

A John Wiley and Sons, Ltd, Publication

NODE.JS
JAVASCRIPT EVERYWHERE

Guillermo Rauch

This edition first published 2012
© 2012 Guillermo Rauch

Registered office
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ,
United Kingdom

For details of our global editorial offices, for customer services and for information about
how to apply for permission to reuse the copyright material in this book please see our
website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in
accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopy-
ing, recording or otherwise, except as permitted by the UK Copyright, Designs and
Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that
appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as
trademarks. All brand names and product names used in this book are trade names,
service marks, trademarks or registered trademarks of their respective owners. The
publisher is not associated with any product or vendor mentioned in this book. This
publication is designed to provide accurate and authoritative information in regard to
the subject matter covered. It is sold on the understanding that the publisher is not
engaged in rendering professional services. If professional advice or other expert
assistance is required, the services of a competent professional should be sought.

Trademarks: Wiley and the John Wiley & Sons, Ltd. logo are trademarks or registered
trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United States and/or
other countries, and may not be used without written permission. All other trademarks
are the property of their respective owners. John Wiley & Sons, Ltd. is not associated
with any product or vendor mentioned in the book.

A catalogue record for this book is available from the British Library.

ISBN 978-1-119-96259-5 (paperback); ISBN 978-1-119-96311-0 (emobi);
978-1-119-96309-7 (epdf); 978-1-119-96310-3 (epub)

Set in 10/12 Minion Pro
Printed in the U.S. at Command Web

http://www.wiley.com

PUBLISHER’S ACKNOWLEDGEMENTS
Some of the people who helped bring this book to market include the following:

Editorial and Production
VP Consumer and Technology Publishing Director: Michelle Leete
Associate Director–Book Content Management: Martin Tribe
Associate Publisher: Chris Webb
Assistant Editor: Ellie Scott
Development Editor: Brian Herrmann
Copy Editor: Chuck Hutchinson
Technical Editor: Goddy Zhao
Editorial Manager: Jodi Jensen
Senior Project Editor: Sara Shlaer
Editorial Assistant: Leslie Saxman

Marketing
Associate Marketing Director: Louise Breinholt
Senior Marketing Executive: Kate Parrett

Composition Services
Compositor: Andrea Hornberger
Proofreader: Linda Seifert
Indexer: Potomac Indexing, LLC

ABOUT THE AUTHOR

Guillermo Rauch (San Francisco, CA) is CTO and co-founder of San Francisco-based
education startup LearnBoost. Rauch is the inventor of several renowned Node.JS projects,
and has been a speaker at JSConf as well as Node.js workshops.

CONTENTS

PART I: GETTING STARTED: SETUP AND CONCEPTS	 5

Chapter 1: The Setup	 7
Installing on Windows	 8
Installing on OS X	 8
Installing on Linux	 8

Compiling	 9
Ensuring that it works	 9

The Node REPL	 9
Executing a file	 10
NPM	 10

Installing modules	 11
Defining your own module	 12
Installing binary utilities	 13
Exploring the NPM registry	 14

Summary	 14
Chapter 2: JavaScript: An Overview	 15

Introduction	 15
Basic JavaScript	 16

Types	 16
Type hiccups	 16
Functions	 18
this, Function#call, and Function#apply	 18
Function arity	 19
Closures	 19
Classes	 20
Inheritance	 20
try {} catch {}	 21

v8 JavaScript	 22
Object#keys	 22
Array#isArray	 23
Array methods	 23
String methods	 24
JSON	 24
Function#bind	 24

vC O NT E NT S

Function#name	 24
proto (inheritance)	 25
Accessors	 25

Summary	 26
Chapter 3: Blocking and Non-blocking IO	 27

With great power comes great responsibility	 28
Blocking-ness	 29
A single-threaded world	 31
Error handling	 33
Stack traces	 35

Summary	 37
Chapter 4: Node JavaScript	 39

The global object	 40
Useful globals	 40

The module system	 41
Absolute and relative modules	 41

Exposing APIs	 44
Events	 45
Buffers	 47
Summary	 48

PART II: ESSENTIAL NODE APIS	 49

Chapter 5: CLI and FS APIs: Your First Application	 51
Requirements	 52
Writing your first program	 52

Creating the module	 53
Sync or async?	 54
Understanding streams	 55
Input and ouput	 57
Refactoring	 59
Interacting with the fs	 61

Exploring the CLI	 63
Argv	 63
Working directory	 64
Environmental variables	 65
Exiting	 65
Signals	 65
ANSI escape codes	 66

Exploring the fs module	 66
Streams	 67
Watch	 67

Summary	 68

vi C O NT E NT S

Chapter 6: TCP	 69
What are the characteristics of TCP?	 70

Connection-oriented communication
and same-order delivery	 70
Byte orientation	 70
Reliability	 71
Flow control	 71
Congestion control	 71

Telnet	 71
A TCP chat program	 74

Creating the module	 74
Understanding the net.server API	 74
Receiving connections	 76
The data event	 77
State and keeping track of connections	 79
Wrap up	 81

An IRC Client program	 83
Creating the module	 83
Understanding the net#Stream API	 84
Implementing part of the IRC protocol	 84
Testing with a real-world IRC server	 85

Summary	 85
Chapter 7: HTTP	 87

The structure of HTTP	 88
Headers	 89
Connections	 93
A simple web server	 94

Creating the module	 95
Printing out the form	 95
Methods and URLs	 97
Data	 99
Putting the pieces together	 102
Bullet-proofing	 103

A Twitter web client	 104
Creating the module	 104
Making a simple HTTP request	 104
Sending a body of data	 106
Getting tweets	 107

A superagent to the rescue	 110
Reloading HTTP servers with up	 111
Summary	 112

C O NT E NT S vii

PART III: WEB DEVELOPMENT	 113

Chapter 8: Connect	 115
A simple website with HTTP	 116
A simple website with Connect	 119
Middleware	 121

Writing reusable middleware	 122
Static middleware	 127
Query	 128
Logger	 129
Body parser	 131
Cookies	 134
Session	 134
REDIS sessions	 140
methodOverride	 141
basicAuth	 141

Summary	 144
Chapter 9: Express	 145

A simple express app	 146
Creating the module	 146
HTML	 146
Setup	 147
Defining routes	 148
Search	 150
Run	 152

Settings	 153
Template engines	 154
Error handling	 155
Convenience methods	 155
Routes	 157
Middleware	 159
Organization strategies	 160
Summary	 162

Chapter 10: WebSocket	 163
AJAX	 164
HTML5 WebSocket	 166
An Echo Example	 167

Setting it up	 167
Setting up the server	 168
Setting up the client	 169
Running the server	 170

Mouse cursors	 171
Setting up the example	 171
Setting up the server	 172

viii C O NT E NT S

Setting up the client	 174
Running the server	 176

The Challenges Ahead	 177
Close doesn’t mean disconnect	 177
JSON	 177
Reconnections	 177
Broadcasting	 177
WebSockets are HTML5: Older browsers don’t support them	 177
The solution	 178

Summary	 178
Chapter 11: Socket.IO	 179

Transports	 180
Disconnected versus closed	 180
Events	 180
Namespaces	 181

A chat program	 182
Setting up the program	 182
Setting up the server	 182
Setting up the client	 183
Events and Broadcasting	 185
Ensuring reception	 190

A DJ-by-turns application	 191
Extending the chat	 191
Integrating with the Grooveshark API	 193
Playing	 196

Summary	 201

PART IV: DATABASES	 203

Chapter 12: MongoDB	 205
Installation	 207
Accessing MongoDB: A user authentication example	 208

Setting up the application	 208
Creating the Express app	 208
Connecting to MongoDB	 212
Creating documents	 214
Finding documents	 215
Authentication middleware	 217
Validation	 218
Atomicity	 219
Safe mode	 219

Introducing Mongoose	 220
Defining a model	 220
Defining nested keys	 222
Defining embedded documents	 222

C O NT E NT S ix

Setting up indexes	 222
Middleware	 223
Inspecting the state of the model	 223
Querying	 224
Extending queries	 224
Sorting	 224
Making Selections	 224
Limiting	 225
Skipping	 225
Populating keys automatically	 225
Casting	 225

A mongoose example	 226
Setting up the application	 226
Refactoring	 226
Setting up models	 227

Summary	 229
Chapter 13: MySQL	 231

node-mysql	 232
Setting it up	 232
Th e Express app	 232
Connecting to MySQL	 234
Initializing the script	 234
Creating data	 238
Fetching data	 242

sequelize	 244
Setting up sequelize	 245
Setting up the Express app	 245
Connecting sequelize	 248
Defining models and synchronizing	 249
Creating data	 250
Retrieving data	 253
Removing data	 254
Wrapping up	 256

Summary	 257
Chapter 14: Redis	 259

Installing Redis	 261
The Redis query language	 261
Data types	 262

Strings	 263
Hashes	 263
Lists	 265
Sets	 265
Sorted sets	 266

Redis and Node	 266
Implementing a social graph with node-redis	 267

Summary	 276

x C O NT E NT S

PART V: TESTING	 277
Chapter 15: Code Sharing	 279

What can be shared?	 280
Writing compatible JavaScript	 280

Exposing modules	 280
Shimming ECMA APIs	 282
Shimming Node APIs	 283
Shimming browser APIs	 284
Cross-browser inheritance	 284

Putting it all together: browserbuild	 285
A basic example	 286

Summary	 288
Chapter 16: Testing	 289

Simple testing	 290
Th e test subject	 290
Th e test strategy	 290
Th e test program	 291

Expect.JS	 292
API overview	 292

Mocha	 294
Testing asynchronous code	 295
BDD style	 297
TDD style	 298
Exports style	 298
Taking Mocha to the browser	 299

Summary	 300

FOREWORD

MOST WEB APPLICATIONS have both a client side and a server side. Implementing the
server side has traditionally been complex and cumbersome. Creating a simple server
required expert knowledge about multi-threading, scalability, and server deployment. An
additional complication is that web client software is implemented using HTML and
JavaScript whereas server code most often is implemented using more static programming
languages. This split forces the programmer to use multiple programming languages and
make early design decisions about where certain program logic should reside.

A few years ago, it would have been unthinkable to implement server software in JavaScript.
Poor runtime performance, toy-like memory management, and lack of operating system
integration all had to be fixed before JavaScript could be considered as a viable solution for
servers. As part of Google Chrome, we designed the new V8 JavaScript engine to tackle the
first two problems. V8 is available as an open source project with a simple API for embedding.

Ryan Dahl saw the opportunity in bringing JavaScript to the server side by embedding V8
into an OS integration layer that featured asynchronous interfaces to the underlying operating
system. That was the inception of Node.JS. The benefits were obvious. Programmers could
now use the same programming language on both client and server side. The dynamic nature
of JavaScript made it trivial to develop and experiment with server code freeing the
programmer from the traditional slow tool-heavy programming model.

Node.JS became an instant success, spawning a vibrant open source community, supporting
companies, and even necessitating its own conference. I would attribute this success to a
combination of simplicity, improved programming productivity, and high performance. I’m
pleased V8 played a small part in this.

This book will take the reader through all steps of creating the server side of a web application
on top of Node.JS including how to organize asynchronous server code and interface to
databases.

Enjoy the book,

Lars Bak, Virtual Machinist

INTRODUCTION

Late in 2009, Ryan Dahl announced a technology named Node.JS (http://nodejs.org/) at a
JavaScript conference in Berlin. Interestingly, and to the surprise of the attendees, this
technology wasn’t designed to run in the browser, the land that JavaScript had conquered and
that many developers thought it would always be confined to.

This technology was about running JavaScript in the server. That simple phrase immediately
sparked the imagination of the audience, which celebrated the announcement in standing
ovation.

If done right, we could write web applications in just one language.

That was, undoubtedly, the first thought in everyone’s minds. After all, to produce a rich and
modern web application, one must be proficient with JavaScript, but server technologies are
varied and require specialization. As an example, Facebook recently revealed that its codebase
has four times the number of lines of JS than PHP, its back-end language of choice.

But what Ryan was interested in showing went beyond that simple yet powerful premise. Ryan
showed that the “hello world” program of Node.JS creates a web server:

var http = require(‘http’);

var server = http.createServer(function (req, res) {

 res.writeHead(200);

 res.end(’Hello world’);

});

server.listen(80);

It so happens this webserver is not just a toy, but a high-performance web server that happens
to fare just as well (or even better) than established and tested software like Apache and Nginx
in a multitude of scenarios. Node.JS was presented as a tool specifically aimed to design
network applications the right way.

Node.JS owes its incredible speed and performance to a technique called the event loop and
the fact that it runs on top of V8, the JavaScript interpreter and virtual machine that Google
created to make their Chrome web browser run impossibly fast.

When it comes to web development, Node.JS changes the panorama. You are no longer
writing scripts that are executed by a web server you install separately, such as the traditional
LAMP model, which usually involves PHP and Apache.

http://nodejs.org/

2 I NT R O D U C T I O N

Taking back control of the web server, as you’ll see, resulted in a new category of applications
being developed on top of Node.JS: real time web apps. Very fast data streaming between a
server and thousands of concurrent clients is common currency in Node. This means that not
only are you going to be creating more efficient programs, but you’ll be part of a community
that’s pushing the boundaries of what we thought was achievable in the web world.

With Node, you are in charge. And with that capability comes a set of new challenges and
responsibilities that this book carefully examines.

APPROACH
First and foremost, Smashing Node.JS is a book about JavaScript. Your knowledge of JavaScript
is absolutely required, and therefore I dedicate an initial chapter to the concepts of JavaScript
that, in my opinion and experience, matter most.

As you learn later, Node.JS strives to create an environment where the browser developer feels
comfortable. Common expressions that are not part of the language specification but were
added by browsers instead, such as setTimeout and console.log, are still available in
Node.JS to this end.

After you make it past the “memory refreshing” phase, you go right into Node. Node comes
with a lot of useful modules as part of its core, and a revolutionarily simple package manager
called NPM. This book teaches you to build things leveraging only the Node core modules,
and then a selection of the most useful abstractions the community has built on top of it, that
you can install with NPM.

Before we jump into a module designed for solving a specific problem, I usually try to go
through the hurdles of solving the same problem without them first. The best way to under-
stand a tool is to understand why the tool exists in the first place. Therefore, before you learn
about a web framework, you’ll learn why it’s better than using Node.JS HTTP primitives.
Before you learn how to build an app with a cross-browser real time framework like Socket.
IO, you’ll learn the limitations of barebones HTML5 WebSockets.

This book is all about examples. Every step of the way you’ll be building a small application or
testing out different APIs. You can execute all the code examples in this book with the node
command, which you can use in two different ways:

◾	 Through the node REPL (Read-Eval-Print Loop). In the same spirit as the Firebug or
Web Inspector JavaScript consoles, this approach allows you to type in some JavaScript
code, press Enter, and get it executed, right from your operating system’s command-line
interface.

◾	 As files that are run through the node command. This approach requires that you use a
text editor, which you obviously already have. I personally recommend vim (http://vim.
org) for this purpose, but any of them are good.

http://vim.org
http://vim.org

I NT R O D U C T I O N 3

In most cases, you’ll be writing the code examples step-by-step, reproducing the way it was
built the first time around. I’ll guide you through different challenges and refactors. When you
hit important milestones, I usually include a screenshot of what you should be seeing, either
in your terminal or in a browser window, depending on what you’re developing.

Sometimes, no matter how much thought went into the construction of these examples,
problems are inevitable. I put together a collection of resources that can aid you.

RESOURCES
Should you get stuck on any part of the book, there are a few ways you can get help.

For general Node.JS support, check out the following:

◾	 The Node.JS mailing list (http://groups.google.com/group/nodejs)
◾	 On the irc.freenode.net server, the #nodejs channel

For help related to specific projects, such as socket.io or express, check out the official
support channels or, if none are available, general forums such as Stack Overflow (http://
stackoverflow.com/questions/tagged/node.js) certainly prove helpful.

The majority of Node.JS modules are hosted on GitHub. If you’re certain you’ve found a bug,
locate their GitHub repository and contribute a test case.

Try your best to identify whether your problem is Node.JS or JavaScript related. It’s usually
best to keep your Node.JS help requests strictly Node related.

If you want to discuss a specific issue about this book, you can reach me at rauchg@gmail.
com.

http://groups.google.com/group/nodejs
http://stackoverflow.com/questions/tagged/node.js
http://stackoverflow.com/questions/tagged/node.js

PA R T

I GETTING
STARTED:
SETUP AND
CONCEPTS

Chapter 1: The Setup

Chapter 2: JavaScript: An Overview

Chapter 3: Blocking and Non-blocking IO

Chapter 4: Node JavaScript

This chapter describes the installation process for
Windows, OS X, and Linux systems. For the
latter, you’re going to ensure that you have the
correct dependencies and compile it from the
source.

INSTALLING NODE.JS IS a painless process.
Since its conception, one of its goals has been
maintaining a small number of dependencies that
would make the compilation or installation of the
project very seamless.

THE SETUP1
C H A P T E R

8 PA RT I   •   Getting Started: Setup and Concepts

Note: When you see lines prefixed with $ in the code snippets in the book, you
should type these expressions into your OS shell.

INSTALLING ON WINDOWS
On Windows, go to http://nodejs.org and
download the MSI installer. Every release of
node has a corresponding MSI installer that
you need to download and execute.

The filename follows the format node-
v?.?.?.msi. Upon executing it, simply
follow the instructions in the setup wizard
shown in Figure 1-1.

To ensure that the installation worked, open
the shell or command prompt by running
cmd.exe and typing $ node –version.

The version name of the package you just
installed should display.

INSTALLING ON OS X
On the Mac, similarly to Windows, you can leverage an installer package. From the Node.JS
website, download the PKG file that follows the format node-v?.?.?.pkg. If you want to
compile it instead, ensure you have XCode installed and follow the Compilation instructions
for Linux.

Run the downloaded package and follow the
simple steps (see Figure 1-2).

To ensure installation was successful, open
the shell or terminal by running Terminal.
app (you can type in “Terminal” in Spotlight
to locate it) and type in $ node
–version.

The version of Node you just installed should
be outputted.

INSTALLING ON LINUX
Compiling Node.JS is almost just as easy as installing binaries. To compile it in most *nix
systems, simply make sure a C/C++ compiler and the OpenSSL libraries are available.

Figure 1-1: The Node.JS setup wizard.

Figure 1-2: The Node.JS package installer.

http://nodejs.org

C H A P T E R 1   •   The Setup 9

Most Linux distributions come with a package manager that allows for the easy installation of
these.

For example, for Amazon Linux, you use

> sudo yum install gcc gcc-c++ openssl-devel curl

On Ubuntu, the installation is slightly different; you use

> sudo apt-get install g++ libssl-dev apache2-utils curl

COMPILING
From your OS terminal, execute the following commands:

Note: Replace ? with the latest available version of node in the following example.

$ curl -O http://nodejs.org/dist/node-v?.?.?.tar.gz

$ tar -xzvf node-v?.?.?.tar.gz

$ cd node-v?.?.?

$./configure

$ make

$ make test

$ make install

If the make test command aborts with errors, I recommend you stop the installation and
post a log of the ./configure, make, and make test commands to the Node.JS mailing
list.

ENSURING THAT IT WORKS
Launch a terminal or equivalent, such as XTerm, and type in $ node –version.

The version of Node you just installed should be outputted.

THE NODE REPL
To run the Node REPL, simply type node.

Try running some JavaScript expressions. For example:

> Object.keys(global)

Note: When you see lines prefixed with > in the code snippets in the book, you
should run these expressions in the REPL.

10 PA RT I   •   Getting Started: Setup and Concepts

The REPL is one of my favorite tools for quickly verifying that different Node or vanilla
JavaScript APIs work as expected. While developing larger modules, it’s often useful to check
a certain API works exactly the way you remember it when unsure. To that end, opening a
separate terminal tab and quickly evaluating some JavaScript primitives in a REPL helps
immensely.

EXECUTING A FILE
Like most scripted programming languages, Node can interpret the contents of a file by
appending a path to the node command.

With your favorite text editor, create a file called my-web-server.js, with the following
contents:

var http = require(‘http’);

var serv = http.createServer(function (req, res) {

 res.writeHead(200, { ’Content-Type’: ’text/html’ });

 res.end(’<marquee>Smashing Node!</marquee>’);

});

serv.listen(3000);

Run the file:

$ node my-web-server.js

Then, as shown in Figure 1-3, point your web
browser to http://localhost:3000.

In this code snippet, you’re leveraging the
power of Node to script a fully compliant
HTTP server that serves a basic HTML
document. This is the traditional example
used whenever Node.JS is being discussed,
because it demonstrates the power of creating
a web server just like Apache or IIS with only
a few lines of JavaScript.

NPM
The Node Package Manager (NPM) allows you to easily manage modules in projects by
downloading packages, resolving dependencies, running tests, and installing command-line
utilities.

Even though doing so is not essential to the core functionality of the project, you truly need to
work efficiently on projects that rely on other pre-existing modules released by third parties.

Figure 1-3: Serving a basic HTML document in Node.

http://localhost:3000/

C H A P T E R 1   •   The Setup 11

NPM is a program written in Node.JS and shipped with the binary packages (the MSI
Windows installer, and the PKG for the Mac). If you compiled node from the source files, you
want to install NPM as follows:

$ curl http://npmjs.org/install.sh | sh

To ensure successful installation, issue the following command:

$ npm --version

The NPM version should be displayed.

INSTALLING MODULES
To illustrate the installation of a module with NPM, install the colors library in the direc-
tory my-project and then create an index.js file:

$ mkdir my-project/

$ cd my-project/

$ npm install colors

Verify that the project was installed by ensuring the path node_modules/colors was
created.

Then edit index.js with your favorite editor:

$ vim index.js

And add the following contents:

require(‘colors’);

console.log(‘smashing node’.rainbow);

The result should look like Figure 1-4.

Figure 1-4: The result of installing a module

12 PA RT I   •   Getting Started: Setup and Concepts

DEFINING YOUR OWN MODULE
To define your own module, you need to create a package.json file. Defining your own
module has three fundamental benefits:

◾	 Allows you to easily share the dependencies of your application with others, without
sending along the node_modules directory. Because npm install takes care of
fetching everything, distributing this directory wouldn’t make sense. This is especially
important in SCM systems like Git.

◾	 Allows you to easily track the versions of the modules you depend on that you know
work. For example, when you wrote a particular project, you ran npm install
colors and that installed colors 0.5.0. A year later, due to API changes, perhaps the
latest colors are no longer compatible with your project, and if you were to run npm
install without specifying the version, your project would break.

◾	 Makes redistribution possible. Did your project turn out fine and you want to share it
with others? Because you have a package.json, the command npm publish.
publishes it to the NPM registry for everyone to install.

In the directory created earlier (my-project), remove the node_modules directory and
create a package.json file:

$ rm -r node_modules

$ vim package.json

Then add the following contents:

{

 “name”: “my-colors-project”

 , “version”: “0.0.1”

 , “dependencies”: {

 “colors”: “0.5.0”

 }

}

Note: The contents of this file must be valid JSON. Valid JavaScript is not enough.
This means that you must make sure, for example, to use double quotes for all
strings, including property names.

The package.json file is the file that describes your project to both Node.JS and NPM. The
only required fields are name and version. Normally, modules have dependencies, which is an
object that references other projects by the name and version they defined in their package.
json files.

Save the file, install the local project, and run index.js again:

C H A P T E R 1   •   The Setup 13

$ npm install

$ node index # notice that you don’t need to include “.js”!

In this case, the intention is to create a module for internal use. If you wanted, NPM makes it
really easy to publish a module by running:

$ npm publish

To tell Node which file to look for when someone calls require(‘my-colors-project’)
we can specify the main property in the package.json:

{

 “name”: “my-colors-project”

 , “version”: “0.0.1”

 , “main”: “./index”

 , “dependencies”: {

 “colors”: “0.5.0”

 }

}

When you learn how to make modules export APIs, the main property will become a lot
more important, because you will need it to define the entry point of your modules (which
sometimes are comprised of multiple files).

To learn about all the possible properties for the package.json file, run:

$ npm help json

Tip: If you never intend to publish a certain project, add “private”: “true” to
your package.json. This prevents accidental publication.

INSTALLING BINARY UTILITIES
Some projects distribute command-line tools that were written in Node. When that’s the case,
you need to install them with the -g flag.

For example, the web framework you’re going to learn in this book called express contains an
executable utility to create projects.

$ npm install -g express

Then try it out by creating a directory and running “express” inside:

$ mkdir my-site

$ cd mysite

$ express

14 PA RT I   •   Getting Started: Setup and Concepts

Tip: If you want to distribute a script like this, include a flag “bin”: “./path/
to/script” pointing to your executable script or binary when publishing.

EXPLORING THE NPM REGISTRY
Once you get comfortable with the Node.JS module system in Chapter 4, you should be able
to write programs that leverage any module in the ecosystem.

NPM has a rich registry that contains thousands of modules. Two commands are instrumen-
tal in your exploration of the registry: search and view.

If you want to search for plugins related to realtime, for example, you would execute the
following:

$ npm search realtime

This will search all the published modules that contain MySQL in their name, tags, and
description fields.

Once you find a package that interests you, you can see its package.json and other
properties related to the NPM registry by running npm view followed by the module name.
For example:

$ npm view socket.io

Tip: If you want to learn more about a certain NPM command, type “npm help
<command>.” For example, “npm help publish” will teach you more about how to
publish modules.

SUMMARY
After this chapter, you should now have a working Node.JS + NPM environment.

In addition to being able to run the node and npm commands, you should now have a basic
understanding of how to execute simple scripts, but also how to put together modules with
dependencies.

You now know that an important keyword in Node.JS is require, which allows for module
and API interoperability, and which will be an important subject in Chapter 4, after quickly
reviewing the language basics.

You also are now aware of the NPM registry, which is the gateway to the Node.JS module
ecosystem. Node.JS is an open source project, and as a result many of the programs that are
written with it are also open source and available for you to reuse, a few keystrokes away.

In addition, most of the code you’ll write is in
compliance with the “good parts” of JavaScript
that Douglas Crockford enounced in his famous
book, JavaScript: The Good Parts.

This chapter is divided into two parts:
◾	 Basic JavaScript. The fundamentals of the

language. They apply everywhere: node,
browser, and standards committee.

◾	 v8 JavaScript. Some features used in v8 are
not available in all browsers, especially Internet
Explorer, because they’ve recently been
standardized. Others are nonstandard, but you
still use them because they solve fundamental
problems.

In addition, the next chapter covers the language
extensions and features exclusively available in
Node.

INTRODUCTION

JAVASCRIPT IS A prototype-based, object-
oriented, loosely-typed dynamic scripting
language. It has powerful features from the
functional world, such as closures and higher-
order functions, that are of special interest here.

JavaScript is technically an implementation of the
ECMAScript language standard. It’s important to
know that with Node, because of v8, you’ll be
primarily dealing with an implementation that
gets close to the standard, with the exception of a
few extra features. This means that the JavaScript
you’re going to be dealing with has some impor-
tant differences with the one that earned the
language its bad reputation in the browser world.

JAVASCRIPT:
AN OVERVIEW2

C H A P T E R

16 PA RT I   •   Getting Started: Setup and Concepts

BASIC JAVASCRIPT
This chapter assumes that you’re somewhat familiar with JavaScript and its syntax. It goes over
some fundamental concepts you must understand if you want to work with Node.js.

TYPES
You can divide JavaScript types into two groups: primitive and complex. When one of the
primitive types is accessed, you work directly on its value. When a complex type is accessed,
you work on a reference to the value.

◾	 The primitive types are number, boolean, string, null, and undefined.
◾	 The complex types are array, function, and object.

To illustrate:

// primitives

var a = 5;

var b = a;

b = 6;

a; // will be 5

b; // will be 6

// complex

var a = [‘hello’, ‘world’];

var b = a;

b[0] = ‘bye’;

a[0]; // will be ’bye’

b[0]; // will be ‘bye’

In the second example, b contains the same reference to the value as a does. Hence, when you
access the first member of the array, you alter the original, so a[0] === b[0].

TYPE HICCUPS
Correctly identifying the type of value a certain variable holds remains a challenge in
JavaScript.

Because JavaScript has constructors for most primitives like in other languages with object-
oriented features, you can create a string in these two ways:

var a = ‘woot’;

var b = new String(‘woot’);

a + b; // ‘woot woot’

C H A P T E R 2   •   JavaScript: An Overview 17

If you use the typeof and instanceof operators on these two variables, however, things
get interesting:

typeof a; // ‘string’

typeof b; // ‘object’

a instanceof String; // false

b instanceof String; // true

However, both are definitely strings that have the same prototypical methods:

a.substr == b.substr; // true

And they evaluate in the same way with the == operator but not with ===:

a == b; // true

a === b; // false

Considering these discrepancies, I encourage you to always define your types in the literal
way, avoiding new.

It’s important to remember that certain values will be evaluate to false in conditional
expressions: null, undefined, ‘’, 0:

var a = 0;

if (a) {

 // this will never execute

}

a == false; // true

a === false; // false

Also noteworthy is the fact that typeof doesn’t recognize null as its own type:

typeof null == ‘object’; // true, unfortunately

And the same goes for arrays, even if defined with [], as shown here:

typeof [] == ‘object’; // true

You can be thankful that v8 provides a way of identifying an array without resorting to hacks.
In browsers, you typically inspect the internal [[Class]] value of an object: Object.
prototype.toString.call([]) == ‘[object Array]’. This is an immutable
property of objects that has the benefit of working across different contexts (for example,
browser frames), whereas instanceof Array is true only for arrays initialized within that
particular context.

18 PA RT I   •   Getting Started: Setup and Concepts

FUNCTIONS
Functions are of utmost importance in JavaScript.

They’re first class: they can be stored in variables as references, and then you can pass them
around as if they were any other object:

var a = function () {}

console.log(a); // passing the function as a parameter

All functions in JavaScript can be named. It’s important to distinguish between the function
name and the variable name:

var a = function a () {

 ‘function’ == typeof a; // true

};

THIS, FUNCTION#CALL, AND FUNCTION#APPLY
When the following function is called, the value of this is the global object. In the browser,
that’s window:

function a () {

 window == this; // true;

};

a();

By using the .call and .apply methods, you can change the reference of this to a
different object when calling the function:

function a () {

 this.a == ‘b’; // true

}

a.call({ a: ‘b’ });

The difference between call and apply is that call takes a list of parameters to pass to the
function following, whereas apply takes an array:

function a (b, c) {

 b == ‘first’; // true

 c == ‘second’; // true

}

a.call({ a: ‘b’ }, ‘first’, ‘second’)

a.apply({ a: ‘b’ }, [‘first’, ‘second’]);

C H A P T E R 2   •   JavaScript: An Overview 19

FUNCTION ARITY
An interesting property of a function is its arity, which refers to the number of arguments that
the function was declared with. In JavaScript, this equates to the length property of a
function:

var a = function (a, b, c);

a.length == 3; // true

Even though less common in the browser, this feature is important to us because it’s leveraged
by some popular Node.JS frameworks to offer different functionality depending on the
number of parameters the functions you pass around take.

CLOSURES
In JavaScript, every time a function is called, a new scope is defined.

Variables defined within a scope are accessible only to that scope and inner scopes (that is,
scopes defined within that scope):

var a = 5;

function woot () {

 a == 5; // true

 var a = 6;

 function test () {

 a == 6; // true

 }

 test();

};

woot();

Self-invoked functions are a mechanism by which you declare and call an anonymous function
where your only goal is defining a new scope:

var a = 3;

(function () {

 var a = 5;

})();

a == 3 // true;

These functions are very useful when you want to declare private variables that shouldn’t be
exposed to another piece of code.

20 PA RT I   •   Getting Started: Setup and Concepts

CLASSES
In JavaScript, there’s no class keyword. A class is defined like a function instead:

function Animal () { }

To define a method on all the instances of Animal that you create, you set it on the
prototype:

Animal.prototype.eat = function (food) {

 // eat method

}

It’s worth mentioning that within functions in the prototype, this doesn’t refer to the global
object like regular functions, but to the class instance instead:

function Animal (name) {

 this.name = name;

}

Animal.prototype.getName () {

 return this.name;

};

var animal = new Animal(‘tobi’);

a.getName() == ‘tobi’; // true

INHERITANCE
JavaScript has prototypical inheritance. Traditionally, you simulate classical inheritance as
follows.

You define another constructor that’s going to inherit from Animal:

function Ferret () { };

To define the inheritance chain, you initialize an Animal object and assign it to the Ferret.
prototype.

// you inherit

Ferret.prototype = new Animal();

You can then define methods and properties exclusive to your subclass:

// you specialize the type property for all ferrets

Ferret.prototype.type = ‘domestic’;

C H A P T E R 2   •   JavaScript: An Overview 21

To override methods and call the parent, you reference the prototype:

Ferret.prototype.eat = function (food) {

 Animal.prototype.eat.call(this, food);

 // ferret-specific logic here

}

This technique is almost perfect. It’s the best performing across the board (compared to the
alternative functional technique) and doesn’t break the instanceof operator:

var animal = new Animal();

animal instanceof Animal // true

animal instanceof Ferret // false

var ferret = new Ferret();

ferret instanceof Animal // true

ferret instanceof Ferret // true

Its major drawback is that an object is initialized when the inheritance is declared (Ferret.
prototype = new Animal), which might be undesirable. A way around this problem is
to include a conditional statement in the constructor:

function Animal (a) {

 if (false !== a) return;

 // do constructor stuff

}

Ferret.prototype = new Animal(false)

Another workaround is to define a new, empty constructor and override its prototype:

function Animal () {

 // constructor stuff

}

function f () {};

f.prototype = Animal.prototype;

Ferret.prototype = new f;

Fortunately, v8 has a cleaner solution for this, which is described later in this chapter.

TRY {} CATCH {}
try/catch allows you to capture an exception. The following code throws one:

> var a = 5;

> a()

TypeError: Property ‘a’ of object #<Object> is not a function

22 PA RT I   •   Getting Started: Setup and Concepts

When a function throws an error, execution stops:

function () {

 throw new Error(‘hi’);

 console.log(‘hi’); // this will never execute

}

If you use try/catch, you can handle the error and execution continues:

function () {

 var a = 5;

 try {

 a();

 } catch (e) {

 e instanceof Error; // true

 }

 console.log(‘you got here!’);

}

V8 JAVASCRIPT
So far you’ve looked at the JavaScript features that are most relevant to dealing with the
language in most environments, including ancient browsers.

With the introduction of the Chrome web browser came a new JavaScript engine, v8, which
has been quickly pushing the boundaries by providing us with an extremely fast execution
environment that stays up-to-date and supports the latest ECMAScript features.

Some of these features address deficiencies in the language. Others were introduced thanks to
the advent of client-side frameworks like jQuery and PrototypeJS, because they provided
extensions or utilities that are so frequently used it’s now unimaginable to consider the
JavaScript language without them.

In this section you’ll learn about the most useful features that you can take advantage of from
v8 to write more concise and faster code that fits right it with the style of code that the most
popular Node.JS frameworks and libraries adopt.

OBJECT#KEYS
If you wanted to obtain the keys for the following object (a and c)

var a = { a: ‘b’, c: ‘d’ };

Then normally iterate as follows:

for (var i in a) { }

C H A P T E R 2   •   JavaScript: An Overview 23

By iterating over the keys, you can collect them in an array. However, if you were to extend
the Object.prototype as follows:

Object.prototype.c = ‘d’;

To avoid getting c in the list of keys you would need to run a hasOwnProperty check:

for (var i in a) {

 if (a.hasOwnProperty(i)) {}

}

To get around that complication, to get all the own keys in an object, in v8 you can safely use

var a = { a: ‘b’, c: ‘d’ };

Object.keys(a); // [‘a’, ‘c’]

ARRAY#ISARRAY
Like you saw before, the typeof operator will return “object” for arrays. Most of the
time, however, you want to check that an array is actually an array.

Array.isArray returns true for arrays and false for any other value:

Array.isArray(new Array) // true

Array.isArray([]) // true

Array.isArray(null) // false

Array.isArray(arguments) // false

ARRAY METHODS
To loop over an array, you can use forEach (similar to jQuery $.each):

// will print 1 2 and 3

[1, 2, 3].forEach(function (v) {

 console.log(v);

});

To filter elements out of an array, you can use filter (similar to jQuery $.grep)

[1, 2, 3].forEach(function (v) {

 return v < 3;

}); // will return [1, 2]

To change the value of each item, you can use map (similar to jQuery $.map)

[5, 10, 15].map(function (v) {

 return v * 2;

}); // will return [10, 20, 30]

24 PA RT I   •   Getting Started: Setup and Concepts

Also available but less commonly used are the methods reduce, reduceRight, and
lastIndexOf.

STRING METHODS
To remove space in the beginning and ending of a string, use

‘ hello ‘.trim(); // ‘hello’

JSON
v8 exposes JSON.stringify and JSON.parse to decode and encode JSON, respectively.

JSON is an encoding specification that closely resembles the JavaScript object literal, utilized
by many web services and APIs:

var obj = JSON.parse(‘{“a”:”b”}’)

obj.a == ‘b’; // true

FUNCTION#BIND
.bind (equivalent to jQuery’s $.proxy) allows you to change the reference of this:

function a () {

 this.hello == ‘world’; // true

};

var b = a.bind({ hello: ‘world’ });

b();

FUNCTION#NAME
In v8, the nonstandard property name of a function is supported:

var a = function woot () {};

a.name == ‘woot’; // true

This property is used internally by v8 in stack traces. When an error is thrown, v8 shows a
stack trace, which is the succession of function calls it made to reach the point where the error
occurred:

> var woot = function () { throw new Error(); };

> woot()

Error

 at [object Context]:1:32

C H A P T E R 2   •   JavaScript: An Overview 25

In this case, v8 is not able to assign a name to the function reference. If you name it, however,
v8 will be able to include it in the stack traces as shown here:

> var woot = function buggy () { throw new Error(); };

> woot()

Error

 at buggy ([object Context]:1:34)

Because naming significantly aids in debugging, I always recommend you name your
functions.

PROTO (INHERITANCE)
__proto__ makes it easy for you to define the inheritance chain:

function Animal () { }

function Ferret () { }

Ferret.prototype.__proto__ = Animal.prototype;

This is a very useful feature that removes the need to:

◾	 Resort to intermediate constructors, as shown in the previous section.
◾	 Leverage OOP toolkits or utilities. You don’t need to require any third-party modules to

expressively declare prototypical inheritance.

ACCESSORS
You are able to define properties that call functions when they’re accessed (__define
Getter__) or set (__defineSetter__).

As an example, define a property called ago that returns the time ago in words for a Date
object.

Many times, especially in the software you create, you want to express time in words relative
to a certain point. For example, it’s easier for people to understand that something happened
three seconds ago than reading the complete date.

The following example adds an ago getter to all the Date instances that will output the
distance of time in words to the present. Simply accessing the property will execute the
function you define, without having to explicitly call it.

// Based on prettyDate by John Resig (MIT license)

Date.prototype.__defineGetter__(‘ago’, function () {

 var diff = (((new Date()).getTime() - this.getTime()) / 1000)

 , day_diff = Math.floor(diff / 86400);

26 PA RT I   •   Getting Started: Setup and Concepts

 return day_diff == 0 && (

 diff < 60 && “just now” ||

 diff < 120 && “1 minute ago” ||

 diff < 3600 && Math.floor(diff / 60) + “ minutes ago” ||

 diff < 7200 && “1 hour ago” ||

 diff < 86400 && Math.floor(diff / 3600) + “ hours ago”) ||

 day_diff == 1 && “Yesterday” ||

 day_diff < 7 && day_diff + “ days ago” ||

 Math.ceil(day_diff / 7) + “ weeks ago”;

});

Then you simply refer to the ago property. Notice that you’re not executing a function, yet it’s
still being executed transparently for you:

var a = new Date(‘12/12/1990’); // my birth date

a.ago // 1071 weeks ago

SUMMARY
Understanding this chapter is essential to getting up to speed with the quirks of the language
and handicaps of most environments the language has traditionally been run in, such as old
browsers.

Due to JavaScript evolving really slowly and being somewhat overlooked for years, many
developers have invested significant amounts of time in developing techniques to write the
most efficient and maintainable code, and have characterized what aspects of the language
don’t work as expected.

v8 has done a fantastic job at keeping up to date with the recent editions of ECMA, and
continues to do so. The Node.JS core team of developers always ensures that when you install
the latest version of Node, you always get the most recent version of v8. This opens up a new
panorama for server-side development, since we can leverage APIs that are easier to under-
stand and faster to execute.

Hopefully during this chapter you’ve learned some of the features that Node developers
commonly use, which are those that are defining the present and future of JavaScript.

perform really well in comparison to other
mainstream solutions, provided that they
understand the tradeoffs and what makes Node
programs perform well.

MUCH OF THE DISCUSSION about Node.JS
is centered around its capabilities to handle a lot
of concurrency. In simple terms, Node is a
framework that offers developers a powerful way
to design networking applications that will

BLOCKING AND
NON-BLOCKING IO3

C H A P T E R

28 PA RT I   •   Getting Started: Setup and Concepts

WITH GREAT POWER COMES GREAT RESPONSIBILITY
Node introduces a complexity to JavaScript that you’re probably not really used to managing
much in the browser: shared-state concurrency. As a matter of fact, this complexity is also
inexistent in traditional models for making web applications like Apache and mod_php or
Nginx and FastCGI.

In less technical terms, in Node you have to be careful about how your callbacks modify the
variables around them (state) that are currently in memory. Thus, you need to be especially
careful about how you handle errors that can potentially alter this state in unexpected ways
and potentially render the entire process unusable.

To fully understand this, imagine the following function, which gets executed every time the
user makes a request to the URL /books. Imagine also that the “state” is a collection of books
that you’ll ultimately use to return an HTML list of books.

var books = [

 ‘Metamorphosis’

 , ‘Crime and punishment’

];

function serveBooks () {

 // I’m going to serve some HTML to the client

 var html = ‘’ + books.join(‘
’) + ‘’;

 // I’m evil, and I’m going to change state!

 books = [];

 return html;

}

The equivalent PHP code is

$books = array(

 ‘Metamorphosis’

 , ‘Crime and punishment’

);

function serveBooks () {

 $html = ‘’ . join($books, ‘
’) . ‘’;

 $books = array();

 return $html;

}

Notice that in the serveBooks functions of both examples, you reset the books array.

Now imagine a user who requests /books twice in a row to the Node server and twice in a
row to the PHP server. Try to predict what’s going to happen:

C H A P T E R 3   •   Blocking and Non-blocking IO 29

◾	 Node handles the first request and returns the books. The second request returns no books.
◾	 PHP returns books in both cases.

The difference lies in the fundamental schemes. Node is a long-running process, whereas
Apache spawns multiple threads (one per request), which start with a fresh state every time.
In PHP, the next time the interpreter runs, the variable $books gets repopulated, whereas in
Node, the function serveBooks gets called again, and the scope variable is not affected.

 +---------------------+

 | APACHE |

 +-+--------+--------+-+

 | | |

 +---+ | +---+

 +----+----+ +----+----+ +----+----+

 | PHP | | PHP | | PHP |

 | | | | | |

 | THREAD | | THREAD | | THREAD |

 +----+----+ +----+----+ +----+----+

 | | |

 +---------+ +---------+ +---------+

 | REQUEST | | REQUEST | | REQUEST |

 +---------+ +---------+ +---------+

With great power comes great responsibility.

 +-----------------------------------+

 | |

 | |

 | NODE.JS |

 | |

 | PROCESS |

 | |

 | |

 | |

 +----+------------+------------+----+

 | | |

 +---------+ +---------+ +---------+

 | REQUEST | | REQUEST | | REQUEST |

 +---------+ +---------+ +---------+

Keeping this in mind at all times is essential for writing solid Node.JS programs that don’t
experience problems during their executions.

An equally important aspect is understanding what is meant by blocking and non-blocking IO.

BLOCKING-NESS
Try to identify the difference between the following PHP example:

30 PA RT I   •   Getting Started: Setup and Concepts

// PHP

print(‘Hello’);

sleep(5);

print(‘World’);

And this Node example:

// node

console.log(‘Hello’);

setTimeout(function () {

 console.log(‘World’);

}, 5000);

The difference is not merely syntactic (Node.JS uses a callback) because these examples epitomize
the distinction between blocking and non-blocking code. In the first example, PHP sleep()
blocks the thread of execution. While the program is sleeping, it’s not doing anything else.

Node.JS, on the other hand, leverages the event loop here, so setTimeout is non-blocking.

This means that if you introduce a console.log statement immediately after the
setTimeout, it is called immediately:

console.log(‘Hello’);

setTimeout(function () {

 console.log(‘World’);

}, 5000);

console.log(‘Bye’);

// this script will output:

// Hello

// Bye

// World

What does it mean to leverage the event loop? Essentially, Node registers events and then runs
an infinite loop to poll the kernel to know whether these events are ready to be dispatched.
When they are, the associated function callbacks are fired, and it moves on. If no events are
polled, Node just keeps going until new events are ready.

In contrast, in the PHP world, when sleep is executed, the execution is blocked for however
long you specified, and no other instructions are executed until said time elapses, which
means it’s synchronous. setTimeout, instead of blocking, just registers an event for the
future and lets the program continue to run, therefore being asynchronous.

The event loop constitutes Node’s approach to concurrency. The same technique shown
previously for timeouts is also utilized for all the IO that native modules such as http or net

C H A P T E R 3   •   Blocking and Non-blocking IO 31

perform. In the same fashion that internally Node loops and triggers a notification when the
timeout is complete, it uses the event loop to trigger notifications about file descriptors.

File descriptors are abstract handles that reference open files, sockets, pipes, and so on.
Essentially, when Node gets an HTTP request from a browser, the underlying TCP connec-
tion allocates a file descriptor. If the client then sends data to the server, Node gets a notifica-
tion about this and fires a callback in your JavaScript code.

A SINGLE-THREADED WORLD
It’s important to note that Node uses a single thread of execution. It’s not possible, without the
help of third-party modules, to change this fact.

To illustrate what this means and how it relates to the event loop, consider the following example:

var start = Date.now();

setTimeout(function () {

 console.log(Date.now() - start);

 for (var i = 0; i < 1000000000; i++){}

}, 1000);

setTimeout(function () {

 console.log(Date.now() - start);

}, 2000);

These two timeouts print how many seconds elapsed from the moment they’re set to the
moment the functions are called. The output in my computer looks like Figure 3-1.

Figure 3-1: This program shows the elapsed time when each setTimeout is
executed, which doesn’t correlate to the values in the code.

What happens internally is that the event loop is blocked by the JavaScript code. When the
first event is dispatched, the JavaScript callback is run. Because you are doing a lot of intense
computation (a very long for loop), by the time the next iteration of the event loop is
executed, more than two seconds have elapsed; therefore, the JavaScript timeouts don’t match
actual clock seconds.

32 PA RT I   •   Getting Started: Setup and Concepts

This behavior is, of course, undesirable. As I explained previously, the event loop is the
foundation of all IO in Node. If a timeout can be delayed, so can an incoming HTTP request
or other forms of IO. That means the HTTP server would handle fewer requests per second
and not perform efficiently.

For this reason, the great majority of modules available for node are non-blocking and
perform tasks asynchronously.

If you have only one thread of execution, which means that as a function is running no others
can be executed concurrently, how is Node.JS so good at managing a lot of network concur-
rency? For example, in a normal laptop, a simple HTTP server written in Node is able to
handle thousands of clients per second.

For this to happen, you must first understand the concept of call stacks.

When v8 first calls a function, it starts what is commonly known as a call stack or execution
stack.

If that function calls another function, v8 adds it to the call stack. Consider the following
example:

function a () {

 b();

}

function b(){};

The call stack in this example is composed of “a” followed by “b”. When “b” is reached, v8
doesn’t have anything left to execute.

Return to the HTTP server example:

http.createServer(function () {

 a();

});

function a(){

 b();

};

function b(){};

In this example, whenever an HTTP client connects to Node, the event loop dispatches a
notification. Eventually, the callback function is executed, and the call stack becomes “a” > “b”.

Since Node is running in a single thread, while that call stack is being unrolled no other client
or HTTP request can be handled.

You might be thinking, then, that Node maximum concurrency is 1! And that would be
correct. Node does not offer true parallelization, because that would require the introduction
of many parallel threads of execution.

C H A P T E R 3   •   Blocking and Non-blocking IO 33

The key is that you don’t need to handle more than one at the same given instant, provided
that the call stack executes really fast. And that’s why v8 coupled with non-blocking IO are so
good together: v8 is really fast at executing JavaScript, and non-blocking IO ensures the single
thread of execution doesn’t get hung up on external uncertainties, like reading a database or
hard disk.

A real-world example of the utility of non-blocking IO is the cloud. In most cloud deploy-
ments like the Amazon cloud (“AWS”), operating systems are virtualized and hardware
resources are shared between tenants (since you are essentially “renting hardware”). What this
means is that if the hard drive, for example, is spinning to seek a file for another tenant, and
you are trying to seek, the latency will increase. Since the IO performance for the hard drive is
very unpredictable, if we blocked our thread of execution when we’re reading a file, our
program could behave very erratically and slowly.

A common example of IO in our applications is getting data from databases. Imagine a
situation where you need to get some data from the database to respond to a request.

http.createServer(function (req, res) {

 database.getInformation(function (data) {

 res.writeHead(200);

 res.end(data);

 });

});

In this case, once a request comes in, the call stack is just composed of the database call. Since
the call is non-blocking, it’s up to the event loop once again to initiate a new call stack when
the database IO completes. But after you tell Node “let me know when you have the database
response,” Node can continue to do other things. Namely, handling more HTTP clients and
requests!

A topic covered throughout the book that very much has to do with the way Node is archi-
tected is error handling, described next.

ERROR HANDLING
First and foremost, as you saw earlier in the chapter, Node applications rely on big processes
with a lot of shared state.

If an error occurs in a particular callback of a particular HTTP request, for example, the
whole process is compromised:

var http = require(‘http’);

http.createServer(function () {

 throw new Error(’This will be uncaught’)

}).listen(3000)

34 PA RT I   •   Getting Started: Setup and Concepts

Because that exception isn’t caught, the moment you try to access the web server, the process
crashes, as shown in Figure 3-2.

Figure 3-2: You can see the call stack from the event loop (IOWatcher) all
the way to the callback.

Node behaves this way because the state of the process after an uncaught exception is uncer-
tain. Things might or might not work normally afterward, and if the error is left unhandled,
things might continue to fail in ways that are unexpected or can’t be debugged.

This behavior changes if you add an uncaughtException handler. The process doesn’t
exit, and you are in charge of things afterward:

process.on(‘uncaughtException’, function (err) {

 console.error(err);

 process.exit(1); // we exit manually

});

This behavior is consistent with APIs that emit error events. For example, consider the
following example, where you make a TCP server and connect to it with the telnet utility:

var net = require(‘net’);

net.createServer(function (connection) {

 connection.on(‘error’, function (err) {

 // err is an Error object

 });

}).listen(400);

Throughout Node, many of the native modules such as http and net emit error events. If
these events go unhandled, an uncaught exception is thrown.

Aside from the uncaughtException and error events, most of the asynchronous Node
APIs take a callback where the first parameter sent is an error object or null:

C H A P T E R 3   •   Blocking and Non-blocking IO 35

var fs = require(‘fs’);

fs.readFile(‘/etc/passwd’, function (err, data) {

 if (err) return console.error(err);

 console.log(data);

});

Handling errors every step of the way in your code is essential because it allows you to write
safe programs and also not lose context of where errors originate.

STACK TRACES
In JavaScript, when an error occurs, you can see the series of function calls that lead up to the
error. This is called a stack trace. Consider the following example:

function c () {

 b();

};

function b () {

 a();

};

function a () {

 throw new Error(‘here’);

};

c();

Run it now to obtain a stack trace like the one in Figure 3-3.

Figure 3-3: The call stack displayed by v8 for the succession of calls you defined.

36 PA RT I   •   Getting Started: Setup and Concepts

In this figure, you can see the clear succession of calls that lead to the error. Now try the same
thing when the event loop is involved:

function c () {

 b();

};

function b () {

 a();

};

function a () {

 setTimeout(function () {

 throw new Error(‘here’);

 }, 10);

};

c();

When this code is executed (as in Figure 3-4), valuable information is missing from the stack
trace.

Figure 3-4: The call stack begins with the entry point of the event loop.

By the same token, catching an error of a function that’s deferred so that it is called in the
future is not possible. This yields an uncaught exception and the catch block doesn’t execute:

try {

 setTimeout(function () {

 throw new Error(‘here’);

 }, 10);

} catch (e) { }

This is the main reason that in Node.JS, you want to handle errors correctly every step of the
way. If you are sloppy, you might find yourself with errors that are hard to track down because
no contextual information is available.

C H A P T E R 3   •   Blocking and Non-blocking IO 37

It’s important to mention that in future versions of Node, machinery will be in place to make
errors thrown by asynchronous handlers easier to track down.

SUMMARY
You now understand how all the actors involved—the event loop, non-blocking IO, and
v8—work efficiently together to give developers interfaces to write very fast networked
applications.

You understand that Node offers great simplicity to the programmer by having a single thread
of execution, but also that this architecture makes it unwise to perform blocking IO when
you’re trying to write network applications. You also understand that all the state is main-
tained in a single memory space for that thread, which means you need to be extra careful
when writing programs.

You also clearly see that non-blocking IO and callbacks introduce new paradigms for debug-
ging and error handling that are strikingly different from programs you write with blocking IO.

conceived in its specification, but that both Node
and browsers have. But more importantly, you
will also go through the core Node.JS additions
that are considered, as the title of this chapter
implies, “Node JavaScript.”

The first difference you’ll look at pertains to the
global object.

WRITING JAVASCRIPT FOR Node.JS and the
browser is a remarkably different experience.
Node.JS takes the basic language, and just like
browsers did, adds different APIs on top of it to
ensure writing code that’s meant to power
networked applications feels as natural as possible.

Throughout this chapter you will examine certain
APIs that are not part of the language as it was

NODE
JAVASCRIPT4

C H A P T E R

40 PA RT I   •   Getting Started: Setup and Concepts

THE GLOBAL OBJECT
In the browser, window is the global object. Anything that you define in window becomes
available to all parts of your code. For example, setTimeout is in reality window.
setTimeout, and document is window.document.

Node has two similar objects that provide a cleaner separation:

◾	 global: Just like window, any property attached to global becomes a variable you can
access anywhere.

◾	 process: Everything that pertains to the global context of execution is in the process
object. In the browser, there’s only one window, and in Node, there’s only one process at
any given time. As an example, in the browser, the window name is window.name, and
in Node, the name of the process is process.title.

Later chapters dig deeper into the process object because it provides broad and interesting
functionality, especially pertaining to command-line programs.

USEFUL GLOBALS
Some functions and utilities available in the browser are not part of the language specification
but rather are useful things that browsers added on top, which today are generally considered
to be JavaScript. These are often exposed as globals.

For example, setTimeout is not part of ECMAScript, but a function that browsers deemed
important to implement. As a matter of fact, even if you tried, you wouldn’t be able to rewrite
that function in pure JavaScript.

Other APIs are in the process of being introduced to the language (and are at the proposal
stage), but Node.JS adds them because they’re needed for us to write our programs effectively.
An example of this is a the setImmediate API, which in Node.JS it finds its equivalent in
process.nextTick

This function allows you to schedule the execution of a function at the next iteration of the
event loop:

console.log(1);

process.nextTick(function () {

 console.log(3);

});

console.log(2);

Imagine it as something similar to setTimeout(fn, 1) or “call this function in the most
immediate future in an asynchronous way.” You can then understand why the previous
example will output the numbers in the order 1, 2, 3.

C H A P T E R 4   •   Node JavaScript 41

A similar example is console, which was originally implemented by Firebug, the Firefox
plugin to aid development. As a result, Node includes a global console object with useful
methods, such as console.log and console.error.

THE MODULE SYSTEM
JavaScript, in its pure form, is a world of globals. All the APIs that are normally used in the
browser setTimeout, document, and so on are globally defined.

When you include third-party modules, the expectation is that they also expose a global
variable (or many). For example, when you include <script src=”http://code.
jquery.com/jquery-1.6.0.js”> in an HTML document, you later refer to this module
through the global jQuery object:

<script>

 jQuery(function () {

 alert(‘hello world!’);

 });

</script>

The fundamental reason for this is that in its specification, JavaScript doesn’t describe an API
for module dependency and isolation. As a result, including multiple “modules” in this way
results in a pollution of the global namespace and potential naming collisions.

Node ships with a lot of useful modules that are the fundamental toolkit for building out
modern applications; they include http, net, fs, and many more. And as you saw in
Chapter 1, “The Setup,” especially with the help of NPM, you can easily install hundreds more.

Instead of defining a number of globals (or evaluating a lot of code that you might not use),
Node decided to introduce a simple yet extremely powerful module system, the roots of
which are three globals: require, module, and exports.

ABSOLUTE AND RELATIVE MODULES
I use the term absolute modules for the ones that Node finds by internally inspecting the
node_modules directory, or modules that Node ships within its core, like fs.

As you saw in Chapter 1, if you have a colors module installed, its path becomes
./node_modules/colors.

Therefore, you can require that module by its name without pointing to any directory:

require(‘colors’)

42 PA RT I   •   Getting Started: Setup and Concepts

This particular module alters String.prototype, so it doesn’t export an API. The fs
module, however, exports a number of functions that you can leverage:

var fs = require(‘fs’);

fs.readFile(‘/some/file’, function (err, contents) {

 if (!err) console.log(contents);

});

Modules can also leverage the module system internally, to produce code with a clean separation
of APIs and abstractions. But instead of having to declare each part of a certain module or app as
a separate module with its own package.json file, you can leverage what I’ll call relative
modules.

Relative modules point require to a JavaScript file relative to the working directory. To
illustrate, create two files named module_a.js and module_b.js and a third file named
main.js, all in the same directory

module_a.js
console.log(‘this is a’);

module_b.js
console.log(‘this is b’);

main.js
require(‘module_a’);

require(‘module_b’);

Then run main (see Figure 4-1):

$ node main

As you can see in Figure 4-1, Node is unable to find module_a or module_b. The reason is
that they weren’t installed with NPM, they’re not in a node_modules directory, and Node
most certainly doesn’t ship with them.

C H A P T E R 4   •   Node JavaScript 43

Figure 4-1: Error shown when trying to require module_a, which can’t be found

What you need to do for this example to run is to prepend ./ to the require parameters:

main.js
require(‘./module_a’)

require(‘./module_b’)

Now run this example again (see Figure 4-2).

Figure 4-2: Module requirements are executed successfully

Success! The two modules execute. Next, I describe how you can make these modules expose
APIs that you can assign to a variable when you call require.

44 PA RT I   •   Getting Started: Setup and Concepts

EXPOSING APIS
For a module to expose an API that’s expressed as the return value of a require call, two
globals, module and exports ,come into play.

By default, each module exports an empty object {}. If you want to add properties to it, you
can simply reference exports:

module_a.js
exports.name = ‘john’;

exports.data = ‘this is some data’;

var privateVariable = 5;

exports.getPrivate = function () {

 return privateVariable;

};

Now test it out (see Figure 4-3):

index.js
var a = require(‘./module_a’);

console.log(a.name);

console.log(a.data);

console.log(a.getPrivate());

Figure 4-3: Showing the values exposed by the API of module_a

In this case, exports happens to be a reference to module.exports, which is an object by
default. If setting individual keys in this object is not enough, you can also override module.
exports completely. This is a common use case for modules that export constructors (see
Figure 4-4):

C H A P T E R 4   •   Node JavaScript 45

person.js
module.exports = Person;

function Person (name) {

 this.name = name;

};

Person.prototype.talk = function () {

 console.log(‘my name is’, this.name);

};

index.js
var Person = require(‘./person’);

var john = new Person(‘john’);

john.talk();

Figure 4-4: OOP-style JavaScript with Node.JS modules example

As you can see, in this index you no longer receive an Object as the return value, but a
Function, thanks to overriding module.exports.

EVENTS
One of the fundamental APIs in Node.JS is the EventEmitter. In both Node and browser
JavaScript, a lot of the code depends on events you listen on or events you emit:

window.addEventListener(‘load’, function () {

 alert(‘Window is loaded!’);

});

The DOM APIs in the browser that deal with events are mainly addEventListener,
removeEventListener, and dispatchEvent. They are present on a number of different
objects, from a window to an XMLHTTPRequest.

46 PA RT I   •   Getting Started: Setup and Concepts

The following example makes an AJAX request (in modern browsers) and listens on the
stateChange to know when data is ready:

var ajax = new XMLHTTPRequest

ajax.addEventListener(‘stateChange’, function () {

 if (ajax.readyState == 4 && ajax.responseText) {

 alert(‘we got some data: ‘ + ajax.responseText);

 }

});

ajax.open(‘GET’, ‘/my-page’);

ajax.send(null);

In Node, you also listen to and emit events everywhere. Node therefore exposes the Event
Emitter API that defines on, emit, and removeListener methods. It’s exposed as
process.EventEmitter:

eventemitter/index.js
var EventEmitter = require(‘events’).EventEmitter

 , a = new EventEmitter;

a.on(‘event’, function () {

 console.log(‘event called’);

});

a.emit(‘event’);

This API a lot less verbose than the DOM equivalent, and Node uses it internally and lets you
easily add it to your own classes:

var EventEmitter = process.EventEmitter

 , MyClass = function (){};

MyClass.prototype._proto__ = EventEmitter.prototype;

Therefore, all the instances of MyClass have encapsulated events support:

var a = new MyClass;

a.on(‘some event’, function () {

 // do something

});

Events are central to Node’s non-blocking design. Since Node usually doesn’t “respond right
away” with data (because that would imply blocking the thread while waiting on a resource),
it usually emits events with data instead.

As an example, consider an HTTP server again. When Node fires the callback with an
incoming request, all its data might not be immediately available. This is the case for example
for POST requests (that is, the user submitting a form).

When the user submits a form, you normally listen on the data and end events of a request:

C H A P T E R 4   •   Node JavaScript 47

http.Server(function (req, res) {

 var buf = ‘’;

 req.on(‘data’, function (data) {

 buf += data;

 });

 req.on(‘end’, function () {

 console.log(‘All the data is ready!’);

 });

});

This is a common use-case in Node.JS: you “buffer” the contents of the request (data event),
and then you can do something with it when you’re sure all the data has been received (end
event).

In order for Node to let you know that a request has hit the server as soon as possible, regardless
of whether all its data is present or not, it needs to rely on events. Events in Node are the
mechanism by which you get notified of things that haven’t occurred yet, but are bound to occur.

Whether an event will be fired or not depends on the API that implements it. For example,
you know that ServerRequest inherits from EventEmitter, and now you also know
that it emits data and end events.

Certain APIs emit error events, which might or might not happen at all. There are events that
only fire once (like end), or others that could fire more than once (like data). Some APIs only
emit a certain event when certain conditions are met. For example, after a certain event
happens some other event might be guaranteed not to be fired again. In the case for an HTTP
request, you fully expect no data events to happen after an end event. Otherwise, your app
would malfunction.

Similarly, sometimes for the use case of your application you only care about registering a
callback for an event only once, regardless if it fires again in the future. Node provides a
shortcut method for this:

a.once(‘an event’, function () {

 // this function will be called only once, even if the event is triggered again

});

To understand what type of events are available and what their contracts (the “rules” the given
API defines for triggering them) are, you usually refer to the API documentation of the given
module. Throughout the book you’ll learn the core Node module APIs and some of the most
important events, but always keeping the API handy will be a very helpful habit.

BUFFERS
Another deficiency in the language that Node makes up for, besides modules, is handling of
binary data.

48 PA RT I   •   Getting Started: Setup and Concepts

Buffer is a global object that represents a fixed memory allocation (that is, the number of
bytes that are put aside for a buffer have to be known in advance), which behaves like an array
of octets, effectively letting you represent binary data in JavaScript.

A part of its functionality is the capability to convert data between encodings. For example,
you can create a buffer from the base64 representation of an image and then write it down
to a file as a binary PNG that can actually be used:

buffers/index.js
var mybuffer = new Buffer(‘==ii1j2i3h1i23h’, ‘base64’):

console.log(mybuffer);

require(‘fs’).writeFile(‘logo.png’, mybufffer);

For those not familiar with base64, it’s essentially a way of writing binary data with only
ASCII characters. In other words, it allows you to represent something as complex as an
image in simple English characters (therefore taking up a lot more hard drive space).

Most of the Node.JS APIs that do data IO take and export data as buffers. In this example, the
writeFile API from the filesystem module takes a buffer as a parameter to write out the file
logo.gif.

Run it and open the file (see Figure 4-5).

$ node index

$ open logo.png

As you can see as the result of the console.
log call with the Buffer object, it’s a
simple interface to the raw bytes that make
up an image.

SUMMARY
You have now looked at the major differences between the JavaScript you write for the
browser and the one you write for Node.JS.

You have a basic grasp of the APIs that Node added for patterns that are extremely common
in day-to-day JavaScript but absent from the main language specification, such as timers,
events, binary data, and modules.

You know the equivalent of window in Node world, and that you can leverage existing
developer utilities like console.

Figure 4-5: The GIF file created from the buffer base64
representation in the script showing the Node.JS logo

PA R T

II ESSENTIAL
NODE APIS

Chapter 5: CLI and FS APIs: Your First Application

Chapter 6: TCP

Chapter 7: HTTP

your first contact with the flow control involved
in nonblocking evented I/O programming.

In addition to learning how all these APIs
interact together, you create your first applica-
tion: a simple command-line file explorer, whose
goal is to allow the user to read and create files.

THIS CHAPTER EXAMINES some of the
most essential Node.JS APIs: those related to the
handling of stdin and stdout of a process
(stdio) and those related to the filesystem (fs).

As discussed in the preceding chapter, the Node
approach to concurrency inherently involves the
use of callbacks and events. These APIs provide

CLI AND FS APIS:
YOUR FIRST
APPLICATION5

C H A P T E R

52 PA RT I I   •   Essential Node APIs

REQUIREMENTS
Start by defining what you want your program to do:

◾	 You want the program to run on the command line. This means that the program is
summoned either with the node command or by executing it directly, and then provides
interaction with the user input and output through the terminal.

◾	 Upon starting, the program should display the list of current directories (see Figure 5-1).

Figure 5-1: List of current directories displayed at startup.

◾	 After you select a file, the program should output its contents.
◾	 After you select a directory, the program should display its children.
◾	 Then the program should quit.

Considering these cases, you can break down the project into different steps:

	 1.	Creating our module
	 2.	Deciding on sync fs versus async fs
	 3.	Understanding Streams
	 4.	Performing input and output
	 5.	Refactoring
	 6.	 Interacting with the fs
	 7.	Wrapping up

WRITING YOUR FIRST PROGRAM
You’re now going to write a module based on the steps outlined above. The module is made
up of a few files that you can create with any text editor.

By the end of this section you will have a fully functioning program written 100% in Node.JS.

C H A P T E R 5   •   CLI and FS APIs: Your First Application 53

CREATING THE MODULE
As in any other example in this book, you start by creating a directory that will contain the
project. For the sake of this example, call this directory file-explorer.

As you learned in other chapters, it’s always good practice to define a package.json file for
your projects. This way, you can manage dependencies that are part of the NPM registry and
make future publication of your modules possible.

Even though this particular example uses only APIs that are core to Node.JS (and therefore
not fetched from the NPM registry), you need to create the simple package.json:

package.json

{

 “name”: “file-explorer”

 , “version”: “0.0.1”

 , “description”: “A command-file file explorer!”

}

Note: NPM adheres to a versioning spec called semver. That’s why instead of using
“0.1” or “1” as the version field, you explicitly define it as “0.0.1”.

To verify that your package.json is valid, run the command $ npm install.

If it works, the output should be empty. Otherwise, a JSON exception is shown (see Figure 5-2).

Figure 5-2: Running npm install with malformed JSON in package.json.

To continue, you are going to create a single JavaScript file to contain the entire functionality
of your program: index.js.

http://semver.org/

54 PA RT I I   •   Essential Node APIs

SYNC OR ASYNC?
You start the file by declaring the dependencies. Because the stdio APIs are part of the
process global, the only dependency you have is the fs module:

index.js

/**

 * Module dependencies.

 */

var fs = require(‘fs’);

The first thing you do upon running the program is obtain a list of files in the current directory.

One important point to keep in mind is that the fs API is unique in that it allows you to
make both blocking and nonblocking calls. For example, if you want to get the list of present
directories, you can use the following call:

> console.log(require(‘fs’).readdirSync(__dirname));

That returns the contents immediately or throws an exception if an error exists (see Figure 5-3).

Figure 5-3: Examining the return value of readdirSync

The approach is obviously the asynchronous one:

> function async (err, files) { console.log(files); };

> require(‘fs’).readdir(‘.’, async);

This example produces the same result, shown in Figure 5-4.

Figure 5-4: The asynchronous version of readdir

C H A P T E R 5   •   CLI and FS APIs: Your First Application 55

As discussed in Chapter 3, to create fast programs that can handle a lot of concurrency in only
one thread, you create asynchronous evented programs.

Such are not the circumstances for this little CLI program (since only one person will be reading
files at a time), but for the sake of learning the most important and challenging parts of Node.JS,
you will write this in async style.

To get the list of files, you therefore use fs.readdir. The callback you supply provides an
error object (which is null if no error occurs) and a files array:

index.js

// . . .

fs.readdir(__dirname, function (err, files) {

 console.log(files);

});

Try executing the program! The result looks something like that in Figure 5-5.

Figure 5-5: Running the example in your own node program contained in
index.js

Now that you understand that the fs module has synchronous and asynchronous methods
for accessing the file system, you need to understand about streams, a fundamental concept in
Node.JS.

UNDERSTANDING STREAMS
As you noticed already, console.log outputs to the console. In particular, console.log
does something really specific: it writes to the stdout stream the string that you supply,
followed by a \n (newline) character.

Observe the difference between the examples in Figure 5-6.

56 PA RT I I   •   Essential Node APIs

Figure 5-6: Writing Hello World in the first case yields a newline, but not in the
second case

Now look at the source:

example-1.js

console.log(‘Hello world’);

and

example-2.js

process.stdout.write(‘Hello world’);

The process global contains three Stream objects that match the three Unix Standard
Streams:

- **stdin**: Standard input

- **stdout**: Standard output

- **stderr**: Standard error

These Stream objects are illustrated in
Figure 5-7.

The first one, stdin, is a readable stream,
whereas stdout and stderr are writeable
streams.

The default state of the stdin Stream is
paused. Normally, when a program is
executed, it does something and then exits.
Sometimes, however, and such is the case in
this application, you need to keep the
program running so that the user can enter
some data.

When you resume that Stream, Node watches the underlying file descriptor (that in Unix
receives the number 0), therefore keeping the event loop running and not exiting your
program, waiting for events to be triggered. Node.JS always exits automatically, unless it’s
waiting on IO.

Figure 5-7: The stdin, stdout, and stderr
objects in the context of a traditional text terminal

C H A P T E R 5   •   CLI and FS APIs: Your First Application 57

Another property of a Stream is that it can have a default encoding. If you set an encoding to
a stream, instead of getting a raw Buffer, you get an encoded string (utf-8, ascii, and so on)
as parameters of events.

The Stream object is a basic building block much like an EventEmitter (as a matter of
fact, it inherits from it). You’ll be dealing with different types of Streams throughout Node,
such as TCP sockets or HTTP requests. In short, when reading or writing data progressively is
involved, streams are involved.

INPUT AND OUPUT
Now that you understand a little more about what happens when you execute your program,
try to write the first part of the application, which lists files in the present directory and waits
for user input:

index.js

// . . .

fs.readdir(process.cwd(), function (err, files) {

 console.log(‘’);

 if (!files.length) {

 return console.log(‘ \033[31m No files to show!\033[39m\n’);

 }

 console.log(‘ Select which file or directory you want to see\n’);

 function file(i) {

 var filename = files[i];

 fs.stat(__dirname + ‘/’ + filename, function (err, stat) {

 if (stat.isDirectory()) {

 console.log(‘ ‘+i+’ \033[36m’ + filename + ‘/\033[39m’);

 } else {

 console.log(‘ ‘+i+’ \033[90m’ + filename + ‘\033[39m’);

 }

 i++;

 if (i == files.length) {

 console.log(’’);

 process.stdout.write(’ \033[33mEnter your choice: \033[39m’);

 process.stdin.resume();

 } else {

 file(i);

 }

 });

 }

 file(0);

});

58 PA RT I I   •   Essential Node APIs

Now look at this code line by line.

For visual separation, you output an empty line:

console.log(‘’)

You write that no files are present to be listed if the files array is empty. The \033[31m and
033[39m that surround the text give it a red color. The last character in the example is the
newline \n again, simply for visual separation.

if (!files.length) {

 return console.log(‘ \033[31m No files to show!\033[39m\n’);

}

The next line is self-explanatory:

console.log(‘ Select which file or directory you want to see\n’);

You define a function that is going to be executed for each member of the array. This is the
first pattern of asynchronous flow control used throughout this book: serial execution. At the
end of the chapter, you look at it in detail.

function file (i) {

 // . . .

}

You access the first filename and then obtain the Stat on it. fs.stat gives a variety of
metadata about the file or directory:

var filename = files[i];

fs.stat(__dirname + ‘/’ + filename, function (err, stat) {

 // . . .

});

The callback gives you, again, an error object (if any) and a Stat object. The Stat object
method of interest in this case is isDirectory:

if (stat.isDirectory()) {

 console.log(‘ ‘+i+’ \033[36m’ + filename + ‘/\033[39m’);

} else {

 console.log(‘ ‘+i+’ \033[90m’ + filename + ‘\033[39m’);

}

If the path is a directory, you want to print it in a different color from files.

Next is the central piece of flow control. You increment the counter by one, and you immedi-
ately check whether you have any files left for processing:

C H A P T E R 5   •   CLI and FS APIs: Your First Application 59

i++;

if (i == files.length) {

 console.log(‘’);

 process.stdout.write(‘ \033[33mEnter your choice: \033[39m’);

 process.stdin.resume();

 process.stdin.setEncoding(‘utf8’);

} else {

 file(i);

}

If you don’t have any files left, you prompt the user for an option. Notice that you use
process.stdout.write instead of console.log; you don’t want a newline so that the
user can type right after the prompt (see Figure 5-8):

 console.log(‘’);

 process.stdout.write(‘ \033[33mEnter your choice: \033[39m’);

Figure 5-8: Your program so far, prompting you for stdin input.

This line, as discussed earlier, allows you to request input from the user:

 process.stdin.resume();

This line sets the Stream encoding to utf8 so that you can seamlessly support special
characters:

 process.stdin.setEncoding(‘utf8’);

On the other hand, if there’s still a file to process, the function calls itself again:

 file(i);

The process thus continues serially until all the files are processed and user input is requested.
This is the first important pattern you study in this chapter.

REFACTORING
You start refactoring by adding some useful shortcuts because you’re going to use stdin and
stdout quite a bit:

60 PA RT I I   •   Essential Node APIs

index.js

// . . .

var fs = require(‘fs’)

 , stdin = process.stdin

 , stdout = process.stdout

Because you’re writing code that’s asynchronous, you run the risk that as the functionality
grows (especially that which regards to flow control), too much nesting of functions makes
the program hard to read.

To counter this, you can define functions in succession that represent each step of the async
process.

First, separate the function to read the stdin:

index.js

// called for each file walked in the directory

function file(i) {

 var filename = files[i];

 fs.stat(__dirname + ‘/’ + filename, function (err, stat) {

 if (stat.isDirectory()) {

 console.log(‘ ‘+i+’ \033[36m’ + filename + ‘/\033[39m’);

 } else {

 console.log(‘ ‘+i+’ \033[90m’ + filename + ‘\033[39m’);

 }

 if (++i == files.length) {

 read();

 } else {

 file(i);

 }

 });

}

// read user input when files are shown

function read () {

 console.log(‘’);

 stdout.write(‘ \033[33mEnter your choice: \033[39m’);

 stdin.resume();

 stdin.setEncoding(‘utf8’);

}

Notice that you’re also leveraging new stdin and stdout references.

The next logical step after reading input is evaluating it. The user is asked to provide an option
of which file to read. To that end, after you set the encoding for stdin, you start listening on
the data event:

C H A P T E R 5   •   CLI and FS APIs: Your First Application 61

function read () {

 // . . .

 stdin.on(‘data’, option);

}

// called with the option supplied by the user

function option (data) {

 if (!files[Number(data)]) {

 stdout.write(‘ \033[31mEnter your choice: \033[39m’);

 } else {

 stdin.pause();

 }

}

Here, you check that the user input matches an existing index in the files array. Remember
that the files array is part of the callback you’re enclosed in (fs.readdir). Notice you
convert the utf-8 string data to a Number for the check.

If the check is successful, you make sure to pause the stream again (back to its default state) so
that after the program performs the fs operations described in the next step, it quits (see
Figure 5-9).

Figure 5-9: An example of a wrong choice being entered

Now that you’ve made progress in the user interaction aspects by presenting the user with the
list of files, you can move on to actually read and display them.

INTERACTING WITH THE FS
When you know you can locate the file, it’s time to read it!

function option (data) {

 var filename = files[Number(data)];

 if (!filename) {

 stdout.write(‘ \033[31mEnter your choice: \033[39m’);

 } else {

 stdin.pause();

 fs.readFile(__dirname + ‘/’ + filename, ‘utf8’, function (err, data) {

62 PA RT I I   •   Essential Node APIs

 console.log(‘’);

 console.log(‘\033[90m’ + data.replace(/(.*)/g, ‘ $1’) + ‘\033[39m’);

 });

 }

}

Notice that once again, you can specify the encoding in advance so that the event gives you a
ready-for-use string:

fs.readFile(__dirname + ‘/’ + filename, ‘utf8’, function (err, data) {

You then output the content data, adding some indentation with a regular expression (see
Figure 5-10):

data.replace(/(.*)/g, ‘ $1’)

Figure 5-10: An example of reading a simple file

But what if a directory is chosen? In that case, you’re supposed to output its children instead.

To avoid performing an fs.stat again, go back to the file function and save references to
the Stat objects:

// . . .

var stats = [];

function file(i) {

 var filename = files[i];

 fs.stat(__dirname + ‘/’ + filename, function (err, stat) {

 stats[i] = stat;

 // . . .

C H A P T E R 5   •   CLI and FS APIs: Your First Application 63

Now you can easily check from the option function. For reference, this is where you were
previously executing fs.readFile:

 if (stats[Number(data)].isDirectory()) {

 fs.readdir(__dirname + ‘/’ + filename, function (err, files) {

 console.log(‘’);

 console.log(‘ (‘ + files.length + ‘ files)’);

 files.forEach(function (file) {

 console.log(‘ - ‘ + file);

 });

 console.log(‘’);

 });

 } else {

 fs.readFile(__dirname + ‘/’ + filename, ‘utf8’, function (err, data) {

 console.log(‘’);

 console.log(‘\033[90m’ + data.replace(/(.*)/g, ‘ $1’) + ‘\033[39m’);

 });

 }

If you run the program now you should be able to select a directory and be presented with a
list of choices of files to read (see Figure 5-11).

Figure 5-11: An example of reading the test/ folder.

And you’re done! Congratulations on writing your first Node CLI program.

EXPLORING THE CLI
Now that you have completed your first command-line program, it’s useful to learn additional
APIs that are helpful when writing similar applications that run from the terminal.

ARGV
The process.argv contains all the argument values with which the node program that is
being run was summoned:

64 PA RT I I   •   Essential Node APIs

example.js

console.log(process.argv);

In Figure 5-12, notice that the first element is always node, and the second is the path of the
file being evaluated. Subsequent elements are the arguments supplied with the command.

Figure 5-12: An example of the contents of process.argv

To obtain these elements, you can slice off the first two elements from the array (see Figure 5-13):

example-2.js

console.log(process.argv.slice(2));

Figure 5-13: An example of the stripped-down argv that displays only the
supplied options to the example program

Next up, you need to understand how to access the difference between the directory a
program resides at and the one the program is run at.

WORKING DIRECTORY
In the sample app, you use __dirname to access the directory where the file that you’re
executing is in the filesystem.

Sometimes, however, it’s preferable to look for the current working directory at the time the
application is run. With the current implementation, if you’re in your home directory and
want to run this app, the result is the same as if you run it in any other directory because the
location where index.js lives doesn’t change, and therefore __dirname stays the same.

If you want to obtain the current working directory, you can call process.cwd:

> process.cwd()

/Users/guillermo

C H A P T E R 5   •   CLI and FS APIs: Your First Application 65

Node also provides the flexibility for changing it via process.chdir:

> process.cwd()

/Users/guillermo

> process.chdir(‘/’)

> process.cwd()

/

Another aspect of the context a program is run in is the presence of environmental variables.
You will learn how to access them next.

ENVIRONMENTAL VARIABLES
Node allows you to easily access variables that are part of your shell environment via the
handy object process.env.

For example, a common environmental variable is NODE_ENV (see Figure 5-14), which is used
conventionally to signal a node program whether you’re in a development or production
environment.

Figure 5-14: The environmental variable NODE_ENV

Controlling when to quit a program from within it is often times necessary.

EXITING
To quit your application, you can call process.exit and optionally supply an exit code.
For example, if you want to exit with an error, it’s good practice to quit with the code 1:

console.error(‘An error occurred’);

process.exit(1);

This allows healthy interoperability between your node CLI programs and other tools in the
operating system.

Another point of interoperability is the process signals.

SIGNALS
One of the ways processes communicate with the operating system is through signals. When you
want to signal the process to terminate immediately, for example, you send the SIGKILL signal.

66 PA RT I I   •   Essential Node APIs

Signals in Node programs are emitted as events on the process object:

process.on(‘SIGKILL’, function () {

 // signal received

});

Read on to understand how you brought colors to the example program in this chapter with
escape codes.

ANSI ESCAPE CODES
To control formatting, colors, and other output preferences in a text terminal, you use ANSI
escape sequences or codes. These special characters are recognized by the terminal emulator in
a standard way.

When you include the characters that surround your text, those characters are obviously not
output. These characters are called nonprinting.

Consider, for example, the following sequence:

 console.log(‘\033[90m’ + data.replace(/(.*)/g, ‘ $1’) + ‘\033[39m’);

◾	 \033 begins the escape sequence.
◾	 [indicates color setting.
◾	 90 is the foreground color to bright gray.
◾	 m wraps up the setting.

You might notice that on the other end you use 39, which resets back to the default terminal
color so that you partially colorize text.

You can find a complete table of ANSI escape codes at http://en.wikipedia.org/wiki/
ansi_escape_code.

EXPLORING THE FS MODULE
The fs module allows you to read and write data through a Stream API. Unlike the read
File and writeFile methods, the allocation of memory doesn’t happen all at once.

Consider the example of a large comma-separated file with millions of rows. Reading the
entire file to parse it would mean a large allocation of memory all at once. A much better
approach would be to read chunks at a time, look for line endings (“\n”) and parse
progressively.

Node Streams are a perfect fit for this, as you’ll read about next.

http://en.wikipedia.org/wiki/ansi_escape_code
http://en.wikipedia.org/wiki/ansi_escape_code

C H A P T E R 5   •   CLI and FS APIs: Your First Application 67

STREAMS
The method fs.createReadStream allows you to create a readable Stream object for a
particular file.

To understand the power of streams, consider the difference between the following two examples:

fs.readFile(‘my-file.txt’, function (err, contents){

 // do something with file

});

In this case, the callback function that you supply fires after the entire file is read, placed in
RAM, and ready to use.

In the following example, chunks of varying sizes are read, and each time a callback is fired:

var stream = fs.createReadStream(‘my-file.txt’);

stream.on(‘data’, function(chunk){

 // do something with part of the file

});

stream.on(‘end’, function(chunk){

 // reached the end

});

Why is this capability important? Imagine you have a large video you need to upload to a web
service. You don’t really need to read the entire video to start uploading it, so using Stream
immediately translates into a speed advantage.

This is also the case for logging, especially with a writable stream. If you use a web app to log
visitors to your website, it might not be so efficient to tell the operating system to open and
close the file (and therefore seek it in your disk each time) because you’ll be writing to the file
a lot.

Therefore, that’s a good use case for a fs.WriteStream. Open the file once and then call
.write for each log entry.

Another great fit for Node’s non-blocking design is watching.

WATCH
Node allows you to watch files and directories for changes. Watching means that upon a file
(or files contained within, in the case for watching a directory) changing in the file system,
you get an event in the form of a callback.

This functionality is widely used within the Node ecosystem. For example, some people prefer
to write CSS stylesheets in a language that compiles down to CSS. It’s often really handy to
perform the compilation upon the source file being modified.

68 PA RT I I   •   Essential Node APIs

Consider the following example. First, you look for all the CSS files in the working directory
and then you watch them for changes. When a change is detected, the filename is output to
the console:

var stream = fs.createReadStream(‘my-file.txt’);

var fs = require(‘fs’);

// get all files in working directory

var files = fs.readdirSync(process.cwd());

files.forEach(function (file) {

 // watch the file if it ends in “.css”

 if (/\.css/.test(file)) {

 fs.watchFile(process.cwd() + ‘/’ + file, function () {

 console.log(‘ – ‘ + file + ‘ changed!’);

 });

 }

});

In addition to fs.watchFile, you can also leverage fs.watch to watch entire directories
seamlessly.

SUMMARY
During this chapter you learned the fundamentals of writing a program in Node.JS, specifi-
cally a command-line program that interacts with the filesystem.

Despite the first example program being a good fit for the synchronous fs APIs, you lever-
aged the asynchronous ones to understand some of the intricacies of writing code that
contains a lot of callbacks. Regardless, we succeeded in making the program’s code expressive
and completely functional.

One of the most important APIs you learned about is the Stream, which will appear fre-
quently throughout the book. Almost everywhere where I/O is present, Streams are as well.

You also now have tools and pointers to play around and create sophisticated and useful
terminal programs that leverage the filesystem, interact with other programs or get input from
the user.

You will leverage these APIs (specially those pertaining to process) a lot as a Node.JS devel-
oper, even when writing web applications or more complex problems. Make sure you remem-
ber them well!

First, you are going to learn the characteristics of
the protocol. For example, what guarantees you
have when you send a message from one com-
puter to another using TCP. If you send two
messages in a row, will they get to the other end
in the order you wrote them? Understanding the
protocol is essential to understanding any
software that leverages it. Most of the times you
connect and talk to a database like MySQL,
you’re doing so over a TCP socket, for example.

The Node HTTP server is built on top of the Node
TCP server. To us programmers, this translates
into the Node http.Server inheriting from the
net.Server (net is the TCP module).

In addition to web browsers and servers (HTTP),
applications you rely on daily leverage TCP, like
email clients (SMTP/IMAP/POP), chat programs
(IRC/XMPP), remote shells (SSH), and a lot more.

Knowing as much as possible about TCP and
familiarizing yourself with the Node.JS APIs for it
will therefore help you create or understand
network programs with a variety of uses and
applications.

TRANSMISSION CONTROL PROTOCOL
(TCP) is a connection-oriented protocol that
provides reliable and ordered delivery of data
from one computer to another.

In other words, TCP is the transport protocol you
use whenever you want to ensure that all the
bytes you send from one point reach the other
completely and in the correct order.

For these and other reasons, most protocols that
you use now, such as HTTP, are built on top of
TCP. When you send the HTML for a page, you
want it to get to the other end in the exact form
that you sent it, and if that is not possible, an
error should be triggered. If even one character
(byte) of the stream were to be misplaced, a
browser might not be able to render the page.

Node.JS is a framework designed with the
development of networked applications in mind.
Today, applications in a network communicate
over the transport known as TCP/IP. Therefore
it’s crucial that we have an understanding about
how TCP/IP basically works, and how Node.JS
expresses it with its amazingly simple APIs.

TCP6
C H A P T E R

70 PA RT I I   •   Essential Node APIs

WHAT ARE THE CHARACTERISTICS OF TCP?
In order to use TCP, you don’t really need to understand how it works internally, or what
decisions were made about how the protocol works.

But that understanding can be a big help when analyzing problems with higher-level proto-
cols and servers, such as web servers or databases.

The first thing to understand about TCP is that it’s connection-oriented.

CONNECTION-ORIENTED COMMUNICATION
AND SAME-ORDER DELIVERY
When you work with TCP, you can think of the communication between a client and server
as a connection or data stream. This is a useful abstraction for the development of services and
applications because the Internet Protocol (IP) on which TCP sits is connectionless.

IP is based on the transmission of datagrams. These datagrams are packets of data that are
sent and received independently and whose order of arrival is arbitrary.

How does TCP ensure that these independent datagrams are part of an ordered stream?

If using IP means having potentially irregular arrival times of data packets, and these packets
do not belong to any data stream or connection, how is it possible that if you open two TCP/IP
connections to a server, the packets you send don’t get mixed up?

The answer to these two questions is what explains the existence of TCP. When you send data
in the context of a TCP connection, the IP datagrams that are sent out contain information
that identifies the connection they belong to and the order in the data stream.

Imagine splitting up a message into four parts. If a server gets parts 1 and 4, and both belong
to connection A, it knows to wait for parts 2 and 3 to arrive in other datagrams.

When you write a server that implements TCP, like you’re going to do with Node, you simply
don’t worry about this underlying complexity. You always think of connections, and when you
write to a socket, you know that the other end will receive it in that order, or if a network error
occurs, the connection will be considered erroneous and aborted.

BYTE ORIENTATION
TCP doesn’t know about characters, or character encodings, and rightfully so. As you saw in
Chapter 4, different text encoding can result in a different number of bytes being transmitted.

TCP therefore allows you to transmit data that could be a succession of ASCII characters
(1 byte each) or Unicode that could take up to 4 bytes each.

C H A P T E R 6   •   TCP 71

By not enforcing a particular message format, TCP offers great flexibility.

RELIABILITY
Because TCP is based on a fundamentally unreliable service, it must implement a series of
mechanisms to achieve reliability based on acknowledgments and timeouts.

When a data packet is sent, the sender expects an acknowledgment (a tiny response indicat-
ing that the packet was received). If, after a certain window of time, the acknowledgment is
not received, the sender retries to send the packet.

This behavior effectively deals with unpredictable conditions such as network errors and
network congestions.

FLOW CONTROL
What happens when two computers communicate and one has a significantly faster connec-
tion speed than the other?

TCP also ensures a balance in the flow of packets between the two ends by means of flow control.

CONGESTION CONTROL
TCP has built-in mechanisms to ensure that rates of packet delay and loss within a network
don’t drastically increase to ensure a good quality of service (QoS).

Similarly to flow control, which prevents the sender from overwhelming the receiver, TCP
tries to avoid congestive collapse by regulating the rate at which packets are sent, for example.

Now that you have some basic understanding of how TCP theoretically works, it’s time to get
practical. In order to test or play around with TCP servers, you can leverage the Telnet utility.

TELNET
Telnet is an old network protocol intended to provide a bidirectional virtual terminal. It was
mostly used before SSH existed as a means of controlling remote computers, such as remote
server administration. It’s (no surprise!) a layer on top of the TCP protocol.

Even though it’s almost completely fallen into disuse since the 2000s, almost all modern
operating systems today ship with a telnet client (also illustrated in Figure 6-1):

$ telnet

The port over which most Telnet communications occur is 23. If you try to connect to a
server over this port (telnet host.com 23 or simply telnet host.com), the program
attempts to speak the Telnet protocol over TCP.

72 PA RT I I   •   Essential Node APIs

Figure 6-1: Running the telnet utility.

But the telnet client program has a capability of far more interest in this case. If, by looking at
the data sent, it sees that the server is speaking a protocol other than Telnet, instead of closing
the connection or displaying an error, it puts the client in a protocol-less RAW TCP mode.

So, what happens when you try to telnet to a web server? To find out, check out the
following example.

First, start by writing a hello world Node.JS web server and making it listen on port 3000:

web-server.js

require(‘http’).createServer(function (req, res) {

 res.writeHead(200, { ‘Content-Type’: ‘text/html’ });

 res.end(‘<h1>Hello world</h1>’);

}).listen(3000);

You run it with node server.js. To make sure it works, you can use the quintessential
HTTP client, the browser, as shown in Figure 6-2.

Figure 6-2: The browser establishes a TCP connection to localhost over port 3000,
and then “talks” the HTTP protocol.

Now implement the client. To do so, establish a connection with telnet (see also Figure 6-3):

$ telnet localhost 3000

C H A P T E R 6   •   TCP 73

Figure 6-3: telnet enables you to establish a TCP connection manually using
the terminal.

Based on the result in Figure 6-3, it definitely looks as though this example worked, but
nothing that remotely resembles “Hello World” is coming up. The reason is that you must first
create an HTTP request by writing to the TCP connection, which is also called socket. Type
GET / HTTP/1.1 and press Enter twice.

The response, illustrated in Figure 6-4, should come up!

Figure 6-4: An IRC client (Textual.app) in action on the Mac.
Textual.app implements the IRC protocol over TCP sockets.

In sum:

◾	 You successfully established a TCP connection.
◾	 You created an HTTP request.
◾	 You received an HTTP response.
◾	 You tested a few of the features that make TCP. The data arrived just like you wrote it in

Node.JS: you first wrote the Content-Type header and then the response body, and
everything arrived in perfect order.

74 PA RT I I   •   Essential Node APIs

A TCP CHAT PROGRAM
As you saw earlier, the main goal of TCP is enabling reliable communication between
machines across networks.

The “Hello World” program of TCP chosen for this chapter is a chat application because it’s
one of the simplest ways to illustrate the usefulness of TCP.

Next, you’re going to create a basic TCP server that anyone can connect to without imple-
menting any sophisticated protocols or commands:

◾	 When the server is connected, it greets you and asks for your name. It tells you how many
other clients are connected.

◾	 Upon typing in your name followed by Enter, you’re considered connected.
◾	 When connected, you can receive and send messages to other connected clients by typing

and pressing Enter.

What does it mean to press Enter? Essentially, everything you write on Telnet is immediately
sent to the server. Pressing Enter inserts the character \n. In the Node server, you look for
this \n to know when a message has arrived completely. It’s the delimiter.

In other words, pressing Enter is no different from writing a letter a.

CREATING THE MODULE
As usual, you start by creating the directory where your project is going to live and a
package.json file:

package.json

{

 “name”: “tcp-chat”

 , “description”: “Our first TCP server”

 , “version”: “0.0.1”

}

You can test it by running npm install. An empty line should be printed because the
project has no dependencies.

UNDERSTANDING THE NET.SERVER API
Next, create an index.js file to contain the server:

/**

 * Module dependencies.

 */

var net = require(‘net’)

C H A P T E R 6   •   TCP 75

/**

 * Create server.

 */

var server = net.createServer(function (conn) {

 // handle connection

 console.log(‘\033[90m new connection!\033[39m’);

});

/**

 * Listen.

 */

server.listen(3000, function () {

 console.log(‘\033[96m server listening on *:3000\033[39m’);

});

Notice that you specify a callback function to createServer. This function gets executed
every time a new connection to the server is established.

To test this callback, run the code to spawn your TCP to the server. When listen executes,
it binds the server to the port 3000 and subsequently prints a message to the terminal.

$ node index.js

Figure 6-5: Your server will bind to the port 3000 and then display a success message.

Now, attempt a connection with telnet:

$ telnet 127.0.0.1 3000

In Figure 6-6, you can see the command and the “new connection!” output side by side.

As you can see, this example very much resembles the HTTP hello world. This should come
as no surprise considering that HTTP is a layer on top of TCP. In this case, however, you’re
creating your own protocol.

The createServer callback passes an object that’s an instance of a common occurrence in
Node: a Stream. In this case, it passes a net.Stream, which is usually both readable and
writable.

76 PA RT I I   •   Essential Node APIs

Figure 6-6: On the left, you can see the status of the server process. On the right,
the client, that upon connecting makes the server print “new connection!”

Finally, another method of importance is listen, which allows you to bind the server to a
port. Because this method is asynchronous, it also receives a callback.

RECEIVING CONNECTIONS
As defined in the earlier project description, as soon as a connection is established, you want
to write back to the client with a Hello and the number of active connections.

You start by adding a counter outside the callback:

/**

 * Keep track of connections.

 */

var count = 0;

You change the connection callback to increment this counter and print the greeting:

var server = net.createServer(function (conn) {

 conn.write(

 ‘\n > welcome to \033[92mnode-chat\033[39m!’

 + ‘\n > ‘ + count + ‘ other people are connected at this time.’

 + ‘\n > please write your name and press enter: ‘

);

 count++;

});

As you can see here, you still use shell escape codes to print out colors.

Test it now by restarting the server:

$ node index

Then connect again (see also Figure 6-7):

$ telnet 127.0.0.1 3000

C H A P T E R 6   •   TCP 77

Figure 6-7: The client now receives some data upon connecting.

If you connect again, as shown in Figure 6-8, you can see the counter go up!

Figure 6-8: The connections counter in action

When the client emits the close event, you substract a unit from the counter variable:

conn.on(‘close’, function () {

 count--;

});

The close event is fired by Node.JS when the underlying socket is closed. Node.JS has two
events related to the connection finalization: end and close. The former is received when
the client explicitly closes the TCP connection. For example, when you close telnet properly, it
will send a packet called “FIN” that signals the end of the connection.

If a connection error occurs (which triggers the error event), end won’t fire, since the “FIN”
packet wasn’t received. close, however, will fire under both circumstances, so it’s better to
use that one instead for this example.

You can end a telnet connection properly by pressing alt+[key on the Mac, and Ctrl+] on
Windows.

THE DATA EVENT
Now that you have printed out some data, you also need to consider the data that comes in.

78 PA RT I I   •   Essential Node APIs

The first piece of data to handle is the nickname; you therefore can start listening on the incom-
ing data event. Like many other APIs in Node, the net.Stream is also an EventEmitter.

To test this, print out the incoming data to the server console:

var server = net.createServer(function (conn) {

 conn.write(

 ‘\n > welcome to \033[92mnode-chat\033[39m!’

 + ‘\n > ‘ + count + ‘ other people are connected at this time.’

 + ‘\n > please write your name and press enter: ‘

);

 count++;

 conn.on(‘data’, function (data) {

 console.log(data);

 });

 conn.on(‘close’, function () {

 count--;

 });

});

You then launch the server and connect a client. Try writing some data, as in Figure 6-9. On
the left, as you write data, the server is passing it by console.log.

Figure 6-9: You can see the representation of the Buffer objects on the left for
the data sent on the right.

As you can see, what you get as data is a Buffer. Remember I said TCP is byte oriented?
Here, you can see Node complying with TCP!

At this point, you have a couple of different options. You could call .toString(‘utf8’)
on the Buffer object to get a utf8-encoded representation.

However, because at no point are you going to need data in an encoding other than utf8, you
can use handy net.Stream#setEncoding to have Node do that for you:

C H A P T E R 6   •   TCP 79

index.js

. . .

conn.setEncoding(‘utf8’);

Figure 6-10: On the left, the chat messages are now output as utf8-encoded strings.

Now that you successfully passed messages back and forth between one client and the server,
you can bring in the tracking of other clients to chat with.

STATE AND KEEPING TRACK OF CONNECTIONS
The counter defined earlier is part of what is normally called state. Node is said to deal with
shared-state concurrency because in the example, two concurrent users alter the same state
variables.

To be able to send a message and broadcast it to all other connections, you need to extend this
state to keep track of who’s connected.

A client is considered connected and capable of receiving messages when a nickname has
been typed in.

The first thing you do is keep track of all the users who have set a nickname. To do so, you
introduce a new state variable, users:

var count = 0

 , users = {}

Next, introduce the variable nickname in the scope of each connection:

conn.setEncoding(‘utf8’);

// the nickname for the current connection

var nickname;

conn.on(‘data’, function (data) {

80 PA RT I I   •   Essential Node APIs

When you get data, you make sure to clear the \r\n (equivalent to pressing Enter):

// remove the “enter” character

data = data.replace(‘\r\n’, ‘’);

If the user doesn’t have a nickname, you validate it. If the nickname is not being used, you
relay it to everyone that you connected (see Figure 6-11):

// the first piece of data you expect is the nickname

if (!nickname) {

 if (users[data]) {

 conn.write(‘\033[93m> nickname already in use. try again:\033[39m ‘);

 return;

 } else {

 nickname = data;

 users[nickname] = conn;

 for (var i in users) {

 users[i].write(’\033[90m > ’ + nickname + ’ joined the room\033[39m\n’);

 }

 }

}

Figure 6-11: You can see the messages being broadcasted as other clients join the
chat server.

However, if the user has been set, you consider that the incoming data is a message to relay to
everyone else:

C H A P T E R 6   •   TCP 81

else {

 // otherwise you consider it a chat message

 for (var i in users) {

 if (i != nickname) {

 users[i].write(’\033[96m > ’ + nickname + ’:\033[39m ’ + data + ’\n’);

 }

 }

}

You check that you don’t send the message to yourself by using the i != nickname check.

You can see in Figure 6-12 the new behavior by connecting two clients, writing in one and
watching the other.

Figure 6-12: Clients get messages typed by other clients prefixed with their nicknames.

After succeeding in exchanging chat messages, you can make the final touches.

WRAP UP
When someone disconnects, you clear up the users array:

conn.on(‘close’, function () {

 count--;

 delete users[nickname];

});

It’s also a good idea to send a message to the rest of the users about your departure. Because
you need to broadcast to all the users yet again, you can probably abstract that out as a utility:

82 PA RT I I   •   Essential Node APIs

// . . .

function broadcast (msg, exceptMyself) {

 for (var i in users) {

 if (!exceptMyself || i != nickname) {

 users[i].write(msg);

 }

 }

}

conn.on(‘data’, function (data) {

 // . . .

The following function is self-explanatory. You can replace the other instances of broadcasting
with the new reusable utility:

broadcast(‘\033[90m > ‘ + nickname + ‘ joined the room\033[39m\n’);

// . . .

broadcast(‘\033[96m > ‘ + nickname + ‘:\033[39m ‘ + data + ‘\n’, true);

Now you can add it to the close handler (see Figure 6-13):

conn.on(‘close’, function () {

 // . . .

 broadcast(‘\033[90m > ‘ + nickname + ‘ left the room\033[39m\n’);

});

Figure 6-13: After killing the first client to make it forcefully “close” the connection,
you can see the departure message relayed by the server on the other clients’ screens.

You’re done!

C H A P T E R 6   •   TCP 83

After having implemented a TCP server successfully, you should learn how to implement
TCP clients in Node.JS.

The client APIs will bear a lot of resemblance to other clients, such as the HTTP clients you
use to query web services like Twitter, so it’s crucial that you understand them fully.

AN IRC CLIENT PROGRAM
IRC, which stands for Internet Relay Chat, is yet another protocol based on TCP that’s in
common use. It’s normally used through desktop apps, similar to the one shown in Figure
6-14, that act as clients to IRC servers.

Figure 6-14: An IRC client (Linkinus) in action on the Mac. Linkinus implements the
IRC protocol over TCP sockets.

Because you successfully created a TCP server in the previous part, you’re now going to create
a TCP client.

Creating a client involves implementing the IRC protocol. This means that you need to make
sure that incoming and outgoing data adhere to the set of commands that IRC servers “speak.”

For example, to set a nickname, you send the following string:

NICK mynick

IRC is a very straightforward and simple protocol. You can achieve a lot and experience
interoperability with existing applications and servers (like the one shown in Figure 6-14)
with just a few simple commands.

Read on to learn how to write a very basic client in Node.JS that connects to a server, joins a
room and relays a message.

CREATING THE MODULE
As usual, start by creating the directory where your project is going to live and a package.
json file:

84 PA RT I I   •   Essential Node APIs

{

 “name”: “irc-client”

 , “description”: “Our first TCP client”

 , “version”: “0.0.1”

}

Test it by running npm install. An empty line should be printed because the project has
no dependencies.

UNDERSTANDING THE NET#STREAM API
In the same way that you use createServer, the net API offers a method called connect
with an API, as follows:

net.connect(port[[, host], callback]])

If a function is supplied, it’s equivalent to listening on the connect event of the resulting
object.

var client = net.connect(3000, ‘localhost’);

client.on(‘connect’, function () {});

is therefore equivalent to

net.connect(300, ‘localhost’, function () {});

In addition, similar to the API you saw previously, you can listen on data and close events.

IMPLEMENTING PART OF THE IRC PROTOCOL
You first initialize the client. Then attempt to log on to the #node.js channel on irc.
freenode.net:

var client = net.connect(6667, ‘irc.freenode.net’)

You set the encoding to utf-8:

client.setEncoding(‘utf-8’)

When you’re connected, you send your desired nickname. In addition, you write the USER
command, which is required by servers. You send data like this:

NICK mynick

USER mynick 0 * :realname

JOIN #node.js

C H A P T E R 6   •   TCP 85

You therefore write

client.on(‘connect, function () {

 client.write(‘NICK mynick\r\n’);

 client.write(‘USER mynick 0 * :realname\r\n’);

 client.write(‘JOIN #node.js\r\n’)

});

Notice that after each command you need to include the delimiter \r\n. This is the equiva-
lent to using Telnet and pressing Enter in our previous example. \r\n is also the delimiter
used by the HTTP protocol to separate header lines.

TESTING WITH A REAL-WORLD IRC SERVER
Fire up an IRC client (such as mIRC on Windows, xChat on Linux, or Colloquy/Linkinus on
Mac) and point it to

irc.freenode.net

#node.js

Then start the client and watch for mynick to connect:

SUMMARY
This chapter described a simple implementation of a net Client. You saw it successfully
interoperate with a TCP server that’s not your own.

As an exercise, listen on data events and attempt to parse the incoming data so that you can
print out the messages that other users send to the #node.js channel. You can then com-
bine it with the existing code to produce an IRC bot that responds to commands automati-
cally. For example, if someone says “date” (which you can detect in the data events), you can
output the result of new Date().

Moving forward, you’ll learn about HTTP, the protocol of the web that Node.JS is largely
famous for. You now have a very solid understanding of the building blocks, and learning the
HTTP APIs as a “layer” on top of TCP gives you true in-depth knowledge of the Node.JS core
functioning.

http://f.cl.ly/items/1b3g3i1w120Z2U082I3G/Image 2011.11.07 2:31:35 AM.png

Keep in mind that since you’re programming
both the server and the website as part of the
same code, every time you make changes with
your text editor to code that’s running, you need
to restart the Node process that powers it to have
the changes reflect. At the end of this chapter I’ll
teach you how to leverage a tool to make this
process straightforward.

To get started, let’s review the anatomy of the
HTTP protocol.

HYPERTEXT TRANSFER PROTOCOL, or
HTTP, is the protocol that powers the web, and,
as discussed in Chapter 6, it sits on top of the
TCP stack,

Throughout this chapter you’ll learn how to
leverage the Node.JS Server and Client APIs.
Both are really easy to use to get started, but
you’ll also learn some of the shortcomings that
come up when building actual websites and web
applications with them. For that, in the coming
chapters I will introduce you to abstractions that
sit on the HTTP server to introduce reusable
components.

HTTP7
C H A P T E R

88 PA RT I I   •   Essential Node APIs

THE STRUCTURE OF HTTP
The protocol is structured around the concept of requests and responses, materialized in Node.
JS as objects of the http.ServerRequest and http.ServerResponse constructors,
respectively.

When a user first browses to a website, the user agent (the browser) creates a request that gets
sent to the web server over TCP, and a response is emitted.

What do requests and responses look like? To find out, first create a Hello World Node HTTP
server that listens on http://localhost:3000:

require(‘http’).createServer(function (req, res) {

 res.writeHead(200);

 res.end(‘Hello World’);

}).listen(3000);

Next, establish a telnet connection and write your own request:

GET / HTTP/1.1

After typing GET / HTTP/1.1, press Enter twice.

The response, illustrated in Figure 7-1, comes in right afterward!

Figure 7-1: The response produced by our HTTP server.

The response text looks like this:

HTTP/1.1 200 OK

Connection: keep-alive

Transfer-Encoding: chunked

C H A P T E R 7   •   HTTP 89

b

Hello World

0

The first relevant section of this response is the headers, which you’ll read about next.

HEADERS
As you can see, HTTP is a protocol in the same fashion as IRC. Its purpose is to enable the
exchange of documents. It utilizes headers that precede both requests and responses to
describe different aspects of the communication and the content.

As an example, think of the different types of content that web pages deliver: text, HTML,
XML, JSON, PNG and JPEG images, and a large number of other possibilities.

The type of content that’s sent is annotated by the famous Content-Type header.

Look at how this applies in practice. Bring back hello world, but this time add some HTML in
there:

require(‘http’).createServer(function (req, res) {

 res.writeHead(200);

 res.end(‘Hello World’);

}).listen(3000);

Notice that the word World is surrounded by bold tags. You can check it out with the rudi-
mentary TCP client again (see Figure 7-2).

Figure 7-2: The Hello World response

The response is just what you might expect:

90 PA RT I I   •   Essential Node APIs

GET / HTTP/1.1

HTTP/1.1 200 OK

Connection: keep-alive

Transfer-Encoding: chunked

12

Hello World

0

Now, however, see what happens when you look at it with a browser (see Figure 7-3).

Figure 7-3: The browser shows the response as plain text.

That doesn’t look like rich text, but why?

As it occurs, the HTTP client (the browser) doesn’t know what type of content you’re sending
because you didn’t include that as part of your communication. The browser therefore
considers what you’re seeing as content type text/plain, or normal plain text, and doesn’t
try to render it as HTML.

If you adjust the code to include the appropriate header, you fix the problem (see Figure 7-4):

require(‘http’).createServer(function (req, res) {

 res.writeHead(200, { ‘Content-Type’: ‘text/html’ });

 res.end(‘Hello World’);

}).listen(3000);

C H A P T E R 7   •   HTTP 91

Figure 7-4: The response, this time with the additional header.

The response text is as follows:

HTTP/1.1 200 OK

Content-Type: text/html

Connection: keep-alive

Transfer-Encoding: chunked

12

Hello World

0

Notice the header is included as part of the response text. The same response is parsed out by
the browser (see Figure 7-5), which now renders the HTML correctly.

Figure 7-5: The browser now shows the word World in bold rich text.

92 PA RT I I   •   Essential Node APIs

Notice that despite having specified a header with the writeHead API call, Node still
includes two other headers: Transfer-Encoding and Connection.

The default value for the Transfer-Encoding header is chunked. The main reason for
this is that due to Node asynchronous nature, it’s not rare for a response to be created
progressively.

Consider the following example:

 require(‘http’).createServer(function (req, res) {

 res.writeHead(200);

 res.write(‘Hello’);

 setTimeout(function () {

 res.end(‘World’);

 }, 500);

}).listen(3000);

Notice that you can send data as part of multiple write calls, before you call end. In the
spirit of trying to respond as fast as possible to clients, by the time the first write is called,
Node can already send all the response headers and the first chunk of data (Hello).

Later on, when the setTimeout callback is fired, another chunk can be written. Since this
time around you use end instead of write, Node finishes the response and no further writes
are allowed.

Another instance where writing in chunks is very efficient is when the file system is involved.
It’s not uncommon for web servers to serve files like images that are somewhere in the hard
drive. Since Node can write a response in chunks, and also allows us to read a file in chunks,
you can leverage the ReadStream filesystem APIs for this purpose.

The following example reads the image image.png and serves it with the right Content-
Type header:

require(‘http’).createServer(function (req, res) {

 res.writeHead(200, { ‘Content-Type’: ‘image/png’);

 var stream = require(‘fs’).createReadStream(‘image.png’);

 stream.on(‘data’, function (data) {

 res.write(data);

 });

 stream.on(‘end’, function () {

 res.end();

 });

}).listen(3000);

C H A P T E R 7   •   HTTP 93

By writing the image as a series of chunks, you ensure:

◾	 Efficient memory allocation. If you read the image completely for each request prior to
writing it (by leveraging fs.readFile), you’d probably end up using more memory
over time when handlings lots of requests.

◾	 You write data as soon as it becomes available to you.

In addition, notice that what you’re doing is piping one Stream (an FS one) onto another (an
http.ServerResponse object). As I’ve mentioned before, streams are a very important
abstraction in Node.JS. Piping streams is a very common action, so Node.JS offers a method
to make the above example very succinct:

require(‘http’).createServer(function (req, res) {

 res.writeHead(200, { ‘Content-Type’: ‘image/png’);

 require(‘fs’).createReadStream(‘image.png’).pipe(res);

}).listen(3000);

Now that you understand why Node defaults to a chunked transfer encoding, let’s talk about
connections.

CONNECTIONS
If you compare your TCP server implementation and your HTTP server implementation side
by side, you might notice they’re similar. In both cases, you call createServer, and in both
cases, you get a callback when a client connects.

A fundamental difference, however, is the type of object you get in that callback. In the case of
the net server, you get a connection, and in the case of an HTTP server, you get request and
response objects.

The reason for this is two-fold. First, the HTTP server is a higher-level API that gives you tools
to handle the specific set of functionality and behaviors inherent to the HTTP protocol.

For example, look at the headers property of the request object (the req parameter in the
example) when a common web browser accesses the server (see Figure 7-6). For this experi-
ment, use console.log on the req.headers property:

require(‘http’).createServer(function (req, res) {

 console.log(req.headers);

 res.writeHead(200, { ‘Content-Type’: ‘text/html’ });

 res.end(‘Hello World’);

}).listen(3000);

94 PA RT I I   •   Essential Node APIs

Figure 7-6: The ServerRequest headers property as output by
console.log.

Notice that Node does a lot of the heavy work for you. It takes the incoming message by the
browser, analyzes it (parses it), and constructs a JavaScript object that you can conveniently
use from your scripts. It even makes the headers lowercase so that you don’t have to remember
if it was Content-type or Content-Type or Content-TYPE.

The second, even more important reason is that browsers don’t use just a single connection
when they access websites. Modern browsers can open up to eight different connections to a
same host and send requests over all of them in an effort to make websites load faster.

Node wants to make it easy for you to worry just about requests and not connections.
Therefore, even though you can still access the TCP connection through the property req.
connection, you are mostly going to get involved with the request and response abstrac-
tions here.

By default, Node tells browsers to keep the connection alive and send more requests through
it. This is expressed by the keep-alive value of the Connection header you saw previ-
ously. Normally this is the desired behavior in the interest of performance (since browsers
don’t need to waste time tearing down and restarting new TCP connections), but you can also
override this header by passing a different value to the writeHead call, such as Close.

For your next project, you utilize the Node HTTP APIs to perform a real-world task: process
a form that the user submits.

A SIMPLE WEB SERVER
Throughout this project you’ll leverage some of the key concepts outlined above, like the
Content-Type header.

You’ll also learn how web browsers exchange encoded data as part of form submissions, and
how to parse them into JavaScript data structures.

C H A P T E R 7   •   HTTP 95

CREATING THE MODULE
As usual, you start by creating the directory where your project is going to live and a
package.json file:

{

 “name”: “http-form”

 , “description”: “An HTTP server that processes forms”

 , “version”: “0.0.1”

}

You test it by running npm install. An empty line should be printed because the project
has no dependencies.

PRINTING OUT THE FORM
Just as in the Hello World example, you are going to print out some HTML. In
this case, you want to represent a form. Place the following contents in your server.js file

require(‘http’).createServer(function (req, res) {

 res.writeHead(200, { ‘Content-Type’: ‘text/html’ });

 res.end([

 ‘<form method=”POST” action=”/url”>’

 , ‘<h1>My form</h1>’

 , ‘<fieldset>’

 , ‘<label>Personal information</label>’

 , ‘<p>What is your name?</p>’

 , ‘<input type=”text” name=”name”>’

 , ‘<p><button>Submit</button></p>’

 , ‘</form>’

].join(‘’)); }).listen(3000);

Notice that for the sake of syntax clarity, I structured the response text as an array that gets
combined into a string with the join method. Otherwise, the example is equivalent to Hello
World.

Notice that the <form> contains an endpoint URL /url and a method POST. Also notice
that the input the user types has a name of name.

Now you can run the server:

$ node server.js

96 PA RT I I   •   Essential Node APIs

Next, point the browser, as shown in Figure 7-7, to see the rendered form for the HTML you
output:

Figure 7-7: The rendered page for your form should look like this.

You can try pressing Enter. The browser then elaborates a new request (one that contains the
data), but because all the code does right now is print out that HTML, the result after pressing
Enter should be the same (see Figure 7-8). Type in a name and click Submit.

Figure 7-8: An example of the form submission.

As a result of the submission, the URL changes, but the response is constant, as shown in
Figure 7-9.

C H A P T E R 7   •   HTTP 97

Figure 7-9: Despite the submission, Node will handle the request in the same way,
therefore sending the same HTML again.

In order to have Node treat the submission request differently and produce an appropriate
response, you need to learn about inspecting the request method and URL.

METHODS AND URLS
Obviously, when the user presses Enter, you want to display something different. You want to
process the form.

To that end, inspect the url property of the request object. The code for server.js should now
look like this:

require(‘http’).createServer(function (req, res) {

 if (‘/’ == req.url) {

 res.writeHead(200, { ‘Content-Type’: ‘text/html’ });

 res.end([

 ‘<form method=”POST” action=”/url”>’

 , ‘<h1>My form</h1>’

 , ‘<fieldset>’

 , ‘<label>Personal information</label>’

 , ‘<p>What is your name?</p>’

 , ‘<input type=”text” name=”name”>’

 , ‘<p><button>Submit</button></p>’

 , ‘</form>’

].join(‘’));

 } else if (‘/url’ == req.url) {

 res.writeHead(200, { ‘Content-Type’: ‘text/html’ });

 res.end(‘You sent a ’ + req.method + ‘ request’);

 }

}).listen(3000);

98 PA RT I I   •   Essential Node APIs

If you go to the / URL, as shown in Figure 7-10, nothing changes.

Figure 7-10: The request handler still shows the same HTML when we go to the URL.

If you type in /url, you see something like Figure 7-11. The supplied URL matches the req.
url in the else if clause, and the appropriate response is produced.

Figure 7-11: What you see when you go to /url as a result of req.url changing.

However, when you enter your name through the form, you see a message like that in Figure
7-12. The reason for this is that browsers will send the form data in the HTTP method
specified in the action attribute of the <form> tag. The req.method value will be POST
in this case, thus producing what you see in Figure 7-12.

C H A P T E R 7   •   HTTP 99

Figure 7-12: In this case req.method is POST.

As you can see, you’re dealing with two different variables of the request: the URL and the
method.

Node.JS puts in the url property everything that follows the hostname. If you navigate
to http://myhost.com/url?this+is+a+long+url, the contents of url are
/url?this+is+a+long+url.

The reigning protocol of the web, HTTP/1.1 (as you may remember from the telnet
example in Chapter 6), establishes different methods for a request:

◾	 GET (the default)
◾	 POST

◾	 PUT

◾	 DELETE

◾	 PATCH (the newest)

The idea behind this is that an HTTP client picks a method to alter a resource on a server,
which is located by its URL, with certain data as the body of the request.

DATA
When you sent HTML, you had to define a Content-Type along with the body of your
response.

Symmetrically to a response, a request can also contain a Content-Type and body of data.

100 PA RT I I   •   Essential Node APIs

To process forms effectively, you absolutely need these two pieces of information. Just like the
browser doesn’t know if the Hello World is going to be HTML or plain text unless you
explicitly indicate so, how do you know if the user is sending her name in JSON, XML, or
plain text? The code for server.js should look like this now:

require(‘http’).createServer(function (req, res) {

 if (‘/’ == req.url) {

 res.writeHead(200, { ‘Content-Type’: ‘text/html’ });

 res.end([

 ‘<form method=”POST” action=”/url”>’

 , ‘<h1>My form</h1>’

 , ‘<fieldset>’

 , ‘<label>Personal information</label>’

 , ‘<p>What is your name?</p>’

 , ‘<input type=”text” name=”name”>’

 , ‘<p><button>Submit</button></p>’

 , ‘</form>’

].join(‘’));

 } else if (‘/url’ == req.url && ‘POST’ == req.method) {

 var body = ‘’;

 req.on(‘data’, function (chunk) {

 body += chunk;

 });

 req.on(‘end’, function () {

 res.writeHead(200, { ‘Content-Type’: ‘text/html’ });

 res.end(‘<p>Content-Type: ‘ + req.headers[‘content-type’] + ‘</p>’

 + ‘<p>Data:</p><pre>’ + body + ‘</pre>’);

 });

 }

}).listen(3000);

What is going on here? You are listening to the data and end events. You create a body
string that gets populated with different chunks, and then you consider that you have all the
data only after the end events fires and not before.

The reason for this is that Node.JS allows you to process the data as it comes to the server.
Because data can come in different TCP packets, it’s entirely possible that in real-world usage,
you get a piece of the data first and sometime later you get the remainder.

Submit the form again and take a look at the response in Figure 7-13.

C H A P T E R 7   •   HTTP 101

Figure 7-13: In this example you output the Content-Type and request
data back to the page.

For example, when you search on Google, the URL can look like that in Figure 7-14.

Figure 7-14: The highlighted part in the URL when a search is performed is
q=<search term>.

Notice the fragment for the search in the URL gets encoded in the same way the form contents
do. That’s why the Content-Type in this case is called urlencoded.

This particular fragment of URLs is also known as the query string.

Node.JS provides a module called querystring that makes it easy to parse those strings
into data you can easily access in the same way it does with headers. Create a file qs-exam-
ple.js with the following contents and run it (see Figure 7-15).

console.log(require(‘querystring’).parse(‘name=Guillermo’)); console.

log(require(‘querystring’).parse(‘q=guillermo+rauch’));

102 PA RT I I   •   Essential Node APIs

Figure 7-15: The output for the parse function calls.

As you can see, the querystring module is capable of taking a string and producing an
Object data-structure from it. This parsing process is homologous to Node taking the headers
from the HTTP request data and producing the headers object you can easily access.

You’ll leverage the query string module to easily access the form field that’s submitted with the
form.

PUTTING THE PIECES TOGETHER
You’re now ready to parse the incoming body data and display it to the user. server.js
should now have the following contents. Notice that in the end request event we now run the
body through the querystring parse module, you get the name key from the produced
Object and output it back to the user. Keep in mind that name matches the name attribute
of the <input> tag defined in the HTML you first output. The server.js code now looks
as follows:

var qs = require(‘querystring’);

require(‘http’).createServer(function (req, res) {

 if (‘/’ == req.url) {

 res.writeHead(200, { ‘Content-Type’: ‘text/html’ });

 res.end([

 ‘<form method=”POST” action=”/url”>’

 , ‘<h1>My form</h1>’

 , ‘<fieldset>’

 , ‘<label>Personal information</label>’

 , ‘<p>What is your name?</p>’

 , ‘<input type=”text” name=”name”>’

 , ‘<p><button>Submit</button></p>’

 , ‘</form>’

].join(‘’));

 } else if (‘/url’ == req.url && ‘POST’ == req.method) {

 var body = ‘’;

 req.on(‘data’, function (chunk) {

 body += chunk;

 });

 req.on(‘end’, function () {

 res.writeHead(200, { ‘Content-Type’: ‘text/html’ });

 res.end(‘<p>Your name is ’ + qs.parse(body).name + ‘</p>’);

 });

 }

}).listen(3000);

C H A P T E R 7   •   HTTP 103

You point the browser and voila! (See Figure 7-16.)

Figure 7-16: The name field that you see

BULLET-PROOFING
A problem still exists in the preceding example: what happens if no URL is matched by your
conditional statements?

If you try going to the URL /test, you see that the server never responds, and the user agent
(browser) just hangs.

To solve this problem, you can send back the status code 404 (Not Found) if the server
doesn’t know how to treat the request. Notice that in server.js you add an else clause
that calls writeHead with the 404 status code:

var qs = require(‘querystring’);

require(‘http’).createServer(function (req, res) {

 if (‘/’ == req.url) {

 res.writeHead(200, { ‘Content-Type’: ‘text/html’ });

 res.end([

 ‘<form method=”POST” action=”/url”>’

 , ‘<h1>My form</h1>’

 , ‘<fieldset>’

 , ‘<label>Personal information</label>’

 , ‘<p>What is your name?</p>’

 , ‘<input type=”text” name=”name”>’

 , ‘<p><button>Submit</button></p>’

 , ‘</form>’

].join(‘’));

 } else if (‘/url’ == req.url && ‘POST’ == req.method) {

 var body = ‘’;

 req.on(‘data’, function (chunk) {

 body += chunk;

 });

104 PA RT I I   •   Essential Node APIs

 req.on(‘end’, function () {

 res.writeHead(200, { ‘Content-Type’: ‘text/html’ });

 res.end(‘<p>Your name is ’ + qs.parse(body).name + ‘</p>’);

 });

 } else {

 res.writeHead(404);

 res.end(‘Not Found’);

 }

}).listen(3000);

You can now consider your first HTTP web server complete! The code is not as clean as it
could be, but you’ll learn the right way to write more complex HTTP servers in the coming
chapters.

Moving on, you’ll learn the counterpart of the Server API: the HTTP Client.

A TWITTER WEB CLIENT
The importance of learning how to make requests to other web servers from Node.JS cannot
be overstated.

HTTP has become a protocol not just for exchanging markup that’s meant to be rendered and
presented to the user (thanks to HTML), but also a fundamental way of transmitting data
between servers in different networks. JSON is quickly becoming the de-facto standard data
format for this, which puts Node.JS in a very good position to establish its server-side
dominance, as the notation was born out of the JavaScript object literal syntax.

For this example, you’ll learn how to query the Twitter API, get some JSON, which you’ll
decode into a data structure that you can loop over and produce a human-readable terminal
output form.

CREATING THE MODULE
As usual, you start by creating the directory where your project is going to live and a
package.json file:

{

 “name”: “tweet-client”

 , “description”: “An HTTP tweets client”

 , “version”: “0.0.1”

}

MAKING A SIMPLE HTTP REQUEST
Analogous to the TCP client you created, and not by coincidence, you instantiate a Client
object with a static method on the http module called request.

To get familiar with it, bring back the typical HTTP server:

C H A P T E R 7   •   HTTP 105

require(‘http’).createServer(function (req, res) {

 res.writeHead(200);

 res.end(‘Hello World’);

}).listen(3000);

Then write a client that gets the response and prints it out in colors to the console:

require(‘http’).request({

 host: ‘127.0.0.1’

 , port: 3000

 , url: ‘/’

 , method: ‘GET’

}, function (res) {

 var body = ‘’;

 res.setEncoding(‘utf8’);

 res.on(‘data’, function (chunk) {

 body += chunk;

 });

 res.on(‘end’, function () {

 console.log(‘\n We got: \033[96m’ + body + ‘\033[39m\n’);

 });

 }).end();

The first thing you do is call the request method. This initializes a new http.Client
Request object.

Notice that you collect the body in chunks in the same way you did for the requests sent from
the web browser in the server section of this chapter. The remote server you’re connecting to
might respond in different data chunks that you need to put together to get a complete
response. It might happen that all the data comes in one data event, but you can’t really know.

Therefore, you listen on the end event to, in this case, log the body to the console.

In addition, you also set the default encoding on the response object to utf8 with
setEncoding, because all you want to print to the console is text. As an example, if you try
to download a PNG image with the client, trying to print it as a utf8 string would not be ideal.

Now run the server and then the client (see Figure 7-17):

$ node client

Figure 7-17: The response from our Hello World server is displayed after the client
successfully requests it.

106 PA RT I I   •   Essential Node APIs

Next, you’ll learn how to also send data along with your request.

SENDING A BODY OF DATA
Notice that after you call request in the preceding example, you also have to call end.

The reason for this is that after you create a request, you can continue to interact with the
request object prior to sending it to the server.

And an example of that is if you want to send data to the server, as you see in the next example.

Remember the form you created in the browser? Reproduce that here, but this time for the
client, use Node, and for the <form>, use stdin, incorporating the knowledge you learned
in Chapter 5.

The server processes the form:

var qs = require(‘querystring’);

require(‘http’).createServer(function (req, res) {

 var body = ‘’;

 req.on(‘data’, function (chunk) {

 body += chunk;

 });

 req.on(‘end’, function () {

 res.writeHead(200);

 res.end(‘Done’);

 console.log(‘\n got name \033[90m’ + qs.parse(body).name + ‘\033[39m\n’);

 });

}).listen(3000);

The client does the opposite. By using the stringify method of the querystring
module, you can turn an object into a urlencoded body of data:

var http = require(‘http’)

 , qs = require(‘querystring’)

function send (theName) {

 http.request({

 host: ‘127.0.0.1’ , port: 3000

 , url: ‘/’

 , method: ‘POST’

 }, function (res) {

 res.setEncoding(‘utf8’);

 res.on(‘end’, function () {

 console.log(‘\n \033[90m✔ request complete!\033[39m’);
process.stdout.write(‘\n your name: ‘);

 });

 }).end(qs.stringify({ name: theName }));

}

C H A P T E R 7   •   HTTP 107

process.stdout.write(‘\n your name: ‘);

process.stdin.resume(); process.stdin.setEncoding(‘utf-8’);

process.stdin.on(‘data’, function (name) {

 send(name.replace(‘\n’, ‘’));

});

Notice that data is passed to the end method, in the same way you do when you create a
response in the server.

In this case, don’t worry about the chunks of data that you can get from the server. You simply
know that when end is called, you can print the text request complete and ask the user again
for data.

Figure 7-18 shows the action side by side. On the left, the server is showing the name that’s
submitted with the form on the left through stdin.

Figure 7-18: When prompted on the right for name, I typed one in and pressed enter,
which is correctly processed by the server on the left.

Now that you learned how to send data along with a request, you have seen almost the full
extent of the request API. Let’s continue with our main goal!

GETTING TWEETS
Now you’re ready for some real real-world HTTP! Create a command called tweets that
takes a search argument and displays the latest tweets about that given topic.

If you look at the documentation for the public search API for Twitter, you can see that URLs
look like this: http://search.twitter.com/search.json?q=blue+angels.

And the result looks like this (notice I cut it short at the end)

108 PA RT I I   •   Essential Node APIs

{

 “completed_in”:0.031,

 “max_id”:122078461840982016,

 “max_id_str”:”122078461840982016”,

 “next_page”:”?page=2&max_id=122078461840982016&q=blue%20angels&rpp=5”,

 “page”:1,

 “query”:”blue+angels”,

 “refresh_url”:”?since_id=122078461840982016&q=blue%20angels”,

 “results”:[{

 // …

Once again, the usual suspects: the search term is urlencoded (q=blue+angels), and the result
is JSON. The tweets are in the results array in the object that forms the response.

Because you’re producing a command that takes an argument, like you saw in Chapter 5, you
want to access argv. With the querystring module, you produce the URL and then
obtain the response data. The method to access the resource is obviously GET and the port
80, both of which are defaults you can skip (for the sake of clarity in this first HTTP client
example, I still included the GET option).

var qs = require(‘querystring’)

 , http = require(‘http’)

var search = process.argv.slice(2).join(‘ ‘).trim()

if (!search.length) {

 return console.log(‘\n Usage: node tweets <search term>\n’);

}

console.log(‘\n searching for: \033[96m’ + search + ‘\033[39m\n’);

http.request({

 host: ‘search.twitter.com’

 , path: ‘/search.json?’ + qs.stringify({ q: search })

}, function (res) {

 var body = ‘’;

 res.setEncoding(‘utf8’);

 res.on(‘data’, function (chunk) {

 body += chunk;

 });

 res.on(‘end’, function () {

 var obj = JSON.parse(body);

 obj.results.forEach(function (tweet) {

 console.log(‘ \033[90m’ + tweet.text + ‘\033[39m’);

 console.log(‘ \033[94m’ + tweet.from_user + ‘\033[39m’);

 console.log(‘--’);

 });

 });

}).end()

When you execute it, it will validate the processs.argv array to know if you have a search
term (see Figure 7-19), and output help text otherwise.

C H A P T E R 7   •   HTTP 109

Figure 7-19: The command being run without a search term.

When you supply arguments, the search is executed, as shown in Figure 7-20. Twitter
responds with JSON, which is looped over after being parsed in the end event handler, and
output back to the user.

Figure 7-20: In this case I searched for Justin Bieber, and some interesting tweets come back.

So far you’ve been using the http.request pretty extensively. You’ve mostly made GET
requests, which one could say are the most common. Web services usually expose more GET
endpoints than POST or PUT. Sending data (a request body) along with a request is also fairly
uncommon.

Node.JS tries to make the most common use case for requests easy by exposing request.
get. The Twitter API call (with http.request) could be rewritten like this:

http.get({

 host: ‘search.twitter.com’

 , path: ‘/search.json?’ + qs.stringify({ q: search })

}, function (res) {

 var body = ‘’;

 res.setEncoding(‘utf8’);

 res.on(‘data’, function (chunk) {

 body += chunk;

 });

110 PA RT I I   •   Essential Node APIs

 res.on(‘end’, function () {

 var obj = JSON.parse(body);

 obj.results.forEach(function (tweet) {

 console.log(‘ \033[90m’ + tweet.text + ‘\033[39m’);

 console.log(‘ \033[94m’ + tweet.from_user + ‘\033[39m’);

 console.log(‘--’);

 });

 });

})

The only real difference is that you don’t need to call end, and you make it slightly more
explicit that you’re getting data. The API accepts a method parameter, which defaults to GET,
so this method provides little extra usefulness.

With this improvement, we’re still repeating ourselves a lot. Next up, I’ll introduce you to a
tool called superagent, an API that sits on top of the HTTP Client API to make these work-
flows easier.

A SUPERAGENT TO THE RESCUE
More often than not, the HTTP clients you create will follow a common pattern: you want to
get all the response data, execute a parser based on the Content-Type of the response, and
do something with it.

When sending data to the server, the situation is similar. You’ll want to make a POST request,
and encode an object as JSON.

A module called superagent solves this by extending the response object with useful addi-
tions, some of which I’ll show you next.

The examples in this section use superagent version 0.3.0. Create a new directory and install
superagent locally inside:

$ npm install superagent@0.3.0

To get the JSON data for a request, provided the server responds with the right Content-
Type that indicates the response contains JSON, superagent will automatically buffer and
parse it and place it as res.body. Create a file called tweet.js with the following contents:

var request = require(‘superagent’);

request.get(‘http://twitter.com/search.json’)

 .send({ q: ‘justin bieber’ })

 .end(function (res) { console.log(res.body); });

If you run the file, you’ll see the Object that results from decoding the JSON response. You
can still access the raw response text b accessing res.text.

C H A P T E R 7   •   HTTP 111

Notice that you also didn’t need to encode the query string manually, since superagent knows
that if you try to send data with a GET request, that means encoding it as part of the URL as a
query string.

To set a header for the request, you can do so by calling set. In the following example I set
the Date header with the request:

var request = require(‘superagent’);

request.get(‘http://twitter.com/search.json’)

 .send({ q: ‘justin bieber’ })

 .set(‘Date, new Date)

 .end(function (res) { console.log(res.body); });

Both send and set can be called multiple times, which makes it a progressive API: you can
build out the object progressively, and then call end when you’re done.

The simplicity of this API does not stop at GET requests. Similarly, superagent exposes put,
post, head, and del methods.

The following example POSTs a JSON-encoded object:

var request = require(‘superagent’);

request.post(‘http://example.com/’)

 .send({ json: ‘encoded’ })

 .end();

JSON is the default encoding. If you want to change it, simply adjust the Content-Type of the
request by calling set.

RELOADING HTTP SERVERS WITH UP
By now, you probably already noticed that it can get somewhat annoying to continuously
reload a Node process manually in order for a web browser to reflect the changes you make to
your servers code with your text editor.

The most naive way to tackle this problem is to simply reload the process every time a code
change is detected. This can work well for development, but when you deploy your web
servers to production, you probably want to make sure requests that are in-flight (in other
words, requests that are in progress at the time you want to reload your code) are not killed
along with the old process.

I developed a tool called up to tackle this problem in a very safe and reliable way. For devel-
opment, simply install the up executable with NPM:

$ npm install –g up

112 PA RT I I   •   Essential Node APIs

Then, you need to ensure that you structure your code in such a way that you export the Node
HTTP Server you want to reload, instead of calling listen. This is because up will call
listen for you, and it needs to be able to access the Server instance. For example, create a
new directory and place a file server.js with the following contents:

module.exports = require(‘http’).createServer(function (req, res) {

 res.writeHead(200, { ‘Content-Type’: ‘text/html’ });

 res.end(‘Hello World’);

});

Now cd to that directory, run the server by summoning up and passing the --watch and
--port options:

$ up –watch –port 80 server.js

--watch will leverage the appropriate Node APIs to detect changes to any file in the working
directory. Try pointing your browser to this server, then editing server.js and changing
the Hello World text. As soon as you save the file, refresh your browser, and your
changes are reflected immediately!

SUMMARY
You learned a lot about writing HTTP with Node. You started out by understanding the basics
of HTTP from the perspective of a protocol that sits on top of TCP.

You took a careful look at the default response Node.JS produces in a Hello World example.
You can recognize the default headers, and you understand why they’re there.

You learned the importance of headers in HTTP requests and how to change the default one
in server responses. You also have a fundamental understanding of the encoding formats that
are normally used to exchange data with browsers, and what tools Node offers to parse
incoming data and work with it.

After writing a working web server, you also took a look at the client APIs, which are very
useful for web services interoperability in the modern web. After observing the most common
use cases, you successfully queried the Twitter API, but it soon became evident that the same
code was written over and over again. For that reason you were also introduced to a new API
that sits on top of the core Node.JS one to make things easier. The module that’s the focus of
the next chapter, Connect, does the same thing for web servers, but there’s a lot more to learn.

Finally, I introduced up, a command-line utility (also available as a JavaScript API) to make
the servers you write from now on easier to test as you iterate on the code and make changes
to it. Remember: in order to leverage it moving forward, make sure your modules export the
http.Server instance returned by createServer.

PA R T

III WEB
DEVELOPMENT

Chapter 8: Connect

Chapter 9: Express

Chapter 10: WebSocket

Chapter 11: Socket.IO

Under the images directory, you have four
images:

$ ls website/images/

1.jpg 2.jpg 3.jpg 4.jpg

The index.html simply displays the four
images, and you want to access the website
through http://localhost as in other
examples (see Figure 8-1):

<h1>My website</h1>

NODE.JS PROVIDES basic APIs for common
network applications. So far, you have looked at
the basic APIs for TCP servers and an API for
HTTP that builds on top of it.

Most real-world applications, however, perform a
series of common tasks that you probably don’t
want to re-implement on top of primitive APIs
over and over again.

Connect is a toolkit that sits on top of the HTTP
server to provide a new way of organizing code
that interfaces with request and responses,
around units called middleware.

To illustrate the benefits of code reuse through
middleware, assume this sample structure for a
website:

$ ls website/

index.html images/

CONNECT8
C H A P T E R

116 PA RT I I I   •   Web Development

Figure 8-1: A simple static website demonstrating Connect’s capabilities

To show the simplicity Connect offers for the world of HTTP applications, this chapter shows
how to write this simple website with the native http API and later with the connect API.

A SIMPLE WEBSITE WITH HTTP
As usual, you start by requiring the http module for the server and the fs module for
reading files:

/**

 * Module dependencies.

 */

var http = require(‘http’)

 , fs = require(‘fs’)

Then you initialize the server and handle the request-response cycles:

/**

 * Create the server.

 */

var server = http.createServer(function (req, res) {

 // …

});

And finally you listen:

C H A P T E R 8   •   Connect 117

/**

 * Listen.

 */

server.listen(3000);

Now back to the createServer callback. You need to check that the URL matches a file in
the directory, and if so, read the file and serve it. In the future, you might want to add more
images, so you need to make sure it’s dynamic enough to support this capability.

The first step is to check that the method is GET and the URL starts with /images and
finishes with .jpg. If the url is ‘/’, you serve index.html (with the shortcut function
serve you write later). Otherwise, you send the status 404 Not Found, as follows:

if (‘GET’ == req.method && ‘/images’ == req.url.substr(0, 7)

 && ‘.jpg’ == req.url.substr(-4)) {

 // …

} else if (‘GET’ == req.method && ‘/’ == req.url) {

 serve(__dirname + ‘/index.html’, ‘text/html’);

} else {

 res.writeHead(404);

 res.end(‘Not found’);

}

Then you use fs.stat to check that the file exists. You use the Node global constant
__dirname to reference the directory where the server lives. After the first “if ”, you’d place
the next statement.

 fs.stat(__dirname + req.url, function (err, stat) {

 });

You do not use the synchronous version of fs.stat (fs.statSync). If you did, you would
block other requests from being processed while the files are being sought in the disk, which
is undesirable for a server to handle high concurrency. For reference, we discussed this in
Chapter 3.

If an error occurs, you abort the process and send the HTTP status code 404 to signal that you
can’t find the requested image. You also should do this if the stat succeeds but the supplied
path is not a file, as shown here. The following snippet goes in the fs.stat callback.

 if (err || !stat.isFile()) {

 res.writeHead(404);

 res.end(‘Not Found’);

 return;

 }

118 PA RT I I I   •   Web Development

Otherwise, you serve the image. The following line follows the if:

 serve(__dirname + req.url, ‘application/jpg’);

Finally, you write the serve function afterwards, which, as you might have guessed, takes the
path of the file to serve and includes the ‘Content-Type’ header which is necessary, as
you saw, for the browser to know what type of resource you’re sending:

function serve (path, type) {

 res.writeHead(200, { ‘Content-Type’: type });

 fs.createReadStream(path).pipe(res);

}

Remember the subsection about Streams in Chapter 6? An HTTP Response is a write-only
Stream. And you can create a Stream from a file that’s read-only. And you can pipe the
filesystem stream to the HTTP Response! The preceding short snippet of code is roughly
equivalent to this:

fs.createReadStream(path)

 .on(‘data, function (data) {

 res.write(data);

 })

 .on(‘end’, function () {

 res.end();

 })

It’s also the most effective and recommended method for serving static files.

Putting all the pieces together, you get

/**

 * Module dependencies.

 */

var http = require(‘http’)

 , fs = require(‘fs’)

/**

 * Create the server.

 */

var server = http.createServer(function (req, res) {

 if (’GET’ == req.method && ’/images’ == req.url.substr(0, 7)

 && ’.jpg’ == req.url.substr(-4)) {

 fs.stat(__dirname + req.url, function (err, stat) {

 if (err || !stat.isFile()) {

 res.writeHead(404);

 res.end(’Not Found’);

C H A P T E R 8   •   Connect 119

 return;

 }

 serve(__dirname + req.url, ’application/jpg’);

 });

 } else if (’GET’ == req.method && ’/’ == req.url) {

 serve(__dirname + ’/index.html’, ’text/html’);

 } else {

 res.writeHead(404);

 res.end(’Not found’);

 }

 function serve (path, type) {

 res.writeHead(200, { ’Content-Type’: type });

 fs.createReadStream(path).pipe(res);

 }

});

/**

 * Listen.

 */

server.listen(3000);

Now you’re done! The next step is to run the following:

$ node server

Then point your browser to http://127.0.0.1:3000, and you should see your website!

A SIMPLE WEBSITE WITH CONNECT
This website example highlights a few common tasks frequently involved in creating a
website:

◾	 Serving static files
◾	 Handling errors and bad or missing URLs
◾	 Handling different types of requests

Connect, as a layer on top of the http API, provides some facilities to make these repeatable
processes easier to implement so that you can focus on the real purpose of your application. It
lets you stick to the DRY pattern: Don’t Repeat Yourself.

The example can be simplified tremendously thanks to Connect. You first create package.
json with the dependency “connect” in a new directory.

{

 “name”: “my-website”

 , “version”: “0.0.1”

120 PA RT I I I   •   Web Development

 , “dependencies”: {

 “connect”: “1.8.7”

 }

}

Then you install it:

$ npm install

Next, you require it:

/**

 * Module dependencies.

 */

var connect = require(‘connect’)

You create the http.Server through Connect:

/**

 * Create server.

 */

var server = connect.createServer();

You use() the static middleware. You explore the concept of middleware in the next
section and go in greater depth in the coming chapters. For now, it’s important to understand
that middleware is a simple JavaScript function. In this case, we configure the static middle-
ware by passing some parameters to connect.static, which returns a function.

/**

 * Handle static files.

 */

server.use(connect.static(__dirname + ‘/website’));

You place index.html and the images directory under /website to ensure you don’t
serve undesired files.

Then you listen():

/**

 * Listen.

 */

server.listen(3000);

Now you’re done! Connect can even handle 404s for you, so also try going to /made-up-url.

C H A P T E R 8   •   Connect 121

MIDDLEWARE
To understand middleware better, go back to the node HTTP example. Remove the logic and
focus for a minute on what you’re trying to do:

if (‘GET’ == req.method && ‘/images’ == req.url.substr(0, 7)) {

 // serve image

} else if (‘GET’ == req.method && ‘/’ == req.url) {

 // serve index

} else {

 // display 404

}

As you can see, the application tries to do only one of three things every time a request
comes. If you also want to log requests, for example, you would add this piece of code to the
top:

console.error(‘ %s %s ‘, req.method, req.url);

Now imagine a larger application that can do many different things, depending on the
different variables at play for each request:

◾	 Log requests and how long they take
◾	 Serve static files
◾	 Perform authorization

These tasks can make handling code in a single event handler (the callback that you pass to
createServer) a very convoluted process.

Simply put, middleware is made up of functions that handle the req and res objects but also
receive a next function that allows you to do flow control.

If you want to write the same application using the middleware pattern, it would look like
this:

server.use(function (req, res, next) {

 // you always log

 console.error(‘ %s %s ‘, req.method, req.url);

 next();

});

server.use(function (req, res, next) {

 if (‘GET’ == req.method && ‘/images’ == req.url.substr(0, 7)) {

 // serve image

 } else {

122 PA RT I I I   •   Web Development

 // let other middleware handle it

 next();

 }

});

server.use(function (req, res, next) {

 if (‘GET’ == req.method && ‘/’ == req.url) {

 // serve index

 } else {

 // let other middleware handle it

 next();

 }

});

server.use(function (req, res, next) {

 // last middleware, if you got here you don’t know what to do with this

 res.writeHead(404);

 res.end(‘Not found’);

});

You not only benefit from the expressive power (the ability to break down the app into smaller
units), but also benefit from the reusability. As you will see, Connect already ships middle-
ware that performs common tasks. To do request logging, you can simply use the following:

app.use(connect.logger(‘dev’))

And that handles logging!

The next section explains how to write middleware that alerts you when a certain request is
taking a long time to respond.

WRITING REUSABLE MIDDLEWARE
Middleware that notifies you when a request is taking too long can be useful under many
circumstances. For example, imagine you have a page that makes a series of requests to a
database. Under your tests, everything responds within 100 milliseconds (ms), but you want
to make sure you log whenever processing is taking longer than that.

You start by creating middleware in a separate module (file) called request-time.js.

The purpose of this module is to expose a function that returns a function. This is a very
common pattern for middleware that allows for configurability. When you summoned
connect.logger in the previous example, you passed a parameter to it, and that returns
the function that eventually handles the requests.

The module for now takes a single option, the number of milliseconds after which you want
to log the request as problematic:

C H A P T E R 8   •   Connect 123

/**

 * Request time middleware.

 *

 * Options:

 * - 'time’ (‘Number’): number of ms after which you log (100)

 *

 * @param {Object} options

 * @api public

 */

module.exports = function (opts) {

 // …

};

First, you default the time to 100:

 var time = opts.time || 100;

Then you return the function that will become the middleware:

 return function (req, res, next) {

In the middleware itself, you should first create a timer that fires within the time specified:

 var timer = setTimeout(function () {

 console.log(

 ‘\033[90m%s %s\033[39m \033[91mis taking too long!\033[39m’

 , req.method

 , req.url

);

 }, time);

Now you have to make sure to clear (that is, stop or cancel) the timer if the response finishes
within 100ms. Another common pattern in middleware is to override functions (also known
as monkey-patch) so that when other middleware calls them, you can perform a certain
action.

In this case, when the response end()s, you want to clear the timer:

var end = res.end;

res.end = function (chunk, encoding) {

 res.end = end;

 res.end(chunk, encoding);

 clearTimeout(timer);

};

You first keep a reference around to the original function (var end = res.end). Then,
within the overridden function, you restore the original, call it, and then clear the timer.

124 PA RT I I I   •   Web Development

Finally, you should always let other middleware look at the request, so you call next.
Otherwise, your app wouldn’t do anything!

 next();

The complete middleware code looks like this:

/**

 * Request time middleware.

 *

 * Options:

 * - ‘time’ (‘Number’): number of ms after which we log (100)

 *

 * @param {Object} options

 * @api public

 */

module.exports = function (opts) {

 var time = opts.time || 100;

 return function (req, res, next) {

 var timer = setTimeout(function () {

 console.log(

 ‘\033[90m%s %s\033[39m \033[91mis taking too long!\033[39m’

 , req.method

 , req.url

);

 }, time);

 var end = res.end;

 res.end = function (chunk, encoding) {

 res.end = end;

 res.end(chunk, encoding);

 clearTimeout(timer);

 };

 next();

 };

};

To test this example, create a quick Connect app that has two different routes: one that gets
resolved quickly and one that takes a second:

You start with the dependencies:

 # sample.js

 /**

 * Module dependencies.

 */

 var connect = require(‘connect’)

 , time = require(‘./request-time’)

C H A P T E R 8   •   Connect 125

Next, create the server:

 /**

 * Create server.

 */

 var server = connect.createServer();

You log requests:

 /**

 * Log requests.

 */

 server.use(connect.logger(‘dev’));

Then you implement the middleware:

 /**

 * Implement time middleware.

 */

 server.use(time({ time: 500 }));

You implement the fast handler:

 /**

 * Fast response.

 */

 server.use(function (req, res, next) {

 if (‘/a’ == req.url) {

 res.writeHead(200);

 res.end(‘Fast!’);

 } else {

 next();

 }

 });

Then you implement the simulated slow route:

 /**

 * Slow response.

 */

 server.use(function (req, res, next) {

 if (‘/b’ == req.url) {

 setTimeout(function () {

 res.writeHead(200);

126 PA RT I I I   •   Web Development

 res.end(‘Slow!’);

 }, 1000);

 } else {

 next();

 }

 });

As usual, you make the server listen:

/**

 * Listen.

 */

server.listen(3000);

You run the server:

$ node server

And then, as shown in Figure 8-2, visit http://localhost:3000/a with the browser
(the fast route).

Figure 8-2: A simple route (/a) being shown to the browser.

If you look at the console shown in Figure 8-3, you can see the logger middleware in action.

Figure 8-3: The logs shown in the console after accessing route /a

C H A P T E R 8   •   Connect 127

Figure 8-4 shows the slow route (/b).

Figure 8-4: The slow route /b response in the browser

Figure 8-5 depicts the console and shows the middleware in action!

Figure 8-5: The logs after accessing route /b reveal the warning produced by your
first middleware

Next up, you’ll go through some of the built-in middleware that Connect ships with due to
the high level of reusability they have in common web applications.

STATIC MIDDLEWARE
Static middleware is probably among the most common type of middleware you will use
during the development of web applications with Node.

Mounting

Connect allows middleware to be mounted to specific URLs. For middleware like static,
this can be really useful because it allows you to map an arbitrary URL to any directory in
your filesystem.

For example, assume you want to serve a directory called /images when the URL /my-
images is requested. You can do it with mounting:

server.use(‘/my-images’, connect.static(‘/path/to/images’));

128 PA RT I I I   •   Web Development

maxAge

The static middleware takes an option called maxAge that specifies how long a certain
resource can be cached in the client’s user agent. This capability is useful when you know a
certain asset is not going to change, and you don’t want the user’s browser to re-request it.

For example, it’s common practice for web applications to bundle up all the client-side
JavaScript into a file that represents a revision number. You can add the maxAge option to
ensure those get cached forever:

server.use(‘/js’, connect.static(‘/path/to/bundles’, { maxAge: 10000000000000 });

hidden

The other option static takes is hidden. If this option is set to true, Connect serves files
that begin with a dot (.) and are considered hidden in Unix filesystems:

server.use(connect.static(‘/path/to/resources’, { hidden: true });

QUERY
Sometimes in your applications you have optional data associated with a URL that you send
as part of the query string.

For example, consider the url /blog-posts?page=5. If you point your browser to that
URL, then Node populates req.url with a string:

server.use(function (req) {

 // req.url == “/blog-posts?page=5”

});

Most likely, though, you actually want to access the value contained in that querystring.

If you implement the query middleware, you get a req.query object automatically with
those values:

server.use(connect.query);

server.use(function (req, res) {

 // req.query.page == “5”

});

Again, parsing the query string is a common task for applications that Connect greatly
simplifies. Just as in the static example where you stopped including the require call for
the fs module, you no longer need to worry about using the querystring module.

This middleware is included automatically for you in Express, the web framework subject of
the next chapter. Another very useful middleware is logger, which is described next.

C H A P T E R 8   •   Connect 129

LOGGER
The logger middleware is a useful diagnostics tool for your web application. It prints out
information about incoming requests and outgoing responses to the terminal.

There are different built-in logging formats you can use

◾	 default

◾	 dev

◾	 short

◾	 tiny

For example, in order to leverage the dev logger format you would initialize the logger
middleware as follows:

server.use(connect.logger(‘dev’));

Consider the following example, a typical “Hello World” HTTP server with the logger
middleware in use:

var connect = require(‘connect’);

connect.createServer(

 connect.logger(‘dev’)

 , function (req, res) {

 res.writeHead(200);

 res.end(‘Hello world’);

 }

).listen(3000);

Notice that I passed a series of middleware functions as parameters to the createServer
helper function. This is equivalent to initializing a Connect server and calling use twice.

When you go to http://127.0.0.1:3000 in your browser, you’ll notice two lines get
output:

GET / 200 0ms

GET /favicon.ico 200 2ms

The browser is requesting /favicon.ico and /, and the connect logger is displaying the
method for the request, in addition to the response status code, and how long the process
took.

dev is a concise and short logging format, giving you insight into behavior and performance
while you’re testing out your web apps.

The logger middleware allows custom strings that represent the format of your output.

http://127.0.0.1:3000

130 PA RT I I I   •   Web Development

Say you want to log only the method and the IP:

server.use(connect.logger(‘:method :remote-addr’));

You can also log headers by using the dynamic tokens req and res. To log the content-
length and the content-type of the response along with how long it took to produce,
you use the following:

server.use(connect.logger(‘type is :res[content-type], length is ‘

 + ‘:res[content-length] and it took :response-time ms.’));

Note: Remember that, in Node, request/response headers are always lowercase.

If you apply it to the original website that requests four images, you can see some interesting
output, as shown in Figure 8-6. (Make sure you request on a fresh cache and clear your
browser data prior to running the example.)

Figure 8-6: Your custom logger in action

Following is the complete list of tokens you can use:

◾	 :req[header] (for example, :req[Accept])
◾	 :res[header] (for example, :res[Content-Length])
◾	 :http-version

◾	 :response-time

◾	 :remote-addr

◾	 :date

◾	 :method

◾	 :url

◾	 :referrer

◾	 :user-agent

◾	 :status

C H A P T E R 8   •   Connect 131

You can also define custom tokens. Say you want a shortcut called :type that refers to the
Content-Type of the request; in that case, you use the following:

connect.logger.token(‘type’, function (req, res) {

 return req.headers[‘content-type’];

});

The next middleware to consider is body parser, which automates another task you’ve been
manually writing for http servers so far.

BODY PARSER
In one of the examples in the http module, you used the qs module to parse the body of a
POST request.

Connect can also help here! You can leverage bodyParser as follows:

server.use(connect.bodyParser());

Then you can get the POST data in the req.body:

server.use(function (req, res) {

 // req.body.myinput

});

If you send JSON from the client in a POST request, req.body also is populated accordingly
because bodyParser looks at the Content-Type of the request.

Handling uploads

Another function of the bodyParser is leveraging a module called formidable that
allows you to access the files that the user uploaded.

For this example, you can use a shortcut way of calling createServer and pass all the
middleware you need to it:

 var server = connect(

 connect.bodyParser()

 , connect.static(‘static’)

);

In the folder static/, you create index.html with a simple form to handle a file upload:

<form action=”/” method=”POST” enctype=”multipart/form-data”>

 <input type=”file” />

 <button>Send file!</button>

</form>

132 PA RT I I I   •   Web Development

Then you can add simple middleware to see what req.body.file looks like:

function (req, res, next) {

 if (‘POST’ == req.method) {

 console.log(req.body.file);

 } else {

 next();

 }

}

You’re ready to test it! To do so, upload the file Hello.txt, as shown in Figure 8-7.

Figure 8-7: Uploading a sample text file from the browser

Then look at the server output, as shown in Figure 8-8.

As you can see, you get an object that describes the upload with some useful properties. Now
print the upload back to the user:

 if (‘POST’ == req.method && req.body.file) {

 fs.readFile(req.body.file.path, ‘utf8’, function (err, data) {

 if (err) {

 res.writeHead(500);

 res.end(‘Error!’);

 return;

 }

 res.writeHead(200, { ‘Content-Type’: ‘text/html’ });

 res.end([

 ‘<h3>File: ‘ + req.body.file.name + ‘</h3>’

 , ‘<h4>Type: ‘ + req.body.file.type + ‘</h4>’

 , ‘<h4>Contents:</h4><pre>’ + data + ‘</pre>’

].join(‘’));

C H A P T E R 8   •   Connect 133

 });

 } else {

 next();

 }

Figure 8-8: The uploaded file object representation in req.body shown through
the console

Uploading the file again reveals its contents (see Figure 8-9).

Figure 8-9: The contents of sample file Hello.txt shown through the browser
after the successful upload

134 PA RT I I I   •   Web Development

Multiple files

If you want to handle multiple uploads, all you need to do is add [] to the name attribute of
your input:

<input type=”file” name=”files[]” />

<input type=”file” name=”files[]” />

Then req.body.files contains an array of objects like the one you saw in the Hello.
txt example before.

COOKIES
In a similar fashion to query, Connect can aid in the process of parsing and exposing
cookies.

When a browser sends cookies, it does so through the Cookie header. Its format is somewhat
similar to the query string of a URL. Look at a sample request that includes this header:

GET /secret HTTP/1.1

Host: www.mywebsite.org

Cookie: secret1=value; secret2=value2

Accept: */*

To access those values (secret1 and secret2) without having to parse manually or use
regular expressions, you can turn to the cookieParser middleware:

server.use(connect.cookieParser())

And, as you could expect, you can access the values through a req.cookies object:

server.use(function (req, res, next) {

 // req.cookies.secret1 = “value”

 // req.cookies.secret2 = “value2”

})

SESSION
In most web applications, the concept of a “user session” that spawns over multiple requests is
necessary. Every time you need to “log in” to a website, you’re probably leveraging some form
of session system that relies on setting a cookie on the browser that is sent with subsequent
requests.

Connect makes it really easy to do this. For this example, you create a simple login system.
You’re going to store the credentials in a users.json file that looks like this:

C H A P T E R 8   •   Connect 135

{

 “tobi”: {

 “password”: “ferret”

 , “name”: “Tobi Holowaychuk”

 }

}

The first thing you do is require Connect and the users file:

/**

 * Module dependencies

 */

var connect = require(‘connect’)

 , users = require(‘./users’)

Notice that you can require JSON files! When you only need to export data, you don’t need
to include module.exports, and you can export it as JSON directly.

Next, you include the logger, bodyParser and session middleware. Because sessions
depend on sending a cookie to the user, the session middleware needs to be preceded by the
cookieParser middleware:

var server = connect(

 connect.logger(‘dev’)

 , connect.bodyParser()

 , connect.cookieParser()

 , connect.session({ secret: ‘my app secret’ })

For security reasons, you have to supply a secret option when you initialize the session
middleware.

The first middleware checks whether the user is logged in; otherwise, you let other middleware
handle this task:

, function (req, res, next) {

 if (‘/’ == req.url && req.session.logged_in) {

 res.writeHead(200, { ‘Content-Type’: ‘text/html’ });

 res.end(

 ‘Welcome back, ’ + req.session.name + ‘. ‘

 + ‘Logout’

);

 } else {

 next();

 }

 }

The second one displays a form for logging in:

136 PA RT I I I   •   Web Development

, function (req, res, next) {

 if (‘/’ == req.url && ‘GET’ == req.method) {

 res.writeHead(200, { ‘Content-Type’: ‘text/html’ });

 res.end([

 ‘<form action=”/login” method=”POST”>’

 , ‘<fieldset>’

 , ‘<legend>Please log in</legend>’

 , ‘<p>User: <input type=”text” name=”user”></p>’

 , ‘<p>Password: <input type=”password” name=”password”></p>’

 , ‘<button>Submit</button>’

 , ‘</fieldset>’

 , ‘</form>’

].join(‘’));

 } else {

 next();

 }

 }

The next one actually checks that the credentials exist and logs in the user as a result:

, function (req, res, next) {

 if (‘/login’ == req.url && ‘POST’ == req.method) {

 res.writeHead(200);

 if (!users[req.body.user] || req.body.password != users[req.body.user].

password) {

 res.end(‘Bad username/password’);

 } else {

 req.session.logged_in = true;

 req.session.name = users[req.body.user].name;

 res.end(‘Authenticated!’);

 }

 } else {

 next();

 }

 }

Notice that you modify an object called req.session. This object is saved whenever the
response is sent, and you don’t have to save it manually. You store the name and mark
logged_in as true.

Finally, you handle the logout action in a similar fashion:

, function (req, res, next) {

 if (‘/logout’ == req.url) {

 req.session.logged_in = false;

 res.writeHead(200);

 res.end(‘Logged out!’);

 } else {

 next();

 }

 }

C H A P T E R 8   •   Connect 137

The complete code should look like this:

/**

 * Module dependencies

 */

var connect = require(‘connect’)

 , users = require(‘./users’)

/**

 * Create server

 */

var server = connect(

 connect.logger(‘dev’)

 , connect.bodyParser()

 , connect.cookieParser()

 , connect.session({ secret: ‘my app secret’ })

 , function (req, res, next) {

 if (‘/’ == req.url && req.session.logged_in) {

 res.writeHead(200, { ‘Content-Type’: ‘text/html’ });

 res.end(

 ‘Welcome back, ’ + req.session.name + ‘. ‘

 + ‘Logout’

);

 } else {

 next();

 }

 }

 , function (req, res, next) {

 if (‘/’ == req.url && ‘GET’ == req.method) {

 res.writeHead(200, { ‘Content-Type’: ‘text/html’ });

 res.end([

 ‘<form action=”/login” method=”POST”>’

 , ‘<fieldset>’

 , ‘<legend>Please log in</legend>’

 , ‘<p>User: <input type=”text” name=”user”></p>’

 , ‘<p>Password: <input type=”password” name=”password”></p>’

 , ‘<button>Submit</button>’

 , ‘</fieldset>’

 , ‘</form>’

].join(‘’));

 } else {

 next();

 }

 }

 , function (req, res, next) {

 if (‘/login’ == req.url && ‘POST’ == req.method) {

 res.writeHead(200);

 if (!users[req.body.user] || req.body.password != users[req.body.user].

password) {

138 PA RT I I I   •   Web Development

 res.end(‘Bad username/password’);

 } else {

 req.session.logged_in = true;

 req.session.name = users[req.body.user].name;

 res.end(‘Authenticated!’);

 }

 } else {

 next();

 }

 }

 , function (req, res, next) {

 if (‘/logout’ == req.url) {

 req.session.logged_in = false;

 res.writeHead(200);

 res.end(‘Logged out!’);

 } else {

 next();

 }

 }

);

/**

 * Listen.

 */

server.listen(3000);

Now try out this simple login system. First, as shown in Figures 8-10 and 8-11, make sure
basic security works.

Figure 8-10: Trying out a login with bad credentials

C H A P T E R 8   •   Connect 139

Figure 8-11: The bad credentials result in unsuccessful login as expected

Now , as depicted in Figure 8-12, try logging in with one of the users in users.json.

Figure 8-12: Login attempt with a valid user

Figure 8-13 illustrates a successful login.

Figure 8-13: Success page after login

140 PA RT I I I   •   Web Development

In Figure 8-14, you’ve returned to the main page after a successful login.

Figure 8-14: The result of going back to the main page once logged in

In order to have sessions work in a production-ready manner, you should learn how to persist
them with Redis.

REDIS SESSIONS
Try the following: while logged in, restart your node server and then refresh your browser.
Notice that the session is now gone!

The reason is that the default store for the session middleware is Memory. This means that
the session data is stored in memory, and when the process dies, the sessions die with it.

This result is not a bad thing while you’re developing applications, but it certainly can be
detrimental for production applications. In those scenarios, you should swap the store with one
that can persist reloading your node application, such as Redis (more on Redis in Chapter 12).

Redis is a small, fast database that a module called connect-redis leverages to store
session data so that it lives outside the Node process.

You can set it up like this (you must have Redis installed):

var connect = require(‘connect’)

 , RedisStore = require(‘connect-redis’)(connect);

Then you include it by passing the store option to the session middleware:

server.use(connect.session({ store: new RedisStore, secret: ‘my secret’ }))

Now you’re done! Sessions outlive your Node processes.

C H A P T E R 8   •   Connect 141

METHODOVERRIDE
Older browsers are incapable of creating requests (like Ajax) of certain methods such as PUT,
DELETE, or PATCH. A common way to address this shortcoming for these specific user agents
is to send a GET or POST request and to append a _method variable to the query string of the
URL with the real intended method.

For example, if you want to PUT a resource from IE, you could send a request like this:

POST /url?_method=PUT HTTP/1.1

For your middleware to think that that request is actually a PUT request, you can include the
methodOverride middleware:

server.use(connect.methodOverride())

Remember that middleware gets executed sequentially, so make sure it’s placed before you
include other middleware that handles requests.

BASICAUTH
For certain projects, sometimes you just need a basic authentication layer (see Figure 8-15)
that’s controlled by the user agent.

Figure 8-15: A login dialog shown by the browser (basic authentication)

142 PA RT I I I   •   Web Development

Connect makes it really easy to add this layer through the basicAuth middleware.

As an example, create a toy authentication system that relies on the administration authoriz-
ing users through the command line.

You first receive user input:

process.stdin.resume();

process.stdin.setEncoding(‘ascii’);

Then you add the basicAuth middleware:

connect.basicAuth(function (user, pass, fn) {

 process.stdout.write(‘Allow user \033[96m’ + user + ‘\033[39m ‘

 + ‘with pass \033[90m’ + pass + ‘\033[39m ? [y/n]: ‘);

 process.stdin.once(‘data’, function (data) {

 if (data[0] == ‘y’) {

 fn(null, { username: user });

 }

 else fn(new Error(‘Unauthorized’));

 });

})

Notice that you use the once method on the stdin EventEmitter because you only care
about receiving data from the command line once per request.

The middleware is simple to use. It supplies the user and pass as parameters, and it supplies
a callback to be invoked upon successful or failed authorization.

If the authorization succeeds, you pass null as the first argument (or an Error if it doesn’t
succeed) and the user object to populate req.remoteUser with.

You then declare the next middleware, which gets executed only if the authentication
succeeds:

, function (req, res) { res.writeHead(200); res.end(‘Welcome to the protected area,

‘ + req.remoteUser.username); }

Then you submit your credentials (see Figure 8-16).

C H A P T E R 8   •   Connect 143

Figure 8-16: Filling the login dialog with sample credentials

Finally, as shown in Figure 8-17, you (in)securely authorize from the command line!

Figure 8-17: The server console reveals the authentication request which is responded to

Figure 8-18 shows the web site after a user has been authenticated via the command line.

Figure 8-18: After the user is authorized through the terminal, the request is authorized

144 PA RT I I I   •   Web Development

SUMMARY
In this chapter you learned the benefits of leveraging middleware as building blocks for code
organization and reusability around requests and responses in HTTP servers. In this case,
Connect is the module that supplies the infrastructure to do this in a very expressive way.

You compared having a single request handler in contrast with separating logic into smaller
units connected by the next middleware function parameter.

You also looked at the middleware that Connect bundles that solves a variety of common
needs for the development of websites and web applications. You now understand how to
write your own middleware, and how to make them reusable through the Node.JS module
system.

Express builds on top of Connect and therefore
on the idea that you can reuse middleware that
performs certain basic tasks. This means you get
an expressive API for your web applications,
without sacrificing a rich ecosystem of reusable
components that sit on top of the HTTP stack.

To see the expressiveness hands-on, write a small
application powered entirely by Express to search
the Twitter API.

WHEREAS CONNECT PROVIDES the
foundation for the common set of basic tasks that
are normally performed on top of the HTTP
module, Express provides convenient APIs on
top of Connect to build entire websites and web
applications.

Throughout the examples in Chapter 8, you
might have noticed most of the tasks performed
in the interaction between a web browser and
web server are organized around methods and
URLs. The combination of these two is what is
sometimes referred to as routes, a concept that
sets the foundation for an Express app.

EXPRESS9
C H A P T E R

146 PA RT I I I   •   Web Development

A SIMPLE EXPRESS APP
This app, albeit simple, is by definition dynamic. When the user requests “tweets” for their
search term, you need to produce HTML that contains them. Instead of concatenating strings
that make up that HTML manually in our request handlers, you’ll be leveraging a simple
template language that will split the logic of the controller from the view.

The first step will be to ensure we include the module requirements that satisfy these needs.

CREATING THE MODULE
Create package.json as usual, but this time add two extra dependencies: ejs, the template
engine for this example, and superagent, to simplify the HTTP requests for the Twitter
searches.

{

 “name”: “express-tweet”

 , “version”: “0.0.1”

 , “dependencies”: {

 “express”: “2.5.9”

 , “ejs”: “0.4.2”

 , “superagent”: “0.3.0”

 }

}

Please notice that even though I’m using Express 2 for this example, the code should be
completely compatible with Express 3 (under development at the time of this writing).

The next step after defining the meta data for the project will be to create the templates that
produce the HTML you need.

HTML
Unlike you did in the previous applications, you are going to use a simple template language
to avoid having HTML code directly in the application logic (what is normally called control-
lers or route handlers). This template language is called EJS (or embedded js), and is similar to
embedding PHP in HTML.

You start by defining index.ejs inside the views/ folder. The templates can live anywhere,
but for the sake of project structure, put them in a separate directory.

The first template gets served for the default route (the home page). It prompts the user to
submit a search term to crawl Twitter:

<h1>Twitter app</h1>

<p>Please enter your search term:</p>

<form action=”/search” method=”GET”>

 <input type=”text” name=”q”>

C H A P T E R 9   •   Express 147

 <button>Search</button>

</form>

The other template is the search results, search.ejs. Highlight the current term and then
walk through the results (if any) or otherwise display a message:

<h1>Tweet results for <%= search %></h1>

<% if (results.length) { %>

 <% for (var i = 0; i < results.length; i++) { %>

 <%= results[i].text %> - <%= results[i].from_user %>

 <% } %>

<% } else { %>

 <p>No results</p>

<% } %>

As you can see, all we did was embed JavaScript code between the special <% and %> EJS tags.
In order to print out variables, you need to add extra “=” after <%.

SETUP
As usual, you define your dependencies in a server.js file:

var express = require(‘express’)

After requiring Express, you want to initialize your web server with it. Express provides a
shortcut method createServer just like Connect that returns an Express HTTP server.
Add the following line:

var app = express.createServer()

Unlike other popular web frameworks, Express doesn’t require configuration or a specific
filesystem structure. It’s flexible enough to let you customize every single aspect of its
functionality.

For this app, specify the template engine (so that you don’t have to include it every time you
reference your views) and where your views files (templates) are located. The method you
called earlier, express.createServer, augments HTTP servers with a configuration
system. You can call set to change configuration flags. Add these afterwards:

app.set(‘view engine’, ‘ejs’);

app.set(‘views’, __dirname + ‘/views’);

app.set(‘view options’, { layout: false });

The third parameter view options defines configuration options that are passed to every
template when rendering a view. The value layout is set to false here, to match what will
become a default with Express 3.

148 PA RT I I I   •   Web Development

If you wanted to obtain a configuration setting, you would call app.set with just one flag.
For example, if you wanted to print out the value of the setting views, you call it like this:

console.log(app.set(‘views’));

Moving forward, you’ll leverage additional methods Express adds to expressively define
routes, something that you’ve done a lot quite a bit in Chapter 7 and Chapter 8.

DEFINING ROUTES
Instead of defining middleware that checks the properties method and url manually every
time, you can use Express to progressively define routes by calling the function corresponding
to the HTTP method you want to handle and then supplying the URL and the handler
middleware.

The methods Express adds to the server are get, put, post, del, patch, and head,
matching HTTP verbs GET, PUT, POST, DELETE, PATCH, and HEAD, respectively. The
following are examples of route definitions with them:

app.get(‘/’, function (req, res, next) {});

app.put(‘/post/:name’, function (req, res, next) {});

app.post(‘/signup’, function (req, res, next) {});

app.del(‘/user/:id’, function (req, res, next) {});

app.patch(‘/user/:id’, function (req, res, next) {});

app.head(‘/user/:id’, function (req, res, next) {});

The first parameter is the route, and the second is the route handler. Route handlers work just
like middleware.

Note that routes can take a special format to define variables within them. In the example
above /user/:id, id can take different values and the route will still match: for example
/user/2, /user/3, and so on. You’ll learn more about them later in the chapter.

For now, you should first define your home page route: Add the following to server.js:

app.get(‘/’, function (req, res) {

 res.render(‘index’);

});

The complete code for server.js should look like this so far:

/**

 * Module requirements.

 */

C H A P T E R 9   •   Express 149

var express = require(‘express’)

 , search = require(‘./search’)

/**

 * Create app.

 */

var app = express.createServer();

/**

 * Configuration

 */

app.set(‘view engine’, ‘ejs’);

app.set(‘views’, __dirname + ‘/views’);

app.set(‘view options’, { layout: false });

/**

 * Routes

 */

app.get(‘/’, function (req, res) {

 res.render(‘index’);

});

/**

 * Listen

 */

app.listen(3000);

Express adds a method called render to the response; it acts as shortcut to

	 1.	 Initializing the template engine
	 2.	Reading the view file and passing it to the template engine
	 3.	Getting the resulting HTML and sending it as a response

Because you specified the view engine to be ejs in the previous step, you don’t need to
reference index.ejs.

As shown in Figure 9-1, test the route (don’t forget to call listen).

150 PA RT I I I   •   Web Development

Figure 9-1: The route handler / renders the index view.

For the second route, call a function named search (which you define in a separate
module):

app.get(‘/search’, function (req, res, next) {

 search(req.query.q, function (err, tweets) {

 if (err) return next(err);

 res.render(‘search’, { results: tweets, search: req.query.q });

 });

});

Next, add the search dependency after express:

var express = require(‘express’)

 , search = require(‘./search’)

Notice that if an error is passed by the search function, you pass it to next. When you learn
more about error handling later in the chapter you’ll understand why, but for now assume that
Express takes care of informing the user of the error.

In this route, you also call render, but you pass an object as second parameters. The contents
of that object get exposed to the view. Notice how you pass tweets and search, both of
which get referenced directly in search.ejs. You call this object the locals object
because its keys become local to the template.

SEARCH
The search module exposes a simple function to query the Twitter Search API. The file this
module will reside in, search.js, goes in the same directory as server.js for this
example.

In the function call search above, you passed it the search term, and the function callback
passed back an error (if any), and an array of tweets.

C H A P T E R 9   •   Express 151

To write a module that does this, you start defining its dependencies. In this case, you’re only
going to need superagent:

var request = require(‘superagent’)

Since the HTTP request made to the Twitter web service we make is essential to the function-
ing of your application, you want to make sure the search module does proper error handling.

For example, if the Twitter API is down or malfunctioning, you want to pass an error object so
that ultimately the user sees an error page (for example, showing HTTP status code error 500).

/**

 * Search function.

 *

 * @param {String} search query

 * @param {Function} callback

 * @api public

 */

module.exports = function search (query, fn) {

 request.get(‘http://search.twitter.com/search.json’)

 .data({ q: query })

 .end(function (res) {

 if (res.body && Array.isArray(res.body.results)) {

 return fn(null, res.body.results);

 }

 fn(new Error(‘Bad twitter response’);

 });

};

Similar to the other superagent examples, you want to make a GET request, sending the
querystring data field q with the search term. The URL superagent hit for the search
term hello world will be something like http://search.twitter.com/search.
json?q=hello+world.

In the response handler, you’re actively making sure that the request works and satisfies our
expectations completely. Instead of looking at HTTP status codes and verifying you got 200
instead of something else, it’s smarter to ask the question: did I get an array of tweets as part
of the response?

If you remember from Chapter 7, if superagent gets a JSON response, it will automatically
decode it and place its contents as part of the res.body variable. Since the Twitter API
responds with a JSON object with a key results containing an array of tweets, the following
snippet from the code above is all you need for error handling:

if (res.body && Array.isArray(res.body.results)) {

 return fn(null, res.body.results);

}

http://search.twitter.com/search.json?q=hello+world
http://search.twitter.com/search.json?q=hello+world

152 PA RT I I I   •   Web Development

RUN
Run the server and point your browser to http://localhost:3000 (see Figure 9-2) and
try out a search term (see Figure 9-3).

Figure 9-2: An example filling out a search term and submitting it.

Figure 9-3: The results of querying the search term.

It works! After making the search to Twitter, you got back an array of tweets. It eventually
made its way to the template search.ejs, which generated the dynamic list of tweets.

After the HTML was produced by the render functionality of Express, the /search route
successfully served the complete page to the user as shown in Figure 9-3.

After this simple example, it’s time to analyze some of the Express features you used in depth,
and learn new ones.

C H A P T E R 9   •   Express 153

SETTINGS
One of the interesting features Express provides that proves necessary for any type of web
application is the ability to manage environments and settings.

For example, during production you can make a performance enhancement and let express
cache the templates so that they get served faster. However, if you enable this feature during
development, you would need to restart Node every time you make a change to a template to
test the result.

Express lets you set this environment by calling configure:

app.configure(‘production’, function () {

 app.enable(‘view cache’);

});

In this case, app.enable is the equivalent to calling app.set like you saw in the simple
Express example above for the views config flag.

 app.set(‘view cache’, true);

To know whether a configuration flag is enabled you can also call app.enabled. app.
disable and app.disabled are also available.

When the environment variable NODE_ENV is set to production, the callback we defined
with app.configure gets executed.

To test it, run

$ NODE_ENV=production node server

If node NODE_ENV is defined, the environment defaults to development:

app.configure(‘development’, function () {

 // gets called in the absence of NODE_ENV too!

});

Some other useful built-in settings are

◾	 case sensitive routes: Enable case-sensitive routing. By default, when you define
a route as follows:
app.get(‘/my/route’, function (req, res) {}

	 Express will match that route for /my/route and /MY/ROUTE. By enabling this, routes
will match if the cases match.

154 PA RT I I I   •   Web Development

◾	 strict routing: When enabled trailing slashes are no longer ignored. For example,
the previous example route matches the URLs /my/route and /my/route/. If strict
routing is enabled, however, only /my/route would match, since that’s how it was
defined with app.get.

◾	 jsonp callback: Enable res.send() / res.json() transparent jsonp
support. JSONP is a technique for serving cross-domain JSON that consists in wrapping
the response with the callback provided by the user.

◾	 When JSONP is requested, the URL would look like this: /my/route?callback=
myCallback. Express can automatically detect the callback parameter and wrap the
response with the myCallback text. To enable this behavior, call app.enable(‘
jsonp callback’). Please note that this only applies when you call res.send or
res.json in a route, which are described later in the chapter.

TEMPLATE ENGINES
To use ejs in the preceding example, you must take two steps:

	 1.	You install the ejs module through NPM.
	 2.	You declare the view engine as ejs.

In the same way many other templates are commonly used with Express:

◾	 Haml
◾	 Jade
◾	 CoffeeKup
◾	 jQuery Templates for node

Express tries to call require with the extension name of the template or the configured
view engine.

For example, you can call

res.render(‘index.html’)

In this case, Express tries to require the html engine. Because it can’t find one, the call
results in an error.

You can map extensions to known template engines by using the app.register API. For
example, to map html extensions to the jade template engine, run

app.register(‘.html’, require(‘jade’));

Jade is one of the most popular template languages, and definitely worth learning. To find out
more about it, refer to its website http://jade-lang.org.

http://jade-lang.org

C H A P T E R 9   •   Express 155

ERROR HANDLING
It’s natural in the Node environment to pass around error objects as the result of non-blocking
I/O callbacks. In our example in this chapter, we expected the possibility of an Error object
when we performed the Twitter API search.

What you normally want to do with them in the context of Express routes is pass these error
objects to next. By default, Express will show an error page and send the status code 500.

Most web applications however will want to customize error pages, or even set up custom
backend reporting.

You can define special handlers with app.error that act as middleware for errors:

app.error(function (err, req, res, next) {

 if (‘Bad twitter response’ == err.message) {

 res.render(‘twitter-error’);

 } else {

 next();

 }

});

Notice that in that example I’m inspecting the error message to decide whether the middle-
ware will handle the error or not, and call next otherwise.

You can set up multiple .error handlers that have different actions. For example, the last
error handler can send a 500 Internal Server Error and render a generic error page:

app.error(function (err, req, res) {

 res.render(‘error’, { status: 500 });

});

If you call next and another handler is not available, the default Express error handler will
kick in.

CONVENIENCE METHODS
Express provides a series of extensions to Node’s Request and Response objects that
greatly simplify different tasks.

The extensions to the Request object are

◾	 header: This extension allows for easily retrieving a header as a function in a way that is
not case sensitive:
req.header(‘Host’)

req.header(‘host‘)

156 PA RT I I I   •   Web Development

◾	 accepts: This extension analyzes the Accept header of the request according to the
supplied value and returns true or false:
req.accepts(‘html’)

req.accepts(‘text/html’)

◾	 is: This extension is similar to accepts, but it checks the Content-Type header:
req.is(‘json’)

req.is(‘text/html‘)

The extensions to the Response object are

◾	 header: This extension takes one argument to check whether a header has been set for
the response:
res.header(‘content-type’)

Or two arguments to set a header:
res.header(‘content-type’, ‘application/json’)

◾	 render: You have learned most of the usage of render already. In the previous
example, however, you might have noticed you passed the status local. This is a special
type of local that, when set, also sets the status code of the response.
•	 In addition, you can supply a third parameter to render to obtain the HTML

without sending it automatically as the response.
res.render(‘template’, function (err, html) {

 // do something with html

});

◾	 send: This magic method acts based on the type of the supplied argument.
•	 Number: Sends a status code:

res.send(500);

•	 String: Sends HTML:
res.send(‘<p>html</p>’);

•	 Object/Array: Serializes it into JSON, setting the appropriate Content-Type
header:
res.send({ hello: ‘world’ }); res.send([1,2,3]);

◾	 json: This extension is similar to send for most situations. It explicitly sends a value as
JSON.
res.json(5);

You want to use this method when the type of the value is unknown. res.send relies on
type checking for an object to decide whether to call JSON.stringify on it. If a number is
supplied, it assumes you want to send a status code and finish the response. res.json,
however, would pass the number through JSON.stringify.

Since most of the time you’ll want to encode objects, res.send is still the most common
choice.

C H A P T E R 9   •   Express 157

◾	 redirect: Redirect offers a helper for sending the 302 (Moved Temporarily) status code
and the Location header. The following:

res.redirect(‘/some/other/url’)

is effectively equivalent to:
res.header(‘Location’, ‘/some/other/url’);

res.send(302);

which in turn is equivalent to the following native Node.JS:
res.writeHead(302, { ‘Location’: ‘/some/other/url’ });

◾	 redirect also takes a custom status code as its second parameter. For example, if you
want to send Moved Permanently instead you would set it to 301:

res.redirect(‘/some/other/url’, 301)

◾	 sendfile: This extension is similar in spirit to the Connect static middleware, but it
is used for individual files:
res.sendfile(‘image.jpg‘)

Beyond our usage of routes in the simple example app, there’s a lot more to them that can be
really useful for larger web applications.

ROUTES
Routes can define custom parameters:

app.get(‘/post/:name’, function () {

 // . . .

})

In this case, the variable name is populated inside the req.params object. For example,
say you point your browser to ‘/post/hello-world’, the object req.params gets
populated accordingly:

app.get(‘/post/:name’, function () {

 // req.params.name == “hello-world”

})

You can make parameters optional by appending a question mark (?) symbol after them. In
the previous route, if you point your browser to /post, there won’t be a match. The route is
defined by the requirement of a parameter:

app.get(‘/post/:name?’, function (req, res, next) {

 // this will match for /post and /post/a-post-here

})

Routes that include parameters like these compile down to regular expressions internally. That
means for more advanced route matching you can also pass a RegExp object directly. For

158 PA RT I I I   •   Web Development

example, if you wanted to make that route match only for alphanumeric characters and
dashes, you could use the following:

app.get(/^\/post\/([a-z\d\-]*)/, function (req, res, next) {

 // req.params contains the matches set by the RegExp capture groups

})

In the same spirit as middleware, you can use next to control the flow of route matching.
Even when a route is executed, you can still force Express to continue matching the request
against other defined routes.

For example, make a route that accepts only parameters that start with an ‘h’:

app.get(‘/post/:name’, function (req, res, next) {

 if (‘h’ != req.params.name[0]) return next();

 // . . .

});

This fine-grained route flow control solves a variety of situations gracefully thanks to its
flexibility.

For example, many web applications allow routes such as /home and /about, but they also
want to have permalinks that point to dynamic content, such as vanity URLs.

After you define all your routes, you can define one that captures vanity usernames and makes
a database call. If the username is not found, you can next and send a 404; otherwise, you
render his profile:

app.get(‘/home’, function (req, res) {

 // . . .

});

app.get(‘/:username’, function (req, res, next) {

 // if you got here, no prior application routes matched

 getUser(req.params.username, function (err, user) {

 if (err) return next(err);

 if (exists) {

 res.render(‘profile’)

 } else {

 next();

 }

 });

}):

Express takes the concept of middleware you’re already familiar with and expands on it. Read
on to learn more about it.

C H A P T E R 9   •   Express 159

MIDDLEWARE
Because Express is built on top of Connect, when you create an Express server, you can use it
to enable Connect-compatible middleware. For example, to serve images under an images/
folder, you can leverage the static middleware like this:

app.use(express.static(__dirname + ‘/images’));

Or if you wanted to leverage connect sessions, you would do it just like we did for Connect:

app.use(express.cookieParser());

app.use(express.session());

Notice that you can access Connect middleware directly as part of the Express requirement.
There’s no need to require(‘connect’) or add connect as a dependency to your
package.json file. Middleware are easily accessible to you.

More interestingly, Express also allows for middleware that gets appended only after a certain
route matched, as opposed to every request.

Imagine a situation in which you want to check that the user is authenticated, but only for
certain protected routes. In this case, you can define a secure middleware that sends the
status code 403 Not Authorized if the req.session.logged_in is not true:

function secure (req, res, next) {

 if (!req.session.logged_in) {

 return res.send(403);

 }

 next();

}

Then you can apply it to routes:

app.get(‘/home’, function () {

 // accessible to everyone

});

app.get(‘/financials’, secure, function () {

 // secure!

});

app.get(‘/about’, function () {

 // accessible to everyone

});

app.get(‘/roadmap’, secure, function () {

 // secure!

});

160 PA RT I I I   •   Web Development

You can define more than one middleware function for each route:

‘’app.post(‘/route’, a, b, c, function () { });

In some situations, you want to call next from route middleware in such a way that the rest
of the middleware for that route gets skipped, and Express resumes processing at the next
route.

For example, if instead of sending 403, you want to let Express check other routes, you could
use the following approach:

function secure (req, res, next) {

 if (!req.session.logged_in) {

 return next(‘route’);

 }

 next();

}

By calling next(‘route’), you ensure the current route gets skipped.

As applications grow and the number of routes and middleware increases, it’s useful to have
some code organization strategies in mind. The next section describes the most fundamental
ways of achieving this.

ORGANIZATION STRATEGIES
The first rule for any Node.JS application, including Express web apps, is to always be modular.
Node.JS gives us a very powerful code organization strategy through the simple require
API.

For example, consider an application that has three distinct sections /blog, /pages, and
/tags, each with other routes under their hierarchy. For example, /blog/search,
/pages/list, or /tags/cloud.

A successful organization strategy would be to maintain a server.js file with the route map and
then include the route handlers as modules blog.js, pages.js, and tags.js. First, you
define the dependencies and initialize the app, include middleware, and so on:

var express = require(‘express’)

 , blog = require(‘./blog’)

 , pages = require(‘./pages’)

 , tags = require(‘./tags’)

// initialize app

var app = express.createServer();

// here you would include middleware, settings, etc

C H A P T E R 9   •   Express 161

Then you define what I refer to as the route map, which is simply laying out all the URLs that
you want to handle in a single place:

// blog routes

app.get(‘/blog’, blog.home);

app.get(‘/blog/search’, blog.search);

app.post(‘/blog/create’, blog.create);

// pages routes

app.get(‘/pages’, pages.home);

app.get(‘/pages/list’, pages.list);

// tags routes

app.get(‘/tags’, tags.home);

app.get(‘/tags/search’, tags.search);

Then, for each specific file you would leverage exports. Consider the example for blog.js:

exports.home = function (req, res, next) {

 // home

};

exports.search = function (req, res, next) {

 // search functionality

};

Modules offer great flexibility. You could take this to a next level and divide modules by
methods. For example:

exports.get = {};

exports.get.home = function (req, res, next) {})

exports.post = {};

exports.post.create = function (req, res, next) {})

The other way in which applications can be decoupled is what’s known as app mounting. You
can export an entire Express app as a module (which you could also obtain from NPM), and
mount it to your existing application, making the routes match seamlessly.

Consider the example of an application that needs a blog. You can define a blog with all its
routes /, /categories, and /search, and export that as blog.js:

var app = module.exports = express.createServer();

app.get(‘/’, function (req, res, next) {});

app.get(‘/categories’, function (req, res, next) {});

app.get(‘/search’, function (req, res, next) {});

Notice that the routes are defined in absolute terms, without a prefix. Then, in your main app,
all you have to do is require it and pass it to app.use:

162 PA RT I I I   •   Web Development

app.use(require(‘./blog’));

With this, all the blog routes immediately become available to another application. In
addition, you can set a prefix for them:

app.use (‘/blog’, require(‘./blog’));

Now the routes /blog/, /blog/categories, and /blog/search will seamlessly be
handled by the other express application, which can have its own completely separate set of
dependencies, middleware, configuration, and more.

SUMMARY
In this chapter you learned how to leverage Express, the most popular Node.JS web
framework.

The main benefit you’ll see from your usage and implementation of Express is that it’s simple,
largely unopinionated but flexible, and it builds on top of other battle-tested and clean
abstractions like Connect.

Unlike other web frameworks and libraries, Express can be easily molded to fit different
needs, structures, and patterns. You learned how to use it with minimal implementation
overhead in the first application example, just like the Node.JS Hello World.

As a matter of fact, you might have noticed that Express tries to stay close to the Node.JS core
API and extend it, as opposed to creating a new world on top of it. That’s why route handlers
still receive the native Node request and response objects, the same we received in the first
HTTP server we wrote. You learned and appreciated the usefulness of these extensions, and
how for example they make writing APIs that respond with JSON a breeze with res.send.

Finally, you learned how to put different pieces together to create maintainable code. Again,
the main strategy of staying close to the Node.JS core APIs pays off: leveraging require is
one of the most powerful tools for superior code organization.

Consider the following, for example:
GET /animals/index.html

GET /animals/mammals/index.html

GET /animals/mammals/ferrets.html

With time, however, the web became more and
more interactive. The traditional web that was
about retrieving entire documents every time the
user clicked is less common nowadays, especially
with all the tools that HTML5 makes available.
You can now create very sophisticated web
applications that often have completely depre-
cated desktop application counterparts, games,
text editors, and more.

SO FAR, MOST website and web application
developers are accustomed to communicating
exclusively with a server by making HTTP
requests that are followed by HTTP responses.

The model of requesting a resource by specifying
its URL, Content-Type, and other attributes
that you saw in previous chapters works well if
you keep in mind the use case that the World
Wide Web was crafted to solve. The web was
created to deliver documents that were heavily
interlinked to each other. URLs have paths
because documents typically have hierarchies in
file systems. And each level of hierarchy can
contain indexes with hyperlinks.

WEBSOCKET10
C H A P T E R

164 PA RT I I I   •   Web Development

AJAX
The Web 2.0 marked the uprise of the web application. One of its key ingredients was AJAX,
which translated into a snappier user experience for a fundamental reason: you no longer had
to retrieve an entire HTML document every time the user interacted with the server.

For example, if you are updating your profile on a social networking application, you can
make an asynchronous POST request and get a simple OK in return. Then with one of the
readily available JavaScript frameworks, you can alter the view to represent the user action.

Alternatively, when you click Remove on a table, you can send a DELETE request and erase
the row (<tr>) element without having the browser fetch a lot of unnecessary data, images,
scripts, and stylesheets and then rerender the entire page.

In essence, AJAX was important because it allowed you to get rid of a lot of data transfer and
rendering overhead that you didn’t need for many of the things that web applications were
trying to do with web applications.

In recent times, however, many applications have been transferring data in ways in which the
traditional HTTP request+response model results in significant overhead. Consider the
example of the application you are going to build in this chapter. Say you want to show where
the cursors of every visitor of your website are in real time. Every time a visitor moves her
mouse, you send her coordinates.

Say you use jQuery to send AJAX requests. The first idea that comes to mind is using $.post
to send a POST request with the cursor location every time the mousemove event is triggered,
as shown here:

$(document).mousemove(function (ev) {

 $.post(‘/position’, { x: ev.clientX, y: ev.clientY });

});

This code, despite looking straightforward, has a fundamental problem: you have no control
over the order in which the server receives requests.

When your code makes a request, the browser can send it through any of its available sockets
because browsers open multiple sockets to the target server to enhance performance. For
example, while an image is being downloaded, an AJAX request can still be sent. If the
browser operates with only one socket, this is impossible and websites are extremely slow to
interact with.

If three requests are made in parallel through three different sockets, you have no guarantee of
the order in which they are received. As a result, you need to adjust your code to send only
one request at a time and wait for the response to send the next one:

C H A P T E R 10   •   WebSocket 165

var sending = false;

$(document).mousemove(function (ev) {

 if (sending) return;

 sending = true;

 $.post(‘/position’, { x: ev.clientX, y: ev.clientY }, function () {

 sending = false;

 });

});

Now consider what the TCP traffic would look like using Firefox as an example:

Request
POST / HTTP/1.1

Host: localhost:3000

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.7; rv:8.0.1) Gecko/20100101

Firefox/8.0.1

Accept: */*

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip, deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Content-Type: application/x-www-form-urlencoded; charset=UTF-8

X-Requested-With: XMLHttpRequest

Referer: http://localhost:3000/

Content-Length: 7

Pragma: no-cache

Cache-Control: no-cache

x=6&y=7

Response
HTTP/1.1 200 OK

Content-Type: text/plain

Content-Length: 2

Connection: keep-alive

OK

As you can see, a great amount of text surrounds a minimal amount of data. A lot of
unneeded headers for this particular use case are sent back and forth, and they greatly
outweigh how much data we’re sending.

Even if you could remove some of those headers, do you really need a response in this case? If
you’re sending something as volatile and unimportant as the position of a mouse, you don’t
really need to wait for an OK to send more.

166 PA RT I I I   •   Web Development

The ideal case for this particular web application starts to resemble raw TCP (like that in the
chat application in Chapter 6) more than it resembles HTTP. Ideally, you would want to write
the positions to a socket sequentially with minimal framing (that is, the data that surrounds
the data you care about).

If you think in terms of telnet, ideally you would like the browser to send

x=6&y=7 \n

x=10&y=15 \n

. . .

Now, thanks to HTML5, you have a solution: WebSocket. WebSocket is the TCP of the web, a
low-level bidirectional socket that gives control of the communication back to you.

HTML5 WEBSOCKET
When you discuss WebSocket, you’re talking about two distinct parts: the WebSocket API
implemented by browsers, and the WebSocket Protocol implemented by servers. Both have
been designed and developed in conjunction with other technologies as part of the HTML5
initiative and movement, but are not a formal part of the HTML5 specification. The former
is being standardized by the W3C, and the latter has been standardized by the IETF as
RFC 6455.

The API as it’s implemented by the browser looks like this:

var ws = new WebSocket(‘ws://host/path’);

ws.onopen = function () {

 ws.send(‘data’);

}

ws.onclose = function () {}

ws.ondata = function (ev) {

 alert(ev.data);

}

The simplicity of its API is, not coincidentally, reminiscent of the TCP client you wrote in
Chapter 6. As you can see, unlike XMLHttpRequest (AJAX), it’s not oriented around
requests and responses, but messages sent with the send method. You can send and receive
messages in UTF-8 or binary encoding very easily, through the data event, and learn about
the connection being opened or closed through the open and close events.

Connection must first be established with a handshake. The handshake looks like a normal
HTTP request, but after the server responds to it, the client and server begin exchanging data
with minimal framing:

C H A P T E R 10   •   WebSocket 167

Request
GET /ws HTTP/1.1

Host: example.com

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Version: 6

Sec-WebSocket-Origin: http://pmx

Sec-WebSocket-Extensions: deflate-stream

Sec-WebSocket-Key: x3JJHMbDL1EzLkh9GBhXDw==

Response
HTTP/1.1 101 Switching Protocols

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept: HSmrc0sMlYUkAGmm5OPpG2HaGWk=

WebSockets are still based on HTTP, which means it’s fairly easy to implement the protocol
on top of existing servers. The main difference is that as soon as the handshake is complete, a
minimalistic TCP-like socket is available to you.

To better understand these concepts, let’s write an example app.

AN ECHO EXAMPLE
The first example will consist of a server and a client exchanging simple ping and pong
strings. When the client sends a ping, you’ll record the time, and measure how many millisec-
onds it takes for the server to respond.

SETTING IT UP
For this example, you use websocket.io, which I created while working at LearnBoost.

It’s important to keep in mind that websocket.io handles only the WebSocket requests. All
the other requests in your website or application are still handled by a regular web server,
which is why you also include express in your package.json file:

“name”: “ws-echo”

 , “version”: “0.0.1”

 , “dependencies”: {

 “express”: “2.5.1”

 , “websocket.io”: “0.1.6”

 }

}

168 PA RT I I I   •   Web Development

The server simply responds to messages by echoing them back to the browser. The browser
measures how long it takes for the server to respond.

SETTING UP THE SERVER
The first thing you need to do is initialize express and attach websocket.io to it so that
it can handle the WebSocket requests:

var express = require(‘express’)

 , wsio = require(‘websocket.io’)

/**

 * Create express app.

 */

var app = express.createServer();

/**

 * Attach websocket server.

 */

var ws = wsio.attach(app);

/**

 * Serve your code

 */

app.use(express.static(‘public’));

/**

 * Listening on connections

 */

ws.on(‘connection’, function (socket) {

 // . . .

});

/**

 * Listen

 */

app.listen(3000);

Now focus on the connection handler. I explicitly designed websocket.io to closely
resemble how you would implement a net.Server. Because you want to echo back
messages, all you need to do is listen on the message event and send it back.

ws.on(‘connection’, function (socket) {

 socket.on(‘message’, function (msg) {

C H A P T E R 10   •   WebSocket 169

 console.log(‘ \033[96mgot:\033[39m ‘ + msg);

 socket.send(‘pong’);

 });

});

SETTING UP THE CLIENT
Now you’re ready to move onto the code, which goes into the public folder:

index.html
<!doctype html>

<html>

 <head>

 <title>WebSocket echo test</title>

 <script>

 var lastMessage;

 window.onload = function () {

 // create socket

 var ws = new WebSocket(‘ws://localhost:3000’);

 ws.onopen = function () {

 // send first ping

 ping();

 }

 ws.onmessage = function (ev) {

 console.log(‘ got: ‘ + ev.data);

 // you got echo back, measure latency

 document.getElementById(‘latency’).innerHTML = new Date – lastMessage;

 // ping again

 ping();

 }

 function ping () {

 // record the timestamp

 lastMessage = +new Date;

 // send the message

 ws.send(‘ping’);

 };

 </script>

 </head>

 <body>

 <h1>WebSocket Echo</h1>

 <h2>Latency: ms</h2>

</body>

</html>

If you look at the HTML, it’s fairly self-explanatory. It just sets up a placeholder to display the
latency (which is the number of milliseconds that a message takes to complete a round trip).

170 PA RT I I I   •   Web Development

The JavaScript code is relatively straightforward also. You keep track of the last message
timestamp:

var lastMessage

Initializing WebSocket opens the connection:

var ws = new WebSocket(‘ws://localhost:3000’);

You register the connection as open and send the first message to the server:

ws.onopen = function () {

 ping();

}

When the server replies, you measure the latency and ping again:

ws.onmessage = function () {

 console.log(‘ got: ‘ + ev.data);

 // you got echo back, measure latency

 document.getElementById(‘latency’).innerHTML = new Date – lastMessage;

 // ping again

 ping();

}

Finally, let’s define the ping function, which tracks the timestamp to measure the response
against (so that we can determine the latency), and sends a simple string:

function ping () {

 // record the timestamp

 lastMessage = +new Date;

 // send the message

 ws.send(‘ping’);

};

RUNNING THE SERVER
Now you run the server:

$ node server.js

Then you point the browser to http://localhost:3000 (see Figure 10-1). Make sure you test with
a modern web browser that supports WebSocket, like Chrome 15+ or IE 10+. If unsure, go to
http://websocket.org and look at the “Does your browser support WebSocket?” box.

You successfully created a single-user realtime application. Check the terminal output and
your web browser’s console for a log of the messages exchanged. In most modern computers,

http://localhost:3000/
http://websocket.org

C H A P T E R 10   •   WebSocket 171

it will take on average between 1 and 5 milliseconds to exchange this message. As an exercise,
try writing this same example leveraging AJAX and Express routes, and compare how long it
takes to complete a ping-pong cycle.

Figure 10-1: The time it takes for a packet to go to the server and back to the client

For the next example, you’ll write an application where the server’s role is to connect multiple
users on a single screen.

MOUSE CURSORS
You are going to display the image of a cursor representing the position of all the connected
users in the screen.

Through this example, you learn the concept of broadcasting, which consists of one user
relaying a message to everyone but himself.

SETTING UP THE EXAMPLE
The requirements for this project are the exact same as for the previous example. In your
package.json include:

{

 “name”: “ws-cursors”

 , “version”: “0.0.1”

 , “dependencies”: {

 “express”: “2.5.1”

 , “websocket.io”: “0.1.6”

 }

}

172 PA RT I I I   •   Web Development

SETTING UP THE SERVER
The basic server setup is equivalent to the previous app. You serve static HTML with
express, and you attach a websocket.io server to it in your server.js:

var express = require(‘express’)

 , wsio = require(‘websocket.io’)

/**

 * Create express app.

 */

var app = express.createServer();

/**

 * Attach websocket server.

 */

var ws = wsio.attach(app);

/**

 * Serve your code

 */

app.use(express.static(‘public’))

/**

 * Listening on connections

 */

ws.on(‘connection’, function (socket) {

 // . . .

});

/**

 * Listen

 */

app.listen(3000);

In this case, however, you want to take a different action when a user connects. You want to
keep track of everyone’s positions in memory in a simple object. You also keep track of the
total number of clients that have connected so that you can give each client a unique ID. That
ID identifies the client’s position in the positions object:

var positions = {}

 , total = 0

ws.on(‘connection’, function (socket) {

 // . . .

});

C H A P T E R 10   •   WebSocket 173

When a user first connects, you want to send everyone’s positions to him as the first message.
That way, when the user first loads the page, he can see everyone who is connected.

To that end, you encode the positions object as JSON:

ws.on(‘connection’, function (socket) {

 // you give the socket an id

 socket.id = ++total;

 // you send the positions of everyone else

 socket.send(JSON.stringify(positions));

});

When a client sends a message, you assume he’s sending his position as JSON (as an object
with x and y coordinates). You then store it in the positions object:

socket.on(‘message’, function (msg) {

 try {

 var pos = JSON.parse(msg);

 } catch (e) {

 return;

 }

 positions[socket.id] = pos;

});

Finally, when the user disconnects, you clear his position:

socket.on(‘close’, function () {

 delete positions[socket.id];

});

What is missing here? Broadcasting, of course. When a position is received, you want to send
it to everyone else. And when the socket closes, you want to notify everyone else that the user
disconnected so his cursor is removed from the screen.

You declare a broadcast function to go through the rest of the clients and send them a
message. Include it right after you register the ws connection listener:

function broadcast (msg) {

 for (var i = 0, l = ws.clients.length; i < l; i++) {

 // you avoid sending a message to the same socket that broadcasts

 if (ws.clients[i] && socket.id != ws.clients[i].id) {

 // you call ‘send’ on the other clients

 ws.clients[i].send(msg);

 }

 }

}

174 PA RT I I I   •   Web Development

Because you have two distinct types of data to send, you send a small JSON packet with a
type identifier.

When you relay a position, you send an object that looks like this:

{

 type: ‘position’

 , pos: { x: <x>, y: <y> }

 , id: <socket id>

}

When a user disconnects, you send

{

 type: ‘disconnect’

 , id: <socket id>

}

Therefore,

socket.on(‘message’, function () {

 // . . .

 broadcast(JSON.stringify({ type: ‘position’, pos: pos, id: socket.id }));

});

And upon close, you send

socket.on(‘close’, function () {

 // . . .

 broadcast(JSON.stringify({ type: ‘disconnect’, id: socket.id }));

});

Now you’re done with the server and can move on to the client.

SETTING UP THE CLIENT
For the client, you start with a simple HTML document and an onload handler for the
window in your index.html:

<!doctype html>

<html>

 <head>

 <title>WebSocket cursors</title>

 <script>

 window.onload = function () {

 var ws = new WebSocket(‘ws://localhost’);

 // . . .

 }

 </script>

C H A P T E R 10   •   WebSocket 175

 </head>

 <body>

 <h1>WebSocket cursors</h1>

 </body>

</html>

For this task, you want to concentrate on the two main events: open and message.

When the connection first opens, you attach a mousemove handler to start relaying the
cursor position to others:

ws.onopen = function () {

 document.onmousemove = function (ev) {

 ws.send(JSON.stringify({ x: ev.clientX, y: ev.clientY }));

 }

}

When a message is received, as you saw in the previous section, it can signal either someone’s
cursor moving or someone disconnecting:

// we instantiate a variable to keep track of initialization for this client

var initialized;

ws.onmessage = function (ev) {

 var obj = JSON.parse(ev.data);

 // the first message is the position of all existing cursors

 if (!initialized) {

 initialized = true;

 for (var id in obj) {

 move(id, obj[id]);

 }

 } else {

 // other messages can either be a position change or

 // a disconnection

 if (‘disconnect’ == obj.type) {

 remove(obj.id);

 } else {

 move(obj.id, obj.pos);

 }

 }

}

You then declare the functions move and remove.

For the move function, you first want to make sure the element for the cursor exists. You look
for a DOM element with the ID cursor-{id}. If the element is missing, you create the
image element and set the image URL and a basic style to make it float around.

176 PA RT I I I   •   Web Development

Then you adjust its position on the screen:

function move (id, pos) {

 var cursor = document.getElementById(‘cursor-’ + id);

 if (!cursor) {

 cursor = document.createElement(‘img’);

 cursor.id = ‘cursor-’ + id;

 cursor.src = ‘/cursor.png’;

 cursor.style.position = ‘absolute’;

 document.body.appendChild(cursor);

 }

 cursor.style.left = pos.x + ‘px’;

 cursor.style.top = pos.y + ‘px’;

}

For removing, you simply detach the element from the DOM:

function remove (id) {

 var cursor = document.getElementById(‘cursor-’ + id);

 cursor.parentNode.removeChild(cursor);

}

RUNNING THE SERVER
As in the other example, all you need to do is run the server and point your browser to it.
Make sure to open multiple tabs (shown in Figure 10-2) to fully experience the real-time
interaction.

Figure 10-2: Several clients connected, relaying their cursor positions in real time.
cursor.png courtesy of http://thenounproject.com

http://thenounproject.com

C H A P T E R 10   •   WebSocket 177

THE CHALLENGES AHEAD
Even though you got the basic example functioning, these applications need some more work
to become ready for real-world usage.

CLOSE DOESN’T MEAN DISCONNECT
When a close event fires on a WebSocket server or client, it means something specific: the
TCP connection was appropriately close. In the real world, however, this is not always the
case. Your computer can shut down unexpectedly, a network error can occur, or you spill a
glass of water on your motherboard. In a lot of scenarios, close might never fire!

The solution for this problem is to rely on timeouts and heartbeats. For your application to
handle these scenarios, you need to send dummy messages every number of seconds to make
sure the client is alive and otherwise consider him forcefully disconnected.

JSON
As examples get more complicated, the variety of messages that the server and clients
exchange increases.

The second example here relied heavily on encoding and decoding JSON packets manually.
Because this is a common pattern in applications, that work should be done for you as part of
another abstraction.

RECONNECTIONS
What happens if the client temporarily disconnects? Most applications try to get the user
reconnected automatically. In these examples, if a disconnection occurs, the only way to
reconnect is to refresh the browser.

BROADCASTING
Broadcasting is a common pattern in real-time applications where interaction with other
clients is expected. You shouldn’t need to define your own broadcasting mechanism manually.

WEBSOCKETS ARE HTML5: OLDER BROWSERS
DON’T SUPPORT THEM
WebSocket is a recent technology. Many browsers, proxies, firewalls, and antivirus software
are still not ready to work completely with this new protocol and way of communicating. A
solution for older browsers is needed.

178 PA RT I I I   •   Web Development

THE SOLUTION
Fortunately, all these problems have solutions. In the next chapter, you work with a module
called socket.io whose goal is to fix all the aforementioned issues while retaining the
simplicity and speed of WebSocket-based communication.

SUMMARY
You now understand the fundamentals of the WebSocket API and the WebSocket protocol,
and how you can use Node.JS to leverage it for very fast message exchange. In the first
example you familiarized yourself with its most basic usage.

You created a multi-user application that exhibits the strengths of WebSocket: its minimal
framing allows for sending lots of short messages that arrive to other clients as fast as possible.

Finally, I described the weaknesses in terms of API and browser support that we can improve
upon thanks to the socket.io framework, described in the next chapter.

Server API
io.listen(app);

io.sockets.on(‘connection’, function

(socket) {

 socket.emit(‘my event’, { my: ‘object’ });

});

Browser/Client API
var socket = io.connect();

socket.on(‘my event’, function (obj) {

 console.log(obj.my);

});

AS MENTIONED PREVIOUSLY, getting
WebSocket ready for your applications takes
more than a simple implementation.

Socket.IO is a project I created that aims to solve
the most common deficiencies of the simple
implementation. It provides a great deal of
flexibility while retaining a simple API:

SOCKET.IO11
C H A P T E R

180 PA RT I I I   •   Web Development

TRANSPORTS
One of the most appealing features about Socket.IO is that communication is based on
transports, not all of which are WebSocket, which means Socket.IO works on a large variety of
browsers and devices, all the way from IE6 to iOS.

For example, you can utilize AJAX as a method for real-time communication when using a
technique called long polling. Basically, this technique consists of making serial AJAX calls,
but if the server doesn’t have any data to send you, the connection stays open for 20–50
seconds so that no extra data transfer due to HTTP request/response headers occurs.

Socket.IO automatically leverages complex and convoluted techniques such as long polling for
you, without making the API any more complicated than WebSocket.

In addition, even if WebSocket is supported by the browser but blocked by proxies or fire-
walls, Socket.IO can still handle that situation gracefully.

DISCONNECTED VERSUS CLOSED
Another fundamental feature that Socket.IO brings to the table is timeouts. As discussed in
Chapters 6 and 10, an application that relies on perfectly closed TCP connections is not ready
for real-world usage.

Throughout your use of Socket.IO in this chapter, you listen on connect events instead of
open, and disconnect instead of close. The reason is that Socket.IO provides reliable
events. If the client stops transmitting data but doesn’t properly close the connection after a
certain amount of time elapses, Socket.IO considers him disconnected.

This approach allows you to focus on the core of your application logic instead of all the
possible different hiccups of networks.

Socket.IO also takes care of reconnecting when the connection is lost, which happens
automatically by default.

EVENTS
So far you saw that typical communication on the web has been oriented around retrieving
(requesting) documents (resources) over HTTP. The real-time web, however, is about the
transmission of events.

Even though Socket.IO still allows you to transmit simple text back and forth like WebSocket,
it also enables you to emit and listen on events that send JSON data back and forth In the
following example you can see Socket.IO acting as as reliable WebSocket:

io.sockets.on(‘connection’, function (socket) {

 socket.send(‘a’);

 socket.on(‘message’, function (msg) {

C H A P T E R 11   •   Socket.IO 181

 console.log(msg);

 });

});

If you were to re-imagine the cursor example from Chapter 10 with Socket.IO, the application
code would be greatly simplified:

Client code
var socket = io.connect();

socket.on(‘position’, move);

socket.on(‘remove’, remove);

Notice that instead of having to parse the incoming strings of a single event (message), we can
channel data according to its meaning within the applications. Events can receive any number of
parameters in any of the types JSON encodes: Number, Array, String, Object, and so on.

NAMESPACES
Another powerful feature that Socket.IO offers is the ability to separate a single connection
into namespaces that are isolated from each other.

Sometimes your application requires separation of logic into distinct parts, but for perfor-
mance or speed reasons it’s still desirable to leverage the same connection. Considering you
can’t make assumptions about how fast the clients are or how capable their browsers are, it’s
usually a good idea to not rely on too many open connections simultaneously.

Therefore, Socket.IO allows you to listen on the connection event of multiple namespaces:

io.sockets.on(‘connection’);

io.of(‘/some/namespace’).on(‘connection’)

io.of(‘/some/other/namespace’).on(‘connection’)

Even though you’ll get different connection objects, when you connect from the browser like
in the following example, a single transport (like a WebSocket connection) will be used:

var socket = io.connect();

var socket2 = io.connect(‘/some/namespace’);

var socket3 = io.connect(‘/some/other/namespace’);

In some cases, modules or parts of your application are written in such a way that for the sake
of abstraction are completely isolated from the rest. Some part of your client side JavaScript
codebase might be completely unaware of another that’s executing in parallel.

182 PA RT I I I   •   Web Development

For example, you could build a social network that displays a real time chat program along-
side a farming game. Even though they could both share some common data, such as the
identity of the authenticated user, it would be a good idea to write them in a way that they
both assume complete control of a socket.

That socket, thanks to the namespaces (also called multiplexing) feature, does not necessarily
have to be its own allocated actual TCP socket. Socket.IO takes care of channeling data
through the same resource (the chosen transport for that user) and passing the data to the
appropriate callbacks.

Now that you’ve learned the major differences between Socket.IO and WebSocket, you’re
ready for the first example application, a chat program.

A CHAT PROGRAM

SETTING UP THE PROGRAM
In the same fashion as websocket.io, you make socket.io attach itself to a regular
http.Server that can still handle the requests and responses for your application:

package.json
{

 “name”: “chat.io”

 , “version”: “0.0.1”

 , “dependencies”: {

 “express”: “2.5.1”

 , “socket.io”: “0.9.2”

 }

}

As usual, once you create the package.json file make sure to run npm install to fetch
all the dependencies.

SETTING UP THE SERVER
As with websocket.io, you set up a normal Express app with the static middleware:

server.js
/**

 * Module dependencies.

 */

var express = require(‘express’)

 , sio = require(‘socket.io’)

C H A P T E R 11   •   Socket.IO 183

/**

 * Create app.

 */

app = express.createServer(

 express.bodyParser()

, express.static(‘public’)

);

/**

 * Listen.

 */

app.listen(3000);

Now it’s time to attach socket.io. You call sio.listen in the same fashion as you do
with websocket.io:

var io = sio.listen(app);

Now you can set up the connection’s listener:

io.sockets.on(‘connection’, function (socket) {

 console.log(‘Someone connected’);

});

For now, you can simply output to the console whenever someone connects. Because Socket.
IO is a custom API, you have to load the Socket.IO client on the browser.

SETTING UP THE CLIENT
Because you added the static middleware for the public folder, you need to create a file
index.html inside.

This time, for the sake of convenience, keep the chat logic separate from the markup, into its
own file called chat.js.

One of the handy aspects of Socket.IO is that when it appends itself to http.Server, all the
communication that happens to URLs that begin with /socket.io are intercepted.

Socket.IO therefore also takes care of exposing the client code to the browser out of the box.
Consequently, you don’t have to worry about obtaining and serving the file manually.

Notice that in the following example you create a <script> tag that references /socket.
io/socket.io.js:

184 PA RT I I I   •   Web Development

index.html
<!doctype html>

<html>

 <head>

 <title>Socket.IO chat</title>

 <script src=”/socket.io/socket.io.js”></script>

 <script src=”/chat.js”></script>

 <link href=”/chat.css” rel=”stylesheet” />

 </head>

 <body>

 <div id=”chat”>

 <ul id=”messages”>

 <form id=”form”>

 <input type=”text” id=”input” />

 <button>Send</button>

 </form>

 </div>

 </body>

</html>

For now, chat.js is going to connect to make sure the client loaded properly. If everything
goes well, you should be see the output Someone connected in the console.

chat.js
window.onload = function () {

 var socket = io.connect();

}

All the functions and classes exposed by the Socket.IO client are contained in the io
namespace.

io.connect is similar to new WebSocket, but smarter. In this case, because you are not
passing any arguments to it, it attempts to connect to the same host that is loading the page,
which is a desirable behavior for this example.

You run this application normally with

$ node server

Then you point your browser to http://localhost:3000. You should see the output
from the Socket.IO logger regarding what’s going on underneath the hood; for example, you
can see what transport in particular this client is using (see Figure 11-1).

C H A P T E R 11   •   Socket.IO 185

Figure 11-1: Debug output from socket.io along with the message you print with
console.log

If you connect from a modern browser, as in this example, Socket.IO is likely able to connect
and then upgrade the connection to WebSocket.

Socket.IO always tries to find a method for connection that is faster for the user and performs
best for your server, but it always ensures a connection despite adverse conditions.

EVENTS AND BROADCASTING
Now that you have successfully connected, it’s time to identify the fundamental pieces of the
Socket.IO server.

Broadcasting upon join

Whenever a user connects, you want to notify everyone else that she did. Because this is going
to be a special message not sent by anyone in particular, you can call this an announcement
and style it accordingly.

The first thing to do from the client perspective is to ask what the user’s name is.

Because you want to disallow any interaction with the chat until the user is actually con-
nected, you need to hide the chat:

chat.css
/* … */

#chat { display: none }

Then you show it upon connection. To this end, you are going to listen on the connect event
on the created socket (within the window.onload function you defined earlier):

186 PA RT I I I   •   Web Development

chat.js
socket.on(‘connect’, function () {

 // send a join event with your name

 socket.emit(‘join’, prompt(‘What is your nickname?’));

 // show the chat

 document.getElementById(‘chat’).style.display = ‘block’;

});

On the server, you are going to listen on the join event to notify all others that the user
connected. Replace the previous io.sockets connection handler with the following:

server.js
// …

io.sockets.on(‘connection’, function (socket) {

 socket.on(‘join’, function (name) {

 socket.nickname = name;

 socket.broadcast.emit(‘announcement’, name + ‘ joined the chat.’);

 });

});

Focus your attention on socket.broadcast.emit. broadcast is called a flag, which
alters the behavior of the function that follows it.

In this case, if you simply call socket.emit, you echo back the message. But what you
really want to do is broadcast that message to everyone else, which is what adding the flag
accomplishes.

On the client, you are going to listen on the announcement event and create an element in the
list of messages in the DOM. Add this at the bottom of the connect handler:

chat.js
socket.on(‘announcement’, function (msg) {

 var li = document.createElement(‘li’);

 li.className = ‘announcement’;

 li.innerHTML = msg;

 document.getElementById(‘messages’).appendChild(li);

});

Broadcasting chat messages

Next, you can give users the ability to write a message that gets sent to everyone else.

C H A P T E R 11   •   Socket.IO 187

When a user enters data into the form and submits it, you are going to emit a text event
with its content:

chat.js
var input = document.getElementById(‘input’);

document.getElementById(‘form’).onsubmit = function () {

 socket.emit(‘text’, input.value);

 // reset the input

 input.value = ‘’;

 input.focus();

 return false;

}

Because obviously the user wrote the message, you don’t want the server to send it back to
himself. So you call the function addMessage immediately to display the message as soon as
it’s sent:

chat.js
function addMessage (from, text) {

 var li = document.createElement(‘li’);

 li.className = ‘message’;

 li.innerHTML = ‘’ + from + ‘: ‘ + text;

 document.getElementById(‘messages’).appendChild(li);

}

document.getElementById(‘form’).onsubmit = function () {

 addMessage(‘me’, input.value);

 // . . .

}

You want to do the same thing when you receive messages from others. Here, you can simply
pass the reference to the addMessage function and ensure that from the server side you
broadcast the message with the right parameters:

chat.js
// …

socket.on(‘text’, addMessage);

server.js
socket.on(‘text’, function (msg) {

 socket.broadcast.emit(‘text’, socket.nickname, msg);

});

188 PA RT I I I   •   Web Development

The code so far for each file should roughly look as follows:

chat.js
window.onload = function () {

 var socket = io.connect();

 socket.on(‘connect’, function () {

 // send a join event with your name

 socket.emit(‘join’, prompt(‘What is your nickname?’));

 // show the chat

 document.getElementById(‘chat’).style.display = ‘block’;

 socket.on(‘announcement’, function (msg) {

 var li = document.createElement(‘li’);

 li.className = ‘announcement’;

 li.innerHTML = msg;

 document.getElementById(‘messages’).appendChild(li);

 });

 });

 function addMessage (from, text) {

 var li = document.createElement(‘li’);

 li.className = ‘message’;

 li.innerHTML = ‘’ + from + ‘: ‘ + text;

 document.getElementById(‘messages’).appendChild(li);

 }

 var input = document.getElementById(‘input’);

 document.getElementById(‘form’).onsubmit = function () {

 addMessage(‘me’, input.value);

 socket.emit(‘text’, input.value);

 // reset the input

 input.value = ‘’;

 input.focus();

 return false;

 }

 socket.on(‘text’, addMessage);

}

server.js
/**

 * Module dependencies.

 */

var express = require(‘express’)

C H A P T E R 11   •   Socket.IO 189

 , sio = require(‘socket.io’)

/**

 * Create app.

 */

app = express.createServer(

 express.bodyParser()

 , express.static(‘public’)

);

/**

 * Listen.

 */

app.listen(3000);

var io = sio.listen(app);

io.sockets.on(‘connection’, function (socket) {

 socket.on(‘join’, function (name) {

 socket.nickname = name;

 socket.broadcast.emit(‘announcement’, name + ‘ joined the chat.’);

 });

 socket.on(‘text’, function (msg) {

 socket.broadcast.emit(‘text’, socket.nickname, msg);

 });

});

If you run server.js, you should now have a completely functioning real time chat
application, like the one shown in Figure 11-2..

Figure 11-2: The chat application in action. Here chatting from multiple browser tabs.

190 PA RT I I I   •   Web Development

Next up, you’ll learn about callbacks for events, and how they can help you add a new feature.

ENSURING RECEPTION
In the chat example, you call addMessage immediately upon the user pressing Enter,
therefore creating the illusion that everyone else is seeing the message at that exact instant.

And just like WebSocket, Socket.IO does not enforce responses for each message you send.
Sometimes, however, the need for confirmation that a message was received arises. Socket.IO
calls this type of confirmation an acknowledgment.

To implement acknowledgments, all you have to do is pass a function whenever you’re
emitting an event.

First, you’re going to return a reference to the element you create in the addMessage
function so that you can append a CSS class to it after the message is confirmed as received.
Then you can display a nice icon next to it.

/chat.js
function addMessage (from, text) {

 // …

 return li;

}

Next, you add the callback. Socket.IO can also receive data along with these acknowledgments.
For this example, you can send a timestamp indicating when the message was received:

/chat.js
document.getElementById(‘form’).onsubmit = function () {

 var li = addMessage(‘me’, input.value);

 socket.emit(’text’, input.value, function (date) {

 li.className = ’confirmed’;

 li.title = date;

 });

On the server side, Socket.IO appends a callback as the last parameter of the event:

/server.js/
// …

socket.on(‘text’, function (msg, fn) {

 // …

 // confirm the reception

 fn(Date.now());

});

C H A P T E R 11   •   Socket.IO 191

Now, when the server acknowledges that it received your message, a class will be added and
the title attribute will be set for the appended list item. This brings the best of both worlds:
the application has maximum responsiveness since it shows the message as soon as you press
Enter, but you can still give feedback to the user through CSS (for example, by adding an icon
next to the message, such as the encircled check mark in Figure 11-3.

Figure 11-3: In this example I set a CSS background after the acknowledgement
 is received.

A DJ-BY-TURNS APPLICATION
How cool would it be if you empowered the users of your chat application to be DJs?

◾	 The server starts by selecting a DJ.
◾	 The DJ is given the ability to query an API, get search results, and select a song. He can

then broadcast the song to others.
◾	 When the DJ leaves, he leaves the spot open for the next user to be elected DJ.

EXTENDING THE CHAT
The foundations of the chat application are solid enough to add this functionality to it.

The first thing to do is select a DJ if none is selected. Since you also want to keep track of the
current song, you’ll define two state variables: currentSong and dj.

Since the DJ can change, you’ll define an elect function that performs the DJ selection task
and announcements. When the join event is emitted, a DJ can be elected or the current song
(currentSong) is relayed to the user. Later, when you implement search, currentSong is
going to be populated with an object.

192 PA RT I I I   •   Web Development

server.js
var io = sio.listen(app)

, currentSong

 , dj

function elect (socket) {

 dj = socket;

 io.sockets.emit(‘announcement’, socket.nickname + ‘ is the new dj’);

 socket.emit(‘elected’);

 socket.dj = true;

 socket.on(‘disconnect’, function () {

 dj = null;

 io.sockets.emit(‘announcement’, ‘the dj left - next one to join becomes dj’);

 });

}

io.sockets.on(‘connection’, function (socket) {

 socket.on(‘join’, function (name) {

 socket.nickname = name;

 socket.broadcast.emit(‘announcement’, name + ‘ joined the chat.’);

 if (!dj) {

 elect(socket);

 } else {

 socket.emit(‘song’, currentSong);

 }

 });

 // …

});

The elect function does the following:

	 1.	Mark the current user as the DJ
	 2.	Emit an announcement to everyone that a new DJ is ready.
	 3.	Let the user know that she has been elected by emitting an elected event.
	 4.	Upon the user being disconnected, mark the DJ spot as available so that the next connec-

tion becomes the DJ.

In the client, add the song selection interface to the markup, under the chat form:

index.html
<div id=”playing”></div>

<form id=”dj”>

 <h3>Search songs</h3>

 <input type=”text” id=”s” />

 <ul id=”results”>

 <button type=submit>Search</button>

</form>

C H A P T E R 11   •   Socket.IO 193

INTEGRATING WITH THE GROOVESHARK API
Grooveshark (http://grooveshark.com) offers a simple and handy API for your purposes; it’s
called TinySong.

TinySong allows a search like this:

GET http://tinysong.com/s/Beethoven?key={apiKey}&format=json

And it returns results like these:

[

 {

 “Url”: “http:\/\/tinysong.com\/7Wm7”,

 “SongID”: 8815585,

 “SongName”: “Moonlight Sonata”,

 “ArtistID”: 1833,

 “ArtistName”: “Beethoven”,

 “AlbumID”: 258724,

 “AlbumName”: “Beethoven”

 },

 {

 “Url”: “http:\/\/tinysong.com\/6Jk3”,

 “SongID”: 564004,

 “SongName”: “Fur Elise”,

 “ArtistID”: 1833,

 “ArtistName”: “Beethoven”,

 “AlbumID”: 268605,

 “AlbumName”: “Beethoven”

 },

 {

 “Url”: “http:\/\/tinysong.com\/8We2”,

 “SongID”: 269743,

 “SongName”: “The Legend Of Lil’ Beethoven”,

 “ArtistID”: 7620,

 “ArtistName”: “Sparks”,

 “AlbumID”: 204019,

 “AlbumName”: “Sparks”

 }

]

You therefore expose a Socket.IO event called search that leverages the superagent
module to query the API and return the results.

Add the superagent module to package.json and the module dependencies:

http://grooveshark.com

194 PA RT I I I   •   Web Development

server.js
var express = require(‘express’)

 , sio = require(‘socket.io’)

 , request = require(‘superagent’)

package.json
 , “dependencies”: {

 “express”: “2.5.1”

 , “socket.io”: “0.9.2”

 , “superagent”: “0.4.0”

 }

Notice that you have to include your own API key as part of the URL, which you can get on
the website http://tinysong.com:

Define the apiKey as follows:

server.js
var io = sio.listen(app)

 , apiKey = ‘{ your API key }’

 , currentSong

 , dj

And then define the search event:

socket.on(‘search’, function (q, fn) {

 request(‘http://tinysong.com/s/’ + encodeURIComponent(q)

 + ‘?key=’ + apiKey + ‘&format=json’, function (res) {

 if (200 == res.status) fn(JSON.parse(res.text));

 });});

Notice that I’m manually parsing the JSON response. This is due to a TinySong not cur-
rently sending the right Content-Type response header, which makes superagent’s auto-
matic JSON parsing not be enabled.

To make things more fun in the application, you’re going to make the search available to
everyone, but only the Select functionality available to the DJ.

In the chat.css file, add these two lines:

#results a { display: none; }

form.isDJ #results a { display: inline; }

http://tinysong.com

C H A P T E R 11   •   Socket.IO 195

Then you’re going to add the logic to make the search, get the results back through a Socket.
IO callback and relay the song choice to everyone.

In the chat.js file, add the following:

 // search form

 var form = document.getElementById(‘dj’);

 var results = document.getElementById(‘results’);

 form.style.display = ‘block’;

 form.onsubmit = function () {

 results.innerHTML = ‘’;

 socket.emit(‘search’, document.getElementById(‘s’).value, function (songs) {

 for (var i = 0, l = songs.length; i < l; i++) {

 (function (song) {

 var result = document.createElement(‘li’);

 result.innerHTML = song.ArtistName + ‘ - ’ + song.SongName + ‘ ‘;

 var a = document.createElement(‘a’);

 a.href = ‘#’;

 a.innerHTML = ‘Select’;

 a.onclick = function () {

 socket.emit(‘song’, song);

 return false;

 }

 result.appendChild(a);

 results.appendChild(result);

 })(songs[i]);

 }

 });

 return false;

 };

 socket.on(‘elected’, function () {

 form.className = ‘isDJ’;

 });

Most of the code is centered around DOM manipulation. Since the server relays all the songs
from the TinyURL API, you are free to render it however you want. In this case I decided to
show the song’s band next to the song’s name (ArtistName and SongName keys,
respectively).

When the elected event is received, you change form’s className to reveal the links to
select a given song.

Upon clicking the Select link, you send a song event to the server, whose job is simply
going to be marking the current song and broadcasting it. In server.js add the following
event:

196 PA RT I I I   •   Web Development

server.js
 socket.on(‘song’, function (song) {

 if (socket.dj) {

 currentSong = song;

 socket.broadcast.emit(‘song’, song);

 }

 });

Now that users have the ability to search and relay songs, all that’s left to add is the ability to
play them. That’s what we reserved the <div id=playing> element for.

PLAYING
Just like you did with the addMessage function, you’re going to define one to mark the
current song being played.

Add the following code to chat.js. It simply renders the song’s band and title next to the text
Now Playing, and it injects an iframe that points to the Url field that TinySong gave you to
play the song.

 var playing = document.getElementById(‘playing’);

 function play (song) {

 if (!song) return;

 playing.innerHTML = ‘<hr>Now Playing: ‘

 + song.ArtistName + ‘ ‘ + song.SongName + ‘
’;

 var iframe = document.createElement(‘iframe’);

 iframe.frameborder = 0;

 iframe.src = song.Url;

 playing.appendChild(iframe);

 };

You want to use, once again, this function in two situations: as soon as the DJ selects a song
(for himself), and when the song event is relayed to a regular user by the DJ.

For the second case, you simply pass the new play function as the callback to the song event
in chat.js:

socket.on(‘song’, play);

For the DJ to start listening immediately, you want to call play as soon as he selects it. Go
back to the onclick handler where you emit the song event to the server and add call
play, so that the handler looks as follows:

 a.onclick = function () {

 socket.emit(‘song’, song);

C H A P T E R 11   •   Socket.IO 197

 play(song);

 return false;

 }

And you’re done!. If you recall from the initial addition to the join event on the server-side,
the song event gets emitted if there’s a currentSong on the server side. This means that the
song will start playing not just for users that were connected at the time of its selection by the
DJ, but also new users joining the room after they select their nickname (see Figure 11-4).

The final code for the complete Chat + DJ application should look roughly as follows:

server.js
var express = require(‘express’)

 , sio = require(‘socket.io’)

 , request = require(‘superagent’)

app = express.createServer(

 express.bodyParser()

 , express.static(‘public’)

);

app.listen(3000);

var io = sio.listen(app)

 , apiKey = ‘{ your API key }’

 , currentSong

 , dj

function elect (socket) {

 dj = socket;

 io.sockets.emit(‘announcement’, socket.nickname + ‘ is the new dj’);

 socket.emit(‘elected’);

 socket.dj = true;

 socket.on(‘disconnect’, function () {

 dj = null;

 io.sockets.emit(‘announcement’, ‘the dj left - next one to join becomes dj’);

 });

}

io.sockets.on(‘connection’, function (socket) {

 socket.on(‘join’, function (name) {

 socket.nickname = name;

 socket.broadcast.emit(‘announcement’, name + ‘ joined the chat.’);

 if (!dj) {

 elect(socket);

 } else {

 socket.emit(‘song’, currentSong);

 }

 });

continued

198 PA RT I I I   •   Web Development

server.js  (continued)

 socket.on(‘song’, function (song) {

 if (socket.dj) {

 currentSong = song;

 socket.broadcast.emit(‘song’, song);

 }

 });

 socket.on(‘search’, function (q, fn) {

 request(‘http://tinysong.com/s/’ + encodeURIComponent(q)

 + ‘?key=’ + apiKey + ‘&format=json’, function (res) {

 if (200 == res.status) fn(JSON.parse(res.text));

 });

 });

 socket.on(‘text’, function (msg) {

 socket.broadcast.emit(‘text’, socket.nickname, msg);

 });

});

chat.js
window.onload = function () {

 var socket = io.connect();

 socket.on(‘connect’, function () {

 // send a join event with your name

 socket.emit(‘join’, prompt(‘What is your nickname?’));

 // show the chat

 document.getElementById(‘chat’).style.display = ‘block’;

 socket.on(‘announcement’, function (msg) {

 var li = document.createElement(‘li’);

 li.className = ‘announcement’;

 li.innerHTML = msg;

 document.getElementById(‘messages’).appendChild(li);

 });

 });

 function addMessage (from, text) {

 var li = document.createElement(‘li’);

 li.className = ‘message’;

 li.innerHTML = ‘’ + from + ‘: ‘ + text;

 document.getElementById(‘messages’).appendChild(li);

 }

 var input = document.getElementById(‘input’);

 document.getElementById(‘form’).onsubmit = function () {

 addMessage(‘me’, input.value);

 socket.emit(‘text’, input.value);

C H A P T E R 11   •   Socket.IO 199

 // reset the input

 input.value = ‘’;

 input.focus();

 return false;

 }

 socket.on(‘text’, addMessage);

 // plays a song

 var playing = document.getElementById(‘playing’);

 function play (song) {

 if (!song) return;

 playing.innerHTML = ‘<hr>Now Playing: ‘

 + song.ArtistName + ‘ ‘ + song.SongName + ‘
’;

 var iframe = document.createElement(‘iframe’);

 iframe.frameborder = 0;

 iframe.src = song.Url;

 playing.appendChild(iframe);

 };

 socket.on(‘song’, play);

 // search form

 var form = document.getElementById(‘dj’);

 var results = document.getElementById(‘results’);

 form.style.display = ‘block’;

 form.onsubmit = function () {

 results.innerHTML = ‘’;

 socket.emit(‘search’, document.getElementById(‘s’).value, function (songs) {

 for (var i = 0, l = songs.length; i < l; i++) {

 (function (song) {

 var result = document.createElement(‘li’);

 result.innerHTML = song.ArtistName + ‘ - ’ + song.SongName + ‘ ‘;

 var a = document.createElement(‘a’);

 a.href = ‘#’;

 a.innerHTML = ‘Select’;

 a.onclick = function () {

 socket.emit(‘song’, song);

 play(song);

 return false;

 }

 result.appendChild(a);

 results.appendChild(result);

 })(songs[i]);

 }

 });

 return false;

 };

continued

200 PA RT I I I   •   Web Development

chat.js  (continued)

 socket.on(‘elected’, function () {

 form.className = ‘isDJ’;

 });

}

index.html
<!doctype html>

<html>

 <head>

 <title>Socket.IO chat</title>

 <script src=”/socket.io/socket.io.js”></script>

 <script src=”/chat.js”></script>

 <link href=”/chat.css” rel=”stylesheet” />

 </head>

 <body>

 <div id=”chat”>

 <ul id=”messages”>

 <form id=”form”>

 <input type=”text” id=”input” />

 <button>Send</button>

 </form>

 <div id=”playing”></div>

 <form id=”dj”>

 <h3>Search songs</h3>

 <input type=”text” id=”s” />

 <ul id=”results”>

 <button>Search</button>

 </form>

 </div>

 </body>

</html>

C H A P T E R 11   •   Socket.IO 201

Figure 11-4: The DJ+Chat application in action

SUMMARY
Socket.IO is a really simple but extremely powerful API to build applications that communi-
cate data back-and-forth really fast, in real time. Socket.IO gives you the confidence that this
data exchange happens not only as fast as possible, but also that it works on every browser and
lots of mobile devices.

During this chapter you learned how to structure a really simple application that takes
advantage of some of the API sugar it provides. You leveraged events as a way of organizing
the different type of information that’s sent back and forth between users and the server.

A fundamental part of writing real time applications is broadcasting. You learned how to
convey an event to everyone in the server, but also how to have one person convey something
to everyone else. You used this technique, for example, to enable a DJ to announce what song
is currently playing to everyone else.

One thing to keep in mind is that a lot of the functionality is contained in the client side: you
need to have code ready to restructure the interface according to the variety of events that can
happen. Since this chapter focuses solely on Socket.IO, I made sure to stay away from
templating libraries or higher-level frameworks that can be leveraged on the client-side and
worked on top of the DOM APIs directly, but in the real world this can get quite complicated
as the application grows.

PA R T

IV DATABASES

Chapter 12: MongoDB

Chapter 13: MySQL

Chapter 14: Redis

One of its most interesting features is that unlike
MySQL or PostgreSQL, which store data in tables
that are generally fixed in their design (schema),
MongoDB can store documents of any kind in
collections (schema-less).

MONGODB IS A document-oriented, schema-
less database that has been shown to fit in really
well with Node.JS applications and cloud
deployments.

MONGODB12
C H A P T E R

206 PA RT I V   •   Databases

For example, say you create a table that holds the user profiles of a web application:

First Last Email Twitter

Guillermo Rauch rauchg@gmail.com rauchg

When you build your application, you decide your users’ information will be structured
around this particular design. You expect to have one or more of the following: first name, last
name, email, and Twitter ID.

As applications evolve, business needs change, or as time passes and new needs arise, you
might need to add or remove some of those columns.

The fundamental problem, however, with the way most traditional (SQL) databases are
optimized to work is that it’s very expensive to make changes to the table design, both opera-
tionally and in terms of performance.

Every time you need to make a change to that design, in MySQL, for example, you need to
run a command to add a column:

$ mysql

 > ALTER TABLE profiles ADD COLUMN . . .

And the same occurs if you remove one or more columns.

With MongoDB, you can think of your data as documents that are flexible in their design.
And, as it happens, these documents are stored in a format that resembles JSON very closely
(or completely, for most purposes):

{

 “name”: “Guillermo”

 , “last”: “Rauch”

 , “email”: “rauchg@gmail.com”

 , “age”: 21

 , “twitter”: “rauchg”

}

Another important characteristic of MongoDB that sets it apart from most NoSQL databases
that are key-value is that documents can have arbitrary depth.

For example, instead of adding all the possible social networks as keys of your document, you
can store them as a data structure within:

{

 “name”: “Guillermo”

 , “last”: “Rauch”

mailto:rauchg@gmail.com

C H A P T E R 1 2   •   MongoDB 207

 , “email”: “rauchg@gmail.com”

 , “age”: 21

 , “social_networks”: {

 “twitter”: “rauchg”

 , “facebook”: “rauchg@gmail.com”

 , “linkedin”: 27760647

 }

}

As you can see, you are also free to combine data types. Here, twitter and facebook are
both strings, but linkedin is a number. When you obtain that document from Node.JS, the
data types you get are truthful to the stored ones.

As this chapter unfolds, it examines most of the commonly used capabilities of MongoDB and
looks at the best patterns to achieve the most long-term flexibility and maximum performance
(through indexing). You also learn ways to query documents in different ways and simplify its
usage through Mongoose, a Node.JS module I co-created with Nathan White that brings some
of the features of traditional database ORMs (Object-Relational Mappers) to the MongoDB
and JavaScript world. A term that’s increasingly common to refer to this type of project is
ODM: Object Document Mapper.

INSTALLATION
It’s important for this chapter that you install the latest version of MongoDB available in the
2.x branch.

You can obtain MongoDB through the downloads area of the website: www.mongodb.org/
downloads. In addition, you might want to take a quick look at the Quickstart guide available
for every platform we cover in this book here: www.mongodb.org/display/DOCS/Quickstart

You can make sure it’s running by executing the mongo client, which should look like
Figure 12-1.

Figure 12-1: The MongoDB shell

If you are not able to access MongoDB, review your installation and ensure that the MongoDB
server (mongod) is running by looking at your system’s process manager.

file:///Volumes/Working/Tech/9781119962595/9781119962595%20Text/9781119962595%20Original%20Text/www.mongodb.org/downloads
file:///Volumes/Working/Tech/9781119962595/9781119962595%20Text/9781119962595%20Original%20Text/www.mongodb.org/downloads

208 PA RT I V   •   Databases

ACCESSING MONGODB: A USER
AUTHENTICATION EXAMPLE
The most essential way of accessing MongoDB documents through Node.JS is with a driver.
What is normally called a driver in Node.JS is a basic API that understands the protocol of the
network access layer of the database and how to encode and decode the data that it stores.

The project of choice is called node-mongodb-native, created by Christian Amor Kvalheim.
You can find it on the Node Package Manager (NPM) with the name mongodb.

For the first example, you create a simple Express application that stores users’ information in
MongoDB and allows you to log in and sign up.

SETTING UP THE APPLICATION
You create your package.json with the dependencies for the project. In this case, they’re
simply express and mongodb. In addition, for the templates, you use jade:

{

 “name”: “user-auth-example”

 , “version”: “0.0.1”

 , “dependencies”: {

 “express”: “2.5.8”

 , “mongodb”: “0.9.9”

 , “jade”: “0.20.3”

 }

}

CREATING THE EXPRESS APP
You start by requiring your dependencies as you normally do using require:

/**

 * Module dependencies

 */

var express = require(‘express’)

 , mongodb = require(‘mongodb’)

This application deals with form processing, so you are going to implement the bodyParser
middleware.

Because you also want to authenticate users and retain that information, you also leverage the
session middleware (which depends on the cookieParser Connect middleware, as
explained in Chapter 8).

/**

 * Set up application.

C H A P T E R 1 2   •   MongoDB 209

 */

app = express.createServer()

/**

 * Middleware.

 */

app.use(express.bodyParser());

app.use(express.cookieParser());

app.use(express.session({ secret: ‘my secret’ }));

Because the template engine of choice for this example is jade, you set the view engine
Express configuration flag:

/**

 * Specify your views options.

 */

app.set(‘view engine’, ‘jade’);

// the following line won’t be needed in express 3

app.set(‘view options’, { layout: false });

By default, the folder where the views are located is views/. You create it and create a layout
template that surrounds all your views called layout.jade:

doctype 5

html

 head

 title MongoDB example

 body

 h1 My first MongoDB app

 hr

 block body

Even though it’s not the scope of this chapter, it’s important to learn a few things about jade, as
it’s one of the most prevalent template engines in the Node.JS world:

◾	 Instead of using complicated nested XML or HTML tags, jade leverages indentation (by
default of two spaces, you should refrain from using tabs). Therefore this code:
p

 span Hello world

	 Is equivalent to <p>Hello world</p>.
◾	 Instead of writing <h1>My first MongoDB app</h1> you wrote the tag name first

followed by its content h1 My First MongoDB app.

210 PA RT I V   •   Databases

	 You used doctype 5 to automatically insert the HTML5 doctype
◾	 You used a special keyword block so that other files can fill in that block. That’s why you

call this file the layout. Other special keywords include if and else
◾	 Attributes look like HTML and JavaScript mixed together, and it’s easy to embed vari-

ables (or locals, as express calls the variables exposed from a controller):
a(href=#, another=attribute, dynamic=someVariable) My link

◾	 You can embed variables in the content with the interpolation syntax
p Welcome back, #{user.name}

You then define the routes. You have a homepage route (/) plus signup (/signup) and login
(/login) routes:

/**

 * Default route

 */

app.get(‘/’, function (req, res) {

 res.render(‘index’, { authenticated: false });

});

/**

 * Login route

 */

app.get(‘/login’, function (req, res) {

 res.render(‘login’);

});

/**

 * Signup route

 */

app.get(‘/signup’, function (req, res) {

 res.render(‘signup’);

});

In the homepage route (/), you pass a local authenticated with the value of false. You
populate this variable after you implement the login functionality.

You leverage it in the index template:

index.jade
extends layout

block body

if (authenticated)

 p Welcome back, #{me.first}

 a(href=”/logout”) Logout

C H A P T E R 1 2   •   MongoDB 211

else

 p Welcome new visitor!

 ul

 li: a(href=”/login”) Login

 li: a(href=”/signup”) Signup

The signup and login views (see Figure 12-2) are simple semantic forms:

signup.jade
extends layout

block body

form(action=”/signup”, method=”POST”)

 fieldset

 legend Sign up

 p

 label First

 input(name=”user[first]”, type=”text”)

 p

 label Last

 input(name=”user[last]”, type=”text”)

 p

 label Email

 input(name=”user[email]”, type=”text”)

 p

 label Password

 input(name=”user[password]”, type=”password”)

 p

 button Submit

 p

 a(href=”/”) Go back

login.jade
extends layout

block body

form(action=”/login”, method=”POST”)

 fieldset

 legend Log in

 p

 label Email

 input(name=”user[email]”, type=”text”)

 p

 label Password

 input(name=”user[password]”, type=”password”)

 p

 button Submit

 p

 a(href=”/”) Go back

212 PA RT I V   •   Databases

You finally make the application listen:

/**

 * Listen

 */

app.listen(3000);

And if you point your browser, you should be able to navigate through all the routes with ease.

Figure 12-2: The /signup route

CONNECTING TO MONGODB
Before you proceed to find documents (for login) and insert documents (for signup), you
need to connect to the MongoDB server and select the database.

And you want to do so even before you make the server listen. Because the logic of the
application depends completely on the database, it wouldn’t make sense to allow requests to
come in before you’re ready to query data for them.

Because you’re using the MongoDB driver directly, the API is verbose. The goal, however, is to
expose the MongoDB collection API as app.users so that any route can access it easily.

You first initialize the server by creating a mongodb.Server and supplying an IP and port:

C H A P T E R 1 2   •   MongoDB 213

/**

 * Connect to the database.

 */

var server = new mongodb.Server(‘127.0.0.1’, 27017)

You then tell the driver to connect to the database. For this example, call it my-website. In
MongoDB, if a certain name you pick doesn’t exist, it creates the database for you.

new mongodb.Db(‘my-website’, server).open(function (err, client) {

If you can’t connect, you want to abort the process:

 // don’t allow the app to start if there was an error

 if (err) throw err;

You print out if you succeed:

 console.log(‘\033[96m + \033[39m connected to mongodb’);

Then you set up the collection:

 // set up collection shortcuts

 app.users = new mongodb.Collection(client, ‘users’);

And finally you make Express ready to take in connections:

 // listen

 app.listen(3000, function () {

 console.log(‘\033[96m + \033[39m app listening on *:3000’);

 });

});

If you run the application (always ensuring your database is running as well), the output
should now look like this:

$ node server.js

 + connected to mongodb

 + app listening on *:3000

If you go to the mongo client again and run show log global, you should , as illustrated
in Figure 12-3, see your connection!

$ mongo

> show log global;

[. . .]

{date} [initandlisten] connection accepted from 127.0.0.1:53649 #16

214 PA RT I V   •   Databases

Figure 12-3: As you can see in the last log line, Mongo gets a connection from your
local web server

CREATING DOCUMENTS
The API for insertion is simple. You simply call Collection#insert by supplying the
document and a callback. As with most callbacks in Node, the first parameter is an error, and
in this case, the second one is an array of the inserted documents:

collection.insert({ my: ‘document’ }, function (err, docs) {

 // . . .

});

An additional options object is an optional second parameter, which you look at later.

If you look at the signup form again, you can see that the input names follow this format:
user[field]. For example:

input(name=”user[name]”, type=”text”)

When bodyParser encounters that format, as you can see, it exposes the field as req.
body.user.name.

This functionality is particularly handy for you because you can insert the document directly
into MongoDB. For the sake of this example, skip data validation (which is very important).

The signup processing route is thus very simple:

/**

 * Signup processing route

 */

app.post(‘/signup’, function (req, res, next) {

 app.users.insert(req.body.user, function (err, doc) {

 if (err) return next(err);

 res.redirect(‘/login/’ + doc[0].email);

 });

});

C H A P T E R 1 2   •   MongoDB 215

If an error occurs, you want to make sure to next it so that you can display an “Error
500” page. Although infrequent, errors occur and it’s important that the application always
deals with them.

A common gotcha is to forget to return after taking care of the error. That mistake could
end up producing unexpected behavior in the application. For example, in this situation if an
error occurs, the doc variable is undefined, and the code throws an uncaught exception.

After a successful insertion, you redirect to the login route supplying the email.

In the login route, you capture this parameter and expose it to the view:

/**

 * Login route

 */

app.get(‘/login/:signupEmail’, function (req, res) {

 res.render(‘login’, { signupEmail: req.params.signupEmail });

});

In the view, you display a message:

if (signupEmail)

 p Congratulations on signing up! Please login below.

Then you prepopulate the email input:

input(name=”user[email]”, type=”text”, value=signupEmail)

Now launch the application and try signing up! If you launch the mongo client and run the
find command on the new collection, you should see the document(s) you created:

 Brian: in the mongo client things appear like this$ mongo my-website

> db.users.find()

{ “first” : “A”, “last” : “B”, “email” : “a@b.com”, “password” : “d”, “_id” : Object

Id(“4ef2cbd77bb50163a7000001”) }

Notice that the document looks identical to what you expected, with minimal effort on your
part. In addition, Mongo adds an _id field automatically that lets you uniquely identify your
document. Handy!

FINDING DOCUMENTS
Now that you have created a document, you can look it up in the /login route. Essentially,
you want to retrieve the document that matches an email and password combination.

In MongoDB, no fixed schema determines a collection, so every time you know you are going
to query a collection in a particular way, making sure it’s properly indexed is a good idea. If a

216 PA RT I V   •   Databases

certain key is not indexed, especially if it’s found within a nested structure, it could result in a
tablescan lookup and a performance decrease in your application.

MongoDB has a command called ensureIndex that, as the name implies, you can call
regardless of whether an index exists to ensure it’s there before querying. You can do so at the
initialization step of the application.

After setting app.users, you then should add two ensureIndex calls:

client.ensureIndex(‘users’, ‘email’, function (err) {

 if (err) throw err;

 client.ensureIndex(‘users’, ‘password’, function (err) {

 if (err) throw err;

 console.log(‘\033[96m + \033[39m ensured indexes’);

 // listen

 app.listen(3000, function () {

 console.log(‘\033[96m + \033[39m app listening on *:3000’);

 });

 });

});

If you relaunch the app, you notice the extra log:

$ node server.js

+ connected to mongodb

+ ensured indexes

+ app listening on :3000

You can now start querying!

/**

 * Login process route

 */

app.post(‘/login’, function (req, res) {

 app.users.findOne({ email: req.body.user.email, password: req.body.user.password

}, function (err, doc) {

 if (err) return next(err);

 if (!doc) return res.send(‘<p>User not found. Go back and try again</p>’);

 req.session.loggedIn = doc._id.toString();

 res.redirect(‘/’);

 });

});

In the same way as the insert command, the findOne command takes a MongoDB query
document.

C H A P T E R 1 2   •   MongoDB 217

You store the _id as part of the session so that you can retrieve this user in subsequent routes
he visits. Notice that you’re explicitly storing it as a string, which for a MongoDB ObjectId this
is a hexadecimal representation.

Finally, you also can implement the /logout route, which simply clears the session. Remem-
ber, you can freely alter the req.session object, and after you produce a response (a redirect
in this case), Express saves it down automatically.

/**

 * Logout route.

 */

app.get(‘/logout’, function (req, res) {

 req.session.loggedIn = null;

 res.redirect(‘/’);

});

In this case, you preserve the session and set the ID to null. Alternatively, if you want to
wipe the session entirely, you can call req.session.regenerate().

AUTHENTICATION MIDDLEWARE
It’s likely that most applications you develop will require access to the authenticated user in
more than one place.

If you take a look at index.jade again, the expectation there is that you can access the
object me to access the document matching the logged-in user and that you can verify
whether the user is authenticated through the authenticated local:

if (authenticated)

 p Welcome back, #{me.name}

 a(href=”/logout”) Logout

You can thus define middleware that exposes both variables automatically for you to any
template you render. Now you can leverage the res.local Express API:

/**

 * Authentication middleware.

 */

app.use(function (req, res, next) {

 if (req.session.loggedIn) {

 res.local(‘authenticated’, true);

 app.users.findOne({ _id: { $oid: req.session.loggedIn } }, function (err, doc) {

 if (err) return next(err);

 res.local(‘me’, doc);

 next();

 });

218 PA RT I V   •   Databases

 } else {

 res.local(‘authenticated’, false);

 next();

 }

});

Notice that in the findOne call you’re passing the $oid modifier. This allows you to send a
string instead of an actual ObjectId object. If you recall from before, you made sure to store
loggedIn as a string by calling the toString method.

Remember to remove the { authenticated: false } test value you set up earlier in
the index route, which should now look like this (see Figure 12-4):

app.get(‘/’, function (req, res) {

 res.render(‘index’);

});

Figure 12-4: The screen after the user successfully logs in

The previous application didn’t take into consideration a few fundamental features that
real-world applications require. The following three sections discuss those features.

VALIDATION
What happens if the user submits a form that’s too large? In the previous example, he could
potentially insert a large document right into the database.

In addition, you might want to ensure that the email field is actually an email field prior to
storing it and that the password is at least six characters long and a string and not a Date or
Number.

You also don’t want to repeat these rules every time you create, update, or query your database.

C H A P T E R 1 2   •   MongoDB 219

Mongoose solves this problem by allowing you to define schemas in your application layer
that enforce certain properties but that are still flexible and easily modifiable. They are called
models.

ATOMICITY
Say you’re writing a blogging engine on top of Express and MongoDB. Naturally, one of the
sections of the application allows you to edit the title and content of the post and maybe
another allows you to edit and remove tags.

MongoDB document-oriented design fits this situation perfectly. In the posts collection,
you might imagine a document that looks like this:

{

 “title”: “I just bought Smashing Node.JS”

 , “author”: “John Ward”

 , “content”: “I went to the bookstore and picked up. . .”

 , “tags”: [“node.js”, “learning”, “book”]

}

Now say at the exact same time, user A is trying to edit the title of the document and user B is
trying to add a tag.

If both users send an update operation with a copy of the entire document each, only one
copy prevails. One of the two users is unable to make his change.

If you want to ensure the atomicity of an operation, MongoDB exposes different operators
such as $set and $push:

db.blogposts.update({ _id: <id> }, { $set: { title: ‘My title’ } })

db.blogposts.update({ _id: <id> }, { tags: { $push: “new tag” })

Mongoose solves this problem by detecting the changes you make to a document and altering
only the specific properties affected. And if you’re operating on an array (including arrays of
documents), atomicity is still retained.

SAFE MODE
When you use the driver, as mentioned earlier, you can optionally supply a hash of options to
operations:

app.users.insert({ }, { <options> })

One of those options is called safe, which enables the safe mode of making changes to the
database.

220 PA RT I V   •   Databases

By default, MongoDB does not notify you right away if an error occurs after an operation. The
driver needs to make a special call called db.getLastError after the operation is executed
to find out whether the data is altered successfully.

The reasoning behind this is that in many applications, speed is more important than know-
ing whether a particular operation failed. For example, if you keep a collection of logs,
missing some of them isn’t the end of the world, but maximizing performance is desired.

Mongoose, by default, enables safe mode for all operations, and you can still turn it off if required.

INTRODUCING MONGOOSE
As usual, the first thing you want to do to start working with Mongoose is to define it in your
package.json as a dependency and then to require it:

var mongoose = require(‘mongoose’)

The first simplification that Mongoose makes over the raw driver is that it assumes most
applications work with a single database, which makes getting started significantly easier. To
connect, you simply call mongoose.connect with a mongodb:// URI:

mongoose.connect(‘mongodb://localhost/my_database’);

In addition, with mongoose it doesn’t matter when the connection is actually established, as it
will buffer commands and send them to MongoDB as soon as it connects. This means you
don’t have to listen on a connection callback. You can connect and start querying in the
following line.

DEFINING A MODEL
Models are simply instances of the Schema class. When you specify a field, you simply use
the JavaScript native constructor that matches the desired type:

var Schema = mongoose.Schema

 , ObjectId = Schema.ObjectId;

var PostSchema = new Schema({

 author : ObjectId

 , title : String

 , body : String

 , date : Date

});

These types are:

◾	 Date

◾	 String

C H A P T E R 1 2   •   MongoDB 221

◾	 Number

◾	 Array

◾	 Object

In addition, MongoDB has a specific type ObjectId, which you can reference as Schema.
ObjectId.

In the example of this blog post, you can store the ObjectId of the user who created the
blog post.

Mongoose accepts different options for any given key. When you want to supply options, you
need to reference the aforementioned constructors as a type key in an object. As an example,
if you want a key to be automatically populated with a default, you would pass the default
and type options as follows:

var PostSchema = new Schema({

 author : ObjectId

 , title : { type: String, default: ‘Untitled’ }

 , body : String

 , date : Date

});

After creating the Schema, you register a Model with mongoose:

var Post = mongoose.model(‘BlogPost’, PostSchema);

Mongoose sets your collection name to blogposts for this case, unless you specify other-
wise via the third parameter. It always lowercases and pluralizes the name of your model, by
convention.

If you want to retrieve the Model later, you can call mongoose.model with just one parameter:

var Post = mongoose.model(‘BlogPost’);

You can then operate on it. If you want to create a blog post, all you need to do is use the new
operator:

new Post({ title: ‘My title’ }).save(function (err) {

 console.log(‘that was easy!’);

});

It’s important to note that the Schema is just a simple abstraction that describes what your
model looks like and how it works. The interaction with the data occurs in the model, not the
Schema.

Therefore, when it comes to querying, you execute the static Post.find (or others, which
are listed below) as opposed to initializing a Post with the new keyword.

222 PA RT I V   •   Databases

DEFINING NESTED KEYS
For the sake of organization, sometimes it’s useful to organize keys within substructures:

var BlogPost = new Schema({

 author : ObjectId

 , title : String

 , body : String

 , meta : {

 votes : Number

 , favs : Number

 }

});

In MongoDB, you use dot notation to operate on these properties. If you want to find by
number of votes, for example, you define your query like this:

db.blogposts.find({ ‘meta.votes’: 5 })

DEFINING EMBEDDED DOCUMENTS
In MongoDB, documents can be big and deep. This means that if you have a document for
your blog post, you can include the comments inside it instead of in a separate collection:

var Comments = new Schema({

 title : String

 , body : String

 , date : Date

});

var BlogPost = new Schema({

 author : ObjectId

 , title : String

 , body : String

 , buf : Buffer

 , date : Date

 , comments : [Comments]

 , meta : {

 votes : Number

 , favs : Number

 }

});

Mongoose also naturally allows you to define the types that you expect for that field.

SETTING UP INDEXES
As I mentioned before, indexes are a key ingredient to ensuring fast queries in a MongoDB
database.

C H A P T E R 1 2   •   MongoDB 223

In order to set up an index for any given key, pass an option index with the Boolean value
true to it.

As an example, if you want to index by the title key, and set the uid key as unique:

var BlogPost = new Schema({

 author : ObjectId

 , title : { type: String, index: true }

 , uid : { type: Number, unique: true }

});

To set up more complicated indexes (like compound indexes), you can leverage the static
index method:

BlogPost.index({ key: -1, otherKey: 1 });

MIDDLEWARE
In most applications of respectable size, sometimes the same data is altered in different ways
and places.

Centralizing the interaction with your database around a model interface is a useful way of
avoiding code repetition.

Mongoose aids with this goal by introducing middleware. Middleware in Mongoose works in
a similar fashion to Express middleware. You can define methods that are executed prior to
distinct actions: save and remove.

For example, say you want to email an author when his blog post is removed:

Blogpost.pre(‘remove’, function (next) {

 emailAuthor(this.email, ‘Blog post removed!);

 next();

});

You can define middleware multiple times per action to perform any sort of operation,
especially asynchronous ones.

INSPECTING THE STATE OF THE MODEL
Many times, you want to perform actions that depend on what changes have been made to
the particular instance of a model you’re interacting with:

Blogpost.pre(‘save’, function (next) {

 if (this.isNew) {

 // doSomething

 } else {

 // doSomethingElse

224 PA RT I V   •   Databases

 }

});

You can also access what keys have been altered by referencing this.dirtyPaths.

QUERYING
All the common operations are exposed to the Model instance:

◾	 find

◾	 findOne

◾	 remove

◾	 update

◾	 count

Mongoose also adds findById, which takes an ObjectId and matches it against the _id
property of your document.

EXTENDING QUERIES
If you don’t supply a callback to a particular Query, you can keep mutating it until you call run:

Post.find({ author: ‘4ef2cbffb1d9807fa7000001’ })

 .where(‘title’, ‘My title’)

 .sort(‘content’, -1)

 .limit(5)

 .run(function(err, post) {

 // . . .

 })

SORTING
To sort, simply supply the key and its direction:

query.sort(‘key’, 1)

query.sort(‘some.key’, -1)

MAKING SELECTIONS
If you have large documents and want to select only certain keys, you can call Query#select.

For example, if you want to show a list of blog posts with links, you don’t need to retrieve all
the fields (some of which could be really large):

Post.find()

 .select(‘field’, ‘field2’)

C H A P T E R 1 2   •   MongoDB 225

LIMITING
If you want to limit the number of results to a certain ceiling, call Query#limit:

query.limit(5)

SKIPPING
To skip a certain number of documents, you use

query.skip(10);

This capability is useful in combination with Model#count to do pagination:

Post.count(function (err, totalPosts) {

 var numPages = Math.ceil(totalPosts / 10);

});

POPULATING KEYS AUTOMATICALLY
In the BlogPost model example, you store the ID of the user who owns it as the author
property.

Many times, upon querying a blog post, you also want to retrieve the associated user. You can
supply the ref property to an ObjectId type:

var BlogPost = new Schema({

 author : { type: ObjectId, ref: ‘Author’ }

 , title : String

 , body : String

 , meta : {

 votes : Number

 , favs : Number

 }

});

You can later query documents that autopopulate the author! Simply call populate for each
key that you want to populate:

BlogPost.find({ title: ‘My title’ })

 .populate(‘author’)

 .run(function (err, doc) {

 console.log(doc.author.email);

 })

CASTING
Because Mongoose knows in advance what data types to expect, it always tries to cast types
for you.

226 PA RT I V   •   Databases

For example, assume you have an age property, and you indicate in your Schema that it’s a
Number. If someone posts a regular form on your website, chances are that if no JSON or
custom logic is involved, you receive a string instead of a number. Mongoose takes advantage
of the fact that you are dealing with a dynamic language and has no problem converting ‘21’
(as String) to 21 (as Number) prior to its storage.

The same occurs for the ObjectId. In the previous example, you had to leverage the $oid
modifier to make the query with a ObjectID string successful, but this is something far too
common to be so verbose. If you pass “4ef2cbd77bb50163a7000001” to Mongoose, it is
cast automatically to ObjectId(“4ef2cbd77bb50163a7000001”)

In addition, if a value type mismatch occurs but the casting fails, Mongoose raises a validation
error and prevents the document from being stored. This behavior ensures ease of use while
preserving consistent and clean storage of your documents.

A MONGOOSE EXAMPLE
Just like you did with the node http module, improved upon by Connect and later Express,
you’re going to see what Mongoose brings to the table in terms of expressiveness by refactor-
ing the previous application.

To kick it off, you’ll create a new package.json with the mongoose dependency.

SETTING UP THE APPLICATION
Your new package.json file should look like this:

{

 “name”: “mongoose-example”

 , “version”: “0.0.1”

 , “dependencies”: {

 “express”: “2.5.2”

 , “mongoose”: “2.5.10”

 }

}

Try out that it works successfully by running npm install, as usual. Next up, you’ll work
on refactoring the main server code.

REFACTORING
Copy your server.js file and views from the previous example in this chapter to get started.

The first thing you’ll want to do is replace the requirement for the mongodb module for
mongoose, since it’s no longer present in the package.json file. Internally, mongoose
leverages the mongodb module for us.

C H A P T E R 1 2   •   MongoDB 227

The top part of your server.js file should now look like this:

/**

 * Module dependencies.

 */

var express = require(‘express’)

 , mongoose = require(‘mongoose’)

Now you’re going to focus on the bottom part of the file, where the connection to the database
occurs

/**

 * Connect to the database.

 */

var server = new mongodb.Server(‘127.0.0.1’, 27017)

// . . .

As mentioned before, mongoose greatly simplifies how you connect to a database, access
collections, set up indexes and much more. This will translate in the following simplification
for the last part of the server.js file:

/**

 * Connect to the database.

 */

mongoose.connect(‘mongodb://127.0.0.1/my-website’);

app.listen(3000, function () {

 console.log(‘\033[96m + \033[39m app listening on *:3000’);

});

Next up, you’re going to define the model that will replace the reference to app.users and
set up the indexes you were previously setting up in that section.

SETTING UP MODELS
Models can be defined with Mongoose anywhere in the file. It doesn’t matter whether
Mongoose has connected yet or not.

At the end of the file, append the model definition:

/**

 * Define model.

 */

var Schema = mongoose.Schema

var User = mongoose.model(‘User’, new Schema({

228 PA RT I V   •   Databases

 first: String

 , last: String

 , email: { type: String, unique: true }

 , password: { type: String, index: true }

}));

Now, start leveraging it by looking at the occurrences for app.users. The first one is in the
authentication middleware. Replace the $oid search with the convenient Mongoose method
findById:

app.use(function (req, res, next) {

 if (req.session.loggedIn) {

 res.local(‘authenticated’, true);

 User.findById(req.session.loggedIn, function (err, doc) {

 if (err) return next(err);

 res.local(‘me’, doc);

 next();

 });

 } else {

 res.local(‘authenticated’, false);

 next();

 }

});

In the login POST route, you want to once again leverage the model method. In this case,
findOne:

app.post(‘/login’, function (req, res) {

 User.findOne({ email: req.body.user.email, password: req.body.user.password },

function (err, doc) {

 if (err) return next(err);

 if (!doc) return res.send(‘<p>User not found. Go back and try again’);

 req.session.loggedIn = doc._id.toString();

 res.redirect(‘/’);

 });

});

As I mentioned before, models can be used statically (as shown in those two examples), but
are also constructors.

The POST signup route should thus look as follows:

app.post(‘/signup’, function (req, res, next) {

 var user = new User(req.body.user).save(function (err) {

 if (err) return next(err);

 res.redirect(‘/login/’ + user.email);

 });

});

C H A P T E R 1 2   •   MongoDB 229

Notice that you don’t need a callback with the document anymore. You can simply refer to the
instance we create from within the callback (user.email is used instead of doc[0].email).

The refactor is now complete! If you run server.js, everything should run smoothly, but
the codebase is significantly cleaner and easier to iterate on and reason about.

SUMMARY
In this chapter you were introduced to one of the most popular databases in the Node.JS
world: MongoDB.

You learned the basics of how document databases work, and explored the utilization of the
MongoDB driver in Node.JS.

You noticed how natural it is to work with data in this way, and how well it maps to how data
is usually sent back and forth between a browser and the web server.

By refactoring our first example, you now appreciate the significant advantages introduced by
a framework that introduces the notion of models, among other very convenient APIs.

With node-mysql, you write your own SQL
queries to interact with the database.

In addition to the driver, you’re going to learn
how to use an Object-Relational Mapper (ORM)
for MySQL called node-sequelize. As you’ll see,
an ORM gives you a mapping between JavaScript
instances of a model and data contained in your
MySQL database, making it easier to work with
relationships, data sanitization, and much more.

DESPITE THE INTRODUCTION and increas-
ing popularity of NoSQL, SQL databases are still
empowering the majority of applications today.

Node.JS has a rich ecosystem of modules
designed to work with SQL databases, especially
the one that is the focus of this chapter: MySQL.

In the same fashion as Chapter 12 on MongoDB,
here you first learn how to leverage the raw
power of the driver (a project called node-mysql).

MYSQL13
C H A P T E R

232 PA RT I V   •   Databases

NODE-MYSQL
To learn how to use node-mysql, you create a few simple models for a shopping cart
application.

SETTING IT UP
As usual, you start your application with express, jade, and in this case node-mysql:

package.json
{

 “name”: “shopping-cart-example”

 , “version”: “0.0.1”

 , “dependencies”: {

 “express”: “2.5.2”

 , “jade”: “0.19.0”

 , “mysql”: “0.9.5”

 }

}

THE EXPRESS APP
Next, you create a simple Express app with the following routes:

◾	 /: displays all the items and an item creation form.
◾	 /item/<id>: shows a particular item and its user reviews.
◾	 /item/<id>/review (POST): creates a review.
◾	 /item/create (POST): creates an item.

From the index and item routes you’re going to render simple templates. Notice that I
configured the express view options to exclude a layout, which matches the behavior of
Express 3. Template layouts are going to be leveraged directly through jade.

server.js
/**

 * Module dependencies.

 */

var express = require(‘express’)

/**

 * Create app.

 */

C H A P T E R 1 3   •   MySQL 233

app = express.createServer();

/**

 * Configure app.

 */

app.set(‘view engine’, ‘jade’);

app.set(‘views’, __dirname + ‘/views’);

app.set(‘view options’, { layout: false });

/**

 * Main route

 */

app.get(‘/’, function (req, res, next) {

 res.render(‘index’);

});

/**

 * Item creation route.

 */

app.post(‘/create’, function (req, res, next) {

});

/**

 * Item route.

 */

app.get(‘/item/:id’, function (req, res, next) {

 res.render(‘item’);

});

/**

 * Item review creation route.

 */

app.post(‘/item/:id/review’, function (req, res, next) {

});

/**

 * Listen.

 */

app.listen(3000, function () {

 console.log(‘ - listening on http://*:3000’);

});

234 PA RT I V   •   Databases

CONNECTING TO MYSQL
The next step is to add the node-mysql dependency:

server.js
var express = require(‘express’)

 , mysql = require(‘mysql’)

To initialize the connection, you call createClient in a similar way to the Node API for
creating a net client.

In a similar way to what Mongoose does for mongodb, node-mysql accepts commands before
it connects to MySQL, buffers them (that is, keeps them around in memory), and after the
connection is established, sends them all to MySQL.

You therefore don’t need to listen on a connection callback or event, and you simply initialize
the client with your settings. Add the following after the configuration section of the app:

server.js
/**

 * Connect to MySQL

 */

var db = mysql.createClient({

 host: ‘localhost’

 , database: ‘cart-example’

});

If you set a user and password for your database, make sure to include them as the user and
password options passed to the createClient API. For more advanced usage, reference
to the documentation of node-mysql available at http://github.com/felixge/node-mysql.

INITIALIZING THE SCRIPT
Prior to using a SQL database from the application, you almost always need to set up the
necessary database and tables.

To make this reusable, you create a simple node script called setup.js that runs the
necessary CREATE TABLE commands.

Because the connection parameters are the same as the ones used for the application, you first
need to abstract out the configuration as a config.json file:

http://github.com/felixge/node-mysql

C H A P T E R 1 3   •   MySQL 235

config.json
{

 “host”: “localhost”

 , “database”: “cart-example”

}

Note that valid JavaScript is not necessarily valid JSON. For this example, you add quotation
marks around all keys and ensure all values are surrounded with double quotation marks
instead of single quotation marks.

Starting with Node 0.6, you can use require to load JSON files without relying on JSON.
parse and fs#readFileSync. You then edit the dependencies:

server.js
/**

 * Module dependencies.

 */

var express = require(‘express’)

 , mysql = require(‘mysql’)

 , config = require(‘./config’)

// . . .

In the connection line, you replace the object with the config reference:

server.js
var db = mysql.createClient(config);

You are now ready to create the setup script. It depends only on mysql and the config
because it is meant to be executed only from the command-line interface.

setup.js
/**

 * Module dependencies.

 */

var mysql = require(‘mysql’)

 , config = require(‘./config’)

You initialize the client next, making sure not to include the database field of the config,
as it’s not created yet:

236 PA RT I V   •   Databases

setup.js
/**

 * Initialize client.

 */

delete config.database;

var db = mysql.createClient(config);

The API that node-mysql exposes for executing queries is simple: client.query
(<sql>, <callback>). The API for closing the connection is client.end.

Because you are dealing with essentially a single TCP connection, the server receives all the
commands you send out in the order you write them. This means that you don’t need to nest
callbacks to ensure proper order of execution:

// this is unnecessary!

db.query(‘CREATE TABLE. . .’, function (err) {

 db.query(‘CREATE TABLE. . .’, function (err) {

 db.query(‘CREATE TABLE. . .’, function (err) { });

 });

});

Because you still should make sure errors that occur are reported to the user, you can listen
on the db error event:

db.on(‘error’, function () {

 // handle error

});

For the terminal program, however, the desired behavior when an error occurs is to display
the error and its stack trace to the user and abort execution. As you might recall from
Chapter 4, when an error is emitted on an EventEmitter for which there are no listeners
(that is, the event goes unhandled), Node throws the error to ensure the programmer is aware
of the program’s potential point of failure instead of silently avoiding it. As a result, you don’t
really need to attach an error handler for this particular program, and Node takes care of
notifying the user of the unhandled error.

First, you need to create the database and tell MySQL it’s the one to keep using:

setup.js
/**

 * Create database.

 */

db.query(‘CREATE DATABASE IF NOT EXISTS `cart-example`’);

db.query(‘USE `cart-example`’);

C H A P T E R 1 3   •   MySQL 237

setup.js
/**

 * Create tables.

 */

db.query(‘DROP TABLE IF EXISTS item’);

db.query(‘CREATE TABLE item (‘ +

 ‘id INT(11) AUTO_INCREMENT,’ +

 ‘title VARCHAR(255),’ +

 ‘description TEXT,’ +

 ‘created DATETIME,’ +

 ‘PRIMARY KEY (id))’);

db.query(‘DROP TABLE IF EXISTS review’);

db.query(‘CREATE TABLE review (‘ +

 ‘id INT(11) AUTO_INCREMENT,’ +

 ‘item_id INT(11),’ +

 ‘text TEXT,’ +

 ‘stars INT(1),’ +

 ‘created DATETIME,’ +

 ‘PRIMARY KEY (id))’);

setup.js
/**

 * Close client.

 */

db.end();

As you saw in Chapter 3, Node exits the process when it has nothing left to do in the event
loop. By connecting to the MySQL server, you open a file descriptor, for which Node’s event
loop waits on notifications. When you call end, the file descriptor gets closed, therefore
ending the life of the program.

Code like this is therefore redundant:

setup.js
db.end(function () {

 process.exit();

});

You are now ready to test the script:

$ node setup.js

You can then check with the mysql client that the database and tables are created (see Figure 13-1):

238 PA RT I V   •   Databases

Figure 13-1: Inspecting the database and tables created with setup.js with MySQL
command-line client

$ mysql

> show databases;

. . .

> use cart-examples;

. . .

> SHOW TABLES;

. . .

CREATING DATA
Next, you create a simple layout in the views directory. This file, as you can see, contains a
special jade block body declaration, that other views will be filling in.

views/layout.jade
doctype 5

html

 head

 title My shopping cart

 body

 h1 My shopping cart

 #cart

block body

The index file displays all items as a list and a form to create a new product:

C H A P T E R 1 3   •   MySQL 239

views/index.jade
extends layout

block body

h2 All items

if (items.length)

 ul

 each item in items

 li

 h3: a(href=”/item/#{item.id}”)= item.title

 = item.description

else

 p No items to show

h2 Create new item

form(action=”/create”, method=”POST”)

 p

 label Title

 input(type=”text”, name=”title”)

 p

 label Description

 textarea(name=”description”)

 p

 button Submit

Since you’re looping through an items array by checking for the length property, make
sure to fill it in the / route with an empty one for now, as shown below. The items array will of
course come for the database later on:

server.js
app.get(‘/’, function (req, res, next) {

 res.render(‘index’, { items: [] });

});. . .

And for the item view, you also include the item and its reviews and a form to submit a
review:

views/item.jade
extends layout

block body

 a(href=”/”) Go back

 h2= item.title

 p= item.description

continued

240 PA RT I V   •   Databases

views/item.jade  (continued)

 h3 User reviews

 if (reviews.length)

 each review in reviews

 .review

 b #{review.stars} stars

 p= review.text

 hr

 else

 p No reviews to show. Write one!

 form(action=”/item/#{item.id}/review”, method=”POST”)

 fieldset

 legend Create review

 p

 label Stars

 select(name=”stars”)

 option 1

 option 2

 option 3

 option 4

 option 5

 p

 label Review

 textarea(name=”text”)

 p

 button(type=”submit”) Send

Notice that in the form action attribute you leveraged the jade interpolation feature. By
using #{} you can include a variable within some other string in a safe way (so that HTML
entities get escaped). If you wanted to include a string without escaping, use !{} instead.

Before you start selecting data, you need to be able to insert it to simplify the testing of the app.

Add the bodyParser middleware to process POST requests after the app configuration:

server.js
/**

 * Middleware.

 */

app.use(express.bodyParser());

C H A P T E R 1 3   •   MySQL 241

And then you complete the /create route:

server.js
/**

 * Item creation route.

 */

app.post(‘/create’, function (req, res, next) {

 db.query(‘INSERT INTO item SET title = ?, description = ?’,

 [req.body.title, req.body.description], function (err, info) {

 if (err) return next(err);

 console.log(‘ - item created with id %s’, info.insertId);

 res.redirect(‘/’);

 });

});

This code has two interesting aspects. The first one is that db.query allows for replacing ?
tokens in the query with properly escaped data. By replacing tokens, the code avoids concat-
enation and ensures that your app is not vulnerable to SQL injection attacks. If you include ?
in a query, you pass an array of values to replace as the second parameter.

The other interesting aspect is the info object. In this case, to get the ID of the inserted item,
you look for insertId in it. This property is always present provided an error doesn’t occur.
If an error does occur, you want to interrupt all flow and next it.

The review creation route is similar:

/**

 * Item review creation route.

 */

app.post(‘/item/:id/review’, function (req, res, next) {

 db.query(‘INSERT INTO review SET item_id = ?, stars = ?, text = ?’,

 [req.params.id, req.body.stars, req.body.text], function (err, info) {

 if (err) return next(err);

 console.log(‘ - review created with id %s’, info.insertId);

 res.redirect(‘/item/’ + req.params.id);

 });

});

You test by running the app and creating an item (illustrated in Figure 13-2).

242 PA RT I V   •   Databases

Figure 13-2: Filling the form to create an item in the main route

Upon doing so, you should Figure 13-3 see in the console.

Figure 13-3: The console after an item is created reveals the id of the inserted row

FETCHING DATA
Retrieving data from MySQL is equally as straightforward with node-mysql. When the
command you’re executing is a SELECT one, the callback you get contains an array of result
objects, and an object describing the properties of the returned fields. You’re going to focus on
the former only for the scope of this chapter.

This maps really well to what we’re expecting in the template index.jade, since we’re looping
through the array items and looking up the id, title, and description properties.

Therefore, all we need to do is check for an error and pass the results to the view:

/**

 * Main route

 */

C H A P T E R 1 3   •   MySQL 243

app.get(‘/’, function (req, res, next) {

 db.query(‘SELECT id, title, description FROM item’, function (err, results) {

res.render(‘index’, { items: results });

 });

});

Once your / route looks like this, you should be able to relaunch your application and see a list
of the items you created previously.

As for the item route, which we link to from that list, you want to retrieve the item, make sure
it exists, and fetch the reviews along with it. If the item does not exist, you want to send a 404
status code.

To avoid making the code hard to follow, break the logic into functions that are defined in the
logical order they’re executed:

server.js
/**

 * Item route.

 */

app.get(‘/item/:id’, function (req, res, next) {

 function getItem (fn) {

 db.query(‘SELECT id, title, description FROM item WHERE id = ? LIMIT 1’,

 [req.params.id], function (err, results) {

 if (err) return next(err);

 if (!results[0]) return res.send(404);

 fn(results[0]);

 });

 }

 function getReviews (item_id, fn) {

 db.query(‘SELECT text, stars FROM review WHERE item_id = ?’,

 [item_id], function (err, results) {

 if (err) return next(err);

 fn(results);

 });

 }

 getItem(function (item) {

 getReviews(item.id, function (reviews) {

 res.render(‘item’, { item: item, reviews: reviews });

 });

 });

});

Figure 13-4 shows the completed application. You can now browse the items, submit reviews
for them, and see them reflect in the interface.

244 PA RT I V   •   Databases

Figure 13-4: The completed application in action

SEQUELIZE
In the preceding example, you experienced some of the gotchas of working with SQL
databases.

The first one is that the process of setting up the tables is manual (therefore time consuming),
and the table definitions are not part of the project itself. The application doesn’t know that an
item has a title property that allows a maximum of 255 characters. If it did, you could, for
example, perform automatic validation of user input with error messages.

The solution to this problem is elegantly packaged for you by sequelize: you can define
schemas and models and can also leverage synchronization features to create tables for use
based on those definitions. The setup.js part of the preceding example is therefore
completely removed.

Because the schemas are part of the application, you can also use them to leverage type
conversion or casting. If you want to insert an item with specific data, you can pass a Java-
Script Date object instead of having to manually compose the date format that MySQL
expects.

Last but not least is associations. In the preceding example, you manually retrieved the
reviews for an item, but you could also retrieve them automatically.

C H A P T E R 1 3   •   MySQL 245

To apply the different concepts and features that sequelize brings to the table, create a simple
TODO list application. TODO tasks can be grouped as projects. You can add, create, and
remove projects, and you can add, create, and remove tasks for a given project.

SETTING UP SEQUELIZE
Because sequelize uses the node-mysql driver internally, the dependencies list looks like this:

package.json
{

 “name”: “todo-list-example”

 , “version”: “0.0.1”

 , “dependencies”: {

 “express”: “2.5.2”

 , “jade”: “0.19.0”

 , “sequelize”: “1.3.7”

 }

}

SETTING UP THE EXPRESS APP
This particular application deviates a little bit from the traditional style and introduces some
AJAX interaction for creating and removing items. You can make the application more RESTful
by introducing the usage of the DELETE method. If you’re not familiar with REST, it’s a set of
principles that introduce a broader usage of the protocol constructs that HTTP makes available
to us, such as methods like PATCH or DELETE or status codes that are normally not utilized.

The routes look as follows:

◾	 / (GET): retrieves projects.
◾	 /projects (POST): creates projects.
◾	 /project/:id (DELETE): deletes a project.
◾	 /project/:id/tasks (GET): retrieves tasks.
◾	 /project/:id/tasks (POST): adds tasks.
◾	 /task/:id (DELETE): removes a task.

/**

 * Module dependencies.

 */

var express = require(‘express’)

246 PA RT I V   •   Databases

/**

 * Create app.

 */

app = express.createServer();

/**

 * Configure app.

 */

app.set(‘view engine’, ‘jade’);

app.set(‘views’, __dirname + ‘/views’);

app.set(‘view options’, { layout: false });

/**

 * Main route

 */

app.get(‘/’, function (req, res, next) {

 res.render(‘index’);

});

/**

 * Project deletion route.

 */

app.del(‘/project/:id’, function (req, res, next) {

});

/**

 * Project creation route.

 */

app.post(‘/projects’, function (req, res, next) {

});

/**

 * Show tasks for project.

 */

app.get(‘/project/:id/tasks, function (req, res, next) {

});

/**

 * Add task for project.

 */

app.post(‘/project/:id/tasks, function (req, res, next) {

});

/**

 * Item route.

C H A P T E R 1 3   •   MySQL 247

 */

app.del(‘/task/:id’, function (req, res, next) {

});

/**

 * Listen.

 */

app.listen(3000, function () {

 console.log(‘ - listening on http://*:3000’);

});

You define a simple layout again, this time with jQuery to make AJAX requests easy:

views/layout.jade
doctype 5

html

 head

 title TODO list app

 script(src=”http://code.jquery.com/jquery-1.7.2.js”)

 script(src=”/js/main.js”)

 body

 h1 TODO list app

 #todo

 block body

Notice that the layout loads a main.js file, which is going to contain all the client side logic
(that deals with, for example, the AJAX submission of requests).

The projects and tasks lists behave in the same way because you perform the same operations
on them: add and delete:

views/index.jade
extends layout

block body

 h2 Projects

 #list

 ul#projects-list

 each project in projects

 li

 a(href=”/project/#{project.id}/items”)= project.title

 a.delete(href=”/project/#{project.id}”) x

 form#add(action=”/projects”, method=”POST”)

 input(type=”text”, name=”title”)

248 PA RT I V   •   Databases

button(type=”submit”) Addviews/tasks.jade
h2 Tasks for project #{project.title}

#list

 ul#tasks-list

 each task in tasks

 li

 span= task.title

 a.delete(href=”/task/#{task.id} “) x

 form#add(action=”/project/#{project.id}/tasks”, method=”POST”)

 input(type=”text”, name=”title”)

 button Add

CONNECTING SEQUELIZE
Now you’re ready to add sequelize to your dependencies:

server.js
/**

 * Module dependencies.

 */

var express = require(‘express’)

 , Sequelize = require(‘sequelize’)

You then initialize the main class. You can do this directly underneath the module dependen-
cies, or after the application settings, for the sake of clarity.

server.js
/**

 * Instantiate sequelize.

 */

var sequelize = new Sequelize(‘todo-example’, ‘root’)

The Sequelize constructor takes the following parameters:

◾	 database (String)
◾	 username (String) - required
◾	 password (String) - optional
◾	 other options (Object) - optional
•	 host (String)
•	 port (Number)

C H A P T E R 1 3   •   MySQL 249

You can create the database from the command line as follows. Remember to replace root
with your MySQL user in the Sequelize constructor and the command below:

$ mysqldmin -u root -p create todo-exmaple

DEFINING MODELS AND SYNCHRONIZING
To define a model, you call sequelize.define. You can do this directly after requiring
sequelize. The first parameter is the name that identifies the model, and the second is an
object of properties.

server.js
var Project = sequelize.define(‘Project’, {

 title: Sequelize.STRING

 , description: Sequelize.TEXT

 , created: Sequelize.DATE

});

As you can see, you map keys to the following sequelize types. Next to each of them, you can
see the MySQL type they map to:

◾	 Sequelize.STRING // VARCHAR(255)
◾	 Sequelize.BOOLEAN // TINYINT(1)
◾	 Sequelize.TEXT // TEXT
◾	 Sequelize.DATE // DATETIME
◾	 Sequelize.INTEGER // INT

In addition to passing the types, you can supply options by passing an object. For example, to
set a default value, you pass

title: { type: Sequelize.STRING, defaultValue: ‘No title’ }

You then set the task model:

server.js
/**

 * Define task model.

 */

var Task = sequelize.define(‘Task’, {

 title: Sequelize.STRING

});

250 PA RT I V   •   Databases

Finally, you set a hasMany association:

server.js
/**

 * Set up association.

 */

Task.belongsTo(Project);

Project.hasMany(Task);

Sequelize takes care of setting up the appropriate columns, primary keys, and indexes to make
the relationships.

The implication of a belongsTo association is that each Task has a field pointing to the
project it belongs to. The other implication is that the instances of the task model have a
method called getProject to easily access the parent project.

As for hasMany, the result will be that when you access Project instances later on by calling
find, they will have a method getTasks to easily access the project’s tasks.

The other relationship type supported by sequelize which you won’t use for this example is
hasOne: the symmetrical opposite of belongsTo.

Finally, you need to make sure the schema is synchronized to the database without having to
manually run CREATE TABLE commands:

/**

 * Synchronize.

 */

sequelize.sync();

During development, you are bound to change the tables a lot. You can tell sequelize to always
drop the existing table and create it again to ensure that changes are always reflected by
supplying the option { force: true }.

server.js
sequelize.sync();

CREATING DATA
For both the projects and tasks lists, you want to attach a jQuery listener when the form is
submitted.

When you send the AJAX call, you expect a JSON response with the model instance data.

C H A P T E R 1 3   •   MySQL 251

From that, you append an item to the DOM.

Before proceeding, you need to add a static middleware to serve the public/js directory
(which you should create as well). Since you’re going to POSTing data from jQuery, you also
want the bodyParser middleware.

server.js
/**

 * Middleware

 */

app.use(express.static(__dirname + ‘/public’));

app.use(express.bodyParser());

public/js/main.js
$(function () {

 $(‘form’).submit(function (ev) {

 ev.preventDefault();

 var form = $(this);

 $.ajax({

 url: form.attr(‘action’)

 , type: ‘POST’

 , data: form.serialize()

 , success: function (obj) {

 var el = $(‘’);

 if ($(‘#projects-list’).length) {

 el

 .append($(‘<a>’).attr(‘href’, ‘/project/’ + obj.id

+ ‘/tasks’).text(obj.title + ‘ ‘))

 .append($(‘<a>’).attr(‘href’, ‘/project/’ + obj.id)

.attr(‘class’, ‘delete’).text(‘x’));

 } else {

 el

 .append($(‘’).text(obj.title + ‘ ‘))

 .append($(‘<a>’).attr(‘href’, ‘/task/’ + obj.id)

.attr(‘class’, ‘delete’).text(‘x’));

 }

 $(‘ul’).append(el);

 }

 });

form.find(‘input’).val(‘’); // clear the input

 });

});

The code is simple. You capture the submission of any form in the website, and you ajaxify it:

	 1.	You capture the submission of the form

252 PA RT I V   •   Databases

	 2.	You prevent the default behavior by calling preventDefault. That is, you prevent the
browser from attempting to POST the form automatically, since you’re going to do it with
the AJAX request.

	 3.	You call jQuery’s $.ajax to make a POST request with the form serialized as a query
string as the body (which you achieve by passing the result of form.serialize as the
data property).

When the JSON comes back, you reconstruct the item to inject to the list of projects or tasks.
If it’s a project, you insert a link to the tasks list and a delete link. If it’s a task, you simply
inject a span and a delete link.

You now populate the .post routes in the Express application. You leverage the .build
method exposed in each model:

server.js
/**

 * Project creation route.

 */

app.post(‘/projects’, function (req, res, next) {

 Project.build(req.body).save()

 .success(function (obj) {

 res.send(obj);

 })

 ..error(next)

});

/**

 * Add task for project.

 */

app.post(‘/project/:id/tasks’, function (req, res, next) {

 res.body.ProjectId = req.params.id;

 Task.build(req.body).save()

 .success(function (obj) {

 res.send(obj);

 })

 .error(next)

});

It’s very important to keep in mind that you should only pass the entire request body like this
(such as pass req.body) when there are no security implications from the user being able
to set any field in your database, as in the case of this example application. Even if you only
create a few inputs in a form, never forget that the user can forge any type of request manually.

C H A P T E R 1 3   •   MySQL 253

As you saw in Chapter 9, the res.send method from Express allows you to send JSON easily.

When you call .save on a model instance, as shown below, sequelize can either emit a
success event with the built object or failure with an error. Even though the following
code is valid within sequelize:

Task.build(req.body).save()

 .on(‘success’, function (obj) {

 res.send(obj);

 })

 .on(‘failure’, next)

It’s much easier to add the event handlers through the convenience success and error
methods:

 Task.build(req.body).save()

 .success(function (obj) {

 res.send(obj);

 })

 .error(next)

Notice that in order to make sure the relationship between a task and a project is preserved, I
add the field ProjectId to the Task object I create with Task.build. Back when you set
up the belongsTo relationship in the model, sequelize automatically added the ProjectId
field to the schema definition.

RETRIEVING DATA
Each sequelize model exposes simple methods for retrieving one or multiple instances from a
given table.

If you call Model#find, you can supply a primary key directly and then listen on the
success and failure events:

/**

 * Main route

 */

app.get(‘/’, function (req, res, next) {

 Project.findAll()

 .success(function (projects) {

 res.render(‘index’, { projects: projects });

 })

 .error(next);

});

254 PA RT I V   •   Databases

Because you set up the project – tasks association previously, you can leverage the getTasks
method to expose both the project and tasks to the view for the /project/:id/items route:

server.js
app.get(‘/project/:id/tasks’, function (req, res, next) {

 Project.find(Number(req.params.id))

 .success(function (project) {

 project.getTasks().on(‘success’, function (tasks) {

 res.render(‘tasks’, { project: project, tasks: tasks });

 })

 })

 .error(next)

});

Also notice that when you leverage the find method of the model instance you need to
convert the parameter to a Number. This is important for sequelize to know that it has to
perform a primary key lookup.

Let’s now focus on the remaining routes: projects and tasks deletion.

REMOVING DATA
Next, you use event delegation to capture any link with the class delete and send a DELETE
request. Add the following code right after the $(form).submit handler:

public/js/main.js
$(‘ul’).delegate(‘a.delete’, ‘click’, function (ev) {

 ev.preventDefault();

 var li = $(this).closest(‘li’);

 $.ajax({

 url: $(this).attr(‘href’)

 , type: ‘DELETE’

 , success: function () {

 li.remove();

 }

 });

});

Delegation allows you to capture the click of any anchor that contains the class delete,
regardless of whether you added it dynamically or it was already in the DOM.

Notice that upon clicking an anchor with the class name delete, you look for the parent li
item, and then upon success of the AJAX call, you remove it.

C H A P T E R 1 3   •   MySQL 255

You then define the deletion routes:

/**

 * Project deletion route.

 */

app.del(‘/project/:id’, function (req, res, next) {

 Project.find(Number(req.params.id)).success(function (proj) {

 proj.destroy()

 .success(function () {

 res.send(200);

 })

 .error(next);

 }).error(next);

});

/**

 * Item deletion route.

 */

app.del(‘/task/:id’, function (req, res, next) {

 Task.find(Number(req.params.id)).success(function (task) {

 task.destroy()

 .success(function () {

 res.send(200);

 })

 .error(next)

 }).error(next);

});

As you can see, you first fetch the task or project instance, and once it is retrieved you call
destroy to remove it. If the destroy command succeeds, a status code 200 is sent back to
the browser.

Similarly, if you wanted to modify the property of a retrieved item you would call the method
updateAttributes. The following snippet would change the title of a given task instance:

task.updateAttributes({

 title: ‘a new title’

});

Figure 13-5 shows the completed app. You can browse projects and tasks, add new ones
asynchronously and delete them at will.

256 PA RT I V   •   Databases

Figure 13-5: Creating a new task for a project

WRAPPING UP
There’s still a lot more functionality contained within sequelize. Just like Mongoose does for
MongoDB, Sequelize can add a validation layer in between MySQL and the data your applica-
tion supplies to the models, which is really useful in addition to being able to define types.

You can set up validations by passing the validate option in the field definition within your
model. The type goes under the key type.

For example, if you wanted to only allow uppercase letters as part of your tasks, your model
definition would look as follows:

var Task = sequelize.define(‘Task’, {

 title: { type: Sequelize.STRING, isUppercase: true }

});

To set up custom validations, simply pass an arbitrary name and validation function. For a
complete list of built-in validators, refer to the official Sequelize documentation on validators:
http://sequelizejs.com/?active=validations#validations.

It’s also possible to expand Models with your own class and instance methods:

var Task = sequelize.define(‘Task’, {

 title: { type: Sequelize.STRING, isUppercase: true }

 , classMethods: {

 staticMethod: function(){}

 }

 , instanceMethods: {

 instanceMethod: function(){}

 }

});

http://sequelizejs.com/?active=validations#validations

C H A P T E R 1 3   •   MySQL 257

The staticMethod in the example above would be called as follows:

Task.staticMethod()

The instanceMethod would become available to instances that are selected:

Task.find(4).success(function (task) {

 task.instanceMethod();

});

SUMMARY
MySQL is still one of the most powerful and reliable open-source databases available. Regard-
less of what new trends emerge, the fact that MySQL is still a great choice for building a
variety of applications is unlikely to change.

Throughout this chapter, you learned the excellent MySQL Node.JS driver. You had to write
SQL by hand to set up the database, tables and then query it.

For the purpose of developing web applications, ORMs are usually a very useful weapon to
have. In the second example of this chapter, you didn’t write a single query, and you manipu-
lated the dataset by operating on model classes and instances, thanks to Sequelize.

Even though you must be careful to always select the right tool for the job, you now have a
good understanding of what projects you can leverage to work with MySQL really effectively
from Node.JS.

Redis is a database, but it would be more accu-
rately described as a datastructure server, a
definition that resonates more with MongoDB
than MySQL.

NOW THAT YOU have successfully leveraged
two major databases with Node.JS—MongoDB
and MySQL—it’s time learn about Redis.

REDIS14
C H A P T E R

260 PA RT I V   •   Databases

Instead of interacting with rows in tables or documents in collections, you always access data
in Redis through keys. As a result, you can think of Redis as a key-value store like the follow-
ing JavaScript object:

{

 ‘key’: ‘some value’

 , ‘key.2’: ‘some other value’

}

But because it’s a datastructure server, the value is not always a simple string. The following
are the fundamental data types that you can assign to keys in Redis:

◾	 string
◾	 list
◾	 set
◾	 hash
◾	 sorted set

A fundamental difference between Redis and MongoDB, however, is that Redis document
structure is always flat. Even though a key, for example, can contain something that resembles
a JavaScript object very closely—a hash—that hash can’t contain nested data structures like it
could in MongoDB.

Another fundamental difference is how you persist data. Redis is designed to be an extremely
fast in-memory store with configurable persistence to disk. It’s important to remember
persistence to disk matters because anything stored in memory is volatile and susceptible to
be lost upon a system crash or reboot.

What this means is that Redis usage and configuration should be carefully reviewed prior to
its deployment for sensitive information systems (such as those involving financial transac-
tions). Even though Redis stores its working dataset (that is, all the data you work with and
query) in memory, it does have different strategies for ensuring a copy of it stays in the hard
drive. The problem is that its default configuration and behavior is not as well suited for
sensitive systems as MySQL could be, for example. That’s why Redis is commonly regarded as
“not durable,, but such a categorization is not truly informative.

If you’re planning to deploy Redis for the first time, I encourage you to review the different
options related to persistence in the official website: http://redis.io/topics/persistence. In
summary, you can think of Redis as a single, big, flat (key-value) JavaScript object, where the
values can be special data structures (a hash, a set, a string, and so on) It’s designed for lookup
and write speed (it keeps everything in memory). How safe the data is after writing to it is
configurable, but it could be a bad choice for certain types of systems if used out of the box.

http://redis.io/topics/persistence

C H A P T E R 14   •   REDIS 261

INSTALLING REDIS
Redis is officially distributed as a tarball with its complete source code and supported under
Mac OS X and Linux. If you’re familiar with compiling software, you can head directly to
http://redis.io/download and download the latest stable version.

For the Mac, however, the easiest way to install Redis is with homebrew:

$ brew install redis

Or with ports:

$ sudo port install redis

These two package managers will set it up to load upon bootup, unlike when you install it
from the source code. To make it run when compiling, you can run the following command:

$ nohup redis-server &

For Windows, there’s unofficial ports that are well maintained. Refer to the URL above for the
latest up-to-date information about Windows support.

THE REDIS QUERY LANGUAGE
To start learning the Redis query language (the equivalent of SQL in the Redis world, in other
words), first make sure the server is running; then execute

$ redis-cli

As when you execute node, redis-cli takes you to a prompt that’s not unlike establishing
a telnet connection to the Redis server. In other words, the commands that you’re about to
execute are almost the same as those the Node client executes when it establishes a TCP
connection to Redis.

The first command to execute is KEYS. Commands in Redis are not case sensitive, but by
convention they usually are uppercase.

Like function calls, commands can take an arbitrary number of arguments. If you execute the
KEYS command without arguments, Redis comes back with an error:

redis 127.0.0.1:6379> KEYS

(error) ERR wrong number of arguments for ‘keys’ command

The KEYS command takes a pattern to match keys against and returns them. You supply * to
match all keys:

http://redis.io/download

262 PA RT I V   •   Databases

redis 127.0.0.1:6379> KEYS *

(empty list or set)

Because the Redis installation is new here, it comes back with no results.

You now use the SET command to assign a string to a key. Redis returns OK:

redis 127.0.0.1:6379> SET my.key test

OK

Running GET my.key should return the value you just stored:

redis 127.0.0.1:6379> GET my.key

“test”

And executing KEYS * again should reflect the new key:

redis 127.0.0.1:6379> KEYS *

1) “my.key”

The majority of Redis commands depend on which data type you’re working with. You use
GET and SET to operate with strings, but somewhat unintuitively, you can’t use GET to “get” a
hash.

DATA TYPES
One of the fundamental benefits of Redis’s simple design is that the developer can easily
predict performance. The database is not a black box, but simply a process that holds some
known data structures in memory that you can access from other programs through a simple
protocol.

If you look for the command HEXISTS in the official Redis documentation manual, you can
see that one of the sections contemplated is time complexity.

In the case of the HEXISTS command, the time complexity is O(1), or constant time. This
means that running the HEXISTS command takes the same amount of time always, no
matter the size of the dataset.

If you look at the SMEMBERS command, the time complexity is O(n), or linear time, and it
varies according to the size of the set. This means that the amount of time Redis takes to
complete the response is directly proportional to how much data you’re holding in that
particular key.

Because the Redis object model is roughly equivalent to a big, flat JSON object, the easiest
way to understand the different data types is to think of their JavaScript counterparts. For
each data type, the following sections provide examples of their rough equivalents in the JS
world.

C H A P T E R 14   •   REDIS 263

STRINGS
Strings in Redis contemplate both the Number and String data type in JavaScript.

In addition to using SET and GET, you can increment and decrement numbers:

redis 127.0.0.1:6379> SET online.users 0

OK

redis 127.0.0.1:6379> INCR online.users

(integer) 1

redis 127.0.0.1:6379> INCR online.users

(integer) 2

HASHES
In the Redis world, hashes are the equivalent of subobjects. Those subobjects are limited to
keys and values that are strings, unlike in MongoDB.

Say you want to store a user profile in Redis that looks like this:

{

 “name”: “Guillermo”

 , “last”: “Rauch”

 , “age”: “21”

}

Because both keys and values are strings (or integers), it’s a suitable data structure for a hash.

In Redis, as mentioned earlier, everything is accessed by a unique key in a big object. To store
the profiles, then, you need to include the user ID as part of the key to uniquely identify it.
The Redis database looks somewhat like this:

{

 “profile:1”: { name: “Guillermo”, “last”: “Rauch”, . . . }

 , “profile:2”: { name: “Tobi”, “last”: “Rauch”, . . . }

}

The use of the colon (:) in this case is completely up to you. You could use a dot, an under-
score, or nothing. The fundamental premise is that each key remains unique to avoid colli-
sions when interacting with the documents and that it contains enough information for you
to access it easily from your application.

The basic command for operating with hashes is HSET:

redis 127.0.0.1:6379> HSET profile.1 name Guillermo

(integer) 1

This command is equivalent to simply setting a key in JavaScript:

264 PA RT I V   •   Databases

obj[‘profile.1’].name = ‘Guillermo’;

To retrieve all keys and values for a given hash, you use HGETALL and supply the key:

redis 127.0.0.1:6379> HGETALL profile.1

1) “name”

2) “Guillermo”

Redis returns a list composed of alternating keys and values:

redis 127.0.0.1:6379> HSET profile.1 last Rauch

(integer) 1

redis 127.0.0.1:6379> HGETALL profile.1

1) “name”

2) “Guillermo”

3) “last”

4) “Rauch”

To delete a key in the hash, you can call HDEL:

redis 127.0.0.1:6379> HSET profile.1 programmer 1

(integer) 1

redis 127.0.0.1:6379> HGETALL profile.1

1) “name”

2) “Guillermo”

3) “last”

4) “Rauch”

5) “programmer”

6) “1”

redis 127.0.0.1:6379> HDEL profile.1 programmer

(integer) 1

redis 127.0.0.1:6379> HGETALL profile.1

1) “name”

2) “Guillermo”

3) “last”

4) “Rauch”

In JavaScript, the preceding command is equivalent to using the delete operator in a hash:

delete obj[‘profile.1’].programmer

You can check for the existence of a certain field with HEXISTS:

redis 127.0.0.1:6379> HEXISTS profile.1 programmer

(integer) 0

This command is equivalent to checking whether a value is not undefined:

‘undefined’ != typeof obj[‘profile.1’].programmer

C H A P T E R 14   •   REDIS 265

LISTS
A Redis list is the equivalent of a JavaScript array of strings.

The two fundamental operations you can perform in Redis are RPUSH (push to the right, or
tail of the list) and LPUSH (push to the left, or head of the list).

You operate on lists similarly to the way you do with hashes:

redis 127.0.0.1:6379> RPUSH profile.1.jobs “job 1”

(integer) 1

redis 127.0.0.1:6379> RPUSH profile.1.jobs “job 2”

(integer) 2

You can then access a specified range of the array:

redis 127.0.0.1:6379> LRANGE profile.1.jobs 0 -1

1) “job 1”

2) “job 2”

LPUSH is also intuitively similar:

redis 127.0.0.1:6379> LPUSH profile.1.jobs “job 0”

(integer) 3

redis 127.0.0.1:6379> LRANGE profile.1.jobs 0 -1

1) “job 0”

2) “job 1”

3) “job 2”

RPUSH is the equivalent of pushing to an array in JavaScript:

obj[‘profile.1.jobs’].push(‘job 2’);

LPUSH is the equivalent of unshifting:

obj[‘profile.1.jobs’].unshift(‘job 2’);

The LRANGE command returns a range of items in the list. It’s similar but not identical to an
array slice in JavaScript. In particular, if the second argument is -1, it returns all the values
of the list.

SETS
Sets lie somewhere in between a list and a hash. They share the property of hashes that each
item in a set (or key in a hash) is unique and unrepeatable. As with keys in a hash, operating
on members of a set happens in constant time (that is, no matter how big the set, removing,
adding, or looking up members of a set takes the same amount of time).

266 PA RT I V   •   Databases

Like lists and unlike hashes, a set holds only single values (strings) without keys. But sets also
have their own unique and interesting properties. Redis allows you to compute the intersec-
tions between sets, unions, the retrieval of random members, and so on.

To add a member to a set, you use SADD:

redis 127.0.0.1:6379> SADD myset “a member”

(integer) 1

To retrieve all members in a set, you use SMEMBERS:

redis 127.0.0.1:6379> SMEMBERS myset

1) “a member”

Calling SADD again with the same value does nothing:

redis 127.0.0.1:6379> SADD myset “a member”

(integer) 0

redis 127.0.0.1:6379> SMEMBERS myset

1) “a member”

To remove an item from a set, you use SREM:

redis 127.0.0.1:6379> SREM myset “a member”

(integer) 1

SORTED SETS
Sorted sets share all the characteristics of Redis sets, but as the name implies, they are
sortable. Their use cases in the Redis world are notably more rare and advanced.

REDIS AND NODE
Because JavaScript already has all these data structures readily available to you (or easily
achievable) and operating with them doesn’t require the existence of a protocol and server,
how is Redis useful to you?

One of the fundamental reasons is that if you shut down the Node process, the data you are
holding in memory goes away with it.

In Chapter 9, you saw how to leverage Redis to store user session data. If you store it in each
Node process, you have two fundamental disadvantages:

◾	 The application could never be powered by more than one process As applications grow
and a single process is not able to sustain all the load or traffic, you need to scale an
application to multiple processes or computers.

C H A P T E R 14   •   REDIS 267

◾	 You lose session data each time you reload your application: for example, upon deploying
new code.

Redis also has other important advantages, such as interoperability between programming
languages, eventual persistence, and other features that are not so easily attainable without
writing a complete data store solution.

IMPLEMENTING A SOCIAL GRAPH WITH NODE-REDIS
For a sample application with Redis and Node, you can leverage the power of sets and
intersections to create a social graph of follows and followers, very much like Twitter.

Setting up the application

The Redis client of choice comes from a project called node_redis (https://github.com/
mranney/node_redis) The NPM project name is simply redis:

package.json
{

 “name”: “sample-social-graph”

 , “version”: “0.0.1”

 , “dependencies”: {

 “redis”: “0.7.1”

 }

}

Connecting to redis

node-redis obeys a design that’s similar to the MySQL client you already looked at in
Chapter 13.

First, you require the module and then initialize a client with createClient:

/**

 * Module dependencies.

 */

var redis = require(‘redis’)

/**

 * Create client.

 */

var client = redis.createClient();

The client exposes all the commands as simple functions. For example, say you want to
use SET:

https://github.com/mranney/node_redis
https://github.com/mranney/node_redis

268 PA RT I V   •   Databases

client.set(‘my key’, ‘my value’, function (err) {

 // . . .

});

The same applies to all other commands, such as SMEMBERS or HEXISTS.

Defining the model

The basic premise is that you can create different Redis sets for follows and followers for each
user, including IDs as part of the key:

user:<id>:follows

user:<id>:followers

When one user (id “1”) follows another (id “2”), you want to execute two operations:

- Add user id “2” to the user:1:follows

- Add user id “1” to the user:2:followers

In addition, you store the user profile as a hash:

user:<id>:data

You start by defining the basic model:

/**

 * User model

 */

function User (id, data) {

 this.id = id;

 this.data = data;

}

Each instance of a User contains an id that identifies that user and the data of the user account.

You then expose a static method find for populating a User instance from Redis:

User.find = function (id, fn) {

 client.hgetall(‘user:’ + id + ‘:data’, function (err, obj) {

 if (err) return fn(err);

 fn(null, new User(id, obj));

 });

};

Creating and modifying users

It’s desirable for the model to be able to find a user, change some of his data, and save it back
into Redis. And you should also be able to run new User, set some data, and save it into Redis.

C H A P T E R 14   •   REDIS 269

Thankfully, operating on hashes from Node is simpler than it would be with Redis commands.
The functions hgetall and hmset operate with native JavaScript objects, therefore making
this possible:

client.hmset(‘somehash’, { a: ‘key’, another: ‘key’ });

The equivalent of this command in the Redis command-line interface (CLI) would be

HMSET somehash “key” “value” “anotherkey” “anothervalue”

And when you are retrieving with hgetall, the second parameter is a JavaScript object:

client.hgetall(‘somehash’, function (err, obj) {

 // obj.a == ‘key’

});

You therefore can add a save method to the model that executes hmset to enable the
creation and modification of user records:

User.prototype.save = function (fn) {

 if (!this.id) {

 this.id = String(Math.random()).substr(3);

 }

 client.hmset(‘user:’ + this.id + ‘:data’, this.data, fn)

};

Defining graph methods

The basic two operations that you want to perform for a given user are to follow and unfollow
another:

User.prototype.follow = function (user_id, fn) {

 client.multi()

 .sadd(‘user:’ + user_id + ‘:followers’, this.id)

 .sadd(‘user:’ + this.id + ‘:follows’, user_id)

 .exec(fn);

};

User.prototype.unfollow = function (user_id, fn) {

 client.multi()

 .srem(‘user:’ + user_id + ‘:followers’, this.id)

 .srem(‘user:’ + this.id + ‘:follows’, user_id)

 .exec(fn);

};

Notice that unlike the previous example, this one calls client.multi. Calling multi tells
the Redis client that all the commands executed up until exec is called are part of a transac-
tion and should all be executed together.

270 PA RT I V   •   Databases

If you modify a followers list, but something happens afterward and the follows
alteration fails, you could end up with inconsistent and fault-prone data. You therefore need
to execute both commands as part of a transaction.

Finally, you also want to be able to retrieve the IDs of follows and followers:

User.prototype.getFollowers = function (fn) {

 client.smembers(‘user:’ + this.id + ‘:followers’, fn);

};

User.prototype.getFollows = function (fn) {

 client.smembers(‘user:’ + this.id + ‘:follows’, fn);

};

Computing intersections

Besides follows and followers, you also can compute a third type of relationship: friendship.

You can say two users are friends if they follow each other. In other words, if a user ID appears
both in the follows and followers sets of a given user, that user is a friend.

Adding the getFriends method is therefore as easy as calling the SINTER command to
compute the intersection between the two sets:

User.prototype.getFriends = function (fn) {

 client.sinter(‘user:’ + this.id + ‘:follows’, ‘user:’ + this.id + ‘:followers’,

fn);

};

Testing it out

To test the model, you are going to create a few users that would be representative of those
created through a web application.

The first step is to compile the model you worked on above into its own file for reusability, so
that you can require it easily. Notice that I added the appropriate module.exports line:

model.js

/**

 * Module dependencies.

 */

var redis = require(‘redis’)

/**

 * Module exports

C H A P T E R 14   •   REDIS 271

 */

module.exports = User;

/**

 * Create client.

 */

var client = redis.createClient();

/**

 * User model

 */

function User (id, data) {

 this.id = id;

 this.data = data;

}

User.prototype.save = function (fn) {

 if (!this.id) {

 this.id = String(Math.random()).substr(3);

 }

 client.hmset(‘user:’ + this.id + ‘:data’, this.data, fn)

};

User.prototype.follow = function (user_id, fn) {

 client.multi()

 .sadd(‘user:’ + user_id + ‘:followers’, this.id)

 .sadd(‘user:’ + this.id + ‘:follows’, user_id)

 .exec(fn);

};

User.prototype.unfollow = function (user_id, fn) {

 client.multi()

 .srem(‘user:’ + user_id + ‘:followers’, this.id)

 .srem(‘user:’ + this.id + ‘:follows’, user_id)

 .exec(fn);

};

User.prototype.getFollowers = function (fn) {

 client.smembers(‘user:’ + this.id + ‘:followers’, fn);

};

User.prototype.getFollorws = function (fn) {

 client.smembers(‘user:’ + this.id + ‘:follows’, fn);

};

continued

272 PA RT I V   •   Databases

model.js  (continued)

User.prototype.getFriends = function (fn) {

 client.sinter(‘user:’ + this.id + ‘:follows’, ‘user:’ + this.id + ‘:followers’,

fn);

};

User.find = function (id, fn) {

 client.hgetall(‘user:’ + id + ‘:data’, function (err, obj) {

 if (err) return fn(err);

 fn(null, new User(id, obj));

 });

};

Make sure to run npm install redis so that the only dependency for this example is
installed, and also check that Redis is running by running redis-cli.

The next step is to create the testing file and require the model. In the same directory, test.
js should look like this:

test.js

/**

 * Module dependencies

 */

var User = require(‘./model’)

If you execute the test file right now with node test, you will notice it hangs and doesn’t
exit by itself. This is because the model establishes the connection to Redis.

Next, you want to create a few testing users. To organize the code properly and avoid too
many nested callbacks, I defined a create function that receives an object of emails and user
data. For this example, the email address of the user is going to be its unique id within Redis.

test.js

/**

 * Module dependencies

 */

var User = require(‘./model’)

/**

 * Create test users

 */

C H A P T E R 14   •   REDIS 273

var testUsers = {

 ‘mark@facebook.com’: { name: ‘Mark Zuckerberg’ }

 , ‘bill@microsoft.com’: { name: ‘Bill Gates’ }

 , ‘jeff@amazon.com’: { name: ‘Jeff Bezos’ }

 , ‘fred@fedex.com’: { name: ‘Fred Smith’ }

};

/**

 * Create users function

 */

function create (users, fn) {

 var total = Object.keys(users).length;

 for (var i in users) {

 (function (email, data) {

 var user = new User(email, data);

 user.save(function (err) {

 if (err) throw err;

 --total || fn();

 });

 })(i, users[i]);

 }

}

/**

 * Create test users.

 */

create(testUsers, function () {

 console.log(‘all users created’);

 process.exit();

});

If you execute node test now, it should add the four users and exit. You can use redis-
cli to verify everything is as expected:

redis-cli

redis 127.0.0.1:6379> KEYS *

1) “user:fred@fedex.com:data”

2) “user:jeff@amazon.com:data”

3) “user:bill@microsoft.com:data”

4) “user:mark@facebook.com:data”

redis 127.0.0.1:6379> HGETALL “user:fred@fedex.com:data”

1) “name”

2) “Fred Smith”

Notice that the HGETALL command I executed is essentially what the User.find function
does: it retrieves the data available for a given user based on his id.

274 PA RT I V   •   Databases

To prevent misleading results, every time you execute node test to verify your progress, I
suggest you wipe the Redis database clean to make sure data created by different tests don’t
interfere. You can do that with the following command:

redis-cli FLUSHALL

Notice that the HGETALL command I executed is essentially what the User.find function
does: it retrieves the data available for a given user based on his id.

Now that the users are created successfully, you want to retrieve the actual User objects based
on each email, so that you can set up the relationships through the methods we created in the
model. This process is normally called hydration, so you set up a hydrate method and
use it from the create callback:

test.js
/**

 * Hydrate users function

 */

function hydrate (users, fn) {

 var total = Object.keys(users).length;

 for (var i in users) {

 (function (email) {

 User.find(email, function (err, user) {

 if (err) throw err;

 users[email] = user;

 --total || fn();

 });

 })(i);

 }

}

/**

 * Create test users.

 */

create(testUsers, function () {

 hydrate(testUsers, function () {

 console.log(testUsers);

 });

});

If, as shown in Figure 14-1, you run the test again, you will notice that the testUsers object
is now populated with the User objects (which contain id and data properties, as you set
them in the User constructor above).

C H A P T E R 14   •   REDIS 275

{ ‘mark@facebook.com’: { id: ‘mark@facebook.com’, data: { name: ‘Mark Zuckerberg’ }

},

 ‘bill@microsoft.com’: { id: ‘bill@microsoft.com’, data: { name: ‘Bill Gates’ } },

 ‘jeff@amazon.com’: { id: ‘jeff@amazon.com’, data: { name: ‘Jeff Bezos’ } },

 ‘fred@fedex.com’: { id: ‘fred@fedex.com’, data: { name: ‘Fred Smith’ } } }

Figure 14-1: JSON output of created users

After hydrating, you can now play with the different methods available:

test.js
create(testUsers, function () {

 hydrate(testUsers, function () {

 testUsers[‘bill@microsoft.com’].follow(‘jeff@amazon.com’, function (err) {

 if (err) throw err;

 console.log(‘+ bill followed jeff’);

 testUsers[‘jeff@amazon.com’].getFollowers(function (err, users) {

 if (err) throw err;

 console.log(“jeff’s followers”, users);

 testUsers[‘jeff@amazon.com’].getFriends(function (err, users) {

 if (err) throw err;

 console.log(“jeff’s friends”, users);

 testUsers[‘jeff@amazon.com’].follow(‘bill@microsoft.com’

 , function (err) {

 if (err) throw err;

 console.log(‘+ jeffed follow bill’);

continued

276 PA RT I V   •   Databases

test.js  (continued)

 testUsers[‘jeff@amazon.com’].getFriends(function (err, users) {

 if (err) throw err;

 console.log(“jeff’s friends”, users);

 process.exit(0);

 });

 });

 });

 });

 });

 });

});

In Figure 14-2 you can see Redis intersection in action, as the console output reflects.

Figure 14-2: Followers and friends in the social graph

SUMMARY
Redis is in my opinion one of the most important up and coming databases, which is why I
spent the initial part of this chapter teaching you about its fundamentals.

Since it acts as a datastructure server, it can not only be used as a regular database but also be
used as the glue to provide interoperability between small programs.

For example, in Chapter 9 you learned how to make sure sessions would stick around after
reloading a Node process with connect-redis. Node could of course hold those same data
structures in memory as well, but by separating the data into a different process that you can
connect to over TCP with a simple protocol, you gain freedom and independence: your
programs can be stopped and started at will, and the data will still remain accessible.

A surprising number of programs and web applications have very simple data models, and the
datasets usually fit very well in memory. For those scenarios, I recommend you always
consider Redis due to its simplicity, reliability, and ease of use from Node.JS. A testament to
this is the very example covered in this chapter: you wrote an entire model that covers an
important aspect of social applications today with just the Redis driver!

PA R T

V TESTING

Chapter 15: Code Sharing

Chapter 16: Testing

you haven’t taken advantage of the unique
opportunity of writing code once and running
it everywhere.

This chapter analyzes what use cases are optimal
for code sharing and how to solve common
language compatibility problems. You also learn
how you can write modular code with the best
practices of Node that can be compiled to run in the
browser without bloat by using browserbuild.

IN THE INTRODUCTION of the book, I
referred to one of the most appealing aspects of
Node.JS: the fact that JavaScript, the language it
empowers, is the only language supported by
browsers.

Even though so far you have been writing code in
JavaScript alone, which reduces the mental
overhead of having to switch contexts between
languages when working on web applications,

CODE
SHARING15

C H A P T E R

280 PA RT V   •   Testing

WHAT CAN BE SHARED?
The easiest way to answer whether a certain piece of code can be shared between the browser
and server is to break down this question into two questions:

◾	 Is it worthwhile to run the codebase in both environments?
◾	 Do the APIs it depends on exist in both environments? If not, can they easily be replaced

or added (also known as shimming)?

Answering the first question is normally easy, and the answer itself depends exclusively on
your program and project. Answering the second question can be a little trickier.

In Chapter 2, you saw that certain APIs that you commonly associate with JavaScript are not a
formal part of the language but a standard API added on top of it by browsers. Examples of
these APIs are XMLHttpRequest, WebSocket, the DOM, the 2d Canvas API, and so on.

Although no XMLHttpRequest API is available as part of the core Node.JS offering, you can
completely shim its API and make it work on top of the normal Node.JS HTTP client APIs. A
project in NPM called xmlhttprequest does exactly this.

In other cases, certain modules interact only with native APIs, and those are normally the
easiest to write in such a way that they run in both environments.

Examples of these are

◾	 Date manipulation toolkits: They normally simply extend or work with the Date
object API.

◾	 Template engines: They usually take a String, parse it with regular expressions or for
loops, generate (compile) a function, which outputs a String.

◾	 Math and crypto libraries: They normally depend exclusively on Number and Math.
◾	 OOP frameworks: They provide syntax sugar for writing classes in JavaScript. In other

words, they provide different APIs to make writing object-oriented code in JavaScript
more similar to classical OOP languages.

WRITING COMPATIBLE JAVASCRIPT
The first challenge you need to solve is executing JavaScript code that has been written with
the Node.JS module system, which is not available in the browser.

EXPOSING MODULES
The first challenge you face is the lack of a module global in the browser environment. Even
if your file doesn’t rely on required dependencies, the way that a certain file becomes useful to
other parts of a Node program is by leveraging module.exports or exports.

C H A P T E R 1 5   •   Code Sharing 281

Assume you want to write a simple function that sums two numbers:

add.js
module.exports = function (a, b) {

 return a + b;

}

In Node, you can simply leverage the function by calling require(‘./add’) from another
file. In the browser, you most likely want to expose the module as a global variable add.

To avoid modifying the existing code, you can simulate module.exports for the browser
by prefixing the code with a fake object:

if (‘undefined’ == typeof module) {

 module = { exports: {} };

}

At the end of the module, after the object is populated, you can expose it to the window:

if (‘undefined’ != typeof window) {

 window.add = module.exports;

}

Unlike in Node.JS, in the browser, files get evaluated in the global scope. Therefore, you would
be introducing a global module variable to the rest of the program that you don’t want.

Wrapping your module in a self-invoking function is therefore a good idea:

(function (module) {

 module.exports = function (a, b) {

 return a + b;

 }

 if (‘undefined’ != typeof window) {

 window.add = module.exports;

 }

})(‘undefined’ == typeof module ? { module: { exports: {} } } : module);

Ta-da! The module can still be required:

$ node

> require(‘./add’)(1,2)

3

282 PA RT V   •   Testing

And you can include it in the DOM:

add.html
<script src=”add.js”><script>

<script>

 console.log(add(1,2));

</script>

SHIMMING ECMA APIS
The next challenge you usually face is the reliance on modern JavaScript features not available
to all browsers and JavaScript engines.

Sometimes the v8 engine in Node is even more up to date than that which has been
shipped by the Google Chrome browser to millions of computers. In other cases, such as
Function#bind, otherwise-modern engines like the JavaScriptCore VM that empowers
Safari still miss certain implementations. You have to pay special care to what features are
used if you intend your code to run everywhere.

There are two distinct approaches to adding missing functionality: the pure shimming of a
missing implementation by extending the native prototype or the use of utility functions.

Extending prototypes

Say a particular module you’re writing and intend to run in Node and browsers uses
Function#bind:

var myfn = fn.bind(this);

Because bind is not available everywhere, you can add it if it’s missing:

if (!Function.prototype.bind) {

 Function.prototype.bind = function () {

 // code that replicates bind behavior

 }

}

A project called es5-shim goes above and beyond by implementing all the missing ECMA-
standard APIs in a cross-browser way whenever possible. You can find it at https://github.
com/kriskowal/es5-shim.

The obvious advantage of this technique is that you can include the shim and mostly not
worry about changing your code.

https://github.com/kriskowal/es5-shim
https://github.com/kriskowal/es5-shim

C H A P T E R 1 5   •   Code Sharing 283

The disadvantage is that the evaluation of your library in the browser affects prototypes used
or extended by others, which is more obtrusive than it could be.

Utilities

Another approach is defining simple functions that receive the native object as an argument,
try to leverage existing implementations if present, or re-implement the functionality
otherwise.

An example of a missing API in many browsers that you commonly use in Node is
Object.keys.

You can then create a utility as follows:

var keys = Object.keys || function (obj) {

 var ret = [];

 for (var i in obj) {

 if (Object.prototype.hasOwnProperty.call(obj, i)) {

 ret.push(i);

 }

 }

 return ret;

};

The advantages of this technique are that it works everywhere, it’s not obtrusive, and it makes
clear to the developer what areas are simulated instead of native, which can aid in detecting
performance loopholes in certain browsers.

On the downside, you have to be careful about remembering to leverage the utility instead of
the original.

In addition, the resulting code sometimes looks more convoluted. If you’re trying to
achieve compatibility with old versions of IE where Array#forEach and Array#map/
Array#filter are missing, you might use code like this:

arr.filter(function () {}).map(function(){ }).forEach(function () {})

However, this code looks less clear when utilities are leveraged:

each(map(filter(arr, function() {}), function () {}), function (){})

SHIMMING NODE APIS
Certain Node APIs such as EventEmitter are likely to be leveraged by your own custom
classes. Fortunately, the community has written versions of Node APIs that work in all
environments.

284 PA RT V   •   Testing

EventEmitter

Implementations of the node EventEmitter can be found at https://github.com/Wolfy87/
EventEmitter and https://github.com/tmpvar/node-eventemitter.

assert

The assert module has been ported to the browser: https://github.com/Jxck/assert.

SHIMMING BROWSER APIS
In many situations, you want Node to run APIs that some or all browsers natively expose.

XMLHttpRequest

The node-XMLHttpRequest project (found at https://github.com/driverdan/node-XMLHttp
Request) brings the shimmed API to Node by simply requiring it:

var XMLHttpRequest = require(‘xmlhttprequest’)

DOM

A complete and tested implementation of DOM levels I, II, and III exists at https://github.
com/tmpvar/jsdom.

WebSocket

The WebSocket client API (https://github.com/einaros/ws) is available to Node as well:

var WebSocket = require(‘ws’)

node-canvas

The canvas 2D context for image manipulation is available to Node thanks to node-canvas:
https://github.com/learnboost/node-canvas.

CROSS-BROWSER INHERITANCE
A common need in modules is to make a class inherit from another. In Chapter 2, you learned
about .__proto__, which is a proprietary extension and also impossible to shim directly.

A simple alternative is declaring a utility function as follows:

/**

 * Inheritance utility.

 *

 * @param {Function} constructor

https://github.com/Wolfy87/EventEmitter
https://github.com/Wolfy87/EventEmitter
https://github.com/tmpvar/node-eventemitter
https://github.com/Jxck/assert
https://github.com/driverdan/node-XMLHttpRequest
https://github.com/driverdan/node-XMLHttpRequest
https://github.com/tmpvar/jsdom
https://github.com/tmpvar/jsdom
https://github.com/einaros/ws
https://github.com/learnboost/node-canvas

C H A P T E R 1 5   •   Code Sharing 285

 * @param {Function} constructor you inherit from

 * @api private

 */

function inherits (a, b) {

 function c () {};

 c.prototype = b.prototype;

 a.prototype = new c;

};

You can then leverage it for both Node and browsers:

function A () {}

function B () {}

inherits(A, B);

// instead of A.prototype.__proto__ = B.prototype

PUTTING IT ALL TOGETHER: BROWSERBUILD
Wrapping your modules with self-invoking functions and performing typeof checks all over
the place can be a daunting experience.

I created a project called browserbuild whose basic premise is to empower you to write
modules in Node style (that is, that leverage require, module.exports, and exports
and are broken into multiple files). By simply running a command, you can compile a
browser version.

Browserbuild makes it possible to write the add example you wrote above in Node style, and
then generate the version you would include in the HTML as <script> through a compila-
tion process.

Browserbuild is available as an NPM module that sets up a browserbuild command-line
script. To install it globally on your computer, you can run the following:

npm install –g browserbuild

browserbuild --version

The second command should output the installed version of browserbuild. The version I’ll use
for this section is 0.4.8.

Alternatively, you can install it in the working directory and leverage it through the .bin
directory locally:

npm install browserbuild

./node_modules/browserbuild/.bin/browserbuild --version

286 PA RT V   •   Testing

A BASIC EXAMPLE
For this example you’re going to write a module that depends on a logging utility.

First, write the main file main.js:

main.js
var log = require(‘./log’):

module.exports = function () {

log(‘Executed my module’);

}

This is the equivalent of that main file in an NPM package or the file that you normally
require when you are going to leverage a certain module.

log.js
module.exports = function (str) {

 return console.log(str);

}

In Node, you would simply write

node.js
var mymodule = require(‘./main’)

mymodule();

For the browser, you want to export it as a global called mymodule. You therefore run
browserbuild pointing to the working directory and supplying the name of the global
variable to export and the main file:

browserbuild --main main –-global mymodule main.js log.js > out.js.

What you’re telling the browserbuild command is: compile the files main.js and log.
js together, with the main module being main exposed as the global mymodule.

In addition, notice that at the end of the command I used > compiled.js. This ensures
that the output that the command generates goes into the compiled.js file.

When you need to implement the library in the browser, all you do is include the <script>
tag pointing to the compiled.js script:

<script src=’compiled.js”>

C H A P T E R 1 5   •   Code Sharing 287

The output of this generated script looks as follows:

compiled.js
(function(){var global = this;function debug(){return debug};function require(p,

parent){ var path = require.resolve(p) , mod = require.modules[path]; if (!mod)

throw new Error(‘failed to require “’ + p + ‘” from ‘ + parent); if (!mod.exports)

{ mod.exports = {}; mod.call(mod.exports, mod, mod.exports, require.relative(path),

global); } return mod.exports;}require.modules = {};require.resolve =

function(path){ var orig = path , reg = path + ‘.js’ , index = path + ‘/index.js’;

return require.modules[reg] && reg || require.modules[index] && index ||

orig;};require.register = function(path, fn){ require.modules[path] = fn;};require.

relative = function(parent) { return function(p){ if (‘debug’ == p) return debug;

if (‘.’ != p.charAt(0)) return require(p); var path = parent.split(‘/’) , segs =

p.split(‘/’); path.pop(); for (var i = 0; i < segs.length; i++) { var seg =

segs[i]; if (‘..’ == seg) path.pop(); else if (‘.’ != seg) path.push(seg); } return

require(path.join(‘/’), parent); };};require.register(“main.js”, function(module,

exports, require, global){

var log = require(‘./log’);

module.exports = function () {

 log(‘Executed my module’);

}

});require.register(“log.js”, function(module, exports, require, global){

module.exports = function (str) {

 return console.log(str);

}

});mymodule = require(‘main’);

})();

The first section of the script is the implementation of the require function that the rest of
the script uses. It’s compiled into one line of code so that the impact of the compilation
process on the length of the file is minimized.

The other interesting piece is that the require.register function exposes a global
parameter. This is so that you don’t have to rely on detecting whether a window is available to
expose a certain global. You can write your scripts relying on Node.JS’s global object, and in
the browser it will point to the window.

Finally, the last section of the code is what exposes the global (in this case mymodule) and
explains why we need to tell broswerbuild which module is the main one:

mymodule = require(‘main’);

288 PA RT V   •   Testing

Another interesting feature of the browserbuild compilation process is the if node block,
which allows you to use JavaScript comments to tell the compiler that a certain section of
code should be stripped when compiling the module for the browser:

nodeonly.js
// if node

process.exit(1);

// end

console.log(‘browser and node’);

In this case, the block gets removed from the browser version. If you execute

$ browserbuild –-main nodeonly nodeonly.js

You’ll notice the process.exit line will be gone:

// …

require.register(“nodeonly.js”, function(module, exports, require, global){

console.log(‘browser and node’);

});nodeonly = require(‘nodeonly’);

})();

To learn more about the different available options, you can execute browserbuild --help
or refer to the project page located at http://github.com/learnboost/browserbuild.

SUMMARY
As it’s been highlighted throughout the book, Node.JS has done a remarkable job at making
writing JavaScript on the server-side a very pleasant activity.

At the core of its innovation lies the module system, something for which the browser
environment has no de-facto equivalent.

This chapter started exploring the basic runtime methods of making code that can execute
both on the server and the browser. By performing typeof checks, one can accomplish the
feature detection of the module system, and provide an alternative exposure mechanism for
the browser, such as globals.

But wrapping code manually in self-invoking functions, and executing typeof checks for
every file of your library can definitely counteract the beautiful simplicity of the require
system in Node, and that’s the problem browserbuild allows you to solve. You are now
empowered to write modules for Node.JS that can be compiled and executed in the browser
with minimal friction.

The main advantage of this method is that your library gets eventually exposed as a global in
the browser environment, just like jQuery or IO, which means you’re not imposing a specific
module system API for the end-user to leverage your code in a browser.

http://github.com/learnboost/browserbuild

creating one small node program per test and
leveraging the native assert module.

Next, you optimize the process of writing
assertions by leveraging a project called expect.js.
You then explore how to organize testing by
leveraging Mocha, a test framework.

Finally, for codebases that are meant to be run in
browser and server environments, you will see
how to take your existing tests and also run them
on the browser.

SO FAR, EVERY time you have written a Node
program, you have verified it worked as expected
by running it and observing that its behavior
matched your expectations. This method of
testing is often insufficient to ensure that pro-
grams work correctly and don’t introduce new
bugs as time goes by.

Automated testing is the process by which a
series of programs are executed to verify that the
intended function is in place. The first approach
to automated testing in this chapter consists of

TESTING16
C H A P T E R

290 PA RT V   •   Testing

SIMPLE TESTING
To get started, you’ll need to identify a test subject. In other words, you’ll decide what script
or functionality you want to write tests for.

THE TEST SUBJECT
The test subject for this chapter is the application you wrote in Chapter 9 for searching tweets.

Here, you write a program which asserts that upon submitting a search keyword, a list of
tweets is returned after the program looks for some indicative pieces of HTML. In this case, a
list of tweets is composed of one or more elements. Asserting the presence of the search
keyword and the string as part of the HTTP response should be sufficient for establish-
ing that the application worked.

To start, navigate to the code examples and ensure that the application is running. Then point
your browser to http://localhost:3000.

THE TEST STRATEGY
The most basic form of testing is writing a new node program whose exit code is 0 if the test
passes or 1 if the test doesn’t succeed.

If an uncaught exception is thrown, Node automatically exits with a failure error code for you,
which fits this model nicely. In addition, you get a stack trace to understand where the error
comes from. Therefore, when you write your tests, your goal is to assert that certain condi-
tions are met or throw an exception otherwise. To this end, Node has a core module called
assert that—like the name implies —ensures that a condition passes; otherwise, it raises an
AssertionError as an exception.

As an example, write a test program that succeeds if the current timestamp is an even number
or fails with a stack trace if it’s an odd number:

/**

 * Module dependencies.

 */

var assert = require(‘assert’);

/**

 * Assert condition

 */

var now = Date.now();

console.log(now);

assert.ok(now % 2 == 0);

C H A P T E R 1 6   •   Testing 291

You leverage assert.ok to guarantee that the value supplied is truthy (that is, it evaluates to
true even if it’s not true). If the number is divisible by 2 with no remainder, it means the
number is even.

Now run the program a few times and look at the timestamps:

 ∞ simple-testing node assert-example.js

1325520251830

 ∞ simple-testing node assert-example.js

1325520252742

 ∞ simple-testing node assert-example.js

1325520253637

node.js:134

 throw e; // process.nextTick error, or ‘error’ event on first tick

 ^

AssertionError: true == false

 at Object.<anonymous> (assert-example.js:14:8)

 at Module._compile (module.js:411:26)

 at Object..js (module.js:417:10)

 at Module.load (module.js:343:31)

 at Function._load (module.js:302:12)

 at Array.<anonymous> (module.js:430:10)

 at EventEmitter._tickCallback (node.js:126:26)

In the first two cases, it’s an even number, so the test exits cleanly. In the third execution, the
timestamp is an odd number, and you therefore get a stack trace.

THE TEST PROGRAM
Now leverage superagent to make a GET request with the search term bieber and then
analyze the response:

/**

 * Module dependencies.

 */

var request = require(‘superagent’)

 , assert = require(‘assert’)

/**

 * Tests /search?q=<tweet>

 */

request.get(‘http://localhost:3000’)

 .data({ q: ‘bieber’ })

 .exec(function (res) {

292 PA RT V   •   Testing

 // assert correct status code

 assert.ok(200 == res.status);

 // assert presence of search keyword

 assert.ok(~res.text.toLowerCase().indexOf(‘bieber’));

 // assert list items

 assert.ok(~res.text.indexOf(‘’));

 });

Notice that if the request produces an error, you throw it so that it becomes an uncaught
exception and makes the program fail.

Remember you need to obtain superagent before you can run the tests:

npm install superagent@0.4.1

EXPECT.JS
In the preceding examples, you leverage assert.ok and a basic JavaScript expression.

When you’re reading through tests, you might find it hard to understand what exactly is being
tested for. For example, to assert that a string contains another, the easiest way to test it is to
check for indexOf and apply the ~ operator, like you did previously.

Here, expect.js offers a single function called expect that turns

assert.ok(~res.text.indexOf(‘’));

into

expect(res.text).to.contain(‘’));

The expressiveness of expectations in something reminiscent of natural language makes
writing and understanding tests a simpler task.

Expect.js is available through NPM as expect.js and its documentation can be found at
https://github.com/learnboost/expect.js.

Next up you’ll learn some of the basics of the expect.js API.

API OVERVIEW
The expect function is obtained by requiring the expect.js module:

var expect = require(‘expect.js’)

https://github.com/learnboost/expect.js

C H A P T E R 1 6   •   Testing 293

Expect.js is completely interoperable with any module that already works with assert. Just
like any of the functions exposed in the assert module, when an expectation is not met, an
AssertionError is thrown.

Some of the most useful methods exposed by expect.js as of 0.1.2 are the following:

◾	 ok: Asserts that the value is truthy or not
expect(1).to.be.ok();

expect(true).to.be.ok();

expect({}).to.be.ok();

expect(0).to.not.be.ok();

◾	 be / equal: Asserts === equality
expect(1).to.be(1);

expect(NaN).not.to.equal(NaN);

expect(1).not.to.be(true);

expect(‘1’).to.not.be(1);

◾	 eql: Asserts loose equality that works with objects
expect({ a: ‘b’ }).to.eql({ a: ‘b’ });

expect(1).to.eql(‘1’);

◾	 a/an: Asserts typeof with support for array type and instanceof
// typeof with optional array

expect(5).to.be.a(‘number’);

expect([]).to.be.an(‘array’); // works

expect([]).to.be.an(‘object’); // works too, since it uses typeof`

// constructors

expect(5).to.be.a(Number);

expect([]).to.be.an(Array);

expect(tobi).to.be.a(Ferret);

expect(person).to.be.a(Mammal);

◾	 match: Asserts String regular expression match
expect(program.version).to.match(/[0-9]+\.[0-9]+\.[0-9]+/);

◾	 contain: Asserts indexOf for an array or string
expect([1, 2]).to.contain(1);

expect(‘hello world’).to.contain(‘world’);

◾	 length: Asserts array .length
expect([]).to.have.length(0);
expect([1,2,3]).to.have.length(3);

◾	 empty: Asserts that an array is empty or not
expect([]).to.be.empty();

expect([1,2,3]).to.not.be.empty();

◾	 property: Asserts presence of an own property (and value optionally)
expect(window).to.have.property(‘expect’);expect(window).to.have.

property(‘expect’, expect)

expect({a: ‘b’}).to.have.property(‘a’);

294 PA RT V   •   Testing

◾	 key/keys: Asserts the presence of a key; supports the only modifier
js expect({ a: ‘b’ }).to.have.key(‘a’);

expect({ a: ‘b’, c: ‘d’ }).to.only.have.keys(‘a’, ‘c’);

expect({ a: ‘b’, c: ‘d’ }).to.only.have.keys([‘a’, ‘c’]);

expect({ a: ‘b’, c: ‘d’ }).to.not.only.have.key(‘a’);

◾	 throwException: Asserts that the Function throws or not when called
expect(fn).to.throwException();

expect(fn2).to.not.throwException();

◾	 within: Asserts a number within a range
expect(1).to.be.within(0, Infinity);

◾	 greaterThan/above: Asserts >
expect(3).to.be.above(0); expect(5).to.be.greaterThan(3);

◾	 lessThan/below: Asserts <
expect(0).to.be.below(3); expect(1).to.be.lessThan(3);

Now that you’ve improved your assertion style, you can also refactor the tests organization
with a framework called Mocha.

MOCHA
Mocha is a test framework that simplifies the process of writing tests that run in succession,
running them and producing output that’s helpful for the developer to observe.

Instead of having to write each test in a separate file, which could result in dozens of files that
are unordered in the filesystem, you can use Mocha to structure your tests like this:

test.js
describe(‘a topic’, function () {

 it(‘should test something’, function () {

 });

 describe(‘another topic’, function () {

 it(‘should test something else’, function () {

 });

 });

});

C H A P T E R 1 6   •   Testing 295

In the same spirit as expect.js, in test.js, the process of describing and organizing tests is
natural.

All you need to do to run the tests is to leverage the mocha command. To get the mocha
command, make sure to run npm install -g mocha. Then use

mocha test.js

Mocha can leverage multiple reporters to display the tests passing and running:

mocha test.js

 ..

 ✔ 2 tests complete (0ms)

An alternative reporter, for example, is a list:

mocha -R list test.js

 ✓ a topic should test something: 0ms

 ✓ a topic another topic should test something else: 0ms

 ✔ 2 tests complete (1ms)

As you see later, Mocha also has an HTML reporter, which enables you to take your tests to
the browser.

TESTING ASYNCHRONOUS CODE
By default, Mocha executes one test after another immediately. Many times, however, you
want to delay the execution of the next test after some async event occurs.

Consider the following test:

it(‘should not throw’, function () {

 setTimeout(function () {

 throw new Error(‘An error!’);

 }, 100);

});

This test always passes. The reason is that the timer is set, and there’s nothing left to do,
Mocha continues with the next one. Because no exceptions are raised immediately after setting
the timeout, the test passes.

For tests in which exceptions could be raised in the future (that is, as a result of asynchronous
behavior), you want to tell Mocha that you will notify it when you consider the test complete.

296 PA RT V   •   Testing

For that, you simply define an argument as part of the callback. In other words, as you saw in
Chapter 2, you set the arity of the function (or the function#length) to 1:

it(‘should not throw’, function (done) {

 setTimeout(function () {

 assert.ok(1 == 1);

 }, 100);

});

The test now behaves similarly to middleware. Mocha waits until the done function is called.
If the function is not called within 2 seconds (by default), a timeout exception is raised to
inform you on which test it’s stuck. You can tweak this timeout by supplying the -t option to
the mocha command. You also can customize it per test as follows:

it(‘will fail’, function () {

 this.timeout(100);

 setTimeout(function () {

 // the test will timeout before this occurs

 }, 1000);

});

To make the test work, you invoke done after the assertions are done:

it(‘should not throw’, function (done) {

 setTimeout(function () {

 assert.ok(1 == 1);

 done();

 }, 100);

});

Thus, you could rewrite the Bieber Twitter client in Mocha like this:

it(‘should find bieber tweets’, function (done) {

 request.get(‘http://localhost:3000’)

 .data({ q: ‘bieber’ })

 .exec(function (res) {

 // assert correct status code

 assert.ok(200 == res.status);

 // assert presence of search keyword

 assert.ok(~res.text.toLowerCase().indexOf(‘bieber’));

 // assert list items

 assert.ok(~res.text.indexOf(‘’));

 done();

 });

});

C H A P T E R 1 6   •   Testing 297

Sometimes, a test can pass only when more than one asynchronous task run in parallel completes.

For this approach, you can use the typical trick of keeping a counter:

it(‘should complete three requests’, function (done) {

 var total = 3;

 request.get(‘http://localhost:3000/1’, function (res) {

 if (200 != res.status) throw new Error(‘Request error’);--total || done();

 });

 request.get(‘http://localhost:3000/2’, function (res) {

 if (200 != res.status) throw new Error(‘Request error’);--total || done();

 });

 request.get(‘http://localhost:3000/3’, function (res) {

 if (200 != res.status) throw new Error(‘Request error’);;

 --total || done();

 });

});

Note that Mocha is smart enough to recognize that a certain uncaught exception belongs to a
specific test. Because Mocha executes only one test at a time at any time, it knows to link any
uncaught exceptions that are captured through process.on(‘uncaughtException’)
handler to the appropriate test.

BDD STYLE
The style described in the preceding section is called behavior-driven development (BDD).

In the following example, you test the behavior of Jade when supplied a template that contains
a paragraph. You use it in combination with expect.js

First, you install Jade, Mocha, and expect.js:

$ npm install expect.js jade mocha

bdd.js
var expect = require(‘expect.js’)

 , jade = require(‘jade’);

describe(‘jade.render’, function () {

 it(‘should render a paragraph’, function () {

 expect(jade.render(‘p A paragraph’)).to.be(‘<p>A paragraph</p>’);

 });

});

Because you installed Mocha locally, you can execute it by finding it in ./node_modules/bin:

$./node_modules/.bin/mocha bdd.js

298 PA RT V   •   Testing

TDD STYLE
The next style is called test-driven development (TDD). It’s similar to BDD, but the organiza-
tion is set around suites and tests.

Each suite can have setup and teardown functions associated with them. These functions are
executed prior to each test in the suite, and they avoid code repetition while maximizing
testing isolation.

For example, say you want to test the native Node net client. At the beginning of each test of
the suite, you might want to initialize a client because each test in the suite leverages one, and
at the end, you want to close the connection.

suite(‘net’, function () {

 suite(‘Stream’, function () {

 var client;

 suiteSetup(function () {

 client = net.connect(3000, ‘localhost’);

 });

 test(‘connect event’, function (done) {

 client.on(‘connect’, done);

 });

 test(‘receiving data’, function (done) {

 client.write(‘’);

 client.once(‘data’, done);

 });

 suiteTeardown(function () {

 client.end();

 });

 });

});

EXPORTS STYLE
The exports style leverages the node module system to expose tests.

Each key exported constitutes the equivalent of a suite, and nested suites can appear as
subobjects:

C H A P T E R 1 6   •   Testing 299

exports.Array = {

 ‘#indexOf()’: {

 ‘should return -1 when the value is not present’: function () {},

 ‘should return the correct index when the value is present’: function () { }

 }

};

TAKING MOCHA TO THE BROWSER
Mocha is a project that was written for Node, but it can be compiled to be run in the browser.

The strategy for running tests in the browser (HTML) is straightforward:

	 1.	Load the Mocha CSS and JS runtime.
	 2.	Tell Mocha what test style you want to use (TDD, BDD, or exports).
	 3.	Load your tests.
	 4.	Run Mocha.

The expect.js project also runs in all modern and old browsers, which makes it the perfect
companion for Mocha.

Setting up the project

You start by creating a test/ folder that will contain the Mocha browser runtime files
(mocha.css and mocha.js).

You can obtain both files by either copying them from the node_modules/mocha directory
or downloading them directly from the git repository. For more information on how to
download these files, refer to http://mochajs.com.

You also should load jQuery, expect.js, and your tests and then call mocha.setup to load
the particular test style.

The test/index.htmltherefore looks like this:

test/index.html
<!doctype html>

<html>

 <head>

 <title>my tests</title>

 <link href=”/mocha.css” rel=”stylesheet” media=”screen” />

 <script src=”/jquery.js”></script>

 <script src=”/mocha.js”></script>

http://mochajs.com

300 PA RT V   •   Testing

test/index.html  (continued)

 <script src=”/expect.js”></script>

 <script>mocha.setup(‘bdd’);</script>

 <script src=”/my-test.js”></script>

 <script>window.onload = function () { mocha.run(); };</script>

 </head>

 <body>

 <div id=”mocha”></div>

 </body>

</html>

As you can see, Mocha runs the my-test file, which you populate with a few simple array
tests in BDD style:

my-test.js
describe(‘my tests’, function () {

 it(‘should not throw’, function () {

 expect(1 + 1).to.be(2);

 });

});

Serving up the directory

The easiest way to serve an entire directory as a website is to leverage a utility called
serve(1). A simple command-line program, serve runs connect static provider
middleware for the directory you point it to:

$ serve .

You then simply point your browser to http://localhost:3000.

SUMMARY
You started off learning the easiest way to test a program, which is running a simple test script
and expecting it to run successfully.

In order to verify that certain conditions are met within that test script, you used the core
Node.JS module assert.

With that foundation in place, you set out to make stylistic and organization improvements to
your tests with expect.js and Mocha, respectively. Expect allows you to express your tests very
clearly, while Mocha gives you the ability to organize them around suites and empowers you
to run tests in the browser environment. It also makes testing asynchronous code, as you saw,
very elegant.

INDEX

SYMBOLS AND
NUMERICS
> (angle bracket), defined, 9
$ (dollar sign) prefix, 8
./, (dot slash) adding to

require parameters, 43
\r\n delimiter, 85
 [] (square brackets) for uploading

multiple files, 134
404 (Not Found) status

code, 117

A
absolute modules, defined, 41
accepts extension for

Request, 156
accessors in v8, 25–26
acknowledgment, Socket.IO,

190–191
acknowledgments, TCP, 71
addEventListener API, 45–46
addMessage function, 187, 190
AJAX, 164–166, 180, 245
Amazon Linux, 9
angle bracket (>), defined, 9
ANSI escape codes (website), 66
Apache/PHP compared to

Node, 28–29
app. users function, 212
app.configure function, 153
app.enable function, 153
app.error function, 155
apply method, 18
app.set function, 147, 148
app.use function, 159, 161
argv API, 63–64, 108
arity of a function, 19, 296

array JavaScript type, 16, 17
arrays, 23, 239–240, 242–243
assert module, 284,

290–291, 293
AssertionError, 290
asynchronous code

advantage for Node, 32
serial execution, 58, 59
synchronous code, compared

to, 30, 53–55
testing, 295–297

authentication, MongoDB
access, 217–218

B
base64, defined, 48
basicAuth middleware,

141–143
BDD (behavior-driven

development), 297
belongsTo relationship type, 250
binary data, representing in

JavaScript, 47–48
bind method, 24
block body declaration, 238
blocking code, 29–31, 32, 33,

46, 54
bodyParser middleware,

131–134, 208, 214, 251
boolean JavaScript type, 16
broadcast function, 171,

173–174, 186, 187
broadcasting issue, WebSocket,

177, 185–190
browser. See also code sharing

Chrome, 1, 22
Mocha, compiling for, 299–300
Node’s connection features, 94

shimming browser APIs, 284
WebSocket issues, 166, 177, 180

browserbuild project, 279,
285–288

Buffer object, 48
buffers, 47–48
bundling up client-side

JavaScript, 128
byte orientation in TCP, 70–71

C
call method, 18
call stacks in v8, 32
case sensitive routes in

Express, 153
casting in Mongoose, 225–226
Chrome, Google, 1, 22
chunked value for transfer en-

coding, 92–93
classes, 20, 46, 220, 254
CLI (command line interface),

exploring APIs for, 63–66
client. See also browser

bundling up JavaScript, 128
createClient in

MySQL, 234
http.ClientRequest

object, 105, 106
IRC, 83–85
mongo client, 207
Socket.IO, 183–185
telnet client, 71–73
WebSocket, 169

client.end function, 236
client.query function, 236
close event, 77, 177, 180
closures, JavaScript, 19

302 I N D E X

cloud deployments, non-blocking
IO advantages for, 33

code sharing (browser/server)
browser APIs, shimming, 284
browserbuild project,

285–288
cross-browser inheritance,

284–285
ECMA APIs, shimming,

282–283
introduction, 279–280
modules, exposing, 280–282
Node APIs, shimming, 283–284
summary, 288

Collection.insert
function, 214

collections of documents in
MongoDB, 205, 213–216

command line interface (CLI),
exploring APIs for, 63–66

complex JavaScript types, 16
concurrency. See shared-state

concurrency
configure function, 153
congestion control in TCP, 71
Connect API. See also middleware

Connect-based website,
creating, 119–120

HTTP-based website,
creating, 116–119

introduction, 115–116
summary, 144

connect event, 84, 180, 185–186
connect function, 84, 184, 220
connection event, 168, 181
Connection HTTP header,

92, 94
connections

client/server communications
as, 70

HTTP, 93–94
MongoDB access, 212–214
node-mysql, 234
redis, 267–268
sequelize, 248–249
tracking in TCP, 79–81
WebSocket, 177

console object, 40
Content-Type HTTP header,

89, 99–100
contracts, event, defined, 47

controllers, separating HTML
code from in Express, 146

convenience methods, Express,
155–157, 253

Cookie header, 134
createClient API, 234
createServer function

Connect style, 120
Express style, 147
HTTP server, 112, 117
TCP, 75
WebSocket, 168

Crockford, Douglas (author)
JavaScript: The Good Parts, 15

cross-browser inheritance,
284–285

crypto libraries, code sharing, 280
current working directory, 64–65

D
Dahl, Ryan (developer), 1
data deletion route, sequelize,

254–255
data event, 60–61, 77–79
data stream, client/server com-

munication as, 70
data types, 207, 262–266
database access, non-blocking IO

advantage for, 33. See also
MongoDB; MySQL; Redis

datagram, defined, 70
:date dynamic token, 130
date manipulation toolkits, code

sharing, 280
db.getLastError

function, 220
db.query function, 241
default logging format, 129
delete class, 254
DELETE request, 99
deletion route, data, sequelize,

254–255
destroy command, 255
dev logging format, 129
_dirname, 64
disconnect event, 180
disconnecting and close event in

WebSocket, 177
dispatchEvent API, 45–46

documents, MongoDB data as,
205, 206, 213–217, 222

dollar sign ($) prefix, 8
DOM API, code sharing (website),

282, 284
dot notation for nested keys in

MongoDB, 222
dot slash (./), adding to

require parameters, 43
driver APIs, defined, 208. See also

node-mongodb-native
driver; node-mysql driver;
node-redis driver

E
ECMA APIs, shimming, 282–283
ECMAScript, 15
ejs template engine, 146–147, 154
elect function, 192
embedded documents, defining in

Mongoose, 222
encoded string as parameter

of event, 57
end event, 77
end method, 107
ensureIndex function, 216
environmental variables, 65
error event, 34, 47, 77
error handling
AssertionError in

testing, 290
db.getLastError

function, 220
Express API, 150, 151, 155
MySQL, 236
Node, 34–35
shared-state concurrency, 33–35
stack traces, 35–37

es5-shim project (website), 282
event loop

introduction, 1
IO, relationship to, 32
keeping it running with

Stream, 56
non-blocking code, relationship

to, 30–31
single thread of execution, 31

EventEmitter API, 45–46,
78, 284

INDEX 303

events
close, 77, 177, 180
connect, 84, 180, 185–186
connection, 168, 181
data, 60–61, 77–79
disconnect, 180
encoded string as parameter, 57
end, 77
error, 34, 47, 77
join, 186
Node JavaScript additions, 45–47
open, 180
Socket.IO, 180–181, 185

exception, capturing, 21–22
executing a file, 10
exit API, 65
expect function, 292–293
expect.js project (website), 292–294
exports global object, 41, 44
exports style in Mocha, 298–299
exposing APIs, Node JavaScript

additions, 44–45
Express API, 157–158. See also

routes and route handlers
convenience methods, 155–157
error handling, 150, 151, 155
HTML, 146–147
introduction, 145
middleware, 159–160
module, creating, 146
MongoDB, 208–212, 213
node-mysql, 232–233
organization strategies, 160–162
search module, 150–151, 152
sequelize, 245–248
settings, 153–154
setup, 147–148
summary, 162
template engines, 146, 147,

154, 209
in WebSocket API, 167

F
file descriptors, 31, 56
filesystem, 92. See also fs module
filter method, 23
find method in sequelize,

253–254
findById query operation, 224
findOne command, 216

flag, defined, 186
flow control, 71, 121, 158
FLUSHALL command, 274
forEach method, 23
formidable module, 131
404 (Not Found) status code,

103, 117
framing, defined, 166
fs module

interacting with, 61–63
overview, 41
Stream, 66–68
sync compared to async

style, 54
watch, 67–68

fs.createReadStream
function, 67

fs.stat function, 58, 117
fs.watch function, 68
fs.WriteStream function, 67
function JavaScript type, 16
function name compared to

variable name, 18
functions, overview, 18–19. See

also specific functions and
methods

G
-g flag, 13
GET command, 262
Get request, 99, 108, 109–110
GitHub, 3
global object, 40–41
Google Chrome, 1, 22
Grooveshark API (website),

192–196

H
handshake, defined, 166
hash data type in Redis, 263–264
hasMany association, 250
HDEL command, 264
header extension for

Request, 155
header extension for

Response, 156
headers, HTTP, 89–93, 99–100
HEXLISTS command, 262, 264
HGETALL command, 264,

273, 274

hgetall function, 269
hidden option in static

middleware, 127
hmset function, 269
homebrew package manager, 261
HSET command, 263
HTML. See browser
HTML5 WebSocket, 166–167
HTTP (Hypertext Transfer

Protocol)
Connect API, compared to,

116–119
connections, 93–94
headers, 89–93, 99–100
introduction, 87
reloading with up, 111–112
request+response model inef-

ficiencies, 164–166
structure, 88–89
summary, 112
superagent module, 110–111
TCP, relationship to, 69, 88, 93
Twitter web client exercise,

104–110
web server, creating, 93–104
WebSocket, relationship to, 167

http.ClientRequest
object, 105, 106

http.request object, 105,
106, 108, 109

http.Server object, 69,
182, 183

http.ServerRequest
constructor, 88

http.ServerResponse
constructor, 88

:http-version dynamic
token, 130

I
if node block in

browserbuild, 288
index method, 223
index setup for Mongoose,

215–216, 222–223
info object, 241
inheritance, 20–21, 25, 284–285
in-memory store, Redis, 260
input and output, basics in

Node, 57–59

304 I N D E X

insert command, 214–215
instanceof operator, 17, 21
interpolation feature in jade, 240
io.connect function, 184
IP (Internet Protocol), 70
IRC (Internet Relay Chat) client

program, 83–85
is extension for Request, 156
isarray method, 23
items array, database data,

239–240, 242–243

J
jade template engine, 154,

209–210, 238–240
JavaScript. See also Node,

JavaScript additions
bundling up client-side, 128
classes, 20
defined, 15
functions, 18–19
inheritance, 20–21
JSON, compared to, 235
Redis, compared to, 266
summary, 26
try/catch, 21–22
types, 16–17
v8, 22–26

JavaScript: The Good Parts
(Crockford), 15

join event, 186
jQuery listener for sequelize data,

250–251
JSON

in Connect, 135
creating package.json, 12–13
data format, 104
encoding specification

from v8, 24
JavaScript, compared to, 235
MongoDB design, relationship

to, 206
in sequelize, 252–253
Socket.IO’s coordination of

events, 181
in WebSocket, 173, 177

json extension for
Response, 156

jsonp function, 154

K
keep-alive value for

Connection header, 94
KEYS command, 261, 262
keys method, 22–23
key-value basis for Redis, 260, 263
Kvalheim, Christian Amor

(developer), 208

L
lastIndexof method, 24
length property, 19
Linux systems, installing

Node.JS on, 8–9
list data type in Redis, 265
listen method, 76, 112
locals object, 150
logger middleware, 129–131
login route, MongoDB, 215
login system, creating with Con-

nect, 134–140
long polling, defined, 180
LPUSH command, 265
LRANGE command, 265

M
Mac OS X, installing Node.JS on, 8
make test command, 9
map method, 23
math libraries, code sharing, 280
maxAge option in static

middleware, 127
:method dynamic token, 130
methodOverride

middleware, 141
middleware

Connect API
basicAuth, 141–143
bodyParser, 131–134
Cookie header, 134
defined, 115
introduction, 121–122
logger, 129–131
methodOverride, 141
query, 128
RedisStore, 140
session, 134–140
static, 120, 127–128
writing reusable, 122–127

Express API, 159–160
MongoDB, 208, 214, 217–218
Mongoose, 223
next function, relationship

to, 124, 158
sequelize, 251

mocha command, 295
Mocha framework, 294–300
Model.count function, 225
models, database

Mongoose, 219, 220–221,
223–224, 227–229

Redis, 268
sequelize, 249–250

module global object, 41, 44,
280–281

module system
assert, 284, 290–291, 293
code sharing, 280–282
creating the module, 12–13, 53
Express API, 146, 150–151
formidable, 131
fs, 41, 54, 61–63, 66–68
HTTP, 95, 104–110
input and output, 57–59
Node JavaScript additions,

41–43
querystring, 101–102,

106, 108
refactoring, 59–61
streams, 55–57
superagent, 110–111, 146,

151, 291–292
synchronous compared to

asynchronous code, 53–55
TCP (chat program), 74

mongo client, 207
mongod server, 207
MongoDB

compared to other database
programs, 205–207,
260, 263

defined, 205
installing, 207
Mongoose, 220–229
node-mongodb-native

driver
application setup, 208
atomicity, 219
connecting to, 212–214
creating documents, 214–215

INDEX 305

Express app, creating,
208–212, 213

finding documents, 215–217
middleware, 208, 214,

217–218
safe mode, 219–220
validation, 218–219

summary, 229
mongodb.Server, 212–213
Mongoose

atomicity, 219
automatic key populating, 225
casting, 225–226
defining the model, 220–221
embedded documents, defining,

222
example program, 226–229
index setup, 215–216, 222–223
inspecting the model state,

223–224
limiting, 225
middleware, 223
nested keys, defining, 222
querying, 224–225
selecting, 224
skipping, 225
sorting, 224

monkey-patch (overriding func-
tions), 123

mounting with static middle-
ware, 127

MSI installer in Windows, 8
multi function, 269
multiplexing, defined, 182
MySQL

introduction, 231
MongoDB, compared to, 205,

206
node-mysql driver

connecting to, 234
creating data, 238–242
Express app, 232–233
fetching data, 242–244
initializing the script,

234–238
setup, 232

node-sequelize ORM
connecting to, 248–249
creating data, 250–253
defining models, 249–250
Express app, 245–248

introduction, 244–245
other functionality, 256–257
removing data, 254–256
retrieving data, 253–254
setup, 245
synchronizing to the data-

base, 250
summary, 257

N
name method, 24
namespaces in Socket.IO, 181–182
nested keys, defining in Mon-

goose, 222
net.connect function, 84
net.createServer, 75
net.Server API, 74–76
net.Stream API, 75, 84
next function and middleware,

124, 158
nextTick function, 40
node command, 2, 9–10
Node Package Manager (NPM), 2,

10–14, 53
node-canvas (canvas 2D con-

text) (website), 284
NODE_ENV, 65, 153
Node.JS. See also specific APIs and

database programs
code sharing, 279–288
data in memory disadvantage,

266–267
installing, 7–14
introduction, 1–3
JavaScript additions

buffers, 47–48
events, 45–47
exposing APIs, 44–45
global object, 40–41
introduction, 39
module system, 41–43
summary, 48

shared-state concurrency
blocking compared to non-

blocking code, 29–31
error handling, 33–35
introduction, 27–29
single thread of execution,

31–33
stack traces, 35–37

state, 79
summary, 37

support resources, 3
testing

expect.js project, 292–294
introduction, 289
Mocha framework, 294–300
program, 291–292
strategy, 290–291
subject for, 290
summary, 300

node_modules directory, 41
node-mongodb-native driver

application setup, 208
atomicity, 219
connecting to, 212–214
creating documents, 214–215
Express app, creating, 208–212,

213
finding documents, 215–217
middleware, 208, 214, 217–218
safe mode, 219–220
validation, 218–219

node-mysql driver
connecting to, 234
creating data, 238–242
Express app, 232–233
fetching data, 242–244
initializing the script, 234–238
sequelize, relationship to, 245
setup, 232

node-redis driver
connecting to redis, 267–268
defining the model, 268
graph methods, 269–270
intersections, computing, 270
testing, 270–276
users, creating and modifying,

268–269
node-sequelize ORM

connecting to, 248–249
creating data, 250–253
defining models, 249–250
Express app, 245–248
introduction, 244–245
other functionality, 256–257
removing data, 254–256
retrieving data, 253–254
setup, 245
summary, 257

306 I N D E X

non-blocking code, 29–31, 32, 33,
46, 54

nonprinting characters, 66
NoSQL, 206, 231
NPM (Node Package Manager), 2,

10–14, 53
npm install command, 12
npm publish command, 12, 13
null JavaScript type, 16

O
object JavaScript type, 16
ObjectID Schema type, 221,

225, 226
Object.keys API, code sharing

issue, 283
Object-Relational Mappers

(ORMs), 207. See also
node-sequelize ORM

octets, 48
ODM (Object Document

Mapper), 207
once method, 142
onload handler, 174
OOP frameworks, code

sharing, 280
open event, 180
option function, 63
ORMs (Object-Relational

Mappers), 207. See also
node-sequelize ORM

P
package.json file, 12–13
parse method, 24
PATCH request, 99
paused state, 56
persistence, Redis data, 260
PHP compared to Node, 28–31
piping streams, 93
PKG file in Mac OS X, 8
port method, 112
ports package manager, 261
positions object, 172–173
POST request, 46–47, 99, 131
PostgreSQL, 205
primitive JavaScript types, 16
private variable, defined, 19
process object, 40
process.argv API, 63–64, 108

process.cwd object, 64–65
process.env object, 65
process.exit object, 65
process.on handler, 297
programming requirements,

setting, 52
progressive API, defined, 111
proto, 25, 284
prototype extension in code

sharing, 282–283
prototypical inheritance,

defined, 20
PUT request, 99

Q
quality of service (QoS) for

TCP, 71
query middleware, 128
query string in URLs, 101
querying database, 215–216,

224–225, 261–262
query.limit extension, 225
query.select extension for

MongoDB, 224
query.skip extension for

MongoDB, 225
query.sort extension for

MongoDB, 224
querystring module, 101–102,

106, 108
querystringparse module, 102

R
RAW TCP mode, 72
Read-Eval-Print Loop (REPL), 2,

9–10
ReadStream filesystem APIs, 92
reception acknowledgment in

Socket.IO, 190–191
reconnection issue in

WebSocket, 177
redirect extension for

Response, 157
Redis

data types, 262–266
installing, 261
introduction, 259–260
middleware, 140
node-redis driver, 266–276

query language, 261–262
summary, 276

redis-cli command line
execution, 261

RedisStore middleware, 140
reduce method, 24
refactoring, 59–61, 226–227
:referrer dynamic token, 130
RegExp object, 157–158
relative modules, 42
:remote-addr dynamic

token, 130
removeEventListener

API, 45–46
render extension for

Response, 156
render method, 149, 150
REPL (Read-Eval-Print Loop), 2,

9–10
:req dynamic token, 130
req.params object, 157
Request object

Express extensions, 155–156
HTTP, 88, 93, 104–106, 108,

109–110, 164–166
Node/JavaScript code sharing,

280, 284
require global object
browserbuild considerations,

286–287
exposing APIs, 44–45
Express, 160
JSON file loading, 235
keyword, 14
module system role, 41
relative modules, 42–43

:res dynamic token, 130
Response object

Express extensions, 156–157
HTTP, 88, 93, 105, 164–166

:response-time dynamic
token, 130

REST principles, 245
resume state, 56
review command, 14
routes and route handlers

case-sensitive, 153
data deletion route in sequelize,

254–255
defining in Express, 148–150
error handling, 155–157

INDEX 307

middleware, 159–160
MongoDB, 210–211
organization strategy role

(route maps), 160–162
strict, 154
terms defined, 145, 146
web application capabilities,

157–158
RPUSH command, 265

S
SADD command, 266
safe option, MongoDB driver,

219–220
Schema class, 220
schema-less database, MongoDB

as, 205–206
scope definition in JavaScript, 19
<script> tag, 183–184
search command, 14
search module for Express Twitter

app, 150–151, 152
Select command, 242–243
self-invoked function, defined, 19
semver versioning spec, 53
send extension for Response,

156
send object, 110–111, 166
sendfile extension for

Response, 157
sequelize. See node-sequelize

ORM
Sequelize constructor, 248–249
sequelize.define, 249
sequelize.sync, 250
serial execution, 58, 59
serve function, 118
serve(1) utility, 300
server. See also createServer

function; HTTP
communications with client, 70
creating with Node.JS, 1–2, 10
MongoDB, 207, 212–213
net global object, 74–76

Server API, 69, 95–104, 182, 183
session data, 140, 266–267
session middleware,

134–140, 208
SET command, 262
set data type in Redis, 265–266

set object, 110–111
setEncoding method, 105
setImmediate API, 40
setTimeout function, 40
shared-state concurrency

blocking compared to
non-blocking code, 29–31

error handling, 33–35
introduction, 27–29
single thread of execution, 31–33
stack traces, 35–37
state, 79
summary, 37

shimming of APIs, 280, 282–284
short logging format, 129
SIGKILL signal, 65
signals, 65–66
single thread of execution, 31–33
sio.listen function, 183
slash-r, slash-n (\r\n)

delimiter, 85
SMEMBERS command, 262, 266
socket, TCP, 73
Socket.IO

chat program exercise
broadcasting, 185–190
client setup, 183–185
events, 185
reception acknowledgment,

190–191
server setup, 182–183

DJ-by-turns application exercise
extending chat, 191–192
Grooveshark API integration,

192–196
playing function, 196–201

introduction, 179
summary, 201
transports, 180–182

socket.io, program setup, 182
sorted sets in Redis, 266
sorting in database, 224
square brackets ([]) for uploading

multiple files, 134
SREM command, 266
Stack Overflow (website), 3
stack trace, 24–25, 35–37
Stat object, 58
state variables and TCP, 79–81
static middleware, 120, 127–128
:status dynamic token, 130

stderr stream object, 56, 57
stdin stream object, 56, 59–60
stdio process, 51
stdout stream object, 51, 56, 57,

59–60
store for login sessions, setting up

with Connect, 140
Stream objects

in first program module, 55–57
fs module, 66–68
net.createServer, 75–76
net.Stream API, 75, 84
types of, 51, 56–57, 59–60

strict routing in Express, 154
string data type in Redis, 263
string JavaScript type, 16
string methods in v8, 24
stringify method, 24, 106
String.prototype, 42
suite in TDD, 298
superagent module, 110–111,

146, 151, 291–292
synchronizing to database in

sequelize, 250
synchronous code, 30, 53–55

T
tablescan lookup, defined, 216
TCP (Transmission Control

Protocol)
characteristics of, 69–71
chat program exercise

creating the module, 74
data event, 77–79
disconnecting, 81–83
net.Server API, 74–76
receiving connections, 76–77
state variables, 79–81

HTTP, relationship to, 69, 88, 93
introduction, 69
IRC client program, 83–85
summary, 85
Telnet, 71–73

TDD (test-driven development),
298

telnet client, 71–73
template engines

code sharing, 280
ejs, 146–147, 154
jade, 154, 209–210, 238–240

308 I N D E X

tenants in cloud environment, 33
testing

arrays, 23
asynchronous code, 295–297
expect.js project, 292–294
introduction, 289
Mocha framework, 294–300
node-redis driver, 270–276
program, 291–292
strategy, 290–291
subject for, 290
summary, 300

test.js (Mocha), 295–300
text editor, 2
third-party modules, 41
time complexity, Redis, 262
timeouts
setTimeout function, 40
Socket.IO, 180
TCP, 71

tiny logging format, 129
TinySong API, 193–196
Transfer-Encoding HTTP

header, 92
Transmission Control Protocol.

See TCP (Transmission
Control Protocol)

transports, Socket.IO, 180–182
try/catch in JavaScript, 21–22
type options in Mongoose, 221
typeof operator, 17, 281

U
Ubuntu, 9
uncaughtException

handler, 34

undefined JavaScript type, 16
Unix Standard Streams, 56
up executable, 111–112
updateAttributes

method, 255
uploads, file, with bodyParser,

131–134
:url dynamic token, 130
url property, 97
/url property, 98
use function for static

middleware, 120
:user-agent dynamic

token, 130
utf8 string, 105

V
v8 JavaScript interpreter, 1, 17,

22–26, 32, 33
validate option in sequelize,

256
validation, MongoDB, 218–219
versioning spec for NPM, 53
view options parameter in

Express, 147, 209, 232
vim text editor (website), 2
virtualized operating systems in

cloud environment, 33

W
W3C, 166
watch function, 67–68, 112
Web 2.0, 164
web applications, rise of, 164
web browser. See browser

web server. See server
WebSocket. See also Socket.IO

API compared to Protocol, 166
background for, 163–167
broadcasting issue, 177,

185–190
client setups, 169
close event and

disconnecting, 177
defined, 166
echo example, 167–171
JSON packet encoding/

decoding, 173, 177
mouse cursor example, 171–176
Node/JavaScript code sharing,

280, 284
reconnection issue, 177
running the server, 170, 176
server setups, 168, 172
summary, 178

websocket.io, 167–168, 172
White, Nathan (developer), 207
window object, 40
Windows systems, installing

Node.JS on, 8
working directory, CLI, 64–65
writeHead API, 90, 92

X
XCode, 8
XMLHttpRequest API, 280, 284

	Smashing Node.js: JavaScript Everywhere
	CONTENTS
	FOREWORD
	INTRODUCTION
	APPROACH
	RESOURCES

	PART I: GETTING STARTED: SETUP AND CONCEPTS
	CHAPTER 1: THE SETUP
	INSTALLING ON WINDOWS
	INSTALLING ON OS X
	INSTALLING ON LINUX
	THE NODE REPL
	EXECUTING A FILE
	NPM
	SUMMARY

	CHAPTER 2: JAVASCRIPT: AN OVERVIEW
	INTRODUCTION
	BASIC JAVASCRIPT
	V8 JAVASCRIPT
	SUMMARY

	CHAPTER 3: BLOCKING AND NON-BLOCKING IO
	WITH GREAT POWER COMES GREAT RESPONSIBILITY
	SUMMARY

	CHAPTER 4: NODE JAVASCRIPT
	THE GLOBAL OBJECT
	THE MODULE SYSTEM
	EXPOSING APIS
	EVENTS
	BUFFERS
	SUMMARY

	PART II: ESSENTIAL NODE APIS
	CHAPTER 5: CLI AND FS APIS: YOUR FIRST APPLICATION
	REQUIREMENTS
	WRITING YOUR FIRST PROGRAM
	EXPLORING THE CLI
	EXPLORING THE FS MODULE
	SUMMARY

	CHAPTER 6: TCP
	WHAT ARE THE CHARACTERISTICS OF TCP?
	TELNET
	A TCP CHAT PROGRAM
	AN IRC CLIENT PROGRAM
	SUMMARY

	CHAPTER 7: HTTP
	THE STRUCTURE OF HTTP
	HEADERS
	CONNECTIONS
	A SIMPLE WEB SERVER
	A TWITTER WEB CLIENT
	A SUPERAGENT TO THE RESCUE
	RELOADING HTTP SERVERS WITH UP
	SUMMARY

	PART III: WEB DEVELOPMENT
	CHAPTER 8: CONNECT
	A SIMPLE WEBSITE WITH HTTP
	A SIMPLE WEBSITE WITH CONNECT
	MIDDLEWARE
	SUMMARY

	CHAPTER 9: EXPRESS
	A SIMPLE EXPRESS APP
	SETTINGS
	TEMPLATE ENGINES
	ERROR HANDLING
	CONVENIENCE METHODS
	ROUTES
	MIDDLEWARE
	ORGANIZATION STRATEGIES
	SUMMARY

	CHAPTER 10: WEBSOCKET
	AJAX
	HTML5 WEBSOCKET
	AN ECHO EXAMPLE
	MOUSE CURSORS
	THE CHALLENGES AHEAD
	SUMMARY

	CHAPTER 11: SOCKET.IO
	TRANSPORTS
	A CHAT PROGRAM
	A DJ-BY-TURNS APPLICATION
	SUMMARY

	PART IV: DATABASES
	CHAPTER 12: MONGODB
	INSTALLATION
	ACCESSING MONGODB: A USER AUTHENTICATION EXAMPLE
	INTRODUCING MONGOOSE
	A MONGOOSE EXAMPLE
	SUMMARY

	CHAPTER 13: MYSQL
	NODE-MYSQL
	SEQUELIZE
	SUMMARY

	CHAPTER 14: REDIS
	INSTALLING REDIS
	THE REDIS QUERY LANGUAGE
	DATA TYPES
	REDIS AND NODE
	SUMMARY

	PART V: TESTING
	CHAPTER 15: CODE SHARING
	WHAT CAN BE SHARED?
	WRITING COMPATIBLE JAVASCRIPT
	PUTTING IT ALL TOGETHER: BROWSERBUILD
	SUMMARY

	CHAPTER 16: TESTING
	SIMPLE TESTING
	EXPECT.JS
	MOCHA
	SUMMARY

	INDEX

