

Advanced 3D Game
Programming

Using DirectX
®

9.0

Peter Walsh

Wordware Publishing, Inc.

Library of Congress Cataloging-in-Publication Data

Walsh, Peter (Peter Andrew), 1980-
Advanced 3D game programming with DirectX 9.0 / by Peter Walsh.

p. cm.
ISBN 1-55622-968-2 (pbk.)
1. Computer games--Programming. 2. DirectX. I. Title.
QA76.76.C672W382 2003
794.8'167768--dc21 2003007140

CIP

© 2003, Wordware Publishing, Inc.

All Rights Reserved

2320 Los Rios Boulevard
Plano, Texas 75074

No part of this book may be reproduced in any form or by
any means without permission in writing from

Wordware Publishing, Inc.

Printed in the United States of America

ISBN 1-55622-968-2
10 9 8 7 6 5 4 3 2 1
0403

DirectX is a registered trademark of Microsoft Corporation in the United States and/or other
countries.
All brand names and product names mentioned in this book are trademarks or service marks of their
respective companies. Any omission or misuse (of any kind) of service marks or trademarks should
not be regarded as intent to infringe on the property of others. The publisher recognizes and respects
all marks used by companies, manufacturers, and developers as a means to distinguish their
products.

All inquiries for volume purchases of this book should be addressed to Wordware
Publishing, Inc., at the above address. Telephone inquiries may be made by calling:

(972) 423-0090

Dedications

To my beautiful fiancée Lisa Sullivan

I love you with all my heart.

Peter

To my parents, Manny and Maria

Adrian

Original edition for DirectX version 7.0 written by

Adrian Perez with Dan Royer.

Revised and updated by Peter Walsh.

This page inten tion ally left blank

Contents

Acknowledgments . xiii
Introduction . xv

Chapter 1 Windows . 1

A Word about Windows . 1
Hungarian Notation . 3
General Windows Concepts . 3
Message Handling in Windows . 5

Explaining Message Processing 6
Hello World—Windows Style . 7

Explaining the Code . 10
Registering the Application 12
Initializing the Window . 12
WndProc—The Message Pump 15

Manipulating Window Geometry 16
Important Window Messages . 18
MFC . 22
Class Encapsulation . 23
COM: The Component Object Model 29
Conclusion . 32

Chapter 2 Getting Started with DirectX 33

What Is DirectX? . 33
Installation . 34
Setting up VC++ . 34
What Happened to DirectDraw?! 36
Direct3D . 38

2D Graphics—A Primer . 39
Surfaces . 42
The IDirect3DSurface9 Interface 47
Surface Operations . 47
Surfaces and Memory . 49
Modifying the Contents of Surfaces 50
Drawing on Surfaces with GDI 51

The Direct3D Device Object 51
Windowed vs. Full-screen . 52

v

The Direct3D Object . 53
Creating Direct3D Surfaces 53
More on Direct3D Devices 54

Implementing Direct3D with cGraphicsLayer. 55
Creating the Graphics Layer 59
Full-screen Initialization . 60
Shutting Down Direct3D . 65
Changes to cApplication. 66

Application: Direct3D Sample 66

Chapter 3 Communicating with DirectInput 71

Devices . 72
Receiving Device States . 73
Cooperative Levels . 76

Application Focus and Devices . 77
The DirectInput Object . 77

Implementing DirectInput with cInputLayer 77
Additions to cApplication . 91

Chapter 4 DirectSound . 93

The Essentials of Sound . 94
DirectSound Concepts . 95

DirectSound Buffers . 96
Operations on Sound Buffers . 98

Loading WAV Files . 101
Implementing DirectSound with cSoundLayer 102

Creating the DirectSound Object 103
Setting the Cooperative Level 103
Grabbing the Primary Buffer 104

The cSound Class . 108
Additions to cApplication . 114

Application: DirectSound Sample 114

Chapter 5 3D Math Foundations 119

Points. 119
The point3 Structure . 122
Basic point3 Functions . 123

Assign. 123
Mag and MagSquared . 124
Normalize . 124
Dist . 125

point3 Operators . 125
Addition/Subtraction . 125
Vector-Scalar Multiplication/Division 127

Contents

vi

Vector Equality . 128
Dot Product . 129
Cross Product . 132

Polygons . 133
Triangles . 135

Strips and Fans . 136
Planes . 137

Defining Locality with Relation to a Plane 141
Back-face Culling . 143
Clipping Lines . 144
Clipping Polygons . 145

Object Representations . 149
Transformations . 151

Matrices . 152
The matrix4 Structure . 161

Translation . 163
Basic Rotations . 164
Axis-Angle Rotation . 165
The LookAt Matrix. 167
Perspective Projection Matrix 170
Inverse of a Matrix . 170

Collision Detection with Bounding Spheres 171
Lighting . 173

Representing Color . 173
Lighting Models . 176

Specular Reflection . 178
Light Types . 179

Parallel Lights (or Directional Lights) 179
Point Lights . 180
Spotlights . 180

Shading Models . 181
Lambert . 182
Gouraud . 182
Phong. 183

BSP Trees . 183
BSP Tree Theory . 184
BSP Tree Construction . 185
BSP Tree Algorithms . 189

Sorted Polygon Ordering 189
Testing Locality of a Point 191
Testing Line Segments . 191

BSP Tree Code . 192
Wrapping It Up . 202

Contents

vii

Chapter 6 Artificial Intelligence. 203

Starting Point. 204
Locomotion . 204
Steering—Basic Algorithms . 205

Chasing . 205
Evading . 206
Pattern-based AI . 206

Steering—Advanced Algorithms 207
Potential Functions . 208

The Good . 209
The Bad . 210
Application: potentialFunc 210

Path Following . 212
Groundwork . 214
Graph Theory . 215
Using Graphs to Find Shortest Paths. 219
Application: Path Planner 220

Motivation . 224
Non-Deterministic Finite Automata (NFAs) 224
Genetic Algorithms . 226
Rule-Based AI . 228
Neural Networks . 229

A Basic Neuron . 230
Simple Neural Networks 232
Training Neural Networks 234
Using Neural Networks in Games 234
Application: NeuralNet . 235

Some Closing Thoughts . 244

Chapter 7 UDP Networking . 245

Terminology . 245
Endianness . 245
Network Models . 247
Protocols . 248
Packets . 249

Implementation 1: MTUDP . 250
Design Considerations . 250
Things That Go “argh, my kidney!” in the Night. 250

Mutexes . 252
Threads, Monitor, and the Problem of the

try/throw/catch Construction 254
MTUDP: The Early Years . 254

MTUDP::Startup() and MTUDP::Cleanup() 255
MTUDP::MTUDP() and MTUDP::~MTUDP() 256
MTUDP::StartListening(). 256

Contents

viii

MTUDP::StartSending() . 257
MTUDP::ThreadProc() . 258
MTUDP::ProcessIncomingData() 260
MTUPD::GetReliableData() 260
MTUDP::ReliableSendTo() 261
MTUDP::ReliableSendTo() 268

Implementation 2: Smooth Network Play 282
Geographic and Temporal Independence 282
Timing Is Everything . 283
Pick and Choose . 284
Prediction and Extrapolation 285

Conclusion . 287

Chapter 8 Beginning Direct3D 289

Introduction to D3D. 289
The Direct3D9 Object . 290
The Direct3DDevice9 Object . 290

Device Semantics . 291
Device Types . 292

Hardware . 292
Software . 292
Ramp (and Other Legacy Devices) 293

Determining Device Capabilities 293
Setting Device Render States. 296

Fundamental Direct3D Structures 300
D3DCOLOR . 300
D3DCOLORVALUE . 301
D3DVECTOR. 302
D3DMATRIX . 302

The Depth Problem (and How Direct3D Solves It) 303
W-Buffering . 306

Stencil Buffers . 307
Vertex Buffers . 307
Texture Mapping . 309

Materials and Lights. 310
Using Lights . 310
Using Materials . 314

The Geometry Pipeline . 316
Clipping and Viewports. 317

Fog . 318
Vertex-based Fog . 319
Pixel-based Fog . 320
Using Fog . 320

Drawing with the Device . 322
Direct3D Vertex Structures 322

Contents

ix

Flexible Vertex Format Flags. 322
Primitive Types . 325
The DrawPrimitive Functions 326

DrawPrimitive . 326
DrawPrimitiveUP . 326
DrawIndexedPrimitive . 327
DrawIndexedPrimitiveUP 327

Adding Direct3D to the Graphics Layer 328
Direct3D Initialization . 328

Acquire an IDirect3D9 Interface. 329
Fill In the Presentation Parameters 329
Create a Viewport and Projection Matrix 331

Further Additions to the GameLib 333
The Direct3DX Library . 334
Application: D3D View . 334

The .o3d Format . 335
The cModel Class . 335

Chapter 9 Advanced 3D Programming 345

Animation Using Hierarchical Objects 345
Forward Kinematics . 347
Inverse Kinematics . 349

Application: InvKim . 352
Parametric Curves and Surfaces. 354

Bezier Curves and Surfaces 355
Bezier Concepts . 355
The Math . 357
Finding the Basis Matrix . 359
Calculating Bezier Curves 360
Forward Differencing . 362
Drawing Curves . 366
Drawing Surfaces. 367
Application: Teapot. 368

B-Spline Curves . 373
Application: BSpline . 374

Subdivision Surfaces . 376
Subdivision Essentials . 376

Triangles vs. Quads . 378
Interpolating vs. Approximating 378
Uniform vs. Non-Uniform 379
Stationary vs. Non-Stationary 379

Modified Butterfly Method Subdivision Scheme 379
Application: SubDiv . 383

Progressive Meshes . 394
Progressive Mesh Basics . 395

Contents

x

Choosing Our Edges . 396
Stan Melax’s Edge Selection Algorithm 397
Quadric Error Metrics . 397

Implementing a Progressive Mesh Renderer 399
Radiosity . 401

Radiosity Foundations . 402
Progressive Radiosity . 405
The Form Factor . 405
Application: Radiosity . 407

Chapter 10 Advanced Direct3D 413

Alpha Blending . 413
The Alpha Blending Equation. 414
A Note on Depth Ordering 415
Enabling Alpha Blending . 415
Blending Modes . 415

Texture Mapping 101 . 417
Fundamentals . 418
Affine vs. Perspective Mapping 419
Texture Addressing . 420

Wrap . 420
Mirror . 421
Clamp . 421
Border Color. 422

Texture Wrapping. 423
Texture Aliasing . 423
MIP Maps . 425
Filtering . 425

Point Sampling . 426
Bilinear Filtering . 427
Trilinear Filtering . 427
Anisotropic Filtering . 428

Textures in Direct3D . 429
Texture Management. 430
Texture Loading . 431

DDS Format . 431
The cTexture Class . 432

Activating Textures . 435
Texture Mapping 202 . 436

Multiple Textures Per Primitive. 436
Texture Transforms . 441

Effects Using Multiple Textures. 443
Light Maps (a.k.a. Dark Maps) 443
Environment Maps . 446
Specular Maps . 451

Contents

xi

Detail Maps . 451
Glow Maps . 458
Gloss Maps . 459
Other Effects . 461

Application: MultiTex . 461
Pass 1: Base Map . 462
Pass 2: Detail Map . 463
Pass 3: Glow Map . 465
Pass 4: Environment Map 467
Pass 5: Gloss Map . 470
Pass 6: Cloud Map . 473
Putting Them All Together 475

Using the Stencil Buffer . 477
Overdraw Counter . 479
Dissolves and Wipes . 480
Stencil Shadows and Stencil Mirrors 481

Validating Device Capabilities with ValidateDevice() 481

Chapter 11 Scene Management 485

The Scene Management Problem 485
Solutions to the Scene Management Problem 486

Quadtrees/Octrees . 487
Portal Rendering . 488

Portal Rendering Concepts 489
Exact Portal Rendering . 496
Approximative Portal Rendering 497

Portal Effects . 498
Mirrors . 498
Translocators and Non-Euclidean Movement 501

Portal Generation. 502
Precalculated Portal Rendering (PVS) 504

Advantages/Disadvantages 505
Implementation Details . 505

Application: Mobots Attack! . 506
Interobject Communication 506
Network Communication . 510
Code Structure . 512

Closing Thoughts . 513

Appendix An STL Primer . 513

Templates . 513
Containers . 514
Iterators . 516
Functors. 518

Index . 519

Contents

xii

Acknowledgments

Like Adrian says below, this book, like any other, was not just the work of
one (or two or three) people; there have been so many people over the
years who have helped me in one way or another, and the result of all
these efforts contributed to the knowledge contained in this book. I will try
to thank everyone I can. My update of this book would not have occurred
without the help of Tracy Williams, who has helped me many times with
my books. Not only did she get me going on my first book, but she got me
hooked up with Wordware for this book, my third. Of course, I must thank
Jim Hill, Wes Beckwith, and Tim McEvoy of Wordware for being such great
people to work with.

Thanks to Phil Taylor on the DirectX team at Microsoft for agreeing to
do the tech check and also to Wolfgang Engel and Bruno Sousa for their
technical support. Of course, thank you to my wonderful fiancee Lisa for
helping to keep me motivated while working on the book, when I just
wanted to give up and party!

Where would I be without thanking all my friends and family, who
keep me sane during the many months that I spent researching and writ-
ing these massive books. So thank you Jon-Paul Keatley, Stewart Wright,
Andrew McCall, Todd Fay, Mike Andrews, Laz Allen, and all my other
friends around the world that I don’t have room to list! Also, who would I
be writing a book and not mentioning my soon-to-be family-in-law? So
thank you Liam and Ann Sullivan for giving me permission to marry your
beautiful daughter (also to Joanne, Pauline, Liam Jr., and the rest of the
family). Of course, thanks to my parents Simon and Joy Walsh for being so
supportive during my younger years and to this day.

The worst thing about writing acknowledgments is that you always
forget someone who helped you until the day the book goes to print. So
thank you to everyone else I forgot—please accept my apologies; my poor
brain is worn out after all this work!

Peter Walsh

xiii

This book couldn’t have been completed without the help and guidance of
a whole lot of people. I’ll try to remember them all here. First, thanks to
Wes Beckwith and Jim Hill at Wordware Publishing. They were extremely
forgiving of my hectic schedule, and they helped guide me to finishing this
book. I also must thank Alex Dunne for letting me write an article in 1998
for Game Developer magazine. If I hadn’t written that article, I never would
have written this book.

Everything I know about the topics in this book I learned from other
people. Some of these people were mentors, others were bosses, and still
others were professors and teachers. Some were just cool people who took
the time to sit and talk with me. I can’t thank them enough. Paul Heckbert,
Tom Funkhouser, Eric Petajan, Charles Boyd, Mike Toelle, Kent Griffin,
David Baraff, Randy Pausch, Howie Choset, Michael Abrash, Hugues
Hoppe, and Mark Stehlik: You guys rock. Thank you.

Thanks to Microsoft, ATI, nVidia, id Software, and Lydia Choy for
helping me with some of the images used in the text.

Many people helped assure the technical correctness and general san-
ity of this text. Ian Parberry and his class at University of North Texas were
immensely helpful: Thanks, guys. Michael Krause was an indispensable
help in assuring the correctness of the DirectX chapters. Bob Gaines, Mikey
Wetzel, and Jason Sandlin from the DirectX team at Microsoft helped make
sure Chapters 2, 3, 4, 8, and 10 were shipshape: Mad props to them. David
Black was kind enough to look over Chapter 11 and help remove some
errors and clarify a few points.

Finally, I need to thank all of the people who helped me get this thing
done. I know I won’t be able to remember all of them, but here’s a short
list: Manual and Maria Perez, Katherin Peperzak, Lydia Choy (again), Mike
Schuresko, Mike Breen (and the rest of the Originals), Vick Mukherjee,
Patrick Nelson, Brian Sharp, and Marcin Krieger.

Adrian Perez

xiv

Acknowledgments

Introduction

A wise man somewhere, somehow, at some point in history, may have said
the best way to start a book is with an anecdote. I would never question
the words of a wise man who may or may not have existed, so here we go.

When I was a freshman in high school back in 1993, I took the
required biology class that most kids my age end up having to take. It
involved experiments, lab reports, dissecting of various animals, and the
like. One of my lab partners was a fellow named Chris V. We were both
interested in computers and quickly became friends, to the point where
talking about biology in class was second to techno-babble.

One night, in the middle of December, Chris called me up. The lab
report that was due the next day required results from the experiment we
had done together in class, and he had lost his copy of our experiment
results. He wanted to know if I could copy mine and bring them over to
his place so he could finish writing up the lab. Of course, this was in those
heinous pre-car days, so driving to his house required talking my parents
into it, finding his address, and various other hardships. While I was will-
ing to do him the favor, I wasn’t willing to do it for free. So I asked him
what he could do to reciprocate my kind gesture.

“Well,” he said, “I guess I can give you a copy of this game I just got.”
“Really? What’s it called?” I said.
“Doom. By the Wolf 3D guys.”
“It’s called Doom? What kind of name is that??”
After getting the results to his house and the game to mine, I fired the

program up on my creaky old 386 DX-20 clone, burning rubber with a
whopping 4 MB of RAM. As my space marine took his first tenuous steps
down the corridors infested with hellspawn, my life changed. I had done
some programming before in school (Logo and Basic), but after I finished
playing the first time, I had a clear picture in my head of what I wanted to
do with my life: I wanted to write games, something like Doom. I popped
onto a few local bulletinboards and asked two questions: What language
was the game written in, and what compiler was used?

Within a day or so, I purchased Watcom C 10.0 and got my first book
on C programming. My first C program was “Hello, World.” My second was
a slow, crash-happy, non-robust, wireframe spinning cube.

I tip my hat to John Carmack, John Romero, and the rest of the team
behind Doom; my love for creating games was fully realized via their

xv

masterpiece. It’s because of them that I learned everything that I have
about this exceptionally interesting and dynamic area of computer
acquired programming. The knowledge that I have is what I hope to fill
these pages with, so other people can get into graphics and game
programming.

I’ve found that the best way to get a lot of useful information down in
a short amount of space is to use the tried-and-true FAQ (frequently asked
questions) format. I figured if people needed answers to some questions
about this book as they stood in their local bookstore trying to decide
whether or not to buy it, these would be them.

Who are you? What are you doing here?

Well I, being Peter rather than Adrian, am a professional games program-
mer and have been for a quite a few years. I started out like most people
these days, getting extremely interested in how games worked after Doom

came out. After teaching myself programming, I moved on to study for a
degree in computer games development at Abertay University in Dundee,
Scotland. After that I went on to work for a short while with IC-CAVE,
which is a think tank for the next generation of gaming technology. Over
the years I’ve worked on games like F1 Career Challenge, Harry Potter and

the Chamber of Secrets, SHOX, and the upcoming Medal of Honor: Rising

Sun. I’ve developed games for the PC, Game Boy, Dreamcast, PS2, Game
Cube, and Xbox. I’ve also written two other books over the last two years
on DirectX programming.

I’ve also read so many programming books that I reckon I have person-
ally wiped out half of the Amazon rainforest. So hopefully all that material
will help me write this book in a way that avoids all the pitfalls that other
authors have fallen into. I really hope you learn a lot from this book. If you
have any questions along the way that you just can’t get to the bottom of,
please email me at mrzen@msn.com. Unfortunately, after printing that
email in a previous book it was bombarded by junk mail from spammers
and became almost unusable. However, Hotmail has gotten better lately, so
hopefully your questions will get through to me!

Why was this book written?

I’ve learned from many amazingly brilliant people, covered a lot of difficult
ground, and asked a lot of dumb questions. One thing that I’ve found is
that the game development industry is all about sharing. If everyone
shares, everyone knows more stuff, and the net knowledge of the industry
increases. This is a good thing because then we all get to play better
games. No one person could discover all the principles behind computer
graphics and game programming themselves, and no one can learn in a
vacuum. People took the time to share what they learned with me, and
now I’m taking the time to share what I’ve learned with you.

Introduction

xvi

Who should read this book?

This book was intended specifically for people who know how to program
already but have taken only rudimentary stabs at graphics/game program-
ming or never taken any stab at all, such as programmers in another field
or college students looking to embark on some side projects.

Who should not read this book?

This book was not designed for beginners. I’m not trying to sound arrogant
or anything; I’m sure a beginner will be able to trudge through this book if
he or she feels up to it. However, since I’m so constrained for space, often-
times I need to breeze past certain concepts (such as inheritance in C++).
If you’ve never programmed before, you’ll have an exceedingly difficult
time with this book.

What are the requirements for using the code?

The code was written in C++, using Microsoft Visual C++ 6.0. The .DSPs
and .DSWs are provided on the downloadable files (www.wordware.com/
files/dx9); the .DSPs will work with versions previous to 6.0, and the
.DSWs will work with 6.0 and up. If you choose to use a different compiler,
getting the source code to work should be a fairly trivial task. I specifically
wrote this code to use as little non-standard C++ as possible (as far as I
know, the only non-standard C++ I use is nameless structures within
unions).

Why use Windows? Why not use Linux?

I chose to use Win32 as the API environment because 90 percent of com-
puter users currently work on Windows. Win32 is not an easy API to
understand, especially after using DOS coding conventions. It isn’t terribly
elegant either, but I suppose it could be worse. I could choose other plat-
forms to work on, but doing so reduces my target audience by a factor of
nine or more.

Why use Direct3D? Why not use OpenGL?

For those of you who have never used it, OpenGL is another graphics API.
Silicon Graphics designed it in the early ’90s for use on their high-end
graphics workstations. It has been ported to countless platforms and oper-
ating systems. Outside of the games industry in areas like simulation and
academic research, OpenGL is the de facto standard for doing computer
graphics. It is a simple, elegant, and fast API. Check out www.opengl.org
for more information.

But it isn’t perfect. First of all, OpenGL has a large amount of function-
ality in it. Making the interface so simple requires that the implementation

Introduction

xvii

take care of a lot of ugly details to make sure everything works correctly.
Because of the way drivers are implemented, each company that makes a
3D card has to support the entire OpenGL feature set in order to have a
fully compliant OpenGL driver. These drivers are extremely difficult to
implement correctly, and the performance on equal hardware can vary
wildly based on driver quality. In addition, DirectX has the added advan-
tage of being able to move quickly to accommodate new hardware
features. DirectX is controlled by Microsoft (which can be a good or bad
thing, depending on your view of it), while OpenGL extensions need to be
deliberated by committees.

My initial hope was to have two versions of the source code—one for
Windows and Direct3D and the other for Linux and OpenGL. This ended
up not being possible, so I had to choose one or the other; I chose
Direct3D.

Why use C++? Why not C, ASM, or Java?

I had a few other language choices that I was kicking around when plan-
ning this book. Although there are acolytes out there for Delphi, VB, and
even C#, the only languages I seriously considered were C++, Java, and
C. Java is designed by Sun Microsystems and an inherently object-oriented
language, with some high-level language features like garbage collection.
C is about as low level as programming gets without dipping into assembly.
It has very few if any high-level constructs and doesn’t abstract anything
away from the programmer.

C++ is an interesting language because it essentially sits directly
between the functionality of the other two languages. C++ supports COM
better than C does (this is more thoroughly discussed in Chapter 1). Also,
class systems and operator overloading generally make code easier to read
(although, of course, any good thing can and will be abused). Java,
although very cool, is an interpreted language. Every year this seems to be
less important: JIT compilation gets faster and more grunt work is handed
off to the APIs. However, I felt C++ would be a better fit for the book.
Java is still a very young language and is still going through a lot of
change.

Do I need a 3D accelerator?

That depends. Technically, no, you can get by without any accelerator at
all, using Direct3D’s software rasterizer. However, it’s extremely slow, far
from real time for anything but trivially simple scenes. It’s almost impossi-
ble to buy a computer these days without some sort of 3D acceleration,
and an accelerator capable of handling all the code in this book can be
purchased for under $100.

Introduction

xviii

How hardcore is the C++ in this book?

Some people see C++ as a divine blade to smite the wicked. They take
control of template classes the likes of which you have never seen. They
overload the iostream operators for all of their classes. They see multiple
inheritance as a hellspawn of Satan himself. I see C++ as a tool. The more
esoteric features of the language (such as the iostream library) I don’t use
at all. Less esoteric features (like multiple inheritance) I use when it makes
sense. Having a coding style you stick to is invaluable. The code for this
book was written over an eleven-month period, plus another three for the
revision, but I can pick up the code I wrote at the beginning and still grok
it because I commented and used some good conventions. If I can under-
stand it, hopefully you can too.

What are the coding conventions used in the source?

One of the greatest books I’ve ever read on programming was Code Com-

plete (Microsoft Press). It’s a handbook on how to program well (not just
how to program). Nuances like the length of variable names, design of
subroutines, and length of files are covered in detail in this book; I strongly
encourage anyone who wants to become a great programmer to pick it up.
You may notice that some of the conventions I use in this book are similar
to the conventions described in Code Complete; some of them are borrowed
from the great game programmers like John Carmack, and some of them
are borrowed from source in DirectX, MFC, and Win32.

I’ve tried really hard to make the code in this book accessible to every-
one. I comment anything I think is unclear, I strive for good choice in
variable names, and I try to make my code look clean while still trying to
be fast. Of course, I can’t please everyone. Assuredly, there are some C++
coding standards I’m probably not following correctly. There are some
pieces of code that would get much faster with a little obfuscation.

If you’ve never used C++ before or are new to programming, this
book is going to be extremely hard to digest. A good discussion on pro-
gramming essentials and the C++ language is C++ Primer (Lippman et
al.; Addison-Wesley Publishing).

Class/Structure Names

MFC names its classes with a prefixed C. As an example, a class that
represents the functionality of a button is called CButton. I like this fine,
but due to namespace clashing, I instead prefix my own classes with a
lowercase c for classes, a lowercase s for structs, a lowercase i for inter-
faces, and a lowercase e for enumerations (cButton or sButton).

There is one notable exception. While most classes are intended
to hide functionality away and act as components, there are a few
classes/structures that are intended to be instantiated as basic primitives.

Introduction

xix

So for basic mathematic primitives like points and matrices, I have no pre-
fix, and I postfix with the dimension of the primitive (2D points are point2,
3D points are point3, etc.). This is to allow them to have the same look
and feel as their closest conceptual neighbor, float. For the same reason, all
of the mathematic primitives have many overloaded operators to simplify
math-laden code.

Variable Names

Semi-long variable names are a good thing. They make your code self-
commenting. One needs to be careful though: Make them too long, and
they distract from both the code itself and the process of writing it.

I use short variables very sporadically; int i, j, k pop up a lot in my
code for loops and whatnot, but besides that I strive to give meaningful
names to the variables I use. Usually, this means that they have more than
one word in them. The system I use specifies lowercase for the first word
and initial cap for each word after that, with no underscores (an example
would be int numObjects). If the last letter of a word is a capital letter, an
underscore is placed to separate it from the next word (example: class
cD3D_App).

A popular nomenclature for variables is Hungarian notation, which we
touch on in Chapter 1. I’m not hardcore about it, but generally my floats
are prefixed with “f,” my ints with “i,” and my pointers with “p” (examples:
float fTimer; int iStringSize; char* pBuffer). Note that the prefix counts as
the first word, making all words after it caps. (I find pBuffer much more
readable than pbuffer.)

I also use prefixes to define special qualities of variables. Global
variables are preceded with a “g_” (an example would be int g_hIn-
stance); static variables are preceded with an “s_” (static float s_fTimer);
and member variables of classes are preceded with an “m_” (int
m_iNumElements).

Companion Files

The companion files can be downloaded from the following web site:

www.wordware.com/files/dx9

These files include the source code discussed in the book along with the
game Mobots Attack!. Each chapter (and the game) has its own workspace
so you can use them independently of each other.

Introduction

xx

Chapter 1

Welcome, one and all, to the first stage of the journey into the depths of
advanced 3D game development with DirectX 9.0. Before you can start
exploring the world of 3D game programming, you need a canvas to
work on. Basic operations like opening and closing a program, handling
rudimentary input, and painting basic primitives must be discussed
before you can properly understand more difficult topics. If you’re
familiar with the Windows API, you should breeze through this chapter;
otherwise, hold on to your seat! In this chapter you are going to learn
about:

� The theory behind Windows and developing with the Win32 API

� How Win32 game development differs from standard Windows
programming

� Messages and how to handle them

� The infamous message pump

� Other methods of Windows programming such as MFC

� COM, or the component object model

� And much more!

A Word about WindowsA Word about Windows

Windows programs are fundamentally different in almost every way
from DOS programs. In traditional DOS programs, you have 100
percent of the processor time, 100 percent control over all the devices
and files in the machine. You also need an intimate knowledge of all of
the devices on a user’s machine (you probably remember old DOS
games, which almost always required you to input DMA and IRQ set-
tings for sound cards). When a game crashed, you didn’t need to worry
too much about leaving things in a state for the machine to piece itself
together; the user could just reboot. Some old 320x200x256 games
would crash without even changing the video mode back to normal,
leaving the user screen full of oversized text with the crash information.

1

In Windows, things are totally different. When your application is run-
ning, it is sharing the processor with many other tasks, all running
concurrently (at the same time). You can’t hog control of the sound card,
the video card, the hard disk, or any other system resource for that matter.
The input and output is abstracted away, and you don’t poll the keyboard
or mess with interrupts; Windows manages all that for you.

This is both a good and bad thing. On one hand, Windows applications
have a consistent look and feel. Unless you want to get picky, almost any
window you create is automatically familiar to Windows users. They
already know how to use menus and toolbars, so if you build your applica-
tion with the basic Windows constructs, they can pick up the user interface
quickly. Also, a lot of mundane GUI tasks are completely handled by the
Windows API, such as displaying complex property pages, freeing you to
write the interesting code.

Aside: “Reinventing the wheel,” or rewriting existing code, can make sense
sometimes, especially when writing games. However, not on the scale of
operating systems; nobody wants to reimplement the functionality of the
Windows API.

On the other hand, you have to put a lot of faith into Windows and other
applications. Until DirectX came around, you needed to use the default
Windows drawing commands (called the GDI). While the GDI can auto-
matically handle any bit depth and work on any monitor, it’s not the
speediest thing in the world. (In fact it is probably the slowest!) For this
reason, many DOS developers swore off ever working in Windows. Pretty
much the best you could do with graphics was rendering onto a bitmap
that was then drawn into a window, which is pretty slow. You used to have
to give up a lot when writing a Windows application.

However, there are a lot of things that Windows can do that would be
a nightmare to code in the old world of DOS. You can play sound effects
using a single line of code (the PlaySound function), query the time stamp
counter, use a robust TCP/IP network stack, get access to virtual memory,
and the list goes on. Even though you have to take a few speed hits here
and there, the advantages of Windows far outweigh the disadvantages.

I’ll be using the Win32 environment to write all of the applications for
this book. Win32 is not a programming language; it is an application pro-
gramming interface (API). In other words, it is a set of C functions that an
application uses to make a Windows-compliant program. It abstracts away
a lot of difficult operations like multitasking and protected memory, as well
as providing interfaces to higher-level concepts. Supporting menus, dialog
boxes, and multimedia have well-established, fairly easy-to-use (you may
not believe me about this!) library functions written for that specific task.

Windows is an extremely broad set of APIs. You can do just about any-
thing, from playing videos to loading web pages. And for every task, there
are a slew of different ways to accomplish it. There are some seriously

2 � Chapter 1: Windows

large books devoted just to the more rudimentary concepts of Windows
programming. Subsequently, the discussion here will be limited to what is
relevant to allow you to continue on with the rest of the book. Instead of
covering the tomes of knowledge required to set up dialogs with tree con-
trols, print documents, and read/write keys in the registry, I’m going to
deal with the simplest case: creating a window that can draw the world,
passing input to the program, and having at least the beginnings of a
pleasant relationship with the operating system. If you need any more info,
there are many good resources out there on Windows programming.

Hungarian NotationHungarian Notation

All of the variable names in Windows land use what is called Hungarian
notation. The name came from its inventor, Charles Simonyi, a now-leg-
endary Microsoft programmer who happened to be Hungarian.

Hungarian notation is the coding convention of just prefixing variables
with a few letters to help identify their type. Hungarian notation makes it
easier to read other peoples’ code and easy to ensure the correct variables
are supplied to functions in the right format. However, it can be really con-
fusing to people who haven’t seen it before.

Table 1.1 gives some of the more common prefixes used in most of the
Windows and DirectX code that you’ll see in this book.

Table 1.1: Some common Hungarian notation prefixes

b (example: bActive) Variable is a BOOL, a C precursor to the Boolean type
found in C++. BOOLs can be TRUE or FALSE.

l (example: lPitch) Variable is a long integer.

dw (example: dwWidth) Variable is a DWORD, or unsigned long integer.

w (example: wSize) Variable is a WORD, or unsigned short integer.

sz (example: szWindowClass) Variable is a pointer to a string terminated by a zero (a
standard C-style string).

p or lp (example: lpData) Variable is a pointer (lp is a carryover from the far
pointers of the 16-bit days; it means long pointer). A
pointer-pointer is prefixed by pp or lplp, and so on.

h (example: hInstance) Variable is a Windows handle.

General Windows ConceptsGeneral Windows Concepts

Notepad.exe is probably the best example of a simple Windows program. It
allows basic text input, lets you do some basic text manipulation like
searching and using the clipboard, and also lets you load, save, and print
to a file. The program appears in Figure 1.1.

Chapter 1: Windows � 3

The windows I show you how to create will be similar to this. A window
such as this is partitioned into several distinct areas. Windows manages
some of them, but the rest your application manages. The partitioning
looks something like Figure 1.2.

The main parts are:

Title Bar This area appears in most windows. It gives the name of the window and provides
access to the system buttons that allow the user to close, minimize, or maximize
an application. The only real control you have over the title bar is via a few flags in
the window creation process. You can make it disappear, make it appear without
the system icons, or make it thinner.

Menu Bar The menu is one of the primary forms of interaction in a GUI program. It
provides a list of commands the user can execute at any one time. Windows also
controls this piece of the puzzle. You create the menu and define the commands,
and Windows takes care of everything else.

4 � Chapter 1: Windows

Figure 1.1:
Notepad.exe—
as basic as a window
gets

Figure 1.2:
The important GUI
components of a
window

Resize Bars Resize bars allow the user to modify the size of the window on screen. You have
the option of turning them off during window creation if you don’t want to deal
with the possibility of the window resizing.

Client Area The client area is the meat of what you deal with. Windows essentially gives you a
sandbox to play with in the client area. This is where you draw your scene.
Windows can draw on parts of this region too. When there are scroll bars or
toolbars in the application, they are intruding in the client area, so to speak.

Message Handling in WindowsMessage Handling in Windows

Windows also have something called focus. Only one window can have
focus at a time. The window that has the focus is the only window that the
user can interact with. The rest appear with a different color title bar, in
the background. Because of this, only one application gets to know about
the keyboard state.

How does your application know this? How does it know things like
when it has focus or when the user clicks on it? How does it know where
its window is located on the screen? Well, Windows “tells” the application
when certain events happen. Also, you can tell other windows when things
happen (in this way, different windows can communicate with each other).

Hold on though… How does Windows “tell” an application anything?
This can be a very foreign concept to people used to console programming,
but it is paramount to the way Windows works. The trick is, Windows (and
other applications) share information by sending packets of data back and
forth called messages. A message is just a structure that contains the mes-
sage itself, along with some parameters that contain information about the
message.

The structure of a Windows message appears below:

typedef struct tagMSG {
HWND hwnd;
UINT message;
WPARAM wParam;
LPARAM lParam;
DWORD time;
POINT pt;

} MSG;

hwnd Handle to the window that should receive the message

message The identifier of the message. For example, the application receives a msg
object when the window is resized, and the message member variable is
set to the constant WM_SIZE.

wParam Information about the message; dependent on the type of message

lParam Additional information about the message

time Specifies when the message was posted

pt Mouse location when the message was posted

Chapter 1: Windows � 5

Explaining Message Processing

What is an HWND? It’s basically just an integer, representing a handle to a
window. When a Windows application wants to tell another window to do
something, or wants to access a volatile system object like a file on disk,
Windows doesn’t actually let it fiddle with pointers or give it the opportu-
nity to trounce on another application’s memory space. Everything is done
with handles to objects. It allows the application to send messages to the
object, directing it to do things. A good way to think of a handle is like a
bar code. That is, a handle is a unique identifier that allows you, and Win-
dows, to differentiate between different objects such as windows, bitmaps,
fonts, and so on.

Each window in Windows exists in a hierarchy and each has an identi-
fier, or handle. A window handle is an integer describing a window; there
can be up to 16,384 windows open simultaneously (214). When you tell
Windows “I want the client rectangle for window x,” Windows finds the
window corresponding to handle x. It fetches the client rectangle of the
window and passes it back to the application. If the window does not exist
(for example if you give a bogus window handle), then an error is
returned.

Note: The Win32 API predated the current OOP frenzy in the programming
world, and thus doesn’t take advantage of some newer programming con-
cepts like exception handling. Every function in Windows instead returns an
error code (called an HRESULT) that tells the caller how the function did. A
non-negative HRESULT means the function succeeded.

If the function returns a negative number, an error occurred. The
FAILED() macro returns true if an HRESULT is negative. There are a myriad
of different types of errors that can result from a function; two examples are
E_FAIL (generic error) and E_NOTIMPL (the function was not
implemented).

An annoying side effect of having everything return an error code is that
all the calls that retrieve information need to be passed a pointer of data to
fill (instead of the more logical choice of just returning the requested data).

Messages can tell a window anything from “Paint yourself” to “You have
lost focus” or “User double-clicked at location (x, y).” Each time a message
is sent to a window, it is added to a message queue deep inside Windows.
Each window has its own associated local message queue. A message
queue ensures that each message gets processed in the order it gets
received, even if it arrives while the application is busy processing other
messages. In fact, when most Windows applications get stuck in an infinite
loop or otherwise stop working, you’ll notice because they’ll stop process-
ing messages, and therefore don’t redraw or process input.

So how does an application process messages? Windows defines a
function that all programs must implement called the window procedure
(or WndProc for short). When you create a window, you give Windows

6 � Chapter 1: Windows

your WndProc function in the form of a function pointer. Then, when mes-
sages are processed, they are passed as parameters to the function, and the
WndProc deals with them. So, for example, when theWndProc function
gets passed a message saying “Paint yourself!” that is the signal for the
window to redraw itself.

When you send a message, Windows examines the window handle
you provide, using it to find out where to send the message. The message
ID describes the message being sent, and the parameters to the ID are con-
tained in the two other fields in a message, wParam and lParam. Back in
the 16-bit days, wParam was a 16-bit (word sized) integer and lParam was
a 32-bit (long sized) integer, but with Win32 they’re both 32 bits long. The
messages wait in a queue until the application receives them.

The window procedure should return 0 for any message it processes.
All messages it doesn’t process should be passed to the default Windows
message procedure, DefWindowProc(). Windows can start behaving errati-
cally if DefWindowProc doesn’t see all of your non-processed messages.
Don’t worry if you’re not getting all of this just yet; it will become clearer
over the course of this book.

Hello World—Windows StyleHello World—Windows Style

To help explain these ideas, let me show you a minimalist Win32 program
and analyze what’s going on. This code was modified from the default
“Hello, World” code that Visual C++ 6.0 will automatically generate for
you, but some of the things were removed, leaving this one of the most
stripped-down Windows programs you can write.

Listing 1.1: One of the simplest possible Windows programs

/***
* Advanced 3D Game Programming using DirectX 9.0
* *
* Title: HelloWorld.cpp
* Desc: Simple windows app
* copyright (c) 2002 by Peter A Walsh and Adrian Perez
**/
#include "stdafx.h"

#define MAX_LOADSTRING 100

// Global Variables:
HINSTANCE hInst; // current instance
char szTitle[] = "Hello, World!"; // The title bar text
char szWindowClass[] = "Hello, World!"; // The title bar text

// Forward declarations of functions included in this code module:
ATOM MyRegisterClass(HINSTANCE hInstance);
BOOL InitInstance(HINSTANCE, int);
LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM);
LRESULT CALLBACK About(HWND, UINT, WPARAM, LPARAM);

Chapter 1: Windows � 7

int APIENTRY WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nCmdShow)

{
// TODO: Place code here.
MSG msg;

// Initialize global strings
MyRegisterClass(hInstance);

// Perform application initialization:
if (!InitInstance (hInstance, nCmdShow))
{

return FALSE;
}

// Main message loop:
while (GetMessage(&msg, NULL, 0, 0))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

}

return msg.wParam;
}

//
// FUNCTION: MyRegisterClass()
//
// PURPOSE: Registers the window class.
//
// COMMENTS:
//
// This function and its usage is only necessary if you want this code
// to be compatible with Win32 systems prior to the 'RegisterClassEx'
// function that was added to Windows 95. It is important to call this
// function so that the application will get 'well formed' small icons
// associated with it.
//
ATOM MyRegisterClass(HINSTANCE hInstance)
{

WNDCLASSEX wcex;

wcex.cbSize = sizeof(WNDCLASSEX);
wcex.style = CS_HREDRAW | CS_VREDRAW;
wcex.lpfnWndProc = (WNDPROC)WndProc;
wcex.cbClsExtra = 0;
wcex.cbWndExtra = 0;
wcex.hInstance = hInstance;
wcex.hIcon = LoadIcon(hInstance, (LPCTSTR)IDI_APPLICATION);
wcex.hCursor = LoadCursor(NULL, IDC_ARROW);

8 � Chapter 1: Windows

wcex.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
wcex.lpszMenuName = NULL;
wcex.lpszClassName = szWindowClass;
wcex.hIconSm = LoadIcon(wcex.hInstance, (LPCTSTR)IDI_APPLICATION);

return RegisterClassEx(&wcex);
}

//
// FUNCTION: InitInstance(HANDLE, int)
//
// PURPOSE: Saves instance handle and creates main window
//
// COMMENTS:
//
// In this function, we save the instance handle in a global variable and
// create and display the main program window.
//
BOOL InitInstance(HINSTANCE hInstance, int nCmdShow)
{

HWND hWnd;

hInst = hInstance; // Store instance handle in our global variable

hWnd = CreateWindow(
szWindowClass, // Name of the window class to use for this window

// registered in MyRegisterClass
szTitle, // Title of the application
WS_OVERLAPPEDWINDOW, // Style that Windows should make our window with

// (this is the 'default' window style for windowed apps)
20, // Starting X of the window
20, // Starting Y of the window
640, // Width of the window
480, // Height of the window
NULL, // Handle of our parent window (Null, since we have none)
NULL, // Handle to our menu (Null, since we don't have one)
hInstance, // Instance of our running application
NULL); // Pointer to window-creation data (we provide none)

if (!hWnd)
{

return FALSE;
}

ShowWindow(hWnd, nCmdShow);
UpdateWindow(hWnd);

return TRUE;
}

//
// FUNCTION: WndProc(HWND, unsigned, WORD, LONG)
//
// PURPOSE: Processes messages for the main window.
//

Chapter 1: Windows � 9

// WM_PAINT - Paint the main window
// WM_DESTROY - post a quit message and return
//
//
LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)
{

PAINTSTRUCT ps;
HDC hdc;
char szHello[] = "Hello, you crazy world you!";

switch (message)
{

case WM_PAINT:
hdc = BeginPaint(hWnd, &ps);
// TODO: Add any drawing code here...
RECT rt;
GetClientRect(hWnd, &rt);
DrawText(hdc, szHello, strlen(szHello), &rt,

DT_CENTER | DT_VCENTER | DT_SINGLELINE);
EndPaint(hWnd, &ps);
break;

case WM_DESTROY:
PostQuitMessage(0);
break;

default:
return DefWindowProc(hWnd, message, wParam, lParam);

}
return 0;

}

It’s easy to get worried when you think this is one of the simplest Windows
programs you can write, and it’s still over 100 lines long. The good thing is
that the code above is more or less common to all Windows programs.
Most Windows programmers don’t remember the exact order everything
goes in; they just copy the working Windows initialization code from a pre-
vious application and use it like it is their own!

Explaining the Code

Every C/C++ program has its entry point in main(), where it is passed
control from the operating system. In Windows, things work a little differ-
ently. There is some code that the Win32 API runs first, before letting your
code run. The actual stub for main() lies deep within the Win32 DLLs
where you can’t touch it. However, this application starts at a different
point: a function called WinMain(). Windows does its setup work when
your application is first run, and then calls WinMain(). This is why when
you debug a Windows app “WinMain” doesn’t appear at the bottom of the
call stack; the internal DLL functions that called it are. WinMain is passed
the following parameters (in order):

� The instance of the application (another handle, this one representing
an instantiation of a running executable). Each process has a separate

10 � Chapter 1: Windows

instance handle that uniquely identifies the process to Windows. This is
different from window handles, as each application can have many
windows under its control. You need to hold on to this instance, as cer-
tain Windows API calls need to know what instance is calling them.
Think of an instance as just a copy, or even as an image, of the execut-
able in memory. Each executable has a handle so that Windows can tell
them apart, manage them, and so on.

� An HINSTANCE of another copy of your application currently running.
Back in the days before machines had much memory, Windows would
have multiple instances of a running program share memory. These
days each process is run in its own separate memory space, so this
parameter is always NULL. It remains this way so that legacy Windows
applications still work.

� A pointer to the command line string. When the user drags a file onto
an executable in Explorer (not a running copy of the program), Win-
dows runs the program with the first parameter of the command line
being the path and filename of file dragged onto it. This is an easy way
to do drag-and-drop. The hard way involves OLE/COM, but let’s keep
OLE under a restraining order. It is useful, but at the price of being a
seriously ugly piece of work.

� A set of flags describing how the window should initially be drawn
(such as fullscreen, minimized, etc.).

The conceptual flow of the function is to do the following:

WinMain
Register the application class with Windows
Create the main window
while(Someone hasn't told us to exit)

Process any messages that Windows has sent us

MyRegisterClass takes the application instance and tells Windows about
the application (registering it, in essence). InitInstance creates the primary
window on the screen and starts it drawing. Then the code enters a while
loop that remains in execution until the application quits. The function
GetMessage looks at the message queue. It always returns 1 unless there is
a specific system message in the queue: This is the “Hey you! Quit! Now!!”
message and has the message ID WM_QUIT. If there is a message in the
queue, GetMessage will remove it and fill it into the message structure,
which is the “msg” variable above. Inside the while loop, you first take the
message and translate it using a function called TranslateMessage.

This is a convenience function. When you receive a message saying a
key has been pressed or released, you get the specific key as a virtual key
code. The actual values for the IDs are arbitrary, but the namespace is what
you care about: When the letter “a” is pressed, one of the message parame-
ters is equivalent to the #define VK_A. Since that nomenclature is a pain
to deal with if you’re doing something like text input, TranslateMessage

Chapter 1: Windows � 11

does some housekeeping, and converts the parameter from “VK_A” to
“(char)‘a’ ”. This makes processing regular text input much easier. Keys
without clear ASCII equivalents, such as Page Up and Left Arrow, keep
their virtual key code values (VK_PRIOR and VK_LEFT respectively). All
other messages go through the function and come out unchanged.

The second function, DispatchMessage, is the one that actually pro-
cesses it. Internally, it looks up which function was registered to process
messages (in MyRegisterClass) and sends the message to that function.
You’ll notice that the code never actually calls the window procedure.
That’s because Windows does it for you when you ask it to with the
DispatchMessage function.

Think of this while loop as the central nervous system for any Win-
dows program. It constantly grabs messages off the queue and processes
them as fast as it can. It’s so universal it actually has a special name: the
message pump. Whenever you see a reference to a message pump in a text,
or optimizing message pumps for this application or that, that’s what it is
in reference to.

Registering the Application

MyRegisterClass() fills a structure that contains the info Windows needs to
know about your application before it can create a window, and passes it
to the Win32 API. This is where you tell Windows what to make the icon
for the application that appears in the taskbar (hIcon, the large version,
and hIconSm, the smaller version). You can also give it the name of the
menu bar if you ever decide to use one. (For now there is none, so it’s set
to 0.) You need to tell Windows what the application instance is (the one
received in the WinMain); this is the hInstance parameter. You also tell it
which function to call when it processes messages; this is the lpfnWndProc
parameter. The window class has a name as well, lpszClassName, that is
used to reference the class later in the CreateWindow function.

Warning: A window class is completely different from a C++ class. Windows
predated the popularity of the C++ language, and therefore some of the
nomenclature has a tendency to clash.

Initializing the Window

InitInstance creates the window and starts the drawing process. The win-
dow is created with a call to CreateWindow, which has the following
prototype:

HWND CreateWindow(
LPCTSTR lpClassName,
LPCTSTR lpWindowName,
DWORD dwStyle,
int x,
int y,

12 � Chapter 1: Windows

int nWidth,
int nHeight,
HWND hWndParent,
HMENU hMenu,
HANDLE hInstance,
LPVOID lpParam

);

lpClassName A null-terminated string giving the class name for the window class that was
registered with RegisterClass. This defines the basic style of the window,
along with which WndProc will be handling the messages (you can create
more than one window class per application).

lpWindowName The title of the window. This will appear in the title bar of the window and in
the taskbar.

dwStyle A set of flags describing the style for the window (such as having thin
borders, being unresizable, and so on). For these discussions windowed
applications will all use WS_OVERLAPPEDWINDOW (this is the
standard-looking window, with a resizable edge, a system menu, a title bar,
etc.). However, full-screen applications will use the WS_POPUP style (no
Windows features at all, not even a border; it’s just a client rectangle).

x, y The x and y location, relative to the top left corner of the monitor (x
increasing right, y increasing down), where the window should be placed.

nWidth, nHeight The width and height of the window.

hWndParent A window can have child windows (imagine a paint program like Paint Shop
Pro, where each image file exists in its own window). If this is the case and
you are creating a child window, pass the HWND of the parent window
here.

hMenu If an application has a menu (yours doesn’t), pass the handle to it here.

hInstance This is the instance of the application that was received in WinMain.

lpParam Pointer to extra window creation data you can provide in more advanced
situations (for now, just pass in NULL).

The width and height of the window that you pass to this function is the
width and height for the entire window, not just the client area. If you
want the client area to be a specific size, say 640 by 480 pixels, you need
to adjust the width and height passed to account for the pixels needed for
the title bar, resize bars, etc. You can do this with a function called
AdjustWindowRect (discussed later in the chapter). You pass a rectangle
structure filled with the desired client rectangle, and the function adjusts
the rectangle to reflect the size of the window that will contain the client
rectangle, based on the style you pass it (hopefully the same style passed
to CreateWindow). A window created with WS_POPUP has no extra
Windows UI features, so the window will go through unchanged.
WS_OVERLAPPEDWINDOW has to add space on each side for the resize
bar and on the top for the title bar.

If CreateWindow fails (this will happen if there are too many windows
or if it receives bad inputs, such as an hInstance different from the one

Chapter 1: Windows � 13

provided in MyRegisterClass), you shouldn’t try processing any messages
for the window (since there is no window!) so return false. This is handled
in WinMain by exiting the application before entering the message pump.
Normally, before exiting, you’d bring up some sort of pop-up alerting the
user to the error, instead of just silently quitting. Otherwise, call Show-
Window, which sets the show state of the window just created (the show
state was passed to as the last formal parameter in WinMain), and Update-
Window, which sends a paint message to the window so it can draw itself.

Warning: CreateWindow calls the WndProc function several times before it
exits! This can sometimes cause headaches in getting certain Windows pro-
grams to work.

Before the function returns and you get the window handle back,
WM_CREATE, WM_MOVE, WM_SIZE, and WM_PAINT (among others) are
sent to the program through the WndProc.

If you’re using any components that need the HWND of a program to
perform work (a good example is a DirectX window, whose surface must
resize itself whenever it gets a WM_SIZE message), you need to tread very
carefully so that you don’t try to resize the surface before it has been initial-
ized. One way to handle this is to record your window’s HWND inside
WM_CREATE, since one of the parameters that gets passed to the WndProc
is the window handle to receive the message.

You may wonder,when an event such as an error occurs, how would you
alert the user? Unfortunately, you no longer have the printf and getchar
commands to print out error messages, so instead you have to create
dialogs that present information such as why the program failed, to the
user. Creating complex dialogs with buttons and edit boxes and whatnot
are generally not needed for creating games (usually you create your own
interface inside the game); however, there are some basic dialogs that
Windows can automatically create, such as the infamous pop-up window
you see when you attempt to exit any sort of document editing software
that says “Save SomeFile.x before exiting?” and has two buttons marked
“Yes” and “No.”

The function you use to automate the dialog creation process is called
MessageBox. It is one of the most versatile and useful Windows functions.
Take a look at its prototype in the following:

int MessageBox(
HWND hWnd,
LPCTSTR lpText,
LPCTSTR lpCaption,
UINT uType

);

hWnd Handle to the owner of the window (this is generally the application’s window
handle).

14 � Chapter 1: Windows

lpText Text for the inside of the message box.

lpCaption Title of the message box.

uType A set of flags describing the behavior of the message box. The flags are described
in Table 1.2.

The function displays the dialog on the desktop and does not return until
the box is closed.

Table 1.2: A set of the common flags used with MessageBox

MB_OK The message box has just one button marked OK. This is the default
behavior.

MB_ABORTRETRYIGNORE Three buttons appear—Abort, Retry, and Ignore.

MB_OKCANCEL Two buttons appear—OK and Cancel.

MB_RETRYCANCEL Two buttons appear—Retry and Cancel.

MB_YESNO Two buttons appear—Yes and No.

MB_YESNOCANCEL Three buttons appear—Yes, No, and Cancel.

MB_ICONEXCLAMATION,
MB_ICONWARNING

An exclamation mark icon is displayed.

MB_ICONINFORMATION,
MB_ICONASTERISK

An information icon (a lowercase i inscribed in a circle) is displayed.

MB_ICONQUESTION A question mark icon is displayed.

MB_ICONSTOP,
MB_ICONERROR,
MB_ICONHAND

A stop sign icon is displayed.

The return value of MessageBox depends on which button was pressed.
Table 1.3 gives the possible return values. Note that this is one of the rare
Windows functions that does not return an HRESULT.

Table 1.3: Return values for MessageBox

IDABORT The Abort button was pressed.

IDCANCEL The Cancel button was pressed.

IDIGNORE The Ignore button was pressed.

IDNO The No button was pressed.

IDOK The OK button was pressed.

IDRETRY The Retry button was pressed.

IDYES The Yes button was pressed.

WndProc—The Message Pump

WndProc is the window procedure. This is where everything happens in a
Windows application. Since this application is so simple, it will only pro-
cess two messages (more complex Windows programs will need to process
dozens upon dozens of messages). The two messages that probably every

Chapter 1: Windows � 15

Win32 application handles are WM_PAINT (sent when Windows would
like the window to be redrawn) and WM_DESTROY (sent when the win-
dow is being destroyed). An important thing to note is that any message
you don’t process in the switch statement goes into DefWindowProc, which
defines the default behavior for every Windows message. Anything not
processed needs to go into DefWindowProc for the application to behave
correctly.

System messages, such as the message received when the window is
being created and destroyed, are sent by Windows internally. You can post
messages to your own application (and other applications) with two func-
tions: PostMessage and SendMessage. PostMessage adds the message to
the application’s message queue to be processed in the message pump.
SendMessage actually calls the WndProc with the given message itself.

One extremely important point to remember when you’re doing Win-
dows programming is that you don’t need to memorize any of this. Very
few, if any, people know all the parameters to each and every one of the
Windows functions; usually it’s looked up in MSDN, copied from another
place, or filled in for you by a project wizard. So don’t worry if you’re
barely following some of this stuff. One of the most useful investments I
ever made was to purchase a second monitor. That way I can program on
my main screen with MSDN up on the other, which means I don’t have to
keep task switching between applications.

One thing you might notice is that for a program that just says “Hello,
World!” there sure is a lot of code. Most of it exists in all Windows pro-
grams. All applications need to register themselves, they all need to create
a window if they want one, and they all need a window procedure. While
it may be a bit on the long side, the program does a lot. You can resize it,
move it around the screen, have it become occluded by other windows,
minimize, maximize, and so on. Windows users automatically take this
functionality for granted, but there is a lot of code taking place out of
sight.

Manipulating Window GeometryManipulating Window Geometry

Since for now the application’s use of Windows is so restricted, you only
need to concern yourself with two basic Windows structures that are used
in geometry functions: POINT and RECT.

In Windows, there are two coordinate spaces. One is the client area
coordinate space. The origin (0,0) is the top left corner of the window
(known as client space). Coordinates relative to the client area don’t need
to change when the window is moved around the screen. The other coordi-
nate space is the desktop coordinate space. This space is absolute, and the
origin is the top left corner of the screen (also known as screen space).

Windows uses the POINT structure to represent 2D coordinates. It has
two long integers, one for the horizontal component and one for the
vertical:

16 � Chapter 1: Windows

typedef struct tagPOINT {
LONG x;
LONG y;

} POINT;

Since all windows are rectangular, Windows has a structure to represent a
rectangle. You’ll notice that essentially the structure is two points end to
end, the first describing the top left corner of the rectangle, the other
describing the bottom right.

typedef struct _RECT {
LONG left;
LONG top;
LONG right;
LONG bottom;

} RECT;

left Left side of the window.

top Top of the window.

right Right side of the window (width is right-left).

bottom Bottom side of the window (height is bottom-top).

To get the client rectangle of a window you can use the function GetClient-
Rect. The left and top members are always zero, and the right and bottom
give you the width and height of the window.

BOOL GetClientRect(
HWND hWnd,
LPRECT lpRect

);

hWnd Handle to the window you want information about.

lpRect Pointer to a RECT structure you would like filled with the client rectangle.

Once you have the client rectangle, you often need to know what those
points are relative to the desktop coordinate space. ClientToScreen, which
has the following prototype, provides this functionality:

BOOL ClientToScreen(
HWND hWnd,
LPPOINT lpPoint

);

hWnd Handle to the window the client point is defined in.

lpPoint Pointer to the client point; this point is changed to screen space.

To change the rectangle you get through GetClientRect to screen space,
you can use the ClientToScreen function on the bottom and right members
of a rectangle. Slightly inelegant, but it works.

Chapter 1: Windows � 17

One thing that can mess up window construction is determining the
width and height of the window. You could say you want a client rectangle
that is 800 pixels by 600 pixels (or some other resolution), but you call
CreateWindow giving the dimensions of the whole window, including any
resize, title bar, and menu bars. Luckily, you can convert a rectangle repre-
senting the client rectangle to one representing the window dimensions
using AdjustWindowRect. It pushes all of the coordinates out to accommo-
date the window style dwStyle, which should be the same one used in
CreateWindow for it to work correctly. For non-pop-up windows, this will
make the top and left coordinates negative.

BOOL AdjustWindowRect(
LPRECT lpRect,
DWORD dwStyle,
BOOL bMenu

);

lpRect Pointer to the RECT structure to be adjusted.

dwStyle Style of the intended window, this defines how much to adjust each
coordinate. For example, WS_POPUP style windows aren’t adjusted at all.

bMenu Boolean that is TRUE if the window will have a menu. If, like in this case,
there is no menu then you can just pass FALSE for this parameter.

Windows has a full-featured graphics library that performs operations on a
handle to a graphics device. The package is called the GDI, or Graphical
Device Interface. It allows users to draw, among other things, lines, ellip-
ses, bitmaps, and text (I’ll show you its text painting ability in a later
chapter). The sample program uses it to draw the “Hello, World!” text on
the screen. I’ll show you more of the GDI’s functions later in the book.

Important Window MessagesImportant Window Messages

Most of the code in this book uses Windows as a jumping-off point—a way
to put a window up on the screen that allows you to draw in it. I’ll only be
showing you a small subset of the massive list of window messages in Win-
dows, which is a good thing since they can get pretty mind-numbing after
a while. Table 1.4 describes the important messages and their parameters.

Table 1.4: Some important window messages

WM_CREATE Sent to the application when Windows has completed creating its window but
before it is drawn. This is the first time the application will see what the
HWND of its window is.

WM_PAINT Sent to the application when Windows wants the window to draw itself.

Parameters:

(HDC) wParam
A handle to the device context for the window that you can draw in.

18 � Chapter 1: Windows

WM_ERASEBKGND Called when the background of a client window should be erased. If you
process this message instead of passing it to DefWindowProc, Windows will
let you erase the background of the window (later, I’ll show you why this can
be a good thing).

Parameters:

(HDC) wParam
A handle to the device context to draw in.

WM_DESTROY Sent when the window is being destroyed.

WM_CLOSE Sent when the window is being asked to close itself. This is where you can, for
example, ask for confirmation before closing the window.

WM_SIZE Sent when the window is resized. When the window is resized, the top left
location stays the same (so when you resize from the top left, both a
WM_MOVE and a WM_SIZE message are sent).

Parameters:

wParam
Resizing flag. There are other flags, but the juicy one is SIZE_MINIMIZED; it’s
sent when the window is minimized.

LOWORD(lParam)
New width of the client area (not total window).

HIWORD(lParam)
New height of the client area (not total window).

WM_MOVE Sent when the window is moved.

Parameters:

(int)(short)LOWORD(lParam)
New upper left x coordinate of client area.

(int)(short)HIWORD(lParam)
New upper left y coordinate of client area.

WM_QUIT Last message the application gets; upon its receipt the application exits. You
never process this message, as it actually never gets through to WndProc.
Instead, it is caught in the message pump in WinMain and causes that loop to
drop out and the application to subsequently exit.

WM_KEYDOWN Received every time a key is pressed. Also received after a specified time for
auto-repeats.

Parameters:

(int)wParam
The virtual key code for the pressed key. If you call TranslateMessage on the
message before processing it, if it is a key with an ASCII code equivalent
(letters, numbers, punctuation marks) it will be equivalent to the actual ASCII
character.

WM_KEYUP Received when a key is released.

Parameters:

(int)wParam
The virtual key code for the released key.

WM_MOUSEMOVE MouseMove is a message that is received almost constantly. Each time the
mouse moves in the client area of the window, the application gets notified of
the new location of the mouse cursor relative to the origin of the client area.

Chapter 1: Windows � 19

Parameters:

LOWORD(lParam)
The x-location of the mouse, relative to the upper left corner of the client
area.

HIWORD(lParam)
The y-location of the mouse, relative to the upper left corner of the client
area.

wParam
Key flags. This helps you tell what the keyboard state is for special clicks (such
as Alt-left click, for example). Test the key flags to see if certain flags are set.
The flags are:

� MK_CONTROL: Indicates the Control key is down.
� MK_LBUTTON: Indicates the left mouse button is down.
� MK_MBUTTON: Indicates the middle mouse button is down.
� MK_RBUTTON: Indicates the right mouse button is down.
� MK_SHIFT: Indicates the Shift key is down.

WM_LBUTTONDOWN This message is received when the user presses the left mouse button in the
client area. You only receive one message when the button is pressed, as
opposed to receiving them continually while the button is down.

Parameters:

LOWORD(lParam)
The x-location of the mouse, relative to the upper left corner of the client
area.

HIWORD(lParam)
The y-location of the mouse, relative to the upper left corner of the client
area.

wParam
Key flags. This helps you tell what the keyboard state is for special clicks (such
as Alt-left click, for example). Test the key flags to see if certain flags are set.
The flags are:

� MK_CONTROL: Indicates the Control key is down.
� MK_MBUTTON: Indicates the middle mouse button is down.
� MK_RBUTTON: Indicates the right mouse button is down.
� MK_SHIFT: Indicates the Shift key is down.

WM_MBUTTONDOWN You receive this message when the user presses the middle mouse button in
the client area. You only receive one message when the button is pressed, as
opposed to receiving them continually while the button is down.

Parameters:

LOWORD(lParam)

The x-location of the mouse, relative to the upper left corner of the client
area.

HIWORD(lParam)
The y-location of the mouse, relative to the upper left corner of the client
area.

wParam
Key flags. This helps you tell what the keyboard state is for special clicks (such
as Alt-left click, for example). Test the key flags to see if certain flags are set.
The flags are:

20 � Chapter 1: Windows

� MK_CONTROL: If set, Control key is down.
� MK_LBUTTON: If set, left mouse button is down.
� MK_RBUTTON: If set, right mouse button is down.
� MK_SHIFT: If set, Shift key is down.

WM_RBUTTONDOWN You receive this message when the user presses the right mouse button in the
client area. You only receive one message when the button is pressed, as
opposed to receiving them continually while the button is down.

Parameters:

LOWORD(lParam)
The x-location of the mouse, relative to the upper left corner of the client
area.

HIWORD(lParam)
The y-location of the mouse, relative to the upper left corner of the client
area.

wParam
Key flags. This helps you tell what the keyboard state is for special clicks (such
as Alt-left click, for example). Test the key flags to see if certain flags are set.
The flags are:

� MK_CONTROL: Indicates the Control key is down.
� MK_LBUTTON: Indicates the left mouse button is down.
� MK_MBUTTON: Indicates the middle mouse button is down.
� MK_SHIFT: Indicates the Shift key is down.

WM_LBUTTONUP Received when the user releases the left mouse button in the client area.

Parameters:

The parameters are the same as for WM_LBUTTONDOWN.

WM_MBUTTONUP Received when the user releases the middle mouse button in the client area.

Parameters:

The parameters are the same as for WM_MBUTTONDOWN.

WM_RBUTTONUP Received when the user releases the right mouse button in the client area.

Parameters:

The parameters are the same as for WM_RBUTTONDOWN.

WM_MOUSEWHEEL Most new mice come equipped with a z-axis control, in the form of a wheel.
It can be spun forward and backward and clicked. If it is clicked, it generally
sends middle mouse button messages. However, if it is spun forward or
backward, the following parameters are passed.

Parameters:

(short) HIWORD(wParam)
The amount the wheel has spun since the last message. A positive value means
the wheel was spun forward (away from the user). A negative value means the
wheel was spun backward (towards the user).

(short) LOWORD(lParam)
The x-location of the mouse, relative to the upper left corner of the client
area.

(short) HIWORD(lParam)
The y-location of the mouse, relative to the upper left corner of the client
area.

Chapter 1: Windows � 21

LOWORD(wParam)
Key flags. This helps you tell what the keyboard state is for special clicks (such
as Alt-left click, for example). Test the key flags to see if certain flags are set.
The flags are:

� MK_CONTROL: Indicates the Control key is down.
� MK_LBUTTON: Indicates the left mouse button is down.
� MK_MBUTTON: Indicates the middle mouse button is down.
� MK_RBUTTON: Indicates the right mouse button is down.
� MK_SHIFT: Indicates the Shift key is down.

MFC

As you have probably guessed already, programming Windows applications
isn’t the easiest thing in the world. People tend to fear difficult things,
blowing them up in their mind, making them many times worse than they
actually are. While it is ugly code, a lot of the stuff required to make Win-
dows work is used in every application and should be abstracted away.
While there are many libraries on the market to do this, the predominant
one is the one made by Microsoft, called MFC.

MFC, or the Microsoft Foundation Classes, is a system of classes
designed to encapsulate the Win32 API. It tries to create simple ways to do
the most common tasks in Windows programs. Your application derives
from CWinApp, your window from CWnd, your dialogs from CDialog, etc.
This makes applications much easier to write, as a lot of the muscle work
required in Windows is taken care of for you. MFC is a fantastic tool for
making quick front ends to existing code.

However, things aren’t as great as they first appear. First of all, MFC is
geared towards document view type applications (like WordPad). It has
loads of code to support docking toolbars, handle modeless dialogs, and
work with the GDI. Unfortunately, those things aren’t of much use if all
you want to do is make 3D games.

Another inherent MFC problem is the size and speed penalties. The
added functionality given by MFC comes at a price: The DLLs are fairly
large, and unless they’re already loaded in memory, they can hit your
application in load time.

Finally, MFC isn’t the perfect bedfellow for DirectX. The programming
models with which both APIs are designed are different. For example, win-
dowed Direct3D applications need to know when the window it is drawing
is moved or resized. However, getting notified of such changes isn’t an
instant event in MFC, particularly if the DirectX window is a document
window that can move relative to its parent window. These hurdles are not
insurmountable; they’re just kind of a pain. Most of your applications will
run in full-screen mode anyway and don’t need the GUI bells and whistles
that MFC provides.

22 � Chapter 1: Windows

MFC won’t be in any of the code that I show you, so there is no point
in going into any more detail about it. However, if you seriously start
developing a 3D game, you’ll need utilities to help manage your data.
When the day comes that you need to build those utilities, crack open a
good book on MFC and you’ll have stuff up and running in no time. One of
the best books on MFC is Professional MFC with Visual C++ by Mike
Blaszczak, published by Wrox Press.

Class EncapsulationClass Encapsulation

So, now that you can create a window, I’m going to show you how to
design a framework that will sit beneath the Direct3D and other game
code and simplify the programming tasks needed in all of the other appli-
cations you’ll be building in the book. You’ll also learn how to hide that
code so that you never need to look at it again.

As a first step, let’s look at a list of benefits that could be gained from
the encapsulation. In no particular order, it would be good if the applica-
tion had:

� The ability to control and reimplement the construction and destruc-
tion of the application object.

� The ability to automatically create standard system objects (right now
just the application window, but later on Direct3D, DirectInput, and so
on), and facilities to create your own.

� The ability to add objects that can listen to the stream of window mes-
sages arriving to the application and add customized ways to handle
them.

� A simple main loop that runs repeatedly until the application exits.

The way I’ll do this is with two classes. One of them will abstract the Win-
dows code that needs to be run; it is called cWindow. It will be used by a
bigger class that is responsible for actually running the application. This
class is called cApplication. Each new application that you create (with a
couple of exceptions) will be subclassed from cApplication.

Whenever something goes wrong during the execution that requires
the application to exit, the infrastructure is designed so that an error can
be thrown. The entire application is wrapped around a try/catch block, so
any errors are caught in WinMain, and the application is shut down. A text
message describing the error can be passed in the thrown exception, and
the string is popped up using a message box before the application exits.

I chose to do this because it can be easier than the alternative of hav-
ing every single function return an error code, and having each function
check the result of each function it calls. Exceptions get thrown so rarely
that the added complexity that error codes add seems pretty unnecessary
really. With exception handling, the code is nice and clean. The error that

Chapter 1: Windows � 23

almost all of the code in this book throws is called cGameError, and is
defined in Listing 1.2.

Listing 1.2: The cGameError object and eResult enumeration

class cGameError
{

string m_errorText;
public:

cGameError(char* errorText)
{

DP1("***\n*** [ERROR] cGameError thrown! text: [%s]\n***\n",
errorText);

m_errorText = string(errorText);
}

const char* GetText()
{

return m_errorText.c_str();
}

};

enum eResult
{

resAllGood = 0, // function passed with flying colors
resFalse = 1, // function worked and returns 'false'
resFailed = –1, // function failed miserably
resNotImpl = –2, // function has not been implemented
resForceDWord = 0x7FFFFFFF

};

The window abstraction, cWindow, is fairly straightforward. MyRegister-
Class is replaced with cWindow::RegisterClass, MyInitInstance is now
cWindow::InitInstance, and WndProc is now a static function
cWindow::WndProc. The function is static because non-static class func-
tions have a hidden first variable passed in (the this pointer) that is not
compatible with the WndProc function declaration. Later on I’ll define a
child class for you that allows the creation of full-screen ready windows.
In practice, this is the same as a normal window; the only change is that
WS_POPUP is used as the window style instead of WS_OVERLAPPED-
WINDOW.

The message pump that you’ll come to know and love (although prob-
ably hate at the start!) is encapsulated in two functions. HasMessages()
checks the queue and sees if there are any messages waiting to be pro-
cessed, returning true if there are any. Pump() processes a single message,
sending it off to WndProc using TranslateMessage/DispatchMessage. When
Pump receives the WM_QUIT message, which again is a notification from
Windows that the application should exit, it returns resFalse.

Special care needs to be taken to handle thrown exceptions that hap-
pen during the window procedure. You see, between the execution of
DispatchMessage and WndProc, the call stack meanders into some kernel

24 � Chapter 1: Windows

DLL functions. If a thrown exception flies into them, bad stuff happens
(anything from your program crashing to your machine crashing). To han-
dle this, any and all exceptions are caught in the WndProc and saved in a
temporary variable. When Pump finishes pumping a message, it checks the
temporary variable to see if an error was thrown. If there is an error wait-
ing, Pump rethrows the error and it rises up to WinMain.

class cWindow
{
protected:

int m_width, m_height;
HWND m_hWnd;
std::string m_name;
bool m_bActive;
static cWindow* m_pGlobalWindow;

public:

cWindow(
int width,
int height,
const char* name = "Default window name");

~cWindow();

virtual LRESULT WndProc(
HWND hWnd,
UINT uMsg,
WPARAM wParam,
LPARAM lParam);

virtual void RegisterClass(WNDCLASSEX* pWc = NULL);
virtual void InitInstance();

HWND GetHWnd();
bool IsActive();
bool HasMessages();
eResult Pump();
static cWindow* GetMainWindow();

};

inline cWindow* MainWindow();

m_width, m_height Width and height of the client rectangle of the window. This is different
from the width and height of the actual window.

m_hWnd Handle to the window. Use the public function GetHWnd to get access
to it outside the class.

m_name The name of the window used to construct the window class and
window.

m_bActive Boolean value; TRUE if the window is active (a window is active if it is
currently in the foreground).

Chapter 1: Windows � 25

m_pGlobalWindow Static variable that points to the single instantiation of a cWindow class
for an application. Initially set to NULL.

cWindow(...) Constructs a window object. You can only create one instance of this
object; this is verified by setting the m_pGlobalWindow object.

~cWindow() The destructor destroys the window and sets the global window variable
to NULL so that it cannot be accessed any longer.

WndProc() Window procedure for the class. Called by a hidden function inside
Window.cpp.

RegisterClass(...) Virtual function that registers the window class. This function can be
overloaded in child classes to add functionality, such as a menu or
different WndProc.

InitInstance() Virtual function that creates the window. This function can be overloaded
in child classes to add functionality, such as changing the window style.

GetHWnd() Returns the window handle for this window.

IsActive() Returns true if the application is active and in the foreground.

HasMessages() True if the window has any messages in its message queue waiting to be
processed. Uses PeekMessage with PM_NOREMOVE.

Pump() Pumps the first message off the queue and dispatches it to the WndProc.
Returns resAllGood, unless the message gotten off the queue was
WM_QUIT, in which case it returns resFalse.

GetMainWindow() Public function; used by the global function MainWindow to gain access
to the only window object.

MainWindow() Global function that returns the single instance of the cWindow class for
this program. Any piece of code can use this to query information about
the window. For example, any code can get the hWnd for the window by
calling MainWindow()->GetHWnd().

Finally, there is the Big Kahuna—cApplication. Child classes will generally
only reimplement SceneInit and DoFrame. However, other functions can
be reimplemented if added functionality, like the construction of extra sys-
tem objects, is needed. The game presented in Chapter 11 will use several
other system objects that it will need to construct.

class cApplication
{
protected:

string m_title;
int m_width;
int m_height;

bool m_bActive;

static cApplication* m_pGlobalApp;

virtual void InitPrimaryWindow();
virtual void InitGraphics();
virtual void InitInput();
virtual void InitSound();

26 � Chapter 1: Windows

virtual void InitExtraSubsystems();

public:

cApplication();
virtual ~cApplication();

virtual void Init();

virtual void Run();
virtual void DoFrame(float timeDelta);
virtual void DoIdleFrame(float timeDelta);
virtual void ParseCmdLine(char* cmdLine);

virtual void SceneInit();
virtual void SceneEnd();

void Pause();
void UnPause();

static cApplication* GetApplication();

static void KillApplication();
};

inline cApplication* Application();

HINSTANCE AppInstance();

cApplication* CreateApplication();

m_title Title for the application. Sent to the cWindow when it is
constructed.

m_width, m_height Width and height of the client area of the desired window.

m_bActive True if the application is active and running. When the application
is inactive, input isn’t received and the idle frame function is
called.

m_pGlobalApp Static pointer to the single global instance of the application.

InitPrimaryWindow(...) Virtual function to initialize the primary window for this
application. If bExclusive is true, a pop-up window is created in
anticipation of full-screen mode. If it is false, a regular window is
made.

InitGraphics() This function will be discussed in Chapter 2.

InitInput() This function will be discussed in Chapter 3.

InitSound() This function will be discussed in Chapter 4.

InitExtraSubsystems(...) Virtual function to initialize any additional subsystems the
application wants before the scene is initialized.

cApplication() Constructor; fills in default values for the member variables.

~cApplication() Shuts down all of the system objects.

Chapter 1: Windows � 27

Init() Initializes all of the system objects (which I’ll show you in Chapter
4).

Run() Main part of the application. Displays frames as fast as it can until
the WM_QUIT message arrives.

DoFrame(...) This function is called every frame by Run. In it, the subclassing
application should perform all game logic and draw the frame.
timeDelta is a floating-point value representing how much time
elapsed since the last frame. This is to aid in making applications
perform animations at constant speed independent of the frame
rate of the machine.

DoIdleFrame(...) This function is called by Run if the application is currently
inactive. Most of the applications that I’ll show you won’t need
this function, but it exists for completeness.

ParseCmdLine(...) Virtual function to allow subclasses to view the command line
before anything is run.

SceneInit() Virtual function; overload this to perform scene-specific
initialization. Called after the system objects are created.

SceneEnd() Virtual function; overload to perform scene-specific shutdown
code.

Pause() Pause the application.

UnPause() Un-pause the application.

GetApplication() Public accessor function to acquire the global application pointer.

KillApplication() Kills the application and invalidates the global application pointer.

Application() Global inline function to simplify access to the global application
pointer. Equivalent to cApplication::GetApplication().

AppInstance() Global inline function to acquire the HINSTANCE of this
application.

CreateApplication() This global function is undefined and must be declared in all
further applications. It creates an application object for the code
inside GameLib to use. If an application subclasses cApplication
with a class cMyApplication, CreateApplication should simply
return (new cMyApplication).

The WinMain for the application is abstracted away from child applica-
tions, hidden inside the GameLib code. Just so you don’t miss it, the code
for it appears in Listing 1.3.

Listing 1.3: WinMain

int APIENTRY WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nCmdShow)

{

cApplication* pApp;

g_hInstance = hInstance;

28 � Chapter 1: Windows

try
{

pApp = CreateApplication();

pApp->ParseCmdLine(lpCmdLine);

pApp->Init();
pApp->SceneInit();
pApp->Run();

}
catch(cGameError& err)
{

/**
* Knock out the graphics before displaying the dialog,
* just to be safe.
*/
if(Graphics())
{

Graphics()->DestroyAll();
}
MessageBox(

NULL,
err.GetText(),
"Error!",
MB_OK|MB_ICONEXCLAMATION);

// Clean everything up
delete pApp;
return 0;

}

delete pApp;
return 0;

}

COM: The Component Object ModelCOM: The Component Object Model

Component-based software development is big business. Instead of writing
one deeply intertwined piece of software (called monolithic software devel-
opment), a team writes a set of many smaller components that talk to one
another. This ends up being an advantage because if the components are
modular enough, they can be used in other projects without a lot of head-
ache. Not only that, but the components can be updated and improved
independently of each other. As long as the components talk to each other
the same way, no problems arise.

To aid in component-based software design, Microsoft created a
scheme called the Component Object Model, or COM for short. It provides a
standard way for objects to communicate with other objects and expose
their functionality to other objects that seek it. It is language independent,
platform independent, and even machine independent (a COM object can

Chapter 1: Windows � 29

talk to another COM object over a network connection). In this section we
cover how COM objects are used in component-based software. As the
knowledge required to construct your own COM objects is not necessary
for this book, you may want to look in some other books devoted to COM
if you need more information.

A COM object is basically a block of code that implements one or more
COM interfaces. (I love circular definitions like this. Look up “worrier” in
the dictionary; it’s defined as “someone who worries.”) A COM interface is
just a set of functions. Actually, it’s implemented the same way that almost
all C++ compilers implement virtual function tables. In C++, COM
objects just inherit one or more abstract base classes, which are called
COM interfaces. Other classes can get a COM object to do work by calling
functions in its interfaces, but that’s it. There are no other functions
besides the ones in the interfaces, and no access to member variables out-
side of Get/Set functions existing in the interfaces.

All COM interfaces derive, either directly or indirectly, from a class
called IUnknown. In technical terms, this means the first three entries in
the vTable of all COM interfaces are the same three functions of
IUnknown. The interface is provided in the following:

typedef struct interface
interface IUnknown
{

virtual HRESULT QueryInterface(REFIID idd, void** ppvObject) = 0;
virtual ULONG AddRef(void) = 0;
virtual ULONG Release(void) = 0;

};

AddRef and Release implement reference counting for us. COM objects are
created outside of your control. They may be created with new, malloc, or
a completely different memory manager. Because of this you can’t simply
delete the interface when you’re done with it. Reference counting lets the
object perform its own memory management. The reference count is the
number of other pieces of code that are referencing an object. When you
create a COM object, the reference count will most likely be 1, since you’re
the only one using it. When another piece of code in a different component
wants an interface, generally you call AddRef() on the interface to tell the
COM object that there is an additional piece of code using it. When a piece
of code is done with an interface, it calls Release(), which decrements the
reference count. When the reference count reaches 0, it means that no
objects are referencing the COM object and it can safely destroy itself.

Warning: If you don’t release your COM objects when you’re done with them,
they won’t destroy themselves. This can cause annoying resource leaks in
your application.

QueryInterface is the one function that makes COM work. It allows an
object to request another interface from a COM object it has an interface

30 � Chapter 1: Windows

for. You pass QueryInterface an interface ID, and a pointer to a void
pointer to fill with an interface pointer if the requested interface is
supported.

As an example, let’s consider a car. You create the car object and get an
interface pointer to an iCarIgnition interface. If you want to change the
radio station, you can ask the owner of the iCarIgnition interface if it also
supports the iCarRadio interface.

Listing 1.4: Querying for interfaces

ICarRadio* pRadio = NULL;
HRESULT hr = pIgnition->QueryInterface(

IID_ICarRadio,
(VOID**)&pRadio);

if(!pRadio || FAILED(hr))
{

/* handle error */
}

// Now pRadio is ready to use.

This is the beauty of COM. The object can be improved without needing to
be recompiled. If you decide to add support for a CD player in your car, all
a piece of code needs to do is run QueryInterface for an iCarCDPlayer
interface.

Getting COM to work like this forces two restrictions on the design of
a system. First up, all interfaces are public. If you poke through the DirectX
headers, you’ll find the definitions for all of the DirectX interfaces. Any
COM program can use any COM object, as long as it has the interface defi-
nition and the IDs for the COM interfaces.

A second, bigger restriction is that COM interfaces can never change.
Once they are publicly released, they can never be modified in any way
(not even fairly harmless modifications, like appending functions to the
end of the interface). If this wasn’t enforced, applications that used COM
objects would need to be recompiled whenever an interface changed,
which would defeat COM’s whole purpose.

To add functionality to a COM object, you need to add new interfaces.
For instance, say you wanted to extend iCarRadio to add bass and treble
controls. You can’t just add the functions. Instead, you have to put the new
functions into a new interface, which would most likely be called
iCarRadio2. Any applications that didn’t need the new functionality, or
ones that predated the addition of the iCarRadio2 interface, wouldn’t need
to worry about anything and would continue working using the iCarRadio
interface. New applications could take advantage of the new functions by
simply using QueryInterface to acquire an iCarRadio2 interface.

The one last big question to address is how COM objects get created.
With DirectX, you don’t need to worry about a lot of the innards of COM
object creation, but I’ll give you a cursory overview.

Chapter 1: Windows � 31

You create a COM object by providing a COM object ID and an inter-
face ID. Internally, the COM creation functions consult the registry, looking
for the requested object ID. If the COM object is installed on your system,
there will be a registry entry tying an object ID to a DLL. The DLL is loaded
by your application, the object is constructed using a DLL-side class factory
(returning an IUnknown interface), and then the interface is Query-
Interface’d for the provided interface ID. If you look up the object ID for
Direct3D in the registry, you’ll find it sitting there, tied to d3d9.dll.

Note: The registry is a location for Windows to put all sorts of information per-
taining to your machine. Versions previous to Windows 95 stored this
information in .ini files.

So what are these object and interface IDs, and how are they given out?
Well, all COM object creators couldn’t be in constant communication, mak-
ing sure the IDs they chose weren’t already in use by someone else, so the
creators of COM use what are called globally unique identifiers (GUIDs for
short). These are 16-byte numbers that are guaranteed to be unique over
time and space. (They’re made up of an extremely large timestamp in
addition to hardware factors like the ID of the network card of the
machine that created it.) That way, when an interface is created, a GUID
can be generated for it automatically that is guaranteed to not be in use
(using a program called GUIDGEN that comes with Visual C++).

Conclusion

So now you know quite a lot about the inner workings of Windows appli-
cations and are well on your way to coming to grips with creating a
DirectX game. Although we only scratched the surface of Windows, that is
pretty much all you really need to know when using DirectX.

In the next chapter you’ll see how to start actually using DirectX in
your application. So with that in mind.. .turn the page and don’t even
think about taking a break!

32 � Chapter 1: Windows

Chapter 2Chapter 2

Now that you know enough about Windows, it’s time to get down and
dirty with DirectX. This chapter shows you everything you need to know
to get started with Direct3D. In later chapters I’ll show you DirectSound,
DirectInput, and DirectPlay, but for now let’s stick with getting the
graphics going!

I remember when I first started programming protected mode DOS
using Watcom 10.0. My first stabs at graphics programming were
extremely basic, using the provided graphics library that came with the
Watcom SDK. My first graphics program did nothing more than draw a
single point in the center of the screen, but let me tell you, that was one
magical program. Sure, I could get the computer to do fairly uninterest-
ing stuff like print text and read in text, but now I could actually make
pictures.

Getting your first graphics program working, even if it just draws
one dot on the screen, is an amazingly cool, almost religious experience.
In this chapter I’m going to cover:

� An overview of DirectX

� The components that make up DirectX

� How to initialize Direct3D

� Surfaces and how to use them

� Moving to full-screen graphics

� Setting pixels and rendering rectangles

� And tons more!

What Is DirectX?What Is DirectX?

Shortly after the release of Windows 95, Microsoft made a push to
end DOS’s reign as the primary game platform on the PC. Developers
weren’t swooned by the added abilities that Win32 programming gives
you (a robust TCP/IP stack, multitasking, access to system information).

33

They wanted the total control they had in DOS. Besides that, graphics in
Windows at that time were done with WinG or even the Windows GDI.
While WinG was pretty cool (and written by all-around cool guy Chris
Hecker), it didn’t have the feature set that games of the time needed, espe-
cially when it came to things like full-screen rendering. The GDI was
designed to work on a myriad of different configurations, different resolu-
tions, different bit depths—it was not designed to be fast.

Microsoft’s answer to game developers was The Game SDK, which was
really the first version of DirectX. Finally, developers could write fast
games and still get the advantages of using the Win32 API, like multi-
threading support, a TCP/IP stack, and countless UI features. With version
2.0, the SDK’s name was changed to DirectX. This was because Microsoft
realized that game developers weren’t the only people who wanted the
graphics and audio acceleration provided by the SDK; developers of every-
thing from video playback programs to presentation software wanted
faster graphics.

Installation

Installing DirectX is a straightforward process. The only real decision you
need to make is choosing between the retail and debug builds. The retail
builds are stripped of lots of sanity checks and are also compiled to run
faster. If you just plan on running other DirectX applications and not writ-
ing your own, the retail builds will be fine.

The debug builds are designed to help out coders while they’re getting
their DirectX applications up and running. For example, when you try to
do something using DirectX and it fails, chances are the debug builds will
print something to the debug window as to why it failed (which is often
something easily fixed, like “dwSize parameter not set”). The tradeoff,
however, is that they run slightly slower than the retail builds. I recom-
mend that while you are learning you use the debug version of the
software; it will save you many headaches later.

The other piece of software you’ll most likely need to install is the lat-
est version of your video card’s drivers if your video card predates the
release of DirectX 9.0. You can pick them up off your video card manufac-
turer’s web site or the Microsoft Windows update site. Having the newest
possible versions of drivers is important, especially for recently released
cards.

Setting up VC++Setting up VC++

After you have gotten DirectX installed, you might want to take one of the
samples (like boids, for instance) and try to compile it. To get it working
you’ll need to do a couple of things.

34 � Chapter 2: Getting Started with DirectX

Visual C++ needs to know where the headers and library files for
DirectX are so it can correctly compile and link your application. You only
need to set this up once, since all projects use the same include and lib
directories. To specify the directories, select Options from the Tools menu.
In the Options dialog box, select the Directories tab. For include directo-
ries, you should enter DX 9.0 SDK Install Path\include. For lib directories,
enter DX 9.0 SDK Install Path\Lib.

DX 9.0 SDK Install Path is just the directory where you installed the
DirectX SDK on your hard disk.

The other trick is that the directories need to appear at the top of the
list, so that they get searched first. When the compiler searches for d3d9.h,
for example, it should find DX 9.0 SDK Install Path\include\d3d9.h (the
9.0 version of the header) first, and not use DEVSTUDIO\VC98\include\
d3d.h (the 3.0 version of the header). Figures 2.1 and 2.2 show what the
include and lib directory listings should look like.

If the directories aren’t set up correctly, you’ll see some telltale signs in the
errors the compiler produces. For example, if you get an error like this:

e:\book\chapter 10\gamelib\dxhelper.h(89) : error C2065: '_D3DSURFACE_DESC :
undeclared identifier

This means that it can’t find the header with the D3DSURFACE_DESC
structure, which was defined after DirectX 7.0. The headers that come with
Visual C++ are from version 3.0, and the compiler is incorrectly trying to
use the old versions of the headers.

The other thing you need when building a DirectX application is to
have the right libraries listed for the linking step. Most of the applications
you write will need the following libraries linked in:

� winmm.lib The windows multimedia library, which has
timeGetTime

� dxguid.lib Has the GUIDs for all of the DirectX COM objects

Chapter 2: Getting Started with DirectX � 35

Figure 2.1: The include directory listing Figure 2.2: The library directory listing

� d3d9.lib Direct3D

� d3dx9.lib Useful D3DX utility extensions

� dsound.lib DirectSound

� dinput9.lib DirectInput

Figure 2.3 shows an example of one of the Chapter 10 programs and the
first few libraries it links in (it links in several more than can fit in the
window).

If you don’t include the libraries correctly, you’ll see errors such as these:

GameLib.lib(GraphicsLayer.obj) : error LNK2001: unresolved external symbol
_IID_IDirect3D9
GameLib.lib(GraphicsLayer.obj) : error LNK2001: unresolved external symbol
_IID_IDirect3DRefDevice
GameLib.lib(GraphicsLayer.obj) : error LNK2001: unresolved external symbol
_IID_IDirect3DRGBDevice
GameLib.lib(GraphicsLayer.obj) : error LNK2001: unresolved external symbol
_IID_IDirect3DHALDevice
GameLib.lib(GraphicsLayer.obj) : error LNK2001: unresolved external symbol
_IID_IDirect3DTnLHalDevice

Fixing this would just be a case of linking in dxguid.lib.

What Happened to DirectDraw?!What Happened to DirectDraw?!

If you have any previous experience with DirectX graphics, then you will
have probably heard of terms such as DirectDraw, Direct3D, Immediate
Mode, and Retained Mode. If not, then don’t worry; I’ll explain them in a
moment. Version 8.0 of DirectX was described by Microsoft as the single
most significant upgrade to DirectX since its initial release all those years
ago and version 9.0 continues to build on it. Version 8.0 is to DirectX what
Windows 95 was to 3.11. So let me begin with a short introduction into

36 � Chapter 2: Getting Started with DirectX

Figure 2.3:
Linking in
libraries

the way things used to be, so that if you come across these terms you will
know what is going on.

Graphical output on the PC can be roughly divided into two groups:
2D and 3D, with the latter obviously being far more complex. The imple-
mentation of DirectX graphics pretty much followed this train of thought.
You had DirectDraw, which looked after 2D graphics, and Direct3D, which
looked after 3D. Direct3D was further split into two groups—Immediate

Mode, which provided a low-level interface to the 3D graphics hardware
that was generally considered very complex but fast. Retained Mode pro-
vided a higher-level, easy to use interface to the hardware, but it was
bloated, inflexible, and slow.

As the development of DirectX continued, a number of patterns started
to become clear:

� The development of DirectDraw had all but come to an end as of
DirectX 5.0. There was just nothing left to do with it, and most
resources were being focused on Direct3D.

� The learning curve for DirectDraw was too steep; it was too compli-
cated and required too many tedious steps to set up in code.

� The theoretical split between Direct3D and DirectDraw was becoming a
performance bottleneck.

� Direct3D Retained Mode was a complete failure with almost no com-
mercial take-up, and its support was pretty much dropped from DirectX
6.0.

� Direct3D Immediate Mode was too complicated, although it did
improve significantly with the release of DirectX 5.0.

To fix these issues, Microsoft took some bold steps in version 8.0 and then
9.0 and completely reorganized Direct3D and DirectDraw. They made the
following changes:

� DirectDraw was completely removed as a separate entity and inte-
grated entirely with Direct3D.

� Direct3D Retained Mode was ripped out and was not replaced.

� Direct3D Immediate Mode remains, but is now much more simplified,
faster, and just all around more elegant.

� Vertex and pixel shaders were introduced, which allow you to imple-
ment advanced visual effects and move away from a fixed function
pipeline. In version 9.0 a high-level shader language was introduced,
which makes shader programming much more intuitive.

The result of all these changes is that the graphics section of DirectX is
now called DirectX Graphics, although I will be referring to it as Direct3D,
since that is where all the functionality is now implemented. The setup
portion of code for Direct3D has dropped from a staggering 1,000-plus

Chapter 2: Getting Started with DirectX � 37

lines to about 200, which is nice, although it leaves poor authors like
myself with little to write about!

Don’t forget that although throughout the book I’ll be referring to
DirectX Graphics as Direct3D, I am not necessarily talking about 3D graph-
ics, since Direct3D now handles the 2D stuff as well. For instance, in the
next section I talk heavily about 2D graphics.

OK, so now that you’ve had your history lesson, let’s look at Direct3D
in a little more detail.

Direct3D

For a lot of people, Direct3D can be really confusing. It uses a lot of para-
digms you may have never seen before. It forces your code to behave
nicely with other applications that can be simultaneously using system
resources. Diving into the code that makes Direct3D work will be confus-
ing enough, so to start out I’m just going to talk about the concepts behind
the code, which will hopefully make the rocky road ahead a little less
painful.

Don’t let anyone else tell you otherwise: Direct3D is hard. If you don’t
get this stuff immediately, it doesn’t mean you’re slow and it doesn’t mean
you’re not ready for Windows programming; it means you’re normal.
DirectX wasn’t designed to be easy to use. It was designed to be fast while
allowing Windows to maintain some semblance of control over the system.
DirectX has gotten much better in recent versions, but it still isn’t a trivial
thing to pick up.

Direct3D is a set of interfaces and functions that allow a Windows
application to talk to the video card(s) in a machine. Only the most basic
2D graphics functions are handled by Direct3D. There are some 2D graph-
ics libraries, such as the GDI, that can do things like draw rounded
rectangles, ellipses, lines, thick lines, n-sided polygons, and so forth.
Direct3D cannot do any of this. Any raster operations need to be developed
by you, the game programmer.

What Direct3D does do is provide a transparent layer of communica-
tion with the hardware on the user’s machine. Supported Direct3D
functions, like blitting images (which I’ll discuss later in the chapter), are
implemented by the video card’s super-fast internal hardware if the card
can handle it. If no hardware is available, Direct3D will transparently emu-
late the hardware capabilities with hand-optimized assembly routines.

Aside: If you want raster operations like drawing lines and don’t want to use
Direct3D, the web is rife with shareware and freeware libraries to do this
for you. Search and you shall find.

38 � Chapter 2: Getting Started with DirectX

2D Graphics—A Primer

The way your computer represents images on the screen is as a rectangle
of values. Each value is called a pixel, short for picture element. If the image
is m pixels wide and n pixels high, then there are m*n pixels in the image.
Each pixel may be anywhere from 1 bit to 4 bytes in size, representing dif-
ferent kinds of color information. The total memory taken up by an image
can generally be found as the width of the image times the height of the
image times the number of bytes per pixel.

Color on computers is dealt with the same way it is drawn on moni-
tors. Computer screens have three cathode ray tubes shining light onto the
phosphorous screen dozens of times a second. The rays shine on red,
green, and blue phosphors. By controlling how much red, green, and blue
light hits each area of the monitor, the color that results from the phos-
phors changes. A white pixel, when examined very closely, is actually three
smaller pixels: one red, one green, and one blue. You’ve probably noticed
this if you’ve ever gotten drops of water on your monitor, which magnify
what is under them. I wouldn’t do this on purpose by the way—try a mag-
nifying glass instead.

There are two main ways that color images are represented on com-
puters. In the first, called paletted images, there exists a table of color
values (usually with 256 entries) and an image where each pixel is a char-
acter indexing into the list. This restricts the image to having 256 unique
colors. Before a few years ago, all games used 256-color images for all of
their graphics, and before then even fewer colors were used (16 in
high-resolution VGA, 4 in EGA and CGA). See Figure 2.4 for a diagram of
what this looked like.

Chapter 2: Getting Started with DirectX � 39

Figure 2.4:
The workings of
paletted images

Nowadays every PC you can buy has hardware that can render images
with thousands or millions of individual colors. Rather than have an array
with thousands of color entries, the images instead contain explicit color
values for each pixel. A 16-bit display is named since each pixel in a 16-bit
image is taken up by 16 bits (2 bytes): 5 bits of red information, 6 bits of
green information, and 5 bits of blue information. Incidentally, the extra
bit (and therefore twice as much color resolution) is given to green
because your eyes are more sensitive to green. A 24-bit display, of course,
uses 24 bits, or 3 bytes per pixel, for color information. This gives 1 byte,
or 256 distinct values each, for red, green, and blue. This is generally
called true color, because 2563 (16.7 million) colors is about as much as
your eyes can discern, so more color resolution really isn’t necessary, at
least for computer monitors.

Finally, there is 32-bit color, something seen on most new graphics
cards. Many 3D accelerators keep 8 extra bits per pixel around to store
transparency information, which is generally referred to as the alpha chan-

nel, and therefore take up 4 bytes, or 32 bits, of storage per pixel. Rather
than reimplement the display logic on 2D displays that don’t need alpha
information, these 8 bits are usually just wasted.

Almost universally, all computer images have an origin located at the
top left corner of the image. The top left corner pixel is referenced with the
x,y pair (0,0). The value of x increases to the right; y increases down. This
is a departure from the way people usually think of Cartesian coordinates,
where the origin is usually in the lower left or center. Figure 2.5 shows the
coordinate convention your images will use.

Each horizontal row of pixels is called a scan line. The image is stored in
memory by attaching each scan line from the top to the bottom end-to-end
into a single large one-dimensional array. That way, accessing pixel (x,y) on

40 � Chapter 2: Getting Started with DirectX

Figure 2.5:
Coordinate setup
of an image

the screen requires you to move across to the correct scan line (the scan
line number is y; each scan line is width pixels across) and then move
across the scan line to the correct pixel.

pixel(x,y)=width*y+x

There is one special image in memory that describes the pixels that the
monitor will draw. Back in the DOS days, if you put the machine into
320x200x256 color mode and then set *(0xa0000) = 15, a white pixel
would appear in the top left corner of the screen (palette entry 15 is white
by default). The pointer 0xa0000 pointed to the start of the 64KB block of
video memory on VGA cards. A graphics application takes this block of
memory and fills it with whatever it would like to show up on the screen.

There’s a problem, however. The screen isn’t updated instantly. It’s a
physical device, and as such moves eons slower than the CPU. The actual
electron gun that lights the screen is internally flying across each scan line
of the monitor, reading from the screen’s image data and displaying the
appropriate colors on the screen. When it reaches the end of a scan line, it
moves diagonally down and to the left to the start of the next scan line.
When it finishes the last scan line, it moves diagonally up and to the left
back to the start of the first scan line. The movement from the bottom right
to the top left corners is called the vertical blank or vertical retrace (shown
in Figure 2.6) and it takes a long time in terms of processor speed. I’m
talking years here.

Keep this in mind when rendering your images. If you update the screen
image at an arbitrary time, the electron gun may be in the middle of the
screen. So for that particular frame, the top half of the screen will display
the old image, and the bottom half will display the new image. That’s
assuming you can change the image quickly enough. If you don’t, pieces of

Chapter 2: Getting Started with DirectX � 41

Figure 2.6:
The vertical blank

new image may be smattered all over the screen, creating a horrible, ugly
mess. This effect is known as tearing.

Because of this, every game under the sun uses a trick called double

buffering. During rendering, the final image is rasterized into a secondary,
off-screen buffer. Then the application waits around for the vertical blank
to begin. When this occurs it is safe to copy the off-screen image to the
on-screen image buffer. The off-screen buffer is generally referred to as the
back buffer, while the visible image buffer is referred to as the primary sur-

face. You can be fairly sure that the memory copy will finish before the
vertical blank does, so when the electron gun starts drawing again, it’s
using the new image. While it’s drawing the new image, you start render-
ing the next image into your back buffer, and the cycle continues.

Note: Actually, applications can go a step further and use triple or even quadru-
ple buffering. This is useful to help smooth out jerky frame rates but requires
a lot of precious video memory (especially at high resolutions).

Surfaces

2D images in Direct3D are wrapped by objects called surfaces. Internally, a
surface is just a structure that manages image data as a contiguous block
of memory. Because of this you see the concept of a surface being used in
lots of places in DirectX to take care of different types of data, from vertex
buffers to sound buffers. The structure keeps track of the vital statistics of
the surface, such as its height, width, and format of the pixel. You create
them using the Direct3D object and use the IDirect3DSurface9 interface to
play with them.

One of the features that surfaces implement is locking. This is because
of the asynchronous (multiple things happening in parallel) nature of
many video cards. Instead of having to wait for every operation to finish,
you can tell the hardware to do something for you, and it will perform the
task in the background while you are attending to other tasks. When multi-
ple things are accessing the same piece of memory at the same time,
caution must be taken.

For example, imagine you draw an image to a surface and request
Direct3D to copy the pixels to the screen (using a blit, or bit block transfer,
which I’ll discuss shortly). The task gets queued with the other tasks the
card is currently doing and will be finished eventually. However, without
memory protection, you could quickly copy another image onto the bits of
the surface before the blit gets executed. When the card got around to per-
forming the blit, it would be blitting a different image!

This is a horrible problem. Depending on how much load was on the
video card (and whether or not it operates asynchronously; some cards do
not), sometimes the surface will be replaced before it is copied, sometimes
it won’t, sometimes it may even be in the process of being replaced when
the card gets to it.

42 � Chapter 2: Getting Started with DirectX

For this reason, you do not have continual access to the raw bits of
data that make up your image at all times. The solution DirectX uses is a
fairly common concurrency paradigm called a lock. When you acquire a
lock to a surface, you have exclusive access to it until you are finished with
it. If you request a lock on a surface and another piece of code is using it,
you won’t be able to get it until the other process releases its lock on the
surface. When you successfully complete a lock, you are given a pointer to
the raw bits, which you may modify at your leisure, while being confident
that no other programs will mess with your memory. In the previous exam-
ple, Direct3D would lock the surface when you requested the blit and
unlock it once the blit had completed. If you tried to mangle the bits of the
image, your code would not be able to get a pointer to the image data (one
of the things you receive when you engage a lock) until the lock had been
released by Direct3D.

Surfaces, along with having the raw bits to image data, contain a lot of
information about the pixels they contain. The width, height, format of the
pixel, type of surface, etc., are stored in the surface. There is another
important variable that a surface contains that I should mention, called the
pitch. Some hardware devices require that image rows begin aligned to
4-pixel boundaries, or 10-pixel boundaries, or any other possible value. If
you tried to make an image with an odd width, the card would not be able
to handle it. Because of this, Direct3D uses the concept of a pitch in addi-
tion to the width.

The pitch of an image is similar to the width; however, it may be a bit
bigger to accommodate the way the display adapter works. The address of
the pixel directly below the top left corner of a Direct3D surface is not sur-
face_width * bytes_per_pixel. Rather, it is pixel * surface_pitch. The
surface pitch is always measured in bytes; it doesn’t vary in relation to the
number of bits per pixel. See Figure 2.7.

Chapter 2: Getting Started with DirectX � 43

Figure 2.7:
The extra issue
of dealing with
image pitch

Note: This is very important so don’t forget it: The pitch of a surface is always
measured in bytes and has nothing to do with the number of bits per pixel
you are currently working with.

Complex Surfaces

Surfaces can be attached to other surfaces in something called a surface

chain. This concept is used to represent MIP maps, cubic environment
maps (both discussed in Chapter 10), and flipping chains.

Flipping chains allow an easier way for the hardware to implement
double buffering if two (or more) surfaces exist in the chain. One of them
is actually the screen image, the pixels the electron gun will use to display
the image on the monitor. The other is the back buffer, the buffer you ren-
der the scene into. When you’re done rendering, you can flip the surfaces,
which will actually swap the addresses of the buffers internally on the
video card. Then the back buffer becomes the screen image, and the screen
image becomes the back buffer. The next time the application starts ren-
dering a frame, it will be rendering into what once was the screen image,
while what once was the back buffer is currently being drawn to the screen
by the monitor.

Warning: If you’re counting on the results from the previous frame when ren-
dering the current frame, be wary. The bits you get when you’re using
double buffering with a flipping chain isn’t the state of the frame buffer at the
end of the previous frame; it’s the frame buffer from two frames ago!

Describing Surfaces

When you create surfaces or request information about surfaces, the capa-
bilities and vital statistics for the surface are inscribed in a structure called
the surface description. The surface description is represented by the
D3DSURFACE_DESC structure and has the following definition:

typedef struct _D3DSURFACE_DESC {
D3DFORMAT Format;
D3DRESOURCETYPE Type;
DWORD Usage;
D3DPOOL Pool;
UINT Size;
D3DMULTISAMPLE_TYPE MultiSampleType;
DWORD MultiSampleQuality;
UINT Width;
UINT Height;

} D3DSURFACE_DESC;

44 � Chapter 2: Getting Started with DirectX

Table 2.1: The D3DSURFACE_DESC structure

Format A member of the D3DFORMAT enumeration identifying the format for the
surface that you want to use. This can be set to any of the following values,
although you don’t have to worry about most of them for now. I have
bolded the most important flags that you will probably come across.

� D3DFMT_UNKNOWN—The surface format is not known.
� D3DFMT_R8G8B8—Standard 24-bit RGB (red, green, blue) format
� D3DFMT_A8R8G8B8—Standard 32-bit ARGB (alpha, red, green, blue)

format
� D3DFMT_X8R8G8B8—32-bit RGB format
� D3DFMT_R5G6B5—Standard 16-bit RGB format
� D3DFMT_X1R5G5B5—15-bit RGB format
� D3DFMT_A1R5G5B5—16-bit ARGB format
� D3DFMT_A4R4G4B4—16-bit ARGB format
� D3DFMT_R3G3B2—8-bit RGB format
� D3DFMT_A8—8-bit alpha-only surface
� D3DFMT_A8R3G3B2—16-bit ARGB format
� D3DFMT_X4R4G4B4—16-bit RGB format
� D3DFMT_A8P8—16-bit AP surface format (8 bits alpha, 8 bits palette)
� D3DFMT_P8—8-bit palettized surface
� D3DFMT_L8—8-bit luminance-only surface
� D3DFMT_A8L8—16-bit AL surface (8 bits alpha, 8 bits luminance)
� D3DFMT_A4L4—8-bit AL surface (4 bits alpha, 4 bits luminance)
� D3DFMT_V8U8—16-bit bump map format
� D3DFMT_L6V5U5—16-bit bump map surface with luminance
� D3DFMT_X8L8V8U8—32-bit bump map surface with luminance

(8 bits each)
� D3DFMT_Q8W8V8U8—32-bit bump map surface
� D3DFMT_V16U16—32-bit bump map only surface format
� D3DFMT_W11V11U10—32-bit bump map only surface format
� D3DFMT_UYVY—PC98 compatible UYVY format
� D3DFMT_YUY2—PC98 compatible YUY2 format
� D3DFMT_DXT1—DXT1 compressed surface
� D3DFMT_DXT2—DXT2 compressed surface
� D3DFMT_DXT3—DXT3 compressed surface
� D3DFMT_DXT4—DXT4 compressed surface
� D3DFMT_DXT5—DXT5 compressed surface
� D3DFMT_D16_LOCKABLE—16-bit lockable depth buffer
� D3DFMT_D32—32-bit depth buffer
� D3DFMT_D15S1—16-bit depth buffer with a 1-bit stencil buffer
� D3DFMT_D24S8—32-bit depth buffer with an 8-bit stencil buffer
� D3DFMT_D16—Standard 16-bit depth buffer
� D3DFMT_D24X8—24-bit depth buffer on a 32-bit surface
� D3DFMT_D24X4S4—32-bit depth buffer with a 4-bit stencil buffer
� D3DFMT_VERTEXDATA—The surface contains vertex buffer data
� D3DFMT_INDEX16—The surface contains 16-bit index buffer data
� D3DFMT_INDEX32—The surface contains 32-bit index buffer data

Chapter 2: Getting Started with DirectX � 45

Type A member of the D3DRESOURCETYPE enumeration, identifying the type
of surface. The possible values for Type are listed below. Again, don’t worry
too much about what they mean just yet—I’ll cover everything important
throughout the book. For now just specify the D3DRTYPE_SURFACE
identifier.

� D3DRTYPE_SURFACE—The object you are creating will be a surface.
� D3DRTYPE_VOLUME—The object you are creating will be a volume.
� D3DRTYPE_TEXTURE—The object will be a standard texture.
� D3DRTYPE_VOLUMETEXTURE—The object will be a volume texture.
� D3DRTYPE_CUBETEXTURE—The object will be a cubic texture.
� D3DRTYPE_VERTEXBUFFER—The object will be a vertex buffer.
� D3DRTYPE_INDEXBUFFER—The object will be an index buffer.

Usage This specifies how the surface will be used. If you are creating an off-screen
surface to hold an image, set this to NULL. If the surface will be used as a
render target (e.g., a back buffer), specify D3DUSAGE_RENDERTARGET.
Or, if you want to create a depth or stencil buffer, which I’ll cover in later
chapters, specify D3DUSAGE_DEPTHSTENCIL.

Pool A member of the D3DPOOL enumeration identifying where in memory you
want the new surface to reside. The possible values for the D3DPOOL
enumeration are shown below, but you will almost always want to specify
D3DPOOL_MANAGED for this variable.

� D3DPOOL_DEFAULT—Direct3D will automatically place the surface in
the memory (system, video, AGP, etc.) that is best suited to hold it.
� D3DPOOL_MANAGED—The surface will be copied into video memory
as it is needed automatically and is backed up by system memory so the
image is unaffected by device loss, which I will talk about shortly.
� D3DPOOL_SYSTEMMEM—The surface will reside in system memory,
which is usually not accessible by the display adapter.
� D3DPOOL_SCRATCH—Resources are kept in system RAM and
therefore do not need to be randomized when a device is lost.

Size The size of the surface in bytes

MultiSampleType Member of the D3DMULTISAMPLE_TYPE enumeration identifying the
number of multisample levels that the device supports. Just assume this to
be NULL for now.

MultiSample
Quality

This is the quality that you want for multisampling. Set this to an index
between 0 and one less than the value returned from
IDirect3D9::CheckDeviceMultiSampleType.

Width The width, in pixels, of the surface

Height The height, in pixels, of the surface

Don’t worry, I’m not expecting you to get this yet. At the moment I am
throwing a lot of information at you. The important thing to do is to keep
your head above the mud and keep reading. So now that you’ve seen how
surfaces are described, let’s look at an actual Direct3D surface.

46 � Chapter 2: Getting Started with DirectX

The IDirect3DSurface9 Interface

A Direct3D surface is represented with a COM interface. Since more and
more features have been added through the different versions of DirectX,
new COM interfaces have been made (remember that you can never
change COM interfaces once they’re published). The current version of the
Direct3D surface interface is called IDirect3DSurface9. Unlike previous ver-
sions of this interface, which used to be called IDirectDrawSurface8,
IDirect3DSurface9 has only six member functions; they are listed in Table
2.2.

Table 2.2: IDirect3DSurface9 methods

GetContainer Gets a pointer to a parent texture if one exists.

GetDesc Retrieves a D3DSURFACE_DESC structure, which is filled with information
describing the surface.

LockRect The all-important function that is used to lock a surface so that you can access
it. The function gets you a D3DLOCKED_RECT structure, which contains the
pitch of the surface as well as a pointer to the start of the image data.

UnlockRect Unlocks a previously locked surface.

GetDC Gets a device context for a surface so that you can use it with standard
Windows GDI functions.

ReleaseDC Releases the handle to the device context back to Windows. Call this when you
are done making GDI calls with this surface. You should not keep the DC
handle for longer than you need to.

Surface Operations

These days Direct3D only has a few facilities to help you play with sur-
faces. The main one is blitting. Blit (or bit block transfer) is the short name
for physically copying the contents of one image on top of another image.
The 2D games of yore focused intently on blitting; games lived and died by
the speed of their blitting engine. When you saw Mario running about the
screen, you were actually looking at two small square images, one repre-
senting the head and shoulders and one representing the body, that were
copied onto the screen, one on top of the other, to look like an Italian
plumber doing his best to fulfill his archaic gender role and save Princess
Toadstool.

Back in the pre-Direct3D days, people generally did blitting them-
selves, without the help of Windows. In the simplest case (no scaling, no
transparency), it was just a matter of doing some memcpy’s to overwrite a
section of one surface’s contents with a section of another’s. However, in
the brave new world of hardware accelerated video cards, this is not the
best thing to do. Most (if not all) modern video cards support many basic
2D operations (like blitting) in hardware, making them orders of magni-
tude faster than the fastest memcpy you could ever write. In order to
transparently use whatever hardware is currently supported on the
machine, you tell Direct3D what you want to do, and Direct3D translates

Chapter 2: Getting Started with DirectX � 47

your commands to whatever hardware is available. If no hardware acceler-
ation is available, Direct3D does all the work itself, using heavily optimized
code, which is just as good if not better than anything you or I would be
able to write.

While 2D games may employ blits all over the place, calling hundreds
or thousands of them per frame, 3D applications don’t really need them.
You’ll just be using blitting in a couple of places, oftentimes making only
one blit per frame. Because of this I’m not going to go into the myriad of
effects, specializations, optimizations, and so forth that deal with image
blitting.

Warning: Direct3D cannot blit between two surfaces that have different pixel
formats, according to the spec. However, there are some new tools with
Direct3D 9.0 that allow you to get around this problem easily, specifically in
the D3DX library, which I’ll talk about later.

In the past blitting was an integral part of surfaces. There used to be an
actual function called IDirectDrawSurface7::Blt(). However, for some rea-
son or another, an incredible amount of functionality was removed from
surfaces during the unification of Direct3D and DirectDraw, and the
blitting technology is now implemented in functions external to the object.
It seems like a step backward from object orientation, but I’m sure
Microsoft had its reasons.

These days if you want to copy one surface to another you use the
DirectX utility function D3DXLoadSurfaceFromSurface(), which I have
prototyped for you below:

HRESULT D3DXLoadSurfaceFromSurface(
LPDIRECT3DSURFACE9 pDestSurface,
CONST PALETTEENTRY* pDestPalette,
CONST RECT* pDestRect,
LPDIRECT3DSURFACE9 pSrcSurface,
CONST PALETTEENTRY* pSrcPalette,
CONST RECT* pSrcRect,
DWORD Filter,
D3DCOLOR ColorKey

);

The term loading is the Microsoft lingo for filling a surface with data. As
you will see later, you can also load a surface from a file, from a memory
resource, or from just about anywhere. Okay, now let’s take a moment to
look at the function. Don’t get too overwhelmed with it just yet—it is much
simpler than it seems. The parameters are shown in Table 2.3.

Table 2.3: The parameters to D3DXLoadSurfaceFromSurface()

pDestSurface Pointer to the destination IDirect3DSurface9 surface, which will be filled with
the new image.

48 � Chapter 2: Getting Started with DirectX

pDestPalette This can hold a pointer to a PALETTEENTRY palette for the destination surface
if the surface is palettized. However, these days palettized surfaces are rare so
you will probably just want to go ahead and set this to NULL.

pDestRect This parameter takes the address of a destination rectangle within the surface
that you want to fill with the source image. Depending on flags specified in the
Filter parameter, the image will either be cropped or scaled to fit this rectangle.
If you want to use the entire surface as the destination, you can specify NULL
for this parameter.

pSrcSurface Takes the address of the source IDirect3DSurface9 surface that you want to
copy.

pSrcPalette Similarly to the pDestPalette parameter, this parameter takes the address of the
palette for the source surface if it is palettized. You will usually set this
parameter to NULL.

pSrcRect This is the address of a RECT rectangle that contains the dimensions of the area
within the source surface that you want to copy. If you want to copy the entire
source surface then set this parameter to NULL.

Filter This is an interesting parameter that you can set to change the way that the
image is copied if the dimensions of the destination rectangle do not match the
source. I have listed the important flags in the following:

D3DX_FILTER_NONE—No filter will be applied and the image will be cropped
(have its edges chopped off) to make it fit the destination rectangle.

D3DX_FILTER_POINT—A point filter will be applied to scale the source image to
fit the destination. Point filtering is very fast but results in a blocky image.

D3DX_FILTER_LINEAR—A linear filter is used to scale the image. Linear filtering
is slightly slower than point filtering, although the results, which are smoothly
scaled, are orders of magnitude better.

D3DX_FILTER_TRIANGLE—This is the highest quality, and slowest, of the scaling
filters. The performance tradeoff generally does not justify its use over linear
filtering—the results are often indistinguishable.

ColorKey A D3DCOLOR value, which specifies the color that you want to be used as a
color key. Unfortunately, this is not a proper implementation of color keying;
instead, the pixels within the source image that match the color key are just
turned to black on the destination image. If you want true color key support,
I’m afraid you are going to have to program it yourself.

Don’t worry about this too much just yet—all the pieces of the puzzle will
fall into place in your mind as you progress through the book.

You will probably use D3DXLoadSurfaceFromSurface() as your pri-
mary tool when copying surfaces. There is, however, one exception, and
that is when you are copying from a back buffer onto the primary surface,
which I will cover shortly.

Surfaces and Memory

Surfaces can exist in system RAM or in the video card’s memory. Where
you should put the surface depends on what you want to do with it. Blits
between system RAM and video RAM are slow because the data needs to

Chapter 2: Getting Started with DirectX � 49

be transferred over the system bus. The bus usually runs at a lower clock
rate than the system RAM or the video card, causing both of them to sit
around waiting for the bits to be sent.

In general, surfaces that get blitted on top of each other should be in
the same region of memory if possible. For example, say you are compos-
ing a scene with hundreds of blitted images like in a complex 2D game.
Since you probably won’t be able to fit all of the surfaces in video memory,
you need to plan to have at least a few of them in system memory. The
blind algorithm would be to blit each of the surfaces onto the back buffer.
The surfaces in video memory would blit much faster, because they not
only don’t need to go over the bus, they can be blitted by the 2D hardware.
Conversely, the system memory surfaces can hurt the application greatly.

Modifying the Contents of Surfaces

Applications that wish to perform their own raster functions on surfaces,
such as plotting pixels or drawing triangles with custom rasterizers, must
first lock the surface before being able to modify the pixels of the image.

Warning: To prevent other programs from modifying a locked surface, Direct3D
may acquire a win16mutex. This can cause problems if you try to, for exam-
ple, step through code between lock/unlock calls using a debugger like Visual
C++. Luckily, these problems only crop up on Win9x; Win2K and WinXP
use the NT kernel and therefore aren’t affected by this problem. With
DirectX 9.0 now fully integrated into Win2K I suggest that you use that plat-
form for your development. Not only is it a better system, but you can
usually recover from crashed programs easily and without restarting your PC.

To lock a surface you use the IDirect3DSurface9::LockRect() function,
which I have prototyped in the following:

HRESULT LockRect(
D3DLOCKED_RECT* pLockedRect,
CONST RECT* pRect,
DWORD Flags

);

Table 2.4: LockRect parameters

pLockedRect A pointer to a D3DLOCKED_RECT structure, which will be filled with
information about the locked surface. The D3DLOCKED_RECT structure has
the following members:

typedef struct _D3DLOCKED_RECT {
INT Pitch;
void* pBits;
} D3DLOCKED_RECT;

pRect Takes the address of a RECT structure that is filled with the dimensions of the
surface that you want to lock. If you want to lock the entire surface, set this
parameter to NULL.

50 � Chapter 2: Getting Started with DirectX

Flags This can be set to flags that change the behavior of the surface in rare situations.
Usually you will just set this parameter to NULL. If you want more information
on the other flags, see DirectX 9.0 C++ Documentation/DirectX Graphics/

Reference/C++ Reference/IDirect3DSurface9/LockRect in the online
documentation.

Since locking a surface causes most of the critical components of Windows
to start getting into a traffic jam, I cannot overstate the importance of
unlocking a surface when you are done with it. If you do not, Windows
will grind to a halt and eventually stall. To unlock a surface, use the func-
tion IDirect3DSurface9::UnlockRect, which looks like this:

HRESULT UnlockRect();

As you can see, it does not take any parameters. Call this function as soon
as you are finished updating the contents of the surface.

Drawing on Surfaces with GDI

In past versions of DirectX it was incredibly easy to use the Windows GDI
to draw onto a Direct3D surface. However, rather inexplicably, Microsoft
removed all interoperability between surfaces and the GDI in version 8.0.
So unless you wanted to manually program your own routines to copy GDI
data to Direct3D surfaces, you were kind of stuck. Luckily in version 9.0
they have restored this functionality with the IDirect3DSurface9::GetDC()
method. I’m not going to go into how to use the GDI since this book is
about DirectX, but it is not difficult. Once you acquire a DC handle for the
surface you can use it with the GDI as if it is any normal device context. If
you’re interested in learning more about the GDI, then I would suggest
reading the latest version of Charles Petzold’s book Programming Windows

or my book, The Zen of Direct3D Game Programming.
Anyway, the GDI is so slow that you would be better off just rewriting

your own optimized rectangle, line, or circle functions yourself rather than
resorting to the monstrous GDI.

The Direct3D Device Object

The Direct3D device object provides a line of communication between your
software and the video card in the host machine. Typically, since only one
video card exists in a machine, you only have to concern yourself with one
device object. However, in the case of a machine with more than one
graphics card, or a graphics card with more than one monitor attached,
there can be multiple Direct3D device objects to choose from. In this case
you may have to be careful which object you create. For example, if the
user had an old dinosaur 3DFX card (which worked alongside a 2D card)
and you wrongly chose the primary Direct3D object instead of the object
corresponding to the 3DFX card, you wouldn’t be able to access its 3D
capabilities. This is due to the fact that when you build Direct3D code in

Chapter 2: Getting Started with DirectX � 51

Chapter 8, it is built on top of the 2D technology. However, these days this
is not so much of an issue since there are almost no separate add-on cards
left on the market. Instead, 3D functionality is built right into the primary
display adapter. If you have one of these older cards, it is definitely time to
get out of the Stone Age and go out and purchase a new one, especially if
you are interested in development.

The Direct3D object lets you do things you could never do with only
the standard Windows API. For example, you can change the bit depth and
the resolution of the display to any mode the card supports. You can ask
the object for a list of available resolutions and select from among them.
The Direct3D device object is created by the Direct3D object, which I will
show you shortly.

Windowed vs. Full-screen

The two main modes of operation of Direct3D are windowed rendering
and full-screen rendering. In windowed rendering, your application draws
its graphics to the client rectangle of a regular old window, sharing space
with other running applications. When your window is resized, you need
to take care to resize your internal structures to adapt to the new size. The
same applies when the window is moved around the screen. In addition,
windowed rendering makes use of a Direct3D concept called a clipper. A
clipper object keeps track of any windows that are on top of your window,
so that when you draw your surface to the screen only the pixels that actu-
ally belong to the application’s client rectangle are drawn. Luckily the
process of handling clipping is completely handled by Direct3D, so you
never have to touch it.

Figure 2.8 shows the kind of issue I’m talking about. If you just drew
arbitrarily to the client rectangle, you would overwrite the top left part of
the Notepad application floating over the window.

52 � Chapter 2: Getting Started with DirectX

Figure 2.8:
You can’t draw
just anywhere!

The Direct3D Object

The IDirect3D9 interface is the first interface that you will interact with
when you are using DirectX Graphics. It does basically nothing except for
creating the Direct3D device object, which I talked about previously. It is
the device that is used to interact with the graphics hardware. Well, I kind
of lied; IDirect3D9 does have some functionality, but to tell you the truth
in all the time I have used Direct3D, I have rarely used any of its function-
ality since most of it is replicated in the device object anyway.

IDirect3D9 is created with the Direct3DCreate9() function, which I
will show you shortly. Now, before I bring all this stuff together, let me take
a moment to show you how to create surfaces.

Creating Direct3D Surfaces

Creating surfaces used to be a total pain before version 9.0 came out. You
had to fill out massive annoying structures that contained an unbelievable
amount of entries and substructures. Couple that with poor, badly struc-
tured documentation, and it was no wonder that so many people found
the learning curve for DirectX Graphics so steep.

Luckily these days all that is gone and all you have to do is make a
simple call to a function called IDirect3DDevice9::CreateOffscreenPlain-
Surface().

HRESULT CreateOffscreenPlainSurface (
UINT Width,
UINT Height,
D3DFORMAT Format,
D3DPOOL Pool,
IDirect3DSurface9** ppSurface
HANDLE* pHandle

);

Table 2.5: CreateOffscreenPlainSurface parameters

Width The width that you want the new surface to be, in pixels.

Height The height that you want the new surface to be, in pixels.

Format A member of the D3DFORMAT enumerated type, specifying the format for the
surface. You can see the full list of possible values for this parameter earlier in the
chapter in the table for D3DSURFACE_DESC structure. However, you will
usually want to set this to D3DFMT_ A8R8G8B8 for 32-bit surfaces. For more
information, see DirectX 9.0 C++ Documentation/DirectX Graphics/Direct3D

C++ Reference/Enumerated Types/D3DFORMAT.

Pool The type of surface pool to use

ppSurface Takes the address of a pointer that will be filled with the address of the newly
created surface.

pHandle Reserved. Set this parameter to NULL.

Chapter 2: Getting Started with DirectX � 53

So if you wanted to create a simple 32-bit ARGB, 640x480 surface, you
could use the following code:

Listing 2.1: Creating a new image surface

HRESULT r = 0;
LPDIRECT3DSURFACE9 pSurface = 0;

r = g_pDevice->CreateOffscreenPlainSurface(640, 480, D3DFMT_A8R8G8B8,
D3DPOOL_MANAGED, &pSurface, NULL);

if(FAILED(r))
{

// Error
}

// Success!

When you are finished with a surface that uses a large amount of
resources, don’t forget to release it using the IDirect3DSurface9::Release()
function, like this:

pSurface->Release();
pSurface = 0;

More on Direct3D Devices

There are two pieces of code running in Direct3D applications. The first is
the extremely thin layer that takes requests to blit surfaces, for example,
and converts those into hardware instructions for the video card to per-
form. This thin layer that wraps the hardware, abstracting it away, is called
the hardware abstraction layer (HAL).

In the event that a desired effect in Direct3D is not supported by the
HAL, usually it is handled by a larger piece of code that emulates what the
hardware would do, actually performing the work with the CPU. This layer
is called the hardware emulation layer (HEL). The HEL can be considerably
slower than the HAL, both because it isn’t asynchronous and because it
needs to use the CPU to do its dirty work, which isn’t specialized for graph-
ics operations.

Any piece of hardware that can accelerate 3D graphics will support the
subset of Direct3D (which, essentially, is just surface blits and filled blits).
If you plan on using more esoteric features, you should check the device
capabilities. This can be done using IDirect3DDevice9::GetDeviceCaps().
There isn’t space to cover the function or the structure of capability bits it
fills up because it is literally massive. However, if you are feeling moti-
vated, you can check this bad boy out in DirectX 9.0 C++ Documentation/

DirectX Graphics/Reference/Direct3D C++ Reference/Interfaces/IDirect3D-

Device9/GetDeviceCaps in the online documentation.

54 � Chapter 2: Getting Started with DirectX

Implementing Direct3D with cGraphicsLayer

To implement Direct3D I’m going to create a class called cGraphicsLayer.
Like cApplication, it is a class that can only have one instance. In creating
this class, there are several abilities that it should possess:

� Initialization of full-screen Direct3D should be automatic.

� It should be easy to get access to the Direct3D objects if need be, but
that need should arise as rarely as possible.

� You should be able to initialize Direct3D with the primary display
adapter.

Let’s dive into the code. First, have a look at the header file DxHelper.h,
which helps simplify some of the programming tasks.

Listing 2.2: DxHelper.h

/***
* Advanced 3D Game Programming using DirectX 9.0
* *
* Desc: Sample application for Direct3D
*
* copyright (c) 2003 by Peter A Walsh and Adrian Perez
* See license.txt for modification and distribution information
**/

#ifndef _D3DHELPER_H
#define _D3DHELPER_H

#include <memory.h>

/**
* This class takes care of the annoying gruntwork
* of having to zero-out and set the size parameter
* of our Windows and DirectX structures.
*/
template <class T>
struct sAutoZero : public T
{

sAutoZero()
{

memset(this, 0, sizeof(T));
dwSize = sizeof(T);

}
};

/**
* The Right Way to release our COM interfaces.
* If they're still valid, release them, then
* invalidate them and null them.
*/
template <class T>
inline void SafeRelease(T& iface)
{

Chapter 2: Getting Started with DirectX � 55

if(iface)
{

iface->Release();
iface = NULL;

}
}
#endif // _D3DHELPER_H

The interface for the graphics layer appears in GraphicsLayer.h, which is
given in Listing 2.3.

Listing 2.3: GraphicsLayer.h

/***
* Advanced 3D Game Programming using DirectX 9.0
* *
* Desc: Sample application for Direct3D
*
* (C) 2003 by Peter A Walsh and Adrian Perez
* See license.txt for modification and distribution information
**/

#ifndef _GRAPHICSLAYER_H
#define _GRAPHICSLAYER_H

#include <list>
#include <string>
using std::string;
using std::list;

#include "GameTypes.h"
#include "DxHelper.h"

#include <d3d9.h>

class cApplication;

class cGraphicsLayer
{

protected:

HWND m_hWnd; // The handle to the window
LPDIRECT3D9 m_pD3D; // The IDirect3D9 interface
LPDIRECT3DDEVICE9 m_pDevice; // The IDirect3DDevice9 interface
LPDIRECT3DSURFACE9 m_pBackSurf; // Pointer to the back buffer

RECT m_rcScreenRect; // The dimensions of the screen

cGraphicsLayer(HWND hWnd); // Constructor
static cGraphicsLayer* m_pGlobalGLayer; // Pointer to main global gfx object

public:

void DestroyAll();

56 � Chapter 2: Getting Started with DirectX

~cGraphicsLayer();

/**
* Initialization calls.
*/

void InitD3DFullScreen(GUID* pGuid, int width, int height, int bpp);

/**
* This function uses Direct3DX to write text to the back buffer.
* It's much faster than using the GDI
*/
void DrawTextString(int x, int y, DWORD color, const char * str);

//==========-------------------------- Accessor functions
// Gets a pointer to the IDirect3D9
LPDIRECT3D9 GetD3D()
{

return m_pD3D;
}

// Gets a pointer to the device
LPDIRECT3DDEVICE9 GetDevice()
{

return m_pDevice;
}

// Gets a pointer to the back buffer
LPDIRECT3DSURFACE9 GetBackBuffer()
{

return m_pBackSurf;
}

// Gets the screen width
int Width() const
{

return m_rcScreenRect.right;
}

// Gets the screen height
int Height() const
{

return m_rcScreenRect.bottom;
}

// Presents the back buffer to the primary surface
void Flip();

// Gets a pointer to the main gfx object
static cGraphicsLayer* GetGraphics()
{

return m_pGlobalGLayer;
}

// Initializes this object

Chapter 2: Getting Started with DirectX � 57

static void Create(
HWND hWnd, // handle to the window
short width, short height, // width and height
GUID* pGuid); // Device guid

};

inline cGraphicsLayer* Graphics()
{

return cGraphicsLayer::GetGraphics();
}

#endif //_GRAPHICSLAYER_H

GraphicsLayer.cpp is pretty long, so I’ll show it to you step by step. There
are a few functions that don’t deal with initialization, which I’ll list here.
The first is a helper function used to draw text onto a Direct3D surface
(such as the back buffer). It uses the D3DX utility COM object ID3DXFont
to display the text.

Listing 2.4: cGraphicsLayer::DrawTextString

void cGraphicsLayer::DrawTextString(int x, int y, DWORD color, const char *
str)

{

HRESULT r = 0;

if(!m_pBackSurf)
return;

// Get a handle for the font to use
HFONT hFont = (HFONT)GetStockObject(SYSTEM_FONT);

LPD3DXFONT pFont = 0;
// Create the D3DX Font
r = D3DXCreateFont(m_pDevice, hFont, &pFont);
if(FAILED(r))

return;

// Rectangle where the text will be located
RECT TextRect = { x, y, 0, 0 };

// Inform font it is about to be used
pFont->Begin();

// Calculate the rectangle the text will occupy
pFont->DrawText(str, -1, &TextRect, DT_CALCRECT, 0);

// Output the text, left aligned
pFont->DrawText(str, -1, &TextRect, DT_LEFT, color);

// Finish up drawing
pFont->End();

58 � Chapter 2: Getting Started with DirectX

// Release the font
pFont->Release();

}

The other function not covered by the initialization code is Flip(). It is
called when you are finished rendering the frame to the back buffer. Flip-
ping is accomplished with a call to IDirect3DDevice9::Present(), which
takes no parameters.

Listing 2.5: cGraphicsLayer::Flip

void cGraphicsLayer::Flip()
{

HRESULT r = 0;

// Make sure the device has been created.
assert(m_pDevice);

// Blit the back buffer to the primary surface
r = m_pDevice->Present(NULL, NULL, NULL, NULL);
if(FAILED(r))
{

OutputDebugString("Flipping Failed!\n");
}

}

Creating the Graphics Layer

In a moment I’m going to dive into the code that initializes Direct3D for
full-screen rendering. The way the code actually gets called is in cAppli-
cation::InitGraphics. That code calls the static function cGraphicsLayer::
Create, which appears in the following listing.

Listing 2.6: cGraphicsLayer::Create

void cGraphicsLayer::Create(HWND hWnd, short width, short height, GUID* pGuid)
{

new cGraphicsLayer(hWnd); // construct the object.

// Init Direct3D and the device for fullscreen operation
Graphics()->InitD3DFullScreen(pGuid, width, height, 32);

}

Now that you know how the initialization code will be called, let’s dive in
and see how it works.

Chapter 2: Getting Started with DirectX � 59

Full-screen Initialization

Initializing Direct3D for full-screen mode is easier than windowed mode.
The set and order of things to do is fairly consistent, so it’s easy to hide it
away into an initialization function. I’ll go through the process step by
step.

Step 1: Create the Direct3D object.

The first step in Direct3D initialization is to create an instance of the
Direct3D object and acquire an interface to it. Instead of using the stan-
dard COM construction technique, which is a total pain, you can use a
pleasantly wrapped-up function called Direct3DCreate9():

IDirect3D9* Direct3DCreate9(UINT SDKVersion);

Table 2.6: Direct3DCreate9 parameters

SDKVersion An identifier specifying the version of Direct3D that you are using. You should
always specify D3D_SDK_VERSION for this parameter, which automatically
contains the correct version.

// Create the Direct3D object
m_pD3D = Direct3DCreate9(D3D_SDK_VERSION);
if(!m_pD3D)
{

throw cGameError("Could not create IDirect3D9");
}

Step 2: Set the present parameters.

The new word for moving the contents of the back buffer to the primary
surface is present. So when you are done messing with the back buffer and
want to display it, you present it to the primary surface. Keep that in your
head because it pops up a lot in this section. The first thing you need to do
when initializing Direct3D is to fill in what are called the present parame-
ters. This is basically just a structure that contains information about the
size and bit depth of the back buffer and primary surface, which is impor-
tant because in version 9.0, Direct3D manages these two surfaces for you.
The structure looks like this:

typedef struct _D3DPRESENT_PARAMETERS_ {
UINT BackBufferWidth, BackBufferHeight;
D3DFORMAT BackBufferFormat;
UINT BackBufferCount;
D3DMULTISAMPLE_TYPE MultiSampleType;
DWORD MultiSampleQuality;
D3DSWAPEFFECT SwapEffect;
HWND hDeviceWindow;
BOOL Windowed;
BOOL EnableAutoDepthStencil;
D3DFORMAT AutoDepthStencilFormat;
DWORD Flags;
UINT FullScreen_RefreshRateInHz;

60 � Chapter 2: Getting Started with DirectX

UINT PresentationInterval;
} D3DPRESENT_PARAMETERS;

Table 2.7: D3DPRESENT_PARAMETERS structure members

BackBufferWidth Width of the back buffer, in pixels.

BackBufferHeight Height of the back buffer, in pixels.

BackBufferFormat A D3DFORMAT enumeration member specifying the format
for the back buffer, which can be any of the flags in Listing 2.1.
You will usually set this to D3DFMT_A8R8G8B8 for 32-bit
surfaces or D3DFMT_R5G6R5 for 16-bit surfaces.

BackBufferCount The number of back buffers that you want to associate with
the primary surface. You normally want this to be 1.

MultiSampleType A member of the D3DMULTISAMPLE_TYPE enumeration,
specifying the type of multisampling, if any, that you want to
use. Just set this parameter to D3DMULTISAMPLE_NONE.

MultiSampleQuality Set this value to between 0 and the result of
IDirect3D9::CheckDeviceMultiSampleType.

SwapEffect A D3DSWAPEFFECT enumeration member specifying the
semantics that you want to use when presenting the back
buffer to the primary surface. You will normally set this to
D3DSWAPEFFECT_COPY.

hDeviceWindow A handle to the window that you want to use as the rendering
target.

Windowed A Boolean value specifying whether the application runs in
full-screen or windowed mode. Specify FALSE for full-screen
operation.

EnableAutoDepthStencil A Boolean value specifying whether you want Direct3D to
manage the depth and/or stencil buffer for you. This is usually a
good thing so you should specify TRUE.

AutoDepthStencilFormat Takes a member of the D3DFORMAT enumeration that
specifies the format of the depth buffer that you want
Direct3D to manage. D3DFMT_16 is a good choice; it creates
a 16-bit depth buffer for you.

Flags Set this to its only possible value, D3DPRESENTFLAG_LOCK-
ABLEBACKBUFFER. If you will not be messing with the back
buffer, set this to 0 for a slight performance improvement.

FullScreen_RefreshRateInHz The refresh rate that you want the monitor to run at. Set this
to D3DPRESENT_RATE_DEFAULT to allow Direct3D to use
what it thinks is the best rate.

PresentationInterval Specifies how quickly you want the back buffer to be present-
ed to the primary surface. Specify D3DPRESENT_INTER-
VAL_IMMEDIATE to allow the process to complete as quickly
as possible.

It is not as hard as it looks since most of the entries can be set to default
values that you never have to look at again. Have a look at the code

Chapter 2: Getting Started with DirectX � 61

snippet below as an example of how to fill in the structure to create a stan-
dard, full-screen, 640x480, 32-bit application:

Listing 2.7: Filling in the D3DPRESENT_PARAMETERS structure

D3DPRESENT_PARAMETERS d3dpp;
ZeroMemory(&d3dpp, sizeof(d3dpp));

// The width and height for the initial back buffer
d3dpp.BackBufferWidth = width;
d3dpp.BackBufferHeight = height;
// Set the flags for the bit depth - only supports 16-, 24-, and 32-bit formats
if(bpp == 16)

d3dpp.BackBufferFormat = D3DFMT_R5G6B5;
else if(bpp == 24)

d3dpp.BackBufferFormat = D3DFMT_X8R8G8B8;
else if(bpp == 32)

d3dpp.BackBufferFormat = D3DFMT_A8R8G8B8;
else
{

OutputDebugString("Invalid surface format - defaulting to 32bit");
d3dpp.BackBufferFormat = D3DFMT_A8R8G8B8;

}
// Only have one back buffer associated with the primary surface
d3dpp.BackBufferCount = 1;
// No multisampling
d3dpp.MultiSampleType = D3DMULTISAMPLE_NONE;
// The quality of the multisampling
d3dpp.MultiSampleQuality = 0;
// Copy the back buffer to the primary surface normally
d3dpp.SwapEffect = D3DSWAPEFFECT_COPY;
// The handle to the window to render in to
d3dpp.hDeviceWindow = m_hWnd;
// Full-screen operation
d3dpp.Windowed = FALSE;
// Let Direct3D look after the depth buffer
d3dpp.EnableAutoDepthStencil = TRUE;
// Set the depth buffer depth to 16 bits
d3dpp.AutoDepthStencilFormat = D3DFMT_D16;
// Use the default refresh rate
d3dpp.FullScreen_RefreshRateInHz = D3DPRESENT_RATE_DEFAULT;
// Update the screen as soon as possible (don't wait for vsync)
d3dpp.PresentationInterval = D3DPRESENT_INTERVAL_IMMEDIATE;
// Allow the back buffer to be locked
d3dpp.Flags = D3DPRESENTFLAG_LOCKABLE_BACKBUFFER;

And that’s it. After the structure is filled in it is very simple to create the
device, which I am just about to show you.

Step 3: Create the device.

The Direct3D rendering device is created with a call to IDirect3DDevice9::
CreateDevice(). Recall that the device is Direct3D lingo for the COM object

62 � Chapter 2: Getting Started with DirectX

that communicates your rendering requests to the actual physical display
adapter in your PC. The function is prototyped in the following:

HRESULT CreateDevice(
UINT Adapter,
D3DDEVTYPE DeviceType,
HWND hFocusWindow,
DWORD BehaviorFlags,
D3DPRESENT_PARAMETERS* pPresentationParameters,
IDirect3DDevice9** ppReturnedDeviceInterface

);

Table 2.8: CreateDevice parameters

Adapter Integer identifying which display device you want to render with.
Specify 0 to use the primary display adapter.

DeviceType A D3DDEVTYPE enumeration member specifying the type of
device that you want to create. Use D3DDEVTYPE_HAL for a
hardware accelerated device, D3DDEVTYPE_SW for a software
device, or D3DDEVTYPE_REF for a reference device. You’ll
almost always want to go with a hardware device. Only use
reference devices for debugging; they contain all possible
hardware features emulated in software, but they are extremely

slow.

hFocusWindow Handle to the window that you want to use as the default
rendering target. This should match the handle that you
specified in the present parameters structure.

BehaviorFlags Takes flags that define the behavior of the device; most of these
are superfluous and you will probably want to stick with just
D3DCREATE_SOFTWARE_VERTEXPROCESSING. If you have
a newfangled hardware transform and lighting card you can
specify D3DCREATE_HARDWARE_VERTEXPROCESSING.

pPresentationParameters Address of the D3DPRESENT_PARAMETERS structure that you
filled with information about the device.

ppReturnedDeviceInterface Address of a pointer that will be filled with the address of the
newly created device.

So if you were going to create a standard hardware accelerated device
with software vertex processing you could use the following code:

Listing 2.8: Creating the device

// Create the device using hardware acceleration if available
r = m_pD3D->CreateDevice(D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL,

m_hWnd, D3DCREATE_SOFTWARE_VERTEXPROCESSING,
&d3dpp, &m_pDevice);

if(FAILED(r))
{

throw cGameError("Could not create IDirect3DDevice9");
}

Chapter 2: Getting Started with DirectX � 63

In previous versions of DirectX you had to program a million other things
like creating clippers, setting the cooperative level, setting the screen reso-
lution, and on and on. These days you are lucky because Direct3D does it
all for you. That one call to CreateDevice() handles all the grunt work and
you can pretty much start rendering as soon as it is created. However,
before I start getting ahead of myself, let me show you in the next step a
function I created that automates this whole process.

Step 4: Put it together.

Now that you know what you need to do, you can write a full-screen ini-
tialization routine. It takes as input a GUID to use for the device, a width, a
height, and a depth, and then it does the rest. The GUID can be set to
NULL to use the primary display device.

Listing 2.9: Direct3D full-screen initialization in cGraphicsLayer

void cGraphicsLayer::InitD3DFullScreen (GUID* pGuid, int width,
int height, int bpp)

{

HRESULT r = 0;

// Create the Direct3D object
m_pD3D = Direct3DCreate9(D3D_SDK_VERSION);
if(!m_pD3D)
{

throw cGameError("Could not create IDirect3D9");
}

// Structure to hold the creation parameters for the device
D3DPRESENT_PARAMETERS d3dpp;
ZeroMemory(&d3dpp, sizeof(d3dpp));

// The width and height for the initial back buffer
d3dpp.BackBufferWidth = width;
d3dpp.BackBufferHeight = height;

// Set the flags for bit depth - only supports 16, 24, and 32 bit formats
if(bpp == 16)

d3dpp.BackBufferFormat = D3DFMT_R5G6B5;
else if(bpp == 24)

d3dpp.BackBufferFormat = D3DFMT_X8R8G8B8;
else if(bpp == 32)

d3dpp.BackBufferFormat = D3DFMT_A8R8G8B8;
else
{

OutputDebugString("Invalid surface format - defaulting to 32bit");
d3dpp.BackBufferFormat = D3DFMT_A8R8G8B8;

}

// Only have one back buffer associated with the primary surface
d3dpp.BackBufferCount = 1;
// No multisampling

64 � Chapter 2: Getting Started with DirectX

d3dpp.MultiSampleType = D3DMULTISAMPLE_NONE;
// The quality of the multisampling
d3dpp.MultiSampleQuality = 0;
// Copy the back buffer to the primary surface normally
d3dpp.SwapEffect = D3DSWAPEFFECT_COPY;
// The handle to the window to render in to
d3dpp.hDeviceWindow = m_hWnd;
// Full-screen operation
d3dpp.Windowed = FALSE;
// Let Direct3D look after the depth buffer
d3dpp.EnableAutoDepthStencil = TRUE;
// Set the depth buffer depth to 16 bits
d3dpp.AutoDepthStencilFormat = D3DFMT_D16;
// Use the default refresh rate
d3dpp.FullScreen_RefreshRateInHz = D3DPRESENT_RATE_DEFAULT;
// Update the screen as soon as possible (don’t wait for vsync)
d3dpp.PresentationInterval = D3DPRESENT_INTERVAL_IMMEDIATE;
// Allow the back buffer to be locked
d3dpp.Flags = D3DPRESENTFLAG_LOCKABLE_BACKBUFFER;

// Create the device using hardware acceleration if available
r = m_pD3D->CreateDevice(D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, m_hWnd,

D3DCREATE_SOFTWARE_VERTEXPROCESSING,
&d3dpp, &m_pDevice);

if(FAILED(r))
{

throw cGameError("Could not create IDirect3DDevice9");
}

// Keep a copy of the screen dimensions
m_rcScreenRect.left = m_rcScreenRect.top = 0;
m_rcScreenRect.right = width;
m_rcScreenRect.bottom = height;

// Get a copy of the pointer to the back buffer
m_pDevice->GetBackBuffer(0, D3DBACKBUFFER_TYPE_MONO, &m_pBackSurf);

}

Shutting Down Direct3D

After the application has finished its rendering, it must properly shut down
Direct3D before terminating the application. This is just a matter of releas-
ing the back buffer, Direct3D device interface, and finally the IDirect3D9
interface. By the way, you should always try to release the interfaces to
COM objects in the opposite order of the way they were created.

The code to shut down Direct3D appears in cGraphicsLayer::Destroy-
All. The destructor calls DestroyAll, but other modules may call it if need
be.

Chapter 2: Getting Started with DirectX � 65

Listing 2.10: cGraphicsLayer::DestroyAll

void cGraphicsLayer::DestroyAll()
{

SafeRelease(m_pBackSurf);
SafeRelease(m_pDevice);

SafeRelease(m_pD3D);

/**
* Prevent any further access to the graphics class
*/
m_pGlobalGLayer = NULL;

}

Changes to cApplication

A new member variable was added to cApplication class to modify the
behavior of the graphics layer when it is initialized. The new variable is
given below:

int m_bpp; // Desired depth (may not be possible)

The m_bpp variable is set to be 32 bits by default in the constructor—you
can change this if you find it necessary.

Using the members in cApplication, cApplication::InitGraphics sets up
the graphics subsystem. At the end of the function you can see the
cGraphicsLayer::Create function I discussed earlier. At the moment it just
sets up Direct3D with the call to cGraphicsLayer::Create, but if you needed
to do any other graphics initialization you could put the code here, away
from the Direct3D messiness.

Listing 2.11: Graphics initialization code

void cApplication::InitGraphics()
{

cGraphicsLayer::Create(
MainWindow()->GetHWnd(),
m_width, m_height,
NULL);

}

Application: Direct3D Sample

To give an idea of how you might use the graphics layer in a regular appli-
cation, I’ll go through a bare-bones Direct3D application with just 2D
graphics for now. In every frame, it fills the screen with pseudo-random
pixels and then uses a color blit to copy a filled rectangle to the screen. It
also flashes text around random locations.

66 � Chapter 2: Getting Started with DirectX

Warning: Almost all of the sample applications in this book depend on the
GameLib library (and the Math3d library, which I’ll show you in Chapter 5).
To make them compile correctly, make sure that the dependencies are set
up correctly (this can be checked by selecting the Project|Dependencies
menu option). GameLib, for this sample and any others that use it, should be
listed as a dependency of your project.

Since the program is so short, I’ll include all of the source code for it. This
appears in Listing 2.12.

Listing 2.12: DDSample.cpp

/***
* Advanced 3D Game Programming using DirectX 9.0
* *
* Desc: Sample application for Direct3D
*
* copyright (c) 2003 by Peter A Walsh and Adrian Perez
* See license.txt for modification and distribution information
**/

#include "stdafx.h"

#include <string>
using namespace std;

class cD3DSampleApp : public cApplication
{

public:

//==========-------------------------- cApplication

virtual void DoFrame(float timeDelta);

cD3DSampleApp() :
cApplication()

{
m_title = string("Direct3D Sample");

}
};

cApplication* CreateApplication()
{

return new cD3DSampleApp();
}

void cD3DSampleApp::DoFrame(float timeDelta)
{

HRESULT hr;
if(!Graphics()) return;

// Clear the previous contents of the back buffer

Chapter 2: Getting Started with DirectX � 67

Graphics()->GetDevice()->Clear(0, 0, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER,
D3DCOLOR_XRGB(0,0,0), 1.0f, 0);

// Structure to hold information about the locked back buffer
D3DLOCKED_RECT LockedRect;

// Get a local pointer to the back buffer
LPDIRECT3DSURFACE9 pBackSurf = Graphics()->GetBackBuffer();

// Lock the back buffer
pBackSurf->LockRect(&LockedRect, NULL, NULL);

// Get a pointer to the back buffer
DWORD* pData = (DWORD*)LockedRect.pBits;

// Convert the pitch to work with 32-bit (4 byte) surfaces
int Pitch32 = LockedRect.Pitch / 4;

int x, y; // Holds the location of the random pixel
DWORD Color; // Holds the color of the pixels and rectangles

// ------------- PART 1: Draw 10,000 randomly colored pixels
for(int i = 0 ; i < 10000 ; i++)
{

// Get a random location for the pixel
x = rand()%639;
y = rand()%479;

// Get a random color for the pixel
Color = D3DCOLOR_XRGB(rand()%255, rand()%255, rand()%255);

// Set the pixel at x,y to the color
pData[Pitch32 * y + x] = Color;

}

// ------------- PART 2: Draw 10 random rectangles

RECT Rect; // Structure to hold the dimensions of the rectangles
for(int j = 0 ; j < 10 ; j++)
{

// Create a random sized rectangle
SetRect(&Rect, rand()%639, rand()%479,

rand()%639, rand()%479);

// Get a random rectangle color
Color = D3DCOLOR_XRGB(rand()%255, rand()%255, rand()%255);

// Draw the rectangle (i.e., clear a rectangle to a color)
Graphics()->GetDevice()->Clear(1, (D3DRECT*)&Rect, D3DCLEAR_TARGET,

Color, 1.0f, 0);
}

// Unlock the back surface. Very important to do this!
pBackSurf->UnlockRect();
pBackSurf = 0;

68 � Chapter 2: Getting Started with DirectX

// ------------- PART 3: Output text to the back surface
// Tell Direct3D we are about to start rendering through Direct3D
Graphics()->GetDevice()->BeginScene();

// Output green text at a random location
Graphics()->DrawTextString(rand()%640, rand()%480,

D3DCOLOR_XRGB(0, 255, 0), "Advanced Direct3D 9.0");

// Tell Direct3D we are finished rendering
Graphics()->GetDevice()->EndScene();

// Present the back buffer to the primary surface to make it visible
Graphics()->Flip();

}

And that is all there is to it. Well I’m glad that part is over—initializing
Direct3D is the tedious part that always stands in the way of having fun.
But now that that is over I can start to show you some fun stuff. In the next
chapter I’m going to show you how to get DirectInput up and running so
that we can start to get some much needed input into the application!

Slowly the fog is thinning and the knowledge is becoming clearer.. .

Chapter 2: Getting Started with DirectX � 69

This page inten tion ally left blank

Chapter 3Chapter 3

Getting input from the user is probably the most important part of any
computer game. Without input, no matter how snazzy the graphics or
how great the sound, you are effectively just watching a movie. A game
needs to get information from the keyboard, mouse, or joystick. In the
past, programming these different devices into a usable form meant a

lot of effort and hair pulling, particularly with joysticks. To fix this prob-
lem Microsoft created DirectInput.

DirectInput was created to provide a direct way to communicate
with the input devices that exist on users’ systems. It supplies the ability
to enumerate all the devices connected to a machine and even enumer-
ate the capabilities of a particular device. You can take any input device
under the sun; as long as it has a DirectInput driver written for it, your
application can talk to it. These days virtually every device has a
DirectInput driver.

There are a lot of nifty features in DirectInput like force feedback,
but I don’t have much space to discuss it. This DirectInput discussion
will be limited to just mouse and keyboard usage. However, once you
understand the concepts that make DirectInput work, getting more
complex things done with it won’t be difficult.

The Win32 API has a full set of window messages that can inform
you when keys are pressed, when the mouse moves, etc. There is even
rudimentary support for joysticks. So what advantages are there to
using DirectInput over the standard API calls?

Well, there are several reasons:

� The Win32 API was not designed for games, or speed.

� Joystick support under Win32 is flaky at best. Supporting complex
joysticks with several axes, 8 to 10 buttons, a point of view hat, etc.,
just can’t be done on Win32.

� The mouse support is limited to three buttons, two axes, and the
mouse wheel if one is present. Many mice on the market today have
four, five, or even more buttons.

� The keyboard support in Win32 was designed for keyboard entry
applications. There is a lot of functionality to handle automatically

71

repeating keys, conversion from key codes to ASCII characters, etc.,
that a game just doesn’t need, and ends up wasting valuable processor
cycles.

� The Win32 keyboard handling code captures some keys for you (like
Alt) that require special message processing to handle correctly.

� Message processing isn’t the fastest thing in the world. Applications get
flooded with mouse message requests, and since you can’t render a
frame until the message queue is empty, this can slow down the
application.

Devices

A DirectInput device represents a physical object that can give input to the
computer. The keyboard, the mouse, and any joysticks/joypads are exam-
ples of devices. You talk to devices through a COM interface, just like with
Direct3D. The interface name in DirectX 9.0 is IDirectInputDevice8.

Note: You may be wondering why in DirectX 9.0 the device is called
IDirectInputDevice8. This is because there have been no updates to this
particular interface since the last (eighth) revision of the interface, which
coincidentally was DirectX 8.0. The only additions were some behind-the-
scenes compatibility changes.

Devices are composed of a set of objects, each one defining a button, axis,
POV hat, etc. A device can enumerate the objects it contains using IDirect-
InputDevice8::EnumObjects. This is only really useful for joysticks, as
keyboards and mice have a standard set of objects.

An object is described by a structure called DIDEVICEOBJECT-
INSTANCE. The set of DirectInput functionality that I’m going to show you
doesn’t require you to understand the workings of this structure, but I’ll
give you a peek at it anyway. The structure has, among other things, a
GUID that describes the type of object. The current set of object types
appears in Table 3.1. More may appear in the future as people create
newer and better object types.

Table 3.1: The current set of object type GUIDs

GUID_XAxis An axis representing movement in the x-axis (for example, left-to-right
movement on a mouse).

GUID_YAxis An axis representing movement in the y-axis (for example, up-to-down
movement on a mouse).

GUID_ZAxis An axis representing movement in the z-axis (for example, the mouse wheel on
newer models).

GUID_RxAxis An axis representing rotation relative to the x-axis.

GUID_RyAxis An axis representing rotation relative to the y-axis.

72 � Chapter 3: Communicating with DirectInput

GUID_RzAxis An axis representing rotation relative to the z-axis.

GUID_Slider A slider axis (for example, the throttle slider that appears on some joysticks).

GUID_Button A button (on a mouse or joystick).

GUID_Key A key (on a keyboard).

GUID_POV A POV hat that appears on some joysticks.

GUID_Unknown An unknown type of device.

When an application requests the current state of the device, the informa-
tion needs to be transmitted in some meaningful way. Just getting a list of
bytes wouldn’t provide enough information, and forcing applications to
use a standard communication method wouldn’t elegantly solve the prob-
lem for all the different types of devices on the market. Because of this,
DirectInput lets the application dictate to the device how it wishes to
receive its data. If you only want one or two buttons on a joystick, you
don’t need to request all of the data from the joystick, which may have
dozens of buttons. Among other things, the application can decide if any
axes on the device should be absolute (centered around a neutral origin,
like a joystick axis) or relative (freely moving, like a mouse axis). When a
device is created, you must call IDirectInputDevice8::SetDataFormat.

HRESULT IDirectInputDevice8::SetDataFormat(
LPCDIDATAFORMAT lpdf

);

lpdf A pointer to a DIDATAFORMAT structure that defines the format of the data received
from the device.
There are some defined constants that you can use:
� c_dfDIKeyboard—Standard keyboard structure. An array of 256 characters, one

for each key.
� c_dfDIMouse—Standard mouse structure. Three axes and four buttons.

Corresponds to the DIMOUSESTATE structure.
� c_dfDIMouse2—Extended mouse structure. Three axes and eight buttons.

Corresponds to the DIMOUSESTATE2 structure.
� c_dfDIJoystick—Standard joystick. Three positional axes, three rotation axes, two

sliders, a POV hat, and 32 buttons. Corresponds to the DIJOYSTATE
structure.

� c_dfDIJoystick2—Extended capability joystick. Refers to the SDK documentation
for the truly massive data format definition. Corresponds to the
DIJOYSTATE2 structure.

Receiving Device States

There are two ways to receive data from a device: immediate data access
and buffered data access. This code only uses immediate data access, but
buffered data access is not without its merits. Buffered data access is useful
for when you absolutely need to get every input event that happens. If a
key is quickly pressed and released between immediate device state
requests, you will miss it since the state changes aren’t queued. If the

Chapter 3: Communicating with DirectInput � 73

application is running at any reasonable frame rate, however, this won’t be
a problem. Immediate data access is used to find the current state of the
device at some point in time. If buttons were pressed and released between
when you ask, you don’t see them. You ask for the device state using
IDirectInputDevice8::GetDeviceState:

HRESULT IDirectInputDevice8::GetDeviceState(
DWORD cbData,
LPVOID lpvData

);

cbData Size, in bytes, of the data structure being passed in with lpvData.

lpvData Pointer to a buffer to fill with the device state. The format of the data depends on
the format you defined using SetDataFormat.

For mouse devices, if you set the data format to c_dfDIMouse, the parame-
ters to GetDeviceData should be sizeof(DIMOUSESTATE) and the address
of a valid DIMOUSESTATE structure. After the function completes, if it is
successful, the structure will be filled with the data from the mouse.

typedef struct DIMOUSESTATE {
LONG lX;
LONG lY;
LONG lZ;
BYTE rgbButtons[4];

} DIMOUSESTATE, *LPDIMOUSESTATE;

lX X-axis of movement. Relative movement; if the axis hasn’t moved since the last
time you checked this will be 0.

lY Y-axis of movement. Relative movement; if the axis hasn’t moved since the last
time you checked this will be 0.

lZ Z-axis (mouse wheel) movement. Relative movement; if the axis hasn’t moved
since the last time it was checked this will be 0.

rgbButtons A set of bytes, one for each of four mouse buttons. To support a mouse with
more buttons, use the DIMOUSESTATE2 structure.

As for the keyboard data, all you do is pass in a 256-element array of char-
acters. Each character represents a certain key. You can index into the
array to find a certain key using the DirectInput key constants. There is a
constant for every possible key on a keyboard. Table 3.2 has a list of the
common ones. Some of the more obscure ones, like the ones for Japanese
keyboards and web keyboards, are not included. See the SDK documenta-
tion for a complete list at DirectX 9.0 C++ Documentation/DirectInput/

DirectInput C++ Reference/Device Constants/Keyboard Device.

74 � Chapter 3: Communicating with DirectInput

Table 3.2: The common DirectInput keyboard constants

DIK_A … DIK_Z A through Z keys

DIK_0 … DIK_9 0 through 9 keys

DIK_F1 … DIK_F15 F1 through F15 keys, if they exist

DIK_NUMPAD0 …
DIK_NUMPAD9

Number pad keys. The keys are the same regardless of whether or not
Num Lock is on.

DIK_ESCAPE Esc key

DIK_MINUS – key on the top row

DIK_EQUALS = key on the top row

DIK_BACK Backspace key

DIK_TAB Tab key

DIK_LBRACKET [(left bracket) key

DIK_RBRACKET] (right bracket) key

DIK_RETURN Return key

DIK_LCONTROL Left-side Ctrl key

DIK_SEMICOLON ; key

DIK_APOSTROPHE ' (apostrophe) key

DIK_GRAVE ` (grave accent) key; usually the same as the tilde (~) key

DIK_LSHIFT Left-side Shift key

DIK_BACKSLASH \ (backslash) key

DIK_COMMA , (comma) key

DIK_PERIOD . (period) key

DIK_SLASH / (forward slash) key

DIK_RSHIFT Right-side Shift key

DIK_MULTIPLY * key on numeric pad

DIK_LMENU Left-side Alt key

DIK_SPACE Spacebar

DIK_CAPITAL Caps Lock key

DIK_NUMLOCK Num Lock key

DIK_SCROLL Scroll Lock key

DIK_SUBTRACT – sign on keypad

DIK_ADD + sign on keypad

DIK_DECIMAL . sign on keypad

DIK_NUMPADENTER Enter on keypad

DIK_RCONTROL Right-side Ctrl key

DIK_DIVIDE / sign on keypad

DIK_SYSRQ SysRq (same as PrtScrn) key

DIK_RMENU Right-side Alt key

DIK_PAUSE Pause key

DIK_HOME Home key (if there is a set separate from the keypad)

Chapter 3: Communicating with DirectInput � 75

DIK_UP Up arrow

DIK_PRIOR PgUp key (if there is a set separate from the keypad)

DIK_LEFT Left arrow

DIK_RIGHT Right arrow

DIK_END End key (if there is a set separate from the keypad)

DIK_DOWN Down arrow

DIK_NEXT PgDn key (if there is a set separate from the keypad)

DIK_INSERT Insert key (if there is a set separate from the keypad)

DIK_DELETE Delete key (if there is a set separate from the keypad)

DIK_LWIN Left-side Windows key

DIK_RWIN Right-side Windows key

DIK_APPS Application key

Cooperative Levels

DirectInput devices have a concept of a cooperative level, since they are
shared by all applications using the system. Setting the cooperative level is
the first thing that you should do upon successful creation of an
IDirectInputDevice8 interface. The call to set the cooperative level is:

HRESULT IDirectInputDevice8::SetCooperativeLevel(
HWND hwnd,
DWORD dwFlags

);

hwnd Handle to the window of the application that created the object.

dwFlags A set of flags describing the cooperative level desired. Can be a combination of the
following:
� DISCL_BACKGROUND—When this flag is set, the application may acquire the

device at any time, even if it is not the currently active application.
� DISCL_EXCLUSIVE—Application requests exclusive access to the input device.

This prevents other applications from simultaneously using the device (for example,
Windows itself). If the mouse device is set to exclusive mode, Windows stops
sending mouse messages and the cursor disappears.

� DISCL_FOREGROUND—When this flag is set, the device is automatically
unacquired when the window moves to the background. It can only be reacquired
when the application moves to the foreground.

� DISCL_NONEXCLUSIVE—Application requests non-exclusive access to the input
device. This way it doesn’t interfere with the other applications that are
simultaneously using the device (for example, Windows itself).

� DISCL_NOWINKEY—Disables the use of the Windows key. This prevents the
user from accidentally being knocked out of an exclusive application by pressing the
Windows key.
All devices must set either DISCL_FOREGROUND or DISCL_BACKGROUND
(but not both), as well as either DISCL_EXCLUSIVE or DISCL_NONEXCLUSIVE
(but not both).

76 � Chapter 3: Communicating with DirectInput

Application Focus and DevicesApplication Focus and Devices

If you ever can’t get the device state from a device, chances are access to it
has been lost. For example, when the application doesn’t have focus you
can’t grab the state of the keyboard. The application class will automati-
cally detect when it loses focus and stop the input code from polling the
devices until focus is regained. When you get focus, you need to reacquire
the device before you can start requesting its state. That is done using the
parameter-free function IDirectInputDevice8::Acquire(). You’ll see Acquire
scattered throughout the input code for both the keyboard and the mouse.

The DirectInput ObjectThe DirectInput Object

The DirectInput object (which has the interface IDirectInputDevice8)
doesn’t have a clear tie to a physical device as the Direct3D device object
did. It is useful, however; you need it to enumerate available devices and
to create them.

To create the DirectInput object, you use the global function Direct-
Input8Create, which wraps up all the necessary COM work.

HRESULT WINAPI DirectInput8Create(
HINSTANCE hinst,
DWORD dwVersion,
REFIID riidltf,
LPVOID* ppvOut,
LPUNKNOWN punkOuter

);

hinst Handle to the instance of the application that is creating the DirectInput.

dwVersion The version number of the DirectInput object that you want to create. You
should specify DIRECTINPUT_VERSION for this parameter.

riidltf An identifier for the interface you want to create. Specify IID_IDirectInput8 for
this parameter and you won’t go wrong.

ppvOut Address of a pointer that will receive the address of the newly created interface.

punkOuter Used for COM aggregation—just specify NULL.

Once you have the DirectInput interface, you can use it to enumerate and
create devices. Device creation is done using IDirectInput8::CreateDevice.

Implementing DirectInput with cInputLayer

Due to the small subset of the total DirectInput functionality I’m showing
you, the code to handle DirectInput is very simple. Adding support for sim-
ple joysticks wouldn’t be too much harder, but implementing a robust
system that could enumerate device objects and assign tasks to each of
them would take considerably more work than I have space to apply.

Chapter 3: Communicating with DirectInput � 77

The way the code works is the input layer constructs and holds onto a
mouse object and a keyboard object (cMouse and cKeyboard, respectively).
Both the mouse and the keyboard can have listeners, or classes that are
notified when events happen. To make a class a listener, two things must
happen. First, the class must implement the iKeyboardReceiver interface
(for keyboards) and/or the iMouseReceiver interface (for mouse devices).
Second, it must tell the keyboard or mouse to make itself a receiver. This
can be done by calling cKeyboard::SetReceiver() or cMouse::SetReceiver().
Just pass in the address of the class that wishes to become a receiver. Here
are the interfaces:

Listing 3.1: Input communication interfaces

/**
* Any object that implements this interface can receive input
* from the keyboard.
*/
struct iKeyboardReceiver
{

virtual void KeyUp(int key) = 0;
virtual void KeyDown(int key) = 0;

};

/**
* Any object that implements this interface can receive input
* from the mouse.
*/
struct iMouseReceiver
{

virtual void MouseMoved(int dx, int dy) = 0;
virtual void MouseButtonUp(int button) = 0;
virtual void MouseButtonDown(int button) = 0;

};

The input layer is another system object, and like the others can only have
one instance. This condition is validated in the constructor. The input layer
appears in Listings 3.2 (header) and 3.3 (source).

Listing 3.2: InputLayer.h

/***
* Advanced 3D Game Programming using DirectX 9.0
* *
* Desc: Sample application for Direct3D
*
* copyright (c) 2002 by Peter A Walsh and Adrian Perez
* See license.txt for modification and distribution information
**/

#ifndef _INPUTLAYER_H
#define _INPUTLAYER_H

#include <dinput.h>

78 � Chapter 3: Communicating with DirectInput

#include "Keyboard.h"
#include "Mouse.h"

class cInputLayer
{

cKeyboard* m_pKeyboard;
cMouse* m_pMouse;

// The DI8 object
LPDIRECTINPUT8 m_pDI;

static cInputLayer* m_pGlobalILayer;

cInputLayer(
HINSTANCE hInst,
HWND hWnd,
bool bExclusive,
bool bUseKeyboard = true,
bool bUseMouse = true);

public:

virtual ~cInputLayer();

cKeyboard* GetKeyboard()
{

return m_pKeyboard;
}

cMouse* GetMouse()
{

return m_pMouse;
}

void UpdateDevices();

static cInputLayer* GetInput()
{

return m_pGlobalILayer;
}

LPDIRECTINPUT8 GetDInput()
{

return m_pDI;
}

void SetFocus(); // called when the app gains focus
void KillFocus(); // called when the app must release focus

static void Create(
HINSTANCE hInst,
HWND hWnd,
bool bExclusive,
bool bUseKeyboard = true,
bool bUseMouse = true)

Chapter 3: Communicating with DirectInput � 79

{
// everything is taken care of in the constructor
new cInputLayer(

hInst,
hWnd,
bExclusive,
bUseKeyboard,
bUseMouse);

}
};

inline cInputLayer* Input()
{

return cInputLayer::GetInput();
}

#endif //_INPUTLAYER_H

Listing 3.3: InputLayer.cpp

/***
* Advanced 3D Game Programming using DirectX 9.0
* *
* Desc: Sample application for Direct3D
*
* copyright (c) 2002 by Peter A Walsh and Adrian Perez
* See license.txt for modification and distribution information
**/

#include "stdafx.h"
#include "InputLayer.h"
#include "Keyboard.h"
#include "Mouse.h"
#include "Application.h"
#include "Window.h"

cInputLayer* cInputLayer::m_pGlobalILayer = NULL;

cInputLayer::cInputLayer(
HINSTANCE hInst,
HWND hWnd,
bool bExclusive,
bool bUseKeyboard,
bool bUseMouse)

{

m_pKeyboard = NULL;
m_pMouse = NULL;

if(m_pGlobalILayer)
{

throw cGameError("cInputLayer already initialized!\n");
}
m_pGlobalILayer = this;

80 � Chapter 3: Communicating with DirectInput

HRESULT hr;

/**
* Create the DI8 object
*/

hr = DirectInput8Create(hInst, DIRECTINPUT_VERSION,
IID_IDirectInput8, (void**)&m_pDI, NULL);

if(FAILED(hr))
{

throw cGameError("DirectInput8 object could not be created\n");
}

try
{

if(bUseKeyboard)
{

m_pKeyboard = new cKeyboard(hWnd);
}
if(bUseMouse)
{

m_pMouse = new cMouse(hWnd, bExclusive);
}

}
catch(...)
{

SafeRelease(m_pDI);
throw;

}

}

cInputLayer::~cInputLayer()
{

if(m_pDI)
{

if(m_pKeyboard)
{

delete m_pKeyboard; // this does all the de-init.
}

if(m_pMouse)
{

delete m_pMouse; // this does all the de-init.
}
SafeRelease(m_pDI);

}
m_pGlobalILayer = NULL;

}

void cInputLayer::UpdateDevices()
{

if(m_pKeyboard)

Chapter 3: Communicating with DirectInput � 81

{
m_pKeyboard->Update();

}
if(m_pMouse)
{

m_pMouse->Update();
}

}

void cInputLayer::SetFocus()
{

if(m_pKeyboard)
{

m_pKeyboard->ClearTable();
}
if(m_pMouse)
{

m_pMouse->Acquire();
}

}

void cInputLayer::KillFocus()
{

if(m_pKeyboard)
{

m_pKeyboard->ClearTable();
}
if(m_pMouse)
{

m_pMouse->UnAcquire();
}

}

The keyboard object pretty much wraps around the IDirectInputDevice8
interface, while providing the listener interface for an easy way for classes
to listen to keys that get pressed. If you don’t want to use listeners, just call
the Poll method on the keyboard object to find the state of a certain key at
the last checked time.

Listing 3.4: Keyboard.h

/***
* Advanced 3D Game Programming using DirectX 9.0
* *
* Desc: Sample application for Direct3D
*
* copyright (c) 2002 by Peter A Walsh and Adrian Perez
* See license.txt for modification and distribution information
**/

#ifndef _KEYBOARD_H
#define _KEYBOARD_H

82 � Chapter 3: Communicating with DirectInput

#include <memory.h>
#include <dinput.h>

class cInputLayer;

/**
* Any object that implements this interface can receive input
* from the keyboard.
*/
struct iKeyboardReceiver
{

virtual void KeyUp(int key){};
virtual void KeyDown(int key){};

};

class cKeyboard
{

// The DInput device used to encapsulate the keyboard
LPDIRECTINPUTDEVICE8 m_pDevice;

char m_keyState[256];

iKeyboardReceiver* m_pTarget;

public:

void ClearTable()
{

memset(m_keyState, 0, sizeof(char)*256);
}

cKeyboard(HWND hWnd);
~cKeyboard();

// Poll to see if a certain key is down
bool Poll(int key);

// Use this to establish a KeyboardReceiver as the current input focus
void SetReceiver(iKeyboardReceiver* pTarget);

eResult Update();
};

#endif //_KEYBOARD_H

Listing 3.5: Keyboard.cpp

/***
* Advanced 3D Game Programming using DirectX 9.0
* *
* Desc: Sample application for Direct3D
*
* copyright (c) 2002 by Peter A Walsh and Adrian Perez

Chapter 3: Communicating with DirectInput � 83

* See license.txt for modification and distribution information
**/

#include "stdafx.h"
#include "InputLayer.h"
#include "window.h"

#include <stack>
using namespace std;

#include "Keyboard.h"

cKeyboard::cKeyboard(HWND hWnd)
{

m_pTarget = NULL;

HRESULT hr;

/**
* Get the DInput interface pointer
*/
LPDIRECTINPUT8 pDI = Input()->GetDInput();

/**
* Create the keyboard device
*
*/
hr = Input()->GetDInput()->CreateDevice(GUID_SysKeyboard, &m_pDevice,

NULL);
if(FAILED(hr))
{

throw cGameError("Keyboard could not be created\n");
}

/**
* Set the keyboard data format
*/
hr = m_pDevice->SetDataFormat(&c_dfDIKeyboard);
if(FAILED(hr))
{

SafeRelease(m_pDevice);
throw cGameError("Keyboard could not be created\n");

}

/**
* Set the cooperative level
*/
hr = m_pDevice->SetCooperativeLevel(

hWnd,
DISCL_FOREGROUND | DISCL_NONEXCLUSIVE);

if(FAILED(hr))
{

SafeRelease(m_pDevice);
throw cGameError("Keyboard coop level could not be changed\n");

84 � Chapter 3: Communicating with DirectInput

}

memset(m_keyState, 0, 256*sizeof(bool));
}

cKeyboard::~cKeyboard()
{

if(m_pDevice)
{

m_pDevice->Unacquire();
SafeRelease(m_pDevice);

}
}

void cKeyboard::SetReceiver(iKeyboardReceiver* pTarget)
{

// Set the new target.
m_pTarget = pTarget;

}

bool cKeyboard::Poll(int key)
{

// stuff goes in here.
if(m_keyState[key] & 0x80)

return true;
return false;

}

eResult cKeyboard::Update()
{

char newState[256];
HRESULT hr;

hr = m_pDevice->Poll();
hr = m_pDevice->GetDeviceState(sizeof(newState),(LPVOID)&newState);

if(FAILED(hr))
{

hr = m_pDevice->Acquire();
if(FAILED(hr))
{

return resFailed;
}

hr = m_pDevice->Poll();
hr = m_pDevice->GetDeviceState(sizeof(newState),(LPVOID)&newState);
if(FAILED(hr))
{

return resFailed;
}

}

Chapter 3: Communicating with DirectInput � 85

if(m_pTarget)
{

int i;
for(i=0; i< 256; i++)
{

if(m_keyState[i] != newState[i])
{

// Something happened to this key since last checked
if(!(newState[i] & 0x80))
{

// It was Released
m_pTarget->KeyUp(i);

}
else
{

// Do nothing; it was just pressed, it'll get a keydown
// in a bit, and we don’t want to send the signal to
// the input target twice

}
}

// copy the state over (we could do a memcpy at the end, but this
// will have better cache performance)
m_keyState[i] = newState[i];

if(Poll(i))
{

// It was pressed
m_pTarget->KeyDown(i);

}
}

}
else
{

// copy the new states over.
memcpy(m_keyState, newState, 256);

}

return resAllGood;
}

The mouse object is almost identical in function to the keyboard object.
The code behind the mouse is in Listings 3.6 (header) and 3.7 (source).

Listing 3.6: Mouse.h

/***
* Advanced 3D Game Programming using DirectX 9.0
* *
* Desc: Sample application for Direct3D
*
* copyright (c) 2002 by Peter A Walsh and Adrian Perez
* See license.txt for modification and distribution information
**/

86 � Chapter 3: Communicating with DirectInput

#ifndef _MOUSE_H
#define _MOUSE_H

#include <dinput.h>

/**
* Any object that implements this interface can receive input
* from the mouse.
*/
struct iMouseReceiver
{

virtual void MouseMoved(int dx, int dy){};
virtual void MouseButtonUp(int button){};
virtual void MouseButtonDown(int button){};

};

class cMouse
{

LPDIRECTINPUTDEVICE8 m_pDevice;

DIMOUSESTATE m_lastState;

iMouseReceiver* m_pTarget;

public:

cMouse(HWND hWnd, bool bExclusive);
~cMouse();

/**
* Use this to establish a MouseReceiver as the current
* input focus
*/
void SetReceiver(iMouseReceiver* pTarget);

eResult Update();

eResult Acquire();
void UnAcquire();

};

#endif // _MOUSE_H

Listing 3.7: Mouse.cpp

/***
* Advanced 3D Game Programming using DirectX 9.0
* *
* Desc: Sample application for Direct3D
*
* copyright (c) 2002 by Peter A Walsh and Adrian Perez
* See license.txt for modification and distribution information
**/

Chapter 3: Communicating with DirectInput � 87

#include "stdafx.h"
#include "InputLayer.h"
#include "Window.h"

#include "Mouse.h"

cMouse::cMouse(HWND hWnd, bool bExclusive)
{

m_pTarget = NULL;

HRESULT hr;

/**
* Create the device
*
*/
hr = Input()->GetDInput()->CreateDevice(GUID_SysMouse,

&m_pDevice, NULL);
if(FAILED(hr))
{

throw cGameError("[cMouse::Init]: Couldn't create the device!\n");
}

/**
* Set the data format
*/
hr = m_pDevice->SetDataFormat(&c_dfDIMouse);
if(FAILED(hr))
{

SafeRelease(m_pDevice);
throw cGameError("[cMouse::Init]: SetDataFormat failed\n");

}

/**
* Set the cooperative level
*/
if(bExclusive)
{

hr = m_pDevice->SetCooperativeLevel(hWnd, DISCL_EXCLUSIVE |
DISCL_NOWINKEY | DISCL_FOREGROUND);

}
else
{

hr = m_pDevice->SetCooperativeLevel(hWnd, DISCL_NONEXCLUSIVE |
DISCL_FOREGROUND);

}

if(FAILED(hr))
{

SafeRelease(m_pDevice);
throw cGameError("[cMouse::Init]: SetCooperativeLevel failed\n");

}

88 � Chapter 3: Communicating with DirectInput

m_lastState.lX = 0;
m_lastState.lY = 0;
m_lastState.lZ = 0;
m_lastState.rgbButtons[0] = 0;
m_lastState.rgbButtons[1] = 0;
m_lastState.rgbButtons[2] = 0;
m_lastState.rgbButtons[3] = 0;

}

cMouse::~cMouse()
{

if(m_pDevice)
{

m_pDevice->Unacquire();
SafeRelease(m_pDevice);

}
}

void cMouse::SetReceiver(iMouseReceiver* pTarget)
{

m_pTarget = pTarget;
}

eResult cMouse::Update()
{

DIMOUSESTATE currState;
HRESULT hr;

hr = m_pDevice->Poll();
hr = m_pDevice->GetDeviceState(sizeof(DIMOUSESTATE),

(void*)&currState);

if(FAILED(hr))
{

hr = m_pDevice->Acquire();
if(FAILED(hr))
{

return resFailed;
}

hr = m_pDevice->Poll();
hr = m_pDevice->GetDeviceState(sizeof(DIMOUSESTATE),

(void*)&currState);
if(FAILED(hr))
{

return resFailed;
}

}
if(m_pTarget)
{

int dx = currState.lX;
int dy = currState.lY;
if(dx || dy)

Chapter 3: Communicating with DirectInput � 89

{
m_pTarget->MouseMoved(dx, dy);

}
if(currState.rgbButtons[0] & 0x80)
{

// the button got pressed.
m_pTarget->MouseButtonDown(0);

}
if(currState.rgbButtons[1] & 0x80)
{

// the button got pressed.
m_pTarget->MouseButtonDown(1);

}
if(currState.rgbButtons[2] & 0x80)
{

// the button got pressed.
m_pTarget->MouseButtonDown(2);

}
if(!(currState.rgbButtons[0] & 0x80) && (m_lastState.rgbButtons[0]

& 0x80))
{

// the button got released.
m_pTarget->MouseButtonUp(0);

}
if(!(currState.rgbButtons[1] & 0x80) && (m_lastState.rgbButtons[1]

& 0x80))
{

// the button got released.
m_pTarget->MouseButtonUp(1);

}
if(!(currState.rgbButtons[2] & 0x80) && (m_lastState.rgbButtons[2]

& 0x80))
{

// the button got released.
m_pTarget->MouseButtonUp(2);

}
}
m_lastState = currState;
return resAllGood;

}

eResult cMouse::Acquire()
{

HRESULT hr = m_pDevice->Acquire();
if(FAILED(hr))
{

return resFailed;
}
return resAllGood;

}

void cMouse::UnAcquire()
{

90 � Chapter 3: Communicating with DirectInput

m_pDevice->Unacquire();
}

Additions to cApplication

The only addition to cApplication is the InitInput call. It initializes both the
keyboard and the mouse. The method can be overloaded if this behavior
isn’t what you want. The code is in the following:

cInputLayer::Create(AppInstance(),
MainWindow()->GetHWnd(), NULL, true, true);

As you have probably noticed, there is no sample application for this chap-
ter. Don’t worry though; I decided to combine the samples for this and the
next chapter together, so you will see it in about 20 pages or so.

DirectInput is pretty involved, but it is really a lot nicer interface than
what existed before in the DOS world, when you had to deal with analog
timing signals, the BIOS, and proprietary mouse drivers. It is also a huge
improvement on the original support that Win32 had for input devices.

Once you have created your DirectInput code, you can keep it as it is
for most of your projects without too much modification. So if, in the
future, you ever need to use code for any of your own projects to deal with
input, you can just cut and paste what you have learned in this chapter
into your code.

Now it’s time to move further into the possibilities of DirectX, with
DirectSound…

Chapter 3: Communicating with DirectInput � 91

This page inten tion ally left blank

Chapter 4Chapter 4

I am a recent convert to the importance of sound in games. I used to
think that the main selling point of any game was the initial shock value
of how its graphics looked. However, a while back I attended a Micro-
soft DirectX Meltdown conference in London, where one of the
Microsoft guys showed me a rewritten version of 3D Boids that included
full support for advanced 3D DirectSound and DirectMusic. The results
were really spectacular. The original, slightly boring game became
incredibly immersive at the press of a key. Since then I have always
strived to ensure that audio is a huge part of any project I work on.

There was a time, long ago, when computers didn’t have sound
cards. Sound cards were add-ons that people bought and installed man-
ually. I clearly remember the first time I played Wolfenstein 3D on a
sound card-enabled machine; after that I ran out and bought one.
Sound can totally change the experience of electronic entertainment.
Instead of just associating visual images with a virtual experience, add-
ing sound to an application makes it still more immersive, especially if
the sound effects are well made.

Before the great move to Windows, using sound was a tricky pro-
cess for programmers. Usually it involved licensing an expensive and
complex third-party sound library that could interface with the different
types of sound cards on the market. These libraries could cost hundreds
or thousands of dollars. With the advent of DirectSound, the need for
these libraries has all but disappeared. DirectSound is an API that can
play sound on any Windows-capable sound card (which is, basically, all
of them). It has advanced features for more advanced cards, like 3D
sound effects.

While the Win32 API has some limited sound-playing functionality,
it’s not something that is practical for most games. Sounds can’t be
mixed together, signal processing is nonexistent, and it isn’t the fastest
thing in the world.

As of DirectX 6.1, the DirectX component called DirectMusic allows
applications to dynamically improvise music for games. DirectMusic is
really a specialist subject that goes too far off track for this book, so I’m
going to limit my discussions to DirectSound only.

93

The Essentials of SoundThe Essentials of Sound

Sound itself is a wave of kinetic energy caused by the motion of an object.
The wave travels through matter at a speed dependent on the type of mat-
ter and temperature (very quickly through solids; through air at 24° C (75°
F) it moves at about 1240 kph (775 mph)). Sound waves have energy, so
they can cause objects to move; when they hit a solid object, some of the
sound is transmitted through the object, some is absorbed, and some is
reflected back (the reflecting back is known as echo). When the waves hit
an object, they make it vibrate. When the vibrating object is your eardrum,
electric signals go to your brain and it hears the sound.

The waves are sinusoidal in nature, and they have an amplitude and a
frequency. The amplitude defines how loud the sound is and is usually
measured in decibels (dB). The frequency is how many different wave
oscillations fit into one second, measured in hertz (Hz). The frequency of a
sound defines what its pitch is; lower-pitched sounds resonate less than
higher-pitched sounds. The A above middle C has a wave that resonates
440 times a second, so it has a frequency of 440 Hz.

Sound is additive; that is, if two sounds are going through the air
together, they both apply their energy to the air molecules around them.
When the crests of the sound waves match up, their result is a louder
sound, while if opposite crests match up, they cancel each other out. The
more things there are creating sound in a room, the more sound there gen-
erally is in the room.

On a computer, sound is represented as a stream of discrete samples.
Each sample is usually an 8-bit or 16-bit integer, representing the ampli-
tude of the sample. With 16 bits the amplitude can be better approxi-
mated, since there is a range of about 65,000 values, instead of only 256
found in 8 bits. Successive samples are played, and when enough samples
are put together, they approximate the continuous sound curve well
enough that the human ear can’t tell the difference. In order to approxi-
mate it well, the sampling rate (number of samples every second) is much
higher than the frequency of most audible sounds—for CD-quality sound,
44.1 thousand samples per second are used to approximate the waveform.
See Figure 4.1 for what this looks like. The figure shows an extremely
magnified waveform; the amount of signal shown would probably account
for a few hundredths of a second of sound.

Note: By the way, in case you have any experience with previous versions of
DirectSound, there are virtually no changes between DirectSound 8.0 and
DirectSound 9.0. The changes are pretty obscure and minor but if you’re
interested, check out DirectX C++ Documentation/DirectSound/What’s New.
There are no changes to any methods or interfaces so your old code should
work perfectly with DirectX 9.0.

94 � Chapter 4: DirectSound

DirectSound ConceptsDirectSound Concepts

DirectSound centers around a set of interfaces that perform all the work
you need to do. The DirectSound interfaces are summed up in Table 4.1.
For now, I’m just going to focus on the ability to play sounds, so don’t get
too caught up with all interfaces below.

Table 4.1: The main DirectSound interfaces

IDirectSound8 Used in determining capabilities of the sound card and creating
buffers for playback.

IDirectSoundBuffer8 A buffer of data used to hold onto the data for a playable sound.

IDirectSound3DBuffer8 A buffer used to contain a 3D sound. Has additional information
like distance, position, projection cones, and so forth.

IDirectSound3DListener8 An object used to represent a 3D listener. Depending on the
location and direction of the listener in 3D space, 3D buffers
sound different.

IDirectSoundCapture8 Interface used to create capture buffers.

IDirectSoundCapture-
Buffer8

Buffer used to hold sound data recorded from a device such as a
microphone.

IDirectSoundNotify8 Object that can be used to notify an application when a sound
has finished playing.

Chapter 4: DirectSound � 95

Figure 4.1: Continuous waveforms, and a computer’s approximation

IKsPropertySet8 An interface used by sound card manufacturers to add special
abilities to their driver without needing to extend the spec. This
is for pretty hard core stuff, so I’m not going to cover it.

DirectSound Buffers

DirectSound buffers are your main tools in DirectSound. They are akin to
the surfaces used in Direct3D in more ways than one. They even operate in
a similar way. Just like surfaces, in order to access their data you need to
lock them and then unlock them when you’re finished. This is for the same
reason as in Direct3D: The DirectSound driver can operate asynchronously
from the user application, so care must be taken that no application is
reading data when another is reading from it, or vice versa.

There are two kinds of buffers in DirectSound: primary buffers and
secondary buffers. The primary buffer (there is only one of them) repre-
sents the sound that is currently playing on the card. There is a secondary
buffer for each sound effect an application wants to play. Secondary sound
buffers are mixed together into the primary buffer and play out the speak-
ers. Using the mixer is how you get multiple sound effects to play at once;
DirectSound has a well-optimized piece of code that can mix a bunch of
secondary sound buffers together, and many sound cards can perform this
operation in hardware automatically.

One key difference between Direct3D surfaces and DirectSound buff-
ers is that buffers are conceptually circular. When a sound effect is playing,
the play marker loops around to the beginning of the buffer when it
reaches the end, unless you tell it to do otherwise. The play marker is a
conceptual marker in the buffer that represents where sound data is being
retrieved.

Just like surfaces, buffers are created by filling out a description of
what you want in the buffer. The structure used to describe a DirectSound
buffer is called DSBUFFERDESC:

typedef struct {
DWORD dwSize;
DWORD dwFlags;
DWORD dwBufferBytes;
DWORD dwReserved;
LPWAVEFORMATEX lpwfxFormat;
GUID guid3DAlgorithm;

} DSBUFFERDESC, *LPDSBUFFERDESC;

dwSize Size of the structure; set this to sizeof(DSBUFFERDESC).

dwFlags Flags that describe the capabilities or desired capabilities of the surface. Can
be one or more of the following:
� DSBCAPS_CTRL3D—The buffer requires 3D control. It may be a

primary or secondary buffer.
� DSBCAPS_CTRLFREQUENCY—The buffer requires the ability to

control its frequency.

96 � Chapter 4: DirectSound

� DSBCAPS_CTRLPAN—The buffer requires the ability to control
panning.

� DSBCAPS_CTRLPOSITIONNOTIFY—The buffer requires position
notification.

� DSBCAPS_CTRLVOLUME—The buffer requires the ability to control its
volume.

� DSBCAPS_GETCURRENTPOSITION2—Any calls to
GetCurrentPosition() should use the new behavior of putting the read
position where it is actually reading. The old behavior put it right behind
the write position. The old behavior was also only on emulated
DirectSound devices.

� DSBCAPS_GLOBALFOCUS—Like DSBCAPS_STICKYFOCUS, except
the buffer can also be heard when other DirectSound applications have
focus. The exception is applications that request exclusive access to the
sound cards. All other global sounds will be muted when those
applications have focus.

� DSBCAPS_LOCDEFER—The buffer can be assigned to either hardware
or software playback, depending on the mood of the driver. This flag
must be set if the voice management features in version 9.0 are to be
used.

� DSBCAPS_LOCHARDWARE—Forces the buffer to be mixed in
hardware. The application must make sure there is a mixing channel
available for the buffer. If there isn’t enough memory on the card, or the
card doesn’t support hardware mixing, calling CreateSoundBuffer will fail.

� DSBCAPS_LOCSOFTWARE—Forces the buffer to be mixed in software.
� DSBCAPS_MUTE3DATMAXDISTANCE—This flag applies to advanced

3D sound buffers.
� DSBCAPS_PRIMARYBUFFER—Indicates that the buffer is the single and

only primary buffer for the sound card. A secondary buffer is created if
this flag is not set.

� DSBCAPS_STATIC—Informs the driver that the buffer will be filled once
and played many times. This makes the driver more likely to put the
buffer in hardware memory.

� DSBCAPS_STICKYFOCUS—Changes the focus behavior of a sound
buffer. Buffers created with sticky focus aren’t muted when the user
switches to a non-DirectSound application. This is useful for applications
like TV cards, where the user wants to hear what is happening while
using another application. However, if the user switches to another
DirectSound application, all sound effects are muted.

dwBufferBytes Size of the buffer, in bytes. When you create the primary surface, this
parameter should be set to zero.

dwReserved Reserved for use by DirectSound; don’t use.

lpwfxFormat Pointer to a WAVEFORMATEX structure describing the format of the wave
data in the buffer. This is analogous to the pixel formats describing the
format of the pixels in Direct3D surfaces.

guid3DAlgorithm GUID that defines the two-speaker virtualization algorithm to be used for
software rendering. This GUID is ignored unless the buffer needs 3D control
(set by the DSBCAPS_CTRL3D flag). See the documentation for a listing of
the available GUIDs for this parameter.

Chapter 4: DirectSound � 97

The lpwfxFormat member of the sound buffer description is a pointer to a
WAVEFORMATEX structure. The reason why there’s no DS prefixing the
structure is because it isn’t a DirectSound structure, but instead is one used
intrinsically by Windows for its sound playback work.

typedef struct {
WORD wFormatTag;
WORD nChannels;
DWORD nSamplesPerSec;
DWORD nAvgBytesPerSec;
WORD nBlockAlign;
WORD wBitsPerSample;
WORD cbSize;

} WAVEFORMATEX;

wFormatTag A tag describing the content of the sound data. If the data is compressed, this
tag will correspond to the particular method that was used to compress it.
For non-compressed data, this will be set to the constant
WAVE_FORMAT_PCM.

nChannels The number of separate audio channels for the sound data. For monaural
sound there is one channel; for stereo sound there are two.

nSamplesPerSec The number of samples per second. For CD-quality audio this is about
44,100; for radio quality it is about 22,050.

nAvgBytesPerSec The required data throughput to play the sound. This is here so you can deal
with compressed sound files.

nBlockAlign Block alignment in bytes. Essentially this is the amount of data for one
sample. If you had two channels of audio and 16 bits (2 bytes) per sample,
this would be 2*2 = 4 bytes.

wBitsPerSample The number of bits for each discrete sample. This is generally either 8 or 16.

cbSize The size of any extra info that is appended to the structure. This is only used
by compressed sound formats.

Operations on Sound BuffersOperations on Sound Buffers

Once you have created a buffer and filled it with the appropriate data, you
would, of course, like to play it. The Play() method on the buffer interface
plays a sound buffer on the primary surface. The sound can be stopped by
calling the Stop() method, which takes no parameters.

HRESULT IDirectSoundBuffer8::Play(
DWORD dwReserved1,
DWORD dwPriority,
DWORD dwFlags

);
HRESULT IDirectSoundBuffer8::Stop();

dwReserved1 Reserved parameter; must be set to 0.

98 � Chapter 4: DirectSound

dwPriority The priority of the sound. This is used by the sound manager in the event that it
needs to evict a playing sound (it evicts the one with the lowest priority). The
valid range is anywhere from 0x0 to 0xFFFFFFFF. 0 has the lowest priority. This
value shouldn’t be used if the surface wasn’t created with the LOC_DEFER flag,
and should be left as 0.

dwFlags A set of flags describing the method’s behavior. They are:
� DSBPLAY_LOOPING—Whenever the end of the buffer is reached,

DirectSound wraps to the beginning of the buffer and continues playing it.
This is useful for sounds like engine hums. The sound effect continues
playing until it is explicitly shut off using Stop().

� DSBPLAY_LOCHARDWARE—This flag only affects surfaces created with
the DSBCAPS_LOCDEFER flag. It forces the buffer to be played in the hard-
ware. If there aren’t any voices available and no TERMINATEBY_* flags are
set, Play() will fail. This flag shouldn’t be used with DSBPLAY_LOC-
SOFTWARE.

� DSBPLAY_LOCSOFTWARE—This flag only affects surfaces created with
the DSBCAPS_LOCDEFER flag. It forces the buffer to be played in software.
If there aren’t any voices available and no TERMINATEBY_* flags are set,
Play() will fail. This flag shouldn’t be used with DSBPLAY_LOCHARDWARE.
If neither LOCSOFTWARE or LOCHARDWARE is specified, the location for
playback will be decided by the sound driver, depending on the available
resources.

� DSBPLAY_TERMINATEBY_TIME—Setting this flag enables the buffer to
steal resources from another buffer. The driver is forced to play the buffer in
hardware. If no hardware voices are available, the driver chooses a buffer to
remove, choosing the buffer that has the least amount of time left to play.
The only candidate buffers for removal are ones created with the
DSBCAPS_LOCDEFER flag.

� DSBPLAY_TERMINATEBY_DISTANCE—This flag is only relevant to 3D
buffers, which are not discussed in this book.

� DSBPLAY_TERMINATEBY_PRIORITY—Setting this flag enables the buffer
to steal resources from another buffer. The driver is forced to play the
buffer in hardware. If no hardware voices are available, the driver chooses
a buffer to remove, choosing the buffer that has the lowest priority. The
only candidate buffers for removal are ones created with the
DSBCAPS_LOCDEFER flag.

Unfortunately, there is only one play marker per sound buffer, so you can’t
play the same sound twice at the same time. However, the code I’ll show
you can clone the sound effect into a new buffer and play the new effect,
so you can have multiple sounds of the same type playing at the same
time. To implement this, however, you need to know if the sound buffer is
playing at any point in time. You can do this using the GetStatus method
on the sound buffer interface:

HRESULT IDirectSoundBuffer8::GetStatus(
LPDWORD lpdwStatus

);

Chapter 4: DirectSound � 99

lpdwStatus Pointer to a DWORD that will be filled with the status of the sound buffer. If the
function succeeds, the DWORD can check to see if any of the following flags are
set:
� DSBSTATUS_BUFFERLOST—The sound buffer was lost. Before it can be

played or locked, it must be restored using the Restore() method on the
DirectSoundBuffer. Restore takes no parameters and reallocates the required
memory for a DirectSound buffer.

� DSBSTATUS_LOOPING—The buffer is playing and also looping. It won’t stop
until the Stop() method is called on it.

� DSBSTATUS_PLAYING—The buffer is currently playing. The buffer is stopped
if this flag isn’t set.

� DSBSTATUS_LOCSOFTWARE—The buffer is playing from system RAM. This
flag is only meaningful for buffers that were created with the
DSBCAPS_LOCDEFER flag.

� DSBSTATUS_LOCHARDWARE—The buffer is playing on the sound card’s
memory. This flag is only meaningful for buffers that were created with the
DSBCAPS_LOCDEFER flag.

� DSBSTATUS_TERMINATED—The buffer was terminated by the sound logic.

To play a buffer with anything meaningful in it, you’re going to need to fill
it with something. Unfortunately, DirectSound doesn’t have the ability to
automatically load WAV files, so you have to do it yourself. When you load
the file and get the data, you put it into the sound buffer by locking it and
getting a pointer to the buffer to write into. This is done using the Lock()
method on the sound buffer interface.

HRESULT IDirectSoundBuffer8::Lock(
DWORD dwWriteCursor,
DWORD dwWriteBytes,
LPVOID lplpvAudioPtr1,
LPDWORD lpdwAudioBytes1,
LPVOID lplpvAudioPtr2,
LPDWORD lpdwAudioBytes2,
DWORD dwFlags

);

dwWriteCursor Offset from the start of the buffer (in bytes) to where the lock should begin.

dwWriteBytes Number of bytes that should be locked. Remember that sound buffers are
circular, conceptually. If more bytes are requested than are left in the file, the
lock continues at the beginning of the buffer.

lplpvAudioPtr1 Pointer to be filled with the requested data pointer of the lock.

lpdwAudioBytes1 Pointer to be filled with the number of bytes of the first data block. This may
or may not be the same as dwWriteBytes, depending on whether or not the
lock wrapped to the beginning of the sound buffer.

lplpvAudioPtr2 Pointer to be filled with the secondary data pointer of the lock. This
member is only set if the memory requested in the lock wrapped to the
beginning of the buffer (it will be set to the beginning of the buffer). If the
lock did not require a wrap, this pointer will be set to NULL.

100 � Chapter 4: DirectSound

lpdwAudioBytes2 Pointer to be filled with the number of bytes of the second data block. If the
lock required a wrap, this will be the number of bytes left over after the
wrap around.

dwFlags A set of flags modifying the behavior of the lock method:
� DSBLOCK_FROMWRITECURSOR—Locks from the current write

cursor in the buffer.
� DSBLOCK_ENTIREBUFFER—Locks the entire sound buffer. The

dwWriteBytes parameter is ignored and can be set to zero.

To unlock a sound buffer after filling it, just call the Unlock() method on it.
This allows other concurrent tasks on the machine, like the sound hard-
ware, to access the sound buffer’s data bits.

HRESULT IDirectSoundBuffer8::Unlock(
LPVOID lpvAudioPtr1,
DWORD dwAudioBytes1,
LPVOID lpvAudioPtr2,
DWORD dwAudioBytes2

);

lpvAudioPtr1 Pointer to the first block of data to unlock. This must be the same value that
was given by Lock().

dwAudioBytes1 Length of the first block of data to unlock. This must be the same value that
was given by Lock().

lpvAudioPtr2 Pointer to the second block of data to unlock. This must be the same value
that was given by Lock().

dwAudioBytes2 Length of the second block of data to unlock. This must be the same value
that was given by Lock().

Loading WAV Files

Call me old fashioned, but I try to avoid reinventing any wheels I can. One
I distinctly do not want to reinvent is the WAV-file-loading wheel. The
DirectX SDK comes with code to load a WAV file and create a DirectSound
buffer, and I’m going to use it verbatim here. Rather than list the source
code for it, which is pretty confusing, I’m just going to list the interface for
it. You’ll see how this fits into the code later.

Listing 4.1: WavRead.h, the Microsoft-provided interface for the Wave Sound Reader

object

//---
// File: WavRead.h
//
// Desc: Support for loading and playing Wave files using DirectSound sound
// buffers.
//
// Copyright (c) 1999 Microsoft Corp. All rights reserved.
//---
#ifndef WAVE_READ_H
#define WAVE_READ_H

Chapter 4: DirectSound � 101

#include <mmreg.h>
#include <mmsystem.h>

//---
// Name: class CWaveSoundRead
// Desc: A class to read in sound data from a Wave file
//---
class CWaveSoundRead
{
public:

WAVEFORMATEX* m_pwfx; // Pointer to WAVEFORMATEX structure
HMMIO m_hmmioIn; // MM I/O handle for the WAVE
MMCKINFO m_ckIn; // Multimedia RIFF chunk
MMCKINFO m_ckInRiff; // Use in opening a WAVE file

public:
CWaveSoundRead();
~CWaveSoundRead();

HRESULT Open(CHAR* strFilename);
HRESULT Reset();
HRESULT Read(UINT nSizeToRead, BYTE* pbData, UINT* pnSizeRead);
HRESULT Close();

};

#endif WAVE_READ_H

Implementing DirectSound with cSoundLayerImplementing DirectSound with cSoundLayer

The final system layer I’m going to implement in this chapter is the sound
layer. The class is called cSoundLayer, and has the same restrictions as the
graphics and input layers (most notably only one instance of the class may
exist in any application).

Creating the sound layer is simple enough. The sound layer has the
same interface for creation that the graphics and input layers did: a static
Create() method that took care of the initialization hassles. The Create
method for the sound layer is simple enough, and it appears in the
following:

static void cSoundLayer::Create(HWND hWnd)
{

new cSoundLayer(hWnd);
}

The code that lies inside the cSoundLayer constructor is what I’ll dissect
next in the step-by-step process of setting up DirectSound.

102 � Chapter 4: DirectSound

Creating the DirectSound Object

The first step in initializing DirectSound is to actually acquire the interface
pointer to the IDirectSound8 object. To do this, you call the function
DirectSoundCreate8.

HRESULT WINAPI DirectSoundCreate8(
LPCGUID lpcGuid,
LPDIRECTSOUND8 * ppDS,
LPUNKNOWN pUnkOuter

);

lpcGuid A pointer to a GUID that describes the device you wish to create. While you can
enumerate all of the sound devices with DirectSoundEnumerate, generally there
is only one sound card on a machine. To get the default device (which is what you
want, usually), set this to NULL.

ppDS A pointer to an LPDIRECTSOUND8 interface pointer that will be filled with a
valid interface pointer if the function succeeds.

pUnkOuter Used for COM aggregation; leave this as NULL.

Sample code to create the sound interface appears in the following:

LPDIRECTSOUND8 m_pDSound = 0;

// Create IDirectSound using the primary sound device
hr = DirectSoundCreate8(NULL, &m_pDSound, NULL);
if(FAILED(hr))
{

// Handle critical error
}

Setting the Cooperative Level

After you acquire the interface pointer, the next step is to declare how
cooperative you intend on being. Just like DirectInput, this is done using
the SetCooperativeLevel command.

HRESULT IDirectSound8::SetCooperativeLevel(
HWND hwnd,
DWORD dwLevel

);

hwnd Handle to the window to be associated with the DirectSound object. This should
be the primary window.

dwLevel One of the following flags, describing the desired cooperative level.
� DSSCL_EXCLUSIVE—Grab exclusive control of the sound device. When the

application has focus, it is the only audible application.
� DSSCL_NORMAL—Smoothest, yet most restrictive cooperative level. The

primary format cannot be changed. This is the cooperative level the sound
layer uses.

Chapter 4: DirectSound � 103

� DSSCL_PRIORITY—Like DDSCL_NORMAL except the primary format may
be changed.

� DSSCL_WRITEPRIMARY—This is the highest possible priority for an
application to have. It can’t play any secondary buffers, and it has the ability to
manually mangle the bits of the primary buffer. Only for the extremely
hardcore!

This code will be changing the primary format of the sound buffer, so I’ll
go ahead and set this to DSSCL_PRIORITY. Sample code to do this appears
in the following:

// pDSound is a valid LPDIRECTSOUND8 object.
HRESULT hr = pDSound->SetCooperativeLevel(hWnd, DSSCL_PRIORITY);
if(FAILED(hr))
{

/* handle error */
}

Grabbing the Primary Buffer

Since the sound layer sets the cooperative level’s priority, it can do some
crazy things like change the format of the primary buffer. Generally it’s
best to set the primary buffer to the same format that all of your secondary
buffers will be in; this makes the mixer’s job easier, as it doesn’t have to
resample any sound effects to be able to mix them into the primary buffer.
You can imagine what would happen if you tried to play a 22 KHz sound
effect in a 44 KHz buffer without resampling: You would run out of sam-
ples twice as soon as you would expect, and the sound effect would have
sort of a chipmunkish quality to it.

To change the format of the primary buffer, you just need to grab it
using CreateSoundBuffer, fill out a new format description, and set it using
the SetFormat() method on the primary buffer. Listing 4.2 has code that
sets the primary format to 22 KHz, 16-bit stereo.

Listing 4.2: Sample code to change the format of the primary buffer

// pDSound is a valid LPDIRECTSOUND object.
LPDIRECTSOUNDBUFFER pDSBPrimary = NULL;

sAutoZero<DSBUFFERDESC> dsbd;
dsbd.dwFlags = DSBCAPS_PRIMARYBUFFER;
dsbd.dwBufferBytes = 0;
dsbd.lpwfxFormat = NULL;

HRESULT hr = pDSound->CreateSoundBuffer(&dsbd, &pDSBPrimary, NULL);
if(FAILED(hr))
{

/* handle error */
}

// Set primary buffer format to 22 kHz and 16-bit output.
WAVEFORMATEX wfx;

104 � Chapter 4: DirectSound

ZeroMemory(&wfx, sizeof(WAVEFORMATEX));
wfx.wFormatTag = WAVE_FORMAT_PCM;
wfx.nChannels = 2;
wfx.nSamplesPerSec = 22050;
wfx.wBitsPerSample = 16;
wfx.nBlockAlign = wfx.wBitsPerSample / 8 * wfx.nChannels;
wfx.nAvgBytesPerSec = wfx.nSamplesPerSec * wfx.nBlockAlign;

HRESULT hr = hr = pDSBPrimary->SetFormat(&wfx)
if(FAILED())
{

throw cGameError("SetFormat (DS) failed!");
}

SafeRelease(pDSBPrimary);

With all the code in place, you can actually write the sound layer class. The
header appears in Listing 4.3, and the source code is in Listing 4.4.

Listing 4.3: SoundLayer.h

/***
* Advanced 3D Game Programming using DirectX 9.0
* *
* Desc: Sample application for Direct3D
*
* copyright (c) 2002 by Peter A Walsh and Adrian Perez
* See license.txt for modification and distribution information
**/

#ifndef _SOUNDLAYER_H
#define _SOUNDLAYER_H

#include <dsound.h>
#include "GameErrors.h" // Added by ClassView

class cSound;

class cSoundLayer
{

LPDIRECTSOUND8 m_pDSound;
LPDIRECTSOUNDBUFFER8 m_pPrimary; // primary mixer

static cSoundLayer* m_pGlobalSLayer;

cSoundLayer(HWND hWnd);

public:
virtual ~cSoundLayer();

static cSoundLayer* GetSound()
{

return m_pGlobalSLayer;
}

Chapter 4: DirectSound � 105

LPDIRECTSOUND8 GetDSound()
{

return m_pDSound;
}

static void Create(HWND hWnd)
{

new cSoundLayer(hWnd);
}

};

inline cSoundLayer* Sound()
{

return cSoundLayer::GetSound();
}

#endif //_SOUNDLAYER_H

Listing 4.4: SoundLayer.cpp

/***
* Advanced 3D Game Programming using DirectX 9.0
* *
* Desc: Sample application for Direct3D
*
* copyright (c) 2002 by Peter A Walsh and Adrian Perez
* See license.txt for modification and distribution information
**/

#include "stdafx.h"

#include "SoundLayer.h"
#include "Sound.h"

cSoundLayer* cSoundLayer::m_pGlobalSLayer = NULL;

cSoundLayer::cSoundLayer(HWND hWnd)
{

m_pDSound = NULL;
m_pPrimary = NULL;

if(m_pGlobalSLayer)
{

throw cGameError("cSoundLayer already initialized!");
}
m_pGlobalSLayer = this;

HRESULT hr;
LPDIRECTSOUNDBUFFER pDSBPrimary = NULL;

// Create IDirectSound using the primary sound device
hr = DirectSoundCreate8(NULL, &m_pDSound, NULL);
if(FAILED(hr))
{

106 � Chapter 4: DirectSound

throw cGameError("DirectSoundCreate failed!");
}

// Set coop level to DSSCL_PRIORITY
hr = m_pDSound->SetCooperativeLevel(hWnd, DSSCL_PRIORITY);
if(FAILED(hr))
{

throw cGameError("SetCooperativeLevel (DS) failed!");
}

// Get the primary buffer
sAutoZero<DSBUFFERDESC> dsbd;
dsbd.dwFlags = DSBCAPS_PRIMARYBUFFER;
dsbd.dwBufferBytes = 0;
dsbd.lpwfxFormat = NULL;

hr = m_pDSound->CreateSoundBuffer(&dsbd, &pDSBPrimary, NULL);
if(FAILED(hr))
{

throw cGameError("CreateSoundBuffer (DS) failed!");
}

// Set primary buffer format to 22 kHz and 16-bit output.
WAVEFORMATEX wfx;
ZeroMemory(&wfx, sizeof(WAVEFORMATEX));
wfx.wFormatTag = WAVE_FORMAT_PCM;
wfx.nChannels = 2;
wfx.nSamplesPerSec = 22050;
wfx.wBitsPerSample = 16;
wfx.nBlockAlign = wfx.wBitsPerSample / 8 * wfx.nChannels;
wfx.nAvgBytesPerSec = wfx.nSamplesPerSec * wfx.nBlockAlign;

if(FAILED(hr = pDSBPrimary->SetFormat(&wfx)))
{

throw cGameError("SetFormat (DS) failed!");
}

SafeRelease(pDSBPrimary);
}

cSoundLayer::~cSoundLayer()
{

SafeRelease(m_pPrimary);
SafeRelease(m_pDSound);
m_pGlobalSLayer = NULL;

}

Chapter 4: DirectSound � 107

The cSound ClassThe cSound Class

To help facilitate the creation and playback of secondary buffers, I con-
structed an encapsulation class called cSound. A cSound object can be
constructed either from a filename or from another cSound object. The
copy constructor uses a ref-counting map so that all cSounds based on the
same WAV file use the same CWaveSoundRead object. The overhead of the
map could have been avoided if the CWaveSoundRead code was changed
to accommodate the needed functionality, but I felt it was better to leave
the code unchanged from the DirectX SDK.

Without any further ado, let’s just dive into the code. The details of
how this code works isn’t terribly interesting but have a look through it
anyway to get accustomed to it.

Listing 4.5: Sound.h

/***
* Advanced 3D Game Programming using DirectX 9.0
* *
* * Desc: Sample application for Direct3D
*
* copyright (c) 2002 by Peter A Walsh and Adrian Perez
* See license.txt for modification and distribution information
**/

#ifndef _SOUND_H
#define _SOUND_H

#include <map>

#include "SoundLayer.h"
#include "Wavread.h"

class cSound
{

CWaveSoundRead* m_pWaveSoundRead;
LPDIRECTSOUNDBUFFER8 m_pBuffer;
int m_bufferSize;

/**
* Multiple sounds that use the same
* file shouldn't reread it, they should
* share the CWSR object. This map
* implements rudimentary reference counting.
* I would have just changed CWaveSoundRead,
* but I wanted to keep it unchanged from the
* samples.
*/
static std::map< CWaveSoundRead*, int > m_waveMap;

void Init();

public:

108 � Chapter 4: DirectSound

cSound(char* filename);
cSound(cSound& in);
cSound& operator=(const cSound &in);

virtual ~cSound();

void Restore();
void Fill();
void Play(bool bLoop = false);

bool IsPlaying();

};

#endif //_SOUND_H

Listing 4.6: Sound.cpp

/***
* Advanced 3D Game Programming using DirectX 9.0
* *
* Desc: Sample application for Direct3D
*
* copyright (c) 2002 by Peter A Walsh and Adrian Perez
* See license.txt for modification and distribution information
**/

#include "stdafx.h"

#include "WavRead.h"
#include "Sound.h"

using std::map;

map< CWaveSoundRead*, int > cSound::m_waveMap;

cSound::cSound(char* filename)
{

m_pWaveSoundRead = NULL;
m_pBuffer = NULL;

// Create a new wave file class
m_pWaveSoundRead = new CWaveSoundRead();

m_waveMap[m_pWaveSoundRead] = 1;

// Load the wave file
if(FAILED(m_pWaveSoundRead->Open(filename)))
{

throw cGameError("couldn't open file!");
}

Init();
Fill();

}

Chapter 4: DirectSound � 109

cSound::cSound(cSound& in)
{

m_pWaveSoundRead = in.m_pWaveSoundRead;
m_waveMap[m_pWaveSoundRead]++;
Init();
Fill();

}

cSound& cSound::operator=(const cSound &in)
{

/**
* Destroy the old object
*/
int count = --m_waveMap[m_pWaveSoundRead];
if(!count)
{

delete m_pWaveSoundRead;
}
SafeRelease(m_pBuffer);

/**
* Clone the incoming one
*/
m_pWaveSoundRead = in.m_pWaveSoundRead;
m_waveMap[m_pWaveSoundRead]++;

Init();
Fill();

return *this;
}

cSound::~cSound()
{

int count = m_waveMap[m_pWaveSoundRead];
if(count == 1)
{

delete m_pWaveSoundRead;
}
else
{

m_waveMap[m_pWaveSoundRead] = count - 1;
}

SafeRelease(m_pBuffer);
}

void cSound::Init()
{

/**
* Set up the DirectSound surface. The size of the sound file
* and the format of the data can be retrieved from the wave
* sound object. Besides that, we only set the STATIC flag,
* so that the driver isn't restricted in setting up the

110 � Chapter 4: DirectSound

* buffer.
*/
sAutoZero<DSBUFFERDESC> dsbd;
dsbd.dwFlags = DSBCAPS_STATIC;
dsbd.dwBufferBytes = m_pWaveSoundRead->m_ckIn.cksize;
dsbd.lpwfxFormat = m_pWaveSoundRead->m_pwfx;

HRESULT hr;

// Temporary pointer to old DirectSound interface
LPDIRECTSOUNDBUFFER pTempBuffer = 0;

// Create the sound buffer
hr = Sound()->GetDSound()->CreateSoundBuffer(&dsbd, &pTempBuffer, NULL);
if(FAILED(hr))
{

throw cGameError("CreateSoundBuffer failed!");
}

// Upgrade the sound buffer to version 8
pTempBuffer->QueryInterface(IID_IDirectSoundBuffer8, (void**)&m_pBuffer);
if(FAILED(hr))
{

throw cGameError("SoundBuffer query to 8 failed!");
}

// Release the temporary old buffer
pTempBuffer->Release();

/**
* Remember how big the buffer is
*/
m_bufferSize = dsbd.dwBufferBytes;

}

void cSound::Restore()
{

HRESULT hr;

if(NULL == m_pBuffer)
{

return;
}

DWORD dwStatus;
if(FAILED(hr = m_pBuffer->GetStatus(&dwStatus)))
{

throw cGameError("couldn't get buffer status");
}

if(dwStatus & DSBSTATUS_BUFFERLOST)
{

/**
* Chances are, we got here because the app /just/

Chapter 4: DirectSound � 111

* started, and DirectSound hasn't given us any
* control yet. Just spin until we can restore
* the buffer
*/

do
{

hr = m_pBuffer->Restore();
if(hr == DSERR_BUFFERLOST)

Sleep(10);
}
while(hr = m_pBuffer->Restore());

/**
* The buffer was restored. Fill 'er up.
*/

Fill();
}

}

void cSound::Fill()
{

HRESULT hr;
uchar* pbWavData; // Pointer to actual wav data
uint cbWavSize; // Size of data
void* pbData = NULL;
void* pbData2 = NULL;
ulong dwLength;
ulong dwLength2;

/**
* How big the wav file is
*/
uint nWaveFileSize = m_pWaveSoundRead->m_ckIn.cksize;

/**
* Allocate enough data to hold the wav file data
*/
pbWavData = new uchar[nWaveFileSize];
if(NULL == pbWavData)
{

delete [] pbWavData;
throw cGameError("Out of memory!");

}

hr = m_pWaveSoundRead->Read(
nWaveFileSize,
pbWavData,
&cbWavSize);

if(FAILED(hr))
{

delete [] pbWavData;
throw cGameError("m_pWaveSoundRead->Read failed");

}

112 � Chapter 4: DirectSound

/**
* Reset the file to the beginning
*/
m_pWaveSoundRead->Reset();

/**
* Lock the buffer so we can copy the data over
*/
hr = m_pBuffer->Lock(

0, m_bufferSize, &pbData, &dwLength,
&pbData2, &dwLength2, 0L);

if(FAILED(hr))
{

delete [] pbWavData;
throw cGameError("m_pBuffer->Lock failed");

}

/**
* Copy said data over, unlocking afterwards
*/
memcpy(pbData, pbWavData, m_bufferSize);
m_pBuffer->Unlock(pbData, m_bufferSize, NULL, 0);

/**
* We're done with the wav data memory.
*/
delete [] pbWavData;

}

bool cSound::IsPlaying()
{

DWORD dwStatus = 0;

m_pBuffer->GetStatus(&dwStatus);

if(dwStatus & DSBSTATUS_PLAYING)
return true;

else
return false;

}

void cSound::Play(bool bLoop)
{

HRESULT hr;
if(NULL == m_pBuffer)

return;

// Restore the buffers if they are lost
Restore();

// Play buffer
DWORD dwLooped = bLoop ? DSBPLAY_LOOPING : 0L;
if(FAILED(hr = m_pBuffer->Play(0, 0, dwLooped)))

Chapter 4: DirectSound � 113

{
throw cGameError("m_pBuffer->Play failed");

}
}

Additions to cApplication

The only addition to cApplication is the InitSound call, which initializes
the sound layer. After the call completes you can freely create cSound
objects and play them. If this is not the behavior you would like in your
application, the function is overloadable. The code is in the following:

void cApplication::InitSound()
{

cSoundLayer::Create(MainWindow()->GetHWnd());
}

Application: DirectSound SampleApplication: DirectSound Sample

Adrian, the lead author of the DirectX 7.0 version of this book, has a few
interesting hobbies. As part of an ongoing effort, he does extracurricular
activities that actually have nothing to do with programming. One of them
is an a cappella group that he sings bass in. One of his jobs in the a
cappella group is to take care of some of the vocal percussion.

A cappella music can’t have any sort of accompaniment, so any percus-
sion needs to be done with the human voice. This has spawned an entire
subculture of vocal percussionists, each trying to make that perfect snare
sound or cymbal crash using only their mouths. The DirectSound sample
for this chapter was created using Adrian’s unique vocal abilities.

When you load the file DSSAMPLE from the companion files, you’re
presented with a small window that lists six different vocal percussion
sounds. The keys 1 through 6 play each of the sounds, and you can press
multiple keys simultaneously to play multiple sounds.

You’ll note that I didn’t show you a DirectInput sample, because I fig-
ured it would be better to roll DirectSound and DirectInput into one
sample. DirectInput is used to capture the keystrokes. With some practice
you can get a pretty swank beat going. The code behind the sample
appears in Listing 4.7.

Listing 4.7: The vocal percussion DirectSound sample app

/***
* Advanced 3D Game Programming using DirectX 9.0
* *
* Desc: Sample application for Direct3D
*
* copyright (c) 2002 by Peter A Walsh and Adrian Perez
* See license.txt for modification and distribution information
**/

114 � Chapter 4: DirectSound

#include "stdafx.h"

#include <vector>
#include <string>
using namespace std;

class cDSSampleApp : public cApplication, public iKeyboardReceiver
{

vector< cSound* > m_sounds[6];
string m_names[6];

int m_states[6]; // states of the keys 1-6

public:

void PlaySound(int num);

//==========-------------------------- cApplication

virtual void DoFrame(float timeDelta);
virtual void SceneInit();

cDSSampleApp() :
cApplication()

{
m_title = string("DirectSound Sample");
m_width = 320;
m_height = 200;

for(int i=0; i<6; i++) m_states[i] = 0;
}

~cDSSampleApp()
{

for(int i=0; i<6; i++)
{

for(int i2=0; i2< m_sounds[i].size(); i2++)
{

delete m_sounds[i][i2];
}

}
}

virtual void KeyUp(int key);
virtual void KeyDown(int key);

};

cApplication* CreateApplication()
{

return new cDSSampleApp();
}

Chapter 4: DirectSound � 115

void DestroyApplication(cApplication* pApp)
{

delete pApp;
}

void cDSSampleApp::SceneInit()
{

m_names[0] = string("media\\keg.wav");
m_names[1] = string("media\\crash1.wav");
m_names[2] = string("media\\crash2.wav");
m_names[3] = string("media\\bass.wav");
m_names[4] = string("media\\snare.wav");
m_names[5] = string("media\\hihat.wav");

Input()->GetKeyboard()->SetReceiver(this);

for(int i=0; i<6; i++)
{

m_sounds[i].push_back(new cSound((char*)m_names[i].c_str()));
}

}

void cDSSampleApp::PlaySound(int num)
{

/**
* iterate through the vector, looking
* for a sound that isn't currently playing.
*/
vector<cSound*>::iterator iter;
for(iter = m_sounds[num].begin(); iter != m_sounds[num].end(); iter++)
{

if(!(*iter)->IsPlaying())
{

(*iter)->Play();
return;

}
}

/**
* A sound wasn't found. Create a new one.
*/
DP("spawning a new sound\n");

cSound* pNew = new cSound(*m_sounds[num][0]);
m_sounds[num].push_back(pNew);
m_sounds[num][m_sounds[num].size() - 1]->Play();

}

void cDSSampleApp::DoFrame(float timeDelta)
{

// Clear the previous contents of the back buffer
Graphics()->GetDevice()->Clear(0, 0, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER,

116 � Chapter 4: DirectSound

D3DCOLOR_XRGB(0,0,200), 1.0f, 0);

// Set up the strings
string help;
help += "DirectSound Sample application\n";
help += "Vocal Percussion with Adrian Perez\n";
help += " [1]: Keg drum\n";
help += " [2]: Crash 1\n";
help += " [3]: Crash 2\n";
help += " [4]: Bass drum\n";
help += " [5]: Snare drum\n";
help += " [6]: Hi-Hat\n";

// Tell Direct3D we are about to start rendering
Graphics()->GetDevice()->BeginScene();

// Output the text
Graphics()->DrawTextString(1, 1, D3DCOLOR_XRGB(0, 255, 0), help.c_str());

// Tell Direct3D we are done rendering
Graphics()->GetDevice()->EndScene();

// Present the back buffer to the primary surface
Graphics()->Flip();

}

void cDSSampleApp::KeyDown(int key)
{

switch(key)
{
case DIK_1:

if(!m_states[0])
{

m_states[0] = 1;
PlaySound(0);

}
break;

case DIK_2:
if(!m_states[1])
{

m_states[1] = 1;
PlaySound(1);

}
break;

case DIK_3:
if(!m_states[2])
{

m_states[2] = 1;
PlaySound(2);

}
break;

case DIK_4:
if(!m_states[3])
{

Chapter 4: DirectSound � 117

m_states[3] = 1;
PlaySound(3);

}
break;

case DIK_5:
if(!m_states[4])
{

m_states[4] = 1;
PlaySound(4);

}
break;

case DIK_6:
if(!m_states[5])
{

m_states[5] = 1;
PlaySound(5);

}
break;

}
}

void cDSSampleApp::KeyUp(int key)
{

switch(key)
{
case DIK_1:

m_states[0] = 0;
break;

case DIK_2:
m_states[1] = 0;
break;

case DIK_3:
m_states[2] = 0;
break;

case DIK_4:
m_states[3] = 0;
break;

case DIK_5:
m_states[4] = 0;
break;

case DIK_6:
m_states[5] = 0;
break;

}
}

And that, ladies and gentlemen, is DirectSound. You should be able to
build on top of the code I have shown you in this chapter to create the per-
fect acoustic accompaniment to your own projects without too much
difficulty.

Now it’s time to focus on the 3D mathematics that you need to start
exploring the next dimension with Direct3D. What is the matrix? You’re
about to find out…

118 � Chapter 4: DirectSound

Chapter 5Chapter 5

When you really get down to it, using 3D graphics is an exercise in
math. Some of the math can be intensely interesting; some of it can be
seriously dull. It all depends on the eye of the beholder. Love it or hate
it, however, you still have to learn it. A solid foundation in math is a
requirement if you want to be a successful 3D coder. Don’t worry,
though; I’ll try to keep this chapter as interesting as possible.

Points

Let’s start with the most basic of basic primitives: the 3D point, or vector.
Points are paramount in 3D graphics. The vertices of objects, the objects’
locations and directions, and their velocities/forces are all described
with 3D points. Three-dimensional objects have width, height, and
depth, which are represented with the shorthand components x (width),
y (height), and z (depth). Points and vectors, when used in equations,
are referred to as vector quantities, while regular numbers are referred
to as scalar quantities. In this book I’ll refer to 3D vectors with lower-
case, boldface letters (examples would be v and p).
The three components are written separated by
commas like this: <x,y,z>. They are also repre-
sented as a single row matrix (or, equivalently, a
transposed single column matrix). If you’re unfa-
miliar with the concept of matrices, have patience:
I’ll get there soon. At the right is an example of how
points are represented using matrix notation:

Note: In the book I use the terms “point” and “vector” interchangeably.
They loosely mean the same thing. A point is a location in 3D space, and
a vector is a line that goes from the origin to a location in 3D space. For
all the math that I’m discussing in this book, they can be used
interchangeably.

119

T

�
�
�

�

�

�
�
�

�

�
�

�

z

y

x

zyx

and

][

v

v

v

v

vvvv

Here are a few examples of three-dimensional points. It’s difficult to repre-
sent the dimensions on paper, so please be tolerant of the illustrations used
in this book.

3D points are graphed in a way analogous to the 2D Cartesian coordinate
system. There are three principal axes stretching off into infinity in both
directions. These are the x, y, and z axes. They meet at the origin, a specific
point that represents the center of the current coordinate system (typically
you have several coordinate systems to worry about, but I’ll leave this until
later). The coordinates of the origin are, of course, <0,0,0>.

Which way do the axes point? In some systems (for example, some 3D
modelers like 3D Studio Max), x increases to the right, y increases forward
(into the page), and z increases up. These directions are all dependent on
the orientation of the viewer of the scene. My choice of axes direction is
the one used in most 3D games: x increases to the right, y increases up,
and z increases forward, into the monitor (or away from you if that makes
it clearer).

Note: This book uses a left-handed coordinate space, where x increases to the
right, y increases up, and z increases forward (into the screen). In
right-handed coordinate systems, z increases coming out of the screen.

A point always exists some distance away from the origin of the coordinate
space; this quantity is called the magnitude of the vector (or, more intu-
itively, the length of the vector). To compute the magnitude of vectors in
2D, you use the Pythagorean theorem:

Luckily, the Pythagorean theorem extends into 3D to measure the length of
3D vectors by simply adding the extra z component into the equation. You

120 � Chapter 5: 3D Math Foundations

Figure 5.1:
Examples of 3D
vectors

22magnitude yx 	�

can see that the 2D Pythagorean equation is simply a special case of the 3D
equation where the z-distance from the origin is zero.

There is a shorthand notation used to denote the magnitude of a vec-
tor when used in more complex equations. The notation is the vector
surrounded on both sides by double vertical lines. The equation for vector
length, given a vector v with components x, y, and z is:

A special type of vector is one that has a length of 1. This type of vector is
called a unit vector. Each unit vector touches a point on what is called the
unit sphere, a conceptual sphere with radius 1, situated at the origin.

It’s often the case that you want a unit-length version of a given vector.
For example, the unit-length version n of a given vector m would be:

For simplicity’s sake, however, I’ll introduce some shorthand notation. The
same equation can be represented by putting a bar over m to signify the
unit-length version:

There are three specific unit vectors that represent the directions along the
three primary axes: i <1,0,0>, j <0,1,0>, and k <0,0,1>.

Many physics texts use the i, j, and k vectors as primitives to describe
other 3D vectors, so it is worth mentioning it here. Any point in 3D can be
represented as a linear combination of the i, j, and k vectors. You can
define any vector as a sum of the scalar components with the three

Chapter 5: 3D Math Foundations � 121

222 zyx 		�v

m

m
n �

mn �

Figure 5.2:
The i, j, and k vectors

principal vectors. For example, if you had the 3D vector a = <3,5,2>, you
could represent it like this:

This trait will become more important later on, when I discuss matrices
and the spaces they represent.

Aside: While it isn’t really pertinent to the level of expertise you need to reach
in this book, the concept of a linear combination is important when talking
about spaces and transformations.

Given n vectors b0..bn-1, any vector v is a linear combination of the set
of the vectors if the following equation can be satisfied:

where k0..kn-1 are scalars.
That is, if you want to get to v, you can start at the origin and walk

along any or all of the vectors some amount and reach v.
You can say the set of b vectors is linearly independent if no single b

vector is a linear combination of the others.

The point3 Structure

It is always useful to design a class to encapsulate a generic 3D point. The
class name I use is point3. Unlike most of the other classes you have seen
so far, the intent of the point3 structure is to act as a mathematical primi-
tive like float or int. The 3 suffix denotes the dimension of the point. I’ll
also define 2D and 4D versions of points, which are named point2 and
point4, respectively.

Listing 5.1: The point3 structure (defined in point3.h)

struct point3
{

union
{

struct
{

float x,y,z; // 3 real components of the vector
};
float v[3]; // Array access useful in for loops

};

// Default constructor
point3(){}

// Construct a point with 3 given inputs
point3(float X, float Y, float Z) :

x(X), y(Y), z(Z)
{
}

122 � Chapter 5: 3D Math Foundations

111100

			� nnkkk bbbv �

kjia 253 		�

// ... more will go in here.
};

This class uses a union in conjunction with a nameless struct. If you’ve
never encountered unions before, a union is used to name components
that share memory. So, in the above code, the y variable and the v[1] vari-
able represent the same piece of memory; when one of them changes, both
of them change. A nameless struct is used to let you define the x, y, and z
components as one atomic unit (since I don’t want them to each be refer-
ring to the same piece of memory). This way you can use the familiar x,y,z
notation for most of the code, but maintain the ability to index into an
array for iteration.

Aside: The non-default constructor uses initialization lists. C++ classes should
use these whenever possible. They clarify the intent of the code to the com-
piler, which lets it do its job better (it has a better chance to inline the code,
and the code will end up being considerably more efficient, especially for
complex structures).

Finally, you may wonder why I’m choosing floats (32 bits/4 bytes) instead
of doubles (64 bits/8 bytes) or long doubles (80 bits/10 bytes). Well, I
could just implement the point as a template class, but there are too many
other interactions with other classes to complicate the code that much.
Using it as a template in a way defeats the concept of using the point as a
generic primitive, especially since there is a space of only three types I
would use.

Doubles and long doubles are slower than floats, about twice as slow
for things like divides (19 versus 39 cycles), and on top of that they require
twice the space. The added precision really isn’t important unless you
really need a wide range of precision. Within a few years worlds will be big
enough and model resolution will be fine enough that you may need to
employ larger floating-point resolutions to get the job done. Until then I’d
suggest sticking with traditional floats.

Basic point3 Functions

The point3 structure is pretty lame right now. All it can do is construct
structures! To spice it up, I’ll add some member functions to help perform
some basic operations on 3D points, and explain what they are used for.

Assign

Setting a point to a certain value is a common task. It could be done
explicitly in three lines, setting the x, y, and z values separately. However,
for simplicity’s sake, it’s easier to set them all at once, with a single func-
tion call. This is also better than just creating a new variable on the stack

Chapter 5: 3D Math Foundations � 123

with a point3 constructor; it’s more efficient to reuse stack variables when-
ever possible. The code to do this appears in Listing 5.2.

Listing 5.2: point3::Assign

// Reassign a point without making a temporary structure
inline void point3::Assign(float X, float Y, float Z)
{

x=X;
y=Y;
z=Z;

}

Mag and MagSquared

The function Mag uses the 3D version of the Pythagorean theorem men-
tioned previously to calculate the length of the point structure (the
distance from the point to the origin). The code appears in Listing 5.3.

Listing 5.3: point3::Mag

inline float point3::Mag() const
{

return (float)sqrt(x*x + y*y + z*z);
}

Sometimes you want the squared distance (for example, when calculating
the attenuation factor for a point-source light). Rather than computing the
expensive square root and squaring it, you can avoid the cost and simply
make an extra function to do it for you, which appears in Listing 5.4.

Listing 5.4: point3::MagSquared

inline float point3::MagSquared() const
{

return (x*x + y*y + z*z);
}

Normalize

Normalize takes a point structure and makes it a unit-length vector point-
ing in the same direction. The code appears in Listing 5.5.

Listing 5.5: point3::Normalize

inline void point3::Normalize()
{

float InvertedMagnitude=1/Mag();
x*=InvertedMagnitude;
y*=InvertedMagnitude;
z*=InvertedMagnitude;

}

124 � Chapter 5: 3D Math Foundations

Dist

Dist is a static function that calculates the distance between two point
structures. Conceptually, it finds the vector that connects them (which is
the vector b–a) and computes its length. The code appears in Listing 5.6.

Listing 5.6: point3::Dist

inline static float point3::Dist(const point3 &a, const point3 &b)
{

point3 distVec(b.x - a.x, b.y - a.y, b.z - a.z);
return distVec.Mag();

}

point3 Operators

Now that there is a basic primitive I can use, like other primitives (e.g., int
or float), I need some way to operate on the data. Since vectors can be
added, subtracted, and multiplied (sort of), just like scalars, it would be
cool to have an easy way to perform these operations. Operator overload-
ing to the rescue! C++ lets you modify/define the behavior of operators
on classes.

Addition/Subtraction

Vector addition and subtraction are useful in moving points around in 3D.
Conceptually, adding a vector to another moves the location of the first
vector in the direction of the second. Figure 5.3 shows what the result of
vector addition looks like, and Figure 5.4 shows the result of vector
subtraction.

Chapter 5: 3D Math Foundations � 125

Figure 5.3:
Vector addition example

In many respects, vector addition/subtraction is incredibly similar to the
normal scalar addition that I’m sure you know and love. For example, if
you wanted to find the average location of a set of vectors, you simply add
them together and divide the result by the number of vectors added, which
is, of course, the same averaging formula used for scalars.

The code for adding/subtracting vectors is equally similar to their sca-
lar cousins: Simply add (or subtract) each component together separately.
I’ll give the + and – operators; in the code you’ll find the += and –=
operators.

Listing 5.7: Addition and subtraction operators for point3

inline point3 operator+(point3 const &a, point3 const &b)
{

return point3
(

a.x+b.x,
a.y+b.y,
a.z+b.z

);
};

inline point3 operator-(point3 const &a, point3 const &b)
{

return point3
(

a.x-b.x,
a.y-b.y,
a.z-b.z

);
};

126 � Chapter 5: 3D Math Foundations

Figure 5.4:
Vector subtraction
example

Vector-Scalar Multiplication/Division

Often, you may want to increase or decrease the length of a vector, while
making sure it still points in the same direction. Basically, you want to
scale the vector by a scalar. Figure 5.5 shows what scaling vectors looks
like.

Doing this in code is easy enough; just multiply (or divide) each compo-
nent in the vector by the provided scalar. Listing 5.8 has the * and /
operators; the *= and /= operators are defined in the header. Note that I
defined two multiplicative operators; one for vector * scalar and another
for scalar * vector.

Listing 5.8: Scalar multiplication/division operators for point3

inline point3 operator*(point3 const &a, float const &b)
{

return point3
(

a.x*b,
a.y*b,
a.z*b

);
};

inline point3 operator*(float const &a, point3 const &b)
{

return point3
(

a*b.x,
a*b.y,
a*b.z

);
};

inline point3 operator/(point3 const &a, float const &b)
{

Chapter 5: 3D Math Foundations � 127

Figure 5.5:
Multiplying/dividing
vectors by scalars

float inv = 1.f / b; // Cache the division.
return point3
(

a.x*inv,
a.y*inv,
a.z*inv

);
};

Vector Equality

Often, you want to know if two points represent the same location in 3D.
You can use this to see if two polygons share an edge, or if two triangles
are the same, for example. I’ll overload the equality operator (==) to do
this.

This one, at first glance, would be a no-brainer; just compare to see if
the x, y, and z values match up. However, the answer is not as simple as
that. This is one of many points where an important line in the sand must
be drawn, a line between the wonderful land of theory and the painful
land of reality.

In Theory, there is infinite precision for scalar values. The decimal
value of 1/3 has a string of 3s that never ends. When you multiply two
scalar numbers together, the solution is exactly the correct one. When
comparing two floating-point numbers, you know (with infinite precision)
whether or not the numbers are equal. When multiplying an extremely
large number by an extremely small one, the result is exactly what was
expected. Everything is nice, in Theory. However, right now real estate is
pretty expensive over there, so you and I are going have to stay here, in
Reality.

In Reality, floating pointers do not have infinite precision. Floats (32
bits) and doubles (64 bits) can only encode so much precision (around 5
and 15 base 10 places, respectively). They do not multiply nicely. If you
multiply an extremely large number and an extremely small number, the
solution is not the solution you might expect, due to the lack of precision.
Finally, they do not handle equality too well. Due to all the imprecision
floating around, two different paths of calculation that should result in the
same answer can yield subtly different, although technically equal,
numbers.

Note: Look on the web for programming horror stories, and you’ll see that
countless problems in computer programming come from assuming that
floating- or fixed-point numbers will have enough precision for what you
need.

So, how is this little issue fixed? In practice, the problem really can’t be
fixed, but it is possible to hack out a solution that works well enough. Epsi-
lon values provide the answer. (You’ll see them covered throughout the

128 � Chapter 5: 3D Math Foundations

book; epsilons are used all over the place to correct for numerical impreci-
sion.) What you do is make each point have a certain, extremely small
mass, going out in each direction a value epsilon. For instance, I will be
using an epsilon of 10–3, or 0.001. That way, in order to see if two points
are equal (or, in this case, equal enough), you test to see if the difference
between them is less than or equal to epsilon. If this case is satisfied for all
three coordinates, then it can safely be said the two points are equal.

Note: In case you haven’t picked it up yet, getting a solution to a problem that
is not necessarily correct but good enough is one of the mantras of graphics
programming. There is never enough time to calculate everything the hard
way; the more corners you can cut without people being able to tell, the
more of an edge you’ll have over your competition.

In code, this becomes:

Listing 5.9: point3 equality operator

// above somewhere: #define EPSILON 0.001
inline bool operator==(point3 const &a, point3 const &b)
{

if(fabs(a.x-b.x)<EPSILON)
{

if(fabs(a.y-b.y)<EPSILON)
{

if(fabs(a.z-b.z)<EPSILON)
{

return true; // We passed
}

}
}
return false; // The points were not equal enough

};

Dot Product

The dot product (mathematically represented with the symbol �) is one of
the most important operations in 3D graphics. It is used everywhere.
Everything from transformation to clipping to BSP tree traversal uses the
dot product.

The mathematical definition for the dot product is this:

In this equation, u and v represent two vectors in 3D. The �u� and �v�
represent the lengths of the vectors, and theta (�) represents the angle
between the vectors. As you can see from the equation, the result of the
dot product equation is a scalar, not a vector.

Chapter 5: 3D Math Foundations � 129

)cos(����� vuvu

Conceptually, the dot product describes the relation between two vec-
tors in scalar form. If one of the vectors is normalized, the dot product
represents the length of the shadow that the other vector would cast, as
shown in Figure 5.6.

This particular trait is used in clipping.
Using the equation given above, you can rearrange the terms to pro-

vide a way to find the angle theta between two vectors:

This works out very conveniently if both vectors are unit-length; two
square roots (to find the vector lengths) and a division drop out of the
equation and you get:

(if u and v are unit-length)

How does this work? This seems like a rather arbitrary trait for the dot
product to have. Well, for some insight, think back to your trigonometry
days. My trigonometry professor had a little mnemonic device to help
remember the basic rules of trigonometry called “SOHCAHTOA.” The mid-
dle three letters say that cosine is equal to the adjacent edge divided by the
hypotenuse of a right triangle or:

Now, on a unit circle, the hypotenuse will be length 1, so that drops out of
the equation. You’re left with cos(�)= adjacent edge. Think of the adjacent
edge as the shadow of the hypotenuse onto the x-axis as shown in Figure
5.7.

130 � Chapter 5: 3D Math Foundations

Figure 5.6:
The conceptual “shadow”
the dot product produces

vu

vu

�
��)cos(�

hypotenuse

adjacent�)cos(�

)(cos 1 vu ��
�

So if, for the sake of this example, v is a unit vector going out along the
x-axis, and u is a unit vector of the hypotenuse, then u� v will give the
length of the shadow of u onto v, which is equivalent to the adjacent edge
in the right triangle, and therefore cos(�).

The actual code behind the dot product is much simpler than the equa-
tions above, devoid of square roots, divides, and cosines (which is great,
since the dot product is computed so often!). The dot product is achieved
by summing the piecewise multiplication of each of the components. To
implement dot products, I’m going to overload the multiplication operator
*. It seems almost mysterious how three multiplications and two additions
can make the same result that you get from the complex equation above,
but don’t look a gift horse in the mouth, as they say.

Listing 5.10: Dot product operator

inline float operator*(point3 const &a, point3 const &b)
{

return a.x*b.x + a.y*b.y + a.z*b.z;
}

Chapter 5: 3D Math Foundations � 131

Figure 5.7:
Visual definitions of the
cosine terms

Figure 5.8:
The analog to cosine in the
vector world

Cross Product

Another operation that can be performed
between two vectors is called the cross product.
It’s represented mathematically with the symbol
� . The formula for computing the cross product
is shown at the right:

The operation returns a vector, not a scalar
like the dot product. The vector it returns is mutually orthogonal to both
input vectors. A vector mutually orthogonal to two others means that it is
perpendicular to both of them. The resultant vector from a cross product is
perpendicular (or orthogonal) to both of the input vectors. Once I start dis-
cussing planes you’ll see how useful they can be. For most applications of
the cross product, you want the result to be unit-length.

Warning: If the two input vectors in a cross-product operation are parallel, the
result of the operation is undefined (as there are an infinite number of vec-
tors that are perpendicular to one vector).

An important note is that the cross product operation is not commutative.
That is, a � b is not the same as b � a. They are very similar, however, as
one points in the opposite direction of the other.

Now it’s time for some implementation. Since the * operator is already
used for the dot product, something else needs to be picked instead. The
choice of operator is fairly arbitrary, but following the example of a former
professor of mine named David Baraff (who’s now working at Pixar), I use
the XOR operator ^. The code, while not the most intuitive thing in the
world, follows the equations stated above.

Listing 5.11: Cross product operator

inline point3 operator^(point3 const &a, point3 const &b)
{

return point3
(

(a.y*b.z-a.z*b.y),
(a.z*b.x-a.x*b.z),
(a.x*b.y-a.y*b.x)

);
}

The full code that defines all the behavior for points in 3D is found in the
downloadable files in the code directory for this chapter in point3.h and
point3.cpp. Also included are point4.h and point4.cpp, which define
four-dimensional points (you’ll see these later for quaternion rotations and
parametric surfaces).

132 � Chapter 5: 3D Math Foundations

T

yxyx

yxxz

yxzy

�
�
�

�

�

�
�
�

�

�

��
baba

baba

baba

ba

Polygons

The polygon is the bread and butter of computer graphics. Rendered
images would be pretty bland if you didn’t have the polygon. While there
are other primitives used in computer graphics (implicit surfaces, for
example), just about every personal computer on the market today has
hardware in it to accelerate the drawing of polygons (well, triangles
actually … but same difference), so the polygon is king.

All of the polygons dealt with here are convex. Convex polygons have
no dents or pits, i.e., no internal obtuse angles. A convex polygon is much
easier to rasterize, easier to clip, easier to cull, and the list goes on. While
you could deal with concave polygons, the code to manage them and draw
them is harder than in the convex case. It’s much easier to represent con-
cave polygons with two or more convex polygons.

Polygons (or triangles, which I’ll discuss next) describe the boundary
representation of an object (academic and CAD texts often use the term
b-rep to mean this). A b-rep is simply a set of polygons that exactly define
the boundary surface of an object. If the object is a cube, the b-rep is the
six square polygons that make up each face.

Figure 5.9 has four examples of polygons. Two are convex, and two
are not.

For now, I’ll implement polygons with a template class. This is because I
don’t want to have to reimplement the class for holding indices or point
data (I’ll discuss what this means later). While polygons could be imple-
mented with a fully dynamic array, like an STL vector, I chose to limit the
functionality for the sake of speed. Each polygon is created with a maxi-
mum number of possible elements it can contain. For most applications, a
number like 8 or 10 will suffice. In addition to this, there is the number of

Chapter 5: 3D Math Foundations � 133

Figure 5.9:
Different types of
polygons

actual elements in the polygon. This number should never be greater than
the maximum number of elements. Let’s take a look at the polygon class.
Listing 5.12 has the code for it.

Listing 5.12: The polygon template struct, defined in polygon.h

template <class type>
struct polygon
{

int nElem; // number of elements in the polygon
int maxElem;

type *pList;

polygon()
{

nElem = 0;
maxElem = 0;
pList = NULL;

}

polygon(int maxSize)
{

maxElem = maxSize;
pList = new type[maxSize];

}

polygon(const polygon &in)
{

CloneData(in);
}

~polygon()
{

DestroyData();
}

void CloneData(const polygon &in)
{

if(!in.pList)
return;

pList = new type[in.maxElem];
maxElem = in.maxElem;
nElem = in.nElem;
for(int i=0; i<in.nElem; i++)
{

pList[i] = in.pList[i];
}

}

void DestroyData()
{

delete[] pList;
pList = NULL;

134 � Chapter 5: 3D Math Foundations

}

polygon& operator=(const polygon<type> &in)
{

if(&in != this)
{

DestroyData();

CloneData(in);
}

return *this;
}

};

Triangles

Triangles are to 3D graphics what pixels are to 2D graphics. Every PC hard-
ware accelerator under the sun uses triangles as the fundamental drawing
primitive (well … scan line aligned trapezoids actually, but that’s a hard-
ware implementation issue). When you draw a polygon, hardware devices
really draw a fan of triangles. Triangles “flesh out” a 3D object, connecting
them together to form a skin or mesh that defines the boundary surface of
an object. Triangles, like polygons, generally have an orientation associ-
ated with them, to help in normal calculations. All of the code in this book
uses the convention that you are located in front of a triangle if the order-
ing of the vertices goes clockwise around the triangle. Figure 5.10 shows
what a clockwise ordered triangle would look like.

When defining a mesh of triangles that define the boundary of a solid, you
set it up so that all of the triangles along the skin are ordered clockwise
when viewed from the outside.

Chapter 5: 3D Math Foundations � 135

Figure 5.10:
Three points in
space, and the
triangle connect-
ing them

It is impossible to see triangles that face away from you. (You can find
this out by computing the triangle’s plane normal and performing a dot
product with a vector from the camera location to a location on the plane.)

Now let’s move on to the code. To help facilitate using the multiple
types, I’ll implement triangles using templates. The code is fairly simple; it
uses triangles as a container class, so I only define constructors and keep
the access public so accessors are not needed.

Listing 5.13: The tri template struct

template <class type>
struct tri
{

type v[3]; // Array access useful for loops

tri()
{

// nothing
}

tri(type v0, type v1, type v2)
{

v[0] = v0;
v[1] = v1;
v[2] = v2;

}
};

Strips and Fans

Lists of triangles are generally represented in one of three ways. The first is
an explicit list or array of triangles, where every three elements represent a
new triangle. However, there are two additional representations, designed
to save bandwidth while sending triangles to dedicated hardware to draw
them. They are called triangle strips and triangle fans.

Triangle fans, conceptually, look like the folding fans you see in Asian
souvenir shops. They are a list of triangles that all share a common point.
The first three elements indicate the first triangle. Then each new element
is combined with the first element and the current last element to form a
new triangle. Note that an N-sided polygon can be represented efficiently
using a triangle fan. Figure 5.11 illustrates what I’m talking about.

Triangles in a triangle strip, instead of sharing a common element with
all other triangles like a fan, only share elements with the triangle immedi-
ately preceding them. The first three elements define the first triangle.
Then each subsequent element is combined with the two elements before
it, in clockwise order, to create a new triangle. See Figure 5.12 for an
explanation of strips.

136 � Chapter 5: 3D Math Foundations

Planes

The next primitive to discuss is the plane. Planes are to 3D what lines are
in 2D; they’re n–1 dimensional hyperplanes that can help you accomplish
various tasks. Planes are defined as infinitely large, infinitely thin slices of
space, like big pieces of paper. Triangles that make up your model each
exist in their own plane. When you have a plane that represents a slice of
3D space, you can perform operations like classification of points and poly-
gons and clipping.

So how do you represent planes? Well it is best to build a structure
from the equation that defines a plane in 3D. The implicit equation for a
plane is:

What do these numbers represent? The triplet <a,b,c> represents what is
called the normal of the plane. A normal is a unit vector that, conceptually

Chapter 5: 3D Math Foundations � 137

Figure 5.11:
A list of points compos-
ing a triangle fan

Figure 5.12:
A list of points compos-
ing a triangle strip

ax by cz d	 	 	 � 0

speaking, sticks directly out of a plane. A stronger mathematical definition
would be that the normal is a vector that is perpendicular to all of the
points that lie in the plane.

The d component in the equation represents the distance from the
plane to the origin. The distance is computed by tracing a line towards the
plane until you hit it. Finally the triplet <x,y,z> is any point that satisfies
the equation. The set of all points <x,y,z> that solve the equation is
exactly all the points that lie in the plane.

All of the pictures I’m showing you will be of the top-down variety, and
the 3D planes will be on edge, appearing as 2D lines. This makes figure
drawing much easier; if there is an easy way to represent infinite 3D
planes in 2D, I sure don’t know it. (If only Q were here, he could tell me...)

Following are two examples of planes. The first has the normal point-
ing away from the origin, which causes d to be negative (try some sample
values for yourself if this doesn’t make sense). The second has the normal
pointing towards the origin, so d is positive. Of course, if the plane goes
through the origin, d is zero (the distance from the plane to the origin is
zero). Figures 5.13 and Figure 5.14 provide some insight into this relation.

138 � Chapter 5: 3D Math Foundations

Figure 5.13:
d is negative when the
normal faces towards the
origin

Figure 5.14:
d is positive when it
faces away from the
origin

It’s important to notice that technically the normal <a,b,c> does not have
to be unit-length for it to have a valid plane equation. But since things end
up nicer if the normal is unit-length, all of the normals in this book are
unit-length.

The basic plane3 structure is defined in Listing 5.14.

Listing 5.14: The plane3 structure

struct plane3 {

point3 n; // Normal of the plane
float d; // Distance along the normal to the origin

plane3(float nX, float nY, float nZ, float D) :
n(nX, nY, nZ), d(D)

{
// All done.

}
plane3(const point3& N, float D) :

n(N), d(D)
{

// All done.
}

// Construct a plane from three 3D points
plane3(const point3& a, const point3& b, const point3& c);

// Construct a plane from a normal direction and
// a point on the plane
plane3(const point3& norm, const point3& loc);

// Construct a plane from a polygon
plane3(const polygon<point3>& poly);

plane3()
{

// Do nothing
}

// Flip the orientation of the plane
void Flip();

};

Constructing a plane given three points that lie in the plane is a simple
task. You just perform a cross product between the two vectors made up by
the three points (<point2 – point0> and <point1 – point0>) to find a nor-
mal for the plane. After generating the normal and making it unit length,
finding the d value for the plane is just a matter of storing the negative dot
product of the normal with any of the points. This holds because it essen-
tially solves the plane equation above for d. Of course plugging a point in
the plane equation will make it equal 0, and this constructor has three of
them. Listing 5.15 has the code to construct a plane from three points.

Chapter 5: 3D Math Foundations � 139

Listing 5.15: Constructing a plane from three points on the plane

inline plane3::plane3(
const point3& a,
const point3& b,
const point3& c)

{
n = (b-a)^(c-a);
n.Normalize();
d = -(n*a);

}

If you already have a normal and also have a point on the plane, the first
step can be skipped. See Listing 5.16.

Listing 5.16: Constructing a plane from a normal and a point on the plane

inline plane3::plane3(const point3& norm, const point3& loc) :
n(norm), d(-(norm*loc))

{
// all done

}

Finally, constructing a plane given a polygon of point3 elements is just a
matter of taking three of the points and using the constructor given above.
Listing 5.17 shows what I’m talking about.

Listing 5.17: Constructing a plane given a polygon<point3> structure

inline plane3::plane3(const polygon<point3>& poly)
{

point3 a = poly.pList[0];
point3 b = poly.pList[1];
point3 c = poly.pList[2];

n = (b-a)^(c-a);
n.Normalize();
d = -(n*a);

}

This brings up an important point. If you have an n-sided polygon, nothing
discussed up to this point is forcing all of the points to be coplanar. How-
ever, problems can crop up if some of the points in the polygon aren’t
coplanar. For example, when I discuss back-face culling in a moment, you
may misidentify what is actually behind the polygon, since there won’t be
a plane that clearly defines what is in front of and what is behind the
plane. That is one of the advantages of using triangles to represent geome-
try—three points define a plane exactly.

140 � Chapter 5: 3D Math Foundations

Defining Locality with Relation to a Plane

One of the most important operations planes let you perform is defining
the location of a point with respect to a plane. If you drop a point into the
equation, it can be classified into three cases: in front of the plane, in back
of the plane, or coplanar with the plane. Front is defined as the side of the
plane the normal sticks out of.

Here, once again, precision will rear its ugly head. Instead of doing
things the theoretical way, having the planes infinitely thin, I’m going to
give them a certain thickness of (you guessed it) epsilon.

How do you orient a point in relation to a plane? Well, simply plug x,
y, and z into the equation, and see what you get on the right side. If you
get zero (or a number close enough to zero by plus or minus epsilon), then
the point satisfied the equation and lies on the plane. Points like this can
be called coplanar. If the number is greater than zero, then you know that
you would have to travel farther along the origin following the path of the
normal than you would need to go to reach the plane, so the point must be
in front of the plane. If the number is negative, it must be behind the
plane. Note that the first three terms of the equation simplify to the dot
product of the input vector and the plane normal. Figure 5.15 has a visual
representation of this operation, and Listing 5.18 has the code for it.

Listing 5.18: plane3::TestPoint

// Defines the three possible locations of a point in
// relation to a plane
enum ePointLoc
{

ptFront,
ptBack,
ptCoplanar

};

Chapter 5: 3D Math Foundations � 141

Figure 5.15:
Classifying points with
respect to a plane

// we're inlining this because we do it constantly
inline ePointLoc plane3::TestPoint(point3 const &point) const
{

float dp = (point * n) + d;

if(dp > EPSILON)
{

return ptFront;
}
if(dp < -EPSILON)
{

return ptBack;
}
return ptCoplanar; // it was between EP and -EP

}

Once you have code to classify a point, classifying other primitives, like
polygons, becomes pretty trivial, as shown in Listing 5.19. The one issue is
there are now four possible definition states when the element being
tested isn’t infinitesimally small. The element may be entirely in front of
the plane, entirely in back, or perfectly coplanar. It may also be partially in
front and partially in back. I’ll refer to this state as splitting the plane. It’s
just a term; the element isn’t actually splitting anything.

Listing 5.19: Polygon classification code

// Defines the four possible locations of a point list in
// relation to a plane. A point list is a more general
// example of a polygon.
enum ePListLoc
{

plistFront,
plistBack,
plistSplit,
plistCoplanar

};

ePListLoc plane3::TestPList(point3 *list, int num) const
{

bool allfront=true, allback=true;

ePointLoc res;

for(int i=0; i<num; i++)
{

res = TestPoint(list[i]);

if(res == ptBack)
{

allfront = false;
}
else if(res == ptFront)
{

142 � Chapter 5: 3D Math Foundations

allback = false;
}

}
if(allfront && !allback)
{

// All the points were either in front or coplanar
return plistFront;

}
else if(!allfront && allback)
{

// All the points were either in back or coplanar
return plistBack;

}
else if(!allfront && !allback)
{

// Some were in front, some were in back
return plistSplit;

}
// All were coplanar
return plistCoplanar;

}

Back-face Culling

Now that you know how to define a point with respect to a plane, you can
perform back-face culling, one of the most fundamental optimization tech-
niques of 3D graphics.

Let’s suppose you have a triangle whose elements are ordered in such
a fashion that when viewing the triangle from the front, the elements
appear in clockwise order. Back-face culling allows you to take triangles
defined with this method and use the plane equation to discard triangles
that are facing away. Conceptually, any closed mesh, a cube for example,
will have some triangles facing you and some facing away. You know for a
fact that you’ll never be able to see a polygon that faces away from you;
they are always hidden by triangles facing towards you. This, of course,
doesn’t hold if you’re allowed to view the cube from its inside, but this
shouldn’t be allowed to happen if you want to really optimize your engine.

Rather than perform the work necessary to draw all of the triangles on
the screen, you can use the plane equation to find out if a triangle is facing
towards the camera, and discard it if it is not. How is this achieved? Given
the three points of the triangle, you can define a plane that the triangle sits
in. Since you know the elements of the triangle are listed in clockwise
order, you also know that if you pass the elements in order to the plane
constructor, the normal to the plane will be on the front side of the trian-
gle. If you then think of the location of the camera as a point, all you need
to do is perform a point-plane test. If the point of the camera is in front of
the plane, then the triangle is visible and should be drawn.

There’s an optimization to be had. Since you know three points that lie
in the plane (the three points of the triangle) you only need to hold onto

Chapter 5: 3D Math Foundations � 143

the normal of the plane, not the entire plane equation. To perform the
back-face cull, just subtract one of the triangle’s points from the camera
location and perform a dot product with the resultant vector and the nor-
mal. If the result of the dot product is greater than zero, then the view
point was in front of the triangle. Figure 5.16 can help explain the point.

In practice, 3D accelerators can actually perform back-face culling by them-
selves, so as the triangle rates of cards increase, the amount of manual
back-face culling that is performed has steadily decreased. However, the
information is useful for custom 3D engines that don’t plan on using the
facilities of Direct3D.

Clipping Lines

One thing that you’ll need is the ability to take two points (a and b) that
are on different sides of a plane defining a line segment, and find the point
making the intersection of the line with the plane.

This is easy enough to do. Think of this parametrically. Point a can be
thought of as the point at time 0 and point b as the point at time 1, and
the point of intersection you want to find is somewhere between those
two.

Take the dot product of a and b. Using them and the inverse of the
plane’s d parameter, you can find the scale value (which is a value between
0 and 1 that defines the parametric location of the particle when it inter-
sects the plane). Armed with that, you just use the scale value, plugging it
into the linear parametric equation to find the intersection location. Figure
5.17 shows this happening visually, and Listing 5.20 has the code.

144 � Chapter 5: 3D Math Foundations

Figure 5.16:
A visual example of
back-face culling

Listing 5.20: plane3::Split

inline const point3 plane3::Split(const point3 &a, const point3 &b) const
{

float aDot = (a * n);
float bDot = (b * n);

float scale = (-d - aDot) / (bDot - aDot);

return a + (scale * (b - a));
}

Clipping Polygons

With the ability to clip lines, you can now also clip polygons. Clipping
polygons against planes is a common operation. You take a plane and a
polygon and want to get a polygon in return that represents only the part
of the input polygon that sits in front of the plane. Conceptually, you can
think of the plane slicing off the part of the polygon that is behind it.

Clipping polygons is used principally in clipping. If a polygon is sitting
in a position such that when it was drawn it would be partially on screen
and partially off screen, you want to clip the polygon such that you only
draw the part of the polygon that would be sitting on the screen. Trying to
draw primitives that aren’t in the view can wreak havoc in many programs.
Figure 5.18 shows the dilemma.

Chapter 5: 3D Math Foundations � 145

Figure 5.17:
Finding the intersec-
tion of a plane and a
line

To implement polygon clipping, I’ll use the Sutherland-Hodgeman polygon
clipping algorithm, discussed in section 3.14.1 of Computer Graphics: Prin-

ciples and Practice in C (2nd Ed.) by James Foley, et al.
The algorithm is fairly straightforward. In a clockwise fashion, you

wind all the way around the polygon, considering each adjacent pair of
points. If the first point is on the front side of the plane (found using a
plane to point classification call), you add it to the end of the outgoing
polygon (it starts out empty). If the first and second vertices are on differ-
ent sides, find the split point and add that to the list. While it may not
intuitively seem obvious, the algorithm does work. The visual steps of it
working appear in Figure 5.19. Listing 5.21 has code to perform the task.
The function returns true if the clipped polygon is not degenerate (has
three or more vertices).

146 � Chapter 5: 3D Math Foundations

Figure 5.18:
A polygon that needs
to be clipped

Figure 5.19:
Clipping using the
Sutherland-Hodgeman
algorithm

Listing 5.21: plane3::Clip

bool plane3::Clip(const polygon<point3> &in, polygon<point3> *out) const
{

// Make sure our pointer to the out polygon is valid
assert(out);
// Make sure we're not passed a degenerate polygon
assert(in.nElem > 2);

int thisInd=in.nElem-1;
int nextInd=0;

ePointLoc thisRes = TestPoint(in.pList[thisInd]);
ePointLoc nextRes;

out->nElem = 0;

for(nextInd=0; nextInd<in.nElem; nextInd++)
{

nextRes = TestPoint(in.pList[nextInd]);

if(thisRes == ptFront || thisRes == ptCoplanar)
{

// Add the point
out->pList[out->nElem++] = in.pList[thisInd];

}

if((thisRes == ptBack && nextRes == ptFront) ||
(thisRes == ptFront && nextRes == ptBack))

{
// Add the split point
out->pList[out->nElem++] = Split(

in.pList[thisInd],
in.pList[nextInd]);

}

thisInd = nextInd;

thisRes = nextRes;
}
if(out->nElem >= 3)
{

return true;
}
return false;

}

If you have code to take a polygon and clip off the area behind a plane,
then creating a function to save the area behind the plane into an addi-
tional polygon isn’t too hard. The operation takes a polygon that has
elements lying on both sides of a plane and splits it into two distinct
pieces, one completely in front of and one completely behind the plane.

Chapter 5: 3D Math Foundations � 147

The BSP code at the end of this chapter uses polygon splitting. The algo-
rithm to do this follows directly from the clipping code, and the code is
very similar.

Listing 5.22: plane3::Split

bool plane3::Split(polygon<point3> const &in, polygon<point3> *pFront,
polygon<point3> *pBack) const

{

// Make sure our pointer to the out polygon is valid
assert(pFront);
// Make sure our pointer to the out polygon is valid
assert(pBack);
// Make sure we're not passed a degenerate polygon
assert(in.nElem > 2);

// Start with curr as the last vertex and next as 0.
pFront->nElem = 0;
pBack->nElem = 0;

int thisInd=in.nElem-1;
int nextInd=0;

ePointLoc thisRes = TestPoint(in.pList[thisInd]);
ePointLoc nextRes;

for(nextInd=0; nextInd<in.nElem; nextInd++) {

nextRes = TestPoint(in.pList[nextInd]);

if(thisRes == ptFront)
{

// Add the point to the front
pFront->pList[pFront->nElem++] = in.pList[thisInd];

}

if(thisRes == ptBack)
{

// Add the point to the back
pBack->pList[pBack->nElem++] = in.pList[thisInd];

}

if(thisRes == ptCoplanar)
{

// Add the point to both
pFront->pList[pFront->nElem++] = in.pList[thisInd];
pBack->pList[pBack->nElem++] = in.pList[thisInd];

}

if((thisRes == ptBack && nextRes == ptFront) ||
(thisRes == ptFront && nextRes == ptBack))

{
// Add the split point to both
point3 split = Split(

148 � Chapter 5: 3D Math Foundations

in.pList[thisInd],
in.pList[nextInd]);

pFront->pList[pFront->nElem++] = split;
pBack->pList[pBack->nElem++] = split;

}

thisInd = nextInd;
thisRes = nextRes;

}
if(pFront->nElem > 2 && pBack->nElem > 2)
{

// Nothing ended up degenerate
return true;

}
return false;

}

Object RepresentationsObject Representations

Now that you have polygons and triangles, you can build objects. An object

is just a boundary representation (and a few other traits, like materials,
textures, and transformation matrices). Representing the boundary repre-
sentations of objects is one of the ways that differentiate the myriad of 3D
engines out there. There are many different ways to represent polygon
data, each with its own advantages and disadvantages.

A big concern is that triangles and polygons need more information
than just position if anything interesting is going to be drawn. Typically,
the points that make up the triangle faces of an object are called vertices, to
differentiate them from points or vectors. Vertices can have many different
types of data in them besides position, from normal information (for
smooth shading), to texture coordinates for texture mapping, to diffuse
and specular color information. I’ll visit this point in Chapter 8 when I start
showing you how to make 3D objects, but for right now keep in mind that
the models will be more complex than just a list of points connecting a
bunch of triangles.

An unsophisticated first approach to representing an object would be
to explicitly list each triangle as a triplet of vertices. This method is bad for
several reasons. The main reason is that generally the objects are made up
of a closed mesh of triangles. They meet up and touch each other; each
vertex is the meeting point of two or more triangles. While a cube actually
has only eight vertices, this method would need three distinct vertices for
each of the 12 triangles, a total of 36 vertices. Any amount of work to do
per-vertex would have to be done four times more than if you had a repre-
sentation with only eight vertices. Because of this downfall, this method
isn’t used much.

Chapter 5: 3D Math Foundations � 149

However, it isn’t without its advantages. For example, if the triangles are
all distinct entities, you can do some neat effects, such as having the trian-
gles fly off in separate directions when the object explodes (the game MDK

did a good job with this; at the end of each level the world broke up into
its component triangles and flew up into the sky).

Another big advantage that this method has is it allows triangles that
share vertex locations to have different color, texture, and normal informa-
tion. For example, if you have the eight-vertex cube, where each vertex
had a position and a color, all the triangles that share each corner have the
same color information for that corner. If you want each face of the cube to
have a different color, you can use explicit vertices for each triangle.

Note: A better way to do this would be to only have explicit copies of the color
information and just use one vector. However, this style of object represen-
tation doesn’t work well with Direct3D.

If you don’t need distinct information for each triangle, there is a much
better way to represent the objects. There are two lists: one list of vertices
representing all of the vertices in the object and one list of triangles, where
each triangle is a triplet of integers, not points. The integers represent indi-
ces into the vertex list.

150 � Chapter 5: 3D Math Foundations

Figure 5.20:
Example of an
object made up
of distinct
triangles

This is the method used by many 3D applications, and the method most
preferred by Direct3D. In Chapter 8, I’ll create a format to represent
objects of this type, and provide code both to load objects from disk and
draw them.

These aren’t the only two horses in town. In Chapter 9, I’ll talk about
objects where vertices need to know adjacency information (that is, which
other vertices are connected to it by triangle edges). There are even more
esoteric systems, like the quad-edge data structure, whose data structures
barely resemble objects at all, essentially being a pure graph of nodes and
edges (nodes represent vertices; triangles are represented by loops in the
graph).

Transformations

Now that there are objects in the world, it would be good to be able to
move them around the scene: animate them, spin them, and so forth. To
do this you need to define a set of transformations that act upon the points
in the objects. I’ll start out with the simplest transformation: translation.

To move an object by a given vector p, all you need to do is add p to
each of the points in the object. The translation transformation can be
defined by a vector p as T(p). The translation transformation is inverted
easily. The transformation T-1(p) that undoes T(p) is just T(–p), in essence
subtracting p from each point in the object.

Unfortunately, translation isn’t terribly interesting on its own. It is also
important to be able to rotate the objects around arbitrary points and axes
as well as translating them. The next thing to do is add rotation transfor-
mations. Before doing that, however, I need to talk a little about matrices.

Chapter 5: 3D Math Foundations � 151

Figure 5.21:
Index-based
object definition

Matrices

A matrix is really just a shorthand way to write a set of simultaneous equa-
tions. For example, let’s say you’re trying to solve x, y, and z that satisfy the
following three equations:

First, put all the coefficients of the equations into an n by m box called a
matrix, where n (the vertical dimension) is the number of equations and m

(the horizontal dimension) is the number of coefficients:

Here’s a 3x4 matrix:

The subscript notation used above is how to reference individual elements
of a matrix. The first component is the row number, and the second com-
ponent is the column number.

Matrices can be added together simply by adding each component.
However, the matrices must be the same size to be able to add them (you
couldn’t, for example, add a 3x3 and a 2x2 matrix together).

Multiplying matrices together is a bit more involved. To find AB=C, each
component cij of the resultant matrix is found by computing the dot prod-
uct of the ith row of A with the jth column of B. The rules for matrix sizes
are different than that in addition. If A is m by n and B is o by p, the multi-
plication is only valid if n = o, and the dimension of the resultant matrix is
m by p. Note that multiplication only is valid if the row length of matrix A
is the same as the column length of matrix B.

152 � Chapter 5: 3D Math Foundations

05.032

021415

01283

�
	
�
	
�	

zyx

zyx

zyx

�
�
�

�

�

�
�
�

�

�

	

	

	

15.032

21415

1283

5.032

21415

1283

zyx

zyx

zyx

�
�
�

�

�

�
�
�

�

�

34333231

24232221

14131211

aaaa

aaaa

aaaa

�
�

�
�
�

�
		
		

��
�

�
�
�

�
	�

�

�
�
�

�

22222121

12121111

2221

1211

2221

1211

baba

baba

bb

bb

aa

aa

�
�

�
�
�

�
		
		

��
�

�
�
�

�
�
�

�
�
�

�

2222122121221121

2212121121121111

2221

1211

2221

1211

babababa

babababa

bb

bb

aa

aa

Another example (3x3 times 3x1 yields 3x1):

This way it is easy to represent the problem above of trying to solve a
matrix equation. If you multiply out the matrices below into three simulta-
neous equations, you’ll get the same three above.

Warning: Note that multiplication is not commutative. That is, AB is not the
same as BA.

Matrix multiplication has an identity value, just like scalar multiplication
(which has an identity of 1). The identity is only defined for square matri-
ces, however. It is defined as a zeroed-out matrix with ones running down
the diagonal. Here is the 3x3 identity matrix I3:

Matrix multiplication also has the law of associativity going for it. That
means that as long as you preserve left-to-right order, you can multiply
matrix pairs together in any order:

This will come into play later; right now just keep it in the back of your
head.

What does all this have to do with anything? Very good question.
Matrices can be used to represent transformations, specifically rotations.
You can represent rotations with 3x3 matrices and points as 1x3 matrices,
multiplying them together to get transformed vertices.

Chapter 5: 3D Math Foundations � 153

�
�
�

�

�

�
�
�

�

�

		
		
		

�
�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

313321321131

312321221121

311321121111

31

21

11

333231

232221

131211

bababa

bababa

bababa

b

b

b

aaa

aaa

aaa

�
�
�

�

�

�
�
�

�

�
�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

0

0

0

15.032

21415

1283

z

y

x

�
�
�

�

�

�
�
�

�

�
�

100

010

001

3I

AB)C)D)(((AB)(CD)(A(BC)DABCD ���

� � � �zyx

aaa

aaa

aaa

zyx ����
�
�
�

�

�

�
�
�

�

�

��

333231

232221

131211

vvA

There are three standard matrices to facilitate rotations about the x, y, and
z axes by some angle theta. They are:

To show this happening, let’s manually rotate the point <2,0,0> 45
degrees clockwise about the z axis.

Now you can take an object and apply a sequence of transformations to it
to make it do whatever you want. All you need to do is figure out the
sequence of transformations needed and then apply the sequence to each
of the points in the model.

As an example, let’s say you want to rotate an object sitting at a cer-
tain point p around its z axis. You would perform the following sequence
of transformations to achieve this:

The first transformation moves a point such that it is situated about the
world origin instead of being situated about the point p. The next one
rotates it (remember, you can only rotate about the origin, not arbitrary

154 � Chapter 5: 3D Math Foundations

�
�
�

�

�

�
�
�

�

�

�

)cos()sin(0

)sin()cos(0

001

)(R

��
���x

�
�
�

�

�

�
�
�

�

�

�

)cos(0)sin(

010

)sin(0)cos(

)(R

��

��
�y

�
�
�

�

�

�
�
�

�

�

�

100

0)cos()sin(

0)sin()cos(

)(R ��
��

�z

�
�
�

�

�

�
�
�

�

�

�

�
�
�

�

�

�
�
�

�

�

�	�	�
�	�	
�

�	�	�
�

�
�
�

�

�

�
�
�

�

�
�

�
�
�

�

�

�
�
�

�

�

�

�

0

414.1

414.1

'

000002

00707.00707.02

00707.00707.02

'

0

0

2

100

0707.0707.0

0707.0707.0

'

)45(R'

v

v

v

vv z

)(T

2
R

)(T

pvv

vv

pvv

�

�
�
��

�
��

�
�

z

points in space). Finally, after the point is rotated, you want to move it
back so that it is situated about p. The final translation accomplishes this.

Notice the difference between a rotation followed by a translation and a
translation followed by a rotation.

You would be set now, except for one small problem: Doing things this
way is kind of slow. There may be dozens of transformations to perform on
an object, and if the object has thousands of points, that is dozens of thou-
sands of transformations that need to be trudged through.

The nice thing about matrices is that they can be concatenated
together before they are multiplied by points. If there are two rotations,
A and B, you know from the associativity law:

So before multiplying each of the points by both rotation transformations,
you multiply them together into one matrix that represents both rotations,
and just multiply the points by the new matrix. If you could also represent
translations as matrices, you could concatenate the entire string of matri-
ces together into one big matrix, cutting down on the transformation work
quite a bit.

There’s a problem: 3x3 matrices can’t encode translation. A translation
is just an addition by another vector, and because of the semantics of
matrix multiplication, you just can’t make a 3x3 matrix that adds a vector
to an input one.

The way the graphics, robotics, mathematics, and physics communities
have solved this problem is to introduce a fourth component to the vectors
and an added dimension to the matrices, making them 4x4.

The fourth coordinate is called the homogenous coordinate, and is rep-
resented with the letter w. There are an infinite number of 4D homogenous

Chapter 5: 3D Math Foundations � 155

Figure 5.22:
Visualizing
compound
transformations

)()(ABvvBvAv ����

coordinates for any 3D Cartesian coordinate you can supply. The space of
homogenous coordinates given a Cartesian coordinate is defined as this:

(for all b != 0)

To reclaim a Cartesian coordinate from a homogenous coordinate, just
make sure the w component is 1, and then get the x, y, and z values. If w

isn’t 1, then divide all four components by w (removing the b from the
equation).

Now you can change the translation transformation to a 4x4 matrix:

Note that multiplication by this matrix has the desired behavior:

The identity and rotation matrices change too, to reflect the added
dimension:

Now that know how to represent all of the transformations with matrices,
you can concatenate them together, saving a load of time and space. This
also changes the way you might think about transformations. Each object

156 � Chapter 5: 3D Math Foundations

� � � �1
1

0100

0010

0001

1 zyx

zyx

zyxzyx ppp

ppp

			�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�

1

0100

0010

0001

)(T

zyx ppp

p

�
�
�
�

�

�

�
�
�
�

�

�

�

1000

0100

0010

0001

4I

�
�
�
�

�

�

�
�
�
�

�

�

�

1000

0)cos()sin(0

0)sin()cos(0

0001

)(R
��
��

�x

� � � �bbzbybxzyx

�
�
�
�

�

�

�
�
�
�

�

�

�

1000

0)cos(0)sin(

0010

0)sin(0)cos(

)(R
��

��

�y

�
�
�
�

�

�

�
�
�
�

�

�

�

1000

0100

00)cos()sin(

00)sin()cos(

)(R
��
��

�z

defines all of its points with respect to a local coordinate system, with the
origin representing the center of rotation for the object. Each object also
has a matrix, which transforms the points from the local origin to some
location in the world. When the object is moved, the matrix can be manip-
ulated to move the points to a different location in the world.

To understand what is going on here, you need to modify the way you
perceive matrix transformations. Rather than translate or rotate, they actu-
ally become maps from one coordinate space to another. The object is
defined in one coordinate space (which is generally called the object’s local

coordinate space), and the object’s matrix maps all of the points to a new
location in another coordinate space, which is generally the coordinate
space for the entire world (generally called the world coordinate space).

A nice feature of matrices is that it’s easy to see where the matrix that
transforms from object space to world space is sitting in the world. If you
look at the data the right way, you can actually see where the object axes
get mapped into the world space.

Consider four vectors, called n, o, a, and p. The p vector represents
the location of the object coordinate space with relation to the world ori-
gin. The n, o, and a vectors represent the orientation of the i, j, and k
vectors, respectively.

You can get and set these vectors right in the matrix, as they are sitting
there in plain sight:

Chapter 5: 3D Math Foundations � 157

+y

+x

+z

n

o

p

n: <1,0,0>
o: <0,1,0>
a: <0,0,1>
p: <4,2,4>

a

Figure 5.23:
The n, o, a, and p
vectors for a
transformation

�
�
�
�
�

�

�

�
�
�
�
�

�

�

1

0

0

0

zyx

zyx

zyx

zyx

ppp

aaa

ooo

nnn

This system of matrix concatenations is how almost all 3D applications
perform their transformations. There are four spaces that points can live
in: object space, world space, and two new spaces: view space and screen
space.

View space defines how images on the screen are displayed. Think of it
as a camera. If you move the camera around the scene, the view will
change. You see what is in front of the camera (in front is defined as posi-
tive z).

The transformation here is different than the one used to move from object
space to world space. Now, while the camera is defined with the same n,
o, a, and p vectors as defined with the other transforms, the matrix itself
is different.

In fact, the view matrix is the inversion of what the object matrix for
that position and orientation would be. This is because you’re performing a
backward transformation: taking points once they’re in world space and
putting them into a local coordinate space.

As long as you compose the transformations of just rotations and
translations (and reflections, by the way, but that comes into play much
later in the book), computing the inverse of a transformation is easy. Oth-
erwise, computing an inverse is considerably more difficult and may not
even be possible. The inverse of a transformation matrix is given below.

158 � Chapter 5: 3D Math Foundations

Figure 5.24:
Mapping from
world space to
view space

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

1)()()(

0

0

0

1

0

0

0
1

apopnp

aon

aon

aon

ppp

aaa

ooo

nnn

zzz

yyy

xxx

zyx

zyx

zyx

zyx

Warning: This formula for inversion is not universal for all matrices. In fact, the
only matrices that can be inverted this way are ones composed exclusively of
rotations, reflections, and translations.

There is a final transformation that the points must go through in the
transformation process. This transformation maps 3D points defined with
respect to the view origin (in view space) and turns them into 2D points
that can be drawn on the display. After transforming and clipping the poly-
gons that make up the scene such that they are visible on the screen, the
final step is to move them into 2D coordinates, since in order to actually
draw things on the screen you need to have absolute x,y coordinates on
the screen to draw.

The way this used to be done was without matrices, just as an explicit
projection calculation. The point <x,y,z> would be mapped to <x',y'>
using the following equations:

where xCenter and yCenter were half of the width and height of the
screen, respectively. These days more complex equations are used, espe-
cially since there is now the need to make provisions for z-buffering. While
you want x and y to still behave the same way, you don’t want to use a
value as arbitrary as scale.

Instead, a better value to use in the calculation of the projection
matrix is the horizontal field of view (fov). The horizontal fov will be
hardcoded, and the code chooses a vertical field of view that will keep the
aspect ratio of the screen. This makes sense: You couldn’t get away with
using the same field of view for both horizontal and vertical directions
unless the screen was square; it would end up looking vertically squished.

Finally, you also want to scale the z values appropriately. In Chapter 8,
I’ll teach you about z-buffering, but for right now just make note of an
important feature: They let you clip out certain values of z-range. Given
the two variables znear and zfar, nothing in front of znear will be drawn, nor
will anything behind zfar. To make the z-buffer work swimmingly on all
ranges of znear and zfar, you need to scale the valid z values to the range of
0.0 to 1.0.

For purposes of continuity, I’ll use the same projection matrix defini-
tion that Direct3D recommends in the documentation. First, let’s define
some values. You initially start with the width and height of the viewport
and the horizontal field of view.

Chapter 5: 3D Math Foundations � 159

)('

'

yCenter
z

y
scaleheighty

xCenter
z

x
scalex

	
�

	�

With these parameters, the following projection matrix can be made:

Just for a sanity check, check out the result of this matrix multiplication:

Hmm… this is almost the result wanted, but there is more work to be
done. Remember that in order to extract the Cartesian (x,y,z) coordinates
from the vector, the homogenous w component must be 1.0. Since, after
the multiplication, it’s set to z (which can be any value), all four compo-
nents need to be divided by w to normalize it. This gives the following
Cartesian coordinate:

As you can see, this is exactly what was wanted. The width and height are
still scaled by values as in the above equation and they are still divided by
z. The visible x and y pixels are mapped to [–1,1], so before rasterization
Direct3D multiplies and adds the number by xCenter or yCenter. This, in
essence, maps the coordinates from [–1,1] to [0,width] and [0,height].

With this last piece of the puzzle, it is now possible to create the entire
transformation pipeline. When you want to render a scene, you set up a
world matrix (to transform an object’s local coordinate points into world
space), a view matrix (to transform world coordinate points into a space
relative to the viewer), and a projection matrix (to take those viewer-rela-
tive points and project them onto a 2D surface so that they can be drawn
on the screen). You then multiply the world, view, and projection matrices

160 � Chapter 5: 3D Math Foundations

� � � �zqqzhywx

q

q

h

w

zyx)z(

0)z(00

100

000

000

1 near

near

�
�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

 0)z(00

100

000

000

nearq

q

h

w

nearfar

far

zz

z

sin(fov)

cos(fov)

sin(fov)

cos(fov)
aspect

width

height
aspect

�

�

�

�

q

h

w

�
�

�
�
�

�
�
�
��

�
�
 1

)z(
1 near

z
q

z

hy

z

wx

together (in that order) to get a total matrix that transforms points from
object space to screen space.

Warning: OpenGL uses a different matrix convention (where vectors are col-
umn vectors, not row vectors, and all matrices are transposed). If you’re
used to OpenGL, the equation above will seem backward. This is the con-
vention that Direct3D uses, so to avoid confusion, it’s what is used here.

To draw a triangle, for example, you would take its local space points
defining its three corners and multiply them by the transformation matrix.
Then you have to remember to divide through by the w component and
voilá! The points are now in screen space and can be filled in using a 2D
raster algorithm. Drawing multiple objects is a snap, too. For each object in
the scene all you need to do is change the world matrix and reconstruct
the total transformation matrix.

The matrix4 Structure

Now that all the groundwork has been laid out to handle transformations,
let’s actually write some code. The struct is called matrix4, because it rep-
resents 4D homogenous transformations. Hypothetically, if you wanted to
just create rotation matrices, you could do so with a class called matrix3.
The definition of matrix4 appears in Listing 5.23.

Listing 5.23: The matrix4 structure

struct matrix4
{

/**
* we're using m[y][x] as our notation.
*/
union
{

struct
{

float _11, _12, _13, _14;
float _21, _22, _23, _24;
float _31, _32, _33, _34;
float _41, _42, _43, _44;

};
float m[4][4];

};

Chapter 5: 3D Math Foundations � 161

� �projectionviewworldlocalscreen

projectionviewscreen

viewworldview

worldlocalworld

MMMvv

Mvv

Mvv

Mvv

�

�
�
�

// justification for a function this ugly:
// provides an easy way to initialize static matrix variables
// like base matrices for bezier curves and the identity
matrix4(float IN_11, float IN_12, float IN_13, float IN_14,

float IN_21, float IN_22, float IN_23, float IN_24,
float IN_31, float IN_32, float IN_33, float IN_34,
float IN_41, float IN_42, float IN_43, float IN_44)

{
_11 = IN_11; _12 = IN_12; _13 = IN_13; _14 = IN_14;
_21 = IN_21; _22 = IN_22; _23 = IN_23; _24 = IN_24;
_31 = IN_31; _32 = IN_32; _33 = IN_33; _34 = IN_34;
_41 = IN_41; _42 = IN_42; _43 = IN_43; _44 = IN_44;

}

matrix4()
{

// Do nothing.
}

static const matrix4 Identity;
};

The code contains three main ways to multiply matrices. Two 4x4 matrices
can be multiplied together; this is useful for concatenating matrices. A
point4 structure can be multiplied by a matrix4 structure; the result is the
application of the transformation to the 4D point. Finally, a specialization
for multiplying point3 structures and matrix4 structures exists to apply a
non-projection transformation to a point3 structure. The matrix4*matrix4
operator creates a temporary structure to hold the result, and isn’t terribly
fast. Matrix multiplications aren’t performed often enough for this to be
much of a concern, however.

Warning: If you plan on doing a lot of matrix multiplications per object or even
per triangle, you won’t want to use the operator. Use the provided MatMult
function; it’s faster.

Listing 5.24: Matrix multiplication routines

matrix4 operator*(matrix4 const &a, matrix4 const &b)
{

matrix4 out; // temporary matrix4 for storing result
for (int j = 0; j < 4; j++) // transform by columns first

for (int i = 0; i < 4; i++) // then by rows
out.m[i][j] = a.m[i][0] * b.m[0][j] +

a.m[i][1] * b.m[1][j] +
a.m[i][2] * b.m[2][j] +
a.m[i][3] * b.m[3][j];

return out;
};

inline const point4 operator*(const matrix4 &a, const point4 &b)
{

162 � Chapter 5: 3D Math Foundations

return point4(
b.x*a._11 + b.y*a._21 + b.z*a._31 + b.w*a._41,
b.x*a._12 + b.y*a._22 + b.z*a._32 + b.w*a._42,
b.x*a._13 + b.y*a._23 + b.z*a._33 + b.w*a._43,
b.x*a._14 + b.y*a._24 + b.z*a._34 + b.w*a._44

);
};

inline const point4 operator*(const point4 &a, const matrix4 &b)
{

return b*a;
};

inline const point3 operator*(const matrix4 &a, const point3 &b)
{

return point3(
b.x*a._11 + b.y*a._21 + b.z*a._31 + a._41,
b.x*a._12 + b.y*a._22 + b.z*a._32 + a._42,
b.x*a._13 + b.y*a._23 + b.z*a._33 + a._43

);
};

inline const point3 operator*(const point3 &a, const matrix4 &b)
{

return b*a;
};

There are two ways to create each type of matrix transformation. One per-
forms on an existing matrix4 structure (it doesn’t create a temporary
matrix4 structure, which is slow). The function for a transformation x is
void matrix4::Tox. The other is a static function designed to help write
cleaner looking code, not for speed. The format for these functions is static
matrix4 matrix4::x.

Translation

Here again is the matrix for the translation transformation by a given point
p:

The code to create this type of transformation matrix appears in Listing
5.25.

Listing 5.25: Code to create a translation transformation

void matrix4::ToTranslation(const point3& p)
{

MakeIdent();

Chapter 5: 3D Math Foundations � 163

�
�
�
�
�

�

�

�
�
�
�
�

�

�

1

0100

0010

0001

zyx ppp

_41 = p.x;
_42 = p.y;
_43 = p.z;

}

matrix4 matrix4::Translation(const point3& p)
{

matrix4 out;
out.ToTranslation(p);
return out;

}

Basic Rotations

The matrices used to rotate around the three principal axes, again, are:

The code to set up Euler rotation matrices appears in Listing 5.26.

Listing 5.26: Code to create Euler rotation transformations

void matrix4::ToXRot(float theta)
{

float c = (float) cos(theta);
float s = (float) sin(theta);
MakeIdent();
_22 = c;
_23 = s;
_32 = -s;
_33 = c;

}

matrix4 matrix4::XRot(float theta)
{

matrix4 out;
out.ToXRot(theta);
return out;

}

164 � Chapter 5: 3D Math Foundations

�
�
�
�

�

�

�
�
�
�

�

�

�

1000

0)cos()sin(0

0)sin()cos(0

0001

)(R
��
��

�x

�
�
�
�

�

�

�
�
�
�

�

�

�

1000

0)cos(0)sin(

0010

0)sin(0)cos(

)(R
��

��

�y

�
�
�
�

�

�

�
�
�
�

�

�

�

1000

0100

00)cos()sin(

00)sin()cos(

)(R
��
��

�z

//==========--------------------------

void matrix4::ToYRot(float theta)
{

float c = (float) cos(theta);
float s = (float) sin(theta);
MakeIdent();
_11 = c;
_13 = -s;
_31 = s;
_33 = c;

}

matrix4 matrix4::YRot(float theta)
{

matrix4 out;
out.ToYRot(theta);
return out;

}

//==========--------------------------

void matrix4::ToZRot(float theta)
{

float c = (float) cos(theta);
float s = (float) sin(theta);
MakeIdent();
_11 = c;
_12 = s;
_21 = -s;
_22 = c;

}

matrix4 matrix4::ZRot(float theta)
{

matrix4 out;
out.ToZRot(theta);
return out;

}

Axis-Angle Rotation

While there isn’t enough space to provide a derivation of the axis-angle
rotation matrix, that doesn’t stop it from being cool. Axis-angle rotations
are the most useful matrix-based rotation. (I say matrix-based because
quaternions are faster and more flexible than matrix rotations; see Real-

Time Rendering by Tomas Moller and Eric Haines for a good discussion on
them.)

There are a few problems with using just Euler rotation matrices (the
x-rotation, y-rotation, z-rotation matrices you’ve seen thus far). For start-
ers, there really is no standard way to combine them together.

Chapter 5: 3D Math Foundations � 165

Imagine that you want to rotate an object around all three axes by
three angles. In which order should the matrices be multiplied together?
Should the x-rotation come first? The z-rotation? Since no answer is tech-
nically correct, usually people pick the one convention that works best and
stick with it.

A worse problem is that of gimbal lock. To explain, look at how rota-
tion matrices are put together. There are really two ways to use rotation
matrices. Method 1 is to keep track of the current yaw, pitch, and roll rota-
tions, and build a rotation matrix every frame. Method 2 uses the rotation
matrix from the last frame, by just rotating it a small amount to represent
any rotation that happened since the last frame.

The second method, while it doesn’t suffer from gimbal lock, suffers
from other things, namely the fact that all that matrix multiplication brings
up some numerical imprecision issues. The i, j, and k vectors of your
matrix gradually become non-unit length and not mutually perpendicular.
This is a bad thing. However, there are ways to fix it that are pretty stan-
dard, such as renormalizing the vectors, using cross-products to assure
orthagonality.

Gimbal lock pops up when you’re using the first method detailed
above. Imagine that you perform a yaw rotation first, then pitch, then roll.
Also, say that the yaw and pitch rotations are both a quarter-turn (this
could come up quite easily in a game like Descent). So imagine you per-
form the first rotation, which takes you from pointing forward to pointing
up. The second rotation spins you around the y axis 90 degrees, so you’re
still facing up but your up direction is now to the right, not backward.

Now comes the lock. When you go to do the roll rotation, which way
will it turn you? About the z axis, of course. However, given any roll value,
you can reach the same final rotation just by changing yaw or pitch. So
essentially, you have lost a degree of freedom. This, as you would expect, is
bad.

Axis-angle rotations fix both of these problems by doing rotations
much more intuitively. You provide an axis that you want to rotate around
and an angle amount to rotate around that axis. Simple. The actual matrix
to do it, which appears below, isn’t quite as simple, unfortunately. For san-
ity’s sake, just treat it as a black box. See Real-Time Rendering (Moller and
Haines) for a derivation of how this matrix is constructed.

Code to create an axis-angle matrix transformation appears in Listing 5.27.

166 � Chapter 5: 3D Math Foundations

�
�
�
�

�

�

�
�
�
�

�

�

	

	

	
	

	
	

1000

0)cos())cos(1()sin())cos(1()sin())cos(1(

0)sin())cos(1()cos())cos(1()sin())cos(1(

0)sin())cos(1()sin())cos(1()cos())cos(1(

������
������
������

zzxyzyxz

xyzyyzxy

yxzzyxxx

Listing 5.27: Axis-angle matrix transformation code

void matrix4::ToAxisAngle(const point3& inAxis, float angle)
{

point3 axis = inAxis.Normalized();
float s = (float)sin(angle);
float c = (float)cos(angle);
float x = axis.x, y = axis.y, z = axis.z;

_11 = x*x*(1-c)+c;
_21 = x*y*(1-c)-(z*s);
_31 = x*z*(1-c)+(y*s);
_41 = 0;
_12 = y*x*(1-c)+(z*s);
_22 = y*y*(1-c)+c;
_32 = y*z*(1-c)-(x*s);
_42 = 0;
_13 = z*x*(1-c)-(y*s);
_23 = z*y*(1-c)+(x*s);
_33 = z*z*(1-c)+c;
_43 = 0;
_14 = 0;
_24 = 0;
_34 = 0;
_44 = 1;

}

matrix4 matrix4::AxisAngle(const point3& axis, float angle)
{

matrix4 out;
out.ToAxisAngle(axis, angle);
return out;

}

The LookAt Matrix

I discussed before that the first three components of the first three rows
(the n, o, and a vectors) make up the three principal axes (i, j, and k) of
the coordinate space that the matrix represents. I am going to use this to
make a matrix that represents a transformation of an object looking a par-
ticular direction. This is useful in many cases and is most often used in
controlling the camera. Usually, there is a place where the camera is and a
place you want the camera to focus on. You can accomplish this using an
inverted LookAt matrix (you need to invert it because the camera transfor-
mation brings points from world space to view space, not the other way
around, like object matrices).

There is one restriction the LookAt matrix has. It always assumes that
there is a constant up vector, and the camera orients itself to that, so there
is no tilt. For the code to work, the camera cannot be looking in the same
direction that the up vector points. This is because a cross product is

Chapter 5: 3D Math Foundations � 167

performed with the view vector and the up vector, and if they’re the same
thing the behavior of the cross product is undefined. In games like Quake

III: Arena, you can look almost straight up, but there is some infinitesi-
mally small epsilon that prevents you from looking in the exact direction.

Three vectors are passed into the function: a location for the matrix to
be, a target to look at, and the up vector (the third parameter will default
to j <0,1,0> so you don’t need to always enter it). The transformation
vector for the matrix is simply the location. The a vector is the normalized
vector representing the target minus the location (or a vector that is the
direction you want the object to look in). To find the n vector, simply take
the normalized cross product of the up vector and the direction vector.
(This is why they can’t be the same vector; the cross product would return
garbage.) Finally, you can get the o vector by taking the cross product of
the n and a vectors already found.

I’ll show you two versions of this transformation, one to compute the
matrix for an object to world transformation, and one that computes the
inverse automatically. Use ObjectLookAt to make object matrices that look
in certain directions, and CameraLookAt to make cameras that look in cer-
tain directions.

Listing 5.28: LookAt matrix generation code

void matrix4::ToObjectLookAt(
const point3& loc,
const point3& lookAt,
const point3& inUp)

{

point3 viewVec = lookAt - loc;
float mag = viewVec.Mag();
viewVec /= mag;

float fDot = inUp * viewVec;
point3 upVec = inUp - fDot * viewVec;
upVec.Normalize();

point3 rightVec = upVec ^ viewVec;

// The first three rows contain the basis
// vectors used to rotate the view to point at the lookat point
_11 = rightVec.x; _21 = upVec.x; _31 = viewVec.x;
_12 = rightVec.y; _22 = upVec.y; _32 = viewVec.y;
_13 = rightVec.z; _23 = upVec.z; _33 = viewVec.z;

// Do the translation values
_41 = loc.x;
_42 = loc.y;
_43 = loc.z;

_14 = 0;
_24 = 0;
_34 = 0;

168 � Chapter 5: 3D Math Foundations

_44 = 1;

}

matrix4 matrix4::ObjectLookAt(
const point3& loc,
const point3& lookAt,
const point3& inUp)

{
matrix4 out;
out.ToObjectLookAt(loc, lookAt, inUp);
return out;

}

//==========--------------------------

void matrix4::ToCameraLookAt(
const point3& loc,
const point3& lookAt,
const point3& inUp)

{
point3 viewVec = lookAt - loc;
float mag = viewVec.Mag();
viewVec /= mag;

float fDot = inUp * viewVec;
point3 upVec = inUp - fDot * viewVec;
upVec.Normalize();

point3 rightVec = upVec ^ viewVec;

// The first three columns contain the basis
// vectors used to rotate the view to point
// at the lookat point
_11 = rightVec.x; _12 = upVec.x; _13 = viewVec.x;
_21 = rightVec.y; _22 = upVec.y; _23 = viewVec.y;
_31 = rightVec.z; _32 = upVec.z; _33 = viewVec.z;

// Do the translation values
_41 = - (loc * rightVec);
_42 = - (loc * upVec);
_43 = - (loc * viewVec);

_14 = 0;
_24 = 0;
_34 = 0;
_44 = 1;

}

matrix4 matrix4::CameraLookAt(
const point3& loc,
const point3& lookAt,
const point3& inUp)

{
matrix4 out;

Chapter 5: 3D Math Foundations � 169

out.ToCameraLookAt(loc, lookAt, inUp);
return out;

}

Perspective Projection Matrix

Creating a perspective projection matrix will be handled by the graphics
layer when I add Direct3D to it in Chapter 8, using the matrix discussed
earlier in the chapter.

Inverse of a Matrix

Again, the inverse of a matrix composed solely of translations, rotations,
and reflections (scales such as <1,1,–1> that flip sign but don’t change the
length) can be computed easily. The inverse matrix looks like this:

Code to perform inversion appears in Listing 5.29.

Listing 5.29: Matrix inversion code

void matrix4::ToInverse(const matrix4& in)
{

// first transpose the rotation matrix
_11 = in._11;
_12 = in._21;
_13 = in._31;
_21 = in._12;
_22 = in._22;
_23 = in._32;
_31 = in._13;
_32 = in._23;
_33 = in._33;

// fix right column
_14 = 0;
_24 = 0;
_34 = 0;
_44 = 1;

// now get the new translation vector
point3 temp = in.GetLoc();

_41 = -(temp.x * in._11 + temp.y * in._12 + temp.z * in._13);
_42 = -(temp.x * in._21 + temp.y * in._22 + temp.z * in._23);
_43 = -(temp.x * in._31 + temp.y * in._32 + temp.z * in._33);

170 � Chapter 5: 3D Math Foundations

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

1)()()(

0

0

0

1

0

0

0
1

apopnp

aon

aon

aon

ppp

aaa

ooo

nnn

zzz

yyy

xxx

zyx

zyx

zyx

zyx

}

matrix4 matrix4::Inverse(const matrix4& in)
{

matrix4 out;
out.ToInverse(in);
return out;

}

Collision Detection with Bounding SpheresCollision Detection with Bounding Spheres

Up until now, when I talked about moving 3D objects around, I did so
completely oblivious to wherever they may be moving. But suppose there
is a sphere slowly moving through the scene. During its journey it collides
into another object (for the sake of simplicity, say another sphere). You
generally want the reaction that results from the collision to be at least
partially similar to what happens in the real world.

In the real world, depending on the mass of the spheres, the amount
of force they absorb, the air resistance in the scene, and a slew of other
factors, they will physically react to each other the moment they collide. If
they were rubber balls, they may bounce off of each other. If the spheres
were instead made of crazy glue, they would not bounce at all, but would
become inextricably attached to each other. Physics simulation aside, you
most certainly do not want to allow any object to blindly fly through
another object (unless, of course, that is the effect you’re trying to achieve,
such as an apparition object like the ghosts in Super Mario Brothers

games).
There are a million and one ways to handle collisions and the method

you use will be very implementation dependent. So for now, all I’m going
to discuss here is just getting a rough idea of when a collision has
occurred. Most of the time, games only have the horsepower to do very
quick and dirty collision detection. Games generally use bounding boxes or
bounding spheres to accomplish this; I’m going to talk about bounding
spheres. They try to simplify complex graphics tasks like occlusion and col-
lision detection.

The general idea is that instead of performing tests against possibly
thousands of polygons in an object, you can simply hold on to a sphere
that approximates the object, and just test against that. Testing a plane or
point against a bounding sphere is a simple process, requiring only a sub-
traction and a vector comparison. When the results you need are
approximate, using bounding objects can speed things up nicely. This gives
up the ability to get exact results. Fire up just about any game and try to
just miss an object with a shot. Chances are (if you’re not playing some-
thing with great collision detection like MDK, Goldeneye, or House of the

Chapter 5: 3D Math Foundations � 171

Dead) you’ll hit your target anyway. Most of the time you don’t even
notice, so giving up exact results isn’t a tremendous loss.

Even if you do need exact results, you can still use bounding objects.
They allow you to perform trivial rejection. An example is in collision
detection. Typically, to calculate collision detection exactly is an expensive
process (it can be as bad as O(mn), where m and n are the number of poly-
gons in each object). If you have multiple objects in the scene, you need to
perform collision tests between all of them, a total of O(n2) operations
where n is the number of objects. This is prohibitive with a large amount
of complex objects. Bounding object tests are much more manageable, typ-
ically being O(1) per test.

To implement bounding spheres, I’ll create a structure called
bSphere3. It can be constructed from a location and a list of points (the
location of the object, the object’s points) or from an explicit location and
radius check. Checking if two spheres intersect is a matter of calling
bSphere3::Intersect with both spheres. It returns true if they intersect each
other. This is only a baby step that can be taken towards good physics,
mind you, but baby steps beat doing nothing!

Listing 5.30: Bounding sphere structure

struct bSphere3
{

float m_radius;
point3 m_loc;

bSphere3(){}

bSphere3(float radius, point3 loc) :
m_radius(radius), m_loc(loc)

{
}

bSphere3(point3 loc, int nVerts, point3* pList)
{

m_loc = loc;
m_radius = 0.f;
float currRad;
for(int i=0; i< nVerts; i++)
{

currRad = pList[i].Mag();
if(currRad > m_radius)
{

m_radius = currRad;
}

}
}

template< class iter >
bSphere3(point3 loc, iter& begin, iter& end)
{

iter i = begin;

172 � Chapter 5: 3D Math Foundations

m_loc = loc;
m_radius = 0.f;
float currRad;
while(i != end)
{

currRad = (*i).Mag();
if(currRad > m_radius)
{

m_radius = currRad;
}
i++;

}
}

static bool Intersect(bSphere3& a, bSphere3& b)
{

// avoid a square root by squaring both sides of the equation
float magSqrd =

(a.m_radius + b.m_radius) *
(a.m_radius + b.m_radius);

if((b.m_loc - a.m_loc).MagSquared() > magSqrd)
{

return false;
}
return true;

}
};

Some additional operators are defined in bSphere3.h, and plane-sphere
classification code is in plane3.h as well. See the downloadable files for
more detail.

Lighting

Lighting your scenes is essentially a prerequisite if you want them to look
realistic. Lighting is a fairly slow and complex system, especially when
modeling light correctly (this doesn’t happen too often). Later in the book
I’ll discuss some advanced lighting schemes, specifically radiosity.
Advanced lighting models typically are done as a preprocessing step, as
they can take several hours or even days for complex scenes. For real-time
graphics you need simpler lighting models that approximate correct light-
ing. I’ll discuss two points in this section: how to acquire the amount of
light hitting a point in 3D and how to shade a triangle with those three
points.

Representing Color

Before you can go about giving color to anything in a scene, you need to
know how to represent color! Usually you use the same red, green, and
blue channels discussed in Chapter 2, but for this there will also be a

Chapter 5: 3D Math Foundations � 173

fourth component called alpha. The alpha component stores transparency
information about a surface. It’s discussed more in detail in Chapter 10,
but for right now let’s plan ahead. There will be two structures to ease the
color duties: color3 and color4. They both use floating-point values for
their components; color3 has red, green, and blue, while color4 has the
additional fourth component of alpha in there.

Colors aren’t like points—they have a fixed range. Each component
can be anywhere between 0.0 and 1.0 (zero contribution of the channel or
complete contribution). If performing operations on colors, such as adding
them together, the components may rise above 1.0 or below 0.0. Before
trying to use a color, for example feeding it to Direct3D, it needs to be sat-
urated. That is what the Sat() function does. The conversions to unsigned
longs will be used in Chapter 8, when the colors start to get plugged into
Direct3D.

The code for color4 appears in Listing 5.31. I’ve left out a few routine
bits of code to keep the listing focused.

Listing 5.31: The color4 structure

struct color4
{

union {
struct
{

float r, g, b, a; // Red, Green, and Blue color data
};
float c[4];

};

color4(){}

color4(float inR, float inG, float inB, float inA) :
r(inR), g(inG), b(inB), a(inA)

{
}

color4(const color3& in, float alpha = 1.f)
{

r = in.r;
g = in.g;
b = in.b;
a = alpha;

}

color4(unsigned long color)
{

b = (float)(color&255) / 255.f;
color >>= 8;
g = (float)(color&255) / 255.f;
color >>= 8;
r = (float)(color&255) / 255.f;
color >>= 8;
a = (float)(color&255) / 255.f;

174 � Chapter 5: 3D Math Foundations

}

void Assign(float inR, float inG, float inB, float inA)
{

r = inR;
g = inG;
b = inB;
a = inA;

}

unsigned long MakeDWord()
{

unsigned long iA = (int)(a * 255.f) << 24;
unsigned long iR = (int)(r * 255.f) << 16;
unsigned long iG = (int)(g * 255.f) << 8;
unsigned long iB = (int)(b * 255.f);
return iA | iR | iG | iB;

}

unsigned long MakeDWordSafe()
{

color4 temp = *this;
temp.Sat();
return temp.MakeDWord();

}

// if any of the values are >1, cap them.
void Sat()
{

if(r > 1)
r = 1.f;

if(g > 1)
g = 1.f;

if(b > 1)
b = 1.f;

if(a > 1)
a = 1.f;

if(r < 0.f)
r = 0.f;

if(g < 0.f)
g = 0.f;

if(b < 0.f)
b = 0.f;

if(a < 0.f)
a = 0.f;

}

color4& operator += (const color4& in);
color4& operator -= (const color4& in);
color4& operator *= (const color4& in);
color4& operator /= (const color4& in);
color4& operator *= (const float& in);
color4& operator /= (const float& in);

Chapter 5: 3D Math Foundations � 175

// some basic colors.
static const color4 Black;
static const color4 Gray;
static const color4 White;
static const color4 Red;
static const color4 Green;
static const color4 Blue;
static const color4 Magenta;
static const color4 Cyan;
static const color4 Yellow;

};

Lighting Models

Lighting an object correctly is an extremely difficult process. Even today,
it’s still an area of research in academia. There are applications on the
market that cost tens of thousands of dollars to perform renderings of
scenes that have extremely accurate lighting. These renderings can take
inordinate amounts of time to compute, sometimes on the order of several
hours or even days for extremely complex images. Think of some of the
computer-generated imagery in movies like Final Fantasy, Shrek, and Ice

Age.
Never one to do difficult things, Direct3D and OpenGL graphics pro-

grammers use approximations of correct lighting models to get fast but
good looking lighting models. While the images invariably end up looking
computer generated, they can be done in real time. True photo realism
needs to have incredibly accurate lighting, as human eyes are very sensi-
tive to lighting in a scene. All the kinds of light are cubby-holed into four
essential types:

� Ambient light—Ambient light can be thought of as the average light
in a scene. It is light that is equally transmitted to all points on all sur-
faces the same amount. Ambient lighting is a horrible hack—an
attempt to impersonate the diffuse reflection that is better approxi-
mated by radiosity (covered in Chapter 9), but it works well enough for
many applications. The difference between ambient light and ambient
reflection is that ambient reflection is how much a surface reflects
ambient light.

� Diffuse light—Diffuse light is light that hits a surface and reflects off
equally in all directions. Surfaces that only reflect diffuse light appear
lit the same amount, no matter how the camera views it. If modeling
chalk or velvet, for example, only diffuse light would be reflected.

� Specular light—Specular light is light that only reflects off a surface
in a particular direction. This causes a shiny spot on the surface, which

is called a specular highlight. The highlight is dependent on both the
location of the light and the location of the viewer. For example,

176 � Chapter 5: 3D Math Foundations

imagine picking up an apple. The shiny spot on the apple is a good
example of a specular highlight. As you move your head, the highlight
moves around the surface (which is an indication that it’s dependent on
the viewing angle).

� Emissive light—Emissive light is energy that actually comes off of a
surface. A light bulb, for example, looks very bright, because it has
emissive light. Emissive light does not contribute to other objects in the
scene. It is not a light itself; it just modifies the appearance of the
surface.

Ambient and diffuse lights have easier equations, so I’ll give those first. If
the model doesn’t reflect specular light at all, you can use the following
equation to light each vertex of the object. This is the same diffuse and
ambient lighting equation that Direct3D uses (given in the Microsoft
DirectX 9.0 SDK documentation). The equation sums all of the lights in
the scene.

Table 5.1: Terms in the ambient/diffuse/emissive lighting equation for a surface

Dv Final color for the surface.

Ia Ambient light for the entire scene.

Sa Ambient color for the surface.

Se Emitted color of the surface.

Ai Attenuation for light i. This value depends on the kind of light you have, but
essentially means how much of the total energy from the light hits an object.

Rdi Diffuse reflection factor for light i. This is usually the inverse of the dot product
between the vertex normal and the direction in which the light is coming. That way,
normals that are facing directly to the light receive more than normals that are
turned away from it (of course, if the reflectance factor is less than zero, no diffuse
light hits the object). Figure 5.25 shows the calculation visually.

Sd Diffuse color for the surface.

Ldi Diffuse light emitted by light i.

Lai Ambient light emitted by light i.

The surfaces in the following equation will end up being vertices of the 3D
models once D3D is up and running. The surface reflectance components
are usually defined with material structures defined in Chapter 8.

Chapter 5: 3D Math Foundations � 177

� �� 			�
i

aiadiddiieaav LSLSRASSID

Specular Reflection

Specular reflections are more complex than ambient, emissive, or diffuse
reflections, requiring more computation to use. Many old applications
don’t use specular reflections because of the overhead involved, or they’ll
do something like approximate them with an environment map. However,
as accelerators are getting faster (especially since newer accelerators, such
as the GeForce 4, can perform lighting in hardware) specular lighting is
increasingly being used to add more realism to scenes.

To find the amount of specular color to attribute to a given vector with
a given light, you use the following equations (taken from the Microsoft
DirectX 9.0 SDK documentation):

The meanings of the variables are given in Table 5.2.

Table 5.2: Meanings of the specular reflection variables

pc Location of the camera.

pv Location of the surface.

ld Direction of the light.

h The “halfway” vector. Think of this as the vector bisecting the angle made by the
light direction and the viewer direction. The closer this is to the normal, the
brighter the surface should be. The normal-halfway angle relation is handled by the
dot product.

178 � Chapter 5: 3D Math Foundations

Figure 5.25:
Computation of
the diffuse reflec-
tion factor

� �
ssss

p
s

d

vc

LARCS

R

�
��

�

�

hn

lvh

ppv

n The normal of the surface.

Rs Specular reflectance. This is, in essence, the intensity of the specular reflection.
When the point you’re computing lies directly on a highlight, it will be 1.0; when it
isn’t in a highlight at all, it’ll be 0.

p The “power” of the surface. The higher this number, the sharper the specular
highlight. A value of 1 doesn’t look much different from diffuse lighting, but using a
value of 15 or 20 gives a nice sharp highlight.

Ss The color being computed (this is what you want).

Cs Specular color of the surface. That is, if white specular light were hitting the surface,
this is the specular color you would see.

A Attenuation of the light (how much of the total energy leaving the light actually hits
the surface).

Ls Specular color of the light.

Note that this only solves for one light; you need to solve the same equa-
tion for each light, summing up the results as you go.

Light Types

Now that you have a way to find the light hitting a surface, you’re going to
need some lights! There are three types of lights I am going to discuss,
which happen to be the same three light types supported by Direct3D.

Parallel Lights (or Directional Lights)

Parallel lights cheat a little bit. They represent light that comes from an
infinitely far away light source. Because of this, all of the light rays that
reach the object are parallel (hence the name). The standard use of paral-
lel lights is to simulate the sun. While it’s not infinitely far away, 93 million
miles is good enough!

Chapter 5: 3D Math Foundations � 179

Figure 5.26:
Parallel light
sources

The great thing about parallel lights is that a lot of the ugly math goes
away. The attenuation factor is always 1 (for point/spotlights, it generally
involves divisions if not square roots). The incoming light vector for calcu-
lation of the diffuse reflection factor is the same for all considered points,
whereas point lights and spotlights involve vector subtractions and a nor-
malization per vertex.

Typically, lighting is the kind of effect that is sacrificed for processing
speed. Parallel light sources are the easiest and therefore fastest to process.
If you can’t afford to do the nicer point lights or spotlights, falling back to
parallel lights can keep your frame rates at reasonable levels.

Point Lights

One step better than directional lights are point lights. They represent
infinitesimally small points that emit light. Light scatters out equally in all
directions. Depending on how much effort you’re willing to expend on the
light, you can have the intensity falloff based on the inverse squared dis-
tance from the light, which is how real lights work.

The light direction is different for each surface location (otherwise the
point light would look just like a directional light). The equation for it is:

Spotlights

Spotlights are the most expensive type of light I discuss in this book and
should be avoided if possible. They model a spotlight not unlike the type
you would see in a theatrical production. They are point lights, but light
only leaves the point in a particular direction, spreading out based on the
aperture of the light.

180 � Chapter 5: 3D Math Foundations

2
tionlight_loca–cationsurface_lo

n_factorattenuatio
k�

tionlight_loca–cationsurface_lo

tionlight_loca–cationsurface_lo
ctionlight_dire �

Figure 5.27:
Point light sources

Spotlights have two angles associated with them. One is the internal
cone whose angle is generally referred to as theta (�). Points within the
internal cone receive all of the light of the spotlight; the attenuation is the
same as it would be if point lights were used. There is also an angle that
defines the outer cone; the angle is referred to as phi (�). Points outside
the outer cone receive no light. Points outside the inner cone but inside the
outer cone receive light, usually a linear falloff based on how close it is to
the inner cone.

If you think all of this sounds mathematically expensive, you’re right.
Direct3D implements lighting for you, so you won’t need to worry about
the math behind spotlights, but rest assured that they’re extremely expen-
sive and can slow down your application a great deal. Then again, they do
provide an incredible amount of atmosphere when used correctly, so you
will have to figure out a line between performance and aesthetics.

Shading Models

Once you’ve found lighting information, you need to know how to draw
the triangles with the sup-
plied information. There are
currently three ways to do
this; the third has just become
a hardware feature with
DirectX 9.0. Here is a polygon
mesh of a sphere, which I’ll
use to explain the shading
models:

Chapter 5: 3D Math Foundations � 181

Figure 5.28:
A spotlight

Figure 5.29:
Wireframe
view of our
polygon mesh

Lambert

Triangles that use Lambertian shading are painted with one solid color
instead of using a gradient. Typically each triangle is lit using that trian-
gle’s normal. The resulting
object looks very angular and
sharp. Lambertian shading
was used mostly back when
computers weren’t fast enough
to do Gouraud shading in real
time. To light a triangle, you
compute the lighting equa-
tions using the triangle’s
normal and any of the three
vertices of the triangle.

Gouraud

Gouraud (pronounced garrow) shading is the current de facto shading
standard in accelerated 3D hardware. Instead of specifying one color to
use for the entire triangle, each vertex has its own separate color. The color
values are linearly interpolated across the triangle, creating a smooth tran-
sition between the vertex color values. To calculate the lighting for a
vertex, you use the position of the vertex and a vertex normal.

Of course, it’s a little hard to correctly define a normal for a vertex.
What people do instead is
average the normals of all the
polygons that share a certain
vertex, using that as the vertex
normal. When the object is
drawn, the lighting color is
found for each vertex (rather
than each polygon), and then
the colors are linearly interpo-
lated across the object. This
creates a slick and smooth
look, like the one in Figure
5.31.

One problem with Gouraud shading is that the triangles’ intensities
can never be greater than the intensities at the edges. So if there is a spot-
light shining directly into the center of a large triangle, Gouraud shading
will interpolate the intensities at the three dark corners, resulting in an
incorrectly dark triangle.

182 � Chapter 5: 3D Math Foundations

Figure 5.30:
Flat shaded
view of our
polygon mesh

Figure 5.31:
Gouraud shaded
view of our
polygon mesh

Aside: The internal highlighting problem usually isn’t that bad. If there are
enough triangles in the model, the interpolation done by Gouraud shading is
usually good enough. If you really want internal highlights but only have
Gouraud shading, you can subdivide the triangle into smaller pieces.

Phong

Phong shading is the most realistic shading model I’m going to talk about,
and also the most computationally expensive. It tries to solve several prob-
lems that arise when you use Gouraud shading. If you’re looking for
something more realistic, Foley discusses nicer shading models like
Tarrence-Sparrow, but they aren’t real time (at least not right now).

First of all, Gouraud shading uses a linear gradient. Many objects in
real life have sharp highlights, such as the shiny spot on an apple. This is
difficult to handle with pure Gouraud shading. The way Phong does this is
by interpolating the normal across the triangle face, not the color value,
and the lighting equation is
solved individually for each
pixel.

Phong shading isn’t
techically supported in hard-
ware. But you can now
program your own Phong ren-
dering engine, and many other
special effects, using shaders,
a hot new technology that I
will discuss later in the book.

BSP TreesBSP Trees

If all you want to do is just draw lists of polygons and be done with it, then
you now have enough knowledge at your disposal to do that. However,
there is a lot more to 3D game programming that you must concern your-
self with. Hard problems abound, and finding an elegant way to solve the
problems is half the challenge of graphics programming (actually imple-

menting the solution is the other half).
A lot of the hard graphics problems, such as precise collision detection

or ray-object intersection, boil down to a question of spatial relationship.
You need to know where objects (defined with a boundary representation
of polygons) exist in relation to the other objects around them.

You can, of course, find this explicitly if you’d like, but this leads to a
lot of complex and slow algorithms. For example, say you’re trying to see if
a ray going through space is hitting any of a list of polygons. The slow way
to do it would be to explicitly test each and every polygon against the ray.
Polygon-ray intersection is not a trivial operation, so if there are a few
thousand polygons, the speed of the algorithm can quickly grind to a halt.

Chapter 5: 3D Math Foundations � 183

Figure 5.32:
Phong shaded
view of a poly-
gon mesh

A spatial relationship of polygons can help a lot. If you were able to
say, “The ray didn’t hit this polygon, but the entire ray is completely in
front of the plane the polygon lies in,” then you wouldn’t need to test any-
thing that sat behind the first polygon. BSP trees, as you shall soon see, are
one of the most useful ways to partition space.

Aside I implemented a ray-tracer a while back using two algorithms. One was a
brute-force, test-every-polygon-against-every-ray nightmare; the other used
BSP trees. The first algorithm took about 90 minutes to render a single
frame with about 15K triangles in it. With BSP trees, the rendering time
went down to about 45 seconds. Saying BSP trees make a big difference is a
major understatement.

It all started when Henry Fuchs and Zvi Kedem, both professors at the Uni-
versity of Texas at Dallas, found a bright young recent grad working at
Texas Instruments named Bruce Naylor. They talked him into becoming a
graduate student in their graphics department, and he started doing work
on computational geometry. Fuchs was a sort of bright, energetic type, and
Kedem contained that spark that few other theoretical computer scientists
have: He was able to take theory and apply it to practical problems. Out of
this triumvirate came two SIGGRAPH papers, and Naylor’s Ph.D. thesis,
which gave birth to BSP trees.

BSP Tree Theory

BSP trees are a specialization of binary trees, one of the most basic con-
structs of computer science. A BSP tree represents a region of space (the
tree can have any number of nodes, including just one). The tree is made
up of nodes (having exactly two children) and leaves (having exactly zero
children). A node represents a partitioning of the space that the tree it is a
part of represents. The partitioning creates two new spaces, one in front of
the node and one in back of the node.

In 2D applications, such as Doom (which used BSP trees to represent
the worlds the fearless space marine navigated), the top-level tree repre-
sents the entire 2D world. The root node, which contains in it a line
equation, defines a partitioning of the world into two pieces, one in front
of the line and one in back of it. Each of these pieces is represented by a
subtree, itself a BSP tree. The node also contained a line segment that was
part of the line equation used in the partitioning. The line segment, with
other information like the height and texture ID, became a wall in the
world. Subtrees are leaves if and only if the space that they represent has
no other walls in it. If it did, the wall would be used to partition the space
yet again.

In 3D applications, things are pretty much the same. The space is par-
titioned with 3D planes, which contain polygons within them. The plane at
each node slices its region into two hunks, one that is further subdivided

184 � Chapter 5: 3D Math Foundations

by its front child node, and the other further subdivided by its back child
node.

The recursion downward stops when a space cannot be partitioned
any further. For now, this happens when there are no polygons inside of it.
At this point, a leaf is created, and it represents a uniform, convex region
of space.

There are two primary ways to do BSP trees. In the first method
(called node-based BSP trees), nodes contain both polygons and the planes
used to partition. Leaves are empty. In the other method (called leaf-based

or leafy BSP trees), nodes only contain planes. Leaves contain all of the
polygons that form the boundary of that convex space. I’m only going to
talk about node-based BSP trees, but leaf-based BSPs are useful, for exam-
ple in computing the potentially visible set (PVS) of a scene.

BSP trees are most useful when the set of polygons used to construct
the tree represents the boundary-representation of an object. The object
has a conceptual inside made of solid matter, an outside of empty space
surrounding it, and polygons that meet in the middle. Luckily this is how I
am representing the objects anyway. When the tree is complete, each leaf
represents either solid or empty space. This will prove to be extremely use-
ful, as you shall see in a moment.

BSP Tree Construction

The algorithm to create a node-based BSP tree is simple and recursive. It is
fairly time consuming, however, enough so that generally the set of poly-
gons used to construct the BSP tree remains static. This is the case for most
of the worlds that players navigate in 3D games, so games such as Quake

III: Arena consist of a static BSP tree (representing a world) and a set of
objects (health boxes, ammo boxes, players, enemies, doors, etc.) that can
move around in the world.

I’ll go through the tree construction process step by step. Pseudocode
for the algorithm appears in Listing 5.32.

Listing 5.32: Pseudocode for BSP construction

struct node
polygon poly
plane part_plane
ptr front
ptr back
vector< polygon > coplanar_polygons

struct leaf
bool solid

leaf Make_Leaf(bool solid)
leaf out = new leaf
out.solid = solid
return out

Chapter 5: 3D Math Foundations � 185

polygon Get_Splitting_Polygon(vector< polygon > input_list)
polygon out = polygon that satisfies some hueristic
remove out from input_list
return out

node Make_Node(vector< polygon > input_list)
vector< polygon > front_list, back_list
node out = new node
chosen_polygon = Get_Splitting_Polygon(input_list)
out.part_plane = Make_Plane_From_Polygon(chosen_polygon)
out.poly = chosen_polygon
for(each polygon curr in input_list)

switch(out.part_plane.Classify_Polygon(curr))
case front

add curr to front_list
case back

add curr to back_list
case coplanar

add curr to node.coplanar_polygons
case split

split curr into front and back polygons
add front to front_list
add back to back_list

if(front_list is empty)
out.front = Make_Leaf(false)

else
out.front = Make_Node(front_list)

if(back_list is empty)
out.back = Make_Leaf(true)

else
out.back = Make_Node(back_list)

return out

node Make_BSP_Tree(vector< polygon > input_list)
return Make_Node(input_list)

Let’s step through a sample 2D tree to show what is going on. The initial
case will be a relatively small data set with four edges defining a closed
region surrounded by empty space. Figure 5.33 shows the initial case, with
the polygons on the left and a list on the right that will be processed. Each
of the segments also has its plane normal visible; note that they all point
out of the solid region.

To create the root node, segment A is used. Segments B, C, and D are
all behind segment A, so they all go in the back list. The front list is empty,
so the front child is made a leaf representing empty space corresponding to
the entire subspace in front of segment A. The back list isn’t empty, so it
must be recursed, processing the subspace behind segment A. The result of
the first partition appears in Figure 5.34.

186 � Chapter 5: 3D Math Foundations

Once recursion into the root node’s back child is complete, a polygon to
partition with must once again be selected. While real-world applications
probably wouldn’t choose it, to diversify the example I’m going to use seg-
ment B. Segment C is completely in front, but segment D is partially in
front and partially in back. It is split into two pieces, one completely in
front (which I’ll call DF) and one completely in back (called DB). After the
classification, both the front list and the back list have polygons in them, so
they must be recursed with each. Figure 5.35 shows the progress up to this
point.

Chapter 5: 3D Math Foundations � 187

Figure 5.33:
Initial case of the BSP
construction

Figure 5.34:
Result after the first
partitioning

Note: Notice the dashed line for segment B. It doesn’t intrude into the space in
front of segment A, because it is only partitioning the subspace behind A.
This is a very important point you’ll need to assimilate if you want to under-
stand BSP trees fully.

I’ll partition the front side of the node, the one with a list of DF and C. I’ll
use DF as the partitioning polygon. C is the only polygon to classify, and it’s
completely behind DF. The front list is empty, so I create an empty space
leaf. This brings the progress up to Figure 5.36.

Now there are two nodes left to process, C and DB. I’ll consolidate them
into one step. They both have no other polygons to classify once the only
polygon in each list is selected to be the partitioner. This creates two child
leaf nodes, one in back of the polygon representing solid space (repre-
sented with a plus sign) and one in front representing empty space
(represented with a minus sign). This results in the final BSP tree, which

188 � Chapter 5: 3D Math Foundations

Figure 5.35:
Result after the second
partitioning

Figure 5.36:
Result of the third
partitioning

appears in Figure 5.27. I put small dashed lines from each of the leaf nodes
to the subspace they represent.

One piece that’s left out of the equation is how you take the list of poly-
gons during each step and choose the polygon to use as the partitioner.
There are two heuristics you can try to satisfy: Choose the polygon that
causes the least amount of splits, or choose the polygon that most evenly
divides the set. One problem, however, is that you can have a ton of poly-
gons in the data set, especially at the top levels of the tree. In Foley’s
Computer Graphics it mentions that after you check about 10% of the poly-
gons, the best candidate found thus far is so similar to the ideal one that
it’s not worth checking any more. This code will use a strict least-split heu-
ristic, checking the first 10% of the polygon data (or the whole set if it’s
below some threshold).

BSP Tree Algorithms

Now that you’ve covered enough ground to create a BSP tree, hopefully a
few algorithms will be at your disposal to perform operations on them. A
few of the algorithms work in all polygon configurations, but generally
they’re suited for BSP trees that represent the boundary representation of
an object.

Sorted Polygon Ordering

One of the first uses of BSP trees was to get a list of polygons sorted by dis-
tance from a given viewpoint. This was used back before hardware
z-buffers, when polygons needed to be drawn in back-to-front order to be
rendered correctly. It’s still useful, however; z-buffer rendering goes faster
if you reject early (so rendering front-to-back can be an advantage), and
alpha-blended polygons need to be rendered back-to-front to be rendered
correctly.

Chapter 5: 3D Math Foundations � 189

Figure 5.37:
The final BSP tree

The fundamental concept behind the algorithm is that if you have a
certain plane in the scene dividing it into two pieces, and you are on one
side of the plane, then nothing behind the plane can occlude anything in
front of the plane. Armed with this rule, all you need to do is traverse the
tree. At each node, you check to see which side the camera is on. If it’s in
front, then you add all the polygons behind the plane (by traversing into
the back node), then all the polygons in the plane (the partitioning poly-
gon and any coplanar polygons), and finally the polygons in front of the
plane (by traversing into the front node). The opposite applies if it is in
back. Leaves just return automatically.

Note: If you don’t want to draw polygons facing away, you can automatically
discard the node polygon if the camera point is behind the node plane. The
coplanar polygons you can check, unless you keep two lists of coplanar poly-
gons—one facing in the same direction as the partitioning polygons and one
facing the opposite way.

The algorithm to do this is fairly simple and recursive. Pseudocode for it
appears in Listing 5.33.

Listing 5.33: Pseudocode to sort a polygon list based on distance

void node::GetSortedPolyList(
list< polygon3 >* pList,
point& camera)

{
switch(node.part_plane.Classify_Point(camera))
{
case front

back. GetSortedPolyList(pList, camera);
add all node polygons to pList
front. GetSortedPolyList(pList, camera);

case back
front. GetSortedPolyList(pList, camera);
add all node polygons to pList
back. GetSortedPolyList(pList, camera);

case coplanar
// order doesn’t matter
front. GetSortedPolyList(pList, camera);
back. GetSortedPolyList(pList, camera);

}
}

void leaf:: GetSortedPolyList(
list< polygon3 >* pList,
point& camera)

{
return;

}

190 � Chapter 5: 3D Math Foundations

Testing Locality of a Point

A really great use of BSP trees is testing the locality of points. Given a
point and a tree, you can tell whether the point is sitting in a solid leaf or
not. This is useful for collision detection, among other things.

The algorithm to do it is amazingly simple. At each branch of the tree,
you test the point against the plane. If it’s in front, you drop it down the
front branch; if it’s in back, you drop it down the back branch. If the point
is coplanar with the polygon, you can pick either one. Whenever you land
in a leaf, you have found the region of space that the point is sitting in. If
the leaf is tagged as being solid, then the point is sitting in solid space; oth-
erwise it’s not. Pseudocode for this algorithm appears in Listing 5.34.

Listing 5.34: Pseudocode to define the locality of a point

bool node::TestPoint(
point& pt)

{
switch(node.part_plane.Classify_Point(pt))
{
case front

return front.TestPoint(pt);
case back

return back.TestPoint(pt);
case coplanar

// Let’s drop down the back tree
return back.TestPoint(pt);

}
}

bool leaf::TestPoint(
point& pt)

{
if(solid)

return true;
return false;

}

Testing Line Segments

While there are many other algorithms for use with BSP trees, the last one
I’ll discuss lets you test a line segment against a tree. The algorithm returns
true if there is a clear line of sight between both endpoints of the line, and
false otherwise. Another way to think of it is to say that the algorithm
returns true if and only if the line segment only sits in non-solid leaves.

Chapter 5: 3D Math Foundations � 191

Like all the other algorithms I’ve discussed, this is a conceptually sim-
ple and elegant algorithm. Starting at the root, you compare the line
segment to the plane at a node. If the line segment is completely in front,
you drop it down the front side. If it’s completely in back, you drop it down
the back side. If the line segment is on both sides of the plane, you divide
it into two pieces (one in front of the plane and one in back) and recurse
with both of them. If any piece of segment ever lands in a solid cell, then
you know there is no line of sight, and you return false.

Source code to do this appears in the following BSP tree source code.

BSP Tree Code

Listings 5.35 and 5.36 have the header and source code for the BSP class.
I’ll be using it in Chapter 9 to find the form factor in the radiosity simula-
tor. The main difference between this code and the pseudocode given
above is this code uses the same node structure to represent both nodes
and leaves. This made the code simpler but is an inefficient use of space
(leaves only need a single word defining them as solid; here a lot more
than that is used).

Listing 5.35: BspTree.h

/***
* Advanced 3D Game Programming using DirectX 9.0
* *
* Desc: Sample application for Direct3D
*
* copyright (c) 2002 by Peter A Walsh and Adrian Perez
* See license.txt for modification and distribution information
**/

#ifndef _BSPTREE_H
#define _BSPTREE_H

#include <point3.h>
#include <polygon.h>
#include <plane3.h>

#include <vector>
using std::vector;

const float percentageToCheck = .1f; // 10%

/**
* This code expects the set of polygons we're giving it to be
* closed, forming a continuous skin. If it's not, weird things
* may happen.
*/
class cBspTree
{
public:

// construction/destruction

192 � Chapter 5: 3D Math Foundations

cBspTree();
~cBspTree();

// we need to handle copying
cBspTree(const cBspTree &in);
cBspTree& operator=(const cBspTree &in);

// add a polygon to the tree
void AddPolygon(const polygon<point3>& in);
void AddPolygonList(vector< polygon<point3> >& in);

void TraverseTree(
vector< polygon<point3>* >* polyList,
const point3& loc);

bool LineOfSight(const point3& a, const point3& b);

protected:

private:

class cNode
{

cNode* m_pFront; // pointer to front subtree
cNode* m_pBack; // pointer to back subtree

polygon<point3> m_poly;
plane3 m_plane;
bool m_bIsLeaf;
bool m_bIsSolid;

vector< polygon<point3> > m_coplanarList;

static int BestIndex(vector< polygon<point3> >& polyList);

public:
cNode(bool bIsSolid); // leaf constructor
cNode(const polygon<point3>& in); // node constructor
cNode(vector< polygon<point3> >& in); // node constructor
~cNode();

// we need to handle copying
cNode(const cNode &in);
cNode& operator=(const cNode &in);

void AddPolygon(const polygon<point3>& in);

void TraverseTree(
vector< polygon<point3>* >* polyList,
const point3& loc);

bool IsLeaf()
{

Chapter 5: 3D Math Foundations � 193

return m_bIsLeaf;
}

bool LineOfSight(const point3& a, const point3& b);
};

cNode* m_pHead; // root node of the tree

};

inline cBspTree::cBspTree(const cBspTree &in)
{

// clone the tree
if(in.m_pHead)

m_pHead = new cNode(*in.m_pHead);
else

m_pHead = NULL;
}

inline cBspTree& cBspTree::operator=(const cBspTree &in)
{

if(&in != this)
{

// delete the tree if we have one already
if(m_pHead)

delete m_pHead;

// clone the tree
if(in.m_pHead)

m_pHead = new cNode(*in.m_pHead);
else

m_pHead = NULL;
}

return *this;
}

inline cBspTree::cNode::cNode(const cNode &in)
{

m_poly = in.m_poly;
m_plane = in.m_plane;
m_bIsLeaf = in.m_bIsLeaf;
m_bIsSolid = in.m_bIsSolid;

// clone the trees
m_pFront = NULL;
if(in.m_pFront)

m_pFront = new cNode(*in.m_pFront);

m_pBack = NULL;
if(in.m_pBack)

m_pBack = new cNode(*in.m_pBack);
}

194 � Chapter 5: 3D Math Foundations

inline cBspTree::cNode& cBspTree::cNode::operator=(const cNode &in)
{

if(&in != this)
{

// delete the subtrees if we have them already
if(m_pFront)

delete m_pFront;
if(m_pBack)

delete m_pBack;

// copy all the data over
m_poly = in.m_poly;
m_plane = in.m_plane;
m_bIsLeaf = in.m_bIsLeaf;
m_bIsSolid = in.m_bIsSolid;

// clone the trees
m_pFront = NULL;
if(in.m_pFront)

m_pFront = new cNode(*in.m_pFront);

m_pBack = NULL;
if(in.m_pBack)

m_pBack = new cNode(*in.m_pBack);
}
return *this;

}

#endif //_BSPTREE_H

Listing 5.36: BspTree.cpp

/***
* Advanced 3D Game Programming using DirectX 9.0
* *
* Desc: Sampe application for Direct3D
*
* copyright (c) 2002 by Peter A Walsh and Adrian Perez
* See license.txt for modification and distribution information
**/

#include <template.h>
#include <BspTree.h>

cBspTree::cBspTree()
{
}

cBspTree::~cBspTree()
{

// destroy the tree
}

Chapter 5: 3D Math Foundations � 195

void cBspTree::AddPolygon(const polygon<point3>& in)
{

if(!m_pHead)
{

// if there's no tree, make a new one
m_pHead = new cNode(in);

}
else
{

// otherwise add it to the tree
m_pHead->AddPolygon(in);

}
}

void cBspTree::AddPolygonList(vector< polygon<point3> >& in)
{

if(!m_pHead)
{

// if there's no tree, make a new one
m_pHead = new cNode(in);

}
else
{

/**
* Adding a list of polygons to
* an existing tree is unimplemented
* (exercise to the reader)
*/
assert(false);

}
}

void cBspTree::TraverseTree(
vector<polygon<point3>*>* polyList,
const point3& loc)

{
if(m_pHead)
{

// drop it down
m_pHead->TraverseTree(polyList, loc);

}
}

bool cBspTree::LineOfSight(const point3& a, const point3& b)
{

assert(m_pHead); // make sure there is a tree to test against

return m_pHead->LineOfSight(a, b);
}

196 � Chapter 5: 3D Math Foundations

cBspTree::cNode::~cNode()
{

delete m_pFront;
delete m_pBack;

}

cBspTree::cNode::cNode(bool bIsSolid)
: m_bIsLeaf(true)
, m_bIsSolid(bIsSolid)
, m_pFront(NULL)
, m_pBack(NULL)
{

// all done.
}

cBspTree::cNode::cNode(const polygon<point3>& in)
: m_bIsLeaf(false)
, m_poly(in)
, m_plane(in)
, m_pFront(new cNode(false))
, m_pBack(new cNode(true))
{

// all done.
}

cBspTree::cNode::cNode(vector< polygon<point3> >& in)
: m_bIsLeaf(false)
{

// if the list is empty, we're bombing out.
assert(in.size());

// get the best index to use as a splitting plane
int bestIndex = BestIndex(in);

// we could remove the index from the vector, but that's slow.
// instead we'll just kind of ignore it during the next phase.
// remove the best index
polygon<point3> splitPoly = in[bestIndex];

m_plane = plane3(splitPoly);
m_poly = splitPoly;

// take the rest of the polygons and divide them.
vector< polygon<point3> > frontList, backList;

int i;
for(i=0; i<in.size(); i++)
{

// ignore the polygon if it's the one
// we're using as the splitting plane
if(i == bestIndex) continue;

// test the polygon against this node.
pListLoc res = m_plane.TestPoly(in[i]);

Chapter 5: 3D Math Foundations � 197

polygon<point3> front, back; // used in PLIST_SPLIT

switch(res)
{
case PLIST_FRONT:

// drop down the front
frontList.push_back(in[i]);
break;

case PLIST_BACK:
// drop down the back
backList.push_back(in[i]);
break;

case PLIST_SPLIT:
// split the polygon, drop the halves down.
m_plane.Split(in[i], &front, &back);
frontList.push_back(front);
backList.push_back(back);
break;

case PLIST_COPLANAR:
// add the polygon to this node's list
m_coplanarList.push_back(in[i]);
break;

}
}

// we're done processing the polygon list. Deal with them.
if(frontList.size())
{

m_pFront = new cNode(frontList);
}
else
{

m_pFront = new cNode(false);
}
if(backList.size())
{

m_pBack = new cNode(backList);
}
else
{

m_pBack = new cNode(true);
}

}

void cBspTree::cNode::AddPolygon(const polygon<point3>& in)
{

if(m_bIsLeaf)
{

// reinitialize ourselves as a node
*this = cNode(in);

}
else
{

198 � Chapter 5: 3D Math Foundations

// test the polygon against this node.
pListLoc res = this->m_plane.TestPoly(in);

polygon<point3> front, back; // used in PLIST_SPLIT
switch(res)
{
case PLIST_FRONT:

// drop down the front
m_pFront->AddPolygon(in);
break;

case PLIST_BACK:
// drop down the back
m_pBack->AddPolygon(in);
break;

case PLIST_SPLIT:
// split the polygon, drop the halves down.
m_plane.Split(in, &front, &back);
m_pFront->AddPolygon(front);
m_pBack->AddPolygon(back);
break;

case PLIST_COPLANAR:
// add the polygon to this node's list
m_coplanarList.push_back(in);
break;

}
}

}

void cBspTree::cNode::TraverseTree(vector< polygon<point3>* >* polyList,
const point3& loc)

{
if(m_bIsLeaf)
{

// do nothing.
}
else
{

// test the loc against the current node
pointLoc res = m_plane.TestPoint(loc);

int i;
switch(res)
{
case POINT_FRONT:

// get back, us, front
m_pBack->TraverseTree(polyList, loc);
polyList->push_back(&m_poly); // the poly at this node
for(i=0; i<m_coplanarList.size(); i++)
{

polyList->push_back(&m_coplanarList[i]);
}
m_pFront->TraverseTree(polyList, loc);
break;

case POINT_BACK:

Chapter 5: 3D Math Foundations � 199

// get front, us, back
m_pFront->TraverseTree(polyList, loc);
polyList->push_back(&m_poly); // the poly at this node
for(i=0; i<m_coplanarList.size(); i++)
{

polyList->push_back(&m_coplanarList[i]);
}
m_pBack->TraverseTree(polyList, loc);
break;

case POINT_COPLANAR:
// get front, back, us
m_pFront->TraverseTree(polyList, loc);
m_pBack->TraverseTree(polyList, loc);
polyList->push_back(&m_poly); // the poly at this node
for(i=0; i<m_coplanarList.size(); i++)
{

polyList->push_back(&m_coplanarList[i]);
}
break;

}
}

}

int cBspTree::cNode::BestIndex(vector< polygon<point3> >& polyList)
{

/**
* The current hueristic is blind least-split
*/
// run through the list, searching for the best one.
// the highest polygon we'll bother testing (10% of total)
int maxCheck;
maxCheck = (int)(polyList.size() * percentageToCheck);
if(!maxCheck) maxCheck = 1;

int i, i2;
int bestSplits = 100000;
int bestIndex = -1;
int currSplits;
plane3 currPlane;
for(i=0; i<maxCheck; i++)
{

currSplits = 0;
currPlane = plane3(polyList[i]);
pListLoc res;

for(i2=0; i2< polyList.size(); i2++)
{

if(i == i2) continue;

res = currPlane.TestPoly(polyList[i2]);
if(res == PLIST_SPLIT)

currSplits++;
}

200 � Chapter 5: 3D Math Foundations

if(currSplits < bestSplits)
{

bestSplits = currSplits;
bestIndex = i;

}
}
assert(bestIndex >= 0);
return bestIndex;

}

bool cBspTree::cNode::LineOfSight(const point3& a, const point3& b)
{

if(m_bIsLeaf)
{

// if we land in a solid node, then there is no line of sight
return !m_bIsSolid;

}

pointLoc aLoc = m_plane.TestPoint(a);
pointLoc bLoc = m_plane.TestPoint(b);

point3 split;

if(aLoc == POINT_COPLANAR && bLoc == POINT_COPLANAR)
{

// for sake of something better to do, be conservative
//return false;
return m_pFront->LineOfSight(a, b);

}

if(aLoc == POINT_FRONT && bLoc == POINT_BACK)
{

//split, then return the logical 'or' of both sides
split = m_plane.Split(a, b);

return m_pFront->LineOfSight(a, split)
&& m_pBack->LineOfSight(b, split);

}

if(aLoc == POINT_BACK && bLoc == POINT_FRONT)
{

// split, then return the logical 'or' of both sides
split = m_plane.Split(a, b);

return m_pFront->LineOfSight(b, split)
&& m_pBack->LineOfSight(a, split);

}

// the other == POINT_COLPLANAR or POINT_FRONT
if(aLoc == POINT_FRONT || bLoc == POINT_FRONT)
{

// drop down the front
return m_pFront->LineOfSight(a, b);

Chapter 5: 3D Math Foundations � 201

}

else // they're both on the back side
{

// drop down the front
return m_pBack->LineOfSight(a, b);

}

return true;
}

Wrapping It UpWrapping It Up

Most of the code discussed in this chapter is available from the download-
able files in one library, called math3d.lib. The rest of it (most notably the
transformation, clipping, and lighting pipeline) won’t be implemented by
you; that’s being left wholly to Direct3D. There aren’t any sample applica-
tions for this chapter because you won’t be able to draw any primitives
until Chapter 8. The directory for this chapter contains more complete,
more commented versions of the code discussed in this chapter. So feel
free to take a look at that.

In the next chapter I’m going to show you some really cool stuff. Get
your terminator-destroying weapons out . . . It’s time to check out the
realms of artificial intelligence!

202 � Chapter 5: 3D Math Foundations

Chapter 6Chapter 6

Some of my earliest memories are of my dad bouncing me on his knee,
playing computer games on our 8088. I was fascinated with computers,
despite the fact that we only had two games for the machine: a game
where a donkey ran down the road avoiding cars, and an app that used
the PC speaker to crudely simulate a piano. One of my first phrases was
“Dunkee n musik,” a jumbled group of syllables I would yelp when I
wanted to play the games.

Right around then was when I saw my first AI application. The title
escapes me (I believe it may have been just Animal), but the premise
was simple enough. The object of the game was for the computer to
guess an animal you were thinking about. It would ask a series of
yes/no questions that would narrow down the possible choices (exam-
ples would be “does your animal fly?” or “does your animal have four
legs?”), and when it was sure, it would tell you what it thought your
animal was. The neat thing was, if it didn’t guess your animal, it would
ask you for a question that differentiated the two animals, something
your animal had that the other didn’t. From then on, the program
would be able to guess your animal! It could learn!

This impressed my young mind to no end. After some formal train-
ing in programming, I’ve come to accept that it’s a fairly trivial program:
The application keeps an internal binary tree with a question at each
branch and an animal at each leaf. It descends down the tree asking the
question at each branch and taking the appropriate direction. If it
reaches a leaf and the animal stored there isn’t yours, it creates a new
branch, adds your question, and puts your animal and the animal previ-
ously in the leaf in two new leaves.

How the program worked, however, really isn’t that important. The
trick is, it seemed intelligent to me. Game programmers need to aim for
this. While academia argues for the next 50 years over whether or not
human-level intelligence is possible with computers, game developers
need only be concerned with tricking humans into thinking what they’re
playing against is intelligent. And luckily (for both developers and aca-
demia), humans aren’t that smart.

203

This is, of course, not as easy as it sounds. Video games are rife with
pretty stupid computer opponents. Early first-person shooters had enemies
that walked towards the player in a zigzag pattern, never walking directly
towards their target, shooting intermittently. Bad guys in other games
would sometimes walk into a corner looking for you, determined that they
would eventually find you even though you were several rooms away.
Fighting games are even worse. The AI governing computer opponents can
become extremely repetitive (so that every time you jump towards the
opponent, they execute the same move). I can’t promise to teach you
everything you need to know to make the next Reaper Bot; that would be
the topic of an entire book all its own. By the end of this chapter, however,
you should be able to write an AI that can at least challenge you and
maybe even surprise you!

Starting PointStarting Point

Most AI problems that programmers face fall into three groups. At the low-
est level is the problem of physical movement—how to move the unit, how
to turn, how to walk, etc. This group is sometimes called locomotion, or
motor skills. Moving up one level is a higher-level view of unit movement,
where the unit has to decide how to get from point A to point B, avoiding
obstacles and/or other units. This group is called steering, or task genera-

tion. Finally, at the highest level, the meatiest part of AI, is the actual
thinking. Any cockroach can turn in a circle and do its best to avoid basic
obstacles (like a human’s foot). That does not make the cockroach intelli-
gent. The third and highest stage is where the unit decides what to do and
uses its ability to move around and plan directions to carry out its wishes.
This highest level is called motivation, or action steering.

Locomotion

Locomotion, depending on how you look at it, is either trivial or trivially
complex. An animation-based system can handle locomotion pretty easily,
move forward one unit, and use the next frame of animation in the walk
cycle. Every game on the market uses something similar to this to handle
AI locomotion.

However, that isn’t the whole story. When you walk up stairs, you need
a stair walking animation; when you descend down a hill, you naturally
lean back to retain your balance. The angle you lean back is dependent on
the angle of the hill. The amount you dig your feet into the ice is depend-
ent on how slippery the ice is and how sure your footing needs to be
before you proceed. Animation systems robust enough to handle cases like
this require a lot of special casing and scripting; most animation systems
use the same walk animation for all cases. I always found it kind of

204 � Chapter 6: Artificial Intelligence

disappointing when the guards in the surface level of Goldeneye could sim-
ply walk up 8-foot tall, 70 degree banks of snow.

A branch of control theory attempts to solve this with physical control-

lers. You can actually teach an AI how to stand and tell it how to retain its
balance, how to walk around, jump, anything. This gives the AI incredible
control, as the algorithms can handle any realistic terrain, any conditions.
Many people agree that the future of locomotion in games is physical
controllers.

However, physical controllers aren’t easy. At all. For these purposes, it’s
total overkill. As Moore’s law inevitably marches forward, there will even-
tually be enough processing power to devote the cycles to letting each
creature figure out how to run towards its target. When this happens,
games will be one huge step closer to looking like real life.

Steering—Basic AlgorithmsSteering—Basic Algorithms

Even games with little or no AI at all need to implement some form of
steering. Steering allows entities to navigate around the world they exist
in. Without it, enemies would just sit there with a rather blank look in
their eyes. There are a slew of extremely basic steering algorithms that I’ll
touch upon, and a couple of slightly more advanced ones that I’ll dig into a
little deeper.

Chasing

The first AI that most people implement is the ruthless, unthinking, unre-
lenting Terminator AI. The creature never thinks about rest, about getting
health or ammo, about attacking other targets, or even walking around
obstacles: It just picks a target and moves towards it each frame relent-
lessly. The code to handle this sort of AI is trivial. Each frame, the creature
takes the position of its target, generates a vector to it, and moves along
the vector a fixed amount (the amount is the speed of the creature).
Pseudocode to handle this type of AI is in Listing 6.1.

Listing 6.1: The Terminator manifested

void cCreature::Chase(cObject* target)
{

// Find the locations of the creature and its target.
point3 creatureLoc = m_loc;
point3 targetLoc = target->GetLoc();

// Generate a direction vector between the objects
point3 direction = targetLoc - creatureLoc;

// Normalize the direction (make it unit-length)
direction.Normalize();

// move our object along the direction vector some fixed amount

Chapter 6: Artificial Intelligence � 205

m_loc += direction * m_speed;
}

Evading

The inverse of a chasing algorithm is what I could probably get away with
calling rabbit AI, but I’ll leave it at evading. Each frame, you move directly
away from a target as fast as you can (although in this case the target
would most likely be a predator).

Listing 6.2: John Connor, perhaps?

void cCreature::Evade(cObject* target)
{

// Find the locations of the creature and its target.
point3 creatureLoc = m_loc;
point3 targetLoc = target->GetLoc();

// Generate a direction vector between the objects
point3 direction = targetLoc - creatureLoc;

// Normalize the direction (make it unit-length)
direction.Normalize();

// move our object away from the target by multiplying
// by a negative speed
m_loc += direction * -m_speed;

}

Pattern-based AI

Another fairly simple AI algorithm I’m going to discuss is pattern-based AI.
If you have ever played the classic Space Invaders, you’re familiar with this
AI algorithm. Aliens take turns dive-bombing the player, with every type of
alien attacking in one uniform way. The way it attacks is called a pattern.
At each point in time, each creature in the simulation is following some
sort of pattern.

The motivation engine (in this case, usually a random number genera-
tor) decides from a fixed set of patterns to perform. Each pattern encodes
a series of movements to be carried out each frame. Following the Space

Invaders theme, examples of pattern-based AI would be moving back and
forth, diving, and diving while shooting. Anyone who has played the game
has noticed that each unit type dives towards the player the same way,
oblivious to where the player is. When the baddies aren’t diving, they all
slide back and forth in the same exact way. They’re all following the same
set of patterns.

The algorithm to run a pattern-based AI creature is straightforward. I’ll
define a pattern to be an array of points that define direction vectors for
each frame of the pattern. Since the arrays can be of any length, I also

206 � Chapter 6: Artificial Intelligence

keep track of the length of the array. Then during the AI simulation step
the creature moves itself by the amount in the current index of the array.
When it reaches the end of an array, it randomly selects a new pattern.
Let’s examine some pseudocode to handle pattern-based AI.

Listing 6.3: Pattern-based AI

struct sPattern
{

int patternLength;
point3 *pattern; // array of length patternLength

};

sPattern g_patterns[NUM_PATTERNS];

void cCreature::FollowPattern()
{

// pattFrame is the current frame of the pattern
// pattNum is the current pattern we're using.

if(pattFrame >= g_patterns[pattNum].patternLength)
{

// new pattern
pattNum = rand()%NUM_PATTERNS;
pattFrame = 0;

}

// follow our current pattern.
m_loc += g_patterns[pattNum].pattern[pattFrame++];

}

Pattern-based AI can be specialized into what is known as scripted AI.
When a certain state is reached, the motivation engine can run a certain
scripted steering pattern. For example, an important state would be your
player entering a room with a bad guy in it. This could cause the creature
to follow a specialized animation just for that one game situation. The bad
guy could run and trip an alarm, dive out of bed towards his bludgeoning
weapon of choice, or anything else you can dream up.

Steering—Advanced AlgorithmsSteering—Advanced Algorithms

In case you haven’t figured it out yet, the basic steering algorithms pro-
vided so far are terrible! They merely provide the creature with an ability
to move. Moving in a pattern, moving directly towards an opponent, or
fleeing directly away from it is only slightly more believable than picking a
random direction to move every frame! No one will ever mistake your
basic cretins for intelligent creatures. Real creatures don’t follow patterns.
Moving directly towards or directly away from you makes them an easy
target. A prime example of how this would fail is illustrated in Figure 6.1.

Chapter 6: Artificial Intelligence � 207

How can you make the creatures appear more intelligent? It would be
cool to give them the ability to navigate through an environment, avoiding
obstacles. If the top-level motivation AI decides that it needs health or
ammo, or needs to head to a certain location, the task of getting there
intelligently should be handed off to the steering engine. Two general
algorithms for achieving this are what I’ll discuss next.

Potential Functions

Luckily for game programmers, a lot of the hard problems in steering and
autonomous navigation for AI creatures have already been solved by the
robotics community. Getting an autonomous unit, like a Mars rover, to plan
a path and execute it in a foreign environment is a problem that countless
researchers and academics have spent years trying to solve. One of the
ways they have come up with to let a robot (or a creature in the game)
wander through an unknown scene is to use what are called potential

functions.
Imagine a scene filled with obstacles, say tree trunks in a forest. There

is a path from the start to the goal and no tricky situations (like a U-shaped
wall of trees, which ends up being a real problem as you’ll see in a
moment). The unit should be able to reach the goal; all it needs to do is
not run into any trees. Anytime it gets close to a tree, logically, it should
adjust its direction vector so it moves away from the tree. The amount it
wants to move away from the tree should be a function based on the dis-
tance from the obstacle; that is, if it is right next to the obstacle, it will
want to avoid it more than if it is half a mile away from it. Figure 6.2
shows an example of this. It will obviously want to try to avoid obstacle 1
more than it tries to avoid obstacle 2, since obstacle 2 is so much farther
away.

208 � Chapter 6: Artificial Intelligence

Figure 6.1:
Chasing directly
towards a target
wouldn’t be too
smart in many
cases

This statement can be turned into an equation. Initially the direction is the
normalized vector leading to the goal (or the goal location minus the cur-
rent location). Then, for each obstacle, you find the normalized vector that
moves directly away from it. Then multiply it by a constant, and divide it
by the squared distance from the obstacle. When finished, you have a vec-
tor that the object should use as a direction vector (it should be
normalized, however).

Generally the obstacles (and the object navigating) have some radius asso-
ciated with them, so the last term in the equation can be adjusted to use
the distance between the spheres, instead of the distance between the
spheres’ centers.

The Good

Potential functions work great in sparse areas with physical obstacles, par-
ticularly outdoor scenes. You can reach a goal on the other side of a map
avoiding trees, rocks, and houses beautifully and with little computational
effort. A quick and easy optimization is to only consider the objects that
are within some reasonable distance from you, say 50 feet; that way you
don’t need to test against every object in the world (which could have hun-
dreds or thousands of objects in it).

One great advantage of potential functions is that the obstacles them-
selves can move around. You can use potential functions to model the
movement of a squad of units across a map for example. They can avoid
obstacles in the scene (using potential functions or more complex path

Chapter 6: Artificial Intelligence � 209

Figure 6.2:
Some obstacles
should be
avoided more
than others

�
�
�
�

�

�

�
�
�

�

�

�
	
�

n

k
2

loc
n

loc

loc
n

loclocloc

obstcurr

obstcurrcurrgoaldirection

finding algorithms like A*) and then avoid each other using potential
functions.

The Bad

Potential functions are not a silver bullet for all problems, however. As
intelligent as units can look being autonomously navigated with this
method, they’re still incredibly stupid. Mathematically, think of the poten-
tial functions as descending into a valley towards a goal, with the obstacles
appearing as hills that roll past. If there is a miniature valley that is
descended into, there is no way of getting out of it, since the only way to
move is downward. This miniature valley can appear all over the place; if
two obstacles are too close to each other, you won’t be able to pass
between them, and if obstacles are organized to form a barrier, like a wall
or specifically a U-shaped obstacle, you’re totally screwed. Figure 6.3 gives
an example of this.

Application: potentialFunc

To help explain the ideas described above, I wrote a small test app to show
off potential functions. You can use the z, x, and c keys to make large,
medium, and small obstacles under the mouse, respectively. The Space key
releases a creature under the mouse that heads to the goal, which appears
as a green circle. Since the GDI is so slow, I decided against clearing the
window every frame, so the creatures leave trails as they move around. For
most cases, the creatures (more than one can be created at once) reach
their goal well, as evidenced in the following picture:

210 � Chapter 6: Artificial Intelligence

Figure 6.3:
Potential func-
tions alone can-
not get to the
goal in this
configuration

However, they don’t work all the time, as evidenced by this picture:

You’ll notice that inside the code I sum the potential forces for the objects
and move a bit ten times each frame. If I only moved once, I would need to
move a fairly large amount to have the speed of the creature be anything
interesting. However, when the deltas are that large, the result is some
ugly numerical stability problems (characterized by a jittering when the
creature gets very close to an obstacle). Sampling multiple times each
frame fixes the problem.

The GDI isn’t useful for writing 3D games, so I’m covering it very
minimally in this book. However, for doing something like a potential
function application it turns out to be quite useful. While I’m providing
no explanations of how GDI works, armed with this code and the Win32
SDK documentation, figuring it out on your own won’t be terribly
difficult.

The code uses two main classes, cCreature (an entity that tries to
reach the goal) and cObstacle (something obstructing the path to the
goal). The code keeps vectors of all of the creatures and objects in the
scene. Each frame, each member of the creature vector gets processed,
during which it examines the list of obstacles. A nice extension to the

Chapter 6: Artificial Intelligence � 211

Figure 6.4:
Potential functions doing
their job

Figure 6.5:
Potential functions failing
spectacularly

program would be for creatures to also avoid other creatures; currently
they blindly run all over each other.

The code for this application is mostly GUI and drawing code, and the
important function is cCreature::Process. It is called every frame, and it
performs the potential function equation listed above to find the new loca-
tion. After each creature gets processed, the entire scene gets drawn.
Rather than list all of the code for the program, I’ll just give this one
function.

Listing 6.4: The main function of note, cCreature::Process

bool cCreature::Process()
{

point3 goalVec = g_goalLoc - m_loc;

if(goalVec.Length() < g_creatureSpeed)
return false; // we reached the goal, destroy ourselves

point3 dirVec = goalVec / goalVec.Length();

float k = .1f;

// for each obstacle
for(int i=0; i<g_obstacles.size(); i++)
{

// find the vector between the creature and the obstacle
point3 obstacleVec = m_loc - g_obstacles[i].m_loc;

// compute the length, subtracting object radii to find
// the distance between the spheres,
// not the sphere centers
float dist = obstacleVec.Length() -

g_obstacles[i].m_rad - m_rad;

// this is the vector pointing away from the obstacle
obstacleVec.Normalize();

dirVec += obstacleVec * (k / (dist * dist));
}
dirVec.Normalize();

m_loc += g_creatureSpeed * dirVec;
return true; // we should continue processing

}

Path Following

Path following is the process of making an agent look intelligent by having
it proceed to its destination using a logical path. The term “path following”
is really only half of the picture. Following a path once you’re given it is
fairly easy. The tricky part is generating a logical path to a target. This is
called path planning.

212 � Chapter 6: Artificial Intelligence

Before it is possible to create a logical path, it must be defined. For
example, if a creature’s desired destination (handed to it from the motiva-
tion code) is on the other side of a steep ravine, a logical path would
probably be to walk to the nearest bridge, cross the ravine, then walk to
the target. If there were a steep mountain separating it from its target, the
most logical path would be to walk around the mountain, instead of whip-
ping out climbing gear.

A slightly more precise definition of a logical path is the path of least

resistance. Resistance can be defined as one of a million possible things,
from a lava pit to a strong enemy to a brick wall. In an example of a world
with no environmental hazards, enemies, cliffs, or whatnot, the path of
least resistance is the shortest one, as shown in Figure 6.6.

Other worlds are not so constant. Resistance factors can be worked into
algorithms to account for something like a room that has the chance of
being filled with lava (like the main area of DM2 in Quake). Even if travel-
ing through the lava room is the shortest of all possible paths using sheer
distance, the most logical path is to avoid the lava room if it made sense.
Luckily, once the path finding algorithm is set up, modifying it to support
other kinds of cost besides distance is a fairly trivial task. If other factors
are taken into account, the chosen path may be different. See Figure 6.7.

Chapter 6: Artificial Intelligence � 213

Figure 6.6:
Choosing paths
based on length
alone

Groundwork

While there are algorithms for path planning in just about every sort of
environment, I’m going to focus on path planning in networked convex
polyhedral cells. Path planning for something like a 2D map (like those
seen in Starcraft) is better planned with algorithms like A*.

A convex cell will be defined as a region of passable space that a crea-
ture can wander through, such as a room or hallway. Convex polyhedrons
follow the same rules for convexity as the polygons. For a polygon (2D) or
a polyhedron (3D) to be convex, any ray that is traced between any two
points in the cell cannot leave the cell. Intuitively, the cell cannot have any
dents or depressions in it; there isn’t any part of the cell that sticks inward.
Concavity is a very important trait for what is being done here. At any
point inside the polyhedron, exiting the polyhedron at any location is pos-
sible and there is no need to worry about bumping into walls. Terminator
logic can be used from before until the edge of the polyhedron is reached.

The polyhedrons, when all laid out, become the world. They do not
intersect with each other. They meet up such that there is exactly one con-
vex polygon joining any two cells. This invisible boundary polygon is a
special type of polygon called a portal. Portals are the doorways connecting
rooms and are passable regions themselves. If you enter and exit cells from
portals, and you know a cell is convex, then you also know that any ray
traveled between two portals will not be obstructed by the walls of the cell
(although it may run against a wall). Until objects are introduced into the
world, if the paths are followed exactly, there is no need to perform colli-
sion tests.

214 � Chapter 6: Artificial Intelligence

Figure 6.7:
Choosing paths
based on other
criterion

I’ll touch upon this spatial definition later in the book when I discuss hid-
den surface removal algorithms; portal rendering uses this same paradigm
to accelerate hidden surface removal tasks.

The big question that remains is how do you move around this map?
To accomplish finding the shortest path between two arbitrary locations on
the map (the location of the creature and a location the user chooses), I’m
going to build a directed, weighted graph and use Dijkstra’s algorithm to
find the shortest edge traversal of the graph.

If that last sentence didn’t make a whole lot of sense, don’t worry, just
keep reading!

Graph Theory

The need to find the shortest path in graphs shows up everywhere in com-
puter programming. Graphs can be used to solve a large variety of
problems, from finding a good path to send packets through on a network
of computers, to planning airline trips, to generating door-to-door direc-
tions using map software.

A weighted, directed graph is a set of nodes connected to each other by
a set of edges. Nodes contain locations, states you would like to reach,
machines, anything of interest. Edges are bridges from one node to
another. (The two nodes being connected can be the same node, although
for these purposes that isn’t terribly useful.) Each edge has a value that
describes the cost to travel across the edge, and is unidirectional. To travel
from one node to another and back, two edges are needed: one to take you
from the first node to the second, and one that goes from the second node
to the first.

Dijkstra’s algorithm allows you to take a graph with positive weights
on each edge and a starting location and find the shortest path to all of the
other nodes (if they are reachable at all). In this algorithm each node has

Chapter 6: Artificial Intelligence � 215

Figure 6.8:
Cells and the portals
connecting them

two pieces of data associated with it: a “parent” node and a “best cost”
value. Initially, all of the parent values for all of the nodes are set to invalid
values, and the best cost values are set to infinity. The start node’s best cost
is set to zero, and all of the nodes are put into a priority queue that always
removes the element with the lowest cost. Figure 6.9 shows the initial
case.

Note: Notice that the example graphs I’m using seem to have bidirectional
edges (edges with arrows on both sides). These are just meant as shorthand
for two unidirectional edges with the same cost in both directions. In the
successive images, gray circles are visited nodes and dashed lines are parent
links.

Iteratively remove the node with the lowest best cost from the queue. Then
look at each of its edges. If the current best cost for the destination node
for any of the edges is greater than the current node’s cost plus the edges’
cost, then there is a better path to the destination node. Then update the
cost of the destination node and the parent node information, pointing
them to the current node. Pseudocode for the algorithm appears in Listing
6.5.

Listing 6.5: Pseudocode for Dijkstra’s algorithm

struct node
vector< edge > edges
node parent
real cost

struct edge
node dest
real cost

while(priority_queue is not empty)
node curr = priority_queue.pop
for(all edges leaving curr)

216 � Chapter 6: Artificial Intelligence

Figure 6.9:
Our initial case for the
shortest path computation

if(edge.dest.cost > curr.cost + edge.cost)
edge.dest.cost = curr.cost + edge.cost
edge.dest.parent = curr

Let me step through the algorithm so I can show you what happens. In the
first iteration, I take the starting node off the priority queue (since its best
cost is zero and the rest are all set to infinity). All of the destination nodes
are currently at infinity, so they get updated, as shown in Figure 6.10.

Then it all has to be done again. The new node you pull off the priority
queue is the top left node, with a best cost of 8. It updates the top right
node and the center node, as shown in Figure 6.11.

The next node to come off the queue is the bottom right one, with a value
of 10. Its only destination node, the top right one, already has a best cost
of 13, which is less than 15 (10 + the cost of the edge – 15). Thus, the top
right node doesn’t get updated, as shown in Figure 6.12.

Chapter 6: Artificial Intelligence � 217

Figure 6.10:
Aftermath of the first step
of Dijkstra’s algorithm

Figure 6.11:
Step 2

Next is the top right node. It updates the center node, giving it a new best
cost of 14, producing Figure 6.13.

Finally, the center node is visited. It doesn’t update anything. This empties
the priority queue, giving the final graph, which appears in Figure 6.14.

218 � Chapter 6: Artificial Intelligence

Figure 6.12:
Step 3

Figure 6.13:
Step 4

Figure 6.14:
The graph with the final
parent-pointers and costs

Using Graphs to Find Shortest Paths

Now, armed with Dijkstra’s algorithm, you can take a point and find the
shortest path and shortest distance to all other visitable nodes on the
graph. But one question remains: How is the graph to traverse generated?
As it turns out, this is a simple, automatic process, thanks to the spatial
data structure.

First, the kind of behavior that you wish the creature to have needs to
be established. When a creature’s target exists in the same convex cell the
creature is in, the path is simple: Go directly towards the object using
something like the Terminator AI I discussed at the beginning of the chap-
ter. There is no need to worry about colliding with walls since the
definition of convexity assures that it is possible to just march directly
towards the target.

Warning: I’m ignoring the fact that the objects take up a certain amount of
space, so the total set of the creature’s visitable points is slightly smaller than
the total set of points in the convex cell. For the purposes of what I’m doing
here, this is a tolerable problem, but a more robust application would need
to take this fact into account.

So first there needs to be a way to tell which cell an object is in. Luckily,
this is easy to do. Each polygon in a cell has a plane associated with it. All
of the planes are defined such that the normal points into the cell. Simply
controlling the winding order of the polygons created does this. Also
known is that each point can be classified whether it is in front of or in
back of a plane. For a point to be inside a cell, it must be in front of all of
the planes that make up the boundary of the cell.

It may seem mildly counterintuitive to have the normals sticking in
towards the center of the object rather than outwards, but remember that
they’re never going to be considered for drawing from the outside. The
cells are areas of empty space surrounded by solid matter. You draw from
the inside, and the normals point towards you when the polygons are visi-
ble, so the normals should point inside.

Now you can easily find out the cell in which both the source and des-
tination locations are. If they are in the same cell, you’re done (marching
towards the target). If not, more work needs to be done. You need to gen-
erate a path that goes from the source cell to the destination cell. To do
this, you put nodes inside each portal, and throw edges back and forth
between all the portals in a cell. An implementation detail is that a node in
a portal is actually held by both of the cells on either side of the portal.
Once the network of nodes is set up, building the edges is fairly easy. Add
two edges (one each way) between each of the nodes in each cell. You
have to be careful, as really intricate worlds with lots of portals and lots of
nodes have to be carefully constructed so as not to overload the graph.
(Naturally, the more edges in the graph, the longer Dijkstra’s algorithm
will take to finish its task.)

Chapter 6: Artificial Intelligence � 219

You may be wondering why I’m bothering with directed edges. The
effect of having two directed edges going in opposite directions would be
the same as having one bi-directed edge, and you would only have half the
edges in the graph. In this 2D example there is little reason to have unidi-
rectional edges. But in 3D everything changes. If, for example, the cell on
the other side of the portal has a floor 20 feet below the other cell, you
can’t use the same behavior you use in the 2D example, especially when
incorporating physical properties like gravity. In this case, you would want
to let the creature walk off the ledge and fall 20 feet, but since the creature
wouldn’t be able to turn around and miraculously leap 20 feet into the air
into the cell above, you don’t want an edge that would tell you to do so.

Here is where you can start to see a very important fact about AI.
Although a creature seems intelligent now (well . . . more intelligent than
the basic algorithms at the beginning of the chapter would allow), it’s fol-
lowing a very standard algorithm to pursue its target. It has no idea what
gravity is, and it has no idea that it can’t leap 20 feet. The intelligence in
this example doesn’t come from the algorithm itself, but rather it comes
from the implementation, specifically the way the graph is laid out. If it is
done poorly (for example, putting in an edge that told the creature to
move forward even though the door was 20 feet above it), the creature
will follow the same algorithm it always does but will look much less intel-
ligent (walking against a wall repeatedly, hoping to magically cross
through the doorway 20 feet above it).

Application: Path Planner

The second application for this chapter is a fully functioning path planner
and executor. The code loads a world description off the disk, and builds
an internal graph to navigate with. When the user clicks somewhere in the
map, the little creature internally finds the shortest path to that location
and then moves there.

Parsing the world isn’t terribly hard; the data is listed in ASCII format
(and was entered manually, yuck!). The first line of the file has one num-
ber, providing the number of cells. Following, separated by blank lines, are
that many cells. Each cell has one line of header (containing the number of
vertices, number of edges, number of portals, and number of items). Items
were never implemented for this demo, but they wouldn’t be too hard to
stick in. It would be nice to be able to put health in the world and tell the
creature “go get health!” and have it go get it.

Points are described with two floating-point coordinates, edges with
two indices, and portals with two indices and a third index corresponding
to the cell on the other side of the doorway. Listing 6.6 has a sample cell
from the world file you’ll be using.

220 � Chapter 6: Artificial Intelligence

Listing 6.6: Sample snippet from the cell description file

17

6 5 1 0
-8.0 8.0
-4.0 8.0
-4.0 4.0
-5.5 4.0
-6.5 4.0
-8.0 4.0
0 1
1 2
2 3
4 5
5 0
3 4 8

... more cells

Building the graph is a little trickier. The way it works is that each pair of
doorways (remember, each conceptual doorway has a doorway structure
leading out of both of the cells touching it) holds onto a node situated in
the center of the doorway. Each cell connects all of its doorway nodes
together with dual edges—one going in each direction.

When the user clicks on a location, first the code makes sure that the
user clicked inside the boundary of one of the cells. If it did not, the click is
ignored. Only approximate boundary testing is used (using two-dimen-
sional bounding boxes); more work would need to be done to do more
exact hit testing (this is left as an exercise for the reader).

When the user clicks inside a cell, then the fun starts. Barring the triv-
ial case (the creature and clicked location are in the same cell), a node is
created inside the cell and edges are thrown out to all of the doorway
nodes. Then Dijkstra’s algorithm is used to find the shortest path to the
node. The shortest path is inserted into a structure called sPath that is
essentially just a stack of nodes. While the creature is following a path, it
peeks at the top of the stack. If it is close enough to it within some epsilon,
the node is popped off the stack and the next one is chosen. When the
stack is empty, the creature has reached its destination.

The application uses the GDI for all the graphics, making it fairly slow.
Also, the graph searching algorithm uses linear searches to find the cheap-
est node while it’s constructing the shortest path. What fun would it be if I
did all the work for you? A screen shot from the path planner appears in
Figure 6.15 on the following page. The creature appears as a red circle.

Listing 6.7 gives the code used to find the shortest path in the graph.
There is plenty of other source code to wander through in this project, but
this seemed like the most interesting part.

Chapter 6: Artificial Intelligence � 221

Listing 6.7: The graph searching code for the path planner

cNode* cWorld::FindCheapestNode()
{

// ideally, we would implement a slightly more advanced
// data structure to hold the nodes, like a heap.
// since our levels are so simple, we can deal with a
// linear algorithm.

float fBestCost = REALLY_BIG;
cNode* pOut = NULL;
for(int i=0; i<m_nodeList.size(); i++)
{

if(!m_nodeList[i]->m_bVisited)
{

if(m_nodeList[i]->m_fCost < fBestCost)
{

// new cheapest node
fBestCost = m_nodeList[i]->m_fCost;
pOut = m_nodeList[i];

}

}
}

// if we haven't found a node yet, something is
// wrong with the graph.
assert(pOut);

return pOut;
}

void cNode::Relax()

222 � Chapter 6: Artificial Intelligence

Figure 6.15:
Screen shot from the path
planner

{
this->m_bVisited = true;

for(int i=0; i<m_edgeList.size(); i++)
{

cEdge* pCurr = m_edgeList[i];
if(pCurr->m_fWeight + this->m_fCost < pCurr->m_pTo->m_fCost)
{

// relax the 'to' node
pCurr->m_pTo->m_pPrev = this;
pCurr->m_pTo->m_fCost = pCurr->m_fWeight + this->m_fCost;

}
}

}

void cWorld::ShortestPath(sPath* pPath, cNode *pTo, cNode* pFrom)
{

// easy out.
if(pTo == pFrom) return;

InitShortestPath();

pFrom->m_fCost = 0.f;

bool bDone = false;
cNode* pCurr;
while(1)
{

pCurr = FindCheapestNode();
if(!pCurr)

return; // no path can be found.
if(pCurr == pTo)

break; // We found the shortest path

pCurr->Relax(); // relax this node
}

// now we construct the path.

// empty the path first.
while(!pPath->m_nodeStack.empty()) pPath->m_nodeStack.pop();

pCurr = pTo;
while(pCurr != pFrom)
{

pPath->m_nodeStack.push(pCurr);
pCurr = pCurr->m_pPrev;

}
}

Chapter 6: Artificial Intelligence � 223

Motivation

The final area of AI I’ll be discussing is the motivation of a creature. I feel
it’s the most interesting facet of AI. The job of the motivation engine is to
decide, at a very high level, what the creature should be doing. Examples
of high-level states would be “get health” or “attack nearest player.” Once
you have decided on a behavior, you create a set of tasks for the steering
engine to accomplish. Using the “get health” example, the motivation
engine would look through an internal map of the world for the closest
health and then direct the locomotion engine to find the shortest path to it
and execute the path. I’ll show you a few high-level motivation concepts.

Non-Deterministic Finite Automata (NFAs)

NFAs are popular in simpler artificial intelligence systems (and not only in
AI; NFAs are used everywhere). If, for example, you’ve ever used a search
program like grep (a UNIX searching command), you’ve used NFAs.
They’re a classical piece of theoretic computer science, an extension of
Deterministic Finite Automata (DFAs).

How do they work? In the classic sense, you have a set of nodes con-
nected with edges. One node (or more) is the start node and one (or
more) is the end node. At any point in time, there is a set of active nodes.
You send a string of data into an NFA. Each piece is processed individually.

The processing goes as follows: Each active node receives the current
piece of data. It makes itself inactive and compares the data to each of its
edges. If any of its outgoing edges match the input data, they turn their
destination node on. There is a special type of edge called an epsilon edge,
which turns its destination on regardless of the input.

When all of the data has been processed, you look at the list of active
nodes. If any of the end nodes are active, then that means the string of
data passed. You construct the NFA to accept certain types of strings and
can quickly run a string through an NFA to test it.

Here are a few examples to help make the definition more concrete.
Both of the examples are fairly simple NFAs just to show the concepts
being explained. Let’s say there is an alphabet with exactly two values, A
and B. The first example, Figure 6.16, is an NFA that accepts only the
string ABB and nothing else.

The second example, Figure 6.17, shows an NFA that accepts the string
A*B, where A* means any number of As, including zero.

224 � Chapter 6: Artificial Intelligence

How is this useful for game programming? If you encode the environment
that the creature exists in into a string that you feed into an NFA, you can
allow it to process its scene and decide what to do. You could have one
goal state for each of the possible behaviors (that is, one for “attack
enemy,” one for “get health,” and other high-level behaviors). As an exam-
ple, one of the entries in the array of NFA data could represent how much
ammo the character has. Let’s say there are three possible states: {Plenty of
ammo, Ammo, Little or no ammo}. The edge that corresponded to “Plenty
of ammo” would lead to a section of the NFA that would contain aggres-
sive end states, while the “Little or no ammo” edges would lead to a
section of the NFA that would most likely have the creature decide that it
needed to get some ammo. The next piece of data would describe a differ-
ent aspect of the universe the creature existed in, and the NFA would have
branches ready to accept it.

Chapter 6: Artificial Intelligence � 225

Figure 6.16:
NFA that accepts the
string ABB

Figure 6.17:
NFA that accepts the
string A*B

Table 6.1 contains some examples of states that could be encoded in
the string of data for the NFA.

Table 6.1: Some example states that could be encoded into an NFA

Proximity to nearest opponent Very near; Average distance; Very far.

If the nearest opponent is very far, the edge could lead to states
that encourage the collection of items.

Health Plenty of health; Adequate health; Dangerous health.

If the creature has dangerously low health and the opponent was
very near, a kamikaze attack would probably be in order. If the
nearest enemy was very far away, it should consider getting
some health.

Environment Tight and close; Medium; Expansive.

A state like this would determine which weapon to use. For
example, an explosive weapon like a rocket launcher shouldn’t
be used in tight and close areas.

Enemy health Plenty of health; Adequate health; Dangerous health.

The health of the nearest enemy determines the attacking
pattern of the creature. Even if the creature has moderate to
low health, it should try for the kill if the enemy has dangerous
health.

Enemy altitude Above; Equal; Below.

It’s advantageous in most games to be on higher ground than
your opponent, especially in games with rocket launcher splash
damage. If the creature is below its nearest opponent and the
opponent is nearby, it might consider retreating to higher ground
before attacking.

One way to implement NFAs would be to have a function pointer in each
end state that got executed after the NFA was processed if the end state
succeeded.

The only problem with NFAs is that it’s extremely difficult to encode
fuzzy decisions. For example, it would be better if the creature’s health was
represented with a floating-point value, so there would be a nearly contin-
uous range of responses based on health. I’ll show you how to use neural
networks to do this. However, NFA-based AI can be more than adequate
for many games. If your NFA’s behavior is too simple, you generally only
need to extend the NFA, adding more behaviors and more states.

Genetic Algorithms

While not directly a motivation concept, genetic algorithms (or GAs) can
be used to tweak other motivation engines. They try to imitate nature to
solve problems. Typically, when you’re trying to solve a problem that has a
fuzzy solution (like, for example, the skill of an AI opponent), it’s very
hard to tweak the numbers to get the best answer.

226 � Chapter 6: Artificial Intelligence

One way to solve a problem like this is to attack it the way nature
does. In nature (according to Darwin, anyway) animals do everything they
can to survive long enough to produce offspring. Typically, the only mem-
bers of a species that survive long enough to procreate are the most
superior of their immediate peers. In a pride of lions, only one male
impregnates all of the females. All of the other male lions vie for control
of the pride, so that their genes get carried on.

Added to this system, occasionally, is a bit of mutation. An offspring is
the combination of the genes of the two parents, but it may be different
from either of the parents by themselves. Occasionally, an animal will be
born with bigger teeth, sharper claws, longer legs, or in Simpsonian cases,
a third eye. The change might give that particular offspring an advantage
over its peers. If it does, that offspring is more likely than the other ani-
mals to carry on its genes, and thus, over time, the species improves.

That’s nice and all, but what does that have to do with software devel-
opment? A lot, frankly. What if you could codify the parameters of a
problem into genes? You could randomly create a set of animals, each with
its own genes. They are set loose, they wreak havoc, and a superior pair of
genes is found. Then you combine these two genes, sprinkle some random
perturbations in, and repeat the process with the new offspring and
another bunch of random creatures.

For example, you could define the behavior of all the creatures in
terms of a set of scalar values. Values that define how timid a creature is
when it’s damaged, how prone it is to change its current goal, how accu-
rate its shots are when it is moving backward, and so forth. Correctly
determining the best set of parameters for each of the creatures can prove
difficult. Things get worse when you consider other types of variables, like
the weapon the creature is using and the type of enemy it’s up against.

Genetic algorithms to the rescue! Initially, you create a slew of crea-
tures with a bunch of random values for each of the parameters and put
them into a virtual battleground, having them duke it out until only two
creatures remain. Those two creatures mate, combining their genes and
sprinkling in a bit of mutation to create a whole new set of creatures, and
the cycle repeats.

The behavior that genetic algorithms exhibit is called hill climbing. You
can think of a creature’s idealness as a function of n variables. The graph
for this function would have many relative maximums and one absolute
maximum. In the case where there were only two variables, you would see
a graph with a bunch of hills (where the two parameters made a formida-
ble opponent), a bunch of valleys (where the parameters made a bad
opponent), and an absolute maximum (the top of the tallest mountain: the
best possible creature).

For each iteration, the creature that will survive will hopefully be the
one that was the highest on the graph. Then the iteration continues, with a
small mutation (you can think of this as sampling the area immediately
around the creature). The winner of the next round will be a little bit

Chapter 6: Artificial Intelligence � 227

better than its parent as it climbs the hill. When the children stop getting
better, you know you have reached the top of a hill, a relative maximum.

How do you know if you reached the absolute maximum, the tallest
hill on the graph? It’s extremely hard to do. If you increase the amount of
mutation, you increase the area you sample around the creature, so you’re
more likely to happen to hit a point along the slope of the tallest moun-
tain. However, the more you increase the sampling area, the less likely you
are to birth a creature further up the mountain, so the function takes much
longer to converge.

Rule-Based AI

The world of reality is governed by a set of rules, rules that control every-
thing from the rising and setting of the sun to the way cars work. The AI
algorithms discussed up to this point aren’t aware of any rules, so they
would have a lot of difficulty knowing how to start a car, for example.

Rule-based AI can help alleviate this problem. You define a set of rules
that govern how things work in the world. The creature can analyze the
set of rules to decide what to do. For example, let’s say that a creature
needs health. It knows that there is health in a certain room, but to get
into the room the creature must open the door, which can only be done
from a security station console. One way to implement this would be to
hardcode the knowledge into the creature. It would run to the security sta-
tion, open the door, run through it, and grab the health.

However, a generic solution has a lot of advantages. The behavior it
can exhibit isn’t limited to just opening security doors. Anything you can
describe with a set of rules is something it can figure out. See Listing 6.8
for a subset of the rules for a certain world.

Listing 6.8: Some rules for an example world

IF [Health_Room == Visitable]
THEN [Health == Gettable]

IF [Security_Door == Door_Open]
THEN [Health_Room == Visitable]

IF [Today == Sunday]
THEN [Tacos == 0.49]

IF [Creature_Health < 0.25]
THEN [Creature_State = FindGettableHealth]

IF [Creature_Position NEAR Security_Console]
THEN [Security_Console_Usable]

IF [Security_Console_Usable] AND [Security_Door != Door_Open]
THEN [Creature_Use(Security_Console)]

IF [Security_Console_Used]
THEN [Security_Door == Door_Open]

IF [Creature_Move_To(Security_Console)]
THEN [Creature_Position NEAR Security_Console]

Half the challenge in setting up rule-based systems is to come up with an
efficient way to encode the rules. The other half is actually creating the

228 � Chapter 6: Artificial Intelligence

rules. Luckily a lot of the rules, like the Creature_Move_To rule at the end
of the list, can be automatically generated.

How does the creature figure out what to do, given these rules? It has
a goal in mind: getting health. It looks in the rules and finds the goal it
wants, [Health == Gettable]. It then needs to satisfy the condition for that
goal to be true, that is [Health_Room == Visitable]. The creature can
query the game engine and ask it if the health room is visitable. When the
creature finds out that it is not, it has a new goal: making the health room
visitable.

Searching the rules again, it finds that [Health_Room == Visitable] if
[Security_Door == Door_Open]. Once again, it sees that the security door
is not open, so it analyzes the rule set again, looking for a way to satisfy
the condition.

This process continues until the creature reaches the rule saying that if
it moves to the security console, it will be near the security console. Finally,
a command that it can do! It then uses path planning to get to the security
console, presses the button to open the security door, moves to the health
room, and picks up the health.

AI like this can be amazingly neat. Nowhere do you tell how to get the
health. It actually figured out how to do it all by itself. If you could encode
all the rules necessary to do anything in a particular world, then the AI
would be able to figure out how to accomplish whatever goals it wanted.
The only tricky thing is encoding this information in an efficient way. And
if you think that’s tricky, try getting the creature to develop its own rules as
it goes along. If you can get that, your AI will always be learning, always
improving.

Neural Networks

One of the huge areas of research in AI is in neural networks (NNs). They
take a very fundamental approach to the problem of artificial intelligence
by trying to closely simulate intelligence, in the physical sense.

Years of research have gone into studying how the brain actually
works (it’s mystifying that evolution managed to design an intelligence
capable of analyzing itself). Researchers have discovered the basic building
blocks of the brain and have found that, at a biological level, it is just a
really, really (REALLY) dense graph. On the order of billions or trillions of
nodes, and each node is connected to thousands of others.

The difference between the brain and other types of graphs is that the
brain is extremely connected. Thinking of several concepts brings up sev-
eral other concepts, simply through the fact that the nodes are connected.
As an example, think for a moment about an object that is leafy, green, and
crunchy. You most likely thought about several things, maybe celery or
some other vegetable. That’s because there is a strong connection between
the leafy part of your brain and things that are leafy. When the leafy neu-
ron fires, it sends its signal to all the nodes it’s connected to. The same
goes for green and crunchy. Since, when you think of those things, they all

Chapter 6: Artificial Intelligence � 229

fire and all send signals to nodes, some nodes receive enough energy to
fire themselves, such as the celery node.

Now, I’m not going to attempt to model the brain itself, but you can
learn from it and build your own network of electronic neurons. Graphs
that simulate brain activity in this way are generally called neural

networks.
Neural networks are still a very active area of research. In the last year

or so, a team was able to use a new type of neural network to understand
garbled human speech better than humans can! One of the big advantages
of neural networks is that they can be trained to remember their past
actions. You can teach them, giving them an input and then telling them
the correct output. Do this enough times and the network can learn what
the correct answer is.

However, that is a big piece of pie to bite down on. Instead, I’m going
to delve into a higher-level discussion of neural networks, by explaining
how they work sans training, and providing code for you to play with.

A Basic Neuron

Think of a generic neuron in your brain as consisting of three biological
parts: an axon, dendrites, and a soma. The processing unit is the soma. It
takes input coming from the dendrites and outputs to the axon. The axon,
in turn, is connected to the dendrites of other neurons, passing the signals
on. These processes are all handled with chemicals in real neurons; a soma
that fires is, in essence, sending a chemical down its axon that will meet up
with other dendrites, sending the fired message to other neurons. Figure
6.18 shows what a real neuron looks like.

The digital version is very similar. There is a network of nodes connected
by edges. When a node is processed, it takes all of the signals on the
incoming edges and adds them together. One of these edges is a special
bias or memory edge, which is just an edge that is always on. This value

230 � Chapter 6: Artificial Intelligence

Figure 6.18:
A biological neuron

can change to modify the behavior of the network (the higher the bias
value, the more likely the neuron is to fire). If the summation of the input-
ting nodes is above the threshold (usually 1.0), then the node sends a fire
signal to each of its outgoing edges. The fire signal is not the result of the
addition, as that may be much more than 1.0. It is always 1.0. Each edge
also has a bias that can scale the signal being passed it higher or lower.
Because of this, the input that arrives at a neuron can be just about any
value, not just 1.0 (firing neurons) or 0 (non-firing neurons). They may be
anywhere; if the edge bias was 5.0, for example, the neuron would receive
5.0 or 0, depending on whether the neuron attached to it fired or not.
Using a bias on the edges can also make a fired neuron have a dampened
effect on other neurons.

The equation for the output of a neuron can be formalized as follows:

where you sum over the inputs n (the bias of the edge, multiplied by the
output of the neuron attached to it) plus the weight of the bias node times
the bias edge weight.

Other types of responses to the inputs are possible; some systems use a
Sigmoid exponential function like the one below. A continuous function
such as this makes it easier to train certain types of networks (back propa-
gation networks, for example), but for these purposes the all-or-nothing
response will do the job.

One of the capabilities of the brain is the ability to imagine things given a
few inputs. Imagine you hear the phrases “vegetable,” “orange,” and
“eaten by rabbits.” Your mind’s eye conjures up an image of carrots. Imag-
ine your neural network’s inputs are these words and your outputs are
names of different objects. When you hear the word “orange,” somewhere
in your network (and your brain) an “orange” neuron fires. It sends a fire
signal to objects you have associated with the word “orange” (for example:
carrots, oranges, orange crayons, an orange shirt). That signal alone prob-
ably won’t be enough for any particular one of those other neurons to fire;
they need other signals to help bring the total over the threshold. If you
then hear another phrase, such as “eaten by rabbits,” the “eaten by rabbits”
neuron will fire off a signal to all the nodes associated with that word (for
example: carrots, lettuce, boisterous English crusaders). Those two signals

Chapter 6: Artificial Intelligence � 231

�
�
� �

�

	� �

otherwise0.0

1.0xif0.1
out

)node(bias)(x
n

nnBb

x

n

nn

e

Bb

	
�

	� �

0.1

0.1
out

)node(bias)(x

may be enough to have the neuron fire, sending an output of carrots. Fig-
ure 6.19 abstractly shows what is happening.

Simple Neural Networks

Neural networks are Turing-complete; that is, they can be used to perform
any calculation that computers can do, given enough nodes and enough
edges. Given that you can construct any processor using nothing but NAND
gates, this doesn’t seem like too ridiculous a conjecture. Let’s look at some
simpler neural networks before trying to tackle anything more complex.

AND

Binary logic seems like a good place to start. As a first stab at a neural net,
let’s try to design a neural net that can perform a binary AND. The network
appears in Figure 6.20.

232 � Chapter 6: Artificial Intelligence

Figure 6.19:
A subsection of a
hypothetical neural
network

Figure 6.20:
A neural network
that can perform
a binary AND
function

Note that the input nodes have a bias of 0.1. This is to help fuzzify the
numbers a bit. You could make the network strict if you’d like (setting the
bias to 0.0), but for many applications 0.9 is close enough to 1.0 to count
as being 1.0.

OR

Binary OR is similar to AND; the middle edges just have a higher weight so
that either one of them can activate the output node. The net appears in
Figure 6.21.

XOR

Handling XOR requires a bit more thought. Three nodes alone can’t possi-
bly handle XOR; you need to make another layer to the network. A
semi-intuitive reasoning behind the workings of Figure 6.22: The top inter-
nal node will only be activated if both input nodes fire. The bottom one
will fire if either of the input nodes fires. If both internal nodes fire, that
means that both input nodes fired (a case you should not accept), which is
correctly handled by having a large negative weight for the edge leading
from the top internal node to the output node.

Chapter 6: Artificial Intelligence � 233

Figure 6.21:
A neural network that
can perform a binary
OR function

Training Neural Networks

While it’s outside the scope of this book, it’s important to know one of the
most important and interesting features about neural nets: They can be
trained. Suppose you create a neural net to solve a certain problem (or put
another way, to give a certain output given a set of inputs). You can ini-
tially seed the network with random values for all of the edge biases and
then have the network learn. Neural nets can be trained or can learn
autonomously. An autonomously learning neural net would be, for exam-
ple, an AI that was trying to escape from a maze. As it moves, it learns
more information, but it has no way to check its answer as it goes along.
These types of networks learn much slower than trained networks. Trained
neural networks on the other hand have a cheat sheet; that is, they know
the solution to each problem. They run an input and check their output
against the correct answer. If it is wrong, the network modifies some of the
weights so that it gets the correct answer the next time.

Using Neural Networks in Games

Using a neural network to decide the high-level action to perform in lieu of
NFAs has a lot of advantages. For example, the solutions are often much
fuzzier. Reaching a certain state isn’t as black and white as achieving a cer-
tain value in the string of inputs; it’s the sum of a set of factors that all
contribute to the behavior.

As an example, let’s say that you have a state that, when reached,
causes your creature to flee its current location in search of health. You
may want to do this in many cases. One example would be if there was a
strong enemy nearby. Another would be if there was a mildly strong enemy
nearby and the main character is low on health. You can probably conjure
up a dozen other cases that would justify turning tail and fleeing.

While it’s possible to codify all of these cases separately into an NFA,
it’s rather tedious. It’s better to have all of the input states (proximity of

234 � Chapter 6: Artificial Intelligence

Figure 6.22:
A neural network that
can perform a binary
XOR function

nearest enemy, strength of nearest enemy, health, ammo, etc.) become
inputs into the neural network. Then you could just have an output node
that, when fired, caused the creature to run for health. This way, the
behavior emerges from the millions of different combinations for inputs. If
enough factors contribute to the turn-and-flee state to make it fire, it will
sum over the threshold and fire.

A neural network that does this is exactly what I’m going to show you
how to write.

Application: NeuralNet

The NeuralNet sample application is a command-line application to show
off a neural network simulator. The network is loaded off disk from a
description file; input values for the network are requested from the user,
then the network is run and the output appears on the console. I’ll also
build a sample network that simulates a simple creature AI. An example
running of the network appears in Listing 6.9. In this example, the crea-
ture has low health, plenty of ammo, and an enemy nearby. The network
decides to select the state [Flee_Enemy_ Towards_Health]. If this code
were to be used in a game, state-setting functions would be called in lieu
of printing out the names of the output states.

Listing 6.9: Sample output of the neural net simulator

Advanced 3D Game Programming using DirectX 9.0
--

Neural Net Simulator

Using nn description file [creature.nn]

Neural Net Inputs:

Ammo (0..1)
1 - Ammo (0..1)
Proximity to enemy (0..1)
1 - Proximity to enemy (0..1)
Health (0..1)
1 - Health (0..1)

Enter Inputs:

Enter floating point input for [Ammo (0..1)]
1.0

The NeuralNet description file (*.nn) details the network that the applica-
tion will run. Each line that isn’t a comment starts with a keyword
describing the data contained in the line. The keywords appear in Table
6.2.

Chapter 6: Artificial Intelligence � 235

Table 6.2: Neural net description keywords

NN_BEGIN Defines the beginning of the neural network. Always the first line of the file.
First token is the number of layers in the neural network. The input layer
counts as one, and so does the output layer.

NN_END Defines the ending of the neural network description.

NEURON Declares a neuron. The first token is the name of the neuron, and the
second is the bias of the neuron.

INPUT Declares an input. The first token is the name of the neuron to receive the
input, and the second token (enclosed in quotes) is the user-friendly name
for the input. The list of inputs is iterated for user inputs prior to running
the simulation.

DEFAULTOUT The default output of the neural network. Only token is the text of the
default output.

OUTPUT Declares an output. The first token is the name of the neuron, the second is
the text to print if the neuron fires, and the third is the bias of the neuron.

EDGE Declares an edge. The first token is the name of the source node, the
second token is the name of the destination node, and the third token is the
floating-point weight of the edge.

The order in which the neurons appear in the file is pivotally important.
They are appended to an STL vector as they are loaded in, and the vector
is traversed when the network is run. Therefore, they should appear
ordered in the file as they would appear left to right in the diagrams pre-
sented thus far (the input nodes at the beginning, the internal nodes in the
middle, the output nodes at the end).

Listing 6.10 shows the sample network description creature.nn. This is
a simplistic creature AI that can attack, flee, and find items it needs. The
network is simple enough that it’s easy to see that adding more states
wouldn’t be too hard a task. It’s important to note that this network is
designed to have its inputs range from –1 to 1 (so having health input as 0
means the creature has about 50% health).

Listing 6.10: creature.nn

First line starts the NN loading and gives the # of layers.
NN_BEGIN 2
#
NEURON x y z
x = layer number
y = node name
z = node bias
NEURON 0 health 0.0
NEURON 0 healthInv 0.0
NEURON 0 ammo 0.0
NEURON 0 ammoInv 0.0
NEURON 0 enemy 0.0
NEURON 0 enemyInv 0.0
NEURON 1 findHealth 0.2
NEURON 1 findAmmo 0.2

236 � Chapter 6: Artificial Intelligence

NEURON 1 attackEnemy 0.5
NEURON 1 fleeToHealth 0.5
NEURON 1 fleeToAmmo 0.5
#
DEFAULTOUT "string"
string = the default output
DEFAULTOUT "Chill out"
#
EDGE x y z
x = source neuron
y = dest neuron
z = edge weight
#
EDGE health attackEnemy 0.5
EDGE ammo attackEnemy 0.5
EDGE enemy attackEnemy 0.5
EDGE healthInv attackEnemy -0.5
EDGE ammoInv attackEnemy -0.5
EDGE enemyInv attackEnemy -0.6
#
EDGE healthInv findHealth 0.6
EDGE enemyInv findHealth 0.6
#
EDGE ammoInv findAmmo 0.6
EDGE enemyInv findAmmo 0.6
#
EDGE healthInv fleeToHealth 0.8
EDGE enemy fleeToHealth 0.5
#
EDGE ammoInv fleeToAmmo 0.8
EDGE enemy fleeToAmmo 0.5
#
INPUT/OUTPUT x "y"
x = node for input/output
y = fancy name for the input/output
INPUT health "Health (0..1)"
INPUT healthInv "1 - Health (0..1)"
INPUT ammo "Ammo (0..1)"
INPUT ammoInv "1 - Ammo (0..1)"
INPUT enemy "Proximity to enemy (0..1)"
INPUT enemyInv "1 - Proximity to enemy (0..1)"
OUTPUT findHealth "Find Health"
OUTPUT findAmmo "Find Ammo"
OUTPUT attackEnemy "Attack Nearest Enemy"
OUTPUT fleeToHealth "Flee Enemy Towards Health"
OUTPUT fleeToAmmo "Flee Enemy Towards Ammo"
#
NN_END

The source code for the neural network simulator appears in Listings 6.11
and 6.12.

Chapter 6: Artificial Intelligence � 237

Listing 6.11: NeuralNet.h

/***
* Advanced 3D Game Programming using DirectX 9.0
* *
* Desc: Sample AI code
*
* copyright (c) 2002 by Peter A Walsh and Adrian Perez
* See license.txt for modification and distribution information
**/

#ifndef _NEURALNET_H
#define _NEURALNET_H

#include <string>
#include <vector>
#include <map>

using namespace std;

#include "file.h"

class cNeuralNet
{
protected:

class cNode;
class cEdge;

public:
string GetOutput();

void SendInput(const char* inputName, float amt);

void Load(cFile& file);
void Run();
void Clear();
cNeuralNet();
virtual ~cNeuralNet();

void ListInputs();
void GetInputs();

protected:

cNode* FindNode(const char* name);

class cNode
{
public:

void Init(const char* name, float weight);

void Clear();
virtual void Run();

238 � Chapter 6: Artificial Intelligence

void AddOutEdge(cNode* target, float edgeWeight);
void SendInput(float in);

const char* GetName() const;
float GetTotal() const;

protected:

// Computes the output function given the total.
virtual float CalcOutput();

string m_name;
float m_weight; // initial bias in either direction
float m_total; // total of the summed inputs
vector< cEdge > m_outEdges;

};

class cEdge
{

cNode* m_pSrc;
cNode* m_pDest;
float m_weight;

public:

cEdge(cNode* pSrc, cNode* pDst, float weight);

void Fire(float amount);
};
friend class cNode;

vector< vector< cNode* > > m_nodes;

// maps the names of output nodes to output strings.
map< string, string > m_inputs;
map< string, string > m_outputs;

string m_defaultOutput;
};

inline const char* cNeuralNet::cNode::GetName() const
{

return m_name.c_str();
}

inline float cNeuralNet::cNode::GetTotal() const
{

return m_total;
}

#endif // _NEURALNET_H

Chapter 6: Artificial Intelligence � 239

Listing 6.12: NeuralNet.cpp

/***
* Advanced 3D Game Programming using DirectX 9.0
* *
* Desc: Sample AI code
*
* copyright (c) 2002 by Peter A Walsh and Adrian Perez
* See license.txt for modification and distribution information
**/

using namespace std;

int main(int argc, char* argv[])
{

// Sorry, I don't do cout.
printf("Advanced 3D Game Programming using DirectX 9.0\n");
printf("--\n\n");
printf("Neural Net Simulator\n\n");

if(argc != 2)
{

printf("Usage: neuralnet filename.nn\n");
return 0;

}

printf("Using nn description file [%s]\n\n", argv[1]);

cNeuralNet nn;
cFile nnFile;
nnFile.Open(argv[1]);
nn.Load(nnFile);
nnFile.Close();

int done = 0;
while(!done)
{

// Clear the totals
nn.Clear();

// List the inputs for the net from the user
nn.ListInputs();

// Get the inputs for the net from the user
nn.GetInputs();

// Run the net
nn.Run();

// Get the net's output.
string output = nn.GetOutput();

printf("\nNeural Net output was [%s]\n", output.c_str());
printf("\nRun Again? (y/n)\n");
char buff[80];

240 � Chapter 6: Artificial Intelligence

gets(buff);

if(!(buff[0] == 'y' || buff[0] == 'Y'))
{

done = 1;
}

}
return 0;

}

cNeuralNet::cNeuralNet()
{

// no work needs to be done.
}

cNeuralNet::~cNeuralNet()
{

// delete all of the nodes; each node will get its outgoing edges
int numLayers = m_nodes.size();
for(int i=0; i<numLayers; i++)
{

int layerSize = m_nodes[i].size();
for(int j=0; j<layerSize; j++)
{

delete m_nodes[i][j];
}

}
}

cNeuralNet::cNode* cNeuralNet::FindNode(const char *name)
{

cNode* pCurr;

// Search for the node.
int numLayers = m_nodes.size();
for(int i=0; i<numLayers; i++)
{

int layerSize = m_nodes[i].size();
for(int j=0; j<layerSize; j++)
{

pCurr = m_nodes[i][j];
if(0 == strcmp(pCurr->GetName(), name))

return pCurr;
}

}

// didn't contain the node (bad)
printf("ERROR IN NEURAL NET FILE!\n");
printf("Tried to look for node named [%s]\n", name);
printf("but couldn't find it!\n");
exit(0);
return NULL;

}

void cNeuralNet::Clear()

Chapter 6: Artificial Intelligence � 241

{
// Call clear on each of the networks.
cNode* pCurr;

int numLayers = m_nodes.size();
for(int i=0; i<numLayers; i++)
{

int layerSize = m_nodes[i].size();
for(int j=0; j<layerSize; j++)
{

pCurr = m_nodes[i][j];
pCurr->Clear();

}
}

}

void cNeuralNet::Run()
{

// Run each layer, running each node in each layer.
int numLayers = m_nodes.size();
for(int i=0; i<numLayers; i++)
{

int layerSize = m_nodes[i].size();
for(int j=0; j<layerSize; j++)
{

m_nodes[i][j]->Run();
}

}
}

void cNeuralNet::SendInput(const char *inputTarget, float amt)
{

// Find the node that we're sending the input to, and send it.
FindNode(inputTarget)->SendInput(amt);

}

void cNeuralNet::cNode::Clear()
{

// initial total is set to the bias
m_total = m_weight;

}

void cNeuralNet::cNode::Run()
{

// Compute the transfer function
float output = CalcOutput();

// Send it to each of our children
cEdge* pCurr;
int size = m_outEdges.size();
for(int i=0; i< size; i++)
{

m_outEdges[i].Fire(output);
}

}

242 � Chapter 6: Artificial Intelligence

void cNeuralNet::cNode::Init(const char *name, float weight)
{

m_name = string(name);
m_weight = weight;

}

float cNeuralNet::cNode::CalcOutput()
{

// This can use an exponential-type function
// but for simplicity's sake we're just doing
// flat yes/no.
if(m_total >= 1.0f)

return 1.0f;
else

return 0.f;
}

void cNeuralNet::cNode::SendInput(float in)
{

// just add the input to the total for the network.
m_total += in;

}

void cNeuralNet::cNode::AddOutEdge(cNode *target, float edgeWeight)
{

// Create an edge structure
m_outEdges.push_back(cEdge(this, target, edgeWeight));

}

cNeuralNet::cEdge::cEdge(cNode *pSrc, cNode *pDest, float weight)
: m_pSrc(pSrc)
, m_pDest(pDest)
, m_weight(weight)
{

// all done.
}

void cNeuralNet::cEdge::Fire(float amount)
{

// Send the signal, multiplied by the weight,
// to the destination node.
m_pDest->SendInput(amount * m_weight);

}

Chapter 6: Artificial Intelligence � 243

Some Closing ThoughtsSome Closing Thoughts

Creating a successful AI engine needs the combined effort of a bunch of
different concepts and ideas. Neural networks alone can’t do much, but
combine them with path planning and you can create a formidable oppo-
nent. Use genetic algorithms to evolve the neural networks (well, actually
just the bias weights for the neural networks) and you can breed an army
of formidable opponents, each one different in its own way. It’s a truly
exciting facet of game programming, and you’re only cheating yourself if
you don’t investigate the topic further!

244 � Chapter 6: Artificial Intelligence

Chapter 7Chapter 7

Doom. Quake III: Arena. Duke Nukem’. Unreal Tournament. It seems like
every game released these days is written to be played on the Internet.
It’s the wave of the future—the world is becoming a global village and
there’s a dire need to kill everyone in town. But writing a game and
writing a game that can be played over the Internet are two very differ-
ent things. Far too many games have died in their infancy because
programmers assumed it would be a simple matter of adding in net-
work code when everything else was done. Nothing could be further
from the truth. In this chapter, I’m going to show you the basics of set-
ting up a network game and reducing the amount of lag, and then
investigate some possible optimizations.

Terminology

First, you need to know some basic terminology.

Endianness

There are a few major problems with the Internet. First, it’s completely
unorganized; second, data sent over the Internet has a good chance of
never reaching its destination. It’s important to understand some of
what is going on inside the Internet in order to overcome these
problems.

The reason the Internet is so unorganized is that it is still evolving.
Different operating systems, different hardware—it can be a real head-
ache. By far one of the furthest reaching differences is that of
endianness. When a computer CPU has to store information that takes
up more than 1 byte, most types of CPUs will store the bytes in order
from largest to smallest. This is known as little endian. However, other
machines (namely Apples) do it a little differently. Suppose you have a
whole number that takes up 2 bytes. In a little endian system, the bytes
are stored with bits 0-7 representing the values 20-27 and bits 8-15 rep-
resenting values 28-215. But the CPU in a big endian system stores the

245

same value the other way around with bits 0-7 representing values 28-215

and bits 8-15 representing values 20-27.

Note: By the way, if you’re wondering where this “endian” terminology comes
from, this is the note for you. It originates, I think, from the book Gulliver’s

Travels. Somewhere in the book there are people who are split into two
groups. The first group, the little endians, ate their hard-boiled eggs from the
small side first. The other group, the big endians, ate their eggs from the big
side. So it’s not really a technical term!

This means that when you want to send data over the Internet you have to
make sure that your numbers are in the default endianness of the Internet,
and when you receive information you have to be sure to switch back to
your computer’s default endianness.

Another effect of such an unorganized system is that a system of
addresses had to be created so as to tell one machine from another. Known
as a host address or IP address, they take the form nnn.nnn.nnn.nnn, where
nnn is a whole number between 0 and 255, inclusive. This would imply
that there can’t be more than 4 billion machines on the Internet simulta-
neously, but in practice the limit is quite a bit lower. The reason is that
there are three types of networks called class A, class B, and class C. Each
class uses a certain range of possible IP addresses, severely limiting the
total possible combinations. For example, class C networks use IP
addresses in the range 192.0.0.x through 223.255.255.x. Class C networks
use the first three bits to identify the network as class C, which leaves 21
bits for identifying a computer on the network. The value 221 is a total of
2,097,152 possible addresses; as of 2002, over fifty percent of those have
been assigned to computers that are always online. But it gets worse—
class B networks have a total of 16,384 combinations and class A networks
only have 128. Fortunately, new legislation is changing all that. For more
information check out the American Registry for Internet Numbers
(www.arin.net).

There are two kinds of addresses: For those machines that are always
on the Internet there are static addresses that never change. For those
computers that have dial-up connections or that aren’t regularly on the

246 � Chapter 7: UDP Networking

16 168 87 0 07

10110101 1011010111101001 11101001

0xB5 0xB5

0xB5E9 0xE9B5

little-endian big-endian

0xE9 0xE9

Figure 7.1:
Big-endian vs.
little-endian
system

Internet there are dynamic addresses that are different each time the com-
puter connects.

With all the phone numbers, bank accounts, combination locks, secret
passwords, and shoe sizes, there isn’t much room left over in most people’s
memories for a collection of IP addresses. So in order to make things a lit-
tle more user friendly, host names were introduced. A host name such as
www.flipcode.com or www.gamedev.net represents the four-number
address. If the IP address changes, the host name keeps working. A host
name has to be resolved back into the IP address before it can be used to
make a connection attempt. In order to resolve a host name, the computer
trying to resolve must already know the address of a Domain Name Server

(DNS). It contacts the DNS and sends the host name. The DNS server
responds by returning the numeric IP address of the host.

With so many programs running on so many different computers
around the globe, there has to be a way to separate communication into
different “channels,” much like separate phone lines or TV stations. Inside
any Winsock-compliant computer are 65,534 imaginary ports to which
data can be sent. Some recognized protocols have default ports—HTTP
uses port 80 and FTP uses port 21 (more on protocols in a moment). Any
program can send data to any port, but if there’s no one listening the data
will be ignored, and if the listening program doesn’t understand the data
then things could get ugly. In order to listen or transmit data to a port,
both machines must begin by initializing Winsock, a standard library of
methods for accessing network firmware/hardware. Winsock is based in
part on UNIX sockets so most methods can be used on either type of
operating system without need for rewriting. Once Winsock has been ini-
tialized, the two machines must each create a socket handle and associate
that socket with a port. Having successfully completed socket association,
all that remains to do is transfer data and then clean up when you’re done.
But your problems are just beginning. Once you’ve finished all the funda-
mental communication code there should only be one thing on your mind:
speed, speed, and more speed.

Network Models

In order to make games run smoothly some kind of order has to be
imposed on the Internet; some clearly defined way of making sure that
every player in the game sees as close to the same thing as possible. The
first thought that leaps to mind is “connect every machine to every other
machine!” This is known as a peer-to-peer configuration and it sounds like
a good configuration. In fact it was used in some of the first networked
games. However, as the number of players rise, this peer-to-peer model
quickly becomes impractical. Consider a game with four players. Each
player must have three connections to other players for a total of six con-
nections. Each player also has to send the same data three times. Hmm.
Dubious. Now consider the same game with six players. Each player has to
send the same data out five times and there are a total of 15 connections.

Chapter 7: UDP Networking � 247

In an eight-player game there are 28 connections. Try it yourself—the
equation is

where P is the number of players.

Another method might be to arrange all the players in a ring, with each
player connected to two other machines. This sounds a bit better because
there are only (P + 1) connections and each player only has to send data
once, clockwise around the ring. My computer tells your computer, your
computer tells her computer, and so on around the ring until it comes back
to me at which point I do nothing. But consider the amount of time it takes
to send information from one computer to another. Even if a computer
sends data in both directions at once it will still take too long for data to
travel halfway around the ring. Things can become pretty complicated if
one of the player’s computers suddenly crashes or leaves the game—all the
data that it had received but not yet transmitted to the next machine in the
ring suddenly vanishes, leaving some machines with one version of the
game and some with another.

The most popular design is a client/server configuration, which might look
like a star because every player is connected to a powerful central com-
puter. This central computer is the server and it makes sure everyone is
synchronized and experiencing the same thing. There are, at most, P con-
nections in a client/server configuration and the clients only have to send
data once. The server does the bulk of the work, sending out the same
data, at most, P times. This method ensures the smallest possible time dif-
ference between any two clients but can be quite taxing on the server, so
much so that some computers are dedicated servers that do nothing but
keep games running for other people.

Protocols

Once you’ve decided on which model you’re going to use (I reach out with
my mind powers and see that you have chosen client/server…) there
comes the decision of what protocol. Protocols are accepted standard lan-
guages that computers use to transmit data back and forth. Most protocol
information does not have to be set up by the programmer (phew) but is
required for making sure that data reaches its intended destination. At the
core, most protocols consist of basically the same thing. The following is a

248 � Chapter 7: UDP Networking

Figure 7.2:
Peer to peer,
ring, and
client/server
network
configurations

2

1)–(PP �

list of some of the more commonly used protocols and a brief description
of each.

� Internet Protocol (IP) is one of the simplest protocols available. Pro-
grammers use protocols built on top of IP in order to transmit data.

� User Datagram Protocol (UDP) adds the barest minimum of features to
IP. It’s just enough to transmit data and it does the job very fast. How-
ever, UDP data is unreliable, meaning that if you send data through
UDP, some of it may not reach the destination machine, and even if it
does it may not arrive in the order that it was sent. However, for
real-time games this is the protocol of choice and the one I will be cov-
ering in this chapter.

� Transmission Control Protocol (TCP) is also built on top of IP and adds a
lot of stability to network data transmission at the expense of speed. If
you want reliable data transmission, this is the protocol for you. It is
best suited for turn-based games that don’t have to worry about speed
so much as making sure the right information reaches its destination.

This is not to say it can’t be used for real-time games—NetStorm (an
Activision title) uses TCP/IP. However, it is my considered opinion that

the amount of data being transmitted in NetStorm is far lower than in,

say, Unreal Tournament.

� Internet Control Message Protocol (ICMP) is built on top of IP and pro-
vides a way to return error messages. ICMP is at the heart of every ping
utility. Its features are duplicated in so many other protocols that some-
times its features are mistaken as being a part of IP.

Packets

Any data you transmit is broken into packets, blocks of data of a maximum
size. Each packet is then prefixed with a header block containing informa-
tion such as host address, host port, the amount of time the packet has
been traveling through the Internet, and whatever else the selected proto-
col requires. A UDP packet’s maximum size is 4096 bytes. If it doesn’t seem
like much, you’re right. But remember, most dial-up connections have trou-
ble reaching 10 kilobytes per second, and you’re going to be transmitting a
lot of information both ways. When a packet is sent out into the Internet, it
must first travel to one of the servers that forms the backbone of the
Internet. Up until that point the packet is traveling in a straight line and
there’s no confusion. However, the moment the packet reaches the first
server on the backbone it starts to follow a new set of rules. Each computer
with more than one connection has a series of weights associated with
each connection to another computer. These weights determine which
computer should receive the most traffic. If these weights should change,
the packets from your computer could take a much longer route than nec-
essary and in some cases never even reach their destination. The real
drawback is that it means packets may not arrive at their destination in

Chapter 7: UDP Networking � 249

any particular order. It could also be that every copy of the packet takes a
scenic route, dies of old age, and the machine you were trying to send to
never gets the packet at all.

In this case I’m willing to sacrifice a little reliability in exchange for the
increased speed, but sometimes there are messages being sent to the server
that must get through. For that reason I’ll show you how to set up a reli-
able, ordered communication system for the few, the proud, the brave: the
UDP packets.

Implementation 1: MTUDPImplementation 1: MTUDP

Design Considerations

Since this is a tutorial, I’m only going to develop for the Windows plat-
form. This means that I don’t have to be very careful about endianness. I’ve
also chosen to use UDP because it’s the fastest way to communicate and
makes the most sense in a real-time game. I’m also going to design with
the client/server (star) configuration in mind, because it is the most scal-
able and the most robust.

Things That Go “argh, my kidney!” in the Night

In all the online tutorials that I’ve read about creating multiplayer net-
worked games, there’s always one detail that’s left out, and that detail is
about the same size and level of danger as an out-of-control 18-wheel
truck. The problem is multithreading.

Consider for a moment a simple single-thread game: In your main
loop you read in from the keyboard, move things in the world, and then
draw to the screen. So it would seem reasonable that in a network game
you would read in from the keyboard, read in from the Internet, move
things, send messages back out to the Internet, and then draw to the
screen. Sadly, this is not the case. Oh sure, you can write a game to work
like this (I learned the hard way), but it won’t work the way you expect it
to. Why? Let’s say your computer can draw 20 frames per second. That
means that most of 50ms is being spent drawing, which means that nearly
50ms go by between any two checks for new data from the Internet. So
what? Anyone who’s ever played a network game will tell you that 50ms
can mean the difference between life and death. So when you send a mes-
sage to another computer, that message could be waiting to be read for
nearly 50ms and the reply could be waiting in your machine’s hardware
for an extra 50ms for an extra round trip time of 100ms!

Worse still is the realization that if you stay with a single-threaded
app, there’s nothing you can do to solve the problem; nothing will make
that delay go away. Yes, it would be shorter if the frame rate were higher.
But just try to tell people they can’t play unless their frame rate is high
enough—I bet good money they tar and feather you.

250 � Chapter 7: UDP Networking

The solution is, of course, to write a multithreaded app. I’ll admit the
first time I had to write one I was pretty spooked. I thought it was going to
be a huge pain. Please believe me when I say that as long as you write
clean, careful code, you can get it right the first time and you won’t have
to debug a multithreaded app. And since everything you do from here on
in will depend on that multithreading, let’s start the MTUDP (multi-
threaded UDP) class there. First of all, be sure that you tell the compiler
you’re not designing a single-threaded app. In MSVC 6.0 the option to
change is in Project|Settings|C/C++|Code Generation|Use Runtime
Library.

Windows multithreading is, from what I hear, completely insane in its
design. Fortunately, it’s also really easy to get started. CreateThread() is a
standard Windows function and, while I won’t go into much detail about
its inner working here (you have MSDN; look it up!) I will say that I call it
as follows:

void cThread::Begin()
{

d_threadHandle = CreateThread(NULL,
0,
(LPTHREAD_START_ROUTINE)gsThreadProc,
this, 0, (LPDWORD)&d_threadID);

if(d_threadHandle == NULL)
throw cError("cThread() - Thread creation failed.");

d_bIsRunning = true;
}

As you can tell, I’ve encapsulated all my thread stuff into a single class.
This gives me a nice place to store d_threadHandle so I can kill the thread
later, and it means I can use cThread as a base class for, oh, say, MTUDP,
and I can reuse the cThread class in all my other applications without mak-
ing any changes to it.

CreateThread() takes six parameters, the most important of which are
parameters 3 and 4, gsThreadProc and this. this is a pointer to the instance
of cThread and will be sent to gsThreadProc. This is crucial because
gsThreadProc cannot be a class function because Windows doesn’t like
that. Instead, gsThreadProc is defined at the very beginning of
cThread.cpp as follows:

static DWORD WINAPI cThreadProc(cThread *pThis)
{

return pThis->ThreadProc();
}

I don’t know about you, but I think that’s pretty sneaky. It also happens to
work! Back in the cThread class ThreadProc is a virtual function that
returns zero immediately. ThreadProc can return anything you like, but
I’ve always liked to return zero when there is no problem and use every
other number as an error code.

Chapter 7: UDP Networking � 251

Sooner or later you’re going to want to stop the thread. Again, this is
pretty straightforward.

void cThread::End()
{
if(d_threadHandle != NULL)
{
d_bIsRunning = false;
WaitForSingleObject(d_threadHandle, INFINITE);
CloseHandle(d_threadHandle);
d_threadHandle = NULL;

}
}

The function cThread::End() is set up in such a way that you can’t stop a
thread more than once, but the real beauty is hidden. Notice d_bIsRun-
ning? Well, you can use it for more than just telling the other threads that
you’re still working. Let’s look at a simple version of a derived class’s
ThreadProc().

DWORD MTUDP::ThreadProc()
{
while(d_bIsRunning == true)
{
// Read and process network data here.

}
return 0;

}

This means that the moment d_bIsRunning is set to false, the thread will
quit. Of course, we could get the thread to quit any time—if it detected
an error, for example. This is an easy way for one thread to have
start/stop control on another thread. In fact, if you didn’t set d_bIsRunning
to false, the first thread would stop running forever while it waited for
WaitForSingleObject(d_threadHandle, INFINITE). This is because
d_threadHandle functions like a mutex.

Mutexes

Mutexes are crucial in multithreading because they protect data that is in a
critical section. For example, let’s say you have a linked list of information.
One thread is adding to the linked list and the other thread is removing.
What would happen if the two tried to access the linked list at the same
time? There’s a chance that one thread could walk through the linked list
and then step off into “funny RAM” (some undefined location in RAM that
is potentially dangerous to modify) because the other thread hadn’t fin-
ished working with the linked list pointers.

Fortunately, C++ lets you set up a really nice little class to monitor
these critical sections and make sure every thread plays nice.

class cMonitor
{

252 � Chapter 7: UDP Networking

protected:

HANDLE d_mutex;

public:
cMonitor();
virtual ~cMonitor();

void MutexOn() const;
void MutexOff() const;

};

Again, this class is used as a base class for every class that has a critical
section. In fact, I defined cThread as class cThread : public cMonitor. The
four cMonitor functions are also very interesting.

cMonitor::cMonitor()
{
// This mutex will help the two threads share their toys.
d_mutex = CreateMutex(NULL, false, NULL);
if(d_mutex == NULL)
throw cError("cMonitor() - Mutex creation failed.");

}

cMonitor::~cMonitor()
{
if(d_mutex != NULL)
{
CloseHandle(d_mutex);
d_mutex = NULL;

}
}

cMonitor will create a new mutex and clean up after itself.

void cMonitor::MutexOn() const
{
WaitForSingleObject(d_mutex, INFINITE);

}

void cMonitor::MutexOff() const
{
ReleaseMutex(d_mutex); // To be safe...

}

Once again you see that WaitForSingleObject() will stall a thread forever if
necessary. The big difference between this and d_threadHandle is that
d_threadHandle was released by Windows. Here, control is left up to a
thread. If WaitForSingleObject() is called, the thread will gain control of a
mutex and every other thread will have to wait until that same thread calls
ReleaseMutex() before they get a turn, and it’s first come, first serve. This
means you have to be very careful with how you handle your mutexes—if
you don’t match every WaitFor… with a ReleaseMutex(), threads will hang
forever and you will soon find yourself turning your computer off to reboot

Chapter 7: UDP Networking � 253

it. I suppose I could have written a version of MutexOn() that would wait
n milliseconds and return an error code, but I haven’t found a need for it
yet.

Threads, Monitor, and the Problem of the
try/throw/catch Construction

Try/throw/catch is a wonderful construction that can simplify your debug-
ging. Unfortunately, it doesn’t work very well inside other threads.
Actually, it works, but it might surprise you. The following would work,
but it would not catch anything thrown by the other thread.

// somewhere inside thread #1
try
{
cThreadDerived myNewThread;

mNewThread.Begin();

// Do other stuff.
}
catch(cError &err)
{
// No error would be reported.

}
}

// somewhere inside cThreadDerived::ThreadProc()
throw cError("Gack!");

The solution is to put an extra try/catch inside the ThreadProc of
cThreadDerived and then store the error somewhere for the other thread
to read it or process it right there and then.

MTUDP: The Early Years

You’ve seen the multithreading class and you’ve got a way to protect the
critical sections. So here’s how it’s going to work: The main thread can
read and send data with MTUDP whenever it can get the mutex. The rest
of the time it can render, check the keyboard, play music, etc. MTUDP,
meanwhile, will be constantly rechecking the network to see if there is
data to be read in from the Internet and processing any that arrives.

Now you can start getting down to business!

class MTUDP : public cThread
{
protected:
SOCKET d_listenSocket,

d_sendSocket;
unsigned short d_localListenPort,

d_foreignListenPort;
bool d_bStarted,

d_bListening,

254 � Chapter 7: UDP Networking

d_bSending;
// A list of all the data packets that have arrived.

public:
MTUDP();
virtual ~MTUDP();

virtual ThreadProc();

void Startup(unsigned short localListenPort,
unsigned short ForeignListenPort);

void Cleanup();
void StartListening();
void StartSending();
void StopListening();
void StopSending();
unsigned short GetReliableData(char * const pBuffer,

unsigned short maxLen);
void ReliableSendTo(const char * const pStr, unsigned short len);

};

Startup() and Cleanup() are the bookends of the class and are required to
initialize and tidy up. StartListening() and StartSending() will create the
d_listenSocket and d_sendSocket, respectively. One or more of these has to
be called before ReliableSendTo() or GetReliableData() will do anything.

MTUDP::Startup() and MTUDP::Cleanup()

void MTUDP::Startup(unsigned short localListenPort,
unsigned short foreignListenPort)

{
Cleanup(); // just in case somebody messed up out there...

WSAData wsaData;
int error;

error = WSAStartup(MAKEWORD(2, 2), &wsaData);
if(error == SOCKET_ERROR)
{
char errorBuffer[100];

error = WSAGetLastError();
if(error == WSAVERNOTSUPPORTED)
{
sprintf(errorBuffer,

"MTUDP::Startup() - WSAStartup() error.\nRequested v2.2, found only v%d.%d.",
LOBYTE(wsaData.wVersion), HIBYTE(wsaData.wVersion));

WSACleanup();
}
else
sprintf(errorBuffer, "MTUDP::Startup() - WSAStartup() error %d",
WSAGetLastError());

throw cError(errorBuffer);

Chapter 7: UDP Networking � 255

}

d_localListenPort = localListenPort;
d_foreignListenPort = foreignListenPort;
d_bytesTransfered = 0;
d_bStarted = true;

}

Really the only mystery here is WSAStartup(). It takes two parameters: a
word that describes what version of Winsock you’d like to use and a
pointer to an instance of WSAData, which will contain all kinds of useful
information regarding this machine’s Winsock capabilities. I admire the
way the Winsock programmers handle errors—just about everything will
return SOCKET_ERROR, at which point you can call WSAGetLastError()
to find out more information. The two variables passed to Startup
(d_localListenPort and d_foreignListenPort) will be used a little later.

void MTUDP::Cleanup()
{
if(d_bStarted == false)
return;

d_bStarted = false;

StopListening();
StopSending();

// Clean up all data waiting to be read

WSACleanup();
}

An important note: WSAStartup() causes a DLL to be loaded, so be sure to
match every call to WSAStartup() with exactly one call to WSACleanup().

MTUDP::MTUDP() and MTUDP::~MTUDP()

All programming (and, as I’ve learned, all attempts to explain things to
people) should follow the “method of least surprise.” MTUDP’s creation
and destruction methods prove we’ve been able to stick to that rule.

At this point all the creation method does is initialize d_bStarted to
false and the destruction method calls Cleanup().

MTUDP::StartListening()

Now we get to put d_localListenPort to use.

void MTUDP::StartListening()
{
if(d_bListening == true ||

d_bStarted == false)
return;

d_bListening = true;

256 � Chapter 7: UDP Networking

Nothing special yet; this just prevents you from calling StartListening()
twice.

d_listenSocket = socket(AF_INET, SOCK_DGRAM, 0);
if(d_listenSocket == INVALID_SOCKET)
// throw an error here.

Socket() is a Winsock method that creates a socket. The three parameters
are the address family, the socket type, and the protocol type (which modi-
fies the socket type). The only parameter here you should ever mess with
is SOCK_DGRAM, which could be changed to SOCK_STREAM if you
wanted to work in TCP/IP.

SOCKADDR_IN localAddr;
int result;

memset(&localAddr, 0, sizeof(SOCKADDR_IN));
localAddr.sin_family = AF_INET;
localAddr.sin_addr.s_addr = htonl(INADDR_ANY);
localAddr.sin_port = htons(d_localListenPort);

result = bind(d_listenSocket,
(sockaddr *)&localAddr,
sizeof(SOCKADDR_IN));

if(result == SOCKET_ERROR)
{
closesocket(d_listenSocket);
// throw another error.

}

Bind() takes three parameters—the port number on which to open the
new listening socket, some information about the type of socket (in the
form of a SOCKADDR or SOCKADDR_IN structure), and the size of param-
eter 2. Every time you Bind() a socket you have to make sin_family equal
to the same thing as the socket’s address family. Since this is a listening
socket, you want it to be on port d_localListenPort so that’s what sin_port
is set to. The last parameter, sin_addr.s_addr, is the address you would be
sending data to. The listen socket will never send any data so set it to
INADDR_ANY. Lastly, if the Bind() fails, be sure to close the socket. There’s
only one step left!

// We’re go for go!
cThread::Begin();

}

MTUDP::StartSending()

The start of StartSending() is the same old deal—check that a send socket
has not been opened (d_bSending == false) and create the send socket
(which looks exactly the same as it did in StartListening()). The only sig-
nificant change comes in the call to Bind().

Chapter 7: UDP Networking � 257

SOCKADDR_IN localAddr;
int result;

memset(&localAddr, 0, sizeof(SOCKADDR_IN));
localAddr.sin_family = AF_INET;
localAddr.sin_addr.s_addr = htonl(INADDR_ANY);
localAddr.sin_port = htons(0);

result = bind(d_sendSocket, (sockaddr *)&localAddr, sizeof(SOCKADDR_IN));
if(result == SOCKET_ERROR)
// close the socket and throw an error.

I don’t care what port the send socket is bound to, so sin_port is set to
zero. Even though data is being sent, because UDP is being used, the
sin_addr.s_addr is once again set to INADDR_ANY. This would have to
change if you wanted to use TCP/IP, because once you open a TCP/IP
socket it can only send to one address until it is closed or forced to change.

At the end of StartSending() you do not call cThread::Begin(). Thanks
to the cThread class it wouldn’t have an effect, so make sure to call Start-
Listen() before StartSending(). Another good reason to call StartListen-
ing() first is because there’s a very small chance that the random port
Winsock binds your send socket to is the same port you want to use for
listening.

MTUDP::ThreadProc()

Now to the real meat and potatoes. I’ll explain the whole thing at the end.

DWORD MTUDP::ThreadProc()
{
if(d_bListening == false)
return 0; // Quit already?! It can happen...

char inBuffer[MAX_UDPBUFFERSIZE];
timeval waitTimeStr;
SOCKADDR_IN fromAddr;
int fromLen;
unsigned short result;
FD_SET set;

try
{
while(d_bListening == true)
{
// Listen to see if there is data waiting to be read.
FD_ZERO(&set);
FD_SET(d_listenSocket, &set);

waitTimeStr.tv_sec = 0; // Wait 0 seconds
waitTimeStr.tv_usec = 0; // Wait 0 microseconds (1/(1*10^6) seconds)

// Select tells us if there is data to be read.
result = select(FD_SETSIZE, &set, NULL, NULL, &waitTimeStr);
if(result == 0)

258 � Chapter 7: UDP Networking

continue;
if(result == SOCKET_ERROR)
// throw an error.

// Recvfrom gets the data and puts it in inBuffer.
fromLen = sizeof(SOCKADDR);
result = recvfrom(d_listenSocket,

inBuffer,
MAX_UDPBUFFERSIZE,
0,
(SOCKADDR *)&fromAddr,
&fromLen);

if(result == 0)
continue;

if(result == SOCKET_ERROR)
// throw an error.

// Put the received data in a mutex-protected queue here.
ProcessIncomingData(inBuffer,

result,
ntohl(fromAddr.sin_addr.s_addr),
GetTickCount());

} // while
} // try
catch(cError &err)
{
// do something with err.d_text so that the
// other thread knows this thread borked.

}

// Returns 1 if the close was not graceful.

return d_bListening == true;
}

It may seem a little weird to put a check for d_bListening at the start of the
thread proc. I added it because there is a short delay between when you
call Begin() and when ThreadProc() is actually called, and even if you
clean up properly when you’re going to quit, it can make your debug out-
put look a little funny.

MAX_UDPBUFFERSIZE is equal to the maximum size of a UDP packet,
4096 bytes. I seriously doubt you will ever send a UDP block this big, but it
never hurts to play it safe. As you can see, try/catch/throw is here, just like
I said. The next step is the while loop, which begins with a call to Select().
Select() will check any number of sockets to see if there is data waiting to
be read, check if one of the sockets can send data, and/or check if an error
occurred on one of the sockets. Select() can be made to wait for a state
change as long as you want, but I set waitTimeStr to 0 milliseconds so that
it would poll the sockets and return immediately. That way it’s a little more
thread friendly.

Some of you may have some experience with Winsock and are proba-
bly wondering why I didn’t use something called “asynchronous event

Chapter 7: UDP Networking � 259

notification.” Two reasons: First, it takes a lot of effort to get set up and
then clean up again. Second, it makes MTUDP dependent on a window
handle, which makes it dependent on the speed at which WndProc() mes-
sages can be parsed, and it would make MTUDP even more dependent on
Windows functions, something we’d like to avoid, if possible.

The next steps only happen if there is data to be read. Recvfrom() will
read in data from a given socket and return the number of bytes read, but
no more than the MAX_UDPBUFFERSIZE limit. Recvfrom() will also sup-
ply some information on where the data came from in the fromAddr
structure.

If some data was successfully read in to inBuffer, the final step in
the while loop is called. This is a new MTUDP function called Process-
IncomingData().

MTUDP::ProcessIncomingData()

Well, I’m sorry to say that, for now, ProcessIncomingData() is virtually
empty. However, it is the first opportunity to see mutexes in action.

void MTUDP::ProcessIncomingData(char * const pData,
unsigned short length,
DWORD address,
DWORD receiveTime)

{
cMonitor::MutexOn();
// Add the data to our list of received packets.
cMonitor::MutexOff();

}

MTUPD::GetReliableData()

GetReliableData() is one of the few methods that can be called by another
thread. Because it also messes with the list of received packets, mutexes
have to be used again.

unsigned short MTUDP::GetReliableData(char * const pBuffer,
unsigned short maxLen)

{
if(pBuffer == NULL)
throw cError("MTUPD::GetReliableData() - Invalid parameters.");

if(maxLen == 0)
return 0;

cMonitor::MutexOn();
// take one of the received packets off the list.
cMonitor::MutexOff();
// fill pBuffer with the contents of the packet.
// return the size of the packet we just read in.

}

260 � Chapter 7: UDP Networking

TA DA! You’ve now got everything required to asynchronously read data
from the Internet while the other thread renders, reads input, picks its
nose, gives your hard drive a wedgie, you name it; it’s coded. Of course, it
doesn’t really tell you who sent the information, and it’s a long way from
being reliable.

MTUDP::ReliableSendTo()

It’s a good thing that I left this for the end because some of the code to get
ReliableSendTo() working will help with reliable communications. In
music circles this next bit would be called a bridge—the melody changes,
maybe even enters a new key, but it gets you where you need to go.

cDataPacket

You’ve probably had all sorts of ideas on how to store the incoming data
packets. I’m going to describe my data packet format, which may be a little
puzzling at first. Trust me, by the end it will all make perfect sense.

// this file is eventually inherited everywhere else, so this seemed
// like a good place to define it.
#define MAX_UDPBUFFERSIZE 4096

class cDataPacket
{
public:
char d_data[MAX_UDPBUFFERSIZE];
unsigned short d_length,

d_timesSent;
DWORD d_id,

d_firstTime,
d_lastTime;

cDataPacket();
virtual ~cDataPacket();

void Init(DWORD time,
DWORD id,
unsigned short len,
const char * const pData);

cDataPacket &operator=(const cDataPacket &otherPacket);
};

As always, it follows the K.I.S.S. (keep it simple, stupid) principle. Init sets
d_firstTime and d_lastTime to time, d_id to id, and d_length to len, and
copies len bytes from pData into d_data. The = operator copies one packet
into another.

cQueueIn

cQueueIn stores all the data packets in a nice, neat, orderly manner. In fact
it keeps two lists—one for data packets that are in order and one for the

Chapter 7: UDP Networking � 261

rest (which are as ordered as can be, given that some may be missing from
the list).

class cQueueIn : public cMonitor
{
protected:
list<cDataPacket *> d_packetsOrdered;
list<cDataPacket *> d_packetsUnordered;
DWORD d_currentPacketID,

d_count; // number of packets added to this queue.

public:
cQueueIn();
virtual ~cQueueIn();

void Clear();
void AddPacket(DWORD packetID,

const char * const pData,
unsigned short len,
DWORD receiveTime);

cDataPacket *GetPacket();
bool UnorderedPacketIsQueued(DWORD packetID);
DWORD GetHighestID();
inline DWORD GetCurrentID(); // returns d_currentPacketID.
inline DWORD GetCount(); // returns d_count.

};

d_currentPacketID is equal to the highest ordered packet ID plus 1. Clear()
removes all packets from all lists. GetPacket() removes the first packet in
the d_packetsOrdered list (if any) and returns it. UnorderedPacketIs-
Queued() informs the caller if the packet is in the d_packetsUnordered list
and returns true if packetID < d_currentPacketID. GetHighestID() returns
the highest unordered packet ID plus 1 (or d_currentPacketID if d_packets-
Unordered is empty). In fact, the only tricky part in this whole class is
AddPacket().

void cQueueIn::AddPacket(DWORD packetID,
const char * const pData,
unsigned short len,
DWORD receiveTime)

{
if(pData == NULL ||

len == 0 ||
d_currentPacketID > packetID)

return;

// Create the packet.
cDataPacket *pPacket;

pPacket = new cDataPacket;
if(pPacket == NULL)
throw cError("cQueueIn::AddPacket() - insufficient memory.");

pPacket->Init(receiveTime, packetID, len, pData);

262 � Chapter 7: UDP Networking

// Add the packet to the queues.
cMonitor::MutexOn();

if(d_currentPacketID == pPacket->d_id)
{
// This packet is the next ordered packet. Add it to the ordered list
// and then move all unordered that can be moved to the ordered list.
d_packetsOrdered.push_back(pPacket);
d_currentPacketID++;
d_count++;

pPacket = *d_packetsUnordered.begin();
while(d_packetsUnordered.empty() == false &&

d_currentPacketID == pPacket->d_id)
{
d_packetsUnordered.pop_front();
d_packetsOrdered.push_back(pPacket);
d_currentPacketID++;
pPacket = *d_packetsUnordered.begin();

}
}
else // d_currentPacketID < pPacket->d_id
{
// Out of order. Sort into the list.
list<cDataPacket *>::iterator iPacket;
bool bExists;

bExists = false;

for(iPacket = d_packetsUnordered.begin();
iPacket != d_packetsUnordered.end(); ++iPacket)

{
// Already in list - get out now!
if((*iPacket)->d_id == pPacket->d_id)
{
bExists = true;
break;

}
if((*iPacket)->d_id > pPacket->d_id)
break;

}

if(bExists == true)
delete pPacket;

else
{
// We've gone 1 past the spot where pPacket belongs. Back up and insert.
d_packetsUnordered.insert(iPacket, pPacket);
d_count++;

}
}

cMonitor::MutexOff();
}

Chapter 7: UDP Networking � 263

Now I could stop right here, add an instance of cQueueIn to MTUDP, and
there would be almost everything needed for reliable communications, but
that’s not why I went off on this tangent. There is still no way of sending
data to another computer and also no way of telling who the data came
from.

cHost

Yes, this is another new class. Don’t worry, there’s only four more, but they
won’t be mentioned for quite some time. (I’m only telling you that to fill
you with anticipation and dread in the same way Stephen King would start
a chapter with “three weeks before the church steeple blew up” or Hitch-
cock would show you the ticking bomb hidden under a restaurant table.
It’s a spooky story and an education! More BANG! (aah!) for your buck.)
The cHost class doesn’t contain much yet, but it will be expanded later.

class cHost : public cMonitor
{
DWORD d_address;
unsigned short d_port;
cQueueIn d_inQueue;

public:
cHost();
virtual ~cHost();

unsigned short ProcessIncomingReliable(char * const pBuffer, unsigned
short len, DWORD receiveTime);

void SetPort(unsigned short port);
bool SetAddress(const char * const pAddress);
bool SetAddress(DWORD address);
DWORD GetAddress(); // returns d_address.
unsigned short GetPort(); // returns d_port.

cQueueIn &GetInQueue(); // returns d_inQueue.
};

There are only two big mysteries here: SetAddress() and ProcessIncoming-
Reliable().

bool cHost::SetAddress(const char * const pAddress)
{
if(pAddress == NULL)
return true;

IN_ADDR *pAddr;
HOSTENT *pHe;

pHe = gethostbyname(pAddress);
if(pHe == NULL)
return true;

pAddr = (in_addr *)pHe->h_addr_list[0];
d_address = ntohl(pAddr->s_addr);

264 � Chapter 7: UDP Networking

return false;
}

The other SetAddress assumes you’ve already done the work, so it just sets
d_address equal to address and returns.

As I said before, the cHost you’re working with is a really simple ver-
sion of the full cHost class. Even ProcessIncomingReliable(), which I’m
about to show, is a simple version of the full ProcessIncomingReliable().

unsigned short cHost::ProcessIncomingReliable(char * const pBuffer,
unsigned short maxLen,
DWORD receiveTime)

{
DWORD packetID;
char *readPtr;
unsigned short length;

readPtr = pBuffer;
memcpy(&packetID, readPtr, sizeof(DWORD));
readPtr += sizeof(DWORD);
memcpy(&length, readPtr, sizeof(unsigned short));
readPtr += sizeof(unsigned short);

// If this message is a packet, queue the data
// to be dealt with by the application later.
d_inQueue.AddPacket(packetID, (char *)readPtr, length, receiveTime);
readPtr += length;

// d_inQueue::d_count will be used here at a much much later date.

return readPtr - pBuffer;
}

This might seem like overkill, but it will make the program a lot more
robust and net-friendly in the near future.

Things are now going to start building on the layers that came
before. To start with, MTUDP is going to store a list<> containing all the
instances of cHost, so the definition of MTUDP has to be expanded.

// Used by classes that call MTUDP, rather than have MTUDP return a pointer.
typedef DWORD HOSTHANDLE;

class MTUDP : public cThread
{
private:
// purely internal shortcuts.
typedef map<HOSTHANDLE, cHost *> HOSTMAP;
typedef list<cHost *> HOSTLIST;

protected:
HOSTLIST d_hosts;
HOSTMAP d_hostMap;
HOSTHANDLE d_lastHandleID;

Chapter 7: UDP Networking � 265

public:
HOSTHANDLE HostCreate(const char * const pAddress,

unsigned short port);
HOSTHANDLE HostCreate(DWORD address, unsigned short port);
void HostDestroy(HOSTHANDLE hostID);
unsigned short HostGetPort(HOSTHANDLE hostID);
DWORD HostGetAddress(HOSTHANDLE hostID);

So what exactly did I do here? Well, MTUDP returns a unique HOST-
HANDLE for each host so that no one can do anything silly (like try to
delete a host). It also means that because MTUDP has to be called for
everything involving hosts, MTUDP can protect d_hostMap and d_hosts
with the cThread::cMonitor.

Now, it may surprise you to know that MTUDP creates hosts at times
other than when some outside class calls HostCreate(). In fact, this is a
perfect time to also show you just what’s going to happen to cHost::Queue-
In() by revisiting MTUDP::ProcessIncomingData().

void MTUDP::ProcessIncomingData(char * const pData, unsigned short length,
DWORD address, DWORD receiveTime)

{
// Find the host that sent this data.
cHost *pHost;
HOSTLIST::iterator iHost;

cMonitor::MutexOn();
// search d_hosts to find a host with the same address.
if(iHost == d_hosts.end())
{
// Host not found! Must be someone new sending data to this computer.
DWORD hostID;

hostID = HostCreate(address, d_foreignListenPort);
if(hostID == 0)
// turn mutex off and throw an error, the host creation failed.

pHost = d_hostMap[hostID];
}
else
pHost = *iHost;

assert(pHost != NULL);

// This next part will get more complicated later.
pHost->ProcessIncomingReliable(pData, length, receiveTime);

}

Of course, that means you now have a list of hosts. Each host might con-
tain some new data that arrived from the Internet, so you’re going to have
to tell the other thread about it somehow. That means you’re going to have
to make changes to MTUDP::GetReliableData().

unsigned short MTUDP::GetReliableData(char * const pBuffer,
unsigned short maxLen,
HOSTHANDLE * const pHostID)

266 � Chapter 7: UDP Networking

{
if(pBuffer == NULL ||

pHostID == NULL)
throw cError("MTUPD::GetReliableData() - Invalid parameters.");

if(maxLen == 0)
return 0;

cDataPacket *pPacket;
HOSTLIST::iterator iHost;

pPacket = NULL;

cMonitor::MutexOn();

// Is there any queued, ordered data?
for(iHost = d_hosts.begin(); iHost != d_hosts.end(); ++iHost)
{
pPacket = (*iHost)->GetInQueue().GetPacket();
if(pPacket != NULL)
break;

}

cMonitor::MutexOff();

unsigned short length;

length = 0;

if(pPacket != NULL)
{
length = pPacket->d_length > maxLen ? maxLen : pPacket->d_length;
memcpy(pBuffer, pPacket->d_data, length);

delete pPacket;

*pHostID = (*iHost)->GetAddress();
}

return length;
}

See how I deal with pPacket copying into pBuffer after I release the
mutex? This is an opportunity to reinforce a very important point: Hold on

to a mutex for as little time as possible. A perfect example: Before I had a
monitor class my network class had one mutex. Naturally, it was being
held by one thread or another for vast periods of time (20ms!), and it was
creating the same delay effect as when I was only using one thread. Boy,
was my face black and blue (mostly from hitting it against my desk in
frustration).

Chapter 7: UDP Networking � 267

MTUDP::ReliableSendTo()

Finally! Code first, explanation later.

void MTUDP::ReliableSendTo(const char * const pStr, unsigned short length,
HOSTHANDLE hostID)

{
if(d_bSending == false)
throw cError("MTUDP::ReliableSendTo() – Sending not initialized!");

cHost *pHost;

cMonitor::MutexOn();

pHost = d_hostMap[hostID];
if(pHost == NULL)
throw cError("MTUDP::ReliableSendTo() - Invalid parameters.");

char outBuffer[MAX_UDPBUFFERSIZE];
unsigned short count;
DWORD packetID;

count = 0;
memset(outBuffer, 0, MAX_UDPBUFFERSIZE);

// Attach the message data.
packetID = pHost->GetOutQueue().GetCurrentID();
if(pStr)
{
// Flag indicating this block is a message.
outBuffer[count] = MTUDPMSGTYPE_RELIABLE;
count++;

memcpy(&outBuffer[count], &packetID, sizeof(DWORD));
count += sizeof(DWORD);
memcpy(&outBuffer[count], &length, sizeof(unsigned short));
count += sizeof(unsigned short);
memcpy(&outBuffer[count], pStr, length);
count += length;

}

// Attach the previous message, just to ensure that it gets there.
cDataPacket secondPacket;

if(pHost->GetOutQueue().GetPreviousPacket(packetID, &secondPacket)
== true)

{
// Flag indicating this block is a message.
outBuffer[count] = MTUDPMSGTYPE_RELIABLE;
count++;

// Append the message
memcpy(&outBuffer[count], &secondPacket.d_id, sizeof(DWORD));
count += sizeof(DWORD);

268 � Chapter 7: UDP Networking

memcpy(&outBuffer[count],
&secondPacket.d_length,
sizeof(unsigned short));

count += sizeof(unsigned short);
memcpy(&outBuffer[count], secondPacket.d_data, secondPacket.d_length);
count += secondPacket.d_length;

}

#if defined(_DEBUG_DROPTEST) && _DEBUG_DROPTEST > 1
if(rand() % _DEBUG_DROPTEST != _DEBUG_DROPTEST - 1)
{

#endif
// Send
SOCKADDR_IN remoteAddr;
unsigned short result;

memset(&remoteAddr, 0, sizeof(SOCKADDR_IN));
remoteAddr.sin_family = AF_INET;
remoteAddr.sin_addr.s_addr = htonl(pHost->GetAddress());
remoteAddr.sin_port = htons(pHost->GetPort());

// Send the data.
result = sendto(d_sendSocket,

outBuffer,
count,
0,
(SOCKADDR *)&remoteAddr,
sizeof(SOCKADDR));

if(result < count)
// turn off the mutex and throw an error – could not send all data.

if(result == SOCKET_ERROR)
// turn off the mutex and throw an error – sendto() failed.

#if defined(_DEBUG_DROPTEST)
}

#endif

if(pStr)
pHost->GetOutQueue().AddPacket(pStr, length);

cMonitor::MutexOff();
}

Since I’ve covered most of this before, there are only four new and inter-
esting things.

The first is _DEBUG_DROPTEST. This function will cause a random
packet to not be sent, which is equivalent to playing on a really bad net-
work. If your game can still play on a LAN with a _DEBUG_DROPTEST as
high as four, then you have done a really good job, because that’s more
than you would ever see in a real game.

The second new thing is sendto(). I think any logically minded person
can look at the bind() code, look at the clearly named variables, and
understand how sendto() works.

Chapter 7: UDP Networking � 269

It may surprise you to see that the mutex is held for so long, directly
contradicting what I said earlier. As you can see, pHost is still being used
on the next-to-last line of the program, so the mutex has to be held in case
the other thread calls MTUDP::HostDestroy(). Of course, the only reason it
has to be held so long is because of HostDestroy().

The third new thing is MTUDPMSGTYPE_RELIABLE. I’ll get to that a
little later.

The last and most important new item is cHost::GetOutQueue(). Just
like its counterpart, GetOutQueue provides access to an instance of
cQueueOut, which is remarkably similar (but not identical) to cQueueIn.

class cQueueOut : public cMonitor
{
protected:
list<cDataPacket *> d_packets;
DWORD d_currentPacketID,

d_count; // number of packets added to this queue.

public:
cQueueOut();
virtual ~cQueueOut();

void Clear();
void AddPacket(const char * const pData, unsigned short len);
void RemovePacket(DWORD packetID);
bool GetPacketForResend(DWORD waitTime, cDataPacket *pPacket);
bool GetPreviousPacket(DWORD packetID, cDataPacket *pPacket);
cDataPacket *BorrowPacket(DWORD packetID);
void ReturnPacket();
DWORD GetLowestID();
bool IsEmpty();

inline DWORD GetCurrentID(); // returns d_currentPacketID.
inline DWORD GetCount(); // returns d_count.

};

There are several crucial differences between cQueueIn and cQueueOut:
d_currentPacketID is the ID of the last packet sent/added to the queue;
GetLowestID() returns the ID of the first packet in the list (which, inciden-
tally, would also be the packet that has been in the list the longest);
AddPacket() just adds a packet to the far end of the list and assigns it the
next d_currentPacketID; and RemovePacket() removes the packet with
d_id == packetID.

The four new functions are GetPacketForResend(), GetPrevious-
Packet(), BorrowPacket(), and ReturnPacket(), of which the first two
require a brief overview and the last two require a big warning.
GetPacketForResend() checks if there are any packets that were last sent
more than waitTime milliseconds ago. If there are, it copies that packet to
pPacket and updates the original packet’s d_lastTime. This way, if you
know the ping to some other computer, then you know how long to wait
before you can assume the packet was dropped. GetPreviousPacket() is far

270 � Chapter 7: UDP Networking

simpler; it returns the packet that was sent just before the packet with
d_id == packetID. This is used by ReliableSendTo() to “piggyback” an old
packet with a new one in the hopes that it will reduce the number of
resends caused by packet drops.

BorrowPacket() and ReturnPacket() are evil incarnate. I say this
because they really, really bend the unwritten mutex rule: Lock and
release a mutex in the same function. I know I should have gotten rid of
them, but when you see how they are used in the code (later), I hope
you’ll agree it was the most straightforward implementation. I put it to
you as a challenge to remove them. Nevermore shall I mention the
functions-that-cannot-be-named().

Now, about that MTUDPMSGTYPE_RELIABLE: The longer I think
about MTUDPMSGTYPE_RELIABLE, the more I think I should have given
an edited version of ReliableSendTo() and then gone back and introduced
it later. But then a little voice says, “Hey! That’s why they put ADVANCED
on the cover!” The point of MTUDPMSGTYPE_RELIABLE is that it is an
identifier that would be read by ProcessIncomingData(). When Process-
IncomingData() sees MTUDPMSGTYPE_RELIABLE, it would call
pHost->ProcessIncomingReliable(). The benefit of doing things this way is
that it means I can send other stuff in the same message and piggyback it
just like I did with the old messages and GetPreviousPacket(). In fact, I
could send a message that had all kinds of data and no MTUDPMSG-
TYPE_RELIABLE (madness! utter madness!). Of course, in order to be able
to process these different message types I’d better make some improve-
ments, the first of which is to define all the different types.

enum eMTUDPMsgType
{
MTUDPMSGTYPE_ACKS = 0,
MTUDPMSGTYPE_RELIABLE = 1,
MTUDPMSGTYPE_UNRELIABLE = 2,
MTUDPMSGTYPE_CLOCK = 3,
MTUDPMSGTYPE_NUMMESSAGES = 4,

};

I defined this enum in MTUDP.cpp because it’s a completely internal matter
that no other class should be messing with.

Although you’re not going to work with most of these types (just yet)
here’s a brief overview of what they’re for:

� MTUDPMSGTYPE_CLOCK is for a really cool clock I’m going to add

later. “I’m sorry, did you say cool?” Well, okay, it’s not cool in a Pulp

Fiction/Fight Club kind of cool, but it is pretty neat when you consider
that the clock will read almost exactly the same value on all clients and
the server. This is a critical feature of real-time games because it makes
sure that you can say “this thing happened at this time” and everyone
can correctly duplicate the effect.

Chapter 7: UDP Networking � 271

� MTUDPMSGTYPE_UNRELIABLE is an unreliable message. When a
computer sends an unreliable message it doesn’t expect any kind of
confirmation because it isn’t very concerned if the message doesn’t
reach the intended destination. A good example of this would be the
update messages in a game—if you’re sending 20 messages a second,
a packet drop here and a packet drop there is no reason to have a
nervous breakdown. That’s part of the reason we made _DEBUG-
_DROPTEST in the first place!

� MTUDPMSGTYPE_ACKS is vital to reliable message transmission. If my
computer sends a reliable message to your computer, I need to get a
message back saying “yes, I got that message!” If I don’t get that mes-
sage, then I have to resend it after a certain amount of time (hence
GetPacketForResend()).

Now, before I start implementing the stuff associated with eMTUDPMsg-
Type, let me go back and improve MTUDP::ProcessIncomingData().

assert(pHost != NULL);

// Process the header for this packet.
bool bMessageArrived;
unsigned char code;
char *ptr;

bMessageArrived = false;
ptr = pData;

while(ptr < pData + length)
{
code = *ptr;
ptr++;

switch(code)
{
case MTUDPMSGTYPE_ACKS:
// Process any ACKs in the packet.
ptr += pHost->ProcessIncomingACKs(ptr,

pData + length - ptr,
receiveTime);

break;
case MTUDPMSGTYPE_RELIABLE:
bMessageArrived = true;
// Process reliable message in the packet.
ptr += pHost->ProcessIncomingReliable(ptr,

pData + length - ptr,
receiveTime);

break;
case MTUDPMSGTYPE_UNRELIABLE:
// Process UNreliable message in the packet.
ptr += pHost->ProcessIncomingUnreliable(ptr,

pData + length - ptr,
receiveTime);

272 � Chapter 7: UDP Networking

break;
case MTUDPMSGTYPE_CLOCK:
ptr += ProcessIncomingClockData(ptr,

pData + length - ptr,
pHost,
receiveTime);

break;
default:
// turn mutex off, throw an error. something VERY BAD has happened,
// probably a write to bad memory (such as to an uninitialized
// pointer).
break;

}
}

cMonitor::MutexOff();

if(bMessageArrived == true)
{
// Send an ACK immediately. If this machine is the
// server, also send a timestamp of the server clock.
ReliableSendTo(NULL, 0, pHost->GetAddress());

}
}

So ProcessIncomingData() reads in the message type then sends the
remaining data off to be processed. It repeats this until there’s no data left
to be processed. At the end, if a new message arrived, it calls Reliable-
SendTo() again. Why? Because I’m going to make more improvements
to it!

// some code we've seen before
memset(outBuffer, 0, MAX_UDPBUFFERSIZE);

// Attach the ACKs.
if(pHost->GetInQueue().GetCount() != 0)
{
// Flag indicating this block is a set of ACKs.
outBuffer[count] = MTUDPMSGTYPE_ACKS;
count++;

count += pHost->AddACKMessage(&outBuffer[count], MAX_UDPBUFFERSIZE);
}

count += AddClockData(&outBuffer[count],
MAX_UDPBUFFERSIZE - count,
pHost);

// some code we've seen before.

So now it is sending clock data, ACK messages, and as many as two reli-
able packets in every message sent out. Unfortunately, there are now a
number of outstanding issues:

Chapter 7: UDP Networking � 273

� ProcessIncomingUnreliable() is all well and good, but how do you send
unreliable data?

� How do cHost::AddACKMessage() and cHost::ProcessingIncoming-
ACKs() work?

� Ok, so I ACK the messages. But you said I should only resend packets if
I haven’t received an ACK within a few milliseconds of the ping to that
computer. So how do I calculate ping?

� How do AddClockData() and ProcessIncomingClockData() work?

Unfortunately, most of those questions have answers that overlap, so I
apologize in advance if things get a little confusing.

Remember how I said there were four more classes to be defined? The
class cQueueOut was one and here come two more.

cUnreliableQueueIn

class cUnreliableQueueIn : public cMonitor
{
list<cDataPacket *> d_packets;
DWORD d_currentPacketID;

public:
cUnreliableQueueIn();
virtual ~cUnreliableQueueIn();

void Clear();
void AddPacket(DWORD packetID,

const char * const pData,
unsigned short len,
DWORD receiveTime);

cDataPacket *GetPacket();
};

cUnreliableQueueOut

class cUnreliableQueueOut : public cMonitor
{
list<cDataPacket *> d_packets;
DWORD d_currentPacketID;
unsigned char d_maxPackets,

d_numPackets;

public:
cUnreliableQueueOut();
virtual ~cUnreliableQueueOut();

void Clear();
void AddPacket(const char * const pData, unsigned short len);
bool GetPreviousPacket(DWORD packetID, cDataPacket *pPacket);
void SetMaxPackets(unsigned char maxPackets);

inline DWORD GetCurrentID(); // returns d_currentPacketID.
};

274 � Chapter 7: UDP Networking

They certainly share a lot of traits with their reliable counterparts. The two
differences are that I don’t want to hang on to a huge number of outgoing
packets, and I only have to sort incoming packets into one list. In fact, my
unreliable packet sorting is really lazy—if the packets don’t arrive in the
right order, the packet with the lower ID gets deleted. As you can see,
cQueueOut has a function called SetMaxPackets() so you can control how
many packets are queued. Frankly, you’d only ever set it to 0, 1, or 2.

Now that that’s been explained, let’s look at MTUDP::Unreliable-
SendTo(). UnreliableSendTo() is almost identical to ReliableSendTo(). The
only two differences are that unreliable queues are used instead of the reli-
able ones and the previous packet (if any) is put into the outBuffer first,
followed by the new packet. This is done so that if packet N is dropped,
when packet N arrives with packet N+1, my lazy packet queuing won’t
destroy packet N.

cHost::AddACKMessage()/cHost::ProcessIncomingACKs()

Aside from these two functions, there’s a few other things that have to be
added to cHost with regard to ACKs.

#define ACK_MAXPERMSG 256
#define ACK_BUFFERLENGTH 48

class cHost : public cMonitor
{
protected:
// A buffer of the latest ACK message for this host
char d_ackBuffer[ACK_BUFFERLENGTH];

unsigned short d_ackLength; // amount of the buffer actually used.

void ACKPacket(DWORD packetID, DWORD receiveTime);

public:
unsigned short ProcessIncomingACKs(char * const pBuffer,

unsigned short len,
DWORD receiveTime);

unsigned short AddACKMessage(char * const pBuffer, unsigned short
maxLen);

}

The idea here is that I’ll probably be sending more ACKs than receiving
packets, so it only makes sense to save time by generating the ACK mes-
sage when required and then using a cut and paste. In fact, that’s what
AddACKMessage() does—it copies d_ackLength bytes of d_ackBuffer into
pBuffer. The actual ACK message is generated at the end of cHost::Process-
IncomingReliable(). Now you’ll finally learn what cQueueIn::d_count,
cQueueIn::GetHighestID(), cQueueIn::GetCurrentID(), and cQueueIn::
UnorderedPacketIsQueued() are for.

Chapter 7: UDP Networking � 275

// some code we've seen before.
d_inQueue.AddPacket(packetID, (char *)readPtr, length, receiveTime);
readPtr += length;

// Should we build an ACK message?
if(d_inQueue.GetCount() == 0)
return (readPtr - pBuffer);

// Build the new ACK message.
DWORD lowest, highest, ackID;
unsigned char mask, *ptr;

lowest = d_inQueue.GetCurrentID();
highest = d_inQueue.GetHighestID();

// Cap the highest so as not to overflow the ACK buffer
// (or spend too much time building ACK messages).
if(highest > lowest + ACK_MAXPERMSG)
highest = lowest + ACK_MAXPERMSG;

ptr = (unsigned char *)d_ackBuffer;
// Send the base packet ID, which is the
// ID of the last ordered packet received.
memcpy(ptr, &lowest, sizeof(DWORD));
ptr += sizeof(DWORD);
// Add the number of additional ACKs.
*ptr = highest - lowest;
ptr++;

ackID = lowest;
mask = 0x80;

while(ackID < highest)
{
if(mask == 0)
{
mask = 0x80;
ptr++;

}

// Is there a packet with id 'i' ?
if(d_inQueue.UnorderedPacketIsQueued(ackID) == true)
*ptr |= mask; // There is

else
*ptr &= ~mask; // There isn't

mask >>= 1;
ackID++;

}

// Record the amount of the ackBuffer used.
d_ackLength = (ptr - (unsigned char *)d_ackBuffer) + (mask != 0);

// return the number of bytes read from

276 � Chapter 7: UDP Networking

return readPtr - pBuffer;
}

For those of you who don’t dream in binary (wimps), here’s how it works.
First of all, you know the number of reliable packets that have arrived in
the correct order. So telling the other computer about all the packets that
have arrived since last time that are below that number is just a waste of
bandwidth. For the rest of the packets, I could have sent the IDs of every
packet that has been received (or not received), but think about it: Each ID
requires 4 bytes, so storing, say, 64 IDs would take 256 bytes! Fortunately, I
can show you a handy trick:

// pretend ackBuffer is actually 48 * 8 BITS long instead of 48 BYTES.
for(j = 0; j < highest - lowest; j++)
{
if(d_inQueue.UnorderedPacketIsQueued(j + lowest) == true)
ackBuffer[j] == 1;

else
ackBuffer[j] == 0;

}

Even if you used a whole character to store a 1 or a 0 you’d still be using
one-fourth the amount of space. As it is, you could store those original 64
IDs in 8 bytes, eight times less than originally planned.

The next important step is cHost::ProcessIncomingACKs(). I think you
get the idea—read in the first DWORD and ACK every packet with a lower
ID that’s still in d_queueOut. Then go one bit at a time through the rest of
the ACKs (if any) and if a bit is 1, ACK the corresponding packet. So I
guess the only thing left to show is how to calculate the ping using the
ACK information.

void cHost::ACKPacket(DWORD packetID, DWORD receiveTime)
{
cDataPacket *pPacket;

pPacket = d_outQueue.BorrowPacket(packetID);
if(pPacket == NULL)
return; // the mutex was not locked.

DWORD time;

time = receiveTime - pPacket->d_firstTime;
d_outQueue.ReturnPacket();

unsigned int i;

if(pPacket->d_timesSent == 1)
{
for(i = 0; i < PING_RECORDLENGTH - 1; i++)
d_pingLink[i] = d_pingLink[i + 1];

d_pingLink[i] = time;
}
for(i = 0; i < PING_RECORDLENGTH - 1; i++)

Chapter 7: UDP Networking � 277

d_pingTrans[i] = d_pingTrans[i + 1];
d_pingTrans[i] = time;

d_outQueue.RemovePacket(packetID);
}

In classic Hollywood style, I’ve finally finished one thing just as I open the
door and introduce something else. If you take a good look at cHost::ACK-
Packet() you’ll notice the only line that actually does anything to ACK the
packet is the last one! Everything else helps with the next outstanding
issue: ping calculation.

There are two kinds of ping: link ping and transmission latency ping.
Link ping is the shortest possible time it takes a message to go from one
computer and back, the kind of ping you would get from using a ping util-
ity (open a DOS box, type “ping [some address]” and see for yourself).
Transmission latency ping is the time it takes two programs to respond to
each other. In this case, it’s the average time that it takes a reliably sent
packet to be ACKed, including all the attempts to resend it.

In order to calculate ping for each cHost, the following has to be
added:

#define PING_RECORDLENGTH 64
#define PING_DEFAULTVALLINK 150
#define PING_DEFAULTVALTRANS 200

class cHost : public cMonitor
{
protected:
// Ping records
DWORD d_pingLink[PING_RECORDLENGTH],

d_pingTrans[PING_RECORDLENGTH];

public:
float GetAverageLinkPing(float percent);
float GetAverageTransPing(float percent);

}

As packets come in and are ACKed their round trip time is calculated and
stored in the appropriate ping record (as previously described). Of course,
the two ping records need to be initialized and that’s what PING_DE-
FAULTVALLINK and PING_DEFAULTVALTRANS are for. This is done only
once, when cHost is created. Picking good initial values is important for
those first few seconds before a lot of messages have been transmitted
back and forth. Too high or too low and GetAverage…Ping() will be
wrong, which could temporarily mess things up.

Since both average ping calculators are the same (only using different
lists), I’ll only show the first, GetAverageLinkPing(). Remember how in the
cThread class I showed you a little cheat with cThreadProc()? I’m going to
do something like that again.

// This is defined at the start of cHost.cpp for qsort.
static int sSortPing(const void *arg1, const void *arg2)

278 � Chapter 7: UDP Networking

{
if(*(DWORD *)arg1 < *(DWORD *)arg2)
return -1;

if(*(DWORD *)arg1 > *(DWORD *)arg2)
return 1;

return 0;
}

float cHost::GetAverageLinkPing(float bestPercentage)
{
if(bestPercentage <= 0.0f ||

bestPercentage > 100.0f)
bestPercentage = 100.0f;

DWORD pings[PING_RECORDLENGTH];
float sum, worstFloat;
int worst, i;

// Recalculate the ping list
memcpy(pings, &d_pingLink, PING_RECORDLENGTH * sizeof(DWORD));
qsort(pings, PING_RECORDLENGTH, sizeof(DWORD), sSortPing);

// Average the first bestPercentage / 100.
worstFloat = (float)PING_RECORDLENGTH * bestPercentage / 100.0f;
worst = (int)worstFloat + ((worstFloat - (int)worstFloat) != 0);
sum = 0.0f;
for(i = 0; i < worst; i++)
sum += pings[i];

return sum / (float)worst;
}

The beauty of this seemingly overcomplicated system is that you can get
an average of the best n percent of the pings. Want an average ping that
ignores the three or four worst cases? Get the best 80%. Want super accu-
rate best times? Get 30% or less. In fact, those super accurate link ping
times will be vital when I answer the fourth question: How do AddClock-
Data() and ProcessIncomingClockData() work?

cNetClock

There’s only one class left to define and here it is.

class cNetClock : public cMonitor
{
protected:
struct cTimePair
{
public:
DWORD d_actual, // The actual time as reported by GetTickCount()

d_clock; // The clock time as determined by the server.
};

cTimePair d_start, // The first time set by the server.

Chapter 7: UDP Networking � 279

d_lastUpdate; // the last updated time set by the server.
bool d_bInitialized; // first time has been received.

public:
cNetClock();
virtual ~cNetClock();

void Init();
void Synchronize(DWORD serverTime,

DWORD packetSendTime,
DWORD packetACKTime,
float ping);

DWORD GetTime() const;
DWORD TranslateTime(DWORD time) const;

};

The class cTimePair consists of two values: d_actual (which is the time
returned by the local clock) and d_clock (which is the estimated server
clock time). The value d_start is the clock value the first time it is calcu-
lated and d_lastUpdate is the most recent clock value. Why keep both?
Although I haven’t written it here in the book, I was running an experi-
ment to see if you could determine the rate at which the local clock and
the server clock would drift apart and then compensate for that drift.

Anyhow, about the other methods. GetTime() returns the current
server clock time. TranslateTime will take a local time value and convert it
to server clock time. Init() will set up the initial values and that just leaves
Synchronize().

void cNetClock::Synchronize(DWORD serverTime,
DWORD packetSendTime,
DWORD packetACKTime,
float ping)

{
cMonitor::MutexOn();

DWORD dt;

dt = packetACKTime - packetSendTime;

if(dt > 10000)
// this synch attempt is too old. release mutex and return now.

if(d_bInitialized == true)
{
// if the packet ACK time was too long OR the clock is close enough
// then do not update the clock.
if(abs(serverTime + (dt / 2) - GetTime()) <= 5)
// the clock is already very synched. release mutex and return now.

d_lastUpdate.d_actual = packetACKTime;
d_lastUpdate.d_clock = serverTime + (DWORD)(ping / 2);
d_ratio = (double)(d_lastUpdate.d_clock - d_start.d_clock) /

(double)(d_lastUpdate.d_actual - d_start.d_actual);
}

280 � Chapter 7: UDP Networking

else // d_bInitialized == false
{
d_lastUpdate.d_actual = packetACKTime;
d_lastUpdate.d_clock = serverTime + (dt / 2);
d_start.d_actual = d_lastUpdate.d_actual;
d_start.d_clock = d_lastUpdate.d_clock;
d_bInitialized = true;

}

cMonitor::MutexOff();
}

As you can see, Synchronize() requires three values: serverTime,
packetSendTime, and packetACKTime. Two of the values seem to make
good sense—the time a packet was sent out and the time that packet was
ACKed. But how does serverTime fit into the picture? For that I have to
add more code to MTUDP.

class MTUDP : public cThread
{
protected:
bool d_bIsServerOn,

d_bIsClientOn;
cNetClock d_clock;

unsigned short AddClockData(char * const pData,
unsigned short maxLen,
cHost * const pHost);

unsigned short ProcessIncomingClockData(char * const pData,
unsigned short len,
cHost * const pHost,
DWORD receiveTime);

public:
void StartServer();
void StopServer();
void StartClient();
void StopClient();

// GetClock returns d_clock and returns a const ptr so
// that no one can call Synchronize and screw things up.
inline const cNetClock &GetClock();

}

All the client/server stuff you see here is required for the clock and only
for the clock. In essence, what it does is tell MTUDP who is in charge and
has the final say about what the clock should read. When a client calls
AddClockData() it sends the current time local to that client, not the server
time according to the client. When the server receives a clock time from a
client it stores that time in cHost. When a message is going to be sent back
to the client, the server sends the last clock time it got from the client and
the current server time. When the client gets a clock update from the
server it now has three values: the time the message was originally sent
(packetSendTime), the server time when a response was given

Chapter 7: UDP Networking � 281

(serverTime), and the current local time (packetACKTime). Based on
these three values the current server time should be approximately
cNetClock::d_lastUpdate.d_clock = serverTime + (packetACKTime –
packetSendTime) / 2.

Of course, you’d only do this if the total round trip was extremely close
to the actual ping time because it’s the only way to minimize the difference
between client net clock time and server net clock time.

As I said, the last client time has to be stored in cHost. That means one
final addition to cHost.

class cHost : public cMonitor
{
protected:
// For clock synchronization
DWORD d_lastClockTime;
bool d_bClockTimeSet;

public:
DWORD GetLastClockTime(); // self-explanatory.
void SetLastClockTime(DWORD time); // self-explanatory.

inline bool WasClockTimeSet(); // returns d_bClockTimeSet.
}

And that appears to be that. In just about 35 pages I’ve shown you how to
set up all the harder parts of network game programming. In the next sec-
tion I’ll show you how to use the MTUDP class to achieve first-rate,
super-smooth game play.

Implementation 2: Smooth Network PlayImplementation 2: Smooth Network Play

Fortunately, this section is a lot shorter. Unfortunately, this section has no
code because the solution for any one game probably wouldn’t work for
another game.

Geographic and Temporal Independence

Although in this book I am going to write a real-time, networked game, it
is important to note the other types of network games and how they affect
the inner workings. The major differences can be categorized in two ways:
the time separation and the player separation, more formally referred to as
geographic independence and temporal independence.

Geographic independence means separation between players. A best-
case example would be a two-player Tetris game where the players’ game
boards are displayed side by side. There doesn’t have to be a lot of accu-
racy because the two will never interact. A worst-case example would be a
crowded room in Quake—everybody’s shooting, everybody’s moving, and
it’s very hard to keep everybody nicely synched. This is why in a heavy
firefight the latency climbs; the server has to send out a lot more informa-
tion to a lot more people.

282 � Chapter 7: UDP Networking

Temporal independence is the separation between events. A best-case
example would be a turn-based game such as chess. I can’t move a piece
until you’ve moved a piece and I can take as long as I want to think about
the next move, so there’s plenty of time to make sure that each player sees
exactly the same thing. Again, the worst-case scenario is Quake—every-
body’s moving as fast as they can, and if you don’t keep up then you lag
and die.

It’s important when designing your game to take the types of inde-
pendence into consideration because it can greatly alter the way you code
the inner workings. In a chess game I would only use MTUDP::Reliable-
SendTo(), because every move has to be told to the other player and it
doesn’t matter how long it takes until he gets the packet; he’ll believe I’m
still thinking about my move. In a Tetris game I might use Reliable-
SendTo() to tell the other player what new piece has appeared at the top
of the wall, where the pieces land, and other important messages like “the
other player has lost.” The in-between part while the player is twisting and
turning isn’t really all that important, so maybe I would send that informa-
tion using MTUDP::UnreliableSendTo(). That way they look like they’re
doing something and I can still guarantee that the final version of each
player’s wall is correctly imitated on the other player’s computer.

Real-time games, however, are a far more complicated story. The login
and logout are, of course, sent with Reliable…(). But so are any name,
model, team, color, shoe size, decal changes, votes, chat messages—the list
goes on and on. In a game, however, updates about the player’s position
are sent 20 times a second and they are sent unreliably. Why? At 20 times
a second a player can do a lot of fancy dancin’ and it will be (reasonably)
duplicated on the other computers. But because there are so many updates
being sent, you don’t really care if one or two get lost—it’s no reason to
throw yourself off a bridge. If, however, you were sending all the updates
with Reliable…(), the slightest hiccup in the network would start a chain
reaction of backlogged reliable messages that would very quickly ruin the
game.

While all these updates are being sent unreliably, important events like
shooting a rocket, colliding with another player, opening a door, or a
player death are all sent reliably. The reason for this is because a rocket
blast could kill somebody, and if you don’t get the message, you would still
see them standing there. Another possibility is that you don’t know the
rocket was fired, so you’d be walking along and suddenly (“argh!”) you’d
die for no reason.

Timing Is Everything

The next challenge you’ll face is a simple problem with a complicated solu-
tion. The client and the server are sending messages to each other at
roughly 50 millisecond intervals. Unfortunately, tests will show that over
most connections the receiver will get a “burst” of packets followed by a
period of silence followed by another burst. This means you definitely

Chapter 7: UDP Networking � 283

cannot assume that packets arrive exactly 50ms apart—you can’t even
begin to assume when they were first sent. (If you were trying, cut it out!)

The solution comes from our synchronized network clock.

cGame::SendUpdate()
{
if(time to send another update)
{
update.SetTime(d_MTUDPInstance.GetClock().GetTime());
update.SetPlayerData(pPlayer->ID(), pPlayer->Pos(), pPlayer->Vel());
d_MTUDPInstance.UnreliableSendTo(update.Buffer(),

update.BufferLength(),
someHostID);

}
}

cGame::ProcessIncomingUpdate(anUpdate)
{
currentTime = d_MTUDPInstance.GetClock().GetTime();
eventTime = anUpdate.GetTime();

updatePos = anUpdate.GetPos();
updateVel = anUpdate.GetVelocity();

newPos = updatePos + updateVel * (currentTime – eventTime);
pPlayer[playerID].SetPos(newPos);

}

The above case would only work if people moved in a straight line. Since
most games don’t, you also have to take into account their turning speed,
physics, whether they are jumping, etc.

In case it wasn’t clear yet, let me make it perfectly crystal: Latency is

public enemy #1. Of course, getting players to appear isn’t the only
problem.

Pick and Choose

Reducing the amount of data is another important aspect of network pro-
gramming. The question to keep in mind when determining what to send
is: “What is the bare minimum I have to send to keep the other com-
puter(s) up to date?” For example, in a game like Quake there are a lot of
ambient noises. Water flowing, lava burbling, moaning voices, wind, and
so on. Not one of these effects is an instruction from the server. Why?
Because none of these sounds are critical to keeping the game going. In
fact, none of the sounds are. Not that it makes any difference because you
can get all your “play this sound” type messages for free.

Every time a sound is played, it’s because something happened. When
something happens, it has to be duplicated on every computer. This means
that every sound event is implicit in some other kind of event. If your com-
puter gets a message saying “a door opened,” then your machine knows it
has to open the door and play the door open sound.

284 � Chapter 7: UDP Networking

Another good question to keep in mind is “how can I send the same
information with less data?” A perfect example is the ACK system. Remem-
ber how I used 1 bit per packet and ended up using one-eighth the amount
of data? Then consider what happens if, instead of saying “player x is turn-
ing left and moving forward” you use 1-bit flags. It only takes 2 bits to
indicate left, right, or no turning and the same goes for walking for-
ward/back or left/right. A few more 1-bit flags that mean things like “I am
shooting,” “I am reloading,” or “I am shaving my bikini zone,” and you’ve
got everything you need to duplicate the events of one computer on
another. Another good example of reducing data comes in the form of a
parametric movement. Take a rocket, for example. It flies in a nice straight
line, so you only have to send the message “a rocket has been fired from
position X with velocity Y at time Z” and the other computer can calculate
its trajectory from there.

Prediction and Extrapolation

Of course, it’s not just as simple as processing the messages as they arrive.
The game has to keep moving things around whether or not it’s getting
messages from the other computer(s) for as long as it can. That means that
everything in the game has to be predictable: All players of type Y carrying
gun X move at a speed Z. Without constants like that, the game on one
machine would quickly become different from that on other machines and
everything would get very annoying. But there’s more to it, and that
“more” is a latency related problem.

Note: This is one of the few places where things start to differ between the cli-
ent and server, so please bear with me.

The server isn’t just the final authority on the clock time, it’s also the final
authority on every single player movement or world event (such as doors
and elevators). That means it also has to shoulder a big burden. Imagine
that there’s a latency of 100 milliseconds between client and server. On the
server, a player gets hit with a rocket and dies. The server builds a message
and sends it to the client. From the time the server sends the message until
the client gets the message the two games are not synchronized. It may not
sound like much but it’s the culmination of all these little things that make
a great game terrible—or fantastic, if they’re solved. In this case, the server
could try predicting to see where everyone and everything will be n milli-
seconds from now and send messages that say things like “if this player
gets hit by that rocket he’ll die.” The client will get the message just in time
and no one will be the wiser. In order to predict where everyone will be n

milliseconds from now, the server must first extrapolate the players’ cur-
rent position based on the last update sent from the clients. In other
words, the server uses the last update from a client and moves the player
based on that information every frame. It then uses this new position to

Chapter 7: UDP Networking � 285

predict where the player is going to be and then it can tell clients “player X
will be at position Y at time Z.” In order to make the game run its smooth-
est for all clients the amount of time to predict ahead should be equal to
half the client’s transmission ping. Of course, this means recalculating the
predictions for every player, but it’s a small price to pay for super-smooth
game play.

The clients, on the other hand, should be getting the “player X will be
at position Y at time Z” just about the same moment the clock reaches time
Z. You would think that the client could just start extrapolating based on
that info, right? Wrong. Although both the clients and the server are show-
ing almost exactly the same thing, the clients have one small problem,
illustrated in this example: If a client shoots at a moving target, that target
will not be there by the time the message gets to the server. Woe! Suffer-
ance! What to do? Well, the answer is to predict where everything will be n

milliseconds from now. What is n? If you guessed half the transmission
ping, you guessed right.

You’re probably wondering why one is called prediction and the other
is extrapolation. When the server is extrapolating, it’s using old data to
find the current player positions. When a client is predicting, it’s using cur-
rent data to extrapolate future player positions.

Using cHost::GetAverageTransPing(50.0f) to get half the transmission
ping is not the answer. Using cHost::GetAverageTransPing(80.0f)/2 would
work a lot better. Why? By taking 80 percent of the transmission pings you
can ignore a few of the worst cases where a packet was dropped (maybe
even dropped twice!), and since ping is the round trip time you have to
divide it by two.

Although predicting helps to get the messages to the server on time, it
doesn’t help to solve the last problem—what happens if a prediction is
wrong? The players on screen would “teleport” to new locations without
crossing the intermediate distance. It could also mean that a client thinks
someone got hit by a rocket when in fact on the server he dodged at just
the last second.

The rocket-dodging problem is the easier problem to solve so I’ll tackle
it first. Because the server has the final say in everything, the client should
perform collision detection as it always would: Let the rocket blow up, spill
some blood pixels around the room, and then do nothing to the player
until it got a message from the server saying “player X has definitely been
hit and player X’s new health is Y.” Until that message is received, all the
animations performed around/with the player should be as non-interfering
and superficial as a sound effect. All of which raises an important point:
Both the client and the server perform collision detection, but it’s the
server that decides who lives and who dies.

As for the teleport issue, well, it’s a bit trickier. Let’s say you are watch-
ing somebody whose predicted position is (0,0) and they are running
(1,0). Suddenly your client gets an update that says the player’s new pre-
dicted position is (2,0) running (0,1). Instead of teleporting that player

286 � Chapter 7: UDP Networking

and suddenly turning him, why not interpolate the difference? By that I
mean the player would very (very) quickly move from (0,0) to somewhere
around (2,0.1) and make a fast turn to the left. Naturally, this can only be
done if the updates come within, say, 75 milliseconds of each other. Any-
thing more and you’d have to teleport the players or they might start
clipping through walls.

And last but not least, there are times when a real network can sud-
denly go nuts and lag for as much as 30 seconds. In cases where the last
message from a computer was more than two seconds ago, I would freeze
all motion and try to get the other machine talking again. If the computer
does eventually respond, the best solution for the server would be to send
a special update saying where everything is in the game right now and let
the client start predicting from scratch. If there’s still no response after 15
seconds I would disconnect that other computer from the game (or discon-
nect myself, if I’m a client).

Conclusion

In this chapter I’ve divulged almost everything I know about multi-
threading and network game programming. Well, except for my biggest
secrets! There’s only two things left to make note of.

First, if MTUDP::ProcessIncomingData() is screaming its head off
because there’s an invalid message type (i.e., the byte read does not equal
one of the eMTUDPMsgType), then it means that somewhere in the rest of
your program you are writing to funny memory such as writing beyond the
bounds of an array or trying to do something funny with an uninitialized
pointer.

Second, do not try to add network support to a game that has already
been written because it will drive you insane. Try it this way—when most
people start writing an engine, they begin with some graphics, then add
keyboard or mouse support because graphics are more important and
without graphics, the keyboard and mouse are useless. The network con-
trols a lot of things about how the graphics will appear, which means that
the network is more important than the graphics!

I am sure you will have endless fun with the network topics I have
discussed here as long as you incorporate them from the beginning!

Chapter 7: UDP Networking � 287

This page inten tion ally left blank

Chapter 8Chapter 8

I remember when I was but a lad and went through the rite of passage
of learning to ride a bicycle. It wasn’t pretty. At first, I was simply terri-
fied of getting near the thing. I figured my own two feet were good
enough. Personally, I felt the added speed and features of a bike weren’t
worth the learning curve. I would straddle my bicycle, only to have it
violently buck me over its shoulders like some vicious bull at a rodeo.
The balance I needed, the speed control, the turning-while-braking—it
was all almost too much. Every ten minutes, I would burst into my
house, looking for my mom so she could bandage up my newly skinned
knees. It took a while, but eventually the vicious spirit of the bike was
broken and I was able to ride around. Once I got used to it, I wondered
why it took me so long to get the hang of it. Once I got over the hump
of the learning curve, the rest was smooth sailing.

And with that, I delve into something quite similar to learning to
ride a bicycle. Something that initially is hard to grasp, something that
may scrape your knees a few times (maybe as deep as the arteries), but
something that is worth learning and, once you get used to it, pretty
painless: Direct3D programming.

Introduction to D3DIntroduction to D3D

There are two major interfaces that are all-important in Direct3D: the
Direct3D object and the Direct3D device. You came across both of these
peripherally in Chapter 2. The Direct3D object is communicated with
through the IDirect3D9 interface. It handles creation of the Direct3D
device, enumeration of devices and z-buffer formats, and eviction of
managed textures. You essentially create it during initialization, use it a
couple of times, then pretty much forget about it.

The Direct3D device, on the other hand, will become the center of
your 3D universe. Just about all of the work you do in Direct3D goes
through the device. Each card has several different kinds of pipelines
available. If the card supports accelerated rasterization, then it will have
a device that takes advantage of those capabilities. It also has devices

289

that completely render in software. I’ll discuss all of the different device
types in a moment.

Note: This is the first time I’ve had to really worry about the concept of
rasterization, so it makes sense to at least define the term. Rasterization is
the process of taking a graphics primitive (such as a triangle) and actually
rendering it pixel by pixel to the screen. It’s an extremely complex (and
interesting) facet of computer graphics programming; you’re missing out if
you’ve never tried to write your own texture mapper from scratch!

You’ll use the device for everything: setting textures, setting render states
(which control the state of the device), drawing triangles, setting up the
transformation matrices, etc. It is your mode of communication with the
hardware on the user’s machine. You’ll use it constantly. Learn the inter-
face, and love it.

Many of the concepts I talked about in Chapter 5 will come back in full
effect here. It’s no coincidence that the same types of lights I discussed are
the same ones Direct3D supports. In order to grasp the practical concepts
of Direct3D, I needed to first show you the essentials of 3D programming.
With that in your back pocket you can start exploring the concepts that
drive Direct3D programming.

The Direct3D9 ObjectThe Direct3D9 Object

The Direct3D object is the way you can talk to the 3D capabilities of the
video card, asking it what kinds of devices it supports (whether or not it
has hardware acceleration, etc.), or requesting interfaces to a particular
type of device.

To get a IDirect3D9 pointer, all you need to do is call Direct3D-
Create9(). I covered this back in Chapter 2.

The Direct3DDevice9 ObjectThe Direct3DDevice9 Object

All of the real work in Direct3D is pushed through the Direct3D device. In
earlier versions of Direct3D, the D3DDevice interface was actually imple-
mented by the same object that implemented IDirectDrawSurface. In
recent versions, it has become its own object. It transparently abstracts the
pipeline that is used to draw primitives on the screen.

If, for example, you have a card that has hardware support for
rasterization, the device object takes rasterization calls you make and
translates them into something the card can understand. When hardware
acceleration for a particular task does not exist, Direct3D 8.0 and above
only have software vertex emulation. It no longer emulates rasterization.
(Although, for several reasons, this isn’t feasible for some effects.)

290 � Chapter 8: Beginning Direct3D

This gives you a very powerful tool. You can write code once and have
it work on all machines, regardless of what kind of accelerated hardware
they have installed as long as it has support for hardware rasterization.
This is a far cry from the way games used to be written, with developers
pouring months of work into hand-optimized texture mapping routines
and geometry engines, and supporting each 3D accelerator individually.

Aside: If you’ve ever played the old game Forsaken, you know what the old way
was like—the game had a separate executable for each hardware accelera-
tor that was out at the time: almost a dozen .exe files!

It’s not as perfect as you would like, however. Direct3D’s software
rasterizer (which must be used when no hardware is available on a
machine) is designed to work as a general case for all types of applications.
As such it isn’t as fast as those hand-optimized texture mappers that are
designed for a specific case (like vertical or horizontal lines of constant-Z
that were prevalent in 2D games like Doom). However, with each passing
month more and more users have accelerators in their machines; it’s
almost impossible to buy a computer today without some sort of 3D accel-
erator in it. For the ability to run seamlessly on dozens of hardware
devices, some control must be relinquished. This is a difficult thing for
many programmers (myself included!) to do. Also, not all 3D cards out
there are guaranteed to support the entire feature set of Direct3D. You
must look at the capability bits of the 3D card to make sure what we want
to do can be done at all.

There is an even uglier problem. The drivers that interface to hard-
ware cards are exceedingly complex, and in the constant efforts of all card
manufacturers to get a one-up on benchmarks, stability and feature com-
pleteness are often pushed aside. As a result, the set of features that the
cap bits describe is often a superset of the actual ability features that the
card can handle. For example, most consumer level hardware out today
can draw multiple textures at the same time (a feature called multitex-

turing). They can also all generally do tri-linear MIP map interpolation.
However, many of them can’t do both things at the same time. You can
deal with this (and I’ll show you how in Chapter 10), but it is still a head-
ache. However, today these problems have really diminished with the
consolidation and progression of the 3D accelerator market. The main
manufacturers ATI, Matrox, and nVidia plus a few others pump millions of
dollars into their cards. Enough other problems have been solved so that
they can now focus on quality assurance instead of just performance.

Device Semantics

Most Direct3D applications create exactly one device and use it the entire
time the application runs. Some applications may try to create more than
one device, but this is only useful in fairly obscure cases (for example,

Chapter 8: Beginning Direct3D � 291

using a second device to render a pick buffer for use in something like a
level editor). Using multiple Direct3D devices under DirectX 9.0 can be a
performance hit (it wasn’t in previous versions), so in this chapter I’ll just
be using one.

Devices are conceptually connected to exactly one surface, where
primitives are rendered. This surface is generally called the frame buffer.
In most cases, the frame buffer is the back buffer in a page flipping
(full-screen) or blitting (windowed) application. This is a regular
LPDIRECT3DSURFACE9.

Device Types

The capabilities of people’s machines can be wide and varied. Some people
may not have any 3D hardware (although this is rare) at all but want to
play games anyway. Some may have hardware but not hardware that sup-
ports transformation and lighting, only 2D rasterization of triangles in
screen space. Others may have one of the newer types of cards that sup-
port transformation and lighting on the hardware. There is a final,
extremely small slice of the pie: developers or hardware engineers who
would like to know what their code would look like on an ideal piece of
hardware, while viewing it at an extremely reduced frame rate. Because of
this, Direct3D has built in several different types of devices to do
rendering.

Hardware

The HAL (or hardware abstraction layer) is a device-specific interface, pro-
vided by the device manufacturer, that Direct3D uses to work directly with
the display hardware. Applications never interact with the HAL. With the
infrastructure that the HAL provides, Direct3D exposes a consistent set of
interfaces and methods that an application uses to display graphics.

If there is not a hardware accelerator in a user’s machine, attempting
to create a HAL device will fail. If this happens, since there is no default
software device anymore, you must write your own pluggable software
device.

To try to create a HAL device, you call IDirect3D9::CreateDevice with
D3DDEVTYPE_HAL as the second parameter. This step will be discussed in
the “Direct3D Initialization” section later in this chapter.

Software

A software device is a pluggable software device that has been registered
with IDirect3D9::RegisterSoftwareDevice.

292 � Chapter 8: Beginning Direct3D

Ramp (and Other Legacy Devices)

Older books on D3D discuss other device types, specifically Ramp and
MMX. These two device types are not supported in Direct3D 9.0. If you
wish to access them, you must use a previous version of the Direct3D inter-
faces (5.0, for example). The MMX device was a different type of software
accelerator that was specifically optimized for MMX machines. MMX (and
Katmai/3DNow) support is now intrinsically supported in the software
device. The Ramp device was used for drawing 3D graphics in 256-color
displays. In this day and age of high-color and true-color displays,
256-color graphics are about as useful as a lead life jacket. The Ramp
device was dropped a few versions ago.

Determining Device Capabilities

Once you go through the process of creating the Direct3D device object,
you need to know what it can do. Since all hardware devices are different,
you can’t assume that it can do whatever you want. Direct3D has a struc-
ture called a Device Capabilities structure (D3DCAPS9). It is a very
comprehensive description of exactly what the card can and cannot do.
However, the features described in the device description may be a
superset of the actual features, as some features on some cards cannot be
used simultaneously (such as the multitexture/tri-linear example given
before). Note that I’m not covering every facet of the device for the sake of
brevity; refer to the SDK documentation for more information.

typedef struct _D3DCAPS9 {
D3DDEVTYPE DeviceType;
UINT AdapterOrdinal;
DWORD Caps;
DWORD Caps2;
DWORD Caps3;
DWORD PresentationIntervals;
DWORD CursorCaps;
DWORD DevCaps;
DWORD PrimitiveMiscCaps;
DWORD RasterCaps;
DWORD ZCmpCaps;
DWORD SrcBlendCaps;
DWORD DestBlendCaps;
DWORD AlphaCmpCaps;
DWORD ShadeCaps;
DWORD TextureCaps;
DWORD TextureFilterCaps;
DWORD CubeTextureFilterCaps;
DWORD VolumeTextureFilterCaps;
DWORD TextureAddressCaps;
DWORD VolumeTextureAddressCaps;
DWORD LineCaps;
DWORD MaxTextureWidth;
DWORD MaxTextureHeight;
DWORD MaxVolumeExtent;

Chapter 8: Beginning Direct3D � 293

DWORD MaxTextureRepeat;
DWORD MaxTextureAspectRatio;
DWORD MaxAnisotropy;
float MaxVertexW;
float GuardBandLeft;
float GuardBandTop;
float GuardBandRight;
float GuardBandBottom;
float ExtentsAdjust;
DWORD StencilCaps;
DWORD FVFCaps;
DWORD TextureOpCaps;
DWORD MaxTextureBlendStages;
DWORD MaxSimultaneousTextures;
DWORD VertexProcessingCaps;
DWORD MaxActiveLights;
DWORD MaxUserClipPlanes;
DWORD MaxVertexBlendMatrices;
DWORD MaxVertexBlendMatrixIndex;
float MaxPointSize;
DWORD MaxPrimitiveCount;
DWORD MaxVertexIndex;
DWORD MaxStreams;
DWORD MaxStreamStride;
DWORD VertexShaderVersion;
DWORD MaxVertexShaderConst;
DWORD PixelShaderVersion;
float PixelShader1xMaxValue;
DWORD DevCaps2;
float MaxNpatchTesselationLevel;
float MinAntialiasedLineWidth;
float MaxAntialiasedLineWidth;
UINT MasterAdapterOrdinal;
UINT AdapterOrdinalInGroup;
UINT NumberOfAdaptersInGroup;
DWORD DeclTypes;
DWORD NumSimultaneousRTs;
DWORD StretchRectFilterCaps;
D3DVSHADERCAPS2_0 VS20Caps;
D3DPSHADERCAPS2_0 PS20Caps;
DWORD VertexTextureFilterCaps;

} D3DCAPS9;

Device Type A D3DDEVTYPE enumeration member identifying the type of
device.

AdapterOrdinal A number identifying which adapter is encapsulated by this device.

Caps Flags indicating the capabilities of the driver

Caps2 Flags indicating the capabilities of the driver

Caps3 Flags indicating the capabilities of the driver

PresentationIntervals Flags identifying which swap intervals the device supports

CursorCaps Flags identifying the available mouse cursor capabilities.

DevCaps Flags identifying device capabilities

294 � Chapter 8: Beginning Direct3D

PrimitiveMiscCaps General primitive capabilities

RasterCaps Raster drawing capabilities

ZCmpCaps Z-buffer comparison capabilities

SrcBlendCaps Source blending capabilities

DestBlendCaps Destination blending capabilities

AlphaCmpCaps Alpha comparison capabilities

ShadeCaps Shading capabilities

TextureCaps Texture mapping capabilities

TextureFilterCaps Texture filtering capabilities

CubeTextureFilterCaps Cubic texturing capabilities

VolumeTextureFilterCaps Volumetric texturing capabilities

TextureAddressCaps Texture addressing capabilities

VolumeTextureAddressCaps Volumetric texturing capabilities

LineCaps Line drawing capabilities

MaxTextureWidth and
MaxTextureHeight

The maximum width and height of textures that the device
supports

MaxVolumeExtent Maximum volume extent

MaxTextureRepeat Maximum texture repeats

MaxTextureAspectRatio Maximum texture aspect ratio; usually a power of 2

MaxAnisotrophy Maximum valid value for the D3DTSS_MAXANISOTROPHY
texture-stage state

MaxVertexW Maximum depth that the device supports for W buffers

GuardBandLeft,
GuardBandRight,
GuardBandTop, and
GuardBandBottom

Screen space coordinates of the guard band clipping region

ExtentsAdjust Number of pixels to adjust extents to compensate anti-aliasing
kernels

StencilCaps Stencil buffer capabilities

FVFCaps Flexible vertex format capabilities

TextureOpCaps Texture operations capabilities

MaxTextureBlendStages Maximum supported texture blend stages

MaxSimultaneousTextures Maximum number of textures that can be bound to the texture
blending stages

VertexProcessingCaps Vertex processing capabilities

MaxActiveLights Maximum number of active lights

MaxUserClipPlanes Maximum number of user-defined clipping planes

MaxVertexBlendMatrices Maximum number of matrices the device can use to blend vertices

MaxVertexBlendMatrixIndex The maximum matrix that can be indexed into using per-vertex
indices

MaxPointSize The maximum size for a point primitive; equals 1.0 if unsupported

MaxPrimitiveCount Maximum number of primitives for each draw primitive call

Chapter 8: Beginning Direct3D � 295

MaxVertexIndex Maximum size of indices for hardware vertex processing

MaxStreams Maximum number of concurrent streams for IDirect3D-
Device9::SetStreamSource()

MaxStreamStride Maximum stride for IDirect3DDevice9::SetStreamSource()

VertexShaderVersion The vertex shader version employed by the device

MaxVertexShaderConst Maximum number of vertex shader constants

PixelShaderVersion The pixel shader version employed by the device

PixelShader1xMaxValue Maximum value of the pixel shader’s arithmetic component

DevCaps2 Device driver capabilities for adaptive tessellation

MaxNpatchTesselationLevel The maximum number of N-patch subdivision levels allowed by
the card

MinAntialiasedLineWidth Minimum antialiased line width

MaxAntialiasedLineWidth Maximum antialiased line width

MasterAdapterOrdinal The adapter index to be used as the master

AdapterOrdinalInGroup Indicates the order of the heads in the group

NumberOfAdaptersInGroup The number of adapters in the group

DeclTypes A combination of one or more data types contained in a vertex
declaration

NumSimultaneousRTs The number of simultaneous render targets

StretchRectFilterCaps Combination of flags describing the operations supported by
IDirect3DDevice9::StretchRect()

_0 VS20Caps The device supports vertex shaders 2.0

_0 PS20Caps The device supports vertex shaders 2.0

VertexTextureFilterCaps Lets you know if the device supports the vertex shader texture
filter capability

That is just a cursory overview of the structure; a full explanation would be
truly massive. You won’t be using it much though, so don’t worry. However,
if you want the real deal, check out DirectX 9.0 Documentation/DirectX

Graphics/Direct3D C++ Reference/Structures/D3DCAPS9.

Setting Device Render States

The Direct3D device is a state machine. This means that when you change
the workings of the device by adding a texture stage, modifying the light-
ing, etc., you’re changing the state of the device. The changes you make
remain until you change them again, regardless of your current location in
the code. This can end up saving you a lot of work. If you want to draw an
alpha-blended object, you change the state of the device to handle drawing
it, draw the object, and then change the state to what you draw next. This
is much better than having to explicitly fiddle with drawing styles every
time you want to draw a triangle, both in code simplicity and code speed:
less instructions have to be sent to the card.

296 � Chapter 8: Beginning Direct3D

As an example, Direct3D can automatically back-face cull primitives
for us. There is a render state that defines how Direct3D culls primitives (it
can either cull clockwise triangles, counter-clockwise triangles, or neither).
When you change the render state to not cull anything, for example, every
primitive you draw until you change the state again is not back-face culled.

Depending on the hardware your application is running on, state
changes, especially a lot of them, can have adverse effects on system per-
formance. One of the most important optimization steps you can learn
about Direct3D is batching your primitives according to the type of state
they have. If n number of the triangles in your scene use a certain set of
render states, you should try to set the render states once, and then draw
all n of them together. This is improved from blindly iterating through the
list of primitives, setting the appropriate render states for each one.
Changing the texture is an especially important render state you should try
to avoid as much as possible. If multiple triangles in your scene are ren-
dered with the same texture, draw them all in a bunch, then switch
textures and order the next batch, and so on.

A while back a Microsoft intern friend of mine wrote a DLL wrapper to
reinterpret glide calls as Direct3D calls. He couldn’t understand why cards
that were about as capable as a Voodoo2 at the time couldn’t match the
frame rates of a Voodoo2 in games like the glide version of Unreal Tourna-

ment. After some experimentation, he found the answer: excessive state
changes. State changes on most cards are actually fairly expensive and
should be grouped together if at all possible (for example, instead of draw-
ing all of the polygons in your scene in arbitrary order, a smart application
should group them by the textures they use so the active texture doesn’t
need to be changed that often). On a 3DFX card, however, state changes
are practically free. The Unreal engine, when it drew its world, wasn’t
batching its state changes at all; in fact it was doing about eight state
changes per polygon!

Direct3D states are set using the SetRenderState function:

HRESULT IDirect3DDevice9::SetRenderState(
D3DRENDERSTATETYPE State,
DWORD Value

);

State A member of the D3DRENDERSTATETYPE enumeration describing the render
state you would like to set.

Value A DWORD that contains the desired state for the supplied render state.

and retrieved using the GetRenderState function:

HRESULT IDirect3DDevice9::GetRenderState(
D3DRENDERSTATETYPE State,
LPDWORD pValue

);

Chapter 8: Beginning Direct3D � 297

State A member of the D3DRENDERSTATETYPE enumeration describing the render
state to retrieve.

pValue A pointer to a DWORD that should be filled with the current state of the supplied
render state.

There is a long list of render states that allow you to modify the behavior
of the lighting engine, the z-buffering state, alpha blending states, and so
forth. See the SDK documentation for further information on particular
states.

Table 8.1: Direct3D render states

D3DRS_ZENABLE Depth buffering state defined with a member of the
D3DZBUFFERTYPE enumeration

D3DRS_FILLMODE The fill mode; specified with the D3DFILLMODE
enumeration

D3DRS_SHADEMODE The shade mode; specified with the D3DSHADEMODE
enumeration

D3DRS_LINEPATTERN A D3DLINEPATTERN structure specifying the line
pattern

D3DRS_ZWRITEENABLE TRUE if you want access to the depth buffer

D3DRS_ALPHATESTENABLE TRUE to enable alpha testing

D3DRS_LASTPIXEL FALSE to enable drawing the last pixel in a line or triangle

D3DRS_SRCBLEND A member of the D3DBLEND enumeration specifying the
source blend mode

D3DRS_DESTBLEND A member of the D3DBLEND enumeration specifying the
destination blend mode

D3DRS_CULLMODE A member of the D3DCULL enumeration specifying the
cull mode

D3DRS_ZFUNC A D3DCMPFUNC enumeration member identifying the
depth buffer comparison function

D3DRS_ALPHAREF A reference value to compare alpha values against

D3DRS_ALPHAFUNC A D3DCMPFUNC enumeration member identifying the
alpha comparison function

D3DRS_DITHERENABLE TRUE to enable dithering

D3DRS_ALPHABLENDENABLE TRUE to enable alpha blended transparency

D3DRS_FOGENABLE TRUE to enable fog

D3DRS_SPECULARENABLE TRUE to enable specular highlights

D3DRS_ZVISIBLE Not implemented

D3DRS_FOGCOLOR A D3DCOLOR specifying the fog color

D3DRS_FOGTABLEMODE A D3DFOGMODE enumeration identifying the fog type

D3DRS_FOGSTART The depth where fog effects start

D3DRS_FOGEND The depth where fog effects end

D3DRS_FOGDENSITY The fog density ranging from 0.0 through 1.0

298 � Chapter 8: Beginning Direct3D

D3DRS_EDGEANTIALIAS TRUE to antialias lines forming the convex outline of
objects

D3DRS_ZBIAS Value 0 to 16 that causes physically coplanar polygons to
appear separate

D3DRS_RANGEFOGENABLE TRUE to enable range-based fog

D3DRS_STENCILENABLE TRUE to enable stencil buffering

D3DRS_STENCILFAIL Stencil operation to execute if the stencil test fails

D3DRS_STENCILZFAIL Stencil operation to execute if the stencil test passes but
the z test fails

D3DRS_STENCILPASS Stencil operation to execute if the stencil test passes

D3DRS_STENCILFUNC The comparison function to use for stenciling

D3DRS_STENCILREF Integer reference for the stencil test

D3DRS_STENCILMASK Mask to apply to the reference value for stenciling

D3DRS_STENCILWRITEMASK Write mask to apply when stenciling

D3DRS_TEXTUREFACTOR Color used for multiple texture blending

D3DRS_WRAP0 to D3DRS_WRAP7 Texture wrapping behavior for multiple sets of texture
coordinates

D3DRS_CLIPPING TRUE to enable primitive clipping

D3DRS_LIGHTING TRUE to enable lighting

D3DRS_AMBIENT A D3DCOLOR specifying the ambient light color

D3DRS_FOGVERTEXMODE The fog formula to use for vertex fog

D3DRS_COLORVERTEX TRUE to enable per vertex coloring

D3DRS_LOCALVIEWER TRUE to enable camera-relative specular highlights

D3DRS_NORMALIZENORMALS TRUE to enable automatic normalization of vertex
normals

D3DRS_DIFFUSEMATERIALSOURCE Diffuse color source for lighting calculations

D3DRS_SPECULARMATERIALSOURCE Specular color source for lighting calculations

D3DRS_AMBIENTMATERIALSOURCE Ambient color source for light calculations

D3DRS_EMISSIVEMATERIALSOURCE Emissive color source for light calculations

D3DRS_VERTEXBLEND Number of vertices to use to perform vertex blending

D3DRS_CLIPENABLE Enables or disables user-defined clip planes

D3DRS_SOFTWAREVERTEXPROCESSING TRUE to use software vertex processing; see
documentation for details

D3DRS_POINTSIZE Float value indicating the size to use for point primitives

D3DRS_MULTISAMPLEANTIALIAS BOOL value controlling how samples are computed when
multisampling

D3DRS_MULTISAMPLEMASK The mask to use as an accumulation buffer when
multisampling

D3DRS_PATCHEDGESTYLE Sets whether to use float style tessellation. Specified with
a member of the D3DPATCHEDGESTYLE enumeration.

D3DRS_PATCHSEGMENTS Sets the number of segments when using patches

Chapter 8: Beginning Direct3D � 299

D3DRS_DEBUGMONITORTOKEN A member of the D3DDEBUGMONITORTOKENS
enumeration specifying a token for the debug monitor

D3DRS_INDEXEDVERTEXBLENDENABLE TRUE to enable vertex blending

D3DRS_COLORWRITEENABLE UINT value that can enable a per-channel write for the
render target color buffer.

D3DRS_TWEENFACTOR Float value that controls the tween factor

D3DRS_BLENDOP Sets the arithmetic operation to use when alpha blending
is enabled

Yes, it is big. And it is ugly; but don’t worry—it will all make perfect sense
soon.

Stencil buffer, z-buffer, and alpha blending can have a comparison
function set for them. The possible values for their states are members of
the D3DCMPFUNC enumeration:

Table 8.2: Values for the D3DCMPFUNC enumeration

D3DCMP_NEVER Always fails the test.

D3DCMP_LESS Passes if the tested pixel is less than the current pixel.

D3DCMP_EQUAL Passes if the tested pixel is equal to the current pixel.

D3DCMP_LESSEQUAL Passes if the tested pixel is less than or equal to the current pixel.

D3DCMP_GREATER Passes if the tested pixel is greater than the current pixel.

D3DCMP_NOTEQUAL Passes if the tested pixel is not equal to the current pixel.

D3DCMP_GREATEREQUAL Passes if the tested pixel is greater than or equal to the current pixel.

D3DCMP_ALWAYS Always passes the test.

Fundamental Direct3D StructuresFundamental Direct3D Structures

Direct3D has some basic structures to encapsulate vertices, vectors, colors,
and matrices. However, they aren’t quite as easy to use as the structures I
defined in Chapter 5 (at least I think so). Luckily, the structures I showed
you in Chapter 5 are compatible with the Direct3D ones, so you can use
simple static casts to convert them. For completeness, I’ll briefly discuss
these structures here.

D3DCOLOR

Most colors in Direct3D are represented with D3DCOLOR structures. They
are defined thusly:

typedef DWORD D3DCOLOR, D3DCOLOR, *LPD3DCOLOR;

They represent color the same way it is held in a 32-bit frame buffer—with
a DWORD (which itself is a typedef of unsigned long). The first (lowest
order) 8 bits represent blue, the second 8 bits represent green, the third 8
bits represent red, and the last (highest order) 8 bits represent alpha. Two
convenience macros are defined that let you convert floating-point color

300 � Chapter 8: Beginning Direct3D

values into DWORDs. The code to do this is already inside color3 and
color4 I created in Chapter 5.

There are two useful macros used to create DWORD colors using
Direct3D. They are:

Listing 8.1: D3DCOLOR conversion macros

// convert an r,g,b triple into a DWORD
D3DCOLOR_XRGB(r,g,b) \

((D3DCOLOR)(((&0xff)<<24)|(((r)&0xff)<<16)|(((g)&0xff)<<8)|((b)&0xff)))

// convert an r,g,b,a quad into a DWORD
D3DCOLOR_ARGB(a,r,g,b) \

((D3DCOLOR)((((a)&0xff)<<24)|(((r)&0xff)<<16)|(((g)&0xff)<<8)|((b)&0xff)))

There isn’t a structure in our library to represent this structure, but that’s
okay. All of the color manipulation in this book is just done in floating
point, and converted to DWORD with the conversion functions
color3::MakeDWord() and color4::MakeDWord() provided in the library.

D3DCOLORVALUE

When extra resolution for color information is needed, you can opt to use
floating points. Using floats to represent color also has the added advan-
tage that you can deal with saturation more elegantly. If DWORDs saturate
(that is, they go past the highest value for each color), they simply roll
over back to the lowest value. Floats can go above the highest value, but
you must remember to clamp them down to the valid color range before
attempting to use them, or the behavior can get weird.

D3D’s structure to handle floating-point color values is called D3D-
COLORVALUE. It is defined as:

Listing 8.2: The D3DCOLORVALUE structure

typedef struct _D3DCOLORVALUE {
union {

D3DVALUE r;
D3DVALUE dvR;

};
union {

D3DVALUE g;
D3DVALUE dvG;

};
union {

D3DVALUE b;
D3DVALUE dvB;

};
union {

D3DVALUE a;
D3DVALUE dvA;

};
} D3DCOLORVALUE;

Chapter 8: Beginning Direct3D � 301

This structure is equivalent to the color4 structure. The library has an
added method to automatically cast a color4 pointer to a D3DCOLOR-
VALUE pointer when the need arises. Color3s, when they want to look like
a D3DCOLORVALUE, can’t just mangle the pointer, as there is an extra
float on the end (for alpha) that is missing in that structure. You can, how-
ever, change the color3 into a color4 first, using an alpha of 1.0.

D3DVECTOR

The D3DVECTOR structure defines a point in 3D, just like our point3 struc-
ture. Again, the structures are equivalent, so a conversion between them is
painless.

Listing 8.3: The D3DVECTOR structure

typedef struct _D3DVECTOR {
union {

D3DVALUE x;
D3DVALUE dvX;

};
union {

D3DVALUE y;
D3DVALUE dvY;

};
union {

D3DVALUE z;
D3DVALUE dvZ;

};
} D3DVECTOR, *LPD3DVECTOR;

D3DMATRIX

The D3DMATRIX structure defines a 4x4 matrix. You may notice we used a
similar variable layout when I created the matrix4 structure. You can use a
C-style cast to convert a matrix4 pointer to a D3DMATRIX pointer, as they
are laid out in memory the same way.

Listing 8.4: The D3DMATRIX structure

typedef struct _D3DMATRIX {
D3DVALUE _11, _12, _13, _14;
D3DVALUE _21, _22, _23, _24;
D3DVALUE _31, _32, _33, _34;
D3DVALUE _41, _42, _43, _44;

} D3DMATRIX, *LPD3DMATRIX;

302 � Chapter 8: Beginning Direct3D

The Depth Problem (and How Direct3D Solves It)The Depth Problem (and How Direct3D Solves It)

Often in computer graphics, you run into the problem of determining
which pixels of each triangle are visible to the viewer. A drawing algorithm
typically acts in the same way as a painter. When you draw a triangle on
the screen, the device draws it right over everything else that’s there, like
painting one on a canvas. This presents an immediate problem: The image
can appear incorrect if you draw polygons out of order. Imagine what a
picture would look like if a painter placed birds and clouds on the canvas
first, then painted the blue sky on top of it, covering everything he had
already drawn! Figure 8.1 shows what I am talking about.

The old way to solve this problem, before there was readily available hard-
ware to solve the problem for you, was to implement the painter’s
algorithm. In it, you draw the world the same way a painter would: Draw
the farthest things first, the nearest things last. This way, your image ends
up being drawn correctly. If it doesn’t seem intuitive, just think of how
painters create paintings. First, they draw the farthest things away (sky,
mountains, whatnot). As the paint dries they paint on top of what they had
previously, adding elements in the foreground.

There are a few problems with this algorithm. First of all, it doesn’t
always work. You have to sort your polygons based on depth, but unless
the polygons are parallel with the view plane, how do you determine the
depth of the entire polygon? You could use the nearest vertex, the farthest,
or the average of all the vertices, but these all have cases that won’t work.
There are some other cases, like triangles that intersect each other, that
cannot possibly be drawn correctly with the painter’s algorithm. Some tri-
angle configurations are also unrenderable using the painter’s algorithm
(see Figure 8.2). Finally, you need to actually have an ordered list of

Chapter 8: Beginning Direct3D � 303

Figure 8.1:
The depth
problem

polygons to draw. That involves a lot of sorting, which can become prohibi-
tive as the triangle count increases. Most naïve sorting algorithms are
O(n2), and while the fastest ones approach O(n lg n), this still will kill you
if you have thousands of triangles visible on the screen at once.

Isn’t there a better way to handle finding the nearest triangle at each
pixel? As usual in computer science, there’s an extremely simple but ineffi-
cient brute force way to attack the problem. The brute force way ends up
being the one that most cards use. Some cards, like the prehistoric NEC
Power VR and PowerVR2, do not, but they are old cards. Pretty much
every other card on the market these days do. The method is called
z-buffering.

The z-buffer is a second image buffer you keep in addition to the
frame buffer. The z-buffer holds a single number that represents the dis-
tance at every pixel (measured with the z component, since you’re looking
down the z-axis with the coordinate system). Each pixel in the z-buffer
holds a z-value of the closest pixel drawn up to that point. Note that you
don’t use the Pythagorean distance in the z-buffer, just the raw z-value of
the pixels.

Before drawing, you initialize the buffer to an extremely far away
value. When you draw a triangle, you iterate not only color information,
but also the depth (distance, along the z-axis from the camera) of the cur-
rent pixel you want to draw. When you go to draw, you check the iterated
depth against the value currently in the depth buffer. If the current depth is
closer than the buffer depth, it means the pixel is in front of the pixel
already in the frame buffer. So you can update the frame buffer with the
color value and update the depth buffer with the new depth. If the iterated
depth is farther away than the z-buffer depth, that means the pixel already
in the frame buffer is closer than the one you’re trying to draw, so you do
nothing. That way, you never draw a pixel that is obscured by something

304 � Chapter 8: Beginning Direct3D

Figure 8.2:
Some sadistic
polygon sorting
problems can’t
be solved with-
out splitting
polygons.

already in the scene. See Figure 8.3 to see how the frame buffer changes as
you rasterize a triangle.

Z-buffering is not a perfect solution. First of all, you don’t have infinite res-
olution to represent depth (again, numerical imprecision comes up to
haunt us). The problem is that the precision of z-buffers doesn’t vary lin-
early with z (because z doesn’t vary linearly in screen space). Because of
this, a lot of the precision (like 90% of it) is used up in the front 10% of
the scene. The end result is artifacts tend to show up, especially in primi-
tives drawn far away from the viewer. Quake players may remember
camping beside the mega-health outside in the pent courtyard in DM3.
Sometimes people hiding in the enclave on the opposite side of the court-
yard would appear through the wall obscuring them. This was caused by a
lack of z-buffer precision in the Quake software rasterizer. This can be fixed
by having a higher-resolution z-buffer (24 bits, for example). Going any
higher than 24 bits is really a waste; going to 32 bits means there are 4 bil-
lion possible depth values between your near and far plane, which is way
too much. This is why the top 8 bits of a 32-bit depth buffer are usually
used for stencil information.

Another problem with z-buffering is the speed of the algorithm. You
need to perform a comparison per-pixel per-triangle. This would be pro-
hibitive, but thankfully the card does this automatically for you, generally
at no speed loss. Thanks to the silicon, you don’t have to worry about the
rendering order of the triangles (until, of course, you start doing stuff like
alpha blending, but that comes later…). Actually, the main reason anyone
uses the z-buffer algorithm is that brute force algorithms tend to be
extremely easy to implement in hardware.

Chapter 8: Beginning Direct3D � 305

Figure 8.3:
Our buffers after
rasterizing a
triangle

W-Buffering

Some cards have a crafty way of getting around the resolution problems of
fixed-point numbers. Instead of using fixed-point values, they use float-
ing-point values. Floating-point z-buffers are generally called w-buffers,
because they use the w component of the 4D vector instead of z. You’ll
remember that when performing the perspective projection, the w compo-
nent can become a value other than 1, so you must divide all four
components by it to renormalize it. With most projection matrices, the w
component actually ends up being the z value for the scene, so you get the
perspective divide many of you may be used to if you did graphics coding
back in the day. W-buffering is totally a hardware side issue. It uses the
same type of memory as a z-buffer; it’s just how the card will interpret the
values. If the card supports it, you merely need to turn it on to get its
benefits.

What are its benefits? W-buffering is implemented with the reciprocal
homogenous value which boils down to 1/z in most projection matrices.
One-over-z, unlike z, does vary linearly in screen space. The precision of
the z-buffer is spread out over the entire range of z-values. Because of this,
far away primitives are less susceptible to artifacts, but the trade-off is that
primitives close to the viewer may have some minor artifacts.

Warning: W-buffers can get flaky if the ratio of the far plane over the near plane
is too high (too high is a relative term, but a ratio of between 200 and 500
should work just fine).

You can check for w-buffer support on a device by checking one of the ras-
ter caps bits, and turn it on using a render state:

Listing 8.5: W-buffer detection and selection code

// how to check for w-buffer support
// g_pDevice is a valid LPDIRECT3DDEVICE9 object

D3DCAPS9 DevCaps;

g_pDevice->GetDeviceCaps(&DevCaps);

if(DevCaps.RasterCaps | D3DPRASTERCAPS_WBUFFER)
{

g_pDevice->SetRenderState(D3DRS_ZENABLE, D3DZB_USEW);
}

306 � Chapter 8: Beginning Direct3D

Stencil BuffersStencil Buffers

Stencil buffers have risen to fame recently, as there are now a plethora of
accelerators that support them. Originally they existed solely on high-end
SGI machines costing barrels of money, but finally they have entered the
consumer market.

Stencils are used all over the place in the “real world.” For example,
when people paint arrows and letters on the street, they lay large pieces of
metal on the ground, then spray a whole lot of paint on them. The stencil
constrains where the paint can go, so that you get a nice arrow on the
ground without having to painstakingly paint each edge.

Stencil buffers work in a similar way. You can use them to constrain
drawing to a particular region and to record how many times a particular
region has been written to. They can even be used to render dynamic
shadows really quickly. We’ll discuss them more later, but for right now just
keep them in mind. Know that typically they come in 1-, 4-, and 8-bit vari-
eties, and that they share bits with the depth buffer (in a 32-bit z-buffer,
you can set up 24 bits are for z, 8 are for stencil).

Vertex BuffersVertex Buffers

DirectX 6.0 was the first version of the SDK to include vertex buffers. The
circular definition is that they are buffers filled with vertices, but this is
actually about as good a definition as you’ll need. Instead of creating a sur-
face with image data or sound data, this is a surface with vertex data. Like
any other surface, it must be locked to gain access and unlocked when you
relinquish said access. These vertices may be at any stage of the vertex
pipeline (transformed, untransformed, lit, unlit). You can draw them using
special draw primitive commands that specifically make use of the vertex
buffer.

Vertex buffers have two primary uses. First, they accelerate the render-
ing of static geometry: You create a vertex buffer to hold the geometry for
an object, fill it once, and draw the set of vertices every frame. You can use
the vertex buffer to optimize the vertex data for the particular device, so it
can draw it as fast as possible. The other use for vertex buffers is to pro-
vide a high-bandwidth stream of data so you can feed the graphics cards
primitives as fast as you can.

Vertex buffers also make it easier for the hardware to reuse vertex
data. For example, let’s say you’re drawing an object with multiple textures
on it, or with multiple states for one section or another. Instead of having
to separately transform, light, and clip all of the vertices in the object for
each texture, you can run the entire geometry pipeline on the vertex buffer
once, then draw groups of vertices as you like. There is also a big advan-
tage to vertex buffers on hardware transformation and lighting cards. You
can place the vertices into memory on the card once, and then draw them

Chapter 8: Beginning Direct3D � 307

as many times as you like. The subdivision surface sample application dis-
cussed in Chapter 9 makes use of vertex buffers, if you want to see a piece
of code that takes advantage of this nifty feature.

Creating vertex buffers is very simple; it is done with a call to IDirect-
3DDevice9::CreateVertexBuffer().

HRESULT CreateVertexBuffer(
UINT Length,
DWORD Usage,
DWORD FVF,
D3DPOOL Pool,
IDirect3DVertexBuffer9** ppVertexBuffer

);

Length The size of the vertex buffer, in bytes

Usage Flags specifying the usage of the buffer. You will usually set this to
D3DUSAGE_WRITEONLY since you hardly ever read from these buffers.

FVF A combination of flexible vertex format (FVF) flags identifying the types of
vertices that you want to use. I will discuss these shortly.

Pool A member of the D3DPOOL enumeration identifying how you want the
buffer to be managed in memory. You will generally use the D3DPOOL-
_DEFAULT flag, which allows Direct3D to place it in the most appropriate
memory.

ppVertexBuffer The address of a pointer that will be filled with the address of the newly
created vertex buffer.

pHandle Reserved, set this to NULL.

Once you create a vertex buffer, it must be filled with vertex data. To fill
the vertex buffer you must first lock it, using the Lock method on the
newly created vertex buffer interface:

HRESULT IDirect3DVertexBuffer9::Lock(
UINT OffsetToLock,
UINT SizeToLock,
BYTE** ppbData,

DWORD Flags
);

OffsetToLock The offset into the buffer that you want to lock

SizeToLock The size of the vertex buffer, in bytes, that you want to lock. Specify 0 to
lock the entire buffer.

ppbData The address of a pointer that will be filled with a pointer to the locked
vertex data

Flags A combination of zero or more of the following flags, which indicate how the
memory should be locked. You normally set this parameter to NULL.
� D3DLOCK_DISCARD—The application is going to overwrite the entire

vertex buffer.
� D3DLOCK_NOOVERWRITE—This can lead to performance

enhancements if you are only appending data in the buffer.

308 � Chapter 8: Beginning Direct3D

� D3DLOCK_NOSYSLOCK—Cause a critical section lock not to be held
for the duration of the lock.

� D3DLOCK_READONLY—The application will not write to the buffer.

If the lock succeeds, you receive a pointer to the vertex data. You can then
freely fill in the vertex buffer with all the vertex data you wish to render
with. When you’re finished, call Unlock, just like a surface. It takes no
parameters.

You must use vertex buffers to draw primitives, such as triangles, lines,
and so on. In the past you could just draw primitives with calls to certain
functions, but these days you must package your rendering data into
vertex buffers before rendering them with DrawPrimitive or DrawIndexed-
Primitive. Well, I kind of lied—you can use the DrawPrimitiveUP or
DrawIndexedPrimitiveUP functions to render raw vertices from memory,
and I’ll show you these in action shortly.

To render vertex buffers you must attach them to something called a
rendering stream. Once the vertex buffer is attached, you can then call one
of the DrawPrimitive functions, and it will render whatever is attached to
the rendering stream. You attach a vertex buffer to a rendering stream
with the function SetStreamSource, which has the following definition:

HRESULT SetStreamSource(
UINT StreamNumber,
IDirect3DVertexBuffer9* pStreamData,
UINT OffsetInBytes,
UINT Stride

);

Stream Number The stream number that you want to attach the vertex buffer to. This will
usually be set to 0 to indicate stream zero.

pStreamData A pointer to the vertex buffer that you want to attach to the rendering
stream.

OffsetInBytes Offset from the start of the buffer to the data stream; not supported by all
devices.

Stride The distance, in bytes, between each of the vertices in the buffer. In other
words, you can just do a sizeof() to figure out the size of your vertex
structure.

Texture MappingTexture Mapping

Texture mapping is pretty much the feature that adds the most wow power
to a 3D application. It’s also one of the most complex and varied features
Direct3D has. Since there is so much to it, I’ll save most of the discussion
for later and just try to get the basics here.

Chapter 8: Beginning Direct3D � 309

Materials and Lights

Back in the old school of Direct3D 6.0 and previous versions, using lights
and materials was a tedious process. Ref-counted COM interfaces were
used to represent lights and materials, which led to much confusion. It
wasn’t a really big deal, though; before 7.0 and the advent of hardware
accelerated transformation and lighting, nobody really used the lighting
pipeline anyway.

With 7.0, Microsoft decided to clean up the interfaces used to handle
materials and lighting, since at long last it seemed that people might actu-
ally use them. Lights and materials are represented with regular C-style
structures (not even Win32 style structures; you don’t need to set a dwSize
variable!) and you use a much simpler interface to initialize and activate
lights in our scene.

Using Lights

In any given scene you have one material and n lights (the number of
lights allowable by the device is listed in the device description but is usu-
ally in the tens of thousands). Since you can have many more initialized
lights in a scene than activated lights, it’s best to create all of the lights at
application startup. As you render the world, you activate and deactivate
lights as you wish, for example, picking the three or four closest lights to
the camera for use in rendering. Of course, the fewer lights you use, and
the simpler those lights are, the faster everything goes. Directional lights
are the fastest, followed by point source lights and spotlights at a distant
third. On hardware T&L cards, however, the first few lights are free regard-
less of complexity.

Lights are abstracted by a structure called the D3DLIGHT9 structure. It
is defined as follows:

typedef struct _D3DLIGHT9 {
D3DLIGHTTYPE Type;
D3DCOLORVALUE Diffuse;
D3DCOLORVALUE Specular;
D3DCOLORVALUE Ambient;
D3DVECTOR Position;
D3DVECTOR Direction;
float Range;
float Falloff;
float Attenuation0;
float Attenuation1;
float Attenuation2;
float Theta;
float Phi;

} D3DLIGHT9;

310 � Chapter 8: Beginning Direct3D

Type Defines the type of light the structure represents. The D3DLIGHTTYPE
enumeration supports three values. The values are D3DLIGHT_POINT (for
point-source lights), D3DLIGHT_SPOT (for spotlights), and
D3DLIGHT_DIRECTIONAL (for directional lights).

Diffuse A D3DCOLORVALUE that represents the diffuse light emitted by the light
object.

Specular A D3DCOLORVALUE that represents the specular light emitted by the light
object.

Ambient A D3DCOLORVALUE that represents the ambient light emitted by the light
object.

Position A D3DVECTOR that represents the position of the light. This only applies for
point source lights and spotlights; for directional lights this value is ignored.

Direction A D3DVECTOR that represents the direction that the light is pointing. Since
point source lights are omni-directional, this value does not apply to them, but
it does apply to spotlights and directional lights. The value doesn’t need to be
normalized, but it does need to have a non-zero length for the light to function
correctly.

Range A float that represents the farthest distance an object can be to be influenced
by the light. If a vertex is any farther away, this light will not be considered in
the lighting calculations. As this only works for lights that have a defined
position, it does not apply to directional lights.

Falloff A float that represents how much of an intensity difference exists between a
spotlight’s inner cone and outer cone. Programs can be hit significantly by using
this value, especially if no dedicated lighting hardware exists in the machine, so
if spotlights are used, this value is typically set to 1.0.

Attenuation0 The constant falloff based on distance for the light. This value does not apply to
directional lights.

Attenuation1 The linear falloff based on distance for the light. This value does not apply to
directional lights. Most applications can get by with just linear falloff, but
quadratic falloff is the most physically correct.

Attenuation2 The quadratic falloff based on distance for the light. This value does not apply
to directional lights.

Theta A float (in radians) that represents the angle between the direction and the
edge of the inner cone of a spotlight (points inside the inner cone of a spotlight
are fully lit). Only applies to spotlights.

Phi A float (in radians) that represents the angle between the direction and the
edge of the outer cone of a spotlight (points outside the inner cone of a
spotlight are not lit). Only applies to spotlights.

D3D Lighting Semantics

Lights can be set, activated, or disabled through the Direct3D device. The
device can handle a certain number of simultaneously active lights (the
number can be found in the MaxActiveLights member of the D3DCAPS9
structure). You set the values for a light using the D3DDevice function
SetLight:

Chapter 8: Beginning Direct3D � 311

HRESULT IDirect3DDevice9::SetLight(
DWORD Index,
LPD3DLIGHT9 pLight

);

Index The index of the light you would like to change. (Direct3D keeps an internal list of
lights; setting two lights to the same index will cause the second to overwrite the
values of the first.)

pLight A pointer to a D3DLIGHT9 structure you have filled up to define a light in the
scene.

After you have set up the light, you might think you were all set. This is
not the case! After you initialize the light structures, you need to explicitly
turn each of them on. Why is this? The expected use of D3D lighting is to
initialize all of your lights at application startup, turn on the visible ones
when you want to use them, and turn them off when you stop. In order to
enable or disable individual lights that you have initialized with SetLight,
you must call LightEnable:

HRESULT IDirect3DDevice9::LightEnable(
DWORD LightIndex,
BOOL bEnable

);

LightIndex The index of the light you would like to change. (Direct3D keeps an internal list of
lights; setting two lights to the same index will cause the second to overwrite the
values of the first.)

bEnable If this value is non-zero, the light in question is enabled. If this value is zero, it is
disabled.

What happens if you try to enable a light that you have not initialized?
There is a default light structure that Direct3D uses, which is a white direc-
tional light pointing out into your scene in the +Z direction.

The sLight Helper Class

To help facilitate the use of lights in Direct3D, I wrote a helper class to
automatically construct lights based on the constructor used. The class is
called sLight, and the class definition appears in Listing 8.6.

Listing 8.6: The sLight structure

/**
* sLight helps the D3DLIGHT9 structure.
* The static constructors make it possible to
* automatically create certain light types
*/
struct sLight : public D3DLIGHT9
{

sLight()
{

312 � Chapter 8: Beginning Direct3D

// do nothing
}

static sLight Directional(
const point3& dir,
const color3& diff = color3::White,
const color3& spec = color3::Black,
const color3& amb = color3::Black)

{
sLight out;
memset(out, 0, sizeof(D3DLIGHT9));
out.Type = D3DLIGHT_DIRECTIONAL;

out.Direction = *(D3DVECTOR*)&dir;

out.Diffuse = *(D3DCOLORVALUE*)&diff;
out.Specular = *(D3DCOLORVALUE*)&spec;
out.Ambient = *(D3DCOLORVALUE*)&amb;
return out;

}

static sLight PointSource(
const point3& loc,
const color3& diff = color3::White,
const color3& spec = color3::Black,
const color3& amb = color3::Black)

{
sLight out;
memset(out, 0, sizeof(D3DLIGHT9));
out.Type = D3DLIGHT_POINT;

out.Range = D3DLIGHT_RANGE_MAX;

out.Attenuation0 = 0.f;
out.Attenuation1 = 1.f;
out.Attenuation2 = 0.f;

out.Position = *(D3DVECTOR*)&loc;

out.Diffuse = *(D3DCOLORVALUE*)&diff;
out.Specular = *(D3DCOLORVALUE*)&spec;
out.Ambient = *(D3DCOLORVALUE*)&amb;
return out;

}

static sLight Spot(
const point3& loc,
const point3& dir,
float theta, float phi,
const color3& diff = color3::White,
const color3& spec = color3::Black,
const color3& amb = color3::Black)

{
sLight out;
memset(out, 0, sizeof(D3DLIGHT9));

Chapter 8: Beginning Direct3D � 313

out.Type = D3DLIGHT_SPOT;

out.Range = D3DLIGHT_RANGE_MAX;

out.Attenuation0 = 0.f;
out.Attenuation1 = 1.f;
out.Attenuation2 = 0.f;

out.Theta = theta;
out.Phi = phi;
out.Position = *(D3DVECTOR*)&loc;
out.Direction = *(D3DVECTOR*)&dir;

out.Diffuse = *(D3DCOLORVALUE*)&diff;
out.Specular = *(D3DCOLORVALUE*)&spec;
out.Ambient = *(D3DCOLORVALUE*)&amb;
return out;

}

operator D3DLIGHT9*()
{

return this;
}
operator const D3DLIGHT9*() const
{

return (const D3DLIGHT9*)this;
}

};

By the way, just as a footnote for the above. See the D3DLIGHT_RANGE
_MAX identifier? That used to be defined in previous versions of DirectX,
but these days it has disappeared for some reason. If you want to use it
you must define it yourself like this:

#define D3DLIGHT_RANGE_MAX ((float)sqrt(FLT_MAX))

Using Materials

Materials, also discussed in earlier chapters, help us define the look of an
object. Using different material parameters, you can make a surface look
shiny (like an apple), matte (like chalk), emissive (like a light), and any-
where in between.

typedef struct _D3DMATERIAL9 {
D3DCOLORVALUE Diffuse;
D3DCOLORVALUE Ambient;
D3DCOLORVALUE Specular;
D3DCOLORVALUE Emissive;
float Power;

} D3DMATERIAL9;

314 � Chapter 8: Beginning Direct3D

Diffuse Diffuse color reflectance for the material.

Ambient Ambient color reflectance for the material.

Specular Specular color reflectance for the material.

Emissive Emissive color for the material.

Power Power used in the lighting equations. Floating-point number 1.0 will give very soft
highlights, where values of 20-40 will only look correct on highly tessellated
models, as the highlights will be extremely small.

D3D Material Semantics

Direct3D materials have two functions to play with: one to set the current
material and one to retrieve it. Again, there is only one material for scenes
in this book, which is why I don’t have an index variable like the lighting
functions. You can set the material using SetMaterial:

HRESULT IDirect3DDevice9::SetMaterial(
D3DMATERIAL9* pMaterial

);

pMaterial Pointer to a material structure filled with what the current material should
become.

And retrieve the material with GetMaterial:

HRESULT IDirect3DDevice9::GetMaterial(
D3DMATERIAL9* pMaterial

);

pMaterial Pointer to a material structure to be filled with what the current material is.

The sMaterial Helper Class

As with the sLight helper class discussed previously, the library has a class
to help initialize materials, with a constructor to automate the creation
process for you.

Listing 8.7: The sMaterial structure

struct sMaterial : public D3DMATERIAL9
{

sMaterial(
float pow,
color4 diff = color4(1.f, 1.f, 1.f, 1.f),
color4 spec = color4(1.f, 1.f, 1.f, 1.f),
color4 amb = color4(1.f, 1.f, 1.f, 1.f),
color4 emit = color4(0.f, 0.f, 0.f, 0.f))

{
ZeroMemory(this, sizeof(D3DMATERIAL9));

/**

Chapter 8: Beginning Direct3D � 315

* We could make an operator for this, but
* putting d3d.h everywhere kills compile time.
*/
Diffuse = *(D3DCOLORVALUE*)&diff;
Ambient = *(D3DCOLORVALUE*)&amb;
Specular = *(D3DCOLORVALUE*)&spec;
Emissive = *(D3DCOLORVALUE*)&emit;
Power = pow;

}

operator D3DMATERIAL9*()
{

return this;
}
operator const D3DMATERIAL9*() const
{

return (const D3DMATERIAL9*)this;
}

};

The Geometry PipelineThe Geometry Pipeline

Direct3D has an extremely robust, extremely fast software geometry pipe-
line, when a hardware one is not available. The only argument against
using it is that it turns part of your program into a black box. If there is a
nifty optimization you can pull off because of the way your scene works
(for example, if you can get perspective projection for a terrain scene using
only adds), you should consider implementing the pipeline yourself.

In order to use the geometry pipeline, all you need to do is specify
matrices you would like Direct3D to use when it performs transformations.
All of Direct3D’s internal matrices start out as the identity matrix. The
main matrices you want to worry about right now are the world, view, and
projection matrices. The world matrix transforms local coordinate space
points to world space; the view matrix transforms world coordinate space
points to view space; the projection matrix projects view-space points into
screen space. This was covered in Chapter 5.

Transformation matrices are changed using two methods on the device
interface: GetTransform and SetTransform.

HRESULT IDirect3DDevice9::GetTransform(
D3DTRANSFORMSTATETYPE State,
D3DMATRIX* pMatrix

);
HRESULT IDirect3DDevice9::SetTransform(
D3DTRANSFORMSTATETYPE State,
D3DMATRIX* pMatrix

);

316 � Chapter 8: Beginning Direct3D

State A member of the D3DTRANSFORMSTATETYPE enumeration describing which
Direct3D matrix the call is in reference to. The members are given below.

pMatrix Pointer to the matrix being used.

D3DTRANSFORMSTATETYPE has the following members:

Table 8.3: Members of the D3DTRANSFORMSTATETYPE enumeration

D3DTS_WORLD Primary world matrix transformation. Transforms from object space to
world space.

D3DTS_VIEW View matrix transformation. Transforms from world space to view space.

D3DTS_PROJECTION Projection matrix transformation. Transforms from view space to screen
space.

D3DTS_TEXTURE0-
D3DTS_TEXTURE7

Texture transformation matrices.

Some internal housekeeping is done when matrices are changed, especially
the first three. At the very least, Direct3D needs to perform two matrix
multiplications to concatenate the world, view, and projection matrices
together whenever one of them is changed. Excessive transformation
changes (excessive being tens of thousands a frame) can slow down per-
formance and should be avoided. An application should only need to
change the view matrix once per frame (if the camera moves), and the
world matrix once per object drawn.

Clipping and Viewports

Direct3D, in addition to the transformation pipeline, can clip your primi-
tives for you, so only the parts that are actually within the dimensions of
the frustum get used. The projection matrix determines the frustum and
what gets clipped in homogeneous clip space. The viewport is used to cre-
ate the transformation from the projection window to the screen (or
viewport), which describes which part of the frame buffer you want to ren-
der to. While you can make it a subset of our total surface if you like,
generally you want to set up the viewport so it renders to the entire
surface.

The viewport structure is called D3DVIEWPORT9 and is defined as
follows:

typedef struct _D3DVIEWPORT9{
DWORD X;
DWORD Y;
DWORD Width;
DWORD Height;
D3DVALUE MinZ;
D3DVALUE MaxZ;

} D3DVIEWPORT9;

Chapter 8: Beginning Direct3D � 317

X, Y The x and y coordinates of the top left corner of the viewport. If you want to
use the entire surface, set these parameters to 0.

Width, Height The width and height of the viewport. If you want to use the entire surface,
set these parameters to the width and height of the drawing surface.

MinZ, MaxZ The range of z values you want your application to draw. These numbers
aren’t the same ones you use when you make the projection matrix; almost
universally you should set these to 0.0 and 1.0.

The viewport functions are similar to the material functions; one to set the
viewport…

HRESULT IDirect3DDevice9::SetViewport(
CONST D3DVIEWPORT9* pViewport

);

pViewport Pointer to a viewport structure filled with what the current viewport should
become.

… and one to retrieve it.

HRESULT IDirect3DDevice9::GetViewport(
D3DVIEWPORT9* pViewport

);

pViewport Pointer to a viewport structure to be filled with what the current viewport is.

I decided against making a wrapper class for the viewport, since it’s only
touched in one piece of code, so the abstraction seemed unnecessary.

Fog

Fog in games is one of those double-edged swords. On one hand, there are
games like Goldeneye for the N64, which used tinted fog to add ambience
to the levels (I was blown away the first time I saw the satellite dish eerily
emerge from the gray fog in the surface level). On the other hand, there
are games like Turok: Dinosaur Hunter; it had an impenetrable fog layer 20
feet away from the player because there wasn’t enough of a triangle bud-
get to draw any further.

Whether you’re using it to add mood or using it to add speed,
Direct3D has all the fog functionality you could possibly want. It supports
two different fog interfaces: pixel-based fog and vertex-based fog. Pixel fog

(or table fog) is implemented in the Direct3D driver and is a per-pixel oper-
ation; it’s implemented in hardware on most HAL devices. Vertex fog, on
the other hand, is part of the D3D lighting engine, and is computed by the
Direct3D lighting engine and passed to the rasterization engine. On
TnLHal devices, it’s hardware accelerated, but in software it is dependent
on the main processor to do the grunt work and it can get a bit slow.

318 � Chapter 8: Beginning Direct3D

They both work with the same concept in mind. As the distance of a
primitive increases, a fog color is applied, until some faraway distance at
which point it is completely shrouded in fog. This tries to imitate atmo-
spheric interference, where particles of dust and pollen in the air can
gradually color distant objects. If you’ve ever been driving in the moun-
tains you know this effect; the farther back a mountain is, the more the
atmosphere around it tints it.

The way fog acts on vertices can be summed up with an equation:

Warning: The fog engine uses the projection matrix for the scene to find the
range of depth values to use in the lighting equations. Even if you’re not using
the projection matrix (performing your own transformations), a w-friendly
projection matrix must be set for fog to work.

Vertex-based Fog

Vertex-based fog is performed by the D3D lighting engine. Thus, it can only
be calculated for unlit, untransformed vertices. If you perform your own
lighting or transform your own vertices, you can only use pixel fog. The
lighting engine calculates the fog value for each vertex of each primitive.
Then the fog intensity is linearly interpolated across the primitive, like
Gouraud color.

Due to speed constraints, only one fog mode, linear fog, is supported
for vertex-based fog. This means that the fog color increases linearly as the
distance increases. Pixel fog can handle more esoteric blending rates, such
as logarithmic exponential fog.

Offsetting this shortcoming is the fact that vertex-based fog can be
eye-relative if the need arises. Usually fog is calculated based on the incor-
rect distance function of the z-value of the vertex in view space. While this
is correct for vertices directly in front of the camera, when they are off to
the side, they actually receive less fog than they should.

This can cause really nasty artifacts. Consider Figure 8.4. As the cam-
era rotates, Object 2 moves out of the fog and into visible space. This, of
course, is incorrect. Ideally, the distance used to compute fog should be the
actual Pythagorean distance I showed you in Chapter 3. This calculation
involves two multiplications and a square root per vertex, however, and
can slow down a lot for scenes with a high number of primitives.

Chapter 8: Beginning Direct3D � 319

� � fogcurrfinal color-1colorcolor

istance)function(dfogintensityfog

�	��
�

ff

f

Pixel-based Fog

Pixel-based fog is performed by the rasterizer as opposed to the lighting
engine. It’s also called table-based fog because typically the fog color is
generated using a look-up table of fog intensities for certain distances.

Because pixel fog uses a look-up table, you’re not constrained to hav-
ing fog vary based on distance. You can use two additional fog modes:
D3DFOG_EXP, which varies fog intensity exponentially based on distance,
and D3DFOG_EXP2, which varies fog intensity exponentially based on the
squared distance. You can also define the density of the fog, which helps
define how much distance is required before the object disappears. The
SDK documentation has a good chart displaying the different falloff meth-
ods in a chart listed under DirectX 9.0 C++ Documentation/DirectX

Graphics/Using DirectX Graphics/Techniques and Special Effects/Fog/Fog

Formulas.

Using Fog

Fog in Direct3D is controlled completely by render states. There are a slew
of them, each controlling one particular facet of the fog pipeline.

Table 8.4: Fog render states

D3DRS_FOGENABLE Set to TRUE to turn on fog blending. Setting the rest of these modes is
pointless unless you actually turn fog on!

(default = FALSE)

D3DRS_FOGCOLOR A D3DCOLOR that represents the color of the fog. The alpha
component is ignored. This color is the color of the atmosphere. As
objects move farther back they will blend more and more into the fog
color, eventually disappearing entirely.

320 � Chapter 8: Beginning Direct3D

Figure 8.4:
Problems with
z-based fog

D3DRS_FOGTABLEMODE Fog mode to use for pixel-based fog (or table fog). Must be a member
of the D3DFOGMODE enumeration, presented below.

(default = D3DFOG_NONE)

D3DRS_FOGSTART The starting point for the fog effect in linear fog modes. For vertex fog,
this number is the distance value in world space. For pixel fog, the
value can be in world space (for eye-relative fog) or device space
[0.0,1.0] (for z-relative fog). The number is given in floating point, so it
must be cast to a DWORD like so:

float start = 0.0f; // or some other value
* ((DWORD*) (&start)))

D3DRS_FOGEND The end point for the fog effect in linear fog modes. For vertex fog, this
num-
ber is the distance value in world space. For pixel fog, the value can be in
world space (for eye-relative fog) or device space [0.0,1.0] (for z-relative
fog). The number is given in floating point, so it must be cast to a
DWORD like so:

float end = 1.0f; // or some other value
((DWORD) (&end)))

D3DRS_FOGDENSITY The fog density used in the two exponential fog modes. The number is
given in floating point, so it must be cast to a DWORD like so:

float density = 1.0f; // or some other value
((DWORD) (&density)))

(default = 1.0)

D3DRS_RANGEFOGENABLE Setting this state to TRUE enables range-based fog. The fog value is
found based on the distance from the eye point, not the z-value in
view space. This is physically correct but computationally expensive.
Also, range-based fog only works for D3DVERTEX primitives. Vertices
that are lit or transformed and lit are assumed to have their fog
component already computed. A value of FALSE means the system
uses z-based fog.

(default = FALSE)

D3DRS_FOGVERTEXMODE Fog mode to use for vertex-based fog. Must be a member of the
D3DFOGMODE enumeration, presented below.

(default = D3DFOG_NONE)

There are four fog modes for the FOGVERTEXMODE and FOGTABLEMODE
render states. They are described by the D3DFOGMODE enumeration.

Table 8.5: Members of the D3DFOGMODE enumeration

D3DFOG_NONE No fog effect is used.

D3DFOG_EXP The effect of the fog increases exponentially with distance. The
amount of fog color applied relates to distance with the formula:

Chapter 8: Beginning Direct3D � 321

densityfogdistance
intensityfog ��

e

1

D3DFOG_EXP2 The effect of the fog increases exponentially with the square of the
distance. The amount of fog color applied relates to distance with the
formula:

D3DFOG_LINEAR The effect of the fog varies linearly with the distance’s relation
between the fog start point and fog end point. This is the only mode
supported by vertex fog. The amount of fog color applied relates to
distance with the formula:

Drawing with the DeviceDrawing with the Device

Once you have set up the states of the device to your liking, turned on the
fog, made your vertex buffers, and set up the lighting, you need to actually
draw some triangles!

The Draw*Primitive* interface has existed since Direct3D 5.0 to let
applications draw line strips, triangle fans, point lists, and so on. Before
DirectX 5.0, 3D applications needed to use what were called execute buff-

ers. They provided a way to batch rendering commands into buffers so that
the software rasterizer could execute them as quickly as possible. The
interface was a total pain to use, however. Thank your lucky stars that exe-
cute buffers were dropped a few versions ago. No, really; get down and
start thanking the gods!

Direct3D Vertex Structures

When you want to draw primitives, you can’t just give an x, y, and z loca-
tion. Direct3D needs to know more information, such as texture mapping
coordinates, diffuse/specular color information, and/or normal informa-
tion. Prior to Direct3D 6.0, you had to use one of three predefined
structures: D3DVERTEX, D3DLVERTEX, or D3DTLVERTEX. However, now
there are no set structures that you can use for your vertices; instead you
must use what is called the flexible vertex format.

Flexible Vertex Format Flags

Since DirectX 6.0, applications have been able to define their own vertex
structures. You can define extra sets of texture coordinates, define just dif-
fuse data instead of both diffuse and specular (saving 4 bytes of storage
per vertex), and even define geometry blending factors.

This is accomplished by filling a bit vector with flexible vertex format
flags (FVF), and passing the bit vector to the device when you render. If a
particular flag is set, that means the vertex contains that info. The values
must appear in a certain order; for example, position data is always the

322 � Chapter 8: Beginning Direct3D

� �2

1

densityfogdistance
intensityfog

�
�

e

startend

end

fogfog

distancefog
intensityfog

�

first value in a vertex (and must be included). The flags, in the order they
must appear in the vertex, are shown in Table 8.6.

Table 8.6: The set of flexible vertex format flags

D3DFVF_XYZ This flag means you include the position of the point you wish to draw.
The value must be untransformed. The location is stored as a triplet of
floats representing x, y, and z locations. Cannot be used with the
D3DFVF_XYZRHW flag.

D3DFVF_XYZRHW This flag means you are including the location of a transformed vertex.
This means the x and y components are in screen space, the z
component is the distance from the view plane, and an additional float
called RHW holds the reciprocal homogeneous w coordinate. This is
incompatible with the D3DFVF_NORMAL flag.

D3DFVF_XYZBx
(x = {1..5})

Vertices can be transformed certain amounts by certain matrices to
help make smooth transitions in joints with bone-based animation.
These flags describe how many beta values (32-bit floats) each vertex
has. Each beta value is a weight, multiplied by its corresponding world
space matrix. See Chapter 9 for a discussion of geometry blending.

D3DFVF_NORMAL If this flag is set, the vertex contains normal information. The data is
stored as three floats, representing the x, y, and z components of the
normal. Cannot be used with the D3DFVF_XYZRHW flag.

D3DFVF_DIFFUSE 32-bit integer (DWORD) representing the diffuse color of the vertex,
in RGBA form. You can use this in conjunction with the
D3DFVF_NORMAL flag to define a diffuse color per-vertex, instead of
using the current material.

D3DFVF_SPECULAR 32-bit integer (DWORD) representing the specular color of the
vertex, in RGBA form. You can use this in conjunction with the
D3DFVF_NORMAL flag to define a specular color per-vertex, instead
of using the current material.

D3DFVF_TEXx
(x = {1..8})

The number of texture coordinates in this vertex. Note that the flags
are not sequential. Each pair of texture coordinates is represented
with two 32-bit floats, the first representing the horizontal u
component and the second representing the vertical v component.
Texture mapping is discussed at length in Chapter 10.

D3DFVF_TEXCOORDSIZEx
(x = {1..4})

This actually isn’t a flag; it’s a macro. It is used to define the dimension
for each set of texture coordinates. The macro D3DFVF_TEX-
COORDSIZEx(y) means that the yth set of texture coordinates are
x-dimensional. The default for all sets is two-dimensional, so unless
you’re getting esoteric you don’t need to muck around with this
macro.

Predefined Flag Macros

There are a few predefined macros that help you when you’re using the
supplied D3D vertex structures (vertex, lit vertex, and transformed and lit
vertex). They are:

� D3DFVF_VERTEX—Flags that correspond with the D3DVERTEX
structure.

Chapter 8: Beginning Direct3D � 323

� D3DFVF_LVERTEX—Flags that correspond with the D3DLVERTEX
structure.

� D3DFVF_TLVERTEX—Flags that correspond with the D3DTLVERTEX
structure.

Before rendering with Direct3D you must tell it what kind of vertices you
are rendering, or else Direct3D will crash. What you are actually doing is
setting up what is called a vertex shader, which controls how your vertices
are processed. You set the vertex shader with a call to SetFVF(), which has
the following definition:

HRESULT SetFVF(DWORD FVF);

FVF A handle to the vertex shader that you want to create. This can also be a
combination of FVF flags describing the vertices you are rendering.

So for instance, say you have a vertex that has a position, normal, and
color. To use it, you would make the following call:

SetFVF(...)

Now you are ready to go ahead and render the vertex buffer. If you find
the debug output from Direct3D keeps giving you errors about not having
a valid vertex shader, this is probably what your problem is.

Examples

Most of the vertex types you’ll encounter in this book are one of the ones
defined above. However, there are some cases (the multitexture applica-
tion in Chapter 10 is a big example) where you may wish to roll your own
vertices. I’ll show you two examples.

In the first (shown in Listing 8.8), I’m building a simple three-pass
multitexture application. The lighting is not used at all, but the transfor-
mation engine is. Also, specular coordinate data is not needed.

Listing 8.8: A vertex with three sets of texture coordinates

#include <point3.h>
#include <gametypes.h> // ulong

struct texCoord2 { float m_u, m_v; };

struct mtVertex
{

point3 m_loc; // Position
ulong m_diff; // Color
texCoord2 m_tex[3]; // Texture coordinates

static ulong m_fvfFlags; // Flags
};
ulong mtVertex::m_fvfFlags = D3DFVF_XYZ | D3DFVF_DIFFUSE | D3DFVF_TEX3;

324 � Chapter 8: Beginning Direct3D

The other example is about as hardcore as you’re ever likely to see a vertex
get. It not only uses the transformation and lighting engines, it also defines
its own diffuse and specular vertex colors in addition to the lit color values.
On top of that, it has two sets of texture coordinates, the first two-dimen-
sional and the second three-dimensional.

Listing 8.9: Vertex with multidimensional texture coordinate sets

#include <point3.h>
#include <gametypes.h> // ulong

struct texCoord2 { float m_u, m_v; };
struct texCoord3 { float m_u, m_v, m_w; };

struct mtVertex
{

point3 m_loc; // Position
point3 m_norm; // Normal
ulong m_diff; // Color (Diffuse)
ulong m_spec; // Color (Specular)
texCoord2 m_tex1;
texCoord3 m_tex2;

static ulong m_fvfFlags;
};

ulong mtVertex::m_fvfFlags =
D3DFVF_XYZ |
D3DFVF_NORMAL |
D3DFVF_DIFFUSE |
D3DFVF_SPECULAR |
D3DFVF_TEXCOORDSIZE2(0) | // set 0 is 2-dimensional
D3DFVF_TEXCOORDSIZE3(1); // set 1 is 3-dimensional

Primitive Types

When drawing primitives using the D3D device, you need to inform the
device what type of primitive you would like it to draw. Currently,
Direct3D can draw three types of primitives: points, lines, and triangles.

D3DPT_POINTLIST The data being handed to the driver is a list of points. The Direct3D
device draws one pixel for each vertex handed to it.

D3DPT_LINELIST The data being handed to the driver is a list of lines. The number of
vertices provided to the device must be even. If n vertices are passed
in, n/2 lines are drawn. For example, the third line D3D draws is from
the fourth to the fifth vertex.

D3DPT_LINESTRIP Direct3D draws a continuous strip of lines. Each vertex besides the
first becomes the endpoint of a line, with a beginning of the vertex
before it.

Chapter 8: Beginning Direct3D � 325

D3DPT_TRIANGLELIST Direct3D draws a list of distinct triangles. Each three vertices are
rendered as a triangle. Of course, the number of vertices supplied to
the DrawPrim functions must be a multiple of three.

D3DPT_TRIANGLESTRIP Direct3D draws a triangle strip, each vertex after the first two defining
the third point of a triangle. See Chapter 5 for a discussion of triangle
strips.

D3DPT_TRIANGLEFAN Direct3D draws a triangle fan, each vertex after the first two defining
the third point of a triangle. See Chapter 5 for a discussion of triangle
fans.

The DrawPrimitive Functions

There are four total functions to draw primitives for us. They are all very
similar and once you’ve mastered one, you’ve pretty much mastered them
all. Let’s take a look at each of them.

DrawPrimitive

DrawPrimitive is the most basic primitive drawing function. It simply takes
the current vertex buffer that is attached to a rendering stream and ren-
ders it. It doesn’t use any indexed information, and therefore isn’t as
efficient for drawing triangle meshes as DrawIndexedPrimitive for most
applications. The one exception is drawing triangle strips and fans. On
some cards (such as the GeForce), the cache coherency goes way up and
using DrawPrimitive is actually faster than DrawIndexedPrimitive.

HRESULT DrawPrimitive(
D3DPRIMITIVETYPE PrimitiveType,
UINT StartVertex,
UINT PrimitiveCount

);

PrimitiveType The type of primitive you would like the device to draw for you.

StartVertex Index of the first vertex you want to load; usually set this to 0.

PrimitiveCount The number of primitives to render.

DrawPrimitiveUP

DrawPrimitiveUP is very similar to the regular DrawPrimitive except that it
does not require you to package your vertices in buffers. Instead it takes a
pointer to vertex data that exists somewhere in system memory and uses
that as the rendering stream. UP, by the way, stands for user pointer. The
function has this definition:

HRESULT DrawPrimitiveUP(
D3DPRIMITIVETYPE PrimitiveType,
UINT PrimitiveCount,
CONST void* pVertexStreamZeroData,
UINT VertexStreamZeroStride

);

326 � Chapter 8: Beginning Direct3D

PrimitiveType The type of primitive you would like the device to draw for you.

PrimitiveCount The number of primitives you want to render.

pVertexStreamZeroData A pointer to the vertex data that the device will use as rendering
stream 0.

VertexStreamZeroStride The stride between each vertex, in bytes. Usually this will be 0.

DrawIndexedPrimitive

DrawIndexedPrimitive accepts two buffers: an array of vertices and an
array of indices. The entire list of vertices is transformed, and then the
primitives are drawn using the list of indices.

Warning: Each time DrawIndexedPrimitive is called, the entire list of vertices is
transformed, regardless of whether or not they actually end up being used in
the list of indices. Thus, for efficiency reasons, DrawIndexedPrimitive
shouldn’t be called multiple times for the same buffer. If this type of behavior
is required, consider putting the vertices in a vertex buffer and transforming
them just once using the ProcessVertices method on the vertex buffer
interface.

HRESULT DrawIndexedPrimitive(
D3DPRIMITIVETYPE Type,
INT BaseVertexIndex, // Note this new parameter
UINT MinIndex,
UINT NumVertices,
UINT StartIndex,
UINT PrimitiveCount

);

Type The type of primitive you would like the device to draw for you.

BaseVertexIndex Offset from the start of the index buffer to the first vertex index.

MinIndex The lowest vertex that will be used for this call.

NumVertices The number of vertices that will be used for this call.

StartIndex The location in the array to start reading vertices

PrimitiveCount The number of primitives that will be rendered.

DrawIndexedPrimitiveUP

DrawIndexedPrimitiveUP is to DrawIndexedPrimitive what DrawPrim-
itiveUP was to DrawPrimitive. Basically it operates in exactly the same way
as DrawIndexedPrimitive, except that it uses vertex data at a particular
memory location instead of requiring it to be packaged into a vertex buffer
and attached to a rendering stream. It has this definition:

HRESULT DrawIndexedPrimitiveUP(
D3DPRIMITIVETYPE PrimitiveType,
UINT MinVertexIndex,
UINT NumVertexIndices,

Chapter 8: Beginning Direct3D � 327

UINT PrimitiveCount,
CONST void* pIndexData,
D3DFORMAT IndexDataFormat,
CONST void* pVertexStreamZeroData,
UINT VertexStreamZeroStride

);

PrimitiveType The type of primitive you would like the device to draw for you.

MinVertexIndex The minimum vertex index that will be used for a vertex in this call.

NumVertexIndices The number of vertex indices to be used for this call.

PrimitiveCount The number of primitives that you want to render.

pIndexData A pointer to the index data.

IndexDataFormat This can be set to either D3DFMT_INDEX16 or D3DFMT_
INDEX32, depending on whether you are using 16- or 32-bit
indices. You will usually use 16-bit indices.

pVertexStreamZeroData A pointer to the vertex data.

VertexStreamZeroStride The stride (distance between each vertex, in bytes) for the
vertices; this will almost always be 0.

Adding Direct3D to the Graphics LayerAdding Direct3D to the Graphics Layer

Now that you know enough Direct3D to get up and running, let’s add
Direct3D support to the graphics layer in the game library. I’ll be adding
more than initialization code this time around, as there are some conve-
nience functions to help and also new native matrix types.

Direct3D Initialization

Getting Direct3D initialized used to be a tricky process, but these days it is
much more straightforward, conceptually. In fact, in Chapter 2, I showed
you almost everything you need to know, although I’ll admit I glossed over
the more complex 3D topics a little. Don’t worry; I’ll cover them here. For
the updates there will be some changes to the class system in Chapter 2.
There are a few new steps to perform, such as initializing view and projec-
tion matrices, and so on.

The particular feature set an application would like may not necessar-
ily be the same for all applications. For example, some apps may choose
not to use a z-buffer to avoid the added memory overhead on low-memory
cards. To facilitate the various options a user application might like, the
graphics layer’s Direct3D initialization call accepts a set of flags that mod-
ify the path the initialization steps go through. The flags are:

Table 8.7: The set of graphics layer flags

GLF_ZBUFFER The application is requesting that a z-buffer is created.

GLF_HIRESZBUFFER The application is requesting that a high-resolution (24- or 32-bit)
z-buffer is created.

328 � Chapter 8: Beginning Direct3D

GLF_STENCIL The application is requesting stencil bits in addition to depth information
in the z-buffer.

GLF_FORCEREFERENCE The application is demanding a reference device. If one of these cannot
be created, the initialization phase fails.

GLF_FORCEHARDWARE The application is demanding a hardware (HAL) device. If one of these
cannot be created, the initialization phase fails.

GLF_FORCESOFTWARE The application is demanding a software device. If one of these cannot
be created, the initialization phase fails.

GLF_FORCE16BIT The application is forcing 16-bit rendering.

Let’s take a step-by-step look at how Direct3D is initialized within the
graphics layer. Some of this you have already seen in Chapter 2, but for
consistency I’ll show you it again since it is pretty relevant.

Acquire an IDirect3D9 Interface

Getting an IDirect3D9 interface pointer is the simplest task to do. All you
need to do is ask the Direct 3D interface pointer. This is done using
Direct3DCreate9. For a discussion on how COM works, see Chapter 1.

Listing 8.10: Acquiring a Direct3D9 interface pointer

// Create the Direct3D interface
m_pD3D = Direct3DCreate9(D3D_SDK_VERSION);
if(!m_pD3D)
{

throw cGameError("Could not create IDirect3D9");
}

Fill In the Presentation Parameters

I’m going to run through this quickly because you have seen a lot of it
before. However, it has changed somewhat, so pay attention to the
updates. If you need a refresher, refer back to Chapter 2. The first part of
the D3DPRESENT_PARAMETERS structure deals with the format of the
back buffer. Check out the following code:

// Structure to hold the creation parameters for the device
D3DPRESENT_PARAMETERS d3dpp;
ZeroMemory(&d3dpp, sizeof(d3dpp));

// The width and height for the initial back buffer
d3dpp.BackBufferWidth = width;
d3dpp.BackBufferHeight = height;

// Set the flags for the bit depth - only supports 16-, 24-, and 32-bit formats
if(bpp == 16)

d3dpp.BackBufferFormat = D3DFMT_R5G6B5;
else if(bpp == 24)

d3dpp.BackBufferFormat = D3DFMT_R8G8B8;

Chapter 8: Beginning Direct3D � 329

else if(bpp == 32)
d3dpp.BackBufferFormat = D3DFMT_A8R8G8B8;

else
{

OutputDebugString("Invalid surface format - defaulting to 32bit");
d3dpp.BackBufferFormat = D3DFMT_A8R8G8B8;

}

// Only have one back buffer associated with the primary surface
d3dpp.BackBufferCount = 1;
// No multisampling
d3dpp.MultiSampleType = D3DMULTISAMPLE_NONE;
// Copy the back buffer to the primary surface normally
d3dpp.SwapEffect = D3DSWAPEFFECT_COPY;
// The handle to the window to render in to
d3dpp.hDeviceWindow = m_hWnd;
// Fullscreen operation

d3dpp.Windowed = FALSE;

Notice how the bit depth format is set with flags by comparing the bit
depth passed as an integer. That code is quite straightforward. Now check
out the following code, which implements some of the flags that I was talk-
ing about previously to set up the depth and stencil buffer.

// If a depth buffer was requested
if(flags & (GLF_ZBUFFER|GLF_HIRESZBUFFER))
{

// Tell Direct3D we want a depth buffer
d3dpp.EnableAutoDepthStencil = TRUE;

if(flags & (GLF_HIRESZBUFFER))
{

if(flags & (GLF_STENCIL))
// 24-bit depth buffer and 8-bit stencil
d3dpp.AutoDepthStencilFormat = D3DFMT_D24S8;

else
// 32-bit depth buffer and no stencil
d3dpp.AutoDepthStencilFormat = D3DFMT_D32;

}
else
{

if(flags & (GLF_STENCIL))
// 15-bit depth buffer and 1-bit stencil
d3dpp.AutoDepthStencilFormat = D3DFMT_D15S1;

else
// 16-bit depth buffer and no stencil
d3dpp.AutoDepthStencilFormat = D3DFMT_D16;

}

}
else
{

// No depth buffer or stencil

330 � Chapter 8: Beginning Direct3D

d3dpp.EnableAutoDepthStencil = FALSE;
}

That is also pretty straightforward, so I’ll let the code speak for itself.
Finally, just before I actually create the device there is another snippet of
code that I want to show that has changed from Chapter 2:

// Use the default refresh rate
d3dpp.FullScreen_RefreshRateInHz= D3DPRESENT_RATE_DEFAULT;
// Update the screen as soon as possible (don’t wait for vsync)
d3dpp.FullScreen_PresentationInterval = D3DPRESENT_INTERVAL_IMMEDIATE;

// Hardware device by default
D3DDEVTYPE DeviceType = D3DDEVTYPE_HAL;

if(flags & (GLF_FORCEHARDWARE))
DeviceType = D3DDEVTYPE_HAL;

else if(flags & (GLF_FORCEREFERENCE))
DeviceType = D3DDEVTYPE_REF;

Notice how you now have the option of forcing a certain type of device to
be created by passing a flag to the InitD3DFullScreen. After all of that
structure filling it is simple to create the device with a call to, you guessed
it, CreateDevice. The function call looks like this:

// Create the device using hardware acceleration if available
r = m_pD3D->CreateDevice(Ordinal, DeviceType, m_hWnd,

D3DCREATE_SOFTWARE_VERTEXPROCESSING,
&d3dpp, &m_pDevice);

if(FAILED(r))
{

throw cGameError("Could not create IDirect3DDevice9");
}

And that’s it—you now have a fully 3D capable device set up and ready to
render. If you have had previous experience with DirectX, particularly prior
to version 5.0, you will be trying to pick your jaw off the floor out of sur-
prise at how easy it is to create. In this last section (about two pages) is
everything that used to take over a thousand lines of code to set up. Just
smile and nod.

Create a Viewport and Projection Matrix

Creating the viewport is one of the more monotonous tasks in Direct3D ini-
tialization. The graphics layer is assuming that all applications will want
the entire viewport as visible. If this is not the case, user applications will
have to create a viewport themselves.

The code that the graphics layer uses to set up the viewport is straight-
forward. The z-range from 0.0 to 1.0 is used, and the bounds of the screen
are used as the viewport boundaries.

Chapter 8: Beginning Direct3D � 331

Listing 8.11: Viewport creation code

void cGraphicsLayer::MakeViewport()
{

HRESULT hr;
if(!m_pDevice)
{

DP("[cGraphicsLayer::MakeViewport]: no device\n");
return;

}

DWORD dwRenderWidth = m_rcScreenRect.right;
DWORD dwRenderHeight = m_rcScreenRect.bottom;
D3DVIEWPORT9 vp = { 0, 0, dwRenderWidth, dwRenderHeight, 0.0f, 1.0f };

hr = m_pDevice->SetViewport(&vp);
if(FAILED(hr))

throw cGameError("viewport setting failed.");
}

The projection matrix your application gives Direct3D is dependent on the
dimensions of your frame buffer, so it is created when you create the
viewport. It just uses the same projection matrix discussed in Chapter 5,
which uses the recommended projection matrix from the SDK
documentation.

Listing 8.12: Projection matrix construction code

eResult cGraphicsLayer::MakeProjectionMatrix()
{

D3DMATRIX mat;

DWORD width, height;
width = m_rcScreenRect.right;
height = m_rcScreenRect.bottom;

float fAspect = ((float)height) / width;

if(fabs(m_far-m_near) < 0.01f)
return resFailed;

if(fabs(sin(m_fov/2)) < 0.01f)
return resFailed;

float w = fAspect * (float)(cos(m_fov/2)/sin(m_fov/2));
float h = 1.0f * (float)(cos(m_fov/2)/sin(m_fov/2));
float Q = m_far / (m_far - m_near);

ZeroMemory(&mat, sizeof(D3DMATRIX));
mat._11 = w;
mat._22 = h;
mat._33 = Q;
mat._34 = 1.0f;
mat._43 = -Q*m_near;

332 � Chapter 8: Beginning Direct3D

m_pDevice->SetTransform(D3DTS_PROJECTION, &mat);

return resAllGood;
}

Further Additions to the GameLibFurther Additions to the GameLib

To handle the addition of Direct3D to the GameLib, some changes needed
to be made.

The cGraphicsLayer class got a host of new functions added to it. Their
names and functions are summed up in Table 8.8.

Table 8.8: New functions in cGraphicsLayer

void BeginScene(); Wraps IDirect3DDevice9::BeginScene.

void EndScene(); Wraps IDirect3DDevice9::EndScene.

void SetProjectionData(
float inFov,
float inNear,
float inFar);

Sets the three important projection parameters (field of view,
near z plane distance, far z plane distance). By default these
values are PI/2, 1.0, and 1000.0, respectively.

void GetProjectionData(
float* inFov,
float* inNear,
float* inFar);

Gets the three important projection parameters (field of view,
near z plane distance, far z plane distance). By default these
values are PI/2, 1.0, and 1000.0, respectively.

eResult
MakeProjectionMatrix();

Rebuilds the projection matrix using the currently set values for
field of view, near plane, and far plane. The projection matrix is
identical to the one described in Chapter 5.

void GetProjectionMatrix(
matrix4* pMat);

Gets the currently set projection matrix from the D3D device.

void SetProjectionMatrix(
const matrix4& mat);

Sets the current projection matrix to the supplied matrix.
Provided for completeness, the projection matrix should be set
with SetProjectionData and MakeProjectionMatrix.

void GetViewMatrix(
matrix4* pMat);

Gets the currently set view matrix from the D3D device.

void SetViewMatrix(
const matrix4& mat);

Sets the current view matrix to the supplied matrix.

void GetWorldMatrix(
matrix4* pMat);

Gets the currently set world matrix from the D3D device.

void SetWorldMatrix(
const matrix4& mat);

Sets the current world matrix to the supplied matrix.

LPDIRECT3DDEVICE9
GetDevice();

Gets the Direct3D device interface.

LPDIRECT3D9 GetD3D(); Gets the Direct3D interface.

Chapter 8: Beginning Direct3D � 333

void Clear(
bool bClearFrame,
bool bClearZ,
DWORD frameColor,
float zValue);

Clears the back buffer, and the z-buffer if needed, to the
provided color and value.

The Direct3DX LibraryThe Direct3DX Library

One of the biggest complaints people made about Direct3D in the past was
its complexity. The initialization procedure, loading texture correctly from
disk, and many other tasks proved to be remarkably difficult. However,
versions 8 and 9 have gone a long way to improve this state of affairs.

Microsoft’s answer to this was two-fold. First, Direct3D 9.0 is consider-
ably easier to use and manage than previous versions. Lights, materials,
and viewports used to be interfaces that needed to be AddRef’d and
Released.

The second, more interesting answer to the complaints about D3D’s
complexity is the Direct3DX library (D3DX for short). It attempts to take
care of most of the grunt work by providing things like macros, mathemat-
ical functions, COM objects, and many other useful bits and pieces that
makes DirectX a nicer place to live. I’m not going to give you an exhaustive
look at the D3DX library, since it so large, but I really suggest you take a
look at DirectX 9.0 C++ Documentation/DirectX Graphics/Direct3DX C++

Reference in the documentation. You may be surprised at what you find.
D3DX is extremely useful for small applications and prototyping. If you

only want to test a certain feature, or if you want to check to see what a
texture looks like under certain conditions, D3DX is a godsend.

D3DX, while extremely useful for prototyping, is not something I will
be using much for this code, since it hides away a lot of the functionality
that I’m teaching you.

Application: D3D ViewApplication: D3D View

The sample application for this chapter is an object viewer. It loads object
files from disk and displays the object spinning around the scene. Before
you can draw the spinning object, you of course need a way to load it.

There are a myriad of different object formats out there. OBJ, 3DS,
DXF, ASC, and PLG files are available on the net or easy to construct. How-
ever, they’re all either extremely hard to parse or not fully featured
enough. Rather than trudge through a parser for one of these data types,
I’m going to circumvent a lot of headache and create our own format. The
web is rife with parsers for any of these other formats, so if you want to
parse it you won’t have to reinvent the wheel.

334 � Chapter 8: Beginning Direct3D

The .o3d Format

The name for the object format will be .o3d (object 3D format). It’s an
ASCII file, which makes it easy to edit manually if the need arises. The
object is designed for regular D3DVERTEX objects, which have no color
information but may have normal or texture information. Listing 8.13 has
the o3d file for a simple tetrahedron model.

Listing 8.13: Tetrahedron model

Tetrahedron 3 1 4 4
-1.0 -1.0 -1.0
1.0 1.0 -1.0
-1.0 1.0 1.0
1.0 -1.0 1.0
2 3 4
1 4 3
1 3 2
1 2 4

The first line of the file is the header. It has five fields, separated by spaces.
They are, in order:

� The name for the object (spaces within the name are not allowed).

� The number of fields per vertex. This can be three (just position), five
(three position and two texture), six (three position and three normal),
or eight (three position, three normal, and two texture).

� The offset for the indices. Some index lists are 0-based, some are
1-based. This offset is subtracted from each of the indices on load.
Since the indices in the tetrahedron list start at 1, the offset is 1 (since
index 1 will actually be element 0 internally).

� The number of vertices in the model.

� The number of triangles in the model.

After the header line, there is one line for each of the vertices. Each line
has n fields separated by spaces (where n is the number of fields per ver-
tex). The first three fields are always position.

After the list of vertices, there is a list of triangles. Each triangle is
defined with three indices separated by spaces. Each index has the offset
(defined in the header) subtracted from it.

The cModel Class

To load o3d models, I’m going to create a class that represents a model. It
has one constructor that takes a filename on disk. The constructor opens
the file, parses it, and extracts the vertex and triangle information. It takes
the information and fills up two vectors. If the file it loads does not have

Chapter 8: Beginning Direct3D � 335

normal information defined for it, the class uses face averaging to auto-
matically generate normals for the object.

Face averaging is used often to find normals for vertices that make a
model appear rounded when Gouraud shading is used on it. The normals
for each of the faces are computed, and the normal is added to each of the
face’s vertices. When all of the faces have contributed their normals, the
vertex normals are normalized. This, in essence, makes each vertex normal
the average of the normals of the faces around it. This gives the model a
smooth look.

The cModel class can automatically draw an object, given a matrix to
use for the world matrix. It uses DrawIndexedPrimitive to draw the entire
model in one fell swoop. There are also a few accessor functions; future
classes that load models will use cModel to load the file for them, and just
extract the vertex and triangle information for themselves.

Listing 8.14: cModel, a simple drawable 3D object

#define FVF_TYPE (D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_DIFFUSE | D3DFVF_TEX1)

class cModel
{

typedef tri<unsigned short> sTri;

vector< sTri > m_tris;

vector< sVertex > m_verts;

string m_name;

public:

cModel(const char* filename);

float GenRadius();
void Scale(float amt);

void Draw(const matrix4& mat);

//==========-------------------------- Access functions.

int NumVerts(){ return m_verts.size(); }
int NumTris(){ return m_tris.size(); }
const char* Name(){ return m_name.c_str(); }

/**
* Some other classes may end up using cModel
* to assist in their file parsing. Because of this
* give them a way to get at the vertex and triangle
* data.
*/
sVertex* VertData(){ return &m_verts[0]; }
sTri* TriData(){ return &m_tris[0]; }

336 � Chapter 8: Beginning Direct3D

};

cModel::cModel(const char* filename)
{

int i;

cFile file;
file.Open(filename);

queue<string> m_tokens;

file.TokenizeNextNCLine(&m_tokens, '#');

// first token is the name.
m_name = m_tokens.front();
m_tokens.pop();

// next is the # of fields in the vertex info
int nVertexFields = atoi(m_tokens.front().c_str());
m_tokens.pop();

// next is the triangle offset
int offset = atoi(m_tokens.front().c_str());
m_tokens.pop();

// next is the # of vertices
int nVerts = atoi(m_tokens.front().c_str());
m_tokens.pop();

// next is the # of triangles
int nTris = atoi(m_tokens.front().c_str());
m_tokens.pop();

// Reserve space in the vector for all the verts.
// This will speed up all the additions, since only
// one resize will be done.
m_verts.reserve(nVerts);
for(i=0; i<nVerts; i++)
{

m_tokens.empty();
file.TokenizeNextNCLine(&m_tokens, '#');

sVertex curr;

// Vertex data is guaranteed
curr.loc.x = atof(m_tokens.front().c_str());
m_tokens.pop();
curr.loc.y = atof(m_tokens.front().c_str());
m_tokens.pop();
curr.loc.z = atof(m_tokens.front().c_str());
m_tokens.pop();

// Load normal data if nfields is 6 or 8
if(nVertexFields == 6 || nVertexFields == 8)

Chapter 8: Beginning Direct3D � 337

{
curr.norm.x = atof(m_tokens.front().c_str());
m_tokens.pop();
curr.norm.y = atof(m_tokens.front().c_str());
m_tokens.pop();
curr.norm.z = atof(m_tokens.front().c_str());
m_tokens.pop();

}
else
{

curr.norm.Assign(0, 0, 0);
}

// Load texture data if nfields is 5 or 8
if(nVertexFields == 5 || nVertexFields == 8)
{

curr.u = atof(m_tokens.front().c_str());
m_tokens.pop();
curr.v = atof(m_tokens.front().c_str());
m_tokens.pop();

}
else
{

curr.u = 0.f;
curr.v = 0.f;

}

m_verts.push_back(curr);
}

// Reserve space in the vector for all the verts.
// This will speed up all the additions, since only
// one resize will be done.
m_tris.reserve(nTris);
for(i=0; i<nTris; i++)
{

m_tokens.empty();
file.TokenizeNextNCLine(&m_tokens, '#');

sTri tri;

// vertex data is guaranteed
tri.v[0] = atoi(m_tokens.front().c_str()) - offset;
m_tokens.pop();
tri.v[1] = atoi(m_tokens.front().c_str()) - offset;
m_tokens.pop();
tri.v[2] = atoi(m_tokens.front().c_str()) - offset;
m_tokens.pop();

m_tris.push_back(tri);
}

if(nVertexFields == 3 || nVertexFields == 5)
{

// Normals weren't provided. Generate our own.

338 � Chapter 8: Beginning Direct3D

// First set all the normals to zero.
for(i=0; i<nVerts; i++)
{

m_verts[i].norm.Assign(0,0,0);
}

// Then go through and add each triangle's normal
// to each of its verts.
for(i=0; i<nTris; i++)
{

plane3 plane(
m_verts[m_tris[i].v[0]].loc,
m_verts[m_tris[i].v[1]].loc,
m_verts[m_tris[i].v[2]].loc);

m_verts[m_tris[i].v[0]].norm += plane.n;
m_verts[m_tris[i].v[1]].norm += plane.n;
m_verts[m_tris[i].v[2]].norm += plane.n;

}

// Finally normalize all of the normals
for(i=0; i<nVerts; i++)
{

m_verts[i].norm.Normalize();
}

}
}

void cModel::Scale(float amt)
{

int size = m_verts.size();
for(int i=0; i<size; i++)
{

m_verts[i].loc *= amt;
}

}

void cModel::Draw(const matrix4& mat)
{

Graphics()->SetWorldMatrix(mat);

SetFVF(FVF_TYPE);

Graphics()->GetDevice()->DrawIndexedPrimitiveUP(
D3DPT_TRIANGLELIST,
0,
m_verts.size(),
m_tris.size(),
&m_tris[0],
D3DFMT_INDEX16,
&m_verts[0],
sizeof(vertex));

Chapter 8: Beginning Direct3D � 339

}

float cModel::GenRadius()
{

float best = 0.f;
int size = m_verts.size();
for(int i=0; i<size; i++)
{

float curr = m_verts[i].loc.Mag();
if(curr > best)

best = curr;
}
return best;

}

Now that you have a way to load models, a program just needs to be
wrapped around it. That is what the D3DSample program does. It takes a
filename in the constructor, loads it, creates three colored directional
lights, and spins the object around in front of the camera. There is no user
input for this program; it’s just there to look pretty. See Figure 8.5 for a
screen shot of D3DSample in action.

The code for D3DSample appears in Listing 8.15. There are a few models
in the Chapter 08\BIN\Media folder in the downloadable files, so you can
mess around with it if you want to see what other models look like. I
highly recommend the rabbit.

Listing 8.15: D3DSample.cpp

/***
* Advanced 3D Game Programming using DirectX 9.0

340 � Chapter 8: Beginning Direct3D

Figure 8.5:
Screen shot from
D3DSample

* *
* Title: D3DSample.cpp
* Desc: An extremely simple D3D app, using the framework
* we have made
* (C) 2003 by Peter A Walsh and Adrian Perez
* See license.txt for modification and distribution information
**/

#include "stdafx.h"

class cD3DSampleApp : public cApplication
{

public:

string m_filename;
cModel* m_pModel;

void InitLights();

//==========-------------------------- cApplication

virtual void DoFrame(float timeDelta);
virtual void SceneInit();

virtual void SceneEnd()
{

delete m_pModel;
}

cD3DSampleApp() :
cApplication()

{
m_title = string("D3DSample - Objects Spinning in D3D");
m_pModel = NULL;
m_filename = "..\\BIN\\Media\\Cow.o3d";

}
};

cApplication* CreateApplication()
{

return new cD3DSampleApp();
}

void DestroyApplication(cApplication* pApp)
{

delete pApp;
}

void cD3DSampleApp::SceneInit()
{

/**
* We're making the FOV less than 90 degrees.
* this is so the object doesn't warp as much
* when we're really close to it.

Chapter 8: Beginning Direct3D � 341

*/
Graphics()->SetProjectionData(PI/4.f, 0.5f, 10.f);
Graphics()->MakeProjectionMatrix();

/**
* initialize our scene
*/
LPDIRECT3DDEVICE9 pDevice = Graphics()->GetDevice();

pDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_CCW);
pDevice->SetRenderState(D3DRS_LIGHTING, TRUE);
pDevice->SetRenderState(D3DRS_DITHERENABLE, TRUE);
pDevice->SetRenderState(D3DRS_SPECULARENABLE, TRUE);
pDevice->SetRenderState(D3DRS_AMBIENT, 0x404040);

/**
* initialize the camera
*/
Graphics()->SetViewMatrix(matrix4::Identity);

/**
* Create a model with the given filename,
* and resize it so it fits inside a unit sphere.
*/
m_pModel = new cModel(m_filename.c_str());
m_pModel->Scale(1.f / m_pModel->GenRadius());

InitLights();
}

void cD3DSampleApp::InitLights()
{

LPDIRECT3DDEVICE9 pDevice = Graphics()->GetDevice();

sLight light;

// Light 0
light = sLight::Directional(

point3(0,-4,2).Normalized(),
0.5f * color3::White + 0.2f * color3::Red,
0.7f * color3::White + 0.2f * color3::Red,
0.2f * color3::White + 0.2f * color3::Red);

// Set the light
pDevice->SetLight(0, &light);
pDevice->LightEnable(0, TRUE);

// Light 1
light = sLight::Directional(

point3(3,1,1).Normalized(),
0.5f * color3::White + 0.2f * color3::Green,
0.7f * color3::White + 0.2f * color3::Green,
0.2f * color3::White + 0.2f * color3::Green);

342 � Chapter 8: Beginning Direct3D

// Set the light
pDevice->SetLight(1, &light);
pDevice->LightEnable(1, TRUE);

// Light 2
light = sLight::Directional(

point3(-3,3,5).Normalized(),
0.5f * color3::White + 0.2f * color3::Blue,
0.7f * color3::White + 0.2f * color3::Blue,
0.2f * color3::White + 0.2f * color3::Blue);

// Set the light
pDevice->SetLight(2, &light);
pDevice->LightEnable(2, TRUE);

sMaterial mat(
16.f,
color3(0.5f,0.5f,0.5f),
color3(0.7f,0.7f,0.7f),
color3(0.1f,0.1f,0.1f));

pDevice->SetMaterial(&mat);
}

void cD3DSampleApp::DoFrame(float timeDelta)
{

/**
* update the time
*/
static float rotAmt = 0.f;
rotAmt += timeDelta;

/**
* then, draw the frame.
*/
LPDIRECT3DDEVICE9 pDevice = Graphics()->GetDevice();
if(pDevice)
{

Graphics()->Clear(true, true, 0x000000, 1.f);

Graphics()->BeginScene();

/**
* Build a simple matrix for the object,
* just spin around all three axes.
*/
matrix4 mat;
mat.MakeIdent();
mat.Rotate(rotAmt, 1.1f * rotAmt, 1.4f * rotAmt);
mat.Place(point3(0,0,3.f));
Graphics()->SetWorldMatrix(mat);

/**
* Here is where we actually draw our object

Chapter 8: Beginning Direct3D � 343

*/
m_pModel->Draw(mat);

Graphics()->EndScene();

/**
* flip the buffer.
*/
Graphics()->Flip();

}
}

344 � Chapter 8: Beginning Direct3D

Chapter 9Chapter 9

This is my favorite chapter in the book. Nothing but sweet, pure, uncut
3D graphics. We’re going to take a whirlwind tour of some more
advanced topics in 3D programming. Among other things we’ll cover
inverse kinematics, subdivision surfaces, and radiosity lighting. This is
the most interesting and exciting part of graphics programming—exper-
imenting with cool technology and trying to get it to work well enough
to make it into a project. Sometimes it works and sometimes it doesn’t,
but hit or miss, it’s still mind-numbingly fun.

Animation Using Hierarchical ObjectsAnimation Using Hierarchical Objects

I wish there were more space to devote to animating our objects, but
unfortunately there isn’t. Animation is a rich topic, from key frame ani-
mation to motion capture to rotoscoping. I’ll just be able to give a
sweeping discussion about a few techniques used in animation, then
talk about hierarchical objects.

Back in the 2D days, animation was done using sprites. Sprites are
just bunches of pixels that represent images on the screen. A set of ani-
mation frames would be shown in rapid succession to give the illusion
of motion. The same technique is used in animated films to give life to
their characters.

In 3D, the landscape is much more varied. Some systems use simple
extensions from their 2D counterparts. Some games have a complete set
of vertex positions for each frame of each animation. This made it very
similar to 2D games, just replacing pixels with vertices. Newer games
move a step further, using interpolation to smoothly morph between
frames. This way the playback speed looks good independent of the
recording speed; an animation recorded at 10 fps still looks smooth on a
60 fps display.

While systems like this can be very fast (you have to compute, at
most, a linear interpolation per vertex), they have a slew of disadvan-
tages. The primary disadvantage is that you must explicitly store each
frame of animation in memory. If you have a model with 500 vertices, at

345

24 bytes (3 floats) per vertex, that’s 12 kilobytes of memory needed per
frame. If you have several hundred frames of animation, suddenly you’re
faced with around a megabyte of storage per animated object. In practice, if
you have many different types of objects in the scene, the memory require-
ments become prohibitive.

Note: The memory requirements for each character model in Quake III: Arena

were so high that the game almost had an eleventh-hour switch over to hier-
archical models.

Explicitly placing each vertex in a model each frame isn’t the only solution.
It is lathered in redundancy. The topology of the models remains about the
same. Outside of the bending and flexing that occurs at model joints, the
relative locations of the vertices in relation to each other stays pretty
similar.

The way humans and other animals move isn’t defined by the skin
moving around. Your bones are rigid bodies connected by joints that can
only bend in certain directions. The muscles in your body are connected to
the bones through tendons and ligaments, and the skin sits on top of the
muscles. Therefore, the position of your skin is a function of the position of
your bones.

This structural paradigm is emulated by bone-based animation. A
model is defined once in a neutral position, with a set of bones underlying
the structure of the model. All of the vertices in the forearm region of the
model are conceptually bound to the forearm bone, and so forth. Instead
of explicitly listing a set of vertices per frame for your animation, all this
system needs is the orientation of each bone in relation to its parent bone.
Typically, the root node is the hip of the model, so that the world matrix
for the object corresponds to the position of the hip, and the world trans-
formations for each of the other joints are derived from it.

346 � Chapter 9: Advanced 3D Programming

Figure 9.1:
Building a hierar-
chy of rigid
objects to make a
humanoid

With these orientations you can figure out the layout of each bone of the
model, and you use the same transformation matrices. Figuring out the
positions of bones, given the angles of the joints, is called forward

kinematics.

Forward Kinematics

Understanding the way transformations are concatenated is pivotal to
understanding forward kinematics. See Chapter 5 for a discussion on this
topic if you’re rusty on it.

Let’s say we’re dealing with the simple case of a 2D two-linkage sys-
tem, an upper arm and a lower arm, with shoulder and elbow joints. We’ll
define the vertices of the upper arm with a local origin of the shoulder, the
vertices sticking out along the x-axis. The lower arm is defined in the same
manner, just using the elbow as the local origin. There is a special point in
the upper arm that defines where the elbow joint is situated. There is also
a point that defines where the shoulder joint is situated relative to the
world origin.

The first task is to transform the points of the upper arm. What you want
to do is rotate each of the points about the shoulder axis by the shoulder
angle � 1, and then translate them so that they are situated relative to the
origin. So the transformation becomes:

upper-arm transformation = RZ(� 1)T(shoulder_location)

Chapter 9: Advanced 3D Programming � 347

Figure 9.2:
The untransformed
upper and lower
arm segments

Transforming the elbow points is more difficult. Not only are they depend-
ent on the elbow angle � 2, they also depend on the position and angle of
their parent, the upper arm and shoulder joint.

We can subdivide the problem to make it easier. If we can transform
the elbow points to orient them relative to the origin of the shoulder, then
we can just add to that the transformation for the shoulder, to take them to
world space. This transformation becomes:

lower-arm transformation = RZ(� 2)T(elbow_location)
RZ(� 1)T(shoulder_location)

or

lower-arm transformation = RZ(� 2)T(elbow_location)
upper-arm transformation

348 � Chapter 9: Advanced 3D Programming

Figure 9.3:
The result of
transforming just
the shoulder

Figure 9.4:
The fully trans-
formed arm

This system makes at least some intuitive sense. Imagine we have some
point on the lower arm, initially in object space. The rotation by � 2 rotates
the point about the elbow joint, and the translation moves the point such
that the elbow is sticking out to the right of the origin. At this point we
have the shoulder joint at the origin, the upper arm sticking out to the
right, a jointed elbow, and then our point somewhere on the lower arm.
The next transformation we apply is the rotation by � 1, which rotates
everything up to this point (the lower arm and upper arm) by the shoulder
angle. Finally, we apply the transformation to place the shoulder some-
where in the world a little more meaningful than the world space origin.

This system fits into a clean recursive algorithm very well. At each
stage of the hierarchy, we compute the transformation that transforms the
current joint to the space of the joint above it in the hierarchy, appending it
to the front of the current world matrix, and recursing with each of the
children. Pseudocode to do this appears in Listing 9.1.

Listing 9.1: Pseudocode to draw hierarchical models

struct hierNode
{

vert_and_triangle_Data m_data;
vector< hierNode* children > m_children;
matrix4 m_matrix;

void Draw(matrix4 parentMatrix)
{

matrix4 curr = m_matrix * parentMatrix;

// draws the triangles of this node using the provided matrix
m_data->Draw(curr);
for(int i=0; i<m_children.size(); i++)
{

m_children[i]->Draw(curr);
}

}
};

Inverse Kinematics

Forward kinematics takes a set of joint angles and finds the position of the
end effector. The inverse of the problem, finding the set of joint angles
required to place the end effector in a desired position, is called inverse

kinematics.
IK is useful in a lot of applications. An example would be having

autonomous agents helping the player in a game. During the course of the
game, the situation may arise that the autonomous helper needs to press a
button, pull a lever, or perform some other action. When this is done with-
out IK, each type of button must be hand-animated by an artist so the
agent hits the button accurately. With IK this becomes much easier. The

Chapter 9: Advanced 3D Programming � 349

agent just needs to move close enough to it, and find the angles for the
shoulder, elbow, and hand to put the pointer finger at the location of the
button.

Inverse kinematics is a hard problem, especially when you start solving
harder cases. It all boils down to degrees of freedom. In all but the sim-
plest case (being a single angular joint and a singular prismatic joint) there
are multiple possible solutions for an inverse kinematics system. Take, for
example, a shoulder-elbow linkage: two links with two angular joints
(shoulder and elbow) and an end effector at the hand. If there is any bend
in the arm at all, then there are two possible solutions for the linkage, as
evidenced by Figure 9.5.

These two possible solutions are commonly referred to as elbow up and
elbow down. While for this case it’s fairly easy to determine the two-elbow
configurations, it only gets worse. If you had a three-segment linkage, for
example, there are potentially an infinite number of solutions to the
problem.

Aside: Howie Choset, a professor at Carnegie Mellon, does research on snake
robots. One of them is a six-segment linkage, and each joint has three
degrees of freedom. The set of inverse kinematics solutions for a linkage like
this has about 18 solutions!

There are two ways to go about solving an IK problem. One way is to do it
algebraically: The forward kinematics equation gets inverted, the system is
solved, and the solution is found. The other way is geometrically: Trigono-
metric identities and other geometric theorems are used to solve the
problem. Often for more complex IK systems, a combination of both meth-
ods needs to be used. Algebraic manipulation will get you so far towards

350 � Chapter 9: Advanced 3D Programming

Figure 9.5:
The two joint solu-
tions for a given
end effector

the solution, then you take what you’ve gotten thus far and feed it into a
geometric solution to get a little further, and so on.

To introduce you to IK, let’s solve a simple system: two segments, each
with a pivot joint with one degree of freedom. This corresponds closely to
a human arm. The base joint is the shoulder, the second joint is the elbow,
and the end effector is the wrist. It’s a 2D problem, but applying the solu-
tion in 3D isn’t hard. Ian Davis, a CMU alum currently at Activision, used
this type of IK problem to implement autonomous agents in a game. The
agents could wander around and help the player. When they wanted to
press a button, they moved to the button such that a plane was formed
with the arm and button, and then the 2D IK solution was found in the
plane.

Being able to solve the two-joint system is also useful in solving
slightly more complex systems. If we want to have a third segment (a
hand, pivoting at the wrist), there are an infinite amount of solutions for
most positions that the pointer finger can be in. However, if we force the
hand to be at a particular angle, the problem decomposes into solving a
two-segment problem (given the length of the hand and the angle it
should be in, the position of the wrist can be found relative to the end
effector, and then the wrist, elbow, and shoulder form a solvable
two-segment problem).

The two things we’ll need to solve the IK problem are two laws of
geometry, the law of cosines and the law of sines. They are given in Figure
9.6.

To formally state the problem, we are given as input the lengths of two
arm segments L1 and L2, and the desired x,y position of the end effector.
We wish to find a valid set of theta angles for the shoulder and elbow
joints. The problem configuration appears in Figure 9.7.

Chapter 9: Advanced 3D Programming � 351

Figure 9.6:
The law of sines and the
law of cosines

We’ll be using a bunch of variables to solve the IK problem. They are given
in Figure 9.8.

Here is what we do to solve the IK problem, step by step:

1. Find dist, using the Pythagoean theorem.

2. Find � , using the arc-tangent (� = tan-1(y/x)).

3. Find � hat using the law of cosines (A=dist, B= L1, C=L2).

4. We can now find the shoulder angle � 1 by subtracting � hat

from � .

5. � arm can be found using the law of cosines as well (A=L2, B=

L1, C=dist).

6. The elbow angle, � 2, is just PI-� arm.

Application: InvKim

To show off inverse kinematics, I wrote a simple application called InvKim
that solves the two-linkage problem. One of the things that it needs to do
is bound the end effector position to the range of possible solutions that

352 � Chapter 9: Advanced 3D Programming

Figure 9.8:
The IK problem with the variables
we’ll use to solve it

Figure 9.7:
The IK problem we wish to solve

can be reached by the arm. The mouse controls a little icon that the end
effector always moves towards. You’ll notice that the end effector moves at
a constant velocity, and the theta angles change to accommodate its move-
ment. When the pointer is in a position that the arm cannot reach, it tries
its best to get there, pointing towards its desired goal.

Listing 9.2: Snippets from InvKim

void cIKApp::DrawLinkage(){
/**
* Use the lengths and theta information
* to compute the forward dynamics of
* the arm, and draw it.
*/
sLitVertex box[4];
sLitVertex joint[20];
matrix4 rot1, trans1;
matrix4 rot2, trans2;

/**
* create a half circle to give our links rounded edges
*/
point3 halfCircle[10];
int i;
for(i=0; i<10; i++)
{

float theta = (float)i*PI/9.f;
halfCircle[i] = point3(

0.85f * sin(theta),
0.85f * cos(theta),
0.f);

}

rot1.ToZRot(m_theta1);
trans1.ToTranslation(point3(m_l1,0, 0));

rot2.ToZRot(m_theta2);

LPDIRECT3DDEVICE9 pDevice = Graphics()->GetDevice();

/**
* Make and draw the upper arm
*/
matrix4 shoulderMat = rot1;
for(i=0; i<10; i++)
{

point3 temp = halfCircle[i];
temp.x = -temp.x;
joint[i] = sLitVertex(shoulderMat*temp, 0xFF8080);
joint[19-i] = sLitVertex(shoulderMat*

(halfCircle[i] + point3(m_l1, 0, 0)), 0x80FF80);
}

pDevice->DrawPrimitiveUP(
D3DPT_TRIANGLEFAN,

Chapter 9: Advanced 3D Programming � 353

18,
joint,
sizeof(sLitVertex));

/**
* Make and draw the lower arm
*/
matrix4 elbowMat = rot2 * trans1 * rot1;
for(i=0; i<10; i++)
{

point3 temp = halfCircle[i];
temp.x = -temp.x;
joint[i] = sLitVertex(elbowMat * temp, 0x80FF80);
joint[19-i] = sLitVertex(elbowMat *

(halfCircle[i] + point3(m_l2, 0, 0.f)), 0x8080FF);
}

pDevice->DrawPrimitiveUP(
D3DPT_TRIANGLEFAN,
18,
joint,
sizeof(sLitVertex));

/**
* Draw a diamond where the mouse is
*/
matrix4 mouseTrans;
mouseTrans.ToTranslation(m_mouse);
box[0] = sLitVertex(point3(0.5f,0.f,0.f)*mouseTrans, 0x808080);
box[1] = sLitVertex(point3(0.f,-0.5f,0.f)*mouseTrans, 0x808080);
box[2] = sLitVertex(point3(-0.5f,0.f,0.f)*mouseTrans, 0x808080);
box[3] = sLitVertex(point3(0.f,0.5f,0.f)*mouseTrans, 0x808080);

pDevice->DrawPrimitiveUP(
D3DPT_TRIANGLEFAN,
2,
box,
sizeof(sLitVertex));

}

Parametric Curves and SurfacesParametric Curves and Surfaces

Something you may have noticed up to this point is that most of the
objects we have been dealing with have been a little on the angular side.
We can clearly see the vertices, triangles, and edges that define the bound-
aries. Objects in the real world, especially organic objects like humans,
don’t have such sharp definitions. They are curvy to some extent, a trait
that is difficult to represent with generic triangle meshes. We can define
mathematical entities that allow us to smoothly generate curves (called
splines) and surfaces (called patches). We’ll discuss two styles of curves:
cubic Bezier and cubic b-spline curves.

354 � Chapter 9: Advanced 3D Programming

Aside: The term spline comes from way, way back, when ships were built from
wood. The process of bending planks with weights so they could build the
hulls of boats is not unlike the math behind curves.

Bezier Curves and Surfaces

A cubic Bezier curve defines a parametric equation that produces a posi-
tion in space from a given time parameter. They can have different
degrees, but there are only two that are widely used: quadric and cubic.
Quadric curves only use three control points, while cubic curves use four.
We’ll be covering cubic Bezier curves, but deriving the math for quadric
curves won’t be difficult once we’re through.

Bezier Concepts

Cubic Bezier curves are defined by four points in space. These are called
the control points of the curve. To avoid confusion, generally lines are
drawn between the points to define which way they connect to each other.
Figure 9.9 shows an example of four control points that define a Bezier
curve.

The actual curve is computed using these four control points, by solving an
equation with a given t parameter between 0 and 1. At t=0, the returned
point is sitting at the first control point. At t=1, the point is sitting at the
last control point. The tangent of the curve (the direction at which the par-
ticle moves) at t=0 is parallel to the line connecting the first and second
control points. For t=1, the tangent is parallel to the line connecting the
third and fourth control points. The time in the middle the particle traces a
smooth path between these two directions/locations, making a curve that
looks like the one in Figure 9.10.

Chapter 9: Advanced 3D Programming � 355

Figure 9.9:
Four points defining a control
polygon for a Bezier curve

With just four points, it’s hard to represent too intricate a curve. In order to
have anything interesting, we have to combine them to form larger, more
complex curves. TrueType fonts are defined this way, as a set of Bezier
curves. However, they are defined as a set of quadric curves, which are
easier to rasterize.

But how do we join them? How do we know that the curviness will
continue from one curve to the next? This brings up the concept of conti-

nuity. Bezier curves can meet together in several ways.
The first type of continuity is called C0. In this, the last control point of

one curve is in the same position as the first control point of the next
curve. Because of this, the particle will go from one curve to the other
without a jump. However, remember from before that the positions and
distances of the vectors between the first/second and third/fourth control
points define the direction of the particle. If the third and fourth control
points of one curve are not colinear with the second control point of the
next curve, there will be a sharp discontinuity, as shown in Figure 9.11.

We can fix this by achieving C1 continuity. In it, the second control point of
the second curve is colinear with the last two points of the previous curve,
but not the same distance from the first control point that the third control

356 � Chapter 9: Advanced 3D Programming

Figure 9.10:
Sample Bezier curve

Figure 9.11:
Two curves meeting with C0

continuity

point of the previous curve is. Curves with C1 continuity appear smooth, as
shown in Figure 9.12.

To make our curves seem totally smooth, we must go for C2 continuity. To
do this, the distance between the third and fourth control points of one
curve must be the same direction and same distance apart as the first and
second control points of the next one. This puts serious constraints on how
we can model our Bezier surfaces, however. The restrictions we have to
impose give us an extremely fair, extremely smooth looking joint connect-
ing the two curve segments, as shown in Figure 9.13.

The Math

Everyone put on your math caps; here comes the fun part. We’ll define
Bezier curve of degree n parametrically, as a function of t. We can think of
t being the time during the particles’ travel. The t variable varies from 0.0
to 1.0 for each Bezier curve.

Chapter 9: Advanced 3D Programming � 357

Figure 9.12:
Two curves meeting with C1

continuity

Figure 9.13:
Two curves meeting with C2

continuity

10)()(
0

, !!� �
�

ttBt

n

i

niipq

where Bi,n(t) is the Bernstein polynomial:

The vector pi is control point i.

Let’s work out the equations for our cubic (n = 3) curves. To help with the
flow of the derivation we’re going to do, we’ll expand each equation so it’s
in the form of ax3+bx2+cx+d.

Putting everything together, we get:

358 � Chapter 9: Advanced 3D Programming

ttt

ttt

tt

tttB

363

)21(3

)1(3

)1(
)!2(!1

!3
)(

23

2

2

12
3,1

	
�

	
�

�

�

23

2

2

21
3,2

33

)21(3

)1(3

)1(
)!1(!2

!3
)(

tt

ttt

tt

tttB

	
�

	
�

�

�

3

30
3,3)1(

)!0(!3

!3
)(

t

tttB

�

�

3223

3,33,23,13,0

)1(3)1(3)1()(

)()()()()(

ttttttt

tBtBtBtBt

3210

3210

ppppq

ppppq

	
	
	
�

			�

iin
ni

iin
ni

tt
ini

n
tB

tt
i

n
tB

�

���

�
���

�
�

)1(
)!(!

!
)(

)1()(

,

,

133

)2()21(

)21)(1(

)1(

)1(
)!3(!0

!3
)(

23

322

2

3

03
3,0

	
	
�

	

	
�

	

�

�

�

ttt

ttttt

ttt

t

tttB

The equation can be solved using vector mathematics, or we can extract
the x, y, and z components of each control point and solve the curve posi-
tion for that component independently of the other two.

Some insight as to how this equation generates a curve for us comes
when we graph the equation. The graph of the four Bernstein blending
functions appears in Figure 9.14.

Note that at t=0 we are only influenced by the first control point (the
Bernstein for the others evaluates to 0). This agrees with the observation
that at t=0 our curve is sitting on top of the first control point. The same is
true for the last point at t=1. Also note that the second and third points
never get to contribute completely to the curve (their graphs never reach
1.0), which explains why the middle two control points do not intersect
(unless our control points are all collinear, of course).

Finding the Basis Matrix

The equation presented above to find Bezier curve points is a bit clunky,
and doesn’t fit well into the 3D framework we’ve set up thus far. Luckily,
we can decompose the equation into matrix-vector math, as we’ll soon see.

Let us consider each coordinate separately, performing the equations
for x, y, and z separately. So when we write p0, for example, we’re refer-
ring to one particular coordinate of the first control vector. If we think
about the control points as a vector, we can rewrite the equation as a dot
product of two 4D vectors:

Chapter 9: Advanced 3D Programming � 359

Figure 9.14:
A graph of the four blend-
ing functions

TT

x

x

x

x

x

t

tt

tt

t

p

p

p

p

t

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�

�

�

�

3

2

2

3

3

2

1

0

)1(3

)1(3

)1(

)(q

Note that the equations for y and z are identical, just swapping the corre-
sponding components. We’ll exclude the component subscripts for the rest
of the equations, but keep them in mind. Now, each term in the second
vector is one of the Bernstein terms. Let’s fill in their full forms that we fig-
ured out above. (I took the liberty of adding a few choice zero terms, to
help the logic flow of where we’re taking this.)

Hmmm … well, this is interesting. We have a lot of like terms here. As it
turns out, we can represent the right term as the result of the multiplica-
tion of a 4x4 matrix and the vector <t3,t2,t,1>.

Note: If you don’t follow the jump, go to Chapter 5 to see how we multiply 4x4
and 1x4 matrices together. Try working it out on paper so you see what is
happening.

If you’ve followed up to this point, pat yourself on the back. We just
derived MB, the basis matrix for Bezier curves:

Now we’re golden: We can find any point p(t) on a Bezier curve. For each
component (x, y, and z), we multiply together a vector of those compo-
nents from the four control points, the vector <t3,t2,t,1>, and the basis
matrix MB. We perform the 1D computation for all three axes
independently.

Calculating Bezier Curves

So this begs the question of how we render our Bezier curves. Well, the
way it’s typically done is stepping across the curve a discrete amount of
steps, calculating the point along the curve at that point, and then drawing

360 � Chapter 9: Advanced 3D Programming

TT

ttt

ttt

ttt

ttt

p

p

p

p

t

�
�
�
�
�

�

�

�
�
�
�
�

�

�

			
			

		

	
	

�
�
�
�
�

�

�

�
�
�
�

�

�

�

)1(000

)1(0033

)1(0363

133

)(

23

23

23

23

3

2

1

0

q

��
�
�
�
�

�

�

��
�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�

�

�

�

0001

0033

0363

1331

1

)(
2

3

3

2

1

0

TT

t

t

t

p

p

p

p

tq

�
�
�
�

�

�

�
�
�
�

�

�

�

0001

0033

0363

1331

BM

a small line between each pair of lines. So our curves are not perfectly
curvy (unless we calculate an infinite amount of points between t=0 and
t=1, which is a bit on the impossible side). However, we’re always bound
to some resolution below which we don’t really care about. In printing, it’s
the dots-per-inch of the printer, and in video it’s the resolution of the moni-
tor. So if we calculate the curve such that each sub-line is less than one
pixel long, it will appear exactly as the limit curve would, and has much
more feasible memory and computational constraints.

Here’s the code to do it.

Listing 9.3: The cSlowBezierIterator class

matrix4 cBezierPatch::m_basisMatrix = matrix4(
-1.0f, 3.0f, -3.0f, 1.0f,
3.0f, -6.0f, 3.0f, 0.0f,

-3.0f, 3.0f, 0.0f, 0.0f,
1.0f, 0.0f, 0.0f, 0.0f

);

class cBezierSlowIterator
{

int m_i; // our current step in the iteration
int m_nSteps; // the number of steps
point4 m_p[3]; // for x, y, and z
point3 m_cPts[4];

point3 m_Q; // Current position
public:

cBezierSlowIterator(
int nSteps, point3 p1, point3 p2, point3 p3, point3 p4)

{
m_cPts[0] = p1;
m_cPts[1] = p2;
m_cPts[2] = p3;
m_cPts[3] = p4;

m_nSteps = nSteps;
m_p[0].Assign(p1.x, p2.x, p3.x, p4.x);
m_p[1].Assign(p1.y, p2.y, p3.y, p4.y);
m_p[2].Assign(p1.z, p2.z, p3.z, p4.z);

}

void Start() {
m_i = 0;

}

bool Done() {
return !(m_i<m_nSteps);

}

point3& GetCurr() {
return m_Q;

}

Chapter 9: Advanced 3D Programming � 361

operator point3&() {
return m_Q;

}

void CalcNext() {
float t = (float)m_i / m_nSteps;
point4 tVec(t*t*t, t*t, t, 1);
point4 pVec;

m_Q.x = m_p[0] * (tVec * cBezierPatch::m_basisMatrix);
m_Q.y = m_p[1] * (tVec * cBezierPatch::m_basisMatrix);
m_Q.z = m_p[2] * (tVec * cBezierPatch::m_basisMatrix);
m_i++;

}
};

That code is written for readability; it’s terribly slow and it isn’t anything
anyone would use in production-quality code. Let’s write it for speed!

Forward Differencing

When we’re computing a linear function (say, color across a polygon) we
never try finding the result of the function at each point explicitly like this:

int numSteps = 50;
for(int i=0; i<numSteps; i++)
{

outColor[i] = FindColor(i);
}

Instead, we find the correct value at the first pixel (or point or whatever),
and find out how much it will change during each step (this is called a
delta). Then when we go across, we simply add the delta to the output,
like so:

int numSteps = 50;
color curr = FindColor(0);
color delta = FindDelta(numSteps);
for(int i=0; i<numSteps; i++)
{

outColor[i] = curr;
curr += delta;

}

If FindColor() is an expensive function, we end up speeding up our code a
whole lot, because we’re replacing it with just an addition.

The reason this particular code works is because the function we’re
interpolating is linear. The graph of the function is a straight line. So if we
can compute the slope of the line, we can increment our y by the slope
whenever we increment x, and thus we compute f(x+1) in terms of f(x)
instead of doing it explicitly.

362 � Chapter 9: Advanced 3D Programming

What about Bezier curves? The delta we would add to the position
during each iteration of finding p(t) isn’t constant, because it’s a cubic
function. The first derivative of the curve formed by the Bezier curve isn’t a
straight line (neither is the second derivative, for that matter). To solve this
problem, it is best to use forward differencing.

We can define our Bezier equation to be just a regular cubic function
(or the dot product of two 4D vectors), like so:

Note that in the above we only define qx; qy and qz would be essentially
identical. For the remainder of the equations we’re going to just abstractly
deal with some function q(t) (in code, we’ll need to do the work for each
component).

Let’s define the forward difference as �q(t). The forward difference is
defined such that when we add it to q(t), we get the next point in the iter-
ation (the point we get after we increment t by the small inter-step delta
value d). That is…

So now we just need to find �q(t). Don’t forget that d is a constant, based
on the number we wish to tessellate (" =1/size). Let’s get the math down:

Unfortunately, �q(t) is a function of t, so we would need to calculate it
explicitly each iteration. All we’ve done is add extra work. However, �q(t)
is a quadratic equation where q(t) was cubic, so we’ve improved a bit.
Let’s calculate the forward difference of �q(t) (that is, �2q(t)).

Chapter 9: Advanced 3D Programming � 363

)()()(ttt qqq #	�	 "

� � � � � � � �
� � """"""

"""

"

cbabatatt

dctbtatdtctbtat

ttt

					�#
			
						�#

	�#

2322

2323

233)(

)(

)()()(

q

q

qqq

� �
� �

� � T
xxxxB

T

T

x

x

dcba

ttt

t

dctbtatt

3210

23

23

1

)(

)(

ppppMc

c

t

ctq

q

�

�

�

��
			�

� � � � � �
� �� �

2322

2322

23222

2

266)(

233

233)(

)()()(

"""
""""""

""""""""

"

baatt

cbabatat

cbabattat

ttt

		�#
					

							�#

#
	#�#

q

q

qqq

We’re almost there. While �2q(t) still is a function of t, this time it’s just a
linear equation. We just need to do this one more time and calculate
�3q(t):

Eureka! A constant! If you don’t share my exuberance, hold on. Let’s sup-
pose that at some point along the curve we know q(t), �q(t), �2q(t), and
�3q(t). This will hold true at the initial case when t=0: We can explicitly
compute all four variables. To arrive at the next step in the iteration, we
just do:

As you can see, it’s just a bunch of additions. All we need to do is keep
track of everything. Suddenly, we only need to do hard work during setup;
calculating n points is next to free.

The cFwdDiffIterator Class

The cFwdDiffIterator class implements the equations listed above to per-
form forward differencing. Compare and contrast the equations and the
code until they make sense. The code appears in Listing 9.4.

Listing 9.4: Forward difference iterator class

class cFwdDiffIterator
{

int m_i; // our current step in the iteration
int m_nSteps; // the number of steps

point3 m_p[4]; // The 4 control points

point3 m_Q; // the point at the current iteration location
point3 m_dQ; // First derivative (initially at zero)
point3 m_ddQ; // Second derivative (initially at zero)
point3 m_dddQ; // Triple derivative (constant)

public:
cFwdDiffIterator()
{

// Do nothing
}
cFwdDiffIterator(

int nSteps,

364 � Chapter 9: Advanced 3D Programming

� � � �
33

2322323

223

6)(

266266)(

)()()(

"
"""""""

"

at

baatbatat

ttt

�#
		
			�#

#
	#�#

q

q

qqq

)()()(

)()()(

)()()(

322

2

ttt

ttt

ttt

qqq

qqq

qqq

#	#�	#

#	#�	#

#	�	

"

"

"

point3 p1,
point3 p2,
point3 p3,
point3 p4)

{
m_nSteps = nSteps;
m_p[0] = p1;
m_p[1] = p2;
m_p[2] = p3;
m_p[3] = p4;

}

void Start()
{

m_i = 0;

float d = 1.f/(m_nSteps-1);
float d2 = d*d; // d^2
float d3 = d*d2;// d^3

point4 px(m_p[0].x, m_p[1].x, m_p[2].x, m_p[3].x);
point4 py(m_p[0].y, m_p[1].y, m_p[2].y, m_p[3].y);
point4 pz(m_p[0].z, m_p[1].z, m_p[2].z, m_p[3].z);

point4 cVec[3]; // <a, b, c, d> for x, y, and z.
cVec[0] = px * cBezierPatch::m_basisMatrix;
cVec[1] = py * cBezierPatch::m_basisMatrix;
cVec[2] = pz * cBezierPatch::m_basisMatrix;

m_Q = m_p[0];

// Do the work for each component
int i = 3;
while (i—)
{

// remember that t=0 here so many of the terms
// in the text drop out.
float a = cVec[i].v[0];
float b = cVec[i].v[1];
float c = cVec[i].v[2];
// luckily d isn't used, which
// would clash with the other d.

m_dQ.v[i] = a * d3 + b * d2 + c * d;
m_ddQ.v[i] = 6 * a * d3 + 2 * b * d2;
m_dddQ.v[i] = 6 * a * d3;

}
}

bool Done()
{

return !(m_i<m_nSteps);
}

point3& GetCurr()

Chapter 9: Advanced 3D Programming � 365

{
return m_Q;

}

operator point3&()
{

return m_Q;
}

void CalcNext()
{

m_Q += m_dQ;
m_dQ += m_ddQ;
m_ddQ += m_dddQ;

m_i++;
}

};

Drawing Curves

Armed with our fast forward difference iterator, drawing curves isn’t diffi-
cult at all. All we need to do is step across the Bezier curve, sample the
curve point at however many locations desired, and draw the data, either
as a point list or a line strip. Listing 9.5 shows what this would look like.

Listing 9.5: Sample code to draw a Bezier curve

void DrawCurve(
const point3& c1,
const point3& c2,
const point3& c3,
const point3& c4)

{
LPDIRECT3DDEVICE9 pDevice = Graphics()->GetDevice();
// we can tessellate to any level of detail we want, but for the
// sake of example let's generate 50 points (49 line segments)
sLitVertex v[50];
cFwdDiffIterator iter(50, c1, c2, c3, c4);
int curr = 0;
for(iter.Start(); !iter.Done(); iter.CalcNext())
{

v[curr++] = sLitVertex(iter.GetCurr(), 0x00FFFFFF);

}

pDevice->DrawPrimitiveUP(
D3DPT_LINESTRIP,
49,
v,
sizeof(sLitVertex));

}

366 � Chapter 9: Advanced 3D Programming

Drawing Surfaces

While curves are swell and all, what we really want to do is draw curved
surfaces. Luckily, we’re not far away from being able to do that. Instead of
four control points, we’re going to have 16. We define a 4x4 grid of points
that will form a 3D surface, called a patch. A simple patch appears in Fig-
ure 9.15.

So instead of the function q(t) we had before, now we have a new func-
tion q(s,t) that gives the point along the surface for the two inputs
([0,1],[0,1]). The four corners of our patch are (0,0), (1,0), (1,1), and
(0,1). In practice, it would be possible to just iterate across the entire sur-
face with two for loops, calculating the point using the two-dimensional
function. However, we can exploit the code written previously for calculat-
ing curves.

We can think of the patch as a series of n curves put side to side to give
the impression of a surface. If we step evenly along all n curves m times,
we will create an m x n grid of point values. We can use the same forward
differencing code we wrote before to step m times along each of these n

curves. All we need is the four control points that define each of the n

curves.
No problem. We can think of the 16 control points as four sets of con-

trol points describing four vertical curves. We simultaneously step n times
along each of these four curves. Each of the n iterated points is a control
point for a horizontal curve. We take the four iterated points from the four
curves and use that to create a horizontal curve, which we iterate across n

times. We use our forward differencing code here, too. An image of a
Bezier patch appears in Figure 9.16.

Chapter 9: Advanced 3D Programming � 367

Figure 9.15:
A control net for a simple
patch

Application: Teapot

The application for this section is a viewer to display objects composed of
Bezier surfaces. A Bezier object (represented by the class cBezierObject)
holds on to a bunch of separate Bezier patches. To show off the code, we’ll
use the canonical Bezier patch surface: the Utah Teapot.

The teapot is used in graphics so often it’s transcended to the point of
being a basic geometric primitive (in both 3D Studio and Direct3D). It’s a
set of 28 patches that define an object that looks like a teapot. Figure 9.17
shows what the control nets for the patches looks like, and Figure 9.18
shows the tessellated Bezier patches.

368 � Chapter 9: Advanced 3D Programming

Figure 9.16:
The control net, with the
tessellated mesh

Figure 9.17:
Control nets for the Bezier
patches of the teapot model

Figure 9.18: Tessellated teapot
model

The Bezier patches are loaded from an ASCII .bez file. The first line gives
the number of patches, and then each patch is listed on four lines (four
control points per line). Each patch is separated by a line of white space.

One thing we haven’t discussed yet is how to generate normals for our
patches. We need to define a vertex normal for each vertex in the grid if
we want it to be lit correctly. One way to do it would be to compute them
the same way as for regular polygonal surfaces (that is, find normals for
each of the triangles, and average the normals of all the triangles that
share a vertex, making that the vertex normal). This won’t work however;
at least not completely. The normals of the edges will be biased inward a
little (since they don’t have the triangles of adjacent patches contributing
to the average). This will cause our patches to not meet up correctly, caus-
ing a visual seam where adjacent normals are different.

A better way to calculate Bezier patch normals is to generate them
explicitly from the definition of the curve. When we compute the Bezier
function using the t-vector <t3,t2,t,1> we compute the position along the
curve. If we instead use the first derivative of the Bezier function we will
get the tangent at each point instead of the position. To compute the deriv-
ative we just use a different t-vector, where each component is the
derivative of the component in the regular t-vector. This gives us the vector
<3t2,2t,1,0>.

To do this I threw together a quick and dirty iterator class (called
cTangentIterator) that uses the slow matrix multiplication method to cal-
culate the tangent vectors. Converting the iterator to use forward
differencing would not be hard, and is left as an exercise for the reader.

We step across the patch one way and find the position and u-tangent
vector. We then step across the perpendicular direction, calculating the
v-tangent vectors. Then we cross product the two tangent vectors to get a
vector perpendicular to both of them (which is the normal we want). We
use the position and normal to build the vertex list. Then when we draw,
it’s just one DrawIndexedPrimitive call. There’s too much code in the pro-
ject to list here, so I’ll just put in the interesting parts.

Listing 9.6: Notable code from the teapot program

void cBezierPatch::Init(int size)
{

delete [] m_vertList;
delete [] m_triList;
delete [] m_uTangList;
delete [] m_vTangList;

m_size = size;

// allocate our lists
m_vertList = new sVertex[size * size];

m_triList = new sTri[(size-1) * (size-1) * 2];

Chapter 9: Advanced 3D Programming � 369

m_uTangList = new point3[size * size];
m_vTangList = new point3[size * size];

Tesselate();
}

/**
* Fill in the grid of values (all the dynamic arrays
* have been initialized already). The grid is of
* size mxn where m = n = m_size
*/
void cBezierPatch::Tesselate()
{

int u, v; // patch-space coordinates.
point3 p1,p2,p3,p4;

/**
* These are the four curves that will define the
* control points for the rest of the curves
*/
cFwdDiffIterator mainCurve1;
cFwdDiffIterator mainCurve2;
cFwdDiffIterator mainCurve3;
cFwdDiffIterator mainCurve4;

int nSteps = m_size;
mainCurve1 = cFwdDiffIterator(nSteps, m_ctrlPoints[0],

m_ctrlPoints[4], m_ctrlPoints[8], m_ctrlPoints[12]);
mainCurve2 = cFwdDiffIterator(nSteps, m_ctrlPoints[1],

m_ctrlPoints[5], m_ctrlPoints[9], m_ctrlPoints[13]);
mainCurve3 = cFwdDiffIterator(nSteps, m_ctrlPoints[2],

m_ctrlPoints[6], m_ctrlPoints[10], m_ctrlPoints[14]);
mainCurve4 = cFwdDiffIterator(nSteps, m_ctrlPoints[3],

m_ctrlPoints[7], m_ctrlPoints[11], m_ctrlPoints[15]);

mainCurve1.Start();
mainCurve2.Start();
mainCurve3.Start();
mainCurve4.Start();

for(v=0;v<m_size;v++)
{

/**
* Generate our four control points for this curve
*/
p1 = mainCurve1.GetCurr();
p2 = mainCurve2.GetCurr();
p3 = mainCurve3.GetCurr();
p4 = mainCurve4.GetCurr();

/**
* Now step along the curve filling in the data
*/
cTangentIterator tanIter(nSteps, p1, p2, p3, p4);

370 � Chapter 9: Advanced 3D Programming

tanIter.Start();
cFwdDiffIterator iter(nSteps, p1, p2, p3, p4);
u = 0;
for(

iter.Start(); !iter.Done(); iter.CalcNext(), u++)
{

m_vertList[m_size*v+u].loc = iter.GetCurr();

// We're piggybacking our u-direction
// tangent vector calculation here.
m_uTangList[m_size*v+u] = tanIter.GetCurr();
tanIter.CalcNext();

}

mainCurve1.CalcNext();
mainCurve2.CalcNext();
mainCurve3.CalcNext();
mainCurve4.CalcNext();

}

/**
* Since we can't generate the v-tangents in the same run as
* the u-tangents (we need to go in the opposite direction),
* we have to go through the process again, but this time in the
* perpendicular direction we went the first time
*/
mainCurve1 = cFwdDiffIterator(nSteps, m_ctrlPoints[0],

m_ctrlPoints[1], m_ctrlPoints[2], m_ctrlPoints[3]);
mainCurve2 = cFwdDiffIterator(nSteps, m_ctrlPoints[4],

m_ctrlPoints[5], m_ctrlPoints[6], m_ctrlPoints[7]);
mainCurve3 = cFwdDiffIterator(nSteps, m_ctrlPoints[8],

m_ctrlPoints[9], m_ctrlPoints[10], m_ctrlPoints[11]);
mainCurve4 = cFwdDiffIterator(nSteps, m_ctrlPoints[12],

m_ctrlPoints[13], m_ctrlPoints[14], m_ctrlPoints[15]);

mainCurve1.Start();
mainCurve2.Start();
mainCurve3.Start();
mainCurve4.Start();

for(v=0;v<m_size;v++)
{

// create a horizontal Bezier curve by
// calc'ing points along the 4 vertical ones

p1 = mainCurve1.GetCurr();
p2 = mainCurve2.GetCurr();
p3 = mainCurve3.GetCurr();
p4 = mainCurve4.GetCurr();

cTangentIterator iter(nSteps, p1, p2, p3, p4);
u = 0;
for(iter.Start(); !iter.Done(); iter.CalcNext(), u++)
{

// We don't get the location because all we

Chapter 9: Advanced 3D Programming � 371

// want here is the v-tangents
m_vTangList[m_size*u+v] = iter.GetCurr();

}

mainCurve1.CalcNext();
mainCurve2.CalcNext();
mainCurve3.CalcNext();
mainCurve4.CalcNext();

}

int offset;
for(v=0;v<m_size;v++)
{

// tesselate across the horizontal Bezier
for(u=0;u<m_size;u++)
{

offset = m_size*v+u;

point3 norm;
norm = m_vTangList[offset] ^ m_uTangList[offset];
norm.Normalize();

m_vertList[offset].norm = norm;
m_vertList[offset].u = 0;
m_vertList[offset].v = 0;

}
}

// use an incremented pointer to the triangle list
sTri* pCurrTri = m_triList;

// build the tri list
for(v=0; v< (m_size-1); v++)
{

for(u=0; u< (m_size-1); u++)
{

// tesselating square [u,v]

// 0, 1, 2
pCurrTri->v[0] = m_size*(v+0) + (u+0);
pCurrTri->v[1] = m_size*(v+0) + (u+1);
pCurrTri->v[2] = m_size*(v+1) + (u+1);
pCurrTri++;

// 2, 3, 0
pCurrTri->v[0] = m_size*(v+1) + (u+1);
pCurrTri->v[1] = m_size*(v+1) + (u+0);
pCurrTri->v[2] = m_size*(v+0) + (u+0);
pCurrTri++;

}
}

}

372 � Chapter 9: Advanced 3D Programming

void cBezierPatch::Draw(bool bDrawNet)
{

// hard code the control mesh lines
static short netIndices[] = {

0, 1, 1, 2, 2, 3, 4, 5, 5, 6, 6, 7,
8, 9, 9, 10, 10, 11, 12, 13, 13, 14, 14, 15,
0, 4, 4, 8, 8, 12, 1, 5, 5, 9, 9, 13,
2, 6, 6, 10, 10, 14, 3, 7, 7, 11, 11, 15 };

SetFVF(D3DFVF_VERTEX)

if(bDrawNet)
{

sLitVertex v[16];
for(int i=0; i<16; i++)
{

v[i] = sLitVertex(m_ctrlPoints[i], 0);
}
Graphics()->GetDevice()->DrawIndexedPrimitiveUP(

D3DPT_LINELIST,
0,
16,
8,
netIndices,
D3DFMT_INDEX16,
v,
sizeof(sLitVertex));

}

Graphics()->GetDevice()->DrawIndexedPrimitiveUP(
D3DPT_TRIANGLELIST, // Primitive Type
0, // Minimum Index
m_size * m_size, // Number of vertices
2*(m_size-1)*(m_size-1), // Number of Primitives
m_triList, // Index Data
D3DFMT_INDEX16, // Index format
m_vertList, // Vertex Data
sizeof(sLitVertex)); // Vertex Stride

}

B-Spline Curves

There are a myriad of other types of parametric curves and surfaces; we
could not even hope to cover them all. They each have their own advan-
tages and disadvantages, and they’re each suited to particular types of
applications. To help get a better idea of the kinds of curves we can do,
we’ll quickly cover one more type of curve before moving on to subdivision
surfaces: b-splines.

Uniform, rational b-splines are quite different from Bezier curves.
Rather than have a set of distinct curves, each one made up of four control
points, a b-spline is made up of any number of control points (well… any

Chapter 9: Advanced 3D Programming � 373

number greater than four). They are C2 continuous, but they are not
interpolative (they don’t pass through their control points).

Given a particular control point pi, we iterate from t=0 to t=1. The
iteration uses the four control points (pi, pi+1, pi+2, pi+3). The curve it steps
out sits between pi+1 and pi+2, but note that the curve itself probably won’t
actually go through those points. Figure 9.19 may help you understand
this.

Each section of the curve (denoted by s0, s1, etc.) is traced out by the four
control points around it. Segment s0 is traced out by p0–p3, segment s1 by
p1–p4, and so on. To compute a point along a b-spline, we use the follow-
ing equation:

The main reason I’m including b-spline curves in this chapter is just to
show you that once you’ve learned one style of parametric curve, you’ve
pretty much learned them all. They almost all use the same style of equa-
tion; it’s just a matter of choosing the kind of curve you want and plugging
it into your code.

Application: BSpline

Just for fun, I threw together a simple application to show off b-splines. It
draws a set of six splines spinning around in space, whose tails fade off to
blackness. The code running the splines is pretty rudimentary; it’s just
there to hopefully spark an idea in your head to use them for something
more complex. As simple as the code is, it can be pretty mesmerizing, and I

374 � Chapter 9: Advanced 3D Programming

Figure 9.19:
Sample b-spline

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�

	

	

	

3

2

1
2

3

0141

0303

0363

1331

6

1

1

)(

i

i

i

i

T

t

t

t

t

p

p

p

p

q

feel it’s one of the more visually pleasing sample applications in this book.
Listing 9.7 has a small sample from the source; it’s the code used to calcu-
late points along the b-spline curve.

Listing 9.7: B-spline calculation code

/**
* The b-spline basis matrix
*/
matrix4 cBSpline::m_baseMatrix = matrix4(

-1, 3, -3, 1,
3, -6, 3, 0,
-3, 0, 3, 0,
1, 4, 1, 0);

point3 cBSpline::Calc(float t, int i0)
{

assert(i0+3 < m_ctrlPoints.size());
assert(t>=0.f && t<=1.f);
point4 tVec(t*t*t, t*t, t, 1);

point4 xVec(
m_ctrlPoints[i0].x,
m_ctrlPoints[i0+1].x,
m_ctrlPoints[i0+2].x,
m_ctrlPoints[i0+3].x);

point4 yVec(
m_ctrlPoints[i0].y,
m_ctrlPoints[i0+1].y,
m_ctrlPoints[i0+2].y,
m_ctrlPoints[i0+3].y);

point4 zVec(
m_ctrlPoints[i0].z,
m_ctrlPoints[i0+1].z,
m_ctrlPoints[i0+2].z,
m_ctrlPoints[i0+3].z);

return point3(
tVec * (1.f/6) * m_baseMatrix * xVec,
tVec * (1.f/6) * m_baseMatrix * yVec,
tVec * (1.f/6) * m_baseMatrix * zVec);

}

point3 cBSpline::CalcAbs(float t)
{

// the T we get isn't right, fix it.
t *= m_ctrlPoints.size() - 3;
int vert = (int)(floor(t));
t -= (float)floor(t);
return Calc(t, vert);

}

Chapter 9: Advanced 3D Programming � 375

Subdivision SurfacesSubdivision Surfaces

Parametric surfaces, while really cool, are not without their problems. The
main problem is in order to have smoothness, it’s usually necessary to keep
the valence at patch corners equal to 2 or 4. (That is, at any patch corner
there is either one more or three more patches also touching that corner.)
Otherwise, the patches don’t meet up correctly and there’s a seam in the
surface. This can be fixed by using degenerate patches (patches that are
really triangles); however, getting some things to look right (like the meet-
ing point of a handle and a mug) can prove downright maddening.

Subdivision surfaces try to get around this restriction by attacking the
problem of creating smooth surfaces a different way. They use a discrete
operation that takes a given mesh and subdivides it. If the resultant mesh
is subdivided again and again, eventually the surface reaches the limit sur-

face. Most subdivision schemes have a limit surface that has C1 continuity,
which is generally all we need for games. You don’t need to go all the way
to the limit surface, however; each time you subdivide your surface looks
smoother and smoother.

Subdivision surfaces have gotten a lot of press in the computer graph-
ics community. Mostly this is because they’re fairly straightforward to code,
easy to use by artists, and very very cool looking. The first mainstream
media to use subdivision surfaces was Geri’s Game, a short by Pixar. The
piece won, among other things, an Academy Award for Best Animated
Short.

Subdivision Essentials

To begin the discussion of subdivision curves and surfaces, we’ll consider a
simple 2D case: subdividing a curve. Once we learn how to subdivide that,
we can start experimenting with surfaces. Our lowest resolution curve, the
control curve, appears in Figure 9.20.

Luckily for us, this is a closed loop, so for our first baby steps we don’t
need to trip over boundary cases. Let’s define an operation that we can

376 � Chapter 9: Advanced 3D Programming

Figure 9.20:
A simple four-segment loop

perform on our curve and call it an edge split. It takes some particular
edge from pn to pn+1. The edge is subdivided into two new edges. The
location of the new internal point (we’ll call it pn+0.5) depends on the
neighborhood of points around it. We want to position the new internal
point such that it fits on the curve defined by the points around it.

The formula we’ll define to calculate pn+0.5 is the following:

This equation, after some reflection, seems pretty intuitive. Most of the
position of the new point is an average of the two points adjacent to it.
Then, to perturb it a little, we move it away from the points one hop from
it on either side by a small amount. Note that the set of constant values
(called the mask) all add up to 1.

If we apply the equation to each of the edges in the control curve, we
get a new curve. We’ll call this curve the level 1 curve. It rears its
not-so-ugly head in Figure 9.21.

You’ll notice that after the subdivision step, we doubled the number of
edges in our loop, and our loop got a tiny bit smoother. If we apply it again
(shown in Figure 9.22), it gets still smoother.

Chapter 9: Advanced 3D Programming � 377

2115.0
16

1

16

9

16

9

16

1
		
	
		
� nnnnn ppppp

Figure 9.21:
The loop after one subdivision

Figure 9.22:
The loop after two subdivisions

It’s fairly easy to see that eventually this little fella will be about as smooth
as we can possibly deal with. How smooth we go depends on the applica-
tion. If we were Pixar, and we were making the new animated short Geri’s

Curve, we could afford to subdivide it such that all of our line segments are
half a pixel wide. Any smoother than that is truly excessive, and even tak-
ing it to that level is infeasible for current generation real-time 3D
graphics.

Handling surfaces is just as easy. You start out with a control mesh (in
some cases this is just a regular triangular model) and each subdivision
creates a more tessellated mesh. The beauty is you can decide how much
to subdivide based on how much hardware is available to do the work. If
someone picks up your game eight years from now, your code could auto-
matically take advantage of the multi-quadrillion triangle rate and
subdivide your curves and surfaces from here to kingdom come.

This is the driving idea behind all subdivision surface schemes: They
all derive their identity from small little differences. Let’s take a look at
some of the differences before we decide upon a method to implement.

Triangles vs. Quads

One of the most obvious differences between subdivision schemes is the
type of primitive they operate on. Some schemes, such as Catmull-Clark
subdivision, operate with control meshes of quadrilaterals. Others, like
butterfly subdivision, instead work with triangle meshes.

Using a subdivision mesh based on triangles has a lot of advantages
over quadrilateral methods. First of all, most modeling programs can easily
create meshes built out of triangles. Making one exclusively out of quadri-
laterals can be considerably more difficult, and has a lot of the same
problems that arise from attempting to build complex objects out of Bezier
patches. Also, being able to use triangle meshes is a big plus because you
may be adding subdivision surfaces to an existing project that uses regular
triangle models; you won’t need to do any work converting your existing
media over to a subdividing system.

Interpolating vs. Approximating

After we’ve decided what primitive our subdivision meshes should be
based on, we need to decide if the method we want to implement should
be interpolating or approximating. They define how the new control mesh
is reached from the original.

With approximating subdivision, the limit mesh is actually never
reached by the vertices, unless the surface is subdivided an infinite amount
of times. Each time a subdivision is performed, the old mesh is completely
thrown away and a new mesh is created that is a bit closer to the limit
curve. As subdivisions continue, the surface moves closer and closer to the
limit surface, looking more and more like it. This has a few side effects.
The primary one is that the initial control mesh tends not to look much like

378 � Chapter 9: Advanced 3D Programming

the limit surface at all. Modifying the initial mesh to get the desired result
in the limit mesh isn’t easy. However, for giving up a bit of intuitive con-
trol, you generally get a much nicer-looking mesh. The mesh tends to look
nicer and have fewer strange-looking subdivided areas.

Interpolating subdivision, on the other hand, always adds vertices
right on the limit surface. The initial control mesh is on the limit surface,
each new batch of vertices and triangles we add is on the limit surface, and
so on. Essentially the subdivision just interpolates new points on the limit
surface, making the surface look smoother and smoother but not too dif-
ferent. You can anticipate what the limit curve will look like when you’re
examining an interpolating subdivision scheme.

Uniform vs. Non-Uniform

Uniform schemes define a single unified way to divide an edge. No matter
what type of edge you have or whatever valence the endpoints have, the
same scheme is used to subdivide it. Non-uniform methods tailor them-
selves to different cases, oftentimes specializing to take care of
irregularities in the surface. For example, the modified butterfly scheme
(which we’ll discuss at length shortly) is non-uniform, since it uses three
different ways to subdivide edges based on the types of vertices at the
endpoints.

Stationary vs. Non-Stationary

This consideration is similar to the uniform/non-uniform one. When a
scheme is stationary, the same scheme is used at each subdivision level.
Non-stationary methods may use one method for the first subdivision, then
switch to another once the surface is looking moderately smooth.

Modified Butterfly Method Subdivision Scheme

The butterfly subdivision scheme was first birthed in 1990 by Dyn, Greg-
ory, and Levin. It handled certain types of surfaces beautifully, but it had a
lot of visual discontinuities in certain situations that made it somewhat
undesirable. In 1996, Zorin, Schröder, and Sweldens extended the butter-
fly subdivision scheme to better handle irregular cases, creating the
modified butterfly method subdivision scheme. This is the method we’re
going to focus on for several reasons. First, it’s interpolative, so our limit
mesh looks a lot like our initial mesh. Second, it works on triangle meshes,
which means we can take existing code and drop in subdivision surfaces
pretty easily. Finally, it’s visually pleasing and easy to code. What more
could you want?

To subdivide our mesh, we take each edge and subdivide it into two
pieces, forming four new triangles from each original triangle. This is pre-
ferred because our subdivided triangles will have a similar shape to their
parent triangle (unlike, for example, creating a split location in the center

Chapter 9: Advanced 3D Programming � 379

of the triangle and throwing edges to the corners of the triangle). Figure
9.23 shows what a subdivision step looks like.

The equation we use to subdivide an edge depends on the valence of its
endpoints. The valence of a vertex in this context is defined as the number
of other vertices the vertex is adjacent to. There are three possible cases
that we have to handle.

The first case is when both vertices of a particular edge have a
valence=6. We use a mask on the neighborhood of vertices around the
edge. This mask is where the modified butterfly scheme gets its name,
because it looks sort of like a butterfly. It appears in Figure 9.24.

The modified butterfly scheme added two points and a tension parameter
that lets you control the sharpness of the limit surface. Since this scheme
complicates the code, I chose to go with a universal w-value of 0.0 instead
(which resolves to the above Figure 9.24). The modified butterfly mask
appears in Figure 9.25.

380 � Chapter 9: Advanced 3D Programming

Figure 9.23:
Subdividing edges to add
triangles

Figure 9.24:
The butterfly mask

To compute the location of the subdivided edge vertex (the white circle in
both images), we step around the neighborhood of vertices and sum them
(multiplying each vector by the weight dictated by the mask). You’ll notice
that all the weights sum up to 1.0. This is good; it means our subdivided
point will be in the right neighborhood compared to the rest of the verti-
ces. You can imagine if the sum was much larger the subdivided vertex
would be much farther away from the origin than any of the vertices used
to create it, which would be incorrect.

When only one of our vertices is regular (i.e., has a valence=6), we
compute the subdivided location using the irregular vertex, otherwise
known as a k-vertex. This is where the modified butterfly algorithm shines
over the original butterfly algorithm (which handled k-vertices very
poorly). An example appears in Figure 9.26. The right vertex has a valence
of 6, and the left vertex has a valence of 9, so we use the left vertex to
compute the location for the new vertex (indicated by the white circle).

The general case for a k-vertex has us step around the vertex, weighting
the neighbors using a mask determined by the valence of the k-vertex. Fig-
ure 9.27 shows the generic k-vertex and how we name the vertices. Note
that the k-vertex itself has a weight of ¾, in all cases.

Chapter 9: Advanced 3D Programming � 381

Figure 9.25:
The modified butterfly mask

Figure 9.26:
Example of a k-vertex

There are three cases to deal with: k=3, k=4, and k=5. The masks for
each of them are:

for k = 3

for k = 4

for k $ 5 (k != 6)

The third and final case we need to worry about is when both endpoints of
the current edge are k-vertices. When this occurs we compute the k-vertex
for both endpoints using the above weights, and average the results
together.

Note that we are assuming that our input triangle mesh is closed
boundary representation (doesn’t have any holes in it). The paper describ-
ing the modified butterfly scheme discusses ways to handle holes in the
model (with excellent results) but the code we’ll write next won’t be able
to handle holes in the model so we won’t discuss it.

Using these schema for computing our subdivided locations results in
an extremely fair looking surface. Figure 9.28 shows how an octahedron
looks as it is repeatedly subdivided. The application we will make next was
used to create this image.

382 � Chapter 9: Advanced 3D Programming

Figure 9.27:
Generic k-vertex

12

1
,

12

5
2,10
�� ss

0,
8

1
,

8

3
3,120 �
�� sss

�
�
��

�
� 		�

k

i

k

i

k
si

�� 4
cos

2

12
cos

4

11

Application: SubDiv

The SubDiv application implements the modified butterfly subdivision
scheme we just discussed. It loads an .o3d file and displays it interactively,
giving the user the option of subdividing the model whenever they wish.

The model data is represented with an adjacency graph. Each triangle
structure holds pointers to the three vertices it is composed of. Each vertex
structure has STL vectors that contain pointers to edge structures (one
edge for each vertex it’s connected to) and triangle structures. The lists are
unsorted (which requires linear searching; fixing this to order the edges in
clockwise winding order, for example, is left as an exercise for the reader).

Listing 9.8 gives the header definitions (and many of the functions) for
the vertex, edge, and triangle structures. These classes are all defined
inside the subdivision surface class (cSubDivSurf).

Listing 9.8: Vertex, edge, and triangle structures

/**
* Subdivision Surface vertex (name 'sVertex' is used in D3D code)
*/
struct sVert
{

/**
* These two arrays describe the adjacency information
* for a vertex. Each vertex knows who all of its neighboring
* edges and triangles are. An important note is that these
* lists aren't sorted. We need to search through the list
* when we need to get a specific adjacent triangle.
* This is, of course, inefficient. Consider sorted insertion
* an exercise to the reader.
*/
std::vector< sTriangle* > m_triList;
std::vector< sEdge* > m_edgeList;

/**

Chapter 9: Advanced 3D Programming � 383

Figure 9.28:
A subdivided octagon
model.

Levels 0 (8 triangles)
through 4 (2048 trian-
gles) are shown.
Finally, level 4 mesh is
shown in filled mode.

* position/normal information for the vertex
*/
sVertex m_vert;

/**
* Each Vertex knows its position in the array it lies in.
* This helps when we're constructing the arrays of
* subdivided data.
*/
int m_index;

void AddEdge(sEdge* pEdge)
{

assert(0 == std::count(
m_edgeList.begin(),
m_edgeList.end(),
pEdge));

m_edgeList.push_back(pEdge);
}

void AddTri(sTriangle* pTri)
{

assert(0 == std::count(
m_triList.begin(),
m_triList.end(),
pTri));

m_triList.push_back(pTri);
}

/**
* Valence == How many other vertices are connected to this one
* which said another way is how many edges the vert has.
*/
int Valence()
{

return m_edgeList.size();
}

sVert() :
m_triList(0),
m_edgeList(0)

{
}

/**
* Given a Vertex that we know we are attached to, this function
* searches the list of adjacent edges looking for the one that
* contains the input vertex. Asserts if there is no edge for
* that vertex.
*/
sEdge* GetEdge(sVert* pOther)
{

for(int i=0; i<m_edgeList.size(); i++)
{

if(m_edgeList[i]->Contains(pOther))

384 � Chapter 9: Advanced 3D Programming

return m_edgeList[i];
}
assert(false); // didn't have it!
return NULL;

}
};

/**
* Edge structure that connects two vertices in a SubSurf
*/
struct sEdge
{

sVert* m_v[2];

/**
* When we perform the subdivision calculations on all the edges
* the result is held in this newVLoc strucure. Never has any
* connectivity information, just location and color.
*/
sVert m_newVLoc;

/**
* true == one of the edges' vertices is the inputted vertex
*/
bool Contains(sVert* pVert)
{

return (m_v[0] == pVert) || m_v[1] == pVert;
}

/**
* retval = the other vertex than the inputted one
*/
sVert* Other(sVert* pVert)
{

return (m_v[0] == pVert) ? m_v[1] : m_v[0];
}

void Init(sVert* v0, sVert* v1)
{

m_v[0] = v0;
m_v[1] = v1;

/**
* Note that the edge notifies both of its vertices that it's
* connected to them.
*/
m_v[0]->AddEdge(this);
m_v[1]->AddEdge(this);

}

/**
* This function takes into consideration the two triangles that
* share this edge. It returns the third vertex of the first
* triangle it finds that is not equal to 'notThisOne'. So if

Chapter 9: Advanced 3D Programming � 385

* want one, notThisOne is passed as NULL. If we want the other
* one, we pass the result of the first execution.
*/
sVert* GetOtherVert(sVert* v0, sVert* v1, sVert* notThisOne)
{

sTriangle* pTri;
for(int i=0; i<v0->m_triList.size(); i++)
{

pTri = v0->m_triList[i];
if(pTri->Contains(v0) && pTri->Contains(v1))
{

if(pTri->Other(v0, v1) != notThisOne)
return pTri->Other(v0, v1);

}
}
// when we support boundary edges, we shouldn't assert
assert(false);
return NULL;

}

/**
* Calculate the K-Vertex location of 'prim' vertex. For triangles
* of valence !=6
*/
point3 CalcKVert(int prim, int sec);

/**
* Calculate the location of the subdivided point using the
* butterfly method.
* for edges with both vertices of valence == 6
*/
point3 CalcButterfly();

};

/**
* Subdivision surface triangle
*/
struct sTriangle
{

/**
* The three vertices of this triangle
*/
sVert* m_v[3];
point3 m_normal;

void Init(sVert* v0, sVert* v1, sVert* v2)
{

m_v[0] = v0;
m_v[1] = v1;
m_v[2] = v2;

/**
* Note that the triangle notifies all 3 of its vertices
* that it's connected to them.
*/

386 � Chapter 9: Advanced 3D Programming

m_v[0]->AddTri(this);
m_v[1]->AddTri(this);
m_v[2]->AddTri(this);

}

/**
* true == the triangle contains the inputted vertex
*/
bool Contains(sVert* pVert)
{

return pVert == m_v[0] || pVert == m_v[1] || pVert == m_v[2];
}

/**
* retval = the third vertex (first and second are inputted).
* asserts out if inputted values aren't part of the triangle
*/
sVert* Other(sVert* v1, sVert* v2)
{

assert(Contains(v1) && Contains(v2));
for(int i=0; i<3; i++)
{

if(m_v[i] != v1 && m_v[i] != v2)
return m_v[i];

}
assert(false); // something bad happened;
return NULL;

}
};

The interesting part of the application is when the model is subdivided.
Since we used vertex buffers to hold the subdivided data, we have an
upper bound of 216, or 65,536, vertices. Listing 9.9 gives the code that gets
called when the user subdivides the model.

Listing 9.9: The code to handle subdivision

result cSubDivSurf::Subdivide()
{

/**
* We know how many components our subdivided model will have,
* calc them
*/
int nNewEdges = 2*m_nEdges + 3*m_nTris;
int nNewVerts = m_nVerts + m_nEdges;
int nNewTris = 4*m_nTris;

/**
* Find the location of the new vertices. Most of the hard work
* is done here.
*/
GenNewVertLocs();

Chapter 9: Advanced 3D Programming � 387

int i;

// the vertices on the 3 edges (order: 0..1, 1..2, 2..0)
sVert* inner[3];

// Allocate space for the subdivided data
sVert* pNewVerts = new sVert[nNewVerts];
sEdge* pNewEdges = new sEdge[nNewEdges];
sTriangle* pNewTris = new sTriangle[nNewTris];

//==========--------------------------
Step 1: Fill vertex list

// First batch - the original vertices
for(i=0; i<m_nVerts; i++)
{

pNewVerts[i].m_index = i;
pNewVerts[i].m_vert = m_pVList[i].m_vert;

}
// Second batch - vertices from each edge
for(i=0; i<m_nEdges; i++)
{

pNewVerts[m_nVerts + i].m_index = m_nVerts + i;
pNewVerts[m_nVerts + i].m_vert = m_pEList[i].m_newVLoc.m_vert;

}

//==========--------------------------
Step 2: Fill edge list

int currEdge = 0;
// First batch - the 2 edges that are spawned by each original edge
for(i=0; i<m_nEdges; i++)
{

pNewEdges[currEdge++].Init(
&pNewVerts[m_pEList[i].m_v[0]->m_index],
&pNewVerts[m_pEList[i].m_newVLoc.m_index]);

pNewEdges[currEdge++].Init(
&pNewVerts[m_pEList[i].m_v[1]->m_index],
&pNewVerts[m_pEList[i].m_newVLoc.m_index]);

}
// Second batch - the 3 inner edges spawned by each original tri
for(i=0; i<m_nTris; i++)
{

// find the inner 3 vertices of this triangle
// (the new vertex of each of the triangles' edges)
inner[0] = &m_pTList[i].m_v[0]->GetEdge(

m_pTList[i].m_v[1])->m_newVLoc;
inner[1] = &m_pTList[i].m_v[1]->GetEdge(

m_pTList[i].m_v[2])->m_newVLoc;
inner[2] = &m_pTList[i].m_v[2]->GetEdge(

m_pTList[i].m_v[0])->m_newVLoc;

pNewEdges[currEdge++].Init(
&pNewVerts[inner[0]->m_index],

388 � Chapter 9: Advanced 3D Programming

&pNewVerts[inner[1]->m_index]);
pNewEdges[currEdge++].Init(

&pNewVerts[inner[1]->m_index],
&pNewVerts[inner[2]->m_index]);

pNewEdges[currEdge++].Init(
&pNewVerts[inner[2]->m_index],
&pNewVerts[inner[0]->m_index]);

}

//==========--------------------------
Step 3: Fill triangle list

int currTri = 0;
for(i=0; i<m_nTris; i++)
{

// find the inner vertices
inner[0] = &m_pTList[i].m_v[0]->GetEdge(

m_pTList[i].m_v[1])->m_newVLoc;
inner[1] = &m_pTList[i].m_v[1]->GetEdge(

m_pTList[i].m_v[2])->m_newVLoc;
inner[2] = &m_pTList[i].m_v[2]->GetEdge(

m_pTList[i].m_v[0])->m_newVLoc;

// 0, inner0, inner2
pNewTris[currTri++].Init(

&pNewVerts[m_pTList[i].m_v[0]->m_index],
&pNewVerts[inner[0]->m_index],
&pNewVerts[inner[2]->m_index]);

// 1, inner1, inner0
pNewTris[currTri++].Init(

&pNewVerts[m_pTList[i].m_v[1]->m_index],
&pNewVerts[inner[1]->m_index],
&pNewVerts[inner[0]->m_index]);

// 2, inner2, inner1
pNewTris[currTri++].Init(

&pNewVerts[m_pTList[i].m_v[2]->m_index],
&pNewVerts[inner[2]->m_index],
&pNewVerts[inner[1]->m_index]);

// inner0, inner1, inner2
pNewTris[currTri++].Init(

&pNewVerts[inner[0]->m_index],
&pNewVerts[inner[1]->m_index],
&pNewVerts[inner[2]->m_index]);

}

//==========--------------------------
Step 4: Housekeeping

// Swap out the old data sets for the new ones.

delete [] m_pVList;

Chapter 9: Advanced 3D Programming � 389

delete [] m_pEList;
delete [] m_pTList;

m_nVerts = nNewVerts;
m_nEdges = nNewEdges;
m_nTris = nNewTris;

m_pVList = pNewVerts;
m_pEList = pNewEdges;
m_pTList = pNewTris;

// Calculate the vertex normals of the new mesh
// using face normal averaging
CalcNormals();

//==========--------------------------
Step 5: Make arrays so we can send the triangles in one batch

delete [] m_d3dTriList;
if(m_pVertexBuffer)

m_pVertexBuffer->Release();
m_pVertexBuffer = NULL;

GenD3DData();

return res_AllGood;
}

/**
* This is where the meat of the subdivision work is done.
* Depending on the valence of the two endpoints of each edge,
* the code will generate the new edge value
*/
void cSubDivSurf::GenNewVertLocs()
{

for(int i=0; i<m_nEdges; i++)
{

int val0 = m_pEList[i].m_v[0]->Valence();
int val1 = m_pEList[i].m_v[1]->Valence();

point3 loc;

/**
* CASE 1: both vertices are of valence == 6
* Use the butterfly scheme
*/
if(val0 == 6 && val1 == 6)
{

loc = m_pEList[i].CalcButterfly();
}

/**
* CASE 2: one of the vertices are of valence == 6
* Calculate the k-vertex for the non-6 vertex

390 � Chapter 9: Advanced 3D Programming

*/
else if(val0 == 6 && val1 != 6)
{

loc = m_pEList[i].CalcKVert(1,0);
}

else if(val0 != 6 && val1 == 6)
{

loc = m_pEList[i].CalcKVert(0,1);
}

/**
* CASE 3: neither of the vertices are of valence == 6
* Calculate the k-vertex for each of them, and average
* the result
*/
else
{

loc = (m_pEList[i].CalcKVert(1,0) +
m_pEList[i].CalcKVert(0,1)) / 2.f;

}

m_pEList[i].m_newVLoc.m_vert = sVertex(
loc , point3::Zero);

/**
* Assign the new vertex an index (this is useful later,
* when we start throwing vertex pointers around. We
* could have implemented everything with indices, but
* the code would be much harder to read. An extra dword
* per vertex is a small price to pay.)
*/
m_pEList[i].m_newVLoc.m_index = i + m_nVerts;

}
}

point3 cSubDivSurf::sEdge::CalcButterfly()
{

point3 out = point3::Zero;

sVert* other[2];
other[0] = GetOtherVert(m_v[0], m_v[1], NULL);
other[1] = GetOtherVert(m_v[0], m_v[1], other[0]);

// two main ones
out += (1.f/2.f) * m_v[0]->m_vert.loc;
out += (1.f/2.f) * m_v[1]->m_vert.loc;

// top/bottom ones
out += (1.f/8.f) * other[0]->m_vert.loc;
out += (1.f/8.f) * other[1]->m_vert.loc;

// outside 4 verts
out += (-1.f/16.f) *

GetOtherVert(other[0], m_v[0], m_v[1])->m_vert.loc;

Chapter 9: Advanced 3D Programming � 391

out += (-1.f/16.f) *
GetOtherVert(other[0], m_v[1], m_v[0])->m_vert.loc;

out += (-1.f/16.f) *
GetOtherVert(other[1], m_v[0], m_v[1])->m_vert.loc;

out += (-1.f/16.f) *
GetOtherVert(other[1], m_v[1], m_v[0])->m_vert.loc;

return out;
}

point3 cSubDivSurf::sEdge::CalcKVert(int prim, int sec)
{

int valence = m_v[prim]->Valence();

point3 out = point3::Zero;

out += (3.f / 4.f) * m_v[prim]->m_vert.loc;

if(valence < 3)
assert(false);

else if(valence == 3)
{

for(int i=0; i<m_v[prim]->m_edgeList.size(); i++)
{

sVert* pOther =
m_v[prim]->m_edgeList[i]->Other(m_v[prim]);

if(pOther == m_v[sec])
out += (5.f/12.f) * pOther->m_vert.loc;

else
out += (-1.f/12.f) * pOther->m_vert.loc;

}
}

else if(valence == 4)
{

out += (3.f/8.f) * m_v[sec]->m_vert.loc;

sVert* pTemp = GetOtherVert(m_v[0], m_v[1], NULL);
// get the one after it
sVert* pOther = GetOtherVert(m_v[prim], pTemp, m_v[sec]);

out += (-1.f/8.f) * pOther->m_vert.loc;
}

else // valence >= 5
{

sVert* pCurr = m_v[sec];
sVert* pLast = NULL;
sVert* pTemp;
for(int i=0; i< valence; i++)
{

float weight =
((1.f/4.f) +
(float)cos(2 * PI * (float)i / (float)valence) +

392 � Chapter 9: Advanced 3D Programming

(1.f/2.f) * (float)cos(4*PI*(float)i/(float)valence))
/ (float)valence;

out += weight * pCurr->m_vert.loc;

pTemp = GetOtherVert(m_v[prim], pCurr, pLast);
pLast = pCurr;
pCurr = pTemp;

}
}
return out;

}

void cSubDivSurf::GenD3DData()
{

/**
* Create a vertex buffer
*/
HRESULT hr;
hr = Graphics()->GetDevice()->CreateVertexBuffer(

m_nVerts * sizeof(sVertex),
D3DUSAGE_WRITEONLY,
D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_TEX1,
D3DPOOL_DEFAULT,
&m_pVertexBuffer);

if(FAILED(hr))
{

throw cGameError("Vertex Buffer creation failed!\n");
}

m_d3dTriList = new sTri[m_nTris];

sVertex* pVert;

// Lock the vertex buffer
hr = m_pVertexBuffer->Lock(

0,
0,
(BYTE**)&pVert,
0);

if(FAILED(hr))
{

throw cGameError("VB Lock failed\n");
}

int i;

// Copy data into the buffer
for(i=0; i<m_nVerts; i++)
{

*pVert++ = m_pVList[i].m_vert;
}
m_pVertexBuffer->Unlock();

Chapter 9: Advanced 3D Programming � 393

for(i=0; i<m_nTris; i++)
{

m_d3dTriList[i].v[0] = m_pTList[i].m_v[0]->m_index;
m_d3dTriList[i].v[1] = m_pTList[i].m_v[1]->m_index;
m_d3dTriList[i].v[2] = m_pTList[i].m_v[2]->m_index;

}
}

Progressive MeshesProgressive Meshes

The final multiresolution system we are going to discuss is progressive
meshes. They’re rapidly gaining favor in the game community; many
games use them as a way to keep scene detail at a constant level.

Oftentimes when we’re playing a 3D game, many of our objects will
appear off in the distance. For example, if we’re building a combat flight
simulator, bogies will appear miles away before we engage them. When an
object is this far away, it will appear to be only a few pixels on the screen.

We could simply opt not to draw an object if it is this far away. How-
ever, this can lead to a discontinuity of experience for the user. He or she
will suddenly remember they’re playing a video game, and that should be
avoided at all costs. If we have a model with thousands of triangles in it to
represent our enemy aircraft, we’re going to waste a lot of time transform-
ing and lighting vertices when we’ll end up with just a blob of a few pixels.
Drawing several incoming bogie blobs may max out our triangle budget for
the frame, and our frame rate will drop. This will hurt the user experience
just as much if not more than not drawing the object in the first place.

Even when the object is moderately close, if most of the triangles are
smaller than one pixel big, we’re wasting effort on drawing our models. If
we used, instead, a lower resolution version of the mesh to use at farther
distances, the visual output would be about the same, but we would save a
lot of time in model processing.

This is the problem progressive meshes try to solve. They allow us to
arbitrarily scale the polygon resolution of a mesh from its max all the way
down to two triangles. When our model is extremely far away, we draw
the lowest resolution model we can. Then, as it approaches the camera, we
slowly add detail polygon by polygon, so the user always will be seeing a
nearly ideal image at a much faster frame rate. Moving between detail lev-
els on a triangle-by-triangle basis is much less noticeable than switching
between a handful of models at different resolutions. We can even morph
our triangle-by-triangle transitions using what are called geomorphs, mak-
ing them even less noticeable.

Progressive meshes can also help us when we have multiple close
objects on the screen. If we used just the distance criterion discussed above
to set polygon resolution, we could easily have the case where there are
multiple dense objects close to the camera. We would have to draw them

394 � Chapter 9: Advanced 3D Programming

all at a high resolution, and we would hit our polygon budget and our
frame rate would drop out. In this extreme situation, we can suffer some
visual quality loss and turn down the polygon count of our objects. In gen-
eral, when a user is playing an intense game, he or she won’t notice that
the meshes are lower resolution. Users will, however, immediately notice a
frame rate reduction.

One thing progressive meshes can’t do is add detail to a model. Unlike
the other two multiresolution surface methods we have discussed, progres-
sive meshes can only vary the detail in a model from its original polygon
count down to two polygons.

Progressive meshes were originally described in a 1996 SIGGRAPH
paper by Hugues Hoppe. Since then a lot of neat things have happened
with them. Hoppe has applied them to view-dependent level-of-detail and
terrain rendering. They were added to Direct3D Retained Mode (which is
no longer supported). Recently, Hoppe extended research done by Michael
Garland and Paul Heckbert, using quadric error metrics to encode normal,
color, and texture information. We’ll be covering some of the basics of
quadric error metrics, and Hoppe’s web site has downloadable versions of
all his papers. The URL is http://www.research.microsoft.com/~hoppe.

Progressive Mesh Basics

How do progressive meshes work? They center around an operation called
an edge collapse. Conceptually, it takes two vertices that share an edge and
merges them. This destroys the edge that was shared and the two triangles
that shared the edge.

The cool thing about edge collapse is that it only affects a small neigh-
borhood of vertices, edges, and triangles. We can save the state of those
entities in a way that we can reverse the effect of the edge collapse, split-
ting a vertex into two, adding an edge, and adding two triangles. This
operation, the inverse of the edge collapse, is called a vertex split. Figure
9.29 shows how the edge collapse and vertex split work.

Chapter 9: Advanced 3D Programming � 395

Figure 9.29:
The edge collapse and
vertex split operations

To construct a progressive mesh, we take our initial mesh and iteratively
remove edges using edge collapses. Each time we remove an edge, the
model loses two triangles. We then save the edge collapse we performed
into a stack, and continue with the new model. Eventually, we reach a
point where we can no longer remove any edges. At this point we have our
lowest resolution mesh and a stack of structures representing each edge
that was collapsed. If we want to have a particular number of triangles for
our model, all we do is apply vertex splits or edge collapses to get to the
required number (plus or minus one, though, since we can only change the
count by two).

During run time, most systems have three main areas of data: a stack
of edge collapses, a stack of vertex splits, and the model. To apply a vertex
split, we pop one off the stack, perform the requisite operations on the
mesh, construct an edge collapse to invert the process, and push the newly
created edge collapse onto the edge collapse stack. The reverse process
applies to edge collapses.

There are a lot of cool side effects that arise from progressive meshes.
For starters, they can be stored on disk efficiently. If an application is smart
about how it represents vertex splits, storing the lowest resolution mesh
and the sequence of vertex splits to bring it back to the highest resolution
model doesn’t take much more space than storing the high-resolution
mesh on its own.

Also, the entire mesh doesn’t need to be loaded all at once. A game
could load the first 400 or so triangles of each model at startup and then
load more vertex splits as needed. This can save some time if the game is
being loaded from disk, and a lot of time if the game is being loaded over
the Internet.

Another thing to consider is that since the edge collapses happen in
such a small region, many of them can be combined together, getting quick
jumps from one resolution to another. Each edge collapse/vertex split can
even be morphed, smoothly moving the vertices together or apart. This
alleviates some of the popping effects that can occur when progressive
meshes are used without any morphing. Hoppe calls these transitions
geomorphs.

Choosing Our Edges

The secret to making a good progressive mesh is choosing the right edge to
collapse during each iteration. The sequence is extremely important. If we
choose our edges unwisely, our low-resolution mesh won’t look anything
like our high-resolution mesh.

As an extreme example, imagine we chose our edges completely at
random. This can have extremely adverse effects on the way our model
looks even after a few edge collapses.

396 � Chapter 9: Advanced 3D Programming

Warning: Obviously, we should not choose vertices completely at random. We
have to take other factors into account when choosing an edge. Specifically,
we have to maintain the topology of a model. We shouldn’t select edges that
will cause seams in our mesh (places where more than two triangles meet an
edge).

Another naïve method of selecting edges would be to choose the shortest
edge at each point in time. This uses the well-founded idea that smaller
edges won’t be as visible to the user from faraway distances, so they
should be destroyed first. However, this method overlooks an important
factor that must be considered in our final selection algorithm. Specifically,
small details, such as the nose of a human face or the horns of a cow, must
be preserved as long as possible if a good low-polygon representation of
the model is to be created. We must not only take into account the length
of the edge, but also how much the model will change if we remove it.
Ideally, we want to pick the edge that changes the visual look of the model
the least. Since this is a very fuzzy heuristic, we end up approximating it.

The opposite extreme would be to rigorously try to approximate the
least-visual-change heuristic, and spend an awfully long time doing it.
While this will give us the best visual model, it is less than ideal. If we can
spend something like 5 percent of the processing time and get a model
that looks 95 percent as good as an ultra-slow ideal method, we should use
that one. We’ll discuss two different edge selection algorithms.

Stan Melax’s Edge Selection Algorithm

Stan Melax wrote an article for Game Developer magazine back in Novem-
ber 1998 which detailed a simple and fast cost function to compute the
relative cost of contracting a vertex v into a vertex u. Since they are differ-
ent operations, cost(u,v) will generally be different than cost(v,u). The
alorithm’s only shortcoming lies in the fact that it can only collapse one
vertex onto another; it cannot take an edge and reposition the final vertex
in a location to minimize the total error (as quadric error metrics can do).
The cost function is:

where Tu is the set of triangles that share vertex u, and Tuv is the set of tri-
angles that share both vertex u and v.

Quadric Error Metrics

Michael Garland and Paul Heckbert devised an edge selection algorithm in
1997 that was based on quadric error metrics (published as “Surface Sim-
plification Using Quadratic Error Metrics” in Computer Graphics). The
algorithm is not only extremely fast, its output looks very nice. I don’t have

Chapter 9: Advanced 3D Programming � 397

� �% & ��
���

� '�
�
�
((

2..1minmax),(cost normalnnormalf
TuvnTuf

vuvu

the space to explain all the math needed to get this algorithm working
(specifically, generic matrix inversion code), but we can go over enough to
get your feet wet.

Given a particular vertex v and a new vertex v', we want to be able to
find out how much error would be introduced into the model by replacing
v with v'. If we think of each vertex as being the intersection point of sev-
eral planes (in particular, the planes belonging to the set of triangles that
share the vertex), then we can define the error as how far the new vertex
is from each plane.

This algorithm uses the squared distance. This way we can define an
error function for a vertex v given the set of planes p that share the vertex
as:

The matrix Kp represents the coefficients of the plane equation <a, b, c,
d> for a particular plane p multiplied with its transpose to form a 4x4
matrix. Expanded, the multiplication becomes:

Kp is used to find the squared distance error of a vertex to the plane it rep-
resents. We sum the matrices for each plane to form the matrix Q:

which makes the error equation:

Given the matrix Q for each of the vertices in the model, we can find the
error for taking out any particular edge in the model. Given an edge
between two vertices v1 and v2, we find the ideal vertex v' by minimizing
the function:

398 � Chapter 9: Advanced 3D Programming

� � � �
� � � �� �
� � � �

� � vKvv

vppvv

vppvv

vpv

vp

p

vp

vp

vp

���

�
���

�
�#

�#

�#

�#

�

�

�

�

(

(

(

(

)(

)(

)(

)(

2

planes

T

planes

TT

planes

TT

planes

T

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�

2

2

2

2

dcdbdad

dccbcac

dbcbbab

dacabaa

pK

�
(

�
)(vp

pKQ

planes

� � Qvvv T�#

where Q1 and Q2 are the Q matrices for v1 and v2.
Finding v' is the hard part of this algorithm. If we want to try and

solve it exactly, we just want to solve the equation:

where the 4x4 matrix above is (Q1+Q2) with the bottom row changed
around. If the matrix above is invertible, then the ideal v' (the one that has
zero error) is just:

If the matrix isn’t invertible, then the easiest thing to do, short of solving
the minimization problem, would be to just choose the vertex causing the
least error out of the set (v1, v2, (v1+v2)/2). Finding out if the matrix is
invertible, and inverting it, is the ugly part that I don’t have space to
explain fully. It isn’t a terribly hard problem, given a solid background in
linear algebra.

We compute the ideal vertex (the one that minimizes the error caused
by contracting an edge) and store the error associated with that ideal ver-
tex (since it may not be zero). When we’ve done this for each of the edges,
the best edge to remove is the one with the least amount of error. After we
collapse the cheapest edge, we re-compute the Q matrices and the ideal
vertices for each of the vertices in the immediate neighborhood of the
removed edge (since the planes have changed) and continue.

Implementing a Progressive Mesh Renderer

Due to space and time constraints, code to implement progressive meshes
is not included in this book. That shouldn’t scare you off, however; they’re
not too hard to implement. The only real trick is making them efficient.

How you implement progressive meshes depends on whether you cal-
culate the mesh as a preprocessing step or at run time. A lot of extra
information needs to be kept around during the mesh construction to
make it even moderately efficient, so it might be best to write two applica-
tions. The first one would take an object, build a progressive mesh out of
it, and write the progressive mesh to disk. A separate application would

Chapter 9: Advanced 3D Programming � 399

� �vQQv �	� 21
T

�
�
�
�

�

�

�
�
�
�

�

�

��

�
�
�
�

�

�

�
�
�
�

�

�

1

0

0

0

1000

34333231

24232221

14131211

v
qqqq

qqqq

qqqq

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

��

1

0

0

0

1000

1

34333231

24232221

14131211

qqqq

qqqq

qqqq

v

actually load the progressive mesh off the disk and display it. This would
have a lot of advantages; most notably you could make both algorithms
(construction and display) efficient in their own ways without having to
make them sacrifice things for each other.

To implement a progressive mesh constructor efficiently, you’ll most
likely want something along the lines of the code used in the subdivision
surface renderer, where each vertex knows about all the vertices around it.
As edges were removed, the adjacency information would be updated to
reflect the new topology of the model. This way it would be easy to find
the set of vertices and triangles that would be modified when an edge is
removed.

Storing the vertex splits and edge collapses can be done in several
ways. One way would be to make a structure like the one in Listing 9.10.

Listing 9.10: Sample edge collapse structure

// can double as sVSplit
struct sECol
{

// the 2 former locations of the vertices
point3 locs[2];

// where the collapsed vertex goes.
point3 newLoc;

// Indices of the two vertices
int verts[2];

// Indices of the two triangles
int tris[2];

// The indices of triangles that need to
// have vertex indices swapped
vector<int> modTris;

};

When it came time to perform a vertex split, you would perform the fol-
lowing steps:

� Activate (via an active flag) verts[1], tris[0], and tris[1] (verts[0] is the
collapsed vertex, so it’s already active).

� Move verts[0] and verts[1] to locs[0] and locs[1].

� For each of the triangles in modTris, change any indices that point to
verts[0] and change them to verts[1]. You can think of the modTris as
being the set of triangles below the collapsed triangles in Figure 9.29.

Performing an edge collapse would be a similar process, just reversing
everything.

400 � Chapter 9: Advanced 3D Programming

Radiosity

The lighting system that Direct3D implements, the one that most of the
real-time graphics community uses, is rather clunky. It’s just an effort to get
something that looks right, something that can pass for correct. In actual-
ity, it isn’t correct at all, and under certain conditions this can become
painfully obvious. We’re going to discuss a way to do lighting that is much
more correct, but only handles diffuse light: radiosity lighting.

The wave/particle duality aside, light acts much like any other type of
energy. It leaves a source in a particular direction; as it hits objects some of
the energy is absorbed, and some is reflected back into the scene. The
direction it reflects back on depends on the microscopic structure of the
surface. Surfaces that appear smooth at a macroscopic level, like chalk,
actually have a really rough microstructure when seen under a microscope.

The light that leaves an object may bounce off of a thousand other
points in the scene before it eventually reaches our eye. In fact, only a tiny
amount (generally less than a tenth of one percent) of all the energy that
leaves a light ever reaches our eye. Because of this the light that reflects off
of other objects affects the total lighting of the scene.

An example: When you’re watching a movie at a movie theater, there
is generally only one light in the scene (sans exit lights, aisle lights, etc.),
and that is the movie projector. The only object that directly receives light
from the movie projector is the movie screen. However, that is not the only
object that receives any light. If you’ve ever gotten up to get popcorn,
you’re able to see everyone in the theater watching the movie, because
light is bouncing off the screen, bouncing off of their faces, and bouncing
into your eyes. The problem with the lighting models we’ve discussed so
far is that they can’t handle this. Sure, we could just turn up the ambient
color to simulate the light reflecting off the screen into the theater, but that
won’t work; since we only want the front sides of people to be lit, it will
look horridly wrong.

What we would like is to simulate the real world, and find not only the
light that is emitted from light sources that hits surfaces, but also find the
light that is emitted from other surfaces. We want to find the
interreflection of light in our 3D scene.

This is both good and bad (but not ugly, thankfully). The good is, the
light in our scene will behave more like light we see in the real world.
Light will bounce off of all the surfaces in our scene. Modeling this
interreflection will give us an extremely slick-looking scene. The bad thing
is, the math suddenly becomes much harder, because now all of our sur-
faces are interrelated. The lighting calculation must be done as a
precalculating step, since it’s far too expensive to do in real time. We save
the radiosity results into the data file we use to represent geometry on
disk, so any program using the data can take advantage of the time spent
calculating the radiosity solution.

Chapter 9: Advanced 3D Programming � 401

Aside: Radiosity isn’t for everyone. While Quake II used it to great effect to light
the worlds, Quake III did not. The motivation behind not using it for Quake III

lies partially in the fact that computing the correct radiosity solution for
Bezier surfaces is a total pain, and radiosity doesn’t give shadows as sharp as
non-interreflective lighting schemes. Quake had a very certain look and feel
because of how its shadows worked. Quake III went back to that.

Radiosity Foundations

We’ll begin our discussion of radiosity with some basic terms that we’ll use
in the rest of the equations:

Table 9.1: Some basic terms used in radiosity

Radiance (or intensity) The light (or power) coming into (or out of) an area in a given
direction.

Units: power / (area x solid angle)

Radiosity The light leaving an area. This value can be thought of as color
leaving a surface.

Units: power / area

Radiant emitted flux density The unit for light emission. This value can be thought of as the
initial color of a surface.

Units: power / area

Our initial scene is composed of a set of closed polygons. We subdivide our
polygons into a grid of patches. A patch is a discrete element with a com-
putable surface area whose radiosity (and color) remains constant across
the whole surface.

The amount we subdivide our polygons decides how intricately our
polygon can be lit. You can imagine the worst case of a diagonal shadow
falling on a surface. If we don’t subdivide enough, we’ll be able to see a
stepping pattern at the borders between intensity levels. Another way to
think of this is drawing a scene in 320x200 versus 1600x1200. The more
resolution we add, the better the output picture looks. However, the more
patches we add, the more patches we need to work with, which makes our
algorithm considerably slower.

Radiosity doesn’t use traditional lights (like point lights or spotlights).
Instead, certain patches actually emit energy (light) into the scene. This
could be why a lot of the radiosity images seen in books like Foley’s are
offices lit by fluorescent ceiling panel lights (which are quite easy to
approximate with a polygon).

Let’s consider a particular patch i in our scene. We want to find the
radiosity leaving our surface (this can be a source of confusion: Radiosity
is both an algorithm and a unit!). Essentially, the radiosity leaving our sur-
face is the color of the surface when we end up drawing it. For example,
the more red energy leaving the surface, the more red light will enter our

402 � Chapter 9: Advanced 3D Programming

virtual eye looking at the surface, making the surface appear more red. For
all of the following equations, power is equivalent to light.

We know how much power each of our surfaces emit. All the surfaces we
want to use as lights emit some light; the rest of the surfaces don’t emit
any. All we need to know is how much is reflected by a surface. This ends
up being the amount of energy the surface receives from the other sur-
faces, multiplied by the reflectance of the surface. Expanding the right side
gives:

So this equation says that the energy reflected by element i is equal to the
incoming energy times a reflectance term that says how much of the
incoming energy is reflected back into the scene. To find the energy incom-
ing to our surface, we take every other surface j in our scene, find out how
much of the outgoing power of j hits i, and sum all of the energy terms
together. You may have noticed that in order to find the outgoing power of
element i we need the outgoing power of element j, and in order to find
the outgoing power of element j we need the outgoing power of element i.
We’ll cover this soon.

Let’s define some variables to represent the terms above and flesh out
a mathematical equation:

Table 9.2: Variables for our radiosity equations

Ai Area of patch i. (This is pretty easy to compute for quads.)

ei Radiant emitted flux density of patch i. (We are given this. Our luminous surfaces
get to emit light of a certain color.)

ri Reflectance of patch i. (We’re given this too. It’s how much the patch reflects each
color component. Essentially, this is the color of the patch when seen under bright
white light.)

bi Radiosity of patch i. (This is what we want to find.)

Fj-i Form factor from patch j to patch i (the fraction of the total radiosity leaving j that
directly hits i, which we will compute later).

So if we simply rewrite the equation we have above with our defined vari-
ables we get the following radiosity equation:

Chapter 9: Advanced 3D Programming � 403

�
�
�

�

�

�
�
�

�

�
	

�
�
�

�

�

�
�
�

�

�
�

�
�
�

�

�

�
�
�

�

�

iii element

byreflected

power

element

byemitted

power

element

ofpower

outgoing

�
)* �

�
�

�

�

�
�
�

�

�
�

�
�
�

�

�

�
�
�

�

�
����

�
���

�
	

�
�
�

�

�

�
�
�

�

�
�

�
�
�

�

�

�
�
�

�

�

ij
ielem.atarrives

thatjelem.leaving

poweroffraction

jelem.of

power

outgoing

ielem.of

ereflectanc

ielem.

byemitted

power

ielem.

ofpower

outgoing

We’re going to go into the computation of the form factor later. For right
now we’ll just present a particular trait of the form factor called the Reci-
procity Law:

This states that the form factors between sub-patches are related to the
areas of each of the sub-patches. With this law we can simplify and rear-
range our equation to get the following:

By now you’ve probably noticed an icky problem: To find the radiosity of
some surface i we need to know the radiosity of all of the other surfaces,
presenting a circular dependency. To get around this we need to solve all
of the radiosity equations simultaneously.

The way this is generally done is to take all n patches in our scene and
compose a humongous n x n matrix, turning all of the equations above
into one matrix equation.

I could try to explain how to solve this monstrosity, but hopefully we’re all
getting the idea that this is the wrong way to go. Getting a good radiosity
solution can require several thousand patches for even simple scenes,
which will cost us tens of megabytes of memory for the n x n matrix, and
forget about the processing cost of trying to solve said multimegabyte
matrix equation.

Unless we can figure out some way around this, we’re up a creek.
Luckily, there is a way around. In most situations, a lot of the values in the
matrix will be either zero or arbitrarily small. This is called a sparse matrix.
The amount of outgoing energy for most of these patches is really small,
and will only contribute to a small subset of the surfaces. Rather than
explicitly solve this large sparse matrix, we can solve it progressively, sav-
ing us a ton of memory and a ton of time.

404 � Chapter 9: Advanced 3D Programming

�
�

	�
n

j i

j
ijjiii

A

A
Fbeb

1

+

jijiji FAFA �

�
�

	�
n

j

jijiii Fbeb

1

+ i

n

j

jijii eFbb �
 �
�

1

+

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

nnnnnnnnn

n

n

e

e

e

b

b

b

FFF

FFF

FFF

��

�

����

�

�

2

1

2

1

21

22222122

11211111

1

1

1

+++

+++
+++

Progressive Radiosity

The big conceptual difference between progressive radiosity and matrix
radiosity is that in progressive radiosity we shoot light out from patches,
instead of receiving it. Each patch has a value that represents how much
energy it has to give out (�Radiosity, or deltaRad) that is initially set to
how much energy the surface emits. Each iteration, we choose the patch
that has the most energy to give out (deltaRad * the area of the patch). We
then send its energy out into the scene, finding how much of it hits each
surface. We add the incoming energy to the radiosity and deltaRad of each
other patch. Finally, we set the deltaRad of our source patch to zero (since,
at this point, it has released all of its energy) and repeat. Whenever the
patch with the most energy has its energy value below a certain
threshhold, we stop.

Here’s pseudocode for the algorithm:

Listing 9.11: Pseudocode for the radiosity algorithm

For(each patch 'curr')
curr.radiosity = curr.emitted
curr.deltaRad = curr.emitted

while(not done)
source = patch with max. outgoing energy (deltaRad * area)
if(source.deltaRad < threshold)

done = true
For(each patch 'dest' != source)

deltaRad = dest.reflectiveness *
FormFactor(dest, source)

dest.radiosity += deltaRad
dest.deltaRad += deltaRad

source.deltaRad = 0
Draw scene (if desired)

The Form Factor

The final piece of the puzzle is the calculation of this mysterious form fac-
tor. Again, it represents the amount of energy that leaves a sub-patch i that
reaches a sub-patch j. The initial equation is not as scary as it looks. The
definition of the form factor between two sub-patches i and j is:

Table 9.3 lists the meanings of the variables in this equation.

Table 9.3: Variable meanings for the form factor equation

vij Visibility relationship between i and j; 1 if there is a line of sight between the two
elements, 0 otherwise.

Chapter 9: Advanced 3D Programming � 405

ijji

A A

ji

i
ji dAdAv

rA
F

i j

 , ,�
2

coscos1

�

��

dAi, dAj Infinitesimally small pieces of the elements i and j.

r The length of the ray separating i and j.

� i and � j The angle between the ray separating i and j and the normals of i and j, respectively
(see Figure 9.30).

Figure 9.30 may help you visualize the relationship between some of the
variables in the form factor equation.

Maybe you enjoy working with troublesome double integrals. I don’t. I
look at equations like this, think about having to write code to handle it,
and run for the hills. Luckily we can give up a little bit in accuracy and get
rid of those nasty integrals.

What do the integrals mean? Essentially, we want to compute the bulk
of the equation an infinite amount of times for a set of infinitely small
pieces of the patches, and sum them all together. Of course, doing it an
infinite amount of times is unreasonable. We can do it enough so that our
solution is close enough to what we would get if we had computed the
integral properly. We’re not even going to do it enough, though; we’re just
going to do it once.

What is the justification for this? Our patches are generally going to be
pretty small, small to the point that the radiosity for each of the
sub-patches is going to be pretty much the same. We can’t get much vari-
ance in the amount of light hitting a surface when the surface is only a few
inches square. Of course, there are cases where it could fail, but they most
likely won’t come up, and if they do that’s what we get for approximating.

Instead of computing the form factor equation for a bunch of small
sub-patches, we’re going to just compute it once for both patches. The
delta areas become the regular areas, and we compute the line-of-sight

406 � Chapter 9: Advanced 3D Programming

Figure 9.30:
The theta and r
variables visualized

only once, using the centers of the patches. This makes our equation much
nicer looking:

This isn’t painful at all. To compute the line-of-sight, we’ll just use the BSP
tree code we developed in Chapter 5. Testing is quick (anywhere from
O(lg n) to O(n) worst case, where n is the number of polygons), and it’s
not dependent on the number of patches, just the number of polygons.

Application: Radiosity

With all the pieces in place, we can finally make a stab at implementing a
radiosity simulator, which I have taken the liberty of doing. It loads a scene
description file off the disk and progressively adds radiosity to the scene.
For each frame it processes the brightest patch and then renders it. That
way, as the program is running, light slowly fills the room.

The first non-commented line of the file contains the number of poly-
gons. Listing 9.12 shows the header and the first polygon of the provided
data file. The first line of the polygon has four floating-point values, the
first three of which describe the energy of the surface. Most of the poly-
gons have the energy set to black, but there are three lit polygons in the
room to add light to it. The fourth component is the reflectance of the
polygon. This should be an RGB triplet as well; making it just a float
restricts all the surfaces to be varying shades of gray. After the polygon
header there are four lines with three floats each, defining the four corners
of the polygon. When the polygon is loaded, it is subdivided into a bunch
of sub-patches until their area is below a constant threshold.

Listing 9.12: Sample from the radiosity data file

this is a more complex data set
26
top of the room, very reflective
0.0 0.0 0.0 0.76 ##
-10.0 10.0 -10.0
10.0 10.0 -10.0
10.0 10.0 -8.0
-10.0 10.0 -8.0
...

This code can only correctly deal with square polygons. Adding support for
other types of polygons wouldn’t be hard, but I didn’t want to
over-complicate the code for this program. Also, for the sake of simplicity,
patches are flat shaded. Computing the right color for the patch corners is

Chapter 9: Advanced 3D Programming � 407

jji
ji

ji

ijji
ji

i
ji

Av
r

F

AAv
rA

F

�

�

2

2

coscos

coscos1

�

��
�

��

harder than you would think. The naïve solution would be to just compute
the radiosity equations using the vertices instead of the centers of the
patches. The problem occurs at corners. Since the point you’re computing
is right against the polygon next to it, it won’t receive any light, and you’ll
get an almost black line running around the borders of all your poly-
gons—an unacceptable artifact. There is a nifty algorithm in Foley’s
Computer Graphics in the radiosity section to compute vertex colors from
patch colors; implementing it is left as an exercise for the reader.

A screen shot from the radiosity application after it has run its course
(it can take a while—five minutes on Adrian’s Celeron 366, or 5 seconds
on my P4 1.5Ghz) appears in Figure 9.31. Some interesting snippets from
the code appear in Listing 9.13.

Listing 9.13: Snippets from the radiosity calculator

bool cRadiosityCalc::LineOfSight(sPatch* a, sPatch* b)
{

// Early-out 1: they're sitting on the same spot
if(a->m_plane == b->m_plane)

return false;

// Early-out 2: b is behind a
if(a->m_plane.TestPoint(b->m_center) == ptBack)

return false;

// Early-out 3: a is behind b
if(b->m_plane.TestPoint(a->m_center) == ptBack)

return false;

// Compute the slow
return m_tree.LineOfSight(a->m_center, b->m_center);

408 � Chapter 9: Advanced 3D Programming

Figure 9.31:
Screen shot
from radiosity
calculator

}

float cRadiosityCalc::FormFactor(sPatch *pSrc, sPatch *pDest)
{

float angle1, angle2, dist, factor;
point3 vec;

// find vij first. If it's 0, we can early-out.
if(!LineOfSight(pSrc, pDest))

return 0.f;

point3 srcLoc = pSrc->m_center;
point3 destLoc = pDest->m_center;

vec = destLoc - srcLoc;
dist = vec.Mag();
vec /= dist;

angle1 = vec * pSrc->m_plane.n;
angle2 = -(vec * pDest->m_plane.n);

factor = angle1 * angle2 * pDest->m_area;
factor /= PI * dist * dist;

return factor;
}

cRadiosityCalc::sPatch* cRadiosityCalc::FindBrightest()
{

sPatch* pBrightest = NULL;
float brightest = 0.05f;

float currIntensity;

list<sPatch*>::iterator iter;

// Blech. Linear search
sPatch* pCurr;
for(

iter = m_patchList.begin();
iter != m_patchList.end();
iter++)

{
pCurr = *iter;

currIntensity = pCurr->m_intensity;

if(currIntensity > brightest)
{

brightest = currIntensity;
pBrightest = pCurr;

}
}

Chapter 9: Advanced 3D Programming � 409

// This will be NULL if nothing was bright enough
return pBrightest;

}

bool cRadiosityCalc::CalcNextIteration()
{

// Find the next patch that we need to
sPatch* pSrc = FindBrightest();

// If there was no patch, we're done.
if(!pSrc)
{

DWORD diff = timeGetTime() - m_startTime;
float time = (float)diff/1000;

char buff[255];
sprintf(

buff,
"Radiosity : Done - took %f seconds to render",
time);

SetWindowText(MainWindow()->GetHWnd(), buff);
return false; // no more to calculate

}

sPatch* pDest;
list<sPatch*>::iterator iter;

float formFactor; // form factor Fi-j
color3 deltaRad; // Incremental radiosity shot from src to dest

for(
iter = m_patchList.begin();
iter != m_patchList.end();
iter++)

{
pDest = *iter;

// Skip sending energy to ourself
if(pDest == pSrc)

continue;

// Compute the form factor
formFactor = FormFactor(pDest, pSrc);

// Early out if the form factor was 0.
if(formFactor == 0.f)

continue;

// Compute the energy being sent from src to dest
deltaRad = pDest->m_reflect * pSrc->m_deltaRad * formFactor;

// Send said energy
pDest->m_radiosity += deltaRad;
pDest->m_deltaRad += deltaRad;

410 � Chapter 9: Advanced 3D Programming

// Cache the new intensity.
pDest->m_intensity =

pDest->m_area *
(pDest->m_deltaRad.r +
pDest->m_deltaRad.g +
pDest->m_deltaRad.b);

}
// this patch has shot out all of its engergy.
pSrc->m_deltaRad = color3::Black;
pSrc->m_intensity = 0.f;

return true;
}

Chapter 9: Advanced 3D Programming � 411

This page inten tion ally left blank

Chapter 10Chapter 10

While I covered a lot of ground in Chapter 8, I really only scratched the
surface of Direct3D’s total set of functionality. While I can’t hope to
cover everything in this chapter (it’s far too big an API), I can cover
enough to get some really cool things going. By the end of this chapter,
I’ll have discussed everything you could ever want to know about tex-
ture mapping, along with alpha blending, multitexture effects, and the
stencil buffer.

With Direct3D, there eventually comes a crest in the learning curve.
At some point you know enough about the API that figuring out the rest
is easy. For example, there comes a point when you’ve been bitten
enough by setting the vertex shader parameters and zeroing out struc-
tures that you automatically do it. Hopefully, after learning the material
in this chapter, you’ll be over the hump. When you get there, learning
the rest of the API is a breeze. It’s like that parable about giving a man a
fish or teaching him how to fish. This chapter is giving you a few fish,
but hopefully it’s also giving you a fishing pole.

Alpha BlendingAlpha Blending

Up to this point, I’ve been fairly dismissive of the mysterious alpha com-
ponent that rides along in all of the D3DColor structures. Now, young
grasshopper, you may finally learn its dark secrets. A lot of power is hid-
den away inside the alpha component.

Loosely, the alpha component of the RGBA quad represents the
opaqueness of a surface. An alpha value of 0xFF (255) means the color
is completely opaque, and an alpha value of 0x00 (0) means the color is
completely transparent. Of course, the value of the alpha component is
fairly meaningless unless you actually activate the alpha blending step.
If you want, you can set things up a different way, such as having 0x00
(0) mean that the color is completely opaque. The meaning of alpha is
dependent on how you set up the alpha blending step.

The alpha blending step is one of the last in the D3D pixel pipeline.
As you rasterize primitives, each pixel that you wish to change in the

413

frame buffer gets sent through the alpha blending step. That pixel is com-
bined using blending factors to the pixel that is currently in the frame
buffer. You can add the two pixels together, multiply them together, lin-
early combine them using the alpha component, and so forth. The name
“alpha blending” comes from the fact that generally the blending factors
used are either the alpha or the inverse of the alpha.

The Alpha Blending Equation

The equation that governs the behavior of the blending performed in
Direct3D is defined as follows:

Final color is the color that goes to the frame buffer after the blending
operation. Source is the pixel you are attempting to draw to the frame
buffer, generally one of the many pixels in a triangle you have told D3D to
draw for you. Destination is the pixel that already exists in the frame
buffer before you attempt to draw a new one. The source and destination
blend factors are variables that modify how the colors are combined
together. The blend factors are the components you have control over in
the equation; you cannot modify the positions of any of the terms or mod-
ify the operations performed on them.

For example, say you want an alpha blending equation to do noth-
ing—to just draw the pixel from the triangle and not consider what was
already there at all (this is the default behavior of the Direct3D Rasterizer).
An equation that would accomplish this would be:

As you can see, the destination blending factor is 0 and the source blend-
ing factor is 1. This reduces the equation to:

A second example would be if you wanted to multiply the source and des-
tination components together before writing them to the frame buffer. This
initially would seem difficult, as in the above equation they are only added
together. However, the blending factors defined need not be constants;
they can in fact be actual color components (or inverses thereof). The
equation setup would be:

In this equation, the destination blend factor is set to the source color
itself. Also, since the source blend factor is set to zero, the left-hand side of
the equation drops away and you are left with:

414 � Chapter 10: Advanced Direct3D

factorblendndestinationdestinatiofactorblendsourcesourcecolorfinal �	��

0.0ndestinatio0.1sourcecolorfinal �	��

sourcecolorfinal �

sourcendestinatio0.0sourcecolorfinal �	��

sourcendestinatiocolorfinal ��

A Note on Depth Ordering

Usually if you are using a blending step that changes the color already in
the depth buffer, you are attempting to use a semi-transparent surface,
such as a puff of smoke or a fading particle effect. For the particle to
appear correctly, the value already in the depth buffer must be what you
would naturally see behind the specified primitive. For this to work cor-
rectly, you need to manually sort all of the alpha-blended primitives into a
back-to-front list, drawing them after you draw the rest of our scene poly-
gons. Using qsort, the STL generic sort algorithm, or something similar
using the view space z value of the first vertex of each primitive as the
sorting key will generally do the trick.

Enabling Alpha Blending

Turning on alpha blending is a matter of setting a render state in the
device using IDirect3DDevice9::SetRenderState. Set D3DRS_ALPHA-
BLENDENABLE to TRUE to enable alpha blending or FALSE to disable it.

It is important that you don’t enable alpha blending when you don’t
have to. On many cards, a penalty is suffered during rasterization if the
hardware needs to read from its frame buffer. Software rendering is spec-
tacularly slow when it has to perform additional blending at each pixel.
Only turn on alpha blending when you are going to use it.

Blending Modes

You set the blending factors for the alpha blending step using two render
states: D3DRS_SRCBLEND and D3DRS_DESTBLEND. They set up the
source and destination blending factors, respectively. The second parame-
ter for the SetRenderState call must be a member of the D3DBLEND
enumeration, which defines the set of supported blending factors. Table
10.1 presents the set of values for the D3DBLEND enumeration.

Note: You may see the blend factors that I was just talking about written differ-
ently in other publications. For instance, D3DRS_DESTBLEND may be
written as D3DRENDERSTATE_DESTBLEND. The longer version is the
way it was defined previous to DirectX 8.0, and if you try to use it you will
get compile errors.

Table 10.1: Members of the D3DBLEND enumeration

D3DBLEND_ZERO The blending factor is zero for all components:

(0, 0, 0, 0)

D3DBLEND_ONE The blending factor is set to one for all components:

(1, 1, 1, 1)

D3DBLEND_SRCCOLOR The blending factor is set to the source color:

(srcred, srcgreen, srcblue, srcalpha)

Chapter 10: Advanced Direct3D � 415

D3DBLEND_INVSRCCOLOR The blending factor is set to the inverse of the source color:

(1–srcred, 1–srcgreen, 1–srcblue, 1–srcalpha)

D3DBLEND_SRCALPHA The blending factor is set to the alpha of the source color:

(srcalpha, srcalpha, srcalpha, srcalpha)

D3DBLEND_INVSRCALPHA The blending factor is set to the inverse of the alpha of the
source color:

(1–srcalpha, 1–srcalpha, 1–srcalpha, 1–srcalpha)

D3DBLEND_DESTALPHA The blending factor is set to the alpha of the destination color
(this only makes sense if the frame buffer has an alpha
component):

(destalpha, destalpha, destalpha, destalpha)

D3DBLEND_INVDESTALPHA The blending factor is set to the inverse of the alpha of the
destination color (this only makes sense if our frame buffer has
an alpha component):

(1–destalpha, 1–destalpha, 1–destalpha, 1–destalpha)

D3DBLEND_DESTCOLOR The blending factor is set to the destination color:

(destred, destgreen, destblue, destalpha)

D3DBLEND_INVDESTCOLOR The blending factor is set to the inverse of the destination color:

(1–destred, 1–destgreen, 1–destblue, 1–destalpha)

D3DBLEND_SRCALPHASAT The blending factor is the source alpha saturated against the
inverse destination alpha:

f = min(srcalpha, 1–destalpha)

(f, f, f, 1)

D3DBLEND_BOTHINVSRCALPHA This state is only valid for D3DRS_SRCBLEND. It sets the
source blending factor to D3DBLEND_INVSRCALPHA, and the
destination blending factor to D3DBLEND_SRCALPHA.

As an example, let’s say you wanted to perform the blending mode dis-
cussed above, multiplying the two components together and storing the
result in the frame buffer. Code for this would look like what appears in
Listing 10.1.

Listing 10.1: Enabling alpha blending

// turn on alpha blending
pDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);

// set our blending terms
pDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ZERO);
pDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_SRCCOLOR);

The blending equation after setting these states (as long as the blending
operations were supported by the device) would be:

There is one last thing you need to worry about, and that is determining if
the blending modes we wish to use are supported by the card. This can be

416 � Chapter 10: Advanced Direct3D

)src,src,src,src()dest,dest,dest,dest()0()src,src,src,src(abgrabgrabgr 	�result

done by checking the primitive caps in the D3D device description. There
are two member variables, SrcBlendCaps (for source blending factors) and
DestBlendCaps (for destination blending factors). There is a flag for each
member of the D3DBLEND enumeration. Just perform an AND with a flag
to see if the blending factor you want is supported. The names are similar,
following the convention that the blending factor D3DBLEND_x has a
corresponding flag D3DPBLENDCAPS_x. For example, D3DPBLEND-
CAPS_ONE is the flag for D3DBLEND_ONE.

Now that you have alpha blending at your disposal, what can you do
with it? Well, for starters, you can have semi-transparent objects. Set up
your iterated alpha value to be something like 0.5 (for medium transpar-
ency). This is done by fiddling with the material settings when you draw
unlit primitives or changing the iterated alpha color in the diffuse compo-
nent of lit primitives. Then set the blending mode to be SRCALPHA for the
source blending factor and INVSRCALPHA for the destination blending fac-
tor. This is just scratching the surface; later in the chapter I’ll explore a lot
of neat effects that can be done with alpha blending. Of course, before you
get there you need to learn a little bit about texture mapping.

Texture Mapping 101Texture Mapping 101

It’s kind of hard to think of texture mapping qualifying as advanced
Direct3D material. Just about every 3D game that has come out in the last
few years has used it, so it can’t be terribly complex. When drawing your
3D objects with only a solid color (or even a solid color per vertex that is
Gouraud shaded across the triangle pixels), they look rather bland and
uninteresting. Objects in the real world have detail all over them, from the
rings in woodgrain to the red and white pattern on a brick wall.

You could simulate these types of surfaces by increasing the triangle
count a few orders of magnitude, and color each triangle so it could simu-
late things like the pictures of letters that appear on the keys of a
keyboard. This, of course, is a terrible idea! You are almost always limited
by the number of triangles you can feed the card per-frame, so you cannot
add the amount of triangles you need to simulate that kind of detail. There
must be a better way to solve the problem.

Really, what it comes down to is that you generally have the polygon
budget to represent something like a brick wall with a handful of triangles.
Instead of assigning a color to the vertices, you want to paint the picture of
a brick wall onto the mesh. Then, at least from an appreciable distance (far
enough that you can’t notice the bumps and cracks in the wall), the poly-
gons will look a lot like a brick wall.

Welcome to the world of texture mapping. A texture is just a regular
image with some restrictions on it (such as having a power-of-two width
and height). The name “texture” is kind of a misnomer; it does not repre-
sent what the uninitiated think of when they hear the word texture.
Instead of meaning the physical feeling of a surface (being rough, smooth,

Chapter 10: Advanced Direct3D � 417

etc.), texture in this context just means a special kind of image that you
can map onto a polygon.

Fundamentals

Every texture-mapped polygon in our 3D space has a corresponding 2D
polygon in texture space. In Direct3D, the coordinates for texture space are
u (the horizontal direction) and v (the vertical direction). The upper-left
corner of the texture is <0,0> and the bottom-right corner is <1,1>
regardless of the actual size of the texture; even if the texture is wider than
it is tall.

Direct3D is provided with the texture coordinates for the vertices of
the triangles. It then interpolates across each pixel in the triangle, finding
the appropriate u,v pair and then fetches that texture coordinate (or texel)
and using it as the color for that pixel. Figure 10.1 shows a visual represen-
tation of what happens when you texture a primitive.

Other factors can come into play, such as the diffuse color, multiple tex-
tures, and so forth, but I’ll get to this later. While you can create regular
Direct3D surfaces with countless different pixel formats, only subsets of
them are supported as texture formats by most hardware cards. Because of
this, applications should try to use one of these formats for their textures:

� 24-bit RGB (top 8 bits for red, next 8 bits for green, lowest 8 bits for
blue)

� 32-bit ARGB (top 8 bits for alpha, next 8 bits for red, next 8 bits for
green, lowest 8 bits for blue)

� 32-bit RGB (top 8 bits aren’t used, next 8 bits for red, next 8 bits for
green, lowest 8 bits for blue)

418 � Chapter 10: Advanced Direct3D

Figure 10.1:
How primitives get
drawn with tex-
ture coordinates

� 16-bit RGB (top 5 bits for red, next 6 bits for green, lowest 5 bits for
blue)

� 16-bit ARGB (top bit for alpha, next 5 bits for red, next 5 bits for green,
lowest 5 bits for blue)

� 16-bit RGB (top 4 bits aren’t used, next 4 bits for red, next 4 bits for
green, lowest 4 bits for blue)

� 16-bit ARGB (top 4 bits for alpha, next 4 bits for red, next 4 bits for
green, lowest 4 bits for blue)

Warning: Steer clear of 4-4-4 formats if you can (the last two in the above list).
Having only 16 possible values for each of your primary colors just looks ugly
if your image has any sort of color variance in it at all.

Affine vs. Perspective Mapping

To draw a primitive with a texture map, all you need to do is specify tex-
ture coordinates for each of the vertices of the primitive. How the per-pixel
texture coordinates are found can be done in one of two ways, called affine

mapping and perspective mapping. Affine mapping is considered old tech-
nology and was used before there was the computing horsepower available
to handle perspective mapping.

Affine mapping interpolates texture coordinates across each scanline
of a triangle linearly. The u and v are interpolated the same way that r, g,
and b are for Gouraud shading. Because of the simplicity (finding the
delta-u and delta-v for a scanline, and then two adds per pixel to find the
new u and v), affine mapping was very big in the days predating hardware
acceleration.

However, betting that u and v vary linearly across a polygon is grossly
incorrect. If the polygon is facing directly towards the viewer, then yes, u
and v will vary linearly in relation to the pixels. However, if the polygon is
on an angle, there is perspective distortion that prevents this from being
true. The Playstation renders its triangles using affine rendering, and this
can be really visible, especially when 1/z varies a lot over the space of a
triangle. A good example is angled triangles near the camera, such as the
ones at the bottom of the screen in racing games.

Perspective mapping, otherwise known as perspective-correct mapping,
varies u and v correctly across the polygon, correcting for perspective dis-
tortion. The short mathematical answer is that while u and v do not vary
linearly across a scanline, u/z, v/z, and 1/z do. If you interpolate all three
of those values, you can find u and v by dividing u/z and v/z by 1/z. A
division-per-pixel with a software renderer is impossible to do in real time,
or at least it was back in the day, so most games found some way around
it. Quake, for example, did the division every 16 pixels and did a linear
interpolation between, which made the texture mapping look perfect in

Chapter 10: Advanced Direct3D � 419

anything but extremely off-center polygons. With acceleration, there is no
need to worry; it’s just as fast as affine mapping on all modern cards.

Every accelerator you can buy these days can do perspective-correct
mapping at no speed penalty compared to affine mapping, so there is
really no reason to turn it off. The device has perspective texturing turned
on by default, but if you really, really want to turn it off, set the render
state D3DRS_TEXTUREPERSPECTIVE to FALSE.

Warning: An extra incentive to use perspective-correct mapping is that not
using it on certain chip sets can mess with other components that depend on
w or z being interpolated correctly across the polygon (in a particular pixel
fog). Some cards even ignore the texture perspective render state alto-
gether, always rendering with perspective correction enabled.

Texture Addressing

Behavior for choosing texels at the vertices between 0..1 is pretty well
defined, but what happens if you chose texels outside that range? How
should Direct3D deal with it? This is a texture addressing problem. There
are four different ways that Direct3D can do texture addressing: wrap, mir-
ror, clamp, and border color. Each of them is described below.

Wrap

In wrap addressing mode, when a texel is selected past the end of the tex-
ture, it is wrapped around to the other side of the texture. The texel
(1.3,–0.4) would be mapped to (0.3,0.6). This makes the texture repeat
itself like posters on the walls of construction site, as shown in Figure 10.2.

420 � Chapter 10: Advanced Direct3D

Figure 10.2:
The wrap addressing mode

Care must be taken to make sure textures tile correctly when this address-
ing mode is used. If not, visible seams between copies of the texture will be
visible, per the previous figure.

Mirror

Mirror addressing mode flips texels outside of the (0..1) region so that it
looks as if the texture is mirrored along each axis. This addressing mode
can be useful for drawing multiple copies of a texture across a surface,
even if the texture was not designed to wrap cleanly. The texel (1.3,–0.4)
would be mapped to (0.7,0.4), as shown in Figure 10.3.

Clamp

Clamp mode is useful when you only want one copy of the texture map to
appear on a polygon. All texture coordinates outside the (0..1) boundary
are snapped to the nearest edge so they fall within (0..1). The texel
(1.3,–0.4) would be mapped to (1.0,0.0). This appears in Figure 10.4.

Unless the texture is created with a 1-pixel boundary of a solid color
around the edges, noticeable artifacts can occur (for example, the streaks
in the image).

Chapter 10: Advanced Direct3D � 421

Figure 10.3:
The mirror addressing mode

Border Color

Border color mode actually has two stage states to worry about: one to
change the state to the addressing mode and one to choose a border color.
In this addressing mode, all texture coordinates outside of the (0..1)
region become the border color. See Figure 10.5.

422 � Chapter 10: Advanced Direct3D

Figure 10.4:
The clamp addressing mode

Figure 10.5:
The border color addressing
mode

Texture Wrapping

Texture wrapping is different from the texture addressing problem
described above. Instead of deciding how texel coordinates outside the
boundary of (0,1) should be mapped to the (0,1) area, it decides how to
interpolate between texture coordinates. Usually, when the rasterizer
needs to interpolate between two u coordinates (say, 0.1 and 0.8), it inter-
polates horizontally across the texture map, finding a midpoint of 0.45.
When wrapping is enabled, it instead interpolates in the shortest direction.
This would be to actually move from 0.1 to the left, wrap past 0.0 to 1.0,
and then keep moving left to 0.8. The midpoint here would be 0.95.

To enable texture wrapping for each stage, you set the render state
D3DRS_WRAPx, where x is the desired texture stage (from 0 to 7) to
change. Until you start experimenting with multitexture, I’ll only deal with
stage 0. To enable wrapping for a particular direction, you include the bit
for that particular direction. The u-direction bit is D3DWRAPCOORD_0,
and the v-direction bit is D3DWRAPCOORD_1. Figure 10.6 may help clar-
ify what texture wrapping does.

Texture Aliasing

One of the biggest problems applications that use texture mapping have to
deal with is texture aliasing. Texture aliasing is a smaller part of aliasing,
which is another real problem in computer graphics. Aliasing, essentially, is
when your image doesn’t look the way you would expect; it looks like it
was generated with a computer. Texture aliasing can take many forms. If
you’ve ever heard of moire effects, jaggies, blockies, blurries, texel swim-
ming, or shimmering, you’ve heard about texture aliasing.

Why does texture aliasing occur? The short answer is because you’re
trying to discretely sample a signal (the texture on a polygon, being

Chapter 10: Advanced Direct3D � 423

Figure 10.6:
Examples of
texture
wrapping

displayed on a set of pixels) that we would actually see as continuous (or
as continuous as the resolution of our eyes can go). Take the example of a
texture that just had a horizontal repeating sinusoidal color variation on it.
If you graphed the intensity as it related to horizontal position on the
screen, you would get something like Figure 10.7.

Notice that even though it is being sampled discretely, the sample points
follow together well, and you can fairly closely approximate the continu-
ous signal you’re seeing. Problems start occurring when the signal changes
faster than the discrete samples can keep up with. Take Figure 10.8, for
example.

424 � Chapter 10: Advanced Direct3D

Figure 10.7:
A good result
from discrete
sampling of an
image

Figure 10.8:
A very, very bad
result from dis-
crete sampling of
an image

In this graph, the discrete samples don’t approximate the continuous signal
correctly, and you get a different signal altogether. As the frequency of the
sine wave changes, the discrete signal you get varies widely, producing
some really ugly effects. The ugly effects become even worse because the
texture isn’t actually a continuous signal; it’s a discrete signal being sam-
pled at a different frequency. It’s easy to imagine the sine function
becoming the tiniest bit wider, so that each discrete sample met up with
the crest of the sine wave. This tiny difference could happen over a couple
of frames of a simulation (imagine the texture slowly moving towards the
camera), and the resultant image would change from a wide variation of
color to solid white!

If none of this is making sense, fire up an old texture-mapped game,
such as Doom or Duke3D. Watch the floors in the distance as you run
around. You’ll notice that the textures kind of swim around and you see
lots of ugly artifacts. That’s bad. That effect is what I’m talking about here.

MIP Maps

MIP mapping is a way for Direct3D to alleviate some of the aliasing that
can occur by limiting the ratio of pixel size to texel size. The closer the
ratio is to 1, the less texture aliasing occurs (because you’re taking enough
samples to approximate the signal of the texture).

Note: MIP is short for “multum in parvo,” which is Latin for “many things in a
small place.”

Instead of keeping just one version of a texture in memory, we keep a
chain of MIP maps. The top one is the original texture. Each successive one
is half the size in each direction of the previous one (if the top level is
256x256 texels, the first MIP level is 128x128, the next is 64x64, and so
on, down to 1x1).

Creating MIP map surfaces can be done automatically using Create-
Texture. Just create a texture with the Levels parameters set above 1.

Generating MIP levels can be done in several ways. The most common
is to simply sample each 4x4 pixel square in one MIP level into one pixel of
the MIP level below it, averaging the four color values. Luckily, since you’re
loading DDS texture files, this is done automatically.

Filtering

Filtering, or the way in which you get texels from the texture map given a
u,v coordinate pair, can affect the way the final image turns out immensely.
The filtering problem is divided into two separate issues: magnification
and minification.

Magnification occurs when you try to map a single texel in a texture
map to many pixels in the frame buffer. For example, if you were drawing
a 64x64 texture onto a 400 by 400 pixel polygon, the image would suffer

Chapter 10: Advanced Direct3D � 425

the torment of magnification artifacts. Bilinear filtering helps get rid of
these artifacts.

Minification (I didn’t make up this word) is the opposite prob-
lem—when multiple texels need to be mapped to a single pixel. If you
were instead drawing that 64x64 texture onto a 10 by 10 pixel polygon,
our image would instead be feeling the pain from minification. Swimming
pixels, such as the type discussed with the signal discussion above, are
tell-tale symptoms.

Most of the newer kinds of commercial hardware can use four differ-
ent varieties of filtering to alleviate magnification and minification
artifacts. They are point sampling, bilinear filtering, trilinear filtering, and
anisotropic filtering. I’ll go through and take a look at each of them.

Point Sampling

Point sampling is the simplest kind of filter. In fact, it’s hard to think of it as
being a filter at all. Given a floating-point (or fixed-point) u,v coordinate,
the coordinates are snapped to the nearest integer and the texel at that
coordinate pair is used as the final color.

Point sampling suffers from the most aliasing artifacts. If MIP mapping
is used, these artifacts can be alleviated somewhat. The Playstation console
uses point sampling for its texture mapping, as did the first generation of
3D games (Descent, Quake). Quake got past some of the visual artifacts of
point sampling by using MIP maps, selecting the MIP map based on dis-
tance, and point sampling out of that. However, since no filtering is done
between MIP map levels, if you run towards a wall from a far-off distance,
you can visually see the MIP level switch as the distance decreases. Figure
10.9 shows worst-case point sampling, a checkerboard pattern with no
MIP mapping.

The artifacts caused by point sampling are readily visible in the distance.
As the ratio between the signal and the discrete sampling changes, the out-
put signal changes completely, giving rise to the visible banding artifacts.

426 � Chapter 10: Advanced Direct3D

Figure 10.9:
Worst-case point samplingC

o
u
rt

es
y

o
f

Pa
u
l
H

ec
k
b
er

t

Bilinear Filtering

One step up from point sampling is bilinear filtering. Instead of snapping
to the nearest integer coordinate, the four nearest texels are averaged
together based on the relative distances from the sampling point. The
closer the ideal coordinate is to an integer coordinate, the more you
weight it. For example, if you wanted a texel for the coordinate
(8.15,2.75), the result would be:

Bilinear filtering can improve image quality a lot, especially if it is com-
bined with MIP mapping. Just about all consumer-level hardware can
handle bilinear filtering with MIP maps, so it is used the most often. If MIP
maps aren’t used, however, it only looks marginally better than point sam-
pling, as evidenced by Figure 10.10.

Many cards can implement per-pixel MIP mapping, where the correct MIP
level is chosen per pixel instead of per polygon. With bilinear filtering this
can cause banding, sharp visual changes between MIP boundaries.

Trilinear Filtering

Trilinear filtering looks much better than bilinear filtering, especially as
you move through a scene. Trilinear filtering is the short name for the fil-
tering method. The long name is “trilinear MIP map interpolation.” For
each pixel, instead of choosing the correct MIP map to use, the two nearest
MIP maps are used. Each of those MIP levels performs a bilinear filter to
choose the pixel for that MIP level, and then the resultant pixels are

Chapter 10: Advanced Direct3D � 427

)3,9(Texel75.015.0

)3,8(Texel75.0)15.01(

)2,9(Texel)75.01(15.0

)2,8(Texel)75.01()15.01(

pixelResult

��
	��

	�
�

	�
�

�

Figure 10.10:
Bilinear filtering without MIP
mapsC

o
u
rt

es
y

o
f

Pa
u
l
H

ec
k
b
er

t

combined together using the proximity of each MIP map to the ideal MIP
level. For example, if the ideal MIP level was 4.2, then the combination
would be (1 minus 0.2 multiplied by the bilinear result from MIP level 4)
plus (0.2 multiplied by the bilinear result from MIP level 5). Trilinear filter-
ing looks silky-smooth, as evidenced by Figure 10.11.

While many cards can do trilinear filtering (pretty much everything that
came out after the Voodoo2, along with the Voodoo2 itself), most of them
use the multitexture unit to do it. This is done by putting alternating MIP
map levels in each texture stage and then doing a fade filter between both
stages based on the distance between MIP levels. While the card does this
process transparently for you, it prevents you from using more than one
stage when trilinear filtering is enabled on dual-texture cards. Cards
released shortly after, such as the ATI Rage 128, and more modern cards
can handle trilinear filtering in each stage, so this restriction doesn’t apply.
Make sure the device has the necessary support before you try to render
two trilinear textures together.

Anisotropic Filtering

A problem that arises in bilinear and trilinear filtering is that texels are
sampled using square sampling. This works well if the polygon is facing
directly to the viewer but doesn’t work properly if the polygons are angled
sharply away from the viewer. For example, think of the point of view of a
chicken crossing a road. If you could imagine each pixel as a tall, thin pyr-
amid being shot out of the chicken’s eye, when the pyramid intersected the
road it wouldn’t be a square at all. Figure 10.12 illustrates this concept
using a circular sample region.

428 � Chapter 10: Advanced Direct3D

Figure 10.11:
Trilinear filteringC

o
u
rt

es
y

o
f

Pa
u
l
H

ec
k
b
er

t

Anisotropic filtering attempts to correct for this. It’s only available on more
recent cards and can often come at a severe performance penalty. On the
TNT generation of cards, for example, anisotropic filtering could be done
but resulted in an 8x degradation in performance.

Performance problems or not, anisotropic filtering looks about as good
as it can get, as evidenced in Figure 10.13. Just about all of the banding
artifacts or blurring artifacts are gone, and the image looks more and more
like a photograph taken of a real infinite checkerboard.

Textures in Direct3D

In Direct3D, textures are just Direct3D surfaces with a few restrictions.
They almost universally need a power-of-two width and height (example:
64x128 == 26x27). This is a time-honored restriction in computer graph-
ics. Indexing into a 2D array is easier when the dimensions are

Chapter 10: Advanced Direct3D � 429

Figure 10.12:
How textures
would ideally be
sampled

Figure 10.13:
Anisotropic filteringC

o
u
rt

es
y

o
f

Pa
u
l
H

ec
k
b
er

t

powers-of-two; you can shift instead of multiplying. Back before dedicated
hardware was doing texture mapping, this restriction made a big differ-
ence in texture mapping performance. In the future, however, this
restriction will no doubt disappear.

Texture Management

Generally most scenes have many more textures than are visible at any one
time. Also, all of the textures in the scene usually can’t fit in the video
card’s texture memory. This, of course, presents a dilemma: How should an
application make sure that the textures it currently needs for drawing are
loaded into the video card?

To solve this problem you need a subsystem to handle texture manage-
ment. Whenever you want to draw a primitive with a certain texture, the
texture management subsystem makes sure that the texture is available
and in memory. If it isn’t, the card is uploaded and another texture is
evicted from memory to make space for it.

Which texture do you evict? You can’t be haphazard about it:
Uploading textures is expensive and should be done as little as possible. If
you know for certain that a texture won’t be used for a while (say it’s a
special texture used in an area that you’re far away from), then you can
evict it, but generally such information isn’t available. Instead, usually the
texture that hasn’t been used in the longest time, or the least recently used
texture (LRU), is evicted. This system is used almost everywhere where
more data is needed than places to store it (disk caches, for example). Of
course, textures continue to be evicted until there is enough space to place
in the desired texture.

Warning: Pray that you never run into the situation where you need more tex-
ture space than is available on the card to draw a frame. Because of the way
LRU works, every single texture will have to be reloaded as you render each
frame, knocking your frame rates out the window.

Direct3D, thankfully, has an automatic texture management system. While
it’s not as fast as a more specific texture management system would be, for
these purposes it’s all that’s needed.

To activate texture management, you must request the capability
when we create the surface. When creating any resource in Direct3D,
such as a surface or texture, you just have to specify the pool type as
D3DPOOL_MANAGED.

The D3D managed texture manage flag instructs Direct3D to handle
texture management chores. The regular texture manage flag will let the
driver itself do the texture management work if it can. If it can’t, the work
goes to Direct3D’s texture management engine.

You have no way of knowing if any of the managed textures are cur-
rently sitting in video memory; however, this information really isn’t
needed. You just know that whenever you try to draw with that texture,

430 � Chapter 10: Advanced Direct3D

Direct3D will do what it can to make sure the texture appears in video
memory.

You can’t be too reckless with your newfound power, however. If you
tried to draw a scene with 10 MB of textures simultaneously visible on a
card with only 8 MB of texture RAM, that would mean that the texture
management engine would need to download 2 MB of textures to the
graphics card every frame. This can be an expensive operation, and can
just murder your frame rate. In situations like this, it is a better bet to
lower the resolutions of your textures, just so everything can fit on the card
at once.

Direct3D lets you control the way in which managed textures are
evicted. Direct3D holds on to a time stamp of when each managed texture
was used, as well as a priority number for each. When Direct3D needs to
remove a texture, it removes the one with the lowest priority, removing the
least recently used if there is more than one candidate. You can set the pri-
ority of a texture using SetPriority(). There is also a corresponding call to
get the priority called GetPriority().

HRESULT IDirect3DResource9::SetPriority(
DWORD PriorityNew

);

PriorityNew DWORD containing the new priority value for this surface. This method only
has meaning for managed texture surfaces.

Being able to use texture management makes our lives much easier. At
startup we just need to load all the textures we want to use and Direct3D
will take care of everything. If there are too many, the extra ones will invis-
ibly sit in system RAM surfaces until they are used, and then they’ll get
uploaded to the card.

Texture Loading

Just like playing sound effects in Chapter 4, in order to do anything inter-
esting with your newly learned texture mapping skills, you need to
actually have some data to work with. Be aware that loading certain types
of textures can be avoided by generating them algorithmically.

DDS Format

Loading the DDS (or Direct3D Surface) format couldn’t be easier. The first
four bytes contain a magic number that describes it as a DDS surface
(0x20534444, or “DDS” in ASCII). Next is a DDSURFACEDESC2 structure
describing the surface. After that are the raw data of the surface. If there
are any attached surfaces (MIP maps, for example), the data for them is
provided after the main surface.

DDS surfaces can be created using the DirectX Texture Tool, which
comes with the SDK. It can load a BMP file (and load another into the

Chapter 10: Advanced Direct3D � 431

alpha channel, if desired), generate MIP maps, and save the result as a
DDS texture. You can also create compressed DDS texture files. However,
you don’t need to worry about the intricacies of the surface format because
since version 8.0 it is easy to load DDS files with the D3DXCreateTexture-
FromFile() utility function.

The cTexture Class

To facilitate the loading of Direct3D textures, I’m going to create a class
that wraps around a Direct3D texture object, specifically for use as a tex-
ture. The class is fairly simple, based on the Compress Direct3D sample.
The source appears in Listings 10.2 (header) and 10.3 (source).

Listing 10.2: Texture.h

/***
* Advanced 3D Game Programming using DirectX 9.0
* *
* copyright (c) 2003 by Peter A Walsh and Adrian Perez
* See license.txt for modification and distribution information
**/

#ifndef _TEXTURE_H
#define _TEXTURE_H

#include <ddraw.h>

#include <vector>
#include <string>

class cGraphicsLayer;

class cTexture
{
protected:

void ReadDDSTexture(LPDIRECT3DTEXTURE9& pTexture);

static bool m_bSupportsMipmaps;

void BltToTextureSurface(LPDIRECT3DTEXTURE9 pTempTex);

LPDIRECT3DTEXTURE9 m_pTexture;

string m_name;

// The stage for this particular texture.
DWORD m_stage;

public:
cTexture(const char* filename, DWORD stage = 0);
virtual ~cTexture();

LPDIRECT3DTEXTURE9 GetTexture();

432 � Chapter 10: Advanced Direct3D

};

#endif //_TEXTURE_H

Listing 10.3: Texture.cpp

/***
* Advanced 3D Game Programming using DirectX 9.0
* *
* copyright (c) 2003 by Peter A Walsh and Adrian Perez
* See license.txt for modification and distribution information
**/

#include "stdafx.h"
#include "Texture.h"
#include "GraphicsLayer.h"
#include "DxHelper.h"

using std::vector;

bool cTexture::m_bSupportsMipmaps;

int GetNumberOfBits(int mask)
{

for(int nBits = 0; mask; nBits++)
mask = mask & (mask - 1);

return nBits;
}

HRESULT WINAPI EnumTextureFormats(DDPIXELFORMAT* pddpf, VOID* pVoid)
{

vector<DDPIXELFORMAT>* pVec = (vector<DDPIXELFORMAT>*)pVoid;

pVec->push_back(*pddpf);

return DDENUMRET_OK;
}

cTexture::cTexture(const char* filename, DWORD stage)
{

LPDIRECT3DTEXTURE9 pTempTex = 0;

m_pTexture = 0;

m_name = string(filename);
m_stage = stage;

Chapter 10: Advanced Direct3D � 433

ReadDDSTexture(pTempTex);

BltToTextureSurface(pTempTex);

SafeRelease(pTempTex);
}

cTexture::~cTexture()
{

SafeRelease(m_pTexture);
}

void cTexture::ReadDDSTexture(LPDIRECT3DTEXTURE9& pTexture)
{

HRESULT r = 0;

r = D3DXCreateTextureFromFile(
Graphics()->GetDevice(),
m_name.c_str(),
&pTexture);

if(FAILED(r))
{

throw cGameError("Bad DDS file\n");
}

}

LPDIRECT3DTEXTURE9 cTexture::GetTexture()
{

return m_pTexture;
}

void cTexture::BltToTextureSurface(LPDIRECT3DTEXTURE9 pTempTex)
{

SafeRelease(m_pTexture);

D3DSURFACE_DESC TexDesc;

pTempTex->GetLevelDesc(0, &TexDesc);
DWORD NumLevels = pTempTex->GetLevelCount();

D3DXCreateTexture(
Graphics()->GetDevice(),
TexDesc.Width,
TexDesc.Height,
NumLevels,
0,
TexDesc.Format,
D3DPOOL_MANAGED,
&m_pTexture);

434 � Chapter 10: Advanced Direct3D

LPDIRECT3DSURFACE9 pSrcSurf = 0;
LPDIRECT3DSURFACE9 pDestSurf = 0;

for(int i = 0 ; i < NumLevels ; i++)
{

m_pTexture->GetSurfaceLevel(i, &pDestSurf);
pTempTex->GetSurfaceLevel(i, &pSrcSurf);

D3DXLoadSurfaceFromSurface(
pDestSurf,
0,
0,
pSrcSurf,
0,
0,
D3DX_FILTER_NONE,
0);

pDestSurf->Release();
pSrcSurf->Release();

}

}

Activating Textures

With all this talk of texture management and texture addressing, filtering,
and wrapping, I still haven’t described how to activate a texture for use!
After creating a texture surface, filling it with image data, setting all the
rendering states we want, and so forth, to actually activate it you use the
SetTexture method on the Direct3D device interface.

HRESULT IDirect3DDevice9::SetTexture(
DWORD Stage,
IDIRECT3DBASETEXTURE9* pTexture

);

Stage Stage for the texture. I’ll be talking a lot about the texture stages in a moment.
This can be an integer from 0 to 7, corresponding to the first (0) through the last
(7) texture stage. If you’re just activating one texture, this value should be 0.

pTexture Pointer to the Direct3D texture to use as the current texture.

Note that SetTexture AddRef’s the surface being given to it. It releases it
when the texture is replaced. It can either be replaced with another texture
or with NULL using SetTexture(stage, NULL). Note that it doesn’t release
them when the device itself is released. This is why, in cGraphics-
Layer::DestroyAll(), you step through all seven stages, setting the texture
to NULL to avoid a memory leak.

Once a texture has been activated, every primitive drawn will be tex-
tured. If you want to stop texturing, you must deactivate the first texture
stage (which we will discuss in a moment).

Chapter 10: Advanced Direct3D � 435

Texture Mapping 202Texture Mapping 202

In this day and age, plain vanilla texture mapping is not enough. There are
many neat effects that you can do using multiple passes, and in this section
I’ll discuss how to use multipass and multitexture effects to make textured
objects that look really cool.

Multiple Textures Per Primitive

With the release of DirectX 6.0, Direct3D had the ability to support the ren-
dering of primitives with multiple textures applied to them. The feature is
supported by what are called texture stages.

Each texture stage can be thought of as two separate units (alpha and
color), each with two arguments (such as the iterated color of the pixel,
the texture at the pixel, or the result of the previous stage) and an operator
combining them (such as multiplication, addition, or subtraction).

The result of stage 0 can be used in stage 1; that result can be used in
stage 2, and so forth, cascading down to stage 7, the highest stage cur-
rently supported by Direct3D. All the stages don’t need to be active at
once, however. Whenever Direct3D encounters an inactivated stage, the
current result is fed to the next stage of the rasterization pipeline. A visual
representation of the texture stage cascade is shown in Figure 10.14.

Note: The reason there are separate cascades for alpha and color is so that you
can use them independently of each other. You’ll see later examples where
the alpha component of a texture is actually a completely different image
than the color component, so being able to use it differently is a neat thing.

436 � Chapter 10: Advanced Direct3D

Figure 10.14:
The color and
alpha blending
cascades

Be warned: You can’t assume that any or all of the blending stages are
available. As of publication, the top-of-the-line graphics cards can only do
four stages, and only two of them can use textures. Within the next few
years, cards will begin to appear that can handle all eight texture stages,
but for right now, the device description should be checked to see how
many stages can be used and how many of those can use textures. There
are two important member variables: MaxTextureBlendStages (how many
stages can simultaneously be used) and MaxSimultaneousTextures (how
many textures can be used simultaneously).

Warning: Why the need for two different variables? Besides the fact that tex-
tures aren’t always needed for multitexture effects, there is an important
problem that the two variables help solve. On many cards, iterated color
(the diffuse r, g, and b values) can only be introduced in the last stage. On
these cards there is one more stage than there are possible textures, since
the last stage can be used to combine the current multitexture result with
the iterated diffuse color.

Multiple texture blending is a fairly complex feature, so I’ll go through it
step by step. Each texture stage has its own separate state independent of
the other stages. That state can be set using SetTextureStageState and
retrieved with GetTextureStageState.

HRESULT IDirect3DDevice9::SetTextureStageState(
DWORD Stage,
D3DTEXTURESTAGESTATETYPE Type,
DWORD Value

);

Stage The texture stage being changed. Valid values for this parameter are integers
between 0 and 7.

Type A member of the D3DTEXTURESTAGESTATETYPE enumeration, describing the
state being changed (discussed below).

Value New value for the state.

HRESULT IDirect3DDevice9::GetTextureStageState(
DWORD Stage,
D3DTEXTURESTAGESTATETYPE Type,
LPDWORD pValue

);

Stage The texture stage being queried. Valid values for this parameter are integers
between 0 and 7.

Type A member of the D3DTEXTURESTAGESTATETYPE enumeration, describing
the state being queried (discussed below).

pValue Pointer to data that will receive the new state.

Chapter 10: Advanced Direct3D � 437

There are a myriad of states that can be changed for each stage. The set of
texture stage states is encompassed by the D3DTEXTURESTAGE-
STATETYPE enumeration, which is dissected in Table 10.2.

Table 10.2: Members of the D3DTEXTURESTAGESTATETYPE enumeration (D3DTSS_ prefix
omitted)

COLOROP Defines the operation done to combine COLORARG1 and
COLORARG2. One of the members of the D3DTEXTUREOP
enumeration, discussed below.

(Default = D3DTOP_DISABLE for all stages except stage 0, which is
D3DTOP_MODULATE)

COLORARG1,
COLORARG2

Describes the source for the arguments in the texture color operation.
The color argument can be any of the texture argument flags:

� D3DTA_CURRENT—The argument value is the color from the
previous stage. On stage 0, this is the diffuse color.
� D3DTA_DIFFUSE—The argument value is the diffuse color.

� D3DTA_TEXTURE—The argument value is the texture color. It is
recommended that this argument be used only in stage 1.

� D3DTA_TFACTOR—The argument value is the currently set texture
factor. This is set by changing the
D3DRENDERSTATE_TEXTUREFACTOR render state.

� D3DTA_SPECULAR—The argument value is the texture color. It is
recommended that this argument be used only in stage 1.

� D3DTA_ALPHAREPLICATE—Additional flag, used in conjunction
with one of the above. Causes the alpha component of the color to be
copied to the other three color values.

� D3DTA_COMPLEMENT—Additional flag, used in conjunction with
one of the above. Causes all components to be inverted, such that (x =
1.0 – x).

(Default = D3DTOP_TEXTURE)

ALPHAOP Defines the operation done to combine ALPHAARG1 and ALPHAARG2.
One of the members of the D3DTEXTUREOP enumeration, discussed
below.

(Default = D3DTOP_DISABLE for all stages except stage 0, which is
D3DTOP_MODULATE).

ALPHAARG1,
ALPHAARG2

Describes the source for the arguments in the texture alpha operation.
The color argument can be any of the texture argument flags, which are
supplied in the description of COLORARG1 and COLORARG2.

(Default = D3DTOP_TEXTURE)

BUMPENVMAT00,
BUMPENVMAT01,
BUMPENVMAT10,
BUMPENVMAT11

Coefficients for the bump-mapping matrix. The valid range for these
values is [–8,8]. This is the mathematical way of saying that the number
must be equal or greater than –8 and less than (but not equal to) 8.

(Default = 0)

438 � Chapter 10: Advanced Direct3D

TEXCOORDINDEX An integer describing which set of texture coordinates to use for a
particular stage (a vertex can be defined with up to eight vertices). You’ll
remember that back in Chapter 8 I described some vertex formats that
had multiple sets of texture coordinates; this is where you can use them.
If a requested index doesn’t occur in the vertex, the behavior is to default
to the texture coordinate (0,0).

The value can also be one of the following additional flags:

� D3DTSS_TCI_PASSTHRU—Texture coordinates should be taken
from the input index into the array of texture coordinates. This flag
resolves to zero.

� D3DTSS_TCI_CAMERASPACENORMAL—The texture coordinates
for this stage are the normal for the vertex, transformed into camera
space. This is mostly useful when texture transforms are enabled.

� D3DTSS_TCI_CAMERASPACEPOSITION—The texture coordinates
for this stage are the position for the vertex, transformed into camera
space. This is mostly useful when texture transforms are enabled.

� D3DTSS_TCI_CAMERASPACEREFLECTIONVECTOR—The texture
coordinates for this stage are the reflection vector for the vertex,
transformed into camera space. This is mostly useful when texture
transforms are enabled. The reflection vector is a ray that is sent from
the eye point and bounced off the vertex.

(Default (for all stages) = 0)

BUMPENVLSCALE,
BUMPENVLOFFSET

Bump mapping texture stage states.

TEXTURE
TRANSFORMFLAGS

Stage flags for texture transformations, discussed later in the chapter.

� D3DTTFF_DISABLE—Disables texture transforms for the current
stage.

� D3DTTFF_COUNT1—Instructs the rasterizer to expect
one-dimensional texture coordinates. This is in place because it can be
the case where an application takes 3D coordinates, like the camera
space position, and applies a texture transformation matrix that only
cares about one of the entries.

� D3DTTFF_COUNT2—Instructs the rasterizer to expect
two-dimensional texture coordinates. This is in place because it is
possible that an application could take 3D coordinates, like the camera
space position, and apply a texture transformation matrix that only cares
about two of the entries.

� D3DTTFF_COUNT3—Instructs the rasterizer to expect three-dim-
ensional texture coordinates.

� D3DTTFF_COUNT4—Instructs the rasterizer to expect four-dimen-
sional texture coordinates.

� D3DTTFF_PROJECTED—All of the texture coordinates, save the
last, are divided by the last element, and the last element is thrown away.
For example, if we supply the flags (D3DTTFF_COUNT3|D3D-
TTFF_PROJECTED), the first two texture coordinates are divided by the
third, the third is thrown away, and the result is passed to the rasterizer.

(Default = D3DTTFF_DISABLE)

Chapter 10: Advanced Direct3D � 439

One of the most often changed texture stage states is to change the
color/alpha operation performed at each stage. The set of color/alpha
operations sits inside the D3DTEXTUREOP enumeration, which is pre-
sented in Table 10.3:

Table 10.3: Members of the D3DTEXTUREOP enumeration (D3DTOP_ prefix omitted)

DISABLE Disables a stage. Once Direct3D encounters a disabled stage,
the stage cascade stops and the current result is passed to the
next phase of the pipeline.

SELECTARG1 Result of the stage’s texture operation is the color of the first
argument.

Res=Arg1

SELECTARG2 Result of the stage’s texture operation is the color of the
second argument.

Res=Arg2

MODULATE Result of the stage’s texture operation is the result of the
multiplication of the arguments.

Res=Arg1� Arg2

MODULATE2X Result of the stage’s texture operation is the result of the
multiplication of the arguments, multiplied by 2.

Res=2� (Arg1� Arg2)

MODULATE4X Result of the stage’s texture operation is the result of the
multiplication of the arguments, multiplied by 4.

Res=4� (Arg1� Arg2)

ADD Result of the stage’s texture operation is the result of the
addition of the arguments.

Res=Arg1+Arg2

ADDSIGNED Result of the stage’s texture operation is the result of the
addition of the arguments biased by –0.5. This makes the
range of one of the operations effectively a signed number
[–0.5, 0.5].

Res=Arg1+Arg2–0.5

ADDSIGNED2X Result of the stage’s texture operation is the result of the
addition of the arguments biased by –0.5 and multiplied by 2.
The bias makes the range of one of the operations effectively a
signed number [–0.5, 0.5].

Res=2� (Arg1+Arg2–0.5)

SUBTRACT Result of the stage’s texture operation is the result of the
subtraction of the second argument from the first.

Res=Arg1–Arg2

ADDSMOOTH Result of the stage’s texture operation is the result of the
addition of the arguments subtracted by the product of the
arguments.

Res=Arg1+Arg2–Arg1� Arg2
=Arg1+Arg2(1–Arg1)

440 � Chapter 10: Advanced Direct3D

BLENDDIFFUSEALPHA,
BLENDTEXTUREALPHA,
BLENDFACTORALPHA,
BLENDTEXTUREALPHAPM,
BLENDCURRENTALPHA

Result of the stage’s texture operation is the result of the
linear blending of both color operations with the iterated
diffuse alpha, the current iterated texture alpha, a scalar alpha
factor (set with the D3DRS_TFACTOR render state), or the
alpha that resulted from the previous stage.

Res=Arg1� alpha+Arg2� (1–alpha)

PREMODULATE For use with premodulated textures.

MODULATEALPHA_ADDCOLOR Result of the stage’s texture operation is the addition of the
second color modulated with the first color’s alpha
component to the first color. This operation is only valid for
color operations (not alpha operations).

ResRGB=Arg1RGB+Arg1A� Arg2RGB

MODULATECOLOR_ADDALPHA Result of the stage’s texture operation is the addition of the
first argument’s alpha component to the modulated first and
second colors. This operation is only valid for color operations
(not alpha operations).

ResRGB=Arg1RGB� Arg2RGB+Arg1A

MODULATEINVALPHA_ADDCOLOR Result of the stage’s texture operation is the addition of the
second color modulated with the inverse of the first color’s
alpha component to the first color. This operation is only valid
for color operations (not alpha operations).

ResRGB=Arg1RGB+(1–Arg1A)� Arg2RGB

MODULATEINVCOLOR_ADDALPHA Result of the stage’s texture operation is the addition of the
first argument’s alpha component to the modulation of the
second color and the inverse of the first color. This operation
is only valid for color operations (not alpha operations).

ResRGB=(1–Arg1RGB)� Arg2RGB+Arg1A

BUMPENVMAP Performs per-pixel bump mapping, using the next stage as an
environment map. This operation is only valid for color
operations (not alpha operations).

BUMPENVMAPLUMINANCE Performs per-pixel bump mapping, using the next stage as an
environment map. The next stage must be a luminance map.
This operation is only valid for color operations (not alpha
operations).

DOTPRODUCT3 Performs a dot product with the two arguments, replicating
the result to all four color components.

ResRGBA=Arg1R� Arg2R+
Arg1G� Arg2G+
Arg1B� Arg2B

Texture Transforms

DirectX 9.0 has a feature for texture mapping called texture transforms.
They allow an application to specify modifiers, such as projection or matri-
ces that get applied to texture coordinates before being used.

Each texture stage has a 4x4 texture transformation matrix associated
with it. A lot of neat texture effects can be done automatically simply by
fiddling with the matrix you set up. The texture coordinates that go into

Chapter 10: Advanced Direct3D � 441

the matrix don’t need to be four-dimensional; they can be two- or even
one-dimensional.

For example, let’s say you want to perform a simple translation (sup-
pose you had a texture that showed running water and you were
displaying it on the clear section of a pipe). Instead of having to move the
texture coordinates for the clear section of the pipe each frame, you can
keep them stationary and use texture transformations. The end effect here
is each frame you want to translate the coordinates horizontally to simu-
late movement over many frames. You would have a translation amount,
which is called du. Just to be safe, whenever it is incremented past 1.0, it
would be wrapped around back to 0.0 to prevent overflow. Strange things
can happen if the magnitude of the texture coordinates are too large. Set-
ting up the matrix to do this would yield:

Before the vertex texture coordinates are used to fetch texels from the
image, the texture matrix first multiplies them for their stage. Of course, if
the texture coordinate is only two-dimensional (u,v coordinates), it’s pad-
ded with 1s to make the multiplication valid.

To set the texture transform matrix for a particular stage, you call
IDirect3DDevice9::SetTransform using the constants D3DTS_ TEXTURE0
(for the first stage) through D3DTS_TEXTURE7 (for the last stage) in the
first state type parameter.

To actually enable texture transforms, only one more step of work
needs to be done. You set the texture stage state D3DTSS_TEXTURE-
TRANSFORMFLAGS to inform it of how many of the resultant texture
coordinates should be passed to the rasterizer. To disable the texture trans-
formation, set this to D3DTTFF_DISABLE. For two-dimensional texture
coordinates, set it to D3DTTFF_COUNT2. If you’re doing something like
projected textures, you would like to perform a perspective division on
the texture coordinates we receive. To do this, set this to D3DTTFF-
COUNT3|D3DTTFF PROJECTED. This instructs the texture transform
engine to take the three texture coordinates resulting from the texture
transform and divide the first two by the third. If you set up the matrix
correctly this will perform your perspective divide.

The cool thing is you can use things besides the specified texture
coordinates with the texture transforms. You can change the D3D-
TSS_TEXCOORDINDEX texture stage state to use the view space position,
view space normal, or view space reflection vector (all 3D values) as tex-
ture coordinates. I’ll use this fact later to do spherical environment
mapping.

442 � Chapter 10: Advanced Direct3D

�
�
�
�

�

�

�
�
�
�

�

�

1000

010

0010

0001

du

Effects Using Multiple Textures

Most modern games now use multiple textures per primitive for a variety
of effects. While there are many more possible kinds of effects than can be
described here, I’m going to run through the most common ones and show
how to implement them using both multiple textures per pass and multiple
passes.

The way you combine textures and the way you make the textures
defines the kind of effect you end up with. Using multitexturing is pre-
ferred. Since you only draw the primitive once, it ends up being faster than
multipass. Multipass involves drawing each of the separate phases of the
effect one at a time. Generally you change the texture, change the alpha
blending effects, and redraw the primitive. The new pass will be combined
with the previous pass pixel-by-pixel. Figure 10.15 may help explain the
kinds of things I’m trying to do. Using multitexture, you would set the first
stage to texture A, the second stage to texture B, and then set the opera-
tion in texture B to either add, multiply, or subtract the pixels. Using
multipass, you would draw texture A first, then change the alpha blending
steps to add or multiply the pixels together (you can’t subtract), and then
draw the polygon again using texture B.

Light Maps (a.k.a. Dark Maps)

Light mapping is practically a standard feature for first-person shooters
these days. It allows the diffuse color of a polygon to change non-linearly
across the face of a polygon. This is used to create effects like colored
lights and shadows.

Using a light-map creation system (usually something like a radiosity
calculator, which I created in Chapter 9), texture maps that contain just
lighting information are calculated for all of the surfaces in the scene.

Chapter 10: Advanced Direct3D � 443

Figure 10.15:
Combining
textures

Since usually the light map doesn’t change per-pixel nearly as much as the
texture map, a lower-resolution texture is used for the light map. Quake-
style games use about 162 texels of light map for each texel of texture map.
The base map is just the picture that would appear on the wall if every-
thing were fully and evenly lit, like wallpaper. The light map is modulated
with the base map. That way areas that get a lot of light (which appear
white in the light map) appear as they would in the fully lit world (since
the base map pixel times white(1) resolves to the base map). As the light
map gets darker, the result appears darker. Since a light map can only
darken the base map, not lighten it, sometimes the effect is referred to as
“dark mapping.”

When you go to draw the polygon, you can do it in several ways. First
I’ll discuss the multitexture way. Using light maps with multitexture is
done with two texture stages. The first texture stage can be either the base
map or the light map, and the second is the other texture. You only need to
worry about the color stages, too; the alpha stages aren’t needed. Listing
10.4 shows sample code for setting this up.

Listing 10.4: Sample code for setting up light mapping using multitexture

//pDevice is a valid LPDIRECT3DDEVICE9 object
//pBase is the base texture
//pLightMap is the light map

pDevice->SetTextureStageState(0, COLORARG1, D3DTA_TEXTURE);
pDevice->SetTextureStageState(0, COLOROP, D3DTOP_SELECTARG1);
pDevice->SetTexture(0, pBase);

pDevice->SetTextureStageState(1, COLORARG1, D3DTA_TEXTURE);
pDevice->SetTextureStageState(1, COLORARG2, D3DTA_CURRENT);
pDevice->SetTextureStageState(1, COLOROP, D3DTOP_MODULATE);
pDevice->SetTexture(1, pLightMap);

// draw polygon

Note that the texture is put into argument 1. Some cards depend on this
being the case so you should make a habit of it.

The effect using multipass rendering is similar to the above. You ren-
der the polygon twice, the first with no alpha blending and the base map,
the second with the light map texture. The alpha blending done on the sec-
ond stage should mimic the modulate color operation used in the
multitexture rendering. Code to do it appears in Listing 10.5.

Listing 10.5: Sample code for setting up light mapping using multipass

//pDevice is a valid LPDIRECT3DDEVICE9 object
//pBase is the base texture
//pLightMap is the light map

pDevice->SetTextureStageState(0, COLORARG1, D3DTA_TEXTURE);
pDevice->SetTextureStageState(0, COLOROP, D3DTOP_SELECTARG1);

444 � Chapter 10: Advanced Direct3D

pDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
pDevice->SetTexture(0, pBase);

// draw polygon

pDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
pDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ZERO);
pDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_SRCCOLOR);
pDevice->SetTexture(0, pLightMap);

// draw polygon

The visual flair that you get from light mapping is amazing. Following is a
prime example from Quake III: Arena. The first, Figure 10.16, is rendered
without light maps. The image looks bland and uninteresting. Figure 10.17
shows the same scene with light mapping enabled. The difference, I’m sure
you’ll agree, is amazing.

Chapter 10: Advanced Direct3D � 445

Figure 10.16:
Quake III: Arena, sans
light mapsC

o
u
rt

es
y

o
f

id
So

ft
w

a
re

Figure 10.17:
Quake III: Arena, with
light mapsC

o
u
rt

es
y

o
f

id
So

ft
w

a
re

Environment Maps

Environment mapping was one of the first cool effects people used texture
maps with. The concept is quite simple: You want a polygon to be able to
reflect back the scene, as if it were a mirror or shiny surface like chrome.
There are two primary ways to do it that Direct3D supports: spherical envi-
ronment maps and cubic environment maps.

Spherical Environment Maps

Spherical environment maps are one of those classic horrible hacks that
happens to look really good in practice. It isn’t a perfect effect, but it’s
more than good enough for most purposes.

The environment mapping maps each vertex into a u,v pair in the
spherical environment map. Once you have the locations in the sphere
map for each vertex, you texture map as normal. The sphere map is called
that because the actual picture looks like the scene pictured on a sphere.
Real photos are taken with a 180-degree field of view camera lens, or
using a ray-tracer to prerender the sphere map. Rendering a texture like
this is complex enough that it is infeasible to try to do it in real time; it
must be done as a preprocessing step. An example of a sphere map texture
appears in Figure 10.18.

The region outside of the circle in the above image is black, but it can be
any color; you’re never actually going to be addressing from those coordi-
nates, as you’ll see in a moment.

446 � Chapter 10: Advanced Direct3D

Figure 10.18:
A texture map for
use with spherical
environment
mappingC

o
u
rt

es
y

o
f

n
V

id
ia

C
o
rp

o
ra

ti
o
n

Once you have the spherical texture map, the only task left to do is
generate the texture coordinates for each vertex. Here comes the trick that
runs the algorithm:

The normal for each vertex, when transformed to view space, will vary
along each direction from –1 to 1. What if you took just the x and y com-
ponents and mapped them to (0,1)? You could use the following equation:

You know that the radius of the 2D vector <nx, ny> will vary between 0
(when z is 1.0 and the normal is facing directly towards the viewer) and 1
(when z is 0.0 and the normal is perpendicular to the viewer). When nx

and ny are 0, you’ll get a u,v pair of <0.5, 0.5>. This is exactly what was
wanted: The vertex whose normal is pointing directly towards us should
reflect the point directly behind us (the point in the center of the sphere
map). The vertices along the edges (with radius 1.0) should reflect the
regions on the edge of the sphere map. This is exactly what happens.

As evidenced by Figure 10.19, this environment mapping method can
have really nice looking results.

One caveat of this rendering method is that the sphere map must remain
the same, even if the camera moves. Because of this, it often isn’t useful to

Chapter 10: Advanced Direct3D � 447

2

1

2

1

	
�

	�

y

x

n
v

n
u

Figure 10.19:
In some cases,
spherical environ-
ment mapping
looks great.C

o
u
rt

es
y

o
f

n
V

id
ia

C
o
rp

o
ra

ti
o
n

reflect certain types of scenes; it’s best suited for bland scenery like
starscapes.

There are some mechanisms used to attempt to interpolate correct
positions for the spherical environment map while the camera is moving,
but they are far from perfect. They suffer from precision issues; while
texels in the center of the sphere map correspond to relatively small
changes in normal direction, along the edges there are big changes, and an
infinite change when you reach the edge of the circle. This causes some
noticeable artifacts, as evidenced in Figure 10.20. Again, these artifacts
only pop up if you try to find the sphere map location while the camera is
moving. If you always use the same sphere map, none of this happens.

Cubic Environment Maps

With DirectX 8.0, Microsoft added support for cubic environments to
Direct3D. Cubic environment maps have been used in high-end graphics
workstations for some time, and they have a lot of advantages over spheri-
cal environment maps.

The big advantage is cubic environment maps don’t suffer from the
warping artifacts that plague spherical environment maps. You can move
around an object, and it will correctly reflect the correct portion of the
scene. Also, they’re much easier to make, and in fact can be made in real
time (producing accurate real-time reflections).

448 � Chapter 10: Advanced Direct3D

Figure 10.20:
Spherical environ-
ment mapping can
have warping
artifactsC

o
u
rt

es
y

o
f

n
V

id
ia

C
o
rp

o
ra

ti
o
n

A cubic environment map is actually a complex Direct3D texture with
six different square textures, one facing in each direction. They are:

� Map 0 : +X direction (+Y up, –Z right)

� Map 1 : –X direction (+Y up, +Z right)

� Map 2 : +Y direction (–Z up, –X right)

� Map 3 : –Y direction (+Z up, –X right)

� Map 4 : +Z direction (+Y up, +X right)

� Map 5 : –Z direction (+Y up, +X right)

The six environment maps that are used in the images for this section
appear in Figure 10.21 below.

How do you actually use this environment map to get texture coordinates
for each of the vertices? The first step is to find the reflection vector for
each vertex. You can think of a particle flying out of the camera and hitting
the vertex. The surface at the vertex has a normal provided by the vertex
normal, and the particle bounces off of the vertex back off into the scene.
The direction it bounces off in is the reflection vector, and it’s a function of
the camera to vertex direction and vertex normal. The equation to find the
reflection vector r is:

where r is the desired reflection vector, v is the vertex location, c is the
camera location, and n is the vertex normal. The d vector is the normal-
ized direction vector pointing from the camera to the vertex.

Chapter 10: Advanced Direct3D � 449

Figure 10.21:
The six pieces of
a cubic
environment mapC

o
u
rt

es
y

o
f

n
V

id
ia

C
o
rp

o
ra

ti
o
n

� � dnndr

cv

cv
d

���

�

2

Given the reflection vector, finding the right texel in the cubic environ-
ment map isn’t that hard. First, you find which component of the three has
the greatest magnitude (let’s assume it’s the x component). This deter-
mines which environment map you want to use. So if the absolute value of
the x component was the greatest and the x component was also negative,
you would want to use the –X direction cubic map (map 1). The other two
components, y and z in this example, are used to index into the map. We
scale them from the [–1,1] range to the [0,1] range. Finally you use z to
choose the u value and y to choose the v value.

Luckily Direct3D does the above so you don’t have to worry about it.
There are some truly icky cases that arise, like when the three vertices of a
triangle all choose coordinates out of different maps. There is some inter-
esting literature out on the web as to how hardware does this, but it’s far
too ugly to cover here.

The sphere you saw being spherically environment mapped earlier
appears with cubic environment mapping in Figure 10.22. Notice that all
of the artifacts are gone and the sphere looks pretty much perfect.

Checking to see if a device supports cubic environment mapping is fairly
simple given its device description. Have a look at DirectX 9.0 C++ Docu-

mentation/DirectX Graphics/Using DirectX Graphics/Techniques and Special

Effects/Environment Mapping/Cubic Environment Mapping.
Once you have your cubic environment maps set up, to activate the

feature all you need is to select the texture and set up the texture process-
ing caps to generate the reflection vector for you. Code to do this appears
in Listing 10.6.

450 � Chapter 10: Advanced Direct3D

Figure 10.22:
Sweet, sweet
cubic environ-
ment mappingC

o
u
rt

es
y

o
f

n
V

id
ia

C
o
rp

o
ra

ti
o
n

Listing 10.6: Activating cubic environment mapping

// pCubeTex is our cubic environment map
// pDevice is our LPDIRECT3DDEVICE9 interface pointer

// Since our texture coordinates are automatically generated,
// we don't need to include any in the vertices
DWORD dwFVF = D3DFVF_XYZ | D3DFVF_NORMAL;

pDevice->SetTextureStageState(
0,
D3DTSS_TEXCOORDINDEX,
D3DTSS_TCI_CAMERASPACEREFLECTIONVECTOR);

pDevice->SetTexture(0, pCubeTex);

// Draw our object
...

Specular Maps

The types of lighting you can approximate with multitexture isn’t limited
to diffuse color. Specular highlights can also be done using multitexture. It
can do neat things that specular highlights done per-vertex cannot, like
having highlights in the middle of a polygon.

A specular map is usually an environment map like the kind used in
spherical environment mapping that approximates the reflective view of
the lights in our scene from the viewpoint of an object’s location. Then you
just perform normal spherical (or cubic) environment mapping to get the
specular highlights.

The added advantage of doing things this way is that some special pro-
cessing can be done on the specular map to do some neat effects. For
example, after creating the environment map, you could perform a blur fil-
ter on it to make the highlights a little softer. This would approximate a
slightly matte specular surface.

Detail Maps

A problem that arises with many textures is that the camera generally is
allowed to get too close to them. Take, for example, Figure 10.23. From a
standard viewing distance (15 or 20 feet away), this texture would look
perfectly normal on an 8- to 10-foot tall wall.

Chapter 10: Advanced Direct3D � 451

However, a free-moving camera can move anywhere it likes. If you position
the camera to be only a few inches away from the wall, you get something
that looks like Figure 10.24. With point sampling, we get large, ugly,
blocky texels. With bilinear or trilinear filtering the problem is even worse:
You get a blurry mess.

This problem gets really bad in things like flight simulators. The source art
for the ground is designed to be viewed from a distance of 30,000 feet
above. When the plane is dipping close to the ground, it’s almost impossi-
ble to correctly gauge distance; there isn’t any detail to help you gauge
how far off the ground it is, resulting in a poor visual experience.

452 � Chapter 10: Advanced Direct3D

Figure 10.23:
An example wall texture

Figure 10.24:
Getting too close to our wall
texture

A bad solution is to just use bigger textures. This is bad for several rea-
sons; most of them tied to the memory requirements that larger textures
bring. You can use larger textures in the scene, but then you need to page
to system RAM more, load times are longer, etc. This entire headache, and
all you get is improved visual experience for an anomalous occurrence
anyway; most of the user’s time won’t be spent six inches away from a
wall.

What this problem boils down to is the designed signal of an image.
Most textures are designed to encode low-frequency signals, the kind that
changes over several inches. The general color and shape of an image are
examples of low-frequency signals.

The real world, however, has high-frequency signals in addition to
these low-frequency signals. These are the little details that you notice
when you look closely at a surface, the kind that change over fractions of
an inch. The bumps and cracks in asphalt, the grit in granite, and the tiny
grains in a piece of wood are all good examples of high-frequency signals.

While you could hypothetically make all of the textures 4096 texels on
a side and record all of the high-frequency data, you don’t need to. The
high-frequency image data is generally really repetitive. If you make it tile
correctly, all you need to do is repeat it across the surface. It should be
combined with the base map, adding detail to it (making areas darker or
lighter).

Figure 10.25 has the detail map that you’ll use in the application com-
ing up in a little bit. The histogram of the image is tightly centered around
solid gray (127,127,127). You’ll see why in a moment. Also, it’s designed
without lots of sharp visual distinctions across the surface, so any details
quickly fade away with MIP level increases.

Chapter 10: Advanced Direct3D � 453

Figure 10.25:
The detail map used in this
example

If you tile the high-frequency detail map across the low-frequency base
map, you can eliminate the blurry artifacts encountered before. As an
added bonus, after you get far enough away from a surface, the MIP level
for the detail map will be solid gray so you can actually turn it off, if you’d
like, for faraway surfaces. Doing this improves the performance penalty on
non-multitexture hardware since you don’t need to do an extra pass for the
detail map for every polygon on the screen—only the ones that will benefit
from it. Figure 10.26 shows the base map with the detail map applied.

There are two primary ways to implement detail maps. Actually, there are
three methods, but two of them are very closely related. Which one to use
depends on the hardware configuration of the machine running the code.

The preferred, ideal, use-this-if-it’s-available way to implement detail
maps is using the ADDSIGNED blending mode. To recap, the equation for
the ADDSIGNED blending mode is:

This essentially does an addition, having one of the textures have signed
color values (–127..128) instead of the unsigned values (0..255) that
you’re used to. Black corresponds to –127, white corresponds to 128, and
solid gray corresponds to 0. If the second texture map is a solid gray image
(like the detail map at a low MIP map level), the result of the blend is just
the other texture.

The way ADDSIGNED works is that lighter-gray texels in the detail
map will brighten the base map, and darker-gray texels will darken it. This
is exactly what you want. Source code to set it up using multitexture
appears in Listing 10.7. One important difference with the light map code
is you usually define a second pair of texture coordinates that wrap over

454 � Chapter 10: Advanced Direct3D

Figure 10.26:
The base map combined
with the detail map

5.02Arg1ArgRes
	�

the texture map multiple times (for example, u would vary from 0..1 in the
base map, 0..8 in the detail map).

Listing 10.7: Sample code for setting up detail mapping using multitexture

//pDevice is a valid LPDIRECT3DDEVICE9 object
//pBase is the base texture
//pDetailMap is the detail map

pDevice->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_TEXTURE);
pDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_SELECTARG1);
// use the low-frequency texture coordinates
pDevice->SetTextureStageState(0, D3DTSS_TEXCOORDINDEX, 0);
pDevice->SetTexture(0, pBase);

pDevice->SetTextureStageState(1, D3DTSS_COLORARG1, D3DTA_TEXTURE);
pDevice->SetTextureStageState(1, D3DTSS_COLORARG2, D3DTA_CURRENT);
pDevice->SetTextureStageState(1, D3DTSS_COLOROP, D3DTOP_ADDSIGNED);
// use the high-frequency texture coordinates
pDevice->SetTextureStageState(1, D3DTSS_TEXCOORDINDEX, 1);
pDevice->SetTexture(1, pDetailMap);

// draw polygon

If the ADDSIGNED blending mode isn’t available on the hardware you’re
running on, don’t despair; there are other options. Well, there’s actually
just two, and they’re almost the same. The first backup option is to use the
MODULATE2X blending mode. To recap, the equation for this blending
mode is:

Looking at the equation, realize that if arg2 (the detail map) is 0.5 or solid
gray, then the equation will resolve to arg1 (the base map). Also, if arg2 is
a lighter gray, arg1 will be brighter; if arg2 is darker, arg1 will be darker,
just like ADDSIGNED. MODULATE2X is also supported by more hardware
devices than ADDSIGNED. To handle mod2x rendering, just use the same
code in Listing 10.7, replacing D3DTOP_ADDSIGNED with D3DTOP-
_MODULATE2X. The only problem is that the MODULATE2X blending
mode tends to wash out colors a little, so it is less ideal than ADDSIGNED.
It’ll do the job well enough, however, when ADDSIGNED isn’t supported.

What do you do if you can’t add detail maps in the same pass as our
base map? What if the hardware you’re designing for only has two stages,
and the second stage is already taken up by light map rendering? You can
do detail rendering multipass. All you need to do is mimic what MOD-
ULATE2X does in multitexture with an alpha blending step.

Let’s take the original equation above, and move pieces of it around:

Chapter 10: Advanced Direct3D � 455

2Arg1Arg2Res ���

You draw the scene once with the base map, and then draw it again with
the detail map. The dest color will be the base map color, and the source

color will be the detail map color. All you need to do is have the source
blending factor be the destination color and the destination blending factor
be the source color. This blending operation isn’t supported on all hard-
ware; so again, you should check the device description to make sure you
can do it.

Coding up a multipass detail map renderer is fairly simple; it’s very
similar to the light map renderer I discussed earlier in the chapter. Source
code to set it up appears in Listing 10.8.

Listing 10.8: Sample code for setting up detail mapping using multipass

//pDevice is a valid LPDIRECT3DDEVICE9 object
//pBase is the base texture
//pDetailMap is the detail map

pDevice->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_TEXTURE);
pDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_SELECTARG1);
// use the low-frequency texture coordinates
pDevice->SetTextureStageState(0, D3DTSS_TEXCOORDINDEX, 0);
pDevice->SetRenderState(D3DRENDERSTATE_ALPHABLENDENABLE, FALSE);
pDevice->SetTexture(0, pBase);
// draw polygon

pDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
pDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_DESTCOLOR);
pDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_SRCCOLOR);
// use the high-frequency texture coordinates
pDevice->SetTextureStageState(0, D3DTSS_TEXCOORDINDEX, 1);
pDevice->SetTexture(0, pDetailMap);

// draw polygon

Application: Detail

To show off the texture loading code I set up earlier in the chapter and
explain detail textures, I threw together a simple application that shows
the base map/detail map combo used throughout this section. The applica-
tion uses the new version of the GameLib library (which has texture
support). A screen shot from the application appears in Figure 10.27.

456 � Chapter 10: Advanced Direct3D

destsourcesourcedestRes

1Arg2Arg2Arg1ArgRes

2Arg1Arg2Arg1ArgRes

2Arg1Arg2Res

�	��
�	��

�	��
���

There are two main pieces of code that are important for this application:
the device checking code and the actual code to draw the unit. The rest is
essentially initialization and upkeep and won’t be listed here for brevity.
See Listing 10.9 for the source code.

Listing 10.9: Device checking code for the Detail sample

bool CheckCaps()
{

D3DCAPS9 DevCaps;

Graphics()->GetDevice()->GetDeviceCaps(&DevCaps);

m_bCanDoMultitexture = false;
if(DevCaps.MaxSimultaneousTextures > 1)
{

m_bCanDoMultitexture = true;
}

m_bCanDoAddSigned = false;
if(DevCaps.TextureOpCaps & D3DTEXOPCAPS_ADDSIGNED)
{

m_bCanDoAddSigned = true;
}

if(!(DevCaps.TextureOpCaps & D3DTEXOPCAPS_MODULATE2X))
{

// the device can't do mod 2x. If we also can't do add signed,
// we have no way to do the multitexture.
if(!m_bCanDoAddSigned)
{

// turn off multitexture and just go with the one detail texture
m_bCanDoMultitexture = false;

Chapter 10: Advanced Direct3D � 457

Figure 10.27:
Screen shot from
the detail
texturing
application

}
}

bool bSrcColor = DevCaps.SrcBlendCaps & D3DPBLENDCAPS_SRCCOLOR;
bool bDestColor = DevCaps.SrcBlendCaps & D3DPBLENDCAPS_DESTCOLOR;
if(!m_bCanDoMultitexture && !(bSrcColor && bDestColor))
{

// device couldn't do the alpha blending we wanted.
return false;

}

return true;
}

Glow Maps

Glow maps are useful for creating objects that have glowing parts that
glow independently of the base map. Examples of this are things like LEDs
on a tactical unit, buttons on a weapon or other unit, and the lights on a
building or spaceship. The same scenery during the daytime could look
completely different at night with the addition of a few glow maps.

To implement it you use a texture map that is mostly black, with
lighter areas representing things that will glow on the final image. What
you want is the glow map to have no effect on the base map except in
glowing areas, so you can’t use the modulate blending mode. Instead you
can use the addition blending mode, D3DTOP_ADD. Listing 10.10 has the
source code to do it.

Listing 10.10: Sample code for setting up glow mapping using multitexture

//pDevice is a valid LPDIRECT3DDEVICE9 object
//pBase is the base texture
//pGlowMap is the glow map

pDevice->SetTextureStageState(0, COLORARG1, D3DTA_TEXTURE);
pDevice->SetTextureStageState(0, COLOROP, D3DTOP_SELECTARG1);
pDevice->SetTexture(0, pBase);

pDevice->SetTextureStageState(1, COLORARG1, D3DTA_TEXTURE);
pDevice->SetTextureStageState(1, COLORARG2, D3DTA_CURRENT);
pDevice->SetTextureStageState(1, COLOROP, D3DTOP_ADD);
pDevice->SetTexture(1, pGlowMap);

// draw polygon

The additive blending mode can also be approximated with multipass ren-
dering when either the blending mode isn’t available or the extra stage is
being used by something else. You just set the source blending factor to 1.0
and the destination blend factor to 1.0. See Listing 10.11 for the source
code.

458 � Chapter 10: Advanced Direct3D

Listing 10.11: Sample code for setting up glow mapping using multipass

// pDevice is a valid LPDIRECT3DDEVICE9 object
// pBase is the base texture
// pDetailMap is the glowmap

pDevice->SetTextureStageState(0, COLORARG1, D3DTA_TEXTURE);
pDevice->SetTextureStageState(0, COLOROP, D3DTOP_SELECTARG1);
pDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
pDevice->SetTexture(0, pBase);

// draw polygon

pDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
pDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ONE);
pDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ONE);
pDevice->SetTexture(0, pGlowMap);

// draw polygon

The one danger of using glow maps is you can easily saturate the image if
you use a bad choice of texture. Saturation occurs when the result of the
blending step is greater than 1.0. The value is clamped down to 1.0 of
course, but this causes the image to look too bright. If the base map is too
bright, consider using darker shades of color for glowing areas of the glow
map.

Gloss Maps

Gloss maps are one of the cooler effects that can be done with multitex-
ture, in my opinion. Any other effect you can do (like environment maps
or specular maps) can look cooler if you also use gloss maps.

Gloss maps themselves don’t do much; they are combined with
another multitexture operation. The gloss map controls how much another
effect shows through on a surface. For example, let’s suppose you’re
designing a racing car game. The texture map for the car includes every-
thing except the wheels (which are different objects, connected to the
parent object). When you go to draw the car, you put an environment map
on it, showing some sort of city scene or lighting that is rushing by (see
San Francisco Rush by Atari for an example of this).

One small issue that can crop up using this method is the fact that the
entire surface of the car (windshield, hood, bumper, etc.) reflects the envi-
ronment map the same amount. SFR got around this by using a different
map for the windshield, but there is another way to go about it: using a
gloss map on the car. The gloss map is brighter in areas that should reflect
the environment map more, and darker in areas where it should reflect it
less. So, in this example, the area that would cover the windshield would
be fairly bright, almost white. The body of the car would be a lighter gray,
where the non-reflective bumpers would be dark, almost black. Figure

Chapter 10: Advanced Direct3D � 459

10.28 shows how you combine the base map, gloss map, and specu-
lar/environment map to make a gloss mapped image.

You can do some amazing effects with this. For example, let’s say you’re
driving through a mud puddle and mud splatters up on the car. You could
use a special mud texture and blit some streaks of mud on top of the base
car texture map around the wheels to show that it had just gone through
mud. You could also blit the same mud effects to the gloss map, painting
black texels instead of mud-colored texels. That way, whatever regions of
the car had mud on them would not reflect the environment map, which is
exactly the kind of effect wanted.

The way it works is you perform a first pass with the base map modu-
lated by the diffuse color to get the regular vanilla texture mapped model
we all know and love. Then you perform a second pass that has two tex-
tures (the environment map and the gloss map) modulated together. The
modulation allows the light areas of the gloss map to cause the environ-
ment map to come out more than in dark areas. The result of the
modulation is blended with the frame buffer destination color using an
addition blend (source factor = 1, dest factor = 1).

Source code to implement gloss mapping appears in Listing 10.12.

Listing 10.12: Sample code for setting up gloss mapping

// pDevice is a valid LPDIRECT3DDEVICE9 object
// pBase is the base texture
// pSpecularMap is the spec map
// pGlossMap is the gloss map

// Pass 1: base map modulated with diffuse color
pDevice->SetTextureStageState(0, COLORARG1, D3DTA_TEXTURE);

pDevice->SetTextureStageState(0, COLOROP, D3DTOP_SELECTARG1);

460 � Chapter 10: Advanced Direct3D

Figure 10.28:
The separate
pieces of gloss
mapping in actionPe

a
r

im
a
ge

s
co

u
rt

es
y

o
f

Ja
so

n
L.

M
it

ch
el

l,
AT

I
R

es
ea

rc
h
,

In
c.

pDevice->SetTextureStageState(1, COLORARG1, D3DTA_DIFFUSE);
pDevice->SetTextureStageState(1, COLORARG2, D3DTA_CURRENT);
pDevice->SetTextureStageState(1, COLOROP, D3DTOP_MODULATE);

pDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
pDevice->SetTexture(0, pBase);

// draw polygon

// Pass 2: spec map modulated with gloss map.
// not included: code to set up spec-mapped texture coordinates

pDevice->SetTextureStageState(0, COLORARG1, D3DTA_TEXTURE);
pDevice->SetTextureStageState(0, COLOROP, D3DTOP_SELECTARG1);

pDevice->SetTextureStageState(1, COLORARG1, D3DTA_TEXTURE);
pDevice->SetTextureStageState(1, COLORARG2, D3DTA_CURRENT);
pDevice->SetTextureStageState(1, COLOROP, D3DTOP_MODULATE);
pDevice->SetTexture(0, pSpecMap);
pDevice->SetTexture(1, pGlossMap);

pDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
pDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ONE);
pDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ONE);

// draw polygon

Other Effects

There are a myriad of other multitexture effects that are possible given the
set of blending operations provided by Direct3D. To do a certain effect, all
you need to do is dream it up; chances are there’s a way to do it using
multitexture. To showcase that concept, I’m going to throw together the
blending modes I’ve discussed thus far into a menagerie of multitexture!

Application: MultiTex

To show off some multipass and multitexture effects, I threw together an
application that shows an object resembling the earth with six total passes
that can each be toggled on and off. Some of the code in this application is
based off of the bumpearth DX SDK sample, specifically the code to gener-
ate the sphere. Also, the base texture map is from the SDK.

When you first start the application, it loads all the textures and starts
running with just the base map modulated with the diffuse color. There is
one mostly white (but a little yellow) directional light in the scene to
mimic the sun.

Chapter 10: Advanced Direct3D � 461

Pass 1: Base Map

The first pass, which is the only one displayed when the program starts up,
is the base pass. It just modulates the base texture map (a picture of the
earth, which appears in Figure 10.29) with the diffuse color coming in
from the sun directional light, making Figure 10.30.

The code to draw the base pass appears in Listing 10.13.

462 � Chapter 10: Advanced Direct3D

Figure 10.29: The first pass texture map

Figure 10.30:
The base pass all
by itself

Listing 10.13: Code to draw the base pass

void cMultiTexApp::DoBasePass()
{

LPDIRECT3DDEVICE9 pDevice = Graphics()->GetDevice();
/**
* first pass should modulate with the diffuse color
*/
pDevice->SetTexture(0, m_pTextures[0]->GetTexture());
SetColorStage(0, D3DTA_TEXTURE, D3DTA_CURRENT, D3DTOP_MODULATE);

/**
* first pass doesn't use alpha blending.
*/
pDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);

sMaterial mat(
0.f,
color3(0.8f,0.8f,0.8f),
color3(0.0f,0.0f,0.0f),
color3(0.0f,0.0f,0.0f));

pDevice->SetMaterial(&mat);

pDevice->DrawPrimitiveUP(
D3DPT_TRIANGLESTRIP,
m_earthVerts.size() - 2,
&m_earthVerts[0],
sizeof(sMTVertex));

}

Pass 2: Detail Map

The second pass, activated by pressing the 2 key, enables detail mapping. A
higher-frequency set of texture coordinates is generated for the second pair
of texture coordinates, and the texture map in Figure 10.31 is used for the
detail map.

Using MODULATE2X style alpha blending, the detail pass is combined
with the base pass to accomplish the desired detail effect, which appears in
Figure 10.32.

Chapter 10: Advanced Direct3D � 463

Figure 10.31:
The second pass texture map

The code to draw the detail pass appears in Listing 10.14.

Listing 10.14: Code to draw the detail pass

void cMultiTexApp::DoDetailPass()
{

LPDIRECT3DDEVICE9 pDevice = Graphics()->GetDevice();

/**
* set up modulate 2x style alpha blending
*/
pDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
pDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_DESTCOLOR);
pDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_SRCCOLOR);

/**
* first stage is the detail map
*/
pDevice->SetTexture(0, m_pTextures[2]->GetTexture());
SetColorStage(0, D3DTA_TEXTURE, D3DTA_CURRENT, D3DTOP_SELECTARG1);

/**
* The detail map needs the second pair of coordinates
*/
pDevice->SetTextureStageState(0, D3DTSS_TEXCOORDINDEX, 1);
pDevice->DrawPrimitiveUP(

D3DPT_TRIANGLESTRIP,
m_earthVerts.size() - 2,
&m_earthVerts[0],
sizeof(sMTVertex));

/**
* Restore the texture coordinates
*/
pDevice->SetTextureStageState(0, D3DTSS_TEXCOORDINDEX, 0);

464 � Chapter 10: Advanced Direct3D

Figure 10.32:
The base pass
plus the detail
pass

pDevice->SetTextureStageState(1, D3DTSS_TEXCOORDINDEX, 1);
}

Pass 3: Glow Map

Third is the glow pass. It’s activated with the 3 key. For this pass, I wanted
to simulate the city lights that appear when the earth is shrouded in dark-
ness. I wanted to simulate millions of little lights, rather than have blotchy
areas that were lit. Finally, I wanted the lights to gradually disappear as
light shined on them, since most city lights aren’t on during the day.

This pass was accomplished using two simultaneous textures. The first
texture, which appears in Figure 10.33, provided kind of a gross concept of
which areas were populated and which weren’t. Lighter areas on the tex-
ture map would receive more city lights than darker areas, so I tried my
best to approximate where there would be city lights (for example, coastal
regions are much more populated than, say, the Sahara desert, so they are
brighter).

The second stage of the glow pass has a noise texture of pixels from gray
to white. It uses the same higher-frequency texture coordinates used by the
detail pass. The texture is modulated with the first stage texture, so that
black areas appear as black and white areas appear as a random speckling
of pixels, to simulate city lights. The noise map appears in Figure 10.34.

Chapter 10: Advanced Direct3D � 465

Figure 10.33: The first texture of the third pass

Figure 10.34:
The second texture of the third pass

The result of the modulation is combined with the frame buffer using
additive blending (both source and destination blending factors set to
D3DBLEND_ONE). This produces Figure 10.35.

The code to draw the glow pass appears in Listing 10.15.

Listing 10.15: Code to draw the glow pass

void cMultiTexApp::DoGlowPass()
{

LPDIRECT3DDEVICE9 pDevice = Graphics()->GetDevice();

/**
* glow map the glow map mask gets modulated with the
* inverse diffuse color, that way it fades as light
* hits it.
*/
pDevice->SetTexture(0, m_pTextures[1]->GetTexture());
SetColorStage(

0,
D3DTA_TEXTURE,
D3DTA_DIFFUSE | D3DTA_COMPLEMENT,
D3DTOP_MODULATE);

/**
* The second pass is the noise map, to give the
* illusion of millions of little lights. just
* modulate with whatever made it through the
* first pass
*/
pDevice->SetTexture(1, m_pTextures[4]->GetTexture());
pDevice->SetTextureStageState(1, D3DTSS_TEXCOORDINDEX, 1);
SetColorStage(

1,
D3DTA_TEXTURE,

466 � Chapter 10: Advanced Direct3D

Figure 10.35:
The base pass
plus the glow
pass

D3DTA_CURRENT,
D3DTOP_MODULATE);

/**
* set up add style blending
*/
pDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
pDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ONE);
pDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ONE);

/**
* Turn up diffuse all the way to accentuate the
* effect
*/
sMaterial mat(

0.f,
color3(1.0f,1.0f,1.0f),
color3(0.0f,0.0f,0.0f),
color3(0.0f,0.0f,0.0f));

pDevice->SetMaterial(&mat);

/**
* The second light is to help accentuate the light hitting the earth.
* This helps the little lights fade away as they hit sunlight.
*/
pDevice->LightEnable(1, TRUE);

pDevice->DrawPrimitiveUP(
D3DPT_TRIANGLESTRIP,
m_earthVerts.size() - 2,
&m_earthVerts[0],
sizeof(sMTVertex));

/**
* Restore the basic state
*/
pDevice->SetTextureStageState(1, D3DTSS_COLOROP ,D3DTOP_DISABLE);
pDevice->SetTextureStageState(1, D3DTSS_TEXCOORDINDEX, 0);
pDevice->LightEnable(1, FALSE);

}

Pass 4: Environment Map

The fourth pass uses texture transforms to do spherical environment
mapping. A texture transformation matrix multiplies the camera space
normal vector, and the first two components are used to index into the
environment map. The map itself is the coffee shop texture given in the
environment mapping section before. The texture transformation equation
that is used appears on the following page.

Chapter 10: Advanced Direct3D � 467

The environment map is combined using alpha blending with the same
map I’ll use in the glow map pass (so that the envy map reflects more on
the water) and is also modulated by the inverse diffuse color (so that the
envy map reflects more during the night). The result appears in Figure
10.36.

The code to draw the environment mapping pass appears in Listing 10.16.

Listing 10.16: Code to do environment mapping

void cMultiTexApp::DoEnvyPass()
{

LPDIRECT3DDEVICE9 pDevice = Graphics()->GetDevice();

/**
* The first color pass is just the inverse diffuse color.
* the first alpha pass takes the earth mask used in
* the gloss pass. This will be modulated with the
* final color before being alpha blended onto the
* frame buffer.
*/
pDevice->SetTexture(0, m_pTextures[1]->GetTexture());
SetColorStage(

0,
D3DTA_DIFFUSE | D3DTA_COMPLEMENT,
D3DTA_CURRENT,

468 � Chapter 10: Advanced Direct3D

� � �
�

�
�
�

� 		�
�
�
�
�

�

�

�
�
�
�

�

�

1
2

1

2

1

105.05.0

0100

005.00

0005.0

1 z
yx

zyx n
nn

nnn

Figure 10.36:
Base pass plus
environment
mapping pass

D3DTOP_SELECTARG1);

SetAlphaStage(
0,
D3DTA_TEXTURE,
D3DTA_CURRENT,
D3DTOP_SELECTARG1);

/**
* The second pass is the envy map. Sure, a nice
* star pattern would have worked, but using the
* coffeeshop texturemap really points out that
* the envymapping is working correctly.
*/
pDevice->SetTexture(1, m_pTextures[5]->GetTexture());
SetColorStage(

1,
D3DTA_TEXTURE,
D3DTA_CURRENT,
D3DTOP_MODULATE);

/**
* Set up texture transformations.
*/
pDevice->SetTextureStageState(1, D3DTSS_TEXCOORDINDEX,

D3DTSS_TCI_CAMERASPACENORMAL);
pDevice->SetTextureStageState(1, D3DTSS_TEXTURETRANSFORMFLAGS, D3DTTFF_COUNT2);

/**
* Set up the environment mapping matrix.
* This performs the calculation we want:
* u=n_x/2 + 0.5
* v=-n_y/2 + 0.5
*/
matrix4 texMat;
texMat.MakeIdent();
texMat._11 = 0.5;
texMat._41 = 0.5;
texMat._22 = -0.5;
texMat._42 = 0.5;
pDevice->SetTransform(D3DTS_TEXTURE1, (D3DMATRIX*)&texMat);

/**
* Reflect lots of the diffuse light again
*/
sMaterial mat(

0.f,
color3(1.0f,1.0f,1.0f),
color3(0.0f,0.0f,0.0f),
color3(0.0f,0.0f,0.0f));

pDevice->SetMaterial(&mat);

// Turn on that extra light we used in the glow pass too.
pDevice->LightEnable(1, TRUE);

Chapter 10: Advanced Direct3D � 469

/**
* set up add style blending
*/
pDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
pDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA);
pDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ONE);

pDevice->DrawPrimitiveUP(
D3DPT_TRIANGLESTRIP,
m_earthVerts.size() - 2,
&m_earthVerts[0],
sizeof(sMTVertex));

/**
* Fix up all of our esoteric states
*/
pDevice->SetTextureStageState(1, D3DTSS_TEXTURETRANSFORMFLAGS,

D3DTTFF_DISABLE);
pDevice->SetTextureStageState(1, D3DTSS_COLOROP ,D3DTOP_DISABLE);
pDevice->SetTextureStageState(1, D3DTSS_TEXCOORDINDEX, 0);
pDevice->LightEnable(1, FALSE);

}

Pass 5: Gloss Map

The fifth pass, which performs gloss mapping, uses two textures. The first
texture is the gloss map, and it appears in Figure 10.37. To save texture
space, this image hides in the alpha component of the glow map texture.
This is why I used the source alpha in the blending step: It essentially per-
forms a modulation for you (the alpha, holding the gloss value, is
modulated with the specular value).

470 � Chapter 10: Advanced Direct3D

Figure 10.37: The gloss map texture

To create the specular value, I used spherical environment mapping with a
texture with a bright spot in the upper-left corner. The original version of
this application just used the interpolated specular value.

The result of the operation is that you get really shiny looking water,
especially at coastal regions, while the land doesn’t reflect specularities at
all. The image showing this appears in Figure 10.38.

The code to draw the gloss pass appears in Listing 10.17.

Listing 10.17: Code to draw the gloss pass

void cMultiTexApp::DoGlossPass()
{

LPDIRECT3DDEVICE9 pDevice = Graphics()->GetDevice();

/**
* The first color pass is just the diffuse color.
* the first alpha pass uses the gloss map texture.
* This will be modulated with the
* final color before being alpha blended onto the
* frame buffer.
*/
pDevice->SetTexture(0, m_pTextures[1]->GetTexture());
SetColorStage(

0,
D3DTA_DIFFUSE,
D3DTA_CURRENT,
D3DTOP_SELECTARG1);

SetAlphaStage(
0,
D3DTA_TEXTURE,
D3DTA_CURRENT,
D3DTOP_SELECTARG1);

Chapter 10: Advanced Direct3D � 471

Figure 10.38:
The base pass
plus the gloss
pass

/**
* The second pass is the specular map. It isn't even
* close to being correct, but it looks good enough.
*/
pDevice->SetTexture(1, m_pTextures[6]->GetTexture());
SetColorStage(

1,
D3DTA_TEXTURE,
D3DTA_CURRENT,
D3DTOP_SELECTARG1);

/**
* Set up texture transformations.
*/
pDevice->SetTextureStageState(1, D3DTSS_TEXCOORDINDEX,

D3DTSS_TCI_CAMERASPACENORMAL);
pDevice->SetTextureStageState(1, D3DTSS_TEXTURETRANSFORMFLAGS, D3DTTFF_COUNT2);

/**
* Set up the environment mapping matrix.
* This performs the calculation we want:
* u=n_x/2 + 0.5
* v=-n_y/2 + 0.5
*/
matrix4 texMat;
texMat.MakeIdent();
texMat._11 = 0.5;
texMat._41 = 0.5;
texMat._22 = -0.5;
texMat._42 = 0.5;
pDevice->SetTransform(D3DTS_TEXTURE1, (D3DMATRIX*)&texMat);

/**
* Reflect lots of the diffuse light again
*/
sMaterial mat(

0.f,
color3(1.0f,1.0f,1.0f),
color3(0.0f,0.0f,0.0f),
color3(0.0f,0.0f,0.0f));

pDevice->SetMaterial(&mat);

// Turn on that extra light we used in the glow pass too.
pDevice->LightEnable(1, TRUE);

/**
* set up add style blending
*/
pDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
pDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA);
pDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ONE);

pDevice->DrawPrimitiveUP(
D3DPT_TRIANGLESTRIP,
m_earthVerts.size() - 2,

472 � Chapter 10: Advanced Direct3D

&m_earthVerts[0],
sizeof(sMTVertex));

/**
* Fix up all of our esoteric states
*/
pDevice->SetTextureStageState(1, D3DTSS_TEXTURETRANSFORMFLAGS,

D3DTTFF_DISABLE);
pDevice->SetTextureStageState(1, D3DTSS_COLOROP ,D3DTOP_DISABLE);
pDevice->SetTextureStageState(1, D3DTSS_TEXCOORDINDEX, 0);
pDevice->LightEnable(1, FALSE);

}

Pass 6: Cloud Map

The final pass tries to simulate a cloud cover on the earth. The cloud map
hides in the alpha component of the base texture. It’s modulated with the
diffuse color using alpha blending and combined with the background
using (SRCALPHA: INVSRCALPHA) blending. The cloud map appears in
Figure 10.39.

The result of the pass when applied to the base map appears in Figure
10.40.

Chapter 10: Advanced Direct3D � 473

Figure 10.39: The cloud map

The code to draw the cloud pass appears in Listing 10.18.

Listing 10.18: Code to draw the cloud pass

void cMultiTexApp::DoCloudPass()
{

LPDIRECT3DDEVICE9 pDevice = Graphics()->GetDevice();

pDevice->SetTexture(0, m_pTextures[0]->GetTexture());

SetColorStage(
0,
D3DTA_TEXTURE,
D3DTA_DIFFUSE,
D3DTOP_SELECTARG2);

SetAlphaStage(
0,
D3DTA_TEXTURE,
D3DTA_DIFFUSE,
D3DTOP_SELECTARG1);

/**
* Reflect lots of the diffuse light again
*/
sMaterial mat(

0.f,
color3(1.0f,1.0f,1.0f),
color3(0.0f,0.0f,0.0f),
color3(0.3f,0.3f,0.3f));

pDevice->SetMaterial(&mat);

/**
* Alpha blending modulates with source color, so

474 � Chapter 10: Advanced Direct3D

Figure 10.40:
Base pass plus
cloud pass

* the brighter the texture is, the more it is seen.
*/
pDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
pDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA);
pDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA);

pDevice->DrawPrimitiveUP(
D3DPT_TRIANGLESTRIP,
m_cloudVerts.size() - 2,
&m_cloudVerts[0],
sizeof(sMTVertex));

}

Putting Them All Together

Figure 10.41 has all six passes combined together into a composite image.
When viewed on a good card, this looks quite nice.

One important piece of code that we need to worry about is the device
checking code. It goes through and checks for the needed capabilities of
each pass. If the effects aren’t available, the app doesn’t let you activate
them. The code to check device capabilities appears in Listing 10.19.

Listing 10.19: Device confirmation code

bool cMultiTexApp::CheckCaps()
{

// certain base functionality is assumed, like MODULATE
// and SELECTARGx

m_bCanDoBasePass = true; // lord help us if can't do the base pass.
m_bCanDoDetailPass = false;
m_bCanDoGlowPass = false;

Chapter 10: Advanced Direct3D � 475

Figure 10.41:
All six passes

m_bCanDoGlossPass = false;
m_bCanDoEnvyPass = false;
m_bCanDoCloudPass = false;

D3DCAPS9 DevCaps;

Graphics()->GetDevice()->GetDeviceCaps(&DevCaps);
bool bCanDoMultitexture = (DevCaps.MaxSimultaneousTextures >= 2);
bool bCanDoMod2x = (DevCaps.TextureOpCaps & D3DTEXOPCAPS_MODULATE2X)?

true : false;

/**
* check detail mapping
*/
if((DevCaps.SrcBlendCaps & D3DPBLENDCAPS_DESTCOLOR) &&

(DevCaps.DestBlendCaps & D3DPBLENDCAPS_SRCCOLOR))
{

m_bCanDoDetailPass = true;
}

/**
* check glow mapping
*/
if(bCanDoMultitexture &&

(DevCaps.SrcBlendCaps & D3DPBLENDCAPS_ONE) &&
(DevCaps.DestBlendCaps & D3DPBLENDCAPS_ONE))

{
m_bCanDoGlowPass = true;

}

/**
* check envy mapping
*/
if((DevCaps.VertexProcessingCaps & D3DVTXPCAPS_TEXGEN) &&

(DevCaps.SrcBlendCaps & D3DPBLENDCAPS_SRCCOLOR) &&
(DevCaps.DestBlendCaps & D3DPBLENDCAPS_ONE))

{
m_bCanDoEnvyPass = true;

}

/**
* check gloss mapping
*/
if(bCanDoMod2x &&

(DevCaps.SrcBlendCaps & D3DPBLENDCAPS_ONE) &&
(DevCaps.DestBlendCaps & D3DPBLENDCAPS_ONE))

{
m_bCanDoGlossPass = true;

}

/**
* check cloud mapping
*/
if((DevCaps.SrcBlendCaps & D3DPBLENDCAPS_SRCCOLOR) &&

476 � Chapter 10: Advanced Direct3D

(DevCaps.DestBlendCaps & D3DPBLENDCAPS_INVSRCCOLOR))
{

m_bCanDoCloudPass = true;
}

return true;
}

Using the Stencil BufferUsing the Stencil Buffer

I promised back in Chapter 8 that I would talk about stencil buffers more,
and here we are. While they’ve been in high-end SGI hardware for quite
some time now, it’s only been recently that they’ve started to crop up on
consumer hardware. They allow you to perform a lot of nifty effects easily
that otherwise would be extremely difficult/slow, if not impossible.

The stencil buffer is yet another buffer for your application (you
already have the frame buffer, back buffer, and the z-buffer). It’s never its
own buffer; rather, it always piggybacks a few bits of the z-buffer. Gen-
erally, when stenciling is desired, you set up a 16-bit z-buffer (15 bits of
depth, one bit of stencil) or a 32-bit z-buffer (24 bits of depth, 8 bits of
stencil). You can clear it to a default value using IDirect3DDevice9::Clear
just like you did with the back buffer and the z-buffer.

Here’s the way it works: Before a pixel is tested against the z-buffer,
it’s tested against the stencil buffer. The stencil for a pixel is defined by the
stencil reference value (which is set with one of the device render states).
They are compared using a D3DCMPFUNC just like the z-buffer. It should
be noted that before the reference value and the stencil buffer value are
compared, they are both ANDed by the stencil mask. The equation for the
stencil test step is:

(StencilRef & StencilMask) CompFunc (StencilBufferValue & StencilMask)

What happens as a result of the comparison is defined by a bunch of other
render states. There are three possible cases that can occur, and you can
modify what happens to the stencil buffer for each of them. The three
cases are:

� The stencil test fails.

� The stencil test succeeds, but then the z test fails.

� Both the stencil test and the z test succeed.

What happens when you get to one of these three cases is defined by set-
ting render states to a member of the D3STENCILOP enumeration, which
is listed in Table 10.4.

Chapter 10: Advanced Direct3D � 477

Table 10.4: Values for the D3DSTENCILOP enumeration

D3DSTENCILOP_KEEP Do not change the value in the stencil buffer.

D3DSTENCILOP_ZERO Set the entry in the stencil buffer to 0.

D3DSTENCILOP_REPLACE Set the entry in the stencil buffer to the reference value.

D3DSTENCILOP_INCRSAT Increment the stencil buffer entry, clamping it to the maximum
value—8-bit stencil buffers have a maximum value of 255, 1-bit
stencil buffers have a maximum value of 1.

D3DSTENCILOP_DECRSAT Decrement the stencil buffer entry, clamping it to 0.

D3DSTENCILOP_INVERT Invert the bits in the stencil buffer entry.

D3DSTENCILOP_INCR Increment the stencil buffer entry, wrapping to 0 if it goes past the
maximum value.

D3DSTENCILOP_DECR Decrement the stencil buffer entry, wrapping to the maximum
value if it goes past 0.

The actual render states you have to set to muck with the stencil buffer
appear in Table 10.5.

Table 10.5: Stencil buffer render states (D3DRS_ prefix ommited)

STENCILENABLE Set this state to TRUE to enable stenciling.

(default = FALSE)

STENCILFAIL Operation to perform if the stencil test fails. Member of the
D3DSTENCILOP enumeration, described above.

(default = D3DSTENCILOP_KEEP)

STENCILZFAIL Operation to perform if the stencil test succeeds but then the
z-test fails. Member of the D3DSTENCILOP enumeration,
described above.

(default = D3DSTENCILOP_KEEP)

STENCILPASS Operation to perform if both the stencil test and z-test succeed.
Member of the D3DSTENCILOP enumeration, described above.

(default = D3DSTENCILOP_KEEP)

STENCILFUNC Sets the stencil comparison test function. The value must be one of
the members of the D3DCMPFUNC enumeration, discussed in
Chapter 8.

(default = D3DCMP_ALWAYS)

STENCILREF Sets the integer reference value that stencil pixels are tested
against when stencil buffering is enabled.

(default = 0)

STENCILMASK Mask applied to both the current and reference stencil values
before the stencil test is performed.

(default = 0xFFFFFFFF)

STENCILWRITEMASK Write mask applied to stencil values before they are written to the
stencil buffer.

(default = 0xFFFFFFFF)

Also, as a refresher, Table 10.6 has the D3DCMPFUNC enumeration, which
holds the possible comparison functions we can set D3DRS_STENCILFUNC
to.

478 � Chapter 10: Advanced Direct3D

Table 10.6: Values for the D3DCMPFUNC enumeration

D3DCMP_NEVER Always fails the test.

D3DCMP_LESS Passes if the tested pixel is less than the current pixel.

D3DCMP_EQUAL Passes if the tested pixel is equal to the current pixel.

D3DCMP_LESSEQUAL Passes if the tested pixel is less than or equal to the current
pixel.

D3DCMP_GREATER Passes if the tested pixel is greater than the current pixel.

D3DCMP_NOTEQUAL Passes if the tested pixel is not equal to the current pixel.

D3DCMP_GREATEREQUAL Passes if the tested pixel is greater than or equal to the current
pixel.

D3DCMP_ALWAYS Always passes the test.

Overdraw Counter

One simple use of stencil buffers is to implement an overdraw counter. The
bounding factor in most graphics applications (especially games like Quake

III: Arena/Unreal Tournament) is the fill-rate of the card. Very few games
implement anywhere near exact visibility for their scenes, so many pixels
on the screen will be drawn two, three, five, or more times. If you draw
every pixel five times and you’re running at a high resolution, the applica-
tion will be completely bound by how fast the card can draw the pixels to
the frame buffer.

You can use stencil buffers to help you figure out how much overdraw
you’re doing when rendering a given scene. Initially you clear the stencil
buffer to zero. The stencil comparison function is set to always accept pix-
els. Then the stencil operations for both PASS and ZFAIL are set to
increment the value in the stencil buffer.

Then, after you render your frame, you lock the z-buffer and average
together all of the stencil values in the buffer. Of course, this is going to be
a really slow operation; calculating the overdraw level is something to be
done during development only!

Sample code that would set up the stencil buffer to handle an over-
draw counter appears in Listing 10.20.

Listing 10.20: Sample code to set up the stencil buffer for an overdraw counter

// pDevice is a valid Direct3D Device

// Turn on stenciling
pDevice->SetRenderState(D3DRS_STENCILENABLE, TRUE);

// Set the function to always pass.
pDevice->SetRenderState(D3DRS_STENCILFUNC, D3DCMP_ALWAYS);
pDevice->SetRenderState(D3DRS_STENCILREF, 0);
pDevice->SetRenderState(D3DRS_STENCILMASK, -1);

// Always increment the stencil value
pDevice->SetRenderState(

D3DRS_STENCILZFAIL,
D3DSTENCILOP_INCR);

Chapter 10: Advanced Direct3D � 479

pDevice->SetRenderState(
D3DRS_STENCILPASS,
D3DSTENCILOP_INCR);

Dissolves and Wipes

Another use for stencil buffers is to block out certain regions of an image.
You can use this to do film-like transitions between scenes, such as wiping
left to right from one image to another.

To implement it, you have a polygon that grows frame to frame, even-
tually enveloping the entire screen. You initially clear out the stencil buffer
to zero. The wipe polygon doesn’t draw anything to the frame buffer (use
an alpha of 0 and the alpha-testing render states to prevent anything from
being drawn), but it sets the stencil pixels it covers to 1. The old scene
should be rendered on all the stencil pixels marked with a 0 (the ones that
weren’t covered by the wipe polygon) and the new scene should be ren-
dered on all the pixels with a stencil value of 1. When the wipe polygon
grows to the point that it’s completely covering the frame buffer, you can
stop rendering the first scene (since it’s completely invisible now). Sample
source code to set up a wipe effect appears in Listing 10.21.

Listing 10.21: Sample code to set up the stencil buffer for a wipe

// Stencil is initially cleared to 0.
// pDevice is a valid Direct3D Device pointer

// Set up stencil states for the wipe polygon
pDevice->SetRenderState(D3DRS_STENCILENABLE, TRUE);
pDevice->SetRenderState(D3DRS_STENCILFUNC, D3DCMP_ALWAYS);
pDevice->SetRenderState(D3DRS_STENCILPASS,D3DSTENCILOP_INCR);
pDevice->SetRenderState(D3DRS_ALPHAFUNC, D3DCMP_NEVER);
pDevice->SetRenderState(D3DRS_ALPHATESTENABLE, TRUE);

// Render the wipe polygon
...

pDevice->SetRenderState(D3DRS_ALPHAFUNC, D3DCMP_ALWAYS);
pDevice->SetRenderState(D3DRS_ALPHATESTENABLE, FALSE);
pDevice->SetRenderState(D3DRS_STENCILFUNC, D3DCMP_EQUAL);
pDevice->SetRenderState(D3DRS_STENCILPASS,D3DSTENCILOP_KEEP);
pDevice->SetRenderState(D3DRS_STENCILREF, 0);

// Render the old scene
...

pDevice->SetRenderState(D3DS_STENCILREF, 1);

// Render the new scene
...

480 � Chapter 10: Advanced Direct3D

Stencil Shadows and Stencil Mirrors

While there isn’t enough space to discuss stencil shadows and mirrors, they
are a really nifty use of stencil buffers.

Validating Device Capabilities with ValidateDevice()Validating Device Capabilities with ValidateDevice()

While hardware manufacturers are exceeding our expectations with hard-
ware performance every day, there is yet to be a perfect Direct3D hardware
device. By perfect I mean one that completely implements the entire
Direct3D feature set. Most cards, for example, can only draw two or three
textures simultaneously. By the time you read this book there should be
cards available that can draw four textures simultaneously, but Direct3D
can support up to eight.

Because of this, you should become accustomed to checking the
capabilities of the device before doing anything really tricky by using the
device description structure. This way you can transparently degrade your
rendering to support less able cards (for example, only enabling cubic
environment mapping if the device supports it).

Unfortunately, this sometimes isn’t enough to make sure an application
works correctly. All too often, a card can only do a certain feature when a
certain other feature is disabled.

A common example: Many cards on the market (most of them since
Voodoo2) have been able to do trilinear filtering on texture maps. The
capability bits of the device description say so. However, they do it using a
trick. Since the device can support multiple textures, they transparently
place the MIP maps of a texture into alternating texture stages. That way,
the blending step done between MIP maps can be done just by using alpha
to blend between the two texture maps.

There is, of course, a problem with this method: If the second texture
stage is filled up with half of the MIP map levels for the first texture, you
can’t put your own textures in there. So while most multitexture cards can
draw multiple textures at the same time, and also support trilinear MIP
mapping, they can’t do both of them at the same time. Luckily, cards since
the ATI Rage 128 are being released that can perform trilinear filtering in
each stage separately.

Unfortunately, using just the device description there is no way to
anticipate problems like this. This was one of the primary complaints with
Direct3D before version 6.0. When version 6.0 came out, there was a new
function to help people fix this sort of problem.

The function is IDirect3DDevice9::ValidateDevice. It examines the
state of the device (render states, texture stage states, and the currently set
textures) and lets you know if the device is capable of rendering it in one
pass. If it is not, it will give you a fairly helpful error code, along with an
idea of how many passes it will take to correctly render primitives with the
desired configuration.

Chapter 10: Advanced Direct3D � 481

HRESULT IDirect3DDevice9::ValidateDevice(
LPDWORD pNumPasses

);

pNumPasses Pointer to a DWORD that will be filled with the number of passes the
desired configuration will take in.

Table 10.7 lists some of the error codes that can result from using this
function.

Table 10.7: The useful error codes that ValidateDevice can return

D3DERR_CONFLICTINGTEXTUREFILTER Some of the current texture filters currently set
cannot be used together.

D3DERR_CONFLICTINGTEXTUREPALETTE The current textures cannot be used together. This
generally results from some multitexture hardware
that requires simultaneous paletted textures to use
the same palette.

D3DERR_TOOMANYOPERATIONS More texture filtering operations are being
requested than are supported by the driver.

D3DERR_UNSUPPORTEDALPHAARG One of the alpha arguments being used in the
texture blend stages is not supported.

D3DERR_UNSUPPORTEDALPHAOPERATION One of the alpha operations being used in the
texture blend stages is not supported.

D3DERR_UNSUPPORTEDCOLORARG One of the color arguments being used in the
texture blend stages is not supported.

D3DERR_UNSUPPORTEDCOLOROPERATION One of the color operations being used in the
texture blend stages is not supported.

D3DERR_UNSUPPORTEDFACTORVALUE The texture factor value is not supported by the
driver.

D3DERR_UNSUPPORTEDTEXTUREFILTER One of the currently set texture filters is not
supported.

D3DERR_WRONGTEXTUREFORMAT The pixel format for one of the textures is not
supported by the device with the currently set
blending modes (or with the other textures).

There are a few guidelines that you should follow if you want to increase
the chances of a desired rendering setup to validate correctly:

� There are cards (for example, ATI cards, although there are most likely
others) that are designed to anticipate any texture argument to appear
in the first argument of a texture stage. Only put D3DTA_TEXTURE
into the D3DTSS_COLORARG1 and D3DTSS_ALPHAARG1 texture
stage states.

� Using iterated color arguments (like D3DTA_DIFFUSE or
D3DTA_SPECULAR) often are only valid in the last texture stage. If you
want to do light mapping with diffuse shading, for example, use three
stages: The first selects the base texture, the second modulates the light
map, and the third modulates the diffuse color.

482 � Chapter 10: Advanced Direct3D

� Don’t use both D3DTA_TFACTOR and D3DTA_DIFFUSE, as many cards
don’t support this.

� Don’t use trilinear filtering with multiple textures unless you absolutely
need to. If you really, really need it, consider rendering each texture
with its own pass. This, of course, limits the types of texture blending
you can perform, but it’s more likely to be supported by the hardware.

Chapter 10: Advanced Direct3D � 483

This page inten tion ally left blank

Chapter 11Chapter 11

Sometimes I wish I was in an industry that moved a little slower. Imag-
ine the car industry—if car manufacturers had to move at the speed that
computers have to move at, cars would be traveling at supersonic
speeds, flying, and driving themselves. Luckily for them this isn’t the
case. Large strides in most industries happen over years, not days.

The computer industry is an entirely different matter. Users are
always clamoring for more—bigger bad guys, more complex physics
and AI, higher resolution textures, and so forth. If a game doesn’t pro-
vide what the users want, it won’t be what users buy.

Aside: In fact, it’s quickly becoming the case that the programmers aren’t
the ones running the fastest to keep up. For many artists, creating a tex-
ture twice as detailed takes more than twice as long to make. The same
thing goes for models and worlds. Content creation, within the next few
years, will become the bottleneck for games. It took a team of artists
years to create the relatively small house players wandered around in The

7th Guest, and it won’t be long until cards can handle worlds like that in
real time.

The Scene Management ProblemThe Scene Management Problem

An extremely large problem that every game has to deal with is manag-
ing its world on a per-frame basis. The problem as a whole is called
scene management. It has many different facets: managing the per-frame
polygon count, keeping the O(n2) physics and AI algorithms in check,
and managing the network throughput, among others.

As an example, suppose you’re writing a first-person style game,
where the world is a large research facility with a scientist you must
find. The research facility might be tremendously large, with a hundred
rooms or more, and hallways connecting them. Each room has dozens
of objects, most with hundreds of triangles. All in all, the entire world
could have upwards of two or three million triangles in it.

There are a number of issues that you need to deal with to handle
this world. For starters, how do you draw it? Early naïve systems would

485

have no structure to the world at all, just a list of two million triangles.
There is no choice but to draw the entire two million triangle list. This is
pretty ridiculous, as almost all of the polygons drawn won’t end up con-
tributing pixels to the final image. In most cases, we’ll be standing in one
room. If the door is closed, all of the visible polygons belong to the room
you’re in, and you’ll end up drawing less than 1% of the total polygon
count. The only way you’ll be able to draw the world at interactive frame
rates is to somehow chop away polygons that you know won’t be visible.
Drawing 1% versus drawing 100% of the polygons can mean the differ-
ence between 30 frames per second and three seconds per frame!

There’s an even worse example: collision detection. Whenever an
object (such as our fearless player) moves in the world, you must make
sure it hasn’t hit any other objects. The brute force algorithm involves us
taking each object and checking it for a collision. True, for most of the sev-
eral thousand objects in the scene, you will quickly reject them with a
trivial bounding box or bounding sphere test. However, you still need to
perform all multi-thousand tests, however quick and trivial they may be,
for each object that moves! The time complexity of this algorithm, O(n2),
will completely devour any processor power you have, and the frame rate
will slow to a crawl.

The idea of doing this is completely ridiculous. If an object is situated
in a room, you should test against the dozens of objects in the room, not
the thousands of objects in the whole world! As you reduce n (the number
of objects each object must test against for collisions), the physics code
speed increases quadratically!

The same issues that plague collision detection also attack the net-
working code. As characters move around the scene, their movements
must be broadcast to all the other clients, so they can keep an accurate pic-
ture of the world. However, each client couldn’t care less about where
things that they can’t see are moving. Rather than knowing where each of
the thousands of scene objects are, it just wants to know about the ones
that are relevant to it.

There needs to be a system of scene management. You have to be
smart about which parts of the scene you choose to render, which sets of
objects we perform tests against, and so forth, to keep the running time of
the application in check. Ideally the size of the total scene shouldn’t mat-
ter; as long as there is RAM to hold it all, you can increase the size of the
worlds without bounds while keeping all of the ugly algorithms running at
about the same speed.

Solutions to the Scene Management ProblemSolutions to the Scene Management Problem

I’ll go over a few different systems that can be used to manage different
types of scenes. I’ll end up using one of them (portal rendering) to write a
game at the end of this chapter, so I’ll obviously be going in-depth on that

486 � Chapter 11: Scene Management

one the most. The other ones we’ll hopefully cover enough that you’ll be
able to implement them on your own.

Quadtrees/Octrees

Quadtrees are a classic form of spatial partitioning, and are used in scene
management algorithms for many systems where the spatial data can be
usefully boiled down to two dimensions. The most prevalent example of
this is games that take place over terrain, like Myth or Tribes. While objects
have a particular height value, the space of possible height values is much
less than either of the lateral dimensions. You can take advantage of this
and use the two lateral dimensions to classify the relations of the objects.

The scene is initially bounded on all sides by a bounding square. The
recursive algorithm proceeds as follows: If there is more than one object in
the bounding square, the square is divided into four smaller squares, or
subnodes. The subnodes are associated with their parent node in the form
of a tree with either four or zero children at each node (hence the name
quadtree). When an object is bridging a boundary between two nodes,
both nodes contain a handle to the object. This continues until all the
nodes have either one or zero objects in them or some maximum depth
level is reached. Figure 11.1 shows how you would turn a scene into a
quadtree.

The advantage that quadtrees give lies in hierarchical culling. To illustrate,
consider the case of drawing the world. Imagine that the total scene is very
large, covering many square miles—much more than the viewer could ever
see. When you go to draw the scene, you test the four subnodes of the
quadtree root against the visible region from the current viewpoint. If one
of the subnodes does not sit in the visible region, you know that none of its
children do either. You can trivially cull that subnode and everything below

Chapter 11: Scene Management � 487

Figure 11.1:
Sample quadtree

it. If any part of the subnode is in the visible region, you recurse on the
four children of that subnode. When we reach a leaf, you draw all of the
objects inside it. This gives you a pleasingly quick way to cull out large
portions of the database during rendering.

As objects move around, they may exit the current node they are in. At
this point the quadtree should be recomputed. This way the tree always
has the least amount of nodes necessary to represent the data. Alterna-
tively, the tree can be constructed independently of the objects, blindly
subdivided to a certain depth. Then as objects move, the code finds out the
set of leaves that the bounding sphere for the object sits in.

Doing interobject collisions this way can be done really quickly using a
tree such as this. The only objects that some particular object could possi-
bly intersect with must also be in one of the same leaves that said
particular object is in. To do an object intersection test, you get the list of
leaves an object is sitting in and then get the list of objects that are sitting
in each of those leaves. That set of objects is the space of possible collision
candidates. The space of candidates you end up with will be considerably
smaller than the total number of objects. Also, if you keep the size of the
leaves constant you can increase the size of the total scene almost without
bound. Each of these algorithms will take about the same time to run as
long as the relative proximity of objects remains the same relative to the
area of the leaves.

Octrees are very similar to quadtrees, except you deal with cubes
instead of squares and divide the space along all three axes, making eight
subregions. Each node has eight subnodes instead of the four that we see
in quadtrees. Octrees perform very well in games like 3D space sim such as
Homeworld, where there are many objects in the scene, but very few of
them are likely candidates for collisions.

Portal Rendering

Portal rendering is a really effective way to handle scene management for
indoor environments. It’s the method I’ll use in the game I write at the end
of this chapter. It’s also used in many games and public domain engines
(like Crystal Space). Besides being effective for what it tries to do, portal
rendering is intuitive and easy to implement.

Imagine you are standing in a room. This room turns out to be a bit on
the sparse side; in fact there is absolutely nothing in it. The only thing in
the room for us to look at is a doorway, leading into another equally empty
and uninteresting room. The doorway is jumping on the minimalist band-
wagon, so it happens to not have a door in it. There is an unobstructed
view into the next room. Also, for the sake of discussion, assume that the
walls between the rooms are made of a new space-age construction mate-
rial that is infinitely thin.

488 � Chapter 11: Scene Management

Now draw the room you’re standing in. You have some sort of data
structure that represents the room, with a list of the polygons that define
the walls, floors, and ceiling. Eventually this data structure will be called a
cell. You also have a special invisible polygon that covers the doorway. This
special polygon is a portal.

After you have drawn the room you are in, the entire frame buffer will
be filled in except for the doorway. You know for a fact that the other
room, the one you can see through the doorway, is entirely behind the
room you are standing in. The only pixels left to even consider when draw-
ing the next room are the ones seen through the doorway.

Instead of blindly drawing the next room and letting the z-buffer take
care of it, you can constrain the renderer, telling it to only draw the pixels
that haven’t been touched yet. I’ll discuss the constraining part in a
moment, but for right now I intuitively know that the pixels that haven’t
been drawn yet are the pixels in the doorway. That way, you don’t waste
time drawing triangles that would be obstructed by the z-buffer and not
drawn anyway; you only draw pixels that will end up making it onto the
screen. The bound for many applications is the fill rate of the card: how
fast it can draw pixels on the screen. The fewer pixels you have it draw, the
faster the application has the potential to be. An extra advantage comes
from the fact that the fewer triangles you process, the less strain we put on
the transformation and lighting pipeline.

This algorithm is recursive. For example, say that the second room has
another doorway on the opposite wall, looking into a third room. When
you finish drawing the second room, the only pixels left will be the ones
that lay inside the next doorway. Once again constrain the drawing to only
take place inside that doorway and then draw the next room.

Portal Rendering Concepts

A scene rendered using portal rendering must be put together in a certain
way. In essence, you compose your scene out of a set of rooms that are all
connected by doorways. The rooms, which I’ll call cells, can have any num-
ber of polygons, as long as the cells themselves remain convex. Each cell
represents empty space, and all of the polygons in the cell face inwards.
They can be connected to any number of other cells, and the boundary
locations become the portals. You can think of two adjacent cells (call
them A and B) having two portals that connect them. One belongs to A
and points to B as the neighbor, and the other belongs to B and points to A
as the neighbor. The two portals must be exactly the same except for ver-
tex ordering and normal orientation. If this is not the case, portal
rendering will not work correctly. To help illustrate the point, consider a
standard scene of polygons, as shown in Figure 11.2.

Chapter 11: Scene Management � 489

This scene is of a few angular rooms, seen from a top-down view. The
white area shows the region you can move around in. As you have it set up
now, there is no spatial relationship set up for this scene. You can draw the
world using the z-buffer and not have to worry about anything, but you’ll
have to suffer through all the scene management problems detailed above.

Instead, how about turning the scene into something with which you
can portal render. I’ll discuss later how you can take an arbitrary polygonal
scene and decompose it into a bunch of convex cells, but for right now
assume that I have a black box that can do it for you. It might come up
with a composition like the one that appears in Figure 11.3.

Now you have divided the scene into eight distinct convex rooms, all con-
nected together with portals. Even without the rendering efficiency of
having zero overdraw, this data representation is useful in many ways.

490 � Chapter 11: Scene Management

Figure 11.2:
A regular scene of
polygons

Figure 11.3:
The scene divided
into eight cells

Since the cells are convex, you can quickly perform a test between the
bounding sphere of an object and the cells in the world to find out which
cell(s) an object is touching (it may be situated in a portal such that it is
sitting in more than one cell). All you do is perform a plane-sphere test
with each polygon and portal of the cell. If the sphere is completely behind
any of the planes (remember that the normals all point into the cell), then
you know that the sphere isn’t touching the cell at all.

If you know the space of cells an object exists in, then suddenly the
scene becomes much more manageable. When you want to do any pro-
cessing on an object that needs to be tested against other objects (for
example, checking for collisions), you don’t need to check all the objects in
the scene; you just need to check the objects that are in each of the cells
that the target object is in. Even if the world has a hundred thousand cells
and a hundred thousand objects wandering around those cells, the hard
algorithms will only need to be run with an extremely small subset of that
total set; there might only be ten or so other objects in the cell(s) a target
object is currently in. You can imagine how much faster this makes things.

The extra bonus that you get with cell-based worlds of course lies in
portal rendering, which allows you to efficiently find the exact set of cells
that are visible from that viewpoint. Even better, you can find the exact set
of polygons visible from that viewpoint.

To generate this visibility data, I use what I’ll call a viewing cone. A
viewing cone is an n-sided pyramid that extends infinitely forward, with all
the sides meeting together in world space at the location of the viewer. The
sides bound the visible region of space that can be seen from the camera.
Before you do any portal rendering, the sides of the cone represent the
sides of the screen; anything outside the cone will be outside the screen
and shouldn’t be drawn. Note that when you’re rendering, the viewing
cone has two extra conceptual polygons that lop off the tip of the cone
(everything in front of the near z-plane is not drawn) and the bottom of
the cone (everything behind the far z-plane is not drawn). You must ignore
these two planes for right now; portal rendering won’t work correctly if
you don’t.

Aside: A pyramid with the top and bottom chopped off is called a frustum.

Given the viewing cone, clipping a polygon against it is fairly easy. You per-
form a polygon-plane clipping operation with the polygon and each of the
planes of the cone. If at any time we completely cull the polygon, we know
that it is invisible and we can stop processing it.

To use this functionality, we’ll make a class called cViewCone. It can be
constructed from a viewer location and a polygon (which can be extracted
from a portal in our scene) or from a viewer location and the projection
information (width, height, field of view). It clips polygons with Clip(),
returning true if some part of the polygon was inside the viewing cone
(and false otherwise). Also, an output polygon is filled with the inside

Chapter 11: Scene Management � 491

fragment, if one was there. The source for cViewCone appears in Listings
11.1 (header) and 11.2 (source).

Listing 11.1: ViewCone.h

/***
* Advanced 3D Game Programming using DirectX 9.0
* *
* copyright (c) 2003 Peter A Walsh and by Adrian Perez
* See license.txt for modification and distribution information
**/

#ifndef _FRUSTUM_H
#define _FRUSTUM_H

#include "..\math3d\point3.h"
#include "..\math3d\plane3.h"

#define MAX_PLANES 32

class cViewCone
{

plane3 m_planes[MAX_PLANES];
int m_nPlanes;
point3 m_camLoc;

/**
* We need this functionality twice, encapsulate it
*/
void GenFromPoly(

const point3& camLoc,
const polygon< point3 >& in);

public:

/**
* Default constructor
*/
cViewCone();

/**
* Construct a frustum from an input polygon. The polygon
* is assumed to wind clockwise from the point of view of the
* camera
*/
cViewCone(const point3& camLoc, const polygon< point3 >& in);

/**
* Construct a frustum from the viewport data. Uses the
* data to construct a cameraspace polygon,
* back-transforms it to worldspace, then constructs a
* frustum out of it.
*/
cViewCone(float fov, int width, int height, matrix4& viewMat);

492 � Chapter 11: Scene Management

/**
* Clip a polygon to the frustum.
* true if there was anything left
*/
bool Clip(

const polygon<point3>& in,
polygon<point3>* out);

/**
* Get the center point of a frustum
* this is needed when we create frustums
* from other frustums
*/
const point3& GetLoc()
{

return m_camLoc;
}

};

#endif // _FRUSTUM_H

Listing 11.2: ViewCone.cpp

/***
* Advanced 3D Game Programming using DirectX 9.0
* *
* copyright (c) 2003 by Peter A Walsh and Adrian Perez
* See license.txt for modification and distribution information
**/

#include "stdafx.h"
#include <assert.h>

#include <algorithm> // for swap()

#include "ViewCone.h"

using namespace std;

cViewCone::cViewCone()
: m_nPlanes(0)
, m_camLoc(point3::Zero)
{

// Do nothing
}

cViewCone::cViewCone(
const point3& camLoc,
const polygon< point3 >& in)

{
assert(in.nElem);
assert(in.pList);
GenFromPoly(camLoc, in);

Chapter 11: Scene Management � 493

}

cViewCone::cViewCone(
float fov, int width, int height,
matrix4& viewMat)

{
/**
* This function is kind of a magic trick, as it tries to
* invert the projection matrix. If you stare at the way
* we make projection matrices for long enough this should
* make sense.
*/
float aspect = ((float)height) / width;

float z = 10;

float w = aspect * (float)(cos(fov/2)/sin(fov/2));
float h = 1.0f * (float)(cos(fov/2)/sin(fov/2));

float x0 = -z/w;
float x1 = z/w;
float y0 = z/h;
float y1 = -z/h;

/**
* Construct a clockwise camera-space polygon
*/
polygon<point3> poly(4);
poly.nElem = 4;
poly.pList[0] = point3(x0, y0,z); // top-left
poly.pList[1] = point3(x1, y0,z); // top-right
poly.pList[2] = point3(x1, y1,z); // bottom-right
poly.pList[3] = point3(x0, y1,z); // bottom-left

/**
* Create a camspace->worldspace transform
*/
matrix4 camMatInv = matrix4::Inverse(viewMat);

/**
* Convert it to worldspace
*/
poly.pList[0] = poly.pList[0] * camMatInv;
poly.pList[1] = poly.pList[1] * camMatInv;
poly.pList[2] = poly.pList[2] * camMatInv;
poly.pList[3] = poly.pList[3] * camMatInv;

/**
* Generate the frustum
*/
GenFromPoly(camMatInv.GetLoc(), poly);

}

void cViewCone::GenFromPoly(

494 � Chapter 11: Scene Management

const point3& camLoc,
const polygon< point3 >& in)

{
int i;
m_camLoc = camLoc;
m_nPlanes = 0;
for(i=0; i< in.nElem; i++)
{

/**
* Plane 'i' contains the camera location and the 'ith'
* edge around the polygon
*/
m_planes[m_nPlanes++] = plane3(

camLoc,
in.pList[(i+1)%in.nElem],
in.pList[i]);

}
}

bool cViewCone::Clip(const polygon<point3>& in, polygon<point3>* out)
{

/**
* Temporary polygons. This isn't thread safe
*/
static polygon<point3> a(32), b(32);
polygon<point3>* pSrc = &a;
polygon<point3>* pDest = &b;

int i;

/**
* Copy the input polygon to a.
*/
a.nElem = in.nElem;
for(i=0; i<a.nElem; i++)
{

a.pList[i] = in.pList[i];
}

/**
* Iteratively clip the polygon
*/
for(i=0; i<m_nPlanes; i++)
{

if(!m_planes[i].Clip(*pSrc, pDest))
{

/**
* Failure
*/
return false;

}
std::swap(pSrc, pDest);

}

/**

Chapter 11: Scene Management � 495

* If we make it here, we have a polygon that survived.
* Copy it to out.
*/
out->nElem = pSrc->nElem;
for(i=0; i<pSrc->nElem; i++)
{

out->pList[i] = pSrc->pList[i];
}

/**
* Success
*/
return true;

}

You can perform portal rendering in one of two ways, depending on the fill
rate of the hardware you’re running on and the speed of the host proces-
sor. The two methods are exact portal rendering and approximative portal
rendering.

Exact Portal Rendering

To render a portal scene using exact portal rendering, you use a simple
recursive algorithm. Each cell has a list of polygons, a list of portals, and a
visited bit. Each portal has a pointer to the cell adjacent to it. You start the
algorithm knowing where the camera is situated, where it’s pointing, and
which cell it is sitting in. From this, along with other information like the
height, width, and field of view of the camera, you can determine the ini-
tial viewing cone that represents the entire viewable area on the screen.
Also, you clear the valid bit for all the cells in the scene.

You draw all of the visible regions of the cell’s polygons (the visible
regions are found by clipping the polygons against the current viewing
cone). Also, you set the visited bit to true. Then you walk the list of portals
for the cell. If the cell on the other side hasn’t been visited, you try to clip
the portal against the viewing cone. If a valid portal fragment results from
the operation, you have the area of the portal that was visible from the
current viewing cone. Take the resulting portal fragment and use it to gen-
erate a new viewing cone. Finally, you recurse into the cell adjacent to the
portal in question using the new viewing cone. You repeat this process
until there are no new cells to traverse into. Pseudocode to do this appears
in Listing 11.3.

Listing 11.3: Pseudocode for exact portal rendering

void DrawSceneExact
for(all cells)

cell.visited = false
currCell = cell camera is in
currCone = viewing cone of camera
currCell.visited = true
VisitCell(currCell, currCone)

496 � Chapter 11: Scene Management

void VisitCell(cell, viewCone)
for(each polygon in cell)

polygon fragment = viewCone.clip(current polygon)
if(polygon fragment is valid)

draw(polygon fragment)
for(each portal)

portal fragment = viewCone.clip(current portal)
if(portal fragment is valid)

if(!portal.otherCell.visited)
portal.otherCell.visited = true
newCone = viewing cone of portal fragment
VisitCell(portal.otherCell, newCone)

I haven’t talked about how to handle rendering objects (such as enemies,
players, ammo boxes, and so forth) that would be sitting in these cells. It’s
almost impossible to guarantee zero overdraw if you have to draw objects
that are in cells. Luckily, there is the z-buffer so you don’t need to worry;
you just draw the objects for a particular cell when you recurse into it.
Handling objects without a depth buffer can get hairy pretty quickly; be
happy you have it.

Approximative Portal Rendering

As the fill rate of cards keeps increasing, it’s becoming less and less trou-
blesome to just throw up your hands and draw some triangles that won’t
be seen. The situation is definitely much better than it was a few years
ago, when software rasterizers were so slow that you wouldn’t even think
of wasting time drawing pixels you would never see. Also, since the trian-
gle rate is increasing so rapidly it’s quickly getting to the point where the
time you spend clipping off invisible regions of a triangle takes longer than
it would to just draw the triangle and let the hardware sort any problems
out.

In approximative portal rendering, you only spend time clipping por-
tals. Objects in the cells and the triangles making up the cell boundaries
are either trivially rejected or drawn. When you want to draw an object,
you test the bounding sphere against the frustum. If the sphere is com-
pletely outside the frustum, you know that it’s completely obscured by the
cells you’ve already drawn, so you don’t draw the object. If any part of it is
visible, you just draw the entire object, no questions asked. While you do
spend time drawing invisible triangles (since part of the object may be
obscured) you make up for it since you can draw the object without any
special processing using one big DrawIndexedPrimitive or something simi-
lar. The same is true for portal polygons. You can try to trivially reject
polygons in the cell and save some rendering time or just blindly draw all
of them when you enter the cell.

Another plus when you go with an approximative portal rendering
scheme is that the cells don’t need to be strictly convex; they can have any

Chapter 11: Scene Management � 497

number of concavities in them and still render correctly if a z-buffer is
used. Remember, however, that things like containment tests become
untrivial when you go with concave cells; you can generally use something
like a BSP tree for each cell to get around these problems.

Portal Effects

Assuming that all of the portals and cells are in a fixed location in 3D,
there isn’t anything terribly interesting that you do with portal rendering.
However, that’s a restriction you don’t necessarily need to put on yourself.
There are a few nifty effects that can be done almost for free with a portal
rendering engine, two of which I’ll cover here: mirrors and teleporters.

Mirrors

Portals can be used to create mirrors that reflect the scene back onto you.
Using them is much easier when you’re using exact portal rendering (clip-
ping all drawn polygons to the boundaries of the viewing cone for the cell
the polygons are in); when they’re used with approximative portal render-
ing, a little more work needs to be done.

Mirrors can be implemented with a special portal that contains a trans-
formation matrix and a pointer back to the parent cell. When this portal is
reached, the viewing cone is transformed by the portal’s transformation
matrix. You then continue the recursive portal algorithm, drawing the cell
we’re in again with the new transformation matrix that will make it seem
as if we are looking through a mirror.

Warning: Note that you should be careful when using multiple mirrors in a
scene. If two mirrors can see each other, it is possible to infinitely recurse
between both portals until the stack overflows. This can be avoided by
keeping track of how many times you have recursed into a mirror portal and
stopping after some number of iterations.

To implement mirrors you need two pieces of information: How do you
create the mirror transformation matrix, and how do you transform the
viewing cone by that matrix? I’ll answer each of these questions separately.

Before you can try to make the mirror transformation matrix, you need
an intuitive understanding of what the transformation should do. When
you transform the viewing cone by the matrix, you will essentially be flip-
ping it over the mirror such that it is sitting in world space exactly opposite
where it was before. Figure 11.4 shows what is happening.

498 � Chapter 11: Scene Management

For comprehension’s sake, let’s give the mirror its own local coordinate
space. To define it, you need the n, o, a, and p vectors to put the matrix
together (see Chapter 5). The p vector is any point on the mirror; you can
just use the first vertex of the portal polygon. The a vector is the normal of
the portal polygon (so in the local coordinate space, the mirror is situated
at the origin in the x-y plane). The n vector is found by crossing a with
any vector that isn’t parallel to it (let’s just use the up direction, <0,1,0>)
and normalizing the result. Given n and a, o is just the normalized cross
product of the two. Altogether this becomes:

Warning: The cross product is undefined when the two vectors are parallel, so
if the mirror is on the floor or ceiling you should use a different vector rather
than <0,1,0>. <1,0,0> will suffice.

However, a transformation matrix that converts points local to the mirror
to world space isn’t terribly useful by itself. To actually make the mirror
transformation matrix you need to do a bit more work. The final transfor-
mation needs to perform the following steps:

Chapter 11: Scene Management � 499

Figure 11.4:
2D example of view
cone reflection

�
�
�
�

�

�

�
�
�
�

�

�

�

��

��

�

1

0

0

0

0,1,0

mirrornormal

p

a

o

n

T

nao

an

a

mirror

� Transform world space vertices to the mirror’s local coordinate space.
This can be accomplished by multiplying the vertices by Tmirror

-1.

� Flip the local space vertices over the x-y plane. This can be accom-
plished by using a scaling transformation that scales by 1 in the x and y
directions and –1 in the z direction (see Chapter 5). We’ll call this
transformation Treflect.

� Finally, transform the reflected local space vertices back to world space.
This can be accomplished by multiplying the vertices by Tmirror.

Given these three steps you can compose the final transformation matrix,
Mmirror.

Given Mmirror, how do you apply the transformation to the viewing cone,
which is just a single point and a set of planes? I haven’t discussed how to
apply transformations to planes yet, but now seems like a great time.
There is a real way to do it, given the plane defined as a 1x4 matrix:

If you don’t like that, there’s a slightly more intuitive way that requires you
to do a tiny bit more work. The problem with transforming normals by a
transformation matrix is that you don’t want them to be translated, just
rotated. If you translated them they wouldn’t be normal-length anymore
and wouldn’t correctly represent a normal for anything. If you just
zero-out the translation component of Mmirror, (M14, M24, and M34), and
multiply it by the normal component of the plane, it will be correctly trans-
formed. Alternatively you can just do a 1x4 times 4x4 operation, making
the first vector [a,b,c,0].

Warning: This trick only works for rigid-body transforms (ones composed
solely of rotations, translations, and reflections).

So you create two transformation matrices, one for transforming regular
vectors and one for transforming normals. You multiply the view cone
location by the vector transformation matrix and multiply each of the nor-
mals in the view cone planes by the normal transformation matrix. Finally,
recompute the d components for each of the planes by taking the negative
dot product of the transformed normal and the transformed view cone
location (since the location is sitting on each of the planes in the view
cone).

500 � Chapter 11: Scene Management

mirrorreflectmirrormirror TTTM
1
�

� �
� � T

dcba

1'
�
�

Mnn

n

You should postpone rendering through a mirror portal until you have
finished with all of the regular portals. When you go to draw a mirror por-
tal, you clone the viewing cone and transform it by Mmirror. Then you reset
all of the visited bits and continue the algorithm in the cell that owned the
portal. This is done for all of the mirrors visited. Each time you find one,
you add it to a mirror queue of mirror portals left to process.

You must be careful if you are using approximative portal rendering
and you try to use mirrors. If you draw cells behind the portal, the poly-
gons will interfere with each other because of z-buffer issues. Technically,
what you see in a mirror is a flat image, and should always occlude things
it is in front of. The way you are rendering a mirror (as a regular portal
walk) it has depth, and faraway things in the mirror may not occlude near
things that should technically be behind it. To fix this, before you render
through the mirror portal, you change the z-buffer comparison function to
D3DCMP_ALWAYS and draw a screen space polygon over the portal poly-
gon with the depth set to the maximum depth value. This essentially resets
the z-buffer of the portal region so that everything drawn through the mir-
ror portal will occlude anything drawn behind it. I recommend you use
exact portal rendering if you want to do mirrors or translocators, which I’ll
discuss next.

Translocators and Non-Euclidean Movement

One of the coolest effects you can do with portal rendering is create
non-Euclidean spaces to explore. One effect is having a doorway floating in
the middle of a room that leads to a different area; you can see the differ-
ent area through the door as you move around it. Another effect is having
a small structure with a door, and upon entering the structure you realize
there is much more space inside of it than could be possible given the
dimensions of the structure from the outside. Imagine a small cube with a
small door that opens into a giant amphitheater. Neither of these effects is
possible in the real world, making them all the neater to have in a game.

You perform this trick in a way similar to the way you did mirrors,
with a special transformation matrix you apply to the viewing cone when
you descend through the portal. Instead of a mirror portal which points
back to the cell it belongs to, a translocator portal points to a cell that can
be anywhere in the scene. There are two portals that are the same size
(but not necessarily the same orientation), a source portal and a destina-
tion portal. When you look through the source portal, the view is seen as if
you were looking through the destination portal. Figure 11.5 may help
explain this.

Chapter 11: Scene Management � 501

To create the transformation matrix to transform the view cone so that it
appears to be looking through the destination portal, you compute local
coordinate space matrices for both portals using the same n, o, a, and p
vectors we used in the mirrors section. This gives you two matrices, Tsource

and Tdest. Then to compute Mtranslocator, you do the following steps:

� Transform the vectors from world space to the local coordinate space of
the source matrix (multiply them by Tsource

–1).

� Take the local space vectors and transform them back into world space,
but use the destination transformation matrix (Tdest).

Given these steps you can compose the final transformation matrix:

The rendering process for translocators is identical to rendering mirrors
and has the same caveats when approximative portal rendering is used.

Portal Generation

Portal generation, or finding the set of convex cells and interconnecting
portals given an arbitrary set of polygons, is a fairly difficult problem. The
algorithm I’m going to describe is too complex to fully describe here; it
would take much more space than can be allotted. However, it should lead
you in the generally right direction if you wish to implement it. David
Black originally introduced me to this algorithm.

The first step is to create a leafy BSP of the data set. Leafy BSPs are
built differently than node BSPs (the kind discussed in Chapter 5). Instead
of storing polygons and planes at the nodes, only planes are stored. Leaves
contain lists of polygons. During construction, you take the array of poly-
gons and attempt to find a plane from the set of polygon planes that

502 � Chapter 11: Scene Management

Figure 11.5:
2D representation of
the translocator
transformation

ndestinatiosourceortranslocat TTM
1
�

divides the set into two non-zero sets. Coplanar polygons are put into the
side that they face, so if the normal to the polygon is the same as the plane
normal, it is considered in front of the plane. Trying to find a splitter will
fail if and only if the set of polygons forms a convex cell. If this happens,
the set of polygons becomes a leaf; otherwise the plane is used to divide
the set into two pieces, and the algorithm recurses on both pieces. An
example of tree construction on a simple 12-polygon 2D data set appears
in Figure 11.6.

The leaves of the tree will become the cells of the data set, and the nodes
will become the portals. To find the portal polygon given the plane at a
node, you first build a polygon that lies in the plane but extends out in all
directions past the boundaries of the data set.

This isn’t hideously difficult. You keep track of a universe box, a cube
that is big enough to enclose the entire data set. You look at the plane nor-
mal to find the polygon in the universe box that is the most parallel to it.
Each of the four vertices of that universe box polygon are projected into
the plane. You then drop that polygon through the tree, clipping it against
the cells that it sits in. After some careful clipping work (you need to clip
against other polygons in the same plane, polygons in adjacent cells, etc.),
you get a polygon that isn’t obscured by any of the geometry polygons.
This becomes a portal polygon.

After you do this for each of the splitting planes, you have a set of cells
and a set of portal polygons but no association between them. Generating
the associations between cells and portals is fairly involved, unfortunately.
The sides of a cell may be defined by planes far away, so it’s difficult to
match up a portal polygon with a cell that it is abutting. Making the prob-
lem worse is the fact that some portal polygons may be too big, spanning
across several adjacent cells. In this case you would need to split the cell
up.

Chapter 11: Scene Management � 503

Figure 11.6:
Constructing a
leafy BSP tree

On top of all that, once you get through this mess and are left with the
set of cells and portals, you’ll almost definitely have way too many cells
and way too many portals. Combining cells isn’t easy. You could just merge
cells only if the new cell they formed was convex, but this will also give
you a less-than-ideal solution: you may need to merge together three or
more cells together to get a nice big convex cell, but you wouldn’t be able
to reach that cell if you couldn’t find pairs of cells out of the set that
formed convex cells.

Because of problems like this, many engines just leave the process of
portal cell generation up to the artists. If you’re using approximative portal
rendering the artists can place portals fairly judiciously and end up with
concave cells, leaving them just in things like doorways between rooms
and whatnot. Quake II used something like this to help culling scenes
behind closed doors; area portals would be covering doors and scenes
behind them would only be traversed if the doors weren’t closed.

Precalculated Portal Rendering (PVS)

Up to this point I have discussed the usage of portal rendering to find the
set of visible cells from a certain point in space. This way you can dynami-
cally find the exact set of visible cells you can see from a certain viewpoint.
However, you shouldn’t forget one of the fundamental optimization con-
cepts in computer programming: Why generate something dynamically if
you can precalculate it?

How do you precalculate the set of visible cells from a given view-
point? The scene has a near infinite number of possible viewpoints, and
calculating the set of visible cells for each of them would be a nightmare. If
you want to be able to precalculate anything, you need to cut down the
space of entries or cut down the number of positions for which you need to
precalculate.

What if you just considered each cell as a whole? If you found the set
of all the cells that were visible from any point in the cell, you could just
save that. Each of the n cells would have a bit vector with n entries. If bit i

in the bit vector is true, then cell i is visible from the current cell.
This technique of precalculating the set of visible cells for each cell

was pioneered by Seth Teller in his 1992 thesis. The data associated with
each cell is called the Potentially Visible Set, or PVS for short. It has since
been used in Quake, Quake II, and just about every other first-person
shooter under the sun.

Doing this, of course, forces you to give up exact visibility. The set of
visible cells from all points inside a cell will almost definitely be more than
the set of visible cells from one particular point inside the cell, so you may
end up drawing some cells that are totally obscured from the camera.
However, what you lose in fill-rate, you gain in processing time. You don’t
need to do any expensive frustum generation or cell traversal; you simply
step through the bit vector of the particular cell and draw all the cells
whose bits are set.

504 � Chapter 11: Scene Management

Advantages/Disadvantages

The big reason this system is a win is because it offloads work from the
processor to the hardware. True, you’ll end up drawing more polygons
than you have to, but it won’t be that much more. The extra cost in trian-
gle processing and fill rate is more than made up for since you don’t need
to do any frustum generation or polygon clipping.

However, using this system forces you to give up some freedom. The
time it takes to compute the PVS is fairly substantial, due to the complexity
of the algorithm. This prevents you from having your cells move around;
they must remain static. This, however, is forgivable in most cases; the
geometry that defines walls and floors shouldn’t be moving around
anyway.

Implementation Details

I can’t possibly hope to cover the material required to implement PVS ren-
dering; Seth Teller spends 150 pages doing it in his thesis. However, I can
give a sweeping overview of the pieces of code involved.

The first step is to generate a cell and portal data set, using something
like the algorithm discussed earlier. It’s especially important to keep your
cell count down, since you have an n2 memory cost to hold the PVS data
(where n is the number of cells). Because of this, most systems use the
concept of detail polygons when computing the cells. Detail polygons are
things like torches or computer terminals—things that don’t really define
the structural boundaries of a scene but just introduce concavities. Those
polygons generally are not considered until the PVS table is calculated.
Then they are just added to the cells they belong to. This causes the cells
to be concave, but the visibility information will still remain the same, so
we’re all good.

Once you have the set of portals and cells, you iteratively step through
each cell and find the set of visible cells from it. To do this, you do some-
thing similar to the frustum generation we did earlier in the chapter, but
instead of a viewing cone coming out of a point, you generate a solid that
represents what is viewable from all points inside the solid. An algorithm
to do this (called portal stabbing) is given in Seth Teller’s thesis. Also, the
source code to QV (the application that performs this operation for the
Quake engine) is available online.

When finished, and you have the PVS vector for each of the cells, ren-
dering is easy. You can easily find out which cell the viewer is in (since
each of the cells is convex). Given that cell, you step through the bit vector
for that cell. If bit i is set, you draw cell i and let the z-buffer sort it out.

Chapter 11: Scene Management � 505

Application: Mobots Attack!Application: Mobots Attack!

The intent of Mobots Attack! was to make an extremely simple client-server
game that would provide a starting point for your own 3D game project.
As such, it is severely lacking in some areas but fairly functional in others.
There is only one level and it was crafted entirely by hand. Physics support
is extremely lacking, as is the user interface. However, it has a fairly robust
networking model that allows players to connect to a server, wander
about, and shoot rockets at each other.

The objective of the game wasn’t to make something glitzy. It doesn’t
use radiosity, AI opponents, multitexture, or any of the multi-resolution
modeling techniques we discussed in Chapter 9. However, adding any of
these things wouldn’t be terribly difficult. Hopefully, adding cool features
to an existing project will prove more fruitful for you than trying to write
the entire project yourself. Making a project that was easy to add to was
the goal of this game. I’ll quickly cover some of the concepts that make this
project work.

Interobject Communication

One of the biggest problems in getting a project of this size to work in any
sort of reasonable way is interobject communication. For example, when
an object hits a wall, some amount of communication needs to go on
between the object and the wall so that the object stops moving. When a
rocket hits an object, the rocket needs to inform the object that it must lose
some of its hit points. When a piece of code wants to print debugging info,
it needs to tell the application object to handle it.

Things get even worse. When the client moves, it needs some way to
tell the server that its object has moved. But how would it do that? It’s not
like it can just dereference a pointer and change the position manually; the
server could be in a completely different continent.

To take care of this, a messaging system for objects to communicate
with each other was implemented. Every object that wanted to communi-
cate needed to implement an interface called iGameObject, the definition
of which appears in Listing 11.4:

Listing 11.4: The iGameObject interface

typedef uint msgRet;

interface iGameObject
{
public:

virtual objID GetID() = 0;
virtual void SetID(objID id) = 0;

virtual msgRet ProcMsg(const sMsg& msg) = 0;
};

506 � Chapter 11: Scene Management

An objID is an int masquerading as two shorts. The high short defines the
class of object that the ID corresponds to, and the low short is the individ-
ual instance of that object. Each object in the game has a different objID,
and that ID is the same across all the machines playing a game (the server
and each of the clients). The code that runs the objID appears in Listing
11.5.

Listing 11.5: objID code

typedef uint objID;

inline objID MakeID(ushort segment, ushort offset)
{

return (((uint)segment)<<16) | ((uint)offset);
}

inline ushort GetIDSegment(objID id)
{

return (ushort)(id>>16);
}

inline ushort GetIDOffset(objID id)
{

return (ushort)(id & 0xFFFF);
}

/**
* These segments define the types of objects
*/
const ushort c_sysSegment = 0; // System object
const ushort c_cellSegment = 1; // Cell object
const ushort c_playerSegment = 2; // Player object
const ushort c_spawnSegment = 3; // Spawning object
const ushort c_projSegment = 4; // Projectile object
const ushort c_paraSegment = 5; // Parametric object
const ushort c_tempSegment = 6; // Temp object

All object communication is done by passing messages around. In the same
way you would send a message to a window to have it change its screen
position in Windows, you send a message to an object to have it perform a
certain task. The message structure holds onto the destination object (an
objID), the type of the message (which is a member of the eMsgType enu-
meration), and then some extra data that has a different meaning for each
of the messages. The sMsg structure appears in Listing 11.6.

Listing 11.6: Pseudocode for exact portal rendering

struct sMsg
{

eMsgType m_type;
objID m_dest;
union
{

Chapter 11: Scene Management � 507

struct
{

point3 m_pt;
};
struct
{

plane3 m_plane;
};
struct
{

color3 m_col;
};
struct
{

int m_i[4];
};
struct
{

float m_f[4];
};
struct
{

void* m_pData;
};

};

sMsg(eMsgType type = msgForceDword, objID dest = 0)
: m_type(type)
, m_dest(dest)
{
}

sMsg(eMsgType type, objID dest, float f)
: m_type(type)
, m_dest(dest)
{

m_f[0] = f;
}

sMsg(eMsgType type, objID dest, int i)
: m_type(type)
, m_dest(dest)
{

m_i[0] = i;
}

sMsg(eMsgType type, objID dest, const point3& pt)
: m_type(type)
, m_dest(dest)
, m_pt(pt)
{
}

sMsg(eMsgType type, objID dest, const plane3& plane)
: m_type(type)

508 � Chapter 11: Scene Management

, m_dest(dest)
, m_plane(plane)
{
}

sMsg(eMsgType type, objID dest, void* pData)
: m_type(type)
, m_dest(dest)
, m_pData(pData)
{
}

};

When an object is created, it registers itself with a singleton object called
the message daemon (cMsgDaemon). The registering process simply adds
an entry into a map that associates a particular ID with a pointer to an
object. Typically what happens is when an object is created, a message will
be broadcast to the other connected machines telling them to make the
object as well and providing it with the ID to use in the object creation.
The cMsgDaemon class appears in Listing 11.7.

Listing 11.7: Code for the message daemon

class cMsgDaemon
{

map< objID, iGameObject* > m_objectMap;
static cMsgDaemon* m_pGlobalMsgDaemon;

public:
cMsgDaemon();
~cMsgDaemon();

static cMsgDaemon* GetMsgDaemon()
{

// Accessor to the singleton
if(!m_pGlobalMsgDaemon)
{

m_pGlobalMsgDaemon = new cMsgDaemon;
}
return m_pGlobalMsgDaemon;

}

void RegObject(objID id, iGameObject* pObj);
void UnRegObject(objID id);

iGameObject* Get(int id)
{

return m_objectMap[id];
}

/**
* Deliver this message to the destination
* marked in msg.m_dest. Throws an exception
* if no such object exists.

Chapter 11: Scene Management � 509

*/
uint DeliverMessage(const sMsg& msg);

};

When one object wants to send a message to another object, it just needs
to fill out an sMsg structure and then call cMsgDaemon::DeliverMessage
(or a nicer-looking wrapper use function SendMessage). In some areas of
code, rather than ferry a slew of messages back and forth, a local-scope
pointer to an object corresponding to an ID can be acquired with
cMsgDaemon::Get and then member functions can be called.

Network Communication

The networking model this game has is remarkably simple. There is no
client-side prediction and no extrapolation. While this makes for choppy
gameplay, hopefully it should make it easier to understand. The messaging
model I implemented here was strongly based on an article written by
Mason McCuskey for GameDev.net called “Why pluggable factories rock
my multiplayer world.”

Here’s the essential problem pluggable factories try to solve. Messages
arrive to you as datagrams, essentially just buffers full of bits. Those bits
represent a message that was sent to you from another client. The first
byte (or short, if there are a whole lot of messages) is an ID tag that
describes what the message is (a tag of 0x07, for example, may be the tag
for a message describing the new position of an object that moved). Using
the ID tag, you can figure out what the rest of the data is.

How do you figure out what the rest of the data is? One way would be
to just have a massive switch statement with a case label for each message
tag that will take the rest of the data and construct a useful message.
While that would work, it isn’t the right thing to do, OOP-wise. Higher-
level code (that is, the code that constructs the network messages) needs
to know details about lower-level code (that is, each of the message IDs
and to what each of them correspond).

Pluggable factories allow you to get around this. Each message has a
class that describes it. Every message derives from a common base class
called cNetMessage, which appears in Listing 11.8.

Listing 11.8: Code for the cNetMessage class

/**
* Generic Message
* Every message class derives from this one.
*/
class cNetMessage
{
public:

cNetMessage()
{
}

510 � Chapter 11: Scene Management

~cNetMessage()
{
}

/**
* Write out a bitstream to be sent over the wire
* that encapsulates the data of the message.
*/
virtual int SerializeTo(uchar* pOutput)
{

return 0;
}

/**
* Take a bitstream as input (coming in over
* the wire) and convert it into a message
*/
virtual void SerializeFrom(uchar *pFromData, int datasize)
{
}

/**
* This is called on a newly constructed message.
* The message in essence executes itself. This
* works because of the objID system; the message
* object can communicate its desired changes to
* the other objects in the system.
*/
virtual void Exec() = 0;

netID GetFrom()
{

return m_from;
}
netID GetTo()
{

return m_to;
}

void SetFrom(netID id)
{
m_from = id;

}

void SetTo(netID id)
{
m_to = id;

}

protected:

netID m_from;
netID m_to;

};

Chapter 11: Scene Management � 511

Every derived NetMessage class has a sister class that is the maker for that
particular class type. For example, the login request message class
cNM_LoginRequest has a sister maker class called cNM_LoginRequest-
Maker. The maker class’s responsibility is to create instances of its class
type. The maker registers itself with a map in the maker parent class. The
map associates those first-byte IDs with a pointer to a maker object. When
a message comes off the wire, a piece of code looks up the ID in the map,
gets the maker pointer, and tells the maker to create a message object. The
maker creates a new instance of its sister net message class, calls Serialize-
From on it with the incoming data, and returns the instance of the class.

Once a message is created, its Exec() method is called. This is where
the message does any work it needs to do. For example, when the
cNM_LoginRequest is executed (this happens on the server when a client
attempts to connect), the message tells the server (using the interobject
messaging system discussed previously) to create the player with the given
name that was supplied. This will in turn create new messages, like an
acknowledgment message notifying the client that it has logged in.

Code Structure

There are six projects in the game workspace. Three of them you’ve seen
before: math3D, netLib, and gameLib. The other three are gameServer,
gameClient, and gameCommon. I made gameCommon just to ease the
compile times; it has all the code that is common to both the client and
the server.

The server is a Win32 dialog app. It doesn’t link any of the DirectX
headers in, so it should be able to run on any machine with a network
card. All of the render code is pretty much divorced from everything else
and put into the client library. The gameClient derives from cApplication
just like every other sample app in the book.

The downloadable files contain documentation to help you get the
game up and running on your machine; the client can connect to the local
host, so a server and a client can both run on the same machine.

Closing ThoughtsClosing Thoughts

I’ve covered a lot of ground in this book. Hopefully, it has all been lucid
and the steps taken haven’t been too big. If you’ve made it to this point,
you should have enough knowledge to be able to implement a fairly com-
plex game.

More importantly, you hopefully have acquired enough knowledge
about 3D graphics and game programming that learning new things will
come easily. Once you make it over the big hump, you start to see all the
fundamental concepts that interconnect just about all of the driving con-
cepts and algorithms.

Good luck with all of your endeavors.

512 � Chapter 11: Scene Management

Appendix

The world has two kinds of people in it. People who love the STL and
use it every day, and people who have never learned the STL. If you’re
one of the latter, this appendix will hopefully help you get started.

The Standard Template Library is a set of classes and functions that
help coders use basic containers (like linked lists and dynamic arrays)
and basic algorithms (like sorting). It was officially introduced into the
C++ library by the ANSI/ISO C++ Standards Committee in July 1994.
Almost all C++ compilers (and all of the popular ones) implement the
STL fairly well, while some implementations are better than others (the
SGI implementation is one of the better ones; it does a few things much
more efficiently than the Visual C++ implementation).

Almost all of the classes in the STL are template classes. This makes
them usable with any type of object or class, and they are also compiled
entirely as inline, making them extremely fast.

Templates

A quick explanation of templates: They allow you to define a generic
piece of code that will work with any type of data, be it ints, floats, or
classes.

The canonical example is Swap. Normally, if you want to swap inte-
gers in one place and swap floats in another, you write something like
Listing A.1.

Listing A.1: Non-template code

void SwapInt(int &a, int &b)
{

int temp = a;
a = b;
b = temp;

}

void SwapFloat(float &a, float &b)
{

float temp = a;
a = b;

513

b = temp;
}

This is tolerable as long as you’re only swapping around these two types,
but what if you start swapping other things? You would end up with 10 or
15 different Swap functions in some file. The worst part is they’re all
exactly the same, except for the three tokens that declare the type. Let’s
make Swap a template function. Its source is in Listing A.2.

Listing A.2: Template code

template < class swapType >
void Swap(swapType &a, swapType &b)
{

swapType temp = a;
a = b;
b = temp;

}

Here’s how it works. You use the templated Swap function like you would
any other. When the compiler encounters a place that you use the function,
it checks the types that you’re using, and makes sure they’re valid (both
the same, since you use T for both a and b). Then it makes a custom piece
of code specifically for the two types you’re using and compiles it inline. A
way to think of it is the compiler does a find-replace, switching all
instances of swapType (or whatever you name your template types; most
people use T) to the types of the two variables you pass into swap. Because
of this, the only penalty for using templates is during compilation; using
them at run time is just as fast as using custom functions. There’s also a
small penalty since using everything inline can increase your code size.
However for a large part this point is moot—most STL functions are short
enough that the code actually ends up being smaller. Inlining the code for
small functions takes less space than saving/restoring the stack frame.

Of course, even writing your own templated Swap() function is kind of
dumb, as the STL library has its own function (swap())… but it serves as a
good example. Templated classes are syntactically a little different, but
we’ll get to those in a moment.

Containers

STL implements a set of basic containers to simplify most programming
tasks; I used them everywhere in the text. While there are several more,
Table A.1 lists the most popular ones.

514 � Appendix: An STL Primer

Table A.1: The basic container classes

vector Dynamic array class. You append entries on the end (using push_back()) and then
can access them using standard array notation (via an overloaded [] operator).
When the array needs more space, it internally allocates a bigger block of memory,
copies the data over (explicitly, not bitwise), and releases the old one. Inserting
data anywhere but the back is slow, as all the other entries need to be moved back
one slot in memory.

deque DeQueue class. Essentially a dynamic array of dynamic arrays. The data doesn’t sit
linear in memory, but you can get array-style lookups really quickly, and can append
to the front or the back quickly.

list Doubly linked list class. Inserting and removing anywhere is cheap, but you can’t
randomly access things; you can only iterate forward or backard.

slist Singly linked list class. Inserting to the front is quick, to the back is extremely slow.
You shouldn’t need to use this since list is sufficiently fast for most code that would
be using a linked list anyway.

map This is used in a few places in the code; it is an associative container that lets you
look up entries given a key. An example would be telephone numbers. You would
make a map like so:

map<string, int> numMap;

and be able to say things like:

numMap["joe"] = 5553298;

stack A simple stack class.

queue A simple queue class.

string A vector of characters, with a lot of useful string operations implemented.

Let’s look at some sample code. Listing A.3 creates a vector template class
of integers, adds some elements, and then asserts both.

Listing A.3: Template sample code

#include <list>
#include <vector>
#include <string>

using namespace std;

void main()
{

// Create a vector and add some numbers
vector<int> intVec;
intVec.push_back(5);
intVec.push_back(10);
assert(intVec[0] == 5);
assert(intVec.size() == 2);

}

Notice two things: The headers for STL aren’t post-fixed by .h, and the
code uses the Using keyword, which you may not have seen before.

Appendix: An STL Primer � 515

Namespaces essentially are blocks of functions, classes, and variables that
sit in their own namespace (in this case, the namespace std). That way all
of STL doesn’t cloud the global namespace with all of its types (you may
want to define your own class called string, for example). Putting the
Using keyword at the top of a .cpp file declares that we want the entire std
namespace to be introduced into the global namespace so we can just say
vector<int>. If we don’t do that, we would need to specify the namespace
we were referring to, so we would put std::vector<int>.

Iterators

Accessing individual elements of a vector is pretty straightforward; it’s, in
essence, an array (just a dynamic one) so we can use the same bracket-
style syntax we use to access regular arrays. What about lists? Random
access in a list is extremely inefficient, so it would be bad to allow the
bracket operator to be used to access random elements. Accessing ele-
ments in other containers, like maps, makes even less intuitive sense. To
remedy these problems, STL uses an iterator interface to access elements
in all the containers the same way.

Iterators are classes that each container defines that represent ele-
ments in the container. Iterators have two important methods: dereference
and increment. Dereference accesses the element to which the iterator is
currently pointing. Incrementing an iterator just moves it such that it
points to the next element in the container.

For vectors of a type T, the iterator is just an alias to a pointer to a T.
Incrementing a pointer will move to the next element in the array, and
dereferencing will access the data. Linked lists use an actual class, where
increment does something like (currNode = currNode->pNext) and
dereference does something like (return currNode->data).

In order to make it work swimmingly, containers define two important
iterators, begin and end. The begin iterator points to the first element in
the container (vec[0] for vectors, head.pNext for lists). The end iterator
points to one-past-the-last element in the container; the first non-valid ele-
ment (vec[size] for vectors, tail for lists). In other words, when our iterator
is pointing to end, we’re done. Listing A.4 gives some sample code for
using iterators.

Listing A.4: Using iterators

#include <list>
#include <vector>
#include <string>

using namespace std;

class cFoo
{

...
public:

516 � Appendix: An STL Primer

void DoSomething();
}

void main()
{

vector< cFoo > fooVec;

// Fill fooVec with some stuff
...

// Create an iterator
vector<cFoo>::iterator iter;

// Iterate over all the elements in fooVec.
for(iter = fooVec.begin();

iter != fooVec.end();
iter++)

{
(*iter).DoSomething();

}
}

You should realize that the picture is much richer than this. There are actu-
ally several different types of iterators (forward only iterators, random
iterators, bidirectional iterators). I’m just trying to provide enough infor-
mation to get your feet wet.

Why are iterators so cool? They provide a standard way to access the
elements in a container. This is used extensively by the STL generic algo-
rithms. As a first example, consider the generic algorithm for_each. It
accepts three inputs: an iterator pointing to the first element we want to
touch, an iterator pointing to the-one-after-the-last element, and a functor.
We’ll get to functors in a second. The functor is, as far as we care right
now, a function called on each element in the container. Look at Listing
A.5.

Listing A.5: A cleaned-up version of for_each

// for_each. Apply a function to every element of a range.
template <class iterator, class functor >
functor for_each(iterator curr, iterator last, functor f)
{

for (; curr != last; ++curr)
{

f(*curr);
}
return f;

}

This code will work with any kind of iterator, be it a list iterator or a vector
iterator. So you can run the generic function (or any of the other several

Appendix: An STL Primer � 517

dozen generic functions and algorithms) on any container. Pretty sweet,
huh?

Functors

The last thing we’ll talk about in this short run through the STL are func-
tors. They are used by many of the generic algorithms and functions (like
for_each, discussed above). They are classes that implement the parenthe-
ses operator. This allows them to mimic the behavior of a regular function,
but they can do neat things like save function state (via member
variables).

Chapter 8 uses a functor to search through a list of z-buffer formats for
a good match using the generic algorithm find_if. The algorithm runs the
functor on each element in the container until either it runs out of ele-
ments or the functor returns true for one of the elements (in this case, the
particular z-buffer format we wish to use). See the source code for Chapter
8 to get an idea of how functors work.

518 � Appendix: An STL Primer

Index

~MTUDP(), 256
2D graphics, 39-51
32-bit color, 40

A
ACKPacket, 274-278
Acquire(), 77
action steering, 204
AddACKMessage(), 275
addition, vector, 125-126
AddPacket(), 262-263
AddRef(), 30
addresses, 246-247
addressing, texture, 420-422
AdjustWindowRect(), 18
affine mapping, 419
AI, 204

rule-based, 228-229
types of, 204

aliasing, 423-425
alpha blending, 413-414

enabling, 415-416
equation, 414
modes, 415-417

alpha channel, 40
alpha component, 173-174
ambient light, 176
ambient reflection, 176
amplitude, 94
animation, 345-352
anistropic filtering, 428-429
application, registering, 12
approximating, 378-379
approximative portal rendering, 497-498
artificial intelligence, see AI
Assign(), 123-124
audio, see sound
axis-angle rotations, 165-167

B
back buffer, 42
back-face culling, 143-144
Begin(), 251
Bezier curve, 355

calculating, 360-362
drawing, 355-359
using with matrix, 359-360

big endian, 245-246
bilinear filtering, 427
bit block transfer, 47-48
blitting, 47-48
border color addressing, 422
BorrowPacket(), 270-271

bounding box, 171
bounding sphere, 171

implementing, 172-173
b-rep, 133
BSP tree, 184

algorithms, 189-192
code, 192-202
building, 185-189
using to test line segments, 191-192
using to text location of points, 191

bSphere3 structure, 172-173
b-spline curves, 373-374
b-spline example application, 374-375
buffer, 96, 307-309, 322 see also sound buffers

DirectSound, 96
frame, 292
setting primary, 104-105

buffered data access, 73
buffering, 42
butterfly subdivision scheme, 379

C
cApplication, 23, 26-28

modifying, 66, 91, 114
cBspTree, 192-202
cDataPacket, 261
cFwdDiffIterator, 364-366
cGameError, 24
cGraphicsLayer, 55

modifying, 333-334
chasing algorithm, 205-206
cHost, 264-267
cInputLayer, 77-91
clamp addressing, 421-422
class encapsulation, 23-25
Cleanup(), 256
client area, 5
client space, 16
client/server configuration, 248
ClientToScreen(), 17
Clip(), 147
clipper, 52
clipping, 144-149, 316-317
cModel, 335-340
cMonitor, 252-253
cNetClock, 279-280
collision detection, 171-172
color, representing, 39-40, 173-174
color4 structure, 174-176
COM, 29-32
COM interface, 30
COM object, 29-30

Index � 519

creating, 32
Component Object Model, see COM
concave polygons, 133
continuity, 356
control points, 355
convex polygons, 133
cooperative level, setting, 76, 103
coordinates, 40
cQueueIn, 261-264
cQueueOut, 270
Create(), 102
CreateDevice(), 62-63
CreateOffscreenPlainSurface(), 53-54
CreateVertexBuffer(), 308
CreateWindow(), 12-13
cross product, 132
cSlowBezierIterator, 361-362
cSound, 108-114
cSoundLayer, 102, 105-107
cTexture, 432-435
cubic curves, 355
cubic environment mapping, activating, 451
cubic environment maps, 448-450
cUnreliableQueueIn, 274
cUnreliableQueueOut, 274-275
curves,

subdividing, 376-378
drawing, 366

cViewCone, 492-496
cWindow, 23, 25-26

D
D3D vertex structure macros, 323-324
D3DBLEND enumeration, 415-416
D3DCAPS9 structure, 293-296
D3DCMPFUNC enumeration, 479

values, 300
D3DCOLOR structure, 300-301
D3DCOLORVALUE structure, 301-302
D3DFOGMODE enumeration, 321-322
D3DLIGHT9 structure, 310-311
D3DMATERIAL9 structure, 314-315
D3DMATRIX structure, 302
D3DPRESENT_PARAMETERS structure, 60-62
D3DSTENCILOP enumeration, 478
D3DSURFACE_DESC structure, 44-46
D3DTEXTUREOP enumeration, 440-441
D3DTEXTURESTAGESTATETYPE enumeration,

438-439
D3DTRANSFORMSTATETYPE enumeration, 317
D3DVECTOR structure, 302
D3DVIEWPORT9 structure, 317-318
D3DX, 334
D3DXLoadSurfaceFromSurface(), 48-49
dark maps, see light maps
data access, 73-74
DDS, 431

format, 431-432
dedicated servers, 248

DefWindowProc(), 7, 16
depth ordering, 415
depth problem, 303-305
DestroyAll(), 65-66
detail mapping example application, 456-458
detail maps, 451-456

setting up using multipass, 456
setting up using multitexture, 455

device capabilities,
determining, 293
validating, 481-483

device render states, 298-300
setting, 296-297

device states, receiving, 73-74
device types, 292-293
devices, 72

receiving state of, 73-74
diffuse light, 176
Dijkstra’s algorithm, 215-218
DIMOUSESTATE structure, 74
Direct3D, 37-38

adding to graphics layer, 328-333
device object, 51-52
device, 289-290
example application, 66-69
Immediate Mode, 37
implementing, 55-66
initializing in full-screen mode, 60-65
initializing, 328-333
modes, 52
render states, 298-300
rendering device, creating, 62-64
Retained Mode, 37
shutting down, 65
structures, 300-302
textures in, 429-431

Direct3D object, 53, 289
creating, 60

Direct3D Surface, see DDS
Direct3D9 object, 290
Direct3DCreate9(), 60
Direct3DDevice9, 290-291
Direct3DX library, see D3DX
DirectDraw, 36-38
DirectInput, 71

devices, 72
example application, 114-118
implementing, 77-91
keyboard constants, 75-76
object, creating, 77
vs. Win32 API, 71-72

DirectInput8Create(), 77
directional lights, 179-180
DirectMusic, 93
DirectSound, 93

implementing, 102-107
buffers, 96
example application, 114-118
interfaces, 95-96

520 � Index

object, creating, 103
DirectSoundCreate8(), 103
DirectX, 33-34

installing, 34
DirectX Graphics, 37-38
Dist(), 125
division, vector-scalar, 127-128
DOS programming vs. Windows programming,

1-2
dot product, 129-131
double buffering, 42
DrawIndexedPrimitive, 327
DrawIndexedPrimitiveUP, 327-328
DrawPrimitive(), 326
DrawPrimitiveUP(), 326-327
DSBUFFERDESC structure, 96-98
dynamic address, 246-247

E
edge collapse, 395-396
edge selection, 396-397

algorithms, 397-399
edge split, 376-377
emissive light, 177
End(), 252
endianness, 245
environment mapping, 446-451
error codes, 6
Euler rotation transformation, creating, 164-165
evading algorithm, 206
exact portal rendering, 496-497
examples

b-spline, 374-375
D3D object viewer, 334-344
detail mapping, 456-458
Direct3D application, 66-69
DirectInput application, 114-118
DirectSound application, 114-118
Hello World, 7-10
inverse kinematics, 352-354
Mobots Attack!, 506-512
modified butterfly subdivision scheme,

383-394
neural networks, 235-243
path planning, 220-223
potential functions, 210-212
radiosity, 407-411
teapot, 368-373
using detail mapping, 456-458
using multipass and multitexture effects,

461-477
execute buffers, 322

F
filtering, 425-429
flexible vertex format, 322-323
focus, 5
fog, 318-319

render states, 320-321
form factor, 405-407

forward differencing, 362-366
forward kinematics, 347-349
frame buffer, 292
frequency, 94
frustrum, 491
full-screen rendering, 52

G
game example, 506-512
GDI, 18

drawing on surfaces with, 51
genetic algorithms, 226-228
geographic independence, 282
geometry pipeline, 316
geomorphs, 396
GetClientRect(), 17
GetDC(), 51
GetDeviceState(), 74
GetMaterial(), 315
GetPacketForResend(), 270
GetPreviousPacket(), 270-271
GetReliableData(), 260, 266-267
GetRenderState(), 297-298
GetStatus(), 99-100
GetTextureStageState(), 437
GetTransform(), 316-317
GetViewport(), 318
gimbal lock, 166
globally unique identifier, see GUID
gloss mapping, setting up, 460-461
gloss maps, 459-460
glow maps, 458

setting up using multipass, 459
setting up using multitexture, 458

Gouraud shading, 182-183
Graphical Device Interface, see GDI
graphics layer, adding Direct3D to, 328-333
GUID, 32

H
HAL, 54, 292
handle, 6
hardware abstraction layer, see HAL
hardware emulation layer, see HEL
HasMessages(), 24
HEL, 54
Hello World example, 7-10
hierarchical animation model, 345-346
hill climbing, 227-228
homogenous coordinate, 155-156
host address, 246
host names, 247
Hungarian notation, 3
HWND, 6

I
ICMP, 249
identity matrix, 153
IDirect3D9 interface, 53

acquiring, 329

Index � 521

IDirect3DSurface9 interface, 47
methods, 47

IDirectInputDevice8, 72
IDirectSound3DBuffer8 interface, 95
IDirectSound3DListener8 interface, 95
IDirectSound8 interface, 95
IDirectSoundBuffer8 interface, 95
IDirectSoundCapture8 interface, 95
IDirectSoundCaptureBuffer8 interface, 95
IDirectSoundNotify8 interface, 95
IK, see inverse kinematics
IKsPropertySet8 interface, 96
immediate data access, 73-74
independence, 282-283
intensity, 402
interface, querying for, 31
Internet Control Message Protocol, see ICMP
Internet Protocol, see IP
interpolating, 378-379
inverse kinematics, 349-352

example application, 352-354
IP, 249
IP address, 246
IUnknown interface, 30

L
Lambert shading, 182
leaf-based BSP trees, 185
leaves, 184
left-handed coordinate system, 120
libraries, 35-36
light mapping, 443-445
light maps, 443-444

setting up using multipass, 444-445
setting up using multitexture, 444

light types, 179-181
LightEnable(), 312
lighting, 173

models, 176-177
lights, using, 310-314
limit surface, 376
lines, clipping, 144-145
link ping, 278
listeners, 78
little endian, 245-246
local coordinate space, 157
location, defining, 141-143
Lock(), 100-101, 308-309
lock, 43
locking, 42-43
LockRect(), 50-51
locomotion, 204-205
logical path, 213
LookAt matrix, 167-170

M
Mag(), 124
magnification, 425-426
magnitude, 120
MagSquared(), 124

mapping, affine, 419
perspective, 419-420
perspective-correct, 419-420
texture, 417-419

mask, 377
materials, using, 314-316
matrices, see matrix
matrix, 152

addition, 152
inverse, 170-171
multiplication, 152-153, 162-163
operations, 152-153

matrix4 structure, 161-162
memory and surfaces, 49-50
menu bar, 4
message handling in Windows, 5
message processing, 6-7
message pump, 12
MessageBox(), 14-15
messages, 5

processing, 6-7
system, 16

MFC, 22-23
Microsoft Foundation Classes, see MFC
minification, 426
MIP map, 425
mirror addressing, 421
mirrors, implementing, 498-501
mixer, 96
MMX, 293
Mobots Attack! example game application,

506-512
modified butterfly subdivision scheme, 379-383

example application, 383-394
motivation, 204, 224
motor skills, 204
MSG structure, 5
MTUDP, 251

classes, 261-267, 274-275, 279-282
functions, 255-261, 268-274, 275-279

MTUDP(), 256
MTUDPMSGTYPE, 271-272
multipass,

example application, 461-477
using to set up detail maps, 456
using to set up glow maps, 459
using to set up light mapping, 444-445

multiple textures, using for effects, 443
multiplication, vector-scalar, 127-128
multitexture,

example application, 461-477
using to set up detail maps, 455
using to set up glow maps, 458
using to set up light mapping, 444

multitexturing, 291
multithreaded UDP class, see MTUDP
multithreading, 250-251
mutexes, 252-254

522 � Index

N
nameless struct, 123
network models, 247-248
network play, implementing, 282-287
neural networks, 229-230, 232-234

AND function, 232-233
example application, 235-243
OR function, 233
training, 234
using in games, 234-235
XOR function, 233-234

neuron, 230-232
NFA, 224-226
node-based BSP trees, 185
nodes, 184
non-deterministic finite automata, see NFA
normal, 137-138
Normalize(), 124

O
object, 149

representing, 149-151
object viewer example application, 334-344
octrees, 488
off-screen buffer, 42
origin, 40, 120
overdraw counter, 479

setting stencil buffer for, 479-480

P
packets, 249-250
painter’s algorithm, 303-304
paletted color, 39-40
parallel lights, 179-180
patches, 354, 402
path, finding shortest, 219-220
path following, 212
path planning, 212-218

example application, 220-223
pattern, 206
pattern-based algorithm, 206-207
peer-to-peer configuration, 247-248
perspective mapping, 419-420
perspective projection matrix, 170
perspective-correct mapping, 419-420
Phong shading, 183
physical controllers, 205
picture element, 39
pitch, 43-44
pixel, 39
pixel fog, 318, 320
plane, 137-139

constructing, 139-140
splitting, 142
using to define point location, 141-143

plane3 structure, 139
Play(), 98-99
point lights, 180
point sampling, 426
POINT structure, 16-17

point3 structure, 122-123
functions, 123-125
operators, 125-132

points, 119-122
testing locality of using BSP tree, 191
using plane to define location of, 141-143

polygons, 133-134
clipping, 145-147
implementing, 133-135
ordering, 189
splitting, 148-149

portal, 214
portal effects, 498-502
portal generation, 502-504
portal polygon, 503
portal rendering, 488-491

approximative, 497-498
exact, 496-497
precalculated, 504-505

ports, 247
PostMessage(), 16
potential functions, 208-210

example, 210-212
Potentially Visible Set, see PVS
precalculated portal rendering, 504-505
primary buffers, 96

setting, 104-105
primary surface, 42
primitives, types of, 325-326
Process(), 212
ProcessIncomingACKs(), 275, 277-278
ProcessIncomingData(), 260, 266, 272-273
ProcessIncomingReliable(), 265
progressive meshes, 394-396

implementing, 399-400
progressive radiosity, 405
projection matrix, creating, 332-333
protocols, 248-249
Pump(), 24
PVS, 504-505

implementing, 505
Pythagorean theorem, 120-121

Q
quadric curves, 355
quadtrees, 487-488
QueryInterface(), 30-31

R
radiance, 402
radiant emitted flux density, 402
radiosity, 401-404

example application, 407-411
progressive, 405

Ramp, 293
rasterization, 290
RECT structure, 17
reference counting, 30
Release(), 30, 54
ReliableSendTo(), 261, 268-270

Index � 523

render states, 298-300
rendering,

full-screen, 52
windowed, 52

resize bars, 5
ReturnPacket(), 270-271
right-handed coordinate system, 120
ring configuration, 248
rotation transformation, 153-155, 164

creating, 164-165
rule-based AI, 228-229

S
scalar quantities, 119
scan line, 40-41
scene management, 485-486

systems, 486
screen space, 16
scripted AI, 207
secondary buffers, 96
SendMessage(), 16
SendUpdate(), 284
SetAddress(), 264-265
SetCooperativeLevel(), 76, 103-104
SetDataFormat(), 73
SetFVF(), 324
SetLight(), 311-312
SetMaterial(), 315
SetPriority(), 431
SetRenderState(), 297
SetStreamSource(), 309
SetTexture(), 435
SetTextureStageState(), 437
SetTransform(), 316-317
SetViewport(), 318
shading models, 181-183
sLight, 312-314
sMaterial, 315-316
socket handle, 247
sound, 94-95

importance in games, 93
sound buffers, using, 98-102
sound layer, creating, 102
sparse matrix, 404
spatial relationships, determining, 183-184
specular highlight, 176-177
specular light, 176-177
specular maps, 451
specular reflection, 178-179
spherical environment maps, 446-448
splines, 354-355
Split(), 148-149
spotlights, 180-181
sprites, 345
Standard Template Library, see STL
StartListening(), 256-257
StartSending(), 257-258
Startup(), 255-256
state machine, 296

static address, 246
steering algorithms, 205-223
steering, 204
stencil buffer render states, 478
stencil buffer, 307, 477

using, 477, 479-481
STL, 515

containers, 516-518
functors, 520
iterators, 518-520
templates, 515-516

Stop(), 98
structures

bSphere3, 172-173
color4, 174-176
D3DCAPS9, 293-296
D3DCOLOR, 300-301
D3DCOLORVALUE, 301-302
D3DLIGHT9, 310-311
D3DMATERIAL9, 314-315
D3DMATRIX, 302
D3DPRESENT_PARAMETERS, 60-62
D3DSURFACE_DESC, 44-46
D3DVECTOR, 302
D3DVIEWPORT9, 317-318
DIMOUSESTATE, 74
DSBUFFERDESC, 96-98
matrix4, 161-162
MSG, 5
plane3, 139
POINT, 16-17
point3, 122-123
RECT, 17
WAVEFORMATEX, 98

subdivision schemes, 376-378
butterfly, 379
example application, 383-394
modified butterfly, 379-383
stationary vs. non-stationary, 379
uniform vs. non-uniform, 379
using with triangles, 378

subdivision surfaces, 376
subtraction, vector, 125-126
surface, primary, 42
surface chain, 44
surfaces, 42-46

and memory, 49-50
complex, 44
creating, 53-54
describing, 44
drawing, 367-368
drawing on with GDI, 51
loading, 48
locking, 42-43
modifying, 50-51

Sutherland-Hodgeman algorithm, 146
Synchronize(), 280-281
system messages, 16

524 � Index

T
table fog, 318
task generation, 204
TCP, 249
teapot example application, 368-373
tearing, 41-42
temporal independence, 283
texel, 418
texture, 417-418
texture addressing, 420-422
texture aliasing, 423-425
texture blending, 437
texture coordinate, 418
texture formats, 418-419
texture loading, 431
texture management, 430-431
texture mapping, 309-316, 417-419, 436-477
texture stages, 436-437
texture transforms, 441-442
texture wrapping, 423
textures, activating, 435
textures in Direct3D, 429-431
ThreadProc(), 252, 258-260
title bar, 4
transformation matrix, inverse of, 158-159
transformations, 151, 153-161

creating, 163-165
translation transformation, 151, 163

creating, 163-164
translocators, 501-502
Transmission Control Protocol, see TCP
transmission latency ping, 278
triangle fans, 136-137
triangle strips, 136-137
triangles, 135-136

implementing, 136
trilinear filtering, 427-428
true color, 40
try/throw/catch, 254

U
UDP, 249

implementing, 250-282
union, 123
unit sphere, 121
unit vector, 121
universe box, 503
Unlock(), 101
UnlockRect(), 51
User Datagram Protocol, see UDP
user input, 71

V
ValidateDevice(), 481-482
vector equality, 128-129
vector operators, 125-132
vector quantities, 119
vectors, 119
vertex buffers, 307-308

using, 307-309

vertex fog, 318-320
vertex split, 395-396
vertical blank, 41
vertical retrace, 41
vertices, 149
view space, 158
viewport, 316-317

creating, 331-332
Visual C++, setting up, 34-36

W
WAV files, loading, 101-102
WAVEFORMATEX structure, 98
w-buffering, 306
Win32, 2
Win32 API vs. DirectInput, 71-72
window,

class, 12
handle, 6
initializing, 12-15
messages, 18-22
procedure, 6-7

windowed rendering, 52
Windows message handling, 5

vs. DOS programming, 1-2
windows, 4-5
WinMain(), 10-11
Winsock, 247
wipe, setting stencil buffer for, 480
WM_CLOSE message, 19
WM_CREATE message, 18
WM_DESTROY message, 19
WM_ERASEBKGND message, 19
WM_KEYDOWN message, 19
WM_KEYUP message, 19
WM_LBUTTONDOWN message, 20
WM_LBUTTONUP message, 21
WM_MBUTTONDOWN message, 20-21
WM_MBUTTONUP message, 21
WM_MOUSEMOVE message, 19-20
WM_MOUSEWHEEL message, 21-22
WM_MOVE message, 19
WM_PAINT message, 18
WM_QUIT message, 19
WM_RBUTTONDOWN message, 21
WM_RBUTTONUP message, 21
WM_SIZE message, 19
WndProc, 6-7, 15-16
world coordinate space, 157
wrap addressing, 420-421

Z
z-buffering, 304-305

Index � 525

Looking for more?Looking for more?

Check out Wordware’s market-leading Game Developer’s
Library featuring the following new releases.

LightWave 3D 7 Character
Animation
1-55622-901-1 • $49.95
7½ x 9¼ • 360 pp.

Visit us online at www.wordware.com for more information.

Use the following coupon code for online specials: dx9-9682

Direct3D ShaderX Vertex and
Pixel Shader Tips and Tricks
1-55622-041-3 • $59.95
7½ x 9¼ • 520 pp.

Wireless Game Development
in C/C++ with BREW
1-55622-905-4 • $49.95
6 x 9 • 416 pp.

Game Development and
Production
1-55622-951-8 • $49.95
6 x 9 • 432 pp.

Game Design Foundations
1-55622-973-9 • $39.95
6 x 9 • 400 pp.

Vector Game Math Processors
1-55622-921-6 • $59.95
6 x 9 • 528 pp.

LightWave 3D 7.5 Lighting
1-55622-354-4 • $69.95
6 x 9 • 496 pp.

Java 1.4 Game Programming
1-55622-963-1 • $59.95
6 x 9 • 672 pp.

Learn FileMaker Pro 6
1-55622-974-7 • $39.95
6 x 9 • 504 pp.

FileMaker Pro 6 Developer’s
Guide to XML/XSL
1-55622-043-X • $49.95
6 x 9 • 416 pp.

Advanced FileMaker Pro 6 Web
Development
1-55622-860-0 • $59.95
6 x 9 • 464 pp.

	Advanced 3D Game Programming Using DirectX® 9.0
	Advanced 3D Game Programming Using DirectX® 9.0
	Copyright
	Dedications
	Contents
	Acknowledgments

	Introduction
	Chapter 1 Windows
	A Word about Windows
	Hungarian Notation
	General Windows Concepts
	Message Handling in Windows
	Explaining Message Processing

	Hello World ¡ª Windows Style
	Explaining the Code
	Registering the Application
	Initializing the Window
	WndProc ¡ª The Message Pump

	Manipulating Window Geometry
	Important Window Messages
	MFC
	Class Encapsulation
	COM: The Component Object Model
	Conclusion

	Chapter 2 Getting Started with DirectX
	What Is DirectX?
	Installation
	Setting up VC++
	What Happened to DirectDraw?!
	Direct3D
	2D Graphics ¡ª A Primer
	Surfaces
	The IDirect3DSurface9 Interface
	Surface Operations
	Surfaces and Memory
	Modifying the Contents of Surfaces
	Drawing on Surfaces with GDI

	The Direct3D Device Object
	Windowed vs. Full- screen

	The Direct3D Object
	Creating Direct3D Surfaces
	More on Direct3D Devices

	Implementing Direct3D with cGraphicsLayer
	Creating the Graphics Layer
	Full- screen Initialization
	Shutting Down Direct3D
	Changes to cApplication

	Application: Direct3D Sample

	Chapter 3 Communicating with DirectInput
	Devices
	Receiving Device States
	Cooperative Levels

	Application Focus and Devices
	The DirectInput Object
	Implementing DirectInput with cInputLayer
	Additions to cApplication

	Chapter 4 DirectSound
	The Essentials of Sound
	DirectSound Concepts
	DirectSound Buffers

	Operations on Sound Buffers
	Loading WAV Files

	Implementing DirectSound with cSoundLayer
	Creating the DirectSound Object
	Setting the Cooperative Level
	Grabbing the Primary Buffer

	The cSound Class
	Additions to cApplication

	Application: DirectSound Sample

	Chapter 5 3D Math Foundations
	Points
	The point3 Structure
	Basic point3 Functions
	Assign
	Mag and MagSquared
	Normalize
	Dist

	point3 Operators
	Addition/ Subtraction
	Vector- Scalar Multiplication/ Division
	Vector Equality
	Dot Product
	Cross Product

	Polygons
	Triangles
	Strips and Fans

	Planes
	Defining Locality with Relation to a Plane
	Back- face Culling
	Clipping Lines
	Clipping Polygons

	Object Representations
	Transformations
	Matrices
	The matrix4 Structure
	Translation
	Basic Rotations
	Axis- Angle Rotation
	The LookAt Matrix
	Perspective Projection Matrix
	Inverse of a Matrix

	Collision Detection with Bounding Spheres
	Lighting
	Representing Color
	Lighting Models
	Specular Reflection

	Light Types
	Parallel Lights (or Directional Lights)
	Point Lights
	Spotlights

	Shading Models
	Lambert
	Gouraud
	Phong

	BSP Trees
	BSP Tree Theory
	BSP Tree Construction
	BSP Tree Algorithms
	Sorted Polygon Ordering
	Testing Locality of a Point
	Testing Line Segments

	BSP Tree Code

	Wrapping It Up

	Chapter 6 Artificial Intelligence
	Starting Point
	Locomotion
	Steering ¡ª Basic Algorithms
	Chasing
	Evading
	Pattern- based AI

	Steering ¡ª Advanced Algorithms
	Potential Functions
	The Good
	The Bad
	Application: potentialFunc

	Path Following
	Groundwork
	Graph Theory
	Using Graphs to Find Shortest Paths
	Application: Path Planner

	Motivation
	Non- Deterministic Finite Automata (NFAs)
	Genetic Algorithms
	Rule- Based AI
	Neural Networks
	A Basic Neuron
	Simple Neural Networks
	Training Neural Networks
	Using Neural Networks in Games
	Application: NeuralNet

	Some Closing Thoughts

	Chapter 7 UDP Networking
	Terminology
	Endianness
	Network Models
	Protocols
	Packets

	Implementation 1: MTUDP
	Design Considerations
	Things That Go ¡° argh, my kidney!¡± in the Night
	Mutexes

	Threads, Monitor, and the Problem of the try/ throw/ catch Construction
	MTUDP: The Early Years
	MTUDP:: Startup() and MTUDP:: Cleanup()
	MTUDP:: MTUDP() and MTUDP::~ MTUDP()
	MTUDP:: StartListening()
	MTUDP:: StartSending()
	MTUDP:: ThreadProc()
	MTUDP:: ProcessIncomingData()
	MTUPD:: GetReliableData()
	MTUDP:: ReliableSendTo()
	MTUDP:: ReliableSendTo()

	Implementation 2: Smooth Network Play
	Geographic and Temporal Independence
	Timing Is Everything
	Pick and Choose
	Prediction and Extrapolation

	Conclusion

	Chapter 8 Beginning Direct3D
	Introduction to D3D
	The Direct3D9 Object
	The Direct3DDevice9 Object
	Device Semantics
	Device Types
	Hardware
	Software
	Ramp (and Other Legacy Devices)

	Determining Device Capabilities
	Setting Device Render States

	Fundamental Direct3D Structures
	D3DCOLOR
	D3DCOLORVALUE
	D3DVECTOR
	D3DMATRIX

	The Depth Problem (and How Direct3D Solves It)
	W- Buffering

	Stencil Buffers
	Vertex Buffers
	Texture Mapping
	Materials and Lights
	Using Lights
	Using Materials

	The Geometry Pipeline
	Clipping and Viewports

	Fog
	Vertex- based Fog
	Pixel- based Fog
	Using Fog

	Drawing with the Device
	Direct3D Vertex Structures
	Flexible Vertex Format Flags

	Primitive Types
	The DrawPrimitive Functions
	DrawPrimitive
	DrawPrimitiveUP
	DrawIndexedPrimitive
	DrawIndexedPrimitiveUP

	Adding Direct3D to the Graphics Layer
	Direct3D Initialization
	Acquire an IDirect3D9 Interface
	Fill In the Presentation Parameters
	Create a Viewport and Projection Matrix

	Further Additions to the GameLib
	The Direct3DX Library
	Application: D3D View
	The . o3d Format
	The cModel Class

	Chapter 9 Advanced 3D Programming
	Animation Using Hierarchical Objects
	Forward Kinematics
	Inverse Kinematics
	Application: InvKim

	Parametric Curves and Surfaces
	Bezier Curves and Surfaces
	Bezier Concepts
	The Math
	Finding the Basis Matrix
	Calculating Bezier Curves
	Forward Differencing
	Drawing Curves
	Drawing Surfaces
	Application: Teapot

	B- Spline Curves
	Application: BSpline

	Subdivision Surfaces
	Subdivision Essentials
	Triangles vs. Quads
	Interpolating vs. Approximating
	Uniform vs. Non- Uniform
	Stationary vs. Non- Stationary

	Modified Butterfly Method Subdivision Scheme
	Application: SubDiv

	Progressive Meshes
	Progressive Mesh Basics
	Choosing Our Edges
	Stan Melax¡¯s Edge Selection Algorithm
	Quadric Error Metrics

	Implementing a Progressive Mesh Renderer

	Radiosity
	Radiosity Foundations
	Progressive Radiosity
	The Form Factor
	Application: Radiosity

	Chapter 10 Advanced Direct3D
	Alpha Blending
	The Alpha Blending Equation
	A Note on Depth Ordering
	Enabling Alpha Blending
	Blending Modes

	Texture Mapping 101
	Fundamentals
	Affine vs. Perspective Mapping
	Texture Addressing
	Wrap
	Mirror
	Clamp
	Border Color

	Texture Wrapping
	Texture Aliasing
	MIP Maps
	Filtering
	Point Sampling
	Bilinear Filtering
	Trilinear Filtering
	Anisotropic Filtering

	Textures in Direct3D
	Texture Management
	Texture Loading

	DDS Format
	The cTexture Class
	Activating Textures

	Texture Mapping 202
	Multiple Textures Per Primitive
	Texture Transforms

	Effects Using Multiple Textures
	Light Maps (a. k. a. Dark Maps)
	Environment Maps
	Specular Maps
	Detail Maps
	Glow Maps
	Gloss Maps
	Other Effects

	Application: MultiTex
	Pass 1: Base Map
	Pass 2: Detail Map
	Pass 3: Glow Map
	Pass 4: Environment Map
	Pass 5: Gloss Map
	Pass 6: Cloud Map
	Putting Them All Together

	Using the Stencil Buffer
	Overdraw Counter
	Dissolves and Wipes
	Stencil Shadows and Stencil Mirrors

	Validating Device Capabilities with ValidateDevice()

	Chapter 11 Scene Management
	The Scene Management Problem
	Solutions to the Scene Management Problem
	Quadtrees/ Octrees
	Portal Rendering
	Portal Rendering Concepts
	Exact Portal Rendering
	Approximative Portal Rendering

	Portal Effects
	Mirrors
	Translocators and Non- Euclidean Movement

	Portal Generation
	Precalculated Portal Rendering (PVS)
	Advantages/ Disadvantages
	Implementation Details

	Application: Mobots Attack!
	Interobject Communication
	Network Communication
	Code Structure

	Closing Thoughts

	Appendix
	Templates
	Containers
	Iterators
	Functors

	Index

