB(x.,Kd(x)) 

(3.6.7) 
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which along with (3.6.5) and (3.6.6) implies, 

Df3u(x) - Df3px .(x) = Sf3(x*, x) (3.6.8) 

where 
ISf3(x*,x)1 ~ C(,B,k)Mlx-x*l k -If3I. 

We emphasize here that for given x E U - A, (3.6.8) is valid only for x* E A 
such that d(x) = Ix - x*l. We now proceed to establish the estimate for 
arbitrary x* E A. 

By assumption liuIiTk,p(x) ~ M for all x E A. Therefore, we may apply 
Theorem 3.5.7 to conclude that u E Tk(A). Thus, if xt E A, 

Px • (x*) = u(x*) 

and 

where 
IRa(xr, x*)1 ~ C(a, k)Mlx* - xrl k - 1al . 

By Taylor's theorem for polynomials, it follows that 

k-l-If31 
Df3px .(x)= " .!..Df3+aPx .(x*)(x-x*)a. 

L..J a! 
lal=O 

Thus, by (3.6.9) and Taylor's theorem, 

By Taylor's theorem, it follows that 

Therefore, since 

(3.6.9) 

Ix - x*1 ~ Ix - xrl and Ix· - xrl ~ Ix* - xl + Ix - xrl ~ 21x - xii, 
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(3.6.10) becomes (after some algebraic simplification) 

{k-l)-If31 ~ 

Df3 Px• (x) - L ~!Df3+0 Pxi (x~)(x - X~)'l = O(lx - x~lk-If3I). 
101=0 

It follows from (3.6.8), that 

(k-l)-If31 1 
Df3u(x) - L ,Df3+oPXi(x~)(x - xi)° = O(lx - x~lk-If3I) 

101=0 
Q. 

or 
(3.6.11) 

Thus, (3.6.11) holds whenever xi E A and x E U - A and Theorem 3.5.7 
implies that it also holds with Df3u(x) replaced by uf3(x) whenever x E 
A. This implies that Df3u is a continuous extension of uf3 and that this 
extension has a Taylor series expansion about each point in A. Since u E 
COO(U - A) it now follows that U E Ck-l(U). 

In order to prove that u E Ck-l,l(U) it suffices to show that Df3u is 
Lipschitz, 1.81 = k -1. We know from (3.6.11) that if a E A, and 1.81 = k-1 

IDf3u(x) - Df3u(a) I :s C(k)Mlx - al (3.6.12) 

for x E U. Therefore, it is necessary to consider only the case x, Y E U - A. 
First suppose Ix - YI 2: ~d(y) and let a E A be such that d(y) = la - YI· 
Then, la - yl :s 21x - yl and 

Ix - al :s Ix - yl + Iy - al :s 31x - YI· 

Thus, utilizing (3.6.12), 

IDf3u(x) - Df3u(y) I :s IDf3u(x) - Df3u(a) I + IDf3u(y) - Df3u(a) I 
:s IDf3u(x) - Df3u(a) I + IDf3u(y) - Df3u(a) I 
:s C(k)M[lx - al + Iy - all 

:s 5C(k)Mlx - YI· 

Finally, suppose Ix - yl < ~d(y) and d(y) = la - yl. Using (3.6.5) with 
1.81 = k - 1 and the Mean Value theorem, we have 

IDf3u(x) - Df3u(y) I = J R(a, z) [Rf3(x, z) - Rf3(y, z)l dz 

:s Ix - yl J IDxRf3(xo, z)IIR(a, z)ldz (3.6.13) 

where Xo is a point on the line segment joining x and y. Now spt Rf3(xo, y) c 
B(xo,8(xo)) and 8(xo) :s Cd(xo). Thus, 

IDxRf3(xo, z)1 :s C(.8)d(xo)-n-k, 
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(1,81 = k - 1). Therefore, (3.6.13) implies 

ID.Bu(x) - D.Bu(y) I :5 C(,B)lx - yld(xo)-n-k r IR(a,z)ldz. 
J B(xo,Gd(xo)) 

Since Lip(d) = 1, we have 

1 
2d(xo) ;::: d(x) ;::: d(y) -Ix - yl > "2d(y) > Ix - yl· 

If z E U, Iz - xol :5 Cd(xo), then 

That is, 

Iz - al :5 Iz - xol + Ixo - al 

:5 Cd(xo) + Ixo - al 

:5 Cd(xo) + Ixo - yl + d(y) 

:5 Cd(xo) + Ix - yl + d(y) 

:5 Cd(xo) + d(xo) + 2d(xo). 

B(xo, Cd(xo)) C B(a, (C + 3)d(xo)). 

Therefore, reference to (3.6.7) implies 

r IR(a, z)ldz :5 C[d(xo)t+k 
J B(xo ,Gd(xo)) 

and this, along with (3.6.14) completes the proof. 

(3.6.14) 

o 

This proof leads directly to the following which is the Whitney extension 
theorem in the context of tk,P(x) spaces. 

3.6.3. Theorem. Let A C Rn be closed and let U = {x : d(x, A) < 1}. If 
u E V(U), 1 :5 p :5 00, and u E tk,P(x) for all x E A with (3.5.3) holding 
uniformly on A, then there exists u E Ck(U) such that D.Bu(x) = D.Bpx(x) 
for x E A, 0 :5 I.BI :5 k. 

Proof. The proof is essentially the same as the one above with only minor 
changes necessary. For example, the polynomials in (3.6.8) and (3.6.9) are 
now of degree k and the remainders can be estimated, respectively, by 

IS.B(x*, x)1 :5 o(lx - x* Ik-I.BI) 

and 
IRa(xi,x*)1 :5 o(lx* - xilk- 1al ), 

thus allowing (3.6.11) to be replaced by 

D.Bu(x) - D.BPxr(x) = o(lx - xilk-I.BI). 

The remainder of the argument proceeds as before. o 
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3.7 An Observation on Differentiation 

We address the technicality of showing that IluIITk,P(x) is a measurable 
function of x and then establish a result in differentiation theory that will 
be needed later in the sequel. 

3.7.1. Lemma. Let u E Tk,P(x) for all x in a measurable set E. Then, 
IluIITk,P(x) is a measurable function of x. 

Proof. Recall that the norm IluIITk,P(x) is the sum of the numbers Ilullp, 
IDOPx(x)l, 0 ~ lal ~ k -1, and the pth root of 

supr-kp 1 lu(y) - Px(y)IPdy. 
r>O h(x,r) 

Also recall that DO Px(x) = uo(x). To show that DO Px(x) is measurable 
in x consider the function cp of Lemma 3.5.6 and define 

uc(x) = CPc * u(x). 

If we write u(y) - Px(Y) = Rx(Y), then 

DOuc(x) = DO(cpc * Px)(x) + DO(cpc * Rx)(x) 

= DO Px(x) + J E-(n+joj) DOcp [~] Rx(x - y)dy. 

The above integral is dominated by 

CE-(n+joj) r IRx(x - y)ldy ~ CE-(n+joj)Ek+n 
iB(x,c) 

= CEk - joj --+ 0 as E --+ O. 

This shows that DO Px(x) is the limit of smooth functions DOue(x) for all 
x E E, and is therefore measurable. The remainder of the proof is easy to 
establish. 0 

3.7.2. Lemma. Let u E V(Rn), 1 ~ p < 00, be such that for some C, 
a > 0 and all r > 0, 

1 lu(y)IPdy ~ Cra, ( ) 

lip 

h(x,r) 

for all x in a measurable set E C Rn. Then, for almost all x E E, 

1 lu(y)IPdy = o(ra) as r 1 O. ( ) 

lip 

h(x,r) 
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Proof. Without loss of generality we may assume that E is bounded and 
that u has compact support. Given c > 0, let ACE be a closed set such 
that IE - AI < c. Let U be the open set defined by 

U = {x: d(x, A) < I}. 

It will suffice to establish the conclusion for almost all x E A. 
First, observe that the hypotheses imply that 

lim 1 lu(y)ldy = 0 
r-+O h(x,r) 

for x E A and therefore, u = 0 almost everywhere on A. 
Let h(x) = lod(x,A). Recall from Theorem 1.3.1 that there is a count

able set S C U - A such that {B(s, h(s)) : s E S} is disjointed and 

{UB(s,5h(s)) : s E S} ::J U - A. 

Therefore, since u = 0 almost everywhere on A, 

[[ lu(y)1 dydx < [[ lu(y)1 dydx 
JA Ju Ix - yln+a - JA JU-A Ix - yln+a 

:5 [L [ lu(Y)I:!a dx 
JA SESJB(S,Sh(s» Ix - yl 

""1 1 dx = L..J lu(y)1 + dy. 
sES B(s,Sh(s» A Ix - yin a 

(3.7.1) 

Let Xs E A be such that Is - xsl = d(s, A) = d(s). Hence, B(s,5h(s)) C 
B(xs, Is - xsi + 5h(s)) and Is - xsl = d(s) = 10h(s). By Jensen's inequality 
and the hypothesis of the lemma 

( ) 
lip ( ) lip 

lui :5 lulP :5 C lulP :5 Ch(s)a. 
t(S,Sh(S» t(S,Sh(S» t(X.,lSh(S» 

(3.7.2) 
Now for x E A, y E B(s, 5h(s)), we have 

Ix - yl ~ Ix - sl-Is - yl ~ d(s) - 5h(s) = 5h(s). 

Hence, for y E B(s,5h(s)) we estimate by spherical coordinates with origin 
at y, 

[ dx < C [00 r-a-ldr 
J A Ix - yln+a - J1Sh(s)1 

:5 C(a)h(s)-a. 
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This, along with (3.7.2) yields 

r r lu(y~ a dydx ~ C(a)h(st. 
J A J B(s,5h(s)) Ix - yl + 

Since {B(s, h(s)) : s E S} is disjointed, it follows from (3.7.1) that 

and therefore, 

r r lu(y)1 dydx ~ C(a) L h(s)n < 00 

J A Ju Ix - yln+a sES 

r lu(y)ldy < 00 

Ju Ix - yln+a 

for almost every x E A. Clearly, 

r lu(y)ldy < 00 

JRn_u Ix - yln+a 

for all x E A, and therefore 

for almost all x E A. 

r :-,1_u(=y.:...;.)ld-=y~ < 00 

J Rn Ix - yln+a 

An analysis of the argument shows that this was established by using 
only the fact that 

1 lui ~ Cra. 
h(x,r) 

If we apply the above argument with v = lulP , our hypothesis becomes 

1 Iv(y)ldy ~ Crap 
h(x,r) 

for all x E E and therefore 

00 > r Iv(y)ldy _ r lu(y)IPdy 
J Rn Iy - xln+ap - J Rn Iy - xln+ap 

for almost all x E E. But, for all such x, and for e > 0, 

r Ilu(y):PdY < e for all small r > o. J B(x,r) Y - X n+pa 

That is, 

1 lu(y)IPdy < era ( ) 

lip 

h(x,r) 

for all small r. o 
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3.8 Rademacher's Theorem in the V-Context 

Recall the fundamental result of Rademacher which states that a Lipschitz 
function defined on Rn has a total differential at almost all points (Theorem 
2.2.1). We rephrase this result in terms of the present setting by replacing 
the hypothesis that u is Lipschitz by u E Tk,P(x) for all x in some set E. 
If k = 1 and p = 00, this yields the usual Rademacher hypothesis. The 
conclusion we will establish is that u E tk,p (x) for almost all x E E. 

3.8.1. Theorem. Let u E Tk,P(x) for all x E E, where E c Rn is measur
able, k a non-negative integer and 1 < p < 00. Then u E tk,P(x) for almost 
all x E E. 

Proof. By Lemma 3.7.1 and Lusin's theorem we may assume that E is 
compact and that IluIITk.P(x) :::; M for all x E E. Since u E Tk,P(x) for 
x E E, we may write u(y) = Px(Y) + Rx(Y) where Px is a polynomial of 
degree less than k and where 

l' > O. (3.8.1) 

From Theorem 3.6.2 it follows that there exists an open set U :::> E and 
u E Ck-I,I(U) such that 

D{3u(x) = D{3 Px(x), 0:::; 1,81 < k. (3.8.2) 

Because u is of class Ck-l,l it follows from Theorem 2.1.4 that u E Wl~~(Rn) 
and therefore we may apply Theorem 3.4.2. Thus, for almost all x E Rn, 
there is a polynomial Qx of degree at most k such that u(y) = Qx(y)+Rx(Y) 
where 

( 1 IRx(Y)IPdY) lip = o(rk) as 1'10. 
h(x,r) 

(3.8.3) 

Because u E Ck - l (Rn ), the argument following Definition 3.5.5 implies 
that 

D{3u(x) = D{3Qx(x), 0:::; 1,81 < k. 

Therefore, in view of (3.8.1), (3.8.2), and (3.8.3) 

(1 lu _ U1P ) liP:::; Crk 
h(x,r) 

for almost all x E E. Appealing to Lemma 3.7.2 we have 

1 lu - ulP = o(rk) as l' 1 0 ( ) 

lip 

h(x,r) 

(3.8.4) 
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for almost all x E E. Consequently, for all such x, 

1 lu(y) - Qx(y)IPdy < ( ) 

lip 

h(x,r) 
(1 lu(y) _ U(Y)IPdY) lip 

JB(x,r) 

thus establishing the result. 

+ (1 Iu(y) _ Qx(y)IPdY) lip 

h(x,r) 

::; o(rk) as r ----> 0, 

o 

3.9 The Implications of Pointwise Differentiability 

We have seen in Section 4 of this chapter that Sobolev functions possess 
LP-derivatives almost everywhere. This runs parallel to the classical result 
that an absolutely continuous function f on the real line is differentiable 
almost everywhere. Of course, the converse is false. However, if it is assumed 
that f' exists everywhere and that 1f'1 is integrable, then f is absolutely 
continuous (Exercise 3.16). It is natural, therefore, to inquire whether this 
result has a counterpart in the multivariate V theory. It will be shown 
that this question has an affirmative answer. Indeed, we will establish that 
if a function has an V derivative everywhere except for a small exceptional 
set, and if the coefficients of the associated Taylor polynomial are in V, 
then the function is in a Sobolev space. 

We begin the investigation by asking the following question. Suppose 
u E LP(Rn) has V-derivatives at x ERn; that is, suppose u E tk,P(x) 
where k is a positive integer. Then, is it possible to relate the distributional 
derivatives of u (which always exist) to the V-derivatives of u? The first 
step in this direction is given by the following lemma. First, recall that 
u E tk,P(x) if there is a polynomial Px of degree k such that 

as r ----> 0, (3.9.1) 

and u E Tk,P(x) if there is a polynomial Px of degree less than k and a 
number M > 0 such that 

0< r < 00. 

3.9.1. Lemma. Suppose u E V(Rn ), p 2: 1. 
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(i) If u E Tk,p(x), then 

lim inf CPt * DQu(y) > -00, 
t--->O 
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with Ix - yl < t, and where DQ u denotes the distributional derivative 
of u, 0 ::; lal ::; k; 

(ii) If u E tk,P(x), then 

lim sup CPt * DQu(y) = DQ Px(x), 
t--->O 

with Ix - yl < t, 0 ::; lal ::; k. 

The function CPt above is a mollifier as described in Section 1.6. Since 
CPt E C(f(Rn), its convolution with a distribution T is again a smooth 
function. Moreover, for small t and Iy - xl ::; t, the quantity CPt * T(y) gives 
an approximate description of the behavior of T in a neighborhood of x. 
Indeed, if T is a function, then 

lim sup CPt * T(y) = T(x) 
t--->o 

ly-xl9 

whenever x is a Lebesgue point for T. This will be established in the proof of 
Lemma 3.9.3. Very roughly then, the statement in (ii) of the above lemma 
states that, on the average, the behavior of the distribution DQu near x 
is reflected in the value of the coefficient, DQ Px(x), of the Taylor series 
expansion. 

Let F(y, t) = CPt * u(y). F is thus a function defined on a subset of Rn+l, 
namely Rn x (0,00) and is smooth in y. The lower and upper limits stated 
in (i) and (ii) above can be interpreted as non-tangential approach in Rn+l 
of (y, t) to the point (x, 0) whch is located on the hyperplane t = O. 

Proof of Lemma 3.9.1. Proof of (ii). Let 

u(y) = Px(Y) + Rx(Y) and Ft(Y) = F(y, t). 

Then 

Therefore 

DQ Ft(x + h) = J DQcpt(x + h - y)u(y)dy 

= J DQcpt(x + h - y)Px(y)dy + J DQcpt(x + h - y)Rx(y)dy 

= (cpt *DQPx)(x+h) + J DQcpt(x+h-y)Rx(y)dy. (3.9.2) 
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There is a constant C = C(ID'PI) such that 

ID°'Pt(x + h - y)1 ~ CCn - k 

for lal = k. Consequently, for h E B(O, t), it follows that 

IJD°'Pt(X + h - Y)Rx(Y)dyl ~ CCn - k r IRx(Y)ldy 
lB(x+h,t) 

~ CC n - k r IRx(y)ldy ---> 0 as t 1 0, 
1 B(x,2t) 

by (3.9.1). Writing Px in terms of its Taylor series, we have 

and therefore DOPx(y) = DOPx(x) for all y E Rn if lal = k. Hence, 
'Pt * DO Px(x + h) = DO Px(x), and reference to (3.9.2) yields 

lim sup 'Pt * DOu(x + h) = DO Px(x), 0 ~ Ihl ~ t, 
t!O 

(3.9.3) 

thus establishing (ii) if lal = k. However, if 0 ~ £ ~ k, then u E tl,P(x) and 
the associated polynomial is 

Thus, applying (3.9.3) to this case leads to the proof of (ii). 
The proof of (i) is similar and perhaps simpler. The only difference is 

that because Px is of degree at most k - 1, we have 

if lal = k. The integral is estimated as before and its absolute value is seen 
to be bounded for all t > 0, thus establishing (i). 0 

The next two lemmas, along with the preceding one, will lead to the 
main result, Theorem 3.9.4. 

3.9.2. Lemma. Let T be a distribution and suppose for all x in an open 
set n c Rn that 

lim inf 'Pt * T(y) > -00, Ix - yl ~ t, 
t-->O 
tES 
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where S c (0, 00) is a countable set having 0 as its only limit point. Let C 
be a closed set such that C n 0 =I- O. Then there exist N > 0 and an open 
set 0 1 C 0 with enO l =I- 0 such that 'Pt * T(y) ;::: -N > -00 whenever 
Iy - xl ::; t, x E enOl , t E S. 

Proof. Let 
F*(x) = inf{'Pt * T(y) : Ix - yl ::; t, t E S}. 

Then, F. (x) > - 00 for x E 0 since 0 is the only limit point of S and it is 
easy to verify that F. is upper semicontinuous. Thus, the sets 

cnOn{x:F.(x);:::-i}, i=1,2, ... , 

are closed relative to C n 0 and their union is C n O. Since C n 0 is of the 
second category in itself, the Baire Category theorem implies that one of 
these sets has a non-empty interior relative to C n O. D 

One of the fundamental results in distribution theory is that a non
negative distribution is a measure. The following lemma provides a gener
alization of this fact. 

3.9.3. Lemma. Let 8 > 0, N > 0, and suppose S is as in Lemma 3.9.2. If 
T is a distribution in an open set 0 such that 

and 

'Pt *T(x) > -N > -00 for x E 0, t E Sn (0,8) 

limsup 'Pt * T(x) ;::: 0 for almost all Xo E 0, 
tLO 

Ix-xQ l::St 

then T is a non-negative measure in O. 

Proof. Let 'l/J E .9'(0), 'l/J ;::: 0, and recall from Section 1.7, that the convo
lution 'Pt * T is a smooth function defined by 

'Pt * T(x) = T(Tx(Pt) 

where (Pt(y) = 'Pt( -y) and Tx<Pt(Y) = <Pt(Y - x). Then, 

T('l/J * <pt} = T * ({; * 'Pt)(O) 

= (T * 'Pt) * {;(O) 

= J T * 'Pt( -y){;(y)dy 

= J T * 'Pt(Y)'l/J(y)dy. 
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Now 'I/J * CPt --+ 'I/J in 9(n) as t --+ 0+. Moreover, since 'I/J is non-negative 
and CPt * T(x) ;?: -N for x E nand t E S n (0,8), it follows with the help 
of Fatou's lemma, that 

T('I/J) = lim T('I/J * CPt) 
tiO 
tES 

;?: liminf [ T * CPt (y)'I/J(y)dy 
t!O in 
tES 

;?: [liminfT * CPt (y)'I/J(y)dy in tiO 
tES 

;?: -N k 'I/J(y)dy. 

Thus, the distribution T + N has the property that 

(T + N)('I/J) ;?: 0 for 'I/J E 9(n), 'I/J;?: o. 
That is, T + N is a non-negative measure on n, call it JL. Let JL = v + a 
where v is absolutely continuous with respect to Lebesgue measure and a 
is singular. Clearly, n is the union of a countable number of sets of finite 
v measure. Thus, by the Radon-Nikodym theorem, there exists f E Ll(n) 
such that 

v(E) = l f(x)dx 

for every measurable set E C n. Since T + N = JL, it follows that 

CPt * T(x) + N = CPt * (T + N)(x) = CPt * JL(x) 

= k CPt(x - y)f(y)dy + k CPt (x - y)da(y), (3.9.4) 

for x E n. Because a is a singular measure, a result from classical differen
tiation theory states that 

lim a[B(xo, t)] = 0 
t--+O IB(xo, t)1 

for almost all Xo En, cf. [SA, Lemma 7.1]. Therefore, at all such Xo with 
Ix - xol ~ t, 

! cpt(x - y)da(y) = [ CPt(x - y)da(y) i B(x,t) 

~ [ CPt (x - y)da(y) 
i B(xo,2t) 

< Gil II a[(B(xo,2t)] 
- cP 00 IB(xo, t)1 

--+ 0 as t --+ 0+ with Ix - xol < t. 
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To treat the other term in (3.9.4), recall that f has a Lebesgue point at 
almost all Xo E O. That is, 

Therefore, 

1 If(y) - f(xo)ldy -t 0 as r -t 0+. 
h(xo,r) 

r f(Y)IPt(X - y)dy - f(xo) = r [f(y) - f(xo)]lPt(X - y)dy 
JB~~ JB~~ 

:::; CIIIPlioo 1 If(y) - f(xo)ldy -t 0 as t -t 0, Ix - xol :::; t. 
h(xo,2t) 

Consequently, 
N:::; lim sup IPt * T(x) + N = f(xo) 

tLO 
Ix-xol:::=;t 

for almost all Xo E O. This implies that 

v(E) ?= NIEI 

for all measurable E c O. Since J.L(E) ?= v(E) it follows that the measure 
J.L - N = T is non-negative. 0 

3.9.4. Theorem. Let T be a distribution in an open set 0 C Rn and let 
f E Ltoc(O). Assume 

limsuPIPt *T(y)?= f(x), Ix - yl:::; t, 
tLO 

for almost all x E 0, and 

liminf IPt * T(y) > -00, Ix - yl :::; t, 
tLO 
tES 

for all x E O. Then T - f is a non-negative measure in O. 

Proof. We first assume that f == O. Lemma 3.9.2 implies that every open 
subset of 0 contains an open subset 0' such that for some N > 0, IPt*T(x) > 
-N for x EO', t E S. Lemma 3.9.3 implies that T is a measure in 0'. 

Let 0 1 be the union of all open sets 0' cO such that T is a non-negative 
measure on 0'. From Remark 1.7.2 we know that T is a measure in 0 1 . 

We wish to show that 0 1 = O. Suppose not. Applying Lemma 3.9.2 with 
C = R n - 0 1 , there is an open set 0' C 0 such that IPt * T(x) ?= -N 
for y E C no', Ix - yl :::; t, and t E S. Let O2 = 0 1 U 0' and note that 
O2 - 0 1 = C no'. Let 
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for some e > o. Take e sufficiently small so that 0 3 n (Rn - 0 1 ) # 0. 
Consider CPt * T(x) for x E 0 3 and t < e. Now T is a non-negative measure 
in 0 1. Therefore, if d(x,Rn - 0 1 ) > t, CPt * T(x) 2: O. On the other hand, 
if d(x, Rn - 0 1 ) ::::; t, there exists y E Rn - 0 1 such that Ix - yl ::::; t. 
Since B(x, t) C02, it follows that y E O2 - 0 1 = C n 0'. Consequently, 
cpt*T(x) 2: -N. Hence, cpt*T(x) is bounded below for x E 0 3 , t E Sn(O, e), 
and thus T is a measure in 0 3 by Lemma 3.9.3. But 0 3 n (Rn - ot) # 0 
thus contradicting the definition of 0 1. 

For the case 1# 0, for each N > 0 define 

{
N, l(x)2:N 

IN(X) = I(x), -N::::; I(x) ::::; N 
-N, I(x)::::;-N 

and let R be the distribution defined by R = T - IN. Clearly R satisfies 
the same conditions as did T when I was assumed to be identically zero. 
Therefore, R is a non-negative measure in O. Thus, for 1/J E CO'(O), 1/J 2: 0, 

R(1/J) = T(1/J) - j IN1/Jdx 2: o. 

Letting N --+ 00, we have that 

T(1/J) - j 11/J dx 2: o. 

That is, T - I is a non-negative measure in O. o 

Now that Theorem 3.9.4 is established, we are in a position to consider 
the implications of a function U with the property that U E Tk,P(x) for 
every x E 0, where 0 is an open subset of Rn. From Theorem 3.8.1 we 
have that U E tk,P(x) for almost all x E O. Moreover, in view of Lemma 
3.9.1 (ii), it follows that whenever U E tk,P(x), 

lim sup CPt * DQu(y) = DQPx(x), Ix - yl ::::; t, 
t!O 

for 0 ::::; lal ::::; k. For convenience of notation, let uQ(x) = DOl Px(x), and 
assume U Q E V(O). Then Theorem 3.9.4 implies that the distribution 
DQu - U Q is a non-negative measure. Similar reasoning applied to the func
tion -u implies that DQ( -u) - (-uQ) is a non-negative measure or equiv
alently, that DQu - U Q is a non-positive measure. Thus, we conclude that 
DQu = U Q almost everywhere in O. That is, the distributional derivatives 
of u are functions in V(O). In summary, we have the following result. 

3.9.5. Theorem. Let 1 ::::; p < 00 and let k be a non-negative integer. II 
U E Tk,P(x) lor every x E 0 and the V-derivatives, UQ' belong to V(O), 
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o ~ lal ~ k, then u E Wk,p(n). 

Clearly, the hypothesis that the V-derivatives belong to V(n) is neces
sary. On the other hand, we will be able to strengthen the result slightly 
by not requiring that u E Tk,P(x) for all x E n. The following allows an 
exceptional set. 

3.9.6. Corollary. Let KeRn be compact and let n = R n - K. Suppose 
Hn-I[7ri(K)] = 0 where the 7ri: R n --+ Rn-l, i = I,2, ... ,n, are n inde
pendent orthogonal projections. Assume u E Tk,P(x) for all x E n and that 
uo E V(n), 0 ~ lal ~ k. Then u E Wk,P(Rn ). 

Proof. Assume initially that the projections 7ri are given by 

7ri(X) = (XI, ... ,X2, ... ,Xn ) 

where (Xl, ... , Xi,"" xn) denotes the (n -I)-tuple with the xi-component 
deleted. Theorem 3.9.5 implies that U E Wk,p(n). In view of the assumption 
on K, reference to Theorem 2.1.4 shows that u E wl,p(Rn) since u has a 
representative that is absolutely continuous on almost all lines parallel to 
the coordinate axes. Now consider DOu, lal = 1. Since DOu E Wk-l,p(n) 
a similar argument shows that DOu E WI,P(Rn ) and therefore that u E 
W 2 ,p(Rn). Proceeding inductively, we have that u E Wk,P(Rn ). 

Recall from Theorem 2.2.2 that u E Wk,P(Rn) remains in the space 
Wk,P(Rn) when subjected to a linear, non-singular change of coordinates. 
Thus, the initial restriction on the projections 7ri is not necessary and the 
proof is complete. 0 

In the special case of k = 1, it is possible to obtain a similar result 
that does not require the exceptional set K to be compact. We state the 
following [BAZ, Theorem 4.5], without proof. 

3.9.7. Theorem. Let KeRn be a Borel set and suppose Hn-I[7ri(K)] = 0 
where the 7ri : R n --+ Rn-l, i = 1,2, ... , n, are n independent orthogonal 
projections. Let n = R n - K and assume u E Lfoc(n) has the property that 
its partial derivatives exist at each point of n and that they are in Lfoc(n). 

Then u E Wl~'~(Rn). 

3.10 A Lusin-Type Approximation for Sobolev 
Functions 

Lusin's Theorem states that a measurable function on a compact inter
val agrees with a continuous function except perhaps for a closed set of 
arbitrarily small measure. By analogy, it seems plausible that a Sobolev 
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function u E Wk,p(n) should agree with a function of class Ck(n) except 
for a set of small measure. Moreover, if the requirement concerning the 
degree of smoothness is lessened, perhaps it could be expected that there 
is a larger set on which there is agreement. That is, one could hope that u 
agrees with a function of class Ci(n), 0 ~ £ < k, except for a set of small 
Bk_i,p-capacity. Finally, because Sobolev functions can be approximated 
in norm by functions of class Ck(n), it is also plausible that the Lusin-type 
approximant could be chosen arbitrarily close to u in norm. The purpose 
of this and the next section is to show that all of this is possible. 

In this section, we begin by showing that if u E Wk,P(Rn ), then u agrees 
with a function, v, of class Ci on the complement of an open set of ar
bitrarily small Bk_i,p-capacity. In the next section, it will also be shown 
that Ilu - vlli,p can be made small. The outline of the proof of the exis
tence of v is as follows. If u E Wk,P(Rn ) and 0 ~ £ ~ k, then Theorem 
3.4.2 implies that u E ti,P(x) for all x except for a set of Bk_i,p-capacity O. 
This means that the remainder terms tends to 0 (with appropriate speed) 
at Bk-i,p-q.e. x E Rn. We have already established that if a function u 
has an V-derivative of order £ at all points of a closed set A (that is, if 
u E ti,P(x) for each x E A) and if the remainder term tends to 0 in £P uni
formly on A, then there exists a function v E ci(Rn) which agrees with u 
on A (Theorem 3.6.3). Thus, to establish our result, we need to strengthen 
Theorem 3.4.2 by showing that the remainder tends uniformly to 0 on the 
complement of sets of arbitrarily small capacity. This will be accomplished 
in Theorem 3.10.4 below. 

In the following, we will adopt the notation 

( ) 

lip 

Mp,RU(X) = sup 1 lu(y)IPdy 
O<r<R JB(x,r) 

whenever u E V(Rn), 1 < p < 00, and 0 < R < 00. 

3.10.1. Theorem. If 1 < p < 00 and k is a non-negative integer such that 
kp ~ n, then there is a constant C = C(k,p, n) such that 

(3.10.1) 

Proof. We use Theorem 2.6.1 to represent u as u = gk*f where f E V(Rn) 
and Ilullk,p rv Ilfllp' Thus, it is sufficient to establish (3.10.1) with Ilullk,p 
replaced by Ilfllp. Since lui ~ gk * If I, we may assume f ~ O. Let 

E t = {x : Mp,RU(X) > t} 

and choose x E E t . For notational convenience, we will assume that x = 0 
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and denote B(O, r) = B(r). Thus, there exists 0 < r < R < 1 such that 

1 lu(y)IPdy > tP 
h(r) 

or 

t(r) (Ln gk(y - w)f(w)dw r dy > tP. 

Utilizing the simple inequality (a + b)P :::; 2P- 1 (aP + bP) whenever a, b ~ 0, 
it therefore follows that either 

or 

1 ( ( gk(y - W)f(W)dW)P dy > 21- pt p 
h(r) J1wl<5,2r 

1 ( ( gk(y - W)f(W)dW)P dy > 21- ptp. 
h(r) J1wl>2r 

(3.10.2) 

(3.10.3) 

If y E B(r), then from Lemma 2.8.3(i) and the fact that gk :::; Ch, (2.6.3), 
we obtain 

{ gk(y - w)f(w)dw:::; C ( I f(~~_kdW 
J1wl<2r J1y-wl9r Y - W 

:::; CrkMf(y), 

where C = C(k, n). Thus, in case (3.10.2) holds, we have 

tP :::; Crkp 1 Mf(y)Pdy 
h(r) 

where C = C(k,p, n). 
We will now establish the estimate 

(3.10.4) 

{ gk(y - w)f(w)dw :::; C inf ( gk(y - w)f(w)dw (3.10.5) 
J1wl>2r YEB(r) J1wl>2r 

for all y E B(r). Recall that r < 1. Now if y and ware such that Iyl < r < 
2r :::; Iwi :::; 2, we have 

~Iwi ~ Iwi + Iyl ~ Iw - yl ~ Iwl-lyl ~ Iwl- I~I. 
Consequently, if Yl and Y2 are any two points of B(r), refer to (2.6.3) and 
the inequality preceding it to conclude that for some constant C = C(k, n) 

(3.10.6) 



156 3. Pointwise Behavior of Sobolev Functions 

If Iwi > 2 and Y E B(r), then ~Iwi > Iwi + 1 ;::: Iw - yl ;::: Iwl - Iyl ;::: 
Iwl - 1 > Iwl/2. Therefore, in this case we also have 

(3.10.7) 

Our desired estimate (3.10.5) follows from (3.10.6) and (3.10.7). Thus, in 
case (3.10.3) holds, there is a constant C = C(k,p,n) such that 

tP < C inf (r 9k(W - Y)f(W)dW)P 
YEB{r) J 1w l>2r 

::; C inf (9k * f(y))P. 
YEB{r) 

To summarize the results of our efforts thus far, for each x E Et there 
exists 0 < r < 1 such that either 

tp::;CrkP1 Mf(y)Pdy 
k{x,r) 

(3.10.8) 

or 
t::;C inf 9k*f(y). 

YEB{x,r) 
(3.10.9) 

Let 91 be the family of all closed balls for which (3.10.8) holds. By Theorem 
1.3.1, there exists a disjoint subfamily F such that 

Bk,p[{UB : B E 9d] ::; Bk,p[{UB : B E F}] 

::; L Bk,p(B) 
BEF 

::; C L (5rt- kp (by Theorem 2.6.13) 
B{x,r)EF 

::; ~ L r Mf(y)Pdy 
BEF JB 

C 
::; tP Ilfll~ (by Theorem 2.8.2). (3.10.10) 

Let 92 be the family of closed balls for which (3.10.9) holds, then the def
inition of Bessel capacity implies that Bk,p[{UB : B E 92}] ::; (C/tP)lIfll~. 
Thus 

which establishes our result. o 

We now have the necessary information to prove that integral averages 
of Sobolev functions can be made uniformly small on the complement of 
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sets of small capacity. This result provides an alternate proof of Theorem 
3.3.3, as promised in the introduction to Section 1 of this chapter. 

3.10.2. Theorem. Let 1 < p < 00 and k be a non-negative integer such 
that kp ~ n. If u E wk,p(Rn), then for every E > 0 there exists an open 
set U c Rn with Bk,p(U) < E such that 

1 ju(y) - u(x)JPdy -t 0 
h(x,r) 

uniformly on Rn - U as r 1 o. 

Proof. With the result of Theorem 3.3.3 in mind, we define 

Aru(x) = 1 ju(y) - u(x)JPdy 
h(x,r) 

for x E Rn and r > O. Select e such that 0 < e < 1. Since u E wk,p(Rn), 
there exists 9 E C~ (Rn) such that 

jju - gjjt,p < gP+1 /2. 

Set h = u - g. Then 

and therefore, 

Aru(x) ~ 2P- 1 [Arg(x) + Arh(x)], 

Arh(x) ~ 2P - 1 (1 jh(y)jPdy + jh(X)jP) , 
h(x,r) 

where C = C (p). Consequently, for each x E Rn, 

sup Aru(x) ~ C [ sup Arg(x) + Mp,Rjhj(x) + jh(X)JP] . 
O<r<R O<r<R 

Since 9 has compact support, it is uniformly continuous on Rn and therefore 
there exists 0 < R < 1 such that 

sup CArg(x) < e 
O<r<R 

whenever x E Rn. Therefore, 

{ x: sup Aru(x) > 3e} c {x : CMp,Rjhj(x) > n U {x: Cjh(x)JP > n 
O<r<R 
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c {x: CMp,Rlhl(x) > e} u {x: (Cr 1)1/Plh(x)1 > I}. 

Since h E Wk,P(Rn ), by Theorem 2.6.1 we can write h = gk * f, where 
Ilflip '" lihllk,p' Now 

{x: (Cr 1 )1/Plh(x)1 > I} C {x: (Cr 1 )1/Pgk * Ifl(x) > I} 

and therefore, by the preceding theorem and the definition of capacity, we 
obtain a constant C = C(k,p,n) such that 

For each positive integer i and e as in the statement of the theorem, let 
ei = C-1e2- i to obtain 0 < Ri < 1 such that 

Bk,p [{x: sup Aru(x) > 3ei }] < eTi. 
O<r<R; 

Let 

u = u {x: sup Aru(x) > 3ei} 
i=1 O<r<R; 

to establish the conclusion of the theorem. o 

3.10.3. Remark. If we are willing to accept a slightly weaker conclusion in 
Theorem 3.10.2, the proof becomes less complicated. That is, if we require 
only that 

1 lu(y) - u(x)ldy ~ 0 
Tn(x,r) 

uniformly on Rn - U as r ! 0, rather than 

1 lu(y) - u(x)IPdy ~ 0, 
Tn(x,r) 

then an inspection of the proof reveals that it is only necessary to show 

C 
Bk,p[{X : Mu(x) > t}] ~ tP IluI11,p' 

To prove this, let u = gk * f, where Ilfllp '" Ilulik,p and define 

r (x) = {r~ if Ixl ~ r 
r 0 otherwise. 
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Then 

1 lu(y)ldy = rr * lul(x) 
h(x,r) 

~ rr * (gk * Ifl)(x) 

~ gk * Mlfl(x), 

which implies Mu ~ gk * Mlfl. From the definition of capacity, 

Bk,p[{X: Mu(x) 2: t}] ~ Bk,p[{X : gk * Mlfl(x) 2: t}] 
~ rpllM Iflll~ 

~ crpllfll~, by Theorem 2.8.2, 

~ crPliullt,p' 
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As an immediate consequence of Theorem 3.10.2 and the proof of The
orem 3.4.2, we obtain the following theorem which states that Sobolev 
functions are uniformly differentiable on the complement of sets of small 
capacity. 

3.10.4. Theorem. Let l, k be non-negative integers such that l ~ k and 
(k -l)p < n. Let u E Wk,P(Rn ). Then, for each e > 0, there exists an open 
set U with Bk-l,p(U) < e such that 

r-l [1 lu(y) - P~l)(y)IPdYlI/P ____ 0 
h(x,r) 

uniformly on R n - U as r 1 o. 

Finally, as a direct consequence of Theorems 3.10.4 and 3.6.3, we have 
the following. 

3.10.5. Theorem. Let l, k be non-negative integers such that l ~ k and 
(k -l)p < n. Let u E Wk,P(Rn ) and e > O. Then there exists an open set 
U c R n and a C t function v on R n , such that 

Bk-l,p(U) < e 

and 
Dav(x) = Dau(x) 

for all x E R n - U and 0 ~ lal ~ l. 

3.11 The Main Approximation 

We conclude the approximation procedure by proving that the smooth 
function v obtained in the previous theorem can be modified so as to be 
close to u in norm. 
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In addition to some preliminary lemmas, we will need the following ver
sion of the Poincare inequality which will be proved in Theorem 4.5.1. 

3.11.1. Theorem. Let a E (0,1), l a positive integer, and 1 :S p < 00. 

Then there exists a constant C = C (a, l, p, n) such that for every non-empty 
bounded convex subset n of R n with diameter p and every u E wl,p(n) 
for which 

In n {x: u(x) = O}I ~ alnl, 
we have the inequality 

3.11.2. Lemma. Let l be a positive integer and let u be a function Wl,P(Rn ) 

which vanishes outside a bounded open set U. Let fl, a E (0,1) and let 

E = BUn {x: inf IK(x,t) n (Rn - U)I > a} 
O<t~8 t n -

(3.11.1) 

where K(x, t) denotes the closed cube with center x and side-length t. Let 
m be a positive integer such that m :S l and let c > O. Then there exists a 
function v E wm,p(Rn ) and an open set V such that 

(i) IIu - vllm,p < C; 

(ii) E c V and vex) = 0 when x E V U (Rn - U). 

Proof. For A E (0,1]' let K),. denote the set of all closed cubes of the form 

where i l , i 2 , ... ,in are arbitrary integers. Let A :S ~fl and let 

be those cubes of K). that intersect E. Let ai be the center of Ki and let 

Pi = K(ai' 4A). 

Let ( be a Coo function on Rn , such that 0 :S ( :S 1, ((x) = 0, when 
x E K(O, 1) and ((x) = 1 when x rf. K(O, 3/2). Define 

v).(x) = u(x) }] ( (x ;/i ) (3.11.2) 

for x ERn. Clearly v).(x) = 0 when d(x, E) :S ~A, so that, for any A, we 
can define v by v = v). and find an open set V satisfying (ii). 
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We keep i fixed for the moment and estimate 

lIu - VA lIe,p;pi' (3.11.3) 

We observe that there exists a constant 1', depending only on n and such 
that at most l' of the cubes Pj intersect Pi (including Pi). Denote these by 

where s :::; 1'. Then, for x E Pi 

VA(x) = u(x)w(x), (3.11.4) 

where 
8 

w(x) = II ([(x - ajk)/2,\j. (3.11.5) 
k=l 

Now, for x E Pi and any multi-index a with 0 :::; lal :::; i, we have 

where Al depends only on i and n. Hence for almost all x E Pi and any 
multi-index "y with 0 :::; I"YI :::; i, we have 

11'1 
ID'YVA(x)1 :::; A2 L: ,\r-I'YI L: IDf3u(x)l, (3.11.6) 

r=O 1f3I=r 

where A2 depends only on i and n. 
Let y be a point where Ki intersects E. Clearly, there is a subcube Qi of 

Pi with center y and edge length 3'\. By (3.11.1), u and hence its derivatives 
are zero on a subset Z of Qi with 

, (3.11.7) 

By applying the Poincare inequality to the interior of the convex set I{ we 
obtain, when 1.81 < i, 

Li IDf3u(x)IPdx:::; A3,\p(e-If3IlI'f:eLi IDeu(x)IPdx (3.11.8) 

where A3 = A3(i, a,p, n). But, with a suitable constant A3, (3.11.8) will 
still hold when 1.81 = i. By (3.11.6) and (3.11.8) (since ,\ :::; 1) 

Li ID'YVA(x)IPdx :::; A4
1

'f:e Li IDeu(x)IPdx (3.11.9) 
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for 0::; hi::; t, where A4 = A4(t,p,a,n). Let 

r 

X>. = UPi . 

i=l 

Then 

Ix>. ID'Yv>.(x)IPdx ::; A41~i ~ hi IDeu(x)IPdx 

for 0 ::; hi ::; t. But each point of X>. belongs to at most T of the cubes Pi, 
hence 

(3.11.10) 

for 0 ::; hi ::; t. Now 

Ilu - v>.I!~,p ::; 2P L [1 ID'Yv>.(x)IPdx + 1 ID'Yu(x)IPdX], 
O::;I'Y19 x>. x>. 

so that by (3.11.10) 

Ilu - v>.II~,p ::; A5 L 1 ID'Yu(x)IPdx 
O::;hl::;i x>.nu 

where A5 = A5(t,p,a,n). But 

X>. n U c un {x: d(x, aU) < 2vnA}. 

Hence I(X>. n U)I -+ 0 as A 1 O. Therefore by (3.11.11) 

Ilu - V>.l!i,p -+ 0 

as A -+ 0+. 

(3.11.11) 

The required function v is now obtained by putting v = v>., with suffi-
ciently small A. 0 

3.11.3. Lemma. Let 0 ::; A ::; n. Then there exists a constant C = C(A, n) 
such that 

1 Ix - yl>.-ndx ::; Cly - zl>.-n, 
k(z,t5) 

for all y, z E Rn and all 8 > O. 

(3.11.12) 

Proof. We first show that there exists a constant C, such that (3.11.12) 
holds when y = 0 and z is arbitrary. 
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When Izl 2: 38, we have 

1 
Izl::; Ixl + Iz - xl < Ixl + 8::; Ixl + 31zl , 

so that Izl ::; ~Ixl, Ixl A-n ::; AlzIA-n, and (3.11.12) holds. 
When Izl < 38, 

8-n r IxlA-ndx ::; 8-n r IxlA-ndx = C8A-n. 
1 B(z,8) 1 B(0,48) 

Hence, it is clear that (3.11.12) holds with y = O. 
Since we have shown that 

8-n r IxlA-ndx ::; ClzIA-n, 
lB(z,8) 
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for all z E Rn, the general result follows by a change of variables; that is, 
replace z by z - y. D 

Throughout the remainder of this section, it will be more convenient 
to employ the Riesz capacity, Rk,p, rather than the Bessel capacity, Bk,p
This will have no significant effect on the main result, Theorem 3.11.6. See 
Remark 3.11.7. 

3.11.4. Lemma. Let k be a non-negative real number such that kp < n. 
Let U be a bounded non-empty open subset of R n and F a subset of au 
with the property that for each x E F, there is atE (0,1) for which 

,--I U-,-n_B,----:-( x:-:-' t..:...;.) I > (J 

IB(x, t)1 -
(3.11.13) 

where (J E (0,1). Then there exists a constant C = C(n,p, k) such that 

(3.11.14) 

Proof. Let (J, U, and F be as described above. The cases k = 0 and k > 0 
are treated separately. 

(i) We consider first the case where k > O. Let 'Ij; be a non-negative 
function in V(Rn) with the property that 

'},tk) Ln Ix - Ylk-n'lj;(y)dy 2: 1 (3.11.15) 

for all x E U. Let C1 be the constant of Lemma 3.11.3. It can be assumed 
that C1 2: 1. Consider a point bE F and let t be such that (3.11.13) holds 
for x = b. By Lemma 3.11.3, 

C1 1y - bl k-n 2: 1 Ix - ylk-ndx 
Tn(b,t) 
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so that 

and by (3.11.15), 

Hence by (3.11.13), 

for all x E F, and therefore, 

Thus 

Rk,p(F) :::; (~2) p Rk,p(U). 

The required inequality now follows. 
(ii) Now let k = 0, so that Rk,p becomes Lebesgue measure. Let 13 be 

the collection of all closed balls B with center in F and radius between 0 
and 1 such that 

lunBI 
IBI ~a. (3.11.16) 

Hence, by Theorem 1.3.1, there exists sequence {Br}, Br E 13, such that 
Br n BB = 0 when r i= sand 

00 

Fe U Br . 

r=l 
Thus 

00 00 

IFI:::; L IBrl = 5n L IBrl 
r=l r=l 

and by (3.11.16) 

00 

< 5n a- l L IU n Brl :::; 5n a- l lUl· 
r=l 

Since a < 1, the required inequality follows. o 
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3.11.5. Lemma. Let p > 1, k a non-negative real number such that kp < n 
and £ a positive integer. There exists a constant C = C(n,p, k, £) such that 
for each bounded non-empty open subset U of Rn, each u E Wt,p (Rn) 
which vanishes outside U and every 10 > 0 there exists a Coo function v on 
Rn with the properties 

(i) Ilu - vllt,p < 10, 

(ii) Rk,p(Spt v) s:; CRk,p(U) and 

(iii) sptv c V = Rn n {x: d(x, U) < e}. 

Proof. Let U, u, and 10 be as described above. Since U =1= 0, it follows that 
Rk,p(U) > O. Let 

E=8Un (x: inf IB(x,t)-U)1 > ~}. l O<t~1/2 tn - 2 
(3.11.17) 

Then E is closed. By Lemma 3.11.2 there exists a function Vo E wt,p(Rn) 
and an open set Vo such that 

1 
Ilu - vollt,p < '2 10 , 

E c Vo and vo(x) = 0 when x E Vo U (Rn - U). Set 

F=8U-E. 

Then, for each x E F there exists t E (0,1/2] such that 

IU n B(x, t)1 
'---:=---'----,--'-'- > (1 

IB(x, t)1 -

(3.11.18) 

(3.11.19) 

where (1 = 1 - 1/(2o:(n)). Let C1 be the constant appearing in Lemma 
3.11.4. Then 

1 
Rk,p(U U F) s:; '2CRk,p(U), (3.11.20) 

where C = 2CW-p . Let 

B = Rn n {x: vo(x) =1= O}. 

Then B C U U F and hence Rk,p(B) s:; ~CRk,p(U), so that there exists an 
open set W with B c Wand 

By applying a suitable mollifier to Vo we can obtain a Coo function v with 
spt v C V n Wand 

(3.11.21) 
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It follows from (3.11.18) and (3.11.21) that v has the required proper
t~s. 0 

We are now in a position to prove the main theorem. 

3.11.6. Theorem. Let e, m be positive integers with m ~ e, (e - m)p < n 
and let n be a non-empty open subset of Rn. Then, for u E Wl,p(n) and 
each c > 0, there exists a cm function v on n such that if 

F = n n {x: u(x) ¥- v(x)}, 

then 
Rl-m,p(F) < c and Ilu - vllm,p < c. 

Proof. It can be assumed that the set A = n n {x : u( x) ¥- O} is not empty. 
Initially, it will be assumed that n = Rn and A bounded. We will show 
that there exists a Cm function v on Rn satisfying the conclusion of the 
theorem and that spt v is contained in the set V = Rn n {x : d( x, A) < c}. 

Let C be the constant of Lemma 3.11.5. Let u be defined by its values 
at Lebesgue points everywhere on n except for a set E with Bl,p(E) = 
Rl,p(E) = O. By Theorem 3.10.5 there exists an open set U of Rn and a 
Cm function h on Rn , such that U :J E, 

(3.11.22) 

and 
h(x) = u(x) 

for all x E Rn - U. We may assume that spt h c V and U c V. By 
substituting e - m for k and u - h for u in Lemma 3.11.5, we obtain a Coo 
function rp on Rn such that 

IIu - h - rpllm,p < c, 

Rl-m,p(Spt rp) ~ CRl-m,p(U), 

and 
spt rp c V. 

(3.11.23) 

(3.11.24) 

(3.11.25) 

Put v = h + rp. Then the second part of the theorem follows from (3.11.23). 
Clearly, 

FeRn n [{x: h(x) ¥- u(x)} u spt rp] C U U spt rp, 

so that by (3.11.24) 

Rl-m,p(F) ~ (1 + C)Rl-m,p(U). 

(3.11.26) 
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Thus, the first part of the conclusion follows from (3.11.22). Since spt hand 
spt!p are both contained in V, it follows that spt v C V. 

We now consider the general case when n is an arbitrary open subset of 
Rn. Let {Cj } ~o be an infinite sequence of non-empty compact sets, such 
that 

Ci C lnt CHI 

for i a non-negative integer and 

(3.11.27) 

(3.11.28) 

Put C- 1 = 0. For each i 2: 0, let !Pi be a Coo function on Rn such that 
o ::; !Pi ::; 1, 

Ci C int{x : !Pi(X) = I}, (3.11.29) 

and 
(3.11.30) 

Put 
'lj;o = !Po and 'lj;i = !Pi - !Pi-l (3.11.31) 

when i 2: 1. Then each 'lj;i is Coo on Rn with compact support and 

(3.11.32) 

Hence, for each x E n, 'lj;i(X) i- 0 for at most two values of i. Therefore 

00 

(3.11.33) 

for all x E n. For each i = 0,1,2, ... define 

u.(X) = {U(X)'Ij;i(X) when x E n 
, 0 when x ~ n. (3.11.34) 

By the conclusion of our theorem proved under the assumption that n = 
Rn, there exists for each i 2: 0 a cm function Vi on Rn with compact 
support such that 

and 

where 

Moreover, 

C 
Ilui - villm,p < 2H1 ' (3.11.35) 

(3.11.36) 

(3.11.37) 
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For each x E n, there are at most two values of i for which Vi(X) f O. 
Hence we can define 

00 

V(x) = L Vi(X) 
i=O 

for x E n. It is easily seen that F C U~OFi' hence 

Rl-m,p(F) :::; c. 

Also 
00 

Ilu - vllm,p :::; L Ilui - villm,p < c. o 
i=O 

3.11.7. Remark. We have seen from earlier work in Section 2.6, that 
Rk,p :::; CBk,p and that Rk,p and Bk,p have the same null sets. However, it 
also can be shown that Bk,p:::; C[Rk,p+(Rk,p)n/(n-kp)] for kp < n, cf. [A5]. 
Therefore, the Riesz capacity in the previous theorem can be replaced by 
Bessel capacity. 

Exercises 

3.1. Prove that the statement 

lim 1 u(y)dy = U(X) 
r-->O h(x,r) 

for B1,p-q.e. x E R n and any u E W1,P(Rn) implies the apparently 
stronger statement 

lim 1 lu(y) - u(x)ldy = 0 
r-->O h(x,r) 

for B1,p-q.e. x E Rn. See the beginning of Section 3.3. 

3.2. It was proved in Theorem 2.1.4 that a function u E w1,p(Rn) has 
a representative that is absolutely continuous on almost all line seg
ments parallel to the coordinate axes. If a restriction is placed on p, 
more information can be obtained. For example, if it is assumed that 
p < n - 1, then u is continuous on almost all hyperplanes parallel 
to the coordinate planes. To prove this, refer to Theorem 3.10.2 to 
conclude that there is a sequence of integral averages 

which, for each c > 0, converges uniformly to u on the complement 
of an open set Ue: whose B1,p-capacity is less than c. Hence E = 
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ng>oug is a set of B1,p-capacity O. It follows from Theorem 2.16.6 
(or Exercise 2.16) that the projection of E onto a coordinate axis 
has linear measure O. Note that u is continuous on 11"-1 (t), t ¢ 1I"(E) 
where 11" denotes the projection. Corresponding results for p > n - k, 
k an integer, can be easily stated and proved. 

3.3. At the beginning of Section 3.9, an example is given which shows that 
u need not be bounded when u E w1,n[B(O, r)], r < 1. This example 
can be easily modified to make the pathology even more striking. Let 
u(x) = 10glog(1/lxl) for smalllxl and otherwise defined so that u is 
positive, smooth and has compact support. Now let 

00 

v(x) = LTku(x - rk) 
k=l 

where {rkl is dense in Rn. Then v E w1,n(Rn) and is unbounded in 
a neighborhood of each point. 

3.4. Use (2.4.18) to show that if u E Wl~'%(Rn), p > n, then u is classically 
differentiable almost everywhere. 

3.5. Verify that lIuIITk,P(x), which is discussed in Definition 3.5.4, is in fact 
a norm. 

3.6. If u E W1,P(Rn), the classical Lebesgue point theorem states that 

lim 1 lu(x) - u(xo)ldx = 0 
r-+O h(xo,r) 

for a.e. Xo. Of course, u E L1(Rn) is sufficient to establish this result. 
Since u E W1,P(Rn), this result can be improved to the extent that 
(*) holds for B1,p-q.e. Xo E Rn (Theorem 3.3.3). Give an example 
that shows this result is optimal. That is, show that in general it is 
necessary to omit a B1,p-null set for the validity of (*). 

3.7. Prove that (3.3.22) can be improved by replacing p by p* = np/(n
kp). 

3.8. A measurable function u is said to have a Lebesgue point at Xo if 

lim 1 lu(y) - u(xo)ldy = o. 
r-+O h(xo,r) 

A closely related concept is that of approximate continuity. A mea
surable function u is said to be approximately continuous at Xo if 
there exists a measurable set E with density 1 at Xo such that u is 
continuous at Xo relative to E. Show that if u has a Lebesgue point 
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at xo, then u is approximately continuous at Xo. See Remark 4.4.5. 
Show that the converse is true if u is bounded and that it is false 
without this assumption. 

Another definition of approximate continuity is the following. u IS 

approximately continuous at Xo if for every c: > 0, the set 

Ac = {x: lu(x) - u(xo)1 2: c:} 

has density 0 at Xo. Ac is said to have density 0 at Xo if 

Prove that the two definitions of approximate continuity are equiva
lent. 

3.9. The definition of an approximate total differential is analogous to 
that of approximate continuity. If u is a real valued function defined 
on a subset of Rn, we say that a linear function L : Rn -t RI is an 
approximate differential of u at Xo if for every c: > 0 the set 

A _ { . lu(x) - u(xo) - L(x - xo) } 
c- x. I I 2:c: x -Xo 

has density 0 at Xo. Prove the analog of Exercise 3.8; show that if u 
is an element of tl,I(XO), then u has an approximate total differential 
at Xo. 

3.10. The definition of an approximate total differential given in Exercise 
3.9 implies that the difference quotient 

lu(x) - u(xo) - L(x - xo) 

Ix -xol 
approaches 0 as x -t Xo through a set E whose density at Xo is 
1. In some applications, it is necessary to have more information 
concerning the set E. For example, if u E WI,P(Rn ), p > n - 1, then 
it can be shown that u has a regular approximate total differential at 
almost all points Xo. The definition of this is the same as that for an 
approximate total differential, except that the set E is required to be 
the union of boundaries of concentric cubes centered at Xo. To prove 
this, consider 

(t ) = u(xo + tz) - u(xo) _ L( ) 
uXo ,z t z , 

and define 
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where C is a cube centered at Xo. Since Xo is fixed throughout the 
argument, let Ut(z) = uXo (t, z). 

STEP 1. For each Xo and each cube C with Xo as center, observe that 
Ut E WI,P( C) for all sufficiently small t > O. With 

prove that O!Xo (t) -+ 0 as t -+ 0 for almost all Xo. 

STEP 2. Show that U has a regular approximate differential at all Xo 
that satisfy the conclusion of Step 1 and for which Du(xo) exists. For 
this purpose, let L(z) = Du(xo) . z. Since Ut E WI,P(C), it follows 
that Ut E WI,P(Kr) for almost all r > 0 where Kr is the boundary of 
a cube of side length 2r. Moreover, from Exercise 3.2, we know that 
Ut is continuous on all such K r . Let 

Let Et = [1/2,1] n {r: 'Pt(r) < O!xo(t)I/2} and conclude that 

1([1/2,1]- Et)1 :::; O!xo(t)1/2. 

STEP 3. Use the Sobolev inequality to prove that for z E K r , r E Et , 

and f3 = (n - 1)/p 

IUt(z)1 :::; Mr- f3 ([r lutIPdHn-l) lip 

+ Mr l- f3 ([r IDUtIPdHn-l) lip 

:::; Mr- f3 'Pt(r)I/P + Mr l- f3 'Pt(r)l/p 

:::; [M2f3 + M]O!xo(t)I/2p, 

where M = M(p, n). 

STEP 4. Thus, for z E Kr and r E E t , 

rxo(t· r) = r- l sup{lut(z)1 : z E Kr} 
:::; 2[M2f3 + 1]· O!xo(t)1/2P. 

STEP 5. For each positive integer i, let ti = 2- i and let Eti be the 
associated set as in Step 2. Set A = U~l Eti and note that 0 is a 
point of right density for A (Step 1) and that rxo(t) -+ 0 as t -+ 0, 
tEA. 
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3.11. Prove that u defined in (3.6.2) belongs to COO(U - A). 

3.12. Give an example which shows that the uniformity condition in the 
second part of the statement in Theorem 3.5.7 is necessary. 

3.13. In this and the next exercise, it will be shown that a function with 
minimal differentiability hypotheses agrees with a C 1 function on a 
set oflarge measure, thus establishing an extension of Theorem 3.11.6. 
For simplicity, we only consider functions of two variables and begin 
by outlining a proof of the following classical fact: If u is a measur
able function whose partial derivatives exist almost everywhere on a 
measurable set E, then u has an approximate total differential almost 
everywhere on E. See Exercise 3.9 for the definition of approximate 
total differential. 

STEP 1. By Lusin's theorem, we may assume that E is closed and 
that u is its partial derivatives are continuous on E. 

STEP 2. For each (x, y) E E consider the differences 

~(x, y; h, k) = lu(x + h, y + k) - u(x, y) - hD1u(x, y) - kD2u(x, y)1 

~l(X, y; h) = lu(x + h, y) - u(x, y) - hD1u(x, y)1 

~2(X, y; k) = lu(x, y + k) - u(x, y) - kD2u(x, y)1 

where D1 = a/ax and D2 = a/ay. Choose positive numbers E, T. 
Using the information in Step 1, prove that there exists a > 0 such 
that the set ACE consisting of all points (x, y) with the property 
that 

l{x+h:~l(X,y;h)<Th, (x+h,Y)EE, 

a::; x ::; b, Ib - al < a, Ihl < Ib - al}1 2: (1- E)lb - al 

satisfies IE - AI < E. Perhaps the following informal description of A 
will be helpful. For fixed (x, y), let us agree to call a point (x + h, y) 
"good" if ~l(x,y;h) ::; Th and (x + h,y) E E. The set A consists 
of those points (x, y) with the property that if Ix is any interval 
parallel to the x-axis containing x whose length is less than a, then 
the relative measure of the set of good points in Ix is large. 

STEP 3. Now repeat the analysis of Step 2 with E replaced with A to 
obtain a positive number 0'1 < a and a closed set B C A, IA - BI < E 
which consists of all points (x, y) with the property that 

I{y + k : ~2(X, y; k) ::; Tk, (x, y + k) E A, 

a::; y ::; b, Ib - al < 0'1, Ikl < Ib - al}1 2: (1 - E)lb - al· 
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STEP 4. Let (12 < (11 be such that 

ID1u(x + h2' y + k2) - D1U(X + hI, y + k1 )1 < r 

for any 2 points (X+h2' y+k2), (X+h1' y+k1) in E with Ih2-h11 < (12, 
Ik2 - k11 < (11· 

STEP 5. Choose (xo, Yo) E B and let R = [aI, bI] x [a2' b2] be any 
rectangle containing (xo, Yo) whose diameter is less than (12 < (11 < (1. 
Let 

and for each (Yo + k) 

(xo + h,yo + k) E E}. 

Now for any (h, k) such that Yo + k E E2 and Xo + h E E1(yo + k), 
we have (xo + h, Yo + k) E En R and therefore 

~(xo, Yo; h, k) :::; ~l(XO, Yo; h) + ~2(XO, Yo; k) 

+ IhIID1u(xo,yo + k) - D1u(xo,yo)1 

:::; r(lhl + Ikl). 

From this conclude that 

IB n R n {(xo + h, Yo + k) : ~(xo, Yo; h, k) :::; 2r(lhl + Iklnl 

2: (1- c)2(b1 - a1)(b2 - a2) = (1 - c)2IRI· 

STEP 6. Take R to be a square with (xo, Yo) as center and appeal to 
Exercise 3.8 to reach the desired conclusion. 

3.14. We continue to outline the proof that a function whose partial deriva
tives exist almost everywhere agrees with a C 1 function on a set of 
large measure. Let u be a real valued function defined on a measurable 
set E c Rn , and for each positive number M and x E E let 

A(x, M) = En {y : lu(y) - u(x)1 :::; Mly - xl}. 

If A(x, M) has density 1 at x, u is said to be of approximate linear 
distortion at x. Our objective is to show that if u is of approximate 
linear distortion at each point E, then there exists sets Ek such that 
E = U~lEk and u is Lipschitzian on each of the sets Ek. 
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STEP 1. If Xl and X2 are any two points of Rn , then 

is a positive number less than 1 which is independent of the choice of 
Xl and X2' 

STEP 2. For each positive integer k, let Ek be the set of those points 
X E E such that lu(x)1 ::; k and that if r is any number such that 
0< r ::; 11k, then 

IA(x, k) n B(x, r)1 > 1 _ D:. 

IB(x,r)1 

Prove that E = Uk:lEk. 

STEP 3. In order to show that u is Lipschitz on Ek, choose any two 
points Xl,X2 E Ek. If IX2 - xII> 11k, then 

IU(X2) - u(xdl ::; 2k21x2 - xII. 

Thus, assume that 

Let 
Al = A(Xl' k) n B(Xl' IX2 - XII), 

A2 = A(X2' k) n B(X2' IX2 - XII). 

Prove that IAI n A21 > O. If x* E Al n A2, show that 

lu(x*) - u(xi)1 ::; klx* - Xii, i = 1,2 

Ix* - xii::; IX2 - XII, i = 1,2. 

Now conclude that 

STEP 4. If u has partial derivatives almost everywhere, appeal to the 
previous exercise to conclude that u is of approximate linear distor
tion at almost every point. Now refer to Theorem 3.11.6 to find a Cl 
function that agrees with u on a set of arbitrarily large measure. 

3.15. Suppose u E wl,p(Rn). Prove that for Bl,p-q.e. X ERn, U is abso
lutely continuous on almost every ray .Ax whose endpoint is x. 

3.16. Let f be a measurable function defined on [0,1] having the property 
that I' exists everywhere on [0,1] and that 11'1 is integrable. Prove 
that f is an absolutely continuous function. 
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Historical Notes 

3.1. The idea that an integrable function has a representative that can be 
expressed as the limit of integral averages originates with Lebesgue [LE2]. 
The set of points for which the limit of integral averages does not exist (the 
exceptional set) is of measure zero. Several authors were aware that the 
exceptional sets associated with Sobolev functions or Riesz potentials were 
much smaller than sets of measure zero, cf. [DL], [ARS1], [FU], [FL], [GI]. 
However, optimal results for the exceptional sets in terms of capacity were 
obtained in [FZ], [BAZ], [ME2], [CFR]. The development in this section is 
taken from [MIZ]. 

3.2. The results in this section are merely a few of the many measure 
theoretic density theorems of a general nature; see [F, Section 2.10.9] for 
more. 

3.3. Theorem 3.3.3 was first established in [FZ] for the case k = 1, and for 
general k in [BAZ], [ME2], and [CFR]. The concepts of thinness and fine 
continuity are found in classical potential theory although their develop
ment in the context of nonlinear potential theory was advanced significantly 
in [AM], [HE2] , [HW] , [ME3]. The proof of the theorem in Remark 3.3.5 
was communicated to the author by Norman Meyers. 

3.4. Derivatives of a function at a point in the V-sense were first studied 
in depth by Calderon and Zygmund [CZ]. They also proved Theorem 3.4.2 
where the exceptional set was obtained as a set of Lebesgue measure zero. 
The proof of the theorem with the exceptional set expressed in terms of 
capacity appears in [BAZ], [ME2], and [CFR]. 

3.5. The spaces Tk(E), tk(E), Tk,P(x), and tk,P(x) were first introduced 
in [CZ] where also Theorem 3.5.7 was proved. These spaces introduce but 
one of many methods of dealing with the notion of "approximate differen
tiability." For other forms of approximate differentiability, see [F, Section 
3.1.2], [RR]. 

3.6-3.8. The material in these sections is adopted from [CZ]. It should 
be noted that Theorem 8 in [CZ] is slightly in error. The error occurs 
in the following part of the statement of their theorem: "If in addition 
f E t~(xo) for all Xo E Q, then f E bu(Q)." The difficulty is that for 
this conclusion to hold, it is necessary that condition (1.2) in [CZ] holds 
uniformly. Indeed, the example in [WH] can be easily modified to show 
that this uniformity condition is necessary. Theorem 3.6.3 gives the correct 
version of their theorem. In order for this result to be applicable within the 
framework of Sobolev spaces, it is necessary to show that Sobolev functions 
are uniformly differentiable on the complement of sets of small capacity. 
This is established in Theorem 3.10.4. 

In comparing Whitney's Extension theorem (Theorem 3.5.3) with the 
LP-version (Theorem 3.6.3), observe that the latter is more general in the 
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sense that the remainder term of the function u in question is required to 
approach zero only in LP and not in LOO • On the other hand, the function 
is required to be defined only on the set E in Whitney's theorem, while the 
condition u E tk,P(x) in Theorem 3.5.3 implies that u E V[B(x, r)] (for all 
small r > 0) thus requiring u to be defined in a neighborhood of x. 

3.9. Theorem 3.9.4 and the preceding lemmas are due to Calderon [CA4]j 
the remaining results are from [BAZ]. 

3.10. The main result ofthis section is Theorem 3.10.2 which easily implies 
that Sobolev functions are uniformly differentiable in V on the complement 
of sets of small capacity. The proof is due to Lars Hedberg. Observe that 
the proof of Theorem 3.10.2 becomes simpler if we are willing to accept a 
subsequence {rij} such that 

t lu(y) - u(x)IPdy - 0 
B(x,rij) 

uniformly on Rn-u where Bk,p(U) < €. This can be proved by the methods 
of Lemma 2.6.4. However, this result would not be strong enough to apply 
Theorem 3.6.3, thus not making it possible to establish the approximation 
result in Theorem 3.10.5. 

3.11. These results appear in [MIZ]. The main theorem (Theorem 3.11.6) 
is analogous to an interesting result proved by J .H. Michael [MI] in the 
setting of area theory. He proved that a measurable function f defined on 
a closed cube Q C Rn can be approximated by a Lipschitz function 9 such 
that 

I{x : f(x) i g(xHI < € 
and IAU, Q) - A(g, Q)I < € where AU, Q) denotes the Lebesgue area of f 
on Q. Theorem 3.11.6 was first proved by Liu [LI] in the case m = f. 
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Poincare Inequalities
A Unified Approach 
In Chapter 2, basic Sobolev inequalities were established for functions in 
the space W;'P(O). We recall the following fundamental result which is a 
particular case of Theorem 2.4.2. 

4.1.1. Theorem. Let 0 c R n be an open set and 1 :::; p < n. There is a 
constant C = C(p, n) such that if U E WJ'P(O), then 

(4.1.1) 

where p* = np/(n - p). 

Clearly, inequality (4.1.1) is false in case U is the function that is identi
cally equal to a non-zero constant, thereby ruling out the possibility that 
it may hold for all U E Wl,p(O). One of the main objectives of this chapter 
is to determine the extent to which the hypothesis that U is "zero on the 
boundary of 0" can be replaced by others. It is well known that there are 
a variety of hypotheses that imply (4.1.1). For example, if we assume that 
o is a bounded, connected, extension domain (see Remark 2.5.2) and that 
U is zero on a set 8 with 181 = a > 0, then it can be shown that (4.1.1) 
remains valid where the constant C now depends on a, n, and O. This in
equality and others similar to it, are known as Poincare-type inequalities. 
We will give a proof of this inequality which is based on an argument that 
is fundamental to the development of this chapter. A general and abstract 
version of this argument is given in Lemma 4.1.3. 

There is no loss of generality in proving the inequality with p* replaced 
by p. The proof proceeds as follows and is by contradiction. If (4.1.1) were 
false for the class of Sobolev functions that vanish on a set whose measure 
is greater than a, then for each integer i there is such a function Ui with 
the property that 

IIUillp;o ~ ill'puillp;o. 

Clearly, we may assume that IIUilll,p;O = 1. But then, there exist a sub
sequence (denoted by the full sequence) and U E W1,P(O) such that Ui 

tends weakly to U in W1,P(O). By the Rellich-Kondrachov compactness 
theorem (Theorem 2.5.1, see also Remark 2.5.2) Ui tends strongly to U in 
£P(O). Since IIUilll,p;O = 1 it follows that IIDuillp;o -+ 0 and therefore that 
IIDullp;o = O. Corollary 2.1.9 thus implies that U is constant on O. This 
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constant is not 0 since Ilullp;n = 1. Now each Ui is 0 on a set 8 i whose mea
sure is no less than a. The strong convergence of Ui to U in V(n) implies 
that (for a subsequence) Ui ----> U almost everywhere on S = n~l U~j Si' 

Since lSI ~ a > 0, this contradicts the conclusion that u is equal to a 
non-zero constant on n. 

A close inspection of the proof reveals that the result also remains valid if 
we assume In u(x)dx = 0 rather than u = 0 on a set of positive measure. In 
this chapter we will show that these two inequalities and many other related 
ones follow from a single, comprehensive inequality obtained in Theorem 
4.2.1. 

4.1 Inequalities in a General Setting 

We now proceed to establish an abstract version of the argument given 
above which will lead to the general form of the Poincare inequality, The
orem 4.2.1. 

4.1.2. Definition. If X is a Banach space and Y C X a subspace, then a 
bounded linear map L ; X ----> Y onto Y is called a projection if L 0 L = L. 

Note that 
L(y)=y, yEY, ( 4.1.2) 

for there exists x E X such that L(x) = y and y = L(x) = L[L(x)] = L(y). 

4.1.3. Lemma. Let Xo be a normed linear space with norm II 110 and let 
X C Xo be a Banach space with norm 1111. Suppose 1111 = 11110 + 11111 where 
II 111 is a semi-norm and assume that bounded sets in X are precompact in 
Xo. Let Y = X n {x; IIxl11 = a}. If L ; X ----> Y is a projection, there is a 
constant 0 independent of L such thai 

Ilx - L(x)llo :s; OIlLllllxlh ( 4.1.3) 

for all x E X. 

Proof. First, select a particular projection L' ; X ----> Y. We will prove that 
there is a constant 0' = O'(IIL'II) such that 

Ilx - L'(x)llo :s; O'llxlh, ( 4.1.4) 

for all x EX. We emphasize that this part of the proof will produce a 
constant that depends on L'. 

If (4.1.4) were false there would exist Xi E X such that 
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Replacing Xi by xdllxi - L'(Xi)llo it follows that 

Ilxi - L'(Xi)llo = 1 and Ilxilll -+ O. 

Let Zi = Xi - L'(x;}. Then 

Ilzilll = Ilxi - L'(Xi)lh ::; Ilxilll + IIL'(Xi)lh 
::; Ilxi III 
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since IIL'(Xi)lll = O. Hence, Zi is a bounded sequence in X and therefore, 
by assumption, there exist a subsequence (which we still denote by {Zi}) 
and Z E Xo such that Ilzi - zilo -+ O. Since Ilzilll -+ 0 it follows that Zi is a 
Cauchy sequence in X and therefore Ilzi - zil -+ O. Note that Ilzllo = 1 and 
Ilzlh = O. Thus Z -:f. 0, Z E Y, and L'(z) = z by (4.1.2). But L'(Zi) -+ L'(z) 
and L'(Zi) = 0, a contradiction. 

The next step is to prove (4.1.3) for any projection L where G does not 
depend on L. Let L : X -+ Y be a projection and observe that 

X - L(x) = X - L'(x) - L(x - L'(x)). 

Hence, by (4.1.4), 

Ilx - L(x)llo ::; Ilx - L'(x)llo + IIL(x - L'(x))llo 

::; G'llxlll + IIL(x - L'(x))11 

::; G'llxlll + IILIIII(x - L'(x))11 

::; G'llxlll + IILII [11(x - L'(x))llo + Ilxlll] 

since IIL'(x)lll = O. Appealing again to (4.1.4) we obtain, 

Ilx - L(x)lIo ::; G'llxlll + IILII [G'llxlll + Ilxlll] 
= (G' + (G' + l)IILII)llxlll' 

Since L is a projection, IILII 2: 1 and the result now follows. o 

We now will apply this result in the context of Sobolev spaces. In par
ticular it will be convenient to take X = Wm,p(n). 

For notational simplicity, in the following we will let the characteristic 
function of n be denoted by 1. That is, let Xn = 1. Also, let Pk (Rn) denote 
the set of all polynomials in Rn of degree k. 

4.1.4. Lemma. Let k and m be integers with 0 ::; k < m and p > 1. 
Let n c R n be an open set of finite Lebesgue measure and suppose T E 
(Wm-k,p(n))* has the property that T(l) -:f. O. Then there is a projection 
L: Wm,p(n) -+ Pk(Rn) such that for each u E Wm,p(n) and all lal ::; k, 

T(DC>u) = T(DC> P) ( 4.1.5) 
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where P = L(u). Moreover, L has the form 

L(u) = L T(Pu(Du))xU 

lul9 

where Pu E 'Pk(Rn), Du = (DIU, D2U, ... , Dnu), and 

IILII ~ C· (:~i~) k+l , 

C = C(k,p, In!). 

Proof. If P E 'Pk(Rn) then P has the form P(x) = r:f1"=o a1'x1' and 
therefore 

D U P(O) = a!au 

for any multi-index a. Consequently, by Taylor's theorem for polynomials, 

or 

In particular, 

k-Iul Du+f3 P(O) 
DUP(x) = L ,xf3 

1f3I=o f3. 

k-Iul ( f3)' 
u () ""' a+. f3 D P x = L...J au+f3 f3! x. 

1f3I=o 

DUP(x) = aua! 

if lal = k. Thus, in order to satisfy (4.1.5), the coefficients au of the poly
nomial must satisfy 

T(DUu) 
au = a!T(I) , 

if lal = k. Similarly, if lal = k - 1 then 

D UP( ) ,,,", (a + f3)! f3 
x = aua. + L...J au+f3 f3! X. 

1f31=1 

Consequently by using (4.1.6), (4.1.5) will hold if 

T(DUu) (a + f3)! T(xf3 ) 
au = a!T(I) - ILl au+f3 a!f3! T(I)' 

f3 =1 

where lal = k - 1. Proceeding recursively, for any lal :::; k we have 

T(DUu) k-Iul (a + f3)! T(xf3 ) 

au = a!T(I) - ILl au+f3 a!f3! T(I)' 
f3 =1 

( 4.1.6) 

(4.1. 7) 
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It is easily verified that L is a projection since L( u) = P implies DQ[L( u)] = 
DQ P for any multi-index a. But then, 

T(DQ u) = T(DQ P) = T[DQ(Lu)] 

and reference to (4.1.7) yields the desired conclusion. 
In order to estimate the norm of L, let u E Wm,p(n) with Ilullm,p;!l ::::; 1. 

Then IILII ::::; IIL(u)llm,p;!l = 1IPIIm,p;!l where P(x) = L~1'I=o a1'x1'. Now 

k 

1IPIIm,p;!l ::::; C(lnl) L la1'l· 
11'1=0 

To estimate the series, first consider laQI, lal = k. Note that for lal = k 
and any non-negative integer £, 

jgJL = IITII· T(l)£ < C(£ p Inl) (ElL)H1 (4.1.8) 
a!T(l) a!T(l)1+f - " T(l) 

because T(l) ::::; InI1/PIITII. In particular, this holds for £ = k. Hence from 
(4.1.6) it follows that 

la 1< jgJL < C(k p Inl) (ElL)k+1 (419) 
Q - a!T(l) - "T(l) .. 

If lal = k-1, k 2: 1, then from (4.1.7), (4.1.9) and thefact that IITII/T(l) 2: 
Inl-1/p, 

IITII "IITII laQI ::::; a!T(l) + C(k, In!) ~ aQ+i3T(l) 
1131=1 

::::; C(k,p, In!) (:~~D 2 

I (IITII )k+1 
:::; C (k,p, In!) T(l) 

In general, if lal = k - i, k 2: i, we have 

Proceeding in this way, we find that 

( IITII )k+1 
IILII :::; C(k,p, In!) T(l) o 
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In the preceding analysis, if we knew that the distribution T was a non
negative measure f.L, then we would be able to improve the result. Indeed, 
suppose the measure satisfies the inequality 

( 4.1.10) 

for every lal ~ k. Of course, such an M exists if either 0 or spt f.L is bounded. 
Then the estimate of IILII becomes sharper because, with T = f.L, the term 
T(xf3)/T(1) in (4.1.7) is bounded above by M, thus implying that 

IITII 
IILII ~ C(k,p, M) T(1)· 

Hence, we have the following corollary. 

4.1.5. Corollary. Let k and m be integers with 0 ~ k < m and p > 1. 
Let 0 c R n be an open set and suppose f.L E (wm-k,p(o))* is a non
negative non-trivial measure satisfying (4.1.10). Then there is a projection 
L : Wm,P(O) -t 'Pk(Rn ) such that for each u E Wm,P(O) and all lal ~ k, 

where P = L(u). Moreover, L has the form 

C = C(k,p, M). 

L(u) = L f.L(Pu(Du))xU 

luI9 

IILII < C· (Jlt:!L) - f.L(O)' 

4.2 Applications to Sobolev Spaces 

(4.1.11) 

We now consider some of the consequences of the previous two results when 
applied in the setting of Sobolev spaces. Thus, if 0 ~ k < m are integers, 
p> 1 and 0 c Rn is a bounded, connected, extension domain (see Remark 
2.5.2), we employ Lemma 4.1.3 with X = Wm,P(O) and Xo = Wk,P(O). It 
follows from the Rellich-Konrachov imbedding theorem (see Exercise 2.3) 
that bounded sets in Wm,P(O) are precompact in Wk,P(O). Set IIulio = 
IIullk,pO and IIulil = IIDk+l u ll m_(k+1),p;O where Dk+1u is considered as the 
vector {DUu } lal = k + 1. Clearly, IIuli = IIulio + IIulh is an equivalent 
norm on Wm,P(O). Moreover, it follows from Exercise 2.7 that IIulil = 0 if 
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and only ifu E Pk(Rn). 1fT E (Wm-k,P(f!))* with T(l) =1= 0, then Lemma 
4.1.4 asserts that there is a projection L : Wm,P(f!) ---+ Pk(Rn) such that 

IILII < C (EJl) k+l 
- T(l) 

Therefore, Lemma 4.1.3 implies 

Ilu - L(u)llk,p;n :S CIILIIIIDk+1ullm_(k+1),p;n 

( liT II ) k+l k+l 
:S C T(l) liD ullm-(k+l),p;n. 

These observations are summarized in the following theorem. 

4.2.1. Theorem. Suppose 0 :S k < m are integers and p :::.- 1. Let f! c Rn 
be a bounded, connected extension domain. Let T E (Wm-k,P(f!))* be such 
that T(l) =1= O. Then, if L: Wm,P(f!) ---+ Pk(Rn) is the projection associated 
with T, 

( IITII )k+l Ilu - L(u)llk,p;n :S C T(l) IIDk+1ullm_(k+l),p;n (4.2.1) 

where C = C(k,p, f!). 

It will now be shown that the norm on the left side of (4.2.1) can be 
replaced by the V· -norm of u - L(u), where p* = np/(n - mp). For this 
we need the following lemma. 

4.2.2. Lemma. Suppose m > 1 is an integer and p :::.- 1. Let f! c Rn be a 
bounded extension domain. Then for each integer k, 1 :S k :S m - 1, and 
e > 0 there is a constant C = C(n, m,p, k, e, f!) such that 

( 4.2.2) 

whenever u E Wm,P(f!). 

Proof. We proceed by contradiction. If the result were not true, then for 
each positive integer i there would exist Ui E Wm,P(f!) such that 

( 4.2.3) 

By replacing Ui by udlluillm,p;n we may assume that Iluillm,p;n = 1, i = 
1,2, .... Hence, from Exercise 2.3 there is u E Wm,P(f!) and a subsequence 
(which we assume without loss of generality is the full sequence) such that 
Ui ---+ U strongly in Wm-1,P(f!). In particular Ui ---+ U in V(f!). Since 

(4.2.4) 
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it follows from (4.2.3) that Ui -t 0 in V(n) and therefore U = o. But then 
Ui -t 0 in Wm-1,p(n) and consequently IIDkuiJlp;fl -t 0 by (4.2.4). This 
implies that JlDmuillp;fl -t 0 or Ui -t 0 in Wm,p(n), a contradiction to the 
fact that Jlui Jlm,p;fl = 1. 0 

If v E wm,p(Rn) has compact support, then it follows from the funda
mental Sobolev inequalities, namely Theorem 2.4.2, 2.9.1, and 2.4.4 that 

where p* is defined by 

and 

11m 
-=---
p* p n 

1 5:. p* < 00 

p* = 00 

if mp < n, 

if mp = n, 

if mp> n. 

Since n c Rn is an extension domain, U E Wm,p(n) has an extension 
to v E wm,p(Rn) with compact support such that Ilvllm,p 5:. CJlullm,p;fl. 
Therefore, 

IluJlp*;fl 5:. CJlvJlp* 
5:. CJlvJlm,p 
5:. CJluJlm,p;fl 

5:. C [IIuJlp;fl + JlDmuJlp;fl] (4.2.5) 

by Lemma 4.2.2. Now apply this to (4.2.1) while observing that DCl(L(u)) = 
0, lal = m, and obtain 

Jlu - L(U)Jlp*;fl 5:. C [Jlu - L(U)Jlp;fl + IIDmullp;fl] 

( IITII ) k+l k+l 
5:. C T(I) JlD uJlm-(k+1),p;fl. 

We have thus established the following result. 

4.2.3. Corollary. With the hypotheses of Theorem 4.2.1, 

4.2.4. Remark. In many applications it is of interest to know when L(u) = 
O. In this connection we remind the reader the coefficients of the polynomial 
L(u) are given by (4.1.7) and will be zero if T(DClu) = 0 for 0 5:. lal 5:. 
k. The question of determining conditions under which L(u) = 0 will be 
pursued in Sections 4.4 and 4.5. 
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4.3 The Dual of Wm,P(O) 

In order to obtain more information from inequality (4.2.1) it will be helpful 
to have a representation of (wm,p(D))*, the dual of Wm,P(D). This is easily 
accomplished by regarding Wm,P(D) as a closed subspace of the cartesian 
product of LP(D). 

To this end let 
N=N(n,m)= L 1 

O:'Slal:'Sm 

be the number of multi-induces 0: with 0 ::; /0:/ ::; m. Let 

N 

L~(D) = II U(D). 
i=l 

L~ (D) is endowed with the norm 

if 1::; p < 00 

IIvllp,N;r! = 

max IIvll oo ;r! 
O:'Slal:'Sm 

if p = 00 

4.3.1. Theorem. Let Dc Rn be an open set. Then each linear functional 
T E (wm,p(D))*, 1 ::; p < 00, can be represented as 

T(u) = f: 1 va(x)Dau(x)dx for u E Wm,P(D), 
lal=O r! 

where v = {va} E L~(D). 

(4.3.1) 

Proof. Clearly, the right side of (4.3.1) defines an element T E (wm,p(D))* 
with 

IITII ::; Cllvllp,N;r!, 

see (2.1.5). In order to express T(u) in the form of (4.3.1) first observe 
that Wm,P(D) can be identified as a subspace of L~(D). The operator 
D : Wm,P(D) ----t L~(D) defined by 

D(u) = {Dau}, 0::; /0:/ ::; m 

has a closed range since Wm,P(D) is complete. Define a linear functional 
T* on the range of D by 

T*[D(u)] = T(u), u E Wm,P(D). 
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By the Hahn-Banach theorem, there is a norm preserving extension T' 
of T* to all of L}y(O). By the Riesz Representation theorem, there exists 

v = {va} E L~(O) such that 

T'(w) = f: 1 va(x)wa(x)dx 
lal=O n 

whenever w = {wa} E L}y(O). Thus, if u E Wm,P(O), we may regard 

Du = {Dau} E L}y(O) and therefore 

T(u) = T*[D(u)) = T'(Du) 

= f: 1 va(x)Dau(x)dx. 
lal=O n 

o 

In the event that 0 c Rn is a bounded extension domain, the repre
sentation of (wm,p(o))* is slightly simpler, as described in the following 
result. 

4.3.2. Theorem. If 0 c Rn is a bounded extension domain and 1 ::::; p < 
00, then each element T E (wm,p(o))* can be represented as 

T(u) = 1 (vu + L VOID<>U)dX 
n 1001=m 

(4.3.2) 

where v, VOl E £P' (0), lad = m. 

Proof. The proof is almost the same as in Theorem 4.3.1 except that now 
Wm,P(O) can be identified with a subspace of L}y(O) where N = k(m) + 1, 
and k(m) = the number of multi-indices a such that lal = m. Thus u E 
Wm,P(O) is identified with (u, {D<>u}I<>I=m). In view of Lemma 4.2.2 this 
provides an isometric embedding of Wm,P(O) into L}y(O). 0 

It is useful to regard the restriction of the linear functional T in Theorems 
4.3.1 and 4.3.2 to the space g(O) as a distribution. Indeed, if cp E g(O) 
is a Schwartz test function (see Section 1.7), then from (4.3.1) we have 

T(cp) = f: 1 VOIDOIcpdx 
1<>1=0 n 

(4.3.3) 

where V<> E £P' (0). In the language of distributions, this states that T is a 
distribution in 0 with 

m 

T = L (-l)la ID<>vOI 
1011=0 

( 4.3.4) 
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where Va E /)" (0). Similarly, if T is the functional in Theorem 4.3.2, then 

T=v+ L (-I)la IDava (4.3.5) 
lal=m 

where V, Va E /)" (0). However, not every distribution T of the form (4.3.4) 
or (4.3.5) is necessarily in (wm,p(o))*. In case one deals with W;',P(O) 
instead of Wm,P(O), distributions of the form (4.3.4) or (4.3.5) completely 
describe the dual space, for if T is a distribution as in (4.3.4), for example, 
then it possesses a unique extension to W;"P(O). To see this, consider 
u E W;',P (0) and let {c,oi} be a sequence in .9J" (0) such that c,oi --+ u in 
W;"P(O). Then 

m 

iT(c,oi) - T(c,oj)i = L 1 VaDac,oi - vaDac,ojdx 
lal=O n 
m 

~ L IiDa(c,oi - c,oj)lipii vaiip',n 
lal=O 

~ Iic,oi - c,ojiim,piivalip',n --+ 0 

as i,j --+ 00. Thus, T(c,oi) converges to a limit, denoted by T(u), which is 
well-defined. T is clearly linear and bounded, for if c,oi --+ u in W;"P(O), 
then 

iT(u)i = .lim iT(c,oi)i ~ .lim iiTlilic,oilim,p 
z~oo "'--+00 

= IiTliliulim,p. 

The norm IiTIi in this context is defined relative to the space W;"P(O). 
These remarks are formalized in the following theorem. 

4.3.3. Theorem. Let 1 ~ p < 00. If 0 c Rn is an open set, then the dual 
space (W;"P(O))* consists of all distributions T of the form 

m 

T = L (-l)laIDava 
lal=O 

where Va E /)" (0). If 0 is a bounded extension domain, then (W;"P(O))* 
consists of those T such that 

V, Va E /)" (0). 

T=v+ L (-l)laIDava 
lal=m 

The dual space (W;"P(O))* is denoted by W-m,p' (0). 
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4.4 Some Measures in (W~,p(n))* 

We now exploit Theorem 4.2.1 and its Corollary 4.2.3 to derive some of the 
most basic and often used Poincare-type inequalities. These inequalities 
are obtained below by considering Lebesgue measure and its variants as 
elements of (Wm,P(D))*. 

In order to demonstrate the method that employs the results of Section 
4.2, we begin by reproving the inequality 

(4.4.1) 

for u E Co (Rn), where 0 :::; k :::; m are integers and p 2: 1. Suppose that the 
support of u is contained in some ball: sptu c B(O,r). Let D = B(O,2r). 
With this choice of D, we wish to apply Corollary 4.2.3 by selecting T so 
that the associated projection L will have the property that L( u) = O. 
Then by appealing to (4.2.2), we will have established (4.4.1). Define T E 
(Wm-k,P(D))* by 

T(w) = i vwdx 

for w E Wm-k,P(D), where v = XB(O,2r)-B(O,r)' Since spt u C B(O, r), 

T(DQ u ) = 0 for 0:::; lal :::; k 

and therefore L(u) = 0 by Remark 4.2.4. Hence, (4.4.1) is established. 
In case D is a bounded open set and u E Co(D), a similar result can 

be established by defining u to be identically zero on the complement of D 
and by considering a ball B(O, r) that contains D. Since Co(D) is dense 
in W;,P(D) the following is immediate. (Of course, this result also follows 
from the inequalities established in Chapter 2.) 

4.4.1. Theorem. Let D c Rn be a bounded set. Let 0:::; k :::; m be integers 
and p 2: 1. Then, there is a constant C = C(k, m,p, diam D) such that 

IIDkullp;o :::; CIIDmullp;o, 

A slight variation of the preceding argument leads to the following results. 

4.4.2. Theorem. Suppose 0 :::; k < m are integers and p 2: 1. Let D be a 
bounded extension domain. Suppose u E Wm,P(D) has the property that 

L DQudx = 0 for 0:::; lal :::; k, 

where E C D is a measurable set of positive Lebesgue measure. Then, 

Ilullk,p;O :::; CIIDk+lullm_(k+l),p;O 
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where C = C(k, m,p, 0, lEI). 

Proof. Define T E (wm-k,p(o))* by 

T(w) = L wdx, wE Wm-k,P(O). 

Then T(l) -::j:. 0, 
T(DOu) = 0 for 0:::; lal :::; k, 

and therefore by Remark 4.2.4 the associated functional L has the property 
that L(u) = O. The result now follows from Theorem 4.2.1. 0 

4.4.3. Corollary. If u E Wm,P(O) has the property that DOu = 0 almost 
everywhere on E for 0 :::; lal :::; k, then 

lIullk,p;o :::; CIIDk+lu ll m _(k+1),p;o, 

Theorem 4.4.2 provides a Poincare-type inequality provided the integral 
averages of the derivatives of u over a set E of positive measure are zero. In 
the next result, the integral average hypothesis is replaced by one involving 
the generalized notion of median of a function. If the sets A and B below 
are of equal measure, then we could think of 0 as being the median of u 
over AUB. 

4.4.4. Theorem. Let 0 E Rn be a bounded extension domain and let 
u E W1,P(O), p ~ 1. Suppose u > 0 on A and u < 0 on B, where A and B 
are measurable subsets of n of positive Lebesgue measure. Then 

where C = C(p,n, IAI, IBI). 

Proof. Let 

a = i u dx and /3 = 1 u dx 

and define T E (Wl,p(O))* by 

T(w) = In vwdx, wE W1,P(O) 

where v = (l/a)XA - (l/!3)XB. Then T(u) = 0 and the result follows from 
Theorem 4.2.1 and Remark 4.2.4. 0 

4.4.5. Remark. In the remainder of this section, we will include a small 
development of the notion of trace of a Sobolev function on the boundary 
of a Lipschitz domain as well as some related Sobolev-type inequalities 
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(Theorem 4.4.6 and its corollary). This material will be subsumed in the 
development of BV functions in Chapter 5, but we include it here for the 
benefit of the reader who does not wish to pursue the BV theory. 

If n c Rn is a bounded Lipschitz domain and u E W 1,p(n), 1 < p ~ 00, 

it is possible to give a pointwise definition of u on an in the following way. 
Since n is an extension domain, let u denote an extension of u to all of 
Rn where u E W 1,P(Rn ). Therefore, u has a Lebesgue point everywhere on 
Rn except possibly for a set of B1,p-capacity zero (Theorem 3.3.3). Since 
p> 1, we know from Theorem 2.6.16 that sets of B1,p-capacity zero are of 
H n- 1-measure zero and therefore u is defined Hn- 1-almost everywhere on 
an. We define the trace of u on an by setting u = u on an. 

We now show that this definition is independent of the extension u. For 
this purpose, we first show that at each Lebesgue point Xo of U, there is a 
measurable set A such that the Lebesgue density of A at Xo is 1 and that 
u is continuous at Xo relative to A. Since 

1 lu(x) - u(xo)ldx --> 0 as r --> 0, 
hCxQ,r) 

for each positive integer i, there is a number ri such that the set Ei 
R n n {x: lu(x) - u(xo)1 > Iii} has the property that 

IB(xo, r) nEil 2- i £ 
IB(xo, r)1 < ,or r ~ rio ( 4.4.2) 

We may assume that the sequence {ril is strictly decreasing. Let 

00 

E = U [B(xo, ri) - B(xo, ri-1)] n Ei · 
i=l 

We now will show that the Lebesgue density of E at Xo is zero, that is 

lim IB(xo, r) n EI = o. 
r-+O IB(x, r)1 

( 4.4.3) 

Choose a small r > 0 and let k be that unique index such that rk+1 < 
r < rk. For notational simplicity, let B(r) = B(xo, r). Then from (4.4.2) it 
follows that 

IB(r) n EI ~ liQ[(B(r) n Ei ) n (B(ri) - B(ri+1))] I 
00 

~ TkIB(r)1 + L TiIB(ri)1 
i=k+1 
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which establishes (4.4.3). Clearly, if we set A = Rn - E we have that u is 
continuous at xo relative to A and that the Lebesgue density of A at Xo is 
one. 

Because n is a Lipschitz domain, the boundary of n is locally repre
sentable as the graph of a Lipschitz function. Thus, the boundary can 
be expressed locally as {(x, f (x)) : x E U}, where U is an open ball in 
R n - 1 and f is a Lipschitz function. Recall from Theorem 2.2.1 that a Lip
schitz function is differentiable almost everywhere. Moreover, the function 
J: Rn - 1 --+ Rn defined by 

J(x) = (x, f(x)) 

is Lipschitz and carries sets of Lebesgue measure zero in R n - 1 into sets of 
Hn-1-measure zero in Rn. Consequently, an possesses a tangent plane at 
all Hn-1-almost all points of an. From this it is not difficult to show that 

lim IB(xo, r) n nl _ ~ 
r->O IB(xo,r)1 -2' 

for Hn-l-almost all Xo E an. Since the Lebesgue density of A at Xo is equal 
to one, it follows that 

lim IB(xo, r) n n n AI = ~. 
r->O IB(xo, r) I 2 

Also, because u is continuous at Xo relative to A, it is clear that 

lim u(x) = u(xo). 
X-+Xo 

xEnnA 

This shows that the value of u(xo) is determined by u in n, thus proving 
that the trace of u on the boundary of n is independent of the extension 
u. 

In the statement of the next theorem, we will let f-l denote the restriction 
of (n -I)-dimensional Hausdorff measure to an. That is f-l(A) = Hn-l(A n 
an) whenever A eRn. 

4.4.6. Theorem. Let n c Rn be a bounded Lipschitz domain and suppose 
u E W1,p(n), 1 < p < 00. Let 

c(u) = r udHn- 1 = r udf-l. 
Jan Jan 

Then f-l E (W1,p(n))* and 
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where p* = np/(n - p) and C = C(n,p, 0). 

Proof. Because 0 is a bounded Lipschitz domain, u has an extension it 
to all of Rn such that lIitlh,p ~ Cllulll,p;o. By multiplying it by a function 
cp E COO(Rn) with cp == Ion 0, we may assume that it has compact support. 

In order to show that J.L E (Wl,P(O))*, we will first prove that 

( 4.4.4) 

whenever v is a non-negative function in COO(Rn). From Lemma 1.5.1, we 
have 

(4.4.5) 

where Et = {x: v(x) > t}. By the Morse-Sard theorem, for almost all t, 
Et is bounded by a smooth manifold. We now borrow an essentially self
contained result of Chapter 5. That is, we employ Lemma 5.9.3 and Remark 
5.4.2 to conclude that for all such t, Et can be covered by balls B(Xi' ri) 
such that 

00 

L rf- l ~ CHn-l[v-l(t)], ( 4.4.6) 
i=l 

where C is a constant depending only on n. Because ao is locally the graph 
of a Lipschitz function, it follows from (1.4.6) that there is a constant C 
such that J.L(B(x,r)) ~ Crn-l. Thus, from (4.4.6) it follows that 

00 

J.L(Et ) ~ L J.L(B(Xi, ri)) 
i=l 

00 

~ CLrf-l ~ CHn-l(v-l(t)). 
i=l 

Appealing to (4.4.5) and co-area formula (Theorem 2.7.1), we have 

J v dJ.L = 100 
J.L(Et)dt 

thus establishing (4.4.4). 

~ C 100 Hn-l(v-l(t))dt 

= CIIDvlll 

~ C(O)IIDv ll p 

~ Cllvlh,p, 

If v is now assumed to be a bounded, non-negative function in Wl,P(Rn), 
we may apply (4.4.4) to the mollified function Ve;. From Theorem 1.6.1 we 
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have that live - Vlll,p - 0 and that ve(x) - v(x) whenever x is a Lebesgue 
point for v. From Theorem 3.3.3 we know that v has a Lebesgue point at all 
x except possibly for a set of B1,p capacity zero, therefore of Hn-1-measure 
0, and therefore of J.t-measure O. Consequently, by Lebesgue's dominated 
convergence theorem, 

J vedJ.t - J vdJ.t. 

It now follows that (4.4.4) is established whenever v is a non-negative, 
bounded function in W1,p(Rn). 

If we drop the assumption that v is bounded, then we may apply (4.4.4) 
to the functions 

{ k ifv(x»k 
Vk(X) = v(x) if v(x) :( k. 

It follows from Corollary 2.1.8 that Vk E W1,P(Rn) for k = 1,2, .... Thus, 
an application of the Monotone Convergence theorem yields (4.4.4) for non
negative functions in W1,p(Rn), in particular, for u+ and u-. Hence (4.4.4) 
is established for U. 

From Remark 4.4.5 we have that u = U Hn-1-almost everywhere on an, 
and therefore 

J udJ.t= J udJ.t 

::; Cllulll,p 

::; Cllulll,p;n. 
Thus, we have shown that J.t E (W1,p(n))*, and reference to Corollary 

4.2.3 completes the proof. 0 

The following is an immediate consequence of Theorem 4.4.6. 

4.4.7. Corollary. If n is a bounded Lipschitz domain and u E W1,p(n), 
p> 1, then 

and 

[ udHn - 1 ::; C [liullpo;n + IIDullp;n] Jan 

Ilullpo;n ::; C [IiDullp;n + fan UdHn - 1] • 

As mentioned in the beginning of Remark 2.4.5, these inequalities will 
be extended to the situation when u E BV, thus including the case p = 1. 

4.5 Poincare Inequalities 

Here we further develop the results in Section 4.2 to obtain Poincare-type 
inequalities for which the term L(u) in inequality (4.2.1) is zero. We will 
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show that this term vanishes provided the set {x: u(x) = O} is sufficiently 
large when measured by an appropriate capacity. 

First, recall from Corollary 2.6.9 that if A c Rn is a Suslin set, then 

Bl,p(A) = SUP{Bl,p(K): K C A,K compact}. 

Moreover, if KeRn is compact Theorem 2.6.12 implies that there is a 
non-negative measure J.l such that spt J.l C K, 

and 
J.l(Rn) = [Bl,p(K)]l/P . 

Now consider u E Wm-k,p(n) where n c Rn is a bounded extension 
domain. Then u has an extension u defined on Rn such that lIull m-k,p ::; 
Cllullm-k,p;!1. Without loss of generality, we may assume that u has com
pact support. From Theorem 2.6.1 it follows that u has the representation 

u = 9m-k * f 

where f E V(Rn) and IIfllp '" lIullm-k,p' 
Now suppose that J.l is a non-negative measure with the properties that 

sptJ.l C IT and 

where k is an integer, 0 ::; k < m. Observe that J.l can be considered as an 
element of (wm-k(n))* for if we define T : wm-k(n) _ Rl by 

then, 

T(u) = f udJ.l, 

f J.ldJ.l= f udJ.l 

= f 9m-k * fdJ.l 

= f 9m-k * J.l' f dx, by Fubini's theorem, 

::; 119m-k * J.lllp,llfllp, by Holder's inequality, 

::; C119m-k * J.lllp,llullm-k,p' 
::; ClI9m-k * J.lllp,lIull m-k,p;!1. (4.5.1) 

Thus, J.l E (Wm-k,p(n))*. 
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This leads to another application of Theorem 4.2.1 which allows the 
main constant in the inequality to be estimated by the capacity of the set 
on which u vanishes. 

4.5.1. Theorem. Let 0 E Rn be a bounded extension domain and let 
A c Rn be a Buslin set with Bm-k,p(A) > 0 where 0 ~ k < m are integers 
and p 2: 1. Then, there exists a projection L: Wm,P(O) -+ Pk(Rn) such that 

Ilu - L(u)llk,p;n ~ C (Bm_k,p(A))-l/P IIDk+1ullm_(k+1),p;n 
where C = C(k, m,p, 0). 

Proof. From the above discussion, there exists a non-negative measure Ji 
such that Ji is supported in A, 

and 

Ji(Rn) 2: ~ (Bm_k,p(A))l/P. 

If we set T = Ji in Theorem 4.2.1, we have T(1) = Ji(Rn) > 0 and from 
(4.5.1) that 

IITII ~ Cllgm-k * Jillpl ~ C. 
The result now follows from Theorem 4.2.1 and Corollary 4.1.5. 0 

4.5.2. Corollary. Let u E Wm,P(O) and let 

N = IT n {x: DCtu(x) = 0 for all 0 ~ lal ~ k}. 

If Bm-k,p(N) > 0 then 

Ilullk,p;n ~ C (Bm_k,p(N))-l/P IIDk+1ullm_(k+1),p;n 
and 

Proof. The coefficients of the polynomial L( u) in Theorem 4.5.1 depend 
upon 

T(DCtu) = J DCtudJi 

for 0 ~ lal ~ k, and thus are all zero, (see Remark 4.2.4). The second 
inequality follows from Corollary 4.2.3. 0 

Because of the importance of the case m = 1, k = 0, we state the Poincare 
inequality separately in this situation. 

4.5.3. Corollary. If u E W1,P(O), then 

Ilullp*;n ~ C (B1,p(N))-1/P IIDullp;n ( 4.5.2) 
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where N = {x : u(x) = O}. 

4.6 Another Version of Poincare's Inequality 

We can improve the inequalities of Corollary 4.5.2 if we allow dependence 
on the set N and not merely on its capacity. In particular, if j, k, and mare 
integers such that 0 < j ::; k < m, then the assumption Bm-k,p(N) > 0 will 
be replaced by the weaker one, Bm-(k-j),p(N) > 0, provided an additional 
condition is added which requires dependence on the set N in the resulting 
inequality. 

To make this precise let Sl be a bounded extension domain and let N c n 
be a Suslin set with the property that 

Bm-(k-j),p(N - Z) > 0 

for every set Z of the form 

Z= n {x:Dap(x)=O,O=lPEPk(Rnn· 
iai9-j 

(4.6.1) 

( 4.6.2) 

These sets comprise a subclass of the class of algebraic varieties. Thus, for 
any algebraic variety of the form (4.6.2), we require some subset of N of 
positive capacity to lie in the complement of Z. 

Let M(N) denote the set of all non-negative Radon measures Jl com
pactly supported in N such that 

gm-(k-j) * Jl E Lpl (Rn). 

Consider all functionals of the form 

T(u) = J DaudJl, Jl E M(N), ( 4.6.3) 

where lal ::; k- j. We will verify that all such T are elements of (wm,p(Sl))*. 
Let u E Wm,P(Sl). Since Sl is an extension domain, there is an extension u 
of u to Rn with Ilullm,p ::; Cllullm,p;o. From Theorem 2.6.1, we know that u 
has the representation u = gm * f, where f E V(Rn) and Ilfllp ,...., Ilullm,p. 
Since Jl is supported in N c n, it follows that 
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where g E V(Rn). By Fubini's theorem we have 

J Do.udf.L = J gm-lo.l * gdf.L 

= J gm-lo.l * f.L' gdx. 

It follows from (2.6.2) that 

gm-lo.l * f.L = gl * (gm-(k-j) * f.L), 
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where £ = (k - j) -Ial. Since gm-(k-j) * f.L E V' (Rn) by assumption and 
gl E Ll(Rn), it follows from Young's inequality that gm-lo.l *f.L E V'(Rn). 
Therefore an application of Holder's inequality yields 

However, 

J Do.udf.L= J gm-lo.l *f.L·g dx 

:5 Ilgm-lo.l * f.Lllplllgllp 
:5 Ilgm-lo.l * f.LllpIIIDo.ullm_lo.l,p· 

IIDo.ullm_lo.l,p :5 Ilullm,p :5 Cllullm,p, 
thus proving that T E (Wm,p(n))*. 

Let V C (wm,p(n))* be the space spanned by all such functionals T as 
defined in (4.6.3). Let 

Vo = {T I Pk : T E V}, 

so that Vo C Pk. Observe that 

dim Vo = dim Pk(Rn) 

or 
Vo = [Pk(Rn)]*, 

for if this were not true, there would exist 0 =f. P E Pk(Rn) such that 
T(P) = 0 for every T E V. This would imply 

J DO. P df.L = 0, lal:5 k - j 

for all f.L E M(N). That is, from Theorem 2.6.12, this would imply 

for Bm-(k-j)-q.e. x E Nand tal :5 k - j, a contradiction to (4.6.1) and 
(4.6.2). Therefore dimVo = dimPk(Rn) or Vo = [Pk(Rn)]*. This implies 
the existence of To. E V such that 

( 4.6.4) 
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m 

L(u) = L Ta(u)x'\ 
lal=O 

(4.6.5) 

then (4.6.4) shows that L is a projection. An appeal to (4.1.3) results in 
the following theorem. 

4.6.1. Theorem. Let f2 c R n be a bounded extension domain. Suppose 
N c IT is a Suslin set such that (4.6.1) is satisfied. Then, with L given by 
(4.6.5), there is a constant C = CU,k,m,N,f2) such that 

The special nature of the projection L is what makes this result inter
esting. For example if we assume that Dau = 0 on N except possibly for 
a Bm_(k_j),p-null set, then all T of the form (4.6.3) are zero and therefore 
L( u) = o. The following is a consequence. 

4.6.2. Corollary. Let f2 c R n be a bounded extension domain. Suppose 
N c IT is a Suslin set such that (4.6.1) is satisfied. If u E W m,P(f2) is such 
that 

Dau(x) = 0 for Bm-(k-j),p-q.e. x E N 

and all 0 ::; 10:1 ::; k - j, then 

Ilullk,p;!1 ::; CIIDk+1u ll m _(k+1),P;!1 

where C = CU, k, m, N, f2). 

4.7 More Measures in (wm,p(o))* 

The general inequality (4.2.1) involves a projection operator L : W m,P(f2) --+ 

Pk(Rn) which is determined by an element T E (Wm- k,P(f2))*. It is there
fore of importance to have an ample supply of elements in the dual of 
W m- k,P(f2) that are useful in applications. In Section 4.4 we have already 
seen that Lebesgue measure (more precisely, suitably normalized measures 
which are absolutely continuous with respect to Lebesgue measure) and 
normalized (n-1 )-dimensional Hausdorff measure belong to (Wm - k ,p (f2)) * . 
The fact that these measures are elements of (wm-k,p(f2))* allowed us to 
deduce interesting Poincare-type inequalities. In this section we will per
form a finer analysis to establish that a large class of measures belong 
to (wm-k,p(f2))*, including those that are obtained as the restriction of 
Hausdorff measure to sub-manifolds of appropriate dimension in Rn. 
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We begin with a result that provides a generalization of the Sobolev 
inequality for Riesz potentials and also gives us a method of exhibiting a 
large class of measures that are elements of (Wm-k,p(n))*. It will depend 
on the Marcinkiewicz Interpolation Theorem which we state here without 
proof. 

Let (Po, qo) and (PI, ql) be pairs of numbers such that 1 ::; Pi ::; qi < 00, 

i = 0,1, Po < PI, and qo =1= ql. Let I-l be a Radon measure defined on R n 

and suppose T is an additive operator defined on C8"'(Rn ) whose values are 
I-l-measurable functions. The operator T is said to be of weak-type (Pi, qi) 
if there is a constant C i such that for any f E CO'(Rn ), and a > 0, 

4.7.1. Theorem (Marcinkiewicz Interpolation Theorem). Suppose T is 
simultaneously of weak-types (Po, qo) and (PI, qd. If ° < () < 1, and 

1-() () 
l/p=-+-

Po PI 

1-() () 
l/q= --+-, 

qo PI 

then T is of strong type (p, q); that is, 

where C = C(Pi, qi, ()), i = 0,1. 

We are now in a position to prove the basic estimate of this section which 
is expressed in terms of the Riesz kernel, Ik, that was introduced in Section 
2.6. 

4.7.2. Theorem. Let I-l be a Radon measure on R n such that for all x E R n 

and ° < r < 00, there is a constant M with the property that 

I-l[B(x, r)] ::; Mr a 

where a = q/p(n - kp), k > 0, 1 < P < q < 00, and kp < n. If f E V(Rn ), 

then 

(J Ih * flqdl-l) l/q ::; CMI/qllfllp 

where C = C(k,p, q, n). 

This inequality is obviously an extension of the Sobolev inequality for 
Riesz potentials that was established in Theorem 2.8.4. In that situation, 
the measure I-l is taken as Lebesgue measure. In Remark 4.7.3, we will 
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discuss further what other measures play an important role in the inequality 
of Theorem 4.7.2. 

Proof of Theorem 4.7.2. For t > 0 let 

At = {y : h * IfI(Y) > t}. 

Our objective is to estimate JL(At ) in terms of Ilfll p. Let JLt = JL I At· Then 

tJL(At ) :::; it Ik * IfldJL = J Ik * IfldJLt 

= { Ik * JLt(x)lf(x)ldx JRn (4.7.1) 

where the last equality is a consequence of Fubini's theorem. Referring to 
Lemma 1.5.1 it follows that 

1 roo 
Ik *JLt(x) = ,(k) Jo JLt [B (x,r 1/(k-n))] dr 

(n - k) roo [ k-n-1 
= ,(k) Jo JLt B(x, r)]r dr. 

For R > 0 which will be specified later, (4.7.1) becomes 

Since JL[B(x, r)] :::; Mra by hypothesis, the first integral, 11 , is estimated 
by observing that 

and then applying Holder's inequality to obtain 

h:::; n - k IlfllpM 1/p { {JLdB(x, r)]dx rk - n -1+(a/p)dr. () R ( ) l/p' 

,(k) Jo JRn 

We now will evaluate 

{ JLt[B(x, r)]dx. JRn 
For this purpose, consider the diagonal 

D = (Rn x Rn) n {(x,y) : x = y} 

(4.7.3) 
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and define for r > 0, 

Dr = (Rn X Rn) n {(x,y): Ix - yl < r}. 

Finally, let F = XD r ' Then, by Fubini's theorem, 

r ILt[B(x, r)]dx = r r dlLt(y)dx J Rn J Rn J B(x,r) 
= r r F(x, y)dlLt(y)dx JRn JRn 
= r r F(x,y)dxdlLt(Y) JRn JRn 
= r IB(y, r)1 dlLt(Y) JRn 
= a(n)rnlL(At ). 

Therefore (4.7.3) yields 

h ::; p(n - k) IIfil Ml/Pa(n)l/P'IL(At)l/p'Rk-(n-a)p. 
'Y(k)[kp - (n - a)] P 

Similarly, by employing the elementary estimate 

we have 

Hence 

p(n - k) 1/ ' [Ml/PIL(Adl/p'Rk-(n-a)/p 
h + 12 ::; 'Y(k) a(n) P IIfilp kp _ (n - a) 

IL(At)Rk-n/P] 
+ . 

n-kp 
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In order for this inequality to achieve its maximum effectiveness, we seek 
that value of R for which the right-hand side attains a minimum. An ele
mentary calculation shows that 
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and the value of the right-hand side for this value of R is 

Consequently, from (4.7.2) 

tJ.L(Ad/q = tJ.L(At)J.L(At?/q-l 

< ( p(n - k)a a(n)l/pl Ml/q) 
- ,(k)(n - kp)(kp - n + a) 

. (J.L(At)l-l/qJ.L(At)l/q-lllfllp) 

::; ,(k)(n _P:p)(q _ p) a(n)l/pl Ml/qllfll p. (4.7.4) 

Expression (4.7.4) states that the Riesz potential operator h is of weak 
type (p, q) whenever p and q are numbers such that 

1 < p < q < 00, kp < n. (4.7.5) 

Hence, if (Po, qo), (p, q) and (Pl, ql) are pairs of numbers such that (Po, qo), 
(Pl, ql) satisfy (4.7.5) and for 0 ::; () < 1, 

1-() () 
1/p= --+-

Po Pl 

1-() () 
1/q= --+-, 

qo Pl 

then the Marcinkiewicz Interpolation Theorem states that lk is of type 
(p, q), with 

IIlk * fllq;/L ::; CM1/qllfllp, 
thus establishing our result. o 

4.7.3. Remark. The number a that appears in the statement of Theorem 
4.7.2 is equal to n when q = np/(n - kp) = p*. In this case the conditions 
of the theorem are satisfied by any measure J.L that is absolutely continuous 
with respect to Lebesgue and that has bounded density. In particular, if 
we take J.L as Lebesgue measure, we can recover Theorem 2.3.6, which is 
Sobolev's inequality for Riesz potentials. 

Theorem 4.7.2 also provides an inequality for Riesz potentials restricted 
to a lower dimensional submanifold MA of Rn. For example, if MA is a com
pact, smooth A-dimensional submanifold of Rn, then it is easy to verify that 
A-dimensional Hausdorff measure restricted to M satisfies the condition of 
Theorem 4.7.2. That is, if we define J.L by 
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for every Borel set E C Rn , then there is a constant M such that 

p,[B(x, r)] ::; MrA 
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(4.7.6) 

for every ball B (x, r) C Rn. Now let f E £P (Rn) and consider the potential 

u=h*f. 

By Theorem 4.7.2 we have 

where A* = Ap/(n - kp), n - A < kp < n. In other words, 

1/ A' 

(JM>' lu(x)( dHA(x)) ::; Cllfllp (4.7.7) 

where C = C(k,p, A, n, M). Note that the constant C depends on M which, 
in turn, theory, it is sometimes possible to obtain an equality similar to 
(4.7.7) where the constant is independent of the manifold. 

Inequality (4.7.7) is valid for Riesz potentials u = Ik * f and thus does 
not automatically include Sobolev functions. However, it is immediate that 
Theorem 4.7.2 and (4.7.7) apply as well to Sobolev functions u E Wk,P(Rn) 
because Theorem 2.6.2 states that u can be represented as 

u = gk * f 
where gk is the Bessel kernel, f E £p(Rn) and Ilfllp '" Ilullk,p. Moreover, 
we know from (2.6.3) that there is a constant C such that gk(X) ::; Clk(x), 
x ¥= o. 

To reassure ourselves that the integral on the left-side of (4.7.7) is mean
ingful, recall from Theorem 3.3.3 that u is defined pointwise everywhere on 
Rn except possibly for a set A with Rk,p(A) = o. Therefore, by Theorem 
2.6.16, Hn-kp+e:(A) = 0 for every € > O. By assumption, A > n - kp and 
consequently HA(A) = o. Thus, u is defined HA almost everywhere on MA 
which is in accord with inequality (4.7.7). 

Also, we observe that if p, is a non-negative measure on R n with compact 
support, and otherwise satisfies the conditions of Theorem 4.7.2, then p, E 

(Wk,P(D))* whenever D is a bounded extension domain. To see this, let 
u E Wk,P(D) and let u be an extension of u to Rn such that Ilullk,p ::; 
Cllullk,p;n. Because u E wk,p(Rn), we have 

u = gk * f 
where Ilfllp '" Ilullk,p. Hence, by Theorem 4.7.2 and the fact that spt p, is 
compact, 
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= Cllullk,p 
::; Cllullk,p;!1' 

This establishes the following result. 

4.7.4. Theorem. Let n c Rn be a bounded extension domain and suppose 
p, is a compactly supported Radon measure on R n with the property that if 
e > 0, there is a constant M such that 

p,[B(x, r)] ::; Mrn- kp+e , 

for all x E Rn and all r > 0, where kp < n, p > 1. Then p, E (Wk,p(n))*. 

This result obviously is not sharp and thereby invites the question of 
determining an optimal condition for p, to be an element of (wk,p(Rn))*. 
By using a different approach, it is possible to find a condition, related 
to the one in the theorem above, that provides a characterization of those 
Radon measures that are elements of (Wk,P(Rn))*. 

For this purpose, we need a few preliminaries. If p, is a Radon measure, 
we will use the fractional maximal operator 

MkP,(X) = sup{rk-n/L[B(x,r)]: r > OJ. 

There is an obvious relationship between the Riesz potential of p, and the 
fractional maximal operator: MkP,(X) ::; C1k*p,(x) for every x E Rn, where 
C = C(k, n). The opposite inequality in integrated form is not so obvious 
and is implied by a result due to [MW]. It states that for every 1 < p < 00 

and 0 < k < n, there exists C = C(k,p, n) such that 

The (k,p)-energy of p, is defined as 

Since the Bessel kernel is dominated by the Riesz kernel, we have 

Ck,p(p,) ::; C { (Ik * p,)pl dx iRn 
= { (Ik * p,) . (Ik * p,)l/(p-l)dx iRn 

(4.7.8) 

= { h * (h * p,)l/(P-l)dp" by Fubini's theorem. (4.7.9) iRn 
The expression 
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is called the non-linear potential of p,. 

4.7.5. Theorem. Let p > 1 and kp ::; n. If p, is a Radon measure, then 
p, E (wk,p(Rn))* if and only if 

111 (P,[B(Y, r)]) l/(p-l) dr 
n-k -dp,(y) < 00. Rn 0 r p r 

(4.7.10) 

Proof. In order to avoid technical details involving the behavior at infinity, 
we will give a proof for measures p, with compact support. 

If p, is such a measure with gk * P, E £P', then by Fubini's theorem and 
with u = gk * f we can write 

J u dp, = J gk * f dp, 

= J gk * P, • f dx 

::; Ilgk * p,llp'llfllp 
::; Cllgk * p,lip,ll u llk,p, 

which implies that p, E (wk,p(Rn))*. Conversely, if p, E (wk,p(Rn))*, then 
the reflexivity of £P implies that gk * P, E £P'. Therefore p, is an element 
of (Wk,P(Rn))* if and only if Ilgk * p,llp' < 00, i.e., if and only if the (k,p)
energy of p, is finite. 

We proceed to find a (sharp) condition on p, that will ensure the finiteness 
of its (k,p)-energy. For each r > 0, 

Thus, 

Therefore, 

p,[B(x,r)] < C ({2r [P,[B(X,t)]]P' dt)llP' 
rn-k - ir tn-k t 

, lip' 
< C ( t)Q [P,[B(X, t)]] p dt) 
- io t n - k t 

, lip' 
M (x) < C ( roo [P,[B(X, t)]]P dt) 

kP, - io tn- k t 

Ek,p(p,) ::; C { (Ik * J-l)P'dx iRn 
::; C { (MkP,)P'dx, by (4.7.8), iRn 
<C { roo [P,[B(X,t)]]P' dt dx . 
- iRn io tn - k t 
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Now to evaluate the last term, we have 

{ /-l[B(x, t)]p' dx = ( /-l[B(x, t)]l/(P-l) /-l[B(x, t)]dx 
iRn iRn 

:s { (/-l[B(X, t)]l/(P-l) ( d/-l(Y)) dx 
i Rn i B(x,t) 

:s { ({ /-l[B(y, 2t)]1/(P-l)d/-l(Y)) dx 
i Rn i B(x,t) 

:s in (in F(x, Y)/-l[B(y, 2tW/(P-l)d/-l(Y)) dx 

:s ( /-l[B(y, 2t)]1/(p-l)IB(x, t)ld/-l(Y) 
iRn 

where F(x, y) = XDt and Dt = Rn x Rn n {(x, y) : Ix - yl < t}. Therefore, 

Ck,p(/-l) :s C roo (tk-n)P' ( /-l[B(y, 2t)]1/(P-l)IB(x, t)ld/-l(Y) dt 
io iRn t 

< C 1100 (/-l[B(Y, t)]) l/(p-l) dt d . 
- tn-kp t /-l(Y) 

Rn 0 

Since /-l has compact support and finite total mass, it is evident that the 
expression on the right side of the above inequality is finite if and only if 

111 (/-l[B(Y, t)]) l/(p-l) dt d < 00. 
tn-kp t /-l(Y) 

Rn 0 

This establishes the sufficiency of condition (4.7.10). 
For the proof of necessity, we employ the estimate 

gk(X) 2: Clxlk-ne-2Ixl for x ERn, xi- 0 

(see Section 2.6). As in (4.7.9), we have 

Ck,p(/-l) = { (gk * /-l)P'dx = { gk * (gk * /-l)l/(P-l)d/-l. 
iRn iRn 

(4.7.11) 

To estimate the last integral, let f = (gk * /-l)l/(p-l) and use Lemma 1.5.1 
and (4.7.11) to obtain 

gk * f(x) 2: C roo ( ( f(Y)dY) rk-ne-2rdr. 
io iB(x,r) . r 

Clearly, for r > 0, 

f(y) 2: ( gk(Y - z)d/-l(z) ( ) 
l/(p-l) 

i B(y,r) 
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and therefore, 

gk * f(x) 2: C roo ( ( f(Y)dY) rk-ne-2rdr 
Jo JB(x,r) r 

2:C roo rn (gk(y-z)dJ.L(Z) dy rk-ne-2rdr ( ( ) 
l/(p-l) ) 

Jo JB(y,r) r 

2: C roo rn ( rk- ne-2r dJ.L(Z) dy rk-ne-2r dr ( ( ) 
l/(p-l) ) 

Jo JB(y,r) r 

> C roo (J.L[B(y,r)])l/(P-l) e-2plrdr. 
- Jo rn-~ r 

This implies 

£ () > cJ, 100 (Il[B(y,r)])l/(P-l) e-2P'r dr d ( ) 
k,p Il - rn- kp r Il y 

Rn a 

> C J, 11 (Il[B(Y, r )]) l/(p-l) e-2p'r dr d ( ) 
- rn-kp r Il Y Rn a 

2: Ce- 2p' { (I (1l[~~~r)])l/(P-l) dr dll(Y). D 
JRn Jo r p r 

4.8 Other Inequalities Involving Measures in 
( Wk,P)* 

We now return to the inequality (4.2.1) for another application. It states 
that 

( IITII ) k+l k+l Ilu - L(u)llk,p;O :s C T(l) liD ullm-(k+l),p;O, 

where T E (Wm-k,p(O))* and L : W m,P(!1) ---+ Pk(Rn) is the associated 
projection. L( u) has the form 

L(u) = L T(Pa(D)u)xa 

lal9 

where Pa is a polynomial of degree lal whose argument is D = (Dl , ... , Dn). 
In Corollary 4.5.2 we found that L(u) = 0 if Bm-k,p(N) > 0 where 

N = n n {x: Dau(x) = 0 for all O:s lal :s k}. 

This was proved by the establishing the existence of a measure Il 2: 0 
supported in N with Il E (Wm- k,P(!1))*. By taking T = Il it clearly follows 
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that 
L(u) = L J Pu(D)udJ.L = O. 

lul::5k 

(4.8.1) 

Now, if J.L is taken as any non-negative measure in (Wm-k,p(n))* with the 
property that J DUu dJ.L = 0 for all 0:::; lal :::; k, 

then (4.8.1) holds. This observation along with Theorem 4.2.1 and Corol
lary 4.2.3 yield the following result. 

4.8.1. Theorem. Let p > 1 and suppose 0 :::; k :::; m are integers. Let 
n c Rn be a bounded extension domain. If J.L is a non-negative measure on 
Rn such that J.L E (Wm-k,p(n))*, J.L(Rn) ¥- 0 and 

J DUudJ.L = 0 for all 0:::; lal :::; k, 

then 

and 
lIullp*;o :::; CIIDk+lu ll m _(k+1),p;O 

where C = (k,p,m,J.L,n). 

In particular, with k = 0 and m = 1, we have 

if J.L E (W1,p(n))* and 

J udJ.L=O. 

From the preceding section we have found that a non-negative measure 
J.L with compact support belongs to (Wm-k,p(n))* if, for some c: > 0, 

{ J.L[B(x, r)] n } 
sup (k) + : x E R , r > 0 < 00. rn- m- p e 

(4.8.2) 

Consequently, if A is an integer such that A ~ n - (m - k)p + c: and M A is 
a smooth compact manifold of dimension A, then HA I MA is a measure in 
(Wm-k,p(n))*. As an immediate consequence of Theorem 4.8.1, we have 

4.8.2. Corollary. Let A be an integer such that A ~ n - (m - k)p + c: 
where p > 1 and c: > O. Suppose MA is a smooth compact submanifold 
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of dimension >. of Rn, 51 c Rn is an extension domain and suppose u E 
Wm,p(51) has the property that 

r DO:udH).. = 0 for all 0 $ lal $ k 
JM>.nfl 

where H)..(M).. n 51) =f. O. Then 

IIullk,p;fl $ CIIDk+1u ll m_(k+1),p;fl 

and 
IIullp';fl $ CIIDk+lullm_(k+l),p;fl 

where C = C(k,p, m, MA, 51). 

4.9 The Case p = 1 

The development thus far in this chapter has excluded the case p = 1, 
a situation which almost always requires special treatment in V-theory. 
Our objective here is to extend Theorem 4.7.2 to include the case p = 1. 
Since the analysis will depend upon estimates involving IIDulib it is not 
surprising that the co-area formula (Theorem 2.7.1) will playa critical role. 
We begin with the following lemma that serves as a first approximation to 
Theorem 4.7.2 in the case p = 1. We will return to this later (in Chapter 
5) for a complete development in the setting of BV functions. 

4.9.1. Lemma. Let JL ;::: 0 be a Radon measure on Rn and q a number 
such that 1 $ q $ n/n - 1. If 

sup {JL[B(X, r)] : x E Rn r > o} < M 
rq(n-l) , -

for some M;::: 0, then there exists C = C(q, n) such that 

(Ln uqdJL) l/q $ CM1/qilDuill 

whenever u E C[f(Rn). 

(4.9.1) 

Proof. First consider q = 1 and refer to Lemma 1.5.1 to conclude that 

(4.9.2) 

whenever u E C[f(Rn) is non-negative. Here Et = {x: u(x) > t}. Because 
u is continuous, BEt C u-1(t) for each t > OJ moreover the smoothness 
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of u and the Morse-Sard theorem states that u-1(t) is a smooth (n - 1)
manifold for almost all t > O. Consequently, Lemma 5.9.3 and Remark 5.4.2 
imply that for all such t there exists a covering of Et by a sequence of balls 
B(Xi, ri) such that 

00 

L rr- 1 :::; CHn- 1(8Et ) :::; CHn- 1( {u-1(t)}) 
i=l 

where C = C(n). Hence, 

00 

i=l 

i=l 

where C = C(n). Referring to (4.9.2) and the co-area formula (Theorem 
2.7.1) we have 

J u dp, = 100 
p,(Et)dt 

:::; CM 100 Hn-l({u-1(t)})dt 

=CM f IDuldx. iRn 
If u is not non-negative, write lui = u+ - u-, and apply the preceding 
argument to u+ and u- to establish our result for q = 1. 

Now consider q > 1 and let g E Lq' (p,), g ~ O. Then, Holder's inequality 
implies 

Thus, gp, is a Radon measure which satisfies the conditions of the lemma 
for q = 1. Consequently, if u E Co(Rn) we have 

f lulg dp, :::; CM1/qllgll q ,;1' f IDuldx iR iRn 
for all g E Lq' (p,), g ~ O. However, by the Riesz Representation theorem, 
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and our result is established. o 

4.9.2. Remark. The restriction q :S n/n -1 in the lemma is not essential. 
If q > n/n - 1, the lemma would require a Radon measure p, to satisfy 

p,[B(x, r)] :S Mrm 

for all x E Rn, all r > 0, and some m > n. However, there is no non-trivial 
Radon measure with this property. In order to see this, let U c Rn be a 
bounded open set. Choose € > 0 and for each x E U, consider the family 
Qx of closed balls B(x, r) such that 0 < r < € and B(x, r) C U. Defining 

Q={B:BEQx,XEU} 

we see that Q covers U and thus, by Theorem 1.3.1 there is a disjointed 
subfamily F C Q such that 

U c U{B : B E Q} C U{B : B E F}. 

Hence, denoting the radius of Bi by ri, we have 

00 

00 

< M5m €m-n '"' r~ - ~~ 
i=l 

Since U is bounded and € is arbitrary, it follows that p,(U) = O. 0 

Our next objective in this section is to extend inequality (4.9.1) by re
placing IIDul11 on the right side by IIDlulh- For this purpose it will be 
necessary to first establish the following lemma. 

4.9.3. Lemma. Let p, :::: 0 be a Radon measure on Rn, £ < n, 1 :S q < 
(n - £ + 1)(n - £) and 7- 1 = 1- (q -1)(n - £)/n. Then there is a constant 
C such that for all x E Rn and r > 0, 

rl-(n+1)llh * p,IIT;B(x,r) :S Csup{r(l-n)qp,[B(x,r)]: x E Rn,r > O}. 

Proof. It will suffice to prove the lemma for x 
Minkowski's inequality for integrals yields 

O. An application of 

dp,(y) dx ( ( ) 
T ) liT 

l(o,r) 1(o,2r) Ix - yln-1 
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< { ({ dx ) liT dJ.L(Y). 
J B(O,2r) J B(O,r) Ix - yl(n-l)T 

(4.9.3) 

Observe that 

{ dx ( dx 
JB(O,r) Ix - yl(n-l)T = JB(O,r)nB(y,r) Ix - yl(n-l)T 

( dx 
+ J B(O,r)-B(y,r) Ix - yl(n-l)T' 

The first integral can be estimated by 

( dx < Crn-T(n-l) 
J B(y,r) Ix - yl(n-l)T -

and the second integral is dominated by rn-T(n-l). Here we have used the 
fact that (n - 1)7 < n. Thus, 

( dx < Crn-T(n-l) 
J B(O,r) Ix - yl(n-l)T - , 

and therefore from (4.9.3) 

ri-(n+l) ( { ( ( dJ.L(y)) T dX) liT 
J B(O,r) J B(O,2r) Ix - yl(n-l) 

:::; Cr(i-n)qJ.L[B(O,2r)]. 

If Ixl < rand Iyl ~ 2r, then Iyl :::; 21Y - xl- Consequently, 

ri-(n+l) ( { ( ( dJ.L(y)) T dX) liT 
J B(O,r) J 1Y1 ?2r Ix - yl(n-l) 

< Cr(i-l)-(q-l)(n-i) ( dJ.L(Y) . 
- J 1Y1 ?2r Iyln-l 

Appealing to Lemma 1.5.1, we have 

1 dJ.L(Y) 100 -n -I In-l :::; (n - 1) J.L[B(O, t)]t dt. 
lyl?2r Y 2r 

Now define a measure von Rl by v = t(n-i)q-ndt and write 

rOO J.L[B(O, t)]rndt = roo J.L[B(O, t)]t(i-n)qdv 
J2r J2r 

:::; sup {r(i-n)qJ.L[B(O,r)]} roo dv 
r>O J 2r 

:::; Cr(n-i)q-n+l sup r(i-n)q J.L[B(O, r )]. 
r>O 

( 4.9.4) 

( 4.9.5) 
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This combined with (4.9.5) and (4.9.4) yield the desired result. 0 

We are now prepared for the main result of this section. 

4.9.4. Theorem. Let J-l ;::: 0 be a Radon measure on Rn and let £ :S n, 
q;::: 1. Then if 

{ J-l[B(X,r)] n } 
sup rq(n-i) : x E R , r > 0 = M < 00, 

there exists C = C (q, n) such that 

whenever u E Cff (Rn ). 

Proof. If £ = n, then for u E Cff(Rn) and x ERn, 

from which the result follows. 
If 1 = £ < n, the result follows from Lemma 4.9.1. 
Next, consider the case £ < n, £ > 1 and q > n/(n - 1). Since u E 

C!)(Rn), it follows that u E W~-1,n/(n-1)(Rn) and therefore u = gi-1 * f, 
f E Ln/(n-1)(Rn) with Ilflln/(n-1) '" Ilulli-1,n/(n-1) '" IIDi-1ulln/(n_1)' 
Thus, Theorem 4.7.2 implies 

Ilullq;1' :S CM1/qIlDi-1ulln/(n_1)' 

Since IIDi-11In/n_1 :S CIIDiul11 by Theorem 2.4.1, our result is established 
in this case. 

Finally, consider £ < n, £ > 1, and q :S n/(n - 1). We proceed by 
induction on £, assuming that the result holds for derivatives of orders up 
to and including £ - 1. As in (2.4.5), 

r lu(xWdJ-l(x):S C r I r 'r('u(r2~q; dyl dJ-l(x) J Rn J Rn J Rn X - Y 

:S Cq r IDullulq-1I1 * J-l dy (by Fubini's theorem) 
JRn 

:S Cqllull;/(ln_i) IIIDulh * J-lIIT (by Holder's inequality) 

where T-1 = 1 - (q - l)(n - £)n-1. By Sobolev's inequality, 

(4.9.6) 
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To estimate IIIDulh * MilT let m be a measure on Rn defined by m 
(h * Mtdx and apply the induction hypothesis to obtain 

IIIDul l 1 * MilT = IIIDuIIIT;m 
::; C sup{ r(i-1)-nm [B(x, r WIT: r > 0, x E Rn} IIDiul11 

= Csup{r(i-1)-nllh * MIIT;B(x,r) : r > O,X ERn} IIDiulh. 

This combined with (4.9.6) and Lemma 4.9.3 establishes the proof. 0 

Exercises 

4.1. Give a proof of Corollary 4.5.3 based on the argument that imme
diately precedes Section 4.1. You will need the material in Section 
2.6. 

4.2. The following provides another method that can be used to define 
the trace of a Sobolev function u E W 1,p(n) on the boundary of a 
Lipschitz domain n. 
STEP 1. Assume first that u E C1(n), u 2': 0. For each Xo E an and 
with the (n + 1 )-cube centered at Xo with side length 2r denoted by 
C(xo, r), we may assume (after a suitable rotation and relabeling of 
coordinate axes) that there exists r > ° such that C (xo, r) n an can 
be represented as the graph of Lipschitz function f where the unit 
exterior normal v can be expressed as 

(Dd, ... ,Dn , f, 1) 

Jl + IDfl2 

Hn-a.e. on C(xo, r) n an. With en+! = (0, ... ,1) and under the as
sumption that spt u C C(xo, r), appeal to the Gauss-Green theorem 
(see Theorem 5.8.7) to conclude that there exists a non-negative con
stant C, depending only on the Lipschitz constant of f, such that 

r udHn ::; C r (uen+d. vdHn 
Jan Jan 

= C In div( uen+!)dx 

::; C In IDuldx. 

If u assumes both positive and negative values, write lui = u+ + u
to obtain 

r lui dHn ::; C r IDul dx. Jan Jn 
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STEP 2. With no restriction on spt u, use a partition of unity to 
obtain 

[ lui dHn ~ C [ (lui + IDul)dx. Jan Jn 

STEP 3. Prove that 

[ lulPdHn ~ C [ (lulP + IDulP)dx Jan Jn 
by replacing lui by lulP in the preceding step. 

STEP 4. Now under the assumption that u E W1,P(O), refer to Ex
ercise 2.17 to obtain a sequence of smooth functions Uk such that 
IIUk - uliI,p;n ---+ 0 and 

[ IUk - utlPdHn ---+ 0 as k, l ---+ 00. Jan 
The limiting function u* E IJ'(aO) is called the trace of u. 

4.3. Prove that u* obtained in the preceding exercise is equivalent to the 
trace obtained in Remark 4.4.5. 

4.4. Prove the following Poincare-type inequality which provides an esti
mate of the measure of {lui ~ k} in terms of IIDulh. Let u E W1,P(B) 
where B is an open ball of radius r and suppose JL is a measure of 
total mass 1 supported in B n {x: u(x) = O}. Then, if k ~ 0, 

kl{x: lu(x)1 ~ k}1 ~ Cr L IDul + Crn L (h * JL) ·IDul, 

where Rl is the Riesz kernel (see Section 2.6). Hint: Choose x, y E B 
with u(y) = 0 and obtain 

lu(x)1 ~ lu(x) - u(z)1 + lu(z) - u(y)1 

whenever z E B. An application of polar coordinates yields 

u(x) ~ C[h * (XB ·IDul)(x) + h * (XB ·IDul)(y)]. 

4.5. The technique in the preceding exercise yields yet another proof of 
Corollary 4.5.3 which is outlined as follows. Let u E W1,P(B(r)) where 
B(r) is a ball ofradius r and let N = {x : u(x) = O}. Let t.p be a non
negative smooth function with spt t.p contained in the ball of radius 
2r and such that t.p is identically one on B(r). Select x E B(r) in 
accordance with the result of Exercise 3.15 and define h = t.p[u(x)-u]. 
Then, for each y E R n , 

t.p(y)u(x) = t.p(y)u(y) + h(y). 
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Recall from Theorem 2.6.1 that the operator J : V(Rn) -t Wl,P(Rn) 
defined in terms of the Bessel kernel gl by J(f) = gl * f is an isom
etry. Therefore, with p, as any non-negative Radon measure p" an 
application of Fubini's theorem yields 

j hdp,= jgl*(J-lh)dP,= j(J-lh).gl*P,dX. 

Thus, if p, is concentrated on B(r) n N and satisfies Ilgl * p,llpl ::; 1, it 
follows that 

p,[B(r) n Nllu(x)1 ::; IIJ-l[cp(u - u(x))llip ::; Cllcp(u - u(x)lh,p· 

Taking the supremum over all such p, leads to 

Bl,p[B(r) n Nllu(x)IP ::; C [r-p r lu(x) - u(y)IPdy 
iB(2r) 

+ r IDulP dyj. 
iB(2r) 

Use Exercise 3.15 to estimate 

r lu(x) - u(y)IPdy 
iB(2r) 

in terms of the norm of Du. 

4.6. Poincare's inequality states that if u E Wl,p(n) and u vanishes on 
a set N of positive Bl,p-capacity, then lIullp*;n ::; CIiDullp;n, where 
C depends on n and the capacity of N. In the event that more is 
known about u, this result can be improved. Using the indirect proof 
of Section 4.1, prove that if u E Wl,p(n) is a harmonic function that 
vanishes at some point Xo E n, then there exists C = C(xo, n) such 
that 

4.7. Lemma 4.2.2 is one of many interpolation results involving different 
orders of derivatives of a given function. In this and the next exercise, 
we will establish another one that has many useful applications. Prove 
the following: Let g be a measurable function on Rn , and let 0 < 0: < 
n, 0 < E < 1. Then 

IIm:(g)(x)1 ::; C(Mg(x))l-". (Ia(lgl)(x))", 

where M g is the maximal function of g. Refer to the proof of Theorem 
2.8.4 and choose b in(2.8.4) as 
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4.8. Let I = la(g), 9 ~ O. Prove the interpolation inequality 

IIDk Ilir ~ CIIIII~,~alllllia-lkl)/s 

where k is any multi-index with 0 < Ikl < a, l/r = Ikl/ap+(l-lkl)/ S, 

and p < S ~ 00. Use the previous exercise to prove 

where 1 < p < 00, l/r = (1 - r::)/p + f/S, p < S < 00. Then let 
1= la(g) and observe that 

4.9. Prove the following as a consequence of Theorem 4.2.1. Let r! c Rn 

be a bounded, connected, extension domain. Suppose v E £P' (r!), 
n i= 0, p > 1. Prove that there exists C = C(p, v, r!) such that 

whenever u E W1,P(r!), In uv dx = O. 

4.10. When r! c Rn+l is a Lipschitz domain, Exercise 4.2 shows one way 
of defining the trace, u* E £P(ar!), when u E W1,P(r!), p > 1. Note 
that 

{ lu*IPdHn ~ C {(luIP + IDuIP)dx. 
Jan Jn 

Let v E £P' (ar!), v i= O. Prove that there exists C = C(p, v, r!) such 
that 

Ilullp;n ~ CIIDullp;n 

whenever u E W1,P(r!), Ian u*v*dHn = O. 

4.11. At the beginning of this chapter an indirect proof of the following 
Poincare inequality is given: If u E W1,P(r!) and u = 0 on a set of 
positive measure S, then Ilullp;n ~ ClIDullp;n. Show that essentially 
the same argument will establish the same conclusion if it is only 
assumed that u = 0 on a set of positive B1,p-capacity. 

Historical Notes 

4.1. Lemmas 4.1.3 and 4.1.4 provide the main idea that serves as the key
stone for the developments in this chapter. They are due to Norman Meyers 
[ME4] and many other results in this chapter, such as those in Sections 2, 
5, and 6 are taken from this paper. It should be emphasized that Lemma 
4.1.3 is an abstract version of the usual indirect proof of the basic Poincare 
inequalities. 
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4.4. In Remark 4.4.5 an approach to the subject of trace theory on the 
boundary is indicated which is based on the material in Chapter 3 con
cerning the property of Sobolev functions being defined everywhere in the 
complement of small exceptional sets. Another approach to this subject is 
presented in [LM]. 

In the proof of Theorem 4.4.6 it is not necessary to use the Morse-Sard 
theorem if we are willing to use the full strength of the "Boxing Inequality" 
[GU] and not the version reflected in Lemma 5.9.3. The inequality in [GU] 
states that there is a constant C = C(n) such that any compact set KeRn 
can be covered by a sequence of balls {B(ri)} such that 

00 

L rr- 1 ::; CHn - 1(8K). 
i=l 

This inequality could be used to establish (4.4.6) if K is taken as E t and 
by observing that 8Et C v-1(t) since v is continuous. 

4.5. The proof of the Poincare inequality here is, of course, based on the 
material in the previous sections, particularly Theorem 4.2.1. This proof is 
contained in [ME4]. There are several other proofs of the Poincare inequal
ity including the one in [P] which is especially interesting. 

4.7. All of the Sobolev-type inequalities discussed thus far are in terms 
of inequalities defined on Rn. There also are similar inequalities that hold 
for functions defined on sub manifolds of Rn. For example, in minimal sur
face theory, Sobolev inequalities are known to hold for functions defined on 
submanifolds where the inequality includes a term involving the mean cur
vature of the submanifold, cf. [MS]. In case of a minimal surface, the mean 
curvature is O. Theorem 4.7.2 is a result of the same ilk in that the left 
side involves integration with respect to a measure t-t which can be taken 
as a suitable Hausdorff measure restricted to some submanifold. However, 
it is different in the respect that the right side of the inequality involves 
the V-norm of the gradient relative to Lebesgue measure on Rn and not 
the norm relative to Hausdorff measure restricted to the submanifold. This 
interesting result was proved by David Adams [AD2]. Theorem 4.7.4 states 
that measures with suitable growth over all balls are elements of the dual 
of wk,p(Rn). Thus, Theorem 4.7.2 is closely related to (4.2.1). 

Theorem 4.7.5 which yields a characterization of those measures in the 
dual ofwk,p(Rn) is due to Hedberg and Wolff [HW] although the proof we 
give is adapted from [AD7]. 

4.9. Inequality (4.9.1) is due to Meyers-Ziemer [MZ] in case q = 1. The 
proof for the case 1 < q < n/(n - 1) is taken from [MA3]. This inequality 
is also established in Chapter 5 in the setting of BV functions, cf. Theorem 
5.12.5. Corollary 4.1.5 is an observation that was communicated to the 
author by David Adams. This result when applied to Theorem 4.5.1 yields 
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more information if Lemma 4.1.4 were used. This is an interesting example 
of the critical role played by the sharpness of a constant, in this instance, the 
exponent of Bm-k,p(A) in Theorem 4.5.1. Indeed, in the work of Hedberg 
[HE2J, it was essential that the best exponent appear. He gave a different 
proof of Theorem 4.5.1. 
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Functions of Bounded 
Variation 
A function of bounded variation of one variable can be characterized as 
an integrable function whose derivative in the sense of distributions is a 
signed measure with finite total variation. This chapter is directed to the 
multivariate analog of these functions, namely the class of LI functions 
whose partial derivatives are measures in the sense of distributions. Just 
as absolutely continuous functions form a subclass of BV functions, so it 
is that Sobolev functions are contained within the class of BV functions of 
several variables. While functions of bounded variation of one variable have 
a relatively simple structure that is easy to expose, the multivariate theory 
produces a rich and beautiful structure that draws heavily from geometric 
measure theory. An interesting and important aspect of the theory is the 
analysis of sets whose characteristic functions are BV (called sets of finite 
perimeter). These sets have applications in a variety of settings because of 
their generality and utility. For example, they include the class of Lipschitz 
domains and the fact that the Gauss-Green theorem is valid for them 
underscores their usefulness. One of our main objectives is to establish 
Poincare-type inequalities for functions of bounded variation in a context 
similar to that developed in Chapter 4 for Sobolev functions. This will 
require an analysis of the structure of BV functions including the notion of 
trace on the boundary of an open set. 

5.1 Definitions 

5.1.1. Definition. A function u E LI(n) whose partial derivatives in the 
sense of distributions are measures with finite total variation in n is called 
a function of bounded variation. The class of all such functions will be 
denoted by BV(n). Thus u E BV(n) if and only if there are Radon (signed 
measures) measures J-LI, J-L2, ... , J-Ln defined in n such that for i = 1,2, ... , n, 
IDJ-Lil(n) < CXl and 

J UDicpdx = - J cpdJ-Li (5.1.1) 

for all cp E cO'(n). 
The gradient of u will therefore be a vector valued measure with finite 
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total variation: 

IIDull = sup{1n udivv dx : v = (Vb"" Vn ) E Cgo(fl; Rn), 

Iv(x)1 ~ 1 for x E fl} < 00. 
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(5.1.2) 

The divergence of a vector field V is denoted by div v and is defined by 
divv = E~=l Divi· Observe that in (5.1.1) and (5.1.2), the space CO'(fl) 
may be replaced by CJ(fl). The space BV(fl) is endowed with the norm 

IlullBV = Ilulll;O + IIDull· (5.1.3) 

If u E BV(fl) the total variation IIDul1 may be regarded as a measure, 
for if I is a non-negative real-valued continuous function with compact 
support fl, define 

Iv(x)1 ~ I(x) for x E fl}. (5.1.4) 

5.1.2. Remark. In order to see that II Dull as defined by (5.1.4) is in fact 
a measure, an appeal to the Riesz Representation Theorem shows it is 
sufficient to prove that IIDul1 is a positive linear functional on Co(fl) which 
is continuous under monotone convergence. That is, if {Jd is a sequence 
of non-negative functions in Co(fl) such that Ii i g for g E Co(fl), then 
IIDull(fi) --+ IIDull(g), cf. [F4, Theorem 2.5.5]. In order to prove that IIDul1 
has these properties, let JL = Du and refer to (5.1.1) to see that JL satisfies 

J udiv<pdx = - J <p' dJL 

where <p E CO'(fl; Rn). Therefore, we may write (5.1.4) as 

IIDull(f) = sup{1n V· dJL : v = (Vl, ... , vn ) E Co(fl; Rn) 

Iv(x)1 ~ I(x) for x E fl}. (5.1.5) 

To show that IIDul1 is additive, let I, g E Co(fl) be non-negative functions 
and suppose v E Co(fl, Rn) is such that Ivl ~ 1+ g. Let h = inf{J, Ivl} and 
define 

{ 
h(x) v(x) 

w(x) ~ :(X)I 
Iv(x)1 =I 0 

Iv(x)1 = o. 
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It is easy to verify that W E Co(O) and Iv - wi = Ivl - h ::; g. Therefore, 
since Iwi = h ::; I, 

In v . dJ.L = In w . dJ.L + In (v - w) . dJ.L 

::; IIDuIlU) + IIDull(g)· 

This implies that IIDuliU + g) ::; IIDuIlU) + IIDull(g). The opposite in
equality is obvious and consequently it follows that IIDull is additive. It 
is clearly positively homogeneous. It remains to show that it is contin
uous under monotone convergence. For this purpose, let Ii i 9 and let 
v E Co(O, Rn) be such that Ivl ::; g. Also, define hi = inf{/i, Ivl} and 

Iv(x)1 # 0 

Iv(x)1 = o. 
Note that Wi E Co(O), IWil = hi ::; Ii, and that rv - wil = Ivl- hi ! 0 as 
i -+ 00. Since Iv - Wi I = Ivl- hi ::; 21vl, Lebesgue's Dominated Convergence 
Theorem implies 

f VdJ.L = Du· v = .lim Du· Wi::; .lim IIDull(hi ). 
'&--+00 1--+00 

By taking the supremum of the left side over all such v it follows that 
IIDull(g) ::; limi_oo II Dull (hi). Since hi ::; 9 for all i = 1,2, ... , we have 
IIDull(g) = limhoo II Du II (hi). This establishes that IIDull is a non-negative 
Radon measure on O. 

We know that the space of absolutely continuous u with u' E Ll(Rl) 
is contained within BV(Rl). Analogously, in R n we have that a Sobolev 
function is also BV. That is, W1,1(0) C BV(O), for if u E W1,1(0), then 

r udivvdx = - r'tDiUvdX 
in ini=l 

and the gradient of u has finite total variation with 

IIDull(O) = In IDuldx. 

5.2 Elementary Properties of BV Functions 

In this section we establish a few results concerning convergence properties 
of BV functions. We begin with the following which is almost immediate 
from definitions, but yet extremely useful. 

5.2.1. Theorem. Let 0 C R n be an open set and Ui E BV(O) a sequence 
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of functions that converge to a function u in Lfoc(D.). Then 

liminf IIDuill(U) ~ IIDull(U) 
...... 00 

for every open set U c D.. 

Proof. Let v be a vector field such that v E OO'(U; Rn) and Iv(x)1 ~ 1 for 
x E U. Then 

r udivvdx = lim r uidivvdx ~ liminfIIDuill(U). iu ...... 00 iu ...... 00 

The result follows by taking the supremum over all such v. D 

5.2.2. Remark. Note that the above result does not assert that the limit 
function U is an element of BV(D.). However, if u E L1(D.) and we assume 
that 

sup{IIDuill(D.): i = 1,2, ... } < 00 

then u E BV(D.). Indeed, if cp E 00'(0.), and DUi is any partial derivative 
of Ui, then 

and therefore 

I r UDCPdXI ~ sup Icpl1iminf IIDuill(D.) < 00. in ...... 00 

Since 00'(0.) is dense in the space of continuous functions with compact 
support, we have that 

Du(cp) = -In uDcpdx 

is a bounded functional on 0 0 (0.). That is, Du is a measure on D.. 
Theorem 5.2.1 established the lower semicontinuity of the total variation 

of the gradient measure relative to convergence in Lfoc. We now will prove 
an elementary result that provides upper semicontinuity. 

5.2.3. Theorem. Let {ud E BV(D.) be a sequence such that Ui --+ U in 
Lfoc(D.) and 

lim IIDuill(D.) = IIDull(D.) . 
...... 00 

Then, 
lim sup IIDull(U n D.) ~ IIDull(U n D.) 
i~oo 
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whenever U is an open subset of O. 

Proof. Since V = 0 - U is open, it follows from Theorem 5.2.1 that 

II Dull (U) ::; li!Jl inf IIDui II (U) .-00 
IIDull(V) ::; li!Jlinf II Dui II (V) . • -00 

But, 

IIDull(U n 0) + IIDull(V) = IIDull(O) = lim IIDuill(O) 
'-00 

2: lim sup IIDuill(U n 0) + liminf IIDuill(V) 
i~oo 1.--+00 

2: lim sup II Dui II (U n 0) + IIDull(V). 0 
i--+oo 

In view of the last result and Theorem 5.2.1, the following is immediate. 

5.2.4. Corollary. If {Ui} E BV(O) is a sequence such that Ui --+ U in 
Lfoc(O), limi_oo II Duill(O) = IIDull(O), and IIDull(8U) = 0, where U is an 
open subset of 0, then 

lim IIDuill(U) = IIDull(U). 
'-00 

5.3 Regularization of BV Functions 

Here we collect some results that employ the technique of regularization 
introduced in Section 1.6. Thus, for each E: > 0, 'Pc; is the regularizing kernel 
and Uc; = U*'Pc;. From the proof of Theorem 1.6.1, it follows that if U cc 0, 
and u E Lfoc(O), then lIuc;1I1;u ::; lIulll;o for all sufficiently small E: > O. In 
this sense, regularization does not increase the norm. We begin by showing 
that a similar statement is valid when the BV norm is considered. 

5.3.1. Theorem. Suppose U is an open set with U c 0 and let u E BV(O). 
Then, for all sufficiently small E: > 0, 

lI uc;IIBv(u) ::; lI u IlBv(o), 

Proof. In view of Theorem 5.2.1, it suffices to show that IIDuc;II(U) ::; 
IIDull(O) for all sufficiently small E: > O. Select v E CJ(U, Rn) with Ivl ::; 1. 
Choose TJ > 0 such that {x : d(x, U) < TJ} C O. Note that Ivc;1 ::; 1 and 
sptvc; C {x: d(x,U) < TJ} for all small E: > O. For all such E: > 0, Fubini's 
Theorem yields 

fu uc;div v dx = In uc;div v dx = In u( div v)c;dx 

= In udivvc;dx ::; IIDull(O). 
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The result follows by taking the supremum over all such v. o 

5.3.2. Proposition. Let u E BV(O) and f E Coo(O). Then fu E BV(O) 
and D(fu) = D fu + f Du in the sense of distributions. 

Proof. Let U be an open set such that spt feU c U c O. Then, 
uc;f E Co(U) with D(fuc;) = (Df)uc; + fDuc; at all points in U. However, 
Iluc;-ulh;u ---+ 0 as c ---+ O. (Of course, we consider only those c > 0 for which 
uc;(x) is defined for x E U.) In particular, when considered as distributions, 
Uc; ---+ u. That is, Uc; ---+ U in ,9?"(U) and therefore Duc; ---+ Du in ,9?"(U) , (see 
Section 1.7). Since f E COO(U), it follows that fDuc; ---+ fDu in ,9?"(U). 
Clearly, (Df)uc; ---+ (Df)u in ,9?"(U). Finally, with the observation that 
fuc; ---+ fu in ,9?"(U) and therefore that D(fuc;) ---+ D(fu) in ,9?"(U), the 
conclusion readily follows. 0 

We now proceed to use the technique of regularization to show that 
BV functions can be approximated by smooth functions and thus obtain a 
result somewhat analogous to Theorem 2.3.2 which states that COO(O)n{ u : 
Ilullk,p;n < oo} is dense in Wk,P(O). Of course, it is not possible to obtain 
a strict analog of this result for BV functions because a sequence {Ui} E 
Coo (0) that is fundamental in the BV norm will converge to a function in 
W 1,1 (0). However, we obtain the following approximation result. 

5.3.3. Theorem. Let u E BV(O). Then there exists a sequence {Ui} E 
Coo (0) such that 

lim r lUi - uldx = 0 
' ..... 00 in 

and 
lim IIDuill(O) = IIDull(O). 
' ..... 00 

Proof. In view of Theorem 5.2.1, it suffices to show that for every c > 0, 
there exists a function Vc; E COO(O) such that 

!nlu - vc;ldx < c and IIDvc;II(O) < IIDull(O) + c. (5.3.1) 

Proceeding as in Theorem 2.3.2, let Oi be sub domains of 0 such that 
0i cc 0iH and U~oOi = O. Since IIDul1 is a measure we may assume, 
by renumbering if necessary, that IIDull(O - 0 0 ) < c. Let Uo = 0 1 and 
Ui = 0i+1 - Oi-1 for i = 1,2, .... By Lemma 2.3.1, there is a partition of 
unity subordinate to the covering Ui = 0i+1 - Oi-1, i = 0,1, .... Thus, 
there exist functions fi such that fi E CO(Ui ), 0 ~ J; ~ 1, and z=:o fi == 1 
on O. Let 'Pc; be a regularizer as discussed at the beginning of this section. 
Then, for each i there exists Ci > 0 such that 

(5.3.2) 
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Define 

In l(fiU)ei -liuldx < eT(Hl) 

In l(uDfi)ei - uDfildx < eT(i+1). 

00 

Ve = ~)Uli)ei' 
i=O 

Clearly, Ve E COO(n) and u = L:o uk Therefore, from (5.3.3) 

[ IVe - uldx $ f: [ I(u/i)ei - Ufil dx < e. 
in i=O in 

Reference to Proposition 5.3.2 leads to 
00 00 

DVe = ~)fiDu)ei + ~)uDli)ei 
i=O i=O 
00 00 

= '2)liDu)ei + L[(uDfi)ei - uDfi]' 
i=O i=O 

Here we have used the fact that ~ D fi = 0 on n. Therefore, 

(5.3.3) 

(5.3.4) 

(5.3.5) 

In IDveldx $ ~ !n1(liDu)eildx + ~ !n1(uD/i)ei - uDlildx. 

The last term is less than e by (5.3.4). In order to estimate the first term, 
let 't/J E C~(n; Rn) with sup I't/JI $ 1. Then, with ipe * 't/J = 't/Je, 

If ipe * (fi Du)· 't/Jdxl = If 't/Jefid(Du)I by Fubini's theorem, 

= If Udiv('t/Je!i)dXI 

$IIDull(Ui) 

since sPt't/Je!i C Ui and I't/Je!il $ 1. Taking the supremum over all such 't/J 
yields 

!n1(fiDu)ei Idx $ IIDull(Ui), i = 0,1, .... 

Therefore, since each x E n belongs to at most two of the sets Ui, 

llDveldX $ f: IIDull(Ui) + e 
n i=O 

00 

$IIDull(n1) + L IIDull(Ui) + e 
i=l 

$ IIDull(n1 ) + 2l1Dull(n - no) + e 

$ IIDull(n) + 3e. 
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Since c > 0 is arbitrary, this along with (5.3.5) establishes (5.3.1). D 

5.3.4. Corollary. Let Sl eRn be a bounded extension domain for Wl,I(Sl). 
Then BV(Sl) n {u: IlullBV ::; 1} is compact in Ll(Sl). 

Proof. Let Ui E BV(Sl) be a sequence of functions with the property that 
IluillBV ::; 1. By Theorem 5.3.3 there exist functions Vi E Coo(Sl) such that 

In IVi - uil dx < i-I and In IDvil dx ::; 2. 

Thus, the sequence {llvilll,I;O} is bounded. Then, by the Rellich-Kondra
chov compactness theorem (Theorem 2.5.1), there is a subsequence of {Vi} 
that converges to a function V in Ll(Sl). Referring to Remark 5.2.2, we 
obtain that V E BV(Sl). D 

In Theorem 2.1.4 we found that u E W 1,p if and only if u E £P and u has 
a representative that is absolutely continuous on almost all line segments 
parallel to the coordinate axes and whose partial derivatives belong to £P. 
We will show that a similar result holds for BV functions. 

Since we are concerned with functions for which changes on sets of mea
sure zero have no effect, it will be necessary to replace the usual notion of 
variation of a function by essential variation. If u is defined on the interval 
[a, b], the essential variation of u on [a, b] is defined as 

where the supremum is taken over all finite partitions a < to < h ... tk < b 
such that each ti is a point of approximate continuity of u. (See Remarks 
3.3.5 and 4.4.5 for discussions relating to approximate continuity.) From Ex
ercise 5.1, we see that u E BV(a, b) if and only if ess V;(u) < 00. Moreover, 
ess V;(u) = IIDull[(a, b)]. We will use this fact in the following theorem. As 
in Theorem 2.1.4, if 1 ::; i ::; n, we write x = (x, Xi) where x E Rn-l and 
we define Ui(Xi) = u(x, Xi). Note that Ui depends on the choice of x but for 
simplicity, this dependence will not be exhibited in the notation. Also, we 
consider rectangular cells R ofthe form R = (aI, b1 ) X (a2' b2) X ... x (an, bn ). 

5.3.5. Theorem. Let u E Ltoc(Rn). Then u E BVioc(Rn) if and only if 

kess V;/(ui)dx < 00 

for each rectangular cell R c R n- 1 , each i = 1,2, ... ,n, and ai < bi. 

Proof. Assume first that u E BVioc (Rn). For 1 ::; i ::; n it will be shown 
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that 

hess Vd'II(Ui)dx < 00 

for each rectangular cell R c Rn-l and ai < bi' For notational s~mplicity, 
we will drop the dependence on i and take R of the form R = R x [a, b]. 
Now consider the mollified function Ue = 'Pe * U and note that 

L IUe - uldx -+ 0 as e -+ 0 

and 
limsup { IDueldx < 00 (Theorem 5.3.1). 

e-+O JR 

Consequently, with Ue,i(Xi) = ue(x, Xi), it follows that Ue,i -+ Ui in Ll(a, b) 
for Hn-l-a.e. X E R. Theorem 5.2.1 implies that liminfe-+o IIDue,ill[(a, b)] ~ 
IIDuill[(a, b)] and therefore, from Exercise 5.1, 

ess Vd'( Ui) ~ lim inf ess Vd'( Ue i) 
e-+O ' 

for Hn-l_ a.e. X E R. Fatou's lemma yields 

hess Vd'(ui)dHn-1(x) ~ li~lrf hess Vd'(ue,i)dHn-1(x) 

= liminf { IDiUeldx 
e-+O JR 

~ limsup ( IDueldx < 00. 
e-+O JR 

For the other half of the theorem, let U E L{oc(Rn) and assume 

hess Vd'(ui)dHn-1(x) < 00 

for each 1 ~ i ~ n, a < b, and each rectangular cell R eRn-I. Choose 
'P E C~(R), I'PI ~ 1, where R = R x (a, b) and employ Exercise 5.1 to 
obtain 

( uDi'P dx ~ Z essVd'(ui)dHn-1(x) < 00. JRn Jk 
This shows that the partial derivatives of U are totally finite measures over 
R and therefore that U E BV'ioc(Rn). 0 

5.4 Sets of Finite Perimeter 

The Gauss-Green theorem is one of the fundamental results of analysis 
and although its proof is well understood for smoothly bounded domains 
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or even domains with piece-wise smooth boundary, the formulation of the 
result in its ultimate generality requires the notion of an exterior normal to 
a set with no smoothness properties in the classical sense. In this section, 
we introduce a large class of subsets of Rn for which the Gauss-Green 
theorem holds. These sets are called sets of finite perimeter and it will be 
shown that they possess an exterior normal which is defined in the same 
spirit as Lebesgue points of V-derivatives. The Gauss-Green theorem in 
the setting of sets of finite perimeter will be proved in Section 5.8. 

5.4.1. Definition. A Borel set E C R n is said to have finite perimeter 
in an open set f2 provided that the characteristic function of E, XE, is a 
function of bounded variation in n. Thus, the partial derivatives of XE are 
Radon measures in f2 and the perimeter of E in f2 is defined as 

P(E, f2) = IIDXEII(f2). 
A set E is said to be of locally finite perimeter if P(E, f2) < 00 for every 
bounded open set f2. If E is of finite perimeter in Rn , it is simply called a 
set of finite perimeter. From (5.1.4), it follows that 

P(E,f2) = sup{l divvdx: v = (V1, ... ,Vn) E CO'(f2, Rn), Iv(x)1 :::; I}. 

(5.4.1) 

5.4.2. Remark. We will see later that sets with minimally smooth bound
aries, say Lipschitz domains, are of finite perimeter. In case E is a bounded 
open set with C2 boundary, by a simple application of the Gauss-Green 
theorem it is easy to see that E is of finite perimeter. For if v E CO"(f2; Rn) 
with IIvll"" :::; 1, then 

[divvdx= [ v·vdHn- 1 :::;Hn- 1(f2n8E)<00 
JE JaE 

where v(x) is the unit exterior normal to E at x. Therefore, by (5.4.1), 
P(E, f2) < 00 whenever f2 is an open set. 

Moreover, it is clear that P(E,f2) = Hn-1(f2n8E). Indeed, since E is a 
C 2-domain, there is an open set, U, containing 8E such that d(x) = d(x, E) 
is C 1 on U - 8E and Dd(x) = (x - ~(x))/d(x) where ~(x) is the unique 
point in 8E that is nearest to x. Therefore, the unit exterior normal v to 
E has an extension ii E CJ(Rn ) such that liil :::; 1. Hence, if v = 'flii with 
'fl E CO"(f2), we have, 

[ div v dx = [ div 'flii dx = [ 'fl dHn- 1 . 
JE JE JaE 

This implies 

P(E, f2) ;::: sup {faE 'fldHn- 1 : 'fl E CO'(f2), l'fll :::; I} 

= Hn-1(f2 n 8E). 
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Intuitively, the measure DXE is nothing more than surface measure 
(Hn-1-measure) restricted to the boundary of E, at least if E is a smoothly 
bounded set. One of the main results of this chapter is to show that this 
idea still remains valid if E is a set of finite perimeter. Of course, since we 
are in the setting of measure theory, the topological boundary of E is no 
longer the appropriate object of study. Rather, it will be seen that a subset 
of the topological boundary, defined in terms of metric density, will carry 
the measure DXE. 

In Theorem 2.7.4 we observed that the isoperimetric inequality lead to 
the Sobolev inequality via the co-area formula. Conversely, in Remark 
2.7.5 we indicated that the Sobolev inequality can be used to establish 
the isoperimetric inequality. We now return to this idea and place it in 
the appropriate context of sets of finite perimeter. We will establish the 
classical isoperimetric inequality for sets of finite perimeter and also a local 
version, called the relative isoperimetric inequality. 

5.4.3. Theorem. Let E C Rn be a bounded set of finite perimeter. Then 
there is a constant C = C(n) such that 

(5.4.2) 

Moreover, for each ball B (r) C Rn, 

min {IB(r) n EI, IB(r) - E)I}(n-l)/n :::; CIIDXEII(B(r)) = CP(E, B(r)). 
(5.4.3) 

Proof. The inequality (5.4.2) is a special case of the Sobolev inequality for 
BV functions since XE is BV. We will give a general treatment of Sobolev
type inequalities in Section 11. If u E BV(Rn), refer to Theorem 5.3.3 to 
find functions Ui E CD (Rn) such that 

lim J lUi - uldx = 0, 
'-+00 

.lim IIDuill(Rn) = IIDull(Rn) . 
• -+00 

By passing to a subsequence, we may assume that Ui ---+ U a.e. Then, by 
Fatou's lemma and Sobolev's inequality (Theorem 2.4.1), 

Ilulin/(n-l) :::; lim inf IIUi IIn/(n-l) 
.-+00 

:::; lim CIIDuill(Rn) 
'-+00 

:::; ClIDull(Rn). 

To prove the relative isoperimetric inequality (5.4.3), a similar argument 
along with Poincare's inequality for smooth functions (Theorem 4.4.2), 
yields 

lIu - u(r)lIn/(n-l);B(r) :::; CIIDull(B(r)) 
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where u(r) = fB(r) u(x)dx and B(r) is any ball in Rn. Now let u = XE and 
obtain 

[ lu(x) - u(r)ln/(n-l)dx = (IB(r) - EI)n/(n-l) IB(r) n EI 
J B(r) IB(r) I 

+ (IBI~~~IEI) n/(n-l) IB(r) _ EI. 

If IB(r) - EI 2:: IB(r) n EI, then (IB(r) - EI)/(IB(r)1) 2:: ~ and 

CIIDXEII(B(r)) = CIiDull(B(r)) 2:: IIu - u(r)lIn/(n-l);B(r) 

> (IB(r) - EI) IB(r) n EI(n-l)/n 
- IB(r)1 

1 . (IB(r)nEI IB(r)_EI)(n-l)/n 
2:: "2 mm IB(r)I' IB(r)1 

A similar argument treats the case IB(r) n EI2: IB(r) - EI. o 

We now return to the topic of the co-area formula which was proved 
in Theorem 2.7.1 for smooth functions. Simple examples show that (2.7.1) 
cannot hold for BV functions (consider a step function). However, a version 
is valid if the perimeters of level sets are employed. In the following, we let 

E t = n n {x: u(x) > t}. 

5.4.4. Theorem. Let n c Rn be open and u E BV(n). Then 

IIDull(n) = [ IIDXE,II(n)dt. JRl 
Moreover, if u E Ll(n) and Et has finite perimeter in n for almost all t 
with 

then u E BV(n). 

[ IIDXEt II (n)dt < 00, JRl 

Proof. We will first proof the second assertion of the theorem. For each 
t E Rl, define a function ft : Rn --+ Rl by 

Thus, 

u(x) = [ ft(x)dt, x ERn. JRl 
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Now consider a test function ep E Co(o.), such that sup lepl ~ 1. Then 

{ u(x)ep(x)dx = { { ft(x)ep(x)dtdx JRn JRn JRl 
= { ( h(x)ep(x)dxdt. JRl JRn (5.4.4) 

Now (5.4.4) remains valid if ep is replaced by anyone of its first partial 
derivatives. Also, it is not difficult to see that the mapping t ~ IIDXEt II (0.) 
is measurable. Therefore, if ep is taken as ep E Co(o.; Rn) with sup lepl ~ 1, 
we have 

Du(ep) = - { u· divepdx = - { { ft(x)divep(x)dxdt JRn JRIJRn 

~ { Dh(ep)dt ~ ( IIDxEt!I(o.)dt < 00. (5.4.5) JRl JRl 
However, the sup of (5.4.5) over all such ep equals IIDull(D.), which estab
lishes the second assertion. 

In order to prove the opposite inequality under the assumption that 
u E BV(o.), let {Pkl be a sequence of polyhedral regions invading 0. and 
Lk : Pk ~ Rl piecewise linear maps such that 

(5.4.6) 

and 

(5.4.7) 

(see Exercise 5.2). Let 

E; = Pk n {x : Lk(X) > t}, 

k_ 
Xt - XE;' 

From (5.4.6) it follows that there is a countable set S C Rl such that for 
each j = 1,2, ... 

lim ( IXt(x) - X~(x)ldx = 0 (5.4.8) 
k-+oo J Fj 

whenever t rt. S. Thus, for t rt. S, and E > 0, refer to (5.4.1) to find 
ep E Co(o.; Rn) such that lepl ~ 1 and 

IIDxEt!I(o.) - { divepdx < ~. (5.4.9) JEt 2 

Let M = J Rn I div ep I dx and choose j such that spt ep C Pj . Choose ko ;:::: j 
such that for k ;:::: ko, 
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For k ~ ko, 

If div<pdx - f div<Pdxl:::; M f IXt - X~ldx < ~. 
E t Ef P j 2 

Therefore, from (5.4.9) and (5.4.10) 

Thus, for t (j. S, 

I! DXE.!I (D):::; f div <p dx + c 
lEf 

:::; IIDXEf II(D) + c. 

IIDXEtll(D):::; liminfIIDXEkll(D). k-too t 

Therefore, Fatou's lemma implies 

f IIDXEt II(D)dt :::; liminf f IIDXEk II(D)dt 1 R' k-too 1 R' t 
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(5.4.10) 

:::; liminf f Hn-l[L;l(t) n D]dt (by Remark 5.4.2) 
k-too 1 R' 

:::; liminf f IDLkldx (by (2.7.1)) 
k-too 1 Pk 

= IIDull(D) (by (5.4.7)). D 

5.5 The Generalized Exterior Normal 

In Remark 5.4.2 we observed that a smoothly bounded set has finite perime
ter. We now begin the investigation of the converse by determining the reg
ularity properties possessed by the boundary of a set of finite perimeter. 

5.5.1. Definition. Let E be of locally finite perimeter. The reduced bound
ary of E, {)- E, consists of all points x E Rn for which the following hold: 

(i) IIDXEII[B(x, r)] > 0 for all r > 0, 

(ii) If vr(x) = -DXE[B(x, r)l/IIDXEI![B(x, r)], then the limit v(x) 
limr-to vr(x) exists with Iv(x)1 = 1. 

v(x) is called the generalized exterior normal to E at x. We will employ 
the notation v(x) = v(x, E) in case there is a possibility of ambiguity. The 
notation {)- is used in {)- E to indicate that the normal to E is pointing in 
the direction opposite to the gradient. 

Observe that v(x, E) is essentially the Radon-Nikodym derivative of 
DXE with respect to IIDXEII. To see this, let p(x) be the vector-valued 
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function defined by 

. DXE[B(x, r)] 
p(x) = - ;~ IIDXEII[B(x, r)J' 

From the theory of differentiation of measures in Chapter 1 (see Remark 
1.3.9) this implies that p is the Radon-Nikodym derivative of DXE with 
respect to IIDXEII and that 

for all Borel sets BeRn. Moreover, 

Ie divvdx = - J v(x)· p(x)dIlDXEII 

whenever v E CJ(Rn; Rn). Consequently, by (5.1.2), Ip(x)1 = 1 for IIDXEII
a.e. x E Rn and therefore, p(x) = v(x, E) for IIDXEII-a.e. x ERn. Thus, 
we have 

DXE(B) = - ( v(x, E)dIIDXEII(x), 
iBna-E 

IIDXEII(Rn - 8-E) = O. 

The next lemma is a preliminary version of the Gauss-Green theorem. 

5.5.2. Lemma. Suppose E is of locally finite perimeter and let f E cgo(Rn). 
Then, for almost all r > 0, 

{ Dd dx = - ( fd(DiXE) + ( f(y)vi(Y, B(r))dHn-1(y) 
i EnB(r) i B(r) i Ena(B(r)) 

where B(r) = B(x, r) and Vi(y, B(r)) is the ith component of the unit 
exterior normal. 

Proof. To simplify notation, we will take x = O. From Proposition 5.3.2, 
we have that fXE E BV(f2). Let S be the countable set of r such that 
IIDi (fXE)II[8(B(r))] =I- O. Select r ¢ S and let "IE: be a piecewise linear 
function on (0,00) such that "IE: == Ion (O,r] and "IE: == 0 on (r + 6",00). 
Since Di[JXE] is a measure, we have 

{ f(X)XE(X)Di["IE:(lxl)]dx = - ( "IE: (lxl)d(DdfXE]) (x) iRn iRn 
= -Di(fXE)[B(r)] 

- r "IE:(lxl)d(DdfxE])(x). 
i B(r+E:)-B(r) 
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Therefore 

1 J X· -- f(x)XE(x)-1 'I dx 
C B(r+c)-B(r) X 

-Di(JXE)[B(r)]- r r0Ixl)d(Di[JXE])(x). 
J B(r+c)-B(r) 

Since r f/. Sand 1171 :::; 1, the integral on the right converges to 0 as c ! o. 
By the co-area formula (Theorem 2.7.3), the integral on the left can be 
expressed as 

11 X· -- f(x)XE(x)-1 'I dx 
C B(r+c)-B(r) X 

= _~lr+c r f(x)lxildHn-l(x)dt. 
C r JEn8(B(r)) x 

Therefore 

-~ r f(X)XE(X) IXil dx -+ - r f(x) IXil dHn-1(x) 
c J B(r+c)-B(r) X J En8(B(r)) x 

which implies 

r f(x) IXildHn-l(X) = Di(JXE)[B(r)] 
J En8(B(r)) x 

for almost all r > o. Moreover, from Proposition 5.3.2, 

Di[fXE](B(r)) = (Dd)XE(B(r)) + fDiXE(B(r)) 

= r Dd(x)dx + r fd(DiXE). 0 
J EnB(r) J B(r) 

5.5.3. Corollary. If E has finite perimeter in n, then for almost all r > 0 
with B(r) en, 

P(E n B(r), n) :::; P(E, B(r)) + Hn-1[E n 8(B(r))]. 

Proof. Choose v E cgo(n, Rn) with Ivl :::; 1 and let r > 0 be a number for 
which the preceding lemma holds. Then 

r divvdx=- r v·d(DXE) 
JEnB(r) JB(r) 

+ r v(x) . lI(x, B(r))dHn-1(x) 
J En8(B(r)) 

:::; IIDxEII(B(r)) + Hn-1[E n 8(B(r))]. 
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Taking the supremum over all such v establishes the result. o 

Remark. Equality actually holds in the above corollary, but this is not 
needed in the immediate sequel. 

The next lemma will be needed later when we begin to investigate bound
ary regularity of sets of finite perimeter. 

5.5.4. Lemma. Let E be a set with locally finite perimeter. Then, for each 
x E 8- E, there is a positive constant C = C( n) such that for all sufficiently 
small r > 0, 

r-nIB(x, r) n EI :? C, 

r-nIB(x, r) - EI :? c, 
C::; r 1- nIIDXEII(B(x,r))::; C-1. 

(5.5.1) 

(5.5.2) 

(5.5.3) 

Proof. To simplify the notation, we may assume that x = O. Since 0 E 

8- E, there is a positive constant C = C(n) such that 

(5.5.4) 

for all small r > O. For almost all r > 0, it follows from Lemma 5.5.2 that 

DXE(B(r)) = ( -ixi dHn- 1(x) 
iEn8(B(R)) x 

and therefore 
IDXE(B(r))1 ::; Hn-1[E n 8(B(r))]. 

Consequently, (5.5.4) implies 

(5.5.5) 

Note that (5.5.5) holds for all small values of r since the left side is a 
left-continuous function of r. This establishes the upper bound in (5.5.3). 

To establish (5.5.1), recall from Corollary 5.5.3 and (5.5.5) that for almost 
all r > 0, 

P(E n B(r)) ::; P(E, B(r)) + H n- 1[E n 8(B(r))] 

and 
P(E, B(r)) ::; C- 1 H n- 1[E n 8(B(r))]. 

Thus, an application of the isoperimetric inequality (Theorem 5.4.3) and 
the previous two inequalities lead to 

IE n B(r)l(n-1)/n ::; CP(E n B(r)) ::; CHn- 1[E n 8(B(r))], 
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for some constant C = C(n). Let h(r) = IE n B(r)1 and observe that the 
co-area formula (Theorem 2.7.3) yields 

h(r) = ( ID(lxl)ldx = l r Hn-l[E n 8(B(t))]dt. 
JEnB(r) 0 

Hence, h'(r) 2:: Ch(r)(n-l)/n and therefore that h(r)(1/n)-lh'(r) 
n(hl/n(r))' 2:: C. This implies h(r)l/n 2:: Cr, thus establishing (5.5.1). 

Note that (5.5.1) implies (5.5.2) since P(E) = p(Rn - E) and VE = 

-VRn-E· 

The lower bound in (5.5.3) follows immediately from (5.5.1), (5.5.2), and 
the relative isoperimetric inequality (Theorem 5.4.3) 

IIDXEII(B(r)) C . (IB(r)nEIIB(r)-EI)(n-l)/n -"----"-'..,...-'---'-'- > mm , '--'-'----' 
r n- 1 - rn rn o 

5.6 Tangential Properties of the Reduced 
Boundary and the Measure-Theoretic Normal 

Now that we have introduced the definition of the unit exterior normal to a 
set of finite perimeter, we ask whether the existence of the exterior normal 
implies some type of regularity of the boundary. In order for the theory 
to run parallel to the classical development, the hyperplane orthogonal to 
the generalized normal in some sense should be tangent to the reduced 
boundary (see Definition 5.5.1). Although it cannot be expected that this 
plane is tangent in the usual sense, it will be shown that it is so in the 
measure-theoretic sense. 

For this purpose, we will employ a "blow-up" technique which views the 
local behavior of a set at a point by examining a sequence of dilations of the 
set at the point. Specifically, let E be a set of locally finite perimeter and 
suppose for notational simplicity that 0 E 8- E. For each c > 0, consider 
the dilation Te:(x) = x/c and let Ee: = Te:(E). Note that XEe = XE 0 Te:- 1 

and that the scaling of DXEe is of order n - 1. That is, 

DXEe[B(r/c)] = c1-nDXdB(r)] for r > 0 
(5.6.1) 

IIDXEe II[B(r/c)] = c1-nIIDXEII[B(r)] for r > O. 

The proof of the second equation, for example, can be obtained by choos
ing a sequence {Ui} E COO [B(r)] such that Ui ----> XE in Ll[B(r)] and 
JB(r) IDuildx ----> IIDXEII[B(r)] (Theorem 5.3.3). However, 

{ IDui,e:ldx = c1- n ( IDuildx 
J B(r/e:) J B(r) 
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where Ui,g = Ui 0 Tg- I . Then, Ui,g -+ XE 0 Tg- I = XEe in LI[B(c/r)] and by 
Theorem 5.2.1, 

liminf r IDui,gldx ~ IIDXEJ[B(r/c)]. 
' ..... 00 J B(r/g) 

Hence, 
II D XEJ[B(r/c)] ::; cl-nIIDXEII[B(r)]. 

The reverse inequality is obtained by a similar argument involving a se
quence of smooth function approximating XE 0 Tg- I . 

5.6.1. Definition. For x E f)- E, let 11"(x) denote the (n -1)-plane orthog
onal to vex, E), the generalized exterior normal to E at x. Also, define the 
half-spaces 

H+(x) = {y : vex) . (y - x) > O} 

H-(x) = {y : vex) . (y - x) < O}. 

5.6.2. Theorem. If E is of locally finite perimeter and 0 E f)- E, then 

XEe -+ XH- in Lfoc(Rn) as c! 0 

and 
IIDXEe II(U) -+ IIDxH-II(U) 

whenever U is a bounded open set with Hn-I[(f)U) n 11"(0)] = O. 

Proof. Without loss of generality, we may assume that the exterior normal 
to E at 0 is directed along the xn-axis so that vnCO) = 1 and VI(O) = ... = 
Vn-I (0) = O. It is sufficient to show that for each sequence {cd -+ 0, there 
is a subsequence (which we denote by the full sequence) such that 

(5.6.2) 

as Ci ! o. 
From (5.6.1) and (5.5.3) we obtain for each r > 0, 

IIDXEe II[B(r)] = cl-nIIDXEII[B(cr)] ::; C-Icl-n(cr)n-1 = C-Irn-\ 
(5.6.3) 

and 

for all sufficiently small c > o. Thus, for each B(r), Crn- I ::; IlxEe IIBV(B(r)) 
::; C-Irn- I for all sufficiently small c > O. Therefore we may invoke the 
compactness of BV functions (Corollary 5.3.4) and a diagonalization pro
cess to conclude that XESi -+ XA in LfocCRn). For each bounded open 
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set 0, XE, -+ XA in .Q?/(O) (in the sense of distributions) and therefore 
DXE, -+ 'DXA in .Q?/(O). Note that DXA 1= 0 from (5.6.4). Moreover 
DXE,' -+ DXA weakly in the sense of Radon measures and therefore, for 
all but countably many r > 0, 

DXE, [B(r)] -+ DXA[B(r)]. , (5.6.5) 

From (5.6.1), and the definition of the generalized exterior normal, 

lim DiXE[B(cr)]/IIDXEII[B(cr)] = 0, i = 1,2, ... , n - 1, (5.6.6) 
e-O 

whereas 
lim DnXE.[B(r)]/IIDXEJ[B(r)] = -1. 
e-O 

(5.6.7) 

Thus, from (5.6.7) and (5.6.3), 

lim IIDXE, II[B(r)] = - .lim DnXE, [B(r)] = -DnXA[B(r)]. (5.6.8) 
~-+oo t 1.--+00 t 

From the lower semicontinuity of the total variation measure (Theorem 
5.2.1) we obtain 

liminf IIDXE, II[B(r)] ~ IIDXAII[B(r)] 
1.--+00 t 

and therefore IIDXAII[B(r)] ::; -DnXA[B(r)] from (5.6.8). Since the oppo
site inequality is always true, we conclude that 

(5.6.9) 

for all r > O. Therefore, by Theorem 1.3.8 and Remark 1.3.9, 

IIDXAII(B(r)) = -DnXA(B(r)) = r vn(x, A)dIIDXAII(x). 
JB(r) 

This implies that vn(x, A) = 1 for IIDXAII-a.e. x and thus that Vi(X, A) = 0 
for IIDXAII-a.e. x, i = 1,2, ... , n - 1. Consequently, we conclude that the 
measures DiXA are identically zero, i = 1,2, ... , n - 1. Hence, XA depends 
only on Xn and is a non-increasing function of that variable. Let 

A = sup{xn : XA(X) = 1}. 

Since DXA 1= 0, we know that A 1= 00. The proof will be completed by 
showing that A = O. If A < 0, we would have B(r) C Rn - A for r < IAI 
and since XE,. -+ XA in Lfoc(Rn), , 

0= IB(r) n AI = .lim IEei n B(r)1 = lim cinIB(rci) n EI 
t-too 1.--+00 

= .lim rn(rci)-nIB(rci) n EI 
'-00 
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which contradicts (5.5.1). A similar contradiction is reached if>. > O. There
fore, A = H- and by (5.6.8) and (5.6.9), 

.lim II DXE. II [B(r)] = IIDnXH-II[B(r)] 
t--+OO t 

for all but countably many r > O. If U is an open set with U C B(r) for 
such an r > 0 and 

IIDXH-II(8U) = H n- 1 [7r(0) n 8U] = 0, 

then Corollary 5.2.4 implies IIDXE •. II(U) -+ IIDXH-II(U). . D 

We now will explore the sense in which the hyperplane 7r(x) introduced in 
Definition 5.6.1 is tangent to 8-Eat x. For this, we introduce the following. 

5.6.3. Definition. Let vERn with Ivl = 1. For x E Rn and e > 0, let 

C(X,e,V) = Rn n {y: I(y - x)· vi> elY - xl}· 

In what follows, it will be clear from the context that both x and v are 
fixed and therefore, we will simply write C (e) = C (x, e, v). 

C(e) is a cone with vertex at x whose major axis is parallel to the vector 
v. If M were a smooth hypersurface with v normal to M at x, then for 
each e > 0 

C(e) n M n B(x,r) = 0 (5.6.10) 

for all r > 0 sufficiently small. When M is replaced by 8-E, Theorem 5.6.5 
below yields an approximation to (5.6.10). 

Before we begin the proof of Theorem 5.6.5, we introduce another con
cept for the exterior normal to a set. This one states, roughly, that a unit 
vector n is normal to a set E at a point x if E lies completely on one (the 
appropriate) side of the hyperplane orthogonal to n, in the sense of metric 
density. The precise definition is as follows. 

5.6.4. Definition. Let E C Rn be a Lebesgue measurable set. A unit 
vector n is called the measure-theoretic normal to E at x if 

lim r-nIB(x, r) n {y : (y - x) . n < 0, y ¢ E}I = 0 
r-+O 

and 
lim r-nIB(x, r) n {y : (y - x) . n > 0, y E E}I = O. 
r-+O 

The measure-theoretic normal to E at x will be denoted by n(x, E) and we 
define 

8*E = {x: n(x, E) exists}. 
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The following result proves that the measure theoretic normal exists 
whenever the generalized exterior normal does. Thus, 8-E C 8* E. 

5.6.5. Theorem. Let E be a set with locally finite perimeter. Suppose 
o E {)- E. Let v be the generalized exterior normal to E at 0 and 71"(0) the 
hyperplane orthogonal to v. Then, 

lim rn-11IDXEIHG(e) n B(r)] = 0, 
r-+O 

lim r-nlE n H+ n B(r)1 = 0, and 
r-+O 

lim r-nl(B(r) - E) n H-I = O. 
r-+O 

(5.6.11) 

(5.6.12) 

(5.6.13) 

Proof. Again we use the "blow-up" technique that was employed to obtain 
(5.6.1). Thus, let Tr(x) = x/r and recall that 

IIDXErll[B(l)] = r1-nIlDXEII[B(r)]. 

Note that Tr[G(e) n B(r)] = G(e) n B(l). Therefore 

IIDXEr II[G(e) n B(l)] = r1-nIIDXEII[G(e) n B(r)], 

and by Theorem 5.6.2, 

rl-nIlDXEII[G(e) n B(r)]- Hn-l[G(e) n B(l) n 71"(0)] = O. 

This proves (5.6.11). 
Similarly, 

r-nlE n B(r) n H+I = IEr n B(l) n H+I 

and since XEr - XH- in Ltoc(Rn) (Theorem 5.6.2), 

lim IEr n B(l) n H+I = IH- n B(l) n H+I = o. 
r-+O 

This establishes (5.6.12) and (5.6.13) is treated similarly. o 

The following is an easy consequence of the relative isoperimetric in
equality and complements (5.5.3). 

5.6.6. Lemma. There exists a constant G = G(n) such that 

liminf IIDXEII[B(x, r)] > G 
r-+O r n - 1 -

whenever x E {)* E. 

Proof. Recall from Definition 5.6.4 that if x E 8* E, then 

lim r-nIB(x, r) n E n H+(x)1 = 0 
r-+O 
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and 
lim r-nl[B(x,r) - E] n H-(x)1 = 0 
r---+O 

where H+ (x) and H- (x) are the half-spaces determined by the exterior 
normal, n(x, E). Since B(x, r)nH-(x) = ([B(x, r)-E]nH-(x))U(B(x, r)n 
E n H- (x)), the last equality implies that 

liminf IB(r) n EI > lim IB(x, r) n E n H-(x)1 = ~. 
r---+O IB(r)1 - r---+O IB(x, r)1 2 

Similarly, 

1. . f IB(r) - EI 1 
1m III >-
r---+O IB(r)1 - 2 

and consequently, 

lim IB(r) n EI = lim IB(r) - EI = !. 
r---+O IB(r)1 r---+O IB(r)1 2 

The result now follows from the relative isoperimetric inequality (5.4.3). 0 

This result allows us to make our first comparison of the measures IIDXEII 
and Hn-l restricted to 8* E. 

5.6.7. Theorem. There is a positive constant C such that if E is a set 
with locally finite perimeter, and B c 8* E is a Borel set, then 

Proof. For each x E B we obtain from Lemma 5.6.6 that 

liminf IIDXEII[~(x, r)] 2: C. 
r---+O rn-

Our conclusion thus follows from Lemma 3.2.1. o 

5.6.S. Corollary. If E is a set with locally finite perimeter, then 

Hn-l(8* E - 8- E) = o. (5.6.14) 

Moreover, IIDXEII and the restriction of Hn-l to 8* E have the same null 
sets. 

Proof. From the discussion in Definition 5.5.1, we have that IIDXEII(Rn-
8- E) = 0 and therefore IIDXEII(8* E - 8-E) = o. Thus, (5.6.14) follows 
from the previous theorem. Moreover, if Be 8-E with Hn-l(B) = 0, then 
IIDXEII(B) = 0 because of the second inequality in (5.5.3). This establishes 
the second assertion. 0 
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5.7 Rectifiability of the Reduced Boundary 

Thus far, we have shown that the measure-theoretic normal to a set E 
of locally finite perimeter exists whenever the generalized exterior normal 
exists (Theorem 5.6.5). Moreover, (5.6.11) states that the measure IIDXEII 
has no mass inside the cone C(c:), at least in the sense of measure density. 
This indicates that the reduced boundary may have some appealing tan
gential properties. Indeed, it will be shown that Hn- 1-almost all of ()- E 
can be decomposed into countably many sets each of which is contained 
within some C1 manifold of dimension (n - 1). 

5.7.1. Definition. A set A c Rn is called countably (n -1)-rectificable if 
A c Ao U [U~oli(Rn-1)] where Hn-1(Ao) = 0, and each Ii: R n- 1 -+ Rn is 
Lipschitz, i = 1,2, .... Because a Lipschitz map defined on an arbitrary set 
in Rn-1 can be extended to all of R n- 1 (Theorem 3.6.2), countable (n-l)
rectifiability is equivalent to the statement that there exist sets Ei C R n - 1 

and Lipschitz maps Ii: Ei -+ R n such that A C Ao U [U~di(Ei)]' 

The next result is an easy consequence of Rademacher's theorem and 
Theorem 3.6.2, concerning the approximation of Lipschitz functions. 

5.7.2. Lemma. A set A C Rn-1 is countably (n - I)-rectifiable if and 
only if A C U~oAi where Hn-1(Ao) = 0, and each Ai, i ;::: 1, is an 
(n - 1)- dimensional embedded C 1 submanifold of Rn. 

Proof. Obviously, only one direction requires proof. For this purpose, for 
each Lipschitz function fi in the Definition 5.7.1, we may use Theorem 
3.10.5 to find C 1 functions gi,j, j = 1,2, ... , such that 

where H n- 1(Ni ) = O. Let Ci,j denote the critical set of gi,j: 

Ci,j = R n- 1 n {y : Jgi,j(y) = O}, 

where Jgi,j(y) denotes the Jacobian of gi,j at y. By an elementary area 
formula, see [F4, Theorem 3.2.3], H n- 1[gi,j(Ci,j)] = 0 and therefore the 
set 

Ao = (UNi) U (.U gi,j(Ci,j)) =0 
.=1 .,)=1 

has zero Hn-1 measure. 
For each y E R n- 1 - Ci,j an application of the implicit function the

orem ensures the existence of an open set Ui,j (y) containing y such that 
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gi,j I Ui,j(Y) is univalent and that gi,j(Ui,j(Y)) is an (n -I)-dimensional G l 

submanifold of Rn. Clearly, there exists a sequence of points Yl. Y2,' .. in 
Rn - l - Gi,j such that U~=lUi,j(Yk) ~ Rn - l - Gi,j and 

00 

U g. ·(U· '(Yk)) ~ g' ·(Rn - l - C· .). t,] t,] t,] t,] 

k=l 

Therefore, for each i, 

00 

fi(Rn - l ) - Ao C U gi,j(Ui,j(Yk)) 
j,k=l 

from which the result follows. o 

5.7.3. Theorem. If E C Rn is of locally finite perimeter, then 8- E is 
countably (n - I)-rectifiable. 

Proof. Clearly, in view of Corollary 5.5.3, we can reduce the argument to 
the case of E with finite perimeter. Now recall from the proof of Lemma 
5.6.6, that if x E 8-E, then 

lim r-nIB(x, r)E n H+(x)1 = 0 
r-+O 

and 

Since B(x, r) n H-(x) = ([B(x, r) - E] n H-(x)) U (B(x, r) n E n H-(x)), 
the last equality implies that 

lim IB(x,r)nEnH-(x)1 =~. 
r-+O IB(x,r)1 2 

Therefore, with the aid of Egoroff's theorem, for each 0 < c < 1 and 
each positive integer i, there is a measurable set Fi C 8-E and a positive 
number ri > 0 such that IIDXE II [(8- E) - Fi] < Ij(2i) and 

IE n H+(x) n B(x, r)1 < ~ Gf IB(x, r)1 (5.7.1) 

1 IE n H-(x) n B(x,r)1 > '4IB(x,r)1 (5.7.2) 

whenever x E Fi and r < rio Furthermore, by Lusin's theorem, there is a 
compact set Mi C Fi such that IIDXEII[Fi-Mi] < Ij(2i) and the restriction 
of v(·, E) to Mi n 8-E is uniformly continuous. Since H n - l restricted to 
8- E is absolutely continuous with respect to IIDXEII (Theorem 5.6.7), our 
conclusion will follow if we can show that each Mi is countable (n - 1)
rectifiable. 
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We will first prove that for each x E M i , 

C(x,c:,v(x,E))nMinB(x,~) =0 (5.7.3) 

where C(x, c:, v(x, E)) is the cone introduced in Definition 5.6.3. Thus, we 
will show that Iv(x), (x - y)1 ::; c:lx - yl whenever x, y E Mi and Ix - yl < 
(1/2)ri. If this were not true, first consider the consequences of v(x) . (y
x) > c:lx - yl. Since the projection of the vector y - x onto v(x) satisfies 
Iprojll(x)(y - x)1 2: c:lx - yl, it would follow that B(y, c:lx - yl) c H+(x). 
Also, since c: < 1, 

B(y, c:lx - yl) c B(x, 21x - yl) 

and therefore 

B(y, c:lx - yl) C H+(x) n B(x, 21x - yl). 

However, since 21x - yl < ri, it follows from (5.7.1) and (5.7.2) that 

and 

1 (c:)n IE n H+(x) n B(x, 21x - yl)l < 4 2 IB(x, 21x - yl)l 

1 
::; 4c:n IB(0, Ix - yl)l 

IE n B(y, c:lx - yl)l > IE n B(y, c:lx - yl) n H- (y)1 

1 
> 4IB(y, c:lx - yl)l 

1 
= 4c:n IB(0, Ix - yl)l· 

Thus, from (5.7.4), a contradiction is reached because 

1 
4c:n IB(0, Ix - yl)1 < IE n B(y,c:lx - yl)l 

(5.7.4) 

(5.7.5) 

(5.7.6) 

1 
::; IE n H+(x) n B(x, 21x - yl)1 < 4c:n IB(0, Ix - yl)l· 

A similar contradiction is reached if v(x) . (y - x) < -c:lx - yl and thus, 
(5.7.3) is established. 

We will now proceed to show that each Mi is countably (n-1)-rectifiable. 
In fact, we will show that Mi is finitely (n -1 )-rectifiable. First, recall that 
Mi is compact and that v(·, E) is uniformly continuous on Mi. It will be 
shown that for each Xo E Mi there exists at> ° such that Mi n B(xo, t) 
is the image of a set A C Rn - 1 under a Lipschitz map. For this purpose, 
assume for notational simplicity that v(xo, E) = v(xo) is the nth basis 
vector (0,0, ... ,1). Let 7r(xo) be the hyperplane orthogonal to v(xo) and 
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let p : Mi --+ 7r(xo) denote the orthogonal projection of Mi into 7r(xo), The 
conclusion will be established by showing that p is univalent on B(xo, t)nMi 
and that p-1Ip[B(xo, t) n Mil is Lipschitz. 

To see that p is univalent, assume the contrary and suppose that y, z E 
Mi are points near Xo with Iz-YI < ~ri andp(y) = p(z). Let u = z-y/lz-yl 
and note that III(xo) . ul = 1. Since II is continuous, it would follow that 
III(Y) . ul ;::: 6 if y were sufficiently close to Xo. However, (5.7.3) implies that 
III(Y)' ul < 6, a contradiction. Thus, there exists 0 < t < ~ri such that p is 
univalent on B(xo, t) n Mi. 

Let L be the inverse of p restricted to p[B(xo, t) n Mil and let y, z E 

p[B(xo, t) n Mil. Then 

IL(z) - L(y)1 IL(z) - L(y)1 
Iz - yl (IL(z) - L(y)12 -lprojv(xo)[L(z) - L(y)JI2)l/2 

1 

(
1 _ Iprojy(xo) (L(Z)-L(Y)I2) 1/2 . 

IL(z)-L(Y)1 2 

Using again the continuity of II, the last expression is close to 

1 

(
1 _ Iprojy(y) [L(Z)-L(Y)JI2) 1/2 

IL(x)-L(Y)1 2 

(5.7.7) 

provided that y is close to Xo. by (5.7.3), (5.7.7) is bounded above by 
1/(1_62)1/2, which proves that L is Lipschitz in some neighborhood of Xo. 
Since Mi is compact, this proves that Mi is finitely (n - I)-rectifiable. 0 

The following is an immediate consequence of Lemma 5.7.2 and the pre
vious result. 

5.7.4. Corollary. If E e Rn is of locally finite perimeter, then 

00 

fFEe UMiUN 
i=1 

where Hn-1(N) = 0 and each Mi is an (n - I)-dimensional embedded C 1 

submanifold of Rn. 

5.8 The Gauss-Green Theorem 

In this section it will be shown that the Gauss-Green formula is valid on 
sets oflocally finite perimeter. The two main ingredients in the formulation 
of this result are the boundary of a set and the exterior normal. Since we 
are in the setting of sets of finite perimeter, it should not be surprising 
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that the boundary of a set will be taken as the reduced boundary and the 
exterior normal as the measure-theoretic exterior normal. 

In Definition 5.6.4, we introduced the notion of the measure-theoretic 
exterior normal and demonstrated (Theorem 5.6.5) that 

irE c EYE. (5.8.1) 

Moreover, from (5.6.14), 

(5.8.2) 

One of the main objectives of this section is to strengthen this result by 
showing that if B c 8* E, then 

(5.8.3) 

This is a crucial result needed for the proof of the Gauss-Green theorem. 

5.8.1. Theorem. If E c R n has locally finite perimeter, then 

whenever B c 8* E is a Borel set. 

Proof. If x E 8-E, it follows from Theorem 5.6.3 that 

r 1- nIIDXEII[B(x, r)] = II DXEr II[B(x, 1)]-> IIDxH-II[B(x, 1)] 

= Hn- 1[B(x, 1) n 7r(x)] 

=a(n-1) 

where 7r(x) is the hyperplane orthogonal to vex, E). Therefore, 

lim IIDxEII[B(x,r)] = 1 
r--+O a(n - 1)rn - 1 ' 

x E 8-E. (5.8.4) 

Since Hn-1(8* E - 8-E) = IIDXEII[8* E - 8-E] = 0 (Corollary 5.6.9) we 
may assume that B C 8-E and B C U~lMi' where each Mi is an (n-1)
manifold of class 0 1 (Corollary 5.7.4). Fix i and let p, = Hn-1IMi. Since 
Mi is smooth, 

lim p,[B(x, r)] = 1, x E B n Mi , 
r--+O a(n - 1)rn - 1 

and therefore, by (5.8.4), 

11·m p,[B(x, r)] = 1, M 
] x E B n i. 

r--+O IIDXEII[B(x, r) 



248 5. Functions of Bounded Variation 

By the Besicovitch Differentiation Theorem (Theorem 1.3.8 and Remark 
1.3.9), 

The result easily follows from this. o 

We now are able to establish the Gauss-Green theorem in the context of 
sets of finite perimeter. 

5.8.2. Theorem. Let E be a set with locally finite perimeter. Then, 

{ div V dx = ( n(x, E) . V(x)dHn-1(x) lE l o*E 

Proof. Choose a ball B(r) containing spt V. Then 

Ie divV dx = - J V· d(DXE) (from Lemma 5.5.2) 

= ( V(x) . v(x, E)dIIDXEII (from Definition 5.5.1) 
lo-E 

= ( V(x) . n(x, E)dHn-1(x) (by the preceding theorem). 
lo*E 

5.8.3. Remark. The Gauss-Green theorem is one of the basic results in 
analysis and therefore, the above result alone emphasizes the importance 
of sets of finite perimeter. Therefore, a question of critical importance is 
how large is the class of sets of finite perimeter. The definition alone does 
not allow easy identification of such sets. However, it is not difficult to see 
that a Lipschitz domain, n, is a set with locally finite perimeter. An outline 
of the proof will be given here while details are left as an exercise, for the 
reader. We may assume that n is locally of the form 

n = {(w,y): 0:::; y:::; g(w)} 

where g is a non-negative Lipschitz function defined on an open cube 
Q c Rn - 1 . Since g admits a Lipschitz extension (Theorem (3.6.2) we may 
assume that g is defined on Rn-l. Let gg be a mollifier of g (Section 1.6) 
and recall that k IDggldx:::; k IDgldx (5.8.5) 

for all E: > O. Each set 

ng = {(w, y) : 0 :::; y :::; gg(w), wE Q} 
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is obviously of finite perimeter because the classical Gauss-Green theo
rem applies to it (see Remark 5.4.2). Let Xe denote Xn. and observe that 
IIDXell(Rn) = H n- 1(8ne). Since 

k Jl + IDgel 2dx = Hn-1[{(w, y) : y = ge(w), wE Q}], 

it follows from (5.8.5) that IIDXell(Rn) ~ C where C is some constant 
independent of c. We may apply the compactness property of BV functions 
(Corollary 5.3.4) to conclude that X is BV in Rn, thus showing that n is 
locally of finite perimeter. Moreover, Rademacher's theorem on the almost 
everywhere total differentiability of Lipschitz functions (Theorem 2.2.1) 
implies that the measure-theoretic normal is Hn-1-almost everywhere given 
by 

where x = (w,g(w)). 

n(x, n) = (Dg(w),I) 
Jl + IDg(w)12 

(5.8.6) 

We conclude this section by stating without proof a useful characteriza
tion of sets of finite perimeter. This will be stated in terms of the measure
theoretic boundary. 

5.8.4. Definition. If E c Rn is a Lebesgue measurable set, the measure
theoretic boundary of E is defined by 

8M E = {x: D(E,x) > O} n {x: D(Rn - E,x) > O}. 

If we agree to call the measure-theoretic interior (exterior) of E all points 
x for which D(E, x) = 1 (D(E, x) = 0), then 8M E consists of those points 
that are in neither the measure-theoretic interior nor exterior of E. See 
Exercise 5.3 for more on this subject. In Lemma 5.9.5, we shall see that 
8* E and 8M E differ by at most a set of Hn-l-measure o. 

5.8.5. Theorem. Let E C Rn be Lebesgue measurable. Then E has locally 
finite perimeter if and only if 

Hn-1(K n 8M E) < 00 

for every compact set KeRn. 

The reader is referred to [F4, Theorem 4.5.11] for the proof. 

5.9 Pointwise Behavior of BV Functions 

We now begin a treatment for BV functions analogous to that developed for 
Sobolev functions in the first three sections of Chapter 3. It will be shown 
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that a BV function can be defined by means of its Lebesgue points every
where except for a set of Hn-l-measure zero and a set that is analogous 
to the set of jump discontinuities in Rl. 

In the definition below, the following notation will be used: 

and 

At = {x: u(x) > t}, 

Bt = {x : u(x) < t}, 

D(E ) -1· IE n B(x, r)1 
,x - lmsup IB( )1 

r-+O x, r 

. . IE n B(x, r)1 
D(E,x) = lImmf IB( )1 . 

r-+O x, r 

In case the upper and lower limits are equal, we denote their common value 
by D(E, x). Note that the sets At and Bt are defined up to sets of Lebesgue 
measure zero. 

5.9.1. Definition. If u is a Lebesgue measurable function defined on Rn , 

the upper (lower) approximate limit of u at a point x is defined by 

aplimsupu(y) = inf{t: D(At,x) = O} 
y-+x 

(apliminfu(y) = sup{t: D(Bt,x) = O}). 
y-+x 

We speak of the approximate limit of u at x in case 

ap lim sup u(y) = ap lim inf u(y). 
y-+x y-+x 

u is said to be approximately continuous at x if 

ap lim u(y) = u(x). 
y-+x 

5.9.2. Remark. If u is defined on an open set n, reference to the definitions 
imply that u is approximately continuous at x if for every open set U 
containing u(x), 

D[u-l(U) n n,x] = l. 

An equivalent and rather appealing formulation is the one used in Remark 
3.3.5. It is as follows: u is approximately continuous at x if there exists a 
Lebesgue measurable set E containing x such that D(E, x) = 1 and u I E 
is continuous at x. It is clear that this formulation implies the previous 
one. To see the validity of the opposite direction, let rl > r2 > r3 > ... be 
positive numbers tending to zero such that 
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Define 

Clearly, u I E is continuous at x. In order to complete the assertion, we will 
show that D(E,x) = O. For this purpose, choose e > 0 and let J be such 
that L:~J t. < e. Let r be such that 0 < r < r J and let K ~ J be the 
integer such that rK+l ::::; r < rK. Then, 

I(Rn - E) n B(x, r)1 ::::; ~I{B(X' rk) - B(x, rHi)} 

n{y: lu(y)-u(x)1 > ~}I 
< IB(x,r)1 ~ IB(x,rk)1 
- 2K + L...J 2k 

k=K+i 

IB(x,r)1 ~ IB(x,r)1 
::::; 2K + L...J 2k 

k=K+i 
00 1 

::::; IB(x,r)1 L 2k 
k=K 

::::; IB(x, r)le, 

which yields the desired result since e is arbitrary. 
One of the main results of this section is that a BV function can be 

defined in terms of its approximate limits Hn-i-almost everywhere. For 
this, the following is needed. 

5.9.3. Lemma. Let n > 1 and 0 < 7 < 1/2. Suppose E is a Lebesgue 
measurable set such that D(E, x) > 7 whenever x E E. Then there exists a 
constant C = C(7, n) and a sequence of closed balls B(Xi' ri) with Xi E E 
such that 

00 

E c U B(Xi' ri) 
i=i 

and 
00 

L(ri)n-i ::::; CIIDXEII[Rnj. 
i=i 

Proof. For each x E Rn , the continuous function 

f(r) = IB(x, r) n EI 
IB(x, r)1 
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assumes the value T for some rx > 0 because it exceeds this value for some 
possibly different r and approaches zero as r -+ 00. Since T < 1/2, the 
relative isoperimetric inequality, (5.4.3), implies 

Now apply Theorem 1.3.1 to the family of all such balls B(x, rx) to obtain a 
sequence of disjoint balls B(Xi' ri) such that U~l B(Xi' 5ri) :> E. Therefore, 

00 00 

[Ta(n)](n-1)/n ~)5ri)n-1 :::; 5(n-1)cL: IIDXEII[B(x,ri)] 
i=l i=l 

o 

In addition to (5.5.3) concerning the (n - I)-density of the measure 
IIDXEII, we will need the following. 

5.9.4. Lemma. Let E C Rn be a set with locally finite perimeter. Then, 
for Hn-1-almost every x E Rn - 0* E, 

limsup IIDXEII[B(x, r)] = O. 
r-O a(n - l)rn - 1 

Proof. For each positive number A let 

A = (Rn - 0* E) n {x : limsup IIDXEII[B(x, r)] > A} . 
r-O a(n - l)rn - 1 

It follows from Lemma 3.2.1 that 

Therefore Hn-1(A) = 0 since IIDXEII(A) = 0, thus establishing the con
clusion of the lemma. 0 

This leads directly to the next result which is needed to discuss the 
points of approximate continuity of BV functions. Recall the definition of 
the measure-theoretic boundary, oME, Definition 5.8.4. The next result, 
along with (5.8.2) shows that all of the boundaries associated with a set 
of finite perimeter, 0- E, 0* E, and oME, are the same except for a set of 
Hn-1-measure zero. 

5.9.5. Lemma. Let E C Rn be a set with locally finite perimeter. Then 
0* E COME and Hn-1(oME - 0* E) = o. 

Proof. It follows immediately from Definition 5.6.4 that 8* E cOME. In 
order to prove the second assertion, consider a point z E oME such that 
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D(E, z) > 8 and D(Rn - E, z) > 8 where 0 < 8 < 1/2 and define a 
continuous function f by 

f(r) = IEnB(z,r)1 =1_ IB(z,r)-EI 
IB(z, r)1 IB(z, r)1 . 

Thus, 
limsupf(r) = D(E,z) > 8 

r-O 

and 
liminf f(r) = 1 - D(E, z) < 1 - 8, 

r-O 

with 8 < 1 - 8. Hence, there are arbitrarily small r > 0 such that 8 < 
f(r) < 1- 8 and for all such r, the relative isoperimetric inequality, (5.4.3), 
implies 

[8a(n)rn](n-l)/n :::; CIIDXEII[B(z, r)]. 

Thus, 

1· IIDXEII[B(z,r)] 0 
1m sup ( ) -1 > , 
r-O a n -1 rn 

and reference to Lemma 5.9.4 now establishes the conclusion. o 

In the next theorem, it is shown that a BV function is approximately 
continuous at all points except for a set of Hn-l-measure zero and a count
ably (n - I)-rectifiable set E which, roughly speaking, includes the points 
at which u has a jump discontinuity (in the sense of approximate limits). 
It is also shown that at Hn-l-almost all points of E, u has one-sided ap
proximate limits. Later, these results will be refined and stated in terms of 
integral averages. 

Recall from Definition 5.9.1 that At = {x : u(x) > t}. 

5.9.6. Theorem. Let u E BV(Rn). If 

p,(x) = ap lim sup u(y), 
y-x 

A(X) = apliminfu(y), 
y-x 

and 
E = Rn n {x: A(X) < p,(x)}, 

then 

(i) E is countably (n - I)-rectifiable, 

(ii) -00 < A(X) :::; p,(x) < 00 for Hn- 1-almost all x ERn, 

(iii) for Hn-l-almost all z E E, there is a unit vector v such that n(z, As) = 
v whenever A(Z) < s < p,(z). 



254 5. Functions of Bounded Variation 

(iv) For all z as in (iii), with -00 < >.(x) < I1(X) < 00, let H-(z) = {y : 
(y - z) . v < O} and H+(z) = {y : (y - z) . v > O}. Then, there are 
Lebesgue measurable sets E- and E+ such that 

lim IE- n H-(z) n B(z, r)1 = 1 = lim IE+ n H+(z) n B(z, r)1 
r--->O IH-(z) n B(z, r)1 r--->O IH+(z) n B(z, r)1 

and 

lim 
x--->z 

u(x) = I1(Z), lim 
x--->z 

u(x) = >'(z). 
xEE-nH-(z) xEE+nH+(z) 

Proof. Applying Theorems 5.4.4 and 5.7.3, there exists a countable dense 
subset Q of Rl such that P(Ad < 00 and 0* At is countably (n - 1)
rectifiable whenever t E Q. From Remark 5.9.2 we see that 

It follows immediately from definitions that 

{x: >.(x) < t < I1(X)} C OMAt for t E R\ (5.9.1) 

and therefore E C {UoMAt : t E Q}, Hn-l[E - {Uo* At : t E Q}] = O. This 
proves that E is (n - 1 )-countably rectifiable. 

Let I = {x : >.(x) = -oo} U {x : I1(X) = oo}. We will show that 
Hn-l(I) = O. For this purpose it will be sufficient to assume that u has 
compact support. First, we will prove that Hn-1[{x: >.(x) = oo}] = O. Let 
Lt = {x : >.(x) > t} and note that D(Lt,x) = 1 whenever x E Lt. Now 
apply Lemma 5.9.3 to conclude that there is a sequence of balls {B(ri)} 
whose union contains L t such that 

00 

L rf-l :S GllDXL t II· 
i=l 

Since u has compact support, we may assume that diam B(rd < a, for 
some positive number a. Therefore, Theorem 5.4.4 implies 

H~-l[{X : >.(x) = oo}] = H~-l[{nLt : t E Rl}] 

:S G lim inf IIDXL t II(Rn) = O. 
t--->oo 

From this it easily follows that Hn-l[{x: >.(x) = oo}] = O. A similar proof 
yields Hn-l[{x : I1(X) = -oo}] = O. Thus, the set {x: I1(X) - >.(x)} is well
defined for Hn-l-a.e. x and the proof of (ii) will be concluded by showing 
that Hn-1[{x : I1(X) - >.(x) = +oo}] = O. Since E is countably (n - 1)
rectifiable, it is a-finite with respect to Hn-l restricted to E. Therefore, 
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we may apply Lemma 1.5.1 to obtain 

l (M - A)dHn- 1 = 1000 Hn-1[{x : A(X) < t < M(X)}]dt 

:s 1000 Hn-1(oMAt)dt (by 5.9.1) 

:s 1000 Hn-l(o* At)dt (by Lemma 5.9.5) 

:s C 1000 
IIDXA, Iidt (by Theorem 5.6.7) 

:s CIIDull(Rn) (by Theorem 5.4.4) 

< 00, since spt u is compact. 

We will prove that (iii) holds at each point 

z E E - {U(oMAt - 0* Ad: t E Q}. 

255 

If t E Q with A(Z) < t < M(Z), then Z E OMAt and therefore Z E 0* At. Con
sequently, n(z, At) exists. But is must be shown that n(z, At) = n(z, As) 
whenever A(Z) < S < M(Z). It follows from the definition of the measure 
theoretic exterior normal (Definition 5.6.4) that 

D(At, z) = 1/2 = D(As, z). (5.9.2) 

If S < t, then As :J At and therefore D(As - At, z) = 0, which implies that 
n(z, At) = n(z, As). 

For the proof of the first assertion of (iv), let z E E - I and choose E > 0 
such that A(Z) < M(Z) - E < M(Z). Observe that D(Ap(z)+e, z) = 0 while 

from (5.9.2). Therefore 

lim IU-1[M(Z) - E, M(Z) + E] n H-(z) n B(z, r)1 = 1. 
r--->O IH-(z) n B(z, r)1 

By an argument similar to that in Remark 5.9.2, this implies that there 
is a set E- with the desired properties. The second assertion is proved 
similarly. D 

5.10 The Trace of a BV Function 

For a given set Sl c Rn with suitably regular boundary and u E BV(Sl), 
we will show that it is possible to assign values to u at Hn-1-almost all 
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points of an even though u, when considered as a member of L1(n), is 
defined only as an element of an equivalence class of functions. Recall that 
two measurable functions are called equivalent if they differ at most on 
a set of Lebesgue measure zero. The difficulty with defining the trace of 
a function on the boundary is that an may have zero Lebesgue measure, 
precisely where the function may be undefined. The theory requires further 
development in order for this difficulty to be circumvented. The approach 
we use for this is as follows. For a certain class of domains n c Rn (called 
admissible domains below), if u E BV(n) is extended to all of Rn by 
defining u == ° on Rn - n, then an easy application of the co-area formula 
shows that u E BV(Rn). By means of Theorem 5.9.6 we then are able 
to define u Hn-1-almost everywhere including E, the set of approximate 
jump discontinuities. 

5.10.1. Definition. A bounded domain n of finite perimeter is said to be 
admissible if the following two conditions are satisfied: 

(ii) There is a constant M = M(n) and for each x E an there is a ball 
B(x, r) with 

(5.10.1) 

whenever E c n n B( x, r) is a measurable set. 

5.10.2. Remark. It is not difficult to see that a Lipschitz domain is ad
missible. For this purpose, we may assume that n is of the form 

n = ((w,y): 0:::; y:::; g(w)} 

where g is a non-negative Lipschitz function defined on an open ball B C 
Rn-l. From Remark 5.8.3 we know that n is a set of finite perimeter. Let 
E c n be a measurable set and we may as well assume that Hn-l(n n 
aME) < 00 for otherwise (5.10.1) is trivially satisfied. Since aME = (aMEn 
an) u (n naME) and Hn-l(an) < 00, we conclude from Theorem 5.8.5 
that E has finite perimeter. Hence, we may apply the Gauss~Green theorem 
(Theorem 5.8.2) with the constant vector field V = (0,0, ... ,1) and (5.8.6) 
to obtain 

[ V· n(x, n)dHn-1(x) + [ V . n(x, E)dHn-1(x) = 0. 
i(8' E)n(8n) i(8' E)nn 

Therefore, if A is the Lipschitz constant of g, we have 
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and reference to Lemma 5.9.5 establishes the desired conclusion. 

5.10.3. Definition. Whenever u is a real valued Lebesgue measurable 
function defined on an open set 0, we denote by Uo the extension of u to 
Rn: 

( ) _ {U(X) x E 0 
Uo x - 0 x E Rn - O. 

Observe that Uo is merely a measurable function and is therefore de
fined only almost everywhere. Later in the development, we will consider 
u E BV(O) where 0 is an admissible domain, and then we will be able 
to define Uo everywhere except for an Hn-1-null set. If 0 is a smoothly 
bounded domain and u E BV(O), it is intuitively clear that Uo E BV(Rn) 
because the variation of Uo is greater than that of u by only the amount 
contributed by Hn-l(oo). The next result makes this precise in the context 
of admissible domains. 

5.10.4. Lemma. If 0 is an admissible domain and u E BV(O), then 
Uo E BV(Rn) and IluoIIBV(Rn) ::; ClluIIBV(n) where C = C(O). 

Proof. It suffices to show that Uo is BV in a neighborhood of each point of 
00 because 00 is compact. If we write u in terms of its positive and negative 
parts, u = u+ - u-, it follows from Theorem 5.3.5 that u E BV(O) if and 
only if u+(O), u-(O) E BV(O). Therefore, we may as well assume that u is 
non-negative. For each x E 00, let B(x, r) be the ball provided by condition 
(ii) of Definition 5.10.1. Let cp be a smooth function supported by B(x, r) 
such that 0 ::; cp ::; 1 and cp == 1 on B(x, r /2). Clearly, cpUo E BV(O) and 
Theorem 5.4.4 and Lemma 5.9.5 implies 

100 
Hn-l[o n OMAt]dt = IiD(cpuo)II(O) < 00 (5.10.2) 

where At = {x: cpuo(x) > t}. Since IAt -nnB(x, r)1 = 0 for t > 0, (5.10.1) 
and (5.10.2) imply 

Hence, by Theorem 5.4.4, cpuo E BV(Rn) with 

IIDuoll[B(x,r/2)]II::; IID(cpuo)II(Rn)::; CIID(cpuo)II(O). 

However, by (5.1.2), 

IID(cpuo)II(O) = sup {in uocpdivV dx: V E C6(0; Rn), IVI ::; I} 
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and k uorpdivVdx= k udiv{rpV)dx- k uDrp·Vdx. 

Therefore 

II Duo II [B{x, r/2)lll ::; CIID{rpuo)lI{n) ::; CIiDull{n) + C{r)llulll;O 
::; [C + C{r)lIluIlBV(O)' 

This is sufficient to establish the result because an is compact. 0 

We now are able to define the trace of u on the boundary of an admissible 
domain. 

5.10.5. Definition. If n is an admissible domain and u E BV{n), the 
trace, u*, of u on an is defined by 

where J.Luo{x) and >'uo{x) are the upper and lower approximate limits ofuo 
as discussed in Definition 5.9.1 and Theorem 5.9.6. 

5.10.6. Remark. We will analyze some basic properties ofthe trace in light 
of Theorem 5.9.6. Let E = {x : >'uo{x) < J.Luo{x)}, At = {x : uo{x) > t}, 
and select a point Xo E Ena*n where (iii) of Theorem 5.9.6 applies. Thus, 
there is a unit vector v such that 

n{xo, At) = v whenever >'uo (xo) < t < J.Luo (xo). 

We would like to conclude that 

v = ±n{xo, n). (5.10.3) 

For this purpose, note that 0 E [>'uo (xo), J.Luo (xo) 1 and At C n for t > O. 
If t > 0 and v t- ±n{xo, n), then simple geometric considerations yield 

1. I{At - n) n B{xo, r)1 0 
1m sup IB{ )1 >. 

r ..... O xo, r 

This is impossible since At C n. On the other hand, if t < 0 and v t
±n{xo, n), then 

1· I{Bt-n)nB{xo,r)1 0 
1m sup IB{ )1 >, r ..... O xo, r 

an impossibility since Bt = {x: uo{x) < t} c n. Hence, (5.10.3) is estab
lished. 
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Also, observe that 

if v = n(xo, 0), then Auo (xo) = O. (5.10.4) 

For, if Auo (xo) < 0 there would exist t < 0 such that Auo (xo) < t < /-luo (xo). 
Because v = n(xo, At), it follows that 

D(At n {x: (x - xo)· v ~ O},xo) = o. 

But t < 0 implies I(Rn - 0) - Atl = O. This, along with the fact that 
v = n(xo, 0) yields 

D(At n {x: (x - xo)· v ~ O},xo) ~ 1/2, 

a contradiction. Therefore, Auo (xo) < O. 
On the other hand, if Auo (xo) > 0, there would exist t > 0 such that 

D(At , xo) = 1. This would imply that 

D(At n {x: (x - xo)· v ~ O},xo) = 1/2 

which is impossible since IAt - 01 = 0 and 

D(O n {x: (x - xo)· v ~ O},xo) = O. 

Thus, (5.10.4) follows and a similar argument shows that 

if v = -n(xo, 0), then /-luo (xo) = O. (5.10.5) 

Later, in Section 5.12, after certain Poincare-type inequalities have been 
established for BV functions we will be able to show that if 0 is admissible 
and U E BV(O), then 

lim 1 Iu(y) - u*(x)ln/(n-l)dy = 0 
r->O Ts(x,r)nf! 

(5.10.6) 

for Hn-1-almost all x E a~. 

We conclude this section with a result that ensures the integrability of 
u* over a~. 

5.10.7. Theorem. If 0 is an admissible domain, there is a constant M = 
M(O) such that 

whenever u E BV(O). 

Proof. Since by definition, u* = Auo + /-luo, it suffices to establish the 
inequality for the non-negative function /-l = /-luo, the case involving A 
being treated in a similar manner. As in the proof of Lemma 5.10.4, we 



260 5. FUnctions of Bounded Variation 

need only consider the case when J.I. is replaced by CPJ.l., where cP is a smooth 
function with 0:::; cP :::; 1, cP == 1 on B(x,r/2), and sptu c B(x,r), where 
B(x, r) is a ball satisfying the condition (5.10.1). 

First, with At = {x : CPJ.l.(x) > t}, observe that At n OMn c (OMAt) n 
(OMn), for t > o. Indeed, let x E At n OMn and suppose x ¢ oMAt· Then 
either D(At,x) = 1 or D(At,x) = O. In the first case D(n,x) = 1 since 
IAt - 0.1 = 0 for t > o. Hence, x ¢ OMn, a contradiction. In the second 
case, a contradiction again is reached since the definition of CPJ.l.(x) implies 
x ¢ At. Therefore, we have 

(5.10.7) 

Thus, we have 

[ J.l.dHn- 1 :::; [ cpJ.l.dHn- 1 
J B(x,r/2)n8MO J B(x,r)n8MO 

:::; 100 Hn-1(At n OMn) (by Lemma 1.5.1) 

:::; 100 Hn-1[(oMAt ) n (oMn)]dt (by 5.10.7) 

:::; M 100 Hn-1[(OMAt) n n]dt (by 5.10.1) 

:::; MIID(cpJ.l.)II(n) (by Theorem 5.4.4) 

:::; MlliuIlBV(O). 

Since J.I. = u almost everywhere, the last inequality follows as in the proof 
of Lemma 5.10.4. D 

5.11 Poincare-Type Inequalities for BV Functions 

In this section we prove the main inequality (Theorem 5.11.1) from which 
essentially all Poincare-type inequalities for BV functions will follow. This 
result is analogous to Theorem 4.2.1 which was established in the context 
of Sobolev spaces. In accordance with the previous section, throughout we 
will adopt the following conventions concerning the point-wise definition of 
BV functions. If u E BV(Rn) set 

1 
u(x) = "2[Au(X) + J.l.u(x)] (5.11.1) 

at any point where the right side is defined. From Theorem 5.9.6(ii), we 
know that this occurs at Hn-1-almost all x ERn. If U E BV(n), 0. admis
sible, then we know by Lemma 5.10.4 that Uo E BV(Rn) and therefore Uo 
is defined Hn-l_a.e. on Rn. Thus, we may define u on n in terms of Uo as 



5.11. Poincare-Type Inequalities for BV Functions 

follows: 

{ uo(X) xEn 
u(x) = 2uo(x) x E an. 
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(5.11.2) 

At first glance, it may appear strange to define u(x) = 2uo(x) on an, 
but reference to (5.10.4) and (5.10.5) shows that this definition implies the 
intuitively satisfying fact that at Hn-1_a.e. x E an, either u(x) = J-Luo(x) 
or u(x) = >'uo(x). Consequently, u is a Borel function defined Hn-l_ a.e. on 
n. Note that we have for Hn-l_a.e. x, 

au(x) + bu(x) = (au + bU)(x) 

whenever a, b E Rl. 

5.11.1. Theorem. Let n be a connected, admissible domain and suppose 
u E BV(n). If T E [BV(n)]* and T(X!1) = 1, then 

Ilu - T(u)lln/(n-l);!1 ::; CIITIIIIDull(n), (5.11.3) 

where IITII denotes the norm of T as an element of [BV(n)]*, and C = 
C(n, n). 

Proof. It suffices to show that 

Ilu - T(u)111;!1 ::; CIITIIIIDull(n), (5.11.4) 

for if we set f = u - T(u), then by Sobolev's inequality and (5.11.4), 

Ilflln/(n-l);!1 = Ilfolln/(n-l);Rn ::; C11IfoIIBV(Rn) ::; CllfIIBv(!1)' 

The last inequality follows from Lemma 5.10.4. Also, note that the Sobolev 
inequality holds for fo because it holds for the regularizers of fo, whose BV 
norms converge to IlfoIIBV(Rn) by Corollary 5.2.4. Thus, in view of the fact 
that IITII ~ Inl-1, (5.11.3) follows from (5.11.4). 

To prove (5.11.4), it is sufficient to assume I!1 u(x)dx = 0 since the 
inequality is unchanged by adding a constant to u. With this assumption, 
(5.11.4) will follow if we can show 

because 

Ilu - T(u)111;!1 ::; Ilulll;!1 + In IIITllll uIIBV(!1) 

::; [1 + InIIITII](Ilulh;!1 + IIDull(n)) 

::; 2InIIITII(ll u lh;!1 + IIDull(n)). 

(5.11.5) 

If (5.11.5) were not true for some constant C, there would exist a sequence 
Uk E BV(n) such that 

(5.11.6) 
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For each Uk, form the extension Uk,O by setting u = 0 on Rn - O. From 
Lemma 5.10.4, it follows that the sequence {lIuk,oIIBV(Rn)} is bounded 
and therefore an application of Corollary 5.3.4 implies that there exist 
u E BV(Rn) and a subsequence of {Uk,O} (which will still be denoted by 
the full sequence) such that Uk,O --+ U in L1(0). Therefore Ilul11;n = 1 
from (5.11.6). But (5.11.6) also show that IIDull(O) = 0 and therefore u = 
constant on 0 since 0 is connected. Consequently, u == 0 which contradicts 
lIull1;n = 1. Thus, (5.11.5) and therefore (5.11.4) is established. 0 

5.11.2. Corollary. Let 0 be a connected, admissible domain. Let c and 
M be numbers such that 

lao + a1cl ~ Mllao + a1u IIBV(n) 

for all ao, a1 E R1. Then there exists 0 = 0(0) such that 

lIu - clln/(n-1);n ~ OMIIDull(Rn). (5.11. 7) 

Proof. Define a linear map To on the subspace of BV(O) generated by 
Xn and u by To(Xn) = 1 and To(u) = c. From the hypotheses, the norm 
of To is bounded by M and therefore an application of the Hahn-Banach 
theorem provides an extension, T, to BV(O) with the same norm. Now 
apply Theorem 5.11.1 to obtain the desired result. 0 

5.12 Inequalities Involving Capacity 

We now will investigate the role that capacity plays in Sobolev-type in
equalities by considering the implications of Theorem 5.11.1. Recall that 
the BV(O) is endowed with the norm 

lI u IIBv(n) = Ilul11;n + IIDull(O). 
However, for notational convenience, we will henceforth treat BV(Rn) sep
arately and its norm will be given by 

In Section 2.6, Bessel capacity was introduced, developed, and subse
quently applied to the theory of Sobolev spaces. Because of the irrefiexivity 
of L1, it was necessary to restrict our attention to p > 1. The case p = 1 
is naturally associated with BV functions and the capacity in this case is 
defined as follows: 

,(E) = inf{IIDvll(Rn) : v E Y(Rn), E C int{v ~ I}}, 

where 
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Note that w1,1(Rn) C Y(Rn) and by regularization (cf. Theorem 5.3.1), 
that 

(5.12.1) 

for u E Y(Rn). A simple regularization argument also yields that in case 
E is compact, 

'"'((E) = inf{IIDvlll : v E Co(Rn ), E C int{v ~ I}}. (5.12.2) 

5.12.1. Lemma. If E C Rn is a Bus lin set, then 

'"'((E) = suph(K) : K C E, K compact}. 

Proof. Referring to Theorem 2.6.8, we see that it is only necessary to 
show that '"'( is left continuous on arbitrary sets since right continuity on 
compact sets follows directly from (5.12.2). Thus, it suffices to prove that 
if El C E2 C ... are subsets of R n , then 

For this purpose, suppose 

.A = ,lim '"'((Ei) < 00, and e > O. 
' ..... 00 

Choose non-negative Vi E Y(Rn) so that 

Ei C int{x: vi(a;) ~ I} and IIDvill(Rn)::; '"'((Ei) +eTi , 

and let hi = sup{ vb V2, ... ,Vi}. Note that hi E Y(Rn) and 

hj = sup{hj_bvj}, Ej - 1 C int{x: inf{hj_bvj}(x) ~ I}. 

Therefore, letting I j = inf{hj_l,vj}, it follows from Theorem 5.4.4 (which 
remains valid for functions in Y(Rn)) and Lemma 5.9.5 that 

It is an easy matter to verify that 

OM{hj > t} U oM{Ij > t} C oM{hj- 1 > t} U OM{ Vj > t} 

oM{hj > t} n OM{Ij > t} C oM{hj- 1 > t} n OM{Vj > t}. 
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Consequently, 

Hn - 1(8M {hj > t}) + Hn - 1(8M {Ij > t}) 

< Hn-l(8M{hj_l > t}) + H n- 1 (8M{ Vj > t}) 

and therefore, 

It follows by induction that 

j 

IIDhjll(Rn):::; 'Y(Ej ) + LE2-i. 
i=l 

Therefore, letting w = limj--+oo hj, (5.12.1) implies 

whereas the proof of Theorem 5.2.1 implies 

IIDwll(Rn):::; liminfIIDhjll(Rn) < 00. )--+00 

Thus, w E Y(Rn) and 

In addition to the properties above, we will also need the following. 

5.12.2. Lemma. If A c Rn is compact, then 

'Y(A) = inf{P(U): A C U,U open and lUI < oo}. (5.12.3) 

Proof. Let 'Yl(A) denote the right side of (5.12.3). 
'Y(A) :::; 'Yl(A): Choose Tf > 0 and let A C U where U is bounded, open 

and 
P(U) < 'Yl(A) + Tf· 
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Let X = Xu and Xe: = Xu * 'Pe:, where 'Pe: is a regularizer. Then Xe: 2: 1 on 
A for all sufficiently small e: > 0 and 

,(A)::; r IDXe:ldx (by (5.12.2)) JRn 
::; IIDXull(Rn) (by Theorem 5.3.1) 

< ,l(A) + Tf. 

This establishes the desired inequality since Tf is arbitrary. 
,l(A) ::; ,(A): If Tf > 0, (5.12.2) yields u E Co(Rn) such that u 2: Ion 

A and 

By the co-area formula, 

r IDuldx < ,(A) + Tf. JRn 

r IDuldx = ['X) Hn-1[u-1(t)]dt 
JRn Jo 

2: 101 Hn-1[u-1(t)]dt 

2: Hn-l[u-1(to)] 

for some 0 < to < 1. Since 8{u > to} C u-1(to), with the help of Lemma 
5.9.5, it follows that 

'l(A) ::; P({u > to})::; Hn-l[8{u > to}]::; Hn-l[u-1(to)] 

< ,(A) + Tf. 0 

We now are able to characterize the null sets of, in terms of Hn-l. 

5.12.3. Lemma. If E C Rn is a Buslin set, then 

,(E) = 0 if and only if Hn-l(E) = O. 

Proof. The sufficiency is immediate from the definition of Hn-l and the 
fact that ,[B(r)] = Crn-l. In fact, by a scaling argument involving x ---; rx, 
it follows that ,[B(r)] = ,[B(1)]rn- 1. 

To establish necessity, Lemma 5.12.1 along with the inner regularity of 
H n - 1 [F4, Corollary 2.10.48] shows that it is sufficient to prove that if 
A c Rn is compact with ,(A) = 0, then Hn-l(A) = O. For e: > 0, the 
previous lemma implies the existence of an open set U :J A such that 
P(U) < e:. Lemma 5.9.3 provides a sequence of closed balls {B(ri)} such 
that U~l B(ri) :J U :J A and 

00 

L r~-l ::; CP(U) < Ce:. o 
i=l 
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We proceed with the following result which provides some information 
concerning the composition of [BV (Rn)]* . 

5.12.4. Theorem. Let J-L be a positive Radon measure on Rn. The following 
four statements are equivalent. 

(i) Hn-l(A) = 0 implies that J-L(A) = 0 for all Borel sets A C Rn and 
that there is a constant M such that I J udJ-L1 ::; MIiUIiBV(Rn) for all 
u E BV(Rn). 

(ii) There is a constant M such that J-L(A) ::; MP(A) for all Borel sets 
A C Rn with IAI < 00. 

(iii) There is a constant Ml such that J-L(A) ::; Mn(A) for all Borel sets 
AcRn. 

(iv) There is a constant M2 such that J-L[B(x, r)] ::; M2rn- 1 whenever 
x E Rn and r E Rl. 

The ratios of the smallest constants M, Mb and M2, have upper bounds 
depending only on n. 

Proof. By taking u = XA, (ii) clearly follows from (i) since 

For the implication (ii) => (iii), consider a compact set K and observe 
that from the regularity of J-L and (ii), 

J-L(K) = inf{J-L(U) : K C U, U open and lUI < oo} 

::; Minf{P(U): K C U,U open and lUI < oo}. 

Lemma 5.12.2 yields J-L(K) ::; M'Y(K). The inner regularity of J-L and Lemma 
(5.12.1) give (iii). 

Since 'Y[B(r)] = ern-I, (iii) implies (iv). 
Clearly, (iv) implies that J-L vanishes on sets of Hn-1-measure zero. Con

sequently, if u E BV(Rn), our convention (5.11.1) implies that u is defined 
J-L-a.e. If u is also non-negative, we obtain from the co-area formula 

(5.12.4) 

where At = {x : u(x) > t}. In particular, this implies that for a.e. t, At has 
finite perimeter. For all such t, define 

Ft = At n {x: D(At,x) ~ 1/2}. 

For x E At, the upper approximate limit of u at x is greater than t (see 
5.11.1), and therefore 

At - Ft C {x: 0 < D(At,x) < 1/2}. (5.12.5) 
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Therefore, At - Ft C 8MAt . In fact, At - Ft C 8MAt - 8* At because 
x E 8* At implies that D(At, x) = 1/2. Therefore, Hn-l(At - Ft ) = 0 
by Lemma 5.9.5. Thus, we may apply Lemma 5.9.3 to Ft and obtain a 
sequence of balls {B(riH such that Ft C Ui:lB(ri) and 

00 

L rf-l :5 GP(Ft ). 

i=l 

Therefore (iv) yields 
(5.12.6) 

Now, peAt} = P(Ft ) and since f-l vanishes on sets of Hn-l-measure zero, 
we have f-l(At) = f-l(Ft). Thus, Lemma 1.5.1, (5.12.6), and (5.12.4) imply 

I udf-l = 100 
f-l(At)dt:5 GM2 I1 UIlBV(Rn). 

If u is not non-negative, apply the above arguments to lui to obtain (i). 0 

5.12.5. Remark. A positive Radon measure f-l satisfying one of the con
ditions of Theorem 5.12.4 can be identified with an element of [BV(Rn)]* 
and M can be chosen as its norm. 

Suppose n is an admissible domain and f-l a positive measure such that 
spt f-l C Ii. In addition, if f-l E [BV(n)]*, then there exists a constant 
G = G(n, f-l) such that 

II Udf-ll :5 GliuIlBv(o) :5 GliuIlBV(Rn) 

whenever u E BV(Rn). Thus, f-l E [BV(Rn)]* and Theorem 5.12.4 applies. 
On the other hand, if spt f-l C Ii and one of the conditions of Theorem 5.12.4 
holds, then f-l E [BV(n)]* because of Lemma 5.10.4. Thus, for measures f-l 
supported by Ii, f-l E [BV(n)]* if and only if one of the conditions of 
Theorem 5.12.4 holds and in this case there is a constant G = G(n) such 
that 

(5.12.7) 

For the applications that follow, it will be necessary to have yet another 
formulation for the capacity 'Y. 

5.12.6. Lemma. If A C Rn is a Suslin set, then 

'Y(A) = sup{f-l(AH (5.12.8) 

where the supremum is taken over the set of positive Radon measures f-l E 

[BV(Rn)]* with 11f-lIl[BV(Rn)]* :5 1. 

Proof. Because of the inner regularity of'Y (Lemma 5.12.1) it suffices to 
consider the case when A is compact. Referring to the Minimax theorem 
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stated in Section 2.6, let X denote the set of all positive Radon measures 
Jl with spt Jl c A and Jl(Rn) = 1. Let Y be the set of all non-negative 
functions f E Co(Rn) such that IIDflll :s 1. From the Minimax Theorem, 
we have 

sup inf J f dJl = inf sup J f dJl. 
fEY /lEX /lEX fEY 

It is easily seen that the left side is equal to the reciprocal of ')'(A) whereas 
the right side is the reciprocal of the right side of (5.12.8). 0 

One of the most frequently used Poincare-type inequalities is 

where p > 1, u E Wl,P(D), and In u(x)dx = O. Inequalities ofthis type were 
treated from a general perspective in Section 4.2. In the next theorem, we 
will obtain a Poincare-type inequality for BV functions normalized so that 
their integral with respect to a measure in [BV(D)]* is zero. That is, the 
measures under consideration are those with the property that Jl[B(x, r)] :s 
Mrn- l for all balls B(x, r). For example, this includes Lebesgue measure 
restricted to a bounded domain or (n - I)-Hausdorff measure restricted to 
a compact smooth hypersurface in Rn. 

5.12.7. Theorem. Let D be a connected admissible domain in Rn and let 
Jl be a non-trivial positive Radpn measure such that spt Jl en-and for some 
constant M > 0 that 

Jl[B(x, r)] :s Mrn- l 

for all balls B (x, r) in Rn. Then, there exists a constant C = C (D) such 
that for each u E BV(D), 

M 
Ilu - u(Jl)lln/(n-l)"n < C---=-IIDull(D) , - Jl(D) 

where u(Jl) = /l(h) I u(x) dJl(x). 

Proof. Theorem 5.12.4 states that /-l E [BV(Rn)]* and because D is admis
sible, (5.12.7) shows that Jl may be regarded as an element of [BV(D)]*. 
Therefore, Theorem 5.11.1 is applicable and the result follows immedi
~cl~ 0 

This leads directly to the Poincare inequality for BV functions. 

5.12.8. Corollary. Let D be a connected, admissible domain and let A c n
be a Buslin set with Hn-l(A) > o. Then for u E BV(D) with the property 
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that u(x) = 0 for Hn-l-almost all x E A, there exists a constant C = C(O) 
such that 

C 
lIulin/(n-l);n :::; ,(A) IIDull(O). 

Proof. From Lemma 5.12.6 we find that A supports a positive Radon mea
sure f1 E [BV(O)]* such that f1(A) 2:: 2- l ,(A) and 11f1II[BV(Rn)]* :::; 1. Thus, 
for any u E BV(O) with the property in the statement of the corollary, 
J u df1 = O. Our conclusion now follows from the preceding theorem. 0 

We now consider inequalities involving the median of a function rather 
than the mean. The definition of the median is given below. 

5.12.9. Definition. If u E BV(O) and f1 a positive Radon measure in 
[BV(O)]*, we define med( u, f1) as the set of real numbers t such that 

- 1 -
f1[O n {x : u(x) > t}] :::; "2 f1 (O) 

- 1 -
f1[O n {x : u(x) < t}] :::; "2 f1 (O). 

It is easily seen that med( u, f1) is a non-empty compact interval and that 
if aD and al are constants, then 

med( aD + al u, f1) = aD + almed( u, f1). (5.12.9) 

If c E med(u, f1), then f1(Ae) 2:: ~f1(IT) where Ae = IT n {x : u(x) 2:: c}]. 
Consequently, 

~f1(IT) :::; cf1(Ae) :::; k lu(x)ldf1(x). 

Similarly, if c :::; 0, then f1(Be) 2:: ~f1(IT) where Be = IT n {x : u(x) :::; c}] 
and 

-~f1(IT) :::; -cf1(Be):::; r -u(x)df1(x):::; ~ lu(x)ldf1(x). lBe ln 
Therefore, 

(5.12.10) 

and (5.12.9) thus implies 

2 
lao + alcl :::; f1(IT) 11f1II[BV(n)]*lIao + aluIIBV(n). 

The following is now a direct consequence of Corollary 5.11.2. 

5.12.10. Theorem. Let 0 be a connected admissible domain in Rn and let 
f1 be a positive Radon measure such that spt f1 C IT and for some constant 
M > 0 that 

f1[B(x, r)] :::; Mrn- l 
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for all balls B(x,r) in Rn. Then there exists a constant C = C(O) such 
that for u E BV(O) and c E med( u, J1), 

M 
Ilu - clln/(n-l)'f! < C---=-IIDull(O). , - J1(0) 

5.12.11. Corollary. Let 0 be a connected, admissible domain and let A 
and B be disjoint Suslin subsets of IT of positive Hn-l-measure. Then 
there exists a constant C = C(O) such that for each u E BV(O) with u > 0 
Hn-1_a.e. on A and u < 0 Hn-1_a.e. on B, 

Proof. Lemma 5.12.6 yields measures J1 and v supported by A and B 
respectively such that 

1 
,(A) ~ J1(A) ~ "2,(A), 11J1II[BV(Rn)]*:S 1, 

1 
,(B) ~ v(B) ~ "2,(B), Ilvll[BV(Rn)]*:S 1. 

Define 
>. = J1(A)v + v(B)J1 

and observe that 0 E med(u, >.) for u E BV(O). Since >.(IT) = 2J1(A)v(B) 
and 11>'II[BV(Rn)]* :S J1(A) + v(B), the conclusion follows from Theorems 
5.12.4 and 5.12.10. 0 

5.13 Generalizations to the Case p > 1 

Since a BV function u is defined Hn-1-almost everywhere by means of 
(5.11.1), an obvious question arises whether the results of the previous 
section can be extended by replacing Ilulin/(n-l);f! that appears on the left 
side of the inequalities by the appropriate V-norm of u defined relative to a 
measure that is absolutely continuous with respect to Hn-l. We will show 
that this can be accomplished by establishing Poincare-type inequalities 
that involve lIulln/(n-l),>. where). is a positive measure that satisfies one 
of the conditions of Theorem 5.12.2. 

5.13.1. Theorem. Let). be a positive Radon measure on Rn. The following 
two conditions are equivalent: 

(i) Hn-l(A) = 0 implies >'(A) = 0 for all Borel sets A and for 1 :S p :S 
n/(n - 1), there exists a constant C = C(p, n, >.) such that 

for all u E BV(Rn). 
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(ii) There is a constant C1 such that 

A[B(x, r)] ::; CfrP(n-1) 

for all balls B(x, r). 

The ratios of the smallest constants C and C1 have upper bounds de
pending only on n. 

Proof. The case p = 1 is covered by Theorem 5.12.2, so we may assume 
that p > 1. Suppose (ii) holds and let f E V' (A), f ~ O. Then, by Holder's 
inequality, 

Thus, the measure f A defined by 

fA (E) = Ie f(x)dA(x) 

satisfies condition (ii) with p = 1. Therefore, by Theorem 5.12.2, 

for all u E BV(Rn). From the definition of Hausdorff measure, it is clear 
that Hn-1(A) = 0 implies A(A) = O. Thus, (i) is established. 

Now assume that (i) holds. For each Borel set A c Rn and each e > 0, 
reference to Lemma 5.12.1 supplies an open set U :> A such that P(U) ::; 
1'(A) + e. Therefore, from (i) with u = XA, 

A(A)l/P ::; A(U)l/p ::; CIIDXull(Rn) 

= CP(U) 

::; C1'(A) + Ce. 

In view of the fact that 1'[B(x,r)] = Crn- 1, (ii) is established. 0 

With the help of the preceding theorem, results analogous to those of 
the Section 5.12 are easily obtained. For example, we have the following. 

5.13.2. Theorem. Let n be a connected, admissible domain in Rn. Let I-t 
and A be positive Radon measures supported by n such that 
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'\[B(x, r)] ::; C~rp(n-l), 1::; p ::; n/(n - 1), 

for all balls B(x, r). Then, there exists a constant M = M(fl) such that 

C1C2 
Ilu - u(~)llp,>, ::; M ~(IT) IIDull(fl) 

for all u E BV(fl). 

Proof. From Theorem 5.13.1 and Lemma 5.10.3 we have 

Ilullp,>.;o = Iluollp,>. 
::; ClluoIiBV(Rn) 

::; ClluIIBV(O)' 

Applying this inequality to u - u(~), we obtain 

Ilu - u(~)llp,>,;o ::; Cllu - u(~)IIBV(O) 

::; Cllu - u(~)111;O + ClIDull(fl) 
::; CIIDull(fl). D 

Other results analogous to those in the preceding section are established 
in a similar way and are stated without proof. 

5.13.3. Theorem. If c E med(u,~), then 

C1C2 
Ilu - clip,>. ::; M ~(fi) IIDull(fl). 

Also, 
If u(x) = 0 on A where A is a Bus lin set of positive Hn-1-measure, then 

C2 
Ilullp,>. ::; M I'(A) IIDull(fl). 

5.14 The Trace Defined in Terms of Integral 
Averages 

For u E BV(Rn), recall the following facts established in Theorem 5.9.6: 

(i) E = {x : '\(x) < ~(x)} is countably (n - I)-rectifiable, 

(ii) -00 < '\(x) ::; ~(x) < 00 for Hn-1-almost all x ERn, 

(iii) For Hn-1-almost every Z E E, there exists a unit vector v such that 
n(z,As) = v whenever '\(z) < s < ~(z). 
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Although our convention (5.11.1) of setting u(x) = ~[Au(X) + /-lu(x)] 
allows a meaningful pointwise definition of u at Hn-1-almost all points, 
the simple example of u as the characteristic function of a ball shows that 
it is not possible to define u in terms of its Lebesgue points Hn-1-almost 
everywhere. This is merely one of the ways that the BV theory differs from 
the Sobolev theory developed in Chapters 3 and 4. However, in this section 
we will show that a slightly weaker result holds: 

. i 1 hm u(y)dy = -2 [Au (x) + /-lu(x)] 
r-+O B(x,r) 

for Hn-1-almost all x E n. If n is admissible, then a similar result will be 
shown to hold for the trace u*, the only difference being that the ball B(x, r) 
in the above expression will be replaced by B(x,r)nn. Briefly stated then, 
a BV function can be defined pointwise Hn-l-almost everywhere on n as 
the limit of its integral averages. 

5.14.1. Remark. If u E BV(Rn) is bounded, then it is easily seen that 
(with convention (5.11.1) in force), 

lim 1 lu(x) - U(XoW" dx = 0 (5.14.1) 
r-+O Ts(xo,r) 

for Xo ¢ E and that for all z E E for which (iii) above holds, 

lim 1 lu(x) - Au(z)IO" dz = 0, 
r-+O Ts+(z,r) 

where 

and 

lim 1 lu(x) - /-lu(zWdz = 0, 
r-+oTs-(z,r) 

B+(z,r) = B(z,r) n {y: (y - z)· v> O}, 

B-(z,r) = B(z,r) n {y: (y - z)· v < O}, 

n 
cr= --. 

n-1 

(5.14.2) 

(5.14.3) 

To verify (5.14.1), use Remark 5.9.2 to conclude that there is a Lebesgue 
measurable set A such that D(A, xo) = 1 and 

lim = u(xo). 
X-+Xo 

xEA 

Then 

limr-n r lu(x)-u(xoWdx=limr-n r lu(x)-u(xoWdx 
r-+O J B(xo,r) r-+O J B(xo,r)nA 

+ lim r-n r lu(x) - u(xoWdx. 
r-+O J B(xo,r)nA. 
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The first term tends to 0 by the continuity of u I A. The second term also 
tends to 0 because u is bounded and D(A, xo) = 0, where A = Rn - A. 

Now consider (5.14.3), the proof of (5.14.2) being similar. From the def
inition of p,(z), we have that D(At, z) = 0 for each t > p,(z). From (iii) 
above, D(As n {y : (y - z)· v < O}) = 0 for >.(z) < s < p,(z). Thus, if c > 0, 
t - s < c, and s < p,(z) < t, we have 

limsupr-n [ lu(x) - P,u(z)I""dx:::; limsupr-n [ c"" 
r->O J B- (z,r) r->O J B-(z,r)n(As-Atl 

The last term is zero since u is bounded and therefore the conclusion follows 
since c is arbitrary. 

Our task now is to prove (5.14.1), (5.14.2), and (5.14.3) without the 
assumption that u is bounded. For this we need the following lemma. 

5.14.2. Lemma. If u E BV(Rn) and >'u(xo) = P,u(xo), then there is a 
constant C = C(n) such that 

limsup 1 lu(x) - U(Xo)I"" dx :::; Climsuprl-nIIDull[B(xo, r)]. ( ) I~ 
r->O h(xQ,r) r->O 

Proof. For each r > 0, consider the median of u in B(xo, r), 

tr = inf{t: IB(xo, r) n {x: u(x) > t}1 :::; ~IB(xo, r)I}, 

and apply Theorem 5.12.10 and Minkowski's inequality to conclude 

limsup 1 lu(x) - u(xo)I"" dx ( )

1/,," 

r->O h(xQ,r) 

:::; C limsuprl-nIIDull[B(xo, r)] + C/ltr - u(xo)l. 
r->O 

Moreover, tr ---+ u(xo) since >'u(xo) = P,u(xo), o 

5.14.3. Theorem. If u E BV(Rn), then (5.14.1) holds for Hn-I-almost 
all Xo E Rn - E, whereas (5.14.2) and (5.14.3) hold for Hn-I-almost all 
Xo E E. 

Proof. For each positive integer i, let 

if u(x) > i 
if lu(x)l:::; i 
if u(x) < -i, 
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and observe that 

by Theorem 5.9.6(ii). 
For each E > 0, let 

Z._{ '1' IID(u-Ui)II[B(xo,r)] } 
t - Xo· 1msup ( ) -1 :::; E 

r-O an -1 rn 

and refer to Lemma 3.2.1 to obtain 

whenever U c Rn is open. By Theorem 5.4.4, 

IIDu(u - ui)II(U):::; 1000 P[{x: (u - Ui)(X) ~ s}, U]ds 

+ J~ P[{x : (u - Ui)(X) < s}, U]ds 

= 1000 P[{x: u(x) ~ i+s},U]ds 

+ J~ P[{x: u(x) < -i+s},U]ds 
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(5.14.4) 

(5.14.5) 

(5.14.6) 

= [P[{x:u(x»s},U]ds. (5.14.7) 
J1S1>i 

If U is bounded, then 

i: P[{x: u(x) > s},U]ds = IIDull(U) < 00, 

and therefore the last integral in (5.14.7) tends to zero as i ~ 00. Hence, 
we obtain from (5.14.6) that Hn-1(u - Zi) ~ 0 as i ~ 00. Then, 

and 

(5.14.8) 
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To prove (5.14.1), it suffices by (5.14.4) to consider Xo E (U~l Wi) - E. 
Because U - Ui has 0 as an approximate limit at each such point Xo of Wi, 
it follows from Lemma 5.14.2 that 

limsup 1 Iu(x) - ui(xWdx ( )

1/<7 

r---+O h(xo,r) 

::; Climsupr1- n IID(u - ui)II[B(xo,r)]. (5.14.9) 
r---+O 

From (5.14.8) we may as well assume that Xo E n~l U~j Zi. For i suffi
ciently large, reference to Remark 5.14.1 yields 

lim 1 IUi(X) - u(xW dx = O. ( ) 1~ 
r---+O h(xo,r) 

From (5.14.9), there exists i sufficiently large such that 

lim 1 Iu(x) - ui(xWdx ::; Ce:. ( )

1/<7 

r---+O h(xo,r) 

Consequently, (5.14.1) follows for unbounded U E BV(Rn) by Minkowski's 
inequality and the fact that e: is arbitrary. 

Essentially the same argument establishes (5.14.2) and (5.14.3). 0 

As an immediate consequence of the above result, we obtain the follow
ing. 

5.14.4. Theorem. If n c Rn is open and U E BV(n), then 

lim 1 Iu(x) - u(xo)ln/(n-1)dx = 0 
r---+oh(xo,r) 

for Hn-1-almost all Xo En - E, and 

lim 1 u(x)dx = U(Xo) 
r---+oh(xo,r) 

for Hn-1-almost all Xo E n. If n is admissible, then the trace u* satisfies 

lim r lu(x) - u*(xo)ln/(n-1)dx = 0 
r---+oo J B(xo,r )nn 

for Hn-1-almost every Xo E an. 

Proof. The statements concerning the integral averages of u follow imme
diately from (5.14.2) and (5.14.3). Also, referring to Remark 5.10.6 leads 
to the last part of the theorem. 0 
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Exercises 

5.1. Suppose u is a function of a single variable and that u E BV (a, b), 
a ~ b. Prove that IIDull(a, b) = ess V;(u). Hint: Use regularizers of u. 

5.2. Suppose n c Rn is an open set and u E BV(n). Prove that there 
exists a sequence of polyhedral regions {Pk} invading n and piecewise 
linear maps Lk : Pk --+ RI such that 

Hint: By Theorem 5.3.3, it suffices to consider the case when u E 
COO(n) n BV(n). Let PI C P2 C ... c n be polyhedral regions such 
that In - Pkl --+ O. Choose each Pk as a simplicial complex, so that 
it is composed of n-dimensional simplices. Since IIDulll;O < 00, we 
may choose k so as to make fO-Pk IDul arbitrarily small. Moreover, 
we may assume without loss of generality that each simplex, u, in 
Pk has its diameter small enough to ensure that the oscillation of lui 
and IDul over u is small, uniformly with respect to all u. Suppose u 
is spanned by the unit vectors VI. V2, . .. ,Vn . Define the linear map 
Lk on u so that it agrees with u at the n + 1 vertices of u. Clearly, 
IILklll;Pk --+ lIulll;O' To see that the L1-norm of the gradients also 
converge, note that 

i IDul = IDu(P)llul 

for some P E u. On each of the edges of u determined by the vectors Vi, 
i = 1,2, ... ,n, there is a point Pi such that [DU(Pi)-DLk(Pi)]'Vi = 0 
(by the Mean Value theorem). But DLk(Pi) = DLk(p) since Lk is 
linear and I DU(Pi) I is close to I Du(p) I because of the small oscillation 
of IDul over u. Therefore, IDu(p)-DLk(P)1 is small and consequently, 
fO' IDLkl is close to fO' IDul, uniformly wit!"> respect to all u. 

5.3. If E c Rn is a measurable set, let us say that E is open in the density 
topology if D(E,x) = 1 for each x E E. Prove that the sets open in 
this sense actually produce a topology. In order to show this, it must 
be established that an uncountable union of density open sets is open; 
in particular, it must be shown that it is measurable. Hint: Use the 
Vitali covering theorem. If we agree to call the exterior of E all points 
x such that D(E, x) = 0, we see that 8M E is the boundary of E in 
the density topology. 
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5.4. In the setting of metric spaces, there is an inequality, called the Eilen
berg Inequality, that vaguely has the form of the co-area formula. It 
states that if X is a separable metric space and u : X -+ Rn is a 
Lipschitz map, then for any E c X and all integers 0 :5 k :5 n 

r Hn-k(E n u-1(y))dHk(y) :5 2n a(n - k)a(n) Lk Hn(E). 
JRn a(n) 

Here, L is the Lipschitz constant of u and r denotes the upper 
Lebesgue integral. Also, Hm denotes m-dimensional Hausdorff mea
sure which has a meaningful definition in a metric space. 

STEP 1. By the definition of H n , for every integer 8 > 0 there exists 
a countable covering of E in X by sets Ei,8' i = 1,2, ... , such that 
diamEi,8 < 1/8 and 

Hn(E) > a(n) ~(diamE. )n _ ~. 
- 2n L...J t,8 

i=l 8 

Hence, 

STEP 2. Consider the characteristic function ofthe set u(A), X( u(A)), 
where u(A) denotes the closure of u(A). Then 

[diam (A n u-1(y))]n-k :5 (diamA)n-kX(u(A), y). 

Hence, from Step 1, 

STEP 3. Apply Fatou's lemma (which is valid with the upper integral) 
to obtain 

However, 

Now use Step 1 to reach the desired conclusion. 
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5.5. Let u E BV(O) where 0 c Rn is an open set. For each real number 
t, let At = {x: u(x) 2:: t}. As usual, let XA denote the characteristic 
function of the set A. For any Borel set E, prove that 

1+00 

Du(E) = -00 DXAt (E)dt. 

5.6. Prove the following version of the Gauss-Green theorem for BV vector 
fields. Let 0 be a bounded Lipschitz domain and suppose u : 0 -+ Rn 
is a vector field such that each of its components is an element of 
BV(O). Then the trace, u*, of u on 00 is defined and 

divu(O) = [ u*(x)v(x,0)dHn - 1(x). 
Jan 

For this it is sufficient to prove that 

where u E BV(O), 1 ::; i ::; n, and Di = O/OXi. With the notation of 
the previous exercise, observe that 

DiXAt (0) = - [ Vi(X, At )dHn - 1(x) 
Jnna-At 

= - [ Vi(X, At )dHn - 1(x) 
Janna-At 
(since DiXAt (Rn) = 0) 

= - [ Vi(x,0)dHn - 1(x) 
Janna-At 

= -! Vi(x,0)dHn - 1(x) 
Atna-n 

= DiXn(O* Ad· 

With the help of the previous exercise, conclude that 
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= t XJ DiXn({X: u* ~ t})dt _ [0 DiXn({X: u* :::; t})dt 
10 1-00 

= [ u*dDiXn lan 
= [ u*(x)vi(x,0)dHn-1(x). 

lan 
5.7. Give a description of the result in the previous exercise on the line, 

i.e., when n = 1. 

5.8. Under the conditions of Corollary 5.2.4, prove that {DUi} ~ Du 
weakly as measures as i ~ 00. 

5.9. Suppose 0 is an open subset of Rn - 1 and that u: 0 ~ R1 is differ
entiable at Xo E 0 in the sense defined by (2.2.2). Also, let M = 
{(x, u(x)) : x EO}. Show that there exists a vector, v, that satisfies 
(5.6.10) at (xo, u(xo)). 

5.10. Let 0 c Rn be an open set with the property that 80 has a tangent 
plane at Xo E 80. That is, assume for each c > 0, that 

C(c) n 80 n B(xo, r) = 0 

for all small r > 0, where C(c) is introduced in Definition 5.6.3. 
Assume also that 

1. 10 n B(xo, r)1 0 
1m sup > 

r-tO IB(xo,r)1 

and 
1· I(Rn-O)nB(xo,r)1 0 
1m sup IB()I >. 

r-tO Xo, r 

Prove that Xo E 8*0. 

Historical Notes 

5.1. BV functions were employed in several areas such as area theory and 
the calculus of variations before the formal introduction of distributions, 
cf., [CE], [TO]. However, the definition employed at that time was in the 
spirit of Theorem 5.3.5. 

5.3. Theorem 5.3.3 is a result adopted from Krickerberg [KK]. This result 
is analogous to the one obtained by Meyers and Serrin [MSE] for Sobolev 
functions, Theorem 2.3.2. Serrin [SE] and Hughs [HS] independently dis
covered Theorem 5.3.5. 
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5.4. The theory of sets of finite perimeter was initiated by Caccioppoli [C) 
and DeGiorgi [DGl), [GD2) and subsequently developed by many contrib
utors including [KK), [FL) , [Fl), and [F2). Sets of finite perimeter can be 
regarded as n-dimensional integral currents in R n and therefore they can 
be developed within the context of geometric measure theory. The isoperi
metric inequality with sets of finite perimeter is due to DeGiorgi [Dl), [D2) 
and the co-area formula for BV functions, Theorem 5.4.4 was proved by 
Fleming and Rishel [FR). 

5.5. The notion of generalized exterior normal is due to DeGiorgi [D2) and 
is basic to the development of sets of finite perimeter. Essentially all of the 
results in this section are adapted from DeGiorgi's theory. 

5.6. The concept of the measure-theoretic normal was introduced by Fed
erer [Fl) who proved [F2) that it was essentially the same as the generalized 
exterior normal of DeGiorgi. 

Definition 5.6.3 implicitly invokes the notion of an approximate tangent 
plane to an arbitrary set which is of fundamental importance in geometric 
measure theory, cf. [F4). Theorem 5.6.5 states that the plane orthogonal to 
the generalized exterior normal at a point Xo is the approximate tangent 
plane to the reduced boundary at Xo. 

5.7. Count ably k-rectifiable sets and approximate tangent planes are closely 
related concepts. Indeed, from the definition and Rademacher's theorem, 
it follows that a countably k-rectificable set has an approximate tangent 
k-plane at Hk almost all of its points. Lemma 5.7.2 is one of the important 
results of the theory developed in [F4). Theorem 5.7.3 is due to DeGiorgi 
[Dl), [D2), although his formulation and proof are not the same. 

5.8. In his earlier work Federer, [Fl), was able to establish a version of the 
Gauss-Green theorem which employs the measure-theoretic normal for all 
every open subset of Rn whose boundary has finite Hn-l-measure. After 
DeGiorgi had established the regularity of the reduced boundary (Theorems 
5.7.3 and 5.8.1), Federer proved Theorem 5.8.7 [F2). 

5.9. A different version of Lemma 5.9.3 was first proved by William Gustin 
[GV). This version is due to Federer and appears in [F4, Section 4.5.4). 
Theorem 5.9.6 is only a part of the development of BV functions that 
appears in [F4, Section 4.5.9). Other contributors to the pointwise behavior 
of BV functions include Goffman [GO) and Vol' pert [YO). In particular, 
Vol'pert proved that the measure-theoretic boundary 8M E is equivalent to 
the reduced boundary. 

5.10-5.11. The trace of a BV function on the boundary of a regular domain 
as developed in this section is taken from [MZ). Alternate developments can 
be found in [GIl) and [MA3). This treatment of Poincare-type inequalities 
was developed in [MZ). . 
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5.12. Lemma 5.12.3 was first proved by Fleming [FL). The proof of the 
lemma depends critically on Lemma 5.9.3. Fleming publicly conjectured 
that the claim of the lemma (his statement had a slightly different form) 
was true and Gustin proved it in [GU). Theorems 5.12.2, 5.12.8, and the 
material in Section 5.13 were proved in [MZ). 
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