Framework
-.-"' Design
Guidelines

Conventions, Idioms, and Patterns
for Reusable .NET Libraries

Second Edition

Krzysztof Cwalina
Brad Abrams

vvAddison-Wesley

Upper Saddle River, N] * Boston * Indianapolis * San Francisco
New York ® Toronto = Montreal * London * Munich ¢ Paris = Madrid

Capetown * Sydney = Tokyo ¢ Singapore « Mexico City

Many of the designations used by manufacturers
and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in
this book, and the publisher was aware of a trade-
mark claim, the designations have been printed
with initial capital letters or in all capitals.

The NET _logo is either a registered trademark or
trademark of Microsoft Corporation in the United
States and /or other countries and is used under
license from Microsoft,

Microsoft, Windows, Visual Basic, Visual C#, and
Visual C++ are either registered trademarks or
trademarks of Microsoft Corporation in the US.A.
and /or other countries regions.

The authors and publisher have taken care in the
preparabion of this book, but make no expressed or
implied warranty of any kind and assume no
responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in
connection with or arising out of the use of the infor-
mation or programs contained herein.

The publisher offers excellent discounts on this book
when ordered in quantity for bulk purchases or spe-
cial sales, which may include electronic versions
and /or custom covers and content particular to vour
business, fraining goals, marketing focus, and brand-
ing interests. For more information, please contact:

U5, Corporate and Government Sales
(B00) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com /aw

Libsrary of Congress Cataloging-in-Publication Data

Cwalina, Krzysztof,

Framework design guidelines : conventions,
idioms, and patterns for reusable NET libraries /
Krzysztof Cwalina, Brad Abrams. — 2nd ed.

P. con.
Includes bibliographical references and index,
ISBIN 978-0-321-54561-9 (hardcover : alk. paper)
1. Microsoft WNET Framework, 2. Application
program interfaces (Computer software) 1.
Abrams, Brad. I1. Title.

QAT6.76.M52C87 2008
006.7'882—dc22
2008034905

Copyright © 2000 Microsoft Corporatiom

All rights reserved. Printed in the United States of
America. This publication is protected by copy-
right, and permission must be obtained from the
publisher prior to any prohibited reproduction,
storage ina retrieval system, or transmission inany
form ar by any means, electronic, mechanical, pho-
tocopying, recording, or likewise. For information
regarding permissions, write to:

Pearson Education, Inc,

Rights and Contracts Department
501 Boylston Street, Suite 900
Bostom, MA 02116

Fax (617) 671 3447

ISBMN-13: 978-0-321-54561-49
ISBMN-10: (-321-54561-3

Text printed in the United States on recycled paper
at Donnelley in Craw fordsville, Indiana.
First printing, October 2008

To my wife, Ela,
for her support throughout the long process of writing this book,
and to my parents,
Jadwiga and Janusz, for their encouragement.
—Krzysztof Cwalina

To my wife, Tamara:
Your love and patience strengthen me.

—Brad Abrams

Praise for Framework Design Guidelines

“Framework Design Guidelines is one of those rare books that can be read at differ-
ent reading levels and can be useful to different kinds of developers. Regardless
of whether you want to design an effective object model, improve your under-
standing of the NET Framework, borrow from the experience of software
gurus, stay clear of the most common programming mistakes, or just get an
idea of the huge effort that led to the INET initiative, this book is a must-read.”

—Francesco Balena, The VB Migration Partner Team (www.vbmigration.com),
Code Architect, Author, and Microsoft Regional Director, Italy

“Frameworks are valuable but notoriously difficult to construct: your every
decision must be geared toward making them easy to be used correctly and
difficult to be used incorrectly. This book takes you through a progression of
recommendations that will eliminate many of those downstream ‘I wish I'd

known that earlier’ moments. [wish ['d read it earlier.”

—Paul Besly, Principal Technologist, QA

“Not since Brooks” The Mythical Man Month has the major software maker of
its time produced a book so full of relevant advice for the modern software
developer. This book has a permanent place on my bookshelf and I consult it

r

frequently.

—George Byrkit, Senior Software Engineer, Genomic Solutions

“Updated for the new language features of the NET Framework 3.0 and 3.5,
this book continues to be the definitive resource for .NET developers and
architects who are designing class library frameworks. Some of the existing
guidelines have been expanded with new annotations and more detail, and
new guidance covering such features as extension methods and nullable
types has also been included. The guidance will help any developer write
clearer and more understandable code, while the annotations provide invalu-
able insight into some of the design decisions that made the NET Framework
what it is today.”

—Scott Dorman, Microsoft MVP and President,
Tampa Bay International Association of Software Architects

“Filled with information useful to developers and architects of all levels, this
book provides practical guidelines and expert background information to
get behind the rules. Framework Design Guidelines takes the already pub-
lished guidelines to a higher level, and it is needed to write applications
that integrate well in the .NET area.”

—Cristof Falk, Software Engineer

“This book is an absolute must read for all NET developers. It gives clear ‘do’
and ‘don’t’ guidance on how to design class libraries for .NET. It also offers
insight into the design and creation of .NET that really helps developers under-
stand the reasons why things are the way they are. This information will aid
developers designing their own class libraries and will also allow them to take
advantage of the NET class library more effectively.”

Jetfrey Richter, Author/Trainer /Consultant, Wintellect

“The second edition of Frametwork Design Guidelines gives you new, important
insight into designing your own class libraries: Abrams and Cwalina frankly
discuss the challenges of adding new features to shipping versions of their prod-
ucts with minimal impact on existing code. You'll find great examples of how to
create version N+1 of your software by learning how the NET class library team
created versions 2.0, 3.0, and 3.5 of the NET library. They were able to add gener-
ics, WCE, WPF, WE and LINQ with minimal impact on the existing APls, even
providing capabilities for customers wanting to use only some of the new fea-
tures, while still maintaining compatibility with the original library.”

—Bill Wagner, Founder and Consultant, SRT Solutions,
author of Effective C# and More Effective C#

“This book is a must read for all architects and software developers thinking
about frameworks. The book offers insight into some driving factors behind
the design of the NET Framework. It should be considered mandatory reading

for anybody tasked with creating application frameworks.”

—Peter Winkler, Sr. Software Engineer, Balance Technology Inc.

Microsoft .NET Development Series

John Montgomery, Series Advisor
Don Box, Series Advisor
Brad Abrams, Series Advisor

The award-winning Microsoft .NET Development Series was established in 2002 to provide professional
developers with the most comprehensive and practical coverage of the latest NET technologies. It is
supported and developed by the leaders and experts of Microsoft development technologies, including
Microsoft architects, MVPs, and leading industry luminaries. Books in this series provide a core resource of

information and understanding every develuper needs ko write effective applicn tHons.

Titles in the Series

Brad Abrams, NET Framework Standard Library
Anunotated Reference Volume 1: Base Class Library and
Extended Numerics Library, 978-0-321-15489-7

Brad Abrams and Tamara Abrams, NET Framework
Standard Library Annotated Reference, Volume 2:
Networking Library, Reflection Library, and XML Library,
O78-0-321-19445-9

Chris Anderson, Essential Windeus Presentation Foundation
(WPE), 978-0-321-37447-9

Bob Beauchemin and Dan Sullivan, A Developer's Guide fo
SO Server 2005, 978-0-321-382158-4

Adam Calderon, Joel Rumerman, Advanced ASPNET
AJAX Server Controls: For NET Framework 3.5,
H78-0-321-51444-8

Eric Carter and Eric Lippert, Visual Studio Tools for Office:
Lising C# with Excel, Word, Outlook, and InfoPath,
O78-0-321-33488-6

Eric Carter and Eric Lippert, Visual Studio Tools for
Office: Using Visual Basic 2005 with Excel, Word, l!'_]uh’urrﬁ
aned .En_.h-}P.:iH: O78-0-321-41175-4

Steve Cook, Gareth Jones, Stuart Kent, Alan Cameron
Wills, Domuain-Specific Development with Visual Studio
DSL Tools, 478-0-321-39820-8

Krzys;r,mf Cwalina and Brad Abrams, Framenork Design
Guidelines: Conventions, Idioms, and Patterns for Rensable

NET Libraries, Second Edition, 978-0-321-54561-9

Joe Dufty, Concurrent Programming on Windows,

978-0-321-43482-1

Sam Guckenheimer and Juan J. Perez, Software
Engincering with Microsoft Visual Studio Team System,

978-0-321-27872-2

Anders Hejlsberg, Mads Torgersen, Scott Wiltamuth,
Peter Golde, The C# Progranmming Language, Third Edition,
O978-0-321-562099-9

Alex Homer and Dave Sussman, ASENET 2.0 Mustrated,
978-0-321-41834-0

Joe Kaplan and Ryan Dunn, The NET Developer's Guide to
Directory Services Programming, 978-0-321-35017-6

Mark Michaelis, Essential C# 3.0: For NET Framework 3.5,
978-0-321-53392-0

James 5. Miller and Susann Ragsdale,
The Common Language Infrastructure Annotated Standard,

978-0-321-15493-4

Christian Nagel, Enterprise Services with the NET
Framework: Developing Distributed Business Solutions
with NET Enterprise Services, 978-0-321-24673-8

Brian Moyes, Data Binding with Windows Forms 2.0:
Programuring Swart Client Data Applications with NET,
Q78-0-321-26892-1

Brian Noyes, Smart Clignt Deployment with ClickOnee:
Deploying Windows Forms Applications with ClickOnce,
078-0-321-19769-H
Fritz Onicn with Keith Brown, Fssential ASPNET 2.0,
978-0-321-23770-5

Steve Resnick, Richard Crane, Chris Bowen, Essential
Windows Communication Foundation: For NET Framework
2.5, 978-0-321-44006-8

Scott Roberts and Hagen Green, Designing Forms
for Microsoft Office InfoPath and Forms Services 2007,
978-0-321-41054-7

Neil Roodyn, eXtrene NET: Introducing eXtreme
Pragramuring Tl=u‘.’qum'.-; o NET Duz-w':qu?h.:,
078-0-321-30363-9

Chris Sells and Michael Weinhardt, Windows Forms 2.0
Pragramuring, 9758-0-321-267%6-2

Dharma Shukla and Bob Schmidt, Essential Windows
i"l.-’:n'kﬁ{:uw Fowrdation, 978-0-321-39983-0

Guy Smith-Ferrier, NET Infernationalization:
The Developer's Guide to Building Global Windoiws
and Web Applications, 978-0-321-34138-9

Will Stott and James Mewkirk, Visual Studio Team
Systen: Better Snfrn.rcm* Development ﬁ]r Agile Teams,
978-0-321-41850-0

Paul Yao and David Durant, NET Conpact Framework
Programuring with C#, 978-0-321-17403-1

Paul Yao and David Durant, NET Compact Framework
Programmring with Visual Basic NET, 978-0-321-17404-8

For more information go to informit.com/msdotnetseries/

Figures

FIGURE 2-1: Learning curve of a multiframework platform 12
FIGURE 2-2: Learning curve of a progressive framework platform 13
FIGURE 4-1: The logical grouping of types 77

FIGURE 9-1: Query Pattern Method Signatures 341

o xvii

=
Tables

TABLE 3-1:
TABLE 3-2:

TABLE 3-3:
TABLE 3-4:

TABLE 5-1:
TABLE 8.1:
TaeLe B.1:
TaeLE B.2:

Capitalization Rules for Different Types of Identifiers
Capitalization and Spelling for Common Compound
Words and Common Terms 43

CLR Type Names for Language-Specific Type Nanes
Name Rules for Types Derived from or Implementing
Certain Core Types 65

Operators and Corresponding Method Names 172
NET Framework Serialization Technologies 274
Stuffixes for Common Base Types and Interfaces 379
Symmetric Operators 392

40

50

o oXix

Foreword

When the .NET Framework was first published, 1 was fascinated by the
technology. The benefits of the CLR (Common Language Runtime), its
extensive APls, and the C# language were immediately obvious. But
underneath all the technology were a common design for the APIs and a
set of conventions that were used everywhere. This was the NET culture.
Once you had learned a part of it, it was easy to translate this knowledge
into other areas of the Framework.

For the past 16 years, | have been working on open source software.
Since contributors span not only multiple backgrounds but multiple years,
adhering to the same style and coding conventions has always been very
important. Maintainers routinely rewrite or adapt contributions to soft-
ware to ensure that code adheres to project coding standards and style. It
is always better when contributors and people who join a software project
follow conventions used in an existing project. The more information that
can be conveyed through practices and standards, the simpler it becomes
tor future contributors to get up-to-speed on a project. This helps the proj-
ect converge code, both old and new.

As both the NET Framework and its developer community have
grown, new practices, patterns, and conventions have been identified.
Brad and Krzysztof have become the curators who turned all of this new
knowledge into the present-day guidelines. They typically blog about a

new convention, solicit feedback from the community, and keep track of

XXi

XXii

m Foreword

these guidelines. In my opinion, their blogs are must-read documents
for everyone who is interested in getting the most out of the NET
Framework.

The first edition of Framework Design Guidelines became an instant clas-
sic in the Mono community for two valuable reasons. First, it provided us
a means of understanding why and how the various NET APIs had been
implemented. Second, we appreciated it for its invaluable guidelines that
we too strived to follow in our own programs and libraries. This new edi-
tion not only builds on the success of the first but has been updated with
new lessons that have since been learned. The annotations to the guide-
lines are provided by some of the lead .NET architects and great program-
mers who have helped shape these conventions.

In conclusion, this text goes beyond guidelines. It is a book that you
will cherish as the “classic” that helped you become a better programmer,

and there are only a select few of those in our industry.

Miguel de Icaza
Boston, MA

Foreword to the First Edition

In the early days of development of the NET Framework, before it was
even called that, I spent countless hours with members of the develop-
ment teams reviewing designs to ensure that the final result would be a
coherent platform. I have always felt that a key characteristic of a frame-
work must be consistency. Once you understand one piece of the frame-
work, the other pieces should be immediately familiar.

As you might expect from a large team of smart people, we had many
differences of opinion—there is nothing like coding conventions to spark
lively and heated debates. However, in the name of consistency, we grad-
ually worked out our differences and codified the result into a common
set of guidelines that allow programmers to understand and use the
Framework easily.

Brad Abrams, and later Krzysztof Cwalina, helped capture these
guidelines in a living document that has been continuously updated and
refined during the past six years. The book you are holding is the result of
their work.

The guidelines have served us well through three versions of the NET
Framework and numerous smaller projects, and they are guiding the
development of the next generation of APIs for the Microsoft Windows
operating system.

XXiii

xxiv 'm Foreword to the First Edition

With this book, I hope and expect that you will also be successful in

making your frameworks, class libraries, and components easy to under-
stand and use.

Good luck and happy designing.

Anders Hejlsberg
Redmond, WA
June 2005

Preface

This book, Framework Design Guidelines, presents best practices for design-
ing frameworks, which are reusable object-oriented libraries. The guide-
lines are applicable to frameworks in various sizes and scales of reuse,

including the following:

» Large system frameworks, such as the .NET Framework, usually
consisting of thousands of types and used by millions of developers.

* Medium-size reusable layers of large distributed applications or
extensions to system frameworks, such as the Web Services
Enhancements.

* Small components shared among several applications, such as a grid

control library.

It is worth noting that this book focuses on design issues that directly
affect the programmability of a framework (publicly accessible APIs'). As
a result, we generally do not cover much in terms of implementation
details. Just as a user interface design book doesn’t cover the details of
how to implement hit testing, this book does not describe how to imple-
ment a binary sort, for example. This scope allows us to provide a definitive
guide for framework designers instead of being yet another book about

programming,

1. This includes public types, and their public, protected, and explicitly implemented mem-
bers of these types.

Xxv

XXvi

m Preface

These guidelines were created in the early days of NET Framework
development. They started as a small set of naming and design conven-
tions but have been enhanced, scrutinized, and refined to a point where
they are generally considered the canonical way to design frameworks at
Microsoft. They carry the experience and cumulative wisdom of thousands
of developer hours over three versions of the NET Framework. We tried
to avoid basing the text purely on some idealistic design philosophies, and
we think its day-to-day use by development teams at Microsoft has made
it an intensely pragmatic book.

The book contains many annotations that explain trade-offs, explain
history, amplify, or provide critiquing views on the guidelines. These anno-
tations are written by experienced framework designers, industry experts,
and users. They are the stories from the trenches that add color and setting
for many of the guidelines presented.

To make them more easily distinguished in text, namespace names,
classes, interfaces, methods, properties, and types are set in monospace font.

The book assumes basic familiarity with .NET Framework program-
ming. A few guidelines assume familiarity with features introduced in
version 3.5 of the Framework. If you are looking for a good introduction to
Framework programming, there are some excellent suggestions in the
Suggested Reading List at the end of the book.

Guideline Presentation

The guidelines are organized as simple recommendations using Do,
Consider, Avoid, and Do not. Each guideline describes either a good or
bad practice, and all have a consistent presentation. Good practices have
a v in front of them, and bad practices have an X in front of them. The
wording of each guideline also indicates how strong the recommendation
is. For example, a Do guideline is one that should always? be followed (all
examples are from this book):

2. Always might be a bit too strong a word. There are guidelines that should literally be always
followed, but they are extremely rare. On the other hand, vou probably need to have a
really unusual case for breaking a Do guideline and still have it be beneficial to the users of
the framework.

Preface m

v/ DO name custom attribute classes with the suffix “Attribute.”
public class ObsoleteAttribute : Attribute { ... }

On the other hand, Consider guidelines should generally be followed,
but if you fully understand the reasoning behind a guideline and have a
good reason to not tollow it anyway, vou should not feel bad about break-
ing the rules:

/ CONSIDER defining a struct instead of a class if instances of the type are
small and commonly short-lived or are commonly embedded in other

objects.

Similarly, Do not guidelines indicate something you should almost

never do:
X DO NOT assign instances of mutable types to read-only fields.

Less strong, Avoid guidelines indicate that something is generally not a
good idea, but there are known cases where breaking the rule makes sense:

X AvoID using ICollection<T> or ICollection as a parameter just to
access the Count property.

Some more complex guidelines are followed by additional background
information, illustrative code samples, and rationale:

v DO implement IEquatable<T> on value types,

Theobject.Equals method on value types causes boxing and its default
implementation is not very efficient because it uses reflection.
IEquatable<T>.Equals can offer much better performance and can be

implemented so it does not cause boxing.

public struct Int32 : IEquatable<Int32: {
public bool Equals(Int32 other){ ... }

}

Xxv

—

Xxviii

m Preface

Language Choice and Code Examples

One of the goals of the Common Language Runtime (CLR) is to support a
variety of programming languages: those with implementations provided
by Microsoft, such as C++, VB, C#, F#, Python, and Ruby, as well as third-
party languages such as Eiffel, COBOL, Fortran, and others. Therefore, this
book was written to be applicable to a broad set of languages that can be
used to develop and consume modern frameworks.

To reinforce the message of multilanguage framework design, we con-
sidered writing code examples using several different programming lan-
guages. However, we decided against this. We felt that using different
languages would help to carry the philosophical message, but it could
force readers to learn several new languages, which is not the objective of
this book.

We decided to choose a single language that is most likely to be read-
able to the broadest range of developers. We picked C#, because it is a
simple language from the C family of languages (C, C++, Java, and C#), a
family with a rich history in framework development.

Choice of language is close to the hearts of many developers, and we

offer apologies to those who are uncomfortable with our choice.

About This Book

This book offers guidelines for framework design from the top down.

Chapter 1, “Introduction,” is a brief orientation to the book, describing
the general philosophy of framework design. This is the only chapter with-
out guidelines.

Chapter 2, “Framework Design Fundamentals,” offers principles and
guidelines that are fundamental to overall framework design.

Chapter 3, “Naming Guidelines,” contains common design idioms and
naming guidelines for various parts of a framework, such as namespaces,
types, and members.

Chapter 4, “Type Design Guidelines,” provides guidelines for the gen-
eral design of types.

Preface m

Chapter 5, “Member Design,” takes a further step and presents guide-
lines for the design of members of types.

Chapter 6, “Designing for Extensibility,” presents issues and guidelines
that are important to ensure appropriate extensibility in your framework.

Chapter 7, “Exceptions,” presents guidelines for working with excep-
tions, the preferred error reporting mechanisms.

Chapter 8, “Usage Guidelines,” contains guidelines for extending and
using types that commonly appear in frameworks.

Chapter 9, “Common Design Patterns,” offers guidelines and examples
of common framework design patterns.

Appendix A, “C# Coding Style Conventions,” contains a short descrip-
tion of coding conventions used in this book.

Appendix B, “Using FxCop to Enforce the Framework Design Guide-
lines,” describes a tool called FxCop. The tool can be used to analyze frame-
work binaries for compliance with the guidelines described in this book. A
link to the tool is included on the DVD that accompanies this book.

Appendix C, “Sample API Specification,” is a sample of an API speci-
fication that framework designers within Microsoft create when design-
ing APls.

Included with the book is a DVD that contains several hours of video
presentations covering topics presented in this book by the authors, a sam-

ple API specification, and other useful resources.

XXix

Acknowledgments

This book, by its nature, is the collected wisdom of many hundreds of
people, and we are deeply grateful to all of them.

Many people within Microsoft have worked long and hard, over a
period of years, proposing, debating, and finally, writing many of these
guidelines. Although it is impossible to name everyone who has been
involved, a few deserve special mention: Chris Anderson, Erik Christensen,
Jason Clark, Joe Duffy, Patrick Dussud, Anders Hejlsberg, Jim Miller,
Michael Murray, Lance Olson, Eric Gunnerson, Dare Obasanjo, Steve
Starck, Kit George, Mike Hillberg, Greg Schecter, Mark Boulter, Asad
Jawahar, Justin Van Patten, and Mircea Trofin.

We'd also like to thank the annotators: Mark Alcazar, Chris Anderson,
Christopher Brumme, Pablo Castro, Jason Clark, Steven Clarke, Joe Duffy,
Patrick Dussud, Mike Fanning, Kit George, Jan Gray, Brian Grunkemeyer,
Eric Gunnerson, Phil Haack, Anders Hejlsberg, David Kean, Rico Mariani,
Anthony Moore, Vance Morrison, Christophe Nasarre, Dare Obasanjo,
Brian Pepin, Jon Pincus, Jeff Prosise, Brent Rector, Jeffrey Richter, Greg
Schechter, Chris Sells, Steve Starck, Herb Sutter, Clemens Szyperski, Mircea
Trofin, and Paul Vick.

Their insights provide much needed commentary, color, humor, and
history that add tremendous value to this book.

Sheridan Harrison and David Kean actually wrote and edited
Appendix B on FxCop, which would not have been done without their
skill and passion for this tool.

XXxi

XXXii

m Acknowledgments

For all of the help, reviews, and support, both technical and moral, we
thank Martin Heller. And for their insightful and helpful comments, we
appreciate Pierre Nallet, George Byrkit, Khristof Falk, Paul Besley, Bill
Wagner, and Peter Winkler.

We would also like to give special thanks to Susann Ragsdale, who
turned this book from a semi-random collection of disconnected thoughts
into seamlessly flowing prose. Her flawless writing, patience, and fabulous

sense of humor made the process of writing this book so much easier.

=
About the Authors

Brad Abrams was a founding member of the Common Language Run-
time and .NET Framework teams at Microsoft Corporation. He has been
designing parts of the NET Framework since 1998 and is currently Group
Program Manager of the NET Framework team. Brad started his frame-
work design career building the Base Class Library (BCL) that ships as a
core part of the NET Framework. Brad was also the lead editor on the
Common Language Specification (CLS), the .NET Framework Design
Guidelines, and the libraries in the ECMAMISO CLI Standard. Brad has
authored and coauthored multiple publications, including Programming
in the NET Environment and .NET Framework Standard Library Annotated
Reference, Volumes 1 and 2. Brad graduated from North Carolina State
University with a B.S. in computer science. You can find his most recent
musings on his blog at http: / /blogs.msdn.com /BradA.

Krzysztof Cwalina is a program manager on the NET Framework team
at Microsoft. He was a founding member of the NET Framework team and
throughout his career has designed many .NET Framework APIs and
framework development tools, such as FxCop. He is currently leading a
companywide effort to develop, promote, and apply framework design
and architectural guidelines to the INET Framework. He is also leading the
team responsible for delivering core NET Framework APls. Krzysztof
graduated with a B.S. and an M.S. in computer science from the University

of lowa. You can find his blog at http:/ /blogs.msdn.com /kcwalina.

XxXxiii

=
About the Annotators

Mark Alcazar wanted to be a famous sportsman. After discovering he had
no hand-eye coordination or athletic ability, however, he decided a better
career might be computers. Mark has been at Microsoft for the last nine
years, where he’s worked on the HIML rendering engine in Internet
Explorer and has been a member of the Windows Presentation Foundation
team since its inception. Mark is a big fan of consistent white space, peach-
nectarine Talking Rain, and spicy food. He has a B.Sc. from the University
of the West Indies and an M.5c. from the University of Pennsylvania.
Chris Anderson is an architect at Microsott in the Connected Systems
Division. Chris’s primary focus is on the design and architecture of NET
technologies used to implement the next generation of applications and
services. From 2002 until recently he was the lead architect of the WPF
team. Chris has written numerous articles and white papers, and he has
presented and been a keynote speaker at numerous conferences (Microsoft
Professional Developers Conference, Microsoft TechEd, WinDev, DevCon,
etc.) worldwide. He has a very popular blog at www.simplegeek.com.
Christopher Brumme joined Microsoft in 1997, when the Common
Language Runtime (CLR) team was being formed. Since then, he has con-
tributed to the execution engine portions of the codebase and more broadly
to the design. He is currently focused on concurrency issues in managed
code. Prior to joining the CLR team, Chris was an architect at Borland and

QOracle.

XXXV

XXXVi

m Aboutthe Annotators

Pablo Castro is a technical lead in the SQL Server team. He has contrib-
uted extensively to several areas of SQL Server and the .INET Framework,
including SQL-CLR integration, type-system extensibility, the TDS client-
server protocol, and the ADO.NET API. Pablo is currently involved with
the development of the ADO.NET Entity Framework and also leads the
ADO.NET Data Services project, which is looking at how to bring data and
Web technologies together. Before joining Microsoft, Pablo worked in vari-
ous companies on a broad set of topics that range from distributed infer-
ence systems for creditscoring / risk analysis to collaboration and groupware
applications.

Jason Clark works as a software architect for Microsoft. His Microsoft
software engineering credits include three versions of Windows, three
releases of the NET Framework, and WCE. In 2000 he published his first
book on software development and continues to confribute to magazines
and other publications. He is currently responsible for the Visual Studio
Team System Database Edition. Jason’s only other passions are his wife
and kids, with whom he happily lives in the Seattle area.

Steven Clarke has been a user experience researcher in the Developer
Division at Microsoft since 1999, His main interests are observing, under-
standing, and modeling the experiences that developers have with APls in
order to help design APIs that provide an optimal experience to their users.

Joe Duffy is the development lead for parallel extensions to NET at
Microsoft. He codes heavily, manages a team of developers, and defines
the team’s long-term vision and strategy. Joe previously worked on con-
currency in the CLR team and was a software engineer at EMC. While not
geeking out, Joe spends his time playing guitar, studying music theory,
and blogging at www.bluebytesoftware.com.

Patrick Dussud is a Technical Fellow at Microsoft, where he serves as
the chief architect of both the CLR and the INET Framework architecture
groups. He works on NET Framework issues across the company, helping
development teams best utilize the CLR. He specifically focuses on taking
advantage of the abstractions the CLR provides to optimize program
execution.

Michael Fanning is the current development lead for Expression Web

at Microsoft. He was an early member of the team that produced FxCop

About the Annotators [

for internal use and ultimately added it to Visual Studio 2005 for release to
the general public.

Kit George is a program manager on the .NET Framework team at
Microsoft. He graduated in 1995 with a B.A. in psychology, philosophy,
and mathematics from Victoria University of Wellington (New Zealand).
Prior to joining Microsoft, he worked as a technical trainer, primarily in
Visual Basic. He participated in the design and implementation of the first
two releases of the Framework for the last two years.

Jan Gray is a software architect at Microsoft who now works on con-
currency programming models and infrastructure. He was previously a
CLR performance architect, and in the 1990s he helped write the early
MS C++ compilers (e.g., semantics, runtime object model, precompiled
headers, PDBs, incremental compilation, and linking) and Microsoft
Transaction Server. Jan's interests include building custom multiproces-
sors in FPGAs.

Brian Grunkemeyer has been a software design engineer on the NET
Framework team at Microsoft since 1998. He implemented a large portion
of the Framework Class Libraries and contributed to the details of the
classes in the ECMA /ISO CLI standard. Brian is currently working on
tuture versions of the .NET Framework, including areas such as generics,
managed code reliability, versioning, contracts in code, and improving the
developer experience. He has a B.S. in computer science with a double
major in cognitive science from Carnegie Mellon University.

Eric Gunnerson found himself at Microsoft in 1994 after working in
the aerospace and going-out-of-business industries. He has worked on
the C++ compiler team, as a member of the C# language design team, and
as an early thought follower on the DevDiv community effort. He worked
on the Windows DVD Maker Ul during Vista and joined the Microsoft
HealthVault team in early 2007. He spends his free time cycling, skiing,
cracking ribs, building decks, blogging, and writing about himself in the
third person.

Phil Haack is a program manager with the ASPNET team working on
the ASPNET MVC Framework, which is being developed in a community-
driven transparent manner. The Framework driving goal is to embody and

encourage certain principles of good software design: separation of

XxXxvii

XXXV

m About the Annotators

concerns, testability, and the single responsibility principle, among others.
Phil is also a code junkie and loves to both write software as well as write
about software development on his blog,.

Anders Hejlsberg is a technical fellow in the Developer Division at
Microsoft. He is the chief designer of the C# programming language and
a key participant in the development of the NET Framework. Before join-
ing Microsoft in 1996, Anders was a principal engineer at Borland Inter-
national. As one of the first employees of Borland, he was the original
author of Turbo Pascal and later worked as the chief architect of the Delphi
product line. Anders studied engineering at the Technical University of
Denmark.

David Kean is a developer on the .NET Framework team at Microsoft,
where he works on the Managed Extensibility Framework (MEF), a set of
building blocks for developing extensible and dynamic applications. He
worked earlier on the often well-loved but also greatly misunderstood tool
FxCop and its related sibling, Visual Studio Code Analysis. He graduated
with a B.CS. from Deakin University in Melbourne, Australia, and is now
based in Seattle with his wife, Lucy, and two children, Jack and Sarah.

Rico Mariani began his career at Microsoft in 1988, working on lan-
guage products, beginning with Microsoft C version 6.0, and he contrib-
uted there until the release of the Microsoft Visual C++ wversion 5.0
development system. In 1995, Rico became development manager for what
was to become the “Sidewalk” project, which started his seven years of
platform work on various MSN technologies. In the summer of 2002, Rico
returned to the Developer Division as a performance architect on the CLR
team. His performance work led to his most recent assignment as chief
architect of Visual Studio. Rico’s interests include compilers and language
theory, databases, 3D art, and good fiction.

Anthony Moore is a development lead for the Connected Systems
Division. He was the development lead for the Base Class Libraries of the
CLR from 2001 to 2007, spanning FX V1.0 to FX 3.5. Anthony joined
Microsoft in 1999 and initially worked on Visual Basic and ASP.NET. Before
that he worked as a corporate developer for eight years in his native Aus-
tralia, including a three-year period working in the snack food industry.

Vance Morrison is a performance architect for the NET Runtime at
Microsoft. He involves himself with most aspects of runtime performance,

About the Annotators [

with current attention devoted to improving startup time. He has been
involved in designs of components of the NET runtime since its inception.
He previously drove the design of the INET Intermediate Language (IL)
and has been the development lead for the JIT compiler for the runtime.

Christophe Nasarre is a software architect and development lead for
Business Objects, a multinational software company from SAP that is
focused on business intelligence solutions. During his spare time, Christophe
writes articles for MSDN Magazine, MSDN, and ASPToday. Since 1996, he
has also worked as a technical editor on numerous books on Win32, COM,
MEC, .NET, and WPFE. In 2007, he wrote his first book, Windows via C/C++
from Microsoft Press.

Dare Obasanjo is a program manager on the MSN Communication
Services Platform team at Microsoft. He brings his love of solving prob-
lems with XML to building the server infrastructure utilized by the M5SN
Messenger, MSN Hotmail, and MSN Spaces teams. He was previously a
program manager on the XML team responsible for the core XML applica-
tion programming interfaces and W3C XML Schema-related technologies
in the NET Framework.

Brian Pepin is a software architect at Microsoft and is currently work-
ing on the WPF and Silverlight designers for Visual Studio. He's been
involved in developer tools and frameworks for 14 years and has provided
input on the design of Visual Basic 5, Visual J++, the NET Framework,
WPF, Silverlight, and more than one unfortunate experiment that luckily
never made it to market.

Jonathan Pincus was a senior researcher in the Systems and Network-
ing Group at Microsoft Research, where he focused on the security, pri-
vacy, and reliability of software and software-based systems. He was
previously founder and CTO of Intrinsa and worked in design automation
(placement and routing for ICs and CAD frameworks) at GE Calma and
EDA Systems.

Jeff Prosise is a cofounder of Wintellect (www.wintellect.com). His
most recent book, Programming Microsoft NET, was published by Micro-
soft Press in 2002, and his writings appear regularly in MSDN Magazine
and other developer magazines. Jeff's professional life revolves around
ASP.NET, ASPNET AJAX, and Silverlight. A reformed engineer who dis-
covered after college that there’s more to life than computing loads on

XXXiX

xl

m Aboutthe Annotators

mounting brackets, Jeff is known to go out of his way to get wet in some of
the world’s best dive spots and to spend way too much time building and
flying R/C aircraft.

Brent Rector is a program manager at Microsoft on a technical strategy
incubation effort. He has more than 30 years of experience in the software
development industry in the production of programming language com-
pilers, operating systems, ISV applications, and other products. Brent is
the author and coauthor of numerous Windows software development
books, including ATL Internals, Win32 Programming (both Addison-Wesley),
and Introducing WinFX (Microsoft Press). Prior to joining Microsoft, Brent
was the president and founder of Wise Owl Consulting, Inc. and chief
architect of its premier .NET obfuscator, Demeanor for .NET,

Jeffrey Richter is a cofounder of Wintellect (www.Wintellect.com), a
training, debugging, and consulting firm dedicated to helping companies
build better software faster. He is the author of several best-selling .NET
and Win32 programming books, including Applied Microsoft NET Frame-
work Programming (Microsoft Press). Jeffrey is also a contributing editor at
MSDN Magazine, where he writes the “Concurrent Affairs” column. Jeff has
been consulting with Microsoft's NET Framework team since 1999 and
was also a consultant on Microsoft’s Web Services and Messaging Team.

Greg Schechter has been working on APl implementation and API
design for over 20 years, primarily in the 2D and 3D graphics realm, but
also in media, imaging, general user interface systems, and asynchronous
programming,. Greg is currently an architect on the Windows Presentation
Foundation and Silverlight teams at Microsoft. Prior to coming to Micro-
soft in 1994, Greg was at Sun Microsystems for six years. Beyond all of
that, Greg also loves to write about himself in the third person.

Chris Sells is a program manager for the Connected Systems Division
at Microsoft. He's written several books, including Programming WPF,
Windows Forms 2.0 Programming, and ATL Internals. In his free time, Chris
hosts various conferences and makes a pest of himself on Microsoft inter-
nal product team discussion lists.

Steve Starck is a technical lead on the ADONET team at Microsoft,
where he has been developing and designing data access technologies,

including ODBC, OLE DB, and ADO.NET, for the past ten years.

About the Annotators [

Herb Sutter is a leading authority on software development. During
his career, Herb has been the creator and principal designer of several
major commercial technologies, including the PeerDirect peer replication
system for heterogeneous distributed databases, the C++/CLI language
extensions to C++ for NET programming, and most recently the Concur
concurrent programming model. Currently a software architect at Micro-
soft, he also serves as chair of the ISO C++ standards committee and is the
author of four acclaimed books and hundreds of technical papers and arti-
cles on software development topics.

Clemens Szyperski joined Microsoft Research as a software architect in
1999, He focuses on leveraging component software to effectively build
new kinds of software. Clemens is cofounder of Oberon Microsystems and
its spin-off, Esmertec, and he was an associate professor at the School of Com-
puter Science, Queensland University of Technology, Australia, where he
retains an adjunct professorship. He is the author of the Jolt award-winning
Component Software (Addison-Wesley) and the coauthor of Softaare Ecosystem
(MIT Press). He has a Ph.D. in computer science from the Swiss Federal Insti-
tute of Technology in Zurich and an M.S. in electrical engineering /computer
engineering from the Aachen University of Technology:

Mircea Trofin is a program manager with the NET Application Frame-
work Core group at Microsoft. He is primarily responsible for driving the
effort for ensuring and improving the architecture of the NET Framework.
He is also responsible for a number of upcoming features in .NET in the
area of component-based programming. He received his B.A.Sc. in com-
puter engineering from University of Waterloo, and his Ph.D. in computer
science from University College Dublin.

Paul Vick is the language architect for Visual Basic, leading the language
design team. Paul originally began his career working at Microsoft in 1992
on the Microsoft Access team, shipping versions 1.0 through 97 of Access.
In 1998, he moved to the Visual Basic team, participating in the design and
implementation of the Visual Basic compiler and driving the redesign of
the language for the NET Framework. He is the author of the Visual Basic
NET Language Specification and the Addison-Wesley book The Visual Basic

NET Language. His weblog can be found at www.panopticoncentral.net.

xli

B ls

Introduction

I F YOU COULD STAND over the shoulder of every developer who is
using your framework to write code and explain how it is supposed to
be used, guidelines would not be necessary. The guidelines presented in
this book give you, as the framework author, a palette of tools that allow
you to create a common language between framework authors and the
developers who will use the frameworks. For example, exposing an opera-
tion as a property instead of exposing it as a method conveys vital infor-
mation about how that operation is to be used.

In the early days of the PC era, the main tools for developing applica-
tions were a programming language compiler, a very small set of standard
libraries, and the raw operating system application programming inter-
taces (APIs)—a very basic set of low-level programming tools.

Even as developers were building applications using such basic tools,
they were discovering an increasing amount of code that was repetitive
and could be abstracted away through higher-level APlIs. Operating sys-
tem vendors noticed that they could make it cheaper for developers to
create applications for their systems if they provided them with such
higher-level APIs. The number of applications that could run on the sys-
tem would increase, which would then make the system more appealing
to end users who demanded a variety of applications. Also, independent
tool and component vendors quickly recognized the business opportuni-
ties offered by raising the API abstraction level.

2

m Introduction

In parallel, the industry slowly began to accept object-oriented design and
its emphasis on extensibility and reusability.! When reusable library vendors
adopted object-oriented programming (OOP) for the development of their
high-level APIs, the concept of what we consider a framework was born.
Application developers were no longer expected to write most of the applica-
tion from scratch. The framework would provide most of the needed pieces,
which would then be customized and connected? to form applications.

As more vendors started to provide components that could be reused
by stitching them together into a single application, developers noticed
that some of the components did not fit together well. Their applications
looked and worked like a house built by different contractors who never
talked to each other. Likewise, as a larger percentage of application source
code became constructed of API calls rather than standard language con-
structs, developers started to complain that they now had to read and
write multiple languages: one programming language and several “lan-
guages” of the components they wanted to reuse. This had significant neg-
ative impact on developer productivity, and productivity is one of the
main factors in the success of a framework. It became clear that there was
a need for common rules that would ensure consistency and seamless inte-
gration of reusable components.

Most of today’s application development platforms spell out some
kind of design conventions to be used when designing frameworks for
the platform. Frameworks that do not follow such conventions, and so do
not integrate well with the plattorm, are either a source ot constant frus-
tration to those trying to use them, or are at a competitive disadvantage

1. Object-oriented languages are not the only languages well suited for developing extensible
and reusable libraries, but they played a kev role in popularizing the concepts of reusabil-
ity and extensibility. Extensibility and reusability are a large part of the philosophy of
object-oriented programming (OOP), and the adoption of OOP contributed to increased
awareness of their benefits,

[

There has been a great deal of recent criticism of object-oriented (OO} design, which claims
that the promise of reusability never materialized. OO design is not a guarantee of reus-
ability (especially without testing), but we are not sure that it was ever promised. On the
other hand, OO design provides natural constructs to express units of reusability (bypes), to
communicate and control extensibility points (virtual members), and to facilitate decou-
pling (abstractions).

1.4 Qualities of a Well-Designed Framework g

and ultimately fail in the marketplace. The ones that succeed are often

described as self-consistent, making sense, and well-designed.

1.1 Qualities of a Well-Designed Framework

The question is, then, what defines a well-designed framework, and how
do you get there? There are many factors, such as performance, reliability,
security, dependency management, and so on, that affect software quality.
Frameworks, of course, must adhere to these same quality standards. The
difference between frameworks and other kinds of software is that frame-
works are made up of reusable APIs, which presents a set of special con-
siderations in designing quality frameworks.

1.1.1 Well-Designed Frameworks Are Simple

Most frameworks do not lack power, because more features are reasonably
easy to add as requirements become clearer. On the other hand, simplicity
often gets sacrificed when schedule pressure, feature creep, or the desire to
satisfy every little corner-case scenario takes over the development process.
However, simplicity is a must-have feature of every framework. If you have
any second thoughts about the complexity of a design, it is almost always
much better to cut the feature from the current release and spend more time
to get the design right for the next release. As framework designers often
say, “You can always add; you cannot ever remove.” If the design does not

feel right, and you ship it anyway, you are likely to regret having done so.

®s CHRIS SELLS As a test of whether an API is “simple,” I like to submit
it to a test I call “client-first programming.” If you say what your library
does and ask a developer to write a program against what he or she expects
such a library to look like (without actually looking at your library), does
the developer come up with something substantially similar to what you've
produced? Do this with a few developers. If the majority of them write sim-

ilar things without matching what you've produced, they’re right, you're
wrong, and your library should be updated appropriately.

I find this technique so useful that I often design library APIs by writing
the client code I wish I could write and then just implement the library to
match that. Of course, you have to balance simplicity with the intrinsic com-
plexity of the functionality you're trying to provide, but that’s what your
computer science degree is for!

3

4

m Introduction

Many of the guidelines described in this book are motivated by the
desire to strike the right balance between power and simplicity. In particu-
lar, Chapter 2 talks extensively about some basic techniques used by the
most successful framework designers to design the right level of simplic-

ity and power.

1.1.2 Well-Designed Frameworks Are Expensive to Design

Good framework design does not happen magically. It is hard work that
consumes lots of time and resources. If you are not willing to invest real
money in the design, you should not expect to create a well-designed
framework.

Framework design should be an explicit and distinct part of the devel-
opment process;* it must be explicit because it needs to be appropriately
planned, staffed, and executed, and it must be distinct because it cannot
just be a side effect of the implementation process. It is too often the case
that the framework is whatever types and members happen to remain
public after the implementation process ends.

The best framework designs are done either by people whose explicit
responsibility is framework design, or by people who can put the frame-
work designer’s hat on at the right time in the development process. Mix-
ing the responsibilities is a mistake and leads to designs that expose
implementation details, which should not be visible to the end user of the
framework. *

3. Do not misunderstand this as an endorsement of heavy up-front design processes. In fact,
heavy APl design processes lead to waste, because APls often need to be tweaked after
they are implemented. However, the APl design process has to be separate from the imple-
mentation process and has to be incorporated in every part of the product cycle: the plan-
ning phase (what are the APls our customers need?), the design process (what are the
functionality trade-offs we are willing to make to get the right framework APIs?), the devel-
opment process (have we allocated time to try to use the framework to see how the end
result feels?), the beta process (have we allocated time for the costly APQ redesign?), and
maintenance (are we decreasing the design quality as we evolve the tramework?).

4. Prototyping is one of the most important parts of the framework design process, but proto-
typing is very different from implementation.

1.4 Qualities of a Well-Designed Framework g

1.1.3 Well-Designed Frameworks Are Full of Trade-Offs
There is no such thing as the perfect design. Design is all about making
trade-offs, and to make the right decisions, you need to understand the
options, their benefits, and their drawbacks. If you find yourself thinking
you have a design without trade-offs, you are probably missing something
big instead of finding the silver bullet.

The practices described in this book are presented as guidelines, rather
than rules, precisely because framework design requires managing trade-
offs. Some of the guidelines discuss the trade-offs involved and even pro-

vide alternatives that need to be considered in specific situations.

1.1.4 Well-Designed Frameworks Borrow from the Past
Most successful frameworks borrow from and build on top of existing

to introduce com-

proven designs. It is possible—and often desirable
pletely novel solutions into framework design, but it should be done with
the utmost caution. As the number of new concepts increases, the proba-
bility that the overall design will be right goes down.

®s CHRIS SELLS Please don't innovate in library design. Make the API to

your library as boring as possible. You want the functionality to be interest-
ing, not the APL

The guidelines contained in this book are based on the experiences we
gained while designing the .NET Framework; they encourage borrowing
from things that worked and withstood the test of time, and warn about
ones that did not. We encourage you to use these good practices as a start-
ing point, and to improve on them. Chapter 9 talks extensively about com-
mon design approaches that worked.

1.1.5 Well-Designed Frameworks Are Designed to Evolve

Thinking about how to evolve your framework in the future has some
trade-offs. On the one hand, a framework designer can certainly take more
time and painstaking effort in the design process, and occasionally addi-
tional complexity can be introduced “just in case.” But, on the other hand,

5

6

m Introduction

careful consideration can also save you from shipping something that will
degrade over time, or even worse, something that will not be able to pre-
serve backward compatibility® As a general rule, it is better to move a
complete feature to the next release than to do it halfway in the current
release.

Whenever you make a design trade-off, you should determine how the
decision will affect your ability to evolve the framework in the future. The
guidelines presented in this book take this important concern into
account.

1.1.6 Well-Designed Frameworks Are Integrated

Modern frameworks need to be designed to integrate well with a large
ecosystem of different development tools, programming languages, appli-
cation models, and so on. Distributed computing means that the era of
frameworks designed for specific application models is over. This is also
true of frameworks designed without thinking about proper tool support
or integration with programming languages used by the developer
community.

1.1.7 Well-Designed Frameworks Are Consistent

Consistency is the key characteristic of a well-designed framework. It is
one of the most important factors affecting productivity. A consistent
framework allows for transfer of knowledge between the parts of the
framework that a developer knows to parts that the developer is trying to
learn. Consistency also helps developers to quickly recognize which parts
of the design are truly unique to the particular feature area and so require
special attention, and which are just the same old common design patterns
and idioms.

Consistency is probably the main theme of this book. Almost every sin-
gle guideline is partially motivated by consistency, but Chapters 3 to 5 are
probably the most important ones, because they describe the core consis-
tency guidelines.

5. Backward compatibility is not discussed in detail in this book, but it should be considered
one of the basics of framework design, together with reliability, security, and performance.

1.4 Qualities of a Well-Designed Framework g 7

We offer these guidelines to help you make your framework successful.

The next chapter presents guidelines for general library design.

®. PHIL HAACK I would add one more point to this list, which is that
“Well-Designed Frameworks Are Testable.” And by “testable” I don't just
mean that the framework itself can be unit tested, though that is important
as well.

One hard lesson we learned from our customers as we released early
previews of the ASPNET MVC framework is that unit test coverage of a
framework is not sufficient to calling it “testable.”

While we could easily test our framework, we needed to go further and
strive to make sure that applications built using our fmmewﬂrk are them-
selves testable.

This usually falls out naturally by following solid design principles such
as Separation of Concerns, Orthogonality, Composition, and DRY (Don't
Repeat Yourself). Most importantly, we put ourselves in our customers’
shoes and built apps using our framework in a test-driven manner. This
app building effort improved the design of the Framework immensely.

www.EBooksWorld.ir

2=

Framework Design
Fundamentals

A SUCCESSFUL GENERAL-PURPOSE framework must be designed for
a broad range of developers with different requirements, skills, and
backgrounds. One of the biggest challenges facing framework designers is
to offer both power and simplicity to this diverse group of customers.

Another important goal of a managed framework designer must be to
offer a unified programming model regardless of the kind of application' a
developer writes or the programming language the developer uses.

By using widely accepted general software design principles and fol-
lowing the guidelines described in this chapter, you can create a frame-
work that offers consistent functionality that is appropriate for a broad
range of developers who are building different kinds of applications using
a variety of programming languages.

v Do design frameworks that are both powerful and easy to use.

Awell-designed framework makes implementing simple scenarios easy.

At the same time, it does not prohibit implementing more advanced sce-

narios, though these might be more difficult. As Alan Kay said, “Simple

things should be simple and complex things should be possible.”

1. Forexample, a framework component should have the same programming model whether
it is used in a console, Windows Forms, or ASP.NET application, if at all possible.

10 m Framework Design Fundamentals

This guideline is also related to the 80/20 rule, which says that in any
situation, 20 percent will be important, and 80 percent will be trivial.
When designing a framework, concentrate on the important 20 percent
of scenarios and APls. In other words, invest in the design of the most

commonly used parts of the framework.

v/ DO understand and explicitly design for a broad range of developers
with different programming styles, requirements, and skill levels.

®s PAULVICK There is no magic bullet when designing frameworks for
Visual Basic developers. Our users run the gamut from people who are
picking up a programming tool for the first time to industry veterans build-
ing large-scale commercial applications. The key to designing a framework
that appeals to Visual Basic developers is to focus on allowing them to get
the job done with the minimum amount of fuss and bother. Designing a
framework that uses the minimum number of concepts is a good idea, not
because VB developers can’t handle concepts, but because having to stop
and think about concepts extraneous to the task at hand interrupts work-
flow. The goal of a VB developer usually is not to learn some interesting or
exciting new concept or to be impressed with the intellectual purity and
simplicity of your design but to get the job done and move on.

"s KRZYSZTOF CWALINA Itis easy to design for users who are like you, and
very difficult to design for somebody unlike you. There are too many APls that
are designed by domain experts and, frankly, they are only good for domain
experts. The problem is that most developers are not, will never be, and do not
need to be experts in all technologies used in modern applications.

®s BRAD ABRAMS Although the famous Hewlett-Packard motto “Build
for the engineer at the next bench” is useful for driving quality and complete-
ness into software projects, it is misleading for API design. For example, the
developers on the Microsoft Word team have a clear understanding that they
are not the target customers for Word. My mom is much more the target cus-
tomer. Therefore the Word team puts in many more features that my mom
might find helpful rather than the features the development team finds help-
ful. Although that is obvious in the case of applications such as Word, we
often tend to miss the principle when designing APlIs. We tend to design APIs
only for ourselves instead of thinking clearly about the customer scenarios.

2.1 Progressive Frameworks g

v/ DO understand and design for the broad variety of programming
languages.
There are many programming language implementations supporting
the Common Language Runtime (CLR) and the .NET Framework.
Some of these languages might be very different from the language you
are using to implement your APlIs. Often special care needs to be taken

to ensure that your APIs can work well with a variety of languages.

For example, developers using dynamically typed languages (such as
Python, Ruby, and others) might have problems using APIs that require
them to create a strongly typed type or apply an attribute to a type.
Such APIs usually have Generic* parameters or System. Type parameters
and require the user to pass a custom type as the argument.

Other special considerations for various programming languages are
described throughout the book.

2.1 Progressive Frameworks

Designing a single framework for a broad range of developers, scenarios,
and languages is a difficult and costly enterprise. Historically, framework
vendors offered several products targeted at specific developer groups for
specific scenarios. For example, Microsoft was providing Visual Basic
libraries optimized for simplicity and a relatively narrow set of scenarios,
and Win32 libraries optimized for power and flexibility, even if it meant
sacrificing ease of use. Other frameworks, such as MFC and ATL, were
also targeted at specific developer groups and scenarios.

Although this multiframework approach has proven to be successful in
providing APIs that were powerful and easy for specific developer groups,
it has significant drawbacks. The main drawback® is that the multitude of
frameworks makes it difficult for developers using one of the frameworks
to transfer their knowledge to the next skill level or scenario (which often
requires a different framework). For example, when there is a need to

2. Parameters of Generic Types or Generic Members.
Lo}

3. Other drawbacks include slower time to market for frameworks that are wrappers on top
of other frameworks, duplication of effort, and lack of common tools.

11

12 m Framework Design Fundamentals

[Skills Required]

-
-

Less Advanced More Advanced [Scenarios]

FIGURE 2-1: Learning curve of a multiframework platform

implement a different application that requires more powerful functional-
ity, developers hit a very steep learning curve, because they have to learn a
completely different way of programming, as shown in Figure 2-1.

®s ANDERS HEJLSBERG In the good old days of early Windows, you had
the Windows APL To write apps you fired up your C compiler, #included
windows.h, created a winproc, and handled your windows messages—
basically the old Petzold style of Windows programming. Although this
worked, it was neither particularly productive nor particularly easy.

Over time, various programming models on top of the Windows API
have emerged. VB embraced Rapid Application Development (RAD). With
VB you could instantiate a form, drag components onto the form, and write
event handlers; through delegation, your code executes.

In the world of C++, we had MFC and ATL taking a different view. The
key concept here is subclassing. Developers would subclass from an exist-
ing monolithic, object-oriented framework. Although this gives you more
power and expressiveness, it doesn’t really match the ease or productivity
of VB's composition model.

With ASP and the Web, we've seen the emergence of the ASP model,
where you write stateless code that's embedded in HTML pages.

If you look at this picture, one of the problems is that your choice of pro-
gramming model also necessarily becomes your choice of programming
language. This is an unfortunate situation. If you're a skilled MFC devel-
oper and you need to write some code in an ASP page, your skills don’t
translate. Likewise, if you know a lot about VB, there’s not much that trans-
fers to MFC.

2.1 Progressive Frameworks g

There is also not a consistent availability of APIs. Each of these models
has dreamed up its own solutions to a number of problems that are actu-
ally core and common to all of the models; for example, how do I deal with
file I/O, how do I do string formatting, how do I do security, threading,
and so on?

What the NET Framework does is unify all of these models. It gives you
a consistent AP that is available everywhere regardless of what language
you use or what programming model you are targeting.

®s PAULVICK It's also worth noting that this unification comes at a cost.
There is an unresolvable tension between writing frameworks that expose a
great amount of power and allow a developer a great deal of control over
behavior and writing frameworks that expose a more limited functionality in

an extremely conceptually simple way. In most cases, there is no silver bullet,
and trade-offs inevitably have to be made between power on the one hand
and simplicity on the other. An enormous amount of effort went into the NET
Framework to ensure that it achieved the best possible balance between these
two, but it is something that I think we continue to work on to this day.

A much better approach is to provide a progressive framework, which is a
single framework targeted at a broad range of developers that allows for
transfer of knowledge from less advanced to more advanced scenarios.

The NET Framework is a progressive framework and provides such a

gradual learning curve (see Figure 2-2).

A

"-g { MNET FramewnrkJ

S

=

i}

C

i)

=

o,

"
Less Advanced More Advanced [Scenarios]

FIGURE 2-2: Learning curve of a progressive framework platform

13

14

m Framework Design Fundamentals

Achieving a gradual learning curve with a low entry point is difficult
but not impossible. It is difficult because it requires a new approach to the
process of framework design, demands much greater design discipline,
and has a higher design cost.

Fortunately, the guidelines described in this chapter and throughout
the book are meant to guide you through the difficult design process and
ultimately help you design a great progressive framework.

You should also keep in mind that the developer community is vast. It
ranges from office workers recording macros to authors of low-level device
drivers. Any framework that attempts to serve all of these users could end
up being a mess that could not satisfy any of them. The goal of a progres-
sive framework is to scale through a broad range of developers, but not
every possible developer. This clearly means that those developers who
fall outside this target will need specialty APlLs.

2.2 Fundamental Principles of Framework Design

Providing a development platform that is both powerful and easy to use is
one of the main goals of the NET Framework, and it should be one of your
goals if you are extending it. The first version of the Framework indeed
presented a powerful set of APIs, but some developers found parts of the
Framework too difficult to use.

®s RICO MARIANI The flip side of this is that it must not only be easy to
use the APT; it must also be easy to use the AFI in the best possible way.
Think carefully about what patterns you offer and be sure that the most
natural way to use your system gives results that are correct, is secure
against attacks, and has great performance. Make it hard to do things the
wrong way. A few vears ago I wrote:

The Pit of Success
In stark contrast to a summit, a peak, or a journey across a desert to find vic-
tory through many trials and surprises, we want our customers to simply
fall into winning practices by using our platform and frameworks. To the
extent that we make it easy to get into trouble we fail.

True productivity comes from being able to easily create great
products—not from being able to easily create junk. Build a pit of success.

2.2 Fundamental Principles of Framework Design g

Customer feedback and usability studies have shown that a large seg-
ment of the VB developer group had problems learning VB.NET. Part of
the problem lay simply in the fact that the Framework is different from VB
6.0 libraries, but there were also several major usability problems related
to API design. Fixing these problems became a high priority for Microsoft
in the Framework 2.0 time frame.

The principles described in this section were developed to address the
problems just mentioned and are meant to help framework designers avoid
the most severe design mistakes reported in many usability studies and in
customer feedback. We believe that these principles are central to the design
of any general-purpose framework. Some of the principles and recommen-
dations overlap, which is probably a testimony to their validity.

2.2.1 The Principle of Scenario-Driven Design
Frameworks often contain a very large set of APIs. This is necessary to enable
advanced scenarios that require power and expressiveness. However, most
development revolves around a small set of common scenarios that use a
relatively small subset of the full framework. To optimize the overall pro-
ductivity of the developers using a framework, it is crucial to invest heavily
in the design of APIs that are used in the most common scenarios.
Therefore, framework design should be focused around a set of com-
mon scenarios to the point where the whole design process is scenario-
driven. We recommend that framework designers first write code that the
users of the framework will have to write in main scenarios, and then

design the object model to support these code samples.*

Framework Design Principle

Frameworks must be designed starting from a set of usage scenarios and
code samples implementing these scenarios.

4. This is similar to processes based on test-driven development (TDD) or on use cases. There
are some differences, though, TDD is more heavyweight because it has other objectives
beyond driving the design of APls. Use cases are describing scenarios on a higher level
than individual AP calls.

15

16

m Framework Design Fundamentals

"s KRZYSZTOF CWALINA I would like to add “There is simply no other

way to design a great framework” to the principle just spelled out. If I had

to choose only one design principle to be included in the book, this would
be it. If I could not write a book but only a short article on what's important
in API design, I would choose this principle.

Framework designers often make the mistake of starting with the
design of the object model (using various design methodologies) and then
writing code samples based on the resulting API. The problem is that most
design methodologies (including most commonly used object-oriented
design methodologies) are optimized for the maintainability of the result-
ing implementation, not for the usability of the resulting APls. They are
best suited for internal architecture designs—not for designs of the public
API layer of a large framework.

When designing a framework, you should start with producing a
scenario-driven APl specification (see Appendix C). This specification can
be either separate from the functional specification or part of a larger spec-
ification document. In the latter case, the API specification should precede
the functional one in location and time.

The specification should contain a scenario section listing the top five
to ten scenarios for a given technology area and should show code samples
that implement these scenarios. The code samples should be in at least two
programming languages. This is very important, because sometimes code
written using those languages differs significantly.

It is also important that these scenarios be written using different cod-
ing styles that are common among users of the particular language (using
language-specific features). The samples should be written using language-
specific casing. For example, VB.NET is case insensitive, so samples should
reflect that. C# code should follow the standard casing described in
Chapter 3.

v/ DO make sure that the API design specification is the central part of the
design of any feature that includes a publicly accessible APL

Appendix C contains an example of such a specification.

v’ DO define top usage scenarios for each major feature area.

2.2 Fundamental Principles of Framework Design g

The API specification should include a section that describes the main
scenarios and shows code samples implementing these scenarios. The
section should appear immediately after the executive overview sec-
tion. The average feature area (such as file I/O) should have five to ten

main scenarios,

v/ DO ensure that the scenarios correspond to an appropriate abstraction
level. They should roughly correspond to the end-user use cases.

For example, reading from a file is a good scenario. Opening a file, read-
ing a line of text from a file, or closing a file are not good scenarios; they
are too granular.

v/ DO design APIs by first writing code samples for the main scenarios
and then defining the object model to support the code samples.

For example, when designing an API to measure elapsed time, you

might write the following scenario code samples:

// scenario #1 ! measure time elapsed
Stopwatch watch = Stopwatch.StartNew()};
DoSomething();
Console.WriteLine(watch.Elapsed);

J/ scenario #2 @ reuse stopwatch

Dim watch As Stopwatch = Stopwatch.StartNew()
DoSomething();
Console.Writeline(watch.ElapsedMilliseconds)

watch.Reset()
watch.start()
DoSomething()
Console.WriteLine(watch.Elapsed)

These code samples lead to the following object model:

public class Stopwatch {
public static Stopwatch StartNew();

public veid Start();
public void Reset();

public TimeSpan Elapsed { get; }
public long ElapsedMilliseconds { get; }

+ e

17

18 m Framework Design Fundamentals

"s JOEDUFFY As software developers, we enjoy creating fun and power-
ful new capabilities, and sharing them with other developers. That's one of
the reasons API design is so enjoyable. But it’s also incredibly difficult to
step back and objectively assess whether some new capability that you're
particularly passionate about has utility in the real world. Using scenarios is
the best way [know of to identify the need for and ideal usage of new capa-

bilities. Developing scenarios is in fact incredibly hard, for good reason: It
requires a unique combination of technical skill and customer understand-
ing. When you're finished, you could make a series of decisions based only
on gut feel and intuition, and perhaps deliver some useful APls, but the risk
that you will make a decision you will later regret is far greater. When in
doubt, it's best to leave a feature out and decide to add it later when a com-
pelling need is better understood.

v/ DO write main scenario code samples in at least two different language
families (e.g., VB.INET and C++).

It is best to ensure that the languages chosen have significantly differ-
ent syntax, style, and capabilities.

®s PAULVICK If you are writing a framework to be used by multiple lan-
guages, it is helpful to actually know more than one programming language
(and knowing more than one C-style language doesn’t count). We've found
that sometimes an API works well only in one language, and that’s because

the person designing the API (and testing the API) only really knew that
one language. Learn several .NET languages and really work with them the
way they were designed to be used. Expecting the whole world to speak
your language does not work well on a multilanguage platform like the
NET Framework.

v/ CONSIDER writing main scenario code samples using a dynamically
typed language such as Python or Ruby.
It is easy to design APIs that don't work well with dynamically typed
languages. Such languages often have problems dealing with some
generic methods, APIs that rely on applying attributes or creating

strongly typed types.

2.2 Fundamental Principles of Framework Design g

X DO NOT rely solely on standard design methodologies when designing
the public API layer of a framework.

Standard design methodologies (including object-oriented design
methodologies) are optimized for the maintainability of the resulting
implementation, not for the usability of the resulting APIs. Scenario-
driven design together with prototyping, usability studies, and some

amount of iteration is a much better approach.

®. CHRIS ANDERSON Each developer has his or her own methodology,
and although there isn't anything fundamentally wrong with using other
modeling approaches, the problem generally is the output. Starting by writ-

ing the code you want a developer to write is almost always the best
approach—think of it as a form of test-driven development. You write the
perfect code and then work backwards to figure out the object model that
you would want.

2.2.1.1 Usability Studies

Usability studies of a framework prototype conducted with a wide range
of developers are the key to scenario-driven design. The APIs for the top
scenarios might seem simple to their authors, but they might not actually
be simple to other developers.

Understanding the way developers approach each of the main scenar-
ios provides useful insight into the design of the framework and how well
it meets the needs of all target developers. Because of this fact, conducting
usability studies, either formally or informally, is a very important part of
the framework design process.

If you discover during usability studies that the majority of developers
cannot implement one of the scenarios, or if the approach they take is sig-
nificantly different from what the designer expected, the APl should be

redesigned.

19

20 m Framework Design Fundamentals

"s KRZYSZTOF CWALINA We did not test the usability of the types in the
System. IO namespace before shipping version 1.0 of the Framework. Soon
after shipping, we received negative customer feedback about System.IO0
usability. We were quite surprised, and we decided to conduct usability
studies with eight average VB developers. Eight out of eight failed to read
text from a file in the 30 minutes we allocated for the task. We believe this
was due in part to problems with the documentation search engine and
insufficient sample coverage; however, it is clear that the APl itself had sev-
eral usability problems. If we had conducted the studies before shipping the
product, we could have eliminated a significant source of customer dissatis-
faction and avoided the cost of trying to fix the API of a major feature area
without introducing breaking changes.

®s BRAD ABRAMS There is no more powerful experience to give an API
designer a visceral understanding of the usability of his or her API than sit-
ting behind a one-way mirror watching developer after developer get frus-
trated with an API he or she designed and ultimately fail to complete the
task. I personally went through a full range of emotions while watching the
usability studies for System. I0 that we did right after shipping version 1.0.
As developer after developer failed to complete the simple task, my emo-
tions moved from arrogance to disbelief, then to frustration, and finally to
stringent resolve to fix the problem in the APL

®s CHRIS SELLS Usability studies can be formal, if you've got that kind
of time and money, but you'll get 80 percent of the feedback you need by
just running your proposed API by a few developers close to the target
audience for your library. Don’t let the term “usability study” scare you into
doing nothing—think of it as a “hey, look at this” study instead.

The APT usability studies should ideally be performed using the actual
development environment, code editors, and the documentation most
widely used by the targeted developer group. However, it is best to run
usability studies early rather than late in the product cycle, so don’t post-
pone organizing a study just because the whole product is not ready yet.

2.2 Fundamental Principles of Framework Design g

Also, formal usability studies are often impractical for small develop-
ment teams and frameworks that target a relatively small set of customers.
In such cases, an informal study can be conducted. Giving a prototype
library to somebody not familiar with the design, asking them to spend
30 minutes writing a simple program, and observing how they deal with

the design is a great way to find the most troublesome APl design issues.
v Do organize usability studies to test APIs in main scenarios.

The studies should be organized early in the development cycle, because
the most severe usability problems often require substantial design
changes. Most developers should be able to write code for the main sce-
narios without major problems; if they cannot, you need to redesign the
APL Although redesign is a costly practice, we found that it actually
saves resources in the long run because the cost of fixing an unusable

API without introducing changes that break existing code is enormous.

The next section describes the importance of designing APIs so that the
initial encounter is not discouraging. This is called the principle of low

barrier to entry.

2.2.2 The Principle of Low Barrier to Entry

Today, many developers expect to learn the basics of new frameworks very
quickly. They want to do it by experimenting with parts of the framework
on an ad hoc basis, and only take the time to fully understand the whole
architecture if they find a particular feature interesting or if they need to
move beyond the simple scenarios. The initial encounter with a badly
designed API can leave a lasting impression of complexity and discourage
some from using the framework. This is why it is very important for frame-
works to provide a very low barrier for developers who just want to exper-
iment with the framework.

Framework Design Principle

Frameworks must offer a low barrier to entry for nonexpert users through
ease of experimentation.

21

22 m Framework Design Fundamentals

Many developers want to experiment with an API to discover what it
does and then adjust their code slowly to get their program to do what
they really want. The huge demand for the Edit & Continue feature is a
manifestation of this preference.

®s PAULVICK Most developers, regardless of the language that they work
in, learn by doing. Documentation can help give the initial idea of what's
supposed to happen, but we all know that you never really learn how some-
thing works until you get down into it and start fiddling around, trying to
do something useful. Visual Basic, in particular, encourages this kind of

experimental approach to programming. Although we never eschew fore-
thought and advance planning, we try to make the process of learning and
programming a continuous flow. Writing APIs that are self-evident and do
not require a complex knowledge of the interaction of multiple objects or
APls encourages this flow. (In fact, this seems to apply across most lan-
guages, not just Visual Basic.)

Some APIs lend themselves to experimentation and some do not. To be
easy to experiment with, an APl must do the following:

« Allow easy identification of the right set of types and members for
common programming tasks. A namespace intended to hold com-
mon scenario APIs that contains 500 types, out of which only a
handful are actually important in common scenarios, is not easy to
experiment with. The same applies to mainline scenario types with

many members that are intended only for very advanced scenarios.

®s CHRIS ANDERSON In the early days of the Windows Presentation
Foundation (WPF) project, we ran into this exact issue. We had a common
base type named Visual from which almost all of our elements were derived.
The problem was that it introduced members that directly conflicted with
the object model of the more derived elements, specifically around children.

Visual had a single hierarchy of child visuals for rendering, but our ele-
ments wanted to introduce domain-specific children (like a TabControl
only accepting TabPages). Our solution was to create a VisualOperations
class that had static members that worked on a Visual instead of complicat-
ing the object model of every element.

2.2 Fundamental Principles of Framework Design m 23

» Allow a developer to use it immediately, whether or not it does what
the developer ultimately wants it to do or not. A framework that
requires an extensive initialization or an instantiating of several types
and then hooking them together is not easy to experiment with.
Similarly, APIs with no convenience overloads (overloaded members
with short parameter lists) or bad defaults for properties pose a high
barrier for developers who just want to experiment with the APIs.

®s CHRIS ANDERSON Think of the object model as a map—you have to
put clear signs about how to get from one place to another. You want a prop-
erty to clearly point people to what it does, what values it takes, and what
will happen if you set it. Pointing to an abstract base type with no obvious
derivations is a bad, bad thing. An example of this being broken is how ani-

mations were exposed in WPF: The type for animations was Timeline, but
nothing in the namespace ended in the word “Timeline.” It turns out that
Animation derived from Timeline and there were lots of DoubleAnimation,
ColorAnimation, and so on, but there was no connection between the prop-
erty type and the valid items with which to fill the property.

+ Allow for easy finding and fixing of mistakes caused by incorrect
usage of an APL For example, APls should throw exceptions that

clearly describe what needs to be done to fix the problem.

®s CHRIS SELLS In my own programming, I dearly love error messages
that say what I did wrong and how to fix it. All too often, all [get is the for-

mer, when all I really care about is the latter.

The following guidelines will help you ensure that your framework is

well suited for developers who want to learn by experimenting.

v/ DO ensure that each main feature area namespace contains only types
that are used in the most common scenarios. Types used in advanced
scenarios should be placed in subnamespaces.

For example, the System.Net namespace provides networking mainline-
scenario APIs. The more advanced socket APIs are placed in the System.
Net.Sockets subnamespace.

24 m Framework Design Fundamentals

®s ANTHONY MOORE The converse of this is also true, which could be
stated as, “Don’t bury a commonly used type in a namespace with much
less commonly used types.” StringBuilder is an example of something
we later wished we had included in the System namespace. It lives in

System.Text but is much more commonly used than the other types
in there and is not closely related to them.

That being said, this is the only thing in the System namespace that suf-
fers from the converse of this rule. For the most part, we suffered from hav-
ing too many infrequently used types in there.

v/ DO provide simple overloads of constructors and methods. A simple
overload has a very small number of parameters, and all parameters
are primitives.

X DO NOT have members intended for advanced scenarios on types
intended for mainline scenarios.

“s BRAD ABRAMS One of the important principles in designing the NET
Framework was the notion of addition through subtraction. That is, by
removing features from (or never adding them to) the framework, we could
actually make developers more productive because there would be fewer
concepts to deal with. Leaving out multiple inheritance is a classic example
of addition through subtraction at the CLR level.

X DO NOT require users to explicitly instantiate more than one type in the
most basic scenarios.

®s KRZYSZTOF CWALINA Book publishers say that the number of copies
a book will sell is inversely proportional to the number of equations in the
book. The framework designer version of this law is this: The number of

customers who will use your framework is inversely proportional to the
number of explicit constructor invocations required to implement the top
ten simple scenarios.

2.2 Fundamental Principles of Framework Design m 25

X DO NOT require that users perform any extensive initialization before
they can start programming basic scenarios.

Mainline-scenario APIs should be designed to require minimal initial-
ization. Ideally, a default constructor or a constructor with one simple
parameter should be sufficient to start working with a type designed

for the basic scenarios.

var zipCodes = new Dictionary<string, int>();
zipCodes . Add("Redmond", 98852);
zipCodes.Add("Sammamish",980874);

If some initialization is necessary, the exception that results from not
performing the initialization should clearly explain what needs to

be done.

B, STEVEN CLARKE Since the first edition of this book was published,
we have done significant usability studies in this area. Time and time again
we observe that types that require extensive initialization significantly
raise the barrier to entry. The consequences of this are that some develop-

ers will decide not to use those types and will look for something else that
might do the job instead, some developers will end up using the type incor-
rectly, and only a few developers will eventually figure out how to use the
type correctly.

ADO. NET is an example of a feature area that our customers found diffi-
cult to use because of the extensive initialization it requires. Even in the
simplest scenarios, users are expected to understand complex interac-
tions and dependencies between several types. To use this feature, even
in simple scenarios, users must instantiate and hook up several objects
(instances of DataSet, DataAdapter, SqlConnection, and SqlCommand).
Note that many of these problems were addressed in the NET Frame-
work 2.0 through the addition of helper classes, which greatly simpli-

fied basic scenarios.

v/ DO provide good defaults for all properties and parameters (using con-
venience overloads), if possible.

26 m Framework Design Fundamentals

System.Messaging.MessageQueue is a good illustration of this concept.
The component can send messages after passing just a path string to
the constructor and calling the Send method. The message priority,
encryption algorithms, and other message properties can be custom-

ized by adding code to the simple scenario.

var ordersQueus = new MessageQueue(path);
ordersQueue.Send(order); // uses default priority, encryption, etc.

These recommendations cannot be applied blindly. Framework design-
ers should avoid providing defaults if the default can lead the user
astray. For example, a default should never result in a security hole or
horribly performing code.

v/ DO communicate incorrect usage of APls using exceptions.

The exceptions should clearly describe their cause and the way the
developer should modify the code to get rid of the problem. For exam-
ple, the Eventlog component requires the Source property to be set
before events can be written. If the Source is not set before WriteEntry
is called, an exception is thrown that states, “Source property was not
set before writing to the event log.”

®s STEVEN CLARKE We've observed many developers in our usability
studies who consider exceptions like these to be the best kind of documen-

tation an APl can provide. The guidance provided is always in the context
of what the developer is trying to achieve, and it really supports the learn-
ing-by-doing approach favored by many developers.

The next section describes the importance of making the object model

as self-documenting as possible.

2.2.3 The Principle of Self-Documenting Object Models

Many frameworks consist of hundreds, if not thousands, of types and sig-
nificantly more members and parameters. Developers using such frame-
works require a great deal of guidance and frequent reminders of the
purpose and proper usage of the APls. Reference documentation by itself

cannot meet the demand. If it is necessary to refer to the documentation to

2.2 Fundamental Principles of Framework Design g

answer the simplest questions, doing so is likely to be time-consuming
and break the developer’s workflow. Moreover, as noted earlier, many
developers prefer to code by trial and error, and they resort to reading
documentation only when intuition fails them.

Therefore, it is very important to design APIs that do not require that
developers read documentation every time they want to perform a simple
task. We found that following a simple set of guidelines can help in pro-
ducing intuitive APIs that are relatively self-documenting,

Framework Design Principle

In simple scenarios, frameworks must be usable without the need for
documentation.

®s CHRIS SELLS Never underestimate the power of Intellisense when
anticipating how a developer will learn to use your framework. If your AP1
is intuitive, Intellisense is 80 percent of all a new developer will need to be
happy and successful with your library. Optimize for Intellisense.

®. KRZYSZTOF CWALINA Reference documentation is still a very impor-

tant part of the framework. It is impossible to design a completely self-
documenting APIL Different people, depending on their skills and past
experiences, will find different areas of your framework to be self-explanatory.
Also, the documentation remains critically important for many users who
do take the time to understand the overall design of the framework up front.
For those users, informative, concise, and complete documentation is as cru-
cial as self-explanatory object models.

v/ DO ensure that APIs are intuitive and can be successfully used in basic
scenarios without referring to the reference documentation.

v Do provide great documentation with all APIs.

Not all APIs can be self-explanatory, and there are developers who
want to thoroughly understand APIs before they start using them.

27

28

m Framework Design Fundamentals

To make a framework self-documenting, care must be taken when
choosing names, types, designing exceptions, and so on. The following
sections describe some of the most important considerations related to the

design of self-documenting APIs.

2.2.3.1 Naming
The simplest but also the most often missed opportunity for making frame-
works self-documenting is to reserve simple and intuitive names for types
that developers are expected to use (instantiate) in the most common sce-
narios. Framework designers often “burn” the best names for less com-
monly used types, with which most users do not have to be concerned.
For example, naming the abstract base class File and then providing a
concrete type NtfsFile works well if the expectation is that all users will
understand the inheritance hierarchy before they start using the APIs. If
the users do not understand the hierarchy, the first thing they will try to
use, most often unsuccessfully, is the File type. Although this naming
works well in the object-oriented design sense (after all, NtfsFile is a kind
of File), it fails the usability test, because File is the name most develop-

ers would intuitively think to program against.

®s KRZYSZTOF CWALINA The designers of the NET Framework spent a

lot of time discussing naming alternatives for main types. The majority of

the identifiers in the Framework have well-chosen names. The cases in
which the name choices are not so fortunate resulted from focusing on con-
cepts and abstractions instead of the top scenarios.

Another recommendation is to use descriptive identifier names that
clearly state what each method does and what each type and parameter rep-
resents. Framework designers should not be afraid to be quite verbose when
choosing identifier names. For example, EventLog.DeleteEventSource(
string source, string machineName) might be seen as rather verbose, but
we think it has a positive net usability value.

Descriptive method names are only possible for methods that have
simple and clear semantics. This is another reason avoiding complex

semantics is a great general design principle to follow.

2.2 Fundamental Principles of Framework Design m 29

The overall point is that the names of identifiers need to be chosen
extremely carefully. Name choices are one of the most important design
choices a framework designer has to make. It is extremely difficult and

costly to make changes to identifier names after the API has shipped.

v/ DO make the discussion about identifier naming choices a significant

part of specification reviews.

What are the types most scenarios start with? What are the names most
people will think of first when trying to implement this scenario? Are
the names of the common types what users will think of first? For
example, because “File” is the name most people think of when dealing
with file I/O scenarios, the main type for accessing files should be
named File.

Also, you should discuss the most commonly used methods of the most
commonly used types and all of their parameters. Can anybody famil-
iar with your technology, but not this specitic design, recognize and call

those methods quickly, correctly, and easily?

X DO NOT be afraid to use verbose identifier names.

Most identifier names should clearly state what each method does and
what each type and parameter represents.

®s BRENT RECTOR Developers read identifier names hundreds, if not
thousands, of times more than they type them. Modern editors even make
the typing chore minimal. Longer names allow developers to find the right
type or member via Intellisense more quickly. Additionally, code using

types with well-chosen identifier names is more understandable and main-
tainable over the long term.

A note to C-based language developers especially: Free yourselves
from the shackles of reduced productivity induced by cryptic identifier
naming habits.

v/ CONSIDER involving user education experts early in the design pro-
cess. They can be a great resource for spotting designs with bad name

choices and designs that would be difficult to explain to the customer.

30

m Framework Design Fundamentals

v/ CONSIDER reserving the best type names for the most commonly used
types.
If you believe you will add more high-level APls in a future version,
don’t be afraid to reserve the best name in the first version of your

framework for future APIs.

®s ANTHONY MOORE There are other reasons to avoid names that are
too general even if you never anticipate using the name later. More specific
names help to make the API more understandable and readable, If someone

sees a general name in code, that person is likely to assume that it has a very
general application, so it is misleading to use a general name for something
more specialized. A more descriptive name can also help identify what sce-
nario or technology a type is associated with.

2.2.3.2 Exceptions

Exceptions play a crucial role in designing self-documenting frameworks.
They should communicate the correct usage to the developer through the
exception message. For example, the following sample code should throw
an exception with a message “Source property was not set before writing

to the event log.”

ff c#

var log = new EventLog();

f/ The log source is not set yet.
log.WriteEntry({"Hello World"};

v/ DO use exception messages to communicate framework usage mistakes
to the developer. For example, if a user forgets to set the Source property
on an EventLog component, any calls to a method that requires the source
to be set should state this clearly in the exception message. See more
about the design of exceptions and exception messages in Chapter 7.

2.2.3.3 Strong Typing
Strong typing is probably the single most important factor in determining
how intuitive APIs are. Clearly, calling Customer.Name is easier than calling

2.2 Fundamental Principles of Framework Design g

Customer.Properties["Name"]. Also, a Name property returning the name
as a String is more usable than if the property returned an Object.

There are cases where property bags, late-bound calls, and other loosely
tvped APIs are necessary, but they should be an exception to the rule rather
than common practice. Moreover, designers should consider providing
strongly typed helpers for the most common operations that the user
would perform on the nonstrongly typed API layer. For example, the
Customer type may have a property bag but in addition provide strongly
typed APls for most common properties like Name, Address, and so on.

v Do provide strongly typed APIs if at all possible.
Do not rely exclusively on weakly typed APIs such as property bags. In
cases in which a property bag is required, provide strongly typed prop-
erties for the most common properties in the bag.

®s VANCE MORRISON The strong typing (and thus much better Intelli-

sense) is a crucial reason why .NET frameworks are easier to “learn by pro-
gramming” than your typical COM APL From time to time, I still need to

use functionality exposed through COM, and as long as it stays strongly
typed, I do fine, but all too often APIs return or take a generic object or
string parameter or passed DWORD when an enumeration is needed, and it
takes me ten times longer to discover what exactly needs to be passed.

2.2.3.4 Consistency

Consistency with existing APIs that are already familiar to the user is yet
another powerful technique for designing self-documenting frameworks.
This includes consistency with other APls in the INET Framework as well
as some legacy APIs. Having said that, vou should not use legacy APIs or
badly designed Framework APIs as an excuse to avoid following any guide-
lines described in this book, but you should also not change good estab-
lished patterns and designs arbitrarily without having a reason to do so.

v/ DO ensure consistency with the .NET Framework and other frame-
works vour customers are likely to use.

Consistency is great for general usability. If a user is familiar with some

part of a framework that your API is similar to, he or she will see your

31

32

m Framework Design Fundamentals

design as natural and intuitive. Your API should differ from other NET
Framework APlIs only in places where there is something unique about
your particular APL

2.2.3.5 Limiting Abstractions
Common scenario APIs should not use many abstractions but should
instead correspond to physical or well-known logical parts of the system.

As noted before, standard object-oriented design methodologies are
aimed at producing designs that are optimized for maintainability of the
code base. This makes sense, because the maintenance cost is the largest
chunk of the overall expense of developing a software product. One way
of improving maintainability is through the use of abstractions. Because of
that, modern design methodologies tend to produce a lot of them.

The problem is that frameworks with many abstractions force users to
become experts in the framework architecture before starting to imple-
ment even the simplest scenarios. However, most developers don’t have
the desire or business justification to become experts in all of the APlIs that
such frameworks provide. For simple scenarios, developers demand that
APIs be simple enough to be used without their having to understand how
the entire feature areas fit together. This is something that the standard
design methodologies are not optimized for and never claimed to be opti-
mized for.

Of course, abstractions have their place in framework design. For
example, abstractions can be extremely useful in improving testability and
general extensibility of frameworks. Such extensibility is often possible
because of well-designed abstractions. Chapter 6 talks about designing
extensible APIs and should help you strike the right balance between too
much and too little extensibility.

X AVOID many abstractions in mainline scenario APIs.

®s KRZYSZTOF CWALINA Abstractions are almost always necessary, but

too many abstractions indicate overengineered systems. Framework design-

ers should be careful to design for customers, not for their own intellectual
pleasure.

2.2 Fundamental Principles of Framework Design m 33

®s JEFF PROSISE A design with too many abstractions can impact per-
formance, too. I once worked with a customer who reengineered its product
to incorporate a heavily OO design. They modeled everything as a class and
ended up with some ridiculously deeply nested object hierarchies. Part of
the intent of the redesign was to improve performance, but the “improved”
software ran four times slower than the original!

®s VANCE MORRISON Anyone who has had the “pleasure” of debug-
ging through the C++ STL libraries knows that abstraction is a double-
edged sword. Too much abstraction and code gets very difficult to
understand, because you have to remember what all the abstract names
really mean in your scenario. Going overboard with generics or inheritance
are common symptoms that you may have overgeneralized.

®s CHRIS SELLS It's often said that any problem in computer science can
be solved by adding a layer of abstraction. Unfortunately, problems of
developer education are often caused by them.

2.2.4 The Principle of Layered Architecture

Not all developers are required to solve the same kinds of problems. Dit-
ferent developers often require and expect different levels of abstraction
and different amounts of control from the frameworks they use. Some
developers who typically use C++ or C# value APIs that are expressive
and powerful. We refer to APIs of this type as low-level APIs because they
often offer a low level of abstraction. On the other hand, some developers
who typically use C# or VB.NET value APIs that optimize for productivity
and simplicity. We refer to these APIs as high-level APIs because they offer
a higher level of abstraction. By using a layered design it is possible to

build a single framework that meets these diverse needs.

34

m Framework Design Fundamentals

Framework Design Principle

Layered design makes it possible to provide both power and ease of use in
a single framework.

®s PAULVICK Part of the reason for moving Visual Basic to the .NET plat-
form was the fact that many VB developers ran into problems when they
needed to use low-level APIs to access specific functionality that was not
available in the high-level APIs that we provided. The fact that VB develop-

ers might spend much of their initial time rapidly developing their applica-

tions using high-level APIs doesn’t change the fact that sooner or later most
developers need to tweak or fine-tune their applications, and doing that
usually involves working with lower-level APIs to achieve those extra bits
of functionality. So the design for low-level APls should very much take VB
developers into consideration.

The general guideline for building a single framework that targets the
breadth of developers is to factor your APl set into low-level types that
expose all the richness and power and into high-level types that wrap the
lower layer with convenience APIs.

This is a very powerful simplification technique. In a single-layer API,
you are often forced to decide between having a more complex design and
not supporting some scenarios. Having a low-level power layer provides
the freedom to scope the high-level API to truly mainline scenarios.

Note that in some cases one of the layers might not be needed. For
example, some feature areas might expose only the low-level APls.

ASPNET (the system.Web namespace) is an example of such a layered
design. For the power and expressiveness crowd, ASPNET offers a low-
level HTTP layer that allows developers to code against the raw requests
coming to the Web server, with very little abstraction provided. However,
ASPNET also offers a rich set of Web Controls that allows developers to
code against high-level concepts with properties and methods without
worrying about the Web protocols. In this way, ASP.NET offers a single
framework that is consistently available but has layers that target different
scenarios and developer audiences.

2.2 Fundamental Principles of Framework Design m 35

There are two main namespace factoring approaches for the API
P g app
layers:

b EXPDSE‘ la}rers in separa te namespaces.

» Expose layers in the same namespace.

®s JEFF PROSISE In addition to providing a fine example of layered
architecture, ASPNET also serves as a model for modular architecture.
Many of the key services and features of ASP.NET are implemented in the
form of HTTP handlers and HTTP modules. You can extend (or modify)

ASP.NET's HTTP runtime by writing HTTP handlers and HTTP modules of
your own. Moreover, the same handler and module architecture can be used
to extend I1S 7.

2.2.4.1 Exposing Layers in Separate Namespaces
One way to factor a framework is to put the high-level and low-level types
in different but related namespaces. This has the advantage of hiding the
low-level types from the mainstream scenarios without putting them too far
out of reach when developers need to implement more complex scenarios.
ASPNET is factored this way. The low-level HttpRuntime APIs are in a
different namespace than the high-level page framework and controls,
which are in the System.Web.UI namespace. The page framework is built on
top of the low-level functionality (the Page class implements IHttpHandler)
and provides the programming model for 99 percent of scenarios.
The large majority of frameworks should follow this namespace-

factoring approach.

2.2.4.2 Exposing Layers in the Same Namespace

The other way to factor a framework is to put the high-level and low-level
types in the same namespace. This has the advantage of providing a more
automatic fall-back to the more complex functionality when it is needed.
The downside is that having the complex types in the namespace makes
some scenarios more difficult, even if the more complex types are not used.

36

m Framework Design Fundamentals

This factorization works best for simple features. For example, the
System.Net namespace includes both low-level types such as Dns as well as
the higher-level WebClient class. It should be noted that the even lower-

level socket classes are factored out to the System.Net.Sockets namespace.

®s STEVEN CLARKE Also take care to think about the runtime behavior
of a layered APL For example, make sure that if the developer is working at
one layer, he or she isn't expected to catch exceptions thrown from a differ-

ent laver. You want to make sure that, in writing, reading, and understand-
ing code, developers only ever need to really concern themselves with what

is going on in one layer and that they can safely consider other layers as a
black box.

v/ CONSIDER using a layered framework with high-level APIs optimized
for productivity, and using low-level APIs optimized for power and
expressiveness.

X AVOID mixing low-level and high-level APIs in a single namespace if

the low-level APls are very complex (i.e., they contain many types).

v/ DO ensure that layers of a single feature area are well integrated. Devel-
opers should be able to start programming using one of the layers and
then change their code to use the other layer without rewriting the
whole application.

SUMMARY

In designing a framework, it is very important to be aware that the audi-
ence is very diverse, in terms of both needs and skill levels. Following the
principles described in this chapter ensures that your framework is usable
for a diverse group of developers.

.3I

Naming Guidelines

FULI.E]‘WING A CONSISTENT set of naming conventions in the development
of a framework can be a major contribution to the framework’s usabil-
ity. It allows the framework to be used by many developers on widely sepa-
rated projects. Beyond consistency of form, names of framework elements
must be easily understood and must convey the function of each element.

The goal of this chapter is to provide a consistent set of naming conven-
tions that results in names that make immediate sense to developers.

Most of the naming guidelines are simply conventions that have no
technical rationale. However, following these naming guidelines will
ensure that the names are understandable and consistent.

Although adopting these naming conventions as general code devel-
opment guidelines would result in more consistent naming throughout
your code, you are required only to apply them to APIs that are publicly
exposed (public or protected types and members, and explicitly imple-
mented interfaces).

", KRZYSZTOF CWALINA The team that develops the NET Framework

Base Class Library spends an enormous amount of time on naming and
considers it to be a crucial part of framework development.

37

38

m Naming Guidelines

This chapter describes general naming guidelines, including how to
use capitalization, mechanics, and certain specific terms. It also provides
specific guidelines for naming namespaces, types, members, parameters,

assemblies, and resources.

3.1 Capitalization Conventions

Because the CLR supports many languages that might or might not be
case sensitive, case alone should not be used to differentiate names. How-
ever, the importance of case in enhancing the readability of names cannot
be overemphasized. The guidelines in this chapter lay out a simple method
for using case that, when applied consistently, make identifiers for types,
members, and parameters easy to read.

3.1.1 Capitalization Rules for Identifiers

To differentiate words in an identifier, capitalize the first letter of each
word in the identifier. Do not use underscores to differentiate words, or for
that matter, anywhere in identifiers. There are two appropriate ways to
capitalize identifiers, depending on the use of the identifier:

* PascalCasing

+ camelCasing

", BRAD ABRAMS In the initial design of the Framework, we had hun-
dreds of hours of debate about the naming styvle. To facilitate these debates,
we coined a number of terms. With Anders Hejlsberg, the original designer
of Turbo Pascal, and a key member of the design team, it is no wonder that
we chose the term PascalCasing for the casing style popularized by the

Pascal programming language. We were somewhat cute in using the term
camelCasing for the casing styvle that looks something like the hump on a
camel. We used the term SCREAMING_CAPS to indicate an all-uppercase

style. Luckily, this style (and name) did not survive in the final guideline,

The PascalCasing convention, used for all identifiers except parameter
names, capitalizes the first character of each word (including acronyms

over two letters in length), as shown in the following examples:

3.1 Capitalization Conventions g 39

PropertyDescriptor
HitmlTag

A special case is made for two-letter acronyms in which both letters are
capitalized, as shown in the following identifier:

I05traam

The camelCasing convention, used only for parameter names, capital-
izes the first character of each word except the first word, as shown in the
following examples. As the example also shows, two-letter acronyms that

begin a camel-cased identifier are both lowercase.

propertyDescriptor
loS5tream
htmlTag

The following are two basic capitalization guidelines for identifiers:

v/ DO use PascalCasing for namespace, type, and member names consist-
ing of multiple words.
For example, use TextColor rather than Textcolor or Text_color.
Single words, such as Button, simply have initial capitals. Compound
words that are always written as a single word, like endpoint, are
treated as single words and have initial capitals only. More information

on compound words is given in section 3.1.3.

v/ DO use camelCasing for parameter names.

Table 3-1 describes the capitalization rules for different types of

identifiers.

"s BRAD ABRAMS An early version of this table included a convention
for instance field names. We later adopted the guideline that you should

almost never use publicly exposed instance fields and should use properties
instead. Thus, the guideline for publicly exposed instance fields was no lon-
ger needed. For the record, the convention was camelCasing.

40 'm Naming Guidelines

Taeie 3-1: Capitalization Rules for Different Types of |dentifiers

Identifier Casing Example
Namespace Pascal namespace System.Security { ... }
Type Pascal public class StreamReader { ... }
Interface Pascal public interface IEnumerable { ... }
Method Pascal public class Object {
public virtual string ToString();
¥
Property Pascal public class String {
public int Length { get; }
¥
Event Pascal public class Process {
public event EventHandler Exited;
}
Field Pascal public class MessageQueue {
public static readonly TimeSpan
InfiniteTimeout;
¥
public struct UInt32 {
public const Min = @;
¥
Enum value Pascal public enum FileMode {
Append,
}
Parameter Camel public class Convert {

public static int ToInt32(string
value);

¥

3.1.2 Capitalizing Acronyms

In general, it is important to avoid using acronyms in identifier names
unless they are in common usage and are immediately understandable to
anyone who might use the framework. For example, HIML, XML, and 10

are all well understood, but less well-known acronyms should definitely

be avoided.

3.1 Capitalization Conventions g

"s KRZYSZTOF CWALINA Acronyms are distinct from abbreviations, which

should never be used in identifiers. An acronym is a word made from the
initial letters of a phrase, whereas an abbreviation simply shortens a word.

By definition, an acronym must be at least two characters. Acronyms of
three or more characters follow the guidelines of any other word. Only the
first letter is capitalized, unless it is the first word in a camel-cased param-
eter name, which is all lowercase.

As mentioned in the preceding section, two-character acronyms (e.g.,
I0) are treated differently, primarily to avoid confusion. Both characters
should be capitalized unless the two-character acronym is the first word in
a camel-cased parameter name, in which case both characters are lower-
case. The following examples illustrate all of these cases:

public void StartIO(Stream ioStream, bool closelOStream);
public void ProcessHtmlTag(string htmlTag)

v Do capitalize both characters of two-character acronyms, except the
tirst word of a camel-cased identitier.

System. IO
public void StartIO(Stream ioStream)

v Do capitalize only the first character of acronyms with three or more
characters, except the first word of a camel-cased identifier.

System.xml
public void ProcessHEmlTag(string htmlTag)

v/ DO NOT capitalize any of the characters of any acronyms, whatever
their length, at the beginning of a camel-cased identifier.

®s BRAD ABRAMS In my time working on the .NET Framework, [have
heard every possible excuse for violating these naming guidelines. Many
teams feel that they have some special reason to use case differently in their
identifiers than in the rest of the Framework. These excuses include consis-

tency with other platforms (MFC, HTML, etc.), avoiding geopolitical issues

41

42

m Naming Guidelines

(casing of some country names), honoring the dead (abbreviation names
that came up with some crypto algorithm), and the list goes on and on. For
the most part, our customers have seen the places in which we have diverged
from these guidelines (for even the best excuse) as warts in the Framework.
The only time I think it really makes sense to violate these guidelines is
when using a trademark as an identifier. However, I suggest not using
trademarks, because they tend to change faster than APIs do.

®s BRAD ABRAMS Here is an example of putting these naming guide-
lines to the test. We have the class shown here in the Framework today. It
successfully follows the guidelines for casing and uses Argb rather than
ARGB. But we have actually gotten bug reports along the lines of “How do
you convert a color from an ARGB value—all | see are methods to convert
‘from argument b."?”

public struct Color {
public static Color FromArgb(int alpha, Color baseColor);
public static Color FromArgb({int alpha, int red, int green, int blue);
public static Color FromArgb{int argh);
public static Color FromArgh{int red, int green, int blue);

}

In retrospect, should this have been a place where we violated the guidelines
and used FromARGB? [do not think so. It turns out that this is a case of overab-
breviation. RGB is a well-recognized acronym for red-green-blue values. An
ARGB value is a relatively uncommon abbreviation that includes the alpha
channel. It would have been clearer to name these AlphaRgb and would have
been more consistent in naming with the rest of the Framework,

public struct Color {
public static Color FromaAlphaRgb{int alpha, Color baseColor);
public static Color FromAlphaRgb(int alpha, int red, int green, int blue);
public static Color FromAlphaRgb(int arghb);
public static Color FromAlphaRgb{int red, int green, int blue);

3.1 Capitalization Conventions g

3.1.3 Capitalizing Compound Words and Common Terms
Most compound terms are treated as single words for purposes of

capitalization.

X DO NOT capitalize each word in so-called closed-form -:ompnund
words.

These are compound words written as a single word, such as endpoint.
For the purpose of casing guidelines, treat a closed-form compound
word as a single word. Use a current dictionary to determine if a com-

pound word is written in closed form.

Table 3-2 shows capitalization for some of the most commonly used
compound words and common terms.

Taele 3-2: Capitalization and Spelling for Common Compound Words and Common Terms

Pascal Camel Not
BitFlag bitFlag Bitflag
Callback callback CallBack
Canceled canceled Cancelled
DoNot doNot Don't
Email email EMail
Endpoint endpoint EndPoint
FileName fileName Filename
Gridline gridline GridLine
Hashtable hashtable HashTable
Id id ID
Indexes indexes Indices
Logoff logOff LogOut

Continnes

43

44 '"m Naming Guidelines

Taeie 3.2: Continued

Pascal Camel Not

LogOn logOn LogIn
Metadata metadata MetaData, metaData
Multipanel multipanel MultiPanel
Multiview multiview MultiView
Namespace namespace NameSpace
0k ok oK

Pi pi PI
Placeholder placeholder PlaceHolder
Signln signln SignOn
SignOut signOut Signoff
UserName userhame Username
WhiteSpace whiteSpace Whitespace
Writable writable Writeable

Two other terms that are in common usage are in a category by them-
selves, because they are common slang abbreviations. The two words Ok
and Id (and they should be cased as shown) are the exceptions to the guide-

line that no abbreviations should be used in names.

®s BRAD ABRAMS Table 3-2 presents specific examples found in the

develcpment of the NET Framework. You might find it useful to create

your own appendix to this table for compound words and other terms com-
monly used in your domain.

3.1 Capitalization Conventions g

"s BRAD ABRAMS One abbreviation commonly used in COM interface

names was Ex (for interfaces that were extended versions of previously

existing interfaces). This abbreviation should be avoided in reusable librar-
ies. Use instead a meaningful name that describes the new functionality. For
example, rather than IDispatchEx, consider IDynamicDispatch.

3.1.4 Case Sensitivity

Languages that can run on the CLR are not required to support case
sensitivity, although some do. Even if your language supports it, other
languages that might access your framework do not. Any APIs that are
externally accessible, therefore, cannot rely on case alone to distinguish
between two names in the same context.

%, PAULVICK When it came to the question of case sensitivity, there was
no question in the minds of the Visual Basic team that the CLR had to sup-
port case insensitivity as well as case sensitivity. Visual Basic has been case
insensitive for a very long time, and the shock of trying to move VB devel-
opers (including myself) into a case-sensitive world would have made any
of the other challenges we faced pale in comparison. Add to that the fact
that COM is case insensitive, and the matter seemed pretty clear. The CLR
would have to take case insensitivity into account.

®. JEFFREY RICHTER To be clear, the CLR is actually case sensitive. Some
programming languages, like Visual Basic, are case insensitive. When the
VB compiler is trying to resolve a method call to a type defined in a case-
sensitive language like C#, the compiler (not the CLR) figures out the actual
case of the method’s name and embeds it in metadata. The CLR knows
nothing about this. Now if you are using reflection to bind to a method, the
reflection APIs do offer the ability to do case-insensitive lookups. This is the
extent to which the CLR supports case insensitivity.

There is really only one guideline for case sensitivity, albeit an impor-
tant one,

45

46

m Naming Guidelines

X DO NOT assume that all programming languages are case sensitive.
They are not. Names cannot differ by case alone.

3.2 General Naming Conventions

This section describes general naming conventions that relate to word
choice, guidelines on using abbreviations and acronyms, and recommen-

dations on how to avoid using language-specific names.

3.2.1 Word Choice

It is important that names of framework identifiers make sense on first
reading. Identifier names should clearly state what each member does and
what each type and parameter represents. To this end, it is more important
that the name be clear than that it be short. Names should correspond to
scenarios, logical or physical parts of the system, and well-known con-
cepts rather than to technologies or architecture.

\/ DO choose easily readable identifier names.
For example, a property named HorizontalAlignment is more English-

readable than AlignmentHorizontal.

v/ DO favor readability over brevity. The property name Canscroll-
Horizontally is better than ScrollableX (an obscure reference to the
X-axis).

X DO NOT use underscores, hyphens, or any other non-alphanumeric
characters.

x DO NOT use Hungarian notation.

®s BRENT RECTOR It might be useful here to define what Hungarian
notation is. It is the convention of prefixing a variable name with some low-
ercase encoding of its data type. For example, the variable uiCount would

be an unsigned integer. Another common convention also adds a prefix
indicating the scope of the variable in addition to or in place of the type (see
Jeffrey’s later example of static and member variable-scope prefixes).

3.2 General Naming Conventions

One downside of Hungarian notation is that developers frequently
change the type of variables during early coding, which requires the name
of the variable to also change. Additionally, while commonly used funda-
mental data types (integers, characters, etc.) had well-recognized and stan-
dard prefixes, developers frequently fail to use a meaningful and consistent
prefix for their custom data types.

®s KRZYSZTOF CWALINA There have always been both positive and
negative effects of using the Hungarian naming convention, and they still
exist today. Positives include better readability (if used correctly). Nega-
tives include cost of maintenance, confusion if maintenance was not done
properly, and finally, Hungarian makes the API more cryptic (less approach-
able) to some developers. In the world of procedural languages (e.g., C)
and the separation of the System APIs for advanced developers from
framework libraries for a much wider developer group, the positives
seemed to be greater than the negatives. Today, with System APIs designed
to be approachable to more developers, and with object-oriented lan-
guages, the trade-off seems to be pul_li_ng in the other direction. OO encap-
sulation brings variable declaration and usage points closer together, 0O
style favors short, well-factored methods, and abstractions often make the
exact type less important or even meaningless.

®s JEFFREY RICHTER [I'll admit it; I miss Hungarian notation. Although
in many editors, like Visual Studio, you can hover the mouse over a vari-
able and the editor pops up the type, this does not work when reading
source code in a book chapter or magazine article. Fortunately, in OO, vari-
ables tend have a short scope, so that you only need to scan a few lines to
find the definition of a variable. However, this is not true for a type's static

and instance fields. Personally, I make all my fields private, and I now pre-
fix my instance fields with “m_" and my static fields with “s_" so that I can
easily spot fields in my methods. Luckily, this does not conflict with the
guidelines described in this chapter, because they only cover publicly
exposed members. This helps me a lot, but I still can’t tell what type a vari-
able represents. I rely on my editor’s tool tips for this.

47

48 'm Naming Guidelines

"s ANTHONY MOORE While most coding guidelines in use at Microsoft
do not promote the use of “m_" and “s_" described above, I believe that
practice is worth consideration. For the most part, the consistency of use of
a coding guideline is more important than its details. However, in this case
I've seen a few bugs caused by confusion between local variables and mem-

ber fields that this practice could prevent. Similarly, static fields are a dan-
gerous construct, because for a library you generally need to make them—as
well as any instances transitively hanging off them—threadsafe. Making
them look different from regular members makes it easier to find thread-
safety errors when reviewing code.

X AvoID using identifiers that conflict with keywords of widely used pro-
gramming languages.
According to Rule 4 of the Common Language Specification (CLS), all
compliant languages must provide a mechanism that allows access to
named items that use a keyword of that language as an identifier. C#,
for example, uses the @ sign as an escape mechanism in this case. How-
ever, it is still a good idea to avoid common keywords because it is
much more difficult to use a method with the escape sequence than one
without it.

®s JEFFREY RICHTER When I was porting my Applied Microsoft .NET
Framework Programming book from C# to Visual Basic, I ran into this situa-
tion a lot. For example, the class library has Delegate, Module, and
Assembly classes, and Visual Basic uses these same terms for keywords.

This problem is exacerbated by the fact that VB is a case-insensitive lan-
guage. Visual Basic, like C#, has a way to escape the keywords to disam-
biguate the situation to the compiler (using square brackets), but I was
surprised that the VB team selected keywords that conflict with so many
class library names.

3.2.2 Using Abbreviations and Acronyms
In general, do not use abbreviations or acronyms in identifiers. As stated
earlier, it is more important for names to be readable than it is for them to

3.2 General Naming Conventions g 49

be brief. It is equally important not to use abbreviations and acronyms that
are not generally understood—that is, do not use anything that the large
majority of people who are not experts in a given tield would not know the
meaning of immediately.

X DO NOT use abbreviations or contractions as part of identifier names.
For example, use GetWindow rather than GetWin.

X DO NOT use any acronyms that are not widely accepted, and even if
they are, only when necessary.

For example, Ul is used for User Interface and HTML is used for Hyper
Text Markup Language. Although many framework designers feel that
some recent acronym will soon be widely accepted, it is bad practice to

use it in framework identifiers.

For acronym capitalization rules, see section 3.1.2.

"= BRAD ABRAMS We continually debate about whether a given acro-
nym is well known or not. A good divining rod is what I call the grep test.
Simply use some search engine to grep the Web for the acronym. If the first

few results returned are indeed the meaning you intend, it is likely that
your acronym qualifies as well known; if you don’t get those search results,
think harder about the name. If vou fail the test, don’tjust spell out the acro-
nym but consider how you can be descriptive in the name.

3.2.3 Avoiding Language-Specific Names

Programming languages that target the CLR often have their own names
(aliases) for the so-called primitive types. For example, int is a C# alias for
System.Int32. To ensure that your framework can take full advantage of
the cross-language interoperation that is one of the core features of the
CLR, it is important to avoid the use of these language-specitic type names
in identifiers.

50 m Naming Guidelines

"s JEFFREY RICHTER Personally, I take this a step further and never use
the language’s alias names. I find that the alias adds nothing of value and
introduces enormous confusion. For example, I'm frequently asked what
the difference is between String and string in C#. I've even heard people
say that strings (lowercase “S”) are allocated on the stack while Strings

(uppercase “S”) are allocated on the heap. In my book CLR wvia C#, I give
several reasons in addition to the one offered here for avoiding the alias

names. Another example of a class library/language mismatch is the

NullReferenceException class, which can be thrown by VB code. But VB
uses Nothing, not null.

v/ DO use semantically interesting names rather than language-specific
keywords for type names.

For example, GetLength is a better name than GetInt.

/ DO use a generic CLR type name, rather than a language-specific name,
in the rare cases when an identifier has no semantic meaning beyond
its type.

For example, a method converting to System.Int64 should be named
ToInte4, not TolLong (because System.Inted is a CLR name for the
C#-specitic alias 1ong). Table 3-3 presents several base data types using
the CLR type names (as well as the corresponding type names for C#,

Visual Basic, and C++).

Taere 3-3: CLR Type Names for Language-Specific Type Names

Cc# Visual Basic C++ CLR
sbyte SByte char SByte
byte Byte unsigned char Byte
short Short short Intile
ushort UIntle unsigned short UIntls
int Integer int Int32

3.2 General Naming Conventions g

Ci Visual Basic C++ CLR
uint UInt32 unsigned int UInt32
long Long __inte4 Inte4d
ulong UIntc4 unsigned __int64 UInt&4
float Single float Single
double Double double Double
bool Boolean bool Boolean
char Char wchar_t Char
string String String String
object Object Object Object

v/ DO use a common name, such as value or iten, rather than repeating the
type name, in the rare cases when an identifier has no semantic mean-

ing and the type of the parameter is not important.

The following is a good example of methods of a class that supports

writing a variety of data types into a stream:

void Write{double value};
void Write({float value);
void Write{short value);

3.2.4 Naming New Versions of Existing APIs

Sometimes a new feature cannot be added to an existing type even though
the type’s name implies that it is the best place for the new feature. In such
a case, a new type needs to be added, which often leaves the framework
designer with the difficult task of finding a good new name for the new
type. Similarly, an existing member often cannot be extended or over-
loaded to provide additional functionality, and so a member with a new

name needs to be added. The guidelines that follow describe how to choose

51

52 m Naming Guidelines

names for new types and members that supersede or replace existing types

or members.

v/ DO use a name similar to the old API when creating new versions of an
existing APL

This helps to highlight the relationship between the APIs.

class AppDomain {

[Obsolete("AppDomain.SetCachePath has been deprecated. Flease use
AppDomainSetup.CachePath instead.")]

public wvoid SetCachePath(String path) { ... }

¥

class AppDomainSetup {
public string CachePath { get { ... }; set { ... }; }
¥

v/ DO prefer adding a suffix rather than a prefix to indicate a new version
of an existing AL

®s VANCE MORRISON We did exactly this when we added a faster (but
not completely backward-compatible) version of ReaderWriterLock. We
called it ReaderWriterLockS1lim. There was debate whether we should call

it SlimReaderWriterLock (following the guideline that you write it like
you say it in English), but decided the discoverability (and the fact that lexi-
cal sorting would put them close to each other) was more important.

This will assist discovery when browsing documentation, or using
Intellisense. The old version of the API will be organized close to the
new APls, because most browsers and Intellisense show identifiers in
alphabetical order.

\/ CONSIDER using a brand new, but meaningful identifier, instead of

adding a suffix or a prefix.

v DO use a numeric suffix to indicate a new version of an existing API,
particularly if the existing name of the APl is the only name that makes
sense (i.e., if it is an industry standard) and if adding any meaningful

suffix (or changing the name) is not an appropriate option.

3.2 General Naming Conventions m 53

ff old API

[Obsolete{"This type is obsolete. Please use the new version of the same
class, X5@9Certificate2.”)]

public class XS5@9Certificate { ... }

ff new APT

public class XS@9Certificatez { ... }

®s KRZYSZTOF CWALINA I would use numeric suffixes as the very last
resort. A much better approach is to use a new name or a meaningful
suffix.

The BCL team shipped a new type named TimeZone2 in one of the early
prereleases of the NET Framework 3.5. The name immediately became the
center of a controversy in the blogging community. After a set of lengthy

discussions, the team decided to rename the type to TimeZoneInfo, which
is not a great name but is much better than TimeZone2.

It’s interesting to note that nobody dislikes X509Certificate2. My inter-
pretation of this fact is that programmers are more willing to accept the
ugly numeric suffix on rarely used library types somewhere in the corner of
the Framework than on a core type in the System namespace.

X DO NOT use the “Ex” (or a similar) suffix for an identifier to distinguish

it from an earlier version of the same APL

[Obsolete("This type is obsolete, ...")}]
public class Car { ...}

// new API

public class CarEx
public class CarNew
public class Car2
public class Automobile

// the wrong way
// the wrong way
// the right way
// the right way

s T e T e T e
b o i R

v/ DO use the “64” suffix when introducing versions of APIs that operate
on a 64-bit integer (a long integer) instead of a 32-bit integer. You only
need to take this approach when the existing 32-bit API exists; don’t do
it for brand new APIs with only a 64-bit version.

For example, various APIs on System.Diagnostics.Process return

Int32 values representing memory sizes, such as PagedMemorySize or

54

m Naming Guidelines

PeakWorkingSet. To appropriately support these APIs on 64-bit systems,
APls have been added that have the same name but a “64” suffix.

public e¢lass Process {
// old APIs
public int PeakWorkingSet { get; }
public int PagedMemorysize { get; }
I
/{ new APIs
public long Peakllorkingseted { get; }
public long PagedMemorySizesd { get; }

"s KIT GEORGE Note that this guideline applies only to retrofitting APIs
that have already shipped. When designing a brand new API, use the most

appropriate type and name for the API that will work on all platforms, and
avoid using both “32” and “64” suffixes. Consider using overloading,

3.3 Names of Assemblies and DLLs

An assembly is the unit of deployment and identity for managed code pro-
grams. Although assemblies can span one or more files, typically an assem-
bly maps one-to-one with a DLL. Therefore, this section describes only
DLL naming conventions, which then can be mapped to assembly naming
conventions.

®. JEFFREY RICHTER Multifile assemblies are rarely used, and Visual

Studio has no built-in support for them.

Keep in mind that namespaces are distinct from DLL and assembly
names. Namespaces represent logical groupings for developers, whereas
DLLs and assemblies represent packaging and deployment boundaries.
DLLs can contain multiple namespaces for product factoring and other
reasons. Because namespace factoring is different than DLL factoring, yvou
should design them independently. For example, if you decide to name
your DLL MyCompany .MyTechnology, it does not mean that the DLL has to
contain a namespace named MyCompany .MyTechnology, though it can.

3.3 MNames of Assemblies and DLLs g 55

"= JEFFREY RICHTER Programmers are frequently confused by the fact
that the CLR does not enforce a relationship between namespaces and
assembly file names. For example, System.I0.FileStreamisinMSCorLib.
dll, and System.IO0.FileSystemWatcher is in System.d1ll. As you can
see, types in a single namespace can span multiple files. Also notice that the
NET Framework doesn’t ship with a System.I10.d11 file at all.

®s BRAD ABRAMS We decided early in the design of the CLR to separate
the developer view of the platform (namespaces) from the packaging and
deployment view of the platform (assemblies). This separation allows each
to be optimized independently based on its own criteria. For example, we
are free to factor namespaces to group types that are functionally related
(e.g., all the I/O stuff is in System. I0), but the assemblies can be factored for
performance (load time), deployment, servicing, or versioning reasons.

v/ DO choose names for your assembly DLLs that suggest large chunks of
functionality, such as System.Data.

Assembly and DLL names don’t have to correspond to namespace
names, but it is reasonable to follow the namespace name when nam-
ing assemblies. A good rule of thumb is to name the DLL based on the
common prefix of the assemblies contained in the assembly. For exam-
ple, an assembly with two namespaces, MyCompany.MyTechnology.
FirstFeature and MyCompany.MyTechnology.SecondFeature, could be
called MyCompany .MyTechnology.d1l.

v/ CONSIDER naming DLLs according to the following pattern:

<Company >, <Component>.dll

where <Component> contains one or more dot-separated clauses. For
example:

Microsoft.VisualBasic.dll
Microsoft.VisualBasic.Vsa.dll
Fabrikam.Security.dll
Litware.Controls.dll

56 m Naming Guidelines

3.4 Names of Namespaces

As with other naming guidelines, the goal when naming namespaces is
creating sufficient clarity for the programmer using the framework to
immediately know what the content of the namespace is likely to be. The
following template specifies the general rule for naming namespaces:

<Company>. (<Product> |<Technology>)[.<Feature>][.<Subnamespace>]
The following are examples:

Microsoft.Visualstudio
Microsoft.VisualStudio.Design
Fabrikam.Math
Litware.Security

v Do prefix namespace names with a company name to prevent
namespaces from different companies from having the same name.

For example, the Microsoft Office automation APIs provided by Micro-
soft should be in the namespace Microsoft.0ffice.

"« BRAD ABRAMS It is important to use the official name of your com-
pany or organization when choosing the first part of your namespace name

to avoid possible conflicts. For example, if Microsoft had chosen to use MS
as its root namespace, it might have been confusing to developers at other
companies that use MS as an abbreviation.

v’ DO use a stable, version-independent product name at the second level

of a namespace name.

®s BRAD ABRAMS This means staying away from the latest cool and
catchy name that the marketing folks have come up with. It is fine to tweak
the branding of a product from release to release, but the namespace name

is going to be burned into your client’s code forever. Therefore, choose
something that is technically sound and not subject to the marketing whims
of the day.

3.4 Names of Namespaces [

X DO NOT use organizational hierarchies as the basis for names in
namespace hierarchies, because group names within corporations tend
to be short-lived. Organize the hierarchy of namespaces around groups
of related technologies.

"s BRAD ABRAMS We added a set of controls to ASPNET late in the ship
cycle for V1.0 of the NET Framework that rendered for mobile devices.
Because these controls came from a team in a different division, our imme-
diate reaction was to put them in a different namespace (System.Web.
MobileControls). Then, after a couple of reorganizations and .NET Frame-

work versions, we realized a better engineering trade-off was to fold that
functionality into the existing controls in System.Web.Controls. In retro-
spect, we let internal organizational ditferences affect the public exposure of
the APIs, and we came to regret that later. Avoid this type of mistake in your
designs.

v/ DO use PascalCasing, and separate namespace components with peri-
ods (e.g., Microsoft.0ffice.PowerPoint). If your brand employs non-
traditional casing, vou should follow the casing defined by your brand,
even if it deviates from normal namespace casing.

v/ CONSIDER using plural namespace names where appropriate.

For example, use System.Collections instead of System.Collection.
Brand names and acronyms are exceptions to this rule, however. For

example, use System. IO instead of System. IOs.

X DO NOT use the same name for a namespace and a type in that
namespace.
For example, do not use Debug as a namespace name and then also pro-

vide a class named Debug in the same namespace. Several compilers
require such types to be fully qualified.

These guidelines cover general namespace naming guidelines, but the
next section provides specific guidelines for certain special subnamespaces.

57

58 @ Naming Guidelines

3.4.1 Namespaces and Type Name Conflicts

Namespaces are used to organize types into a logical and easy-to-explore
hierarchy. They are also indispensable in resolving type name ambiguities
that might arise when importing multiple namespaces. However, that fact
should not be used as an excuse to introduce known ambiguities between
types in different namespaces that are commonly used together. Develop-
ers should not be required to qualify type names in common scenarios.

X DO NOT introduce generic type names such as Element, Node, Log, and
Message.

There is a very high probability that doing so will lead to type name

conflicts in common scenarios. You should qualify the generic type

names (FormElement, XmlNode, EventLog, SoapMessage).

There are specific guidelines for avoiding type name conflicts for differ-
ent categories of namespaces. Namespaces can be divided into the follow-
ing categories:

Application model namespaces

Infrastructure namespaces

Core ndamespaces

Technology namespace groups

3.4.1.1 Application Model Namespaces

Namespaces belonging to a single application model are very often used
together, but they are almost never used with namespaces of other appli-
cation models. For example, the System.Windows . Forms namespace is very
rarely used together with the System.Web.UI namespace. The following is

a list of well-known application model namespace groups:

System.Windows*
System.uWeb.UI*

3.4 Names of Namespaces [

X DO NOT give the same name to types in namespaces within a single
application model.

For example, do not add a type named Page to the System.Web.UI.
Adapters namespace, because the System.Web.UI namespace already

contains a type named Page.

3.4.1.2 Infrastructure Namespaces

This group contains namespaces that are rarely imported during develop-
ment of common applications. For example, .Design namespaces are
mainly used when developing programming tools. Avoiding conflicts with
types in these namespaces is not critical.

System.Windows.Forms,Design
*.Design
* . Permissions

3.4.1.3 Core Namespaces

Core namespaces include all System namespaces, excluding namespaces
of the application models and the Infrastructure namespaces. Core
namespaces include, among others, System, System. IO, System.Xml, and
System.Net.

X DO NOT give types names that would conflict with any type in the Core
namespaces.

For example, never use Stream as a type name. It would conflict with
System.I0.Stream, a very commonly used type.

By the same token, do not add a type named EventlLog to the System.
Diagnostics.Events namespace, because the System.Diagnostics
namespace already contains a type named EventlLog.

3.4.1.4 Technology Namespace Groups
This category includes all namespaces with the same first two namespace
nodes (<Company>.<Technology>*), such as Microsoft.Build.utilities

59

60

m Naming Guidelines

and Microsoft.Build.Tasks. It is important that types belonging to a
single technology do not conflict with each other.

X Do NOT assign type names that would conflict with other types within

a single technology.

X DO NOT introduce type name conflicts between types in technology
namespaces and an application model namespace (unless the technol-
ogy is not intended to be used with the application model).

For example, one would not add a type named Binding to the
Microsoft.VisualBasic namespace because the System.Windows.
Forms namespace already contains that type name.

3.5 Names of Classes, Structs, and Interfaces

In general, class and struct names should be nouns or noun phrases, because
they represent entities of the system. A good rule of thumb is that if you are
not able to come up with a noun or a noun phrase name for a class or a
struct, you probably should rethink the general design of the type. Inter-
faces representing roots of a hierarchy (e.g.,, IList<T>) should also use
nouns or noun phrases. Interfaces representing capabilities should use
adjectives and adjective phrases (e.g., IComparable<T>, IFormattable).
Another important consideration is that the most easily recognizable
names should be used for the most commonly used types, even if the name
fits some other less-used type better in the purely technical sense. For
example, a type used in mainline scenarios to submit print jobs to print
queues should be named Printer, rather than PrintQueue. Even though
technically the type represents a print queue and not the physical device
(printer), from the scenario point of view, Printer is the ideal name because
most people are interested in submitting print jobs and not in other opera-
tions related to the physical printer device (e.g., configuring the printer). If
you need to provide another type that corresponds, for example, to the
physical printer to be used in configuration scenarios, the type could be

called PrinterConfiguration or PrinterManager.

3.5 Names of Classes, Structs, and Interfaces g

"s KRZYSZTOF CWALINA I know this goes against the technical preci-
sion that is one of the core character traits of most software engineers, but I
really do think it’s more important to have better names from the point of
view of the most common scenario, even if it results in slightly inconsistent

or even wrong type names from a purely technical point of view. Advanced
users will be able to understand slightly inconsistent naming. Most users
are usually not concerned with technicalities and will not even notice the
inconsistency, but they will appreciate the names guiding them to the most
important APls.

Similarly, names of the most commonly used types should reflect usage
scenarios, not inheritance hierarchy. Most users use the leaves of an inheri-
tance hierarchy almost exclusively, and they are rarely concerned with the
structure of the hierarchy. Yet API designers often see the inheritance hier-
archy as the most important criterion for type name selection. For example,
Stream, StreamReader, TextReader, StringReader, and FileStream all
describe the place of each of the types in the inheritance hierarchy quite
well, but they obscure the most important information for the majority of
users: the type that they need to instantiate to read text from a file.

The naming guidelines that follow apply to general type naming,.

l/ DO name classes and structs with nouns or noun phrases, using
PascalCasing.
This distinguishes type names from methods, which are named with

verb phrases.

v/ DO name interfaces with adjective phrases, or occasionally with nouns
or noun phrases.

Nouns and noun phrases should be used rarely and they might indi-
cate that the type should be an abstract class, and not an interface. See
section 4.3 for details about deciding how to choose between abstract
classes and interfaces.

X DO NOT give class names a prefix (e.g., “C").

61

62 m MNaming Guidelines

"s KRZYSZTOF CWALINA One of the few prefixes used is “1” for inter-
faces (as in ICollection), but that is for historical reasons. In retrospect, I
think it would have been better to use regular type names. In a majority of
the cases, developers don’t care that something is an interface and not an
abstract class, for example.

5. BRAD ABRAMS On the other hand, the “T” prefix on interfaces is a
clear recognition of the influence of COM (and Java) on the NET Frame-
work. COM popularized, even institutionalized, the notation that interfaces
begin with “L.” Although we discussed diverging from this historic pattern,
we decided to carry forward the pattern because so many of our users were
already familiar with COM.

®s JEFFREY RICHTER Personally, I like the “I” prefix, and I wish we had
more stuff like this. Little one-character prefixes go a long way toward keep-
ing code terse and yet descriptive. As I said earlier, I use prefixes for my
private type fields because I find this very useful.

®s BRENT RECTOR Note: This is really another application of Hungarian
notation (though one without the disadvantages of the notation’s use in
variable names).

/ CONSIDER ending the name of derived classes with the name of the

base class.

This is very readable and explains the relationship clearly. Some
examples of this in code are: ArgumentOutOfRangeException, whichis a
kind of Exception, and SerializableAttribute, which is a kind of
Attribute. However, it is important to use reasonable judgment in
applying this guideline; for example, the Button class is a kind of

3.5 Names of Classes, Structs, and Interfaces g 63

Control event, although Control doesn’t appear in its name. The fol-

lowing are examples of correctly named classes:

public class FileStream : Stream {...}
public class Button : Control {...}

v’ DO prefix interface names with the letter [, to indicate that the type is an
interface.

For example, IComponent (descriptive noun), ICustomAttribute-
Provider (noun phrase), and IPersistable (adjective) are appropriate
interface names. As with other type names, avoid abbreviations,

®s JEFFREY RICHTER There is one interface I'm aware of that doesn't fol-
low this guideline: System._AppDomain. It is very disconcerting to me

when [see this type used without the uppercase I. Please don’t make this
same mistake in your code.

i I.I'.F

v/ DO ensure that the names differ only by the “I” prefix on the interface
name when you are defining a class-interface pair where the class is a
standard implementation of the interface.

The following example illustrates this guideline for the interface

IComponent and its standard implementation, the class Component:

public interface IComponent { ... }
public class Component ; IComponent { ... }

®s PHILHAACK One place where the Framework violates this convention
is the class HttpSessionState, which you would suspect implements
IHttpSessionState, but you'd be wrong, as I was.

This inconsistency nearly bit us when we were developing our
HttpContextBase abstraction of HttpContext, because it seemed we could
expose the Session property as the IHttpSessionState interface, which
turned out to not be the case.

64

m Naming Guidelines

3.5.1 Names of Generic Type Parameters
Generics were added to NET Framework 2.0. The feature introduced a
new kind of identifier called type parameter. The following guidelines

describe naming conventions related to naming such type parameters:
v/ DO name generic type parameters with descriptive names unless a
single-letter name is completely self-explanatory and a descriptive

name would not add value.

public interface ISessionChannel<TSession> { ... }

public delegate TOutput Converter<TInput,TOutput>(TInput from);
public class Nullable<T> { ... }

public class List<T> { ... }

v/ CONSIDER using T as the type parameter name for types with one

single-letter type parameter.

public int IComparer<T> { ... }
public delegate bool Predicate<T»(T item);
public struct Nullable<T> where T:struct { ... }

v/ Do pretfix descriptive type parameter names with T.

public interface ISessionChannel<TSession> where TSession i ISession{
TSession Session { get; }

v/ CONSIDER indicating constraints placed on a type parameter in the
name of the parameter.

For example, a parameter constrained to ISession might be called

TSession.

3.5.2 Names of Common Types
If you are deriving from or implementing types contained in the NET
Framework, it is important to follow the guidelines in this section.

v/ DO follow the guidelines described in Table 3-4 when naming types
derived from or implementing certain NET Framework types.

3.5 MNames of Classes, Structs, and Interfaces m 65

These suffixing guidelines apply to the whole hierarchy of the specified
base type. For example, itis not just types derived directly from System.
Exception that need the suffixes, but those derived from Exception

subclasses as well.

These suffixes should be reserved for the named types. Types derived
from or implementing other types should not use these suffixes. For
example, the following represent incorrect naming;:

public class ElementStream : Object { ... }
public class WindowsAttribute : Control { ... }

Taete 3-4: Name Rules for Types Derived from or Implementing Certain Core Types

Base Type Derived/Implementing Type Guideline

System.Attribute v DO add the suffix “ Attribute” to names of
custom attribute classes.

System.Delegate v DO add the suffix “EventHandler” to names
of delegates that are used in events.

v DO add the suffix “Callback” to names of
delegates other than those used as event
handlers.

X DO NOT add the suffix “Delegate” to a
delegate.

System.EventArgs v' DO add the suffix “EventArgs.”

AL BN X DO NOT derive from this class; use the

keyword supported by your language
instead; for example, in C#, use the enum
keyword.

X DO NOT add the suffix “Enum” or “Flag.”

System.Exception v DO add the suffix “Exception.”
IDictionary v DO add the suffix “Dictiona ry.” Note that
IDictionary<TKey, TValue> IDictionary is a specific type of

collection, but this guideline takes prece-
dence over the more general collections
guideline that follows.

Cantbiniics

66 m Naming Guidelines

Taeie 3.4: Continued

Base Type Derived /Implementing Type Guideline

IEnumerable v' DO add the suffix “Collection.”
ICollection

IList
IEnumerable<T>
ICollection<T?»
IList<T>

System.I0.Stream v DO add the suffix “Stream.”

CodeAccessPermission v' DO add the suffix “Permission.”
IPermission

3.5.3 Naming Enumerations

Names of enumeration types (also called enums) in general should follow
the standard type-naming rules (PascalCasing, etc.). However, there are
additional guidelines that apply specifically to enums.

v/ DO use a singular type name for an enumeration unless its values are
bit fields.

public enum ConsoleColor {
Black,
Blue,
Cyan,

v/ DO use a plural type name for an enumeration with bit fields as values,
also called flags enum.

[Flags]

public enum ConsoleModifiers {
alt,
Control,
shift

3.5 Names of Classes, Structs, and Interfaces m

X DO NOT use an “Enum” suffix in enum type names.

For example, the following enum is badly named:

// Bad naming
public enum CelorEnum {

}

X DO NOT use “Flag” or “Flags” sutfixes in enum type names.

For example, the following enum is badly named:

// Bad naming
[Flags]
public enum ColorFlags {

ER

}

X DO NOT use a prefix on enumeration value names (e.g., “ad” for ADO
enums, “rtf” for rich text enums, etc.).

public enum ImageMode {
ImageModeBitmap = @, // ImageMode prefix is not necessary
ImageMocdeGrayscale = 1,
ImageModeIndexed = 2,
ImageModeRgh = 3,

The following naming scheme would be better:

public enum ImageMode {
Bitmap = 8,
Grayscale = 1,
Indexed = 2,
Rgb = 3,

"s BRAD ABRAMS Notice that this guideline is the exact opposite of com-
mon usage in C++ programming. It is important in C++ to fully qualify

each enum member because they can be accessed outside of the scope of the
enum name. However, in the managed world, enum members are only
accessed through the scope of the enum name.

67

68

m Naming Guidelines

3.6 Names of Type Members

Types are made of members: methods, properties, events, constructors,
and fields. The following sections describe guidelines for naming type
members,

3.6.1 Names of Methods

Because methods are the means of taking action, the design guidelines
require that method names be verbs or verb phrases. Following this guide-
line also serves to distinguish method names from property and type

names, which are noun or adjective phrases.

®s STEVEN CLARKE Do your best to name methods according to the task
that they enable, not according to some implementation detail. In a usability
study on the System.Xml APIs, participants were asked to write code that
would perform a query over an instance of an XPathDocument. To do this,
participants needed to call the CreateXPathNavigator method from XPath-
Document. This returns an instance of an XPathNavigator that is used to
iterate over the document data returned by a query. However, no participants

expected or realized that they would have to do this. Instead, they expected
to be able to call some method named Query or Select on the document itself.
Such a method could just as easily return an instance of XPathNavigator in
the same way that CreateXPathNavigator does. By tying the name of the
method more directly to the task it enables, rather than to the implementation
details, it is more likely that developers using your API will be able to find the
correct method to accomplish a task.

/ DO give methods names that are verbs or verb phrases.

public class String {
public int CompareTo(...);
public string[] split(...);
public string Trim()};

3.6.2 Names of Properties
Unlike other members, properties should be given noun phrase or adjec-
tive names. That is because a property refers to data, and the name of the

property reflects that. PascalCasing is always used for property names.

3.6 Names of Type Members [

v/ DO name properties using a noun, noun phrase, or adjective.

public class String {
public int Length { get; }
}

X DO NOT have properties that match the name of “Get” methods as in
the following example:

public string TextWriter { get {...} set {...} }
public string GetTextWriter(int value) { ... }

This pattern typically indicates that the property should really be a
method. See section 5.1.3 for additional information.

v/ DO name collection properties with a plural phrase describing the items
in the collection instead of using a singular phrase followed by “List”

or “Collection.”

public class ListView {
// good naming
public ItemCollection Items { get; }

// bad naming
public ItemCollection ItemCollection { get; }

v/ DO name Boolean properties with an affirmative phrase (CanSeek
instead of CantSeek). Optionally, vou can also prefix Boolean properties
with “Is,” “Can,” or “Has,” but only where it adds value.

For example, CanRead is more understandable than Readable. However,
Created is actually more readable than IsCreated. Having the prefix is
often too verbose and unnecessary, particularly in the face of Intellisense
in the code editors. It is just as clear to type MyObject.Enabled = and
have Intellisense give vou the choice of true or false as it is to have
MyObject.IsEnabled =, and the second one is more verbose.

69

70

m Naming Guidelines

"s KRZYSZTOF CWALINA In selecting names for Boolean properties and
functions, consider testing out the common uses of the APl inan if-statement.
Such a usage test will highlight whether the word choices and grammar of
the API name (e.g., active versus passive voice, singular versus plural) make
sense as English phrases. For example, both of the following

if(collection.Contains{item))
if(regularExpression.Matches(text))

read more naturally than

if(collection.IsContained(item))
if(regularExpression.Match(text))

Also, all else being equal, you should prefer the active voice to the passive
voice:

if(stream.CanSeek) // better than ..
if(stream.IsSeekable)

\/ CONSIDER giving a property the same name as its type.

For example, the following property correctly gets and sets an enum
value named Color, so the property is named Color:

public enum Color {...}
public class Control {
public Color Color { get {...} set {...} }

¥

3.6.3 Names of Events
Events always refer to some action, either one that is happening or one
that has occurred. Therefore, as with methods, events are named with
verbs, and verb tense is used to indicate the time when the event is raised.
v/ DO name events with a verb or a verb phrase,
Examples include Clicked, Painting, DroppedDown, and so on.
v Do give events names with a concept of before and after, using the pres-
ent and past tenses.

3.6 Names of Type Members [

For example, a close event that is raised before a window is closed
would be called Closing, and one that is raised after the window is
closed would be called Closed.

X DO NOT use “Before” or “After” prefixes or postfixes to indicate pre-

and post-events. Use present and past tenses as just described.

v/ DO name event handlers (delegates used as types of events) with the
“EventHandler” sutfix, as shown in the following example:

public delegate void ClickedeventHandler (cbject sender, ClickedEventargs e);

Note that vou should create custom event handlers very rarely. Instead,
most APIs should simply use EventHandler<T>. Section 5.4.1 talks

about event design in more detail.

"s JASON CLARK Today, it is the rare case where you would need to
define your own “EventHandler” delegate. Instead, you should use the
EventHandler<TEventArgs> delegate type, where TEventArgs is either

EventArgs or your own EventArgs derived class. This reduces type defini-
tions in the system and ensures that your event follows the pattern described

in the preceding bullet,

v/ DO use two parameters named sender and ¢ in event handlers.

The sender parameter represents the object that raised the event. The
sender parameter is typically of type object, even if it is possible to
employ a more specific type. The pattern is used consistently across the

Framework and is described in more detail in section 5.4.

public delegate void <EventHame>EventHandler({object sender,
<EventName>EventArgs e);

v/ DO name event argument classes with the “EventArgs” suffix, as shown

in the following example:

public class ClickedEventArgs : Eventargs {
int x;
int y;

71

72

m Naming Guidelines

public ClickedeventArgs (int %, int y) {
this.x = x;
this.y = y;
1
public int X { get { return x; } }
public int ¥ { get { return v; } }

3.6.4 Naming Fields

The field-naming guidelines apply to static public and protected fields.
Internal and private fields are not covered by guidelines, and public or
protected instance fields are not allowed by the member design guidelines,
which are described in Chapter 5.

v/ DO use PascalCasing in field names.

public class String {
public static readonly string Empty ="";

1
public struct UInt32 {

public const Min = &;

¥

v/ DO name fields using a noun, noun phrase, or adjective.

X DO NOT use a prefix for field names.

For example, do not use “g_" or “s_" to indicate static fields. Publicly
accessible fields (the subject of this section) are very similar to proper-
ties from the API design point of view; therefore, they should follow

the same naming conventions as properties.

"s BRAD ABRAMS Notice that, as with just about all the guidelines in
this book, this guideline is meant to apply only to publicly exposed fields.
In this case, it's important that the names be clean and simple so the masses

of consumers can easily understand them. As many have noted, there are
very good reasons to use some sort of convention for private fields and local

variables.

3.7 MNaming Parameters g

®s JEFF PROSISE As a matter of personal preference, I typically prefix
the names of private fields with an underscore (forexample, _connection).
When I read the code back after a time away, this makes it obvious to me

which fields are not intended for public consumption. This convention is
used quite a lot in the .NET Framework—for example, in System.Net.
HttpWebRequest and System.Web.HttpContext—but it is not used
throughout.

3.7 Naming Parameters

Beyond the obvious reason of readability, it is important to follow the
guidelines for parameter names because parameters are displayed in
documentation and in the designer when visual design tools provide

Intellisense and class browsing functionality.

v/ DO use camelCasing in parameter names.

public class String {
public bool Contains{string value);
public string Remove(int startIndex, int count);

/ DO use descriptive parameter names.

Parameter names should be descriptive enough to use with their types
to determine their meaning in most scenarios.

v/ CONSIDER using names based on a parameter’s meaning rather than
the parameter’s type.
Development tools must provide useful information about the type, so
the parameter name can be put to better use describing semantics rather
than the type. Occasional use of type-based parameter names is entirely
appropriate—but it is not ever appropriate under these guidelines to

revert to the Hungarian naming convention.

73

74

m Naming Guidelines
3.7.1 Naming Operator Overload Parameters
This section talks about naming parameters of operator overloads.

/ DO use left and right for binary operator overload parameter names if

there is no meaning to the parameters.

public static TimeSpan operator-(DateTimeCffset left,
DateTimeOffset right)
public static bool operator==(DateTimeOffset left,
DateTimeOffset right)

v/ DO use value for unary operator overload parameter names if there is
no meaning to the parameters.

public static BigInteger operator-(BigInteger value);

v/ CONSIDER meaningful names for operator overload parameters if
doing so adds significant value.
public static BigInteger Divide(BigInteger dividend,

BigInteger divisor);

X DO NOT use abbreviations or numeric indices for operator overload
parameter names.

// incorrect parameter naming
public static bool cperator ==(DateTimeOffset di,
DateTimeOffset d2);

3.8 Naming Resources

Because localizable resources can be referenced via certain objects as it
they were properties, the naming guidelines for resources are similar to
property guidelines.

\/ DO use PascalCasing in resource keys.

v Do provide descriptive rather than short identifiers.

3.8 Naming Resources m 75

Keep them concise where possible, but do not sacrifice readability

for space.

X DO NOT use language-specific keywords of the main CLR languages.

v/ DO use only alphanumeric characters and underscores in naming

resources.

v/ DO use the following naming convention for exception message
resources.
The resource identifier should be the exception type name plus a short

identifier of the exception:

ArgumentExceptionIllegalCharacters
ArgumentExceptionInvalidName
ArgumentExceptionFileNameIsMalformed

SUMMARY

The naming guidelines described in this chapter, if followed, provide a
consistent scheme that will make it easy for users of a framework to iden-
tify the function of elements of the framework. The guidelines provide
naming consistency across frameworks developed by different organiza-
tions or companies.

The next chapter provides general guidelines for implementing types.

www.EBooksWorld.ir

I4I

Type Design Guidelines

F ROM THE CLR perspective, there are only two categories of types—
reference types and value types—but for the purpose of a discussion
about framework design, we divide types into more logical groups, each

with its own specific design rules. Figure 4-1 shows these logical groups.

Types

Reference Types Value Types Interfaces
Classes Struets
Stalic Classes Enums

Colleclions

Amays

Exceptions

Affribuies

FIGURE 4-1: The logical grouping of types

78

m Type Design Guidelines

Classes are the general case of reference types. They make up the bulk
of types in the majority of frameworks. Classes owe their popularity to the
rich set of object-oriented features they support and to their general appli-
cability. Base classes and abstract classes are special logical groups related
to extensibility. Extensibility and base classes are covered in Chapter 6.

Interfaces are types that can be implemented by both reference types
and value types. They can thus serve as roots of polymorphic hierarchies of
reference types and value types. In addition, interfaces can be used to simu-
late multiple inheritance, which is not natively supported by the CLR.

Structs are the general case of value types and should be reserved for
small, simple types, similar to language primitives.

Enums are a special case of value types used to define short sets of val-
ues, such as days of the week, console colors, and so on.

Static classes are types intended to be containers for static members.
They are commonly used to provide shortcuts to other operations.

Delegates, exceptions, attributes, arrays, and collections are all special
cases of reference types intended for specific uses, and guidelines for their

design and usage are discussed elsewhere in this book.

v’ DO ensure that each tvpe is a well-defined set of related members, not

just a random collection of unrelated functionality.

It is important that a type can be described in one simple sentence. A
good definition should also rule out functionality that is only tangen-
tially related.

"s BRAD ABRAMS If you have ever managed a team of people, you know
that they don’t do well without a crisp set of responsibilities. Well, types
work the same way. I have noticed that types without a firm and focused
scope tend to be magnets for more random functionality, which over time

makes a small problem a lot worse. It becomes more difficult to justify why
the next member with even more random functionality does not belong in
the type. As the focus of the members in a type blurs, the developer s ability
to predict where to find a given functionality is impaired, and therefore so is
productivity.

4.1 Types and Namespaces m 79

"s RICO MARIANI Good types are like good diagrams: What has been
omitted is as important to clarity and usability as what has been included.
Every additional member you add to a type starts at a net negative value
and only by proven usefulness does it go from there to positive. If you add
too much in an attempt to make the type more useful to some, you are just
as likely to make the type useless to everyone.

®. JEFFREY RICHTER When I was learning OOP back in the early 1980s,
was taught a mantra that 1 still honor today: If things get too complicated,
make more types. Sometimes I find that I am thinking really hard trying to
define a good set of methods for a type. When I start to feel that I'm spend-
ing too much time on this or when things just don’t seem to fit together well,
I remember my mantra and I define more, smaller types where each type has
well-defined functionality. This has worked extremely well for me over the
years. On the flip side, sometimes types do end up being dumping grounds
for various loosely related functions, The NET Framework offers several
types like this, such as Marshal, GC, Console, Math, and Application. You
will note that all members of these types are static and so it is not possible to
create any instances of these types. Programmers seem to be OK with this.
Fortunately, these types’ methods are separated a bit into separate types. It
would be awful if all these methods were defined in just one type!

4.1 Types and Namespaces

You should decide how to factor your functionality into a set of functional
areas represented by namespaces before you design a large framework.
This kind of top-down architectural design is important because it ensures
a coherent set of namespaces containing types that are well integrated,
don’t collide, and are not repetitive. The namespace design process is iter-
ative, of course, and it should be expected that the design will have to be
tweaked as types are added to the namespaces over the course of several
releases. This philosophy leads to the following guidelines.

v/ DO use namespaces to organize types into a hierarchy of related fea-

ture areas.

80 m Type Design Guidelines

The hierarchy should be optimized for developers browsing the frame-
work for desired APIs.

®s KRZYSZTOF CWALINA This is an important guideline. Contrary to
popular belief, the main purpose of namespaces is not to help in resolving
naming conflicts between types with the same name. As the guideline states,
the main purpose of namespaces is to organize types in a hierarchy that is

coherent, easy to navigate, and easy to understand.

I consider type-name contlicts in a single framework to indicate sloppy
design. Types with identical names should either be merged to allow for
better integration between parts of the library or be renamed to improve
code readability and searchability.

X AVOID very deep namespace hierarchies. Such hierarchies are difficult
to browse because the user has to backtrack often.

X AVOID having too many namespaces.

Users of a framework should not have to import many namespaces in
most common scenarios. Types that are used together in common sce-
narios should reside in a single namespace if at all possible.

®s JEFFREY RICHTER As an example of a problem, the runtime serializer
types are defined under the System.Runtime.Serialization namespace
and its subnamespaces. However, the Serializable and NonSerialized
attributes are incorrectly defined in the System namespace. Because these
types are not in the same namespace, developers don't realize that they are

closely related. In fact, I have run into many developers who apply the
Serializable attribute to a class that they are serializing with the System.
Xml.Serialization’s XmlSerializer type. However, the XmlSerializer
completely ignores the Serializable attribute; applying the attribute gives
no value and just bloats your assembly’s metadata.

X AVOID having tvpes designed for advanced scenarios in the same

namespace as types intended for common programming tasks.

This makes it easier to understand the basics of the framework and to
use the framework in the common scenarios.

4.1 Types and Namespaces

"s BRADABRAMS One of the best features of Visual Studio is Intellisense,
which provides a drop-down for your likely next type or member usage.
The benefit of this feature is inversely proportional to the number of options.
That is, if there are too many items in the list it takes longer to find the one
you are looking for. Following this guideline to split out advanced function-
ality into a separate namespace enables developers to see the smallest num-
ber of types possible in the common case.

®s BRIAN PEPIN One thing we've learned is that most programmers live
or die by Intellisense. If something isn't listed in the drop-down, most pro-
grammers won't believe it exists. But, as Brad says, too much of a good
thing can be bad, and having too much stuff in the drop-down list dilutes its
value. If you have functionality that should be in the same namespace but
you don’t think it needs to be shown all the time to users, you can use the
EditorBrowsable attribute. Put this attribute on a class or member and
you can instruct Intellisense to only show the class or member for advanced
scenarios.

®s RICO MARIANI Don’t go crazy adding members for every exotic thing
someone might want to do with your type. You'll make fatter, uglier assem-
blies that are hard to grasp. Provide good primitives with understandable
limitations. A great example of this is the urge people get to duplicate func-
tionality that is already easy to use via Interop to native. Interop is there for
a reason—it’s not an unwanted stepchild. When wrapping anything, be
sure you are adding plenty of value. Otherwise, the value added by not
implementing the type and therefore being smaller would make vour
assembly more helpful to more people.

®. JEFFREY RICHTER I agree with this guideline, but I'd like to further
add that the more advanced classes should be in a namespace that is under
the namespace that contains the simple types. For example, the simple types
might be in System.Mail, and the more advanced types should be in
System.Mail.Advanced.

81

82 m Type Design Guidelines

X DO NOT define types without specifying their namespaces.

This organizes related types in a hierarchy and can help to resolve
potential type name collisions. Please note that the fact that namespaces
can help to resolve name collisions does not mean that such collisions

should be introduced. See section 3.4.1 for details.

"= BRAD ABRAMS It is important to realize that namespaces cannot actu-
ally prevent naming collisions; however, they can significantly reduce them.
I could define a class called MyNamespace.MyType in an assembly called
MyAssembly and define a class with precisely the same name in another
assembly. I could then build an application that uses both of these assem-
blies and types. The CLR would not get confused because the type identity
in the CLR is based on the strong name (which includes the fully qualified
assembly name) rather than just the namespace and type name. This fact
can be seen by looking at the C# and ILASM of code creating an instance of

MyType.

C#:
new MyType();

3 5 B
IL_@a8@: newobj instance vold [Mydssembly]MyNamespace.MyType::.ctor()

Notice that the C# compiler adds a reference to the assembly that defines
the type, of the form [MyAssembly], so the runtime always has a disam-
biguated, fully qualified name to work with.

®. JEFFREY RICHTER Although what Brad says is true, the C# compiler
doesn't let you specify in source code which assembly to pull a type out of,
so if you have code that wants to use a type called MyNamespace.MyType
that exists in two or more assemblies, there is no easy way to do this in C#
source code. Prior to C# 2.0, distinguishing between the two types was
impossible. However, with C# 2.0, it is now possible using the new extern
aliases and namespace qualifier features.

4.1 Types and Namespaces [

®s RICO MARIANI Namespaces are a language thing. The CLR doesn’t
know anything about them really. As far as the CLR is concerned, the name
of the class really is something like MyNameSpace.MyOtherNameSpace.

MyAmazingType. The compilers give vou syntax (e.g., “using”) so that you
don’t have to type those long class names all the time. So the CLR is never
confused about class names because everything is always fully qualified.

4.1.1 Standard Subnamespace Names

Types that are rarely used should be placed in subnamespaces to avoid
cluttering the main namespaces. We have identified several groups of
types that should be separated from their main namespaces.

4.1.1.1 The .Design Subnamespace

Design-time-only types should reside in a subnamespace named .Design.
For example, System.Windows . Forms .Design contains Designers and related
classes used to do design of applications based on System.Windows.Forms.

System.Windows.Forms.Design
System.Messaging.Design
System.Diagnostics.Design

/ DO use a namespace with the “.Design” suffix to contain types that pro-

vide design-time functionality for a base namespace.

4.1.1.2 The .Permissions Subnamespace
Permission types should reside in a subnamespace named .Permissions.

v/ DO use a namespace with the “.Permissions” suffix to contain types
that provide custom permissions for a base namespace.

"s KRZYSZTOF CWALINA In the initial design of the .NET Framework
namespaces, all types related to a given feature area were in the same
namespace. Prior to the first release, we moved design-related types to sub-
namespaces with the “.Design” suffix. Unfortunately, we did not have time

to do it for the Permission types. This is a problem in several parts of the
Framework. For example, a large portion of the types in the System.
Diagnostics namespace are types needed for the security infrastructure
and very rarely used by the end users of the APL

83

84

m Type Design Guidelines

4.1.1.3 The .Interop Subnamespace
Many frameworks need to support interoperability with legacy compo-
nents. Due diligence should be used in designing interoperability from the
ground up. However, the nature of the problem often requires that the
shape and style of such interoperability APIs are often quite ditferent from
good managed framework design. Thus, it makes sense to put functional-
ity related to interoperation with legacy components in a subnamespace.
You should not put types that completely abstract unmanaged concepts
into the Interop subnamespace and expose them as managed. It is often
the case that managed APIs are implemented by calling out to unmanaged
code. For example, the System.I0.FileStream class calls out to Win32
CreateFile. This is perfectly acceptable and does not imply that the
FileStreamclass needs to bein the System.I0.Interop namespace because
FileStream completely abstracts the Win32 concepts and publicly exposes
a nice managed abstraction.

|/ DO use a namespace with the “.Interop” suffix to contain types that

provide interop functionality for a base namespace.

v/ DO usc a namespace with the “.Interop” suffix for all code in a Primary
Interop Assembly (PIA).

4.2 Choosing Between Class and Struct

One of the basic design decisions every framework designer faces is
whether to design a type as a class (a reference type) or as a struct (a value
type). Good understanding of the differences in the behavior of reference
types and value types is crucial in making this choice.

The first difference between reference types and value types we will
consider is that reference types are allocated on the heap and garbage-
collected, whereas value types are allocated either on the stack or inline in
containing types and deallocated when the stack unwinds or when their
containing type gets deallocated. Therefore, allocations and deallocations
of value types are in general cheaper than allocations and deallocations of
reference types.

Next, arrays of reference types are allocated out-of-line, meaning the

array elements are just references to instances of the reference type residing

4.2 Choosing Between Class and Struct [

on the heap. Value type arrays are allocated inline, meaning that the array
elements are the actual instances of the value type. Therefore, allocations
and deallocations of value type arrays are much cheaper than allocations
and deallocations of reference type arrays. In addition, in a majority of

cases value type arrays exhibit much better locality of reference.

®s RICO MARIANI The preceding is often true, but it’s a very broad gen-
eralization that [would be very careful about. Whether or not you get better
locality of reference when value types get boxed when cast to an array of
value types will depend on how much of the value type yvou use, how much
searching you have to do, how much data reuse there could have been with
equivalent array members (sharing a pointer), the typical array access pat-
terns, and probably other factors [can’t think of at the moment. Your mile-
age might vary, but value type arrays are a great tool for your toolbox.

®s CHRIS SELLS I find the restrictions of value types to be painful and
therefore prefer reference types. Custom value types are often used for per-
formance improvements, so I would recommend profiling large-scale antic-
ipated usage of your library and changing reference tvpes to value types
based on actual data instead of on some anticipated problem that may never
manifest itself in real-world conditions.

The next difference is related to memory usage. Value types get boxed
when cast to a reference type or one of the interfaces they implement. They
get unboxed when cast back to the value type. Because boxes are objects
that are allocated on the heap and are garbage-collected, too much boxing
and unboxing can have a negative impact on the heap, the garbage collec-
tor, and ultimately the performance of the application. In contrast, no such
boxing occurs as reference types are cast.

Next, reference type assignments copy the reference, whereas value
type assignments copy the entire value. Therefore, assignments of large
reference types are cheaper than assignments of large value types.

Finally, reference types are passed by reference, whereas value types
are passed by value. Changes to an instance of a reference type affect all
references pointing to the instance. Value type instances are copied when

they are passed by value. When an instance of a value type is changed, it

85

86 'm TypeDesign Guidelines

of course does not affect any of its copies. Because the copies are not cre-
ated explicitly by the user but are implicitly created when arguments are
passed or return values are returned, value types that can be changed can

be confusing to many users. Therefore, value types should be immutable.!

®s RICO MARIANI If you make your value type mutable, you will find
that you end up having to pass it by reference a lot to get the semantics you
want (using, for example, “out” syntax in C#). This might be important in
cases in which the value type is expected to be embedded in a variety of
other objects that are themselves reference types or embedded in arrays.
The biggest trouble from having mutable value types is where they look
like independent entities like complex numbers. Value types that have a
mission in life of being an accumulator of sorts or a piece of a reference type
have fewer pitfalls for mutability.

®s VANCE MORRISON Today all reference types have an overhead of
8 bytes (16 on 64 bit) per object. Thus if your application memory usage is
dominated by a large number (> 1M) of small objects (< 16 bytes), you will
"waste” a large fraction of your memory on object overhead. You can avoid
this by putting these objects into a value type array instead (which has 0 per
object overhead).

You can even refer to these elements inside the array as if they were nor-
mal objects by making “smart pointer” value types. These types have two
fields; the first is to the large array, and the second is to the index within the
array. From a user’s point of view, using these "smart pointers” is just like
using normal reference types, but you have saved large amounts of memory.

The downside to this technique is that you don’t get garbage collection
on elements in your array. Thus, this technique should be used only when
that is not an issue (e.g., when vou have a large read-only array of small
structures).

1. Immutable types are types that don't have any public members that can modify this
instance. For example, System.String is immutable. Its members, such as ToUpper, do not
modify the string on which they are called but return a new modified string instead and
leave the original string unchanged.

4.2 Choosing Between Class and Struct g 87

As a rule of thumb, the majority of types in a framework should be
classes. There are, however, some situations in which the characteristics of
a value type make it more appropriate to use structs.

v/ CONSIDER defining a struct instead of a class if instances of the type are
small and commonly short-lived or are commonly embedded in other

objects.

X AvVOID defining a struct unless the type has all of the following

characteristics:
» Itlogically represents a single value, similar to primitive types (int,
double, etc.).
» It has an instance size under 16 bytes.
= Itis immutable.

» It will not have to be boxed frequently.

In all other cases, you should define your types as classes.

®s JEFFREY RICHTER In my opinion, a value type should be defined for
types that have approximately 16 bytes or less. Value types can be more
than 16 bytes if you don’t intend to pass them to other methods or copy
them to and from a collection class (like an array). I would also define a
value type if you expect instances of the type to be used for short periods of
time (usually they are created in a method and no longer needed after a
method returns). I used to discourage defining value types if you thought
that instances of them would be placed in a collection due to all the boxing
that would have to be done. But, fortunately, newer versions of the CLR, C#,
and other languages support generics so that boxing is no longer necessary
when putting value type instances in a collection.

"s ERIC GUNNERSON Rather than avoiding all value types that are big-
ger than 16 bytes in size, use this guideline as a trigger to do more investiga-
tion. Figure out how your type is used and do some benchmarking to
understand what implications a bigger value type might have.

Also consider a value type if it is part of a set of types where all the oth-
ers are value types. Having one reference type in such a group will likely be
confusing.

88

m Type Design Guidelines

"s JOE DUFFY I frequently struggle with the reference versus value type
decision. Although these rules are very black-and-white, there is a fairly
large cliff you jump off of when you decide to implement a reference type.
This decision means you will pay the cost of heap allocation for each
instance—which can impact scalability on multiprocessor machines due to

the shared heap and cost of collections—in addition to at least a pointer of
overhead (due to the object header) and a level of indirection to each access
(due to the need to go through an object reference). That said, my experi-
ence has shown that whenever [attempt to be clever and break any of these
rules, it usually comes back to bite me.

4.3 Choosing Between Class and Interface

In general, classes are the preferred construct for exposing abstractions.

The main drawback of interfaces is that they are much less flexible than
classes when it comes to allowing for evolution of APIs. After yvou ship an
interface, the set of its members is fixed forever. Any additions to the inter-
face would break existing types that implement the interface.

A class offers much more flexibility. You can add members to classes
that have already shipped. As long as the method is not abstract (i.e., as
long as you provide a default implementation of the method), any existing
derived classes continue to tfunction unchanged.

Let’s illustrate the concept with a real example from the NET Frame-
work. The System.I0.Stream abstract class shipped in version 1.0 of the
Framework without any support for timing out pending 1/0O operations.
In version 2.0, several members were added to Stream to allow subclasses
to support timeout-related operations, even when accessed through their
base class APIs.

public abstract class Stream {
public virtual bool CanTimeout {
get { return false; }

}

public virtual int ReadTimeout{
get{
throw new InvalidOperationException(...);

}

4.3 Choosing Between Class and Interface g 89

set {
throw new InvalidOperationException(...);

}
}

public class FileStream : Stream {
public override bool CanTimeout {
get { return true; }

}
public override int ReadTimeout{
get{
}
set {
}
1

The only way to evolve interface-based APIs is to add a new interface
with the additional members. This might seem like a good option, but it
suffers from several problems. Let's illustrate this on a hypothetical
IStream interface. Let’s assume we had shipped the following APIs in ver-
sion 1.0 of the Framework.

public interface IStream {

w e o

}

public class FileStream : IStream {
}

If we wanted to add support for timeouts to streams in version 2.0, we
would have to do something like the following:

public interface ITimeoutEnabledStream : IStream {
int ReadTimeout{ get; set; }

}

public class FileStream : ITimeoutEnabledStream {
public int ReadTimecut{
get{

90

m Type Design Guidelines

{
set {

}

But now we would have a problem with all the existing APlIs that
consume and return IStream. For example, StreamReader has several con-
structor overloads and a property typed as Stream.

public class StreamReader {
public StreamReader(IStream stream)}{ ... }
public IStream BaseStream { get { ... } }

How would we add support for ITimeoutEnabledStream to Stream-
Reader? We would have several options, each with substantial develop-
ment cost and usability issues:

« Leave the StreamReader as is, and ask users who want to access the
timeout-related APIs on the instance returned from BaseStream
property to use a dynamic cast and query for the ITimeout-
EnabledStream interface.

StreamReader reader = GetSomeReader();
ITimeoutEnabledstream stream = reader.BaseStream as ITimeoutEnabledStream;
if(stream != null){

stream.ReadTimeout = 168;

¥

Unfortunately, this option does not perform well in usability studies.
The fact that some streams can now support the new operations is
not immediately apparent to the users of StreamReader APls. Also,
some developers have difficulty understanding and using dynamic
casts.

* Add a new property to StreamReader that would return ITimeout-
EnabledStream if one is passed to the constructor or null if IStream
is passed.

4.3 Choosing Between Class and Interface g 91

StreamReader reader = GetSomeReader();
ITimecutEnabledStream stream = reader.TimeoutEnabledBaseStream;
if{stream!= null}{

stream. ReadTimeout = 188;

}

Such APIs are only marginally better in terms of usability. It's really
not obvious to the user that the TimeoutEnabledBaseStream prop-
erty getter might return null, which results in confusing and often
unexpected NullReferenceExceptions.

* Add a new type called TimeoutEnabledStreamReader that would
take ITimeoutEnabledStream parameters to the constructor over-
loads and return ITimeoutEnabledStream from the BaseStream
property.

The problem with this approach is that every additional type in
the framework adds complexity for the users. What's worse, the
solution usually creates more problems like the one it is trying

to solve. StreamReader itself is used in other APIs. These other
APIs will now need new versions that can operate on the new
TimeoutEnabledStreamReader.

The Framework streaming APIs are based on an abstract class. This
allowed for an addition of timeout functionality in version 2.0 of
the Framework. The addition is straightforward, discoverable, and
had little impact on other parts of the Framework.

StreamReader reader = GetSomeReader();
if(reader.Basestream.CanTimeout){
reader.BaseStream.ReadTimeout = 188;

}

One of the most common arguments in favor of interfaces is that they
allow separating contract from the implementation. However, the argu-
ment incorrectly assumes that you cannot separate contracts from imple-
mentation using classes. Abstract classes residing in a separate assembly
from their concrete implementations are a great way to achieve such sepa-

ration. For example, the contract of IList<T> says that when an item is

92

m Type Design Guidelines

added to a collection, the Count property is incremented by one. Such a
simple contract can be expressed and, what’s more important, locked for
all subtypes, using the following abstract class:

public abstract class CollectionContract<T> : IListeTs {

public void Add(T item){
AddCore(item);
this.count++;

}

public int Count {
get { return this.count; }

}
protected abstract void AddCore(T item);

private int count;

"« KRZYSZTOF CWALINA 1 often hear people saying that interfaces spec-
ify contracts. I believe this is a dangerous myth. Interfaces, by themselves,
do not specify much beyond the syntax required to use an object. The
interface-as-contract myth causes people to do the wrong thing when trying

to separate contracts from implementation, which is a great engineering
practice. Interfaces separate syntax from implementation, which is not that
useful, and the myth provides a false sense of doing the right engineering.
In reality, the contract is semantics, and these can actually be nicely expressed
with some implementation.

COM exposed APIs exclusively through interfaces, but you should not
assume that COM did this because interfaces were superior. COM did it
because COM is an interface standard that was intended to be supported
on many execution environments. CLR is an execution standard, and it

provides a great benefit for libraries that rely on portable implementation.
v/ DO favor defining classes over interfaces.

Class-based APIs can be evolved with much greater ease than interface-
based APIs because it is possible to add members to a class without break-

ing existing code.

4.3 Choosing Between Class and Interface g 93

"s KRZYSZTOF CWALINA Over the course of the three versions of the
NET Framework, I have talked about this guideline with quite a few devel-
opers on our team. Many of them, including those who initially disagreed
with the guideline, have said that they regret having shipped some API as
an interface. I have not heard of even one case in which somebody regretted

that they shipped a class.

®s JEFFREY RICHTER Iagree with Krzysztof in general. However, you do
need to think about some other things. There are some special base classes,
such as MarshalByRefObject. If your library type provides an abstract
base class that isn't itself derived from MarshalByRefObject, then types
that derive from your abstract base class cannot live in a different
AppDomain.

v/ DO use abstract classes instead of interfaces to decou ple the contract
from implementations.

Abstract classes, if designed correctly, allow for the same degree of
decoupling between contract and implementation.

®s CHRIS ANDERSON Here is one instance in which the design guide-
line, if followed too strictly, can paint you into a corner. Abstract types do
version much better, and allow for future extensibility, but they also burn
your one and only one base type. Interfaces are appropriate when you are
really defining a contract between two objects that is invariant over time.

Abstract base types are better for defining a common base for a family of
types. When we did .NET, there was somewhat of a backlash against the
complexity and strictness of COM—interfaces, GUIDs, variants, and IDL
were all seen as bad things. I believe today that we have a more balanced
view of this. All of these COM-isms have their place, and in fact you can see
interfaces coming back as a core concept in Indigo.

94 'm Type Design Guidelines

®s BRIAN PEPIN One thing I've started doing is to actually bake as much
contract into my abstract class as possible. For example, I might want to
have four overloads to a method where each overload offers an increasingly
complex set of parameters. The best way to do this is to provide a nonvir-

tual implementation of these methods on the abstract class and have the
implementations all route to a protected abstract method that provides the
actual implementation. By doing this, you can write all the boring argu-
ment-checking logic once. Developers who want to implement your class

will thank you.

v/ DO define an interface if you need to provide a polymorphic hierarchy
of value types.

Value types cannot inherit from other types, but they can implement
interfaces. For example, IComparable, IFormattable, and IConvertible
are all interfaces, so value types such as Int32, Inté4, and other primi-
tives can all be comparable, formattable, and convertible.

public struct Int32 : IComparable, IFormattable, IConvertible {

b
public struct Intéd4 ; IComparable, IFormattable, IConvertible {

}

®s RICO MARIANI Good interface candidates often have this “mix in”
feel to them. All sorts of objects can be IFormattable—it isn't restricted to
a certain subtype. It’s more like a type attribute. Other times we have inter-
faces that look more like they should be classes—IFormatProvider springs
to mind. The fact that the interface’s name ended in “er” speaks volumes.

®s BRIAN PEPIN Another sign that vou've got a well-defined interface is
that the interface does exactly one thing. If you have an interface that has a
grab bag of functionality, that's a warning sign. You'll end up regretting it
because in the next version of your product you'll want to add new func-
tionality to this rich interface, but you can’t.

4.4 Abstract Class Design m 95

v/ CONSIDER defining interfaces to achieve a similar effect to that of mul-
tiple inheritance.

For example, System.IDisposable and System.ICloneable are both inter-
taces, so types, like System.Drawing.Image, can be both disposable and
cloneable yet still inherit from the System.MarshalByRefObject class.

public class Image : MarshalByRefObject, IDisposable, ICloneable {

}

®s JEFFREY RICHTER When a class is derived from a base class, I say that
the derived class has an “is a” relationship with the base. For example, a
FileStream “isa” Stream. However, when a class implements an interface,

I'say that the implementing class has a “can-do” relationship with the inter-
face. For example, a FileStream “can-do” disposing because it implements
the IDisposable.

4.4 Abstract Class Design

X DO NOT define public or protected internal constructors in abstract types.

Constructors should be public only if users will need to create instances
of the type. Because you cannot create instances of an abstract type, an
abstract type with a public constructor is incorrectly designed and mis-
leading to the users.”

// bad design

public abstract class Claim {
public Claim() {
}

}

// good design

public abstract class Claim {
protected Claim() {

}

2. This also applies to protected internal constructors.

96 m Type Design Guidelines

v/ DO define a protected or an internal constructor in abstract classes.

A protected constructor is more common and simply allows the base
class to do its own initialization when subtypes are created.

public abstract class Claim {
protected Claim{) {

}

An internal constructor can be used to limit concrete implementations
of the abstract class to the assembly defining the class.

public abstract class Claim {
internal Claim() {

}

"s BRAD ABRAMS Many languages (such as C#) will insert a protected
constructor if you do not. It is a good practice to define the constructor

explicitly in the source so that it can be more easily documented and main-
tained over time.

|/ DO provide at least one concrete type that inherits from each abstract
class that you ship.

Doing this helps to validate the design of the abstract class. For exam-
ple, System.I0.FileStream is an implementation of the System.IO.
Stream abstract class.

"s BRAD ABRAMS [have seen countless examples of a “well-designed”
base class or interface where the designers spent hundreds of hours debat-
ing and tweaking the design only to have it blown out of the water when

the first real-world client came to use the design. Far too often these real-
world clients come too late in the product cycle to allow time for the correct
fix. Forcing yourself to provide at least one concrete implementation reduces
the chances of finding a new problem late in the product cycle.

4.5 Static Class Design m 97

®s CHRIS SELLS My rule of thumb for testing a type or set of types is to

have three people write three apps against it based on scenarios you hope

to support. If the client code is pretty in all three cases, you've done a good
job. Otherwise, you should consider refactoring until pretty happens.

4.5 Static Class Design

Astatic class is defined as a class that contains only static members (of course
besides the instance members inherited from System.0Object and possibly a
private constructor). Some languages provide built-in support for static
classes. In C# 2.0 and later, when a class is declared to be static, it is sealed,
abstract, and no instance members can be overridden or declared.

public static class File {
}

If vour language does not have built-in support for static classes, you
can declare such classes manually as shown in the following C++

example:
public class File abstract sealed {

}

Static classes are a compromise between pure object-oriented design
and simplicity. They are commonly used to provide shortcuts to other
operations (such as System.I0.File), holders of extension methods, or
tunctionality for which a full object-oriented wrapper is unwarranted
(such as System.Environment).

I/ DO use static classes sparingly.
Static classes should be used only as supporting classes for the object-
oriented core of the framework.

X DO NOT treat static classes as a miscellaneous bucket.

There should be a clear charter for the class.

98

m Type Design Guidelines

X DO NOT declare or override instance members in static classes.

v/ DO declare static classes as sealed, abstract, and add a private instance
constructor if your programming language does not have built-in sup-
port for static classes.

", BRIAN GRUNKEMEYER In the .NET Framework 1.0, I wrote the code
for the System.Environment class, which is an excellent example of a
static class. I messed up and accidentally added a property to this class that
wasn't static (HasShutdownStarted). Because it was an instance method
on a class that could never be instantiated, no one could call it. We didn’t
discover the problem early enough in the product cycle to fix it before
releasing version 1.0.

If I were inventing a new language, [would explicitly add the concept of
a static class into the language to help people avoid falling into this trap.
And in fact, C# 2.0 did add support for static classes!

®s JEFFREY RICHTER Make sure that you do not attempt to define a static
structure, because structures (value types) can always be instantiated, no
matter what. Only classes can be static.

4.6 Interface Design

Although most APIs are best modeled using classes and structs, there are
cases in which interfaces are more appropriate or are the only option.

The CLR does not support multiple inheritance (i.e., CLR classes can-
not inherit from more than one base class), but it does allow types to imple-
ment one or more interfaces in addition to inheriting from a base class.
Therefore, interfaces are often used to achieve the effect of multiple inheri-
tance. For example, IDisposable is an interface that allows types to sup-
port disposability independent of any other inheritance hierarchy in which

I:hey,-r want to participal_‘e.

public class Component : MarshalByRefObject, IDisposable, IComponent {

¥

4.6 Interface Design m 99

The other situation in which defining an interface is appropriate is in
creating a common interface that can be supported by several types,
including some value types. Value types cannot inherit from types other
than System.ValueType, but they can implement interfaces, so using an

interface is the only option in order to provide a common base type.

public struct Boolean : IComparable {

}
public class String: IComparable {

& B @

}

v/ DO define an interface if yvou need some common APl to be supported
by a set of tvpes that includes value types.

v/ CONSIDER defining an interface if you need to support its functionality
on types that already inherit from some other type.

X AVOID using marker interfaces (interfaces with no members).

If you need to mark a class as having a specific characteristic (marker),
in general, use a custom attribute rather than an interface.

J/ Avoid
public interface IImmutable {} // empty interface

public class Key: IImmutable {

}

// Consider
[Immutable]
public class key {

}

Methods can be implemented to reject parameters that are not marked
with a specific attribute, as follows:

public void Add(Key key, object value){
if(!key.GetType().IsDefined(typeof(ImmutableAttribute), false)){
throw new ArgumentException("The parameter must be immutable”,"key");

}

100

m Type Design Guidelines

"s RICO MARIANI Of course any kind of marking like this has a cost.
Attribute testing is a lot more costly than type checking. You might find that
it's necessary to use the marker interface approach for performance

reasons—measure and see. My own experience is that true markers (with
no members) don’t come up very often. Most of the time, you need a no-
kidding-around interface with actual functionality to do the job, in which
case there is no choice to make.

The problem with this approach is that the check for the custom attri-
bute can occur only at runtime. Sometimes it is very important that the
check for the marker be done at compile-time. For example, a method that
can serialize objects of any type might be more concerned with verifying
the presence of the marker than with type verification at compile-time.
Using marker interfaces might be acceptable in such situations. The fol-
lowing example illustrates this design approach:

public interface ITextSerializable {} // empty interface
public void Serialize(ITextSerializable item){
// use reflection to serialize all public properties

v Do provide at least one type that is an implementation of an interface.

Doing this helps to validate the design of the interface. For example,
System.Collections.Generic.List<T> is an implementation of the
System.Collections.Generic.IList<T> interface.

v Do provide at least one API that consumes each interface you define (a
method taking the interface as a parameter or a property typed as the
interface).

Doing this helps to validate the interface design. For example, List<T>.
Sort consumes the IComparer<T> interface.

X DO NOT add members to an interface that has previously shipped.

4.7 Struct Design m

Doing so would break implementations of the interface. You should
create a new interface in order to avoid versioning problems.

Except for the situations described in these guidelines, you should, in
general, choose classes rather than interfaces in designing managed

code reusable libraries.

4.7 Struct Design

The general-purpose value type is most often referred to as a struct, its C#
keyword. This section provides guidelines for general struct design.
Section 4.8 presents guidelines for the design of a special case of value
type, the enum.

X DO NOT provide a default constructor for a struct.

Following this guideline allows arrays of structs to be created without
having to run the constructor on each item of the array. Notice that C#
does not allow structs to have default constructors.

X DO NOT define mutable value types.

Mutable value types have several problems. For example, when a prop-
erty getter returns a value type, the caller receives a copy. Because the
copy is created implicitly, developers might not be aware that they are
mutating the copy, and not the original value. Also, some languages
(dynamic languages, in particular) have problems using mutable value
types because even local variables, when dereferenced, cause a copy to
be made.

// bad design

public struct ZipCode {
int fiveDigitCode;
int plusFourExtension;

public int FiveDigitCode { get; set; } // get/set properties
public int PlusFourExtension { get; set; }

101

102 @ Type Design Guidelines

/[good design

public struct ZipCode {
int fiveDigitCode;
int plusFourExtension;

public ZipCede(int fiveDigitCode, int plusFourExtension){...}
public ZipCode{int fiveDigitCode):this{fiveDigitCode,®){}

public int FiveDigitCode { get; } // get-only properties
public int PlusFourExtension { get; }

v/ DO ensure that a state where all instance data is set to zero, false, or null
(as appropriate) is valid.

This prevents accidental creation of invalid instances when an array of
the structs is created. For example, the following struct is incorrectly
designed. The parameterized constructor is meant to ensure a valid
state, but the constructor is not executed when an array of the struct is
created and so the instance field value gets initialized to 0, which is not

a valid value for this type.

// bad design
public struct Positivelnteger {
int value;

public PositiveInteger{int value) {
if (value <= @) throw new ArgumentException{...);
this.value = value;

}

public override string ToString() {
return value.Tostring();

}

The problem can be fixed by ensuring that the default state (in this case,
the value field equal to 0) is a valid logical state for the type.

{/ good design
public struct PositiveInteger {
int value; // the logical value is value+1

4.8 Enum Design m

public PositiveInteger{int value) {
if (value <= 8) throw new ArgumentException(...);
this.value = value-1;

b

public override string ToString() {
return (value+l).Tostring();

}

v Do implement IEquatable<T> on value types.

The object.Equals method on value types causes boxing, and its
default implementation is not very efficient, because it uses reflection.
IEquatable<T>.Equals can have much better performance and can be
implemented so that it will not cause boxing. See section 8.6 for guide-
lines on implementing IEquatable<T>.

X DO NOT explicitly extend System.VvalueType. In fact, most languages

prevent this.

In general, structs can be very useful but should only be used for small,
single, immutable values that will not be boxed frequently.

The guidelines in the next section are for enum design, a more complex

matter.

4.8 Enum Design

Enums are a special kind of value type. There are two kinds of enums:
simple enums and flag enums.

Simple enums represent small closed sets of choices. A common exam-
ple of the simple enum is a set of colors such as the following:

public enum Color {
Red,
Green,
Blue,

w e

103

104 m Type Design Guidelines

Flag enums are designed to support bitwise operations on the enum
values. A common example of the flags enum is a list of options like the
following:

[Flags]
public enum AttributeTargets {
Assembly = @xe8e1,

Module = Bxaea2z,
Cass = Bxaged,
struct = Bxa088,

®s BRAD ABRAMS We had some debates about what to call enums that
are designed to be bitwise OR-ed together. We considered bitfields, bitflags,
and even bitmasks but ultimately decided to use flag enums because the
term is clear, simple, and approachable.

®s STEVEN CLARKE I'm sure that less experienced developers will be
able to understand bitwise operations on flags. The real question, though, is
whether they would expect to have to do this. Most of the APIs that I have
run through the labs don’t require them to perform such operations, so |
have a feeling that they would have the same experience that we observed
during a recent study—it’s just not something that they are used to doing,
so they might not even think about it.

Where it could get worse, I think, is that if less advanced developers
don’t realize they are working with a set of flags that can be combined with
one another, they might just look at the list available and think that is all the
functionality they can access. As we've seen in other studies, if an APl makes
it look to them as though a specific scenario or requirement isn't immedi-
ately possible, it's likely that they will change the requirement and do what
does appear to be possible rather than being motivated to spend time inves-
tigating what they need to do to achieve the original goal.

Historically, many APls (e.g., Win32 APIs) represented sets of values
using integer constants. Enums make such sets more strongly typed and

thus improve compile-time error checking, usability, and readability. For

4.8 Enum Design m 105

example, use of enums allows development tools to know the possible

choices for a property or a parameter.

v/ DO use an enum to strongly type parameters, properties, and return

values that represent sets of values.

/ DO favor using an enum instead of static constants.

Intellisense provides support for specifying arguments to members with
enum parameters. It does not have similar support for static constants.

[/ Avoid the following

public static class Color {
public static int Red
public static int Green = 1;
public static int Blue

|
=
e

]
I
-

// Favor the following
public enum Color {
Red,
areen,
Blue,

®s JEFFREY RICHTER An enum is a structure with a set of static constants.
The reason to follow this guideline is because you will get some additional

compiler and reflection support if you define an enum versus manually
deﬂzﬂng a structure with static constants.

X DO NOT use an enum for open sets (such as the operating system ver-
sion, names of your friends, etc.).

X DO NOT provide reserved enum values that are intended for future use.

You can always simply add values to the existing enum at a later stage.
See section 4.8.2 for more details on adding values to enums. Reserved
values just pollute the set of real values and tend to lead to user errors.

106 m Type Design Guidelines

public enum DeskType {
Circular,
Oblong,
Rectangular,

/{ the following twe walues should not be here
ReservedForFuturelsel,
ReservedForFuturelse2,

X AvOID publicly exposing enums with only one value.

A common practice for ensuring future extensibility of C APls is to add
reserved parameters to method signatures. Such reserved parameters
can be expressed as enums with a single default value. This should not
be done in managed APIs. Method overloading allows adding param-
eters in future releases.

// Bad Design
public enum SomeOption {
DefaultOption
J/ we will add more options in the future

1

// The option parameter is not needed.

// It can always be added in the future

[/ to an overload of SomeMethod().

public void SomeMethod(SomeOption option) {

+ =8

¥

®s VANCE MORRISON While I agree that this example is not a good prac-
tice, I think it is OK to define enums with no values (or just one “sentinel”
value). The key is whether the type safety (not being allowed to "acciden-
tially” use an int) is valuable. If you pass out int as “handles” to your struc-

ture, passing them out as an enum rather than an intis a REALLY good thing
because it prevents mistakes and makes the intent of the APl clear (what can
I do with this “handle” you returned to me?). When you do this, you may be
defining enums with no values or maybe just one (a “Null” value).

4.8 Enum Design m 107

®s JOE DUFFY Although having enums with one value is a bad idea,
enums with just two values are far more common. If you have a Boolean
parameter and suspect that the choice may have a third possible value
sometime in the future, it's usually a good idea to proactively add the
parameter to a two-valued enum. This can help to avoid versioning prob-
lems down the road.

®s BRAD ABRAMS Like Joe, I believe an enum with just two values is a

fine and common practice. I much prefer this to a Boolean argument. The
main reason is for code readability. For example, consider:

FileStream f = File.Open ("foo.txt", true, false);

This call gives vou no context whatsoever for understanding the mean-
ing behind true and false. Now consider if the call were:

FileStream f = File.Open ("foo.txt", CasingOptions.CaseSensitive,
FileMade.Open);

X DO NOT include sentinel values in enums.

Although they are sometimes helpful to framework developers, senti-
nel values are confusing to users of the framework. They are used to
track the state of the enum rather than being one of the values from the
set represented by the enum. The following example shows an enum
with an additional sentinel value used to identify the last value of the
enum, which is intended for use in range checks. This is bad practice in

framework design.

public enum DeskType {

Circular =1,
Oblong = 2,
Rectangular = 3,

LastValue = 3 // this sentinel value should not be here

108 m Type Design Guidelines

public void OrderDesk(DeskType desk){
if((desk > DeskType.LastValue){
throw new ArgumentOutOfRangeException(...);

¥
¥

Rather than relying on sentinel values, framework developers should
perform the check using one of the real enum values.

public void OrderDesk(DeskType desk){
if(desk » DeskType.Rectangular || desk < DeskType.Circular){
throw new ArgumentOutOfRangeException(...);

}

®s RICO MARIANI You can get yourself into a lot of trouble by trying to
be too clever with enums. Sentinel values are a great example of this: People
write code like the example shown, but they use the sentinel value
LastValue instead of Rectangular, as recommended. When a new value
comes along and LastValue is updated, their program “automatically”
does the right thing and accepts the new input value without giving an

ArgumentOutOfRangeException. That sounds grand except for all that we
didn’t show, the part that’s doing the actual work and that might not yet
expect or even handle the new value. By avoiding sentinel values you will
be forced to revisit all the right places to ensure that the new value really is
going to work. The few minutes you spend visiting those call sites will be
more than repaid in time you save avoiding bugs.

v Do provide a value of zero on simple enums.

Consider calling the value something like “None.” It such a value is not
appropriate for this particular enum, the most common default value
for the enum should be assigned the underlying value of zero.

public enum Compression {
Mone = @,
GZip,
Deflate,

4.8 Enum Design m 109

public enum EventType {
Error = @,
Warning,
Information,

v/ CONSIDER using Int32 (the default in most programming languages)
as the underlying type of an enum unless any of the following is true:
* The enum is a flags enum and you have more than 32 flags, or
expect to have more in the future.

®s BRAD ABRAMS This might not be as uncommon a concern as you
might first expect. We are only in version 2.0 of the .NET Framework and
we are already running out of values in the CodeDom GeneratorSupport
enum. In retrospect, we should have used a different mechanism for com-
municating the generator support options than an enum.

®s RICO MARIANI Did you know that the CLR supports enums with an
underlying type of float or double even though most languages don't
choose to expose it? This is very handy for strongly typed constants that
happen to be floating point (e.g., a set of canonical conversion factors for
different measuring systems). It's in the ECMA standard.

* The underlying type needs to be different than Int32 for easier
interoperability with unmanaged code expecting different-size enums.
» A smaller underlying type would result in substantial savings in
space. If you expect the enum to be used mainly as an argument for
tlow of control, the size makes little difference. The size savings
might be significant if:
* You expect the enum to be used as a field in a very frequently
instantiated structure or class.
* You expect users to create large arrays or collections of the enum
instances.

* You expect a large number of instances of the enum to be serialized.

110

m Type Design Guidelines

For in-memory usage, be aware that managed objects are always
DWORD-aligned, so you effectively need multiple enums or other small
structures in an instance to pack a smaller enum with in order to make a

difference, because the total instance size is always going to be rounded up

to a DWORD.

"s BRAD ABRAMS Keep in mind that it is a binary breaking change to

change the size of the enum type once you have shipped, so choose wisely—

with an eye on the future. Our experience has been that Int32 is usually the
right choice and thus we made it the default.

v/ DO name flag enums with plural nouns or noun phrases and simple

enums with singular nouns or noun phrases.

See section 3.5.3 for details.

X DO NOT extend System.Enum directly.

System.Enum is a special type used by the CLR to create user-defined
enumerations, Most programming languages provide a programming
element that gives you access to this functionality. For example, in C#

the enum keyvword is used to define an enumeration.

4.8.1 Designing Flag Enums

®. JEFFREY RICHTER I use flag enums quite frequently in my own pro-
gramming. They store very efficiently in memory, and manipulation is
very fast. In addition, they can be used with interlocked operations, mak-
ing them ideal for solving thread synchronization problems. I'd love to

see the System.Enum type offer a bunch of additional methods that could
be easily inlined by the JIT compiler that would make source code easier
to read and maintain. Here are some of the methods I'd like to see added
to System.Enum: IsExactlyOneBitSet, CountOnBits, AreAllBitsOn,
AreAnyBitsOn, and TurnBitsOnOff.

/ DO apply the system.FlagsAttribute to flag enums. Do not apply this
PPy y E 2 PPy
attribute to simple enums.

4.8 Enum Design m

[Flags]
public enum AttributeTargets {

v/ DO use powers of two for the flag enum values so they can be freely

combined using the bitwise OR operation.

[Flags]
public enum WatcherChangeTypes {
Created = @x@ea2,
Deleted = BxeE84,
Changed = @x8ga8,
Renamed = @x@0la,
}

v/ CONSIDER providing special enum values for commonly used combi-
nations of flags.

Bitwise operations are an advanced concept and should not be required
for simple tasks. FileAccess.ReadWrite is an example of such a special

value.

[Flags]

public enum FileAccess {
Read = 1,
Write = 2,
ReadwWrite = Read | Write

X AYOID creating flag enums where certain combinations of values are

invalid.

The system.Reflection.BindingFlags enum is an example of an incor-
rect design of this kind. The enum tries to represent many different
concepts, such as visibility, staticness, member kind, and so on.

[Flags]

public enum BindingFlags {
Instance,
Static,

NonPublic,
Public,

111

112 m Type Design Guidelines

CreateInstance,
GetField,
SetField,
GetProperty,
SetProperty,
InvokeMethed,

Certain combinations of the values are not valid. For example, the Type.
GetMembers method accepts this enum as a parameter, but the docu-
mentation for the method warns users, “You must specify either
BindingFlags.Instance or BindingFlags.Static in order to get a
return.” Similar warnings apply to several other values of the enum.

If you have an enum with this problem, you should separate the values
of the enum into two or more enums or other types. For example, the
Reflection APIs could have been designed as tollows:

[Flags]

public enum Visibilities {
Publie,
MonPublic

1

[Flags]

public enum MemberScopes {
Instance,
Statie

I

[Flags]

public enum MemberKinds {
Constructor;
Field,
PropertyGetter,
Propertysetter,
Method,

i

public class Type {
public MemberInfo[] GetMembers(Memberkinds members,
visibilities visibility,
MemberScopes scope);

4.8 Enum Design m 113

X AVOID using flag enum values of zero unless the value represents “all
flags are cleared” and is named appropriately, as prescribed by the next
guideline.

The following example shows a common implementation of a check
that programmers use to determine if a flag is set (see the if-statement
in the example). The check works as expected for all flag enum values
except the value of zero, where the Boolean expression always evalu-
ates to true.

[Flags]
public enum SomeFlag {
Valued = @, // this might be confusing to users
ValueB = 1,
ValueC = 2,
ValueBAndC = ValueB | Valuec,

}

SomeFlag flags = GetValue();
if ((flags & SomeFlag.vValued) == SomeFlag.Valued) {

¥

®s ANDERS HEJLSBERG Note that in C# the literal constant 0 implicitly
converts to any enum type, so you could just write:

if (Foo.SomeFlag == @)...

We support this special conversion in order to provide programmers
with a consistent way of writing the default value of an enum type, which
by CLR decree is “all bits zero” for any value type.

v/ DO name the zero value of flag enums None. For a flag enum, the value
must always mean “all flags are cleared.”

[Flags]

public enum Borderstyle {
Fixed3iD = Px1,
FixedSingle = X2,
Mone = @xe

}

if (foo.BorderStyle == BorderStyle.None)....

114 @ Type Design Guidelines

®s VANCE MORRISON Note that the zero value is special in that it is the
default value that will be assigned if no other assignment is made. Thus, it
has the potential to be the most common value. Your design should accom-
modate this. In particular, the zero value should be either of the following:

* Avery good default value (when there is such a default)

* An error value that is checked by your APIs (when there is no good
default value and you want to ensure that users set something)

4.8.2 Adding Values to Enums

[tis very common to discover that you need to add values to an enum after
you have already shipped it. There is a potential application compatibility
problem when the newly added value is returned from an existing API,
because poorly written applications might not handle the new value cor-
rectly. Documentation, samples, and FxCop rules encourage application
developers to write robust code that can help applications deal with unex-
pected values. Therefore, it is generally acceptable to add values to enums,
but as with most guidelines there might be exceptions to the rule based on

the specifics of the framework.

v/ CONSIDER adding values to enums, despite a small compatibility risk.

If you have real data about application incompatibilities caused by
additions to an enum, consider adding a new API that returns the new
and old values, and deprecate the old API, which should continue
returning just the old values. This will ensure that your existing appli-
cations remain compatible.

"= CLEMENS SZYPERSKI Adding a value to an enum presents a very
real possibility of breaking a client. Before the addition of the new enum
value, a client that was throwing unconditionally in the default case pre-

sumably never actually threw the exception, and the corresponding catch
path is likely untested. Now that the new enum value can pop up, the client
will throw and likely fold.

4.9 Nested Types m 115

The biggest concern with adding values to enums is that you dont know
whether clients perform an exhaustive switch over an enum or a progres-
sive case analysis across wider-spread code. Even with these FxCop rules in
place and even when it is assumed that client apps pass FxCop without
warnings, we still would not know about code that performs things like if
(myEnum == someValue) ... in various places.

Clients might instead perform point-wise case analyses across their
code, resulting in fragility under enum versioning. It is important to pro-
vide specific guidelines to developers of enum client code detailing what
they need to do to survive the addition of new elements to enums they use.
Developing with the suspected future versioning of an enum in mind is the
required attitude.

®s ANTHONY MOORE Enum values that have a usage pattern of method
or property return values should usually not be changed (even by addition)
after being shipped because of usage in switch or enum statements,
DateTimeKind is an example of this.

Enums that are primarily used as input arguments are generally safe to

add members to, because code that has followed the argument validation
guidelines will at worst throw an ArgumentException if it encounters the
new value. FileAccess on FileStream is an example of this.

In general, it is safe to add members to flags enums. Compared to regu-
lar enums, it is much harder to write code against them that would be
broken by the presence of new values,

4.9 Nested Types

A nested type is a type defined within the scope of another type, which is
called the enclosing type. A nested type has access to all members of its
enclosing type. For example, it has access to private tields defined in the
enclosing type and to protected fields defined in all ascendants of the

enclosing type.

// enclosing type
public class QuterType {
private string name;

116

m Type Design Guidelines

[/ nested type
public class InnerType {
public InnerType(QuterType outer){
[/ the name field is private, but it works just fine
Console.WriteLine{outer.name);

In general, nested types should be used sparingly. There are several
reasons for this. Some developers are not fully familiar with the concept.
These developers might, for example, have problems with the syntax of
declaring variables of nested types. Nested types are also very tightly cou-
pled with their enclosing types, and as such are not suited to be general-
purpose types.

Nested types are best suited for modeling implementation details of
their enclosing types. The end user should rarely have to declare variables
of a nested type and almost never should have to explicitly instantiate
nested types. For example, the enumerator of a collection can be a nested
type of that collection. Enumerators are usually instantiated by their enclos-
ing type, and because many languages support the foreach statement, enu-
merator variables rarely have to be declared by the end user.

v/ DO use nested types when the relationship between the nested type
and its outer type is such that member-accessibility semantics are
desirable.

For example, the nested type needs to have access to private members

of the outer type.

public OrderCollection : IEnumerable<Order> {
Order[] data = ...;

public IEnumerator<Order> GetEnumerator(){
return new OrderEnumerator(this);

¥

[/ This nested type will have access to the data array
/f of its outer type.
class OrderEnumerator : IEnumerator<Order> {

}

4.9 Nested Types m 117

X DO NOT use public nested types as a logical grouping construct; use
namespaces for this.

x AVOID publicly exposed nested types. The only exception to this is if
variables of the nested type need to be declared only in rare scenarios
such as subclassing or other advanced customization scenarios.

®s KRZYSZTOF CWALINA The main motivation for this guideline is
that many less skilled developers don’t understand why some type
names have dots in them and some don’t. As long as they don’t have to
type in the type name, they don't care. But the moment you ask them

to declare a variable of a nested type, they get lost. Therefore, in gen-
eral, we avoid nested types and use them only in places where develop-
ers almost never have to declare variables of that tvpe (e.g., collection

enumerators).

X DO NOT use nested tvpes if the type is likely to be referenced outside of

the containing type.

For example, an enum passed to a method defined on a class should
not be defined as a nested type in the class.

X DO NOT use nested types if they need to be instantiated by client code.
If a type has a public constructor, it should probably not be nested.

If a type can be instantiated, that seems to indicate the type has a place
in the framework on its own (you can create it, work with it, and destroy
it without ever using the outer type), and thus should not be nested.
Inner types should not be widely reused outside of the outer type with-

out any relationship whatsoever to the outer type.
X DO NOT define a nested type as a member of an interface. Many lan-
guages do not support such a construct.

In general, nested types should be used sparingly, and exposure as

public types should be avoided.

118

m Type Design Guidelines

4.10 Types and Assembly Metadata

Types reside in assemblies, which in most cases are packaged in the form

of DLLs or executables (EXEs). There are several important attributes that

should be applied to assemblies that contain public types. This section
describes guidelines related to these attributes.

v Do apply the CLSCompliant(true) attribute to assemblies with public

types.

[assembly:CLSCompliant(true)]

The attribute is a declaration that the types contained in the assembly
are CLS* compliant and so can be used by all NET languages.? Some
languages, such as C#, verify compliance® with the standard if the attri-
bute is applied.

For example, unsigned integers are not in the CLS subset. Therefore, it
vou add an API that uses UIn32 (for example), C# is going to generate a
compilation warning. To comply with the CLS standard, the assembly
must provide a compliant alternative and explicitly declare the non-
compliant API as CLSCompliant (false).

public static class Console {

[CLSCompliant(false)]
public void Write(uint value); // not CLS compliant

public void Write(long value); // CLS compliant alternative

w

The CLS standard is an interoperability agreement between framework developers and
language developers as to what subset of the CLR tvpe system can be used in framework
APls so that these APls can be used by all CLS-compliant languages.

All that support the CLS standard and almaost all of the CLR languages do.

C# verifies compliance with most of the CLS rules. Some rules are not automatically verifi-
able. For example, the standard does not say that an assembly cannot have noncompliant
APls. It only says that noncompliant APls must be marked with CLsCompliant(false) and
that a compliant alternative must exist. But, of course, the existence of an alternative to a
noncompliant API cannot be verified automatically.

4.10 Types and Assembly Metadata m

v DO apply AssemblyVersionAttribute to assemblies with public types.

[assembly:AssemblyVersion(...)]

v/ CONSIDER using the format <V>.<5>..<R> for the assembly ver-
sion, where V is the major version number, S is the servicing number, B
is the build number, and R is the build revision number.

For example, this is how the version attribute is applied in System.Core.

dll, which shipped as part of NET Framework 3.5:

[assembly:AssemblyVersion("3.5.21822.8")]

v Do apply the following informational attributes to assemblies. These
attributes are used by tools, such as Visual Studio, to inform the user of

the assembly about its contents.

[assembly:AssemblyTitle("System.Core.d11")]
[assembly:AssemblyCompany({ "Microsoft Corporation”)]
[assembly:AssemblyProduct("Micrasoft .MET Framework")]
[assembly:AssemblyDescription(...}]

v/ CONSIDER applying Comvisible(false) to your assembly. COM-
callable APIs need to be designed explicitly. As a rule of thumb, .NET
assemblies should not be visible to COM. If you do design the APIs to
be COM-callable, you can apply Comvisible(true) either to the indi-
vidual APIs or to the whole assembly.

v/ CONSIDER applying AssemblyFileVersionAttribute and Assembly-
CopyrightAttribute in order to provide additional information about
the assembly.

SUMMARY

This chapter presented guidelines that describe when and how to design
classes, structs, and interfaces.
The next chapter goes to the next level in type design—the design of

members.

119

www.EBooksWorld.ir

l5i

Member Design

M ETHODS, PROPERTIES, EVENTS, constructors, and fields are collectively
referred to as members. Members are ultimately the means by which
framework functionality is exposed to the end users of a framework.

Members can be virtual or nonvirtual, concrete or abstract, static or
instance, and can have several different scopes of accessibility. All this
variety provides incredible expressiveness but at the same time requires
care on the part of the framework designer.

This chapter offers basic guidelines that should be followed when
designing members of any type. Chapter 6 spells out additional guidelines

related to members that need to support extensibility.

5.1 General Member Design Guidelines

Most member design guidelines are specific to the kind of member being
designed and are described later in this chapter. There are, however, some
broad design conventions applicable to different kinds of members. This

section discusses such conventions.

5.1.1 Member Overloading
Member overloading means creating two or more members on the same

type that differ only in the number or type of parameters but have the

121

122 @ Member Design

same name. For example, in the following, the WritelLine method is

overloaded:

public static class Console {
public void WriteLine();
public void WritelLine(string value);
public void WritelLine(bool value);

88

}

Because only methods, constructors, and indexed properties can have
parameters, only those members can be overloaded.

®s BRENT RECTOR Technically, the CLR allows additional overloading.
For example, multiple fields in the same scope can have the same name as
long as the fields have differing types, and multiple methods in the same
scope can have the same name, number, and type of parameters as long as

the methods have differing return types. However, few languages above IL
support such distinctions. If you created an API using such distinctions, the
API wouldn’t be usable from most programming languages. Therefore, it's
a useful fiction to restrict discussion of overloading to methods, construc-

tors, and indexed properties.

Overloading is one of the most important techniques for improving
usability, productivity, and readability of reusable libraries. Overloading
on the number of parameters makes it possible to provide simpler ver-
sions of constructors and methods. Overloading on the parameter type
makes it possible to use the same member name for members performing
identical operations on a selected set of different types.

For example, System.DateTime has several constructor overloads. The
most powerful but at the same time the most complex one takes eight
parameters. Thanks to constructor overloading, the type also supports a
shortened constructor that takes only three simple parameters: hours, min-

utes, and seconds.

public struct DateTime {
public DateTime(int year, int month, int day,
int hour, int minute, int second,
int millisecond, Calendar calendar) { ... }

public DateTime{int hour, int minute, int second) { ... }

5.1 General Member Design Guidelines g

®s RICO MARIANI This is one case where a simpler API for the program-
mer also results in better code—most calls to the library do not need the
complicated arguments, so the bulk of the call sites are abbreviated. Even

though there might be internal forwarding to the more complicated API,
that forwarding code is shared, so overall there is significantly less code.
Less code means more cache hits, which means faster programs.

This section does not talk about the similarly named but quite different
construct called operator overloading. Operator overloading is described
in section 5.7.

v Do try to use descriptive parameter names to indicate the default used
by shorter overloads.

In a family of members overloaded on the number of parameters, the
longer overload should use parameter names that indicate the default
value used by the corresponding shorter member. This is mostly appli-
cable to Boolean parameters. For example, in the following code, the
first short overload does a case-sensitive look-up. The second longer
overload adds a Boolean parameter that can be used to control whether
the look-up is case sensitive or not. The parameter is named ignoreCase
rather than caseSensitive to indicate that the longer overload should
be used to ignore case and that the shorter overload probably defaults
to the opposite, a case-sensitive look-up.

public class Type {
public MethodInfo GetMethod(string name); //ignoreCase = false
public MethodInfo GetMethod(string name, Boolean ignoreCase);

"s BRAD ABRAMS Notice that this APl would be even better if it used an

enum rather than the Boolean parameter. As you see in section 5.8.1, an
enum argument would make it easier to understand code calling this APL

X AVOID arbitrarily varying parameter names in overloads. If a parameter
in one overload represents the same input as a parameter in another

overload, the parameters should have the same name.

123

124

m Member Design

public class String {

{/ correct
public int IndexOf (string value) { ... }
public int Index0Of (string value, int startIndex) { ... }

{/ incorrect
public int IndexOf (string value) { ... }
public int IndexOf (string str, int startIndex) { ... }

X AvOID being inconsistent in the ordering of parameters in overloaded
members. Parameters with the same name should appear in the same
position in all overloads.

public class EventLog {
public EventLog();
public EventLog(string logName};
public EventLog({string logName, string machineName);
public EventLog(string loghame, string machineName, string source);

There are specific cases where this otherwise very strict guideline can
be broken. For example, a params array parameter has to be the last param-
eter in a parameter list. If a params array parameter appears in an over-
loaded member, the APl designer might need to make a trade-off and
either settle for inconsistent parameter ordering or not use the params
modifier. For more information on the params array parameters, see sec-
tion 5.8.4.

Another case where the guideline might need to be violated is when
the parameter list contains out parameters. These parameters should in
general appear at the end of the parameter list, which again means that the
API designer might need tosettle for a slightly inconsistent order of param-
eters in overloads with out parameters. See section 5.8 for more informa-
tion about out parameters.

v/ DO make only the longest overload virtual (if extensibility is required).

Shorter overloads should simply call through to a longer overload.

5.1 General Member Design Guidelines m 125

public class String {
public int IndexOf (string s){
return Indexof (s, 8);

}
public int IndexOf (string s, int startIndex){

return Index0f (s, startIndex, s.Length};
}

public virtual int IndexOf (string s, int startIndex, int count){
//do real work here

}

For more information on the design of virtual members, see Chapter 6.

"s BRIAN PEPIN Remember that you can apply this pattern to abstract
classes, too. In your abstract class, you can perform all necessary argument
checking in nonabstract, nonvirtual methods and then provide a single
abstract method for the developer to implement.

®s CHRIS SELLS 1 love this guideline, not only because it makes the
library code easier to reason about, but because it makes it easier for me to
write. If [have to implement each overload from scratch instead of making
the less complicated ones call the more complicated ones, then I have to test
and maintain all that copied code, too, which I'm far too lazy to do
properly.

Further, if I've got more than two overloads, [always make the less com-
plicated ones call the next more complicated one and not the most compli-
cated one, like the three overloads of Index0f shown previously for String.
That way, I'm not hard-coding defaults in more than one place—if I had to
do that, I'd probably get it wrong,.

X DO NOT use ref or out modifiers to overload members.
For example, you should not do the following:
public class SomeType {

public void SomeMethod{string name){ ... }
public void SomeMethod{out string name}{ ... }

126

m Member Design

Some languages cannot resolve calls to overloads like this. In addition,
such overloads usually have completely different semantics and prob-
ably should not be overloads but two separate methods instead.

DO NOT have overloads with parameters at the same position and simi-

lar types vet with different semantics.

The following example is a bit extreme, but it does illustrate the point:

public class SomeType {
public void Print(long value, string terminator){
Console.Write("{@}{1}",value,terminator);

1
public void Print(int repetitions, string str){
for{int i=@; i< repetitions; i++){
Console.Write(str);

}

The methods just presented should not be overloads. They should have
two different names.

It's difficult in some languages (in particular, dynamically typed lan-
guages) to resolve calls to overloads like these. In most cases, if two
overloads called with a number and a string would do exactly the same
thing, it would not matter which overload is called. For example, the

following is fine, because these methods are semantically equivalent:

public static class Console {
public void WriteLine(long value){ ... }
public void WriteLine(int value){ ... }

v/ DO allow null to be passed for optional arguments.

If a method takes optional arguments that are reference types, allow
null to be passed to indicate that the default value should be used. This
avoids the problem of having to check for null betore calling an API, as
shown here:

if (geometry==null) DrawGeometry(brush, pen);
else DrawGeometry(brush, pen, geometry);

5.1 General Member Design Guidelines m 127

"s BRAD ABRAMS Notice that this guideline is not intended to encour-

age developers to use null as a magic constant but to help them avoid

explicit checking, as previously described. In fact, whenever you have to
use literal null when calling an AP], it indicates an error in your code or in
the framework not providing the appropriate overload.

v/ DO use member overloading rather than defining members with default
arguments.

Default arguments are not CLS compliant.

' Bad Design
Class Point
Sub Move(x As Integer, Optional y As Integer = 8)
Me.x = Me.x + X
Me.y = Me.y + ¥
End Sub
End Class

' Good Design
Class Point
Sub Move(x As Integer)
Move (x,8)
End Sub
Sub Move(x As Integer, y As Integer)
Me.x = Mea.x + X
Me.y = Me.y + ¢
End Sub
End Class

®s RICO MARIANI Languages tend to implement default arguments by
implementing only the full function and then padding out the provided
arguments at each call site to the necessary full list using the defaults. This
isn’t necessarily the best thing to do at all, because now each call site has the
code for the full argument list. It might be better if languages instead used

default argument notation as “syntactic sugar” for creating the two over-
loads in the “good design.” It looks like more code has to run, but the
accrued benefits of code sharing can easily offset that extra cost and give
you the net best performance with the good pattern. In addition, that pat-
tern is CLS-compliant. Bottom line: The good pattern is likely to win on a
performance basis as well as on a compliance basis.

128 @ Member Design

®s JEFFREY RICHTER In addition to this not being CLS-compliant, there
is also a versioning issue here, and the version issue is why C# and other
languages don’t even offer this feature. Imagine version 1 of a method that
sets an optional parameter to 123. When compiling code that calls this

method without specifying the optional parameter, the compiler will embed
the default value (123} into the code at the call site. Now, if version 2 of the
method changes the optional parameter to 863, then, if the calling code is
not recompiled, it will call version 2 of the method passing in 123 (version
1’s default, not version 2's default).

5.1.2 Implementing Interface Members Explicitly

Explicit interface member implementation allows an interface member to
be implemented so that it is only callable when the instance is cast to the
interface type. For example, consider the following definition:

public struct Int32 : IConvertible {
int IConvertible.ToInt32 () {..}

}

[/ calling ToInt32 defined on Int32

int i = @;

i.ToInt32(); // does not compile
((IConvertible)i).ToInt32(); // works just fine

In general, implementing interface members explicitly is straightfor-
ward and follows the same general guidelines as those for methods, prop-
erties, or events, However, there are some specific guidelines concerning
implementing interface members explicitly and these are described next.

"s ANDERS HEJLSBERG Programmers working in other environments
consistently complain about the need for internal methods to be public just
s0 a class can implement some worker interface. Explicit member imple-

mentations are the correct solution to that problem. Yes, it is true that C#
doesn’t give you syntax to call the base implementation of such members,
but I have seen very few actual requests for that feature.

5.1 General Member Design Guidelines m 129

X AVOID implementing interface members explicitly without having a
strong reason to do so.

Explicitly implemented members can be contusing to developers
because such members don’t appear in the list of public members and

can also cause unnecessary boxing of value types.

®s KRZYSZTOF CWALINA You need to be especially careful when consid-
ering explicitly implementing members on value types. Casting a value
type to an interface, which is the only way to call explicitly implemented
members, causes boxing.

®s RICO MARIANI Value types are often very simple types with very sim-
ple operations on them. You must be especially careful about incurring extra
dispatching costs on any of these operations, If the main work at hand is
something as simple as comparing one value to another or reinterpreting an
integer in another format, then just the cost of the function calls might be
more than the actual work you have to do. Keep this in mind or you might
find that you have created a value type that is fundamentally unusable for

its primary (cheap) purpose.

"s JEFFREY RICHTER In general, the reason to explicitly implement an
interface method is if your type also has another method with the same
name and parameters but with a different return type, for example:

class Collection : IEnumerable {
IEnumerator IEnumerable.GetEnumerator() { ... }
public MyEnumerator GetEnumerator() { ... }

}

The Collection class can’t have two methods called GetEnumerator
that differ only in return value unless the version that returns an
IEnumerator is an explicitly implemented interface method (as shown ear-
lier). Now, if someone calls GetEnumerator, they are calling the strongly
typed version of the method that returns MyEnumerator. Aside from this
example, there are few other reasons to implement an interface method
explicitly.

130 m Member Design

®s STEVEN CLARKE One common observation we have made in the API
usability studies is that many developers assume that the reason members
have been implemented explicitly is that they are not supposed to be used

in common scenarios. Thus, they sometimes have a tendency to avoid using
these members and spend time looking for some other way to accomplish
their task.

v/ CONSIDER implementing interface members explicitly if the members
are intended to be called only through the interface.

This includes mainly members supporting framework infrastructure,
such as data binding or serialization. For example, ICollection<T>.
IsReadOnly is intended to be accessed mainly by the data-binding infra-
structure through the ICollection<T> interface. It is almost never
accessed directly when using types implementing the interface. There-
fore, List<T> implements the member explicitly.

\/ CONSIDER implementing interface members explicitly to simulate vari-

ance (change parameters or return type in “overridden” members).

For example, IList implementations often change the type of the
parameters and returned values to create strongly typed collections by
explicitly implementing (hiding) the loosely typed member and adding
the publicly implemented strongly typed member.

public c¢lass StringCollection : IList {
public string this[int index]{ ... }
object IList.this[int index] { ... }

v/ CONSIDER implementing interface members explicitly to hide a mem-
ber and add an equivalent member with a better name.

You can say that this amounts to renaming a member. For example,
System.I0.FileStreamimplements IDisposable.Dispose explicitly and
renames it to FileStream.Close.

5.1 General Member Design Guidelines m 131

// this is not exactly how FileStream does it but this simplification
// best illustrates the concept
public class FileStream : IDisposable {

void IDisposable.Dispose() { Close(); }

public void Close(} { ... }

}

Such member renaming should be done extremely sparingly. In most
cases, the added confusion is a bigger problem than the suboptimal
name of the interface member.

"s RICO MARIANI Even this example is plagued with problems. Should
Close() be calling IDisposable.Dispose() or should it call some shared
helper function (that's Dispose(true) in this example)? And how does a
client of your API know that it's really the same thing? Do they Close()

and Dispose()? In what order? All of these questions will plague your cli-
ents, so the advice to do this «a-md'_rE-rrmaa*l:.,r sparingly is well taken. I sometimes
wish we had syntax to say Close = Dispose so that the equivalence of
these methods would be discoverable by inspecting, and could even be
enforced.

X DO NOT use explicit members as a security boundary.

Such members can be called by any code by simply casting an instance
to the interface.

"s RICO MARIANI Generally, objects that have security issues should
expose the fewest possible interfaces and inherit as little as possible. Get
your code reuse by encapsulation rather than inheritance and seal as much
as you can. My biggest dissent with the guidelines is that they do not rec-

ommend sealing as often as I believe they should. Where there are security
issues, be more careful and consider sealing more aggressively, inheriting
less aggressively, and using explicit (sealed) implementations of those inter-
faces you need to offer.

v Do provide a protected virtual member that offers the same functional-
ity as the explicitly implemented member if the functionality is meant

to be specialized by derived classes.

132 m Member Design

Explicitly implemented members cannot be overridden. They can be
redefined, but then it is impossible for subtypes to call the base meth-
od’s implementation. It is recommended that vou name the protected
member by either using the same name or affixing Core to the interface

member name.

[Serializable]
public class List<T>» : ISerializable {

void ISerializable.GetObjectData(
serializationInfo info, StreamingContext context) {
GetObjectData(info,context);

}

protected virtual void GetObjectData(
SerializationInfo info, StreamingContext context) {

®s RICO MARIANI Classes designed to be subclassed in normal use need

extra care. The times when the Core functions are called is part of the con-

tract, so document it well and try not to change it. Access to protected mem-
bers might allow partially trusted code to do bad things to the internal state.
You must code with the expectation that the subclass will be hostile.

5.1.3 Choosing Between Properties and Methods
When designing members of a type, one of the most common decisions
a library designer must make is to choose whether a member should be a
property or a method.

On a high level, there are two general styles of API design in terms of
usage of properties and methods. In method-heavy APIs, methods have a
large number of parameters, and the types have fewer properties.

public class PersenFinder {
public string FindPersonsiame (
int height,
int weight,
string haircolor,

5.1 General Member Design Guidelines m 133

string eyeColeor,
int shoeSize,
Connection database

'H
}

In property-heavy APIs, methods have a small number of parameters
and more properties to control the semantics of the methods.

public class PersonFinder {
public int Height { get; set; }
public int Weight { get; set; }
public string HairColor { get;set; }
public string EyeColor { get; set; }
public int ShoeSize { get; set; }

public string FindPersonsMame (Connection database);

®s RICO MARIANI Note the huge difference in semantics. With proper-
ties, you must (or can, if you see that as a benefit) set each field indepen-
dently, and the PersonFinder can only be used for one call at one time
because it captures the result of the find as well as the input. With the func-
tional contract, multiple threads can use the very same finder and there is
only one function call. This is not a small decision we are making here.

®. CHRIS ANDERSON 1 have to firmly agree with the guideline encour-

aging the use of properties. Generally, methods with lots of arguments lend
themselves to lots of overloads—you have 15 overloads of a method so you
can get every combination of options. This produces APIs that are super
hard to understand, and inconsistent. Look at DrawRectangle on System.
Drawing.Graphics as a great example. There are a lot of overloads, and
there is always one missing. When you add a new feature to the API, you
have to add more overloads, making it less and less understandable over
time. Properties provide a natural self-documentation aspect to the API,
easy statement completion, progressive understanding, and simple version-
ing. You always have to balance performance, but in general properties
really do add a huge amount of value.

134

m Member Design

All else being equal, the property-heavy design is generally preferable
because methods with many parameters are less approachable to inexperi-
enced developers. This is described in detail in Chapter 2.

Another reason to use properties when they are appropriate is that
property values show up automatically in the debugger, and inspecting a

value of a method is much more cumbersome.

®s CHRIS SELLS TIhave yet to find any developer who prefers things to be
harder than they need to be. If you make something more approachable for

the “inexperienced developer,” then it's more approachable for everyone.

However, it is worth noting that the method-heavy design has the
advantage in terms of performance, and might result in better APIs for
advanced users.

A rule of thumb is that methods should represent actions and proper-
ties should represent data. Properties are preferred over methods if every-
thing else is equal.

"s RICO MARIANI Properties probably result in more performance crimes
than any other language feature. You must remember that the property
looks like a simple field access to your customers and comes with an expec-
tation that it is no more costly than a field access. You can expect your call-
ers will write straightforward-looking code to access the properties, and
they will be astonished if this is expensive. Similarly, they will be aston-
ished if the behavior changes over time so that it becomes costly, or if it is
costly with some subtypes and not with others.

®: JOE DUFFY Properties should contain a tiny amount of code. If you
avoid if-statements, try /catch blocks, calls to other methods, etc., and strive
to make them nothing more than a simple field access, it is highly likely the
CLR’s JIT compiler will inline all accesses to them. Doing this helps to avoid
the performance crimes that Rico mentions in his comment.

v/ CONSIDER using a property if the member represents a logical attribute
of the type.

5.1 General Member Design Guidelines m 135

For example, Button.Color is a property because color is an attribute of
a button.

"s BRAD ABRAMS Early in the implementation of the .NET Framework
1.0, when we first added a first-class construct of properties to the system,
we went in and blanket-changed all the Get<Name> methods to <Name>
properties. For example, Type . GetName() became Type . Name. This worked

out well in many places, but not in the Guid class where we had a method
called Guid.GetNext() that generated the next Guid in a sequence. When
we changed it to a Guid.Next property, it became quite confusing because
GUIDs do not naturally have a next-value attribute. Luckily, we fixed this
back to a GetNext () method before we shipped.

v/ DO use a property, rather than a method, if the value of the property is
stored in the process memory and the property would just provide
access to the value.

For example, a member that retrieves the name of a Customer from a

tield stored in the object should be a property.

public Customer {
public Customer({string name){
this.name = name;

b
public string MName {
get { return this.name; }

}

private string name;

v/ DO use a method, rather than a property, in the following situations:

* The operation is orders of magnitude slower than a field access
would be. If you are even considering providing an asynchronous
version of an operation to avoid blocking the thread, it is very likely
that the operation is too expensive to be a property. In particular,
operations that access the network or the file system (other than
once for initialization) should likely be methods, not properties.

136 m Member Design

"s JEFFREY RICHTER If you follow the performance guideline to its logi-
cal extreme, types that are ultimately derived from MarshalByRefObject

should never have any properties because the object could be on a remote
machine somewhere and there is no telling how long accessing the property
will take.

» The operation is a conversion, such as Object.ToString method.

* The operation returns a different result each time it is called, even if
the parameters don’t change. For example, the Guid.NewGuid
method returns a different value each time it is called.

®s JEFFREY RICHTER The DateTime.Now property is an example of a
place in the Framework where this property should have been a method
because the operation returns a different result each time.

» The operation has a significant and observable side effect. Notice
that populating an internal cache is not generally considered an
observable side effect.

®s BRIAN PEPIN The Handle property on a Windows Forms control is an
example of where too many side effects might occur. If the control has not
had its handle created yet, accessing the Handle property will create it. I
can’t tell you how many times I've completely changed the result of a

debugging session by setting up a watch on the Handle property. The
debugger’s watch will actually create the control’s handle, often hiding
your bug.

* The operation returns a copy of an internal state (this does not
include copies of value type objects returned on the stack).

* The operation returns an array.
Properties that return arrays can be very misleading. Usually it is nec-

essary to return a copy of an internal array so that the user cannot
change the internal state. This could lead to inefficient code.

5.1 General Member Design Guidelines g

In the following example, the Employees property is accessed twice in
every iteration of the loop. That would be 2n + 1 copies for the follow-
ing short code sample:

Company microsoft = GetCompanyData("MSFT");
for (int 1 = @; i < microsoft.Employees.Length; i++) {
if (microsoft.Employees[i].Alias == "kcwalina"){

}

This problem can be addressed in one of two ways:

» Change the property to a method, which communicates to callers
that they are not just accessing an internal field and probably are
creating an array every time they call the method. Given that, users
are more likely to call the method once, cache the result, and work
with the cached array.

Company microsoft = GetCompanyData("MSFT");
Employees|] employees = microsoft.GetEmployees();
for (int i = 8; i < employees.Length; i++) {

if (employees[i].Alias == "kcwalina™){

B AR

}

» Change the property to return a collection instead of an array.
You can use ReadOnlyCollection<T> to provide public read-only
access to a private array. Alternatively, you can use a subclass of
Collection<T> to provide controlled read-write access, where you
can be notified when the collection is modified by the user code.
See section 8.3 for more details on using ReadonlyCollection<T>
and Collection<T>.

public ReadOnlyCellection<Employee> Employees {
get { return roEmployees; }

}

private Employee[] employees;

private ReadOnlyCollection<Employee> roEmployees;

137

1383 @ Member Design

"s BRAD ABRAMS Some of the guidelines in this book were debated and
agreed on in the abstract; others were learned in the school of hard knocks.
The guideline on properties that return arrays is in the school of hard knocks
camp. When we were investigating some perf{}rmance issues in version 1.0
of the .NET Framework, we noticed that thousands of arrays were being
created and quickly trashed. It turns out that many places in the Framework
itself ran into this pattern. Needless to say, we fixed those instances and the
guidelines.

®s RICO MARIANI I hope you've read this far—you really must under-
stand that the preceding guideline is designed to avoid some pretty big
problems. I'd encourage you to remember this shorthand: Use properties
for simple access to simple data with a simple computation. Don't stray
from that pattern.

5.2 Property Design

Although properties are technically very similar to methods, they are
quite different in terms of their usage scenarios. They should be seen as
smart fields. They have the calling syntax of fields, and the flexibility of

methods.

v’ DO create get-only properties if the caller should not be able to change
the value of the property.
Keep in mind that if the type of the property is a mutable reference type,
the property value can be changed even if the property is get-only.

X DONOT provide set-only properties or properties with the setter having
broader accessibility than the getter.

For example, do not use properties with a public setter and a protected
getter.

If the property getter cannot be provided, implement the functionality
as a method instead. Consider starting the method name with Set and

5.2 Property Design m

follow with what vou would have named the property. For example,
AppDomain has a method called SetCachePath instead of having a set-
only property called CachePath.

v DO provide sensible default values for all properties, ensuring that the

defaults do not result in a security hole or terribly inefficient code.

v/ DO allow properties to be set in any order even if this results in a tem-
porary invalid state of the object.

It is common for two or more properties to be interrelated to a point
where some values of one property might be invalid given the values
of other properties on the same object. In such cases, exceptions result-
ing from the invalid state should be postponed until the interrelated
properties are actually used together by the object.

®s RICO MARIANI This happens a lot in business objects used in a three-
tier system. You cannot do much more than basic validation of the proper-
ties when they are set. You have to provide an explicit “commit” method of
some kind so that you know the caller is completely done with the update.
Avoid validation that you cannot do with local knowledge (i.e., don’t go to
the database, etc.). Remember that there is a strong expectation that setting
a property is not much more expensive than setting a field.

®s BRIAN PEPIN While working on the code generator for the Windows
Forms designer, I had a lot of people ask me for a way to tell the code gen-
erator how to order properties. I stubbornly refused every time, because it
adds a huge amount of complexity for developers. It's easy to dictate an
order for your properties, but how does your property ordering mix in with
classes that derive from you? Also, if it is complicated to describe to a code
generator how things need to be ordered, imagine how complicated it will
be to explain this to developers.

v Do preserve the previous value if a property setter throws an
exception.

X AVOID throwing exceptions from property getters,

139

140 @m Member Design

Property getters should be simple operations and should not have
any preconditions. If a getter can throw an exception, it should prob-
ably be redesigned to be a method. Notice that this rule does not apply
to indexers, where we do expect exceptions as a result of validating

the arguments.

®s PATRICK DUSSUD Notice that this guideline only applies to property
getters. It is OK to throw an exception in a property setter. It is very much
like setting an array element, which can throw as well (and not just when
checking the index bound but the possibility of tvpe mismatch between the
value and the array element type).

"s JASON CLARK TPatrick’s guidance speaks to one of the key reasons that
exceptions and object-oriented programming environments go hand in
hand. Object-oriented environments impose many circumstances whereby
the developer of a method has limited or no control of the methods signa-
ture. Properties, events, constructors, virtual overrides, and operator over-
loads are examples of this. What exceptions do is take the error response of
a method call out of band of the signature or return type. This introduces
the necessary flexibility to both reflect and react to failure in any method
regardless of the syntax sugar that restricts signature decisions.

®s JOE DUFFY Another pattern to avoid is blocking the thread inside of a
property, because of either I/Q or some synchronization operation. This is
the extreme example of “doing too much work” inside of a property. In the
worst case (deadlock), the property may never actually return to the caller.
If the property accesses shared state, it may be necessary to acquire a lock in
order to access it safely, but anything more complicated (like waiting on a
WaitHandle) is an indication that a method is a better design choice.

5.2.1 Indexed Property Design
An indexed property is a special property that can have parameters and

can be called with special syntax similar to array indexing.

5.2 Property Design g

public class String {
public char this[int index] {

get { .. }
1

string city = "Seattle”;
Console.WriteLine(city[®]); // this will print 'S’

Indexed properties are commonly referred to as indexers. Indexers
should be used only in APIs that provide access to items in a logical collec-
tion. For example, a string is a collection of characters, and the indexer on
System.String was added to access its characters.

®s RICO MARIANI Be extra careful with these—you can expect them to be

called in a loop! Keep them very simple.

v/ CONSIDER using indexers to provide access to data stored in an inter-
nal array.

v/ CONSIDER providing indexers on types representing collections of
items.

X AVOID using indexed properties with more than one parameter.

If the design requires multiple parameters, reconsider whether the
property really represents an accessor to a logical collection. If it does
not, use methods instead. Consider starting the method name with Get
or Set.

X AVOID indexers with parameter types other than System.Int32, System.
Inte4, System.String, System.0Object, or an enum.

If the design requires other types of parameters, strongly reevaluate
whether the API really represents an accessor to a logical collection. If
it does not, use a method. Consider starting the method name with
Get or Set.

v/ DO use the name Ttem for indexed properties unless there is an obvi-
ously better name (e.g., see the Chars property on System.String).

141

142 m Member Design

In C#, indexers are by default named Item. The IndexerNameAttribute

can be used to customize this name.

public sealed class string {
[System.Runtime.CompilerServices. IndexerNameAttribute("Chars")]
public char this[int index] {

get { ... }

X DO NOT provide both an indexer and methods that are semantically
equivalent.
In the following example, the indexer should be changed to a method.
// Bad design
public class Type {
[System.Runtime.CompilerServices.IndexerNameAttribute("Members"}]

public MemberInfo this[string membernName]{ ... }
public MemberInfo GetMember(string memberName, Boolean ignoreCase){ ... }

X DO NOT provide more than one family of overloaded indexers in one
type.
This is enforced by the C# compiler.

X DO NOT use nondefault indexed properties.
This is enforced by the C# compiler.

5.2.2 Property Change Notification Events
Sometimes it is useful to provide an event notifying the user of changes in
a property value. For example, System.Windows.Forms.Control raises a

TextChanged event after the value of its Text property has changed.

public class Control : Component{
string text = String. Empty;

public event EventHandler<EventArgs> TextChanged;

public string Text{
get{ return text; }

5.2 Property Design g 143

set{
if (text!=value) {
text = value;
OnTextChanged();

¥

}
}

protected virtual void OnTextChanged(){
EventHandler<Eventargs> handler = TextChanged;
if({handler!=null){

handler{this,Eventargs.Empty);

}
}
}

The guidelines that follow describe when property change events are
appropriate and their recommended design for these APls.

®s RICO MARIANI Recall some of the previous rules about properties:
They should look and act like fields as much as possible, because library
users will think of them and use them as though they were fields. Here
we're practically guaranteeing that the property setter will have a side effect
because we're allowing arbitrary user code to run. We're also causing mul-
tiple function calls to be made for each set. All of that cross-wiring of objects
and handlers often causes “object spaghetti.” If the notifications are not at a
high enough level, they will be much too frequent and the connections too
complex, rendering the system both unusable and indescribable.

"s CHRIS SELLS For data binding to work properly in WPF or Windows
Forms, objects with properties must raise property change events, prefera-
bly via INotifyPropertyChanged.

v/ CONSIDER raising change notification events when property values in
high-level APIs (usually designer components) are modified.
If there is a good scenario for a user to know when a property of an

object is changing, the object should raise a change notification event
for the property.

144

m Member Design

However, it is unlikely to be worth the overhead to raise such events
tor low-level APIs such as base types or collections. For example,
List<T> would not raise such events when a new item is added to the
list and the Count property changes.

®s CHRISSELLS Because List<T> doesn’t implement any of the notifica-
tion APIs for data binding, and because I like data binding, I find myself

using ObservableCollection<T> instead, which implements INotify-
CollectionChanged.

v/ CONSIDER raising change notification events when the value of a prop-
erty changes via external forces.

If a property value changes via some external force (in a way other than
by calling methods on the object), raise events indicate to the developer
that the value is changing and has changed. A good example is the Text
property of a text box control. When the user types text in a TextBox,
the property value automatically changes.

The next section provides guidelines for constructor design.

5.3 Constructor Design

There are two kinds of constructors: type constructors and instance
constructors,

public class Customer {
public Custemer{) { ... } // instance constructor
static Customer() { ... } // tvpe constructor

-

Type constructors are static and are run by the CLR before the type is
used. Instance constructors run when an instance of a type is created.

Type constructors cannot take any parameters. Instance constructors
can. Instance constructors that don’t take any parameters are often called
default constructors.

5.3 Constructor Design m

Constructors are the most natural way to create instances of a type.
Most developers will search and try to use a constructor before they con-
sider alternative ways of creating instances (such as factory methods).

v/ CONSIDER providing simple, ideally default, constructors.

A simple constructor has a very small number of parameters, and all
parameters are primitives or enums. Such simple constructors increase
usability of the framework.

®s PHIL HAACK If you have a type that has a required dependency on
another type, that is, an instance of your type won't work if it doesn’t have
a proper instance of this type, then you should allow passing that type in
via a constructor parameter.

I see the constructor parameter list as defining the set of required depen-
dencies for your type. Following this approach makes your type more ame-
nable to dependency injection.

At the same time, [think it's a good practice to have default constructors
that provide reasonable defaults for these required dependencies.

v/ CONSIDER using a static factory method instead of a constructor if the
semantics of the desired operation do not map directly to the construc-
tion of a new instance, or if following the constructor design guidelines

feels unnatural.

See section 9.5 for more details on factory method design.

v/ DO use constructor parameters as shortcuts for setting main
properties.
There should be no difference in semantics between using the empty
constructor followed by some property sets and using a constructor
with multiple arguments. The following three code examples are

equivalent:

/71

var applicationLog = new EventLog();
applicationlog.MachineName = "BillingServer";
applicationlog.Log = "Application”;

145

146 @m Member Design

/2
var applicationLog = new EventlLog("Application™);
applicationLog.MachineName = "BillingServer";

/3

var applicationLog = new EventLog("Application", "BillingServer");

v/ DO use the same name for constructor parameters and a property if the
constructor parameters are used to simply set the property.

The only difference between such parameters and the properties should

be casing.

public class EventlLog {
public EventlLog(string loghame){
this.LogName = logName;

}

public string Loghame {
get { ... }
E'Et{ -1!}

¥

/ DO minimal work in the constructor.

Constructors should not do much work other than capture the con-
structor parameters. The cost of any other processing should be delayed
until required.

v/ DO throw exceptions from instance constructors, if appropriate.

®s CHRISTOPHER BRUMME When an exception propagates out of a con-
structor, the object is already created despite the fact that the new operator
does not return the object reference. If the type defines a Finalize method,

the method will run when the object becomes eligible for garbage collec-
tion. This means that you should make sure the Finalize method can run
on partially constructed objects.

5.3 Constructor Design m

"s JEFFREY RICHTER Alternatively, you could call GC.Suppress-
Finalize from within the constructor itself to avoid having the Finalize
method called and to improve performance.

// finalizable type constructor that can throw
public FinalizableType({)}{

try{
SomeOperationThatCanThrow();

handle = ... // allocate resource that needs to be finalized

¥
catch{Exception){

GC.SuppressFinalize(this);
throw:

¥
}

®s BRIAN GRUNKEMEYER Note that if your constructor throws an excep-
tion, the finalizer for your type will still run! So the finalizer and the
Dispose(false) code path in your type must be prepared to handle an
uninitialized state. Worse yet, if your app must deal with asynchronous
exceptions such as ThreadAbortException or OutOfMemoryException,
your finalizer may have to deal with partially initialized state if your con-
structor threw an exception halfway through! This surprising fact is usually
pretty easy to deal with, but it may take you several years to realize it.

®s JOE DUFFY A related constructor anti-pattern can lead to the same
problem that Chris describes. If a constructor prematurely shares the Hiis
reference, the object may be accessible even if it has thrown an exception
before it was fully constructed. This could happen by setting a field on an
object passed in as an argument, or via a static variable, for example. Avoid
doing this at all costs.

v Do explicitly declare the public default constructor in classes, if such a
constructor is required.

If you don't explicitly declare any constructors on a type, many lan-

guages (such as C#) will automatically add a public default constructor.

147

148

m Member Design

(Abstract classes get a protected constructor.) For example, the follow-

ing two declarations are equivalent in C#:

public class Customer {

¥

public class Customer {
public Customer(){}
¥

Adding a parameterized constructor to a class prevents the compiler
from adding the default constructor. This often causes accidental
breaking changes. Consider a class defined as shown in the following
example:

public class Customer {

¥

Users of the class can call the default constructor, which the compiler

automatically added in this case, to create an instance of the class.

var customer = new Customer();

It is quite common to add a parameterized constructor to an existing
type with a default constructor. If the addition is not done carefully, the
default constructor might not be emitted anymore. For example, the
following addition to the type just declared will “remove” the default
constructor:

public class Customer {
public Customer(string name) { ... }

¥

This will break code relying on the default constructor and is unlikely
to be caught in a code review. Therefore, the best practice is to always
specify the public default constructor explicitly.

Note that this does not apply to structs. Structs implicitly get default
constructors even if they have a parameterized constructor defined.

5.3 Constructor Design @ 149

X AVOID explicitly defining default constructors on structs,

This makes array creation faster, because if the default constructor is
not defined, it does not have to be run on every slot in the array.! Note
that many compilers, including C#, don’t allow structs to have param-

eterless constructors for this reason.

Consider List<T>, which has a private array field. It would be very
unfortunate if constructors would have to run on every slot when the
array is created, because the collection items are added to the array

after its creation.

Even if a struct does not have a default constructor, instances of the
struct can be created using the default constructor syntax.

public struct Token {
public Teken(Guid id) { this.id = id; }
internal Guid id;

}

var token = new Token(); // this compiles and executes just fine.

The runtime will initialize all of the fields of the struct to their default
values (0/null).

X AVOID calling virtual members on an object inside its constructor.

Calling a virtual member will cause the most derived override to be
called, even if the constructor of the most derived type has not been
fully run yet.

Consider the following example, which prints out “What is wrong?”
when a new instance of Derived is created. The implementer of the
derived class assumes that the value will be set before anyone can call
the Method. However, that is not true, because the Base constructor is
called before the Derived constructor finishes, so any calls it makes to

Method might operate on data that is not yet initialized.

1. Astruct without an explicitly defined constructor still gets one that is provided by the CLR
implicitly, but because the implicit constructor is empty (does not do anything), the run-
time does not have to run it on value types in a newly created array.

150 @ Member Design

public abstract class Base {
public Base() {
Method();

¥
public abstract void Method(};

¥

public class Derived: Base {
private int value;
public Derived() {
value = 1;

}

public override void Method() {
if (value == 1){
Console.Writeline("All is good"};
}

else {
Console.WriteLline("What is wrong?"};

}

Occasionally, the benefits associated with calling virtual members from
a constructor might outweigh the risks. An example of this case is a
helper constructor that initializes virtual properties using parameters
passed to the constructor. It's acceptable to call virtual members from
constructors, given that all the risks are carefully analyzed and you
document the virtual members that you call for the users overriding
the virtual members.

®s CHRISTOPHER BRUMME In unmanaged C++, the vtable is updated
during the construction so that a call to a virtual function during construc-
tion only calls to the level of the object hierarchy that has been constructed.

It’s been my experience that many programmers are as confused by the
C++ behavior as they are about the managed behavior. The fact is that most

programmers don’t think about the semantics of virtual calls during con-
struction and destruction until thev have just finished debugging a failure
related to this.

Either behavior is appropriate for some programs and inappropriate for
others. Both behaviors can be logically defended. For the CLR, the decision

is ultimately based on our desire to support extremely fast object creation.

5.3 Constructor Design m

5.3.1 Type Constructor Guidelines
A type constructor, also called a static constructor, is used to initialize a
type. The runtime calls the static constructor before the first instance of the

type is created or any static members of the type are accessed.

v/ DO make static constructors private.

A static constructor, also called a class constructor, is used to initialize a
type. The CLR calls the static constructor before the first instance of the
type is created or any static members on that type are called. The user
has no control over when the static constructor is called. If a static con-
structor is not private, it can be called by code other than the CLR.
Depending on the operations performed in the constructor, this can
cause unexpected behavior. The C# compiler forces static constructors

to be private.

X DO NOT throw exceptions from static constructors.

If an exception is thrown from a type constructor, the type is not usable

in the current application domain.

"s CHRISTOPHER BRUMME The only time it's OK to throw from a static
constructor is if the type must never again be used in this application
domain. You are basically making the type off-limits in the application
domain where you throw, so you'd better have a good reason, such as if
some important invariant is broken and you would not be secure if usage
were to be permitted.

®s VANCE MORRISON To be clear on this rule, it does not apply to just
explicitly throwing, but any exception, which implies that if the body of the
class constructor has the potential to make method calls (and this is very
likely the case) you need a “try-catch” around the body of your class
constructor.

151

152 m Member Design

v/ CONSIDER initializing static fields inline rather than explicitly using
static constructors, because the runtime is able to optimize the perfor-
mance of types that don’t have an explicitly defined static constructor.

// unoptimized code
public class Foo {
public static readonly int Value;
static Foo() {
Value = 53;

¥
public static veoid PrintValue() {

Console.WriteLine(Value);

h
¥

/f optimized code
public class Foo {
public static readonly int Value = 83;
public static void Printvalue() {
Console.WriteLine(Value);

}
¥

®s CHRISTOPHER BRUMME Be aware that initializing static fields inline
has very loose guarantees about when the fields will be initialized. The
guarantee is that the fields will be initialized before the first time they are
accessed, but it could potentially be much earlier. The CLR reserves the
right to do the initialization before the program even starts running (e.g.,
using NGEN techniques). Explicit static constructors make a very precise
guarantee. They are run before the first static member (code or data) is
accessed, but no earlier.

®s VANCE MORRISON Generally, doing nontrivial work in a class con-
structor is bad because if it fails, you make the class unavailable, and you
have made some nontrivial semantic etfect happen at a potentially surpris-
ing time (do all your users know the rules for precise class construction?).
Thus you should seriously reconsider any design that does nontrivial work
in class constructors. Initializing statics is really the reason class construc-
tors exist, and for that you don't need the static class |} syntax (use static
initialization functions instead). It has less guarantees, but you should not
need stronger guarantees, and the flexibility you give the runtime allows
class construction to be more efficient.

5.4 Event Design 'm

5.4 Event Design

Events are the most commonly used form of callbacks (constructs that
allow the framework to call into user code). Other callback mechanisms
include members taking delegates, virtual members, and interface-based
plug-ins. Data from usability studies indicate that the majority of develop-
ers are more comfortable using events than they are using the other call-
back mechanisms. Events are nicely integrated with Visual Studio and
many language&.

Under the covers, events are not much more than fields that have a
type that is a delegate, plus two methods to manipulate the field. Delegates
used by events have special signatures (by convention) and are referred to
as event handlers.

When users subscribe to an event, they provide an instance of the event
handler bound to a method that will be called when the event is raised.
The method provided by the user is referred to as an event handling
method.

The event handler determines the event handling method’s signature.
By convention, the return type of the method is void and takes two param-
eters. The first parameter represents the object that raised the event. The
second parameter represents event-related data that the object raising the
event wants to pass to the event handling method. The data are often

referred to as event arguments.

var timer = new Timer(1@ea);
timer.Elapsed += new ElapsedEventHandler{TimerElapsedHandlingMethod);

J/ event handling method for Timer.Elapsed
void TimerElapsedHandlingMethod({object sender, ElapsedEventirgs e){

}

Itis important to note that there are two groups of events: events raised
before a state of the system changes, called pre-events, and events raised
after a state changes, called post-events. An example of a pre-event would
be Form.Closing, which is raised before a form is closed. An example of a
post-event would be Form.Closed, which is raised after a form is closed.

153

154 @ Member Design

The following sample shows an AlarmClock class defining an AlarmRaised
post-event.

public ¢lass AlarmClock {
public AlarmClock() {
timer.Elapsed += new ElapsedEventHandler(TimerElapsed);

public event EventHandler<AlarmRaisedEventArgs> AlarmRaised;

public DateTimeOffset AlarmTime {
get { return alarmTime; }
set {
if (alarmTime != value) {

timer.Enabled = false;
alarmTime = value;
TimeSpan delay = alarmTime - DateTimeOffset.MNow;
timer.Interval = delay.TotalMilliseconds;
timer.Enabled = true;

}

protected virtual void OndlarmRaised(AlarmRaisedEventargs e){
EventHandler<AlarmRaisedEventaArgs: handler = AlarmRaised;
if (handler != null) {

handler({this, e);

}

private void TimereElapsed{object sender, ElapsedEventArgs e){
OnAlarmRaised{AlarmRaisedEventargs.Empty);

¥

private Timer timer = new Timer();
private DateTimeOffset alarmTime;

¥

public class AlarmRaisedEventArgs : Eventargs {
new internal static readonly
AlarmRaisedEventArgs Empty = new AlarmRaisedEventargs();

v/ DO use the term “raise” for events rather than “fire” or “trigger.”

When referring to events in documentation, use the phrase “an event

was raised” instead of “an event was fired” or “an event was triggered.”

5.4 Event Design g 155

"s BRAD ABRAMS Why did we decide to use “raised” rather than

“fired?” Well, we certainly have some prior art on our side on this one, but

we also felt like fire was too negative a term. After all, you fire a gun or you
fire an employee. Raise sounds more peaceful.

v/ DO use System.EventHandler<T> instead of manually creating new del-
egates to be used as event handlers.

public class NotifyingContactCollection : Collection<Contacts {
public event EventHandler<ContactAddedEventArgs> ContactAdded;

If you're adding new events to an existing feature area that uses tradi-
tional event handlers, then keep using those in order to remain consis-
tent within the feature area. For example, System.Windows.Forms might
want to continue using manually created handlers.

Also, this guideline does not apply to frameworks that need to run on

one of the early versions of the CLR that does not support Generics.

®s BRIAN PEPIN You wouldn't believe how long we debated this. On one
hand, EventHandler<T> doesn’t really buy vou that much over the one-
line declaration of your own event handler. In fact, the syntax is quite a bit
more confusing. On the other hand, reducing the number of classes that
need to be loaded by your code improves performance. I've never been a

big fan of choosing performance over ease of use (performance gets better
over time; ease of use doesn’t). The current round of compilers allows you
to leave out the new EventHandler<ContactAddedEventArgs>() busi-
ness, however, so this doesn’t really impact ease of use that much. We also
finally solved the last hurdle—getting the Visual Studio designers to under-
stand generic events—so I'll be glad to finally put this debate to bed.

v/ CONSIDER using a subclass of EventArgs as the event argument, unless

you are absolutely sure the event will never need to carry any data to

156 @m Member Design

the event handling method, in which case you can use the EventArgs

type directly.

public class AlarmRaisedEventargs : EventArgs {

¥

If you ship an APl using EventArgs directly, vou will never be able to
add any data to be carried with the event without breaking compatibil-
ity. If you use a subclass, even if initially completely empty, you will be
able to add properties to the subclass when needed.

public c¢lass AlarmRaisedEventéArgs : Eventérgs {
public DateTimeOffset AlarmTime { get; }
)

v/ DO use a protected virtual method to raise each event. This is only
applicable to nonstatic events on unsealed classes, not to structs, sealed
classes, or static events.

For each event, include a corresponding protected virtual method that
raises the event. The purpose of the method is to provide a way for a
derived class to handle the event using an override. Overriding is a
more flexible, faster, and more natural way to handle base class events
in derived classes. By convention, the name of the method should start
with “On” and be followed with the name of the event.

®s RICO MARIANI Note that using an event handler mechanism gives
you maximum flexibility in terms of code that can receive the event—in
principle, any object could be notified. Sometimes all that’s necessary is for
the object to notity itself or more generally the subtype. If that's the case, an
event might be overkill and all you need is a virtual protected OnWhatever()
method. This is both cheaper and simpler than an event.

public class AlarmClock {
public event EventHandler<AlarmRaisedEventaArgs> AlarmRaised;

protected virtual void OnAlarmRaised(AlarmRaisedEventargs e){
EventHandler<AlarmRaisedEventArgs> handler = AlarmRaised;

5.4 Event Design g 157

if (handler != null) {
handler(this, e);

The derived class can choose not to call the base implementation of the
method in its override. Be prepared for this by not including any process-

ing in the method that is required for the base class to work correctly.

®s ERIC GUNNERSON If you have an event in a class, you need to add a
null test before you call the delegate. Typically, you would write:

if (Click !'= null) Click{this, e);

There is actually a possible race condition here: The event can be cleared
between the first and second line. You would actually want to write:

ClickHandler handler = Click;
if (handler != null) handler(this, e);

You might want to do some other sort of synchronization in other sce-
narios. So back to the main question: Why is the null test required? We can't
change the existing behavior of calling through a delegate, because some
apps might depend on it, so it would have to be an addition to the language.
We have talked about adding an Invoke keyword to the language to make
this easier, but after a fair bit of discussion, we decided that we couldn’t do
the right thing all the time, so we elected not to change the way the C# com-

piler behaved.

®s JOE DUFFY An example of other kinds of synchronization you might
need, as Eric alludes to, is event handlers. This is because the code gener-
ated for adding and removing event handlers is not threadsafe. If you need
to support multiple threads subscribing or removing handlers simultane-
ously, you'll need to write custom event add and remove methods that use
locking internally. The AppDomain class does this, for example, so that
threads subscribing to its events (such as ProcessExit) don't race with one
another, which leads to missed subscriptions.

158

m Member Design

v/ DO take one parameter to the protected method that raises an event.
The parameter should be named e and should be typed as the event

argument class.

protected virtual void OnAlarmRaised({AlarmRaisedEventArgs e){
EventHandler<alarmRaisedEventaArgs: handler = AlarmRaised;
if (handler != null) {
handler(this, e);

X DO NOT pass null as the sender when raising a nonstatic event.

v po pass null as the sender when raising a static event.

EventHandler<EventArgs> handler = ...}
if (handler!=null) handler{null,...);

X DO NOT pass null as the event data parameter when raising an event.

You should pass EventArgs.Empty if you don’t want to pass any data
to the event handling method. Developers expect this parameter not

to be null.

v/ CONSIDER raising events that the end user can cancel. This only applies

to pr&events.

Use system.ComponentModel.CancelEventArgs or its subclass as the
event argument to allow the end user to cancel events. For example,
System.Windows.Forms.Form raises a Closing event before a form
closes. The user can cancel the close operation, as shown in the follow-
ing example:

void ClosingHandler({object sender, CancelEventArgs e) {
e.Cancel = true;

The next section describes custom event handler design.

5.5 Field Design 'm

5.4.1 Custom Event Handler Design

There are cases in which EventHandler<T> cannot be used, such as when
the framework needs to work with earlier versions of the CLR, which did
not support Generics. In such cases, you might need to design and develop
a custom event handler delegate.

v/ DO use a return type of void for event handlers.

An event handler can invoke multiple event handling methods, possi-
bly on multiple objects. If event handling methods were allowed to
return a value, there would be multiple return values for each event

invocation.

v/ DO use object as the type of the first parameter of the event handler,
and call it sender.

v/ DO use System.EventArgs or its subclass as the type of the second
parameter of the event handler, and call it e.

X DO NOT have more than two parameters on event handlers.

The following event handler follows all of the preceding guidelines.

public delegate yoid ClickedEventHandler(object sender, ClickedEventirgs e);

®s CHRIS ANDERSON Why? People always ask this. In the end, this is
Just about a pattern. By having event arguments packaged in a class you get
better versioning semantics. By having a common pattern (sender, e)itis

easily learned as the signature for all events. I think back to how bad it was
with Win32—when data was in WPARAM versus LPARAM, and so on. The
pattern becomes noise and developers just assume that event handlers have
scope to the sender and arguments of the event.

5.5 Field Design

The principle of encapsulation is one of the most important notions in
object-oriented design. This principle states that data stored inside an

object should be accessible only to that object.

159

160

m Member Design

A useful way to interpret the principle is to say that a type should be
designed so that changes to fields of that type (name or type changes) can
be made without breaking code other than for members of the type. This
interpretation immediately implies that all fields must be private.

We exclude constant and static read-only fields from this strict restric-
tion, because such fields, almost by definition, are never required to
change.

X DO NOT provide instance fields that are public or protected.

You should provide properties for accessing fields instead of making
them public or protected.

Very trivial property accessors, as shown here, can be inlined by the
Just-in-Time (JIT) compiler and provide performance on a par with that

of accessing a field.

public struct Point{
private int x;
private int y;

public Point(int x, int y){
this.x = %3
this.y = y;

}

public int X {
get{ return x; }

}

public int ¥{
get{ return y; }

}

By not exposing fields directly to the developer, the type can be ver-
sioned more easily, and for the following reasons:
+ A field cannot be changed to a property while maintaining binary
compatibility.
* The presence of executable code in get and set property accessors
allows later improvements, such as demand-creation of an object

on usage of the property, or a property change notification.

5.5 Field Design m

®s CHRIS ANDERSON Fields are the bane of my existence. Because reflec-
tion treats fields and properties as different constructs, any system that
walks an object graph must special-case both of them. Data binding always
looks only at properties; runtime serialization looks only at fields. The fact
that we didn’t unify these two (treating properties as smart fields) is defi-
nitely a regret of mine. However, as Rico Mariani would say, properties
have additional overhead. And as [would say, fields don’t version. You can
never promote a field to be a property when yvou want to add validation,
change notification, put it in an interface, and so on. Fields are private data;
they are the stores behind your public contract, which should be imple-
mented with properties, methods, and events.

"« JEFFREY RICHTER Personally, I always make my fields private. I don't
even expose fields as internal, because doing so would give me no protec-
tion from code in my own assembly.

v/ DO use constant fields for constants that will never change.

The compiler burns the values of const fields directly into calling code.
Therefore, const values can never be changed without the risk of break-

ing compatibility.

public struct Int32 {
public const int MaxValue = @x7Fffffff;
public const int MinValue = unchecked((int)éxzeoesaes) ;

}

v/ DO use public static readonly fields for predefined object instances.

If there are predefined instances of the type, declare them as public
readonly static fields of the type itself.

public struct Color{
public static readonly Color Red = new Color(@x8eearF);
public static readonly Color Green = new Color(8xe@FFea);
public static readonly Color Blue = new Color({@xFFeees);

161

162 m Member Design

X DO NOT assign instances of mutable types to readonly fields.

A mutable type is a type with instances that can be modified after they
are instantiated. For example, arrays, most collections, and streams are
mutable types, but System.Int32, System.Uri, and System.String are
all immutable. The read-only modifier on a reference type field pre-
vents the instance stored in the field from being replaced, but it does
not prevent the field's instance data from being moditied by calling
members changing the instance. The following example shows how it
is possible to change the value of an object referred to by a readonly

field.

public class SomeType {
public static readonly int[] Numbers = new int[1@];

¥

SomeType.Numbers[S] = 18; f/ changes a value in the array

®s JOE DUFFY The real distinction here is deep versus shallow immutabil-
itv. A deeply immutable type is one whose fields are all readonly, and each
field is of a type that itself is also deeply immutable. This ensures that a
whole object graph is transitively immutable. While this is certainly the

most useful kind, shallow immutability can also be useful. What this guide-
line is trying to protect you from is believing vou've exposed a deeply
immutable object graph when in fact it is shallow, and then writing code
that assumes the whole graph is immutable.

The next section offers guidelines for operator overload design.

5.6 Extension Methods

Extension methods are a language feature that allows static methods to be
called using instance method call syntax. These methods must take at least
one parameter, which represents the instance the method is to operate on.
For example, in C#, this is done by using the s modifier on such a param-
eter when defining the method.

5.6 Extension Methods g 163

public static class StringExtensions {
public static bool IsPalindrome{this string s){

1

This extension method can be called as follows:

if({"hello world".IsPalindrome()){
¥

The class that defines such extension methods is referred to as the
“sponsor” class, and it must be declared as static. To use extension meth-
ods, one must import the namespace defining the sponsor class.

X AVOID frivolously defining extension methods, especially on types you
don’t own.

If you do own source code of a type, consider using regular instance
methods instead. If you don’t own, and you want to add a method, be
very careful. Liberal use of extension methods has the potential of clut-

tering APIs of types that were not designed to have these methods.

Another thing to consider is that extension methods are a compile-time
tacility, and not all languages provide support for them. These lan-
guages will have to use the regular static method call syntax to call
extension methods.

There are, of course, scenarios in which extension methods should be

employed. These are outlined in the guidelines that follow.

v/ CONSIDER using extension methods in any of the following scenarios:

» To provide helper functionality relevant to every implementation
of an interface, if said functionality can be written in terms of the
core interface. This is because concrete implementations cannot
otherwise be assigned to interfaces. For example, the LINQ to
Objects operators are implemented as extension methods for all
IEnumerable<T> types. Thus, any IEnumerable<> implementation
is automatically LINQ-enabled.

164 @m Member Design

* When an instance method would introduce a dependency on some
type, but such a dependency would break dependency manage-
ment rules. For example, a dependency from String to System.Uri
is probably not desirable, and so String.ToUri() instance method
returning System.Uri would be the wrong design from a depen-
dency management perspective. A static extension method Uri.
ToUri(this string str) returning System.Uri would be a much
better design.

®s RICO MARIANI The value of this cannot be overstated. Extension
methods provide yvou with a way to give interfaces not just one default
implementation but as many as you need, and you can choose between
them simply by bringing the right namespace(s) into your lexical scope with
using. However, this could be easily abused in the same way that complex
#include combinations in C++ can make the final code hard to read.

Another interesting feature of this manner of adding functionality to a
class is that you could potentially partition (extension) methods of the same
class into different assemblies for performance reasons. Again, this should
not be done lightly, because you could cause great confusion.

This is one of the many times I like to quote from Spiderman—"With
great power comes great responsibility.”

®s PHILHAACK Section 2.2.4.1 covers the topic of layering in namespaces,
which I think applies well to extension methods.

One scenario I've seen is to put functionality that is more advanced or
esoteric in a separate namespace. That way, for core scenarios, these extra
methods do not “pollute” the APIL But for those who know about the
namespace, or need these alternate scenarios, they can add the namespace
and gain access to these extra methods,

The drawback, of course, is that this results in a “hidden” API that is not
very discoverable.

®s JOEDUFFY Extension methods can also be used to provide actual con-
crete method implementations for interfaces. For example, if you ship an
IFoo interface, you can also have a static Foo class with a method public
static void Bar(this IFoo f) that makes all instances of IFoo effec-
tively have an extra Bar method.

5.6 Extension Methods g 165

X AVOID defining extension methods on System.0bject.

VB users will not be able to call such methods on object references using
the extension method syntax. VB does not support calling such meth-
ods because, in VB, declaring a reference as Object forces all method
invocations on it to be late bound (actual member called is determined
at runtime), while bindings to extension methods are determined at

compile-time (early bound). For example:

J/ C# declaration of the extension method
public static class SomeExtensions{
static void SomeMethod({this object 0){...}

}

' VB will fail to compile as VB.NET does not support calling extension
' methods on references types as Object

Dim o As Object = ...

o.SomeMethod();

VB users will have to call the method using the regular static method
call syntax.

SomeExtensions.SomeMethod(o)

Note that the guideline applies to other languages where the same
binding behavior is present, or where extension methods are not sup-

ported.

X DO NOT put extension methods in the same namespace as the extended
tvpe unless it is for adding methods to interfaces or for dependency
management.

Of course, in the latter case, the type would be in a different assembly.

X AVOID defining two or more extension methods with the same signa-
ture, even if they reside in different namespaces.

For example, if two different namespaces defined the same extension
method on the same type, it would be impossible to import both
namespaces in the same file—the compiler would report an ambiguity
if one of the methods is called.

166 m Member Design

namespace A{
public static class AExtensions{
public static void ExtensionMethod(this Foo foo){...}

}
i
namespace B{
public static class BExtensions{
public static wvoid ExtensionMethod(this Foo foo){...}

}
¥

", RICO MARIANI There can be reasons to violate this guideline; for
example, there might be a framework that allowed developers to choose:

using SomeType.Routing.SpeedOptimized;

using SomeType.Routing.SpaceOptimized;

In this case, both namespaces could offer the same services, and devel-
opers simply choose which flavor to use.

The key here is that a natural mutual exclusion exists for a given con-
sumer of the extension so that it avoids the ambiguity. If vou tried to use
both, you would want to see the error so that you would realize you have a
conflict.

®s MIRCEA TROFIN Such a situation may occur when using a mix of
third-party libraries. To resolve it, import in a file only one namespace defin-
ing extension methods on a type, and use fully qualified static method calls
for extension methods defined on the same type in a different namespace.

using A;

T somelObj = ...

some0bj.ExtentionMethod(); //this calls AExtensions.ExtensionMethod
/f to avoid compilation errors,

/f we call explicitly the extension method defined in namespace B
B.BExtensions.ExtensionMethod(somelbj);

5.6 Extension Methods g

v/ CONSIDER defining extension methods in the same namespace as the
extended type if the type is an interface and if the extension methods

are meant to be used in most or all cases.

X DONOT define extension methods implementing a feature innamespaces
normally associated with other features. Instead, define them in the

namespace associated with the feature they belong to.

For example, do not define Uri.ToUri(this string string):Uri in
the System namespace (the namespace containing String). Such an
extension method should probably be defined in the System.Net

namespace.

X AvoID generic naming of namespaces dedicated to extension methods
(e.g., “Extensions”). Use a descriptive name (e.g., “Routing”) instead.

®s ANTHONY MOORE Many developers love the power and expressivity
of extension methods and are tempted to use them in ways that clearly vio-
late these guidelines. In many ways, this seems a lot like operator overload-
ing in the early days of C++, where there was initially vigorous and
“creative” use of operators for nonintuitive cases, including the runtime
libraries of the language.

Owver time the painful lesson was learned, and operator overloading was
one of the features that many companies using C++ all but banned. It pro-
vides a one-off saving of some typing at the expense of future transparency
of the code, and code is read a lot more times than it is written. Using exten-
sion methods for reasons other than the scenarios for interfaces or layering
is very similar to this situation.

As an example, I've had some frustrating experiences with using APls
that enthusiastically use extensions. On a multilanguage project I found
that a pleasant and intuitive object model in one language was awkward in
a language without the support for extension methods. I've also had cases
where [was misled about the type of an instance because some local code
was injecting extensions into it.

Please use extension methods with caution.

167

168 m Member Design

"s BRIAN PEPIN When working on the implementation of the WPF
designer for Visual Studio, we made careful use of extension methods. In
many places in our code we needed to identify properties based on the
values of certain attributes defined for XAML. For example, the content
property of a control can be identified by looking for a ContentProperty-
Attribute on the type, and then using the value of that attribute to look
for a property on the type. Having this code everywhere was cumber-
some, s0 we wrote a set of internal extension methods to Type to do the
work for us:

internal static class XamlTypeExtensions {
internal static PropertyInfe GetContentProperty(this Type source) {

var attrs = source.GetCustomAttributes(typeof
{ContentPropertyfttribute), true);

if (attrs.Length > 8) {

return source.GetProperty(((ContentPropertyAttribute)

attrs[@]).Name);

}

return null;

}

Centralizing these types of operations in a set of internal extension meth-
ods allowed our code to be much cleaner and allowed us to optimize imple-
mentations in one place.

5.7 Operator Overloads

Operator overloads allow framework types to appear as if they were built-
in language primitives. The following snippet shows some of the most

important operator overloads defined by System.Decimal.

public struct Decimal {
public static Decimal operator+(Decimal d);
public static Decimal operator-(Decimal d};
public static Decimal operator++(Decimal d);
public static Decimal operator--(Decimal d);
public static Decimal operator+(Decimal d1, Decimal d2)
public static Decimal operator-(Decimal dl, Decimal d2)
public static Decimal operator*(Decimal dl1, Decimal d2)
public static Decimal operator/(Decimal d1, Decimal d2)
public static Decimal operator¥(Decimal d1, Decimal d2};

F
£l
2
-
k.

5.7 Operator Overloads g 169

public static bool operator==(Decimal d1, Decimal d42);
public static bool operator!=(Decimal d1, Decimal d2);
public static bool operator<(Decimal d1, Decimal d2);

public static bool operator<=(Decimal di, Decimal d2) ;
public static bool operator:(Decimal di, Decimal d2) ;
public static bool operator»=(Decimal di, Decimal dz);

public static implicit operator Decimal(int value);
public static implicit operator Decimal(long value);
public static explicit operator Decimal(float value);
public static explicit operator Decimal(double value);

public static explicit operator int(Decimal value);
public static explicit operator long(Decimal value);
public static explicit operator float(Decimal value);
public static explicit operator double{Decimal value);

Although allowed and useful in some situations, operator overloads
should be used cautiously. There are many cases in which operator over-
loading has been abused, such as when framework designers started to
use operators for operations that should be simple methods. The following
guidelines should help you decide when and how to use operator

overloading.

®s CHRIS SELLS Operator overloads don’t show up in Intellisense, so for
most developers, they don’t exist. Keep that in mind before you go through
the complicated exercise of making sure your operators work and act like

the same operators on the built-in types.

®s KRZYSZTOF CWALINA Normally, overloading is understood as hav-
ing more than one member with the same name but different parameters
defined by one type. In the case of operators, they are said to be overloaded
despite the fact that there might be only one such operator member on a
type. This terminology can be quite confusing, but there is a reason for the
seemingly confusing name.

170

m Member Design

X

Overloading happens when an addition of a member means the com-
piler will have to use the argument list, in addition to the member name, to
resolve which member should be called. So, for example, the moment you
add an operator+ to a custom type, the compiler has to know the types of
arguments (operands) of the following call to know which operator needs

to be called.

public struct BigInteger {
public static BigInteger operator+(BigInt left, BigInt right);
¥

// if » and y are BigInteger instances the operator above will be used
cbject result = x + ¥y;

AVOID defining operator overloads, except in types that should feel like
primitive (built-in) types.

v/ CONSIDER defining operator overloads in a type that should feel like a

primitive type.

For example, System.String has operator== and operator!= defined.

v/ DO define operator overloads in structs that represent numbers (such as

X

System.Decimal).

DO NOT be cute when defining operator overloads.

Operator overloading is useful in cases in which itis immediately obvi-
ous what the result of the operation will be. For example, it makes sense
to be able to subtract one DateTime from another DateTime and get a
TimeSpan. However, it is not appropriate to use the logical union opera-
tor to union two database queries, or to use the shift operator to write
to a stream.

DO NOT provide operator overloads unless at least one of the operands
is of the type defining the overload.

In other words, operators should operate on types that define them.

The C# compiler enforces this guideline.

5.7 Operator Overloads [

public struct RangedInt32 {
public static RangedInt32 operator-(RangedInt32 left, RangedInt32 right);
public static RangedInt32 operator-(RangedInt32 left, int right);
public static RangedInt32 operator-(int left, RangedInt32 right);

J/ the following would vieclate the guideline and in fact does net
J/ compile in C#.
// public static RangedInt32 operator-(int left, int right);

v/ DO overload operators in a symmetric fashion.

For example, if you overload the operator==, you should also overload
the operator!=. Similarly, if you overload the operator<, you should
also overload the operator:, and so on.

"« RICO MARIANI More generally, if you haven't defined a whole family
of overloads (because maybe they don’t all make sense), there's a good

chance that operator overloading isn’t really the best way to express vour
class. Remember that there are no bonus points for using fewer characters
in your method calls.

v/ CONSIDER providing methods with friendly names that correspond to
each overloaded operator.

Many languages do not support operator overloading. For this reason,
it is recommended that types that overload operators include a second-
ary method with an appropriate domain-specific name that provides
equivalent functionality. The following example illustrates this point.

public struct DateTimeOffset {
public static TimeSpan operator-(DateTimeOffset left, DateTimeoffset

right) { ... }
public TimeSpan Subtract(DateTimedffset value) { ... }
}

Table 5-1 contains a list of operators and the corresponding friendly

method names.

171

172 m Member Design

Taeie 5-1: Operators and Corresponding Method Names

C# Operator Metadata Name Friendly Name

Symbol

N/A op_Implicit To<TypeName>/From<TypeName>
N/A op_Explicit To<Typelame>/From<Typelame»
+ (binary) op Addition Add

- (binary) op_ Subtractien Subtract

* (binary) op Multiply Multiply

/ op_Division Divide

% op_Modulus Mod or Remainder

i op_ExclusiveOr Xor

& (binary) op_BitwiseAnd BitwiseAnd

| op_BitwiseOr BitwiseOr

L& op_LogicalAnd And

|| op_Logicalor or

- op_Assign Assign

g op_LeftShift LeftShift

5 op_RightShift RightShift

NSA op_SignedRightshift SignedRightshift
N/A op_UnsignedRightshift UnsignedRightshift
= op_Equality Equals

I= op_Inequality Equals

> op_GreaterThan CompareTo

< op_LessThan CompareTo

b= op_GreaterThanOrEqual CompareTo

5.7 Operator Overloads B

Ci# Operator Metadata Name Friendly Name

Symbol

<= op LessThanOrEqual CompareTo

¥ op_MultiplicationAssignment Multiply

-= op_SubtractionAssignment Subtract

o op_ExclusiveOrAssignment Xor

{{= op_lLeftShiftAssignment Leftshift

%= op_ModulusAssignment Mod

4= op_AdditionAssignment Add

&= op_BitwiseAndAssignment BitwiseAnd

|= op BitwiseOrAssignment BitwiseOr

i op_Comma Comma

f= op DivisionAssignment Divide

BE op_Decrement Decrement

++ op_Increment Increment

- {unary) op_UnaryNegation Megate

+ (unary) op_UnaryPlus Plus

~ op_OnesComplement OnesComplement
5.7.1 Overloading Operator ==
Overloading operator == is quite complicated. The semantics of the

operator need to be compatible with several other members, such as

Object.Equals. For information on this subject, see section 8.9.1.

5.7.2 Conversion Operators
C(‘Jl'l"k’f_‘l'.‘:ii(]l"l L‘.-peraturs are 11113.1'}-’ L‘.-peraturs thﬂt 'ﬁ“(ﬂ’\-’ conversion fl"i_}lT'L one

type to another. The operators must be defined as static members on either

173

174

m Member Design

the operand or the return tyvpe. There are two types of conversion opera-

tors: implicit and explicit.

public struct RangedInt32 {
public static implicit operator int(RangedInt32 value){ ... }
public static explicit operator RangedInt32(int value) { ... }

X DO NOT provide a conversion operator if such conversion is not clearly

expected by the end users.
Ideally, you should have some customer research data showing that the

conversion is expected, or some prior art examples where a similar type

needed such conversion.

DO NOT define conversion operators outside of a type’s domain.

For example, Int32, Double, and Decimal are all numeric types, whereas
DateTime is not. Therefore, there should be no conversion operator to
convert a Double(long) to a DateTime. A constructor is preferred in

such a case.

public struct DateTime {
public DateTime(long ticks){ ... }

DO NOT provide an implicit conversion operator if the conversion is
potentially lossy.

For example, there should not be an implicit conversion from Double to
Int32 because Double has a wider range than Int32. An explicit con-
version operator can be provided even if the conversion is potentially

lossy.
DO NOT throw exceptions from implicit casts.

It is very difficult for end users to understand what is happening,

because they might not be aware that a conversion is taking place.

5.8 Parameter Design g

v/ DO throw System.InvalidCastException if a call to a cast operator
results in a lossy conversion and the contract of the operator does not

allow lossy conversions.

public static explicit operator RangedInt32(long value) {
if (value < Int32.Minvalue || value > Int32.MaxValue) {
throw new InvalidCastException();

}
return new RangedInt32({int)value, Int32.MinValue, Int32.MaxValue);

For information on overloading operator==, see section 8.13. The next

section presents guidelines on parameter design.

5.8 Parameter Design

This section provides broad guidelines on parameter design, including
sections with guidelines for checking arguments. In addition, you should
refer to the parameter naming guidelines described in Chapter 3.

v/ DO use the least derived parameter type that provides the functionality
required by the member.
For example, suppose you want to design a method that enumerates
a collection and prints each item to the console. Such a method should
take IEnumerable as the parameter, not ArrayList or IList, for

example.

public void WriteItemsToConsole{IEnumerable collection){
foreach{object item in collection){
Console.WriteLine(item.ToString());

}

None of the specific IList members needs to be used inside the method.
Typing the parameter as IEnumerable allows the end user to pass col-

lections that implement only IEnumerable and not IList.

175

176 m Member Design

"s RICO MARIANI Interface isn’t everything. If your algorithm needs a
more specialized type to get decent performance, there’s no point in pre-
tending that you only need a base type. Best to make your needs clear—ask

for the type that is required to get the designed behavior. Likewise, if your
method requires certain thread-safety or security features provided by sub-
types, insist on those features in the contract. There's no point in allowing
users to make calls that won't work.

X DO NOT use reserved parameters.

If more input to a member is needed in some future version, a new
overload can be added. For example, it would be bad to reserve a

parameter as follows:

public void Method{SomeCption option, object reserved);

It is better to simply add a parameter in a future version, as shown in

the following example:

public void Method({SomeCption optien);

{/ added in a future version
public void Method{SomeOption option, string path);

X DO NOT have publicly exposed methods that take pointers, arrays of

pointers, or multidimensional arrays as parameters.

Pointers and multidimensional arrays are relatively ditficult to use
properly. In almost all cases, APIs can be redesigned to avoid taking
these types as parameters.

®s RICO MARIANI Sometimes people try these sorts of things to squeeze

out more performance. But remember that you aren’t helping anyone if it’s
fast but also virtually impossible to use correctly.

v Do place all out parameters following all of the by-value and ref
parameters (excluding parameter arrays), even if it results in an incon-
sistency in parameter ordering between overloads (see section 5.1.1).

5.8 Parameter Design g 177

The out parameters can be seen as extra return values, and grouping them

together makes the method signature easier to understand. For example:

public struct DateTimeOffset {
public static bool TryParse(string input, out DateTimeOffset result);
public static bool TryParse(string input, IFormatProvider
formatProvider, DateTimeStyles styles, out DateTimeOffset result);

}

v/ DO be consistent in naming parameters when overriding members or

implementing interface members.

This better communicates the relationship between the methods.

public interface IComparable<T> {
int CompareTo(T other);

public class Nullable<T> : IComparable<Nullable<T>> {
// correct
public int CompareTo{Nullable<T>» other) { ... }

/! incorrect
public int CompareTo(Mullable<T>» nullable) { ... }

public class Object {
public virtual bool Equals{object obj) { ... }

public class String {
// correct, the parameter to the base method is called 'obj'
public override bool Equals(object obj) { ... }

// incorrect, the parameter should be called 'obj'
public override bool Equals{object value) { ... }

5.8.1 Choosing Between Enum and Boolean Parameters

A framework designer often must decide when to use enums and when to
use Booleans for parameters. In general, you should favor using enums
where it improves the readability of the client code, especially in commonly

178 m Member Design

used APIs. If using enums would add unneeded complexity and actually
hurt readability, or if the API is very rarely used, Booleans should be
preferred.

/ DO use enums if a member would otherwise have two or more Boolean

parameters.

Enums are much more readable when it comes to books, documenta-
tion, source code reviews, and so on. For example, look at the following
method call:

Stream stream = File.Open ("foo.txt", true, false);

This call gives the reader no context within which to understand the
meaning behind true and false. The call would be much more usable if
it were to use enums, as follows:

Stream stream = File.Open("foo.txt", CasingOptions.CaseSensitive,
FileMode.Open);

®s ANTHONY MOORE Some have asked why we don’t have a similar
guideline for integers, doubles, and so on. Should we find a way to “name”
them as well? There is a big difference between numeric types and Bool-
eans. You almost always use constants and variables to pass numeric values
around, because it is good programming practice and you don’t want to
have “magic numbers.” However, if you take a look at real-life source code,
this is almost never true of Booleans. Eighty percent of the time a Boolean
argument is passed in as a literal constant, and its intention is to turn a piece
of behavior on or off. We could alternatively try to establish a coding guide-
line that you should never pass a literal value to a method or constructor,
but I don't think it would be practical. I certainly don’t want to define a
constant for each Boolean parameter I'm passing in.

", JON PINCUS Methods with two Boolean parameters, like the one in the
preceding example, allow developers to inadvertently switch the arguments,
and the compiler and static analysis tools can’t help you. Even with just one
parameter, I tend to believe it's still somewhat easier to make a mistake with
Booleans ... let's see, does true mean case insensitive or case sensitive?

5.8 Parameter Design m

®s STEVEN CLARKE The worst example of an unreadable Boolean param-
eter that I had to deal with was the CWnd: :UpdateData method in MFC. It
takes a Boolean that indicates whether a dialog is being initialized or data is

being retrieved. I always had to look up whether to pass true or false to this
method each time I called it. Likewise, each time I read code that called the
method, I had to look it up to see what it meant.

X DO NOT use Booleans unless you are absolutely sure there will never be
a need for more than two values.

Enums give you some room for future addition of values, but you
should be aware of all the implications of adding values to enums,
which are described in section 4.8.2.

"s BRAD ABRAMS We have seen a couple of places in the Framework
where we added a Boolean in one version and in the next one we were
forced to add another Boolean option to account for what could have been a
foreseeable change. Don't let this happen to you: If there is even a slight
possibility of needing more options in the future, use an enum now.

v/ CONSIDER using Booleans for constructor parameters that are truly
two-state values and are simply used to initialize Boolean properties.

®s ANTHONY MOORE An interesting clarification of this guideline for
constructor parameters that map onto properties is that if the value is typi-
cally set in the constructor, an enum value is better. If the value is usua!_l}? set
using the property setter, a Boolean value is better. This thinking helped us

clarify arecent CodeDom workitem toadd IsGlobal onCodeTypeReference.
In this case, it should be an enum because it is typically set in the construc-
tor, but the IsPartial property on CodeTypeDeclaration should be a
Boolean.

5.8.2 Validating Arguments
Rigorous checks on arguments passed to members are a crucial element of
modern reusable libraries. Although argument checks might have a slight

179

180

m Member Design

impact on performance, end users are in general willing to pay the price
for the benefit of better error reporting, which becomes possible if argu-
ments are validated as high on the call stack as possible.

®: RICO MARIANI The key words for me here are “high on the call stack.”
When you get low in the call stack, the amount of work that the functions
are doing is so small that the argument validation becomes a significant,
even dominant, factor in performance, At that point it's a lousy deal. Where

do I tend to just let the runtime throw exceptions rather than prevalidate?
Typically, in comparison and hashing functions; you can expect those to be
called often and with tight requirements. Regular measurements will help
you spot any validations that are too low in the stack.

v/ DO validate arguments passed to public, protected, or explicitly imple-
mented members. Throw System.ArgumentException, or one of its sub-
classes, if the validation fails.

public class StringCollection : IList {
int IList.Add{object item){
string str = item as string;
if{str==null) throw new ArgumenthullException(...};
return Add(str);

Note that the actual validation does not necessarily have to happen in
the public or protected member itself. It could happen at a lower level
in some private or internal routine. The main point is that the entire
surface area that is exposed to the end users checks the arguments.

v DO throw ArgumentNullException if a null argument is passed and the

member does not support null arguments.

v/ DO validate enum parameters.

Do not assume enum arguments will be in the range defined by the
enum. The CLR allows casting any integer value into an enum value

even if the value is not defined in the enum.

5.8 Parameter Design g 181

public void PickCelor(Celor coler) {
if(color » Color.Black || color < Color.White){
throw new ArgumentOutOfRangeException(...);

b

®s VANCE MORRISON I am not a believer in always validating [Flags]
enums. Typically, all you can usefully do for them is to confirm that
“unused” ﬂags are not used, but this also makes your code unnecessarily

fragile (now adding a new flag is a breaking change!). Your code “naturally”
would simply ignore unused flags, and [think that is a reasonable seman-
tics. Note, however, that if certain combinations of flags are illegal, that
should certainly be checked and an appropriate error thrown.

X DO NOT use Enum. IsDefined for enum range checks.

"s BRAD ABRAMS There are really two problems with Enum, IsDefined.
First, it loads reflection and a bunch of cold type metadata, making it a sur-
prisingly expensive call. Second, there is a versioning issue here. Consider
an alternate way to validate enum values.

public void PickColor(Color color) {
// the following check is incorrect!
if (!Enum.IsDefined (typeof(Color), color) {
throw new InvalidEnumfrgumentException(...);

}

// issue: never pass a negative color value
NativeMethods .SetImageColor (color, byte[] image);

}
ff callsite

Foo.PickColor ((Color) -1); //throws InvalideEnumArgumentException

This looks pretty good, even if you know this (mythical) native APl has a
buffer overrun if you pass a color value that is negative. You know this
because you know the enum only defined positive values and you are sure
that any value passed was one of the ones defined in the enum, right? Well,
only half right. You don’t know what values are defined in the enum. Check-
ing at the moment you write this code is not good enough because IsDefined

182 m Member Design

takes the value of the enum at runtime. So if someone later added a new
value (say Ultraviolet = -1) to the enum, IsDefined will start allowing
the value -1 through. This is true whether the enum is defined in the same
assembly as the method or in another assembly.

public enum Color {
Red = 1,
Green = 2,
Blue = 3,
Ultraviolet = -1, //new value added this version

}

Now, that same call site no longer throws.

Jfcauses a buffer overrun in NativeMethods.SetImageColor() Foo.PickColor
{(Color) -1});

The moral of the story is twofold. First, be very careful when you use
Enum.IsDefined in your code. Second, when you design an API to sim-

plify a situation, be sure the fix isn’t worse than the current problem.

"s BRENT RECTOR Enum.IsDefined is surprisingly expensive. How-
ever, I think using Enum. IsDefined is appropriate when you want to deter-
mine whether a value equals a definition in an enumerated hype—but that's not
what the prior example is trving to do.

In the preceding example, the issue is that there is a condition required
before calling the native SetImageColor method: The Color argument can-
not have a negative value. As Brad mentions, the values defined in an enu-
merated type may change from compilation to compilation. In other words,
the constraint applicable to the argument value (which must not be nega-
tive) doesn’t necessarily hold over time for the values defined in the enu-
merated type. Therefore, validating that the Color argument is not negative
by testing whether its value matches a definition in an enumerated type
simply isn't proper validation.

The example is great, though, in that it demonstrates how easily you
can unintentionally misuse Enum. IsDefined, so use it thoughtfully.

5.8 Parameter Design m

v/ DO be aware that mutable arguments might have changed after they
were validated.

If the member is security sensitive, you are encouraged to make a copy
and then validate and process the argument.

®s RICO MARIANI This is one of the many places where you can cash in

on the fact that CLR strings are immutable; there is no need to copy them in
security-sensitive operations.

5.8.3 Parameter Passing
From the perspective of a framework designer, there are three main groups
of parameters: by-value parameters, ref parameters, and out parameters.
When an argument is passed through a by-value parameter, the mem-
ber receives a copy of the actual argument passed in. If the argument is a
value type, a copy of the argument is put on the stack. If the argument is a
reference type, a copy of the reference is put on the stack. Most popular
CLR languages, such as C#, VB.NET, and C++, default to passing param-
eters by value.

public void Add (object value) {...}
®s PAULVICK When moving to .NET, VB changed the default for param-

eters from by-reference to by-value. We did this because the vast majority of
parameters are by-value and so having a default of by-reference meant that

parameters could unintentionally side effect quite easily. Thus, defaulting
to by-value was a safer default and meant that choosing by-reference seman-
tics was a conscious, rather than accidental, decision.

When an argument is passed through a ref parameter, the member
receives a reference to the actual argument passed in. If the argument is a
value type, a reference to the argument is put on the stack. If the argument
is a reference type, a reference to the reference is put on the stack. Ref

183

184

m Member Design

parameters can be used to allow the member to modify arguments passed

by the caller.

public static void Swap(ref object objl, ref object obj2){
object temp = objl;
objl = obj2;
objz = temp;

Out parameters are similar to ref parameters, with some small differ-
ences. The parameter is initially considered unassigned and cannot be read
in the member body before it is assigned some value. Also, the parameter
has to be assigned some value before the member returns. For example,
the following sample will not compile and generates compiler error “Use

of unassigned out parameter ‘uri."”

public class Uri {
public bool TryParse(string uriString, out Uri uri){
Trace.WriteLine{uri);

®. RICO MARIANI oOut is the same as the ref in mechanism, but there are

different (stronger) verification rules because the intent has been made clear
to the compiler and the runtime.

X AvVOID using out or ref parameters.
Using out or ref parameters requires experience with pointers, under-
standing how value types and reference types differ, and handling
methods with multiple return values. Also, the difference between out
and ref parameters is not widely understood. Framework architects

designing for a general audience should not expect users to master
working with out or ref parameters.

5.8 Parameter Design m

"s ANDERS HEJLSBERG As a rule, [am not too crazy about ref and out
parameters in APIs. Such APIs compose very poorly, forcing you to declare
temporary variables. I much prefer functional designs that convey the entire
result in the return value.

"= BRIAN PEPIN If you need to return several pieces of data from a call,
wrap that data up into a class or struct. For example, the NET Framework
has an APT to perform hit testing of controls that returns a HitTestResult

object.

®s JASON CLARK Generics and ref/out parameters interact very nicely.
Normally, the variable used to make a ref call must be an exact type match,
which can be inconvenient, However, if the method is defined with a generic
argument that is merely constrained to the required base type, then vari-
ables of derived types can be used to make the call. Meanwhile, inference
by the compiler makes it unlikely that the caller is impacted by the generic
syntax for the method. Very nice!

X DO NOT pass reference types by reference.

There are some limited exceptions to the rule, such as a method that
can be used to swap references.

public static class Reference {
public veid Swap<T»(ref T objl, ref T obj2){
T temp = obijl;
objl = obj2;
obj2 = temp;
}
}

®s CHRIS SELLS Swap always comes up in these discussions, but I have

not written code that actually needed a swap function since college. Unless
you've got a very good reason, avoid out and ref altogether.

185

186 @m Member Design

5.8.4 Members with Variable Number of Parameters

Members that can take a variable number of arguments are expressed by
providing an array parameter. For example, String provides the following
method:

public class String {
public static string Format({string format, object[] parameters);

}
A user can then call the string. Format method, as follows:

String.Format("File {@} not found in {1}",new object[]{filename,directory});

Adding the C# params keyword to an array parameter changes the
parameter to a so-called params array parameter and provides a shortcut
to creating a temporary array.

public class String {
public static string Format{string format, params object[] parameters);
ki

Doing this allows the user to call the method by passing the array ele-
ments directly in the argument list.

String.Format("File {@} not found in {1}",filename,directory);

Note that the params keyword can be added only to the last parameter
in the parameter list.

®s RICO MARIANI Creating a temporary object array just to make a func-
tion call might sound like a scary thing to do from a performance
perspective—and it can be—but keep in mind that allocations on the GC
heap are quite zippy. The amortized cost of temporary objects is only about
double (or so) what it would cost to do an alloca() in unmanaged code;
that is, it is about double the cost of raw stack use. If the function that you
are calling has a good bit of work to do (e.g., WriteLine()), then the argu-

ment cost won't be a big percentage. On the other hand, an otherwise very
cheap function will suffer measurably if called with a params arrav.

5.8 Parameter Design m

v/ CONSIDER adding the params keyword to array parameters if you
expect the end users to pass arrays with a small number of elements.

It it’s expected that lots of elements will be passed in common scenar-
ios, users will probably not pass these elements inline anyway, and so

the params keyword is not necessary.

®s BRIAN PEPIN There are several places in the Framework where we
didn’t do this, and it still grates on me whenever I have to write code that

creates a bunch of temporary arrays. In many cases, we were able to add
params in a later version, but in other cases adding params made the
method ambiguous and was a source-code breaking change.

X AVOID using params arrays if the caller would almost always have the
input already in an array.

For example, members with byte array parameters would almost never
be called by passing individual bytes. For this reason, byte array param-
eters in the NET Framework do not use the params keyword.

X DO NOT use params arrays if the array is modified by the member tak-

ing the params array parameter.

Because of the fact that many compilers turn the arguments to the mem-
ber into a temporary array at the call site, the array might be a tempo-

rary object, and therefore any modifications to the array will be lost.

v/ CONSIDER using the params keyword in a simple overload, even if a
more complex overload could not use it.

Ask yourself if users would value having the params array in one
overload even if it wasn't in all overloads. Consider the following over-
loaded method:

public class Graphics {
FillPolygon(Brush brush, params Point[] points) { ... }
FillPolygon{Brush brush, Point[] points, FillMode fillMaode) {

}

187

188

m Member Design

The array parameter of the second overload is not the last parameter in
the parameter list. Therefore, it cannot use the params keyword. This
does not mean that the keyword should not be used in the first over-
load, where it is the last parameter. If the first overload is used often,

users will appreciate the addition.

v po try to order parameters to make it possible to use the params

keyword.

Consider the following overloads on PropertyDescriptorCollection:

Sort()

Sort{IComparer comparer)

Sort(string[] names, IComparer comparer)
Sort({params string[] names)

Because of the order of parameters on the third overload, the opportu-
nity to use the params keyword has been lost. The parameters could be
reordered to allow for the params keyword in both overloads.

Sort
Sort
Sort
sort

)

IComparer comparer)
IComparer comparer, params string[] names)
params string[] names)

P T e T e T]

\/ CONSIDER providing special overloads and code paths for calls with a

small number of arguments in extremely performance-sensitive APls.

This makes it possible to avoid creating array objects when the AP is
called with a small number of arguments. Form the names of the param-
eters by taking a singular form of the array parameter and adding a
numeric suffix.

void Format (string formatString, object argl)
void Format (string formatsString, object argl, object arg2)

vold Format (string formatString, params object[] args)

You should only do this if you are going to special-case the entire code
path, not just create an array and call the more general method.

5.8 Parameter Design g 189

"s RICO MARIANI You might also do this if you want to specialize the
code path at some point, even if you can't do it in your first release. That

way, you can change your internal implementation without having vour
clients recompile, and you can do the most important specializations first.

!/ DO be aware that null could be passed as a params array argument.

You should validate that the array is not null before processing.

static void Main() {
sum(1l, 2, 3, 4, 5); //result == 15
Sum{null);
}
static int Sum(params int[] values) {
if({values==null) throw ArgumentNullException(...);
int sum = 8;
foreach (int value in values) {
sum += value;

}

return sum;

®s RICO MARIANI Very low-level functions (those doing only a tiny
amount of work) will find the cost of temporary array creation and array

validation a significant burden. All of this argues in favor of using the
params construct higher up in your stack—in bigger functions that are
doing more work.

X DO NOT use the vara rgs methods, otherwise known as the ellipsis.

Some CLR languages, such as C++, support an alternative convention
tor passing variable parameter lists called varargs methods. The conven-
tion should not be used in frameworks, because it is not CLS compliant.

®. RICO MARIANI Of course “never” in this context means not in the
framework AFPIs—varargs wasn’'t added lightly to C++. If varargs help

you in your internal implementation, by all means use them. Just remember
itisn't CLS-compliant, so it's bad form to use it in public APIs,

190

m Member Design

5.8.5 Pointer Parameters

In general, pointers should not appear in the public surface area of a well-
designed managed code framework. Most of the time, pointers should be
encapsulated. However, in some cases pointers are required for interoper-

ability reasons, and using pointers in such cases is appropriate.

v po provide an alternative for any member that takes a pointer argu-
ment, because pointers are not CLS-compliant.

[CLSCompliant(false)]
public unsafe int GetBytes{char* chars, int charCount,
byte* bytes, int byteCount);

public int GetBytes(char[] chars, int charIndex, int charCount,
byte[] bytes, int byteIndex, int byteCount)

X AVOID doing expensive argument checking of pointer arguments.

In general, argument checking is well worth the cost, but for APIs that
are performance-critical enough to require using pointers, the overhead

is often not worth it.

®s RICO MARIANI This is right in line with my general advice. Put the
argument checking at the right level of your abstraction stack. That will get

you the best diagnostics at the best price. After you get this close to the
metal, those extra tests can be a significant fraction of the job at hand.

v/ DO follow common pointer-related conventions when designing mem-
bers with pointers.

For example, there is no need to pass the start index, because simple

pointer arithmetic can be used to accomplish the same result.

//Bad practice
public unsafe int GetBytes(char* chars, int charIndex, int charCount,
byte* bytes, int byteIndex, int byteCount)

//Better practice
public unsafe int GetBytes(char* chars, int charCount,
byte* bytes, int byteCount)

5.8 Parameter Design g 191

[f/example callsite
GetBytes(chars + charIndex, charCount, bytes + byteIndex, byteCount);

"s BRAD ABRAMS For developers working with pointer-based APIs, it is
more natural to think of the world with a pointer-oriented mindset.

Although it is common in “safe” managed code, in pointer-based code,
passing an index is uncommon; it is more natural to use pointer arithmetic.

SUMMARY

This chapter offers comprehensive guidelines for general member design.
As you could see from several of the annotations, member design is one of
the most complex parts of designing a framework. This is a natural conse-
quence of the richness of concepts related to member design.

The next chapter covers design issues relating to extensibility.

www.EBooksWorld.ir

= 6.

Designing for Extensibility

O NE IMPORTANT ASPECT of designing a framework is making sure
the extensibility of the framework has been carefully considered.
This requires that you understand the costs and benefits associated with
various extensibility mechanisms. This chapter helps you decide which of
the extensibility mechanisms—subclassing, events, virtual members, call-
backs, and so on—can best meet the requirements of your framework.
This chapter does not talk about the design details of these mechanisms.
Such details are discussed in other parts of the book, and this chapter sim-
ply provides cross-references to sections that describe those details.

A good understanding of OOP is a necessary prerequisite to designing
an effective framework and, in particular, to understanding the concepts
discussed in this chapter. However, we do not cover the basics of object-
orientation in this book, because there are already excellent books entirely
devoted to the topic. A list of some of them is provided in the Suggested
Reading List at the end of the book.

6.1 Extensibility Mechanisms

There are many ways to allow extensibility in frameworks. They range
from less powerful but less costly to very powerful but expensive. For

any given extensibility requirement, you should choose the least costly

193

194

m Designing for Extensibility

extensibility mechanism that meets the requirements. Keep in mind that
it's usually possible to add more extensibility later, but you can never take
it away without introducing breaking changes.

This section discusses some of the framework extensibility mechanisms

in detail.

6.1.1 Unsealed Classes
Sealed classes cannot be inherited from, and they prevent extensibility. In

contrast, classes that can be inherited from are called unsealed classes.

// string cannot be inherited from
public sealed class String { ... }

/I TraceSource can be inherited from
public class TraceSource { ... }

Subclasses can add new members, apply attributes, and implement
additional interfaces. Although subclasses can access protected members
and override virtual members, these extensibility mechanisms result in
significantly different costs and benefits. Subclasses are described in sec-
tions 6.1.2 and 6.1.4. Adding protected and virtual members to a class can
have expensive ramifications if not done with care, so if you are looking
for simple, inexpensive extensibility, an unsealed class that does not declare
any virtual or protected members is a good way to doit.

v/ CONSIDER using unsealed classes with no added virtual or protected
members as a great way to provide inexpensive yet much appreciated
extensibility to a framework.

Developers often want to inherit from unsealed classes so as to add
convenience members such as custom constructors, new methods, or
method overloads.! For example, System.Messaging.MessageQueue is
unsealed and thus allows users to create custom queues that default to

a particular queue path or to add custom methods that simplify the API

1. Some convenience methods can be added to sealed types as extension methods.

6.1 Extensibility Mechanisms m 195

for specific scenarios (in the following example, the scenario is for a
method sending Order objects to the queue).

public class OrdersQueue : MessageQueue {
public OrdersQueue() : base(OrdersQueue.Path){
this.Formatter = new BinaryMessageFormatter();
}
public void SendOrder(Order order){
send(order,order.Id);

}

"s PHILHAACK Because Test-Driven Development has caught fire in the
NET developer community, many developers want to inherit from unsealed
classes (often dynamically using a mock framework) in order to substitute a

test double in the place of the real implementation.
At the very least, if you've gone to the trouble of making your class

unsealed, consider making key members virtual, perhaps via the Template
Method Pattern, in order to provide more control.

Classes are unsealed by default in most programming languages, and
this is also the recommended default for most classes in frameworks.
The extensibility afforded by unsealed types is much appreciated by
framework users and quite inexpensive to provide because of relatively
low test costs associated with unsealed types.

®s VANCE MORRISON The key word in this advice is “CONSIDER.”
Keep in mind that you always have the option of unsealing a class in the
future (it is not a breaking change), but once unsealed, a class must remain
unsealed, Also, unsealing does inhibit some optimizations (e.g., converting
virtual calls to more efficient nonvirtual calls (and then inlining)). Finally,

unsealing only helps your users if they control the creation of the class
(sometimes true, sometimes not). In short, designs are only rarely usefully
extensible “by accident.” Being unsealed is part of the contract of a class
and its users, and like everything about the contract deserves to be a con-
scious, deliberate choice on the part of the designer.

196

m Designing for Extensibility

6.1.2 Protected Members

Protected members by themselves do not provide any extensibility, but
they can make extensibility through subclassing more powerful. They can
be used to expose advanced customization options without unnecessarily
complicating the main public interface. For example, the SourceSwitch.
Value property is protected because it is intended for use only in advanced
customization scenarios.

public class FlowSwitch : SourceSwitch {
protected override void oOnValueChanged() {
switch {this.vValue) {
case "None" : Level = FlowSwitchSetting.None; break:
case "Both" : Level = FlowSwitchSetting.Both; break;
case "Entering”: Level = FlowswitchSetting.Entering; break;
case "Exiting" : Lewvel = FlowSwitchSetting.Exiting; break;

Framework designers need to be careful with protected members
because the name “protected” can give a false sense of security. Anyone is
able to subclass an unsealed class and access protected members, and so
all the same defensive coding practices used for public members apply to
protected members.

v/ CONSIDER using protected members for advanced customization.
Protected members are a great way to provide advanced customization
without complicating the public interface.

v’ DO treat protected members in unsealed classes as public for the pur-
pose of security, documentation, and compatibility analysis.

Anyone can inherit from a class and access the protected members.

®s BRAD ABRAMS Protected members are just as much a part of your
publicly callable interface as public members. In designing the Framework,
we considered protected and public to be roughly equivalent. We generally

did the same level of review and error checking in protected APls as we did
in public APIs because they can be called from any code that just happens to
subclass.

6.1 Extensibility Mechanisms g

6.1.3 Events and Callbacks
Callbacks are extensibility points that allow a framework to call back into
user code through a delegate. These delegates are usually passed to the

framework through a parameter of a method.

List<string» cityNames = ...
cityNames.Removehll(delegate(string name) {
return name.StartsWith("Seattle");

});

Events are a special case of callbacks that supports convenient and con-
sistent syntax for supplying the delegate (an event handler). In addition,
Visual Studio’s statement completion and designers provide help in using
event-based APIs,

var timer = new Timer(leee);
timer.Elapsed += delegate {
Consele.Writeline("Time is up!™};

}s

timerstart();

General event design is discussed in section 5.4.

Callbacks and events can be used to provide quite powerful extensibil-
ity, comparable to virtual members. At the same time, callbacks, and even
more so, events, are more approachable to a broader range of developers
because they don’t require a thorough understanding of object-oriented
design. Also, callbacks can provide extensibility at runtime, while virtual
members can only be customized at compile-time.

The main disadvantage of callbacks is that they are more heavyweight
than virtual members. The performance of calling through a delegate is
worse than it is for calling a virtual member. In addition, delegates are
objects and thus affect memory consumption.

You should also be aware that by accepting and calling a delegate, you
are executing arbitrary code in the context of vour framework. Theretore, a
careful analysis of all such callback extensibility points from the security,
correctness, and compatibility points of view is required.

v/ CONSIDER using callbacks to allow users to provide custom code to be
executed by the framework.

198

m Designing for Extensibility

v/ CONSIDER using events to allow users to customize the behavior of a
framework without the need for understanding object-oriented

design.

v Do prefer events over plain callbacks, because they are more familiar to
a broader range of developers and are integrated with Visual Studio
statement completion.

X AVOID using callbacks in performance-sensitive APIs.

®. KRZYSZTOF CWALINA Delegate calls were made much faster in the
CLR 2.0, but they are still about two times slower than direct calls to virtual

members. In addition, delegate-based APIs are generally less efficient in
terms of memory usage. Having said that, the differences are relatively
small and should only matter if the AP is called very frequently.

v/ DO use the new Func<.. .>, Action<...>, or Expression<...> types
instead of custom delegates, when defining APIs with callbacks.

Func<...> and Action<...> represent generic delegates. The follow-
ing is how .NET Framework defines them:

public delegate void Action()

public delegate void Action<T1l, T2»>(T1 argl, T2 arg2)

public delegate void Action<T1, T2, T3»(T1 argl, T2 arg2, T3 argd)
public delegate void Action<T1, T2, T3, T4>(T1 argl, T2 arg2, T3 arg3, T4
argd)

public delegate TResult Func<TResult>()

public delegate TResult Func<T, TResult>(T arg)

public delegate TResult Func<T1, T2, TResult>»(T1 argl, T2 arg2)

public delegate TResult Func<T1, T2, T3, TResult:>(T1l argl, T2 arg2, T3
arg3)

public delegate TResult Func<Tl, T2, T3, T4, TResult>(T1 argl, T2 arg2, T3
args3, T4 argd)

They can be used as follows:

Func<int,int,double> divide = (x,y)=>{double)x/(double)y;
Action<double> write = (d)=>Console.Writeline(d);
write{divide(2,3)};

6.1 Extensibility Mechanisms m 199

Expression<...> represents function definitions that can be compiled
and subsequently invoked at runtime but can also be serialized and
passed to remote processes. Continuing with our example:

Expression<Func<int,int,double>> expression =(x,y)=:(double)x/(double)y;
Func<int,int,double> divide = expression.Compile();
write{divide2(2,3));

Notice how the syntax for constructing an Expression<> object is very
similar to the one used to construct a Func<> object; in fact, the only dif-
terence is the static type declaration of the variable (Expression<>
instead of Func<...>).

®s RICO MARIANI Most times vou're going to want Func or Action if
all that needs to happen is to run some code. You need Expression when

the code needs to be analyzed, serialized, or optimized before it is run.
Expression is for thinking about code, Func /Action is for running it.

v/ DO measure and understand performance implications of using
Expression<...>, instead of using Func<...>and Action<. . .> delegates.

Expression<...> types are in most cases logically equivalent to
Func<...> and Action<...> delegates. The main difference between
them is that the delegates are intended to be used in local process sce-
narios; expressions are intended for cases where it's beneficial and pos-

sible to evaluate the expression in a remote process or machine.

®s RICO MARIANI The remoteness of the evaluation is sort of incidental.
The main thing about Expressions is that you use them when you are
going to need to reason over the code to be executed, often over a composi-
tion of expressions such as in a LINQ query, and then, having considered
the whole and the execution options, you create some kind of optimized
plan for doing the work. This is how LINQ to SQL is able to create a single
SQL fragment from a composition of loose-looking expressions.

This plan could easily go wrong. You could do too much analysis of
expressions or too little. You could use up too much space holding expres-
sion trees or you could avoid all the trees but then find you have bad perfor-
mance because you have so many small anonymous delegates.

200 @ Designing for Extensibility

If you look at the patterns that were used in the LINQ implementations
in the .NET Framework, you'll see several good ways to make use of these
constructs:

¢+ Use expressions only if you need to “think” about the code and not
just run it.

* Don’t blindly compose and run code that could be meaningfully
optimized if you “thought” about it before running it.

* Don’t create systems that optimize the code so much before run-
ning it that it would have been faster to just run it directly without
optimizing.

* Optimization isn’t the only use for expression trees, but it is an
important one.

v/ DO understand that by calling a delegate, you are executing arbitrary
code and that could have security, correctness, and compatibility

repercuss ons.

"s BRIAN PEPIN The Windows Forms team bumped up against this issue
when writing some of the low-level code in SystemEvents. SystemEvents
defines a static API and therefore needs to be threadsafe. Internally, it uses
locks to ensure thread safety. Early code in SystemEvents would grab a
lock and then raise an event. Here's an example:

lock{socmeInternalLock) {
if{eventHandler!=null) eventHandler(sender, Eventargs.Empty);
}

This is bad because you have no idea what the user code in the event

handler is going to do. If the user code signals a thread and waits on its own
lock, you might have just introduced a deadlock. This would be better code:

EventHandler localHandler = eventHandler:
if({localHandler != null) localHandler(sender, EventArgs.Empty);

This way, the user’s code will never deadlock due to your own internal
implementation. Note that because assignments in managed code are
atomic, [didn’t need a lock at all in this case. That won't always be true.
For example, if your code needed to check more than one variable, you'd
still need a lock:

6.1 Extensibility Mechanisms m 201

EventHandler localHandler = null;
lock({someInternalLock) {
if (eventHandler != null && shouldRaiseEvents) {
localHandler = eventHandler;

}
}

if(localHandler!=null)} localHandler(sender,EventArgs.Empty);

"s JOE DUFFY In addition to deadlock, invoking a callback under a lock
like this can cause reentrancy. Locks on the CLR support recursive acquires,
so if the callback somehow manages to call back into the same object that
initiated the callback, the results are often not good. Locks are typically used
to isolate invariants that are temporarily broken, and yet this practice can
expose them at the reentrant boundary. Needless to say, this is apt to cause
weird exceptions and unexpected behavior.

That said, sometimes this practice is necessary. If the callback is being
used to make a decision—as would be the case with a predicate—and that
decision needs to be made under a lock, you will have no choice. When
unavoidable, be sure to carefully document the restrictions (no inter-thread
communication, no reentrancy). And you must ensure that, should a devel-
oper violate these restrictions, the result will not lead to security vulnerabil-
ities. The risk here is usually greater than the reward.

6.1.4 Virtual Members

Virtual members can be overridden, thus changing the behavior of the
subclass. They are quite similar to callbacks in terms of the extensibility
they provide, but they are better in terms of execution performance and
memory consumption. Also, virtual members feel more natural in scenar-
ios that require creating a special kind of an existing type (specialization).

The main disadvantage of virtual members is that the behavior of a
virtual member can only be modified at the time of compilation. The
behavior of a callback can be modified at runtime.

Virtual members, like callbacks (and maybe more than callbacks), are
costly to design, test, and maintain because any call to a virtual member can
be overridden in unpredictable ways and can execute arbitrary code. Also,
much more effort is usually required to clearly define the contract of virtual

members, so the cost of designing and documenting them is higher.

202 @ Designing for Extensibility

"s KRZYSZTOF CWALINA A common question I get is whether documen-
tation for virtual members should say that the overrides must call the base
implementation. The answer is that overrides should preserve the contract
of the base class. They can do it by calling the base implementation or by

some other means. It is rare that a member can claim that the only way to
preserve its contract (in the override) is to call it. In a lot of cases, calling the
base might be the easiest way to preserve the contract (and docs should
point that out), but it's rarely absolutely required.

Because of the risks and costs, limiting extensibility of virtual members
should be considered. Extensibility through virtual members today should
be limited to those areas that have a clear scenario requiring extensibility.
This section presents guidelines for when to allow it and when and how to
limit it.

x DO NOT make members virtual unless you have a good reason to do so
and you are aware of all the costs related to designing, testing, and
maintaining virtual members.

Virtual members are less forgiving in terms of changes that can be made to

them without breaking compatibility. Also, they are slower than nonvirtual

members, mostly because calls to virtual members are not inlined.

"s RICO MARIANI Be sure you understand your extensibility require-
ments completely before you make decisions in the name of extensibility. A
common mistake is sprinkling classes with virtual methods and properties
only to find that the needed extensibility still can’t be realized and every-
thing is now (and forever) slower.

®: JAN GRAY The peril: If you ship types with virtual members, you are
promising to forever abide by subtle and complex observable behaviors and
subclass interactions. I think framework designers underestimate their peril.
For example, we found that ArrayList item enumeration calls several vir-
tual methods for each MoveNext and Current. Fixing those performance
problems could (but probably doesn’t) break user-defined implementations
of virtual members on the ArrayList class that are dependent on virtual
method call order and frequency.

6.1 Extensibility Mechanisms m 203

v/ CONSIDER limiting extensibility to only what is absolutely necessary
through the use of the Template Method Pattern, described in section 9.9.

v Do prefer protected accessibility over public accessibility for virtual
members. Public members should provide extensibility (if required) by
calling into a protected virtual member.

The public members of a class should provide the right set of function-
ality for direct consumers of that class. Virtual members are designed
to be overridden in subclasses, and protected accessibility is a great

way to scope all virtual extensibility points to where they can be used.

public Control{
public void SetBounds(...){

SetBoundsCore (...);

}

protected virtual void SetBoundsCore(...){
!/ Do the real work here.
}
}

You can see more on this subject in section 9.9,

®. JEFFREY RICHTER It is common for a type to define multiple over-
loaded methods for caller convenience. These methods typically allow the
caller to pass fewer arguments to the method and then, internally, the
method calls a more complex method, passing additional arguments with

good default values. If vour type offers convenience methods, these meth-
ods should not be virtual, but internally they should call the one virtual
method that contains the actual implementation of the method (which can
be overridden).

6.1.5 Abstractions (Abstract Types and Interfaces)

An abstraction is a type that describes a contract but does not provide a
full implementation of the contract. Abstractions are usually implemented
as abstract classes or interfaces, and they come with a well-defined set of
reference documentation describing the required semantics of the types

204

m Designing for Extensibility

implementing the contract. Some of the most important abstractions in the
NET Framework include Stream, IEnumerable<T>, and Object. Section 4.3
discusses how to choose between an interface and a class when designing
an abstraction.

You can extend frameworks by implementing a concrete type that sup-
ports the contract of an abstraction and using this concrete type with
framework APIs consuming (operating on) the abstraction.

A meaningful and useful abstraction that is able to withstand the test
of time is very difficult to design. The main difficulty is getting the right
set of members, no more and no fewer. It an abstraction has too many
members, it becomes difficult or even impossible to implement. If it has
too few members for the promised functionality, it becomes useless in
many interesting scenarios. Also, abstractions without first-class docu-
mentation that clearly spells out all the pre- and post-conditions often end
up being failures in the long term. Because of this, abstractions have a

very high design cost.

®. JEFFREY RICHTER The ICloneable interface is an example of very
simple abstraction with a contract that was never explicitly documented.
Some types that implement this interface’s Clone method implement it so
that it performs a shallow copy of the object, whereas some implementa-

tions perform a deep-copy. Because what this interface’s Clone method
should do was never fully documented, when using an object with a type
that implements ICloneable, you never know what you're going to get.
This makes the interface useless.

Too many abstractions in a framework also negatively affect usability
of the framework. It is often quite difficult to understand an abstraction
without understanding how it fits into the larger picture of the concrete
implementations and the APIs operating on the abstraction. Also, names
of abstractions and their members are necessarily abstract, which often
makes them cryptic and unapproachable without first understanding the
broader context of their usage.

However, abstractions provide extremely powerful extensibility that
the other extensibility mechanisms cannot often match. They are at the

6.1 Extensibility Mechanisms m 205

core of many architectural patterns, such as plug-ins, inversion of control
(IoC), pipelines, and so on. They are also extremely important for testabil-
ity of frameworks. Good abstractions make it possible to stub out heavy
dependencies for the purpose of unit testing. In summary, abstractions are
responsible for the sought-after richness of the modern object-oriented

frameworks.

X DO NOT provide abstractions unless they are tested by developing sev-
eral concrete implementations and APIs consuming the abstractions.

"« KRZYSZTOF CWALINA The PowerCollections project is a framework
extending the System.Collections.Generic namespace. It has been a
great source of feedback and validation for the abstractions contained in the

namespace. Based on the feedback, we fixed several design issues that
would otherwise probably not have been discovered until after the release,
at which point it's usually too late to fix abstractions, because the fixes
require breaking changes.

v/ DO choose carefully between an abstract class and an interface when
designing an abstraction. See section 4.3 for more details on this
subject.

v/ CONSIDER providing reference tests for concrete implementations of
abstractions. Such tests should allow users to test whether their imple-
mentations correctly implement the contract.

"s JEFFREY RICHTER I like what the Windows Forms team did: They
defined an interface called System.ComponentModel.IComponent. Of
course, any type can implement this interface. But the Windows Forms team
also provided a System.ComponentModel.Component class that imple-

ments the IComponent interface. So a type could choose to derive from
Component and get the implementation for free, or the type could derive
from a different base class and then manually implement the IComponent
interface. By having available an interface and a base class, developers get
to choose whichever works best for them.

206

m Designing for Extensibility

6.2 Base Classes

Strictly speaking, a class becomes a base class when another class is derived
from it. For the purpose of this section, however, a base class is a class
designed mainly to provide a common abstraction or for other classes to
reuse some default implementation though inheritance. Base classes usu-
ally sit in the middle of inheritance hierarchies, between an abstraction at
the root of a hierarchy and several custom implementations at the bottom.

They serve as implementation helpers for implementing abstractions.
For example, one of the Framework's abstractions for ordered collections
of items is the IList<T> interface. Implementing IList<T> is not trivial,
and therefore the Framework provides several base classes, such as
Collection<T> and KeyedCollection<TKey,TItem>, which serve as help-
ers for implementing custom collections.

public class OrderCollection : Collection<Order> {
protected override void SetItem{int index, Order item) {
if{item==null) throw new ArgumenthullException{...};
base.SetItem(index,item);

Base classes are usually not suited to serve as abstractions by them-
selves, because they tend to contain too much implementation. For exam-
ple, the Collection<T> base class contains lots of implementation related
to the fact that it implements the nongeneric IList interface (to integrate
better with nongeneric collections) and to the fact that it is a collection of

items stored in memory in one of its fields.

"s KRZYSZTOF CWALINA collection<T> canalso be used directly, with-

out the need to create subclasses, but its main purpose is to provide an easy
way to implement custom collections.

As previously discussed, base classes can provide invaluable help for
users who need to implement abstractions, but at the same time they can
be a significant liability. They add surface area and increase the depth of
inheritance hierarchies and so conceptually complicate the framework.
Therefore, base classes should be used only if they provide significant

6.3 Sealing g 207

value to the users of the framework. They should be avoided if they pro-
vide value only to the implementers of the framework, in which case del-
egation to an internal implementation instead of inheritance from a base
class should be strongly considered.

v/ CONSIDER making base classes abstract even if they don’t contain any
abstract members. This clearly communicates to the users that the class
is designed solely to be inherited from.

v/ CONSIDER placing base classes in a separate namespace from the main-
line scenario types. By definition, base classes are intended for advanced
extensibility scenarios and therefore are not interesting to the majority
of users. See section 2.2.4 for details.

X AVOID naming base classes with a “Base” suffix if the class is intended
for use in public APIs.

For example, despite the fact that Collection<T> is designed to be
inherited from, in many cases frameworks expose APIs typed as the
base class, not as its subclasses, mainly because of the cost associated

with a new public type.

public Directory {
public Collection<string> GetFilenames(){
return new FilenameCollection(this);

}

private class FilenameCollection : Collection<string> {

CRC Y

}

The fact that Collection<T> is a base class is irrelevant for the user of
the GetFilename method, so the “Base” suffix would only create an
unnecessary distraction for the user of the method.

6.3 Sealing

One of the features of object-oriented frameworks is that developers can
extend and customize them in ways unanticipated by the framework

designers. This is both the power and danger of extensible design. When

208

m Designing for Extensibility

you design your framework, it is, therefore, very important to carefully
design for extensibility when it is desired, and to limit extensibility when
it is dangerous.

®s KRZYSZTOF CWALINA Sometimes framework designers want to limit
the extensibility of a type hierarchy to a fixed set of classes. For example,
let's say you want to create a hierarchy of living organisms that is split into
two and only two subgroups: animals and plants. One way to do it is to
make the constructor of LivingOrganism internal and then provide two
subclasses (Plant and Animal) in the same assembly and give them pro-
tected constructors. Because the constructor of LivingOrganism is internal,
third parties can only extend Animal and Plant, but not LivingOrganism.

public class LivingOrganism {
internal LivingOrganism(){}

public class Animal : LivingOrganism {
protected Animal() {}

}
public class Plant : LivingOrganism {

protected Plant() {}

A powerful mechanism that prevents extensibility is sealing. You can
seal either the class or individual members. Sealing a class prevents users
from inheriting from the class. Sealing a member prevents users from over-

riding a particular member.

public class NonNullCollection<T» : Collection<T> {
protected sealed override void SetItem{int index, T item) {
if(item==null) throw new ArgumentNullException();
base.SetItem{index,item);

Because one of the key differentiating points of frameworks is that they
offer some degree of extensibility, sealing classes and members will likely
feel very abrasive to developers using your framework. Therefore, you

should seal only when there are good reasons to do so.

6.3 Sealing m 209

X DO NOT scal classes without having a good reason to do so.

Sealing a class because you cannot think of an extensibility scenario is
not a good reason. Framework users like to inherit from classes for var-
ious nonobvious reasons, like adding convenience members. See sec-
tion 6.1.1 for examples of nonobvious reasons users want to inherit

from a type.
Good reasons for sealing a class include the following:

* The class is a static class. For more information on static classes, see
section 4.5.

» The class stores security-sensitive secrets in inherited protected
members.

* The class inherits many virtual members and the cost of sealing
them individually would outweigh the benefits of leaving the class
unsealed.

* The class is an attribute that requires very fast runtime look-up.
Sealed attributes have slightly higher performance levels than
unsealed ones. For more information on attribute design, see
section 8.2,

"« BRAD ABRAMS Having classes that are open to some level of customi-
zation is one of the core differences between a framework and a library.
With an API library (such as the Win32 API), you basically get what vou get.
It is very difficult to extend the data structures and APIs. With a framework
such as MFC or AWT, clients can extend and customize the classes. The pro-
ductivity boost from this is obvious.

"s KRZYSZTOF CWALINA People often ask what the cost of sealing indi-
vidual members is. The cost is relatively small, but it is nonzero and should
be taken into account. There is development cost (typing in the overrides),
testing cost (have you called the base class from the override?), assembly
size cost (new overrides), and working set cost (if both the overrides and
the base implementation are ever called).

210 @ Designing for Extensibility

X DO NOT declare protected or virtual members on sealed types.

By definition, sealed types cannot be inherited from. This means that
protected members on sealed types cannot be called, and virtual meth-
ods on sealed types cannot be overridden.

v/ CONSIDER sealing members that you override.

public class FlowSwitch : SourceSwitch {
protected sealed override void oOnValueChanged() {

}

Problems that can result from introducing virtual members (discussed
in section 6.1.4) apply to overrides as well, although to a slightly lesser
degree. Sealing an override shields you from these problems starting
trom that point in the inheritance hierarchy.

In short, part of designing for extensibility is knowing when to limit it,

and sealed types are one of the mechanisms by which to do that.

SUMMARY

Designing for extensibility is a critical aspect of designing frameworks.
Understanding the costs and benefits provided by various extensibility
mechanisms permits the design of frameworks that are flexible without

many of the pitfalls that lead to trouble later.

.7I

Exceptions

XCEPTION HANDLING HAS many advantages over return-value-
based error reporting. Good framework design helps the application
developer realize the benefits of exceptions. This section discusses the ben-
efits of exceptions and presents guidelines for using them effectively.
Exception handling offers the following benefits:

* Exceptions integrate well with object-oriented languages. Object-
oriented languages tend to impose constraints on member signa-
tures that are not imposed by functions in non-0O0 languages. For
example, in the case of constructors, operator overloads, and proper-
ties, the developer has no choice in the return value. For this reason,
it is not possible to standardize on return-value-based error report-
ing for object-oriented frameworks. An error reporting method, such
as exceptions, which is out of band of the method signature is the
only option.

"s JEFFREY RICHTER From my perspective, this is the most important
reason why exceptions must be used to report problems. In an OO system
(like .NET), return codes could not be used for certain constructs, and an
out-of-band mechanism must be used. Now the question becomes whether

B 211

212 m Exceptions

to use exceptions for everything or to use them for the special constructs
and use return codes for methods. Obviously, having two different error
reporting mechanisms is worse than having one, so it should be obvious
that exceptions should be used to report all errors for all code constructs.

®s CHRIS SELLS Jeff is right: Always use exceptions for communicating
errors and never use them for anything else.

* Exceptions promote API consistency. This is because they are
designed to be used for failure reporting and nothing else. In con-
trast, return values have many uses, of which failure reporting is
only a subset. For this reason, it is likely that APls that report failure
through return values will find a number of patterns, whereas
exceptions can be constrained to specific patterns. The Win32 API
is a clear example of this inconsistency through usage of BOOLs,
HRESULTS, and GetLastError, among others.

* With return-value-based error reporting, error handling code is
always very near to the code that could fail. However, with excep-
tion handling the application developer has a choice. Code can be
written to catch exceptions near the failure point, or the handling
code can be centralized by locating it further up in the call stack.

* Error handling code is more easily localized. Very robust code that
reports failure through return values tends to have an if-statement
for nearly every functional line of code. The job of these if-statements
is to handle the failure case. With exception-based error reporting,
robust code can often be written so that a number of methods and
operations can be performed with the error handling logic grouped
just after the try block or even higher in the call stack.

"« STEVEN CLARKE In one API usability study we performed, develop-
ers had to call an Insert method to insert one or more records into a data-
base. If the method did not throw an exception, the implication was that the

Exceptions g 213

records had been inserted successfully. However, this wasn’t clear to par-
ticipants in the study. They expected the method to return the number of
records that were successfully inserted. Although return codes should not
be used to indicate failure, you can still consider returning status informa-
tion in the case of a successful operation.

» Error codes can be easily ignored, and often are. Exceptions, on the
other hand, take an active role in the flow of your code. This makes
failures reported as exceptions impossible to ignore and improves
the robustness of code.

®s JEFFREY RICHTER It should be pointed out that this means that more
bugs are caught during the testing of your code and that the code that ships
will be more robust. Also, because the shipping code is more robust, there
will probably be very few exceptions that get thrown when the shipping
code is running out in the wild.

For example, the Win32 API CloseHandle fails very rarely, so it is com-
mon (and appropriate) for many applications to ignore the return value of
the APL. However, if any application has a bug that causes CloseHandle to
be called twice on the same handle, it would not be obvious unless the
code was written to test the return value. A managed equivalent to this
API would throw an exception in this case, and the unhandled exception
handler would log the failure and the bug would be found.

"= BRAD ABRAMS With the return-code error handling model, if the API
you are calling fails, the program will muddle on with incorrect results,
causing your program to crash or corrupt data at some point in the future.
With the exception handling model, when an error occurs the thread is sus-

pended and the calling code is given a chance to handle the exception. When
that method doesn’t handle the exception, the method that calls it is given a
chance to handle it. When no method up the stack handles the exception,
your application is terminated. It is better to terminate the application than
to let it muddle on—at least the error is eventually fixed.

214 m Exceptions

"s JEFFREY RICHTER I completely agree with Brad here. There are also
potential security issues that could come up when you let a program con-
tinue to run after something fails. I know there are a lot of programmers
who do not want their application to crash out in the field, and they are
willing to do almost anything to stop that from happening—like swallow
exceptions and let the program continue to run. But this is absolutely the
wrong thing to doj; it is much better for a program to crash than to continue
running with unpredictable behavior and potential security vulnerabilities.
Many other examples exist. For examples, Windows blue screens occur due
to an unhandled exception in kernel-mode code. If a kernel-mode operation
fails unexpectedly (an unhandled exception), then Windows doesn’t want
to just keep running, so it blue screens, all applications are stopped, and all
data in memory is lost. In fact, all Microsoft applications, such as Office and
Visual Studio, display dialog boxes when they experience an unhandled
exception, and they terminate the application. The operating system and
these applications are doing the right thing: Do not let your application
keep running in the case of an unexpected failure.

®s BRENT RECTOR A corollary to the preceding is that your application
should handle only those exceptions that it understands. It is generally
impossible to restore the possibly corrupted state of an application to a nor-
mal state after “something” has gone wrong. Handle only those exceptions
for which your application can respond reasonably. Let all others go unhan-
dled and let the operating system terminate yvour application.

* Exceptions can carry very rich information describing the cause of
the failure.

* Exceptions allow for unhandled exception handlers. Ideally, every
application is written to intelligently handle all forms of failure. How-
ever, this is unrealistic, because all forms of failure can’t be known. With
error codes, unexpected failures can be easily ignored by calling code,
and the application continues to run with undefined results. With
well-written exception-based code, unexpected failures eventually
cause an unhandled exception handler to be called. This handler can be
designed to log the failure and can also make the choice to shut down

the application. This is by far preferable to running with indeterminate

Exceptions g 215

results and also provides for logging that makes it possible to add
more significant error handling for the previously unexpected case.
For example, Microsoft Office uses an unhandled exception handler
to gracefully recover and relaunch the application, as well as to send

error information to Microsoft to improve the product.

"s CHRISTOPHER BRUMME You should have a custom unhandled
exception handler only if you have application-specific work to do in the
handler. If you just want error reporting to occur, the runtime will handle
that automatically for you, and you do not need to (and should not) use an
unhandled exception filter (UEF). An application should only register a
UEF if it can provide functionality above and beyond the standard error
reporting that comes with the system and runtime.

®s JEFFREY RICHTER In addition to what Chris says, only applications
should even think about using a UEE. Components should not be using one
of these at all. UEFs are always application-model-specific. In other words,
a Windows Form application will probably pop up a window, a Windows
NT service will probably log to the event log, and a Web service will prob-
ably send a SOAP fault. The component doesn’t know in which application
model it is being used, and therefore components should leave this up to
the application developer who is using their component.

* Exceptions promote instrumentation. Exceptions are a well-defined
method-failure model. Because of this, it is possible for tools such as
debuggers, profilers, performance counters, and others to be inti-
mately aware of exceptions. For example, the Performance Monitor
keeps track of exception statistics, and debuggers can be instructed
to break when an exception is thrown. Methods that return failure
do not share in the benefits of instrumentation.

®s BRAD ABRAMS It is worthwhile to note that the exception handling
feature can easily be defeated by poorly designed frameworks. If the frame-

work designer chooses to use return codes for error handling, none of the
benefits apply.

216

m Exceptions

7.1 Exception Throwing

Exception-throwing guidelines described in this section require a good
definition of the meaning of execution failure. Execution failure occurs
whenever a member cannot do what it was designed to do (what the
member name implies). For example, if the OpenFile method cannot
return an opened file handle to the caller, it would be considered an exe-

cution failure.

®s KRZYSZTOF CWALINA One of the biggest misconceptions about excep-
tions is that they are for “exceptional conditions.” The reality is that they are
for communicating error conditions. From a framework design perspective,
there is no such thing as an “exceptional condition.” Whether a condition is
exceptional or not depends on the context of usage, but reusable libraries

rarely know how they will be used. For example, OutOfMemoryException
might be exceptional for a simple data entry application; it's not so excep-
tional for applications doing their own memory management (e.g., SQL
Server). In other words, one man’s exceptional condition is another man’s
chronic condition.

Most developers have become comfortable with using exceptions for
usage errors such as division by zero or null references. In the Frame-
work, exceptions are used for all error conditions, including execution
errors. At first, it can be difficult to embrace exception handling as the
means of reporting all failures. However, it is important to design all pub-
lic methods of a framework to report method failures by throwing an
exception.

There are a variety of excuses for not using exceptions, but most boil
down to the two perceptions that exception handling syntax is undesir-
able, so returning an error code is somehow preferable, or that a thrown
exception does not perform as well as returning an error code. The perfor-
mance concerns are addressed in sections 7.5.1 and 7.5.2. The concern
over syntax is largely a matter of familiarity. We recognize that develop-
ers who are new to exceptions find the syntax awkward, but this becomes
much less of a problem over time as developers get used to exception
handling.

7.1 Exception Throwing @m 217

®s JEFFREY RICHTER In addition, different programming languages will
offer different syntax for developers to express exception handling. Even
for existing languages, like C#, new syntax could be provided in the future.

Or code editors could spit out the code, making the coding a little less
tedious. Certainly, I agree that syntax should not be a factor in determining
exception usage.

X DO NOT return error codes.

Exceptions are the primary means of reporting errors in frameworks.
The beginning section of the chapter describes the benefits of excep-
tions in detail.

®s KRZYSZTOF CWALINA It's OK for exceptions to have a property
returning some kind of error code, but I would be very careful about this.
Each exception can carry two main pieces of information: the exception
message explaining to the developer what went wrong and how to fix it,
and the exception type that should be used by handlers to decide what pro-
grammatic action to take. If you think you need to have a property on your
exception that would return additional error code, ask yourself who this
code is for. Is it for the developer or for the exception handler? If for the
developer, add additional information to the message. If for the handlers,
add a new exception type.

®s CHRISTOPHE NASARRE The error code property in a System,
Exception is useful when you need to bind the issue to external documen-
tation that details how to fix the problem. This is particularly important
with different layers of a framework where the upper layer does not always
(and should not) know how the lower layer is implemented. For example, a
Web service call could get an exception because the associated database on
the server is not started. In that case, you don’t expect the client code to
explain how to restart the database when the exception is caught. Instead,
you provide a pointer to the documentation and the right section where the
whole restarting process is explained.

218 m Exceptions

v Do report execution failures by throwing exceptions.

If a member cannot successfully do what it is designed to do, it should
be considered an execution failure, and an exception should be thrown.

®. JASON CLARK A good rule of thumb is that if a method does not do
what its name suggests, it should be considered a method-level failure,
resulting in an exception. For example, a method called ReadByte should
throw if there are no more bytes left in a stream to be read. Meanwhile, a

method named ReadChar should not throw when it reaches end of stream,
because EOF is a valid char (in most character sets) that can be returned in
this case while still achieving what the method’s name suggests. So a char
can be “read” successfully at the end of a stream, whereas a byte cannot.

v/ CONSIDER terminating the process by calling System.Environment.
FailFast (NET Framework 2.0 feature) instead of throwing an excep-
tion if your code encounters a situation where it is unsafe for further

execution.

®s CHRISTOPHER BRUMME An example of the operating system per-
forming a fail fast occurs when the stack is so corrupt that the operating
system cannot propagate exceptions through it. In this case, the invariant
expectations of the application (i.e., that exceptions propagate) can no lon-
ger be satisfied, so the application must terminate.

An example of the CLR performing a fail fast occurs when the GC heap
is so corrupt that we can no longer track managed objects. In this case, a
process-wide resource is required for further processing, but it is now cor-
rupt and cannot be returned to a functional state.

Similar legitimate reasons for fail fast can occur in managed code. For
example, if the application cannot revert a security impersonation on a
thread (i.e., exceptions are thrown from WindowsImpersonationContext.
Dispose), that thread must be doomed. But if there is no good way for the
application to ensure that no more code runs on this thread, perhaps because
it is the Finalizer thread or a ThreadPool thread, then the process must be
destroyed. Environment.FailFast can be used for this purpose.

X DO NOT use exceptions for the normal flow of control, if possible.

7.1 Exception Throwing m 219

Except for system failures and operations with potential race condi-
tions, framework designers should design APIs so users can write code
that does not throw exceptions. For example, you can provide a way to
check preconditions before calling a member so users can write code

that does not throw exceptions.

ICollection<int> collection = ...
if{lcollection.IsReadOnly){
collection,.Add{additionalNumber) ;

}

The member used to check preconditions of another member is often
referred to as a tester, and the member that actually does the work is
called a doer. See section 7.5.1 for more information on the lester-Doer
Pattern.

There are cases when the Tester-Doer Pattern can have an unacceptable
performance overhead. In such cases, the so-called Try-Parse Pattern
should be considered (see section 7.5.2 for more information).

®s JEFFREY RICHTER This pattern should be used with caution. The
potential problem occurs when you have multiple threads accessing the
object at the same time. For example, one thread could execute the tester

method, which reports that all is OK, and before the doer method executes,
another thread could change the object, causing the doer to fail. Although
this pattern might improve performance, it introduces race conditions and
must be used with extreme caution.

v/ CONSIDER the performance implications of throwing exceptions. Throw
rates above 100 per second are likely to noticeably impact the perfor-
mance of most applications. See section 7.5 for details.

v/ DO document all exceptions thrown by publicly callable members
because of a violation of the member contract (rather than a system
tailure) and treat them as part of your contract.

Exceptions that are a part of the contract should not change from one
version to the next (i.e., exception type should not change, and new
exceptions should not be added).

220 m Exceptions

X DO NOT have public members that can either throw or not based on
some option.

// bad design
public Type GetType(string name, bocl throwlnError)

®s BRAD ABRAMS An API such as this one usually reflects the inability
of the framework designer to make a decision. A method either completes
successfully or it does not, in which case it should throw an exception. Fail-

ure to decide forces the decision on the caller of the API, who likely does not
have enough context on implementation details of the API to make an
informed decision.

X DO NOT have public members that return exceptions as the return value
or an out parameter.

Returning exceptions from public APIs instead of throwing them
defeats many of the benefits of exception-based error reporting.

// bad design
public Exception DoSomething() { ... }

q/ CONSIDER using exception builder methods.

It is common to throw the same exception from ditferent places. To
avoid code bloat, use helper methods that create exceptions and initial-
ize their properties.

Also, members that throw exceptions are not getting inlined. Moving
the throw statement inside the builder might allow the member to be
inlined. For example:

class Fileq
string fileName;

public byte[] Read(int bytes){
if (!ReadFile(handle, bytes)) ThrowNewFileIOException{...};
¥

7.2 Choosing the Right Type of Exception to Throw g 221

void ThrowhNewFileIDException(...}{
string description = // build localized string
throw new FileIOException(description);

i
}

X DO NOT throw exceptions from exception filter blocks.

When an exception filter raises an exception, the exception is caught by
the CLR, and the filter returns false. This behavior is indistinguishable
trom the filter executing and returning false explicitly and is therefore
very difficult to debug.

' VB sample

' This is bad design. The exception filter (When clause)

' may throw an exception when the InnerException property
' returns null

Try

Catch e As ArgumentException _
When e.InnerException.Message.StartsWith({"File™)

End Try

®. KRZYSZTOF CWALINA Not all CLR languages support exception fil-

ters. For example, Visual Basic NET and C++ support exception filters, but
Ci# does not.

X AVOID explicitly throwing exceptions from finally blocks. Implicitly thrown
exceptions resulting from calling methods that throw are acceptable.

This section covered the general issues on throwing exceptions. The

next section deals with how to decide which type of exception to throw.

7.2 Choosing the Right Type of Exception to Throw

After you have decided when you need to throw exceptions, the next step
is to pick the right type of exception to throw. This section provides those
guidelines.

222

m Exceptions

You should first decide whether the error condition represents a usage
error or an execution error.

A usage error represents an incorrectly written program and is some-
thing that can be avoided by changing the code that calls your APIL. There is
no reason to programmatically handle usage errors; instead the calling code
should be changed. For example, if a routine gets into an error state when a
nullis passed as one of its arguments (an error condition usually represented
by an ArgumentNullException), the calling code can be modified to ensure
that null is never passed. In other words, usage errors can be fixed at com-
pile-time, and the developer can ensure that they never occur at runtime.

An execution error is something that cannot be completely avoided by
writing “better” code. Forexample, File.Open throws FileNotFoundException
when it tries to open a file that does not exist. Even if the caller of the API
checks whether the file exists before calling File.Open, the file can get deleted
or corrupted between the call to File.Exists and the call to File.Open.

Execution errors need to be further divided into two groups: program
errors and system failures.

A program error is an execution error that can be handled program-
matically. For example, if File.Open throws FileNotFoundException, the
calling code can catch the exception and handle it by creating a new file.
This is in contrast to the usage error example described earlier where you
would never write code that first passes an argument to a method, catches
the NullArgumentException, and in the handler calls the method with a
non-null argument.

A system failure is an execution error that cannot be handled program-
matically. For example, you really cannot handle an out-of-memory excep-
tion resulting from the Just-in-Time (JIT) compiler running out of memory:'

X DO NOT create new exception types to communicate usage errors. Throw
one of the existing Framework exceptions instead. See section 7.3 for

detailed usage guidelines for the most common standard exception types.

Usage errors need to be communicated to the developer calling the API

and should not be handled directly in code. The exception type is

1. And so by default the CLR shuts down the process in such case instead of throwing an
exception.

7.2 Choosing the Right Type of Exception to Throw g 223

generally less important to developers trying to fix their code than
the message string. Theretore, for exceptions that are thrown as a result
of usage errors, you should concentrate on designing a really good
(i.e., explanatory) exception message and using one of the existing
NET Framework exception types: ArgumentNullException, Argument-
Exception, InvalidOperationException, NotSupportedException, and

50 OI.

®s JASON CLARK This guideline should be followed with great caution.
The exception’s type is an “identity” for a type of failure. If code in the
application catches the exception, its mitigation is going to be custom-made
for failures of a particular nature. If you reuse an exception type simply
because it has a relevant-sounding name, then you will probably have trou-

ble down the road. Some exceptions have extremely clear meanings and are
meant to be rethrown by all managed code; ArgumentException and its
inheritors are good examples of this. Some virtual methods specify specific
exceptions that you should throw to indicate certain expected failures to the
caller. But most often you should be throwing your own exception types if
you expect callers to handle the exception in a unique way.

v/ CONSIDER creating and throwing custom exceptions if you have a pro-
gram error condition that can be programmatically handled in a differ-
ent way than any other existing exception. Otherwise, throw one of the
existing exceptions. See section 7.4 for details on creating custom
excephions.

Program errors are errors that can be, and often are, handled in code.
The way to handle such errors is to catch the exception and execute
some “compensating” logic. Whether the catch statement executes is
determined by the type of the exception the catch block claims it can
handle. This means that a program error is an error condition (actually
the only error condition) where the exception type matters, and so you

should consider creating a new exception type.

If you think you are dealing with a program error, validate this belief
by actually writing code or describing very precisely what the catch
handler would do when it catches the exception to allow the program
to continue its execution. If you cannot describe it, or if the error can be

224 m Exceptions

avoided by changing the calling code, you are probably dealing with a
usage error or a system failure.

X DO NOT create a new exception type if the exception would not be han-
dled differently than an existing Framework exception. Throw the
existing Framework exception in such case. See section 7.3 for detailed

usage guidelines for the most common standard exception types.

Of course, the existing exception type must make sense for your error
condition. For example, you don’t want to throw FileNotFound-
Exception from an API unrelated to accessing files.

Also, make sure that reusing the exception will not make an error con-
dition ambiguous. That is, make sure that the code that wants to handle
the specific error will always be able to tell whether the exception was
thrown because of the error or because of some other error that hap-
pens to use the same exception. For example, you don’t want to throw
(reuse) FileNotFoundException from a routine that calls Framework’s
file I/O APIs, and so can throw the same exception, unless it does not
matter to the calling code whether your code or the Framework threw

the exception.

v/ DO create a new exception type to communicate a unique program error
that cannot be communicated using an existing Framework exception.

See section 7.4 for details on creating custom exceptions.

®s KRZYSZTOF CWALINA Keep in mind that it's not a breaking change to
change an exception your code throws to a subtype of that exception. For
example, if the first version of yvour framework throws FooException, in
any future version of your library, you can start throwing a subtype for
FooException without breaking code that was compiled against the previ-
ous version of your library. This means, when in doubt, I would consider

not creating new exception types until you are sure you need them. At that
point, you can create a new exception type by inheriting from the currently
thrown type. Sometimes it might result in slightly strange exception hierar-
chy (for example, a custom exception inheriting from InvalidOperation-
Exception), but it's not a big deal in comparison to the cost of having
unnecessary exception types in vour library, which makes the library more
complex, adds development cost, increases working set, and so on.

7.2 Choosing the Right Type of Exception to Throw @g 225

X AVOID creating APIs that when called can result in a system failure. If
such a failure can occur, call Environment.FailFast instead of throw-
ing an exception when the system failure occurs.

System failures are errors that cannot be handled by the developer or
the program. The good thing is that system failures are extremely
rare in reusable libraries. They are mostly caused by the execution
engine. The best way to shut down a process in such cases is to call
Environment.FailFast, which logs the state of the system, some-
thing that is very useful in diagnosing the problem.

X DO NOT create and throw new exceptions just to have your team’s
exception.

v/ DO throw the most specific (the most derived) exception that makes
sense.

For example, throw ArgumentNullException and not its base type,
ArgumentException, if a null argument is passed.

®s JEFFREYRICHTER Throwing System.Exception, the base class of all
CLS-compliant exceptions, is always the wrong thing to do.

®s BRENT RECTOR As described in more detail later, catching System.
Exception is nearly always the wrong thing to do as well.

Now that you have chosen the correct exception type, you can focus on
ensuring that the error message your exception delivers says what you
need it to sav.

7.2.1 Error Message Design
The guidelines in this section define best practices for creating the excep-
tion message text.

v DO provide a rich and meaningful message text targeted at the devel-
oper when throwing an exception.

The message should explain the cause of the exception and clearly

describe what needs to be done to avoid the exception.

226

m Exceptions

"s BRAD ABRAMS This guideline applies to frameworks. It is likely quite

appropriate in application code for the exception message to be targeted at

an admin or even an end user. The high-level advice is that the message text
should be targeted at whoever will have to make sense out of it.

/ DO ensure that exception messages are grammatically correct.

Top-level exception handlers can show the exception message to appli-

cation end users.

v/ DO ensure that each sentence of the message text ends with a period.

This way, code that displays exception messages to the user does not
have to handle the case in which a developer forgot the final period,
which is relatively cumbersome and expensive.

X AvOID question marks and exclamation points in exception messages.

X DO NOT disclose security-sensitive information in exception messages
without demanding appropriate permissions.

v/ CONSIDER localizing the exception messages thrown by your compo-
nents if you expect your components to be used by developers speak-

ing different languages.

®s JEFFREY RICHTER Exception messages are not relevant when an
exception is handled; they only come into play when an exception is unhan-
dled. An unhandled exception indicates a real bug in the application because
the application will be terminated. The only way to fix the application now
is to have the failure reported, the source code modified, recompiled, and to
update the deployments in the field. So the error messages should be geared
toward helping developers fix bugs in their code. End users should not see

these messages. When a Microsoft Office application gets an unhandled
exception, all the dialog box says is something like this: “Microsoft Word
has encountered a problem and needs to close. We are sorry for the inconve-
nience.” There is a bit more to the message, but there is nothing computer-
ese in the message. The user does have the option of clicking a button that
will show them what's in the error report that gets sent back to Microsoft,
and this error report is very geeky.

7.2 Choosing the Right Type of Exception to Throw @ 227

7.2.2 Exception Handling

Having decided when to throw exceptions, their type, and the message
design, the next thing to focus on is how to handle exceptions. First, let’s
define some terminology. You handle an exception when you have a catch
block for a specific exception type and you fully understand the implica-
tions of continuing execution of the application after executing the catch
block; for example, if you try to open a configuration file, catch FileNot-
FoundException if the file is not present, and fall back to the default con-
tiguration. You swallow an exception when you catch a very generic type
of exception (usually) and without fully understanding or responding to
the failure continue with the execution of the application.

X DO NOT swallow errors by catching nonspecific exceptions, such as
System.Exception, System.SystemException, and so on, in frame-

work code.

try{
File.Open({...);

}

catch{Exception e)}{ } // swallow "all" exceptions - don't do this!

A legitimate reason for catching a nonspecific exception is so that you
can transfer that exception to another thread. This can happen, for
example, when a GUI application transfers an operation to the Ul
thread, when doing asynchronous programming, using thread pool
operations, and so on. Obviously, if you are transferring an exception to
another thread, you aren’t actually swallowing it.

®. JOE DUFFY When transferring exceptions across threads, it is impera-
tive that you have put safeguards in place that prevent the exception from
getting missed. For example, if you catch the exception and stuff it into a list

that no other thread in the system ever gets around to checking, you have
essentially swallowed it. And the effects can be as disastrous as ignoring an
error code in Win32.

X AVOID swallowing errors by catching nonspecific exceptions, such as
System.Exception, System.SystemException, and so on, in applica-
tion code.

228 m Exceptions

There are cases when swallowing errors in applications is acceptable,
but such cases are rare.

If you decide to swallow exceptions, you must realize that you don't
know exactly what went wrong, so you generally cannot predict what
state might now be inconsistent. By swallowing exceptions, you are
making a trade-off that the value of continuing to execute code in this
application domain or process exceeds the risk of executing in the face
of inconsistencies. Because a security attack might be able to exploit
those inconsistencies, your decision here has deep consequences.

®s VANCE MORRISON There is surprisingly little you can do when catch-

ing an exception unless you know the following:

« Exactly what component threw it, and what the contract was (what
state the object was left in).

« The WHOLE call stack between the thrower and the catcher, and you
have determined that every method in that stack properly cleaned up
any global state changes before returning.

If you don’t know these two items, then you don’t know that some global
state has been left in a “half done” state, which will cause strange errors if
the program continues. This is especially true for exceptions like OutOf-
MemoryException,StackOverflowException,or ThreadAbortException,
which can happen in a great many places.

In practice, you don't know the whole call stack unless the caller and the
thrower are right next to each other. This means that if you are trying to
catch “any” exception, you should not continue execution. You should only
be doing things like error logging and persisting critical information as a
prelude to shutting down (and possibly relaunching the process). These lat-
ter operations are best done in a finally block.

X DO NOT exclude any special exceptions when catching for the purpose

of transferring exceptions.

catch (Exception e) {
[/ bad code
// do not do this!

7.2 Choosing the Right Type of Exception to Throw g 229

if (e is stackOverflowException ||
e is OutOfMemoryException ||
e is ThreadAbortException

} throw;

®s BRAD ABRAMS There are some sets of exceptions that quite frankly
can’t be legitimately handled. Exceptions such as StackOverflowException,

for example, are thrown by the runtime for fatal conditions. However, it is not
recommended that you put special case code in every catch clause as just
shown because such code is hard to maintain and prone to errors.

v/ CONSIDER catching a specific exception when you understand why
it was thrown in a given context and can respond to the failure
programmatically.

"« JEFFREY RICHTER You should only catch an exception when you
know vou can gracefully recover from it. When performing some operation,
you might know why an exception was thrown, but if you don’t know how
you'd recover from it, do not catch it.

X DO NOT overcatch. Exceptions should often be allowed to propagate up
the call stack.

®s JEFFREY RICHTER This can't be stressed enough. Far too many times
I've seen developers catch an exception, which basically hides a bug that is
in their program. Do not catch; flush out the bugs during testing and ship a
better, more robust product.

®s ERIC GUNNERSON Exception handling is robust by default—every
exception that is thrown will propagate up, looking for a handler. Every
place you write an exception handler is a chance for you to remove robust-
ness from the system, and if you make a mistake it will often be hard to
track down. So be minimal about it.

230 m Exceptions

v/ DO use try-finally and avoid using try-catch for cleanup code. In
well-written exception code, try-finally is far more common than
try-catch.

It might seem counterintuitive at first, but catch blocks are not needed
in a surprising number of cases. On the other hand, you should always
consider whether try-finally could be of use for cleanup to ensure a
consistent state of the system when an exception is thrown. Usually, the
cleanup logic rolls back resource allocations.

FileStream stream = null;
try{

stream = new FileStream{...);
Hinally{
if(stream != null) stream.close();

}

C# and VB.NET? provide the using statement, which can be used instead
of plain try-finally to clean up objects implementing the IDisposable
interface.

using(var stream = new FileStream(...))}q{

1

®s CHRISTOPHER BRUMME If you use catch clauses for cleanup, you
should know that any code that comes after the end of the catch might not
be executed. In CLR 2.0, the finally and catch blocks get special protection
from thread aborts. Code after a catch does not.

"s BRENT RECTOR Don't use catch blocks for cleanup code. Use catch
blocks for error recovery code and finally blocks for cleanup code. A catch
block only runs when an exception of a particular type occurs within the try
block. A finally block always runs. If you always need to clean up (the typi-
cal case), you need to perform that logic in a finally block.

2. The using statement was added to VB.NET in the Visual Studio 2005 release.

7.2 Choosing the Right Type of Exception to Throw g 231

®s JEFFREY RICHTER I completely agree with this guideline. I recom-
mend that almost all cleanup code go inside finally blocks, and it is quite
convenient that C# and VB.INET offer many language constructs that emit
try-finally blocks automatically for you. Examples are C#/VB's using state-
ment, C#'s lock statement, VB's SyncLock statement, C#'s foreach state-

ment, and VB’s For Each statement. In addition, when you define a finalizer
in C#, the compiler makes sure that the base class’s Finalize is called by
placing the call within a finally block. In fact, I have designed many of my
own types to have methods that return an IDisposable object so that they
can be easily used with C#/VB's using statement.

v Do prefer using an empty throw when catching and rethrowing an
exception. This is the best way to preserve the exception call stack.

public void DoSomething(FileStream file){
long position = file.Position;

tryq{
+.s // do some reading with the file

Yeatechq
file.Position = position; // unwind on failure
throw; // rethrow

}
}

®s CHRISTOPHER BRUMME Every time you catch and throw and
rethrow, you impact the debuggability of the system. Debugging of excep-
tions is based on the notion that we detect exceptions going unhandled dur-
ing the first pass, when no state changes have occurred. By attaching a
debugger at that time, we see the state at the time when the exception was
thrown, If there is a series of catch and throw and rethrow segments up the
stack, then debugging might be limited to inspecting the very last segment.
This is an arbitrary distance from the original fault. The same state changes
will reduce the effectiveness of Watson dumps.

®. JEFFREY RICHTER In addition, when you throw a new exception (ver-
sus rethrowing the original exception), you are reporting a different failure
than the failure that actually occurred. This also hurts your ability to debug
the application. Therefore, always prefer a rethrow to a throw and try to

avoid catching and (re)throwing altogether.

232

m Exceptions

X DO NOT handle non-CLS-compliant exceptions (exceptions that don’t
derive from System.Exception) using a parameterless catch block.

Languages that support non-Exception-derived exceptions are free to
handle these exceptions.

tryf{ ... }
catch{ ... }

The CLR 2.0 has been modified and is delivering noncompliant
exceptions to compliant catch blocks wrapped up in RuntimeWrapped-

Exception.

7.2.3 Wrapping Exceptions

Sometimes exceptions raised in a lower layer would be meaningless if they
were allowed to propagate from a higher layer. In such cases, it is sometimes
beneficial to wrap the lower-layer exception in an exception that is meaning-
ful to the users of the higher layer. For example, a FileNotFoundException
would be completely meaningless if allowed to propagate from transaction
management APIs. The user of the transaction APIs might not even be aware
that transactions can be stored on the file system. In other cases, the actual
exception type is less important than the fact that it was raised in some par-
ticular code path. For example, even if an otherwise benign exception is
thrown from a static constructor, the type will be unusable in the current
application domain. In such a case, it is much more important to communi-
cate to the user that an exception occurred in the constructor than what
caused the exception. Therefore, the CLR wraps all exceptions propagating

out of the static constructors into TypeInitializationException.

®s STEVEN CLARKE Make sure that the terminology used in the error
message will make sense in the context in which it is being consumed. In an
APl usability study we ran, the lower-level details of the API had been fac-
tored out so that developers were only exposed to the high-level details.

Unfortunately, exceptions were thrown from the lower level and caught at
the higher level. The error message described concepts that would have
made sense only to someone working at the lower level of the API and thus
was no good at communicating the reason for the problem.

7.2 Choosing the Right Type of Exception to Throw g 233

v/ CONSIDER wrapping specific exceptions thrown from a lower layer in a
more appropriate exception if the lower-layer exception does not make

sense in the context of the higher-layer operation.

Such wrapping should be quite rare in a typical framework. It will
likely have a negative impact on the ability to debug.

try {
f// read the transaction file

}
catch{FileNotFoundException e) {

throw new TransactionFileMissingException(...,e);

}

®s RICO MARIANI Chris Brumme's previous annotation on rethrowing
also applies to this context. The example given illustrates the point nicely:
For rethrowing to help, the original exception context has to be nearly mean-
ingless and certainly uninteresting to debug. That the original call stack was
uninteresting is the controlling factor, in my opinion. In this case, nobody
thinks that there is anything wrong with the file opening services—you
might as well rethrow something more meaningful to indicate where we
had trouble opening files and what file we were trying to open.

®s ERIC GUNNERSON Another way of stating this is: “Don’t wrap if your
users will ever want to look at the inner exception.” By far the worst posi-
tion to be in is to have to look at an inner exception and base your behavior
on the type of the inner exception.

X AVOID catching and wrapping nonspecific exceptions.

The catch and wrap practice is often undesired and is just another form
of swallowing errors. There are exceptions to this rule. They include
cases in which the wrapper exception communicates a severe condi-
tion that is much more interesting to the caller than the actual type of
the original exception. For example, the TypeInitializationException
wraps all exceptions propagating from static constructors.

234

m Exceptions

v Do specify the inner exception when wrapping exceptions.

throw new ConfigurationFileMissingException{...,e);

®: JEFFREY RICHTER It cannot be stressed enough how carefully this
needs to be thought through. When in doubt, do not wrap an exception
with another. An example in the CLR where wrapping is known to cause
all kinds of trouble is with reflection. When vou invoke a method using

reflection, if that method throws an exception, the CLR catches it and
throws a new TargetInvocationException. This is incredibly annoying
because it hides the actual method and location in the method that had the

problem. [have wasted much time trying to debug my code because of this
exception wrapping.

7.3 Using Standard Exception Types

This section describes the standard exceptions provided by the Framework
and the details of their usage. The list is by no means exhaustive. Please
refer to the NET Framework reference documentation for usage of other
Framework exception types.

7.3.1 Exception and SystemException
X DO NOT throw System.Exception or System.SystemException.

X DO NOT catch System.Exception or System.SystemException in frame-
work code, unless you intend to rethrow.

X AVOID catching System.Exception or System.SystemException, except
in top-level exception handlers.

7.3.2 ApplicationException

X DO NOT throw or derive from System.ApplicationException.

7-3 Using Standard Exception Types g 235

®s JEFFREY RICHTER system.ApplicationException is a class that
should not be part of the .NET Framework. The original idea was that
classes derived from SystemException would indicate exceptions thrown
from the CLR (or system) itself, whereas non-CLR exceptions would be
derived from ApplicationException. However, a lot of exception classes

didn’t follow this pattern. For example, TargetInvocationException
(which is thrown by the CLR) is derived from ApplicationException. So
the ApplicationException class lost all meaning. The reason to derive
from this base class is to allow some code higher up the call stack to catch
the base class. It was no longer possible to catch all application exceptions.

7.3.3 InvalidOperationException

v/ DO throw an InvalidOperationException if the object is in an inappro-
priate state.

The System.InvalidOperationException exception should be thrown
if a property set or a method call is not appropriate given the object’s
current state. An example of this is writing to a FileStream that's been
opened for reading,.

"s KRZYSZTOF CWALINA The difference between InvalidOperation-
Exception and ArgumentException is that ArgumentException does not
rely on the state of any other object besides the argument itself to determine

whether it needs to be thrown. For example, if client code tries to access a
nonexistent resource, InvalidOperationException should be thrown. On
the other hand, if client code tries to access a resource using a malformed
identifier, ArgumentException should be thrown.

7.3.4 ArgumentException, ArgumentNullException, and
ArgumentOutOfRangeException

v/ DO throw ArgumentException or one of its subtypes if bad arguments
are passed to a member. Prefer the most derived exception type, if

applicable.

23¢ m Exceptions

v/ DO set the ParamName property when throwing one of the subclasses of
ArgumentExceptions.

This property represents the name of the parameter that caused the
exception to be thrown. Note that the property can be set using one of

the constructor overloads.

public static FileAttributes GetAttributes(string path){
if(path==null}{
throw new ArgumentNullException(“path”,...);

}
¥

/ DO use value for the name of the implicit value parameter of property
setters.

public FileAttributes Attributes {
set {
if{values=null){
throw new ArgumentNullException("value",...);

®s JEFFREY RICHTER It is very unusual to find code that catches any of
these argument exceptions. When one of these exceptions is thrown, you
almost always want the application to die. Then look at the exception stack
trace, fix yvour source code so that you are passing the right argument,
recompile the code, and retest.

®s JASON CLARK Jeffrey is absolutely correct here. And it is the infre-

quency with which these exception types are caught that makes them safe
to broadly reuse for throwing in your code.

7.3 Using Standard Exception Types g 237

7.3.5 NullReferenceException, IndexOutOfRangeException, and
AccessViolationException

X DO NOT allow publicly callable APIs to explicitly or implicitly throw
NullReferenceException, AccessViolationException, or IndexOutOf-
RangeException. These exceptions are reserved and thrown by the exe-

cution engine and in most cases indicate a bug.

Do argument checking to avoid throwing these exceptions. Throwing
these exceptions exposes implementation details of your method that
might change over time.

®s CHRISTOPHER BRUMME Prior to CLR 2.0, there was no distinction
between NullReferenceException and AccessViolationException.
In CLR 2.0, if you are running on an NT-based operating system rather
than Win9x, the CLR will distinguish all the potentially corrupting access
violations as AccessViolationException rather than NullReference-
Exception.

My advice is to treat NullReferenceException just like any other
application exception. Generally, it is neither dangerous nor exotic. How-
ever, if you have a place where you know an AccessViolationException
could occur, you have a bug that you must not ship. Based on all the cases [
have seen, AccessViolationException should only be seen during devel-
opment, where it indicates corruption.

7.3.6 StackOverflowException

X DO NOT explicitly throw StackOverflowException. The exception
should be explicitly thrown only by the CLR.

X DO NOT catch stackOverflowException.

It is almost impossible to write managed code that remains consistent
in the presence of arbitrary stack overflows. The unmanaged parts of
the CLR remain consistent by using probes to move stack overflows to
well-defined places rather than by backing out from arbitrary stack
overflows.

238 m Exceptions

®s CHRISTOPHER BRUMME Generally you should never special-case
StackOverflowException. Default policy in CLR 2.0 will result in a fast

shutdown of the process when a stack overflows. There are strong security
and reliability reasons for this decision. In a normal process, a stack over-
flow won't even result in a managed exception.

7.3.7 OutOfMemoryException

X DO NOT explicitly throw outOfMemoryException. This exception is to be
thrown only by the CLR infrastructure.

% . CHRISTOPHER BRUMME At one end of the spectrum, an OutOf-
MemoryException could be the result of a failure to obtain 12 bytes for
implicitly autoboxing, or a failure to JIT some code that is required for criti-
cal backout. These cases are catastrophic failures and ideally would result in
termination of the process. At the other end of the spectrum, an OutOf-
MemoryException could be the result of a thread asking for a 1 GB byte
array. The fact that we failed this allocation attempt has no impact on the
consistency and viability of the rest of the process.

The sad fact is that CLR 2.0 cannot distinguish among any points on this
spectrum. In most managed processes, all OutOfMemoryExceptions are con-
sidered equivalent and they all result in a managed exception being propa-
gated up the thread. However, you cannot depend on your backout code
being executed, because we might fail to JIT some of your backout methods,
or we might fail to execute static constructors required for backout.

Also, keep in mind that all other exceptions can get folded into an Out-
OfMemoryExceptionif there isn't enough memory to instantiate those other
exception objects. Also, we will give you a unique OutOfMemoryException
with its own stack trace if we can. But if we are tight enough on memory;,
you will share an uninteresting global instance with everyone else in the
process.

My best recommendation is that you treat OutOfMemoryException like
any other application exception. You make your best attempts to handle it
and remain consistent. In the future, I hope the CLR can do a better job of
distinguishing catastrophic OOM from the 1 GB byte array case. If so, we
might provoke termination of the process for the catastrophic cases, leaving
the application to deal with the less risky ones. By treating all OOM cases as
the less risky ones, you are preparing for that day.

7.4 Designing Custom Exceptions g 239

7.3.8 ComException, SEHException, and ExecutionEngineException

X DO NOT explicitly throw ComException, ExecutionEngineException,
and SEHException. These exceptions are to be thrown only by the CLR

infrastructure.

®s CHRISTOPHER BRUMME If you see an ExecutionEngineException
thrown, treat it like any other Framework exception. It was thrown from a
place where the CLR is not actually in an invalid state. For instance, there

are some invalid operations in the security code that throw this exception,
and backward compatibility requirements prevent us from changing the

excepﬁnn type.

7.4 Designing Custom Exceptions

In some cases, it will not be possible to use existing exceptions (section 7.2
describes in detail how to make such determination). In those cases, you'll
need to define custom exceptions. The guidelines in this section provide
help on doing that.

v’ DO derive exceptions from System.Exception or one of the other com-

mon base exceptions.

X AvoID deep exception hierarchies.

There are limited cases where it's good to create a more elaborate hier-
archy of exceptions, but it's extremely rare. The reason is that code that
handles exceptions almost never cares about the hierarchy, because it
almost never wants to handle more than one error at a time. If two or
more errors can be handled the same way, they should not be expressed
using different exception types. Of course, there are exceptions to the
rule and in some cases, it may be better to create a deeper hierarchy.

/ DO end exception class names with the “Exception” suffix.

v/ DO make exceptions runtime serializable. An exception must be serial-
izable to work correctly across application domain and remoting
boundaries.

240

m Exceptions

v Do provide (at least) these common constructors on all exceptions.
Make sure the names and types of the parameters are exactly as shown

in the following example.

public class SomeException: Exception, ISerializable {
public SomeException();
public SomeException(string message);
public SomeException(string message, Exception inner);

/J this constructor is needed for serialization.
protected SomeException(SerializationInfo info, StreamingContext
context);

¥

/ DO report security-sensitive information through an override of
ToString only after demanding an appropriate permission.

If the permission demand fails, return a string excluding the security-

sensitive information.

®s RICO MARIANI Do not store the results of ToString in any generally
accessible data structure unless that data structure suitably secures the

string from untrusted code. This advice applies to all strings, but because
exception strings frequently contain sensitive information (such as file
paths), I reiterate the advice here.

v/ DO store useful security-sensitive information in a private exception
state. Ensure only trusted code can get the information.

/ CONSIDER providing exception properties for programmatic access to

extra information (besides the message string) relevant to the exception.

7.5 Exceptions and Performance

One common concern related to exceptions is that if exceptions are used
for code that routinely fails, the performance of the implementation will
be unacceptable. This is a valid concern. When a member throws an excep-
tion, its performance can be orders of magnitude slower. However, it is

7.5 Exceptions and Performance m 241

possible to achieve good performance while strictly adhering to the excep-
tion guidelines that disallow using error codes. Two patterns described in
this section suggest ways to do this.

X DO NOT use error codes because of concerns that exceptions might affect

performance negatively.

To improve performance, it is possible to use either the Tester-Doer
Pattern or the Try-Parse Pattern, described in the next two sections.

7.5.1 Tester-Doer Pattern

Sometimes performance of an exception-throwing member can be
improved by breaking the member into two. Let’s look at the Add method
of the ICollection<T> interface.

ICollection<int> numbers = ...
numbers.Add{1);

The method Add throws if the collection is read-only. This can be a per-
formance problem in scenarios where the method call is expected to fail
often. One of the ways to mitigate the problem is to test whether the collec-

ton is writable before tryving to add a value.

ICollection<int> numbers = ...

if{ 'numbers.IsReadOnly){
numbers . Add{1);
}

The member used to test a condition, which in our example is the prop-
erty IsReadOnly, is referred to as the tester. The member used to perform a
potentially throwing operation, the Add method in our example, is referred

to as the doer.

v/ CONSIDER the Tester-Doer Pattern for members that might throw

exceptions in common scenarios to avoid performance problems related

to exceptions.

®s RICO MARIANI Consider this when the “test” is much cheaper than

the “do.”

242 @m Exceptions

"s JEFFREY RICHTER This pattern needs to be used carefully. The poten-
tial problem occurs when you have multiple threads accessing the object at
the same time. For example, one thread could execute the tester method,
which reports that all is OK, and before the doer method executes, another
thread could change the object, causing the doer to fail. Although this pat-
tern might improve performance, it might introduce race conditions and
must be used with extreme caution.

®s VANCE MORRISON Jeff’s comment about races is true, but it only
rarely should impact your design. The reason is that unless you specifically
designed your class to be threadsafe (operate properly while multiple
threads simultaneously use it), it almost certainly is not. Of the thousands
of classes in the NET Framework, only a handful are designed to be thread-
safe (and this is specifically noted in the documentation). If your class is not
threadsafe (the default), any user must use locks to ensure that only one
thread uses it at a time. As long as both the “test” and “do” are done under
the same lock (this will typically happen naturally), there is not a problem.
Thus, Jeff's concern only applies to the design of threadsafe classes.

7.5.2 Try-Parse Pattern

For extremely performance-sensitive APIs, an even faster pattern than the
Tester-Doer Pattern described in the previous section should be used. The
pattern calls for adjusting the member name to make a well-defined test
case a part of the member semantics. For example, DateTime defines a
Parse method that throws an exception if parsing of a string fails. It also
defines a corresponding TryParse method that attempts to parse, but
returns false if parsing is unsuccessful and returns the result of a success-

ful parsing using an out parameter.

public struct DateTime {
public static DateTime Parse(string dateTime){

}

public static bool TryParse(string dateTime, out DateTime result){

}

7.5 Exceptions and Performance m 243

When using this pattern, it is important to define the try functionality
in strict terms. If the member fails for any reason other than the well-
defined try, the member must still throw a corresponding exception.

v/ CONSIDER the Try-Parse Pattern for members that might throw excep-
tions in common scenarios to avoid performance problems related to
exceptions.

®s JEFFREYRICHTER Ilike this guideline a lot. It solves the race-condition

problem and the performance problem. Besides the DateTime,TryParse,
the Dictionary class has a TryGetValue method.

/ DO use the prefix “Try” and Boolean return type for methods imple-
menting this pattern.

v Do provide an exception-throwing member for each member using the

Try-Parse Pattern.
public struct DateTime {
public static DateTime Parse(string dateTime){ ... }
public static bool TryParse(string dateTime, out DateTime result){ ... }

}

®s RICO MARIANI Butdon't provide members that nobody could reason-
ably use. There's no reason to set your clients up for failure by giving them

an API that's almost guaranteed to be too slow to use. The most obvious
way to use your system should also be the best way.

SUMMARY

In designing frameworks, it is important to use exceptions as your error
handling mechanism, for all of the reasons detailed in this chapter. In the

end, it will make your and your customers’ lives easier.

www.EBooksWorld.ir

n 8s

Usage Guidelines

HIS CHAPTER CONTAINS guidelines for using common types in pub-

licly accessible APIs. It deals with direct usage of built-in Framework
types (e.g., Collection<T>, serialization attributes), implementing com-
mon interfaces, and inheriting from common base classes. The last section
of the chapter talks about overloading common operators.

8.1 Arrays
This section presents guidelines for using arrays in publicly accessible APls.

v Do prefer using collections over arrays in public APIs. Section 8.3.3

provides details about how to choose between collections and arrays.

public class Order {
public Collection<OrderItem» Items { get { ... } }

X DO NOT use read-only array fields. The field itself is read-only and can’t
be changed, but elements in the array can be changed.

m 245

246 @ Usage Guidelines

This example demonstrates the pitfalls of using read-only array fields:

//bad code
public sealed class Path {
public static readonly char[] InvalidPathChars =

I T R

This allows callers to change the values in the array as follows:

Path.InvalidPathChars[@] = "A";

Instead, you can either use a read-only collection (only if the items are
immutable) or clone the array before returning it.

public static ReadOnlyCollection<char> GetInvalidPathChars() {
return Array.AsReadOnly(badChars);

}

public static char[] GetInvalidPathChars() {
return (char[])badChars.Clone();
¥

v/ CONSIDER using jagged arrays instead of multidimensional arrays.

Ajagged array is an array with elements that are also arrays. The arrays
that make up the elements can be of different sizes, leading to less
wasted space for some sets of data (e.g., sparse matrix) compared to
multidimensional arrays. Furthermore, the CLR optimizes index oper-
ations on jagged arrays, so they might exhibit better runtime perfor-

mance in some scenarios.

J/ jagged arrays
int[1[] jaggedArray = {
new int[] {1,2,3,4},
new int[] {5,6,7},
new int[] {8},
new int[] {9}

8.2 Attributes m 247

f/ multidimensional arrays
int [,] multiDimArray = {
{1,2,3,4},
{5,6,7,8},
{Bﬂalai B}J
{9,0,86,8}
};

®s BRAD ABRAMS In general, I have found that usage of non-SZ (one

dimension, zero lower bound) arrays in mainstream public APIs is very
rare. Their usage should be constrained to problem areas that inherently

lend themselves to multidimensional cases (such as matrix multiplication).
All other usages should prefer defining a custom data structure or passing
multiple arrays.

8.2 Attributes

System.Attribute is a base class used to define custom attributes. The fol-

lowing is an example of a custom attribute:

[AttributeUsage(...)]

public class NameAttribute : Attribute {
public NameAttribute (string userName) {..} // required argument
public string Userbame { get{..} }
public int Age { get{..} set{..} } // optional argument

}

Attributes are annotations that can be added to programming elements
such as assemblies, types, members, and parameters. They are stored in the
metadata of the assembly and can be accessed at runtime using the reflec-
tion APIs. For example, the Framework defines the ObsoleteAttribute,
which can be applied to a type or a member to indicate that the type or
member has been deprecated.

Attributes can have one or more properties that carry additional data
related to the attribute. For example, ObsoleteAttribute could carry addi-
tional information about the release in which a type or a member got dep-
recated and the description of the new APlIs replacing the obsolete APL

248

m Usage Guidelines

Some properties of an attribute must be specified when the attribute is
applied. These are referred to as the required properties or required argu-
ments, because they are represented as positional constructor parameters.
For example, the ConditionString property of the ConditionalAttribute
is a required property.

public static class Trace {

[Conditional("TRACE")]
public static void WriteLine(string message) { ... }

Properties that do not necessarily have to be specified when the attri-
bute is applied are called optional properties (or optional arguments).
They are represented by settable properties. Compilers provide special
syntax to set these properties when an attribute is applied. For example,
the AttributeUsageAttribute.Inherited property represents an optional

argu ment.

[AttributeUsage(AttributeTargets.All, Inherited = false)]
public ¢lass SomeAttribute : Attribute {

1

The following guidelines are aimed at designing custom attributes.

v’ DO name custom attribute classes with the suffix “Attribute.”

public class Obsoleteattribute : Attribute { ... }

v/ DO apply the AttributeUsageAttribute to custom attributes.

[AttributeUsage(...)]
public class Obsoleteattribute{}

v Do provide settable properties for optional arguments.
public class MameAttribute : Attribute {

public int Age { get{..} set{..} } // optional argument
}

/ DO provide get-only properties for required arguments.

8.2 Attributes m 249

v DO provide constructor parameters to initialize properties correspond-
ing to required arguments. Each parameter should have the same name
(although with different casing) as the corresponding property.

[AttributeUsage(...)]

public class NameAttribute : Attribute {
public NameAttribute(string userName){..} // required argument
public string UserMame { get{..} } // required argument

®s KRZYSZTOF CWALINA This guideline applies equally to case-sensitive

and case-insensitive languages. For example, this is how the attribute would
look if defined using case-insensitive VB.NET:

Public Class FooAttribute
Dim nameValue As String
Public Sub New(ByVal name As String)
nameValue = name
End Sub

Public ReadOnly Property Name() As String
Get
Return nameValue
End Get
End Property
End Class

X AvVOID providing constructor parameters to initialize properties corre-

sponding to the optional arguments.

In other words, do not have properties that can be set with both a con-
structor and a setter. This guideline makes very explicit which argu-
ments are optional and which are required, and avoids having two

ways of doing the same thing.

X AVOID overloading custom attribute constructors.

Having only one constructor clearly communicates to the user which
arguments are required and which are optional.

250 m Usage Guidelines

v/ DO scal custom attribute classes, if possible. This makes the look-up for
the attribute faster.

public sealed class MameAttribute : Attribute { ... }
"s JASON CLARK In the exception section, I cautioned against the reuse

of somebody else’s exception type. Here I am going to do the same for cus-
tom attributes. Reuse of somebody else’s custom attribute, unless it means

exactly the same thing, puts your mutual clients in the awkward position of
having to choose between avoiding vour APl and applying the co-opted
attribute, which involves the risk of unexpected or expected (but undesir-
able) side effects from the original code that used the attribute.

The next section offers guidelines for designing collections.

8.3 Collections

Any type designed specifically to manipulate a group of objects having some
common characteristic can be considered a collection. It is almost always
appropriate for such types to implement IEnumerable or IEnumerable<T>, so
in this section we only consider types implementing one or both of those
interfaces to be collections.

X DO NOT use weakly typed collections in public APIs.

The type of all return values and parameters representing collection
items should be the exact item type, not any of its base types (this
applies only to public members of the collection). For example, a collec-
tion storing Components should not have a public Add method that

takes object or a public indexer returning IComponent.

// bad design
public class ComponentDesigner {
public IList Components {get { ... } }

b
[/ good design
public class ComponentDesigner {
public Collection<Component> Components { get { ... } }

8.3 Collections m 251

X DO NOT use ArrayList or List<T> in public APIs.

These types are data structures designed to be used in internal imple-
mentation, not in public APIs. List<T> is optimized for performance
and power at the cost of cleanness of the APIs and flexibility. For exam-
ple, if you return List<T>, you will not ever be able to receive notifica-
tions when client code modifies the collection. Also, List<T> exposes
many members, such as BinarySearch, that are not useful or applicable
in many scenarios. Sections 8.3.1 and 8.3.2 describe types (abstractions)
designed specifically for use in public APlIs.

// bad design
public class Order {
public List<Orderltem> Items { get { ... } }

}
// good design

public class Order {
public Collection<OrderItem> Items { get { ... } }

X DO NOT use Hashtable or Dictionary<TKey,TValues in public APIs.

These types are data structures designed to be used in internal imple-
mentation. Public APIs should use IDictionary, IDictionary <TKey,
Tvalue>, or a custom type implementing one or both of the interfaces.

X DO NOT use IEnumerator<T>, IEnumerator, or any other type that
implements either of these interfaces, except as the return type of a
GetEnumerator method.

®s ANTHONY MOORE TI've seen a lot of violations of this guideline ever
since LINQ has been available. The review body made an explicit decision

that LINQ should not change this guideline. Your callers can end up with a
clumsy object model if they choose not to use LINQ or use a language that
does not support it.

Types returning enumerators from methods other than GetEnumerator

cannot be used with the foreach statement.

252 @m Usage Guidelines

X DO NOT implement both TEnumerator<T> and IEnumerable<T> on the
same type. The same applies to the nongeneric interfaces IEnumerator
and IEnumerable.

In other words, a type should be either a collection or an enumerator,
but not both.

®s ANTHONY MOORE In design meetings, we would often describe this
set of guidelines with the statement that you should “require the weakest
thing you need, and return the strongest thing you have.”

A nonobvious example that people sometimes miss is “out” parameters,
which are really more like return values than input parameters and thus

work a little better with the stronger typed objects.

A less clear case is properties on return values on interfaces or abstract
base types. In this case, they are both input and output. These usually
work better with the weak types because they leave more options to the
implementation.

8.3.1 Collection Parameters
This section describes guidelines for using collections as parameters.

/ DO use the least-specialized type possible as a parameter type. Most
members taking collections as parameters use the IEnumerable<T>

interface.

public void PrintNames(IEnumerable<string» names){
foreach{string name in names){
Console.WriteLine(name);

}

X AvVOID using ICollection<T> or ICollection as a parameter just to
access the Count property.

Instead, consider using IEnumerable<T> or IEnumerable and dynam-
ically checking whether the object implements ICollection<T> or

ICollection.

8.3 Collections m 253

public List<T»(IEnumerable<T» collection){
J// check if it implements ICollection
ICollection<T> col = collection as ICollection<T>;
if{coll=null}{
this.Capacity = collection.Count;

}

foreach(T item in collection){
Add{item);
}

8.3.2 Collection Properties and Return Values

This section offers guidelines for returning collections from methods and
from property getters.

X DO NOT provide settable collection properties.

Users can replace the contents of the collection by clearing the collec-
tion first and then adding the new contents. If replacing the whole col-
lection is a common scenario, consider providing the AddRange method
on the collection.

[/ bad design
public class Order {
public Collection<OrderItem» Items { get { ... }set{ ... } }

}
// good design
public class Order {
public Cellection<OrderItem:> Items { get { ... } }

ER

v/ DO use Collection<Ts or a subclass of Collection<Ts for properties or

return values representing read /write collections.

public Collection<Session> Sessions { get; }

If Collection<T> does not meet some requirement (e.g., the collection
must not implement IList), use a custom collection by implementing
IEnumerable<T>, ICollection<T>, or IList<T>.

254 @m Usage Guidelines

v’ DO use ReadOnlyCollection<T>, a subclass of ReadOnlyCollection<T>,
or in rare cases IEnumerable<T> for properties or return values repre-
senting read-only collections.

public ReadOnlyCollection<Session> Sessions { get; }

In general, prefer ReadOnlyCollection<T>. If it does not meet some
requirement (e.g., the collection must not implement IList), use a cus-
tom collection by implementing IEnumerable<T>, ICollection<T>, or
IList<T>. If you do implement a custom read-only collection, imple-
ment ICollection<T>.ReadOnly to return false.

public class SessionCollection : IList<Session> {

bool ICollection<Session>.IsReadOnly { get { return false; } }

+ 8@

In cases where you are sure that the only scenario you will ever want to

support is forward-only iteration, you can simply use IEnumerable<T>.

®s CHRISSELLS Oneof my favorite implementations of IEnumerable<T>
is sometimes known as a generator. A generator is an iterator class or
method that generates collection members on the fly, which is really useful
when you'd prefer not to precompute something and then buffer it simply
for convenient access. For example, the following is a generator method
that computes as many numbers from the Fibonacci sequence as you care to

ask for wrapped in an IEnumerable for easy access via foreach or for pass-
ing to methods that take IEnumerable as input:

class FibonacciGenerator{
public static IEnumerable<long> GetSegquence(int count)}{
long fibl = 2;
long fib2 = 1;

8.3 Collections g

yield return fibl;
yield return fib2; // assume they want at least 2, else what
J/fun are they?
while{--count!= 1) {
long fib3 = fibl + fib2;
yield return fib3;
fibl = fib2;
fib2 = fih3:
!
o
i

class Program {
static void Main() {
foreach(long fib in FibonacciGenerator.GetSequence(lee)){
Console.Writeline(fib);

v/ CONSIDER using subclasses of generic base collections instead of using

the collections directly.

This allows for a better name and for adding helper members that are
not present on the base collection types. This is especially applicable to
high-level APlIs.

public TraceSourceCollection : Collection<TraceSource> {
// optional helper method
public veid Flushall {
foreach(TraceSource source in this){
source, Flush();
}
1

// another common helper
public void AddSource(string sourceName){
Add{new TraceSource(sourceName));

255

256

m Usage Guidelines

v/ CONSIDER returning a subclass of Collection<T> or ReadOnly-

Collection<T> from very commonly used methods and properties.

public class ListItemCollection : Collection<ListItems {}
public class ListBox {
public ListItemCollection Items { get; }
by
public class XmlAttributeCollection : ReadOnlyCollection<¥mlAttribute> {}
public class XmlNode {
public XmlattributeCollection Attributes { get; }

}

This will make it possible for you to add helper methods or change the
collection implementation in the future.

v/ CONSIDER using a keyed collection if the items stored in the collection

have unique keys (names, IDs, etc.). Keyed collections are collections
that can be indexed by both an integer and a key and are usually imple-
mented by inheriting from KeyedCollection<TKey, TItems.

For example, a collection of files in a directory could be represented as
a subclass of KeyedCollection<string,FileInfo> where string is the
filename. Users of the collection could then index the collection using

filenames.

public class FileInfoCollection : KeyedCollection<string,FileInfo>x {

}

public class Directory {
public Directory(string root);
public FileInfoCollection GetFiles();

Keyed collections usually have larger memory footprints and should
not be used if the memory overhead outweighs the benefits of having
the keys.

DO NOT return null values from collection properties or from methods
returning collections. Return an empty collection or an empty array
instead.

8.3 Collections m 257

Users of collection properties often assume that the following code will

always work:

IEnumerable<string:> list = GetList();
foreach({string name in list){

}

The general rule is that null and empty (0 item) collections or arrays
should be treated the same.

8.3.2.1 Snapshots Versus Live Collections

Collections representing a state at some point in time are called snapshot
collections. For example, a collection containing rows returned from a
database query would be a snapshot. Collections that always represent
the current state are called live collections. For example, a collection of

ComboBox items is a live collection.

X DO NOT return snapshot collections from properties. Properties should
return live collections.

public class Directory {

public Directory(string root);

public IEnumerable<FileInfo> Files { get {...} } //live collection
}

Property getters should be very lightweight operations. Returning a
snapshot requires creating a copy of an internal collection in an O(n)

operation.

v/ DO use either a snapshot collection or a live IEnumerable<T> (or its sub-
type) to represent collections that are volatile (i.e., that can change with-
out explicitly moditying the collection).

In general, all collections representing a shared resource (e.g., files in a

directory) are volatile. Such collections are very difficult or impossible

258

m Usage Guidelines

to implement as live collections unless the implementation is simply a
torward-only enumerator.

public class Directory {
public Directory(string root);
public IEnumerable<FileInfo» Files { get; } // live

// or
public FileInfoCollection GetFiles(); // snapshot

E

8.3.3 Choosing Between Arrays and Collections

Framework designers often need to choose whether to use an array or a
collection. These two alternative approaches have very similar usage but
somewhat different performance characteristics, usability, and versioning
implications.

v DO prefer collections over arrays.

Collections provide more control over contents, can evolve over time,
and are more usable. In addition, using arrays for read-only scenarios
is discouraged because the cost of cloning the array is prohibitive.
Usability studies have shown that some developers feel more comfort-
able using collection-based APIs.

However, if you are developing low-level APlIs, it might be better to use
arrays for read-write scenarios. Arrays have a smaller memory foot-
print, which helps reduce the working set, and access to elements in an

array is faster because it is optimized by the runtime.

/ CONSIDER using arrays in low-level APIs to minimize memory con-

sumption and maximize perfurmance.
v/ DO use byte arrays instead of collections of bytes.

// bad design
public Collection<byte> ReadBytes{) { ... }

[/ good design
public byte[] ReadBytes() { ... }

8.3 Collections m 259

X DO NOT use arrays for properties if the property would have to return a
new array (e.g., a copy of an internal array) every time the property
getter is called.

This ensures that users will not write the following inefficient code:

Jf/bad design
for({int index=@; index< customer.Orders.Length; index++) {
Console.Writeline{customer.Orders[i]);

}

The next section goes into the guidelines for implementing custom

collections.

8.3.4 Implementing Custom Collections
In implementing custom collections, it is a good idea to follow these
guidelines.

v/ CONSIDER inheriting from Collection<T>, ReadonlyCollection<Ts, or

KeyedCollection<TKey, TItem> when designing new collections.

public class OrderCollection : Collection<Order> {
protected override void InsertItem({int index, Order item) {

}

/DD implement IEnumerable<T> when designing new collections.
Consider implementing ICollection<T> or even IList<T> where it
makes sense.

public class TextDeccrationCollection : IList<TextDecorations ... {

}

When implementing such custom collection, follow the APl pattern
established by Collection<T> and ReadOnlyCollection<T> as closely
as possible. That is, implement the same members explicitly, name the

260

m Usage Guidelines

parameters like these two collections name them, and so on. In other
words, make your custom collection different from these two collec-
tions only when you have a very good reason to.

v/ CONSIDER implementing nongeneric collection interfaces (IList and
ICollection) if the collection will often be passed to APIs taking these
interfaces as input.

public class OrderCollection : IList<Orders, ILIst {

& 8 @

¥

X AvoID implementing collection interfaces on types with complex APls

unrelated to the concept of a collection.

In other words, a collection should be a simple type used to store,
access, and manipulate items, and not much more.

X DO NOT inherit from nongeneric base collections such as Collection-
Base. Use Collection<T>, ReadOnlyCollection<T>, and Keyed-
Collection<TKey,TItem> instead.

8.3.4.1 Naming Custom Collections

Collections (types that implement IEnumerable) are created mainly for

two reasons: (1) to create a new data structure with structure-specitic oper-

ations and often different performance characteristics than existing data

structures (e.g., List<T>, LinkedList<T>, Stack<T>), and (2) to create a

specialized collection for holding a specific set of items (e.g., String-

Collection). Data structures are most often used in the internal imple-

mentation of applications and libraries. Specialized collections are mainly

to be exposed in APIs (as property and parameter types).

v/ DO use the “Dictionary” suffix in names of abstractions implementing
IDictionary or IDictionary<TKey,TValue>.

v/ DO use the “Collection” suffix in names of types implementing
IEnumerable (or any of its descendants) and representing a list of items.

public class OrderCollection : IEnumerable<Order> { ... }

public class CustomerCollection : ICollection<Customer: { ... }
public class AddressCollection : IList<Address> { ... }

8.4 DateTime and DateTimeOffset m 261

v’ DO use the appropriate data structure name for custom data structures.

public class LinkedList«<T» : IEnumerable<T>» ,... { ... }
public class Stack<T» : ICollection<Customer> { ... }

X AVOID using any suffixes implying particular implementation, such as
“LinkedList” or “Hashtable,” in names of collection abstractions.

v/ CONSIDER prefixing collection names with the name of the item type.
For example, a collection storing items of type Address (implementing
IEnumerable<Address>») should be named AddressCollection. If the
item type is an interface, the “I"” prefix of the item type can be omitted.
Thus, a collection of IDisposable items can be called Disposable-

Collection.

v/ CONSIDER using the “ReadOnly” prefix in names of read-only collec-
tions if a corresponding writeable collection might be added or already
exists in the framework.

For example, a read-only collection of strings should be called Read-
OnlyStringCollection.

8.4 DateTime and DateTimeOffset

The NET Framework 3.5 introduced a new type for representing a point
in time called DateTimeOffset. The type is similar to the DateTime struc-
ture, which should be familiar to most users of the .NET Framework.
DateTimeOffset stores similar data to DateTime but adds information
about the offset from the GMT time and sois a more precise representation

of a point in time.

®s ANTHONY MOORE This was one of the hardest types to name in the
history of the Base Class Libraries. The way to think about it is

Date+Time+Offset. However, it confuses people because at first glance it
looks the type of just the offset piece. There were many other options dis-
cussed, but they were seen to have problems even worse than this.

262 @m Usage Guidelines

The following listing shows the main properties of the DateTime and
DateTimeOffset:

public struct DateTime {

public DateTime Date { get; }
public DateTimeKind Kind { get; }
public DayOfleek DayOfWeek { get; }
public int Day { get; }

public int DayOf¥ear { get; }
public int Hour { get; }

public int Millisecond { get; }
public int Minute { get; }

public int Month { get; }

public int Second { get; }

public int Year { get; }

public long Ticks { get; }

public TimeSpan TimeOfDay { get; }

b

public struct DateTimeOffset {

public DateTime Date { get; }

public DateTime DateTime { get; }
public DateTime LocalDateTime { get; }
public DateTime UtcDateTime { get; }
public DayOflleek DayOfieek { get; }
public int Day { get; }

public int DayOfyYear { get; }

public int Hour { get; }

public int Millisecond { get; }
public int Minute { get; }

public int Month { get; }

public int Second { get; }

public int Year { get; }

public long Ticks { get; }

public long UtcTicks { get; }

public TimeSpan Offset { get; }
public TimeSpan TimeOfDay { get; }

v/ DO use DateTimeoffset whenever you are referring to an exact point

in time. For example, use it to calculate “now,” transaction times, file

8.5 ICloneable g 263

change times, logging event times, and so on. If the time zone is not
known, use it with UTC. These usages are much more common than
the scenarios where DateTime is preferred, so this should be considered
the default.

v/ DO use DateTime for any cases where the absolute point in time does

not apply, such as store opening times that apply across time zones.

v/ DO use DateTime when the time zone cither is not known or is some-
times not known. This may happen in cases where it comes from a leg-

acy data source.

X DO NOT use DateTimeKind if DateTimeOffset can be used instead.

DateTimeKind is an enum stored in DateTime to indicate whether the
instance represents UTC, local time, or unspecified time zone.

v/ DO use DateTime with a 00:00:00 time component rather than Date-
TimeOffset to represent whole dates, such as a date of birth.

v/ DO use TimeSpan to represent times of day without a date.

®s ANTHONY MOORE We have considered adding Date and Time types
in future releases of the Framework. Although the idea is not off the table

completely, we are concerned that such additions will complicate the Frame-
work without providing enough value to offset the negatives.

8.5 ICloneable

The ICloneable interface contains a single Clone method, which creates a

copy of the current object.

public interface IClcneable {
object Clone();

}

There are two general ways to implement cloning, as either deep-copy
or shallow-copy. Deep-copy copies the cloned object and all objects refer-
enced by the object, recursively, until all objects in the graph are copied. A
shallow-copy copies only a part of the object graph.

264

m Usage Guidelines

Because the contract of ICloneable does not specify the type of clone
implementation required to satisfy the contract, different classes have differ-
ent implementations of the interface. Consumers cannot rely on ICloneable
to let them know whether an object is deep-copied or not. Therefore, we

recommend that ICloneable not be implemented.

"s KRZYSZTOF CWALINA The moral of the story is that you should never

ahip an interface if you don’t have both implementaticma and consumers of

the interface. In the case of ICloneable, we did not have consumers when
we shipped it. I searched the Framework sources and could not find even
one place where we take ICloneable as a parameter.

X DO NOT implement ICloneable.
X DO NOT use ICloneable in public APls.
v/ CONSIDER defining the Clone method on types that need a cloning

mechanism. Ensure that the documentation clearly states whether it is

a deep- or shallow-copy.

public class Customer {
public Customer Clone();

8.6 IComparable<T> and IEquatable<T>

IComparable<T> and IEquatable<T> can be implemented by types that
support either equality or order comparison. IComparable<T> specifies
ordering (less than, equals, greater than) and is used mainly for sorting.
IEquatable<T> specifies equality and is used mainly for look-up.

public interface IComparable«<T: {
// returns a negative integer if this is less than other
ff returns 8 it this and other are equal
ff returns a positive integer if this is greater than other
public int CompareTo(T other);

8.6 IComparable<T> and IEquatable<T> m 265

public interface IEquatable<T> {
public bool Equals(T other);
¥

v Do implement IEquatable<T> on value types.

The Object.Equals method on value types causes boxing, and its
default implementation is not very efficient because it uses reflection.
IEquatable<T>.Equals can offer much better performance and can be

implemented so that it does not cause boxing.

public struct Int32 : IEquatable<Int32> {
public bool Equals(Int32 other){ ... }

}

v/ DO follow the same guidelines as for overriding Object.Equals when
implementing IEquatable<T>.Equals.

See section 8.7.1 for detailed guidelines on overriding Object.Equals.

v’ DO override Object.Equals whenever implementing IEquatable<T>.

Both overloads of the Equals method should have exactly the same

semandtics.

public struct PositiveInt32 : IEquatable<PositiveInt3z:> {
public bool Equals(PositiveInt3z other) { ... }
public override bool Equals{object obj){
if (!obj is PositiveInt32) return false;
return Equals({PositiveInt32)obi);

v/ CONSIDER overloading operator== and operator!= whenever imple-
menting IEquatable<T>.

public struct Decimal : IEquatable<Decimal», ... {
public bool Equals(Decimal other){ ... }
public static bool operator==(Decimal x, Decimal y) {
return x.eEquals(y);
}
public static bool operator!=(Decimal x, Decimal y} {
return Ix.Equals(y);

b

266 @m Usage Guidelines

See section 8.10 for more details about implementing the equality

operators.
v Do implement IEquatable<T> anytime you implement IComparable<T>.

Note that the reverse is not true, and not all types can support ordering.

public struct Decimal : IComparable<Decimal>, IEquatable<Decimal> {

¥

v/ CONSIDER overloading comparison operators (<, >,<=, >=) whenever
vou implement IComparable<T>.

public struct Decimal : IComparable< Decimal », ... {
public int CompareTo(Decimal other}{ ... }
public static bool operator<{Decimal x, Decimal y) {
return X.CompareTo(y)<e;

1
public static bool operator>{Decimal x, Decimal vy} {
return x.CompareTo(y)»8;

1

+ =8

See section 5.6 for details on when to overload operators.

8.7 IDisposable

IDisposable is known as the Dispose Pattern and is discussed in
section 9.3.

8.8 Nullable<T>

Nullable<T> is a simple type added to the INET Framework 2.0. The type

is designed to be able to represent value types with “null” values.

Nullable<int> x = null;

Nullable<int> y = 5;

Console.WriteLine(® == null); // prints true
Console.WriteLine(y == null}; // prints false

8.8 Nullable<T> m 267

Note that C# provides special support for Nullable<T> in the form of
language aliases for nullable types, lifted operators, and the new coalesc-
ing operator.

int? ¥ = null; // alias for Nullable<int»
long? d = x; // calls cast operator from Int32 to Intes
Console.WriteLine(d??18); // coalescing; prints 1@ because d == null

v/ CONSIDER using Nullable<T> to represent values that might not be
present (i.e., optional values). For example, use it when returning a
strongly typed record from a database with a property representing an
optional table column.

X DO NOT use Nullable<T> unless you would use a reference type in a
similar manner, taking advantage of the fact that reference type values

can be null.

For example, you would not use null to represent optional parameters.

{/ bad design
public class Foo {
public Foo(string name, int? id);

}

/{ good design

public class Foo {
public Foo(string name, int id);
public Foo(string name);

X AVOID using Nullable<bool> to represent a general three-state value.

Nullable<bool> should only be used to represent truly optional Bool-
ean values: true, false, and not available. If you simply want to repre-

sent three states (e.g., yes, no, cancel), consider using an enum.

X AvoID using System.DBNull. Prefer Nullable<T> instead.

268

m Usage Guidelines

"s PABLO CASTRO nNullable<T> isin general a better representation of
optional database values. One thing to consider though is that while
Nullable<T> gives you the ability to represent null values, you don't get

database null operational semantics. Specifically, you don’t get null propa-
gation through operators and functions. If you deeply care about the prop-
agation semantics, consider sticking with DBNull.

8.9 Object

System.Object has several members that are very commonly overridden.

The following sections describe when and how to override these members.

8.9.1 Object.Equals

The default implementation of Object.Equals on value types returns true
if all fields of the values being compared compare themselves as equal. We
call such equality the value equality. The implementation uses reflection to
access the fields and because of that it is often unacceptably inefficient and
needs to be overridden.

The default implementation of Object.Equals on reference types
returns true if the two references being compared point to the same object.
We call such equality the reference equality. Some reference types override
the default implementation to provide value equality semantics. For exam-
ple, the value of a string is based on the characters of the string, and so the
Equals method of the String class returns true for any two string instances
that contain exactly the same characters in the same order.

The following guidelines describe when and how to override the
default behavior of the Object.Equals method.

v bo comply with the contract defined for Object.Equals when overrid-
ing the method.

For convenience, the contract taken directly from the System.Object

documentation is provided here.
* x.Equals(x) returns true.
¢ x.Equals(y) returns the same value as y.Equals(x).

¢ If (x.Equals(y) && y.Equals(z)) returns true, then x.Equals(z)
returns true.

8.9 Object g 269

« Successive invocations of x.Equals(y) return the same value as

long as the objects x and y are not modified.
¢ x.Equals(null) returns false.
v/ DO override GetHashCode whenever you override Equals.
The contracts of Equals and GetHashCode are interdependent. For more

information, see section 8.7.2 on implementing GetHashCode.

v/ CONSIDER implementing IEquatable<T> whenever overriding Object.
Equals.
X DO NOT throw exceptions from Equals.

Two objects should either be equal or not. So, for example, even if the
argument passed to Equals is null, returning false is better than throw-
ing an exception.

8.9.1.1 Equals on Value Types

v/ DO override Equals on value types.

The default implementation uses reflection to access and compare all

the fields and because of that is often unacceptably inefficient.

v Do provide an overload of Equals taking the value type parameter by
implementing IEquatable<T>.

This provides a way to compare two value types without boxing the

parameter passed to Equals.

public struct MyStruct {
public bool Equals (MyStruct value) { ... }

8.9.1.2 Equals on Reference Types

v/ CONSIDER overriding Equals to provide value equality if a reference
type represents a value. For example, you might want to override
Equals in reference types representing numbers or other mathematical

entibes.

270 m Usage Guidelines

X DO NOT implement value equality on mutable reference types.

Reference types that implement value equality (e.g., System.String)
should be immutable. Mutable reference types with value equality can,
tor example, be “lost” as hashtables when their value (and so the hash-

code) changes.

8.9.2 Object.GetHashCode

Ahash function is used to generate a number (hash code) that corresponds
to the identity of an object that is determined by an associated implemen-
tation of equality. Hash codes are used by hashtables and it is important to

understand how hashtables work to be able to implement hash functions

properly.

v/ DO override GetHashCode if you override Object.Equals.
This guarantees that two objects considered equal have the same hash
code. The following guidelines provide more information.

v/ DO ensure that if the Object.Equals method returns true for any two
objects, GetHashCode returns the same value for these objects.

Types that do not follow this guideline will not work correctly when

used as hashtable keys.

®s CHRISTOPHER BRUMME This means that if objl.Equals(obij2)
returns true, both of the objects should have the same hash code. If the
objects aren’t equal, they might or might not have the same hash code.

Strictly speaking, all objects could have a hash code of 1. This would really
be terrible from a performance point of view when looking up such items in
a hashtable, of course.

v/ DO make every effort to ensure that GetHashCode generates a random
distribution of numbers for all objects of a type.
This will minimize hashtable collisions, which degrade performance.
For example, two strings return the same hash code if they represent the
same string value, as defined by the String.Equals implementation.
Also, the method uses all the characters in the string to generate reason-

ably randomly distributed output, even when the input is clustered in

8.9 Object g 271

certain ranges (e.g., many users could have strings that contain only the
lower 128 ASCII characters, even though a string can contain any of the
65,535 Unicode characters).

v/ DO ensure that GetHashCode returns exactly the same value regardless

of any changes that are made to the object.

Note that there are several related guidelines throughout the book. In
particular, there are guidelines advising against mutable value types
and against mutable reference types implementing value equality. See
sections 8.9.1.2 and 4.7.

X AvoID throwing exceptions from GetHashCode.

"= BRIAN PEPIN This has tripped me up more than once: Make sure
GetHashCode always returns the same value across the lifetime of an
instance. Remember that hash codes are used to identify “buckets” in most

hashtable implementations. If an object’s “bucket” changes, a hashtable
may not be able to find your object. These can be very hard bugs to find, so
get it right the first time.

8.9.3 Object.ToString

The Object.ToString method is intended to be used for general display
and debugging purposes. The default implementation simply provides
the object type name. The default implementation is not very useful, and it
is recommended that the method be overridden.

v/ DO override ToString whenever an interesting human-readable string
can be returned.

The default implementation is not very useful, and a custom imple-

mentation can almost always provide more value.

®s CHRIS SELLS Iconsider ToString an especially dangerous method to
provide for Ul-generic types, because it's likely to be implemented with
some specific Ul in mind, making it useless for other Ul needs. To avoid

tempting myself in this way, | prefer to make my ToString output as geeky
as possible to emphasize that the only “humans” that should ever see the
output are “developer humans” (a subspecies all their own).

272 m Usage Guidelines

"s BRIAN PEPIN I tend to be very careful with ToString. I treat it as a
diagnostic APl and seldom use it for presentation to users unless I know
exactly how it works. A few months ago I was working with the source code
to Expression Blend and had an instance of an object that represented a
value converted to a string. There was no obvious API to return the string,
but what do you know, ToString had just what I needed! It turned out I
was wrong: ToString was returning debugging information that looked
just like the value I wanted most of the time. Other times, however, it
returned different diagnostic information and broke my code. The moral is
use ToString only for diagnostics and define a separate method for end-
user presentation.

®s VANCE MORRISON The most important value of ToString is that the
debugger uses it as the default way of displaying the object. This is really
valuable and is well worth doing. Sadly, all too often we don't do this and
the debuggability of our code suffers. In my own code, for nontrivial types,
I found that writing something that looked like an XML fragment was quite
useful (it is unambiguous, and programmers understand its syntax).

v Do try to keep the string returned from ToString short.

The debugger uses ToString to get a textual representation of an object
to be shown to the developer. If the string is longer than the debugger
can display (typically less than one screen length), the debugging expe-
rience is hindered.

®s CHRISTOPHE NASARRE In term of debugging experience, you should

decorate your type with DebuggerDisplayAttribute in addition to over-
riding ToString for that particular purpose.

v/ CONSIDER returning a unique string associated with the instance.
v Do prefer a friendly name over a unique but not readable ID.

/ DO string formatting based on the current thread culture when return-

ing culture-dependent information.

8.9 Object g 273

®s CHRISTOPHE NASARRE To be more explicit, use the CultureInfo
instance returned by a thread’s CurrentCulture property to format any

numeric or date, and the one returned by CurrentUICulture to look up
any resource. People are often confused between the two properties.

v/ DO provide overload ToString(string format), or implement
IFormattable, if the string returned from ToString() is culture sensi-
tive or there are various ways to format the string. For example,
DateTime provides the overload and implements IFormattable.

X DO NOT return an empty string or null from ToString.
X AvVOID throwing exceptions from ToString.

v/ DO ensure that Tost ring has no observable side effects.

One reason for this is that ToString is called by debuggers during
debugging, and such side effects can make debugging difficult.

v DO report security-sensitive information through an override of
ToString only after demanding an appropriate permission. If the per-
mission demand fails, return a string excluding the security-sensitive
information.

"= RICO MARIANI Do not store the results of ToString in any generally
accessible data structure unless that data structure suitably secures the

string from untrusted code. This advice applies to all strings, but because
exception strings frequently contain sensitive information (such as file
paths), I reiterate the advice here.

v/ CONSIDER having the output of ToString be a valid input for any pars-
ing methods on this type.

For example, the string returned from DateTime.ToString can be suc-

cessfully parsed using DateTime.Parse.

DateTime now = DateTime.Now;
DateTime parsed = DateTime.Parse{now.ToString());

274 m Usage Guidelines

8.10 Serialization

Serialization is the process of converting an object into a format that can be
readily persisted or transported. For example, you can serialize an object,
transport it over the Internet using HTTD, and deserialized it at the desti-
nation machine.

The NET Framework offers three main serialization technologies opti-
mized for various serialization scenarios. Table 8-1 lists these technologies

and the main Framework types related to these technologies.

Taete8.1: .NET Framework Serialization Technologies

Technology Name Main Types Scenarios

Data Contract DataContractAttribute General

Serialization persistence
DataMemberAttribute Weh Siruiise
DataContractSerializer J1SOMN

NetDataContractSerializer

DataContractlsonSerializer

Iserializable
XML Serialization ¥mlserializer XML format
with full control
over the shape of
the XML
Runtime Serialization SerializableAttribute NET Remoting
(Binary and SOAP)
ISerializable
BinaryFormatter

SoapFormatter

8.10 Serialization m 275

When vou design new types, you should decide which, if any, of these
technologies those types need to support. The following guidelines
describe how to make that choice and how to provide such support. Please
note that these guidelines are not trying to help vou choose what serializa-
tion technology yvou should use in the implementation of your application
or library. Such guidelines are not directly related to API design and thus
are not within the scope of this book.

v/ DO think about serialization when you design new types.

Serialization is an important design consideration for any type, because
programs might need to persist or transmit instances of the type.

8.10.1 Choosing the Right Serialization Technology to Support
Any given type can support none, one, or more of the serialization
technologies.

/ CONSIDER supporting Data Contract Serialization if instances of your
type might need to be persisted or used in Web Services.
See section 8.10.2 for details on supporting Data Contract Serialization.

v/ CONSIDER supporting the XML Serialization instead of or in addition
to Data Contract Serialization if you need more control over the XML
format that is produced when the type is serialized.

This may be necessary in some interoperability scenarios where you
need to use an XML construct that is not supported by Data Contract
Serialization, for example, to produce XML attributes. See section 8.10.3
for details on supporting XML Serialization.

v/ CONSIDER supporting the Runtime Serialization if instances of your
type need to travel across .NET Remoting boundaries.

See section 8.10.4 for details on supporting Runtime Serialization.

X AVOID supporting Runtime Serialization or XML Serialization just for

general persistence reasons. Prefer Data Contract Serialization instead.

276 m Usage Guidelines

8.10.2 Supporting Data Contract Serialization

Types can support Data Contract Serialization by applying the Data-
ContractAttribute to the type and the DataMemberAttribute to the mem-
bers (fields and properties) of the type.

[DataContract]
class Person {

[DataMember]string lastName;
[DataMember]string FirstName;

public Person(string firstName; string lastMame){ ... }

public string LastName {
get { return lastName; }

}

public string FirstName {
get { return firstName; }

¥

/ CONSIDER marking data members of your type public if the type can

be used in partial trust.

In full trust, Data Contract serializers can serialize and deserialize non-
public types and members, but only public members can be serialized
and deserialized in partial trust.

v Do implement a getter and setter on all properties that have Data-
MemberAttribute. Data Contract serializers require both the getter and the
setter for the type to be considered serializable.' If the type won’t be used
in partial trust, one or both of the property accessors can be nonpublic.

[DataContract]
class Person {

string lastName;
string firstName;

public Person(string firstName, string lastName){
this.lastName = lastMame;
this.firstName = firstName;

1. In NET Framework 3.5 5P1, some collection properties can be get-only.

8.10 Serialization m 277

[DataMember]
public string LastName {
get { return lastName; }
private set { lasthame = value; }

[DataMember]
public string FirstName {
get { return firstName; }
private set { firstName = value; }

v/ CONSIDER using the serialization callbacks for initialization of deserial-

ized instances.

Constructors are not called? when objects are deserialized. Therefore,
any logic that executes during normal construction needs to be imple-

mented as one of the serialization callbacks.

[bataContract]
tlass Person {

[DataMember] string lasthame;
[DataMember] string firstName;
string fulllName;

public Person(string firstName, string lastName){
this.lastMame = lastName:
this.firstName = firstName;
fullhame = firstName + " " + lastName;

public string FullName {
get { return fullMName; }

[OnDeserialized]
vold OnDeserialized({StreamingContext context) {
fulllame = firstName + " " + lastName;

2. There are exceptions to the rule. Constructors of collections marked with CollectionData-
Contractattribute are called during deserialization.

278

m Usage Guidelines

OnDeserializedAttribute is the most commonly used callback attri-
bute. The other attributes in the family are OnDeserializingAttribute,
OnSeralizingAttribute, and OnSerializedAttribute. They can be
used to mark callbacks that get executed before deserialization, before

serialization, and finally, after serialization, respectively.

v/ CONSIDER using the KnownTypeAttribute to indicate concrete types

that should be used when deserializing a complex object graph.

For example, if a type of a deserialized data member is represented by an
abstract class, the serializer will need the Known Type information to
decide what concrete type to instantiate and assign to the member. If the
Known Type is not specified using the attribute, it will need to be passed to
the serializer explicitly (you can do it by passing Known Types to the seri-
alizer constructor) or it will need to be specified in the configuration file.

[KnownType (typeof{USAddress))]
[DataContract]
class Person {

[DataMember] string fullName;
[DataMember] Address address; // Address is abstract

public Person(string fullName, Address address){
this.fullName = fullMame;
this.address = address;

}

public string FullName {
get { return fullName; }
}
b

[DataContract]
public abstract class Address {
public abstract string FullAddress { get; }

}

[DataContract]
public class USAddress : Address {

[DataMember] public string Street { get; set; }
[DataMember] public string City { get; set; }
[DataMember] public string State { get; set; }
[DataMember] public string ZipCode { get; set; }

8.10 Serialization m 279

public override string Fulladdress { get {
return Street + "\n" + City + ", " + State + " " + ZipCode; }

¥

In cases where the list of Known Types is not known statically (when
the Person class is compiled), the KnownTypeAttribute can also point to
a method that returns a list of Known Types at runtime.

v/ DO consider backward and forward compatibility when creating or
changing serializable types.
Keep in mind that serialized streams of future versions of your type can
be deserialized into the current version of the type, and vice versa.
Make sure you understand that data members, even private and inter-
nal, cannot change their names, types, or even their order in future ver-
sions of the type unless special care is taken to preserve the contract
using explicit parameters to the data contract attributes.

Test compatibility of serialization when making changes to serializable
types. Try deserializing the new version into an old version, and vice

versa.

v/ CONSIDER implementing IExtensibleDataobject to allow round-
tripping between different versions of the type.
The interface allows the serializer to ensure that no data is lost during
round-tripping. The IExtensibleDataObject.ExtensionData property
is used to store any data from the future version of the type that is
unknown to the current version, and so it cannot store it in its data
members. When the current version is subsequently serialized and
deserialized into a future version, the additional data will be available
in the serialized stream.

[DataContract]
class Person : IExtensibleDatadbject {

[DataMember] string fullMame;

public Person(string fulllame){
this.fullName = fullName:

280

m Usage Guidelines

public string FullMame {
get { return fullName; }

¥

ExtensionDataObject serializationData;
ExtensionDataObject IExtensibleDataObject.Extensionbata {
get { return serializationData; }
set { serializationData = value; }

8.10.3 Supporting XML Serialization

Data Contract Serialization is the main (default) serialization technology
in the NET Framework, but there are serialization scenarios that Data
Contract Serialization does not support. For example, it does not give you
full control over the shape of XML produced or consumed by the serial-
izer. If such fine control is required, XML Serialization has to be used, and

you need to design your types to support this serialization technology.

X AvoID designing your types specifically for XML Serialization, unless
you have a very strong reason to control the shape of the XML pro-
duced. This serialization technology has been superseded by the Data
Contract Serialization discussed in the previous section.

In other words, don’tapply attributes from System.Xml.Serialization
namespace to new types, unless you know that the type will be used
with XML Serialization. The following example shows how System.
Xml.Serialization can be used to control the shape of the XML
produced.

public class Address {
[Xmlattribute] // serialize as XML attribute, instead of an element
public string Name { get { return "John Smith"; } set { } }

[¥mlElement(ElementName = "StreetLine”)] // explicitly name element
public string Street = "1 Some Street"”;

v/ CONSIDER implementing the IXmlSerializable interface if you want
even more control over the shape of the serialized XML than what's

8.10 Serialization m 281

offered by applying the XML Serialization attributes. Two methods of
the interface, ReadXml and WriteXml, allow you to fully control the seri-
alized XML stream. You can also control the XML schema that gets gen-
erated for the type by applying the XmlSchemaProviderAttribute.

8.10.4 Supporting Runtime Serialization

Runtime Serialization is a technology used by NET Remoting. If you think
your types will be transported using .NET Remoting, you need to make
sure they support Runtime Serialization.

The basic support for Runtime Serialization can be provided by applying
the SerializableAttribute, and more advanced scenarios involve imple-
menting a simple Runtime Serializable Pattern (implement ISerializable
and provide serialization constructor).

v/ CONSIDER su pporting Runtime Serialization if your types will be used
with .NET Remoting. For example, the System.AddIn namespace uses
NET Remoting, and so all types exchanged between System.AddIn
add-ins need to support Runtime Serialization.

[Serializable]
public class Person {

}

v/ CONSIDER implementing the Runtime Serializable Pattern if you want
complete control over the serialization process. For example, if you
want to transform data as it gets serialized or deserialized.

The pattern is very simple. All you need to do is implement the
ISerializable interface and provide a special constructor that is used

when the object is deserialized.

[serializable]
public ¢lass Person @ ISerializable {
string fullName;

public Person{) { }

protected Person{SerializationInfo info, StreamingContext context) {
if (info == null) throw new System.ArgumentNullException("info");
fulliame = (string)info.GetValue("name”, typeof(string));

282 @ Usage Guidelines

[SecurityPermission(
Securityadction.LinkDemand,
Flags = SecurityPermissionfFlag.SerializationFormatter)

]
void ISerializable.GetObjectData(SerializationInfo info,
StreamingContext context) {
if (info == null) throw new System.ArgumentNullException("info");
info.Addvalue("name”, fullName);
}
public string FullName {
get { return fullName; }
set { fullhame = value; }
}
i

v/ DO make the serialization constructor protected and provide two
parameters typed and named exactly as shown in the sample here.

[Serializable]
public class Person : ISerializable {
protected Person(SerializationInfo info, StreamingContext context) {

v Do implement the ISerializable members explicitly.

[serializable]
public class Person : ISerializable {
void ISerializable.GetObjectData(...) {

v Do apply a link demand to ISerializable.GetObjectData implemen-
tation. This ensures that only fully trusted core and the Runtime Serial-

izer have access to the member.

[Serializable]
public class Person : ISerializable {
[SecurityPermission(

SecurityaAction.LinkDemand,
Flags = SecurityPermissionFlag.SerializationFormatter)

B.11 Uri m 283

void Iserializable.GetObjectData(...} {

}

8.11 Uri

System.Uri is a type that can be used to represent uniform resource identi-
tiers (URIs). These concepts can also be represented using strings. Some of
the most important guidelines in this section are intended to help you
choose between System.Uri and System.String for representing URIs,

v/ DO use Systen.Uri to represent URI and URL data.
This applies to parameter types, property types, and return value types.

public class Navigator {
public Navigator(Uri initialLocation);
public Uri CurrentLocation { get; }
public Uri NavigateTo(Uri location);

®s MARK ALCAZAR sSystem.Uri is a much safer and richer way of rep-

resenting URIs. Extensive manipulation of URI-related data using plain
strings has been shown to cause many security and correctness problems.

v/ CONSIDER providing string-based overloads for most commonly used
members with System.Uri parameters.

In cases where the usage pattern of taking a string from a user will be
common enough, you should consider adding a convenience overload
accepting a string. The string-based overload should be implemented

in terms of the Uri-based overload.

public class Mavigator {
public void MavigateTo{Uri location);
public void NavigateTo{string location) {
MavigateTo (new Uri{location));

}

284 @m Usage Guidelines

X DO NOT automatically overload all Uri-based members with a version
that accepts a string,.

Generally, Uri-based APIs are preferred. String-based overloads are
meant to be helpers for the most common scenarios. Therefore, you
should not automatically provide string-based overloads for all vari-
ants of the Uri-based members. Be selective and provide such helpers

just for the most commonly used variants.

public class Navigator {
public void MavigateTo(Uri locaticn);
public veoid NavigateTo{Uri location, NavigationMode mode);
public void NavigateTo(string location);

8.11.1 System.Uri Implementation Guidelines
The guidelines in this section help with the implementation of code using
System.Uri.

/ DO call the Uri-based overloads, if available.

X DO NOT store URI/URL data in a string,.
When you accept a URI/URL input as a string, you should convert the

string to System.Uri and store the instance of System. Uri.

public class SomeResource {
Uri location;
public SomeResource{string location) {
this.lecation = new Uri{location);

}

public SomeRescurce(Uri location){
this.location = location;

}

8.12 System.Xml Usage

This section talks about usage of several types residing in System.Xml
namespaces that can be used to represent XML data.

8.12 System.Xml Usage @ 285

X DO NOT use XmlNode or XmlDocument to represent XML data. Favor
using instances of IXPathNavigable, XmlReader, XmlWriter, or subtypes
of XNode instead. XmlNode and XmlDocument are not designed for expos-
ing in public APIs.

// bad design
public class ServerConfiguration {

public XmlDocument ConfigurationData { get { ... } }

}
// good design
public class Serverlonfiguration {

public IXPathNavigable ConfigurationData { get { ... } }

v/ DO use xmlReader, IXPathNavigable, or subtypes of XNode as input or

output of members that accept or return XML.

Use these abstractions instead of XmlDocument, XmlNode, or XPath-
Document, because this decouples the methods from specific imple-
mentations of an in-memory XML document and allows them to work
with virtual XML data sources that expose XNode, Xm1Reader, or XPath-
Navigator.

X DO NOT subclass XmlDocument if you want to create a type representing
an XML view of an underlying object model or data source.

This guideline means that XmlDataDocument is an example of what not
to do.

"s DARE OBASANJO There are several problems with implementations
like the XmlDataDocument. One is inefficiency. Because XmlNodes need
to be distinct objects, such implementations result in large memory con-
sumption. The second problem is that the data model of the DataSet does
not map 1:1 with that of XML. There are all sorts of edge cases when one
does things like insert comments, Pls, or CDATA sections into an
XmlDataDocument.

286

m Usage Guidelines

Implementing a custom XPathNavigator gets around the inefficiency
problems because the navigator is a cursor; there is no need to create objects
for each node in the tree. It also reduces the Data /XML impedance mismatch.
Because the main goal of XmlDataDocument was so users could either write
out the DataSet as XML or query it with XPath, there is no need to support
editability via the DOM. Second, the simpler data model of the XPath-
Navigator leads to fewer edge cases in mapping your data model to XML.

8.13 Equality Operators

This section discusses overloading equality operators and refers to
operator== and operator!= as equality operators.

X DO NOT overload one of the equality operators and not the other.

It is very surprising to developers when they discover that a type over-

loads just one of the operators.

v/ DO ensure that Object. Equals and the equality operators have exactly

the same semantics and similar performance characteristics.

This often means that Object.Equals needs to be overridden when the
equality operators are overloaded.

public struct PositivelInt32 : IEquatable<PositiveInt32: {
public bool Equals(PositiveInt32 other) { ... }
public override bool Equals{object obj) { ... }
public static bool operator==(PositiveInt32 x, PositiveInt32 y){
return x.Equals(y);

}

public static bool operator!=(PositiveInt32 x, PositiveInt32 y}{
return !x.Equals{y);

}

X AVOID throwing exceptions from equality operators.

For example, return false if one of the arguments is null instead of

throwing NullReferenceException.

8.13 Equality Operators g 287

8.13.1 Equality Operators on Value Types

v/ DO overload the equality operators on value types, if equality is
meaningful.
In most programming languages, there is no default implementation of
operator== for value types.

8.13.2 Equality Operators on Reference Types

X AVOID overloading equality operators on mutable reference types.
Many languages have built-in equality operators for reference types.
The built-in operators usually implement the reference equality, and
many developers are surprised when the default behavior is changed

to the value equality.

This problem is mitigated for immutable reference types because immu-
tability makes it much harder to notice the difference between reference

equality and value equality.

X AVOID overloading equality operators on reference types if the imple-
mentation would be significantly slower than that of reference
equality.

The next chapter discusses a set of design patterns used in the design of
the NET Framework that we feel will be of help to other framework
designers.

www.EBooksWorld.ir

n 9»

Common Design Patterns

T HERE ARE NUMEROUS books on software patterns, pattern languages,
and antipatterns that address the very broad subject of patterns. Thus,
this chapter provides guidelines and discussion related to a very limited
set of patterns that are used frequently in the design of the NET Frame-
work APls.

9.1 Aggregate Components

Many feature areas might benefit from one or more tacade types that act as
simplified views over more complex but also more powerful APls. A fagade
that supports component-oriented design (see section 9.1.1) is called an
aggregate component.

An aggregate component ties multiple lower-level factored types into a
higher-level component to support common scenarios. An example might
be an e-mail component that ties together Simple Mail Transfer Protocol
(SMTP), sockets, encodings, and so on. It is important for an aggregate
component to provide a higher abstraction level rather than just a different
way of doing things.

Providing simplified high-level operations is crucial for those developers
who do not want to learn the whole extent of the functionality provided by
the feature and just need to get their (often very simple) tasks done.

m 289

290

m Common Design Patterns

"s KRZYSZTOF CWALINA System.Net.WebClient is an example of an

aggregate component. It provides an API for simple scenarios in the

System.Net namespace. Other examples of such components include
System.Messaging.MessageQueue, System.I0.SerialPort, and System.
Diagnostics.EventlLog.

Aggregate components, as high-level APls, should be implemented so
they magically work without the user being aware of sometimes compli-
cated things happening underneath. We often refer to this concept as
It-Just-Works. For example, the EventLog component hides the fact that a
log has a read handle and a write handle that need to be opened. As far as
the user is concerned, the component can be instantiated, properties can be
set, and log events can be written.

Sometimes a bit more transparency is required. We recommend more
transparency for operations if the user would be required to take an explicit
action as a result of an operation. For example, implicitly opening a file
and then requiring the user to explicitly close it is probably taking the prin-
ciple of It-Just-Works a bit too far.

"s KRZYSZTOF CWALINA Animportant API design principle is that com-
plexity should be either completely hidden (or very close to completely) or

not hidden at all. The worst thing you can do is design an API that looks

simple but as developers start to use it, they discover (usually the hard way)
that it is not.

It is often possible to design clever solutions that hide even those com-
plexities. For example, reading a file can be implemented as a single opera-
tion that opens a file, reads its content, and closes it, thus shielding the
user from all the complexities related to opening and closing the file

handles.
string[] lines = File.ReadAllLines(@"c:\foo.txt");

Users of aggregate components should not be required to implement
any interfaces, modify any configuration files, and so on. Framework
designers should ship default implementations for all interfaces they

9.1 Aggregate Components g 291

declare. All configuration settings should be optional and backed by sen-
sible defaults. Tools and IDE features should be considered for all common
development tasks that are required beyond writing simple lines of code.
In other words, framework designers should provide full end-to-end solu-

tions, not just the APls.

"s KRZYSZTOF CWALINA The System.ServiceProcess namespace
greatly simplifies development of Windows Service applications. The API

would be more successful with a wider range of developers if writing a ser-
vice relied on hooking up event handlers instead of requiring the developer
to override methods.

Aggregate components frequently integrate with Visual Studio design-
ers by implementing IComponent or deriving from one of the Ul Element
classes).

The next section describes component-oriented design, an important
concept in the design of high-level APls, particularly in the design of
aggregate components.

9.1.1 Component-Oriented Design

Component-oriented design is a design in which APIs are exposed as
types, with constructors, properties, methods, and events. It actually has
more to do with the way the API is used than with the mere inclusions of
the constructors, methods, properties, and events. The usage model for
component-oriented design follows a pattern of instantiating a type with a
default or relatively simple constructor, setting some instance properties,
and then calling simple instance methods. We call such pattern the Create-
Set-Call Pattern.

" VB.NET sample code
' Instantiate
Dim € As New T()

' Set properties/options
t.Pl=vl1
t.P2 = v2
t.P3 = v3

292

m Common Design Patterns

' Call methods and optionally change options between calls

t.M1()
'"t.P3 = v4d
t.M2()

A concrete example showing the Create-Set-Call usage pattern would

look like the following;:

' Instantiate
Dim queue As New MessageQueue()

' Set properties

gueue.Path = queusPath

gqueue.EncryptionRequired = EncryptionRequired.Body
queue,Formatter = New BinaryMessageFormatier()

' Call methods
gueue,Send("Hello World")
queue.Close()

Itis very important that all aggregate components support this pattern.
The pattern is something that users of aggregate components expect and

for which tools such as Intellisense and designers are optimized.

®. STEVEN CLARKE We have investigated this design pattern extensively
in our usability labs. Our observations highlighted just how critical this pat-

tern is for some developers. Without it, reading, writing, and debugging
code can be much more difficult, because it can be more difficult to learn
about the purpose of each parameter that a method takes.

One of the problems with component-oriented design is that it some-
times results in types that can have modes and invalid states. For example,
a default constructor allows users to instantiate a MessageQueue compo-
nent without providing a valid path. Also, properties, which can be set
optionally and independently, sometimes cannot enforce consistent and
atomic changes to the state of the object. The benefits of component-
oriented design often outweigh these drawbacks for mainline scenario
APIs, such as aggregate components, where usability is the top priority.

Also, some of the problems can and should be mitigated with proper
error reporting. When users call methods that are not valid in the current

state of the object, an InvalidOperationException should be thrown. The

9.1 Aggregate Components g 293

exception’s message should clearly explain what properties need to be
changed to get the object into a valid state.

®s STEVEN CLARKE Following this pattern means that it is very easy to

learn about how to use the API through usage, rather than having to resort
to documentation.

Often, API designers try to design types so objects cannot exist in an
invalid state. This is accomplished by having all required settings as param-
eters to the constructor, having get-only properties for settings that cannot
be changed after instantiation, and breaking functionality into separate
types so that properties and methods do not overlap. This approach is
strongly recommended for factored types (see section 9.1.2) but does not
work for aggregate components. For aggregate components, we recommencd
relying on clear exceptions for communicating invalid states to the user. The
exceptions should be thrown when an operation is being performed, not
when the component is initialized (i.e., when the constructor is called or the
property is being set). This is important for avoiding situations in which
the invalid state is temporary and gets “fixed” in a subsequent line of code.

var workingSet = new PerformanceCounter();

workingSet.Instance = process.Processhame;

// exception is not thrown here despite that the counter is in an
J/f invalid state (counter is not specified).

workingSet.Counter = "Working Set"; // state is "fixed" here!
workingSet.Category = "Process";

Debug.Writeline{workingSet.MextValue());

®s CHRISTOPHE NASARRE It is not recommended to define a class with
the opposite pattern: Create-Call-Get. For example, don’t define a Session
class that provides a Login method that pops up a dialog in which the end
user enters his credential. The Get properties for the user name, for exam-

ple, are valid for use only after the call to Login. Instead, you should imple-
ment the Login method to return another type that contains the credential
details. It is even worse if the class provides other methods that depend on
methods to be called in specific order, such as GetSessionInfo, only if the
Login method has already been called.

294 m Common Design Patterns

An aggregate component is a facade based on component-oriented

design with the following additional requirements:

+ Constructors: An aggregate component should have a default
constructor.

» Constructors: All constructor parameters correspond to and initial-
ize properties.

» Properties: Most properties have getters and setters.

» Properties: All properties have sensible defaults.

* Methods: Methods do not take parameters if the parameters specify
options that stay constant across method calls (in main scenarios).
Such options should be specified using properties.

» Events: Methods do not take delegates as parameters. All callbacks
are implemented in terms of events.

9.1.2 Factored Types

As described in the preceding section, an aggregate component provides
shortcuts for most common high-level operations and is usually imple-
mented as a fagade over a set of more complex but also richer types. We
call these types factored types.

Factored types should not have modes and should have very clear life-
times. An aggregate component might provide access to its internal fac-
tored types through some properties or methods. Users would access the
internal factored types in advanced scenarios or in scenarios where inte-
gration with different parts of the system is required. The following exam-
ple shows an aggregate component (SerialPort) exposing its internal
tactored type (a serial port Stream) through the BaseStream property.

var port = newW SerialPort("COM1");

port.Open();

GZipStream compressed;

compressed = new GZipStream(port.BaseStream, CompressionMode.Compress);
compressed.Write(data, @, data.Length);

port.Close();

9.1 Aggregate Components g 295

®s PHIL HAACK Since Factored Types have an explicit lifetime, it proba-
bly makes good sense to implement the IDisposable interface so that
developers can make use of the using statement. The code sample here
could then be refactored to:

using(SerialPort port = new SerialPort("cCoM1")) {

port.0pen();
GZipStream compressed;
compressed = new GZipStream(port.BaseStream,
CompressionMode.Compress);
compressed.Write(data, @, data.Length);
1

9.1.3 Aggregate Component Guidelines
The following guidelines provide guidance for designing aggregate

components.

v/ CONSIDER providing aggregate components for commonly used fea-
ture areas.
Aggregate components provide high-level functionality and are start-
ing points for exploring given technology. They should provide short-
cuts for common operations and add significant value over what is
already provided by factored types. They should not simply duplicate
the functionality. Many main scenario code samples should start with
an instantiation of an aggregate component.

" KRZYSZTOF CWALINA An easy trick to increase visibility of an aggre-

gate component is to choose the most “attractive” name for the component

and less attractive names for the corresponding factored types. For exam-
ple, a name representing a well-known system entity like File will attract
more attention than StreamReader.

v/ DO model high-level concepts (physical objects) rather than system-

level tasks with aggregate components.

For example, the components should model files, directories, and

drives, not streams, formatters, or comparers.

296

m Common Design Patterns

v/ DO increase visibility of aggregate components by giving them names
that correspond to well-known entities of the system, such as Message-
Queue, Process, or EventLog.

v Do design aggregate components so they can be used after very simple
initialization. If some initialization is necessary, the exception resulting
from not having the component initialized should clearly explain what

needs to be done.

X DO NOT require the users of aggregate components to explicitly instan-
tiate multiple objects in a single scenario.
Simple tasks should be done with just one object. The next best thing is
to start with one object that in turn creates other supporting objects.
Your top five scenario samples showing aggregate component usage
should not have more than one new statement.

var queue = neWw MessageQueue();
gueue.Path = ...}
gueue,Send{ "Hello World™);

"« KRZYSZTOF CWALINA Book publishers say that the number of copies

a book will sell is inversely proportional to the number of equations in the

book. The API designer version of this law is that the number of customers
who will use your APl is inversely proportional to the number of new state-
ments in your simple scenarios.

v/ DO make sure aggregate components support the Create-Set-Call usage
pattern, where developers expect to be able to implement most scenar-
ios by instantiating the component, setting its properties, and calling

simple methods.

v Do provide a default or a very simple constructor for all aggregate
components.

public class MessageQueue {
public MessageQueue()} { ... }
public MessageQueue(string path) { ... }

}

9.1 Aggregate Components g 297

v DO provide properties with getters and setters corresponding to all

parameters of aggrega’re cumpun{-nt constructors.

It should always be possible to use the default constructor and then set
some properties instead of calling a parameterized constructor.

public class MessageQueue {
public MessageQueue() { ... }
public MessageQueue{string path) { ... }

public string Path { get { ... } set { ... } }

v/ DO use events instead of delegate-based APIs in aggregate com-
ponents.

Aggregate components are optimized for ease of use, and events are
much easier to use than APIs using delegates. See section 5.4, for more
details.

v/ CONSIDER using events instead of virtual members that need to be
overridden.

x DO NOT require users of aggregate components to inherit, override

methods, or implement any interfaces in common scenarios.

Components should mostly rely on properties and composition as the

means of modifving their behavior.

X DO NOT require users of aggregate components to do anything besides
writing code in common scenarios. For example, users should not have
to configure components in the configuration file, generate any resource

files, and so on.

v/ CONSIDER making changes to aggregate components’ modes auto-
matic.

For example, a single instance of MessageQueue can be used to send and
receive messages, but the user should not be aware that mode switch-

Ing 1s occurring,

X DO NOT design factored types that have modes.

298

m Common Design Patterns

Factored types should have a well-defined life span scoped to a single
mode. For example, instances of Stream can either read or write, and an
instantiated stream is already opened.

v/ CONSIDER integrating vour aggregate components with Visual Studio
designers.
Integration allows placing the component on the Visual Studio Toolbox
and adds support for drag and drop, property grid, event hookup, and
so on. The integration is simple and can be done by implementing
IComponent or inheriting from a type implementing the interface, such
as Component or Control.

v/ CONSIDER separating aggregate components and factored types into
different assemblies.
This allows the component to aggregate arbitrary functionality pro-

vided by factored types without circular dependencies.

v/ CONSIDER exposing access to internal factored types of an aggregate
component.
Factored types are ideal for integrating different feature areas. For
example, the SerialPort component exposes access to its stream, thus
allowing integration with reusable APls, such as compression APIs that
operate on streams.

9.2 The Async Patterns

The .NET Framework uses two different API patterns to model asynchro-
nous APIs: the so-called Classic Async Pattern (a.k.a. Async Pattern) and a
newer Event-Based Async Pattern (a.k.a. Async Pattern for Components).
This section describes details of these two patterns as well as how to choose

between them when designing asynchronous APlIs.

9.2.1 Choosing Between the Async Patterns
This section discusses the criteria for choosing the appropriate pattern for
implementing asynchronous APlIs. The main difference between the pat-

terns is that the Event-Based Async Pattern is optimized for usability and

9.2 The Async Patterns g 299

integration with visual designers; the other is optimized for power and

small surface area.

®s STEVEN CLARKE This was clearly called out during our usability stud-
ies on this pattern. Most participants in our study could use the event-based
pattern successfully without reading any documentation. On the other
hand, developers who are unfamiliar with the Classic Async Pattern will

have a more difficult time without spending time reading documentation.

While it's not the case that usability in the context of an API means the
ability to use that API without reading documentation, for some users APIs
that support learning by doing are preferable to those that don’t.

The Classic Async Pattern offers a powerful and flexible programming
model but is lacking when it comes to ease of use, especially when applied
to components supporting graphical designers. The main reasons for
usability differences between the patterns are the following:

» The Classic Async Pattern callbacks are executed on an arbitrary
thread as opposed to a thread appropriate for the application model
(for example, the Ul thread for Windows Forms applications).

* There is currently no Visual Studio support for using the Classic
Async Pattern, because it is delegate-based rather than event-based.
Visual Studio provides extensive support for defining and hooking
up event handlers, and the Event-Based Async Pattern takes full
advantage of this support.

®s GREG SCHECHTER Also, even if visual designers aren’t used, the
VB.NET code editor combined with WithEvents provides much greater

support for implementing and connecting event handlers than it does for
delegates.

v Do implement the Event-Based Async Pattern if your type is a com-
ponent supporting visual designers (i.e, if the type implements
IComponent).

300 m Common Design Patterns

v Do implement the Classic Async Pattern if you must support wait
handles.

The main reason to support wait handles is to be able to initiate multi-
ple asynchronous operations simultaneously and then wait for the

completion of one or all of the operations.

v/ CONSIDER implementing the Event-Based Async Pattern if you are
designing higher-level APIs. For example, aggregate components (see
section 9.2.4) should implement this pattern.

v/ CONSIDER implementing the Classic Async Pattern for low-level APIs

where usability is less important than power, memory consumption,
tflexibility, and small surface area.

®s JOE DUFFY This decision is ultimately very simple to me. If you are
developing a type meant to be consumed by other library or framework
developers, you should use the Classic Async Pattern. They will appreciate

the flexibility. If you are developing a type meant to be consumed by appli-
cation developers, you should almost always prefer the Event-Based Async
Pattern. They will appreciate the simplicity and Visual Studio integration.

.K AVOID implementing both patterns at the same time on a single type or
even on a single set of related types.

Components that implement both patterns may be confusing to some
users. For example, for one synchronous method SomeMethod, there will
be four asynchronous operations.

SomeMethod
SomeMethodAsync
BeginSomeMethod
EndSomeMethod
SomeMethodCompleted

9.2.2 Classic Async Pattern

The Classic Async Pattern is a naming, method signature, and behavioral
convention for providing APIs that can be used to execute asynchronous
operations. The main elements of the Async PPattern include the following:

9.2 The Async Patterns m 301

* The Begin method, which initiates an asynchronous operation.
* The End method, which completes an asynchronous operation.

* The IAsyncResult object, which is returned from the Begin method
and is essentially a token representing a single asynchronous opera-
tion. It contains methods and properties providing access to some
basic information about the operation.

* An async callback, which is a user-supplied method that is passed to
the Begin method and is called when the asynchronous operation is
completed.

* The State object, which is a user-provided state that can be passed
to the Begin method, is then passed to the async callback. This state
is commonly used to pass caller-specitic data to the async callback.

The following guidelines spell out conventions related to the APl design
part of the Classic Async Pattern. The guidelines do not go into the details
of implementing the pattern.

Note that the guidelines assume that a method implementing a syn-
chronous version of the operation already exists. It is quite common that
an asynchronous operation is provided together with a synchronous coun-

terpart, but it is not an absolute requirement.

v/ DO use the tollowing convention for defining APlIs for asynchronous
operations. Given a synchronous method named Operation, provide
BeginOperation and EndOperation methods with the following signa-

tures (note that the out params are optional):

// synchronous method

public <return>» Operation(<parameters>,<out params>)

// async pattern methods

public IAsyncResult BeginOperation(<parameters>, AsyncCallback callback,
object state)

public <return: EndOperation(IAsyncResult asyncResult, <out params:>)

As an example, System.I0.Stream defines a synchronous Read method
and the BeginRead and EndRead methods.

public int Read{byte[] buffer, int offset, int count)

public IAsyncResult BeginRead(byte[] buffer, int offset, int count,
AsyncCallback callback, object state)

public int EndRead{IAsyncResult asyncResult)

302

m Common Design Patterns

v/ DO ensure that the return type of the Begin method implements
IAsyncResult.

v/ DO ensure that any by-value and ref parameters of the synchronous
method are represented as by-value parameters of the Begin method.
out parameters of the synchronous methods should not show in the

signature of the Begin method.

v/ DO ensure that the return type of the End method is the same as the
return type of the synchronous method.

public abstract class Stream
public int Read(byte[] buffer, int offset, int count)
public int EndRead(IAsyncResult asyncResult)

v/ DO ensure that any out and ref parameters of the synchronous method
are represented as out parameters of the End method. By-value param-
eters of the synchronous methods should not show in the signature of
the End method.

X DO NOT continue the asynchronous operation if the Begin method
throws an exception.
This method should throw if it needs to indicate the asynchronous
operation could not be started. The async callback should not be called
after this method throws.

v Do notity the caller that the asynchronous operation completed via all

of the following mechanisms in this order:

= Set IAsyncResult.IsCompleted to true.
* Signal the wait handle returned from IAsyncResult.

AsyncWaitHandle.

= Call the async callback.

®. JOEDUFFY This callback should never be transferred to a specific thread.
It is all right to queue a work item to the thread pool for invocation so as not
to reuse the current callstack at the time the operation completes. This can be

9.2 The Async Patterns m 303

particularly useful if the operation completed synchronously. But you should
specifically not try to do anything with SynchronizationContext, Windows
Forms’ Control.Invoke, Windows Presentation Foundation’s Dispatcher,
etc. to marshal the callback to another thread. One of the great things about
the Classic Async Pattern is that it is consistent in this regard. If you find
yourself needing to do this kind of marshaling, it's an indication vou ought to
consider using the Event-Based Async Pattern instead.

v/ DO throw exceptions from the End method to indicate that the asyn-
chronous operation could not complete successtully.

This allows a deterministic place to catch those exceptions.

v Do complete all remaining work synchronously once the End method is
called.

In other words, the End method blocks until the operation completes
and then returns.

v/ CONSIDER throwing an InvalidOperationException if the End method
is called with the same IAsyncResult twice, or if the IAsyncResult was

returned from an unrelated Begin method.

v’ DO sct IAsyncResult.CompletedSynchronously to true if and only if
the async callback will be run on the thread that called Begin.

"s BRIAN GRUNKEMEYER The point of the CompletedSynchronously
property is not to report the underlying details of the asynchronous opera-
tion, but instead to help the async callback deal with potential stack over-
flows. Some callers might want to call the Begin method again from within
their callback, passing in the callback again as to the nested Begin. This can
lead to stack overflows if the underlying operation executes synchronously

and the callback is called on that same thread. By checking this property, the
callback can tell whether it is running at some arbitrary stack depth on a
user thread or at the base of a thread pool thread.

Yes, I know, the name might have been poorly chosen. Alternate names
could have been something like CallbackRunningOnThreadpoolThread
or CallbackCanContinueCallingBeginMethodName.

304

m Common Design Patterns

9.2.3 Classic Async Pattern Basic Implementation Example

The following sample shows a basic implementation of the Async Pattern.
This particular implementation is for illustrative purposes only. Although
the implementation is useful for understanding the general pattern, it is
unlikely to produce the optimum performance in exposing asynchronous
operations because it utilizes the asynchronous functionality built into
delegates. This uses the remoting layer and so is not optimum in terms of
performance and resource consumption.

public c¢lass FiboCalculator {
delegate void Callback(int count,ICollection<decimal> series);
private Callback callback = new Callback(GetFibo};

ff starts the process of generating a series and returns
public IAsyncResult BeginGetFibo(

int count,

ICollection<decimals> series,

AsyncCallback callback,

object state)

return this.callback.BeginInvoke({count,series,callback,state);

}

// Blocks until the process of generating a series completes
public void EndGetFibo(IAsyncResult asyncResult) {
this.callback.EndInvoke(asyncResult);

J/! Generate a series of the first count Fibonacci numbers
public static void GetFibo(
int count, ICollection<decimal> series)

1
for (int 1 = 8; i < count; i++) {
decimal d = GetFiboCore(i);
lock (series) {
series.Add(d);
}
}
}

Jf Return the Nth Fibonacci number

static decimal GetFiboCore(int n){
if (n < @) throw new ArgumentException("n must be » @");
if (n==0 || n==1) return 1
return GetFiboCore(n-1) + GetFiboCore(n-2);

9.2 The Async Patterns m 305

"s CHRISTOPHER BRUMME A better way to implement this pattern is to
provide Begin and End methods that use ThreadPool.QueueUserWorkItem
under the covers. Essentially, you are avoiding all the interpretive overhead
of remoting messages by writing the methods that put your state into a
work item and then getting your state back out of the work item. This is
pretty easy to do, and the performance should be much better than when
using asynchronous delegates.

“s BRIAN GRUNKEMEYER To implement the async design pattern using

asynchronous 1/0, look at System.Threading.Overlapped and System.
Threading.Threadpool.BindHandle. BindHandle internally binds a han-
dle to a Win32 /O completion port, which is the most performant mecha-
nism in the operating system to handle asynchronous 1/0, allowing the
operating system to throttle I/O threads as needed. Use the Overlapped
class to provide a NativeOverlapped®*, which you can then pass to Win32
methods taking an LPOVERLAPPED. Make sure any buffers you use for
your asynchronous I/0O operation are passed to Overlapped.Pack or
UnsafePack, or you will corrupt memory if an application domain unload
happens while your asynchronous [/0 operation is in flight.

9.2.4 Event-Based Async Pattern

Usually, asynchronous APIs are offered in addition to synchronous APIs.
The following step-by-step guide for defining asynchronous APIs assumes
the synchronous versions already exist, but it is important to keep in mind
that the synchronous methods need not even be present if the component

just wants to expose asynchronous APL.

9.2.4.1 Defining Asynchronous Methods

Define an asynchronous method for each synchronous method that you
want to provide an asynchronous version for. The asynchronous method
should return void and take the same parameters as the synchronous
method (see section 5.8.3 for handling out and ref parameters). The name
of the method should be built by appending the “Async” suffix to the
name of the synchronous method.

306

m Common Design Patterns

Optionally, define an overload of the asynchronous method with an
additional object parameter called “userState.” Do this if the API supports
multiple concurrent invocations of the asynchronous operation, in which
case the userState will be delivered back to the event handler to distin-
guish between the invocations.

For example, given the following synchronous method:

public class SomeType {
public SomeReturnType Method(string argl, string arg2);

¥

The following asynchronous methods should be added:

public class SomeType {
public void MethodAsync(string argl, string arg2);

// optional
public vold MethodAsync(string argl, string arg2, object usersState};

public SomeReturnType Method(string argl, string arg2);

v/ DO ensure that if your component defines the asynchronous method
without the userState parameter, any attempt to invoke the method
before the prior invocation has completed will result in an Invalid-
OperationException being raised.

For each asynchronous method, also define the following event:

public class SomeType {
public event EventHandler<MethodCompleteEventArgs> MethodCompleted;

public void MethodAsync(string argl, string arg2);
public void MethodAsync(string argl, string arg2, object userState);
public ScmeReturnType Method(string argl, string arg2);

/ DO ensure yvou invoke event handlers on the proper thread. This is one
of the main benefits of using the Event-Based Async Pattern over the

Classic Async Pattern.

9.2 The Async Patterns g 307

It is critical that event handlers get invoked on the proper thread for
the given application model. The Framework provides a mechanism,
AsyncOperationManager, to do this easily and consistently. The mecha-
nism allows components to be used equally well across all application

models.

v/ DO ensure that you always invoke the event handler, on successtul
completion, on an error, or on cancellation. Applications should not be
put in a situation where they indefinitely wait for something that
doesn’t happen. An exception to this, of course, is if the actual asyn-
chronous operation itself never starts or completes.

public class MethodCompletedEventArgs : AsyncCompletedEventargs {
public SomeReturnType Result { get; }

v/ DO ensure that accessing a property! of the event arguments class of a
failed asynchronous operation results in an exception being thrown. In
other words, if there was an error completing the task, the results

shouldn’t be accessible.

X DO NOT define new event handlers or event argument types for void
methods. Use AsyncCompletedEventArgs, AsyncCompletedEventHandler,
or EventHandler<AsyncCompletedEventArg> instead.

9.2.5 Supporting Out and Ref Parameters
The above examples are based on synchronous methods that take only input
parameters; out and ref parameters are not dealt with. Although the use of
out and ref is discouraged in general, sometimes they are unavoidable.
Given a synchronous method with out parameters, the asynchronous
version of the method should omit the parameters from its signature.
Instead, the parameters should be exposed as get-only properties of the
EventArgs class. The names and types of the properties should be the same
as the names and types of the parameters.
Ref parameters to the synchronous method should appear as input

parameters of asynchronous version, and as get-only properties of the

1. This refers only to properties carrying the results of the asynchronous operation, not to
properties carrying the error information, for example.

308 m Common Design Patterns

EventArgs class. The names and types of the properties should be the same
as the names and types of the parameters.
For example, given the following synchronous method:

public string Method({object argl, ref int arg2, out long arg3)
The asynchronous version would look like the following:

public void MethodAsync(object argl, int arg2);

public class MethodCompletedEventArgs : AsyncCompletedEventargs {
public string Result { get; }
public int Arg2 { get; }
public long Arg3 { get; }

9.2.6 Supporting Cancellation
The pattern can optionally support cancellation of pending operations.
Cancellation should be exposed through a CancelAsync method.

If the asynchronous operations support multiple outstanding opera-
tions, that is, if the asynchronous methods take parameter userstate, the
cancellation method should also take a parameter userState. Otherwise,

the method does not take any parameters.

public class SomeType {

public void Cancelasync{object usersState);
ff or public void Cancelfsync();
J/f if multiple outstanding requests are not supported

public SomeReturnType Method(string argl, string arg2);

public void MethodAsync(string argl, string arg2);

public void MethodAsync(string argl, string arg2, object userstate);
public event MethodCompletedeventHandler MethodCompleted;

v/ DO ensure that in the case of cancellation, you set the Cancelled prop-
erty of the event arguments class to true, and that any attempt to access
the result raises an InvalidOperationException stating that the opera-
tion was cancelled.

9.2 The Async Patterns m 309

v DO ignore calls to the cancellation method if the particular operation
cannot be cancelled, instead of raising an exception. The reason for this
is that in general a component cannot know whether an operation is
truly cancelable at any given time and cannot know whether a previ-
ously issued cancellation has succeeded. However, the application will
always know when a cancellation succeeded, because it is indicated by

the Cancelled property of the event arguments class.

9.2.7 Supporting Progress Reporting
It is frequently desired and feasible to provide progress reporting during
an asynchronous operation. The following section describes APIs for such
support.

If an asynchronous operation needs to support progress reporting, add
an additional event, named ProgressChanged, to be raised by the asyn-

chronous operation.

public class SomeType {
public event EventHandler<ProgressChangedEventArgs> ProgressChanged;

public void CancelAsync{object userState);

public SomeReturnType Method(string argl, string arg2);

public void Methodasync({string argl, string arg2);

public void MethodAsync{string argl, string arg2, object userState);
public event MethodCompletedEventHandler MethodCompleted;

ProgressChangedEventArgs parameter, passed to the handler, carries
an integer-valued progress indicator that is expected to be between 0
and 100,

/f this is a standard type defined by the Framework
public class ProgressChangedEventArgs : EventArgs {
public ProgressChangedEventArgs({int progressPercentage,
object userstate);
public object UserState { get; }
public int ProgressPercentage { get; }

310

m Common Design Patterns

Note that in most cases there is only one ProgressChanged event for the
component, regardless of the number of asynchronous operations. Clients
are expected to use the userstate object that was passed in to the opera-
tions to distinguish between progress updates on multiple concurrent
operations.

There may be situations where multiple operations support progress,
and they each return a different indicator for that progress. In that case, a
single ProgressChanged event is no longer appropriate, and the imple-
menter may consider supporting multiple ProgressChanged events as the
situation dictates. In such case the specific progress events should be called
<MethodName:>ProgressChanged.

The basic implementation of progress reporting uses the Progress-
ChangedEventArgs class and the EventHandler<ProgressChangedEvent-
Args> delegate. Optionally, if a more domain-specific progress indicator is
desired (for example, number of bytes read), a subclass of Progress-
ChangedEventArgs can be defined and used.

®s GREG SCHECHTER One could argue that a floating-point value
between (.0 and 1.0 would be more appropriate as ProgressPercentage.

An integer range was chosen because it maps well to the progress control,
which also uses the integer range from 0 to 100.

/ DO ensure that, if you implement a ProgressChanged event, there are
no such events raised for a particular asynchronous operation after that

operation’s completed event has been raised.

"s GREG SCHECHTER If you're dispatching progress and completion

events from the same thread, ensure that no progress events occur after the

operation has completed. If they're coming from different threads, you may
not be able to do this without compromising concurrency, and thus it likely
shouldn’t be pursued in those situations.

9.2 The Async Patterns m 311

v’ DO ensure that, if the standard ProgressChangedEventArgs is being
used, the ProgressPercentage canalways beinterpreted as a percentage
(it does not need to necessarily be an accurate percentage, but it does
need to represent a percentage). If your progress reporting metric must
be something different, then a subclass of ProgressChangedEventArgs

is more appropriate, and you should leave the ProgressPercentage

property at 0.

B, CHRIS SELLS Please make progress reporting move forward, if for no
other reason than my family makes fun of me when they see a progress
report going backwards, as if it's my fault. Personally, I've implemented

several progress percentage algorithms and while I often can’t get the tim-
ing to be smooth through all stages of an operation, at least they always
move forward. In fact, I think you'd have to work extra hard to make them
move backwards.

9.2.8 Supporting Incremental Results
Occasionally, asynchronous operations can return incremental results peri-
odically, prior to being complete. There are a number of different options
that can be used to support this scenario, based on the constraints.

If the component supports multiple asynchronous operations, each
capable of returning incremental results, these incremental results should

all have the same type.

v/ DO raise this ProgressChanged event when there is an incremental
result to report back.

v/ DO extend the ProgressChangedEventArgs to carry the incremental result
data, and define a ProgressChanged event with this extended data.

If the multiple asynchronous operations return a different type of data,
the following approach should be used.

v Do separate out your incremental result reporting from your progress
reporting.

312

m Common Design Patterns

v/ DO define a separate <MethodName>ProgressChanged event with appro-
priate event arguments for each asynchronous operation to handle that

operation’s incremental result data.

®s CHRIS SELLS 1 find the System.ComponentModel.Background-
Worker component to be a simple way to implement the Event-Based

Async Pattern if you'd like help. It's also an excellent example of such an
implementation.

9.3 Dependency Properties

A dependency property (DP) is a regular property that stores its value
in a property store instead of storing it in a type variable (field), for
example.

An attached dependency property is a kind of dependency property
modeled as static Get and Set methods representing “properties” describ-
ing relationships between objects and their containers (e.g., the position of
a Button object on a Panel container).

This section describes when this might be useful and guidelines related

to the design of such properties.

v bo provide the dependency properties, if you need the properties to
support WPF features such as styling, triggers, data binding, anima-
Hons, dynamic resources, and inheritance.

In the tollowing example, the TextButton.Text property is a depen-
dency property supporting WPF style triggers.

<Style TargetType="TextButton">
<Setter Property="Text" Value="Move here and click" />
<Style.Triggers:»
<Trigger Property="IsMouseOver" Value="True":
<Setter Property="Text" Value="Now click” />
</Trigger>
</Style.Triggers>
</Style>

9.3 Dependency Properties g 313
... and here’s an example using the property with data binding:

<TextButton Text="{Binding FirstName}" />

9.3.1 Dependency Property Design
The following guidelines describe details of dependency property design.

v/ DO inherit from Dependencyobject, or one of its subtypes, when imple-
menting dependency properties. The type provides a very efficient
implementation of a property store and automatically supports WPF

data binding.

v Do provide a regular CLR property and public static read-only field
storing an instance of System.Windows.DependencyProperty for each
dependency property.

public class TextButton : DependencyObject {

public string Text {
get { return (string)this.GetValue(TextProperty}; }
set { this.SetValue({TextProperty,value); }

}

public static readonly DependencyProperty TextProperty =
DependencyProperty.Register{"Text",typeof{string), typeof(TextButton));

v Do implement dependency properties by calling instance methods
DependencyObiject.GetValue and DependencyObject.Setvalue.

public class TextButton : DependencyObject {

public string Text {
get { return (string)this.GetValue(TextProperty); }
set { this.SetValue(TextProperty,value); }

}

public static readonly DependencyProperty TextProperty = ...

}

v/ DO name the dependency property static field by suffixing the name of
the property with “Property.”

314 m Common Design Patterns

The first parameter to the DependencyProperty.Register method
should be the name of the wrapper property.

public class TextButton : DependencyObject {

public static readonly DependencyProperty TextProperty =
DependencyProperty.Register("Text",typeof(string), typeof(
TextButton));

X DO NOT set default values of dependency properties explicitly in code;
set them in metadata instead.

If you set a property default explicitly, you might prevent that property
trom being set by some implicit means, such as a styling,.

public class TextButton : DependencyObject {

public TextButton(){
{/ do not set DP default values explicitly
Text = String.Empty; // this is bad!

public static readonly DependencyProperty TextProperty =
DependencyProperty.Register(
"Text",
typeof(string),
typeof({TextButton),
new PropertyMetadata(String.Empty) // this is good!

)i

X DO NOT put code in the property accessors other than the standard code
to access the static field.
That code won't execute if the property is set by implicit means, such as

a styling, because styling uses the static field directly.

public string Text {
get { return (string)GetValue(TextProperty); }
set {
SetValue(TextProperty, value);
DoWorkonTextChanged(); // this is bad!

9.3 Dependency Properties m 315

X DO NOT use dependency properties to store secure data. Even private
dependency properties can be accessed publicly.

public class BadType : DependencyObject {
J// do not do this! It's not secure!
private static readonly DependencyProperty SecretProperty =
DependencyProperty.Register("Secret”,typeof(string),typeof(
BadType));

public BadType() {
SetValue(SecretProperty, "password");

1
}

static void Main(){
var b = new BadType();
var enumerator = b.GetlocalValueEnumerator();
while (enumerator.MoveNext()) {
Console.WriteLine("{e}={1}",
enumerator.Current.Property,
enumerator.Current.Value

b H

9.3.2 Attached Dependency Property Design
Dependency properties described in the preceding section represent
intrinsic properties of the declaring type; for example, the Text property
is a property of TextButton, which declares it. A special kind of depen-
dency property is the attached dependency property. The dependency
property guidelines apply to attached dependency properties as well, but
there are some additional guidelines to consider when implementing
attached dependency properties, and this section describes these special
considerations.

Attached dependency properties represent properties that are defined
on one type but that can be set on an object of another type.

®s CHRISTOPHE NASARRE This is close to what you would achieve with

a PropertyExtender in Windows Forms,

316 m Common Design Patterns

A classic example of an attached property is the Grid.Column property.
The property represents Button's (not Grid’s) column position, but it is
only relevant if the Button is contained in a Grid, and so it’s "attached” to
Buttons by Grids.

<Grid>
<Grid. ColumnDefinitions>
¢ColumnDefinition />
<ColumnbDefinition />
<farid.ColumnbDefinitions>

<Button Grid.Column="@"»Click</Button>
<Button Grid.Column="1">Clack</Button>
<fGrid>»

The definition of an attached property looks mostly like that of a regu-
lar dependency property, except that the accessors are represented by static
Get and Set methods:

public class Grid {

public static int GetColumn{DependencyObject obj}) {
return (int)obj.GetValue(ColumnProperty);

}

public static void SetColumn{DependencyObject obj, int value) {
obj.5etValue(ColumnProperty,value);

¥

public static readonly DependencyProperty ColumnProperty =
DependencyProperty.RegisterAttached(
"Column",
typeof(int),
typeof(Grid)
H

9.3.3 Dependency Property Validation
Properties often implement what is called validation. Validation logic exe-

cutes when an attempt is made to change the value of a property. The

9.3 Dependency Properties g

following example shows the typical validation code ensuring that a prop-
erty is not ever set to null.

public string Text {
set {
if (value==null) {
throw new ArgumenthullException("value”,...);

}
}

Unfortunately dependency property accessors cannot contain arbitrary
validation code, as described in section 9.3.3. Instead, dependency prop-

erty validation logic needs to be specified during property registration.

X DO NOT put dependency property validation logic in the property’s
accessors. Instead, pass a validation callback to DependencyProperty.

Register method.

public static readonly DependencyProperty TextProperty =
DependencyProperty.Register(
"Text",
typeof(string),
typeof(TextButton),
new PropertyMetadata(string.Empty),
delegate{object value) { return value != null; } // validation

9.3.4 Dependency Property Change Notifications

Similarly to validation logic described in the previous section, dependency
property accessors should not have custom code that would be normally
used to trigger property change notification events because these acces-
sors are not called from XAML generated code.

public string Text {
set {
if(this.text!=value){
this.text = value;

b
OnTextChanged(); // bad

317

318 @m Common Design Patterns

X DO NOT implement change notification logic in dependency property
accessors. Dependency properties have a built-in change notifications
feature that must be used by supplying a change notification callback
to the PropertyMetadata.

public static readonly DependencyProperty TextProperty =
DependencyProperty.Register(
"Text",
typeof(string),
typeof{TextButton),
new PropertyMetadatal
String.Empty,
delegate(DependencyObject e,DependencyPropertyChangedEventargs

args
{/ property changed

)3

9.3.5 Dependency Property Value Coercion

Property coercion takes place when the value given to a property setter is
modified by the setter before the property store is actually modified. The
following example shows simple coercion logic.

public string Text {
set {
if (value == null){ value = String.Empty; }
this.text = value;

Similarly to validation and change notification logic described in the
previous sections, dependency properties must specify coercion logic dur-
ing property registration, not directly in the property accessor.

X DO NOT implement coercion logic in dependency property accessors.

Dependency properties have a built-in coercion feature, and it can be
used by supplying a coercion callback to the PropertyMetadata.

9.4 Dispose Pattern m 319

public static readonly DependencyProperty MameProperty =
DependencyProperty.Register("Name", typeof(string), typecf(kWpfType),
new PropertyMetadata(
String.Empty,
delegate(DependencyObject e, DependencyPropertyChangedEventArgs args) {
// change notification callback

}J

delegate(DependencyObject e, object value) {
if (value == null) value = String.Empty; // coercion
return value;

}

)

9.4 Dispose Pattern

All programs acquire one or more system resources, such as memory, sys-
tem handles, or database connections, during the course of their execution.
Developers have to be careful when using such system resources, because
they must be released after they have been acquired and used.

The CLR provides support for automatic memory management. Man-
aged memory (memory allocated using the C# operator new) does not need
to be explicitly released. It is released automatically by the garbage collec-
tor (GC). This frees developers from the tedious and difficult task of releas-
ing memory and has been one of the main reasons for the unprecedented
productivity afforded by the .NET Framework.

Unfortunately, managed memory is just one of many types of system
resources. Resources other than managed memory still need to be released
explicitly and are referred to as unmanaged resources. The GC was speciti-
cally not designed to manage such unmanaged resources, which means
that the responsibility for managing unmanaged resources lies in the hands
of the developers.

The CLR provides some help in releasing unmanaged resources.
System.0Object declares a virtual method Finalize (also called the final-
izer) that is called by the GC before the object’s memory is reclaimed by
the GC and can be overridden to release unmanaged resources. Types that
override the finalizer are referred to as finalizable types.

320

m Common Design Patterns

Although finalizers are effective in some cleanup scenarios, they have
two significant drawbacks:

* The finalizer is called when the GC detects that an object is eligible
for collection. This happens at some undetermined period of time
after the resource is not needed anymore. The delay between when
the developer could or would like to release the resource and the
time when the resource is actually released by the finalizer might
be unacceptable in programs that acquire many scarce resources
(resources that can be easily exhausted) or in cases in which
resources are costly to keep in use (e.g., large unmanaged memory
buffers).

* When the CLR needs to call a finalizer, it must postpone collection
of the object’'s memory until the next round of garbage collection
(the finalizers run between collections). This means that the object’s
memory (and all objects it refers to) will not be released for a longer
period of time.

Therefore, relying exclusively on finalizers might not be appropriate in
many scenarios when it is important to reclaim unmanaged resources
as quickly as possible, when dealing with scarce resources, or in highly
performant scenarios in which the added GC overhead of finalization is
unacceptable.

The Framework provides the System.IDisposable interface thatshould
be implemented to provide the developer a manual way to release unman-
aged resources as soon as they are not needed. It also provides the
GC.SuppressFinalize method that can tell the GC that an object was man-
ually disposed of and does not need to be finalized anymore, in which case
the object’s memory can be reclaimed earlier. Types that implement the
IDisposable interface are referred to as disposable types.

®s BRIAN PEPIN The idea behind Dispose is that you call it to release
scarce or unmanaged resources. We've designed it so if you don't call
Dispose, the object will finalize and release the resource anyway. It's great

9.4 Dispose Pattern m 321

that we'll clean up eventually for you, but in reality you probably have a bug
if you're not disposing of an object when you're done with it. The exception
here is when you're sharing an object with other code. For example, Win-
dows Forms controls that have an ImagelList property never dispose of the
Imagelist, because they don't know if it is being used by other controls.

"s JOE DUFFY The advice I would like to give people is roughly as fol-
lows. When a type implements IDisposable, and ownership is obvious,
you should do your best to call Dispose when vou are done with the object.
But if ownership becomes tricky (because the object is referenced from
multiple places or shared across threads, for example), neglecting to call
Dispose will do no harm. This is along the lines of what Brian says above.

Unfortunately, there are a few instances in the NET Framework where fail-
ure to call Dispose can lead to surprising behavior. FileStream, for exam-
ple, will keep the file handle open until finalization time. If that handle was
opened in write-exclusive mode, nobody else on the machine will be able
to open the file until the finalizer runs. Moreover, the contents written
won’t be flushed to disk until then. This is a nondeterministic event, and it
is terrible to rely on it for correctness.

The Dispose Pattern is intended to standardize the usage and imple-
mentation of finalizers and the IDisposable interface.

The main motivation for the pattern is to reduce the complexity of the
implementation of the Finalize and the Dispose methods. The complex-
ity stems from the fact that the methods share some but not all code paths
(the differences are described later in the chapter). In addition, there are
historical reasons for some elements of the pattern related to the evolution
of language support for deterministic resource management.

v/ DO implement the Basic Dispose Pattern on types containing instances
of disposable types. See section 9.4.1 for details on the basic pattern.
If a type is responsible for the lifetime of other disposable objects, devel-

opers need a way to dispose of them, too. Using the container’s Dispose

method is a convenient way to make this possible.

322

m Common Design Patterns

v Do implement the Basic Dispose Pattern and provide a finalizer on
types holding resources that need to be freed explicitly and that do not
have finalizers.

For example, the pattern should be implemented on types storing
unmanaged memory buffers. Section 9.4.2 discusses guidelines related

to implementing finalizers.

v/ CONSIDER implementing the Basic Dispose Pattern on classes that
themselves don’t hold unmanaged resources or disposable objects but
are likely to have subtypes that do.

A great example of this is the System.I0.Stream class. Although itis an
abstract base class that doesn’t hold any resources, most of its sub-
classes do and because of this, it implements this pattern.

9.4.1 Basic Dispose Pattern
The basic implementation of the pattern involves implementing the
System.IDisposable interface and declaring the Dispose(bool) method
that implements all resource cleanup logic to be shared between the
Dispose method and the optional finalizer. Please note that this section
does not discuss providing a finalizer. Finalizers are extensions to this
basic pattern and are discussed in section 9.4.2,

The following example shows a simple implementation of the basic
pattern:

public class DisposableResourceHolder : IDisposable {
private SafeHandle resource; // handle to a resource

public DisposableResourceHolder()q{
this.resource = ... // allocates the resource

}

public void Dispose(){
Dispose(true);
GC.SuppressFinalize(this);

9.4 Dispose Pattern m 323

protected virtual void Dispose(bool disposing){
if (disposing){
if (resource!= null) resource.Dispose();

®s HERBSUTTER If using C++, simply write the usual destructor (~T())
and the compiler will automatically generate all of the machinery described
later in this section. In the rare cases in which you do want to write a final-
izer (!T()) as well, the recommended way to share code is to put as much

of the work into the finalizer as the finalizer is able to handle (e.g., the final-
izer cannot reliably touch other objects, so don’t put code in there that needs
to use other objects), put the rest in the destructor, and have your destructor
call your finalizer explicitly.

The Boolean parameter disposing indicates whether the method was
invoked from the IDisposable.Dispose implementation or from the
finalizer. The Dispose(bool) implementation should check the parame-
ter before accessing other reference objects (e.g., the resource field in the
preceding sample). Such objects should only be accessed when the
method is called from the IDisposable.Dispose implementation (when
the disposing parameter is equal to true). If the method is invoked from
the finalizer (disposing is false), other objects should not be accessed.
The reason is that objects are finalized in an unpredictable order and so
they, or any of their dependencies, might already have been finalized.

Also, this section applies to classes with a base that does not already
implement the Dispose Pattern. If you are inheriting from a class that
already implements the pattern, simply override the Dispose(bool)
method to provide additional resource cleanup logic.

v/ DO declare a protected virtual void Dispose(bool disposing) method
to centralize all logic related to releasing unmanaged resources.

All resource cleanup should occur in this method. The method is called
from both the finalizer and the IDisposable.Dispose method. The
parameter will be false it being invoked from inside a finalizer. It should

be used to ensure any code running during finalization is not accessing

324 m Common Design Patterns

other finalizable objects. Details of implementing finalizers are described
in section 9.4.2.

protected wvirtual void Dispose(bool disposing){
if (disposing){
if (resource!= null) resource.Dispose();

1

®s JEFFREY RICHTER The idea here is that Dispose(bool) knows
whether it is being called to do explicit cleanup (the Boolean is true) versus
being called due to a garbage collection (the Boolean is false). This distinc-
tion is useful because, when being disposed explicitly, the Dispose(bool)
method can safely execute code using reference type fields that refer to other
objects knowing for sure that these other objects have not been finalized.
When the Boolean is false, the Dispose(Boolean) method should not exe-
cute code that refers to reference type fields because those objects might
have already been finalized.

®s JOE DUFFY Jeff’s comment might seem incorrect at first glance—that
is, can’t you safely access reference type objects that aren't finalizable? The
answer is yes, if and only if you are certain that the object doesn’t rely on the
finalizable state itself! This is a nontrivial thing to figure out and is subject to
change from release to release. Unless you're 100 percent certain, perhaps
because you own the type in question, just avoid doing it.

v DO implement the IDisposable interface by simply calling Dispose(true)
followed by GC. SuppressFinalize(this).

The call to suppressFinalize should only occur if Dispose(true) exe-
cutes successfully.

public void Dispose{}{
Dispose(true);
GC.SuppressFinalize(this);

¥

9.4 Dispose Pattern m 325

"s BRAD ABRAMS We had a fair amount of debate about the relative
ordering of calls in the Dispose() method. We opted for the ordering where
suppressFinalize is called after Dispose(bool). It ensures that GC.
SuppressFinalize() only gets called if the Dispose operation completes
successfully.

®. JEFFREY RICHTER I, too, wrestled back and forth with the order of
these calls. Originally, I felt that SuppressFinalize should be called prior

to Dispose. My thinking was this: If Dispose throws an exception then, it
will throw the same exception when Finalize is called and there is no
benefit to this, and the second exception should be prevented. However, |
have since changed my mind and I now agree with this guideline that
SuppressFinalize should be called after Finalize. The reason is that
Dispose() calls Dispose(true), which might throw, but when Finalize
is called later, Dispose(false) is called. This might be a different code
path than before, and it would be good if this different code path executed.
In addition, the different code path might not throw the exception.

X DO NOT make the parameterless Dispose method virtual.

The Dispose(bool) method is the one that should be overridden by
subclasses.

// bad design

public class DisposableResourceHolder : IDisposable {
public virtual veoid Dispose(){ ... }
protected virtual void Dispose{bool disposing){ ... }

}

// good design

public class DisposableResourceHolder : IDisposable {
public void Dispose(}{ ... }
protected virtual veid Dispose(bool disposing){ ... }

®. BRIAN PEPIN If you look hard enough, there are still places in the
Framework where we don’t follow this pattern. By the time we finalized the

Dispose pattern, quite a bit of the Framework had already been written.
Although we scrubbed everything to the best of our ability, a few things still
slipped through the cracks.

326 m Common Design Patterns

X DO NOT declare any overloads of the Dispose method other than
Dispose() and Dispose(bool).

Dispose should be considered a reserved word to help codify this pat-
tern and prevent confusion among implementers, users, and compilers.
Some languages might choose to automatically implement this pattern

on certain types.

v’ DO allow the Di spose(bool) method to be called more than once. The
method might choose to do nothing after the first call.

public class DisposableResourceHolder : IDisposable {
bool disposed = false;

protected virtual void Dispose({bool disposing){
if{disposed) return;
// cleanup

disposed = true;

X AVOID throwing an exception from within Dispose(bool) except under
critical situations where the containing process has been corrupted
(leaks, inconsistent shared state, etc.).

Users expect that a call to Dispose will not raise an exception. For
example, consider the manual try-finally in this snippet:

TextReader tr = new StreamReader(File.OpenRead(" foo.txt"));
try {
// do some stuff

1

finally {
tr.Dispose();
[more stuff

If Dispose could raise an exception, further finally-block cleanup logic

will not execute. To work around this, the user would need to wrap every

9.4 Dispose Pattern m 327

call to Dispose (within the finally block!) in a try block, which leads to
very complex cleanup handlers. If executing a Dispose(bool disposing)
method, never throw an exception if disposing is false. Doing so will ter-

minate the process if executing inside a finalizer context.

v/ DO throw an ObjectDisposedException from any member that cannot

be used after the object has been disposed of.

public class DisposableRescurceHolder : IDisposable {
bool disposed = false;
safeHandle resource; // handle to a resource

public void DoSomething(){
if(disposed) throw new ObjectDisposedException(...);
J/ now call some native methods using the resource

}

protected virtual void Dispose(bool disposing){
if(disposed) return;
ff cleanup

disposed = true;

v/ CONSIDER providing method Close(), in addition to the Dispose(), if
close is standard terminology in the area.

When doing so, it is important that you make the Close implementa-
tion identical to Dispose and consider implementing the IDisposable.
Dispose method explicitly. See section 5.1.2, on implementing inter-

faces explicitly.

public class Stream : IDisposable {
IDisposable.Dispose(){

Close();

b

public void Close(){
Dispose(true);
GC.SuppressFinalize(this);

}

328

m Common Design Patterns

"s JEFF PROSISE Implementing Close and Dispose so that they're
semantically equivalent helps avoid a lot of confusion. More than once,
I've had developers tell me that you shouldn’t instantiate a SqlConnection

in a using statement because the resultant code will call Dispose but not
Close. In reality, it's fine to combine using and SqlConnection because
SqglConnection.Dispose calls SqlConnection.Close.

9.4.2 Finalizable Types
Finalizable types are types that extend the Basic Dispose Pattern by
overriding the finalizer and providing finalization code path in the
Dispose(bool) method.

Finalizers are notoriously difficult to implement correctly, primarily
because you cannot make certain (normally valid) assumptions about the
state of the system during their execution. The following guidelines should
be taken into careful consideration.

Note that some of the guidelines apply not just to the Finalize method,
but to any code called from a finalizer. In the case of the Basic Dispose Pat-
tern previously defined, this means logic that executes inside Dispose (bool
disposing) when the disposing parameter is false.

If the base class already is tinalizable and implements the Basic Dispose
Pattern, you should not override Finalize again. You should instead just
override the Dispose(bool) method to provide additional resource cleanup
logic.

"s HERB SUTTER You really don't want to write a finalizer if you can
help it. Besides problems already noted earlier in this chapter, writing a
finalizer on a type makes that type more expensive to use even if the final-
izer is never called. For example, allocating a finalizable object is more

expensive because it must also be put on a list of finalizable objects. This
cost can’t be avoided, even if the object immediately suppresses finalization
during its construction (as when creating a managed object semantically on
the stack in C++).

9.4 Dispose Pattern m 329

The following code shows an example of a finalizable type:

public class ComplexResourceHolder : IDisposable {

private IntPtr buffer; // unmanaged memcry buffer
private SafeHandle resource; // disposable handle to a resource

public ComplexResourceHolder(){
this.buffer = ... /f allocates memory
this.resource = ... f/ allocates the resource

}

protected virtual void Dispose{bool disposing){
ReleaseBuffer(buffer); // release unmanaged memory
if (disposing){ // release other disposable objects
if (resource!= null) rescurce.Dispose();

}
1

~ ComplexResourceHolder(){
Dispose(false);

}

public void Dispose(){
Dispose(true);
GC.SuppressFinalize(this);

X AVOID making types finalizable.

Carefully consider any case in which you think a finalizer is needed.
There is a real cost associated with instances with finalizers, from both
a performance and code complexity standpoint. Prefer using resource
wrappers such as SafeHandle to encapsulate unmanaged resources
where possible, in which case a finalizer becomes unnecessary because

the wrapper is responsible for its own resource cleanup.

"s CHRIS SELLS Of course, if you're implementing yvour own managed

wrappers around unmanaged resources, those will need to implement the

finalizable type pattern.

330 m Common Design Patterns

"s BRIAN GRUNKEMEYER If you're writing a wrapper class for an OS
resource such as handles or memory, please consider SafeHandle. That will
handle all of the tricky reliability and security problems associated with
guaranteeing resources get freed eventually and in a threadsafe manner.
Additionally, it will usually mean you don't need to write a finalizer on
your own type. You should still implement IDisposable, though.

®s JOE DUFFY The extra cost of a finalizer object arises in three specific
places. First, at allocation time the object must be registered with the GC as
being finalizable. This makes just creating an object more expensive. Sec-
ond, when such an object is found to be unreachable, it must be moved to a
special to-be-finalized queue. This actually causes the object to be promoted
to the next GC generation. Third, the finalizer thread needs to spend time
processing the to-be-finalized queue and executing finalizers on the objects
within it. There is only a single finalizer thread, so having too many finaliz-
able objects can actually cause scalability problems. On a heavily loaded
server, you may find that one processor spends 100 percent of its time just
running finalizers.

®s VANCE MORRISON Wrapping unmanaged resources is pretty much
the ONLY reason to have a finalizer. If you are wrapping an unmanaged
resource, ideally that should be the only thing the class does, and there is a
good chance you should be subclassing SafeHandle to do it. Thus, “ordi-
nary” types should not have finalizers.

X DO NOT make value types finalizable.

Only reference types actually get finalized by the CLR, and thus any
attempt to place a tinalizer on a value type will be ignored. The C# and
C++ compilers enforce this rule.

v/ DO make a type finalizable if the type is responsible for releasing an
unmanaged resource that does not have its own finalizer.

When implementing the finalizer, simply call Dispose(false) and
place all resource cleanup logic inside the Dispose(bool disposing)
method.

9.4 Dispose Pattern m 331

public class ComplexResourceHolder : IDisposable {

~ ComplexResourceHolder(){
Dispose(false);

}

protected virtual void Dispose(bool disposing){

}

v Do implement the Basic Dispose Pattern on every finalizable type. See
section 9.4.1 for details on the basic pattern.
This gives users of the type a means to explicitly perform deterministic

cleanup of those same resources for which the finalizer is responsible.

®s JEFFREY RICHTER This guideline is very important and should always
be followed, without exception. Without this guideline, a user of a type
can’t control the resource properly.

% HERB SUTTER Languages ought to warn on this case. If you have a
finalizer, you want a destructor (Dispose).

X DO NOT access any finalizable objects in the finalizer code path, because

there is significant risk that they will have already been finalized.

For example, a finalizable object A that has a reference to another final-
izable object B cannot reliably use B in A’s finalizer, or vice versa. Final-
izers are called in a random order (short of a weak ordering guarantee
for critical finalization).

Also, be aware that objects stored in static variables will get collected
at certain points during an application domain unload or while exit-
ing the process. Accessing a static variable that refers to a finalizable
object (or calling a static method that might use values stored in static
variables) might not be safe if Environment.HasShutdownStarted

returns true.

332

m Common Design Patterns

"s JEFFREY RICHTER Note that it is OK to touch unboxed value type

tields.

v/ DO make your Finalize method protected.

C#, C++, and VB.NET developers do not need to worry about this,
because the compilers help to enforce this guideline.

X DO NOT let exceptions escape from the finalizer logic, except for system-
critical failures.

If an exception is thrown from a finalizer, the CLR will shut down the
entire process (as of NET Framework version 2.0), preventing other
tinalizers from executing and resources from being released in a con-
trolled manner.

v/ CONSIDER creating and using a critical finalizable object (a type with a
type hierarchy that contains CriticalFinalizerObject) for situations
in which a finalizer absolutely must execute even in the face of forced
application domain unloads and thread aborts.

The next section presents guidelines on how and when to use factories
to create object instances.

9.5 Factories

The most common and consistent way to create an instance of a type is via
its constructor. However, sometimes a preferable alternative is to use a
factory.

A factory is an operation or collection of operations that abstract the
object creation process for the users, allowing for specialized semantics
and finer granularity of control over an object’s instantiation. Simply put,
a factory’s primary purpose is to generate and provide instances of objects
to callers.

There are two main groups of factories: factory methods and factory
types (also called abstract factories).

9.5 Factories g 333

File.Open and Activator.CreateInstance are examples of factory

methods.

public class File {
public static FileStream Open(String path, FileMode mode) { ... }

public static class Activator {
public static object Createlnstance(Type type){ ... }

Factory methods often appear on the types for which instances are to
be created and are typically static. Such static factory methods are often
limited to creating instances of a specific type determined at the time of
compilation (notice, this is true of constructors as well). This is sufficient in
most scenarios, but sometimes it is necessary to return a dynamically
selected subclass.

Factory types can address these scenarios. Factory types are special-
purpose types with factory methods implemented as virtual (usually
abstract) instance functions.

For example, consider the following scenario in which factory types
inherited from StreamFactory can be used to dynamically select the actual
type of the Stream:

public abstract class StreamFactory {
public abstract Stream CreateStream();

public class FileStreamFactory: StreamFactory {

public class IsolatedStorageStreamFactory: StreamFactory {

v/ DO prefer constructors to factories, because they are generally more
usable, consistent, and convenient than specialized construction
mechanisms,

334 m Common Design Patterns

Factories sacrifice discoverability, usability, and consistency for imple-
mentation flexibility. For example, Intellisense will guide a user through
the instantiation of a new object using its constructors but won't point

users in the direction of factory methods.

®s KRZYSZTOF CWALINA I often hear criticism that we take tool support
into account when making API design decisions. To answer this, [have to
say that I strongly believe that a modern framework is more than just a
piece of stand-alone reusable code. It is a part of a large ecosystem of run-

times, languages, documentation packages, support networks, and finally,
tools. All parts of the ecosystem must influence each other to provide an
optimal solution. A modern framework designed outside of its ecosystem
loses its competitive potential.

v/ CONSIDER using a factory if you need more control than can be pro-
vided by constructors over the creation of the instances.

For example, consider the Singleton, Builder, or other similar patterns
that constrain the ways in which objects are created. A constructor is
very limited in its ability to enforce rich patterns such as these, whereas
a factory method can easily perform caching, throttling, and sharing of

objects, for example.

"s ANDERS HEJLSBERG The advantage of the factory pattern is that
SomeClass.GetReader can return an object whose runtime type is derived
from SomeReader.

SomeClass ¢ = new SomeClass(...)
SomeReader r = c.GetReader{...);

The choice of an actual runtime type can be based on state in the
SomeClass instance as well as arguments passed to GetReader. Say, for
example, that a SomeClass can represent a local file or a URL. GetReader
could then return instances of either FileReader or UrlReader, both of
which are derived from SomeReader. The folks building the managed
XmlReader and XmlWriter switched from constructors in NET 1.1 to a fac-
tory pattern in .NET 2.0 for exactly this reason. Another advantage of the
factory pattern is that GetReader isn't required to return a fresh instance—
it could cache objects and return previously allocated instances.

9.5 Factories g 335

The advantages of the constructor pattern are simplicity and the extensi-
bility argument given previously. Most users find the constructor pattern
simpler and more discoverable because they are used to objects being created
by constructors. The disadvantage is that you can’t dynamically decide the
runtime type of what you return, nor can you return a previously allocated
instance. If you are confident you will never need these capabilities, then con-
structors are probably the better choice. Simplicity is always a good thing,

In short: Factory patterns give you more degrees of freedom, but con-
structors are simpler for the user.

Now, pick your poison ;=)

v/ DO use a tactory in cases where a developer might not know which
type to construct, such as when coding against a base type or

interface.

A tactory can often use parameters and other context-based informa-

tion to make this decision for the user.

public class Type {
// this factory returns instances of various types including:
[/ PropertyInfo, ConstructorInfo, MethodInfo, etc.
MemberInfo[] GetMember({string name);

v/ CONSIDER using a factory if having a named method is the only way to

make the operation self-explanatory.
Constructors cannot have names, and sometimes using a constructor

lacks sufficient context to inform a developer of an operation’s seman-
tics. For example, consider:

public String(char c, int count);
This operation generates a string of repeated characters. Its semantics
would have been clearer if a static factory was provided instead,
because the method name makes the operation self-explanatory, as in

this example:

public static String Repeat(char c, int count);

336 m Common Design Patterns

"s BRAD ABRAMS This is, in fact, the pattern we use for the same con-

cept in ArraylList.

/ DO use a fﬂCtDl’}-" for CUHVEI’SiDn"St}'}E opera Hons.

For example, consider the standard Parse method available on the
primitive value types.

int i = int.Parse{"35");
DateTime d = DateTime.Parse("18/18/1999");

The semantics of the Parse operation is such that information is con-
verted from one representation of the value into another. In fact, it
doesn’t feel like we are constructing a new instance at all, but rather
rehydrating one from an existing state (the string). The System.Convert
class exposes many such static factory methods that take a value type
in one representation and convert it to an instance of a different value
type, retaining the same logical state in the process. Constructors have
a very rigid contract with callers: A unique instance of a specific type
will be created, initialized, and returned.

v Do prefer implementing factory operations as methods rather than
properties.

v/ DO return created instances as method return values, not as out
parameters.

"s KRZYSZTOF CWALINA Methods implementing the Try-Parse Pattern
(see section 7.5.2) are factory methods that return created instances through

out parameters. This is unfortunate, but using the return value for the
Boolean is the best way to implement the pattern. This is an example show-
ing that sometimes even Do and Do not guidelines need to be broken.

v/ CONSIDER naming factory methods by concatenating Create and the

name of the type being created.

For example, consider naming a factory method that creates buttons
CreateButton. In some cases, a domain-specific name can be used, as in

File.Open.

9.6 LINQ Support m 337

v/ CONSIDER na ming factory types by concatenating the name of the type
being created and Factory. For example, consider naming a factory
type that creates Control objects ControlFactory.

The next section discusses when and how to design abstractions that
might or might not support some features.

9.6 LINQ Support

Writing applications that interact with data sources, such as databases,
XML documents, or Web Services, was made easier in the .NET Frame-
work 3.5 with the addition of a set of features collectively referred to as
LINQ (Language-Integrated Query). The following sections provide a very
brief overview of LINQ and list guidelines for designing APIs related to
LINQ support, including the so-called Query Pattern.

9.6.1 Overview of LINQ

Quite often, programming requires processing over sets of values. Exam-
ples include extracting the list of the most recently added books from a
database of products, finding the e-mail address of a person in a directory
service such as Active Directory, transforming parts of an XML document
to HTML to allow for Web publishing, or something as frequent as looking
up a value in a hashtable. LINQ allows for a uniform language-integrated
programming model for querying datasets, independent of the technology
used to store that data,

®s RICO MARIANI Like everything else, there are good and bad ways to
use these patterns. The Entity Framework and LINQ to SQL offer good
examples of how you can provide rich query semantics and still get very
good performance using strong typing and by offering query compilation.
The Pit of Success notion is very important in LINQ implementations.

I've seen some cases where the code that runs as a result of using a LINQ
pattern is simply terrible in comparison to what you would write the con-
ventional way. That's really not good enough—EF and LINQ to SQL let you
write it nicely, and you get high-quality database interactions. That's what
to aim for.

338 m Common Design Patterns

In terms of concrete language features and libraries, LINQ is embod-
ied as:

+ A specification of the notion of extension methods. These are
described in detail in section 5.6.

* Lambda expressions, a language feature for defining anonymous
delegates.

» New types representing generic delegates to functions and proce-

dures: Func<...> and Action<...>.

* Representation of a delay-compiled delegate, the Expression<...>
family of types.

» A definition of a new interface, System.Linq.IQueryable<T>.

* The Query Pattern, a specification of a set of methods a type must
provide in order to be considered as a LINQ provider. A reference
implementation of the pattern can be found in System. Ling.Enumerable
class. Details of the pattern will be discussed later in this chapter.

* Query Expressions, an extension to language syntax allowing for

queries to be expressed in an alternative, SQL-like format.

//using extension methods:
var names = set.Where(x => x.4ge>28).5elect(x=>x.Nama) ;

Jfusing 5QL-like syntax:
var names = from x in set where x.Age>2@ select x.Name;

®s MIRCEA TROFIN The interplay between these features is the follow-
ing: Any IEnumerable can be queried upon using the LINQ extension
methods, most of which require one or more lambda expressions as param-
eters; this leads to an in-memory generic evaluation of the queries. For cases
where the set of data is not in memory (e.g., in a database) and /or queries

may be optimized, the set of data is presented as an IQueryable. If lambda
expressions are given as parameters, they are transformed by the compiler
to Expression<...> objects. The implementation of IQueryable is respon-
sible for processing said expressions. For example, the implementation of
an IQueryable representing a database table would translate Expression
objects to SQL queries.

9.6 LINQ Support m 33°

9.6.2 Ways of Implementing LINQ Support
There are three ways by which a type can support LINQ queries:

* The type can implement IEnumerable<T> (or an interface derived
from it).

* The type canimplement IQueryable<T>.

* The type can implement the Query Pattern.

The following sections will help you choose the right method of sup-

porting LINQ.

9.6.3 Supporting LINQ through IEnumerable<T>

v DO implement IEnumerable<T> to enable basic LINQ support.

Such basic support should be sufficient for most in-memory data-
sets. The basic LINQ support will use the extension methods on
IEnumerable<T> provided in the .NET Framework. For example,
simply define as follows:

public class RangeOfInt32s : IEnumerable<int> {
public IEnumerator<int> GetEnumerator() {...}
IEnumerator IEnumerable.GetEnumerator() {...}

}

Doing so allows for the following code, despite the fact that

Range0fInt32s did not implement a Where method:

var a = new RangeOfInt3is();
var b = a.Where(x => x>18);

®s RICO MARIANI Keeping in mind that you’'ll get your same enumera-

tion semantics, and putting a LINQ facade on them does not make them
execute any faster or use less memory.

v/ CONSIDER implementing ICollection<T> to improve performance of

query operators.

340

m Common Design Patterns

For example, the System.ling.Enumerable.Count method’s default
implementation simply iterates over the collection. Specific collection
types can optimize their implementation of this method, since they
often offer an 0(1) - complexity mechanism for finding the size of the

collection.

v/ CONSIDER supporting selected methods of System.Ling.Enumerable
or the Query Pattern (see section 9.6.5) directly on new types imple-
menting IEnumerable<T> if it is desirable to override the default
System.Ling.Enumerable implementation (e.g., for performance opti-
mization reasons).

9.6.4 Supporting LINQ through IQueryable<T>

v/ CONSIDER implementing IQueryable<T> when access to the query
expression, passed to members of IQueryable, is necessary.

When querying potentially large datasets generated by remote pro-
cesses or machines, it might be beneficial to execute the query remotely.
An example of such a dataset is a database, a directory service, or Web

service.

X DO NOT implement IQueryable<T> without understanding the perfor-
mance implications of doing so.
Building and interpreting expression trees is expensive, and many que-

ries can actually get slower when IQueryable<T> is implemented.

The trade-off is acceptable in the LINQ to SQL case, since the alterna-
tive overhead of performing queries in memory would have been far
greater than the transformation of the expression to an SQL statement
and the delegation of the query processing to the database server.

!/ DO throw NotSupportedException from IQueryable<T> methods that
cannot be logically supported by your data source.
For example, imagine representing a media stream (e.g., an Internet
radio stream) as an IQueryable<byte>. The Count method is not logi-

cally supported—the stream can be considered as infinite, and so the

Count method should throw NotSupportedException.

9.6 LINQ Support m 341

9.6.5 Supporting LINQ through the Query Pattern
The Query Pattern refers to defining the methods in Figure 9-1 without
implementing the IQueryable<T> (or any other LINQ interface).

Please note that the notation is not meant to be valid code in any par-
ticular language but to simply present the type signature pattern.

The notation uses S to indicate a collection type (e.g., IEnumerable<T>,
ICollection<T>), and T to indicate the type of elements in that collec-
tion. Additionally, we use 0<T> to represent subtypes of S<T> that are
ordered. For example, S<T> is a notation that could be substituted with
IEnumerable<int>, ICollection<Foo>, or even MyCollection (as long as
the type is an enumerable type).

The first parameter of all the methods in the pattern (marked with this)
is the type of the object the method is applied to. The notation uses
extension-method-like syntax, but the methods can be implemented as
extension methods or as member methods; in the latter case the first param-
eter should be omitted, of course, and the this pointer should be used.

Also, anywhere Func<. .. > is being used, pattern implementations may
substitute Expression<Func<...>> for it. You can find guidelines later that

describe when that is preferable.

5<T> Where{this S<T>, Func<T,bool>)

S5<T2> Select(this S<T1l», Func<T1,T2>)
S«<T3>» SelectMany(this 5<T1l», Func<T1l,5<T2>>, Func<T1,T2,T3>)
S«<T2> SelectMany(this S<T1>, Funce<T1,5<T2>>)

0«<T> OrderBy(this 5«<T>, Func<T,K»), where K is IComparable
0<T> ThenBy(this 0<T», Func<T,K»), where K is IComparable

S<T» Union{this S5<T», S<T>)

5<T> Take(this 5<T>, int)

S¢<T>» Skip(this 5<T>, int)

S5<T> SkipWhile(this S<T>, Func<T,bools)

S<T3» Join(this S<T1l»; S<T2>, Func<T1,Kl>, Func<T2,K2>,
Func<T1,T2,T3>)

T ElementAt(this S<T>,int)

FIGURE 9-1: Query Pattern Method Signatures

342 m Common Design Patterns

v Do implement the Query Pattern as instance members on the new type,
if the members make sense on the type even outside of the context of
LINQ. Otherwise, implement them as extension methods.

For example, instead of the following:

public class MyDataSet<T»:IEnumerable<T>{...}

CRC]

public static class MyDataSetExtensions{
public static MyDataSet<T> Where(this MyDataSet<T> data, Func<T,bool»

query}{...}
¥

Prefer the following, because it's completely natural for datasets to
support Where methods:

public class MyDataSet<T»:IEnumerable<Ts{
public MyDataSet«<T» Where(Func<T,bool> query){...}

CRE]

v Do implement IEnumerable<T> on types implementing the Query
Pattern.

v/ CONSIDER designing the LINQ operators to return domain-specific

enumerable types. Essentially, one is free to return anything from a
Select query method; however, the expectation is that the query result
type should be at least enumerable.
This allows the implementation to control which query methods get
executed when they are chained. Otherwise, consider a user-defined
type MyType, which implements IEnumerable<T>. MyType has an opti-
mized Count method defined, but the return type of the Where method
is IEnumerable<T>. In the example here, the optimization is lost after
the Where method is called; the method returns IEnumerable<T>, and so
the built-in Enumerable.Count method is called, instead of the opti-
mized one defined on MyType.

var result = myInstance.wWhere{query).Count();

9.6 LINQ Support m 343

X AVOID implementing just a part of the Query Pattern if fallback to the
basic IEnumerable<T> implementations is undesirable.

For example, consider a user-defined type MyType, which implements
IEnumerable<T>. MyType has an optimized Count method defined but
does not have Where. In the example here, the optimization is lost after
the Where method is called; the method returns IEnumerable<T>, and so
the built-in Enumerable.Count method is called, instead of the opti-
mized one defined on MyType.

var result = myInstance.where(query).Count();

v Do represent ordered sequences as a separate type, from its unordered
counterpart. Such types should define ThenBy method.

This follows the current pattern in the LINQ to Objects implementa-
tion and allows for early (compile-time) detection of errors such as
applying ThenBy to an unordered sequence.

For example, the Framework provides the IOrderedEnumerable<T>
type, which is returned by OrderBy. The ThenBy extension method is
defined for this type, and not for IEnumerable<T>.

v/ DO defer execution of query operator implementations. The expected
behavior of most of the Query Pattern members is that they simply con-
struct a new object which, upon enumeration, produces the elements of

the set that match the query.

The following methods are exceptions to this rule: All, Any, Average,
Contains, Count, ElementAt, Empty, First, FirstOrDefault, Last,
LastOrDefault, Max, Min, Single, Sum.

In the example here, the expectation is that the time necessary for eval-
uating the second line will be independent from the size or nature (e.g.,
in-memory or remote server) of setl. The general expectation is that
this line simply prepares set2, delaying the determination of its com-
position to the time of its enumeration.

var setl = ...

var set2 = setl.Select(x => x.SomeInt32Property);
foreach({int number in set2){...} // this is when actual work happens

344 @m Common Design Patterns

v Do place query extensions methods in a “Ling” subnamespace of the
main namespace. For example, extension methods for System.Data fea-
tures reside in System.Data.Ling namespace.

v DO use Expression<Func<...>> as a parameter instead of Func<...>
when it is necessary to inspect the query. See section 9.6.5 for more
details.

As discussed earlier, interacting with an SQL database is already done
through IQueryable<T> (and therefore expressions) rather than
IEnumerable<T>, since this gives an opportunity to translate lambda

expressions to SOL expressions.
F F

An alternative reason for using expressions is performing optimiza-
tions. For example, a sorted list can implement look-up (Where clauses)
with binary search, which can be much more efficient than the standard
IEnumerable<T> or IQueryable<T> implementations.

9.7 Optional Feature Pattern

When designing an abstraction, you might want to allow cases in which
some implementations of the abstraction support a feature or a behav-
ior, whereas other implementations do not. For example, stream imple-
mentations can support reading, writing, seeking, or any combination
thereof.

One way to model these requirements is to provide a base class with
APIs for all nonoptional features and a set of interfaces for the optional
features. The interfaces are implemented only if the feature is actually sup-
ported by a concrete implementation. The following example shows one

of many ways to model the stream abstraction using such an approach.

// framework APIs
public abstract class Stream {
public abstract void Close();
public abstract int Position { get; }
}
public interface IInputStream {
byte[] Read(int numberOfBytes);

9.7 Optional Feature Pattern m 345

public interface IOutputStream {
void Write(byte[] bytes);
¥

public interface ISeekableStream {
void Seek{int position);

}

public interface IFiniteStream {
int Length { get; }
bool EndOfStream { get; }

}

J/ concrete stream
public class FileStream : Stream, IOutputStream, IInputStream,
Iseekablestream, IFiniteStream {

}

// usage
void OverwriteAt(IOutputStream stream, int position, byte[] bytes){
// do dynamic cast to see if the stream is seekable
IseekableStream seekable = stream as ISeekableStream;
if(seekable==null}{
throw new NotSupportedException(...);

1
seekable.Seek({position);
stream.Write(bytes);

You will notice the NET Framework's System.I0 namespace does not
follow this model, and with good reason. Such factored design requires
adding many types to the framework, which increases general complexity.
Also, using optional features exposed through interfaces often requires

dynamic casts, and that in turn results in usability problems.

®s KRZYSZTOF CWALINA Sometimes framework designers provide inter-
faces for common combinations of optional interfaces. For example, the
OverwriteAt method would not have to use the dynamic cast if the frame-

work design provided ISeekableOutputStream. The problem with this
approach is that it results in an explosion of the number of different inter-
faces for all combinations.

Sometimes the benefits of factored design are worth the drawbacks, but

often they are not. It is easy to overestimate the benefits and underestimate

346

m Common Design Patterns

the drawbacks. For example, the factorization did not help the developer
who wrote the OverwriteAt method avoid runtime exceptions (the main
reason for factorization). It is our experience that many designs incorrectly
err on the side of too much factorization.

The Optional Feature Pattern provides an alternative to excessive fac-
torization. It has drawbacks of its own but should be considered as an
alternative to the factored design described previously. The pattern pro-
vides a mechanism for discovering whether the particular instance sup-
ports a feature through a query API and uses the features by accessing
optionally supported members directly through the base abstraction.

{f framework APIs
public abstract class Stream {
public abstract void Close();
public abstract int Position { get; }

public virtual bool CanWrite { get { return false; } }
public virtual veid Write(byte[] bytes){
throw new MotSupportedException(...);

public virtual bool CanSeek { get { return false; } }
public virtual void Seek(int position}{
throw new NotSupportedException(...);

}

.+« [/ other options

¥

// concrete stream
public class FileStream : Stream {
public override bool CanSeek { get { return true; } }

public override void Seek(int position) { ... }

¥

/f usage

void OverwriteAt (Stream stream, int position, byte[] bytes){
if({!stream.CanSeek || !stream.Cankrite){

throw new NotSupportedException(...);

¥

stream.Seek({position);
stream.Write(bytes);

9.7 Optional Feature Pattern m 347

In fact, the System.I0.Stream class uses this design approach. Some
abstractions might choose to use a combination of factoring and the
Optional Feature Pattern. For example, the Framework collection inter-
faces are factored into indexable and nonindexable collections (IList<T>
and ICollection<T>), but they use the Optional Feature Pattern to differ-
entiate between read-only and read-write collections (ICollection<T>.
IsReadOnly property).

/ CONSIDER using the Optional Feature Pattern for optional features in

abstractions.

The pattern minimizes the complexity of the framework and improves
usability by making dynamic casts unnecessary.

"« STEVE STARCK If your expectation is that only a very small percent-
age of classes deriving from the base class or interface would actually imple-
ment the optional feature or behavior, using interface-based design might
be better. There is no real need to add additional members to all derived

classes when only one of them provides the feature or behavior. Also, fac-
tored design is preferred in cases when the number of combinations of the
optional features is small and the compile-time safety afforded by factoriza-
tion is important.

v Do provide a simple Boolean property that clients can use to determine

whether an optional feature is supported.

public abstract class Stream {
public virtual bool CanSeek { get { return false; } }
public virtual void Seek(int position){ ... }

Code that consumes the abstract base class can query this property at
runtime to determine whether it can use the optional feature.

if(stream.Canseek){
stream.Seek(position);

}

348

m Common Design Patterns

v/ DO use virtual methods on the base class that throw NotSupported-
Exception to define optional features.

public abstract class Stream {
public virtual bool CanSeek { get { return false; } }
public virtual void Seek{int position){
throw new NotSupportedException(...);

}

The method can be overridden by subclasses to provide support for the
optional feature. The exception should clearly communicate to the user
that the feature is optional and which property the user should query
to determine if the feature is supported.

9.8 Simulating Covariance

Different constructed types don’t have a common root type. For example,
there would not be a common representation of IEnumerable<string> and
IEnumerable<object> if not for a pattern implemented by IEnumerable<T>
called Simulated Covariance. This section describes the details of the
pattern.

Generics is a very powerful type system feature added to the NET
Framework 2.0. It allows creation of so-called parameterized types. For
example, List<T> is such a type and it represents a list of objects of type T.

The T is specified at the time when the instance of the list is created.

var names = new List<string>();
names . Add("John Smith");
names.add({"Mary Johnson");

Such generic data structures have many benefits over their nonge-
neric counterparts. But they also have some—sometimes surprising—
limitations. For example, some users expect that a List<string> can be
cast to List<object>, just as a String can be cast to Object. But unfortu-

nately, the following code won't even compile.

9.8 Simulating Covariance m 349

List<string> names = new List<strings();
List<object» objects = names; // this won't compile

There is a very good reason tor this limitation, and that is to allow for
full strong typing. For example, if you could cast List<string> to a
List<object> the following incorrect code would compile, but the pro-

gram would fail at runtime.

static void Main(){
var names = new List<strings»();

// this of course does not compile, but if it did

// the whole program would compile, but would be incorrect as it
/f attempts to add arbitrary objects to a list of strings.
AddObjects({{List<object>)names);

string name = names[@]; // how could this work?

J/ this would (and does) compile just fine.

static void AddObjects(List<object> list){
list.Add(new object(}}; // it's a list of strings, really. Should we throw?
list.Add(new Button());

Unfortunately, this limitation can also be undesired in some scenarios.
For example, let’s consider the following type:

public class CountedReference<T> {
public CountedReference(T value);
public T Value { get; }
public int Count { get; }
public veoid AddrReference();
public void ReleaseReference();

There is nothing wrong with casting a CountedReference<string> to
CountedReference<object>, as in the following example.

var reference = new CountedReference<strings>(...);
CountedReference<object> obj = reference; // this won't compile

350 m Common Design Patterns

In general, having a way to represent any instance of this generic type

is very useful.

/f what type should 7?? be?

[/ CountedReference<object> would be nice but it won't work

static void PrintValue(??? anyCountedReference){
Console.Writeline(anyCountedReference.Value);

¥

®s KRZYSZTOF CWALINA Of course, PrintValue could be a generic
method taking CountedReference<T> as the parameter.

static void PrintValue<T:{CountedReference<T> any){
Console.WriteLine(any.Value);

}

This would be a fine solution in many cases. But it does not work as a
general solution and might have negative performance implications. For
example, the trick does not work for properties. If a property needed to be
typed as “any reference,” you could not use CountedReference<T> as the
type of the property. In addition, generic methods might have undesirable
performance implications. If such generic methods are called with many
differently sized type arguments, the runtime will generate a new method
for every argument size. This might introduce unacceptable memory con-
sumption overhead.

Unfortunately, unless CountedReference<T> implemented the Simu-
lated Covariance Pattern described next, the only common representation
of all CountedReference<T> instances would be System.Object. But
System.Object is too limiting and would not allow the Printvalue
method to access the Value property.

The reason that casting to CountedReference<object> is just fine, but
casting to List<object> can cause all sorts of problems, is that in case of
CountedReference<object>, the object appears only in the output position
(the return type of Value property). In the case of List<object>, the object
represents both output and input types. For example, object is the type of
the input to the Add method.

9.8 Simulating Covariance m 351

f/ T does not appear as input to any members except the constructor
public class CountedReference<T> {

public CountedReference(T value);

public T value { get; }

public int Count { get; }

public void AddReference();

public void ReleaseReference();

}

J/ T does appear as input to members of List<T>
public class List<T> {
public void Add(T item); // T is an input here
public T this[int index]{
get;
set; // T is actually an input here

In other words, we say that in CountedReference<T>, the T is at covari-
ant positions (outputs). In List<T>, the T is at covariant and contravariant
(inputs) positions.

To solve the problem of not having a common type representing the
root of all constructions of a generic type, you can implement what's called
the Simulated Covariance Pattern.

Consider a generic type (class or interface) and its dependencies
described in the code fragment that follows.

public class Foo<T> {
public T Propertyl { get; }
public T Property2 { set; }
public T Property3 { get; set; }
public void Methodl(T argl);
public T Method2();
public T Methed3(T arg);
public Typel<T» GetMethodl();
public Type2<T> GetMethod2();
}
public class Typel<T:> {
public T Property { get; }
}
public class Type2«<T» {
public T Property { get; set; }
}

352 m Common Design Patterns

Create a new interface (root type) with all members containing a T at
contravariant positions removed. In addition, feel free to remove all mem-
bers that might not make sense in the context of the trimmed-down type.

public interface IFooc<out T3 {
T Propertyl { get; }
T Property3 { get; } // setter removed
T Method2();
Typel<T> GetMethodl()};
IType2<T> GetMethod2(); // note that the return type changed
'
public interface IType2<T> {
T Property { get; } // setter removed
}

The generic type should then implement the interface explicitly and
“add back” the strongly typed members (using T instead of object) to its
public API surface.

public class Foo<T> : IFoo<cbhject> {
public T Propertyl { get; }
public T Property2 { set; }
public T Property3 { get; set;}
public void Methodl(T argl};
public T Method2();
public T Method3(T arg);
public Typel<T> GetMethodl();
public Type2<T» GetMethod2();

object IFoo<object:.Propertyl { get; }
object IFoo<objects.Property? { get; }
object IFoo<objects.Method2() { return null; }
Typel<object> IFoo<object>.GetMethodl();
ITypeZ<object> IFoo<object>.GetMethod2(});

¥

public class Type2<T» : IType2<object> {
public T Property { get; set; }
cbject ITypeZ<object>.Property { get; }

Now, all constructed instantiations of Foo<T> have a common root type

IFoo<object>.

var foos = new List<IFoo<object>»();
foos. Add(new Foo<int>());
foos. Add(new Foo<string>());

9.8 Simulating Covariance m 353

foreach(IFoo<object> foo in foos}{
Conscle.Writeline(foo.Propertyl);
Console.WriteLine(foo.GetMethod2().Property);

In the case of the simple CountedReference<T>, the code would look
like the following:

public interface ICountedReference<out T: {
T value { get; }
int Count { get; }
void AddReference();
void ReleaseReference();

}

public class CountedReferance<T> : ICountedReference<objects {
public CountedReference(T value) {...}
public T Value { get { ... } }
public int Count { get { ... } }
public veoid AddReference{){...}
public void ReleaseReference(){...}

object ICountedReference<objects>.value { get { return value; } }

}

v/ CONSIDER using the Simulated Covariance Pattern if there is a need to
have a representation for all instantiations of a generic type.

The pattern should not be used frivolously, because it results in additional
types in the framework and can makes the existing types more complex.

v/ DO ensure that the implementation of the root’s members is equivalent
to the implementation of the corresponding generic type members.

There should not be an observable difference between calling a mem-
ber on the root type and calling the corresponding member on the
generic type. In many cases, the members of the root are implemented
by calling members on the generic type.

public class Foo<T> : IFoo<object: {

public T Property3 { get { ... }set { ... } }
cbject IFoo<object>.Property3 { get { return Property3; } }

354

m Common Design Patterns

v/ CONSIDER using an abstract class instead of an interface to represent
the root.
This might sometimes be a better option, because interfaces are more
difficult to evolve (see section 4.3). On the other hand, there are some
problems with using abstract classes for the root. Abstract class mem-
bers cannot be implemented explicitly and the subtypes need to use the
new modifier. This makes it tricky to implement the root’s members by
delegating to the generic type members.

|/ CONSIDER using a nongeneric root type if such type is already

available.

For example, List<T> implements IEnumerable for the purpose of sim-
ulating covariance.

9.9 Template Method

The Template Method Pattern is a very well-known pattern described in
much greater detail in many sources, such as the classic book Design Pat-
terns by Gamma et al. Its intent is to outline an algorithm in an operation.
The Template Method Pattern allows subclasses to retain the algorithm’s
structure while permitting redefinition of certain steps of the algorithm.
We are including a simple description of this pattern here, because it is one
of the most commonly used patterns in API frameworks.

The most common variation of the pattern consists of one or more non-
virtual (usually public) members that are implemented by calling one or

more protected virtual members.

public Control{
public veid SetBounds{int %, int y, int width, int height){

SetBoundsCore (...);

}

public void SetBounds(int x, int y, int width, int
height, BoundsSpecified specified){

SetBoundsCore (...);

9.9 Template Method m 355

protected virtual void SetBoundsCore(int x, int y, int width, int
height, BoundsSpecified specified){
// Do the real work here.

}
}

The goal of the pattern is to control extensibility. In the preceding exam-
ple, the extensibility is centralized to a single method (a common mistake
is to make more than one overload virtual). This helps to ensure that the
semantics of the overloads stay consistent, because the overloads cannot
be overridden independently.

Also, public virtual members basically give up all control over what
happens when the member is called. This pattern is a way for the base
class designer to enforce some structure of the calls that happen in the
member. The nonvirtual public methods can ensure that certain code exe-
cutes before or after the calls to virtual members and that the virtual mem-
bers execute in a fixed order.

As a framework convention, the protected virtual methods participat-
ing in the Template Method Pattern should use the suffix “Core.”

X AVOID making public members virtual.

If a design requires virtual members, follow the template pattern and
create a protected virtual member that the public member calls. This

practice provides more controlled extensibility.

v/ CONSIDER using the Template Method Pattern to provide more con-
trolled extensibility.
In this pattern, all extensibility points are provided through protected
virtual members that are called from nonvirtual members.

v/ CONSIDER naming protected virtual members that provide extensibil-
ity points for nonvirtual members by suffixing the nonvirtual member
name with “Core.”

public void SetBounds(...){

setBoundsCore (...);

}

protected virtual void SetBoundsCore(...)}{ ... }

356 m Common Design Patterns

®s BRIAN PEPIN 1 like to take the template pattern one step further and

implement all argument checking in the nonvirtual public method. This

way I can stop garbage entering methods that were possibly overridden by
another developer, and it helps to enforce a little more of the API contract
across implementations.

The next section goes into designing APIs that need to support
timeouts.

9.10 Timeouts

Timeouts occur when an operation returns before its completion because
the maximum time allocated for the operation (timeout time) has elapsed.
The user often specifies the timeout time. For example, it might take a form
of a parameter to a method call.

server.PerformOperation({timeout) ;
An alternative approach is to use a property.

server. Timeout = timeout;
server, PerformOperation(};

The following short list of guidelines describes best practices for the

design of APIs that need to support timeouts.

v Do prefer method parameters as the mechanism for users to provide
hmeout time.

Method parameters are favored over properties because they make the
association between the operation and the timeout much more appar-
ent. The property-based approach might be better if the type is designed
to be a component used with visual designers.

v Do prefer using TimeSpan to represent timeout time.

g.10 Timeouts m 357

Historically, timeouts have been represented by integers. Integer time-
outs can be hard to use for the following reasons:
* Itis not obvious what the unit of the timeout is.

 Itis difficult to translate units of time into the commonly used
millisecond. (How many milliseconds are in 15 minutes?)

Often, a better approach is to use TimeSpan as the timeout type. TimeSpan

solves the preceding problems.

class Server {
void PerformOperation({TimeSpan timeout){

b
}

var server = new Server();
server.Performbperationi{new TimeSpan(&,15,8));

Integer timeouts are acceptable it:

* The parameter or property name can describe the unit of time used by
the operation, for example, if a parameter can be called milliseconds
without making an otherwise self-describing API cryptic.

* The most commonly used value is small enough that users won't
have to use calculators to determine the value, for example, if the
unit is milliseconds and the commonly used timeout is less than

1 second.

/ DO throw System.TimeoutException when a timeout elapses.

Timeout equal to TimeSpan(@) means that the operation should throw
if it cannot complete immediately. If the timeout equals TimeSpan.
MaxValue, the operation should wait forever without timing out. Oper-
ations are not required to support either of these values, but they should
throw an InvalidArgumentException if an unsupported timeout value
is specified.

If a timeout expires and the System.TimeoutException is thrown, the

server class should cancel the underlying operation.

358 @m Common Design Patterns

In the case of an asynchronous operation with a timeout, the callback
should be called and an exception thrown when the results of the oper-
ation are first accessed.

void OnReceiveCompleted(Object source, ReceiveCompletedEventargs
asyncResult){
MessageQueue queue = (MessageQueue)source;
[/ the following line will throw it BeginReceive has timed out
Message message = queue, EndReceive(asyncResult.AsyncResult};
Console.WriteLine("Message: " + (string)message.Body);
gueue.BeginReceive{new TimeSpan{l1,8,8));

For more information on timeouts and asynchronous operation, see

section 9.2.

X DO NOT return error codes to indicate timeout expiration.

Expiration of a timeout means the operation could not complete suc-
cessfully and thus should be treated and handled as any other runtime

error (see Chapter 7).

9.11 XAML Readable Types

XAML is an XML format used by WPF (and other technologies) to repre-
sent object graphs. The following guidelines describe design consider-
ations for ensuring that your types can be created using XAML readers.

v/ CONSIDER providing the default constructor if you want a type to work
with XAML.

For example, consider the following XAML markup:
<Person Name="John" Age="22" />
It is equivalent to the following C# code:

new Person() { Mame = "John", Age = 22 };

Consequently, for this code to work, the Person class needs to have a
default constructor. Markup extensions, discussed in the next guideline

in this section, are an alternative way of enabling XAML.

9.11 XAML Readable Types m 359

®s CHRIS SELLS In my opinion, this one should really be a DO, not a
CONSIDER. If you're designing a new type to support XAML, it's far pref-

erable to do it with a default constructor than with markup extensions or
t}'PE converters.

!/ DO provide markup extension if you want an immutable type to work

with XAML readers.

Consider the following immutable type:

public class Person {
public Person(string name, int age){
this.name = nama;
this.age = age;

}
public string Mame { get { return name; } }
public int Age { get { return age; } }

string name;
int age;

}
Properties of such type cannot be set using XAML markup, because the

reader does not know how to initialize the properties using the param-
eterized constructor. Markup extensions address the problem.

[MarkupExtensionReturnType(typeof{Person))]
public class PersonExtension : MarkupExtension {
public string Mame { get; set; }
public int Age { get; set; }

public override object ProvideValue(IServiceProvider serwviceProvider){
return new Person(this.Name,this.Age);

}

Keep in mind that immutable types cannot be written using XAML

writers.

X AvOID defining new type converters unless the conversion is natural
and intuitive. In general, limit type converter usage to the ones already
provided by the NET Framework.

360 m Common Design Patterns

Type converters are used to convert a value from a string to the appro-
priate type. They're used by XAML infrastructure and in other places,
such as graphical designers. For example, the string “#FFFF0000” in the
following markup gets converted to an instance of a red Brush thanks

to the type converter associated with the Rectangle.Fill property.

<Rectangle Fill="#FFFFoaoe"/»

But type converters can be defined too liberally. For example, the Brush
type converter should not support specifying gradient brushes, as
shown in the following hypothetical example.

<Rectangle Fill="HorizontalGradient White Red”™ /3

Such converters define new “minilanguages,” which add complexity to
the system.

v/ CONSIDER applying the ContentPropertyAttribute to enable conve-
nient XAML syntax for the most commonly used property.

[ContentProperty("Image")]
public class Button {
public object Image { get; set; }

¥

The following XAML syntax would work without the attribute:

<Button:>
<Button.Image>
<Image Source="foo.jpg"
</Button.Image:
</Button:

The attribute makes the following much more readable syntax possible.

<Button:>
<Image Source="foo.jpg"
< /Button:

9.12 And in the End... m 361

9.12 And in the End...

The process of creating a great framework is demanding. It requires dedi-
cation, knowledge, practice, and a lot of hard work. But in the end, it can
be one of the most fulfilling jobs software engineers ever get to do. Large
system frameworks can enable millions to build software that was not pos-
sible before. Application extensibility frameworks can turn simple appli-
cations into powerful platforms and make them shine. Finally, reusable
component frameworks can inspire and enable developers to take their
applications beyond the ordinary. When you create a framework like that,
please let us know. We would like to congratulate you.

www.EBooksWorld.ir

s As

C# Coding Style Conventions

U NLIKE THE FrRaAMEWORK Design Guidelines, these coding style
conventions are not required and should be treated as a set of sug-
gestions. The reason we don’t insist on following these coding conven-
tions is that they have no direct effect on the end user of the framework.

There are many coding style conventions, each with its own history and

philosophy. The conventions described here have the following goals:

* The conventions must be something real developers use. To accom-
plish this goal, we reviewed sources written by the .NET Framework
developers and rejected any conventions that were proposed but are
not used widely in code contributing to the Framework.

« The conventions are optimized for brevity, within reason. We feel it's
generally useful to fit more lines of code in a small space, to mini-
mize lines running past the end of the screen or wrapping, and to
maximize the density of code (no empty lines), as long as the code

readability is not compromised.

* The conventions are simple. We don’t think coding conventions
need to spell out every single detail of every single formatting
option. Such complicated conventions are difficult to follow and
don’t add much value on top of a small set of core conventions.

m 363

364

m C# Coding Style Conventions

A.1 General Style Conventions

A.1.1 Brace Usage

/ DO place the opening brace at the end of the preceding statement.

if{someExpression){
Dosomething();

¥

v Do align the closing brace with the beginning of the line containing the
corresponding opening brace unless closing a single-statement-block.

if{someExpression){
Dosomething();

}

/ DO place the closing brace at the beginning of a new line.

if{someExpression){
DoSomething();

iy

v/ CONSIDER single-statement-blocks that have braces that begin and end
on the same line. Property accessors often use this style.

public int Foo{
get{ return foo; }
set{ foo = value; }

/ CONSIDER single accessor properties having all brackets on the

same line.

public int Foo{ get{ return foo; } }

v’ DO place the closing brace on its own line unless followed by an else,

else if, or while statement.

A.1 General Style Conventions g

if(someExpression){
do{
DoSomething();
} while(someCtherCondition);

X AVOID omitting braces, even if the language allows it.

Braces should not be considered optional. Even for single-statement-
blocks, you should use braces. This increases code readability and

maintainability.

for{int i=0; i<188; i++){ DoSomething(i); }

There are very limited cases when omitting braces might be acceptable,
such as when adding a new statement after an existing single-line state-
ment is either impossible or extremely rare. For example, it is meaning-

less to add a statement after a throw statement:

if(someExpression) throw new ArgumentOutOfRangeException(...);

Another exception to the rule is braces in case statements. These braces
can be omitted, because the case and break statements indicate the
beginning and the start of the block.

case &:
DoSomething();
break;

A.1.2 Space Usage

v/ DO use one space after the opening and before the closing braces,

public int Foo{ get{ return foo; } }

X AvoID using spaces before the opening braces.

Preferred: if(someExpression){
Acceptable: if(someExpression) {

365

366 @ C# Coding Style Conventions

v/ DO usea single space after a comma between parameters.

Right: public void Foo{char bar, int x, int y)
Wrong: public void Foo(char bar,int x,int y)

X AVOID using space between arguments.

Freferred: Foo{myChar,e,1)
Acceptable: Foo{myChar, @, 1)

X AVOID using spaces after the opening or before the closing
parentheses.

Preferred: Foo(myChar,8,1)
dcceptable: Foo(myChar,8,1)

X DO NOT use spaces between a member name and opening parenthesis.

Right: Foo()
Wrong: Foo ()

X DO NOT use spaces after or before the brackets.

Right: x = datadrray[index];
Wrong: x = dataArray[index];

X DO NOT use spaces before flow control statements.

Right: while({x==y)
Wrong: while (x==y)

X AVOID using spaces before and after binary operators.

Preferred: if(x==y)}{ ... }
Acceptable; if(x ==y){ ... }

X DO NOT use spaces before or after unary operators.

Right: if{ly}{ ... }
Wrong: if(! ¥)3{ ... }

A.2 Naming Conventions g 367

A.1.3 Indent Usage

v/ DO use 4 consecutive space characters for indents.
X DO NOT use the tab character for indents.

v/ DO indent contents of code blocks.

if(someExpression){
Dosomething();

v/ DO indent case blocks even if not using braces.

switch(someExpression){
case 8:
DoSomething();
break;

A.1.4 Other

v/ CONSIDER using the var keyword whenever the resulting type of the
variable is obvious. Avoid using it if it decreases readability.
var names = newW List<string:>(); // good usage of var

string source = GetSource();
var tokens = source.Split("' "); // ok; most developers know String.Split

var id = GetId(); // probably not good; it's not clear what the type of id is

A.2 Naming Conventions

In general, we recommend following the Framework Design Guidelines
for naming identitiers. However, there are some additional conventions
and exceptions to using the Framework Design Guidelines for naming

internal and private identifiers.

368

m C# Coding Style Conventions

v/ DO follow the Framework Design Guidelines for naming identifiers,
except for naming private and internal fields.

/ DO use PascalCasing for namespace, type, and member names, except
for internal and private fields.

v/ DO use camelCasing for private and internal fields.
v/ DO use camelCasing for local variables.
v/ DO use camelCasing for parameters.

X DO NOT use Hu ngarian notation (i.e., do not encode the type of a vari-
able in its name).

X AVOID prefixing local variables.

v/ DO use C# aliases instead of Framework type names.

For example, use int instead of Int32 and object instead of Object.

A.3 Comments

Comments should be used to describe the intent, algorithmic overview,
and logical flow. It would be ideal, if from reading the comments alone,
someone other than the author could understand the function’s behavior
and purpose. Although there are no minimum comment requirements and
certainly some very small routines need no commenting at all, it is desir-
able for most routines to have comments reflecting the programmer’s
intent and approach.

X DO NOT use comments unless they describe something not obvious to
someone other than the developer who wrote the code.

x AYOID multiline syntax (/* ... */) for comments. The single-line syn-
tax (// ...)is preferred even when a comment spans multiple lines.

J/ Implements a variable-size list that uses an array of objects
// to store the elements. A List has a capacity, which is the

[/ allocated length of the internal array. As elements are added
// to a List, the capacity of the List is automatically increased
[/ as required by reallocating the internal array.

/f

A.4 File Organization m 369

public class List<T> : IList<T», IList {

}

x DO NOT place comments at the end of a line unless the comment is very

short.

i/ favoid
public class ArraylList {
private int count; f/ -1 indicates uninitialized array

}

A.4 File Organization

X DO NOT have more than one public type in a source file, unless they dif-
fer only in the number of generic parameters or one is nested in the
other.

Multiple internal types in one file are allowed.

v/ DO name the source file with the name of the public type it contains.
For example, String class should be in String.cs file and List<T> class
should be in List.cs file.

v DO organize the directory hierarchy just like the namespace hierarchy.
For example, the source file for System.Collections.Generic.List<T>
should be in the System\Collections \ Generic directory.

v/ CONSIDER grouping members into the following sections in the speci-
fied order:

» All fields

= All constructors

* Public and protected properties

* Methods

* Events

« All explicit interface implementations

» Internal members

370 m C# Coding Style Conventions
* Private members
» All nested types

v/ DO use #region blocks around not publicly callable and explicit inter-
face implementation groups.

#region internal members

#endregion
#region private members

#endregion

®s VANCE MORRISON 1 find this guideline to be surprisingly useful. 1

now get highly annoyed if [can’t collapse the class and quickly see just the
public surface of the class.

v/ CONSIDER organizing members of each group in alphabetical order.
v/ CONSIDER organizing overloads from the simplest to the most complex.
v’ Do place the using directives outside the namespace declaration.

using System;

namespace System.Collections{

}

m Bs

Using FxCop to Enforce the
Framework Design Guidelines

Sheridan Harrison and David Kean

FxCDP 15 A tool that analyzes managed assemblies and reports issues
when an assembly does not conform to one or more Framework Design
Guidelines. After presenting a brief introduction to FxCop and how it has
evolved over time, this appendix discusses FxCop rules that enforce each

set of guidelines.

®s MIKE FANNING Over the past several years, FxCop has also expanded

into a geneml correctness checker for managai code implemenl:ations.

Although its original (and still primary) purpose is programmatic enforce-
ment of the Framework Design Guidelines, we will continue to extend its
general analysis capabilities in the future.

B.1 What Is FxCop?

FxCop analyzes compiled managed code and evaluates its adherence to
various Framework Design Guidelines and best practices. FxCop also
alerts you to unexpected consequences of certain design decisions. The
rules that FxCop uses to evaluate managed code have evolved over time

m 371

372

m Using FxCop to Enforce the Framework Design Guidelines

and capture the knowledge and expertise of top NET Framework devel-
opers. In addition to being a crucial part of the development lifecycle,
FxCop is also an excellent way for those who are new to the Framework
Design Guidelines to learn the core guidelines simply by writing code and
using FxCop to identify issues with names, design, and performance,
among others. While using FxCop is not a substitute for reading and
understanding all of the guidelines that are applicable to your develop-
ment project, FxCop provides a big productivity boost by teaching you
what is expected in well-designed frameworks.

While most people who know of and use FxCop think of it as an item in
the developer’s toolkit, FxCop is useful in any discipline that includes cod-
ing. For example, technical writers can use FxCop to ensure that the code
examples in their documentation adhere to the Framework Design Guide-
lines. Software testers can use FxCop to check libraries and applications

for security vulnerabilities and performance issues.

B.2 The Evolution of FxCop

FxCop started out at Microsoft as an internal tool. It was developed when
the creators of the Framework Design Guidelines recognized that by pro-
grammatically analyzing the .NET Framework assemblies, many design
errors could be detected and reported to the library designers. Because of
its origins, the charter and vision for FxCop have always been closely
aligned with the Framework Design Guidelines presented in this book. In
addition to enforcing the Framework Design Guidelines, the tool grew to
include other tenets of robust design, such as security and performance
do’s and don’ts. Teams at Microsoft began integrating it into their devel-
opment projects when they recognized that by using FxCop they could
identify and fix many problems early in the development cycle. Today, the
FxCop team develops and supports the tool for both internal and external
software developers. Now recognized as a mission-critical software devel-
opment tool, FxCop has been integrated into the Visual Studio family of
products under the name Visual Studio Code Analysis.

B.3 How Does It Work? @ 373

®s MIKE FANNING The original version of FxCop was called UrtCop and
was developed by Brad and Krzysztof, among others. It was handed over to
the NET Framework 1.0 SDK development team when demands for new
features outstripped the informal development process that had brought it
into existence. FxCop’s value and adoption across Microsoft increased so
quickly that eventually the application became the sole purpose of the entire
development team. FxCop was renamed from UrtCop (that is, Universal
Runtime Cop) to reflect a larger purpose to ensure consistency across the
framework libraries. Due to the newness of managed code and the Frame-
work Design Guidelines themselves, it's interesting to note that the devel-
opment team itself broke a core guideline by not renaming the program
FXCop. Fortunately, by the time this was noticed, “FxCop” had become
such a recognized brand that it warranted an exception according to the
Framework Design Guidelines. While we're airing dirty laundry, FxCop
itself did not ship entirely FxCop-clean until version 1.32 (after nearly three
years of development and 27 updates).

B.3 How Does It Work?

FxCop provides a graphical user interface (FxCop.exe) for interactive
sessions on the developer’s desktop and a command-line interface
(ExCopemd.exe) for automated code analysis. You must specify the man-
aged assemblies to be analyzed and select the set of rules that are run for
your assemblies. When code in the assemblies violates a rule, FxCop gen-
erates an issue message. This message includes the location of the issue, a
level, certainty, and resolution. Depending on the issue, the location will
be an assembly, namespace, type, or member. The level indicates the
importance of the issue. The issue levels (in order from most important to
least important) are: Critical Error, Error, Critical Warning, Warning, and
Informational. The certainty measure estimates the probability of an issue
being detected correctly. A high value means that the rule is most likely
detecting a problem. A low certainty value indicates that there is a signifi-
cant probability that the rule is generating a false positive. The resolution

provides detailed information on what FxCop detected and how to fix it.

374

m Using FxCop to Enforce the Framework Design Guidelines

The following sections highlight some of the FxCop rules that help to
enforce the Framework Design Guidelines. Refer to the FxCop documen-
tation for a detailed description of the complete set of rules shipping
with FxCop.

"s MIKE FANNING The freeware version of FxCop is currently available

for download at http://msdn.microsoft.com/.

B.4 FxCop Guideline Coverage

B.4.1 FxCop Rules for the Naming Guidelines
FxCop enforces naming guidelines using rules in the naming rules cate-
gory. There are naming rules to ensure that casing, spelling, prefixes, and
suffixes are correct and consistent with the Framework Design Guidelines
for identifiers. There are also FxCop naming rules that check whether enu-
merations, types, members, and parameters are well named.

FxCop uses a dictionary to check the spelling of words used in names.
The FxCop documentation gives instructions for adding words and acro-
nyms to the FxCop dictionary.

®s DAVID KEAN While most of FxCop’s naming and design roles fire only
against externally visible tvpe and members (both public and protected),
there is a little-known option to change this in both FxCop and Visual Stu-

dio 2008. Turn this on, and FxCop will start looking at the naming and
design of private and internal APIs.

B.4.1.1 FxCop Rules for Capitalization Conventions

Identifiers should be cased correctly
This rule reports an error if identifiers and tokens within identifiers are not
cased correctly:

This rule ensures that identifiers respect the following guidelines:

B.y FxCop Guideline Coverage m 375

Assembly, namespace, type, and member names are Pascal-cased.

Parameter names are camel-cased.

» Acronyms that are less than three characters are all uppercase.

Acronyms that are three or more characters are Pascal-cased.

FxCop assumes that part of an identifier is an acronym when it
encounters two or more characters in uppercase. Note that when you
change a three-letter acronym to PascalCasing, the Identifiers should be
spelled correctly rule will report an error if the acronym is not found in the
dictionary.

This rule and the Framework Design Guidelines consider “ID” to be an
abbreviation for “identity” or “identifier”—not an acronym. In Pascal-
cased identifiers, instances of “ID” should be changed to “Id.”

Be aware that there are limitations on what this rule can accurately
detect. For example, if a method name contains two short acronyms adja-
cent to each other, FxCop will treat them as one long acronym that is incor-
rectly cased. Consider a property named DBIORate, which reports a
database’s input/output rate. FxCop assumes DBIO is a long acronym and

will suggest that it be changed to Dbio.

"= MIKE FANNING “ID” versus “Id” has by far caused the greatest amount
of developer annoyance and churn in source code at Microsoft. For at least
two years, no one noticed inconsistent usage of these terms, since ID was

permitted as a two-letter acronym while Id was recognized by the spell-
checker. It is a tribute to the pervasive commitment to the Framework Design
Guidelines at Microsoft that as many teams have spent as many hours resolv-
ing this sole issue in order to bring their projects into conformance.

B.4.1.1.1 FxCop Rules for Capitalizing Compound Words and Common Terms

Compound words should be cased correctly

This rule reports an error when an identifier contains a word that should
be treated as a compound word and not as two separate words. For exam-
ple, “endpoint” is a compound word and should not appear as “EndPoint”

376

m Using FxCop to Enforce the Framework Design Guidelines

or “endPoint” when used as an identifier. The rule also detects when a pair

of words is incorrectly cased as a compound word.

®s MIKE FANNING The original lexicon used by the FxCop spell-checker
was first deployed in the Microsoft Office Suite and contained (incorrectly)
several computer-related terms that were strangely cased, such as Fileserver,
Dropdown, and Textbox. This was noticed on deploying FxCop against the
Windows Forms namespaces, which define classes (correctly) named Drop-
Down and TextBox. In some cases, where no clear standard previously
existed, the Framework Design Guidelines and FxCop team mined exist-
ing Microsoft code to determine a standard based on previously shipped
code. FxCop also captures guidance described in a style manual developed
for Microsoft documentation specialists. This guide tells us, for example,
that LogOn is preferred as a term over LogIn, while SignOff should be used
instead of SignOut. Keeping up with previously undetected inconsisten-
cies is a full-time job and one of the reasons FxCop is a valuable tool,
because we have the ability to update and release additional guidance sev-
eral times a year.

B.4.1.1.2 FxCop Rules for Case Sensitivity

Identifiers should differ by more than case

This rule checks namespace, type, member, and parameter names. For each
kind of identifier, the rule reports an error when there are multiple instances
of the identifier that ditfer only by case. For example, FxCop will report an
error if it detects a type named “DataSet” and another type named “Data-
set.” Note that it will not report an error if it sees a type named “DataSet”

and a property named “Dataset.”

B.4.1.2 FxCop Rules for General Naming Conventions
B.4.1.2.1 FxCop Rules for Word Choice

Identifiers should not contain underscores

This rule reports an error when the names chosen for assemblies, namespaces,

oo

types, members, and parameters contain underscore (“_") characters.

B.4 FxCop Guideline Coverage g 377

®s MIKE FANNING Some versions of the Visual Studio applications
designers will automatically create event handlers for controls that contain
underscores, such as buttonl_ClickHandler. Generally speaking, these han-
dlers do not need to be externally visible. To resolve FxCop violations

against them, change the accessibility of these members to internal. Visual
Studio 2005 will emit these items as private or internal by default.

Identifiers should not maitch keywords

This rule reports an error when it encounters identifiers that are reserved
keywords in programming languages that target the Common Language
Runtime (CLR). This rule does not recognize all keywords in all
languages.

B.4.1.2.2 FxCop Rules for Using Abbreviations and Acronyms

Identifiers should be spelled correctly

This rule uses the Microsoft spelling checker library to verify that the
words in assembly, namespace, type, member, and parameter names are
correctly spelled. Refer to the FxCop documentation for instructions on
how to add words to the dictionary used by this rule.

®s MIKE FANNING All versions of FxCop up to and including 1.35 require
that Microsoft Office or the Microsoft Office Proofing Tools be installed on
the computer in order to run the FxCop spelling rules. Versions of FxCop

1.36 and later will install the required spellers and lexicons with the applica-
tion. Note that the first release of Visual Studio 2005 Team System (which
integrates FxCop in the Developer version) did not ship with the spelling
rules, but these rules were added in Visual Studio 2008 Team System.

Be aware that FxCop cannot detect cases where a word in the diction-
ary is being used as an acronym. For example, FxCop will not report that
the method name FindPopServer() is incorrect even though, in this exam-
ple, POP’ is an acronym and the method name should be FindPoint-
OfPresenceServer().

378

m Using FxCop to Enforce the Framework Design Guidelines

B.4.1.2.3 FxCop Rules for Avoiding Language-Specific Names

Identifiers should not contain type names

This rule reports an error if the name of a member or parameter contains
the name of a language-specific data type, or if the name of a parameter
contains the name of a data type. For example, this rule will report a viola-
tion if a parameter is of type System.Int64 and contains the C# data type
“long” in its name.

The rule can detect when certain data or language-specific type names
are being used in a manner that does not violate the Framework Design
Guidelines. For example, a parameter of type string named longName will
not cause FxCop to report an error, even though long is a C#-specific type
name. If, however, the parameter was of type Int64 or UInté4, the rule
would report a violation because the parameter type and the keyword
match. FxCop takes this as an indication that the C# keyword long is being
used to indicate the parameter type.

Like many FxCop rules, this rule does not report errors for parameters
of members that override a base class member; the rule will report the
error only on the base class member.

B.4.1.2.4 FxCop Rules for Naming New Versions of Existing APIs

Identifiers should not have incorrect suffix

This naming rule reports an error when the name of a type ends in “Ex.”

B.4.1.3 FxCop Rules for Names of Assemblies and DLLs
The version of FxCop provided on the companion DVD does not provide
rules to enforce the guidelines for naming assemblies and DLLs.

B.4.1.4 FxCop Rules for Names of Namespaces

Type names should not match namespaces

This rule compiles a list of all of the namespaces being analyzed and the
NET Framework namespaces. Using this list, the rule compares the name
of each type being analyzed to the components in each namespace name

B.y FxCop Guideline Coverage m 379

and reports an error when the type name matches a namespace name com-
ponent. For example, this rule will report an error when it encounters a
type named “Specialized” because that is one of the components in the

“System.Collections.Specialized” namespace name.

B.4.1.5 FxCop Rules for Names of Classes, Structs, and Interfaces

Flags enums should have plural names

This rule reports an error if an enumeration decorated with the System.

_\!I' LTS

FlagsAttribute attribute does not end in “s”,"1,” or “ae.”

Identifiers should have correct prefix

This rule reports an error if an interface name does not begin with “1” and

if the name of a generic type parameter does not begin with “T.”

Identifiers should not have incorrect prefix

This rule reports an error if the name of a type uses “C” as a prefix as in
“CString.” The rule contains logic to detect type names that correctly begin

with “C” such as CollectionBase.

B.4.1.5.1 FxCop Rules for Names of Common Types

Identifiers should have correct suffix
This rule checks for naming consistency for types that derive from certain
framework types or implement certain interfaces. The following table

shows the base type or interface and the suffix that should be used.

Tagie B.1: Suffixes for Common Base Types and Interfaces

Base Type or Interface Suffix

Event handler delegate EventHandler
System.Attribute Attribute
System.EventArgs EventArgs
System.Exception Exception

Confinties

3830 m Using FxCop to Enforce the Framework Design Guidelines

Taeie B.1: Continued

Base Type or Interface Suffix

System.Collections.ICollection Collection
System.Collections.Generic.ICollection<T>
System.Collections.IEnumerable
System.Collections.Generic.IEnumerable<T>
System.Collections.IList

System.Collections.Generic.IList<T>

System.Collections.IDictionary, Dictionary
System.Collections.Generic.IDictionary<K,V:

System.Collections.Queue Collectionor
Queue
System.Collections.Stack Collectionor
Stack
System.Data.DataSet DataSet
System.Data.DataTable DataTable
System.I0.5tream Stream
System.Security.IPermission, Permission

System.Security.CodeAccessPermission

System.Security.Policy.IMembershipCondition Condition

Identifiers should not have incorrect suffix

This rule reports an error when types that should not use the reserved sut-
fixes (see the preceding rule in this section) do use them. This rule also
checks that delegates don’t end in “Delegate.”

B.4.1.5.2 FxCop Rules for Naming Enumerations

Do not pr{’ﬁx entm values with type name

This rule reports an error if the name of the type is used a prefix on the

names of the members of the enumeration.

B.4 FxCop Guideline Coverage g 381

Identifiers should not have incorrect suffix

To enforce correct naming of enumerations, this rule checks that enumera-
tion names don’t end in “Enum” or “Flags.”

Flags enums should have plural names

This rule enforces the use of plural names for enumerations that have the
FlagsAttribute attribute and singular names for enumerations that do
not have the FlagsAttribute attribute.

Only FlagsAttribute enums should have plural names

This rule reports an error when an enumeration is not decorated with the
FlagsAttribute attribute and ends in “s,” “1,” or “ae.” This rule does not
report an error if the enumeration name ends in one of the following spe-

cial cases:

* “gg
. “Is"
* “us”
* “as”

"s DAVID KEAN Although the last two rules did not appear in the Visual
Studio 2005 Team System release, they were added in Visual Studio 2008

Team System and are enabled when running with the system culture set to
an English-based culture.

B.4.1.6 FxCop Rules for Names of Type Members

B.4.1.6.1 FxCop Rules for Names of Properties

Property names should not match Get methods

This naming rule reports an error if the name of a method begins with
“Get” and the rest of the name matches the name of a property. For exam-
ple, if a type declares a method named “GetMessage()” and also declares a
property named “Message,” FxCop will report an error.

382

m Using FxCop to Enforce the Framework Design Guidelines

B.4.1.6.2 FxCop Rules for Names of Events

Declare event handlers correctly

Unlike the rules we've covered so far, which are all in the naming rules
category, this is a design rule that checks the names of the parameters
declared in event handlers. This rule reports an error if any one of the fol-
lowing conditions is true:

* The event's event handler does not have System.Void as its
return type.

* The event’s first parameter is not named “sender” or is not of type
System.Object.

di A

» The event's second parameter is not named “e” or is not a System,
EventArgs type or subclass.

* The event handler has more than two parameters.

®s MIKE FANNING It's worth noting that this convention is one of the few
2]

places in the NET Framework where a parameter name consisting of a sin-

gle letter is an acceptable identifier. This particular convention was estab-

lished very early in the development of version 1.0 of the NET Framework
and was not changed, even as additional guidance recommending more
informative parameter names was added.

Events should not have “Before” or “After” prefix

This naming rule reports an error when the name of an event starts with

“Before” or “After.”

Identifiers should have correct suffix

This rule is described in detail in section B.4.1.5.1 of this appendix. To
enforce the event-naming guidelines, this rule checks that types that inherit
from System.EventArgs end with “EventArgs.”

B.y FxCop Guideline Coverage m 383

B.4.1.6.3 FxCop Rules for Naming Fields

Identifiers should be cased correctly

This rule is described in detail in section B.4.1.1 of this appendix. You
should be aware that this naming rule does not report a violation for pub-
licly visible instance fields that are incorrectly cased. Instead, FxCop
reports a different error because the instance field is publicly accessible.

", MIKE FANNING In general, FxCop tries to restrict analysis to root-
cause problems. Otherwise, developers might fix issues out of order and

make a change that would be entirely unnecessary if a different violation
had been fixed first. For example, there is no sense in renaming a publicly
visible field if the developer will eventually make it a private member.

B.4.1.7 FxCop Rules for Naming Parameters

Identifiers should be cased correctly

This naming rule, which is described in section B.4.1.1 of this appendix,
ensures that parameters use camelCasing,.

Parameter names should not match member names

This naming rule reports an error if a member has the same name as one of
its parameters. When a parameter name matches the member name, it is

likely that the name is not descriptive enough to be useful.

B.4.1.8 FxCop Rules for Naming Resources

Resource strings should be spelled correctly
This naming rule checks resource (ResX) files to ensure strings are spelled
correctly. The rule reports a critical warning for each misspelled string in

the resource file.

Resource string compound words should be cased correctly

This naming rule detects when a resource string contains a word that
should be treated as a compound word and not as two separate words.
The rule also detects when a pair of adjacent words is incorrectly cased as

a compound word.

384

m Using FxCop to Enforce the Framework Design Guidelines

B.4.2 FxCop Rules for the Type Design Guidelines
FxCop enforces type design guidelines using rules in the naming, design,
and usage rules categories. Using FxCop, you can avoid common design

problems with interfaces, nested types, enumerations, and static types.

B.4.2.1 FxCop Rules for Types and Namespaces

Avoid namespaces with few types

This design rule reports a warning it a namespace contains fewer than five
types. Namespaces with the following suffixes are exempt from this rule:
.Configuration, .Permissions, .Design, and .Interop. The Visual Basic
"My"” namespace and the global namespace are also exempt.

Declare types in namespaces

This design rule reports an error when a publicly visible type is in the
global namespace. A type is automatically assigned to the global namespace

when it is not defined in a named namespace.

B.4.2.2 FxCop Rules for Choosing Between Class and Struct
The version of FxCop provided on the companion DVD does not provide

rules to enforce the guidelines for choosing between a class and struct.
B.4.2.3 FxCop Rules for Choosing Between Class and Interface

B.4.2.3.1 FxCop Rules for Abstract Classes

Abstract types should not have constructors
This design rule reports a critical warning if an abstract type defines a pub-

lic constructor.

B.4.2.3.2 FxCop Rules for Static Classes

Static holder types should be sealed

This design rule reports a critical warning if all of a type’s members are static
and the type is not sealed (NotInheritable in Visual Basic). If the compiler
inserts a default public constructor in your type, this rule will not report a
violation because the constructor is an instance method. To ensure that FxCop

B.y FxCop Guideline Coverage m 385

detects this issue, you must either mark the class as static if vour program-
ming language supports this, or