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Preface

1. This book is above all addressed to mathematicians. It is intended to be
a textbook of mathematical logic on a sophisticated level, presenting the
reader with several of the most significant discoveries of the last ten or
fifteen years. These include: the independence of the continuum hypothe-
sis, the Diophantine nature of enumerable sets, the impossibility of finding
an algorithmic solution for one or two old problems.

All the necessary preliminary material, including predicate logic and the
fundamentals of recursive function theory, is presented systematically and
with complete proofs. We only assume that the reader is familiar with
“naive” set theoretic arguments.

In this book mathematical logic is presented both as a part of mathe-
matics and as the result of its self-perception. Thus, the substance of the
book consists of difficult proofs of subtle theorems, and the spirit of the
book consists of attempts to explain what these theorems say about the
mathematical way of thought.

Foundational problems are for the most part passed over in silence.
Most likely, logic is capable of justifying mathematics to no greater extent
than biology is capable of justifying life.

2. The first two chapters are devoted to predicate logic. The presenta-
tion here is fairly standard, except that semantics occupies a very domi-
nant position, truth is introduced before deducibility, and models of
speech in formal languages precede the systematic study of syntax.

The material in the last four sections of Chapter II is not completely
traditional. In the first place, we use Smullyan’s method to prove Tarski’s
theorem on the undefinability of truth in arithmetic, long before the
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Preface

introduction of recursive functions. Later, in the seventh chapter, one of
the proofs of the incompleteness theorem is based on Tarski’s theorem. In
the second place, a large section is devoted to the logic of quantum
mechanics and to a proof of von Neumann’s theorem on the absence of
“hidden variables” in the quantum mechanical picture of the world.

The first two chapters together may be considered as a short course in
logic apart from the rest of the book. Since the predicate logic has received
the widest dissemination outside the realm of professional mathematics,
the author has not resisted the temptation to pursue certain aspects of its
relation to linguistics, psychology, and common sense. This is all discussed
in a series of digressions, which, unfortunately, too often end up trying to
explain “the exact meaning of a proverb” (E. Baratynskii '). This series of
digressions ends with the second chapter.

The third and fourth chapters are optional. They are devoted to com-
plete proofs of the theorems of Godel and Cohen on the independence of
the continuum hypothesis. Cohen forcing is presented in terms of
Boolean-valued models; Godel’s constructible sets are introduced as a
subclass of von Neumann’s universe. The number of omitted formal
deductions does not exceed the accepted norm; due respects are paid to
syntactic difficulties. This ends the first part of the book: “Provability.”

The reader may skip the third and fourth chapters, and proceed im-
mediately to the fifth. Here we present elements of the theory of recursive
functions and enumerable sets, formulate Church’s thesis, and discuss the
notion of algorithmic undecidability.

The basic content of the sixth chapter is a recent result on the Di-
ophantine nature of enumerable sets. We then use this result to prove the
existence of versal families, the existence of undecidable enumerable sets,
and, in the seventh chapter, Godel’s incompleteness theorem (as based on
the definability of provability via an arithmetic formula). Although it is
possible to disagree with this method of development, it has several
advantages over earlier treatments. In this version the main technical effort
is concentrated on proving the basic fact that all enumerable sets are
Diophantine, and not on the more specialized and weaker results concern-
ing the set of recursive descriptions or the Godel numbers of proofs.

! Nineteenth century Russian poet (translator’s note). The full poem is:

We diligently observe the world,

We diligently observe people,

And we hope to understand their deepest meaning.
But what is the fruit of long years of study?

What do the sharp eyes finally detect?

What does the haughty mind finally learn

At the height of all experience and thought,
What?—the exact meaning of an old proverb.

1828
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The last section of the sixth chapter stands somewhat apart from the
rest. It contains an introduction to the Kolmogorov theory of complexity,
which is of considerable general mathematical interest.

The fifth and sixth chapters are independent of the earlier chapters, and
together make up a short course in recursive function theory. They form
the second part of the book: “Computability.”

The third part of the book, “Provability and Computability,” relies
heavily on the first and second parts. It also consists of two chapters. All of
the seventh chapter is devoted to Godel’s incompleteness theorem. The
theorem appears later in the text than is customary because of the belief
that this central result can only be understood in its true light after a solid
grounding both in formal mathematics and in the theory of computability.
Hurried expositions, where the proof that provability is definable is en-
tirely omitted and the mathematical content of the theorem is reduced to
some version of the “liar paradox,” can only create a distorted impression
of this remarkable discovery. The proof is considered from several points
of view. We pay special attention to properties which do not depend on the
choice of Godel numbering. Separate sections are devoted to Feferman’s
recent theorem on Godel formulas as axioms, and to the old but very
beautiful result of Godel on the length of proofs.

The eighth and final chapter is, in a way, removed from the theme of
the book. In it we prove Higman’s theorem on groups defined by enumer-
able sets of generators and relations. The study of recursive structures,
especially in group theory, has attracted continual attention in recent
years, and it seems worthwhile to give an example of a result which is
remarkable for its beauty and completeness.

3. This book was written for very personal reasons. After several years
or decades of working in mathematics, there almost inevitably arises the
need to stand back and look at this research from the side. The study of
logic is, to a certain extent, capable of fulfilling this need.

Formal mathematics has more than a slight touch of self-caricature. Its
structure parodies the most characteristic, if not the most important,
features of our science. The professional topologist or analyst experiences a
strange feeling when he recognizes the familiar pattern glaring out at him
in stark relief.

This book uses material arrived at through the efforts of many mathe-
maticians. Several of the results and methods have not appeared in
monograph form; their sources are given in the text. The author’s point of
view has formed under the influence of the ideas of Hilbert, Godel, Cohen,
and especially John von Neumann, with his deep interest in the external
world, his open-mindedness and spontaneity of thought.

Various parts of the manuscript have been discussed with Yu. V.
Matijasevié, G. V. Cudnovskii, and S. G. Gindikin. I am deeply grateful to
all of these colleagues for their criticism.
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W. D. Goldfarb of Harvard University very kindly agreed to proofread
the entire manuscript. For his detailed corrections and laborious rewriting
of part of Chapter IV, I owe a special debt of gratitude.

I wish to thank Neal Koblitz for his meticulous translation.

Yu. I. Manin
Moscow, September 1974
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CHAPTER 1

Introduction to formal languages

Gelegentlich ergreifen wir die Feder

Und schreiben Zeichen auf ein weisses Blatt,
Die sagen dies und das, es kennt sie jeder,
Es ist ein Spiel, das seine Regeln hat.

H. Hesse, “Buchstaben™

We now and then take pen in hand
And make some marks on empty paper.
Just what they say, all understand.

It is a game with rules that matter.

H. Hesse, “Alphabet”
(translated by Prof. Richard S. Ellis)

1 General information

1.1. Let A be any abstract set. We call 4 an alphaber. Finite sequences of
elements of 4 are called expressions in A. Finite sequences of expressions
are called rexts.

We shall speak of a language with alphabet A if certain expressions and
texts are distinguished (as being “correctly composed,” “meaningful,” etc.).
Thus, in the Latin alphabet 4 we may distinguish English word forms and
grammatically correct English sentences. The resulting set of expressions
and texts is a working approximation to the intuitive notion of the
“English language.”

The language Algol 60 consists of distinguished expressions and texts in
the alphabet {Latin letters} U {digits} U {logical signs} U {separators}.
Programs are among the most important distinguished texts.



I Introduction to formal languages

In natural languages the set of distinguished expressions and texts
usually has unsteady boundaries. The more formal the language, the more
rigid these boundaries are.

The rules for forming distinguished expressions and texts make up the
syntax of the language. The rules which tell how they correspond with
reality make up the semantics of the language. Syntax and semantics are
described in a metalanguage.

1.2. “Reality” for the languages of mathematics consists of certain classes
of (mathematical) arguments or certain computational processes using
(abstract) automata. Corresponding to these designations, the languages
are divided into formal and algorithmic languages. (Compare: in natural
languages, the declarative versus imperative moods, or—on the level of
texts—statement versus command.)

Different formal languages differ from one another, in the first place, by
the scope of the formalizable types of arguments—their expressiveness; in
the second place, by their orientation toward concrete mathematical theo-
ries; and in the third place, by their choice of elementary modes of
expression (from which all others are then synthesized) and written forms
for them.

In the first part of this book a certain class of formal languages is
examined systematically. Algorithmic languages are brought in episodi-
cally.

The “language—parole” dichotomy, which goes back to Humboldt and
Saussure, is as relevant to formal languages as to natural languages. In §3
of this chapter we give models of “speech” in two concrete languages,
based on set theory and arithmetic, respectively; because, as many believe,
habits of speech must precede the study of grammar.

The language of set theory is among the richest in expressive means,
despite its extreme economy. In principle, a formal text can be written in
this language corresponding to almost any segment of modern mathema-
tics—topology, functional analysis, algebra, or logic.

The language of arithmetic is one of the poorest, but its expressive
possibilities are sufficient for describing all of elementary arithmetic, and
also for demonstrating the effects of self-reference a la Godel and Tarski.

1.3. As a means of communication, discovery, and codification, no formal
language can compete with the mixture of mathematical argot and for-
mulas which is common to every working mathematician.

However, because they are so rigidly normalized, formal texts can
themselves serve as an object for mathematical investigation. The results of
this investigation are themselves theorems of mathematics. They arouse
great interest (and strong emotions) because they can be interpreted as
theorems about mathematics. But it is precisely the possibility of these and
still broader interpretations that determines the general philosophical and
human value of mathematical logic.

4



1 General information

1.4. We have agreed that the expressions and texts of a language are
elements of certain abstract sets. In order to work with these elements, we
must somehow fix them materially. In the modern European tradition (as
opposed to the ancient Babylonian tradition, or the latest American
tradition, using computer memory), the following notation is customary.
The elements of the alphabet are indicated by certain symbols on paper
(letters of different kinds of type, digits, additional signs, and also combi-
nations of these). An expression in an alphabet 4 is written in the form of
a sequence of symbols, read from left to right, with hyphens when
necessary. A text is written as a sequence of written expressions, with
spaces or punctuation marks between them.

1.5. If written down, most of the interesting expressions and texts in a
formal language either would be physically extremely long, or else would
be psychologically difficult to decipher and learn in an acceptable amount
of time, or both.

They are therefore replaced by “abbreviated notation” (which can
sometimes turn out to be physically longer). The expression “xxxxxx” can
be briefly written “x - - - x (six times)” or “x°.” The expression “Vz(z € x
<z € y)” can be briefly written “x = y.”” Abbreviated notation can also be
a way of denoting any expression of a definite type, not only a single such
expression; (any expression 101010 - - - 10 can be briefly written ‘“the
sequence of length 2 with ones in odd places and zeros in even places” or
“the binary expansion of (4" —1).”)

Ever since our tradition started, with Vieta, Descartes, and Leibniz,
abbreviated notation has served as an inexhaustible source of inspiration
and errors. There is no sense in, or possibility of, trying to systematize its
devices; they bear the indelible imprint of the fashion and spirit of the
times, the artistry and pedantry of the authors. The symbols %, [, € are
classical models worthy of imitation. Frege’s notation, now forgotten, for
“P and Q7 (actually “not [if P, then not Q],” whence the asymmetry):

FTTT Q

P

shows what should be avoided. In any case, abbreviated notation per-
meates mathematics.
The reader should become used to the trinity

formal text

e

written text—————interpretation of text,

which replaces the unconscious identification of a statement with its form
and its sense, as one of the first priorities in his study of logic.



I Introduction to formal languages

2 First order languages

In this section we describe the most important class of formal languages £,
—the first order languages—and give two concrete representatives of this
class: the Zermelo-Fraenkel language of set theory L,Set, and the Peano
language of arithmetic L,Ar. Another name for £, is predicate languages.

2.1. The alphabet of any language in the class £, is divided into six disjoint
subsets. The following table lists the generic name for the elements in each
subset, the standard notation for these elements in the general case, the
special notation used in this book for the languages L,Set and L,Ar. We
then describe the rules for forming distinguished expressions and briefly
discuss semantics.

The distinguished expressions of any language L in the class £, are
divided into two types: terms and formulas. Both types are defined recur-
sively.

2.2, Definition. Terms are the elements of the least subset of the expres-
sions of the language which satisfies the two conditions:

(a) Variables and constants are (atomic) terms.
(b) If f is an operation of degree r and ¢,,...,1 are terms, then
f(, ..., ¢)is a term.

In (a) we identify an element with a sequence of length one. The

alphabet does not include commas, which are part of our abbreviated
notation: f(¢, t,, t;) means the same as f(#,2,¢;). In §1 of Chapter II we

Language Alphabets

Subsets of Names and Notation

the Alphabet General in L,Set in L,Ar
connectives and < (equivalent); = (implies); \/ (inclusive or); A (and);
quantifiers — (not); V (universal quantifier); 3 (existential quantifier)
variables X, ¥, 2z, U, v, ... with indices

constants ¢ - - - with indices | @ (empty set) 0 (zero); 1 (one)
operations of

degree f, g, ... with none + (addition, degree 2);
1,2,3,... indices - (multiplication, degree 2)
relations (pred- € (is an element = (equality, degree 2)
icates) of degree | p. ¢, ... with of, degree 2);

1,2,3,... indices = (equals, degree 2)

parentheses ((left parenthesis); )(right parenthesis)

6




2 First order languages

explain how a sequence of terms can be uniquely deciphered despite the
absence of commas.

If two sets of expressions in the language satisfy conditions (a) and (b),
then the intersection of the two sets also satisfies these conditions. There-
fore the definition of the set of terms is correct.

2.3. Definition. Formulas are the elements of the least subset of the
expressions of the language which satisfies the two conditions:

(a) If p is a relation of degree r and ¢, ..., are terms, then
p(ty, - .., 1) is an (atomic) formula.

(b) If P and Q are formulas (abbreviated notation!), and x is a variable,
then the expressions

(P)=(0), (P)=(Q), (P)V(Q), (PIN(Q)
—(P), VX(P), AX(P)
are formulas.

It is clear from the definitions that any term is obtained from atomic
terms in a finite number of steps, each of which consists in “applying an
operation symbol” to the earlier terms. The same is true for formulas. In
Chapter 11, §1 we make this remark more precise.

The following initial interpretations of terms and formulas are given for
the purpose of orientation and belong to the so-called “standard models”
(see Chapter II, §2 for the precise definitions).

2.4. EXAMPLES AND INTERPRETATIONS
(a) The terms stand for (are notation for) the objects of the theory.
Atomic terms stand for indeterminate objects (variables) or concrete
objects (constants). The term f(¢, ..., ¢) is the notation for the object
obtained by applying the operation denoted by f to the objects denoted by
t, ..., t.Here are some examples from L Ar:
0 denotes Zero;
1 denotes one;
+(T, T) denotes two (1 + 1 = 2 in the usual notation);
+ (T +(1, T)) denotes three;
. (+ 1, D+(Q, i)) denotes four (2 X 2 =4).

Since this normalized notation is different from what we are used to in
arithmetic, in L,;Ar we shall usually write simply 7, + 1, instead of +(¢,, ,)
and ¢, - ¢, instead of -(¢,, #,). This convention may be considered as another
use of abbreviated notation.

x stands for an indeterminate integer;
x+1 {or +(x, 1)) stands for the next integer.



I Introduction to formal languages

In the language L,Set all terms are atomic:

x stands for an indeterminate set:
@ stands for the empty set.

{b) The formulas stand for statements (arguments, propositions, . . . ) of
the theory. When translated into formal language, a statement may be
either true, false, or indeterminate (if it concerns indeterminate objects);
see Chapter II for the precise definitions. In the general case the atomic
formula p(zy, ..., ) has roughly the following meaning: “The ordered
r-tuple of objects denoted by 7,.. .., has the property denoted by p.”
Here are some examples of atomic formulas in L,Ar. Their general
structure is = (7,. t,), or, in nonnormalized notation. 7, = t,:

0= T x+1 =y.
Here are some examples of formulas which are not atomic:
—(0=1),

(x=0)e(x+1=1),
Vx((x = 6)\/( —(x-x= 6)))
Some atomic formulas in L,Set:
yEx (y is an element of x),

and also @ € y, x € @, etc. Of course, normalized notation must have the
form €(xy), and so on.
Some nonatomic formulas:

Bx(Vy( —(y Ex))): there exists an x of which no y is an element.

Informally this means: “The empty set exists.” We once again recall that
an informal interpretation presupposes some standard interpretive system,
which will be introduced explicitly in Chapter 11.

Vy(y €Ez=y € x): z is a subset of x.

This is an example of a very useful type of abbreviated notation: four
parentheses are omitted in the formula on the left. We shall not specify
precisely when parentheses may be omitted; in any case, it must be
possible to reinsert them in a way that is unique or is clear from the
context without any special effort.

We again emphasize: the abbreviated notation for formulas are only
material designations. Abbreviated notation is chosen for the most part
with psychological goals in mind: speed of reading (possibly with a loss in
formal uniqueness), tendency to encourage useful associations and dis-
courage harmful ones, suitability to the habits of the author and reader,



Digression: names

and so on. The mathematical objects in the theory of formal languages are
the formulas themselves, and not any particular designations.

Digression: names

On several occasions we have said that a certain object (a sign on paper,
an element of an alphabet as an abstract set, etc.) is a notation for, or
denotes, another element. A convenient general term for this relationship is
naming.

The letter x is the name of an element of the alphabet; when it appears
in a formula, it becomes the name of a set or a number; the notation x € y
is the name of an expression in the alphabet 4, and this expression, in turn,
is the name of an assertion about indeterminate sets; and so on.

When we form words, we often identify the names of objects with the
objects themselves: we say “the variable x,” “the formula P,” “the set z.”
This can sometimes be dangerous. The following passage from Rosser’s
book Logic for Mathematicians points up certain hidden pitfalls:

The gist of the matter is that, if we have a statement such as “3 is

9 e 9 9

greater than {3~ about the rational number  and containing a name **3
of this rational number, one can replace this name by any other name of

w3 9

the same rational number, for instance, “}.” If we have a statement such
as “3 divides the denominator of ‘3’ about a name of a rational number
and containing a name of this name, one can replace this name of the
name by some other name of the same name, but not in general by the
name of some other name, if it is a name of some other name of the same
rational number.

Rosser adds that “failure to observe such distinctions carefully can seldom
lead to confusion in logic and still more seldom in mathematics.” How-
ever, these distinctions play a significant role in philosophy and in
mathematical practice.

“A rose by any other name would smell as sweet”—this is true because
roses exist outside of us and smell in and of themselves. But, for example,
it seerns that Hilbert spaces only “exist” insofar as we talk about them, and
the choice of terminology here makes a difference. The word “space” for
the set of equivalence classes of square integrable functions was at the
same time a codeword for an entire circle of intuitive ideas concerning
“real” spaces. This word helped organize the concept and led it in the right
direction.

A successfully chosen name is a bridge between scientific knowledge
and common sense, between new experience and old habits. The concep-
tual foundation of any science consists of a complicated network of names
of things, names of ideas, and names of names. It evolves itself, and its
projection on reality changes.
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3 Beginners’ course in translation

3.1. We recall that the formulas in L;Set stand for statements about sets;
the formulas in L,Ar stand for statements about natural numbers; these
formulas contain names of sets and numbers, which may be indeterminate.

In this section we give the first basic examples of two-way translation
“argot<>formal language.” One of our purposes will be to indicate the
great expressive possibilities in L,Set and L Ar, despite the extremely
limited modes of expression.

As in the case of natural languages, this translation cannot be given by
rigid rules, is not uniquely determined, and is a creative process. Compare
Hesse’s quatrain with its translation in the epigraph to this book: the most
important aim of translation is to “understand . . . just what they say.”

Before reading further, the reader should look through the Appendix to
Chapter 1I: “The von Neumann Universe.” The semantics implicit in L,Set
relates to this universe, and not to arbitrary “Cantor” sets.

A more complete picture of the meaning of the formulas can be
obtained from §2 of Chapter II.

Translation from L,Set to argot.

3.2. Vx( (x €@)): “for all (sets) x it is false that x is an element of (the
set) @ (or “@ is the empty set”).

The second assertion is only equivalent to the first in the von Neumann
universe, where the elements of sets can only be sets, and not real
numbers, chairs, or atoms.

33.Vz(z Exez Ey)ex =y: “if for all z it is true that z is an element of
x if and only if z is an element of y, then it is true that x coincides with y;
and conversely,” or “a set is uniquely determined by its elements.”

In the expression 3.3 at least six parentheses have been omitted; and the
subformulas z € x, z €y, x = y have not been normalized according to the
rules of £,.

34. Vu Vv 3x Vz(z Exe(z=u\/z=0)): “for any two sets u, v there
exists a third set x such that v and v are its only elements.”

This is one of the axioms of Zermelo-Fraenkel. The set x is called the
“unordered pair of sets u, v” and is denoted {u, v} in the Appendix.

35. Vy Vz(((z€Ey Ay Ex)=z€x) A(y Ex= (¥ €y))): “the set x
is partially ordered by the relation € between its elements.”

We mechanically copied the condition y € x= —(y Ey) from the
definition of partial ordering. This condition is automatically fulfilled in
the von Neumann universe, where no set is an element of itself.

10



3 Beginners’ course in translation

A useful exercise would be to write the following formulas:

“x is totally ordered by the relation €”;
“x 1s linearly ordered by the relation €7;
“x is an ordinal.”

3.6. Vx(y € z): The literal translation “for all x it is true that y is an
element of z” sounds a little strange. The formula Vx 3x(y € z), which
agrees with the rules for constructing formulas, looks even worse. It would
be possible to make the rules somewhat more complicated, in order to rule
out such formulas, but in general they cause no harm. In Chapter II we
shall see that, from the point of view of “truth” or “deducibility,” such a
formula is equivalent to the formula y € z. It is in this way that they must
be understood.

Translation from argot to L,Set.

We choose several basic constructions having general mathematical signifi-
cance and show how they are realized in the von Neumann universe, which
only contains sets obtained from @ by the process of *“collecting into a
set,” and in which all relations must be constructed from €.

3.7. “x is the direct product y X z.”

This means that the elements of x are the ordered pairs of elements of y
and z, respectively. The definition of an unordered pair is obvious: the
formula

Vu(uexo(u=y,\Ju=1z))

“means,” or may be briefly written in the form, x = { y,, z;} (compare 3.4).
The ordered pair y; and z, is introduced using a device of Kuratowski and
Wiener: this is the set x; whose elements are the unordered pairs {y, y,}

and {yb Zl}'
We thus arrive at the formula

Iy, 3z,("x, = 2 2)" N2 ={yiu "Nz ={»), Zl}”),
which will be abbreviated
x =y 2y

and will be read: “x, is the ordered pair with first element y, and second
element z,.” The abbreviated notation for the subformulas is in quotes; we
shall later omit the quotation marks.

Finally, the statement “x = y X z” may be written in the form:

Vxl(xl Exedy, Iz /(y,Ey Nz €z N X, =y, 21>”))-

In order to remind the reader for the last time of the liberties taken in
abbreviated notation, we write this same formula adhering to all the

11



I Introduction to formal languages

canons of {;:
(

Vx, [(€(xx))

<

3y, (322(((Vu(( € (ux,))

i

Iy, (321 (((E(yly))/\(E(ZlZ))) A

=((= )V (= () A (YVu(( € (w2)

(= (“.Vl))))) A (Vu(( E(uzy))=((=(w ) V(= (”21))))))))))]

Exercise: Find the open parenthesis corresponding to the fifth closed parenthesis
from the end. In §1 of Chapter 11 we give an algorithm for solving such problems.

3.8. “f is a mapping from the set u to the set v.”

First of all, mappings, or functions, are identified with their graphs;
otherwise, we would not be able to consider them as elements of the
universe. The following formula successively imposes three conditions on
f: fis a subset of u X v; the projection of f onto u coincides with all of u;
and, each element of u corresponds to exactly one element of v:

Vz(z € f= (3w, v, (u, EuNv, € v N“z =uy, 1))
AVu, (u, Eu=3v, Az(v, E v A"z = (uy, v)" Az Ef))
AVu, Vo, Vo, (32, 3zy(2, EfN 2, EfN 2y = (uy 007 N2y = Sy, ©)7)

=0U, = 1)2).

ExERrcIse: Write the formula “f is the projection of y X z onto z.”

3.9. “x is a finite set.”

Finiteness is far from being a primitive concept. Here is Dedekind’s
definition: “there does not exist a one-to-one mapping f of the set x onto a
proper subset.” The formula:

—Ef(“f is a mapping from x to X" AVu, Yu, Vo, Vo, ((“Cup o) € f7
ANty 0y € A (1) = 1)) = (v, = 1y)) Ao (v € x A 3w,
("Cuyp. oy Ef”)))-

12



3 Beginners’ course in translation

The abbreviation “{u,, v,> € f~* means, of course, Iy (“y = {u,;, v,)”" Ay €

D.

3.10. “x is a nonnegative integer.”
The natural numbers are represented in the von Neumann universe by
the finite ordinals, so that the required formula has the form:

“x is totally ordered by the relation € A" x 1s finite.”

ExeRrcIsE: Figure out how to write the formulas “x +y = z”” and “x-y = z,” where
x,y, z are integers > 0.

After this it is possible in the usual way to write the formulas “x is an
integer,” “x is a rational number,” “x is a real number” (following Cantor
or Dedekind), etc., and then construct a formal version of analysis. The
written statements will have acceptable length only if we periodically
extend the language L,Set (see §8 of Chapter II). For example, in L,Set we
are not allowed to write term-names for the numbers 1, 2, 3, ... (& is the
name for 0), although we may construct the formulas “x is the finite
ordinal containing 1 element,” “x is the finite ordinal containing 2 ele-
ments,” etc. If we use such roundabout methods of expression, the simplest
numerical identities become incredibly long; but, of course, in logic we are
mainly concerned with the theoretical possibility of writing them.

LRI

3.11. “x is a topological space.”

In the formula we must give the topology of x explicitly. We define the
topology, for example, in terms of the set y of all open subsets of x. We
first write that y consists of subsets of x and contains x and the empty set:

P Vz(zeEy=Vu(uEz=uEX)AXEY ANDEy.
The intersection w of any two elements u, v in y is open, i.e., belongs to y:
P,y YuVo Vw((u EYAvEYAVz((zEuNzZEV)SzE W))W Ey).

It is harder to write “the union of any set of open subsets is open.” We
first write:

Py Vu(ue:zeVo(vEu=vEy)),
that is, “z is the set of all subsets of y.” Then:
P, VYu Vw((u €AV (v, EweTv(vEuAv E0)))=w Ey).

This means (taking into account P,, which defines z): “If u is any subset of
»y, 1.e., a set of open subsets of x, then the union w of all these subsets
belongs to y, ie., is open.” Now the final formula may be written as
follows:

P AP AVZ(Py=P,).
13



I Introduction to formal languages

The following comments on this formula will be reflected in precise
definitions in Chapter II, §§1 and 2. The letters x,y have the same
meaning in all the P,, while z plays different roles: in P, it is a subset of x,
and in P, and P, it is the set of subsets of x. We are allowed to do this
because, as soon as we “bind” z by the quantifier V, say in P, z no longer
stands for an (indeterminate) individual set, and becomes a temporary
designation for “any set.” Where the “scope of action” of V ended, z can
be given a new meaning. In order to “free” z for later use, Vz was also put
before Py= P,

Translation from argot to L Ar.

312 “x <y Ez(y =(x+z)+ T) Recall that the variables are names
for nonnegative integers.

3.13. “x is a divisor of y” : z(y = x-2).

3.14. “x is a prime number’: “1< x” A"y is a divisor of x"=(y = T\/y =
x)).

3.15. “Fermat’s big theorem”: Vx; Vx, Vx; Yu(*2 <u’A\“x{+ x5 =
X¥=“x,x,x3 = 07). It is not clear how to write the formula x;' + x;' = xJ
in L Ar. Of course, for any concrete u= 1,2, 3 there is a corresponding
atomic formula in L,Ar, but how do we make u into a variable? This is not
a trivial problem. In the second part of the book we show how to find an
atomic formula p(x, u, y, z;, . . ., z,) such that the assertion that
3z, 3z, p(x,u,y,2,...,2,) in the domain of natural numbers is

equivalent to y = x* Then x| + xj' = x} can be translated as follows:

3y, 3y, Iy, (“xlu = Y1”/\“qu =y,  A“xy =Y3”/\)’1 + ¥, =)’3)-
The existence of such a p is a nontrivial number theoretic fact, so that here

the very possibility of performing a translation becomes a mathematical
problem.

3.16. “ The Riemann hypothesis.” The Riemann zeta-function { (s) is defined
by the series £%_,;n~° in the halfplane Res > 1. It can be continued
meromorphically onto the entire complex s-plane. The Riemann hypothe-
sis is the assertion that the nontrivial zeros of { (s) lie on the line Re s = %
Of course, in this form the Riemann hypothesis cannot be translated into
L,Ar. However, there are several purely arithmetic assertions which are
demonstrably equivalent to the Riemann hypothesis. Perhaps the simplest
of them is the following.

Let u(n) be the Mobius function on the set of integers > 1: it equals 0 if
n is divisible by a square, and equals (— 1)", where r is the number of prime
divisors of n, if n is square-free. We then have:

é p(n)

n=1

Riemann hypothesise>Ve >03x Vy |y > x= [ <y1/2+e} .

14



3 Beginners’ course in translation

Only the exponent is not an integer on the right; but ¢ need only run
through numbers of the form 1/z, z an integer > 1, and then we can raise
the inequality to the (2z)th power. The formula

(é u(n)) <yit?

n=1

can then be translated into L,Ar, although not completely trivially. The
necessary techniques will be developed in the second part of the book.
The last two examples were given in order to show the complexity that
is possible in problems which can be stated in L,Ar, despite the apparent
simplicity of the modes of expression and the semantics of the language.
We conclude this section with some remarks concerning higher order
languages.

3.17. Higher order languages. Let L be any first order language. Its modes
of expression are limited in principle by one important consideration: we
are not allowed to speak of arbitrary properties of objects of the theory,
that is, arbitrary subsets of the set of all objects. Syntactically, this is
reflected in the prohibition against forming expressions such as Vp(p(x)),
where p is a relation of degree 1; relations must stand for fixed rather than
variable properties.

Of course, certain properties can be defined using nonatomic formulas.

13

For example, in L,Ar instead of “x is even” we may write
By(x =(1+1)- y). However, there is a continuum of subsets of the in-
tegers but only a countable set of definable properties (see §2 of Chapter
I1), so there are automatically properties which cannot be defined by
formulas. Thus, it is impossible to replace the forbidden expression
Vp(p(x)) by a sequence of expressions P,(x), Py(x), Py(x), . .. .

Languages in which quantifiers may be applied to properties and /or
functions (and also, possibly, to properties of properties, and so on) are
called higher order languages. One such language—L,Real—will be con-
sidered in Chapter III for the purpose of illustrating a simplified version of
Cohen forcing.

On the other hand, the same extension of expressive possibilities can be
obtained without leaving £;. In fact, in the first order language L,Set we
may quantify over all subsets of any set, over all subsets of the set of
subsets, and so on. Informally this means we are speaking of all properties,
all properties of properties, ... (with transfinite extension). In addition,
any higher order language with a “standard interpretation” in some type of
structured sets can be translated into L,Set so as to preserve the meanings
and truth values in this standard interpretation. (An apparent exception is
the languages for describing Godel-Bernays classes and “large” categories;
but it seems, based on our present understanding of paradoxes, that no
higher order languages can be constructed from such a language.)

15



I Introduction to formal languages

The attentive reader will notice the contrast between the possibility of
writing a formula in L,Set in which V is applied to all subsets (informally,
to all properties) of finite ordinals (informally, of integers), and the
impossibility of writing a formula in L,Set which would define any concrete
subset in the continuum of undefinable subsets. (There are fewer such
subsets in L,Set than in L,Ar, but still a continuum.) We shall examine
these problems more closely in Chapter II when we discuss “Skolem’s
paradox.”

Let us summarize. Almost all the basic logical and set theoretic princi-
ples used in the day to day work of the mathematician are contained in the
first-order languages and, in particular, in L,Set. Hence, those languages
will be the subject of study in the first and third parts of the book. But
concrete oriented languages can be formed in other ways, with various
degrees of deviation from the rules of £,. In addition to L,Real, examples
of such languages examined in Chapter II include SELF (Smullyan’s
language for self-description) and SAr, which is a language of arithmetic
convenient for proving Tarski’s theorem on the undefinability of truth.

Digression: syntax

1. The most important feature that most artificial languages have in
common is the ability to encompass a rich spectrum of modes of expres-
sion starting with a small finite number of generating principles.

In each concrete case the choice of these principles (including the
alphabet and syntax) is based on a compromise between two extremes.
Economical use of modes of expression leads to unified notation and
simplified mechanical analysis of the text. But then the texts become much
longer and farther removed from natural language texts. Enriching the
modes of expression brings the artificial texts closer to the natural lan-
guage texts, but complicates the syntax and the formal analysis. (Compare
machine languages with such programming languages as Algol, Fortran,
Cobol, etc.)

We now give several examples based on our material.

2. Dialects of &,

(a) Without changing the logic in £,, it is possible to discard parentheses
and either of the two quantifiers from the alphabet, and to replace all the
connectives by one, namely | (conjunction of negations). (In addition,
constants could be declared to be functions of degree 0, and functions
could be interpreted as relations.)

This is accomplished by the following change in the definitions. If
t, ..., are terms, f is an operation of degree r, and p is a relation of
degree r, then fr, - - - ¢, is a term, and pr, - - - ¢, is an atomic formula. If P
and Q are formulas, then | PQ and VxP are formulas. The content of | PQ
is “not P and not Q,” so that we have the following expressions in this

16



Digression: syntax

dialect:
—(P): | PP
(PIN(Q): WPPLOQ
(PYV(Q): WPQLPQ

Clearly, economizing on parentheses and connectives leads to much repeti-
tion of the same formula. Nevertheless, it may become simpler to prove
theorems about such a language because of the shorter list of syntactic
norms.

(b) Bourbaki’s language of set theory has an alphabet consisting of the
signs [J, 7, \/, —1, =, € and the letters. Expressions in this language are
not simply sequences of signs in the alphabet, but sequences in which
certain elements are paired together by superlinear connectives, For exam-
ple:

I 1

TV EeE QA € A"

The main difference between Bourbaki’s language and L,Set is the use of
the “Hilbert choice symbol.” If, for example, € xy is the formula “x is an
element of y,” then

TE [y

is a term meaning “‘some element of the set y.”

Bourbaki’s language is not very convenient and is not widely used. It
became known in the popular literature thanks to an example of a very
long abbreviated notation for the term “one,” which the authors impru-
dently introduced:

Tz((au)(a U)(u=(U, (@}, Z)AU c (@} x ZA(Yx)((x € {2)})
=(I)((x,¥) € U AVX)I)V)((x,y E UN(x,y) € V)
=(» =)AW@y € Z)=@x)((x.y) € V))))).

It would take several tens of thousands of symbols to write out this term
completely; this seems a little too much for “one.”

(c) A way to greatly extend the expressive possibilities of almost any
language in £, is to allow “class terms™ of the type {x|P(x)}, meaning
“the class of all objects x having the property P.” This idea was used by
Morse in his language of set theory and by Smullyan in his language of
arithmetic; see §10 of Chapter II.

17
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3. General remarks. Most natural and artificial languages are characteristi-
cally discrete and linear (one-dimensional). On the one hand, our percep-
tion of the external world is not felt by us to be either discrete or linear,
although these characteristics are observed on the level of physiological
mechanisms (coding by impulses in the nervous system). On the other
hand, the languages in which we communicate tend to transmit informa-
tion in a sequence of distinguishable elementary signs. The main reason for
this is probably the much greater (theoretically unlimited) uniqueness and
reproducibility of information than is possible with other methods of
conveyance. Compare with the well-known advantages of digital over
analog computers.

The human brain clearly uses both principles. The perception of images
as a whole, along with emotions, are more closely connected with nonlin-
ear and nondiscrete processes—perhaps of a wave nature. It is interesting
to examine from this point of view the nonlinear fragments in various
languages.

In mathematics this includes, first of all, the use of drawings. But this
use does not lend itself to formal description, with the exception of the
separate and formalized theory of graphs. Graphs are especially popular
objects, because they are as close as possible both to their visual image as a
whole and to their description using all the rules of set theory. Every time
we are able to connect a problem with a graph, it becomes much simpler to
discuss it, and large sections of verbal description are replaced by manipu-
lation with pictures.

A less well-known class of examples is the commutative diagrams and
spectral sequences of homological algebra. A typical example is the “snake
lemma.” Here is its precise formulation.

Suppose we are given a commutative diagram of abelian groups and
homomorphisms between them (in the box below), in which the rows are
exact sequences:

0 — Kerf —> Kerg —> Kerh -———————- ]

o

1
|
!
0—)—A————>B——>C———>O:
1

B %f __________ ?’ __________ %_” _________ _

Then the kernels and cokernels of the “vertical” homomorphisms f, g, A
form a six-term exact sequence, as shown in the drawing, and the entire
diagram of solid arrows is commutative. The “snake” morphism Ker 72—

18



Digression: syntax

Coker f, which is denoted by the dotted arrow, is the basic object con-
structed in the lemma.

Of course, it is easy to describe the snake diagram sequentially in a
suitable, more or less formal, linear language. However, such a procedure
requires an artificial and not uniquely determined breaking up of a clearly
two-dimensional picture (as in scanning a television image). Moreover,
without having the overall image in mind, it becomes harder to recognize
the analogous situation in other contexts and to bring the information
together into a single block.

The beginnings of homological algebra saw the enthusiastic recognition
of useful classes of diagrams. At first this interest was even exaggerated;
see the editor’s appendix to the Russian translation of Homological Algebra
by Cartan and Eilenberg.

There is one striking example of an entire book with an intentional
two-dimensional (block) structure: C. H. Lindsey and S. G. van der
Meulen, Informal Introduction to Algol 68 (North-Holland, Amsterdam,
1971). It consists of eight chapters, each of which is divided into seven
sections (eight of the 56 sections are empty, to make the system work!). Let
(i, /) be the name of the jth section of the ith chapter; then the book can
be studied either “row by row” or “column by column” in the (i, j)-matrix,
depending on the reader’s intentions.

As with all great undertakings, this is the fruit of an attempt to solve
what is in all likelihood an insoluble problem, since, as the authors remark,
Algol 68 “is quite impossible to describe . . . until it has been described.”
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CHAPTER II

Truth and deducibility

1 Unique reading lemma

The basic content of this section is Lemma 1.4 and Definitions 1.5 and 1.6.
The lemma guarantees that the terms and formulas of any language in £,
can be deciphered in a unique way, and it serves as a basis for most
inductive arguments. (The reader may take the lemma on faith for the time
being, provided that he was able independently to verify the last formula
in 3.7 of Chapter I. However, the proof of the lemma will be needed in §4
of Chapter VIL) It is important to remember that the theory of any formal
language begins by checking that the syntactic rules are free of ambiguity.

We begin with the standard combinatoric definitions, in order to fix the
terminology.

1.1. Let 4 be a set. By a sequence of length n of elements of 4 we mean a
mapping from the set {1, ..., n} to A. The image of i is called the ith term
of the sequence. Corresponding to n =0 we have the empty sequence.
Sequences of length 1 will sometimes be identified with elements of A.

A sequence of length n can also be written in the form a,...,

a, ..., a, where g, is its ith term. The number i is called the index of the
term a. If P=(a,,...,q,) and Q =(b,, ..., b,) are two sequences, their
concatenation PQ is the sequence (a, ..., a,, b,,...,b,)of length m + n

whose ith terms is @, for i < n and b,_,, for n + 1 <i < n + m. We similarly
define the concatenation of a finite sequence of sequences.

An occurrence of the sequence Q0 in P is any representation of P as a
concatenation P;QP,. Substituting a sequence R in place of a given
occurrence of Q in P amounts to constructing the sequence P,RP,.
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1 Unique reading lemma

Let TI*, TI~ be two disjoint subsets of {1,...,n}. Amapc: 1T >II~
1s called a parentheses bijection if it is bijective and satisfies the conditions:

(@) c(H>iforallicIlt;
(b) for every i and j, j € [ i, ¢(i) ] if and only if ¢(j) € [, ¢(i)].

1.2. Lemma. Given I1* and I1™, if a parentheses bijection exists, then it is
unique.

This lemma will be applied to expressions in languages in £,: TI* will
consist of the indices of the places in the expression at which “(” occurs,
II~ will consist of the indices of the places at which “)” occurs, and the
map c correlates to each left parenthesis the corresponding right parenthe-
sis.

PROOF OF THE LEMMA. Let the function e : {1,...,n} — {0, = 1} take the
value 1 on II*, —1 on 117, and 0 everywhere else. We claim that for every
i €TI", for any parentheses bijection ¢ : II" »II7, and for any &, 1 < k
< ¢(i) — i, we have the relations:

c(i) c(i)—k

2 () =0, 2 e()>0.

J=i J=i

The lemma follows immediately from these relations, since we obtain
the following recipe for determining ¢ from II™ and I17; ¢(i) is the least
[ > i for which 2/ _e(j)=0.

The first relation holds because the elements of I1* and II~ which
appear in the interval [, c(é)] do so in pairs (j, ¢(/)), and e()) + &(c(/))
=0.

To prove the second relation, suppose that for some i and k we have
0% (/) < 0. Since (i) =1, it follows that 2¢¥7%e(/) <0. Hence, the
number of elements of II™ in the interval [i+1,c(i)~ k] is strictly
greater than the number from IT*. Let ¢(j,) EI1~ be an element in the
interval such that jo & [i+ 1, c(i) — k]. Then j, < i, and in fact, j, <,
since ¢(i) 1s outside the interval. But then only one element of the pair j,,
¢(Jo) lies in [ i, ¢(i) ], which contradicts the definition of c. O

1.3. Now let 4 be the alphabet of a language L in £, (see §2 of Chapter I).
Finite sequences of elements of 4 are the expressions in this language.
Certain expressions have been distinguished as formulas or terms. We
recall that the definitions in §2 of Chapter I imply that:

(a) Any term in L either is a constant, is a variable, or is represented in

the form f(¢,, . .., t,), where f is an operation of degree r, and ¢, ...,z
are terms shorter in length.

(b) Any formula in L is represented either in the form p(¢y, ..., t,),
where p is a relation of degree r and ¢, . . ., ¢, are terms shorter in length,
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II Truth and deducibility

or in one of the seven forms

(P)=(Q). (P)=(Q), (P)V(Q), (PIA(Q),
—(P), Vx(P), Ix(P),

where P and Q are formulas shorter in length, and x is a variable.

The following result is then obtained by induction on the length of the
expression: if E is a term or a formula, then there exists a parentheses
bijection between the set 1" of indices of left parentheses in E and the set
11~ of indices of right parentheses. In fact, the new parentheses in 1.3(a) and
(b) have a natural bijection, while the old ones (which might be contained
in the terms 7,, . . ., ¢, or the formulas P, Q) have such a bijection by the
induction assumption. In addition, the new parentheses never come be-
tween two paired old parentheses.

We can now state the basic result of this section:

1.4. Unique Reading Lemma. Every expression in L is either a term, or a
formula, or neither. These alternatives, as well as all of the alternatives
listed in 1.3(a) and (b), are mutually exclusive. Every term (resp. formula)
can be represented in exactly one of the forms in 1.3(a) (resp. 1.3(b)), and
in a unique way.

In addition, in the course of the proof we show that, if an expression
is the concatenation of a finite sequence of terms, then it is uniquely
representable as such a concatenation.

Proor. Using induction on the length of the expression E, we describe an
informal algorithm for syntactic analysis, which uniquely determines which
alternative holds.

(a) If there are no parentheses in E, then £ is either a constant term, a
variable term, or neither a term nor a formula.

(b) If E contains parentheses, but there is no parentheses bijection
between the left and right parentheses, then £ is neither a term nor a
formula.

(¢c) Suppose E contains parentheses with a parentheses bijection. Then
either E is uniquely represented in one of the nine forms

f(E,) (where fis an operation),

p(E,) (where p is a relation),
(E))=(Ey), (E)=(Ey). (E\)V(E). (E)N(E),
—(E;), Vx(E;), 3Ix(E;),
or else E is neither a term nor a formula. Here the pairs of parentheses we
have written out are connected by the unique parentheses bijection which
is assumed to exist in E; this is what ensures uniqueness. In fact, we obtain
the form f(Ey) if and only if the first element of the expression is a

function, the second element is “(,” and the last element is the ““)” which
corresponds under the bijection: and similarly for the other forms.

22



1 Unique reading lemma

We have thereby reduced the problem to the syntactic analysis of the
expressions E,, E,, E,, E;, which are shorter in length. This almost com-
pletes our description of the algorithm, since what remains to be de-
termined about E,, E,, E, is whether or not they are formulas. However,
for E, we must determine whether this expression is a concatenation of the
right number of terms, and we must ask whether such a representation
must be unique.

The answer to the latter question is positive. We have the following
recipe for breaking off terms from left to right in a union of terms.

(d) Let E, be an expression having a parentheses bijection between its
left and right parentheses. If E, can be represented in the form ¢Eg, where ¢
is a term, then this representation is unique. In fact, either E, can be
uniquely represented in one of the forms

xEg, cEg f(Eq)E;

(where x is a variable, ¢ is a constant, and f is an operation whose
parentheses correspond under the unique parentheses bijection in E), or
else E, cannot be represented in the form rEg, where ¢ is a term. In the
cases E, = xE{, or Ey= cEj, this is obviously the only way to break off a
term from the left. In the case E,= f(Eg)E; the question reduces to
whether or not Ej is a concatenation of degree (f) terms. By induction on
the length of E,, we may assume that either Ey is not such a concatena-
tion, or else it is uniquely representable as a concatenation of terms. The
lemma is proved. N

EXERCISE: State and prove a unique reading lemma for the “parentheses-less”
dialect of £, described in 2(a) of “Digression: Syntax” in Chapter L.

Here is the first inductive description of the difference between free and
bound occurrences of a variable in terms and formulas. The correctness of
the following definitions is ensured by Lemma 1.4.

1.5. Definition.

(a) Every occurrence of a variable in an atomic formula or term is
free.

(b) Every occurrence of a variable in —(P) or in (P,) * (P,) (where
* is any of the connectives “\/,” “A,” “=" or “«”) is free (respec-
tively bound) if and only if the corresponding occurrence in P, P, or P,
is free (respectively bound).

(¢) Every occurrence of the variable x in Vx(P) and 3x(P) is bound.
The occurrences of other variables in Vx(P) and 3x(P) are the same as
the corresponding occurrences in P.

Suppose the quantifier V (or 3) occurs in the formula P. It follows from
the definitions that it must be followed in P by a variable and a left
parenthesis. The expression which begins with this variable and ends with
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the corresponding right parenthesis is called the scope of the given (oc-
currence of the) quantifier.

1.6. Definition. Suppose we are given a formula P, a free occurrence of the
variable x in P, and a term ¢. We say that ¢ is free for the given
occurrence of x in P if the occurrence does not lie in the scope of any
quantifier of the form 3y or Vy, where y is a variable occurring in ¢.

In other words, if ¢ is substituted in place of the given occurrence of x,
all free occurrences of variables in ¢ remain free in P.

We usually have to substitute a term for each free occurrence of a given
variable. It is important to note that this operation takes terms into terms
and formulas into formulas (induction on the length). If 7 is free for each
free occurrence of x in P we simply say that ¢ is free for x in P.

1.7. We shall start working with definitions 1.5 and 1.6 in the next section.
Here we shall only give some intuitive explanations.

Definition 1.5 allows us to introduce the important class of closed
formulas. By definition, this consists of formulas without free variables.
(They are also called sentences.) The intuitive meaning of the concept of a
closed formula is as follows. A closed formula corresponds to an assertion
which is completely determined (in particular, regarding truth or falsity);
indeterminate objects of the theory are only mentioned in the context “all
objects x satisfy the condition . ..” or “there exists an object y with the
property ... .” Conversely, a formula which is not closed, such as x € y
or 3x(x €y), may be true or false depending on what sets are being
designated by the names x and y (for the first) or by the name y (for the
second). Here truth or falsity is understood to mean for a fixed interpreta-
tion of the language, as will be explained in §2.

In particular, Definition 1.6 gives the rules of hygiene for changing
notation. If we want to call an indeterminate object x by another name y
in a given formula, we must be sure that x does not appear in the parts of
the formula where this name y is already being used to denote an arbitrary
indeterminate object (after a quantifier). In other words, y must be free for
x. Moreover, if we want to say that x is obtained from certain operations
on other indeterminate objects (x = a term containing y,, . . ., »,), then the
variables y|, . . ., y, must not be bound.

There is a close parallel to these rules in the language of analysis:
instead of [{ f(») dv we may confidently write [{ f(z) dz but we must not
write [7 f(x) dx; the variable y is bound in the scope of [ f(y) dy.

2 Interpretation: truth, definability

2.1. Suppose we are given a language L in £, and a set (or class) M. To
give an interpretation of L in M means to tell how a formula in L can be
given a meaning as a statement about the elements of M.
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2 Interpretation: truth, definability

More precisely, an interpretation ¢ of the language L in M consists of a
collection of mappings which correlate terms and formulas of the language
to elements of M and structures over M (in the sense of Bourbaki). These
mappings are divided into primary mappings, which actually determine the
interpretation, and secondary mappings, which are constructed in a natural
and unique way from the primary mappings. We shall use the term
interpretation to refer to the mappings themselves, and sometimes also to
the values they take.

Let us proceed to the systematic definitions. We shall sometimes call the
elements of the alphabet of L symbols. The notation ¢ for the interpreta-
tion will either be included when writing the mappings or omitted, depend-
ing on the context.

2.2. Primary mappings

(a) An interpretation of the constants is a map from the set of symbols
for constants (in the alphabet of L) to M, which takes a symbol ¢ to
o(c)eE M.

(b) An interpretation of the operations is a map from the set of symbols
for operations {in the alphabet of L) which takes a symbol f of degree r to
a function ¢(f) on M X - - - X M = M" with values in M,

(c) An interpretation of the relations is a map from the set of symbols
for relations (in the alphabet of L) which takes a symbol p of degree r to a
subset ¢(p) Cc M".

Secondary mappings Intuitively, we would like to interpret variables as
names for the “generic element™ of the set M, which can be given specific
values in M. We would like to interpret the term f(x,,...,x,) as a
function ¢(f) of r arguments which run through values in M, and so on.
__In order to give a precise definition, we introduce the interpretation class
M:

M = the set of all maps to M from the set of symbols for variables

in the alphabet of L.

Thus, every point £ € M correlates to any variable x a value ¢(x)(¢) € M,
which we shall usually denote simply x*. This allows us to consider
variables as functions on M with values in M. More generally:

2.3. The interpretation of terms correlates to each term ¢ a function ¢(7) on
M with values in M. This correspondence is defined inductively by the
following compatibilities:

(a) If ¢ is a constant, then ¢(c¢) is the constant function whose value is
defined by the primary mapping.
(b) If x is a variable, then ¢(x) is <¢>(x)(£l as a function of £
© Ife=f(t,..., 1) thenforall{e M
(&) = () (1)), - - ., 6(2,)(8)),

where the ¢(z)(§) are defined by the induction assumption, and
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II Truth and deducibility

¢(f) : M”— M is given by the primary mapping. Instead of ¢(£)(§) we
shall sometimes write simply 7%,

2.4. Interpretation of atomic formulas. An interpretation ¢ assigns to every
formula P in L a truth function |P|,. This is a function on the interpreta-
tion class M which only takes the values 0 (“false™) and 1 (“true”). It is
defined for atomic formulas as follows:

if (i, ...,
Pty @ = & ) Ea(p),

0, otherwise.

Intuitively, a statement p about the names ¢, ..., for objects in M
becomes true if the objects named by 7,, . . ., ¢, satisfy the relation named
by p.

2.5. Interpretation of formulas. The truth function for nonatomic formulas
is defined inductively by means of the following relations (for brevity, we
have omitted parentheses and explicit mention of ¢ and §):

[P=Q|=|P[|Q]+ (1~ [P)1~|Q]):
P« is true when either P and Q are both true or P and Q are both false.
|P=Q[=1—[P|+[P]|Q]:
P= Q is only false when P is true and @ is false.
[PV Q| =max(|P], |Q]):
P\/ Q 1s only false when P and ( are both false.
|P A\ Q= min(|P], |Q]):
P A Q is only true when P and Q are both true.
| =P|=1—|P}:
=P is only false when P is true.
Finally, we must describe what happens when quantifiers are in-
troduced. Suppose that £ € M and x is a variable. By a variation of £ along

x we mean any point & € M for which y* = y* whenever y is a variable
different from x. Then

IVxP|(§) = min [PI(£).
[3xP|(§) = mgx |P|(£),

where ¢ runs through all variations of £ along x.

A formula P is called ¢-true if |P|,(§) =1 for all { &€ M. The interpreta-
tion ¢ (or M) is called a model for a set of formulas & if all the elements of
& are ¢-true.

2.6. EXAMPLE: STANDARD INTERPRETATION OF L Ar. This is the interpreta-
tion in the set N of nonnegative integers, in which 0, | are interpreted as
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2 Interpretation: truth, definability

0, 1, respectively, and +, -, = are interpreted as addition, multiplication,
and equality, respectively.

2.7. EXAMPLE: STANDARD INTERPRETATION OF L,Set. This is the interpreta-
tion in the von Neumann universe V, in which ¢ is interpreted as the
empty set, € is interpreted as the relation “is an element in,” and = is
interpreted as equality.

All of the examples of translations in Chapter I were based on these
standard interpretations. The relationship between those examples and the
above definitions is as follows. Let IT(x, y, z) be a statement in argot about
the indeterminate sets x, y, z in V; and let P(x, y, z) be a translation of I1
into the language L,Set. Then for any point £ interpreting x, y, z as the
names of sets x¢, y¢, z¢ in the von Neumann universe, we have:

TI(x%, p*, 24) is true = | P (x, y, 2)|(§) = 1.

Thus, every formula expresses, or defines, a property of objects in the
interpretation set:

2.8. Definition. A set S C M’, r > 1, is called ¢-definable (by the formula P
in L with the interpretation ¢) if there exist variables x,, . . ., x, such
that

1Pl =1=(x} ..., xf)ES
for all £in M.
One of the most important problems concerning formal languages is to
understand the structure of the sets of

¢-true formulas in L;

¢-definable sets in | ) M.

ra>l

2.9. ExampLE. The sets definable by means of L ,Ar with the standard
interpretation constitute the smallest class of sets in U r>1N’ which

(a) contains all sets of the form
{(<kyoo o kO|F(kyy ..., k)=0} CN",

where £ runs through all polynomials with integral coefficients.

(b) is closed relative to finite intersections, unions, and complements (in
the appropriate V")

(c) is closed relative to the projections pr, : N"— N" " :

priky, ook =Chky ok kg KD
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II Truth and deducibility

In fact, sets of type (a) are defined by atomic formulas of the form
tF=1f, where 1] is a term corresponding to the sum of the monomials in
F with positive coefficients, and IZF corresponds to the sum of the monomi-
als with negative coefficients. Further, if §,, §, C N" are definable by
formulas P,, P, (with the same variables), then §, N S, is definable by
P A\ Py, S, U S, is definable by P, \/ P,, and N"\ §, is definable by —P,.
Finally, the set pr;(S,) is definable by the formula Jx,(P,). The connec-
tives = and < and the quantifier V give nothing new, since, without
changing the set being defined, we may replace them by combinations of
the logical operations already discussed: Vx may be replaced by —3x —,
and so on.

This first description of arithmetical sets, i.e., L, Ar-definable sets, will be
greatly amplified in the second and third parts of the book. At this point it
is not immediately clear how to develop the subtler properties of definabil-
ity, such as the definability of the set of prime numbers in N (see example
3.14 in Chapter I), the definability of the set of partial fractions in the

continued fraction expansion of %) , or the definability of the set of pairs
{ (i, ith digit in the decimal expansion of 7>} C N2.

However, as we shall see in §11 and in Chapter VII, the “Gddel numbers
of the true formulas of arithmetic” form still a much more complicated set,
and this set is not definable.

We now give several simple technical results.

2.10. Proposition. Let P be a formula in L, ¢ an interpretation in M, and
£ & € M. Suppose that x* coincides with x* for all variables x occurring
freely in P. Then |P|,(§) =[P, (&)

2.11. Corollary. In any interpretation the closed formulas P have well-defined
truth values: |P|,(£) does not depend on &.

PrOOF.
(a) Let 7 be a term, and suppose that for any variable x in ¢t we have
xf = x%. Then Lemma 1.4 and induction on the length of ¢ give 1 = ¢*.
(b) Assertion 2.10 holds for atomic formulas P of the form p(¢,, ..., ¢,).
In fact,

PI(E) = L, if (... ) e(P).

0, otherwise,

and similarly for | P|(¢). But if £ and ¢ coincide on all the variables in P
(all of which occur freely), then a fortiori they coincide on all the variables
in ¢, and, by part (a), we have tf =1+, i=1,...,r. Therefore, |P|(§)=
|PI(£).
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2 Interpretation: truth, definability

(c) We now use induction on the total number of connectives and
quantifiers in P. If P has the form —Q or Q, * Q,, then 2.10 for P follows
trivially from 2.10 for Q, Q,, @,. Now suppose that P has the form Vx(Q),
and that 2.10 holds for Q. (The case x(Q) can be treated analogously or
can be reduced to the case Vx by replacing 3x by —1Vx —.) By defini-
tion, we have

IVxQ|(¢) = [ L, if |Q|(n) = 1 for all variations 7 of ¢ along x,
, otherwise;

, 1, if ) =1 for all variati "of ¢ al ,
Vx0|(&) = { i |Q|(n) or all variations o’ of § along x
,  otherwise.

On the right we may let 7 and n’ vary in addition on all variables which do
not occur freely in Q. The assertions after the word “if” remain true or
false in this wider range of values if they were true or false before, by the
induction hypothesis on Q. But then n and %’ run through the same values,
because ¢ and ¢ only differ on variables which do not occur freely in Q,
and on x. The proposition is proved. O

The following almost obvious fact is the basis for many phenomena
which attest to the inadequacy of formal languages for completely describ-
ing intuitive concepts (see “Skolem’s paradox” below):

2.12. Proposition. The cardinality of the class of ¢-definable sets does not
exceed

card(alphabet of L) + .

Here and below, by “card(alphabet of L)” we mean the cardinality of the
alphabet of L without the set of variables.

PrOOF. If the language has < 8, variables, then there are at most
card(alphabet of L) + &, formulas.

If, on the other hand, it has an uncountable set of variables, then we note
that every definable set can be defined by a formula whose variables
belong to a fixed countable subset of the variables which is chosen once
and for all. O

2.13. Corollary. If M is infinite and card(alphabet of L)< 2%M™  then
“almost all” sets are undefinable.

Thus, the only way to define all subsets of M is to include a tremendous
number of names in the language. For languages which are to describe
actual mathematical reasoning this is an unrealistic program. Essentially,
any finitely describable collection of modes of expression only allows us to
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II Truth and deducibility

define a countable number of sets. However, it is often technically useful
to include in the alphabet, for example, names for all the elements of M.

In the following sections we proceed to study systematically sets of true
formulas.

3 Syntactic properties of truth

Let L be a language in £, let ¢ be an interpretation of L, and letT, »L be
the set of ¢-true formulas. In this section we list some properties of T, L
which reflect the logic inherent in languages of £, regardless of the specific
nature of the interpretation ¢.

3.1. The set T,L is complete. By definition, this means that, for any closed
formula P, either P or —P lies in T,L. This property follows from
Corollary 2.11 above.

3.2. The set T¢L does not contain a contradiction, that is, there is no
formula P for which P and —P both lie in T, L. In fact, T,L = {P| |P|,
=1}, while | 7P|, =1—|P|,.

3.3. The set T, L is closed under the rules of deduction MP (modus ponens)
and Gen ( generalization). By definition, this means that, if P and P= Q lie
in T¢L, then Q also lies in T¢L; and that, if P lies in T¢L, then VxP lies in
T,L for any variable x. The verification is immediate: if [P|, =1 and
|P=Q|, =1, then we must have |Q|, = 1 if | P|,(§) = | for all £, then also
[VxP|,(¢) = 1. The formula Q is called a direct consequence of the formulas
P and P= Q using the rule of deduction MP. The formula VxP is called a
direct consequence of the formula P using the rule of deduction Gen.

The intuitive meaning of these rules of deduction is as follows. The rule
MP corresponds to the type of argument: “If P is true, and if the truth of
P implies the truth of Q, then Q is true.” Thus, one might say that the
semantics of the expression “if ... then” in natural languages is divided
between the semantics of the connective = and the semantics of the rule of
deduction MP in languages of £,. Neglecting this point of view often leads
to confusion when one attempts to explain the rules for assigning truth
values to the formula P= Q.

The rule Gen corresponds to the practice in mathematics of writing
“identities” or universally true assertions. When we write (a + b)? = a> +
2ab + b? or “in a right triangle the square of the hypotenuse is equal to the
sum of the squares of the other two sides,” the quantifiers Va Vb and
V triangles are omitted. Putting the quantifiers back in does not change the
truth values, and has the advantage of freeing the notation for later use.

3.4. The set T,L contains all tautologies. To define what a tautology is, we
first introduce the notion of a logical polynomial over a set of formulas &.
This is an element in the least set of formulas which contains & and is
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3 Syntactic properties of truth

closed with respect to constructing formulas from shorter formulas using
logical connectives.

A sequence of formulas P, ..., P, and representations of each P,
either in the form Q, where Q € &, or in the form —Q or Q, * Q,, where
0,0, 0,liein {P, ..., P,_,} is called a representation of P, as a logical
polynomial over & . The representation of P, is not necessarily unique: for
example, if & = {P, Q, P=> 0}, then P= Q has two representations.

Let | | : & —{0, 1} be any map. If we are given a representation r of
the formula P, as a logical polynomial over &, then we can use the
formulas in 2.5 to determine | P,|, recursively.

A formula P is called a tautology if there exists a set of formulas & and a
representation r of P as a logical polynomial over & such that |P|, =1 for all
maps | | : & —{0, 1}. The property of being a tautology is effectively
decidable, since, by syntactically analyzing P we can enumerate all repre-
sentations of P as a logical polynomial. All tautologies obviously belong to
T,L.

Here are our first examples of tautologies:

A0, P=P

Al. P=(Q=2P)

A2. (P=(Q=R))=((P=Q)=(P=R))
A3. (M0=—P)=((Q=P)=Q)

Bl. " P=P, P> 1P

B2. 1 P=(P=0Q).

Here P, Q, and R are arbitrary formulas in L; the form in which these
tautologies are written makes it clear what representation as a logical
polynomial over { P, Q, R} is intended.

Thus, tautologies are formulas which are true regardless of the truth or
falsity of the component parts (if the notion of component is suitably
chosen). Bl is the law of the excluded middle: a double negation is
equivalent to the original assertion. B2 is the mechanism by which a
contradiction in a set of formulas & in L leads to the deducibility of any
formula, and thereby destroys the entire system. (See Proposition 4.2
below.)

EXAMPLE OF HOW A TAUTOLOGY IS VERIFIED. We give three versions of how
to verify that the simple formula Al is a tautology.
Version (a). By the formulas in 2.5, we have

|P=(Q=P)|=1—|P|+|P||Q=P|
=1-|P|+[P|0-|Q|+|P||Q)=1,

since [P|? =|P|.
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IT Truth and deducibility

Version (b). We tabulate |P=(Q = P)| as a function of |P| and |Q]|:

| Q=P [P=(Q=P)|
1 I

- — ool

—_ O~ o0

0 1
1 I
1 {

This is an example of a “truth table.”

Version (c). The basic property of the connective = is that P= Q is
only false if P is true and Q is false. If P=(Q= P) were false, then P
would be true and Q = P would be false; then, in turn, Q would be true
and P would be false, a contradiction.

The reader would do well to verify that the more complicated axioms,
for example A2, are tautologies, and to decide which of the three versions
he prefers.

3.5. The set T,L contains the “logical quantifier axioms,” that is, the
formulas

@) Vx(P=Q)=(P=VxQ), if all the occurrences of x in P are bound.

(b) Vx P —3xP.

(c) VxP(x)= P (1), if t 1s free for x in P (axiom of specialization). Here we
use the notation P (r) for the result of substituting ¢ for each free
occurrence of x in P. In all other respects P and Q are arbitrary
formulas.

In 3.7 we verify that the formulas in 3.5 are ¢-true. The intuitive
meaning of these formulas is more or less clear. For example, the axiom of
specialization means that, if P(x) is true for all x, then P (%) is also true,
where ¢ is the name of any object. The condition that : must be free for x
is the rule of hygiene for changing notation.

The set

Ax L = {tautologies of L} U {quantifier axioms}

is called the set of logical axioms in the language L.

A set of formulas & in L will be called Godelian if it is complete, does not
contain a contradiction, is closed with respect to the rules of deduction MP and
Gen, and contains all the logical axioms of L. The basic conclusion of our
discussion is then:

3.6. Proposition. The set of true formulas of L (in any interpretation) is
Godelian.

In §6 we prove that, conversely, any Godelian set is a set of true
formulas in a suitable interpretation. Thus, the concept of a Godelian set is
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3 Syntactic properties of truth

the closest approximation to the concept of truth which can be attained
“without regard to meaning.”

3.7. Verification that axioms 3.5 are true.

(a) Let R be the formula 3.5(a). We suppose that |R|(§) =0 for some
£ € M and show that that leads to a contradiction.

In fact, then |[Vx(P=0Q)(¥)=1 and |P=Vx Q|(¥)=0. The second
equation implies that |P|(§) =1 and |[Vx Q|(§) =0. Let £ be a variation of
¢ along x for which |Q|(&)=0. Then |P|(¢') =|P}(§) =1 by Proposition
2.10, since x does not occur freely in P. Hence, |P— Q|(¢) =0, which
contradicts the relation |Vx(P=> Q)|(¥) = 1.

(b) For all £ € M and for all vanations £ of § along x, we have

IVx 21 P|(§) = max | = P|(§) = I - min | P|(£);
| 13x PI(§) =1~ rr1£i/n|P|(§’),

Hence, the truth values of Vx 9P and —3x P coincide, so that Vx — P
< —3dx P is identically true. _

(c) Suppose that |Vx P(x)= P()|(§) =0 for some point {E M. We
show that this leads to a contradiction. In fact, then

Vx P(I© =1, [P()I(&) =0,

The first equation implies that | P (x)|(¢) = 1 for all variations ¢ or ¢ along
x. For ¢ we take the variation such that x% =% If we prove that
[P (D& = | P(x)|(§), then we obtain the desired contradiction.

We prove this by induction on the total number of connectives and
quantifiers in P. )

(c;) Let P be an atomic formula p(¢, ..., ). Letting ¢, denote the
result of substituting ¢ for each occurrence of x in ¢, we successively
obtain:

t*=x¥ (by the definition of ),

=1 (byinduction on the length of ¢,),

L4 1

1PNE) =1t tME) =1p(11 - 1)€) = [P(DIE).

(c,) Let P have the form —Q or Q,» Q,, where > is a connective.
Since x does not bind ¢ in P by assumption, the same is true for Q, Q,, and
0O,, and the necessary induction step is automatic.

(c;) Finally, let P have the form 3y Q or Vy Q. We shall examine the
first case; the proof for the second case is analogous.

Subcase 1. y = x. Then x is bound in P; therefore, P(x) = P(¢), and
|P|(&) = | P|(¢) by Proposition 2.10.

Subcase 2. y # x. The induction assumption has the form: |Q (¥)|(n) =
|Q ()|(n"), if n is any point in M and %’ is a variation of 1 along x for
which x" = ¢, We must show that the following two truth values coincide
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(where § and § are defined as above):

3y 0 ()|(E) = { 1, if |Q(x-)|(n’) = | for some variation 5’ of ¢ along y,
0, otherwise.

[Ty Q(0)|(¢) = { Lo if[Q (QK??) = 1 for some variation n of £ along y,
0, otherwise.

We recall that & is the variation of £ along x for which x¢ = /4. .

We first suppose that the second truth value is 1. We choose 1 € M so
that [Q(?)|(n) =1, and then construct the variation 0’ of 7 along x for
which x" =" Then, by the induction assumption, 1=|Q()|(n)=
|Q (x)|(n'). We show that %’ is a variation of ¢ along y; this will imply that
the first truth value is also 1. In fact, n” was obtained by varying 7 along x,
n was obtained by varying £ along y, and ¢ was obtained by varying ¢
along x. Hence, 0’ is a variation of ¢ along x and y; we must show the
variation along x did not actually take place:

x" = x¥,

But the left-hand side is ¢” by the definition of %’; the right-hand side is *
by the definition of ¢’; and n was obtained by varying £ along y. Since ¢ is
free for x in P= 3y Q, it follows that y does not occur in ¢.

It remains to verify that, if the second truth value is 0, then the first is
also 0. The argument is almost the same. If the second truth value is 0,
then |Q(#)|(n) =0 for all variations n of ¢ along y. For each such 7 we
construct 1 as in the first part of the proof. As before, we verify that ' is a
variation of § along y and, moreover, 4" runs through all such variations
when 7 runs through all variations of ¢ along y. Hence, the first truth value
is also 0.

The proposition is proved. O

Digression: natural logic

l. Logic does not concern itself with the external world, but only with
systems for trying to understand it. The logic of one such sys-
tem-—mathematics—is normalized to such an extent that it resembles a
rigid stencil, which we can attempt to impose on any other system. But
whether or not this stencil fits the system should not be seen as the
criterion of suitability or the measure of worth of the system. The physi-
cist’s descriptions do not have to form a consistent or coherent whole; his
job is to describe nature effectively on certain levels. Natural languages
and the spontaneous workings of the mind are even less logical. In general,
adherence to logical principles is only a condition for effectiveness in
certain narrowly specialized spheres of human endeavor.

Although comparisons between the logic of predicates and the logic of
natural languages or their subsystems have no normative force, such
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comparisons may be interesting and enlightening. Here we give some
selected material from linguistics and psychology.

2. B. Russell, K. Déhmann, H. Reichenbach, U. Weinreich, and many
others have studied the problem of finding parallels in natural languages
for categories which can be formalized in languages of £, and of catalogu-
ing the methods of transmitting these categories. This leads to the grouping
of words into so-called logico-semantic classes, instead of the traditional
division into verbs, nouns, articles, etc. (A. V. Gladkii and 1. A. Mel’¢uk,
Eléments de linguistique mathématique, Paris, Dunod, 1972, §6).

For example, the words sleeps, smart, cry-baby are parallel to relation
symbols (predicates) of rank 1; the words loves, friendly, sister correspond
to relations of rank 2. For each of them we have atomic formulas, such as
“N sleeps,” “X is friendly to ¥,” and so on.

“All, sometimes, something” are quantifier words; while “and, or, but,
if ... then” are, of course, connectives. “The nose, le cadeau” are con-
stants. Nouns are made into constants by using the definite article or its
semantic equivalent. In Russian, which does not have definite articles, one
must either use the demonstrative articles ezo? (this), zot (that), or make it
clear from the context that the noun is meant as a constant. The words nos
(nose), podarok (gift) are more like variables which stand for any object
satisfying the simple predicate “is a nose,” “is a gift.” Incidentally, there
are other possible interpretations.

The pronoun “he” is, without doubt, a variable. The pronouns “I” and
“you” have much more complicated semantics, involving a correlation
with who is speaking that does not exist in the speaker-less languages of £,.
Certain aspects of the first person pronoun are included in the semantics of
algorithmic languages. The right type of “memory key” in a program for
the IBM 360 will allow the program to change what is contained in any
byte in the basic memory region. The memory guard asks “Who is there?”,
and the program answers, “It is [.” Finally, it is even possible in languages
of £, to find models for certain types of self-description; see §9-11 and the
digression on self-reference.

In Russian, “ili” (or) can be used not only to express the logical \/, but
also to express the exclusive “or” and even to express conjunction A, as in
the sentence “x* > 0 for x > 0 or for x < 0” (E. V. Paduceva). In Latin, the
functions of exclusive and inclusive “or” are expressed by two different
words, aut and vel. “And” can sometimes express a time sequence:
compare the sentences “Jane got married and had a baby” with “Jane had
a baby and got married” (S. Kleene). The conjunction A can be expressed
in different languages by:

juxtaposition: Chinese: ma mo-—horse and donkey

Swabhili: shika kitabu usome—take a book and read
a preposition: Russian: Petja s Masei—Peter and Marsha
a conjunction: and, i, et
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a postpositional particle: Latin: senatus populusque—the senate and the
people
two conjunctions: Russian: kak . . . tak.

Doéhmann has catalogued the ways of expressing 16 logical polynomials
in two variables in several languages of the world.

3. Curious as all this material may be, it should be regarded critically; in
such comparisons with logic, the subtleties of usage often elude us. As an
example, let us analyze the natural semantics of “if ... then.” We have
already mentioned that in languages of £, this connective corresponds not
only to “=,” but also to the rule of deduction modus ponens. Moreover,
MP more adequately represents the meaning of “if . . . then.”

Actually, the rule that any conditional is true if its antecedent is known
to be false has almost no parallel in natural logic. Examples of the type “if
snow is black, then 2 X 2 =15 which keep cropping up in textbooks, are
only capable of confusing the student, since no natural subsystem in our
language has expressions with this semantics. A possible exception is
certain poetic and expressive formulas with extremely limited usage (“If
she be false, O, then heaven mocks itself!””). Formal mathematics, in which
a single contradiction destroys the entire system, clearly has the features of
poetic hyperbole.

Finally, in the logic of predicates there is no place at all for the modal
aspect of the use of “if ... then” in instructions of the type “if this
happens, do that.”” On the other hand, this aspect can easily be expressed
by the semantics of the connective “if ... then ... else” in algorithmic
languages such as Algol. Unless one uses techniques suggested by algorith-
mic languages, any attempt to find a model for modality in languages
based on £, is doomed to failure (compare: A. A. Ivin, The Logic of
Norms, MGU Press, 1973).

4. We have mentioned several times that the choice of the primitive modes
of expression in the logic of predicates does not reflect psychological
reality. Elementary logical operations, even one-step deductions, may
require a highly trained intellect; yet, logically complicated operations can
often be performed as a single elementary act of thought even by a
damaged brain.

“Sublieutenant Zasetsky, aged twenty-three, suffered a head injury 2
March 1943 that penetrated the left parieto-occipital area of the cranium.
The injury...was further complicated by inflammation that resulted in
adhesions of the brain to the meninges and marked changes in the
adjacent tissues.”

Professor A. R. Luria met Zasetsky at the end of May 1943, and
observed his condition for the next 26 years. In this time Zasetsky wrote
nearly 3000 pages, describing with agonizing effort his life and illness as he
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struggled to regain his reason. His notebooks, which provided the material
for Luria’s book The Man with a Shattered World (Basic Books, Inc., New
York, 1972, translated by L. Solotaroff), not only show his perseverance
and determination, but are also revealing from a psychological point of
view.

At first, the destruction of Zasetsky’s psyche was overwhelming. The
predominant disorder was asematia, the inability to connect symbols with
their meaning. Luria describes his first meeting with Zasetsky:

““Try reading this page,’ I suggested to him.

‘What’s this?...No, | don’t know...don’t understand...what is
this?....

I suggested he try to do something simple with numbers, like add six
and seven.

‘Seven...six...what’s it? No, I can’t...just don’t know.’”

The ability to understand the simplest predicates was lost: “‘What
season is there before winter?” ‘Before winter? After winter?...Sum-
mer?...0r something! No, I can’t get it.” ‘Before spring? ‘It’s spring
now...and...and before...I’ve already forgotten, just can’t remember.””

Zasetsky lost the ability to interpret the syntactic devices for organiz-
ing meaning: “‘In the school where Dunya studied a woman worker from
the factory came to give a report.” What did this mean to him? Who gave
the report—Dunya or the factory worker? And where was Dunya study-
ing? Who came from the factory? Where did she speak?”

This is a fairly difficult example composed by Professor Luria, but here
is what Zasetsky himself writes:

“I also had trouble with expressions like: ‘Is an elephant bigger than a
fly? and ‘Is a fly bigger than an elephant?” All I could figure out was that
a fly is small and an elephant is big, but I didn’t understand the words
bigger and smaller. The main problem was I couldn’t understand which
word they referred to.”

What attracts our attention is the complexity of Zasetsky’s metalinguis-
tic text describing his linguistic difficulties. The subtlety of the analysis
seems incompatible with the crude errors being analyzed. This could be
explained by the retrospective nature of the analysis, but the following
even more complicated description was written concurrently with the
experience of the mental defect being described:

“Sometimes I'll try to make sense out of those simple questions about
the elephant and the fly, decide which is right or wrong. I know that when
you rearrange the words, the meaning changes. At first I didn’t think it
did, it didn’t seem to make any difference whether or not you rearranged
the words. But after I thought about it a while [ noticed that the sense of
the four words (elephant, fly, smaller, larger) did change when the words
were in a different order. But my brain, my memory, can’t figure out right
away what the word smaller (or larger) refers to. So 1 always have to think
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about them for a while.... So sometimes ridiculous expressions like ‘a fly
is bigger than an elephant’ seem right to me, and I have to think about it
a while longer.”

We can also see how complicated mental abilities were preserved while
“simple” ones were lost from examples of Zasetsky’s creative imagination,
which resemble literary-psychological studies:

“Say I'm a doctor examining a patient who is seriously ill. I'm terribly
worried about him, grieve for him with all my heart. (After all, he’s
human too, and helpless. I might become ill and also need help. But right
now it’s him I'm worried about—I"m the sort of person who can’t help
caring.) But say I'm another kind of doctor—someone who is bored to
death with patients and their complaints. I don’t know why I took up
medicine in the first place, because I don’t really want to work and help
anyone. I'll do it if there’s something in it for me, but what do I care if a
patient dies? It’s not the first time people have died, and it won’t be the
last.”

All of this shows that there is no basis whatsoever for Rosser’s opinion
that “once the proof is discovered, and stated in symbolic logic, it can be
checked by a moron.” The human mind is not at all well suited for
analyzing formal texts.

4 Deducibility

4.1. Definition. A deduction of a formula P from a set of formulas & (in a
language L in £)) is a finite sequence of formulas P, ..., P, = P with
the property that for each i=1,..., n at least one of the following
alternative holds:

(@) P.€b;

(b) 3/ < such that P, is a direct consequence of P; using Gen;

(¢) 3/, k <i such that P, is a direct consequence of P, and P, using
MP.

We shall write & |-P to abbreviate “there exists a deduction of P from
& .7 A deduction of P, together with a precise indication for each i < n of
which of the alternatives (a), (b), (c) and which indices ;j in case (b) or J, &
in case (c¢) are used to obtain P, is called a description of a deduction. A
single deduction may have several descriptions.

We usually consider deductions from sets & which contain Ax L, the
logical axioms of L. The other elements of & may be formulas of L which
are “guessed” to be true in the standard interpretation; these are called
special axioms of L. (Examples will be given later in 4.6-4.9.) Such
deductions may be considered the formal equivalents of mathematical
proofs (of a formula P = P, from the hypotheses & ). This identification is
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Jjustified for the following reasons:

(a) As shown in 3.3, if & C T, L for some interpretation ¢, and if & |-P,
then P € T,L; only true formulas can be deduced from true formulas.

(b) A large amount of experimental work has been done on formalizing
mathematical proofs, that is, replacing them by deductions in suitable
languages of £, especially L,Set. This work has shown that for large
segments of mathematics, including the foundations of the theory of
integers and real numbers, set theory, and so on, proofs can successfully be
formalized as deductions within the framework of £,. There is much
material on this theme in the literature on mathematical logic; see, in
particular, Mendelson’s book.

(c) Godel’s completeness theorem for the logical modes of expression in
{2, (see §6) shows that any formula which is not deducible from & must be
false in some model (interpretation) of &.

For further discussion, see “Digression: Proof.”

We occasionally consider deductions from another type of sets & . For
example, we might remove from & certain logical axioms, such as the “law
of the excluded middle” (Bl in Section 3.4), in order to investigate
formally intuitionistic principles. Or we might add to & a formula which
we think is false in order to deduce a contradiction from & ; this is the
so-called “proof by contradiction.”

We now prove some formal aspects of contradiction.

4.2. Proposition. Suppose that & contains all tautologies of type B.2 in
Subsection 3.4. Then the following two properties of & are equivalent:

(a) There exists a formula P such that &P and &} —P.
(b) &}Q for any formula Q.

A set & with these properties is called inconsistent.

PrOOF. (b)=>(a) is obvious. Conversely, suppose & }-P and &} —1P. We
first add the formula - P —(P— Q), which is assumed to lie in &, to the
descriptions of the two deductions. Then, applying MP twice (to this
formula and —P; then to P= Q and P), we obtain a description of a
deduction & |-Q. O

4.3. A large part of the theorems of logic consists in proving assertions of
the type “& |-P™ or “it is not true that & |-P” for various languages L, sets
&, and (classes of) formulas P.

A result of the form & |-P may be proved by presenting a description of
a deduction of P from & . However, even in slightly complicated cases, this
procedure becomes so long that it is replaced by more or less complete
instructions on how to compose such a description. Finally, “& |-P” may
be proved without presenting even an incomplete description of a deduc-
tion of P from &. In this case we “are not proving P, but are proving that
a proof of P exists;” see the example in §8 concerning language extensions.
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In rare cases a result of the form “it is not true that & P” can be
proved by a purely syntactic argument. But usually such a result is
obtained by constructing a model, i.e., an interpretation, in which & is true
and P is false; see the discussion of the continuum problem in Chapters
III-IV. If it is true neither that & }-P nor that &} —P, we say that P is
independent of & .

We now give two useful elementary results concerning deductions. It is
clear that, compared with usual proofs, deductions are made up of very
minor details. The mathematician, as if wearing seven-league boots, covers
entire fields of formal deductions in one step.

4.4. Lemma. Suppose that & contains all tautologies. If &P and &|-Q,
then &P N Q.

ProOF. If P, ..., P, and Q,, ..., Q, are deductions of P and (, respec-

tively, then

Pl""’Pm’ Ql""’Qn'P:>(Q:>(P/\Q))’ Q=>(P/\Q)’P/\Q

is a deduction of P A Q. The third formula from the end is a tautology; the
second formula from the end is a direct consequence of this tautology and
P_ = P using MP; and the last formula is a direct consequence of the
second to last and Q, = Q using MP. O

4.5. Deduction Lemma. Suppose that & D Ax L and P is a closed formula. If
b U {P}Q, then &}P= Q.

PROOF. Let Q,, . . ., O, = Q be a deduction of Q from & U {P}. We show
by induction on 7 that there exists a deduction of P=> Q from &.

(a) n=1. Then either Q € &, or else Q = P. In the first case P=Q is
deduced from Q and the tautology Q=>(P=>Q) using MP. In the second
case P= P is a tautology.

(b) n > 2. We assume that the lemma holds for deductions of length
< n—1 Then &}-P= @, for all i < n — 1. Further, we have the following
possibilities for @, = Q: (b)) Q €&; (by) Q= P; (by) Q is deduced from
Q, and Q,=(Q,= Q) using MP; and (b,) Q has the form Vx Q; for
Jj < n—1. The first two cases are handled in exactly the same way as for
n=1.

In case (b;), P= Q can be deduced from & in the following way:

(1) deduction of P=>Q (induction assumption)

(2) deduction of P=>(Q,= Q) (induction assumption)
Q) (P=(2=Q)=((P=Q)=(P=0Q)) (tautology)
@ (P=0Q)=(P=0Q) (from (2) and (3) using MP)
(5) P=Q (from (1) and (4) using MP).

From now on, arguments of this sort will be presented more briefly, with
explicit mention of only the last steps of the induction (here (3), (4), and

(3))-
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Finally, in case (b,), we obtain a deduction of P=Vx @, from & if we
add the following formulas to the deduction of P= @, from & (which
exists by the induction assumption):

Vx(P=0Q;) (Gen)
Vx(P=Q,)=(P=VYx Q;) (logical quantifier axiom, since P is closed)
P=VYx Q, (MP applied to the two preceding formulas).

The lemma is proved. O

We record for future reference that, in the parts of deductions con-
structed in Lemmas 4.4 and 4.5, only tautologies of the type A0, Al, and
A2 in Subsection 3.4 were used.

We now give some basic examples of special axioms.

Axioms of equality

Let L be a language in £, whose alphabet includes a relation = of rank
two. We shall write ¢, = ¢, instead of = (7, 1,). If P is a formula, x is a
variable, and ¢ is a term, we let P (x, ¢) denote the result of substituting # in
P in place of any or all of the free occurrences of x in P for which ¢ is free.

4.6. Proposition.
(a) The formulas

t=1, L=0L=1L =1 HL=LAL=E=1 =1
x=1t—>(P(x, x)=>P(x,1))

are ¢-true for any interpretation of L in which ¢(=) is equality.
(b) All the formulas in (a) are deducible from the set

Ax LU {x = x|x is a variable}
U {x =p=(P(x, x)= P(x,y))|P is an atomic formula }.

The formulas in this list, except for AX L, are called the axioms of
equality .

(c) Let ¢ be any interpretation of L in a set M for which the axioms of
equality are true. Then ¢(=) is an equivalence relation in M which is
compatible with the interpretations of all the relations and operations of L
in M. If ¢ -denotes the obvious interpretation of L in the quotient set
M’ = M/¢(=), then ¢'(=) is equality, and T,L = T L.

PROOF (SKETCH)

(a) The ¢-truth is easily established. We illustrate this by showing that
the last formula is ¢-true. Suppose it were false at a point £ € M. Then
|x =¢|(§) =1, |P|(§) = | and | P (x, 7)|(§) = 0. The first assertion means that
x® = t5. But then |P|(£) = | P (x, 1)|(£) by Proposition 2.10, contradicting the
second and third assertions.
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(b) Deduction of ¢t =1: x = x (axiom of equality); Vx(x = x) (Gen);
Vx(x = x)=>t =1 (logical axiom of specialization); = t (MP).
Deduction of ¢, = ;= ¢, =1;:

(1) x=y=(x=x=y = x) (axiom of equality with = for P)

(2) 9=((P=>(Q=R))=(P=R)), where Pis x=y, Qis x=x, R is
y = x (tautology)

(3) x = x (axiom of equality)

4) (P=(Q=R))=(P=R) (MP is applied to (2) and (3))

(5) x =y=y = x (MP applied to (1) and (4)).

We then twice apply Gen, the axiom of specialization, and MP, in order to
deduce the formula ¢, = 1, =1, = ¢, from (5); we replace ¢, by 1, and ¢, by
t, to deduce 1, = {,=>1, = 1,; we use Lemma 4.4 to deduce the conjunction
of these two formulas and, finally, the tautology (¢, = Lb=16, =) A (1, =
Lh=1,=16)=(l, = 1,1, = 1)), together with MP, gives the required for-
mula.

The deduction of the third and fourth formulas in (a) will be left to the
reader. The existence of a deduction of the fourth formula can be proved
by induction on the number of connectives and quantifiers in P. P is
represented in the form —Q, Q, * @5, Vx Q, or Ax Q; we assume that the
formula with Q, Q,, and @, in place of P has already been deduced, and
we complete the deduction for P (see Mendelson, Chapter 2, Proposition
2.25).

(c) If the axioms of equality are ¢-true, then so are the formulas in (a),
since they are deducible. The first three formulas in (a), applied to three
different variables x, y, and z, then show that the relation ¢(=) on M 1s
reflexive, symmetric, and transitive. In fact, let X, Y, and Z be any three
elements of M, let £ € M be a point such that x* = X, y =Y, and z* = Z,
and let ~ be the relation ¢(=) on M. The ¢-truth of the formulas in (a)
means that

X~X; X~YosY~X; X~Yand Y ~Z=X~"Z.

By definition, to say that ~ is compatible with the ¢-interpretation of
all relations and operations on M means the following. Let p be a relation,
and let ¢(p) C M’ be its interpretation. If {X,,..., X,> €E¢(p) and X, ~
X, then (X,,...,X/,...,X ) E¢(p). Now let f be an operation, and let
¢(f) : M"= M be its interpretation. If ¢(/)(X,,..., X,)= Y and X/ ~ X,
then (/) Xy ..., X/,....X)=Y ~Y.

We verify this compatibility by using the ¢-truth of the last formula in
4.6(a) at a suitable point £ € M. Here we take the formulas p(x, ..., x,)
and f(x,, ..., x,) =y, respectively, for P; we take the variable x/ for ¢ and
the variable x; for x; and we set xf = X,, x* = X/, and y* = Y.

It follows from the compatibility that we can construct an interpretation
¢’ of L in M’ = M/~, such that ¢'(p) = ¢(p) mod ~, ¢'(f) = ¢(f) mod
~, and ¢'(=) is equality. The last formula in 4.6(a) will then imply that all
the ¢-true formulas remain ¢'-true, and conversely. M
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From now on, when we speak of the special axioms for any language in
£, having the symbol =, we shall without explicit mention always include
among them the axioms of equality for =. Models in which = is
interpreted as equality are called normal models.

Special axioms of arithmetic

4.7. Proposition. The following formulas are true in the standard interpreta-
tion of L Ar, and are called the special axioms of L Ar:

(a) The axioms of equality.
(b) The axioms of addition:

x=0=x; x+y=y+x;(x+y)+z=x+(y+2);
xtz=yt+tzz=x=y.

(¢) The axioms of multiplication:
x-0=0; x-l=x; xy=yx (xy)z=x(y-z).
(d) The distributive axiom:
x-(y+2)=x-y+x-z
{e) The axioms of induction:
P(0) /\Vx(P(x)-——> P(x+ T))::»Vx P(x),
where P is any formula in L,Ar having one free variable.

The proof is trivial and will be left to the reader. We only note that the
“proof” that the induction axioms are true itself uses induction.

Remarks

(a) In (b), (¢), and (d) above, we have written the usual axioms for a
commutative (semi) ring in order to shorten the formal deductions; any
informal computation which only uses these axioms can easily be trans-
formed into a formal deduction of the result of the computation in L Ar.
In Chapter 3 of Mendelson’s textbook, he gives an apparently weaker set
of axioms, and then shows how to deduce our formulas from them. This
takes up 5-6 pages of text, and is basically a tribute to a historical tradition
going back to Peano.

(b) The induction axioms are a countable set of formulas in L;Ar; it is
customary to say that 4.7(e) is an axiom schema. The corresponding fact in
intuitive mathematics is stated as follows; “For any property P of non-
negative integers, if 0 has the property P, and, whenever x has the property
P. x + 1 also has the property P, then all nonnegative integers have the
property P.” Here “property of nonnegative integers” means the same as
“any subset of the nonnegative integers.”

However, in the means of expression of L Ar there is no way to say
“any subset.” Neither is there any way to say “all properties;” we can only
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list one-by-one the properties that are definable by formulas in the lan-
guage. We recall that there are only countably many such properties, while
the intuitive interpretation refers to a continuum of properties. Thus, the
formal axiom of induction is weaker than the informal one, and is also
weaker than the version of this axiom that is obtained by imbedding L,Ar
in L,Set.

Special axioms of Zermelo—Fraenkel set theory
(see the description of V in the Appendix to Chapter 1)

4.8. Proposition. The following formulas are true in the standard interpreta-
tion of L,Set in the von Neumann universe V:

(a) Axiom of the empty set: Vx —(x € Q).

(b) Axiom of extensionality: Vz(z € x<z Ey)e>x =y,

(c) Axiom of pairing: Vu¥Nw Ax Vz(z Exez=u\/z=w).

(d) Axiom of the union: Vx 3y Vu(Az(u Ez Nz Ex)u Ey).

(e) Axiom of the power set: Vx Ay Vz(z Cx<z Ey), where z C x is
abbreviated notation for the formula Vu(u € z=u € x).

() Axiom of regularity: Vx(—x = @=3y(y € x \y N x = @)), where
Y N x = is abbreviated notation for —3z(z Ey N\ z € x).

PROOF AND EXPLANATIONS. This is not a complete list of the axioms of
Zermelo-Fraenkel; the axiom of infinity, axiom of replacement, and also
the axiom of choice, which are more subtle, will be discussed in the next
subsection.

(a) The truth of these formulas must, of course, be proved by computing
the function | | using the rules in 2.4 and 2.5. We do this, for example, for
the axiom of extensionality. Let £ be any point in the interpretation class,
and let X = x!, ¥ = y¢. We must show that

Vz(z Exez €y)|(§) = |x = y|(¥),
1.e., that

éneirllj(|ZEX|IZEY|+(1—|Z€X|)(I—IZEY[))=|X=Y|,

where we have written |Z € X| instead of |z € x|(¢) with 28 = Z, x¥ = X,
and so on. But the left-hand side equals 1 if and only if for every Z € V'
either both Z € X and Z € Y, or else both Z & X and Z € Y, that is, if
and only if X = Y.

More generally, if we replace V' by any subclass M C V and restrict the
standard interpretation of L;Set to M, then the same reasoning shows that:

The axiom of extensionality is true in M if and only if for any elemenis
X, Y €M we have

X=YaXNM=YNnM,

i.e., if and only if every element of M is uniquely determined by its elements
which lie in M. This result will be used later.
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The analogous computations for all the other axioms will be given
systematically in a much more difficult context in Chapter III. Hence, at
this point we shall only explain how to translate them into argot, as in
Chapter I, and why they are fulfilled in V.

(b) The axiom of the empty set does not need special comment. We only
remark that, if we interpret L,Set in a subclass M C ¥, then the constant
¢ may be interpreted as any element X € M with the property that
X N M =@, and this axiom will still hold.

(¢) The axiom of pairing is true, because, if U, W € V, then {U, W} €
P(V,, 1), so that all pairs lie in V.

(d) The axiom of the union is true, because, if X € V, then the set
Y=U_,,Z also lies in V. In fact, if X € V,,, =P (V,), then the
elements of X are subsets of ¥, and their union therefore lies in V.

(e) The axiom of the power set is true, because if X € V, then P(X) €
V. In fact, if X € V,, then X C V,, and hence P (X) C P (V,) =V, 41, SO
that P(X)E V_,,.

(f) The axiom of regularity is true, because any non-empty set X € V'
has an empty intersection with at least one of its elements; in this form the
axiom is proved in the Appendix to this chapter.

4.9. The axioms of L,;Set in Subsection 4.8 have one property in common:
their simplest model in the standard interpretation is precisely the union
Vi, = U _oV, of the first w, levels of the von Neumann universe. In other
words, this is the set of hereditarily finite sets X € V, i.e., those such that,
if X, €X,_ € -+ €X,=X, then all the X; are finite.

V., is the reliable, familiar world of combinatorics and number theory.
Additional principles are needed to force us out of this world. There are
two such principles: the axiom of infinity and the axiom schema of
replacement.

(a) Axiom of infinity:
3x(® eExAW(yex={y}e x))

Here {y) € x is abbreviated notation for 3z(z = {y, y} A\ z € x), where
the meaning of z ={y, y} was explained in 3.7 of Chapter 1. This axiom
requires that we add to V, some set containing the elements

o, {@}, {{@}}, ... (acountable sequence). Then, in order to preserve the
intuitive version of the axiom of the power set, we must add
P(X), P*(X), ..., thereby hopelessly leaving the realm of finite sets,

countable sets, continua, and so on.

It is a striking fact that none of this is necessary in the formal, as
opposed to intuitive, version of set theory, where we can always limit
ourselves to hereditarily countable submodels of V. This important fact
will be discussed in detail in §7.

(b) Axiom schema of replacement. We introduce the following con-
venient abbreviated notation (in any language of £, having the notion of
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equality): 3!y P(y) means Iy P(y) AVx Vy(P(x)AP(Y)=x =)
Thus, this formula is read: “There exists a unique object y with the
property P,” where we assume that = is interpreted as equality. When
other variables besides y occur freely in P, the formula 3!y P(y) is true
precisely when P determines y as an “implicit function” of the other
variables.

We can now write the replacement axioms. In the formula P below we
list all the variables which occur freely in P:

VZl core VZ" VU(VX(X Eu::ﬂ'y P(x»yszl! et Zn))
=3Jw Vy(y Ewsdx(xcuANP(x,y, 2. .., Z,,))))

The hypothesis says that “P gives y as a function of x € u (for given values
of the parameters z, . .., z,)”; the conclusion says that “the image of the
set u under this function is some set w.”

From the standpoint of the formal theory it is worthwhile to note that
from this axiom and the axioms of equality are deducible the so-called
separation axioms, namely:

Vz,- - -V, Vxy Vulueyosucx AP(u,z, .. .,2,)).

This says that if we take the class of sets having a property P and intersect
it with a set x, we obtain a set.

The replacement axioms should be looked at very carefully. They go
beyond the usual, “intuitively obvious” working tools of the topologist and
analyst. The axioms assert that, for example, it is impossible to “stretch”
an ordinal a too far by means of a function f; for any f we choose, there is
always an ordinal 8 such that all the values f(y), y < a, lie in V. In other
words, the unmiverse V' is incomparably more infinite than any of its levels
V..

Even if we adopt this axiom, questions remain which are very similar in
style, which are beyond the reach of our intuition, and which are not
solvable using this and the other axioms. For example, do there exist
so-called inaccessible cardinals y? One of the properties of an inaccessible
cardinal vy is the following: if f is a function from V, to V, (with a <),
then the set of values of f is an element of V.. In particular, there is an
“upper bound” beyond which ordinals not exceeding y cannot be
“stretched.” Do such infinities exist or not?

After thinking about this and related problems, many specialists on the
foundations of mathematics have come to the conclusion that such lan-
guages of set theory as L,Set with a suitable axiom system are the only
reality one should work with, and any attempt to make intrinsic sense out
of the universe V' or similar models is in principle doomed to failure. In
particular, the set of formulas in L,Set which are true in the standard
interpretation is not defined, and we can only talk about formulas which
are deducible from the axioms.
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4 Deducibility

But we shall not entirely adopt this point of view for several reasons.
The simplest reason is the feeling that a language without an interpretation
not only loses its intrinsic justification, but also cannot be used for
anything. We cannot even play the “formal game” well unless we master
the intuitive concepts which give meaning to the symbols. A language
(along with the external world) helps bring order and precision to these
intuitive concepts, which, in turn, make us change the language or at least
revise our earlier linguistic constructions. But we can never assume that we
have achieved complete clanty.

We should understand the need for certain types of self-restraint.
However, intellectual asceticism (like all other forms of asceticism) cannot
be the lot of many.

(c) Axiom of choice:

Vx( —x=g=3y (“y is a function with domain of definition x™
AVu(u e x A\ "u=g=3Iw(w € u A“{u, w) Ey”)))).

That is, y chooses one element from each nonempty element u € x.

The belief that this axiom is true in V is at least as justified as the belief
in the existence of V itself. Over the past fifty years it has become
customary for every working mathematician to accept this axiom, and the
heated controversies about it at the beginning of the century are now all
but forgotten. The interested reader is referred to Chapter 11 of Founda-
tions of Set Theory by Fraenkel and Bar-Hillel (North-Holland, Amster-
dam, 1958).

4.10. General properties of axioms. Despite the wide variety of concepts
reflected in these axioms, each of our sets of axioms for languages in £,
(tautologies; Ax L; special axioms of L,Ar and L,Set) have the following
informal syntactic characteristics:

(a) An algorithm can be given which tells whether any given expression is
an axiom (compare: the syntactic analysis in §1 and the verification of
the tautologies in Subsection 3.4).

(b) A finite number of rules can be given for generating the axioms.

It is clear that, a priori, property (b) is less restrictive than (a). In fact,
an algorithm as in (a) can be transformed into a rule for generating the
axioms: “Write out all possible expressions one by one in some order, and
take those for which the algorithm gives a positive answer.”

It is actually natural to suppose that property (a) should characterize
axioms, and property (b) should characterize deducible formulas, no
matter how we explicitly describe the axioms and the deducible formulas
in a given language. In Part IIl we make these intuitive ideas into precise
definitions and show that (b) is strictly weaker than (a). See also the
discussion in Subsection 11.6(c) of this chapter.
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Digression: proof

1. A proof only becomes a proof after the social act of “accepting it as a
proof.” This is as true for mathematics as it is for physics, linguistics, or
biology. The evolution of commonly accepted criteria for an argument’s
being a proof is an almost untouched theme in the history of science. In
any case, the i1deal for what constitutes a mathematical demonstration of a
“nonobvious truth” has remained unchanged since the time of Euclid: we
must arrive at such a truth from “obvious” hypotheses, or assertions which
have already been proved, by means of a series of explicitly described,
“obviously valid” elementary deductions.

Thus, the method of deduction is a method of mathematics par excel-
lence. (“Mathematical induction” clearly comes out of the same tradition.
Peano’s induction principle allows us to write only the first step and the
general step of a proof, and is thereby in some sense the first metamathe-
matical principle. This point is observed by the tradition of listing Peano’s
axiom among the special axioms (see 4.7(¢e)), but, one way or another, it is
one of the archetypes of mathematical thought.)

The longer the deductive argument, the more important it is for all its
elementary components to be written in an explicit and normalized fash-
ion. In the last analysis, the amount of initial data in formal mathematics
is so small that failure to observe the rules of hygiene in long deductions
would lead to the collapse of the system if we did not have external checks
on the system. In induction, on the other hand, relatively short deductions
are based on a vast amount of initial information. Darwin’s theory of
evolution is explained to school children, but life is not long enough to
judge how persuasive the proofs are. We see a similar situation in com-
parative linguistics when the features of the so-called protolanguages are
reconstructed. In such uses of induction, the “rules of deduction” cannot
be so very rigid, despite the critical viewpoint of the neo-grammarians.

2. The above observations concerning the method of deduction are sup-
ported by the fact that the notion of a formal deduction in languages of £,
is a close approximation to the concept of an ideal mathematical proof. It
1s therefore enlightening to examine the differences between deductions
and the arguments we use in day-to-day practice.

(a) Reliability of the principles. Not only the mathematics implicit in the
special axioms of L,Set and L,Ar, but even the logic of the languages of £,
is not accepted by everyone. In particular, Brouwer and others have called
into question the law of the excluded middle. From their extremely critical
perspective, our “proofs” are at best harmless deductions of nonsense out
of falsehood.

The mathematician cannot permit himself to be completely deaf to
these criticisms. After thinking about them for a while, he should at least
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be willing to admit that proofs can have objectively different “degrees of
proofness.”

(b) Levels of “proofness.” Every proof that is written must be approved and
accepted by other mathematicians, sometimes by several generations of
mathematicians. In the meantime, both the result and the proof itself are
liable to be refined and improved. Usually the proof is more or less an
outline of a formal deduction in a suitable language. But, as mentioned
before, an assertion P is sometimes established by proving that a proof of
P exists. This hierarchy of proofs of the existence of proofs can, in
principle, be continued indefinitely. We can take down the hierarchy using
sophisticated logical and set theoretic principles; however, not everyone
might agree with these principles. Papers on constructive mathematics
abound with assertions of the type: “there cannot not exist an algorithm
which computes x,” whereas a classical mathematician would simply say
“x exists,” or even “x exists and is effectively computable.”

(c) Errors. The peculiarities of the human mind make it impossible in
practice to verify formal deductions, even if we agree that, in principle,
such a verification is the ideal form for a proof. Two circumstances act
together with perilous effect: formal deductions are much longer than texts
n argot, and humans are much slower at reading and comprehending such
formal arguments than texts in natural languages.

A proof of a single theorem may take up five, fifteen, or even fifty
pages. In the theory of finite groups, the proofs of the two Burnside
conjectures occupy nearly five hundred pages apiece. Deligne has esti-
mated that a complete proof of Ramanujan’s conjecture assuming only set
theory and elementary analysis would take about two thousand pages. The
length of the corresponding formal deductions staggers the imagination.

Hence, the absence of errors in a mathematical paper (assuming that
none are discovered), as in other natural sciences, is often established
indirectly: how well the results correspond to what was generally expected,
the use of similar arguments in other papers, examination of small sections
of the proof “under the microscope,” even the reputation of the author—in
short, its reproducibility in the broadest sense of the word. “Incomprehen-
sible” proofs can play a very useful role, since they stimulate the search for
more accessible arguments,

The last two decades have seen the appearance of a very powerful
method for performing long formal deductions, namely the use of com-
puters. At first glance, it would seem that the status of formal deductions
might greatly improve, so that the Leibnizian ideal of being able to verify
truth mechanically would become attainable. But the state of affairs is
actually much less trivial.

We first give two authoritative opinions on this question by C. L. Siegel
and H. P. F. Swinnerton-Dyer. Both opinions relate to the solution by
computer of concrete number theoretic problems.
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3. The present level of knowledge concerning Fermat’s last theorem is as
follows. Let p be a prime. It is called regular if it does not divide the
numerator of any of the Bernoulli numbers B,= ¢, B,=5...., B, ..
Fermat’s theorem was proved for regular prime exponents by Kummer.
For irregular p there is a series of criteria for Fermat’s theorem to hold.
These criteria reduce to checking that certain divisibility properties do not
hold; if they hold, we must try certain other divisibility properties, and so
on. The verification for each p requires extensive computer computations.
As of 1955, this was successfully done for all p <4002 (J. L. Selfridge, C.
A. Nicol, H. S. Vandiver, Proc. Nat. Acad. Sci. USA, 41, 970-973 (1955)).

Let v(x) denote the ratio of the number of irregular primes < x to the
number of regular primes < x. Kummer conjectured that v(x)—3 as
x — 0. Siegel (Nachrichten Ak. Wiss. Gottingen, Math. Phys. Klasse, 1964,
No. 6, 51-57) suggests that Ve — 1 is a more likely value for the limit,
supports this opinion with probabilistic arguments, compares with the data
of Selfridge-Nicol-Vandiver, and concludes this discussion with the
following unexpected sentence: “In addition, it must be taken into account
that the above numerical values for v(x) were obtained using computers,
and therefore, strictly speaking, cannot be considered proved™!

4. Siegel’'s point of view can be explained as a natural reaction to
information received secondhand. But the excerpts below are from an
article by a professional mathematician and experienced computer pro-
grammer (Acta Arithmetica, XVIII, 1971, 371-385). The article is devoted
to the following problem:

“Let Ly, L,,L, be three homogeneous linear forms in u,v,w with real
coefficients and determinant A; and suppose that the lower bound of
|L,L,L,| for integer values of u,v,w not all zero is 1.” What can be said
about the possible value for A?

“The corresponding problem for the product of two linear forms is
much easier, and was essentially completely solved by Markov. There are
countably many possible values of A less than 3, each of which has the
form

A=(9-4n"2)""

for some integer n; the first few values of n are 1, 2, 5, 13, 29, and there is
an algorithm for constructing all the permissible values of n.”

For three forms Davenport (1943) proved that A=7 orA=9or A >9.1.
In Swinnerton-Dyer’s paper, all values of A < 17 are computed wnder the
assumption that there are only finitely many such values and he gives a list
of them: the third value is 148, and the last (the eighteenth) is V 2597/9 .
Discussing this result, he makes a very interesting comment:

“When a theorem has been proved with the help of a computer, it is

impossible to give an exposition of the proof which meets the traditional
test—that a sufficiently patient reader should be able to work through the
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proof and verify that it is correct. Even if one were to print all the
programs and all the sets of data used (which in this case would occupy
some forty verydull pages) there can be no assurance that a data tape has
not been mispunched or misread. Moreover, every modern computer has
obscure faults in its software and hardware—which so seldom cause
errors that they go undetected for years—and every computer is liable to
transient faults. Such errors are rare, but a few of them have probably
occurred in the course of the calculations reported here.”

The arguments on the positive side are also very curious:

“However, the calculation consists in effect of looking for a rather
small number of needles in a six-dimensional haystack; almost all the
calculation is concerned with parts of the haystack which in fact contain
no needles, and an error in those parts of the calculation will have no
effect on the final results. Despite the possibilities of error, I therefore
think it almost certain that the list of permissible A < 17 is complete; and
it is inconceivable that an infinity of permissible A< 17 have been
overlooked.”

His conclusion:

“Nevertheless, the only way to verify these results (if this were thought
worth while) is for the problem to be attacked quite independently, by a
different machine. This corresponds exactly to the situation in most
experimental sciences.”

We note that it is becoming more and more apparent that the process-
ing, and also the storage, of large quantities of information outside the
human brain lead to social problems which go far beyond questions of the
reliability of mathematical deductions.

5. In conclusion, we quote an impression concerning mechanical proofs,
even ones done by hand, which is experienced by many.

After stating a proposition to the effect that “the function Ty, T,00~ is
correctly defined,” a gifted and active young mathematician writes (fnven-
tiones Math., vol. 3, £.3 (1967), 230):

“The proof of this Proposition is a ghastly but wholly straightforward
set of computations. It took me several hours to do every bit and as I was
no wiser at the end—except that I knew the definition was correct—I
shall omit details here.”

The moral: a good proof is one which makes us wiser.

5 Tautologies and Boolean algebras

5.1 Proposition. A finite list, or “basis,” of tautologies—Ilogical polyromials
in three variables P, O, R—can be given with the following property.

Let L be any language in £,, and let & be the set of all formulas in L

which can be obtained from the basis rautologies by substituting all
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possible formulas in place of P, Q, R. Then any tautology in L is deducible
from F using only the rule of deduction MP.

The choice of the basis tautologies is by no means unique. Our list will
consist of the tautologies A0, A1, A2, A3, BI, B2 in Subsection 3.4 and the
following tautologies:

Cl (P=Q)=(PAQ), (PNQ)= (P> Q).
C2(P=Q)=(PVQ) (PVQ)=(P=0)

C3 P=(1Q0=—(P=Q)).

C4 (P=Q)=((—P=0)=0).

C5 (P=0Q)=(Q0= P).

C6 (P=Q0)=((Q=P)=(P=0Q)).

Cl (PeQ)=(P=0), (P=Q)=(Q@=P).

We are not trying to economize on the size of the basis, but rather on the
length of the proof of Proposition 5.1; hence, A0O-C7 is not the shortest
possible list. This does not make any difference for studying the logic of
£,; but the study of modified logical systems, for example those of the
intuitionist type, requires more careful analysis of this list.

PrOOF OF PrROPOSITION 5.1. Let & be a finite set of formulas in L, and let
P be a logical polynomial (with a fixed representation) over &. For any
map v : & — {0, 1}, we extend v to P using the same rules that defined the
truth function | | in Subsection 2.5. We set

P, ife(P)=1

P =
=P, ife(P)=0.

5.2. Fundamental Lemma. Let &° = {Q°|Q € & }. Then for any v we have:
F U &P (using MP).

This lemma expresses the following idea. It is natural to prove Proposi-
tion 5.1 by induction on the length of the tautology. However, the
component parts of a tautology themselves might not be tautologies. The
operation of taking P to P® forces any formula to be “v-true” and makes it
possible for us to use induction.

5.3. PROOF OF 5.1 ASSUMING THE FUNDAMENTAL LEMMA. Let P be a
tautology, so that P* = P for all v. Set & = {P,, ..., P,}. By the funda-
mental lemma, % U { P, ..., P’}}-P using MP for any v: We show that
then § U {P?, ..., P ,}}-P using MP. Descending induction on r then
gives the required assertion (the assumption that P is a logical polynomial
in P, ..., P, is not used in the induction step).

The Deduction Lemma 4.5 shows that & U {P}, ..., P°_}H(P'=P)
using MP; to see this we need only examine the proof and notice that the
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deduction only used MP and the tautologies in %, since the rule of
deduction Gen was not needed.

Since for any v there exists a v’ which coincides withvon P, ..., P,_,
but takes a different value on P,, it follows that: P,.= P and —P,= P are
deducible from F U {Py, ..., P°_,} using MP. On the other hand, the
tautology C4: (P,= P)=(( \P,= P)=P) lies in . Applying MP twice,
we deduce P. O

5.4. PROOF OF THE FUNDAMENTAL LEMMA. We use induction on the number
of connectives in the representation of P as a logical polynomial over & . If
there are no connectives, that is P € &, then the assertion is obvious.
Otherwise, P has the form —Q or Q, * Q,, where * is one of the binary
connectives.

(@) The case P= —1Q. If v(Q)=0, then Q"= Q=P = P* That
Q® = P® is deducible from % U & is precisely the induction assumption.

On the other hand, if o(Q)=1, then Q"= Q, P*= -1 —1Q. Here Q is
deducible from % U &* by the induction assumption, and then the tautol-
ogy 0= —1 —1Q in ¥ along with MP gives a deduction of P°,

(b) The case P= Q, * Q,. For the different connectives and possible
values of v(Q;) and v(Q,) we first tabulate the formulas for which
deductions exist by the induction assumption and the formulas for which
we must find deductions. In the columns under A and \/ we give formulas
from which (Q; A Q,)° and (Q,\/ Q,)°, respectively, are deducible using
MP and the tautologies in ¥ (tautologies Cl, C2, and C5). Hence it
suffices to find deductions of each of formulas 1-16 from % and the pair
of formulas on the appropriate row in the second column using MP.

Deduction of formulas 1-16.

Given:
deductions of Must Find: Deduction of (Q, * Q,)°
o(Q) v(Qy) QF and Q7 = A
0 0 @, 10, . 91=0, 5. 1 (@hi= Q)
0 1 Q4 0, 2.0=0, 6. 1 (1= 10y
1 0 Qi 1@, 3. (0= Q) T Q1= Q)
1 1 QL Oy 4. O)=0, 8. (G= "0y
o(Q) v(Q;) QF and Q7 V =

0 0 =@, 0, 9. (0= 0;) 13. )0,
0 t 0, O 10. =Q\=0Q, 14. =(Q =0y
1 0 Q. 1@ 1. 10,=0, 15, 2(@1=0Q2)
1 1 O, O 12. =Q,=0, 16. Oy Q)

Note that if P is deducible then for any Q the formula Q= P is also
deducible (tautology Al and MP) and if — P is deducible then for any Q
the formula P= Q is deducible (tautology B2 and MP). This immediately
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yields deductions of 1, 2, 4, 10, and 12. If we remove the double negations
in the A column using tautology B1 and MP, we obtain deductions of 5, 6,
and 7. And 11 is deducible since by Bl the second column yields a
deduction of — —Q,. In the first and last rows the deductions of 1 and 4
yield deductions of Q,= @, by symmetry; tautology C6 and MP twice
give a deduction of 13 and 16 from Q,= Q, and @,= Q,.

3 is deduced from C3: Q,=( —1Q,= —(Q,= Q,)) and the second col-
umn using MP twice.

8 is deduced from C3: Q,=( 1 —1Q,= —(Q,= —Q,)) and the second
column using MP, applying B1 to Q,, and again using MP.

9 is deduced from C3: 11Q,=( —1Q,= —( 1Q,= Q,)) using MP twice.

15 is deduced from 3 by C7 and C5 and MP twice.

Finally, the deduction of 3 from Q, and —Q, yields by symmetry a
deduction of —(Q,= Q,) from —Q, and Q,. Hence on the second row
the deduction of 14 is analogous to that of 15.

Proposition 5.1 is proved. |

5.5. Tautologies and probability. Tautologies are statements which are true
independently of the truth or falsity of their “component parts.” This
assertion still holds even if the components of a tautology are assigned
probabilistic truth values || P|| in the algebra of measurable sets in some
probability space.

An example: the tautology R \/ § \V =R \/ —1.S—"either it will rain, or
it will snow, or it won’t rain, or it won’t snow” ! —is a reliable weather
forecast despite the great complexity of the meteorological probability
space.

For a precise result, it is convenient to use the terminology of Boolean
algebras.

5.6. Boolean algebras. A Boolean algebra B is a set with an operation of
rank one, with two operations \/ and A of rank two, and with two
distinguished elements 0 and 1, such that the following axioms hold:

(a) (4’Y = A for all 4 € B;

(b) A and \/ are each associative and commutative;

(¢) A and \/ are distributive with respect to one another;
(d) (e by =a Ab,(aNb) =a' \/ b,

(e) avJa=aNa=a;

@ 1Na=a;0\/a=a.

ExXAMPLES.

(a) B is the set of all subsets of a set M, ' is complement, /\ is intersection,
\/ is union, 0 is the empty subset, and 1 is all of M.

! A Russian proverb (translator’s note).
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(b) B is the set of open-and-closed subsets of a topological space M with
the same operations.

(c) B is the algebra of measurable subsets (modulo measure zero subsets)
of a probability space M with the same operations.

In all of these cases B can be identified with the space of characteristic
functions of the corresponding subsets of M (taking the value 1 on the
subset and 0 on the complement).

5.7. Boolean truth functions. Let B be a Boolean algebra, and let & be a set
of formulas in a language L. Let || || : & — B be any map. We extend this
map to the logical polynomials over & (more precisely, to their representa-
tions) by means of the recursive formulas:

1P=Qll=UPIAICDVAPIANICI),
1P=QlI=1PI"VI2I
1PV el=IPIVvIel

IPAQIH=1PIANCI
| =PI =P

In the case B = {0, 1}, these formulas coincide with the definitions in
2.5. We note that \/ and A have different meanings in the left- and
right-hand sides.

5.8. Proposition. Let the logical polynomial P be a tautology over & . Then
for any map || || : & — B to any Boolean algebra B we have || P| = 1.

PROOF. An example of a natural map || || can be obtained as follows: if we
are given an interpretation of L in a set M, then the truth functions |P|(§)
can be considered as the characteristic functions of the definable subsets of
the interpretation class M (compare §2). Hence, our usual truth functions
are essentially Boolean-valued. They are imbedded in the Boolean algebra
of all subsets of M, which decomposes as a direct product of two-point
Boolean algebras {0, 1}. Hence the proposition follows trivially in this
case.

In the general case one could use Stone’s structure-theorem for Boolean
algebras. However, instead of this we shall indicate how to reduce the
problem to some simple computations using Proposition 5.1. Because of
Proposition 5.1, it suffices to verify that the basis tautologies are || ||-true
and that || ||-truth is preserved when we use MP. For example, if || P|| =1
and ||[P= Q| =1, then |P||' =0 while |P|"\/[|Q}| =1, so that ||| =1
by 5.6(f); this answers the question about MP. The truth values of the basis
tautologies are computed in a similar manner using the axioms in 5.6. [

Boolean truth functions will be the basic tool in the presentation of
Cohen forcing in Chapter III.
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Digression: kennings

1. The process in §5 generates all possible tautologies starting with a finite
number of tautologies and using a finite number of rules. It has become
very popular in modern linguistics to attempt to find a suitable description
of natural languages by means of such generating rules (N. Chomsky and
others; see, for example, the book Eléments de linguistique mathématique by
A. V. Gladkii and 1. A. Mel'¢uk, Paris, Dunod, 1972).

However, many psychologists consider that this conception has little to
do with the actual process of speech. According to one such opinion, real
speech has more in common with a game of chance, chasing a fugitive, or
a river current near a jagged shoreline. The choice of the next word in a
sentence is determined statistically both by a formulating principle (an
idea, situation, or psychological state) and by the peculiarities of seman-
tics, grammar, phonetics, and the associative cloud formed by the earlier
words.

There is reason to hope that formal grammars are more closely suited to
describing special fragments of natural languages which are in some sense
more rigidly defined, such as certain language fragments in poetry or law.
In these fragments an essential role is played by “prohibitions,” which
weed out, say, all texts not having a certain rhythmic pattern. Even the
most casual attempt at writing poetry reveals the psychological reality of
prohibitions in versification. But it is much less obvious that there is a set
of generating rules which also has a psychological reality.

2. Yet there has been at least one poetic system in which generating rules
occupied an important place. One of the basic elements of skaldic (ancient
Icelandic) poetry consisted of special formulas called kennings. A kenning
is an expression which can replace a single word. For example,

“storm of spears” is a kenning for “battle”

“tree of battle”
“bush of the helmet”

are kennings for “warrior” or “man”
“thrower of swords” J &

“giver of gold”
“sea of the wagon” is a kenning for “earth”
“fire of war” is a kenning for “gold”

‘e 2"
sky of sand :
y are kennings for “sea,” and so on.

“field of seals”
A simple kenning is a kenning no part of which is a kenning. The
examples above are all simple kennings. They play the role of axioms;

obviously, only very great poets have the right to create new simple
kennings. It falls to the lot of the lesser poets to create new kennings using
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the rules of deduction. The rule of deduction of a new kenning from earlier
kennings is as follows: any word in a kenning may be replaced by a (not
necessarily simple) kenning for that word. Here is a complicated example
of a kenning together with its decomposition into simple kennings (an
actual example):

“thrower of the fire of the storm of the witch of the moon of the steed of the ship stables”

N

ship

-

shield

spear

battle

sword

warrior or man

The Soviet poet Leonid Martynov thought of kennings as metaphors (a
fundamental error, although an understandable one—kennings and meta-
phors play completely different structural roles in different poetic systems),
and he wrote a poem “Songs of the Skalds” which ends as follows:

...But perhaps the translators have gotten a bit carried away?

No!
In our times, too,
might there not live
some throwers
of the fire
of the storm
of the witch
of the moon
of the steed
of the ship stables,
or

squanderers
of the amber
of the cold earth
of the great boar?
Anything is possible!!
And who can be so very sure
That there-are no longer songs
which could be called
Surf
of yeast
of the people
of the bones
of the fjord"
Perhaps there really are such songs now,

Who can tell??
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After all this, the professional opinion of M. I. Steblin-Kamenskii,
whose book Icelandic Culture (Leningrad, Nauka, 1967) provided us with
the above examples, sounds a little anticlimatic: “As a rule, any kenning
for a man or warrior was no richer in content than the pronoun ‘he.’ ”

EXERCISES:

(a) Find the simple kennings from which the last two kennings in Martynov’s
poem are deduced.

(b) Construct the kennings of maximum length which are deducible from all the
simple kennings in the above text. Prove that it is impossible to deduce longer
kennings.

6 Godel’s completeness theorem

6.1. Let L be a language in £, let ¢ be an interpretation of L, and let T,L
be the set of ¢-true formulas. In §3 it was shown that the set T, L is
Godelian: it is complete, does not contain a contradiction, is closed with
respect to deduction, and contains all the logical axioms Ax L. We say that
a set of formulas & in L is consistent if the set of formulas deducible from
& does not contain a contradiction, i.e., if there is no P such that & P
and & |- 11P; otherwise, we say that & is inconsistent. The basic purpose of
this section is to prove the following converse of the result in §3:

6.2. Theorem (Godel)

(a) Any Godelian set T is the set of ¢-true formulas T,L for a suitable
interpretation of L in some set M having cardinality < card (alphaber of
L) + n,. (Here and below we always mean the cardinality of the alphabet
without the variables.)

(b) Any set of formulas & which contains Ax L and is consistent can be
imbedded in a Gédelian set.

The model M which is constructed in the proof consists of expressions
in some extension of the alphabet of L, and thus has a somewhat artificial
character. In the next section we show that, if we are given some natural
interpretation (M, ¢) of L, then we can find a submodel having cardinality
< card (alphabet of L) + &,

6.3 Corollary. (Deducibility criterion). Ler & O Ax L.
(@) A formula P is deducible from & if and only if either & is
inconsistent, or P is ¢-true for all models ¢ of the set & having cardinality
< card (alphabet of L) + R,.
(b) A formula P is independent of & if and only if both & U { P} and
& U { P} are consistent; by Theorem 6.2, this is true if and only if
& U{P}and & U { 1P} have models.
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6 Godel’s completeness theorem

In what follows we shall often omit the verification that various formal
deductions exist. If the reader wants to fill in such a verification, this can
almost always be done more easily using deducibility criterion 6.3 than
directly.

PROOF OF THE COROLLARY

(a) If & is inconsistent, then any formula can be deduced from &
(Proposition 4.2). Suppose & is consistent and P is ¢-true for all models of
&.Let P=Vx,- - - Vx,P be the “closure” of P. To prove that &|-P we
consider two cases.

(a,) & U { P} is inconsistent. Then & U { —|P}}—P so that, by the
Deduction lemma, &} —P= P. The tautology (1 P=> P)=>P and MP
give & |-P, and then the axiom of specialization and MP give &}-P.

(a) & U { P} is consistent. Then, by Theorem 6.2, the set & U { —|P}
has a model. In this model & is true and P is false, so that this case is
impossible.

(b) Suppose that P is independent of &, i.e., neither P nor —P is
deducible. Then, by part (a), there exists a model of & in which P is true
and a model of & in which P is false. The converse is obvious. O

We now proceed to the proof of Godel’s completeness theorem.

6.4. Definition. Let & be a set of formulas in a language L. The alphabet of
L is said to be sufficient for & if, for each closed formula —Vx P(x) in
& there exists a constant ¢, (depending on P) such that the formula

Rp: Vx P(x)= —1P(cp)
belongs to &.

The intuitive meaning of R, is: “If not all x have the property P, then
some concrete object ¢, can be found which does not have this property.”
We say that the alphaber (rather than &) is “sufficient” or “insufficient”
because, if & does not contain enough formulas of the type Rp, we can
simply add all the R, to &, while if there are not enough constants cp, we
then have to add them to the alphabet of the language.

The plan for proving Theorem 6.2 is as follows. We first prove the
Fundamental Lemma:

6.5. Fundamental Lemma. If a set of formulas & in a language L is
consistent and complete and contains Ax L, and if the alphabet of L is
sufficient for &, then & has a model with cardinality < card (alphabet of
L) + &,

The next two lemmas allow us to imbed any consistent & in a complete
set, or in one for which the alphabet is sufficient.
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II Truth and deducibility

6.6. Lemma. If & is consistent and contains AX L, then there exists a
consistent and complete set of formulas &' D b .

6.7. Lemma. If & is consistent and contains Ax L, then there exist:

(a) a language L’ whose alphabet is obtained from the alphabet of L by
adding a set of new constants having cardinality < card (alphaber of
L) + &,

(b) a set of formulas &' in L' which is consistent, contains & and
AXx L', and has the property that the alphabet of L' is sufficient for &'.

However, these constructions get in each other’s way. If we complete a
set & for which the alphabet is sufficient, we might obtain a set with an
insufficient alphabet; if we add new constants, we increase the overall
supply of formulas in the language, and thereby lose the completeness of
& . Hence, we have to alternate the constructions in 6.6 and 6.7 a countable
number of times in order to prove our last lemma:

6.8. Lemma. If & O Ax L is consistent, then there exist:

(a) a language L™ whose alphabet is obtained from the alphabet of L
by adding a set of new constants having cardinality < card (alphabet of
L)+ &,

(b) a set of formulas & in L'* which is complete and consistent,
contains & and Ax L™, and has the property that the alphabet of L™ is
sufficient for &),

After Lemma 6.8 is proved, Theorem 6.2 is obtained from the Funda-
mental Lemma applied to & if we restrict the resulting model to L and
&.

We now prove the lemmas. The Fundamental Lemma is proved in 6.9,
and Lemmas 6.5, 6.6, and 6.7 are proved in Subsections 6.10, 6.11, and
6.12, respectively.

6.9. PROOF OF THE FUNDAMENTAL LEMMA. We begin by explicitly con-
structing the interpretation ¢ of L which will be our model for &.

(a) By a constant term we mean a term in L which does not contain any
symbols for variables. We let M = {7 | 7 is a constant term} be a “second
copy” of the set of constant terms, and we define the primary mappings of
the interpretation ¢ of L in M as follows:

o(c)=c¢ (for any constant c);
) ) (for each operation symbol f of
(Nt -, 1)= f(r),...,r) degree r and all constant terms
Loy L)
) ) if and only if p(¢y,...,)E b
{ty oo s Y EG(P) (for each relation p of degree r
and all constant terms ¢, ..., ).
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6 Godel’s completeness theorem

We now prove the following

(b) Claim. Let P be a closed formula. Then |P|,=1if and only if P €&.
(This claim implies that ¢ is a model for &. In fact, if P €& is not

closed, then its closure Vx, - - - Vx, P is deducible from & using Gen,
and hence, since & is complete and consistent, Vx, - - - ¥x,P € &. By

the claim, |Vx, - - - Vx,P|, =1, so that |P|, =1.)

PROOF OF THE CLAIM. We use induction on the total number of quantifiers
and connectives in P. We shall write | P| instead of |P|,.

(b)) P is an atomic formula p(¢,, . . ., ,). The claim follows from the
definition of | P| and the list of primary mappings, since the 7, are constant
terms (or else P would not be closed).

(b,) P= Q. If |P|=1, then |Q|=0 and Q €& by the induction
assumption applied to Q; since & is complete, we have —Q €&, ie,
P €6&. On the other hand, if |P|=0, then |Q|=1 and Q € &, so that
—Q & & since & is consistent.

(b;) P =(Q,= Q,). We first show that if |P| =0 then P €& . In fact, in
this case |Q,| =1 and |Q,| =0; by the induction assumption, 0, € &, O,
€& ; since & is complete, —Q, € &; using the tautology Q,=( @,
= —(Q,= 0,)) and using MP twice yields &} —(Q,= Q). Since & is
complete and consistent, all closed formulas which are deducible from &
belong to & ; hence, (Q,=Q,)= P €&, s0 that P £6.

We now show that, if P €&, then | P| =0. In fact, since & is complete,
we then have 1P = —1(Q,= Q,) € &. The tautologies —1(Q,=Q,)= 0,
and —(Q,= 0,)= —1Q, and MP give & |-Q, and & |- 1Q,, so that, since
& is complete and consistent, Q, € & and —Q, € &. By the induction
assumption, |Q,| =1 and |Q,| =0, so that |P|=|Q,= Q,| =0.

(b)) P=0Q,V Q, or O, A\ Q,. Using the tautologies which express /\
and \/ in terms of = and —, we can reduce to the previous cases; we
omit the details.

(bs) P =V xQ. If x does not occur freely in Q, then |P| =1 is equivalent
to |Q|=1, ie., by the induction assumption, to Q €&. But Q €& is
equivalent to Vx Q € &, in one direction using Gen and in the other
direction using the axiom of specialization with ¢ = x and then MP.

We now assume that x occurs freely in Q. We first suppose that |P| =1
but P £&, and obtain a contradiction. If P €&, then P €&, ie,
—Vx Q(x) € &. Since the alphabet of L is sufficient for &, it follows that
& contains the formula Vx Q(x)= 10 (cp). Applying MP, we obtain
& 110 (cp); since & is consistent, we have Q (cp) €& . By the induction
assumption, |Q(co)| =0 (Q(cp) is closed!). This means that [Q()IE) =0
for £ € M if x* = ¢,, contradicting the assumption that |P|=1.

We now suppose that |P| =0 but P € &, and obtain a contradiction.
Since |P| =0, for some { € M we have |Q (x)|(§) = 0. Let ¢ be the constant
term for which x¢ = r. Clearly ¢ is free for x in Q, so that 0= |Q(x)|(§) =
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|Q(7)]. Hence Q(r)&& by the induction assumption, and —Q(?) € &
since & is complete. On the other hand, if P € &, i.e., Vx Q(x) € &, then
the axiom of specialization Vx Q (x)= Q(¢) gives us & |-Q(¢). But, since
—1Q(¢) € &, this contradicts the consistency of &.

(bs) P =3x Q. This reduces to the previous case using the axiom which
expresses J in terms of V and negation; we omit the details. O

6.10. PROOF OF LEMMA 6.6. In order to imbed & in a complete and
consistent set &', we shall have to use Zorn’s lemma and the Deduction
Lemma for L (see Subsection 4.5 of Chapter II). Zorn’s lemma will be
applied to the set C& = the set of sets of formulas &’ in L which contain
& and are consistent. The set C& is ordered by inclusion.

VERIFICATION OF THE HYPOTHESIS OF ZORN’S LEMMA. Let {&.},<; be a
linearly ordered subset of C&, ie., for any a and B we have either
b, < b; or &5 < &;. Then the union U&, belongs to C&. In fact,
otherwise U &, would be inconsistent, and there would exist a deduction
of a contradiction from a finite number of formulas. Suppose these
formulas are contained in &, ..., &, . But one of these sets contains the
remaining n — 1; this set would be inconsistent, contrary to the definition

of C&.

PROOF OF LEMMA 6.6 FROM ZORN’S LEMMA. The set €& has a maximal
element, i.e., a consistent set &' > & such thatif Q €&’ then &' U {Q} is
inconsistent. We claim that &’ is complete. In fact, suppose that there were
a closed formula P such that P €&’ and —P € &'. Since &’ is maximal,
it follows that &’ U {P}-R and &' U { —P}}-R for any formula R. By
the Deduction Lemma, &'FP= R and &'} 1 P= R. Using the tautology
(P=R)=((1P=>R)=R) and MP, we have &'}-R, contradicting the
consistency of &', O

6.11. PROOF OF LEMMA 6.7. In constructing a language with a sufficient
alphabet for a consistent set of formulas &’ which contains & and Ax L’,
we proceed in the most natural way.

(a) We add to the alphabet of L a set of new constants whose
cardinality is that of the alphabet of L + &,. We obtain a language L.

(b) We consider the set of formulas & U Ax L’ in the language L',
where Ax L’ consists of all the logical axioms of L’. We claim that this set
of formulas is consistent. In fact, if there were a deduction of a contradic-
tion from & U Ax L' in L', then the following procedure would transform
it into a deduction of a contradiction from & in L: take the finite set
consisting of all the new constants which occur in the formulas in the
deduction and replace these constants by old variables (in L) which do not
occur in the formulas in the deduction. It is easily verified that the
deduction of a contradiction remains a deduction of a contradiction, and
now lies entirely in L.
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(c) We consider the set S of formulas P (x) containing one free variable
x and such that -1Vx P(x) € & U Ax L'. For each P(x) in S we choose a
new constant ¢, subject to the following restriction: each ¢, can be
assigned a natural number, its rank, in such a way that if a constant of
rank n occurs in P(x) then ¢, has rank > n. This can be done since
card(S) < card(alphabet of L") = card(alphabet of L)+ &,. For each P(x)
in S define the formula

R, : —Vx P(x)= —1P(cp)
and finally let
&' =6 UAX L' U {Ry|P(x)ES}.

Call any R, an R-formula. Note that no R-formula has the form
—Vx P(x), so that L’ is sufficient for &’. It remains only to verify that &’
is consistent. If a contradiction were deducible from &’ then it would be
deducible using finitely many R-formulas. At least one R, among these
must be such that ¢, does not occur in any of the others: namely, pick cp
of maximal rank. Hence it suffices to verify that if & UAX L'U @R is
consistent, where A is a set of formulas not containing cp, then the
addition of R, does not lead to a contradiction.

Suppose & U Ax L' U R U {Rp)} were inconsistent. Then, in particular,
we would have a deduction of —R, and, by the Deduction Lemma,
& UAx L'U R}-Rp= —1Rp. The tautology (Rp=> —1Rp)=> —1Rp and MP
would yield a deduction of —1R,; that is,

&EUAx L'URF —(Vx P(x)= 2P(cp))-

Then the tautology —(P= —1Q)= Q@ and MP would yield a deduction of
P(cp). Transform this deduction by replacing the constant ¢, with a
variable y which does not occur in the formulas in the deduction. Since ¢,
does not occur in 4 it is easily verified that the transformation yields a
deduction of P(y) from & UAXx L' U%R. Using Gen, & UAX L' U
R }Vy P(y). But since —Vx P(x) € & UAx L', we have & U
Ax L'}- 2 Vy P(y). Hence & U Ax L' U %R is inconsistent, contrary to
hypothesis. g

6.12. PrROOF OF LEMMA 6.8. Let L be a language in the class £,, and let &
be a set of formulas in L. We imbed & in a complete and consistent set
&', and then apply Lemma 6.7 to (L, &'). We let L* and & * denote the
resulting language and set of formulas. We further define inductively

(L®, 6@y = (L, &);  (LU*D, §G+D)=(LO" §O"),
and finally

o0 o0
L= LW, 6= = &,
i=0 i=0
The set & is consistent, since any deduction of a contradiction would
be obtained “at some finite level,” and all the & are consistent. It is
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complete, since every closed formula in L is written in the alphabet of
L® for some i, and &*D contains the completion of &? in LY. Finally,
the alphabet of L is sufficient for &*) by the same argument.

This completes the proof of the lemmas. |

6.13. DEDUCTION OF THEOREM 6.2 FROM THE LEMMAS. Let T be a Godelian
set of formulas in L. Applying Lemma 6.8 to 7, we imbed (L, T) in
(L, T™), where the pair (L, T*) satisfies Lemma 6.5. Let ¢ be
an interpretation of L such as must exist by Lemma 6.5. The cardinality
of M does not exceed card (alphabet of L)+ &, The restriction ¢ of
¢ to L satisfies the condition T C T,L. We prove that T'= T, L. In fact,
let P € T,L.1f Pis closed, then P € T, since either P or —P lies in T by
completeness, and —P ¢ T because P is ¢-true. If P is not closed, and
X, ..., X, are the variables which occur freely in P, then Vx, P is closed
and belongs to 7. By the axiom of specialization, P is deducible from
T U {Ax,---Vx, P}, so that P €T, since T is closed under deduction.
This proves the first assertion of the theorem.

The second assertion follows from the analogous argument applied to &
instead of 7. We find a model ¢ for &; then & c T,L and T,L is
Godelian. O

6.14. In conclusion, we note that, if the alphabet of L contains a symbol =
for which the axioms of equality are included in & (or T'), then there exists
a normal interpretation which satisfies Theorem 6.2 and takes = into
equality. To prove this, we take the above model M and divide out by the
equivalence relation ¢(=), as in Subsection 4.6.

7 Countable models and Skolem’s paradox

“I know what you’re thinking about,” said
Tweedledum: “but it isn’t so, nohow.”
“Contrariwise,” continued Tweedledee, “if it
was so, it might be; and if it were so, it would
be: but as it isn’t, it ain’t. That’s logic.”

Lewis Carroll, Through the Looking Glass

7.1. In this section we discuss the technique of “cutting down” models, in
particular, models for L,Set. Let L be a language in £,, let M C N be two
sets (or classes in V), and let ¢ and ¢ be interpretations of L in M and N,
respectively, which are compatible in the obvious sense, so that ¢ is an
extension of ¢. We have a natural imbedding of interpretation classes
M CN.
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7.2. Definition. A formula P in L is called (M, N)-absolute if for all { € M
we have

|P{p() =[P|n(§)-

(We write | |,, instead of | |,, and so on.)

The property of being absolute is usually used as follows: if P is
absolute, and is also N-true, then it is automatically M-true. A formula P
often fails to be absolute for the following reason: a formula P =3x Q(x)
can be N-true, so that N has an object with the property Q, but not
M-true, because no such object lies in M. The proof of the following
assertion shows how to handle this situation.

7.3. Proposition. Let & be a set of formulas in L, let Y be an interpretation of
Lin N, and let My C N be a subset. Then there exists a set M, My C M
C N, having cardinality < card My + card & + &y, such that all the
Sformulas in & are (M, N)-absolute.

7.4. Corollary (Lowenheim—Skolem). If the alphabet of L is countable and N
is a model for &, then N has a countable submodel for & .

The corollary follows from Proposition 7.3 if we construct a countable
submodel with respect to which all the formulas of L are absolute, and, in
particular, in which all formulas which were true before remain true.

PRrROOF oF 7.3. Suppose the set M, C N, i > 0, has already been defined. Set
M =MU {x|§=¢£(x, P, §)},

where x runs through the variables in L, P runs through the subformulas
of the formulas in &, and £ runs through the points of M,, and where, for
each fixed triple (x, P, &), £(x, P, §) is any one variation of § along x for
which |P|y(£) =1 if such a variation exists; otherwise the triple does not
make any contribution to M, ;.

Further set M = U2 M, M clearly has the desired cardinality. We
now show that all subformulas of the formulas in & are (M, N)-absolute.
We use induction on the number of quantifiers and connectives in the
formula. The result is obvious for atomic formulas; the inductive step
when a new formula is constructed using a connective is also clear. The
quantifier ¥ reduces to 3 in the usual way.

Thus, suppose P is absolute. We show that 3x P is also absolute. It
suffices to consider the case when x occurs freely in P. For £ €M we
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have:

1, if there exists a variation £ € N of ¢ along x
13x P|n(§) = with |P| (&) = 1,
0, otherwise.

1, if there exists a variation £’ € M of ¢ along x
[Fx P[y(§) = with | P|,(¢) =1,
0, otherwise.

But the conditions on the right are equivalent. In fact, there exists a
variation 1 of the point § along variables which do not occur freely in P,
such that 7 € M, for some i. Then in the case [3x Ply@ =3x Ply(n) =1
there is a£ € N with |P| (&) = 1 = there is an 7’ € M, , with |P|y(n) =
1, where 7 is a variation of 5 along x, by the construction of M, . This
completes the proof. O

7.5. We now apply Corollary 7.4 to the standard interpretation of L,Set in
the von Neumann universe ¥ and the set & of Zermelo-Fraenkel axioms.
We obtain a countable model N for this axiom system, but this model has
one defect: if X € N, some elements in X might not themselves belong to
N, ie., € is not necessarily transitive. The following result of Mostowski
shows how to replace N by a transitive countable model.

Let N C V' be a subclass, and let e C N X N be a binary relation. We
shall write XeY instead of (X, Y)> Ee. For any X € N we set

[X]={Y|YeX).

Suppose that [X]eV for all X € N, i.e., each [X']is a set rather than a class.
We consider the interpretation ¢ of L;Set in the class N for which ¢(€) is e
and ¢(=) is equality.

7.6. Proposition (Mostowski). Suppose that the axiom of extensionality and
the axiom of the empty set are ¢-true, and that N does not contain any
infinite chain - - - X,eX,_e - - - €X,eX,. Then there exists a unique
transitive class M C V and a unique isomorphism f : (N, ) >(M, €).

If we apply this proposition to the countable model (N, €) for the
Zermelo-Fraenkel axioms in subsection 7.5, we obtain a transitive count-
able model (M, €), that is, a “small universe.” (The condition that all
e-chains are finite even holds in ¥V, as well as in N; [X] is the subset
X N N C X, and hence is an element of V)

7.7. PROOF OF PrROPOSITION 7.6. Using transfinite induction, for every
ordinal « we construct sets N, C N, M, C V and compatible isomorphisms
Jo t (N €|y ) >(M,, €]y,), and we show that U N, = N.
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7 Countable models and Skolem’s paradox

(a) Since the axiom of extensionality is ¢-true and ¢(=) is equality, we
easily obtain X, = X,<[X,]=[X,] for all X, X, E N. Let &, € N be the
interpretation of the constant @ of the language L,Set. Since the axiom of
the empty set is ¢-true, we may conclude that &, is the unique element of
N for which [@y]= O € V. We set

No={on}, My={o}, fol@n) =0

(b) Recursive construction. Let a be an ordinal. Suppose that N, M, and
£, have already been constructed. We set:

Ny ={X EN|[X]CN,AX EN,JUN,;

fa+l(X)={f“(Y)|YE[X]}’ fOrXENa+l\Nu; fzx+l|N,,= a;

M, ,=imageof f . ,=rangeof f ..

If B is a limiting ordinal, we set Ng= Ua<ﬁNu,Ml,= UG<BM,,, and
fs=U ,pf, Finally, we set M= U M, and f= U f.» where the union
is taken over all the ordinals.

(¢) Inductive proof. We verify that for each «

(c)) N,isaset,ie, N EV.

(c;) M, is a transitive subset of V.

(c5) £, is an isomorphism of N, with M, taking € to €.
(c) N=U,N,.

Assertions (c¢,)—(c;) are obvious for a = 0. If they hold for all « < 8 and if
B is a limiting ordinal, then they also hold for 8. It remains to check the
step from « to a + 1.

(c,) [ ] is obviously a function from N, ,,\ N, to P(N,); since the
axiom of extensionality is true, there exists an inverse function. Its image
N, \ N, is a set, since N, and therefore & (N,), are sets by the induction
assumption.

(c,) Any element in M, , ,\ M_ has the form {f (Y)Y €[X]}, where
X € N, |\ N,. But then [X]C N,. Hence, an element f,(Y) of this ele-
ment of M, \ M_ belongs to the image of f, i.e., to the set M, C M, ,.
This proves the transitivity of M, .

(c;) We first verify that f,,, is a bijection. The surjectivity is obvious;
using the induction assumption, we see that it suffices to verify injectivity
on N, .\ N,. Butif X,, X, €EN,, |\ N, and f, , (X)) = f,,1(X,), then

LY €[X,]) = (LMY €[X,]}.

Since f, is injective, we obtain [X,] =[X}], so that X, = X,.
We then find:

YeXo Y €[ X]ef,(Y) €L, (X),

so that for X € N, |\ N, the relation YeX goes to £, (Y) € f,, ,(X). This
is clearly sufficient to complete the induction.
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(c,) Finally, we verify that N= J N,. Let N' = N\ U N,; we suppose
that N’ is nonempty and show that this leads to a contradiction. If there
existed an X € N’ such that [X]N N’ = ¢, then we would have [X]N N
C U N,; then [X]C N, for some ay, so that X € N, ., contradicting the
assumption that X € N\ U N,. On the other hand, if we had [X,]n N’
@ for all X, € N, then, successively choosing X, . ; €[X,] N N’, we would
obtain an infinite chain X, , ;eX,eX,_ ¢ . . . eX,, contradicting the hypothe-
sis of the theorem.

(d) Suppose we have two transitive subclasses M and M’, and an
isomorphism g : (M, €)5>(M', €). We set M, =V, N M and M=V,
N M’. An obvious induction on a then shows that g is the identity map.
The proposition is proved. O

7.8. Skolem’s paradox. Let M be a transitive countable model for the
Zermelo—Fraenkel axioms. Then the following formulas are M-true:

the axiom of infinity;

the power set axiom;

Cantor’s theorem that there is no mapping of x onto % (x) for any set x
(this theorem is deducible from the Zermelo-Fraenkel axioms).

Since 9 (X) is uncountable when X is countably infinite, the content of
the assertion that the power set axiom is true in the countable model M
must be very different from the content of the assertion that this axiom is
V-true. In fact, in L,Set let “y = % (x)” be abbreviated notation for the
formula Vz(“z C x"=z€E€y). Let {EM, x**=X €M, and yi=Y EM.
Then we easily see that

[y =9 u@=1eY={Z|ZcXNZeM},

ie, P(X)y =P (X)N M plays the role of P(X) in M. Here P(X),, is at
most countably infinite, since M is countable; so, from the usual point of
view, there exists a mapping of a countably infinite set X onto % (X),,.
This does not contradict Cantor’s theorem, because the M-truth of
Cantor’s theorem merely means that there are no (graphs of) such map-
pings in the model M. Such graphs may exist outside of M, but, if we add
such a graph to M (along with everything that must be added for the
axioms to remain true), we thereby increase M, and at the same time
% (X) ., and the mapping stops being onto.

All such ways statements of set theory change their meaning in count-
able models are customarily referred to as Skolem’s paradox.

Cohen was the first who was able to use the properties of countable
models to prove the nondeducibility of the continuum hypothesis. In his
models sets of “M-intermediate” cardinality lie between w, and %P (wg) s
although from an external point of view both w, and % (w,),,, along with
all the other sets, are simply countable. Cohen introduced fundamentally
new ideas of relativizing the very notion of truth, and it is only with the
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benefit of hindsight that we can so easily understnad the situation in his
models. For details, see Chapter III.

Skolem himself, and other specialists on the foundations of mathemat-
ics, were willing to work with countably infinite sets, but not with larger
infinities. They considered Skolem’s paradox to be a manifestation of the
relative character of set theoretic concepts. In particular, they considered
that there exist “different continua” % (w,) ,,, none of which coincides with
the “real” & (wy).

From the point of view of the topologist or analyst, for whom the
continuum is a working reality, the existence of countable models means
that formal language has limitations as a means of imitating intuitive
reasoning. We encountered similar limitations when discussing the formal
axioms of induction in §4.

For the psychologist or philosopher, perhaps the most interesting aspect
of the situation is that any mathematician can understand the viewpoint of
another mathematician (without having to agree with it). This means that
what mathematician A says, though demonstrably incapable of conveying
unambiguous information about the continuum, nevertheless is capable of
bringing the brain of mathematician B to the point where it forms an idea
of the continuum which adequately represents the idea in A’s brain. Then
B is still free to reject this idea.

“I know what you’re thinking about,” said Tweedledum: “but it isn’t so,
nohow.”

8 Language extensions

8.1. In this section we study the formal version of “introducing new
notation.” Here we only consider names of new functions and constants
which are “demonstrably definable” in the language. Adding such names
to the alphabet shortens formulas and formal deductions, but does not
increase the set of deducible formulas—this will be the fundamental
theorem of this section.

Of course, in practice, abbreviated notation and well-chosen new names
can immediately make accessible to our intuition entire areas of mathe-
matical facts that were previously inaccessible. One of the best known
examples are the groups introduced by Galois to study equations. In 1924,
commenting on the attempt to curb the inflation in Germany by introduc-
ing a new unit of currency, the Rentenmark, Hilbert remarked skeptically:
“A problem cannot be solved by renaming the independent variable.” But,
as his biographer Constance Reid noted, Hilbert was wrong: the economic
situation gradually stabilized.

We start with the following data.

8.2. Let L’ be a language in £, with equality and with an infinite set of
variables, and let P’(x) be a formula in L’ in which x occurs freely. We
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II Truth and deducibility

recall that the abbreviated notation 3!x P’(x) (read: “there exists a unique
x with the property P’”) stands for the formula

Ax PI(x) AV V(P ()N P (y)=x =)

Let &’ be a set of formulas in I’ which contains Ax L', the axioms of
equality, and perhaps some special axioms. Suppose that the formula
I!x P'(x,y,...,y,) is deducible from &', where P’ has no free variables
other than x, y,,...,y,. Intuitively, this means that P’ defines x as an
implicit function of y,, . . ., y,, and in the informal text we can introduce a
new notation for this function, say, x = f(y,, ..., »,), and then always use

that notation. Now we give the formal version of this procedure.

8.3. Proposition. Under the conditions in 8.2, let L denote the language in £,
whose alphabet is obtained from the alphabet of L' by adding a new
operation symbol f of degree n if n > 1, or a constant fif n=0. Let & be
the smallest set of formulas in L containing Ax L, the axioms of equality,
&', and the formula P'(f(y1s . s Y Vs o oo s V)

Then there exists an explicitly describable map from the set of formulas
of the (richer) language L to the set of formulas of the ( poorer) language
L’ which correlates with each Q a translation Q' and which has the
Sfollowing properties:

(a) If f does not occur in Q, then the translation of Q coincides with Q.

(b) If Q is deducible from & in L, then Q' is deducible from &' in L. In
particular, the set of formulas in L’ which are deducible from &' in L’
coincides with the set of formulas in L which do not contain [ and are
deducible from & in L.

Proor.
Translation of formulas. Suppose n > 1. (The case n =0 is analogous,
and is simpler, so we shall omit it.) The first effect of adding f is to increase

the set of terms: L includes terms of the form f(¢y, ..., ¢,), where f can
occur in ty,...,t, and so on. In order to decrease the number of
references to f, we must say “f(z,, ..., ¢,)” in a roundabout way: “that x
for which P(x, t,. ..., t,).” This is the basic idea behind the translation of
formulas. We now give a precise inductive definition.

(a) A term f(¢,. ..., ¢) is called a simple f-term if f does not occur in
[y oot

-

(b) Let Q be an atomic formula in L. If f does not occur in Q, we let O
be its own translation. If f occurs in Q, then there exists a simple f-term
f(r, ..., 1) which occurs in Q. We take the very first occurrence of a
simple f-term in Q, then take a variable symbol x which does not occur in
Q, substitute it in place of this occurrence, thereby obtaining a formula
Q*, and finally construct the formula

Q' Fx(Px. 1, ..., 1) N\ Q*(x)).
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We apply this procedure to @), to obtain Qf,), and so on. After a finite
number of steps we obtain a formula Q(, = @’ in which f does not occur.
This Q' is the translation of Q.

(c) If Q is not an atomic formula, it has the form —Q, or Q, * Q,
(where +* is a connective), or else Vy @, or Iy Q,. In all cases Q is
translated automatically using the translations of Q, ¢, Q,, ie., by
“adding prime” to the component parts.

Translation of deductions. The problem is the following: Let Q,, ..., Q,
= Q be a deduction of Q from &, and let Q’ be the translation of Q. We
must construct a deduction of Q' from &’. The most obvious idea is to
write the sequence of translations Q;, ..., Q,. Why isn’t this a deduction
of Q' from &', since MP and Gen are translated in a trivial way, and
tautologies are translated as tautologies? Because, for example, the logical
axiom Vx R(x)= R(f) might appear in this sequence, and this formula
stops being an axiom after it is translated, if f occurs in R. Hence, we must
fill in the sequence Q, . . ., @, by adding deductions from & of certain of
its terms. This is a rather cumbersome combinatoric procedure, which one
can read in §74 of Kleene’s book Iniroduction to Metamathematics (Van
Nostrand, New York-Toronto, 1952). (The moral of the story is that new
notation really does economize on time and space.)

Instead of using this procedure, we shall give an ineffective proof that
&'-Q’ using the deducibility criterion in 6.3. We state this criterion once
more;

(@) If Q' is true in any model of &', then &'}-Q’. Since &’ contains the
axioms of equality, we can slightly strengthen this as follows:
(b) If Q' is true in any normal model of &' then Q' is true in any model of

&'

Recall that = is interpreted as equality in a normal model. On the other
hand, in §4 we showed that in any model = is interpreted as an equiva-
lence relation which is compatible with the interpretation of all the
constants, functions, and relations. Factoring out by this equivalence
relation leads to a normal model, in which the truth values of all the
formulas remain as before.

(c) The normal models of &’ (in the language L') coincide with the normal
models of & (in the language L).

More precisely, we can give the following natural one-to-one correspon-
dence between them which preserves the truth function. We shall limit
ourselves to the case n > 1. Let ¢ be a normal interpretation of L’ in M for
which |Q’|, =1 for all Q' € &’. In particular, since &’}-3!x P’, we have

Alx P(x, 1 -5yl =1
Computing the truth value on the left at a point £ € M and using the
normality of the model, we then find that to every n-tuple ()%, ..., y¢> €
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M?" there corresponds a unique x¢' € M such that |P'(x¥, y§, . .., y§)|, =1
(this is not the standard notation, but the meaning is clear). We now
interpret the symbol f (which is the new symbol in the language L) as the
function M” — M which takes {y%, ..., %> to x*". We obviously obtain a
normal model for & in L.

Conversely, any normal model for & can be restricted to L’ to obtain a
normal model for & .

(d) If Q is deducible from & in L, then Q' is true in any normal model for
&',

PRrROOF. Q is true in any model ¢ for &. To prove that Q' is true, we begin

with atomic formulas Q which contain f. In the notation in the first part of

the proof (translation of formulas), we construct Q* and then Q=

Ax(P(x, 1y, ..., L)\ Q@Q*(x)). To verify that |Q(y|, =1, for each point

£ € M we must find a variation ¢ of ¢ along x for which

|Pl(§)=1 and [Q*(x)|,(¢)=1.

We determine x** from the condition |P (x%, 4, . . ., £5)|, = 1. The descrip-
tion in (c) of the interpretation of f shows that we now have |Q*|,(§) =
10L& =1.

Thus, truth is preserved in going from Q to Q(,, Repeating this
procedure, we find that Q' is true for atomic formulas Q. Finally, the truth
of Q' in the general case is proved by induction on the number of
connectives and quantifiers. Combining the results (a)-(d), we then obtain
&'+ Q’, which completes the proof of Proposition 8.3. O

8.4. EXAMPLES

(a) In L,Set the following formula is deducible from the axioms of
extensionality and pairing (and also the axioms of equality and the logical
axioms):

AxVz(zExez=u\/z=1).

Using Proposition 8.3, we see that we may add to L,Set a new degree 2
function symbol { }, “unordered pair,” without changing the set of for-
mulas in L;Set which are deducible from the Zermelo—Fraenkel axioms.
Therefore, without hesitation we may use not only the abbreviated nota-
tion “x = {u, w}” as before, but also terms which are put together using
the symbol { }. In particular, (here the use of { } is not normalized, but is
in agreement with tradition):
(b) We can introduce notation for the finite ordinals

o, {e}. {2, {2}}, -

as terms in their own right in our language extension, and then imbed
formal arithmetic in formal set theory.
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9 Undefinability of truth: the language SELF

(c) After deducing the formula
3!x(“x is an ordinal” A“x is not finite” A“V ordinal y < x, y is finite”)

from the Zermelo-Fraenkel axioms, we can introduce a new constant wy,
and then continue to introduce names of more and more ordinals which
are demonstrably uniquely characterized by formulas in L;Set (or in
language extensions which are formed in the same way).

We shall make use of this new freedom of action in Chapter III.

9 Undefinability of truth: the language SELF

9.1. When modeled in formal languages, arguments of the “Liar Paradox”
type lead to important theorems on the limitations of the modes of
expression and proof in these languages. The best known of these theorems
are Tarski’s theorem on the undefinability of the set of true formulas and
Godel’s theorem on the impossibility of effectivelv axiomatizing
arithmetic.

The next three sections are devoted to Tarski’s theorem. Our presenta-
tion is based on an excellent article by Smullyan (Languages in which
self-reference is possible, J. Symb. Logic. vol. 22, no. 1 (1957), 55-67).

In this section we describe the extremely elementary language SELF
(which does not belong to £,), which was designed to illustrate self-refer-
ence and which graphically demonstrates the idea of such a construction.
In §10 we introduce the language SAr, which is just as expressive as L,Ar,
but does not belong to £,. Its syntax is close to that of SELF, which
greatly simplifies proofs. Finally, in §11 we use a method of Smullyan to
prove Tarski’s theorem for SAr.

9.2. The language SELF (Smullyan’s Easy Language For self-reference)

The alphaber of SELF. E, » (symmetric quotes), r (relation of degree
1), — (negation).

The syntax of SELF. The distinguished expressions are: labels, dis-
plays, formulas, and names. The label of any expression P is » P x (“P
in quotes”). The display of any expression P is P * P * (“something
with a label”). Formulas are expressions of the form rE...E+* P+ or
—wrE...E* P, where E appears k > 0 times after r. We use the
abbreviated notation rEX * P x and —rE* » P » for formulas. Finally,
we introduce the binary relation “is the name of” on the set of all
distinguished expressions. This relation is defined recursively:

(a) The label of P is a name of P.

(b) If Pis a name of Q, then EP is a name of the display of Q, i.e., a name
of the expression Q * Q = .

9.3. Remarks

(@) If P is a name of Q, then the display of O has at least two different
names: EP and * Q * Q@+ x. Thus, an expression can have several
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II Truth and deducibility

names. But, conversely, an expression is uniquely determined if we know
its name; names all have the form E* « P x , k > 0. We shall write N(Q)
in place of “one of the names of Q.”

(b) Every formula has the form rN(Q) or —rN(Q). In 9.4 we interpret
such a formula as the statement, “The expression Q has (or does not have)
the property R,” and it is natural that the formula, in saying something
about Q, “calls Q0 by name.”

(c) The expression E = E = is one of two possible names for itself. In
exactly the same way, the formula rE = rE * “says something about itself”
(see 9.5). The language SELF was constructed precisely in order to
produce these effects of self-reference with the fewest possible modes of
expression.

9.4, The standard interpretations. In order to give one of the standard
interpretations of the language SELF, we choose any set (property) R of
expressions of the language and introduce the truth function | |z on the
formulas by stipulating

1, fQ&ER
0, otherwise.

L | =N (Q)]g = PN (Q)l5 = {

We say that a formula is R-true (R-false) if the value of | |z on the
formula equals 1 (resp. 0).

9.5. Undefinability Theorem. For any property R

R-true formulas
R { formulas) #{ R-false formulas.
PrOOF.

(a) The formula Q= —rE * —rE * is R-truessrE + —rEx is R-
falsee> Q & R, since E + —rE * is a name of the display of —rE, ie, a
name of Q. Thus, @ cannot both lie in R and be true, which proves the
first part of the theorem. The connection with the Liar paradox becomes
clear if we note that Q says about itself: “I do not have the property R.”

(b) Analogously, the formula rE * rE * says about itself: “I have the
property R,” and so cannot both lie in R and be R-false. O

10 Smullyan’s language of arithmetic

10.1. In this section we describe the language of arithmetic SAr and its
standard interpretation. The main difference between SAr and L, Ar is that
in SAr we are allowed to form “class terms”—names of certain sets of
natural numbers. More precisely, if P(x) is a formula in SAr with one free
variable x, then the expression x(P(x)) in SAr names the set {x € N|P(x)

is true}, and the expression x(P(x))lg, where the term k is a name for an
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integer k > 1, is a name for the statement “k satisfies P.” The greater
richness of the modes of expression in SAr, as opposed to L,Ar, does not
increase the class of subsets in U, ,N” which are definable by formulas.
But it brings the syntax of SAr so close to that of SELF that we can
imitate the proof of Theorem 9.5.

In addition, the alphabet of SAr is somewhat altered and shortened in
comparison with the alphabet of L,Ar, but this is only done in order to
simplify the description of the syntax. These changes do not make the logic
of SAr any poorer.

10.2. The alphabet of SAr: x (a variable); ' (used to form a countable set of
variables x, x’, x”, .. .); - (multiplication, a degree 2 operation); 1 (raising
to a power, a degree 2 operation, as in Algol); = (equality); | (a
connective, the conjunction of negations); (, ) (parentheses); and 1 (the
constant one).

10.3. The syntax and interpretation of SAr. Because we are allowed to form
the class terms x(P(x)) and the formulas x(P(x))k, the syntax is more
complicated than in languages of £,. We use induction on the integer i > 0
to define two sequences of sets of expressions: Tm,,; (terms of rank < 2i)
and Fl,; ., (formulas of rank < 2/ + 1). (Using double induction—on the
rank of the term or formula, and, within the set Tm,; or Fi,;,,, on the
length of the term or formula—one can prove a unique reading lemma;
this lemma is the basis for defining free and bound occurrences of
variables and truth functions. However, since there is nothing new here
beyond what was done in §1, we leave the details to the reader.)

Along with our description of the syntax, we give a parallel description
of the standard interpretation of SAr in N. In order to interpret expres-
sions with free variables, we must fix a point {ENY=N XN X ... ,
which we shall identify with the corresponding infinite vector with natural
number coordinates. Here the value of the kth variable (x' )¢ (k —1
primes) 1s in the kth place in the vector.

(ag) Tmy is the set of numerical terms i.e., the least set of expressions
which contains the variables x, x', x”, ... and the names of the natural
numbers 1, 11, 111, . .. and is closed with respect to forming the expressions
(1) - (t5) and (1 )1(¢,), where t; € Tmy,. B 3

Instead of x'* "'’ (k — 1 primes) we shall write x,, and instead of 1 ... 1
(k > 1 ones) we shall write k. The term k is interpreted as k (not
depending on £); xf is interpreted as the kth coordinate of ¢; and, if
tf, 1§ € N have already been determined, then {(z)- (t,)f = £§t5 and
[t = (1§)%. The occurrences of the expressions x, = x' ' in any
term in Tm, are obviously independent of one another. All such oc-
currences are considered free.

(by) Fl, is the least set of expressions which contains all expressions of the
form t =1t, (where t,€ Tmy) and is closed with respect to forming the
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expressions (P)\){(P,), where P, € Fl,. In other words, FI, is the logical
closure of the set of atomic formulas {¢, = t,|t, € Tmy}.

Choosing a point ¢ determines a truth value for any formula P € F/; by
induction on the number of times | occurs:

1, ifed=4
n=w®={’ =1
b 0, otherwise;

|wmwm@=p’““®=mﬁka

0, otherwise.

All occurrences of variables in elements of F/, are independent of one
another, and are considered free.

Now let i > 1, and suppose that the sets Tm,,_,, Fl,,_, are already
defined for k < i along with the interpretations and the division into free
and bound occurrences of variables. We define the next sets Tm,; and
Fl,; ., as follows.

(a;) Tm,; consists of the class terms of rank < 2i:

Tmy U {x(P)k>1,P€EFL_ )

(Tmy, need not be included when i = 1). These elements have the following
interpretation:

x£'|¢ runs through the variations of £ along x;

3
(e(P))'= for which |P|(§) =1

All occurrences of the variable x, in x, (P) are considered bound, and the
occurrences of other variables remain the same (free or bound) as in P.
(b)) Fly ., is the logical closure of the set of expressions

Fly U {x(P)=x(Q)k> 1, P,Q € Fly,_, yu {Tklk > |, T € Tmy;},

The truth function is defined as follows: if we set x,(P)= T, and x,(Q) =
T,, then

1, if Tf = T as subsets of N,
0, otherwise;

|MH=M@MP[

dey= |1, ifkeT?,
ITKI(E) { 0, otherwise.
The function | | is extended to the logical closure in the same way as in by).
All occurrences of variables in x, (P) = x,(Q) and in Tk are the same (free
or bound) as in the corresponding class term. Composition using the
connective | does not change the nature of the occurrence. As in subsec-
tion 2.10, one can prove that |P|(§) only depends on the {-values of the
variables which have free occurrences in the formula P € U2 Fly 4.
This finishes the description of the syntax and semantics of SAr.
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In conclusion, we show that the classes of sets in U ,,,,N” which are
definable by formulas in L,Ar and in SAr coincide. This result is not used
in the proof of Tarski’s theorem in the next section. However, the result
itself and the method of proof are instructive, and we shall return to these
ideas in Part III of the book.

Let L;Ar have a countable set of variables. If we denote them by
Xp, X3+« o5 X,, . .. and identify x; with x’ """ (i — 1 primes), we can also
identify the interpretation classes for L;Ar and SAr in the obvious way.
Our claim that the classes of definable sets coincide is then an immediate
consequence of the following stronger fact:

10.4. Proposition. Two translation mappings
{formulas of L,Ar} = {formulas of SAr}
can be explicitly defined with the following properties:

(a) At every point £ the truth values of any formula and its translation
coincide.
(b) The sets of free variables of any formula and its translation coincide.

We note that the mappings we define will not be inverse to each other!

PRrROOF.

(a) The translation from L,Ar to SAr. The translation of a formula P will
be denoted “P”. We first translate atomic formulas, and then use induc-
tion on the length. The alphabet of SAr does not have addition, but it has
both multiplication and raising to a power, so that in place of z = x + y we
can write 2° =2%-2”,

(a)) Atomic formulas. They have the form ¢, = t,. By “carrying out the
operations,” we replace every nonzero term in L,Ar by a “normalized
term,” i.e., a polynomial of the form Zx;t- - - x/», where the monomials
are written in the form (... (x;-x))- ... -x;)*xy)...), then arranged in
lexicographical order, and finally separated by parentheses: (... ((m, +
my) + my)+ ...). It is clear how to correlate such a term ¢ to the term
“21¢” in SAr. For example, “27((x,) - (x;) + x5)” is (21(x,) - (x))) - @1(xy)).
By definition, the translation “210” is 1. Then we define the translation of
the formula ¢, = ¢, to be “21¢,”="21¢,.” It is clear that such a formula and
its translation have the same variables and are true at the same points £.

(ay) If “Q,” “Q,,” and “Q,” have already been defined, then “ —Q” is
defined as “Q”]|“Q”. We similarly construct “Q, » Q,” for the other
connectives (see “Digression: Syntax” in Chapter I).

(a;) If “Q” has already been defined, then “Vx, Q” is defined as

X (“07) = x, (% = x;).

Both the formula and its translation are true at a point £ if and only if Q
(and “Q7”) are true at all variations ¢ of £ along x,. They also have the
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same free variables, since, by induction, we may assume that this is the
case for Q and “Q.”

(a,) By definition, “Jx, Q7 coincides with “ —Vx, —Q.”

(b) The translation from SAr to L |Ar. As before, we let “P” denote the
translation of a formula P, although this time P will be a formula in SAr
and “P” will be a formula in L, Ar.

There is a subtle point here, namely, how to translate x, = x,1x,. It will
be shown in Part II of the book that such a translation exists, and can even
be taken in the form 3Ix, - - - Ix, p(x;, X3, X3, X4 . . ., X,), Where p is an
atomic formula in L, Ar. Here we shall take this fact on faith, and choose a
translation “x; = x,1x;” once and for all.

(b)) Translation of formulas in Fl,. The following rules give an inductive
definition:

“t; = t,” has exactly the same form if ¢, ¢, € {variables} U

{1, 11,...} (of course, in the sense that x" " is replaced by x, and
1---1is replaced by (- - - (I1+ D+ 1+ ---)). “x,=1,-1,” has the
form Jx, Ix,(“x, =t N\"“x; = ,° \x; = x;-x;) and “x, =1,71,” has the
form Jx, Ix,(“x; = t," A\“x; = t,” Ax;, = x;1x;”), where x; and x; are the
first two variables not occurring in ¢, or #,. We similarly translate formulas
with the left and right-hand sides permuted, and also with 1 - - - 1 instead
of x,. We further stipulate that “z, = ¢, has the form 3x,(“x; = ;" A\*x; =
t,”), where x; is the first variable not occurring in ¢, or ¢,, and where we
only assume that neither ¢, nor ¢, is a variable or 1 - - - 1. It is clear that
the truth function and the set of free variables are preserved under these
translations.

(b,) Suppose that the formulas in F/,;_, have already been translated.
Let

“x.(P)) = x.(P,)” be Vx, (“P,"="“P,”), and

“.xk(P)ﬁ” be “P”(ﬁ),
where on the right A= (- - - (1+ 1)+ 1)+ - - - ) is substituted in place of
all free occurrences of x, in “P.” This completes the proof. O

11 Undefinability of truth: Tarski’s theorem

11.1. The language SAr is interpreted in &, and not in the set of its own
formulas the way SELF is. In order to be able to determine the set of
definable formulas, we number formulas by (certain) integers as follows.

We number the symbols of the alphabet (of which there are nine) from
1 to 9 in any order, as long as 1 corresponds to 9. We then set (here
a; € {alphabet of SAr} and v(q,) is the number of g,):

k
number (a, - - - @) =n(a,; - @)= 2 v(a)I0F 7'+ L

i=1
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In other words, we obtain the number of an expression by replacing all of
its symbols by the corresponding decimal digits (1 is replaced by 9), then
reading the resulting number in the decimal system and adding 1. It is
clear that an expression can be reconstructed in a unique way if we know
its number.

_ The_name in SAr of the number of an expression P, ie,
1. - 1(n(P) times), is called the label of P. As in SELF, we shall denote
the label of P by * P * (but now this is abbreviated notation). We call the
expression P x P = the display of P.

11.2. Definition. Let P(x) be a formula in SAr with one free variable x.
(a) An expression Q satisfies P if the number of ( lies in the set
{k|P (k) is true}.
(b) An expression Q is displayed in P if the display of Q satisfies P.

11.3. Lemma. Let P(x) be as in 11.2. Let P.(x) denote the formula
P((x)- ((10)1(x))) (.., the term “x10*” is substituted in place of all free
occurrences of x). Then the set of expressions satisfying P coincides with
the set of expressions displayed in P.

PrOOF. If Q has number k, then the display of Q has number k- 10*
(which is why 1 has number nine!):

n(Q+Q+*)=n(Q 1---1)
n(Q) times

=(n(Q) =@+ 9.9 +1=n(Q)I0@.
n(Q) times

Hence, n(Q) satisfies P__if and only if n(Q * Q * ) satisfies P. O
11.4. Theorem. For any formula P(x) as in 11.2, we have:

the set of true formulas

the set ! tisfying P
e set of formulas satisfying P # { the set of false formulas.

ProOOF. We consider the Tarski-Smullyan formula §: xPg * xPg .
According to the definitions, we have (recall that xP, is a class term and
* xP; = is the name of a number): § is true< xP; satisfies Pp <= xPy is
displayed in P (by Lemma 11.3)e>the display of xP, satisfies P S
satisfies P. Hence, S is either not false and satisfies P, or else is false and
does not satisfy P. Therefore, the set of formulas satisfying P cannot
coincide with the set of false formulas. As in §9, the formula S says, “I
satisfy P.”
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11 Truth and deducibility

Similarly, the formula

x((PYUP)) g * x((PI(P)) *
says, “I do not satisfy P,” and thus either satisfies P or is true, but not
both. The theorem is proved. O

11.5. Of course, Lemma 11.3 is pure magic. The decimal system really has
nothing to do with all this, and 1 did not really have to be number nine,
but this way everything is much prettier.

More generally, let ?Ar be any language of arithmetic with a finite
alphabet containing the alphabet of SAr. Let the rules for forming dis-
tinguished expressions and the standard interpretation of formulas in ?Ar
be an arbitrary extension of the rules in SAr. We only require that the
terms and formulas in SAr keep their earlier meaning, and that, for any
formula P (x) in ?Ar with a free variable x, the expression x( P (x))k must
be a formula in ?Ar and be interpreted by the same recipe as in SAr. (For
example, we might add to SAr the + sign, the connectives, and the
quantifiers, and then allow formulas to be constructed by the rules of £, as
well, thereby imbedding L Ar in ?Ar.)

Then the Undefinability theorem 11.4 holds for 1Ar.

We must choose the numbering as follows: if m is the number of
elements in the alphabet of ?Ar and » is a numbering of the symbols for
which »(1) = m, then

k
n(a, - a)= > v(a)(m+ 1"+ 1

i=1

Then, using the same conventions as before, we have

n(Qe+Q*)=n(@ 1---1)
n(Q) times

n(Q)-1 ,
=(n(@)-Dm+ 1P 4+m T (m+1)Y+1
j=0

= n(Q)(m+ )",

Defining Pg(x) as P((x)- ((m + 1)1(x))), without any further alterations
we obtain Lemma 11.3 and Tarski’s theorem for ?Ar.

11.6. Remarks

(a) If Tarski’s theorem were not true, and there were a formula P(x)
such that {Q|Q is a formula and P(n(Q)) is true} coincided with the set
of all true formulas of arithmetic, then this would mean that all number
theoretic questions would reduce to a series of problems all of the same
type. Instead of asking, “Is assertion number n true?” we could ask, “Is
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P(n) true?” Although such an all-encompassing problem could still be
rather complicated (in a certain sense even “infinitely complicated,” see
Part III), Tarski’s theorem says that arithmetic has much more diversity
than could be contained in any such single problem.

(b) We still have reason to suspect that perhaps everything worked out
this way because we could “cleverly” number the formulas. This is not the
case; the results in Part III will imply that Tarski’s theorem remains true
for any numbering in which a formula and its number can be effectively
reconstructed from one another.

(¢) It is natural to ask whether the set of numbers of provable, or
deducible, formulas is definable (for some set of axioms and rules of
deduction, for example in SAr). The answer is yes this set is definable. We
shall give some intuitive considerations in this direction, which anticipate
the systematic theory in Part III.

However we define the notion of provability, it is natural to expect it to
have the following property: there exists an algorithm (for example, a
computer program) which for any text of the given language determines
whether this text is a proof and, if so, of what formula.

We now write a program which constructs the texts in the language in
lexicographical order, verifies whether each one is a proof, and, when it is,
computes the number of the formula it proves. Roughly speaking, the
graph of the function (number of a proof)l> (number of the formula
proved) is definable in L Ar because machine logic and arithmetic are
imbedded in L;Ar. Hence, the set of numbers of provable formulas is
definable in L,Ar, in SAr, or in any language ?Ar as in 11.5.

Combining this discussion with Tarski’s theorem, we obtain the follow-
ing form of Godel’s theorem:

11.7. Godel’s Incompleteness Theorem for Arithmetic. /n any language of
arithmetic of type 1Ar, and for any definition of deducibility in which the
set of (numbers of) deducible formulas is definable,

{true formulas }  { deducible formulas).

In Part III we discuss more general formulations of this theorem and
other versions of the proof, and we give a detailed verification of the
principle in 11.6(c) for deductions in L,Ar.

Digression: self-reference

In natural languages it is only recently that linguists have taken note of the
so-called “performative” statements. The characteristic feature of such a
statement is self-reference, which can be defined as the ability to “refer to a
reality that it creates itself, because it is stated under circumstances which
make it into an act” (E. Benveniste, La Philosophie analytique et le
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II Truth and deducibility

langage, Les Et. Philos., No. 1 (1963) 9). Examples of performative state-
ments include: “I solemnly swear,” the saying of which constitutes the act
of swearing; “lI proclaim a general mobilization,” and “I appoint you
director,” when these two statements come from an authority that has the
power to carry out the respective acts. If we look carefully at the semantics
of performative statements, we find an imperative nuance, even though it
is expressed by the declarative mood of the verb.

In this connection, it is interesting to compare the role of self-reference
in formal and algorithmic languages (see also subsection 1.2 of Chapter I).
In formal languages (and, in general, in descriptive languages), self-refer-
ence leads to logical circles, to paradoxes, or, if we try to avoid logical
circles, to demonstrations of certain inadequacies of the language. On the
other hand, in algorithmic languages (and, in general, in control languages
and systems), self-reference is the most important device for turning a
finite program into a process that is potentially arbitrarily long (“loops™);
it takes part in the control instructions (feedback), and is among the
fundamental possibilities of the system.

A similar dichotomy can also be found in psychological behavior—
compare with the distinction between introspection and self-improvement.

Finally, self-reference can play a role in the genetic causality of aging
processes (of biological and social systems). A self-regenerating cycle,
when repeated many times, leads to erosion at the place of generation.

12 Quantum logic

12.1. The last section of this chapter is devoted to certain physical facts
and to the mathematical constructions which have been developed to
describe them. In particular, we discuss von Neumann’s theorem that it is
impossible to introduce hidden variables into the quantum mechanical
picture of the world. This material, while not completely traditional for a
course in logic, is relevant here for two reasons.

In the first place, von Neumann’s theorem is a vivid example of a
metaphysical assertion. It is concerned with properties of the language,
rather than with the subatomic world described by the language, and thus
is analogous to, for example, Tarski’s theorem in metamathematics. This is
why it occupies an isolated position in physics, and why we are interested
in it here.

In the second place, analyzing quantum mechanical phenomena reveals
a profound divergence between the internal logical structures of the
macroworld and the microworld. Although explanations of these dif-
ferences by means of natural language and natural logic are agonizingly
difficult and, in the last analysis, always leave one feeling unsatisfied, these
attempts to explain continue. The development of the foundations of
physics in the twentieth century has taught us a serious lesson. Creating
and understanding these foundations turned out to have very little to do
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with the epistemological abstractions which were of such importance to the
twentieth century critics of the foundations of mathematics: finiteness,
consistency, constructibility, and, in general, the Cartesian notion of intui-
tive clarity. Instead, completely unforeseen principles moved into the
spotlight: complementarity, and a nonclassical, probabilistic truth func-
tion. The electron is infinite, capricious, and free, and does not at all share
our love for algorithms.

The following exposition is based on the article by S. Kochen and E. P.
Specker in J. Math. Mech., vol. 17, no. 1 (1967), 59--87. Subsections
12.9-12.16 contain pure algebra and formally do not depend on the
preceding semi-physical considerations.

12.2. The atom of orthohelium. We now describe certain characteristics of
the behavior of the physical system “an atom of orthohelium in the state
n=21=0,5s=1" Such a helium atom is in an excited state: its two
electrons are on the second energy level, and their spin is pointed in the
same direction. Nevertheless, the state is meta-stable, because, in order to
fall to the first energy level, the electrons must turn their spins in opposite
directions (parahelium); this creates a certain stability.

Spin is a physical quantity which is expressed in the same units as the
“angular momentum.” The total spin of our system (in atomic units:
h = 27) is represented by a unit vector in physical three-dimensional space.
As a first approximation we may think of it as changing with time but
having instantaneous values which can be measured. (The inadequacy of
this picture will soon be demonstrated.)

An experiment for the purpose of measuring the instantaneous value of
the spin of our system could consist of turning on a magnetic field having
a specified geometry and registering the shift in energy levels (spectral
lines) of the atom. Each outcome of such an experiment can be precisely
interpreted as a measurement of the projection of the spin on some axis,
which is uniquely determined by the geometry of the field. We shall
identify these directions with points of the unit sphere S2.

Quantum mechanics makes the following positive assertions concerning
measurements of the spin of orthohelium. The following quantities are
measurable:

(a) the projection s(a, #) of the spin in the direction a € S? at the
moment of time ¢;

(b) the lengths |s|(a;, 2), i=1, 2, 3, of three projections of the spin in
three pairwise orthogonal directions {a;, ay, a3} C S? (a “frame”) at the
time ¢. The predictions concerning the results of these measurements are as
follows:

(¢) s(a, t) is a random variable which can only take the values — 1, 0, 1.
(The probabilities of these values can be predicted from the results of the
previous measurements, but this is not essential for us here.)

(d) 23_\|s|(e;, 1) =2 for any frame {a,, a,, a;} and any 1.
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12.3. Attempt at a classical interpretation. This could consist in adopting the
following hypotheses A and B:

A. There is a certain space £ of “hidden variables” or “internal states”
of the system and a function s(a, #; w), w € £, such that, if the system is in
the state w at time ¢, then s(a, #; w) is the “true value of the projection of
the spin on the «-axis” at this moment.

B. The probabilistic aspect of the predictions in 12.2(c) results from
our not knowing the exact values of w = w(r), so that for some measure
du(w) we have

mathematical expectation of s(a, 1) = fs(a, t; w) dp(w),
Q

and similarly for |s|.

Generalizing, we might suppose that § does not only depend on the
system itself but also on the arrangement for measuring the spin; p may
depend on the time, and so on. However, all of these possibilities actually
contradict the predictions in 12.2(c) for the following startling reason.

12.4. Proposition (Kochen, Specker). There does not exist a mapping S*—
{0, 1} such that for every frame {w,, a,, a3} this mapping takes the value
zero on precisely one of the directions o;. Moreover, it is possible to
construct a finite system T C S? of 117 points with the following property.
For any mapping k : I' — {0, 1} either there is a frame {a,, ay, a3} CT on
which k does take the value 0 exactly once, or else there is a pair of
perpendicular directions {wa,, a,} CT on which k equals 0.

Here we note that adopting both the assertions in 12.2 and the hypothe-
ses in 12.3 would allow us to construct such a mapping of the sphere. In
fact, it would be sufficient to consider

S2={0,1}: aps |s|(a, £ w)

for fixed ¢ and w. By 12(c), |s| only takes the values 0 and 1, and, by 12(d),
it takes the value 1 twice and O once on any frame {a;, ay, a3}.

We prove Proposition 12.4 in subsections 12.12-12.15, and now proceed
to a more systematic study of “quantum logic.” We shall adhere to our
customary and useful dualism between “language and interpretation,”
although these categories are much less formalized and are harder to
distinguish from each other in physics.

12.5. The language of nonrelativistic quantum mechanics. We have a some-
what unusual situation in that quantum mechanics does not really have its
own language. More precisely, to describe a physical system S such as a
“free electron,” “atom of helium in a magnetic field,” etc., quantum
mechanics uses a certain fragment of the language of functional analysis,
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“oriented on describing S.” Assuming that the reader is familiar with
functional analysis, we shall limit ourselves to a glossary of the most
frequently used terms. We also give some synonyms used by physicists to
indicate the “physical sense,” i.e., the interpretation, which will be consid-
ered separately in our text.

(a) A separable complex Hilbert space ¥ g. Here we are also interested in
its one-dimensional subspaces and its vectors of length one. A synonym for
the former is the (pure) states, and for the latter is the (normalized)
y-functions, or, more precisely, the instantaneous values of the y-func-
tions.

(b) Unitary representations of R in Hs: t+—> U,= e "' For synonyms
we have r—> U, 1s the dynamic group; ¢ is the time; and the infinitesimal
generator Hg (which is a self-adjoint operator) is the dynamic operator, or
Hamiltonian, of S.

(c) Schridinger equation: o,/ 3t = — iHgy,. It is satisfied by the y-func-
tions ¢, = e~ s, which evolve with time.

(d) Self-adjoint operators in Hg. Synonym: the observables of the
system. The operator Hy is an energy observable. The discrete spectrum of
Hyg gives us the energy levels of S. We shall be especially interested in the
orthogonal projection observables. Here the pure states C, C J(s are in
one-to-one correspondence with the projections P, onto the corresponding
subspace.

Another important class of projections is constructed using the spectral
decomposition theorem. Let 4 = [® X dP,(A). Then the projection P, (U)
is defined for any Borel subset U C R. In the simplest cases its image is
spanned by the vectors in Jg which are eigenvectors for 4 with eigenval-
ues in U.

Projection observables are also called “questions” (Mackey) or “Eigen-
schaften” (von Neumann).

() Commuting operators. Synonym: compatible (or simultaneously
measurable) observables. For unbounded operators 4 and B, whose formal
commutator may have an empty domain of definition, we define com-
mutativity to mean that P,(U;) and P,(U,) commute for all Borel sets
U, U,CR.

(f) Unitary representations in g of various groups, such as SO (3),
SU2), S,. etc. Synonym: symmetries of the system S (if the representa-
tions commute with the Hamiltonian H), or approximate symmetries (if
Hg = H,+ Hj, where the representations commute with H, and H, is a
“small perturbation™).

12.7. ExaMPLE. Let S be “an electron in the electric field of a proton”
(where we disregard the motion of the proton, the spin, and the relativistic
effects). Here:

9Cs = LY E?) consists of the square integrable complex functions in the
Euclidean “physical coordinate space of the electron.”
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Hy is the self-adjoint extension of the operator
2
h opa_ 1€

 dmm h r’

where £ is Planck’s constant, m is the mass of the electron, e is its charge,
and r is its distance from the origin (where the proton is).

The energy levels (the discrete spectrum of Hg) are: E, =
—Qm'me*/ Y/ (1/n?, n=1,2,3,... . The eigenfunctions ¢ corre-
sponding to the points of this spectrum are the states of an electron in a
hydrogen atom. The energy level n =1 corresponds to the unexcited state,
and the other values of n correspond to excited states. The positive
semiaxis is the continuous spectrum of Hy; in states with positive electron
energy, “the hydrogen atom is ionized.”

The most important observables of the electron are: the operators of
multiplication by the three coordinate functions x; (the coordinate observ-
ables), and the self-adjoint extension of the operators p; = (h/2mi)(3 / 0x;)
(the momentum projection observables). The operators x; and p; do not
commute, so that the x;-coordinate and the projection of the momentum
on the x;-axis are not simultaneously measurable.

The system .S is spherically symmetric. The natural representation of
SO(3) in L*(E*) commutes with Hy. The restriction of this representation
to the subspace of J(g corresponding to the discrete spectrum of Hg in a
natural way splits into a direct sum of representations corresponding to a
given energy level E,. This E, -subspace, in turn, splits into a direct sum of
representations of SO(3) on spherical polynomials of degree ; =
0,1,2,...,n—1 with multiplicity one. If the y-function of the electron
belongs to the level E, and the subspace corresponding to the representa-
tion of SO(3) on spherical polynomials of degree j, we say that n and j are
the principal and orbital quantum numbers, respectively, of the electron’s
state in the hydrogen atom.

The above text is typical of what might be found in a physics textbook.
The “language” is mixed with the “metalanguage” which gives the stan-
dard interpretation of the language. We now describe them separately and
more systematically.

12.8. The interpretation. A very important aspect of the interpretation
which we shall not discuss here is the list of informal recipes for choosing
(s, Hg, and the observables corresponding to a given system S. These
“units of expression” are often chosen in two stages: a classical description
1s chosen, and then the “rules of quantization™ are applied to it. This
procedure might be “approximate” in the sense that certain circumstances
are not taken into account (such as the spin in 12.7).

Suppose that Hs and Hg have already been chosen. The most char-
acteristic peculiarity of the interpretation of quantum language is that it is
“two-layered.” Part of the mathematical statements are interpreted as
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assertions about a “freely evolving system,” and part are interpreted as
assertions about the results of observations on this system.

(a) Freely evolving system. It is generally believed that the system’s
y-function ¥, € K¢ gives (within the framework of a given approximation)
maximally complete information about the state of the system at time 7. As
long as no one looks in on the system, y, evolves as e ~ sy, starting from
the initial state ;. (How do we know i,,? See subsection 12.8(c) below.)

(b) Observation. Suppose we want to measure the instantaneous value of
some physical quantity for our system § at the moment ¢. This quantity
corresponds to an observable A. (How do we know the form of 4?7 See the
beginning of 12.8.) For simplicity we suppose that A4 has a discrete
spectrum with all multiplicities one. The predictions of what will be
observed are as follows.

If Ay, = ay,, then a will be the value of the observable 4 at the time ¢
for the system S in the state with i-function ¥J,.

In the general case, let {7, i=1,2,..., be an orthonormal basis for
s consisting of eigenvectors for 4. We expand i, with respect to this
basis: ¢, = 22 ,a X)W Let 4y = a,4/. Then the result of measuring 4
will be a random variable taking the value g, with probability |a (£ (It
is easy to see that the mathematical expectation of this random variable is
(AY,, ). This formula holds for all A. More generally, the probability of 4
falling in a Borel subset U CR is equal to (P, (U)y,, ¥,), where P (U)
was defined in 12.5(d).)

(c) System evolving after observation. With the same assumptions as
before, the y-function of the system after the observation is determined by
the result of the observation. If we registered the value g; for 4 at the time
ty, then, starting from ¢{ at 7, S evolves until the next observation
completely independently of how it evolved before.

Thus, the result of the observation lets us know the form of the
y-function after the observation, but it tells us nothing about the y-func-
tion before the observation. Hence, physicists often say that registering the
value Y prepares the system in the state ¢’ at the time #,, Another
synonym: at the moment of observation the y-function of the system
reduces 1o Y.

If we were able simultaneously to register the values of two observables,
then we would prepare the system with a ¢-function which is an eigenfunc-
tion for both observables. Since noncommuting observables always have
different eigenvectors, in general the values of such variables are not
simultaneously measurable.

12.9. Quantum logic. We now investigate the algebraic framework of
quantum logic. We start with the following analogous situation.

Suppose we are given a formal language in £, having one variable and
an interpretation of this language in a set M where this variable takes
values. Then we can distinguish the Boolean algebra B of definable sets in
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M (see §3). The conjunction of formulas corresponds to the Boolean
intersection of the sets that define them, and so on. By definition, N € B if
we can ask in the language, “Does the value of the variable belong to N?”.
The algebra B is the most important invariant of the pair {language,
interpretation}.

We now consider the language of quantum mechanics, oriented on
describing a system S. We shall exclude the time aspect by fixing a
moment of time to which all statements about the state of the system refer.
Then the “state of the system” will be the only variable in the language. It
takes values in the set of lines in the Hilbert space J(g. The only questions
to which we can give a yes or no answer are those of the form: “Does the
state of the system belong to a given closed subspace of H ?”. It is the
closed subspaces of Hs which form the analogy of the Boolean algebra B.
The conjunction of questions corresponds to the intersection of subspaces
and the disjunction corresponds to their sum, but both operations can only
be performed when the corresponding projection observables commute.
Only in this case are the Boolean identities fulfilled.

We axiomatize the situation as follows:

12.10. Definition. A partial Boolean algebra is a set B together with the
following structures on B:

(a) A reflexive and symmetric binary relation =* called “compatible
measurability.” Instead of (a, b) € = we write a = b.

(b) Partial binary operations \/ and A and a unary operation '.

(¢) Two elements 0 and 1 € B.

These structures must satisfy the following axioms:

(d) The relation * 1s closed with respect to the operations A, \/, and ":
if a,, a,, and a; are pairwise compatibly measurable, then (a, A\
a,) * ay, (a,\/ a,) * a,, and a} * a;; in addition, @ * 0 and a * 1 for
all a € B.

(e) If a,, a,, and a, are pairwise compatibly measurable, then together
with 0 and 1 they generate a Boolean algebra relative to the
operations \/, A, and ’.

12.11. ExaMmpLE. Let J be a Hilbert space (possibly real and finite
dimensional). The partial Boolean algebra B(J() is defined as the set of
closed subspaces of JC with the following structures:

(a) a * b if and only if there exist three pairwise orthogonal closed sub-
spaces ¢, d, e € J such that a = c® d and b = ¢ D d. The motivation
for this definition is that this condition is equivalent to commutativity
of the projections onto a and b.

{(b) a A b = the intersection of a and b.

(c) a\/ b =the sum of a and b.
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(d) a’ = the orthogonal complement of a.
(¢) 0={0} and 1 = I(.

One form for the theorem that there are no hidden variables is as
follows.

12.12. Theorem. If dim I > 3, then B () cannot be imbedded in a Boolean
algebra in such a way that the operations are preserved.

This result can be strengthened formally in various ways: see §5 of
Kochen and Specker, and also N. Fierler, M. Schlessinger, Duke Math. J.,
vol. 32, No. 2 (1965), 251-262. We shall not dwell on this here.

PrOOF. We choose a real Euclidean space E* c % and show that even
B(E3) cannot be imbedded in a Boolean algebra. Otherwise there would
exist a homomorphism of the partial Boolean algebra B(E?) onto the
two-element Boolean algebra {0, 1}, since, for any pair of elements in any
Boolean algebra, there exists a homomorphism onto {0, 1} which separates
them.

Let 2 be such a homomorphism. If a,, a,, a, € E? are pairwise orthogo-
nal lines, then h(a; A\ a;) = h(a;) A\ h(a;) = 0 for i # ;. Hence, in any pair of
orthogonal lines, at least one of the pair must go to 0 under k. Further-
more, h(a,\/ a,\/ a;) = h(a,)\/ h(ay)\/ h(a;) = h(E®) = 1. Hence, in any
frame exactly one of the lines goes to 1.

If we map the points of the unit sphere S? onto the lines joining them to
the origin and then apply A, we obtain a mapping of S? with the property
in Proposition 12.4 (where we only have to switch the roles of 0 and 1).
We prove that no such map exists even on a certain subset consisting of
117 points on S2. The latter stronger result is combinatorially elegant and
physically meaningful: a physicist might raise objections to asking to be
able to measure the projection of the spin of orthohelium simultaneously in
all directions, independently of the question of whether or not hidden
variables are possible. In fact, we only need finitely many directions to
show the futility of such an attempted measurement.

Consider a finite graph. By a realization of the graph on S? we mean
any imbedding of the set of its vertices in S§? for which the distance
between the endpoints of any edge equals 90°.

12.13. Lemma. Let a and B be points on S* such that the sine of the angle
between them €[0, 11. Then there exists a realization of the following
graph U} in which ay goes to a and aq goes to B.

ag

\/
/A

a;
as
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Proo¥F. Let X, y, z be an ort on S2 We take a5 to x and a, to z. For certain
£, n €R (1o be chosen later), we set

y+é& x+ny
S —— a> —.
\/l+£2 Vl+n2

Then the images of a; and a, are determined up to a sign by the property
of being orthogonal to (a,, a5) and (a,, a¢), and we choose

a, -

§7-: n%—y
arb> —, g — .
Vi +¢? Vi + 7?2
We similarly set
nx ¢y +z x+ny+énz

aoH a—ﬂ—-)

Viteiveg Vit n2+éig

and, finally, a3 and a4 are determined up to a sign. The sine of the angle
between a, and a4 is easy to compute: it equals

tn/Y(1+ 82+ %7)(1+ 0> + £207) .

As & and 7 vary, this expression takes on all values in [0, %],

a

12.14. Lemma. Consider the graph T, which is obtained from Figure 1 by
identifying the vertices a = p,, b= q,, and ¢ = ry (the apparent intersec-
tions of the edges inside the circle are not vertices). This graph is realized
on S2.

ProOOF. For 0 € k£ < 4 set

ok -, . wk -
10 X +sn 10 'V,
wk

10

P> cos

7k

gi > cos 10 -y +s8In -z,

.k — 7k -
rp > sin 10 x +cos 10 z.

Since sin(/10) < 3, we can first extend this map to a realization of the
subgraph between the points p,, p, and r, by using the preceding lemma.
Rotating the resulting realization around r, so as to take (pg, p;) to
(P> P2)s (P, P3), - .., We obtain a realization of the “lower arc” and r,. By

similarly rotating around the images of p, and g, we obtain a realization
of the other two arcs as well. O
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I
P2 A‘ )

Figure 1.

12.15. END OF THE PROOF OF PROPOSITION 12.4 AND THEOREM 12.12.
Consider an arbitrary map & of the vertices of the graph I', to {0, 1}.
Suppose that exactly one vertex in each triangle goes to 1 and at least one
of the two vertices on each edge goes to 0. In the triangle { p,, ry, 9o}
suppose that p, goes to 1. We consider the copy of the graph I'; between
the vertices p,, rq, and p;, which we identify with a,, a5, and a,, respec-
tively.

We must have k(p,) = k(as) = 1. In fact, if we had k(a,) =0, then we
would also have k(a;) = 1, and then k(a,) = k(a,) = k(a;) = k(ay) =0, and
k(as) = k(ag) =1, which is a contradiction.

We now return to I',. Since k(py) = k(p,) =1 we similarly find that
k(p,) =1, and then k(p;)= k(p,) = k(g,) = 1. But k(g,) =1 contradicts
the fact that k(py) = 1. This completes the proof. O

12.16. Quantum tautologies. This theme has been largely neglected. We give
a counterexample due to Kochen and Specker and formulate some recent
results of Gelfand and Ponomarev.
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II Truth and deducibility

(a) Counterexample. This consists of the following: it is possible to give a
logical polynomial in 117 variables which represents a classical tautology
but which is defined and takes the value 0 in the partial Boolean algebra
B(E?®) for some values of the variables. This is simply another aspect of
the impossibility of imbedding B (E?) in a Boolean algebra.

In fact, let P(p, ¢, r) be a logical polynomial in three variables which
takes the truth value 1 when exactly one of |p|, |¢|, and |r| is 1. We may
assume that only the connectives \/, A and — occur in P. Similarly, let
Q(p,q9)= p\/ —q. Then Q takes the value 1 when at least one of
|pl, Iq| 1s 0. We index the vertices of I, from 1 to 117 and set

R PPN = ( P i s r s)'
(p, Pun) =" {ié’\} (p p; Pk){&Q(P Ps)

The first /\ is taken over all triples {i,j, k} corresponding to triangles in
I',, and the second /\ is taken over all pairs {r, s} corresponding to edges.
The argument in 12.15 shows that for any mapping {p, ..., P71}~
{0, 1} at least one of the Boolean factors takes the value 0. Hence R is a
classical tautology.

But if we substitute for p; the line from the origin to the image of the ith
vertex in a fixed realization of T',, then we obtain for the value of R the
element 0 € B(E?). In fact, if p, and p, are orthogonal, then p;\/p; = E 3,
Similarly, if p,, p,, and p, are orthogonal, then P(p;, p,p)=1€ B(E?).
The latter assertion is verified as follows: if we set

a+tb=(aNb)V(a Ab),
then we may take

P(p,gry=p+q+r+pAgANr
(for any arrangement of parentheses on the right), so that

P(ppp)=p®p®p=E"

(b) Results of Gelfand and Ponomarev. We start with the following
observation. The operations A, \/ and ’ are actually defined everywhere
on the set B () of closed subspaces of the Hilbert space J(, although they
do not satisfy the Boolean axioms, and, if we ignore the compatible
measurability relation =+, it seems as if they no longer have physical
meaning.

Nevertheless, it is also natural to investigate these structures, which
were first introduced into the logic of quantum mechanics by G. Birkhoff
and J. von Neumann (Annals of Math. vol. 37 (1936), 823-843). Here is
how these structures are axiomatized:

Definition. A modular structure L is a set with binary operations A and \/
which satisfy the following conditions:

(a) N\ and \/ are associative and commutative;
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bana=ava=aforallaE L;
() If anb=0>b, then (a\/c)Ab=b\/(cA\b) (the “modular iden-
tity™).

Birkhoff and von Neumann also require an “orthogonal complement”
operation to exist with the usual axioms, but we shall omit this here.

We note that the modular identity is only fulfilled universally in B (3()
if 9C is finite dimensional. It is also fulfilled for triples a, b, ¢ whose
elements have finite dimension or codimension in X,

I. M. Gelfand and V. A. Ponomarev (Uspehi mat. nauk, vol. XXIX
(1974), No. 6 (180), 3-58) have studied the linear representations of free
modular structures with r generators in B (J() for finite dimensional spaces
over arbitrary fields. Such a representation is called indecomposable if it
does not split into a direct sum of representations in B (H,)® B(I(,).

Definition. A modular question is an element of a free modular structure
which takes the value 0 or 1 for any indecomposable finite dimensional
representation.

One of the main results of Gelfand and Ponomarev is the construction
of a very nontrivial countable series of modular questions. We shall only
formulate these results here.

Let L” be a free modular structure with »n generators {a,, ..., a,}. We
set I={1,...,n}. Asequencea={_i,...,i)oflength/ > 1 of elements
of I is called admissible if it does not have any identical neighboring
entries. A sequence 8= (k,, ..., k,_,) of length / — 1 of elements of I is
called subordinate to a if it is admissible and if ¥, < /-1, k; & {i;, i;,}.
For admissible a we inductively define

=G ..., =4 /\(Vﬁaﬁ)a

where B runs through all sequences subordinate to «. Further, for ¢ €
{1,..., n} we define

A=V ,a,
where a runs through all admissible sequences of length / with last entry .
Finally, we set

H (1) = \/,; ., A1)

The substructure in L" generated by the elements H\(I), ..., H,(!)
consists entirely of modular questions for all [ > 1.

This is a difficult result. It is relatively easy to prove that this substruc-
ture is a Boolean algebra consisting of 2" elements. If we substitute the
elements in this Boolean algebra for the variables in the usual Boolean
tautologies, we obtain “quantum tautologies,” but to see this we must
consider structures with complements.
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It is not yet clear whether this algebra leads to nontrivial physics.
Perhaps one should combine it with the techniques in the representation
theory of symmetry groups.

12.17. The orthohelium atom revisited. In conclusion, we return to the
orthohelium atom § and show how the material in 12.2 looks from a more
general vantage point.

(@) Choice of Hs. As explained in 12.7, an electron without spin
corresponds to the space L%(E?). If we want to take the spin into account,
we must introduce a “two-component” y-function, i.e., use the space
L*(E*)®C2% The system of two electrons in helium is described by
y-functions in the tensor square of this space. However, by Pauli’s princi-
ple, the y-function of this system must behave antisymmetrically when the
electrons corresponding to the two parts of the tensor square are permuted.
Hence, we finally obtain ¥, = AX(LY E*) ® C?).

(b) Choice of Hg. This 1s a difficult problem, because each electron
moves in the variable electromagnetic field created by the nucleus and the
other electron. The principal term in the Hamiltonian corresponds to the
spherically symmetric constant potential obtained by averaging over time.
The remainder is treated as a small perturbation. We give the approximate
form of the y-function of orthohelium, more precisely, of the element in
A’(L*(E?)) corresponding to the projection of (g onto the subspace of the
unit projection of the spin:

xpze'k("ﬂz)[(C, + Cy(r; + 1)) + Cyriy + Csriy(ry + ry)sinh Co(r) — 1)
+ (ry = r2)(C3 + Corpy)cosh Co (r) — "2))]

where r,=(Z]_x)'% i=1,2; r, =) (x,; — x,))"/% and the con-
stants k, C|, . . ., C4 are found experimentally. (E. U. Condon and G. H.
Shortley, The Theory of Atomic Spectra, Cambridge University Press,
London, 1935.)

(c) Approximate symmetries. The group SU(2) acts on the space Jg: on
L*(E?) through the quotient group SO(3), and on C? by the standard
representation. This is the group of approximate symmetries of the system.
The y-function of orthohelium is “not too far” from the subspace corre-
sponding to a suitable representation of SU(2), so we may speak of the
principal (»), orbital (), and other quantum numbers of the state, as in the
case of a hydrogen atom.

(d) Spin. The total angular momentum operator ¢ commutes with the
Hamiltonian Hy. In the state n =2 and j = 1, its eigenvalue is 2 (in atomic
units). The eigensubspace N C H; corresponding to this eigenvalue is
three-dimensional. Further, the squared spin projection operators ¢,

7, $2 commute in pairs (this is a peculiarity of spin 1). Letting P denote
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the projection of Jg onto N, we are then able to imbed the partial
Boolean algebra B(E?) in B(J() by letting a line a« C E> correspond to
the image in J(g of the operator P¢2. This takes the place of the somewhat
naive picture in 12.2.

Appendix: The von Neumann universe

1. The premises of “naive” Cantorian set theory reduce to the following: a
set may consist of any distinguishable elements (of the physical or intellec-
tual world); a set is uniquely determined by its elements, and any property
determines a set, namely, the set of objects which have this property.

However, the formal language of set theory L,Set was introduced in
order to describe a more restricted class of sets (a universe). Part of these
restrictions come from considerations of convenience, and part come from
the desire to avoid the so-called paradoxes. This gives an “upper bound”
for our classes. We give a “lower bound” by asking that the class of sets be
closed with respect to all mathematical constructions needed for certain
(ideally, “all”) parts of intuitive mathematics.

2. Following Zermelo, von Neumann, and others, we consider two basic
restrictions on sets.

(a) All elements of sets must themselves be sets. In particular, since any
chain X,€ X, €X,€--- in the von Neumann universe ¥ must
terminate (see below), it follows that the last element in such a chain must
be the empty set. Thus, all the sets in V are constructed “from nothing.”

(b) The assumption that every collection of sets, even sets as in (a), is
again a set in V, immediately leads to contradictions (Burali-Forti,
Russell, and others). In particular, the collection of all sets in the universe
is not itself an element of V. Hence, we must give a sufficiently complete
description of which operations do not take us outside of V. The two basic
formal languages of set theory—that of Gddel-Bernays and that of
Zermelo-Fraenkel—differ in the choice of objects over which the variable
symbols are to range under the standard interpretation of the language in
V. In the Zermelo-Fraenkel language (our L,Set), they range over the sets
in V. In the Gédel-Bernays language, they name classes (collections of sets
in V) which “are not necessarily sets,” and the property of “being a set” is
specially defined as the property of “being an element of another class.”
The Godel-Bernays language is studied in Chapter 4 of Mendelson’s book.

In this section we describe the von Neumann universe using the
customary terminology of intuitive mathematics. The relationship of this
construction to formalism will be discussed in subsection 18.

3. The first levels. The von Neumann universe is constructed inductively,
starting from the empty set, by successively applying the “set of all
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subsets” or “power set” operation % . In this way:
Vo = g’
Vi=P@)= {0}
Vv,=%)={e (2}}

—_

Vn+l = ("P(Vn);

It is easy to see that V, C V, ., (later this will be proved in complete
generality). The level ¥, consists of

2
22 (n — 1 twos)

finite sets, whose elements are also finite sets, and so on.
We cannot go beyond finite sets unless we regard all the ¥, as “already
constructed” and apply % to the union of the V. We set

o0
Vwo = U Vn’
n=0

Vi1 = 9(V.,)

w

The indices which we now use for the levels are the names of the first
infinite ordinals. This remarkable idea of transfinite iteration of such
constructions is due to Cantor, who first applied it to study trigonometric
series, and then investigated it systematically, finding in it the key to the
infinite.

In the next two subsections our sets will temporarily be Cantorian sets.
We shall return to V after developing some properties of ordinals.

4. Ordinals. Let X be any set on which we are given a binary relation <.
We consider the following properties of this relation:

@ Y4 Y, foral YEX;if Y, <Y,and Y, < Y, then Y, < Y;.
() Forany Y,Z € X, either Y < Z or Z< Y, or else Y = Z.
(c) Every nonempty subset of X has a least element (in the sense of <).

The relation < is a partial ordering of X if it satisfies (a), a linear
ordering of X if it satisfies (a) and (b), and a well-ordering of X if it satisfies
all three conditions (a), (b), and (c). R

Let (X, <) be a well-ordering. The initial segment Y determined by an
element Y € X is the well-ordered set (Z, <), where Z={Y'|Y' < Y}. As
is customary when speaking about a well-ordered set, we shall omit the
explicit indication of the ordering if it is clear from the context.
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5. Lemma. Let X and Y be two well-ordered sets. Then exactly one of the
Jollowing alternatives holds:

(a) X and Y are isomorphic.
(b) X is isomorphic to an initial segment in Y.
(c) Y is isomorphic to an initial segment in X.

In each case the isomorphism is uniquely determined.

ProoF. We divide the argument into several steps.

(a) Let X be well-ordered, and let f : X — X be a monotonic map, i.e.,
Z, < Z,=>f(Z) < f(Zy). Then for all Z € X we have f(Z) > Z. In fact,
among the elements not having this property there would have to be a least
element Z,. But f(Z,) < Z, and the monotonicity of f imply that f{ f(Z,))
< f(Z,), so that we would have an even smaller element in the set of
elements not havmg the desired property.

(b) Therefore X is not isomorphic to any of its initial segments X if
I X=>X,, then (X)) < X,.

() Now let X and Y be well-ordered. We set f= {(X,, Y)|X, € X,
Y, € Y, and there exists an isomorphism of X, with Yl} First of all, f is
the graph of a one-to-one mapping of pr, f onto pr, f. In fact, if X; # X,,
say X; < X,, then by (b) X, is not isomorphic to X,; by symmetry, the
same holds for f 1. It is also clear from this that f and f~' are monotonic.
Further, if X, €pr, f and X, < X, then X, € pr, f, and similarly for pr, f.
Finally, we show that either pr; f= X, or else pr, f= Y. Otherwise, there
would exist a minimal element X, in X \pr, f and a minimal element Y, in
Y \pr2 J. But, by the preceding paragraph, f induces an isomorphism of X |

with Y,. By the definition of f, we then have (X,, Y,) € f, a contradiction.

(d) All of this means that either f is an isomorphism (more precisely, the
graph of an isomorphism) of the set X onto Y or an initial segment in Y, or
else f~! is an isomorphism of Y onto X or an initial segment of X. It is
clear from the definition of f that the graph of any other isomorphism must
be contained in the graph of f, so we have uniqueness. The lemma is
proved. O

As a preliminary definition, we can now consider the class of all
well-ordered sets isomorphic to some fixed totally ordered set X, and call
that class an ordinal. Two ordinals a and B satisfy the relation a = 8,
a < B, or « > f8 depending on which of the alternatives in Lemma 5 holds
for representatives X € a and Y € B (this obviously does not depend on
the choice of representatives).

The next step is, naturally, to consider “all” ordinals as a class and show
that < induces a well-ordering on this class, thereby giving a universal
well-ordering. However, an unnecessary difficulty arises here: the class of
well-ordered sets isomorphic to a fixed X is extremely large, and so the
class of ordinals must be a “class of classes,” which needlessly complicates
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matters. An elegant technical discovery, due to von Neumann, removes
this difficulty: instead of a vast number of possible orderings imposed on
X from outside, we consider a single relation given by internal properties.
Recall that a set X is transitive if Z € X whenever Z € Y € X for some Y.

6. Definition. An ordinal is a transitive set X of sets which 1s well-ordered
by the relation € between its elements.

7. Theorem.
(a) The class of ordinals On is well-ordered by the relation a € B
(which we shall also write a < 8).
(b) Any well-ordered set is isomorphic to a unique ordinal a, and also to
a unique initial segment of ordinals (those less than a U {a}).

Proor.

(a) We must verify conditions (a), (b), and (c) of subsection 4. The first
of them follows immediately from the definition.

To prove the second condition, we consider two ordinals a and 8. By
Lemma 5, there exists an isomorphism f of one of them, say «, onto either
[ or an initial segment of 8. We show that then a = 8 or a € 8. To do this,
we prove that f(y) =y for all y € a. In fact, if v, is the minimal element
with f(y,)# v,, then f(y,) = f(y,) for all y, € y,. Since f is an isomorphic
imbedding of a with respect to the ordering €, and since y, and f(y,) are
sets, we have f(y,)={f(y)|v: € i) ={v2lv2E€ v} =v,, which con-
tradicts the choice of y,. The same argument shows that f(a) = «a, from
which the condition follows.

Finally, let C be a nonempty class of ordinals, and let « € C. If « 1s not
the least element in C, then the least element in the intersection a N C will
be the least element in C.

(b) Let X be a well-ordered set. Let S denote the set of ordinals which
are 1somorphic to some initial segment in X. § is nonempty, since, for
example, the ordinal {@j} is isomorphic to the segment consisting of the
least element of X. It is easy to see that the set §= J . « is an ordinal.
We claim § is isomorphic to X. In fact, if this were not Athe case, then 8
would be i1somorphic to an initial segment in X, say X,. But then the
ordinals 8 U { 8}, which is larger than f, would be isomorphic to the
initial segment X, U { X, }, contradicting the definition of 8. O

We now give the elementary properties of ordinals.

8. (a) The finite ordinals are the “natural numbers” (and zero) in the first
levels of the universe V. Thus, we shall write:

0=0@, 1={p}, 2={@ (@)}, 3={2 (0} {2 (&}}} .. -
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(b) The ordinal which immediately follows a given a is a U {a}. It is
also denoted a + 1, which agrees with the notation in (a) in the case of
finite a.

(c) An ordinal B is called a /imit ordinal if 8+# @ and 8 # « + 1 for any
a. The first limit ordinal w, is isomorphic as a totally ordered set to
{0,1,2,3,...,n,...}. If ais a limit ordinal, then a= UB<“ B. The
converse is also true.

Ordinals are mainly used for three purposes: proofs using (transfinite)
induction, constructions using (transfinite) recursion, and measuring cardi-
nalities. Here are the basic principles.

9. Transfinite induction. Let C be a class of ordinals for which

(@) gecC.
M) faeC thena+1€C.
(c) If a set of ordinals {e;} is contained as a subset in C, then Ua; € C.

Then C contains all ordinals.

In fact, otherwise there would exist a least ordinal not in C, but this
could not be the empty set by (a), a limit ordinal by (c), or any other
ordinal by (b). In concrete applications, the verification of (a) and (c) are
often trivial and are omitted.

10. Transfinite recursion. Let G be a function of sets (it will actually be
sufficient to assume that G is defined on all sets in the universe) whose
values are sets. Then there exists a unique function F on the ordinals such
that

F(a) = G (the set of values of F on the elements of a).

In fact, this equality uniquely determines F(0) = G (), and then F(1)
= G({F(0)}), F(2)= G({F(0), F(1)}), and so on. Thus, if we consider
the class C of ordinals a for which we can define F with the required
property on the initial segment of ordinals < «, then C satisfies the
conditions 9(a)—(c), and therefore contains all the ordinals. Uniqueness
follows similarly (if F# F’, consider the least a with F(a) # F'(a)).

11. Measuring cardinalities. Different ordinals can have the same cardinal-
ity. For example, all the ordinals wy, wy+ 1, wy+2, ... (and many more
after them!) are countable. However, jumps in cardinality occur arbitrarily
far out.

An ordinal which does not have the same cardinality as any lower ordinal
is called a cardinal. All finite ordinals and w, are cardinals. Clearly, any
infinite cardinal is a limit ordinal. Further, any set has the same cardinality
as some cardinal, and, in fact, a unique one (se¢ §1 of Chapter III). The
infinite cardinals form a totally ordered class, which is naturally indexed
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by ordinals. Thus:

wg = the first countable ordinal ;
w, = the first ordinal of cardinality > w,

= the set of all finite and countable ordinals;
w, = the first ordinal of cardinality > w,

= the set of all ordinals of cardinality < w,,

and so on.
We can now give our fundamental definition.

12. Definition. The (von Neumann) universe F is the class of sets
U V,, where the set V, is defined by the following transfinite

a€0n’ @
recursion:

Vo=@
Va+l = @(Vu)
Vo= U z,Vp if aisalimit ordinal.

We give some elementary properties of the universe V.

13. Each of the sets V, is transitive: if Y EX € V then Y € V. (In other
words, V, C V,,..)

Suppose that this were not true. Then there would exist a least ordinal «
with V, Z V,,,, where a > 2. If « is not a limiting ordinal, a = 8+ 1,
YeXeV, and Y ¢ V,, then we obtain a contradiction as follows:
XEVy =PWp)=>XCVy=YE V=Y EV,,, =V, since for § it
is still true that V C V. by our choice of a. If a is a limit ordinal, the
argument is analogous (find y <awith Y EX €V, and Y € V). O

We define the rank of any set X € V as follows: rank X = « if « is the
least ordinal such that X € V. If Y € X then, rank X > rank Y + 1.

14. All ordinals belong to V, and rank a = «a.

We first show that a« € V., for all ordinals a. This is true for a = 0.
Suppose that a is the least ordinal with a & V,,,. If a =8+ 1, then
B E Vg, sothat Band { B} E V., =P (V) and hence a =B+ 1=
BU{B} € Vg,y= "V, acontradiction. On the other hand, if « is a limit
ordinal, then a = U ,_, B and 8 € V| C V, by the choice of a, so that
a=Uz,,BC Uz, Vg=V, and a € F(V,)=V,,,, a contradiction.
Therefore, rank a < a. We similarly prove strict equality. O

15. The universe V is closed with respect to the standard set operations:
difference, union, intersection, forming %(X) and U , ., 7Y, and “collect-
ing” sets indexed by any set: {X,|Y € Z}. In particular, if X, Y €V,
then the pair {X, Y} € V,,,. We write {X } in place of {X, X}.
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16. Direct products, relations, and functions can also be defined as
elements of V using a device of Kuratowski. The intuitive notion of an
ordered pair of sets X, Y € V is realized by means of the set

X, Y ={{x},{X, Y}}eV

As elements of V, ordered pairs are characterized by the following proper-
ties: an ordered pair is set of two elements X’ and Y’, one of which is a
subset of the other (say X' C Y’); if X' C Y, then X’ = {X} is a one-ele-
ment set, and X is called the first term of the pair; Y’ is a set of at most two
elements, and its element ¥ which is different from X (if it exists) or X
itself (otherwise) is called the second term of the pair. Thus, (X, Y)>=
(X", Y”y if and only if X=X" and Y = Y”, which justifies the name
“ordered pair.”

We emphasize that this definition is introduced so that the direct
product construction does not leave the universe ¥, and so that a set
corresponding to a direct product can be described in terms of the relation
€, i.e., in the language L,Set.

An ordered n-tuple of sets is defined as

Ky Xy =Co s KX X X)),
We define the direct product of two sets as
XXxY={UW)IUEX,WEY)}
Similarly,

XX oo XX, =(- - (X X X)X X5) %X -+ ).

We note that, in general, (X X Y) X Z# X X (Y X Z); we only have a
canonical one-to-one correspondence between these two sets. But it is
usually harmless to take the liberty of identifying the two sets and writing
XXYXZ.

A binary relation (or correspondence) r is a set (or class) all of whose
elements are ordered pairs. If r &€V is a relation, then its domain of
definition dom(r) is the class of all first terms in the elements of r, and the
range of values rng(r) is the class of all second terms.

A function i1s a binary relation in which each element is uniquely
determined by its first term. Thus, functions which are maps of sets in V'
are identified with their graphs. If f is a function, we often write W = f(U)
instead of (U, W) & f. In addition, we set

ST ={rlf(v)ex},
fli=KU W)eflUeX},

A family {X,|Y € Z} as an element of V is defined to be a function
consisting of pairs {{Y, X,>|Y € Z}, and so on.

We again emphasize that the most important feature of these definitions
is that we do not introduce any new objects besides elements of V, or any
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new relations other than those expressible in terms of €. It should also be
noted that, in accordance with the usual (“extensional”) notion, a property
of the elements of a set X € V is a subset Y C X (consisting of all elements
with this property). Thus, ¥ € V, so that properties, properties of proper-
ties, properties of sets of properties, ... (with transfinite iteration) are
elements of V.

The “universe” V has earned its name.

17. Finally, we show that a chain X; € X, € - - - of elements of V' must
terminate (of course, with the empty set).

We prove that, if X is nonempty, then there exists a Y € X with
Y N X = @ (the desired result is obtained if we apply this to the set X of
terms in the chain). In fact, let Y be the element of least rank in X (which
exists because the ranks, since they are ordinals, are well-ordered). If we
had X N Y# @, then any element Z € X N Y would have lower rank
than Y, a contradiction. a

18. Connection with the axioms of L,Set. The point of view adopted in this
book is as follows.

The intuitive notion of a set, to which we appealed when constructing
the universe V, is the primary material. The language L,Set was devised in
order to write formal texts based on this material which are equivalent to
our intuitive arguments concerning V. The axioms of L,Set (including the
logical axioms) are obtained as a result of analyzing intuitive proofs. Our
criterion for the completeness of this list is that we can write a formal
deduction which translates any intuitive proof. The fact that we are able to
do this must be proved by a rather large compendium of formal texts,
which can be found in other books on logic. In particular, in L,Set we can
write the formula “Vx Jordinal a« (x € V)" and deduce it from the
axioms. This formula is the formal expression of our restriction to sets in
V.

The question of the formal consistency of the Zermelo-Fraenkel axioms
must remain a matter of faith, unless and until a formal inconsistency is
demonstrated. So far all the proofs which have been based on these axioms
have never led to a contradiction; rather, they have opened up before us
the rich world of classical and modern mathematics. This world has a
certain reality and life of its own, which little depends on the formalisms
called upon to describe it.

The discovery of a contradiction in any of various formalisms, even if it
should occur, would merely serve to clarify, refine, and perhaps recon-
struct certain of our ideas, but would not lead to their downfall, as has
happened several times in the past.
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CHAPTER III

The continuum problem and forcing

1 The problem: results, ideas

1.1. Cantor introduced two fundamental ideas in the theory of infinite sets:
he discovered (or invented?) the scale of cardinalities of infinite sets, and
gave a proof that this scale is unbounded. We recall that two sets M and N
are said to have the same cardinality (card M = card N) if there exists a
one-to-one correspondence between them. We write card M < card N if
M has the same cardinality as a subset of N. We say that M and N
are comparable if either card M < card N or card N < card M. We write
card M > card N if card M > card N but M and N do not have the same
cardinality.

1.2. Theorem (Cantor, Schroder, Bernstein, Zermelo)

(a) Any two sets are comparable. If both card M < card N and card
N < card M, then card M = card N. In other words, the cardinalities are
linearly ordered.

(b) Let P(M) be the set of all subsets of M. Then card ¥ (M) > card
M. In particular, there does not exist a largest cardinality.

(c) In any class of cardinalities there is a least cardinality. In other
words, the cardinalities are well-ordered.

ProoOF.

(a) Suppose M has the same cardinality as the subset M’ C N and N has
the same cardinality as the subset N, C M = M’'. We identify M with M".
We then have three sets N, C M C N and a one-to-one correspondence
Jf: N—> N,. We must construct a one-to-one correspondence g : N—> M.
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III The continuum problem and forcing

Here is an explicit definition of such a map:

g(x)= { f(x), ifx€f(N)\f"(M)forsomen >0,
X, otherwise.

Here f"(»)=ff( - f(y)---)) (n times); f"(N)={f"(»)|y EN},
and f°(y) =y. We leave the verification that g has the required properties
to the reader.

To prove that any two sets are comparable, it is sufficient to show that
any set can be well-ordered, since Lemma 5 of the Appendix to Chapter II
implies that well-ordered sets are comparable to each other. Let M be any
set. For every nonempty subset N C M choose an element ¢(N) € N. We
call a well-ordering < of a subset M’ C M admissible (with respect to c) if
c(M\X)=X forall X € M’, where X ={Y|Y EM’, Y < X}.

We claim that, if M’" M"” are two subsets of M having admissible
well-orderings, then one set is an initial segment of the other, and the
orderings are compatible. In fact, as in subsection 7 (a) of the Appendix to
Chapter II, we prove that the canonical isomorphism f of, say, M’ with an
initial segment of M” is the identity imbedding: if f(X)# X and X is the
least element with this property, then

f(X)=X, X=c(M\X)=X=c(M\f(X))=f(X),

which is a contradiction.

It is now easy to see that the union M’ of all subsets of M which have a
well-ordering admissible with respect to ¢ itself has an admissible ordering;
moreover, M’ coincides with M, since otherwise we could imbed M’ in
M U {c(M\M)}.

In particular, it follows that any set has the same cardinality as some
ordinal, and hence the same cardinality as a unique cardinal. This justifies
the use of the term “cardinality” and the use of cardinals as our standard
scale of cardinalities (see subsection 11 of the Appendix to Chapter II).

(b) Since % (M) contains all the one-element subsets of M, we have card
P (M) > card M. In addition, any map f: M — P (M) cannot be one-to-
one (or even onto). In fact, we set

N={zlz&f(z)} e (M),
and show that N is not contained in the image of f. If there existed an

n € M such that N = f(n), we would immediately obtain a contradiction
by considering the relationship of n to N:

nEN=n€Ef(n)=>n& N Dby the definition of N;
n@&N=n&Zf(n)=nEN by the definition of N.

This is Cantor’s famous “diagonal process.”

(c) The well-ordering of the cardinals is established at the same time as
their comparability in the first stage of the theory of ordinals (see the
Appendix to Chapter II). O
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1.3. Remark. This proof of the lemma that any set can be well-ordered is
essentially due to Zermelo. It was probably what prompted the most severe
objections to the axiom of choice. The intuitive idea behind the proof
reduces to a recipe for choosing one element after another from the set M
until all of M is exhausted. In this form it is immediately apparent that the
prescription is “physically” unthinkable, and to many of Zermelo’s con-
temporaries the whole proof seemed to be nothing but a trick. For
example, the idea of “first” choosing an element ¢(N) in each subset
N C M met with the following objection of Lebesgue. If the elements we
choose are not characterized by any special properties, how do we know
that we are always thinking about the same elements throughout the proof?
But today, except for specialists in the foundations of mathematics, hardly
any working mathematicians share these doubts.

We now formulate the basic problem that will concern us during the
next two chapters. We shall write card 9 (M) =2 M in analogy to the
finite case. The continuum is 2%,

1.4, The continuum problem. What place does the continuum occupy on the
scale of cardinalities?

By Theorem 1.2(b), we have 2° > w,. Hence, in any case, 2° > w,. On
the other hand, if 20 > @, 2 > w,, .. ., 2“ > w,, ... for any n, then we
would have 2“° >« , since the continuum cannot be a union of countably
many subsets of lower cardinality (Koénig).

1.5. The Continuum Hypothesis (CH). 2“0 = w,.

The Generalized Continuum Hypothesis asserts that 249 ¥ comes
immediately after card M for any infinite M. Here is almost everything we
know about this question:

1.6. Theorem
(a) The negation of the Continuum Hypothesis cannot be deduced from
the other axioms of set theory, if those axioms are consistent (Godel).
(b) The Continuum Hypothesis cannot be deduced from the other
axioms of set theory, if those axioms are consistent (Cohen).

The same holds true for the Generalized Continuum Hypothesis.

If we grant that the axioms of set theory and the logical means of
expression and deduction in L,Set, which are implicit in the statement of
Theorem 1.6, actually exhaust the apparatus for constructing proofs in
modern mathematics, then we can say that the continuum problem is the
only known example of an absolutely undecidable problem. Although
Godel’s incompleteness theorem provides concrete examples of undecid-
able propositions in any formal system having reasonable properties, these
examples can be decided in an “obvious” way in some higher system. The
situation with the continuum problem seems much more difficult. If we
agree that it is a meaningful question, then it can only be decided by
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introducing a new principle of proof. Various possibilities for doing this
have been discussed, but none of the suggested new axioms for set theory
seem sufficiently convincing or, more important, sufficiently useful in
“real” mathematics. In the hundred years since the introduction of trans-
finite induction, not a single new method of constructing sets has come
into common use. Incidentally, the basic idea in Gédel’s proof of Theorem
1.6(a) actually consists in verifying that all the old methods allow us to
construct at most w, subsets of w, (or, equivalently, at most w, real
numbers).

1.7. Godel’s idea. Godel considers the basic set-theoretic operations—form-
ing pairs, products, complements, sums, and so on—and constructs the
class of all sets which are obtained by transfinite iteration of these
operations, starting from . Such sets are called constructible sets. It is a
priori completely unclear whether or not all subsets of {0, 1,2,...} are
constructible, or, more generally, whether or not all sets in the universe ¥
are constructible. (It turns out that this problem is formally undecidable to
the same extent as the continuum problem.) But we find that, within the
class of constructible sets, the number of subsets of {0, 1, 2, ...} is equal
to w;—most likely because we have omitted a vast number of noncon-
structible sets. Meanwhile, all the axioms of set theory, restricted to this
class, are true (in a reasonable meaning of “true”), as are all deductions
from these axioms. Hence the negation of the CH is not deducible, since it
is false in this model. The next chapter will be devoted to Godel’s theorem.

1.8. Cohen’s idea. We shall present this idea in the version due to Scott and
Solovay. First we give its application to a certain simplified problem,
concerned with a language weaker than L,Set; then in §§4-8 we present
the application to L,Set. For another version of Cohen’s idea, see §9.

We shall discuss the CH in the form: there does not exist a subset of the
real numbers R whose cardinality is strictly between that of {0, 1,2, ...}
and that of R. In fact, if we had 2“0 >, then any subset of R of
cardinality w, would have such an intermediate cardinality.

In order to show that this assertion is not deducible, which is equivalent
to Cohen’s theorem, it suffices to construct a model of the real numbers in
which all the axioms and all propositions deducible from them are fulfilled
and in which a set of intermediate cardinality exists. This model will be the
set R of random variables on a very big probability space £2. For a suitable
choice of §2, R will be so big that within the model there exists a set of
intermediate cardinality, containing N (the integers of the model) and
contained in R (the continuum of the model).

Of course, it cannot be quite this simple; there must be some obstacle to
carrying out this program. The obstacle is that almost all the properties of
R, including most of the axioms, turn out to be false for R, so that R
cannot be a model for R in the usual sense of the word. Cohen’s basic idea
was to develop a method for overcoming this difficulty. He replaced the
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property of an assertion being true by another property, which we shall
temporarily call “truth” in quotes, and which has the necessary formal
properties. Namely, all the axioms of R are “true” in R, all deductions
from “true” assertions using the rules of logic again lead to “true”
assertions, and the CH is not “true,” and hence is not deducible from the
axioms. We now show in greater detail how this is done.

1.9. Let I be a set of cardinality > w,;. We set
Q= [O, 1]1, with Lebesgue measure,

R = the set of random variables on €

= the set of measurable real-valued functions on £.

1.10. Theorem
(a) All the axioms of the real numbers and all deductions from them are
“true” for R. _
(b) The CH is not “true” for R.
Here we say that an assertion P about random variables x, y,- - - €R is
“true” if the following condition is fulfilled:

for each point w & we consider the values x(w),y(w),- - - of the random
variables X,y,--- and form the assertion P, about these ordinary real
numbers; then for almost all wERQ (i.e., all but a set of measure 0) P, is
true in the usual sense of the word.

Briefly, “truth” means experimental truth with probability one.

ExXAMPLE. Let P be the assertion that “R has no zero divisors,” i.e., “if
x,y €R are such that xy =0, then either x =0 or y =0.” Then the
assertion “R has no zero divisors” is, of course, not true. However, it is
“true” because: if X, y € R are such that xy =0, then for almost all w € Q
either x(w) = 0 or y(w) =0.

1.11. In order to give a precise meaning to the definition of “truth” and
learn how to verify effectively the “truth” of rather complicated assertions,
we must introduce a formal language, in this case the language of real
numbers. This formal language is a mathematical object, and the precise
formulation of Theorem 1.10 will concern this object, and not R or R at
all.

The connection between this language and R is given by a system of
informal recipes which tell how to translate the usual intuitive texts about
R into this language, and by a system of theorems which tell us that the
translation is always possible and that the recipes are faithful to the
informal texts. The role of R is reduced to that of auxiliary construction
which is used to define and compute a special “truth” function on the
formulas of the language. Thus we see the role of logic in the program.
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1.12. A detailed proof of Theorem 1.10 would be rather lengthy and
nontrivial for several reasons. In the first place, a certain amount of space
must be devoted to describing the formal language and the axioms of R in
this language. We must then verify that all the axioms are “true” and that
the CH is not “true”—this amounts to one or two dozen verifications, each
of which involves an inductive argument with infinite sums and products
in the Boolean algebra of measurable sets in 2. However, the most serious
difficulties arise because the meaning of every assertion changes consider-
ably in going from R to R, and not always in a convenient direction. We
shall illustrate this qualitative aspect by attempting to explain why the CH
is not “true,” and why this is nontrivial. o B

As we have said, we want to construct a subset M of R having
cardinality intermediate between the cardinality of N and the cardinality
of R. We do this as follows: for any i€ I, let the random variable
X, : [0, 1)’ =[O0, I] be the ith projection. Choose a subset § C I such that
wy < card § < card 7 (this is possible if I is large), and set

M—={)cj.|jE§}CE

Then card N < card M < card R is true in the usual meaning of the
word. However, we must show that the corresponding assertion is “true” in
our Pickwickian sense. But then the role of the integers is assumed by the
“locally integral” random variables (whose values are integral with proba-
bility one), and these random variables can have cardinality much greater
than w,. Thus, the required lower estimate for card M becomes much more
serious. Similarly, if we formalize our naive description of M and then

interpret it in R, then M takes on a new meaning, and leads to a much
larger set than the “real” M. Thus, it is also unclear that the upper
inequality for card M still holds. It seems almost miraculous that every-
thing eventually falls into place.

The plan for the rest of the chapter is as follows. In §2 and §3 we give a
(shortened) exposition for the second-order language of real numbers of
this abbreviated version of the theorem that the CH is not deducible. If the
reader is only interested in the complete proof for L,Set, he may skip to §4,
where we introduce the Boolean-valued “universe of random sets,” which
takes the place of V. In §§5-7 we verify that the Zermelo-Fraenkel axioms
are “true,” and in §8 we verify that the CH is “false.” Finally, in §9 we
discuss Cohen’s original method, which is more syntactic and involves
somewhat different intuitive ideas.

2 A language of real analysis

2.1. In this section we describe a formal language based on the theory of
real numbers. In particular, this means that the variables x, y, z will be
considered as names of real numbers. However, if we try to use a
first-order language to formulate the assertions we are interested in, such
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2 A language of real analysis

as the Continuum Hypothesis CH, or even the completeness axiom (which
differentiates the real numbers from the rational numbers), we find that we
are not able to do this. In fact, in these assertions we need to refer to
arbitrary subsets (or relations of degree one) of the real numbers, whereas
first-order languages do not have symbols for variable relations (compare
with subsection 3.17 of Chapter ).

This leads us to consider the second-order language 1.,Real, which is the
most economical language in which the axioms and the CH can be
expressed. We shall give a brief description of this language, for the most
part only noting those features which show the connections with the real
numbers and those which are peculiar to second-order languages.

2.2. The language L,Real. The alphabet consists of the variable symbols
X, ¥, Z, . . . ; the symbols for degree 1 functions f, g, A, . . . ; the constants
0 and 1; the degree 2 operations + and -; the degree 2 relations = and
< ; and the same connectives, quantifiers, and parentheses as in languages
of £,. The terms are x,y,z,... and 0 and 1; and also f(¢), ¢,-t,, and
t, + 1,, if f is a function symbol and ¢, |, and ¢, are terms. The terms are
names of real numbers.

The atomic formulas are t| = t, or , < t,, where ¢, and 1, are terms. The
set of formulas is defined inductively exactly as in languages of £, with
one addition: Vf(Q) and 3f(Q) are formulas if Q is a formula and f is the
symbol for a variable function. The notions of a free occurrence of a
variable (x or f), of a closed formula, and so on carry over to L,Real in the
obvious way. We shall use the same type of abbreviated notation here as in
Chapter 1. The standard interpretation of formulas which is implicit in the
language should be obvious from the definitions and from the following
examples.

23. The formula Z(y): “y is an integer.” It is perhaps not completely
obvious how to write this formula. We can write, “y can be obtained from
0 by repeatedly adding or subtracting 1,” or else “any function f which has
period 1 and vanishes at 0 must also vanish at y,” 1.e.,

Z(y): V(SO =0AVYx(f(x)=f(x+1))=f(¥)=0).

2.4. The formula CH: “Any subset of R either has the same cardinality as R,
or else is countable or finite.”

We first restate the formula in different words: “Given a set of zeros of
any function 4, either there exists a function g mapping it onto all R, or
else there exists a function f mapping the integers onto all of this set.” We
then have:

CH: Vh(EIg Vy Ax(h(x) =
0Ay =g(x)V I Vy(h(r) =0=3x(Z(x) Ay = f(1)))).
Notice that the formula Z (x) occurs as part of the CH.
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We further write the completeness axiom C:

2.5. The formula C: “Any subset of R (the set of values of a function f) which
is bounded from above has a least upper bound z.” We write:

C: Vf(Ely Vx(f(x) < y)=3z ¥y (Vx(f(x) < y)oz < y))

All the other formulas we are interested in are simpler and do not require
any special comment.

We now give a precise definition of the property of “truth” for closed
formulas in L,Real; this property was described informally in §1. We
emphasize that it is not an absolute property, but rather depends on the
choice of the probability space £ which is used to construct the “model” of
the real numbers.

2.6. The algebra of truth values. As in §1, we set
I = a set;
Q=0 1]] with Lebesgue measure ;
B = the algebra of measurable sets in {2 modulo sets of measure zero;

0 = the class of the empty set in B;
1 = the class of @ in B.

We have the following operations in B:

’

a’, the “complement” of the element a € B;
a A\ b, the “intersection” of two elements a, b € B;

a\/ b, the “union” of two elements a, b € B.

These operations satisfy the usual identities and give a Boolean algebra
structure on B. We write a< bif a A\ b= a.

Moreover, the operations of intersection and union extend uniquely to
infinite families of elements, and continue to satisfy the usual identities
which hold in the algebra of all subsets of any given set. We shall omit the
verification of all this. We only note that sets here are identified “modulo
sets of measure zero,” and that identities of the type (A mod 0) A
(B mod 0) = (4 N B) mod 0 do not carry over to infinite families.

Finally, B satisfies the following countable chain condition: if a, \ ag =10
for all distinct indices a and B then a, # 0 for at most countably many
indices a. This follows because Lebesgue measure is positive and additive.
Technically speaking, B is a complete Boolean algebra with the countable
chain condition. The precise origin of B and the fact that it has a measure
play a less important role.

2.7. The interpretation set. We now introduce a large set M, each point £ of
which corresponds to the assignment of certain values to all the symbols in
the alphabet of L,Real. If § is fixed, each formula becomes a concrete
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statement about measurable functions (random variables) on £ and about
functionals on them (compare with §2 of Chapter II).
More precisely, we set

= the set of measurable real-valued functions on {;
R(') = the set of all possible maps f : R=> R which satisfy the condition:

VX, yER
(the set {w €Q|% () =7 (©)} < {0 €QYf (¥)(w) = f (7))} mod o).

The definition of R" has the following intuitive meaning. If we ignore the
“mod 0,” the condition simply means that the value of the random
variable f f(x) at each trial (each point in ) must be determined by the
value of x at this trial. Of course, this is a very natural requirement if we
want functions f to be adequate reflections of properties of ordinary
real-valued functions in the sense of §1. The addition of “mod 0” weakens
this requirement by saying “with conditional probablhty one.’

We now return to the set M. A pont £ € M consists of a choice of

xf €R,  for each variable symbol x;

fE£ € RM, for each symbol f for a variable function.

Here is the interpretation of the expressions in the language which corre-
sponds to a given choice of &: . _

(a) Terms. Let ¢ be a term, and let £ € M. Then #* € R is the random
variable which is defined inductively in the obvious way.

(b) The truth function || | on atomic formulas. Let P be the atomic
formula ¢, < t; or t; = t,. Its truth value at a point £ € M is the element of
the algebra B which is defined as follows:

It < 4lI(§) = {0 €Q|#f (@) < 5(w)) mod 0,

and similarly for ¢, = ¢,.

(c) The truth function || P||(£) in the general case. The general definition
proceeds by induction. The rules when formulas are joined by connectives
are the same as in subsection 5.7 of Chapter II:

I 2l =P,
12NV 2l=12IVIel,
IZAQI=1PIANCI,
I1P=Ql=1PI" VIl
1P=Qll=UPIATCDVAPIAlICI)-
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Here, for brevity, we have omitted the §. Finally,

_ , (over all & which only differ
IVxPI(§) = /g\ IP1&) from £ by a variation of x);
I3xP||(§) = y | P]|(¢) (over the same £');

and similarly when we quantify over variable functions. Intuitively, the
value of the truth function of an assertion about random variables is the
set of trials mod 0 for which this assertion becomes true as a fact about
real numbers.

2.8. Lemma. If P is a closed formula, then ||P||(§) does not depend on the
choice of £ € M and only takes the value O or 1.

This is proved by a simple induction on the length of P. It is just as easy
to prove a more general fact: if P is any formula and £ and £ do not differ
on variables which occur freely in P, then || P||(§) = || P||(§). Compare with
Proposition 2.10 in Chapter II.

This value of || P}|(§) which is common for all £ if P is closed can be
denoted simply || P||. We are now ready to formulate the basic definition
of this section:

2.9. Definition. A formula P in L,Real is said to be “true” if || P||(§) = 1 for
all(ée M.

3 The Continuum Hypothesis is not deducible
in L,Real

3.1. Fundamental Lemma

(a) “Truth” is preserved under the rules of deduction.

(b) The first-order logical axioms and the versions of them in L,Real are
“true.”

(¢) The special axioms of L,Real are “true.”

(d) The CH is not “true” if card I > w,.

This lemma implies
3.2. Theorem. The CH is not deducible from the axioms in L,Real.

In this section we give those parts of the proof of the Fundamental
lemma which are also essential for the “real” Cohen theorem, as well as for
our simplified problem. We note that Theorem 3.2 is weaker than Cohen’s
theorem because the language L,Real contains fewer means of expression
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than the language of set theory. Although the Continuum Hypothesis can -
be stated in L,Real, because of Godel’s general results we have no basis for
expecting, even if the CH were deducible, that the proof could also be
given in this language. For example, the deduction could require us to
introduce functionals of functions, functionals of functionals, and so on.
The language of set theory, which we shall return to in §4, contains the
means for considering all of these finite and even transfinite levels at once.

3.3. ProoF oF 3.1(a). If ||P|/=1 and ||P=Q] =1, then ||P|'=0 and
1PV 1@l =1, so that ||Q]| = 1. Secondly, if ||P| =1, then |[P||(§)=1
for all £ € M; but then (here £ runs through all variations of £ along x)

IVxP||(§) = /g\ I PII(E) = /E\ 1=1 O

We similarly prove this for Gen over functions.

3.4. PROOF OF 3.1(b) (SKETCH).

Tautologies. Their “truth” is proved in §5 of Chapter II.

Quantifier axioms. The proof proceeds by induction on the length of the
formulas in the axiom schemes. Since it is completely straightforward, we
shall omit it.

3.5. PrOOF OF 3.1(c) (skeTcH). We shall list the axioms and make some
brief comments.

The special axioms of set theory: The axioms of equality and the axiom
(schema) of choice

AC: Vx IyP(x,y)=3f Vx P(x, f(x)),

where P is any formula which does not have any free variables except x
and y, and where f is free for y in P,

The special axioms of field theory: The axioms of the additive group, the
axioms of the multiplicative group, and the distributivity of addition with
respect to multiplication.

The special order axioms:

X< yVy<x,
(x<yAy<x)ex=y,
x<y=(x+z<y+z),
(x<yN0<L2)=xz< yz.

The completeness axiom (see 2.5).

Among these axioms, the greatest effort is needed to verify that the
axiom of choice and the completeness axiom are “true.” But these com-
putations resemble those in the proof that the CH is false, which will be
given in detail below. Hence, the verification of these two axioms will be
omitted.
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The first axiom of equality is trivial. The second axiom is first verified
for atomic formulas P, and then we use induction on the length of P. The
argument is rather tedious, but simple.

The axioms of an ordered field are verified without difficulty. We shall
limit ourselves to one example: “every nonzero number has an inverse,”
ie.

Vx((x =0 =3y =)= A (17=01v V15 - IH)

FJER

To verify that this truth value equals 1, it suffices to prove this for each
term on the right, i.e., for each fixed x € R. Then, in turn, for that x it
suffices to construct a random variable y € R such that || x = 0||\/ || xy =1||
= 1. We set

[%(@)7!, if F(w) %0,

lo, if %(w) = =

y(w)=

3.6. Proor oF 3.1(d). We first recall the formula for the CH:
Vh(3g Yy 3x(h(x) =0Ay =g(x))V
3/ Wy (h(y) =0=3x(Z (x) Ay = (x))))-

We let P, and P, denote the first and the second alternatives in this
formula. Thus, the CH has the form VA(P,\/ P,). We must prove that
(IVA(P,\/ P,)||(§) = 0 for any point £ € M. By the definition in 2.7,

IVA(P\ Py)II(§) = /g\ (1P IE) VI PIIE)),

where ¢ runs through all variations of £ along A. To show that this value is
0, it suffices to find a point £ such that || P,[|(§) = || P,||(§) = 0. Since all
the variables except A are bound in P, and P,, choosing §' is equivalent to
choosing k¥’ = h € RD. We shall give 4 explicitly; this will be a function
“whose set of zeros has intermediate cardinality.”

To do this, as in §1 we fix a subset ¢ C 7 having cardinality strictly
between w, and card /. Recall that for each i €I, x; € R _is the “ith
coordinate” function. Further, for each random variable X € R, we choose
a subset (x) C £ such that

\/ [|I¥ = Xl = (%) mod 0
JE§

(here we use the completeness of B). Finally, we define he RO as follows
for every x € R and w € Q:

o 0, if we(x),
h(x =<7
(¥)(«) { 1, otherwise.
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3.7. Correctness Lemma _ _
(a) For fixed x, h(x) is measurable as a function of w, so that h maps R
to R. .
(b) For every X € R we have

A (Z)=0]= \/ IX
JE§
(€) h € RV (see 2.7), so that there exists a point £ € M for which
h = h.

ProoFr.

(a) h(X) only takes the values 0 and 1 on &, and the set where it takes
each of these two values is measurable by the definition and by the
completeness of B.

(b) is obvious from the definition.

(c) We must verify that for all x,y € R we have

{0ex(0) =7 (@)} < {weQh(X)w)=h(7)(w)} mod 0.

We shall show that the set of points w& Q for which both x(w) =y (w) and
h(x)(w) #* h( ¥ )Xw) has measure zero.
It suffices to consider the case h(x ¥w =10, h( Y Xw) =1, i.e., to show that

IX =71 Allk(X) =0 Al (7)=1]=0.

We write the second term in the form \/ E5[|x = x| (by 3.7(b)) and apply
the distributive axiom to the first and second terms (where we use the
completeness of B). We further use the fact that [|x =y|| A|lx =X <
| ¥ = X;||l. We then obtain:

1% =FUNAIA(E) =0l < \/ 117 =5l = lh (7) =0,
which immediately gives us the required result. O

Explanation. Since the choice of A is the essential step in the proof, we
would like to give some motivation for this choice. Recall that A is the
name of the function the cardinality of whose set of zeros interests us. We
choose a concrete 4 to ) “disprove” the CH in such a way that the “almost
everywhere zeros” of 4 include the elements of the set {x;|j € ¢}, which
has intermediate cardinality in the naive sense of the wor_d (compare with
§1). However, 4 cannot be an arbitrary map from R to R; it must satisfy
the strong condition_ € RV, Hence, along with all the X, the almost
everywhere zeros of 4 might also have to include various other JER, and
might have to “partly include” still other z € R. We say “partly include”
convey the possibility that {|#(z)=0|| is_neither 0 nor 1, so that z has a
“certain probability” of being a zero of A.
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II1 The continuum problem and forcing

Thus, the “set of zeros” of 4 might be bigger than we want, and we
might expect to encounter difficulties in proving that this set cannot be
mapped onto all of R (the alternative P;). On the other hand, it would
seem that this situation would make it trivial to disprove the alternative P,
(mapping Z onto the entire set of zeros). But even this is wrong! As we
noted before, we can have ||Z(x)|| = 1 for many x which are not constant
integer functions on 2. Moreover, for still other x we have || Z (x)|| #0, 1,
so that the “set of integers” in our model has grown considerably.

A final remark: in this discussion we have been essentially dealing with
the concept of a “B-random set,” which will be a central idea in what
follows (see §4) That is, the “set of zeros of 4" is random in the sense that,

for each 7 € R, the assertion “z € (zeros of h) is naturally assigned the
Boolean truth value ||A(Z) = 0J].
We now return to the proof that |CH|| =

3.8. PROOF THAT || P,||(§) = 0. By the rules for computing truth functions,
we find:

121 =V AV {lIB () =0 All7 = 2@},

where & was defined above, g runs through all elements of R, and X and
» run through all elements of R. We suppose that || P,||(§") # 0, and show
that this leads to a contradiction. We write the above formula for || P,||(£)
as \/; a(g). B

If || P,||(§)# 0, then a(g) 0 for some concrete function g € R". We
take this function g and set

a= AV I5=5I A1 =2()0)

Here we have substituted \/ - llx = x| for ||h(x)—0|| using 3.7(b).
Furthermore, we have ||x——)?1|]/\||y g(X)| < |ly =g(x)|l. Using this
and distributivity, we find

SA N 17 =2(E)I
In particular, for each X; in place of y, we have
a< jé/g I|x; = g(xj)”'

If, as we have supposed, a # 0, then for each i there exists a j(i) € ¢ such
that

| x; = g(%‘(i))” #0.

Since [ is uncountable and card ¢ < card I, it follows that there exists a
Jo € ¢ such that j, = (i) for all i in an uncountable subset I, C I. But this
contradicts the countable chain condition on B, because the terms in the

116



3 The Continuum Hypothesis is not deducible in L,Real

family ||X; = g(; )|l (i € Ip) are pairwise disjoint. In fact,
%, = 2@)IAR. = 2(5)] <|l%, = =] =0.
if i, # i, U

Notice to what extent this proof parallels the “naive” argument in §1.
By assumption, the function y maps the zeros of h onto R “with nonzero
probability.” But the exact meaning of the computations cannot readily be
stated in words.

Computation of ||Z(y)|- The formula for Z(y), “y is an integer,” was
given in 2.3. Since this formula occurs in P,, we must compute ||Z(y)|| in
order to compute || P,||.

39. Lemma. Let n € Mandy =5 € R. Then
1Z(W)N(n) = ,.é/z 17 =n|={wey(w) EZ} modO.

ProOF. We must show that

N1F @ =01rv(V 176)=F F+0I1) 17 ()=o) =

nEZ

We prove this equality by proving inequality in both directions.
The inequality <. It suffices to find a concrete function fE€R™ for
which the corresponding term on the left is contained in the right-hand

side. We define f by setting f(X)(w)=sin? 7x(w) (here, instead of sin® 7z,
we could take any measurable function with period 1 and zeros only at the
integers). It is easy to see that f(X)ER and f€ R™. Then || f(0)=0|'=
and || f(x)= f(x+ D)||’=0. Hence we need only verify that

=0 =
Isin? 75 = 0]l < \/ || 7= nl,

and this is obvious.
The inequality > . It suffices to show that, for any fixed values of n € Z,
fe RM and y € R, we have:

17 =l <bVe,
where
b=1f @ =01V (VIF@®=FE+DI): =17 () =0l

But the inclusion a < b\/ ¢ is equivalent to a A ¢’ < b. Furthermore, in our
situation we have

aNe =|7=n|AIf(F)=0l < ||f(n)=0].
117



IIT The continuum problem and forcing

(Here n in f (n) is the constant random variable which is everywhere equal
to n.)
It is thus sufficient to see that

IFm =0 <1f@=0v(VIF® =7 E+)r)

or, taking complements, that

1F (=011 > 17 =0l A AILF (R =F (F+ D)

The right side can only become larger if we only take the intersection over
the terms with x =0, 1, 2, ..., n — 1. But this obviously gives

I @ =0IANfO=Ff(1)="...=F()<[f(n)=0]. O

3.10. PROOF THAT || P,||(§") = 0. Using Lemma 3.9 and the rules for comput-
ing truth functions, we find:

1716) =\ A\ (1F ) =01v V(17 = nll A7 =£ )

Since f€ R", we have ||Xx=n| < ||f(X)=f(n)|, so that ||Xx=n|A
17 =F(DI < 117 = F(m)-

Now it suffices to prove that the term corresponding to any concrete
choice of f is equal to 0. We suppose that this is not the case, and show
that we obtain a contradiction. Let a # 0 be the term corresponding to f.
By the previous paragraph, we have

a< A (1A () =01V |17 =7 (m])-
y n
In particular, for every j € § we must have (with X; in place of y).
a <\ [5=1(n)]

(where we have ||h(x;) = 0| =0 by 3.7(b)). Hence, for every j there exists
an integer n(j) such that 0% ||x; = f(n(/))||. Since ¢ is uncountable, there
exists an ny and an uncountable subset ¢, C § such that n(jy) = n, for all
Jo € 31) Then the ||X; = f(ny)ll for jE€§, form an uncountable set of
pairwise disjoint nonzero elements of B. This contradicts the countable
chain condition on B. O

4 Boolean—valued universes

4.1. In this section we fix a complete Boolean algebra B (see 2.6) and
construct the universe V2 of “B-random sets.” It will be a model for the
Zermelo-Fraenkel axioms in the same generalized sense in which the
random variables R were a model for the real numbers R in §3. In §§5-7
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4 Boolean-valued universes

we verify that all the axioms of L,Set are “true,” and then in §8 we verify
that the Continuum Hypothesis is “false” for a suitable choice of B.

The objects of V2 will be denoted by capital letters X, ¥, Z, - - - . Any
two objects determine elements | X € Y||€ B and ||[X= Y| €B. The
intuitive meaning, say, of the first of these is as follows: if B is the algebra
of measurable sets in a probability space, then || X € Y| is the maximal set
on which “X is an element of ¥ with probability one.” Since we do not
deal with probability measures in the general case, we shall simply call the
elements of B “probabilities,” and then || X € Y| is simply the probability
that X belongs to Y.

It is not trivial to construct precise definitions, because we want the
axiom of extensionality to be “true.” If a random set must be uniquely
determined by its elements (which are also random), even in a generalized
sense, then this random set cannot be “too” random (see 4.3).

We shall assume that as a set B is an element of the von Neumann
universe V. Then all the objects of ¥? will also be elements of ¥, and all
our constructions can be expressed in L,Set. In principle, this allows us to
take a more formalistic point of view than we shall in fact take. The proof
given below of the independence of the CH could then be used as a guide
for constructing a much more syntactic version, based on an “internal
interpretation” of the language L,Set in itself. In this context the assump-
tion that the Zermelo-Fraenkel axioms are consistent in the statement of
Theorem 1.6 becomes a necessary precaution, since (by Godel’s result) this
consistency cannot be established using only the language L,Set itself.
However, in our treatment this condition is pure hypocrisy, since by
assuming the “existence™ of the universe V, which is a model for the
axioms, we automatically “prove” that those axioms are consistent (see
subsection 18 of the Appendix to Chapter II).

4.2. Construction of VB. For every ordinal @ we construct the set V2 by
transfinite recursion, and then set V% = U V.. The first step is: V§ = @.

Inductive assumption. The set V2 is defined for the ordinal « > 0; for
every element X € V7 the set D(X) C V7 is defined (its intuitive meaning
will be explained below); for every pair of elements X, Y € V? the
“Boolean truth functions”

IXeY|eB, |X=Y|EB

are defined (intuitively, they should be thought of as the “probability that
X is an element of Y and the “probability that X coincides with Y,”
respectively).

By assumption, this data satisfies the following conditions:

(@ If B, < By < ay, then VG < V5.
(b) Ifﬁ(aandXEVlfH\V/f, thenD(X)=Vlf.
) IXeY|= \/zeD(Y)(IIX= ZINIZEYD De
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III The continuum problem and forcing

(the condition (1), expresses the requirement that the formula x € y <
Jz(x =z Az €y), which is easily deduced from the Zermelo-Fraenkel
axioms, must be “true™).

() [X=Y] =(Ze/.>(x) I1ZEX|'VIZeTY])

A( /\Y> IZEYI'VIZEXI) (Da

ZeD(

(this condition expresses the “truth” of the formula x = y = (Vz(z Ex—z
Ey)AVz(z Ey=1z € x)). We note that it is not completely clear at this
point why, for example, in (1), we only took the union over Z in D (Y); it
would seem natural to take all Z. Later we shall see that the formula
remains true if we take the Boolean union over all Z.

This completes the description of the data for V2. We now give
explicitly the recursive construction of V2, , and the corresponding data.
Definition of V.2, | and D. We set V2, , = VB VB, where V5, consists

of all possible functions Z with domain of definition V2 and range of

values C B which satisfy the following “extensionality condition”:

IX=Y|AZ(X)=||X=Y||AZ(Y), forallX,YEVE (3)

A little later we shall define |[X € Z||=Z(X) for X € V? and Z €
VE \VZ Thus, as before, (3) can be thought of as reflecting the
formula

(x=yAx€z)e(x=yAy€Ez).

Compare also with the comment in 2.7 concerning the definition of R (.

We shall call the elements of V2, \ V.Z new elements (of rank a + 1),
and we shall call the elements of V.2 o/d elements. We set D(Z)= V2 if
Z is a new element.

Definition of the Boolean truth functions. These functions have already
been defined for pairs of old elements. We further set:

X €Y||=Y(X), if Xisoldand Y is new; (4)
1x =] =( A I1Zex|v|ze Yu)
ZED(X)
/\( A lzev|v|z exn). (5)
zZ€Ep(r)

Because of (2),, (5) automatically holds if X and Y are both old
elements; in the other cases, (5) uniquely determines ||X = Y|| if we use
(4) and the fact that Z only runs through old elements in (5). Finally, we

120



4 Boolean-valued universes

set:

IXeYl=_V IX=ZINIZEeY], (6)
ZeD(Y)

if X is a new element and Y is either new or old. The right side is
uniquely determined using (4) and (5), since D (Y) C V2.

Formulas (4) and (6) show the following. As a first approximation we
might say that a random set Y of rank a “consists” of sets Z of lower rank
which occur in Y with probability Y (Z); these probabilities can be chosen
rather arbitrarily, subject only to the extensionality condition (3).

However, we then find (in formula (6) for new X and old Y) that we
must automatically “include” more and more elements X in Y with
probabilities already assigned by formula (6). It is conditions (3) and (6)
which prevent our sets from being completely random.

Definition of V2 and other data for limiting ordinals a. We simply set
V2= Ugco V4, and then all the other data has already been de-
termined.

4.3. Verification that the definitions are correct. Properties 4.2(a) and (b) are
obviously preserved in going from « to a + 1; we must verify (1), and
(2),4+:- Now the only identity here which is not completely obvious is
obtained by taking X old and Y new in (1), ;:
Y(X)=_\ |IX=Z|AY(Z).
zZevk
This is verified as follows. We obtain > by writing the right-hand side in
the form \/,||X = Z|| A\ Y (X) using (3). We obtain < by considering the
term with Z = X and taking into account that || X = X|| =1 for all X (as
follows immediately from (5)).
This completes the construction of the Boolean-valued universe.

4.4. EXAMPLES AND REMARKS. We examine some special cases of these
constructions in order to clarify their structure.

(a) Obviously V¥ = (@), since there exists a unique “empty” function,
whose domain of definition is the subset VE = @. We compute V£ =V}
U V¥ We let {3}, € V7" denote the function of the one-element set V'
which takes the value b € B. All these functions are extensional, so that

vy={o.{a}, forallbeB}.
It follows from (4) that
@ € {@},ll = b.
It 1s clear from (5) that

1@ ={a},l="5"
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III The continuum problem and forcing

Intuitively, these formulas mean that {5}, consists of one element
“over b” and is empty away from b. Again applying (5), we find:

{@},={@}l = (@ VE)N(a V&) =(a\b)\/(a' AD).

Thus, {@}, and {@}, coincide when either they are both empty or they
both consist of one element ¢5: this agrees with intuition. Now applying
(6), we find:

Ho}.€{@},l={a}.= NI € (T}l =a Nb
(i.e., the only possible inclusion, which has the form @ € {@}, holds when
(@}, is empty and {@&¥}, is nonempty).
Finally, let X € V" be an extensional function on the subset ¥ with
values in B. Then, by (6),

1X €{a},ll = IX =0l NS E (B}l =X =3l Nb,
and by (5)

IX=al=(/\ l{e}.eXI) Al x|

aERB

- (GEB“{QL EX|Vo EX”)'.

Thus, intuitively, || X = @|| means the complement of the support of X in
B, and ||X € {@},]| is the set where both X is empty and {@}, is
nonempty, which again agrees with the usual formula @€ {@}. This
shows how new objects X can be random elements of old objects with
nonzero probabilities.

(b) We consider the case B={0, 1}. The corresponding probability
space consists of one point, so our random sets become completely
determined. What happens is: the universe V'” maps naturally onto the
von Neumann universe ¥ in such a way that, if X denotes the image of
X € V5, then all X and Y satisfy the conditions:

IXEY|=leXeY,
[X=Y|=1leX=7Y.

To construct this map we first set @ = @. We now suppose that the map
V{01 5 ¥ has already been constructed with the required properties, and
we extend the map to a + 1. To do this, for any new element X € V[ }
we first find the subset of V,[* ") on which X takes the value 1, and we then
take the image of this subset in V/,, which is an element X of %P (V,)=
V.. 1; by definition, our map takes X to this X. We leave the verification of
the properties of this map to the reader.

(¢c) Boolean truth functions for the formulas in L,Set.

We define these truth functions in an analogous manner to §2. We
introduce the interpretation class M: each point £ € M assigns to every
variable symbol x in L,Set some object x* = X of the universe V2. We
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further assume that every point £ maps the symbol @ in L,;Set to the empty
set.

If P is the atomic formula x €y or x =y in L,Set, then ||P|(§) is
defined to be ||x* € y*|| € B or ||x* = y¢|| € B, respectively. The value of
I|P||(§) for all other P is defined inductively using exactly the same
formulas as in subsection 2.7. We need only note that, although the
€Xpressions \/g a; and /\£ a; must be taken over families indexed by the
class M when we compute with quantifiers, all the different elements of
such a family form a subset of B, so that such an expression makes sense.
We shall call a formula P “true” (in the model V%) if || P||(§) =1 for all £,
and we shall call P “false” if || P||(§) = O for all &

As in §3 of Chapter II, it can be verified that all the tautologies and
logical quantifier axioms are “true” and that the rules of deduction
preserve “truth.” Hence, it remains for us to show that the Zerme-
lo-Fraenkel axioms are “true” (for any B) and that the Continuum
Hypothesis is “false” (for suitable B).

5 The axiom of extensionality is “true”

We begin by proving some relations between the truth functions, First of
all, it is clear from formula (5) in §4 that | X=7Y| =|Y=X| and
|X = X|| = 1. The following lemma is a less immediate consequence of the
formulas.

5.1. Lemma. For any X, Y, Z € V% we have:

IX=YIAIY=Z|| <|X=Z], Y
IX=TYIAIY €Z| <||X €Z], (IT)
X EYIANY=Z||<|X € Z]|. (I11)

PRrROOF.
(2) (1) holds if X € D(Y). In fact, then by formula (5) in §4
IY=Z|<|X €Y' VI]XEZ|,

so that, if we intersect both sides with || X € Y|, we obtain (III).
(b) (IT) holds if X, Y € V! and Z is a new element of V2, . In fact, we
choose U € D(Y) and apply the special case of (III) proved in (a):

IVETYIAIY=Z||<|UEZ|.

We take the Boolean intersection of both sides with || X = U|| and then the
Boolean sum over all U € D(Y). Now applying formula (6) in §4 to the
left-hand side and using distributivity, we obtain:

X EYIAIY=2Z|< \V |X=U|A|UEZ|
UeD(Y)

<V IIX=UIAIUEZ|=|IX € Z].
vepzy=vp
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(©) () holds in V2 | if (I11) holds in VE. We consider an element
U e D(X)e V2 By (a), we have
IVEX|INIX=Y|<[UEeT]
We take the Boolean intersection with | Y = Z||
IUEXINIX=Y[AIY=Z|<||UEY|AIY=Z|.

Here the right side is always < |[U € Z|. In fact, if Y € V2 this follows
by part (b) or by the induction assumption, and if Y is a new element of
V2, | then it follows by part (a).

We have thus shown that for all X, ¥, Z € V2, and all U € D(X):

IUEX[AIX=Y|AIY=Z|<|UEZ|

Because a A b < ¢ implies b < @' \/ ¢ in any Boolean algebra, we then
obtain

IX=Y|AIY=Z|<[|UeX|VIUEZ],

and hence

IX=Y|AIY=2|< /N |VEX|'VIUEZ|.
UED(X)

Interchanging X and Z, we find that for all U € D(Z)

IZ=Y[AIY=X|< N _ IUEZ|'V|UEeX].
UED(Z)

These last two formulas, together with (5), clearly imply (I).
(d) (II) holds in V2, if (I) holds in V2, |. In fact, let U € D(Z). By (I),
we have

[X=Y[IAIY=U|<[X=UJ.
We take the Boolean intersection with ||U € Z|| and then the Boolean sum
overall U € D(Z):
ix=viA( N, 1UeziAlY=Ul)
UeD(Z)

< \/2) I1Z=UlINIU € Z|.

veDb(

Applying (1), , in §4, we obtain (1I).
(e) (II1) holds in V2 | if (II) holds in V2, . In fact, let U € D(Y). By
part (a), we have

IWEY|AIY=Z|<||U€EZ].

Intersecting with || X = U}| and applying (II) to the right-hand side, we
obtain

[X=UINIUEYIAIY=Z| <|X EZ].
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Finally, if we take the Boolean sum over all U € D(Y) and use formula
(1) in §4, we obtain (III). O

Obviously, parts (a)—(e) prove the inductive step for a to a + 1. We are
now in a position to establish the basic result of this section.

5.2. Proposition. The axiom of extensionality
x=ysVz(zExszEY)
is “true.”

ProOF. The formula || P« Q||(§) = 1 is equivalent to || P||(§) = | Q[|(§). Tt is
therefore sufficient to prove that for all X, Y € V2

X = Y] =Zé\VB(IIZ EXIVIZeYINNIZ eXI'VIZ €Y.

The inequality > follows immediately from formula (2) in §4. To obtain
the opposite inequality, we write two obvious corollaries of formula (III) in
Lemma 5.1:
IX=Y|<l|ZeX|VIZEY],
[X=Y[<[ZEX'VI]ZET],

and we take the intersection over all Z. The proposition is proved. O

We note that formula (2) implies the following general extensionality
property: forall X, Y, Z € V5

X =Y[AIY €Z||=|X=TY[AlX€EZ].

5.3. Corollary. The axioms of equality in L Set are “true.”

In fact (see Proposition 4.6 in Chapter II), the axioms of equality in our
case consist of: the “true” formula x = x, the axiom of extensionality (in
the form x = y=(P(x)= P(y)) with P(x)=z € x), and the “true” for-
mula x=y=(xE€z=y €z) (in which P(x)=x € z), since the only
atomic formulas P(x) in L Set are z € x and x € z. 0O

5.4, Remark. In most computations, we shall only need to know the values
of |X € Y|l and || X = Y|, and not the precise definition of the objects X
and Y. In this connection, we note that the following two binary relations
on V% coincide (as easily follows from (III) and the axiom of extensional-

ity):
(@) | x=Yl=1,
(b)VZ e V5, 1Zex|=|ZeY]|.
We shall call such X and Y equivalent and write X ~ Y.
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6 The axioms of pairing, union, power set,
and regularity are “true”

6.1. The computations in the previous section show that the basic work in
ensuring that the axiom of extensionality is “true” was already incorpo-
rated into the definition of the universe V2. The explicit formulas for
recursively computing ||[X € Y| and ||X = Y| reflected so many special
properties of inclusion and equality that together they guaranteed that the
general axiom must hold.

In order to verify several of the other axioms, we must essentially define
in V® analogues of certain operations in ¥, such as forming the unordered
pair, the set of subsets, and so on. These operations can be defined by
means of formulas in L;Set. However, recall that, if P(x) is a formula with
one free variable x, then the x* € V for which P(x)(£) is true generally
form a class and not a set.

It will be convenient to introduce the auxiliary notion of a “random
class” in V2. Using this concept, we shall often construct the operations in
V% in two stages: the value of the operation will at first be a random class,
which we then “identify” with a random set using a separate argument.

6.2. Definition.
(a) A random class is any function W on V2 with values in B which
satisfies the following extensionality condition:

WXINIX=Y|=W(Y)AIX=Y]|, forallX,YeV?:

(b) A random class W 1s said to be equivalent to a random set
Z € V8 (written W~ Z) if

W(X)=|XeZ| forallX eV?

6.3. EXAMPLES AND REMARKS

(a) For any random set Z the function X+ ||X € Z|| is extensional by
(II), §5, and so is a random class. By analogy, we often write || X € W/||
instead of W (X) if W is any random class.

(b) There exist random classes which are not equivalent to random sets.
One such example is the “universal” random class W (X) =1 for all X. (If
W were a set, we would have | W € W| = 1, contradicting the regularity
axiom, which will be shown to be “true” below.)

(¢) Let W be a random class, and let & be any ordinal. We define the
element W, € V2, | as follows:

D(W,)=VE W,_= the restriction of W to V.2 (as a function; see 4.2).
It is easy to see that for all X € V'® we have:

[X € Wl <lIX € W]. (1)
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6 The axioms of pairing, union, power set, and regularity are “true”

In fact, let U € V2 and X € V2. We then have
IX=U|IANW (U)=|X=U|AWU)=|X=U|AW(X)< W(X),
so that, by (6), §4:

X € Wel = ué/vs“X: UIANW,(U)<s W(X)=|X e W]|.

We shall often show that some class W which we are interested in is
equivalent to a set by finding an ordinal a such that W~ W,_. It is clear
from (1) that this follows if | X € W] < || X € W,]| for all X.

(d) Let W, W,, and W, be random classes. Then W', W, A\ W,, and
W\ W, are also random classes, since the extensionality condition is
trivially verified for these functions. We shall write W, n W, and W, U W,
instead of W, A W, and W \/ W,, respectively.

(e) Let W be a random class, and let X be a random set. We show that
W N X is equivalent to a random set. More precisely, if D (X) = V2, then
WNX~(WnX), In fact, for any Y € V2 it follows by (6), §4 that:

HYE(WﬂX)a|I=Ué/VBHU= YIANU € (W nX),l

= \/B(IIU= YIAIU e WIDAIU € X||
vew

= V [[U=Y|AIY EW|AIUEX]|
vevp

=[[YEWIAIY EX|=]YEWnX]|.

This result implies that the separation axioms are “true” (see subsection
4.9(b) of Chapter II).

The following proposition gives a general method for constructing
random classes.

6.4. Proposition. Let P(x, y,,...,y,) be a formula which does not contain
any free variables besides x,y, ...,y,. Let Y,,..., Y, € VE be fixed.
Then the function

X W(X)=|P(X.Y,..., Y,

is a random class.

Intuitively, W contains every set X with probability equal to the
probability that P(X, ..., Y,) is true. ¥Y,,..., Y, play the role of “con-
stants.”

Proor. We use the “truth” of the following axiom of equality:
IVxVyy - Wy, (x=y=(P(x,y, .., 2) =Py -yl =1

If we take a point £ in the interpretation class which assigns to x,y,

127



III The continuum problem and forcing

Ypy----y, thevalues X, Y, Y,, ..., Y, respectively, then we find that
[X=Y[<|P(X,Yy,....Y)I'VIP(Y. Y ..., V)l
or
[X=YIAW(X)<W(Y),

so that W is extensional. O
We are now ready to verify the axioms.

6.5. Proposition. The axiom of pairing
VuVwIxVz(zExez=u\/z=w)
is “true.”
ProOF. By definition we have
IVu Vw Ax Vz(z Exez=u\/z=w)|

=/U\/u>\X//Z\||Z€X©Z=UVZ=W||.

Hence it suffices if, for any U, W € V2, we find an X € V2 such that for
all Z e VB

1ZeX|=IZ2=UlVIZ=W]. ()

For fixed U and W we consider the right side of (2) as a function of Z.
This function is a random class X by Proposition 6.4, since it corresponds
to the formula z = U\/z = W. We show that it is equivalent to a random
set; more precisely, if U, W € V£, then X ~ X,. By the remark at the end
of 6.3(c), it suffices to verify that for all Z

IZ EX||<|IZ € X,

But since |U € X, || = 1, it follows by formula (II) in §5 that
1Z=Ull<|Z€X,

and similarly
1Z=Wl<iZ € X,

which gives the required inequality. O

6.6. Proposition. The axiom of union
Vx Ay Vu(Az(uEzANzEX)2uUEY)
is “true.”

Proor. We fix X € V'® and construct a random set Y such that for all
ueve

UeY|=|32(UezAz€X)I=_\V IVEZIAIZEX].

evs
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6 The axioms of pairing, union, power set, and regularity are “true”

By Proposition 6.4, there exists a random class Y with this property. We
show that if D(X)= V5, then Y~ Y,. Since D(Y,)= D(X), we have

WWevi= \ U=Z|AlIZE VYL
ZeD(X)
-V w=zia( vV 1ZEZIAIZ EXI) ()
ZeD(X) z,eVve

We show that the inner sum in (3) may be taken only over Z, € D(X). In
fact, for any Z,

1ZieXll=_V IZ,=ZlAIlZ€X],
Z,ED(X)

L E
so that
IZeZWNIZ,€Xll= NV NIZEZ|NIZi=ZNIZ, € X|
2€ED(X)
<V NZeZ)NIZEX]|. (4)
Z,eD(X)

Taking this into account, in (3) we first sum over Z for fixed Z, € D (X).
Since D(Z,) < D(X), the sum over Z € D(X) coincides with the sum
over Z € D(Z)), and is equal to ||U € Z,||. Thus,

IUEYl=_\ [UEZ|AIZ €X]
Z,ED(X)
= V IIUEZ|ANIZ eX]=]|UETY],
Z,evh
by (4). a

6.7. Proposition. The power set axiom
Vx 3y Vz(zCxezEy)
is “true.” (Recall that z C x is abbreviated notation for Vu(u €z=>u €
x).)
ProoF. We fix X € VV'? and construct a Y € V% such that for all Z € V2

IZeY|=lZcX|= /\ IUEZ|'VI|UEX|.
vevs

By Proposition 6.4, the right side defines Y as a random class. We show
that, if D(X)= V2, then Y~ Y,

a+1*
We first construct the element Z, € V2, | by considering Z as a random

class. By (1) we have |[U € Z,||' > ||U € Z||; so that
IZEY| <2, EY| =24 E Yourull- (%)
If we prove the inequality

1ZEY|<|Z.=Z] (6)
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III The continuum problem and forcing

it will immediately follow from (5) and (6) that ¥ ~ Y, ,, since, by (II), §5,
IZEY<Z, €EYorrlNIZy=ZI| < | Z € Y, ll-

It remains to verify (6).

First let U € D(X)= V2 Then |[U€ Z,||=||U € Z|), so that |[U €
Z,oU e Z|' =0, and a fortiori

HWwex|A|lUezZ,sUeZ| =0 7

As U varies, the left side of (7) determines a random class of the form
X N W, where W corresponds to the formula — (v € Z, & u € Z). Since
D(X)= V2, it follows by 6.3(c) that X N W~ (X n W),. But, according
to (7), (X N W), is the zero function on V2. Thus, |U € X N W| =0 for
all U € V2. Consequently,

[UEX|<|U€EZ,sUeZ| forall U (8)

To prove (6), we now write the left and right-hand sides separately (using
the “truth” of the formula Z, = ZeVu(u € Z,<u € Z)):

1zevl= /\ IIVEZIV|UEX],
vev

1Z,=2l= N IVeZsUEZ|
U

evE

It is now clear that the inequality in (6) holds term by term. In fact, for
|U € X|| this follows from (8), and for || U € Z ||’ it follows because

IUEZ,sUeZ|=(UcZ]|'VIUEZ]|)
NIV EZIVIU e Z|),
and |U € Z|/ < |U € Z,|| forall U. O

6.8. Proposition. The regularity axiom
Yx(y(y Ex)=(yExAy N x=0))

is “true.”’

Proor. We fix X € V2. The axiom with the “constant” X in place of x has
the form R= S. We must show that ||R= S|} = 1. It suffices to prove that
IRIIANSI =0, where

HR||=Y\/ Iy e xi, €

evs
Isi= NIy exiv( V IZeYIAIZeX]). (10
Yevs zZevs
We suppose that ||R||A||S|"=a+#0, and show that this leads to a
contradiction. It follows from (9) and (10) that there exists a ¥ € V2 such
that || Y € X || A a# 0. We choose Y to have the least rank of any element
with this property.
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7 The axioms of infinity, replacement, and choice are “true”

It is again clear from (9) and (10) that

lYeX||na< V IZEY|NIZ € X]|.
Zev?

On the right we may sum only over Z € D (Y), without changing the value

of the sum. Hence, there must exist a Z € D(Y) such that

I1Z € X|AIIY € X[[Aa#0,

so that ||Z € X || Aa#0. But the rank of Z is less than the rank of Y,
contradicting the choice of Y. O

7 The axioms of infinity, replacement,
and choice are “true”

7.1. We begin this section by describing two more methods for construct-
ing random sets. The first of them, which is very widely used, solves the
following problem. Suppose we are given a set of objects X; € Vi iel,
and a set of elements g, € B. We would like to construct a random set X
which contains each X, with probability g,, but such an X might not exist.
However, it turns out that there always exists an X with ||X; € X || > g for
all / € I; moreover, there exists a least X with this property.

7.2. Lemma.
(2) Under the conditions in 1.1, the function X of Y

IYex|=\Vanly=x| (1)

is a random class X which is equivalent to a random set. In addition,
X, € X|| > a, and, if X’ is any random class such that | X; € X'|| > g
for each i, then |Y € X'|| 2 ||Y € X || for all Y.

We shall say that X (or the equivalent random set) collects the X, with
probabilities a,.

(b) Under the same conditions, the function Z of Y

1Y €Z|=VanlY €X| )

is a random class Z which is equivalent to a random set. If we also have
a, \a,=0 for all i # j, then | Z = X||| > a;, and, for any random class Z'
such that ||Z' = X,|| > a; for each i, we have ||Y € Z'|| > ||Y € Z|| for all
Y

We shall say that Z glues together the X, with probabilities a;.

PrROOF. It is easily verified that the functions Z and X defined by formulas
(1) and (2) are extensional.
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III The continuum problem and forcing

There exists an ordinal a such that X, € ¥ for all i. We show that
X~X,and Z~ Z,. For any Y € V5 we have:

IIYEXHII=Ué/ Y =UIANIU € X,

v e

V VIY=UlAaA|IIU=X|
vevp i

vV VaAlY=XIAIU=X|I

vevp
If we consider the term with U = X; on the right, we obtain a; A || Y = X||
<Y EX,|, so that |[Y €X| <||Y €X,| by (1), and the assertion
follows by 6.3(c).
Similarly, for any Y € V# we have

V VIY=UlAaA|UEX|]
vevp i

1Y € Z|

V \I/a,-/\IIYEX,-H/\IIY= Ull.

vevyt

Since Y €X,|l=\/yeps |Y=U|AIY €X,|, it follows that a, A\ || Y
EX| <Y €Z,], and [|Y € Z| <||Y € Z,|| by (2).

Now let X’ and Z’ be any random sets with the properties in (a) and
(b). It is clear from (1) that || X, € X|| > a,. If || X, € X'|| > a, for each i,
then |[Y €X' =/, [Y=UIAIUEX >\, [|Y=X|AIX, €X|
> 1Y € X by (1).

Similarly, if ; A a; =0 for i # j, then it is clear from (2) that g, A || Y €
Zl|l=aN|Y € X,|, so that

GN\IIX;=Z|=VaN|Y EX; oY EZ|=q
Y
and ||X;= Z|| > a,. Now if |X; = Z’|| > a, for each i, then
N"YezZ| =Y eZ|AIZ" = X,
=Y EXINIZ =Xl 2 e AIlY € X,

sothat |[YEZ'| > ||Y € Z]. O

Here is our first application of Lemma 7.2(a):
7.3. Proposition. The axiom of infinity

Ix(@ Ex AVu(u € x={u} € x))
is “true.”

PrOOF. When we proved that the axiom of pairing is “true,” we con-
structed for any U, W € V& an element Z € V® (unique up to equiva-
lence) with the property that |Y € Z||=||Y=U\N Y= W| forall Y.Itis
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7 The axioms of infinity, replacement, and choice are “true”

natural to let { U, W}# denote this element Z, and let {U}? = (U, U}

We now verify the axiom of infinity. We set X, =@, X, =
{@Y8, ..., X,={X,-,}% ... . Further, we let X € V2 be the element
which collects all the X, with probabilities 1. We show that

Il eEXAVu(ue X={u}eX)|=1.

It is obviously sufficient to prove that for all U € ¥'? we have |U € X || €
1{U}? € X|, that is, by (1):

ZollU=Xll < VZoli{u)"= X,

In fact, since the formula u = x> {u} = {x} is “true,” and since X,
{X;)%, it immediately follows that

1U=XI=I{U}"= X\l O

7.4, Lemma. Let W be a random class. Then there exists an element X € V8
such that

\V W(U)=W(X).
vev

The left-hand side may be represented in the form ||[x(x € W)|| = | W
# || Hence, intuitively, the lemma says that the probability that a given
class is nonempty coincides with the probability that a suitable element
occurs in it.

Proor. We first show that there exists an ordinal 8 such that
Vyeps WU)= \/Ue,,a W(U). In fact, let a = \/UEV’ W (U), and
for any a € B set y(a) = mln(ﬂa > a) (or y(a) 0 if a, % a for all v).
Finally, set 8 =sup,., v(a). Thxs is an ordinal, because B is a set. If
¥ > B, then a, > a5 by monotonicity, but we cannot have a, > a; because
of the choice of 8.

Thus, let \/, W(U) = \/UEV} W (U). We index all the elements in
Vé’ by an initial segment of ordinals (by the axiom of choice!): V;‘ =
{U,}aer We set

a,= W(Ua)A(Y\</aW(UY))’, a€El

Obviously a, A a, = 0 for a # y. Using Lemma 7.2(b), we glue together the
sets U, with probabilities a,(a € I). We obtain a set X satisfying the
conditions || X = U,|| > a, > W (U,). Using the extensionality of W, we
find:

W(X) >\ IX = UIAWU) = W(U)= \V/ W(U). O

vevs
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III The continuum problem and forcing

7.5. Proposition. The replacement axiom
VzVu(Vx(x €u=3ly P(x,y, 7))
=3Iw Vy(y ewsIx(x EuAP(x, y, 5))))

is “true” (here 2 =<z, ..., z,)).

PrOOF. We fix a “vector” Z=<(Z,, ..., Z,> with Z, € V'® and an element
U € V2. We shall write P(x,y) instead of P(x,y, Z). If we write the
axiom with the “constants” Z; and U in the form R= S, then we must
prove that ||[R=§|| = 1.

7.6. The special case: If ||R]| =1, then ||S]| = 1.

We first show how the general case follows from this special case. Let
a € B, and let B, denote the set {b € B|b < a}. The operations on B
induce a Boolean algebra structure on B, with unit element 1, = a. The
natural mapping B— B,: b} b A a is a homomorphism. An easy induc-
tion on a allows us to construct a surjective map of universes V2 — V&
X X, such that for all X, Y € V*? we have

X, EY =X EY[Aa,

X, =Yl =l X=TY||Aa.
Now, to prove Proposition 7.5 from the special case 7.6, we choose
a=||R||. Then ||R||, = 1,, so that 7.6 implies that ||S||, = 1,. This means

that ||.S]| > a, and hence |[R= S| = 1. (Here we have used 7.6 in V%;
clearly ||R||, = ||R,||, where R, is the obvious image of R in V%))

7.7. PROOF OF 7.6. The condition ||R|| = | means that for any X € V&

X € Ul <3y P(X,»)]. (3)
To show that ||S|| = 1, it is sufficient if, given U € V%, we find a W € V8
such that for all Y € V2

Iy e WH=X‘é/VBHXEUH/\I|P(X, Y)II. (4)
It follows from 6.5 that the formula (4) defines W as a random class. We
find an ordinal « such that W~ W,.

To do this, we first note that in (4) we may take the sum only over

Iy ew|= Xe‘})/(u) X € UIAIP(X, Y) &)

(the argument here 1s the same as after formula (3) in §6). We now apply
Lemma 7.4 to the class W, (Y)=||P(X, Y)|. It follows that for every
X € D(U) there exists an element Y, € V% such that

13y P(X, )l = lIP(X, Yy ). (6)
(Because ||3!y P(X, y)| < |3y P(X,y)|, we can use these Yy to estimate
|IX € Uj| with the help of (9) below.)
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7 The axioms of infinity, replacement, and choice are “true”

We set ay = min(a|Y, € V2), and
a =sup(ay|X € D(U)),

and then show that W~ W, for this a. We must verify that ||Y € W/ <
|Y € W, for every Y. By (5) and by formula (II) in §5, this follows if for
any X € D(U) we have

X € UIAIPX, Y)Y = YA Yx €W, (M
In the first place, by (3), (6), (5), and the definition of a, we have:
X EUI<|IYy EW| =Yy €W,

Further, we consider the following formula, which is “true” because it is
deducible from the logical axioms and the axioms of equality:

Vx(3ly P(x, ) AP (x, 1) A P(x,9) =21 = ).
We thereby obtain:
13y P(X, A NP X, YIIANPX, Y )l < (1Y = Y. ®
Finally, it follows from (3), (8), and (9) that
X € UIAIP(X, V) <Y =Y IAIYx €W,
i.e., we have (7). O

7.8. Proposition. The axiom of choice is “true.”

ProoOF. Recall that the axiom of choice has the form Vx 3y(Q A RASA
T), where

Q denotes: Vz(z € y=>3u Iw(z =u, w))) (“y is a binary relation”);

R denotes: Vu Vw, Vw,({u, wD) Ey A{u, wyy Ey=w,=w,) (“y is a
function™);

S denotes: Vu(Iw(u, w) Ey)=>u € x) (“the domain of definition of y
is contained in x”);

T denotes: Vu(u# @ Au€ x=3Iw(w € uA{u, w) €y)) (“the domain
of definition of y coincides with x, and y chooses one element
from each nonempty element of x).

We fix X € V2 and construct the corresponding “choosing function” Y.
To do this:

(a) We index D (X) by an initial segment of ordinals:
D(X)={U,U,...,U, ...}, a€l

(b) For each U, € D(X) we use Lemma 7.4 to find an element W, € V2
such that

IW. €Ul = \/ IIWEU.
wev
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(¢) For each a € 1 we set
a =V € XIA( N U €XI'VIIUs = U,I).
(d) Finally, we let Y denote the set which collects the “ordered pairs”

(U,, W, with probabilities a,, « € I. Here, of course,
. wE={{U}:, (U, W}?)} .

The idea of this construction is as follows. In each U, we choose the
element W, which belongs to U, “with the largest possible probability.”
We then put together the graph of the choice function Y from the “pairs”
{U,, W,>®, where we take the pairs in the order they are indexed, but only
include a given (U,, W,>® to the extent that U, “was not already consid-
ered earlier as belonging to X.”

We now substitute X and Y in place of x and y in the axiom of choice,
and, letting Q, R, S, and T now denote the corresponding formulas with
these constants, we show that ||Q| =||R]||=||S||=||T] =1. We shall
constantly be using the following formula, which follows from (1) and the
definition of Y;

1ZEY|=\VIIZ={U, Wl N\ a,. (10)

7.9. [|Q]| = 1. By the definition of Q, this means that for all Z € V2 we
must have
1Z € Y] <\, 11Z=<U W,

but this is obvious from (10).

7.10. ||R|| = 1. By the definition of R, for any U, W', W? € V2 we must
prove the inequality

KU, WHE EYIAIKU, WHE e Y| < ||W'= W
Using (10), we rewrite the left-hand side in the form
VU= UINIW! = W Aa, NIU=Ugl NIW? = Wl A ag.

Since [|U= UlIAIIU= Ugll < ||U, = Ugl| and ||U, = Ugl Nay,Nag=0
for a # B (see the definition of a,), it follows that in this sum we need only
consider the terms with « = 8. But such a term is < |W!'= W, |A||W?=
W, || < |W'= W?|, as required.

7.11. ||S|| = 1. This 1s equivalent to the inequality
KU, WHP Y| <|U€€X].
But, by (10), the left-hand side equals

VIU=UlAIW =Wl Na, < VIIU=U AW = W NIIU, € X

<SVIU=UlAIU. €EXI= U €X|i.
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7 The axioms of infinity, replacement, and choice are *“true”

7.12. || T|| = 1. We must prove that for any U € V*#
IUeX|IANIU#g| < W\/VBHWE UIAIKU, WP eY|. (11)
S

We first show that it suffices to prove (11) for U € D (X), i.e,, for all U,
a € 1. In fact, suppose (11) holds for all U,. Then for U € V2 we have

IV eX|=VIU=UlAIU.EX],

Iv+al=_ \ IUEeUl
uevt

€

and hence

IUEXIAINU+0I = a\/U U, EUINANU=UJINNU, € Xl
<a\/u U € UINIU= U INIU, € X (by (IIT) in §5)
= VU #BINIU=UlAlIU € Xl

<V NWEUINIKUS WYPEYAIU=T,|  (by (11) for )

a, WevV
< \u{ W € UIINIKU, W)P €Y.
(Here we used the fact that
KU, WYP EYIIAIU=U,|
= \B/IIU.x = UsINIW = Wil Nag \[[U= U,
SV NU= Ul AW = Will Aot
= KU, WP €Y|l.)
Thus, it remains to prove (11) for U,, a € I. Now
U, # ol =13w(we U,)| = \p{ 1w e Ull=I[W,€EU,l-
Hence (11) ¢an be rewritten
U € XINIW, € Ul < \,{ IW € UAIKU, WHP €Y. (12)

We prove this by induction on a. (12) is obvious for a = 0, since the term
on the right with W = W, coincides with the left-hand side. Suppose (12)
holds for 8 < a.

By the definition of a,, we have

10 € Xl =,V ( N/ IUs €EXINIYs = Uyl )
If we substitute this formula in the left-hand side of (12), we find that we
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III The continuum problem and forcing

must prove two inequalities:
a, N\|IWe € Uyl < \/ W € UJINIKU, WP €Y, (13)
1Us €EXIIANINUp= U, |I/\|IW € Ul
< \”{ KU, WY>PEYIANIW EU,|, forall B<a. (14)

The inequality (13) is obvious if we look at the term on the right with
W = W,. The inequality (14) reduces to the induction assumption as
follows. The left-hand side of (14) is:

< Ug e XIINIUg = UlINIIW, € Ugll
<Ug € X|ANUg = UJINIIWg € Ugll

by the definition of Wjy. Further, using the induction assumption and
extensionality, we have

1Up = UINNUp € X|I N[ Wp € U]l
< \V{ W € Ugli A IIKUg, WHF € YIIAIIUg = U,

< \u{ W € UJINIKU, WP €Y,

which completes the verification of the axiom of choice. O

8 The Continuum Hypothesis is “false” for suitable B

8.1. We recall (Lemma 7.2(a)) that the set X € V2 collects the sets {X;}
with probabilities ¢, € BG € 1) if |Y € X[ =\/, |Y = X,|| Ag, forall ¥,
Using this deflmuon we can introduce a useful canonical mapping 7 r
from the von Neumann universe J to the universe V2. Let @ = ¢ (recall
that || Y €@l =0 for all Y), and, if § has already been defined for all
sE V,, then for t € V,, | we let { collect all the § for s € t with probabilities
1. In other words, for any Y € V2

1Y €di=\/ 1Y =3l (1)

(Here the collecting set [ is not uniquely defined, i.e., it is only defined
modulo equivalence, so that, strictly speaking, we should also specify the
rank of 7, for example by saying that it equals the rank of ¢. This is not
essential for us, however, since we shall only be interested in the truth
functions, which do not change if we replace an object by an equivalent
object.)

We now formulate some additional conditions (besides completeness)
which must be imposed on the Boolean algebra B for the purposes of this
section. Recall that w, is the first infinite ordinal, w; is the first ordinal
having cardinality > w,, and w, is the first ordinal having cardinality > w,.
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8 The Continuum Hypothesis is “false” for suitable B

8.2. Conditions on B.

(a) The countable chain condition, which, we recall, says that if we have
a family of elements {g}, i € /, such that g, 70 and q; A a; =0 for i #,
then 7 is at most a countable set.

(b) There exists a family of elements b(n, «) € B, indexed by the set
wy X w,, with the following property: if Z(a) collects the elements 7,
n € w,, with probabilities b(n, a), then ||Z(a)=Z(B)||=0 for a8,
a, f € w,.

The second condition has the following intuitive meaning. It is easy to
see that ||Z(a) C &l =1. In fact, this equality is equivalent to
IVx(x € Z(a)=x E&y)|| =1, i€, tO

VXEVE X EZ(a)| <X Edyl,

and this is obvious from (1), since &, collects the 7 with probabilities 1, and
Z (a) collects the 2 with probabilities b(n, a) < 1.

Thus, condition (b) means that we can find w, distinct subsets Z (a) C
@y so that, in the naive sense, we have card % (&) > w,. This is precisely
the negation of the Continuum Hypothesis. Of course, it is still necessary
to show that this intuitive idea can be made into a proof.

8.3. The existence of B with the required properties. We could use measur-
able sets, as in §3. However, in order to vary our approach, and to prepare
for §9, we give another construction. Let {0, 1} be the discrete two-point
space, let J =wy X w,, and let S = {0, l}’ be the space of vectors whose
coordinates are indexed by I and take the values 0 or 1. We introduce the
direct product topology on §. It has a standard basis of open sets
consisting of all vectors whose coordinates indexed by a finite subset § c I
are fixed.
If a C S, we set

a’ = the complement of the closure of a in S,

and we set a” = (&')’. Sets a C § with a” = a are called regular open sets in
S.

8.4. Theorem. Let

B={acC S|a" =a},
aNb=anb,
aN/b=(aub)".
Then B with the operations /\, \/, and ' is a complete Boolean algebra

with the countable chain condition, and \/, a;= (U, a))” for any family
of ;€ B.

We omit the proof (see J. B. Rosser, Simplified Independence Proofs,
Academic Press, New York, 1969, Chapter 2).
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8.5. Lemma. Under the conditions in 8.4, let

b(n, a) = the set of vectors with 1 in the (n, &) place,
and let Z () be defined as in 8.2(b). Then
1Z(a)=Z(B)II=0, fora+*p.

ProOF. By formula (5) in §4, we have
1Z(@=Z(B)I = A\ (b(n. @)V b(n). B) A(b(n. @) Ab(n, B)).

The right side can only become larger if we replace A by N and \/ by U;
here the primes ’ coincide with the ordinary complements. If we had
[1Z(a) = Z(B)]] # O, then there would exist an element X in the standard
basis of the topology (see the beginning of 8.3) which is contained in

() (b(n, @) N b(n, B)) U (B(n, a) N b(n, BY).

But this intersection consists of all vectors having the same (n, a)-coordi-
nate and (n, )-coordinate for all »n, while all coordinates except for a
finite number range freely in any element X of the standard basis of the

topology. O
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