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Introd uction 

Homotopy theory is the study of the invariants and properties of topological 
spaces X and continuous maps f that depend only on the homotopy type of the 
space and the homotopy class of the map. (We recall that two continuous maps 
f, g : X -t Yare homotopic (f ""' g) if there is a continuous map F : X x I ~ Y 
such that F(x,O) = f(x) and F(x, 1) = g(x). Two topological spaces X and Y 

f 
have the same homotopy type if there are continuous maps X ~ Y such that 

9 

f g ""' id y and g f ""' id x .) The classical examples of such invariants are the 
singular homology groups Hi(X) and the homotopy groups 7l"n(X) , the latter 
consisting of the homotopy classes of maps (sn, *) -t (X, xo). Invariants such 
as these play an essential role in the geometric and analytic behavior of spaces 
and maps. 

The groups Hi(X) and 7l"n(X), n 2: 2, are abelian and hence can be rational
ized to the vector spaces Hi(X; Q) and 7l"n(X) Q9 Q. Rational homotopy theory 
begins with the discovery by Sullivan in the 1960's of an underlying geomet
ric construction: simply connected topological spaces and continuous maps be
tween them can themselves be rationalized to topological spaces XQI and to maps 
fQl : XQI -t YQI, such that H*(XQI) = H*(X; Q) and 7l"*(XQI) = 7l"*(X) Q9 Q. The 
rational homotopy type of a CW complex X is the homotopy type of XQI and the 
rational homotopy class of f : X -t Y is the homotopy class of fQl : XQI -t YQI, 
and rational homotopy theory is then the study of properties that depend only 
on the rational homotopy type of a space or the rational homotopy class of a 
map. 

Rational homotopy theory has the disadvantage of discarding a considerable 
amount of information. For example, the homotopy groups of the sphere S2 
are non-zero in infinitely many degrees whereas its rational homotopy groups 
vanish in all degrees above 3. By contrast, rational homotopy theory has the 
advantage of being remarkably computational. For example, there is not even a 
conjectural description of all the homotopy groups of any simply connected finite 
CW complex, whereas for many of these the rational groups can be explicitly 
determined. And while rational homotopy theory is indeed simpler than ordinary 
homotopy theory, it is exactly this simplicity that makes it possible to address 
(if not always to solve) a number of fundamental questions. 

This is illustrated by two early successes: 

• (Vigue-Sullivan [152]) If M is a simply connected compact riemannian 
manifold whose rational cohomology algebra requires at least two generators 
then its free loop space has unbounded homology and hence (Gromoll- Meyer 
[73]) M has infinitely many geometrically distinct closed geodesics . 

• (Allday-Halperin [3]) If an r torus acts freely on a homogeneous space G / H 
(G and H compact Lie groups) then 

r ::; rankG - rankH , 
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as well as by the list of open problems in the final section of this monograph. 
The computational power of rational homotopy theory is due to the discovery 

by Quillen [135] and by Sullivan [144] of an explicit algebraic formulation. In 
each case the rational homotopy type of a topological space is the same as the 
isomorphism class of its algebraic model and the rational homotopy type of a 
continuous map is the same as the algebraic homotopy class of the correspond
ing morphism between models. These models make the rational homology and 
homotopy of a space transparent. They also (in principle, always, and in prac
tice, sometimes) enable the calculation of other homotopy invariants such as the 
cup product in cohomology, the Whitehead product in homotopy and rational 
Lusternik-Schnirelmann category. 

In its initial phase research in rational homotopy theory focused on the identi
fication of rational homotopy invariants in terms of these models. These included 
the homotopy Lie algebra (the translation of the Whitehead product to the homo
topy groups of the loop space OX under the isomorphism 11'+1 (X) ~ 1I.(OX», 
LS category and cone length. 

Since then, however, work has concentrated on the properties of these in
variants, and has uncovered some truly remarkable, and previously unsuspected 
phenomena. For example 

• If X is an n-dimensional simply connected finite CW complex, then either 
its rational homotopy groups vanish in degrees 2': 2n, or else they grow 
exponentially. 

• Moreover, in the second case any interval (k, k + n) contains an integer i 
such that 1Ii(X) 0 Q =I- O. 

• Again in the second case the sum of all the solvable ideals in the homotopy 
Lie algebra is a finite dimensional ideal R, and 

dim Reven :S cat XQ . 

• Again in the second case for all elements a E 1Ieven(OX) 0 ((Jl of sufficiently 
high degree there is some f3 E 11. (OX)0((Jl such that the iterated Lie brackets 
[a, [a, ... , [a, f3] . .. J] are all non-zero. 

• Finally, rational LS category satisfies the product formula 

in sharp contrast with what happens in the 'non-rational' case. 

The first bullet divides all simply connected finite CW complexes X into two 
groups: the rationally elliptic spaces whose rational homotopy is finite dimen
sional, and the rationally hyperbolic spaces whose rational homotopy grows ex
ponentially. Moreover, because H. (OX; ((Jl) is the universal enveloping algebra 
on the graded Lie algebra Lx = 11 .(OX) Q9 ((Jl, it follows from the first two bullets 
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that whether X is rationally elliptic or rationally hyperbolic can be determined 
from the numbers bi = dim Hi (OX; Q), 1 :s i :s 3n - 3, where n = dim X. 
Rationally elliptic spaces include Lie groups, homogeneous spaces, manifolds 
supporting a co dimension one action and Dupin hypersurfaces (for the last two 
see [77]). However, the 'generic' finite CW complex is rationally hyperbolic. 

The theory of Sullivan replaces spaces with algebraic models, and it is exten
sive calculations and experimentation with these models that has led to much of 
the progress summarized in these results. More recently the fundamental article 
of Anick [11] has made it possible to extend these techniques for finite CW com-

plexes to coefficients Z (:1 ' ... , pi,) with only finitely many primes invested, and 

thereby to obtain analogous results for H. (OX; IF'p) for large primes p. Moreover, 
the rational results originally obtained via Sullivan models often suggest possible 
extensions beyond the rational realm. An example is the 'depth theorem' origi
nally proved in [54] via Sullivan models and established in this monograph (§35) 
topologically for any coefficients. This extension makes it possible to generalize 
many of the results on loop space homology to completely arbitrary coefficients. 

However, for reasons of space and simplicity, in this monograph we have re
stricted ourselves to rational homotopy theory itself. Thus our monograph has 
three main objectives: 

• To provide a coherent, self-contained, reasonably complete and usable de
scription of the tools and techniques of rational homotopy theory. 

• To provide an account of many of the main structural theorems with proofs 
that are often new and/or considerably simplified from the original versions 
in the literature. 

• To illustrate both the use of the technology, and the consequences of the 
theorems in a rich variety of examples. 

We have written this monograph for graduate students who have already en
countered the fundamental group and singular homology, although our hope is 
that the results described will be accessible to interested mathematicians in other 
parts of the subject and that our rational homotopy colleagues may also find it 
useful. To help keep the text more accessible we have adopted a number of 
simplifying strategies: 

- coefficients are usually restricted to fields lk of characteristic zero. 

- topological spaces are usually restricted to be simply connected. 

- Sullivan models for spaces (and their properties) are derived first and only 
then extended to the more general case of fibrations, rather than being 
deduced from the latter as a special case. 

- complex diagrams and proofs by diagram chase are almost always avoided. 



x Introduction 

Of course this has meant, in particular, that theorems and technology are not 
always established in the greatest possible generality, but the resulting saving in 
technical complexity is considerable. 

It should also be emphasized that this is a monograph about topological spaces. 
This is important, because the models themselves at the core of the subject are 
strictly algebraic and indeed we have been careful to define them and establish 
their properties in purely algebraic terms. The reader \vho needs the machin
ery for application in other contexts (for instance local commutative algebra) 
will find it presented here. However the examples and applications throughout 
are drawn largely from topology, and we have not hesitated to use geometric 
constructions and techniques v;hen this seemed a simpler and more intuitive 
approach. 

The algebraic models are, however, at the heart of the material we are pre
senting. They are all graded objects \vith a differential as well as an algebraic 
structure (algebra, Lie algebra, module, ... ), and this reflects an understanding 
that emerged during the 1960's. Previously objects \vith a differential had often 
been thought of as merely a mechanism to compute homology: we now know 
that they carry a homotopy theory which is much richer than the homology. 
For example, if X is a simply connected CW complex of finite type then the 
work of Adams [1] shows that the homotopy type of the cochain algebra C*(X) 
is sufficient to calculate the loop space homology H. (OX) which, on the other 
hand, cannot be computed from the cohomology algebra H*(X). This algebraic 
homotopy theory is introduced in [134] and studied extensively in [20]. 

In this monograph there are three differential graded categories that are im
portant: 

(i) modules over a differential graded algebra (dga) , (R, d). 

(ii) commutative cochain algebras. 

(iii) differential graded Lie algebras (dgl's). 

In each case both the algebraic structure and the differential carry information, 
and in each case there is a fundamental modelling construction which associates 
to an object A in the category a morphism 

such that H (y) is an isomorphism (y is called a quasi-isomorphism) and such 
that the algebraic structure in .M is, in some sense "free". 

These models (the cofibrant objects of [134]) are the exact analogue of a free 
resolution of an arbitrary module over a ring. In our three cases above we find, 
respectively: 

(i) A semi-free resolution of a module over (R, d) which is, in particular a 
complex of free R-modules. 
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(ii) A Sullivan model of a commutative cochain algebra which is a quasi
isomorphism from a commutative cochain algebra that, in particular, is 
free as a commutative graded algebra. (These cochain algebras are called 
Sullivan algebras.) 

(iii) A free Lie model of a dgl, which is a quasi-isomorphism from a dgl that is 
free as a graded Lie algebra. 

These models are the main algebraic tools of the subject. 
The combination of this technology with its application to topological spaces 

constitutes a formidable body of material. To assist the reader in dealing with 
this we have divided the monograph into forty sections grouped into six Parts. 
Each section presents a single aspect of the subject organized into a number 
of distinct topics, and described in an introduction at the start of the section. 
The table of contents lists both the titles of the sections and of the individual 
topics within them. Reading through the table of contents and scanning the 
introductions to the sections should give the reader an excellent idea of the 
contents. 

Here we present an overview of the six Parts, indicating some of the highlights 
and the role of each Part within the book. 

Part I: Homotopy Theory, Resolutions for Fibrations and P-Iocal 
Spaces. 

This Part is a self-contained short course in homotopy theory. In particular, 
§O is merely a summary of definitions and notation from general topology, while 
§3 is the analogue for (graded) algebra. The text proper begins with the basic 
geometric objects, CW complexes and fibrations in §l and §2, and culminates 
with the rationalization in §9 of a topological space. Since CW complexes and 
fibrations are often absent from an introductory course in algebraic topology we 
present their basic properties for the convenience of the reader. In particular, 
we construct a CW model for any topological space and establish Whitehead's 
homotopy lifting theorem, since this is the exact geometric analogue, and the 
motivating example, for the algebraic models referred to above. 

Then, in §6, we introduce the first of these algebraic models: the semifree 
resolution of a module over a differential graded algebra. These resolutions are 
of key importance throughout the text. Now modules over a dga arise naturally 
in topology in at least two contexts: 

• Iff: X ---t Y is a continuous map then the singular cochain algebra C*(X) 
is a module over C* (Y) via C* (1) . 

• If X x G ---t X is the action of a topological monoid then the singular 
chains C*(X) are a module over the chain algebra C*(G). 

In §7 we consider the first case when f is a fibration, and use a semifree 
resolution to compute the cohomology of the fibre (when Y is simply connected 
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with homology of finite type). In §8 we consider the second case when the action 
is that of a principal G-fibration X ---t Y and use a semifree resolution to 
compute H. (Y). Both these results are due essentially to J .C. Moore. 

The second result turns out to give an easy, fast and spectral-sequence-free 
proof of the Whitehead-Serre theorem that for a continuous map f : X ---t Y 
bet\veen simply connected spaces and for Jk C rQ, H.(f; Jk) is an isomorphism 
if and only if ".(f) :;y Jk is an isomorphism. \Ve have therefore included this as 
an interesting application, especially as the theorem itself is fundamental to the 
rationalization of spaces constructed in §9. 

Aside from these results it is in Part I that we establish the notation and 
conventions that will be used throughout (particularly in §O-§5) and state the 
theorems in homotopy theory we will need to quote. Since it turned out that 
with the definitions and statements in place the proofs could also be included 
at very little additional cost in space, we indulged ourselves (and perhaps the 
reader) and included these as welL 

Part II: Sullivan Models 
This Part is the core of the monograph, in which we identify the rational 

homotopy theory of simply connected spaces with the homotopy theory of com
mutative cochain algebras. This occurs in three steps: 

• The construction in §10 of Sullivan's functor from topological spaces X to 
commutative cochain algebras APL(X), which satisfies C*(X) ::::: ApL(X). 

• The construction in §12 of the Sullivan model 

(A1l,d) ~ (A,d) 

for any commutative cochain algebra satisfying HO(A, d) = Jk. (Here, fol
lowing Sullivan ([144]), and the rest of the rational homotopy literature, 
A V denotes the free commutative graded algebra on V.) 

• The construction in § 17 of Sullivan's realization functor which converts 
a Sullivan algebra, (A V, d), (simply connected and of finite type) into a 
rational topological space IAV, dl such that (A V, d) is a Sullivan model for 
APL(IAV,dl)· 

Along the way we show that these functors define bijections: 

{ rational homotopy types } 
of spaces 

and 

{ homotopy classes of } 
maps between rational spaces 

{ isomorphism classes of } 
minimal Sullivan algebras 

{
homotopy classes of } 

maps between minimal 
Sullivan algebras 



Rational Homotopy Theory XIll 

where we restrict to spaces and cochain algebras that are simply connected with 
cohomology of finite type. 

Sullivan's functor ApL \'iaS motivated by the classical commutative co chain 
algebra ADRUV1) of smooth differential forms on a manifold. In §ll we review 
the construction of ADROV1) and prove Sullivan's result that ADRU\1) is quasi
isomorphic to APL(M; JR). This implies (§12) that they have the same Sullivan 
model. 

The rest of Part II is devoted to the technology of Sullivan algebras, and to 
geometric applications. 'Ve construct models of adjunction spaces, identity the 
generating space \/- of a Sullivan model \vith the dual of the rational homotopy 
groups and identity the quadratic part of the differential with the dual of the 
Whitehead product. Here the constructions are in § 13 but some of the proofs 
are deferred to §15. 

In §14 we construct relative Sullivan algebras and decompose any Sullivan 
algebra as the tensor product of a minimal and a contractible Sullivan algebra. 
In §15 we use relative Sullivan algebras to model fibrations and show (applying 
the result from §7) that the Sullivan fibre of the model is a Sullivan model for 
the fibre. Finally, in §16 this material is applied to the structure of the homology 
algebra H*(OX; lk) of the loop space of X. 

Part III: Graded Differential Algebra (Continued). 
In §3 we were careful to limit ourselves to those algebraic constructions needed 

in Parts I and II. Now we need more: the bar construction of a cochain algebra, 
spectral sequences (finally, we held off as long as possible!) and some elementary 
homological algebra. 

Part IV: Lie Models 
In Part I we introduced the first of our algebraic categories (modules over 

a dga) , in Part II we focused on commutative cochain algebras and now we 
introduce and study the third category: differential graded Lie algebras. 

In §21 we introduce graded Lie algebras and their universal enveloping algebras 
and exhibit the two fundamental examples in this monograph: the homotopy 
Lie algebra Lx = 1f*(OX):8: lk of a simply connected topological space, and the 
homotopy Lie algebra L of a minimal Sullivan algebra (A V, d). The latter vector 
space is defined by Lk = Hom (Fk+l, lk) with Lie bracket given by the quadratic 
part of d . .\loreover, if (A F, d) is the Sullivan model for X then Lx ~ L. 

In §22 we construct the free Lie models for a dgl, (L, d). 'Ve also construct (in 
§22 and §23) the classical homotopy equivalences 

(L, d) "0 C*(L, d) and (A., d) "0 L(A.d) 

between the categories of dgl's (\\lith L = L>l of finite type) and commutative 
cochain algebras (with simply connected coho~ology of finite type). In particular 
a Lie model for a free topological space X is a free Lie model of L(A Ii, d) , where 
(A V, d) is a Sullivan model for X. 
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Given a dgl (L, d) that is free as a Lie algebra on generators Vi of degree ni 

we show in §24 how to construct a CW complex X with a single (ni + 1 )~cell 
for each Vi, and whose free Lie model is exactly (L, d). This provides a much 
more geometric approach to the passage algebra ---* topology then the realization 
functor in § 17. 

Finally, §24 and §25 are devoted to Majewski's theorem [119J that if (L, d) is a 

free Lie model for X then there is a chain algebra quasi-isomorphism U(L, d) ~ 
C * (fiX; 1k) which preserves the diagonals up to dga homotopy. 

Part V: Rational Lusternik-Schnirelmann Category 
The LS category, cat X, of a topological space X is the smallest number m 

(or infinity) such that X can be covered by m + 1 open sets each of which is 
contractible in X. In particular: 

• cat X is an invariant of the homotopy type of X. 

• If cat X = m then the product of any m + 1 cohomology classes of X %s 
zero. 

• If X is a CW complex then cat X ::; dim X but the inequality may be 
00 

strict: indeed for the wedge of spheres X = V Si we have dim X = 00 and 
i=l 

cat X = 1. 

The rational LS category, cato X, of X is the LS category of a rational CW 
complex in the rational homotopy type of X. 

Part V begins with the presentation in §27 of the main properties of LS cat
egory for 'ordinary' topological spaces. We have included this material here for 
the convenience of the reader and because, to our knowledge, much of it is not 
available outside the original articles scattered through the research literature. 

We then turn to rational LS category (§2S) and its calculation in terms of 
Sullivan models (§29). A key point is the Mapping Theorem: Given a continuous 
map f : X ---* Y between simply connected spaces, then 

1i * (f) Q9 Ql injective :::::} cato X ::; cato Y . 

In particular, the Postnikov fibres in a Postnikov decomposition of a simply 
connected finite CW complex all have finite rational LS category. (The integral 
analogue is totally false!). 

A second key result is Hess' theorem (Mcat = cat), which is the main step in 
the proof of the product formula cat XiQ x YiQ = cat XiQ + cat YIQ in §30. Finally, 
in §31 we prove a beautiful theorem of Jessup which gives circumstances under 
which the rational LS category of a fibre must be strictly less than that of the 
total space of a fibration. The "0:, (3" theorem described at the start of this 
introduction is an immediate corollary. 
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Part VI: The Rational Dichotomy: Elliptic and Hyperbolic Spaces 
AND Other Applications 

In this Part we use rational homotopy theory to derive the results referred 
to at the start of this introduction (and others) on the structure of H*(f2Xilk), 
when X is a simply connected finite CW complex. These are outlined in the 
introductions to the sections, and we leave it to the reader to check there, rather 
than repeating them here. 

As the overview above makes evident, this monograph makes no pretense of 
being a complete account of rational homotopy theory, and indeed important 
aspects have been omitted. For example we do not treat the iterated integrals 
approach of Chen ([37], [79], [145]) and therefore have not been able to include 
the deep applications to algebraic geometry of Hain and others (e.g. [80], [81], 
[101]). Equivariant rational homotopy theory as developed by Triantafillou and 
others ([151]) is another omission, as is any serious effort to treat the non-simply 
connected case, even though at least nilpotent spaces are covered by Sullivan's 
original theory. We have not described the Sullivan-Haefliger model ([144], [78]) 
for the section space of a fibration even in the simpler case of mapping space, 
except for the simple example of the free loop space XS' , nor have we included 
the Sullivan-Barge classification ([144], [18]) of closed manifolds up to rational 
homotopy type. And we have not given Lemaire's construction [108] of a finite 
CW complex whose homotopy Lie algebra is not finitely generated as a Lie 
algebra. 

Moreover, this monograph does not pursue the connections outside or beyond 
rational homotopy theory. Such connections include the algebraic homotopy the
ory developed by Baues [20] following Quillen's homotopical algebra [134]. There 
is no mention in the text (except in the problems at the end) of Anick's extension 
of the theory to coefficients with only finitely many primes inverted ([11]) and its 
application to loop space homology,and there is equally no mention of how the 
results in Part VI generalize to arbitrary coefficients [56]. And finally, we have 
not dealt with the interaction with the homological study of local commutative 
rings [14] that has been so significantly exploited by Avramov and others. 

We regret that limitations of time and energy (as well as our publisher's insis
tence on limiting the number of pages!) have made it necessary simply to refer 
the reader to the literature for these important aspects of the subject, in the 
hope that what is presented here will make that task an easier one. 

In the last twenty five years a number of monographs have appeared that 
presented various parts of rational homotopy theory. These include Algebres 
Connexes et Homologie des Espaces de Lacets by Lemaire [109], On PL de 
Rham Theory and Rational Homotopy Type by Bousfield and Gugenheim ([30]), 
Theorie Homotopique des Formes Differentielles by Lehmann ([107]), Rational 
Homotopy Theory and Differential Forms by Griffiths and Morgan ([72]), Homo
topie Rationnelle: Modeles de Chen, Quillen, Sullivan by Tame ([145]), Lectures 
on Minimal Models by Halperin [82], La Dichotomie Elliptique - Hyperbolique 
en Homotopic Rationnelle by Felix ([50]), and Homotopy Theory and Models 
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by Aubry ([12]). Our hope is that the present work will complement the real 
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agencies (Centre National de Recherche Scientifique, FNRS, National Sciences 
and Engineering Research Council of Canada, North Atlantic Treaty Organiza
tion) all provided essential financial support. To all of these organizations we 
express our appreciation. 

Above all, however, we wish to express our deep gratitude and appreciation 
to Lucile Lo, who converted thousands of pages of handwritten manuscript to 
beautifully formatted final product with a speed, accuracy, intelligence and good 
humor that are unparalleled in our collective experience. 
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Part I 

Homotopy Theory, Resolutions 
for Fibrations, and P-Iocal Spaces 



o Topological spaces 

In this section we establish the notation and conventions for topological spaces 
that will obtain throughout the monograph. 

A k-space (not to be confused with the symbol Jk used to denote coefficient 
ring) is a Hausdorff topological space X such that A C X is closed if and only 
if A n C is closed in C for all compact subspaces C eX. If X is any Hausdorff 
topological space then X k is the set X equipped with the associated k-space 
topology: A is closed in X k if and only if A n C is closed in C for all compact 

subspaces C of X. It is easy to see that X k is a k-space, X k ~ X is a continuous 
bijection and X = X k if and only if X itself is a k-space. Moreover, all metric 
spaces are k-spaces. A continuous map f : X ~ Y is proper if f- 1 (C) is 
compact whenever C is. It is an easy but important observation that: a proper 
continuous bijection between k-spaces is a homeomorphism. 

Henceforth in this book we shall restrict attention to k-spaces. 
Consistent with this convention we need to modify some (but not all) of the 

standard topological constructions as follows [44]. 

• Subspaces. 
If A is a subset of a k-space X then we assign to A the k-space topology 

associated with the 'ordinary' subspace topology. 

• Products. 
If {Xa} is a family of k-spaces we assign to the set theoretic product IT Xa 

a 
the k-space topology associated to the ordinary product topology. If Z is any 
k-space then a map f : Z ~ IT Xa is continuous if and only if each 'component' 

fa : Z ~ Xa is continuous. 
Note also that if X is locally compact and Y is a k-space then the k-space 

topology in X x Y is just the ordinary topology. 

• Quotients. 
A quotient space Y of X is a surjection p : X ~ Y such that U c Y is 

open if and only if p-1 (U) is open. We only consider quotients Y such that Y 
is Hausdorff and X is a k-space; in this case Y is automatically a k-space. The 
product p x p' : X x X' ~ Y x Y' of two such quotient maps is itself a quotient 
map. (This follows easily from a lemma of Whitehead [44] which states that 
p x id : X x K ~ Y x K is a quotient map if K is locally compact.) 

• Mapping spaces. 
If X and Yare topological spaces then Y x (as a set) is the set of continuous 

maps from X to Y. The compact-open topology in this set is the topology whose 
open sets are the arbitrary unions of finite intersections of subsets of the form 
UC with U open in Y and C compact in X. As usual we assign to Y x the k
space topology associated with the compact-open topology. Then for k-spaces 
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x, Y, Z the exponential law asserts that a homeomorphism ZYxX ~ (ZY)X 
is given by f H F, with F(x)(y) = f(y,x). In particular, the evaluation map 
yX x X ---7 Y, (g, x) H g(x), is continuous. 

The following conventions from topology will be used without further refer
ence. 

• The length of v E jRk is denoted by Ilvll. 

• The unit interval I = [0,1]. 

• The unit n-cube In = I x ... X I C jRn. Thus the boundary, aIn, consists 
of the points x E In with some Xi E {O, I}. 

• The n-dimensional disk D n c jRn is defined by D n = {x E jRn Illxll :S I}. 

• The n-dimensional sphere sn c jRn+ 1 is defined by sn = {x E jRn+l I 
Ilxll = I}. Thus sn = aDn+l is the boundary of the (n + I)-disk. 

• A pair of topological spaces, (X, A) is a space X and a subspace A c X 
(with the k-space topology described above). 

A map of pairs, 'P : (X, A) -+ (Y, B) is a continuous map 'Px : X -+ Y 
restricting to 'P A : A -+ B. If Z is another space then 

(X, A) x Z = (X x Z, A x Z). 

• Given continuous maps X -4 Y ? Z the fibre product X x Y Z C X x Z 
is the subspace of points (x, z) such that f(x) = g(z). Projection defines a 
commutative square 

X xy Z -- Z 

X --+-. Y 
f 

and any pair of continuous maps 'P : W ---7 X,1/;: W ---7 Z such that 
f'P = g1jJ defines a continuous map ('P,1jJ) : W ---7 X Xz Y. 

• A based (or pointed) space is a pair (X, xo); Xo E X is the basepoint. A 
based map is a map 'P : (X, xo) -+ (Y, yo). 

• The disjoint union of spaces X", is denoted by U X",. The wedge of based 

'" spaces (X""x a ) is the based space Vo:X", = UXo:/U{xo:}. Based maps 
0: 0: 

'P: (X,xo) ---7 (Z,zo) and 1iJ(Y,yo) ---7 (Z,zo) define a map ('P,7./J) : X V 

Y ---7 Z. 
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• Suppose given a pair (Z, B) and a continuous map f : B ~ X. We 
denote by X U j Z the quotient space of X U Z obtained by identifying 
b,...., f(b), bE B. It is called the adjunction space obtained by attaching Z 
to X along f. 

• Given A c X the based space (XIA, [AJ) is obtained by identifying the 
points of A to a single point [A], and giving X I A the quotient topology. 
Thus XIA = * Uj X, where f : A ~ * is the constant map. 

• The suspension, ~X, of a based space (X, xo) is the based space X x 
II (X x {O, I} U {xo} x I). 

• Continuous maps f, g : X ~ Yare homotopic (f ,...., g) if there is a continu
ous map F : X x I ~ Y such that F(x, 0) = f(x) and F(x, 1) = g(x), x E 
X. F is a homotopy from f to g. Being homotopic is an equivalence 
relation; the equivalence class of f is its homotopy class and the set of 
homotopy classes of maps is denoted by [X, Y]. 

• A homotopy equivalence is a continuous map f : X --t Y such that for 
some continuous map g : Y --t X we have f g ,...., id y and g f ,...., id x. In 
this case we write f : X -=+ Y and we say g is a homotopy inverse for f. 
If there is a homotopy equivalence from X to Y then X and Y have the 
same homotopy type and we write X :::: Y. If the constant map X --t pt 
is a homotopy equivalence then X is contractible. 

• A based homotopy between f, g : (X, xo) ~ (Y, Yo) is a continuous map 
F : (X,xo) x I ~ (Y,Yo) such that F(x,O) = f(x) and F(x, 1) = g(x). 
This is an equivalence relation and the class of f is its based homotopy 
class. The set of based homotopy classes is denoted by [(X, xo), (Y, Yo)]. 
A based homotopy equivalence is a continuous map f : (X, xo) --t (Y, Yo) 
such that for some continuous map g : (Y, yo) --t (X, xo), fg and gf are, 
respectively, based homotopic to id y and idx . 

• Two continuous maps f, g : X ~ Y which restrict to the same map r.p in a 
subspace A c X are homotopic reI A if there is a homotopy H from f to 
g such that H(a, t) = r.p(a) for all a E A, tEl; H is a homotopy reI A. 

i 
• A subspace AC-..-tX is a retract of A if there is a map p : X ~ A (the 

retraction) such that pi = idA. It is a strong deformation retract if also 
ip ,...., idx reI A. 



1 CW complexes, homotopy groups and cofibra
tions 

We begin this monograph by introducing the main objects of study in homo
topy theory: CW complexes and their homotopy groups. The topological spaces 
(manifolds, polyhedra, real algebraic varieties, ... ) that arise in geometric con
texts are all CW complexes. 

Homotopy groups are groups 1fn(X), n ::::: 1, defined for any topological space, 
and abelian for n ::::: 2. A weak homotopy equivalence is a continuous map f such 
that 1f * (I) is an isomorphism, and we establish two important results of JHC 
Whitehead: 

• There is a weak homotopy equivalence from a CW complex to any topolog
ical space, and 

• A continuous map from a CW complex lifts, up to homotopy, through a 
weak homotopy equivalence. 

It follows that two CW complexes connected by a chain of weak homotopy equiv
alences have the same homotopy type. 

This section is organized into the following topics (We note however that, aside 
from the definition of suspension, topics (d) - (f) will not be needed until Part 
V): 

(a) CW complexes. 

(b) Homotopy groups. 

(c) Weak homotopy type. 

(d) Cofibrations and NDR pairs. 

(e) Adjunction spaces. 

(f) Cones, suspensions, joins and smashes. 

(a) CW complexes. 
Let f : U S:;-l --* X be a continuous map from a disjoint union of (n - 1) 

c> 
spheres S-:;-l to a topological space X. We denote by Y = X Uf (U D~) the 

c> 
quotient space obtained from the disjoint union Xli (ll D~) by identifying x E 

c> 
S:;-l with f(x) E X. The image e~ of D~ in Y is called an n-cell and this 
construction is called attaching n-cells to X along an attaching map f. Thus 
Y = Xu (Uc> e~). The map F;: : D~ --* Y is called the characteristic map of 
the n-cell; by definition it restricts to f : S-:;-l --* X. 
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A filtered space is a topological space X together with an increasing sequence 
X-I C Xo C Xl C of closed subspaces such that 
X = U Xn and X has the weak topology determined by the X n· 

n>-l 
\'Ve are now ready to introduce CW complexes, and we do so in the following 

sequence of basic definitions: 

• Let A be a topological space (necessarily a k-space by our convention). A 
relative CW complex is a pair (X, A) in which X = U Xn is a filtered 

n>-l 
space, A = X-I, and there are specified identifications-and maps 

and 

In: II s~ -7 X n , X n+1 n > O. 
e>EIn +1 

Xn is called the n-skeleton of (X, A). A CW complex is a relative C\V 
complex of the form (X, ¢). 

• If X is a C\'V complex and X = X n, some n, then X is n-dimensional or 
finite dimensional. If X has finitely many n-cells for each n, then X has 
finite type. 

• A based CW complex is a pair (X, xo) with X a CW complex and Xo E Xo. 

• A cellular map I : (X, A) ---+ (Y, B) between relative CW complexes is a 
continuous map such that I: Xn ---+ Yn, n 2: -1. 

• A subcomplex of (X, A) is a pair (Y, A) in \vhich Y is a subspace of X that 
is a union of A and of cells of X. ~ote that (Y, A) and (X, Y) are then 
also relative C\'V complexes. 

We begin with some elementary remarks about the topology of C\V complexes. 
Let (X, A) be a relative CW complex with characteristic maps Fe> : D',;. ---+ X n . 

Then I : X ---+ Z is continuous if and only if 11.4 and 10 F:: are continuous for 
all nand o. 

~ext, if Xe> ED',;. - S',;.-l we may identify (D~ - {xe>}, S~-l) = 

(5;:-1 x (0,1],5',;.-1 x {l}). Fix such an Xe> for each cell, and write Xn = 
X n - 1 Uf (Ue> D~), where I = {fe>} : U 5;:-1 ---+ X n - 1 is the attaching map. 
There is then an automatic procedure for extending a subset 0 C X n - 1 to 
v C Xn: set 
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If 0 is open in X n - I then V is open in X n . Iterating this procedure ad infinitum 
produces U c X such that each Un X k is open; i.e., U is open in X. Clearly 
Un Xn = 0, and we call U the canonical extension of 0 away from the xo:. 

Proposition 1.1 Let (X, A) be a relative CW complex. Then 
(i) X is Hausdorff, and hence automatically a k-space. 
(ii) Every compact subset of X is contained in the union of A and finitely 

many cells. 
(iii) If A = 0 then X has a universal covering space. 
(iv) If A is normal so is X. 

proof: (i) If x,y E Xn - X n- I (n ~ -1) then there are disjoint open neigh
bourhoods O(x),O(y) c Xn - X n- I . The canonical extensions to open sets 
U(x), U(y) C X are disjoint. The general case is proved in the same way. 

(ii) Let C c X be compact and choose Xo: E Fo: (D~ - S~-l) so Xo: E C 

if C n Fo: (D~ - S~-l) =I- 0. For each j3 extend Fj3 (D~ - S3- 1 ) c Xn to an 

open set Uj3 C X, as described above and in the same way extend A = X-I to 
an open set U A. This defines an open cover of X and Xo: is in U 0: and in no 
other U j3. Since C is compact C C U A U U 0:1 U ... U U O:k' It follows that only 

k 

xO: ll ••• ,xO: k are in C, i.e., C C Au U Fo: (D~~). 
1 

(iii) For each n-cell, Fo: (D~ - S~-I) is an open subspace of 
Xn - X n- I . Extend this to an open subset U:; of X away from the origins 
of the other cells. It is easy to see that any loop in U:; is homotopic to the 
constant loop, and that the U;: cover X. Hence the standard construction [68] 
provides a universal cover. 

(iv) Suppose C and C f are disjoint closed subspaces of X. We define a 
continuous function h X ---+ I such that hi c 0 and 

hlc' = 1. Indeed assume by induction that h is constructed in X n . (Start the 
induction with n = 0 using the fact that A is normal.) If Fo: : D~+I ---+ X n+1 

is the characteristic map of an (n + 1 )-cell with attaching map f 0: : sn ---+ X 
define ho: : F;;l(C U Cf) Usn ---+ I by ho: = 0 in F;;l(C), ha = 1 in F;;l(C f) 
and ho: = h 0 fa in sn. Since D~+I is normal we may extend ho: to a continuous 
function ha : D~+I ---+ I (Tietze extension theorem [REF]). The ho: extend the 
construction to h : X n+1 ---+ I. 0 

Example 1 Complex projective space. 
cpn is the space of complex lines through the origin in Cn+!. s2n+! is the 

unit sphere in en+!. Thus assigning to x E S2n+! the complex line Cx, we 
define a map f : s2n+! -+ cpn. The reader is invited to check that cpn+1 = 
cpn U f e2n+2. This exhibits cpn as a CW complex with one cell in each even 
dimension 2k, 0 :::: k :::: n. The CW complex Cpoo is obtairied as the union, 

o 
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Example 2 Wedges. 
The wedge of based CW complexes, (XQ" x",), 

skeleton is the wedge of the n-skeleta of the X",. 

Example 3 Products. 

7 

is a CW complex whose n
O 

Let X and Y be CW complexes. Denote the cells of X and Y respectively by 
e~ and if3, and let ¢J", : D~ ---t X and 1/Ji3 : Dfl -+ Y be the characteristic 
maps for e~ and 1';. 

The product of the CW complexes X and Y is the space X x Y with the 
following CW structure. The cells of dimension k are the products e~ x if3 with 
n + m = k, and characteristic maps 

The attaching map of e~ x if3 is the restriction of the previous map to aDn+m ~ 
(aDn x Dm) U (Dn x aDm). 

If X or Y is a finite CW complex then it is compact, and so the topology in 
X x Y is the ordinary product topology. 0 

Example 4 Quotients and suspensions. 
The quotient XIA for a relative CW complex (X, A) is a CW complex whose 

cells are the cells of X together with the additional O-cell, [AJ. In particular, the 
suspension of a based CW complex is again a based CW complex. 0 

Example 5 Cubes and spheres. 
The unit interval is a CW complex with three cells: {O}, {1} and I. Thus the 

cube In inherits a (product) CW structure, and aln is a sub complex. Note that 
the CW complex Inlaln coincides, as a CW complex, with the suspension of 
I n- l laIn-I. 

On the other hand, assign to sn the basepoint * = (1,0,0, ... ,0). The map 
e : sn-l X I ---t sn, represented by the picture 

e 

"" induces a based homeomorphism I:Sn - l ---=+ sn. Identify 1101 = Sl via the 
map t f--t e2rrit . Then we identify inductively 

rn lam. 
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This exhibits sn as the CW complex * U en. 
There is also a homeomorphism 

(]In+1 ~ sn, n 2:: 1, 

defined by translating In+l in ]E.n+l to centre it at the origin, and then projecting 
the boundary onto sn (explicitly, x r-+ (x - a)/llx - all, where a = (~, ... , ~ )). 
The corresponding base point of (] In+ 1 is (1, ~, ... , ~) . - - 0 

Example 6 Adjunction spaces. 
Suppose B is a sub complex of a G\V complex Z and 1 : B --+ X is a cellular 

map into a third C"\V complex. The adjunction space X U f Z is a CW complex 
whose cells are the cells of X together with the cells of the relative complex 
(Z, B). 0 

Example 7 Mapping cylinders. 
Any continuous map cp : X --+ Y between CW complexes may be converted 

(up to homotopy) to the 'inclusion of a subcomplex' as follows: First, using 
Theorem 1.2 immediately below, replace cp by a homotopic cellular map 7/J. Then 
attach X x I to Y along X x {O} via the map .lj; to obtain the mapping cylinder, 
Y U,;, X x I: 

Since 1jJ is cellular, Y U",. (X x I) is a C'~T complex (Example 6). Moreover 
it contains Y as a strong deformation retract (push down the cylinder) and the 
inclusion of X as the sub complex X x {I} is homotopic through the cylinder to 

o 

Next we turn to properties useful in homotopy theory. Since 
(Dn x I, Dn x {O} U sn-l X I) ==' (Dn x I, Dn x {O}), any continuous map from 
D n x {O} U sn-l X I automatically extends to D n x I. Now suppose (X, A) is a 
relative CW complex, 1 : X --+ Y is continuous and <I> : A x I ---t Y is a homotopy 
from 11A to h. Then (by induction on the skeletal 1 U <I> : X x {O} U A x I --+ Y 
extends to a homotopy X x I ---t Y from 1 to a map g. This homotopy extension 
property for relative CW complexes is important in the proof of 
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Theorem 1.2 (Cellular approximation) [160} Any continuous map 
f : (X, A) ---t (Y, B) between relative CW complexes is homotopic reI A to a 
cellular map. 

proof: Step (i) Linear approximation. Suppose 'P : Z -+ IRk is a continuous 

map from a finite n-dimensional CW complex. Write Zr = Zr-l U fr (g D~ ) 
and let or,a be the origin (centre) of D~. Any point in D~ has the form tv with 
v E S~-l, and 0 :::; t :::; 1. The linear approximation of 'P is the linear map 
e : Z -+ IRk defined inductively by: 

e = 'P in Zo, and e(tv) = tefr(v) + (1- t)'P(Or,o,) , tv E e~. 

An n-dimensional fiat in IRk is a subset of the form v + W where v E IRk and 
W C IRk is an n-dimensional subspace. An obvious induction shows that 1m e 
is contained in a finite union of n-dimensional flats. It is also contained in any 
convex set C such that C :) 1m 'P. Finally, let 10 > 0 and suppose for all cells e~ 
that II'Px - 'P(or.a)11 < 10, X E e~. Since 

Ile(tv) - 'P(tv)11 < tllefr(v) - 'Pfr(v)11 + tll'Pfr(v) - 'P(or,a)11 + 
1I'P(or,a) - cp(tv) II 

< Ilefr(v) - 'Pfr(v)11 + 210, 

it follows by induction that Ilex - 'Pxll < 2nE, x E Z. 
Step (ii) The case (X,A) = (nu, sn-l). Since Dn is com

pact, f : Dn -+ Y has its image in some finite subcomplex Z:) B. If dim Z :::; n 
there is nothing to prove. Otherwise write Z = Z' U er for some subcomplex 
Z' :) B and some r > n. We construct 9 ~ f reI sn-l so that 9 : Dn -+ 
Z'Uj3 (Dr - {z}) for some z in the interior of Dr. But sr-l is a strong deformation 
retract of Dr - {z} and so Z' is a strong deformation retract of Z' Uj3 (Dr - {z}). 
Hence we can find g' : Dn -+ Z' with g' ~ 9 reI sn-l. After finitely many steps 
we have f' ~ f reI sn-l and l' : D n -+ Yn· 

It remains to construct g. For this we may as well suppose that Y = B Ue Dr, 
r> n. Identify (Dn,sn-l) = (In,oIn). The Nth subdivision of In is obtained 
by dividing I into N equal subintervals, regarding these as the I-cells of a CW 
complex structure on I and giving In the product CW complex structure. This 
is illustrated for n = 2 by 

The cells of In will be called little cubes. 



10 1 CW complexes, homotopy groups and cofibrations 

By setting Ilbll = 1, bEE, we extend the standard length function in Dr to 

II-II: Y --7 I. Choose !V so large that for any little cube Ier: 1111x111-lllxzlll < 
16n: X1,X2 E Ier· The union of the little cubes satisfying Illxll > t, x E Ier , is a 
sub complex L of In, and or c L. Similarly the little cubes satisfying Ilfxll < ~, 
x E Ier are a sub complex K, and r = L U K. 

Regard 11K as a map into the disk Dc Dr of radius ~. Since D is convex the 

linear approximation of I I K is a continuous map f) : K --7 D. Choose h : Y --7 I 
so that h(y) = 0 if Ilyll 2': i and h(y) = 1 if Ilyll :s: t. Define <I> : In X I --7 Y by 

{ 
th(fx)f)x + (1 - th(fx» Ix , x E K 

<I> (x, t) = 
Ix , x E L . 

This is well defined because h(fx) = 0 if x E L. Put g(x) = <I>(x, 1). 
Next recall that 1m f) is contained in a finite union of n-dimensional fiats in 

IRr. Since n < r there is a point z E Dr - 1m f) such that Ilzll < 210. If x E L 

then Ilgxll = Illxll > t· If x E K and h(fx) -::j:. 1 then Illxll > t. As noted above 
in (i), IIf)x - Ixll < io: = i· Hence Ilgxll 2': Illxll - th(fx)llf)x - Ixll > ·}o· If 
x E K and h(f x) = 1 then gx = f).T:. In each case gx -::j:. z and so z rt. 1m g. 

Step (iii) The geneT·al case. \Ve construct a sequence of 
maps In : X --7 Y such that fa = r and for n 2': 1, In(Xn-d C Yn- 1, and 
In ~ In-1 reI X n- Z . Indeed given In we use Step (ii) in each n-cell of X to 

construct a homotopy IjJ reI X n-1, from In I to a map g : X n --7 Y~. use the 
Xn 

homotopy extension property to extend IjJ U In: X n x I U X x {O} --7 Y to a 
map <I>n : X x I --7 Y and put In+1 (x) = <I>n(x, 1). 

Finally, let co < C1 < ... < cn < ... be a sequence increasing from 0 = co 
to 1. Let Hn : X x [cn, cn+1] --7 Y be a map such that Hn(x, cn) = In(x), 
Hn(x,cn+d = fn+1(x) and Hn(x,t) = fn(x), x E X n - 1. Define H: X x I --7 Y 
by 

{ 
Hn(x, t) 

H(x,t) = ( ) 
In X 

cn :s: t :s: C,,+l 

X E X n - 1 , t 2': Cn . 

Then H is a homotopy reI A from I to a cellular map. o 

(b) Homotopy groups. 
For any based space (X, xo), we write 

to denote the set of based homotopy classes of continuous maps I : (sn, *) --7 

(X, xo). \"'hen n = 0, 'ifo(X, xo) is the set of path components of X, pointed 
by the path component of Xo. By convention this basepoint is denoted by O. If 
'ifo(X, xo) = {O} then X is called path connected. 

For n 2': 1 , 'if" (X, xo) is a group. 11,1 ultiplication is defined via the identification 
I:Sn- 1 = sn in Example 5 above: if [I], [g] E 'ifn(X,xo) are represented by 
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1, g : (~sn-l, *) -t (X, xo) then the product [1] * [g] is represented by 1 * g : 
(~sn-l, *) -t (X, xo), where 

{ 
1(x,2t) 

U * g) (x, t) = g(x, 2t _ 1) 
O::;t::;~ 
l<t<l ' 
2 - -

x E sn-l, t E I. 

The constant map c : sn -+ Xo represents the identity of 7fn(X,XO)' A 
continuous map cp : (X, xo) -t (1', Yo) induces the group homomorphisms 7f n( cp) : 
7fn(X,xo) -t 7fn(Y,yo) given by 7fn(cp)[j] = [cp 0 1]; 7fn(CP) depends only on the 
based homotopy class of cp. 

Definition The groups 7fn(X, xo) are the homotopy groups of (X, xo). 

If (X, *) and (1', *) are based topological spaces, then the projections of X x l' 

on X and on l' define group isomorphisms: 7fn(X X 1', *) ~ 7fn (X, *) x 7fn(Y, *). 
We shall often identify these groups via this isomorphism. 

The identification sn ~ In / DIn of Example 5 identifies maps (sn, *) -+ 
(X,xo) with maps (In,8In) ---+ (X,xo), and then 

When n 2': 1 we could use the first coordinate tl instead of tn to define a sec
ond product, 1*g. Suppose n 2': 2. Then a simple check shows that there are 
homotopics reI DIn: 

1 * g rv U*c) * (6g) U * c)*(c * g) rv 1*09, 

and 
09 * 1 rv (6g) * U*c) = (c * 1)*(09 * c) rv 1*09. 

Hence 7fn (X, xo) is abelian for n 2': 2. 
We recall Hopf's calculation of 7fi(sn), i ::; n; the first assertion is a corollary 

of the cellular approximation Theorem 1.2. 

Theorem 1.3 [159} 
(i) For i < n, 7fi(sn) = O. 
(ii) For n 2': 1, 7f n (sn) = Z, with 1 E Z represented by the identity map of sn. 

o 

Given a path w : I -+ X and a map 1 : (sn, *) -t (X, w(O)) we obtain a map 
1 . w : (sn, *) -t (X, w(l)) as illustrated in the picture 

collapse right hand 

Circles to pOinLS 

, " 

f \ ,_------------_1, W 
,~ ___ • -------7- X 
\~/ 
\ ! 

~/ 
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This correspondence defines an isomorphism 7l"n(X, w(O)) ~ 7l"n(X, w(l)), and 
this isomorphism depends only on the homotopy class of w reI {O, I}, d. [159]. 

Thus if X is path connected the groups 7l"n(X, x), x E X, are all isomorphic. If 
they vanish for 1 ~ n ~ r then X is r-connected (when r = 1, X is called simply 
connected). When X is simply connected the isomorphisms 7l"n(X, x) ~ 7l"n(X, y) 
are independent of the choice of path, and we write simply 7l"n(X). 

(c) Weak homotopy type. 
A continuous map f : Y -+ Z is a weak homotopy equivalence if 7l"0(f) and 

each 
7l"n(f): 7l"n(Y,y) -+ 7l"n(Z,f(y)), Y E Y, n 2: 1, 

are bijections. Two spaces X and Y have the same weak homotopy type if they 
are connected by a chain of weak homotopy equivalences 

X ~ Z(O) -+ ... ~ Z(n) -+ Y. 

A cellular model for a topological space Y is a CW complex X, together with 
a weak homotopy equivalence f : X -+ Y. 

Theorem 1.4 (Cellular models theorem) [160] 

(i) Every space Y has a cellular model f : X -+ Y. 

(ii) If l' : X' -+ Y is a second cellular model then there is a homotopy equiv

alence 9 : X ~ X' such that l' 0 g"'" f· 

To prove this theorem one needs the fundamental 

Lemma 1.5 (Whitehead lifting lemma) Suppose given a (not necessarily com
mutative) diagram 

A~Y 

ill f 
X -----+ Z , 

!j; 

together with a with a homotopy H : A x 1-+ Z from 'l/Ji to fcp. Assume (X, A) 
is a relative CW complex and f is a weak homotopy equivalence. 

Then cp and H can be extended respectively to a map <1> : X -+ Y and a 
homotopy K: X x 1-+ Z from 'l/J to f 0 <1>. 

proof: As in the proof of Step (iii) in Theorem 1.2 it is enough, by induction on 
the cellular structure, to consider the case that A = Xn and X = Xn+l. Then 
working one cell at a time reduces us to the case that A = sn, X = Dn+l and i 
is the standard inclusion. In this case cp : (sn, *) -+ (Y, Yo) and f 0 cp ,..., 'l/J I Sn ,..., 
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the constant map. Since! is a weak homotopy equivalence, 'P itself is homotopic 
to the constant map via a homotopy H'. 

This produces the map 0" : sn x I U Dn+l x {a, I} --+ (Z, !(Yo)), described in 
the following picture (for n = 1) 

Since sn x IUDn+l x {D, I} is homeomorphic to sn+l and since! is a weak homo
topy equivalence, there is a map T : (Sn+!, *) ---* (Y, Yo) such that 7rn+l (f)[T] = 
[(Ttl. 

Recall the homeomorphism L;sn ~ sn+l. This identifies T as a map T 

(sn x I, sn x {D, I}) ---* (Y, Yo). Define <P : Dn+l ---* Y to be the map 

<l> 
-----;;.-" y 

Then the map "IJ! : sn x I U Dn+l x {D, I} ---* Z given by 

---I~"'Z 

H 

may be redrawn as 
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~ 

[~fO't ..._------ ..... _ I 
/ , 

1_____ I cr 

~ 
Hence 'l1 represents [a] * [f 0 T] = 0, and so it extends to K : Dn+l x I ---+ Z, as 
desired. 0 

Corollary 1.6 If X is a CW complex and f : Y ---+ Z is a weak homotopy 
equivalence then composition with f induces a bijection f# : [X, Y] ---+ [X, Z] of 
homotopy classes of maps. Similarly, if (X, xo) is a pointed CW complex then 
f# : [(X, xo), (Y, Yo)] ---+ [(X, xo), (Z, f(yo))] is a bijection. 

proof: The lifting theorem, applied with the relative CW complex (X, ¢), 
shows that f # is surjective. Regard I as a CW complex with 10 = {O, 1 } 
and h = I. Then the lifting theorem applied with the relative CW complex 
(X x I,X x {O, I}) shows that f# is injective. A slight variation of this argu
ment gives the pointed case. 0 

Corollary 1. 7 

(i) A weak homotopy equivalence between CW complexes is a homotopy equiv
alence. 

(ii) If (X, A) is a relative CW complex and A has the homotopy type of a CW 
complex then X has the homotopy type of a CW complex. 

proof of Theorem 1.4: First we have to show that any space Y has a cellular 
model. It is sufficient to consider the case Y is path connected. We construct 
f : X ---+ Y with X the union of sub complexes XO C Xl C ... C xn C . .. and 
fn the restriction of f to xn. Fix a basepoint Yo E Y and choose fO : (XO, *) = 
V Q: n S:; ---+ (Y, Yo) so that 7ri (f0) is surjective for all i. 

Assume f n - l : X n - l ---+ Y is constructed so that also 7ri(fn-l) is injective for 
i < n. Since sn = *Uen, it follows from the cellular approximation theorem that 
7rn ((Xn-l)n) ---+ 7rn(Y) is surjective. Thus we may add (n + 1)-cells {e~+l} 
to (xn-l)n to kill ker 7r n (jn-l), and then extend over these cells to produce 

fn : xn = X n- l U (u,ee~+l) ---+ Y. The cellular approximation theorem then 

implies that 7r; (fn) is injective for i :::; n. 
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The uniqueness (up to homotopy) of a cellular model follows at once from the 
Whitehead lifting lemma and its corollaries. 0 

(d) Cofibrations and NDR pairs. 
Suppose A is a subspace of a topological space X. The pair (X, A) is a 

cojibration if for any continuous map f : X -+ Y a homotopy H : A x I -+ Y 
starting at flA always extends to a homotopy X x I -+ Y starting at f. 

Lemma 1.8 (X, A) is a cojibration if and only if X x {O} U A x I is a retract 
of X x I. 

proof: A continuous map f : X -+ Y and a homotopy H : A x I starting at 
flA define a map (I,H): Xx{O}UAxI -+ Y. Ifr: XxI -+ Xx{O}UAxIis 
a retraction then (I, H) 0 r : X x I -+ Y extends H and starts at f. Conversely, 
if (X, A) is a cofibration take Y = X x {O} U A x I and (I, H) the identity map. 
An extension of H starting at f is a retraction r : X x I -+ X x {O} U A x 1.0 

Again suppose A is a subspace of a topological space x. 

Definition (i) The pair (X, A) is a DR pair if A is a strong deformation retract 
of X and A = h-1(0) for some continuous function h : X -+ I. 

(ii) The pair (X, A) is an NDR pair if for some open U C X there 
are continuous maps H : U x I -+ X and h : X -+ I such that: 

• A = h-1(0) and U:J h-1([0,c:)), some e > o . 

• H is a homotopy reI A from the inclusion of U in X to a retraction U -+ A. 

(iii) A well-based space is a an NDR pair (X, xo). 

Proposition 1.9 

(i) If (X, A) and (Y, B) are NDR pairs then (X x Y, X x B U A x Y) is an 
NDR pair. 

(ii) A relative CW complex (X, A) is an NDR pair. 

proof: (i) Let H, h, U be as in the definition for the NDR pair (X, A) and let 
K, k, V be analogous maps and open set for (Y, B). Define l : X x Y -+ I by 
lex, y) = inf (h(x), key)). Choose a continuous function a : (1, [0, e/2], [e, 1]) -+ 
(1,1,0) and define H' : X x I -+ X, K' : Y x I -+ Y by 

H'(x, t) { ~(x,a(hx)t) , x E U 
, hx > c: 

and 
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K'(y,t) = { :(y, a(ky)t) 

Define L : X x Y x I ---* X x Y by 

{ 
(H' (x, ~i;\t) ,K'(y,t)) 

L(x,y,t) = (HI(x,t),KI (y, Zi~?t)) 
(HI (x, t), KI(y, t)) 

, Y EU 
, ky > E . 

, k(y) < h(x) 

, h(x) < k(y) 

, h(x) = k(y) . 

Set U' = h- 1 ([0,E/2)), VI = k- 1 ([0,E/2)) and W = UI X Y U X X VI. Then 
L, £, W exhibit (X x Y, A x YuX x B) as an :KDR pair (where we use E/2 instead 
of E). 

(ii) Define a continuous function h : X ---* I by induction on the skeleta, 
as follows. Set h = ° in A. If h is defined in X n- 1 and fo: : S~-l ---* X n- 1 is 
the attaching map of an n-cell D~ then let II II be the length function in D~ 
and extend h to Xn by 

h(x) = (l-llxID + Ilxllh (fo: CI:II) ), x E D~ . 

Then A = h-1(0) and h-1 ([0,1/4]) is contained in the canonical extension of A 
to an open set U in X (away from the origins 00: of the cells D~). 

We show now that A is a strong deformation retract of U. Put 
Un = Un X n, and note that Uo = A. Define a retraction rn : Un ---* Un- 1 

by rn(X) = fo:(x/llxll), x E U n D~, and define Kn : Un X I ---* Un by 
Kn(x, t) = (1 - t + t/llxll) x, x E U n D~. Thus K" exhibits Un- 1 as a strong 
deformation retract of Un. 

Put rk,n = rk 0 ···0 rn : Un ---* Uk- 1 . Then a retraction r : U ---* A is 

defined by rx = rl,n(X), x E Un. Set In = [n~l'~] and turn Kn into a map 

Hn : Un X In ---* Un via the obvious map (In' n~l' ~) ---* (1,0,1). Define 

H : U x I ---* U by setting (for x E Un) 

{

X 

H(x, t) = Hn(x, t) 

Hk (rk+l,n(X), t) 

, t ~ n~l 
, t E In . 

, t E h, 1 ~ k < n . 

Then H exhibits A as a strong deformation retract of U. o 

It turns out that the condition 'NDR pair' is only slightly stronger than the 
condition 'cofibration'. 

Proposition 1.10 The following conditions are equivalent on a topological pair 
(X,A): 
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{i} A is closed in X and (X, A) is a cofibration. 

{ii} (X, A) is an NDR pair. 

{iii} (X x I, X x {O} u A x I) is a DR pair. 

17 

proof: {i} ===} {ii}: Let r = (rx, rI) : X x I ---t X X {O} UA x I be a retraction 
(Lemma 1.8). Define h : X ---t I by h(x) = sup{t - rI(x,t) It E I}. Set 
U = h-1 ([0,1)), and set H = rx : U x I ---t X. 

{ii} ===} {iii}: Let h, U, E. and H be as in the definition of NDR pairs. 
Choose a continuous function 0:: (I, [0,E./2], [E., 1]) ---t (1,1,0) and set 'P = o:h: 
X ---t I. Define K : X x I ---t X by 

( ) { 
H(x, ('Px)t) , x E U 

K x,t = 
x ,hx>E.. 

Define k : X ---t I by kx = inf (:hx, 1). Then K : k- 1 ([0,1)) x {I} ---t A. 
Define a homotopy <I> : (X x 1) x I ---t X x I by 

<I>(X,t,S)={ (K(X,:~), t(I-S)) 
(K(x,s), t-skx) 

, t < kx 

, t ~ kx . 

It is straightforward to see that <I> is a homotopy reI X x {O} u A x I from id x x I 

to a retraction onto X x {O} u A x I. 
{iii} ===} {i}: This is Lemma 1.8. 0 

Proposition 1.11 Suppose (X, A) is an NDR pair. Then the inclusion i : 
A ---t X is a homotopy equivalence if and only if (X, A) is a DR pair. In this 
case (X x I,X x {O, I} U A x I) is a DR pair. 

proof: If (X, A) is a DR pair then i is certainly a homotopy equivalence. Sup
pose that i is a homotopy equivalence. Choose (J : X ---t A so that (Ji '" idA. 
Extend the homotopy to a homotopy X x I ---t A from (J to a map r : X ---t A. 
Clearly ri = idA. Now, since i is a homotopy equivalence, there is a homotopy 
H : X xl ---t X from idx to ir. Define K : X x Ix {O}UX x {I} xIUAx Ix I ---t 
X by setting 

and 

K(x, t, 0) { 
H(x,2t) 

H(irx, 2 - 2t) 

K(x, 1, t) irx , 

, O~t~~ 
, ~~t~l, 

, O~t~~ { 
H(a, 2(1- s)t) 

K(a, t,s) = 
H (a, 2(1 - s)(1 - t)) , ~::;t~l. 

It is easy to construct a homeomorphism 
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D D 
(I X I: I X {O} U {I} X 1) (I X 1,1 X {O}) 

Thus (X x I x I, X x I x {O} U X x {I} x I u A x I x I) ==: (X x I x I, X x 
I x {O} u A x I x I), which is a DR pair by Proposition 1.10. In particular K 
extends to a map K : X x I x I -+ X, and K(x, t, 1) is a homotopy reI A from 
idx to ir. Thus (X, A) is a DR pair. 

Finally, since (X,A) is a DR pair, clearly A. x {I} and A x {O} are strong 
deformation retracts of X x {o} and X x {I}, and so A x I is a strong deformation 
retract of X x {O, l}UA x I. Since the composite A x I -+ X x {O, l}uA x 1-+ 
X x I is also a homotopy equivalence it follows that the inclusion X x {O, I} UA x 
I -+ X x I is a homotopy equivalence as well. Thus (X x I, X x {O, I} U A x I) 
is a DR pair by the first assertion of the proposition. 0 

(e) Adjunction spaces. 
If (X, A) is an ~DR pair and 1 : A -+ Y is a continuous map then it is 

immediate that (Y U I X, Y) is also an NDR pair. (Kote that a continuous 
function h : X -+ I with h~I(O) = A can be used to separate the points of Y 
from the points of X - A, so Y U I X is Hausdorff.) 

Lemma 1.12 If (X, A) is an NDR pair and 10, h : A -+ Yare homotopic 
continuous maps then Y U 10 X :::::: Y U" X. 

proof: Choose a homotopy H : AxI -+ Y from 10 to h. Denote Xx{t}UAxI 
by Bt C X x I. Proposition 1.10 implies that each B t is a strong deformation 
retract of X x I. Hence YUH Bo and YUH Bl are strong deformation retracts 
of Y UH (X x I). But YUH Bo = Y U/o X and YUH Bl = Y U" X. 0 

l\ext, consider a commutative diagram 

Y ..... --'-1_ A --_. X 

yl ______ AI ~ Xl 
j' Z 

of continuous maps. 

Theorem 1.13 If i and i l are the inclusions of NDR pairs and if 'PY, 'PA and 
'P x are homotopy equivalences then 
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is a homotopy equivalence too. 

The proof will rely frequently on the following obvious remark. 

Lemma 1.14 If (B, C) is a DR pair and h : D --+ W is a continuous map from 
a closed subspace DeC then (W Uh B, W Uh C) is a DR pair. In particular, 
the inclusion 

is a homotopy equivalence. o 

proof of Theorem 1.13: Identify (X, A) with (X, A) x {I} C X x I. Then 
(X x I, X) is a DR pair (trivially) and (X x I, X x {O} U A x 1) is a DR pair by 
Proposition 1.10. Moreover f is identified as a map f : A x {I} --+ Y and by 
Lemma 1.14, 

Y Uf (X x {O} U A x 1) --+ Y Uf (X x 1) +-- Y Uf X 

are homotopy equivalences. 
Denote XUY by Z and tpx Utpy by tpz, and define g: A x {O,I} --+ Z by 

g(a,O) = ia and g(a, 1) = fa. Then Y Uf (X x {O} U A x 1) = Z Ug (A x 1). It 
is thus sufficient to show that 

(tpz, tpA x id) : Z Ug (A x 1) --+ Z' Ugt (A' x 1) 

is a homotopy equivalence. Since this map factors as 

Z Ug (A x 1) --+ Z' U""Zg (A x I) --+ Z' Ugt (A' x 1) 

it is sufficient to consider the two special cases: either A = A' and tp A = id or 
else Z = ZI and tpz = id. 

Case 1: Z = ZI and tpz = id: 
Regard tpA as a map A x {O} --+ A' and set B = A' U""A (A x I). Define a 

retraction r : B --+ A' by rea, t) = tpAa, and set 

gB = g' 0 (r x id) : B x {O, I} --+ Z . 

If C c B let gc : C x {O, I} --+ Z be the restriction of gB. Thus the inclusion 
of C in B and the retraction r define an inclusion and retraction 

ZUgc (C x 1) ~ ZUgB (B x I) -'4 ZUg' (A' x 1) . 

Now suppose (B, C) is a DR pair. Then so is (B x I, B x {O, I} U C x 1), by 
Proposition 1.11. Since Z Ugc (C x 1) = Z UgB (B x {O, I} U C x 1) it follows 
that jc is a homotopy equivalence (Lemma 1.14). In particular (B, A') is a 
DR pair and, clearly, gjA' = id. Thus g is a homotopy equivalence. Moreover, 
if we identify A = A x {I} C B then the inclusion is a homotopy equivalence 
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because <PA is. Thus (B, A) is a DR pair (Proposition 1.11) and jA is a homotopy 
equivalence. 

Finally, (id z, <PAx id) = gj A and so it is a homotopy equivalence too. 

Case 2: A = A' and <PA = id: 
Denote (AxI, Ax {a, I}) by (B, C). Thus 9 : C ---+ Z and we have to show that 

if <Pz : Z ---+ ZI is a homotopy equivalence so is (<pz, id) : ZUg B ---+ Z' U'PZg B. 
Suppose first that Z = Z' and idz '" <Pz via a homotopy K : Z x I ---+ Z. Set 

H = K 0 (g x id) : C x I ---+ Z and set 

q. = (K,id BxI ): (ZUg B) x 1---+ ZUH (B x I). 

In the proof of Lemma 1.12 we observed that the inclusions b f--7 (b,O) and b f--7 

(b, 1) of Bin B x I induce homotopy equivalences jo : Z Ug B ---+ Z UH (B x I) 
and h : Z U'PZg B ---+ Z UH (B x I). A quick check shows that q. is a homotopy 
from jo to j1 0 (<pz, id). Hence (<pz, id) is a homotopy equivalence. 

Now suppose <Pz is any homotopy equivalence and choose a homotopy inverse 
'lj;z : Z' ---+ Z : 'lj;z<pz '" idz, and <pz'lj;z '" idz. Form the sequence 

Z Ug B ~ Z U'PZg B ~ Z U'¢Z'PZg B ~ Z U'PZ'¢Z'PZg B , 

where /'0 = (<Pz, id), /'1 = ('lj;z, id) and /'2 = (<pz, id). 
The argument above shows that /'1/'0 and /'2/'1 are both homotopy equiva

lences; i.e., they have homotopy inverses 0: and /3. Thus /3/'2 '" /3/'2/'1/'00: '" /'00:, 

and so /'1 (/3/'2/'1/'00:) '" /'1/3/'2 '" /'1/'00: '" idz and (/3/'2/'1/'00:),,1 '" idz,. Thus 
/'1 is a homotopy equivalence. Hence so is /'0 = (<pz, id). 0 

Corollary If (X, A) is an NDR pair and A is contractible then the quotient 
map q : X ---+ X/A is a homotopy equivalence. 

proof: Identify q as the map (c, id) : A UidA X ---+ pt Uc X, where c : A ---+ pt, 
and note that c is a homotopy equivalence by hypothesis. 0 

(f) Cones, suspensions, joins and smashes. 
The cone, C X, on a topological space X is the space X x 1/ X x {O}, and the 

point [X x {OJ] is called the cone point. We usually denote the point (x, t) by 
tx, so that Ox is the cone point (any x E X). This identifies X as the subspace 
X x {I} and clearly (CX,X) is an NDR pair. 

Recall that the suspension of a based topological space (X, xo) is the based 
space 

~X = (X x I)IX x {a, I} U {xo} x 1= CX/X U {xo} x I . 

Any continuous map f : (X, xo) ---+ (Y, Yo) suspends to the map ~f : ~x ---+ ~Y 
induced from f x id I . Note that if (X, xo) is well based then (X x I, X x {a, I} U 
{xo} x I) is an NDR pair (Proposition 1.9). Hence ~X is well based. Moreover, if 
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(Y, Yo) is also well based then Theorem 1.13 implies that homotopy equivalences 
suspend to homotopy equivalences. 

The join of two topological spaces X and Y is the subspace X * Y c C X x CY 
of points of the form (tx, (1 - t)y), tEl. (Thus X * Y is the union of intervals 
joining x E X to y E Y.) Notice that a homeomorphism 

(CX x Y) UXxY (X x CY) ~ X * Y (1.15) 

is given by (tx, y) f---"; (~x, (1 - ~)y) and (x, ty) f---"; (( 1 - ~) x, h) . 
More generally, the n-fold join Xl * ... * Xn of topological spaces Xi is the 

subspace of CX1 x ... X CXn of points (hX1, ... , tnxn) satisfying 'L.ti = 1. Note 
the obvious identifications 

Next, recall that the wedge X V Y of based spaces (X, xo) and (Y, Yo) is the 
subspace X x {yo} U {xo} x Y of X x Y. The smash product of X and Y is the 
space 

X/\Y=XxY/XVY. 

In particular 'L.X coincides with X /\ Sl and so 

X /\ 'L.Y = X /\ Y /\ Sl = 'L.(X /\ Y) . (1.16) 

Proposition 1.17 If (X, xo) and (Y, Yo) are well based spaces then there is a 

homotopy equivalence, X * Y ~ 'L.(X /\ Y). 

proof: Embed I as I Xo and I Yo in C X and CY. Identify C X U I CY as the 
subspace of X * Y of points (tx, (1- t)y) such that either x = Xo or y = Yo. Now 
(C X U ICY) / I = (C X/I) V (CY / I). Since I is contractible we can apply the 
Corollary to Theorem 1.13 to obtain 

C X U I CY ::::. (C X U ICY) / I ::::. C X V CY ::::. {pt} . 

Hence (by the same Corollary) the quotient map X * Y ---+ X * Y / C X U I CY is 
a homotopy equivalence. 

But if q : X x Y x I ---+ X * Y is the quotient map (x, y, t) f---"; (tx, (1 - t)y) 
then q-1 (CX UI CY) is just (X V Y) x I. Hence q induces a homeomorphism 

'L.(X /\ Y) ~ X * Y/CX UI CY. 0 

Exercises 

1. Prove that P(X, xo) is contractible and that X and X[O,l] have the same 
homotopy type. 
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2. Let X, Y and Z be based spaces. Prove that (XVY) J\ Z c:::: (X J\Z) V (Y J\ Z), 
(X J\ Y) V Z c:::: (X V Z) J\ (Y V Z) and (X J\ Y) J\ Z ::: X J\ (Y J\ Z) . 

3. Prove that X * Y is homeomorphic to the inverse image of the set {( s, t) E 
[0,1]2, S + t = I} under the mapping ex x ex -+ [0,1]2, ([x, s], [y, t]) f-t (8, t). 

4. By considering the mapping IKm+1 x IK,,+l x [0,1] -+ IKm+n+2 ,(x,y,t) f-t 

(x cos ;t ,y sin ¥) , prove that 5 n * 5 m c:::: 5 m +n +1 . 

5. Let 1 : 53 -+ Cp1 = 5'2 be the map defined by I(Zl,Z2) = [Zl'Z'2]' Prove 
that there exists a homeomorphism from the cofibre of 1 onto Cp2. 

6. Let (X, xo) and (Y, Yo) be based spaces. Prove that the inclusion X V 

Y ~ X x Y is a cofibration whose cofibre has the same homotopy type as 
X J\ Y and that L( X x Y) has the same homotopy type as LX V LY V L (X J\ Y). 



2 Fibrations and topological monoids 

A continuous map p : X ~ Y has the lifting property with respect to a pair of 
topological spaces (Z, A) if for every commutative diagram of the form 

A ~ X 

Z ~ Y 
9 

there exists a continuous map k : Z ~ X such that pk = g and ki = f. 
A surjective continuous map p : X ~ Y is a Serre fibration if it has the lifting 

property with respect to (Z xl, Z x {O} ) for all CW complexes Z, and a fibration 
if it has the lifting property with respect to (Z x I, Z x {O}) for all topological 
spaces Z. Here X is called the total space, p the projection and Y the base of 
the fibration. The space Xy = p-l(y) C X is called the fibre at y. If Y has a 
fixed basepoint Yo we often denote the fibre at Yo by F and denote the (Serre) 
fibration by F ~ X ~ Y. 

A fibre-preserving map between (Serre) fibrations is a commutative square of 
continuous maps 

Y'--Y 
9 

in which p' and p are (Serre) fibrations. 
In this section we first establish a long exact sequence connecting the homotopy 

groups of the fibre, total and base spaces of a fibration. Next, we construct the 
Moore loop space OX of a based topological space (X, * ). This is a topological 
monoid acting on the contractible path space, P X, which identifies OX as the 
fibre of the path space fibration P X -+ X. 

This construction generalizes. Given a continuous map f : X -+ Y there is a 
homotopy equivalence X x y MY ~ X which converts f into a fibration whose 
fibre X x y PY admits a natural action of OY. The projection X x y PY -+ X is 
then also a fibration (the holonomy fibration) with fibre OY given by the action. 

Finally, we consider principal bundles with fibre a topological group and con-
struct their classifying spaces. 

This section is organized into the following topics: 

(a) Fibrations. 

(b) Topological monoids and G-fibrations. 

(c) The homotopy fibre and the holonomy action. 
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(d) Fibre bundles and principal bundles. 

(e) Associated bundles, classifying spaces, the Borel construction and the 
holonomy fibration. 

(a) Fibrations. We begin with some examples. 

Example 1 Products. 
The projection Y x F ---+ Y is a fibration (the trivial fibration). o 

Example 2 Covering projections. 
These are fibrations [68]. o 

Example 3 Fibre products and pullbacks. 

Given continuous maps A ~ Y ?- X, recall that the fibre product A x y X c 
A x X is the subspace of pairs (a, x) such that f(a) = p(x). It fits into the 
commutative pullback diagram 

AxyX ~ X 

A --.-+-. Y 
f 

in which PA and g are projection on the first and second factors. If P : X --t Y is 
a (Serre) fibration then so is PA : A Xy X --t A. It is called the pullback fibration. 

When f : A --t Y is the inclusion of a subspace then A Xy X = p-l(A) and 
the fibration PA is called the restriction of the original fibration to A. 0 

Proposition 2.1 (i) A fibration P : X --t Y has the lifting property with respect 
to any DR pair (Z, A). In particular, if (W, B) is any NDR pair then P has the 
lifting property with respect to (W xI, W x {O} u B x 1). 

(ii) A Serre fibration P : X --t Y has the lifting property with 
respect to any relative CW complex (Z, A) for which the inclusion A --t Z is a 
weak homotopy equivalence. In particular, if (W, B) is any relative CW complex 
then P has the lifting property with respect to (W x I, W x {O} U B x 1). 

proof: [157] In both cases we suppose given a commutative square 

A f. X 

Z g' Y 
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and we have to construct k : Z -+ X. 
(i) Let r : Z -+ A be a retraction and let H : Z x 1-+ Z be a homotopy 

reI A from ir to idz . Choose a continuous map h : Z -+ I such that A = h-l(O). 
Define a continuous map H' : Z x I -+ Z by 

I { H (z, t/h(z)) 
H (z, t) = 

z 

, t < h(z) 

, t2h(z). 

Then gH'(Z, 0) = gr(z) = pJr(z). Thus there is a continuous map K : Z xl -+ X 
such that pK = gH' and K(z, 0) = Jr(z). Set k(z) = K (z, h(z)). For the second 
assertion apply Proposition 1.9. 

(ii) The Whitehead lifting lemma 1.5 provides a retraction r : Z -+ A 
and a homotopy reI A, H : ZxI -+ Z, from ir to idz . Assume K : Zn-l xl -+ X 
is defined so that K(a, t) = J(a), a E A, tEl, K(z,O) = Jr(z), z E Zn-l, and 
pK = gH. We extend it to K : Zn x I -+ X as follows. 

Write Zn = Zn-l Uq (g D~ ). We have to fill in the dotted arrows in the 

commutative solid arrow diagrams 

(S~-l X 1) U (D~ x {O}) __ K...o..( q=-x_id-,-)--,U f'-.T ___ • X 

p 
K 

D~ x I ----------......... Y 
gH 

But this is possible since p : X -+ Y is a Serre fibration and since 
(Dn x I, sn-l X I U D n x {O}) ~ (Dn x I, Dn x {O}). This constructs a ho
motopy K : Z x 1-+ X. Set k(z) = K(z, 1). 0 

Fix a Serre fibration 

in which (X, xo) is a path connected based space, Yo pXo and 
F = XYo. The homotopy groups of F, X and Yare tightly related, and this is 
expressed through the natural connecting homomorphism 

which we now describe. 
Let 9 : (sn, *) -+ (Y, Yo) be a continuous map and, as in Example 5, §1, 

identify I:Sn - 1 = sn via the map 8 : sn-l X I -+ sn. Form the commutative 
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diagram 
sn-1 X {O} U {*} x I __ c_o_ns_ta_n_t_m_a-,-p_to_x--,oc---... X 

p 

e sn-1 X I ------+-. sn -----'g'---...... y 

Since p is a Serre fibration, Proposition 2.1 asserts that gO can be lifted through 
p to a continuous map H : sn-1 X I ~ X, which then restricts to a map 
h: (sn-l,*) ~ (F,xo). 

Proposition 2.2 [93] With the notation above the correspondence g "'" h de
fines natural set maps 8n : 7rn (Y, Yo) ~ 7rn -1(F,xo). When n 2: 2, these are 
group homomorphisms, and fit into a long exact sequence (the long exact homo
topy sequence) 

When n = 1, 81 : 7r1 (Y) ~ 7ro(F) factors to give a bijection 

proof: Put W = sn x I and B = sn x {O} U {*} x I. Then the inclusion 
W x {O, I} U B x I C-.-.+ W x I is a weak homotopy equivalence. Hence it follows 
from Proposition 2.1(ii) that the based homotopy class of h is independent of 
the choice of H and depends only on the based homotopy class of g. 

Recall from § 1 that maps (sn, *) ~ (X, xo) may be identified with maps 
(In,8In) ~ (X,xo), and that, when n 2: 1, composition along the first coor
dinate defines a second product, 1*g, such that 1*g rv f * 9 reI 8In. But it is 
immediate from the definition that when n 2: 2, 8n[t*g] = [8n1l*[8ng]; hence 
8n is a group homomorphism. 

The exactness of the sequence and the assertion about 81 are straight forward 
consequences of the definition and Proposition 2.1(ii). D 

Next let 
AxyX gx • X 

q p 

A--g - ... • Y 
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be a pullback diagram (i.e., q and gx are the projections on A and X). Recall 
that if 9 is the inclusion of a subspace A c Y then gx is the inclusion of 
XA = p-l(A). 

Proposition 2.3 Suppose in the diagram above that p is a fibration. 

(i) If 9 is the inclusion of a DR pair (resp. an NDR pair), (Y, A) then (X, XA) 
is also a DR pair (resp. on NDR pair). 

(ii) If 9 is a homotopy equivalence so is gx· 

proof: (i) Suppose (Y, A) is a DR pair. Let H : Y x I -+ Y be a homotopy 
reI A from idy to a retraction r : Y -+ A. Let h : Y -+ I be a continuous 
function such that h-1 (0) = A and define a homotopy HI : X x 1-+ Y by 

I { H (px, t/h(px)) 
H (x, t) = 

px 

, t < h(px) . 

t 2 h(px) . 

Lift this to a homotopy KI : X x I -+ X starting at idx . Define K : X x I -+ X 
by 

{ 
KI(X, t) 

K(x, t) = I ( ()) K x,h px 

, t:=;h(px). 

, t 2 h(px) . 

Then K exhibits XA as a strong deformation retract of X. Thus K together 
with k = hop exhibits (X, XA) as a DR pair. 

An identical argument shows that if (Y, A) is an NDR pair then so is (X, XA)' 
(ii) Regard 9 as a map A x {O} -+ Y, and let r : (A x 1) Ug Y -+ Y 

be the retraction sending (a, t) to gao Denote (A x 1) Ug Y by Z and form the 
pullback diagram 

ZXyX TX 
'X 

'"j p 

Z T 
.y 

Now identify A = A x {I} C Z. Then the inclusion of A in Z is a homotopy 
equivalence, because 9 is, while the inclusion of Y in Z is obviously a homotopy 
equivalence. Since (Z, A) and (Z, Y) are clearly NDR pairs, Proposition 1.11 
asserts they are NR pairs. Now assertion (i) of this proposition implies that 
(Z Xy X, A Xy X) and (Z Xy X, Y Xy X) are DR pairs. But Y Xy X = X and 
rx : Z Xy X -+ X is a left inverse for the inclusion. Hence rx is a homotopy 
equivalence. Moreover, gx factors as A x y X -+ Z x y X ~ X, and so it is a 
homotopy equivalence too. 0 
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Finally, let 

X'~X 

p'l lp 
Y'--tY 

9 

be a fibre preserving map between Serre fibrations with path connected total 
spaces. Then from Proposition 2.2 and the five lemma (see Lemma 3.1) we 
deduce 

Proposition 2.4 Let y' E Y' be any basepoint. If any two of the maps f, 9 
and f y ' : X~, ---+ X gy' are weak homotopy equivalences, then so is the third. 0 

(b) Topological monoids and G-fibrations. 
A topological monoid is a topological space G equipped with a continuous, 

associative multiplication f.L : G x G ---+ G and a two sided identity e E G. A 
(right) action of G on a space P is a continuous map P x G ---+ P, (z, g) f---t z· g, 
such that z· e = z and (z· gd . g2 = z· (glg2), for z E P and g,gl,g2 E G. 
Suppose pI x G' ---+ P' is a right action of a second topological monoid G'. 
Then an equivariant map consists of a morphism "( : G ---+ G' of topological 
monoids and a continuous map f : X ---+ X' such that f{x· a) = f{x) • "(a). 
If f and "( are weak homotopy equivalences then (f, "() is called an equivariant 
weak equivalence. 

Definition A G-(Serre) fibration is a (Serre) fibration p : P ---+ X together 
with a right action P x G ---+ P such that 

(i) p(z· g) = pz, z E P, 9 E G, and 

(ii) For each z E P the map Az : G ---+ Ppz sending 9 f---t z . 9 is a weak 
homotopy equivalence. 

Remark 1 If P is path connected and some Az is a weak homotopy equivalence 
then so is every Aw , w E P. Indeed, join z and w by a path a : I ---+ P. Then 
we have a map of fibrations 

I x G __ ---'-f __ +_. I x x P 

f(t,g) = (t, a(t) . g). 

I 

Let It be the restriction of f to the fibres at t. Then Proposition 2.3 asserts that 

fo is a weak homotopy equivalence ¢=::> f is a weak homotopy equivalence 
¢=::> II is a weak homotopy equivalence 
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But fo = A z and II = Aw· 

Remark 2 If f : Y -t X is a continuous map the pullback Y x x P -t Y of a 
G- (Serre) fibration is again a G-(Serre) fibration with action (y, z)· g = (y, zg), 
y E Y, z E P, g E G. 

Example 1 Path space fibrations. 
As usual, X Y denotes the space of all continuous maps Y ---+ X. In particular, 

let P(X,xo) c Xl be the subspace of paths ending at xo, and let fi(X,xo) C 
P(X, xo) be the subspace of paths beginning and ending at Xo. Then it follows 
easily from the exponential law that 

~ ~ p 
O(X, xo) -------+ P(X, xo) --=-----+ X , p: "( r-----+ "((0), 

is a fibration, and that P X is contractible. Note also that a continuous multi
plication in fix is defined by 

(,,(,w) r-----+ "( * w, { 
"((2t) 

("( * w)(t) = w(2t - 1) 
O~t~~ 
~~t~l. 

This is 'homotopy associative', but not associative. These constructions are the 
classical version of the path space fibration and the loop space for X. It turns 
out to be highly convenient to use instead Moore's version of the path space 
fibration and loop space, since the latter is a genuine topological monoid. 

Thus a Moore path in X is a pair (,,(, C) in which "( : [0,(0) ---+ X is a continuous 
map, f E [0, (0), and "((t) = "((f) for t 2 C. The path starts at "((0), ends at 
"(( C) and has length £. The space M X c X[o.oo) x [0, (0) of all Moore paths is 
the free Moore path space on X. The Moore path space P(X,xo) C MX is the 
subspace of all Moore paths ending at Xo and the Moore loop space O(X, xo) is 
the subspace of all Moore paths starting and ending at Xo. As above, we usually 
abuse notation and write simply OX and P X. We may also abuse notation and 
denote (,,(,f) simply by"(. From the exponential law it follows easily [157] that 
if X is path connected then 

OX---+PX~X 

is a fibration and that P X is contractible. This is called the Moore path space 
fibration for (X,xo). Note that fix and PX can be identified as the subs paces 
of OX and P X of paths of length one, and that these inclusions are homotopy 
equivalences. 

If "( E P X and w E OX are paths of lengths C and r we define their product 
to be the path "( * w of length C + r given by 

("( * w)(t) = { "((t), 
w(t - C), 
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This product, restricted to OX x OX, makes OX into a topological monoid with 
identity the constant loop of length 0 at Xo. It is called the Moore loop space 01 
X at Xo. 

The original map, P X x OX -t P X is a continuous right action of the monoid 
OX on the contractible space PX. Note that p(, * w) = PI" E PX, W E OX. 
Moreover OX is the fibre (P X)xo and the map Ae : OX -t (P X)xo is just the 
identity, and so a weak homotopy equivalence. Thus it follows from Remark 1 
that the Moore path space fibration P X ~ X is an OX -fibration. 

We shall often abuse language and reler to PX and OX simply as the path 
space and loop space of X. Finally, if I : (X, xo) -t (Y, Yo) is any continuous 
map then 01: , ~ 10, defines a morphism of topological monoids, 

01: OX -t OY. 

o 

In particular, suppose F -4 X ~ Y is a fibration with path connected base, 
Y and path connected fibre, F. Choose basepoints Yo E Y, Xo E X and Zo E F 
so that F = XYO and j(zo) = Xo. It follows easily from the exponential law and 

Proposition 2.1 that OX ~ OY is a fibration with fibre OF. Moreover the 
multiplication in OX restricts to an action of OF on OX, and so the pair 

OX~OY , OX x OF -t OX 

is an OF-fibration. 

(c) The homotopy fibre and the holonomy fibration. Let I : X -t Y 
be a continuous map between path connected spaces and let qo, ql : MY -t Y 
denote the maps (r,f) ~ ,(0) and (r,f) ~ ,(f). Let cy be the path oflength 
Oat y. Form the commutative diagram 

j X ---"--_. X x y MY 

Y 

, where 

• X Xy MY is the fibre 
product with respect to 
I and qo 

• j(x) = (x,Ctx) 
• q(X,,)=ql(r). 

It is easy to verify that j is a homotopy equivalence and q is a fibration: we say 
the diagram converts I into the fibration q. 

Fix a basepoint Yo E Y. The fibre of q at Yo is X x y PY. It is called the 
homotopy fibre of I. Clearly the action of OY on PY defined above defines an 
action of OY on the homotopy fibre. Moreover the diagram 

X Xy PY ----* PY 

pi 1 
X ----* Y 

t 

p = projection on the first factor, 
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exhibits p as a pull back flY-fibration. It is called the holonomy fibration asso
ciated with the continuous map j : X -t Y. 

Let 7r : X x y MY -t X be the projection; it is a homotopy equivalence 
inverse to j. The commutative diagram 

X x y PY ---------+-. X x y A1Y -----q=-------. Y 

~/~/ 
X X 

identifies p with i and j with q, 'up to homotopy'. Thus the long exact homotopy 
sequence for the fibration q translates to a long exact sequence 

... -t 7rn (X Xy PY) 1fn (p) 7rn (X) 1fn (f\ 7rn (Y) ~ 7rn -l (X Xy PY) -t ... 

Finally, write F = j-l(yO). Then j restricts to an inclusion jo : F -t 
X XyPY. 

Proposition 2.5 

(i) If p is a fibration then (X Xy PY, F) is a DR pair. In particular, jo is a 
homotopy equivalence. 

(ii) If P is a Serre fibration then jo is a weak homotopy equivalence. 

proof: (i) Define a commutative square of continuous maps 

X Xy PY x {o} ~ X 

1 
X Xy PY x [0,00) ----t Y 

by setting if!(x, I, t) = I(t). Lift if! to a continuous map 1> : X x y PY x [0, 00) -t 
X so that pP = if! and p(x, I, 0) = x. 

Then a homotopy H : X Xy PY x I -t X Xy PY is given by 

H(x'l,t) = (p(x'I,U")'lt) 

where fl-y is the length of I and It is the path of length (1 - t) jl-y given by It (s) = 
I( te-y + s). Clearly H is a homotopy reI F from the identity to a retraction 
X Xy PY -t F. Finally, if h: X Xy PY -t I is defined by h(x'l) = inf(l,jl-y) 
then h-1(0) = F. 

(ii) This follows immediately from Proposition 2.3 since j is a homotopy 
equivalence. 0 
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On the other hand, we can exhibit the homotopy fibre Pf of I : X -t Y 
as the analogue of a homogeneous space. Let pI X C M X be the subspace of 
Moore paths ('y, £) that begin at the basepoint Xo : 'Y(O) = Xo. Multiplication of 
paths defines a left action of OX on pI X and the projection 

is a (left) OX-fibration. 
Let Cx and Cy denote the constant paths of length zero at the basepoints Xo 

and Yo = I Xo· Then nx is the actual fibre of (} at the basepoint (xo, Cy) of Pf 
and the fibre inclusion is given by 

,\ : OX -t p' X X x Pf' '\: 'Y f---t (1' * c x, Xo, cy) . 

Thus we may regard Pf as the 'quotient' of pI X Xx Pf by the topological monoid 
nx. 

Now recall that Pf = X Xy PY. Thus P'X Xx Pf = P'X Xx X Xy PY. 
Define a continuous map 

TJ: p'X Xx Pf -t OY by TJ('y,x,w) = (h) * w. 

We show that TJ has the following properties: 

• TJ is a homotopy equivalence. 

• TJ('y· z) = (nih * TJZ, l' E OX, Z E P'X Xx Pf · 

• The diagram 
j 

OX ---"---..... p' X X x Pf 

~;< 
ny 

commutes. 

Thus 'up to homotopy equivalence' the nx -spaces pI X Xx Pf and OY coincide 
and so Pf may be thought of as the quotient of OY by nx. 

Of the three properties listed for TJ the last two are immediate consequences 
of the definition. For the first, notice that pI X X X X X Y PY = pI X X Y PY 
and that the projection on the first factor is a fibration pI X X Y PY -t pI X, 
with fibre OY. Since pI X is contractible the inclusion ~ : ny -t pI X Xy PY of 
the fibre is a homotopy equivalence. But TJ~ = identity and so TJ is a homotopy 
equivalence too. 

(d) Fibre bundles and principal bundles. 
A product bundle with fibre Z is a continuous map p : X -t Y for which there 

is a homeomorphism g : Y X Z ~ X such that pg(y, z) = y. A fibre bundle with 
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fibre Z is a continuous map p : X ----t Y such that Y is covered by open sets 
Oi and the restrictions Pi: P-1(Oi) ----t Oi are product bundles with fibre Z. If 
P : X ----t Y is a fibre bundle and I : A ----t Y is any continuous map then the 
pullback A x y X ----t A is also a fibre bundle. 

Proposition 2.6 A fibre bundle is a Serre fibration. 

proof: First note that if a continuous surjection p : X -+ Y has the lift
ing property with respect to (In X I, In X {O} )n>O' then it is a Serre fibra
tion. Indeed, suppose given a relative CW complex (W, A) and a homotopy 
9 : W x I ----t Y. Note that (Dn x I, sn-l X I U D n x {O}) ~ (In X I,In X {O}). 
Thus if I: W X {O} U A X I ----t X satisfies pi = 9 we may extend I, one cell at 
a time, to a lift of g. 

Suppose now that p : X -+ Y is a fibre bundle and we want to lift 9 : In+! ----t 
Y through p extending I : In X {O} ----t X. Use the pullback over 9 to reduce 
to the case Y = I n+l, 9 = identity. Recall (§1) that a subdivision of I gives a 
product cellular structure for In+!. Choose the subdivision sufficiently fine that 
each 'little cell' is contained in an open set over which the fibre bundle is trivial. 
Then the restriction to each cell is a Serre fibration and the construction of the 
lift g, one cell at a time, is immediate. 0 

Now consider the following situation: 

• p: X ----t Y is a continuous map. 

• Y is a CW complex with characteristic maps FOt : D~ ----t Yn . 

• The pullbacks D~ X y X ----t D~ (all a, n) are product bundles with common 
fibre Z. 

Proposition 2.7 With the hypotheses above p : X ----t Y is a fibre bundle with 
fibre Z. In particular it is a Serre fibration. 

proof: For each k, the characteristic maps define a homeomorphism 

11 ( D~ - S~-l) ~ Yk - Yk - 1 . Thus the restriction p : p-l (Yk - Yk-d ----t 
(3 

Yk - Yk-l is a product bundle over the open subset Yk - Yk - 1 of Yk . 

Suppose now by induction that we have extended this to an open set U C 

Yn - 1 and a homeomorphism hu : U X Z ~ p-l(U) such that phu(u,z) = u. 
We shall extend U to an open subset V C Yn and hu to a homeomorphism 
hv: V X Z ~ p-l(V) such that phv(v,z) = v. 

For simplicity put D = 11 D~ and S = 11 S~-l and write Yn = Yn- 1 Uf D 
Ot Ot 

where I : S ----t Yn- 1 is the attaching map. Then identify D~ - {OOt} = S~-l x 
(0,1]' with {OOt} the origin of D~ and S~-l identified with S~-l x {l}. Thus 
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D -l1{oaJ = S x (0,1) and V = U Uf (I-1(U) X (0,1]) is an open set of Yn 

extending U. 
Next we undertake the extension of hu to hv. The hypothesis above provides 

a homeomorphism 8 : D x Z ~ D x y X, compatible with the projections on D. 

Moreover hu pulls back to the homeomorphism hf : 1-1(U) x Z ~ 1-1(U) Xy X 
given by hl(w,z) = (w,h(Jw,z)). Thus 8-1 0 hi is a self homeomorphism of 
1-1(U) x Z of the form (w,z) ~ (w,'P(w,z)). Extend this to the homeomor
phism 

81 : 1-1(U) x (0,1) x Z ~ (I-1(U) X (0,1]) Xy X 

given by 81(W,t,z) = 8 ((w,t),'l/!(w,z)). 
The homeomorphisms hu and 81 are compatible and so define a unique set 

theoretic bijection hv making the following diagram commute: 

(U 11 r1(U) x (0,1]) x Z (hu,O~) (U xyX) 11 ((I-1(U) x (0,1]) xyX) 

.. ~j i 

v x Z ----------....... p-1(V) 
hv 

in which q is the obvious quotient map and q' is projection on X. Since hu and 
81 are homeomorphisms we need only verify that q x id and q' are quotient maps 
to conclude that hv is a homeomorphism too. 

Since q is a quotient map so is the product q x id. To consider q' write A = 
F(I-1(U) x (0,1]). Then U and A are closed in V and 

V = U U A. Since q' = id : U x y X ~ p-1 (U) it is enough to show that 
q' : (I-1(U) x (0,1]) Xy X -1- p-1(A) is a quotient map. Because we work 
with k-spaces this reduces to the assertion: if B c Kcompact C p-1 (A) and if 
(q')-l (B) is closed, then B is closed. 

But the compact set p(K) is covered by finitely cells Fa; (D~;), 1 ::; i ::; N. Put 
N 

C = U F;;} (pK). Thus C and hence C Xy K are compact. Since p(K) C A, 
i=l 

C c 1-1(U) X (0,1). Thus (q')-l(B) n (C Xy K) is compact. A simple check 
shows that B = q' ((q')-l(B) n C Xy K). Thus B is compact, and so closed in 
p-l(A). This completes the proof that q' is a quotient map and hence shows 
that hv is indeed a homeomorphism. 

This inductive construction leads to a subset 0 C Y and a bijection h : 
o x Z -1- P -1 ( 0 ) with the following properties: 

• OnYk=Yk-Yk- l . 

• for n 2': k, On = 0 n Yn is open in Yn . 

• for n 2': k, h : On X Z -1- p-l (On) is a homeomorphism. 
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Thus 0 is open in Y. Moreover, since any compact subspace of Y is contained 
in some Yn (Proposition 1.1(ii)) it follows that G cOx Z is compact if and only 

if h(G) is compact and that h: G ~ h(G). This implies (because we work in 
the category of k-spaces) that h is a homeomorphism. 0 

We turn now to the definition of topological groups and principal (fibre) bun
dles, which are important special cases of topological monoids G and G-Serre 
fibrations. 

A topological group is a topological monoid G such that the monoid is a group 
and the map g f-----t g-l is continuous. If the topological group G acts continu
ously on a topological space X then X is the disjoint union of the orbits x·G, 
and the orbit space X/G is the set of orbits equipped with the quotient topology. 
(We only consider cases where X/G is Hausdorff.) 

Let G be a topological group. A principal G-bundle is a continuous map 
p : X -+ Y together with an action of G on X such that Y is covered by 
open sets 00. and there are continuous maps (Jo. : 00. -+ X with the following 
properties: 

• P(Jo. = id 

• A homeomorphism 00. x G ~ p-l(Oo.) is given by (y,g) f-----t (Jo.(Y)· g. 

In this case p : X --t Y is a fibre bundle with typical fibre G, the orbits of G 

are the fibres of p and p induces a homeomorphism X/G ~ Y. In particular, 
p : X -+ Y is a G-Serre fibration. 

Now consider the following situation: 

• p : X -+ Y is a continuous map and X x G -+ X is a continuous action 
of a topological group G. 

• Y is a CW complex with characteristic maps Fo. : D~ -+ Yn . 

• There are continuous maps (J 0. : D~ -+ D~ x y X (all n, 0:) such that (J 0. 
has the form (Jo.(w) = (w, 'Po. (w)) and 

D~ x G ~ D~ Xy X, (w,g) f-----t (Jo.(w)· g 

is a homeomorphism. 

Proposition 2.8 With the hypotheses above p : X -+ Y is a principal G
bundle. 

proof: It follows from Proposition 2.7 that p : X -+ Y is a fibre bundle. 
Thus Y is covered by open sets Ui for which there are continuous maps Ti : 

Ui -+ X such that PTi = id. We have only to check that the continuous maps 
hi: Ui x G -+ p-l(U;), (u,g) f-----t Ti(U)· g, are homeomorphisms. 
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It is immediate from the hypotheses above that hi is a bijection. Thus 
it is sufficient to show that hi1 (C) is compact for any compact subspace 
C c p-l(Ui ). Since p(C) is covered by finitely many cells (Proposition 1.1(ii)) 
this too follows easily from the hypotheses. 0 

(e) Associated bundles, classifying spaces, the Borel construction and 
the holonomy fibration. 

Suppose given a principal G-bundle p : X ---+ Y and an action of G on a third 
topological space Z. Then G acts diagonally on X x Z : (x, z) . g = (xg, zg). 
Consider the continuous maps 

X x Z...!:.t (X x Z)/G ..!4 Y 

where q is the map of orbit spaces induced by the projection X x Z ---+ X. It 
is an easy exercise to check that p is the projection of a principal G-bundle and 
that q is the projection of a fibre bundle with typical fibre Z: this fibre bundle 
is called the fibre bundle associated to the principal bundle via the action of G 
on Z. 

Central to the study of principal G-bundles is Milnor's universal G-bundle 
[125] 

Pa : Ea ---+ Ba 

constructed as follows. 
Recall (§l(f)) that Ca = (G x I)/G x {O} is the cone on G, and that the nth 

join, G*n, is the subspace of Ca x ... X Ca of points ((gO, to), ... , (gn, tn)) such 
that "L,ti = 1. Thus G*n c G*(n+l) (inclusion opposite the base point of Ca). 
Set Ea = U G*n, equipped with the weak topology determined by the G*n. 

n 
A continuous action of G in Ea is given by 

Set Ba = Ea / G and let Pa : Ea ---+ Ba be the quotient map. It is an easy 
exercise to verify that 

• Pa : EG ---+ Ba is a principal G-bundle . 

• every continuous map from a compact space to Ea is homotopic to a 
constant map. In particular, 7r*(Ea) = O. 

The space Bo is called the classifying space of G. Now associated with an 
arbitrary action of G on a topological space X are two important constructions: 
the Borel construction and the loop construction. 

The Borel construction is the fibre bundle 

q : Xo = (Eo x X) /G ---+ Ba 

with typical fibre X, associated to the universal bundle via the action of G on 
X. 
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Proposition 2.9 If p : X ---+ Y is t} principal G-bundle then there is a weak 

homotopy equivalence X c ~ Y. 

proof: The associated fibre bundle with fibre Ec has the form 

q' : Xc = (Ec x X) IG ---+ Y. 

Since 7r * (Ec) = 0 and since this is a Serre fibration, the long exact homotopy 
sequence shows that q' is a weak homotopy equivalence. D 

Consider a principal G-bundle p : X ---+ Y whose base Y is a CW complex. 
Because q' : Xc ---+ Y is a weak homotopy equivalence there is a map (J' : 

Y ---+ Xc such that q' (J' ~ id (Whitehead Lifting Lemma 1.4). Because q' is 
a Serre fibration we can lift the homotopy starting at (J' to obtain a homotopy 
(J' ~ (J : Y ---+ Xc with q'(J = id. This identifies Y as a subspace of Xc. 

Restrict the principal G-bundle Ec x X ---+ Xc to a principal bundle P ---+ Y. 
Projection Ec x X ---+ X restricts to a map P ---+ X of principal bundles covering 
the identity map of Y. This map is therefore a homeomorphism, which we use 
to identify P == X. 

Thus the diagram 

X • Ec xX 
proj E 

- c 

P 

j'G 

Y 
(J 

• Xc q . Be 

exhibits the original principal bundle as a pullback of Milnor's universal bundle 
(whence the name). An extension of this argument shows that the pullback 
construction defines a bijection 

[ 1 ~ { isomorphism classes of principal } 
Y,Bc ---+ , 

G-bundles over Y 

thereby explaining the terminology 'classifying space' for Be. 
Finally, suppose a topological monoid G acts on a path connected space X with 

basepoint Xo. Then, as described in §2(c), the continuous map a: G ---+ X, a: 
9 I---t Xo g, can be converted into the fibration 
G Xx PX ---+ G Xx MX ---+ X. Moreover, this is homotopy equivalent to 

GxxPX~G~X 

where p is the projection of an OX -fibration. 
N ow we show that G x x P X is a topological monoid and that p is a morphism 

of topological monoids. Thus X may be thought of as a sort of 'generalized 
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homogeneous space'. To construct the multiplication on G Xx PX let G act on 
MX by (w· g)(t) = w(t) . g, w E MX, g E G. Then set 

(g, w) . (g', w') = (gg', (w· g') * w'), 

where, as usual, * denotes composition of paths. The pair (ec, cxo ) is a two sided 
identity. We call the monoid G X x P X the loop construction at Xo corresponding 
to the action of G on X. 

In particular, suppose given an arbitrary principal G fibre bundle 

Z~B, ZxG--+Z 

in which 1f*(Z) = O. Then morphisms of topological monoids 

G?GxzPZ~OB 

are defined by ,,((g, w) = g and "('(g, w) = PB 0 W . 

Proposition 2.10 "( and "(' are weak homotopy equivalences, so that G and 
OB are weakly equivalent topological monoids. 

proof: Define an action of G x z P Z on P Z by setting u· (g, w) 
(u. g) * w. Then 1f : PZ --+ B, 1f(w) = PB(W(O)), is a G Xz PZ-fibration. 
It fits in the diagram of fibrations 

Z --1- PZ ~ PB 

B 

where f(w) = w(O) and 1'(w) = PB 0 w. Moreover f and l' restrict to "( and "(' 
respectively in the fibres. Since 1f * vanishes on Z, P Z and P B, it follows from the 
long exact homotopy sequence that "( and "(' are weak homotopy equivalences.D 

Observe that in the proof of Proposition 2.10 that (f, "() and (f', "(') are equiv
ariant weak equivalences. 

Again let P : Z --+ B be the principal G-bundle described just before Propo
sition 2.lO. If 'P : Y --+ B is any continuous map we can form the pullback 
principal bundle 

p: Y XB Z --+ Y , (Y X B Z) x G --+ Y X B Z 

and also the holonomy fibration (§2(c)), 

{}: Y XB PB --+ Y , (Y X B P B) x OB --+ Y x B P B . 
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The diagram of Proposition 2.10 pulls back to the diagram of Serre fibrations 

Y X13 Z ... _y_X-'B=-cf'---_ Y XB PZ YXB!'. Y xB PB 

Y 

which identifies Y x B f and Y x B l' as equivariant weak equivalences. This 
extends Proposition 2.10 to 

Proposition 2.11 The pullback fibre bundle p: Y XB Z --t Y and the holon
amy fibration of'P are connected by equivariant weak equivalences of fibrations: 

Y XB Z • • • Y XB PB 

~/ G+---. --t fiB . 

Y 

o 

Exercises 

1. Let F be the homotopy fiber of the inclusion i : X V Y -+ X x Y. Prove that 
F::: fiX * flY and that fli is a flF- fibration with a cross section. Assume that 
X and Yare simply connected CW complexes. Prove that fI(X V Y) is weakly 
homotopy equivalent to the product fiX x flY x flF. Deduce that if X (resp. 
Y) is r (resp. s) connected then 7rk(X V Y) = 7rk(X) EB 7rk(Y) for k ::; r + s - 2. 

2. Let X be a locally compact space and A C-......-t X a closed cofibration. Prove 
that the canonical map Y x -+ Y A is a fibration. 

3. Prove that p : Bl -+ B x B = B8l ,f f-t (f(0), f(l)) is a fibration. Prove that 
q : B S' -+ B ,q(-y) = 1'(0) is the pull-back fibration of p : Bl -+ B x B along the 
diagonal map B -+ B x B. Deduce that 7rk(BS') = 7rk(B) EB 7rk+dB) , k 2 1. 

4. Let f : sn -+ sn be a homeomorphism of degree -1 and E the quotient 
space of the product sn x [0,1] by the relation (x,O) ~ (f(x), 1). Prove that the 
composite 5 n x [0,1] -+ [0,1] -+ 51 induces a fibration p : E -+ 51. For n 2 2, 
compute 7rk(E) and the action of flS 1 on the homotopy fibre Fp ::: sn. 

5. Prove that if X and Yare simply connected CW complexes then the homotopy 
fibre of the pinch map X V Y -+ X is the half-smash product Y x fiX / * x fiX. 
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In this section we work over an arbitrary commutative ground ring Ik, except 
in (e). Thus module, linear, bilinear, ... will mean Ik-module, Ik-linear, Jk
bilinear, ... and the functors Homk ( -, -) and - (;9 Ik - will be denoted simply 
by Hom(-,-) and-(;9-. 

The object of this section is to establish the basic definitions and conventions 
of graded algebra upon which the rest of this book will rely. It is organized into 
the topics: 

(a) Graded modules and complexes. 

(b) Graded algebras. 

(c) Differential graded algebras. 

(d) Graded coalgebras. 

(e) \Vhen Ik is a field. 

(a) Graded modules and complexes. 
A graded module V, is a family {Vi}iEZ of modules. By 'abuse of language' 

\ve say that an element v E Vi is an element of V of degree i, and we write 
Ivl = deg v = i. \Ve say that V is concentrated in degrees i E I if V, = 0, 
i ~ I , and, by abuse of notation, we write V = {1~LEI. In particular we \vrite 
Veven = {V2i hEZ and Vodd = {V2i+l hE£:· 

Notice that we make frequent use of the Koszul sign convention that when 
two symbols of degrees k and e are permuted the result is multiplied by (-1 )kt. 

The standard notions for non-graded modules carryover to the graded context: 

• A submodule V' C V is a graded module {V;'} with V/ C Vi. 

• The quotient V/V' of a module by a submodule is the family {v,/V;'}. 

• The direct sum EBcY(a) is the family {EBcrV(a);}. In particular if V(i) is 
the graded module defined by 

{ Vi 
1!(i)j = 0 

,j = i 
, otherwise 

then V = EB V(i). We shall therefore sometimes abuse notation and write 

v = EBv,. 

• The direct product TI V(a) is the family {TI V(a);}. The direct product of 
cr 

V and W is written V x W. 
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• A graded module, V, is free if each Vi is a free module. In this case the 
disjoint union of bases of the Vi is called a basis lor V. 

• A linear map I : V -+ W of degree i (between graded modules) is a 
family of linear maps fJ : Vi -+ Wj+i. It determines graded sub modules 
ker I C V and Iml C W: (ker f)j = ker fJ and (Imf)j = ImfJ_i. We 
denote by Hom(V, W) the graded module whose elements of degree i are 
the linear maps of degree i. If I : V' -+ V and 9 : W -+ W' are linear 
maps then Hom(j,g) : Hom(V, W) -+ Hom(V', W') is the linear map 
'P r---t (-1 )deg f( deg g+deg 'P) g'P f. 

• The module Hom(V, lk) dual to V will be denoted by V~, and f~ = 
Hom(j, lk) : W~ -+ V~ will denote the dual of the linear map f. 

• Suppose fa : V(a) --+ Z are linear maps of degree zero. The fibre product, 
( 11 )z(V(a)), is the submodule of 11 V(a) consisting of the elements 
aEI aEI 

{va} satisfying fa(va ) = 1{3(v{3), a,/3 E I. The fibre product of V and W 
is written V Xz W. 

• The tensor product V Q9 W of graded modules is defined by (V Q9 W)i = 
Ei'j+k=i Vi Q9 Wk. If f : V -+ V' and 9 : W -+ W' are linear maps of 
degrees p and q, then I Q9 9 : V Q9 W -+ V' Q9 W' is the linear map: 

(j Q9 g) (v Q9 w) = (-1) deg 9 deg v f ( v) Q9 9 ( w ) 

of degree p + q. If f : V --+ V' we frequently (but not always) simplify 
f Q9 idw to f Q9 W : V Q9 W --+ V' Q9 W. 

• A p-linear map is a map a : V(l) x ... x V(p) -+ W of the form 
a(vI, ... , vp) = /3(VI Q9 •.. Q9 vp), where /3 : VI Q9 •.• Q9 Vp -+ W is a 
linear map. A bilinear map V x W -+ lk is called a pairing and is often 
written v, w r---t (v, w). It determines (and is determined by) the linear 
map 'P : V -+ W~ given by ('Pv)w = (v, w). In particular, if lk is a field 
and V~ and wa are the dual graded vector spaces, then V~ Q9 WU is the 
subspace of (V Q9 W)~ given by 

(Vi Q9 Wi, v Q9 w) = (_l)deg w' degv (Vi, v)(w' , w). 

In addition, 

• The suspension of a graded module V is the graded module s V defined by 
(SV)i = Vi-I. If v E Vi-I the corresponding element in (SV)i is denoted 
by sv. 

• We shall use the classical convention 
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to avoid negative degrees. Thus the degree of an element will depend on 
the context, depending on whether \'ie are using upper or lower degrees. 
For example, if f : 1/ --+ W has degree -1 with respect to lower degrees, 
(J : ~~ --+ Wi-d, then it has degree +1 (J: Vi --+ W i +1 ) with respect 
to upper degrees. In this section 'degree' \vill always mean 'lower degree' 
unless otherwise specified . 

• \Ve use the notation 1/>k = {vi},>k and F>k = {Vi}i>k. The graded sub
modules 1'<k, ~'Sk' F>k, 1'::O:k. V<k, VSk ~re defined- analogously. :\Iore-
over we write 

and 1,' - {17} V+ - 'i i>O . 

A sequence }vI ~ N ~ Q of linear maps is exact if ker g = 1m f. If also f 
is injective and g is surjective then 0 --+ lvI ~ N ~ Q --+ 0 is a short exact 
sequence. A routine check establishes 

Lemma 3.1 (Five lemma) Suppose given a commutative row-exact diagram of 
linear maps of graded modules 

L -------7 AI -------7 N -------7 P -------7 Q 

1 aL 1 aM 1 aN 1 Gp 1 GQ 

L' -------7 lvI' -------7 N' -------7 p' -------7 Q' . 

(i) If aL is surjective and aAf and ap are injective then aN is injective. 

(ii) If aM and ap are surjective and aQ is injective then aI'v' is surjective. 

(iii) If aL is surjective, O:Q is injective and aM and ap are isomorphisms then 
aN is an isomorphism. 0 

A differential in a graded module lvI = {Mi},E£: is a linear map d: M --+ l\!I 
of degree -1 such that d2 = 0, and the pair (AI, d) is called a complex. The 
elements of ker d are cycles, the elements of 1m d are boundaries and the quotient 
graded module H(1\!I, d) = ker d/Im d is the homology of M. We often simplify 
the notation to H(AI). 

A morphism of complexes cp : (M, d) --+ (N, d) is a linear map cp : M --+ N 
of degree zero satisfying cpd = &p. It induces H(cp) : H(IvI) --+ H(N). If H(cp) 
is an isomorphism, cp is called a quasi-isomorphism and we write cp : 111 ..::::.. N. 
Two morphisms cp and 'ljJ are homotopic if there is a linear map h : AI --+ N of 
degree 1 such that y -1/J = hd + dh. \Ve write <p ~ 'lj; : (lvI, d) --+ (N, d) and call 
h a chain homotopy. 

A chain equivalence cp : (111, d) --+ (1V, d) is a morphism such that there is 
a second morphism '0 : (N, d) --+ (lvI, d) satisfying <p'lj; ~ idN and 'lj;cp ~ idM . 

Since H (cp) and H ('lj;) are then inverse isomorphisms, a chain equivalence is a 
quasi-isomorphism. 



Homotopy Theory 43 

If (M, d) and (N, d) are complexes, then so are Hom(M, N) and M ® N: 

d(f) = df - (_l)degj fd, f E Hom(M,N), and 

d(m Q9 n) = dm Q9 n + (_l)deg m m Q9 dn, mE M, n E N. 

Note that in particular the differential in Hom(M, 1;;) is the negative of the dual 
of the differential in M. 

Suppose f is a cycle in Hom( M, N); i.e. df = (-1 )deg j f d. Consistent with 
the notation above we define a linear map H (f) : H (M) -+ H (N) by H (f) [z] = 
[j(z)], where [ ] denotes 'homology class'. 

Lemma 3.2 A necessary and sufficient condition for H(f) to be an isomor
phism (of degree i) is that for each (m, n) E M x N satisfying dm = 0 and 
f(m) = dn there exist (m', n') EM x N satisfying dm' = m and dn' = n- f(m'). 

proof: Suppose the condition holds. If dm = 0 and H(f)[m] = 0 then f(m) = 
dn; hence m = dm' and [m] = O. If [n] E H(N) then dn = 0 = f(O) and so there 
exist (m',n') with dm' = m and dn' = n - f(m'); i.e. [n] = H(f)[m']. 

Suppose H(f) is an isomorphism. Given (m, n) as in the lemma we have 
H(f)[m] = O. Hence m = dml/. Now n - f(ml/) is cycle; hence [n - f(ml/)] = 
H(f)[z] = [j(z)]. Thus m = d(ml/ +z) and n- f(ml/ +z) = dn'. Set m' = ml/+z. 

o 

A chain complex is a complex (M, d) with M = {Mn}n>o; a cochain complex 
is a complex (M,d) with M = {Mn}n:;::o. In the latter cased has (upper) degree 
1, the elements of ker dare cocycles, the elements of 1m dare co boundaries and 
H(M, d) is the cohomology. 

The suspension of a complex (M, d) is the complex s(M, d) = (sM, d) defined 
by sdx = -dsx. 

A short exact sequence of morphisms of complexes, 0 -+ (M, d) ~ (N, d) ~ 
(Q, d) -+ 0 induces a long exact homology sequence, 

Hi (a) Hi ((3) a ... -+ Hi(M) ~ Hi(N) ~ Hi(Q) -+ Hi-1(M) -+ ... , 

defined for all i, in which the connecting homomorphism 8 is defined in the usual 
way: if z E Q represents [z] E Hi(Q) and if (3n = z then 8[z] is represented by 
the unique cycle x E M such that ax = dn. 

(b) Graded algebras. 
A graded algebra is a graded module R together with an associative linear map 

of degree zero, R Q9 R -+ R, x Q9 Y I---t xy, that has an identity 1 E Ro. Thus for 
all x, y, z E R (xy)z = x(yz) and Ix = x = xl. We regard lk as a graded algebra 
concentrated in degree O. A morphism r.p : R -+ S of graded algebras is a linear 
map of degree zero such that r.p(xy) = r.p(x)r.p(y) and r.p(l) = 1. 
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An augmentation for a graded algebra R is a morphism E : R --+ Jk of graded 
algebras. 

A derivation of degree k is a linear map B : R --+ R of a degree k such that 
B(xy) = (Bx)y + (_l)kdegxx (By). 

Let R be a graded algebra. A (left) R-module is a graded module M together 
with a linear map of degree zero R ® NI --+ NI, x ® m f--7 xm, such that 
x(ym) = (xy)m and 1m = m for all x, y E Rand m E M. Right modules are 
defined analogously. 

An R-linear map f : M --+ N of degree k is a linear map of degree k such 
that 

f(xm) = (_l)degj degxx!(m), X E R, mEAl. 

These form a graded submodule HomR(M, N) of the graded module 
Hom(M,N). 

The tensor product M' ®R M of a right R-module M' and a left R-module M 
is the quotient module 

AI' ®R M = (M' ® M)/(m'x ® n - m' ® xn), 

where we have divided by the submodule spanned by elements of the form m' x ® 
n - m' ® xn, m' E AI', m E 1\1, x E R. We use m' (9 m to denote the obvious 
element in M' ® AI; its image in M' ®R M, is denoted by m' ®R m. 

Let R be a graded algebra. A left ideal I in R is a graded submodule such 
that xy E I for x E Rand y E I. Right ideals, (two sided) ideals and subalgebras 
are defined analogously. Note that subalgebras must contain 1. The quotient 
RI I of R by an ideal I is a graded algebra. 

Example 1 Change of algebra. 
A morphism zp : R --+ S of graded algebras makes S into a left (and right) 

R-module 
x· s = zp(x)s or s· x = s'P(x), x E R, s E S. 

If lvl is an R-module then S ®R M is an S-module via s· (s' (9R m) = ss' ®R m. 
o 

Example 2 Free modules. 
Let R be a graded algebra. An R-module M is free if N! ~ R ® V, with V a 

free graded module. A basis {vo:} for V is a basis for the free R-module M. If 
'P : R --+ S is a morphism of graded algebras then 

is a free S-module with the same basis. 
If M is a free R-module with basis {vo:} and if N is any R-module, then the 

choice of elements no: E Nk+lva I determines a unique R-linear map! : M --+ N 
of degree k with f(vo:) = no:. 0 

Example 3 Tensor product of graded algebras. 
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If R, S are graded algebras then R ® S denotes the graded algebra with mul
tiplication 

(x ® y)(x' ® y') = (_l)degy degx' xx' ® yy'. 

Example 4 Tensor algebra. 
For any free graded module V, the tensor algebra TV is defined by 

ex; 

TV = EBTqV 
q=O 

TqF = 17 rg ... ® V . 
'------v--" 

q 

o 

Multiplication is given by a . b = a rg b. Note that q is not the degree: elements 
Vi (8: ... 0 Vq E TqV have degree = ~ deg Vi and word length q. If {vd is a basis 
of V we may write TV = T( {vd). 

Any linear map of degree zero from F to a graded algebra R extends to a 
unique morphism of graded algebras, TV ---t R. Any degree k linear map 
V ---t TV extends to a unique derivation of TV. 0 

Example 5 Commutative graded algebras. 
A graded algebra A. is commutative if 

xy = (_l)deg x degy yx , x,y EA. 

When ~ E lk this condition implies that x 2 = a if x has odd degree. If A. is a 
commutative graded algebra, then a left A.-module, IV!, is automatically a right 
A-module, via 

mx = (_l)deg m degx xm . 

If N is a second A-module then HomA(M, N) and IV! ®A N are A.-modules via 

(xf)(m) = x· f(m) = (_l)de g x degf f(xm) 

and 

x(m ®A n) = xm ®A n = (_l)deg x degmm ®A xn, x E A, mE IVI, n EN. 

If A ---t B, A ---t Care morphisms of commutative graded algebras then 
B .:2) C is also commutative and the kernel of the surjection B ® C ---t B ®A C 
is an ideal. Thus B ®A C is also a commutative graded algebra. 0 

Example 6 Free commutative graded algebras. 
Suppose lk contains ~. Let V be a free graded module. The elements V 0 w -

( -1) deg v deg U' W rg V (v ,-WE V) generate an ideal I C TV. The quotient graded 
algebra 

AV = TV/I 

is called the free commutative graded algebra on V. If {vd is a basis of 17 we 
may write A V = A( {v;}). The algebra A V has the following properties: 
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(i) AV is graded commutative; in particular, the square of an element of odd 
degree in AV is zero. 

(ii) There is a unique isomorphism A(VEBW) = AV®AW which is the identity 
in V and in W. 

(iii) If V is free on a single basis element {v} then a basis of AV is given by: 

if deg v is odd 

if deg v is even. 

(iv) A linear map of degree zero from V to a commutative graded algebra A 
extends to a unique morphism of graded algebras, AV ----+ A. A linear map 
V ----+ 1\"V of degree k extends to a unique derivation in AV. 

(v) Suppose rp : A 1/ -+ A is a morphism of graded algebras and 0 and 0' are 
derivations respectively in A V and in A. If rpOv = 0' rpv, v E V, then 
rpO = O'rp. 

00 

(vi) AV = EEl AqV, where AqV is the linear span of the elements Vl /\ ... /\ vq, 
q=O 

Vi E V; these elements have degree = ~i degvi and word length q. 

o 

(c) Differential graded algebras. 
A differential graded algebra (dga for short) is a graded algebra R together with 

a differential in R that is a derivation. In this situation ker d is a sub algebra and 
1m d is an ideal in ker d. The homology algebra H (R, d) of a differential graded 
algebra (R,d) is the graded algebra H(R,d) = kerdjImd. An augmentation is 
a morphism E : (R, d) -+ .D;;, 

A morphism of differential graded algebras f : (R, d) ----+ (5, d) is a morphism 
of graded algebras satisfying fd = df. It induces a morphism H(J) : H(R) ----+ 
H(5) of graded algebras. 

If (R, d) and (5, d) are dga's then so is (R, d) Q9 (5, d) with the differential 
described in (a) and the multiplication given in Example 3 of (b). This is called 
the tensor product dga. 

A chain algebra is a dga (R, d) with R = {Rn}n20. A cochain algebra is a dga 
(R, d) with R = {Rn }n20. In the latter case H(R, d) is the cohomology algebra 
of (R, d). 

A (left) module over a differential graded algebra (R, d) is an R-module, M, 
together with a differential d in 1111 satisfying 

d(x· m) = dx· m + (_l)degx x · dm, x E R,m E M. 
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Then H(M) is an H(R)-module via 

[x] . [m] = [x· m]. 

A morphism of (left) modules over a dga (R, d), is a morphism 
f : (M, d) --+ (N, d) of graded R-modules satisfying df = fd. The induced 
map H(f) : H(M) --+ H(N) is then a morphism of H(R)-modules. 

If (M, d) and (N, d) are left (R, d)-modules, then HomR(M, N) is a sub complex 
of Hom(M, N). In the same way, if (M', d) is a right (R, d)-module then the 
differential d defined on M' (>9 M induces a differential in M' (>9R M so that 
M' (>9R M is naturally a complex. 

Example 1 HomR(M, M). 
If (M, d) is any (R, d)-module, then HomR(M, M) is a differential graded 

algebra with multiplication defined by the composition of maps. 0 

Example 2 Tensor products. 
If (A, d) -t (B,d) and (A,d) -t (C,d) are morphisms of commutative dga's 

then (B (>9A C, d) is a commutative dga. 0 

Example 3 Direct products. 
If (A, d) and (A', d) are dga's then the direct product (A, d) x (A', d) is the dga 

(A x A',d) given by (a,a' )· (al,aU = (aal,a'a~) and d(a,a' ) = (da,da' ). The 
direct product, Il,,(A(a:), d), of a family of dga's is defined in the same way. 0 

Example 4 Fibre products. 
If f: (A,d) -t (B,d) and 1': (A',d) -t (B,d) are dga morphisms then 

(A XB A', d) is a sub dga of (A, d) x (A', d). It is called the fibre product of 
(A, d) and (A', d). The fibre product of a family of dga's (A(a:), d) with respect 
to dga morphisms fa (A(a:),d) -t (B,d) is the sub dga ((TIa)BA(a:),d) of 
TIa(A(a:), d). 0 

(d) Graded coalgebras. 
A graded coalgebra C is a graded module C together with two linear maps of 

degree zero: a comultiplication ~ : C --+ C (>9 C and an augmentation E: C --+ Ik 
such that (~(>9id)~ = (id(>9~)~ and (id(>9E)~ = (E(>9id)~ = ide. A morphism 
<p : C --+ C' of graded coalgebras is a linear map of degree zero such that 
(<p (>9 <p)~ = ~/<p and E = E'<p. A graded (left) comodule over a graded coalgebra 
C is a graded vector space M together with a linear map ~M : C --+ C (>9 M of 
degree zero such that (~(>9id)~M = (id(>9 ~M)~M and (c(>9idM)C = idM. 

A graded coalgebra is co-commutative if 

where T : C (>9 C --+ C (>9 C is the involution a (>9 b ~ (_l)dega degbb (>9 a. 
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A graded coalgebra is coaugmented by the choice of an element 1 E Co such 
that c(l) = 1 and ll(l) = 1 @ 1. Given such a choice the relations above imply 
that for a E ker c, 

lla - (a C8: 1 + 1 @ a) E kef(: C8: ker E . 

An element, a, in a coaugmented graded coalgebra is called primitive if a E 

ker c and lla = aC8: 1 + 10)a. Primitive elements form a graded submodule of ker E, 

and a morphism of coaugmented graded coalgebras sends primitive elements to 
primitive elements. 

A coderivation of degree k in a graded coalgebra C is a linear map 0 : C ---+ C 
of degree k such that llO = (0 ~ id + id @ O)ll and cO = O. 

A differential graded coalgebra (dgc for short) is a graded coalgebra C together 
with a differential that is a coderivation in C. 

If C is a graded coalgebra, then Hom( C, lk) is a graded algebra whose multi
plication is defined by 

(f. g)(c) = (f @ g)(llc) , f, 9 E Hom(C, lk), c E C 

and with identity the map c : C ---+ lk. If (C, d) is a differential graded coalgebra, 
then C~ = Hom( C, lk) is a differential graded algebra. 

Remark Henceforth \\re may occasionally suppress the differential from the no
tation, writing M, R, ... for a differential graded module (AI, d), a dga (R, d), ... 

(e) When 1; is a field. 
Recall that complexes (M, d) and (N, d) determine the complexes 1v10) Nand 

Hom(M, N) with d(m C8: n) = dm @ n + (_l)degmm @ dn and df = do f -
(_l)degf fod. Natural linear maps 

H(Ivf) tg; H(N) ---+ H(M rg; N) and H (Hom (1V1, 1\1)) ---+ Hom (H(1'v1), H(N)) 

are given by [z] @ [w] f-----t [z @ w] and [1] f-----t H(f). (Recall that H(f)[z] 
[1(z)]). 

Proposition 3.3. If 1k is a field these natural maps are isomorphisms: 

H(M) @ H(N) = H(M @ N) and H (Hom(M, N)) = Hom (H(l'v1), H(N)). 

proof: This is a straightforward exercise using the fact that any complex Iv1 
can be written M = 1m d E9 H @ C with d : C ---=-t 1m d and d = 0 in H. 0 

In particular, suppose (C, d) is a dgc over a field lk. using the first iso
morphism of Proposition 3.3 we may write H(ll) : H(C) -7 H(C) C8: H(C). 
Together with H(s) this makes H(C) into a graded coalgebra. The dual algebra, 
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Hom(H(C),.Dc) is just the homology algebra of the dga, Hom(C, .Dc), as follows 
again from Proposition 3.3. 

If .Dc is a field we say a graded vector space M = {Mi} has finite type if each 
Mi is finite dimensional. If also M is concentrated in finitely many degrees then 
M is finite dimensional and dim M = 2:: dim Mi. 

i 
When M has finite type its Hilbert series is the formal series 

(Xl 

M*(z) = L (dim Mi)zi . 
i==.-oo 

However if M = {Mi} we write M*(z) = 2::(dimMi)zi. When the context is 

clear we simply write M(z). 
If M is finite dimensional then its Euler-Poincare characteristic is the integer 

XM defined by 

If M is equipped with a differential then it is an easy exercise to verify that 

XM =XH(M)· (3.4) 

A graded algebra R (or a dga) has finite type if each Ri is finite dimensional; 
i.e. if it has finite type as a graded vector space. Similarly a graded R-module 
of finite type is an R-module M such that each Mi is finite dimensional. By 
contrast R is finitely generated if it is generated by a finite set of elements (i.e. 
if there is a surjection T( VI, ... , Vk) ---+ R). Similarly M is a finitely generated 

l 
R module if every m E M can be expressed as m = 2:: Ximi, Xi E R, where 

i=I 
m 1, ... me is a fixed set of elements of M. 

Exercises 

1. A complex M is acyclic if Hi(M) = 0, i = 0,1, .... Prove that if M is 
an acyclic R-free chain complex then idM ,..., 0. Let M and N be graded chain 
complexes. Under what conditions is the complex Hom (M, N) acyclic? 

2. Let (M,dM) and (N,dN ) be chain complexes and f E Homo(M,N). Prove 
that if M is an R-free module then f is a chain equivalence if and only if the chain 
complex (C, d) defined by Ck = M k - I tB N k , d(m, n) = (-dMm, f(m) + dNn) is 
acyclic. 

3. Consider the free commutative differential graded algebra (/\(x, y, z), d) with 
deg X = deg y = deg z = 1 and dx = yz, dy = zx, dz = xy. Prove that the map 
'P: (/\t, 0) -t (/\(x,y,z),d) defined by 'P(t) = xyz is a quasi-isomorphism. 
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4. Let TV be the tensor algebra on the graded vector space V. 
Define D. : TV ----t TV @ TV, E: TV ----t ik, by 

D.(VI @ V2 @ ... Q9 vn ) = L:7=o(VI Q9 V2 @ ... @ Vi) @ (Vi+l Q9 Vi+2 @ ... @ Vn ) 

E(l) = 1 and E(VI @ V2 @ ... @ vn ) = 0 if n 2:> 1 . 

Prove that (T(V), D., c) is a non cocommutative graded coalgebra. 

5. Let (M, dM ) and (N, dN ) be chain complexes. Prove that if 1vI is an R
free chain complex then the complex Hom (lVI, N) is isomorphic to the complex 
Hom (M, R) @ N. 

6. Let (M, dM ) be a chain complex. Prove that if M is of finite type then there 
exists a Hilbert series Q(z) such that M(z) = H(A1)(z) + (1 + z)Q(z). 



4 Singular chains, homology and Eilenberg
MacLane spaces 

As usual, we work over an arbitrary commutative ground ring k. 
This section is a quick review of singular homology. Distinct from the usual 

approach, however, is our use of normalized singular chains, so as to arrange 
that the chains on a point vanish in positive degrees. We also take great care 
with the comparison between C*(X x Y) and C*(X) :2i C*(Y), using the clas
sical Alexander-Whitney and Eilenberg-Zilber equivalences because these have 
important associativity and compatibility properties on which we will subse
quently need to rely. 

Beyond the standard material of elementary singular homology we: 

• show that a weak homotopy equivalence induces an isomorphism in homol
ogy. 

• construct the cellular chain complex of a CW complex and show that it is 
chain equivalent to the singular chain complex. 

• prove the Hurewicz theorem identifying the first non-vanishing homotopy 
and homology groups of a space (except when 7fl -:f. 0, in which case 
7f1/[7fl , 7fl] ~ Hi). 

Finally, we construct the Eilenberg-MacLane spaces K(7f, n) for a group 7f 
(abelian if n 2:: 2) and show that if X is an (n -I)-connected CW complex then 
[X,K(7f,n)] ~ Hom (7fn (X),7f), the isomorphism being given by [1] J-----77fn(J). 
In fact this theorem generalizes to the famous 

Theorem ([ED For any CW complex X a bijection [X, K(7f, n)] ~ Hn(x; 7f) 
is given by [J) J-----7 Hn(J)t, t denoting the fundamental class of H n (K(7f, n); 7f). 

However we shall not need this result, and so it is not included in the text. 

This section is organized into the following topics: 

(a) Basic definitions, (normalized) singular chains. 

(b) Topological products, tensor products and the dgc, C* (X; Jk). 

(c) Pairs, excision, homotopy and the Hurewicz homomorphism. 

(d) Weak homotopy equivalences. 

(e) Cellular homology and the Hurewicz theorem. 

(f) Eilenberg-MacLane spaces. 
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(a) Basic definitions, (normalized) singular chains. 
Recall that a singular n-simplex in a space X is a continuous map 

a : ~n ---+ X , 

where n 2 0 and ~n = {~tiei I 0:::; ti:::; 1, L:ti = I} is the convex hull of 

the standard basis eo, ... ,en of ]RnH. If X C ]Rm is a convex subset then any 
sequence Xo, ... ,Xn E X determines the linear simplex 

(xo ... xn): ~ n ---+ X, 'L-tiei I-----t 'L-tiXi. 

Two important examples of linear. simplices are the i-th face inclusion of ~ n, 

(. means omit) 

defined for n 2 1 and 0 :::; i :::; n; and the j -th degeneracy of ~ n, 

{lj = (eo··· ej ej··· en) : ~nH ---+ ~n, 

defined for n 2 0 and 0 :::; j :::; n. The image of .Ai is called the i-th face of ~ n. 
Denote by Sn(X) the set of singular n-simplices on a space X (n 20), and by 

Sn(rp) : Sn(X) --t Sn(Y), Sn(rp): a I-----t rp 0 a, 

the set map induced from a continuous map rp : X -+ Y. The set maps 

Oi : SnH (X) -+ Sn(X), a r-+ a 0 .Ai and Sj : Sn(X) -+ Sn+l (X), a r-+ a 0 (!j 

are called the face and degeneracy maps; they commute with the set maps S*(rp). 
A straightforward calculation shows that 

, i < j; 
SiSj Sj+lSi, , i :::; j; 

{ 
Sj-lOi , i < j (4.1) 

OiSj id ,i=j,j+1 
SjOi-l , i > j + l. 

The free lk-module with basis Sn(X) will be denoted CSn(X; lk), and the sin
gular chain complex of X is the chain complex CS*(Xi lk) = {CSn(Xi lk)}n::::o, 
with differential d = L:( -l)io;. Its homology, denoted H*(Xi lk), is the singular 

homology of X. 
An n + 1 simplex of the form SiT (T E Sn(X), 0:::; i :::; n) is called degenerate 

and the degenerate simplices span a submodule DSn+1 (X) of CSnH(Xilk). 
It follows easily (d. [118]) from (4.1) that DS*(X) is a sub chain complex of 
CS*(Xilk) and that H(DS*(X» = O. We will use the quotient chain complex: 

C*(Xilk) = CS*(Xilk)/DS*(X) 

it is called the normalized singular chain complex of X. 
The following properties follow immediately from the definitions and the re

marks above: 
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• Cn(X; k) is a free module with the non-degenerate n-simplices as basis. 

• The surjection C S* (X; k) ----+ C* (X; k) is a quasi-isomorphism. Thus we 
may (and do) use this to identify 

(4.2) 

• C*(pt) = k, concentrated in degree zero. 

(The last property follows because 6, n ----+ pt is degenerate for n ?:: 1.) 
A continuous map j : X ----+ Y induces the morphism C*(f) : C*(X;k) ----+ 

C*(Y; k) defined by C*(f)(J = jO(J; we write H*(f) for H(C*(f». In particular, 
for the constant map X ----+ pt we may identify 

C*(const) = c : C*(X; k) ----+ k. 

This is called the augmentation of C * (X; k). 

Remark CS*(-) vs C*(-). 
Most presentations of singular homology use C S* ( -) since it is simpler to 

describe, and gives the same answer. For us, however, the property C*( {pt}; k) = 
k turns out to be really useful. 

The constructions that follow are all made first at the level of S*(X), then by 
linear extension to CS*(X; k) and then (by factoring) in C*(X; k). We shall 
describe only the first step, leaving the rest to the reader. 

(b) Topological products, tensor products and the dgc, C*(X; k). 
We recall now how topological products are modelled by tensor products of 

chain complexes. As in §3, - 0 - denotes - 0k -. First note that CS*(X; k) 0 
C S* (Y; k) is a free graded module with basis the tensor products (J 0 T of 
singular simplices in X and Y. Moreover C*(X;k) 0 C*(Y;k) is the quotient 
chain complex obtained by dividing by those (J 0 T with at least one of (J, T 

degenerate. Thus, as remarked above, constructions in C S* (-) pass to C* (-) 
by factoring. 

There are two important chain complex maps that model topological products 
by tensor products. The first is the Alexander-Whitney map 

AW : C*(X x Y; k) ----+ C*(X; k) 0 C*(Y; k). 

defined as follows: If ((J,T) : 6,n -+ X X Y is any singular simplex on X x Y 
then 

n 

AW((J, T) = 2:: (J 0 (eo, ... , ek) 0 T 0 (ek,"" en). 
k=O 

The second is the Eilenberg-Zilber map 

EZ: C*(X;k) 0C*(Y;k) ----+ C*(X x Y;k) , 
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whose construction is based on a combinatorial description of the product ~p x 
~q of two standard simplices with vertices vo, ... , vp and wo, ... , wq. When 
p = q = 1 this reduces to the decomposition of I x I into two triangles: 

w' 

w 

(Vo, wo) 

w = (( Vo, wo), (VI, Wo), (VI, WI)) 

In general ~p x ~ q decomposes as the union of all the linear (p + q)-simplices 
w of the form 

where for each i either 

{ a(i + 1) = a(i) 
,B(i + 1) = ,B(i) + 1 

or else { a(i + 1) = a(i) + 1 
,B(i + 1) = ,B(i). 

Put n(w) = L [,B(i + 1) - ,B(i)] [a(j + 1) - a(j)]. 
O::;i<j<p+q 

The idea of EZ is that if a E Sp(X) and T E Sq(Y) are respectively a p
simplex and a q-simplex then the basis element a I8i Tin Cp(X) I8i Cq(Y) should 
correspond to the map a x T : ~p x ~q --+ X x Y. Thus while the fact that 
~p x ~ q decomposes as the union of the w motivates us, we do not actually need 
it. We simply write down the chain 

w 

where the sum is over all w of the form (4.3). Notice that if a or T is degenerate 
then so is CS*(O' x T)(Cp,q), and so it represents zero in C*(X x Y). Thus we 
may define E Z by 

EZ(O' I8i T) = C*(O' x T)(Cp,q). 

Straightforward (but often tedious) calculations establish the properties below 
of AW and EZ. Let pX : X x Y --+ X and pY : X x Y --+ Y be the projections. 
We identify X = X x {pt} and pX with id x const. : X x Y -----7 X x {pt}. On the 
algebraic side we identify C* (X; lk) I8i C. ({pt}; lk) = C* (X; lk) I8i lk = C. (X; lk). 



Homotopy Theory 55 

• [118] AW and EZ are morphisms of chain complexes, natural in X and in 
)7. (4.4) 

• In particular, 

while (4.5) 

• When X = {pt}, AW and EZ both reduce to the identity map of C*()7; .k). 
A similar assertion holds when )7 = {pt}. (4.6) 

• [118] Associativity For any three spaces X, )7, Z, 

(AW Q9 id) 0 AW = (id Q9 AW) 0 AW, and 
(4.7) 

EZ 0 (EZ Q9 id) = EZ 0 (id Q9 EZ). 

as maps between C*(X x)7 x Z;.k) and C*(X;.k) Q9 C*(J7;.k) Q9 C*(Z; .k). 

• [118] Interchange of factors For topological spaces X,)7 and graded mod
ules M, N define 0 : X x )7 ---t )7 x X by O(x, y) = (y, x) and Oalg : 

M Q9 N ---t N Q9 M by Oalg(m Q9 n) = (_l)degm degnn Q9 m. Then 

• [49] Compatibility The following diagram commutes 

C.(XxX' ;k)0C.(YxY';k) 
<I>o(AW0AW) 
-----t) C.(X;k)0C.(Y;k)0C.(X';k)0C.(Y';k) 

EZ 1 1 EZ0EZ 

C.(XxX'xYxY';kj 
AWoC.(idxOxid) 

C.(XxY;k)0C.(X' xY';k) 

(4.9) 
where iI> = id Q90alg Q9 id. 

Finally we have 

Proposition 4.10 AW and EZ are inverse chain equivalences. In fact, AW 0 

EZ = id and EZ 0 AW is naturally homotopic to the identity. 

proof: The first assertion is a simple computation, depending on the fact that 
we have divided by the degenerate simplices. For the second, we have to construct 
h : Cn(X x)7;.k) ---t Cn+1 (X x)7; .k), natural in X and )7, such that EZ oAW
id = dh + hd. We may set h = 0 in Co(X x )7). Suppose for some n 2: 1 that his 
constructed for i < n. Let ~top : ~ n ---t ~ n X ~ n be the diagonal, regarded as a 
singular n-simplex. Then z = (EZ 0 AW)(~top) - ~top - hd(~top) is a cycle in 
Cn(~n x ~n;.k). Since ~n x ~n is contractible we may find Cn+l E Cn+l(~n X 
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tln; lk) so that dCn+l = z . .:'-iow for any n-simplex (a, T) : tl n --+ X x Y define 
h(O',T) = G*(O' x T)(cn+d. D 

The Alexander-\Vhitney map defines a natural differential graded coalgebra 
structure in G*(X; lk) via the topological diagonaL tltop : X --+ X x X, x >-+ 
(x, x). The comultiplication is given by 

tl = AW 0 G*(tltop) : G*(X; lk) --+ G*(X; lk) (59 G*(X; lk). 

Thus for each a E Sn (X), 

n 

tl(O') = AJ'V(O', a) = Lao < eo,··· ,ek > :g;O'o < Ck,'" ; en > 
k=O 

The augmentation is defined by 

E = G.(const.): G*(X;lk) --+ lk = G*({pt};lk). 

The associativity of A Wand its compatibility with E (cf. (b) above) imply that 
(G*(X;lk),tl,c:) is a dgc. 

'\Ioreover any x E X may be regarded as a zero-simplex in Go (X; lk) and, 
clearly tlx = x t3;x. Thus 1 >-+ x defines a co-augmentation in the dgc, G* (X; lk). 

(c) Pairs, excision, homotopy and the Hurewicz homomorphism. 
For A c X we put 

it is lk-free on the non-degenerate simplices of X whose image is not in A. Its 
homology, H.(X, A; lk) is the ordinary relative singular homology. 

For B cAe X we have the short exact sequence 

0--+ G*(A,B;lk) --+ G*(X,B;lk) --+ G*(X,A.;lk) --+ 0 

induced by the obvious inclusions; it leads to a long exact homology sequence 

a ... --+ Hi(A,B:lk) --+ Hi(X,B:lk) --+ Hi(X,A;lk) --+ Hi-dA,B;lk) --+ ... 
(4.11) 

a is called the connecting homomorphism. Since H* (Y; lk) = H* (Y, ¢; lk) this 
reduces to a more familiar long exact sequence when B = ¢. 

If W cAe X has the property that the closure of vV' is contained in the 
interior of A, then the excision property [142] states that inclusion induces an 
isomorphism 

H.(X - WA - W; lk) --'=+ H.(X, A; lk). 

The morphisms EZ and AW of (b) above factor to give (relative) Eilenberg
Zilber and Alexander-Whitney morphisms 

EZ 
G.(X, A; lk) ~ G*(Y; lk) ~ G.(X x YA x Y; lk) 

Air 
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satisfying AW oEZ = id and EZ oAW '" id. Thus these are quasi-isomorphisms. 
Suppose now that <P : X x I -+ Y is a homotopy from CPo to CPl. Define 

h : Ci(X; lk) -+ CHI (Y; lk), i 2: 0, by h(u) = (-I)iC.(<P) 0 EZ(u 0 idI ), where 
the identity map of I, idI, is regarded as a singular I-simplex. Then 

C.(cpd - C.(cpo) = dh + hd; 

i.e., h is a homotopy from C.(cpo) to C.(cpd. In particular H.(cpd = H.(cpo). 
As an example, let 86. n be the boundary of 6. n, and regard the identity map 

6.n ---=t 6.n as a singular simplex. It represents a cycle, Zn E Cn(6. n,86.n;lk), 
whose homology class will be denoted by [6.n]. 

Lemma 4.12 For n 2: 0, H.(6.n, 86.n; k) is a free module concentrated in de
gree n with single basis element [6. n] 

H.(6.n , 86.n; k) = k. [6.n]. 

proof: We may suppose n > 0. Regard 6.n - 1 = Im(eo, ... , en-I} as one of the 
faces of 6. n and let L be the union of the other faces. Then L is contractible to 
en. Hence H.(L; k) ~ H.(6.n ; lk), and the long exact sequence for ¢ C L C 6.n 

implies that H. (6. n , L; lk) = 0. Thus the long exact sequence for L C 86. n C 6. n 
provides an isomorphism 

8: H. (6. n, 86. n; lk) ~ H.- I (86. n, L; lk). 

On the other hand, shrinking the last coordinate shows that the inclusion 
(6.n - I ,86.n - 1 ) -+ (86. n - {en},L - {en}) is a homotopy equivalence. This 
yields 

Combined with the isomorphism above this gives an isomorphism 

H.(6.n, 86.n; lk) ~ H._ 1 (6.n - 1 , 86.n- 1 ; lk), 

which carries [6.n] to (_I)n[6.n- I ]. The lemma follows by induction on n. 0 

It follows from Lemma 4.12 and the long exact sequence for ¢ C 86.n C 6.n 

that for n 2: 1, H.(86.n; lk) is a free lk-module on two generators 

(4.13) 

where [eo] is the homology class of the O-simplex eo and [86. n] is the homology 
n 

class of the cycle Zn-l = 2: (-I)i(eo .. . ei ... en}. Since (6. n,86.n) is homeo
i=O 

morphic to (Dn, sn-l) we conclude 

Hi(Dn, sn-\ lk) { lk, z = n 
0, otherwise 

and (4.14) 

Hj(sm, {pt}; k) { lk, j=m 
0, otherwise. 
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We use a different calculation to fix a generator in Hm(sm; Z) ~ Z, m 2 l. 
Recall that 1m denotes the m-cube. In Example 5, §1 we constructed homeo
morphisms 

and so (4.14) implies that Hm(Im,8Im;z) ~ Z. Choose generators [1m] E 
Hm (Im,8Im;z) as follows. For m = 1 let [I] E HdI,8I;Z) be the class rep
resented by the identity map L of I (L : t I--t t), which is indeed a relative cycle. 
For m > 1 let [1m] be the class represented by EZ (L 0 ···0 L). Then [1m] 
is a generator of Hm(Im,8Im;71) and 8[Im+l] is a generator of Hm(8Im+l;Z). 
A straightforward calculation shows that the homeomorphisms above send [1m] 
and 8[Im+l] to the same generator, [sm] E Hm(sm; Z). 

Definition [sm] is called the fundamental class of sm class of sm. 

Next, recall that Hm(rp) : Hm(sm; lk) -+ Hm(X; lk) depends only on the 
homotopy class of rp : sm -+ X. Thus set maps 

m 21, 

are defined by hurx[rp] = Hm(rp) [sm]. A straightforward computation shows 
that these are group homomorphisms, and it is immediate from the definition 
that they are natural: if f : (X, xo) -+ (Y, Yo) is continuous then 

Definition The Hurewicz homomorphism for X is the homomorphism hur X : 

7l".(X,xo) -+ H.(X;lk). 

(d) Weak homotopy equivalences. 
We shall rely heavily on 

Theorem 4.15 If rp : X -+ Y is a weak homotopy equivalence then G.(rp) 
G.(X; lk) -+ G.(Y; lk) is a quasi-isomorphism. 

proof: Recall the face maps Ai = (eo ... ei ... en) : .6.n - 1 -+ 6 n . We first 
observe that for each n 2 a and each (J : 6 n -+ Y we can associate (J' : 6 n -+ X 
and a homotopy 1> u : 6 n x I -+ Y from (J to rp 0 (J' such that 

(4.16) 

Indeed we proceed by induction on n. Conditions (4.16) define (J' on 86 nand 
1>u on 86n x I. Now the extension to (J' and 1>u is just the Whitehead lifting 
lemma 1.5. 
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Define a linear map f: C5.(Y;lk) -+ C5.(X;lk) by a I-t a'. The conditions 
above imply that f is a chain map and that C 5. ('P) 0 f - id = hd + dh, where 
h(O') = C5.(<p,,) 0 EZ(O' @idI ). 

A second application of the Whitehead lemma gives, for each T : t::,. n -+ X, 
a homotopy \]!T : t::,.n X I -+ X from ('P 0 T)' to T such that \]!T 0 (Ai x id) = 
\]! TOAi' 0 :s i :s n. This then implies that f 0 C 5. ('P) - id = dk + kd. Hence 
C 5. ('P) is a chain equivalence and C. ('P) is a quasi-isomorphism. 0 

(e) Cellular homology and the Hurewicz theorem. 
Let (X, A) be a relative CW complex with n-skeleton X n, so that Xn = 

X n- 1 Ufn (IJ D~). Let Oa be the origin (centre) of D~. Put U = Xn - IJ {oa} 

and 0 = U (D~ - {oa}). Since Dn-{o} = 5 n- 1 x (0, 1]:::: 5 n- 1 x {I}, it follows 
a 

that the inclusions X n - 1 -+ U and U 5;;-1 -+ 0 are homotopy equivalences. 
a 

Thus in the diagram 

C.(Xn,Xn-,) --_. c.(Xn,U) ... ---- c.(Xn-Xn-l,U-Xn-l) 

where C.(-) stands for C.(-;lk), the horizontal arrows on the left are quasi
isomorphisms, while the horizontal arrows on the right are quasi-isomorphisms 
by excision. Hence the characteristic map induces an isomorphism in homology: 

EBH. (D~,5;;-1) ~ H.(Xn,Xn- 1;Jk). 
a 

By (4.14) we may identify H.(Xn,Xn- 1;lk) as a free module concentrated in 
degree n with basis {ca } indexed by the n-cells of X. This implies via an easy 
induction that H.(Xk,Xr;Jk) is concentrated in degrees i E (r,k]. Since any 
singular simplex of X has compact image it lies in some X k , and so any element 
of C.(X; Jk) is in some C.(Xk; lk). It follows that 

(4.17) 

Denote the free module, H.(Xn,Xn- 1;lk) by Cn. Associated with the inclu
sions X n- 1 C Xn C X n+1 is a long exact homology sequence, (cf. (4.11)) with 
connecting homomorphism f) : Cn+! -+ Cn. An easy computation shows that 
f) 0 f) = O. Thus (C = {Cn}n?:O,fJ) is a chain complex. It is called the cellular 
chain complex for the relative CW complex, (X, A). 

Definition A cellular chain model for (X, A) is a morphism 
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between the cellular and normalized singular chain complexes, restricting to mor
phisms m(n): (C<Sn, 8) -+ C*(Xn,A;.Dc) and such that the induced morphisms 

induce the identity map Cn = H*(Xn, X n- 1; .Dc). 
When A = 0, m : (C, 8) -+ C * (X; .Dc) is called a cellular model for the CW 

complex X. 

Theorem 4.18 (Cellular chain models) Every relative CW complex (X, A) 
has a cellular chain model m : (C*,8) -+ C*(X, A; k), and m and each m(n) 
are always quasi-isomorphisms. 

proof: We construct the morphisms m(n) inductively arid observe in passing 
that they are quasi-isomorphisms. 

Suppose by induction that m(n) is constructed; we extend it to 
m(n + 1) as follows. Represent a basis element Ca E Cn+! by a cycle Za E 
Cn+!(Xn+!,Xn;.Dc), and lift Za to a chain Wa E Cn+!(Xn+!;.Dc). Then dWa is 
an n-cycle in C*(Xn; k). Since m(n) is a quasi-isomorphism there is a cycle 
Va E Cn and a chain aa E Cn+!(Xn;.Dc) such that m(n)(va ) = dWa +daa . Since 
H(m(n)) is the identity, it is immediate that Va = Oca . Extend m(n) to a mor
phism m(n + 1) by setting m(n + I)(ca) = Wa + aa. Since Wa + aa also projects 
to Za, m(n + I)(ca) = Za and H(m(n + I))ca = [zal = Ca , as desired. 

Finally, since H(m(n)) and H(m(n + 1)) are isomorphisms so is 
H(m(n + 1)) by the five lemma (3.1). The sequence m(n) so constructed defines 
a cellular model m : (C*, 8) -+ C*(X, A; .Dc). Moreover for any cellular model we 
have, in the same way, that each m (n) is a quasi-isomorphism. Formula (4.17) 
identifies Hi(m(n)) with Hi(m) for i < n; hence m is a quasi-isomorphism. 0 

Remark Suppose rp : (X, A) -+ (Y, B) is a cellular map of relative CW 
complexes, so that it restricts to maps rp(n,k): (Xn,Xk ) -+ (Yn,Yk ). Put 
fn = Hn(rp(n,n -1)): Hn(Xn,Xn-1;.Dc) -+ Hn(Yn,Yn-1;.Dc). It is immediate 
from the definition of 8 as a connecting homomorphism that 

f = {fn}: (C;,8) -+ (C;,8) 

is a morphism from the cellular chain complex of (X, A) to the cellular chain 
complex of (Y, B). 

Now suppose that mX : (C;,8) ~ C*(X,A;.Dc) and mY : (C;,8) ~ 
C* (Y, B;.Dc) are cellular chain models. We construct linear maps hn : C; -+ 
Cn+! (Yn;.Dc) so that 

i.e., mY f is chain homotopic to C*(rp)mx . 
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In fact, set h-l = 0 and assume hi constructed for i :s: n so that the equation 
above holds in C~n' Let CO' be a basis element of C~l' Then 

d(mY j - C*(i.p)mx - ho)cO' 
(mY j - C*(i.p)m X - dh - ho)ocO' 

= O. 

Thus ZQ = (mY j - C*(i.p)m X - ho)cO' is a cycle in Cn+dYn+1 ; ffi:). Now hOeO' E 
h(C;;) c Cn +1 (Yn; ffi:). It follows that ZO' projects to the cycle (mY j-C*(i.p)mX)co: 
in Cn +1 (Yn +1 , Yn ; ffi:). It is immediate from the definitions that this relative cycle 
is a boundary, so that 

='Jow yO' is an (n + 1)- cycle in Yn· Since Hn+l (Yn ; ffi:) = 0 by the Cellular chain 
models theorem, Ya = dwa ) some WO' E Cn+2 (Yn+1;ffi:). Define hn+1 by setting 
hn+l(cO') = Wo:o 

Theorem 4.19 (Hurewicz) Let (X, xo) be a pointed topological space for which 
7Ii(X,XO) = 0, i:S: r. 

(i) If r = 0 (i.e., X is path connected), then the homomorphism 

is surjective and its kernel is the subgroup of 711 generated by the commu
tators 0:;30: -1,3- 1 . 

(ii) If r 2 1, then Hi(X; 7l) = 0, 1 < i :s: rand 

is an isomorphism. 

proof: The proof of Theorem 1.4 provides a weak homotopy equivalence 

i.p : (Y, Yo) ----+ (X, xo) 

in which Y is a CW complex, Yr = Yo and }~+l = VaS~+l. Thus Theorem 4.15 
asserts that H*(i.p) is an isomorphism. By the naturality of the Hurewicz ho
momorphism it is sufficient to prove the theorem for Y. r..loreover, again by 
naturality, it is sufficient to prove the theorem for the finite subcomplexes of Y; 
i.e. we may assume Y itself is finite. 

\Ve first consider the case r 2 1 and observe that the Cellular chain models 
theorem above shm,'s that Hi(Y; 7l) = 0, 1 :s: i :s: r. ::Vloreover, since sr+l = 
* U er +1 , TI S~+l is a C\V complex with Yr+1 as its (r + 1) skeleton and the 

0' 
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next smallest cells of dimension 2r + 2. Thus (since r 2: 1) there are no r + 2-

cells, and so the Cellular approximation theorem 1.1 implies that 11" r+l (Yr+l) ~ 
11" r+1 (TI S~+l). By Hopf's theorem 1.3, this identifies 11" r+l (Yr+1 ) as a free abelian 

a 

group with basis {[Aa]} where Aa : S~+l ---t Yr+l is the inclusion. Hence 

hur' : 11" r+1 (Yr+d ---t Hr+l (Yr+l; Z) 

is an isomorphism, hur' denoting the Hurewicz homomorphism for Yr+l' 
Let A : Yr+1 ---t Y be the inclusion. Since H(Y, Yr+l; Z) vanishes in degrees 

k::; r + 1 (cf (4.17)), H r+1 (A) is surjective. Now the commutative diagram 

11"r+1(Yr+l) ~ Hr+l(Yr+l; Z) 

1I"r+d>') 1 "'" 1 Hr+l(>') 

11"r+l(Y) ----t Hr+1 (Y;Z) 
hury 

shows that hury is surjective. 
Write Yr+2 = Yr+1 U (U,ae~+2) with attaching maps f,a : S~+l ---t Yr+l' Let 

(C,O) be the cellular chain complex for Y. If c,a E Cr +2 is the basis element 
corresponding to e~+2, then a straightforward computation, using the definition 

of 0 as a connecting homomorphism, shows that oc,a = Hr+l(f,a)[S~+l). Thus 
it follows from the Cellular chain models theorem that the kernel of Hr+1 (A) is 
spanned by the classes H r+l (f,a) [s~+ 1). 

Now suppose 9 : (sr+l, *) ---t (Y, Yo) represents an element in ker hury. By 
the Cellular approximation theorem, 9 is based homotopic to h : sr+l ---t Yr+l; 
i.e., [g) = 11"r+l(A)[h) and 0 = Hr+1(A) hur'[h). Thus 

hur'[h) = I>,aHr+l(f,a)[S~+l) = L k,a hur'[f,a). 
,a ,a 

Since hur' is an isomorphism, 

But f,a is the attaching map for a cell in Yr+2 , and so 11"r+l(A)[J,a) = O. It 
follows that [g) = 11"r+1 (A) [h) = 0 and so hur is injective. 

In the case r = 0, Y1 = V aS~ and the van Kampen theorem (68) implies that 
11"1 (Yd is generated by the circles S~. These same circles form a basis of the 
free abelian group H1 (Y1 ; Z), and it follows that ker hur' is generated by the 
commutators. Now simple modification of the proof for r 2: 1 completes the 
argument. 0 

(f) Eilenberg-MacLane spaces. 
An Eilenberg-MacLane space of type (11", n), n 2: 1, consists of 
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• A path connected, based space (X, xo) such that 7ri(X, xo) = 0, f=. n, 
together with 

• A specified isomorphism of 7rn (X, xo) with a given group 7r. 

If X is a CW complex it is called cellular Eilenberg-MacLane space. Eilenberg
MacLane spaces are often denoted by K(7r, n). Here we shall need two simple 
properties. 

Proposition 4.20 Suppose given an (n-I)-connected based CW complex (X, xo), 
an Eilenberg-M acLane space (K (7r, n), *) and a homomorphism a : 7r n (X, xo) -7 

7r. Then there is a unique homotopy class of maps 

g: (X,xo) -7 (K(7r,n),*) 

such that 7rn(g) = a. 

proof: The proof of the Cellular models theorem 1.4 shows that (X, xo) has 
the weak homotopy of a CW complex with a single O-cell, no cells in dimension 
i, 1 ~ i < n, and all cells attached by based maps (Sk,*) -7 (Xk'XO). Since 
weak homotopy equivalences between CW complexes are homotopy equivalences 
(Corollary 1.7) we may assume (X, xo) itself satisfies this condition. Thus Xn = 
VaS:;, and X nH = VaS:; Uf (ll,gDrl ). 

Now S:; represents a class 1'a E 7r n (X, xo); choose gn : (VaS:;, xo) -+ (K (7r, n), *) 
so that gn restricted to S:; represents aha). If >.. : Xn -7 X is the inclusion 
then 7rn (9n) = a 0 7rn (.A), and it follows that gn 0 f : (S3, *) --;-+ (K(7r,n), *) is 
null homotopic. This permits us to extend gn to a map 9nH : X n+l -7 K(7r, n). 
Extend 9n+l to the rest of X inductively over the skeleta, using the fact that 
7ri(K(7r, n)) = 0, i > n. 

Given a second such map h we use the fact that 7rn(h) = 7rn (g) to conclude 
that hn '" gn : (Xn,xo) -7 (K(7r,n),*). Extend the homotopy H inductively 
over the skeleta: if H is defined in X k x I and Dk+l is a (k + 1) disk attached 
by Sk -7 X k then H yields a map Sk x I -7 K(7r, n). Using h in DkH x {O} 
and 9 in Dk+l x {I} we extend to a map a(Dk+l x I) -+ K(7r,n). Since k 2': 
n, 7rk+l (K(7r, n)) = 0 and this map extends to all of Dk+l x I, thereby extending 
H to X kH x I. 0 

Proposition 4.21 Suppose 7r is an abelian group. Then there exists a K(7r, n) 
and any two have the same weak homotopy type. 

proof: Suppose n ~ 2. Write 7r as the quotient of a free abelian group on 
generators ga divided by relations r/3' The proof of the Hurewicz theorem (4.19) 
identifies 7rn(VaS:;) = EB a d':9"'. Let f6: (S3,*) -+ V",S~ represent r/3. Then 
the proof of the Hurewicz theorem also identifies 7rn(VaS:; UU/3} LI/3 DJH) = 7r. 

Put Yn + l = V aS~ UU/3} LI/3 Drl . Now create Yn +2 by adding (n + 2) - cells 
to Yn+l to kill 7rn +l (Yn+d and continue this process inductively, creating Yk+l 
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by adding (k + 1)- cells to Yk to kill 7rk (Yk). The Cellular approximation theorem 
1.1 will show that Y is a K(7r, n). 

For n = 1 we simply note that, since path spaces are contractible, the long 
exact homotopy sequence (2.2) for the path space fibration implies that nK(7r, 2) 
is a K(7r, 1). 

Let (X, xo) be a cellular model for an Eilenberg-MacLane space (Y, Yo) and 
suppose K(7r, n) is any Eilenberg-MacLane space of the same type. Proposition 
4.20 gives a map g : (X, xo) ---+ K(7r, n) such that 7rn (g) is the identity map of 
7r. Thus 'P is a weak homotopy equivalence. 0 

Remark When n = 1, K(7r, 1)'s exist for any group 7r, and are constructed in 
the same way: 7r is the quotient of a free group on generators ga by relations r{3, 
and adding corresponding 2-cells to V S; gives a space with 7rl = 7r. For details 
see [68).) We will not carry this out since such K(7r, 1)'s do not arise in this text. 

Exercises 

1. Compute the homology with Z coefficients of the space obtained from the 
sphere sn by attaching an (n + 1 )-cell along a continuous map of degree p and 
another (n + I)-cell along a continuous map of degree q with p and q relatively 
prime. 

2. Suppose that Ik is a field. Compute the algebra H*(SP x sq x sri Ik) for 
1:::; p:::; q:::; r. 

3. Let X be a finite complex and Ik a field. Prove that dim H*(X, Ik) < 00. 

Using §3-exercise6, prove that x(X) = L (_I)dim a- • Compute x(X) when 
uECells 

4. Let x(n) be obtained by attaching to a space X cells of dimension n + 2 and 
higher to kill off the homotopy groups of X in dimensions above n. Prove that the 
homotopy fibre of the canonical map x(n+l) --+ x(n) is an Eilenberg-MacLane 
space K (7rn +l (X), n + 1). 

5. Prove that the cap product, CP(X; Ik)0Cq(X; Ik) --+ Cq_p(X; Ik), j0c f-t jn 
c = (10f)AW(c) induces a natural of C*(X; Ik)-module structure on C*(X; Ik). 



5 The co chain algebra C* (X; k) 
As usual, we work over an arbitrary commutative ground ring, k. 

Recall from §3 that given two complexes (M, d) and (N, d) we can form the 
complex (Hom( M, N), d) with d(f) = df - (-1 )deg f f d. In particular, the nor
malized singular cochain complex of a topological space X is the co chain complex 

C*(X; Jk) = Hom (C*(X; Jk), Jk). 

Thus cn(x; Jk) = Hom (Cn(X; Jk), Jk) and d(f) = -( _l)degf fd. In particular, 
an element f E cn (X; Jk) may be thought of as a set theoretic function f 
Sn(X) ---t Jk vanishing on the degenerate simplices, and 

n+l 

(d(f)) (a) = 2)-1)deg f+i+ 1 f(a o < eo, ... ,ei,··· ,en+l ». 
i=O 

The augmentation € : Co (X; Jk) ---t Jk may be regarded as an element 1 E 
CO(X; Jk). 

Recall from §4(b) that the Alexander-Whitney comultiplication in 
C*(X; Jk) is defined by 6 = AWoC*(6top ) : C*(X; Jk) ---t C*(X; Jk)®C*(X; Jk). 
Dually, as described in §3( d), C* (X; Jk) is a cochain algebra whose natural asso
ciative multiplication, the cup product, is defined by 

(f U g)(a) = (f ® g)(6a) 
= (-l)k(n-klf(ao(eo, ... ,ek»)g(ao(ek, ... ,en»), 

f E Ck(X; Jk), g E cn-k(x; Jk), a E Sn(X). 

Definition The cochain algebra C*(X; Jk) is called the normalized singular 
cochain algebra of X. The cohomology algebra H (C* (X; Jk)) is denoted H* (X; Jk) 
and called the singular cohomology of x. 

If cp : X ---t Y is a continuous map then we put C* (cp) = Hom (C* (cp); Jk) : 
C* (Y; Jk) ---t C* (X; Jk). Just as C * (cp) is a morphism of differential graded 
coalgebras so C* (cp) is a co chain algebra morphism, and H* (cp) = H (C* (cp)) is 
a morphism of graded algebras. 

If A c X then C* (X; Jk) ---t C* (A; Jk) is surjective because (as graded mod
ules) C*(A; Jk) is free on a subset of a basis of C*(X; k). The kernel of this 
restriction, C*(X,A;Jk), is an ideal in C*(X;Jk) and the short exact sequence 

o ---t C*(X,A;Jk) ---t C*(X;Jk) ---t C*(A;Jk) ---t 0 

gives rise to a long exact cohomology sequence. Note that C*(X, A; Jk) con
sists of the functions S*(X) ---t Jk that vanish on degenerate simplices and on 
simplices in A. Thus we may identify the cochain complexes C* (X, A; Jk) and 
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Hom (C*(X, A; Jk),Jk). We call C*(X,A;Jk) the complex of normalized relative 
singular cochains; H*(X,A;Jk) = H(C*(X,A;Jk)) is the relative singular coho
mology. 

Left and right multiplication by C*(X; Jk) make C*(X, A; Jk) into a left and 
right C*(X; Jk)~module. Thus H*(X, A; Jk) is a left and right H*(X; Jk)~module. 

Let f E cn(x, A; Jk) and z E Cn(X, A; Jk) be respectively a co cycle and a 
cycle. Then f (z) depends only on the cohomology class [J] and the homology 
class [z]. Define 

a: H*(X,A;Jk) ~ Hom (H*(X, A; Jk),Jk) (5.1) 

by (a[J]) [z] = f(z). This defines a pairing between H* and H* that we denote 
by ([f], [z]), in line with the convention in §3(a). 

Next, let p : (X, A) x Y ~ (X, A) and q : X x Y ~ Y be the projections. 
Since H* ((X, A) x Y; Jk) is a right H*(X x Y; Jk)~module, a linear map 

/'t, : H*(X, A; Jk) 159 H*(Y; Jk) ~ H* ((X, A) x Y; Jk) (5.2) 

is defined by /'t, ([J] @ [g]) = H*(p)[J]· H*(q)[g]. 

Proposition 5.3 (i) If Jk is a field then a is always an isomorphism and so 
( , ) is non-degenerate. In particular, H*(X, A; lk) has finite type if and only if 
H*(X, A; Jk) does. 

(ii) If Jk is a field and at least one of H*(X, A; lk), H*(Y; lk) 
has finite type then /'t, is an isomorphism. 

proof: (i) This is just the assertion of Proposition 3.3 that "H" commutes 
with "Hom". 

(ii) As follows from §4(b), the Alexander-Whitney map is a quasi

isomorphism C* ((X, A) x Y;Jk) ~ C*(X, A; Jk) @ C*(Y;Jk). Since homology 
commutes with tensor products (Proposition 3.3) we obtain an isomorphism 

Because we have supposed one of H*(X, A; Jk), H*(Y; Jk) to have finite type, we 
may identify H*(X,A;Jk) 159 H*(Y;Jk) as the dual of H*(X,A;Jk) @H*(Y;Jk), 
and /'t, as the isomorphism dual to the isomorphism above. 0 

Finally, if A c B C X then the short exact sequence 

o ~ C*(X,B;Jk) ~ C*(X,A;Jk) ~ C*(B,A;Jk) ~ 0 

leads to a long exact cohomology sequence dual to (4.11). 
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Exercises 

1. a) Prove that if A c X and B C X then the cup product C*(X; Ik) Q9 

C* (X; Ik) --+ C* (X; Ik) restricts to a cup product C*(X, A; Ik) Q9 C* (X, B; Ik) --+ 
C*(X, AUB; Ik) and thus induces a cup product H*(X, A; Ik) Q9 H*(X, B; Ik) --+ 
H*(X,AuB;Ik). 

b) Prove that if A and B are contractible open sets such that X = AU B then 
for any p > ° and q > 0, U : HP(X; Ik) Q9 Hq(X; Ik) --+ Hp+q(X, Ik) is zero. 

c) Prove that a suspension (reduced or not) has a trivial cohomology algebra. 
d) Prove that CP2 and 52 V 54 do not have the same homotopy type. 

2. Suppose that Ik is a field. Prove that the morphism Ii, defined in 5.2, is an 
isomorphism of algebras when A = 0. Compute the algebra H*(X; Ik) when: 
X = 51 X 51 X ... X 51 (n-times), X = Y V Z, X = (53 V 57) X (55 V 59), 
X = Y 1\ z. 

3. Prove that, for (} E 7i6(CP2 V 52), the spaces X", = Cp2 V 52 U'" D7 have the 
same cohomology algebra. 

4. Prove that if dim Hi(X; Ik) = CXl, then Hi(X; Ik) is uncountable. 



6 (R, d)-modules and semifree resolutions 

As usual, we work over an arbitrary commutative ground ring, k. Thus graded 
module means graded k-module, linear means k-linear, and Hom( -, -) and - (9 

- stand for Homk( -, -) and - (9Ik -. 

Our focus in this section is on modules (M, d) over a dga (R, d) as defined in §3. 
While the emphasis is on left (R, d)-modules the results apply verbatim to right 
modules. In the classical context of modules M over a ring R (no differentials) 
it is standard to construct a quasi-isomorphism (F*, d) ~ (M,O) from a chain 
complex of free R-modules to M; these are the free resolutions of Iv1. 

Free resolutions were generalized by Avramov and Halperin[16] to modules 
over a dga (R, d). Their analogue of the complexes F* are the semifree (R, d)
modules defined below, which have these two important properties: 

• Any (R, d)-module admits a quasi-isomorphism from an (R, d)-semifree 
module. 

• A ny morphism from an (R, d) -semifree module lifts (up to homotopy) through 
a quasi-isomorphism. 

Thus (cf. introduction to §1) semifree modules over (R, d) are the exact analogues 
of CW complexes. 

This section is organized into the following topics: 

(a) Semi free models. 

(b) Quasi-isomorphism theorems. 

(a) Semifree models. 
We begin with some basic definitions. Recall the tensor product N (9R M 

and the module of R-linear maps HomR(M, M') defined in §3(b) for any right 
R-module N and left R-modules M and M'. If (N,d), (M,d) and (M',d) are 
(R, d)-modules then (cf. §3(c)) 

• (N (9R M, d) is a quotient complex of (N, d) (9 (M, d), and 

• (H omR(M, M /), d) is a sub complex of Hom(M, M/). 

A morphism '-P : (M, d) ---+ (M', d) is an R-linear map of degree zero, sat
isfying '-Pd = d'-P. Two morphisms, '-P, ¢, are homotopic if '-P - ¢ = dfJ + fJd 
for some R-linear map B; fJ is a homotopy and we write '-P ~R ¢. Thus mor
phisms are precisely the cycles of degree zero in HomdM, M/) and two mor
phisms are homotopic if and only if they represent the same homology class in 
Ho(HomR(M, M')). 

In particular an equivalence of (R, d)-modules is a morphism '-P : (M, d) ---+ 
(M', d) such that for some morphism ¢ : (M', d) ---+ (M, d) we have ¢'-P ~ R idM 
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and 'P'if; ~ R idM'· Thus an equivalence is a quasi-isomorphism. The morphism 
'if; is called an inverse equivalence. 

In general, a cycle of degree k in HomR(M, M') is an R -linear map f satisfying 
do f = (_l)degj f 0 d. It induces the H(R)-linear map H(f) : H(M) ----+ H(M') 
defined by H(f)[z] = [fez)]. Clearly H(f) depends only on the homology class, 
[f], of f and [f] f-t H(f) defines a canonical linear map H(HomR(M, M')) ----+ 
HOmH(R) (H(M), H(M')). 

Finally if W is a graded module then unless otherwise specified R 181 W will 
denote the R-module defined by a·(bl8lw) = abl8lw. When w f-t 1181w is injective 
we identify W with the image 1 181 W c R 181 W. 

Definition A left (R, d)-module (M, d) is semifree if it is the union of an in
creasing sequence 

M(O) C M(l) C ... C M(k) C (6.1) 

of sub (R, d)-modules such that M(O) and each M(k)/M(k -1) are R-free on a 
basis of cycles (cf. §3). Such an increasing sequence is called a semifree filtration 
of (M,d). 

A semifree resolution of an (R,d)-module (Q,d) is an (R,d)-semifree module 
(M, d) together with a quasi-isomorphism 

m: (M,d) ~ (Q,d) 

of (R, d)-modules. 

Semifree resolutions play the same role for modules over dga's that ordinary 
free resolutions do in the ungraded case. Moreover they generalize the classical 
case: if ungraded objects are regarded as graded objects concentrated in degree 
zero then free resolutions are examples of semifree resolutions. 

Semifree resolutions also playa quite analogous role to that of CW complexes 
within the category of topological spaces, as will be illustrated shortly by re
sults that mimic several of the theorems in §l. First, however, we make some 
preliminary observations. 

Remark Suppose {M(k)} is a semifree filtration of (M,d). Then M(O) and 
each M(k)/M(k -1) have the form (R,d) 181 (Z(k),O) where Z(k) is a free Jk
module. Thus the surjections M(k) ----+ R 181 Z(k) split: 

M(k) = M(k - 1) EB (R 181 Z(k)), and d: Z(k) ----+ M(k - 1). 

In particular, if we forget the differentials, M = R 181 (E9 Z(k)) is a free R-
k=O 

module. 

Lemma 6.2 If (R,d) ----+ (S,d) is a morphism of dga's, and if (M,d) is a 
semifree (R, d)-module then (S I8IR M, d) is (S, d)-semifree. 
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proof: Let {M(k)} be a semifree filtration for (M, d). From the formula in 
Remark 6.1 we deduce 

This exhibits {S @R M(k)} as a semifree filtration for (S @R M, d). 0 

Lemma 6.3 Suppose an (R, d)-module (M, d) is the union of an increasing se
quence M(O) C M(l) C ... of sub modules such that M(O) and each M(k)jM(k-
1) is (R, d)-semifree. Then (M, d) itself is semifree. 

proof: Put M(-l) = O. In the same way as in the Remark we may write 

00 

M(k) = M(k - 1) EB (R @ [EB Z(k, e)]), 
£=0 

with Z(k, e) a free graded .Dc-module and 

d:Z(k,e) ~ M(k-1)EB (R@ [~Z(k'i)l). 
Thus M is R-free on the union {zoJ of the bases of the .Dc-modules Z(k,e), with 
Z(k, e) a free graded .Dc-module and 

d : Z (k, e) -+ M (k - 1) EB ( R @ [~Z (k, i) l) . 
Define an increasing family W(O) c W(l) c ... offree .Dc-modules inductively 

as follows: W(O) is spanned by the Za for which dZa = 0 and W(m) is spanned 
by the Za for which dZa E R· W(m - 1). Then {R· W(m)} will be a semifree 
filtration of (M,d), provided that each Za is in some W(m). Write (i,j) < (k,e) 
if i < k or if i = k and j < e. If Za E Z(k, e) then dZa = L;X{3Z{3 with X.B E R 
and z{3 E Z(i,j), some (i,j) < (k,e). We may assume by induction that each 
such z{3 is in some W(m{3). Put m = max;3 m{3. Then dZa E W(m) and so 
Za E W(m + 1). 0 

Let 1] : (P, d) ~ (Q, d) be a morphism of (R, d)-modules, and for any third 
(R, d)-module, (M, d), denote by 

HomR(M,1]): HomR(M,P) ~ HomR(M,Q) 

the morphism of complexes defined by 'P M 'fJ 0 'P. 

Proposition 6.4 Suppose (M, d) is semifree and 'fJ is a quasi-isomorphism. 
Then 
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(i) HomR(M, "1) is a quasi-isomorphism. 

(ii) Given a diagram of morphisms of (R, d)-modules, 

(P,d) 

+ (6.5) 

(M,d) ~ (Q,d) , 
'iJ 

there is a unique homotopy class of morphisms 'P : (M, d) ~ (P, d) such 
that 
TJ°'P"'R'ljJ. 

(iii) A quasi-isomorphism between semifree (R, d)-modules is an equivalence. 

proof: (i) As remarked in Lemma 3.2 it is sufficient to show that given f E 
HomR(M, P) and 9 E HomR(M, Q) satisfying d(f) = 0 and "1 ° f = d(g) we 
can find l' E HomR(M, P) and g' E HomR(M, Q) satisfying d(f') = f and 
d(g') = "1 ° l' - g. Let r = deg f. 

Choose a semifree filtration {M (k)} of M, put M ( -1) = 0 and, as in Remark 
6.1 write M(k) = M(k - 1) EB (R i2) Z(k)) where Z(k) is J.;-free and d: Z(k) ~ 
M(k - 1). We construct l' and g' inductively by extending from M(k - 1) to 
M(k). 

For this let {za,} be a basis of Z(k), put Po: = f(zo:) - (-lY I'(dzo:) and 
put qo: = g(zo:) - (-lYg'(dzo:). By hypothesis the equations d(f') = f and 
d(g') = "1° f - 9 are satisfied in M(k-1). It follows after a short calculation that 
dpo: = 0 and TJ(Po:) = dqo:. Since TJ is a quasi-isomorphism there are (by Lemma 
3.2) elements p~ E P and q~ E Q such that dp~ = Po: and dq~ = TJ(p~) - qo:. 
Now extend l' and g' to R-linear maps in M(k) by putting I'(zo:) = p~ and 
g'(zo:) = q~. 

(ii) As remarked near the start of this section, Ho(HomR( -, -)) is the 
set of homotopy classes of morphisms. Thus by (i), composition with "1 induces 
a bijection from homotopy classes of morphisms (M, d) ~ (P, d) to homotopy 
classes of morphisms (M, d) ~ (Q, d). 

(iii) Since (Q, d) is semifree we can find a morphism ~ : (Q, d) ~ (P, d) 
such that TJ~ '" R idQ. In particular, TJ~TJ '" R idQTJ = TJidp . Since (P, d) is semifree 
it follows from the uniqueness in (ii) that ~TJ ,...., R idp . 0 

Remark Notice that Proposition 6.4 (ii) is the analogue of the Whitehead 
lifting lemma 1.5. As in §1 we use this to prove an analogue of the Cellular 
models theorem 1.4. 

Proposition 6.6 

(i) Every (R, d)-module (Q, d) has a semifree resolution m : (M, d) ~ (Q, d). 
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(ii) 1/ m' : (M', d) ~ (Q, d) is a second semifree resolution then there is an 
equivalence 0/ (R, d) -modules 0: : (M', d) ---+ (M, d) such that moo: ~ R m'. 

proof: (i) Let V(O) be a free graded ./k-module whose basis is a system of 
generators of the ./k-module of co cycles of Q. Set M(O) = (R, d) 0 (V(O), 0). The 
inclusion V(O) ---+ Q defines a morphism g(O) : (M(O), d) ---+ (Q, d). Clearly 
H(g(O)) is surjective. We now construct an increasing sequence of morphisms 
g(k) : (M(k), d) ---+ (Q, d). If g(k - 1) is defined, let V(k) be the free ./k
module whose basis Ve> in degree i is in one to one correspondence with co cycles 
We> representing a system of generators of ker Hi-l (g(k - 1)). Set M(k) = 
M(k - 1) EB (R 0 V(k)), and put dVe> = We>. Denote g(k - 1) simply by g. 
Since g(we» is a coboundary, g(we» = d(xe» we put g(k)(ve» = Xe>. Finally, set 
M = UM(k). 

k 

(ii) Proposition 6.4 (ii) asserts the existence of a morphism 0: : (M', d) ---+ 
(M, d) such that moo: ~R mi. Thus H(m) 0 H(o:) = H(m') and so H(o:) is 
the isomorphism H(m') 0 H(m)-l. In other words, 0: is a quasi-isomorphism. 
Hence, by Proposition 6.4 (iii) it is an equivalence. D 

(b) Quasi-isomorphism theorems. 
A basic property satisfied by semifree modules is 'preservation of quasi-iso

morphy' under the operations Hom and 0. First we set some notation: suppose 
/ : M ---+ M' and 9 : P' ---+ Pare R-linear maps between left R-modules and 
define 

Then, if h : Q ---+ Q' is an R-linear map between right R-modules, define 

h 0R /: Q 0R M ---+ Q' 0R M' by q 0R m f-t (_l)degfdegqh(q) 0R /(m). 

If /,g and h commute with the differentials then HomR(f,g) and h 0R / are 
morphisms of complexes. 

Proposition 6.7 Suppose (M, d) and (M', d) are (R, d)-semi/ree. 

(i) 1/ / and 9 are quasi-isomorphisms then so is HomR(f,g). 

(ii) If f and h are quasi-isomorphisms then so is h 0R f· 

proof: (i) Since (M,d) and (M',d) are semifree, Proposition 6.4 (iii) asserts 
that f is an equivalence. Thus there is an inverse equivalence l' : (M', d) ---+ 
(M, d) and R-linear maps 0 : M ---+ M and 0' : M' ---+ M' such that 

1'of-idM=dO+Od and fo1'-idMI=dO'+O'd. (6.8) 

Apply HomR( -, idp 1 ) to these formulae to conclude that HomR(f, idp l ) is an 
equivalence. Since (M, d) is semifree, HomR(idM, g) is just the quasi-isomorphism 
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HomR(M, g) of Proposition 6.4 (i). 
Thus HomR(f, g) = HomR(idM, g) 0 HomR(f, idp') is a quasi-isomorphism. 

(ii) Applying idQ@R- to the formulae (6.8) above we deduce that idQ' @R 
j is an equivalence. Since h @R j = (idQ, @R 1) 0 (h @R idM) it is sufficient to 
show that h @R idM is a quasi-isomorphism. Let M(k) be a semi free filtration; 
it is enough to show that each h @R idM(k) is a quasi-isomorphism, and we do 
this by induction on k. 

Indeed, since M(k)jM(k -1) = (R, d) @ (Z(k), 0) with Z(k) a lk-free graded 
module it is obvious that h@RidM(k)/M(k-l) is a quasi-isomorphism. Moreover, 
as R-modules M(k) = M(k -1) EB (R@ Z(k)) ~ cf. the Remark in §6(a). Thus 
the commutative diagram of complexes, 

o -----?>- Q @R M(k - 1) ---;-.. Q C?9r M(k) ---;-.. Q C?9R M~1~)1) -----?>- 0 

h 0 R-1 h 0 R-1 h0R-l 

o ~ QI Q<;R M(k -1) ~ QI C?9R M(k) ~ QI C?9R M~1~)1) ~ 0 

(6.9) 
is row exact. Now the Five lemma 3.1, applied to the resulting map of long exact 
homology sequences, gives the inductive step. 0 

Remark 1 In Proposition 6.7 (ii) the identical argument shows that h C?9 R j 
is a quasi-isomorphism if (Q,d) and (QI,d) are semifree and (M,d) and (MI, d) 
are unrestricted. 

As it turns out, a somewhat more general result will be required. For this, fix 
a dga morphism 

'P: (R, d) ---7 (5, d). 

Thus any left (or right) (5, d)-module, (N, d) becomes an (R, d)-module via x·n = 
'P(x)n, x E R, n E N. Now suppose given the following left and right modules 
over (R, d) and (5, d) and R-linear maps j, 9 and h of complexes: 

• j: (M,d) ---7 (MI,d); M is left over Rand MI is left over 5. 

• g: (Pi, d) ---7 (P, d); pi is left over 5 and P is left over R. 

• h: (Q,d) ---7 (QI,d); Q is right over Rand QI is right over 5. 

Define 

Hom",(f, g) : Homs(MI, Pi) -+ HomR(M, P) by ~ H (_l)deg '; degf 9 0 ~ 0 j 

and 

h C?9 y j: Q C?9R M ---7 QI C?9s MI by q C?9R m H h(q) C?9s j(m). 

Theorem 6.10 5uppose (M, d) is (R, d)-semi/ree and (MI, d) is (5, d)- semi/ree. 
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(i) If 'P, f and 9 are quasi-isomorphisms, so is Hom"" (j, g). 

(ii) If 'P, hand f are quasi-isomorphisms, so is h ®"" f. 

proof: As observed in Lemma 6.2, (S ®R M, d) is (S, d)-semifree . .\lorem·er, 
since (M, d) is (R, d)-semifree 

is a quasi-isomorphism, by Proposition 6.7 (ii). On the other hand, f extends to 
the morphism of (S, d)-modules 

1': (S®R_TVI,d) ---+ (M',d), 1'(y ®R m) = yf(m), YES, mE Ai. 

Clearly f = l' 0 ('P ®R id) and so l' is also a quasi-isomorphism. 
(i) Note that Homs(S ®R lvI, -) = HomR(M, -) and that Hom",,(j, g) is the 

composite of the morphisms 

and 
Homs(j',idp'): Homs(Al',P') ---+Homs(S®RM,P'). 

In view of our remarks above, Proposition 6.7 (i) implies that both these mor
phisms are quasi-isomorphisms. 

(ii) Observe that Q'®s(S®RM) = Q'®RM and that h®<pf is the composite 
of 

idQ' ®s 1': Q' ®s (S ®R 1~1) ---+ Q' ®s lvI' 

with 
h®RidM: Q®RA1---+Q'®RM. 

Now apply Proposition 6.7 (ii). D 

Remark 2 The argument in 6.10 (ii) shows that h ®<p f is also a quasi
isomorphism if (Q,d) and (Q',d) are semi free and (M,d) and (M',d) are unre
stricted - cf. Remark 1, above. 

Finally, we establish a partial converse to Theorem 6.10 for chain algebras. 
Recall that a chain algebra is a dga, (R, d) and that R = R-~o. The surjection 
Ro ---+ Ho(R), x>-+ [xl may be regarded as a morphism 

ER : (R, d) ---+ (Ho(R), 0) 

natural with respect to chain algebra morphisms. 
Suppose given 

• a chain algebra quasi-isomorphism 'P: (R,d) ---+ (R', d). 
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• a right (R, d)-semifree module (N, d) and a right (R', d)-semifree module 
(N', d), both concentrated in degrees 2: o . 

• a morphism f : (N, d) ~ (N', d) as above (i.e., f(nx) = f(n)'P(x), n E N, 
x E R). 

Then we may construct the morphism of chain complexes 

f 0<p Ho('P) : (N,d) 0R Ho(R) ~ (N',d) 0R' Ho(R'). (6.11) 

Theorem 6.12 With the hypotheses above: 

f is a quasi-isomorphism {::::::} f 0<p Ho ('P) is a quasi-isomorphism. 

proof: We have only to prove ¢::= since the reverse implication is just Re
mark 2. Define a decreasing sequence of differential ideals 

by setting 

k<n-1 
k=n-1 
k2:n 

{ 
0, k < n-1 

and (r)k = (kerdh, k = n 
Rk, k>n. 

These constructions are clearly natural. 
By inspection, H (r / r) = O. Since (N, d) is semifree, N 0R {o} 2t N 0R 

In/Jn. Thus 
N 0R In / r 2t N' 0R (I,)n /(J,)n, 

since both sides have zero homology. 
Also by inspection, 

k=n 
otherwise. 

Thus we may write N 0R In / In+! = (N 0R Ho(R)) 0Ho(R) Hn(R). Now 
N 0R Ho(R) ~ N' 0R' Ho(R') is a quasi-isomorphism of semifree Ho(R)-

modules. Tensoring this with the isomorphism Hn(R) ~ Hn(R') produces a 
quasi-isomorphism (Theorem 6.10) and so 

Now an obvious induction via the five lemma shows that 
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But since N = N;:o, the modules Nand N ®R R/ln+3 coincide in degrees 
::; n + 1. Thus their homology coincides in degrees ::; n. It follows that H (I) is 
an isomorphism. D 

Exercises 

1. Let V' and V" be two copies of the graded vector space V and (R ® V, d) 
a semifree module over the cochain algebra (R, d). Prove that there is a (R, d)
semifree module of the form (R ® (V' 9 V" 9 sV), D) such that 

(i) the natural inclusions i ' ,i" : (R C6: V, d) C-.....+(R® (V' EEl V" 8 sV), D) defined 
by i ' x = x', i" x = x" are quasi-isomorphisms, 

(ii) Dsv = 1 ® Vi + 1 ® v" + S(dv) , v E V where 5 : R Q9 V -+ R Q9 sV denotes 
the unique extension of v M sv to an R-linear map of degree + 1. 

Deduce that two morphisms of R-modules f, 9 : (R ® V, d) -+ (M, d) are 
homotopic if and only if there exits a morphism of R-modules F: (R ® (V' EB 
V" EEl sV), D) -+ (M, d) such that Foi' = f and F 0 i" = g. 

2. Prove that the two morphisms of (Q[x], OJ-modules j, 9 : Q[x] ® (Qa EB Qb) -+ 
Q[x] Q9 Qz defined by: deg x = 4, deg a = 2, deg b = 5 = deg z, da = 0 = dz, 
db = xa, f(a) = g(a) = 0, f(b) = z and g(b) = 0, induce the same map in 
homology but are not homotopic. 

3. Let Tk be a field and (T(V), d) be a chain algebra over Tk. Construct a 
contractible semifree (T(V), d)-module of the form (T(V) ® (Ik EEl sV), D) with 
Dsv - v ® 1 E TV ® sV. 

4. Assume that in diagram (6.5) the morphim 7] is onto. Prove that there is a 
unique morphism cp such that 7]CP = 1/;. 

5. Let j, 9 : P -+ M and 'P : IV! -+ N be morphisms of R-modules. Prove 
that if P is semifree and cP is a quasi-isomorphism, then f ':::'.R 9 if and only if 
'P 0 f ':::'.R 'P 0 g. 

6. Let M and N be chain complexes over R = (R,O) and assume that M and 
H(M) are R-free modules. Prove that H(M ® N) ~ H(M) ® H(N). 

7. Let X be a finite CW complex. Prove that the cellular chain complex of 
X, G;, is a semifree Z-module and that for any space Y the quasi-isomorphism 

G; ~ G*(X) extends to a quasi-isomorphism G; ® G*(Y) ~ G*(X) ® G*(Y). 

8. Let E : (R, d) -+ Ik an augmented cochain algebra and (P, d) an (R, d)-semifree 
module. Consider the surjective cochain map (P, d) -+ (Ik C6:R P, (1). If RO = Ik 
and (1 = 0 we say that P is a minimal semi/ree module. Prove that if Rl = 0 
then any (R, d)-module lvI, with the property that for some ro, Mr = 0, for all 
r < ro, admits a minimal semifree resolution P = (R ® V, d) -='t M and that a 
quasi-isomorphism between two minimal semifree resolutions is an isomorphism. 
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As usual, we work over an arbitrary commutative ground ring, .k. 

We simplify notation in this section by writing C* ( -) instead of C* ( -; .k) 
and H*(-) instead of H*(-;.k). Thus (cf. §5) a continuous map f : X --+ Y 
induces a morphism of cochain algebras C*(J) : C*(X) +-- C*(Y), which makes 
C* (X) into a left (resp. right) C* (Y)-module via a . b = C* (J)a U b (resp. 
b . a = b U C*(J)a). We shall also simplify notation by denoting the tensor 
product over C* (Y) of C* (Y)-linear maps by a Q9 {3 instead of a Q9c* (y) {3. 

Let F be the fibre of a fibration 7f : X --+ Y, as defined in §2. The purpose of 
this section is to show, under mild hypotheses, how to compute the cohomology 
of F from the left C* (Y) -module, C* (X). The answer is surprisingly simple: if 

my : (My, d) ~ C*(X) is a C*(Y)-semifree resolution, then 

H*(F) ~ H (.k Q9c*(y) (My,d)) 

as graded vector spaces. (This will be proved if.k is a field, Y is simply connected 
and one of H*(F;.k) and H*(Y;.k) has finite type.) 

Thus for the rest of this section we fix the following: 

• A fibration 7f : X --+ Y with simply connected base Y and 
fibre inclusion j : F --+ X at a basepoint Yo E Y. 

• A morphism of left C*(Y)-modules, my : (My, d) --+ C*(X), 
in which (My,d) ~ (C*(Y) Q9 W,d) is C*(Y)-semifree. 

(7.1) 

To state the main theorem we also require the following conventions and con
structions dealing with pullbacks. Observe that My and C*(Y) Q9c*(y) My are 
identified by the inverse isomorphisms v f-+ 1 Q9 v and a . v +--1 a Q9 v. Now a 
continuous map 

'lj;:Z--+Y 

determines three constructions associated with (7.1): 

• the pullback fibration 7fz : Xz = Z Xy X --+ Z. 

• the C*(Z)-semifree module C*(Z) Q9c*(y) My. 

• a morphism of left C*(Z)-modules, mz : C*(Z) Q9c*(Y) My --+ C*(Xz) 

(This is really an abuse of notation, since these constructions depend on 'lj; rather 
than on Z.) 

The first two constructions are self evident. To construct mz consider the 
diagrams 

Xz~X 

nz 1 1 n 

Z --------+ Y 
1jJ 

C*(Xz) ~( __ C_*("'_) __ C*(X) 

and C*(nz) i i C*(n) (7.2) 

C* (Z) +---- C* (Y) 
c*(1jJ) 
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in which the left diagram is just the pullback diagram of §2(a). Then mz : 
a 0J v f-t a·C*(cp)my(v),a E C*(Z),v E lvIy, is the unique C*(Z)-module 
morphism making the following diagram commute: 

C*(X) 

I my (7.3) 

C*(Z) 0JCx(Y) My 
C*(1j;)0id 

C*(Y) ®c«Y) My, 

(Here as above we have identified My = C*(Y) 0JCx(Y) }vIy). 
When Z = {yo} the map cp in (7.2) is just the inclusion j : F ---+ X of the 

fibre. ~Ioreover C*(yo) = lk and C*(?j;) is the augmentation f : C*(Y) ---+ lk 
corresponding to Yo. Thus C*(Yo) 0Jc*(y) My = lk ®c*(Y) Aly = lk 0JCx(y) 

(C* (Y) ® W, d) = (W, d), and diagram (7.3) reduces to 

C*(F) ~ C*(X) 

ffiYI Imy (7.4) 

(W, d) f-:- (C* (Y) ® W, d) 
E0,d 

Our main result in this section is 

Theorem 7.5 Suppose 'if : X ---+ Y and my : My ---+ C*(X) are as described 
in (7.1). Assume lk is a field and that at least one of the graded },;-vector spaces 
H*(Y), H*(F) has finite type. Then 

my is a quasi-isomorphism =} my is a quasi-isomorphism. 

Remarks 1 At the end of this section we shall extend Theorem 7.5 to more 
general cochain algebra functors (Theorem 7.10). 

2 The reverse implication in Theorem 7.5 is also true (d. Exer-
cise 1) 

3 Theorem 7.5 is essentially due to J.e. Moore, and also follows 
easily from a theorem ofE. Brown [31]. W. Dwyer [47] has considerably weakened 
the hypothesis of simple connectivity on Y. 

\Ve shall prove Theorem 7.5 using an inductive procedure involving relative 
cochains. First we set some further notation. If i : A ---+ Y is the inclusion 
of a subspace we denote C* (Y, A; lk) simply by C* (Y, A); it is the kernel of the 
surjection C*(i) : C*(Y) ---+ C*(A). In this case the pullback X A is the subspace 
'if-I (A) of X, and mA and my fit into the commutative row-exact diagram 

0--"*) C*(X,XA) __ a __ -3>-:> C*(X) -----3>-) C*(XA) ----3>-:> 0 

lm~A lmy lmA 
O ____ C*(Y,A) ® My ____ C*(Y) ® Aly ____ C*(A) ® My ----0. 

C'(Y) 130id C'(y) C'(i)0 i d Cx(y) , 
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where a and (3 are the obvious inclusions. Indeed the right square commutes by 
definition, and hence my 0 ((3 ® id) factors uniquely through a to define mY,A. 
The exactness of the lower row follows because My is free as a module over the 
graded algebra C*(Y). 

Next, suppose A contains Yo and that '¢ : (Z, B, zo) ~ (Y, A, Yo) is a con
tinuous map. In this case we have a pullback map ip : (X z , X B) ~ (X, X A). 
As above we may construct first mz : Mz = C*(Z) ®C-(Y) My ~ C*(Xz) 
and then mZ,B. It is immediate from the definitions that the following diagram 
commutes: 

C*(XZ,XB) 

mZ,B r 
C*(Z, B) ®C-(y) My ( C*(Y, A) ®c*(Y) My, 

C-('l/J)®id 

(7.6) 

where we have identified C*(Z, B)®c*(z) (C*(Z) ®C-(y) My) = C*(Z, B)®c>(Y) 
My. Moreover the fibre of 7r z at Zo is just {zo} x F and ip restricts to the iden
tification {zo} x F = F. Thus it is immediate from the definitions that 

mz = my: (W,d) ~ C*(F). (7.7) 

Finally we introduce the notation of k-regular : a morphism 0 of cochain 
complexes is k-regular if Hi(O) is an isomorphism for i ::; k and injective for 
i=k+1. 

Suppose now that we are in the situation of Theorem 7.5 and, further that: 

• for some A c Y, (Y, A) is a relative CW complex. 

• Yo E A and all the attaching maps have the form (sn-l, *) ~ (Yn-1,yo); 
i.e. they are based maps. 

• all the cells of (Y, A) have dimension at least two. 

• at least one of the graded vector spaces H* (Y, A), H* (F) has finite type. 

• W = {Wih~o and in My = (C*(Y) ® W,d), 

d: wn ~ C*(Y) ®w<n, n ~ O. 

Note that the last condition exhibits My as C*(Y)-semifree. 

Proposition 7.8 Under the hypotheses above, 

my is k-regular ==} mY,A is (k + 2)-regular. 

proof: We begin by establishing the proposition in four special cases. 

Case 1: (Y, A) = (VaET D~, V aETS~-l), some n ~ 2. 
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Let C*(Y,A)@Ik C*(X) denote the tensor product of these two co chain com
plexes (over lk) and let C* (Y, A)@Ik My denote the tensor product of the co chain 
complexes C* (Y, A) and My. We have used the notation - @Ik - for emphasis. 
Define a commutative square of morphisms of cochain complexes. 

C*(Y,A) @k C*(X) ~ 

id®my r 
C*(Y,A)@kMy --+C*(Y,A)@cxcy) My 

v 

as follows: Jt(a @ b) = C*(7r)a U b, and v is the canonical surjection - @k - -+ 
- @cxcy) -. By Proposition 3.3 we may identify H(id @ my) = id @ H(my). 
Since H(C*(Y,A)) = H*(Y,A.) is concentrated in degrees n;:: 2 (cf. §4(e)) it 
suffices to prove that Jt and v are quasi-isomorphisms and that my is k-regular. 

A homotopy (Y, Yo) x I -+ (Y, Yo) from the identity to the constant map lifts to 

a homotopy (X, F) x I ~ (X, F) from the identity to a map f2: X -+ F. More 
precisely, <I> is a homotopy id ,..., j f2. The restriction of <I> to F x I is a homotopy 
id,..., f2j; i.e. f2 is a homotopy inverse for j. Define () = (()X,()A) : (X,XA) -+ 
(Y, A) x F by ()x(x) = (7rX, f2x). By the long exact homotopy sequence ()x and 
()A are weak homotopy equivalences, and so C*(()) is a quasi-isomorphism. 

On the other hand, a commutative row-exact diagram 

0-- C* ((Y, A) x F) -----;..3> C*(Y x F) --+3> C*(A x F) --- 0 

I A3 I A2 I Al 

is defined by .Ai(a@b) = C*(7rL )aUC*(7rR )b, 7rL and 7rR denoting the projection 
of - x F on the left and right factors. By hypothesis either H* (Y, A) or H* (F) 
has finite type. In the former case (Y, A) has finitely many cells and H*(A) is 
finite dimensional. Thus in either case Proposition 5.3 asserts that the .Ai are 
quasi-isomorphisms. 

N ow observe that C* (()) o.A3 = Jt 0 (id @ C* (f2)). Since f2 is a homotopy 
equivalence C* (f2) is a quasi-isomorphism. Hence so is Jt. 

To see that v is a quasi-isomorphism we observe that because Y is contractible, 
lk -+ C* (Y) is a quasi-isomorphism. Since lk is a field My is trivially lk-semifree 
as well as C*(Y)-semifree. Hence Theorem 6.10 (ii) asserts that v : -@kMy -+ 
- @C-cy) My is a quasi-isomorphism. 

Finally, consider the commutative diagram 

C*(X) 

my I 
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Here C* (j) is a quasi-isomorphism because j is a homotopy equivalence, while € 

and € Q9 id are quasi-isomorphisms because Y is contractible and My is semifree. 
Since my is k-regular (by hypothesis), my is k-regular too. 

Case 2: Y = A u U e~. 
O! 

Because cells are attached by based maps the characteristic map has the form 
V; : (V c; D~, V c; S~-l) -t (Y, A). Put Z = V c; D~ and B = V c; S~-l, and 
consider the pullback 

(XZ,XB) ~ (X,XA) 

1 1 
(Z, B) -----+ (Y, A) . 

'I/J 

Let Oct be the centre of D~ and put 0 = Z - U{oc;} and U = Y - U{oc;}. 
c; c; 

The inclusions B ~ 0 and A ~ U are then homotopy equivalences and so, as 
in §4(e), an excision argument shows that C*(V;) is a quasi-isomorphism. Since 
My is semifree, C*(V;) Q9 id : C*(Y, A) Q9c'(Y) My -t C*(Z, B) Q9C¥(Y) My is 
also a quasi-isomorphism. Moreover the inclusions X B ~ Xo and XA ~ Xu 
are weak homotopy equivalences so that, again by excision, C* ('P) is a quasi
isomorphism. 

Consider diagram (7.6). The horizontal arrows are quasi-isomorphisms so we 
need only show mZ,B is (k + 2)-regular. As remarked in (7.7) mz = my. Since 
H*(Z, B) e:: H*(Y, A) this conclusion now follows from Case 1. 

Case 3: (Y, A) has only finitely many cells. 
Let Yn be the n-skeleton of (Y, A), denote X Yn simply by Xn and put men, s) = 

myn,ys : C*(Yn, Ys) Q9C¥(Y) My -t C*(Xn, Xs). By Case 2, each men + 1, n) 
is (k + 2)-regular. Induction on n via the Five lemma 3.1 and the row exact 
diagram 

o -----+ • -----+ I m(n+l,n) 

o -----+ • -----+ 

• -----+ I m(n+l,O) 

• -----+ 

• -----+ 0 

I m(n,O) 

• -----+ 0 

shows that each men, 0) is (k + 2)-regular. Since (Y, A) is finite mY,A = men, 0) 
for some n. Hence mY,A is (k + 2)-regular. 

Case 4: HS(Y, A) = 0, s :::; k + 3. 
Here we show mY,A is (k + 2)-regular by proving that 

HS (C*(Y,A) Q9c-(Y) My) = 0, s:::; k+3 and HS (C*(X,XA)) = 0, s:::; k+2. 

For this recall that My = (C*(Y) Q9 W,d) with W = {Wih>o and d: Wi -t 

C*(Y) Q9 W<i. This gives C*(Y,A) Q9c-(Y) My = (C*(y,A) Q9 W,d) with d : 
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Wi -----+ C* (Y, A) Q9 W<i. Since HS (C* (Y, A» = HS (Y, A) = 0, s ::; k + 3, the 
exactness of 

H (C*(Y,A) Q9 W<i) -----+ H (C*(Y,A) Q9 WSi ) -----+ H (C*(Y,A» Q9 Wi 

implies via induction on i that H S (C* (Y, A) Q9 WS i ) = 0, s ::; k + 3, all i. Hence 
HS (C*(Y, A) Q9 W) = 0, s ::; k + 3. 

Next observe that a non-zero class a in H* (X, XA) restricts to a non-zero 
class in H*(Xz, XA) for some finite subcomplex (Z, A) c (Y, A). (Indeed (cf. 
§5) a is non-zero on some cycle z in C* (X, X A ) which, for compactness reasons, 
is necessarily in some C*(Xz, XA).) Thus to prove the second assertion it is suf
ficient to show that the restriction maps H S (C*(X,XA» -----+ HS (C*(XZ,XA» 
are zero for s ::; k + 2 and (Z, A) finite. 

Fix Z. We first extend it to a larger finite subcomplex (Z[l], A) C (Y, A) so 
that the inclusion 'f} : (Z, A) -----+ (Z[l], A) satisfies Hs('f}) = 0, s ::; k + 2. (This 
implies HS('f}) = 0, s ::; k + 2). Indeed the Cellular chain models theorem 4.18 
shows that H*(Z,A) has a finite basis. Let U1, ... ,UN be cycles representing 
the basis elements of degree::; k + 2. The hypothesis HSk+2(y, A) = 0 implies 
H Sk+2(Y, A) = 0; hence u).. = db).. in C*(Y, A). By compactness b).. E C(Z).., A) 

N 
for some finite subcomplex (ZA' A) J (Z, A). Put Z[l] = U Z)... 

)..=1 

Finally, iterate this construction to give an increasing sequence (Z, A) C 
(Z[l], A) c ... c (Z[l'], A) c ... of finite sub complexes such that the restriction 
maps HS (Z[l'], A) -----+ HS (Z[l' - 1], A) are zero for s ::; k + 2. 

For any sub complex (T, A) c (Y, A) recall that 

(C*(T,A)Q9W,d) = C*(T,A) Q9 (C*(Y)Q9W,d). 
C*(Y) 

In particular, suppose cI> E c?m (Z[l], A)Q9W is a co cycle of degree s ::; k+2. We 
remark that (C*('f}) Q9 id) cI> is cohomologous to a cocycle in c?m+1(Z, A) Q9 W. 
Indeed, writing cI> = cI>m + cI>m+1 + ... with cI>i E Ci (Z[l], A) Q9 W, and recalling 
that d : wj -----+ C* (-) Q9 W<j, we deduce from dcI> = 0 that (d Q9 id)cI>m = O. 
Thus cI>m = I:aa Q9 Wa with daa = O. Since W is concentrated in non-negative 
degrees m ::; s ::; k + 2. Thus HS('f})[aa] = 0 and C*('f})aa = dba. Evidently 
(C*('f}) Q9id)cI> - d(I:ba Q9Wa) E c?m+1(z,A) Q9 W. 

Put (T, A) = (Z[k + 3], A) and let ~ : (Z, A) -----+ (T, A) be the inclusion. 
If cI> E C* (T, A) Q9 W is a co cycle of degree s ::; k + 2, it follows now that 
(C* (~) Q9 id) cI> is cohomologous to a co cycle in C?k+2 (Z, A) Q9 W. Since s ::; k + 2 
and W = {Wi}i?O, this co cycle is zero; i.e. HS (C* (~) Q9 id) = 0, s ::; k + 2. 

Consider the commutative diagram 

HS(Xz, XA) HS(XT, XA) 

W(mz,A) I I W(mT,A) 

HS(C*(Z,A)Q9W) ( HS(C*(T,A)Q9W). 
Hs(C*(00id) 
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The vertical arrows are isomorphisms (Case 3) for s ::; k+2. Thus HS (XT' X A) --+ 
HS(Xz,XA) = 0, s ::; k + 2, and so, a fortiori, is the composite HS(X,XA) --+ 
HS(XT, X A) --+ HS(Xz , X A). 

We now prove the proposition in general. Let (C*, 0) denote the cellular chain 
complex (§4(e)) for Y: Cn is free on a basis VOl corresponding to the n-cells 
{e~}QETn of Y. Since};, is a field we may choose subsets Kn C :In C Tn such 
that 

Cn=(kero)n@ EB };,vQ=(Imo)nffi EB };,Vo:' 
QEKn QEJn 

Let Yn be the n-skeleton of the relative CW complex (Y, A), and define a se
quence of sub complexes ... (S(n), A) C (T(n), A) C (S(n + 1), A) c ... by 

S(n) = Yn - 1 U ( U e~) 
QEKn 

and T(n) = Yn - 1 U ( U e~). 
QEJn 

Using the Cellular chain models theorem 4.18 we see that 
H* (T(n), S(n)) = Hn(y, A), 

H* (S(n + 1), T(n)) = ° 
and 

Hi (Y,S(k+4)) =0, i::;k+3. 

By Cases 2 and 4, the morphisms mT(n),S(n), mS(n+l),T(n) and my,S(kH) are 
all (k + 2)-regular. Since S(I) = A (because (Y, A) has no I-cells or O-cells) the 
same argument as in Case 3 shows mY,A is (k + 2)-regular. 0 

proof of Theorem 7.5: Choose a weak homotopy equivalence 'lj; : (Z, zo) --+ 
(Y, Yo) from a CW complex Z (Theorem 1.4). The construction in the proof of 
1.4 shows that Z may be chosen with a single O-cell, zo, no I-cells and with all 
cells attached by based maps. Let <p : Xz --+ X be the pullback map. It, too, 
must be a weak homotopy equivalence. Thus in the commutative diagram (cf. 
(7.3) ) 

C*(IP) 
( C*(X) 

1 my 

C*(Z) 0c*(y) My ( C*(Y) 0c*(y) My , 
C*(I/J)0id 

both my and the horizontal arrows are quasi-isomorphisms; hence mz is a quasi
isomorphism too. Since H* (Z) ~ H* (Y), the pullback fibration satisfies the 
hypotheses of 7.5. Thus since mz = my (cf. 7.7) it is sufficient to prove the 
theorem for mz : C*(Z) 0c*(y) My --+ C*(Xz) and mz; i.e. we may assume 
Y is a CW complex as described above. 

Put H = H*(F;};') and let 8 : (H,O) --+ C*(F) be a (not necessarily mul
tiplicative) morphism of cochain complexes satisfying H(8) = id. We con
struct now a C* (Y)-semifree module (C* (Y) 0 H, d) and a quasi-isomorphism 
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j.Ly : (C*(Y) Q9 H, d) --* C*(X) of C*(Y)-modules such that 

d: H n --* C* (Y) Q9 H<n, all n and fly = 0 : (H,O) --* C* (F). 

Note that the first condition will imply that (C* (Y) Q9 H, d) is semifree. 
Suppose d and j.Ly are constructed in C*(Y) Q9 H<n. Consider the row-exact 

commutative diagram 

o --~~ C*(X,F) ------;..~ C*(X) ----.,..~ C*(F) ~ 0 

i ~y,Yo i ~y i py 

Since fly = 0 is (n - I)-regular by construction, Proposition 7.8 asserts that 
j.Ly,YO is (n + I)-regular. Let bd be a basis of Hn and lift the cocycles O'Yk 
to elements Xk E cn(x). Then dn is a cocycle in cn+l(X, F) and so dn = 
j.Ly,yo(Uk) +dVk for some cocycle Uk E C(Y,Yo) 0H<n and some Vk E cn(x, F). 
Extend d and j.Ly by setting d'Yk = Uk and j.LY('Yk) = n - Vk. In this way 

(C*(Y) 0 H,d) ~ C*(X) is constructed. 
Since fly is the quasi-isomorphism 0, Proposition 7.8 asserts that j.Ly,YO is a 

quasi-isomorphism too. Hence, by the five lemma, so is j.Ly. 
Finally, consider the diagram 

(C*(Y) 0 H,d) 

~ 
--"CCCm-y-----+<OC* (X) 

Since My is semifree we may (Proposition 6.4 (ii)) find a C*(Y)-module mor
phism v : My --* (C* (Y) 0 H, d) and a C* (Y)-linear map h : My --* C* (X) 
such that 

j.LyV - my = dh + hd. 

In particular H(j.Ly) 0 H(v) = H(my) and v is a quasi-isomorphism. 
It follows by Proposition 6.7 (ii) that v factors to give a quasi-isomorphism 

iJ: lk0c*(y) My --* lk0c¥(y) (C*(Y)0H,d). Similarly, since h is C*(Y)
linear, a linear map Ii : lk 0c>(y) My --* C*(F) is defined by the commutative 
diagram 
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It is immediate from this construction that f-LYV - my 
H(my) = H(Jiy) 0 H(D) is an isomorphism. 

85 

dh + h d. Hence 
o 

,"Ve finish this section by extending Theorem 7.5 to a some\vhat more general 
setting. 'Ve haye worked till now with the square 

C*(F) c(j) C*(X) 

Dc: I I C(7r) 

lk +--- C*(Y). 

Now suppose more generally that 

lk+---B 
E 

is any commutative square of cochain algebra morphisms. A quasi-isomorphism 

D ~ D(l) from D to a second such square D(l) consists of cochain algebra 
quasi-isomorphisms 

.3: B ~ B(l), !: E ~ E(l) and a: A ~ /1(1) 

that define a commutatiye cube connecting D to D(l). In particular, we shall 
say that the squares Dc and D above are weakly equivalent if they are connected 
by a finite chain of quasi-isomorphisms of the form 

D ~ D(l) ? D(2) -='+ ... ? Dc . 

l'\my consider the square D. Left multiplication by >..(b), bE B makes E into 
a left B-module for which (Proposition 6.6) there will be a semifree resolution 

mE : 2\IE -='+ E. From this we may, as in (7.4), define a morphism mE of 
complexes by the commutative diagram 

(7.9) 

Theorem 7.10 Suppose lk is a field, 7r : X ---+ Y is a fibration with Y simply 
connected and that one of the graded lk -vector spaces H* (1"), H* (F) has finite 

type. If D is a square weakly equivalent to Dc and if mE : ME -='+ E is a 
B -semifree resolution then 

is a quasi-isomorphism. 
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proof: Suppose given a quasi-isomorphism D ----+ D(l) as above. Then we have 
the commutative diagram 

~ ~ ~(l) 

mB I~ 1m 
B &JE ivIE ~ B(l) &JE ME 

{30id 

which identifies m as a quasi-isomorphism. From this \ve deduce that m = 
a 0 mE: Ik @E ivIE ----+ A(l). 

On the other hand, suppose m(l) : AI(l) --=-r ~(l) is any B(l)-semifree res
olution. Then, exactly as in the last part of the proof of Theorem 7.5, we 
can find a quasi-isomorphism v : AI(l) ----+ B(l) :9E lvIE of B(l) modules such 
that m 0 v is B(l)-homotopic to m(l). Since v is a quasi-isomorphism so is 
if: Ik &JE(l) M(l) ----+ lk@E ME. Moreover, exactly as at the end of the proof of 

Theorem 7.5, H(m) 0 H(if) = H(m(l)). Altogether we conclude that 

mE is a quasi-isomorphism {:::::::} m is a quasi-isomorphism 

{:::::::} m(l) is a quasi-isomorphism. 

Consider the chain connecting D to Dc, and recall that the semifree model 
for Dc is just my : My ----+ C* (X). Thus the argument above, repeated along 
the chain, shows that mE is a quasi-isomorphism if and only if my is. But my 
is a quasi-isomorphism by Theorem 7.5. 0 

Exercises 

1. Prove the converse of Theorem 7.5. 

2. Let 7i : X ~ Y be a fibration with simply connected base. Assume Ik is 
a field and that H*(F;Ik) has finite type. Let (R,d) ~ C*(Y,Ik) be a quasi
isomorphism of cochain algebras. Prove that the fibration 7i admits a minimal 
semifree resolution (§ 6-exercise 7) of the form (R @ H, d) with H = H*(F; Ik) 
and d(Hk) C R &J H<k. Write, for any <I> E H, d<I> = dl<I> + ... + dn<I> + ... with 
dn<I> E (Rn @ H). Prove that this sum is finite and if d1<I> = ... = dr<I> = 0 
that dr+l<I> is a co cycle in (R:3) H, d). A class <I> is transgressive if there exists 
n such that dIq. = ... = dnq. = 0 that dn+lq. cJ O. Prove that this definition 
does not depend on the choice of the minimal resolution and that the set T 
of transgressive classes is a vector space, so that q. H [dn+l<I>] defines a linear 
map Tn ~ Hn+l(y). A fibration is totally transgressive if H*(F,Ik) = T. 
Characterize the minimal resolutions of totally transgressive fibrations. 

3. In exercise 2, assume F = sn. Prove that the fibration admits a minimal 
semifree resolution of the form (R&JAx/(x2 ), d) with dx E Rn+l. The cohomology 
class X = [dx] E Hn+1 (X; Ik) is called the Euler class of the fibration. If n is 
odd, prove that we have a short exact sequence 0 ~ (R, d) ~ (R rg; Ax, d)~(R&J 
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Ikx, d @ id) -+ 0 with associated long exact sequence (Gysin exact sequence) 

... -+ Hi+n(x) -+ Hi(y) ~ Hi+n+1(y) Hi;) Hi+n+1(X) -+ ... 

4. In exercise 2, assume Y = sn. Prove that this fibration admits a resolution 
of the form (Ab/W),O) -+ (Ab/W) @ H, d) .!!". (H,O) with dif> = b @ O(if» , if> E 
H, deg b = n. Deduce that there is a short exact sequence 0 -+ (Ikb @ H, 0) -+ 
(Ab/(b2 ) @ H, 0) -+ (H,O) -+ 0 with associated long exact sequence (Wang exact 

sequence) ... -+ Hi(F) -+ Hi+n(x) l!.f Hi+n(F) -+ Hi+l(F) -+ .... 

5. Prove that the homotopy fibre of the canonical projection S2 V S1 -+ S1 is an 
infinite bouquet of 2 dimensional spheres. Does the conclusion of theorem 7.5 
hold? 

6. Let F -4 X 1+ y be a fibration as in exercise 2. Assuming that Tii(P) is an 
isomorphism for i S n, deduce that Hi(P) is an isomorphism for i S n. 

7. Let (X, A) be a pointed pair. Construct, for each n 2: 1, a natural map 
h(X,A) : Tin(X,A,ao) -+ Hn(X,A;Z) such that (hA,hx,h(x,A)) maps the ho
motopy long exact sequence into the homology long exact sequence of the pair 
(X, A). Deduce Whitehead's theorem from exercise 6: Let f : X -+ Y be a 
continuous map with X and Y path connected. If (Tik!) @ Ik is an isomorphism 
for k < n and is surjective for k = n then Hk(f; Ik) is an isomorphism for k < n 
and is surjective for k = n. 
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As usual, we work over an arbitrary commutative ground ring, lk. For simplicity, 
we denote C*(-;Jk) simply by C(-) and H*(-;Jk) simply by H*(-). 

In §2(b) we defined the action of a topological monoid, G and the notion 
of a G-fibration. Here \ve show how multiplication in G makes C* (G) into a 
chain algebra, and hm" an action of G in a space P makes C* (P) into a C* (G)
module. Then, in the case of G-fibrations P ~ X we show (Theorem 8.3) that: 

if (AI, d) --'=+ C* (P) is a C* (G) -semifree resolution then there is an induced 

quasi-isomorphism (AI, d) ®C_(G) Jk --'=+ C*(X). 
Notice that this is the exact analogue of Theorem 7.5. 
Using Theorem 8.3 \ve then give a geometric application of the isomorphism 

theorems of §6. Finally we apply this to provide an elementary proof of the 
\Vhitehead-Serre theorem (Theorem 8.6): 

If Jk is a subring of IQ! and if'P : X --* Y is a continuous map between 
simply connected spaces then 1f * ('P) ®z: Jk is an isomorphism if and 
only H * ('P; lk) is an isomorphism. 

This section is diyided into the follov./ing topics: 

(a) The chain algebra of a topological monoid. 

(b) Semifree chain models. 

(c) The quasi-isomorphism theorem. 

(d) The Whitehead-Serre theorem. 

(a) The chain algebra of a topological monoid. 
Suppose G is a topological monoid. To make C*(G) into a chain algebra 

we use the Eilenberg-Zilber chain equiyalences introduced in §4(b). If {l is the 
multiplication in G then \"e assign to C* (G) the multiplication 

It is associative because EZ and {l are. The identity 1 E C*(G) is the O-simplex 
at the identity e E G. By C* (G) -module we shall mean a module (AI, d) oyer the 
chain algebra, C* (G). 

The constant map G --+ pt may be regarded as a map of monoids, and so the 
augmentation 

(8.1) 

is a dga morphism. In particular it makes Jk into a C* (G: Jk )-modulc. 
In the same way a right action {lp : P x G --+ P induces the morphism 

C({lp) 0 EZ : C*(P;1k) ® C*(G:1k) --+ C*(P;1k), which makes C*(P;Jk) into 
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a right C* (G; lk )-module. In the case of a G-Serre fibration p : P ----t X the 
commutative diagram 

PxG ~P 

pxconst 1 1 p 

X x {pt} ----=---+ X 

translates (cf. (4.5)) to the algebraic formula 

Thus a morphism, m : Iv! ----t C*(P), of right C*(G)-modules induces a unique 
commutative diagram 

M ~C*(P) 

( 1 1 C.(p), (x x 0c.(G) 1, x EM. (8.2) 

M 0c.(G) lk -----+ C*(X) 
n 

of chain complexes. When m = id : C*(P) ----t C*(P) we write n = C*(p) : 
C*(P)0c.(G)lk ----t C*(X). Otherwise we will usually denote n by m: M0c.(G) 
lk ----t C*(X). 

(b) Semifree chain models. 
In general, C*(p) is not a quasi-isomorphism. However, if we replace C*(P) 

by a C * (G)-semifree resolution, we have 

Theorem 8.3 Suppose P ..!!.." X is a G-Serre fibration and m : M -=-r C*(P) 
is a C* (G) -semifree resolution. Then 

is a quasi-isomorphism. 

The main step in the proof of Theorem 8.3 is the construction of a certain 
'geometric' C*(G)-semifree resolution of C*(P) when X is a CW complex. This 
is a simple generalization of the cellular chain models of §4(e). We first carry 
out this construction, and then prove Theorem 8.3. 

Thus we suppose X is a CW complex with n-skeleton X n . Recall from §4(e) 

that a cellular chain model for X is a quasi-isomorphism q : (C,8) -=-r C* (X) that 

restricts to quasi-isomorphisms qn : (C<e: n,8) -=-r C*(Xn ), n 2: O. In particular 

qn induces an isomorphism Cn ~ Hn(Xn,Xn - 1 ), and this identifies Cn as a 
free lk-module on a basis {co} corresponding to the n-cells of X. Moreover 8 is 
identified with a certain connecting homomorphism. 

Denote by p : Pn ----t Xn the G-fibration obtained by restricting p to Pn = 
p-l (Xn). 
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Definition A cellular chain model for the G-fibration p : P -----+ X is a quasi
isomorphism of right C*(G)-modules of the form 

m: (C Q9 C*(G),d) ~ C*(P), 

restricting to quasi isomorphisms m(n) : (C-:;n Q9 C* (G), d) ~ C* (Pn), and such 
that 

in: (C, (1) = (C Q9 C*(G), d) Q9c.(G) Ik -----+ C*(X) 

is a cellular chain model for X. 

Remark Since C*(G) is concentrated in non-negative degrees necessarily d : 
Cn Q9 1 -----+ C<n Q9 C* (G). This exhibits m : (C Q9 C* (G), d) -----+ C* (P) as a 
C* (G)-semifree resolution. 

Proposition 8.4 Every G-Serre fibration whose base is a CW complex has a 
cellular chain model. 

proof: Denote the fibration by p : P -----+ X and adopt the notation above, so 
that the n-cells of X form a basis, Ca, of Hn(Xn, Xn-d. We show first that 
H*(Pn, Pn- 1) is a free H*(G)-module on a basis aa E Hn(Pn, Pn-d satisfying 

H*(p)aa = Ca. Write Xn = X n- 1 U (~e~) and let f: (gD~,gS~-l) -----+ 

(Xn,Xn-d be the characteristic map. Write (D,S) = (gD~,gS~-l) and 

use f to pull the fibration P -----+ X back to the G-fibration 

PD = D Xx P ~ D, (y,z)· 9 = (y,zg), (y,z) E PD , 9 E G. 

Let Ps be the restriction of PD to S, and let cp: (PD, Ps ) -----+ (Pn, Pn-d be the 
pullback map. We first observe that H*(f) and H¥(cp) are isomorphisms. 

Indeed, if Oa is the centre of D~ put 0 = D - U {oa}, U = Xn - U {Oa}, 
a a 

Po = Pr/(O) and Pu = p-1(U). The inclusions SC-......+O and X n- 1 C-......+U are 
homotopy equivalences, and hence Ps -----+ Po and Pn- 1 C-......+ Pu are weak homo
topy equivalences (Proposition 2.3). Exactly as in §4(e) it follows by excision 
that H*(f) and H*(cp) are isomorphisms. 

Choose a contracting homotopy D x I -----+ D from the map U D~ -----+ U {o~} 
to the identity. Choose points Za E Pr/(oa) and lift this homotopy to a map 
H : D x I -----+ PD, starting at the map U D~ -----+ U {z~}. Denote H ( -, 1) by 
u : D -----+ PD. Then PD 0 u = id. Let D x G -----+ D be the trivial G-fibration 
(with action (x,g)· gl = (x,ggd) and define 

(D,S) x G 1j;. (PD,PS ) 

~~ 
(D,S) 
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by 'ljJ(x, g) = a-(x)· g. By the very definition of G-Serre fibrations 'ljJ restricts to 
weak homotopy equivalences in the fibres. Hence (Proposition 2.3) 'ljJ restricts 
to a weak homotopy equivalences D x G -+ PD and S x G -+ Ps. It follows 
that H.('ljJ) is an isomorphism. 

Because H.(D, S) = Hn(D, S) is a free module (on the n-cells of X), there is 

a chain equivalence Hn(D, S) ---=+ C.(D, S). Thus the composite 

Hn(D, S) 0 C.(G) ----=--+ C.(D, S) 0 C.(G) 

----=--+ C. ((D, S) x G) 
EZ 

--=---+ C.(PD , Ps ) 
c.(1/1) 
~ 

C.(Pn, Pn- 1 ) --=---+ 
c.(rp) 

defines an isomorphism >.(n) : Hn(D, S) 0 H.(G) -=t H.(Pn , Pn-d. The asso
ciativity of the Eilenberg-Zilber map implies that EZ above is a morphism of 
C.(G)-modules. Hence >'(n) is an isomorphism of H.(G) modules. 

Let a", E Hn (Pn , Pn-d be the image of >'(n)(c", 0 1). Then Hn(Pn, Pn-d is 
a free right H.(G)-module with basis {a",}, and H.(p)a", = C"" 

We now construct the semifree resolution m : (C 0 C. (G), d) -+ C.(P) by an 
inductive process. Assume the quasi-isomorphism m(n-1) : (C::;n-l 0 C. (G), d) 
---=+ C.(Pn- 1 ) is defined. Let b", E Cn(Pn) be an element that projects to a 
cycle z'" E Cn(Pn , Pn-d representing a",. Then db", is a cycle in C.(Pn-d. 
Choose a cycle u'" E C<n-l 0 C.(G) and an element w'" E Cn(Pn-d so that 
m(n - l)(u",) = db", + dw",. (Recall H(m(n - 1)) is an isomorphism.) Extend d 
and m(n - 1) to C<n 0 C.(G) by setting d(c", (1) = u'" and m(n)(c", (1) = 
b", + W"" The map C::;n/C<n 0 C.(G) -+ C.(Pn , Pn- 1 ) induced from m(n) 

produces, in homology, the morphism (~.&C"') 0 H.(G) -+ H.(Pn,Pn-d of 

H.(G)-modules given by c'" r-t a",. This is the isomorphism >.(n). Thus by 
the Five lemma 3.1, m(n) is a quasi-isomorphism. This completes the inductive 
construction of m : (C 0 C.(G),d) -+ C.(P). Since any singular chain in P 
lives in a compact subspace it must, in particular, be contained in some Pn . It 
follows from this, and the fact that each m(n) is a quasi-isomorphism, that m is 
a quasi-isomorphism too. 

Finally, by construction, m(c", 0 1) = b", + w'" projects to a cycle z'" E 
C.(Pn,Pn-d such that C.(p)z'" represents C"" This is precisely the condition 
that m: (C,d) -+ C.(X) be a cellular chain model. 0 

proof of Theorem 8.3: We are given a G-fibration P ~ X and a C.(G)

semifree resolution m : M ---=+ C.(P). Let 9 : Y -+ X be a weak homotopy 
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equivalence from a CW complex Y (Theorem 1.4) and form the pullback 

Y xxP 
;p .p 

,,1 1, 
Y 

9 
. x; 

cP is a map of G-fibrations and a weak homotopy equivalence (Proposition 2.3). 

Let f-l: (C @ C*(G), d) ~ C*(Y Xx P) be a cellular chain model for our G
fibration; its existence is guaranteed by Proposition 8.4. Recall (diagram (8.2)) 
that f-l factors to define 

Since (C @ C* (G), d) is C* (G)-semifree we may, in the diagram 

M 

lift C* (cp) 0 f-l through m to obtain a morphism v : (C @ C* (G), d) ---+ M and a 
C*(G)-linear map h : C @ C.(G) ---+ C*(P) such that mv - C.(cp)f-l = dh + hd 
(apply Proposition 6.4 (ii)). Since m, C. (cp) and f-l are quasi-isomorphisms so is 
v. Thus (d. Proposition 6.7 (ii)) 

v = v @c.(G) idli; : (C @ C.(G), d) @c*(G) 1k ---+ M @c.(G) 1k 

is a quasi-isomorphism. 
Finally, since h is C.(G)-linear we can form 

- h®id c.(p)) 
h: [C @C.(G)] @c*(G) 1k ---=--+ C*(P) @c.(G) 1k ---'--t C*(X . 

Evidently inv-C.(g)jl = dh+hd. Since V, C.(g) and jl are quasi-isomorphisms, 
so is in : M @c.(G) 1k ---+ C*(X). 0 

(c) The quasi-isomorphism theorem. 
Suppose given 

• a morphism a : G ---+ G' of topological monoids, and 



Homotopy Theory 93 

• a commutative square of continuous maps 

where p is a G-fibration, p' is a G'-fibration and <p(za) = <p(z)a(a), z E 
P,aEG. 

Then C*(a) is a chain algebra morphism. Thus it makes any C.(G')-module 
(eg. C*(P')) into a C*(G)-module. Moreover C.(<p) is a morphism of C*(G)
modules: 

Theorem 8.5 With the notation above, assume G is path connected and C*(a) 
is a quasi-isomorphism. Then 

C* (<p) is a quasi-isomorphism <=:;> C* ('l/J) is a quasi-isomorphism. 

proof: The proof of Proposition 6.6 shows that C.(P) and C*(P') admit C*(G) 
and C* (G') semifree resolutions 

m: (M,d) ~ C*(P) and m': (M',d) ~ C.(P') 

with M and M' concentrated in non-negative degrees. Since (M, d) is semifree 
and m' is a quasi-isomorphism we can find 

f: (M,d) -+ (M',d) and 0: M -+ C*(P') 

such that f is a morphism of C. (G)-modules, 0 is C. (G)-linear and m' f 
C*(<p)m + dO + Od (Proposition 6.4 (ii)). 

Recall the notation of Theorem 6.12, which we wish to apply here, noting that 
Ho (C*(G)) = Ho (C*(G')) = lk. Diagram (8.2) and its analogue for the fibration 
p' yield the following diagram of chain complex morphisms: 

M 0c.(G) lk 

~l~ m -

M' 0c.(G') lk 

~l~' - m 

C.(X) 
c.(1,i!) 

C*(X'). 

This diagram may not commute. However, because 0 is C*(G)-linear it factors 
to give a linear map (j : M 0c.(G) lk --+ C.(X') and m'(j 0c.(a) lk) = C.('l/J)m + 
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dB + Bd. Thus C. (cp) is a quasi-isomorphism if and only if f is and C. ('IjJ) is a 
quasi-isomorphism if and only if f I8Ic.(a) lk is. Now apply Theorem 6.12. D 

Theorem 8.5 has the following important corollary. Consider a fibre preserving 
map between Serre fibrations p and p': 

X I 
X' -----+ 

'j I 

V 
Y -gyl 

and let fy : Xy --+ X~y be the restriction of f to a map between fibres. 

Corollary to Theorem 8.5 Assume Y and Y' are simply connected and X 
and X' are path connected. If C.(Og) is a quasi-isomorphism then 

C. (f) is a quasi-isomorphism ¢:::::} C. (fy) is a quasi-isomorphism. 

proof: The construction in §2( c) of the holonomy fibration is natural. Thus 
there are commutative diagrams 

X xyFY IxPg • X' Xy, FY' Xy I. • X~y 

and 'j j, 
X . X' X xyFY • X' Xy, FY' 

I IxPg 

with)" and)..' weak homotopy equivalences. Since Y and Y' are simply connected, 
OY and OY' are path connected. Now apply Theorem 8.5 to the first diagram. 
D 

(d) The Whitehead-Serre theorem. 

Theorem 8.6 (Whitehead-Serre) Suppose lk is a subring of Q and 9 : X -t 

Y is a continuous map between simply connected spaces. Then the following 
assertions are equivalent: 

(i) II. (g) I8Iz lk is an isomorphism. 

(ii) H.(g; lk) is an isomorphism. 

(iii) H.(Og; lk) is an isomorphism. 
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Remark Here 7r*(g)®zlk denotes the homomorphism 7r*(g) ®z id Ik : 7r*(X)®z 
lk -7 7r * (Y)®zlk. We emphasize the role of lk by using the full notation G*( -; lk) 
and H*( -; lk). When lk = Z the theorem reduces to Whitehead's original result: 
9 is a weak homotopy equivalence if and only if H*(g; Z) is an isomorphism. 

Lemma 8.7 Suppose k c Q, X is an (r - 1) -connected space and either r 2 2 
or r = 1 and 7rl (X) is abelian. Then the Hurewicz homomorphism defines an 
isomorphism 

7rr(X) ®z lk = Hr(X; lk). 

proof: By Theorem 4.19 the Hurewicz homomorphism is an isomorphism 7rr(X) 

~ Hr(X; Z). Thus it defines an isomorphism 7rr(X) ®z lk ~ Hr(X; Z) ®z lk. 
On the other hand the identification G*(X; Z) ®z lk = G*(X; lk) defines a map 
H*(X;Z) ®z lk -+ H*(X;lk). Because lk C Q the operation - ®z lk preserves 
exactness, and it follows that this map too is an isomorphism. 0 

We shall make frequent use of Eilenberg-MacLane spaces (§4(f)). (The reader 
may wish to review §4(f), since we shall often use there properties established 
without explicit reference.) Finally, we shall also rely on the 

Proposition 8.8 Suppose 1k C Q and X is an Eilenberg-MacLane space of 
type (7r, n), n 2 1, with 7r abelian. Then 

7r®zlk=O ¢:} H.(X;lk) =H.(pt;lk). 

proof: Since 7r ®z lk ~ Hn(X; lk) we have only to prove that if 7r ®z lk = 0 
then H.(X; lk) = H.(pt; lk). 

Case 1: n = 1 and 7r is cyclic. 
Since 7r ®z lk = 0, there is a short exact sequence 

where ,\ is a multiplication by an integer k invertible in lk. Let f : K(Z, 2) -7 

K (7r, 2) be a map such that 7r2 (f) = ( and convert f to a fibration 

F ~ E ~ K(7r, 2). 

The long exact homotopy sequence identifies F as an Eilenberg-MacLane space 
of type (Z, 2) and identifies 7r2(i) with the homomorphism ,\ : Z -+ Z. 

Now consider the commutative square 

OF~ OE 

1 1 Qp 

{pt} ---t OK(7r, 2) 
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as a map of OF-fibrations, where the right hand side is the loop space fibration 
described in §2(b). The long exact homotopy sequences for the path space fi
brations identify OF and OE as Eilenberg-MacLane spaces of type (Z,I) and 
identify 7f1 (Oi) with .A. Thus HI (Oi; Jk) = 7fl (Oi) 02 Jk is an isomorphism. 

Moreover, because the universal cover, m., of 51 is contractible it follows that 
51 is an Eilenberg-MacLane space of type (Z, 1). Since all Eilenberg-MacLane 
spaces of the same type have the same homology, Hi(OE; Jk) = Hi(OF; Jk) = 
O,i 2: 2, and so H*(Oi,Jk) is an isomorphism. 

We can therefore apply Theorem 8.5 to the map of OF-fibrations above to 
conclude that H*(OK(7f, 2); Jk) = H.(pt; Jk). But OK(7f,2) is an Eilenberg
MacLane space of type (7f, 1) and hence has the weak homotopy type of X, 
whence H*(X; Jk) = H*(pt; Jk). 

Case 2: 7f is cyclic. 
We induct on n, the case n = 1 having been established in Case 1. Consider 

{pt}--tPX 

1 1 
{pt}--t X 

as a map from an {e }-fibration to the OX -path space fibration on x; {e} 

denoting the I-point monoid. By the induction hypothesis, H.( {e}; Jk) ~ 
H.(OX;Jk), since OX is an Eilenberg-MacLane space of type (7f,n - 1). Ap-

ply Theorem 8.5 to conclude that H.(pt; Jk) ~ H.(X; Jk). 

Case 3: The general case. 
It is easy to modify the construction in §4(f) of cellular Eilenberg-MacLane 

spaces to construct a K (7f, n) that is the union of sub CW complexes K (7f a, n) as 
7f a runs through the finitely generated subgroups of 7f, and such that K (7f a, n) -+ 
K (7f, n) induces the inclusion 7f a -+ 7f. We may also assume that for any 0:1,0:2 

there is a f3 such that K(7f(3,n) =:J K(7fa ;,n), i = 1,2. Since - 02 Jk is exact, 
each 7f a 021k = O. If we can show that each H* (K( 7f a; n); 1k) = H* (pt; Jk) it will 
automatically follow (eg via cellular chains) that H.(K(7f,n);1k) = H.(pt;1k). 
Since X has the weak homotopy type of K(7f, n) this will complete the proof. 

We may therefore as well assume that X is one of the K(7fa ,n); i.e., that 7f 
is finitely generated. Then 7f is the finite direct sum f 1 EB ... EB f m of cyclic 
groups and each f i 02 Jk = O. Thus X has the weak homotopy type of the 
product IT:1 K (f i, n), and, by Case 2, there are chain equivalences 1k ~ 
C. (K(fi' n); Jk). Since the tensor product of chain equivalences is a chain equiv
alence, the Eilenberg-Zilber chain equivalence gives 

m m 

Jk ~ ® C.(K(fi, n); Jk) :z) C*(I1 K(fil n); Jk). 
i=l i=l 
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o 

proof of Theorem 8.6: Apply the Cellular models theorem 1.4 and the 
Whitehead lifting lemma 1.5 to obtain a based homotopy commutative diagram 

X'~Y' 

X 9 .y 

in which X' and Y' are CW complexes and hx and hy are weak homotopy 
equivalences. Since f'lhx and f'lhy are also weak homotopy equivalences it is 
enough to prove the theorem for g': i.e., we may assume X and Yare CW 
complexes, which we now do. 

Our first step is to reduce to the case that 1I2(g) is surjective. Let f = 
112 (Y) / 1m 112 (g) and let K = K (f, 2). Use Proposition 4.20 to find a continuous 
map q : Y ~ K such that 1I2(q) is the quotient homomorphism. Thus 112 (qg) = 0 
and so qg is based homotopic to the constant map. 

In §2(c) we showed how to convert q to a fibration ij via the commutative 
diagram 

>. Y -----+-. Y xKMK 
-

~/ 
K 

in which A is a homotopy equivalence. Since ij Ag is homotopic to the constant 
map and Ii is a fibration we may lift the homotopy to a homotopy Ag '"" gl with 
gl mapping X into the fibre Y XK PK. By the long exact homotopy sequence, 
112 (gr) is surjective, and we claim it is sufficient to prove the theorem for gl. 

In fact the claim follows from the assertion that if i : Y x K P K -+ Y X K M K 
is the inclusion then 1I*(i) Q$i 1., H*(i;1.) and H*(f'li;1.) are all isomorphisms, 
which we see as follows. The Hurewicz theorem 4.19 identifies H2(g) = 112 (g) = 
1I1(f'lg) = Hdf'lg). Hence under any of the three assertions of the theorem, 
1I2(g) Q$iz 1. is an isomorphism. Since - Q$iz 1. is exact f Q$iz 1. = 0, and so 
11 * (i) Q$iz 1. is an isomorphism. 

Moreover Proposition 8.8 asserts that H*(K; 1.) = 1. = H*(f'lK; 1.). Apply 
the Corollary to Theorem 8.5 to the fibre preserving map 

YXKPK ---..... YXKMK 

j 
pt ------..... K 
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to conclude that H.(i;};;) is an isomorphism. On the other hand, 7i2(q) is sur
jective since 7i2(q) is. Thus 7i2(i) is injective and Y XK PK is simply con
nected. Looping the diagram above gives a map of O(Y XK PK)-fibrations. 
Since O(Y XK PK) is path connected Theorem 8.5 can be applied to deduce 
that H.(Oi;};;) is an isomorphism. 

In view of this discussion we may and do henceforth assume that 7i2 (g) is 
surjective. We first establish that assertions (i) and (ii) are equivalent. 

Convert 9 into the fibration 

p : X x y MY ---7 Y 

as described in §2( c). The fibre of p is X x y PY and the homotopy equivalence 

X ~ X x y MY identifies 9 with p. Thus the long exact homotopy sequence 
shows that X x y PY is simply connected. Moreover, since - (>9z };; is exact, 

7i. (g) (>9 };; is an isomorphism {:} 7i. (X X y PY) (>9 };; = o. 

On the other hand (cf. §2(c)), 

X x y PY _----'p:....r-=oj'--_. PY 

X ----g---~. Y 

is a morphism of OY-fibrations. Thus Theorem 8.5 asserts that 

H.(g;};;) is an isomorphism ¢=::} H.(X Xy PY;};;) = H.(pt; };;), 

Let F ---7 X x y PY be a cellular model. We have only to show that 

Define a sequence {Fr }r>1 of r-connected CW complexes, beginning with FI = 
F, as follows. Given F~; put Kr+1 K(7ir+1(Fr), r + 1) and choose a 
continuous map 

Br : Fr ---7 Kr+1 

so that 7ir+I(Br) is the identity isomorphism. Then let Fr+l be a cellular model 
for the homotopy fibre Fr XKr +l PKr+1 of Br· 

As described in §2(c) we have a morphism of OKr+l-fibrations, 

Fr XKr+l PKr+1 
Or 

• PKr+1 

,·l l' (8.10) 

Fr 
Or 

• K r+1 · 
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Moreover, the long exact homotopy sequence has the form 

It follows that Fr XK r +1 PKr+1 is indeed (r + I)-connected and that 1In(Pr) is 
an isomorphism for n :::: r + 2. Thus we have isomorphisms 

Suppose now that H*(F; Jk) = H*(pt; Jk). We show by induction on r that 
H * (Fr; Jk) = H * (pt; Jk), noting that this is true by hypothesis for r = 1. If this 
holds for some r then 1Ir +l(Fr ) 0/Z Jk = Hr+l(Fr;Jk) = 0 and so Proposition 
8.8 asserts that H*(Kr+l; Jk) = H*(pt; Jk). Hence H*(Br; Jk) is an isomorphism. 
Now Theorem 8.5, applied to the diagram (8.10), asserts that H*(iJr ; Jk) is an 
isomorphism, whence 

Since this is true for every r, the homotopy group isomorphisms above show that 

as desired. 
Conversely, suppose 1Ii(F) 0/Z Jk = 0, i :::: 2. Then the homotopy group 

isomorphisms above show that 11 i (Fr) 0/Z Jk = 0 for all i :::: 2 and r :::: 1. In 
particular, 1Ir+dFr 0/Z Jk) = O. On the other hand, if r :::: 1 then OKr+1 is 
an Eilenberg-MacLane space of type (1Ir+l(F),r + 1). Hence (Proposition 8.8) 
H*(OKr+l; Jk) = H*(pt; Jk) for r :::: 1. Consider the diagram 

as a morphism from an {e}-fibration to an OKr+1-fibration, {e} denoting the 1-
point monoid. Apply Theorem 8.5 to conclude that H*(Pr; Jk) is an isomorphism, 
r :::: 1. This gives a sequence of isomorphisms 

Since Fr is r-connected it follows that H*(F; Jk) = H*(pt; Jk). 
This completes the proof that assertions (i) and (ii) are equivalent. To see 

that (ii) and (iii) are equivalent we recall that we may assume 112 (g) is surjective 
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and we use the notation and constructions above. Theorem 8.5, applied to 

PX~PY 

x g' Y 

implies that if H.(flg; Jk) is an isomorphism so is H.(g; Jk). 
Conversely, suppose H.(g;Jk) is an isomorphism. Let Fg = X Xy PY denote 

the homotopy fibre of g. Then, as shown above, H.(Fg ; Jk) = Jk and 1r.(g) Q9z Jk 
is an isomorphism. 

On the other hand, in §2(c) we constructed an fiX -fibration q : pi X Xx Fg -t 

Fg such that the fibre inclusion j : fiX -t pi X X x Fg was identified with fig 
by a homotopy equivalence. Thus 1r. (j) Q9z Jk is an isomorphism by hypothesis 
and we have only to show that H. (j; Jk) is an isomorphism. 

But the commutative diagram 

j 
fiX ---'----. piX Xx Fg 

J' 
{pt} -----. Fg 

is a map of fiX -fibrations and the map {pt} -t Fg induces an isomorphism in 
homology. Now Theorem 8.5 asserts that H.(j; Jk) is an isomorphism too. 

o 

Exercises 

1. Let lk[G] = {I:9EG >..g g, >..g Elk}, where >..g takes the value zero except 
on a finite number of elements of G, be the group ring of a group G. Construct 
a quasi-isomorphism (lk[G], 0) ~ G.(G; lk)). If P -+ X is a G-fibration (for 
instance a finite covering) prove that there exists a quasi-isomorphism of lk[G]

modules lk[G] Q9 G.(X; lk) ~ G.(P; lk). 

2. Let (J E G1 (Sl; lk) be defined by (J( t) = e2iTCt . Prove that (J is a cycle such 
that (J2 = O. Construct a quasi-isomorphism of algebras (.I\x,O) -+ G.(51). 

3. Let T be the torus Sl x Sl X ... X 51 (n times). Deduce from exercise 2 a 
quasi-isomorphism of algebras 'P : (.I\(X1, X2, ... , xn), 0) -+ G. (T). Assume that T 
acts from the right on a topological space X. Prove that G' (X; lk) inherits, via 
'P, a left (.I\(x1,x2, ... ,xn),O)-module structure. 

4. Let F -+ X -+ Y be a fibration with Y I-connected and consider the associ
ated fly-fibration flY -+ F -+ X. Prove that if H.(F; lk) is a free H.(flY; lk)
module, then H.(X; lk) ~ lk Q9H*(IlY;Ik) H.(F; lk). 
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5. Prove that the spaces X = !RPm X sn and Y = sm x !RPn have the same 
homotopy groups but not the same homology groups. Does this contradict the 
Whitehead theorem? 

6. Let P -+ X be a G-fibration with X I-connected. Prove that if (T(V), d) ~ 
C* (flG) is a quasi-isomorphism of chain algebras then there is a weak equivalence 
C* (X) ~ HOmT(V) (T(V) 0 M, Ik), and describe the semifree module TV 0 M. 



9 P-Iocal and rational spaces 

Fix a set P of prime numbers and let I be the set of integers k relatively prime 
to the elements of P. An abelian group" is P-local if multiplication by k in " is 
an isomorphism for all k E I. The rational numbers m/k, k E I, are a subring 
lk c Ql, so " is P-local if and only if it is a lk-module. By convention, when 
P = 1; we take lk = Ql - in this case" is a rational vector space. Throughout 
this section our ground ring lk will be the subring associated in this way with the 
set of primes P. 

If 0 --+ ,,' --+ " --+ ,," --+ 0 is a short exact sequence of abelian groups, then ,,' 
and ,," are P-local if and only if" is P-local. For any abelian group 'if, ,,02: lk 
is P-local. Moreover, if" is P-local then 'if --+ " 02: lk is an isomorphism. For 
general" this homomorphism 

is called its P-localization. 
The idea of P-local spaces and localization of spaces, introduced by Sullivan 

in [143], is a topological analogue. As will be shown in Theorem 9.3, if X is a 
simply connected space then 

".(X) is P-local ¢=:} H.(X,pti Z) is P-local. 

This motivates the 

Definition A simply connected space X is a P-local space if it satisfies these 
equivalent conditions. When lk = Ql (i.e., P = 1;) X is called a rational space. 

This section is organized into the topics: 

(a) P-local spaces. 

(b) Localization. 

(c) Rational homotopy type. 

(a) P-local spaces. 
Before turning to the proof of Theorem 9.3, we introduce an important class 

of P-local spaces: the (relative) CWp-complexes , beginning with the classical 
motivating example: the infinite telescope S;p. 

Let kl' k2' . " be the positive integers relatively prime to P (i.e. i the denomi
nators of lk). Put 
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where Dy+1 is attached by a map sn -+ Sj_1 V 57 representing [Sj-1]- kj[Sj]. 
For n = 1 this is illustrated by the picture 

, I 

in which the (j - 1)st right hand circle is attached to the ph left hand circle 
by the map e2r.it f--t e2r.ikjt, and the bottom solid lines are identified to a single 
point. (This explains the terminology: 'telescope'.) 

The space S!p is called the P-local n-sphere and the space D'j,+1 = S!p x 1/ S!p x 
{O} is called the P-local (n + I)-disk. When Jk = Q these spaces are called the 
rational n-sphere 58 and the rational (n + I)-disk, D8+1. The inclusion of the 
initial sphere So -+ S!p extends to Dn+1 -+ D!p and this inclusion 

(Dn+l, sn) ~ (D'j,+l, S!P) 

is called the natural inclusion of the initial disk and sphere. (This is the simplest 
example of P-Iocalization of topological spaces, defined and constructed later in 
this section.) 
~ow we compute the homology of S!p, showing that 

{ 
Z i = 0 

Hi(S!P;Z) = Jk i = n , 
o othenvise 

\vith the generator 1 E Hn (S!P; Z) represented by the initial sphere [So]. For 
r r 

this, let X(r) c S!p be the sub complex V Sf Uh (U Dy+1). It contains 5;: 
i=O j=1 

as a strong deformation retract: simply collapse the finite telescope X(r) onto 
this terminal sphere. Hence H * (X (r) : Z) vanishes in degrees i f::. 0, n, and so 
H*(S!P;Z) vanishes in these degrees as well. The inclusion X(r) C X(r + 1) 
sends [5;:] to kr +dS;:+1]. Thus an isomorphism Hn(S!p;Z) ==' Jk is given by 

r 

mapping each [5;:] to (TI kj )-1. 
j=1 

\Vhen n ?: 2, S]5 is simply connected since its cells, aside from the base point, 
all have dimension n or n + 1 (apply the Cellular approximation theorem l.2). 
Thus S!p, n ?: 1, is indeed a P-Iocal space. 

\Vhen n = 1, S~ is an Eilenberg-I\lacLane space of type (lk, 1). Indeed any map 
sm -+ S~ has image in some X(r), by compactness. Since X(r) ::::: 51 it follows 
that Jlm(S~) = 0, m?: 2 and JldS~) is abelian. Thus Jl1(S~) ==' H1(S~) ==' lk. 
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Relative CWp complexes are built by assembling P-Iocal disks via attaching 
maps from P-local spheres in exactly the way classical relative CW complexes 
are constructed from ordinary disks. More precisely, 

Definition A relative CvVp complex is a topological pair (X, A) together with 
00 

a filtration X = U X(n) of X by closed subspaces X(n) such that 
n=-l 

• X(1) = X(O) = X( -1) = A, and A is I-connected . 

• For n > 1. X(n+l) is presented as 

X(n+l) = X(n) U in ( 11 D~;;), (9.1) 
a 

with in: U a SP.a -7 X(nJ a cellular map. The D~+; are called the P
local (n + 1 )-cells of (X, A). If A = {pt} then X is a CW p complex. When 
lk = Q we refer to (relative) CW Q . 

Remark Since Sp is a subcomplex of the C\V complex D~+l and since in is 
cellular, the adjunction space X(n) U in ( U a D~+l) carries an induced structure 
as a relative C\V complex with respect to A. This makes (X, A) into a relative 
C\V complex in which each X(n) is a subcomplex. Since (D~+l, Sp) has only 
(n + 1 )-ce11s and (n + 2)-ce11s, it follows that 

n> -1 - , 

where Xn is the n-skeleton of the relative C\V complex (X, A). We call X(n) the 
n-skeleton of the CWp-structure on (X, A). In particular (X, A) has no O-cells 
or I-cells and so every circle in X is homotopic to a circle in the I-connected 
space A; i.e., X is simply connected. 

Finally, as follows from the calculation above of H.(Sp; Z), H.(D~+l, Sp; Z) 
is a free lk-module concentrated in degree n. It follows by excision that each 
H.(X(n+l), X(n); Z) is P-local. The long exact homology sequences now shows 
that H.(X,pt; Z) is P-Iocal: thus X is a P-Iocal space. 

We turn now to the statement and proof of Theorem 9.3. This will make 
frequent use (without reference) of the following elementary remark. 

Lemma 9.2 Let IF'p be the prime field of characteristic p. Then for all pairs of 
spaces (X, A): 

H.(X, A; Z) is P - local -¢=:::} H.(X, A; IF'p) = 0, p tj P. 

In particular 

H.(X,pt;Z)isP-Iocal -¢=:::} H.(X;lF'p)=H.(pt;lF'p), ptjP. 
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proof: Consider the long exact homology sequence associated with the short 
exact sequence 

It shows that multiplication by p in H*(X,A;Z) is an isomorphism precisely 
when H*(X,A;lFp ) = O. 0 

Theorem 9.3 Let X be a simply connected topological space. Then the follow
ing conditions are equivalent: 

(i) 7r*(X) is P-local. 

(ii) H*(X,pt; Z) is P-local. 

(iii) H*(OX,pt;Z) isP-local. 

proof: This is essentially identical to the proof of Theorem 8.6. We begin, as 
in that Theorem, with the case of Eilenberg-MacLane spaces, where we follow 
closely the steps of the proof of Proposition 8.8: 

Lemma 9.4 If X is an Eilenberg-MacLane space of type (7r, n), n ~ 1, then 

proof: Suppose first that n = 1. Reduce to the case 7r is finitely generated 
exactly as in Case 3 in the proof of Theorem 8.6. Since k is a principal ideal 
domain, finitely generated k-modules are the finite direct sums of cyclic k
modules. Hence in this case X has the weak homotopy type of a finite product 
of spaces K(f;, 1) with f; a cyclic k-module. Exactly as in the proof of Case 3 
in (8.6) we are reduced to the case 7r is a cyclic k-module. 

If 7r ~ k then X has the weak homotopy type of Sj, and H*(X,pt; Z) is P
local by the calculation above of the homology of S~. If 7r ~ k then there is a 
short exact sequence of k-modules of the form 

o --+ k --+ k --+ 7r --+ O. 

Exactly as in Case 1 of Proposition 8.8, this leads to a morphism of OF -fibrations 
of the form 

OF~ OE 

1 lop 
pt ~OK(7r,2) 
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in which both DF and DE are Eilenberg-MacLane spaces of type (~, 1). Thus 
as observed above both DF and DE have the weak homotopy type of Sf,. Hence 
H*(OF;Fp) = H*(OE;Fp) H.(pt,Fp)' Thus Theorem 8.5 asserts that 

H*(pt;Fp) ~ H.(OK(r.,2);Fp). Since OK(r., 2) has the weak homotopy type 
of X, the Lemma holds for X. 

This establishes Lemma 9.4 for Eilenberg-MacLane spaces of type (r., 1). The 
case when X has type (r., n), n> 1, follows by induction on n; apply Theorem 
8.5 to the morphism of OX-fibrations 

OX--tPX 

1 1 
pt --t x. 

o 

We now return to Theorem 9.3, whose proof mimics the proof of formula (8.9), 
with X replacing F and Fp replacing k Thus we construct a sequence of spaces 
{Xr }r~l starting with a cellular model Xl -t X, and a sequence of maps 

The space Xr is r-connected, r.r+!(Or) is the identity isomorphism and X r+! is 
a cellular model for Xr XKr +1 PKr+l . From Or we also obtain the morphism 

Xr XKr +1 PKr+1 
Or • PKr+! 

'" j j (9.5) 

Xr 
Or 

• Kr+l 

of OKr+l-fibrations and, as in the proof of (8.8), sequences of isomorphisms 

Suppose H*(X,pt; Z) is P-local. Then also H.(Xr,pt; Z) is P-local for all 
r, by induction. Indeed if this holds for some r then r.r+! (Xr) is P-local and, 
by (9.4), H*(Kr+I;IF'p) = H*(pt;Fp), p f/. P. Apply Theorem 8.5 to (9.5) to 
conclude that H.(8r; Fp) is an isomorphism, p f/. P. Hence H*(Xr+l,pt; Fp) = 
0, p f/. P, and H.(Xr+l,pt; Z) is P-local. In particular each r.r+l(Xr) is P-local 
and so r. * (X) is P-local. 

Conversely if r..(X) is P-local the homotopy group isomorphisms above im
ply that each r.r+l (Xr) is P-local. Hence, by Lemma 9.4, H*(OKr+l ; Fp) = 
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H*(pt; JFp) for T 2: 0 and p ~ P. Regard 

---------------+. Xr 
Pr 
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as a morphism from an {e }-fibration to an OKr+1 fibration. Conclude from 
Theorem 8.5 that H.(Pr;JFp ) is an isomorphism for p rt P. Since Xr is T

connected, the sequence of isomorphisms 

~ H*(Xr+I;JFp ) ~ H*(Xr;JFp ) ~ ..• ~ H*(X;JFp ) 

implies that H*(X; JFp) = H.(pt; JFp),p rt P; i.e., H.(X,pt; Z) is P-local. 
This shows that (i) {:::::::} (ii). Suppose (iii) holds. Let j : {xo} -+ X be the 

inclusion of a basepoint and apply Theorem 8.5 to the map Pj : P{xo} --+ PX 
of path space fibrations to conclude that H. (j; JFp ) is an isomorphism for p tf. P. 
Thus (iii) ===> (ii). 

Conversely, suppose (i) and (ii) hold. Recall from §2(c) that there is a fibration 

and a homotopy equivalence Y c:: Xl which identifies q with (h. Since Xl XK2 

PK2 is 2-connected and 7ri(XI XK2 PK) ~ 7ri (XJ) , i 2: 3 these groups are, in 
particular, P-local and we may apply (i) t+ (ii) to deduce that 

Now note that Oq is an O(XI XK2 PK2)-fibration. We shall apply Theorem 8.5 
to 

{pt} ~ OY 

I I no 

{pt} f OK2 . 

Lemma 9.4 asserts that H * (f; JFp) is an isomorphism for p tf. P. Hence so is 
H.(g;JFp ) and H.(OX;JFp ) ~ H.(OXI;JFp ) ~ H.(OY;JFp ) ~ H*(pt;JFp ), p tf. P.D 

(b) Localization. 
Suppose r.p : X --+ Y is a continuous map between simply connected topologi

cal spaces, and that Y is P-local. Then 7r.(Y) is a lk-module and 7r.(r.p) extends 
uniquely to a morphism 7r.(X) ®z lk --+ 7r.(Y). 
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Definition A P-localization of a simply connected space X is a map 'P : X -t 

X p to a simply connected P-local space X p such that 'P induces an isomorphism 

When lk = Q this is called a rationalization and is denoted by X -t XQ. 

Theorem 9.6 A continuous map 'P : X -t Y between simply connected spaces 
is a P-localization if and only if Y is P-local and H*('P; lk) is an isomorphism. 

proof: Since Y is P-local, 7r * (Y) = 7r * (Y) Q92 lk and the homomorphism 
7r*(X) ®2 lk -t 7r*(Y) is just 7r*('P) ®2 lk. Thus Theorem 9.6 is a special case of 
the Whitehead-Serre Theorem 8.6. 0 

Corollary The inclusion sn -t SF of the initial sphere in the telescope is a 
P -localization. 0 

Localizations always exist, and have important properties. We first describe 
this with a cellular construction that gives the true geometric flavour of the 
meaning of P-localization. 

Example Cellular localization. 
Suppose (X, A) is a relative CW complex in which Xl = Xo = A and 

A is a simply connected P-local space. Thus the Cellular approximation the
orem implies that X is simply connected. We shall use the natural inclusion 
(Dn+l , sn) -t (D~+l, SF) to construct a P-localization of X of the form 

'P: (X, A) -t (Xp, A), 

such that 

• (Xp, A) is a relative CWp complex. 

• The P-local n-cells of (Xp, A) are in 1-1 correspondence with the n-cells 
of (X, A), n 2: 2. 

• 'P restricts to the identity in A, and to maps 'Pn : Xn -t (Xp )(n) satisfying 

'PMI = 'Pn U (U 'Po,): Xn Ufn (U D~+l) --+ (XP)(n) Ugn (U D'!f,;;), 
a a a 

'Pa denoting the standard inclusion D~+l -t D'!f,;; . 

• In particular, 'P is the inclusion of a sub relative CW complex. 

In fact, suppose inductively that (Xp )(n) and 'Pn are constructed, and let 
fa : S;: -t Xn be the attaching map for some (n + I)-cell of (X, A). As noted 
in Remark 9.1, (Xp )(n) is P-local; thus 'Pnfa represents an element in the lk
module 7rn ((XP)(n))' 
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We use this to extend 'Pnfa to a cellular map ga : Sp,a -----+ (XP)(n). Recall 
00 00 

that Sp = V Sf Uh (II;:1 Dj+1). Define ga : V Sf -----+ (XP)(n) so that ga 
i=O i=O 

restricts to 'Pnf a in So and restricts to a representative of (rr;=1 kj ) -1 ['Pnf a] 
in S;:, r ~ 1. (Here the kj are the integers prime to P used to define the 
telescope). Since h attaches D~+l by a map representing [S;:_1] - kr[S;:J, gah 
is homotopically constant and so ga extends to all of SIp. Use the Cellular 
approximation theorem 1.2 to replace ga by a cellular map, homotopic reI So to 
the original. 

Set gn = IIaga. Define (XP )(n+1) = (XP)(n) Ugn (IIaDp~~) and define 
'Pn+1 by the formula above. This completes the construction of'P : (X, A) -----+ 
(Xp , A). To see that 'P is a P-Iocalization, it is enough to prove H*('P; Jk) is an 
isomorphism (Theorem 9.6). This follows at once from the construction and the 
fact that the standard inclusions induce isomorphisms 

H (D n+1 sn. Jk) ~ H (D n+1 sn. Jk) * " * p ,p, . o 

Theorem 9.7 

(i) For each simply connected space X there is a relative CW complex (Xp,X) 
with no zero-cells and no one-cells such that the inclusion 'P : X -----+ X p is 
a P -localizatioin. 

(ii) If (Xp , X) is as in (i) then any continuous map f from X to a simply 
connected P -local space Z extends to a map 9 : X p -+ Z. If g' : X p -+ Z 
extends f' : X -+ Z then any homotopy from f to f' extends to a homotopy 
from 9 to g'. 

(iii) In particular, the P-Iocalizations of (i) are unique up to homotopy equiv
alence reI x. 

proof: (i) Let 'l/J : Y -+ X be a weak homotopy equivalence from a CW complex 
Y such that Y1 = Yo = {pt}. Let j : Y -+ Yp be a cellular P-Iocalization as 
described in the Example above. Put 

Xp = X U,p (Y x 1) Uj Yp, 

where we have identified (y,O) with 'l/J(y) and (y, 1) with j(y). Then (Xp,X) is 
a relative CW complex with no zero- or one-cells. Since X is simply connected 
the Cellular approximation theorem implies that so is Xp. 

Next use excision and the fact that H*('l/J;7l) is an isomorphism to deduce 

Thus H*(Xp ,pt;7l) ==' H*(Yp ,pt;7l). Since Yp is P-Iocal so is Xp. 
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Finally, since j is a P-Iocalization we may use excision to deduce that 

H.(Xp, X; Jk) 3:' H.(Yp , Y; Jk) = O. 

Hence the inclusion cp : X -7 X p satisfies H. (cp; Jk) is an isomorphism; i.e., cp is 
a P-Iocalization. 

(ii) Let (Z U f X p, Z) be the relative CW complex obtained by identify
ing x '" f(x), x EX. Since Z is P-Iocal the construction of the Example above 
gives a P-Iocalization 

u: (Z Uf Xp, Z) -7 «Z Uf X p )p, Z). 

In particular, H.(u, Jk) is an isomorphism. 
On the other hand, H.(cp; Jk) is an isomorphism, and hence H,(ZUf Xp, Z; Jk) 

3:' H.(Xp,X;Jk) = O. Thus H.(Z,Jk) -=., H,(ZUf Xp;Jk) and the composite 
inclusion i : Z -+ (Z Uf Xp)p also satisfies: H.(i; Jk) is an isomorphism. By 
the Whitehead-Serre theorem 8.6, 7f. (i) @ Jk is an isomorphism. Since Z and 
(Z U f X p)p are P-Iocal they satisfy 7f. ( -) = 7f. ( -) @ Jk. Hence i is a weak 
homotopy equivalence. 

Now the Whitehead lifting lemma 1.5 can be applied to 

Z 

1 
to obtain a retraction r : Z Uf Xp -7 Z. Define g to be the composite X p -7 

ZUfXP~Z. 
Finally, suppose gl : Xp -7 Z restricts to r : X -7 Z and <I> : X x I -7 Z s a 

homotopy from f to r. Consider the map 

'Ij; = (g,<I>,l): (Xpx{O})UXxIU(Xpx{l})-7Z. 

An easy calculation like those above shows that the inclusion (Xp x {O}) U X x 
IU (Xp x {I}) --+ X p x I is a P-Iocalization. Hence 1lt extends to a homotopy 
from g to i. 0 

(c) Rational homotopy type. 
We specialize now to the case Jk = Q and P = ¢Y. Consider a continuous map 

f: X--+Y 

between simply connected spaces. It follows from the Whitehead-Serre theorem 
8.6 that the following conditions are equivalent: 

• 7f. (f) @ Q is an isomorphism . 

• H.(f; Q) is an isomorphism. 
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• H*(J; Q) is an isomorphism. 

In this case f is called a rational homotopy equivalence. 
Theorem 9.8 implies that the rationalizations Xo of a simply connected space 

all have the same weak homotopy type and that the vieak homotopy type of XQ 
depends only on the weak homotopy t:vpe of X. 

Definition The \veak homotopy type of X::;: is the rational homotopy type of 
X. 

Theorem 9.7 also gives a second, equivalent description of rational homotopy 
type that does not explicitly involve rationalization. 

Proposition 9.8 Simply connected spaces X and Y have the same rational 
homotopy type if and only if there is a chain of mtional homotopy equivalences 

X f- Z(O) ----t ... f- Z(k) ----t Y. 

In particular if X and Yare CW complexes then they have the same rational 
homotopy type if and only if XQ ::::::: Yc;::. 

proof: The first assertion is immediate from Theorem 9.7. The second follows 
immediately from the \'':hitehead lifting lemma 1.5, because (Xo, X) and (YQ, Y) 
are relative C\V complexes. 0 

Note: Rational homotopy theory is the study of properties of spaces and maps 
that depend only on rational homotopy type: i.e., are invariant under rational 
homotopy equivalence. 

A rational cellular model for a simply connected space yo is a rational homotopy 
equivalence cp : X -+ Y from a CW complex X such that Xl = Xo = {pt}. \Ve 
complete this section by observing, for simply connected spaces Y, that 

• H* (Y; Q) has finite type {:? Y is rationally modelled (9.9) 
by a CW complex of finite 
type 

• H*(Y; Q) is finite dimensional {:? Y is rationally modelled (9.10) 
and concentrated in 
degrees:::; N 

Both these observations are corollaries of 

by a finite t{ -dimensional 
C\V complex 

Theorem 9.11 Every simply connected space Y is rationally modelled by a 
CW complex X for which the differential in the integral cellular chain complex 
is identically zero. 
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Corollary H*(X;'i.) is a free graded 'i.-module. 

proof of 9.11: With the aid of cellular models (Theorem 1.4) we reduce to 
the case Y is a CW complex, Yo = Y1 = {pt}, and all cells are attached by based 
maps (sn,*) --+ (Yn,pt). Let (C*,8) denote the cellular chain complex for Y 
and use the same symbol to denote an n-cell of Y and the corresponding basis 
element of Cn . 

Choose n-cells a7 and bj so that in the rational chain complex (C* ® Q,8), 

Cn ® Q = (ker8)n E8 EB 1Qa? = (Im 8)n e EB 1Qa? E8 EB Qbj. 
j 

Define sub complexes Wen) c Zen) c Yn by 

Wen) = Yn- 1 U (U an and Zen) 

Since 8 : E91Qa7 ~ (Im 8)n-l the Cellular chain models theorem 4.18 asserts 
i 

that 
H*(W(n), Zen -1); Q) = O. Thus the inclusion). : Zen - 1) --+ Wen) gives an 
isomorphism of rational homology, and the Whitehead-Serre theorem 8.6 shows 
that 7r*().) ® Q is an isomorphism. In particular, since the cells bj are attached 
by maps /j : (sn-l,*) --+ Yn- 1 C Wen), there are maps gj : (sn-l,*) --+ 
(Z (n - 1), *) and non-zero integers r j so that 

We now construct 'P : X --+ Y inductively so that 'P restricts to rational 
homotopy equivalences 'Pn : Xn --+ Zen). Begin with Xl = Xo = {pt} and 
'PI : Xl --+ Yl = {pt}. Suppose 'Pn-l : X n- l --+ Zen - 1) is constructed. Then 
there are maps hj : (sn-l, *) --+ (Xn- 1 , pt) and non-zero integers Sj such that 
7rn-l('Pn-d[hj ] = Sj[gj]. Set h = {hj} : Vj Sj-l --+ X n- 1 , and set 

Xn = X n- l Uh (V Dj). 
j 

Choose maps ej : (sn-l, *) --+ (sn-r, *) such that [e j ] = SjTj[sn-l] in 
7rn_rCSn- l , *). Thus in 7rn-rCW(n), *) we have 

It follows that /je j is based homotopic to 'Pn-lhj; i.e. there are maps 

<Pj : sn-l X [t 1]--+ Wen), with 
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Then write 

Z(n) = W(n) Uf (V Dj), I 
j 

and extend tpn-1 to tpn by setting 

( ) _ { if>j(v, t) E W(n), 
tpn tv - 2tO ·(v) E Dn 

J J' 

{fJ}: V Sj-1 --+ Yn- 1, 

v E S;-l, ~:::; t :::; 1, 
v E s;-1, 0:::; t :::; ~. 
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Put X~ = X n- 1 Uh (V S;-l x [~, 1]). Then (Xn, X~) is a relative CW 
complex whose cells are the disks Dj(~) of radius~. An immediate cellu
lar chains argument (Theorem 4.18 and the following Remark) shows that tpn 

induces a homology isomorphism H*(Xn,X~;Q) ~ H*(Z(n), W(n);Q). But 
X n- 1 is a deformation retract of X~_l' and the maps A: Z(n -1) --+ W(n) and 
tpn-1 : X n- 1 --+ Z(n - 1) induce isomorphisms of rational homology. Hence 

which gives 

as desired. 
Finally, observe that for any n, Hn(Z(n); Q) ~ Hn(Z(n), Z(n -1); Q), by an 

immediate cellular chains argument. Hence Hn(Xn; Q) ~ Hn(Xn, X n- 1; Q). If 
(eX ,8) denotes the integral cellular chain complex for X then this implies that 
(e~n,8) Q9 Q --+ (e;,O) Q9 Q yields an isomorphism of homology in degree n. 

This implies 8 : e; -+ e;-l is zero, again, for all n. 0 

Exercises (All spaces are supposed i-connected.) 

1. Determine X(p) for p = 2,3 or 0 and X = sn U<p Dn+1 with tp : sn --+ sn 
a continuous map of degree 6 (resp. 5). Same question with the fibre of the 
collapsing map X --+ sn+1. 

2. A finite complex X is universal if for any rational equivalence a : A --+ B 
and continuous map I : X --+ B there exists a rational equivalence {3 : X -+ X 
and a continuous map 9 : X --+ A such that a 0 9 :::: 1 0 {3. Let X and Y be 
finite complexes and I E [XQ, YQ]. Prove that if X is universal then there exists 
9 E [X, Y] and a rational equivalence a : X --+ X such that gQ :::: 10 aQ. 

3. Let P be a set of prime numbers, p' c P, and define the ring Jk' by Ik' = 
{m/k I k is relatively prime to the elements of PI}. Consider two localization 
maps I : X -+ Xp and I' : Y --+ Yp' with pI c P. Prove that if I : X --+ Y 
is a continuous map then there exists a map AI' : X p --+ Yp ', unique up to 
homotopy, such that 11,1' 0 [ = [' 0 I and the following diagrams commute: 
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ITn(X)I8iIk' 
7rn /0id 

--=--t IT n (Y) I8i Ik' Hn(X) I8i Ik' H~id H n (Y) I8i Ik' 
~+ +~ ~+ +~ 

ITn(XP)I8iIk' 
7r n lUI 

ITn(Ypl) Hn(Xp; Ik') 
Hn/z [I 

Hn(YPI) --+ -----t 

4. Let P be a set of prime numbers and the ring Ik be as defined at the beginning 
of this section. A continuous map f : X -+ Y is a P-equivalence if for any n ~ 2, 

ITn(X)I8iIk 7r~id ITn(Y)I8iIk is an isomorphism. Prove that f is a P-equivalence 
if and only if fp is a homotopy equivalence. When Y is supposed 2-connected, 
prove that this is also equivalent to the following assertion: flf : fiX -+ flY is a 
P-equivalence. Remark: It is not true that the existence of a p-equivalence f : 
X -+ Y for every prime p implies that X :: Y. This motivates the introduction 
of the genus of a space X, i.e. the set of [Yj such that for any prime p, Yp :: Xp. 

5. Let f : X -+ Y be a rational homotopy equivalence between finite CW 
complexes and P be the set of all primes. Prove that there exist PI, P2, ... , Pk E P 
such that Xp :: Yp where P = P - {PI,P2, ···,pd· 
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10 Commutative cochain algebras for spaces and 
simplicial sets 

In this section the ground ring is a field k of characteristic zero. 
Recall from §5 that C* (X; k) denotes the co chain algebra of normalized singu

lar co chains on a topological space X. This algebra is almost never commutative, 
although it is homotopy commutative. 

Now however, because k is a field of characteristic zero, it turns out that we 
may replace C*(X; k) by a genuinely commutative co chain algebra. More pre
cisely, we introduce a naturally defined commutative co chain algebra ApL(X; k), 
and natural cochain algebra quasi-isomorphisms 

C*(X;k) ~ D(X) F- ApL(X;k), 

where D(X) is a third natural co chain algebra. The construction of 
APL(X; k) , due to Sullivan [144], is inspired from Coo differential forms, while 
reflecting the combinatorial nature of how the singular simplices of X fit together. 
The functor 

X"-+ APL(X; k) 

serves as the fundamental bridge which we use to transfer problems from topology 
to algebra. It is important to note that this functor is contravariant; i.e., it 
reverses arrows. 

The quasi-isomorphisms above will be constructed in Theorem 10.9. They 
define a natural isomorphism of graded algebras, 

H*(X; k) = H(APL(X; k)), (10.1) 

and we shall always identify these two algebras via this particular isomorphism. 
Thus for any continuous map, f, we identify H* (f; k) = H (Ap L (f; k)). 

Recall now from Proposition 9.8 that two simply connected spaces X and Y 
have the same rational homotopy type if and only if there is a chain of rational 
homotopy equivalences 

X +- Z(O) ---+ ... +- Z(k) ---+ Y. 

There is an analogous notion for commutative cochain algebras: two commuta
tive cochain algebras (A, d) and (B, d) are weakly equivalent if they are connected 
by a chain 

(A, d) ~ (C(O), d) F- ... ~ (C(k), d) F- (B, d) 

of quasi-isomorphisms of commutative cochain algebras. Such a chain is called a 
weak equivalence between (A, d) and (B, d). 

Next recall from §9(c) that a continuous map f : X -t Y between simply 
connected spaces is a rational equivalence if and only if H* (f; Q) is an isomor
phism. Since k is a field of characteristic zero and we identify H(ApL(f; k)) 
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with H* (f; lk) it follows that f is a rational equivalence if and only if Ap L (f; lk) 
is a quasi-isomorphism. 

In particular if X and Y have the same rational homotopy type then A P L (X; lk) 
and Ap L (Y; lk) are weakly equivalent, and so Ap L ( -; lk) defines a map 

{ rational homotopy } -+ { weak equi-:alence cl~sses of } 
types commutatIve co cham algebras. 

In §17 we show that if lk = ij and if we restrict to simply connected spaces X 
and commutative cochain algebras (A, d) such that H*(X; ij) and H(A, d) have 
finite type, then this correspondence is a bijection. This fundamental result of 
Quillen-Sullivan reduces rational homotopy theory to the study of commutative 
cochain algebras. As noted in the Introduction, our purpose in this text is to 
show how this result may be applied to extract topological information from the 
algebra. 

Since homotopy information is carried by the weak equivalence class of 
APL(X; lk) we may (and frequently will) replace it by a simpler, weakly equiv
alent, commutative cochain algebra: such a cochain algebra will be called a 
commutative model for X. More formally we make the 

Definition: A commutative cochain algebra model for a space X (or simply a 
commutative model for X) is a commutative cochain algebra (A, d) together with 
a weak equivalence 

(A,d) -=+ ... F- APL(X;lk). 

Henceforth we shall fix lk and, for the sake of simplicity suppress lk from the 
notation, writing APL ( -) for APL ( -; lk) and C* ( -) for C* ( -; lk). The rest of 
this section is spent on constructing ApL(X) and establishing its relation to 
C*(X). The section covers six topics: 

(a) Simplicial sets and simplicial cochain algebras. 

(b) The construction A(K). 

(c) The simplicial commutative co chain algebra ApL , and ApdX). 

(d) The simplicial cochain algebra CPL, and the main theorem. 

(e) Integration and the de Rham theorem. 

(a) Simplicial sets and simplicial cochain algebras. 
A simplicial object K with values in a category C is a sequence {Kn}n>o of 

objects in C, together with C-morphisms 
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satisfying the identities 

aiaj i < j; 
i ~ j; 

, i<j 
i=j,j+l 

, i>j+l. 

117 

(10.2) 

A simplicial morphism f : L ---7 K between two such simplicial objects is a 
sequence of C-morphisms i.pn : Ln ---7 Kn commuting with the ai and Sj. 

A simplicial set K is a simplicial object in the category of sets. Thus it 
consists of a sequence of sets {Kn}n>o together with set maps ai, Sj satisfying 
the relations (10.2). The motivating example is, of course, the simplicial set 
S*(X) = {Sn(X)}n>O of singular simplices (J : L1n ---7 X on a topological space 
X, with face and degeneracy maps are defined in §4(a). This is a functor, with 
a continuous map f inducing the morphism S*(1) : (J t---+ f 0 (J, (J E Sn(X). 

A simplicial cochain algebra A is a simplicial object in the category of co chain 
algebras: it consists of a sequence of cochain algebras {An}n~o with appro
priate face and degeneracy morphisms. Similarly simplicial cochain complexes, 
simplicial vector spaces . .. are simplicial objects in the category of cochain com-
plexes, vector spaces, .... Thus a morphism of simplicial cochain complexes, 
e : D ---7 E, is a sequence en : Dn ---7 En of morphisms of cochain complexes, 
compatible with the face and degeneracy maps. If each en is a quasi-isomorphism 
we call e a quasi-isomorphism of simplicial cochain algebras. 

Let K be any simplicial set. By analogy with S* (X) the elements (J E Kn 
are called n-simplices and (J is non-degenerate if it is not of the form (J = SjT 

for some j and some T E K n - 1 . The subset of non-degenerate n-simplices is 
denoted by N Kn. It follows from the relations (10.2) that for each k 2 0 a 
sub simplicial set K(k) C K is given as follows: for n ~ k, K(k)n = Kn and for 
n> k, K(k)n = {SjT I 0 ~ j ~ n - 1, T E K(k)n-d. The simplicial set K(k) is 
called the k-skeleton of K, and is characterized by 

{ 
NK 

N(K(k)n) = <p n 
n~k 

n> k. 

The dimension of K is the greatest k (or (0) such that N K k =I- <p, and this is 
also the least k such that K (k) = K. 

Finally, we use the notation of §4(a) to introduce a sequence of important sub
simplicial sets L1[n] C S*(L1n), n 2 O. Let eo, ... ,en be the vertices of L1n. Then 
L1[nJk C Sk(L1n) consists of the linear k-simplices of the form (J = (eia ... eik) 
with 0 :S io :S ... :S ik :S n. Thus (J is non-degenerate if and only if io < ... < ik· 
In particular L1[kJ is k-dimensional and the identity map 

is the unique non-degenerate n-simplex; Cn is called the fundamental simplex of 
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~[nl· The (n-1)-skeleton of ~[nl is denoted by o~[nl and is called the boundary 
of ~[nl. 

Lemma 10.3 If K is any simplicial set then any (J E Kn determines a unique 
simplicial set map (J. : ~[n] --+ K such that (J.(cn ) = (J. 

proof: The verification using (10.2) is straightforward, but the reader may also 
refer to [122]. 0 

A simplicial object A in a category C is called extendable if for any n ;::: 1 and 
any Ie {O, ... ,n}, the following condition holds: given <Pi E An - 1 ,i E I, and 
satisfying 

Oi<Pj = OJ-1 <Pi ,i < j, 

there exists an element <P E An such that <Pi = Oi<P, i E I. 

(b) The construction A(K). 
Let K be a simplicial set, and let A = {An} n>O be a simplicial co chain complex 

or a simplicial cochain algebra. Then -

is the "ordinary" cochain complex (or cochain algebra) defined as follows: 

• AP(K) is the set of simplicial set morphisms from K to AP. 

Thus an element <P E AP(K) is a mapping that assigns to each n-simplex 
(J E Kn (n ;::: 0) an element <P" E (AP)n, such that <Pai" = Oi<P" and 
<P Sj " = Sj<P". 

• Addition, scalar multiplication and the differential are given by 

• If A is a simplicial co chain algebra multiplication in A(K) is given by 

• If 'P : K --+ L is a morphism of simplicial sets then A('P) : A(K) ~ A(L) 
is the morphism of co chain complexes (or cochain algebras) defined by 

• If B : A --+ B is a morphism of simplicial cochain complexes (or simplicial 
cochain algebras then B(K): A(K) --+ B(K) is the morphism defined by 
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• When X is a topological space we write A(X) for A(S.(X)) . 

• If (J" E Kn then <P t-+ <P". defines a morphism A(K) ---+ An called restriction 
to (J". 

Remark Note that the construction A(K) is functorial in A and contrafunc
torial in K. 

Proposition 10.4 Let A be a simplicial cochain algebra. 

(i) For n 2: 0 an isomorphism A(6.[n]) ~ An of cochain algebras is given 
by <P ~ <P Cn ' where en is the fundamental simplex of 6.[n]. 

(ii) If A is extendable and L C K is an inclusion of simplicial sets, then 
A(K) ~ A(L) is surjective. 

proof: (i) The definitions show that <P ~ <Pcn is a morphism of cochain 
algebras. Since AP(6.[n]) consists of the simplicial set maps 6.[n] ~ AP, Lemma 
10.3 asserts that this morphism is a bijection. 

(ii) Given \[I E A(L) we give an inductive procedure for constructing 
<P E A(K) that restricts to \[I. In fact, suppose we have found elements <P"., (J" E 

K k , 

k < n such that 

Then define <P"., (J" E K n as follows. 
If (J" E L n , <P". = \[I".. If (J" has the form SjT, T E K n - 1 , use (10.2) to see that 

Sj<P r is independent of the choice of j and T and put <P". = Sj<P r . Finally, if 
(J" E K n - Ln is non-degenerate note that 8i ( <P OJ''') = 8j -1 ( <P Oi'" ), i < j. Since A 
is extendable we may therefore choose <P". so that 8 i <p". = <POi"" 0::; i ::; n. In all 
cases the equations above will be satisfied, as follows easily from (10.2). 0 

If A is an extendable simplicial cochain algebra and L C K is an inclusion 
of simplicial sets we denote by A(K, L) the kernel of the surjective morphism 
A(K) ~ A(L). 

Thus A(K, L) is a differential ideal in A(K) and 

o ~ A(K,L) ~ A(K) ~ A(L) ~ 0 

is a short exact sequence of cochain complexes, natural with respect to (K, L) 
and with respect to the simplicial cochain algebra A. 

A key step in the proof of Theorem 10.9 is the following 

Proposition 10.5 Suppose () : D ~ E is a morphism of simplicial cochain 
complexes. Assume that 
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(i) H(Bn) : H(Dn) ---+ H(En) is an isomorphism, n 2: O. 

(ii) D and E are extendable. 

Then for all simplicial sets K, 

H(B(K)) : H(D(K)) ---+ H(E(K)) 

is an isomorphism. 

First we establish a preliminary lemma. Define 

a: A (K(n), K(n - 1)) --+ II A (~[n], ~[n - 1]) ,n 2: 0, 
erENKn 

by setting a : <I> ---+ {A(O".)<I> }erENKn, where 0". : ~[nl ---+ K is the unique 
simplicial map (Lemma 10.3) such that 0". (cn ) = 0". 

Lemma 10.6 If K is a simplicial set and A is an extendable simplicial cochain 
complex then a is an isomorphism, natural in A and in K. 

proof: If O'(<I» = 0 then <I> vanishes on all the non-degenerate simplices of K(n) 
and hence <I> = O. Conversely, given a family {wO" E A(~[n],~[n -1])}erENKn , 

we recall first that (Proposition 10.4 (i)) 

A(~[n], ~[n - 1]) C A(~[n]) = An· 

This identifies the W 0" as elements of An satisfying Oi W 0" = 0, 0 :S i :S n. Define 
<I> E A(K(n),K(n -1)) by the three conditions: 

{ 
<I> 0" =0 0" E Km,m < n 

<I>er = wer , 0" E NKn 

<I>sJer = Sj<I>O" all j, 0". 

Clearly O'<I> = {wO"}. 0 

proof of 10.5: For any inclusion L c M of simplicial sets we have the row 
exact (Proposition 10.4 (ii)) commutative diagram 

o -- D(M, L) -- D(M) -- D(L) ---- 0 

'1M,,", j j'IM} e('.} 

o -- E(M, L) ---+- E(M) -- E(L) ---- 0 



Sullivan Models 121 

Hence, if any two of the vertical arrmvs is a quasi-isomorphism, so is the third. 
~loreover Proposition 10.4 (i), identifies e(.6.[n]) : D(.6.[n]) --+ E(.6.[n]) with en : 
Dn --+ En. Hence e(.6.[n]) is a quasi-isomorphism, n 2:: O. We now use induction 
on n to show that for any simplicial set K, e(K(n)) is a quasi-isomorphism. 

Indeed, this is vacuous for n = -1. Suppose it holds for some n - 1. From 
Lemma 10.6 and the remarks above it follows that e( -) is a quasi-isomorphism 
when (-) is in turn given by: 

8.6.[nJ, (.6.[nJ, 8.6.[n]) , (K(n), K(n - 1)) and K(n). 

This completes the inductive step. Along the \vay we have also shown that each 
e(K(n), K(n - 1)) is a quasi-isomorphism. 

Finally, let K be any simplicial set. Given <I> E D(K) and 1J! E E(K) such 
that d<I> = 0 and e(K)<I> = d1J!, we shall find D E D(K) and [ E E(K) such 
that <I> = dD and 1J! = e(K)D + dr. This implies at once that e(K) is a quasi
isomorphism (Lemma 3.2). 

To find D and [ we construct inductively a sequence Dn E D (K,K(n -1)) 
and [n E E (K, K(n - 1)) such that 

<I> - L dD; E D (K, K(n)) 
;~n 

and 
1J! - L (8(K)D; + d[d E E (K, K(n)). 

;~n 

Indeed, set D~l = [-1 = O. If D; and f; are constructed for i < n, set 
<I> , = <I> - L: dD; and 1J!' = 1J! - L: (e(K)0.; + d[;). Then <I> , restricts to 

i<n i<n 

<I>" E D(K(n),K(n-1)), 1J!' restricts to 1J!" E E(K(n),K(n-1)), d<I>" = 0 
and e(K)<I>" = d1J!". Our remarks above show that e(K(n), K(n - 1)) is a 
quasi-isomorphism. Hence we can find D" E D (K(n), K(n - 1)) and [" E 
E (K(n), K(n - 1)) such that <I>" = dD" and 1J!" = 8(K)D" +d[". Now close the 
induction by using the extendability of D and E to find Dn E D (K, K (n - 1)) 
and r nEE (K, K(n - 1)) which restrict respectively to D" and [". 

Finally, the sequence {Dn} satisfies (Dn),," = 0, n > dima. Thus we may 
define D E D(K) and [ E E(K) by 0.,," = L:(D n ),," and ["" = L:([n),,". Clearly 

n n 

<I> = dD and 1J! = e(K)D + dr. 

o 
(c) The simplicial commutative co chain algebra ApL , and ApL(X). 

The first step in constructing a functor from topological spaces to commuta
tive cochain algebras is the construction of the simplicial commutative cochain 
algebra, ApL . 

For this consider the free graded commutative algebra A(to, ... ,tn, Yo,·· . ,Yn) 
-cf. §3, Example 6.- in which the basis elements t; have degree zero and the 
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basis elements Yj have degree 1. Thus this algebra is the tensor product of the 
polynomial algebra in the variables ti with the exterior algebra in the variables 
YJ· A unique derivation in this algebra is specified by ti H Yi and Yj H o. It 
preserves the ideal In generated by the two elements ~~ ti - 1 and ~~ Yj. 

Now define APL = {(APL )n}n2:0 by: 

• The cochain algebra (Apdn is given by 

A(to, ... ,tn, Yo,··· ,Yn) 
(2'.ti - 1, 2'.Yj) 

dt i = Yi and dYj = O . 

• The face and degeneracy morphisms are the unique cochain algebra mor
phisms 

Oi : (APL)n+l --+ (APL)n and Sj: (APL)n --+ (APL)n+l 

satisfying 

{ 

tk 

Oi : tk f---t 0 

tk~l 

,k < i 
,k = i 

,k > i 

{ 

tk 

and Sj: tk f---t tk + tk+l 

tk+l 

,k < j 
,k = j 

,k > j. 

Notice that the inclusions ti --+ (Apdn, Yj --+ (Apdn extend to an isomorphism 
of co chain algebras, 

Remark 1 The elements of (Apdn are called polynomial differential forms 
with coefficients in k, for the following reason. When Jk C lR (e.g. k = Q) the 
algebra 

(ApL)~ = k [to, ... , tn] / (2'.t; - 1) 

is the k- (eg. rational) subalgebra of the smooth functions Coo(.6.n) generated 
by the restrictions t; of the coordinate functions of lRn+ 1. This identifies (A p L) n 

as a sub-cochain algebra of the classical cochain algebra, ADR(.6.n) of real Coo 
differential forms on .6.n; moreover, ADR(.6.n) = COO (.6.n) Q9(A~L)n (Apdn. 
~ote that this also identifies 

where the .Ai are the face inclusions and the (!j are the degeneracies for the 
simplices .6.n as defined in §4(a). These ideas will be further developed in §11. 

Remark 2 Each A~L' p ?: 0, is itself a simplicial vector space and A pL = 
{A~d >0' equipped with the obvious simplicial multiplication and differential. 

p~ 
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Lemma 10.7 

(i) (APL)o = lk· 1. 

(ii) H ((APL)n) = lk· 1, n 2' O. 

(iii) Each Aj,L is extendable. 

proof: (i) This is immediate from the definition. 
(ii) The isomorphism above identifies (Apdn as the tensor product 

n 

® A(t;, Yi). Since d(tn = kt~-lYi iffollows that H(A(ti, y;)) = lk·1. But H( -) 
;=1 
commutes with tensor products (Proposition 3.3) and so H((Apdn) = lk· 1 as 
well. 

(iii) Suppose given I C {O, ... ,n} and elements <1>; E (APL)n-1, 
i E I, satisfying Oi<l>j = OJ-1<l>i,i < j. Beginning with W-1 = 0, we induc
tively construct elements 
wr E (Apdn, -1::; r ::; n, such that: 

0; W r = <1>;, if i E I and i ::; r. 

We may suppose Wr-1 constructed. If r tt I set wr = Wr-1; otherwise proceed 
as follows. Embed the polynomial algebra (A~L)n in its field of fractions F 
and let BO C F be the subalgebra generated by (A~L)n and the element l!tr. 
Setting d (l!tr) = (1~~:J2 defines a co chain algebra 

which contains (APL)n. l\Ioreover a morphism rp : (APL)n-1 ---+ B of cochain 
algebras is given by 

'P(t,)c { 

ti 
1 - tT 
ti+1 

1 - tr 

,i < r 
and rp(dt;) = drp(t;). 

,i 2' r 

On the other hand, we may extend Or to a morphism B ---+ (Apdn-1 by setting 

Or (1 !tr) = 1. Clearly Or 0 rp = id. 
1 

Every element of B has the form ( ) I\j W for some N > 0 and some 
1 - tr . 

WE (APL)n. In particular we may write 

(1- tr)N rp(<I>r - orwr-d = W, some W E (APL)n. 

Now, for i E I and i < T, we have 
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Hence <Pr - cVl1 r- 1 is in the ideal generated by t; and dti in (Apdn-l, and it 
follmys that Iji is in the ideal generated by t; and dt; in (A.pdn. In particular, 
Oilji = 0, i E I and i < r. 

On the other hand, since Orip = id. \ye also haye orlji = <Pr - orljir-l. Thus 
OJ(1ji + ljir-d = <Pj for j E I and j :S t. This closes the induction. 0 

Because the graded algebras (APL)n are commutative, the construction Apd ) 
defined in (b) assigns to each simplicial set K a commutative co chain algebra, 
A·pdK), and to each map f of simplicial sets a morphism, APL(f) of commu
tative cochain algebras. Since ApL is extendable, with every pair L C K of 
simplicial sets is associated the short exact sequence 

For topological spaces X and continuous maps f \ve apply this construction 
to the simplicial set 5* (X) and to 5* (f). This defines a contravariant functor 
from spaces to commutatiYe cochain algebras, which will be denoted 

X -v-.; APL(X) and f -v-.; APL(f). 

In particular, associated with a subspace Y is the short exact sequence 

0-+ APL(X, Y) -+ APL(X) -+ APL(Y) -+ O. 

\Vhen it is necessary to indicate the coefficient field explicitly we shall write 
APL(X; lk), APL(K; lk) and APL(f; lk) for APL(X), APL(K) and APL(f). 

An element of Aj,dX) is a function assigning to each singular n-simplex of 
X a polynomial p-form on 6. n, n 2: 0, compatible with the face and degeneracy 
maps. This motivates the following terminology: The commutative cochain 
algebra, ApdX), is the cochain algebra of polynomial differential forms on X 
with coefficients in lk. 

Example 1 \Vhen X = {pt}, then S*(X) = 6.[0]. It follows that APL(X) = 
(APIJo = lk; 

APL (pt) = lk. 

Thus an inclusion j : pt -+ Y induces an augmentation c = ApL(j) : ApdY) -+ 
lk. 

(d) The simplicial co chain algebra CPL , and the main theorem. 
Recall from §5 that with eyery topological space X is associated to its singular 

cochain algebra, C~(X; lk). Recall that we simplify notation and write C*(X) for 
C* (X; lk). Now the construction of C* (X) depends only on the singular simplices 
of X and their face and degeneracy maps; i.e., it depends only on the simplicial 
set S*(X). As such it generalizes to any simplicial set K to give the co chain 
algebra C*(K), also written C*(K: lk) if we need to emphasize coefficients. More 
precisely 
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• CP(K) consists ofthe set maps Kp --+ lk vanishing on degenerate simplices. 

• For f E CP(K), g E Cq(K) the product is given by 

(f U g)(a) = (-I)pq f(8p+l ... 8p+qa) . g(808o''' 8oa), a E Kp+q. 

• The differential, d, is given by 

p+l 

(df)(a) = 2) -1)p+i+l f(8i a) ,a E K p+1 , f E CP(K). 
i=O 

Observe that, by definition, C*(X) = C*(S*(X» for topological spaces X. 
Next observe that a simplicial cochain algebra CPL can be defined using the 

simplicial sets ~[n) C s*(~n) introduced in (a). Indeed since the face inclusions 
and degeneracy maps for the ~ n have the form 

Ai = (eo, ... ei ... en+l): ~n --+ ~n+l 

and 

(cf. §4(a» it follows that S*(Ai) and S*(Pj) restrict to simplicial maps 

[Ai): ~[n) --+ ~[n + 1) and [pj): ~[n + 1) --+ ~[n). 

Thus we define CPL = {(Cpdn}n::::o by 

• (CPL)n is the cochain algebra C*(~[n)). 

• The face and degeneracy morphisms are the C* ([Ai)) and C* ([pj)). 

Finally, let 

CPL @ ApL = {(CPL)n @ (ApLk 8i @ 8i ; Sj @ Sj} 

be the tensor product simplicial cochain algebra (where (Cpdn @ (Apdn is the 
tensor product cochain algebra described in §3(c». Morphisms 

CPL ~ CPL @ ApL +- ApL 

are defined by 'Y r-+ 'Y @ 1 and <P r-+ 1 @ <P. Thus, for any simplicial set K they 
determine the natural cochain algebra morphisms 

Our main result, which now follows, is (together with its proof) due to Chris 
Watkiss [155) following the idea in Weil's proof [156) that de Rham cohomology 
and singular cohomology are isomorphic. 
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Theorem 10.9 [i55} Let K be a simplicial set. Then 

(i) There is a natural isomorphism CpdK) ~ C*(K) of cochain algebras. 

(ii) The natural morphisms of cochain algebras, 

CPL(K) -t (CPL ® APL)(K) ~ APL(K) 

are quasi-isomorphisms. 

Substituting S* (X) = K in Theorem 10.9 we obtain 

Corollary 10.10 For topological spaces X there are natural quasi-isomorphisms 
of cochain algebras. 

o 

This gives the isomorphisms H*(X) ==' H(ApdX)) promised in (10.1). 
For the proof of Theorem 10.9 we require two lemmas. 

Lemma 10.11 There are natural isomorphisms CpdK) ~ C*(K). 

proof: Each "f E C~L (K), P ~ 0 determines the element f E CP(K) given by 

where cp is the fundamental simplex of ~[Pl. It follows, by a straightforward 
calculation from the definitions and (10.2), that the correspondence "f 1---7 f 
is a cochain algebra morphism. To show it is injective, assume "f 1---7 O. The 
elements a E ~[nlp are the linear simplices of the form (eio' ... ,eip ) : ~p -+ ~ n 

with io :S ... :S ip , and these can all be written as composites of face and 
degeneracy maps. It follows that for any n ~ 0 and any T E K n, 

Hence "f = 0 and our morphism is injective. 
On the other hand, by Lemma 10.3 any (1 E Kn determines a unique simplicial 

map (1* : ~[nJ -+ K such that (1*(cn ) = (1. Thus, if f E CP(K), we may define 
"f E C~L(K) by "fa = CP((1*)(f). Clearly"f 1-+ f and our morphism is surjective. 
o 

Lemma 10.12 

(ii) CPL is extendable. 

(iii) CPL ® ApL is extendable. 
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proof: (i) The first assertion is the classical calculation of H* (~[n]) which is 
left to the reader; the second then follows from Lemma 10.7 (ii) and the fact 
that H( -) commutes with tensor products (§3(e)). 

(ii) The map [Ad : f3 f-t Ai 0 f3 is an isomorphism of the simplicial set 
~[n - 1] onto a subsimplicial set F(i) C ~[n]. Thus it identifies a p-cochain 
1; E CP(~[n - 1]) with a set map II : F(i)p -t lk. Given a sequence I;, i E 

I C {O, ... ,n} of such cochains, the condition adj = aj- 1 1;, i < j, implies 
that II and Ii restrict to the same function in F(i)p n F(j)p. Thus {in defines 
a function from U F(i)p to lk, which then trivially extends to a function I in 

iEI 
~[n]p, vanishing on degenerate simplices. Thus I is an element in CP(~[n]) such 
that ad = I;,i E I. 

(iii) Suppose given elements Oi E CP(~[n -1]) Q9 (A~L)n-l' i E I c 
{O, ... , n}, satisfying aioj = aj - 1 0 i , i < j. Write Oi = L k" Q9 <Pia and define 

a 

0; : F(i)p -t (.4~L)n-l by 

T E ~[n -l]p. 
a 

Now for each u E ~[n]p let I" E I be the set of indices i such that u E F(i)p. 
It is immediate from the definition that the elements O;(u) E (A~L)n-l satisfy 

ai (OJ(u)) = aj - 1 (O;(u)) ,i < j E I". 

Since APL is extendable (Lemma 10.7 (iii)) we may find <P" E (A~L)n such that 
ai<P" = O;(u), i E I". 

Finally, identify CP(~[n])Q9(A~L)n with the set offunctions ~[n]p -t (Ah)n, 
just as above, and define 0 E CP(~[n]) Q9 (A~L)n by 

O(u) = <P" ,u E ~[n]p. 

It is then immediate that (ai Q9 ai)O = Oi, as desired. o 

proof of Theorem 10.9: The first assertion is Lemma 10.11. The second 
follows by applying Proposition 10.5 to the morphisms 

given by / f-t /Q91 and <P f-t 10<P. Indeed all three simplicial cochain algebras are 
extendable (Lemma 10.7 and Lemma 10.12). Moreover, again by the same two 
lemmas, for each n ::::: 0, H((CPL)n) = H((APL)n) = H((CPL 0 APL)n) = lk·1. 
This trivially implies that H((()c)n) and H((()A)n) are isomorphisms. Thus the 
hypotheses of (10.5) are indeed satisfied. 0 

Finally, let L C K be a sub simplicial set. Then the quasi-isomorphisms of 
Theorem 10.9 restrict to quasi-isomorphism 

C*(K,L) ~ (CPL ®ApL)(K,L)? APL(K,L). 
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Thus the two short exact sequences 

0-----+ C*(K,L) -----+ C*(K) -----+ C*(L) -----+ 0 

and 

are connected by a chain (of length two) of quasi-isomorphisms. In particular 
the canonical isomorphisms of cohomology define an isomorphism of long exact 
cohomology sequences, 

III III III III 

~ Hi (APL(K,L)) ~ Hi (APL(K)) ~ Hi (APL(L)) ~ H i+1 (APL(K,L)) ~ 

Of course K and L may be replaced here by a topological space X and a subspace 
A. 

( e) Integration and the de Rham theorem. 
If K is a simplicial set then ApL(K) is a commutative cochain algebra and 

C* (K) is not, which explains why in Theorem 10.9 we need to connect them 
by the chain of quasi-isomorphisms C*(K) ~ • +=- APL(K). In this topic we 
show how 'integration' provides a natural direct quasi-isomorphism of cochain 
complexes 

f K : APL(K) ~ C*(K) . 

The quasi-isomorphism f was first constructed in the 1930's in the context of 
smooth manifolds and ordinary differential forms. In that setting the fact that 

f commutes with the differentials is precisely Stokes' theorem: r dq. = r q., 
lA lOA 

and the fact that H (f) is an isomorphism was conjectured by E. Cartan and 
proved by de Rham [43]. 

Now recall the constructions in §lO(c) and (d) ofthe simplicial cochain algebras 
Ap Land C PL. We shall construct a quasi-isomorphism of simplicial cochain com
plexes, f : APL -----+ CPL (as defined in §10(a)) and set fK = f(K) : ApdK) -----+ 
CpdK) = C*(K). There are a number of calculations (mostly omitted) which 
are usually easy consequences of the classical integration by parts formula, 

To define f : ApL -----+ CPL we need to define a sequence of cochain complex 
morphisms 
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compatible with the face and degeneracy maps. Recall that (APL)n = A(tl' ... , tn, 
dh, ... ,dtn ). Define a linear map In : (APL)~ ----+ 1k by setting 

(k1 + ... + kn + n)! . 

Now (cf. §10(a)) let u = (eio ... eik) be a k-simplex of .6.n ; i.e. 0:::; io :::; i 1 < 
... :::; ik :::; n. Then u determines the morphism u* : (Apdn ----+ (ApLh given 
by tij 1--+ tj, 1:::; j :::; k, and tm 1--+ 0 if m f:- i o,··· ,ik · 

Define fn : (APL)n ----+ (CPL)n by setting 

(fn <p) (u) = (-1) k(\-l) 1 u*<P , 
<P E (Apd~ 
u a k-simplex of .6. n. 

(Note that if u is degenerate then u*<P = 0 and so (fn <p) (u) = 0, as required.) 

Theorem 10.15 

(i) f = {fn} : ApL ----+ CPL is a quasi-isomorphism of simplicial cochain 
complexes. 

(ii) For each simplicial set K and topological space X the linear maps fK = 
f(K) and fx = f(X) are natural quasi-isomorphisms 

f K : APL(K) ----+ C*(K) and f x : APL(X) ----+ C*(X) 

of co chain complexes. 

proof: A quasi-isomorphism of extendable simplicial cochain complexes in
duces a quasi-isomorphism of cochain complexes when applied to any simplicial 
set (Proposition 10.5). Since C*( -) = Cpd -) and since APL and CPL are ex
tendable (Lemmas 10.11, 10.7 and 10.12) the assertion (ii) of the theorem follows 
from assertion (i). 

To prove (i) we show first that each fn commutes with the differentials, which 
is essentially Stokes' theorem. For this it is sufficient to verify that 
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where ai = (eo··· ei-l ei+l ... en) : 6 n-l -+ 6 n. By linearity it is enough to 
consider <J? of the form t~l ... t~n dt1 1\ ... dtj .. . 1\ dtn (dtj is deleted). But in this 
case the formula is a straightforward calculation via (10.14). 

Next the compatibility of the in with the face and degeneracy morphisms 
follows from the equation 

k(k-l) r k(k-l) r 
(-1)-2- ik r*a*<J? = (-1)-2 - ik (ar)*<J? 

(in <J?)(ar) = (Cpda)Jn <J?) (r) , 

valid for all simplicial maps 6 k ~ 6 T ~ 6 n and all <J? E (APL)~ . 
Finally, to show that the in are quasi-isomorphisms notice that in (1) = 1 and 

recall that H ((Apdn) = ffi: = H ((Cpdn), n ~ 0 (Lemmas 10.7 and 10.12). 0 

Remark Multiplication defines a morphism 

multn : (CPL)n Q9 (CPL)n -+ (CPL)n 

of cochain complexes (but not of algebras), and so mult = {multn } is a morphism 
of simplicial cochain complexes. Thus we have the commutative diagram 

, Q: = mult 0 (id Q9 i) , 

of simplicial cochain complexes, which translates to the obvious diagram when 
applied to any simplicial set or topological space. 0 

Exercises 

1. Prove that Apd*) = Ik. 

2. Give an explicit formula for each Oi : (ApLh --+ (Apdo ~ Ik as defined in 
( c). 

3. Let K be a simplicial set, and A, B simplicial co chain algebras. Prove that if 
H(A) = Ik = H(B) and if A and B are extendable then there exists a sequence 
of quasi-isomorphisms A(K) --+ A(K) Q9 B(K) +- B(K). 

4. Prove that A = {(An, dn) h>o ,Oi , Sj is a simplicial algebra where An 
I\(XO,Xl, ... ,xn) Q91\(YO,Yl, ···,Yn) with dXi = Yi and 

if k < i 
if k = i 
if k > i 

if k < i 
if k = i 
if k > i 
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In this section the ground ring is JR. 
The construction APL ( -;.D;;) of polynomial differential forms in §1O was sug

gested by the classical cochain algebra ADR(M) of smooth differential forms on 
a smooth manifold M. In this section we review the construction of ADR(M) 
and establish a chain of quasi-isomorphisms 

of commutative cochain algebras. This implies (§12) that ADR(M) and APL (M; JR) 
have the same minimal Sullivan algebras and hence that many rational homo
topy invariants (e.g. dim 1Tk(M) @ Q, k 2 2 and the rational LS category of M) 
can be computed directly from ADR(M). 

This section is organized into the following topics: 

(a) Smooth manifolds. 

(b) Smooth differential forms. 

(c) Smooth singular simplices. 

(d) The weak equivalence ADR(M) ~ APL(M; JR). 

(a) Smooth manifolds. 
A topological n-manifold M is a second countable metrizeable topological 

space in which each point has an open neighbourhood homeomorphic to an open 
subset of JRn. Recall that a map from an open subset of JRn to JRn is infinitely 
differentiable or smooth if all its partial derivatives of all orders exist. A smooth 
atlas (U"" U"')"'EY for M is a covering of M by open sets U'" together with 
homeomorphisms u'" of U '" onto an open subset of JRn , and such that for each 

0:, (3 : U",U/il : u/3(U", n U(3) ~ u",(U", n U(3) is smooth. Each (U"" u"') is called 
a chart in the atlas. A smooth n-manifold is a topological n-manifold together 
with a smooth atlas. 

Example 1 JRn. 
The identity map of JRn identifies JRn as a smooth manifold. o 

Example 2 Open subsets. 
Suppose (U"" u",)",EY is a smooth atlas for a smooth manifold M. If 0 is an 

open subset of M then (u", nO, u'" lu no) is a smooth atlas for 0, and thus 
Q ",EY 

identifies 0 as a smooth manifold. 0 
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Example 3 Products. 
If (Un,Un)nEI and (v/3,V;3);3EJ are respectively smooth atlases for a smooth 

n-manifold M and a smooth k-manifold N then (Un X Ve" Un X v;3) identifies 
M X N as a smooth n + k manifold. 0 

Suppose (Un,Un)nEI and (Ve,V;3)eEJ are respectively smooth atlases for a 
smooth n-manifold M and a smooth k-manifold N. A smooth map f : M -+ N 
is a continuous map such that each vefu;;l : Un (Un nf- 1 (V;3)) -+ v;3(Ve) is 
smooth. The composite of smooth maps is smooth, and a diffeomorphism is a 
smooth map admitting a smooth inverse. Finally a smooth function is a smooth 
map M -+ ~ and pointwise addition and multiplication makes these into a 
commutative algebra, Coo (1'v1). For example, the smooth functions u~ : Un -+ lR 
defined by Un = (u;, ... , u~) are called local coordinates in M. As another 
example, if x E oopen c M then there is always a smooth function f : M -+ 
[0,1] which vanishes outside 0, and is identically 1 in a neighbourhood of x [69, 
Prop. VIII, sec.1.8]. Such a function is called a localizing function for x E O. 

Two smooth maps f, g : M -+ N are smoothly homotopic if there is a smooth 
map F : M x lR -+ N such that F( -,0) = f and F( -,1) = g. For example, the 
identity map of ~n is smoothly homotopic to the constant map lRn -+ {O} [69, 
Example 1, sec. 1.10]. 

(b) Smooth differential forms. 
Let M be a smooth n-manifold with smooth atlas { (Un, un)}. Every smooth 

map U : M -+ N determines the morphism COO(u) : COO(M) f-- COO(N) given 
by COO(u)f = f 0 u. 

Definition The tangent space TxM at x E M consists of the linear maps 
~ : COO(M) -+ lR such that ~(fg) = Ug(x) + f(x)~g. If u : M -+ N is smooth 
then Txu : TxM -+ TuxN is the linear map given by (Txu)E,(f) = ~ (COO (u)f). 

If 0 is an open subset of lRn then a canonical isomorphism lRn ~ TxO is 
given by h 0---+ E,h, where 

E,h(f) = lim f(x + th) - f(x) , 
t--*O t 

[69, Prop. 1, sec. 3.3]. This isomorphism maps the standard basis of lRn to the 
partial derivatives a/axi . 

Moreover, if i : 0 -+ M is the inclusion of an open subset then each Txi 
is an isomorphism (use localizing functions) and, finally, if F : M -+ N is a 
diffeomorphism then each TxF is an isomorphism. Thus altogether we obtain 
isomorphisms 

(11.1) 

The basis of TxM corresponding to the standard basis of lRn will be denoted by 
& &i , for the obvious reason. 

U Q 



Sullivan Models 133 

Now suppose f E Coo(M). The gradient of f at x E M is the linear map 
(df)x : TxM ---+ JR given by dfx(~) = U. The gradients (du~ . .)x, ... , (du~)x are 

. 8 
the basis of (TxM)~ = Hom(TxM, JR) dual to the the basis 3""7, and 

vU" 

of i 
dfx = L-O . (x)(duoJx . 

u' 
'" 

(11.2) 

A differential p~form on M is a family <I> = {<I>x E A.P(TxM)~} xEM' For 
x E U'" we have 

<I>x = L Ai1 ... ip(X)(du~)x /\ ... /\ (du~)x 
i,<··<ip 

and <I> is called a smooth differential p~form if the Ai, ... ip are smooth functions 
in U"" The vector space of smooth differential p-forms on M is denoted by 
A~)R(M) and pointwise wedge multiplication makes ADR(M) = {A~)R(M)} >0 

p~ 

into a commutative graded algebra. Note that A~R(M) = Coo(M) and that 
ADR(M) vanishes in degrees> n. 

Formula (11.2) shows that df = {(df)x} is a smooth I-form on M; it is called 
the gradient of f. Extend d to A~)R(M), p 2: 1 as follows. For <I> E A~)R(M) 

write <I> = L: Ai1 ... ipdu~ /\ ... /\ du~ in U'" and define d<I> E Ab+i (M) by 

It is straightforward to verify that this definition is independent of the choice 
of chart, and that d is a derivation of degree 1 in ADR(M). Moreover, for 

f E Coo(M) we have d2 f = d (L-.ELdui ) = '" ~duj /\dui = 0 because of au~ Q ~ au~au~ Q Q; 

',J 
the symmetry of partial derivatives and the skew symmetry of the wedge product. 
It follows that ~ = 0 in ADR(M) and so ADR(M) becomes a commutative 
cochain algebra. 

Definition The cohomology algebra H (ADR(M)) is called the de Rham co
homology of M. 

Finally, if F : M ---+ N is smooth then it is easy to see that Coo (F) extends 
to a unique morphism ADR(F) : ADR(M) +- ADR(N) of cochain algebras (use 
localizing functions). 

(c) SIllooth singular siIllplices. 
Recall that the standard simplex 6. k C JRk+l consists of the points x = 

(to, ... ,td such that each t; 2: 0 and Lti = 1. A smooth singular k~simplex 
in a smooth manifold M is a continuous map (j : 6. k ---+ AI that extends to a 
smooth map from some open neighbourhood of 6. k in JRk+l. The smooth singu
lar simplices form a sub simplicial set, S;:O(M), ofthe simplicial set S.(M) of all 
singular simplices (§lO(a)). The correspond cochain algebra (§lO(d)) is denoted 
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by C~(M) = C* (S;x'(M);JR). If F: M -7 N is smooth then S*(F) and C*(F) 
restrict (factor) to morphisms S;x'(F) and C~(F). 

N ext, we introduce smooth differential forms on the standard simplices, .6. k , 

and the simplicial co chain algebra ADR referred to briefly in §lO(c). Note that 
k 

the condition I: ti = 1 defines an affine k-space Fk C JRk+ 1 which is, in particular 

° a smooth k-manifold. 
Set Tx (.6. k) = Tx (Fk), x E .6. k. Then a smooth differential p-form on .6. k is 

a family <I> = {<I>x E APTx(.6. k )H} xE,C,k that extends to a smooth differential p
form on Fk ; as with smooth manifolds we denote the space of smooth differential 
p-forms on .6.k by A1f)R(.6.k ). It is easy to see that the kernel of ADR(Fk ) -7 

ADR(.6. k ) is preserved by d, so that ADR(.6.k ) inherits a differential. 
Now let Ai and (2j denote the face inclusions and degeneracies for the sim

plices .6. k , as defined in §4(a). Then set (ADRh = ADR(.6.k ) and observe that 
{(ADR)n}n>O' ADR(Ai), ADR ({2j) is a simplicial co chain algebra, which we de
note simply-by ADR . As observed in Remark 1 of §10(c), there is a natural 
inclusion 

of simplicial cochain algebras. Moreover, straightforward calculations establish 

Lemma 11.3 

(i) (ADR)O = lR. 

(ii) H «ADR)n) = JR, n ~ O. 

(iii) Each A1f)R is extendable. 

o 

(d) The weak equivalence ADR(M) ':::: ApdM; JR). 
Let M be a smooth manifold, and recall that S;x'(M) denotes the simplicial 

set of smooth singular simplices. In particular, we may apply the construction 
of §10(b) with the simplicial cochain algebra ADR to obtain the cochain algebra 
ADR (S;x'(M)) whose elements are the families <I> = {<I>u E ADR(.6.lul} uES;o(M) 
compatible with the face and degeneracy operators. 

On the other hand, any a E S;x'(M) determines the morphism ADR(a) 
ADR(M) -7 ADR(.6. lul ). Thus a natural morphism 

is defined by aM: <I> f------t {ADR(a)<I>}UES,;o(M). 
Moreover, recall that ApdM; JR) = APL (S*(M); JR). Thus the inclusions 

S;x'(M) -7 S*(M) and A pL (; JR) -7 ADR define natural morphisms 
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Theorem 11.4 The morphisms CtM,{3M and 1M are all quasi-isomorphisms. 
In particular, ADR(M) is weakly equivalent to ApdM;lR). 

For the proof of Theorem 11.4 we consider first an arbitrary natural trans
formation B : A --+ B between functors from smooth n-manifolds to cochain 
algebras. We suppose, however, that 

(ii) If U, V are open in M and Bu , Bv and Bunv are quasi-isomorphisms, then 
so is Buuv. 

(iii) If 0 = IIOi is the disjoint union of open sets Oi then Bo = IT BOi 

ITA(Oi) --+ ITB(Oi). 
i i 

Lemma 11.5 With the hypotheses above, BM is a quasi-isomorphism for all 
smooth n-manifolds M. 

proof: An i-basis for M is a family of open sets VA C M, closed under finite 
intersection, and such that any open subset of M is the union of some of the 
VA. Given such an i-basis it is possible to write M = 0 U W where 0 = U Oi, 

i 

W = U Wj and each Oi and Wj is a finite union of elements of the i-basis. If 
j 

each Bv).. is a quasi-isomorphism it follows by induction on p that each Bv).. u ... uv).. 
1 p 

is a quasi-isomorphism and hence that Bo, Bw and Bonw are too. Thus in this 
case B M is a quasi-isomorphism. 

Now suppose U is open in lRn. A standard cube in lRn is an open set V of the 
form (aI, bd x ... x (an, bn) and each Bv is a quasi-isomorphism by (i) above. 
But the standard cubes contained in U are an i-basis for U and so Bu is a quasi
isomorphism. But the open subsets of M diffeomorphic to open subsets of lRn 

are an i-basis for M and so BM is a quasi-isomorphism. 0 

proof of Theorem 11.4: (i) ,8M is a quasi-isomorphism. Lemmas 10 and 11.4 
assert that Apd -; lR) --+ ADR is a quasi-isomorphism of extendable simplicial 
cochain algebras. Thus Proposition 10.5 asserts that 13M is a quasi-isomorphism. 

(ii) 1M is a quasi-isomorphism. The inclusion S~(M) --+ S.(M) induces 
f2M : G'(M) --+ G~(M), and Theorem 10.9 identifies H(JM) and H(f2M). 

On the other hand if f, 9 : M --+ N are smoothly homotopic then the ho
motopy G*(J) - G*(g) = dh + hd defined in §4(a) restricts to a homotopy be
tween C~ (f) and C~ (g). Thus since the identity and constant maps in ~n are 
smoothly homotopic we conclude that H (C' (lRn » = lR = H (C~ (lRn ». 

Next, if U and V are open subsets of M then the barycentric subdivision ar
gument [121] that shows that C.(U) + G.(V) ~ G.(U U V) also shows that 

G~(U) + G~(V) ~ G~(U U V). Thus a long exact homology sequence argu
ment shows that if C:;O(U) --+ C.(U), G~(V) --+ G.(V) and C~(U n V) --+ 
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C*(U n F) are all quasi-isomorphisms then so is C;'(U U F) --+ C*(U n F). 
Dually, if ~(U, rV and runv are quasi-isomorphisms then so is rUUV. 

Finally, if 0 = U Oi then clearly ~!O = TI rOi' Thus Lemma 11.5 asserts that 
i 

rM is a quasi-isomorphism for all _~1. 
(iii) etM is a quasi-isomorphism. First note that H (A.DR(lRn)) = JE. (clas

sical Poincare lemma - [69, Example 1, sec 5.5]) while H (A. DR (S;'(JRn))) = 
H (C;' (JE.n)) = JE. as we showed in (ii) above. Next observe that if U and 1/ 
are open in iv! then the difference of restriction morphisms defines a short exact 
sequence 

[69, Lemma 1, sec. 5.4]. Similarly we have the short exact sequence 

0--+ ADR (S;'(U) U S;'(1/)) --+ ADR (S;'(U)) e ADR (S;'(1/)) 
--+ ADR (5;'(U n 1/)) --+ 0 , 

and a long exact cohomology sequence argument shows that the composite 

ADR(U U y") --+ ADR (5~(U U 1/)) --+ ADR (S~(U) U 5:;0(1/)) 

is a quasi-isomorphism if etu, etv and etunv are. 
Since Proposition 10.5 identifies H (ADR(K)) with H (C*(K)) for any simpli-

cial set K and since as in (ii) above H (C;'(U) + C;c(1/)) ~ H (C;c(U U 1/)) 
it follO\vs that ADR (S;o(U U F)) --+ ADR (S;'(U) U S;o(1/)) is also a quasi
isomorphism. Hence so is etuuv. 

Finally, if 0 = U Oi then eto = TI etoi· Thus Lemma 11.5 states that etAf is 
i 

a quasi-isomorphism for all M. o 

Exercises 

1. Let M be a differential manifold with a fixed open cover il = {Uo, U1 , ... , Um}. 
We denote by Np the set of sequences [ = (io, iI, ... , ip) such that 0 :S io < i1 < 
... < ip :S m and U1 := Uio n [Ji , n ... n Uip i= 0. Define o[ : Np+1 -t JVp 
by 01(io,i1 , ... ,ip+d = (io,i1, ... ,i1, ... ,ip+Il and denote by pf : ADR(UL)-t 
A.DR (UK) the restriction map induced by an inclusion UK C U L. "Ve set: 

cn= EB Cp,q(il) ,CP,q(il)= II Aq(U1), wECp,q(il),w=(wllIEN"p 
p+q=n IEN"p 

d' : cp,q (il) -t Cp+l ,q (il), d": cp,q (il) -t CP ,q+l (il) 
p+l 

(d'w)J = L( -IF+1 P~,JW8;J, J E N p+1 , (d"wh = d(WI),I E /v~ 
1=0 

Prove that (C* (il) ,d' + d") is a cochain algebra with the product defined by: 
wE Cp,q(il), Wi E CP' ,q' (il), (w U W')K = -(1)p'qpfw1Pf,wI' 

if K = (io, iI, ... ,p + pi) E N p+p ' , and 

1= (io, iI, ... , ip) E .:Vp, [' = (ip, i p+l , ... , ip+p') E }fp' . 
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Is this product commutative? Prove that if each Ui is contractible in M then 
the graded algebra H (C* (11) , d' + d") is isomorphic to H* (M; ~). 

2. Let M be a connected n-manifold and take a nicely imbedded n-disk D in 
M. Denote by A'(M) the sub algebra of differential forms on M vanishing on 
the disk D. Prove that there is a sequence of quasi-isomorphisms 

A(M) ~ A'(M) ~ ADR(M) , 

where A(M) denotes a connected subalgebra of A'(M). 

3. Let M and N be compact connected oriented n-manifolds. We define the 
connected sum of M and N, M #N, as follows : take a nicely imbedded n-disk 
D in M and in N, remove their interiors, and paste the boundaries together 
via an orientation reversing homeomorphism. We use the notation of exercise 
2) and denote by WM E A(M) (resp. WN E A(N)) a co cycle representing the 
orientation class of M (resp. of N). Prove that there is a quasi-isomorphism: 

([ADR(M) EBJR A(N)] EB u.~, d) -+ ADR(M #N) , 

with d( u) = W M - W N. Deduce that the cohomology ring H* (M #N; Ik) is the 
direct sum of H* (M; Ik) and H* (N; Ik) with the units and the orientation classes 
identified. 
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In this section the ground ring is an arbitrary field k of characteristic zero. 
Having constructed the functor 

A pL : topological spaces'"'" commutative cochain algebras 

in §10, and the functor ADR : smooth manifolds'"'" commutative co chain algebras 
in §11, we focus now on the study of commutative co chain algebras themselves. 
Here the principal role is played by the Sullivan cochain algebras (or Sullivan 
algebras for short) which we introduce now: 

Definition A Sullivan algebra is a commutative cochain algebra of the form 
(AV, d), where 

• V = {VP}P2: 1 and, as usual, AV denotes the free graded commutative 
algebra on V; 

00 

• V = U V(k), where V(O) c V(l) C ... is an increasing sequence of 
k=O 

graded subspaces such that 

d = 0 in V(O) and d: V(k) -+ AV(k - 1), k> 1. 

The second condition is called the nilpotence condition on d. It can be restated 
as: d preserves each AV(k), and there exist graded subspaces Vk C V(k) such 
that AV(k) = AV(k -1) ® AVk, with d: Vk --+ AV(k -1). 

Observe that a Sullivan algebra is completely described by the vector space V 
and the linear operator, d. By contrast, for a general commutative cochain 
algebra (A, dA), the 'non-linear' multiplicative structure of A is also impor
tant. Nonetheless, if HO(A) = 1k then we shall show that there always exists 
a quasi-isomorphism from a Sullivan algebra to (A, d). This applies in particu
lar to ApL(X) for X a path connected topological space, since HO (APL(X)) = 
HO(X; Jk) = k (cf. (10.1)). 

Definitions 1 A Sullivan model for a commutative cochain algebra (A, d) is a 
quasi-isomorphism 

m: (AV, d) -+ (A,d) 

from a Sullivan algebra (AV,d). 
2 If X is a path connected topological space then a Sullivan model 

for APL(X), 
m: (AV, d) ~ ApdX), 

is called a Sullivan model for X. 
3 A Sullivan algebra (or model), (AV, d) is called minimal if 

Imd C A+V· A+V. 
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We shall frequently abuse language and refer simply to (AV, d) as the Sullivan 
model for (A, d) or for X. If HO(A) = lk then (A, d) always has a minimal 
Sullivan model, and this is uniquely determined up to isomorphism. This will 
be shown here in the simply connected case, and in general in §14. In §14 it 
will be shown that every Sullivan model (or algebra) is the tensor product of its 
unique minimal model with a Sullivan algebra of the form (A(U E9 8U), 8), where 

c5 : U ~ c5U. Sullivan algebras of this form are called contractible. 
Sullivan models for topological spaces X are, among all the commutative mod

els, the ones that provide the key to unlocking the rational homotopy properties 
of X. For example, if (AV, d) is a Sullivan model then (cf. (10.1)), as with any 
commutative model, 

H(AV,d) ~ H*(X;lk). 

However, if (AV, d) is minimal there is also a natural isomorphism 

provided that X is simply connected and has rational homology of finite type. 
(The isomorphism is established in §15, based on a construction in §13.) 

Recall further from §1O that if simply connected topological spaces X and Y 
have the same rational homotopy type, then ApL(X) and ApL(Y) are weakly 
equivalent. Since minimal models are unique up to isomorphism, this implies 
that ApL(X) and ApL(Y) have isomorphic minimal models: the isomorphism 
class of a minimal model of X is an invariant of its rational homotopy type. In 
§ 17 we shall show that this defines a bijection, 

{ rational homotopy } 
types 

{ isomorphism classes of } 
minimal Sullivan algebras over Q 

where on the left we restrict to simply connected spaces with rational homology 
of finite type, and on the right to Sullivan algebras (AV, d) with VI = ° and each 
Vk finite dimensional. 

Sullivan models also provide good descriptions of continuous maps, and of 
the relation of homotopy. Indeed, let A(t, dt) be the free commutative graded 
algebra on the basis {t, dt} with deg t = 0, deg dt = 1, and let d be the differential 
sending t f-7 dt. As noted in §10, H (A(t, dt)) = lk. Define augmentations 

CO,CI : A(t,dt) -+ lk by co(t) = 0, CI(t) = 1. 

Definition Two morphisms 'PO,'PI : (AV,d) -+ (A,d) from a Sullivan alge
bra to an arbitrary commutative co chain algebra are homotopic if there is a 
morphism 

If>: (AV, d) -+ (A,d) Q9 (A(t,dt),d) 

such that (id 'Ci)1f> = 'Pi, i = 0,1. Here If> is called a homotopy from 'Po to 'P, 
and we write 'Po '" 'P. 
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We shall see that homotopy is an equivalence relation. Moreover, suppose 
mx : (AV,d) ---+ ApL(X) and my : (AW,d) ---+ ApL(Y) are Sullivan models 
defined over Q, and that f : X ---+ Y is a continuous map. Then it turns out that 
there is a unique homotopy class of morphisms tp : (A W, d) ---+ (A V, d) such that 
mxtp '" A pL (J)my: tp is called a Sullivan representative for f. Furthermore, 
the homotopy class of tp depends only on the homotopy class of f. If X and Y 
are rational spaces (cf. §9) with rational homology of finite type, then we shall 
show in §17 that f I----t tp defines a bijection 

{ homotopy classes of } 
maps X ---+ Y 

{ homotopy classes of } 
morphisms (A W, d) ---+ (A V, d) . 

Finally, and perhaps of most importance, Sullivan algebras and models provide 
an effective computational approach to rational homotopy theory. In this and 
the next section we shall emphasize that approach, complementing the basic 
propositions with a range of examples. The introduction of relative Sullivan 
algebras, and the proofs of a number of theorems, follow in §14 and §15. 

This section, then, is organized into the following topics: 

(a) Sullivan algebras and models: constructions and examples 

(b) Homotopy in Sullivan algebras. 

(c) Quasi-isomorphisms, Sullivan representatives, uniqueness of minimal mod
els and formal spaces. 

(d) Computational examples. 

(e) Differential forms and geometric examples. 

(a) Sullivan algebras and models: constructions and examples. 
We begin by recalling notation and basic facts associated with free commuta

tive graded algebras A V - cf. §3(b), Example 6. These will be used without 
further reference. 

• A V = symmetric algebra (veven ) lSi exterior algebra (vodd). The subalge
bras A (V:Sp) , A(V>q), ... are denoted AV:SP, AV>q, .... 

• If {vn } or Vl, V2, ... is a basis for V we write A( {vn }) or A(Vl' V2' ... ) for 
AV. 

• A qv is the linear span of elements of the form Vl 1\ ... 1\ Vq , Vi E V. 
Elements in AqV have wordlength q. 

• AV = EDMV and we write A2:qV = ED AiV and A+V = A2:1V. 
q i2:q 

• If V = ED VA then A V = ® A VA. 
A A 
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• Any linear map of degree zero from i/ to a commutative graded algebra A 
extends to a unique graded algebra morphism A if -+ .'1. 

• A ny linear map of degree k (k E Z:) from v' to A if extends to a umque 
derivation of degree k in A F. 

In particular the differential in a Sullivan algebra (A 17, d) decomposes uniquely 
as the sum d = do + d1 + d2 + ... of derivations d; raising the wordlength by i. 
The derivation do is called the linear part of d. 

Our first step is to show the existence of Sullivan models: 

Proposition 12.1 Any commutative cochain algebra (A, d) satisfying 
HO(A) = lk has a Sullivan model 

m: (AV,d) --=-r (.'1,d). 

proof: \Ve construct this so that F is the direct sum of graded subspaces iI" 

k 2: 0 with d = 0 in Vo and d : Fk ~ A (kffi1'Ci). Choose mo : (Ava, 0) ~ 
>=0 

(A, d) so that 

H(mo) : va ~ H+(A). 

Since HO(A) = lk, H(mo) is surjective. 

Suppose mo has been extended to mk : (A C~ Fi) ,d) ~ (A,d). Let Za 

be co cycles in A C~ Vi) such that [za] is a basis for ker H(md· Let '1,+1 

be a graded space with basis {va} in 1-1 correspondence \'lith the Za, and with 

deg Va = deg Za - 1. Extend d to a derivation in A (EB1 Vi) by setting dVa = Za. 
l=O 

Since d has odd degree, d2 is a derivation. Since d2 va = dZa = 0, d2 = O. 
Since H(mk)[Za] = 0, mkZa = daa , aa E A. Extend mk to a graded algebra 

morphism mk+1 : A (EB\i) ~ A by setting mk+lvQ = aa' Then mk+1dvc; = 
>=0 

dmk+1Va, and so mk+1d = dmk+1' 
co 

This completes the construction of m : (AVd) ~ (.'1,d) with " = EB vI, 
;=0 

and m IVk = mk· Since m 1,\Vo = mo, and H(mo) is surjective, H(m) is sur-

jective as well. If H(m)[z] = 0 then, since Z is necessarily in some A (4 F i ), 

/=0 

H(mk)[z] = O. By construction, Z is a coboundary in A Ci Fi ). Thus H(m) 

is an isomorphism. 
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We show next by induction on k that Vk is concentrated in degrees 2: 1. This 
is certainly true for k = 0, because Vo ~ H+(A). Assume it true for Vi, i ::; k. 

Any element in A C~ Vi) of degree 1 then has the form 

v = Vo + ... + Vk, Vi E V/. 

Thus if dv = 0 then dVk E d (A :~ Vi). By construction, this implies 

Vk = O. Repeating this argument we find V = Vo and H(mk)[vol = 
H(mo)[vol -=I- 0, unless Vo = O. Thus ker H(mk) vanishes in degree 1; i.e., it 
is concentrated in degrees 2: 2. It follows that Vk+l is concentrated in degrees 
>1. 

Finally, the nilpotence condition on d is built into the construction. 0 

Example 1 The spheres, Sk. 
Recall that in §4(c) we defined the fundamental class [Skl E Hk(Sk;Z). This 

determines a unique class wE Hk (APL(Sk)) such that (w, [SkJ) = 1, and 1, w 
is a basis for H (ApdSk)). Let II> be a representing cocycle for w. 

Now if k is odd then a minimal Sullivan model for Sk is given by 

dege = k. 
me = 11>. 

Indeed, since k is odd, 1 and e are a basis for the exterior algebra A(e). 
Suppose, on the other hand, that k is even. We may still define m : (A(e), 0) ----+ 

ApdSk) by: dege = k, me = 11>. But now, because dege is even, A(e) has as 
basis 1, e, e2 , e3 , . .. and this morphism is not a quasi-isomorphism. However, 11>2 
is certainly a coboundary. Write 11>2 = d1f! and extend m to 

by setting dege' = 2k - 1, de' = e2 and me' = 1f!. A simple computation shows 
that 1, e represents a basis of H (A(e, e'), d). Thus this is a minimal model for 
Sk. 

Finally, observe that quasi-isomorphisms 

(Ae,O) ----+ (H*(Sk),O) , k odd and (A(e,e'),d) ~ (H*(Sk),O) , k even 

are given by e r-+ w, e' r-+ O. 

Example 2 Products of topological spaces. 
Suppose mx : (AV, d) ----+ APL(X) and my : (AW, d) ----+ APL(Y) are Sullivan 

models for path connected topological spaces X and Y. Assume further that the 
rational homology of one of these spaces has finite type. Let pX : X x Y -+ X 
and Py : X x Y -+ Y be the projections. Then APL(PX), APL(pY ) : ApdX) @ 

ApdY) ----+ ApdX x Y) is a quasi-isomorphism of cochain algebras. 
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In fact, ApdpX) . ApdpY) is clearly a morphism of graded vector spaces 
commuting with the differentials. It is a morphism of algebras because ApL(X x 
Y) is commutative. To see that it is a quasi-isomorphism use Corollary 10.10 to 
identify the induced map of cohomology with the map 

H*(X; Jr.) Q9 H*(Y; Jr.) ~ H*(X x Y; Jr.) 

given by CXQ9j31---+ H*(pX)cxUH*(pY)j3. But PropOlition 5.3(ii) asserts that this 
map is an isomorphism. 

Since APL(PX) . ApdpY) is a quasi-isomorphism so is 

mX ·my: (AV, d) Q9 (AW, d) ~ APL(X x Y) , 

where (mx . my)(a Q9 b) = APL(pX)mxa· ApdpY)b. This exhibits (AV, d) Q9 
(AW, d) as a Sullivan model for X x Y. Observe that if (AV, d) and (AW, d) are 
minimal models then so is their tensor product. 0 

Example 3 H-spaces have minimal Sullivan models of the form (AV,O). 
An H -space is a based topological space (X, *) together with a continuous 

map J.l: X x X ~ X such that the self maps x 1---+ J.l(x, *) and x 1---+ J.l(*,x) of X 
are homotopic to the identity. We establish a result of Hopf: 

• If X is a path connected H -space such that H * (X; Jr.) has finite type then 
H* (X; Jr.) is a free commutative graded algebra. 

To see this, observe first that because H*(X; Jr.) has finite type, H*(J.l) can be 
identified as a morphism of graded algebras, 

H*(J.l) : H*(X; Jr.) ~ H*(X; Jr.) Q9 H*(X; Jr.). 

Moreover, the conditions J.l(x, *) ""' id, J.l( *, x) '" id imply that for h E H+(X; Jr.), 

Now choose a graded space V C H+(X; Jr.) so that H+(X; Jr.) = VEBH+(X; Jr.). 
H+(X; Jr.). The inclusion extends to a morphism c.p: AV ~ H*(X; Jr.) of graded 
algebras and an obvious induction on degree shows that c.p is surjective. 

Suppose by induction that c.p is injective in Av<n, and let 7f : H*(X; Jr.) ~ 
H*(X; Jr.)jc.p(Av<n) be the (linear) quotient map. The general element in Av::;n 
can be written as a finite sum w = L V~l V;2 ... v~r akl k2 ... kr' where the 

k11···,k.,. 

ak 1 ···kr E A v<n, the Vi are linearly independent elements in vn and k; = 1 or ° 
if n is odd. Then the component of (7f Q9 id)H*(J.l)c.pw in (1m 7f)n Q9 H*(X; Jr.) is 
given by 

r ( ) 
kl k; -1 k ~±7fV'Q9{() ~ k·v ···v· ···V rak k . L.-t z 'r ~ z 1 z r 1··· r 

i=l k11 ... ,kr 
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By construction, the 7rVi are linearly independent. Hence if 'PW = 0 then 

'P (L;kiV~' ... v~'-l ... v:rak, ... kr) = O. By induction on degw, L;kiV~' ... 
V~i-l .. ·v:rak, ... kr = 0 for each i. Thus each ak, ... kr = 0 unless kl = ... = 
kr = O. Then w E Av<n and 'PW = 0, whence w = 0 by induction. It follows 
that 'P is injective in Av::;n. Thus, by induction, 'P is injective and the proof of 
Hopf's result is complete: 

'P: AV ~ H*(X;1k). 

Finally, let Wi E ApdX) be co cycles representing the cohomology classes Vi. 
The correspondence Vi r-+ Wi defines a linear map V ----+ ApdX) which extends 
to a unique morphism m : (A V, 0) ----+ ApdX). Since 'P is an isomorphism it 
follows that m is a quasi-isomorphism: 

m: (A V, 0) ---=+ ApdX) 

is a minimal Sullivan model for the H -space X. o 

Example 4 A cochain algebra (A V, d) that is not a Sullivan algebra. 
Consider the cochain algebra (A,d) = (A(Vl,V2,V3),d), degvi = 1, with dVI = 

V2V3, dV2 = V3VI, and dV3 = VI V2. Here (A, d) is not a Sullivan algebra. (If it 
were, it would have to have a co cycle of degree 1). The cocycles 1 and VIV2V3 
represent a basis for H(A), and so it has a minimal model 

m: (A(w), 0) ---=+ (AV,d), degw = 3, m(w) = VIV2V3. o 

Example 5 In contrast with Example 4, any cochain algebra of the form 

(A, d) = (AV, d), V=V2: 2, ImdcA+V·A+V 

is automatically a minimal Sullivan algebra. 
Indeed, in this case necessarily (A +V . A +V)k+l c AV::;k-l and so for degree 

reasons alone, 
d: Vk ----+ AV::;k-l. 

This exhibits (A V, d) as a Sullivan algebra. o 

Again, suppose (A, d) is a commutative co chain algebra. In §14 we shall show 
that if HO(A) = 1k then (A, d) has a (unique) minimal Sullivan model; this 
follows from a more general result about relative Sullivan algebras. However, 
if also HI(A) = 0 then there is a simple inductive construction for a minimal 
model. We carry this out here, and prove uniqueness in this context in (c). 

Thus suppose given (A, d) with HO(A) = 1k and HI(A) = O . 

• Choose m2 : (AV2,0) ----+ (A,d) so that H2(m2) : V2 ~ H2(A). Note 
that HI (m2) is an isomorphism because HI (A) = 0 and that H3 (m2) is 
injective because (AV2)3 = O. 
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• Supposing that mk : (AV:Sk, d) ---7 (A, d) is constructed, we extend to 
mk+l : (AV:'Sk+l, d) ---7 (A, d) by the following procedure. 

Choose co cycles ao: E Ak+l and z(3 E (AV:'Sk)k+2 so that 

Hk+l (A) = 1m Hk+l (mk) EB E9 Jk . [ao:] and ker H k+2(mk) = E9 Jk . [Z(3] . 
0: (3 

In particular, mkz(3 = db(3, some b(3 E A. 
Let Vk+l be a vector space (in degree k + 1) with basis {v~,v~} in 1-1 cor

respondence with the elements {ao:}, {z(3}. Write AV:Sk+l = AV:'Sk 0 AVk+l. 
Extend d and mk, respectively, to a derivation in AV:'Sk+l and to a morphism 
mk+l : AV:'Sk+l ---7 A of graded algebras, by setting 

dv~ = 0, dv~ = Z.3 and mv~ = ao:, mv~ = b(3. 

Since d has degree 1, d2 is a derivation. By construction, d2 = 0 in Vk+l and 
in AV:'Sk. Thus d2 = O. In the same way mk+ld = dmk+l in Vk+l and AV:'Sk, 
and so mk+ld = dmk+l' 

Proposition 12.2 Suppose (A, d) is a commutative cochain algebra such that 
HD(A) = Jk and HI (A) = O. Then 

(i) The morphism m : (A V, d) ---7 (A, d) constructed above is a minimal Sulli
van model. 

(ii) Ifr is the least integer greater than zero such that Hr(A) -=P 0, then Vi = 0, 
1 ~ i < rand 

Hr(m) : V r ~ Hr(A). 

(iii) IfdimHk(A) < 00, k 21, then dimVk < 00, k 21. 

proof: (i) Since d : Vk+l ---7 AV:Sk, this exhibits (AV, d) as a Sullivan alge
bra. More, (AV:'Sk)k+2 C A +V:'Sk. A +V:'Sk, and so (AV, d) is minimal. It remains 
to show m is a quasi-isomorphism, and this follows at once from the assertion, 

H i ( ). {an isomorphism for i ~ k 
mk IS .. . C • k 1 lllJectlve lor z = + ,k 2: 2, (12.3) 

which we prove by induction on k. 
For k = 2 (12.3) was observed at the start of the construction above. Suppose 

(12.3) holds for some k. Since mk+l extends mk, ImH(mk) C ImH(mk+l)' 
Thus Hi(mk+d is surjective for i :S k by induction and surjective for i = k + 1 
by construction. 

To show Hi(mk+d is injective for i :S k + 2 let [z] be a cohomology class in 
ker Hi(mk+d, some i :S k + 2. We have to show [z] = O. If deg[z] :S k or if 
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deg[z] = k + 2 then z E AV:Sk and [z] E ker Hi(mk). Thus [z] = 0 by induction 
if deg[z] :S k and by construction if deg[z] = k + 2. 

Suppose deg[z] = k+1. Then z = ~A,.V~+~A,6V~+W, some wE AV9, where 
we use the notation from the construction above. Since dz = 0, ~A,6Z,6 = -dw 
and ~A,6[Z,6] = 0 in H(AV:Sk). By construction, this implies that each A,6 = O. 
But then dw = 0 and ~A,.[a,.] = H k+1(mk)[w]. Again by construction, each 
A,. = O. Hence z = wand so [z] E ker Hk+1(mk). By induction, [z] = O. 

(ii) This is immediate from the construction. 
(iii) Since V 2 ~ H2(A), it is finite dimensional. Suppose by in

duction that Vi is finite dimensional, i :S k. Then AV:Sk has finite type and, 
in particular, ker Hk+2(mk) is finite dimensional. Since also Hk+1(A) is finite 
dimensional it is immediate from the construction that dim Vk+l < 00. 0 

Corollary Let X be a simply connected topological space such that each Hi (X; Q) 
is finite dimensional. Then X has a minimal Sullivan model 

m: (AV,d) -=+ APL(X) 

such that V = {Vi} i~2 and each Vi is finite dimensional. 

proof: The Hurewicz theorem 4.19 shows that H1 (X;lk) = 0, and Hk(X;lk) 
is the dual of the finite dimensional vector space HdX; Q) I8iIQl lk (cf. §3(e) 
and Proposition 5.3). Thus HO (APL(X)) = lk, HI (ApdX)) = 0 and each 
Hk (APL(X)) is finite dimensional. Now apply Proposition 12.2. 0 

Example 6 Simply connected topological spaces X with finite dimensional ho
mology admit finite dimensional commutative models. 

Suppose X is a simply connected topological space such that H*(X; Q) is finite 
dimensional (e.g. a simply connected finite CW complex - cf. Theorem 4.18). 
Then X has a minimal model 

m: (AV,d) -=+ ApdX) 

in which V = {Vi L>2 and each Vi is finite dimensional. In general, A V will not 

be finite dimensional, as is already shown by the even spheres S2r (cf. Example 
1). 

There is, however, a 'non-free' finite dimensional commutative model for X, 
constructed as follows. Put 

nx = max{i I Hi(X; lk) =I- O}. 

Write (Av)nx = HEEl (Imd)nx EEl C, where HEEl (Imd)nx = (kerd)nx; thus 

H ~ Hnx(AV,d) ~ Hnx(X;lk). Choose a graded subspace I C (AV,d) so 
that 

Ik = 0, k < nx - 1 

Ik = (AV)k, k > nx 
and 

Inx -1 EEl (ker d)nx -1 = (Av)nx-l 

Inx = (Imd)nx EEl C. 
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Since V = {Vi} i>2' I is an ideal. It is immediate from the construction that 

I is preserved by d and that H(I,d) = 0 (because Hi(AV,d) = 0, i > nx). Thus 
the quotient map 

TJ: (AV, d) ~ ((AV)jI,d) 

is a quasi-isomorphism, and so ((AV)j I, d) is a finite-dimensional commutative 
model for X. 

Note that (AV)jI vanishes in degrees k > nx and that [(AV)jltx 
Hnx ((AV)jI). 

Example 7 The minimal Sullivan algebra (A(a, b, x, y, z), d), where 

da=db=O, dx=a2 , dy=ab, dz=b2 

and dega = degb = 2 and degx = degy = deg z = 3. 
Here, the cohomology algebra H has as basis 

1, 0: = [a], {3 = [b], "( = [ay - bx], 6 = [by - az], E = [aby - b2x]. 

o 

Note that 0:6 = E = {3"(, and that all other products of basis elements in H+ are 
zero. 

We can now use the procedure above to construct a minimal model for the 
cochain algebra (H, 0). This will have the form m : (AV, d) ~ (H, 0), beginning 
with 

V 2 : VI 

V2 

V 3 : ul 

U2 

U3 

Note that necessarily 

Thus we need to add 

and 

dVI = 0 
dV2 = 0 

dUI = vi 
dU2 = VIV2 

dU3 = v§ 

dXI = VI U2 - V2UI 

dX2 = V2U2 - VI U3 

mVI = 0: 
mV2 = {3 

mUI = 0 
mU2 = 0 
mU3 = 0 

mXI = 0 
mX2 = 0, 

The process turns out (but we can not yet prove this) to continue without end. 
Observe that this provides two distinct minimal Sullivan algebras with the 

same cohomology algebra. 0 
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(b) Homotopy in Sullivan algebras. 
The results in this topic flow from two basic observations. First, consider a 

diagram of commutative co chain algebra morphisms 

(A,d) 

~lry 
(AV, d) ---t (C, d) 

1/J 

in which 'TJ is a surjective quasi-isomorphism, and (A V, d) is a Sullivan algebra. 

Lemma 12.4 (Lifting lemma) There is a morphism 'P : (A V, d) ~ (A, d) 
such that 'TJ'P = 'IjJ ('P is a lift of'IjJ through'TJ). 

proof: We may suppose V is the increasing union of graded subspaces V(k), 
k ?: 0 such that V(k) = V(k - 1) EB Vk and d : Vk ~ AV(k - 1). Assume 'P is 
constructed in V(k - 1) and let Va be a basis of Vk . Then 'Pdva is defined and 
d('Pdva ) = 'P((Pva) = O. Furthermore, 

Since 'TJ is a surjective quasi-isomorphism we can find aa E A so that daa = cpdva 
and 'TJaa = 'ljJva· Extend 'P by setting 'Pva = aa. 0 

Second, with a graded vector space U = {Uih~o associate the commutative 
cochain algebra (E(U), 8), defined by 

E(U) = A(U EB 8U) and 8: U ~ 8U. 

It is augmented by E: : (E(U) , 8) ~ lk, where c(U) = O. Note that if U = 
{Ui}i~l then this is a Sullivan algebra. Cochain algebras of this form are called 
contractible. We recall a remark already made in §12: 

Lemma 12.5 E:: (E(U),8) ~ lk is a quasi-isomorphism; i.e. 

H (E(U), 8) = lk. 

proof: Let {u a } be a basis for U. A direct calculation (using char lk = 0 if 
degua is even) shows that H (A(ua,dua)) = lk. But E(U) = ®A(ua,8ua) and, 

a 
since lk is a field, homology commutes with tensor products (Proposition 3.3).0 

As a direct consequence of this lemma we obtain: 

The surjective trick: If (A, d) is any commutative cochain algebra, then the 
identity of A extends uniquely to a surjective morphism (J: (E(A),8) ~ (A,d). 
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Thus any morphism 'P : (B, d) ---+ (A., d) of commutative cochain algebras factors 
as 

(B, d) ~ (B, d) ® (E(A), 6) y. CT) (A., d) 

in which the inclusion A : b f-----7 b ® I is a quasi-isomorphism and 'P . (J is surjec
tive. 

Recall that A(t, dt) denotes the special case of (E(U), 6) with U = Jkt and with 
degt = O. It is precisely the cochain algebra (ApLh, of polynomial differential 
forms on the standard I-simplex (§IO (c)). The augmentations c0, 101 : A(t, dt) ---+ 
Jk, co (t) = 0, 101 (t) = I, correspond to the inclusions of the endpoints. 

As defined in the introduction to this section, two morphisms 'Po, 'PI : (A V, d) ---+ 
(A., d) from a Sullivan algebra are homotopic if there is a morphism 

1>: (AV,d) ---+ (A,d) ®A(t,dt) 

such that (id 'ci)1> = 'Pi, i = 0,1. Given that ApL reverses arrows, and that 
A(t, dt) is the algebra of polynomial differential forms on the standard I-simplex, 
this is the obvious analogue of a topological homotopy X f----- X x I. 

In fact, A pL 'preserves homotopy' in the following sense. Suppose given con
tinuous maps fo,h : X ---+ Y and a morphism '0 : (AV,d) ---+ ApL(Y) from a 
Sullivan algebra (A V, d). 

Proposition 12.6 If fo "" h X ---+ Y then A PL (fo)1/J "" APL (fr)'0 
(A v", d) ---+ APL (X). 

proof: Identify A( t, dt) as a subcochain algebra of Ap L (1), by mapping t f---t 

U E ACj,dI) , where u restricts to 0 at {O} and to I at {I}. Denote by jo,iI : 
X ---+ X x I the inclusions at the endpoints and by pX : X x I ---+ X and 
pI : X x I ---+ I the projections. Then 

APL(X) ® A(t, dt) 

~'O"''') 
APL(px).APL(pI) ApdX) x ApdX) 

fo'UO),AnU'): 

APL(X x I) 

is a commutative diagram of cochain algebra morphisms. 
Since H (APL(pX)) = H*(pX; Jk) is an isomorphism, APL(pX) . APL(pI) is a 

quasi-isomorphism. We now 'make it surjective'. Let U c ApdX x I) be the 
kernel of (ApL(jo), ApL(jr)). The inclusion of U extends to a unique cochain 
algebra morphism 

(}: (E(U),r5) ---+ .1PL(X x I). 
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Extend the diagram above to the commutative diagram 

ApL(X) CQ ~\(t, dt) CQ (E(U), 6) 

~COCidqe'l 

APL(p-")·APL(pI)·e ApL(X) x A.pL(X) 

fo'Uo'eA,eC("'1 

ApL(X x I) 

Here ApL(pX)·ApL(pI).{! is, obviously, surjective, and it fo11O\\7s from Lemma 12.5 
that it is a quasi-isomorphism too. 

Let H : X x I ---+ Y be a homotopy from fa to h. Use Lemma 12.4 to lift 
An (H)'ljJ : (A V, d) ---+ ApL(X x 1) through the surjective quasi-isomorphism 
ApL(pX) . ApdpI) . {!. This produces a morphism 

Then set <1> 

An (h)'l!;· 

'" : (A"V, d) ---+ An (X) CQ A(t, dt) CQ E(U). 

(idCQ id CQ c)"'; it is the desired homotopy from An(fo)~' to 
D 

As with homotopy of continuous maps, we have 

Proposition 12.7 Homotopy is an equivalence relation in the set of morphisms 
:p : (A V, d) ---+ (A, d) from a Sullivan algebra. 

proof: Reflexivity is obvious: A homotopy <1>: (A1/,d) ---+ (A,d)CQA(t,dt) from 
y to y is given by <1>(v) = yV CQ 1. Symmetry is also easy: the automorphism 
t H 1- t of A(t,dt) interchanges co and CI. For transitivity, suppose 

are homotopics from :Po to :PI and from :PI to :P2. Then <1> and '" define a 
morphism 

(<1>, "') : (A 1/, d) ---+ [(A, d) CQ A(tl' dtd] x A [(/1, d) CQ A(t2' dt2)] 

(A,d) CQ [A(tl,dtd XIk A(t2,dt2)] , 

where the second fibre product is with respect to the augmentations CI : A( t l , dt l ) ---+ 
lk, CI (td = 1, and co : A(t2' dt2 ) ---+ lk, cO(t2) = O. 

Now consider the morphism, 
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given by to f--t (I-tl' I-t2), tl f--t (tr,O), t2 f--t (0,t2)· Using Proposition lO.4(i) 
we may identify it with restriction 

APL (~[2]) -+ APL(L), 

where L C ~[2] is the sub simplicial set with non-degenerate simplices (eo), (el), 
(e2), (eo, el) and (eo, e2). Schematically L is given by the solid lines in the 
diagram 

eo - - - - - - - - - - - - e2 

Since ApL is extendable (Lemma 1O.7(iii)) this morphism is surjective. Direct 
computation shows that H «APL )2) = H (ApL(L)) = li:. Apply the Lifting 
Lemma 12.4 to lift (~, iIJ) to a morphism 

0: (AV, d) -+ (A, d) ® (ApL )2. 

Define (} : (ApL)2 -+ A(t, dt) by to f--t 1 - t, tl f--t 0, t2 f--t t; i.e., (} is the face 
operator corresponding to (eo, e2) : ~[Il -+ ~[2]. Then (id ®(})O is a homotopy 
from 'Po to 'P2. 0 

Notation The set of homotopy classes of morphisms (AV, d) -+ (A, d) will 
be denoted by [(A V, d), (A, d)]. The homotopy class of a morphism 'P will be 
denoted by ['P]. 0 

Example 1 Null homotopic morphisms into (A,O) are constant. 
Let (AV, d) be a minimal Sullivan algebra and let (A,O) be any commutative 

cochain algebra with zero differential. The constant morphism c : (AV, d) -+ 
(A,O) is defined by c(V) = o. We observe that for any morphism 'P : (A V, d) -+ 
(A,O), 

'P '"" c ¢::::::::!? 'P = c. 

In fact, suppose ~ : (AV,d) -+ A ® A(t,dt) is a homotopy from 'P to c and 
write V = U V(k) with V( -1) = 0 and d : V(k) -+ A~2V(k - 1). Assume 

k~-l 

by induction that ~ : V(k - 1) -+ A ® At 0 dt. Since dt 1\ dt = 0 it follows that 
~ (A~2V(k - 1)) = O. 

Choose v E V(k). Then d(~v) = ~(dv) = o. Hence ~v E (A0I)EB(A0At0dt). 
Since 0 = cV = (id 0cr)~v it follows that ~v E A 0 At 0 dt. In other words, 
1m ~ C A 0 At ® dt and 'P = (id 0co)~ = c. 0 
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Definition The linear part of a morphism:p (A V, d) ---+ (A W, d) between 
Sullivan algebras is the linear map 

Qcp : V ---+ IF 

defined by: cpv - Q:pv E A2'2lL v E ·V. 

Kote that Q(cp) commutes with the linear parts of the differentials: Q(:p)do = 
doQ(:p). 

Proposition 12.8 
(i) If:po ~ :PI : (~\ l", d) ---+ (A, d) are homotopic morphisms from an arbi

trary Sullivan algebra then H(cpo) = H(:pd· 
(ii) If CPo ~ :PI : (A F, d) ---+ (A W, d) are homotopic morphisms between 

minimal Sullivan algebras, and if HI (A F, d) = 0, then Q:po = Q'PI. 

proof: (i) Any element in A(t,dt) can be uniquely \vritten as u = Ao + Alt + 
A2dt + x + dy, where x and y arc in the ideal I C A(t) generated by t(l - t) and 
Ai E lk. If <I> is a homotopy from :Po to :PI, define a linear map h : 1\"1/ ---+ A of 
degree -1 by 

<I>(z) = CPo(z) + (:pdz) - :Po(z)) t - (-l)deg =h(z)dt + fl, 

where fl E A @ (I8 d(J)). A simple calculation gives :PI -:Po = dh + hd. 
(ii) We first observe that VI = O. Write V = U V(k), with d : 

k 

V(k) ---+ A2'2V(k - 1). If VI (k - 1) = 0 then this implies that d = 0 in Vi (k). 
But Imd C A2'2V, and so no element of V 1 (k) can be a coboundary (except 
zero). Since HI (;\ I". d) = 0 this implies VI (k) = O. The assertion VI = 0 follows 
by induction. 
~ow let <I> : (AY d) ---+ (AW, d) @ A(t, dt) be a homotopy from :Po to 'Pl· Since 

V = V2'2, it follows that <I> : F ---+ A+n":8! A(t,dt). Hence <I> : A2'kV ---+ 
~\2'klF Q<) A(t, dt). In particular, it induces a linear map 

By construction, ;j; is a map of cochain complexes. However, because (A V, d) 
and (AW, d) are minimal, the differential vanishes in the quotients A + /A2'2. 
Since ,\ +y" = l" e .\2'2F and A +W = WEB A2'2W we may therefore identify <i> 
as a linear map of cochain complexes 

;j; : (F,O) ---+ (W, 0) @ A(t, dt). 

The space of cocydes in (W, O)@A(t, dt) has the form (W Q<) lk . 1) (H/ Q<) A(t)dt). 
It follmvs that (id 'Go);j; = (id 'Gl)<i>; i.c., Q(ipo) = Q(:pd. D 

(c) Quasi-isomorphisms, Sullivan representatives, uniqueness of min
imal models and formal spaces. 
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Suppose 'lj; : (AW, d) ----+ (A V, d) is a morphism between Sullivan algebras. If 
<I> is a homotopy between 'Po, 'PI : (A V, d) ----+ (A, d) then <I>'lj; : 'Po 'lj; ~ 'PI 'lj;. Thus 
we can define 

'lj;# : [(AV,d), (A,d)]----+ [(AW,d), (A,d)] by 'lj;#['P] = ['P'lj;]. 

Similarly, if TJ : (A, d) ----+ (C, d) is a morphism of commutative co chain alge
bras then (TJ ® id) <I> : TJ'Po ~ TJ'PI' Thus we can define 

TJ#: [(AV,d),(A,d)]----+ [(AV,d),(C,d)] by TJ#['P] = [TJ'P]· 

Now suppose given commutative cochain algebra morphisms 

(A, d) 

~ 1 ry 

(A V, d) ----+ (C, d) 
t/J 

in which TJ is a (not necessarily surjective) quasi-isomorphism and (AV, d) is a 
Sullivan algebra. The Lifting lemma extends to the fundamental 

Proposition 12.9 There is a unique homotopy class of morphisms 'P : (AV, d) ----+ 
(A, d) such that TJ'P ~ 'lj;. Thus 

TJ#: [(AV, d), (A,d)] ~ [(AV,d),(C,d)] 

is a bijection. 

proof: We prove the proposition first under the additional hypothesis that TJ is 
surjective. In this case the Lifting lemma 12.4 asserts that 'lj; lifts to a morphism 
'P : (AV, d) ----+ (A, d) such that TJ'P = 'lj;. Thus TJ# is certainly surjective. 

To show TJ# is injective, suppress the differentials from the notation (for sim-

1·· ) U h h' C A( d) (ide· co, ide· Er) C C ryxry A A P ICIty. se t e morp Isms ® t, t ) X t'-----'- X to 
construct a fibre product, and observe (routine verification) that 

(TJ ® id, idA ·co, idA 'cr) : A ® A(t, dt) ----+ [C ® A(t, dt)] XCxC (A x A) 

is a surjective quasi-isomorphism of co chain algebras. 
N ow suppose 'Yo, 'YI : AV ----+ A are cochain algebra morphisms, and that IJI is 

a homotopy from TJ'Yo to TJ'YI. Lift the morphism 

(1JI,'Yo,'Yr) : AV ----+ [C ® A(t, dt)] Xc xC (A x A) 

through the surjective quasi-isomorphism (TJ ® id, idA ·co, idA ·cr). This defines 
a morphism <I> : AV ----+ A ® A(t, dt), and it is immediate from the construction 
that <I> : 'Yo ~ 'YI. 
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Finally, consider the general case, where 'T/ may not be surjective. Let (E(C), il) 
be the acyclic cochain algebra of Lemma 12.5. Since E(C) = A(C EB ilC) and 

since il : C ~ ilC, a surjective morphism of graded algebras, t2 : E(C) --+ C, is 
defined by c t--+ c, ilc t--+ dc. By inspection this is a morphism of cochain algebras. 
Consider the morphisms 

id ·E 7/"12 
(A,d) ===+ (A, d) 0 (E(C),il) ~ (C,d). 

A 

Since H (E(C» = lk, id·c and 'T/. t2 are surjective quasi-isomorphisms. Thus, by 
the argument above, (id ·c)# and ('T/. (2)# are isomorphisms. Since (id ·c)A = id, 
A# is the bijection inverse to (id ·c) #. Hence 'T/# = ('T/. (2) # 0 A# is also a bijection. 

o 

Suppose 
a: (A, d) -+ (AI, d) 

is an arbitrary morphism of commutative cochain algebras that satisfy HO( -) = 

lk. Let m : (AV,d) ~ (A,d) and m l : (AV',d) -+ (AI, d) be Sullivan models. 
By Proposition 12.9 there is a unique homotopy class of morphisms 

rp: (AV, d) -+ (AV', d) 

such that m l rp '" am. 

Definition A morphism rp : (A V, d) -+ (A VI, d) such that m l rp '" am is called 
a Sullivan representative for a. If f : X --+ Y is a continuous map then a Sullivan 
representative of ApL(J) is called a Sullivan representative of f· 

It is follows at once from Proposition 12.6 that Sullivan representatives of 
homotopic maps are homotopic morphisms. 

As a second application of Proposition 12.9 we deduce the uniqueness of min
imal models in the simply connected case. 

Proposition 12.10 

(i) A quasi-isomorphism between minimal Sullivan algebras is an isomorphism 
if both cohomology algebras vanish in degree one. 

(ii) If (A, d) is a commutative cochain algebra and HO(A) = 1., HI (A) = 0, 
then the 
minimal models of (A, d) are all isomorphic. 

proof: (i) Let 'l/J : (AV, d) ~ (AW, d) be a quasi-isomorphism between minimal 
Sullivan algebras, and suppose HI(AV,d) = 0 = HI (AW, d). Proposition 12.9 
then yields a morphism rp : (A W, d) -+ (A V, d) such that 'l/Jrp '" id. Thus 
'l/Jrp'l/J '" 'l/J and (again by Proposition 12.9) it follows that rp'l/J '" id. 
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Now apply Proposition 12.8(ii) to conclude that Q(tp) and Q('ljJ) are inverse 
isomorphisms of V with W. Since Q('ljJ) is surjective we have W k C Im'lj; + 
AWSk- 1 . It follows by induction that Wk and hence A WS k are contained in 
Im'lj;. Thus 'lj; is surjective. 

Use the Lifting lemma 12.4 to choose tp so that 'lj;tp = id. Then tp is injective. 
But also 'lj;tp'lj; = 'lj;, so that tp'lj; ~ id. Now the argument just given shows that 
tp is surjective as well. Thus tp is an isomorphism and, since 'lj;tp = id, 'lj; is the 
inverse isomorphism. 

(ii) Suppose (AV,d) -? (A,d)?!:- (AV',d) are minimal Sullivan mod-
- -

els. Proposition 12.9 provides a morphism 'lj; : (AV, d) ---+ (A V' ,d) such that 
m''lj; ~ m. Thus H(m')H('lj;) = H(m) - Proposition 12.8(i) - and so 'lj; is a 
quasi-isomorphism. ~ow part (i) asserts 'lj; is an isomorphism. 0 

Remark In §14, Proposition 12.9 will be extended to the non-simply-connected 
case. 

Example 1 Wedges. 
Since APL(pt) = lk (§lO(d)) the inclusion of a point j : x ---+ X induces an 

augmentation 

E = APL (j) : APL (X) ---+ lk . 

Let (Xa, Xa) be based CW complexes, so that E : ApL(Xa) -+ lk are augmented 
cochain algebras. Denote by ja : (Xa, xa) -+ (VaXa,:I:) the different inclusions 
into the wedge. Thus If> J-7 {APL(ja)lf>} defines a morphism 

to the fibre product over lk of the ApL(Xa). This morphism, which is obviously 
surjective, induces the analogue 

in cohomology and a cellular chains argument (§4(e)) shows this is an isomor
phism. 

Thus the first morphism is a quasi-isomorphism: the fibre product of augmented 
commutative models for the Xa is an augmented commutative model for VaXa. 

Now suppose ma : (AVa, d) ~ ApL(Xa) are Sullivan models. Then the 
quasi-isomorphism 

(II) (AVa,d) ~ (II) (APL(Xa)) 
a k a k 
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identifies (n) (1\ ~'a, d) as a commutative model for the wedge, VaXa. In 
a lk 

particular, a Sullivan model for (g) Ik (AVa, d) is a Sullivan model for the wedge. 

D 

Recall (§1O) that two commutative cochain algebras (A, d) and (AI, d) are 
weakly equivalent if they are connected by a chain of quasi-isomorphisms. It 
follows from Proposition 12.9 that a Sullivan model m : (1\ V, d) ~ (A, d) lifts 

through such a chain to yield a Sullivan model m l : (A V, d) ~ (AI, d). Hence 
(A, d) and (AI, d) are weakly equivalent if and only if they have the same Sullivan 
models. (A common Sullivan model provides an obvious weak equivalence.) 

A particularly important case of weak equivalence is identified in the 

Definition A commutative cochain algebra (A, d) satisfying HO(A) = Jk is for
mal if it is weakly equivalent to the cochain algebra (H(A), 0). A path connected 
topological space, X, is formal if ApL(X; '(1) is a formal co chain algebra. 

Thus (A, d) and X are formal if and only if their minimal Sullivan models can 
be computed directly from their cohomology algebras; i.e, if these models are a 
'formal consequence' of the cohomology. 

The quasi-isomorphisms at the end of Example I, part (a) of this section, 
exhibit the spheres as formal spaces. Example 2 of §12(a) shows that the product 
of formal spaces is formal if one of them has rational homology of finite type, 
and the example above shows that the wedge of formal spaces is formaL 

Suppose now that X has rational homology of finite type. Then the equality 
(APL,k)n = (APL,Q)n IZi Jk defines an inclusion ApL(X; '(1) IZiQ Jk ---+ APL(X; Jk) 

of co chain algebras. Since the hypothesis implies that H* (X; '(1) IZiQ Jk -=+ 
H*(X;Jk), this is a quasi-isomorphism. Thus if (AV,d) is a rational Sullivan 
model for X then (A V, d) IZiQ Jk is a Sullivan model for X over Jk. 

In particular, if X is formal then ApL(X; Jk) is formaL In fact the converse is 
true: 

Theorem [144] [86] If APL (X; Jk) is formal for some extension field Jk =:> '01 
then X is a formal space. 

\Ve shall not reproduce the somewhat technical proof, and we shall not often 
need to apply the theorem except in the case of geometric examples arising from 
Coo differential forms. 

(d) Computational examples. 
By using Sullivan algebras and computing homotopy classes of morphisms it 

is possible to illustrate interesting phenomena and, sometimes, to completely list 
all homotopy classes. Since Sullivan algebras (of finite type and with HI = 0) 
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are always the models of simply connected spaces (§15), such phenomena can 
always be realized geometrically. 

We shall present Sullivan algebras in the concise form (AV, d) = A( VI) V2, ... ; 

dVl =, ... ) and we shall only indicate the degree of a generator Vi when it is not 
implicit in the formula for dVi. 

Example 1 (AV,d) = A(x,y,z;dx = dy = 0, dz = xy), degx = 3, degy = 5. 
A basis for the cohomology H = H(AV,d) is provided by 1, [x], [yl, [xzl, [yz] 

and [xyzl, and the only non-trivial products are given by 

[x] . [yz] = [xyz] = -[y][xz]. 

Consider all the possible morphisms '{J : (A V, d) ---+ (H,O). For degree reasons, 
we must have 

'Px = A[xl, 'PY = f.L[yJ, and 'PZ = 0, some A, f.L E J.c. 

These morphisms induce distinct maps in cohomology, and hence represent dis
tinct homotopy classes. Thus this provides a complete list of the elements in 
[(AV, d), (H,O)]. Note that none of these morphisms is a quasi-isomorphism so 
that (as with Example 7 in (a)), (AV, d) and (H,O) are not weakly equivalent: 
(A V, d) is not formal. 0 

Example 2 A utomorphisms of the model of 53 x 53 X 55 X 56. 
Note that the tensor product of commutative models (Sullivan or otherwise) 

is a commutative model of the topological product, as follows from §12(a). Thus 
S3 x 53 X S5 X 56 is formal. In Example 1 of part (a) in this section we computed 
the minimal Sullivan models of spheres. This shows that the minimal model of 
S3 x S3 X S5 X S6 has the form (AV, d) = A(x,y,z,a,u;dx = dy = dz = da = 
0, du = a2 ). with degx = degy = 3, degz = 5, dega = 6. 

Define an automorphism, 'P, of this model by: 

'{Jx = x, '{Jy = y, '(JZ = z, 'Pa = a, 'PU = u + xyz. 

Then H('P) = id and Q('P) = id but 'P is not homotopic to the identity. 
Indeed, suppose 'Po ~ 'PI : (A V, d) ---+ (A V, d) via a homotopy, <t>. For degree 

reasons, <t>a = a@ h(t) + xy @ f2(t) + z @ h(t)dt. Similarly, <t>u = u @91(t) + 
xyz @ 92(t) + za 0 93(t). From d<t>a = 0 deduce h, h Elk. If 'Poa = a it follows 
that h = 1 and h = O. In this case the equation d<t>u = (<t>a)2 implies that 
91 = 1, and d92 = O. Thus 92 E lk and '(JoU - 'PI U = Aza. In particular, 'P is not 
homotopic to the identity. 0 

Example3 (AV,d)=A(a,x,bjda=dx=O,db=ax), dega=2, degx=3. 
Let I be the ideal generated by a2, xb2 , ab2 and b3. It is preserved by d, so 

that a commutative cochain algebra (A,d) is defined by A = AVII. 
A basis for H(A) is given by 1, [aJ, [x], lab] and [xb]. In particular, H+(A) . 

H+(A) = 0, and so H(A) ~ H*(S2 V S3 V 56 V 57; lk). However (A, d) and 
H* (52 V S3 V S6 V 57; lk) are not weakly equivalent. 
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Indeed if they were, a minimal model for (A, d) would also be a minimal model 
for H(A, d). The construction process of Proposition 12.2 produces a minimal 

model (AW, d) ~ (A, d) that is given in degrees:::; 5 by A(a, u, x, b; da = 0, du = 
a2 ,dx = O,db = ax). But any morphism from (AW,d) -t (H(A,d),O) sends 
b>-+ 0 for degree reasons, and hence kills the cohomology class lab). 0 

Example 4 A(x, y, z, u; dx = dy = dz = 0, du = xm + ym - zm), deg x 
degy = degz = 2, m 2': 3, lk = Q. 

A morphism (A(x,y,z,u),d) -t (Aa,O), dega = 2, is given by x >-+ Aa, 
y >-+ j.W, Z >-+ ~a, where Am + j.1m = ~m and A, j.1, ~ E Q. By Fermat's last 
theorem, one of A, j.1, ~ is zero. This illustrates how quickly number theoretic 
questions intervene in these computations. 0 

Example 5 [66] Two morphisms that homotopy commute, but are not homo
topic to commuting morphisms. 

Define a minimal Sullivan algebra (AV, d) by specifying the differential in a 
basis of V as follows: 

Xl, X2, X3 
dXi = 0 

z 

dz = 0 
v Wl,W2 

dv = yX2 dWl = z2, dW2 = ZX1X2 

Define two automorphisms rp, 'ljJ : (A V, d) -t (A V, d) by requiring 

!.pz = z + X1X2, !.pWl = Wi + 2W2, tp = identity on the other generators, 

and 

'ljJXl = Xl + X3, 1jJW2 = W2 - zy, 'ljJ = identity on the other generators. 

Then a homotopy <P : (A V, d) -t (AV, d) Q9 A(t, dt) from !.p'ljJ to 'ljJtp is given by 

<PXl = Xl + X3, <Pz = z + X1X2 + X3X2 + ydt, 

<PWl = Wi + 2W2 - 2yzt + 2Xl vdt + 2x3vtdt, 

<PW2 = W2 - yz - X1X2Y + Xlx2yt + (2Xl + x3)vdt, 

and <P = identity on the other generators. (This is a longish, but easy computa
tion.) 

On the other hand, if tp '" !.p' then H(tp') = H(!.p). This implies that tp'Xi = Xi. 
Hence 0 = d( !.p-tp')y. There are no co cycles in degree 5, so !.p'y = rpy = y. Again, 
because H(!.p') = H(tp) we have !.p'z = !.pZ + AX2X3, some A E lk. Similarly, if 
'ljJ' '" 'ljJ then 'ljJ'Xi = 'ljJXi, 'ljJ'y = 'ljJy and 'ljJ'z = 'ljJz + j.1X2X3, some j.1 E lk. A 
computation now shows that 'ljJ'!.p' z i- tp' 'ljJ' z. 

The reader is challenged to show that H(AV, d) is a finite dimensional algebra, 
with top cohomology class of degree 49. 

Example 6 [57) Sullivan algebras homogeneous with respect to word length. 
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The differential in a Sullivan algebra (AV, d) is said to be homogeneous of 
degree k with respect to word length if d : V ---+ A k+ I V. Thus if we let 
Hp,q C Hp+q (A V) be the subspace represented by co cycles in APV then Hn = 

E9 HP,q and HP,q . Hr,s c HP+r,q+s. 
p+q=n 

On the other hand, suppose a graded vector space V is presented as a di-
00 00 

rect sum of graded vector spaces: V = E9 Vm· Then AV = E9 (AV)m, 
m=O m=O 

where VI /\ ... /\ Vr E (AV)m if Vi E Vmi and ~mi = m. Thus if (AV, d) 
is a Sullivan algebra and d : Vm ---+ (AV)m-l, m ?: 0, then a 'lower grad-

00 

ing' Hr(AV,d) = E9 H;"(AV,d) is induced in the cohomology algebra. Again, 
m=O 

H r Hr' H r+r' 
m· m' C m+m" 

Now fix k ?: 1 and any graded vector space Z of the form Z = {Zih?,:2' We 
shall construct a minimal Sullivan algebra (A V, d) homogeneous with respect to 
word length of degree k and with the following properties: 

• V is a graded vector space and V = {Vih~2. 

00 

• V = E9 Vm and d: Vm ---+ (Ak+lV)m_l' 
m=O 

• Vo = Z and the inclusion induces an isomorphism Z ~ HI,*(AV). 

• H?,:k+l'*(AV) = O. 

For this, set Vo = Z, and d = 0 in Z. Next, construct d and Vm induc-
~ (k+l ) ~ tively so that d : Vm+1 ---+ A V::;m m n kerd. Then H(d) : Vm+l ---+ 

H~+I,* (AV<m, d). Now the first three properties above are immediate, as is 
the fact that Hk+l,. (A V, d) = O. 

It remains to see that H>k+l,' (A V, d) = O. This is proved inductively as 
follows. Suppose VI"",Vr E V satisfy dVl = 0 and dVi E A(VI, ... ,Vi-d. Then 
we can divide by Vl"",Vr to obtain a quotient Sullivan algebra (AW,d): here 
we may identify W with any complement of J;;VI EB ... EB J;;vr in V. We call 
(A W, d) an r-quotient, and show that: 

• For any r-quotient (AW,d), H~k+l"(AW,d) = o. (12.11) 

In fact suppose (12.11) is false. Then there is a least degree n in which it fails 
and a least r = ro for which it fails in that degree. Thus for any s-quotient 
(AZ, d) and for any p ?: k + 1 we have: 

Hp,q(AZ,d) = 0 if p + q < n or if p + q = nand s < ro. (12.12) 

N ow suppose (A W, d) is any To-quotient and ~ is a co cycle of degree n in APW 
for some p ?: k + 1. We shall show ~ is a coboundary, thereby contradicting the 
hypothesis that (12.11) fails. 
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Suppose first ro 2: 1. Then there is an (ro-l) quotient of the form (AvQ9AW, b) 
projecting to (AW,d). In particular, b(1 Q9 <J» = vO, some 0 E Av Q9 AW. Now 
if degv is odd then b(1 Q9 <J» = v Q9 0 with 0 E AW. Moreover do = 0, 
deg 0 < nand 0 E A2':k+l W. Our hypothesis above implies that 0 = d'l1 and so 
b(1 Q9 <J> + v Q9 'l1) = O. On the other hand, if deg v is even then vbO = O. Thus 
o is a co cycle of degree < n and word-length 2: k + 1 in an (ro - 1)~quotient. 
Hence 0 = b'l1 and b(1 Q9 <J> - v'l1) = O. In either case <J> lifts to a cocycle of 
degree n and word-length p in an (ro -1)~quotient. Our hypothesis implies that 
this co cycle is a coboundary; hence <J> is a coboundary in (AW, d). 

Finally, suppose ro = O. In this case (AW, d) = (AV, d) and Hk+1,*(AV) = 0 
by construction. Thus we may suppose p 2: k + 2. Now for s 2: 1 any s~quotient 
(AZ, d) is the projection of an (s - 1)~quotient of the form (Av Q9 AZ, b). We 
shall show that if the image of <J> in (AZ, d) is a coboundary then so is its image 
in (Av Q9 AZ, b). Since (clearly) <J> maps to zero in some q~quotient it will follow 
that <J> itself is a coboundary. 

Let 'l1 be the image of <J> in Av Q9 AZ. Its image in AZ has the form d:r and so 
'l1 - b(1 Q9 r) = vO. If v has odd degree we may write 'l1 - b(1 Q9 r) = v Q9 OJ here 
do = 0 and 0 is a cocycle of word-length p - 1 2: k + 1 in an s-quotient. Since 
deg 0 < n we have 0 = do' and 'l1 = b(1 Q9 r - v Q9 0'). If v has even degree 
then bO = 0 and 0 is a cocycle in an (s - 1)~quotient of word-length 2: k + 1 
and degree < n. Thus 0 = bO' and 'l1 = b(1 Q9 r + vO'). 0 

Example 7 Sullivan models for cochain algebras (H,O) with trivial multiplica
tion. 

Let H = Jk EEl H2':2 be a graded algebra with trivial multiplication: H+ • H+ = 
O. Regard H as a co chain algebra with zero differential. 

In Example 6 we constructed word-length homogeneous Sullivan algebras. 
Here we consider the case k = 1 and Z = H+. Then the construction of Exam
ple 6 gives a Sullivan model of the form (AV, d) with 

V = H+ EEl VI EEl· .. EEl Vm EEl ... 

d: Vm ---+ (A2V)m~1 , 

and 
H1'*(AV, d) = H+ and H2':2'*(AV, d) = 0 . 

It follows that dividing by A2':2V and by V2':l defines a quasi-isomorphism 

(AV,d) ~ (H,O) 

which exhibits (AV, d) as the minimal Sullivan model for (H,O). o 

(e) Differential forms and geometric examples. 
In this topic we take Jk = lR. 
Let M be a smooth manifold. In §11 we showed that ADR(M) was weakly 

equivalent to ApdM; lR). Thus the Sullivan models of M are identified with the 
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Sullivan models of ADR(M). This represents a significant strengthening of de 
Rham's theorem, which asserts that H*(M; JR) = H (ADR(M)). 

In particular suppose M is simply connected and has finite dimensional ratio
nal homology, and let (AV, d) be a minimal Sullivan model for ADR(M). Since 
this is also a model for ApL (M; JR) we may conclude (taking for granted results 
announced in §12 and §13 and to be proved in §14 and §15) that 

• H(AV,d) ~ H*(M;JR) as graded algebras. 

• V ~ Hom (1T * (M), JR) . 

• Whitehead products may be computed from the quadratic part of the 
differential, d. 

Finally, with these hypotheses ADR(M) is connected to ApL(M; «Jl)@JR by quasi
isomorphisms of commutative cochain algebras (§ll). It follows that (AV, d) ~ 
(AW, d) @ JR, where (A W, d) is a rational minimal Sullivan model for M. 

Since geometric restrictions on M (e.g. M admits an Einstein metric) are 
often expressed in terms of differential forms, it is natural to expect that these 
could lead to information about the model and hence to information about the 
homotopy groups of the manifold. Unfortunately results of this nature have, so 
far, proved to be elusive. 

Now suppose a Lie group G acts on M, and let ADR(M)G denote the sub 
co chain algebra of differential forms invariant under translation by a E G. A 
theorem of E. Cartan [32], [70], asserts that if G is compact and connected, then 
the inclusion ADR(M)G ---+ ADR(M) is a quasi-isomorphism, and so ADR(M)G 
is also a commutative model for M. 

Example 1 The cochain algebra ADR(G)G of right invariant forms on G, and 
its minimal model. 

Let 9 be the Lie algebra of the group G, identified with the Lie algebra of 
right invariant vector fields on G. Regard g~ = Hom(g; JR) as a graded vector 
space concentrated in degree 1. Let G act on itself by right translation. Then 
ADR(G)G = (Ag~, d), and the formula for the exterior derivative gives 

wE gP 
x,y E g. 

(dw; x, y) = -(w, [x, yJ) , 

Because gP generates AgP and because d is purely quadratic this formula deter
mines d. 

Although AgP is a free commutative graded algebra, the cochain algebra (AgP, d) 
does not, in general, satisfy the nilpotence condition required for Sullivan alge
bras. In fact, it is easy to see that (AgP, d) is a Sullivan algebra if and only if 9 
is a nilpotent Lie algebra. 

On the other hand, G is always homeomorphic to the product of a compact 
Lie group with some JRn [32]. In particular (as with any compact manifold, 
[43), [69]) H*(G; JR) is a finite dimensional vector space. Thus the theorem of 
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Hopf (Example 3, §12(a)) shows that H*(G; ffi.) is an exterior algebra on a finite 
dimensional vector space P concentrated in odd degrees. This gives a minimal 
Sullivan model 

(AP,O) ~ ADR(G), 

which contrasts with the morphism (Ag~,d) --+ ADR(G). o 

Example 2 Nilmanifolds. 
Let G be a nilpotent connected Lie group and let r be a discrete sub-group of 

G such that the quotient space X = G Ir is compact. The covering projection 
7r : G --+ X induces an isomorphism ADRX ~ (ADRG)r (= the complex of 
right r-invariant differential forms on X). Thus we may regard (ADRG)G as a 
subcochain algebra of ADRX. In [130], K. Nomizu proved that this inclusion is 
a quasi-isomorphism. 

In this case the Lie algebra 9 of G is nilpotent and so (Ag~, d) is a minimal 
model of X over the real numbers. Obviously, d = 0 if and only if the Lie 
algebra 9 is abelian. In this case X = Sl X ... X Sl. In particular, X is formal. 
The converse is true. Indeed, assume that there exists a quasi-isomorphism 
(A(X1,X2, ... ,Xk),d) ~ H*(X;ffi.). Then r.p is obviously surjective, and since 
the product XIX2 ... Xk is a co cycle which cannot be a coboundary, r.p is injective. 
This in turn implies that d = O. 

This result has been proved in many different manners: [23], [39], [50], [53], 
[88], [114]. 0 

Example 3 Symmetric spaces are formal. 
Suppose T is an involution of a compact connected Lie group G, and that K is 

the connected component of the identity in the subgroup of elements fixed by T. 

Then G I K is called a symmetric space of compact type. By Cartan's theorem, 

ADR(GIK)G ~ ADR(GIK). 
An argument of E. Cartan shows that the differential in ADR(GIK)G is zero, 

thereby exhibiting G I K as a formal space. It is interesting to note that this is 
still the only proof available of the formality of G I K. 

Cartan's argument runs as follows: observe that T induces an involution a of 
G I K and that ADR (a) restricts to an involution of ADR (G I K)G. Since the ac
tion of G on GI K is transitive, ADR(GIK)G may be identified with a subalgebra 
of AT; (GIK) = A(gl£)*. Let T' : TG --+ TG and a': TGIK --+ TGIK denote 
the derivatives of T and a. Since T is an involution and t = {h E 9 I T' h = I}, it 
follows that a' = - id in glt. Hence ADR(a) = (-l)Pid in AbR(GIK)G. Since 
ADR(a) commutes with d, d = O. 0 

Example 4 (Deligne, Griffiths, Morgan and Sullivan [42]) Compact Kahler 
manifolds are formal. 

Suppose M is a complex manifold with operator J : Tx(M) --+ Tx(M) 
satisfying J2 = -1, x EM. Let ( , ) be a Riemannian metric such that 
(J~, JTJ) = (~,TJ). Define W E Alm(M) by w(~,TJ) = (J~,TJ). M is called a 
Kahler manifold if ( , ) can be chosen so dw = O. 
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Given a Kahler manifold, put dC = J-1dJ : ADR(M) -----+ ADR(M). Then 
(dc )2 = 0 and dCd = ddc . In [42] the authors show that d: kerdc -----+ Imdc and 
that the obvious inclusion and surjection 

are quasi-isomorphisms. This exhibits M as formal. 
Here, again, the only known proof of formality for Kahler manifolds proceeds 

via analysis using ADR(M). 0 

Example 5 Symplectic manifolds need not be formal. 
A symplectic manifold is a 2n-manifold M equipped with w E AbR(M) sat

isfying dw = 0 and w~ "10, x E M. Thus Kahler manifolds are symplectic. 
Now let X = Nz \ N be the manifold constructed out of the 3 x 3 upper 

triangular matrices as described in Example 2. The Lie algebra of N has the basis 
hl,h2,h3, with h3 central and [h1 ,h2] = h3. Thus the minimal Sullivan model 
constructed in Example 2 has the form (A(x, y, z), d) with dx = dy = 0, dz = xl\y 
and x, y, z of degree 1. Note that this is not formal (as is already observed in 
[107); p261) since the algebra H*(X; JR) is not generated by Hl(X; JR). (See also 
Benson and Gordon [23], Cordero, Fernandez and Gray [39], Felix [50], Felix 
and Halperin [53], Lupton and Oprea [114], Hasegawa [88]) 

Put M = X x X. Then the inclusion 

(A(x,y,z),d) 0 (A(x',y',z'),d) -=+ ADR(M) 

is a minimal Sullivan model for M. Hence, as above, M is not formal. Let w be 
the image in AbR(M) of the cocycle x 1\ x' + Y 1\ z + y' 1\ z'. Since w3 "10 and w3 

is left N x N -invariant it follows that w3 is not zero at any point of M. Hence 
(M, w) is a non-formal symplectic manifold. 0 

Recently LK. Babenko and LA. Taimanov, [17], have constructed for any 
n ~ 5 infinitely many pairwise non homotopy equivalent non formal simply 
connected symplectic manifolds of dimension 2n. In fact, as proved, by S.A. 
Merkulov, [124], a symplectic 2n-manifold M is formal if the de Rham co
homology of M satisfies the hard Lefschetz condition: i.e. the cup product 
[wk] : Hn-k(M; JR) -----+ Hn+k(M; JR) is an isomorphism for any k ::; n. 

Exercises 

1. Let (1\ V, d) be a Sullivan model of S2 V 53. Prove that there exists a quasi
isomorphism cp: (I\V, d) ~ H*(S2 V S3;CQ!). (Cf. d)-example 7). Determine the 
restriction of d to vn for n ::; 6. 

2. Prove that if X and Yare formal spaces so are X V Y, X x Y, X 1\ Y and 
X * Y. Determine the minimal Sullivan models of S8 x Cp6, S8 1\ Cp6 and of 
S8 * CP6. 
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3. Let (A; d/d be any commutative graded algebra and (AZ, d) -+ H(A, dA) a 
bigraded model as defined in f)-example 7. Prove that there exist a differential 
D and a quasi-isomorphism y : (AZ, D) -+ (.:-1, dA ) such that D = D] + D2 + 
... + D/ + ... with DiZ;' C (AZ);~; and D1 = d. (see [86j.) 

4. Construct a surjective quasi-isomorphism 

with dV2i = 0 = dW2J; d:r1 = V:2 + U'2, d:T3 = L'l + lL'4 + V2VJ2, dx;s = L'4 W2 + V2lL'4. 

dX7 = V4 VJ4, dY2 = 0; dY4 = 0, dZ,5 = Y2(2Y4 - y~) and dZ7 = Y4(y;, - Y4). 

5. Let (A, d) be a commutative differential algebra and for n 2: 1 denote by 
A(n) the subalgebra defined by 

if k < n 
if k = n + 1 
if k 2: n + 2 

Prove that if (A; d) is formal so is (A(n), d). Let (A V, d) be a Sullivan model of 
a I-connected CW complex. Construct a commutative model of the n-skeleton 
of X. (Cf. a)-example 6). 

6. Let (A, d) be a commutative differential graded algebra and (1i E A"'. i = 
0; 1,2, be co cycles such that d(1l2 = a1 (12 , dan = a2a~ . Prove that ( -1 )deg (11 (11 an 

- a12(13 is a cocycle: its cohomology class (\vhich depends on the choice of a12 

and an) is called a Ma88ey product. Construct a non zero l\Iassey product 
in the cohomology of the minimal model (A (a6, a1O, bll , b15 , bI9 ), d) such that 
db ll = a~ , db15 = a6 a10, db19 = aIo. using the bigraded model of d)-example 7 
prove that a formal space does not admit non tri\'ial l\Iassey products. 

7. Let (A V d) be a Sullivan minimal model and y, 1;) : (A 1/, d) -+ (A, d) two 
morphisms of commutative differential graded algebras. Assume that for any 
n 2: I, the restictions of:p and 1:) to (A i"Sn, d) are homotopic. Prove that 'P and 
6 are homotopic. There are no phantom map8 in rational homotopy theory! 

8. Let Al and N be compact connected oriented n -dimensional manifolds. Prove 
that if lU and N arc formal so is the connected sum JJ #N (see § II-exercise 3). 
Compute the mimimal model of (53 x 5 3)#CP3 up to dimension 12. 



13 Adjunction spaces, homotopy groups and 
Whitehead products 

In this section, the ground ring is a field k of characteristic zero. 
In applying Sullivan models it is important to be able to compute directly 

the models of geometric constructions from models for the spaces used in the 
construction. For example, in §12 we saw that the tensor product of models 
was a model of the topological product, while in §14 we will see how to model 
fibrations. 

A topological pair (Z, Y) and a continuous map f : Y -+ X determine the 
topological pair (X U f Z, X) in which Xu f Z is the adjunction space obtained 
by attaching Z to X along f. These define the commutative square 

Y ·z 

fj jh (13.1 ) 

X 
ix 

• XUf Z. 

Analogously, if 

(C, d) ~ (B, d) ?- (A, d) 

are morphisms of commutative co chain algebras then the fibre product (C x B A, d) 
fits in the commutative fibre product square 

(B,d) • ¢ (A,d) 

~1 1~' (13.2) 

(C,d) • 
¢c 

(C XB A,d), 

and 'lj;c is surjective if 'lj; is. Note that in (3.1) we have ZjY = X Uf ZjX 
while in (3.2) we have ker'lj; = ker'lj;c. If (Z, Y) is a relative CW complex 
then the first equality implies (by the Cellular chain models theorem 4.18) that 

H*(Z, Y; k) --'=+ H*(X Uf z, X; k). 
Our first objective in this section is to show that 

• Suppose cp and 'lj; are Sullivan representatives for f and for i and one of 

cp, 'lj; is surjective. If H*(Z, Yj k) --'=+ H*(X Uf Z; k) then (C XB A, d) is 
a commutative model for X U f Z. 

Thus a Sullivan model for the adjunction space may be computed directly from 
the Sullivan representatives cp and 'lj; of f and i, provided that 'lj; is surjective. 
We shall then construct particular commutative models for the geometric con
structions: cone attachments, cell attachments and suspensions. 
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Next, suppose (A V, d) is a minimal Sullivan model for a simply connected 
topological space X. Our second objective in this section is to construct a 
natural linear map 

Vx : V -+ Hom (7r*(X), J:) 

and then to use the model of a cell attachment to show that: 

• Vx transforms the quadratic part of the differential in A V to the dual of 
the Whitehead product in 7r * (X). 

Later (§15) we shall show that under mild hypotheses Vx is an isomorphism, so 
that this transformation is in fact an identification. 

This section is organized into the following topics: 

(a) Morphisms and quasi-isomorphisms. 

(b) Adjunction spaces. 

(c) Homotopy groups. 

(d) Cell attachments. 

(e) Whitehead products and the quadratic part of the differential. 

(a) Morphisms and quasi-isomorphisms. 

Morphisms (G, d) 2.." (B, d) ?- (A, d) of commutative cochain algebras fit 
into the fibre product square 

(B,d) ..... ---- (A,d) 

D 1 1 
(G,d) ..... ---

and a commutative diagram 

(G, d) __ -,-'P_---+-• (B,d) • (A,d) 

oj "j j. 
(G',d) 

'P' 
• (B',d) • 

'l/J' 
(A',d) 

extends by (,),,0:) : (G XB A,d) -+ (GI XB' A',d) to a commutative cube con
necting the corresponding fibre squares. We shall require 

Lemma 13.3 If ,,/, (3, 0: are quasi-isomorphisms and if one of 'P, 'ljJ and one 
of 'PI, 'ljJ1 are surjective then (,),,0:) : (G x B A, d) -+ (GI X B' AI, d) is a quasi 
isomorphism. 
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proof: If '!jJ and '!jJ1 are both surjective then a restricts to a quasi-isomorphism 
ker'!jJ ~ ker'!jJ'. Now use the row exact diagram 

o --- ker'!jJ --- C XB A ---+- C • 0 

o - ker '!jJ1 ... C I XB' AI - C I • 0 

to conclude that (,)" a) is an isomorphism. 
The other case to consider is that 'PI and'!jJ are surjective. As in §12(b) choose 

a surjective commutative cochain algebra morphism a : (E, J) -+ (B', d) with 
H (E) = Ii; , and consider 

C/~B/~A' 

"" ~j>. <P'"U ~ 

AI iSlE 

The argument above shows that ('Y, Aa) : (C x B A, d) -+ (C I X B' (AI iSI E), d) 
is a quasi-isomorphism. Since 'PI is surjective the same argument shows that 
(id,A) : (CI XB' A',d) -+ (CI XB' (AI iSlE),d) is a quasi-isomorphism. Hence 
so is (')',a). D 

In general a commutative cube 

.~E~----. 

~ I~ 
.~E-----. 

I 1 
e<:-----. 

~l ~ 
.~E-----. 

of morphisms of commutative cochain algebras will be regarded as a morphism 
V -+ VI from the top square to the bottom one. If the vertical arrows are all 
quasi-isomorphisms this is called a quasi-isomorphism of squares and written 
V ~ VI. Two commutative squares connected by a chain • ~ • ? •...• ? 
• of quasi-isomorphisms are called weakly equivalent (as already defined at the 
end of §7). Thus the conclusion of Lemma 13.3 asserts that (,)" a) defines a 
quasi-isomorphism between the two fibre product squares. 
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Next consider a homotopy commutative diagram 

(A~V,d) 
p (B,d) 

<) 
(AW, d) --- -+-

'j ;3 jo 
(C,d) (G,d) -+-- (F,d) 

~ 'I 

of morphisms of commutative cochain algebras, in which (A V, d) and (AW, d) 
are Sullivan algebras. 

Lemma 13.4 Suppose a, 3, ~( aTe quasi-isomoTphisms and that one of cp and 1;) 

and one of ~ and 7j aTe surjective. Then the fibTe squaTes c07Tesponding to CP,1;) 
and to ~,7J aTe weakly equivalent. 

proof: For definiteness take ?j; to be surjective. Suppose first that both ~ and 
7J are surjective. Then we construct morphisms a' ~ a and ~/ ~ ~( such that 
replacing a by a' and; by;' makes the diagram above commutative. Thus in 
this case the Lemma follows from Lemma 13.3. 

To construct a', let W : (A vV d) ----+ (G, d) C2! A (t, dt) be a homotopy from {31j; 
to 7Ja: 100<1> = (31jJ and C1W = 7Ja, as described in §12(b). Use 101 to form the fibre 
product G C2! A(t, dt) Xc E. Then, in the diagram of cochain algebra morphisms 

F &; A(t, dt) 

(AW d) ~ G C2! A(t, dt) Xc F , 

the vertical arrow is a surjective quasi-isomorphism. "Cse the Lifting lemma 12.4 
to lift (<I>, a) to W: (AW,d) ----+ Fg;A(t,dt), and set a' = coW. The morphism 
;' is constructed in the same way. 

Finally suppose ~ (for definiteness) is not surjective. 1] se the surjective trick 
(§12(b)) to extend ~ to a surjection ~·a : (C,d) C2! (E,8) ----+ (G,d), with 
H(E,8) = lk. Then the fibre square for ~. a and 7J is weakly equivalent to the 
fibre square for (7J by Lemma 13.3 and weakly equivalent to the fibre square for 
ip,1/J by the argument above. 0 

(b) Adjunction spaces. 
Suppose that i : Y ----+ Z is the inclusion of a topological pair (Z, Y), and that 
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f : Y -t X is any continuous map. Then we have the commutative square 

Y ·z ApdY) • APL(Z) 

fj jh , and the D: 

1 1 commu-
X ~ XUt Z tative APL(X) • APL(X Ut Z) 

'x model 

The square D determines the morphism 

(APL(ix),APL(fz)) : APL(X Ut Z) -t APL(X) xAPL(Y) APL(Z) 

which (together with the identities) defines a morphism from D to the fibre 
product square. 

Proposition 13.5 If H.(Z, Y; k) ~ H.(X Ut Z, X; k) then the morphism 
(Apdix),ApL(fz)) is a quasi-isomorphism. Thus the fibre product is a com
mutative model for the adjunction space. 

proof: Since H.(Z, Y; k) ~ H.(X Ut Z, X; k) it follows that APL(X Ut 

Z, X) ~ APL(Z, Y). Thus in the row exact diagram 

0----"" APL(X Ut Z,X) -----;;.. .. ApdX Ut Z) ----?-:> APL(X) ----.,.. 0 

~ 1 1 II 
the central arrow is a quasi-isomorphism. D 

Proposition 13.5 replaces the geometric adjunction space by the algebraic fibre 
product. Using Lemma 13.4 we can now pass to Sullivan models. Thus suppose 
X, Y and Z are path connected, that 

mx : (AV, d) -t ApdX) , m: (AU,d) -t APL(Y) and mz: (AW,d) -t APL(Z) 

are Sullivan models and that 

(AV, d) ~ (AU, d) !-- (AW, d) 

are Sullivan representatives for f and for i. 

Proposition 13.6 If H.(Z, Y; k) ~ H.(X Ut Z, X; k) and if one of cp,'lj; is 
surjective then D is weakly equivalent to the fibre product square 

(AU, d) --E-E --- (AW, d) 

r r 
(AV, d) ~ (AV XAU AW,d) 
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In particular, (A V X ,\U A W, d) is a commutative model for X U I Z. 

proof: This is an immediate translation of Lemma 13.4, given Proposition 13.5. 

o 

Now consider the very important special case of adjunction spaces given by 
attaching a cone. Recall that the cone on a topological space Y is the space 
CY = (Y x I)/(Y x {O}). We identify Y as the subspace Y x {I} C CY. Then, 
given any continuous map f : Y ---7 X we attach the cone CY to X along f to 
form X UI CY. 

Now, suppose X is path connected. \Ve shall use a different technique to 
construct a commutative model for Xu ICY. Let rna : (AWa, d) ~ ApdYa ) be 
Sullivan models for the path components Ya of Y, and put (B, d) = TI(AWa, d). 

Then TI APL(Yo,) = APL(Y) and rn = TI rna : (B, d) ~ ApL(Y) is a quasi-
a a 

isomorphism. Let CPa : (A V, d) ---7 (AWa, d) be Sullivan representatives for 
fa = f iy" with respect to a Sullivan model rnx : (;\V,d) ---7 ApdX), and put 

cP = (CPa): (AV, d) ---7 (B,d). 
Finally, as usual, let co, Cl : A(t, dt) ---7 lk be the morphisms t f----t 0,1. Thus 

ker co is the ideal A + (t, dt). Use the morphisms 

(AV,d) ~ (B,d) {d(!)El (lkffi [Bc>9A+(t,dt)] ,d) (13.7) 

to construct the fibre product AVXB (lk EB [B c>9 A+(t,dt)]). 

Proposition 13.8 The fibre product square for (13.1) is weakly equivalent to 
the commutative adjunction space for X U ICY. In particular the cochain algebra 
AV x B (lk ffi [B c>9 A + (t, dt)]) is a commutative model for X U ICY. 

proof: Use Proposition 13.5 to identify ApdX) XAPL(Y) ApdCY) as a com
mutative model for Xu ICY. Let i 1 denote the inclusion y f----t (y, 1) of Y in CY 
and in Y x I and also of {I} in I, and notice that the chain of quasi-isomorphisms 

APL(CY,pt) ~ APL (Y x I, Y x {O}) F- ApdY) Q;;: APL(I, {O}) 

is compatible with the surjections Apdid and id c>9A pL (id. Regard the iden
tity of I as a I-simplex. Restriction to this simplex is a quasi-isomorphism 
APL (I, {O}) ---7 A + (t, dt) which converts id Q;;:APL (id to id c>9cl· Since APL (CY) 
= lk ffi Apd CY, pt) we obtain a chain of quasi-isomorphisms connecting 
APL(X) xAPL(Y) APL(CY) with ApdX) xAPL(Y) (lk ffi [APL(Y) c>9 A+(t, dt)]). 

On the other hand, there are homotopics rnaCPa ~ Apdfo,)rnx. A choice of 
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these defines a commutative diagram 

'" • APL(Y) ...=.- (B,d) 
<0 ~ 

and this connects APL(X) XAPL(Y) (lktB [APL(Y)@A+(t,dt)]) to 
A V X B (lk EB [B @ A + (t, dt)]) by a chain of quasi-isomorphisms too. 

As a special case of Proposition 13.8 we prove 

171 

o 

Proposition 13.9 The suspension, ~Y, of a well-based topological space (Y, Yo) 
is formal, and satisfies H+(~Y; lk)· H+(~Y; 1.) = O. 

proof: Apply Proposition 13.8 to the case of the constant map f : Y ---+ {pt} to 
obtain a commutative model for {pt}UjCY of the form 1.XB(1. tB [B @ A +(t, dt)]). 
But this is just the cochain algebra lk EB [B @ J], where J = ker 101 n A + (t, dt). 

Now J is the ideal generated by t(l-t) and dt and thus the inclusion lkdt ---+ J 
is a quasi-isomorphism. It follows that lkEB [B @ dt] includes quasi-isomorphically 
in lk EB [B @ J]. Let H c B @ dt be any subspace of co cycles mapping isomor
phically to H(B@dt). Since (B@dt)·(B@dt) c B@(dtAdt) = 0, the inclusion 
(1. EB H,O) ---+ lk tB [B @ J] is a cochain algebra quasi-isomorphism, exhibiting 
lk EB H as a commutative model for {pt} Uj CY in which H . H = O. 

Finally, {pt} Uj CY = CY/(Y x {I}), which is homotopy equivalent to ~Y 
since (Y, Yo) is well-based (§l(d)). 0 

(c) Homotopy groups. 
Suppose f : (Y, *) ---+ (X, *) is a continuous map between simply connected 

topological spaces. Recall that a choice of minimal Sullivan models, 

mx : (AV, d) ---=+ APL(X) and my: (AW,d) ---=+ ApL(Y) 

determines a unique homotopy class of morphisms rp j : (A V, d) ---+ (A W, d) such 
that ApLU)mx = myrpj. Moreover, Proposition 12.8(ii) asserts that these 
Sullivan representatives of f all have the same linear part: Q (rp j) is independent 
of the choice of rp j. This will therefore be denoted by 

QU) : V ---+ W. 

Note that (Proposition 12.6) QU) only depends on the homotopy class of f. 
We use this construction to define a natural pairing, ( ; ) between V and 

7l".(X), depending only on the choice of mx : (AV, d) ---+ APL(X), 
First, recall the minimal Sullivan models mk : (A(e),O) ---+ APL(Sk), k odd, 

and mk : (A(e, e'), de' = e2 ) ---+ ApL(Sk), k even, as constructed in Example 1, 
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§12(a). Because H*(Sk; Jk) is so simple, the morphisms mk are determined up to 
homotopy by the condition (H*(mk)[e], [Sk]) = 1, where [Sk] is the fundamental 
class defined in §4(c) and ( , ) denotes the pairing between coho;nology and 
homology (§5). 

Now suppose a E 1rk(X) is represented by a: (Sk,*) ---t (X,*). Then Q(a): 
Vk ---t Jk. e depends only on a and the choice of the morphism mx : (AV, d) ---t 

APL(X), Define the pairing 

(-; -) : V x 1r*(X) ---t Jk (13.10) 

by the equations 

(v;a)e = {Q(a)v , v E Vk, 
o , degv =f. dega . 

It is immediate from the definition that for f : (Y, *) ---t (X, *) as above, 

(Q(f)v;(3) = (v;1r*(f)(3), v E V, (3 E 1r*(Y). 

Lemma 13.11 The map (-; -) is bilinear. 

proof: The linearity in V is immediate from the definition. To show linearity in 
1r * (X), consider the space Sk V Sk. Let io, i l be the inclusions ofthe left and right 
spheres and let j : (Sk, *) ---t (Sk V Sk, *) satisfy [j] = rio] + [ill in 1rk (Sk V Sk). 
The linear maps Q(io), Q(il) and Q(j) can be computed as follows. Let wo, WI be 
the basis for Hk(Sk V Ski Jk) defined by (wo, H*(io)[Skj) = 1 = (WI, H*(id[Skj) 
and (wo, H*(il)[Skj) = 0 = (WI, H*(io)[Skj). Then a minimal Sullivan model for 
Sk V Sk is given by 

~ k k m: (A(eo, el,"')' d) ---t APL(S V S ) 

where eo, el are co cycles of degree k, the remaining generators have greater 
degree, and H(m)[e A] = (VA, ). = 0,1. 

Thus a Sullivan representative ipo for io satisfies H(ipo) [eo] = [e] and H(ipO)[el] 
= O. Since the models have no coboundaries in degree k this implies ipoeo = e 
and ipoel = 0; i.e. Q(io)eo = e and Q(iO)el = O. In the same way it follows that 
Q(idel = 0 and Q(idel = e and Q(j)eo = e = Q(j)el. Now let aO,al represent 
ao, al E 1rk(X), Then ao + al is represented by 

We just computed Q(io), Q(id and Q(j). Since (ao, ad 0 io = ao and (ao, ad 0 

i l = aI, it is immediate from these computations that Q(aO,al)v = (v;ao)eo + 
(v;al)el, and so Q(a)v = (v;ao) + (v;al))e, as desired. 0 
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Lemma 13.11 shows that (-; -) induces a natural linear map 

v f--t (v; -). 

In §15 we shall show that if H. (X; QJ) has finite type then this map is a linear 
isomorphism. 

Finally, recall that rnx : (A Vx- ,d) ---+ APL (X) denotes the minimal Sullivan 
model of our simply connected topological space X. On the one hand we have 
the Hurewicz homomorphism hurx : ,,*(X) ---+ H*(X; Z). On the other, since 
Imd C A2':2VX , division by A2':2VX- defines a linear map ( : H+(AVx-) ---+ Vx-. 
It is immediate from the definition that 

(([z]; 0:) = (H(rnx )[z], hurx(o:)) 

Thus the diagram 

[z] E H+(AVx,d) 

0: E ,,*(X). 

H(mxl • H*(X; Jk) 

I h"", 

--v-x--+' Hom (,,*(X), Jk) 

commutes, where hur*x is the dual of hurx. 

(d) Cell attachments. 
Fix a continuous map 

n 2: 1, 

into a simply connected topological space X, representing 0: E "n(X). The space 
X Ua Dn+l is the space obtained by attaching an (n + I)-cell to X along a. Now 
choose a minimal Sullivan model 

rnx : (AV,d) ---=+ APL(X). 

Our objective is to use this, and the pairing (-; -) : V x "*(X) ---+ Jk, to 
construct a commutative model for X Ua Dn+l . 

If n = 1 then X Ua D2 ::::' X V 52, because a will be based homotopic to the 
constant map. In this case the discussion of wedges in §12(c) shows that XU a D2 
has a commutative model of the form (A V ffi Jku, d) in which deg u = 2, (A V, d) 
is a sub co chain algebra, u . A +V = 0 = u 2 , and du = O. 

For n 2: 2 define a commutative cochain algebra (AV E9 Jku, dal by: 

• degu = n + 1. 

• AV is a subalgebra and U· A+V = 0 = u 2 . 

• dau = 0 and dav = dv + (v;o:)u, v E V. 
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Note that daz = dz if z E A2':2V because da is a derivation. 

Proposition 13.12 The cochain algebra (AVEBku, do,) is a commutative model 
for X Ua Dn+l. 

proof: We apply Proposition 13.8, noting that Dn+l = CSn. This gives a com
mutative model for X Ua Dn+l of the form AV XAW (kEB [A+W Q9 A+(t,dt)]), 
where (AW, d) is the minimal Sulliva.n model for sn (Example 1, §12(a)). The 
quasi-isomorphism (AW,d) ---+ (H(sn),O) then defines a quasi-isomorphism 
AV XAW (k EB [A+W Q9 A +(t, dt)]) ~ AV XH(sn) (Jk EB [H+(sn) Q9 A+(t, dtm. 

These constructions are made using a Sullivan representative r.pa : (A V, d) ---+ 
(AW,d) for a. Let r.p be the composite of r.pa with m : (AW,d) ~ H(sn) and 
define a linear inclusion ), of A V into the fibre product by 

A(l) = 1 and ).II> = (<1>, r.p<1> Q9 t), <1> E A +V . 

Now H+(sn) = k[e], where [e] is dual to the fundamental class [sn]. Hence 
A<1> = (<1>,0) if <1> E A2':2V or if <1> E Vk,k i- n. Moreover, for v E V n, 

Av = (v, (v; a)[e] Q9 t) . 

It follows at once that A is an algebra morphism and that it can be extended 
to a cochain algebra morphism 

by defining u f----t (-l)n[e] 0 dt. It is a trivial verification that this is a quasi
isomorphism. 0 

Remark In the situation of Proposition 13.12, consider the commutative square 
of continuous maps, 

X Ua D n+1 • 
]x 

X 

"D 1 1" 
(13.13) 

D n+1 • 
j 

sn 

This diagram determines the row exact diagram 

0------+ APL (X Ua D n+1 , X) ------+ ApdX Ua Dn+l) ------+ ApdX) ------+ 0 

1 1 APL(aD) 1 APL(a) 

0------+ APL(Dn+1 , sn) ------+ ApdDn+l) ------+ ApdSn) ------+ O. 
(13.14) 
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The proofs of Propositions 13.8 and 13.12 show that this is connected by a chain 
of quasi-isomorphisms to the diagram 

(13.15) 

O~Jm~ffi;EBffi;wEBffi;dw~H*(sn;ffi;)~O, 
A IJ 

in which: 

AU = dw, (JU = dw, (JV = (v; a)w, and ((}W, [sn]) = 1. 

(e) The Whitehead product and the quadratic part of the differen
tial. 

Let X be a path connected topological space. The Whitehead product is a 
map 

We define it now and then show how, if X is simply connected, to read it off 
from the differential in a minimal Sullivan model. 

Recall that in Example 5, §1, homeomorphisms Ik j8Ik ~ Sk and 8Ik+l ~ 
Sk are specified for k 2: 1. Regard the first homeomorphism as a continuous 
map ak: (Ik,8Ik) -7 (Sk,*). Thus 

a x a . (Ik+n 8Ik+n Y ) -7 (Sk X sn Sk V Sn *) k n . , , 0 " , Yo = (1,1, ... , 1). 

Use the second homeomorphism to identify ak x an lalk+n as a continuous map 

ak,n: (sk+n-l,xo) -7 (Sk V sn, *), x - ( 1 1 ) o - v'k+n' ... 'v'k+n . 

The homotopy class [ak,n] E iik+n_l(Sk V sn) is called the universal (k,n)
Whitehead product. (This is actually an abuse oflanguage. The map ak,n must be 
precomposed with an orientation-preserving rotation sending * to Xo. However 
any two such relations are based homotopic, so the based homotopy class of the 
composite depends only on ak,n.) 

When k = n = 1 the picture 

2 1 __ a...::l:1.:,l'--_~:;. 

20 
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Definition The Whitehead product of ~(o E 'iTdX) and ~(l E 'iTn(X) is the 
homotopy class [10, IIlw E 'iTk+n~I (X) represented by the map 

[ . l .. sk+n~I ak,n Sk V sn (co,cd v 
Co ,CI ~t . ----+ ----t "", 

where Co : Sk --+ X represents 10 and Cl : sn --+ X represents ~(I' 
Next, consider a minimal Sullivan algebra (AV, d). The restriction of d to V 

decomposes as the sum of linear maps Cl'i : V -+ N+ I V, i .2: LEach Cl'i extends 
uniquely to a derivation di of AV, and di increases wordlength by i, Moreover d 
decomposes as the sum d = d1 + d2 + ' .. of the derivations di . Clearly, di raises 
word length by 2 and d2 - di raises \vordlength by at least 3. Since d2 = 0 this 
implies di = 0; i.e . 

• (A V, dr) is a minimal Sullivan algebra. 

Definition d1 is called the quadratic part of d. 

Recall from §12(b) that the linear part of a morphism 'P: (AV, d) --+ (AvV,d) 
of Sullivan algebras is the linear map Q('P) : V -+ vi" defined by 'PV - Q('P)v E 

A2:2TV. It extends uniquely to a morphism of graded algebras, AQ('P) : AV --+ 
A W. If (A V, d) and (A W, d) are minimal then the same calculation as for di 
above shows that (AQ('P)) d1 = d1 (AQ('P)); i.e., 

• AQ('P) : (AV,dr) --+ (AW,dr) is a dga morphism between minimal Sullivan 
algebras. 

Finally, suppose that X is a simply connected topological space, with minimal 
Sullivan model 

Define a trilinear map 

by 

(vl\w; 10, 11) = (v; ~(l) (w; 10)+( _l)deg u: deg -10 (v; ~(o) (w; 11), 
v,w E VX , 

10, 11 E'iT*(X). 

Proposition 13.16 The Whitehead product in 'iT * (X) is dual to the quadratic 
part of the differential of (A 11:>:, d). More precisely, 

v E Vx , 
10 E 'iTdX) , 
11 E 'iTn(X) . 
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proof: For the sake of simplicity we denote the universal Whitehead product 
[ak,n] simply by 0 E 1ik+n_l(Sk V sn). If Co : (Sk,*) ~ (X,*) and Cl : 

(sn, *) ~ (X, *) represent "(0 and "(1, then put C = (co, cd : Sk V sn ~ X, so 
that ["(O,"(l]W = 1i*(c)o. Hence 

(v; ["(0, "(l]W) = (Q(c)v; 0). 

Moreover, if io : Sk ~ Sk V sn and i l : sn ~ Sk V sn are the inclusions, then 

It is thus sufficient to prove the proposition for X = Sk V sn and "(0 = [ior and 
"(1 = [ill· 

For this we require the minimal Sullivan model of Sk V sn, at least up to 
degree k + n - 1. First, let mo : (AWo,d) ~ APL(Sk) and ml : (AWl,d) ~ 
APL (sn) be the minimal Sullivan models of Example 1, §12(a). Thus (AWo, d) = 

(A(eo, ... ),d), (AWl, d) = (Ah, ... ),d) and (H(mo)[eo],[Sk]) == 1 = 
(H(ml)[el], [sn]). Let Po = (id, const.) : Sk V sn -7 Sk and PI = (const., id) : 
Sk V sn ~ sn denote the projections. Use the construction process of Propo
sition 12.2 to extend the morphism (APL(po)mo) . (APL(Pl)ml) : (AWo, d) @ 

(AWl, d) ~ APL(Sk V sn) to a Sullivan model 

in which: dx = eo @ el and degYi > degx, i = 1,2, .... Denote this model 
simply by m: (AV, d) ~ APL(Sk V sn). 

Next write a = ak,n, so that Sk X sn = (SkV sn)Ua (Ik xln) . The commutati,'e 
square 

a 

is precisely (13.13), where ak and an are the maps defined at the start of this 
topic. In particular, Proposition 13.12 asserts that (AV tB lku, do:) is a commuta
tive model for Sk X sn, and provides an explicit isomorphism of H(AV tB Jku, do:) 
with H*(Sk X sn; Jk). 

We shall use this isomorphism to evaluate the classes [eoeI] and [u] on a 
certain homology class, [z]. The identity map of I is a singular I-simplex ~ E 

C l (I; Z). The chain Wk = EZ(~ @ ... @~) E Ck(Ik; Z) projects to a relative cycle 
representing [Ik] E Hk(Ik,8Ik;Z), as was observed in §4(c). Moreover, because 
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ak: 8h -7 {pt}, and because G*({pt};Z) = Z·pt, it follows that G.(ak)wk is a 
cycle in Gk(Sk; Z). Define a cycle z E G.(Sk X sn; Z) by 

z = EZ (G. (ak)wk 181 G*(an)wn) = G*(ak x an)Wk+n. 

As observed in §4(c), the cycle G*(ak)wk represents [Sk]. Since (§4(b)) EZ 
and A W induce inverse isomorphisms of homology, a quick computation gives 

On the other hand, it follows from diagram (13.15) that H*(ak x an)[u] = 8*w, 
where: [u] is regarded as a relative cohomology class in H*(Sk X sn, Sk V sn; Jk), 
w E Hn+k-l (sn+k-l; Jk) is dual to [sn+k-l] and 8' is the connecting homor
phism in cohomology for the pair (Ik X In, sn+k-l). Hence 

([u], [z]) = ([u], H.(ak x an)[Ik+n]) = (8*w, [Ik+n]) = (_l)k+n(w, 8[Ik+n]) . 

But, as observed in §4(c), 8[Ik+n] = [Sk+n-l]. Thus ([u], [z]) = (_l)k+n. 
Since dQx = eOel + (x; a)u (cf. §13(d)) it follows that [eOel] + (x; a)[u] = O. 

Evaluate this equation at [z] to find (_l)kn + (-l)k+n(x;a) = 0; i.e. 

(x; a) = (_I)(k+l)(n+l). 

In particular it follows that 

and 
(x; [rio], [illl w ) = (x; a) = (_I)(k+l)(n+l). 

Unless k = n is even, V k+n - l = 1kx, and this completes the proof. In the 
remaining case, e~ and e~ both have degree k + n - 1. However poa : Sk+n-l -7 

Sk factors as sk+n-l -7 Ik X In -7 Sk X sn -----+ Sk, and hence is homotopic 
to the constant map. Thus 

and 
(dle~; rio], [ill> = (e~; rio], [ill> = O. 

The same holds for e~, and so the proposition follows in this case as well. 0 

Example 1 The even spheres s2n. 
Let a E Ti2n(S2n) be represented by the identity map, and recall that the 

minimal Sullivan model of s2n has the form (A(e, e'), de' = e2 ). It is clear that 
(e; a) = 1, and so 

(e'; [a,a]w) = -(e2;a,a) = -2. 

In particular, [a, a]w is not a torsion class in Ti4n-l (S2n). o 
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Example 2 S3 V S3 Uf (Dg U D~). 
Let ao, al : 53 ----+ S3 V S3 denote the inclusions of the left and right hand 

spheres, and put ai = [ail E 1f3(S3 V S3). Attach Dg and D~ to S3 V 53 
by the maps [ao,[ao,allw]w and [aI, [al,ao]wlw· The same argument as in 
Proposition 13.12 shows that the resulting space has a commutative model of 
the form (A V EB lkuo EB lkUl, D) where UOUI = U6 = ui = uoA +V = Ul A +V = 0, 
Duo = DUI = 0, and Dv = dv+(v; lao, lao, al]w]W)Uo+(v; [aI, [aI, ao]w]W)Ul. 
Of course deg Uo = 8 = deg Ul. 

Now (AV,d) = (A(eO,el,x,Yo,Yl,Zl,Z2, .. . ),d) with 

and deg Zi ~ 9, i = 1,2,... . From Proposition 13.16 it follows that Dyo 
eox + Uo, DYI = elx + UI and D = d on the other basis elements of V. 

Moreover, it follows from diagram 13.15 that Uo and UI represent the coho
mology classes dual to the cells Dg and D~, so that [1], [eo], [ed, [uol and lUll is 
a basis for H(AV EB lkuo EB lkUI, D). This implies that a quasi-isomorphism 

is given by eo I-t eo, el I-t el, x I-t x, Yi I-t 0, Zi I-t 0, Uo I-t -eox, and UI I-t -elx. 
Thus (A(eo, el, x)/eoelx, d) is a commutative model for S3 V 53 U (Dg U Dn. 

We may use this to calculate the minimal Sullivan model of S3V 5 3U(Dg U Dn, 
which has the form 

Note that (w; [a, ,B]w) 
1f* (S3 V 53 V (Dg U D~)). 

Exercises 

° for all homotopy classes a and ,B in 
D 

1. Let f : (X, *) -+ (Y, *) be a continuous map between simply connected 
topological spaces. Determine a Sullivan representative of ~f : ~X -+ ~Y. 

2. Prove that the cofibre of the natural inclusion Cp2 ~ Cps and the space 
56 V 58 V SlO have the same Sullivan minimal model. 

3. Let (AV, d) be the minimal model of S2 V 52. Determine the elements of V:SS 

which are dual to Whitehead products. 

4. Let X be a simply connected H-space. Prove that [a, ,B]w = 0 for every 
a,,BE1f*(X)QSiQ. 

5. Let X be a simply connected space and a E 1fn(X), ,B E 1fp(X). 
a) Prove that if E: 1fq(X) -+ 1fq+I(X) denotes the morphism induced by the 

suspension map [5q,X]-+ [5q+1,~X] then E([a,,B]w) = 0. 
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b) Prove that if hurx : 7fq(X) ---+ Hq(X) denotes the Hurewicz homomorphism 
then hur([a, ;3h1') = O. 

6. Let X be a I-connected space. Prove that if X is formal then the Hure\vicz 
homomorphism hurx induces a surjective map A (7f*(X) (8; Q)~ --t H*(X; Q). 

7. Consider the quotient algebra H = /\(Xl' X2, ·1:3, X4)/(XlX2, X1X3X4, X2X:lX4) 

\vith deg Xl =deg x2=deg X3 =3 and deg .1'4 =5. Prove that the Sullivan minimal 
model (/\ V, d) of (H ,0) is given in low degrees by the following table. (The 
reader is invited to complete the table for 1~<::15.) 

... A ••••••••••••••• .................. . ................... . .. 

Y2 X 4 ,Y3 X 4 v 15 

Z7 
/' 

, Zs 
/' V 14 

{ 
Y2X1 ,Y2 X 3 

Y3X2 , Y3 X 3 V 13 
X2Y2 + Y3 X l 

YIX3 X 4 + Y3:J:1 

{ 
Z3 

/' 
, Z4 

/' 

Z5 
/' 

, Z6 
/' 

\/12 
Z7 

/' 

Zg /' 

XlX3 X 4,X2 X 3 X 4 Vll 

Zl X l Y2 
/' 

, Y3 
/' V 10 

V 9 

YIXI ,YlX2 I XlX411 X2 X411 X3 X 41 V 8 

Zl 
/' 

, Z2 
/' V 7 

X1 X 2 I X1 X311 X2X31 V 6 

Yl 
/' §] \15 

\14 

[Xllrx;l!x3l \/3 

... V2 V1 Va 

Assuming that (/\ V d) is the minimal model of a space X, express Yl, Zl and 
u in terms of \Vhitehead products of X. Define D : Va E9 VI E9 1'2 ---+ /\ F by 
DXi = 0, DYj = dYj ,Dz/,; = dz k , k i 1 and DZ1 = YIXl + X3X1· Prove, by 
induction on the lower degree, that D extends to a differential on /\ F such that 
Du = ZlXl - Y2' Determine the minimal model of (AV, D) in low degrees. 

8. Compute the minimal model of the space X = (S~ V S~) U[a,[a,blw Jw e8 (in 
low degrees). 
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In this section the ground ring is an arbitrary field ik of characteristic zero. 
In § 12 we shmv'ed how to model commutative co chain algebras (G, d) by Sulli

van algebras, (A\/, d). 1\0\\" any cochain algebra comes equipped with the specific 
morphism ik ----t (G, d), 1 H l. In this section we introduce relative Sullivan al
gebras (B G9 AV,d) and use them to model general morphisms (B,d) ----t (G,d) 
of commutative cochain algebras. \Ve shall then prove existence and unique
ness theorems in this setting. This will, in particular, eliminate the hypothesis 
Hl = 0 that \vas frequently supposed in §12. 

Definition A relative Sullivan algebra is a commutative cochain algebra of the 
form (B G9 Ali, d) where 

• (B, d) = (B cg: I, d) is a sub cochain algebra, and HO(B) = ik. 

• 1:g \/ = \/ = {\/P}P>l. 

= • \/ = U v'(k), \vhere \/(0) C \/(1) C ... is an increasing sequence of 
k=O 

graded subspac:es such that 

d: 1/(0) ----t Band d: v'(k) ----t B@ A1/(k - 1), k:::: l. 

The third condition is called the nilpotence condition on d. It can be restated 
as follows: if we put II( -1) = 0 and write II (k) = II (k - 1) @ Fk for some graded 
subspace Ilk then 

B @ A1/(k) = [B:g A\/(k - 1)] G9 ,\1/k, and d: Vic ----t B cg: A\/(k - 1), k:::: o. 

'{ote that \ve identify B = B cg: 1 and A 1/ = 1 @ A II. We shall follow this 
convention througho'ut the rest of this monograph. However, while (B, d) is a 
sub cochain algebra it will almost always be the case that the differential does 
not preserve AlT. The sub c:ochain algebra (B,d) is called the base algebra of 
(B :>9 AV d). 

A Sullivan algebra is just a relative Sullivan algebra with B = ik. On the 
other hand if c : (B, d) ----t ik is any augmentation then applying ik @B - to 
(B cg: .\ \/, d) yields a Sullivan algebra (XV, d), the Sullivan fibre at c. 

Now, generalizing the Sullivan models of §12, we consider morphisms of com
mutative cochain algebras 

'P: (B, d) ----t (G, d) 

such that HO(B) = ik and make the 

Definition A Sullivan model for <p is a quasi-isomorphism of co chain algebras 

m : (B :g A 1/, d) --=-r (G, d) 
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such that (B (9 All, d) is a relative Sullivan algebra with base (B, d) and m I B = <po 

H f : X ~ Y is a continuous map then a Sullivan model for ApL(f) is called 
a Sullivan model for f. 

In the case of the morphism lk ~ (A, d) this definition reduces to the defi
nition of a Sullivan model of (A, d). As in that case, we shall frequently abuse 
language and refer simply to (B (9 All, d) as the Sullivan model of <po 

Also as in the case of Sullivan algebras, the minimal relative Sullivan algebras 
play a distinguished role: 

Definition A relative Sullivan algebra (B (9 All, d) is minimal if 

Imd C B+ (9 All + B (9 A~2V 

A minimal Sullivan model for <p : (B,d) ~ (G,d) is a Sullivan model (B (9 

A ll, d) --=+ (G, d) such that (B (9 All, d) is minimal. 

Suppose <p : (B, d) ~ (G, d) has a Sullivan model m : (B (9 All, d) --=+ (G, d). 
By definition, HO(B) = lk and the isomorphism H(m) identifies H(>..) with H(<p), 
where>.. is the inclusion of B in B (9 All. Since II is concentrated in degrees:::: 1, 
it follows that HO(G) = lk and HI(<p) is injective. 

Conversely, if HO (B) = HO (G) = lk and if HI (<p) is injective we shall show 
that <p has a minimal Sullivan model, determined uniquely up to isomorphism. 
This depends on another result we shall also establish: any relative Sullivan 
algebra is the tensor product of a contractible Sullivan algebra and a minimal 
relative Sullivan algebra with the same base. 

The importance of relative Sullivan algebras resides in the fact that they 
provide good models for fibrations. Indeed, suppose p : X ---? Y is a fibra
tion with fibre F and suppose (Ap L (Y) (9 All, d) is a relative Sullivan model 
for APL(p) : ApL(Y) ~ ApL(X). In §15 we shall show that if Y is sim
ply connected and if one of H*(F; lk), H*(Y; lk) has finite type then (All, d) = 
lk (9A PL (Y) (APL(Y) (9 All, d) is a Sullivan model for F. It is from this that we 
deduce that the morphism defined in §13(c) is an isomorphism: 

for minimal Sullivan models (All, d) of suitable topological spaces X. 

This section is organized into the following topics: 

(a) The semifree property, existence of models and homotopy. 

(b) Minimal Sullivan models. 

(a) The semifree property, existence of models and homotopy. 
Let (B (9 All, d) be a relative Sullivan algebra. Multiplication by B makes 

(B (9 All, d) into a left (B, d)-module (cf. §6) and we shall make frequent use of 
the 
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Lemma 14.1 (B ® AV, d) is (B, d)-semifree. 

proof: Write V = U V (k) as in the definition, and set V ( -1) = O. Write 
k~O 

V(k) = V(k - 1) EB Vk, and simplify notation by writing B ® AV(k) = B(k). 
Then B(k) = B(k - 1) ® AVk and d: Vk ---+ B(k - 1). Hence 

(B(k - 1) ® A'Snvk, d) n 
(B(k _ 1) ® A <nVk, d) = (B(k - 1), d) ® (A Vk'O). 

Assume by induction that (B(k - 1), d) is (B, d)-semifree. Then this equation 
identifies the quotient on the left as (B, d)-semifree for each n ?: 1. It follows 
from Lemma 6.3 that each (B(k), d) and (B(k), d) / (B(k - 1), d) are (B, d)
semifree. Now a second application of Lemma 6.3 shows that (B ® AV, d) = 
Uk (B(k), d) is (B,d)-semifree too. 0 

A second useful fact is the 'preservation under pushout' of relative Sullivan 
algebras. Suppose (B ® AV, d) is a relative Sullivan algebra and 'IjJ : (B, d) ---+ 
(B', d) is a morphism of commutative cochain algebras with HO(B') = lk. Then, 
immediately from the definition, the cochain algebra 

(B',d) ®(B,d) (B ® AV,d) = (B' ® AV,d) 

is a relative Sullivan algebra with base algebra (B', d). It is called the pushout 
of(B®AV,d) along'IjJ. 

Notice that associated with the pushout is the commutative diagram of co chain 
algebra morphisms 

(B,d) • (B®AV,d) 

• j j .00< 

(B',d) - (B'®AV,d). 

To see that 'IjJ ® id commutes with the differentials, identify B ® AV = B ®B 
(B ® A V) and observe that 

'IjJ ® idAv = 'IjJ ®B (id B0AV ) : B ®B (B ® AV) ---+ B' ®B (B ® AV). 

Now Proposition 6. 7(iii) asserts that -®B(B ® AV, d) preserves quasi-isomorphisms, 
because (B ® AV, d) is (B, d)-semifree. There follows 

Lemma 14.2 If'IjJ is a quasi-isomorphism so is 'IjJ ® id 
(B' @AV,d). 

(B®AV,d) ---+ 
o 

We can now establish the existence of Sullivan models for morphisms: 

Proposition 14.3 A morphism i.p : (B,d) ---+ (C,d) of commutative cochain 
algebras has a Sullivan model if HO(B) = k = HO(C) and Hl(i.p) is injective. 
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proof: Choose a graded subspace Bl C B so that 

(BdO = lk, (Bd 1 EEl d(BO) = Bl and (Bl)n = B n, n;:::: 2. 

Clearly (Bl' d) is a sub co chain algebra and the inclusion 'P: (BI,d) ----t (B,d) 
is a quasi-isomorphism. In particular the restriction 'PI : (BI,d) ----t (C,d) of 'P 
satisfies: HI ('PI) is injective. 
~ow because (Bd O = lk the argument of Proposition 12.1 applies verbatim to 

show the existence of a Sullivan model ml : (BI ® A V, d) ~ (C, d) for 'Pl. Thus 
a commutative diagram of co chain algebra morphisms is given by 

(B,d) ®(B"d) (Bl ® AV,d) ___ m ___ • (C,d) 

~/ 
(Bl ® AV, d) 

in which j(z) = 1 ®B1 z. 
This may be rewritten as 

(B®AV,d) ____ m ___ ... (C,d) 

~/ 
(Bl ® AV, d) 

Lemma 14.2 and the preceding remarks show that i ® id is a quasi-isomorphism 
and (B ® A V, d) is a Sullivan algebra; hence m : (B ® A V, d) ~ (C, d) is a 
Sullivan model for 'P. 0 

Finally, we extend the lifting lemma to the relative case and define relative 
homotopy. To begin, suppose given a commutative diagram of morphisms of 
commutative co chain algebras 

(B,d) 
a • (A,d) 

ij ~ j ry 

(B®AV,d) 
'If; 

• (C,d) 

in which i is the base inclusion of a relative Sullivan algebra and 'fJ is a surjective 
quasi-isomorphism. An argument identical to that of Lemma 12.4 establishes 

Lemma 14.4 There is a morphism 'P : (B ® AV, d) ----t (A, d) such that 'Pi = a 
('P extends a) and 'fJ'P = 7jJ ('P lifts 7jJ). 0 
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\Ve come now to the notation of relative homotopy. Suppose 

are two morphisms of commutative cochain algebras, in which (B Q9 AV, d) is 
a relative Sullivan algebra and 'Po and ipl restrict to the same morphism a 
(B, d) ---* (A., d). Generalizing the definition in § 12(b) we have 

Definition ipo and 'PI are homotopic reI B ('Po ~ yl reI B) if there is a mor-
phism 

<I> : (B Q9 AV, d) ---* (A, d) &J A(t, dt) 

such that (id .100)1> = ipo, (id ·cd<I> = YI and <I>(b) = a(b) cs: 1, b E B. The 
morphism <I> is called a relative homotopy from 'Po to ipl. 

The identical argument of Proposition 12.7 shO\vs that homotopy reI B is an 
equivalence relation in the set of morphisms ip : (B &J A V, d) ---* (A, d) that 
restrict to a given a : (B, d) ---* (A, d). The homotopy class of y is denoted by 
[y] and the set of homotopy classes is denoted by [(B Q') AV, d), (A, d)L". 

Kotice that a : (B, d) ---* (A., d) makes (A, d) into a (B, d)-module via b· a = 
a(b)a. Now suppose yO, 'PI : (B Q9 AV, d) ---* (A., d) both restrict to a. 

Lemma 14.5 If'Po ~ yl reI B then ipO-ipl = hd+dh, where h: B@AV ---* A. 
is a B-linear map of degree -1, In particular, H('Po) = H('Pd. 

proof: Let <I> : (B Q9 A V, d) ---* (A, d) &J A(t, dt) be a homotopy reI B from ipo 

to ipl. As in the proof of Proposition 12.8, define h : B @ AV ---* A. by 

1>(z) = yo(z) + (YI(Z) - yo(z)) t + (-l)de g zh(z)dt + fl, 

where fl E A. &J (I + dI), I C A(t) denoting the ideal generated by t(l- t). Then, 
because d<I> = 1>d, we obtain yO - YI = dh + hd. Moreover, since <I> restricts to 
a in B it follows that 1>(bz) = a(b)<I>(z), bE B. Hence h(bz) = (_l) degb b· h(z); 
i.e., h is B-linear, D 

Finally, suppose that 

(B,d) ~~~-. (A,d) 

i 1 
(B ® AV, d) ----+-. (C, d) 

1,oJ 

is a commutative square of morphisms of commutative cochain algebra, in which 

• i is the base inclusion of a relative Sullivan algebra, and 

• 71 is a quasi-isomorphism. 
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Note that we do not require that 'T} be surjective. 
The proof of Proposition 12.9 also goes over verbatim to give 

Proposition 14.6 (Lifting lemma) There is a unique homotopy class reI B of 
morphisms 'P : (B 0 AV, d) ---t (A, d) such that 

and 'T}'P""" ~rel B. 

o 

(b) Minimal Sullivan models. 
Here we establish three basic results. 

• Any relative Sullivan algebra is the tensor product of a minimal relative 
Sullivan algebra and a contractible algebra (Theorem 14.9). 

• A quasi-isomorphism between minimal relative Sullivan algebras is an iso
morphism, provided it restricts to an isomorphism of the base algebras 
(Theorem 14.11). 

• Minimal Sullivan models of cochain algebras and of morphisms exist, and 
are unique up to isomorphism (Theorem 14.12). 

For ordinary Sullivan algebras these results extend Proposition 12.2 and several 
results in §12(c) to the case where Hl(_) is not necessarily zero. 

Before beginning the proofs, we make two small but useful observations. Con
sider first an arbitrary commutative graded algebra of the form B = .kEB{Bi}i>l, 
and a graded vector space V = {Vi};:::l. Let W C (B 0 AV)+ be a graded s,"ib
space such that 

The inclusions of Band W extend uniquely to a morphism a : B 0 A W ---t 
B 0 A V of graded algebras. 

Lemma 14.7 The morphism a: B 0 AW ---t B 0 AV is an isomorphism. 

proof: It follows from the hypothesis that vn C wn + B 0 A v<n, n ::::: 1, and 
an obvious induction then gives that a is surjective. Choose 0: : V ---t B 0 A W 
so that ao: = id, and extend id Band 0: to the morphism r = id B '0: : B 0 A V ---t 
B 0 AW. Then ar = id. 

Now suppose by induction that a and r restrict to inverse isomorphisms be
tween B0Aw<n and B0Av<n. Let wE wn. Then rw = w' +u with w' E wn 
and u E B+ 0 A w<n. Hence w = arw = aw' + au = w' + au. In other words, 
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By induction, a is injective in B0Av<n. Hence W = w' and u = 0; i.e., TW = w. 
This shows that Ta = id in wn; which closes the induction. 0 

Next, suppose (B 0 AV, d) is any relative Sullivan algebra. Choose a graded 
vector space Bl C B so that (Bl)D = lk, (Bl)l EB d(BD) = Bl and (Bd i = B i , 
i 2: 2. Then Bl is preserved by d, (Bl' d) is a sub cochain algebra and the 
inclusion in (B, d) is a quasi-isomorphism. 

Lemma 14.8 There is a relative Sullivan algebra (Bl 0 AV, d') and an isomor
phism, 

a: (B 0 AV, d') = (B, d) 0(Bt ,d) (Bl 0 AV, d') ~ (B 0 AV, d), 

restricting to the identity in B. 

proof: Write V = U V (k) with 
k2:0 

(B ® AV(k),d) = (B 0 AV(k -1) 0 AVk,d) 

and d : Vk ---+ B 0 A V (k - 1). Assume by induction we have constructed 
(Bl 0 AV(k - 1), d') and 

a: (B 0 AV(k -l),d') ~ (B 0 AV(k -l),d). 

Lemma 14.2, applied to the inclusion (Bl,d) ---+ (B,d) shows that the inclusion 
(Bl 0 AV(k - 1), d') ---+ (B ® AV(k - 1), d') is a quasi-isomorphism. Hence if 
{va} is a basis of Vk there are d'-cocycles Za E Bl 0 AV (k - 1) and elements 
Ya E B 0 AV(k - 1) such that dVa = a(za + d'Ya). Extend d' and a to Vk by 
setting diVa = Za and aVa = Va - aYa. 

By construction, a is a co chain algebra morphism. By induction, it restricts to 
an isomorphism of B ® A V (k -1) onto itself. Denote the inverse of the restriction 
by T, extend T to B ® AV(k) by setting TVa = Va + Ya, and verify that T and a 
are inverse isomorphisms of B 0 A V (k). 0 

Theorem 14.9 Let (B0AV, d) be a relative Sullivan algebra. Then the identity 
of B extends to an isomorphism of cochain algebras, 

(B 0 AW, d') 0 (A(U @ dU), d) ~ (B 0 AV, d), 

in which (B ® AW, d') is a minimal relative Sullivan algebra and (A(U EB dU), d) 
is contractible. 

proof: First consider the case B = lk @ {Bi}i2:l' The decomposition 
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defines a differential do : V -----+ 1/ by the condition dv-dov E (B+ 0AV) EBA~2V, 
v E V. Write V as the increasing union of graded subspaces V(k) such that 
d: 1l(k) -----+ B Q3; AV(k - 1) and note that 

d - do : V(k)n -----+ B 0 A (V(k - 1)<::n) . 

Choose an increasing sequence U(O) C U(l) C ... C V of graded subspaces 
such that 

U(k) e (kerdo n V(k)) = V(k). 

(Since U(k - 1) n (kerdo n V(k)) = 0, U(k - 1) can be enlarged to the direct 
summand U(k).) Set U = Uk U(k). Then U 8 kerdo = V and so we may write 

V = U 6 doU EB W, do: U ~ doU, do: W -----+ o. 

This construction has the following useful property: for elements u, Ul E U 
and wE W, 

Ul + dou + wE ll(k) ==} Ul E V(k). (14.10) 

Indeed, we may write Ul + dou + w = u' + z' with u' E U(k) and z' E kerdo. 
Thus Ul - U' = z' - dou - w E Un ker do = 0, and Ul = u'. 

),' ow consider the subspace U EO dU EB W C B 0 A V. Apply Lemma 14.7 to 
conclude that this inclusion, together '\lith idB, extends to an isomorphism of 
graded algebras, 

(J: B 0AU 0AdU 0AW ~ B0AV 

Denote the contractible algebra AU Q3; AdU simply by E, and let d = (J-ld(J 
be the induced differential in B 0 E 0 A W. Use (J to identify the two co chain 
algebras and so regard V as a subspace of B 0 E 0 AW. 

Our next step is to exhibit the inclusion 

(B, d) 0 (E, d) -----+ (B Q3; E Q3; AW, d) 

as the inclusion of a relative Sullivan algebra. Define an increasing sequence of 
graded subspaces W(O) C W(I) C ... C W by W(O) = {w E W I dw E B 0 E} 
and W(e) = {w E W I dw E B Q3; E 0 AW(e - I)}, e 2 1. Set Z = Ue W(e). It 
is enough to show Z = ~t~. 

Assume v<n C B 0 E 0 AZ. We show first by induction on k that 

V(k)nCB0E0AZ. 

Indeed if v E v(o)n we have dv E B, so that dov = 0 and v = dou + w, some 
u E un-I, W E w n. As observed above, (do - d)u E B ® Av<n, and hence 
(do - d)u E B 0 E 0 AZ. It follows that 

d(dou) = d(do - d)u E B 0 E Q3; AZ. 
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But dv E B and so dw = dv - ddou E B 0 E 0 AZ. In particular, we must have 
dw E B 0 E 0 A W (£), some £, and so w E W (£ + 1). On the other hand, we have 
just seen that (do - d)u E B 0 E 0 AZ. Since du E E by definition, it follows that 
dou E B0E0AZ. Thus v = dou+w E B0E0AZ; i.e., v(o)n c B0E0AZ. 

Suppose V(k _l)n C B 0 E 0 AZ. Let v E V(k)n and write v = Ul + dou + w, 
with Ul E un, u E Un- 1 and wE W n . As observed in (14.10), then Ul E V(k). 
Hence (d - dO)Ul E B 0 AV(k - l)Sn C B 0 E 0 AZ. The same argument as 
just above for k = 0 shows that (d - do)dou = d(do - d)u E B 1& E 0 AZ. Hence 

dw = (d-do)w E B@E0AZ 

and so, as in the case k = 0, it follows that w E Z. As in that case, dou E 
B 0 E 0 AZ, while Ul E E by definition. This shows that V(k)n c B 1& E 0 AZ. 

It follows by induction on k that vn C B 0 E 0 AZ, and so a second induction 
on n shows that V c B 0 E 0 AZ. This implies that B 0 E 0 AZ is all of 
B 0 E 0 AW, and so Z = W, as desired. 

Finally, let c : E -t lk be the augmentation. Then id·c : (B, d) 0 (E, d) -t 

(B, d) is a quasi-isomorphism. Hence it defines a surjective quasi-isomorphism 

id'c0id: (B0E0AW,d) -t (B0AW,d'), 

as described in Lemma 14.2. 
In particular, (B 0 AW, d') is a relative Sullivan algebra and, since d: W -t 

B+ 0 E 0 AW + (B 0 E 0 AW)+ . (B 0 E 0 AW)+, it follows that d' : W -t 

B+ 0 AW ED A2: 2W; i.e., (B 0 AW, d') is minimal. Apply the Lifting lemma 14.4 
to extend id B to a morphism 

cp: (B 0 AW, d') -t (B 0 E 0 AW, d) 

such that (id·c 0 id)cp = id. 
Then cpw-w E B0E+0AW. This implies (Lemma 14.7) that an isomorphism 

(B 0 AW, d') 0 (A(U ED dU)) -=+ (B 0 AV, d) 

is given by <I> 0 W I-t u( cp<I> . w). This completes the proof of the theorem in the 
case BO = lk. 

Finally, suppose (B 0 AV, d) is a general relative Sullivan algebra. Write 
(B ° AV,d) = (B,d) 0(B1 ,d) (Bl ° AV,d), as in Lemma 14.8, with (Br)° = lk. 
By what we have just proved, (Bl 0 AV, d) ~ (Bl 0 AW, d') 0 A(U ED dU). Thus 
(B 0 AV, d) ~ (B 0 AW, d') 0 A(U ED dU). 0 

Next, consider a cochain algebra quasi-isomorphism 

TJ: (B' ° AV', d) ~ (B 0 AV,d) 

between minimal relative Sullivan algebras. 
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Theorem 14.11 If TJ restricts to an isomorphism TJE : B' ~ B then TJ itself 
is an isomorphism. 

proof: Consider the diagram 

(B' @AI/',d) 

;/~" 
(B, d) - (B @ A V, d) 

We apply an argument of Gomez-Tat 0 [65] to extend TJi/ to a morphism, : 
(B@AY,d) ---+ (B' @AV',d) such that TJ, = id. 

By the very definition of minimality, d : 1/ ---+ B+ ~ A V EB A 2:2V. Thus if 
V = Uk V(k) with I/(k) = V(k -1) 6 Vk and d: I/k ---+ B@AV(k -1) it follows 
that d: Vkn ---+ B ~ Av<n ~ A (V(k - l)n). Thus to construct, it is enough to 
assume it has been defined in A. = B iZJ Av<n iZJ A (V(k - l)n) and to extend it 
to A. cg; A I/kn . 

Observe that TJ factors to give a quasi-isomorphism of cochain complexes, 

B' cg; AV' 'ij B cg; AV 
( ---+ , 

, A.) co: A. 

(we are dividing by graded subspaces, not ideals). The cochain complex B cg; 
A V / A. contains no elements of degree n - 1, and hence no coboundaries of degree 
n. Thus every cocycle of degree n is the image, under fj, of a co cycle of degree 
n in (B' iZJ AV')/r(A.). In particular, if {va} is a basis of Vt then there are 
elements Xa E B' iZJ A V' and elements aa, a~ E A. such that 

Hence dVa = d7)(xa - ,aa) = a~ - daa. Extend, to v~n by putting ,Va = 

Xa - ,aa' 
This completes the construction of f. Since TJ~i = id, , is also a quasi

isomorphism. l\ow the same argument applied to , gives a morphism X : 
(B' cg; AV',d) ---+ (B iZJ AV,d) such that 'X = id. Thus, is both injective 
and surjective; i.e., it is an isomorphism. Since TJ, = id, TJ is the isomorphism ,-I. 0 

Finally, suppose 
rp: (B,d) ---+ (C,d) 

is a morphism of commutative cochain algebras such that HO (B) = lk = HO (C) 
and Hl(rp) is injective. 
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Theorem 14.12 The morphism t.p has a minimal Sullivan model 

m: (B 0 AV,d) ~ (C,d). 

If m' : (B 0 AV', d) ~ (C, d) is a second minimal Sullivan model for t.p then 
there is an isomorphism 

a: (B 0 AV,d) ~ (B 0 AV',d) 

restricting to id B, and such that m' a '" m reI B. 

proof: In Proposition 14.3 we showed t.p had a Sullivan model, and in Theo
rem 14.9 we showed that this is the tensor product of a contractible algebra and 
a minimal relative Sullivan algebra. Thus t.p has a minimal Sullivan model. 

Given two such models we may apply Proposition 14.6 to the diagram 

(B,d) --_. (B0AV',d) 

j + 
~ (B0AV,d) --m-- (C,d) 

to extend idB to a morphism a : (B 0 AV, d) ---t (B 0 AV', d) such that m' a '" 
mrel B. Now Theorem 14.11 asserts that a is an isomorphism. 0 

Corollary Any commutative cochain algebra (A, d) satisfying HO(A) = k and 
any path connected topological space X have a unique minimal Sullivan model. 

Finally, let t.p : (A V, d) ---t (AW, d) be an arbitrary morphism between Sullivan 
algebras. Recall that do : V ---t V and do : W ---t W denote the linear parts of 
the differentials (§12(a)) and that the linear part of t.p is a morphism of complexes 
Q(t.p): (V,do) ---t (W,do). 

Proposition 14.13 Ift.p: (AV, d) ---t (AW, d) is a morphism of Sullivan alge
bras then t.p is a quasi-isomorphism if and only if H (Q (t.p)) is an isomorphism. 

proof: Write (AV,d) = (AV, d) 0 (E,d) and (AW, d) = (AW, d) 0 (F,d) with 
(A V ,d) and (AW, d) minimal Sullivan algebras and (E, d) and (F, d) contractible 
Sullivan algebras. Let 'lj; be the composite (AV,d) ---t (AV,d) ~ (AW,d) ---t 

(AW, d). Then we may identify H(t.p) = H('lj;) and H(Q(t.p)) = Q('lj;). But by 
Theorem 14.11, 'lj; is a quasi-isomorphism if and only if it is an isomorphism. If'lj; 
is an isomorphism so is Q('lj;). Conversely, suppose Q('lj;) is an isomorphism, then 
'lj; induces isomorphisms A2mV /A>mv ~ A2mw /A>mw. By induction it in

duces isomorphisms AV /A>mv ~ AW /A>mw. Since (AV)k = (AV /A>mv)k 
for m > k it follows that 'lj; is an isomorphism. D 
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Example 1 The acyclic closure, (B 0 A V, d). 
Suppose (B, d) is an augmented commutative cochain algebra such that 

HO (B) = lk and HI (B) = o. A minimal Sullivan model (B 0 AV, d) ~ lk 
for the augmentation E : (B, d) ---+ lk is called an acyclic closure for (B, d). We 
show that the quotient differential d in A V is zero. 

Form the relative Sullivan algebra (B 0 AV 0B B 0 AV, d) = (B0AV0AV, d). 
The inclusions of the left and right tensorands are the base inclusions Ao, Al : 
(B 0 A V, d) ---+ (B 0 AV 0 AV, d) of relative Sullivan algebras. Hence E 0,Xo -
and E 0'xl - are surjective quasi-isomorphisms from (B 0 AV 0 AV, d) to (AV, d). 

Let 0: : (A V, d) ~ (B 0 AV Q9 AV, d) be a quasi-isomorphism such that (E c>9'xl 
-) 00: = id (Lemma 12.4). Then (E c>9,Xo -) 00: is a quasi-isomorphism of the 
minimal Sullivan algebra (AV, d). Hence (Theorem 14.11) it is an isomorphism. 
Denote by (3 the inverse isomorphism, and consider the composite morphism 

- '" E0id 0id - - (30id - -
J1: (AV, d) ---+ (B0AVc>9AV,d) ) (AV, d)0(AV, d) -'-----i (AV,d)c>9(AV,d). 

By construction, for z E A +V we have 

J1z = z c>9 1 + a + 1 c>9 z, some a E A + V c>9 A + V . 

Hence for any cocycle z, 

In Example 3, §12(a), we showed that a certain algebra H*(X; lk) was a free 
graded commutative algebra using by the existence of a morphism H*(X; lk) ---+ 
H* (X; lk) c>9 H* (X; lk) satisfying this condition. That argument now shows that 
H(AV, d) is a free graded commutative algebra, AW. Define a quasi-isomorphism 

tp : (A W, 0) ~ (A V, d) by sending a basis of W to representing co cycles in A V. 
Then tp is an isomorphism (Theorem 14.11). D 

Example 2 A commutative model for a Sullivan fibre. 
Let tp : (B, d) ---+ (A, d) be a morphism of commutative cochain algebras both 

of which satisfy HO( -) = lk and HI (-) = o. Extend tp to a minimal Sullivan 

model m : (B Q9 AW, d) ~ (A, d) and recall that (AW, d) = lk c>9B (B c>9 AW, d) 
is the Sullivan fibre of t.p at an augmentation E : B ---+ lk. 

We construct a commutative model for (AW, d) as follows. Let (B c>9 AV, d) be 
an acyclic closure for (B, d). Since - 0B (M, d) preserves quasi-isomorphisms 
for any (B, d)-semifree module (M, d) - cf. Proposition 6.7 - it follows that 

are quasi-isomorphisms; i.e. 

(A 0 AV, d) = A c>9B (B c>9 AV, d) 
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is a commutative model for the Sullivan fibre (AW, d). o 

Exercises 

1. Let ~ : (B@/\V,d) -+ (B@/\W,d) be a morphism of relative Sullivan algebras 

which restricts to the identity on B and let (B@/\ W, d) <P~' (A, d) ~ (A', d') be 
morphisms of commutative differential graded algebras. Assume that ~ and 'ljJ 
are quasi-isomorphisms and that rpo, rpl restrict to the same morphism (B, d) -+ 
(A, d). Prove that the following assertions are equivalent: (i) rpo ""' rpl reI B, (ii) 
rpo~ ""' rpl ~ reI B, (iii) 'ljJrpo ""' 'ljJrpl reI B. 

2. Let (/\ V, d) be a Sullivan minimal algebra. 
a) Fix an automorphism 'ljJ of (/\ V, d) such that for each x E (/\ V, d) there 

is some n (depending on x) such that ('ljJ - id,'\V )n(x) = O. Prove that () = 
ex) (_l)n-l L ('ljJ - id,'\V)n is a derivation of (/\ V, d) , homogeneous of degree 0 

n 
k=l 
which commutes with d and that for each x E (/\ V, d) there is some n (depending 
on x) such that ()n(x) = O. 

00 1 
b) Prove that rp = - L ( ),()n is a linear map which commutes with d 

n+ 1 . 
k=O 

and that ()rp = rp() = 'ljJ - id. 
c) Prove that (/\u@ /\V, D) with u of degree 1 and Dv = u@()(v) + 1 @dv, is 

a minimal model of the kernel of 1'1 • id - EO • 'ljJ : /\(t, dt) @ (/\ V, d) -+ (/\ V, d). 

3. Let (B @ /\ V, d) be a relative Sullivan algebra and consider the contractible 
co chain algebra E(sV) = /\sV @ AV where Vi = Vi. 

a) Prove that (B @ /\V, d) @ E(sV) = (B @ /\(V EB sV EB V), D) is a relative 
Sullivan model. 

b) Prove that the natural inclusion AO : (B@/\V, d) <::...-..t(B@/\(VEBsVEBV), D) 
is a quasi-isomorphism. 

c) Consider the degree -1 derivation 5 defined in (B 0 /\(V 8 sV EB V), D) by 
Sex) = sx, x E V and S(B) = S(sV) = SeV) = o. Prove that () = SD + DS 

00 ()n 
is a degree 0 derivation and that eO = L , is an automorphism of differential 

n. 
n=O 

graded algebras. 
ex) ()j 

d) Prove that Al = eO AO satisfies Al (x) = X + i; + '"' (. ) (So d(x)). 
L... J +1! 
)=0 

e) Let rpo ,rpl : (B@/\V, d)-+(A, dA ) be morphisms of commutative differential 
graded algebras which restrict to the same morphism (B, d) -+ (A, dA). We write 
f ::::i 9 if there exists a morphism of differential graded algebras ~ : (B @ /\(V EB 
sV EB V),D) -+ (A,dA ) such that ~AO = rpo and ~Al = rpl. Prove that ::::i is an 
equivalence relation and that rpo ::::i rpl implies that H(rpo) = H(rpd. 
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f) Assume B = Ik = HO (A) - Prove that !.po ~ !.pI if and only if !.po '" !.pI- Does 
this result extend to the case HO(B) = Ik = HO(A)? 



15 Fibrations, homotopy groups and Lie group 
actions 

In this section the ground ring is an arbitrary field k of characteristic zero. 
In this section we see how relative Sullivan algebras model fibrations. In par

ticular, if f : X ---+ Y is a continuous map with homotopy fibre F we construct a 
Sullivan model for F directly from the morphism ApL(f): APL(Y) ---+ A.PL(X), 
provided Y is simply connected with rational homology of finite type. 

We use this to construct Sullivan models for many more interesting spaces. 
\Ve are also able, at last, to establish the isomorphism 

(promised in §12 and §13(c)) between the generators of a minimal model and 
the dual of the homotopy groups. 

Finally we apply Sullivan models to the study of principal bundles and group 
actions of a path connected topological group G. Our main focus is on the case 
when H.(G; k) is finite dimensional, which includes all connected Lie groups. 
In particular, we use Milnor's universal bundle (§2) to obtain a simple form for 
the Sullivan model of any principal bundle. We also consider models for group 
actions and see, for example, rational homotopy reasons why spaces may not 
support free actions of groups such as 53 x 5U(3). 

Much of the material was originally developed by H. Cartan, Koszul and Weil 
in the context of smooth principal bundles, with the aid of principal connections 
and the curvature tensor. This was described in three lectures [33] [34] [102] 
given in Brussels in 1949 and provided one of the major clues that led to Sul
livan's introduction of minimal models. Indeed, the main result announced in 
Koszul's lecture is the construction of (what we now call) a Sullivan model for a 
homogeneous space. 

This section is organized into the following topics: 

(a) :vlodels of fibrations. 

(b) Loops on spheres, Eilenberg-:vlacLane spaces and spherical fibrations. 

(c) Pullbacks and maps of fibrations. 

(d) Homotopy groups. 

(e) The long exact homotopy sequence. 

(f) Principal bundles, homogeneous spaces and Lie group actions. 

(a) Models of fibrations. 
Consider a Serre fibration of path connected spaces 

p: X ---+ Y, 
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whose fibres are also path connected. Let j : F ----t X be the inclusion of the 
fibre at Yo E Y. Then ApL converts the diagram 

APL(F) /PL(j) APL(X) 

to I I APLCp) (15.1) 

Yo"--+ Y lk +-- APL(Y) , 
E 

where E is the augmentation corresponding to Yo. 
Observe that Hl (ApL(p)) is injective. Indeed, since F is path connected it 

follows from the long exact homotopy sequence that Til (p) is surjective (Propo
sition 2.2). Hence Hl(p;Z) is surjective (Theorem 4.19). But 

and so Hl(P;lk) is also surjective. Thus the dual map, Hl (ApL(p)) = Hl(p;lk) 
is injective (Proposition 5.3(i)). 

Since Hl (ApL(p)) is injective, Proposition 14.3 asserts the existence of a 
Sullivan model for p, 

m: (APL(Y) @ AV, d) -=+ APL(X). 

(In fact (Theorem 14.12) there is even a minimal Sullivan model for p.) 
The augmentation E : ApL(Y) ----t lk defines a quotient Sullivan algebra 

(AV,d) = lk@APLCY) (ApL(Y) @AV,d), 

which is called the fibre of the model at Yo. 
Since ApL(j)APL(p) reduces to E in ApL(Y), ApL(j)m factors over E . id to 

give the commutative diagram of co chain algebra morphisms 

APL(F) -+._A.:...:PL::..:cC"-'.j)_ ApL(X) 

m1 1m (15.2) 

(AV,d) ...... -c.,-Od- (APL(Y)@AV,d) 

We show now that, under mild hypotheses, m is a quasi-isomorphism. Thus in 
this case m : (A V, d) -=+ ApL(F) is a Sullivan model for F: the fibre of a model 
is a model of the fibre. 

Theorem 15.3 Suppose Y is simply connected and one of the graded spaces 
H.(Y; lk), H.(F; lk) has finite type. Then 

m: (AV, d) ----t ApL(F) 

is a quasi-isomorphism. 
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proof: Suppose first that p is a fibration. We wish to apply Theorem 7.10, with 
diagram (15.2) corresponding to diagram (7.9). For this we need to verify two 
things: first, m has to be an ApdY)-semifree resolution and second, diagram 
(15.1) has to be weakly equivalent to the corresponding diagram with C* (-) 
replacing Apd -). But the first assertion is just Lemma 14.1 and the second 

follows from the natural co chain algebra quasi-isomorphisms C*( -) --='+ • ::
Apd -) of Corollary 10.10. Thus we may apply Theorem 7.10 and it asserts 
precisely that m is a quasi-isomorphism. 

l\"ow suppose only that p is a Serre fibration. In the diagram constructed in 
§2 (c), 

).. 

X -----. X Xy MY 

,..\x = (x, const. path at px), 

Y 

..\ is a map from a Serre fibration to a fibration. Since ..\ is a homotopy equiva
lence it restricts to a weak homotopy equivalence 5.. : F ~ X x y PY (Proposi
tion 2.5(ii)). 

Moreover, Apd..\) is a surjective quasi-isomorphism. Apply the Lifting lemma 
14.4 to the diagram 

APL(Y) APL(q). APL(X Xy MY) 

j ....... ~ ........ ~jAPd') 
(APL(Y) 0 AV, d) ~. APL(X) 

to construct the quasi-isomorphism n extending Apdq). Then n : (AV,d) -----+ 
ApdX x y PY) is a quasi-isomorphism by the argument for fibrations, and m 
is the quasi-isomorphism Apd5..)n. 0 

Remark In [82] the theorem is proved under the weaker hypothesis that 11"1 (Y) 
acts locally nilpotently in each Hi(F; Jk). It is in fact possible to show that this 
hypothesis and the hypothesis that one of H.(Y;Jk), H.(F;1k) has finite type 
are both necessary for the conclusion of the theorem to hold. 0 

More generally, suppose that 

f : X -----+ Y 

is an arbitrary continuous map from a path connected topological space X to a 
simply connected topological space Y. Suppose further that H.(Y; Jk) has finite 
type. Since Y is simply connected H1(y; Jk) = 0 and HI (APL(f)) is injective. 
Thus f has a Sullivan model 

m: (APL(Y) o AV,d) ~ APL(X), 
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as above. In this case the argument in the proof of Theorem 15.3 shows that the 
fibre (A V, d) at Yo is a Sullivan model of the homDtopy fibre of f. 

Return to the situation of the Serre fibration p : X ~ Y with which this 
topic began, and recall the notation of (15.1). Theorem 15.3 establishes a fun

damental property for relative Sullivan models (APL(Y) r21AV,d) ~ APL(X), 
It is, however, often useful to replace ApdY) by a Sullivan model, and this is 
done as follows. 

Choose a Sullivan model my : (AVy,d) ~ APL(Y). Since V}' = {V?}i>l 
by definition, there is a unique augmentation c : (A Vy ,d) ~ lk. Construct a 
commutative diagram of cochain algebra morphisms 

APL(Y) 
APL(p) . APL(X) 

APL(j) . APL(F) 

m+ + 1m (15.4) 

(AVy,d) . (A Vy r2l A V, d) . (AV, d) 
c·id 

by requiring that 

• i is the inclusion of a relative Sullivan algebra, and 

• m is a Sullivan model for the composite Apdp)my. 

Then Apdj)m factors over c' id to yield m. 
As in Theorem 15.3, we now restrict to the case that Y is simply connected 

and one of H*(F; lk), H*(Y; lk) has finite type. With these hypotheses we have 

Proposition 15.5 The three morphisms my, m and m in (15.4) are all Sul
livan models. 

proof: (i) The morphism my. This is a Sullivan model by hypothesis. 
(ii) The morphism m. This is a quasi-isomorphism by construction. 

Thus we have only to exhibit (AVy r2l AV, d) as a Sullivan algebra. Put W = 
Vy EB V and define an increasing sequence of subspaces 0 = W ( -1) C W (0) C 
... W by setting W (£ + 1) = {w E W I dw E A W (£)}. It suffices to show that 
W = Ue W(£). 

Now Vy = Uk Vy(k) and V = Uk V(k) with d: Vy(k) ~ AVy(k - 1) and 
d: V(k) ~ AVy e AV(k - 1). Thus Vy(k) C W(k). If V(k - 1) cUe W(£) and 
v E V(k) then since dv E AVy r2l AV(k -1), dv is in some ATV(£). Hence v is in 
some W(£ + 1) and V(k) C U W(£) as well. 

(iii) The morphism m. Write 

ilPL (Y) e(AVy,d) (AVy r2l AV,d) = (APL(Y) r2l AV,d) 

This is a relative Sullivan algebra, and m factors as 

, ,my@id () T) Ap L(p)·m 4 ( ) (Avy r21AV,d) ) (APL Y r21AT,d )" PL X . 



Sullivan Models 199 

But my. ® id is a quasi-isomorphism (Lemma 14.2). Hence so is APL(p) . m. 
Now apply Theorem 15.3. 0 

Since the morphism ApL(p)my has a minimal Sullivan model (Theorem 14.12) 
the relative Sullivan algebra (AVy,d) --* (AVy ® AV,d) may be taken to be 
minimal. In this case (A V, d) is minimal and m : (A V, d) ~ APL (F) is the 
minimal model of F. Thus Proposition 15.5 has the: 

Corollary Suppose (AVy , d) is a Sullivan model for Y and (AV, d) is the mini
mal Sullivan model for F. Then X has a Sullivan model of the form (AVy®AV, d) 
in which (AVy, d) is a sub cochain algebra and dv - dv E A +Vy ® AV, v E V.O 

Note: (AVy ® AV, d) is minimal as a relative Sullivan algebra, but it is easy to 
make examples in which it is not minimal as a Sullivan algebra. 

Proposition 15.5 has an important converse. Again suppose p : X --* Y is the 
Serre fibration with which this topic began. Let my : (AVy,d) ~ ApdY) be 
a Sullivan model, but now suppose given 

• a relative Sullivan algebra (AVy,d) --* (AVy ® AW,d) . 

• a cochain algebra morphism n: (AVy ® AW,d) --* ApdX) that restricts 
to APL(p)my in (AVy, d). 

Then, as above, ApL(j)n factors over E· id to yield n: (AW, d) --* ApdF). 
As in Theorem 15.3 we suppose now that Y is simply connected and that one 

of H*(Fik),H*(Yik) has finite type. 

Proposition 15.6 If n is a quasi-isomorphism then so is n, i.e., 

n: (AVy ® AW,d) --* APL(X) 

is a Sullivan model for X. 

proof: In the proof of Proposition 15.5 we showed that (AVy ® AW, d) was a 
Sullivan algebra. Thus it suffices to show that n is a quasi-isomorphism. 

Let m : (AVy ® AV, d) ~ APL (X) be the Sullivan model of diagram (15.4). 
Use Proposition 14.6 to construct a morphism of cochain algebras cp : (AVy ® 
AW, d) --* (AVy ® AV, d) such that 

cp = id in AVy and mcp '" n reI (A Vy ,d) . 

Now apply k ®AVy - to obtain a morphism cp : (AW,d) --* (AV,d) such 
that mcp '" n. Thus H(m)H(cp) = H(n). Since H(m) is an isomorphism 
(Proposition 15.5) so is H(cp). Put I(k) = (A~kVy ® AW, d) and J(k) = 
(A~kVy ®AV,d). Then cp restricts to maps I(k) --* J(k). The induced maps 
I(k)j I(k + 1) --* J(k)j J(k + 1) have the form 

. - k - k -zd®cp: (A Vy,do) ® (AW,d) --* (A Vy,do) ® (AV, d), 
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where do A Vy -+ A Vy is the 'linear part' of d. Thus these maps are all 
quasi-isomorphisms. 

An obvious induction on k now shows that rp induces quasi-isomorphisms 

B(k): (AVy @AW,d)jI(k) --=+ (AVy@AV,d)jJ(k) 

for k 2: 1. Since Vy = {V? } i2: 1 by the definition of a Sullivan algebra, I(k) and 

J(k) are concentrated in degrees 2: k. Thus we may identify Hi(rp) = Hi(B(k)) 
for i < k, and so rp is a quasi-isomorphism too. Since mrp '" n, so is n. 0 

(b) Loops on spheres, Eilenberg-MacLane spaces and spherical fibra
tions. 

We apply the results of §15(a) to compute explicit Sullivan models in some 
important, but elementary, examples. 

Example 1 The model of the loop space OSk , k 2: 2. 
Let p : P Sk -+ Sk be the path space fibration, with fibre OSk. If k is odd the 

minimal Sullivan model for Sk has the form ms : (A(e),O) --=+ APL(Sk). Define 

m: (A(e,u),du = e) -+ APL(PSk) 

by me = ApL(p)mse and mu = q" where q, is any co chain satisfying dq, 
ApL(p)mse. (Since PSk is contractible any co cycle of positive degree is a 
coboundary.) By inspection, m is a quasi-isomorphism. Hence it follows from 
Proposition 15.5 that m factors to yield a minimal Sullivan model 

Thus H* (OSk; Jk) is the polynomial algebra on a class [u] of even degree k - 1. 
If k is even then the minimal Sullivan model for Sk has the form ms : 

(A(e, e'), de' = e2 ) --=+ ApL(Sk). In this case ApL(p)ms extends to a quasi
isomorphism 

m: (A(e,e',u,u'), du = e, du' = e' - eu) -+ ApL(PSk). 

Thus a minimal Sullivan model for OSk is given by 

In particular H*(OSk; Jk) is the tensor product of the exterior algebra on the 
class [u] and the polynomial algebra on the class [u']. Here deg[u] = k - 1 and 
deg[u'] = 2k - 2. 

Note that whether k is even or odd the Hilbert series (§3(e)) of H*(OSk; Jk) 
is given by 

o 
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Example 2 The model of an Eilenberg-MacLane space. 
Let X be an Eilenberg-1VlacLane space of type (Ti, n), n 2: l. Thus (cf. §4(f)) 

Ti i (X) = 0 for i # n and there is a specified isomorphism Tin (X) e,; Ti. Assume Ti 
is abelian (this is automatic for n > 1) and set vn = Hom(Ti, lk). The Hurewicz 
theorem 4.19 asserts that Hi(X; Z) = 0, 1 :::: i < n and that the Hurewicz 

map is a natural isomorphism Ti --=+ H n (X; Z). This extends to an isomorphism 

Ti (>9z lk ~ Hn(X; lk), which dualizes to an isomorphism vn F- Hn(x; lk). 
~ow suppose Ti (>9z lk is finite dimensional. \Ve shall show that the minimal 

Sullivan model of X is given by 

where m induces the isomorphism vn e,; Hn(x; Jk) above. This is clearly equiv
alent to the classical assertion: H* (X; lk) is the exterior algebra on Hn (X; lk) if 
n is odd and is the polynomial algebra on H n (X; lk) if n is even. 

The proof is by induction on n, beginning with n = l. Let al,···, ar E Ti 
represent a basis of Ti Q9z lk. These elements define a homomorphism Q : Z x 
... x Z --t Ti. By Propositions 4.20 and 4.21 there is a continuous map f : 
K(zr,2) --t K(Ti, 2) such that Ti2(f) = Q. Hence Ti*(f) (>9z lk is an isomorphism, 
and so Ti*(f) Q<lz({] is an isomorphism. Now apply Theorem 8.6 to conclude that 
H*(Of; ((]) is an isomorphism, \vhence also H*(Of; lk) is an isomorphism. 

But OK(Ti, 2) is an Eilenberg-:\IacLane space of type (Ti,l) and OK(zr,2) 
is an Eilenberg-:\IacLane space of type (zr,l). Thus if X is any Eilenberg
MacLane space of type (Ti, 1), X has the weak homotopy type of OK (Ti, 2), 
by Proposition 4.2l. Similarly SI x ... X SI has the weak homotopy type of 
OK(zr,2). It follows that H*(X: lk) e,; H*(SI X ... X SI; lk); i.e. is the exterior 
algebra on r generators in degree one. 
~ow assume n 2: 2 and that our result is established for n - l. Let X be an 

Eilenberg-MacLane space of type (Ti, n) with Ti Q<iz lk finite dimensional. Then, 
as above, OX is an Eilenberg-~lacLane space of type (Ti, n - 1). By induction 
OX has a Sullivan model of the form (AU n - l ,O) with Un- l e,; Homz(Ti,lk). In 
particular, H*(OX:lk) has finite type. 

Let (AW, d) be a minimal Sullivan model for X. Since H*(OX;lk) has finite 
type we may apply Proposition 15.6 to obtain a quasi-isomorphism of the form 

Moreover, since Hi(X;Z) = 0,1 :::: i < n, it follO\',;s that Hi(X;lk) = 0,1 :::: 
i < n. This implies (Proposition 12.2) that VV i = 0, 1 :::: k < n. By minimality, 
d = ° in wn. 

On the other hand, the quasi-isomorphism just above shows that 
H (AW Q<l /tun-I,d) = lk. Thus (AW Q<i AUn-l,d) is a contractible Sullivan 

algebra. It follows that d : Un - l ~ VV and so W = nm. o 

Example 3 The rational homotopy type of K (Z, n). 
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Let K(Z, n) denote an Eilenberg-MacLane space of type (Z, n), and let an : 
sn --t K(Z, n) represent a generator of 1l"n (K(Z, n)) = Z. Then by the Hurewicz 

theorem 4.19, Hn(an; Z) : Hn(sn; Z) ~ Hn (K(1l", n); Z). Hence Hn(an; Q) 
is also an isomorphism. Moreover, for n ~ 2, Oan : osn --t OK (Z, n) = 
K(Z,n - 1) and 1l"n-l(Oan) is an isomorphism, by the long exact homotopy 
sequence applied to the path space fibrations. Hence, as above, Hn-l (Oan; Q) 
is an isomorphism. 

The computations of Examples 1 and 2 above now show that H* (a2n+1; Q) 
and H* (Oa2n+1; Q) are isomorphisms, and so the Whitehead-Serre theorem 8.6 
asserts that: 

a2n+l : s2n+1 --t K(Z, 2n + 1) and Oa2n+1: os2n+1 --t K(Z, 2n) 

are rational homotopy equivalences. 
The reader is cautioned, however, that these maps are far from 'integral' homo

topy equivalences. This illustrates the difference in complexity between integral 
and rational homotopy theory. 0 

Example 4 Spherical fibrations. 
A spherical fibration is a fibration p : X -+ Y whose fibre has the homotopy 

type of a sphere Sk. Suppose given such a fibration with simply connected base 
Y. 

If k is odd then the minimal model of Sk has the form (A(e), 0). Hence we 
can apply Theorem 15.3 to obtain a model for p of the form 

(APL(Y) @ A(e), d) -=+ APL(X), de = z E APL(Y). 

If k is even then the model of Sk has the form (A(e, e'), de' = e2 ). Thus p 
has a model of the form (APL (Y) @ A( e, e'), d) with de E APL (Y) and de' = 
e2 + a @ e + b for some elements a, b E ApdY). The condition ~e' = 0 now 
implies that 2de = -da. Replace e by e + ~a to obtain a model in which de = 0 
and de' = e2 + z, some Z E ApdY). In summary, ApL(p) has a model of the 
form 

de =0 

de' = e2 + z, Z E ApdY). 
(ApL(Y) @A(e,e'),d) -=+ APL(X), 

Note that in both cases z is a co cycle in ApdY) whose cohomology class [z] is 
determined by the fibration. In particular this class is zero if and only if ApdX) 
is weakly equivalent to ApdY x Sk). However in the case of even spheres an easy 
calculation shows that H*(X; lk) ~ H*(Y; lk) @ H*(Sk) as H*(Y; lk)-modules. 

Finally suppose the spherical fibration arises as the unit sphere bundle of a 
vector bundle ~ : E --t Y of rank k + 1. (For facts about vector bundles and 
characteristic classes the reader is referred to [128] and [69] [70].) If k is odd the 
class [z] is the Euler class of ~, essentially by definition. 

If k is even then [z] = ip2k(~)' where P2k(~) denotes the 2kth-Pontrjagin 
class of f In fact, we can use p : X -+ Y to pull the vector bundle ~ back to 
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a vector bundle ~x over X, and ~x is the direct sum of a trivial line bundle 
and a vector bundle 1] of rank k. Let X denote the Euler class of 1]. Then 
X2 = P2k(1]) = H*(P)p2k(~). Moreover, if S; is the fibre of p: X -+ Y at y, then 
1] restricts to the tangent bundle of S;. Hence, by a result of Hopf, (X, [S;]) = 2. 

On the other hand, it follows directly from the model that H* (p) [z] = [e F 
with ([e], [S;]) = 1, and that this condition determines [z] uniquely. Hence 
[z] = ip2k(~). 0 

Example 5 Complex projective spaces. 
The inclusions Sl C S2 C ... C sr C ... define a CW complex SOO = U sr, 

r 

and it follows from the Cellular approximation theorem 1.2 that 1l"r(Soo) = 
1l"r(sr+1) = 0, r ~ o. Regard s2n+! as the unit sphere in Cn . Complex multi
plication defines a free action of Sl on each s2n+! with orbit space the complex 
projective space cpn. Similarly Sl acts on soo with orbit space Cpoo, and the 
Sl-bundle S2n+1 ----7 cpn is the restriction of the Sl-bundle SOO ----7 Cpoo . 

From the long exact homotopy sequence deduce that Cpoo :::::: K(Z,2) and 
hence that H*(Cpoo;Q) = Au, with degu = 2 (Example 2, above). Similarly, 
1l"*(cpn) Q9 Q = Qu EEl Qx with degu = 2 and degx = 2n + 1. Since cpn is a 
2n-dimensional CW complex it has no cohomology in degree 2n + 2. Thus· its 
minimal Sullivan model must have the form A(u, x; dx = un+1). In particular, 
cpn is formal with cohomology algebra Au/un+!. 0 

(c) Pullbacks and maps of fibrations. 
Suppose given any commutative square of continuous maps 

z 9 • X 

A--.... • Y 
f 

in which p and q are Serre fib rations , Z and X are path connected and A and 
Yare simply connected. Choose basepoints ao and Yo so that I(ao) = Yo and 
denote by g : F ----7 F the restriction of 9 to a map from the fibre of q at ao to 
the fibre of p at Yo. Finally, assume that H*( -; k) has finite type for one of F, 
A and for one of F, Y. 

Choose Sullivan models my : (AVy,d) ----7 ApdY) and nA : (AWA,d) ---'=t 
APL(A), and let 

'Ij;: (AVy,d) ----7 (AWA'd) 

be a Sullivan representative for I; i.e., nA'Ij; '" Apdf)my. The Sullivan models 
extend «15.4) and Proposition 15.5) to commutative diagrams 
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APL(Y) 
Apdp) 

• APL(X) . APL(F) 

my ':::" + + - 171 

(AI'y,d) (AI'y ~At·,d) ------ (A17, d) 
E·id 

and 

A.PL(A) 
APL(q) 

• ApdZ) . ApL(F) 

+ + ':::" n (15.7) 

(AWA, d) (AWA ~ AW,d) -- (AW, d) 
c·id 

in which all the vertical arrows are Sullivan models. 
Suppose first that we have been able to choose 1/J so that 

Then the pushout construction of §14(a) yields the morphism 

~ = APL(q)nA . Apdg)m : (AWA,d) ~(AVy,d) (AVy ~ AY,d) ----+ APL(Z) . 

This may be written as ~ : (AWA ~ AV, d) ----+ ApdZ), and fits in the commu
tative diagram 

ApdA) . ApdZ) • APL(.F) 

nAj~ j< j A PL(9)m 

AWA . (AWA®AY,d) . (AY, d) 
c • .,1 

Thus we may apply Proposition 15.6 to deduce 

Proposition 15.8 If H*(g) : H*(F; Jk) ----+ H*(F; Jk) is an isomorphism (in 
particular if Z ----+ A is the pullback of X ----+ Y), then ~ is a Sullivan model for 
Z. 0 

:t\ow consider the more general situation where TJA'l/J ~ Apdf)my. Here we 
shall extend 'l/J to a commutative diagram 

(AVy,d) (AVy ~ AV,d) 
c·id 

(AV, d) ---
"] ], ]0 (15.9) 

(AtFA, d) (AWA iZ:) AW,d) -- (AW, d) 
c-id 
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in which 'P and 'P are Sullivan representatives for g and for g; i.e. n'P '" APL (g)m 
and n (j5 '" APL (.iJ)m. 

Denote by EO,El : - @ A(t,dt) -+ - the morphisms (id· Eo) : t f--t 0 and 
(id· El) : t f--t 1. Let 

[APL(Z) 0 A(t, dt)] XAPL(Z) (AWA @ AW, d) 

be the fibre product with respect to the morphisms 

APL(Z) @ A(t,dt) ~ ApdZ) ? (AWA @AW,d) 

and let ri and (]R denote the projections of the fibre product on the left and right 
factors. Now (]R is surjective and ker (]R = ker Eo. Hence H(ker gR) = 0 and (]R 
is a quasi-isomorphism. It follows that EOgL = n(]R is a quasi-isomorphism and 
therefore so is (]L. 

Let Ill: (AVy,d) -+ APL(A)0A(t,dt) be a homotopy from nA1/I to APL(f)my. 
Then we have the commutative diagram 

(AVy, d) _...:...(A....:P...;::L'-'.(q:..:..)W--,-,-',p-,--) _. [APL(Z)@A(t,dt)]XAPL(Z)(AWA@AW,d) 

j j "," (15.10) 

(AVy@AV,d)-----------+-.APL(Z) 
ApL(g)m 

Since (]L is a quasi-isomorphism so is El(]L. Moreover, if z E ApdZ) then 
Eo(Z @ t) = 0 and so (z @ t, 0) is an element in the fibre product. Now Eul(z @ 

t,O) = El (z @ t) = z, which shows that El(]L is surjective. By the Lifting lemma 
14.4 there is a morphism 

r = (<I>,'P) : (AVy @AV,d) -+ [ApdZ) @A(t,dt)] xAPL(Z) (AWA @AW,d) 

extending (APL(q)Il1, 1/1) and such that El(]Lr = Apdg)m. 
In particular Eo<I> = n'P and El<I> = El(]Lr = ApL(g)m. Thus <I> is a homotopy 

from nrp to APL(g)m and 'P : (AVy @ AV,d) -+ (AWA Q9 AW,d) is a Sullivan 
representative for g. Moreover rp extends 1/1 and so the left hand square of (15.9) 
commutes. 

Finally, set 
'P = lk @,p 'P : (AV, d) -+ (AW, d). 

By construction, the right hand square of (15.9) commutes. Moreover, just as 
m and n factor to give m and n so <I> factors to define a morphism 

¥ : (AV, d) -+ APL (F) @ A(t, dt) 

such that EO¥ = n(j5 and El¥ = APL(g)m. Thus n(j5 '" Apdg)m and (j5 is a 
Sullivan representative for g. This completes the construction of (15.8). 
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Remark As noted in §15(a), the models in (15.7) may be chosen so that 
(AVy,d) --+ (AVy ::':9 AV,d) and (AWA,d) --+ (AWA 12:: AW,d) are minimal 
relative Sullivan algebras. In this case (id .r.p) is a quasi-isomorphism between 
minimal relative Sullivan algebras. Thus Theorem 14.11 asserts that 

id·r.p: (AWA::':9 AYd) ~ (AWA 12:: AW,d) 

is an isomorphism of cochain algebras. 

Example 1 The free loop space X 5' . 

Let X be a simply connected topological space with rational homology of finite 
type. The free loop space, X 5' , is the topological space of all continuous maps 
Sl --+ X. We may identify these as the continuous maps f : I --+ X such that 
f(O) = f(l) and this defines an inclusion i : X5' --+ Xl. Moreover 

i 
X5 1 

-- Xl 

X~XxX 

p(g) = g(O), 
q(f) = (f(O),f(I)), 
~(x) = (x, x) 

is a pullback diagram of fibrations. Finally, the constant map I --+ pt defines a 
homotopy equivalence Xl +--- xpt = X that converts the diagonal ~ to q. 

We may now apply the results above to compute a Sullivan model for X 5' as 
follows. Let (AV, d) be a minimal Sullivan model for X. Then multiplication 

J.L : (A V, d) ::':9 (A V, d) --+ (A V, d) 

is a Sullivan representative for ~ as follows from Example 2, §12(a). Convert 

this to a relative Sullivan algebra (AV::':9 AV 12:: AW,d) -=+ (AV,d) and then by 
Proposition 15.8, (AV, d) ::':9A1/0AV (AV 12:: AV 12:: AW,d) = (A~T 12:: AW,d) is a 
Sullivan model for X5' . 

In this case we can carry out these computations explicitly. Define V by 

V k = Vk+ 1 and consider the acyclic Sullivan algebra (E(V),d) = AV::':9 AdV 
constructed in §12(b). In (A V, d) 12:: (E(V), d) define derivations s of degree -1 
and B of degree zero by sv = V, sv = sdv = 0, and B = sd + ds. (Here the 

isomorphism V k = Vk+1 is denoted by v --+ v.) Then an isomorphism 

r.p: AV®AV®AV ~ (AV, d) 12:: (E(V),d) 

DO 

is given by r.p(v::':91 ::':9 1) = v, r.p(1 ® v ® 1) = L a~!v and cp(l ® 1 ® v) = v. 
o 

Now B is a derivation satisfying Bd = dB in A V ® E(V). It follows that 
00 n 

ea = L ~! is an automorphism of this graded differential algebra. Hence cp(l ® 
n=O 

dv 12:: 1) = dr.p(l ::':9 v ::':9 1). This implies that the inclusion, 

A : (A V, d) ® (A V, d) --+ (A V 12:: A V ® A V, d) 
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is a relative Sullivan algebra. The quasi-isomorphism (AV ® AV ® AV, d) -=r 
(AV,d) ® (E(V),d) ~ (AV,d) converts A into multiplication in AV, and so A 
is a Sullivan model for the multiplication morphism. Thus, as described above, 

(AV ® AV, d) = (AV, d) ®AV0AV (AV ® AV ® AV, d) 

is a Sullivan model for XS'. 
It remains to compute d. Observe that s = 0 in V and dV and hence that 

s2 = 0 since S2 is a derivation. It follows that 

00 (sd)n 
cp(l ® v ® 1) = v + dv + L -,-v, v E V 

n. 
n=l 

and hence that s' = cp-1scp is the derivation in AV ® AV ® AV given by 

s'(v ® 1 ® 1) = s'(l ® v ® 1) = 1 ® 1 ® v and s'(l ® 1 ® v) = 0 . 

Thus in AV ® AV ® AV, 

d(l®l®v) = cp-l(dV)=l®V®l-CP-l(V+~(S:tv) 
00 ( 'd)n 

(1 ® v - v ® 1) ® 1- L _s_,_(v ® 1 ® 1) . 
n. 

n=l 

Finally, let s" be the derivation in AV ® AV given by s"v = v and s"v = o. 
Then an immediate computation from this formula gives the differential d in 
AV®AVas: 

dv = dv and dv = -s"dv . 

This defines the Sullivan model for X S ' explicitly in terms of (A V, d). 0 



208 15 Fibrations, homotopy groups and Lie group actions 

(d) Homotopy groups. 
Suppose f : X -7 Y is a continuous map between simply connected spaces, 

and let 

mx: (AVx, d) -7 APL(X) and my: (AVy,d) -7 APL(Y) 

be minimal Sullivan models. Let <Pf : (AVy,d) -7 (AVx,d) be a Sullivan 
representative for f; i.e., mX<Pf '" ApL(f)my. Its linear part, 

Q(f) : Vy -7 Vx 

is independent of the choice of <Pf (§13(c)). 
In §13(c) we introduced the bilinear map 

(-; -) : Vx x 1f*(X) -7Jk 

defined by Q(a)v = (v; o:)e, where a : Sk -7 X represents 0: and (A(e, ... ), d) is 
the minimal model of Sk. This determines the linear map 

l/x : Vx -7 Homz (1f*(X), Jk) 

given by (l/xv)(o:) = (v; 0:). Given f : X -7 Y, we have (Q(f)v; 0:) = 
(v;1f*(f)o:), v E Vy, 0: E 1f*(X). It follows that l/x is a natural transforma-
tion: 

Vx 0 Q(f) = Homz (1f*(f), Jk) 0 Vy. 

The minimal Sullivan models approach to rational homotopy theory is suc
cessful because Vy identifies the generating space of the model with the dual of 
the homotopy groups of the space: 

Theorem 15.11 Suppose X is simply connected and H*(X; Jk) has finite type. 
Then the bilinear map Vx x 1f*(X) -7 J;; is non-degenerate. Equivalently, 

is an isomorphism. 

Remark 1 It follows from Theorem 15.11 that if H*(X;Q) has finite type so 
does 1f * (X) @Q, since in this case the Sullivan model has finite type. Conversely, 
if 1f *(X)@Q has finite type then the procedure for constructing a rational cellular 
model XIQ (§9) shows that H* (X; Q) has finite type. Indeed if we know by 
induction that the r-skeleton of XIQ is finite we can conclude that it has rational 
homology (and hence rational homotopy) of finite type. Thus the (r + 1 )-skeleton 
is constructed by adjoining finitely many rational cells. 

Remark 2 Theorem 14.11 asserts that a morphism <P between minimal mod
els is an isomorphism if and only if it is a quasi-isomorphism. Since <P is an 
isomorphism if and only if its linear part Q (<p) is an isomorphism we recover the 
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rational Whitehead-Serre theorem for continuous maps f : X -t Y; 7r * (f) ® Q 
is an isomorphism if and only if H * (f; Q) is an isomorphism. 

proof of Theorem 15.11: Fix k 2: 2. 

To show that l/x : V.{ ~ Homz (7rdX) , Jk) we let r be the least integer such 
that 7rr(X) "# 0, and argue by induction on k - r. 

If k = r then the Hurewicz homomorphism is an isomorphism 7rr(X) ~ 
Hr(X; Z) (Theorem 4.19). On the other hand, since Hi(X; Jk) = 0 for 1 ::; 
i ::; r - 1 the minimal model for X satisfies V1- = 0, 1 ::; i ::; r - 1 (Proposi-

tion 12.2). Thus H(mx) : VI ~ Hr(x; Jk). It is immediate from the defini

tion that these isomorphisms identify l/x with the isomorphism H r (X; Jk) ~ 
Homz (Hr(X; Z), Jk). Thus when k = r, l/x is an isomorphism. 

Suppose now that k > r. Observe first that if f : X -t Y is a weak homotopy 
equivalence then H* (f; Jk) is an isomorphism. It follows that a Sullivan represen
tative 'PI is a quasi-isomorphism and hence an isomorphism (Theorem 14.11). 
Thus Q(f), as well as 7r * (f), are isomorphisms. Thus by naturality, we may 
replace X by any space of the same weak homotopy type. 

In particular, we may suppose X is a CW complex. Let K be an Eilenberg
MacLane space of type (7r r (X),r). Choose a continuous map 9 : X -t K such 
that 7rr (g) = identity (Proposition 4.21). Factor 9 (as in §2(c)) in the form 

A 
X ------. XxKMK 

K 

with .A a homotopy equivalence and p a fibration. Again, use naturality to replace 
X by X XK MK. Thus we may assume there is a fibration 

p:X-tK 

such that 7r r (p) is an isomorphism. 
In Example 2 of §15(b) we showed that the minimal model of K has the 

form (AVr,O) ~ APL(K). In particular, H*(K;Jk) has finite type and so 
Theorem 15.3 and its consequences apply to the fibration p. 

Now let j : F -t X be the inclusion of the fibre of p. By the long exact 
homotopy sequence (Proposition 2.2), 7rr (F) = O. 

Because 7ri(F) = 0, 1 ::; i ::; r, a minimal model of F has the form mF : 
(AVF,d) ~ APL(F) with V} = 0, 1 ::; i ::; r (Proposition 12.2). Thus dia-
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gram (15.4) for p becomes 

APL(K) 
APL(p) 

• ApdX) APL(j). APL(F) 

I' + +, 
(AVT,O) (AVT@AVF,d) - (AVF' d) c·id 

Since VF is concentrated in degrees> r the Sullivan algebra (AVT @AVF,d) is 

necessarily minimal. Lift mx to a quasi-isomorphism <p : (AVx,d) -=+ (AVT @ 

AVF,d) such that m<p '" mx and conclude from Theorem 14.11 that <p is an 
isomorphism. Since H*(X; Jk) has finite type so does AVx (Proposition 12.2(iii)). 
Hence so does AVF and, a fortiori, H*(F;Jk). 

Finally mF(C:· id)<p = ApL(j)m<p '" APL(j)mx. This identifies (c:. id)<p as 
a Sullivan representative for j. In particular, Qk(j) is the isomorphism Qk(c:. 
id)Qk(<p). The long exact homotopy sequence for p shows that 1rk(j) is also an 
isomorphism. Thus Vx and VF are identified in degree k by naturality, and Vx 
is an isomorphism in degree k. 0 

Recall (§13(c)) that the projection A+Vx ---+ Vx induces a linear map ( : 
H+(AVx) ---+ Vx. From the commutative diagram at the end of §13(c) we 
deduce the 

"" Corollary The isomorphisms Vx : Vx -=-t Homz (1r*(X),.k) and H(mx) : 

H(AVx) ~ H*(X;.k) identify (with the dual of the Hurewicz homomorphism. 
o 

Example 1 Rational homotopy groups of spheres. 
Let [ E 1r n (sn) be the class represented by the identity map of sn. Then 

and 

,n = 2k + 1 
, otherwise 

,n = 2k 
,n = 4k-1 
, otherwise. 

Indeed in the first case the minimal model is (A(e),O) and (e;[) = 1. In the 
second the minimal model is (A(e,e'), de' = e2 ). Again (e;[) = 1 while Propo
sition 13.16 gives (e'; [[, [lw) = _(e2 ; [, [) = -2. Now apply Theorem 15.11 
o 

Example 2 The model (A(eo,el,x), dx = eoed,.k = Q. 
In Example 2 of §13(e) we considered the space X = (S3 V S3) U,(Dg II 

D~) where the two 8~cells were attached respectively by lao, lao, allw lw and 
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[aI, [al,ao]w]w' The minimal Sullivan model of X was shown to have the form 
(AV,d) = (A(eO,el,x,w,Wo, ... ),d), where dx = eOel, dw = eOelX and the Wi 
have higher degree. 

Thus a linear function VlO --+ (Q) is defined by w H 1. By Theorem 15.11 
there is a continuous map b : SlO --+ X such that Q(b)w = '\e, some non-zero 
,\ E (Q). Put 

Y = X Ub Dll = (S3 V S3) Uf (Dg II Df) Ub Dll. 

According to §13(d) the co chain algebra (AV EB lku, dj3) is a commutative 
model for Y, where f3 = [b] E 7rlO(X). A straightforward calculation shows that 
a quasi-isomorphism 

is given by u H -,\-leoelx, WHO, Wi -+ 0, i 2: O. Thus (A(eo,el,x),d) is the 
minimal Sullivan model for Y. In particular, 

{ 
(Q)EB(Q) ,n=3 

7r n (Y) ® (Q) = (Q) , n = 5 
o , otherwise. 

Observe that the inclusion (A(eo, el, x), d) --+ (A(eo, el, x, w, ... ), d) is a Sulli
van representative for the inclusion i : X --+ Y. This shows that Q(i) is injective 
and so the dual map 

is surjective. 
Finally, we show that the homotopy fibre, F, of i has the same minimal 

Sullivan model as a wedge of spheres, and compute its cohomology. Extend 
(A(eO,el,x),d) to the contractible Sullivan algebra (A(eO,el,x,vO,vl,y),d) by 
setting dvo = eo, dVl = el and dy = x + eOVl. 

It follows from (14.6) that (Q)®A(eo ,e, ,x) (AV, d) is a Sullivan model for F. Form 
the pushout 

(A,d) = (A(eO,el,x,vO,vl,y),d) ®A(eo,e"x) (AV,d) 

as described in §14(a). On the one hand, (A, d) may be regarded as a relative 
Sullivan algebra 

(A(eo, el, x, Vo, VI, y), d) --+ (A(eo, .. ·, y) ® A(w, wo, ... ), d) . 

Since E: : (A(eo, ... , y), d) --+ (Q) is a quasi-isomorphism, so is E: ® - : (A, d) ~ 
(A(w,wo, ... ),d). Thus (A,d) is a Sullivan model for F. 

On the other hand, (A, d) may be regarded as a relative Sullivan algebra 

(AV, d) --+ (AV ® A(vo, VI, y), d). 
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Now apply the quasi-isomorphism (AV,d) ----+ (A(eo,el,x)/eoelx,d) to obtain a 
quasi-isomorphism 

Since H (A(eo, ... , y), d) = Q, the short exact sequence 

allows us to compute H(C), which is isomorphic to H*(F;Q). In particular, the 
Hilbert series of H* (F; Q) is given by 

Z10 

H*(F; Q)(z) = 1 + (1 _ z2)2(1- z4) 

More precisely, the co cycles elxv~viym E C, k 2: 1, e 2: 0, m 2: ° represent 
a basis of H+(C). Since these co cycles multiply each other to zero it follows 
that H+(C) . H+(C) = 0. Moreover these cocycles define a quasi-isomorphism 
(H(C),O) ----+ (C,d) of cochain algebras. Hence (H(C), 0) is also a commutative 
model for F, while by Proposition 3.4 it is also a commutative model for a wedge 
of spheres. 0 

Example 3 The Quillen plus construction . 
Let X be a path connected topological space whose fundamental group, 7rl (X) 

is finitely generated and such that every element in 7rl (X) is a product of com
mutators. Then H1(X;Z) = 0, by the Hurewicz theorem 4.19. 

Adjoin to X finitely many two cells ei, ... , e;, to kill a set of generators 
of 7rl (X). The Cellular approximation theorem 1.2 implies that 7rdX) ----+ 

7rl (X u yen is surjective. Hence X U (y e;) is simply connected. On the 

other hand, since HI (X; Z) = 0, the long exact homology sequence for the pair 

( X U ( Y e;) ,X) shows that there are homology classes al,···, an E 

H2 ( Xu y e;; z) that project to the classes [en ... , [e;,] in the relative ho

mology. 

Since Xu ( y e;) is simply connected the Hurewicz Theorem implies that the 

ai can be represented by maps ai : 52 ----+ X U (y e; ). Attach three cells by 

these maps to create the topological space Y = X u (y e;) U (y e; ). This is 

called the Quillen plus construction on X. 
This construction has two important properties. Firstly Y is simply connected. 

Secondly the inclusion X ----+ Y induces an isomorphism of homology, as follows 
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immediately from the long exact homology sequence for (Y, X). In particular in 
the case X is an Eilenberg-MacLane space (and hence has no higher homotopy 
groups) the higher homotopy groups of Yare invariants of the group 7f1 (X); its 
algebraic K -groups. 

Now suppose the rational homology H*(X;Q) has finite type. Then we can 

construct the minimal Sullivan model mx : (AV,d) --=+ ApL(X) and, as in 
Proposition 12.2, V will be a graded vector space of finite type. However, unlike 
the situation in Theorem 15.11, the graded vector space V may have little to do 
with 7f*(X). 

On the other hand, the inclusion i : X --+ Y induces a quasi-isomorphism 
Apdi) : ApdY) --+ ApdX). Hence a Sullivan representative is an isomor
phism of minimal models (Theorem 14.11), which exist by Theorem 14.12. Thus 
Theorem 15.11 provides an isomorphism 

In particular the rational K -groups of 7f1 (X) may be computed directly from 
ApdX). When X is a smooth manifold we may also use ADR(X) as observed 
in §12(e). 0 

Example 4 Smooth manifolds and smooth maps. 
Let X be a smooth manifold. In §11 we showed that ADR(X) is connected 

by natural quasi-isomorphisms to ApdX; JR). Thus a minimal Sullivan model 

(AV,d) --=+ ADR(X) is a Sullivan model for X (over JR). In particular, if X is 
simply connected and H*(X; JR) has finite type (e.g. if X is compact) then there 
is an isomorphism 

(Theorem 15.11). This shows that the real homotopy groups, as well as the 
cohomology algebra, may be computed from ADR(X). 

Now let <p : X --+ Y be a smooth map. In the same way, a Sullivan represen
tative for ADR(<P) is a Sullivan representative for <po Moreover, if Y is simply 
connected and has real homology of finite type and if 

is a Sullivan model for ADR(<p), then we can apply Theorem 15.3 to identify 
(AW, d) as a Sullivan model for the homotopy fibre of <po (This, of course, need 
not be a manifold !) 0 

( e) The long exact homotopy sequence . 
Let p : X --+ Y be a Serre fibration of path connected spaces, and with path 

connected fibre j : F --+ X. Assume that Y is simply connected and that all 
spaces have homology H * ( -; 1k) of finite type. 
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In §15(a) we constructed the diagram, labelled (15.4): 

( A Fy 15 A F, d) ---;;;:;- (A V d) 

in which all three vertical morphisms are Sullivan models. TvIoreover we can (and 
do here) take (AFy, d) and (AF, d) to be minimal. However, the central Sullivan 
algebra, (A(1/y EB F), d) need not be minimal. Let do be the linear part of d: it 
is the differential in F EB Fy defined by dx - dox E A 2:2 (1/ EB Fy ), x E Fo EB Vy . 
Then i and id ·c restrict to a short exact sequence of cochain complexes, 

0--+ (Vy,O) ~ (Vy e V,do) ~ (1/,0) --+ 0. (15.12) 

This construction is natural in the following sense. Given a map of Serre 
fibrations, consider the Sullivan representatives constructed in (15.8). Their 
linear parts define a morphism of the short exact sequences (15.12) and of the 
corresponding long exact cohomology sequences. 

Recall now from Theorem 14.9 (applied with B = lk) that (A(Vy e V),d) '= 
(AyV, d) ® A(U 8 dU) with (AW, d) a minimal Sullivan algebra and A(U EB dU) 

contractible. This defines a quasi-isomorphism A: (AW,d) -=+ (A(vy EB V),d), 

and mx = mA : (AW, d) -=+ ApdX) is its minimal Sullivan model. Moreover 

(Proposition 14.13), the linear part of A induces an isomorphism W -=--r H(Fy EB 
V do). Use this to replace H(Vy EB V do) by W in the long exact cohomology 
sequence of (15.12), which then takes the form 

Proposition 15.13 Suppose X and F are also simply connected. Then the 
isomorphisms Vy, Vx and VF of Theorem 15.11 identify the long exact cohomol
ogy sequence above, up to sign, with the dual of the long exact homotopy sequence 
of the Serre fibration p : X --+ Y. 

proof: The linear maps Vy --+ Wand W --+ V are identified with Homz (71* (p), lk) 
and Homz (71* (j), lk), as follows easily from the definitions. To check that the 
two connecting homomorphisms are identified we will verify that 

Fix k and Il, and let a : Sk+l --+ Y represent Il. Recall the path space 
fibration p : P Sk+l --+ Sk+l. Since P Sk+l is contractible, const ~ ap. Cover 
this homotopy with a homotopy P Sk+ 1 x I --+ X from the constant map to some 



Sullivan Models 215 

map b : PSk+l ~ X. Thus pb = afj and so b restricts to a map c: nsk+l ~ F. 
By naturality, it is sufficient to establish our formula for the fibration P Sk+l ~ 
Sk+l and a = [idsk+ll. 

In this case, as we saw in Example I, §I2(a) (AVy,d) = (A(e),O) or (A(e,e'), 
de' = e2 ), depending on whether k + 1 is odd or even. Moreover, as shown in 
Example 1, §I5(b), (AV,d) = (A(u),O) or (A(u,u'),O) and the differential in 
(A Vy ® A V, d) is given by du = e and du' = e' - eu. In this case u is a basis for 
Vk and dou = e, so that we are reduced to proving 

Recall the continuous map B : Sk x I ~ Sk+l whose picture is given in 
Example 5, §l. Regard B as a based homotopy from the constant map to itself and 
lift this through fj: PSk+l ~ Sk+l to a based homotopy B : Sk x I ~ PSk+l 
from the constant map to a map h: Sk ~ nSk+l. Then [hl = o*[idsk+ll. 

Let Zk E C*(Sk;Z) be a cycle representing [Skl - d. §4(d). If L is the 
identity map of I, regarded as a singular I-simplex then C*(B)EZ(Zk ® L) is 
a cycle representing [Sk+ll. Set w = C*(B)EZ(Zk ® L). A quick computa
tion shows that C*(p)w is the cycle representing [Sk+ll and that dw is a cy
cle in c*(nsk+l;Z) representing H*(h)[Skl. Thus w projects to a relative 
cycle wE C*(psk+l,nsk+l;Z). Yloreover C*(p) : C*(psk+1,nsk+l;Z) ~ 
C*(Sk+1 ,pt; Z) and we have, by construction that 

here 0* also denotes the connecting homomorphism in homology for the pair 
(PSk+l, nSk+l). 

On the other hand, the quasi-isomorphisms 

o --.... (A+Vy ®AV,d) -+- (AVy ®AV,d) (AV,d) ----·0 

identify the connecting homomorphisms in the two long exact cohomology se
quences. Moreover (d. (10.13)) the upper long exact sequence is, up to sign, 
dual to the long exact singular homology sequence. It follows that 

(H(m)[e ® 1], [w]) = (H*(p)H(my)[e], [w]) = (H(my)[e], [Sk+l]) . 

Finally, since du = e ® 1, 

(H(m)[e ® 1], [wJ) = (0* H(m)[u], [wJ) = (_I)k+l(H(m)[u], Hdh) [SkJ) . 

But the Hurewicz homomorphism converts the duality between V and ". to 
the duality between cohomology and homology. Thus 
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and 
o 

Return to the setup described at the start of this topic and recall that a linear 
map C : H+(AV,d) ---+ V is defined by C[z]- z E A2:2V, z a co cycle in A+V. 
When F is simply connected this is dual to the Hurewicz homomorphism, hur F, 
(§15(d)) and so doC is dual to hurF 8*. We need this without the restriction that 
F be simply connected: 

Proposition 15.14 The linear maps doC and hurF 8* are dual, up to sign, if 
F is path connected and Y is simply connected. 

proof: Let z E (AV)k be a d-cocycle and let a E 7fk+1 (Y) be represented by 
a: Sk+1 ---+ Y. We show that 

(doCz;a) = (-1)k+1(H(m)[z],hur F 8*a). 

Use the pullback of the fibration via a, and naturality, to reduce to the case 
Y = Sk+1 and a = ids k+1. Then (AVy , d) = (A(e, ... ), d) and dz = doCz = Ae, 
for some A E lk. 

Now the argument used in 15.13 for the path space fibration (with the last 
paragraph suppressed) applies verbatim to give the proposition. 0 

(f) Principal bundles, homogeneous spaces and Lie group actions. 
Let G be a path connected topological group with finite dimensional rational 

homology. (This holds for all Lie groups.) As observed in Example 3, §12(a), 
the minimal Sullivan model of G has the form 

me : (APe, 0) 2t ApdG), 

where Pc is a finite dimensional graded vector space concentrated in odd degrees. 
Let Xl, ... , xr be a basis of Pc with degree Xi = 2£i + 1. Since G is weakly 
equivalent to nBc (Proposition 2.10), there are maps fi : S2£;+1 ---+ G such that 
(H(me)xj,H*(J;)[S2£;+1j) = 6ij (apply Proposition 15.14). Thus we recover a 
theorem of Serre: multiplication in G defines a rational homotopy equivalence 

r II S2£;+1 ---+ G. 
i=l 

Now consider the universal principal bundle Pc : Ee ---+ Be constructed in 
§2(d). As described in §15(e) it determines a long exact sequence 

connecting the generating spaces for minimal Sullivan models of Be, Ee and G. 

But H* (Ee) = lk and so W = o. Thus do : Pa ~ V~~l. It follows that VBa is 
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finite dimensional and concentrated in even degrees. Thus AVBG is concentrated 
in even degrees and so the differential must be zero. We have thus established 

Proposition 15.15 The minimal Sullivan model for Be has the form 

where VBG ==' p;J+l. In particular, H* (Be) is the finitely generated polynomial 
~~A~. 0 

Since G is weakly equivalent to nBc, Be is simply connected. Since (A VBG , 0) 
is the Sullivan model of Be, it follows from Theorem 15.11 that VBG ==' 
Homz (7f * (Be), lk). Thus 7f * (Be) 121 Q is finite dimensional and concentrated 
in even degrees and, for degree reasons, all the rational Whitehead products for 
Be vanish. 

Let YI, ... ,Yr be the basis of VBG corresponding to the basis Xl, ... ,Xr of Pc, 
and define a contractible Sullivan algebra (AVBG 121 APe, d) by setting dXi = Yi 
and dYi = O. Since H*(Ee) = lk, there is a commutative diagram ofmorphisms, 

APL(Be) ApL(PG) • APL(Ee) • APL(G) 

m.+ 1m 1m 
(AVBG'O) • (AVBG I2IAPe,d) • (APe,O) 

defined by setting mXi <Pi, where <Pi E ApdEe) is any element satisfying 
d<Pi = ApdPe)mBGYi. Here m is a quasi-isomorphism by inspection and so 
this is the special case of diagram (15.4) for the universal bundle. In particular 
(Proposition 15.5), m is a quasi-isomorphism. Thus we may take me = m. 

Finally, suppose P : X ----t Y is any principal G-bundle over a simply connected 
CW complex, Y. (The following could be extended to the non-simply connected 
case.) This bundle is the pullback of the universal bundle pc : Ee ----t Be over 
a map f: Y ----t Be as shown in §2(e). The cohomology classes in ImH*(f) are 
called the characteristic classes of the fibre bundle. Regard the basis YI, ... , Yr 
of VBG as cohomology classes of Be, so that H* (f)YI, ... , H* (f)Yr are charac
teristic classes. 

Then a Sullivan representative 

for f is characterized by the condition: 'PIYi is a co cycle in AVy representing 
H*(f)Yi' 1 ::; i ::; r. It defines the relative Sullivan algebra 
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which is just the pushout (AVy,d) Q9(AVBG,d) (AVEG Q9APe ,d). Thus the Re
marks in §15(c) give a commutative diagram 

APL(y) 
ApL(p) . ApdX) • APL(G) 

m+ m+ +" (AVy,d) • (AVy Q9 APe, d) • (APe, 0). 

This identifies (A Vy Q9 APe, d) as a Sullivan model for X. 

Example 1 Homogeneous spaces. 
Let KeG be a closed subgroup of a connected Lie group G. Right multi

plication by K is an action on G and the projection p : G -+ G I K onto the 
orbit space is the projection of a principal K -bundle [70]. The space (in fact, a 
smooth manifold) G I K is called a homogeneous space. 

Define a right action of K on EK x G by setting (x, a) . b = (xb, b-la). The 
inclusion j : K -+ G defines an obvious continuous map E(j) : EK -+ Ee. The 
formula (x, a) t--+ (E(j)x) . a defines a continuous map EK x G -+ Ee which 
factors to yield a continuous map f : (E K X G) I K -+ Ee. Thus we obtain a 
commutative diagram 

(EK x G)/K f • Ee 

'J J'" 
BK 

E(j) 
• Be 

in which q and B(j) are the maps of orbit spaces corresponding respectively to 
the projection EK x G -+ EK and to E(j). As in §2(e), q is the projection of a 
principal G-bundle which the diagram exhibits as the pullback of the universal 
bundle over B(j). 

Suppose now that K is connected too and use Sullivan models for B K and Be 
to identify 

as a Sullivan representative for B(j). If Yl, ... ,Yr is a basis for VEG corresponding 
to a basis Xl, ... ,Xr of Pc then the discussion above exhibits 

dXi = H* (B(j)) Yi 

as a Sullivan model for (EK x G)IK. 
On the other hand the projection EK x G -+ G induces (as in Proposition 2.9) 

a weak homotopy equivalence q' : (EK x G)IK -+ GIK. Thus GIK and 
(EK x G)IK have isomorphic Sullivan models and we obtain 
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Proposition 15.16 The Sullivan algebra (AVBK 0 APe, d) defined by dXi = 
H* (B(j)) Yi and d = ° in VBK is a Sullivan model for G/K. 0 

Example 2 The Borel construction; application to free actions. 
Let G be a connected Lie group. An action of G on a space X determines the 

fibre bundle 

q: Xc ---+ BG 

with fibre X, as described in §2(e). Now fibre bundles are Serre fibrations (Propo
sition 2.6) and BG is simply connected. Thus we may apply Proposition 15.5 to 
this Serre fibration to obtain 

APL(BG) Apdq) • ApdXG) 
ApL(j) • ApdX) 

m
B+ + +x 

(AVBG'O) --- (AVBG @AVx,D) • (AVx,d) 

in which mx is a minimal Sullivan model for X. Thus the Borel construction, 
X G , has a Sullivan model of the form (AVBG @AVx,D) above. 0 

Proposition 15.17 If a compact connected Lie group acts smoothly and freely 
on a manifold X then the Sullivan algebra (AVBG @AVx,D) is a Sullivan model 
for the orbit space X/G. In particular, Hi (AVBG @ AVx , D) = 0, i > dim X -
dimG. 

proof: In this case the projection X ---+ X/G is the projection of a principal 
G bundle [REF] and Proposition 2.9 provides a weak homotopy equivalence 
q' : XG ---+ X/G. This implies the first assertion. Since X/G is a manifold and 
dimX/G = dim X - dimG, the second assertion follows. 0 

Example 3 Matrix Lie groups. 
Compact matrix Lie groups 

SO(n) C M(n; ~), SU(n) c M(n; C), Q(n) C M(n; IHI) 

are defined as follows, where ~, C, and IHI are the reals, complex numbers 
and quaternions. Both C and IHI have a conjugations: Q: + (3i = Q: - (3i and 
Q: + (3i + "Ij + Jk = Q: - (3i - "Ij - Jk. Then 

SO(n) = {A I At = A-I and detA = l} 

SU(n) = {A I At = A-I and det A = I} 

Q(n) ={AIAt=A-I}. 
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The linear action of SO(n) in]Rn restricts to a transitive action on sn-l which 

identifies SO(n)/SO(n -1) ~ sn-l. Similar remarks apply in the other cases, 
to give principal bundles: 

SO(n - 1) ---t SO(n) ---t sn-l, 

SU(n - 1) ---t SU(n) ---t s2n-l and 

Q(n - 1) ---t Q(n) ---t s4n-l. 

In particular SO(2) ~ Sl, SU(2) ~ S3 and Q(l) ~ S7. 
On the other hand, for any connected Lie group G with Sullivan model 

(APe, 0) we have Pc ~ K.(G) t8: lk as graded vector spaces (since G is weakly 
equivalent to flBe). Thus the long exact homotopy sequences for the Serre fi
brat ions give an easy inductive calculation of the Sullivan models of the classical 
compact groups: 

SO(2n + 1) 

SO(2n) 

SU(n) 

Q(n) 

A(X1, ... ,Xn) 

A(X1' ... , X n -1, x~) 

A(X2, ... , xn) 

A(X1, ... ,Xn) 

, deg Xi = 4i - 1. 

,degxi = 4i -1, degx~ = 2n-1. 

, deg Xi = 2i - 1. 

, deg Xi = 4i - 1. 

Example 4 A fibre bundle with fibre S3 x SU(3) that is not principal. 
The model for SU(3) is A(X2,X3) with degx2 = 3 and degx3 = 5. Thus the 

model for its classifying space is A(Y2, Y3) with deg Y2 = 4 and deg Y3 = 6. These 

elements are dual to maps S4 ~ B Su(3) and S6 ~ B SU(3)' 
Consider the continuous map 

f : S3 x S3 ---t (S3 X S3)/(S3 V S3) = S6 ~ BSU(3) 

and use it to pull the universal bundle back to a principal SU(3)-bundle p : 
X ---t S3 X S3. Let 

q : X ---t S3 

be the composite of p with projection on the left factor. 
It is a relatively easy exercise to exhibit p as a smooth fibre bundle, and a 

theorem of Ehresmann then asserts that q is a smooth fibre bundle too. (It 
is trivial that q is a Serre fibration.) The fibre of q is the compact Lie group 
S3 x SU(3). Now the discussion above gives a model for the principal bundle p, 
from which we find that q is represented by 

(Au, 0) ---t (A(u, V, X2, X3), d) 

with degu = degv = 3, du = dv = dX2 = 0 and dX3 = uv. This is not the model 
of a principal bundle and so q is not principal. 

In Example 3, §14(d), we constructed a space Y = S3 V S3 U D8 U D8 U DlO. 
By inspection S3 x Y has the same Sullivan model as X. It is, in fact, easy to 
see that X and S3 x Y have the same rational homotopy type. 0 

o 
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Example 5 Non-existence of free actions. 
Consider the manifold X of Example 4. We observed there that a certain 

bundle q : X -t S3 with fibre S3 x SU(3) was not principal. Now we establish 
a stronger assertion: X does not admit any free smooth S3 x SU(3) action. 

In fact we show more: X has no free smooth S3 x S3 action. Indeed let 
G = S3 X S3. For any G action the Borel construction has a Sullivan model of 
the form 

with deg ai = 4, and Dai = O. For degree reasons DX3 = dX3 
Du, Dv E A(al, a2). Thus 

uvand 

whence Du = Dv = o. We also have DX2 E A(al, a2) and these calculations now 
show that A(al, a2)j(Dx2) is a subalgebra of H*(Xc). 

This subalgebra cannot be finite dimensional and hence (Proposition 15.17) 
the action cannot be free. 0 

Exercises 

1 Compute a relative Sullivan model for: 
a) the HopE map 'Y : S7 -* S4, 
b) the composite S3 x S4 -* S3 /\ S4 ~ S7 -4 S4. 

2 Consider a Serre fibration of path connected spaces F ~ X -* Y. Prove the 
following assertions: 

a) If Y = S3 V S4 V S5 and H*(F;Q) = /\(XI,X2, .... ,Xk)j(xi,x~, ... ,xk) with 
each Xi of even degree then X ::::01 Y x F. 

b) If H*(F;Q) = /\(X)j(Xk) with x of even degree and k 2: 2 then the mor
phism H*(j): H*(X;Q) -* H*(F;Q) is onto and H*(X;Q) is isomorphic as an 
H*(Y;Q)-module to the free module H*(Y;Q) 0H*(F;Q). 

3. Consider for n 2: 1, the group of unitary matrices: A E U(n) if At = A-I. 

Let U(k) C-..t U(n + k) be the inclusion A I--t (~ ~) 
a) Using the fibration U(n - 1)-*U(n) -* U(n)jU(n - 1) = S2n-1 prove 

that U(n) admits a minimal model of the form (/\(XI, X3, ... , X2n-r), 0) with deg 
Xi = i. Compute the minimal model of the classifying space BU(n). 

b) Using the fibration S2k-l -* U(n + k)jU(k) -* U(n + k)jU(k - 1) prove, 
by induction on n, that H* (U(n + k)jU(k)); Q) ~ /\(X2k+1, X2k+3, ... , X2n+2k-r). 

4. Let F be the homotopy fiber of the inclusion of the n-skeleton into the 
classifying space X = BU(n). It is known that H*(F; Q) is the cohomology of the 
"Lie algebra of formal vector fields on n-variables". Compute this cohomology. 
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5. Recall that for n ~ 1, the nth-Postnikov approximation In: X ---+ xn of a 
topological space X is defined by the following properties: 7rk(fn) is an isomor
phism for k :S nand 7rk(xn) = 0 for i ~ n + 1. Construct a relative minimal 
model for In. Deduce that a Sullivan minimal model of the homotopy fibre of In 
is quasi-isomorphic to the quotient differential graded algebra Ik @!\v:Sn (/\ V, d). 

6. Let X be a I-connected finite CW complex and n ~ 1 and let 'P be a 
Sullivan representative of a continuous map I : K(Z, 2n) ---+ X. Prove that 'P is 
homotopic to the trivial map. 
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In this section the ground ring is an arbitrary field Ik of characteristic zero. 
In this section we consider based topological spaces, (X, xo), and we shall 

frequently assume that 

X is simply connected and H*(X; Ik) has finite type, (16.1 ) 

even though a number of the results can, with additional work, be established 
for a larger class of spaces. We shall also simplify notation and write 

As described in §2, composition of paths defines a continuous associative mul
tiplication f.1 : OX x OX -+ OX in the (:VIoore) loop space OX and makes the 
path space fibration P X -+ X into an OX·fibration. The identity element of 
OX is the constant path eo of length zero at xo, and we shall always use eo as 
the basepoint of OX. 

The connecting homomorphism for the path space fibration is an isomorphism 

since P X is contractible. In particular, "1 (OX) is abelian. 
The geometric product f.1 : OX x OX -+ OX makes C*(OX; Jk) into a chain 

algebra via the Eilenberg-Zilber morphism EZ, as described in §8(a). The mul
tiplication in the homology algebra, H*(OX; Ik), is given by 

0:·.8 = H*(f.1)H(EZ) (0: ® (3), 0:,.8 E H*(OX;Ik) , 

and the graded algebra H * (OX; Ik) is called the loop space homology algebra of 
X. 

In this section we establish some strong structural results both for the coho
mology algebra H*(OX; Ik) and the homology algebra H*(OX; Jk) for any space 
X satisfying (16.1). When X is a finite complex, however, its loop space ho
mology has many more remarkable and beautiful properties. Developing these 
is one of the main objectives of Part V of this text. 

The structural results to be shown here are summarized by: 

• H* (OX; Ik) is a free graded commutative algebra. 

• The Hurewicz homomorphism is an isomorphism 

,,*(OX) ® Ik ~ P*(OX) 

onto the primitive space for OX. 

• The graded algebra H * (OX; Ik) can be computed explicitly from the graded 
vector space" * (X) ® Jk and the Whitehead product map 
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The first assertion is due (essentially) to Hopf and the last two to Cartan
Serre-Milnor-Moore. 

This section is organized into the following topics: 

(a) The loop space homology algebra. 

(b) The minimal Sullivan model of the path space fibration. 

(c) The rational product decomposition of OX. 

(d) The primitive subspace of H*(OXiJk). 

(e) Whitehead products, commutators and the algebra structure of H*(OXi Jk). 

(a) The loop space homology algebra. 
Let (Y, Yo) be a based path connected space. Recall (§3(b)) that the tensor 

product of graded algebras A and B is the graded algebra A @ B with (a @ 

b) (al @ bd = (-1 )deg b deg a, aal @ bbl. Recall also (§3 (e)) that since Jk is a field, 
homology commutes with tensor products. 

Lemma 16.2 

(i) If f : (X,xo) ~ (Y,Yo) is continuous then H*(Ofik) is a morphism of 
graded algebras. 

(ii) H(EZ): H*(OXik)@H*(OYik) -=+ H*(OXxOYik) is an isomorphism 
of graded algebras. 

proof: The first assertion follows from the naturality of EZ and the fact that 
Of is a morphism of topological monoids. The second assertion is a trivial 
consequence offormula (4.8) in §4(b). 0 

Next, recall from §4(b) that the topological diagonal ~top : Y -t Y X Y, 
y t-t (y, y), induces the Alexander-Whitney diagonal 

Since homology commutes with tensor products, H*(~i Jk) is a linear map 

For simplicity we abbreviate H*(~; Jk) to H(~). 
In §4(b) we observed that (C(Y; Jk),~) is a differential graded coalgebra, 

co-augmented by any y E Y. Passing to homology, we see that H(~) makes 
H * (Y; Jk) into a graded coalgebra, co-augmented by any [y 1 E H 0 (Y; Jk). If Y is 
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path connected these homology classes all coincide and we denote them by 1. In 
this case we have for all a E H+(Y; lk) that 

as observed in §3(d). In particular, the element a is primitive if 

H(6.)a=a@l+l@a 

and the primitive elements form a graded subspace P*(Y;lk) c H+(Y;lk), the 
primitive subspace of H * (Y; lk). 

Remark Note that the product (§5) in the cohomology algebra H*(Y; lk) is 
dual to the comultiplication H(6.). 

Lemma 16.3 ffY = fiX then H(6.) : H*(flX; Jk) ---* H*(flX; Jk)@H*(flX;Jk) 
is a morphism of graded algebras. 

proof: Observe that fiX x fiX is a topological monoid with component-wise 
multiplication, and that 6.top is a morphism of topological monoids. It follows 
that H*(6. top ) : H*(flX; lk) ---* H*(flX x fiX; lk) is a morphism of graded 
algebras. On the other hand H(AW) = H(EZ)-l as shown in Proposition 4.10. 
Since H(EZ) is a morphism of graded algebras (Lemma 16.2) so is H(AW). 
Hence so is H(6.). 0 

Example 1 The homology algebra H*(flS2k+l;lk) , k 21. 
Let f : S2k ---* flS 2k+l satisfy [f] = 8*[ids2k+1]. Then the Hurewicz theo

rem 4.19 asserts that H*(f) [S2k] is a non-zero homology class a E H2k(flS2k+l; lk). 
The inclusion of a extends to a unique morphism from the polynomial algebra 
lk[a]. We show this is an isomorphism: 

In fact [S2k] is (trivially) primitive in H*(S2k; lk) and so a is primitive in 
H*(flS2k+l;lk). Since H(6.) is an algebra morphism, and since k is even, 

H(6.)an = (a @ 1 + 1 @ a)n = an @ 1 + nan- 1 @ a + ... + 1 @ an, n> 1. 

If a n- 1 :j; 0 then it follows that H(6.)an :j; 0 and so an :j; O. Hence our 
morphism is injective. But in Example 1, §15(b) we computed the Hilbert series 
of H*(flS2k+l; lk) to be (1 - z2k) -1. Thus 

,i = 2rk 

, otherwise 
= dimlk[ak 

It follows that the morphism above is an isomorphism. At the end of §16(d) we 
establish the same result for H*(flS2k ; lk). 0 
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(b) The minimal Sullivan model of the path space fibration. 
Suppose (X, xo) is a based topological space satisfying (16.1) and let mx 

(A V", d) ---+ ApL(X) be a minimal Sullivan model for X. Then the path space, 
P X, has a Sullivan model of the form 

m: (AVx Q9 AV,d) -=+ APL(PX). 

It factors to give a minimal Sullivan model m : (A V, d) ---+ ApL(OX) for the loop 
space OX (the Corollary to Proposition 15.5 applied to the path space fibration 
PX ---+ X). As in §15(e) recall that the linear part of d is the differential do in 
Vx ttl V defined by requiring (d- do)x E A2:2(VX ttl V). Because of the minimality 
of (AVx,d) and (AV, d) we have do = ° in Vx and do: V ---+ Vx . 

Now observe that 
do:V~Vx. 

Indeed, (AVx Q9 AV, d) is the tensor product of a contractible algebra and a 
minimal model for PX (Theorem 14.9). Because PX is contractible the minimal 
model is trivial and (AVx Q9 AV,d) itself is contractible. This implies H(Vx ttl 

V, do) = ° and hence that do : V ~ Vx . 
Next, recall that Vx is a graded vector space of finite type (Proposition 12.2). 

Hence so is H* (OX; Jk) ~ H (A V, d). Since OX is an H -space it follows (Exam
ple 3, §12(a» that the differential d is zero, 

m: (AV, 0) -=+ APL(OX). 

Thus d: A(VxEBV) -+ A+Vx Q9AV. In particular, H*(OX;Jk) is the free graded 
commutative algebra A V. 

Moreover, if 2k1 , 2k2 , . .. and 2£1 + 1, 2£2 + 1, . .. are the degrees of a basis of 
V then the Hilbert series for H * (OX; Jk) has the form 

(16.4) 

N ext observe that the action of OX on P X is a map of fibrations, 

PX xOX 9 • PX 

pop' j jP 

X 
idx 

'X 

where pL denotes projection on the left factor, P X. The tensor product of 
Sullivan models is a Sullivan model for the topological product (Example 2, 
§12(a» and so 

m· m: (AVx Q9 AVd) Q9 (AVO) -=+ APL(PX x OX) 
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is a Sullivan model. 
The restriction of g to the fibres at Xo is the multiplication f-t : OX x OX ---+ 

OX. Thus the construction of diagram (15.9) gives a commutative diagram 

(AVx,d) --...... (AVx0AV,d) ------. (AV, 0) 

"I I, I, 
(AVx,d) -- (AVx0AV,d)0(AV,0) ----+-. (AV, 0) 0 (AV, 0) 

in which rp is a Sullivan representative for f-t. In particular, (m ·m)rp ......, Apdf-t)m, 

and so H(m) : AV ~ H*(OX; Jk) identifies rpwith the dual of the multiplication 
map for the graded algebra H * (OX; Jk). The fact that 1 E H 0 (OX; Jk) is the 
identity element translates to 

rp<I> - (<I> 01 + 10 <I» E A+V 0 A+V, <I> E A+V. (16.5) 

Recall next (§ 13( e)) that the quadratic part of the differential d in AV X is the 
derivation d1 determined by the two conditions 

d1 : Vx ---+ A 2Vx and d - d1 : Vx ---+ A ~3VX. 

In §13(e) we showed how to compute d1 from Whitehead products. Here we 
show how to compute d1 using the map rp. 

Let v E V and, as in (16.5) above, write 

rpv = v 0 1 + ~<I>i 0 Wi + 10 v, 

with <I>i, Wi E A+V. Recall that ( : A+V ---+ V is the projection corresponding 

to the decomposition A +V = V EEl A ~2V and that do : V ~ V x . 

Proposition 16.6 The quadratic part of the differential in AVx is given by 

d1 dov = 2)-1)deg 4>i(do(<I>i) 1\ (dO(Wi). 
i 

proof: Write dv = dov + LUi 0 Vi + <I> + 0 with Ui E Vx , Vi E V, <I> E A2VX , 
i 

and 0 E A~3(VX EEl V). Since d2v = ° the component of ~v in A2(VX EEl V) is 
zero, and this fact translates to 

d1dov = - "L) _l)degui ui 1\ dOVi. 

On the other hand, since <pdv = (d 0 id)<pv, the components of <p dv and 
(d 0 id)<pv in Vx 010 V also coincide. Use the following facts to compute these 
components: 
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• ip = id in A Vy 

This gives the equation ~u i 59 lib: Vi = ~do (1) i 59 1 (';(: (\[1 i , whence L ( -1) deg Ui Ui II 

o 

(c) The rational product decomposition of fiX. 
\Ve turn the first part of the algebra above into geometry and provide a geo

metric proof of (16.4) by identifying fiX as (rationally) a product of odd spheres 
and loop spaces of odd spheres. 

First we need to make some remarks about infinite products. Suppose 
(Xa , * )aEJ is a family of based topological spaces. Let X (0'1, ... , aT") C 11 Xa 

a 
be the subspace of points (xa) such that Xo: = * if a ¥ 0'1, ... , aT": clearly 

X(a1, ... , ar) ~ X a, X ... X X"r' Let 11 Xo: be the union of the X(a1,"" ar) 
a 

as {a1' ... ,ar} ranges over all finite subsets of J and give it the weak topology 
determined by the X(a1 .... , ar). This space is called the weak product of the 
(Xa. *). 

Any compact subspace of 11 Xa is contained in some X(a1,"" Qr ), so 11 Xa 
a 0: 

is indeed a k-space. :vloreovcr, if each Xa is a C\V complex with * E (Xo,)o then 

so is each X (Q1' ... ,Qr), and this makes 11 Xo: into a based CW complex. 

It also follows that 

and so if each Xo: is an Eilenberg-MacLane space K(Va; n) then 11 Xo: is a 
a 

K (E17 Vo:, n). Finally, given a topological monoid G with unit element e and 
a 

continuous based maps f 0: : (X 0:, *) --+ (G, e) we define 

" a 

~O\V we return to the study of fiX. First, suppose (X, *) is an arbitrary simply 
connected based topological space. Every based map a : Sk+1 --+ X determines 
two maps: fla : flSk+ 1 --+ fiX and a : Sk --+ OX. where [a] = o*[a] is the 
image of [a] in 7f * (OX) under the connecting homomorphism for the path space 
fibration. Moreover, if id : Sk+1 --+ Sk+1 is the identity then a '" Oa 0 id by the 
naturality of 0*. Let bi : S2£,+2 --+ X and aj : S2k J +l --+ X represent a basis 
of 7f*(X) ® CQl. :vlultiplication of the bi and the Oaj defines a continuous map 

f = (b;) . (OaJ ) : fts2[,+1 x fl;0S2k J +l --+ OX. 
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Proposition 16.7 Both Jr~(j).:g; lk and H.(j: lk) are isomorphisms. 

proof: Since lk is a field of characteristic zero it is sufficient to prove this for 
lk = Q. Recall (Example 1, §15(d)) that Jr.(S2n+1):g; Q = Q. [id S 2n+l]. It is 
immediate from this and the construction that Jr * (j):g; Q is an isomorphism. If 
fiX is simply connected the \Vhitehead-Serre theorem 8.6 asserts that H. (j; Q) 
is an isomorphism. To prove this \vhen fiX is connected we may replace X by 
any other space with the same \veak homotopy type. 

Let K be an Eilenberg-MacLane space of type (Jrz(X), 2), and choose a cellular 
model X' for X (§l(a)). Choose a map 0" : X' --+ K such that Jrz(O") = identity 
(Proposition 4.20) and convert 0" to a fibration (§2( c)). In this way we reduce to 
the case that there is a fibration q : X --+ K whose fibre, F, is 2-connected. 

\Vrite the infinite product above as (~sf) x Z, where Z is the \veak product 

of the odd spheres of higher dimension and the loop spaces flS 2kj +1 . Then 
we may construct f so that it restricts to h : Z --+ nF with Jr. (h) Q9 Q 
also an isomorphism. By the Whitehead-Serre Theorem 8.6, H* (h; Q) is an 
isomorphism. 

On the other hand, flq : nx --+ nK is an OF-fibration (§2(b)). Let 12 be 
~ ~ 

the restriction of f to TI Sf and put 9 = (Oq)12 : TI Sf --+ OK. Then define a 

map of nF -fib rations 
~ TI Sf x OF ___ h __ • nx 

',,,: j 
TI Sf ---g---·nK 

by setting h( x, Y) = f (x) . y. Since h 0 (id x fd = f, it is sufficient to prove that 
H*(h; Q) is an isomorphism. This will follow from Theorem 8.5 if H.(g; Q) is an 

isomorphism. But \ve can write ~ Sf = K ( Et z, 1) = 12K ( Et z, 2). Hence 

9 ~ ng1, where Jr2 (gd = Jr1 (g). In particular, Jrz (gl) i& Q is an isomorphism, 
and so the Whitehead-Serre theorem asserts that H. (ng1 ; Q) is an isomorphism 
too. 0 

In summary: the map f is a rational homotopy equivalence. Thus loop spaces 
have the rational homotopy type of a \veak product of odd spheres and loop 
spaces on odd spheres. l'Ioreover Proposition 10.7 has the following 

Corollary Let X be any simply connected topological space. Then there is a 
rational homotopy equivalence of the form 

TI Kn --+ OX 
n>l 
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where 1f.(Kn) 0 Q is concentrated in degree n. o 

We now suppose that H.(X; Q) has finite type. Then (Remark 1 following 
Theorem 15.11) 1f.(X) 0 Q has finite type and there are finitely many odd 
spheres (or loop spaces on odd spheres) of any given dimension in the weak 
product of Proposition 16.7. Thus a simple modification of the argument for 
finite products (Example 2, §12(a)) shows that the minimal Sullivan model for 
OX is the tensor product of the minimal Sullivan models for the SUiH and 
the OS2kj+l. In particular the form of a minimal Sullivan model for OX and 
formula (16.4) could equally well have been deduced from Proposition 16.7. 

Next, define homology classes f3i and aj in H.(OX;Jk) by setting 

f3i = H. (bi ) [S2liH] and aj = H.(iij)[S2k j]. 

A homology class in H. (OX; Jk) is called distinguished if it can be written in the 
form 

il < ... < ip , 

'Y = f3iI ..... f3i p . a'l,' ..... a;qq, jl < ... < jq, 

nl, ... ,nq EN, 

with p, q 2: O. (If p = 0 there are no f3i'S in the expression, and if q = 0 there are 
no al's. When p = q = 0 there is a single class 'Y = 1.) 

Proposition 16.8 The distinguished homology classes 13· .... . 13· ·an, .... ·anq 
'1 'p JI Jq 

are a basis of the graded vector space H. (OX; k) . 

proof: Recall that iij '" (Oaj)id, where id : S2kj -----+ OS2kjH represents 
o.[idS 2kj+I]. Denote H.(id)[S2kj] simply by [Sj] E H.(OS2k j+l;Jk). The classes 
1, [Sj] , [Sjf, ... are a basis for H.(OS2kjH; Jk), as we showed in the Example at 
the start of §16. Denote [S2liH] simply by [Silo so that 1 and lSi] are a basis 
for H*(S2£i+ 1 ;Jk). Then (Eilenberg-Zilber) the classes 

[SiI] 0 ···0 [Sip] 0 [Sj,]nI 0···0 [Sjqtq 

are a basis for H. ( ~ SUi +l X g OS2kjH; Jk ). This basis is mapped by H* (I) 

onto the set of distinguished homology classes in H. (OX; Jk). 0 

(d) The primitive subspace of H.(OX; k). 
Again suppose X is simply connected with rational homology of finite type. 

Recall from §16(a) that H(m) : AV ~ H·(OX; Jk), and that if [z], [w] E 
H*(OX;Jk) and a E H+(OX;Jk) then 

([z] U [w], a) = ([z] 0 [w], H(~)a). 

Thus a is primitive if and only if ([z] U [w], a) = 0 for all [z], [w] E H+(OX; Jk); 
i.e., if and only if (H(m)(A~2V), a) = O. There follows 
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Lemma 16.9 A non-degenerate pairing between V and p*(nXj 1.;) is given by 

(v,a) f----t (H(m)v,a). o 

Next note that if f : Y -t Z is a continuous map between path connected 
topological spaces, then H * (1) restricts to a map p* (Y; lk) ---+ P* (Z; lk), be
cause the Alexander-Whitney diagonal is natural. Moreover, [Sk] E H k (Sk; lk) 
is primitive because Hi(Sk; lk) = 0, 1 :'S i :'S k - 1. Hence if a : Sk -t Y then 
hury([a]) = H*(a)[Sk] is a primitive element in H*(Y; lk). Thus we may regard 
the Hurewicz homomorphism as a linear map 

Recall that the topological space X we are considering is simply connected 
and has homology of finite type (hypothesis (16.1)). 

Theorem 16.10 (Cartan-Serre) The Hurewicz homomorphism extends to an 
isomorphism 

proof: We begin with three simple observations. 

(i) hur : 1f*(S2iH) 0lk ~ P*(S2lH; 1.;), £ ~ O. 
Indeed, the Hurewicz theorem 4.19 asserts this is an isomorphism in degrees 

:'S 2£ + 1. The homology of S2iH vanishes in higher degrees (4.14) as does 
1f*(S2iH) 0lk (Example 1, §15(d)). 

(ii) hur : 1f * (nS2kH) 0lk ~ P* (nS2kH; lk), k ~ 1. 

Since 1f*(nS2kH ) 0lk ~ 1f*H(S2kH) 0lk we conclude, as in (i) that this 
graded vector space is concentrated in degree 2k. Thus the Hurewicz Theorem 
4.19 asserts that hur : 1f*(ns2k+l) 0lk ~ P2k (ns2k+l; lk). In the Example at 
the start of §16 we saw that H*(ns2k+l;lk) = lk[a] with dega = 2k, and that 

H(6.)an = f: ( ~ ) a i 0 an-i. This shows that an is not primitive for n ~ 2, 
i=O Z 

so that P* (nS2kH ; lk) = P2k (nS2k+ 1 ; lk). 

(iii) If Y and Z are path connected topological spaces, then 

The first assertion is immediate from the definition of 1f *. For the second, recall 

that Eilenberg-Zilber induces an isomorphism H*(Y; lk) 0 H*(Z; lk) ~ H*(Y x 
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Z;lk). It follows easily from formula (4.9), §4(b) that this is an isomorphism of 
graded coalgebras. 

Let c : H. ( -; lk) --+ lk be the augmentation induced by the constant map to 
a point. Thus 

(id ·cz) 0 (cy· id) [H.(Y; lk) 0 H.(Z; lk)]0 [H.(Y; lk) 0 H.(Z; lk)] 
--+ H.(Y; lk) 0 H.(Z; lk). 

But if'Y E H.(Y; lk) 0 H.(Z; lk) and if ~0 denotes the comultiplication in the 
tensor product coalgebra then clearly 

(id ·cz) 0 (cy . id) 0 ~®("() = '"'(. 

Hence if'Y is primitive then 'Y E (H+(Y; lk) 0 1) EB (10 H+(Z; lk)) and so 'Y E 
P.(Y; lk) EB P.(Z; lk). 

N ow recall the continuous map 

~ ~ 

f : I1 S2£,+1 X I1 OS2kj+l --+ OX 
i j 

of Proposition 16.7 and denote this, for simplicity, by f : Y --+ OX. The three 
observations above imply that 

hur : 1[. (Y) 0lk ~ P.(Y; lk). 

Since 1[. (f) 0lk is an isomorphism and since the isomorphism H.(f;lk) neces

sarily restricts to an isomorphism P. (Y; lk) ~ P. (OX; lk), the theorem follows. 
o 

(e) Whitehead products, commutators, and the algebra structure of 
H.(OX;k). 

Again suppose X is simply connected with rational homology of finite type. 
The commutator of two elements U and T in a graded algebra is the element 

[u, T] defined by 
[U,T] = UT - (_l)deg O"degrTu. 

Recall (§16(c)) that as a graded vector space, H.(OX;lk) has a distinguished 
basis consisting of the elements of the form 

il < ... < ip , 

i3il ..... i3ip • a'lll ..... a~q , jl < ... < jq, 

nl, .. ' ,nq EN. 

Thus the algebra structure of H.(OX; lk) would be completely determined if we 
knew the commutators 
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(Since deg,Bi is odd, ,Bl = ~ [,Bi' ,Bil·) 
We shall express these simply and explicitly in terms of Whitehead products 

(§13(e)), using the linear map 0 = huroo* : 7i*(X) --+ H*-I(nXilk). 

Proposition 16.11 If "(0 E 7ik+dX) and "(1 E 7in+l (X) then 

proof: In Proposition 16.6 we showed that the quadratic part of the differential 
in AVx was given by 

where Cf5v = v ® 1 + ~<I>i ® Wi + 1 ® v. Since doe is dual to 0 (Proposition 15.14) 
and since rp is dual to the multiplication in H*(nXi lk), we have 

(H(m)v, (0"(0) (O"(d - (-I)kn(O"(d(O"(o)) 

(~H(m)<I>i ® H(m)wi' 0"(0 ® 0"(1 - (-I) kn O"(1 ® 0"(0) 

2) _1)k degwi (H(m)<I>i, O"(O)(H(m)Wi' 0"(1) 

- ~) _1)kn+ndeg Wi (H(m)<I>i, O"(I)(H(m)Wi,O,,(O) 
i 

I) -1)kn+k+n(do(<I>ii "(0) (dO(Wii "(1) 

+ L( _1)k+n+l (dO(<I>ii "(1) (do(w ii "(0) 

i 

On the other hand, we may apply Proposition 13.16 where we calculated the 
Whitehead product to obtain 

(_I)k+n+l (doVi ["(0, "(11w) 

(d1doVi "(0, "(1). 

The Proposition follows from these formulae, given the duality between V and 
p*(nX; lk) established in Lemma 16.9. 0 

Finally, suppose given 7i * (X) ® lk together with the Whitehead products. De
fine a graded vector space Lx by setting (Lx h = 7ik+l (X) ® lk and denote by 
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sx E 7r.(X) @ lk the element corresponding to x E Lx. In the tensor algebra 
T L x let I be the (two sided) ideal generated by elements of the form 

x @ y - ( -1) deg x deg y Y @ x - (-1) deg sx S -1 ([ sx, sy] w ) . (16.12) 

Theorem 16.13 The Hurewicz homomorphism extends uniquely to an isomor
phism of graded algebras 

proof: First observe that an identification Lx = 7r.(OX) @ lk is specified 
by identifying x with o.sx, x E Lx. This identifies hurnx as a linear map 
Lx --+ H.(OX;lk), which then automatically extends to a morphism TLx --+ 
H. (OX; lk) of graded algebras. Proposition 16.11 asserts precisely that the el
ements (16.12) are in the kernel of this morphism. Hence it factors over the 
quotient TLx --+ (TLx)/I to define a morphism of graded algebras 

We have to show that a is an isomorphism. 
As in §16(b) let bi : S2£;+2 --+ X and aj : S2kj+l --+ X represent a basis of 

7r. (X) @ lk. Put Yi = S-l [bd and Xj = S-l raj]. Thus {Yi, Xj} is a basis of Lx. 
Recall that TSL x = Lx @ ... @Lx (s factors). Let Fs C (TLx)/I be the 

image ofT~s Lx; elements in Fs have filtration degree s. By the very definition of 
I, if z, w, E Lx then zw - (_I)deg zdeg w wz has filtration length 1. In particular 
if z has odd degree then z2 = ~(zz + zz) has filtration degree 1. 

An obvious induction on filtration degree now shows that every element in 
(T Lx) / I is a linear combination of the elements 

i1 < ... < ip 
nl n q . • Yi , ..... Yip· XiI •.•.. Xjq , J1 < ... < Jq 

ni E N. 

(Show that the subset with p + I:nl :::; s spans FS.) The morphism a maps 
these elements to the distinguished basis of H. (OX; lk) established in Proposi
tion 16.8. Hence the elements above must be a basis of (T Lx) / I and a must be 
an isomorphism. D 

Example 1 The homology algebra H.(osn+\ .I.). 
Let a: sn --+ osn+l represent o.[idsn+l], and let a = hur[a] = H.(a)[sn] E 

Hn(osn; lk). We show that the inclusion of a extends to an isomorphism 
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of graded algebras. If n is odd this has already been done in the example at the 
start of §16. 

Suppose n = 2k. Let t = [id S 2n] E 1f2k(S2k). Then 1f*(S2k) ® 1k is two 
dimensional, with basis given by t and [t, t]w (Example 1, §15(d)). Apply The
orem 16.13 to obtain an isomorphism 

Then note that T (x, Y) / (x2 - h) = T (x) = 1k [x], and that this isomorphism 
sends x r-+ a. 

o 

Exercises 

1. Consider the graded vector space V = {Vi};::::o and its graded dual W = 
Hom (V, Q). Let ~p,q denote the subgroup of permutations (J of the set {I, 2, ... , 
p + q} such that: 

(J1 < (J2 < ... < (JP and (J(p + 1) < CJ(p + 2) < ... < (J(p + q) . 

Define a product (called the shuffle product) on TW by: 

[WI ® W2 ® ... ® W p] E TPW, [w~ Q9 w; ® ... Q9 w~] E Tqw 
[WI ® W2 ® ... ® Wp ] * [W~ ® W~ ® ... ® W~] = 

'" (_1)5U [WII ® w" ® ... ® w" ] L. ui u2 u(p+q) , 
uEI;p,q 

W"· = { en 
WrJi if 1 :S (Ji :S p 

W~i_p if P + 1 :S (Ji :S p + q 

Here S(J denotes the graded signature. Prove that the coproduct defined on TV 
in §3-exercise 4 dualizes the product * on TW. 

2. Determine the algebra H*(f'lcpn; Q) for n 2: 2. 

3. Let X be a finite product of simply connected Eilenberg-MacLane spaces. 
Determine the algebra H* (f'lX; Q). 

4. Let X be a simply connected homogeneous space. Prove that all triple 
Whitehead products are trivial in 1f*(X) ® Q. 

5. Determine, up through dimension 5, the Sullivan minimal model of X = 
S~ V S~ U[a.[a,b]w]w D5. Does the subalgebra H*(f'l(S2 V S2));Q) generate the 
algebra H* (f'lX; Q)? 

6. Prove that, up through dimension 5, the Sullivan minimal model of S2V S2V S5 
is given by /\V = /\(XI,X2,X3,YI,Y2,Y3,Zl,Z2, .... ) with V = {Vt} and Xl,X2 E 

V02 , X3 E Vo5 , dVin C (/\V)~l\ dYl = xi ,dY2 = XlX2 ,dY3 = x~, dZ1 = XIY2-

X2Yl , dZ2 = XIY2 - X2Y2 (see §13-exercise 4). Compute the Whitehead products 
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[a, ,6lw = 0 for every a E "2 (52 V 52 V 55) @ iQ! and ,6 E "3 (52 V 52 V 55) @ iQ!. 
Let D : 1/ -+ AV be a linear map such that D - d(Vi) C (AV)<i-Z. Prove that 
D extends to a differential on A V (cf. exercise 5). 

7. Let 1/ = Ikx 8 Iky be the graded vector space generated by the elements 
x E Vp and y E Vq, p, q 2': 2. Prove that ((Ik EEl V) @ T(sV), d), with d defined 
by dx = 0 = dy and for salsa2 ... sak E Tk(SV), d(salsa2 ... sak) = al @ sa2 ... sak, 
is a T(sV)-semifree resolution of the field Ik. Deduce that H*(l!(5P V 5 q)) is 
isomorphic to the graded vector space T(sV). 



17 Spatial realization 

In §17(a), the ground ring is an arbitrary commutative ring, k. In the rest of 
§17, 11; is a field of characteristic zero. Occasionally we specify 11; = Q. 

We began Part II with the construction, in §10, of the (contravariant) functor 
ApL from topological spaces to commutative cochain algebras. Now, at the 
conclusion of Part II, we reverse the process, and construct the (contravariant) 
spatial realization functor 

I : commutative co chain algebras.".., CW complexes. 

Recall that a Sullivan algebra (AV, d) is simply connected of finite type if 
V = {VP}P2:2 and each VP is finite dimensional. When 11; = Q the spatial 
realization functor has the following important properties: 

• Any simply connected rational Sullivan algebra of finite type is a Sullivan 
model of its spatial realization: 

(AV,d) ~ APL(IAV,dl) , 

and this spatial realization is a simply connected rational topological space 
(Theorem 17.10). 

• Any morphism 'P: (AV, d) --t (AW, d) of simply connected rational Sulli
van algebras of finite type is a Sullivan representative of its spatial realiza
tion I'PI : IAV,dl f-IAW,dl, (17.14). 

• Two morphisms 'P,'lfJ : (AV,d) --t (AW,d) between simply connected ra
tional Sullivan algebras of finite type are homotopic if and only if the con
tinuous maps I'PI and 1'lfJ1 are homotopic (Proposition 17.13 and §12(c)). 

• Let 'P : (A V, d) --t (A W, d) be a rational Sullivan representative for a 
continuous map f : X --t Y between simply connected CW complexes with 
rational homology of finite type. Then there is a homotopy commutative 
diagram 

X ______ ~f ______ , Y 

IAW,dl --Irp-I----.' IAV,dl 

in which 1r*(hx) @Q and 1r.(hy ) ® Q are isomorphisms (Theorem 17.15). 

From these properties it is easy to deduce (and we leave this to the reader) 
the bijections 

and 

{ rational homotopy } 
types 

{
isomorphism classes of } 

minimal Sullivan algebras 
over Q 
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{
homotopy classes Of} '" 
continuous maps of -=t 

rational spaces 
{

homotopy classes of } 
morphisms of Sullivan algebras 

over Q 

promised at the start of §12. (Note that for these bijections we restrict to simply 
connected CW complexes with rational homology of finite type and to simply 
connected Sullivan algebras of finite type.) 

The spatial realization functor, 1 I, is constructed as the composite of two 
others. The first is Sullivan's simplicial realization functor [144] 

) : commutative co chain algebras ..... simplicial sets, 

which is the adjoint of Ap d - ), and the second is Milnor's realization functor 
([126]) 

1 : simplicial sets ..... CW complexes . 

In describing Milnor's functor we shall only sketch some of the proofs, referring 
to May's elegant exposition [122] for details. 

We complete this section by using integration to define a natural quasi-isomorphism 

compatible with geometric products. 
This section is organized into the following topics: 

(a) The Milnor realization of a simplicial set. 

(b) Products and fibre bundles. 

(c) The Sullivan realization of a commutative cochain algebra. 

(d) The spatial realization of a Sullivan algebra. 

(e) Morphisms and continuous maps. 

(f) Integration, chain complexes and products. 

(a) The Milnor realization of a simplicial set. 
Recall the definition of a simplicial set from §lO(a), with face and degeneracy 

maps 8i and Sj. Recall also that in §4(a) we introduced the geometric face and de
generacy maps Ai = (eo··· ei··· en) : ~n-l -4 ~n and {!j = (eo··· ejej··· en) : 
~n+l -4 ~n. 

Now let K be a simplicial set. Give each Kn the discrete topology. Then the 
Milnor realization of K is the topological space 
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where "-' is the equivalence relation generated by the relations 

8iUXX"-'UXAiX , uEKn+1, xE~n 

and 

This construction is functorial: if f : K ~ L is a morphism of simplicial sets 
then f = {fn : Kn ~ Ln} and the continuous maps fn x id : Kn x ~n ~ 
Ln x ~ n factor to define the continuous map 

Ifl:IKI~ILI· 

Recall that the face and degeneracy maps of a simplicial set satisfy the com
mutation relations (10.2). A simplex U E Kn is degenerate if U = SjT, some 
T E K n-l; otherwise it is non-degenerate. The set of non-degenerate n-simplices 
is denoted NKn (cf. §lO(a)). 

o 
Recall further that 8~n = UAi(~n-l) and put ~n = ~n - 8~n. 

i 

Lemma 17.1 [122] The quotient map qK : UKn x ~n ~ IKI restricts to a 
n 

bijection 
o 

itK: UNKnx~n~IKI· 
n 

proof: Denote qK simply by q. If U x x E Kn x ~n choose the least k such that 
q(u x x) = q(T X y) for some (T,y) E Kk x ~k. Then T cannot be degenerate (if 

o 
T = SjW then T x y "-' W x (}jY) and Y E ~k (if Y = AiZ then T x y "-' 8iT X z). 
Hence it is surjective. A tedious computation using the commutation formulae 
(10.2) shows that it is injective. 0 

Suppose L c K is a sub-simplicial set. If u E Ln and u = SjT, T E K n- 1 then 
T = 8j Sj T = 8j u E L n- 1 . Thus it follows from Lemma 17.1 that ILl c IKI. In 
particular, recall from §lO(a) that the n-skeleton of K is the sub simplicial set 
K (n) determined by 

N (K(n) ) = {NKk k:S n 
k 0 k>n. 

Thus IK(n)1 c IKI· 

Proposition 17.2 [122] The Milnor realization IKI of a simplicial set K is a 
CW complex with n-skeleton IK(n)1 and n-cells the non-degenerate n-simplices 
u E NKn . The attaching map for u is the restriction of qK to {u} X 8~n. 

proof: Let u E Kn. The quotient map q: UKn x ~n ~ IKI satisfies q(u x 
n 

AiX) = q(8iu X x) and it follows that q restricts to a continuous map q(T : 
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{oj x ot:.. n ----+ IK(n -1)1. Thus, because of Lemma 17.1, q induces a continuous 
bijection 

q(n) : IK(n - 1)1 U(q.,.) ( II {a} x t:..n) ----+ IK(n)1 . 
(jENKn 

A straightforward check shows that the q(n) are proper, and hence homeomor
phisms. Thus the q(n) define a continuous bijection to IKI from a CW complex 
with the desired properties. This is also proper, and hence a homeomorphism. 
o 

Example 1 1t:..[nJI = t:..n. 
In §lO(a) we introduced the simplicial set t:..[nJ whose k-simplices are the linear 

maps 
(e· ... e· ) : t:.. k ----+ t:.. n 0 < io < ... < ik < n . 20 Zk ,_ _ _ _ 

The identity map of t:..n is thus an n-simplex L of t:..[n], and it is straightforward 

to check that q"(n] restricts to a homeomorphism {L} X t:..n ~ I t:..[nJ I· 0 

Example 2 Cones. 
The 'simplicial point' is the unique simplicial set with a single k-simplex Cn in 

each dimension. Now suppose K is any simplicial set. We extend the face and 
degeneracy maps in {K n U { cn} } n2:0 to the sequence of sets 

(CK)n = Kn U (lJ Kk X {Cn-k-d) U {cn} 

by setting (for a E Kk): 

and 

,i::;k. 
, if r = 0 and i = k + l. 
, otherwise. 

,j ::; k. 
, otherwise. 

This defines a simplicial set C K, the cone on K. 
It follows now from Lemma 17.1 that ICKI ~ IKI xl IIKI x {I}. In particular, 

• for any simplicial set K the realization ICK/ of the cone on K is a con-
tractible CW complex. 0 

Example 3 Extendable simplicial sets. 
Recall from §lO(a) that a simplicial set K is extendable if for any n ~ 1 and 

any I C {O, ... , n} the following condition holds: given ai E K n - 1 , i E I and 
satisfying ow) = OJ-1ai, i < j, then there exists a E Kn such that ow = ai, 
i E I. We observe now that 
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• If K is an extendable simplicial set then IKI is contractible. 

Indeed, extendable simplicial sets K have the property that if E is sub sim
plicial set of a simplicial set L then any morphism rp : E --+ K extends to 
a morphism L --+ K. (This was proved in Proposition lO.4(ii) for simplicial 
co chain complexes, but the argument applies verbatim to simplicial sets.) 

In particular the identity of K extends to a morphism 'I/J : CK --+ K. Thus 
id[K[ = I'l/JI 0 1>\1 where .x : K --+ CK is the inclusion. Since ICKI is contractible, 
id[K[ '" constant map; i.e. IKI is contractible. 0 

Let K be a simplicial set. Just as we defined the cochain algebra C' (K) in 
§10(d) so we now introduce the differential graded coalgebra, C.(K), defined as 
follows: 

• C.(K) = {Cn(K)}n>O and Cn(K) is the free .o.-module on Kn divided by 
the submodule spanned by the degenerate simplices. 

• The comultiplication ~ in C.(K) is given by 

n 

~O" = L 8p 8p+1 ... 8nO" I8i 80 ... 80 0", 0" E Kn . 
p=O 

• The differential d is given by 

n 

dO" = L(-1)P8pO" ,0" E Kn . 
p=o 

The reader will immediately see that this generalizes the construction in §4(a): 
if X is a topological space then C. (X) = C. (5* (X)). Moreover C* (K) is the 
cochain algebra Hom(C*(K), .0.), exactly as in the case of topological spaces. 

If K is any simplicial set then the continuous map qK of Lemma 17.1 restricts 
to continuous maps q" : {O"} X ~n --+ IKI, 0" E Kn. This defines an inclusion of 
simplicial sets, 

where 5* (-) denotes the simplicial set of singular simplices defined in §10(a). 
Observe now that ~K maps the non-degenerate simplices of K bijectively to 

singular simplices of IKI that are the characteristic maps for the cells. This 
identifies C*(~K) as a cellular chain model in the sense of Theorem 4.18. In 
particular, H * (~K) is an isomorphism. Note as well that 

is an inclusion, and identifies C*(K) as a sub dgc of C*(IKi). 
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On the other hand, Let X be any topological space, and define a continuous 
map 11 Sn(X) x ~n -+ X by sending (J x y f--+ u(y). This factors over the 

n 
quotient map qs.(X) to produce the continuous map 

It is an interesting but reasonable exercise [122] to show that Sx is always a 
weak homotopy equivalence. We shall limit ourselves here to the easy case that 
X is a simply connected CW complex. 

Proposition 17.3 

(i) If X is a simply connected CW complex then sx is a homotopy equivalence. 

(ii) If K is a simplicial set and IKI is simply connected then I~KI is a homotopy 
equivalence. 

proof: (i) For simplicity put Y = IS*(X)I and ~ = ~s.(X) : S*(X) -+ S*(Y). 
We show first that Y is simply connected. Indeed, since X is connected any two 
points x, y E X are connected by a singular I-simplex f : (I, 0,1) -+ (X, x, y). 
Thus any two O-cells ~(x) and ~(y) in Yare connected by the I-cell ~(J); i.e., Y 
is path connected. 

If g: (I,O, 1) -+ (X,y,z) we define 

{ 
f(2t) 

(J * g)(t) = g(2t _ 1) 
,0:St:S~. 

,~:St:Sl. 

Similarly, f-l(t) = f(I- t). The homotopy class of f reI {O, I} is denoted by [f] 
and an associative composition of homotopy classes is defined by [f] * [g] = [j * g], 
- cf. §1. 

Fix a O-cell, ~xo, as a base point of Y. The Cellular approximation theorem 1.2 
asserts that any loop in Y at ~xo can be deformed into the I-skeleton Yl . The 
easy part of the Van Kampen theorem asserts that any element 'Y E 1fl (Yl , ~xo) 

can be written in the form [Uo]±l * ... * [Un]±l where the Ui are I-cells in Y. 
There are obvious singular 2-simplices 

and 

const 



Sullivan Models 243 

and ~(j and ~T are singular 2-simplices in Y that provide homotopies U-1 ~ 
(U)-l reI {a, I} and U * ~g '" ~(f * g) reI {a, I}. Let f = ft1 * ... * f~l, where 
we have removed the (necessary) brackets for simplicity. Then f is a loop in X 
at Xo and our observations imply 'Y = [U]. Since X is simply connected there is 
a singular 2-simplex 

const 

and ~w is a homotopy from U to the constant loop. Hence 7f1 (Y) = {O}. 
Next recall that H*(~K; Z) is an isomorphism for any simplicial set K. In 

particular, H*(~; Z) is an isomorphism. But the continuous map Sx : Y -----+ X 
induces S*(sx): S*(Y) -----+ S*(X), and it is immediate from the definitions that 
~ : S*(X) -----+ S*(Y) satisfies S*(sx)~ = id. Thus H*(sx; Z) is an isomorphism. 
Since a homology isomorphism between simply connected spaces is a weak homo
topy equivalence (Theorem 8.6) and a weak homotopy equivalence between CW 
complexes is a homotopy equivalence (Corollary 1.7), assertion (i) is established. 

(ii) Assertion (i) states that SIKI : IS*(IKJ)I -----+ IKI is a homotopy 
equivalence. It is immediate from the definition that SIKI 0 I~KI = id. Thus I~KI 
is a homotopy equivalence. 

o 

(b) Products and fibre bundles. 
The product of two simplicial sets K and L is the simplicial set K x L 

({ Kn x L n}, Oi X Oi, Sj X Sj). If K ~ E f!:.-- L are morphisms of simplicial sets 
then the fibre product K x E L c K x L is the sub simplicial set defined by 
(K XE L)n = {«(j, T) I <p(j = 1,0T}. 

Now the projections {}K : K x L -----+ K and {}L : K x L -----+ L are morphisms 
of simplicial sets. Set 

f = (I{}KI, I{}LJ) : IK x LI -----+ IKI x ILl· 

Proposition 17.4 

(i) The continuous map f is a natural homeomorphism IK x LI -=+ IKI x ILl. 

(ii) Furthermore, f restricts to a homeomorphism IK XE LI -=+ IKI xIEIILI· 

proof: We first introduce some notation. Given a surjective map 
Q: {O, ... ,n} -----+ {O, ... ,k} such that ° = Q(O) ::; ... ::; Q(n) = k we put 
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(2a = (ea(O) ... ea(n)) : ~ n ---+ ~k. Then (!a is a composite of degeneracy maps: 
(2a = (2i , 0 ... 0 (!in-k' and in any simplicial set K the map Sa = Si n _ k 0 ... 0 Si , : 

Kk ---+ Kn depends only on 0: and not on the choice of decomposition (use the 
commutation formulae (10.2)). Moreover the map qK of Lemma 17.1 identifies 
SarJ X Y with rJ x (2aY' 

We now turn to the actual proof. 
(i) It is immediate that I is proper and so we only need to show it is bijective. 

We do so via Lemma 17.1. Any simplex in (K x L)n has the form w = (sarJ, Sj3T) 

with rJ E N Kp and TEN Kq and it is degenerate precisely if Sa = SiSa', and 
sj3 = SiSj3' for some i. This is equivalent to: o:(i) = o:(i + 1) and f3(i) = f3(i + 1). 
Thus the non-degenerate simplices are the (sarJ, Sj3T) with o:(i) + f3(i) < o:(i + 
1) + f3(i + 1), all i. 

Now I: {w} x ~n ---+ ({rJ} X ~p) X ({T} X ~q), where n = n(o:,f3) is the 

d· . f UT d h' .. b f ~n (a,j3) 0p 0q ImenSIOn 0 w. vve enote t IS restnctIOn y a,j3: u ~ ~ x ~ . We 
have to show that each la,j3 is injective and that 

~p x ~ q = II la,j3 (~n(a,j3)) , (17.5) 
a,j3 

where the 0:, f3 run over all the non-decreasing sequences such that w = (sarJ, Sj3T) 

is non-degenerate. 
Regard ~p x ~ q as a subset of W+1 x ~q+1. Then I a,j3 is the linear map 

defined by ei f-t (e a (i),ej3(i)), 0 :'S i :'S n(o:,f3). Since either o:(i) < o:(i + 
1) or f3(i) < f3(i + 1) it is easy to see that (ea(O), ej3(O)) , ... , (ea(n), ej3(n)) are 
linearly independent in W+ q+2 . Hence each la,j3 is injective. Formula (17.5) is 
a straightforward computation. 

(ii) By definition I restricts to a continuous injection IE : IK XE LI ---+ 
IKI x lEI ILl and this is proper because IK XE LI is closed in IK x LI. We have 
only to show that IE is surjective. 

Suppose that w = (sarJ, Sj3T) is a non-degenerate n-simplex in K x L (as de-
o 

scribed in the proof of (i)) and that y E ~n. Then IqKxdw xy) = (qK(rJ X (2aY), 

qdT X (!j3Y)). Suppose this point is in IKI xIEIILI. Then 

qE('PrJ x (2aY) = qE('PT X (2j3Y) . 

Write 'PrJ = Sa' (1' and 'PT = Sj3,T', where rJ' and T' are non-degenerate in E. The 
equation above gives 

o 0 

But (!a : ~n ---+ ~p and similarly for (213, (!a' and (213" Thus Lemma 17.1 
n 

implies that (1' = T' and (!a' (!aY = (!j3' (!j3Y· Now Y = 2: tiei and the condition 
o 

o 
Y E ~ n means each ti > O. It follows that the equation (!a' (2aY = (213' (!j3Y implies 
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eO.' eO. = e{3' e{3, whence So. So.' = s{3s{3'. Thus cpsa IJ = SaSa' IJ' = S{3S{3'T' = CPS{3T; 

i.e. wE (K xE L)n and qKxL(w x y) E IK XE LI. D 

Recall from §2(d) that a fibre bundle with fibre Z is a continuous map p : 
X. -7 Y such that for some open cover {Ua } of Y we have: p-l(Ua ) ~ Ua X Z, 
compatibly with the projection on U a. 

There is a useful simplicial analogue of this "local product structure." Let L 
be a simplicial set. As we observed in §lO(a) any simplex IJ E Ln determines 
a unique simplicial map IJ* : ~[nl -7 L such that IJ* (id6.n) = IJ. Thus given 
a morphism of simplicial sets e : K -7 Land IJ E Lnl we can form the fibre 
product ~[nl XL K. 

We define a simplicial fibre bundle with fibre F to be a morphism e : K -7 L of 
simplicial sets such that for each n ~ 0 and each IJ E Ln there is a commutative 
diagram 

~[nl x F ":,:. ~[nl XL K 

~~ 
~[nl 

in which CPa is an isomorphism of simplicial sets. 

Remark Note that a simplicial fibre bundle is not a simplicial object in the 
category of fibre bundles! 

Proposition 17.6 If e : K -7 L is a simplicial fibre bundle with fibre F then 
lei: IKI -7 ILl is a fibre bundle with fibre IFI· 

proof: Recall from §17(a) that the cells of ILl are the non-degenerate simplices 
IJ of L and that the characteristic maps are the maps qa : {IJ} X ~ n -7 ILl. It 
is immediate from the definitions (d. Example 1 of §17(a)) that 

Thus the pullback of lei to an n-cell is just the fibre product I~[nll XILI IKI 
defined with respect to IIJ* I : I~[nll -7 ILl and lei: IKI -7 ILl· 

Now apply Proposition 17.4 to translate the simplicial diagrams above to the 
commutative topological diagrams 

I~[nll x IFI 1":,:1. I~[nll xlLllKI 

~~ 
I~[nll 
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These show that Igl pulls back to a product bundle with fibre IFI over every cell. 
Thus Proposition 2.7 asserts that I gl is a fibre bundle with fibre IFI. 0 

Example 1 A simplicial construction of the Eilenberg-MacLane space K(k, 1). 
Recall that k is our ground field of characteristic zero. Here we think of it 

simply as an abelian group under addition. In §10(c) we introduced the simplicial 
cochain algebra ApL = {(Apdn}. Thus each A~L is a simplicial vector space. 
Let d be the differential in ApL ; then each (kerd)P is a sub simplicial vector 
space of A~L. Put Z = (kerd)l. We shall show that 

• IZI is an Eilenberg-MacLane space, K(k, 1). 

For this let [k] be the simplicial vector space given by [k]n = k, 0; id, 
Sj = id. Since H ((APL)n, d) = k, n 2: 0, (Lemma 10.7), 

o ---+ [k] ---+ AIj,L ~ Z ---+ 0 

is a short exact sequence of simplicial vector spaces. 
Let (J* : ~[n] ---+ Z be the simplicial map determined by any fixed (J E Zn. 

We show that there is an isomorphism 

CPa : ~[n] X [k] ~ ~[n] Xz AIj,L , 

coherent with the projections on ~[n]. For this, fix T E (Apd~ satisfying dT = (J. 

If a E ~[n]k and>' E [k]k = k, define CPa (a, >.) = (a,T*(a) + >.). It is immediate 
from the definition that CPa is a simplicial isomorphism. 

We may now apply Proposition 17.6 to conclude that 

(17.7) 

is a fibre bundle with fibre l[k]l. The elements of [k]o (= k) are the only non
degenerate simplices, and this identifies l[k]1 = k, equipped with the discrete 
topology. (For example, if k = ~ or Ql, this is not the standard topology!) 
Thus Idl is a covering projection with discrete fibre, k. Since AIj,L is extendable 
(Lemma 10.7), IAIj,LI is contractible (Example 3, §17(a)). 

Finally, note that addition in each (APL)~ defines a simplicial morphism AIj,L x 
AIj,L ---+ AIj,L' which restricts to a : AIj,L x [k] ---+ AIj,L. This realizes to a 
continuous map 

lal : IAIj,LI x k ---+ IAIj,LI . 

In the same way addition defines a simplicial morphism [k] x [k] ---+ [kJ, which 
realizes to ordinary addition in k. Thus lal defines an action of the additive 
group of k on IAIj,LI and this identifies k with the group of covering transfor
mations of the covering projection (17.7). Since IAIj,LI is contractible it follows 
that k ~ 11"1 (IZI) and 11"2:2 (lZI) = O. Thus IZI is a K(k, 1). 

It is useful to identify the isomorphism k ~ 11"1 (IZI) explicitly. For this fix 
as basepoints of I Z I and I A Ij, L I the O-cells Zo and ao corresponding to the zero 



Sullivan Models 247 

elements of Zo and (APL)~' Note also that each .\ E lk = (APL)~ determines a 
O-cell a\ in IA<j,LI. Now recall (§lO(c)) that (APL)I = A(h, dtd. For each.\ E lk 
the element .\dtl E Zi defines a I-cell in IZI that is a loop g\ at zoo Its lift is 
the I-cell in I A <j, L I corresponding to .\t I E (A P d ~ and this is a path fA from ao 
to a\. Thus 

• The isomorphism lk ~ 'iiI (IZI, zo) is given by .\ I-t [gAl· 

o 

(c) The Sullivan realization of a cOInmutative co chain algebra. 
Recall again from §10(c) the simplicial cochain algebra (APL,o;,sj)' It may 

be thought of as a sort of 'generalized point'. From this perspective the Sullivan 
realization of a commutative cochain algebra (A, d) is analogous to the construc
tion of an algebraic variety VR from a noetherian commutative algebra R. The 
points of VR are just the algebra morphisms R ---+ lk. Analogously, we make the 

Definition The Sullivan realization is the contravariant functor (A, d) i"'> (A, d) 
from commutative cochain algebras to simplicial sets, given by: 

• The n-simplices of (A,d) are the dga morphisms cr: (A,d) ---+ (APL)n' 

• The face and degeneracy operators are given by o;cr = 0; ocr and Sjcr = 
Sjocr. 

• If 'P : (A, d) ---+ (B, d) is a morphism of commutative cochain algebras then 
('P) : (A,d) +- (B,d) is the simplicial morphism given by ('P)(cr) = cr ° 'P, 

cr E (B,d)n. 

Denote by DGA( -, -) and by Simpl( -, -) the set of morphisms between two 
dga's, and between two simplicial sets. (Thus (A, d)n = DGA ((A, d), (APL)n)') 
Recall from §10(b) and §10(c) that if K is a simplicial set then APL(K) = 
Simpl(K,ApL ) is the cochain algebra of simplicial morphisms from K to ApL . 
Thus a natural bijection 

DGA((A,d),ApL(K))~Simpl(K,(A,d)), 'Pf--.-tf, (17.8) 

is defined by requiring 

f(cr)(a) = 'P(a)(cr) , a E A, cr E K n, n 2:: 0 . 

This establishes ApL\ -) and ( ) as adjoint functors between commutative 
cochain algebras and simplicial sets. In particular, adjoint to the identity of 
(A, d) is the canonical dga morphism 

1]A : (A, d) ---+ APL(A, d) 

Combining Sullivan's functor with Milnor's realization gives the fundamental 
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Definition The spatial realization of a commutative cochain algebra (A, d) is 
the CW complex lA, dl = I (A, d) I· The spatial realization of a morphism 'P 
(A,d) ---+ (B,d) is the continuous map I'PI = I('P)I. 

Example 1 Products. 
Let (A, d) and (B, d) be commutative cochain algebras. A pair of morphisms 

'P : (A, d) ---+ (APL)n and 'ljJ : (B, d) ---+ (APL)n extend uniquely to the mor
phism 'P''ljJ: (A,d) Q?I (B,d) ---+ (Apdn. Thus restriction to A and restriction 
to B defines an isomorphism of simplicial sets 

((A,d) Q?I (B,d)) ~ (A,d) x (B,d) . 

On the other hand, Milnor's realization converts simplicial products to topo
logical products (Proposition 17.4). Thus we obtain a natural homeomorphism 

I(A,d) Q?I (B,d)1 ~ IA,dl x IB,dl . D 

Example 2 Contractible Sullivan algebras have contractible realizations. 
Suppose A = (A(U 83 dU), d) is a contractible Sullivan algebra, and let {uaJ 

be a basis of U. An element of (A)n is a morphism 'P : A ---+ (Apd n, and so an 
isomorphism 

is given by 'P f---i {'Pua}· By Lemma 10.7 each (APL)lual is extendable, and 
hence so is the product (a trivial exercise). It follows (Example 3, §17(a)) that 
IAI is contractible. D 

More generally, we shall see now that spatial realization converts relative Sul
livan algebras (§14) to fibre bundles with geometric fibre the realization of the 
Sullivan fibre. (This is the obverse of the theorem in §15 that in the Sullivan 
model of a fibration the fibre of the model is a model of the fibre.) 

More precisely, fix a relative Sullivan algebra 

A: (B, d) ---+ (B Q?I AV, d) 

such that Imd C (B+ Q?lAV)83 (JeQ?lAV). Dividing by B+Q?lAV defines a Sullivan 
algebra (AV,d). 

Proposition 17.9 The continuous map IAI : IB Q?I AV,dl ---+ IB,dl is a fibre 
bundle with fibre IA V, cll. 

proof: In view of Proposition 17.6 it is sufficient to identify (A) : (B Q?I A V, d) ---+ 
(B, d) as a simplicial fibre bundle with fibre (A V, cl). In other words we need to 
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show that for any (7 E (B, d)n the corresponding fibre product (with respect to 
(7 * : 6. [n] -----+ (B, d)) satisfies 

6.[n] x(B,d) (B:>9 AV,d) ~ 6.[n] x (AV, d) , 

compatibly with the projections on 6.[n]. 
Now (7 is a dga morphism (B, d) -----+ (Apd n. Moreover, for any a E 6.[n]k, a 

is a linear map 6. k -----+ 6. nand (7* (a) = A p d a) 0 (7, as follows at once from the 
definitions. Thus the k-simplices in the fibre product above are the pairs (a, T) 
where a E 6.[n]k and T : (B:>9 AV, d) -----+ (APLh satisfy TO.\ = A PL (a)(7. 

Let ((APL)n 12) AV, d) = (APL)n 19B (B 12) AV, d) be the pushout relative Sul
livan algebra (§14(a)) defined via (7. Since (Apd n = APL (6.[n]) (§10(c)) there 
is a unique simplicial morphism, 6.[n] -----+ ((APL)n)' adjoint to the identity of 
(Apd n. Our observations just above identify 

compatibly with the projections on 6.[n]. On the other hand, H ((APL)n) = lk 
(Lemma 10.7). Thus the argument of Lemma 14.8, with lk -----+ (Apd n replacing 
(Bl,d) -----+ (B,d), shows that the identity of (APL)n extends to a dga isomor
phism (APL)n 12) (A V, d) ~ (( Ap L)n 12) A V, d). This identifies the right hand fibre 
product as (6.[n] X((APL)n) ((~4PL)n)) X (AV, d) = 6.[n] x (AVd). D 

(d) The spatial realization of a Sullivan algebra. 
Fix a Sullivan algebra (A V, d). By definition, V = {VP}P2: 1 and so there is a 

unique augmentation c : (A V, d) -----+ lk, which is then the unique O-simplex in 
(AV, d) and the unique O-cell in IAV, dl. Denote all these by c. 

In § 17( a) we introduced the inclusion of simplicial sets'; = ';(AV,d) : (A V, d) -----+ 
s* (IAV,dl). Thus APL (';) is surjective (Proposition 10.4). As described there 
for integral coefficients, H.(';; lk) is an isomorphism, and so ApdO is a quasi
isomorphism. Thus in the diagram 

(AV, d) 
TJ(AV,d) 

ApL (IAV, dl) 

c:::: 1 APL(O 

APL ((AV,d)) 

we may (Lemma 12.4) lift T)(AV,d) through the surjective quasi-isomorphism 
ApL(O to obtain a canonical homotopy class of dga morphisms 

mU .. V,d): (AV, d) -----+ APL (IAV,dl) . 

We also want to compare Hom]k(V,lk) with the homotopy groups 'if.(IAV,dl). 
To do so we shall rely on the notation, constructions and observations of § 13( c), 
often without explicit reference, as well as to much of §12, which we also take 
for granted here. Thus if a : (sn, xo) -----+ (I A V, dl, c) represents a E 'if n (I A V, dl) 
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then Apda) om(AV,d) lifts to a morphism 'Pa from (AV, d) to the minimal model 
of sn, which has the form (A(e), 0) or (A(e, e'), de' = e2 ) with deg e = n. 

Furthermore, 'Pa restricts to a linear map vn --t lke which depends only on 
0:, and hence determines a map 

(; ): V n X 1rn (IAV,d!) --t lk, 'PaV = (v;o:)e. 

These maps are linear in vn and, if n 2: 2, additive in 1rn (IAV, dl). Thus the 
maps 

are morphisms of abelian groups if n 2: 2. 

Theorem 17.10 Let (A V, d) be a Sullivan algebra such that Hl (A V, d) = 0 
and each HP (A V, d) is finite dimensional. Then 

"" (i) IAV, dl is simply connected and (n : 1r n (IAV, d!) --=t HomIk (V, k) is an 
isomorphism, n 2: 2. 

(ii) If k = IQ then m(AV,d) is a quasi-isomorphism, 

m(AV,d): (AV,d) ---=+ APL (IAV,d!) 

When k = IQ then Theorem 17.10 exhibits any simply connected Sullivan 
algebra of finite type as the Sullivan model of a CW complex. 

proof of Theorem 17.10: We first reduce to the case (AV,d) is minimal. 
Use Theorem 14.9 to write (AV,d) = (AW, d) I8l (A(UffidU),d) with (AW,d) 
minimal. Then IAV,dl is the product of IAW,dl and a contractible CW complex 
(Examples 1 and 2, §17(c)). It is thus sufficient to prove the theorem for (AW, d). 
We may therefore assume that (A V, d) itself is minimal. This implies that V = 
{VP} p>2 and that each VP is finite dimensional. 

We shall rely on the following observation. Suppose (AU, d) --t (AU I8l A V, d) 
is a minimal relative Sullivan algebra in which (AU, d) is itself a minimal Sullivan 

algebra. As in Proposition 17.9 this realizes to a fibre bundle IAU I8l AV, dl ~ 
IAU,dl with fibre IAV,dl. In particular, IAI is a Serre fibration (Proposition 2.6). 
Let 8* : 1r* (IAU,d!) --t 1r*-1 (IAV,dl) be the connecting homeomorphism. 

Next, by adjointness we have the commutative diagram 

(AU,d) --_. (AUI8lAV,d) --_. (AV,d) 

"l "l "l 
APL ((AU, d)) -- APL ((AU I8l AV,d)) - ApL ((AV, d)) 
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Use the Lifting lemma 14.4 to choose m(AU,d), m(AU®AV,d) and m(AV,d) so that 
the diagram 

(AU, d) ----+. (AU@AV,d)----.(AV,d) 

m"u", 1 1 m,'U0 W <, lm,,",> 
APL(lAU,dl) -- APL(lAU@AVI,d) -- APL (IAV,dl) 

commutes, 
~ow the argument of Proposition 15,13 establishes that 

This translates to the commutative diagram 

7in+l(IAU,dl) -{}-'--+. 7in(IAV,dl) 

e." 1 1 e. (17,11) 

in which do is the dual of do: (do!) (v) = (_1)n+1 f(dov) , v E vn, 

proof of (i): We turn now to the proof of (i), which is accomplished in stages, 

Step 1: If degv = 1 then IA(v), 01 is an Eilenberg-MacLane space K(~, 1), and 
81 is an isomorphism, 

Recall that (A(v),O)n consists of the morphisms a : (A(v),O) ----+ (APL)n' 
Thus av E (ker d)}" Since the morphism a is determined by av, an isomorphism 

of simplicial sets (A(v),O) ~ (kerd)l is given by a r-+ av, Thus our assertion 
follows at once from the Example of §17(b), 

Step 2: If degv = n, n ;:: 2, then IA(v),OI is an Eilenberg-MacLane space 
K(~, n), and 8n is an isomorphism, 

Consider diagram (17.11) specialized to the case of the contractible Sullivan 
algebra (A(v, w), dw = v), regarded as the relative Sullivan algebra (A(v), 0) ----+ 
(A( v, w), d). Then do is an isomorphism by inspection, 0. is an isomorphism 
because IA(v,w),dl is contractible (Example 2, §17(c)) and 
(n-l : 7in-l (IA(w), 01) ----+ Hom(~w,~) ~ .D;; is an isomorphism by induction. 
(Start the induction with Step 11) 

Step 3: Assertion (i) holds if V is finite dimensional. 
We establish this by induction on dim V, the case dim V = 1 being Step 2. 

Write V = U EB .D;;v so that (AU, d) is a sub-Sullivan algebra and dv E AU. 
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Thus (AU, d) -----+ (AUI8iA(v),d) is a relative Sullivan algebra. Since (AV,d) is 
minimal, do = 0. By induction on dim V, C. : 7T.(IAU,dl) -----+ Hom(U,Jk) is an 
isomorphism. By Step 2, so is C.: 7T.(IA(v),OI) -----+ Hom(Jkv,Jk). Thus diagram 
17.11 shows that 8. = ° : 7T. (IAU, dl) -----+ 7f .-1 (IA( v), 01). 

;-.Jow (by naturality) we have the row exact commutative diagram 

° -- 7f.(IA(v),OI) • 7f. (I A V, dl) • 7T.(IAU, dl) -- ° 

+ j (. + ° -- Hom(Jkv, Jk) • Hom(V,Jk) • Hom(U,Jk) -- ° 
and it follows that the central arrow is an isomorphism. 

Step 4: Assertion (i) is true in general. 
Fix n and let U = v:=;n+1. Thus we have a fibration IAV, dl -----+ IAU, dl with 

fibre IAv>n+l, dl. Since (ApL)r is concentrated in degrees:::; r it follows that 
for r :::; n + 1 the only morphism (Av>n+\d) -----+ (Apdr is the augmentation 
(Av>n+l,d) -----+ Jk. Thus IAv>n+1,dl has a single zero cell, and no r-cells for 
l:::;r:::;n+1. 

It follows that 7Ti (IAv>n+1,dl) = 0,1:::; r:::; n+ 1, and hence 7Tn(IAV,dl) ~ 
7Tn(IAU,dl). Moreover un = V and On : 7fn(lAU,dl) ~ Hom(Un,Jk) is an iso
morphism by Step 3. Hence On : 7T n (IA V, dl) -----+ Hom(Vn, Jk) is an isomorphism. 

proof of (ii): It follows from (i) that IAV, dl is simply connected and that each 

7TnIAV, dl is a finite dimensional rational vector space, and that O. : 7T .(IAV, dl) ~ 
HomiQl(V, Q) is an isomorphism. We again proceed in stages. 

Step 1: V = V n . 

Here 7f. (I A V, ° I) is concentrated in degree n and so I A V, dl is an Eilenberg
MacLane space of type K(7T, n) with 7f = HomiQl(V, Q). In particular, the 

Hurewicz homomorphism is an isomorphism, hur : 7Tn (IAV, 01) ~ Hn(lAV, 01; Z) 
by Theorem 4.19. It follows that Hn(IAV,OI;Z) is a rational vector space. Alto
gether then, since V is finite dimensional, we obtain 

V HomiQl (HomiQl(V, Q), Q) 

"'" Hom:dHn(IAV,OI;Z),Q) 

Hn(IA V, 01; Q) . 

Back-checking through the definitions identifies this isomorphism as the linear 
map Hn (m(AV,O)) : vn -----+ Hn (APL(IAV, 01)). Now it follows from Example 2 
of §15(b) that m(AV,O) : (Avn; 0) -----+ APL(IAvn, 01) is a quasi-isomorphism. 

Step 2: V = V:S n . 
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Here we argue by induction on n, the case n = 2 being covered by Step 1. Put 
U = v<n. The naturality ofry: (AV,d) ---7 Apd(AV,d)) means that 

(AV,d) ---... (AU®AVn,d) ---... (AVn,O) 

"j "j "j 
commutes. Thus it is easy to arrange that 

(AU,d) --..... (AU®AVn,d) ---... (AVn,O) 

m'AU", 1 m"v", j 1 m,AV'" 

ApdlAU,dl) -_. APL(IAV,dl) - ApdIAVn,OI) 

commutes as well. 
In this diagram m(AU,d) is a quasi-isomorphism (induction on n) as is m(Avn,o) 

(Step 1). Thus Proposition 15.6 gives a quasi-isomorphism 

which extends m(AU,d) and induces m(AVn,o). By the Lifting lemma 14.4 we 
can extend the identity of (AU, d) to a morphism cp : (AU ® AVn, d) ---7 (AU ® 
AVn, D) such that mcp '" m(AV,d) reI (AU, d). Then (cp - id) : vn ---7 AU, which 
implies that cp is an isomorphism and m(AV,d) is a quasi-isomorphism. 

Step 3: The general case. 
For the general case we fix any n and show that Hn (mAv,d) is an isomor

phism. As observed in Step 4 of (i), IAv>n+l, dl is (n+ l)~connected. Thus it has 
a Sullivan model of the form (AW>n+I,d), while IAV:Sn+I,dl has (Av:Sn+I,d) as 
its Sullivan model. By Proposition 15.6, IAV, dl has a Sullivan model of the form 

(AV:Sn+1®Aw>nH,D) and hence Hn(IAv:Sn+I,dl;(!]) ~ Hn(IAV,dl;(!]). 
This identifies Hn (m(AV,d)) with Hn (m(AV::;n+l,d)) , which is an isomorphism 
by Step 2. 0 

When k = (!] and (A V, d) is a Sullivan algebra satisfying the hypotheses of 
Theorem 17.10 then the quasi-isomorphism 

m(AV,d): (AV,d) ---=+ ApdlAV,dl) 

is called a canonical Sullivan model. 

Now let X be any simply connected CW complex with rational homology of 
finite type, and let 

mx : (AW, d) ---=+ APL(X) 
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be a minimal Sullivan model. Since ApL(X) = APL (S.(X», the adjointness 
formula (17.8) produces a natural simplicial map 

IX: S.(X) ---7 (AW,d) , 

adjoint to mx. On the other hand in Proposition 17.3 we established a natural 
homotopy equivalence sx : IS.(X)I ---7 X. Let tx be the inverse homotopy 
equivalence (defined uniquely up to homotopy) and set 

hx = hxl otx: X ---7IAW,dl . 

Theorem 17.12 With the notation and hypotheses above, 

(i) The diagram 

(AW,d) 

is homotopy commutative. 

(ii) If k = Q then all the morphisms in the diagram are quasi-isomorphisms. 
In particular, hx is a rationalization of X (§9(b)). 

proof: (i) The left hand triangle commutes by construction. Next observe that 
S.(sx) 0 ~s.(X) = id : S.(X) ---7 S.(X). Since txsx rv id lsx1 we can apply 
Proposition 12.6 to conclude that 

APL (~S.(X)) ° ApL(sx) ° ApL(tx) ° 'P 

ApL(tX)°'P 

for any morphism 'P : (AW, d) ---7 ApL (IS.(X)I). Thus 

A pL (~S'(X)) ° A pL (hxl) ° m(AW,d) 

APL (Ix ) ° APL (~(AW,d») ° m(A W,d) 

APL (Ix) ° 'T/(AW,d) 

mx, 

the last equality following from the adjointness of IX and mx. 

(ii) According to Theorem 17.10, m(AW,d) is a quasi-isomorphism. Hence 
so is APL(hx). In §17(a) we observed that C.(~K) is a quasi-isomorphism for 
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any simplicial set K. In particular ApL (~(AW,d)) is a quasi-isomorphism. Hence 
so is 1J(AW,d)' 

Finally since lAW, dl is a simply connected rational space and since H*(hx; Q) 
is an isomorphism (because ApL(hx) is a quasi-isomorphism) it follows that hx 
is a rationalization (Theorem 9.6). 0 

(e) Morphisms and continuous maps. 
In §12(c) we observed that homotopic continuous maps fo ,...., h : X ----+ Y 

have homotopic Sullivan representatives. In the reverse direction we prove 

Proposition 17.13 If 'Po ,...., 'PI : (A V, d) ----+ (A W, d) are homotopic morphisms 
between Sullivan algebras then 

l'Pol""" I'PII: IAW,dl----+ IAV,dl· 

proof: A homotopy from 'Po to 'PI is a morphism <I> : (A V, d) ----+ (A W, d) 0 
A(t, dt) such that (id 0Ei) <I> = 'Pi, where Ei(t) = i. Since realization preserves 
products (the Example of §17(c» we obtain a continuous map I<I>I : IAW,dl x 
IA(t,dt)1 ----+ IAV,dl such 1<I>I(x, Ed = l'Pil(x). But the identity map of A(t,dt) is 
a I-cell in IA(t,dt)1 joining Eo to EI, and so l'Pol""" I'PII. 0 

Now suppose 'P: (AV,d) ----+ (AW,d) is a morphism of Sullivan algebras. By 
adjointness - cf. (17.8) -

APL(('P})OJ.L=J.LO'P: (AV,d) ----+APL((AW,d}) , 

where J.L continues to denote the adjoints of id (AV,d) and id (AW,d)' It follows that 

(AV, d) 'P • (AW, d) 

m,,~,) j jmC"w", (17.14) 

APL(IAV, dl) . APL(IAW, dl) 
APL(I'P1l 

is homotopy commutative. Thus if'P is a morphism of simply connected rational 
minimal Sullivan algebras of finite type then (17.14) exhibits 'P as a Sullivan 
representative of I'PI. 

Next, suppose f : X ----+ Y is a continuous map between simply connected CW 
complexes with rational homology of finite type. Let mx : (AW, d) ----+ APL(X) 
and my : (AV, d) ----+ ApL(Y) be minimal rational Sullivan models, and recall 
the continuous maps h x and h y defined at the end of § 17 (d). 
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Theorem 17.15 With the hypothesis and notation above, let 'P : (A V, d) ---t 

(A W, d) be a Sullivan representative for f. Then the diagram 

is homotopy commutative. 

X _--=-1_ ..... Y 

IAW,dl -- IAV,dl 
1<p1 

proof: In the notation at the end of §17(d), tx and ty are homotopy inverses 
to sx and Sy. Since fsx = syIS*(f)1 it follows that ty f '" IS*(f)ltx. But 
hx = h'xl 0 tx, and so it is sufficient to prove that l'Yyl 0 IS*(f)1 '" I'PI 0 h'xl. 

Because 'P is a Sullivan representative of f there is a co chain algebra mor
phism W : (AV,d) ---t APL(X) ® A(t,dt) such that (id®co)w = APL(f)my 
and (id ®cl)W = mx'P. Compose this with the obvious morphism ApL(X) ® 
A(t,dt) ---t APL (S*(X) x ~[1]) and take the adjoint morphism w : S*(X) x 
~[11 ---t (AV, d) via the adjoint relation (7.8). Then Iwl : l'YyS*(f)1 '" 1'P'Yxl. D 

(f) Integration, chain complexes and products. 
Suppose given a Sullivan algebra (AV, d) and recall the natural morphisms of 

cochain complexes 

(AV, d) -.!4 APL (AV, d) L C* (AV, d) 

defined respectively in §17(c) and in §10(e). We denote by C(AV,d) the chain 
complex Hom(AV, lk). Then the composite f 0 'fJ dualizes to a natural morphism 
of chain complexes, 1 : C*(AV,d) ---t C(AV,d) , 

(since C* (A V, d) includes naturally in Hom (C* (A V, d), lk) via the obvious pair
ing). 

Proposition 17.16 Suppose (A V, d) is a Sullivan algebra in which each vn 
is finite dimensional and either V = V2: 2 or else d preserves V. Then J* is a 
quasi-isomorphism. 

proof: Theorem 1O.15(ii) asserts that f is a quasi-isomorphism. On the other 
hand, so is any canonical Sullivan model, m(AV,d)' (If V = V2: 2 this is Theo
rem 17.10. If d : V ---t Va trivial modification of the proof gives the same result.) 
Since'fJ = ApL(~) 0 m(AV,d) it follows that 'fJ is a quasi-isomorphism too (§17(d». 

Thus the composite dualizes to a quasi-isomorphism Hom (C* (A V, d), lk) ~ 

C(AV,d). 
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Finally, if C is any chain complex there is a natural morphism 
C ----+ Hom (Hom( C, Jk), Jk). If C itself has finite type this is an isomorphism. If 
H (C) has finite type then this is a quasi-isomorphism because H (Hom( -, Jk)) = 
Hom (H(-),Jk). In the case of (AV, d) we have H*(AV,d) ~ H(AV,d) and so 
H*(AV,d) has finite type. Thus since C*(AV,d) = Hom (C*(AV,d),Jk) the in
clusion A : C* (AV, d) ----+ Hom (C* (A V, d), Jk) is a quasi-isomorphism too. Hence 
so is the composite J* = Hom (f 0 7], Jk) 0 A. 0 

The quasi-isomorphisms JK : ApdK) ----+ C*(K) are not a morphisms of 
cochain algebras. In compensation, we show that the quasi-isomorphism J* is 
'compatible' with geometric products. 

For this we recall the definition (§17(b)) of the product K x L = {Kn x 
Ln,Oi X ai, Sj x Sj} of simplicial sets. The simplicial diagonal 6. K : K ----+ K x K 
is the morphism cr f----t (cr,cr). Now in §17(a) we introduced the dgc, C*(K) and 
identified it as a sub dgc of C.(IKI) via the inclusion C.(~K)' In this setting, 
the Eilenberg-Zilber and Alexander-Whitney morphisms restrict to morphisms 

and the comultiplication in C*(K) is just AW 0 C*(6. K ). Clearly AW 0 EZ = id 
and tedious but straightforward computations show, as in Proposition 4.10 that 
EZ 0 AW '" id. 

Now suppose (A V, d) and (AW, d) are Sullivan algebras. A natural inclusion 
C(A V,d) Q9 C(AW,d) ----+ C(AV,d)®(A W,d) is given by 

(a Q9 b)(<1> Q91l1) = (_l)degb deg <!>a(<1»b(1l1), a E C{l\V,d) , 

b E C(A W,d); moreover this inclusion is an isomorphism if either A V or A W has 
finite type. Recall also from the Example of §17(c) that we identify ((AV,d) Q9 
(AW,d)) = (AV, d) x (AW, d). 

Proposition 17.17 If (A V, d) and (AW, d) are Sullivan algebras then the dia
gram 

C* (A V, d) Q') C. (A W, d) _E_Z __ • C. ((A V, d) Q') (AW, d)) 

J. ® f. j jI 
C(.W,d) Q9 C(AW,d) -------+-. C(AV,d)®(AW,d) 

commutes. 

proof: First consider arbitrary simplicial sets K and L and let PK : K x L ----+ 
K and PL : K x L ----+ L be the projections. If <1> E APL(K) and III E APL(L) we 
abbreviate ApdpK) <I> A Apdpd1l1 to <1> x Ill. We begin by showing by induction 
on P + q that: 
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,p = k, q = i!, 
, otherwise. 

(17.18) 
Indeed, if p + q = 0 then 0" and T are vertices, EZ(O" ® T) = (0", T) and 

the left hand side is just <I> (0") IJI (T). This is (trivially) the same as the right 
hand side. Suppose p + q = n and that the proposition is proved for n - l. 
Recall from §10(a) that 0" and T determine simplicial maps 0"* : ~[Pl ---t K 
and T* : ~[ql ---t L. By naturality we may use these to reduce to the case 
K = ~[P], L = ~[ql· Thus APL(K) = (A.PL)p and APL(L) = (APL)q, as 
observed in Proposition 10.4(i). In particular there are polynomials f(t 1 , ... , tp) 
and g( tl, ... , tq) such that <I> = f dt 1 1\ ... 1\ dtp and IJI = 9 dt1 1\ ... 1\ dtq. 

Now either p > 0 or q > O. In either case d<I> = dlJl = O. If p > 0 clearly 
<I> = dr and <I> x IJI = d(r x IJI), some r E (APL)~-l. Since fKxL commutes with 
the differentials, for any C E Cn(K x L) we have 

Since EZ also commutes with differentials we may substitute EZ(O" (9 T) for c 
and use induction to complete the proof. If p = 0 and q > 0 write IJI = dn and 
use the same argument. ( A second proof may be constructed starting from the 

observation //XXy f(t)g(s)dtds = (Ix f(t)dt) ([ 9(S)dS). This idea, while 

more intuitive, is technically more complicated to implement.) 
Now specialize to the case K = (AV, d) and L = (AW, d), and observe that 

1J(AV,d)®(AW,d) (<I> ® IJI) = 1J(AV,d) <I> X 1J(AW,d) IJI, 
<I>EAV, 
IJIEAW. 

Thus for 0" E K, TEL, 

Exercises 

±( f KxL(1J(AV,d)<I> X 1J(AW,d) IJI), EZ(O" ® T) ) 

±( f K1J(AVd) <I> , 0" )( f L1J(AW,d) IJI, T ) 

(/. O"® /. T) (<I>®IJI) , 

o 

1. Let (A V, d) be a Sullivan minimal model with dim H* (A V, d) < 00 and Vl = O. 
Show that (A V, d) is the Sullivan minimal model of a I-connected finite CW 
complex. 
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2. Prove that the geometric realization of the relative Sullivan model (I\X2 ® 
I\x3 ; dX3 = xD is the rationalization of the principal fibration 53 ---t 52 ---t 

K(71, 2). 

3. Let (I\(X3, X5), 0) ® (I\(V3, v~, V5, V7, v~, Ug, Vg, Wg, ... ), d) be the Sullivan min
imal model of the product (53 x 55) X (53 V 53) . Compute the differential 
d for the given generators. Consider the relative Sullivan model (I\(X3, Y5) ® 
I\(V3,V~,V5,V7,V~,Ug,Vg,Wg, ... ),D) with D = d up to degree 8, Dug = dUg, 
Dvg = dvg and DW9 = dwg + X5V5, ... . Prove that the geometric real
ization of this model is rationally equivalent to the total space of a fibration 
(53 V 53) ---t E ---t (53 X 55) with non trivial connecting morphism. If a and b 
are generators of 7i3(53 V 53) compute [[a, b]wa]w. 

4. Prove that if cp : (A, dA) ---t (B, dB) is a quasi-isomomorphism then H* (Icpi) : 
H*(lA, dAI) ---t H*(I(B, dB I) is an isomorphism. 

5. Let cp : (I\t,O) ---t I\(x, y, z) be as in §3-exercise 3. Is Icpl an homotopy 
equivalence? 

6. Let (1\ V, d) be a Sullivan minimal model and x an element of degree n . 
Prove that [(l\x,O), (I\V, d)] = Hn(I\V, d). Deduce that if X is a space then 
[X, K(Q,n)] = Hn(x; Q). 



Part III 

Graded Differential Algebra 
( continued) 



18 Spectral sequences 

The ground ring in this section is an arbitrary commutative ring k, except in 
topic (d) where k is a field. 

Although we have managed to provide the reader with relatively simple 'spec
tral sequence-free' proofs in Parts I and II, subsequent material necessarily uses 
spectral sequences in a fundamental way. We therefore introduce them here, but 
limit ourselves to the strict minimum that will be required. In particular, we 
consider only the spectral sequence of a filtered object, and even there make no 
attempt to present results in their most general form. 

A spectral sequence is, in particular, a sequence of differential graded modules 
(E i , di ) such that H(Ei) ~ Ei+l. They can be used to 'approximate' the homol
ogy of a complicated differential module and in this (and other), contexts play 
an essential role in homological calculations. 

In this section we provide a brief and elementary introduction, including only 
material that will be required in the following sections. In particular, much of 
what is presented here holds in considerably greater generality. 

This section is divided into the following topics. 

(a) Bigraded modules and spectral sequences. 

(b) Filtered differential modules. 

(c) Convergence. 

(d) Tensor products and extra structure. 

(a) Bigraded modules and spectral sequences. 
Recall (§3) that a graded module M is a family {Mi}iEZ of modules. Anal

ogously a bigraded module is a family M = {Mi,j hi,j)EZXZ of modules indexed 
by pairs of integers (i,j). The basic constructions of §3 (e.g. Hom and cg:) carry 
over verbatim to the bigraded case. In particular a linear map f : M --+ N of 
bidegree (p, q) is a family of linear maps f : Mi,j --+ Ni+p,j+q and a differential 
is a linear map d: M --+ M such that d2 = 0 and d has bidegree (-i, i-I) for 
some i. The homology, H(M) = kerdjImd, is again a bigraded module. 

Associated with a bigraded module M is the graded module Tot(M) defined 
by 

Tot(Mh = EB Mi,j 

i+j=k 

and a differential in M induces an ordinary differential in Tot(M). 
Finally, as in the singly graded case, we raise and lower indices by setting 

M i,j-M· . 
- -z,-J' 

We can now define spectral sequences. 
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Definition A homology spectral sequence starting at ES is a sequence 

in which Er = {E;,q} is a bigraded module, dr is a differential in Er of bidegree 

(-r, r - 1) and (Jr : H(ET) ~ E r+1 is an isomorphism of bigraded modules. 
A cohomology spectral sequence is a sequence (Er, dr, (Jr), r 2: s, with Er = 

{Ef,q}, dr a differential of bidegree (r, -r + 1) and (Jr : H(Er) ~ Er+l' Thus 
raising degrees converts a homology spectral sequence into a cohomology spectral 
sequence. 

\Ve shall frequently suppress the (Jr from the notation and refer to the spectral 
sequence (Er,dr) or (Er,dr). 

In calculating with (cohomology) spectral sequences it is frequently useful to 
represent them by diagrams of the form 

~
p,q) 

dr 

(p + r, q - r + 1) 

A morphism of spectral sequences is a sequence of linear maps 'P(r) : E(r) ---+ E(r) 
of bidegree zero, commuting with the differentials, and such that (Jr identifies 
H ('P(r)) with 'P(r+l), (or 'P(r) : E(r) ---+ E(r) such that (Jr identifies H ('P(r)) 
with 'P(r+l))' 

(b) Filtered differential modules. 
A filtered (graded) module is a graded module, lvI, together with an increasing 

sequence 
~ : ... C Fp C Fp+l C ... ,p E Z 

of submodules, called the filtration of lvi. (If M = {Mn} we write FP = F_p 
and so the filtration has the form 

~ : . . . =:> FP =:> FP+l =:> . .. .) 

We may also write FP M instead of FP if necessary to avoid confusion. The 
filtered module (M,~) determines the associated bigraded module, gM, given by 
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Here p is called the filtration degree and q is the complementary degree. 
A linear map r..p : AI ---t N between filtered modules is filtration preserving if 

it sends each Fp(M) to Fp(N). In this case it induces (ir..p : (iM ---t (iN in the 
obvious way. A filtered differential module (lvI, d, -J) is a filtered module (M,-J) 
together with a filtration-preserving differential in M. 

Example 1 Semifree modules. 
Suppose (M, d) is a semifree (R, d)-module. Then (by definition, cf. §6) M 

admits a filtration ° c M(O) C M(l) C ... 

such that 
(r;;/vI,(id) ~ (R,d) ~ (V, 0) . 

o 

Example 2 Relative Sullivan algebras. 
Let (B (2) A V, d) be a relative Sullivan algebra (§ 14). It is filtered by the degree 

of B: 
FP(B(2)AV) =B?P(2)AV, p=0,1,2, ... 

and the associated bigraded module is given by 

(r;;(B (2) AV), (id) = (B,O) (2) (A V, d) . 

Example 3 The word-length filtration of a Sullivan algebra. 
Filter a Sullivan algebra (AV,d) by its word-length (cf. §12): 

FP(AV) = A?pV, p 2:: 0. 

The associated bigraded module is then given by 

(r;;(AV),(id) = (AV, do) , 

o 

where do is the linear part of d: do : V ---t V and d - do : V ---t A?2V. 0 

Suppose (M, d, J) is a filtered (graded) differential module. Then (r;;M, (id) is 
a differential bigraded module in which (id is a 'first approximation' to d. The 
spectral sequence associated with (M, d, J) is a spectral sequence beginning with 
(r;;M,(id) and, as we shall see in (c), 'converging' in many cases to H(M,d). ,"Ve 
shall define the cohomology spectral sequence for AI = {Mi}iEZ; the homology 
spectral sequence for AI = {AldiEZ is obtained simply by lowering indices. 

To begin, denote the filtration of M by ... ::) FP ::) FP+l ::) .... ~ote that 
each FP is a graded module: FP = {(FP)n}nEZ. For each integer r 2:: ° define 
graded modules Zr and D~ by 

Z~ = {x E FP I dx E FP+r} and D~ = FP n dFP-r . 
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Evidently 
DP C DP C ... C DP C ... c ZP C ... c zP C zP o I r rIO' 

Now define bigraded modules Er , r 2': 0, by letting E¥,q be the component of 

Z¥j ( z~~i + D~_I) in degree p + q: 

EP,q = (ZP/ (zP+l + DP ))p+q 
r r r-l r-I 

It is immediate from the definition that d factors to define a differential dr in Er 
ofbidegree (r, l-r). Moreover, the inclusions Z~+l ~ Z¥ induce isomorphisms 
of bigraded modules 

Note as well that 
(Eo, do) = (9M, Qd) . 

Definition The spectral sequence (Er, dr ) is called the spectral sequence of the 
filtered differential module (M, d, 'J). 

Note that this construction is natural: if cp is a morphism of filtered differential 
modules it induces a unique morphism Er (cp) of spectral sequences such that 
Eo(cp) = Qcp. 

Example 4 Bigradations. 
There is one particular situation that arises frequently in practice. We suppose 

given a graded differential module (M, D) in which 

• Each M r is given as a direct sum M r = EB MP,q. 
p+q=r 

• The differential d is a direct sum D = L Di with Di : MP,q ---+ MP+i,q-i+I. 
i~O 

Here a canonical filtration is given by Fk(MY = EB MP,r-p and this leads as 
p~k 

just described to a spectral sequence. 
Moreover from D2 = 0 we deduce D6 = 0, DIDo + DoDl = 0 and Di = 

-DoD2 + D2Do. In particular, Do is itself a differential and DI induces a 
differential H(Dd in H(M, Do). Now a straightforward verification shows that 
the first two terms of the spectral sequence are given by 

(Eo, do) = (M, Do) and o 

(c) Convergence. 
Suppose (Er, dr) is a cohomology spectral sequence. Fix a pair (p, q). If the 

maps 
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are both zero then Hp,q(Er,dr) = E~,q and CTr : Etq ~ E~:l' In this case 
we write Etq = E~:l' The spectral sequence (Er, dr) is called convergent if for 
each (p, q) there is an integer r(p, q) such that 

EP,q - EP,q - ... - EP,q - ... r(p.q) - r(p,q)+l - - r - r2: r (p,q). 

In this case the bigraded module E~q is defined by E~q = E~,q, r 2: r(p, q). The 
spectral sequence collapses at Er if di = 0, i 2: r. In this case Eoo is defined and 
Er = Eoo· 

An important example of convergence arises in the case of first quadrant spec
tral sequences, which we now define. 

A first quadrant cohomology spectral sequence is one in which each Er 
{E~,q}p>o,q>o' These spectral sequences are convergent with E~q = E~,q, r > 
max(p, q + 1). Analogously, a first quadrant (cohomology) filtration in a graded 
module M is a filtration {FPM} such that 

:\iotice that these conditions imply that AI = {Mn }n2:0 . 

Let (M, d, J) be a filtered differential (graded) module. Define a filtration in 
H(M) by 

FP(H(I'vI)) = 1m (H(FP}vI) ----7 H(M)) . 

If the associated spectral sequence is convergent and if there is a natural isomor
phism Eoo ~ 9 H (M) then we say the spectral sequence is convergent to H (M). 

Proposition 18.1 Suppose (M, d, J) is a cochain complex with a first quadrant 
filtration. Then the associated spectral sequence is first quadrant, and converges 
to H(M). 

proof: The first assertion is immediate since Eo = 9 Iv1 is necessarily concen
trated in non-negative bidegrees. 

For the second assertion let z~,q be the component of degree p + q in the 
graded module Zr. If r > q + 1 then 

d : z~,q ----7 (FP+r M)p+q+l = 0 . 

Thus 

Moreover, if r > p then D~_l = d(M) n FP M. This identifies 

EP,q = zP,q/ (ZP+l,q-l + (DP )p+q) ~ gp,q H(M) . 
r r r-l r-j o 
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Proposition 18.2 (Comparison) Let cp : (M, d, J) ---+ (N, d, J) be a mor
phism of filtered cochain complexes with first quadrant filtrations. If some Er(CP) 
is a quasi-isomorphism then H(cp) is an isomorphism of filtered modules. In 
particular, cp is a quasi-isomorphism. 

Lemma 18.3 Suppose 'ljJ : (M,~) ---+ (N,~) is a morphism of filtered graded 
modules with first quadrant (cohomology) filtrations. If9('ljJ) is injective (resp. sur
jective) then so is'ljJ. 

proof: Suppose g('ljJ) is injective. If 0 oF x E M n there is a greatest p such 
that x E FP M, because (Fn+l Mt = O. Thus x represents a non-zero element 
[x] E gp,n-p(M) and so 0 oF g('ljJ)[x] = ['ljJx]. In particular 'ljJx oF O. 

Suppose g('ljJ) is surjective. Then for each p, 'ljJ(FP M) + FP+l N = FP N. It 
follows by induction on q that 'ljJ (FP M) + Fp+q N = FP N, q 2: O. Fix nand 
choose q so p + q > n. Then (Fp+q Nt = o. It follows that 'ljJ (FP M) = FP N. D 

proof of 18.2: Since Ei+l (cp) is identified with H (Ei(CP)) it follows that Er+l (cp) 
is an isomorphism. By induction Em (cp) is an isomorphism for m 2: r + 1. Hence 
Eoo(cp) is an isomorphism. By Proposition 18.1 this is identified with gH(cp). 
Now apply the Lemma above (and its proof) with 'ljJ = H(cp). D 

(d) Tensor products and extra structure. 
In this topic we restrict to the case k is a field. 
Suppose (M, d,~) and (N, d,~) are filtered differential (graded) modules. The 

tensor product is the differential graded module (M, d) Q9 (N, d) equipped with 
the filtration 

FP (M Q9 N) = + Fi M Q9 Fj N 
i+j=p 

(note: the sum on the right is NOT direct). It is straightforward to identify that 
if gM or gN is k-projective then 

as bigraded modules, compatible with the differentials. 
Now we observe there are natural identifications 

compatible with the isomorphisms Er+1 = H(Er,dr). In fact, when r = 0 this 
is just the remark above. For r 2: 1 it follows by an inductive application of the 
fact that homology commutes with tensor products (Proposition 3.3). 
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Example 1 Filtered differential graded algebras. 
Suppose (A, d) is a dga equipped with a filtration {FP} such that FP is pre

served by d and satisfies FP . Fq C Fp+q. Then multiplication 

(A, d) C9 (A, d) --t (A, d) 

is filtration preserving and hence determines a morphism of spectral sequences 

This identifies each (Er,dr) as a differential graded algebra with H(Er) ~ 
E r +1 as graded algebras: we say (Er, dr) is a spectral sequence of graded algebras. 

If the spectral sequence is convergent then Eoo is a graded algebra. In the case 
of a first quadrant filtration the isomorphism Eoo ~ 9H(A) is an isomorphism of 
algebras. However the graded algebra Tot 9H(A) may not be isomorphic with 
H(A) ! 

Exercises 

1. Let (/\ V, d) be a Sullivan model. Consider the filtration FP(/\ V) = /\2:pV of 
example 3 and the associated first quadrant spectral sequence of algebras: 

Ei,q = (NH(V,do))P+q ===? Hp+q(/\V,d) . 
Prove that if (/\ V, d) is a I-connected minimal model then E2 = H (/\ V, dr). 
When (/\ V, d) is the minimal model of cpn, n 2' 3, compute the differentials 
and the product in Eoo· 

2. Let (B, d) -t (B C9 /\ V, d) -t (/\ V, d) be a relative Sullivan model and 
consider the spectral sequence of algebras defined in example 2. Prove that 
Ei,q = (BP C9 Hq (/\ V, d), dr), and determine d1 using the short exact sequence 
o -t FP+l / FP+2 -t FP / FP+2 -t BP C9 /\ V -t O. Prove that if Bl = 0, then 
Ef'q = HP(B, d) C9 Hq(/\ V, d). 

3. Let (/\U C9/\ V, d) be a relative Sullivan model such that dim V < 00 and such 
that the algebra H(/\U, d) is finitely generated. Denote by Qi for i = 1,2, ... , n 
(resp. Vi) a linear basis of the space (H+(/\U)/ H+(/\U) . H+(/\U)rven (resp. of 
the space V). Prove that if dVi = aT for some cocycle ai in /\U representing Qi, 

then dim H(/\U @ /\ V, d) < 00. 

4. Let F -t X -t Y be a fibration as in theorem 15.3. Construct a spectral 
sequence (the rational Serre spectral sequence): 

E~,q = HP(Y; Q) @ Hq(F; Q) ===? Hp+q(X; Q). 
a) Prove that H(j) : H*(X; Q) -t H*(F; Q) is onto if and only if the ra

tional Serre spectral sequence collapses at the E2-term and thus H*(X;Q) ~ 
H*(Y;Q) @H*(F;Q) as graded vector spaces. 

b) Prove that if H*(F; Jk) = /\x with x of odd degree then H*(X, Jk) is 
isomorphic to H * (Y, Jk) / (dx) EB sdeg X A where A denotes the annihilator of dx in 
H*(Y, Jk). 
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5. Show that the filtration of a CW complex X by its skeleton induces a first 
quadrant spectral sequence 

EP,q - Hp+q(X"p XP-l.Jk) ===? Hp+q(X Jk) 1 - ...(" , 

which collapses at the E 2 -term. 

6. Suppose that E~,q = 0 unless q = 0 or q = n. Show that E:;;,n = Ker dn+1 . 

Deduce the short exact sequence 
o -t EP,n -t EP,n d~l EP+n+l,O -t EP+n+l.O -t 0 

CXJ 2 2 ex) • 

7. Let F -4 X .4 Y be a fibration with I-connected base Y. Suppose further 
that Hi(Y;rQ) = 0 for 1 ::; i < p and Hj(F;rQ) = 0 for 0 < j < q. Prove that 
there is a long exact sequence 

o -t H1(X;rQ) ~j H1(F;rQ) -t H 2 (Y;rQ) H~f H 2(X;rQ) -t ... 

... -tHP+q-2(F;rQ) -tHP+q-l(Y;rQ) H:'; HP+q-l(X;rQ) ~j HP+q-l(F;rQ). 

8. Consider the Serre fibration G / K -t BK ~ BG as defined in §I5 f, example 
1. Deduce from exercise 4b that H*(BK; rQ) is a finitely generated H*(BG; rQ)
module via H*(Bj; rQ). 



19 The bar and cobar constructions 

In this section the ground ring is an arbitrary commutative ring 1;;. As usual 
- Q9 - means - Q9Jk -. 

The bar and cobar constructions are functors 

augmented 
differential graded algebras 

and 

co-augmented 
differential graded coalgebras 

B 

"'" 
co-augmented 
differential graded coalgebras 

augmented 
differential graded algebras. 

They were introduced, respectively, by Eilenberg-MacLane [48] who showed that 
B(Z[r])::: C* (K(r, 1)) and by Adams [1] who showed that OC*(X) ::: C*(OX). 

Here we give the constructions, and establish those few properties that will be 
essential in the sequel. 

We begin with some conventions (cf. §3). The suspension sV of a graded 
module is defined by (s Vh = Vk- l and the correspondence is denoted by sv B v, 
v E V. Similarly (s-IVh = Vk +1 and S-IV B v. 

Recall that the tensor algebra on a graded module V is the graded algebra 
00 

TV = EB TkV with TOV = lk and TkV = V Q9 .•• Q9 V (k times). The multipli-
k=O 

cation TkV Q9 T£V -+ TkHV is just the tensor product, and TV is augmented 
by E:: V ~ O. 

The tensor coalgebra on V is defined analogously. It coincides with TV as 
a graded module, so to avoid confusion we denote its elements by [vII·· ·IVk] 
instead of by VI Q9 ..• Q9 Vk. The diagonal in the tensor coalgebra is defined by 

k-l 

.6.[vII· . ·IVk] = [VII· . ·IVk] Q9 1 + ~)vII" ·IVi] Q9 [vi+ll· . ·IVk] + 1 Q9 [VII· . ·IVk]. 
i=l 

The tensor coalgebra is augmented by f and co-augmented by lk = TOV. Note 
that the diagonal is not compatible with the tensor algebra structure. 

Now suppose f : (A, dA) -+ lk is an augmented dga and denote ker f by I. 

Definition The bar construction on (A, dA) is the co-augmented differential 
graded coalgebra BA defined as follows: 

• As a co-augmented graded coalgebra BA is the tensor coalgebra T(sI) on 
sI . 

• The differential in BA is the sum d = do + d l of the coderivations given by 

k 

do ([saIl·· ·Isak]) = - L') _l)ni [saIl·· ·lsdAail·· ·Isak] 
i=l 
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and 

Here ni = L: deg saj. 
j<i 

269 

Notice that do reflects the differential dA in A while dl is defined using the 
multiplication. To see that d2 = 0 note that d6 = 0 because d'i = 0, dodl +dldo = 
o because dA is a derivation in A and di = 0 because A is associative. 

We shall adopt the notation BA = EB Bk A with Bk A = Tk(sI). The notation 
k 

'BA' is an abuse; we should really write B(A,d) or B(A,d,E), and we will in 
fact write B(A, d) when there are several possible differentials in A. 

More generally, if (M, d) is a left (A, dA)-module (cf. §3) then the bar construc
tion on (A, dA) with coefficients in (M, d) is the complex B(A; M) = BA lSi M 
with differential d = do + dl where 

k 

dO[sall· . ·Isak]m = - L: (-l)n; [saIl·· ·lsdAail· . ·Isak]m 
i=l 

and 
k 

dl [saIl· . ·Isaklm = L: (_l)n; [saIl· . ·Isai-Iail· . ·Isak]m 
i=2 

+( _1)nk+l [saIl· . ·Isak-l]ak . m. 

Of course dom = dm, dIm = 0 and dl[sa]m = (_l)dega+l a · m. 
We also adopt the convention: Bk (A; M) = Bk A lSi M, and elements in Bk A 

or Bk (A; M) have wordlength k. 
Note as well that if we consider 1. as an (A, dA)-module via E then (BA, d) = 

(B(A; 1.), d). 
Henceforth we shall denote our differential graded algebras by (A, d) since it 

will always be clear from the context whether "d" refers to the differential in A 
or in B(A; M). 

There are two situations in which it is easy to compute H (B(A; M)). The 
first arises when A is a tensor algebra. Thus suppose 

A = TV and either V = {Vik::o or {Vih2:2. 

Let dv : V ----t V be the linear part of the differential in A, so that d - dv 
V ----t T2:2V, and define 

d: sV ----t sV 

by dsv = -sdvv. 
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Now here I = T::: 1 V. Define a morphism of complexes 

f} : (B(TV, d), d) -+ (sV EEl lk, d) 

by the conditions: 

f}1 = 1, e[sv] = sv, e[S(Vl 0···0 ve)] = 0, £ 2: 2 

and e = 0 in B:::2(TV). 

Proposition 19.1 With the notation above, e is a quasi-isomorphism. 

proof: Since e is surjective we need only show H(ker e) = O. Define h 
B(TV) -+ ker f} by h(l) = 0 and 

{ 
[svl···] -+ 0, v E V 

h: d +1 [s(v10···0ve)I···]t---+(-I) egvl [svlls(V20 ... 0ve)I ... ], £>2. 

A quick calculation shows that hd1 +d1h = id in ker e. Since h raises wordlength 
and do preserves it, it follows that (id - hd - dh) increases word length in ker e. 
Similarly, id -hd - dh preserves degrees. 

Let z E ker f} be a cycle of degree n. Then (id -hd - dh)n z has degree nand 
wordlength at least n + 1. However, our hypothesis on V implies that elements 
in B:::n+l(TV) have degree at least n + 1. Thus (id -hd - dh)n z = O. Since 
d(id -hd - dh)k z = 0 this gives (id -dh)nz = 0; i.e. 

is a boundary. o 

The second situation where we can compute is when we take (A, d) as a left 
module over itself, via multiplication. This yields the complex 

B(A;A) = BA 0 A. 

Note that B(A; A) is a right (A, d) -module via multiplication on the right and 
that B(A; M) = B(A; A) 0A M. 

Proposition 19.2 

(i) The augmentations in BA and A define a quasi-isomorphism, c 0 c 

B(A;A) ~ lk. 

(ii) If lk is a field then B(A; A) is a semifree right (A, d)-module. Thus c 0 c 
is an (A, d)-semifree resolution of lk. 
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proof: (i) Define h : B(A; A) ~ ker(E ® E) by 

h: { a f---t (_l)e [s(a - w)]l 

[sall···lsak]af---t (-l)e[sall"'lsakls(a-w)]l, k2:: 1 
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where e = deg[sall·· ·Isak]a. An easy computation gives id = dh + hd in 
ker(E ® E), so that H(ker(E ® E)) = O. 

(ii) Since B(A; A) is the increasing union of the submodules B~k A®A, 
it is sufficient to show that (Lemma 6.3) the quotient modules (B~k AI B<k A) ®A 
are (A,d)-semifree. These quotients may be identified as (Tksf, do) ® (A,d). 
Thus the inclusions ker do ® (A, d) C-.-7(Tk sf, do) ® (A, d) exhibit these quotients 
as semifree. 0 

The cobar construction is a precise dual analogue of the bar construction. 
Suppose (C, d) is a co-augmented differential graded coalgebra with comultipli
cation 6. : C ~ C ® C (cf. §3(d)). Let C be the kernel of the augmentation 
E : C ~ lk. Then (cf. §3(d)) 

6.c - (c ® 1 + 1 ® c) E C ® C , 

Define LS. : C ~ C ® C by LS.c = .6.c - c ® 1 - 1 ® c. This map is called the 
reduced comultiplication and is also coassociative: (LS.®id)LS. = (id ®LS.)LS. : C ~ 
C®C®C. 

Definition The cobar construction on (C, d) is the augmented differential graded 
algebra DC defined as follows: 

• As an augmented graded algebra DC is the tensor algebra T(s-lC) on 
S-lC . 

• The differential in DC is the sum d = do + d1 of the derivations determined 
by 

and 

where LS.x = LXi ® Yi. 

Exercises 

1. Let f : (A,d,E) -+ (A',d',E') be a morphism of augmented chain algebras, 
then the formula Bf([sallsal ... lsakD = [Sfallsfa21 ... lsfakL k 2:: 0, defines a 
morphism of graded differential coalgebras B f : BA -+ BA'. Prove that B f is 
a quasi-isomorphism if and only if f is a quasi-isomorphism. 
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2. Let (A, d, E) be a differential graded augmented algebra. Prove that the nat
ural morphism of differential graded algebras IlBA ---+ A is a quasi-isomorphism. 

3. Let (A, d, E) be a I-connected augmented cochain algebra and denote by B# A 
the graded dual of the bar construction BA. Prove that B# A is a chain algebra. 
Prove that if A is of finite type then IlA# ~ B# A. Let (A, d) = (/\ V, d) be a 
minimal model and d1 : V ---+ V @ V be the quadratic part of the differential 
d. Prove that V ~ sH+ (B# A) and that d1 is dual to the multiplication in 
H+B#A. 

4. Let (A, d, E) and B# A be as in exercise 3 and denote by (1, a) the pairing 
B# A @ BA ---+ Ik. Prove that the action defined by f . [sa1Isa21 ... lsakla = 

k 

L(1,[sa1Isa21···lsai]) [sai+1Isazl···lsak]' k 2: 0, makes B(A,A) into a right 
;=1 

B# A.-module and that this structure is compatible with the right A-module 
structure. Show that the natural map B# A ---+ EndA(B(A, A)) is a quasi
isomorphism. 
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In this section the ground ring is an arbitrary commutative ring, k. 
Our objective is to set up the classical homological functors Ext and Tor 

for modules over a graded algebra; of course this parallels (and includes) the 
standard construction in the non-graded context. Our presentation is terse, and 
the reader seeking a more detailed explanation is referred to [118]. The reader 
may also wish to review the definitions in §3(a) and §3(b). 

Let A be a graded algebra (over k). A chain complex ( {M k,*}, d) of A ~modules 
is a sequence 

d d d d d o +-- Mo,* +-- M 1 ,* +-- ... +-- Mk,* +-- ... 

in which: 

• Each M k,* is an A~module, with Mk,i the component of Mk,* of degree 
k + i. 

• Each d is an A~linear map of degree -1; i.e., d: Mk,i --+ Mk~l,i' 

• d2 = O. 

Notice that (cf. §18(a)) (Tot(M) , d) is an (A, O)~module as defined in §3(c); the 
difference is that here we keep track of the bigrading. 

A chain map of bidegree (p, q) between two such chain complexes is a family 
of A-linear maps 

tp : M k,* --+ Nk+p,*, k 2': 0 , 

of degree p + q, and satisfying dtp = (-1 )p+q tpd. 
Note that the homology, H(M*,*, d) of a chain complex of A~modules is itself 

a family {Hk,*} of graded A~modules and that the chain map tp induces A~linear 
maps Hk,*(tp) : Hk,*(M) --+ Hk+p,*(N) of degree p + q. 

This section is divided into the following topics: 

(a) Projective resolutions. 

(b) Graded Ext and Tor. 

(c) Projective dimension. 

(d) Semifree resolutions. 

(a) Projective resolutions. 
Let A be a graded algebra. An A-module P is projective if P fOB Q is A~free 

for some second A-module Q (cf. §3(b)). In this case any A-linear map (of any 
degree) a : P --+ M lifts through any surjective A-linear map ~ : N --+ M. 
Indeed, extend a to P fOB Q by setting a = 0 in Q, let {va} be a basis of P fOB Q 
and define ii : P fOB Q --+ N by iiv", = n", where n", E N satisfies ~n", = av",. 

Denote A>o by A+ (cf. §3). 
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Remark 1 If A = k e A+ then any A -projective P concentrated in degrees 
2: m, some m E Z, is A-free. 

In fact write P e Q = V,g A for some k-free module V. Apply - @A k 
to obtain (P @A k) 8 (Q ®A k) = V. Thus P = P @A k is k-projective 
and splits back into P. This inclusion extends uniquely to an A-linear map 
(J : P @ A ---+ P. But clearly P = (Jp ED p. A+ = (Jp. A + p. A+. Iterating 
gi ves P = (J P . A + P . (A+ ..... A+ ). Choosing n - m + 1 factors A+ we see that 
Pn = ((Jp. A)n; i.e., (J is surjective. Choose an A-linear map T : P ---+ P @ A 
so (JT = id. Then m(P) 8 (P g A+) = P@ A and it follows as with (J that T is 
surjective. Hence T is an isomorphism, and P is A-free. 

A projective (free) resolution of an A-module, 1\,£ is a chain complex (P, d) = 
({ Pk ,.}, d) of projective (free) A-modules together with a morphism of degree 
zero, (} : Po" ---+ AI such that 

e d d o +- AI +- po,. +- H,. +- ... 

is exact. 

Remark 2 Think of AI = {AID .• } as a trivial chain complex of A-modules. 
Then a projective (free) resolution is just a quasi-isomorphism (} : (P, d) ---+ 
(1\II, 0) of bidegree (0,0). 

Remark 3 Suppose (} : (P, d) ---+ (AI, 0) is a free resolution. Regard (} as a 

quasi-isomorphism (Tot(P), d) ~ (M,O). Filtering Tot(P) by the submodules 

Tot C~ Pi,,) then exhibits this as an (A, O)-semifree resolution of (AI, 0). 

Analogous to Proposition 6.6(i) we have 

Lemma 20.1 Every A-module AI has a free resolution. 

proof: Choose an A-linear surjection of degree zero, (} : po .• ---+ M, from a 
free A-module Po". If 

12 d d 
AI +-'- Po" +- ... +- Pk " 

is constructed choose an A -linear surjection d of bidegree (- L 0) from a free 
A-module PHi,. onto kerd c Pk .,. D 

I\ext, suppose given the diagram 

(P, d) ---~. (IvI, d) 
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in which the objects are all chain complexes of A-modules and D: and ~ are 
morphisms respectively of bidegrees (p, q) and (m, n). 

Analogous to Proposition 6.4(ii) we have 

Lemma 20.2 Suppose the A-modules Pk " are projective and ~ is a surjective 
quasi-isomorphism. Put l' = (p + q) - (m + n). Then 

(i) There is a morphism (3 : (P, d) ---+ (N, d) of bidegree (p - m, q - n), and 
such that ~(3 = D:. 

(ii) If j3 is a second such morphism then (3 - j3 = d"( + (-ly"(d, for some 
A -linear map "( : P ---+ ker ~ of bidegree (p - m + 1, q - n). 

proof: (i) Suppose (3 constructed in Pi,., i < k. Since Pk" is projective there 
is an A-linear map (3' : Pk" ---+ N such that ~(3' = D:. Clearly d(3' - (-1 Y (3d 
sends Pk " into the cycles of ker f Since, by hypothesis, H (ker 0 = 0, it follows 
that d : ker ~ ---+ cycles (ker ~) is surjective. Choose (3" : Pk " ---+ ker ~ so that 
d(3" = d(3' - ( -1 Y (3d and set (3 = (3' - (3" in Pk". 

(ii) Note that (3 - j3 : (P, d) ---+ (ker~, d). If "( is constructed in Pi,., 

i < k then (3 - j3 - ( -1 y"(d sends Pk,. into the cycles of ker ~. Again, d : ker ~ ---+ 
cycles (ker ~) is surjective, which permits us to construct "( : Pk " ---+ ker ~ so that 
d"( = (3 - j3 - (-1 y"(d. 0 

(b) Graded Ext and Tor. 
Fix a graded algebra, A, and A-modules M and N (both left, or both right), 

and choose a projective resolution fl : (P = {Pk,.},d) --=+ (M,O). Then 
HomA(Pk,., N) is the graded module of A-linear maps (cf. §3(b)), and 

Ii Ii ° ---+ Hom A (Po,*, N) ---+ HomA (PI,., N) ---+ . . . (20.3) 

is the cochain complex of graded modules defined by 15 (f) = - ( -1 )deg f f d. 
We use the standard convention to raise degrees, and denote the graded module 

HomA(Pk,., N) by Hom~'(p, N): 

Hom~£(p,N) = HomA(Pk,.,N)_(k+l) . 

Thus the co chain complex (20.3) has the form (HomA (P, N), 15) with 15 ofbidegree 
(1,0) and its homology is a bigraded .Dc-module, H*" (HomA(P,N),t5). 

If fl' : (PI, d) --=+ (M,O) is a second projective resolution then Lemma 20.2(i) 
provides us with a morphism (3 : (P, d) ---+ (PI, d) such that fl' (3 = fl, while it 
follows from Lemma 20.2(ii) that H (HomA((3, N)) is independent of the choice 
of (3. Reversing the roles of (P, d) and (PI, d) yields a morphism (3' : (PI, d) ---+ 
(P, d) and Lemma 20.2(ii) implies that (3(3' "'A idp' while (3'(3 "'A idp. Thus 
H (HomA ((3, N)) and H (HomA ((3', N)) are canonical inverse isomorphisms, and 
we use them to identify H'" (HomA(P,N)) with H*'* (HomA(pl,N)). Thus we 
may make the 
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Definition For each k 2: 0, Ext~(M, N) is the graded module 
Hk,. (HomA(P,N), £5). (Where necessary we write Ext~i(M,N) = Hk,t; recall 
that this is the component of degree k + e.) 

Notice that this const,l)uction is functorial. Indeed, if 0: : M' ---7 M and 
/3 : N ---7 N' are morphisms of A-modules then (Lemma 20.2) 0: lifts to a 
morphism a : (P', d) ---7 (P, d) between projective resolutions for M' and M 
and HomA (a, /3) is a morphism of co chain complexes inducing the canonical 
linear maps 

Ext~(o:,/3) : Ext~(M,N) ---7 Ext~(M',N') . 

In the same way, if L is any A-module (left if M is right, right if M is left) 
then 

d0id d0id o +- Po" Q9A L ~ Pl ,. Q9A L +-=- ... (20.4) 

is a chain complex of graded modules (P Q9A L = {Pk ,. Q9A L}, d) whose homol
ogy is a bigraded module independent of the choice of resolution. 

Definition For each k 2: 0, Tort(M, L) is the graded module H k ,. (P Q9A L, d). 
(Where necessary we write Tort,t(M, L) = Hk,t; this is the component of degree 
k + £.) 

Notice that this construction too is functorial. If 0: : M' ---7 M and "f : L' ---7 L 
then lift 0: to a morphism, a, of projective resolutions and define 

We turn now to the elementary properties of these functors. Observe first that 
if f2 : (P, d) ---7 (M,O) is a projective resolution then the surjection f2 : Po,. ---7 M 
induces natural isomorphisms 

Ext~(M,N)=HomA(M,N) and Tor1i(M,L)=MQ9AL. (20.5) 

Next, suppose 

o ---7 M' ~ M -4 Mil ---7 0 

is a short exact sequence of A-linear maps. (We do not require that 0: and /3 have 
degree zero.) Let f2' : (P', d) ~ (M', 0) be a projective resolution. It is trivial 
to modify the construction in the proof of Lemma 20.1 to obtain a projective 
resolution f2 : (P, d) ~ (M, 0) of the following form: each Pk ,. = p~" tBP~','J each 
Pk ,. is projective, and the inclusion A : P' c P commutes with the differentials 
and satisfies {!A = f2'. 
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In this case the quotient (PIP', d) is the chain complex of projective modules 
Pk" . The induced row exact diagram ,* 

0--- (P', d) 
.\ • (P,d) 7r 

(PIP', d) -0 . 

l 12 - + ji 
0--- (M',O) • (M,O) • (M",O) -0 

exhibits {i' as a projective resolution of lvI" (pass to the long exact homology 
sequences and apply the Five lemma 3.1). 
~ote that (forgetting differentials) P = P' EB PIP' as families of A-modules. 

Hence if N is any A-module, 

is a short exact sequence of cochain complexes of graded modules. Passing to 
homology gives the long exact sequence 

+----- Ext~+l (Mil, N) ?- Ext~ (M', N) +----- Ext~ (.LVI, N) +----- Ext~ (Mil, N) +----
(20.6) 

Similarly we obtain the long exact sequence 

----+ Tor~(M',L) ----+ Tor~(M,L) ----+ Tor~(IvI",L) ~ Tor~_l(M',L)----+ 
(20.7) 

Finally, if Q is a projective A-module then HomA(Q, -) and Q Ci9A - preserve 
short exact sequences (this is immediate from the definition). From this it follows 
that HomA (P, -) and P Ci9 A - convert short exact sequences 

o ----+ N' ----+ N ----+ Nil ----+ 0 an d 0 ----+ L' ----+ L ----+ L II ----+ 0 

into short exact sequences of complexes, whence the long exact sequences 

----+ Ext~ (M, N') ----+ Ext~ (M, N) ----+ Ext~ (lvI, Nil) ~ Ext~+l (M, N') ----+ 
(20.S) 

and 

----+ Tor~(M,L') ----+ Tor~(M,L) ----+ Tor~(M,L") ~ Tor~_l(M,L'). (20.9) 

Example 1 The bar construction. 
Suppose lk is a field and A ~ lk is an augmented algebra, with no differential. 

Then the bar construction with coefficients in A (§19) has the form 
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and Proposition 19.2 exhibits this as an A-free resolution of lk. But for any left 
A-module N we have B(A: N) = B(A; A) Q9A N. It follows that 

TorA(lk, N) = H (B(A; N)) . 

o 

(c) Projective dimension. 
As usual, fix a graded algebra, A. The projective dimension of an A-module 

1vl, denoted proj dim A (M), is the least k (or oc) such that 1\11 admits a projective 
resolution of the form 

Proposition 20.10 For any A-module, M, 

proj dimA (M) = sup { k t Ext~ (lvI, -) is non-zero} . 

proof: Denote the right hand side of the equation by p(M). If M has a projec
tive resolution of the form above then we can use it to compute ExtA (M, -) and 
it follows at once that ExtA(M,-) = 0, n > k. Hence p(M) ~ projdimA(M). 

Conversely, suppose p(lvl) is finite and let (!: ({Pk,*},d) ---+ (M,O) be any 
projective resolution. For simplicity write p = p(M). Let Z C Pp ,* be the 
submodule of cycles (Z = kerd). Then the differential, d, maps Pp+1 ,* onto Z; 
denote this linear map by f : Pp+b ---+ Z. 

In particular f E Hom~+l,*(p, Z) and 5f = fad = d2 = O. Since Ext~+l(M, -) = 

o by hypothesis, f must satisfy f = gad for some 9 : Pp ,* ---+ Z. In other words, 
for x E Pp+ 1,*, dx = f (x) = 9 (dx). Thus 9 restricts to the identity in Z and 
Pp ,* = Z EB ker g. In particular ker 9 is projective and 

d d d 
1\1 f- Po,* f- ... f- Pp - 1 ,* f- ker 9 f- 0 

is a projective resolution, whence proj dimA(M) ~ p(M). o 

(d) Semifree resolutions. 
Now let (A, dA) be a differential graded algebra and let m : (P, d) ~ (Ivl, d) be 

a semifree resolution of an arbitrary right (A, dA)-module, (M, d). As observed 
in the Remark at the start of §6(a) (with completely different notation!) we may 
use a semifree filtration of (P, d) to write 

P = 1/ Q9 A, V = EB V(k) , 
k=O 
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where each V(k) is a free graded (Jk-) module and the semifree filtration is given 
k 

by P(k) = EB V(i) ® A. In particular d : V(k) -t P(k - 1). 
i=O 

Now m restricts to m(O) : V(O) ® (A, dA) -t (M, d) . :'v1oreover the filtration 
gives rise to a homology spectral sequence (§lS) which we denote by (Ei, di)i>O' 

Clearly E~ = V(k) ® (A, dA) and so E~ = H (E~, dO) = V(k) ® H(A) beca;:;-se 
V(k) is Jk-free. Thus we obtain the sequence 

H(M) (H(m(O)) V(O) ® H(A) t- V(l) ® H(A) +- ... 

in which all but the first term form a chain complex of H(A)-modules. 

Definition If this sequence is exact, and hence a free resolution of the H(A)-
module H(M) then m : (P, d) ~ (M, d) is called an Eilenberg-Moore resolution 
of (M, d). 

Proposition 20.11 Each (M, d) has an Eilenberg-Moore resolution. More 
precisely, any H(A)-free resolution of H(M) appears as the El-term of some 
semifree resolution of (M, d). proof: Fix a free resolution 

H(M) ? V(O) Q9 H(A) ? V(l) ® H(A) ? ... 
00 

Set V = EB V(k) and P = V ® A. We define the differential, d and the map m 
k=O 

in each V(k) by induction on k. 
Set d = 0 in V (0) and, if {va} is a basis of V (0), define m(O) : V (0) -t M 

by requiring m(O)va to be a cycle representing [2Va' Then H(m(O)) = [2 and so 
H(m(O)) is surjective. 

Now d = id ®dA in V(O) ® A. Let {v,e} be a basis of V(l) and let Ze be a 
cycle in V(O) ® A such that OVi3 = [z,e]. Then [mzi3] = (jOVe = 0 E H(M); i.e., 
mZi3 = dXe, some x,e E M. Extend m and d to A ® V(l) by setting dv,e = z,e 
and mv,e = x,e. 

n 
Write P(n) = EB V(i) ® A, n 2: 0, and suppose inductively that m and dare 

i=O 
k 

extended to some P(k), k 2: 1. Write d = L di with do = id ®dA and di an 
i=O 

A-linear map sending each V(e) to V(e-i)c><:A, i 2: 1. Thus d1do+dod1 = 0 and 
our inductive assumption is that H(dd = 0 : V(e) ® H(A) -t V(e -1) ® H(A)_ 

To extend m and d to V (k + 1) we consider a do-cycle z E V (k) ® A such that 
o[z] = 0, [z] denoting the class in V(k) ® H(A), and we show that 

• There exist wE P(k - 1) and x E M such that d(z - w) = 0 
and m(z - w) = dx. 

The construction proceeds via the following steps. 

(20.12) 
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Step 1: Since 8[z] = 0, dlz = doz' (z' E V(k-1)®A) and d(z-z') E P(k-2). 

t 
Step 2: Supposefor some y' E P( k -1) that d(z - y') = LUi with Ui E V (i) 0) A 

o 
and 1 :s £ :s k - 2. Then 2;dui = 0, whence dou£ = 0 and dl Ut = -dOUt-l. 
This gives 8[u£] = O. By exactness [ue] = 8[u'] for some do-cycle u', and so 
U£ = dIU' + dou", with u' E V(£ + 1) lSi A and 'u" E V(£) lSi A. 

Altogether we have d(z - y' - u' - u") E P(£ - 1). Iterating this procedure we 
find y E P(k - 1) so that 

d(z - y) E F(O) ® A . 

Step 3: The class [d(z - y)] E V(O) 0) H(A) may be non zero, but g[d(z - y)] 
is represented by the boundary dm(z - y) and so g[d(z - y)] = O. By exactness 
[d(z - y)] = 8[YI] for some do-cycle Yl E V(l) ® A. Thus for some Yo E V(O) ® A 
\ve have 

d( z - y) = dYl + dyo . 

Step 4: The cycle z - y - Yl - Yo is mapped by m to a cycle, which is necessarily 
of the form m(zo) + dx for some cycle Zo E V(O) lSi A. Set w = Y + YI + Yo + ZOo 

This completes the proof of (20.12). Now let {vA} be a basis of V(k + 1), 
write 8v)., = [z).,] and note that 8[z).,] = 82 v)., = O. By (20.12) there are elements 
w)., E P(k - 1) and x)., E M such that d(z)., - w).,) = 0 and m(z)., - w).,) = dx).,. 
Extend d and m to V(k + 1) ® A by setting dv)., = z)., - w)., and mv)., = x).,. 

This completes the construction of d and m. Clearly m is a morphism of 
(A, dA)-modules, (P, d) is semifree and the E1-term of the spectral sequence is 
as desired. Finally, since H(m(O)) is surjective, H(m) certainly is. 

To show H(m) is injective let a be a class represented by a cycle z E P(k). 
Put z = 2;Zi, Zi E V(i) ® A. Then dOzk = 0 and 8[Zk] = O. By exactness 
[Zk] = 8[w'] and so Zk = d1w' + dow" for some do-cycle w' E V(k + 1) ® A, and 
some w" E V(k) lSi A. It follows that z - d(w' + w") E P(k - 1). 

In summary, any class a in H(P) is represented by a cycle Zo E V(O) ® A. If 
H(m)a = 0 then Q[zo] = 0, [zo] = 8[z~] and Zo = d(z~ + z~); i.e. a = O. D 

Example 1 The Eilenberg-Moore spectral sequence. 
Suppose (AI, d) is a right (A, dA)-module with a semifree resolution (P, d) ~ 

(M, d) as constructed in Proposition 20.11. If (N, d) is any left (A, dA)-module 
then the filtration {P( k)} defines the filtration 

P(O) ®A N C P(l) ®A N C ... c P(k) ®A N c ... 

of P®A N. 
This leads to the (fundamental) Eilenberg-Moore spectral sequence, whose E1-

term is just ({V(k) ® H(A)}, 8) ®H(A) H(N). The left hand tensorand is an 
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H(A)-free resolution of H(M). Thus the E2-term of the Eilenberg-Moore spec
tral sequence is given by 

E2,* = Tor~(A) (H(M), H(N)) . 

Under simple hypotheses the spectral sequence converges to H(P:>9A N). As 
shown in §6, this homology is a functor, independent of the choice of semifree 
resolution. It is called the differential tor, Diff TorA(M, N) and so the Eilenberg
Moore spectral sequence converges (usually) from 

TorH(A) (H(M), H(N)) ==} Diff TorA(M, N) . 

D 

Exercises 

1. Let (A,e) be an augmented graded algebra and A =ker e. Using §20 b, 
example 1, prove that Tor~(Ik, Ik) ~ AI iL4:. 

2. Let (A, /0) be a graded augmented algebra. Compute the projective dimension 
of the trivial A-module Ik when a) A = T(V), b) A = I\V,dimV < 00, c) 
A = Ik[x}/(xn ). 

3. Let F -+ X -+ Y be a fibration with Y I-connected and let M be a semi free 
C*(Y; Ik)-resolution of C*(X; Ik). Prove that C*(P(Y, Yo); Ik)) :>9c«Y;lk) M is 
a resolution of C*(F; Ik). Deduce the Eilenberg-Moore spectral sequence of a 
fibration 

T orH"(Y;lk)(Ik,H*(X,Ik)) ==} H*(F,Ik). 

4. Let F -+ X -+ Y be a fibration with I-connected base and let Ik be a field of 
characteristic zero. Assuming that the Serre spectral sequence of the fibration 
collapses at the E2-term, prove that the graded algebra H* (F, Ik) is isomorphic 
to the quotient algebra Ik Q9H*(Y;lk) H*(X, Ik). 

5. Let P -+ X be a G-fibration as in theorem 8.3. Using the spectral sequence 
associated to a semifree resolution construct a spectral sequence 

TorH*(G;lk) (Ik, H* (P, Ik)) ==} H* (X, Ik). 

6. Express Theorem 7.5 in terms of differential Tor. 

7. Let X = K(G,I) with universal cover X. Deduce from §8-exercise 1 that 
H*(X;Ik) ~ Tor lk [G](Ik,Ik) and that H*(X,Ik) ~ Extlk[G](Ik,Ik). As an appli
cation, compute Extlk[G] (Ik, Ik) when G is a free group. 

8. a) Let E and F be Z-modules. Prove that Tors,2(E, F) = O. 
b) Let M and N be chain complexes over Z. Deduce the following short exact 

sequences from the Eilenberg-Moore spectral sequence: 
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c) Let X and Y be topological spaces. Prove the existence of the following 
Kunneth exact sequence: 



Part IV 

Lie Models 



21 Graded (differential) Lie algebras and Hopf 
algebras 

The ground ring in this section is a field k of characteristic zero. Sk denotes 
the permutation group on k symbols. 

This section introduces graded Lie algebras together with associated construc
tions such as the universal enveloping algebra. The main example for us is the 
rational homotopy Lie algebra of a topological space, defined in (c), whose uni
versal enveloping algebra is the loop space homology algebra. 

We begin with the 

Definition A graded Lie algebra, L, is a graded vector space L = {L;}iEZ 
together with a linear map of degree zero, L (>9 L --7 L, x (>9 y r-+ [x, y] satisfying 

(i) [x,y] = _(_l)deg x degy[y,x]. (antisymmetry) 

(ii) [x, [y, zl] = [[x, y], zJ + (_l)deg x deg y [y, [x, z]]. (Jacobi identity) 

The product [ , ] is called the Lie bracket. 
A morphism of graded Lie algebras is a Lie bracket-preserving linear map of 

degree zero. 
If E and F are graded subspaces of L then [E, F] denotes the graded subspace 

oflinear combinations of elements ofthe form [x, y], x E E, y E F. In particular a 
sub Lie algebra (resp. an ideal) EeL is a graded subspace such that [E, E] C E 
(resp., [L, E] C E). In either case the restriction of the bracket makes E into a 
graded Lie algebra. If E is an ideal then there is a unique graded Lie algebra 
structure in L / E for which the quotient map L --7 L / E is a morphism of graded 
Lie algebras. Given a subset S C L the sub Lie algebra (or ideal) generated by 
S is the intersection of all the sub Lie algebras (or ideals) containing S. 

The subspace [L, L] is an ideal, called the derived sub Lie algebra, and L is 
abelian if [L, L] = 0; i.e. if [x, y] = 0 for all x, y E L. 

Exalllple 1 Graded algebras. 
Recall that graded algebras A are associative by definition (§3(b)). A Lie 

bracket (called the commutator) is defined in A by 

[x,y] = xy - (_l)deg x degyyx 

with the Jacobi identity following from the associativity. Note that this Lie 
algebra is abelian if and only if A is commutative. 0 

Let L be a graded Lie algebra. A (left) L-module is a graded vector space V 
together with a degree zero linear map L (>9 V --7 V, X (>9 v r-+ x . v, such that 

[x, y] • v = x • (y • v) - ( -1) deg x deg y y • (x • v) . 

A right L-module is a graded vector space V together with a degree zero linear 
map v (>9 x r-+ v· x such that v • [x, y] = (v. x) . y - (-1) deg x deg y (v • y) . x. If V 
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is a left L-module the induced linear map 'P : L -+ Hom(V, V) is a morphism 
of graded Lie algebras, where Hom(V, V) is given the commutator Lie bracket of 
Example 1. This is called a left representation of L in V. 

A morphism of L-modules 0: : V -+ W is a linear map of degree zero such that 
o:(x. v) = X· o:v, X E L, v E V. Submodules and quotient modules are defined 
in the obvious way and the tensor product of two L-modules is the L-module 
V@W given by 

x . (v @ w) = x . v @ w + ( -1) deg x deg v V @ X • w, x E L, v E V, w E W. 

Note that there is no tensor product analogue for modules over an associative 
algebra. 

Example 2 The adjoint representation. 
If L is a graded Lie algebra then a representation ad : L -+ Hom(L, L) is 

defined by 
(adx)(y) = [x,y], x,y E L. 

This is called the adjoint representation, and (by the Jacobi identity) makes L 
into an L-module. The submodules are precisely the ideals in L. 0 

Example 3 Derivations. 
Suppose first that A is a graded algebra. The graded space Der A of deriva

tions of A (§3(b)) is a graded Lie algebra under the commutator [0:,,8] = 0:,8-
(_l)deg a deg {3,8o:. In other words, Der A is a sub Lie algebra of Hom(A, A) with 
the Lie bracket of Example 1. 

Now suppose L is a graded Lie algebra. A derivation of L of degree k is a 
linear map B: L -+ L of degree k such that B[x,y] = [Bx,y] + (_l)kdeg x[x,By]. 
The derivations of L form a graded sub Lie algebra Der L c Hom(L,L), again 
with respect to the commutator. 

Note that the Jacobi identity states precisely that each ad x is a derivation of 
L. Thus ad : L -+ Der L. 0 

Example 4 Products. 
The product of two graded Lie algebras E and L is the direct sum, E EB L, 

with Lie bracket 

[(x,y),(x',y')] = ([x, x'], [y, y']) , 
x,x' E E 
y,y' E L. 

In particular for x E E, y E L we have [x, y] = 0 in E EB L. 

Example 5 The tensor product, A@ L. 

o 

Suppose L is a graded Lie algebra and A is a commutative graded algebra. 
Then A @ L is a graded Lie algebra with Lie bracket 

[a @ x, b @ y] = (-1) deg b deg x ab @ [x, y]. o 
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The rest of this section is organized into the following topics: 

(a) Universal enveloping algebras. 

(b) Graded Hopf algebras. 

(c) Free graded Lie algebras. 

(d) The homotopy Lie algebra of a topological space. 

(e) The homotopy Lie algebra of a minimal Sullivan algebra. 

(f) Differential graded Lie algebras and differential graded Hopf algebras. 

(a) Universal enveloping algebras. 
Let L be a graded Lie algebra and T L the tensor algebra on the graded vector 

space, L. Let I be the ideal in the (associative) graded algebra T L generated by 
the elements of the form x0y- (_l)degx degY y 0x- [x,y], x,y E L. The graded 
algebra T L/ I is called the universal enveloping algebra of L and is denoted by 
UL. 

Observe that the inclusion L --t T L gives a linear map t : L --t ULand that t 
is a morphism of Lie algebras with respect to the commutator in U L. Conversely, 
let Ct : L --t A be any linear map into a graded algebra which is a morphism 
of Lie algebras with respect to the commutator in A, then the extension of Ct to 
an algebra morphism T L --t A annihilates I and so factors to yield a unique 
morphism of graded algebras 

{3 : UL --t A 

such that {3t = Ct. 

In particular a left representation Ct of L in V determines an algebra morphism 
(3 : U L --t Hom(V, V) such that {3t = Ct. This identifies left L-modules with left 
modules (in the classical sense) over the universal enveloping algebra. Similarly 
right L-modules are just right U L-modules. 

In the same way if cp : E --t L is a morphism of graded Lie algebras then the 
composite E ~ L ~ U L determines a morphism of graded algebras 

Ucp: UE --t UL 

such that Ucp 0 L = L 0 cp. 

ExaIllple 1 Abelian Lie algebras. 
If L is abelian then UL = TL/(x0y- (_l)degx degY y 0x); i.e., UL is the free 

commutative graded algebra, AL, defined in Example 6 of §3(b). 0 
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In general the algebra U L is more complex than AL. Nonetheless a funda
mental theorem asserts that ULand AL are isomorphic as graded vector spaces. 

The first form of the theorem is by an explicit comparison of bases. For this 
we fix a well ordered basis of L : {xaJ aE..J. Define an admissible sequence M 
of length k to be a finite (or empty) sequence of indices al,"" ak such that 
al ::; a2 ::; ... ::; ak and such that ai occurs with multiplicity one if Xa; has 
odd degree. Define the corresponding admissible A -monomial to be the element 
XM = xal 1\ ... 1\ xak E AL (or xq, = 1). Then the admissible A-monomials are 
a basis of AL. 

Next define the admissible U-monomials to be the elements uq, = 1 and 
UM = ([Xal )··· ([Xak ) E UL. 

Theorem 21.1 (PoincanS-BirkojJ- Witt) Let L be a graded Lie algebra. Then 

(i) The admissible U -monomials are a basis of U L. 

(ii) In particular, the linear map [ : L ----t U L is an inclusion and extends to 

an isomorphism of graded vector spaces AL ~ U L. 

proof: [139] If M = aI, ... ,ak is admissible then so is N = a2, ... ,ak and we 
write M = alN. We show first that an L-module structure in AL is defined by 
the conditions Xa - x</> = Xa and, if M = al N, 

XaM if a < al or a = al and degxa is even. 

~[xa,Xa]·XN if a = al and degxa is odd. 

[xa,Xal]-XN + (_l)degx" degx"lXal -Xa -XN if a> al. 

Indeed suppose by (transfinite) induction that X a ' - XM' is defined if 
length M' < length M or if length M' = length M and 0:' < a. Assume further 
that X a ' - XM' is a linear combination of monomials of length::; length M' + 1. 
Then the right hand side of the formula above is defined, and is a linear combi
nation of monomials of length::; length M + 1. By induction Xa - XM is defined 
for all a and M. 

To show that this makes AL into an L-module we write 

and then verify that (a, (3, M) = 0 for all a, (3 and M. For this we may clearly 
suppose (3 ::; a and induct, as before, on length M and on (3. 

It is immediate from the defining formula that (a, (3, ¢) = O. Now suppose 
by induction that (a',(3',M') = 0 if lengthM' < lengthM or if lengthM' = 
lengthM and (3' < (3. Write M = alN, so that XM = Xal -XN. We proceed in 
four steps. 

(i) If (3 < al or (3 = al and deg xi3 is even then xi3 - XM = Xi3M and the 
defining formula gives (a, (3, M) = O. 
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(ii) If 0:1 = (3 = 0: and if deg x iJ is odd then by our ind ucti ve hypothesis on 
lengthM, 

((3,(3,M) [XiJ,XiJ]-X{3 -XN - 2x{3 -(XiJ -xiJ -XN) 
[X{3, X{3]- x{3 - XN - x{3 -[X{3, xiJ]- XN 
[[x,a, X{3], X{3]- XN· 

The Jacobi identity implies 3 [[X{3, xiJ]' X{3] = 0, whence ((3, (3, M) = o. 
(iii) If 0:1 = (3 < 0: then Xc> - XN is a linear combinations of monomials XM' with 

either length M' < length M or else M' = (31N' with (31 2: 0:. Thus (i) and the 
inductive hypothesis on length give x,a-x,a-Xc>-XN = ~[X{3,x,a]-Xc>-XN. Now 
a simple calculation using the Jacobi identity and ind~ction on length yields 
(0:, (3, M) = o. 

(iv) Suppose (3 > 0:1. Use induction on length and the Jacobi identity to verify 
that (0:, (3, M) is a linear combination of expressions of the form ((3,0:1, M') and 
(o:,O:l,M') with lengthM' ~ lengthM. Now the inductive hypothesis implies 
(o:,(3,M) =0. 

This completes the proof that the defining formula above makes AL into an L
module. The action of L extends to an algebra morphism U L ---+ Hom(AL, AL) 
and the linear map U L ---+ AL defined by a H a-I sends U M to X M. Since the 
XM are a basis for AL the UM are linearly independent. 

On the other hand, U L is generated as an algebra by t(L) and hence is linearly 
spanned by monomials of the form t(XC>l) - ... - t(XC>k) where no restriction is 
placed on the order of the O:i. However, by construction, we have t(x)t(y) -
(_l)degx degYt(y)t(x) = t[x, y] and t(X)2 = ~t([x, xl) if Ixi is odd. It follows that 
any monomial can be written as a linear combination of an admissible monomial 
UM and monomials of shorter length. Induction on monomial length now shows 
that every element in U L is a linear combination of the UM; i.e. the UM are a 
basis for U L. 0 

Henceforth we shall identify L with its image in ULand drop the notation 't '. 

If a is a permutation of k letters and if Xl, •.. ,Xk are elements in a graded 
vector space V then in A kV we have Xl 1\ ... 1\ Xk = EXO"(I) 1\ ... 1\ XO"(k), where 
E = ±l and depends only on a and the degrees of the Xi. Where the context 
is clear we abuse notation and denote this sign simply by EO". Recall that Sk 

denotes the permutation group on k letters. 
The following is a useful variant of the Poincare-Birkoff-Witt Theorem: 

Proposition 21.2 If L is any graded Lie algebra then a natural linear isomor
phism of graded vector spaces, 

'Y: AL ~ UL 

is given by 'Y (Xl 1\ ... 1\ Xk) = h L EO"XO"(l)··· XO"(k)· 
O"ESk 
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proof: We adopt the notation of Theorem 21.1 and its proof. Let U L(k) denote 
the subspace spanned by monomials in L of length :S k. The last part of the 
proof of 21.1 establishes in fact that the admissible monomials of length :S k are 
a basis of UL(k). Moreover, if XCI" •• ·XO<k is an admissible monomial in UL(k) 
and if a is any permutation then XO<l ••• XO<k - cQ"XO<u(l) ••• XO<u(k) E U L(k - 1). 
Hence for any admissible sequence M of length k, '"'((XM) - UM E U L(k - 1). 
Since the UM with M of length k represent a basis of UL(k)jUL(k - 1) while 
the XM are a basis of .!I,k L, it follows that '"'( is an isomorphism. 0 

Corollary If EeL is a sub Lie algebra of a graded Lie algebra L then U L is 
a free left (or right) UE-module. 

proof: Write L = EmF (as graded vector spaces) and identify AL = AEC!9AF. 
Define '"'(' : AE C!9 AF ---+ U L by '"'(' (a C!9 b) = '"'((a) • '"'((b). The same calculation as 
in the Proposition shows that '"'(' - '"'( : A k L ---+ U L( k - 1). Hence '"'(' induces iso-

morphisms Ak L ~ U L(k)jUL(k -1), which implies that '"'(' is an isomorphism. 
Since '"'((AE) = U E C U L it follows that multiplication in U L defines an 

isomorphism UEC!9'"'((AF) ~ UL. This exhibits UL as the free left UE-module 
on '"'(( AF). The same argument shows it is a free right U E-module. 0 

(b) Graded Hopf algebras. 
A graded Hopf algebra is a graded vector space G which is simultaneously a 

graded algebra and (§3(d)) a graded coalgebra (with comultiplication ~ : G ---+ 
G C!9 G and augmentation C : G ---+ 1k), such that both ~ and care morphisms of 
graded algebras. Note that the multiplication in G is automatically a morphism 
of coalgebras and that 1 E Go provides the coaugmentation. The Hopf algebra 
is cocommutative if r~ = ~ where r(a C!9 b) = (_l)dega degbb C!9 a. Morphisms 
of graded Hopf algebras are linear maps of degree zero that preserve all the 
additional structure. 

Suppose G is a Hopf algebra and recall (§3( d)) that an element x EGis 
primitive if ~x = xC!91 + 1C!9x. If x and yare primitive then so is the commutator 
bracket [x, y]: 

~ ([x,y]) ~ (xy - (_l)degx degyyx) 
~x~y - (_l)degx degy~y~x 

[x C!9 1 + 1 C!9 x, Y C!9 1 + 1 C!9 y] 
[x,y] C!91 + 1 C!9 [x,y] . 

Thus the space p. (G) of primitive elements is a graded Lie algebra with respect 
to the commutator bracket. 

Conversely, if L is a graded Lie algebra then U L is naturally endowed with 
the structure of a co commutative graded Hopf algebra. To define the diagonal 
we recall first that if E and L are two graded Lie algebras then elements of 
E commute with those of L in E EB L (Example 4). It follows that UE and 
U L commute inside U (E @ L) and so the inclusions extend to morphism of 
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graded algebras U E 0 U L ------+ U (E ttl L). On the other hand the Lie morphism 
E ttl L ------+ UE 0 UL given by (x,y) f--t x 01 + 1 0 Y extends to an algebra 
morphism U(E EB L) ------+ UE 0 UL. Since these two morphisms reduce to the 
identity in E and L they are inverse to each other: U(E ttl L) = UE 0 UL as 
graded algebras. 

When E = L the diagonal (j : L ------+ L ttl L, (j : x f--t (x, x) extends to 
U (j : U L ------+ U(L ttl L), which we may now write as 

~ : U L ------+ U L 0 U L. 

Similarly, c : U L ------+ 1k is obtained from the trivial Lie morphism L ------+ o. These 
are both algebra morphisms by construction. From ((j x id)(j = (id x (j)(j we 
deduce (~0 id)~ = (id 0 ~)~. The identity (c 0 id)(j = id = (id 0c)(j is even 
easier. Thus (U L, ~,c) is a graded Hopf algebra. To see that it is co commutative 
let (J : L ttl L ------+ L ttl L be the involution (x, y) f--t (y, x). Then (J(j = (j so that 
(U (J)~ = ~. But a trivial check shows that (U (J )(a 0 b) = (-1 )deg a deg bb 0 a. 

Note also that the isomorphism 'Y of Proposition 21.2 is an isomorphism of 
graded coalgebras. 

Proposition 21.3 The inclusion L ------+ U L is an isomorphism of L onto the 
graded Lie algebra of primitive elements in U L. 

proof: It is immediate from the definition of U L that the inclusion is a mor
phism of Lie algebras. To see that it is an isomorphism onto p. (U L) define a 
Hopf algebra structure in AL with diagonal ~A the unique algebra morphism 
given by ~A(X) = X 01 + 10 x, x E L. Since ~ is an algebra morphism a 

very short computation shows that the linear isomorphism 'Y : AL ~ U L of 
Proposition 21.2 is an isomorphism of coalgebras. Thus it is sufficient to prove 
that L is the primitive subspace of AL. Fix a basis {xa } of L. Since ~A is an 
algebra morphism, ~A (x~; /\ ... /\ x~~) can be expanded easily. In particular 
it contains a term of the form k1 x; 0 (x~; -1 /\ ... /\ x~~) and this term cannot 
appear in the diagonal of any other monomial in the {x a }. Thus a linear com
bination of monomials is primitive if and only if they all have length 1; i.e., all 
primitive elements in AL are in L. 0 

(c) Free graded Lie algebras. 
Recall that TV denotes the tensor algebra on a graded vector space V. This 

is a graded Lie algebra with the commutator bracket. The sub Lie algebra 
generated by V is called the free graded Lie algebra on V and is denoted by Lv . 

This is justified by the appropriate universal property. A linear map V ------+ L 
of degree zero, L a graded Lie algebra, extends uniquely to an algebra morphism 
TV ------+ UL. Now L is a sub Lie algebra of UL (Theorem 21.1(ii)) and so this 
extension restricts to a map Lv ------+ L which is necessarily a morphism of graded 
Lie algebras. 

Note as well that the inclusion Lv ------+ TV extends to an algebra morphism 
ULv ------+ TV. On the other hand, the inclusions V <=---t Lv <=---t ULv extend to 
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a morphism TV -----+ UlLv. Since V generates lLv as a Lie algebra it generates 
UlLv as an algebra. Since these two morphisms reduce to the identity in V they 
are inverse isomorphisms: 

TV = UlLv . 

Now as usual we say elements in TkV have wordlength k. Analogously, we 
say that an element in lLv has bracket length k if it is a linear combination of 
elements of the form [VI, ... , [Vk-I, Vk]· .. ]. 

Since lLv is generated by V it is the sum of its subspaces of bracket length k. 
Since these spaces are contained in TkV we may deduce that 

• lLv = EB (lLv n TkV). 
k2:1 

• x E lLv has bracket length k if and only if x E lLv n TkV. 

Now let L be any graded Lie algebra and choose any graded subspace VeL 
such that L = V EB [L, L]. Extend the inclusion of V to a morphism 

a : lLv -----+ L 

of graded Lie algebras. 

Proposition 21.4 If L = {Ld i> 1 then a is surjective. Moreover the following 
three conditions are equivalent: -

(i) a is an isomorphism. 

(ii) L is free. 

(iii) proj dimudk) = 1 (cf. §20(c)). 

proof: Put E = a(lLv); it is the sub Lie algebra generated by V. Clearly 
E + [L, L] = L. Since [E, E] c E, substitution gives E + [L, [L, L]] = L. 
Iterating this process gives 

E + lL,[L, ... [L,L] ... ,D = L 
... 

k times 

for any k. Since L = {LiL>I any obvious degree argument gives E = L. 
It remains to prove the equivalence of (i), (ii) and (iii). Clearly (i) =} (ii). 

If (ii) holds then write L = lLw and UL = TW. Let sW be the suspension of 
W: (SW)i = Wi-I. Then the free resolution 

o +--lk +-- TW?- sW 181 TW +-- 0, 
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d( sw @ a) = w @ a, shows that pro j dimu d lk) = 1. To show (iii) ==::} (i), suppose 
proj dimudlk) = 1. Because L = {Ld i2:1' lk has a free resolution of the form 

d o f-lk f- UL f- P1,* f- ... 

with H,* = {P1,d i >o' Now the proof of Proposition 20.10 provides a projective 
resolution of the form 

Of-lkf-UL?Pf-O 

with P c P1,*. Since P is projective it has the form P = W' @ U L, by the 
Remark at the start of 20(a). Thus d embeds W' (with a shift of degrees) as a 
graded subspace W c ULand it is a simple exercise to see that U L = TW. 

Next observe that 

(UL)+ = V EEl (UL)+ ·(UL)+ . 

In fact since (J is surjective it follows that (UL)+ = V + (UL)+ ·(UL)+. On the 
other hand, denote the abelian Lie algebra Lj[L, Lj simply by F. Its universal 
enveloping algebra is just AF and the composite map U L ----+ AF ----+ AF j A 2:2 F 
kills (UL)+ ·(UL)+ and sends V isomorphically to F. Hence Vn(UL)+ ·(U L)+ = 
O. 

Now filter by the wordlength in TW to see that for any subspace V' com
plementing (UL)+ ·(UL)+ in (UL)+ we have UL = TV'. In particular we may 
choose V' = V. Then the identification UL = U!Lv is an isomorphism of Hopf 
algebras and hence restricts to an isomorphism L ~ !Lv of primitive Lie algebras 
, which is inverse to (J. 0 

Corollary If V = {Vi};2:l then any sub Lie algebra L C!Lv is free. 

proof: As noted in the proof of (ii) ==::} (iii) in the Proposition, lk has a U!Lv -
free resolution of length 2. Since U!Lv is a free U L-module, (Corollary to Propo
sition 21.2) this is a free UL-resolution and projdimudlk) = 1. 0 

Example Free products. 
Suppose {L( a)} aEJ is a family of graded Lie algebras. The free product, 

II L (a), is the graded Lie algebra L defined as follows: write V = EB L (a) and 
a a 

denote by ia: L(a) ----+ V the inclusion. Let I C !Lv be the ideal generated by 
the elements ia[x,yj- [iax,iaY], X,y E L(a), a E J. Then II L(a) = !LV/I' 

a 
Note that ia induces a morphism ja : L(a) ----+ II L(a) of graded Lie al-

a 
gebras, and that any family of graded Lie algebra morphisms <.pa : L(a) ----+ E 
determine a unique morphism <.p: II L(a) ----+ E such that <.pa = <.p 0 ja, a E J. 

a 
In particular there is a morphism (}a: II L(a) ----+ L(a) such that {}aja = id 

a 
and {}(3ja = 0, f3 ::j:. O. Thus each ja is an inclusion. 
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Next suppose A(o:) = lk EB A(o:) are graded associative algebras, with A(o:) 

an ideal. We define the free product, V A(o:), and show that U ( V L(O:)) = 

U U L (0:). Indeed, let J be the set of all finite sequences 0:1, ... ,O:q of index 

'" elements such that O:i -# O:iH' Set 

II A(o:) = lk EB EB A(O:I) 0···0 A(O:q) , 
'" :J 

with the product of al 0··· 0 a q E A(O:I) 0 ···0 A(O:q) and b1 0··· 0 br E 

A(o:D 0 ···0 A(o:~) given by al 0··· 0 a qb1 0 b2 0 ... 0 br if O:q = o:~ and by 
al 0··· 0 a q 0 b1 0 ... 0 br otherwise. Clearly morphisms '!/J", : A(o:) -+ B 
of graded associative algebras extend uniquely to a morphism U A(o:) -+ B. 

'" Use this, and the analogous universal property for U L(o:) to construct inverse 

isomorphisms between U U L(o:) and U UL(o:). 

'" '" Finally, suppose A = lkEBA and B = lkEBB are associative graded algebras and 
that P* -+ lk and Q* -+ lk are respectively an A-free and a B-free resolution 
beginning with the augmentations Po = A -+ lk and Ql = B -+ lk. Note that 
A II B is A-free on the direct sum of the subspaces B 0 A 0· .. and lk. It follows 
that 

P?1 0A (A II B) ~ A 0A (A II B) 

is an A II B-free resolution. Since A II B = A 0A (A II B) EB B 0B (A II B) we 
obtain an A II B-free resolution of lk of the form 

[P?1 0A (A II B) EB Q?1 0B (A II B)] -+ A II B -+ lk . 

This yields the formulae 

TorfuB (1k, -) = Torf(lk, -) EB Torf (lk, -), i 2 1 

and 
Ext~UB(lk, -) = Ext~ (lk, -) EB Extk(lk, -), i 2 1 . 

These apply, in particular, to case that A and B are universal enveloping alge
bras. 

o 

(d) The homotopy Lie algebra of a topological space. 
Let X be a simply connected topological space. In §16 we defined the loop 

space homology algebra, H*(OX; lk). Moreover, the Alexander-Whitney diago
nal 

H(6.) : H*(O,X; lk) -+ H* (OX; lk) 0 H*(O,X; lk) 

is a morphism of graded algebras, as was observed in Lemma 16.3. The map 
OX -+ pt is trivially product preserving and so the canonical augmentation 
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E : H.(OX; 1.:) ---+ 1.: is also a morphism of graded algebras. In other words, the 
Alexander- Whitney diagonal and the canonical augmentation make H. (OX; 1.:) 
into a graded Hopf algebra. 

On the other hand, recall that since P X is contractible, the connecting ho
momorphism for the path space fibration is an isomorphism, O. : 1f. (X) ~ 
1f.-1 (OX). Thus we may transfer the Whitehead product [ , lw in 1f .(X) (§13(e)) 
to a bracket [ , 1 in 1f. (OX) by setting 

Theorem 21.5 (Milnor-Moore) [127J If X is a simply connected topological 
space then 

(i) The bracket above makes 1f.(OX) 181 1.: into a graded Lie algebra (to be 
denoted by Lx). 

(ii) The Hurewicz homomorphism for ox is an isomorphism of Lx onto the 
Lie algebra P.(OX;.k) of primitive elements in H.(OX;.k). 

(iii) The Hurewicz homomorphism extends to an isomorphism of graded Hopf 
algebras, 

proof: Consider first the case that X has rational homology of finite type. The 

Cart an-Serre Theorem 16.10 asserts that hur : 1f.(OX) 1811.: ~ P.(OX; 1.:) is a 
linear isomorphism. Hence a unique Lie structure is induced in 1f. (OX) 1811.: such 
that hur is an isomorphism of Lie algebras. Proposition 16.11 asserts precisely 
that for a, (3 E 1f.(OX), 

[hura,hur,8l = (_1)deg a+1 huro. ([o;la,o;l(3]w) . 

Thus the induced Lie structure in 1f.(OX) 1811.: is given by the required bracket. 
This proves (i) and (ii). For assertion (iii) note that, by the definition of 

universal enveloping algebras, hur extends uniquely to a morphism of graded 
algebras a : ULx ---+ H.(OX; 1.:). Theorem 16.13 states precisely that this is 
an isomorphism. Since Lx is primitive in U Lx (Proposition 21.3) the algebra 
morphisms (a 181 a)~ and H(~)a agree in Lx. But Lx generates the algebra 
U Lx. It follows that (a 181 a)~ = H(~)a; i.e., a is an isomorphism of Hopf 
algebras. 

Now consider the general case. A weak homotopy equivalence X' ---+ X 
from a CW complex X' (Theorem 1.4) will induce a weak homotopy equivalence 
OX' ---+ OX (long exact homotopy sequence) and hence a homology isomor-

phism H.(OX';.k) ~ H.(OX; 1.:) (Theorem 4.15). Thus, given the proof of 
Theorem 1.4, we may suppose X is a CW complex with a single O-cell and 
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no I-cells. Then any singular chain c E C*(X; lk) and any continuous map 
I : sn --+ X will satisfy c E C * (Y; lk) and J( sn) C Y for some finite sub
complex Y c X. If I : K --+ ox is a continuous map from a compact set 
then all the loops I(y), y E K have length bounded above by some fi. Moreover 
{J(y)(t) I 0 ::; t ::; €, y E K} is a compact subset of X and hence contained in 
some finite complex Y. Thus any singular chain c E C*(OX;lk) and any contin
uous map I : sn --+ ox will satisfy c E c.(OY; lk) and I(sn) c OY for some 
finite sub complex Y eX. 

Since the theorem has been proved for finite sub complexes Y c X it follows 
now in general. 0 

Definition The graded Lie algebra Lx = (7r*(OX) ® lk, [ , ]) is called the 
homotopy Lie algebra of X with coefficients in lk. When lk = Q it is called the 
rational homotopy Lie algebra of X. 

Observe that all the constructions above are functorial: if I : X --+ Y is 
a continuous map between spaces satisfying the hypotheses of Theorem 21.5 
then 7r*(Of) ® lk is a morphism of graded Lie algebras and hUT is a natural 
isomorphism. 

(e) The homotopy Lie algebra of a minimal Sullivan algebra. 
Let (A V, d) be a minimal Sullivan algebra, as defined in §I2. Thus the differ

ential may be written as an infinite sum d = dl + d2 + ... of derivations, with 
dk raising wordlength by k. As observed in §I3(e), (AV,dI) is itself a minimal 
Sullivan algebra. 

Define a graded vector space L by requiring that 

sL = Hom(V, lk) , 

where as usual the suspension sL is defined by (sLh = L k - I . Thus a pairing 
( ; ) : V x sL --+ lk is defined by (v;sx) = (_I)degvsx(v). Extend this to 
(k + I)-linear maps 

A kV x sL x ... x sL --+ lk 

by setting 

(VI /\ ... /\ Vk; SXk,'" ,SXI) = L co-(Vo-(I); SXl)'" (Vo-(k); SXk), 

o-ESk 

where as usual Sk is the permutation group on k symbols and Vo-(I) /\ ... /\ Vo-(k) = 
Co-VI /\ ... /\ Vk· 

Definition A pair of dual bases for V and for L consists of a basis (Vi) for V 
and a basis (X J) for L such that 

{ I if i = j 
(Vi; SX j) = 0 otherwise. 
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We observe now that L inherits a Lie bracket [ , 1 from d1 . Indeed, a bilinear 
map [ , 1 : L x L ---t L is uniquely determined by the formula 

(v;s[x,yJ) = (_1)degy+l(d1v;sx,sy) , X,y E L, v E V . 

The relation v A w = (_l)deg v deg Ww A v leads at once to 

[x, y 1 = - ( - 1 ) deg x deg y [y, xl, 

and an easy computation gives 

(div; sx, sy, sz) = (-1 )deg y (v; S [x, [y, zlJ - s[[x, y], z] - ( _l)deg x deg y S [y, [x, z 1]). 

Thus the Jacobi identity is implied by (indeed is equivalent to) the relation 
di = O. 

Definition The Lie algebra L is called the homotopy Lie algebra of the Sullivan 
algebra (A V, d). 

This construction is functorial. If cp : (A V, d) ---t (A W, d) is a morphism of 
minimal Sullivan algebras then recall (§12(b)) that Q(cp) : V ---t W is the linear 
part of cp : cpv - Q(cp)v E A:>:2W. It is immediate that the algebra morphism 
AQ(cp) : AV ---t AW satisfies AQ(cp) 0 d1 = d1 0 AQ(cp). 

Now let Land E denote respectively the homotopy Lie algebras of (A V, d) and 
(AW, d). Then Q(cp) dualizes to a Lie algebra morphism 

w : L f- E, (v; swx) = (Q(cp)v; sx) , 

as follows from the compatibility of AQ( 'P) and d1 . 

Finally, suppose X is a simply connected topological space with rational ho
mology of finite type. In §21(d) we defined the homotopy Lie algebra Lx 
7l".(f2X) CSilk. On the other hand, X has a minimal Sullivan model 

m: (AV, d) ---t APL(X) 

with its own homotopy Lie algebra L. 
Now, by definition, sL = Hom(V,lk). Identify sLx = 7l".(X) CSilk by setting 

sa = _(_l)deg O:o;la, where A. : 7l".(X) ~ 7l"*_l(f2X) is the connecting homo
morphism for the path space fibration. In §13( c) we used the quasi-isomorphism, 
m, to define a bilinear map ( ; ) : V x 7l".(X) ---t lk (Lemma 13.11). Define a 
linear map e : 7l".(X) CSilk ---t Hom(V, lk) by (ea)v = (_l)deg o:(v; a). 

TheoreIll 21.6 The linear map 

0" : Lx -----+ L 

defined by e(sa) = sO"a, a E Lx, is an isomorphism of graded Lie algebras. 
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proof: Theorem 15.11 implies that e is an isomorphism of graded vector spaces. 
Hence so is a. To check that a preserves Lie brackets, recall that if a, f3 E Lx 
then their Lie bracket, as defined in §21(d), satisfies 

s[a,f3] - (-1 )deg a+deg {3 8:;1 [a, f3] 
(_l)deg{3 [8:;l a ,8:;1f3]W = (-l)deg a[sa,sf3]w. 

On the other hand Proposition 13.16 states that 

(v; [sa,sf3]w) = (_1)deg a+deg {3+1(d1v; sa, s(3), V E V. 

Thus the Lie bracket in Lx satisfies 

which is the defining condition for the Lie bracket in L. D 

(f) Differential graded Lie algebras and differential graded Hopf alge
bras. 

A differential graded Lie algebra (dgl for short) is a graded Lie algebra equipped 
with a differential d satisfying d[x, y] = [dx, y]+( _l)deg X[x, dy]. Morphisms, sub
algebras and ideals have the obvious meaning in the differential context. A chain 
Lie algebra is a dgl in which L = {Lih::::o. If Lo = 0, L is a connected chain Lie 
algebra. 

A (left) module for a dgl, (L, d) is a complex (V, d) together with a (left) 
representation of L in V such that d(x. v) = dx· v + (_l)degxx . dv. 

Let (L, d) be a dgl. Extend d uniquely to a derivation of square zero in the 
tensor algebra T L and observe that this preserves the ideal I generated by the 
elements x Q9 y - (_l)degx degy y Q9 x - [x,y]. Hence the universal enveloping 
algebra U L = T Lj I inherits a differential d, and with it the structure of a dif
ferential graded algebra. The differential graded algebra (U L, d) is the universal 
enveloping algebra of the dgl, (L,d) and is often denoted by U(L,d). 

Note that (L, d)-modules are precisely the modules over the dga, U(L, d) and 
so can be treated with the techniques of §6. Note also that if'P is a morphism 
of dgl's then U'P is a morphism of dga's. 

As with dga's, the homology H(L) of a dgl inherits the structure of a graded 
Lie algebra as follows: if z and ware cycles in L representing homology classes 
a and f3, then [a, f3] is the class represented by the cycle [z, w]. If 'P is a dgl 
morphism and if (V, d) is an (L, d)-module then H ('P) is a morphism of graded 
Lie algebras and [z].[v] = [z. v] makes H(V) into an H(L)-module. 

Finally, let (L, d) be a dgl and consider the inclusion £ : (L, d) --+ U(L, d) as a 
dgl morphism. Thus H(£) : H(L) --+ H(UL) is a Lie morphism with respect to 
the commutator bracket in the graded algebra H(UL). In particular, it extends 
to a morphism of graded algebras, UH(L) --+ H(UL). 
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Theorem 21.7 

(i) The morphism UH(L) ---+ H(UL) is an isomorphism. 

(ii) A dgl-morphism t.p is a quasi-isomorphism if and only if U t.p is a quasi
isomorphism. 

proof: (i) Recall the isomorphism 'Y : AL ~ U L of Proposition 21.2. Extend 
d to a derivation in AL; then 'Y is a morphism of complexes. Write L = Z E9 

V E9 W where d = 0 in Z and d : V ~ W. Then, as is noted in Lemma 12.5, 
H(A(V E9 W)) = 1k and so (AZ,O) ~ (AL,d). 

Identify Z = H(L) and observe that AZ ~ UH(L) ---+ H(UL) coincides 
'Y 

with the isomorphism AZ ~ H(AL) ~ H(UL). Thus UH(L) ~ H(UL). 
Hh) 

(ii) The isomorphism of (i) identifies H(Ut.p) with UH(t.p). But 'Y iden
tifies AH (t.p) with U H (t.p) and so H (t.p) is an isomorphism if and only if U H (t.p) 
~. 0 

Finally, we define differential graded Hopf algebras: these are simply graded 
Hopf algebras together with a differential compatible with all the algebraic struc
ture. It is immediate from the definition that U(L, d) is a differential graded Hopf 
algebra. In §26 we shall see that so as c.(nX;1k) and establish an equivalence 
(up to homotopy) between c.(nX;1k) and a suitable U(L,d). 

Exercises 

1. Suppose x ELand consider x 2 E U L. Prove that x 2 E L. Is it true that 
xk E L for k 2 3? 

2. Let L be the quotient of the free Lie algebra lL(a, b) by the ideal generated 
by the element [a, [a, b]] E lL(a, b). Prove that if a and b are of even degree then 
a2b + ab2 = 2a[a, b] in U L. 

3. Let L = L' EEl L" be the sum of two graded Lie algebras. Prove that U L ~ 
UL'®UL". 

4. Let F --7 X 4 Y be a fibration with I-connected base and fibre. Prove 
that if 7r.(p) ® Q is onto then the graded algebra H.(nX,Q) is isomorphic to 
H.(nY, Q) ® H.(nF, Q). 

5. Compute the homotopy Lie algebra Lx when X = cpn, n 2 2, X = Sp V sq, 
X = cpp vcPq for p,q 2 2, or X = CPOC vCpoc. Deduce H.(nX,Q) in each 
case. 
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6. Let (A, d, f) be a differential graded augmented algebra. Deduce from §19-
exercise 1 that if A is commutative, then B(A) is a commutative differential 
graded Hopf algebra with the shuffie product defined in §16-exercise 1 and the 
usual coproduct. Determine the Hopf algebra B(lk[x]/(x2 )) when the degree of 
x is even. 

7. Let (A, f) be a graded augmented algebra. Prove that if A is commutative, 
then TorA(lk, lk) is a graded Hopf algebra. 

8. Prove that the adjoint representation (example 2) extends to a left represen
tation of Lin I\L and that the morphism 'Y of Proposition 2 is L-linear. Deduce 
that UL is the direct sum of the L-modules 'Y(l\kL), k = 0,1.. .. 

9. Let 0 -+ L' -+ L it L" -+ 0 be a short exact sequence of graded Lie algebras. 
Define the Hop! kernel of U! : UL -+ UL" by HK(f) = {x E UL, (idQ9 
f) (l1x - x Q9 1) = O)}. Prove that H K (f) is isomorphic to U L' and that U L ~ 
UL' Q9 UL". 

10. Let lk be a commutative ring with unit and p be the least prime, if any, 
which is not a unit in lk. Prove that (p - I)! is a unit in lk. Let (L, d) be a 
differential graded Lie algebra such that Li = 0 for i < r. Prove that the natural 
inclusion (L,d) -+ (UL,d) induces injective maps Hn(L,d) -+ Hn(UL,d) for 
n < rp. 

11. Let X be a simply connected finite type CW complex. Supposing that 
dimH*(OX;Q) < 00 and that H+(X;Q) -# O. Prove that X has the rational 
homotopy type of a finite product of Eilenberg-MacLane spaces of the form 
K(Q,2n). 

12. Let V be an n-dimensional Q-vector space concentrated in degree 2. Using 
Poincare-Birkhoff-Witt, compute the dimension of the brackets of length 2r in 
!Lv, for r ~ 1. 
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In this section the ground ring is a field k of characteristic zero. 
A co algebra of the form C = k EEl {Cdi2:2 will be called one-connected. Such 

coalgebras are co-augmented by k. The object of this section is to construct 
Quillen's functors 

one-connected 
cocommutative 
chain coalgebras 

L 
--+ t--

c. 

connected chain 
Lie algebras 

and to establish the natural quasi-isomorphisms 

and C* (£(C,d))? (C,d). 

In §24 we shall see how this correspondence exhibits chain Lie algebras as an 
alternative description for rational homotopy theory. 

The passage from (L, dL ) to C*(L, dL ) is essentially inverse to the construction 
of the homotopy Lie algebra of a minimal Sullivan algebra given in §2l(d) and 
we make this remark precise in §23. 

This section is organized into the following topics: 

(a) Graded coalgebras. 

(b) The construction of C*(L) and of C*(L; M). 

(c) The properties of C*(L; UL). 

(d) The quasi-isomorphism C*(L) ~ BUL. 

(e) The construction of £( C, d). 

(f) Free Lie models. 

(a) Graded coalgebras. 
Recall (§3(d), §19) that a graded coalgebra C is equipped with a comulti

plication ~ : C ---7 C @ C and an augmentation E : C ---7 k and that a 
co-augmentation is an inclusion k L.....t C so that E(l) = 1 and ~(l) = 1 @ 1. For 
such a coalgebra we write C = kerE, so that C = kEEl C. 

As described in §19, the reduced comultiplication .6. : C ---7 C @ C is defined 
by .6.c = ~c - c @ 1 - 1 @ c. Its kernel is the graded subspace of primitive 
elements. Now set .6.(0) = ide' .6.(1) = .6. and define the nth reduced diagonal 
.6.(n) = (.6. @ id ~ ... @ id) o.6.(n-l) : C ---7 C @ ... @ C (n + 1 factors). We say 

C is primitively cogenerated if C = U ker .6. (n) . Notice that if C = k EB C >0 then 
n 

C is automatically primitively cogenerated. 
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Finally, recall that Cis co commutative if T~ = ~ where T : C 0 C ---+ C 0 C 
sends a 0 b f-t (_l)deg a degbb 0 a. 

The main example, for us, of such graded coalgebras is the coalgebra A V 
whose comultiplication ~ is the unique morphism of graded algebras such that 
~(v) = v 01 + 10 v, v E V. It is augmented by c : A+V ---+ 0, 1 f-t 1 and 
co-augmented by lk = A °V. It is trivially cocommutative. It is also easy to see 
that ker3.(n) = A:Snv, and so AV is primitively cogenerated. 

Among the primitively cogenerated, cocommutative coalgebras (AV, d) has an 
important universal property. Let ~ : A +V ---+ V be the surjection defined by 
a-~aEA~2V. 

Lemma 22.1 Suppose C = lk ffi C is a primitively cogenerated cocommutative 
graded coalgebra. Then any linear map of degree zero, f : C ---+ V lifts to a 
unique morphism of graded coalgebras, tp : C ---+ AV such that ~tp Ie = f· 

proof: Define f(k) : C 0···0 C ---+ AkV by 

f(k) (CI 0···0 Ck) = ~! f(cr) /\ ... /\ f(Ck). 

Recall that 3.(0) = ide and define tp by tp(l) = 1 and 

00 

tpc = L f(k+1) 3. (k) C, c E C. 
k=O 

(Since C is primitively cogenerated, this is a finite sum.) 
To verify that tp is a co algebra morphism, write 3.(k-1)c = L c? 0 ... 0 

'" ch. Co-commutativity implies that 3.(k-I)C = L ±c~(1) 0··· 0 C~(k)' for each 

'" permutation, <Y. 

Co-associativity implies that 3. (k) = (3. (p) 03. (q)) 0 3. for all p, q such that 
p + q = k - 1. Finally, for any Vi E V, 

~(VI /\ ... /\ Vk) = (VI 01+ 10 vr) /\ ... /\ (Vk 01+ 10 Vk) 
k 

= L ~ (k2p)! L ±V(J"(I) /\ ... /\ v(J"(p) 0 v(J"(p+1) /\ ... /\ V(J"(k)· 
p=o (J"ESk 

Combining these facts in a straightforward calculation gives (tp 0 tp)~ = ~tp. 
To prove uniqueness observe that any morphism maps ker 3.(1) into V. Hence 

if'lj; is a second morphism then for c E ker 3.(1), tpc = ~tpc = f(c) = ~'Ij;c = 'lj;c. 
Suppose tp and 'Ij; agree in ker 3.(n) and let c E ker 3.(n+1). By co-associativity, 
3.c E ker 3. (n) 0 ker 3. (n). Thus 3.tpc = (tp 0 tp )3.c = ('Ij; 0 'Ij; )3.c = 3.'Ij;c. This 
implies that (tp - 'Ij;)c = (~tp - ~'Ij;)c = O. D 

An analogue of Lemma 22.1 also holds for coderivations. Indeed, suppose 
g : A kV ---+ V is a linear map of some arbitrary degree, and k 2: 1. Define 
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e 9 : AV -+ AV by 

±g (v· 1\. ... I\. V· ) I\. V1 I\. ... v ... v ... I\. V 21 'lk 1.1 'Zk n & 

(Here ~means deleted and ± is the sign given by V11\.· .. 1\. Vn = ±Vi, 1\. ... 1\. Vik I\. 

V1 I\. ... Vi, ... Vik ... I\. vn.) Note that {} 9 decreases wordlength by k - 1. 

Lemma 22.2 (}g is a coderivation in AV. It is the unique coderivation that 
extends 9 and decreases word length by k - 1. 

proof: The coderivation property is a simple calculation. Uniqueness is proved 
in the same way as in Lemma 22.1. D 

(b) The construction ofC.(L) and ofC.(L;M). 
Let (L, dL) be a differential graded Lie algebra. The differential and the Lie 

bracket determine coderivations in AsL given explicitly by (Lemma 22.2) 

and 

k 

dO(SX1 1\. ... 1\. SXk) = - L( -1) ni SX1 1\. ... I\. sdLXi 1\. ... 1\. SXk, 
i=l 

d1 (SX11\.· . ·I\.SXk) = L (_l)deg Xi+ 1 (_l)nii S[Xi' Xj ]I\.SX1 ... SXi ... SXj .. ·I\.SXk. 
15,i<j5,k 

(Here ni = L deg SXj, and SX11\.·· ·I\.sxk = (_l)nii SXil\.SXjl\.SX1 ... SXi'" SXj ... 1\. 
j<i 

SXk. The symbol ~means 'deleted'.) 
Since do and d1 are coderivations of odd degree, d5, dod1 + dIdo and di are 

also coderivations, decreasing wordlength by 0, 1 and 2 respectively. Moreover 

d5(sx) = sd'ix = 0; 

(dod1 + d1do)(sx I\. sy) = (_l)deg x S (dL[x, y] - [dLX, y] - (_l)degx [x, dLY]) = 0; 

di(sx I\. sy I\. sz) = (_l)degY+l S ([x, [y, z]] - [[x, y], z] - (_l)degx deg Y[y, [x, z]]) 
= O. 

Thus by the uniqueness assertion in Lemma 22.2, all three coderivations are zero. 
In other words, (AsL, d = do + d1) is a differential graded co algebra. 

Definition The Cartan-Eilenberg-Chevalley construction on a dgl, (L, dL) is 
the differential graded coalgebra 

C. (L, dL) = (AsL, d = do + dd. 

We often abuse notation and write simply C.(L) for C.(L, d£). 
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This construction is functorial: if <p : (E, dE) ---+ (L, dL) is a dgl morphism 
then G. (<p) is the dgc morphism Arp : AsE ---+ AsL, with rp( sx) = s<pX. 

Remarks 1 The construction G.(L) is a cocommutative co-augmented and 
~rimitively cogenerated coalgebra. 

2 For the construction for Lie algebras see Chevalley-Eilenberg [38] 
and Cartan-Eilenberg [35]; for the differential graded case see Quillen ([135], 
Appendix B). 

3 The reader may have noticed two apparent coincidences: the first 
between the construction above and the homotopy Lie algebra of a Sullivan 
model (§21(d)); the second between the construction above and those in §19. 
These are not coincidences. The first will be explained in §23 and the second in 
§22(d), below. 0 

Next, we extend the construction above to the case with coefficients in a graded 
(L, dL)-module, (M, d). Denote the differential in G.(L) by d = do + d1 . Define 
a complex (G. (L; M), d = do + dd as follows: 

• G.(Li M) = AsL 0 M as a graded vector space. 

• do = do 0 id + id 0d. 

• d1 = d1 0 id +8, where 

k 

8(SXl 1\ ... 1\ SXk 0 m) = ~) _l)ni SXl 1\ ... SXi··· 1\ SXk 0 Xi· m 
i=1 

k k 

and ni = L (degxj + 1) + L (degx; + l)(degxj + 1). 
j=1 j=i+l 

(Note that, as always, the tensor product of linear maps is defined by (f 0 
g) (a 0 b) = (-1) deg 9 deg a f ( a) 0 9 ( b) . ) 

As in the case of G.(L) we have d6 = dod1 + dIdo = di = O. Indeed d6 = 0 
because d2 = 0, dIdo + dod1 = 0 because d(x·m) = dLx·m + (-l)degx x .dm 
and di = 0 because [x,y]·m = x.y·m - (_l)degx degYy·x·m. 

(c) The properties ofG.(L;UL). 
Recall that (U L, d) = U(L, dL) is the universal enveloping algebra of the 

dgl (L,dL) - cf. §21(e). Multiplication from the left makes UL into a left 
U L-module, and hence into an L-module. Form the complex G.(Li U L) = 
(AsL0UL,d), as described in (b). 

Proposition 22.3 The inclusion k ---+ (AsL 0 U L, d) is a quasi-isomorphism. 

Proposition 22.4 Right multiplication makes (AsL0U L, d) into a right semifree 
(U L, d)-module. 
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proof of 22.3: In the proof of Proposition 21.2 we introduced the subspaces 
UL(n) c UL spanned linearly by the monomials Xl·· ·Xk, Xi E L, k::; n. We 

showed there that a linear isomorphism 'Y : AL ~ U L is given by XI/\· . ·/\Xk f--t 

if L: C17 X17(I)·· . Xo-(k) , and that it induces isomorphisms AkL ~ UL(k)/UL(k-
0-

1). 
Now write AsL 0 U L as the increasing union of the graded subspaces Fk = 

L: A'SisL 0 UL(j). As usual, identify AsL 0 AL = A(sL EB L). Then 
i+j'Sk 

and so induces isomorphisms Ak(sL EB L) ~ Fk/Fk- l . 
Next observe that the differential, d, preserves the spaces Fk . Moreover, be

cause S[Xi, Xj] has lower wordlength than SXi /\ SXj the corresponding terms in 
the formula for d (see (b), above) disappear in Fk/Fk- l . Also, X·'Y(YI/\···/\ 
Yk) - 'Y(X /\ YI/\ ... /\ Yk) E UL(k). These comments imply that id0'Y is an 
isomorphism of complexes 

where fJ is the derivation in the algebra A(sL @ L) specified by 

fJx = dx and fJsx = (_l)deg x+l x - sdx, X E L. 

Trivially, H(sL EB L, fJ) = 0. Choose a basis of sL EB L of the form {u", fJu,,}. 
Then A(sL EB L, fJ) '==' ® A( u", fJu,,) and so H (A(sL @ L), fJ) = 1.; i.e. 

" H (Ak(sL EB L), fJ) = 0, k :::: 1. Because of the isomorphism above, H (Fk/ Fk-l, d) 
= 0, k :::: 1. It follows by induction on k that H (Fk/ Fo, d) = 0, k :::: 1, and so 
H ((AsL 0 U L)/ 1., d) = 0, as desired. D 

proof of 22.4: It is immediate from the definitions that multiplication from 
the right makes C (L; U L) = AsL 0 U L into a right (U L, d)-module. Moreover 
the subspaces M(k) = A'Sk sL 0 U L define an increasing family of submodules, 
and 

(M(k)/M(k -l),d) '==' (AksL, do) 0 (UL,d). 

The two step filtration (kerdo) 0 (UL, d) c (AksL, do) 0 (UL,d) exhibits 
(M(k)/M(k - 1), d) as (U L, d)-semifree. Now Lemma 6.3 asserts that C*(L; U L) 
is (U L, d)-semifree. D 

Notice that the construction C*(L; U L) is functorial: if rp : (E, d) ---+ (L, d) is 
a morphism of dgl's then 

C*(rp) 0Urp: (AsE0UE,d) ---+ (AsL0UL,d) 
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is a morphism of (U E, d)-modules, where U E acts on U L from the right via U 'P. 
Moreover, because of the acyclicity (Proposition 22.3), C. ('P) ® U'P is automati
cally a quasi-isomorphism. 

Recall from Theorem 21. 7 that 'P is a quasi-isomorphism if and only if U'P is. 
U sing the construction above we prove 

Proposition 22.5 

(i) If'P is a quasi-isomorphism then so is C. ('P). 

(ii) If E = {Ei};>o and L = {L;}i>O then 'P is a quasi-isomorphism if and 
only if C. ('P) is a quasi-isomorphism. 

proof: (i) Here U'P is a quasi-isomorphism (Theorem 21.7) and C.('P) ® U'P is 
a quasi-isomorphism because of Proposition 22.3. Since the modules C. (E; U E) 
and C.(L; UL) are semifree, Theorem 6.10 (ii) asserts that 

(C.('P) ® U'P) ®u:p lk: (AsE ® UE) ®UE lk --+ (AsL ® UL) ®UL lk 

is a quasi-isomorphism. But this is precisely C. ('P). 
(ii) Conversely, suppose C.('P) is a quasi-isomorphism. Consider 

(U L, d) as a left (U E, d)-module via multiplication on the left by (U 'P )a, a E U E. 
Then 

C.('P) ® id: C.(E;UL) --+ C.(L; UL) 

is a morphism of right semifree (U L, d)-modules. Moreover (C. ('P) ® id) ®u L lk 
is the quasi-isomorphism C.('P). Now Theorem 6.12 asserts (because E and L are 
concentrated in strictly positive degrees) that C. ('P) ® id is a quasi-isomorphism. 
Hence H(C.(E;UL)) = lk. 

Now choose a (U E, d)-semifree resolution of left (U E, d)-modules, a : (M, d) 

~ (UL,d), with M = {M;}i?:O. Since C.(E;UE) is (UE,d)-semifree, 
C. (E; U E)®UE ~ preserves quasi-isomorphisms. Furthermore, since M is semi
free, - ®UE M preserves quasi-isomorphisms. Thus 

lk ®UE M {~d C.(E; UE) ®UE M id~"') C.(E; UE) ®UE UL = C.(E; UL); 
- -

i.e. H(lk ®UE M) = lk. 
Define (3 : (U E, d) --+ (M, d) by (3a = a· m, where m is a cycle in Mo such 

that H(a)[m] = 1. The calculation H(lk ®UE M) = lk shows that lk ®UE (3 
is a quasi-isomorphism, and hence so is (3, again by Theorem 6.12. Moreover, 
H(a) is an isomorphism by construction. Thus H(U'P) = H(a) 0 H((3) is an 
isomorphism. Now Theorem 21. 7 asserts that 'P is a quasi-isomorphism. 0 

We now return to the construction C.(L;UL). Recall from (a) above that 
AsL is a co commutative graded coalgebra and from §21(e) that (UL,d) is a 
differential graded Hopf algebra. 
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Proposition 22.6 

(i) The tensor product of the diagonals in AsL and in U L makes C* (L; U L) 
into a differential graded coalgebra. 

(ii) The linear isomorphism "( : AL ~ U L of Proposition 21.2 is an isomor
phism of coalgebras. Hence C*(L; U L) ==' AsL ® AL as a graded coalgebras. 

(iii) The module action (AsL®U L, d)®(U L, d) ~ (AsL®U L, d) is a morphism 
of graded coalgebras. 

(iv) The quotient map - ®UL k : (AsL ® U L, d) ~ (AsL, d) is a morphism of 
graded coalgebras. 

proof: The tensor product of the diagonals in AsL and in U L certainly makes 

AsL ® U L into a graded coalgebra. Moreover the isomorphism "( : AL ~ U L 
of Proposition 21.2 is an isomorphism of graded coalgebras, as follows from the 
relation 

To show that the differential is a coderivation denote the differentials in AsL = 
C* (L) by do and d1; they are both coderivations. Since d is a coderivation in U L 
(§21(e)) it follows that do = do ® id + id ®d is a coderivation. Moreover, recall 
that d1 = d1 ® 1 + () where d1 is a coderivation and ()(SX1 1\ ... 1\ SXk ® a) = 
L ±SX1 ... SXi··· SXk ® Xia. Since i:::J. UL is an algebra morphism, i:::J.udxia) = 
(Xi ® 1 + 1 ® xi)i:::J.uLa. This implies (after a short calculation) that () is a 
coderivation. 

The remaining assertions are self-evident. o 

(d) The quasi-isomorphism C*(L) ~ BUL. 
As we observed earlier, the constructions C*(L) and C*(L; M) bear a strong 

similarity to the bar constructions of §19. We can now make this precise. 
Let (L, d) be a dgl and denote by BU L the bar construction on the dga 

(U L, d). As in §19, B(U L; U L) denotes the bar construction with coefficients in 
U L, where U L acts on itself via left multiplication. 

Now BU L is the tensor coalgebra TsU L on the suspension of the augmentation 
ideal UL c UL. The inclusion L c UL (§21(a)) has its image in UL; hence we 
may regard sL as a subspace of sU L. 

Proposition 22.7 A natural dgc quasi-isomorphism 

is given by A: SX11\·· ·I\SXk f-7 L c",[sx.,.(1)I·· ·ISX.,.(k)], where SX11\·· ·l\sXk = 
.,.ESk 

C.,.SX.,.(l) 1\ ... 1\ SX.,.(k). 
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proof: A straightfonvard, if tedious, calculation verifies that A is a morphism 
of dgc's. Similarly, 

A ('~ id : (AsL@ UL , d) ----+ (BUL @ UL,d) 

is a morphism of (U L, d)-modules. According to Proposition 19.2, H(BU L @ 

U L) = lk and (BU L@UL, d) is (U L, d)-semifree. According to Propositions 22.3 
and 22.4, (AsL @ U L, d) has the same two properties. 

Because H(BUL@UL) = lk = H(AsL@UL), A@ id is necessarily a quasi
isomorphism. Because both are (U L, d)-semifree, Proposition 6.7 (ii) asserts 
that (A @ id) ?9UL lk is a quasi-isomorphism. But, trivially, (A @ id) @UL lk = A. 
D 

ReIllark Proposition 22.7 replaces the huge complex T(s-lUL) by the rel
atively small complex AsL, which is a major computational advance. In the 
classical case of ungraded Lie algebras without differentials, the smaller complex 
in fact came first, as the dual of the left invariant forms on a Lie group. The bar 
construction and the equivalence of Proposition 22.7 appear later in [ll8] and 
[35]. 

(e) The construction {(C, d). 
Recall that the free graded Lie algebra lLv is the sub Lie algebra of TV gener

ated by V (§21( c)) and that TV is the universal enveloping algebra of lLv. Thus 
a dgl of the form (lLv, d) will be called a free dgl. Kote that this is a serious 
abuse of language: (lLv, d) is almost never a free object in the category of dgl's. 

Recall first some basic facts about free Lie algebras lLv (d. §21 (c)). First, 

lLt· is the direct sum of the subspaces lL0) of bracket length i, and L~) = V. 
Second, any linear map f : V ----+ L (L a graded Lie algebra) extends uniquely 
to an algebra morphism TV ----+ U L, which then restricts to a Lie morphism 
lLv ----+ L, the unique extension of f· Finally any linear map 9 : V ----+ lLv 
extends uniquely to a derivation e of TV which then restricts to the derivation 
of lLv uniquely extending g. 

Let (lLv, d) be a free dgl. The linear part of the differential d is the differential 

dv : V ----+ l! defined by dv - dvv E E9~). It suspends to a differential din 
k>2 

sF: dsv = -sdvv. 
Now consider the composite 

Q: C*(lLv ) = AslLv ----+ slLv EB lk ----+ sV EB lk, 

where we have first annihilated A2'2 slLv and then S(rrt2'2)). 

Proposition 22.8 The linear map Q is a natural quasi-isomorphism of com
plexes, 

(C*(lLv ), d) --=+ (sF EB lk, d) . 
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proof: It is immediate from the definitions that (] commutes with the dif
ferentials. Moreover, since UlLv = TV, there is an analogous morphism (]' : 
(BUlLv , d) ~ (sV fJJlk, d) constructed in §19 just before Proposition 19.1. More
over, Proposition 19.1 asserts that r2' is a quasi-isomorphism. 

It is immediate that the quasi-isomorphism of Proposition 22.7, A : C. (lLv) ~ 
BUlLv, satisfies (]' A = (]. Thus (] is a quasi-isomorphism. 0 

A prime (but by no means the only) way of constructing free dgl's is through 
Quillen's functor, C, which is the analogue here of the cobar construction. The 
functor C is constructed as follows. Let (C, d) = (C, d) fJJ lk be any co-augmented 
dgc, which is cocommutative. Form the cobar construction, nc = TS-IC, as 
described in §19. The differential has the form d = do + d1 with do preserving 
S-lC and d1 : S-lC ~ s-lC 0 S-lC. Moreover, because C is cocommutative, 
we can express d1 (S-lC) as a sum of commutators in the tensor algebra Ts- 1C. 
Indeed, write Lic = 2: ai 0 bi . Then also Lie = 2: ( -1 )deg ai deg bi bi 0 ai. Hence 

~ 2:( _l)deg ai (s-lai 0 s-lbi -

(_l)(deg ai -1)(deg bi-I) S-1 bi 0 S-1 ai ) 

~ 2:( _l)deg ai [s-lai' s-lbi] . 
i 

This shows that d1 : S-1C ~ lLS - 1 C C T(S-1C). Because d1 is, in particular, a 
Lie derivation it preserves lLS - 1 c. Hence so does d; i.e., (lLS - 1 C' d) is a dgl with 
universal enveloping algebra nco 

This construction is obviously functorial. 

Definition The dgl (lLS - 1 C' d) will be called the Quillen construction on the 
co-augmented cocommutative dgc, (C, d) and will be denoted by C(C, d). 

Theorem 22.9 Suppose (L = {Li};>l, d) is a connected chain Lie algebra 
and (C = 1. fJJ C?2, d) is a cocommutative dgc. Then there are natural quasi
isomorphisms 

'P: (C,d) ~ C.C(C,d) and 'l/J: CC.(L,d) ~ (L,d) 

of dgc's (respectively, of dgl's). 

proof: (i) Existence of 'P. Write C = C?2. Thus C( C, d) = lLS-l C and 
C. (lLS-l c) 
= AslLs - 1 c. Thus by Proposition 22.8 we have a quasi-isomorphism of com
plexes, 
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Now SS-lC = C, and a quick inspection shows that d is the original differential 
in C: 

(!: C*(Ls-1C) ~ (C,d). 

However, (! is not a coalgebra morphism. To obtain one, apply Lemma 22.1 
to the inclusion 

- -I-
f: C = ss C C sLs - 1C C AsLs-1C' 

noting that C is trivially primitively cogenerated because C = {Cdi>2. This 
gives a unique morphism r.p : C --t AsLs - 1 C of coalgebras such that (r.p --f) (C) c 
A 2':2 . We show first that r.p is a dgc morphism, and then that it is a quasi
isomorphism. 

For simplicity, write L = LS - 1 C and denote the differentials in L by 0 = 00 +01 
with OOS-lC = -s-ldc and 01 reflecting the diagonal. Then write r.p = :Er.pi where 
r.pi : C --t AisL is the component of wordlength i. Let ~ : A+sL --t sL be the 
projection with kernel A2':2SL. 

Now observe that ~(r.pd - dr.p) = 0 or, equivalently, that r.pld = dOr.pl + dlr.pz. 
Indeed, dOr.plC = dO(ss-IC) = -SOS-lC. In defining ((C, d) we gave an explicit 
formula for dsc. Thus if, ~c = I: Ci Q9 <, then 

1 
dOr.pIC = ss-Idc = "2 2)-1)degCis[s-lci,S-lc~l. 

i 

On the other hand, r.pIdc = ss-Idc and (cf. Lemma 22.1) 

It follows that r.p1 d = dOr.p1 + dl r.p2. 
Put () = r.pd - dr.p. We have just seen that ~() = o. The coderivation property 

implies that (() Q9 r.p + r.p Q9 ())~ = ~(), where ~ denotes both reduced diagonals. 
By coassociativity, ~ : ker ~(n) --t ker .!~Jn-l) Q9 ker ~(n-l), where ~(n) is the 
nth reduced diagonal as defined in §22(a). Assume by induction that () vanishes 
on ker~(n-I). Then for c E ker~(n),~()c = 0 and ()c = ~()c = O. It follows by 
induction that () = 0; i.e. r.pd = dr.p. 

Finally, note that {!r.p = id. Since (! is a quasi-isomorphism, so is r.p. 
(ii) Existence of'lj;. Put C = C*(L) so that C = A+sL. Define 

u: S-lC --t L bysettingu(s-lsx) = x and u(s-la) = 0, a E A2':2SL. Then since 
LS - 1 C is a free Lie algebra, u extends to a unique Lie morphism 'lj; : LS - 1 C --t L. 
As in (i) we have to check that 'lj; commutes with the differentials and that H('lj;) 
is an isomorphism. 

The linear map () = 'lj;d - d'lj; satisfies ()[a, b) = [()a, 'lj;b) + (_l)dega['lj;a, ()b), 
a, b E lLS-I C. Since this Lie algebra is generated by S-lC it is enough to check 
that () vanishes there. This is a straightforward computation from the definition 
of the differentials, as in (i). 
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Let rp: C*(L) ---=+ C*lLs-lC be the dgc quasi-isomorphism constructed in part 
(i) of the theorem (for general cocommutative dgc's). A quick computation shows 
that C*('ljJ)rp = id. Hence C*('ljJ) is a quasi-isomorphism, and then so is 'ljJ by 
Proposition 22.5. 0 

Corollary Suppose a: : (C, d) ---+ (C', d) is a morphism between dge's satisfying 
the hypotheses of the theorem. Then a: is a quasi-isomorphism if and only if £( a:) 
is. 

proof: The theorem identifies H(a:) with H (C*£(a:)). Now apply Proposi
tion 22.5. 0 

(f) Free Lie models. 
In §22(e) we introduced the free dgl's (lLv,d). Thus (lLv,d) is a connected 

chain Lie algebra precisely when V = {ViL>l. These play the same role within 
the category of connected chain Lie algebras that Sullivan algebras play in the 
category of commutative co chain algebras, and for the same reason: the under
lying algebraic object is free. 

In particular we make the 

Definition A free model of a connected chain Lie algebra (L, d) is a dgl quasi
isomorphism of the form 

m : (lLv, d) ---=+ (L, d) 

with V = {ViL~l. 

'ljJ : £C* (L, d) ---=+ (L, d) . 

There is a simpler approach, however, which extends any morphism "I : (lLw, d) ---+ 
(L, d) of connected chain Lie algebras to a free model: (,X is the obvious inclusion) 

--:---. (L, d) 

/ 

/' (22.10) 

(lLw, d) 

Indeed, suppose for some r ~ 0 that Hib) is an isomorphism for i < rand 
surjective for i = r. Extend "I to 

"I' : (lLw El,vr + 1 , d) ---+ (L, d) 

by requiring that 
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• The elements dv, v E V:+ 1 , are cycles in lLw representing all the classes in 
ker Hr(,) . 

• The elements in V:~l are cycles and are mapped by 'Y to cycles representing 
all the elements in coker H r+ 1 (,). 

Then Hi (") is an isomorphism for i ~ r and surjective for i = r + 1. Iterate this 
procedure to construct (22.10). D 

Free Lie models of the form (22.10) are analogues of the relative Sullivan 
models of §14. This motivates the 

Definition A free Lie extension is a morphism A : (lLw, d) ---+ (lLwElw, d) of 
free connected chain Lie algebras, in which A is the obvious inclusion. 

Suppose now given a commutative diagram 

(lLw, d) ~ (E,d) 

Ai ~ 1 ~ 
(lLwElW' d) --;;-+ (L, d) 

of morphisms of connected chain Lie algebras. Assume A is a free extension and 
~ is a surjective quasi-isomorphism. 

Proposition 22.11 With these hypotheses (): extends to a morphism 
'P : (lLwElw, d) ---+ (E, d) such that ~'P = j3. 

proof: Identical with that of Lemma 12.4, except that the induction is in the 
degree of the elements in W. D 

Suppose next that (lLv, d) is a free connected chain Lie algebra. Then d 
decomposes uniquely as the sum of derivations di : V ---+ ~+1). The differential 
do : V ---+ V is the linear part of d, as defined in (e) above. 

Similarly, if 'P : (lLw, d) ---+ (lLv, d) is a morphism of free connected chain Lie 
algebras then the linear part of'P is the chain complex morphism 

'Po : (W, do) ---+ (V, do) 

defined by 'P - 'Po : W ---+ ~~2) . 

Proposition 22.12 If'P: (lLw, d) ---+ (lLv, d) is a morphism of free connected 
chain Lie algebras then 

'P is a quasi-isomorphism {::::::} 'Po is a quasi-isomorphism. 
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proof: According to Proposition 22.5 and Proposition 22.8 respectively, 

'P is a quasi-isomorphism -¢::::::} C*('P) is a quasi-isomorphism 

-¢::::::} 'Po is a quasi-isomorphism. 

311 

o 

Definition A free connected chain Lie algebra (lLv ,d) is minimal if the linear 
part do of the differential is zero. In this case a quasi-isomorphism 

m: (lLv, d) ~ (L,d) 

is called a minimal free Lie model. 

Theorem 22.13 Every connected chain algebra (L, d) admits a minimal free 
Lie model 

m: (lLv,d) ~ (L,d) 

and (lLv, d) is unique up to isomorphism. 

proof: Theorem 22.9 provides a surjective free model, which we write as 

'IjJ: (lLw,d) ~ (L,d) . 

Decompose W = V EB U EB doU with do = 0 in V and do : U ~ doU. 
Next, let I C lLw be the Lie ideal generated by U and by dUo Thus I is 

preserved by d and (lLw /1, d) is a quotient connected chain Lie algebra. Denote 
the quotient map by (} : (lLw , d) ---t (lLw /1, d) . 

It is an elementary exercise in algebra to verify that the inclusions of V, 
dU and U into lLw extend to an isomorphism T (V EB dU EB U) --=+ TW (filter 
by the ideals T?k). Hence lLw = lLv EB I and (} restricts to an isomorphism 

lLv --=+ lLw /1. Use this to identify (lLw /1, d) as a free chain Lie algebra (lLv , d). 
It is straightforward to check that the linear part of (} is the linear map 

(}o : W ---t V which is the identity on V and zero in U and doU. Since 
do(}ov = (}odov = 0 it follows that (lLv, d) is minimal. Moreover H((}o) is an 
isomorphism and hence (} is a quasi-isomorphism (Proposition 22.12). Finally, 
Proposition 22.11 allows us to lift idLv through (} to obtain u : (lLv, d) ---t 
(lLw ,d) such that (}U = id. Then 

m = 'ljJu: (lLv,d) ~ (L,d) 

is a minimal Lie model. 
For uniqueness, let m' : (lLv', d') ~ (L, d) be any other minimal Lie model. 

Lift m' through the surjective quasi-isomorphism 'IjJ, and compose with (}. This 
gives a quasi-isomorphism 

'P : (lLv', d') ~ (lLv, d) 
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between minimal free connected chain Lie algebras. 
Now Proposition 22.12 asserts that H(<po) is an isomorphism. But do and 

dh are zero, so <Po itself is an isomorphism. Now apply Proposition 22.12 to 
<p : (lLv' , 0) -+ (lLv, 0) to conclude that <p is an isomorphism. 0 

Notice that the last paragraph of the proof of Theorem 22.13 in fact establishes 

Proposition 22.14 A quasi-isomorphism between minimal free connected chain 
Lie algebras is an isomorphism. 0 

Exercises 

1. Prove that if deg v = 2n - 1, n 2 1, then <p : T(v) -+ I\v ® T(u) defined by 
<p(v2k+1 ) = v ® uk and <p(v2k ) = 1 ® uk is an isomorphism of coalgebras (see 
§3-exercise 4). Deduce that 

2. Let <p, 't/J : (lLv, d) -+ (L, d) be two morphisms of differential graded algebras. 
A degree k-linear map 8 : lLv -+ L is an (<p, 't/J) -derivation if it satisties 8([x, y]) = 
[8x,'t/Jyj + (_1)deg x[<px,8yj. We write <p::: 't/J if there exists an (<p,'t/J)-derivation 
of degree 1 satisfying [8, d] = <p - 't/J. Prove that::: is an equivalence relation. 
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In this section the ground ring is a field k oj characteristic zero. In particular, 
we write H * ( -) and H* ( -) jor H * ( -; k) and H* ( -; k) . 

In §22 we constructed the dgc C*(L,dL) associated with a dgl, (L,dd. Here 
we dualize that construction to obtain a commutative differential graded algebra, 
C*(L, dL)' 

When L is a chain Lie algebra, C* (L, dL) is a cochain algebra, and so the full 
Sullivan machinery of Part II may be applied. In particular we can use chain 
Lie algebras (L, dL) to model topological spaces X by requiring that C* (L, dd 
be a model for APL (X). This is carried out in §24. 

This section is organized into the topics 

(a) The constructions C*(L, dL) and LCA,d)' 

(b) The homotopy Lie algebra and the Milnor-Moore spectral sequence. 

(c) Cohomology with coefficients. 

(a) The constructions C*(L,dd, and LCA,d)' 

Again, let (L, dL) be a dgl. Dual to the construction C*(L, dL) we define the 
differential graded algebra, C* (L, dd, by 

as described in §3(d). Thus multiplication and the differential are given by 

(f·g)(c) = (f0g)(D.c) and (df)(c)=-(-l)degfj(dc), j,g EC*(L,dL), 
c EC*(L,dL). 

(When the differential in L is clear from the context we may abuse notation and 
simply write C*(L) and C*(L), as in §22.) 

This is entirely analogous to the construction in §5 of the singular cochain 
algebra on a space· X as the dual of the singular chain coalgebra. However here 
we have the crucial fact that C*(L) is a commutative dga, because C*(L) is 
cocommutative. 

Suppose now that (L,dL) is a connected chain Lie algebra. Then C*(L) = 
AsL = Jk EB {Cd i >2' It follows that C*(L) is a cochain algebra and so the 
machinery of Sullivan models (Part II) can be applied. We shall see now that 
if L is a connected chain Lie algebra and if each Li is finite dimensional then 
C*(L) is, itself, a Sullivan algebra (§12). 

Indeed, the decomposition AsL = EB A k sL defines a surjection AsL -+ sL 
k 

(not compatible with the differential in AsL), which dualizes to an inclusion 

(sL)~ = Hom(sL,Jk)c---+C*(L) . 
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Since C* (L) is commutative this extends uniquely to a morphism of graded 
algebras 

(J : A(sL)~ -----t C*(L) . 

Lemma 23.1 If (L, d) is a connected chain Lie algebra and each Li is finite 
dimensional then 

(J: A(sL)'i. ~ C*(L) 

is an isomorphism of graded algebras, which exhibits C* (L) as a Sullivan algebra. 

proof: Let Yi = SXi be a basis for sL and let Vj be the dual basis for (sL)P : 
(Vj, Yi) = 8ij . If v E (sL)~ and 1> E V(sL)j then 

(v /\ 1>, YiI /\ ... /\ Yip +1 ) = (v Q9 1>, 6.(Yil /\ ... /\ Yi p +1 )) , and 
p+l 

C = '" (_l)degYi J deg<I>(v y.)(1) y' /\ .. . y' . ... /\ y' ). L 'z] ,21 Z] Zp+l 
j=l 

It follows that 

(where ki ::; 1 if IVi I is odd) and that V~' /\ ... /\ v~n evaluates all other monomials 
to zero. Since char lk = 0 this implies that (J is an isomorphism, because C* (L) 
is finite dimensional in each degree. 

Now (J identifies C* (L) as a cochain algebra of the form (AV, d) with V = 
{VP}P>2. Such a cochain algebra is always a Sullivan algebra. Indeed define 
V(O) C V(l) C ... by V(O) = V n kerd and V(k) = V n d- 1 (AV(k - 1)). Since 
(AV)3 = V 3 , d(V2) C V 3 and V2 C V(l) C UV(k). Suppose V:S n - 1 C UV(k). 

k k 
For v E vn, dv = w + 1> with w E V n+1 and 1> E AV:S n - 1 . Thus dw = -d1> E 

A (~V(k)) and so w E ~ V(k). But then also v E ~ V(k) and it follows that 

V = UV(k). 0 
k 

If V and Ware graded vector spaces of finite type then an isomorphism 
W ~ V~ defines a pairing ( ; ) : W x V -----t lk which in turn determines an 
isomorphism V ~ wt. In the case we say V and Ware dual graded vector 
spaces with pairing ( ; ). 

Proposition 23.2 Suppose (L, dL) is a connected chain Lie algebra of finite 
type and each Li is finite dimensional. Then 

(i) C*(L,dL) = (AV, d) and V and sL are dual graded vector spaces. 

(ii) d = do + d1 is the sum of its linear and quadratic parts (§ 12( a) and § 13(e)), 
and 
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(dov; sx) = (_l)deg v (v; SdLX) and (d1 v; SX 1\ sy) = (_l)degy+l (v; s[x, yJ) . 

Conversely, suppose (A V, d) is an arbitrary Sullivan algebra such that d = do + 
d1 and V = {VP} p>2 with each VP finite dimensional. Then a connected chain 
Lie algebra (L,dL)Zs determined uniquely by the condition (AV, d) = C*(L,dd. 

proof: The first assertion follows from Lemma 23.1 and the definition of the 
differential in C*(L,dL). For the second assertion let L be the desuspension of 
Hom(V, lk) and use the formulae above to define dL : L -+ Land [ , 1 : Lx L -+ 
L. The equation ~ = ° reduces to dr = 0, dod1 + d1 do = ° and d5 = 0. These 
translate respectively to: [ , 1 is a Lie bracket (§21(e)), dL is a Lie derivation 
and d'i = 0. D 

Finally suppose that (A, d) is a commutative cochain algebra in which A = 
lk EB A~2 and each Ai is finite dimensional. Let (C, de) = Hom(A, lk), recalling 
that de is the negative dual of d (§3(a)). Because A has finite type, the multi
plication in A dualizes to a comultiplication in C, which makes (C, de) into a 
cocommutative differential graded coalgebra with dual cochain algebra (A, d). 

Apply the functor £ of §22 to this dgc and, abusing notation, denote the result 
by £(A,d): 

£(A,d) = £(C, de) . 

Note that £(A,d) is a connected chain Lie algebra, finite dimensional in each 
degree. Thus the quasi-isomorphism r.p of Theorem 22.9 dualizes to a quasi
isomorphism of commutative cochain algebras 

C* (£(A,d)) ~ (A, d) , 

thereby exhibiting C* (£(A,d)) as a functorial Sullivan model of (A,d). 

Example 1 Graded Lie algebras. 
Suppose L = {Ldi~l is a graded Lie algebra and each Li is finite dimensional. 

Then Proposition 23.2 reduces to 

C*(L,O) = (AV,d1 ) 

in which sL and V are dual graded vector spaces and d1 is purely quadratic. 
Conversely, any commutative cochain algebra of the form (AV, dd with V = 
{VP} p>2' each VP finite dimensional and d1 purely quadratic determines a graded 
Lie algebra L by the requirement that (AV,dd = C*(L,O). 

Next notice that Propositions 22.3 and 22.4 identify C*(L;UL) as an exact 
sequence 

° f-- lk ?- U L ? sL @ U L ? A 2 sL @ U L ? ... 
of right UL-modules. In other words (cf. §20(a)) this is a free UL-resolution 
of the trivial U L-module, lk. On the other hand, it is immediate from the 
definitions that C*(L) = HomuL (C*(L;UL),lk), and so 

H (C*(L)) = Extudlk, lk) . D 
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Example 2 Free graded Lie algebras. 
Suppose E = {Eik::2 is a graded vector space of finite type and (H,O) is the 

commutative cochain algebra with zero differential defined by 

H = lk ffi E and E . E = 0 . 

The dual graded coalgebra has the form C = lk ffi C with Li = 0 : C -+ C @ C. 
Thus the differential in L(C,O) is zero (§22(e)). In other words, if W is the graded 
vector space defined by Wi = Hom (Ei+ 1, lk) then 

L(H,O) = L(C,O) = (lLw, 0) . 

Thus in this case dualizing Theorem 22.9 provides a co chain algebra quasi
isomorphism 

C* (lLw, 0) --=+ (H,O) , 

and C*(lLw, 0) is a minimal Sullivan algebra with purely quadratic differential. 
In other words, this is the minimal Sullivan model of (H,O), and so we recover 
the construction of Example 7, §12(d). 0 

Example 3 Minimal Lie models of minimal Sullivan algebras. 
Suppose (A W, d) is a minimal Sullivan algebra and that W = {Wi L>2 is 

a graded vector space of finite type. Let (lLv, 8) be a minimal Lie model of 
L(AW,d) (Theorem 22.13). Then by Proposition 22.5 the quasi-isomorphism a : 

(lLv, 8) --=+ L(AW,d) induces a quasi-isomorphism C*(a) which then dualizes to a 

quasi-isomorphism C*(a) : C* (lLv,8) ? C* (L(AW,d)). On the other hand, as 

remarked above, we have a quasi-isomorphism C* (L(AW,d)) --=+ (AW, d). 

This has a homotopy inverse (AW, d) --=+ C* (L(AW,d)) (Proposition 12.9), and 
the composite 

<p: (AW,d) --=+ C* (lLv,8) 

exhibits (AW, d) as a minimal model for C* (lLv, 8): if (lLv, 8) is a minimal Lie 
model for (AW, d) then (AW, d) is a minimal Sullivan model for C* (lLv, 8). 

Recall further that C* (lLv, 8) is itself a Sullivan algebra (AZ, d) with Z = 
Hom (slLv, lk). Thus dividing by A~2W and A~2 Z yields a commutative diagram 

where Q(<p) is the linear part of <p and is a quasi-isomorphism because <p is 
(Proposition 14.13). 

On the other hand, lLv = V ffi [lLv , lLv] and 1m 8 C [lLv, lLv]. Thus dividing by 
[lLv, lLv 1 is a surjective chain map TJ : (lLv, 8) -+ (V, 0). The quasi-isomorphism 
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C>o (lLv, 8) -=r sV of Proposition 22.8 converts the inclusion slLv -+ C* (lLv) 
into sry. Its dual therefore converts the dual of sry into the surjection A + Z -+ Z. 
Thus it identifies Hom (sH(ry), Jk) with the map (' in the diagram above, and we 
obtain the commutative diagram 

~ 

--- Hom(sV, Jk) 

I Hom('H(,).': 

W --"",--+-' Hom (sH (lLv ) , Jk) 

o 

Example 4 Sullivan algebras (AW, d) for which H2k(AW, d) = 0, 1 ~ k ~ n. 
Here we consider minimal Sullivan algebras (AW,d) such that W = {WiL>2 

is a graded vector space of finite type. The surjection (A +W, d) -+ (W,O) with 
kernel A22W induces a linear map ( = {(P: HP(AW) -+ WP}. We shall use 
Lie models to show that 

H2k(AW, d) = 0, 1 ~ k ~ n ===} (P is injective, p ~ 2n + 1 . 

In fact, let (lLv, 8) be a minimal Lie model for £(AW,d) (Theorem 22.13). 
Then (Example 3), H+(AW, d) ~ Hom(sV, Jk) as graded vector spaces. Thus 
V2k- 1 = 0, 1 ~ k ~ nand lLV<2n is concentrated in even degrees. For degree 
reasons the differential in lLV<2n- is then zero. 

Recall from Example 3 that ry : (lLv, 8) -+ (V, 0) is the surjection with kernel 
[lLv, lLv]. Since 8 vanishes in degrees ~ 2n, Hi(ry) is surjective for i ~ 2n. 
It follows that Hom (sH(ry), Jk) is injective in degrees p ~ 2n + 1. Example 3 
identifies this dual with (i i.e. (P is injective, p ~ 2n + 1. 0 

(b) The homotopy Lie algebra and the Milnor-Moore spectral se
quence. 

Consider an arbitrary minimal Sullivan algebra (AW, D) such that W = 
{WP} p22 and each WP is finite dimensional. Then D = Dl + D2 + . .. with 
Di : W -+ AHl W. Associated with (AW, D) is its homotopy Lie algebra E (as 
defined in §21(e)), and it is immediate from that definition that 

(AW,Dd = C*(E) 

(where E is regarded as a dgl with zero differential). Indeed, as observed in 
Proposition 23.2, this relation characterizes E. 

Next suppose (L, dL ) is a connected chain Lie algebra with each Li finite 
dimensional. Let 

m: (AW,D) -=r C*(L,dL) 

be a minimal Sullivan model and let E be the homotopy Lie algebra of (AW, D). 
As in Proposition 23.2, write C*(L, dd = (AV, do + dd with V dual to sL. Let 
Q(m) : W -+ V be the linear part of m (§12(b)). Then doQ(m) = O. 
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Proposition 23.3 With the hypotheses above, Q(m) induces an isomorphism 

W ~ H(V, do). Its desuspended dual is an isomorphism of graded Lie algebras, 

H(L) ~E. 

proof: Use Theorem 14.9 and Theorem 14.11 to extend m to an isomorphism 
of the form 

(iUV, D) ~ (A(U 8 JU), J) ~ (AV, do + dd 

with J: U ~ JU. It follows that Q(m) induces an isomorphism 

AH(Q(m)) : (AW, Dd ~ (AH(V, do), H(dd) . 

Now V is dual to sL and do is dual (up to sign and suspension) to dL. This 
identifies H(V, do) as the dual of sH(L) and (AH(V, do), H(d1 )) as C* (H(L), 0). 
Since (AW,Dd = C*(E,O), the 'desuspended' dual of H(Q(m)) is an isomor
phism from H(L) to the homotopy Lie algebra E. 0 

Remar k The effect of replacing C* (L) by (A W, D) is to get rid of the linear 
part do and to convert d1 to Dl = H(dd. However we 'pay' for this simplification 
through the addition of (possibly infinitely many) higher order terms D 2 , D 3 , ... 

in the sum D = L: D i . 

Finally, consider a general Sullivan algebra (A V, d) in which d = do + d1 + d2 + 
... , with di : V -+ Ai+l V. Filter (AV, d) by the decreasing sequence of ideals 

FP = (AV)+.··· .(AV)+ , p 2: 1 , 
'- ' 

P factors 

and set F O = A V. Then (independently of the choice of generating space V) 
FP = A 2:PV, and so this is called the word length filtration. It determines a first 
quadrant spectral sequence (Ei, di ): the Milnor-Moore spectral sequence of the 
Sullivan algebra. Any morphism cp : (A V, d) -+ (A V' ,d') of Sullivan algebras is 
automatically filtration preserving and so induces a morphism Ei (cp) of Milnor
Moore spectral sequences. It is immediate from the definition that 

(Eo, do) = (AV, do) and Eo(cp) = AQ(cp) 

where Q(cp) : V -+ 1/' is the linear part of cp (§12(b)). 
~ext, let 

m: (AW,D) ---=+ (AV,d) 

be a minimal Sullivan model (Theorem 14.12) and suppose W = {WP} and has 
finite type. It follows from Theorem 14.9 and Theorem 14.11 that m extends to 
an isomorphism 

(AW, D) ® (A(U ED JU), J) ~ (A V, d) 
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with b : U ~ bU. Since this isomorphism and its inverse preserve wordlength 
filtrations it induces an isomorphism of Milnor-Moore spectral sequences. In 
particular, if E is the homotopy Lie algebra for (AW, D) then 

(AW, 0) Q9 (A(U EEl bU), b) 

(AW, Dd = C*(E) . 

Thus the Milnor-Moore spectral sequence converges from 

E2 = ExtUE(lk, lk) ===} H(AW, D) . 

Example 1 C*(L, dL). 

and 

Let L be a connected chain Lie algebra with each Li finite dimensional. Then 
the homotopy Lie algebra of C* (L, dL) is just H(L) (Proposition 23.3) and so 
the Milnor-Moore spectral sequence for C*(L,dL ) converges from 

o 

Example 2 Topological spaces X. 
Suppose (AW, D) is the minimal Sullivan model for a simply connected topo

logical space X with rational homology of finite type. Then H(AW, D) ~ 
H* (X; lk), H * (nX; lk) ~ U Lx and Lx is isomorphic to the homotopy Lie alge
bra of (AW, D). (This follows, respectively, from Corollary 10.10, Theorem 21.5 
and Proposition 21.6.) 

Thus the Milnor-Moore spectral sequence for a minimal Sullivam model of X 
converges from 

E2 = ExtH.(OX;Ik)(lk,lk) ===} H*(X;lk) . 

o 

(c) Cohomology with coefficients. 
Suppose given a graded Lie algebra L and a right L-module M; i.e., M is a 

right U L-module. We say this defines a right representation of L in M. Denote 
the action of x E L on z E M by z . x. Since (d. §3( d) and Propositions 22.4 
and 22.6) C*(L;UL) is a C*(L)-comodule and a right UL-module and these 
structures are compatible, 

C*(L; M) = HomuL (C*(L; U L), M) 

is a C*(L)-module. Since C*(L; UL) is a UL-projective resolution of lk (Exam
ple 1, §23(a)) we may identify 

H (C*(L; M)) = Extudlk, M) . (23.4) 
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The cohomology of this complex is called the Lie algebra cohomology of L with 
coefficients in M. 

Now suppose that L = {Ld i>l and that each Li is finite dimensional. Then 
each Ck(L) is finite dimensional. Suppose further that M = {Mi};>p some 
p E Z and use the convention Mi = M-i to write M = {Mi};::;_p. -Thus if 
0: : C.(L) -----+ M is a linear map, it will vanish on C>-lo:l-p. It follows that 
there are natural isomorphisms of graded vector spaces 

C*(L; M) HomuL (C*(L) 0 UL, M) 

Hom (C.(L), M) 

Hom (C.(L), Jk) 0 M 

C'(L) 0 M . 

Write C'(L) = (AV,d), where V is dual to sL and 

(dv;sxAsy) = (_l)degY+l(v;s[x,y]) 

(23.5) 

(Example 1, §23(a)). Then (23.5) identifies C*(L; M) as the (AV, d)-module 
given by 

C*(L;M) = (AV0M,d) 

with the (A V, d)-module structure simply multiplication on the left. Thus the 
differential is determined by its restriction d : M -----+ V 0 M. If we identify 
V0M = Hom(sL,M) via (v 0 z;sx) = (_1)deg z(deg x+1)(v;sx)z then this 
restriction is given by 

(dz;sx) = (_l)deg z+deg xz . x , Z E M, x E L, (23.6) 

as follows immediately from the definition of the differential in C. (L; -) at the 
end of §22(b). 

Conversely suppose given a (A V, d)-module of the form (AV 0 N, d) in which 
d: N -----+ V 0 N. Then (23.6) defines a bilinear map N x L -----+ N and it follows 
easily from the equation d2 = 0 that this is a right representation of L in N. By 
construction, if N = {Ni};>p then 

(AV 0 N, d) = C'(L; N) . 

Exercises 

1. Let M be a L-module and assume that Land M are graded vector spaces of 
finite type. Prove that the graded dual M# is also an L-module and that there 
exists a quasi-isomorphism (C*(L; M))# ~ C'(L; M#). 

2. Let L = L1 ffi L2 be the direct sum of two differential graded Lie algebras. 
Prove that C*(L) = C*(Ld 0 C'(L2). 
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3. Let (JL(V), d) be a free differential graded Lie algebra. Denote by (JL(V'), d) 
and (JL(V"), d) two copies of (JL(V) , d). Prove that there is a quasi-isomorphism 
'P : (JL(V' EB V" EB sV), D) -+ (JL(V), d) with 'P(v') = 'P(v") = v for any v E V, 
D(sv) - v' + v" E JL2: 2 (V' EB V" EB sV), and 'P(sV) = O. 

4. Two morphisms of differential graded Lie algebras j, 9 : (JL(V), d) -+ (L, d) 
are homotopic, j ~ g, if there is a morphism of differential graded Lie algebras 
F: (JL(V' EB V" EB sV),D) -+ (L,d) satisfying F(v') = j(v) and F(v") = g(v). 
Prove that the homotopy relation is an equivalence relation. 

5. Prove that two morphisms of differential graded Lie algebras j, 9 : (JL(V), d) -+ 
(L, d) are homotopic in the sense of exercise 4 if and only if they are equivalent 
in the sense of §22, exercise 2. 

6. Assume j ~ 9 : (JL(V), d) -+ (L, d). Prove that C*(f) ~ C*(g). 

7. Consider the diagram of differential graded Lie algebras 

(JL(V), d) 

where V = {Vi} ;>0 and dim Vi < 00. Prove that if 'P is a quasi-isomorphism 
then there exists a: morphism B : (JL(V), d) -+ (Ll' dd such that 'PB ~ 1jJ. 

8. Let h : (JL(V), d) -+ (JL(W), d), and j, 9 : (JL(W) , d) -+ (L, d) be morphisms 
of differential graded Lie algebras. Assume that h is a quasi-isomorphism and 
that jh ~ gh. Prove that j ~ g. 

9. Let j, 9 : (/\ V, d) -+ (A, dA ) be morphisms of commutative differential graded 
algebras. Suppose that j ~ g. Prove that £(f) ~ £(g). 

10. Let L be a finite dimensional graded Lie algebra concentrated in even 
degrees. Prove that there exists an integer n such that dimHnC*(L,Ik) = 1 
and dimHkC*(L,Ik) = 0, k > n. 



24 Lie models for topological spaces and CW 
complexes 

The ground ring in this section is a field 1k of characteristic zero. 
The fundamental bridge from topological to algebra used in this book is Sul

livan's functor 

topological spaces 
Apd~) 
----t> commutative cochain algebras, 

constructed in §1O. Thus an algebraic object is a model for a topological space 
X if it is associated with the cochain algebra ApL(X). 

For example (§12) a Sullivan model for X is, by definition, a Sullivan algebra 
(AVx, d) together with a quasi-isomorphism 

m: (AVx,d) ~ APL(X) . 

Analogously, we make the 

Definition Let X be a simply connected topological space with rational ho
mology of finite type. A Lie model for X is a connected chain Lie algebra (L, dL ) 

of finite type equipped with a dga quasi-isomorphism 

If L = ILy is a free graded Lie algebra we say (L, dL ) is a free Lie model for x. 
If n : C*(E, dE) ~ APL(Y) is a Lie model for a second topological space Y 

then a Lie representative for a continuous map f : X --+ Y is a dgl morphism 

c.p: (L,dL ) --+ (E,dE ) 

such that mC*(c.p) ~ APL(f)n (as defined at the start of §12). 

Example 1 The free Lie model of a sphere. 
In the tensor algebra T (v) on a single generator, v, the free Lie subalgebra 

lL( v) is given by 

lL(v) = { 
1kv if deg v = 2n 

1kv 81k[v, v] if deg v = 2n + l. 

Thus the cochain algebra C* (lL( v)) is given, respectively, by 

* { (A(e),O) 
C (lL(v)) = (A(e,e'), de' = e2) 

, dege = 2n + 1 

, deg e = 2n + 2 . 

The reader will recognize these as the minimal Sullivan models for spheres 
constructed in Example 1, §12(a). In other words, we have for all n > 1 a 
quasi-isomorphism 
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which exhibits (!L( v), 0) as a minimal free Lie model for sn+l. o 

As with Sullivan models we often abuse language and refer simply to (L, dd 
as a Lie model for X. Lie models provide a description of rational homotopy 
theory that is different from but equivalent to that provided by Sullivan models. 
In particular, if we restrict to simply connected topological spaces with rational 
homology of finite type then 

• Every space X has a minimal free Lie model, unique up to isomorphism, 
and every continuous map has a Lie representative. 

• Every connected chain Lie algebra, (L, dL ) of finite type, and defined over 
Q, is the Lie model of a simply connected CW complex, unique up to ra
tional homotopy equivalence. 

If (L, dL) is a Lie model for X then there is a natural isomorphism H(L) ~ 
7I"*(nX) I8iz lk of graded Lie algebras (§24(b)), which is in a certain sense 'dual' 

to the isomorphism H(AVx) ~ H*(X;lk) in the context of Sullivan algebras. 
The first isomorphism suspends to an isomorphism 

sH(L) ~ 7I"*(X) I8i lk , 

which (up to sign) converts the bracket in H(L) to the Whitehead product in 
7l" * (X) I8i lk. 

Finally, given any free rational chain Lie algebra (!Lv, d) (connected of finite 
type) we shall in (d) below, construct a CW complex X for which (!Lv, d) is a 
Lie model. Here 

• For each n :2 2, the n~cells D~ of X correspond to a basis {va} of Vn~l. 

• The sub dgl (!LV<n ,d) is a Lie model for the n~skeleton X n . 

• The homology classes [dva ] E H (!LV<n_l) correspond to the homotopy 
classes [fa] E 7l"n~l (Xn~l) I8i lk of the attaching maps fa : S~-l ---+ X n- 1 • 

In this case (!Lv, d) will be called a cellular Lie model for X. 
Throughout this section we shall use the properties of Sullivan algebras (§12, 

§14), often without explicit reference. For example, suppose (L, dd is a Lie 
model for a space X and (E, dE) is a connected chain Lie algebra of finite type 
joined to (L, dL) by a sequence of dgl quasi-isomorphisms. Then the Sullivan 
algebras C*(L, dd and C*(E, dE) are joined by quasi-isomorphisms of commu
tative dga's and hence suitable application of 'lifting up to homotopy' exhibits 
(E,dE) as a Lie model for X. 

Similarly, suppose (A, dA) is a commutative model for X with AO = lk, Al = 0 
and each Ai of finite dimension. Then the dga quasi-isomorphism C* £(A,dA) --=+ 
(A, dA ) lifts to a dga quasi-isomorphism C* £(A,dA) --=+ APL(X), which exhibits 
£(A,dA) as a Lie model for X. 

This section is organized into the following topics 
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(a) Free Lie models of topological spaces. 

(b) Homotopy and homology in a Lie model. 

(c) Suspensions and wedges of spheres. 

(d) Lie models for adjunction spaces. 

(e) CW complexes and chain Lie algebras. 

(f) Examples. 

(g) Lie model of a homotopy fibre. 

(a) Free Lie models of topological spaces. 
Let X and Y be simply connected topological spaces with rational homology 

of finite type. The next proposition establishes the first two bullets in the in
troduction to this section. Notice however that the 'existence of a CW complex 
modelled by a chain Lie algebra', but not the uniqueness is established directly 
in §24(d). 

Proposition 24.1 

(i) The space X has a minimal free Lie model (lLv, d), unique up to isomor
phism, and any continuous map f : X -t Y has a Lie representative. 

(ii) If J;; = Q, any connected chain Lie algebra (L, dL) of finite type is the Lie 
model of a simply connected CW complex, unique up to rational homotopy 
equivalence. 

proof: (i) The construction in §12(a) provides minimal Sullivan models mx : 
(AVx,d) --=+ APL(X) with Vx = {V;} >2 and each V; finite dimensional, 

p-

and my : (AVy,d) --=+ APL(Y) with the same properties. Apply the Quillen 
construction (§23(b)) to obtain natural quasi-isomorphisms 

TX : C* (L(AVx,d)) --=+ (AVx, d) an Ty: C* (L(AVy,d)) --=+ (AVy,d) . 

Composed with mx, this exhibits L(AVx,d) and L(AVy,d) as free Lie models of 
X and Y. Next, let 'lj;: (AVy,d) -t (AVx,d) be a Sullivan representative for f· 
Then 'lj;Ty = TxC*(L.p), which exhibits L.p as a Lie representative for f· 

Finally, the argument in the proof of Theorem 22.13 now provides a surjective 
dgl quasi-isomorphism f2 : L(AVx ,d) -t (lLv, d) onto a minimal free Lie chain 
algebra, which is connected of finite type because L(AVx ,d) is. This exhibits 
(lLv ,d) as a minimal free model for X. 
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For uniqueness, suppose m' : C*(lLw,d) ~ ApdX) is an arbitrary minimal 
free Lie model. Lift the quasi-isomorphism C*(lLv, d) --7 ApdX) (up to homo
topy) through m' to a quasi-isomorphism C* (lLv ,d) --7 C* (lLw , d). This yields 
a chain of dgl quasi-isomorphisms 

(lLw ,d) ~ LC> (lLw ,d) --7 LC> (lLv ,d) --7 (lLv, d) . 

Use Proposition 22.11 to invert the first, and Proposition 22.14 to conclude that 
the resulting quasi-isomorphism (lLw, d) --7 (lLv, d) is an isomorphism. The 
same argument constructs a dgl morphism between minimal free Lie models 
that is a Lie representative for f. 

(ii) Apply Theorem 17.10 to obtain 

mC*(L,dLl : C*(L, dd ~ ApL (IC*(L, dd!) , 

thereby exhibiting (L,dd as a Lie model for IC*(L,ddl. If C*(L,dd is a Sul
livan model for a second simply connected CW complex X then Theorem 17.12 
identifies IC* (L, dd I as a rationalization of X. 0 

(b) Homotopy and homology in a Lie model. 
Fix a simply connected topological space X with rational homology of fi

nite type, choose a Lie model (L, dd for X, and choose a minimal Sullivan 
model (AVx, d) for C* (L, dL). We then have specified cochain algebra quasi
isomorphisms 

(AVx,d) ~ C*(L,dL) ~ APL(X) 
m q 

whose composite is a minimal Sullivan model for X. 
Now the homotopy Lie algebra Lx is just 7r*(nX) ® l;; with a certain Lie 

bracket, and in Theorem 21.6 we showed that it was naturally isomorphic to 
the homotopy Lie algebra of the minimal Sullivan model (A V x, d). Further, in 
Proposition 23.3 we used the quasi-isomorphism m to identify this homotopy 
Lie algebra with H(L, dd. Together these provide an isomorphism of graded 
Lie algebras, 

(24.2) 

As in §21(e) we identify 7r*(X)®l;; as the suspension of7!·*(nX)®l;; by writing 
so: = _(_l)deg ao;lo:, 0: E 7r*(nX) ® l;;, where 0* is the connecting homomor
phism for the path space fibration. Then (JL suspends to an isomorphism 

TL : sH(L) ~ 7r*(X) ® l;; . 

Now the Lie bracket in 7r*(nX) ® l;;, as defined in §21(d), is given by 

[o:,,8l = (_l)dega+lo* [o;lo:,a;l,8]w ,0:,,8 E 7r.(nX) , 

where [ , lw denotes the Whitehead product. Since (JL is an isomorphism of Lie 
algebras we deduce that 

TLS[o:,,8l = (_l)deg a [TLSo:,TLs,8lw ,0:,,8 E H(L) . 
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Next we observe that a free Lie model (lL., , d) for X also encodes the homol

ogy of X. Indeed the morphism G'(ILv,d) ~ ApL(X) induces a cohomology 

isomorphism, which dualizes to an isomorphism H (c. (ILv , d)) /!!- H. (X; lk). 
Let d : sV ---7 sV be the suspension of the linear part dv : V ---7 V of 
the differential d in ILv. Then Proposition 22.8 provides a quasi-isomorphism 
G. (ILv ,d) ~ (s V 9 lk, d). Altogether then we obtain an isomorphism 

sH(V, dv) EB lk ==' H.(X; lk) . (24.3) 

In particular, if (ILv ,d) is minimal then H. (X; lk) ==' s V EB lk. 
Finally, [lLv, ILv 1 is the ideal in ILv of elements of bracket length at least two. 

Thus ILv = V EB [ILv , ILv 1 and [lLv, ILv 1 is preserved by d, so division by [ILv, lLv 1 
is a surjective linear map 7) : (ILv, d) ---7 (V, dv). As in Example 3, §23(a), we 
have 

Proposition 24.4 With the hypotheses above the diagram 

sH(lLv , d) 

,U(,l j 
sH(V, dv) 

__ T=-L __ • 'if. (X) 0 lk 
=" 

j ''"'' 
----. H+(X; lk) 

-

commutes, and identifies sH(7)) with the Hurewicz homomorphism hurx. 

proof: The quasi-isomorphism G.(ILv) ---7 sV ffilk of Proposition 22.8 converts 
the inclusion s(ILv, d) ---7 G. (lLv ) into S7). Thus we have to show that 

sH(ILv,d) =" 
---- 'if. (X) 0lk 

j j''"'' 
"" 

---- H.(X; lk) 

commutes. But this is precisely the dual of the commutative diagram at the end 
of §13(c). 0 

(c) Suspensions and wedges of spheres. 
In this topic lk = iQ. \Ve show that a suspension is, rationally, a wedge of 

spheres. More precisely, we establish the 

Theorem 24.5 The following conditions on a simply connected topological 
space X are equivalent 

(i) The rational Hurewicz homomorphism hur x: 'if. (X) 0 iQ ---7 H + (X; iQ) is 
surjective. 
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(ii) There is a rational homotopy equivalence of the form V sn" -+ X (each 
aEL 

nO. 2:: 2). 

(iii) There is a well based, path connected space Y and a rational homotopy 
equivalence of the form :EY -+ x. 

(iv) The rational homotopy Lie algebra Lx is a free graded Lie algebra. 

Before proving the theorem we consider the special case that X = V sn" with 
aEL 

each nO. 2:: 2, and let ia : sn" -+ X be the inclusion. The classes rial E 1fn" (X) 
are mapped by hur x to a basis of H + (X; Q). Hence they are linearly indepen
dent and are mapped by the connecting homomorphism to linearly independent 
elements Wa in 1f * (OX) @z Q = Lx. Let W be the linear span of the Wa. 

Proposition 24.6 With the hypotheses and notation immediately above 

(i) ker hurx = s [Lx, Lx]. 

(ii) The inclusion of W extends to an isomorphism lLw ~ Lx. 

proof: (i) It is clearly sufficient to prove this for a finite wedge of spheres. But 
then H*(X; Q) has finite type and X is a suspension. Thus (Proposition 13.9) X 
has a commutative model of the form J;;ff)H with zero differential and H· H = O. 
Now elk (JJH is a Lie model for X and clearly has the form elk (JJH = (lLv, 0). In 
particular, Lx = H(lLv) = lLv. Moreover, Proposition 24.4 identifies hurx with 
the surjection s'TJ : slLv -+ s V, whose kernel is precisely s [lLv , lLv]. 

(ii) It follows from (i) that Lx = W ff) [Lx, Lx]. Since Lx is free 

Proposition 21.4 states precisely that lLw ~ Lx. o 

proof of Theorem 24.5: If (i) holds then we can choose based continuous 
maps fa: sn" -+ X so that the homology classes H * (fa) [sn,,] are a basis 
of H+(X; Q). Thus the map f : Vasn" -+ X defined by the fa induces an 
isomorphism of rational homology. Hence f is a rational homotopy equivalence 
(Theorem 8.6) and (i) ===> (ii). 

Clearly (ii) ===> (iii). Suppose (iii) holds. Use the Cellular models theorem 1.4 
to reduce to the case Y is a CW complex with a single O-cell. Moreover, since 
LEY ~ Lx we may take X = :EY. 

Now for any finite sub complex Z c Y we know from Proposition 13.9 that ~Z 
has a commutative model of the form lkffiH with zero differential and H • H = o. 
Hence elk ffJH is a Lie model for :EZ and clearly this has the form (lLw, 0). Thus 
Lz ~ H(lLw) = lLw. 

Choose now a graded subspace V C Lx so that V ffi [Lx, Lx] = Lx and 
extend the inclusion of V to a surjection u : lLv -+ Lx (Proposition 21.4). Let 
a E keru. Then a E lLw for some finite dimensional subspace We V. Moreover 
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by choosing a sufficiently large finite sub complex Z C Y we can arrange that 
W C Lr.z and that the morphism lLw -t Lr.z sends 0: to zero. But clearly 
W n [LEZ, LEzl = O. Thus, since Lr.z is free, Proposition 21.4 implies that 
lLw -t Lr.z is injective. Hence 0: = 0, and (J' is an isomorphism. It follows that 
Lx is free; i.e., (iii) =* (iv). 

It remains to show that (iv) =* (i). We show (iv) =* (ii), observing that 
(i) is a trivial consequence of (ii). If Lx = lLv choose based continuous maps 
fa : sna -t X such that the homotopy classes [fal E Tina (X) are mapped by 
the connecting homomorphism a. to a basis Va of V C Lx (= TI.(OX) ® «:)l). 
The fa define a continuous map f : Va sna -t x. 

On the other hand, write S = Vasna and let ia : sna -t S be the inclusion. 
Then by Proposition 24.6, the elements Wa = a.[ia ] are the basis for a subspace 
W C Ls such that Ls = lLw. Since TI. (Of) : Wa f---t Va: it follows that TI. (Of) ® 
«:)l is an isomorphism and f is a rational homotopy equivalence. 0 

Example (Baues [19]) If H+(X; «:)l) is concentrated in odd degrees then X has 
the rational homotopy type of a wedge of spheres. 

Here we consider simply connected spaces X with rational homotopy type of 
finite type. Let (lLv , a) be a rational minimal Lie model for X (Proposition 24.1) 
then a restricts to zero in V and so sV ~ H+(X; «:)l), by (24.3). Since H+(X; «:)l) 
is concentrated in odd degrees, V = Veven and thus lLv is concentrated in even 
degrees too. For degree reasons, then, the differential in lLv is zero. Now the Lie 
algebra isomorphism (24.2) shows that TI. (OX) ® «:)l is a free graded Lie algebra, 
and the conclusion follows from Theorem 24.5. 0 

(d) Lie models for adjunction spaces. 
Consider an adjunction space 

where: 

(i) X is simply connected with rational homology of finite type, 

(iii) the cells Dna+! are all of dimension ~ 2, with finitely many in any given 
dimension. 

Suppose that 
m: G'(lLv, d) -t APL(X) 

is a free Lie model for X. We shall construct a free Lie model for Y. In fact, in 
§24(b) we constructed the isomorphism 

TL : sH(lLv) ~ TI.(X) ® lk 
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Thus the classes [fal E 1Tn,,(X) determine classes s[zal = r-1[fal E sH(lLv) 
represented by cycles Za E lLv. Let W be a graded vector space with basis {wa} 
and deg Wa = na' Then we can extend lLv to a chain Lie algebra lLv@w = 
lL(V EB W) by defining dWa = Za' 

Theorem 24.7 The chain Lie algebra (lLv@w, d) is a Lie model fo,(, Y. 

proof: Decompose C* (lLv ,d) as the tensor product of a minimal Sullivan al
gebra (AVx, d) and a contractible Sullivan algebra. This exhibits (AVx, d) as a 
minimal Sullivan model for X. Let U be a graded vector space with basis {ua } 

and deg U a = na + 1. Then it is shown in Proposition 13.12 that a commutative 
model A = (AVx EB U,dA) for Y is given by setting: 

• AVx is a sub algebra. 

• U· A+ = 0, and dA(U) = 0. 

• dAV = dv + L.:(v; [fa])ua , v E V:y , 
a 

where we have already identified 1T*(X) ® Jk with Hom(Vx,Jk) as in Theo
rem 15.11. (In fact, the proof in 13.12 is for a single cell, so that there U = Jku, 
but the argument in the general case is identical.) 

We proceed now in four steps. 

Step {i}: Description of LA. 
Let (C,dc) be the dgc dual to (AVx, d), so that L(AVx,d) = (lL(s-lC),oe). 

Denote Hom(U, J;;) by U*, with dual basis u~ given by (u{3, u~) = 6{3a. Then the 
graded coalgebra dual to A is just C EB U*, and the elements of U* are primitive: 
Liu~ = 0. The differential, 6, in Hom(A, Jk) reduces to de in C and satisfies 
6u~ = (-1 )deg U o ca , where Ca E C is the primitive cycle given by 

(v,Ca) = (v; [fa]) and (A?:2VX ,Ca) = ° . 
Thus LA = (lL(S-l C EB S-lU*), OA) with OA restricting to oe in lL (S-lC) and 
OAS-1U~ = (_l)degcos-lca' 

Step {ii}: Identification of the Za' 
The cycles Ca E C = Hom(AVx, Jk) restrict to the linear functions ca E 

Hom(Vx,J;;) which we have identified with [fal E 1Tno(X) @lk. On the other 
hand, the decomposition of C* (lLv, d) as (AVx, d) ® E, with E contractible, 
defines a surjective dga quasi-isomorphism 

(J : C* (lLv ,d) -=+ (A V x , d) 

which is left inverse to the inclusion. The linear part, (Jo, of (J therefore dualizes 
to an inclusion, 

Wo: (Hom(Vx, Jk),O) ---t s(lLv,d) , 
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and H(wo) is inverse to the isomorphism T. Thus T-1[fal = H(wo)(ca) = [wocal 
and we may take 

-1 -Za = S WOCa · 

Step (iii): The dgl quasi-isomorphism LA --=+ (lL(V EB W), d). 
The quasi-isomorphism () of Step (ii) dualizes to a dgc quasi-isomorphism 

w : (C, dc) ---+ C (lLv, d) and hence defines the dgl quasi-isomorphism 

L(W) ~ 
~ : L(C, de) ~ L (C*(lLv )) 7 (lLv, d) , 

- -

where ¢ is the quasi-isomorphism of Theorem 22.9. Moreover L(C, de) 
lL(S-l C) and ~(s-lca) = s-lwoca = Za, as follows from the definition of ¢. 

Extend ~ to a morphism of graded Lie algebras 

~A : lL (s-lC EB S-lU*) ---+ lL(V EB W) 

by requiring ~S-lU~ = (-l)deg c"wa . By Step (i), ~A is a dgl morphism from 
LA to (lL(V EB W), d), as defined before the statement of the theorem. Since 
~ is a quasi-isomorphism, so is its linear part: S-lC ---+ V, as we showed in 
Proposition 22.12. By construction, the linear part of ~A sends S-lU* isomor
phically to W. Hence the linear part of ~A is a quasi-isomorphism, and a sec
ond application of Proposition 22.12 establishes ~A as a dgl quasi-isomorphism, 
~A: LA --=+ (lL(V EB W),d). 

Step (iv): (lL(V EB W), d) is a Lie model for Y. 
Since (A, dA) is a commutative model for Y the quasi-isomorphism C*(LA) --=+ 

(A, d) identifies C* (LA) as a Sullivan model for Y and (LA, d) as a Lie model 
for Y. Since (LA, d) ::::: (lL(V EB W), d) the latter is a Lie model for Y as well. 0 

Remark In the setup at the start of §24(d) let 

j:X---+Y 

denote the inclusion. It follows from the Remark after Proposition 13.12 that 
the surjection (A, dA ) ---+ (AVx, d) is connected by a chain of commutative dga 
quasi-isomorphisms to ApL(j). A tedious chase through the proof of Theo
rem 24.7 will therefore establish a homotopy commutative diagram 

C* (lLv) • c· (A) 

mj 

where the left hand vertical arrow is the model with which we started and >.. : 
(lLv, d) ---+ (lLv EBW, d) is the inclusion. 
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(e) CW complexes and chain Lie algebras. 
Suppose X is a connected CW complex with no I-cells and finitely many cells 

in each dimension. Then we can use Theorem 24.7 to construct a Lie model 
(Lv, d) for X such that: each (Lv<n ,d) is a Lie model for X n, a basis {va} of Vn 
corresponds to the (n + I)-cells D~+l of X, and s[dval E sH(Lv<n) corresponds 
to the class [fal of the attaching map fa : s~ ---7 Xn under the isomorphism 

TL : sH (Lv<n) ~ 1T.(DXn ) 0 Q of §24(b). 
We say that (Lv, d) is a cellular Lie model for X. 
Conversely, let (Lv, d) be a connected free chain Lie algebra of finite type 

defined over Q. Then we can use Theorem 24.7 to construct a CW complex X 
for which (Lv, d) is a cellular Lie model. 

Indeed, suppose the n-skeleton, Xn is constructed and (LV<n_l ,d) is identified 
as a Lie model for X n . Then the isomorphism TL identifies -

Choose a basis {Va} of Vn so the classes s[dval correspond to elements in 1Tn(Xn); 
i.e. are represented by continuous maps fa : sn ---7 X n, and set 

N ow Theorem 24.7 identifies (Lv < n ,d) as a Lie model for X n+l' 
This provides an inductive construction of X. By the Remark following The

orem 24.7 there is a homotopy commutative diagram of commutative dga's, 

... --- C' (Lv<n ,d) • C'(A) C' (Lv:<;n ,d) --- ... 

~! !~ 
--- ApL(Xn) -+.--- APL(Xn+d -- ... 

Since C' (Lv, d) ---7 C' (Lv:<; n ,d) is an isomorphism in degrees ~ n + 1, it is 

straightforward to construct a quasi-isomorphism C' (Lv, d) ~ ApL(X). Thus 
(Lv, d) is a cellular model for X. 

(f) Examples. 

Example 1 (Lv, 0) is the minimal Lie model of a wedge of spheres. 
In fact Theorem 24.7 asserts that for any V = {ViL>l of finite type with basis 

{Va}, (Lv, 0) is a Lie model of the space X = Vasna~l = pt Uf ( I] Dna+l), 

degva = na. Note that this also follows from §24(c). 0 

Example 2 The free product of Lie models is a Lie model for a wedge, VaXa. 
Suppose Xa are simply connected spaces and X = VaXa has rational homol

ogy of finite type. Let (Lv (a), da ) be a Lie model for Xa. 
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Recall the free product defined in §21(c) and note that U (LV(a),da ) is 
a 

the free dgl (L~v(a),d), in which d restricts to da in each V(a). Simplify 

the notation (Lv (a), da ) to (La, da ). Then C*(La, da ) is a Sullivan model for 
Xa· Now the Example of §12(c) exhibits the fibre product IT (C*(La, da)) as 

aIk 
a commutative model for X. On the other hand the inclusions (La, da ) --+ 
U (La, da ) induce a dga morphism 
a 

We show that this is a quasi-isomorphism, thereby exhibiting U (La, da ) as a 

Lie model for VaXa. 
To see that this is a quasi-isomorphism note that it is the dual of the horizontal 

arrow in 

1k EB scEB V(a)) 

in which the slant arrows are the quasi-isomorphisms of Proposition 22.8. 
Finally, observe that the homology of a free product is the free product of the 

homologies, so that 

Example 3 The direct sum of Lie models is a Lie model of the product. 
Again let (La, da ) be Lie models for simply connected spaces Xa such that 

X = IT Xa has rational homology of finite type. Then only finitely many Xa 
a 

will have rational homology degrees less than any given n and so we may suppose 
only finitely many La have elements in degrees::; n. It follows that 
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which exhibits E9(La ,da ) as a Lie model for X (Example 2, §12(a)). 0 
a 

Example 4 A Lie model for S~ V Sl U[a,[a,/3]w]w D8. 

Let a, /3 E 7I"3(S~ V S~) be the elements represented by S~ and Sl respectively. 
Then (cf. Example 1) a Lie model for S~ V Sl is just (JL(v, w), 0) with degv = 
deg w = 2 and v, w corresponding to a, /3. Moreover, the isomorphism 71"* (S~ V 
Sl) @Q ~ sJL(v, w) identifies [a, [a, /3lw lw with s [v, [v, wl]' as is shown in §24(b). 
Hence by Theorem 24.7, 

(JL(v,w,u),du = [v[v,w]]) is a Lie model for S~ V Sl U[a,[a,/3]w]w D8. 

o 

Example 5 Lie models for CPOO and cpn. 
The space Cpoo is a K(Z, 2) and so its minimal Sullivan model is A = (A(a), 0) 

with dega = 2 - d. §15(b), Example 2. Thus LA is a Lie model for Cpoo. 
This Lie model has the form JL(VI' V2, V3,"') with Vi the desuspended dual of 
ai . (Thus degvi = 2i - 1). In the coalgebra C dual to A let Ci be the element 
dual to a i . Then 3.ck = L: Ci @Cj. Thus the formula in §22(e) shows that the 

i+j=k 

differential in LA is given by 

Since H(LA' d) ~ 71"* (CpOO) @ Q it follows that 

Hn(LA' d) = . { Q ,n = 2 

o ,otherwIse, 

a fact that may not be immediately obvious from the formula for d. 
Notice that the construction of a CW-complex for this Lie model (§24(e)) has 

one cell in each even degree 2n and no cells of odd degree. The 2n-skeleton has 
the rational homotopy type of cpn , with Lie model L (VI, ... , vn) and the same 
differential. 

In this model L: [Vi, Vjl is a cycle whose suspended homology class in 
i+j=n+I 

7I"2nH (cpn) @ Q is not a Whitehead product. 0 

Example 6 A Lie model for (CP2 V S3) U[a,i3]w D8. 

As we saw in Example 5, a Lie model for CP2 is just (JL( VI , V2), d) with dV2 = 
HVI, vIl· Thus [VI, V2] is a cycle and the homology class of S[VI, V2] corresponds 
to a class a E 7I"S(Cp2) @ Q. Let /3 E 71"3(53 ) be the fundamental class. Then as 
in Example 4, Theorem 24.7 shows that 
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D 

Example 7 Coformal spaces. 
A simply connected topological space X with rational homology of finite type 

is called coformal (sometimes 7r-formal in the literature) if it has a Lie model 
(L,O) with zero differential. In this case L is the homotopy Lie algebra Lx 
(§21(d), (e)); i.e., the rational homotopy type of X can be formally deduced from 
its homotopy Lie algebra. (Note the parallel with formal spaces as defined in 
§12(c).) 

If X is coformal with Lie model (L,O) then C*(L, 0) is a Sullivan model for X 
of the form (AVx,dd with d1 : Vx --+ A2Vx. Conversely any Sullivan model of 
this form can be written as C* (L, 0) - cf. §23(a): X is coformal if and only if 
it has a 'purely quadratic' minimal Sullivan model. 

Finally, recall from Example 1 in §23(a) that H(C*(L,O)) = ExtudJk,Jk). 
But ULx ~ H*(nX;Jk), as we saw in Theorem 21.5. Thus 

X coformal =:::} H*(X; Jk) = ExtH.(rlX;k)(Jk, Jk). D 

Example 8 Minimal free chain Lie algebras. 
Suppose (lLv, d) is a minimal connected free chain Lie algebra of finite type, 

defined over Q and let X be a CW complex for which (lLv, d) is a cellular Lie 
model (§24(e)). Then 

• sV EB Q ~ H*(X; Q), by the last comment in §24(b) . 

• A basis of V is in 1-1 correspondence with the cells of positive dimension 
of X, which also form a basis of the reduced cellular chain complex of X. 

The conclusion is that the differential in the rational cellular chain complex of 
X must be zero, and hence the differential in the integral cellular chain complex 
is zero too. In other words: 

H*(X;'!l,) is a free '!l,-module with basis corresponding to a basis ofQEBsV. D 

(g) Lie model for a homotopy fibre. 
Let 

0--+ (I,dI ) --+ (L,dd ~> (K,dK ) --+ 0 

be a short exact sequence of differential graded Lie algebras (connected and of 
finite type). By taking cochain algebras (see Section 23(a)), we obtain a relative 
Sullivan algebra (see Section 14) 

C*(K,dK ) c'(p\ C*(L,dL) --+ C*(I,dI) . 

Proposition 24.8 When p is a Lie representative for a continuous map f : 
X --+ Y between simply connected spaces, then (1, dI) is a Lie model for the 
homotopy fibre of f· 
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proof: By hypothesis there is a homotopy commutative diagram 

C*(K,dK) 
my • APL(Y) 

q,} j j ApdJ) (24.9) 

C*(L,dL) mx • APL(X). 

Now let H be the homotopy from mxC*(p) to Apdf)my. Then in the com-
mutative diagram 

C*(K,dK) ---.!!......... APL(X) (5?)A(t,dt) 

q,) j 0 j .'0'0 

C*(L,dL) --m-x-. ---+-. APL(X) 

we may lift mx through id ®Eo because C* (p) is the inclusion of a relative Sulli
van algebra (Proposition 14.4). This provides a homotopy mx ~ m'x such that 
m'xC*(p) = APL(f)my. In other words we may suppose that (24.9) commutes 
exactly. 
~ow Proposition 15.5 identifies C* (/, dI ) as a Sullivan model for the homotopy 

fibre, F, of j, and hence by definition identifies (/, dJ) as a Lie model for F. 0 

Exercises 

1. Determine the minimal Lie models of the spaces: 

2. Show that if X is a simply connected CW complex and H*(0X; IQ) is a tensor 
algebra, then X has the rational homotopy type of a wedge of spheres. 

3. Let (A V, d) --+ (A,O) be a Sullivan minimal model with VI = 0, and let x 
be of even degree and tp : (A ® Ax, 0) --+ B = (A ® Axil, 0) a projection whose 
kernel is the ideal I c A ® A + x. 

a) Prove that there is a quasi-isomorphism (AE8Z, 0) --+ (B®E(x) Nt, D) where 
Z = (kerd n B) ® Ax. 

b) Suppose that the continuous map j : X --+ Y admits tp as commutative 
model, and let F be the homotopy fibre of j. Prove that F admits a model of 
the form (A 8 Z) ®(/W,d) E(V) and thus that F has the rational homotopy type 
of a wedge of spheres. 

c) Prove that there exists a short exact sequence of graded Lie algebras 
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4. Let H = /\(Xll ... ,xn )/ 1, where the Xi'S have even degree and where the ideal 
I is generated by monomials. Prove that H ~ (( ... (/\xd/h ® /\x2)/h ® ... ® 

/\xn)/In , where each Ip is an ideal in /\(Xl,X2, ... ,xp) contained in the ideal 
generated by xp. Let X be a formal space such that H* (X; Q) = H. Deduce 
from exercise 3 that there is a finite sequence of extensions 

o -+ JL(Vl ) -+ Ll -+ (Xl, ... , Xn) -+ 0 
o -+ JL(V2 ) -+ L2 -+ Ll -+ 0 

where (Xl, ... ,xn ) denotes the abelian Lie algebra on the variables Xl, X2,··· ,Xn . 

5. Let X and Y be simply connected CW complexes of finite type. Prove that 
Lxvy = Lx il L y . Suppose that X E (Lx )even and y E (LY)even. Prove that 
JL(x,y) c Lxvy. 



25 Chain Lie algebras and topological groups 

In this section the ground ring is Q. 
In this section we pass from algebra to CW complexes using the spatial realiza

tion functor I I of §17(c). It will often be convenient to abbreviate the notation 
lA, dl simply to IAI· We shall also abbreviate IC*(L, dL)1 simply to IC* LI· 

Let (L, dL ) be an arbitrary connected chain Lie algebra of finite type. Our 
principal objective is to 

• Convert the universal enveloping algebra (U L, dd to a topological group 

IfLI· 

• Construct a contractible CW complex IC* (L; f L) I and a principal fibre bun
dle 

IC*(L;fL)1 ~ IC*LI, IC*(L;fL)1 x IfLI-+ IC*(L;fL)1 , 

thereby identifying IC* LI as a classifying space for If LI· 

In particular, if (L, dd is a Lie model for a simply connected topological space 
X then we will deduce a chain of rational equivalences of topological monoids 
from nx to IfLI. 

This section is divided into the following topics 

(a) The topological group IfLI. 

(b) The principal fibre bundle IC*(L;fL)1 ~ IC*LI· 

(c) IfLI as a model for the topological monoid, nx. 

(d) Morphisms of chain Lie algebras and the holonomy action. 

Throughout we shall work with the spatial realization functor (§17(c)) from 
commutative cochain algebras to CW complexes. We recall that it converts the 
tensor product of cochain algebras to the topological product of spaces (Example 
of §17(c)). 

(a) The topological group, IfLI. 
Recall that the universal enveloping algebra, (U L, d) is a dg Hopf algebra (§21) 

which is cocommutative as a coalgebra. Thus its dual (f L, 8L ) = Hom (U L, Q) is 
also a dg Hopf algebra with commutative multiplication J1r and comultiplication 
~r dual, respectively, to the comultiplication and multiplication in U L. Since 
r L is commutative, both J1r and ~r are dga morphisms. 

Proposition 25.1 The CW complex If LI is a topological group, with multipli
cation I ~r I and topological diagonal 1M I· 
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proof: The coassociativity of ~r implies that 

I~rl : IfLI x IfLI ---* IfLI 

is an associative product. The single O-cell of If LI is the augmentation e : f L ---* 
lk, and its compatibility with ~r implies that e E If LI is a two-sided identity. 

To construct an inverse we first construct a distinguished involution v in U L. 
Let U LOPP be the dg Hopf algebra defined as follows: as a differential graded 
coalgebra, U LOPP = U L. However the product in U LOPP is given by a· b = 
(_l)dega degbba, where ba is the product in UL. Define 0: : L ---* ULopp by 
o:x = -x. Then o:[x, y] = o:x· o:y - (_l)degx deg Yo:y ·o:x, and so 0: extends to a 
dga morphism v : U L ---* U LOPP. 

We may regard v as a self morphism of the dgc, U L. Clearly v2 = id, and so 
v is an automorphism satisfying v(ab) = (_l)degadegbba. 

Observe next that the composite 

cp : U L ~ U L 0 U L id Q9v) U L 0 U L ~ U L 

coincides with U L aug.) lk ~ U L. In fact, if x E L then cpx = mult(x 0 1 -
1 0 x) = o. Moreover if ~a = ~ai 0 a~ and ~b = ~bj 0 bj then 

cp(ab) = L ±aibj(vbj)va; = L ±ai(cpb)va; . 
i,j 

Hence if cpb = 0 then cp(ab) = 0 and so cp = 0 in UL+. 
Let v* = Hom(v, lk) be the dual of v. It is an automorphism of the cochain 

algebra (fL,15L ). Apply I I to the dual of the formula above for cp to see that 
Iv'l is an inverse in If LI, which is therefore a topological group. 

Finally, note that in any commutative cochain algebra (A, d) the multiplication 
/-LA realizes to the topological diagonal in lA, dl, as follows immediately from the 
definitions. D 

(b) The principal fibre bundle, IC*(L; fL)1 ~ IC* LI. 
Recall the acyclic construction C*(L; U L) considered in §22(c). It is, in partic

ular, a cocommutative differential graded coalgebra of the form (AsL 0 U L, d). 
Moreover, as we remarked in §22(c), the projection g : (AsL0U L, d) ---* (AsL, d) 
and the right module action 0: : (AsL 0 U L, d) 0 (U L, d) ---* (AsL 0 U L, d) are 
both dgc morphisms. 

Apply the realization functor to the co chain algebra C* (L; f L) dual to (AsL 0 
UL,d), to construct the CW complex IC*(L;fL)I. (Note that the differential 
in C*(L;fL) = (C*(L) 0fL,d) is not the tensor product differential, and so 
IC*(L;fL)1 is not the product of IC*LI and IfLI!). The duals g* and 0:* of the 
morphisms above realize to continuous maps 

IC*(L;fL)1 ~ IC*LI and IC*(L;fL)1 x IfLI---* IC*(L;fL)I· 
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Proposition 25.2 The construction above is a principal If LI-jibre bundle 
whose total space, IC*(L; f L)I, is a contractible CW complex. 

proof: 
Step 1: C*(L) is a Sullivan algebra and the inclusion oJC*(L) in C*(L;fL) is 
a relative Sullivan algebra. 

The first assertion is Lemma 23.1. For the second recall the isomorphism 

"( : AL ~ U L of Proposition 21.2. It is obvious that "( preserves differentials and 
the comultiplication. Thus, dually, (f L, ()L) = (AL *, -diJ as graded algebras, 
L * denoting Hom( L, Q) and d'L the dual of dL . It now follows exactly as in 
Proposition 23.1 that C* (L; f L) = (C* (L) @ AL * , d) is a relative Sullivan algebra 
with respect to the inclusion of C*(L). 

Step 2: IC* (L; f L) 1 is a contractible CW complex. 
By Step 1, C*(L;fL) is itself a Sullivan algebra of the form (AV,d) with 

V = (sL @ 1)* ED (1 @ L)*. The linear part of the differential, do : V --+ V, is 
dual to the restriction of the differential in C* (L; U L) to sL @ 1 ED 1 @ L. Since 
d(sx ® 1) = -sdLx @ 1 + (_1)deg x+l1 @ x and d(l @ x) = 1 @ dLx it follows 
that (sL @ 1) ED (1 @ L) = (sL @ 1) ED d(sL @ 1). Dually, V = U ED doU with 

do : U ~ doU. From §14(b) we deduce that C*(L;fL) = A(U ED dU) with 

d:U~dU. 
Now let {uo,} be a basis of U. A dga morphism 'P : A(U ED dU) --+ (APL)n is 

specified by the arbitrary choice of elements 'Puc> E (ApL)~egu". This identifies 

(A(U EDdU)) as the extendable simplicial set IT A~L I. Thus IC* (L; f L) I = IA(U ED 
C> 

dU)1 is a contractible CW complex (Example 3, §17(a)). 

Step 3: PL: IC*(L;fL)I--+ IC*LI is aprincipallfLI-jibre bundle. 
Recall that C*(L;fL) = (C*(L)@fL,d). An n-simplex of IC*LI is a dga 

morphism a : C*(L) --+ (APL)n. As in the proof of Proposition 17.9, the 
pullback of PL over a has the form 

If we can exhibit this as ~n X IfLI, compatibly with the projection on ~n and 
the action of If LI, then Proposition 2.8 will apply and show that PL is a principal 
bundle. 

Denote (APL)n by A and (APL)n @e'(L) (C*(L) @ f L, d) by (A @ f L, d). 
Note that the dual, a*, of the U L-action a induces an obvious morphism j3 : 
(A@fL,d) --+ (A@fL,d) @ (fL,()L)' Since H(A) = Q, the argument of 
Lemma 14.8 with Q --+ A replacing Bl --+ B shows that idA extends to an 

isomorphism 'lj; : (A @ f L, d) ~ (A, d) @ (f L, () d. Combine this with the 
augmentation, e, of (f L, ()L) to define (id @e)'lj; : (A @ f L, d) --+ (A, d). The 
composite 

'P : (A @ f L, d) ~ (A ® f L, d) @ (f L, ()d (id ®e)'I/J®id) (A, d) @ (f L, ()L) 
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reduces to the identity in A and satisfies 'P(l®z)-l®z E A+®fL, z E fL. Hence 

'P is an isomorphism. It clearly converts (3 into id ®~r· Thus I'PI : IAI x If LI ~ 
IA ® f L, dl compatibly with the projection on IAI and the action of If LI. 0 

Notice that Proposition 25.2 identifies IC' LI as weakly homotopy equivalent 
to the classifying space (§2(e)), B lfLl . In fact (d. §2(e)) the principal bundle 
p: IC*(L;fL)1 ---+ IC*LI pulls back from the universal bundle ElfLl via a map 

f : IC*LI ---+ BlfLl' Since 7r* (lC*(L;fL)I) = 0 = 7r* (ElrLI), f is a weak 
homotopy equivalence. 

(c) IfLI as a model for the topological monoid, OX. 
Suppose now that (L, dL) is a Lie model for a simply connected CW complex, 

X. In particular we have a dga quasi-isomorphism 

C*(L, dL) ~ APL(X) 

which in turn (Theorem 17.12) defines a rationalization hx : X ---+ IC* LI. Thus 
Ohx : OX ---+ OIC* LI is a morphism of topological monoids and also induces an 
isomorphism of rational homotopy and homology (Theorem 8.6). We call such 
a morphism a rational monoid equivalence. 

On the other hand suppose G is any topological group and Z ~ B is any 
principal G-bundle with 7r*(Z) = O. Then from Proposition 2.10 we obtain weak 
equivalences of topological monoids 

G ? G x z P Z ~ OB, a +-------i (a, w) t-----t pow . 

and corresponding weak equivalences of Serre fibrations 

Z --- PZ -- PB 

~j/ 
B 

Thus here we have the chain of rational monoid equivalences 

(25.3) 

thereby exhibiting IfLI as a 'topological model' for OX. We also have the 
corresponding (rational) equivalences of Serre fibrations 

IC"(L;rL)1 ... ---- PIC"(L;rL)1 ---"'-_11 P\c* LI 

~j/ 
Ph X -px 

j 
IC"LI .. ·-----hX------ x 

(25.4) 
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(d) Morphisms of chain Lie algebras and the holonomy action. 
Suppose cp : (L, dd ---t (E, dE) is a morphism of connected chain Lie algebras 

of finite type. Then U cp : (U L, dL) ---t (U E, dE) is a morphism of dg Hopf 
algebras. This is, in particular, a representation of (L,dd in (UE,dE), and 
therefore determines the chain complex (C*(L;UE),d) as described in §22(b). 

This example has many ofthe additional properties of C* (L; U L). It, too, is a 
cocommutative differential graded coalgebra and a right (U E, dE )-module, with 
the module action a dgc morphism. Moreover, C*(cp) : C*(L,dd ---t C*(E, dE) 
extends to the morphism of dgc's and U E-modules: 

Now apply the spatial realization functor to the commutative cochain algebras 
(and morphisms of same) dual to these constructions. This gives the commuta
tive diagram of continuous maps 

IC* (L; f E) I _--,-,c_'(-,-,--'P,---;id-,--,-l' __ , IC* (E; f E) I 

,1 1" 
IC*LI ----'c-.'P-,----' IC*EI 

in which: p is a principal If EI-fibre bundle (exactly as in Proposition 25.2) 
and IC*(cp; id)1 is a map of IfEI-bundles. In particular, this exhibits p as the 
pullback of PE via IC*cpl. 

On the other hand, the continuous map IC*cpl determines a holonomy fibra
tion as described in §2(c), which is just the pullback via IC*cpl of the OIC* EI 
fibration PIC* EI ---t IC* EI. We may therefore apply Proposition 2.11 to obtain 
equivariant weak equivalences of Serre fibrations 

IC*(L;fE)I' ~ P -=--.. IC*LI x,C*EI PIC*EI 

~l/ , IfEI F- f ~ OIC*EI 

IC*LI 
(25.5) 

connecting the principal If EI-fibre bundle p with the holonomy fibration for 
IC'cpl· 

Finally, suppose f : X ---t Y is a continuous map between simply connected 
CW complexes with rational homology of finite type. Assume further that 
(L, dd and (E, dE) are Lie models for X and for Y and that cp : (L, dd ---t 
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(E, dE) makes the diagram 

APL(Y) APL(f) • ApL(X) 

~1 1~ (25.6) 

C*(E,dE ) --_I C*(L,dL ) 
C*(cp) 

homotopy commute in the sense of §12(b). In analogy with §25(c) we observe 
that the principallfEI-fibre bundle p: IC*(L;rE)1 ----t IC*LI is equivariantly 
rationally equivalent to the holonomy fibration X x y PY ----t X. 

In fact, the diagram (25.6) produces the homotopy commutative diagram 

X ______ ~f ______ • Y 

hx I I hy 

IC* LI IC*cpl' IC* EI 

(cf. §17(d)) in which hx and hy are rationalizations. Regard the homotopy as 
a map <I> from X to the space of Moore paths in IC* EI of length 1, such that 
(<I>x)(O) = IC*cplhx(x) and (<I>x)(l) = hy f(x). Then an equivariant rational 
equivalence 

h : X Xy PY ----t IC* LI x IC* EI PIC* EI, flhy: flY ----t fllC* EI (25.7) 

is given by h(x,w) = (hxx,<I>(x)*hyow). Combined with (25.5) above this 
provides the desired equivariant rational equivalence. 0 
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In this section the ground ring is Q; as usual we simplify notation by writing 
G*( -) and H*( -) for G*( -; Q) and H.( -; Q). 

Suppose given a free Lie model (lLv, d) for a simply connected topological 
space X with rational homology of finite type. A natural isomorphism of graded 
Hopf algebras, 

(26.1 ) 

is then described as follows. First, H(UlLv) = U H(lLv), by Theorem 21.7. 
Next, H(lLv) is identified with the homotopy Lie algebra Lx by (24.2). Finally, 
the graded Hopf algebras U Lx and H.(flX) are identified by the Milnor-Moore 
theorem 21.5. 

The main objective of this section is to show (Theorem 26.5) that the isomor
phism (26.1) is induced from a chain algebra quasi-isomorphism 

which commutes with the comultiplications up to dga homotopy (to be defined in 
§26(a)). This is a result of Majewski [119]. Its significance is due to a theorem of 
Anick [11] who showed directly the existence of a unique quasi-isomorphism class 
of free chain Lie algebras (lL, d) admitting such a quasi-isomorphism. However, 
these were potentially different from the Lie models constructed via Sullivan's 
functor ApL as described here. Majewski's result shows that they coincide. 

Our proof of Majewski's theorem is different from his, which takes a more 
abstract approach (permitting him to prove that other forms of introducing Lie 
models also produce the same answer). The idea of the proof here is as follows. 
In §25(c) we connected fiX to a certain topological group, IflLv I, by rational 
monoid equivalences. This reduces the problem to constructing an appropriate 
quasi-isomorphism (UlLv,d) ~ G.lrlLvl. For this we use the integration map 
f. of §17(f). 

Finally, at the end of this section, we consider continuous maps f : X ----t Y 
and prove an analogous theorem about the holonomy fibration. 

This section is divided into the following topics: 

(a) Dga homotopy. 

(b) The dg Hopf algebra G.(flX) and the statement of the theorem. 

(c) The chain algebra quasi-isomorphism (): (UlLv,d) ~ G*(rlLv ,6L). 

(d) The proof of Theorem 26.5. 

In carrying out these steps we shall make frequent use of the Alexander
Whitney and Eilenberg-Ziller chain equivalences 
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defined in §4(b) for topological spaces. As observed in §17(f), these equivalences 
are defined for all simplicial sets, and we shall use them as such. In particular 
we shall quote the important properties (4.4)-(4.10) as if they had been stated 
for simplicial sets, since they hold in thus wider context. 

(a) Dga homotopy. 
Suppose given a chain algebra of the form (TV, d). Given two graded algebra 

morphisms 'P,'P' : TV ---t A we say a linear map <I> : TV ---t A is a ('P,'P')
derivation if 

<I>(xy) = <I>x· 'P'y + (_l)degx deg1>'Px. <I>y, x, Y E TV . 

Any linear map V ---t A extends uniquely to a ('P, 'P')-derivation. 
Two chain algebra morphisms 'P, 'P' : (TV, d) ---t (A, d) are dga homotopic if 

'P - 'P' = d<I> + <I>d 

for some ('P, 'P')-derivation <I>, in which case we write 'P '" 'P" The derivation <I> is 
called a dga homotopy. Note that both sides of such an equation are themselves 
('P, 'P')-derivations. Thus in constructing a dga homotopy it is sufficient to verify 
that this equation holds in V. 

Dga homotopy appears to be quite distinct from Sullivan's homotopy described 
in §12(b). In fact the two are closely related, but we shall not pursue this here. 

The following lifting lemma parallels all the others. 

Lemma 26.2 Suppose TJ : (B, d) ~ (A, d) is a chain algebra quasi-isomorphism. 
Then 

(i) For any chain algebra morphism 'P : (TV, d) ---t (A, d) there is a morphism 
'Ij; : (TV, d) ---t (B, d) such that 'P '" TJ'ljJ. 

(ii) If 'ljJ, 'ljJ' : (TV, d) ---t (B, d) are morphisms satisfying TJ'ljJ '" TJ'Ij;' then'ljJ '" 
'ljJ'. 

proof: (i) We construct 'ljJ and a homotopy <I> : 'P '" TJ'Ij; by induction. Suppose 
they are defined in T(V<n) and choose a basis {v,,} for Vn. Then the cycles 
'lj;dva satisfy TJ('ljJdva) = 'Pdva - d<I>dva = d('Pva - <I>dva). Since TJ is a quasi
isomorphism there are elements ba E Band aa E A such that dba = 'lj;dva and 
TJba = 'PVa - if>dva + daa· Extend 'ljJ and <I> to Vn by setting 'lj;va = ba and 
<I>va = aa. Then 'Ij; extends uniquely to an algebra morphism from TV::;n and 
'ljJd = d'lj; because this relation holds in V::;n. Similar <I> extends uniquely to a 
('P, TJ'Ij;)-derivation from TV::;n to Band 'P - TJ'ljJ = dif> + if>d because this relation 
holds in V::;n. 

(ii) By hypothesis there is an (TJ'ljJ, TJ'ljJ')-derivation <I> such that TJ'Ij; -
TJ'ljJ' = d<I>+if>d, and we seek to construct a ('ljJ, 'Ij;')-derivation l]! such that 'Ij;-'Ij;' = 
dl]! + l]!d. Assume l]! constructed in V<n so that TJl]! - if> = d~ - ~d for some 
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(1]?jJ, 1]?jJ')-derivation 3. Again let {va} be a basis of Vn · Then (?jJ - ?jJ')va - iJldva 
is a cycle Za in B, and 1]Za = d<J>va - (1]iJI - <J> )dva = d( <J>va - 3dva). Choose 
ba E Band aa E A so that Za = dba and 1]ba = <J>va - 3dva + daa. Then extend 
iJI and 3 by setting iJlva = ba and 3va = aa. 0 

LeIllIlla 26.3 Suppose X : (TW,d) --+ (TV,d) ~ (A,d) ~ (B,d) are 
morphisms of chain algebras. <,01 

(i) If CPo"" CPI then H(cpo) = H(cpd· 

(ii) If CPo '" CPI then ?jJcpo '" ?jJCPI and cpox "" CPI X· 

(iii) Dga homotopy is an equivalence relation. 

proof: (i) This is immediate from the equation CPo - CPI = d<J> + <J>d. 

(ii) If <J> is a dga homotopy from CPo to CPI then ?jJ<J> is a dga homotopy 
from ?jJCPo to ?jJCPI and <J>X is a dga homotopy from cpoX to CPIX. 

(iii) Reflexivity: The zero map is a dga homotopy from CPo to CPo. 

Symmetry: First construct a new dga (I, d) as follows. Let V' and 
V" be graded vector spaces isomorphic with V and let s V be the suspension 
of V with suspension isomorphism v r-+ sv. Put I = T(V' EB V" EB sV) and 
let i', i" : TV --+ I be the algebra inclusions extending the linear isomorphisms 
V ~ V', V". Let S: TV --+ I be the (i',i")-derivation determined by Sv = sv. 
Finally, let d be the derivation of I determined by di'v = i' dv, di" v = i" dv and 
dsv = i'v - i"v - Sdv, v E V. 

Next, verify in sequence the equations di' = i'd, di" = i"d, i' - i" = dS + Sd 
and cP = 0, noting that it is sufficient to check each on the appropriate generating 
subspace. In particular (1, d) is a chain algebra, and i' and i" are chain algebra 
morphisms. 

Now suppose <J> is a dga homotopy from CPo to CPl. Define a dga morphism 
n : (1, d) --+ (A, d) by ni' = CPo, ni" = CPI and nsv = <J>v. We show that i" "" i' 
and conclude that CPI = ni" '" ni' = CPo. 

For this define a dga morphism g : (I, d) --+ (TV, d) by gi' = id = gi" and 
gsv = o. If i' is a quasi-isomorphism then so is g and hence Lemma 26.2 will 
give i" "" i'. 

It remains to show that i' is a quasi-isomorphism. Let W = (i' - i")(V). 
Then I = T(V' EB W EB sV). Moreover the ideal I generated by Wand sV is 
preserved by d. Since I = TV' EB I we need only show H(I) = o. For this use 
multiplication in I to write I = TV' @ (W EB sV) @ I. Define h : I --+ I by 

{ 
(-l)deg<l><J>@sv@iJI 

h(<J>@x@iJI)= 0 
, x = i'v - i"v , 

x E sV. 
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Then a straightforward computation shows that hd + dh - id sends TV' ® W ® I 
into TV' ® sV ® I and sends TV' ® sV ® I to zero. It follows that H(I) = 0 
and i' is a quasi-isomorphism. 

Transitivity: Extend (1, d) to a chain algebra (J, d) as follows. Set J = T(V' EB 
V" EB V"' EB sV EB sV) where V"' is a third copy of V and sV is a second copy of 
the suspension of V. Regard i', i" and 5 as maps into J, let i"' : TV ---+ J be the 

algebra inclusion extending the isomorphism V ==' V"' and extend s : V -=+ sV 
to an (i",i"')-derivation S : TV ---+ J. Define din J by requiring di"' = i'"d 
and dsv = i"v - i"'v - Sdv, v E V. 

Now suppose 'Po '" 'PI : (TV, d) ---+ (A, d) and 'PI '" 'P2 : (TV, d) ---+ (A, d) 
are dga homotopic by homotopies <}> and <}>'. Define a chain algebra morphism 
o : (J, d) ---+ (A, d) by O'i' = 'Po, O'i" = 'PI, Oi"' = 'P2, Osv = <}>v and 
Osv = .p' v. Define a chain algebra morphism 7r : (J, d) ---+ (TV, d) by 7ri' = 
7ri" = 7ri"' = id and 7rSV = 7rSV = 0, v E V. As in the proof of symmetry, 7r 
is a quasi-isomorphism and so Lemma 26.2 implies that i' '" i"'. It follows that 
'Po = Oi' '" Oi"' = 'P2· 0 

(b) The dg Hopf algebra C*(OX) and the statement of the theorem. 
Let (X,xo) be a based topological space, and recall (§2(b)) that OX is the 

topological monoid of Moore loops at Xo. Multiplication OX x OX ---+ OX 
is given by composition of loops and the identity is the constant loop c at Xo. 
Now suppose G is any topological monoid with multiplication, /L, and identity, 
c. Then, as observed in the introduction to §16 for G = OX, 

makes C*(G) into a chain algebra. On the other hand (§4(b)) the Alexander
Whitney diagonal 

makes C* (G) into a differential graded coalgebra, where 6.toP denotes the topo
logical diagonal sending y H (y, y). 

Proposition 26.4 The maps /Lalg and 6.a lg make C* (G) into a differential 
graded Hop! algebra with identity and augmentation given by 

and 

proof: This is a straightforward calculation using properties (4.4)-(4.9). In 
particular, the fact that 6.a lg is a morphism of chain algebras follows from the 
compatibility (4.9) of AW and EZ. 0 
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On the other hand, suppose (lLv, d) is a free Lie model for a simply con
nected topological space X with rational homology of finite type (d. §24). Then 
U(lLv, d) is a differential graded Hopf algebra of the form (TV, d), whose co
multiplication is the chain algebra morphism ~u : (TV, d) ---+ (TV, d) ® (TV, d) 
defined by ~uv = v ® 1 + 1 ® v, v E V (§21(c), (f)). Our main theorem reads 

Theorem 26.5 Let X be a simply connected topological space with rational 
homology of finite type. The choice of a free Lie model (lLv , d) for X determines 
a natural homotopy class of chain algebra quasi-isomorphisms 

8: U(lLv,d) -='+ C*(OX) 

such that (8 ® 8)~u and ~aJg 0 8 are dga homotopic. Moreover H(8) is the 
isomorphism (26.1). 

Remark Suppose (lLv , d) is a cellular Lie model (§24( c)) for a simply connected 
CW complex X with rational homology of finite type. The quasi-isomorphism 
of Theorem 26.5 has the form 

because UlLv = TV (§21(c)). Moreover V is free on a basis corresponding to 
the cells of X. 

This is therefore a special case of the classical Adams-Hilton model [2]. This 
model, and the de Rham algebra of differential forms on a manifold, were the 
first uses of differential graded algebras as a tool in homotopy theory. D 

(c) The chain algebra quasi-isomorphism e: (UlLv, d) -='+ C*(flLv ,15L ). 

Fix an arbitrary free connected chain Lie algebra (lLv, d) of finite type. In 
§25(a) we constructed a topological group IflLv , 15L I as follows. First, we let 
(flLv, 8 L) be the commutative graded Hopf algebra dual to UlLv . Thus the 
multiplication /Lr and the comultiplication ~r are respectively dual to the co
multiplication ~u and the multiplication /Lu in UlLv. Then we applied the 
spatial realization functor of §17(c) to obtain IflLv, 81 = l(flLv ,8L )1 with multi
plication I~rl and topological diagonall/Lr I (d. Proposition 25.1). Since (lLv, d) 
is fixed in this discussion we shall abbreviate the dg Hopf algebra (flLv, 8L) to 
f so that our topological group is simply denoted by Ifl. 

As observed in Proposition 26.4, C* Ifl is a dg Hopf algebra with multiplication 
C*(I~rl) 0 EZ and comultiplication AW 0 C*(I/Lrl). However, included in C*lfi 
is the sub dgc C(r), as defined in §17(a). Since EZ and AWare defined in 
the wider context of simplicial sets (§17(f», C*(r) is a sub dg Hopf algebra 
of C*lfl, with multiplication /LaJg = C*(~r) 0 EZ and comultiplication ~alg = 
AW oC*(/Lr). 

Now recall from §17(f) the natural morphism of chain complexes J* : C* (A V, d) 
---+ CCAV,d), dual to the integration operator f defined in §lO(e). In the case of 
(flLv, <5L) it takes the form 
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since f is the dual of UlLv . 

Proposition 26.6 The map J* : C* (f) ~ (UlLv, d) is a chain algebra quasi
isomorphism. 

proof: Proposition 17.16 asserts that J* is a quasi-isomorphism. Proposi
tion 17.17 asserts that 

C*(f) 0 C*(r) f. 0 f .. UlLv 0 UlLv 

~~ 
commutes. But the multiplication I~rl in If! is the realization of ~r which is 
the dual of the multiplication flu in UlLv. Thus for a, T E (f), 

Recall now (§21(c)) that the universal enveloping algebra (UlLv, d) is, as a 
chain algebra, the tensor algebra (TV, d). Thus we may apply Lemma 26.2 to 
the chain algebra quasi-isomorphism J* : C*(f) ~ (TV, d) to obtain a chain 
algebra quasi-isomorphism 

uniquely determined up to dga homotopy by the requirement that J* 0 () '" id. 

Lemma 26.7 The quasi-isomorphism () commutes with the co multiplications 
in UlLv and in C* (f) up to dga homotopy. 

proof: We have to show that 

Now here ~top is just (p,r), where P,r is the dual of ~u. Consider the (non
commutative) diagram 

C*(r) 0 C*(r) 
EZ 

• C*(f0r) f. • UlLv 0 UlLv 

~"'j c.(,c) j ja" 
C*(r) id 

• C*(f) 
f. 

• UlLv . 

Observe first that 

C*(r) 0 C*(r) ~ C*(f 0 f) ~ C*(r) 0 C*(r) 
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are dga morphisms, as follows easily from property (4.7) and (4.8) for EZ 
and from property (4.9) for AW. Moreover (Proposition 4.10) these are quasi
isomorphisms, and AW 0 EZ = id. In particular, 

A W 0 C * (J-Lr) 0 () = ~alg 0 () = A WoE Z 0 ~alg 0 () . 

Since AW is a chain algebra quasi-isomorphism we may apply Lemma 26.2(ii) 
to conclude that C*(J-Lr) 0 () '" EZ 0 ~alg 0 (). 

Finally, note that the right hand square in the diagram above commutes by 
naturality. Thus 

The diagram in the proof of Proposition 26.6 allows us to replace J* oEZ by 

J* 0 J*: 

Thus, since J* () '" id, 

But J* is a quasi-isomorphism. Apply Lemma 26.2 to obtain 

() 0 () 0 ~u '" ~alg 0 () . o 

(d) The proof of Theorem 26.5. 
We are given a free Lie model (lLv, d) for a simply connected topological space 

X, which means that we have specified a cochain algebra quasi-isomorphism 

m : C*(lLv, d) ~ APL(X) . 

For simplicity of notation we shall denote (lLv, d) simply by L. 
Suppose first X is a CW complex. Recall that f = (f L, 8) denotes the dg 

Hopf algebra Hom(U L, Jk). Apply C* to the chain (25.3) of rational monoid 
equivalences to obtain the chain 

(26.8) 

of dg Hopf algebra quasi-isomorphisms. 
Next, recall that UL = TV, and use Lemma 26.2 to lift the quasi-isomorphism 

of §26(c) through this chain to obtain a chain algebra quasi-isomorphism 

e: (UL, d) ~ C*(OX) . 
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It commutes up to dga homotopy with the comultiplications because e does 
(Lemma 26.7) and because the quasi-isomorphisms in (26.8) commute with the 
comultiplications. Moreover e is uniquely determined up to dga homotopy and 
hence, so is 8 (Lemma 26.2). Since J. is natural and the homotopy class of hx 
is natural in X (Theorem 17.15) so is the homotopy class of 8. 

Now we have to show that H(8) coincides with the isomorphism (26.1). We 
may clearly suppose X = IC' LI, hx = id and 

m : C'L --='+ APLIC' LI 

is one of the canonical homotopy class of morphisms (specified in § 17 (d)). Since 
H (U L) = U H (L) it is enough to show these isomorphisms agree on [v 1 for any 
cycle vEL. Thus by naturality we are reduced to the case L = (lL(v) , 0) is the 
free Lie algebra on a single generator of degree n. 

In this case the isomorphism (26.1) sends v to the unique homology class 
corresponding to [sv 1 under the isomorphisms 

But H(8) has the same effect (use the fibrations (25.4) and a simple calculation 
in C.(L;[L)). 0 

Exercise 

Determine a chain algebra quasi-isomorphism e : (TV, d) --+ C. (nX) when X 
is a wedge of spheres sn;, ni 2: 2. Deduce from this the Hopf algebra structure 
of H.(nX;«:]). 
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In this section the ground ring is an arbitrary commutative ring 1;;, unless oth
erwise specified. 

A subspace Z of a topological space X is contractible in X if the inclusion 
i : Z ---t X is homotopic to a constant map Z ---t Xo. 

Definition The LS category of X, denoted cat X, is the least integer m (or 
00) such that X is the union of m + 1 open subsets Ui , each contractible in X. 

Remark LS category was originally introduced in [116], where it was shown 
that cat X + 1 is a lower bound for the number of critical points of any smooth 
function on a closed manifold X. The original definition differs from the one 
above by 1; however the definition above has become standard in homotopy 
theory because, clearly, cat X = 0 if and only if X is contractible. Note that it 
follows that 

cat sn = 1, n 2: 0 . 

Moreover if Xa E Xa has a neighbourhood contractible to Xa in Xa then 

= max {catXa } 
a 

as is immediate from the definition. 

This section is devoted to some of the basic geometric properties of LS cat
egory. (For other presentations the reader is referred to [96], [62] and [40].) 
For example, in §27(a) we shall prove that cat X :::; d/r for an d-dimensional 
(r - I)-connected CW complex, and in §27(f) we shall see that if cohomol
ogy classes ai E H+(X;k) satisfy a1 U··· U an "I 0, then catX 2: n. Now 
ccpn is a I-connected CW complex of dimension 2n whose rational cohomol
ogy algebra has the form k[a]/an+l where a E H2(cpn; Q). It follows that 
n :::; cat cpn :::; 2n/2; i.e. 

catCpn = n. 

An identical argument shows that the LS category of any simply connected 
symplectic manifold X (Example 5, §12(e)) is half the dimension. 

However, our focus in this section is on a number of useful characterisations 
of the inequality cat X :::; m, including: 

• deformation of the diagonal of xm+l into the fat wedge (Whitehead). 

• existence of a cross-section of the mth Ganea fibration (Ganea). 

• retraction of X from an m-cone (Ganea). 

• X V EY is an m-cone (Cornea). 
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LS category is an invariant of homotopy type, but it is particularly difficult to 
compute. For this reason it is useful to approximate it by other invariants. Thus 
we introduce the cup-length, c(X; J;;) and Toomer's invariant, e(X; J;;), which 
are more algebraic in nature, as well as the geometric cone-length cl X which is 
the least m (or CXl) such that X has the homotopy type of an m-cone. We shall 
show that 

c(X; J;;) ~ e(X; J;;) ~ catX ~ clX . 

In this section we shall make heavy use of cones and suspensions. Thus we 
recall (§l(f)) that the cone on a topological space X is the space ex = X x 
I / X x {O}, and that the points (x, t) are usually denoted by tx, 0 ~ t ~ 1, 
with Ox the cone point. This identifies X = X x {I} as a subspace of ex. If 
g : A ~ X is any continuous map the adjunction space X Ug eA is called the 
cofibre of g. 

Next define the reduced cone on a based space (X, xo) to be the space ex = 
ex / I Xo. Then the suspension of X is the based space :EX = ex / X. If (X, xo) 
is well-based then (eX,Ixo) is an NDR pair, the quotient map ex ~ ex 
is a homotopy equivalence (Corollary to Theorem 1.13) and (eX, xo) and :EX 
are well-based. If, in addition, X is path connected a simple van Kampen argu
ment shows that :EX is simply connected. Furthermore the long exact homology 
sequence associated with the pair (eX, X) gives rise to natural isomorphisms 

We shall use all these facts freely without further reference. 
This section is organized into the following topics: 

(a) LS category of spaces and maps. 

(b) Ganea's fibre-cofibre construction. 

(c) Ganea spaces and LS category. 

(d) Cone-length and LS category: Ganea's theorem. 

(e) Cone-length and LS category: Cornea's theorem. 

(f) Cup-length, c(X; J;;) and Toomer's invariant, e(X; J;;). 

(a) LS category of spaces and maps. 
The definition of LS category extends from spaces to continuous maps as 

follows: 

Definition The L8 category of a continuous map j : X ~ Y, denoted cat j, 
is the least integer m (or CXl) such that X is the union of m + 1 open sets Ui for 
which the restriction of f to each Ui is homotopic to a constant map Ui ~ Yi. 
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Note that 
cat X = cat idx 

so that this is a generalisation of the LS category of a space. 
We say a topological space X is a homotopy retract of a topological space Y 

if there are continuous maps X -L. Y ~ X such that 9 f '" id x . 

Lemma 27.1 Suppose f : X -t Y is a continuous map. 

(i) If f' '" f then cat f' = cat f· 

(ii) If 9 : Y -t Z is continuous then cat 9 f :::; min( cat g, cat f). 

(iii) If 9 (resp. f) is a homotopy equivalence then cat gf = cat f (resp. cat gf = 
cat g). 

(iv) catf:::; min(catX,catY). 

(v) If X is a homotopy retract of Y then cat X :::; cat Y. 

proof: (i) and (ii) are trivial consequences of the definitions. For (iii) suppose 
g' is a homotopy inverse for g. Then g' 9 f '" f and so cat f = cat g' 9 f :::; cat 9 f :::; 
cat f. Similarly if f' is a homotopy inverse for f then cat 9 = cat 9 f f' :::; cat 9 f :::; 
catg. (iv) follows from (iii) applied to idy of and f 0 idx and (v) is immediate 
from (i), (ii) and (iv). 0 

As an immediate consequence of Lemma 27.1 (v) we deduce 

Proposition 27.2 If X and Y have the same homotopy type then cat X 
catY. 0 

Lemma 27.3 For any continuous map 9 : A -t X, 

cat(X Ug CA) :::; cat X + 1 . 

proof: Let catX = m and put a = [A x {O}] E CA. Then X Ug CA - {a} 
is an open subset of X Ug C A containing X as a deformation retract. Hence 

- m 
cat (X Ug CA - {a}) = m and X Ug CA - {a} = UUi with Ui open and con

o 
tractible in X Ug CA. Since CA - A is open and contractible in X Ug CA it 
follows that cat(X Ug CA) :::; m + 1. 0 

Next consider a based topological space (X, x) and denote its (m + I)-fold 
product by xmH = X x ... x X. The fat wedge, TmH X C xmH is the subspace 
given by TmH(X) = {(xo, ... , xm) E XmH I some Xi = x}. The diagonal, Llx : 
X -t XmH, is the continuous map Llx : X f----+ (x, x, ... , x). 

Definition The Whitehead category of X, denoted Wh cat X, is the least in
teger m (or (0) such that Llx is homotopic to a map f : X -t TmH(x). 
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Proposition 27.4 [158] Suppose (X, x) is path connected 

(i) If X is normal then Wh cat X :s: cat X. 

(ii) If x is contained in a subspace U that is open and contractible in X then 
catX:S: WhcatX. 

m 
proof: (i) Let m = cat X so that X = U Ui with Ui open and contractible in X. 

o 
Because X is normal there are subspaces Ai C Oi C Bi C Ui with Ai, Bi closed 
and Oi open and X = U Ai, and there are continuous functions hi : X ----t I 

i 

such that hi lA, == 1 and hdx -B, == O. 
Let Hi : Ui x I ----t X be a homotopy from the inclusion of Ui to a constant 

map. Because X is path connected we may suppose H i ( -,1) : Ui ----t x. Define 
Ki : X x I ----t X by 

Ki(x, t) = {
X 

Hi(x, hi(x)t) 

Then K i ( -,1) : Ai ----t X and so 

, x EX -Bi 

, x E Ui . 

K : X x I ----t X m+1 , K(x, t) = (Ko(x, t), ... , Km(x, t)) 

is a homotopy from .6. to a map X ----t Tm+1(x). 
(ii) Let m = Whcat(X) and let K(x,t) = (Ko(x,t), ... ,Km(x,t)) be 

a homotopy from .6. to a map f = (fo, ... , fm) : X ----t Tm+l(X). Set Ui = 
m 

f i- 1 (U). Then X = U Ui . Yloreover Ki is a homotopy from the inclusion of 
o 

Ui to the map j; : Ui ----t U. Since U is contractible in X it follows that Ui is 
contractible in X too. D 

Corollary If X is a path connected CW complex then 

cat X = WhcatX . 

proof: By Proposition 1.1 (iv) and (v), X satisfies the two additional hypothe
ses of Proposition 27.4. D 

Recall next that a topological space X is q-connected if 7ri (X) = 0, 0 :s: i :s: q. 

Proposition 27.5 Suppose X is an (r - I)-connected CW complex of dimen
sion d (some r 2: 1). Then 

catX :s: djr . 



Rational LS-Category 355 

proof: It follows from the construction of Theorem 1.4 that there is a weak 
homotopy equivalence 9 : y ~ X where Y is a CW complex whose (r - 1)
skeleton is a single O-cell, Yo. By Corollary 1.7 this is a homotopy equivalence, 
and hence has a homotopy inverse 1 : X ~ Y. 

Let m be the integer part of djr, and recall from Example 3, §l(a) that ym+l 
is a CW complex whose k-cells are the products D~~ x ... x D~: of cells in 
y with 2:;ki = k. Since d < (m + l)r, the d-skeleton of ym+l is contained 
in Tm+l(y). In particular, a cellular approximation (Theorem 1.2) of the map 
~f = (f, ... , f) : X ~ ym+l is a map h : X ~ Tm+l(y) such that ~f ~ h. 

Finally, since gl ~ id, 9 x ... x 9 0 ~f ~ ~x, ~x the diagonal of X. Thus 
~x ~ (g x ... x g)h : X ~ Tm+l(X). By the Corollary to Proposition 27.4, 
cat X :S m. 0 

(b) Ganea's fibre-cofibre construction. 
Suppose (X, xo) is a based space and let j : F ~ E be the inclusion of the 

fibre at Xo of a fibration 
p:E~X. 

Extend P to the continuous map (d. § 1 (f)) 

Pc :EUjCF ~X 

by setting pc(CF) = Xo. 
Then (§2(c)) convert Pc to the fibration 

p':E'~X 

defined by E' = (E Uj CF) Xx M X and p'(z, ,) = ,(e), £ the length of the path 

,. According to Proposition 2.5, a homotopy equivalence A : E Uj CF ~ E' 
is given by AZ = (z, Cpc z), Cx denoting the path of length zero at x. Note 
that p' A = Pc. Precomposing A with the inclusion of E gives the commutative 
diagram 

E ------~g~-----. E' 

X 

which is called Ganea's jibre-cojibre construction. It is obviously functorial with 
respect to maps of fibrations. 

Now consider the special case that p : E ~ X is itself obtained by converting 
a continuous map 1 : Z ~ X into a fibration, so that 

E = Z x x M X and F = Z x x p X . 
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Thus a holonomy action is defined on F as well as on the fibre F' of p'. Recall 
further from §1(f) that the join F * OX is defined by 

F * OX = (F x COX) UPxQX (CF x OX) . 

Right multiplication in OX and the holonomy action in F define a diagonal 
action of OX on F * OX ( (u, v) . g = (ug, vg)). More generally an OX -space is 
a topological space equipped with a right OX action and a map of OX -spaces 
is a continuous map that commutes with the actions. 

Proposition 27.6 (Ganea [63]) 

(i) The fibre F' of p' at Xo has the homotopy type of F * ox. 

(ii) If p is obtained as above by converting a map f to a fibration then there is 

a homotopy equivalence F' ~ F * OX which is also a map of ox -spaces. 

proof: (i) By construction, 

F' = (EUj CF) Xx PX = (E Xx PX) Ui (CF x OX) , 

i denoting the inclusion of F x OX in E x x P X. 
Now in the proof of Proposition 2.5 (with different notation) we constructed 

a continuous map <I> : E Xx P X x [0,00) ---+ E such that p<I>(z, ,,(, t) = "((t) and 
<I>(z, ,,(, 0) = z. For,,( E OX let i be the loop oflength Coy given by i(t) = "((Coy -t). 
Define K: F x OX x I ---+ E Xx PX by setting 

where "( has length Coy and "(: is the path of length tCoy given by ,,(Hs) = 
"( ((1- t)Coy + s). Then K factors to give a map K : F x COX ---+ E Xx PX. 
Moreover, by construction K(y,,,(, I) = (y',"() where y' = <I>(Y,i,Coy) E F. Thus 
it extends to the map 

(K, I) : (F x COX) UpxQX (CF x OX) ---+ (E Xx PX) Ui (CF x OX) = F' , 

where f(ty, "() = (ty', "() is obviously a homotopy equivalence. 
But formula (1.15) identifies (F x COX) UPxQX (CF x OX) as F * OX. 

Moreover, if Cxo denotes the loop of length 0 at Xo then K restricts to the 
inclusion F x {cxo } x {I} ---+ E Xx PX, and this inclusion is a homotopy 
equivalence by Proposition 2.5. Thus K is a homotopy equivalence and hence 
Theorem 1.13 asserts that so is (K, I). 

(ii) As above, F' = (E Xx PX) Ui (CF x OX), with OX acting by 
multiplication on the right. Observe that composition of paths defines a homo
topy equivalence M X x x P X ~ P X. This extends to a homotopy equivalence 
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E Xx PX = Z Xx MX Xx PX ~ Z Xx PX = F and hence (Theorem 1.13) 
to a homotopy equivalence 

r.p: F' ~ F Ua (CF X OX) , 

where a : F X OX -----+ F is the action of OX. 
If "( E OX has length e define "(' E OX to be the loop of the same length 

satisfying "('(t) = "(e - t). Then "( ~ "(' is a homeomorphism and the maps 
"( ~ "(. "(', "( ~ "(' . "( are homotopic to the constant map. It follows that a 
homotopy equivalence m : C F X OX -----+ C F X OX is defined by (y, "() ~ (Y,,(, "(). 
Denote by qo : F x OX -----+ F and ql : F x OX -----+ OX the projections. Then 
ql . m = a and so (Theorem 1.13) 

idUm: F Ua (CF x OX) ~ F Uqo (CF x OX) 

is a homotopy equivalence. 
By inspection the homotopy equivalence (id Um) 0 r.p : F' ~ F Uqo (C F x OX) 

converts the action of OX in F' to the diagonal action in C F x OX. Since 

F Uqo (CF x X) = F Uqo (J x F x OX) Uq, OX = F * OX , 

the proof is complete. o 

( c) Ganea spaces and LS category. 
Fix a based path connected topological space, (X, xo). Start with the path 

space fibration, and iterate the fibre-cofibre construction to produce a sequence 
of fibrations 

P 
PI Pm 

X 

The space PmX is called the mth Ganea space for X and Pm is called the mth 

Ganea fibration. We set PoX = P X, Po = P and we denote the inclusion of the 
fibre of Pn at Xo by jm : Fm -----+ PmX. Thus Fo = OX and (Proposition 27.6) 
Fn '::: (ox)*n+l. 

Note also that if f : (Y, Yo) -----+ (X, xo) is a continuous map of based path con
nected spaces then the functoriality of the Ganea construction gives commutative 
diagrams 

Y ----:-----, X 
f 

,m ~ 0, 
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in which Pof = P f. 
Notice that 

catPmX :S m . (27.7) 

Indeed, since PmX ::: Pm-IX Ujm_l CFm- 1 we have 

catPmX = cat (Pm-IX Ujm_l CFm- l ) :S cat Pm-IX + 1, 

by Proposition 27.2 and Lemma 27.3 respectively. Since PoX = P X is con
tractible, (27.7) follows by induction. 

Proposition 27.8 (Ganea [62]) The following conditions are equivalent on a 
continuous map f : Y ---+ X from a normal space Y: 

(i) f = Pma for some continuous a : Y ---+ PmX. 

(ii) f '" Pma for some continuous a : Y ---+ PmX. 

(iii) cat f :S m. 

proof: (i) <===> (ii): Suppose q : E ---+ X is any fibration and hE : W ---+ E, 
hx : W ---+ X are arbitrary continuous maps such that qhE '" hx . Lift the 
homotopy starting at hE to obtain hE '" h with qh = hx . In particular (i) <===> 
(ii) . 

(ii) ==> (iii): If (ii) holds apply Lemma 27.1 to conclude cat f = 
catPma :S catpm :S catPmX. Since catPmX :S m by (27.7) it follows that 
cat f :S m. 

(iii) ==> (ii): Denote the constant map by Cy : Y ---+ {xo}. If cat f = 0 
then f '" Cy, which certainly factors through Po· Suppose cat f :S m, some 

m 

m 2: 1. Then Y = U Ui , where the Ui are open and flu '" Cy I u· Since Y is 
i=O t 't 

normal there are open subspaces Vo, VI C Y such that Y = Vo UVI and such that 
m-l 

the closures A and B of Vo and VI satisfy A C U Ui and B CUm· Denote f I A 
i=O 

and CylA by fA and CA. Clearly cat fA :S m -1. Since A is closed it is normal 
and so we may suppose by induction (because (i) <===> (ii)) that fA = Pm-IaA for 
some aA : A ---+ Pm-IX. On the other hand, since Be Um there is a homotopy 
HB : B x I ---+ X from fiB to CyIB· 

Now construct a continuous map 

'P : A x {O} U (A n B x I) U B x {I} ---+ Pm-IX U CFm- 1 , 

B x {I} 

I I 
A x {O} 



Rational LS-Category 359 

as follows. First, set ipIAX{O} = GA. Next, recall (§1(f)) that the points in 

CFm- 1 are denoted by tz, tEl, z E Fm- I. Let Vo be the cone point: Vo = Oz 
for all z E Fm- I . Lift HB to a homotopy H: AnB x I ---t Pm-IX from O"AIAnB 

to a map An B ---t Fm- I . Define ipIAnBX! by 

{ 
H(y,2t) 

ip(y, t) = 2(1 _ t)H(y, 1) 
, O:St:S~. 

~:St:S1. 

Finally, set ip(B x {1}) = Vo. 
Since Y is normal there is a continuous function h : Y ---t I such that h(Y -

Vd = 0 and h(Y - Vo) = 1. Then y ~ (y, h(y)) defines a continuous map 
a : Y ---t A x {O} U (A n B x 1) U B x {1}. Set 

It remains to show that pmO" '" f. Note that Pm(CFm-d = Xo· Thus Pmip 
extends to the continuous map 'l/J : Y x {O} U B x I ---t X given by 'l/J(y, 0) = fy 
and, for y E B, 

'l/J(y, t) = { HB(y,2t) 
Xo 

, O:St:S~ 
~:St:Sl. 

The obvious deformation of Y x {O} U B x I to Y x {O} provides a homotopy 
from Pmrpa = 'l/Ja to f. 0 

Corollary If X is a normal topological space then cat X :S m if and only if 
there is a continuous map 0" : X ---t PmX such that pmO" = idx . 0 

(d) Cone-length and LS category: Ganea's theorem. 
The iterated suspensions ~k X of a based topological space X are defined 

inductively by 

They appear in the 

Definition An n-cone is a based topological space (P,Po) presented in the 
form 

{po} = Po C PI C ... C Pn = P 

where 

PHI = Pk Uhk C~kYk' k 2: 0 , 

for a sequence of well-based spaces (Yk, Yk) and continuous maps hk : (~kYk' Yk) ---t 
(Pk, xo). The (Yk, Yk) are the constituent spaces of the cone and the hk are the 
attaching maps. 



360 27 Lusternik-Schnirelmann category 

Remark 1 A simple van Kampen argument shows that if (P, xo) is an n
cone with path-connected constituent spaces then each Pk (including P itself) is 
simply connected. 

Remark 2 Note that PI = :5:;Yo, and so the I-cones are simply the suspensions. 

Remark 3 An n-cone is automatically well-based since each (C:5:;kYk' :5:;kyk) 
is an ND R pair. 

In §I(a) we introduced a homeomorphism :5:;Sk ~ Sk+I. In the same way we 
have C Sk ;:::: Dk+I. Thus an n-dimensional CW complex X with a single O-cell, 
no I-cells and based attaching maps hk : V ",S~ -+ Xk is a special case of an 
n-cone: 

Definition The cone-length, cl X, of a topological space X is the least n (or 
00) such that X has the homotopy type of an n-cone. 

In this topic we establish two main results. 

Proposition 27.9 (Ganea [63j) If (X, xo) is well-based then each Ganea space 
PnX has the homotopy type of an n-cone with constituent spaces Yk = (OX)Ak+I. 
In particular, if X is simply connected so is each P mX. 

Theorem 27.10 (Ganea [62]) If X is normal then 

cat X :::; m {::::::} X is a homotopy retract of an m-cone. 

In particular, 
cat X :::; clX . 

Remark A recent result of Dupont shows that, even rationally, this inequality 
can be strict; he constructs a rational CW complex X with cat X = 3 and 
clX = 4. 

proof of Proposition 27.9: Recall that Pn : PnX -+ X denotes the nth 
Ganea fibration (§27(c)) and that the fibre inclusion at Xo is denoted by jn 
Fn -+ PnX. Let Cxo denote the loop of length zero at Xo. 

Step 1: (OX,cxo ) is well-based. 
Choose a continuous h : X -+ I, an open set Xo E U C X and a homotopy 

reI xo, H : U x I -+ X from the inclusion of U to the constant map U -+ xo, 
such that h-I(O) = Xo and h-1([O,c:]) C U. Define a continuous function k : 
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ox ---+ I by k(-r) = C'Y + sup {h(-rt) It E [O,oo)}, C'Y denoting the length of 'Y. 
Let V C OX be the open set of loops of length < 1 that lie entirely in U. If 
'Y E V let 'Yt be the loop of length Ct given by 

{ 
H(-r(s),2t) 

'Yt(s) = 
Xo 

, O~t~!. 

!~t~I. 
{ 

C'Y C -
t - (2 - 2t)C'Y 

, O~t~!. 

!~t~I. 

Then k, V and K: (-r,t) t----t (-rt,Ct ) exhibit (nX,cxo ) as well-based. 

Step 2: The smash products (OX)/\k = OX 1\ ... 1\ OX (k times) are well-based 
and ~n(nx)"n+l ~ Fn. 

proof: If (A, ao) and (B, bo) are well-based then (A x B, A x {bo} U {ao} x B) 
is an NDR pair (Proposition 1.9). Hence A 1\ B is well-based. It follows by 
induction starting with Step 1 that (nX)/\k is well-based. On the other hand, 
Fn ~ Fn- 1 * OX, as follows from Proposition 27.6. Since Fo = OX and since for 
well-based spaces A * B ~ ~(A 1\ B) ~ A 1\ ~B we have (by induction) that 

Fn ~ (ox)*(n+l) = (OX) * (ox)*n ~ OX * ~n-l ((nX)/\n) ~ ~n ((ox)"n+l) . 

Step 3: PnX has the homotopy type of an n-cone with constituent spaces Yk = 
(nX)/\k+l. 

Recall from §27(c) that PoX = PX ~ {pt} and that PnX ~ Pn-1X Ujn_l 

CFn- 1. Choose h : ~n-l(ox)/\n -=+ Fn- 1 (Step 2) and (by induction) f : 
Pn-1X -=+ Z, where Z is an (n-I)-cone with constituent spaces Yk = (OX)/\k+1. 
Set g = fjn-lh. Then Theorem 1.13 asserts that the maps 

P X CF (f,id) Z CF (id,Ch) Z c"n-l(ll )/\n n-l Ujn_l n-l ~ Ufjn_l n-l ( U g L... HX 

are homotopy equivalences. Moreover, since ~n-l (ox)/\n is well-based 
c~n-l(ox)/\n -=+ c~n-l(ox)/\n and so, finally Pn-1X Ujn_l CFn- 1 ~ Z Uh 

c~n-l (ox)/\n, for some continuous h : ~n-l (nX)/\n ---+ Z. Since the homo
topy type of an adjunction space only depends on the homotopy class of the 
adjoining map (Lemma 1.12) we may take h to be a based map. 0 

proof of Theorem 27.10: Reduce to the case of well-based spaces (X, xo) by 
replacing X by X Ux [0, 1] and setting Xo = 1. If X is a homotopy retract of an 
m-cone P then cat X ~ catP (Lemma 27.I(v» and catP ~ m (induction using 
Lemma 27.3). Conversely, if cat X ~ m then X is a retract of PmX (Corollary to 
Proposition 27.8) which has the homotopy type of an m-cone (Proposition 27.9). 
The final assertion of the Theorem follows immediately from this equivalence.D 

(e) Cone-length and LS category: Cornea's theorem. 
The purpose of this topic is to establish Cornea's remarkable strengthening of 

Theorem 27.10: 
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Theorem 27.11 (Cornea [40j) If X is a normal topological space then 

cat X ::; m <=? X V ~Y has the homotopy type of an m-cone 
for some m - 1 connected space Y. 

Remark In fact, Cornea shows that there is an m-cone of the form X V ~my' 
and deduces that cl X ::; cat X + 1. We will not prove this refinement here since 
rationally it is immediate and since it requires a result from homotopy theory 
not included in the text. 

In proving Theorem 27.11 we shall need to identify spaces as having the ho
motopy type of n-cones. For this we shall reply heavily on the following. 

Basic Facts: 

• If (Y, A) is an NDR pair then the homotopy type of Z U f Y depends only 
on the homotopy class of f : A -+ Z (Lemma 1. 12). 

• If (Y', A') is a second NDR pair and if f : A' -+ Z' then compatible homo
topy equivalences (Z,Y,A) -+ (Z',Y',A') induce a homotopy equivalence 

Z UA Y ~ Z' UA' Y' (Theorem 1.13). 

• If (Y, A) is an NDR pair and A is contractible then the quotient map Y -+ 
YjA is a homotopy equivalence (Corollary to Theorem 1.13). 

o 

Now suppose 
q:E-+B 

is a fibration with fibre inclusion j : F -+ E at some base point bo E B. The 
key step in the proof of Theorem 27.11 is 

Proposition 27.12 Suppose B has the homotopy type of an n-cone with con
stituent spaces Yk . Then E Uj CF has the homotopy type of an n-cone whose 
kth constituent space has the homotopy type of (Yk x F) U CF. 

proof: 
Step 1: Reduction to the case that B is an n-cone. 

Let g : Z -+ B be a homotopy equivalence from an n-cone Z with constituent 
spaces Yk. Then (Z, zo) is well-based. Since B is path connected we may replace 
9 with a homotopic based map; i.e. we may assume g: (Z,zo) -+ (B,bo). 

In the pullback diagram 

Z XB E __ ---"'9E=---_ __+_. E 

j. 
Z -------9------· B 
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9E is a homotopy equivalence because 9 is (Proposition 2.3). By our second 

'Basic Fact' above, (Z XB E) Uj CF ~ EUj CF; i.e. we may assume B = Z is 
an n-cone with constituent spaces Yk . 

Write B = W U f C A where (W, wo) is an (n - 1 )-cone with constituent spaces 
Yk , k < n, (A,ao) = CEnYn,Yn) and f : (A,ao) -+ (W,wo). Let q: Ew -+ W 
be the restriction of the fibration q to W. 

Step 2: There is a homotopy equivalence of the form 

in which e : A x F -+ Ew restricts to j in {ao} x F. 
Let ('P, f) : (CA, A) -+ (B, W) be the canonical map, and use it to pull the 

original fibration back to a pair of fib rations 

(CA,A) XB E _C'-'-'P.::..E,'"-'!E=...c) .... (E,Ew) 

(",~) j j' 
(CA, A) --C'P-,f-)--' (B, W) , 

noting that ('PE, IE) is projection on (E, Ew) and (p,PA) is projection on (CA, A). 
The fibre of pat ao is just j' = {ao} x j : {ao} x F -+ CA XB E. Since CA is 
contractible, Proposition 2.3 asserts that j' is a homotopy equivalence. 

Now let pL : CA x F -+ CA and pR : CA" x F -+ F be the projections, and 
consider the (non-commutative) diagram 

CA 

We construct a new map h : CA x F -+ CA XB E such that ph = pL, 

hl{ao}XF = j' and both h and its restriction hA : A x F -+ A XB E are 
homotopy equivalences. For this we recall (Proposition 2.1) that a fibration has 
the lifting property with respect to any DR pair and in particular with respect 
to a pair of the form (Y x J, Y x {O} U Y' x J) where (Y, Y') is an NDR pair. We 
also recall (Proposition 2.3) that the pullback of a fibration over an NDR pair is 
an NDR pair. 

Choose a based homotopy H : C A x J -+ C A from the constant map C A -+ 
{ao} to ideA' Lift H 0 (pL x id r ) to a homotopy reI {ao} x F starting at j'pR. 
Define h to be the restriction of this homotopy to C A x F x {I}. Then ph = pL 
and so h restricts to hA : A x F -+ A XB F. Also h restricts to j' in {ao} x F 
and so h is a homotopy equivalence. 
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It remains to show hA is a homotopy equivalence. As above, modify an arbi
trary homotopy inverse of h to obtain a homotopy inverse h' satisfying pL h' = p. 

Let p' : CA x I -+ CA be the projection. If K is a homotopy from hh' to 
idcAXBE' then there is a homotopy reI CA XB Ex {O, I} from pK to p'(p x id I ) 

because CA is contractible. Lift this to obtain K ~ K' reI CA XE B x {O, I}. 
Then K' is a homotopy from hh' to idc A x B E and pK' = p' (p x id I ). In particular 
K' restricts to a homotopy hAh~ ~ idAxBE. Similarly, h~hA ~ idAxF. 

Now set () = fehA : A x F -+ Ew. Since (trivially) E = Ew UtE (CA XB E) 
our second 'Basic Fact' gives 

( id, h) : Ew Ue (C A x F) ~ Ew UtE (C A x B E) = E . 

Step 3: Completion of the proof of the proposition. 
Recall the notation established at the end of Step 1. Since the map h of Step 2 

restricts to j' in {ao} x F it follows that () = f E h A restricts to j : {ao} x F -+ E. 
Extend () by idcF to a map 9 : A x FU{ao} x CF -+ Ew Uj CF. By our second 
'Basic Fact' we may adjoin CF to both sides of the homotopy equivalence of 
Step 2 and still have a homotopy equivalence. This may be written in the form 

(Ew Uj CF) Ug (CA x Fu {aD} x CF) ~ EUj CF. 

By induction Ew Uj CF has the homotopy type of an (n - I)-cone, (D, do) 
with constituent spaces of the homotopy type of Yk x F U CF, k ::; n - 1. Use 
the second 'Basic Fact' to obtain 

DUg' (CA x FU{ao} x CF) ~ EUj CF, 

for a suitable map g' : A x F U {ao} x C F -+ D. Choose a well-based space F' 
of the same homotopy type of F (e.g. F' = F Uy [0, 1]). Then 

C A x F U {ao} x C F ~ C A x F' U {ao} x C F' ~ C A x F' / {ao} x F' . 

Thus our 'Basic Facts' give a homotopy equivalence of the form 

D Uk (CA x F'/{ao} x F') ~ E Uj CF , 

where k : A x F'/ { ao} x F' -+ D is a based map. 
Finally, recall (§I(f)) that the points of CA are denoted by ta, t E I, a E I. 

Define a homeomorphism C A x F'/ {ao} x F' -=+ C (A x F' / { ao} x F') by 
(ta, y) I---t t( a, y). Dividing by A x F' / {ao} x F' on the left yields a home-

omorphism 2;A x F'/ {aD} x F' -=. 2; (A x F' /{ ao} x F'). Thus 

D Uk (CA x F'/{ao} x F') = D Uk C (A x F'/{ao} x F') 

and 

A x F'/{ao} x F' = 2;n- 1Yn _ 1 x F'/{ao} x F' ==' 2;n-l (Yn-,-l x F'/{ao} x F') 
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Since Yn - 1 X F' /{ao} x F' -:::= Yn - 1 X F' U CF' -:::= Yn - 1 X F U CF, the inductive 
step is complete. 0 

proof of Theorem 27.11: If X V ~Y has the homotopy type of an m-cone 
then X is a homotopy retract of an m-cone and cat X ::; m (Theorem 27.10). 

Conversely, suppose cat X ::; m. Then there is a continuous map C7 : X -+ 
PmX such that PmC7 = idx (Corollary to Proposition 27.8). Convert C7 to the 
fibration q : X xp=x M(PmX) -+ PmX as described in §2(c). Denote X xPmx 
M(PmX) by E and denote the inclusion of the fibre of q by j : F -+ E. Since 
PmX has the homotopy type of an m-cone (Proposition 27.9) it follows that 
E Uj CF has the homotopy type of an m-cone too (Proposition 27.12). On the 

other hand, as observed in §2(c) there is a homotopy equivalence A : X ~ E 
such that qA = C7. Let A' be a homotopy inverse for A. Then APmq '" APmC7A' = 
.xN '" idE. Hence j '" .xpmqj, which is a constant map. By our first basic fact 
EUjCF -:::= EVCF/F. But CF/F -:::= ~Y for any well pointed space Y homotopy 
equivalent to F. Thus 

X V ~Y -:::= E V ~Y -:::= E Uj C F , 

and E Uj CF has the homotopy type of an m-cone. 
Finally, it is relatively easy to show that F -:::= OFm. However, here we simply 

notice that since PmC7 = idx it follows that 1f* (PmX) ~ 1f* (X) EEl 1f*(Fm). More
over 1f*(q) is an isomorphism of 1f*(E) onto the subgroup identified with 1f*(X). 
It follows that the connecting homomorphism for the fibration q maps 1f * (F m) 
isomorphically onto 1f*-l(F). Since Fm -:::= ~m(OX)l\m+I and OX is path con
nected we may conclude that Fm is simply connected and that Hi(Fm) = 0, 
1 ::; i ::; m. By the Hurewicz theorem 4.19, Fm is m-connected. Hence F and Y 
are m - 1 connected. 0 

Again, consider a fibration 

q:E-+B 

with fibre inclusion j F -+ E at some base point bo E B. From Proposi
tion 27.12 we deduce 

Proposition 27.13 If B is normal then 

cl(EUj CF) ::; clB and cat(EUj CF)::; catB. 

proof: The first assertion is immediate from Proposition 27.12. For the second, 
let cat B = m. Then B is a homotopy retract of an m-cone P (Theorem 27.10). 

If B ~ P -!:.t B satisfy r f '" id B then the homotopy lifts to a homotopy 
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h'" idE such that qh = r f. Thus we have maps of fibrations 

E (fq,h). P XB E proj. E 

q pr~ q 

B --------, P -------+. B 
f r 

which exhibit E U CF as a homotopy retract of (P XB E) U CF. Since P is an 
m-cone so is (P XB E) U CF, by Proposition 27.12, and so catE U CF::; m. 0 

Example 1 The LS category of the Ganea spaces PnX, 
Suppose X is a normal topological space with cat X = m, m < 00. We show 

that 

catPnX = -{ 
n ifn<m 

m if n 2: m. 

In fact, since Pn+1X ~ PnX U C Fn it follows that cat Pn+1 X ::; cat PnX + 
1 (Lemma 27.3). On the other hand, X is a retract of PmX (Corollary to 
Proposition 27.8) and thus cat PmX 2: cat X = m. Since PoX is contractible 
cat PoX = 0 and now the first inequality implies cat PnX = n, n ::; m. 

On the other hand, Proposition 27.13 gives catPnX ::; catX, all n. Thus 
since X is a retract of PnX, n 2: m we have cat X ::; cat PnX ::; cat X, n 2: m.O 

(f) Cup-length, c(X; k) and Toomer's invariant, e(X; k). 
The cup-length, c(X; lk), of a path connected topological space X is the great

est integer n such that there are cohomology classes Q1, ... ,Qn E H+(X;lk) 
such that Q1 U ... U Qn =I- O. Toomer's invariant, e(X; lk) is the least integer n 
for which there is a continuous map f : Z -------+ X from an n-cone Z such that 
H* (f; lk) is injective. (This invariant was introduced in a slightly different form 
by Toomer in [149].) 

Proposition 27.14 If X is a path connected normal space then for any coef
ficient ring lk, 

c(X;k)::; e(X;k)::; cat X ::; clX . 

proof: To show c(X; lk) ::; e(X; lk) it is enough to show that c(Z; lk) ::; n 
for n-cones Z. Write Z = YUh CA for some (n - 1) cone Y, choose classes 
Qo,···, Qn E H+(Z; lk) and let (3 = QoU·· ,UQn-1. Recall (§5) that the inclusion 
C*(Z, Y; lk) -------+ C*(Z; k) induces a morphism ,\ : H*(Z, Y; lk) -------+ H*(Z; lk) of 
H*(Z; k)-modules. Now by induction (3 restricts to zero in H*(Y; k) and so 
(3 = ,\(3', some (3' E H*(Z, Y; lk). Hence (3 U Qn = ,\((3' U Qn). 
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On the other hand, by excision the obvious map (cp, h) : (CA, A) -t (Z, Y) 

induces an isomorphism H* (cp, h) : H* (Z, Y; k) --=+ H* (C A, A; k). Moreover 
H*(cp, h) ((3' U O:n) = H*(cp, h)(3' U H*(CP)O:n = 0, because CA is contractible. 
Thus (3' U O:n = 0 and hence so is (3 U O:n = >..((3' U O:n). This proves that 
c(Z;lk):S: n. 

The remaining inequalities are trivial consequences of Theorem 27.10 (where, 
indeed, the third inequality is stated). 0 

Next recall the Ganea fibrations Pn : PnX -t X introduced in §27(c). 

Proposition 27.15 If (X, xo) is well-based and normal then e(X; k) is the 
least integer m (or 00) such that H* (Pm; k) is injective. 

proof: Clearly e(X; k) is less than or equal to this least integer, because PnX 
has the homotopy type of an n-cone (Proposition 27.9). On the other hand, if 
e(X;lk) = m choose a map f : Z -t X from an m-cone such that H*(f;k) is 
injective. We can suppose f is a based map because Z is well-based. (Replace 
! by a homotopic map if necessary.) 

Recall (§27(c)) that! induces continuous maps Pm! : PmZ -t PmX such that 
P:;' 0 Pm! =! 0 p:;,. Moreover, since Z is an m-cone cat Z :S m (Theorem 27.10) 
and so there is a continuous map a : Z -t PmZ such that p~ 0 a = idz . Then 
! = ! 0 p~ 0 a = P:;' 0 Pm! 0 a. Since H*(f; k) is injective so is H* (p:;'; k). 0 

Next, consider a continuous map 

! : (Y, Yo) -t (X, xo) 

between topological spaces, and recall that it induces maps 

Y-----· X 
f 

between the Ganea fibrations. If H*(f; k) is an isomorphism then clearly c(Y; k) = 
c(X; lk). However, we also have 

Proposition 27.16 Suppose X and Yare normal and simply connected, and 
let k c Q. If H*(f; k) is an isomorphism then e(Y; lk) = e(X; lk). 

Remark There can be no analogue of Proposition 27.16 for LS category. In
deed, the inclusion of the base point, xo, in the space X below is a weak homotopy 
equivalence: 
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x 

However, no neighbourhood of Xo is contractible in X and so cat X = oo! 

The main step in the proof of Proposition 27.16 is 

Lemma 27.17 Suppose I.; C Q and H * (f; 1.;) is an isomorphism. Then 
H*(Pmf; 1.;) is an isomorphism for m ~ 1. In particular if f is a weak ho
motopy equivalence so is each Pm f . 

proof: Suppose first that if hA : AI ---+ A and hB : BI ---+ B are continuous 
maps between path connected spaces, and that H*(hA;I.;) and H*(hB;I.;) are 
isomorphisms. Then the natural homeomorphism (GA x B) XAxB (A x GB) ~ 
A * B of §l(f) implies that H*(hA * hB; 1.;) is an isomorphism. 

Let Fmf : FmY ---+ FmX denote the restriction of Pmf to the fibres. Proposi
tion 27.6 provides homotopy equivalences Fm( -) :::: Fm - 1 (-) * O( -) which, with 
a little care, can be chosen to identify Fmf with Fm-t! * Of up to homotopy. 
The Whitehead-Serre theorem 8.6 asserts that H*(Of; 1.;) is an isomorphism. 
Hence so is each H*(Fmf; 1.;). 

A simple van Kampen argument shows that the join of path connected spaces is 
simply connected. In particular, it follows from Theorem 8.6 that each 7r*(Fm f)@ 
1.;, m ~ 1, is an isomorphism. Hence PmX is simply connected, m ~ 1 and 
7r * ( Pm f) @ I.; is an isomorphism (long exact homotopy sequence). A second 
application of Theorem 8.6 gives that H*(Pmf; 1.;) is an isomorphism. The final 
assertion of the lemma follows immediately from the same theorem. 0 

proof of Proposition 27.16: If 9 : W ---+ Z is a continuous map and if 
H*(g; lk) is an isomorphism then G*(g; lk) is a chain equivalence (i.e., has a chain 
inverse) and so G*(g;l.;) is a quasi-isomorphism too. In particular, H*(f;lk) 
and H*(Pmf; 1.;) are isomorphisms. Now use the construction X Ux [0,1] to 
reduce to the case f is a based map between well-based spaces. Then apply 
Proposition 27.15. 0 

Exercises 

1. Let X and Z be based path connected spaces, and suppose catZ :S m. Prove 
that every continuous map f : Z ---+ X factors up to homotopy through Pm(X). 
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2. Let X be a simply connected CW complex and Y = X U<p en. Suppose that 
cat X = m and n < 2m. Prove that catY :S catX. 

3. Prove that PI (X) ~ ~nx. 

4. A co-H-space is a space X together with a continuous map V' : X -+ X V X 
such that (idx V *) 0 V' rv idx and (* V idx) 0 V' rv idx. Prove that a based CW 
complex X is a co-H-space if and only if catX :S 1. 

5. Let X be a finite CW complex. Prove that catoX = catXp , where P is the 
complement of a finite set in the set of all prime numbers (cf. §9-exercise 5). 
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In this section the ground ring is Q. 
We begin by recalling some basic facts from §8 and §1 that will be used without 

further reference; then we introduce cato, do and eo as (geometric) invariants 
and finally outline the main results of the section, which treats rational category 
from a geometric perspective. 

Firstly, if J is a continuous map between simply connected topological spaces 
then H* (1; Q) is an isomorphism if and only if 7r. (1) C29 Q is an isomorphism 
(Theorem 8.6). In this case J is a rational homotopy equivalence. Two spaces X 
and Y have the same rational homotopy type if they are connected by a chain 
of rational homotopy equivalences in alternating directions (Proposition 9.8), in 
,vhich case ,ve write X =:::c:; Y. 

A simply connected space is rational if its homotopy groups (or, equivalently, 
its integral homology groups) are rational vector spaces. For each simply con
nected space X there is a relative CW complex (XQ' X), unique up to homotopy 
type reI X such that XQ is a rational space and X ---+ XQ is a rational homo
topy equivalence (§9(b)). vVe call such an XQI a rationalization of X. If X is a 
CW complex then so is XC):. Finally if g : X ---+ Y is any continuous map into 
a simply connected rational space Y then g extends (uniquely up to homotopy 
reI X) to a map 9C;; : Xc;; ---+ Y (Theorem 9.7). 

Definition Let X be a simply connected topological space. 
1 The rational LS category, cato X, is the least integer m such that X =:::Q Y 

and catY = m. 
2 The rational cone-length, clo X, is the least integer n such that X =::::Qi Y 

and d(Y) = n. 

3 The rational Toomer invariant, eoX, is the least integer r such that X =:::Q 
Y and e(Y: Q) = r. 

4 The rational cup length, coX, is the cup length of H*(X;Q). 

:\ote that, by definition, these are invariants of rational homotopy type. 
Among the main results of this section we establish 

• For simply connected CW complexes X, cato X = cat XIQI, clo X = d(X,Q) 
and eoX = e(X; Q). 

• For any simply connected space X, 

eoX :S cato X :S do X :S cato X + 1 . 

• (Mapping Theorem) If a continuous map f : X ---+ Y between simply 
connected spaces satisfies: 7r * (1) C29 Q is injective, then cato X :S cato Y. 

This section is organized into the following topics: 

(a) Rational L5 category. 
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(b) Rational cone-length. 

(c) The mapping theorem. 

(d) Gottlieb groups. 

(a) Rational LS category. 
Here we prove 

Proposition 28.1 If X is a simply connected CW complex, then 

(i) cato X = cat XQ. 

(ii) eoX = e(X; Q) = e(XQ; Q). 

First we need 

Lemma 28.2 Let X be a simply connected CW complex. 

(i) If f : X -t Y is a weak homotopy equivalence then cat X ::; cat Y. 

(ii) cat XiQ: ::; cat X. 
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proof: (i) Put cat Y = m. Then cat f ::; m (Lemma 27.1). Hence f factors 
as p;, 0 (J for some continuous (J : X -t PmY (Proposition 27.8). Since Pmf : 
PmX -t PmY is also a weak homotopy equivalence (Lemma 27.17) we may lift 
(J through P mf to construct a continuous T : X -t P mX such that P mf 0 T ~ (J. 

Then fop':;' 0 T ~ f and so p':;' 0 T ~ idx (Lemma 1.4). It follows (Proposition 
27.8) that cat X ::; m. 

(ii) If cat X = m then there is a map (J : X -t P mX such that 
p':;' 0 (J = id (Proposition 27.8). This extends to (JiQ : XQ -t (PmX)Q, and 
(P':;')Q 0 (JQ ~ id. 

On the other hand, let j : X -t XQ be the inclusion. A simple calculation 
(using Fm :::' I;m(nX)Am+l of Step 2 in Proposition 27.9) shows that Pm (XQ!) is a 
rational space. Hence Pm(j) extends to a continuous map Pm(j)rQ : Pm(X)Q -t 

Pm(XQ), and p':;'~ 0 Pm(j)Q ~ (P':;')IQI. Since XQ is a CW complex it follows that 

p~= 0 (JQ ~ id and cat XQ ::; m (Proposition 27.8). 0 

proof of Proposition 28.1: Suppose X :::'Q Y. Choose a weak homotopy 
equivalence Z -t Y from a GW complex Z. Then XQ and ZiQ have the same 
weak homotopy type. But these are CW complexes and so they have the same 
homotopy type. Hence cat XQ = cat ZiQ ::; cat Z ::; cat Y. 

On the other hand, Proposition 27.14 states that e(Y; Q) = e(Z; Q) and Propo
sition 27.15 identifies this as the least integer m such that H* (p;,; Q) is injective. 
Rationalizing PmZ and Z, we can replace p;, with (p;')IQI. But it follows from 
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the proof of Lemma 28.2 (ii) that if H* ( (p~) Q; Q) is injective so is H* (p:;'~; Q) . 
Thus e(XQ; Q) = e(ZQ; Q) ::; e(Z; Q) = e(Y; Q). 0 

Example 1 cato (y Xo:) = m:x {cato Xo:}. 

Here the Xo: are taken simply connected. We may suppose the Xo: are rational 
CW complexes and then the equality follows from Proposition 28.1 and the 
analogous equality for cat (introduction to §27). 0 

(b) Rational cone-length. 
As a special case of the n-cones defined in §27(d) we define spherical n-cones 

to be based spaces (P,Po) presented as {Po} = Po C PI C ... C Pn with each 
PHI = Pk Uhk CSk, where Sk has the form 

Sk = V sra+k+l, ro: ~ 0 . 
o:E':h 

(In particular any composite of n + 1 Steenrod operations vanishes in a spherical 
n-cone. Thus, although DCpoo is a I-cone, it is not a spherical n-cone for any 
n.) Notice that each Pk in a spherical n-cone is automatically simply connected. 

Proposition 28.3 

(i) If X is simply connected then do X is the least integer n such that there is 
a rational homotopy equivalence f : P --t X from a spherical n-cone, P. 

(ii) If X is a simply connected CW complex then clo X = cl(XQ). 

Lemma 28.4 If (! : X --t Q is a rational homotopy equivalence to a simply 
connected r-cone, Q, then there is a rational homotopy equivalence f : P --t X 
from a spherical r-cone, P. 

proof: Write Q = Qr => ... => Qo = {qo} with Qk+l = Qk Ugk C~kYk as in 
§27(d). 

Sublemma We may suppose each Qk is simply connected. 

proof of sublemma: It is sufficient (van Kampen) that Yo be path connected. 
Now Ql is simply connected because Q is, and so H1(Ql; Z) = 0 (Theorem 4.19). 
It follows that H1(gl) : Hl(~Yl;Z) --t Hl(~YO;Z) is surjective, since this may 
be identified with the connecting homomorphism H2 (Ql,QO;Z) --t Hl(QO;Z). 

Next, recall that Yo and Y1 are well-based with base-points Yo and Yl· Let YOo: 
and Yl{3 be base-points for the other path components of Yo and Y1 . Then the 
interval through YOo: becomes a circle in ~Yo representing a homology class vo:, 
and Hr(~Yo; Z) = E9 ZVo:, again by van Kampen and Theorem 4.19. Similarly 

0: 
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Hl(~Yl;Z) = EBZw,13 where w,13 is represented by the interval through Yl,13· In 
!3 

particular, we may choose a subset :J of path components of Y1 such that 

N ow for each YOa adjoin an interval 1 a to Yo by attaching {o} to Yo and {I} 

to YOa· This gives Yo = Y U (I] fa). Similarly, construct Y1 = Y1 U C~.J 1,13). 

Then Yo is path connected, so ~Yo is simply connected and gl extends to a 
continuous map ih : ~Yl -t ~Yo. Set Q = ~Yo UY1 C~Yl U C~2Y2 U ... U 

c~r-l Yr- 1 . Then Q is simply connected and a straight forward calculation 
shows that the inclusion Q -t Q induces an isomorphism of rational homology. 
Thus we may replace Q by Q; i.e., we may assume Yo is path connected, and 
each Qk is simply connected. D 

We now return to the proof of the lemma. Observe that it is sufficient to 
consider the case that (! is a fibration. Set X k = (!-I(Qk). Since 7r.({!) ®Q is an 
isomorphism the fibre, F, of (! satisfies 7r.(F) ® Q = O. Hence the restrictions 
(!k: X k -t Qk satisfy 7r.({!k) ®Q is an isomorphism. 

Suppose by induction on k that there is a continuous map 9 : Z -t X k with 
Z homotopy equivalent to a spherical k-cone, Pk and 7r. (g) ® Q an isomorphism. 
Again we may take 9 to be a fibration. Theorem 24.5 provides a rational homo-

topy equivalence h : Sk -t ~kYk with Sk = V Sk+l+r". Let ha = hi . 
aE.Jk Sk+l+r" 

- k 1 Ch - k Then the map CS + +r" ~ C~ Yk -t Qk+l lifts through {!k+l to a based 
map Ha : csk+l+r" -t Xk+l, and this restricts to a map ()a : sk+l+r" -t X k. 

Since 7r. (g) ®Q is an isomorphism, there is a positive integer ma with ma [()al E 
1m 7r * (g). Moreover, without loss of generality we may suppose ma = 1. (Simply 
replace h by a new map h' so that [h~] = ma[ha]; then relabel h' as h.) Then, 
since 9 is a fibration, ()a lifts to a based map aa : sk+l+r" -t Z, and we may 
construct 

[} = (g, {Ha}) : Z U{~,,} CVSk+l+r" -t Xk+l . 
a 

Since 7r*({!kg) ®Q is an isomorphism so is H*({!kg; Q). Now an easy homology 
calculation shows that the composite of [} with (!k+l is a rational homotopy 
equivalence. Hence 7r*([}) ® Q is an isomorphism, and the lemma follows by 
induction. D 

proof of Proposition 28.3: (i) Given a rational homotopy equivalence f : 
P -t X from a spherical n-cone we have clo(X) :::::; cl(P) :::::; n. Conversely, 
suppose clo(X) = n. Then there is a chain of rational homotopy equivalences 

X-t···+---Q 
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with Q an n-cone. Apply Lemma 28.4 a finite number of times to obtain a 
rational homotopy equivalence f : P -+ X with P a spherical n-cone. 

(ii) By definition do X :s: d(XQI). Moreover, if Y ~Q X and d(Y) = n then 
(Lemma 28.4) there is a rational homotopy equivalence P -+ Y from a spherical 
n-cone. Present P as {Po} c ... C Pn = P with PkH = Pk U CI:kyk , where Yk 
is a wedge of spheres. Then there is an obvious weak homotopy equivalence 

Denote the n-cone on the left by P'. Since each (P~+ l' p£) is a relative 
CW complex and since PQ -+ XQ is a weak homotopy equivalence a direct 
application of Lemma 1.4 shows that pI -+ XQ is a homotopy equivalence. Thus 
d(XQ) :s: n. It follows that d(XQ) :s: d(Y) for all Y ~Q X; i.e. d(XQ) = do X. 

Theorem 28.5 If X is a simply connected topological space then 

(i) eoX :s: cato X :s: do X :s: cato X + l. 

o 

(ii) If eoX = 1 then eoX = cato X = do X = 1 and X has the rational 
homotopy type of a wedge of spheres. 

(iii) If X is a CW complex then cato X :s: m if and only if XQ is a homotopy 
retract of an m-cone. 

proof: (i) Since the invariants are invariants of rational homotopy type we 
may suppose X is a CW complex, so that eoX = e(XQ; Q), cato X = cat XQ 
and do X = d(XQ). (Proposition 28.1 and 28.3). Now the first two inequalities 
of (i) follow from Proposition 27.14. 

For the last inequality and the proof of (iii), let cato X = m. We lose no 
generality in supposing X a rational CW complex. Then X ~ XQ and cat X = m 
(Proposition 28.1). Thus the mth Ganea fibration Pm : PmX -+ X admits a 
cross-section (J (Corollary to Proposition 27.8). 

Convert (J to a fibration E -+ PmX with fibre F, and E ~ X. In the proof 
of Theorem 27.11 we showed that 

E u CF ~ X V I:Y , 

where Y is a well-pointed space homotopy equivalent to F. Hence X ~ (E u 
CF) U CI:Y. 

On the other hand, we also showed in the proof of 27.11 that 1f*(F) ~ 
1f*H(Fm), Fm the fibre of Pm. But Fm ~ ~m (nxl\mH) by Step 2 in the 
proof of Proposition 27.9. Since the smash of path connected well-based spaces 
is simply connected (trivial) it follows that F and Yare m-connected. Finally, 
Proposition 27.9 identifies PmX as homotopy equivalent to an m-cone and so 
Eu CF also has this property (Proposition 27.13). Since X ~ (EU CF) uCI:Y, 
it follows that do X :s: d X :s: m + 1. 
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Note that we have identified X as a retract of PmX which is homotopy equiv
alent to an m-cone. 

Finally to prove (ii) suppose eoX = 1. Then the first Ganea fibration, 
I:OX -+ X, is surjective in rational homology. Since there is a rational ho
motopy equivalence from a wedge of spheres to I:OX (Theorem 24.5) the ratio
nal Hurewicz homomorphism for X is surjective and X itself has the rational 
homotopy type of a wedge of spheres (Theorem 24.5). D 

Remark As observed in §27, Theorem 28.5(i) is a special case of a theorem of 
Cornea. 

(c) The mapping theorem. 
The usefulness of rational LS category in rational homotopy theory is in large 

part due to 

Theorem 28.6 (Mapping theorem) Let f : X -+ Y be a continuous map 
between simply connected topological spaces. If 7r * (I) 0 <Q is injective then 

cato X :::; cato Y . 

proof: We lose no generality in assuming X and Yare rational CW complexes. 
Let cato Y = m and convert f to the fibration g : E = X x y MY -+ Y as de
scribed in §2(c). Then inclusion of the fibre X x y PY induces zero in homotopy, 
because 7r * (g) is injective. The homotopy equivalence E -+ X converts this 
inclusion to a fibration p : X Xy PY -+ X and so 7r*(p) = 0 and the fibre 
inclusion j : OY -+ X x y PY satisfies: 7r * (j) is surjective. 

Decompose the rational vector spaces 7rn(OY) as 7r~ EB7r~, with 7r*(j) : 7r~ ~ 
7rn (X Xy PY). Let K~ and K~ be cellular Eilenberg-MacLane spaces of types 
(7r~, n) and (7r~, n), respectively. Apply the Corollary to Proposition 16.7 to 
obtain a weak homotopy equivalence 

t.p: IlK~ x IlK~ -+ OY . 
n n 

Then setting K' = Il K~ we see that jt.p : K' -+ X x y PY is a weak homotopy 
n 

equivalence. 
Now let A : X Xy PY -+ E be the inclusion and set 

'ljJ = (id, Cjt.p) : E u>.j<p CK' -+ E u>. C(X Xy PY) . 

By Proposition 27.13, cat (E U C(X Xy PY») :::; m. Moreover, since Aj is the 
constant map, EU>.j<p CK' = Ev (CK' / K'), and this space is simply connected. 
Thus 'lj; is a weak homotopy equivalence, by an obvious homology calculation. 
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Since E V (C K' / K') has the homotopy type of a CW complex we conclude from 
Lemma 28.2 that 

cata X :S cat X < cat (E V (CK' / K')) 

< cat (E U>. C(X Xy PY)) :S m . 

o 

Corollary If f is as in Theorem 28.1 and X is a CW complex then cat fQ = 
cata X. 

proof: Let cat fQ = m and let Pm : Pm --+ YQ be the m th Ganea fibration for 
YQ. Then fQ = Pma for some continuous map a: XQ --+ Pm (Proposition 27.8). 
In particular, 7i * (a) 181 Q is injective and so 

(Proposition 28.1). But also m = cat fQ :S cat XQ by Lemma 27.1. o 

Example 1 Postnikov fibres. 
Let X be a simply connected CW complex and suppose 7ii(X) = 0, i < r. 

From Proposition 4.20 we obtain a fibration X ~ K (7ir (X), r) such that 7ir (p) 
is the identity. If Z is a CW complex mapping by a weak homotopy equivalence 

to the fibre of P then the composite Z ~ X satisfies: 7ii(f) is an isomorphism 
for i 2: r + 1. In this way we obtain a sequence of maps 

such that Xn+l is an n-connected CW complex and 7ii(gn) is an isomorphism 
for i 2: n + 1. The xn are called Postnikov fibres of X. 

Notice that we can apply the Mapping theorem to this sequence to obtain 

... :S cata Xn :S ... :S cata X2 :S cata X . 

In particular, if X has finite rational LS category, so do all its Postnikov fibres. 
o 

Example 2 Free loop spaces have infinite rational category. 
Let X be a topological space. The free loop space of X is the space X S1 of all 

continuous maps Sl --+ X (§O). We show that 

• If X is two-connected and if H+(X; Q) =1= 0 then 
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(Better results can be proved with a little more work.) 
Indeed, let e E Sl be a basepoint. Evaluation at e defines a fibration p : 

X S' -+ X whose fibre at a basepoint Xo E X is the loop space OX. The map 
s : X -+ X S' which associates to x the constant loop 51 -+ x is a cross-section 
for p, and it follows that the inclusions j : OX -+ XS' and s : X -+ XS' are 
injective in homotopy. 

Suppose catO(XS1) = m < 00. Since X is 2-connected, OX and X S' are 

simply connected. Thus Theorem 28.6 asserts that if cato(XS') = m < 00, 

cato X ::; m and cato OX ::; m. Suppose Ii : s2n;+1 -+ X and gj : S2mj -+ X 
represent linearly independent elements in 11* (X) (59 Q. Then, as in Proposi
tion 16.7, TIOli x TI9j : TI052ni +1 X TIS 2 m j -+ OX is injective in ratio-

i j i j 

nal homotopy, and so the category of this product is bounded by m. Since 
H* (OS2ni+l; q is a polynomial algebra (Example 1, §15(b)) it follows that 
1Iodd (X) (59 Q = 0 and dim 1Ieven (X) (59 Q is finite. Now X has a Sullivan model 
of the form A veven and so its cohomology is a polynomial algebra, contradicting 
cato X < 00. 0 

(d) Gottlieb groups. 
Recall (Theorem 1.4) that any based topological space (X, xo) admits a weak 

homotopy equivalence from a based CW complex (Y, Yo), called a cellular model 
for X. In particular an element ex E 1In(X) is representable by a unique based 
homotopy class of continuous maps I : (sn, *) -+ (Y, Yo). 

Definition ex E 11 n (X) is a Gottlieb element for X if (I, id) : sn V Y -+ Y 
extends to a continuous map CPt : sn X Y -+ Y. (Note that this condition is 
independent of the choices of I and of cellular model.) 

Remark Gottlieb elements were introduced by Gottlieb in [67]; however, not 
with this name! 

Given a second Gottlieb element f3 E 1Ir(X) represented by 9 : sr -+ Y we 
note that 

sn X sr X Y id X'P9) sn X Y ~ Y 

restricts to (I, g, idy ) in 5 n V sr V Y. More generally, if Ii represents a Gottlieb 
element in 1Ini (X) then (II, ... , Ik' idy ) : sn1 V ... V snk V Y -+ Y extends to 
a continuous map 

Next observe that the Gottlieb elements form a group. In fact if I, 9 : 

(sn, *) -+ (Y, Yo) then [f] + [g] is represented by (sn, *) ~ (sn V sn, *) (1,9\ 

(Y, Yo) as described in the proof of Lemma 13.6. Since (I, g, id y ) extends to a 
map sn X sn X Y -+ Y, ((I,g)j, idy) extends to sn x Y. The fact that the 
inverse of a Gottlieb element is a Gottlieb element is obvious. 
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Definition The group of Gottlieb elements in 7rn (X) is called the nth Gottlieb 
group of X and is denoted by Gn(X). (It is an invariant of weak homotopy 
type.) 

If X is simply connected the group Gn(XQI) of Gottlieb elements in XQI is 
called the nth rational Gottlieb group of X and will be denoted by G~(X). Note 
that G~(X) is a rational subspace of 7rn (X) I8i Q and contains Gn(X) I8i Q. This 
containment may be strict (see Exercise 1). 

Recall from §21(d) the definition of the rational homotopy Lie algebra Lx = 
7r.(flX) I8i Q = 7r.(flXQI)' By definition, the Lie bracket in Lx corresponds 
up to sign to the Whitehead product in 7r,(X) I8i Q under the isomorphism 
(Lx). 3:' 7r ,+1 (X) I8i Q. 

Proposition 28.7 If a. E (Lx)n corresponds to a Gottlieb element in 7r n+l (X)18i 
Q then 

[a.,,B]=O, ,B E Lx . 

proof: Let Ci E 7r n+1 (X) I8i Q be the Gottlieb element corresponding to a. and 
let 0: be represented by a map f : (sn+ 1, *) -+ (X, * ). Without loss of generality 
assume X is a rational CW complex. Then for any g : (Sk, *) -+ (X, *) the map 
(1,g) : sn+l V Sk -+ X extends to a map sn+l x Sk -+ X, which shows that 
the Whitehead product of 0: = [1] and [g] is zero (§13(d». 0 

Example 1 G-spaces. 
Suppose a topological monoid G acts on a topological space X with basepoint 

Xo. Restricting the action to {xo} x G defines a continuous map j : G -+ X 
and, essentially by definition, 

1m 7rn (j) C Gn(X) . 

In particular, 7rn(G) = Gn(G). o 

Example 2 The holonomy fibration. 
Suppose 1 : X -+ Y is a continuous map and, as in §l(c) construct the 

holonomy fibration X x y PY -+ X with fibre flY. Since the inclusion i : flY -+ 
X x y PY of the fibre extends to an action of OY it follows as in Example 1 that 

Im7rn (i) C Gn(X Xy PY), n> 1. 

Now suppose 1 is itself a Serre fibration with fibre inclusion j : F -+ X. Then 
there is a weak homotopy equivalence between X Xy PY and F which identifies 
1m 7rn (i) with ker7rn (j). It follows that 

kef7rn (j) C Gn(F), n ~ 1 . 0 

Proposition 28.8 Suppose X is a simply connected topological space of finite 
rational LS category. Then 
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(i) G~(X) is concentrated in odd degrees, and 

(ii) dimG~(X) ~ catoX. 
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proof: (i) We may assume X itself is a simply connected rational CW complex, 
and hence that G*(X) = G~(X). Suppose first that f : S2k ----+ X represents a 
non-zero Gottlieb element, and that X is (2k -I)-connected. By Theorem 4.19, 
H2k (X; Q) = 7r2dX) 0 Q = 7r2k(X). Thus there is a cohomology class w E 
H2k(X; Q) such that H*(J)w :f- O. Extend (J, ... , f, idx ) to a map cp : S2k x 
... X S2k X X ----+ X and observe that H*(cp)w = H*(J)w 0 1 0 ···0 1 + 
... + 10 ···0 H*(J)w 0 1 + 1 (9 ···01 (9 w. If we have used n-factors S2k 
then H*(cp)w n = (H*(cp)wt :f- O. It follows that wn :f- 0 for all n and hence 
catoX = 00. 

Now suppose X is only simply connected, and let X 2k ----+ X be its 2kth 
Postnikov fibre. If f : S2k ----+ X represents a non-zero element of G2k (X) then 
we may assume f S2k ----+ X2k. Apply the argument of Lemma 1.5 to the 
diagram 

S2k V X2k (f,id) • X2k 

j 
~ 

j 
S2k x X 'X 

to fill in the dotted arrow making the upper triangle commute. This identifies f 
as representing a non-zero element of G2k (X2k). 

But now the Mapping theorem 28.6 gives cato X :::: cato X 2k = 00. 

(ii) Again we may suppose X is a simply connected rational CW com
plex. Thus G~(X) = G* (X). If D:1, ... ,D:r are linearly independent elements 
of G* (X) then, as at the start of this topic we can extend representatives 
Ii : sni --+ X to a map 

cp: snl X ... X snr X X --+ X . 

Let 9 be the restriction of cp to snl X ... X snr. Then by (i) each ni is odd 
and so 7r*(sni) 0 Q = 7rni (sni) 0 Q = Q (Example I, §15(d)). It follows that 
7r * (cp) 0 Q is injective and so the Mapping theorem 28.6 asserts that cato X :::: 
catO(Snl x ... X snr). But the rational cup length of snl X ... X snr is r and so 
catO(Snl x ... X snr) :::: r. Thus catoX:::: dimG~(X). D 

Corollary Suppose j : F --+ X is the fibre inclusion of a Serre fibration 
X --+ Y, and that F is simply connected. If cato F < 00 then ker 7r * (j) 0 Q is 
concentrated in odd degrees and dim (ker 7r * (j) (9 Q) ~ cato F. 

proof: By Example 2, above, ker7r*(j) 0 Q c G*(F) (9 Q c G~(F). D 
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Example 3 Loop spaces. 
Suppose SlY is a simply connected loop space. We show that 

cato SlY < 00 {:::::::} H*(SlY; Q) = AV ,with V = Vodd and dim V < 00 . 

In fact if catoSlY < 00 then 7r*(SlY) Q9 Q = G*(SlY) Q9 Q (Example 1) and 
hence is finite dimensional and concentrated in odd degrees. Thus 7r * (Y) Q9 Q is 
finite dimensional and §16(b) asserts that SlY has a Sullivan model of the form 
(AV, 0) with V ~ 7r*(SlY) Q9 Q. 

Conversely if H*(SlY;Q) = AV as above then (AV,O) is a Sullivan model 
for SlY and 7r * (SlY) Q9 Q is a finite dimensional vector space concentrated in odd 
degrees. If Ii : S2ni +l ---+ SlY represent a basis then multiplication in SlY defines 

r 

a rational homotopy equivalence IT s2ni +1 ---+ SlY and so cato SlY = r < 00. 0 
i=l 

Exercises 

1. Prove that if a E GnX, then [a,,B] = ° for any,B E 7rkX. 

2. Let X = S3 V (Vn2: 4 sn) Un 2: 4 (Un[S3,sn]Dn+3). Prove that 7r3(X) Z, 

G3 (X) = 0, and G~(X) = Q. 

3. Let 1 : sn -+ X be a continuous map such that [I] E Gn(X), and 
Hn(f; z)([sn]) =I- 0. Prove that X has the same homotopy type as Y X sn. 

4. Let 1 : X -+ Y be a continuous map, and suppose that 7r * (f) Q9 Q is injective. 
Prove that catol = catoX. 

5. Let 1 : X ---+ Y be a continuous map such that H*(f; Q) is injective. Prove 
that eo(X) ~ eo(Y). 
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In this section the ground ring is an arbitrary field 11: of characteristic zero. 
Let X be a simply connected topological space with rational homology of finite 

type. Then the rational homotopy type of X is completely determined by its 
minimal Sullivan model (§12, §17) or by any Lie model (§24). It is thus not un
expected that we should be able to compute cIo X, cato X and eoX directly from 
these models. Recall also that a commutative model for X is any commutative 
cochain algebra connected to ApL(X) by a chain of quasi-isomorphisms (§10). 
Thus (A, d) is a commutative model for X if and only if its minimal Sullivan 
model coincides with that of X. 

Now we introduce the following 

Definition Suppose A = A2:o is a graded algebra with AO = lk. The prod
uct length of A, denoted by nil A, is the greatest integer n (or 00) such that 
A+ ..... A+ i- 0 (n factors). 

Then we prove (§29(a)) a result of Cornea's [40]: 

• cIo X :::; n ~ nil A :::; n for some rational com
mutative model (A, d) of X. 

Note that H(A, d) '=" H*(X; Q) and so the product length of H(A) is just the 
cup length c(X; Q) as defined in §27(f). Thus cIo X = n corresponds to product 
length n in a suitable cochain algebra model, while c(X; Q) = n corresponds to 
product length n in the cohomology algebra. 

Next, suppose (AV, d) is any Sullivan algebra (§12), and m 2 1. Recall that 
(A V, d) is filtered by ideals (A>m V, d) of elements of word length > m. The 
surjections em : (AV,d) --7 (AVjA>mv,d) extend to relative Sullivan models of 
the form 

(AV,d) Am. (AV0AZ(m),d) 

~+ 
(AVjA>mV,d) , 

as described in §14(a). 

Definition The LS category, cat (A V, d), is the least integer m (or 00) such 
that there is a cochain algebra morphism 'lrm : (AV0AZ(m),d) --7 (AV,d) 
such that 'lrmAm = idAv. 

The Toomer invariant, e(AV,d), is the least integer r (or 00) such that H(er) 
is injective. 

In §29(b) we then establish 
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• If (A V, d) is a rational Sullivan model for X then 

cato X = cat(A V, d) and eoX = e(AV, d) . 

We shall deduce this as a corollary of Cornea's theorem, although the result itself 
is older (with a different proof). Then we shall use this to give easy examples in 
which eoX < cato X. Notice that these results indicate a close relation between 
the topological filtration PoX C ... C PmX C ... and the algebraic filtration 
AV ::J A+V::J ... ::J A>mV::J .... 

The second result above reduces the computation of cato X to the existence 
(or non-existence) of retractions (AV®AZ(m),d) ---t (AV,d). Constructing 
such morphisms, however, is not easy, because they are required to be algebra 
morphisms. Fortunately, a magnificent theorem of Hess [90] about any Sullivan 
algebra over Jk comes to our rescue (§29(e)): 

• cat (A V, d) is the least integer m such that there is a morphism of (A V, d)
modules, 7fm : (AV ® AZ (m), d) ---t (AV, d), such that 7f mAm = idA V . 

Finally, in §29(g) we shall extend the notion of e(AV, d) to e(M, d), for any 
(AV, d)-module (M,d). In particular, we may consider the module (AV,d)ti = 
Homlk(AV, Jk) with (a· f)(b) = (_l)dega deg f f(ab), a, bE AV, f E (AV)~. If V 
is a graded vector space of finite type we use Hess's theorem to prove the recent 
result of Felix, Halperin and Lemaire [55]: 

• cat(AV,d) = e ((AV,d)ti). 

This section is organized into the following topics: 

(a) The rational cone-length of spaces and the product length of models. 

(b) The LS category of a Sullivan algebra. 

(c) The mapping theorem for Sullivan algebras. 

(d) Gottlieb elements. 

(e) Hess'theorem. 

(f) The model of (AV, d) ---t (AV/A>mv, d). 

(g) The Milnor-Moore spectral sequence and Ginsburg's theorem. 

(h) The invariants mcat and e for (A V, d)-modules. 

(a) The rational cone-length of spaces and the product length of mod
els. 

Our central result provides an algebraic description of cone-length. It reads 

Theorem 29.1 Let};; = Q. The following conditions are equivalent for a 
simply connected topological space X with rational homology of finite type: 
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(i) clo X :S n. 

(ii) nil A :S n for some commutative model (A, d) for X with AO = (Q. 

(iii) X has a free Lie model (lLv, d) with an increasing filtration 0 = V(O) C 
V(l) C ... C V(n) = V such that for each i, d: V(i) ~ lLV (i-l)· 

(iv) There is a rational homotopy equivalence P ~ X from a spherical n-cone 
whose constituent spaces are wedges of spheres with finitely many spheres 
in each dimension. 

The proof of the theorem requires one small technicality. 

Lemma 29.2 Suppose (A, d) is a commutative cochain algebra (over any k of 
characteristic zero) such that AO = k, Hl(A) = 0 and each Hi(A) has finite 
dimension. Then there is a subcochain algebra (B, d) such that: Bl = 0, each 
Bi is finite dimensional and d : B+ ~ B+ . B+ . 

proof: Choose A C A so that Al = 0, A2 EB d(Al) = A2 and Ai = Ai, i ::::: 3. 

Then (A, d) ~ (A, d) and so we may suppose Al = o. 
Suppose next that Ai is finite dimensional for i < n, and let A be the sub

algebra generated by A <n and (1m d)n. Then A is a sub co chain algebra and 
each Ai is finite dimensional. Now write An = d- 1 (An+!) EB un and choose 
C C A so that (i) C i = Ai, i < n, (ii) cn = d-1 (An+1), (iii) cn+1 ~ An+! and 
cn+1 EB dun = An+! and (iv) C i = Ai, i ::::: n + 2. Then (C, d) is a sub cochain 
algebra including quasi-isomorphically in (A, d) and C i is finite dimensional, 
i < n. 

We now construct a decreasing sequence of quasi-isomorphic inclusions of sub 
co chain algebras A ~ A(2) ::) A(3) ~ ... as follows: if A(k) is constructed so 
that Ai(k) is finite dimensional, i :S k, then A(k + 1) is a subcochain algebra 
including quasi-isomorphically in A(k) such that Ai(k + 1) = Ai(k), i :S k and 
such that among all these Ak+! (k + 1) has minimal dimension (necessarily finite 
by the argument above). Set B = n A(k) and note that Bi = Ai(k), i :S k, 

k 

so that (B, d) ~ (A, d). Note as well that for any proper sub cochain algebra 
(il, d) c (B, d) the inclusion is not a quasi-isomorphism. 

Let ( : B ~ kEBB+ / B+ . B+ be the projection and let Q(d) be the differential 
in B+ / B+ . B+. If ker Q(d) = H EB 1m Q(d) then (-1 (k EB H) is a sub cochain 
algebra including quasi-isomorphically in B. Thus (-1 (Jk EB H) = Band H = 
B+ / B+· B+; i.e., Q(d) = O. 0 

proof of Theorem 29.1: (i) =? (ii). If clo X = 1 then X ::: ~Y for a well
based space Y, and the desired conclusion is exactly Proposition 13.9. For n > 1 
we may suppose X = Y U f C Z where clo Y :S n - 1 and Z and Yare path 
connected. Let my : (AVy,d) ~ ApdY) be a Sullivan model and extend 
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APL(f)my to a Sullivan model mz : (AVy @ AV, d) -=-r APL(Z), Then the 
inclusion), : A Vy ----+ A Vy @ A V is a Sullivan representative for f. 

As usual, let A(t, dt) be the free commutative cochain algebra on genera
tors t and dt of degrees zero and one and let 101 : A(t, dt) ----+ iQl be the aug-

mentation sending t H 1. The morphisms ~ (id ®Ol define a fibre product 
A Vy x A Fy ®A F (iQle [A Vy @ A V @ A + (t, dt) l), and Proposition 13.8 identifies this 
as a commutative model for X. 

By induction there is a quasi-isomorphism of commutative cochain algebras 
(AVy,d) ----+ (B,d), where BO = iQl and nilB:S n-1. Apply B@wy - to 

obtain a quasi-isomorphism (AVy @ AV,d) -=-r (B @ AV,d) as described in 
Lemma 14.2. This identifies B XB®AF (iQlEB[B@AV®A+(t,dt)]) as a com
mutative model for X. This contains (A,d) = B xB®AV (iQle[B+@AV@ 
A+(t,dt)]EB(AV@dt)) as a sub co chain algebra. Since the inclusion ofdt in 
/\+(t,dt) nkerEl is a quasi-isomorphism, so is the inclusion of (A,d) in the fibre 
product. Thus (A, d) is a commutative model for X satisfying nil A :S n. 

(ii) =? (iii). If (ii) holds we may use Lemma 29.2 to find a commutative model 
(B, d) for X such that BO = iQl, B1 = 0, each Bi is finite dimensional, d: B+ ----+ 
B+ ·B+ and also nilB :S n. Then L(B,d) is a Lie model for X (§23(a)). Now 
L(B,d) = lLF with V = 8-1 Hom(B+,iQl). Put l(k) = B+···· ·B+ (k+1 factors) 
and dualize the sequence 

Of- B+ /1(1) f- B+ /1(2) f- ... f- B+ /l(n) = B+ 

to obtain a filtration of V. The facts that B+ ·l(k) C l(k + 1) and d: l(k) ----+ 
l(k + 1) imply that the filtration on V has the stated properties, as follows 
immediately from the definition of the differential in L(B,d). 

(iii) =? (iv). We may clearly suppose X is a CW complex. It follows at once from 
Theorem 24.7 that (lLv, d) is the Lie model of a space of the form P. This means 
that X and P have the same rational homotopy type, and so there is a weak 
homotopy equivalence XiQl -=-r PQ. Now apply Lemma 28.4 to the composite 
X ----+ PiQl. 

(iv) =? (i). This is obvious. o 

(b) The LS category of a Sullivan algebra. 
We begin by proving 

Proposition 29.3 

(i) Let (A V, d) be a Sullivan algebra. Then cat (AV, d) :S m if and only if there 



Rational LS-Category 385 

is a diagram of commutative cochain algebras 

(AV,d) ~ (A,d) ~ (C,d) 

+ 
(B,d) 

in which [3Q is a quasi-isomorphism and nil B ::; m. 

(ii) If (AV, d) and (AW, d) are quasi-isomorphic Sullivan algebras then cat(AV, d) = 
cat(AW, d). 

proof: (i) Recall the diagram at the start of this section. If cat(AV, d) ::; m, 
that diagram, together with the retraction (AV Q9 AZ(m), d) ~ (AV, d) satisfies 
the Proposition. Conversely, given such a diagram note that 'T}Q factors to yield 
,: (AV/A>mv,d) ~ (B,d) with ,Om = 'T}Q. In the diagram 

(AV,d) --"'-_. (A,d) 

'-j + 
(AV Q9 AZ(m),d) ~ (B,d) 

we may extend Q to a morphism ( : (A V Q9 AZ (m), d) ~ (A, d) such that 
'T}( ,....., ,(m reI (A V, d). Finally, in the commutative diagram 

id (AV, d) --_. (A V, d) 

'-j + 
(AVQ9AZ(m),d) -----;3( (C,d) 

we may extend idAv to a retraction 'lrm : (AV Q9 AZ(m),d) ~ (AV, d). 
(ii) This is a trivial consequence of (i). 0 

Corollary 1 Suppose for some n ~ r ~ 1 that the non-zero elements of 
H+ (A V, d) are concentrated in degrees i with r ::; i :s: n. Then 

cat (AV, d) ::; n/r . 
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proof: It is easy to construct a quasi-isomorphism (A V, d) --=+ (B, d) in which 
B+ is concentrated in degrees i, r ::; i ::; n. Then nil B ::; njr. Apply the 
Proposition. 0 

Corollary 2 nilH(AV,d)::; e(AV,d) ::; cat(AV,d) ::; nil A for any commuta
tive model (A, d) of (AV, d). In particular, if H(AV, d) is finite dimensional then 
cat (AV,d) ::; max{iIHi(AV,d) ¥ O}. 

proof: The inequalities are immediate, the first two from the definitions and 
the third from the Proposition. Finally, if H(AV, d) is zero in degrees> n then 
H(I) = 0 where I is the ideal defined by I = (Av»n EEl un, with un chosen so 
(A V) n = un EEl (ker d) n. Thus (A V, d) --+ (AV j I, d) is a quasi-isomorphism and 
cat (AV,d) ::; nil(AVjI) ::; n. 0 

Next we establish 

Proposition 29.4 Suppose (A V, d) is a rational Sullivan model for a simply 
connected space X with rational homology of finite type. Then 

cat (AV, d) = cato X and e(AV, d) = eoX . 

proof: We may suppose X is a rational CW complex, so that cato X = cat X 
(Proposition 28.1). Recall the quasi-isomorphism (m : (A V @ AZ(m), d) --=+ 
(AVjA>mv,d) defined at the start of this section. The Sullivan algebra (AV@ 
AZ(m), d) is a Sullivan model for the realization Y = IAV @ AZ(m),dl, as we 
showed in Theorem 17.10. Thus (AVjA>mV,d) is a commutative model for 
Y, which implies that clo(y) ::; m (Theorem 29.1). Since Y is a rational CW 
complex, Y has the homotopy type of an m-cone (Proposition 28.3). 

Suppose cat (AV, d) =m. Then there is amorphism 7rm : (AV@AZ(m),d)--+ 
(AV, d) such that ITmAm = id. Thus IAmilITml = idlAv,dl and IAV, dl is a retract of 
Y. Since IAV, dl ::::::Q X (Theorem 17.12) it follows that cato X::; cat IAV, dl ::; m. 

Conversely, if cato X = m then cat X = m and X is a homotopy retract of 

an m-cone P (Theorem 27.10). Let (AV,d) ~ (AVp,d) ~ (AV, d) be Sullivan 
representatives respectively for the retraction and the inclusion. Then 'ljJr.p is 
a quasi-isomorphism and hence an isomorphism (Theorem 14.11). Moreover, 
Theorem 29.1 provides a quasi-isomorphism ( : (AVp, d) --=+ (A, d) with nil A ::; 
m. Thus cat(AV, d) ~ m (Proposition 29.3). 

Finally, since eoX = e( X; Q) this is the least integer, r, such that there 
is a continuous map f of X into an r-cone such that HT(f; Q) is injective 
(Proposition 28.1). Now a simplified version of the argument above shows that 
e(AV,d)=eoX. 0 

Corollary Suppose (AV, d) is any rational Sullivan algebra with V = {ViL>2 

a graded vector space of finite type. Then the spatial realization (§ 17) IA V, dl-is 
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a rational space satisfying 

cat IAV, dl = cat(AV, d) . 

proof: According to Theorem 17.10, IAV,dl is a simply connected rational 
topological space with (AV, d) as a Sullivan model. Thus cat IAV, dl = cato IAV, dl = 
cat (AV, d), by Proposition 28.1 and Proposition 29.4 0 

Example 1 A space X satisfying coX < eoX. 
Let X be a simply connected space with Sullivan model (A(x, y, z), d) where 

degx = 3 = degy, dx = dy = ° and dz = xy. Then the cohomology algebra 
H*(X; 10) has 1, [x], [yl, [xzl, [yz] and [x][yz] as basis, and so 

coX = 2. 

On the other hand, nil (A(x, y, z)) = 3 and so 3 2: clo X 2: cato X 2: eoX. 
Finally, xyz E A3(x, y, z) represents a non-trivial cohomology class, so eoX 2: 3. 
Thus 

eoX = cato X = clo X = 3 . o 

Example 2 (Lemaire-Sigrist [111]) A space X satisfying eoX < cato X. 
Consider the commutative cochain algebra (A, d) given by 

A = A(x,y,t)/(x\xy,xt) , dx=dy=O, dt=x3 , 

with deg x = 2, deg y = 3 and deg t = 5. Evidently 

nil(A, d) = 3 . 

Thus if X is a simply connected space with (A, d) as commutative model then 

cato X :S clo X = 3 . 

A vector space basis for A+ is given by X,x2,x3,y,t,yt and so a vector space 
basis for H+(A) is given by [x], [X]2, [yl, [yt]. In particular, H(A) is concentrated 
in degrees :S 7. A minimal Sullivan model (AV, d) for (A, d) has the form m : 
A(x, y, z, t, ... ) ---t A with mx = x, my = y, mz = 0, mt = t and dz = xy; the 
remaining generators all have degree at least 7. In particular A~3V = 1kzx2 EEl 
(A~3V»7. Since zx2 is not a co cycle no cohomology class can be represented 
by a cocycle in A~3V: 

eo(X) = e(AV, d) = 2 . 

Finally, we show that cat (AV, d) > 2, thereby establishing 

clo(X) = cato(X) = cat(AV,d) = 3. 
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Thus in particular, eo(X) < cato(X). In fact, let (!: (AV, d) ~ (AVjA>2V,d) 
be the projection. If cat(AV, d) :s; 2 then there is a morphism of graded algebras 
<p: H (AVjA>2V) ~ H(AV) such that <pH((!) = id. Now t becomes a co cycle 

in AVj A>2V and so we would have [yt+x2z] ~ [y][t] 8 0. Since [yt+x2z] t------+ 

[yt] in H(A), [yt + x2 z] -=I- ° and this contradiction proves cat(AV, d) > 2. 0 

Example 3 (Dupont [45]) A space X satisfying cato X < clo X. 
Let (L, d) be the free differential graded Lie algebra L(a, b, x, y) with deg a = 3, 

degb = 5, degx = 7, degy = 11 and da = db = 0, dx = [a, a], dy = [a, x] + [b,b]. 
Let (L', d) = (L(a' , b' , x', y'), d) be a copy of L and extend L(a, b, x, y, a' ,b' , x', y') 
to the free dgl L(a, b, x, y, a', b' , x', y', a", u, u' , b", v) by requiring 

da" = [a, a']' du = [a, b'], du' = [a', b], db" = [b, b'] 

and 
dv = [[a, [b, b]], 4[a' , y'] + [x', x']] - 'Y , 

where 'Y E L( a, b, a', b' , a" , u, u' , b") has bracket length 5 and satisfies d'Y 
4 [[a, [b, bJ], [a', [b' , b']]]. 

In [45] Dupont shows that if X is a simply connected space with Lie model 
(L, d) then 

clo X = 4 and catoX = 3. 

Since the argument is lengthy and difficult, we do not reproduce it here. 0 

Example 4 Formal spaces. 
Let X be a simply connected topological space with rational homology of finite 

type. If X is formal then 

Co(X) = eo(X) = cato X = clo X . 

In fact, since X is formal H* (X) is a commutative model for X. Thus Co (X) = 
nil H* (X) 2: clo X, by Theorem 29.1. The reverse inequalities are established in 
Theorem 28.5. 0 

Example 5 Coformal spaces. 
Recall that a simply connected topological space X with rational homology of 

finite type is coformal if it has a Lie model of the form (L,O) - Example 7, §24 
(f). Equivalently X has a purely quadratic Sullivan model (AV,d1 ). We show 
for coformal spaces that 

eo(X) = cato(X) = do X . 

In fact, suppose eo(X) = r. Choose a vector space complement S for kerd1 

in Arv. Then I = SffiA>rv is an acyclic ideal and (AVjI,d) is a commutative 
model for X. Since nil(AVj I, d) = r we have (Theorem 29.1) that r 2: clo X. 
The reverse inequalities are always true, as in Example 1. 0 
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Example 6 Minimal Sullivan algebras (A V, d) with V = vodd and dim V < 00. 
r 

If (AV, d) is as in the title of the example, let l' = dim V. Then AV = E9 Ai l/, 
i=O 

dim Arv = 1 and the elements in ATV are co cycles and not coboundaries. Thus 
e(AY,d) = l' = nil(AY,d) and hence e(AV,d) = cat(AY,d) = r. 0 

Example 7 (AV,d) = A(a,b,x,y,z) with dx = a2 , dy = b2 and dz = abo 
In this example we take deg a = 2, deg b = 2, but any even degrees would do. 

Hence (AV, d) -='+ Aa/a2 ® Ab/b2 :g Az, and this commutative model (A, d) has 
nil A = 3. A non trivial cohomology class is represented by abz - xb2 and so 
e(AV,d) 2: 3. It follows that e(AV,d) = cat(AY,d) = 3. 0 

(c) The mapping theorem for Sullivan algebras. 
The Mapping theorem 28.6 for topological spaces (§28( c)) has an analogue for 

Sullivan algebras. In the case lk = Q and the spaces and algebras have finite 
dimensional cohomology in each degree Theorem 28.6 follows from the theorem 
for Sullivan algebras, which reads: 

Theorem 29.5 Suppose tp : (AV,d) ---* (AW,d) is a morphism of minimal 
Sullivan algebras with V = {Vi}i2:2 and W = {Wi}i2: 2 . 

(i) If tp is surjective then cat(AV, d) 2: cat(AW, d). 

(ii) If ther'e are l' elements of odd degree, WI,"" Wr E TV such that AW = 
1m tp. A(WI,"" w r ) then cat(AV, d) + l' 2: cat(AW, d). 

proof: (i) Extend rp to a quasi-isomorphism 7] : (AV ® AZ,d) -='+ (AW,d) 
from a minimal relative Sullivan algebra, and let f2 : (AV ® AZ, d) ---* (AZ, d) 
be the surjection obtained by setting V = O. Choose a quasi-isomorphism 'ljJ : 
(AW, d) -='+ (AV ® AZ,d) such that 7]'ljJ = id (Lemma 12.4). We first establish 

• The differential d in AZ is zero. (29.6) 

and 
• 'ljJ(A+W) C A+V:g AZ. (29.7) 

Indeed let (AV ®AV, D) -='+ lk be a minimal Sullivan model for the augmenta
tion AV ---* lk. Thus (§14(a)) f2 extends to a quasi-isomorphism (AV ® AV) ®AV 

(AV ® AZ) -='+ (AZ,d). Moreover id®7] : (AV ® AV) ®.w (AV ® AZ) -='+ 
(AV ® AV) ®.,w AW and so (AZ,d)::: AW ®AV (AV ® AV) = (AW ® AV,o). 
The linear part, 00, of 0 is the map Q ( tp) Do : V ---* W, where Q (tp) is the linear 
part of rp. 

Now (AV ® AV,D) is contractible, because it is a Sullivan algebra quasi-

isomorphic to lk (Theorem 14.9). Thus Do : V ~ V and so 00 is surjective. 
Write V = Vo 8 VI with Vo = keroo. Then recall (Example of §14(a)) that 
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the quotient differential in A V is zero. Thus a composite morphism 'Y : (A W 0 
AV,6) -+ (A V ,0) -+ (AVo,O) is defined by setting first Wand then VIto zero. 
By construction H(Q(-y)) is an isomorphism and hence 'Y is a quasi-isomorphism 
(Proposition 14.13). This shows that (AVo, 0) is a minimal Sullivan model for 
(AW 0 AV, 6). It follows that (AZ, d) ==' (AVo, 0), which proves (29.6). 

For the proof of (29.7) let A : (A V, d) -+ (AV 0 AZ, d) be the inclusion. Then 
TjA = <p = Tj'ljJ<p and so A ,...., 'ljJ<p (Proposition 12.9). Thus {lA ,...., {l'ljJ<p : (AV, d) -+ 
(AZ,O). But (lA is the augmentation in AV and so the Example in §12(b) asserts 
that {lA = {l'ljJ<p. In other words, (l'ljJ(A +W) = g'ljJ<p(A +V) = 0, which proves 
(29.7) . 

Finally, we suppose cat(A V, d) = m and deduce that cat(AW, d) ::; m. Let 

(AV, d) Am. AV0AZ(m) 7rm. (AV, d) 

~+ 
(AV/ A>mv, d) 

be as described at the start of the section. Apply - 0 AV (A V 0 AZ, d) to the 
augmentation ideals of this diagram to obtain 

--_. ([AV]+ o AZ,d) 

where the vertical arrow is a quasi-isomorphism because (A V 0 AZ, d) is (AV, d)
semifree (Lemma 14.1 and Proposition 6.7). Now (29.7) states that 'ljJ factors as 
(AW, d) -+ (lk EB [AV]+ 0 AZ, d) -+ (AV 0 AZ, d). Thus it also factors as 

(AW,d) ----+-. (lkEB[AV0AZ(m)]+0AZ,d) ---+-. (AV0AZ,d) 

~j 
(lk EB [AV/ A>mv]+ 0 AZ, d) 

Since the lower cochain algebra has product length m this is exactly the situation 
envisaged in Proposition 29.3, which therefore asserts that cat (AW, d) ::; m. 

(ii) This is proved by induction on r, the case r = 0 being precisely 
assertion (i). Assume degwI ::; ... ::; degwr . Set degwI = p and put (AZ, d) = 

(AW<P, d) 0(AV<P,d) (AV, d) = (AW<P0AV2:P, d). Then <p factors as (AV, d) ~ 
(AZ, d) ~ (A W, d) and 'ljJ is surjective. It follows that Im'ljJ' . A( WI, ... ,Wr ) = 
AW and (by assertion (i)) that cat(AV,d):::: cat(AZ,d). 
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Thus it is sufficient to prove assertion (ii) for 'ljJ'; i.e., without loss of generality 
we may and do assume that 'P is an isomorphism from AV<P to AW<p. Since 
V and Ware concentrated in degrees ~ 2, and since (AW, d) is minimal, dWI 
is a co cycle in AW<p. Extend 'P to a morphism T} : (AV 129 Au, d) -t (AW,d) 
by setting du = 'P-IdwI and T}U = WI. By induction, cat(AW,d) .:::; cat(AV 129 
Au, d) + r - 1. It remains to prove cat(AV :81 Au, d) .:::; cat(AV, d) + 1. 

For this, apply - :8IAV (AV 129 Au,d) to the diagram of Proposition 29.3(i), 
with nilB = cat(AV,d). Now B ®AV (AV 129 Au) = B:8I Au. Since degu is odd, 
nil(B ®AV (AV :81 Au)) = nilB+ 1. Since - :8IAv (AV:8I Au,d) preserves quasi
isomorphisms it follows immediately from Proposition 29.3(i) that cat(AV :81 
Au, d) .:::; nil B + 1 .:::; cat(AV, d) + 1. 0 

Example 1 e((AV,d):8I(AW,d)) = e(AV, d) + e(AW, d). 
Let (AV,d) and (AW,d) be any minimal Sullivan algebras. Then e(AV,d) is 

the least integer r such that (AV, d) -t (AV j A>rv, d) is injective in cohomology. 
Thus it is the greatest integer r such that AV::::: r contains a co cycle v representing 
a non-zero class in H (A V). 

Let s = e(AW,d) and wE A:::::sW be a co cycle representing a non-zero class in 
H(AW). Thenv®w E A:::::r+s(v®w) and [v®w]::f- 0, so e ((AV, d) :81 (AW,d)) ~ 
r + s. 

Conversely the surjection AV :8IAW -t AVj A>rv :8IAWj A>sW is injective in 
cohomology, and its kernel contains A>r+s (V EB W). Thus e (( AV, d) 129 (A W, d)) .:::; 
r + s; i.e. e ((AV, d) 129 (AW, d)) = e(AV, d) + e(AW, d). 0 

Example 2 cato X - eo X can be arbitrarily large. 
Let X be the space of Example 2, §29(b). Its minimal Sullivan model (AV,d) 

satisfies cat(AV,d) = 3 and e(AV,d) = 2, and has the form A(x,y,z,t,u,v, ... ) 
with dx = dy = 0, dz = xy, dt = x3 , du = zy, dv = Z2 - 2ux and with degx = 2, 
degy = 3, degz = 4, degt = 5, degu = 6 and degv = 7. Set u and y to zero to 
define a surjection 

(A(x,y,z,t,u,v),d) -t (A(x,z,t,v),d) 

with dx = dz = 0, dt = x3 and dv = z2; denote this quotient Sullivan algebra 
by (A W, d). Then H (A W, d) is concentrated in degrees .:::; 8 while the remaining 
elements of V have degrees at least 8. It follows that the surjection above extends 
to a surjective morphism 'P : (A V, d) -t (A W, d). Taking tensor products we 
obtain surjective morphisms 

®n'P: (Av,d)®n -t (Aw,d)®n . 

The co cycle zx2 in A3W represents a non trivial cohomology class. Thus 
e(AW, d) ~ 3 and e ((AW, d)®n) ~ 3n (Example 1). Now apply the Mapping 
theorem 29.5 to obtain 

cat (AV, d)®n ~ cat(AW, J)®n ~ e(AW, J) ~ 3n . 
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On the other hand, again by Example 1, 

e(AV,d)®n = n e(AV,d) = 2n. 

Thus if xn = X X ... x X (n factors), 

and 

(In fact, it is not too hard to show that cato(Xn) = 3n.) o 

(d) Gottlieb elements. 
A Gottlieb element of degree n for a minimal Sullivan algebra (AV, d) is a 

linear map f : vn -+ Ik that extends to a derivation () of (A V, d), that is, a 
derivation of AV satisfying ()d = (-l)nd(). The Gottlieb elements form a graded 
subspace G*(AV,d) c Hom(V,Ik). 

Now suppose X is a simply connected topological space with rational homology 
of finite type. Recall that the choice of a rational minimal Sullivan model m : 
(AV, d) -=+ APL(X) determines an isomorphism 

as follows from Theorem 15.11. 

Proposition 29.8 The dual of Vx restricts to an isomorphism (§28(d)) 

(i) G*(AV, d) ~ G*(XQ). 

(ii) If (AW, d) is any minimal Sullivan algebra with W = {WP}P~2 and cat(AW, d) 
~ m then G*(AW,d) is concentrated in odd degrees, and dim G*(AW, d) ~ 
m. 

proof: (i) Write H*(sn) = Ik EB Ike, where e E Hn(sn) is dual to the funda
mental class of sn. Any continuous map 9 : sn x XQ -+ XQ is represented by a 
morphism cp : (A V, d) -+ H* (sn) i8l (A V, d) and conversely, any such morphism 

represents a continuous map (Theorem 17.15). The maps 9 such that 91 ~ id 
x-

correspond to the morphisms cp of the form ". 

cpz = 1 i8l z + e i8l ()z , 

in which case () is automatically a derivation of degree -n in (A V, d). 
Thus f : vn -+ Q corresponds to a Gottlieb element of XQ if and only if 

f E Gn(AV,d). 
(ii) Suppose 0 i- f E G2k (AW, d), and extend it to a derivation () of 

(AW, d). Then () = 0 in AW<2k and so dividing by A +W<2k. AW we obtain a 
deri vation iJ in (A W ~ 2k ,d) restricting to f in W 2k . Choose W E W 2k so that 
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(j(w) = few) = 1. Clearly dw = 0 and (jk(Wk) = k!. Thus wk cannot be a 
coboundary and nil H(AW2:2k, d) = 00. Now apply the Mapping theorem 29.5 
to conclude cat(AW,d) ~ cat (AW2: 2k ,d) ~ nilH (AW2: 2k ,d) = 00. 

On the other hand if 0 =I f E G2n+dAW,d), extend f to a derivation 0 of 
(AW,d) and define a morphism 'P : (AW,d) -+ (Au,O) ® (AW,d) of Sullivan 
algebras by 'P : <I> t---+ 1 ® <I> + u ® 0<1> (here deg u = 2n + 1). If 'PI, ... , 'Pr 
correspond to Gottlieb elements /1, ... , fr of odd degree then form the composite 
morphism 

If the h are linearly independent then this morphism is surjective and so 
cat (AW, d) ~ cat (A(UI, ... , u r ), 0) = r. 0 

Example 1 A non-trivial Gottlieb element. 
Let (A, d) be the commutative cochain algebra defined by A = A(a, b, x, y)jabxy 

with deg a = deg b = deg x = 3 and dy = abx. The Sullivan model for (A, d) has 
the form (A V, d) = A(a, b, x, y, z, . .. ) with dz = abxy. We show that the map 
f : y t---+ 1 is a Gottlieb element for (A V, d). 

In fact extend f to a derivation 0 of (A V, d) by first setting Oz = yx. Then 
note that elements of higher degree in V have degree at least 15, while H(AV, d) 
is concentrated in degrees ::::; 11. Thus 0 extends automatically to the rest of V 
so as to satisfy Od + dO = O. 

On the other hand, suppose (AV, d) is a Sullivan model for a simply connected 
topological space X and let X -+ Y be any fibration with fibre S5. It follows 
from §15(a) and a simple calculation that the inclusion S5 -+ X is zero in 
rational homotopy. In particular the Gottlieb element f does not arise as the 
fibre of an S5-fibration. 0 

( e) Hess' theorem. 
Fix a minimal Sullivan algebra (AV,d) such that V = {ViL2:2 and fix an 

integer n. Simplify the diagram in the introduction to 

(AV, d) A. (AV®AZ,d) 

~+ 
(AVjA>mV,d) 

in particular ( is a minimal Sullivan model for g. Our goal is 

Theorem 29.9 (Hess - [gO/) Assume there is a morphism 

'f] : (AV ® AZ, d) -+ (AV, d) 



394 29 LS category of Sullivan algebras 

of (AV, d) -modules such that 1]A = id. Then there is a morphism 1]' : (AV ® 
AZ, d) ---t (A V, d) of cochain algebras such that 1]' A = id; i.e., 

cat(AV, d) ::S m . 

Remark Theorem 29.9 holds even if VI ::j:. 0 and is so stated and proved in 
[90]. We limit ourselves to the case VI = 0 because the proof is then simpler. 0 

The proof of Theorem 29.9 requires a technical result about the structure of 
(A V ®AZ, d) which we state as Proposition 29.10 immediately below. The proof, 
however, will be deferred to the next topic as only the statement is required for 
the theorem. 

Proposition 29.10 The Sullivan model (AV ® AZ, d) can be chosen so that 
((Z) = 0, Z = E9 Zp and 

p>o 

(i) d: Zp ---t 1®(A2 Z)p-I EB [q~O A>q(m-I)v ® Zp_q 1 EBA>m+p(m-I)V, p ~ o. 

(ii) The quotient differential, (1, in AZ satisfies 

p ~ 1, n ~ 1 . 

(iii) The inclusion of (AV ® (1.: EB Zo), d) in (AV ® AZ, d) is a quasi-isomorphism. 

(Here (AZ)* is the grading induced by the grading Z*.) 

proof of Theorem 29.9: Regard (AV ® (1), EB Zo), d) as a (A V, d)-bimodule 
by writing 

DeI> = (_l)deg<p degneI>D = (_l)deg<p degneI> 1\ D , eI>EAV 
DE AV ® (1), EB Zo) . 

Then define a product in AV ® (1.: EB Zo) by setting 

A simple calculation shows that this product is associative and makes 
(AV ® (1), EB Zo),d) into a commutative cochain algebra. We denote this cochain 
algebra by (A, d). It is immediate that A : (A V, d) ---t (A, d) is a morphism of 
cochain algebras as is the restriction 1]A : (A, d) ---t (AV, d) of 1]. 

We prove the theorem by constructing a morphism cp : (A V ® AZ, d) ---t (A, d) 
of cochain algebras such that cpA = A. Then 1]' = 1]ACP : (A V ® AZ, d) ---t (AV, d) 
is the desired retraction. 
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First observe (Proposition 29.10 (iii)) that ( restricts to a surjective quasi
isomorphism (A V ® (~ E8 Zo), d) ----t (A V; A>mv, d). Thus its kernel, I, satisfies 
H(I, d) = O. Moreover, since ((Zo) = 0, 1= A>mv E8 (AV ® Zo)· 

Now we construct 'P inductively to satisfy 

('P + PTJA'P) : Zp ----t I, P 2: 0 . 

First, since Zo C I we may set 'PZ = z, z E Zoo Suppose 'P is constructed in 
AV ® A (Z<p E8 z;n), and simplify notation by writing W = Z<p E8 z;n. Set 

Then Proposition 29.10 (i) asserts that dZ; C U. On the other hand, a trivial 
calculation (using the fact that 'P preserves products and restricts to the identity 
in AV) shows that ('P+PTJA'P)U C I. Thus for z E Z;, ('P+PTJA'P)dz is a cocycle 
in I. 

Since H(!) = 0 there is a linear map h : Z; ----t I such that ('P + PTJA'P)dz = 
dhz. Extend 'P to an algebra morphism 'P : AV ® A(W E8 Z;) ----t A by setting 
'Pz = hz - P~l TJAhz, z E Z;. The equations 

1 
and TJA'Pdz = --dTJAhz ,z E Z; 

p+1 

are immediate from the definitions and together give 'Pdz = d'Pz, z E Z;. Finally 
'P + PTJA'P = h : Z; ----t I. This completes the inductive step, and the proof of 
the theorem. 0 

Corollary cat(AV, d) ~ m if and only if there is a diagram of (AV, d)-module 
morphisms 

(AV, d) a • (P,d) {3 • (AV, d) 

+ (M,d) 

in which (30: = id, "I is a quasi-isomorphism and A>mv· M = O. 

proof: The definition of cat (A V, d) ~ m provides such a diagram. Conversely 
given such a diagram we may (in the notation of Theorem 29.9) factor "10: as 

(AV,d) ~ (AV;A>mV,d) ~ (M,d). Then, because (AV®AZ,d) is semifree, 
Be lifts through the morphism "I to yield a morphism of (A V, d)-modules 'P : 
(A V ® AZ, d) ----t (P, d) such that "I'P ,..., Be (as morphisms of (AV, d)-modules). 
Then "I'P>' ,..., Be>. = Bf} = "10:. Since "I is a quasi-isomorphism, 'P>' ,..., 0: (Proposi
tion 6.4(ii)). 
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Set Tj = j3<p: (A"I/ @AZ,d) -----+ (AV,d). Then TjA = j3<PA ~ j3O' = idAv. Now 
H(TjA) [1] = [1] and so TjA(l) = L Since TjA is A1l-linear, TjA = idAv . By 
Theorem 29.9 cat(AV, d) ::; m. D 

Example 1 Field extension preserves category. 
Let (A V, d) be a minimal Sullivan algebra with V = {Vi L>2' and let IK be a 

field extension of Ik. Then (A V, d) @ IK is a minimal Sullivan algebra over If{. We 
show now that 

cat(AV, d) = cat ((A"I/, d) @ IK) 

Suppose cat (( A V, d) @ IK) = m and let 

(A V, d)@IK--O'--+-.(P,d)----'-13--+-.(AV,d)@IK 

+ (M,d) 

be morphisms of (A V, d) @ IK modules as in the Corollary to Theorem 29.9. In 
particular, A >m V • M = 0 and j3O' = id. Let A : lk -----+ IK the inclusion and let 
1f : IK -----+ lk be a lk-linear map such that 1f A = id. Then the identity of (A V, d) 
factors as 

(A V, d) ~ (P, d) ~ (A V, d) , 

and "( is also a quasi-isomorphism of (AV, d)-modules. Thus the Corollary to 
Theorem 29.9 asserts that cat (A V, d) ::; m. 

Conversely, if cat(AV, d) = m we can apply - @ IK to the diagram of the 
Corollary to conclude cat «(A V, d) C2: IK) ::; m. D 

Example 2 Rational category of smooth manifolds. 
Let AI be a simply connected smooth manifold with rational cohomology of 

finite type, and let (AW,d) -----+ ADR(M) be a minimal Sullivan model for the 
cochain algebra of Coo differential forms on AI. We observe that 

cato]VI = cat(AW, d) . 

In fact, as we saw in §11, ADR(M) is connected by quasi-isomorphisms of 
commutative cochain algebras to ApL(M; Q) @ IR. Thus if (AV, d) is a rational 
minimal Sullivan model for M then (AW, d) '==' (A V, d) @ IR. It follows now from 
Example 1 (and Proposition 29.4) that cato M = cato(AV, d) = cat(AW, d). D 

(f) The model of (AV, d) -----+ (AV/ A>m V, d). 
Recall that Proposition 29.10 describes the structure of a Sullivan model 

( : (AV@AZ, d) ~ (AV/A>m1l , d) of the surjection (}, where (AV, d) is a minimal 
Sullivan algebra and V = {Vi} i>2. Here we provide the proof, beginning with 
two preliminary steps. -
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Step 1 The quadratic part of the differential. 
Let d1, be the quadratic part of the differential in A V. Construct a (A V, d1)

module, (AV 0 (Jk ffi M),dd by requiring that d1 : Mn -+ A>mv ffi (A+V 0 
M<n) and that 

ex = H(dd : M n ~ H (A>mv ffi (A+V 0 M<n)) . 

Since V = {Vi L>2 any element of degree n in A>m V ffi (A + V 0 M) has the 
form <I> = x +y +z with z E Mn, y E A+V 0 M<n-l and x E A>mv. If d<I> = 0 
then z is in the kernel of the map ex above and so z = O. Then d(x + y) = 0 
and so by construction, x + y is a coboundary in A>mv ffi (AV 0 M<n). It 
follows that H (A>mv ffi (AV 0 M), d1) = O. In particular, a quasi-isomorphism 
of (AV,d1)-modules 

~: (AV 0 (Jk ffi M),dd ~ (AVjA>mV,d1) 

is defined by ~(1) = 1 and ~(M) = o. 
Bigrade AV by putting (AV)P,* = APV. Then d1 is homogeneous of bide

gree (1,0). The inductive procedure above defines a bigradation in M : M = 
EB MP'* so that d1 is homogeneous of bidegree (1,0) with respect to the in

p>m 
d~ced bigradation in AV 0 (Jk ffi M), denoted by [AV 0 (Jk ffi M)]M. We call p 
the filter degree. 

The key observation is that M>m,* = 0; i.e., 

Lemma 29.11 M = Mm,*. 

proof: As in the Example in §14(b) extend (AV,dd to a minimal relative 
Sullivan algebra (AV 0 AV,D) with H(AV 0 AV,D) = Jk. As shown in that 
Exam pIe, D : V -+ A + V 0 A V, and the linear part of D is an isomorphism 

V ~ V of degree l. 
Filter (AV 0 AV,D) by the ideals A2:PV 0 AV. In the resulting spectral 

sequence the differential in Eo is zero and so the El -term is a Sullivan algebra 
(A V 0A V, 8) extending (A V, d1). As with D the linear part of 8 is an isomorphism 
V ~ V. It follows that (AV0AV, 8) is contractible and hence H(AV0AV, 8) = 
Jk. Note that 8 is homogeneous of bidegree (1,0) with respect to the bigradation 
(AV 0 AV)P,* = APV 0 AV. 

Next recall (Proposition 6.7) that if (N,8) is any semifree (A V, dd-module 
then -0AV N preserves quasi-isomorphisms. Thus we obtain quasi-isomorphisms 

(AVjA>mv 0 AV,8) ? [AV 0 (Jk ffi M)]0AV [AV 0 AV] -+ (Jk ffi M, 0) . 

It follows that Jk ffi M and H (AVj A>mv 0 AV, 8) are isomorphic as bigraded 
spaces. 

Finally, use the short exact sequence 
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to obtain an isomorphism H+ (AV/A>mVGSiAV,c5) ~ H(A>mVGSiAV,c5) of 
bidegree (1,0). The source is concentrated in bidegrees (p, *) with p:S m and the 
target in bidegrees (q,*) with q > m. It follows that H+ (AV/A>mVGSiAV,c5) 
is concentrated in bidegrees (m, *). 0 

Step 2 A (AV,d)-semifree resolution for (AV/A>mV,d). 
The differential d in AV satisfies: (d - dd : (AV)P,* --+ (AV)2:P+2,*, since 

(AV)P,* is just APV. We shall now extend (A V, d) to a (A V, d)-module 
(AV GSi (.k EB M), d) such that 

d - d1 : [AV GSi (.k EB M)]P,* --+ [AV GSi (.k EB M)]2:P+2,* . 

For this it is sufficient to suppose d constructed in M<n and to extend it to Mn. 
Observe first that any d-cocycle z of degree n + 2 in [A V GSi (.k EB M<n)]2: m+3 ,* is 

the d-coboundary of an element in [A V GSi (.k EB M<n)f m +2 ,*. In fact, write z = 
n+2 
L Xi, where Xi has filter degree r, some r 2: m+3. Then dz = 0 implies d1xr = 
i=r 
O. Since H (AV GSi (.k EB M), d1) is concentrated in filter degrees :S m it follows 

that Xr = d1x' with x' of filter degree r-l. In particular, x' E (A2:2V GSi Mr+l EB 
n+2 

AV c AVGSi(.kEBM<n). Now Z-dX' = L Yi with Yi of filter degree i. Continue 
i=r+l 

in this way to obtain z = du with u E [AV GSi (Jk EB M<n)]2: m+2 ,*. 
We now extend d to Mn as follows. If w E Mn then d1 w E AV GSi (.k EB 

M<n), because V = {Vi L>2' Thus d d1 w is a d-cocycle of degree n + 2 in 

[AVGSi(JkEBM<n)]2:m+3 ,*, b-ecause M = M m,*. This implies dd1w = du for 

some u E [AV GSi (.k EB M<n)]2: m+2 ,* as we observed just above. Extend d by 
setting dw = d1 W - u as w runs through a basis of Mn. 

This completes the construction of (A V GSi (.k EB M), d). Since d(M) C A>mv@ 
(AV GSi M) a morphism 

( : (AV GSi (.k EB M), d) --+ (AV/A>mv, d) 

of (AV, d)-modules is defined by (\ = g and ((M) = O. (Thus if we forget 
AV 

differentials ( coincides with the morphism ~ of Step 1). In particular filtering 
by [AV GSi (.k EB M)]2:P,* and by A2:PV/(A>mv), we obtain from ( a morphism of 
spectral sequences which at the E1-term is just 

Since ~ is a quasi-isomorphism so is (: ( is a (A V, d) semifree resolution of 
(AV/A>mV,d). 

Finally, the same argument as used in the observation at the start of the 
construction of d gives 
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Lemma 29.12 If W E [AV 0 (k EB M)f r ,* is a d-cocycle and if r 2: m then 
W = du for some u E [AV 0 (k EB M)]2: r ,*. D 

We now turn to the 

proof of Proposition 29.10: Set Zo = M, so that the (AV, d)-module of 
Step 2 is written (A V 0 (k EB Zo), d). Extend d and the quasi-isomorphism ( of 
Step 2 (uniquely) to a morphism ( : (AV 0 AZo, d) -T (AV/ A>mv, d) of co chain 
algebras. 

Next suppose by induction that this is extended to a morphism 

of cochain algebras such that ((Z<p EB Z~p) = 0 and conditions (i) and (ii) of 
the Proposition are satisfied. Simplify notation by writing W = Z<p EB z;;-n 
and extend the quotient Sullivan algebra (A W, d) to a quadratic Sullivan algebra 

(A(W EB Z;), d) by requiring that d: Z; ~ (A2W);~~ /\ ker £1. 
Let z E Z;. Then ddz = x + y with 

x E ED A>q(m-l)v 0 (A2W)p_q_l and y E ED A>m+q(m-1)v 0 Wp- q- 1 . 

q<p q<p 

The component of d(x + y) in AV 0 A3W is just (id 0 d)x. Since d(x + y) = 0 
so is (id 0 d)x = O. By (ii) of the Proposition, x = (id 0 d)x l for some Xl E 
EB A>q(m-l)v 0 Wp_q' 
q<p 

It follows that <I> = d(dz-x l ) is a co cycle in AV 0(kEB W). Thus its component 
in AV 0 W is an (id 0 d)-cocycle. By (ii) of the Proposition this component is 
in AV 0 Zoo Thus a careful inspection shows that 

Apply Lemma 29.12 to conclude that <I> = d'I! with 'I! E (A>p(m-l)V 0 Zo) EB 
A>m+p(m-l)v. Extend d by setting dz = dz - Xl - 'I! as z runs through a basis 
of Z;. Extend ( by setting ( (Z;) = O. This completes the inductive step and 
hence the construction of (AV 0 AZ,d) and of (. 

To check that ( is a quasi-isomorphism it is sufficient to establish (iii): the 
inclusion of (A V 0 (k EB Zo), d) in (AV 0 AZ, d) is a quasi-isomorphism, because 
the restriction of ( to (A V 0 (k E9 Zo), d) is a quasi-isomorphism (Step 2). 

Filter both sides by the submodules A ~pV 0 - to obtain a morphism of spectral 
sequences with Eo-term the inclusion (AV 0 (k EB Zo), 0) -T (AV 0 AZ, id 0 d). 
It is thus sufficient to show that k EB Zo ~ (AZ, d). But in view of (ii) this is 
precisely the assertion in Example 7 of §12(d). D 

(g) The Milnor-Moore spectral sequence and Ginsburg's theorem. 
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Let (A V, d) be a minimal Sullivan algebra with V = {Vi} i>2. Filtering by the 

ideals FP = A2:PV yields a spectral sequence, the Milnor-Moo-;'e spectral sequence 
for (A V, d). This spectral sequence was introduced in §23(b) where it was shown 
that 

and 
E~,q = [ExttTL(.k,lk)]p+q , 

where L is the homotopy Lie algebra of (A V, d). Moreover Eoo is just the asso
ciated bigraded algebra of H(AV,d): 

E'{;,* = FPH(AV)/FP+lH(AV) , 

where FPH(AV) is the image of H(A2:PV,d) in H(AV,d). 
On the other hand, e(AV, d) is the largest integer r such that the image of 

H(A2:rv, d) in H(AV, d) is non-zero. We restate this as 

Proposition 29.13 The Toomer invariant e(AV, d) is the largest integer r such 
that E~* (AV, d) =I- O. In particular, 

E'{;,* (AV, d) = 0 p> cat (AV, d) . 

Finally we establish the Sullivan algebra version of a theorem of Ginsburg [64], 
for which a simple proof was later given by Ganea [62]. 

Theorem 29.14 Suppose (AV, d) is a minimal Sullivan algebra and V = 
{Vi L>2. If cat(AV, d) = m then the Milnor-Moore spectral sequence collapses 
at some E l , e :::; m + 1; i.e. Em+l = Eoo. 

proof: Recall the (AV, d)-semifree resolutions 

((k) = (A V 0 (lk ffi M(k)), d) ~ (AV/ A>kV, d) 

constructed in Step 2 of §29(f). We denote AV 0 (lk ffi M(k)) simply by Q(k). 
Recall that Q(k) is bigraded with APV = (AV)P,* and M(k) = M(k)k,* (Lemma 
29.11). Moreover, it follows from the construction that d: Q(k)P,* ---+ Q(k)2:P+l,*. 

Our first step is to construct a commutative diagram of (A V, d)-modules of 
the form 

(Q(k + m), d) --+- AV/A>mHV 

, 1 l' 
~ (Q(m),d) --=--- AV/A>mv 
( 
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such that 'P: Q(k + m)P,* -t Q(m)?'P'* for all p and 'P is the identity on AV. 
(Here {!(1) = 1 !) For this it is sufficient to construct 'P in M(k + m) and we 
suppose by induction this is done in M (k + m) <n . 

Let z E M(k + m)n. Then dz E [AV Q9 (lk EB M(k + m)<n)fk+m,*. Thus 'Pdz 
is defined and 'Pdz E Q(m»k+m,*. By Lemma 29.12 we may write 'Pdz = du 
with u E Q(m)?k+m,*. Extend 'P by setting 'PZ = u. 

This completes the construction of 'P. Since ( and 'P preserve filtrations 
('P (M(k + m)) = 0 = {!( (M(k + m)) and thus the diagram commutes. 

Now suppose cat(AV,d) :::; m. Then there is a morphism TJ : (Q(m),d) -t 
(A V, d) of (A V, d)-modules extending the identity on (A V, d). In particular, 
TJ: Q(m)P,* -t A>p-mV. It follows that {!(k)'PTJ vanishes in M(k+m) and thus 
the diagram 

commutes. 

Q(m + k) _---'-'P __ • Q(m) 

,'(mH) j j" 
AVjA>kV ..... ---- AV 

Q(k) 

Finally let z E E;'*, some £ > m. Then z is represented by an element 
w E A?kV such that dw E A?kHV. To show dtz = 0 it is sufficient to find a 
co cycle Wi E A?kV such that w - Wi E A>kV. 

But since dw E A>k+mV, {!(m + k)w is a cocycle in AVjA>k+mV. Write 
{!(m + k)w = ((m + k)u for some co cycle u E Q(m + k). Then {!(k)w = {!{!(m + 
k)w = {!((m + k)u = {!(k)TJ'Pu. Thus the co cycle Wi = TJ'PU has the desired 
properties, since {!(k)w' = {!(k)w. 

This shows de = 0, £ ~ m + 1 and so Eoo = Em+!. 0 

(h) The invariants mcat and e for (A V, d)-modules. 
Fix a minimal Sullivan algebra (A V, d). This topic relies heavily on §6, often 

without explicit reference. In particular morphism means morphism of (A V, d)
module and homotopy is the relation defined at the start of §6(a). For any 
(AV,d)-module, (M,d), we may then make the following constructions: 

• a semifree resolution (P, d) ---=+ (M, d). 

• the surjections {!(k): (P,d) -t (PjA>kV .P,d). 

• homotopy commutative diagrams of (A V, d)-module morphisms, 

(P, d) __ A--,-( k-,--) __ • (P (k), d) 

~+') 
(PjA>kV.P,d) , 

where ((k) is a semifree resolution of (pjA>kV .P,d). 
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These constructions are unique 'up to quasi-isomorphism'. Indeed, if (Q, d) ~ 
(lvI, d) is a second (AV, d)-semifree resolution then there is a quasi-isomorphism 
a: (Q,d) ~ (P,d) of (AVd)-modules. Moreover 

id :8JAVa: AV/A>kV :8JAv Q ---+ AV/A>kV :8JAv P 

is also a quasi-isomorphism, and this is just the quotient map a(k) : Q / A>kV . Q 
---+ p/A>kV. P. Thus a(k) lifts to a quasi-isomorphism f3(k) : (Q(k), d) ---+ 
(P(k), d) such that ((k)f3(k) ~ a(k)((k). Automatically then A(k)a ~ 8(k)A(k). 
In particular, the following definition is independent of the choice of semi free 
resolution and constructions above: 

Definition (i) The module category of (lvI, d), mcat(lvI, d), is the least integer 
m for which there is a morphism 7) : (P(m), d) ---+ P(d) such that 7)A(m) ~ id. 

(ii) The Toomer invariant of (lvI, d), e(lvI, d), is the least integer r 
such that H({!(r)) is injective. 

Proposition 29.15 For a minimal Sullivan algebra (AVd) and any (AVd)
module, (lvI, d): 

(i) e(1v[, d) :::: mcat( lvI, d). 

(ii) mcat(lvI, d) :::: mcat(AV, d). 

(iii) If V = {ViL::O:2 then mcat(AV,d) = cat(AV,d). 

proof: (i) This is immediate from the definitions. 
(ii) Suppose mcat(AV, d) = k and construct a homotopy commutative 

diagram 
,\ 

(AV,d) ----. (N,d) 

~+ 
and a morphism 7) : (N, d) ---+ (A V, d), such that ( is a semifree resolution and 
7)A ~ id. Let (P, d) be a semifree resolution for (lvi, d), and apply - C9AV P to 
this diagram. This yields 

A' ~' 
(P, d) --_. (N:8J A V P, d) ----'------. (P, d) 

~+ 
(P/A>kV.P,d) 

with 7)' A' roy id. It follows that mcat(lvI, d) :::: k. 
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(iii) Let (: (AV®AZ,d) ---7 (AV/A>mV,d) be a minimal Sullivan 
model for the surjection e. It is in particular a (A V, d)-semifree resolution. If 
cat (AV, d) = m there is a morphism "I : (A V ® AZ, d) ---7 (A V, d) of Sullivan 
algebras restricting to the identity in (AV, d). In particular, "I is AV -linear and 
so mcat(AV, d) :Sm. 

Conversely, if mcat(A V, d) = m then there is a morphism "I : (A V ® AZ, d) ---7 

(AV, d) of (AV, d)-modules such that "I>" '" id, >.. denoting the obvious inclusion. 
But this implies H(TJ>") = id and so "1>"(1) = 1. Since "I>" is AV -linear, "I>" = id. 
Now Hess' theorem 29.9.asserts that cat(AV, d) :S m. 0 

Finally, suppose (M, d) is a (A V, d)-module. The dual (A V, d)-module, 
Hom(M, lk), of lk-linear functions is defined by 

df = - ( -1 ) deg f f 0 d and 

for f E Hom(M,lk), <I> E AV and x E M. 

Theorem 29.16 [55] Let (AV, d) be a minimal Sullivan algebra such that V = 
{Vi L22 and has finite type. Then 

cat(AV,d) = e(Hom(AV,lk),d) . 

Lemma 29.17 If a quasi-isomorphism a : (Q, d) ~ (N, d) of (A V, d) -modules 
factors as (Q,d) ---7 (N',d) ---7 (N,d), with A>rv ·N' = 0, then 

mcat(Q, d) :S r . 

proof: We lose no generality in assuring (Q, d) semifree. It follows from our 
( Ii(r) > /3 . . hypotheses that a factors as Q,d) ---'--'+ (Q/A rv ·Q,d) ---7 (N,d). ThIs YIelds 

a homotopy commutative diagram 

(Q,d) 
A 

• (Q(r), d) ." • (Q,d) 

~+C) Ii(r) + 
(Q/A>rV.Q,d) 

/3 
• (N,d) 

in which ((r) is a semifree resolution. Since aTJ>" '" (3e(r) = a and a is a 
quasi-isomorphism it follows that "I>" '" id. Thus mcat(Q, d) :S T. 0 

proof of Theorem 29.16: Denote (Hom(AV, lk), d) by (M, d). The finite 
type restriction implies that (AV,d) = (Hom(M,lk), d). Since cat(AV,d) 
mcat(AV,d) 2 e(M,d) - Proposition 29.15 - we have only to show that 

e(M, d) > mcat(AV, d) . 
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Let cp : (P, d) ~ (At, d) be a semifree resolution. Since (Hom(M, lk), d) = 

(AV, d) this dualizes to a semifree resolution Hom( cp, lk) : (A ·V, d) ~ Hom(P, lk). 
Let z = Hom(cp, lk)1 E Hom(P, lk). 
~ow suppose e(M,d) = T. Then the surjection 0: (P,d) ----t (PjA>rv.p,d) 

is injective in homology. It follows that the dual, Hom(o, lk), induces a surjection 

H (Hom (pjA>rv. P, lk)) --7-+) ) H (Hom(P, lk)) . 

In particular there is a co cycle f E Hom (Pj.A.>rv. P, lk) such that [J 0 0] = [z]. 

The quasi-isomorphism AV ~ Hom(P, lk) is given by <I> 1-----7 <I>. z. Thus it 
factors as 

(AV, d) --'=-t (Hom (pjA>rv .P,lk) ,d) Hom(Q,k\ (Hom(P,lk),d) 

where a<I> = <I>. f. Now for any 9 E Hom (Pjl\.>TY. P, lk), x E PjA>rv. P and 
'11 E A>rv we have ('11. g)(x) = ±g('11. x) = O. Thus A>rv . Hom (PjA>rv· P, lk) 
= 0 and Lemma 29.17 implies that mcat(AV, d) ::; T. 0 

Corollary Let X be a simply connected topological space with rational homol
ogy of finite type, and rational minimal Sullivan algebra (A V, d). Then 

catoX = e (Hom(AV, ((d)), d) . 

proof: Apply Proposition 29.4. o 
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Exercises 

1. Suppose that the homogeneous space M = 5p(5)/5U(5) admits a minimal 
model of the form (I\(a,b,x,y,z),d) with deg a = 6, deg b = 10, deg x = 11, 
deg y = 15, deg z = 19, da = db = 0, dx = a2 , dy = ab and dz = b2 . Compute 
catoAf. 

2. Let Y be a coformal space and X = YUrp en. Supposing catY = n > l. Prove 
that catX :S catY. 

3. Using 24.5, 24.7 and 29.5, prove that any sub Lie algebra of a free graded Lie 
algebra is free. 

4. Let X = (Cp2 V 52). Denote by 0:, (3 and 1 generators, respectively, of 
1f5(CP2), 1f2(52 ) and 1f2(Cp2). Consider the spaces Y = X U[n,iJj e7 and Z = 
Cp2 X 53. Using minimal models prove that the map 1 : Cp2 V 53 -+ Y which 
restricts to the identity on CP2 and represents the class [(3, I] when restricted 
to 53, extends, once localized, to a continuous map 1 : Zo -+ Yo such that 1f *1 
is injective. Prove that catoY = 3. Deduce that there is no mapping theorem 
for the invariants eo and for the rational cup length. 



30 Rational LS category of products and fibra
tions 

In this section the ground ring is an arbitrary field k of characteristic zero. 
Lusternik-8chnirelmann category is not well-behaved on products and fibra

tions. For example, a simple argument shows that for topological spaces Y and 
Z, 

max( cat Y, cat Z) ::; cat(Y x Z) ::; cat Y + cat Z , 

and inequalities are sharp: for each one there is a non-trivial example where 
the inequality is an equality. For general fibrations p : X ~ Y with fibre F, 
moreover, the best that can be asserted is 

° ::; cat X ::; (cat Y + 1) (cat F + 1) - 1 . 

This section analyzes the behaviour of the rational category of products and 
fibrations. For products cato behaves well: we establish the recent result with 
Lemaire [55]: Y and Z are simply connected with rational homology of finite type 
then 

cato(Y x Z) = cato Y + cato Z . 

(The case Z = sn had been established earlier by Hess [90] and Jessup [98].) 
In the case of fibrations of simply connected spaces with rational homology of 

finite type, the inequalities above remain sharp if cat is replaced by cato. With 
reasonable assumptions, however, they can be improved. For example, if F is an 
odd sphere then 

cato X ::; cato Y + 1 , 

while if cato F < 00 then 

cato X ;::: cato F - dim 0* (7r even (Y) 0 Q) , 

0* 0 Q : 7r * (Y) 0 Q ~ 7r * -1 (F) 0 Q denoting the connecting homomorphism. 
Finally, we strengthen the Mapping theorems 28.6 and 29.5 for the special case 
of a fibre inclusion. 

This section is organized into the following topics: 

(a) Rational L8 category of products. 

(b) Rational L8 category of fibrations. 

(c) The mapping theorem for a fibre inclusion. 

(a) Rational LS category of products. 
We begin with the classical 

Proposition 30.1 If Y and Z are normal topological spaces then 

max(cat Y, cat Z) ::; cat(Y x Z) ::; cat Y + cat Z . 
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proof: The first inequality follows from the fact that Y and Z are retracts 
of Y x Z (Lemma 27.1). For the second, suppose cat Y = m and cat Z = n. 
Then Y and Z are respectively retreats of an m-cone P' and an n-cone Q' 
(Theorem 27.10). We may write P' c::: P = {Po} C P1 C ... C Pm with Pk+1 = 
Pk U/k GAk, and Q' c::: Q = {qo} C Q1 C ... C Qn with Q£+l = Qe U9f GBe· It 
is clearly sufficient to prove cat(P x Q) :S m + n. 

Set (P x Q)r = U Pk x Qe. Then (P x Q)r - (P x Q)r-1 is the disjoint union 
k+£=r 

of the contractible open subsets (Pk - Pk- 1) X (Qr-k - Qr-k-d of (P x Q)r; 
thus it is contractible in (P x Q)r. Let Pk E Pk - Pk- 1 and q£ E Qf - Q£-l be 

r 

the vertices of the cones GAk and GBl and set U = (P x Q)r - U (Pk,qr-k). 
k=O 

Since (P x Q)r = ((P x Q)r - (P x Q)r-1) U U it follows that cat(P x Q)r :S 
cat U + 1. On the other hand, U deformation retracts onto (P x Q)r-1 with 
deformation H : U x I ---+ U given explicitly as follows: If (p, q) E (P x Q)r-1 
then H(p, q, t) = (p, q). If p = (a, s) E GAk and q = (b, s') E CBr- k then 
s + s' > 0 and we set 

H t _{ ((a,s(1+t-%)), (b,s'(1+t-%))) 
(p,q,)- ((a,s(1+t-f,-)), (b,s'(1+t-f,-))) 

s' :S s 

s' > s . 

Thus U c::: (P x Q)r-1 and cat U = cat(P x Q)r-1. Now we have cat(P x Q)r :S 
cat(P x Q)r-1 + 1 and hence cat(P x Q) :S n + m. 0 

The following classical example shows that the inequality of Proposition 30.1 
can be strict. Fix a prime p and let Mn(p) = sn Ufn Gsn where in : sn ---+ sn 
induces multiplication by p in homology. Clearly we may take in+1 to be the 
suspension r; in of in and so Mn+ 1 (p) c::: r; M n (p). In particular, cat Mn (p) = 1, 
n 2: 2. 

N ow if q is a second, different prime the inclusion i : M m (p) V Mn (q) ---+ 
Mm(p) x Mn(q) induces a homology isomorphism (easy calculation). Thus the 
Whitehead-Serre theorem 8.6 asserts that i is a weak homotopy equivalence. 
But these spaces are CW complexes and so i is a homotopy equivalence (Corol
lary 1.7). Thus 

Recently, Iwase [95] has constructed a 2-cell complex Y such that 

cat (Y X sn) = cat Y = 2 , 

thereby providing a considerably more dramatic example. Rationally, however, 
we have 
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Theorem 30.2 [55] 

(i) If Y and Z are simply connected topological spaces with rational homology 
of finite type then 

cato(Y x Z) = cato Y + cato Z . 

(ii) If (AV, d) and (AW,d) are minimal Sullivan algebras with V = {ViL2:2 

and W = {Wi} i2: 2 graded vector spaces of finite type then 

cat ((AV, d) ® (AW, d)) = cat (AV, d) + cat(AW, d) . 

proof: The category of the rational Sullivan minimal models for Y, Z and 
Y x Z is just the rational LS category of Y, Z and Y x Z (Proposition 29.4). 
Moreover the models for Y and Z satisfy the conditions of (ii) (Proposition 12.2) 
and their tensor product is the model for Y x Z (Example 2, §12(a)). Thus (i) 
follows from (ii) when k = Q. 

For (ii) we first let (M, d) and (N, d) be respectively any (AV, d)-module and 
any (AW, d)-module and notice that (M, d) 0 (N, d) is a (AV, d) 0 (AW, d) in the 
obvious way: (<f> 0 w) ·(m ® n) = (_l)degw degm<f>·m 0 W ·n. We show that 

e ((M, d) ® (N, d)) = e(M, d) + e(N, d) ; (30.3) 

the theorem then follows from Theorem 29.16 which asserts that cat ( -) = 
e (Hom( -, k)) for Sullivan algebras satisfying the hypotheses above. 

It remain to prove (30.3). We may suppose (M, d) and (N, d) are respec
tively (A V, d)- and (A W, d)-semifree; in this case the tensor product is obvi
ously (AV,d) ® (AW,d)-semifree. If e(M, d) = m and e(N,d) = n then the 
surjection 1i : (M, d) 0 (N, d) -+ (M / A>m V • M, d) ® (N / A>nw • N, d) is in
jective in cohomology. Since ker1i J A>m+n(V EB W) ·(M ® N) it follows 
that e ((M, d) ® (N, d)) ::; m + n. On the other hand, if u E A2:mV· M and 
z E A2:nW . N are cocycles representing non-trivial cohomology classes in H(M) 
and H(N) then u ® z E A2:m+n(V EB W) ·(M ® N) represents a non-trivial co
homology class, so e ((M, d) ® (N, d)) 2: m + n. 0 

(b) Rational LS category of fibrations. 
In this topic we consider both topological spaces and Sullivan algebras. Thus 

(30.4) 

will always denote a fibration with fibre F in which X, Y and F are simply 
connected. Similarly, 

(AV,d) -+ (AV®AW,d) (30.5) 

will always denote a minimal relative Sullivan algebra in which (A V, d) is itself 
a minimal Sullivan algebra and V and Ware concentrated in degrees:::: 2. We 
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recall from Theorem 15.3 that if ~ = Q and (30.5) is a Sullivan model for (30.4) 
then the Sullivan fibre (A W, d) is a Sullivan model for F and that the connecting 
homomorphism 0* 0 Q : 7l"*(Y) 0 Q -t 7l"*-dF) 0 Q is dual up to sign to the 
linear part of the differential do : W -t V (Proposition 15.13). Finally, in this 
case Proposition 29.4 asserts that cat(AV, d) = cato Y, cat(AV0AW, d) = cato X 
and cat (AW, d) = cato F. These results and notation will be used without further 
reference throughout this topic. 

Example 1 The relative Sullivan algebra (A(x, y), dy = xr+!) -t (A(x, y, u, v), 
dy = xr+1 , dv = un+1 - x). 

In this example we take x and u to be cocycles respectively of degrees 2 (n + 1) 
and 2. The quasi-isomorphism A(x, y) -t (Ax/xr+l, d) shows that H (A(x, y), d) 
is a commutative model for (A(x, y), d). Thus (Corollary to Proposition 29.3) 
cat (A(x, y), d) = nil (Ax/xr+!) = r. Similarly (A(u, v), d) ~ Au/un+! and 

(A(x,y,u,v),d) ~ (Au/u(r+l)(n+!),O). Thus 

cat (A(x, y, u, v), d) (n + l)(r + 1) - 1 
= (cat (A(x,y),d) + 1) (cat (A(u,v),d) + 1) -1. 

o 

Proposition 30.6 The fibration p : X -t Y (30.4) satisfies 

cat X :S (cat Y + 1) (cat F + 1) - 1 

and this inequality is best possible, even for rational spaces. 

proof: Let cat Y = m so that Y is the union of m + 1 open sets U a. each 
contractible in X. The inclusion Aa. of p-l(Ua.) in X is then homotopic to a map 

p-l(Ua.) -t F ~ X and it follows that catAa. :S catj :S catF (Lemma 27.1). 
Thus p-l(Ua.) is the union of (n + 1) open sets each contractible in X, and so 
cat X + 1 :S (cat Y + l)(cat F + 1). 

To see that this inequality can be sharp recall from Proposition 17.9 that 
spatial realization I I converts a relative Sullivan algebra to a Serre fibration. 
Thus in Example 1, IA(x, y, z, u, v), dl -t IA(x, y), dl is a Serre fibration with 
fibre IA(u, v), dl. Denote IA(x, y), dl by Y and convert this to a fibration X -t Y 
with X '::: IA(x,y,u,v),dl and fibre F '::: IA(u,v),dl. Now by the Corollary to 
Proposition 29.4 the LS category of the realization is the category of the model. 
Thus Example 1 translates to 

cat X = (r + 1) (n + 1) - 1 = (cat Y + 1) (cat F + 1) - 1 . 0 

Under reasonable hypotheses it is possible to improve considerably on Propo
sition 30.6 for rational LS category. First we have 
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Proposition 30.7 

(i) If dim W is finite and W is concentrated in odd degrees then 

cat(AV Q9 AW, d) ::; cat (A V, d) + dim W = cat(AV, d) + cat (AW, d) . 

(ii) If Ji * (F) Q9 Ql is finite dimensional and concentrated in odd degrees and if 
Y has rational homology of finite type then 

cato X ::; cato Y + dim Ji * (F) cs: Ql = cato Y + cato F . 

proof: (i) The inequality is just the Mapping theorem 29.5(ii) applied to the 
inclusion (AV, d) -t (AV Q9 AW, d). The equality dim W = cat(AW, d) is Exam
ple 6, §29(b). 

(ii) is an immediate translation of (i). 0 

Proposition 30.8 (Jessup [98]) 

(i) If H(AV Q9AW,d) H(7r) H(AW,d) is surjective then 

cat(AV Q9 AW,d) 2': cat(AV, d) + niIH(AW,d) . 

(ii) If H* (X; Ql) -t H* (F; Ql) is surjective and if Y and F have rational ho
mology of finite type then 

cato X 2': cato Y + coF . 

proof: Put H = H(AW, d) and choose a linear map a- : (H,O) -t (AVQ9AW, d) 
such that H(Ji)H(a-) = id. Then a- extends to a morphism id·a- : (AV,d) Q9 
(H,O) -t (A V Q9AW, d) of (A V, d)-modules. It preserves the filtrations (AV):>:PQ9 
Hand (A V):>:P Q9 A Wand the resulting morphism of spectral sequences is an 
isomorphism of Erterms. Thus id· a- is a quasi-isomorphism. It follows that 
there is also a quasi-isomorphism f.1: (AV Q9 AW,d) -t (AV cs: H,d) of (AV, d)
modules because (A V Q9 A W, d) is also (A V, d)-semifree. 

Suppose nil H(AW, d) = r and let w E H be the product of r cohomology 
classes in H+. Each of these is the image of a cohomology class in H+ (A V 0 
AW,d). The product of representing co cycles is thus a co cycle wE AV 0 AW 
such that f.1W - 1 Q9 w E A +V 0 H<degw. Now define AV -linear maps 

a: (AV, d) -t (AV 0 AW, d) and (id Q9 f) : (AV, d) 0 H -t (AV, d) 

by setting a( <f» = <f> • wand requiring f (w) = 1. Then (id Q9 f) f.1W = 1 and hence 

(id Q9 f) 0 f.1 0 a = idl\v . 
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On the other hand, write AV 0 AW = AZ, with Z = V EB W. Since w is the 
product of r cocycles of positive degree, w E A?r Z. Thus for any m, a; induces 
a morphism a: (AV/A>mV,d) -t (AZ/A>m+rZ,d). This leads to the diagram 

(A V, d) _---'-'-A V-'---__ • (Pv , d) 

~;/. 
(AV/A>mV,d) 

.j !3 

(AZ/A>m+rz,d) 

;/~ 
(AZ,d) ----+-. (Pz,d) 

AZ 

in which (v and (z are respectively (AV,d)- and (AZ,d)-semifree resolutions 
and AV, AZ and /3 are respectively 'homotopy lifts' of [Iv, [lz and a(v. Thus 
(z/3Av '" (zAza; as (AV, d)-linear maps; since (z is a quasi-isomorphism, /3Av '" 
Aza; (Proposition 6.4(i)). 

Finally, observe that since [w] maps to the non zero cohomology class w, [w] =I- 0 
and cat(AZ, d) ~ e(AZ, d) ~ r. Suppose cat(AZ, d) = m + r. Then there is a 
morphism TJ : (Pz , d) -t (AZ, d) of (AZ, d)-modules such that TJAZ = id. Set 
cp = (id 0 f)J..lTJ/3: (Pv , d) -t (AV, d). Then in the diagram 

(AV,d) ~ (Pv,d) -5!...- (AV,d) 

'j 
we have CPAV = (id 0 f)J..lTJ/3Av '" (id 0 f)J..lTJAza; = (id 0 f)J..lCY. = idAV. Thus 
the Corollary to Theorem 29.9 asserts that cat (AV, d) :::; m, i.e. cat(AZ, d) ~ 
cat (A V, d) + nil H(AW, d). 

This establishes (i), and (ii) is an immediate translation. D 

(c) The Inapping theoreIn for a fibre inclusion. 
In the case of a fibre inclusion the Mapping theorems 28.6 and 29.5 can be 

strengthened as follows. 
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Proposition 30.9 

(i) If cat(AW, d) < 00 then do = 0 in weven. Conversely, if do = 0 in weven, 

then 

dim 1m do :::; cat(AW, d) :::; cat(AV Q9 AW, d) + dim 1m do . 

(ii) Suppose Y and F have rational homology of finite type. If cato F < 00 

then 8* Q9 Q = 0 in 7r odd (Y) Q9 Q. Conversely, if 8* Q9 Q = 0 in 7r odd (Y) Q9 Q, 
then 

dim Im(8* Q9 Q) :::; cato F :::; dimlm(8* Q9 Q) + cato X . 

proof: Divide (AV Q9AW, d) by A2: 2V Q9 W to obtain a quotient cochain algebra 
((i1; Q9 V) Q9 AW,J). If {vd is a basis of V then J = id 0 d + ~Vi Q9 (}i and the 
(}i are derivations of (AW, d). Thus if ni = deg (}i then (}i restricts to a Gottlieb 
element fi : wn; -7 i1;. Now suppose dowi = Vi, 1 :::; i :::; T. Then !i(Wi) = 1 
and !J(Wi) = 0, j -I- i. Thus Proposition 29.8 (ii) asserts that if cat (AW, d) < 00 

then each ni is odd and r :::; cat(AW, d). It follows that do = 0 in weven 

and dim 1m do :::; cat(AW,d). The second inequality of (i) is just the Mapping 
theorem 29.5(ii). 

(ii) is an immediate translation. 0 

Example 1 Fibrations with cat X = O. 
If cat X = 0 then X is contractible. Modify the constant map PY -7 pt -7 Y 

to a fibre preserving map PY -7 X, which is (automatically) a homotopy 
equivalence and so induces a weak homotopy equivalence flY -7 F. This map 
is then a rational homotopy equivalence and so cato flY = cato F. 

Thus we have two possibilities (Example 3, §28(d)): either cato F = 00 or else 
7r * (flY) 0 Q is finite dimensional and concentrated in odd degrees. In the latter 
case, 7r * (Y) 0 Q is finite dimensional and concentrated in even degrees; thus Y 
has a Sullivan model of the form (Aveven,O). In particular, cato(Y) = 00: 

cat X = 0 ==} max (cato Y, cato F) = 00 . o 

Example 2 Fibrations with cat X = 1. 
We construct examples of fibrations with cat X = cato X = 1, and 

cato Y = n and n :::; cato F :::; n + 1 , 

for any n 2 1. For this, let Pi : Sl -7 Sf be a copy of the Hopf fibration, with 
n n n 

fibre Sf, 1 :::; i :::; n. Convert the composite map V Sl -7 n Sl -7 n Sf into 
i=l i=l i=l 

n n 

a fibration P : X -7 Y with fibre F : Y = n Sf and X c:::: V Sl. In particular 
i=l i=l 

cat X = catoX = 1, and cato Y = catY = n. 



Rational LS-Category 413 

)Jow 'if.(S~) (59 Q = Qle", EEl Qle~ with dege", = 4 and dege~ = 7 (Example 1, 
§15(d)) and e~ is in the image of 'if. (p",) (59 Q by construction. Thus each e~ E 

1m 'if. (p) (59 Q. On the other hand X is 6-connected and so 0. (59 Q is a injective 
in 'if4(Y) 0 Q. It follows that ker(o. (59 Q) = 'if7(Y) (59 Q and Proposition 30.9(ii) 
asserts that n :::: cato F :::: n + 1. 0 

When the fibration p : X -+ Y has a cross-section we obtain a lower bound 
for cato X: 

Proposition 30.10 If the fibration p : X -+ Y has cross-section then 
cato X 2': max (cato Y, cato F) = cato (Y V F). 

proof: Recall from the Example in §28(a) that max (cato Y, cato F) = cato(YV 
F). Let s : Y -+ X be the cross-section: ps = idy. Thus exhibits Y as a retract 
of X so cato Y :::: cato X and it exhibits 'if.(p) as surjective, so the inclusion 
j : F -+ Y induces an injection 'if. (j) (59 Q of rational homotopy groups. By the 
Mapping theorem 28.6, cato F :::: cato X as well. 0 

The next example shows that Proposition 30.10 is best possible. 

Example 3 Fibmtions with cato X = max (cato Y, cato F). 
For any simply connected topological spaces Y and Z convert the map 

(idy, const.) : Y V Z -+ Y into a fibration p : X -+ Y with X ~ Y V Z, 
as described in §2(c). The inclusion Y -+ Y V Z then defines a cross-section s 
of this fibration; in particular the fibre F is simply connected. 

Moreover, the inclusion Z -+ Y V Z defines an inclusion i : Z -+ F. Let 
j : F -+ X be the inclusion. Since the fibration has a cross-section, 'if. (j) (59 Q 
is injective. Since ji is homotopic to the inclusion Z -+ Y V Z, 'if. (ji) :8: Q is 
injective. Hence 'if * (i) (59 Q is also injective and the Mapping theorem 28.6 asserts 
that 

cato Z :::: cato F :::: cato X . 

Thus cato X = max (cato Y, cato Z) = max (cato Y, cato F). o 

Exercises 

1. Let F ~ X ..!+ Y be a fibration in which X, Y and F are simply connected. 
Prove that catX :::: (cat i + 1) . (cat p + 1) - 1. 

2. Let X be a simply connected space and let p be a prime number. Consider 
the A100re space _Mn(p) = sn Up en+1 . Prove that if X is a rational space, the 
inclusion X V Mn(p) -+ X x Mn(p) is a homotopy equivalence. Supposing that 
H+(X; Q) =J O. Prove that cat(X x Mn(p)) =J cat(X) + cat(Mn(p)). 

3. Let F ~ X -+ Y be a fibration in which X, Y and F are simply con
nected. Suppose that dimH>n(F; Q) = 0, and that there exists an element 
wE Hn(x; Q) such that Hn(i)(w) =J o. Prove that cato(X) 2': cato(Y) + 1. 
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4. Let f : X -+ Y be a continuous map between simply connected CW complexes 
of finite type. Suppose that 7r2n(f) ® Q is injective for n ~ 2. Prove that 

catof::; catoX::; catof + dim (ker7rodd (f) ® Q) . 



31 The homotopy Lie algebra and the holonomy 
representation 

In this section the ground ring is an arbitrary field .k of characteristic zero. 
Recall from §21(d) that the homotopy Lie algebra, Lx, of a simply connected 

topological space X is the graded vector space 7r * (OX) Q9 lk, equipped with 
a Lie bracket defined via the Whitehead product in 7r*(X). In particular, (cf. 
Example 2, §21) each x E Lx determines the linear transformation adx : Lx ---+ 
Lx, given by 

adx: y r----+ [x,y] , y E Lx . 

In this section (Theorem 31.17) we show that 

• If cato X < CXl then for each non-zero x E (Lx )even of sufficiently large de
gree there is some y E Lx such that the iterated Lie brackets 
[x, [x, [x, ... [x, y] . .. ]]] are all non-zero. 

A linear transformation rp : V ---+ V in a graded vector space is called locally 
nilpotent if for each v E V there is an integer n(v) such that rpn(v)v = 0, and 
an element x in a graded Lie algebra is called an Engel element if ad x is locally 
nilpotent. Thus we may restate the result above as: if cato X < CXl then the non
zero Engel elements in (Lx )even are concentrated in finitely many degrees. In 
particular, if cato X < CXl and if (dim Lx )even is infinite then Lx is not abelian. 
We shall use this to show cato X = CXl in an example in which eo(X) = 2 and 
the Milnor-Moore spectral sequence for X collapses at the E 3-term. 

The theorem above follows as a special case of a theorem of Jessup [99], which 
will be our principal objective in this section. For this we consider a Serre 
fibration 

p:X---+Y 

with fibre F at a basepoint Yo E Y, and such that Y is simply connected with 
rational homology of finite type. Associated with this fibration is a right repre
sentation (§23(c)) of the homotopy Lie algebra Ly in H*(F;lk), the holonomy 
representation for this fibration. 

This representation, which is an important invariant of the fibration, is con
structed as follows from the space X Xy PY of §2(c). First, the right ac
tion of OY on X Xy PY makes H* (X Xy PY;lk) into a right H*(OY;lk)
module as described in §8(a). Second, there is a natural weak homotopy equiv
alence j : F ---+ X Xy PY (Proposition 2.5) and we use the isomorphism 
H*(j; lk) to identify H*(F; lk) as a right H*(OY; lk)-module. Finally, since 
H*(OY;lk) = ULy (Milnor-Moore Theorem 21.5) the action of H*(OY;Jk) in 
H*(F; Jk) restricts to a right representation of Ly. 

Definition This representation of Ly in H*(F; lk) is the holonomy represen
tation for the fibration p : X ---+ Y. 
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Observe now that any x E Ly determines two linear transformations: 

adx: Ly ---7 Ly and hI x: H*(F;lk) ---7 H*(F;lk) , 

where hI x is simply the restriction of the holonomy representation to x. Jes
sup's theorem asserts that if X and F are also simply connected with rational 
homology of finite type then: 

• If 1r * (p) @ k is surjective and if there are r linearly independent elements 
Xi E (L y )even such that ad Xi and hI Xi are both locally nilpotent, then 

cato X 2: cato F + r . 

Jessup's theorem is proved by a careful analysis ofthe holonomy representation 
in terms of the Sullivan model of the fibration p : X ---7 Y. For this we first 
introduce the holonomy representation for an arbitrary minimal relative Sullivan 
algebra 

(A V, d) ---7 (A V @ AW, d) 

in which V = {ViL>2 and W = {WiL>2 are graded vector spaces of finite type 
and (AV, d) is itself a minimal Sullivan algebra. 

Recall that the homotopy Lie algebra L of (AV, d) is the graded Lie algebra 
defined by 

V = Hom(sL, lk) and (AV, dd = C*(L) , 

where d1 is the quadratic part of the differential din AV (§21(e) and Example 1, 
§23(a)). Now filter (AV@AW,d) by the ideals FP = A~PV @AW to obtain a 
first quadrant spectral sequence (Ei' 8i ). Its Eo-term is just 

(Eo, 80 ) = (AV@AW,id@d), 

d denoting the quotient differential in A W, and so the E1 -term, (E1' (h), is a 
(AV, d1 )-module of the form 

(E1 ,8d = (AV@H(AW,d),(h) 

in which 81 : H(AW, d) ---7 V @ H(AW, d). Thus (cf. (23.6)) a right representa
tion of the homotopy Lie algebra L in H (A W, d) is defined by 

a-x = (_1)deg a+deg x(81 (1 @a),sx), a E H(AW,d), x E L . 

Definition This representation of Lin H(AW, d) is the holonomy representa
tion for the relative Sullivan algebra (AV,d) ---7 (AV @AW,d). 

Now suppose the relative Sullivan algebra (AV @ AW,d) is a model for the 
fibration p : X ---7 Y, as in (15.4). This determines a quasi-isomorphism 
(AW,d) ---=+ APL(F), and so identifies H(AW,d) = H*(F;lk). On the other 
hand, Theorem 21.6 identifies L with L y , so that the holonomy representation 
for the fibration is a right representation of Lin H*(F; lk). In Theorem 31.3 we 
show that 
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• The holonomy representations of Lin H(AW, d) and in H.(F;k) are dual 
up to sign. 

This permits the translation of hypotheses on the holonomy representation of 
Ly in H.(F; k) into conditions on the differential in the Sullivan model (A V 0 
AW,d) where they can be applied, in particular, to prove Jessup's theorem. 

An important aspect of the holonomy representation for any relative Sullivan 
algebra (A V, d) --t (A V 0 A W, d) is that it can be expressed in terms of deriva
tions of the quotient Sullivan algebra (AW,d), (a derivation 0 in a differential 
graded algebra (A,dA) is a derivation in A such that OdA = (-l) deg OdAO). More 
precisely, if Vi is a basis of V, derivations Oi of (AW, d) are defined by 

Thus by definition the spectral sequence differential 151 H(AW, d) --t V 0 
H(AW,d) is given by J1 [<I>] = 2: Vi 0 H(Oi)[<I>]. It follows that if Xj is the dual 

i 

basis of L «(Vi; SXj) = 1 or 0 as i = j or i ¥- j), then 

(31.1) 

Formula (31.1) expresses the holonomy representation for the relative Sullivan 
algebra in terms of the derivations H(Oi)' However, the derivations Oi themselves 
carry more information. For example, if V = kv and deg V is odd then the entire 
differential in Av 0 A W is given by 

dv = 0, and d(10 <I» = 10 d<I> + V o o <I> , <I> E AW . 

In particular, any derivation 0' of (AW, d) with deg 0' = 1 - deg v determines a 
relative Sullivan algebra Av --t (Av 0 AW, d') by the formula d' = 10 d + v 0 0'. 

Note as well that (in general) the holonomy representation is characterized by 

(AV 0 H(AW, d), 151 ) = C' (L; H(AW, d)) 

(cf. §23(c)). In particular, the spectral sequence above converges from 

E2 = ExtuL (k, H(AW, d)) ====> H(AV 0 AW, d) . 

This section is organized into the following topics 

(a) The holonomy representation for a Sullivan model. 

(b) Local nil potence and local conilpotence. 

(c) Jessup's theorem. 

(d) Proof of Jessup's theorem. 

(e) Examples. 
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(f) Iterated Lie brackets. 

(a) The holonomy representation for a Sullivan model. 
Consider a Serre fibration p : X --7 Y with fibre inclusion j : F --7 X, 

and such that F, X and Yare simply connected and have rational homology of 
finite type. Let'\: (AV,d) --7 (AV Q9 AW,d) be a minimal relative Sullivan 
algebra that is a minimal Sullivan model for the fibration in the sense of (15.4); 
in particular we have the commutative diagram 

ApL(Y) APL(p) 
• APL(X) • APL(F) 

m+ + + - m (31.2) 

(AV, d) 
oX 

• (AV Q9 AW, d) • (AW, d) , 

in which my and m are minimal Sullivan models and m is a Sullivan model. 
Use H(m) to identify H(AW, d) = H*(F; lb) = Hom (H*(F; lb), lb), and use 

Theorem 21.5 to identify the homotopy Lie algebra L y for Y with the homotopy 
Lie algebra L for (AV, d). Recall the two holonomy representations of L, one in 
H(AW, d) and one in H*(F; lb), defined in the introduction to this section. 

Theorem 31.3 These two representations are dual (up to sign): 

(a,x,{3) = _(_l)deg xdeg .B(a,{3.x) , a E H(AW, d), (3 E H*(F;Jc), 
xEL. 

proof: As in §16(b) we may apply the construction in §15(a) to the path space 
fibration q : PY --7 Y to obtain a commutative diagram 

ApdY) ApL(q) • APL(PY) • APL(OY) 

m+ + -1 _ n 

(AV, d) • (AVQ9AV,d) • (AV, 0) 

of Sullivan models. Now consider the pullback diagram of OY -fibrations 

X x y PY __ -=9'--_+_. PY 

j 
X ------::-p---. Y. 
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Diagram (31.2) provides a Sullivan model m: (AV 0 AW,d) ~ APL(X) and 
a Sullivan representative for p, A: (AV,d) ~ (AV 0 AW,d), such that mA = 
Apdp)my. We may therefore, as in §15(a), construct 

Moreover, Proposition 15.8 asserts that ~ is a Sullivan model of the form 

~: (AV 0 AW 0 AV,d) ~ APL(X Xy PY) . 

(Note that AV 0 AW and AV 0 AV are sub cochain algebras.) 
Next consider the composite Serre fibration po f : X Xy PY ~ Y. The fibre 

at Yo is F x OY and the inclusion of the fibre is the continuous map 

a: F x OY ~ X Xy PY , a:(z,I')~(jz).I', zEF,I'EOY. 

A straightforward check shows that in this case diagram (15.4) has the form 

APL(pof) ApdX Xy PY) __ A--=.p..::.L-,--(a-,-) --+-. APL(F x OY) 

+ + .. (31.4) 

(AV,d) - (AV0AW0AV,d) --"-.i-d-' (AW, d) 0 (AV,O). 

Let U be a cocycle in (AW, d) representing a E H*(F; 1c). If 0 : AW ~ 
V 0 AW is the map defined by diP - 10 diP - 0<p E A~2V 0 AW, then by 
definition H (0) = (h and 

a. x = (_l)deg a:+deg x (H(0)a; sx) . (31.5) 

On the other hand, the weak homotopy equivalence j : F ~ X x y PY is 
represented by the surjective quasi-isomorphism c . id . c : (A V 0 A W 0 A V, d) ~ 
(AW, d). Let W E AV 0 AW 0 AV be a cocycle that maps to u. Then it follows 
from diagram (31.4) that for (3 E H*(F;1c), 

(a, (3. x) (H*(a)H* (j)-Ia, (30 hur(x) 

(H(c· id)[w], (30 hur(x) . 

But by construction we may write 

w = 1 0 u 0 1 + WI 0 1 + L 1 0 Ui 0 Vi + <P 

where WI E V 0AW, Ui E AW, Vi E V and <P E A~2(V EB V). Aev 0AW 0AV). 
From dw = ° we deduce that {lUi = ° and hence that 

(a,(3·x) = (-l)deg ,Bdeg x2:)[ui],(3}([vi],hur(x). 
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Furthermore, if do : V ~ V is the linear part of the differential in A V IZi AV we 
also deduce from dw = 0 that 0u + (id IZid)W1 + L( _l)degu i degvidovi IZi Ui = O. 

Thus (31.5) becomes 

(O' o x,!3) = - L(doVi;SX)([Ui],!3) . 

Finally, recall that L =-' L y = 7f*(flY) IZi lk and that sLy is identified with 
7f*(Y) IZi lk via sx = _(_l)degx O;lX, where O. is the connecting homomor
phism of the path space fibration (§21 (e)). Thus the formula in the proof of 
Proposition 15.13 becomes (dOVi; sx) = (w x) = ([Vi), hur(x)), where (O',!3 0 x) = 
_(_l)degjJ deg X(O' o x,!3). 0 

Again suppose p : X -+ Y is a Serre fibration with fibre F, and with X, Y and 
F simply connected and having rational homology of finite type. The holonomy 
representation of the homotopy Lie algebra L y in the homology H* (F; lk) of the 
fibre is an important measure of the non-triviality of the fibration: the holonomy 
representation for the product fibration is trivial. More generally we have 

Proposition 31.6 Let p : X -+ Y be a Serre fibration with fibre F, and sup
pose Y is simply connected with rational homology of finite type. If H*(X; lk) -+ 
H*(F; k) is surjective then the holonomy representation of L y in H.(F; k) is 
trivial. 

proof: Let (AV IZi AW, d) be a minimal Sullivan model for the fibration as 
in (15.4). Then for any cohomology class a E H(AW,d) there is a d-cocycle 
'l1 E A V IZi A W of the form 'l1 = 1 IZi 'l1 0 + 'l11 + . .. such that 'l1 i E Ai V IZi A W 
and 'l10 is a d-cocycle representing o'. 

As in the introduction, choose a basis Vi of V and define derivations ei of 
(A W, d) by d(llZi <p) - 11Zi d<p - I:vi IZi ei<P E A2':2V IZi AW. Then (formula (31.1)) 
the holonomy representation in H(AW, d) is given by a 0 Xi = ±H(ei)O', where Xi 
is the dual basis of the homotopy Lie algebra L of (A V, d). Here we have d'l1 = 0 
and so I:Vi IZi B;'l1o = -rid IZi d)'l1 1 . Thus each H(Bi) 0 and the holonomy 
representation in H*(F; k) is trivial (Theorem 31.3). 0 

(b) Local nilpotence and local conilpotenceo 
Recall that a linear map , : AI -+ M in a graded vector space is locally 

nilpotent if every v E M is in the kernel of some power ~/ of ,. \Ye shall make 
frequent use of the dual notion: 

Lemma 31.7 Suppose (J" : M -+ 1',11 is a linear map of non-zero degree in a 
graded vector space M = {MP} pEZ of finite type. Then the following conditions 
are equivalent: 

(i) The dual linear map in Hom(M, k) is locally nilpotent. 
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(ii) For each p there is an integer k(p) such that MP n 1m (Jk(p) = o. 

(iii) If (wkk?o is an infinite sequence of elements of M such that (JWk+l = Wk, 
k 2 0 then Wk = 0, k 2 o. 
00 

(iv) n Im(Jk =0. 
k=O 

Definition A linear transformation of non-zero degree in a graded vector 
space of finite type is called locally conilpotent if it satisfies the conditions of 
Lemma 31.7. 

proof of Lemma 31. 7: (i) {:::::::} (ii): Denote the linear map dual to (J by f. 
Then 

(M, fk (Hom(M, Jk)p)) = (MP n 1m (Jk, Hom(M, Jk)p) . 

Thus if (ii) holds then fk(p) = 0 in Hom(M, Jk)p, p E Z, and f is locally nilpotent. 
Conversely, if (i) holds then jk(p) = 0 in Hom(M, Jk)p for some k(p), because 
this vector space is finite dimensional. Thus lvIP n 1m (Jk(p) = 0 and (ii) holds. 

(ii) {:::::::} (iii): Clearly (ii) ===} (iii). If (ii) fails then for some p and 

each k, MP n Im(Jk f= O. Set Ak = ((Jk+1)-1 (MP - {O}). Then Ao ?-- ih ?-
A2 ?-- ... is an infinite sequence of linear maps between non-void affine spaces. 
For dimension reasons the sequences Ak :) (J (Ak+d :) (J2 (Ak+2) :) ... must 
stabilize at some integer K(k) : (In (Ak+n) = (JK(k) (Ak+K(k)) for n 2 K(k). 

Put Ek = (JK(k) (Ak+K(k)). Then for n large enough 

(J (Ek+d = (J ((In (Ak+l+ n)) = (In+l (Ak+n+d = Ek . 

Thus we may inductively construct elements Wk E Ek so that (JWk+1 = Wk. 

Moreover, since Ak = ((Jk+1) -1 (l'vIP - {O}) no element in Ak is zero, so Wk f= 0, 
k 2 o. 

(ii) {:::::::} (iv): Clearly (ii) ===} (iv) and the reverse implication follows 
from decreasing sequence IyfP :::> lvIP n 1m (J :) AIP n 1m (J2 :) ... and the fact 
that MP is finite dimensional. 0 

Example 1 The holonomy representation. 
Suppose (AVd) ---+ (AV C8I AW,d) is a relative Sullivan algebra as in the 

introduction to this section and let (Vi) be a basis of V. Let L be the homotopy 
Lie algebra of (A V, d) and denote by hI' x, x E L, the holonomy representation 
of Lin H(AW, d). Recall from the introduction that derivations 8i in (AV,d) 
are determined by the equations 

d(lC81<I»- (lC81d<I>+2(V i ®B i <I» EA?2VC8IAW, <I>EAW. 

Formula (31.1) states that H(8i ) coincides (up to sign) with hI' Xi, where (Xi) is 
the basis of L dual to the basis (Vi). Thus Lemma 31.7 asserts that the following 
conditions are equivalent: 
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• hI' Xi is locally conilpotent. 

• For each p there is an integer k(p) such that HP(AW, d) nIm H(Bi)k(p) = o. 
• If (Ctkh2':o is an infinite sequence of elements of H(AW,d) such that 

H(Bi)Ctk+1 = Ctk, k 2: 0, then Ctk = 0, k 2: o. 
00 • n ImH(Bi)k = o. 

k=O 

o 

Example 2 The adjoint representation. 
Let L be the homotopy Lie algebra of a minimal Sullivan algebra (AV, d) in 

which V = V2':2 is a graded vector space of finite type. Each x E L determines the 
linear function V --+ lk given by v f---t (v; sx). Extend this to a derivation, TJx, 
in A V and define a derivation ~x in (A V, d) by setting ~x = d TJx - ( -1 )deg 1/, TJx d. 

Because (A V, d) is minimal ~x preserves A + V. Define f x : V --+ V by requiring 

~x - fx : V --+ A2':2V ; 

fx is the linear part of ~x. We show now that 

(fxv;sy) = (-l)degxdegY (Vi S[X,yJ) , vEV, YEL. 

This formula exhibits fx as the dual (up to sign) of adx. In particular, fx is 
locally conilpotent if and only if ad x is locally nilpotent. 

For the proof of (31.8) note that fx = d1TJx - (_l)deg1)'TJxdl, where d1 is the 
quadratic part of d. Then use §21(e) to compute 

_(_l)deg1/, (TJxdlV; sy) = (_l)degx(dlViSY,SX) 

(_l)degx degY(ViS[X,yJ) . 

o 

We shall need one more observation about local conilpotence: its good be
haviour with respect to spectral sequences. Indeed, suppose 0" : (M, d) --+ (M, d) 
is a linear transformation of a graded vector space of finite type and suppose fur
ther that both 0" and d preserve a filtration of M of the form 

M = FO M :J Fl M :J ... :J FP M :J ... 

in which n FP M = O. This determines a cohomology spectral sequence (Ei' di ) 

P 

and a morphism Ei(O") : (Ei' di ) --+ (Ei , di ). 

Lemma 31.8 If some Ei(O") is locally conilpotent then so is H(O"). 

proof: If H(O") is not locally conilpotent then there is an infinite sequence of 
non-zero classes Ctk E H(M), such that H(O")CtHl = Ctk, k 2: O. Let p(k) be 
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the greatest integer such that O'.k has a representing co cycle in FP(k) M. Since 
p(k) 2: p(k + 1) 2: ... there is a p and a ko such that p(k) = p, k 2: ko· 

Let Zk be the affine space of co cycles in FP representing O'.k, k 2: ko. Then 
un (Zk+n) ::J un+l (Zk+n+l) ::J ... is a decreasing sequence of finite dimensional 
affine subspaces and hence Ak = nun (Zk+n) is non void subspace of Zk. Exactly 

n 
as in Lemma 31.7 it follows that u (Ak+d = Ak, and so there is a sequence of 
co cycles Zk E Ak such that u Zk+l = Zk and Zk represents O'.k· 

Since p = p(k) and Zk E FP, Zk represents a non-zero class [zkl E E;'*. But 
clearly Ei(U)[Zk+ll = [Zk], k 2: ko, and so if H(u) is not locally conilpotent then 
Ei (u) is not locally conilpotent either. 0 

Examples 1 and 2 allow us to prove a technical lemma that is important for 
the proof of Jessup's theorem, and in §33. Consider a minimal Sullivan algebra 
of the form (Av 181 AU 181 A W, D) in which 

• v has odd degree and Dv = 0 . 

• (Av 181 AU, d) ---+ (Av 181 AU 181 AW, D) is a relative Sullivan algebra. 

Then a derivation, 0, of the quotient. Sullivan algebra (AU 181 AW, d) is defined 
by D(ll8i <f?) = 1181 D<f? + v 181 O<f? 

Next, let L be the homotopy Lie algebra of (Av 181 AU, D) and denote by ad 
and by hi' the adjoint representation of L, and the holonomy representation of 
L in H(AW, d), where d is the quotient differential in AW. Define x E L by 
(v; sx) = 1 and (U; sx) = 0. Then we have 

Lemma 31.9 With the notation and hypotheses above suppose ad x is locally 
nilpotent and hi' x is locally conilpotent. Then H(O) is locally conilpotent. 

proof: First observe that 0 preserves AU and also A+U, because (AvI8iAU,D) 
is a minimal Sullivan algebra. Next, let Tj be the derivation in Av 181 AU defined 
by TjW = (w; sx), W E 1kv EB U; thus TjV = 1 and 17(U) = 0, and thus setting 
~ = D17 - (-l)deg1)17D we have 

Define f : U ---+ U by the condition ~ - f : U ---+ A?2U. Then Example 2 states 
that f is dual (up to sign) to adx. In particular f is locally conilpotent. 

Next, filter AU 181 AW by the ideals FP = A?'PU I8iAW. Since 0 preserves A +U 
it preserves this filtration and in the corresponding spectral sequence we have 

El (0) = Of 181 id + id I8iH(Ov) : AU 181 H(AW, d) ---+ AU 181 H(AW, d) , 

where Of is the derivation in AU extending f. Now H(Ov) is locally conilpotent 
by hypothesis, and we have just observed that so is f, because ad x is locally 
nilpotent. Given a positive integer n choose N so that for k 2: 0: 
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Then the formula above for E1 (B) implies that 

Hence E1 (B) is locally conilpotent and thus so is H(B), by Lemma 31.8. 0 

(c) Jessup's theorem. 
Consider a fibration 

p:X-tY 

of simply connected topological spaces with simply connected fibre F and such 
that Y and F (and hence X) have rational homology of finite type. Let 0* rg lk : 
7r*(Y) rg lk -t 7r*_l(F) (X) lk denote the connecting homomorphism and let hI 
denote the holonomy representation of the homotopy Lie algebra Ly in H* (F; lk). 

Theorem 31.10 (Jessup [99]) Suppose in the fibration p : X -t Y that 0* rg 
lk = O. Assume there are r linearly independent elements x E (LY)even such that 
both ad x and hI x are locally nilpotent. Then 

cato X 2: cato F + r . 

We shall deduce Theorem 31.10 from its translation into Sullivan algebras. 
For this we consider a minimal relative Sullivan algebra 

(AV,d) -t (AVrgAW,d) 

in which V = V2':2 and W = ~V2':2 are graded vector spaces of finite type, and 
(AV, d) is itself a minimal Sullivan algebra. Choose a basis Vl, V2, ... of V such 
that deg Vi ::; deg Vi+1 and define derivations Bi in the quotient Sullivan algebra 
(AHT, d) by requiring 

d(l rg <ll) - 1 (X) d<ll - LVi ::>9 Bi<ll E A2':2V::>9 AW, <ll E AW . 

Then let (Xi) be the dual basis of the homotopy Lie algebra L of (AV, d). 

Theorem 31.11 Suppose in the relative Sullivan algebra (A V, d) -t (A V (X) 

A W, d) that the linear part of the differential in AV (X) A W is zero. Assume that 
in the basis of L there are r elements Xi of even degree such that ad Xi is locally 
nilpotent and H(Bi) is locally conilpotent. Then 

cat(AV (X) AW, d) 2: cat ("\w, d) + r . 

We show first that Theorem 31.11 does imply Theorem 31.10. Indeed, choose 
(A V, d) -t (A V (X) A W, d) to be a rational Sullivan model for the fibration p : 
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x ~ Y as described in (15.4). Then (AV,d) is a minimal Sullivan model for 
Y and L = L y . Thus the linear part of the differential in A V 0 A W is zero, 
because it is dual to 0* 0 lk (Proposition 15.13). Suppose there are r linearly 
independent elements x E Leven such that ad x and hI x are locally nilpotent. 
Choose a basis VI, V2, . .. of V such that deg VI ::; deg V2 ::; . .. and so that these 
r elements appear as a subset XiI' ... ,Xi, of the dual basis (Xi) of L. Then ad Xi, 

is locally nilpotent. Moreover, H(ed is dual (up to sign) to hI Xiv' by formula 
(31.1) and Theorem 31.3. Thus H(ed is locally conilpotent. 

This shows that the minimal Sullivan model of p : X ~ Y satisfies the 
hypotheses of Theorem 31.11. Now let (AU', d) and (AW', d) be minimal rational 
Sullivan models for X and for F. Then (AU',d) 0 lk and (AW',d) 0 lk are 
minimal Sullivan models (over lk) for X and F. It follows that cat(AV0AW, d) = 
cat(AU', d) = cato X and cat(AW, d) = cat(AW', d) = cato F (Example 1, §29(e) 
and Proposition 29.4). Thus Theorem 31.10 follows from Theorem 31.11. 

The proof of Theorem 31.11 will occupy the next two topics. First, in §31(d), 
we shall consider the special case that V = lkv and deg V is odd, so that A V is 
the exterior algebra Av. Then in §31(e) we shall use induction and the mapping 
theorem to prove the theorem in general. 

(d) Proof of Jessup's theorem. 
Consider first a minimal Sullivan algebra of the form (Av 0 AW, d) in which 

deg V is odd. Thus the differential is described by: dv = 0 and 

d( 1 0 <I» = 1 0 d<I> + v 0 e<I>, <I> E A W , (31.12) 

where () is a derivation in the quotient Sullivan algebra (AW, d). 
In this case Theorem 31.11 reduces to 

Proposition 31.13 If H(e) is locally conilpotent then 

cat(Av 0 AW, d) ~ cat (AW, d) + 1 . 

proof: Let cat(Av0AW, d) = m+1. The ideals v0(AW,d) and v0 (A>mw, d) 
are in particular (AV0AW, d)-modules. Let ~ : (Q, d) -=+ v0 (AWl A>mw, d) be 
a (Av 0 AW, d)-semifree resolution for the quotient module. Define ~Q E H(Q) 
by H(~)~Q = [v 01]. 

Next, observe that Q extends to the (Av 0 AW, d)-semifree module (Q 0 N, d) 
defined as follows: N is a graded space with basis (an)o<n<oo and degan = 
n(deg v-I), the module action is <I> .(z 0 an) = <I>z 0 an- for <I> E Av 0 AW, 
z E Q, and the differential is given by 

d(z 0 ao) = dz 0 ao and d(z 0 an) = dz 0 an + vz 0 an-I, n ~ 1 . 

We identify Q with Q 0 ao via z +-----* z 0 ao. 
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The proof of the proposition then consists of the following four steps. 

Step 1: Construction of a morphism of (Av @ AW,d)-modules "Y : (Q,d) ---* 
(Av @ AW, d) such that H("'()tQ = [v @ 1]. 

Step 2: Extension of"Y to a morphism Q : (Q @ N, d) ---* (Av @ AW, d). 

Step 3: Construction of a homotopy from Q to a morphism f3 with image in 
v@AW. 

Step 4: Proof that cat(AW, d) :S m. 

We now carry out this program. 

Step 1: Construction of a morphism of (Av @ AW, d)-modules "Y : (Q, d) ---* 
(Av @AW,d) such that H("'()iQ = [v@ 1]. 

Let I(m + 1) = A>m+l(v EB W) c Av @ AW and let ( : (P, d) ~ (Av @ AW/ 
I(m + 1), d) be a (Av @ AW, d)-semifree resolution. Define ip E H(P, d) by: 
H«()Lp = [1]. Since cat(Av (':9 AW, d) = m + 1 there is a morphism 7J : (P, d) ---* 
(Av @ AW, d) of (Av @ AW, d)-modules such that 7J(ip) = [1]. (This is just the 
definition of cat(Av @ AW, d) if we take for (P, d) the minimal Sullivan model of 
the surjection Av@AW ---* Av @AW/I(m+ 1).) 

Next observe that the inclusion of the ideal v@(AW,d) in (Av (':9 AW, d) factors 
to define a morphism 

cp:v@(AW/A>mW,d) ---* (Av@AW/I(m+l),d) 

of (Av @ A W, d)-modules. Lift cp to a morphism cp' : (Q, d) ---* (P, d) such that 
('1/ ""' cpf,. 

Finally set "Y = 77'// : (Q, d) ---* (Av (':9 AW, d). Since H«()H(cp/)iQ = 
H(cp)H(f,)tQ = H(cp)[v @ 1] = [v]ol = [V]H«()Lp = H«() ([v] 0 ip) we have 
H(cp/)LQ = [v] 0 ip. Thus H("'()iQ = [v (':9 1]. 

Step 2: Extension of"Y to Q : (Q (':9 N, d) ---* (Av (':9 AW, d). 
Extend f, to f,N : (Q@N,d) ---* v (':9 (AW/ A>mw, d) by setting f,N(Q@a n ) = 0, 

n ~ 1. In the diagram 

(Q,d) 

T . · ~l' 
(Q (':9 N,d) -- v (':9 (AW/A>mW,d) 

~N 

we may construct the morphism T so that f,T ""' f,N (Proposition 6.4(i)). Moreover 
it is immediate from the proof of this proposition that we may suppose T restricts 
to the identity in Q, because f,N and f, coincide in Q. Thus 

Q = 7J a cp' aT: (Q (':9 N, d) ---* (Av (':9 AW, d) 
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restricts to 'Y in (Q, d). 

Step 3: Construction of a homotopy from 0 to a morphism (3 with image in 
v®AW. 

It is in this Step that we apply the hypothesis that H((}) is locally conilpotent. 
More precisely, we establish 

Lemma 31.14 Suppose (xn, zn)n::::O is an infinite sequence of pairs of elements 
X n , Zn E AW satisfying: 

and (}Zn+l = Zn + llxn, n 2 ° . 
Then there is an infinite sequence of elements Yn E A W such that 

llYn = Zn and (}Yn+l = Yn + X n , n 2 ° . 

proof: Observe first that each (znl E n 1m H((})k = 0, since (znl = H((})[zn+ll = 
k 

H((})2(zn+2l = .... Thus the affine spaces An = ll-l(zn) are non-void and finite 
dimensional. Affine maps 

are defined by On (y) = (}y - X n , Y E An+l. For each n this gives the infinite 
decreasing sequence of affine spaces 

For dimension reasons this sequence must stabilize at some k( n) : Im( On 0 .. ·0 

On+p) = Im(on o ... On+k(n)) for P 2 k(n). Put En = Im(on o .. . OOn+k(n)). Then 
on(En+1 ) = En since, for p sufficiently large, on(En+1 ) = on(lmon+l 0···0 

on+p) = En. Thus we may choose an infinite sequence of elements Yn E En such 
that Ctn+lYn+l = Yn, n 2 0. Thus (}(Yn+l) = Yn +xn· Since En cAn = ll-l(zn) 
we also have llYn = Zn, n 2 0. 0 

We now complete Step 3 by constructing a homotopy H from 0 to a morphism 
f3 satisfying the stronger condition 

(31.15) 

For this, write Q = Av (>9 AW (>9 M, where M decomposes as the direct sum 
00 

M = EB Mk such that d(Mo) = ° and d(MHd C Av (>9 AW ® M<k. Denote 
k=O -

Av ® AW ® Mk and Av ® AW ® M<k respectively by Qk and Q<k. 
Now any linear map 9k : Mk®N -+ Av®AW extends uniquely to aAv®AW

linear map Gk : Q ® N -+ Av ® AW such that Gk(Mi ® N) = 0, i :j:. k. A 



428 31 The homotopy Lie algebra and the holonomy representation 

sequence of linear maps, gk : Mk iZI N --+ Av iZI AW, determines in this way the 
00 

Av iZI AW-linear map G = I: Gk : Q iZI N --+ Av iZI AW. 
k=O 

Suppose now by induction that gi, i < k of degree -1 are constructed so that 

0/ = 0 - (.I: dGi + Gid) satisfies condition (31.15) in Q<k iZI N. We shall 
t<k 

construct gk so that 0 - (I: dGi + Gid) satisfies (30.15) in Q'Sk iZI N. If (gk) 
i<k 

is the infinite sequence constructed in this way then f3 = 0 - C~ dGi + Gid) 

satisfies (31.15) because (3 restricts to 0 - (to dGi + Gid) in Q'Sk iZI N. 

It remains to construct gk, given 0'. Define Av iZI A W -linear maps f n, qn 
Q~k --+ AW by the equations 

The condition do = od then implies 

Recall now that we suppose a' = 0 in Q<kiZlan, n 2: 1 and that a' (Q<k iZI ao) C 
v iZI AW. Since d: Mk --+ Q<k it follows from this that 

fn 0 d : Mk --+ 0 , n 2: 0 and qn 0 d : Mk --+ 0 , n > 1 . 

Thus if Z E Mk the equations above reduce to 

We may thus apply Lemma 31.14 with Zn = fnz and Xn = qn+IZ to find a 
sequence of elements Yn E A W such that 

and BYn+! = Yn + Xn , n 2: 0 . 

Now define gk : Mk iZI N --+ AW by setting gk(Z iZI an) = Yn where (Yn) is a 
sequence as above for z, and Z runs through a basis of M k. Then dgk(z iZI an) = 
fnz and Bgk(z iZI an+l) = gk(Z iZI an) + qn+IZ, n 2: 0, Z E Mk. Moreover 

where a_I = o. Thus the right hand side is zero for n 2: 1 and reduces to 
V(qkz - Bgk(z iZI ao)) if n = O. Since 0' and 0 coincide in Q<k iZI N, the inductive 
step is complete. 

Step 4: Proof that cat(AW, d) ::;; m. 
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Define a (A W, d)-module structure in (Q 0 N, d) by setting 

1>.(z0an) = I)-l)P ( p;n ) (BP1»z0an+p , 1> E AW, Z E Q. 
p=o 

(Since B decreases degrees this series is a finite sum). By Step 3, {3 : (Q0N, d) ---+ 
v Q9 (AW, d) is a morphism of (Av Q9 A W, d)-modules, vanishing on Q 0 an, n 2:: 1. 
It follows that {3 is a morphism of (AW, d)-modules. 

A'ext, let ZQ be a cocycle in Q representing the class [Q of Step 1 and define a 
morphism A : v0(A W, d) ---+ (Q0N, d) of (AW, d)-modules by setting A( v01» = 
(_l)deg <p1>. zQ. We shall show that {3A = id. 

Since /3 and A are A W -linear it is enough to show that (3A( v Q9 1) = v 01. But 
6 A ( v Q9 1) = tv Q9 1, some t Elk, for reasons of degree. l\loreover {3 A ( v 0 1) = ,6 zQ 
differs from aZQ by a coboundary in Av 0 AW, because {3 ~ a (Step 3). Since 
a restricts to I in Q (Step 2) and since Hh)[Q = [v 01] (Step 1) it follows 
that t[v 0 1] = [v 01] in H(Av::>9 AW,d). Since (Av 0 AW,d) is a minimal 
Sullivan algebra v 0 1 cannot be a coboundary; i.e. [v 0 1] i- 0 and t = 1. Thus 
,6A(V Q9 1) = v 0 1 and ,6A = id. 

Finally, recall the (Av Q9 A W, d)-Quasi-isomorphism 

~ : (Q, d) ::' v Q9 (AvV/A>mw, d) 

defined at the start of the proof of the proposition. It extends to the quasi
isomorphism 

~ 0 id: (Q 0 N, d) ---+ v Q9 (AW/A>mw, d) 0 (N,O) 

since ~(vQ) = V· ~(Q) = O. Moreover we can make v 0 (AW/A>mw, dl 0 (N, 0) 
into a (AW, d)-module, and ~ into a morphism of (AW, d)-modules, by setting 

Thus altogether we have the diagram of morphisms of (AW, d)-modules 

v 0 (A W, d) --"--... (Q 0 N, d) __ 3_-... v 0 (A W, d) 

,I (0" 

v Q9 (AW/A>mW,d) 0 (N,O) , 

with {3A = id. 
Since Av 0 AW is a minimal Sullivan algebra, Imd C 10 A::>2W + v 0 A+W. 

Thus e preserves A + W. It follows that with respect to the module action just 
defined, 
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Hence A>mw· (v@AW/A>mw @N) = O. Now the Corollary to Hess' theo
rem 29.9 asserts that cat(A W, d) ::; m. 0 

proof of Theorem 31.11: Recall that V is equipped with a basis (Vi). Di
viding by the elements VI, ... ,Vi-I gives a quotient Sullivan algebra of the form 
(AV; @ AW,Di) in which Vi,Vi+I, ... project to a basis of V;. Moreover the 
Mapping theorem 29.5 asserts that 

cat(AV;@AW,Di) 2 cat(AV;+1 @AW,Di+d 2 ... 2 cat(AW,d) . 

Thus Theorem 31.11 follows from the assertion: 
If Xi E Leven and if adxi is locally nilpotent and H(()i) is locally conilpotent, 

then 
cat(AV; @AW,Di) 2 cat(AV;+1 @AW,Di+d + 1. 

To verify this, simplify notation by writing Vi = V, V;+I = U, ()i = ()v and Xi = 
x. Denote Di by D and Di+1 by D. Thus the Sullivan algebra (AV; @ AW, Di) 
has the form (Av@AU@AW,D). The homotopy Lie algebra of (Av@AU,D) is 
the subspace I c L spanned by the X j, j 2 i. In particular ad X : I -+ I is the 
restriction of ad Xi : L -+ L and hence is locally nilpotent. 

Since X has even degree, V has odd degree. Thus the differential in Av@ AU @ 

AW is given by Dv = 0 and 

D(l @ <I» = 1 @ D<I> + V @()<I>, <I> E AU @ AW , 

where () is a derivation in (AU@AW, D). Lemma 31.9 asserts that H(()) is locally 
conilpotent, and thus Proposition 31.13 applies to give cat(Av@AU@AW,D) 2 
cat(AU @ AW, D) + 1. 0 

(e) Examples. 

Example 1 The fibration p : S4m+3 -+ JHIPm . 
The unit sphere S3 of the quaternions lHI acts freely by right multiplication 

on the unit sphere S4m+3 of lHF+I (::=, ]R4mH). This is the action of a classical 
principal S3 bundle (§2(a)) p : s4m+3 -+ JHIPm, with base space the quaternionic 
projective m-space. 

The long exact rational homotopy sequence for this fibration reduces to 

7f 4m+3 (S4m+3) @ (Q ~ 7f 4m+3 (JHIPm) @ (Q and 7f 4 (JHIPm) @ (Q ~ 7f3 (S3) @ (Q . 

Thus dim 7f. (JHIPm) @ (Q < 00 and dim 7f odd (JHIPm) @ (Q = 1. Moreover, the 
holonomy representation is automatically locally nilpotent (but not trivial) since 
the fibre has finite rational homology. 

Thus all the hypotheses but one of Theorem 31.10 are satisfied: 0. @ (Q f::. O. 
Since cato S4m+3 < cato S3 + dim 7f odd (JHIPm ) @ (Q the conclusion of the theorem 
fails too, which shows that the hypothesis 0.@(Q = 0 is necessary. (Note, however 
that it intervenes only at the end, in Step 4, of the proof of Proposition 31.13). 

o 
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Example 2 The fibration associated with S3 V S3 ---t S3. 
Convert projection from S3 V S3 to the first factor to a fibration p : X ---t S3 

with X ~ S3 V S3. Since p is not a rational homology equivalence the fibre, F, has 
non-trivial rational homology and so cato F ~ 1 = cato X, and the conclusion of 
Theorem 31.10 fails. 

Here all the hypotheses hold, however, except for the hypothesis that the 
holonomy representation is locally nilpotent. This must therefore fail, and the 
example shows it is a necessary hypothesis. D 

Example 3 Derivations in commutative cochain algebras. 
Suppose 8 is a derivation of even (negative) degree in a commutative cochain 

algebra (A, dA) such that A O = k and HI (A) = o. Then we may construct 
the commutative cochain algebra (Av 0 A, d), with deg v + deg 8 = 1 by setting 
dv = 0 and da = dAa + v 0 8a, a E A. 

Now let (AW, d) be a minimal model of (A, d). Then (Av0A, d) has a Sullivan 
model of the form (Av 0 AW, d) with dtf> = 10 dtf> + v 0 8'tf>. If (Av 0 AW, d) is 
not a minimal Sullivan algebra then 8' restricts to a non-zero Gottlieb element 
W deg v - l ---t k and Proposition 29.8(ii) asserts that cat(AW,d) = 00. On the 
other hand, the isomorphism H(AW, d) ~ H(A, dA) identifies H(8') with H(8). 
Thus if n 1m H(8)k = 0 we can apply Proposition 31.13 to conclude that 

k 

cat (AW, d) IS . 
-. {:S cat(Av 0 AW, d) - 1 , if (Av 0 AW, d) is minimal. 

00 , otherWIse. 

An interesting special case of the above is an arbitrary k[8]-module M con
centrated in degrees ~ 2, from which we construct (A, dA) by setting A = k ffi M, 
dA = 0 and M . M = o. In this case if 8 is locally conilpotent then 

cat(Av 0 AW, d) = 2 . 

In fact since (AW,d) ~ (A,O) and nil A = 1 it follows that cat(AW,d) = 1 
(Proposition 29.3) and hence cat(Av 0 AW, d) ~ 2. On the other hand, (Av 0 
AW, d) ---=+ (Av 0 A, d) and nil(Av 0 A) = 2, so cat(Av 0 AW, d) :S 2. D 

Example 4 A fibration X ---t cpm with fibre S3 and cato X = 2. 
Let SI act on S2m+l by complex multiplication: SI is the unit circle of C and 

s2m+l is the unit sphere in Cm +l . This is the action of a principal SI-bundle, 
s2m+l ---t cpm (§2(d)). For m = 1 we have the action of SI on S3 and the 
associated bundle (§2(e)) 

is a Serre fibration with fibre S3. 
Since 7f * (cpm ) 0 Q is concentrated in degrees 2 and 2m + 1 it follows for degree 

reasons that the rational connecting homomorphism is zero. Since the fibre has 
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finite dimensional homology the holonomy representation is by locally nilpotent 
transformations. Thus Theorem 31.10 applies and gives cato X 2 cato 53 +1 = 2. 

But we may also regard X as the total space of a Serre fibration X -* 52 
with fibre 5 2mH , so that cato X :S 2 (Proposition 30.7). Altogether we have 
catoX = 2. 0 

(f) Iterated Lie brackets. 
Let Lx be the homotopy Lie algebra of a simply connected topological space 

X with rational homology of finite type. Apply Theorem 31.10 to the fibration 

X ~ X to obtain 

Theorem 31.16 If cato X = m there are at most m linearly independent ele
ments Xi E (Lx )even such that ad Xi is locally nilpotent. 

In particular if cato X is finite then for each non-zero X E (Lx )even of suf
ficiently large degree there is some y E Lx such that the iterated Lie brackets 
[x, [x[x, ... , [x, y] . .. ]]] are all non-zero. 

Similarly, if L is the homotopy Lie algebra of a minimal Sullivan algebra (A V, d) 
with V = V?:2 a graded vector space of finite type, then Theorem 31.11 applied 

to the relative Sullivan algebra (A V, d) ~ (AV, d) gives 

Theorem 31.17 If cat(AV, d) = m there are at most m linearly independent 
elements Xi E Leven such that ad Xi is locally nilpotent. 

Example 1 A space with eoX = 2 and cato X = 00. 

In Example 6, §12(d), we constructed a minimal Sullivan model (AV, d) such 
that d : V -* A3V and every co cycle in A?:3V is a coboundary. Moreover 
V = V?:2 and has finite type and it is immediate from the construction that we 
may choose vodd to be infinite dimensional. 

Because every cocycle in A?:3V is a coboundary, e(AV, d) :S 2. Because there 
are no coboundaries in A2V, e(AV, d) = 2. Because d: AkV -* Ak+3V the 
Milnor-Moore spectral sequence collapses at the E 3-term. On the other hand, 
the homotopy Lie algebra is abelian, because the quadratic part of d is zero. 
Thus Theorem 31.18 shows that cat(AV, d) = 00. 

In particular, if X is the geometric realization of (A V, d) (§17) then 

cato X = cat (AV, d) = 00 and eoX = e(AV, d) = 2 . o 

Finally recall that the construction of (A V, d) begins with a graded subspace 
Z C V such that d(Z) = 0, and that V = Z EEl W with d injective in W. 
Let I be the ideal A?:2V EEl W, and let (A, d) be the sub cochain algebra given 
by A = Ef)A2kV. The inclusion (A,d) -* (I EEllk,d) is a quasi-isomorphism. 

k 

Moreover, dividing by (A+)2 and by a complement of kerd in A2V defines a 

quasi-isomorphism (A, d) ~ H(A) and shows H+(A) . H+(A) = O. 
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The surjection (AV,d) ---t (AVjI,d) is a commutative representative for a 
continuous map q : X ---t V 5 n", where 5n " corresponds to a basis element of 

o 

Z with degree no. Moreover (I EB Jk) is a commutative model for the cofibre of 
q as follows from a simple calculation using the Remark after Proposition 13.6. 
In view of the observations above I EB Jk is the commutative model of a wedge of 
spheres (Example of §12(a)) and so we have constructed a cofibration 

V 5;Q" ---t X ---t V 5~{3 . 0 
o (3 

Exercises 

1. Let F -+ X -+ 52n+1 be a fibration. Suppose that F has the homotopy 
type of a simply connected CW complex of finite type and that H. (D52n+l) 
acts trivially on H.(F). Show that the induced map H.(F;tQ) -+ H.(X;tQ) is 
injective. 

2. Let f : X = (53 X 53) V (55 X 55) -+ 53 be the continuous map whose 
restriction to 53 x 53 is projection onto the first factor, and that restricts to 
the trivial map on 55 x 55. Denote by F the homotopy fibre of f. Prove that 
catX = catoF = 2. Prove that H.(F;7I..) is not a free H.(D53)-module, nor a 
locally nilpotent one. 

3. Let p : X -+ 5 2n+l be a fibration with simply connected fibre. If Ti2n+l (52n+l) 
acts locally nilpotently on H.(F; k) and if H.(X; k) is finite dimensional, prove 
that H.(F; k) is finite dimensional. 

4. We consider the rational fibration Vi'=150' -+ X -+ 5~n+l whose commutative 
model is given by (Ax 0 (1, aI, ... ,an), d) with aiaj = 0 and d(ai) = xai-l. 
Prove that: adx(ai) = ai+l , ... ,adx(an ) = O. Using Jessup's result, prove that 
cato X = 2. 

5. Prove that the fibration F -+ E -+ 5 2n+l , n ~ 1, admits a Lie model that is 
a short exact sequence of differential graded Lie algebras 

0-+ L(T(x) 0 W) -+ L(tQx EB W) -+ L(x) -+ O. 

Interpret the holonomy operation as multiplication by x. 

6. Denote by Ex the subspace of Lx generated by the Engels elements of 
Ti.X 0 tQ. Prove that GIQI(X) C Ex. Construct an example with GIQI(X) =I
Ex =I- Lx. 

7. Let F -4 E -+ B be a fibration with dim Ti.(B) 0 tQ < 00 and ker[Ti.(j) 0 
tQ]even = O. Suppose that H.(DB; tQ) acts locally nilpotently in H.(F; tQ), and 
prove that 
cato(E) ~ cato(F) + dim Tiodd (B) 0 tQ - dim[kefTij 0 tQ] ~ dim Tiodd (B) 0 tQ . 
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The Rational Dichotomy: 
Elliptic and Hyperbolic Spaces 
and 
Other Applications 



32 Elliptic spaces 

In this section the ground ring is an arbitrary field k of characteristic zero. 
A simply connected topological space X is called rationally elliptic if it satisfies 

the two conditions: 

dim H*(X; Q) < 00 and dim 7f*(X) ® Q < 00 . 

By analogy a minimal Sullivan algebra (AV, d) is elliptic if both H(AV, d) and 
V are finite dimensional. If (AV, d) is a minimal Sullivan model for a simply 
connected space X then 

H*(AV,d) ~ H*(X;lk) and V ~ Homz(7f*(X),lk) 

(Theorem 10.1 and Theorem 15.11). Thus X is rationally elliptic if and only if 
its minimal Sullivan models are elliptic. 

Rationally elliptic spaces occur naturally; for instance the classical homoge
neous spaces G / K of differential geometry are rationally elliptic. However, the 
'generic' space with finite homology is not rationally elliptic; for example, in this 
section we shall see that the homotopy groups of rationally elliptic spaces satisfy 
very stringent restrictions. 

Indeed, suppose X is rationally elliptic and let nx be the maximum degree 
such that Hnx (X; Q) =J o. In Theorem 32.6 we shall show that if (Xi) is a basis 
of 7fodd(X) ® Q and if (Yj) is a basis for 7feven (X) ® Q then 

.~degxi~2nx-1 and ~degYj~nx, 

so that, in particular, 

• 7fi(X)®Q=O, i~2nx and dim7f*(X)®Q~nx. 

We also obtain a formula for nx: 

• nx = I: degxi - I:(degYi - 1). 
i j 

Finally, in Proposition 32.10 we shall show that 

• dim7fodd(X)®Q-dim7feven(X)®Q?: 0 and I:(-l)idimHi(X;Q)?: 0, 
i 

with equality holding on the left if and only if it fails on the right. 

These various inequalities have interesting geometric properties. For example 

• If X is rationally elliptic then 

and (Allday-Halperin [3]) 
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• If an r-torus acts smoothly and freely on a rationally elliptic closed mani
fold X then 

r ::; dim 7rodd(X) @ Q - dim 7reven (X) @ Q . 

In particular, if X = G / K with G and K compact simply connected Lie 
groups then 

r ::; rankG - rankK . 

Most of these results are obtained by reduction to the case of pure Sullivan 
algebras (A V, d); these are the finitely generated Sullivan algebras in which d = 
o in veven and d : vodd ---+ A veven. Cochain algebras of this special form 
were introduced by H. Cartan in [33] for the computation of the cohomology of 
homogeneous spaces; in retrospect these can be seen to be the first examples of 
Sullivan algebras. The properties of pure Sullivan algebras as established in (a) 
and (d) below are largely due to Koszul [102]' and indeed they are often referred 
to as Koszul complexes. 

This section is organized as follows: 

(a) Pure Sullivan algebras. 

(b) Characterizations of elliptic Sullivan algebras. 

(c) Exponents and formal dimension. 

(d) Euler-Poincare characteristic. 

(e) Rationally elliptic topological spaces. 

(f) Decomposability of the loop spaces of rationally elliptic topological spaces. 

(a) Pure Sullivan algebras. 
Given a Sullivan algebra (AV, d), write veven = Q and vodd = P, so that 

A V = AQ @ AP. Recall that (A V, d) is called pure if V is finite dimensional and 
if d = 0 in Q and d(P) C AQ. If (AV, d) is a pure Sullivan algebra, then d is 
homogeneous of degree -1 with respect to wordlength in P: 

o t- AQ t- AQ @ Pt-· .. t- AQ @ A k Pt-· ... 

Thus if Hk(AV, d) is the subspace representable by cocyles in AQ@Akp we have 
H (A V, d) = EB H k (A V, d); this will be called the lower grading of H (A V, d). 

k 

Note that d(AQ @ P) = AQ· d(P) is the ideal in the polynomial algebra AQ 
generated by d(P). Thus 

Ho(AV,d) = AQ/AQ.d(P) . 

Proposition 32.1 If (AV, d) is a pure Sullivan algebra then H(AV, d) is finite 
dimensional if and only if H 0 (A V, d) is finite dimensional. 
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proof: Since AV is a finitely generated module over the (noetherian) polyno
mial algebra AQ any submodule is also finitely generated. Since d(AQ) = 0, 
ker d is a AQ~submodule of AV; hence it is finitely generated. Thus H(AV, d) is 
finitely generated as a module over the sub algebra Ho (AV, d). The Proposition 
follows. 0 

Consider again a pure Sullivan algebra (A V, d) as above and suppose 2al, ... , 
2aq are the degrees of a basis (Yj) of Q and 2b1 - 1, ... ,2bp - 1 are the degrees 
of a basis (Xi) of P. (Thus dim Q = q and dim P = p). 

Proposition 32.2 Suppose H(AV, d) is finite dimensional and let rand n be 
the maximum integers such that Hn(AV,d) f= 0 and Hr(AV,d) f= o. Then 

(i) Hn(AV,d) is a one-dimensional subspace of Hr(AV,d). 

(ii) r = dim P - dim Q; in particular, dim P ~ dim Q and equality holds if and 
only if H(AV,d) = Ho(AV, d). 

(iii) n = 2:(2bi - 1) - 2:(2aj - 1). 
i j 

proof: Define a graded vector space Q by Qi = Qi+l and denote the cor
respondence between elements by y +-+ y. Extend (A V, d) to a pure Sullivan 
algebra (AQ Q9 A(P Q9 Q), d) by setting dy = y, Y E Q. This can be written as 
(AQ Q9 AQ Q9 AP, d) and (AQ Q9 AQ, d) is contractible (§12(b)). Thus division by 
Q and Q defines a quasi-isomorphism (AQ Q9 AQ Q9 AP, d) ~ (AP, 0), whence 

Let k be the largest integer such that H; (A V, d) f= O. It is easy to construct 
an ideal I C AQ Q9 AP such that: I is preserved by d, H (1, d) = 0, I = EB In 

s 

(AQ Q9 ASP) and I:J (AQ Q9 Asp)l if s > r or if s = rand £ > k. Let (A, d) be 
the quotient co chain algebra (AQ Q9 API I, /1) and note that A = EB As, where 

s 

As is the image of AQ Q9 l' .. s P, and that A+· A~ c At· A~ + A>r = O. By 
Lemma 14.2 the quasi-isomorphism g : (AQ Q9 AP, d) ---+ (A, /1) extends to a 
quasi-isomorphism 

(g Q9 id) : (AQ Q9 AP Q9 AQ, d) ~ (A Q9 AQ, /1) , 

where /1y = gdy. Thus if Hs(A Q9 AQ) is the space represented by co cycles in 
EB Ai Q9 AjQ, we have 

i+j=s 

Now let a E A~ be a co cycle representing a non-zero cohomology class. Since 
A+· A~ = 0, and since /1Yi E A+, a Q9 Yl /\ ... /\ Yq is a cocycle in A Q9 AQ. It 
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cannot be a coboundary, since (A@AQ)r+q+1 = O. Thus it represents a non-zero 
cohomology class of lower degree r + q, which is obviously the maximum lower 
degree possible. Since dim P = p this gives an inclusion 

In particular r + q = p and r = p - q = dimP - dimQ. Since dimAPP = 1 we 
have dim H;(A) = 1 and, if Xl, ... , xp is a basis of P, 

k = L degxi - L degYj = L(2bi - 1) - L(2aj - 1) . 
j j 

Finally, let N be the largest degree such that HN (A @ AQ) f:. 0 and let 
J c AQ @ AP be an ideal of the form (AQ @ AP»n EEl r chosen so that 
H(J,d) = o. Set B = AQ@APIJ. Then the identical argument gives 

Hn(B) @ YI 1\ ... 1\ Yq C HN (B @ AQ) ~ AP P . 

This shows that n = k, which completes the proof. o 

Finally, let Q be a finite dimensional graded vector space concentrated in 
even degrees. A regular sequence in the polynomial algebra AQ is a sequence 
of elements UI, ... , Um in A + Q such that UI is not a zero divisor in AQ and 
(for i 2: 2) the image of Ui is not a zero divisor in the quotient graded algebra 
AQI(UI, ... , Ui-l). 

On the other hand any sequence UI, ... , Um of elements in A + Q determines 
the pure Sullivan algebra (AQ @ A(XI, ... , xm), d) defined by dXi = Ui and we 
have 

Proposition 32.3 The sequence UI, ... , Um is regular if and only if 
H+(AQ@A(XI, ... ,xm),d) =0. 

proof: We show first that if H+(AQ@A(XI, ... ,xm-d) = 0 and if UI, ... , Um-l 
is a regular sequence then H+(AQ@A(XI, ... ,xm),d) = 0 if and only ifuI, ... , Um 
is a regular sequence. Denote by I the ideal in AQ generated by UI, ... , Um-l. 
Under the hypotheses above a quasi-isomorphism cp : (AQ @ A(XI' ... ' xm-d, d) 
---+ AQ I I is defined by: CPXi = 0 and, for a E AQ, cpa is the image of a in AQ I I. 
Then (Lemma 14.2) cP @ id : (AQ @ A(XI, ... , xm), d) ~ (AQ I I @ Axm, d) is a 
quasi-isomorphism, where dX m = cpum . 

Let K C AQ I I be the subspace of elements U such that U· CPUm = O. Then 
H(AQ/I ® Axm,d) = AQ/(UI, ... ,Um) EEl (K ® xm). Since the isomorphism 
H(cp®id) preserves lower degrees (clearly) we have H>2(AQ®A(XI, ... , xm), d) = 
o and HI (AQ ® A(XI' ... ' xm)) ~ K ® Xm. Since K ~ 0 if and only if UI, ... , Um 
is a regular sequence, this is equivalent to H+ (AQ ® A(XI, ... , xm)) = O. 

Finally, if UI, . .. ,Um is a regular sequence so is UI, ... , Um-l and so by in
duction H+(AQ@A(XI, ... ,Xm-I)) = o. Thus H+(AQ@A(XI, ... ,Xm)) = o. 
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Conversely, suppose H+(AQ 181 A(Xl, ... ,Xm )) = O. For any k, let z E AQ 181 
Ak(Xl, ... ,xm-d be a cocycle representing a non-zero class of least degree in 
Hk(AQ 181 A(Xl, ... ,xm-d). A simple calculation shows z is not a coboundary 
in AQI8IA(Xl, ... ,Xm). Thus k = 0 and H+(AQ 181 A(Xl, ... ,Xm-l)) = O. By 
induction, Ul, ... , Um-l is a regular sequence and so by the argument above, so 
iSUl,··.,Um· 0 

(b) Characterization of elliptic Sullivan algebras. 
Suppose (A V, d) is a Sullivan algebra in which V is finite dimensional. Write 

vodd = P and veven = Q, so that A V = AQ 181 AP is the tensor product of 
the polynomial algebra, AQ and the exterior algebra, AP. Then bigrade AV 
by setting (AQ 181 Ak p)n = (Av)k+n,-k and filter AV by setting FP(AV) = 
(AV)2:P,*. 

Since the differential increases degree by one and decreases the wordlength in 
P by at most one it preserves the filtration. Thus (A V, d) is a filtered cochain 
algebra, with which there is then a naturally associated spectral sequence of 
cochain algebras, called the odd spectral sequence for the Sullivan algebra. 

It is immediate from the definition that the first term of the odd spectral 
sequence has the form 

where du is characterized by: 

du (Q) = 0 , du : P ---t AQ and d - du : P ---t AQ 181 A + P . 

Thus (AV,du) is a pure Sullivan algebra and (in the notation of §32(a)) 

EP,q = Hp+q(AV d ) 
I -q , u . 

We call (A V, du ) the pure Sullivan algebra associated with (AV, d). 
Note also that FP((Av)n) = 0, p > n+dimP. Thus the odd spectral sequence 

is convergent to H (A V, d). 

Proposition 32.4 Let (A V, d) be a minimal Sullivan algebra in which V is 
finite dimensional and V = V2: 2 • Then the following conditions are equivalent: 

(i) dim H(AV, du) < 00. 

(ii) dimH(AV,d) < 00. 

(iii) cat(AV,d) < 00. 

proof: Since the odd spectral sequence converges from H (A V, du ) to H (A V, d) 
the implication (i) =} (ii) is immediate, while (ii) =} (iii) follows from Corol
lary 1 to Proposition 29.3. To prove (iii) =} (i) let Xl, ... , Xn be a basis of V 
such that degxl:S degx2 :s ... and dXi E A(XI, ... ,Xi-d. We show first by 
induction on i that if degxi is even then for some N i , x["; = duiI!i. 
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For this, divide by the ideal Ii generated by Xl, ... , Xi-l to obtain a quotient 
Sullivan algebra (AV,d). Then Xi, ... ,Xn project to a basis (Xj) of V, and 
dXi = 0. On the other hand, by the Mapping theorem 29.5 (AV, d) has finite 
category. Thus there is an element <P E A(Xi, ... , xn) such that d~ = xf" (some 
N), where ~ is the image of <P in A V. Since deg <P is odd we have <P = <PI +<P3 + ... 
with <Pj E Ajvodd Q9 Aveven. It follows that (d)"'~1 = xf", which implies that 
d",<PI - xf" E h 

Define elements Yj E V by setting Yj = Xj if deg Xj is even and Yj = ° if 
degxj is odd. Since <PI E vodd Q9 Aveven it follows that d",<PI - xf" = l: Yjo'j, 

j<i 
with o'j E Aveven. The induction hypothesis gives yfj = d.,.Wj, j < i. Since 
d.,.o'j = ° follows that some power of Xi is a d".-coboundary. This closes the 
induction. 

As in §32(a) put Q = veven and P = vodd . We have just shown that for 

a basis Yj of Q some power yfj is a d.,.-coboundary. It follows that Ho(AQ Q9 

AP, d.,.) = AQ / AQ • d.,. (P) is finite dimensional. Hence H (AQ Q9 AP, d.,.) is also 
finite dimensional (Proposition 32.1). 0 

Example 1 A(a2,x3,u3,b4,V5,W7; da = dx = 0, du = a2, db = ax, dv = 
ab - UX, dw = b2 - vx). 

Here subscripts denote degrees. The differential d.,. is given by d.,.a = d.,.b = 
d.,.x = 0, d.,.u = a2 , d.,.v = ab, d.,.w = b2. Thus in H(AV,d.,.) we have [aj2 = 
[bj2 = ° and so (AV, d) is elliptic. 0 

Example 2 Adding variables of high degree. 
Suppose (AV, d) is a minimal Sullivan algebra in which V = V:::: 2 and V is finite 

dimensional. It is an interesting question of Anick whether, given an arbitrary 
positive integer n, there is an elliptic Sullivan algebra of the form (A V Q9 A W, d) 
with W concentrated in degrees ~ n. 

For example, consider the Sullivan algebra (subscripts denote degrees) 

2 2 A(a2,b2,X3,Y3,Z3,C4i da=db=O, dx=a, dy=ab, dz=b, dc=ya-xb). 

It is not elliptic because d.,.c = ° and no power of c is a d.,.-coboundary. On the 
other hand, if we add odd degree variables u, v and w with 

du = cna - ncn-Ixy, dv = cn+Ib - (n + l)uyb - (n + l)cnxz + (n + l)uaz 

and dw = C2n+2 - 2(n + l)cn+luy - 2(n + l)vua + 2(n + l)vck x 

then we obtain an elliptic Sullivan algebra, since d.,.w = C2n+2 . o 

Again let (AV, d) be a minimal Sullivan algebra and denote by k[z] the poly
nomial algebra in a single variable, z, of degree 2. (Note k[z] = Az, but we wish 
to emphasize that this is a polynomial algebra.) 

Proposition 32.5 Suppose V is finite dimensional and V = V:::: 2 , and suppose 
k is algebraically closed. Then (A V, d) is elliptic if and only if every morphism 
tp : (AV, d) ---7 (k[z], 0) is trivial. 
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proof: Suppose (A V, d) is elliptic and let Xl, ... , Xn be a basis of V such that 
dXi E A(Xl, ... ,xi-d. Given 'P: (AV,d) ---+ (1k[z],O), suppose by induction that 
'PXi = 0, j < i. Then 'P factors to give a morphism ip : (A(Xi, ... , Xn), d) ---+ 
(1k[z], 0) from the quotient Sullivan model. If deg Xi is odd then 'PXi = O. If 
deg Xi is even then, since this quotient model has finite category (Theorem 29.5), 
xf" = dip, some N. Hence ('PXi)N = ip(xf") = dipip = O. It follows that 'PXi = O. 
Thus 'P is trivial. 

Conversely, suppose (A V, d) is not elliptic. Then by Proposition 32.4, H (A V, d" ) 
is infinite dimensional, and hence so is Ho (AV, d" ), by Proposition 32.1. This 
algebra has the form A(YI"'" Yq)/ I where I is generated by polynomials fi, 
1 :s: i :s: p. Since it is infinite dimensional there is some Yj such that yj ~ I for 
all k. 

Extend the polynomial algebra A(YI"'" Yq) to a polynomial algebra 
A(YI, ... ,Yq,u) with degu = -degYj· Then the ideal generated by ir, ... ,jp 
and by YjU - 1 is properly contained in A(YI, ... , Yq, u). Thus the Hilbert 
Nullstellensatz asserts the existence of scalars t l , ... , tq, t E 1k such that each 
ji(tl, ... , tq) = 0 and such that tjt = 1. In particular, tj =I- 0, and a non
trivial morphism 'l/J: A(YI, ... ,Yq)/I ---+ 1k[z] is given by Yi f---t tiza;, where 
degYi = 2ai· 

Finally, let J c A V be the ideal generated by vodd and by 1m d. Then 
AV/J = Aveven/Aveven.d,,(vodd) = A(YI, ... ,Yq)/I, and a non-trivial mor-

phism (AV,d) ---+ 1k[z] is obtained by composing (AV,d) ---+ (AV/J,O) ~ 1k[z]. 
o 

Example 3 Algebraic closure oj 11; is necessary in Proposition 32.3. 
Indeed if 1k = Q the Sullivan algebra A(a2, b2, X3; dx = a2 + b2) admits no 

non-trivial morphism to Q[z], since we would have a f---t o:z, b f---t f3z with 
0:, f3 E Q satisfying 0:2 + f32 = O. 0 

Example 4 (Lechuga and Murillo,[106]) n-colourable graphs. 
To each finite graph with vertices Vj and edges ei and for each integer n 2: 2 

associate a pure Sullivan algebra (AQ i8l AP, d) as follows: Q is concentrated in 
degree 2 and has a basis Yj corresponding to the vertices Vj; P is concentrated 
in degree 2n - 3 and has a basis Xi corresponding to the edges ei; finally dXi = 
L: Y'kYe- I- S , where Yk and Ye correspond to the endpoints of ei· 
s 

The graph is n-colourable if each vertex can be assigned one of n distinct 
colours so that vertices connected by an edge have different colours and, as 
shown in [121]: 

A finite connected graph is n-colourable {:::::} dim H(AQ i8l AP, d) = 00. 

Indeed we lose no generality in assuming 1k is algebraically closed. If the graph 
is n-colourable identify the colours with the distinct nth roots of unity Wa and 
note by wa(j) the colour of the vertex Vj' If Wa and W{3 are distinct nth roots of 
unity then L: w~w~-s = w~ - W~/wa - w{3 = 0, and so a non-trivial morphism 
(AQ i8l AP, d) ---+ 1k[z] is given by Yj f---t wa(j)z and Xi f---t O. 
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Conversely, given a non-trivial morphism 'P : (AQ ® AP, d) ---7 lk[z) note that 
if Yk and Ye correspond to the vertices of ei then 0 = 'P(dXi)('PYk - 'PYe) = 
"IJ'PYk)S('PYe)n-s('PYk - 'PYe) = ('PYk)n - ('PYe)n. Since the graph is connected 

S 

there is a single scalar A such that ('PYj)n = AZn, and since some 'PYj i:- 0, A i:- O. 
Choose an nth root of A, X, and define wa(jl bY'PYj = wa(j)Xz. This n-colours 
the graph. 0 

( c) Exponents and formal dimension. 
Fix an elliptic Sullivan algebra (AV, d) and bases Y1, ... , Yq of veven and 

Xl, ... ,xp of VO dd . The sequences aI, ... ,aq and b1 , ... bp defined by deg Yj = 2aj 
and deg Xi = 2bi - 1 are independent (up to permutation) of the choice of basis. 

Definition The integers aI, ... , aq and b1 , ... , bp are respectively the even and 
the odd exponents of (A V, d). 

The formal dimension of (A V, d) is the largest integer n (or 00) such that 
Hn(AV,d) i:- O. 

In this topic we prove 

Theorem 32.6 (Friedlander-Halperin [61) Suppose (AV, d) is an elliptic Sulli
van algebra with formal dimension n and even and odd exponents aI, ... ,aq and 
b1 , •.. , bp • Then 

p q 

(i) 2)2b i - 1) - 2)2aj - 1) = n. 
i=l j=l 

q 

(ii) L 2aj ~ n. 
j=l 

p 

(iii) L(2bi - 1) ~ 2n - 1. 
i=l 

(iv) dim veven ~ dim vodd ~ cat(AV, d). 

Corollary 1 If (AV, d) is an elliptic Sullivan algebra of formal dimension n 
then V is concentrated in degrees ~ 2n - 1, and at most one basis element of V 
can have degree (necessarily odd) > n. 

Corollary 2 If (A V, d) is an elliptic Sullivan algebra of formal dimension n 
then dim V ~ n. 

p q p 

proof: We have n = L (2b i - 1) - L (2aj - 1) > L(2bi-l)+q~p+q, 
i=l j=l i=l 

where p = dim vodd and q = dim veven. o 
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The proof of Theorem 32.6 depends on a reduction to the pure case (Lemma 
32.7) and a characterization of exponents (Proposition 32.9). 

Consider then an elliptic Sullivan algebra (A V, d). By Proposition 32.4 the 
associated pure Sullivan algebra (AV, d,,) also has finite dimensional cohomology. 

Lemma 32.7 (AV,d,,) and (AV,d) have the same formal dimension. 

proof: \Ve argue by induction on dim V. Write (A V, d) as a relative Sullivan 
algebra (Av C9 AW, d) in which V = lkv EB Wand v is an element in V of minimal 
degree. The YIapping theorem 29.5 asserts that the quotient Sullivan algebra 
(AW, d) has finite category; hence it too is elliptic (Proposition 32.4). 

Next observe that if m is the formal dimension of (AW, (1) and n is the formal 
dimension of (A V, d) then 

{ 
m + degv if degv is odd 

n = m _ degv + 1 if degv is even. 
(32.8) 

Indeed if deg v is odd (and therefore 2: 3) this follows from the long exact coho
mology sequence associated with 

0-+ v C9 (AW, d) -+ (Av C9 AW, d) -+ (AW, (1) -+ 0 . 

If deg v is even extend (A V, d) to (A V C9 Av, d) by setting dv = v, and use the 
long exact cohomology sequence associated with 

o -+ (A V, d) -+ (A V C9 Av, d) -+ (A V, d) C9 v -+ 0 

to conclude that formal dimension (A V C9 Av, d) = n + deg v = n + deg v -1. Then 
write (AVC9Av,d) = (AVC9AvC9AW, d) and observe that because H(AvC9Av, d) = 
Ik the surjection (A V C9 Av, d) -+ (AW, (1) is a quasi-isomorphism. 

This proves (32.8). The same argument applies to the relative Sullivan algebra 
(Av C8I AW, d,,), and here the quotient Sullivan algebra (AW, d,,) is just the pure 
Sullivan algebra associated with (A W, d). By induction (A W, (1) and (A W, d" ) 
have the same formal dimension. Thus formula (32.8) for (AV, d) and for (AV, d,,) 
shows these have the same formal dimension too. D 

Our next step is to derive the fundamental property enjoyed by the exponents 
of an elliptic Sullivan algebra. 

Proposition 32.9 (Friedlander-Halperin [61]) Suppose al, ... ,aq and bl , ... , bp 

are the even and odd exponents of an elliptic Sullivan algebra (A V, d). Then for 
any integer s (1 :::; s :::; q) and any subsequence aj" ... ,aj, of even exponents, 
there are at least s odd exponents b; that can be written in the form 

s 

bi = Lk>.aj" , 
>'=1 
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where the k>. are non negative integers (depending on bi) and L: k>. 2: 2. 
>. 
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proof: Since the associated pure Sullivan algebra is also elliptic (Proposi
tion 32.4) we lose no generality in assuming that (A V, d) is itself pure. Re-index 
the even exponents so that the subsequence in question is a1, ... , as. Let (Yj) 
and (Xi) be bases of veven and vodd chosen so deg Yj = 2aj and deg Xi = 2bi - 1. 
Divide by the Yj, j > s, to obtain a pure elliptic Sullivan algebra of the form 
(A(Y1, ... ,Ys) @A(X1, ... ,Xp ),d). 

Next, renumber the basis Xi so that dXi f:. 0, 1 :'S i :'S rand dXi = 0, i > r. 
Then our pure Sullivan algebra has the form (A(Y1, ... ,Ys) @A(X1, ... ,xr),d) @ 

(A(Xr+1, ... ,xp ), 0) and so (A(Y1' ... ,Ys) @ A(X1' ... ,xr), d) is elliptic. By Propo-
sition 32.2 (ii), r 2: s. 

On the other hand, for i :'S r', dXi is a non-zero polynomial in the Yj with no 
linear term, and so it contains a term of the form y~l ... y~s with L: k>. 2: 2. 

Thus 2bi = degxi + 1 = t k>. degy>. = 2 (t k>.a>.). D 
A=l >'=1 

Remark In [61] it is shown via a difficult argument from algebraic geometry 
that any pair of sequences aI, ... ,aq and b1, ... ,bp satisfying the conclusion of 
Proposition 32.9 are the even and odd exponents of an elliptic Sullivan algebra. 
Thus this condition precisely characterizes the possible degrees of a basis for V 
in an elliptic Sullivan algebra (A V, d). D 

proof of Theorem 32.6: In view of Lemma 32.7 we may suppose (AV,d) is 
pure. Thus (i) is just Proposition 32.2 (iii). Now order the exponents so that 
a1 2: a2 2: ... 2: aq and b1 2: b2 2: ... 2: bq . At least s of the bi are non
trivial non-negative integral combinations of a1, ... , as (Proposition 32.9). In 
particular, at least s of the bi satisfy bi 2: 2as. This implies that bs 2: 2as. Thus 
by (i) 

p q q q 

n = 2)2bi - 1) - 2)2aj - 1) 2: L [(4aj - 1) - (2aj - 1)] = L 2aj . 
i=l j=1 j=l j=l 

Similarly, 

p q p p p 

n = L(2bi - 1) - L(2aj - 1) 2: L(2bi - 1) - L(bi - 1) 2: L bi , 

i=l j=l i=l i=1 i=l 

p 

and so 2n -12: 2: (2bi -1). 
i=l 

This proves (i)-(iii). Proposition 32.2 (ii) asserts that dim veven :'S dim vodd , 

which is the first inequality of (iv). Finally, the homotopy Lie algebra L of 
(AV, d) is finite dimensional, since sL is dual to V. Thus ad x is locally nilpotent 
for all x ELand so Theorem 31.17 implies that cat(AV, d) 2: dim Leven (= 
dim vodd ). D 



444 32 Elliptic spaces 

(d) Euler-Poincare characteristic. 
Recall (§3(e)) that the Euler-Poincare characteristic XM of a finite dimensional 

graded vector space is defined by XM = 1;( -1)i dim Mi = dim Meven_dim MOdd. 

If M is equipped with a differential, d, then XM = XH(M,d) , as follows from 
elementary linear algebra. 

The purpose of this topic is to prove 

Proposition 32.10 Let X be the Euler-Poincare characteristic of the cohomol
ogy of an elliptic Sullivan algebra (A V, d). Then 

X ?: 0 and dim Vo dd - dim V even ?: 0 . 

Moreover, the following conditions are equivalent: 

(i) X> o. 

(ii) H(AV, d) is concentrated in even degrees. 

(iii) H (AV, d) is the quotient A(Yl, ... , Yq) / (Ul' ... , uq) of a polynomial algebra 
in variables (Yj) of even degree by an ideal generated by a regular sequence 
(Uj) . 

(iv) (A V, d) is isomorphic to a pure Sullivan algebra (AQ 0 AP, d) in which 
Q = Qeven, P = p odd and d maps a basis of P to a regular sequence in 
AQ. 

(v) dim vodd - dim veven = o. 

The proof of the Proposition relies in part on another invariant of pure Sullivan 
algebras, introduced originally by Koszul in [102]. If (AQ 0 AP, d) is a pure 
Sullivan algebra with Q = Qeven and P = podd then its Koszul-Poincare series 
is the formal series U(z) given by 

(Xl 

U(z) = "2:.:>rzr, Ar = "2)-I)kdim(AQ 0 Akpy-k . 
r=O k 

Lemma 32.11 If 2al, ... , 2aq are the degrees of a basis (Yj) of Q and if 
2bl - 1, ... ,2bp - 1 are the degrees of a basis (Xi) of P then 

p 

IT (1 - z2b i ) 

U(z) = _i~-::-l ___ _ 

IT (1 - z2a j ) 

y=l 
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proof: Write AQ ® AP = A V. Clearly U = Ul\. v does not depend on the 
differential, and UAV0AW = Ul\.V ·UAW. Since AV = AY1 ® ... ® AYq ® AX1 ® 
... ® Axp and since (trivially) 

the lemma follows. 

')b and UAx,(Z) = 1- z-' , 

D 

Now while the Koszul-Poincare series U(z) = L .Arzr for (AQ®AP, d) does not 
r 

depend on the differential, it nonetheless gives important numerical information 
about H(AQ ® AP,d). Indeed, since elements of AQ ® Akp have odd (even) 
degree if k is odd (even), .A r is just the Euler-Poincare characteristic of Cr = 
EB(AQ ® Ak py-k. yIoreover, because d decreases wordlength in P by 1 and 

k 
increases degree by 1 it follows that d preserves each Cr. Thus.Ar is also the 
Euler-Poincare characteristic of H( Cr , d): 

.A r = 2) _l)k dim H~-k(AQ ® AP, d) , 
k 

where Hk(AQ ® AP) is as defined in §32(a). 
l\OW suppose H(AQ ® AP,d) is finite dimensional. Then H(Cr ) = 0 (and 

hence .Ar = 0) for sufficiently large r; i.e.) U(z) is a polynomial. Moreover, since 
AQ ®AP = EB Cr , the Euler-Poincare characteristic X of H(AQ ®AP, d) is given 

r 

by 
(32.12) 

r r 

proof of Proposition 32.10: Recall the odd spectral sequence (Ei, di ) (§32(b)) 
for (A V, d), whose E 1-term is just the cohomology H (A V, d(J) of the associated 
pure Sullivan algebra. Since this is finite dimensional (Proposition 32.4) and 
since Ei+1 = H(Ei) d;) the Euler-Poincare characteristics satisfy 

XH(AV,d~) = XE, = XE2 = .... 

Since E~·-k = Aveven ® Akvodd it vanishes unless 0 < k :s; dim vodd and so 
EDO = E i , i > dim VO dd . But Eoo is the associated bigraded vector space for 
H (A V, d) and we conclude that 

XH(l\.V,d) = XH(AV,d~) . (32.13) 

On the other hand, if 2al, ... ,2aq are the degrees of a basis for veven and if 
2b1 - 1, ... ,2bp - 1 are the degrees for a basis of vodd then Lemma 32.11 asserts 
that the Koszul-Poincare series U for (A V, d(J) satisfies 

q p 

U(z) II (1- z2a j ) = II(l- Z2b i ) . 

j=l ;=1 
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Since U(z) is a polynomial and since z = 1 occurs as a root with multiplic
ity 1 in 1 - zm it follows that p 2: q and that z = 1 occurs as a root of 
U(z) with multiplicity p - q. Since p = dim vodd and q = dim v even we have 
shown that dim vodd 2: dim v even (another proof is given in Theorem 32.6), 
that XH(AV.d) = XH(AV.d~) = U(l) = 0 if dim vodd > dim v even and that if 
dim vodd = dim v even = q then 

q / q 
XH(AV,d) = U(l) = ;g bi ;g ai > 0 . (32.14) 

This proves the first assertion of the Proposition and the equivalence (i) ¢::::::} 

(v). 
Now clearly (iii) ==? (ii) ==? (i), and Proposition 32.3 asserts that (iv) ==? 

(iii). It remains to show that (i) ==? (iv). If (i) holds then, since (i) ==? (v), 
dim v even = dim VO dd . Since H(AY, dO") is finite dimensional (Proposition 32.4), 
Proposition 32.2(ii) asserts that H+ (A Y, dO") = o. It follows (Proposition 32.3) 
that if (Xi) is a basis of vodd then (dO"x;) is a regular sequence in Aveven and 
that H(AV, dO") = Ho(AV, dO") = Aveven j(dO"XI' ... ' dO"xq). 

In particular, H (A V, dO") is evenly graded and so the differentials dl , d2 , ... in 
the odd spectral sequence all vanish. In other words H (A V, dO") is the bigraded 
vector space associated with H(AV, d). Let YI, ... , Yq be a basis for veven . Since 
dO"Yi = 0 there are elements 1>i E Aveven Q9 A +vodd such that d(Yi + 1>;) = O. 
Put Y; = Yi + 1>i and note that (A V, d) = A(y~, . .. ,Y~) Q9 Avodd . Thus without 
loss of generality we may assume d = 0 in veven . 

Finally let Xl, ... , Xq be a basis of vodd such that deg Xl :::; ... :::; deg Xq and 
suppose by induction that for i < k we have found elements Wi E A v"even Q9 

A2" 3 vodd such that d(Xi + w;) = dO"x;. Replace Xi by Xi + Wi to reduce to 
the case dx; = dO"Xi, i < k. Then d = dO" in Aveven Q9 A(XI, ... ,Xk-d. Since 
dO"XI' ... , dO"Xk-l is a regular sequence, Proposition 32.3 implies that dO"Xk -
dx k is a dO"-coboundary in A v even Q9 A + vodd and hence it has the form dO" W k, 
some Wk E Aveven Q9 A2" 3 vodd . By construction dWk = dO"Wk, and so dO"Xk = 
d (Xk + Wk). 

'loT. I - . ,T,. Th (AT/ d) - '\( I I I ') •• h d I - 0 no\\setxi-x,+'I',. en I, -1 Yl, ... ,yq,xl,.·.,Xq,\\lt Yj-
and dx~, ... , dx~ a regular sequence in A(y~, ... , Y~). D 

Corollary If dim v even = dim vodd = q then 

L dim Hr(AV, d)zr = .:....i~,..:.l ___ _ 

r TI (1 - Z2a) ) 

j=l 

q / q 
and XH(AV,d) = dimH(AV,d) = III b; JDI aj. 
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proof: Since H(AV,d) ~ H(AV,d(J") 
Poincare series U for (AV, d(J") that 

Ho(AV, d(J") we have in the Koszul-

AT = 2:(-l)k dimH;-k(AV,d(J") = dimHT(AV,d) . 
k 

Apply Lemma 32.11. o 

(e) Rationally elliptic topological spaces. 
Let X be a simply connected topological space with finite dimensional ra

tional homology. The formal dimension nx of X is the maximum integer 
such that Hnx (X; Q) i 0, and its Euler-Poincare characteristic is the integer 
Xx = L ( -l)P dim HP (X; Q). Recall that X is rationally elliptic if the graded 

P 

vector space 1T*(X) Q9 Q is also finite dimensional. In this case we set 

X".(X) = dim 1Teven(X) Q9 Q - dim 1Todd(X) Q9 Q , 

and we let 2a1, ... , 2aq and 2b1 - 1, ... ,2bp - 1 be the degrees of a basis of 
1T*(X) Q9 Q, so that p = dim 1Todd(X) Q9 Q and q = dim 1Teven(X) Q9 Q. 

Since the minimal Sullivan model, (A V, d), for X satisfies 

H(AV,d) ~ H*(X;Q) , V ~ 1T*(X) Q9Q and cat (AV,d) = catoX 

we may translate Theorem 32.6 and Proposition 32.10 and their corollaries as 
follows: 

Theorelll 32.15 If X is a rationally elliptic space then, in the notation above, 

p q 

(i) nx = L (2b i - 1) - L (2aj - 1). 
i=1 j=1 

q 

(ii) nx 2: L 2aj. 
j=1 

p 

(iii) 2nx -12: L(2bi -1). 
i=1 

(iv) dim 1Teven(X) Q9 Q ~ dim 1Todd(X) Q9 Q ~ cato X. 

In particular 1T * (X)Q9Q is concentrated in degrees ~ 2nx-1 and dim 1T*(X)0Q ~ 
~. 0 

Proposition 32.16 If X is a rationally elliptic space then in the notation 
above 

Xx 2: 0 and X".(X) ~ 0 . 

Moreover, the following conditions are equivalent: 
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(i) Xx > o. 
(ii) H*(X; Q) is the quotient of a polynomial algebra in q variables of even 

degree by an ideal generated by a regular sequence of length q. 

(iii) dim 'iT even (X) Q9 Q = dim 'iT odd (X) Q9 Q. 

If these conditions hold then 

q q 

IT (1 - z2bi ) IT b; 
LdimHk(X;Q)zk = -~.,-------- and 1 

Xx = -q-. 

k IT (1-z2aj) IT aj 
j=l 1 

o 

Example 1 Simply connected finite H -spaces are rationally elliptic. 
If G is as in the title then its Sullivan model is an exterior algebra on a graded 

vector space Pc of finite dimension concentrated in odd degrees, and has zero 
differential (Example 3, §12(a)). The dimension of Pc is called the rank of G.O 

Example 2 Simply connected compact homogeneous spaces G I K are rationally 
elliptic. 

Proposition 15.16 asserts that these spaces have a Sullivan model of the form 
(AVBK Q9APc ,d), where d = 0 in AVBK , VBK is concentrated in even degrees, 
d(Pc ) C AVBK and Pc and VBK are finite dimensional. ~ote that this is a pure 
Sullivan algebra. 

In this example we have Xrr(GIK) = dim VBK - dim Pc = dimPK - dim Pc, 
(even though the Sullivan algebra may not be minimal). Thus 

Xrr(GIK) = rank(K) - rank(G) . 
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Example 3 (Allday-Halperin [3]) Free torus actions. 
Suppose an r-torus T = S1 X ... X S1 (r factors) acts smoothly and freely on a 

simply connected compact smooth manifold M. Then the projection M ~ MIT 
onto the orbit space is a smooth principal bundle. Hence there is a classifying 
map MIT ~ BT whose homotopy fibre is homotopy equivalent to M (§2(e)). 

Now assume M is rationally elliptic. Since BT = Cpoo x ... x Cpoo its 
homotopy groups are concentrated in degree 2, and since MIT is compact its 
homology is finite dimensional. Thus MIT is rationally elliptic. It is immediate 
from the long exact homotopy sequence that 

On the other hand, Theorem 32.15 asserts that X7r(MIT) :S 0 and so we conclude 
that 

r:S -XM ; 

i.e., -XM is an upper bound for the dimension of a free torus acting on M. 
In the case of homogeneous spaces G I K (Example 2, above) this shows that 

rank G - rank K is an upper bound for the dimension of a torus acting freely on 
GIK. 0 

(f) Decomposability of the loop spaces of rationally elliptic spaces. 
Let X be a simply connected CW complex. Recall the localization X p (§9(b)) 

at a set of primes P, obtained by 'inverting the primes not in P.' Here we prove 

Theorem 32.17 (McGibbon-Wilkerson [117]) If the integral homology H* (X; Z) 
is a finitely generated abelian group and if X is rationally elliptic then invert
ing some finite set of primes gives a localization X p such that there is a weak 
homotopy equivalence 

OXp ~ II OS~bi-1 X II S~aj-1 
j 

Corollary If X is a rationally elliptic finite CW complex then H*(OX;Z) has 
p-torsion for only finitely many primes p. 

Remark By contrast Anick [9] and Avramov [15] construct simply connected 
finite CW complexes X such that H* (OX; Z) has torsion of all orders. 

proof of Theorem 32.7: In the course of the proof we shall use a little 'inte
gral' homotopy theory not derived in this monograph. 

The proof is by induction on dim 1r * (X) @ Q and for purposes of the induction 
we prove the theorem under the slightly more general hypothesis that for some 
finite set of primes Pl"",Pn, H*(X;R) is a finitely generated module over 

R = Z (p\ ' ... , p~) c Q. In this case we may replace X by a CW p-complex 
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(P = primes of R) with cells in finitely many dimensions. In the proof we shall 
often extend R (and further localize X) by inverting finitely many additional 
primes, and then continue to denote the result by R (and by X). We shall also 
denote by Sk the localization st. 

\Ve shall frequently rely on the following observation. Suppose given continu-

ous maps X ~ Y ? Z in which 9 is a rational homotopy equivalence and each 
Hk(Y; Z) and Hk(Z; Z) are finitely generated R-modules. Then after inverting 

finitely many more primes we can find localizations X P ' jp,) Yp' ~ Zp' and 
a map h : X P' -+ Zp' such that gp' h ~ jp'. Indeed, we may assume Y and Z 
are CW p-complexes of finite type and that j maps X into a finite sub C\V p

complex of Y. Invert finitely many primes to make 9 a homology isomorphism 
between large skeleta and then compose h with the homotopy inverse. 

~ote as well that by inverting finitely many primes we may arrange that X is 
(r-1)-connected and that Hr(X; Z) is a non-zero free R-module. We distinguish 
two cases: 

Case 1: r is odd. 

Since Hr(X; Z) is a non-zero free R-module there are continuous maps sr ~ 
X ~ K(R,r) such that 7I r (gf) is an isomorphism (Theorem 4.19 and Propo
sition 4.20). Since r is odd the composite is a rational homotopy equivalence 
(Example 3, §15(b)). Thus by inverting finitely more primes we can construct 
h : X -+ sr such that hj ~ id. 

Let i : F -+ X be the 'inclusion' of the homotopy fibre of h. Then (d. §2( c)) 
there is a principal nsr -fibration nsr -+ F -+ X. Since ([2]) H. (nsr; R) is the 
polynomial algebra R[or-d and H.(X;R) is finitely generated, a Serre spectral 
sequence argument shows that H.(F; R) is noetherian over R[Or-1J and hence 
has torsion at only finitely many primes. By inverting these we can arrange that 
H. (F; R) is torsion free. On the other hand the ~lapping theorem 28.6 asserts 
that cato F < 00, and hence (Proposition 32.4) F is rationally elliptic. Thus 
H.(F;Q) is finite dimensional and H.(F;R) is a finitely generated R-module. 

But dim 71. (F) :6: Q < dim 71. (X) :6: Q and so the theorem holds for F by 
induction. Since ni . nj : nF x nsr -+ nx is a weak homotopy equivalence, 
the theorem holds for X as well. 

Case 2: r is even, r = 2q. 

As in the previous case we have sr ~ X ~ K(R, r) with 7Ir (gf) an isomor
phism. Recall the definition of the special unitary group SU(q). As in Example 3, 
§15(f) there is an action of SU(q) on S2q-l and this gives an associated fibre 
bundle p: ESU(q) xSU(q) S2q-l -+ BSU(q) with fibre S2q-l (§2(e)). 

The calculations referred to in Example 3, §15(f) show that BSU(q)Q ~ 
q 

T1 K(2i - 1, Q) and that the connecting homomorphism 8. for p maps a ba-
i=2 

sis element for 7I2qBSU(q)Q to S~q-l. Thus by inverting finitely many primes 
we obtain from 9 : X -+ K(R, r) a map h : X -+ BSU(q)p such that 
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o*[hf] = [S2 q-l]. 
Use h to pull the spherical fibration back to a fibration S2q-l -=-+ E ~ 

X whose connecting homomorphism maps (f] to [S2 q-l]. This implies that 
dim 7f * (E) Q9 Q < dim 7f * (X) Q9 Q while a Serre spectral sequence argument shows 
that H* (E; R) is a finitely generated R-module. Thus by induction, the theorem 
holds for E. 

Finally, as in §2(c) we have a fibration OE ---+ OX ---+ S2q-l which, after 
finitely many primes are inverted, admits a cross-section. Thus multiplication 
in OX defines a weak homotopy equivalence OE x S2q-l ~ OX. 0 

Exercises 

1. Determine all the elliptic spaces X satisfying dimLx ::; 3. 

2. Let X be an elliptic space and denote by n the maximal length of a nonzero 
Whitehead bracket. Prove that catoX 2: n/2. 



33 Growth of Rational Homotopy Groups 

In this section the ground ring k is an arbitrary field of characteristic zero. 
Suppose that X is a simply connected topological space with rational homology 

of finite type. In this section we describe the implications for 7f*(X) Q9 Q of the 
hypothesis that X has finite rational category. If dim 7f * (X) Q9 Q is finite then X 
is rationally elliptic (Proposition 32.4) and its properties are described in §32. 
Thus the focus here is on spaces X such that dim 7f*(X) Q9 Q = 00. 

Definition A simply connected topological space X with rational homology of 
finite type is called rationally hyperbolic if cato X < 00 and dim 7f * (X) Q9 Q = 00. 

The justification for the terminology lies in our first main result: 

k 

• If X is rationally hyperbolic then L: dim 7fi(X) Q9 Q grows exponentially in 
i=2 

k. 

Note that this defines a dichotomy: 

• Simply connected spaces X with rational homology of finite type and finite 
rational category are either: 
- rationally elliptic, with 7f. (X) Q9 Q finite dimensional, or else 

- rationally hyperbolic, with 7f. (X) Q9 Q growing exponentially. 

The result above leaves open the possibility of large intervals [r, s] such that 
7fi(X) Q9 Q = 0, r ~ i ~ s. However, this cannot happen: it follows from 
Theorem 31.16 that 

• If X is rationally hyperbolic then there are integers Nand d such that 

This assertion can be considerably improved in the case that H.(X; Q) has finite 
dimension. In this case we let nx be the formal dimension of X; nx is the largest 
integer such that Hnx (X; Q) # 0. Then we show that 

• If X has finite dimensional rational homology and formal dimension nx 
then either 
- X is rationally elliptic and 7fi(X) Q9 Q = 0, i 2: 2nx, or else 

- X is rationally hyperbolic and for each k 2: 1, 7fi(X) Q9 Q -I- 0, some 
iE(k,k+nx). 

In particular, if X is rationally hyperbolic the non-zero rational homotopy groups 
of X occur at intervals of at most nx - l. 

This section is organized as follows: 

(a) Exponential growth of rational homotopy groups. 
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(b) Spaces whose rational homology is finite dimensional. 

(c) Loop space homology. 

(a) Exponential growth of rational homotopy groups. 

Proposition 33.1 Let X be a simply connected topological space with rational 
homology of finite type. If X is rationally hyperbolic then 

(i) dim Tlodd(X) I8l iQ = 00. 

(ii) For some integers Nand d: TlN+kd(X) Q9 iQ f:- 0, k 2 o. 

proof: Let (A V, d) be a minimal Sullivan model for X. Then cat( A V, d) 
cato X < 00. For any n 2 2, divide by v<n to obtain a quotient Sullivan al
gebra (Av2':n, d), which also has finite category (Mapping theorem 29.5). Since 
dim TIp (X) Q9 iQ = dim VP, p 21, it follows that v2':n f:- O. If v2':n were concen
trated in even degrees we would have d = 0 and H(Av2':n,d) = AV2':n would be 
a polynomial algebra, contradicting cat(AV2':n, (1) < 00. It follows that vodd is 
infinite dimensional, which proves (i). 

Let L be the homotopy Lie algebra of (AV, d). Since Lk is dual to Vk+I, Leven 
is infinite dimensional. Thus according to Theorem 31.17 for some non-zero 
0: E Leven and some f3 E L the iterated Lie brackets (ad o:)k f3 are all non-zero. 
This proves (ii). 0 

Theorem 33.2 Let X be a simply connected topological space with rational 
homology of finite type. If X is rational hyperbolic then for some C > 1 and 
some positive integer K: 

k 

LdimTli(X) l8liQ 2 C k , k 2 K . 
i=O 

proof: Let (A V, d) be a minimal Sullivan model for X. As in the proof of 
Proposition 33.1 we have to show that because cat (A V, d) < 00 and dim V = 00, 

k 

L dim Vi 2 C k , k 2 K for suitable C and K. Set m = cat(AV,d). 
i=O 

Now for any integer k dividing by V<k gives a quotient minimal Sullivan alge
bra which we can write as (AV[k,2k-2] Q9 AV2':2k-l ,d), where V[k,l] = {Vi}k<i<r 

By minimality d = 0 in V[k,2k-2]. Moreover, this quotient Sullivan algebr';;:- has 
category::; m (Mapping theorem 29.5) and hence the product of m + 1 cohomol
ogy classes is always zero (Corollary to Proposition 29.3). Thus in particular, 

A m+1 V[k,2k-2] C 1m d . 
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Define Q : V2: 2k- 1 ~ AV[k,2k-2] by requiring that d = Q + (3 with 1m (3 in 
the ideal generated by V2: 2k- 1. If Q r is the component of Q in Arv[k,2k-2] then 
we have 

m+1 
A m+l V[k,2k-2] = EB Q p (V2:2k-1) • A m+1-Pv[k,2k-2] . 

p=2 

Since APV[k,2k-2] is concentrated in degrees i E [Pk, 2pk - 2p) it follows that 

m+1 
dim Am+lV[k,2k-2] ::; L dim V[pk-1,2pk-4] dim Am+l-PV[k,2k-2] . 

p=2 

2k-2 
Now for each integer k set A(k) = L dim Vi. Denote 2m+l(m + l)!m by Cm 

i=k 
and use Proposition 33.1 (ii) to find an integer N such that 

A(k) ~ c;", k ~ N . 

Then it follows from the inequality above that if k ~ N, 

)'(k)m+1 m+1 
--"':"""':'--,- < " ),(pk - l),(k)m+l-p . 
2m+1(m + I)! - ~ 

p=2 

This in turn implies that for some p E [2, m + 1), 

)'(pk - 1) ~ A(k)P . 
Cm 

[ >'c~)] l/k. In particular, )'(pk - 1) ~ )'(k) and ),(pk - 1)1/pk-1 ~ ... 

Iterating this process yields a sequence of integers No < N1 < ... such that 
No = Nand Ni+l = PiNi - 1 (some Pi E [2, m + 1]), and such that 

3 00 1 1 00 (2)i _ 3 2: J 3/N 
But since NH1 ;::: zNi we have L N ::; N L 3" - N· Thus Cm ' ::; Cm , 

0' i=O 
and it follows that 

)'(Ni) Ji ;::: (),~~)) l/N . 

Now for any i ~ 1 and for Ni ::; T < NH1 we have T ::; (m + 1)2 N i - 1 and 
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1 r 

In other words, setting C = [>.~r)] (m+l)2N we have n~o dim vn 2: cr, r 2: N. 0 

(b) Spaces whose rational homology is finite dimensional. 

Theorem 33.3 Suppose X is a simply connected topological space with finite 
dimensional rational homology and formal dimension nx. Then either 'ifi(X) 0 
Q = 0, i 2: 2nx or else for each k 2: 1, 'ifi(X) 0 Q -# ° for some i E (k, k + nx). 

proof: If dim 'if. (X)0Q is finite then Theorem 32.15 asserts that 'ifi(X)0Q = 0, 
i 2: 2nx· Thus if X were a counterexample to the theorem there would be 
integers k 2: 1 and £ 2: nx + k such that 'ifi(X) 0 Q = 0, k < i < £, and 
'ifl(X) 0 Q is non-zero. It follows (Theorem 15.11) that a minimal Sullivan 
model for X (over any field k of characteristic zero) has the form (AU 0 A W, d) 
in which U = U5. k and W = W~l are non-zero graded vector spaces and W l -# 0. 
Moreover, Hi(AU0AW,d) 2:' Hi(X;k) = 0, i > nx. We shall show that this is 
impossible. 

Denote by (AW, d) the quotient Sullivan algebra and let b be a variable of 
arbitrary degree. The main step in the proof is 

Lemma 33.4 In the situation of the proof of Theorem 33.3 suppose given a 
morphism of the form (!: (AU, d) -t (Ab,O). Then the identity in Ab extends to 
an isomorphism of cochain algebras 

Ab0AU (AU 0 AW,d) 2:' (Ab,O) 0 (AW, d) . 

proof: Given any Sullivan algebra (AV, d), define V by Vk = V k- 1 and denote 
corresponding elements by v +---+ v. Define a commutative cochain algebra 

(A V 0 (k EB V), 8) as follows: 

• Multiplication by elements in AV is just multiplication on the left in AV 0 
(k EB V), and V . V = 0 . 

• 8 = d + s, where s is the derivation defined by sv = v and sv = 0, and 
where d(<I> 01) = d<I> 01 and dv = -sdv. 

This construction is natural: if r.p : (A V, d) -t (AZ, d) is a morphism of Sullivan 

algebras,extendittocp: (AV0(kEBV),8) -t (AZ0(kEBZ),8) by setting 

cpv = sr.pv. Moreover, division by V defines a natural surjective cochain algebra 

morphism 'if : (AV 0 (k EB V), 6) -t (AV, d). 

In particular, denote the cochain algebra (AU 0 (k EB 0),8) simply by (A, J). 
The key observation is then that there is a relative Sullivan algebra 

(A,8) r---t (A 0 AW, 8) 
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such that applying AU 181 A - yields the original relative Sullivan algebra AU -+ 
AU 181 AW. The derivations d in A and in AU 181 AW extend uniquely to a 
derivation d in A 181 AW = A I8IAU (AU 181 AW). Now extend the derivation s in A 
to a derivation s in A 181 A W by constructing its restriction to W as a linear map 
W -+ AU 181 (; 181 AW such that dsw = -sdw, w E W. Then sd + ds = 0, and 
S2 = 0 because s will automatically vanish in AU 181 (; 181 A W. Thus 8 = d + s is 
a differential. 

Suppose by induction that s is defined in w<r. If w E W r, then by construc
tion dsdw = -sd2 w = 0, and so sdw is a d-cocycle in AU 181 (; ® AW. Since 
T 2: e 2: k + nx it follows that deg sdw 2: k + nx + 2. On the other hand, (; is 
concentrated in degrees::; k + 1 and H(AU 181 AW, d) is concentrated in degrees 
::; nx. Hence Hi(AU 181 (; 181 AW,d) = 0, i 2: k + nx + 2, and sdw must be a 
d-coboundary. Thus we may extend s to wr so dsw = -sdw, w E wr. This 
constructs 8. 

Next, given {! : (AU, d) -+ (Ab, 0) extend it to Q : (A,8) -+ (Ab 181 (Jk EB Jkb), 8) 
as described above. Define the quotient cochain algebra (B,8) by 

{ 
Ab 181 (Jk EB Jkb), deg b is even. 

B = Ab 181 (Jk EB Jkb)/bb, degb is odd. 

Set (B 181 AW,8) = B I8IA (A 181 AW,8). By inspection H(B,8) = Jk, and 
so the quotient map 7r : (B 181 A W, 8) -+ (A W, d) is a quasi isomorphism 
(Lemma 14.2). Choose a morphism a : (A W, d) -+ (B 181 A W, 8) such that 
7ra = id (Lifting lemma 12.4); then multiplication defines an isomorphism 

id . a : (B, 8) 181 (A W, d) ~ (B 181 A W, 8), as follows by filtering using the de
gree of B. 

Finally, dividing by b gives a morphism (B,8) -+ (Ab,O) and 

(Ab I8IAu (AU 181 AW, d) ~ Ab I8IB B I8IA (A 181 AW, 8) ~ (Ab,O) 181 (AW, d). 0 

We now return to the proof of Theorem 33.3, where we show that 

• Both H(AW, d) and H(AU, d) are finite dimensional. (33.5) 

Suppose (33.5) is proved. Filter AUI8IAW by setting FP(AUI8IAW) = (AU)2:PI8I 
A Wand observe that the Erterm of the corresponding cohomology spectral 
sequence is given by E~,q = HP (AU, d) 0 Hq (A W, d). If p and q are the maximum 
degrees in which H(AU, d) and H(AW, d) are non-zero then for obvious degree 
reasons di = 0 in Ef'q, i 2: 2 and Ef,q n 1m di = 0, i 2: 2. It follows that Er;,q i- 0 
and hence that Hp+q(AU 181 AW, d) i- O. But (AW, d) is a non-trivial minimal 
Sullivan model and W = W2:£ with e 2: k + nx > nx. This contradicts the 
hypothesis that Hi(AU 181 AW, d) = 0, i > nx, and establishes the theorem. 

Now we have to prove (33.5). Fix a basis Ul, ... ,Ur of U such that deg Ul ::; 

deg U2 ::; ... and let (AUi I8IAW, Di) be the quotient Sullivan algebra obtained by 
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dividing by Ul, ... , Ui-l. We show first by induction that each H(AUi 0 AW, D i) 

is finite dimensional so that, in particular, H(AW, d) is finite dimensional. 
Indeed suppose H (AUi 0 A ~F, D i ) is finite dimensional. If deg Ui is even extend 

this to the Sullivan algebra (AUi 0 AW (:9 Ab, Di) by setting Dib = Ui, and 
note that this is quasi-isomorphic to (AUi +1 0 AW, Di+d. Thus the long exact 
cohomology sequence associated with 

shows that H(AUi +1 0 AW, Di+d is finite dimensional. 
On the other hand, if deg Ui is odd write Di (10 <I» = 1 (:9 D i+1 <I> + Ui (:9 B<I>, <I> E 

AUi+l 0AW. Let N be the maximum degree such that HN (AUi rg AW, D i ) i= O. 
If <I> is a D i+ 1 -cocycle representing [<I>] E H (AUi+ 1 0 A W, D i+ 1) and if deg <I> > N 
then Ui 0 <I> is a Di-cocycle and hence of the form Di (Ui 0 \]:I + 10 <I>1). It follows 
that Di+l <I> 1 = 0 and H(B)[<I>d = [<I>]. This procedure constructs an infinite 
sequence [<I>] ~ H(B)[<I>l] ~ .... 

But division by (Uj), j i= i defines a surjection (AU, d) -t (Aui'O). According 
to Lemma 33.4, Au; rgAU (AU rg AW,d) ~ (Aui,O) (:9 (AW, d). It is immediate 
that if Xl, . .. ,X,.. is the dual basis of the homotopy Lie algebra L of (AU, d) 
then the holonomy representation hI' of L in H (A W, d) satisfies hI' (Xi) = 0 
(Introduction to §31). Since L is finite dimensional ad Xi is trivially nilpotent. 
Hence (Lemma 31.9) H(B) is locally conilpotent and [<I>] = 0; i.e. H>N (AUi +! (:9 

AW, Di+d = O. This shows that H(AUi+1 0 AW, Di+d is finite dimensional. 
It remains to show that H(AU, d) is finite dimensional and for this we lose no 

generality in assuming 1k algebraically closed. Consider an arbitrary morphism 
f2 : (AU, d) -t (Ab,O) where deg b = 2. It extends to a morphism Ii : (AU 0 
AW, d) -t (Ab, 0) defined as follows: use Lemma 33.4 to identify Ab Q9AU (AU 0 
AW, d) as (Ab, 0) 0 (AW, d) and let If be the composite 

(AU (:9 AW, d) -t Ab Q9AU (AU 0 AW, d) -t (Ab, 0) . 

Suppose now by induction that 7rU1 = ... = 7rUi-l = O. If deg U; is odd then 
7rUi = O. Otherwise factor 7r to give a morphism 'if : (AUi 0 .UV, D i ) -t Ab. 
Since H(AUi ® AW, D i ) is finite dimensional and since DiUi = 0, it follows that 
uf = D;fl, some N. Hence 7r(ufV) = 'if(uf) = 'if(Difl) = 0; and it follows that 
7rUi = O. Thus Q = 0 in U and the only morphism (AU, d) -t (Ab,O) is the 
trivial one. Now Proposition 32.3 asserts that H(AU, d) is finite dimensional. 
This completes the proof of (32.5) and hence of the theorem. 

o 

Proposition 33.6 (Lambrechts [104]) Suppose X is as in Theorem 33.3. Then 
for r sufficiently large, 

r+~-1 d. (X) rrll dim Ii,.. (X) ® IQ 
L-t 1m Iii 0 '\£ > -. --'---'---~ 

- d1mH*(X;IQ) 
;=r+l 
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proof: Let (A V, d) be the minimal Sullivan model of X and set 

N = dim H* (X; (Q)) = dim H (A V, d). 

If the inequality of the Proposition fails for some r > nx + 1 we show by induction 
that for 0 ~ k ~ nx -1, (A V, d) can be decomposed as a relative Sullivan algebra 
ofthe form (AUk gAWk, dk) in which Wk = (Wk):,:r, (Wkr = 0, r+ 1 ~ i ~ r+k 
and 

r+nx- 1 

L N dim Wi < dimWk . 
i=r+k+l 

Since V k ~ 'lrk(X) Q?J (Q), this can be achieved for k = 0 by setting Uk = v<r. 

For the inductive step, let w E (Wkr+k+l and write dw = o:w + (3w with o:w E 
(AUk) Q?J W[ and (3w E AUk. Since d2 w = 0 it follows that o:w E kerdg W[. Let 
H (0:) : (Wk) r+k+ 1 ----7 H (A V) Q?J W[ be the induced map and write W[ = Z EB Z' 
where Z is the smallest subspace such that ImH(o:) c H(AV) Q?J Z. Then by 
replacing a basis Wi of wr+k+l by elements of the form w; = Wi + <f>i with 
<f>i E AUk Q?J Z' we may arrange that 0: : wr+k+l ----7 AUk Q?J (lk EB Z). Set 

Uk+l = Uk EB Z 8 (Wkr+k+l and set Wk+1 = Z' EB Wk:':;:k+2. Since (clearly) 
r+nx- 1 

N dim (Wkr+k+l :::: dim Z it follows that ~ N dim Wi < dim Z'. This 
i=r+k+2 

closes the induction. 
For k = nx - 1 we thus obtain a decomposition (A V, d) = (AU Q?J AW, d) in 

which W = W:':r, W r i 0 and Wi = 0, r + 1 ~ i ~ nx + r - 1. Extend a non
zero linear function f : y,p ----7 lk to a derivation () in (AU Q?J Awr, d) by putting 
e = 0 in U. Suppose () is further extended to (AU Q?J Aw<Sm,d). If wE W m + 1 

then ()dw is a cocycle of degree at least nx + 1, and hence is a coboundary in 
AV. Thus we can extend e to Y,Vm+l so that ()dw = dew, w E W m+1 . 

This exhibits f : y,p ----7 lk as a non-zero Gottlieb element (§29( d)) for (A V, d). 
Since cat(AV, d) is finite there are such elements in only finitely many degrees 
r (Proposition 29.8 (ii)), and hence the inequality of this Proposition holds for 
sufficiently large r. 0 

( c) Loop space homology. 
For any topological space X with rational homology of finite type, the Poincare 

co 

series for X is the formal power series Px = ~dimHn(X;(Q))zn. In particular, 
o 

if X is simply connected the Milnor-Moore theorem 21.5 states that the loop 
space homology of X is isomorphic to the universal enveloping algebra of the 
homotopy Lie algebra Lx : H*(OX;(Q)) ~ ULx. Denote by ri (or by ri(X) 
when the dependence on X is not clear from the context) the integers 

Then the Poincare-Birkoff-Witt theorem 21.1 identifies Fax as the formal power 
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series ex) 

II (1 + Z2i+ 1 r2i+1 

P0X = ~i=~O_ex) __________ _ (33.7) 
II (1 - Z2if2i 

i=l 

(Compare with the formula in §32( d) for Px for certain rationally elliptic spaces!) 
Note that (33.7) provides algorithms for computing the integers dim Hi(DX; rQ), 

1 ::::: i ::::: N from the integers dim 7ri+l (X) Q9 rQ, 1 ::::: i ::::: N and for computing 
the integers dim7ri+dX) Q9 rQ, 1 ::::: i ::::: N from the integers dimHi(DX;rQ), 
1 < i < N. 

Proposition 33.8 Suppose Hi(X;rQ) = 0, i > nx. Then the integers 
dim Hi(DX; rQ), 1 ::::: i ::::: 3(nx - 1) deter-mine whether- X is mtionally elliptic or
mtionally hyper-bolic. 

proof: Theorem 33.3 asserts that X is rationally elliptic if and only if 7rj (X) Q9 

rQ = 0, 2nx ::::: j < 3nx - L This only requires the calculation of ri, 2nx - 1 ::::: 
i ::::: 3nx - 3. 0 

Proposition 33.9 

(i) If X is mtionally elliptic then ther-e are constants 0 < A. < B such that 

n 

A.nT ::::: LdimHi(DX;rQ) < BnT n 2: 1 , 
;=0 

wher-e r- = dim 7r odd (X) Q9 rQ. 

(ii) If X is mtionally hyperbolic and if Hi(X; rQ) = 0, i > nx then there are 
constants C > 1 and K such that 

k+2(nx -1) 

L dimHi(DX;rQ) 2:Ck , k>K. 
i=k+1 

proof: The first assertion is immediate from (33.7). For the second let (AV, d) 
be the minimal Sullivan model of X. An element v of V of least degree is a 
co cycle of degree n ::::: nx. If n is even then vP is a coboundary for some p such 
that (p - l)n ::::: nx. Thus whether n is even or odd it follows that V has a 
non-zero element of odd degree 2k + 1 ::::: 2nx - I, and so Lx has an element 

ex) 

of even degree 2k ::::: 2nx - 2. By (33.7), P0X - 1_~2k L ri Zi is a power series 
i=2 

with positive coefficients. Kow apply Theorem 33.2. 0 

The mdius of conver-gence R of a power series L anzn is the least upper 
bound of the nonnegative numbers r- such that L lanlr-n converges, and is given 
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by R-1 = lim sup JanJl/n. Recall that X is supposed simply connected with 
rational homology of finite type. 

Proposition 33.10 The formal power series PQX and LTnZn have the same 
radius of convergence, R. Moreover 

(i) R = 1 if X is rationally elliptic and R < 1 if X is rationally hyperbolic. 

(ii) If X is rationally hyperbolic and if Hi(X; Q) = 0, i > nx then R < K < 1 
for some constant K depending only on nx. 

proof: Write L anzn « L bnzn if an :::; bn for all n. Since 

IT (1 + z2n+l) r2n+l 

LTnZn« n IT (1 _ z2nr2n 
n 

it follows by (33.7) that Lrnzn is convergent if and only if PQX is convergent. 
If X is rationally elliptic the products in (33.7) are finite and R = 1. If X 

is rationally hyperbolic let cato X = m. The proof of Theorem 33.2 shows that 
given N sufficiently large there is an infinite sequence of integers Ni such that 
N = No, Ni :::; Ni+l :::; (m + l)Ni and 

1 

J=N (
21="2 dim 7rj (X) ® Q) N 

where Cm is a constant depending only on m. It is also shown that for N suffi
ciently large the right hand side is larger than one. It follows that lim sup r;,/n > 
1. Moreover, Theorem 33.3 states that if Hi(X; Q) = 0, i > nx, then when 
N = 2nxc;x the right hand side is at least 21/ N , from which assertion (ii) 
follows at once. 0 

Example 1 Wedges of spheres. 
Suppose X = V sn;+l with ni ~ 1 and at most finitely many spheres of a fixed 

i 
degree. Then the homotopy Lie algebra is a free Lie algebra lLv 
vector space with basis (Vi) and degvi = ni (Example 1, §24(e)). 
the tensor algebra TV (§21(c)) and thus 

Example 2 X = S3 V S3. 

on a graded 
But UlLv is 

o 
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As in Example 1, Fnx = 1-~z2 and hence H*(OX;Q) is concentrated in even 
degrees. Thus formula (33.7) becomes 

1 1 
1 - 2z2 - TI (1 - z2nr 2n , 

n 

where r2n = dim 7i2nO(S3 V S3) Q9 Q. Take logs of both sides to obtain 

Equating the coefficients of z2N gives L r2dd = 2N. 
diN 

The Mobius function J1(n) is defined by: J1(n) = 1, (-It or 0 as n is 1, 
a product of r distinct primes or divisible by a prime squared. Elementary 
number theory gives 

r2N = ~ LJ1 (~) 2d 
diN 

as a precise formula for the dimension of 7i2N(OX) Q9 Q. As observed above, 
7iodd(OX) Q9 Q = O. D 

Example 3 X = Sr V Si U[a[a,,6]w]w D8. 

Here Q: and f3 are the elements of 713 (Sr V Sn represented by Sr and S~, 
and [-, -]w is the Whitehead product. According to Example 4, §24(f) X 
has a Lie model of the form (L,d) = (lL(v,w,u),d) with degv = degw = 2, 
deg u = 7, du = [v, [v, wll and dv = dw = O. In degrees::; 8 the cochain 
algebra C*(L,d) coincides with (A(X3,Y3,z5,r7,s7,a8),d) where x,Y,z,r,s and 
a are dual (up to sign) respectively to v, w, [v, w], [w, [w, v]], [v, [v, wll and u, and 
where dz = xy and dr = yz, ds = xz - a and da = O. Dividing by elements 
of degree> 8, and by rand yz gives a commutative model for X of the form 
(A,d) = (A(x,y,z),d) /(yz). 

The quotient map q : X -+ Sr is represented by the inclusion (Ax,O) -+ 
(A, d). Extend this to a quasi-isomorphism from a relative Sullivan algebra, 
(Ax Q9 AV, d) ~ (A, d). Since (A, d) is Ax-semifree this induces a quasi
isomorphism 1;, ®Ax (Ax ® AV,d) ~ 1;, ®Ax (A, d) - Proposition 6.7 (ii). But 
1;, ®Ax (Ax ® AV, d) = (AV, d) is a Sullivan model for the homotopy fibre F of q 
(Theorem 15.3), while 1;, ®Ax (A, d) = (A(y, z)/yz, 0). This shows that 

F ~IQ S3 V S5 . 

Let j : F -+ X be the map corresponding to the fibre inclusion of the fibration 
associated with q : X -+ Sf and let i : Sf -+ X be the inclusion. Since qi = id, 
Oi· OJ : OSf x OF -+ OX is a weak homotopy equivalence. In particular, (cf. 
Example 2) 

1 1 
Fnx = 1 _ z2 1 - z2 - z4 D 
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Example 4 X = T(5 3 ,53 ,53 ). 

Recall that 53 is a CW complex with a O-cell and a 3-cell; thus the product 
53 x 53 X 53 has 8 cells consisting of a O-cell, the three spheres, three 6-cells 
attached by Whitehead products and a 9-cell. The 6-skeleton of 53 x 53 X 53 is 
called the fat wedge T (53, 53, 53). 

The inclusion q : X ---+ 53 X 53 X 53 can be represented by r.p : (A(x, y, z), 0) ---+ 
(A, d) where A is a commutative model concentrated in degrees :S 6. It follows 
that A = A(x, y, z)/xyz. 

If we extend r.p to a quasi-isomorphism (A(x,y,z) cg: AF,d) ---='+ (A,d) from a 
relative Sullivan algebra then, as in Example 3, the quotient Sullivan algebra 
(A "T, d) is a Sullivan model for the homotopy fibre F of q. But there are quasi
isomorphisms (AF,d) ~ (A(x,y,z) (59AFC.9A(x,y,z),d) ~ (Acg:A(x,y,z),d), 
where dx = x, dy = y and dz = z. 

Consider the short exact sequence 

o ---+ 1kxyz C.9 A(x, y, z) ---+ A(x, y, z) cg: A(x, y, z) ---+ A C.9 A(x, y, z) ---+ 0 . 

Since the central term is contractible it follows that every cohomology class in 
H(Acg:A(x,y,z)) is represented by a co cycle in A2(X,y,z) C.9 A(x,y,z). The 
product of bvo such co cycles is zero and it follows that F is formal and thus 
has the rational homotopy type of a wedge of spheres (Proposition 13.12 and 
Theorem 24.5). The long exact cohomology sequence also shows that PF = 
(1-",:2)3. Thus (Example 1) 

Since "*(q) is (trivially) surjective it follows that 

P[lX 
1 

(1-Z2)3_ Z7 

It follows in particular that dimIl3(X) cg: Q = 3, dimlls(X) cg: Q = 1 and 
that lIi(X) C.9 Q = 0, 4 :S i :S 7. This interval of four consecutive zero rational 
homotopy groups is the maximum allowed by Theorem 33.3, since Hi (X; Q) = 0, 
i > 6. 0 

Example 5 X = Y V Z. 
Suppose Y and Z are simply connected CW complexes. Let j : F ---+ Y V Z 

be the 'inclusion' of the homotopy fibre of the inclusion q : Y V Z ---+ Y x Z. The 
construction of F (§2(c)) identifies it as F = OY x PZ U PY x OZ. Since 

[lYxstZ 
the pairs (PY,OY) and (COY,OY) are homotopy equivalent (elementary), and 
similarly for Z we have 

F ~ OY x COZ U COY x OZ ~ OY * OZ ~ ~(OY 1\ OZ) , 
[lYx[lZ 
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((1.15) and Proposition 1.17 - note that (nY,pt) and (nZ,pt) are well based 
by Step 1 of Proposition 27.9). This shows that F has the rational homotopy 
type of a wedge of spheres (Theorem 24.5). 

Now since F ~ 'E(nYAnZ), Pp(z) = Z(Pf2Y-1)(Pnz-l). Thus (Example 1) 
since 7r * (q) is clearly surjective, 

1 
Pnp = --~----~~----~ 

1 - (Pny - 1)(Pnz - 1) 
and Pnx = Pny Pnz 

1 - (PnY - I)(Pnz - 1) 

Simplifying gives the classical formula 

P -l p-l + p-l 1 n(YVz) = ny nz - . o 

Exercises 

1. Let X be a simply connected CW complex of finite type. Suppose that 
7rr(X) ® Q = 0 for r > n, and HP(X; Q) = 0 for n < p < 2n + 1. Prove that 
HP(XjQ) = 0 for p > n. 

2. Denote by R the radius of convergence of the series 'En dimHn(nXj Q)zn. 
If X is a hyperbolic space prove that for large r and for any c > 0, we have 

r [ 1 ]~ ?; dim7rn (X) ® Q 2 (R + c) , 

where m = catoX. 

3. Let Rx be the radius of convergence of H*(nXj Q)[z] and P(z) the Poincare 
series of H*(XjQ). Suppose that dimH*(XjQ) < 00. Prove that Rx 2 
min{lzl ,z =I 0 and z - P(z) + 1 = O}. 



34 The Hochschild-Serre spectral sequence 

In this section the ground ring is an arbitrary field k of characteristic zero. 
In this section we fix a graded Lie algebra, L = {Ld iEZ' with universal en

veloping algebra U L. If M is a left (right) U L-module then restriction of the 
action of U L to L defines a left (right) representation of L in M, and this 
correspondence is a bijection (§21(a)). We use this to identify L-modules as 
U L-modules and conversely. In particular, the trivial representation of L in k 
defines a canonical (left and right) U L-module structure in 1>;. 

Now suppose I C L is an ideal and N is a right L-module. Restriction to I 
makes N into a right I-module, and so the graded vector spaces ExttI(k, N) are 
defined (§20(b)) via any U I-projective resolution of 1>;. It turns out (§34( a)) that 
the L-module structure in N makes each ExttI(k, N) into a right Lj I-module. 
Thus if M is any right Lj I-module the graded vector spaces 

ExtfrL/I (M, ExtiJI(k, N)) 

are defined. 
On the other hand, the quotient map L ---7 Lj I makes M into a right L

module. The main objective of this section is to construct a spectral sequence, 
due to Hochschild and Serre [92], which converges from 

E~,q = ExtfrL/I (M, ExthI(k, N)) =} Extf,:tq (M, N) . 

The case N = U L will be of particular importance in the applications. 
The key notion in this section is that of a chain complex of U L-modules. 

Recall from the introduction to §20 that this is a complex of the form 

in which each Pi,. is a (graded) U L-module with (Pi,.) j 
homogeneous of bidegree (-1,0). We shall adopt the 

Pi,j-i, and d is 

Notation convention: A chain complex of U L-modules will be denoted by p. = 
{Pi}, with Pi denoting the UL-module Pi,.. If N is a UL-module then 
HomuL(P., N) denotes the complex 

.5 .5 o ---7 Homu L (Po, N) ---7 Homu L (PI, N) ---7 ... 

of graded vector spaces with 8 homogeneous of degree 1 (bidegree (1,0)). 

This section is organized into the following topics 

(a) Hom, Ext, tensor and Tor for U L-modules. 

(b) The Hochschild-Serre spectral sequence. 

(c) Coefficients in U L. 
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(a) Hom, Ext, tensor and Tor for UL-modules. 
Let M and N be right L-modules. A natural right L-module structure in 

Hom(M, N) is then defined by 

(f . x) ( m) = (-1) deg x deg m (f ( m) . x - f (m . x» , f E Hom(M,N), 
x E L, mE M. 

Clearly for any ideal I C L, 

HomUI(M,N) = {J E Hom(M,N)lf' x = O,x E I} 

Thus HomUI(M, N) is a sub L-module in which I acts trivially; i.e., it is an 
L / I -module. 

In particular, let P* ~ M be a UL-projective resolution (§20(a». The 
Corollary to Proposition 21.2 implies that P* is also U I-projective, and so 
ExtUI(M, N) = H (HomuI(P*, N». But the remarks above identify HomuI(P*, N) 
as a complex of L/ I-modules, which endows H (HomUI(P*, N») with a right 
L / I -module structure. Moreover, given a second such resolution Q * ---+ M, 

the unique homotopy class of L-linear quasi-isomorphisms Q* ~ P* induc
ing the identity in M induce L/ I-linear quasi-isomorphisms HomUI(P*, N) ~ 
HomuI(Q*, N). Thus the identification H (HomuI(P*, N» = H (HomuI(Q*, N» 
is an identification of L/ I-modules and so this endows each ExttI(M, N) with 
the structure of right L / I-module. 

Definition The L / I -module structure above is called the canonical L / I -struc
ture in ExtUI(M, N). 

Again consider two right L-modules M and N. As with Hom(M, N), the 
tensor product M Q9 N inherits a right L-module structure: 

(m Q9 n) • x = (-1) deg n deg x m . x Q9 n + m Q9 n . x, x E L, m EM, n EN. 

As usual, let (MQ9N) . L denote the subspace spanned by the elements (mQ9n). x. 

Lemma 34.1 If M or N is UL-free then M Q9 N is UL-free. 

proof: Suppose N is U L-free on a basis ao:. Since M Q9 N = ED M Q9 (ao: . U L) 
0: 

it is sufficient to prove that M Q9 U L is U L-free. Let Fp C U L be the linear span 
of elements of the form XiI' ...• Xi q , Xi" E L, q :S p. If m E M and a E Fp then 
(m Q9 1) . a - m Q9 a E M Q9 Fp - 1 . It follows that M Q9 U L is U L-free on a basis 
m A Q9 1 where m A is any k-basis of M. 

The proof when M is U L-free is identical. D 

Next observe that a left L-module structure in N is defined by 

x.n=_(_1)deg xdeg n n . x , nEN, xEL. 
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Moreover, (M 12) N) . L is the kernel of the surjection M 12) N --+ M l2)u L N and of 
the surjection M Q9 N --+ (M Q9 N) I2)UL lk. This provides a natural identification 

IVI Q9UL N = (IVI 12) N) I2)UL lk . (34.2) 

Furthermore, if I C L is an ideal then (M 12) N) . I is an L-module and so 
the quotient M rg;UI N = (1\11 rg; N) I2)UI lk inherits a natural structure of right 
L/ I-module. 

Recall (§3(a)) that we denote Hom(-,lk) simply by (-)~. 

Lemma 34.3 Suppose M and N are right L-modules and that I C L is an 
ideal. 

(i) Each Torr I (M, N) is naturally a right L/ I -module. 

(ii) There are natural isomorphisms TorrI (M, N) ~ TorrI (M I2)N, lk) of L/ 1-
modules. 

(iii) There are natural isomorphisms ExttI(M, N~) ~ TorrI (i'll, N)~ of L/ 1-
modules. 

proof: Let P* --+ M be a U L-projective resolution (§20( a)). It is U I -projective 
by the Corollary to Proposition 21.2. 

(i) ~ote that ToruI (M, N) is the homology of the complex P* Q9UI N of right 
L/ I-modules. 

(ii) Kote that P* 12) N ---=+ M 12) N is a UL-projective resolution (Lemma 34.1) 
and hence that ToruI (M I2)N, lk) = H ((P* 12) N) I2)UI lk). But (P* Q9 N) I2)UI lk = 
P* Q9UI N as L/I-modules. 

(iii) Write Tor~I (AI, N)~ = {TorrI (M,JVY} and (P* l2)u IN); = {(Pk rg;u I N)~}. 
But clearly Hom (M l2)u IN, lk) = HomUI(M, N~), and since lk is a field it follows 
that 

Example 1 TorfI(k,lk) ~ 8 (I/[I,1]). 
Again let I C L be an ideaL Denote by [I, I] the ideal in L which is the linear 

span of the elements [y, z], y, z E I. If x E I denote by (x) the image of 8X in 
the suspension 8 (I/[I, I]). We shall establish an isomorphism 

TorfI (lk, lk) == 8 (I/[I,1]) 

and show that the representation of L/I in TorfI(lk,lk) corresponds under this 
isomorphism to the representation 

(x).y = (_l)degy ([x,y]) . 
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In fact, in §22(b) we constructed a U I -free resolution P* (Propositions 22.3 
and 22.4) of k explicitly, of the form 

d d 2 d k +- U I +- sl @ U I +- A sl @ U I+-· .. 

Apply - @UI k and note from the definition that in this quotient d(sx /\ sy) = 
(_l)degsxs[x,yj. Thus 

TorfI(k,k) = slldA2 s1 = s(II[I,!]) . 

Exactly the same way we have a U L-free resolution Q* of lk of the form 

d d 2 d lk +- U L +- sL @ U L +- A sL @ U L +- ... 

and the inclusion of P* in Q* is a quasi-isomorphism. Let x E I and y E L. 
Then the formula for d in §22(b) gives 

d( sx /\ sy @ 1) = (-1 )deg sx+deg sy SX @ Y ± sy @ x + ( -1 )deg sx S [x, y j @ 1 . 

Applying @UIk kills sy @x, while sx@y = (sx @ 1) .y. Thus in homology we 
have 

(x).y = (_I)degy ([x,y]) , x E I, y E L. o 

Example 2 The representation oj LI I in Tor~I (k, k). 
As in Example 1 the inclusion of P* in Q* is a quasi-isomorphism of U I-free 

resolutions of k, and in particular applying - @UI lk gives a quasi-isomorphism 
(AsI, d) ~ Q* @UI lk. Let a E Aqsl be a cycle (representing a class 0: E 
Tor~I (lk, lk) and let y E L. Then the formulae of §22(b) show that in Q* @UI k, 

d (a /\ sy @ 1) = a . y @ 1 + ( -1) deg a a @ y , 

where a • y is defined by 
q 

(SXl /\ ... /\ sXq) • y = (_I)deg(sx 1 J\···J\sx q ) L (_I)deg y deg(sxi+lJ\···J\Sx q ) SXl /\ ... /\ 
i=l 

S[Xi' yj/\ ... /\ sXq. 
It follows that the representation of LII in Tor~I(k,lk) is given by 

o 

(b) The Hochschild-Serre spectral sequence. 
In this topic we construct the spectral sequence. Fix an ideal I eLand a 

right L I I-module M and a right L-module N. For any graded vector space S 
an isomorphism 

'P: Hom(M@ S,N) ~ Hom (M,Hom(S,N)) 



468 34 The Hochschild-Serre spectral sequence 

is given by 'Pf(m)(s) = f(m Q9 s), f E Hom(M Q9 S, N). 

Lemma 34.4 If S is a right L-module then cp restricts to an isomorphism 

HomudM Q9 S,N) ~ HomuLII (M,HomuI(S,N)) . 

proof: It is immediate that 'P is L-linear. Thus if f E HomudM I8i S, N) we 
have f· x = 0, x ELand so (cpf). x = O. Thus cpf is L-linear. For x E I 
and m EMit follows that ('Pf)(m). x = cpf(m· x) = O. Thus cpf(m) is 1-
linear; i.e. 'P: HomuL(M I8i S, N) ---t HomULIJ (M, HomuJ(S,N)). Conversely 
if f E Hom(M I8i S, N) and if cpf E HomULIJ (M, HomUI(S, N)) then 'Pf is 
L-linear and hence so is f. 0 

Now we construct the spectral sequence. Choose a U L/ I-free resolution eM : 

P* ~ M and aU L-free resolution e : Q* ---t k Denote the tensor product of 
these two complexes by (R*,d) = (P*,d) @ (Q*,d) : Rk = EB Pp I8i Qq. (Note 

p+q=k 
as in §20(a) that each Pp and Qq is itself a graded vector space!) Observe that 

• Each Rk is a free U L-module (Lemma 34.1) . 

• eM Q9 e : R* ~ M is a U L-free resolution (because lk is a field). 

Now Ext~L(M, N) is the homology of the complex HomUL(R*, N) and this is 
in fact a bigraded complex with 

HomtL(R*, N) = EB HomUL (Pp Q9 Qq, N) . 
p+q=k 

Refer to k as the total homological degree to distinguish it from the 'normal' 
degree inherent in the fact that Nand Rk are each graded vector spaces. 

Filter the complex HomudR*, N) by the subspaces EB HomUL (Pi I8i Q*, N). 
i?p 

Use this and the total homological degree to obtain a first quadrant cohomology 
spectral sequence, convergent to ExtudM, N) and with 

E{;,q = HomuL (Pp I8i Qq,N) . 

Lemma 34.4 identifies Homu L (Pp I8i Q q, N) = Homu L I I (Pp, HomUI (Q q, N)). 
The differential do is induced from the differential in Q*. Thus because each Pp 
is U L / I -projective we have 

Ef,q Hq (HomULIJ (Pp, HomUI(Q*, N))) 

HomuLIJ (Pp,lP (HomUI(Q*,N))) 

HomULIJ (pp, ExtijJ(lk, N)) , 
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where Extij](k,N) is equipped with its canonical right L/I-module structure. 
The differential, d1 , is then induced from the differential in P., so that 

It is immediate that this spectral sequence is independent of the choice of reso
lutions p. and Q. and so we may make the definition: 

The spectral sequence above, converging from Extf,LI] (M, Extij](k, N)) 

to Extfriq (M, N) is called the Hochschild-Serre spectral sequence. 

Remark If I acts trivially in N then the E2-term of the Hochschild-Serre 
spectral sequence may be identified as 

where Tor~](k,1.) has the UL/I structure of Lemma 34.3(i). 
In fact in this case 

This identifies 

HomULI](Pp 0UL Qq, N) 

HomULI](Pp 0 (1. 0u] Qq), N) . 

Ei,q = HomULI] (pp 0 Tor~I (1., k), N) 

with L/ I acting diagonally in P. 0 Tor~I (k, 1.). By Lemma 34.1 the differential 
in P. makes p. 0 Tor~I (1.,1.) into a U L/ I-free resolution of M 0 Tor~I (k, 1.). 
This gives 

as desired. 

(c) Coefficients in U L. 
In this topic we suppose that the graded Lie algebra L satisfies: 

L = L?l and each Li is finite dimensional. 

It follows from this that U L is a graded vector space of finite type. 
Let I C L be an ideal and choose a graded subspace W C U L so that mul-

tiplication in U L defines an isomorphism W 0 U I -=+ U L of right U I modules 
(Corollary to Proposition 21.2). The proof of the Corollary shows that the surjec-

tion U L -t U L / I restricts to a linear isomorphism W -=+ U L / I. In particular, 
this endows W with the structure of right L/ I-module. 
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Now let AI be any graded vector space of the form M = {Mdi>O. Since each 
~Vk is finite dimensional a natural isomorphism -

TVk ()() Hom(1\!I, U I) ~ Hom (M, Wk ()() U I) 

is given by w :2) 9 r---t h, with h(m) = w ()() g(m). Thus an isomorphism 

Hom(M, UL) ~ II W k Q9 Hom(A1, UI) 
k 

is defined by f r---t Uk), where for m E AI, fk(m) is the component of f(m) in 
Wk ®U I. (Note that given any m E M and any sequence ik E Wk ®Hom(M, U I) 
of degree p we have fk(m) E TVk ® U fdegm+p-k. Thus fk(m) = 0, k > degm + p 
and the sum L fdm) is finite.) 

Now suppose 1'vi is a right L-module. The isomorphism above then restricts 
to an isomorphism 

cp: HomuI(M, UL) ~ II Wk ® HomUI(M, UI) . 
k 

The infinite product contains the direct sum EB Wk Q9 Homu I (M, U I) as a sub
k 

space, and this is just W ® HomUI(M, UI). 
Recall from §34( a) that Homu I CiVI, U L) is a right L / I -module. Thus TI Wk Q9 

k 

HomUI(M, U I) inherits a right L/ I-module structure via V;, while H/ has a right 

L/ I-module structure through the isomorphism W ~ U L/ f. 
Note that the inclusion W ® HomuI(M, U I) ---+ TI Wk :2) HomuI(M, UI) iden

k 

tifies each Wk Q9 HomuI(M, U I) as a subspace of the infinite product. A simple 
calculation gives 

Lemma 34.5 fix E L/I, wE Wk and IE HomUI(M,UI) then 

(w®j)·x- (_l)degjdegxw.x®f E W<k ®HomUI(M,UI). 

Now let E: P* --=+ lk be a UL-projective resolution of lk. Recall (§34(a)) that 
the canonical L/ I-module structure in ExtfJI(lk, U L) is obtained by identify
ing Extu I (lk, U L) = H (Homu I (P*, U L)) and using the L / I -module structure 
induced from that in HomuI(P*, UL). 

As above, identify 

HomUI(P*, U L) = II Wk ® HomuI(P*, U f) 
k 

and hence identify 

Ext'lJI(lk,UL) = IIWk ®Ext&I(lk,UI). 
k 
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Lemma 34.5 then implies that for x E L/ I, w E W k and a E ExtijI(lk, U 1) we 
have 

(w 0 a)· x - (_l)dega degx w • x 0 a E W<k 0 ExtijI(lk, U1) . (34.6) 

It follows that W 0 Extij I (lk, U I) is an L / I -submodule of the infinite product. 

Proposition 34.7 

(i) W 0 ExtijI(lk, U 1) is a free U L/ I -module on 10 ExtijI(..k, U 1). 

(ii) If either U L/ I or ExtijI(..k, U I) is finite dimensional then 

proof: Denote ExtijI(lk, U1) by Eq. 
(i) An L/I-linear map B from the free L/I-module Eq 0 UL/I to W 0 Eq is 

given by 
B (<I> 0 a) = (1 0 <I» • a, <I> E Eq, a E U L / I . 

(We identify U L / I = W.) It follows from formula (34.6) that B( <I> 0 a) -
(_l)deg<I> deg aa 0 <I> E W <deg a 0 Eq. This implies that B is an isomorphism. 

(ii) If either U L/ lor Eq is finite dimensional then 

W 0 Eq = EBWk 0Eq = IIWk 0Eq = ExtijI(lk,UL). 0 
k k 

Recall again, that L is a graded Lie algebra satisfying L = {LiL>l and each 
Li is finite dimensional. Suppose further that -

• I C L is an ideal and that N is an L-module. 

Write UL = W 0 UI as above. Then (UL)U = (U1)U 0 WU and 

Tor~I (N, (UL)~) = Tor~I (N, (U1)U) 0 wrt . (34.8) 

The surjection UL ---+ UL/I restricts to an isomorphism W ~ UL/I, which 

dualizes to (UL/1)U ~ WU and so makes WU into an L/I module. Thus the left 
hand side of (34.8) is an Lj I-module because N is an L-module (Lemma 34.3) 
and the right hand side is an L j I -module via the action in wrt. 

However, (34.8) is usually NOT an isomorphism of LjI-modules. Even so, 
it is often possible to construct an isomorphism that does preserve the Lj 1-
module structure, as the next proposition shows. Recall (Lemma 34.3) that 
each Tor~I(N,1k) is an LjI-module. 
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Proposition 34.9 With the hypotheses and notation above assume the Lie 
algebra L 1 I is finitely generated and that 0: . U L 1 I is finite dimensional for each 
0: E Tor~ I (N, J;;). Then there is an isomorphism of U L 1 I -modules 

where LI I acts on the right via the action in (U LI I)tt. In particular, 

Lemma 34.10 With the hypotheses of Proposition 34.9, j3. U LI I is finite di
mensional for all j3 E Tor~I (N, (U L)~). 

proof: Write M = (UL)~. Then M = M<o is the union of the submodules 
M?_p. It is thus sufficient to prove the lem~a for j3 E Tor~I (N, M?_p). Con
sider the exact sequence 

where UL acts trivially in M_p. By hypothesis the lemma holds for this trivial 
U L-module. Hence for j3 E Tor~I (N, M?_p) and some n 2: 0, j3 ·(U LI Ihn C 

ImageTor~I (N,M>_p). Because LII is a finitely generated Lie algebra each 
(U LI Ihn is a finitely generated U LI I-module. Hence so is j3 ·(U LI I»n. By 
induction on p it follows that j3 ·(U LI Ihn is finite dimensional. Hence so is 
j3·ULII. 0 

proof of Proposition 34.9: Dualize the inclusion U I ~ U L to a surjection 
(UL)P ~ (UI)tt of UI-modules. This induces a linear map 

and (34.8) shows that f is surjective. 
Right multiplication in U L 1 I makes Hom(U L 1 I, - ) into a left (and thus right) 

U L 1 I -module. Define a morphism 

F: Tor~I (N, (UL)~) ~ Hom (ULII, Tor~I (N, (UI)tt)) 

of ULlI-modules by setting F(o:)(a) = f(o:·a), a E Tor~I ((N,(UL)tt), a E 
U LI I. Recall that an inclusion 

of ULlI-modules is given by 1»(0: Q9 g)(a) = (g,a)o:. the image of I» consists 
of the linear maps cp : U L 1 I ~ Tor~ I (N, (U I)~) such that for some n( cp), cp 
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vanishes on (ULjI)?n(<p). Thus Lemma 34.10 implies that ImF C Im<T> and we 

may regard F as a ULjI-linear map into Tor~I (N, (UI)~) Q9 (ULjI)U. 
Finally, identify (ULjI)U = WU and use (34.8) to write F as a map 

F : Tor~I (N, (UI)U) Q9 W~ -* Tor~I (N, (UI)~) Q9 WU . 

This F may not be the identity, but a straightforward calculation shows that 
(F - id) : - Q9 W!n -* - Q9 W;_n, n ;::: O. Thus F is an isomorphism. 0 

Exercise 

Suppose I is an ideal in a graded Lie algebra L = L?l and that each Li is finite 
dimensional. Prove that: 

(a) If ExtbI(1.,UI) = 0, j < q, then ExtbL(1.,UL) = 0, j < q. 

(b) If in addition Extb I (1., U I) is finite dimensional for q '5:. j '5:. p + q + 1 and 
if ExthLjI(1., ULjI) = 0 for i < p then 

Ext~L(1.,UL) '='" p q { 
0 ,k<p+q 

ExtUL(1., U Lj I) Q9 ExtuI(1., UI) ,k = p + q . 



35 Grade and depth for fibres and loop spaces 

In this section (unless otherwise specified) the ground ring l>; is an arbitrary 
principal ideal domain. 

Recall from §20 the functors Ext~ (-, -) defined for right modules over a 
graded algebra A, and the definition of projective dimension of an A-module. 

Definition 1. The grade, gradeA (M), of a right A-module is the least integer 
k such that Ext~(M,A) -=I- O. (If Ext:4.(M,A) = 0 we say gradeA(M) = 00.) 

The projective grade, proj grade A (M), is the least integer k (or 00) such that 
Ext~ (M, P) -=I- 0 for some A-projective module P. 

2. If A = {Adi>O and Ao = l>; then the depth of A, depth A, is 
the grade of the trivial A-module l>;. The global dimension of A, gl dim A is the 
greatest integer k (or 00) such that Ext~ (l>;, -) -=I- O. 

The main theorem of this section provides a connection between LS category 
and the homological notion of grade. Recall from §2(c) that if 

f:X-+Y 

is a continuous map then a holonomy action of the loop space OY is determined 
in the homotopy fibre F of f. This makes H*(F) into a right H*(OY)-module. 
We shall prove: 

• If X is normal and (Y,yo) is well based, and if H*(F) and H*(OY) are 
l>;-free then 

projgradeH.(rlY) H*(F) :::; catf . 

Moreover, if equality holds then 

proj gradeH.(rlY) H*(F) = cat f = proj dimH.(rlY) H*(F) . 

When each Hi(F) and Hj(OF) have finite l>; bases we will replace projgrade by 
grade in this theorem. 

The special case that f = id : X -+ X is sufficiently important that we 
restate the theorem for it: 

• If X is path connected, well based and normal and if H* (OX) is k-free 
with a finite basis in each degree then 

depthH*(OX) :::; cat X . 

If equality holds then depthH*(OX) = cat X = gldimH*(OX). 

The depth theorem for topological spaces was originally deduced, for the case 
that k = Q and H* (X) has finite type, from a theorem on Sullivan algebras 
established in a joint paper with Jacobsson and L6fwall [54]. Subsequently it 
was extended for spaces to l>; = Fp (with H*(X) still of finite type) in a joint 
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paper with Lemaire [85] using a different but similar approach. However the 
theorem for Sullivan models in [54] is for a coefficient field of any characteristic, 
and is applied as such to the Ext-algebra of a local commutative ring. 

The proof given here (for the more general grade theorem) is different in form, 
although based on the same underlying idea. We shall, however, also sketch the 
proof of the Sullivan algebra theorem in characteristic zero, since it provides an 
interesting application of the material in §29: 

• If L is the homotopy Lie algebra of a minimal Sullivan algebra (A V, d) and 
if V = {Vi} i~2 is a graded vector space of finite type then 

depthUL ~ cat (AV,d) ~ gl dim UL . 

Moreover, if depth U L = cat (A V, d) then cat (A V, d) = gl dim U L. 

Note: When (A V, d) is the Sullivan model of a simply connected space X, then 
U L ~ H. (nX) and cato X = cat (A V, d), (Theorem 21.5, Proposition 29.4) and 
so the two results coincide. 

This section is organized into the following topics: 

(a) Complexes of finite length. 

(b) nY-spaces and C.(nY)-modules. 

(c) The Milnor resolution of k. 

(d) The grade theorem for a homotopy fibre. 

(e) The depth of H.(nX). 

(f) The depth of U L. 

(g) The depth theorem for Sullivan algebras. 

Both the grade theorem and the Sullivan algebra theorem have their roots in 
an elementary theorem about H (HomA(P., Q.)), where A is a graded algebra, 
p. is an A-projective resolution of an A-module M and Q. is a complex of free 
A-modules of finite length. Topics (b )-( e) are then devoted to the grade theorem, 
which is proved in a topological setting with no reference to Sullivan algebras or 
graded Lie algebras. This material can be read with only Part I, Part III and 
§27 as background. Topics (f) and (g) deal with the Sullivan algebra result. 

(a) Complexes of finite length. 
Let A be a graded algebra (over k). As in §34 we denote by p. = {P;} a chain 

complex of A-modules Pi = Pi,. of the form 

d o f-- Po" f-- PI,. f-- ... 
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in which (Pi,*)j = Pi,j-i. IfQ* is a second such chain complex then HomA(P*,Q*) 
will denote the bigraded complex of ./k-modules given by 

HomA (P*, Q*)i,* = II Hom A (Pj , Qj+i) , 
j 

with df = do f - (_l)deg f f 0 d. 
Key to the proof of the grade theorem is 

Lemma 35.1 Suppose P* ~ M is an A-projective resolution of an A-module 
M and suppose Q* = {Q;}o:Si:Sm is a complex of free A-modules. Then 

H i,* (HomA(P*, Q*» = 0, i > m - proj gradeA M . 

proof: Set Q~ = {Q;}o:Si:sm-l. Because the Pi are A-projective the sequence 

is exact. Since Qm is A-free, H i ,* (HomA(P*, Qm» = Ext~-i(M, Qm) 0, 
i > m - projgradeAM. By induction on m, Hi ,* (HomA(P*,Q~» = 0, i > 
m - proj gradeA M. The lemma follows. D 

Suppose next that an A-free module N has an A-basis x", with only finitely 
many elements in each (ordinary) degree and that A and N are concentrated in 
degrees 2: O. It is then immediate that 

whence 

Thus we have 

Lemma 35.2 Suppose in the situation of Lemma 35.1 that A and Qi are con
centrated in nonnegative degrees, and that each Qi has an A -basis with finitely 
many elements in each degree. Then 

H i,* (HomA(P*, Q*» = 0, i > m - gradeA M . 

(b) flY -spaces and C*(flY)-modules. 
Let (Y, Yo) be a based path connected topological space. Multiplication in 

the loop space flY makes it into a topological monoid (§2(b». A topological 
space X equipped with a right flY -action will be called an flY -space and a map 
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of OY -spaces is a continuous map that preserves the action. If X and Z are 
OY -spaces then OY acts diagonally on X x Z via (x, z)· 'Y = (x· 'Y, z· 'Y). 

Next recall (§8(a)) that multiplication in OY makes C*(OY) into a chain 
algebra via the Eilenberg-Zilber equivalence, 

In the same way, if X is any OY -space then the action defines a C* (OY)-module 
structure in C*(X). For example, the constant map OY ----t pt defines a chain 
algebra morphism C* (OY) ----t lk, and makes lk into a C* (OY)-module, because 
C*(pt) = lk - cf. (4.2). 

Now consider the Alexander-Whitney comultiplication 

introduced in §4(b). It follows directly from the compatibility (4.9) of the 
Eilenberg-Zilber and Alexander-Whitney equivalences that ~ is a morphism of 
chain algebras, and so it makes C*(OY) into a differential graded Hopf algebra 
(as also described in §26(b)). In particular, if (M, d) and (N, d) are any two 
C*(OY)-modules then (M,d) ® (N,d) is a C*(OY) ® C*(OY)-module in the 
obvious way, and this action composed with ~ makes (M, d) ® (N, d) into a 
C* (OY)-module. We call this the diagonal action of C* (OY). 

Now suppose X and Z are OY -spaces, and let OY act diagonally on X x Z. 
A simple calculation with formula (4.9) gives 

Lemma 35.3 The Alexander- Whitney equivalence 

AW: C*(X x Z) ~ C*(X) ® C*(Z) 

is a quasi-morphism of C*(OY)-modules, with respect to the topological and al
gebraic diagonal actions. 0 

Next, we pass to homology. For any complexes (M, d) and (N, d) a natural 
map 

H(M, d) ® H(N, d) ----t H ((M, d) ® (N, d)) 

is defined by sending [z 1 ® [w 1 1----7 [z ® w 1 for any cycles z and w in M and N. 
Moreover, if M and H(M) are lk-free (or if Nand H(N) are lk-free) then this is 
an isomorphism. Indeed, because d(M) eM and lk is a principal ideal domain, 
1m d is lk-free. Split the short exact sequences 

o ----t kerd ----t M ----t d(M) ----t 0 and 0 ----t Imd ----t kerd ----t H(M) ----t 0 

to write (M, d) ~ (H(M), O)e;EB(lkma , lkdma ). Since H(M) is lk-free we obtain 
a 

H((M,d) ® (N,d)) = H(H(M) ® (N,d)) = H(M) ® H(N). 
In particular the map 

H*(OY) ® H*(OY) ----t H (C*(OY) ® C*(OY)) H(mult\ H*(OY) 
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makes H*(O,Y) into a graded algebra and, if X is an O,Y-space, then the map 

makes H*(X) into a right H*(O,Y)-module. 
Now suppose H*(O,Y) is lk-free. Then we may use H*(O,Y) Q9 H.(o'Y) 

H (C*(O,Y) Q9 C*(O,Y)) to identify H*(~) as a morphism 

H*(~) : H*(O,Y) --+ H*(O,y) Q9 H*(O,Y) 

of graded algebras; in other words, H. (o'Y) is a graded Hopf algebra. Thus 
if X and Z are o'Y -spaces then H.(o'Y) acts diagonally on H*(X) Q9 H.(Z) 
and, moreover, the morphism H.(X) Q9 H*(Z) --+ H (C*(X) Q9 C*(Z)) is a mor
phism of H*(O,Y)-modules. In particular if H*(X) is lk-free then this provides 
isomorphisms 

of H. (o'Y)-modules. 

(c) The Milnor resolution of k. 
Let (Y, Yo) be a well based path connected topological space. For topological 

groups G, Milnor [125] constructed the universal bundle EG --+ BG by putting 
EG = G*oo, the infinite join of G with itself (§2(e)). Here we consider the 
topological monoid o'Y and, when H*(O,Y) is lk free, we use the filtration of 
(o'Y)*oo by the subspaces (O,y)*n to construct an Eilenberg-Moore resolution of 
the C*(O,Y)-module, lk (§20(d)), which we call the Milnor resolution. 

Recall from §l(f) that the join X * Z of topological spaces is the space (X x 
C Z) u (C X x Z). If X and Z are o'Y spaces then o'Y acts diagonally on X * Z in 
the obvious way and the inclusion X --+ X x {O} in X * Z is a map of o'Y spaces. 
In particular, starting with the action of o'Y on itself by right multiplication we 
obtain a diagonal action in each of the joins (O,y)*n = (O,y)*(n-l) * o'Y. The 
inclusions 

o'Y --+ (O,y)*2 --+ ... --+ (O,y)*n --+ 

are maps of o'Y -spaces and, as in §2(e), we set (o'Y)'oo = U(O,y)m with the 
n 

weak topology determined by the (O,y)*n. 

Lemma 35.4 Let A C X be an inclusion of o'Y -spaces and give (X, A) x o'Y 
the diagonal action, where o'Y acts by right multiplication on o'Y. If H.(X, A) 
is i.-free then H* ((X, A) x o'Y) is H*(o'Y)-free. 

proof: If, E o'Y is a loop of length £ let " be the loop of length £ given by 
,'et) = ,(£ - t), 0 'S t 'S £. Then, 1---+ ,,' and, 1---+ ,', are homotopically 
constant maps. Thus the map 

f: X x o'Y --+ X x o'Y, f(x,,) = (x·",) 
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is a homotopy equivalence with homotopy inverse (x, ')') t---7 (x. ')'1, ')'). 

Denote by (X Q9 f!Yb and (X x f!Y)R the f!Y -spaces in which f!Y acts 
respectively diagonally and by right multiplication on f!Y. The isomorphism 
(cf. §35(b)) H*(X, A) Q9 H*(f!Y) ~ H* ((X,A) x f!Y)R identifies this latter as 
the free H*(f!Y)-module with basis a .k-basis of H*(X,A). On the other hand, 
f: (X x f!Y)R -+ (X x f!Y)6. is a map of f!Y-spaces and H*(f) is therefore 
an isomorphism of H*(OY)-modules. 0 

Lemma 35.5 

(i) (f!Y)*oo has the weak homotopy type of a point. 

(ii) If H*(f!Y) is .k-free so is each H* ((f!y)*n). 

proof: (i) This is an easy exercise since OY is well-based (Step 1 of Propo
sition 27.9) and so (f!y)*(nH) '::::' ~(f!y*n /\ f!Y) of §l(f), and (f!y)*(n+l) '::::' 
~n-l (f!y)A(nH). 

(ii) When X and Z have .k-free homology the isomorphism H*(X) Q9 

H*(Z) ~ H (C*(X) Q9 C*(Z)) ~ H*(X x Z) identifies H*(X /\ Z) as .k-free. 
Now use the formula (f!y)*n '::::' ~n-l(f!y)An. 0 

Henceforth we assume H*(f!Y) is .k-free. We are ready to construct the 
Milnor resolution. Define .k-free graded modules V(n), n 2': 0 by setting 

V(O) = Vo(O) =.k and V(n) = H* (C(f!y)*n , (f!y)*n) , n> 1 . 

Set V = EB V(n). The Milnor resolution will have the form (V Q9 C*(f!Y), d) 
n 

with d: V(n) -+ V« n) Q9 C*(f!Y) and C*(f!Y) acting by multiplication from 
the right. We 
construct it by simultaneously constructing the differential d and a commutative 
diagram 

~ '1"(0) 

----•... _ C*(oy)*(nH) _ ... 

in which the vertical arrows are quasi-isomorphisms of C*(OY)-modules. 
Indeed, set <p(O) = id and then suppose by induction that <p(n - 1) and the 

differential in V( < n) Q9 C* (f!Y) are constructed. Use excision and Lemma 35.3 
to identify 
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H* ((oy)*(n+I), (oY)*n) = H ((c(oy)m, (oy)*n) X OY) as the free H*(OY)
module V(n) 0 H.(OY). 

Next, let v'" be a basis of V(n) and choose elements z'" E C. ((oy)·(n+l)) 
such that 

• z'" maps to a cycle in C* ((oy)·(n+l), (oy)m) representing v"" 

and 

• dz", = cp(n - l)u", for some cycle u'" E V( < n) 0 C.(OY). 

Extend the differential to V(:S n) 0 C.(OY) by setting dv", = u'" and extend 
cp(n - 1) to cp(n) by setting cp(n)v", = Z",. Then cp(n) induces a quotient chain 
map cp(n) : V(n) 0 C.(OY) ---+ C. ((oy)·(n+I), (oy)·n), and H(cp(n)) is the 
identity, by construction. By the five lemma 3.1, cp(n) is a quasi-isomorphism. 

Thus the morphisms cp(n) define a quasi-isomorphism cp : (V 0 C*(OY), d) ~ 
C* ((OY)'OO), while the constant map (OY)'oo ---+ pt is a map of OY-spaces 
and a weak homotopy equivalence (Lemma 35.5). Composing yields a quasi
isomorphism of C. (OY)-modules 

(V 0 C.(OY),d) ~ k, (35.6) 

which we call the Milnor resolution of k. 
Filter this semifree resolution by the submodules (V(:S n) 0 C.(OY), d) to 

obtain a spectral sequence whose EI-term has the form 

o +-- k +-- H.(OY) +-- ... +-- V(n) 0 H.(OY) +-- (35.7) 

Proposition 35.8 The sequence (35.7) is an H*(OY)-free resolution of k; 
i.e., the Milnor resolution is an Eilenberg-Moore resolution (§20(d)). 

proof: We need only show (35.7) is exact. Filter C. ((Oy)'OO) by the submod
ules C. ((oy)·n). Then the quasi-isomorphism cp: V0C.(OY) ---+ C. ((Oy)'OO) 
preserves filtrations. In the construction of cp we showed that each H(cp(n)) was 
an isomorphism. This means precisely that cp induces an isomorphism between 
the El-terms of the spectral sequences. It is thus sufficient to prove that 

is exact. 
Suppose by induction that 

is exact. A simple spectral sequence argument then shows that any dl-cycle, el, 

in 
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H* ((!!y)m, (!!y)*(n-1)) is the image of some class (3 E H* ((!!y)*n). But 
(!!y)*n is contractible in (!!y)*(n+1). Thus a representing cycle, z, for (3 has 
the form z = dw for some w E C* ((!!y)*(n+l)). In particular, w represents a 
class'Y E H. ((!!y)*(n+1), (!!y).n) and dn = 0:. This closes the induction and 
completes the proof. 0 

(d) The grade theorem for a homotopy fibre. 
Fix a continuous map 

f:X-+y 

from a normal topological space X to a path connected, well based topological 
space (y,yo). Convert f into the fibration P : X Xy MY -+ Y, whose fibre 
F = X Xy PY is the homotopy fibre of f (§2(c)). The action of!!Y on F then 
makes H.(F) into an H.(!!Y)-module (§35(b)). 

Theorem 35.9 (Grade theorem) With the hypotheses and notation above sup
pose H*(F) and H*(!!Y) are k-free. Then 

(i) projgradeH*(rlY) H.(F) ~ catf. 

(ii) If equality holds in (i) then 

projgradeH.(rlY) H.(F) = catf = projdimH.(rlY) H.(F) . 

proof: Since proj grade ~ proj dim by definition, both assertions are vacuous 
unless cat f is finite. Set cat f = m. The proof of the theorem is in five steps. 

Step 1 : We construct a map 

hF : F -+ (!!y).(m+1) 

of!!Y -spaces, where!!Y acts diagonally on (!!y)*(m+l) as described in §35(b)). 
For this recall the construction in §27( c) of the Ganea fibrations Pm : Pm Y -+ 

Y, with fibre Fm at yo. According to Proposition 27.8 (with the roles of X and 
Y reversed) there is a continuous map 0"0 : X -+ PmY such that pmO"O = f. 
Moreover, by construction PmY is obtained by converting Pm- 1 YUCFm- 1 -+ Y 
into a fibration and so there is a homotopy O"t from 0"0 to a map 0"1 : X -+ 
Pm - 1Y U CFm - 1 • Define a continuous map 

() : X Xy MY -+ PmY = (Pm- 1Y U CFm-d Xy MY 

as follows: if (x, w) E X Xy MY and w is a path of length e then ()(x, w) 
(0"1 x, Wi), where Wi is the path of length e + 1 given by wl(t) = Pm0"1-t(X), 
o ~ t ~ 1 and wl(t) = wet - 1), t 2: 1. Observe that Pm() = p, and so () restricts 
to a continuous map 
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By construction, 8F is an flY-map. 
On the other hand, Proposition 27.6(ii) provides a map Fm -+ Fm- 1 * flY 

which is a map of flY -spaces and a homotopy equivalence. Iteration of this con
struction produces an flY-map Fm -+ (fly)*(m+l), because Fa = flY. Compo
sition with 8F produces the desired hF : F -+ (fly)*(m+l). 

Step 2: We construct an algebraic model for the continuous map 

h = (id, hF ) : F -+ F x (fly)*(m+l) . 

Choose an Eilenberg-:'>loore resolution (Proposition 20.11), a : (R, d) --=+ 
C.(F), for the C.(flY)-module C*(F) described in §35(b). Then recall the Mil

nor resolution zp : (V (X) C*(flY), d) --=+ C* ((flY)*OO) of §35(c) and denote the 
obvious inclusions by Am: (V(:::;m)(X)C*(flY),d) -+ (V (X) C*(flY),d). The 
algebraic model of h we wish to construct will be a morphism 

7jJ : (R, d) -+ C. (F) (X) (V(~ m) (X) C* (flY), d) 

of C. (flY)-modules, where C. (flY) acts diagonally on the target, and it will 
satisfy: 

(Am (X) id)7jJ : (R, d) -+ C* (F) (X) (V (X) C* (flY), d) is a quasi-isomorphism. 

In fact, since (R, d) is semifree we may lift morphisms from (R, d) (up to 
homotopy) through quasi-isomorphisms (Proposition 6.4(ii)). Apply this remark 
to the diagram 

C.(F) ® (V(:; m) ® C.(OY), d) 
"7 

C*(h) ( ) (R, d) ~ G.(F) ~ C* F x (Oy)*(=+l) AW " C.(F) ® C.(Oy)*(=+l) 

to construct 7jJ. (Note that AW is a morphism of C.(flY)-modules by Lemma 35.3.) 
To show (id (X) Am)7jJ is a quasi-isomorphism, let jm : (fly)*(m+l) -+ (flY)*= be 
the inclusion. Then 

(id x jm)h = (id,jmhF) : F -+ F x (flY)*oo 

is a weak homotopy equivalence, because (flY)*oo -+ pt is (Lemma 35.5(i)). But 
(idx Am)7jJ is connected (up to homotopy) to the quasi-isomorphism C* ((id x jm)h) 
by quasi-isomorphisms, and hence is one itself. 
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Step 3: The associated H*(O,Y)-jree resolutions of H*(F). 

In the Eilenberg-Moore resolution (R,d) ---=+ C*(F) write R = W 181 C*(O,Y) 
00 

where: W is the direct sum W = ffi W(p) of lk-free modules, d : W(p) -+ 
p=O 

W( < p)I8IC*(O,Y) and the filtration {We::; p) 181 C*(O,Y)} is the Eilenberg-Moore 
filtration of R. This defines a homology spectral sequence (E i , di ) whose El
term by definition gives an H(o'Y)-free resolution of H*(F) of the form 

We denote this resolution by 

P* ---=+ H*(F) 

with (as in §35(a)) Pp = W(p) 181 H*(O,Y). 
Next, filter C*(F) 181 (V 181 C*(O,Y),d) by the submodules C*(F) 181 V(::; p) 181 

C*(O,Y). This produces a second homology spectral sequence whose E1-term 
gives a complex of H* (o'Y)-modules of the form, 

since H*(F) and H*(O,y) are lk-free (cf. §35(b)). Now H*(O,Y) acts diagonally 
in (H*(F) 181 V(p)) 181 H*(O,Y) and this is a free H*(O,Y)-module on a lk-basis of 
H*(F) 181 V(p) (§35(b) and Lemma 35.4). Moreover, since the Milnor resolution 
is an Eilenberg-Moore resolution (Proposition 35.8) it follows that this sequence 
is exact; i.e. it is also an H*(o'Y)-free resolution of H*(F). We denote it by 

Q* ---=+ H*(F) 

with Qp = H*(F) 181 V(P) 181 H*(O,Y). 

Step 4: Set proj gradeH.(QY) H*(F) = r. Then'l/J is homotopic (as a morphism 
of C*(O,Y)-modules) to a morphism TJ such that 

Filter C*(F)I8IV(::; m)I8IC*(O,Y) by the submodules C*(F)I8IV(::; p) I8IC* (o'Y) 
to produce a spectral sequence whose E1-term is just (QSm, dd, and denote all 
spectral sequences by (Ei , di ). 

k 

Now write 'l/J as the infinite sum 'l/J = L: 'l/Ji of the C*(Oy)-linear maps 'l/Ji 
-00 

defined by 



484 35 Grade and depth for fibres and loop spaces 

(Necessarily k :S m.) Then dO'ljJk = 'ljJkdO and H('ljJk) is an H.(OY)-linear map 

that raises the resolution degree by exactly k. We may now apply Lemma 35.1. It 
asserts that if k > m-proj gradeH.(IlY) H.(F) (= m-r) then H('ljJk) = dl(}+(}dl 
for some H. (OY)-linear map (} : p. ~ Q. that raises resolution degree by k + 1. 

Choose C.(OY)-linear maps (}' : W(p) I2l C.(OY) ~ C.(F) I2l V(P + k + 
1) I2l C.(OY), p 2 0, so that (}'(w 12l1) is a cycle representing (}(w 12l1). Then 
do(}' + (}' do = 0 and hence 'ljJ' = 'ljJ - (d(}' + (}' d) also raises filtration degree by at 
most k : 'ljJ' = L 'ljJ~. 

i"5.k 
By construction, H('ljJU = 0 : p. ~ Q<m' Choose C.(OY)-linear maps 

(}": W(p)I2lC.(OY) ~ C.(F)I2lV(p+k)I2lC.(OY), p 20, so that do(}"(WI2l1) = 
'ljJ~ (w 12l1), w E W. Set 'ljJ" = 'ljJ' - (d(}" + (}" d). By construction, do (}" + (}" do = 'l/{ 

k-l 
and so 'ljJ" = L 'ljJ~', while clearly 'ljJ" rv 'ljJ. 

-00 

Remark If the lk-modules Hi(F) and Hj(OY) have finite bases for each i and 
j then this will also be true of each [H. (F) I2l V (:S m) h, as follows from the 
definition of V in §35(c). In this case we may use Lemma 35.2 in the proof of 
Step 4 to find 'ljJ rv TJ with 

where q = gradeH.(IlY) H.(F). 

Step 5: Completion of the proof of Theorem 35.9. 
Suppose projgradeH.(IlY) H.(F) 2 catf and, as above, write m = catf and 

r = projgradeH.(IlY) H.(F). Since r 2 m Step 4 provides a filtration preserving 
morphism of C. (OY)-modules, 

Thus TJ induces a morphism Ei(TJ) of spectral sequences which, at the E1-level 
has the form 

(in the notation of Step 3). 
Compose TJ with the inclusion idl2lAm of Step 2 to obtain a filtration preserving 

morphism 

which then yields a morphism Ei(TJ') of spectral sequences. The El-terms of 
these spectral sequences are respectively the resolutions (P.,dl ) and (Q.,dl ) of 
Step 3; in particular it follows from Step 3 that in both cases E2 = Eg, •. In 
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each case Eg,. = H.(F) and so the inclusions W(O) ® C.(DY) -+ W ® C.(DY) 
and C.(F) ® V(O) ® C(DY) -+ C.(F) ® V ® C.(DY) induce isomorphisms 

Eg,. ~ H(-) which identify E2(r/) = Eg,.(r/) = H(r/). 
But r/ = (id ® Am)ry ~ (id ® Am)1/;, which is a quasi-isomorphism by Step 2. 

Hence E2(ry') is an isomorphism and 

is a quasi-isomorphism of resolutions. 
Suppose first that proj gradeH.(Qy) H.(F) > cat f. Then Step 4 would allow 

us to choose ry so that ry = L ryk. It would follow that El (ry) = 0 and so 
k<O 

El(ry') = El(id®Am) o El(ry) = 0 as well. Since El(ry') is a quasi-isomorphism 
this is absurd; i.e., 

projgradeH.(QY) H.(F) ~ catf . 

Now suppose proj gradeH.(QY) H.(F) = cat f, and let N be any right H.(DY)
module. Since El (ry') is a quasi-isomorphism of resolutions, it induces a quasi
isomorphism 

HomH.(Qy)(P.,N)? HomH.(Qy)(Q.,N) . 

It follows that El (ry) induces surjections 

where (as in §35(a)) the left degree "p" is the resolution degree. 
Since Q<m is concentrated in resolution degree ~ m and since N is concen

trated in r~solution degree zero it follows that HP" (HomH.(QY) (P., N)) = 0, 
p> m. But 
HP" (HomH.(QY) (P., N)) = ExtP (H. (F), N), since P. is an H.(DY)-free reso
lution of H.(F) (cf. §20(b)). Thus Ext:;;':(QY) (H.(F), -) = O. Since, byassump

tion, projgradeH.(QY) H.(F) = m it follows that Extil.(QY) (H.(F), -) f. O. 
Thus projdimH.(Qy) (H.(F)) = m, as desired. This completes the proof. 0 

Corollary: Assume, in addition to the hypotheses of Theorem 35.9, that the 
k-modules Hi(F) and Hj(DY) have finite bases for each i and j. Then 

gradeH.(QY) H.(F) ~ catf 

and if equality holds then also cat f = proj dimH. (QY) H. (F). 

proof: The Remark at the end of Step 4 in the proof of the theorem allows us 
to replace proj grade by grade in Step 5. 0 
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(e) The depth of H*(OX). 

Theorem 35.10 If (X, xo) is a normal path connected topological space and if 
each Hi(OX) is k-free on a finite basis then 

depthH*(OX) :S cat X . 

If equality holds then also cat X = gldimH*(OX). 

proof: Replace X by a well based space of the same homotopy type by adjoin
ing an interval to X at the base point Xo. Then apply the Corollary above to 
Theorem 35.9 to f = idx . 0 

Corollary If k is a field of characteristic zero and if X is simply connected 
then depth U L x :S cato X, where Lx is the homotopy Lie algebra. 

proof: Replace X by the rationalization (§9) XiQI and note (Theorem 21.5 and 
Proposition 28.1) that U Lx = H*(OX; k) = H*(OXiQI; lk) and that cato X = 
catXiQI. 0 

(f) The depth of U L. 
In this topic k is an arbitrary field of characteristic zero. 
Suppose L = {Ld i>l is a graded Lie algebra, with universal enveloping al

gebra U L. In §22(a) and §22(b) we constructed C*(L; U L) and established its 
properties, where L is regarded as a differential graded Lie algebra with zero 
differential. This gives, in particular, a U L-free resolution of lk of the form 

This resolution, which plays the key role in this and the next topic, will be 
denoted by 

By definition (§20(b)), ExttrL(lk, -) = HP,* (HomuLCP*, - )). 

Proposition 35.11 Let L = {Ldi>l be a graded Lie algebra with each Li finite 
dimensional. -

(i) gl dim U L is the largest integer n (as CXl) such that Ext'U L (k, k) 1= O. 

(ii) depth U L :S gl dim U L. 

proof: (i) Clearly n:S gl dim UL, since Extrh(k,lk) 1= O. On the other hand, 
write P* = C*(L) ® UL. Then 

ExtuLClk, Jk) = H (HomuL(P*, Jk)) = H (C*(L)~) = H (C*(L))ti , 
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because lk is a field. It follows that H (C* (L)) is concentrated in homological 
degrees ~ n. 

Now choose a graded subspace E c AnsL so that E EB d (An+lsL) = AnsL. 
Observe that (A <n sL EB E) 181 U L is automatically a sub complex of p., and that 
the inclusion defines a morphism of the spectral sequences derived from the fil
trations FP( -) = (-) ·(U L}>p. At the EO-term the differentials are just d 181 id 
in C. (L) 181 ULand so this morphism is a quasi-isomorphism of EO-terms. It fol
lows that the inclusion of (A <n sL EB E) 181 U L in p. is itself a quasi-isomorphism. 
This (A <nsL EB E) 181 U L is a U L-free resolution of lk and so Exti12 (lk, -) = 0; 
i.e., gl dim U L ~ n. 

(ii) Let gl dim U L = n. Then Extu11 (lk, -) = O. Apply Homu dP., -) 
to the short exact sequence 0 -----7 (U L)+ -----7 U L -----7 lk -----7 0 and pass to 
homology to obtain an exact sequence 

Extu L (lk, U L) -----7 ExtUL (lk, lk) -----7 ExtU!l (lk, (U L)+) . 

Thus Extudlk, UL) surjects onto ExtUL(lk, lk), which is non-zero by (i), and so 
depthUL ~ n. 0 

(g) The depth theorem for Sullivan algebras. 
As in the previous topic, in this topic k is an arbitrary field of characteristic 

zero. 
Fix a minimal Sullivan algebra (AV,d) such that V = {ViL>2 is a graded 

vector space of finite type, and let L be the homotopy Lie algebra of (A V, d) as 
defined in §21(e). Recall that cat (AV,d) is defined in the introduction to §29. As 
in the previous topic the complex p. = C. (L; U L) and associated constructions 
will play a key role. 

In particular, let d1 denote the quadratic part of the differential in AV : d1 : 

V -----7 A2V and d - d1 : V -----7 A2:3V. From the definition of the Lie bracket in 
§21(e), and Proposition 23.2, and Example 1 in §23(a) we obtain 

(AV, dd = C*(L) = HomudP*, lk) , 

with APV = HomudPp, lk). Thus 

ExtfTL(lk,lk) = HP'*(AV,d1) , 

with the left degree "p" corresponding to wordlength in A V. 

Proposition 35.12 cat(AV, d) ~ gldimUL. 

proof: Let n = gl dim U L; according to Proposition 35.11 it is the largest 
integer such that Extu L (lk, lk) =I- O. Define an ideal I C AV by setting I = 
A>nv EB In, where In EB (kerdd n,* = Anv. Then H(I, dd = O. Filter I by 
wordlength and use the associated spectral sequence to deduce that H(I, d) = O. 
Conclude from Corollary 2 to Proposition 29.2 that cat(AV, d) ~ nil(AV / 1) ~ n 
because (A V, d) -----7 (A V / I, d) is a quasi-isomorphism. 0 
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Theorem 35.13 [54] If L is the homotopy Lie algebra of a minimal Sullivan 
algebra (A V, d), and if V = {Vi L~2 is a graded vector space of finite type, then 

depth U L ::; cat( A V, d) ::; gl dim U L . 

Moreover ifdepthUL = cat(AV, d) then cat(AV,d) = gldimUL. 

proof: In view of Propositions 35.11 and 35.12 it is sufficient to prove that 

depthUL;::: cat(AV,d) ===? cat(AV,d);::: gldimUL, 

and for this we may suppose cat(AV, d) is a finite integer m. 
Recall first that in §29(f) the surjection (AV, d) ---7 (AVjA>mv,d) is extended 

to a (AV, d)-semifree resolution of the form 

(: (AV 0 (M EB lk),d) ---=+ (AVjA>m,d) , 

and with the following three properties: 

• The differential d1 in A V extends to a differential 81 in AV 0 (M EB lk) 
characterized by 

- 81 : M ---7 (V 0 M) EEl Am+lV, and d - 81 : M ---7 (A~2V 0 M) ffi 
A~m+2v. 

- AV0(Mffilk) is a (AV,dd-module. 

• The surjection (AV,dd ---7 (AVjA>mV,d1 ) extends to a (AV,dd-semifree 
resolution 

~ : (AV 0 (M ffilk), 8r) ---=+ (AVj A>mv, d1 ) 

such that ~(M) = O. 

• Because cat (AV, d) = m there is a morphism (retraction) 

1/J: (AV 0 (M ffilk),d) ---7 (AV, d) 

of (A V, d)-modules such that 1/J(1) = 1. 

Now bigrade AV and the tensor product by setting (AV)P,* = APV and 
(AV0(Mffilk)t'* = (AP-mV0M) ffiAPV. Then filter by setting FP(-) = 
(-)~P'*. Thus d1 (or 8r) increases filtration degree by 1 while d - d1 (or d - 8d 
increases it by at least 2. On the other hand, 1/J need not preserve the filtration 
degree. However 1/J can decrease the filtration degree by at most m and so it can 

00 

be written as the infinite sum 1/J = l: 1/Ji, some k ::; m, of the A V -linear maps 
i=-k 

1/Ji characterized by: 

• 1/Ji increases filtration degree by exactly i. 
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It is immediate that d1 '¢-k - '¢-kr51 = O. Simplify notation by writing 
N = M EEl lk. Then '¢-k is a cycle of bidegree (-k, 0) in the bigraded com
plex HomAv(Ail (9 N, Ail), (defined with respect to the differentials d1 and r5d· 
We show below that 

HP" (Hom.w(Ail (9 N, Ail» = 0, p < 0 . (35.14) 

This implies that if k > 0 then '¢-k = d18 + 861 for some Ail-linear map 
8: Ail (9 N ---7 Ail that decreases filtration degree by exactly k + 1. Thus 
'If; - (d8 + ()d) is a retraction which decreases filtration degree by at most k - 1. 

Proceeding in this way we find a retraction 7] that preserves filtrations. But 
00 

then 7] = 2: 7]i and 7]0 : (Ail (9 N,r5d ---7 (AV,dd satisfies 7]0(1) = 1. This 
i=O 

implies that H(7]o) is surjective. Since 

HP"(AV (9 N,6d ~ HP" (AVjA>mil,d1 ) = 0, p> m , 
H(€) 

it follows that Ext~'t(lk)lk) = H>m"(AV,dd = 0; i.e., cat(AV,d) = m > 
gldim UL. 

It remains to prove (35.14). We shall work entirely in the category ofbigraded 
complexes; in particular, Hom will always mean bigraded Hom and t will mean 

the bigraded dual: (C;,.) p,q = C~,q. 
Now regard each l\PsL (9 U L as a left L-module by setting 

x·a = _(_l)deg x dega a . x , X E L, a E /I,P sL (9 UL. 

Denote the differential in each C. (L; j\PsL (9 U L) by fh and denote the maps 

C.(L;APsL(9UL) ided) C. (L;AP-l sL(9UL) 

by 82 . Then 8 = 81 +82 is a differential of bidegree ( -1, 0) in the bigraded module 
C.(L)(9C.(L)(9UL, where the bigrading is given by (-)p,* = EB C i (9Cj (9UL. 

i+j=p 

As in §22 (b) this complex is in fact a differential graded coalgebra. Moreover, 
if D. is the comultiplication in C.(L) then an easy calculation shows that the 

composite C. (L) ~ C. (L) (9 C. (L) c---+ C. (L) (9 C. (L) (9 U L commutes with 
the differentials and is in fact a dgc quasi-isomorphism. 

Dualizing we find that multiplication in (Ail,d1) extends to a co chain algebra 
quasi-isomorphism of the form 

(Ail(9Ail(9(UL)~,d1) --=+ (AV,dd, 

where (Ail)P,' = APil and (Ail (9 AV (9 (UL)~t'· = EB AiV g AjV (9 (UL)~. 
i+j=p 

This is a quasi-isomorphism of (Ail, dd-semifree modules and so we may apply 
AiljA>mv (9Av - to obtain a quasi-isomorphism 
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Lift this to a quasi-isomorphism into (AV Q9 N, r5d and thereby reduce (35.14) 
to the assertion 

HP,* (HomAv (AV Q9 AV/A>mv Q9 (UL)P,AV)) = 0, p < o. (35.15) 

Next observe that AV/A>mv Q9 (UL)~ = (A~msLQ9ULt Thus there are 
canonical identifications of bigraded vector spaces 

Homi\v (AV Q9 AV/A>mv Q9 (UL)~, AV) 

Hom (AV/A>mv Q9 (UL)~,AV) 

Hom ((A~msL Q9 UL)", (AsL)") 

Hom AsL, (A~msL Q9 UL)" ( 'j) 
Hom (AsL,A~msL Q9 UL) 

HomUL (AsLQ9UL,A~msLQ9UL) 

." where we may identity (A~msL Q9 U L)'- with A~msL Q9 U L because this graded 
vector space has finite type. An arduous but straightforward calculation shows 
that this defines an isomorphism of complexes 

Homw (AV Q9 AV/A>mv Q9 (UL)~,AV) ~ HomuL(P*,P~m) . 

Since AsL is a graded vector space of finite type Lemma 35.2 (applied with 
A = UL and M = Jk) gives 

HP'* (HomuL(P*, P~m)) = 0, p < depth UL - m . 

Since depth U L is supposed ~ m this proves (35.15) and the theorem. 0 

Exercises 

1. Let X be a simply connected CW complex of finite type. Prove that 
depthH*(rl(53 V X);Q) = 1. 

2. Let X be a simply connected finite CW complex. Prove that depth H*(rlX; Ik) 
::; eIk(X) for any field Ik. 

3. Let X be a simply connected formal space with H* (X; Q) ::: Q[a, bl/ 
(a4 , b4 , a2 b2 ) and deg a = 2, deg b = 2. Prove that catoX = 4. Consider 
the map f: 54 V 54 --+ K(~, 4) (resp. 9: K(Qt, 2) --+ K(~, 4)) corresponding 
to the fundamental classes of the spheres (resp. to the squares of generators of 
H*(K(Qt,2))). Convert 9 into a fibration and show that X has the rational 
homotopy type of the pullback of 9 along f. 

Xo !'." K(Qt,2) 
-!- -!-9 

(54 V 5 4)0 -4 K(Qt,4) 
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Compute the rational homotopy Lie algebra of X using the homotopy fibre of 
h. Prove that the dimension of the centre of Lx is 2, and that the depth of 
H.(fJX; Q) is 3. 



36 Lie algebras of finite depth 

In this section the ground ring lk is a field of characteristic =I- 2,3. 
Throughout the section we adopt the convention: 

• L is a graded Lie algebra such that L = {Ldi::O:l and 
each Li is finite dimensional. 

(36.1 ) 

Recall from the start of §35 that the depth of the universal enveloping algebra, 
UL, is the least integer Tn (or x) such that Ext2L(lk, UL) =I- O. Here we shall 
slightly abuse language with the 

Definition The depth of L is the depth of its universal enveloping algebra, 
UL. 

In §35 (Corollary to Theorem 35.10) we showed that if X is a simply connected 
topological space and if each Hi(OX) is finite dimensional then 

depth Lx ::; cato X , 

where Lx is the homotopy Lie algebra of X. Thus spaces of finite rational 
category have homotopy Lie algebras of finite depth. 

Here we study graded Lie algebras L of finite depth Tn and show that 

• The sum of all the solvable ideals in L is finite dimensional. 

• U L is right noetherian if and only if L is finite dimensional. 

• There are at most Tn linearly elements x i in Leven such that ad Xi is locally 
nilpotent. 

As just observed these results apply to the homotopy Lie algebra of a space of 
finite rational category. The reader should also note that the third result is a 
considerable strengthening of Theorem 31.16. 

This section is organized into the follmving topics: 

(a) Depth and grade. 

(b) Solvable Lie algebras and the radical. 

(c) Noetherian enveloping algebras. 

(d) Locally nilpotent elements. 

(e) Examples. 
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(a) Depth and grade. 

Proposition 36.2 

(i) If L is the direct sum of ideals I and J then 

depth L = depth I + depth J . 

(ii) If L is the infinite direct sum of non-zero ideals then depth L = 00. 

proof: (i) Because of (36.1) we may identify ExtfrL (..0., U L) with Tor~L (k, U L~)a, 
p 2: 0 (Lemma 34.3(iii)). Thus depth L is the least integer m such that Tor~L(k, U Ltt) 
f; O. On the other hand, if p. and Q. are respectively U 1- and U J-free resolu
tions of.k then P. Q9 Q. is a U I Q9 U J-free resolution of k Since U L = U I Q9 U J 
this gives 

Assertion (i) follows. 

H ((P. Q9 Q.) Q9UL (UIP Q9 U J~)) 

H(P. Q9UI U IP) Q9 H( Q. Q9UJ U J~) 

TorU1 (k, U IoJ) Q9 TorUJ (..0., U J~). 

(ii) Here there is no a E U L such that (U L)+· a = 0 and so Ext~L(.k, U L) 
= Homud.k, U L) = O. Thus depth L 2: 1. But then for each n 2: 1 we may 
write L as the direct sum of n ideals L(i), each of which is itself an infinite direct 

n 
sum. Thus by (i), depthL = L depthL(i) 2: n. Hence depthL = 00. 0 

i=l 

Next, recall from Lemma 34.3(i) that if Ie L is an ideal then ToruI (..0., k) is 
naturally a right U L / I-module. 

Proposition 36.3 Let I c L be an ideal. 

(i) depth I ::; depth L. 

(ii) If a·UL/I is finite dimensional for all a E Tor~I(k,k), q ::; depthL, 
then depth L/ I::; depth L. 

(iii) If the hypothesis of (ii) holds and the Lie algebras L / I is finitely generated 
then 

proof: 
E~,q 

depth I + depth L / I = depth L. 

(i) The Hochschild-Serre spectral sequence (§34(b)) converges from 
ExtfrL/ I (..0., ExthI(.k, U L)) to Extfriq (..0., U L). Since U L is U I-free 
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it follows that Extb(lk,UL) = 0, q < depth I. Hence Extudlk,UL) = 0, 
r < depth I and depth L ~ depth I. 

(ii) Let m = depthL. We show first that ExtUL (lk,ULj1) =I- o. In 
fact, filter UL by the UL-modules FP = UL·(U1»p- Use the duality of 
ExtUL(lk, UL) and Tor~L(1o:, (UL)~) to deduce that fo; 0 =I- 0: E ExtUL (1o:, UL) 
there is a maximum p such that 0: is in the image of Extudlk, FP). It follows 
that 0: maps to a non-zero element in ExtUL (lk, FP j FP+l). But FP j FP+l is 
just ULjI &! (U1)p as a UL-module, and so ExtUL (lk,ULj1) =I- O. 

Next observe that the Remark in §34(b) identifies the Erterm in the Hochschild
Serre spectral sequence for Extu L (lk, U L j 1) as 

Thus, for some p + q = m, this term is non-zero and so (cf §35) 

gradeu LI I (Tor~ I (lk, lk)) ::; p ::; depth L . 

It is thus sufficient to prove that 

depthLjI::; gradeuLII(M) 

for any non-zero L j I-module M for which 0: • U L j I is finite dimensional, 0: EM. 
Write M as the increasing union of sub Lj I-modules M(i) C M(i + 1), i ~ 0, 

with Lj I acting trivially on each M(i)j M(i - 1). As in §20(b) there is aU Lj I
free resolution P* of M such that P* is the increasing union of free resolutions 
P*(i) of M(i), and also P* (i)jP* (i -1) is a free resolution of M(i)jM(i -1). 

Suppose now that Ext~LII(lk, U Lj 1) = O. If a E HomuLII (Pp, ULj 1) is a co
cycle vanishing on Pp(i-1) then the induced co cycle in HomULI I (Pp(i)j Pp(i - 1) , 

U Lj 1) is a coboundary by hypothesis. Thus for some bE HomuLII (Pp- 1 , U Lj I) 
vanishing on Pp- 1 (i - 1) we have: a - db vanishes on Pp (i). This argument shows 
that a itself is a coboundary and hence that Ext~LII(M,ULj1) = O. Thus 
gradeuL / I(M) ~ depth Lj I, as desired. 

(iii) Recall that the Hochschild-Serre spectral sequence (§34(b)) con
verges from Ext~LI I (lk, Ext'tJI(1o:, U L)) to Extfri,q (lk, U L). The duality observa-

tions in §34(b) identify the E 2-term with the dual ofTor~LII (lk, Tor~I (lk, (U L)~)), 
and this coincidences with Tor~LII (10:, (U Lj 1)U) &! Tor~I (lk, (U 1)~), by Propo
sition 34.11, provided that q ::; depth L. 

Since some E~,q =I- 0 for p + q = depth L we may conclude that depth L ~ 
depth Lj I + depth I. Suppose inequality held and put r = depth Lj I and s = 
depth I. Then E;,8 =I- 0 and E;+j,8-i+1 = 0 = E;-j,8+j-l. This would imply 
g:;'8 =I- 0 contradicting depth L > r + s. 0 
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(b) Solvable Lie algebras and the radical. 
A graded Lie algebra L is called solvable if some L(n+1) = 0, where L(n) is the 

ideal defined inductively by 

L(O) = Land L(n+1) = [L(n), L(n)] , n 2: 0 . 

The solvlength of L is the largest n such that L(n) -I- O. Recall that we restrict 
attention to those L satisfying L = {L;h:;::l and with each L; finite dimensional. 

Theorem 36.4 The graded Lie algebra L is solvable and of finite depth if and 
only if L is finite dimensional. In this case ExtiJL (.k, U L) is one dimensional, 
and 

depth L = dim Leven . 

proof: Suppose L is solvable and has finite depth. The ideal [L, L] has finite 
depth (Proposition 36.3(i)), and so by induction on solvlength, [L, L] is finite 
dimensional. In particular, for some k, L>k is an abelian ideal, also of finite 
depth. WriteL:;::k = EBlkxa and note that-each lkxa is an ideal in L:;::k. Since 

a 
L:;::k has finite depth it cannot be an infinite direct sum. (Proposition 36.2(ii)) 
and hence L:;::k is finite dimensional. Thus so is L. 

Conversely, suppose L is finite dimensional. Since L = L:;::l' L is trivially 
solvable. Moreover, a non-zero element x in L of maximal degree is central. Set 
lkx = I and put 

e = { ~ if deg x is even 

if deg x is odd. 

Since U I is either the exterior or polynomial algebra on lkx, a simple direct 
calculation gives 

Extt~(lk,UI) = 0 and dimExtuI(lk,UI) = 1. 

Thus Proposition 34.7 asserts that there are isomorphisms of U L / I-modules, 

q ~ { UL/I ExtUI(k, UL) = 0 
if q = e 

otherwise. 

In particular the Hochschild-Serre spectral sequence collapses at E2 , and 

ExtUL(k, UL) ~ Ext;L/I(k, UL/I) . 

It follows by induction on dim L that Extudlk, U L) is one dimensional and that 
depth L = dim Leven. 0 

Definition The radical of a graded Lie algebra L is the sum of all the solvable 
ideals of L. 
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Theorem 36.5 [54] If L satisfying (36.1) has finite depth then its radical, R, 
is finite dimensional and dim Reven :::; depth L. 

proof: Every solvable ideal I C L satisfies dim Ieven :::; depth L, by Theorem 
36.4. Choose I so that dim Ieven is maximized. For any solvable ideal J, 1+ J 
is solvable, and hence Jeven Cleven. It follows that Reven = Ieven and so, for 
some k, R?k is concentrated in odd degrees. Thus R?k is abelian and R itself 
is solvable. 

N ow Theorem 36.4 asserts that Ext(JR Uk, U R) is one-dimensional and con
centrated in * = dimReven . It follows that the isomorphism ExtiJRClk,UL) ~ 
Ext(JR(.lk, U R)0U Lj Ridentifies the left hand side with U Lj R as a Lj R-module. 
Thus the Erterm of the Hochschild-Serre spectral sequence converging from 
ExtfrL/ R (Jk, Ext'lJRClk, U L)) to Extf,1Q (Jk, U L) is given by 

E P,q -
2 - { 

ExtfrL/R(Jk,ULjR) 

o 
,q = dimR 

, otherwise. 

In particular, the spectral sequence collapses at E2 , and depth L = depth L j R + 
dim Reven. 0 

(c) Noetherian enveloping algebras. 
A graded algebra A is right noetherian if any right A-submodule of A is finitely 

generated. In this case any submodule of a finitely generated right module is 
finitely generated. 

Theorem 36.6 Suppose L is a graded Lie algebra satisfying (36.1). If L has 
finite depth then 

U L is right noetherian ¢::=} dim L is finite. 

Remark This Theorem was originally proved for homotopy Lie algebras of 
spaces of finite category by Bogvard and Halperin [28]. 

proof: Suppose U L is right noetherian. Then any submodule of a finitely 
generated right U L-module is finitely generated. In particular Jk admits a U L
free resolution P* such that each Pp is U L-free on a finite basis, and this implies 
that each ToriJL (Jk, Jk) is finite dimensional. 

Next, note that any sub Lie algebra EeL is also right noetherian. Indeed 
(Corollary to Proposition 21.2) multiplication in U L defines an isomorphism 

U E 0 V ~ U L for some subspace V C U L. If M cUE is any subspace then 
M . U L = M . U E 0 V. It follows that a minimal set of generators for the U E 
module M . U E is also a minimal set of generators for M· U L as a U L-module. 
In particular this is finite and so any right U E-submodule of U E is finitely 
generated; i.e., U E is right noetherian. 
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Consider the ideal I = L>n, some n > O. Since I is right noetherian each 
Tor~[ (lk, lk) is finite dimen;;ional and hence Proposition 36.3(ii) asserts that 
depth L 2: depth L j I. Since L j I is finite dimensional Theorem 36.5 asserts that 
dim(LjI)even ::; depthL. This holds for I = L>n, any n, and so Leven is finite 
dimensional and, for large n, L-?n is concentrated in odd degrees. Then L>n is 
abelian and L is solvable, hence finite dimensional (Theorem 36.5). 

Conversely, if dim L is finite write L = I E.B lkx where I is an ideal and x is 
a non-zero element of minimal degree. By induction on dim L we may suppose 
U I to be right noetherian. Use multiplication in U L to define an isomorphism 

UI09Ax ~ UL. 
If deg x is odd then U I 09 Ax is generated as a U I -module by 1 and x and 

any sub U L-module is finitely generated even as a U I -module. Suppose deg x 
is even. If M C U L is a right U L-submodule define subspaces S(k) cUI as 
follows: a E S (k) if and only ifaxk + L aixi E M for some elements ai E U I. 

i<k 
Then S(k) is a right UI-submodule. Since S(k) C S(k + 1) c ... it follows 
that for some n, S(n) = U S(k), and we can find a finite subset of U S(k) which 

k k 
contains a set of generators for each S (k), k ::; n. As in the classical case of 
polynomial algebras it is straightforward to use these to construct a finite set of 
generators for M as a U L-module. Thus U L is right noetherian. D 

( d) Locally nilpotent elements. 
An element x E L is locally nilpotent or an Engel element (cf. introduction to 

§31) iffor all y E L there is an n(y) for which (adx)n(Yly = O. 

Theorem 36.8 A graded Lie algebra L satisfying (36.1) and of depth m con
tains at most m linearly independent Engel elements of even degree. 

proof: We show that if L = I E.B lkx, with I an ideal and x a non-zero Engel 
element of even degree, then depth I < depth L. (The theorem follows from this 
by an obvious argument.) 

To establish this assertion note first that since ad x is locally nilpotent, x 
acts locally nilpotently in each Tor~[ (lk, lk), as follows directly from Example 2, 
§34(a). Thus Proposition 36.3(iii) asserts that 

depth I + depth lkx = depth L 

and the conclusion follows from depth lkx = 1 (because x has even degree). D 

(e) Examples. 
Recall that graded Lie algebras L satisfy L = L?l and each Li is finite dimen

sional. 
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Example 1 Depth = o. 
A graded Lie algebra L has depth 0 if and only if HomuL(lk, U L) -I- 0; i.e., 

if and only if a . U L+ = 0 for some non-zero a E U L. It follows at once from 
the Poincare Birkoff Witt theorem 21.1 that this occurs if and only if L is finite 
dimensional and concentrated in odd degrees. D 

Example 2 Free products have depth 1. 
Let E and L be graded Lie algebras and recall the free product E II L defined 

in §21(c). We shall show that depthE II L = 1. 
Indeed, choose free resolutions of the form 

~ V(2) 0 UE ~ V(l) @ UE ~ UE ---+ lk, and 

~ W(2) @ UE ~ W(l) @ UL ~ UL ---+ lk. 

Then as described in §21(c) there is a U(E II L)-free resolution of lk of the form 

[V(2) EB W(2)] @ U(E II L) ~ [V(l) EB W(l)] @ U(E II L) ~ U(E II L) ---+ lk 

in which the restriction of d to V(i) and W(i) is given by the resolutions above. 
Choose non-zero elements x E E and y ELand define a U(E II L)-linear 

map f : [V(1) EB W(l)] @ U(E II L) ---+ U(E II L) by f(v) = (dv)· yx and 
f(w) = (dw)· xy. Trivial calculations show that f 0 d = 0 and that f is not a 
coboundary. D 

Example 3 X V Y. 
Let X and Y be simply connected spaces with rational homotopy of finite type. 

In Example 2 of §24(f) we observed that Lxvy = Lx II L y . Thus depth Lxvy = 
1. 

On the other hand, cato(X V Y) = max(cato X, cato Y) as follows from the 
remarks at the start of §27. Thus the difference cato-depth can be arbitrarily 
large. D 

Example 4 Products. 
If E and L are graded Lie algebras then 

depth (E EB L) = depth E + depth L 

as observed in Proposition 36.2. Since LxxY = LxEBLy we have that depth LxxY 
= depth Lx + depth Ly in analogy with cato(X x Y) = cato X + cato Y (Theo
rem 30.2) D 

Example 5 X = 8~ V 8~ U[a[a,b]w]w D8. 

This CW complex was first discussed in Example 2, §13(d) and subsequently 
in Example 4, §24(f) and in Example 3, §33(c). In §33(c) we showed that the 
homotopy fibre of the retraction X ---+ 8~ was rationally 8~ V 8 5 , and that the 
fibre inclusion 'P : 8~ V 8 5 ---+ X restricted to 8 5 represented [a, b] w· 
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Recall that Lx is the rational homotopy Lie algebra of X. If a, /3 E (Lx)') 
correspond to a,b E 1i3(X) then it follows easily that Lx = lL(a,/3)j[a,[a,/3ll~ 
As an immediate consequence we see that a is an Engel element in Lx. 

Write Lx = lw EB I, where I = k/3 EB (Lxh4' The argument proving The
orem 36.8 shows that depth I < depth L. Since also depth I > 0 (Example 1, 
above) we have depth Lx 2: 2. On the other hand, X is a 2-cone and so cat X :s 2 
(Theorem 27.10). Since depth Lx :s cato X (Theorem 35.10) we conclude 

depth Lx = cato X = cat X = 2 . o 

Example 6 CCpoo jccpn. 
Because the inclusion i : ccpn ~ CCpoo induces the surjection Ax ~ AxjxnH 

in cohomology (degx = 2), the cohomology algebra of CCpoo jccpn is just <Q EEl 
xn+1 • Ax. Moreover, CCpoo jccpn is 2n+1 connected and so 1i2n+2(CCpOO jccpn) = 
H2n+2(CCpOO jccpn) = Z. This defines a continuous map f : CCpoo jccpn ~ 
K(Z, 2n + 2). Let g : F ~ CCpoo jccpn be the homotopy fibre. 

Next, observe that a Sullivan representative for i is also a Sullivan representa
tive for the surjection Ax ~ AxjxnH , (deg x = 2). Use Lemma 13.3 and 13.4 
to deduce that A = k EB x n+1 Ax is a commutative model for CCpoo jccpn. 

Extend the inclusion AxnH ~ A to a minimal Sullivan model 'P : (AxnH 18: 

AV,d) ~ (A,O). This is a Sullivan model for CCpoo jccpn and the inclusion 
of Axn+1 is a Sullivan representative for f. Thus the quotient Sullivan algebra 
(AV,d) is a minimal Sullivan model for F. Moreover since A is Axn+1-free on 
the basis 1, x n+2 , • .. ,X2n+1 it follows that 'P induces a quasi-isomorphism 

2n+1 
ip: (AV, d) ~ kEB EB kXi. 

i=n+2 

Thus F is a formal space in which cup-products vanish and hence F has the 
2n+1 

rational homotopy type of V S2i (Theorem 24.5). 
i=n+2 

Let L be the rational homotopy Lie algebra of CCpoo jccpn. The discussion 
above establishes the short exact sequence 

with deg /3 = 2n + 1 and deg ai = 2n + 2i + 1. Now Proposition 36.3(iii) asserts 
that 

depth L = depth <Qf3 + depth lL( 0.1 , ... ,an) = 1 . o 

Example 7 eo(X) = 2; cato(X) = depth Lx = 3. 
Consider the commutative rational cochain algebra (A, d) = (A(a, b, {Xn}n>1) j 

I, d) with deg a = deg b = 2, deg Xn = 3n -1, I the ideal generated by a2 , b2-and 
A::::: 2 ( {xn}n:::::d, and dX1 = 0 and dXnH = abxn. This is a commutative model for 
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some rational topological space X (§I7). The inclusion A(a,b)/a2 ,b2 ---+ (A, d) 
defines a fibration XQI ---+ Sij x Sij whose homotopy fibre is the infinite wedge 

F = V s~n-1 (same argument as in Example 6). 
n>l 

Con~ider the inclusion Sij V Sij ---+ Sij x Sij and pull this fibration back to 
a fibration Y ---+ Sij V Sij. A commutative model for Y is just A(a,b)/A?2a,b 
0A(a.b)/a2,b2 A (same argument again), and this is just the tensor product H(Sij V 

Sij) 0 H(F). It follows that Y C:::QI (Sij x Sij) x F. Since Sij V S5 ---+ Sij x Sij is 
surjective in homotopy this implies that Lx is the direct sum of the ideals LF 
and LS?xs2. 

Now Pro~position 36.2(i) asserts that 

depth Lx = depth LF + depth Ls~ + depth Ls~ = 3 . 
, ~-

On the other hand, X has a commutative model with product length 3 and so 
Theorem 29.1 states that cat X ::; cl X ::; 3. Since depth X ::; cat X we have 
depth X 
= cat X = cl X = 3. Finally, if (A V, d) is a minimal Sullivan model for X 
then any co cycle of wordlength :2: 3 in AV will map to such a co cycle in A, and 
these are all coboundaries. It follows that e(X) ::; 2. If e(X) = 1 then cat X = 1 
(Theorem 28.5(ii)). Thus e(X) = 2. 0 

Example 8 L = Der>o Lv, where V is a finite dimensional vector space of 
dimension at least 3. 

Write V = 1kv EB W where v E Veven unless Veven = O. Then there are infinitely 
many linearly independent elements x in L(W)even and each one determines 
Ox E Der Lv by Ox (v) = x and Ox (W) = O. It is straightforward to verify that 
each Ox is an Engel element in L, and so depth L = 00. 0 

Exercises 

1. Let X be a I-connected finite CW complex and let Y be an r-connected 
hyperbolic space such that dim X + 1 < r. Prove that the space of continuous 
maps Map(X, Y), endowed with the compact-open topology, is a I-connected 
space. Prove that the evaluation map, Map(X, Y) ---+ X, f t---+ f(xo), is a 
fibration which admits a section. We denote by Map.(X, Y) the fibre of this 
fibration. Prove that depth Map.(X, Y) = depth Map(X, Y) = 00, so that 
cat Map(X, Y) = 00. 

2. Prove that the radical of the graded Lie algebra L = L(a, b)/[a[a, bj], with 
deg a = 2 = deg b is trivial. 

N 
3. Let f : IT S3 ---+ S3N be the natural pinch map. Convert the projection 

i=l 

S3 V S3N ---+ S3N into a fibration E ---+ S3N and consider the pull back fibration 
N 

X ---+ IT S3 along f. Compute the radical of 7r. (OX) 0 Q). 
i=l 
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In this section the ground ring is Q! except that in the first topic it is any com
mutative ring. 

Consider a cellular map 
f : sn ---t X 

between simply connected CW complexes (recall from Theorem 1.2 that any 
continuous map is homotopic to a cellular map). The first objective of this 
section is to study the relationship between the rational homotopy Lie algebra of 
X and of the CW complex Y = xu, Dn+l obtained by attaching an (n+ I)-cell 
to X along f. We shall assume f is not a rational homotopy equivalence, so that 
Y is not a rational point. 

Convert the inclusion i : X ---t Y into the fibration q : X Xy MY ---t Y, as 
defined in §2(c). The fibre of P, F = X Xy PY is the homotopy fibre of i, and the 
holonomy action of OY on F is simply right multiplication in PY. The inclusion 
of X x y PY in X x y MY is homotopic to the projection p : X x y PY ---t X, 
which is an OY -fibration - the holonomy fibration for q. Note that because f 
is null homotopic in Y it lifts to a map 9 : sn ---t X x y PY. Thus we have the 
commutative diagram 

X xyPY= F 

/j' 
sn~j. 

Y = XU, Dn+l. 

Let [sn] denote the fundamental class in Hn(sn) (any coefficients). Our first 
step is to prove 

We use this to give several equivalent conditions for 1[* (i) ® Q! to be surjective, in 
which case there is an explicit formula connecting the Hilbert series for U Lx = 
H*(OX;Q!) and UL y = H*(OY;Q!). 

Next we consider the case where X is a wedge of spheres and we attach a 

family of cells: Y = (y sa) U, ( If Dni+l), via a map f = {Ii : sni ---t X}. 

For these spherical 2-cones we derive the explicit formula for the Hilbert series 
of U Ly originally established by Anick [6]. 

In [140] Serre posed the question: If Y is a simply connected finite CW com
plex is the Hilbert series of U Ly rational? The original negative answer was 
given by Anick [6]. Here we construct an example due to L6fwall and Roos. 
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It is a finite spherical 2-cone \vith the additional property that Ly contains an 
infinite dimensional abelian Lie algebra (although it cannot contain an infinite 
dimensional abelian ideal by Theorem 36.5). 

This section is organized into the following topics: 

(a) The homology of the homotopy fibre, X Xy PY. 

(b) Whitehead products and G-fibrations. 

(c) Inert elements. 

(d) The homotopy Lie algebra of a spherical 2-cone. 

(e) Presentations of graded Lie algebras. 

(f) The Lofwall-Roos example. 

(a) The homology of the homotopy fibre, X Xy PY. 
The path space fibration PY -t Y restricts to the holonomy fibration X x y 

PY -t X. In Proposition 8.4 we constructed a cellular model for C. (X Xy PY) 
of the form 

where each Ck was free on the k-cells of X. A slight modification of the con
struction extends this to a cellular model of the form 

((C EB lken+l) Q9 C.(flY), d) ~ C.(PY) 

This induces a quasi-isomorphism 

lken+l Q<: (C. (flY), d) ~ C.(PY, X Xy PY) 

of C. (flY)-modules. The connecting homomorphism is an isomorphism of degree 
-1 of H. (flY)-modules from H. (PY, X x y PY) to H+ (X x y PY) and it follows 
that H+(X Xy PY) is the free H.(flY)-module on a single class of degree n. 
:\Ioreover, it is immediate from the construction that this class is H. (g) [sn]. 
This establishes 

Proposition 37.1 H+(X Xy PY) is the free H.(flY)-module on the single 
basis element H • (g) [sn]. 0 

(b) Whitehead products and G-fibrations. 
Let p : E -t B be a G-fibration with fibre G at the basepoint * E B, where G 

is any topological monoid. Given continuous maps a : (sn+l, *) -t (B, *) and 
b: (sm, *) -t (E, *) we construct a continuous map 
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as follows. Lift a to a : (Dn+1 , sn, *) -----+ (E, G, *) and regard b as a map 
(Dm,sm-l) -----+ (E,*). Then set 

_ { b(x)· a(y) 
c(x,y) - a(y) 

,(x,y) E Dm x sn 

,(x, y) E sm-l X Dn+l. 

Now a,b,c represent classes 0: E 'ifn+1(B), fJ E 'ifm(E) and '"'( E 'ifn+m(E), 
and the restriction oa : sn -----+ G of a represents the image 0*0: of 0: under 
the connecting homomorphism 0* : 'if*(B) -----+ 'if*_l(G). Finally, recall that the 
action of G on E determines an action of H*(G) on H*(F) (§8). 

Proposition 37.2 ([8-T]) With the notation above, 

proof: The first assertion is immediate from the definition of the Whitehead 
product (§13(e)). For the second, observe that c factors over the surjection 
o(Dm x Dn+l) -----+ (sm x sn)UDm+l to define c : (sm x sn)UDm+1 -----+ E. More
over, hur,",( = H*(c) [o(Dm x Dn+l)] = H*(c) ([sm] ® [sn]) = hurfJ·huro:, 
where [ ] denotes fundamental class. 0 

(c) Inert elements. 
We maintain the notation established at the start of this section. Recall also 

that Lz = 'if*(OZ) ® Q denotes the homotopy Lie algebra of a simply connected 
space Z, and that the connecting homomorphism of the path space fibration is 

an isomorphism 'if*+1(Z) ® Q -=+ Lz · 
In particular, let ~ E (LF )n-l and w E (Lx )n-l correspond to [g] and to [fl. 

Then 'if*(Op)~ = wand so 'if * (Oi)w = o. 

Theorem 37.3 The following conditions on [f] are equivalent: 

(i) F has the rational homotopy type of a wedge of at least two spheres. 

(ii) 'if * (Oi) : Lx -----+ L y is surjective. 

(iii) 'if*(Oi) is surjective, and its kernel is the Lie ideal I generated by w. 

(iv) The ideal I generated by w is a free Lie algebra, and the quotient ll[l,!] 
is a free U Lxi I module on the single generator, w. 

Remark An element 0: in a graded Lie algebra L is called inert if the Lie ideal 
I it generates is a free Lie algebra and if also II[l, l] is a free U LI I module on 
the single generator 0:. Thus Theorem 37.2 asserts that Lx -----+ Ly is surjective 
if and only if w is inert. 
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proof of Theorem 37.3: Recall that we use rational coefficients throughout, 
so that H.( -) = H.( ; <Q!). First observe that (i) {:? (ii). Indeed, if (i) holds then 
LF is a free Lie algebra on at least two generators (Theorem 24.5) and hence has 
no central elements. But in §28 (Example 2 combined with Proposition 28.7) 
we showed that elements in the kernel of 7r.(F) ---+ 7r.(X) correspond to central 
elements in LF. Thus LF ---+ Lx is injective and Lx ---+ L y is surjective. 

Conversely, if Lx ---+ L y is surjective then it follows from Proposition 37.2 
that the subspace hur[g]. U Ly is in the image of the Hurewicz homomorphism, 
hur: 7r.(F) 0<Q! ---+ H.(F). Since hur[g].ULy = H+(F) (Proposition 37.1) it 
follows that 1m hur = H+(F). Now Theorem 24.5 asserts that F has the rational 
homotopy type of a wedge of spheres (at least two because Y is non trivial). 

Next observe that if (i) and (ii) hold then 7r.(Op) : LF ~ kef7r.(Oi). Since 
I c ker 7r. (Oi) (because 7r. (Oi)w = 0) it is, in this case, a sub Lie algebra of 
a free Lie algebra. By the Corollary to Proposition 21.4 I itself is a free Lie 
algebra. This shows that under any of the hypotheses (i)-(iv), I itself is a free 
Lie algebra. 

Factor 7r. (Oi) to define a morphism 

i.p : Lx / 1---+ L y 

and note that Ie 7r.(Op)LF (= ker7r.(Oi)). It is immediate from the long exact 
homotopy sequence that; 

i.p is an isomorphism in degrees :'S r {::::::} 7r.(Op) : (LF)<r ~ I<r . (37.4) 

Moreover, since I is a free Lie algebra we may choose a wedge of spheres 
S = V Sko.+l such that Ls = I, and since I C Im7r.(Op) we may construct 

a 
a continuous map 

such that 7r. (Op) 0 7r. (Oh) is the inclusion of I in Lx. 
The main step in the proof of the theorem is 

Lemma 37.5 If any of the conditions (i)-(iv) of Theorem 37.2 hold then i.p is 
an isomorphism. 

proof: Suppose i.p is an isomorphism in degrees :'S r. Then (37.4) shows that 

7r.(h) : 7r::;r(S)0<Q! ~ 7r::;r(F) 0<Q!. Extend h to h' : S' = SVV SrH vV S;+2 so 
i j 

that 7r. (h') is a rational isomorphism in degrees < r + 1 and rationally surjective 
in degree r + 2. Then (proof of Theorem 8.6 or via an easy argument using 
Theorem 7.5) H.(h') is an isomorphism in degrees :'S r + 1. 

Let f3 E 7rrH (F) 0 <Q! correspond to a E (LF )r. Then hur f3 = hur[g]. () for 
some () E (U Ly )rH-n. Since cp is an isomorphism in this degree we can write 
() = i.p()' for some ()' E U Lx / I. Thus Proposition 37.2 asserts that hur f3 = hur f3' 
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where 7r * (p) j3' is a linear combination of iterated Whitehead products starting 
with (f]. However, the correspondence 7l"*(X)0Q ~ (Lx )*-1 converts Whitehead 
products to Lie brackets (Proposition 16.11). Thus if a' E (LF)r corresponds to 
j3' then 7r*(rlp)a' E I. Moreover, the image of 7r*(rlp)a' in II[I,I] is just W·(J'. 

On the other hand, since j3 - j3' E ker hur and since 7r r+ 1 (h') 0 Q and H r+ 1 (h') 
are isomorphisms it follows that j3 - j3' = 7rr+1 (h'h, where 'Y E 7rr+1 (S') 0 Q is 
in the kernel of the Hurewicz homomorphism for S'. Hence j3 - j3' = 7rr+1(hh, 
where'Y E 7l"r+1 (S)0Q corresponds to an element i E [Ls, Ls]. Thus 7r*(rlp)(a
a') = 7r* (rlp)7r* (rlh)i E [I,I]. 

We are ready to show that <Pr+1 is an isomorphism. Indeed, 7r*(rlp)a = 
7r*(rlp)a' + 7r*(rlp)(a - a') E I, as just shown, and so 7r*(rlp)(LF)r = Ir. On 
the other hand if (i), (ii) or (iii) hold then 7r*(rlp) : LF -7 Lx is automatically 
injective (because (i) :::} (ii)). Suppose (iv) holds and that 7r*(rlp)a = o. As 
just shown 7r*(rlp)(a' - a) E [I,I] and 7r*(rlp)a' represents W· (J' in II[I,I]. 
Since U Lx I I acts freely on w in II[I, I] it follows that (J' = 0 and so hur j3 = 
hur[g].<p(J' = O. This implies (as above) that j3 E 7rr+1(h) (7rr+1(S) 0Q) and 
hence that a E 7r*(rlh)Ls. Since 7l"*(rlp) is injective in this subspace, a = 0; i.e. 
7l"*(rlp) : (LF)r+1 -7 (Lx)r+1 is injective. 0 

We now return to the proof of Theorem 32.3. The Lemma asserts that if 
(ii) holds then <p is an isomorphism. This implies at once that (ii) :::} (iii). 
Moreover since <p is an isomorphism if (iv) holds then in this case 7r*(rlp) : 

LF ~ I and hence 7r*(rlh) : Ls -7 LF is an isomorphism, and h is a rational 
homotopy equivalence. Thus (iv) :::} (i). Finally if (iii) holds then again h : 
S -7 F is a rational homotopy equivalence. This defines a degree 1 isomorphism 

LsI[Ls,Ls] ~ H+(F). Now Ls = I and it follows from Proposition 37.2 that 
the action of Lxi I in I I [I, I] corresponds to the action of Lxi I in H + (F). Since 
the latter is a free ULxlI module on a single generator (Proposition 37.1) so is 
the former. Thus (iii) :::} (iv). 0 

(d) The homotopy Lie algebra of a spherical 2-cone. 
Consider a continuous map 

f: Z = VSm (3+1 -7 X = VSn o.+l 

(3 (> 

between two simply connected wedges of spheres with rational homology of finite 
type, and write Y = X U fez. Then (Theorem 24.5) Y has a free Lie model of 
the form (ILvEBw ,d) in which: 

sV ~ H+(X), dV = 0 and W ~ H+(Z) and d: W -7ILV . 

Assign a bigrading to this differential graded Lie algebra by setting Vp = VO,p 

and Wq = W 1,q-1. Then d has bidegree (-1,0). In particular the homotopy Lie 
00 

algebra Ly = H(lLvEBw,d) inherits a bidegree: Ly = EB(LY)i,*. This exhibits 
i=O 
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Ly as the direct sum 
Ly = L EB I 

of the sub Lie algebra L = (Ly)o,* and the ideal 1= (Ly )+,*. 

Proposition 37.6 With the hypotheses above, I is a free graded Lie algebra. 

proof: Denote ILvEBW simply by IL. Then d(IL1,*) is an ideal in lLo,* and so 
E = 4,* EB d(IL1,*) is an ideal in IL with quotient ILl E = (L,O). 

Now apply the cochain construction of §23 to obtain a relative Sullivan algebra 
C*(L,O) ---+ C*(IL, d) with Sullivan fibre C*(E,d). Recall that C*(IL) = A(sIL)~, 

which we bigrade by setting (s1Lp,q)~ = [(SIL)uy+1,Q. Thus the differential in 
C*(IL) has bidegree (1,0). 

Now let (E', d) c (E, d) be the sub Lie algebra given by 

{ ° ifp=O 
E~ = ker d if p = 1 

Ep if p;::: 2. 

The inclusion (E', d) ---+ (E, d) is a quasi-isomorphism and so (Proposition 22.5) 

C*(E,d) ~ C*(E',d). In particular it follows that: 

H+ (C*(E, d)) is concentrated in bidegrees (p,q) with p;::: 2. (37.7) 

On the other hand, H+ (C*(IL, d)) ~ H ((sV EB sW)rt, d), by Proposition 22.8. 
Hence H+ (C*(IL, d)) is concentrated in bidegrees (p,q) with p = 1,2. It follows 

that there is a quasi-isomorphism C* (IL, d) ~ (A, d) of bigraded commutative 
cochain algebras in which A = Qi9 A 1 ,* EB A2 ,*. 

Finally, we can extend C*(L,O) to the acyclic relative Sullivan algebra 
C* (L, (UL)ff) by dualizing the construction of §23(c). Then we have quasi
isomorphisms 

C*(E) ? C*(IL) ®C*(L) C* (L, (UL)~) ---+ A ®C*(L) C* (L, (UL)rt) . 

Now A®C*(L) C* (L, (U L)~) = A® (U L)rt is concentrated in bidegrees (p, *) with 
p::; 2, because (L)ti is concentrated in bidegrees (0, *). It follows that H (C*(E)) 
is concentrated in bidegrees (p, *) with p ::; 2. Comparing this with (37.7) we 
see that H+ (C* (E, d)) is concentrated in bidegrees (2, * ). 

This implies that there is a quasi-isomorphism C*(E, d) ~ (lk EB H 2 ,*, 0) with 
multiplication in H 2 ,* trivial. It follows that I = H(E,d) ~ H (£C*(E,d)) ~ 
IL (S-l H 2,*) is a free graded Lie algebra (use Theorem 22.9). 0 

Recall from §3(e) that the Hilbert series for a graded vector space V;::o is the 
00 

formal power series V(z) = L dim Vnzn. Similarly, if H = H;::o then H(z) = 
o 
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Proposition 37.8 (Anick [6]) With the notation preceding Proposition 37.6, 

ULy(z)-1 = (1 + z)UL(Z)-l - (z - H+(Z)(z) + H+(X)(z)) . 

Corollary If X and Z are finite wedges then U Ly (z) is rational if and only if 
U L (z) is rational. 

proof of Proposition 37.8: If Co +-- CI +-- ... +-- Cn is a finite dimen
sional chain complex then ~(-l)PdimHp(C) = ~(-l)PdimCp, as follows by a 
trivial calculation. Hence if Co,< +-- C I ,< +-- ... +-- Cn ,< is a finite complex 
of graded vector spaces of finite type with differential of bidegree (-1,0) then 
~(-l)PdimCp,q = ~(-l)PdimHp,q, q 2: O. This implies that 

p p 

Apply this (in the notation of the proof of Proposition 37.6) to the complex 
(A 0 (UL)~) = At 0 UL to obtain 

[A2,*(z) - zA1,«z) + z2 AO,*(z)] UL(z) = [sS(z) + Z2] , 

where I = lLs. On the other hand since C* (lL, d) ~ (A, d) it follows that H+ (A) 
is the dual of the homology of the complex 

Thus 

(sV)~ --+ (sW)ti . 

A2,*(z) - zAI,«z) + z2Ao,*(z) 

= H 2'*(A)(z) - zHI'*(A)(z) + Z2 HO'*(A)(z) 

= (sW)(z) - z(sV)(z) + Z2 

= H+(Z)(z) - zH+(X)(z) + z2 . 

Finally, ULy(z) = UI(z)UL(z) and UI(z) = TS(z) = (1 - S(Z))-l. A short 
calculation completes the proof. 0 

(e) Presentations of graded Lie algebras. 
Let L = L?I be a graded Lie algebra. We may always write L = lLv / J where 

J C [lLv, lLv 1 is an ideal in the free graded Lie algebra lLv. In this case a basis 
(va) of V is a minimal set of generators of L. Similarly the Lie bracket defines 
a representation of lLv in J. Decompose J = REB J. UlLv . Then a basis (r/3) of 
R is a minimal set of generators for the ideal J. The representation 

is called a minimal presentation of L. 
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Proposition 37.9 With the notation above (S2 = double suspension), 

(i) sV ~ TorfL(Q, Q). 

(ii) s2R ~ TorfL(Q,Q). 

proof: (i) Indeed V ~ lLv/[lLv,lLv] = L/[L,L] and so sV ~ TorfL(Q,Q) by 
Example 1, §34(a). 

(ii) Consider the Hochschild-Serre spectral sequence converging from 
Tor~L (Q, Tor~J(Q,Q)) to Tor~!~(Q,Q). Again by Example 1 of §34(a) we 
may identify TorfJ(Q,Q) = s(J/[J,J]) with the representation of UL induced 
by Lie bracket in J. It follows that 

E6,1 = Tor[{L (Q, TorfJ(Q,Q)) ~ s(J/[J,J] @UL Q) ~ sR. 

On the other hand since lLv is free we have TorhlLv (Q, Q) = sV and TorilL (Q, Q) 
= 0 - d. Proposition 21.4. Since Era = TorfL(Q,Q) = sV it follows that the 
differential cf2 in the spectral sequenc~ satisfies 

2. 2 _ UL ~ 2 ~ d . E2 ,a - Tor2 (Q, Q) ---+ Ea,l = sR . o 

Again let L = lL(vQ,)/(r,6) be a minimal presentation of a graded Lie algebra 
L = L?l. Then without loss of generality we may suppose the r,6 are integral 
combinations of Lie brackets of the Va' Put degva = na and degr,6 = m,6. Then 
lLv is the homotopy Lie algebra of the space X = V sna+1 and the 1',6 define a 

a 
continuous map 

f: Z = vsm f3 +1 ---+ X = vsn a +1 . 
,6 a 

As in §37(d) set Y = X Uf CZ. Then as described there the homotopy Lie 
algebra Ly is the direct sum of a sub Lie algebra and an ideal I, and the sub 
Lie algebra in question is exactly 

Thus we may reinterpret Proposition 37.9 as 

In particular, L is finitely presented if there are only finitely many generator Va 
and finitely many relations 1',6 and in this case Y = X Uf CZ is a finite CW 
complex. Since L is a sub Lie algebra of Ly we deduce: 

Theorem 37.10 Let L = L>l be a finitely presented Lie algebra. Then there 
is a finite simply connected GW complex Y = X U fez whose homotopy Lie 
algebra Ly is the direct sum 
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of L as a sub Lie algebra and an ideal I. Moreover I is free as a graded Lie 
algebra and 

(f) The Lofwall-Roos example. 
Here we construct a finite CW complex Y, due to L6fwall and Roos [112], 

such that the Hilbert series U L y is irrational and also L y contains an infinite 
dimensional abelian Lie algebra. 

To begin, note that the cohomology algebra H = H (S2 V S2) X (S2 V S2)) 
has the form [A(a, b)/a2 , ab, b2 ] @ [A(x, y)/x2, xy, y2] where a, b, x, yare classes of 
degree 2 corresponding to the four copies of S2. Put V = EB 1kVi with deg Vi = 2 

i~2 

and define a relative Sullivan algebra 

(H@AV,d). 

by setting dV2 = 0, dV3 = (b + Y)V2 + ax and dVi = (b + (-1 )i+ly )Vi-l, i 2: 4. 
Now the minimal Sullivan model for H is the cochain algebra (AW, d) = 

C* (lL(a,b)) @ C* (lL(x,y)), whose differential is the purely quadratic operator 
given by the Lie bracket. The quasi-isomorphism (AW, d) ~ (H,O) extends 

to a wordlength preserving quasi-isomorphism of the form (AW @ AV, D) ~ 
(H@AV,d). Thus it is also a morphism (AW @AV, D2 ) ~ (H@AV,d), where 
D2 is the quadratic part of D. However, D = D2 in A W, and the quotient 
differential D in AV satisfies D = J = 0, so that D = D2 = O. It follows that 
(AW@ AV,D2) ~ (H@AV,d). 

Let H(p)(AW@AV,D2 ) be the cohomology represented by cocyles of word length 
p. Then H(p)(AW @ AV, D2) = H(p)(H @ AV, d) and a short calculation shows 
that bases for H(l)(H@AV,d) and H(2)(H @AV,d) are given by: 

On the other hand (Example 1, §23(a)) a graded Lie algebra L is determined 
by the condition 

C*(L) = (AW @ AV, D2) . 

Moreover, H(l) = ExthdQ,Q) andH(2) = ExtbL(Q,Q) are dual to TorfL(Q,Q) 
and TorfL(Q, Q). Thus (Proposition 37.9) L is finitely presented with five gen
erators in degree 1 and seven relations in degree 2. Let 
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be the corresponding CW complex described in Theorem 37.10. Then L is a sub 
Lie algebra of Ly and 

ULY(Z)-l = (1 + z)UL(Z)-l - (z - 7z3 + 5z2 ) . 

Finally, since C'(L) = (AW ® AV,D2 ) we have (sL)~ = WEB V with Lie 
bracket dual to D2 . Since D2 = 0 in AV it follows that there is a short exact 
sequence 

0-+ I -+ L -+ L(a,b) x lL(x,y) -+ 0 

where I is an abelian ideal in L with basis V2, ih, ... , and deg Vk = k - 1. In 
particular 

• Ly contains the infinite dimensional abelian sub Lie algebra EB QUk . 
k 

• U Lyl is the irrational power series 

00 

(1 + z)(l- 2Z2)2 n (1 - Z2i) 

----::coo:----.:....i=-=l=------- - (z - 7 Z3 + 5z2 ) . 

n (1 + Z2i+1) 
i=l 

Exercises 

1. Let i : X -+ Y = X U Dn+1. Prove that: 

(a) If i : Cp2 -+ CP3 denotes the natural inclusion then dimker7r.(fli) -
dim Coker 7r.(fli) = 1. 

(b) If i : S3 V S3 -+ S3 X S3 denotes the natural inclusion then 7r.(fli) is 
surjective. 

(c) If i : X ~ X V sn, n ;::: 2, denotes the natural inclusion then 7r.Cfli) is 
not surjective and dim Coker 7r.(fli) = 00. 

2. Let X be a simply connected topological space with rational homology of 
finite type. Using Theorem 29.1, prove that if cato X = 2 then clo X = 2. 

3. Let F be the homology fibre of the inclusion i : X ~ X U Dn+1 = Y and let 
0: flY -+ f be the inclusion {*} x flY ~ F xy PY. Prove that if H.o i- 0 
then depthH.(flY) = 1. 



38 Poincare Duality 

In this section the ground ring k is an arbitrary field of characteristic zero. 
Suppose A = {Ai}O<i<n is a finite dimensional commutative graded algebra 

such that AO = k, and~suppose WA is an element in the dual space (An)~. Define 
bilinear maps ( , ) : A n~p x AP --+ k by 

(a,b) = wA(a·b) , a E An~b , bE AP. 

Definition A is a Poincare duality algebra with fundamental class WA if the 
bilinear maps ( , ) are all non-degenerate scalar products. In this case n is called 
the formal dimension of A. 

If M is a compact simply connected manifold then its cohomology algebra 
H* (M) satisfies Poincare duality [68] and this is the principal condition that a 
simply connected space must satisfy in order to have the rational homotopy type 
of a compact manifold [18]. 

In this section we consider the rational homotopy theory of simply connected 
topological spaces X whose cohomology satisfies Poincare duality. The main 
results are: 

• If X is rationally elliptic then H*(X) satisfies Poincare duality. 

• If H*(X) satisfies Poincare duality then eo(X) = cato(X). 

• Suppose X satisfies Poincare duality with formal dimension n and write 

X = Z Uf Dn so that Hn(Dn,sn~l) ~ Hn(x). Then the element a E 
(LX)n~2 corresponding to [1] E 1fn~l(X) is inert. 

This section is organized into the following topics: 

(a) Properties of Poincare duality. 

(b) Elliptic spaces. 

(c) LS category. 

(d) Inert elements. 

(a) Properties of Poincare duality. 
Let A be a finite dimensional commutative graded algebra of the form 11: EB 

{Aih<i<n and suppose WA E An. The bilinear maps ( , ) defined above deter
mine linear maps () : An~p --+ (AP)~ by 

()(a)(b) = wA(a. b) = (a, b) . 

Since (AP)~ = (A~)~P, we may regard () as a linear map A --+ An of degree -no 
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Lemma 38.1 

(i) A satisfies Poincare duality if and only if B is an isomorphism. 

(ii) If B = J;; Ell {Bih::;i::;m is a second finite dimensional commutative graded 
algebra and if A Q9 B satisfies Poincare duality then so do A and B. 

(iii) If A is equipped with a filtration and the associated graded algebra satisfies 
Poincare duality then so does A. 

proof: (i) is by definition. (ii) follows from BA0B = BA Q9 BB and the fact that 
a tensor product is an isomorphism if and only if both tensorands are. (iii) is an 
obvious calculation. 0 

Next consider a commutative differential graded algebra (A, d), and note that 
(A~, d~) is a chain complex. 

Lemma 38.2 

(i) If A is a Poincare duality algebra and with fundamental class WA E (An)ti 
and if dtiWA = 0, then H(A) is a Poincare duality algebra with fundamental 
class [WAJ. 

(ii) Suppose z E Aeven is a cocycle and define (AQ9Au, d) by du = z. If H(A) is 
a Poincare duality algebra, then H(AQ9Au, d) is a Poincare duality algebra. 

proof: (i) Because dUWA = 0, BAd = (-l)ndt BA and BH(A) = H(BA) is an 
isomorphism. 

(ii) This is a simple exercise left to the reader. 0 

(b) Elliptic spaces. 

Proposition 38.3 If (A V, d) is an elliptic Sullivan algebra (introduction to 
§32) then H(AV, d) is a Poincare duality algebra. Its formal dimension is n = 
L: degxi - L:(degYj - 1), where (Xi) is a basis of v odd and (Yj) is a basis of 
i j 

veven. 

proof: Recall the odd spectral sequence defined in §32(b). Its first term is 
(A V, du ) with dcr (veven) = 0 and dcr (vodd) C veven. Proposition 32.4 asserts 
that H (A V, dcr) is finite dimensional. 

Choose r sufficiently large that each yj = duif>j and extend (A V, du) to (A V Q9 
AU, du ) by assigning U the basis (Uj) and setting dcruj = yj. Then (A V Q9 

AU,du ) -=+ ([E¥AYj/U j ] Q9AVOdd ,du ) and it follows from Lemma 38.2(ii) 

that H(AV Q9 AU,du ) satisfies Poincare duality. On the other hand, H(AV Q9 
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AU,do-) = H(AV,do-):S: A(UI - <I>l, ... ,Uq - <I>q) and so Lemma 38.1(ii) asserts 
that H (A V, do-) satisfies Poincare duality. 

Finally, Theorem 32.6 shows that n = I;degxi - I;(degYj - 1) is the top 
j 

degree in which both (AV, do-) and (A V, d) have non-vanishing cohomology. Since 
H(AV, do-) is a Poincare duality algebra, Hn(AV,da ) = lk[z] and so this class 
must survive through the spectral sequence. Thus if Ep is the p-th term of the 
spectral sequence then (E;)~ = lkw~ and d~wp = O. By Lemma 38.2(i), each Ep 
is a Poincare duality algebra. Hence the bigraded algebra associated to H (A V, d) 
is a Poincare duality algebra and thus so is H(AV,d) (Lemma 38.1(iii)). 0 

(c) LS category. 

Theorem 38.4 Let X be a simply connected topological space and let (A V, d) 
be a minimal simply connected Sullivan algebra such that H(X) and H(AV,d) 
are Poincare duality algebras. Then 

eo(X) = catoX and e(AV,d) = cat(AV, d) . 

Corollary If X and (AV, d) are elliptic then eo(X) = cato X and e(AV, d) = 
cat(AV, d). 

proof of Theorem 38.4: Choose z E (AV)~ so that d~ z = 0 and z represents 
a fundamental class of (A V, d). Define B : (A V, d) --+ (( A V) P , dti ) by setting 
B<I>('l1) = z(<I> 1\ 'l1), <I>, 'l1 E AV. Then B is a linear map of (AV, d)-modules and 
H(B) is an isomorphism because H(AV, d) satisfies Poincare duality. 

On the other hand in §29(h) we introduced the invariants mcat and e for 
(AV, d)-modules (A1,d) in terms of a semifree resolution of (M,d). In particu
lar, these invariants coincide for quasi-isomorphic modules. Thus according to 
Theorem 29.16, 

e(A 1/, d) = e ((A 1/)j, d=) = cat (All, d) . 

Finally, the assertion for X follows from this via the minimal Sullivan model 
~X. 0 

(d) Inert elements. 

Theorem 38.5 (Halperin-Lemaire [85]) Suppose X = ZUfDn is a simply con
nected space such that H* (X) is a Poincare duality algebra of formal dimension 

n, and Hn(Dn,sn-l) ~ Hn(x). If the algebra H*(X) is not generated by a 
single element, then the element a E (L Z )n-2 corresponding to [J] E lIn-l(Z) is 
inert. 

proof: Let (A1/, d) be a minimal Sullivan model for X and extend it to a 
minimal relative Sullivan algebra (A 1/ :s: A 1/, d) such that H(AV :s: A 1/, d) = lk. 
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Thus the linear part of d will be an isomorphism V ~ V, which we denote by 
v t---+ v. 

Because X is simply connected, V = V~2 and d = 0 in V 2. Thus V 2 = 
H2(AV, d). Write (Av)n = In EB lkip, where ip is a co cycle representing a ba
sis element of Hn(AV,d), and r :J (Imd)n. Poincare duality implies that 
multiplication H2 X H n- 2 -t Hn is non-degenerate. It follows that there 
is a subspace In-2 C (Av)n-2 such that r-2 EB (ker d)n-2 = (Av)n-2 and 
such that V 2 • I n - 2 c I n . Now extend these subspaces to a differential ideal 
(J,d) c (AV, d) by setting Jk = 0, k < n-2, In-I = (Av)n-I and Jk = (AV)k, 
k > n. Again by Poincare duality, H n - 1 (A V, d) = 0 and so it follows that 
(A V, d) -t (A VI J, d) is a quasi-isomorphism. 

Denote AV I J simply by A and denote the image of ip by O. Then a Sullivan 
representative for (A, d) -t (AI lkO, d) is also a Sullivan representative for the 
inclusion i : Z -t X. Thus if we define (A EB lku, d) by setting du = 0 and 
u· A+ = 0 the composite (AV, d) ~ (A, d) -t (A EB lku, d) is also equivalent to 
a Sullivan representative for i. 

Extend this composite to a quasi-isomorphism (AV 0 A W, d) ~ (A EB lku, d) 
from a relative Sullivan algebra (A V 0 AW, d). Then Proposition 15.5 identifies 
the quotient Sullivan algebra (AW, d) as a Sullivan model for the homotopy fibre 
of i. Thus by Theorem 37.3 we have only to show that (AW, d) is a Sullivan 
model of a wedge of spheres. 

Now, as observed in Lemma 14.2, we have quasi-isomorphisms 

(AW, d) F- (AV 0 AW,d) Q9,w (AV 0 AV,d) 

(AV Q9 AW Q9 AV,d) 

~ ((A EB lku) Q9 AV, d) . 

Suppose now that the least integer r such that VT f. 0 is odd. In this case 
we shall construct a quasi-isomorphism (B,O) ~ ((AEBlku)0AV,d) with 
B+·B+ = O. By the Example of §12(c), (B,O) is a commutative model for 
a wedge of spheres, and hence (AW, d) will be the Sullivan model for the wedge. 

For this observe that HT(AV,d) = V T = N. Choose v f. 0 in AT and (by 
Poincare duality) a cocycle z E An-T such that vz = O. Then A+ = lkv EB 1, 
where 1 is the differential ideal in A of elements a satisfying za = o. Extend v to 
a basis v, VI, ... ,Vk, ... of AV with deg Vk ::; deg Vk+l and define 0 : AV -t A V 

by O(vSa) = ~:: a, a E A(Vl, ... , Vk, ... ). 

Now dv = v. Suppose dVq E 10 AV for 1 ::; q < k. Then dVk = v Q9 \II + w, 
\II E A(v, ... vk-d, wEI 0 AV, and d(Vk - O\Il) E 10 AV. Replace Vk by 
Vk - O\II and continue in this way to arrange that dVk E 10 AV for all i ::; k. 
Let B+ C (A EB Iku) 0 A V consist of the elements of the form u Q9 \II - z Q9 o \II , 
\II E AV. Since vz = 0 and lz = 0 it follows that d(B+) = 0 and B+ .B+ = O. 
Since H(A 0 AV) = lk it is immediate that the inclusion of B = lk EB B+ in 
(A EB Iku) 0 AV is a quasi-isomorphism, as desired. 
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We now deal with the general case. Let £ be the least odd integer such that 
V, -# O. We prove the theorem by induction on N = L dim Vi. The case 

O<i<' 
N = 0 is the case above when the least positive integer r such that V r -# 0 is 
itself odd. 

For the inductive step we may take r even and, as above, write A+ = Ji,v EB I 
where v is a non zero element of degree r, z is a cocycle such that vz = nand 
I = {a E Alaz = O}. 

Now write V = Ji,v EB VI. Since v has odd degree H (A V Q9 Av, d) also satisfies 
Poincare duality, with formal dimension n + r - 1 (Lemma 38.2(ii)). Moreover 
we have quasi-isomorphisms 

(Av,d)? (AVQ9Av,d) ~ (A Q9 Av,d) ? (AI,d) 

where Al C A Q9 Av is the sub algebra Ji, EB (I Q9 Av) EB Ji,(v Q9 v). On the one hand 
this implies that H(A, d) is a Poincare duality algebra with top cohomology 
class represented by n Q9 v. On the other hand, it allows us to assume that the 
differential in (A Q9 A V, d) sends V I into At Q9 A V I. 

Since the theorem is true by the induction hypothesis for (A VI ,d) and since 
d(uQ9v) = nQ9V and (uQ9v)(At) = 0 it follows that (B, d) = ([AI EB Ji,(u Q9 v)] Q9 
A V I, d) is a commutative model for a wedge of spheres. 

Finally, since (AI, d) ~ (A Q9 Av, d) it follows that 

This source algebra can be written as B = BI EB (u - z Q9 v)AVI . 
By construction d( u - z Q9 v) = n - n = 0 and (u - z Q9 v)B+ = O. It follows 

that (u - z Q9 v)AV I consists entirely of co cycles that multiply B+ to zero. Thus 
since (BI' d) is a commutative model for a wedge of spheres so is (B, d), and the 
theorem follows by induction. D 

Exercises 

1. Let f : M ~ N be a continuous map between I-connected n-dimensional 
compact manifolds. Suppose that Hn(f; Q) -# O. Show that cato(M) ~ cato(N). 

2. Let f : M ~ N be a smooth map between I-connected compact manifolds. 
Prove that if either 

(a) f is a fibration whose cohomology Serre spectral sequence collapses at the 
E 2 -term, 

or else 

(b) or else, f is a locally trivial bundle whose fibre F satisfies X(F) -# 0, 

then cato M ~ cato N. 
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39 Seventeen Open Problems 

\Ve close this monograph with seventeen of our favourite problems, all of which 
remain open as this goes to press, and many of which are decades old. Other 
compilations of problems can be found in [46] and [147]. 

1. Suppose F is a rationally elliptic space with non-zero Euler-Poincare charac
teristic, and F ----t E ----t B is a Serre fibration of simply connected spaces. Does 
the (rational) Serre spectral sequence always collapse at E2? 

A positive answer was conjectured by Halperin in 1976. The cohomology of 
such spaces F has the form H = A(x], ... ,xn)/(h, ... ,fn), where ;I:I, ... ,Xn 
have even degrees and h, ... , f n is a regular sequence in the polynomial algebra 
A(XI, ... , xn). Thus an equivalent formulation of the problem is: 

For graded algebras of the form H is zero the only derivation of neg
ative degree? 

Positive answers to this question have been given in the cases that: all the 
Xi have the same degree ([161]), n ::; 2 ([146]), n ::; 3 ([113]), if F is a homoge
neous space ([141]), and if each polynomial fi is homogeneous with respect to 
wordlength ([120]). In [132] it is shmvn that the ans\ver is positive in the generic 
case. 

Essentially the same question has arisen in the context of deformation of sin
gularities ([154]' [36]) where attention is restricted to the case that fi = %f, for 
some single polynomial f. 

2. Suppose an r~torus acts continuously with finite isotropy groups on a closed 
simply connected manifold Ai. Is it true that dim H* (hI; Q) 2: 2r ? 

The torus rank conjecture asserts that the anSVier to this question is positive. 
It can be easily reformulated in terms of Sullivan models as follows: 

Suppose a simply connected Sullivan algebra A(F, (1) whose cohomol
ogy satisfies Poincare duality occurs as the Sullivan fibre of a relative 
Sullivan algebra of the form (A(XI' ... ,xr ) IZ: A F, d) with deg Xi = 2, 
1 ::; i ::; r. If H (A (Xl, ... , X r ) @ A F) is finite dimensional, is it true 
that dim H(A F, (1) 2: 2r ? 

The torus rank conjecture has been established for homogeneous spaces ([83]), 
for homology Kiihler manifolds ([4]), for r ::; 3 ([5]) and for cohomologically 
symplectic manifolds satisfying the hard Lefschetz theorem ([115]). It implies 
that if L = L>1 is an evenly graded finite dimensional Lie algebra over Q, then 
dimExt~L(Q,~Q) 2: 2dim centre(L). 

3. If X is any finite simply connected CW complex and if N > dim X is there a 
rationally elliptic CW complex Y such that X C:::Q }~'V, Y N the N ~skeleton of Y g 
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This question has been attributed by Anick as a conjecture. The answer is 
obviously affirmative if 7f <N (X) 0Q is concentrated in odd degrees and a positive 
answer is given in [106] f~r the case L dim 7f2i(X) 0 Q = 1. 

2i~N 

.-
4. If X is a rationally hyperbolic finite simply connected CW complex does Lx 
contain a free Lie algebra on two generators? 

A positive answer to this question would provide an 'explanation' for the 
exponential growth of Lx, and a positive answer was conjectured (separately) 
by Avramov and Felix in 1981. The case cata X = 2 was settled in [58] and the 
far more general case that depth Lx = 1 was settled positively in [29]. The case 
when X is formal and H*(X) is evenly graded and generated by at most three 
elements is settled positively in [13]. 

5. Suppose X is a simply connected space with rational homology of finite type. 
If H even (X; Q) and the image of the Hurewicz homomorphism are both finite 
dimensional does it follow that H* (X; Q) is finite dimensional? 

This is trivially true for formal spaces, because in this case a generating space 
for the algebra H* (X; Q) is dual to the image of the Hurewicz homomorphism. 
If Heven(x; Q) = 0 then Baues' theorem [19] states that X is rationally a wedge 
of spheres, which implies a positive answer in this case too. 

This question has been referred to in the literature as the 'Omnibus Conjec
ture', the origin of the terminology being a false proof produced by the second 
author during a particularly slow (omnibus) train ride from Leuven to Louvain 
in 1981. 

6. Suppose X is a simply connected rationally hyperbolic finite CW complex of 
dimension n. Are there numbers A > 0 and C > 1 such that 

s+n-l 

L dim 7fi(X) 0 Q ;::: ACs , all s ;::: 1? 
i=s+l 

A positive answer to this question was conjectured by the authors in the early 
1980's. The gap theorem (Theorem 33.3) establishes the weaker (!) inequality 
with ACs replaced by 1. An important case where there is a positive answer 
is established by Lambrechts in [104]. When X is rationally hyperbolic the 
exponential growth of Theorem 33.2 implies that the Hilbert series H* (OX) (z) 
has radius of convergence (! < 1. Lambrechts gives a positive answer to this 
problem when the singularities of H*(OX)(z) on the boundary circle of radius (! 

are all poles. There are many examples of such spaces, and no examples where 
this condition is known to fail. 

7. Is the radical R c Lx of a simply connected finite CW complex X of dimension 
n, concentrated in degrees :S 2 (n - 1), and is dim R :S n? 
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When X is elliptic all of Lx is concentrated in degrees :S 2(n - 1), and 
dim Lx :S 2 dim(Lx )even :S cat X :S n, which motivated the authors to con
jecture a positive answer to this question in 1982. A weaker question asks: 

Are all rational Goltlieb elements of X of degree :S 2n - 1 ? 

and in the same vein, 

If X is rationally hyperbolic is there an a E (Lx )even of degree :S n-l 
such that ad a is not locally nilpotent? 

The authors believe that the answer to both questions should be yes. 

8. Do the rational homotopy types of the configuration spaces of a simply con
nected compact manifold M depend only on the rational homotopy type of M? 

The configuration space of k points in M is the subspace of points (Xl, ... ,Xk) E 
M x ... x M such that Xi ¥- Xj for i ¥- j. In [22] it is shown that the ratio
nal homology of the configuration space depends only on the rational homotopy 
type of M and in [103] and [150] a positive answer is given for smooth complex 
projective varieties. 

9. Let X be a finite simply connected CW complex. Is X rationally elliptic if and 
only if for each prime number p some pT annihilates all the p-primary torsion 
in 7r*(X)? 

A positive answer to this question was conjectured by J.C. Moore in the 1970's, 
and the Moore conjecture has been a focus of research in unstable homotopy 
ever since. In t117] it is shown that rationally elliptic spaces satisfy the Moore 
condition for all but finitely many primes. In [10] this is shown for 2-cones. The 
full Moore conjecture is known for spheres ([148] and [97]). A survey of progress 
as of 1988 is given in [138]. 

10. Let X be a finite simply connected CW complex. Is it true that either 
H * (OX; Z) has p torsion for all but finitely many primes p or else that H * (OX; Z) 
has p torsion for only finitely primes p? 

Note that if two finite simply connected CW complexes have the same rational 
homotopy type then they have the same homotopy type after inverting only 
finitely many primes, so that the question above depends only on the rational 
homotopy type of X. Moreover, by using 'integral' Sullivan models it is possible 
to compute H * (OX; Z (p)) for all but finitely many primes p directly from a finite 
dimensional commutative rational model for X. The question has a positive 
answer for rationally elliptic spaces X since [117] shows that then H*(OX;Z) 
has p-torsion for only finitely many primes. 
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11. If X is a simply connected, rationally hyperbolic, finite CW complex do the 
betti numbers bi = dim Hi(nX S1 ; Q) of the free loop space grow exponentially? 

A positive answer to this question was conjectured by Vigue in [153], where 
it is proved when X is a wedge of spheres or a manifold of LS category 2. A 
positive answer is given in [105] for non-trivial connected sums of manifolds. This 
conjecture is motivated by the fact that the fibration OX ---+ Xs 1 ---+ X admits 
a section and the fact that H * (OX; Q) grows exponentially. However there is a 
cautionary example in [153] of a rationally elliptic X such that H*(OX; Q) grows 
like a cubic while H*(X S1 ; Q) grows only like a quadratic. 

The original interest in the question arises from the fact that the betti num
bers of Xs 1 can be used to give a lower bound estimate for the number of 
geometrically distinct closed geodesics on X as a function of their length [74]. 

12. Are all simply connected compact riemannian manifolds M with non-negative 
sectional curvature rationally elliptic? 

A positive answer to this question has been attributed to Bott as a conjecture, 
and in [24] a result is established in this direction. A positive answer in general 
would solve the Chern-Hopf conjecture that the Euler-Poincare characteristic is 
non-negative and the Gromov conjecture [75] that dim H* (M; Q) :::; 2n , n = 
dim M. It would also shown that the rationally hyperbolic manifold of [89] 
with a metric of positive Ricci curvature did not admit a metric of non-negative 
sectional curvature. 

In a somewhat different direction Paternain [133] conjectures a positive answer 
to the question: 

Are all simply connected compact riemannian manifolds with com
pletely integrable geodesic flows rationally elliptic? 

13. Let X be a rationally hyperbolic finite simply connected CW complex. Is it 
true for some 0: in the homotopy Lie algebra of B aut 1 (X) that ad 0: is not locally 
nilpotent? 

Here autl (X) is the monoid of continuous maps f : X ---+ X homotopic to 
the identity, and the homotopy Lie algebra in question is just 7r* (autl(X)) 0 Q 
with the Samelson product. This question is posed by Salvatore in [136]. Note 
that if X is rationally elliptic the homotopy Lie algebra 7r* (autl (X)) 0Q is finite 
dimensional. Thus this question provides another (conjectural) characterization 
of the elliptic-hyperbolic dichotomy. 

A second question dealing with the rational homotopy type of B aut1 (X) was 
raised by Schlessinger in 1976: 

Does every simply connected space Y have the rational homotopy type 
of some B aut1 (X)? 
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14. Suppose given i : X ---+ Y = X Uf Dn+l and assume H*(Y;IQ) is a finite 
dimensional algebra not generated by a single element. If f is not inert does 
coker 1f * (i) 0 IQ grow exponentially? 

15. Suppose X, Y and Z are simply connected rational CW complexes with ho
mology of finite type. Is it true that X x Z :::' X X Y implies Z :::' Y? 

This question has a positive answer when X, Y and Z are formal spaces ([25], 
[27]). 

16. Let X be a simply connected rationally hyperbolic CW complex with homotopy 
Lie algebra Lx. Let nx = dim X and set 

k+nx-l 
rk = L dim(Lx)i 

i=k+l 

k+nx- 1 

and mk = L dim (Lx/[Lx, LX])i 
i=k+l 

This question is motivated by the theorems that show that Lx has 'lots' 
of non-vanishing Lie brackets and by computer experiments that suggest that 
[L x, Lx] is large. A positive answer would assert that in sufficiently large degrees 
[Lx, Lx] was arbitrarily close to all of Lx. 

A stronger version of the question asks 

and this is closely related to a problem in [105]: 

If (AV, d) is the Sullivan minimal model for X does the Hilbert series 
for A V have a strictly smaller radius of convergence than the Hilbert 
series for H(AV, d2 ) = ExtULx (IQ, IQ)? 

17. Find an explicit number>" E (0,1) that is not the radius of convergence of 
the Hilbert series H*(OX; IQ)(z) of the loop space homology of a finite simply 
connected CW complex. 

There are, up to homotopy type, only countably many simply connected finite 
CW complexes. Thus only countably many numbers, >.., appear as the radius 
of convergence of H * (OX; IQ) (z) in the question above. However the series for 
sn+l V sn+l V ... V sn+l (r copies) is (1 - rzn)-l with radius of convergence 
(l/r)l/n. Thus the numbers>" appearing as radii of convergence form a dense 
subset of [0, 1]. Moreover these numbers>.. can be transcendental as is shown by 
an example in [8]. 
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